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Je remercie également Ophélie Ronce et Olivier Tenaillon d’avoir accepté de par-
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thésards de t’avoir comme directeur.
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Introduction

In this thesis we conducted several projects under the overarching theme of

the dynamics of viral adaptation. Viruses can mutate and adapt in very short time

scales which has direct impacts for example on the way viral diseases like the Human

Immunodeficiency Virus (HIV) are treated, or vaccination strategies are deployed.

The pandemic of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-

2) harshly reminded us of the threat posed by emerging or re-emerging pathogen.

In this context, it is then crucial that we understand the mechanisms driving viral

adaptation to design effective prophylactic, therapeutic or non pharmaceutical in-

terventions which would limit unwanted consequences of viral evolution.

Evolutionary dynamics is moulded by the selective pressures imposed by the

environment. For pathogens, it is the availability of susceptible hosts that consti-

tutes the environment. For this reason, we begin this introduction with a section

on epidemiological dynamics before addressing more precisely the question of viral

adaptation in three distinct sections, corresponding to the three chapters of the the-

sis. First, we present the adaptation of viruses through changes in life-history traits

such as transmission rate or virulence, in a homogeneous host population. Second,

we introduce resistance in the host population, and discuss the effect on pathogen

emergence and subsequent evolution. Third, we discuss the coevolutionary dynam-

ics of viral population with their hosts.

In this thesis we use both theoretical and experimental approaches. With theory

we try to disentangle the effects of different evolutionary mechanisms and provide

qualitative and quantitative predictions for the outcome of viral adaptation. We

use experiments to validate some of these predictions and to try to uncover new

biological processes.
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Epidemiology

SARS-CoV-2: a zoonotic disease

The SARS-CoV-2 pandemic that has swept through human populations since 2019

illustrates how the interplay between epidemiological and evolutionary dynamics

can affect the viral spread. Before the onset of the pandemic, we can speculate that

this virus was circulating in several other mammal species and “jumped” from its

original animal reservoir host to humans in a process known as a zoonotic spillover.

This process has been estimated to be at the origin of 60 to 75% of human emerging

infectious diseases (Taylor, Latham, and Woolhouse, 2001; Woolhouse and Gowtage-

Sequeria, 2005). The spillover of a pathogen from another species to humans requires

two main elements. First the contact between the pathogen and a human host. Hu-

man population growth, alongside massive deforestation and consumption of animal

derived products, has led to an ever-increasing rate of contact between humans,

animals, and their pathogens (Ellwanger and Chies, 2021). Pathogens have spilled

over to humans from a variety of wild animal hosts such as rats, bats and camels,

but also from domesticated animals like poultry and pigs. Secondly, a pathogen in

contact with a human host must be able to successfully infect this host for any kind

of outbreak to happen. This requires specific molecular features, and in particular

for intracellular pathogens like viruses, the recognition of a human receptor to al-

low entry into a human cell before any replication can happen. For example, the

spike protein of SARS-CoV-2 binds the ACE2 receptor which can be found on the

surface of human lung cells, while the crucial amino acids for this binding have not

been found in one of the closest known relative of SARS-CoV-2, the virus RaTG13

infecting the horseshoe bat Rholophus affinis (Andersen et al., 2020).

Epidemiological dynamics

Viruses can jump between different host species through zoonotic spillovers, but not

all spillovers will result in pandemics of the scale of Covid-19. Many “dead end”

spillovers (which are by nature difficult to detect) may result in a pathogen jump to a

new species in which the pathogen cannot replicate significantly. To understand how

epidemic outbreaks can result in such different scenarios, we can use the following

toy SIR (Susceptible-Infected-Recovered) model in continuous time:

5
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Ṡ(t) = b− S(t)(d+ βI(t))

İ(t) = βS(t)I(t)− (d+ α + γ)I(t)

Ṙ(t) = γI(t)− dR(t)

(1)

In this model, susceptible hosts S enter at a constant rate b and die at a per capita

rate d. Infected cells I infect susceptible cells upon contact with a transmission

rate β. Infected hosts suffer an additional mortality of α (which we will call the

virulence), and recover at rate γ, becoming resistant to further infection. In this

model the equilibrium density of susceptible cells in the absence of disease is S(0) =

b/d. One can make the approximation that when a pathogen is introduced, for

example after a zoonotic spillover, the density of susceptible cells is S(0). The

epidemic will grow if the time derivative of the density of infected cells İ > 0. This

results in the following condition:

R0 =
β

d+ α + γ
S(0) > 1 (2)

where R0 is called the basic reproduction number. This number can be interpreted

as the number of secondary infections that will be caused, on average, by a single

infected host in a population of otherwise susceptible hosts (Anderson and May,

1992). Indeed, if an infected host infects, on average, less than one other host,

the number of infected hosts will decrease over time and the epidemic will become

extinct. On the other hand, if this number is greater than 1, the number of infected

hosts will increase and the infection will spread in the host population. Examining

the expression for R0 gives intuition as to why certain viruses will cause massive

pandemics and others only small and contained outbreaks. To successfully spread

to other hosts, the pathogen must easily be transmitted from infected to susceptible

hosts with rate β. The duration of infectiousness also needs to be sufficiently long.

Indeed if infected hosts die or recover quickly, there may not be enough time to

cause secondary infections. This period of time, which in the simple SIR model is

the lifespan of an infected host, is found in the expression for R0 and is equal to
1

d+α+γ
. Finally the basic reproduction number depends on the density of susceptible

hosts, which can be thought of as the resource available to the pathogen. If the

pathogen successfully emerges, then the system will eventually converge towards

the following endemic equilibrium:

S⋆ =
d+ α + γ

β

I⋆ =
bβ − d(d+ α + γ)

β(d+ α + γ)

(3)
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Disease emergence and stochasticity

The question of emergence of a pathogen is inherently linked to small populations

of pathogens, down to just a single infected host. Indeed with small numbers, the

approximation that a pathogen will escape initial extinction and create an epidemic

if R0 > 1 does not hold. In fact, what this deterministic result provides is a lower

bound on the basic reproduction number for the emergence of an epidemic. Let us

consider a single infected host with R0 = 2 in a population of otherwise susceptible

hosts. On average, such a host would infect two other hosts. Yet, the introduction of

this pathogen is not certain to lead to a major epidemic. Pathogen emergence in the

simple context of our SIR model can be modeled with a one dimensional birth-death

branching process, and the probability of emergence (Diekmann, Heesterbeek, and

Britton, 2013) after the introduction of I0 infected host with R0 > 1 is:

pne = 1−
(

1

R0

)I0

(4)

Thus the higher the R0, the likelier the pathogen is to escape initial extinction.

The number of introduced infected hosts, which we can relate to the number of

events of zoonotic spillover, also increases this probability.

7
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Adaptation

The rest of this introduction is divided into three sections, corresponding to the

three chapters of this thesis. The objectives of each chapter are presented at the

end of the corresponding section.

1. Pathogen adaptation in an homogeneous host population

Fitness and the dynamics of a mutant pathogen

If a newly introduced pathogen escapes initial extinction, it will eventually reach a

high enough density so that it can be well described by deterministic demographic

trajectories. In this framework, the value of R0 is not well suited as it describes the

number of secondary infections produced by an infected host, but with no indication

on the speed of such infections. To study demographic trajectories in continuous

time, the more appropriate measure is the malthusian fitness or growth rate. In the

epidemiological model (1) the fitness of infected hosts is:

r(t) = βS(t)− (d+ α + γ) (5)

When the malthusian fitness is positive, the number of infected hosts increases.

Malthusian fitness provides critical information to study adaptation. Let us now

consider the following system where there are two strains of a pathogen (Iw for

wild-type and Im for mutant) with different values of life-history traits, and thus

fitness:

Ṡ(t) = b− S(t)(d+ βwIw(t) + βmIm(t))

İw(t) = βwS(t)Iw(t)− (d+ αw + γw)Iw(t)

İm(t) = βmS(t)Im(t)− (d+ αm + γm)Im(t)

Ṙ(t) = γwIw(t) + γmIm(t)− dR(t)

(6)

Although not immediately apparent, one can check that it is their difference

in fitness which dictates which of these strains outgrows the other. If we study

pm(t) = Im(t)/(Iw(t) + Im(t)) we get:

ṗm(t) = pm(t)
(
1− pm(t)

)
︸ ︷︷ ︸

variance

(
rm(t)− rw(t)

)
︸ ︷︷ ︸
selection coefficient

(7)
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We see that a mutant will invade a population if its fitness is higher than the

fitness of the resident wild-type strain, and the speed is controlled by the fitness

difference as well as the frequency of the mutant at that time.

Long term adaptation

We have seen with equation (7) the dynamics of the frequency of a mutant pathogen.

Now we can ask the question: can a certain mutant m invade a population where

there is a resident strain w? And more generally, can we find a strain that cannot

be invaded by any other? Addressing this question requires the introduction of the

term Evolutionary Stable Strategy (ESS): a strategy which, in a given environment,

cannot be displaced by a new emerging strategy. A naive method to find the ESS is

developed in the Teaching Appendix C, where we build a Pairwise Invasibility Plot,

which explores in a given space of life-history traits whether a mutant strain will

outcompete a resident strain. To find the ESS analytically in our simple epidemio-

logical model we can use the maximisation of R0 criteria (Anderson and May, 1982):

the strain with the highest possible R0 will not be invaded by any other strain, and

thus be at the ESS. If a pathogen strain spreads more between hosts, then it will be

favoured by natural selection. The speed of pathogen spread can also be quantified

by the malthusian fitness. Consider an endemic equilibrium for a resident pathogen

strain w where the density respectively of infected and susceptible hosts are I⋆w and

S⋆
w. This strain will be at the ESS if at its endemic equilibrium, any other mutant

strain m has a negative fitness upon introduction. This invasion fitness for pathogen

m is:

r⋆m = βmS
⋆
w − (d+ αm + γm) (8)

Indeed, if this invasion fitness is negative, the mutant strain m will not be able

to grow and thus will not outcompete the resident ESS strain. From the above

expression, it is easy to check that consistent with the idea of R0 maximisation, the

invasion fitness being negative is equivalent to the condition that the R0 of strain

m is lower than the R0 of the ESS strain.

R0 maximisation has been tightly linked to the development of the adaptive the-

ory of virulence, which probably stemmed from Theobald Smith’s “Law of declining

virulence” (Méthot, 2012). For a long time, virulence has been seen as a transient

side effect of disease emergence, based on the idea that a virulent pathogen will

greatly deplete its resource: susceptible hosts.

Referred to as the “conventional wisdom” by (May and Anderson, 1983), this

9
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Figure 1: The trade-off curve and finding the ESS. Maximal transmission rate

β is dependent on the virulence and we show it as a function of d + α + γ which

corresponds to the rate at which the infection ends. All phenotypes in the shaded

area under the curve are accessible, but through natural selection they will be cleared

and strains with higher transmission rate and lower virulence will be selected, until

they reach the boundary of the trade-off curve. The ESS can be determined using

the tangent to the trade-off curve that passes through the origin. Indeed, R0 is

maximised when the ratio β(α)/(d + α + γ), which corresponds to the slope of the

dashed line, is maximised.

classical hypothesis that pathogens would tend to avirulence has since been chal-

lenged, perhaps most notably with the trade-off hypothesis (Anderson and May,

1982) reviewed in (Alizon et al., 2009). This hypothesis states that virulence is an

unavoidable consequence of parasite transmission as the latter must come at a cost.

For instance a given value of transmission rate requires a minimum value of viru-

lence based on underlying mechanisms. One such mechanism would be that both

transmission rate and virulence are dependent on the within-host reproduction of

the pathogen. A better reproduction would lead, for a virus, to an increased amount

of viral particles which would lead to an increased viral shedding and a better spread

between hosts. However an enhanced reproduction within the host would certainly

impose a cost on this host, linked to the virulence.

An interesting metaphor for the transmission-virulence trade-off is proposed by

(Bonneaud and Longdon, 2020). To travel between islands, humans would need to
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build boats. To build such boats they would need to cut down trees to get wood,

and in doing so they would deplete the resources from their present island. Thus

they would need to make the most boats while cutting down the minimum number

of trees to be able to visit more new islands. In the same way, pathogens need to

optimize the use of their hosts resources to spread. A “trade-off curve” is often used

to model this hypothesis where the transmission rate is now β(α). It corresponds to

a parametric curve linking directly virulence with the maximum transmission rate it

allows. If this curve is convex (positive second derivative) or linear, then no ESS can

be achieved and a more transmissible and virulent strain on the curve will always

be favoured. A more biologically meaningful curve is a concave (negative second

derivative) one, where there is a saturation in the increase of transmission rate with

virulence. In this case, a single ESS exists where R0 is maximised and we show in

Figure 1 how the corresponding computation can be visualised.

Yet maximising R0 to obtain the ESS is not a generality and there are cases

when this rule does not apply. In fact, evolution will only maximise R0 in very

simple environments and does not apply when more complex environmental feedback

loops are introduced (e.g. density-dependent mortality, host heterogeneity, spatial

structure etc...)(Lion and Metz, 2018). Besides in simple environments such as our

SIR model, the ESS will indeed be a strategy where R0 is maximised, yet this only

applies at equilibrium. We show in the Teaching Appendix that transiently, other

strains can outcompete the ESS, particularly after the introduction of the pathogen.

In this case, the density of susceptible hosts is higher than at equilibrium, and a

strain with a higher transmission rate than the ESS would actually be favoured.

Fisher’s fundamental theorem of adaptation

The interplay between fitness and natural selection was described by Fisher in 1930

with the “Fundamental theorem of natural selection”. This theorem states that

”The rate of increase in fitness of any organism at any time is equal to its genetic

variance in fitness at that time” (Fisher, 1999). Indeed we can transform the previous

expression (7) to obtain the dynamics of mean fitness:

ṙ(t) =
∑

i

pi(t)
(
ri − r

)2

︸ ︷︷ ︸
Variance in fitness

(9)

where pi(t) and ri(t) are respectively the frequency and fitness of strain i. Sim-

ilarly to the dynamics of the mutant frequency, the mean fitness of the pathogen

population will increase with a speed dictated by the heterogeneity in genotypes,
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and the difference in fitness of these genotypes. In this epidemiological context,

it means that the pathogen population will be enriched in strains that are more

transmissible, yet less virulent and with a lower rate of recovery. In the above ex-

pression we dropped the dependence on time, thus assuming a constant population

of susceptible hosts S(t). This is necessary to squarely fit to this formulation of

Fisher’s fundamental theorem. Therefore it should be noted that this formulation

can be misleading and actually describes the rate of increase in fitness from natural

selection only.

Dynamics of life-history traits

Besides mean fitness it is possible to derive directly the dynamics of the mean trait.

If only one trait X is under selection and the environment is constant, the dynamics

of the mean trait in case of perfect heritability can be expressed as:

Ẋ(t) = Cov
(
X(t), rX(t)

)
(10)

where cov(X, rX(t)) denotes the covariance in the population between trait X and

the fitness. For example, if transmission rate β is the only varying trait in the

population, we can write the dynamics of the mean transmission rate as:

β̇(t) = Cov
(
β(t), rβ

)

= Cov
(
β(t), β(t)S − (d+ α)

)

= S Var
(
β(t)

)
(11)

with Var(β) the variance in transmission rate in the population. The mean trans-

mission rate is thus governed by the trait variance, and as the density of hosts S

linearly scales the effect of transmission rate on fitness, it also linearly scales the

intensity of selection on this trait.

Using this approach, it is also possible to study jointly the dynamics of two

traits under selection in the population. Contrary to the equilibrium approach of

R0 maximisation, we can write the dynamics of both mean transmission rate and

virulence as:

(
β̇(t)

α̇(t)

)
=

(
Var
(
β(t)

)
Cov

(
β(t), α(t)

)

Cov
(
β(t), α(t)

)
Var
(
α(t)

)
)

︸ ︷︷ ︸
G

.

(
S(t)

−1

)

(12)

where G is the variance-covariance matrix of the traits.
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Impact of environment change on fitness

Adaptation and the change in mean fitness is not only due to natural selection, but

also to change in environment (Price, 1972). In environment e, the change in mean

fitness r between two points in time is:

∆r = r′|e′ − r|e (13)

where the prime denotes the fitness and environment at the next time point. To

better understand this formula it is useful to rewrite it as (Frank and Slatkin, 1992):

∆r = (r′|e− r|e) + (r′|e′ − r′|e)
= ∆rns +∆rec

(14)

where ∆rns is the effect of natural selection only, while ∆rec describes the change in

mean fitness due to environmental change, these are all the biotic or abiotic factors

that could affect fitness. Thus Fisher’s theorem explains ∆rns only, which explains

its apparent lack of generality. Environmental change include many factors, with

potentially frequency-dependent processes, that can be dependent or not on the

adaptation of the organism of interest.

We can derive the change in mean fitness according to natural selection and

environmental change in our simple epidemiological model. First we must write the

mean fitness using (5) as a function of the mean life-history traits it includes, which

also depend on time:

r(t) = β(t)S(t)− (d+ α(t) + γ(t)) (15)

From which we can write:

ṙ(t) = β(t)Ṡ(t)︸ ︷︷ ︸
∆rec

+ β̇(t)S(t)− α̇(t)− γ̇(t)︸ ︷︷ ︸
∆rns

(16)

We now have an additional term influencing the dynamics of variance in our

simple SIR model. While ∆rns is always positive, i.e. natural selection always

increases mean fitness, the effect of environmental change ∆rec depends on the sign

of Ṡ(t). If the susceptible population decreases (Ṡ(t) < 0) then the quality of the

environment worsens (∆rec < 0) leading to a decline in the infected hosts fitness.

This is what happens after the emergence of a pathogen in a naive population, the

density of susceptible hosts will decrease as the epidemic spreads and thus slows the

growth rate of the infected population. At the endemic equilibrium (3) the density

of infected hosts is stable and so the fitness of infected host must necessarily be zero.

Natural selection can also induce the degradation of the environment. For instance

13
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if a mutant pathogen arises with a higher transmission rate βm > βw and invades

the population, then the susceptible host population will decrease towards the new

equilibrium value (3) corresponding to this new value of β, leading to a negative

∆rec.

Mutation

We have treated in a simple case of SIR model the dynamics of the frequency of two

pathogen strains and the possibility of an ESS, a strategy with which a strain cannot

be invaded by any other strain. Yet the elephant in the room which we have not

treated is how different strains of different genotypes (and thus potentially pheno-

types) arise. Although one could invoke migration as a mechanism that introduces

variability, it is through mutation that new genotypes are generated.

Viruses can exhibit very high rates of mutation which allow them to generate

massive bursts of diversity over short times. It was for example estimated that HIV-

1 could reach rates of 4.1×10−3 substitutions per nucleotide per infection (Cuevas et

al., 2015). For comparison, this rate is estimated to 2.5×10−8 in humans (Nachman

and Crowell, 2000). Of course, mutation rate varies wildly between different viruses

and some exhibit rate close to that of humans. Several elements have been shown

to impact mutation rate (reviewed in (Sanjuán and Domingo-Calap, 2016): RNA

viruses mutate faster than DNA viruses, single stranded viruses mutate faster than

double stranded ones etc.. One interesting characteristic that correlates with muta-

tion rate is genome size: viruses with larger genomes tend to have lower mutation

rates. For example, coronaviruses are the RNA viruses with the largest genomes,

and they are the only RNA viruses to have evolved a proof-reading capacity for

replication, thus limiting the mutation rate (Smith, Sexton, and Denison, 2014).

With such a high mutation rate, the term viral quasispecies has been used to

describe the mutant distribution of viruses (also called mutant cloud or mutant spec-

trum) upon replication (Andino and Domingo, 2015; Domingo and Perales, 2019;

Domingo, Sheldon, and Perales, 2012; Lauring and Andino, 2010). Quasispecies

theory was first developed by Eigen to study the dynamics of a population of primi-

tive replicons (Eigen, 1993). Within this framework, mutation rate is so high that it

is unlikely that upon replication descendants will have the same genomic sequence

as their immediate parent. At the population level this translates to a distribution

of sequences rather than the traditional view of a consensus sequence and some low

frequency variants. The cloud of mutants can spread in the genomic sequence space
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and is only maintained, when mutation is not too strong, by negative selection which

clears unfit mutants. This theoretical framework has been shown to be consistent

with classic population genetics results (Wilke, 2005) and is supported by many

experimental observations for example in HIV (Del Portillo et al., 2011; Jung et al.,

2002) or Hepatitis C (Sobesky et al., 2007).

Mutation rate is only one part of the picture. Another key to describe the mu-

tation process is to infer the effect of mutations on a phenotype, or directly onto

fitness. Genome expression is so complex that we cannot guess the exact effect of

all mutations. Protein 3D models can be used to examine the effect of an amino

acid change on the binding of a protein to a ligand and predict a stronger or re-

duced interaction, but genome expression is so complex that a change in nucleotide

at some location could for example impact the expression of the next gene. We

therefore need experimental measurements to address the question of Distribution

of Fitness Effects (DFE) of mutations, and most results come from what are known

as mutation accumulation experiments.

Mutation accumulation (MA) experiments were first proposed by Muller to study

the rate of mildly deleterious mutations in Drosophila. Indeed mutations are hard

to study and (besides using X-rays to increase mutation rate) he proposed to allow

the accumulation of many mutations in many different Drosophila lines (Muller,

1927). The goal of a MA experiment is to minimise as much as possible the effects

of natural selection, so that a population evolves only through new mutations and

genetic drift. This can be achieved through recurrent bottlenecks of a population,

down to the passage of just one individual. Picking just one individual in a popu-

lation and propagating it arbitrarily fixates any mutation that this individual has

quasi-independently of its fitness effect. Except for highly deleterious or lethal ones,

mutations will accumulate in the lines at the speed with which they would occur

naturally in a genome. After each passage and in each line, a trait (usually growth

rate) can be tested and using parameter estimation techniques, one can access esti-

mates (or bounds) for the value of mutation rate, for the mean effect of mutation

and for the variance in mutational effects. The vast majority of studies have found

that the mean effect of mutation on fitness was deleterious (Halligan and Keight-

ley, 2009). With this information on the mean effect of mutations on fitness s and

the mutation rate U , it is possible to express the direct effect of mutation on the

dynamics of mean fitness :

∆rm = U s (17)
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With a negative value of the mean effect of mutation of fitness s, mutation is

thus a force which directly reduces fitness over time.

Rather than average values of fitness effect, it is also possible to directly infer

DFE of mutations using experimental testing of a collection of artificially induced

mutations. This method requires considerable work to assess the effect on fitness of

individual mutation. Sanjuán et al. used such a method to test the fitness effects of

91 single mutant clones of the vesicular stomatitis virus (VSV) generated through

site-direct mutagenesis (Sanjuán, Moya, and Elena, 2004b). The fitness of these mu-

tants is shown in Figure 2. These results show around 40% of lethal mutations and

a mean effect of non lethal mutations of -13.2% on fitness. The authors note how

striking it is that they found 2 out of 48 random mutations that were beneficial. It is

generally accepted that mutations of beneficial effects are ∼ 1000-fold less common

than neutral or deleterious ones (Miralles et al., 1999; Orr, 2003). In many models

of adaptation a DFE with only deleterious mutations is often used, such as with a

gamma distribution that has been shown to fit well observed data (Burch, Guyader,

et al., 2007). Sanjuán et al. explain this over-representation of beneficial mutations

with the fact that the ancestral virus they use is a chimera from two different VSV

genomes and so there are “many different possible ways to optimize such genome”.

This highlights a caveat of studies estimating mutational effects: they describe

the effects of mutations from one ancestral genotype, in one given environment. In

particular, the time during which a population has evolved in one environment can

completely change the expected DFE. It is expected that as one organism adapts to

one environment, the DFE of mutations will shift towards an increased proportion

of deleterious mutations, and beneficial ones will get scarcer. This is supported by

fitness trajectories which show saturating behaviour with time, the most famous

example being the Lenski E. coli experiment (Lenski et al., 1991; Wiser, Ribeck,

and Lenski, 2013) which has now reached more than 75,000 generations. This sat-

uration can be explained by the hypothesis that beneficial mutations are close to

exponentially distributed: there should be few mutations of large effects expected

to arise early, followed by more numerous mutations of smaller effects (Orr, 2005).

If mutations of large beneficial effects are possible, they are expected to fixate first

through natural selection.

A possible mechanism behind this exponential distribution of beneficial effects is

epistasis, which is completely circumvented when studying the effects of individual
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Figure 2: Frequency of fitness values associated with single-nucleotide substitutions

measured for random mutations in vesicular stomatitis virus clones (VSV), from

(Sanjuán, Moya, and Elena, 2004b)

mutations independently. It was shown with the VSV system described earlier that

the observed effect of mutant carrying pairs of mutations was different than the ex-

pected multiplicative model would predict (Sanjuán, Moya, and Elena, 2004a). In

particular they showed that the effect of pairs of beneficial mutations tended to be

smaller than expected, showcasing antagonistic epistasis. Strikingly, a symmetric

phenomenon was described with virus ϕ6: mutants with deleterious mutations were

less sensitive to further deleterious mutations, highlighting positive epistasis (Burch

and Chao, 2004).

Fisher’s Geometric Model of adaptation: a fitness landscape

We saw that the effect of mutations on fitness is a very complex issue, and to

understand it completely for substitution (one sub-type of mutation), for a single

organism with genome size Ng, in a single environment, we would need to measure

the fitness of all 4Ng possible genotypes. To understand adaptation, let alone pre-

dict it, we must then use models of adaptation that include as many key features

as possible while limiting the number of required parameters. One such model was

proposed by Fisher in 1930 (Fisher, 1999), and which is now called “Fisher’s Ge-
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ometric Model” (FGM). In this model, one organism is defined by n independent

phenotypic continuous traits. These phenotypic traits are abstract and do not rep-

resent traits like viral adsorption, burst size etc. Instead they represent underlying

characteristics, and affect fitness through a transmission function. This model fea-

tures stabilising selection, and thus each trait has an optimal value, meaning there

is a single optimal phenotype which maximises fitness. This optimum is at the ori-

gin, and fitness decreases as the distance to the optimum in this n-space increases.

Although it is possible to introduce anisotropy in selection, we will consider here an

isotropic version of the model, meaning that selection is equivalent for all pheno-

typic traits. Resembling classic quantitative genetics selection functions (Lande and

Arnold, 1983), a Gaussian transmission function has been used to link phenotype

and Darwinian fitness:

Wx = e−
∥x∥2

2 (18)

This transmission function is represented with a two-dimensional phenotypic

space in Figure 3. Introducing mutations in this framework can be done by sam-

pling a mutation vector from a multivariate distribution (e.g. multivariate normal

distribution) which can be added to the phenotypic vector. The effect of such a

mutation will depend on the original phenotype and its distance to the optimum.

As represented in panels (b) and (c), we see that FGM contains features discussed in

the previous section. (i) The DFE contains less beneficial mutations as a phenotype

gets closer to the optimum (i.e. is better adapted to its environment) and converges

to a DFE with only deleterious mutations for phenotypes which have reached the

optimum. (ii) There is antagonistic epistasis between beneficial mutations, mean-

ing that the combined fitness effect of two beneficial mutations will be lower than

expected if fitness effects were multiplicative.

Overall, this model has received a strong support from experiments regarding

its different features: distribution of fitness effects, fraction of beneficial mutations,

epistasis etc. (reviewed in (Tenaillon, 2014)). Yet these features are static and

relate to the mutation process in the FGM. Yet this model could also be used to

derive the dynamics of fitness and provide testable predictions. Martin&Roques

proposed a framework to study such fitness dynamics in a FGM setting (Martin

and Roques, 2016). It is inspired by an approach originally from Bürger (Burger,

1991) where the dynamics of the distribution of traits under mutation and selection

is followed through the cumulants of this distribution (cumulants are quantities

related to moments, e.g. the mean, the variance etc.). Martin & Roques propose to
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Figure 3: Schematic of Fisher’s Geometric Model with phenotypic complexity n=2.

(a) The Gaussian fitness transmission function is shown above the 2D phenotypic

space. 2 phenotypes are shown in red and blue with a circle at a fixed phenotypic

distance. (b) Distribution of Fitness Effects of Gaussian mutations from the red and

blue phenotype are shown, with the associated fraction of beneficial mutations. (c)

Distribution of epistasis between two beneficial mutations picked from the pool of

Gaussian mutations. Epistasis is computed with : e = Log( r12
r0
)−Log( r1

r0
)−Log( r2

r0
)

where r0 is the ancestral fitness, r1 and r2 are the fitness values of 2 beneficial single

mutants and r12 is the fitness of the corresponding double mutant.

19



Introduction

follow directly the distribution of fitness in a population by using a single equation

describing the dynamics of the Cumulant Generating Functions (CGF) of the fitness

distribution. This approach alleviates the need to follow individually the dynamics

of each cumulant. With this approach they provide trajectories for the distribution

of fitness under various assumptions on the mutation/selection regime which could

prove to be testable predictions.

Objectives of Chapter 1

In this introduction we have seen the dynamics of mean fitness could be described

as the sum of three forces such that:

∆r = ∆rns +∆rec +∆rm (19)

where ∆rns is the effect of natural selection, ∆rec is the effect of environmental

change (biotic or abiotic) and ∆rm is the direct effect of mutations. The direct

effect of mutations ∆rm is generally negative, and many mutations come with a cost

so high that the resulting fitness of the virus harbouring them is negative (Figure

2). Viruses (particularly RNA viruses) also exhibit very high mutation rates. From

these observations, the idea of driving viruses to extinction through an increase in

mutation rate has been proposed (J. J. Bull, Sanjuan, and Wilke, 2007; Lynch,

Bürger, et al., 1993) in a process known as “lethal mutagenesis”. This process has

been well studied in a stochastic setting (Lynch, Bürger, et al., 1993; Lynch and

Gabriel, 1990; Matuszewski et al., 2017) and particularly focusing on the role of

Muller’s ratchet (Muller, 1964), which predicts that the fittest genotypes will keep

disappearing through drift, thus bringing down the fitness of the population and

potentially to extinction. However lethal mutagenesis can also drive a population

to extinction in a deterministic manner (Martin and Gandon, 2010). We have seen

in this introduction that mutations have a direct negative effect on fitness, yet they

generate genetic and phenotypic variance, which is the fuel of adaptation through

natural selection ∆rns. Thus, in case of failure to achieve lethal mutagenesis, an

increased mutation rate could also lead to fitter pathogens. To get a complete picture

of the process, it then seems necessary to incorporate both deleterious and beneficial

mutations in models. Besides, lethal mutagenesis is mostly studied independently

of the epidemiological dynamics. Yet we can expect that the dynamics of the host

population will have an effect on the fitness of the pathogen population through the

environmental change term ∆rec.

In the first chapter, we model the joint epidemiological and evolutionary trajec-

tories taking place within an infected host. To model mutational effects, we adapt
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Fisher’s geometric model to a pathogen version: instead of being translated to fit-

ness, phenotypes are translated to a value of transmission rate, which can then be

interpreted as a fitness by taking into account the density of susceptible cells (5). To

better fit observations such as the DFE presented in Figure 2, we also add a category

of mutations independent from phenotype: lethal mutations which lead to a non-

viable pathogen which cannot transmit. This framework has been used by Martin et

al. (Martin and Gandon, 2010) but their analyses were limited to the equilibrium of

the system. Here we extend this work by modeling the dynamics of a distribution of

transmission rates based on two methods: (i) using the dynamics of the cumulants

of the distribution of transmission rate (Burger, 1991; Bürger, 2000) and (ii) using

a Partial Derivative Equation (PDE) on the Cumulant Generating Function (CGF)

of the distribution of transmission rates (Martin and Roques, 2016).

We also extend this framework in Appendix A to model the evolution of both

transmission rate and virulence. To this end we use FGM with two distinct optima

(Martin and Lenormand, 2015): one for transmission rate and one for virulence,

which produces an emerging trade-off between the two life-history traits. We have

seen earlier how to recover the Evolutionary Stable Strategy according to the trade-

off function linking the two life-history traits. However we can expect that viruses

which are not well adapted, for example from recent zoonosis, will not be on this

trade-off curve but rather in the area under it (the grey area in Figure 1). With our

modeling scheme, we can describe jointly the epidemiological dynamics and evolu-

tionary dynamics of transmission rate and virulence.

2. Adaptation to host resistance

Introduction: resistance

In the previous section we assumed that the susceptible population was made up of

only one type of hosts, and so a virus spreading in this population would adapt to an

homogeneous environment. We discussed the effect of environment change through

its effect on fitness ∆rec with the example of the density of susceptible hosts de-

creasing. Another scenario of environment change impacting pathogen fitness is the

introduction in the population of hosts resistant to infection. There are many mech-

anisms of resistance to viral infection in humans such as adaptive immunity, genetic

factors, or vaccines.

21



Introduction

Vaccines have been widely used as a large scale protection measure since the

20th century and have been incredibly efficient to reduce the number of deaths as-

sociated with viral infections. As a striking example, the vaccine against smallpox

allowed for the complete eradication of the disease as declared by the World Health

Organization in 1980, a disease which had previously caused hundreds of millions of

deaths. Many other diseases have seen their numbers of annual cases greatly reduced.

The success of vaccination campaigns is not solely due to the individual effect

of a vaccine. On top of this individual protection, there is an emerging property

of resistance to infection at the population level. When a significant portion of the

population is vaccinated, the circulation of the disease in the population is impaired

which greatly decreases transmission and new cases, which can potentially end the

epidemic.

To explore this, we can adapt the most simple epidemiological model (1) to

include another compartment, that of primed hosts :

ṠN(t) = b (1− p)− SN(t)(d+ βI(t))

ṠP (t) = b p− SP (t)d

İ(t) = βSN(t)I(t)− (d+ α + γ)I(t)

Ṙ(t) = γI(t)− dR(t)

(20)

where SN and SP respectively refer to naive and primed hosts, and p is the fraction

of incoming hosts who are primed. In this model we consider that recovering from

the disease provides full resistance. In this case the equilibrium value for the density

of infected hosts is:

I⋆ =
bβ(1− p)− d(d+ α + γ)

β(d+ α + γ)
(21)

which decreases with the fraction of incoming primed hosts. The equilibrium

given above is only valid if the basic reproduction number of the pathogen is superior

to one, and its value is dependent on p following:

R0 =
β

d+ α + γ

b(1− p)

d
(22)

This value is inferior to that of the same pathogen in a population of only naive

hosts. This yields a threshold value on the fraction of primed hosts which drives the

pathogen to extinction, which can be written as:
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p > 1− 1

R0

(23)

This corresponds to the notion of “herd immunity” which arises when a signifi-

cant portion of the population is protected against a disease. In this case the spread

of the pathogen is so impeded that the population as a whole is protected, including

naive hosts which would otherwise be vulnerable.

Pathogen emergence in a partially resistant population

The probability of pathogen emergence in homogeneous and susceptible host popu-

lation can be described with equation (4). In this equation, one can plug the result

for the value of R0 when there is a fraction p of resistant hosts in the population com-

puted in (22) to obtain the probability of emergence in such a population, always in

the case R0 > 1. However, it is possible that an initially maladapted pathogen with

R0 < 1 generates adaptive mutation(s) before extinction. Such new mutant could

then have a value of R⋆
0 > 1 and escape extinction. We call this type of scenario

an “evolutionary emergence”. If we consider that mutation granting escape to host

resistance, leading to a new reproductive number R⋆
0, takes place with a probabil-

ity u for every new infection, we can approximate the probability of evolutionary

emergence with (André and Day, 2005; Gandon, Hochberg, et al., 2013):

PEE =
R0

1−R0

u

(
1− 1

R⋆
0

)
(24)

where 1 − 1/R⋆
0 is the probability of emergence of a single mutant as shown

in (4). The first quotient is the expected size for the epidemic caused by one ini-

tial pathogen with R0 < 1, which is multiplied by the mutation rate u to yield

the expected number of mutants produced by such an epidemic. Finally, this ex-

pected number is multiplied by the probability of emergence of the mutant from (4).

In a more complex setting, Chabas et al. (Chabas et al., 2018) used this approach

to compute the probability of pathogen emergence when introduced in a population

divided between susceptible and resistant hosts. In particular they study the effect

of heterogeneity in the resistant fraction of the population, which can be divided in

n different compartments. They show that evolutionary emergence and the spread

of escape mutations in the pathogen population is more likely to occur when the

host population contains an intermediate proportion of resistant hosts.
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The effect of diversity of host resistance

Beside the frequency of resistant hosts in the population, there is also a strong

impact of the diversity of the resistance on pathogen emergence and subsequent

evolution. Indeed it has been observed that populations with poor genetic diversity

were more prone to bigger epidemics (O’Brien and Evermann, 1988). This effect

is supported by modeling (King and C. Lively, 2012; C. M. Lively, 2010) but the

relation between epidemics sizes and host diversity is still unclear.

In their paper Chabas et al. also study the effect of the diversity of resistance

in the host population on pathogen emergence. They show that the probability of

pathogen emergence rapidly decreases with the diversity of resistance in the host

population, because the selection coefficient associated with the escape to each in-

dividual spacer is reduced (Chabas et al., 2018). They also use an experimental

system with CRISPR-resistant bacteria and bacteriophages to test this hypothesis,

and manage to recover a significant effect of bacterial diversity on phage emergence.

Dynamics of a mutant escaping host resistance

Yet all vaccines are not infallible nor is natural adaptive immunity, and the SARS-

CoV-2 pandemic is a prime example. With a lack of antiviral treatment, vaccines

were the cornerstone of public health strategy. As of 2023, more than 13 billion

doses of SARS-CoV-2 vaccine have now been administered around the world, with

more than 70% of the world population now having received at least one dose.

WHO reports that there has been more than 750 million confirmed cases. Such

a predominant vaccine coverage and natural immunity can impose a very different

environment for a spreading virus, greatly impacting the evolutionary pressures.

Under these conditions, if a mutant virus arises which is even slightly able to in-

fect vaccinated hosts, it will be greatly favoured by natural selection, which likely

explains the global dominance of the Omicron Variant of Concern as of 2023. Sev-

eral studies have demonstrated that this variant, first detected in late 2021, could

evade neutralization when confronted to serum from vaccinated individuals. These

observations of immune escape by Omicron can thus explain its quick global spread

even in countries with high vaccination coverage (estimated R0 of 3 to 5 in the UK

in 2022) (Willett et al., 2022).

To study this behaviour, we can adapt the SIR to model five compartments:

naive hosts SN , primed hosts SP , hosts infected by a wild-type pathogen Iw, host
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infected by a mutant pathogen Im and finally recovered hosts R. We consider that

the wild-type pathogen is not able to infect primed hosts contrary to the mutant

which can infect all types of susceptible hosts at a cost c in transmission rate:

ṠN(t) = b (1− p)− SN(t)(βIw(t) + β(1− c)Im(t) + d)

ṠP (t) = b p− SP (t)(β(1− c)Im(t) + d)

İw(t) = βSN(t)Iw(t)− (d+ α + γ)Iw(t)

İm(t) = β(1− c)SN(t)Im(t) + β(1− c)SP (t)Im(t)− (d+ α + γ)Im(t)

Ṙ(t) = γ(Im(t) + Iw(t))− dR(t)

(25)

If at least one of the pathogen is present and can emerge, that is with R0 > 1,

then this system will converge to an endemic equilibrium, which composition will

depend on the cost parameter c of the mutant. We can study the dynamics of the

frequency of the mutant by adapting equation (7) to this system:

ṗm(t) = pm(t)(rm(t)− r(t))

= pm(t)
(
1− pm(t)

)(
β(1− c)

(
SN(t) + SP (t)

)
− βSN(t)

) (26)

Crucially, the sign of the difference in fitness is dependent on the densities of

both primed and naive hosts at time t. If there is no cost c = 0 for the mutant asso-

ciated with immune escape, the mutant pathogen will have strictly more resources

available than the wild-type with no downside. The fitness of the hosts infected

by the mutant strain will then always be higher than that of hosts infected by the

wild-type strain. In such a case, the wild-type pathogen will be driven to extinction,

and only the mutant pathogen will remain. In contrast, if there is a too high cost

to immune escape, it could outweigh the benefit to the mutant of having higher

proportion of hosts available compared to the wild-type.

There may be intermediate situations where the cost of immune escape and the

densities of both types of hosts lead to the fitness of both pathogens being equal.

Thus an equilibrium can be reached where both mutant and wild-type pathogens co-

exist. This particular case means that neither strategy is evolutionary stable, which

can arise depending on two symmetric conditions: (i) the invasion fitness of the

mutant in a wild-type-only endemic equilibrium r(m,w) > 0 and (ii) the invasion

fitness of the wild-type in a mutant-only endemic equilibrium r(w,m) > 0. These

conditions imply that both strains are able to invade without completely displacing

each other, and so they can coexist.
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CRISPR, an adaptive immunity system for bacteria

The question of evolutionary emergence of a pathogen that can escape pre-existing

resistance in the host population is central to understand the robustness of vacci-

nation strategies, and is also a major concern in agriculture. Genes of resistance to

pathogens are often introduced and selected for in cultivated crops, and there are

documented cases of emerging pathogens escaping this resistance (McDonald and

Linde, 2002). Yet in both those systems – animal vaccination or resistant crops

– experimental data that could complement models is hard to obtain. The prob-

lem of pathogen evolutionary emergence is intrinsically stochastic, and estimating

probabilities of evolutionary emergence requires a great number of parallel replicates

which is not easily feasible for the aforementioned systems.

A promising experimental pathosystem for the study of evolutionary epidemiol-

ogy is that of bacteria and bacteriophages, which are bacteria-infecting viruses. A

variety of bacteria and their specific bacteriophages are easily cultivated in labora-

tory conditions. It is thus feasible to generate great amounts of data using clas-

sic microbiology techniques to study demographic or evolutionary aspects for many

replicate epidemics. Through the measurement of fitness trajectories, adaptive land-

scapes, mutation effects etc., phages have been used to study the joint impact of

natural selection and mutation on adaptation to an homogeneous and susceptible

host population (J. J. Bull, Heineman, and Wilke, 2011; J. Bull, Badgett, Rokyta,

et al., 2003; J. Bull, Badgett, and Wichman, 2000; Burch and Chao, 1999; Burch,

Guyader, et al., 2007). Yet another great possibility offered by phage-bacteria sys-

tems is the study of the evolution of viral escape to host resistance.

Bacteriophage abundance is estimated to be around 10-fold greater than that

of their bacterial hosts (Suttle, 2005). It is then not surprising that bacteria

have evolved many defense systems against phage infections. Some classic types

of these systems have been described for some time now (Labrie, Samson, and

Moineau, 2010), including mechanisms such as adsorption-blocking, superinfection

exclusion, restriction-modification enzymes, abortive infection, Clustered regularly

interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (cas)

genes etc. (Hampton, Watson, and Fineran, 2020) Very recently, there has been

a burst of discovery of new defense systems using their genomic signature and par-

ticularly their clustering in “defense islands” (Bernheim and Sorek, 2020; Doron

et al., 2018; Makarova, Wolf, Snir, et al., 2011).
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In this thesis, we will focus particularly on the CRISPR-Cas system, which pro-

vides a fantastic system to study the evolution of viral escape. CRISPR-Cas systems

are broadly distributed across the genomes of about 42% of bacteria and 85% of ar-

chaea (Makarova, Wolf, Iranzo, et al., 2020). This defense system functions by

storing short fragments of phage genetic sequences in the bacterial genome, called

spacers, which are separated by unique repeat sequences. These spacers act as an

immune memory repertoire, allowing for specific resistance to phages harboring the

corresponding sequences in their genome, which are called protospacers. When a

bacterium is exposed to a foreign DNA molecule, the Cas complex, guided by spac-

ers, can recognize matching protospacers. The Cas complex then cleaves the foreign

DNA at that site, thus stopping the infection.

This defense system is based on the recognition of complementary base pairs

between bacterial spacers and phage protospacers which leads to high specificity,

but also to a certain weakness in term of robustness. Only a simple mutation like

a nucleotide substitution in the phage protospacer can prevent this recognition and

thus lead to phage escape to the resistance provided by a specific spacer (Deveau

et al., 2008). The specificity of resistance and escape being directly encoded in

the host and pathogen genome means that sequencing on one hand the bacterial

CRISPR locus, and on the other hand the entire phage genome (which is usually

small), completely describes their respective resistance and infectivity phenotypes.

Objectives of Chapter 2

In the second chapter we compare different strategies of deployment of resistance

to limit the emergence of epidemics. A population of hosts can be constituted of

susceptible and potentially different types of resistant individuals. It is also possible

for hosts to be multi-resistant, meaning that pathogens would need several escape

mutations to infect them. We study the efficacy of three different structures of host

population resistance:

- A Mixing strategy where the resistant population is made up of two single resistant

hosts that we call A and B.

- A Pyramiding strategy where the resistant host population is homogeneous and

double resistant AB

- A Combining strategy where the resistant host population is made of half single

resistant hosts (A or B) and half double resistant hosts AB.
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To study the efficacy of each of these resistance deployment strategies, we fo-

cus on a specific quantity: the probability of pathogen emergence, where pathogens

escape initial extinction. We use theoretical modeling to compute this probability

according to the strategy and the initial number of pathogens inoculated. We also

test these analytical predictions experimentally using the CRISPR-resistant bacteria

and bacteriophages system. In this system, it is possible to reproduce the strategies

mentioned above and in particular the double-resistant hosts. Besides, it is possible

with this system to carry out many replicate infections, which is required to esti-

mate probabilities of pathogen emergence. Finally, we can measure the infectivity

phenotypes of the bacteriophages at the end of the experiment to find whether they

can infect either A, B or double resistant AB hosts.

In another experiment we use this CRISPR-resistant bacteria and phages exper-

imental system to study the dynamics of the frequencies of different escape mutants

after the initial emergence (Appendix B). The goal of this work is to monitor these

frequencies through time in different treatments which we designed to assess the

contribution of two parameters:

- Escape mutation rate: if a certain escape mutation happens at a higher rate, we

could expect that it could arise sooner in the experiment, and so the frequency of

this mutation would increase earlier.

- Selection coefficient: if a certain type of resistant is more frequent than others,

an escape mutation allowing the phage to infect this particular host would be more

strongly selected, and so increase in frequency faster.

To investigate the effect of escape mutation rate, we use two groups of host

strains which differ in their corresponding escape mutation rate in the phage, and

we manipulate the selection coefficients of the escape mutations by using different

frequencies of these two groups of hosts. However, these frequencies of hosts are

subject to change during the experiment, and there could also be acquisitions of

additional spacers of resistance by the hosts. To circumvent these limitations, we

limit host evolution by transferring each days only the phage population onto a fresh

mix of bacteria with constant frequencies of hosts, thus allowing host evolution and

epidemiological feedback only within each day.

3. Coevolution between viruses and their hosts

We have mentioned in the precedent section the abundance of phages in natural

environments, as well as the abundance of bacterial defense systems against phages.
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These two facts are not independent and highlight that in addition to the selective

pressure imposed by bacteria on phage population, there is a reciprocal pressure

imposed by phages on their bacterial hosts. Different phage lifestyles can lead to a

variety of ecological interactions. Virulent phages – which can only transmit hori-

zontally and require to kill their hosts to release more viral particles and spread – can

impose great mortality on bacterial populations (Clokie et al., 2011). In contrast,

temperate phages can integrate in their hosts genome in a process called lysogeny.

Through this process, phages can reproduce vertically alongside their hosts, meaning

that their fitness is closely related to the fitness of their host. Phages have thus been

shown to impact positively their host’s fitness by harbouring beneficial functional

genes such as antibiotics resistance genes, representing de facto a mechanism of bac-

terial horizontal gene transfer (Colavecchio et al., 2017). Temperate phages have a

more complex lifestyle than virulent phages, and we will focus on the latter in this

thesis. The importance of ecological interactions between host and pathogen leads

the way to the process of coevolution, which can be defined as the process of re-

ciprocal adaptation and counter-adaptation between ecologically interacting species

(Janzen et al., 1980).

Red queen dynamics

Coevolution is often described through the metaphor of the “Red Queen” (Van

Valen, 1973). Different species experience evolutionary pressures resulting from a

network of interactions, which changes over time as the different partners evolve.

Generally, the adaptation of one species will degrade the effective environment ex-

perienced by other species (and thus their mean fitness through the term ∆rec in

equation (19)), which calls for their reciprocal adaptation in order to escape extinc-

tion. Indeed, ‘it takes all the running you can do, to keep in the same place’. Inside

this Red Queen framework, two main types of coevolutionary dynamics have been

described (Woolhouse, Webster, et al., 2002) depending on the underlying genetic

determinism of the interactions.

In Arm’s Race Dynamics (ARD) adaptation is unidirectional, and the two in-

teracting species will repetitively fix new adaptive mutations (Fig 4.a). This type

of dynamics is thus driven in both host and pathogen by the selection coefficient

associated with the different possible mutations, as well as the mutation rate. In

this case, polymorphism is mostly transient and is only observed during the selective

sweep of a beneficial mutation. In the long term, it can be imagined that all possi-
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ble beneficial mutations will have been acquired, potentially leading to a stop in the

coevolutionary dynamics characterized by a stable coexistence, or the extinction of

one of the interacting species (or both: if the hosts go extinct, pathogens will shortly

follow).

However for Fluctuating Selection Dynamics (FSD), polymorphism is maintained

but the frequency of particular alleles may fluctuate through time. In particular,

the selection coefficient of a given allele will often be considered dependent on the

frequency of a corresponding allele in the population of the interacting species. This

type of interaction can lead to cyclical dynamics for both host and pathogen allele

frequencies, with a small delay or lag in the dynamics of pathogen allele frequency

as the pathogen is tracking and chasing the host phenotype (Fig 4.b). This type of

dynamics can be thought of as an example of Negative Frequency Dependent Selec-

tion (NFDS): if a certain host allele is over-represented in the population then the

corresponding pathogen allele will be strongly selected and increase in frequency,

in turn reducing, potentially to a negative value, the selection coefficient associated

with the over-represented host allele.

These two models of Red Queen Dynamics represent two extremes in a poten-

tially broad continuum of possible dynamics. Besides, for a single coevolving pair of

species, there might be several genes in each partner under coevolutionary pressures:

some might follow arm’s race dynamics, others fluctuating selection dynamics. This

depends on the genetic determinism of the interaction. Although they are very

simplistic, understanding these two types of dynamics and their implications is nec-

essary to then study more complex coevolutionary scenarios.

Investigating coevolution with time-shift experiments

During the early stage of empirical coevolution research, observation and fieldwork

were the main methods employed (Ehrlich and Raven, 1964; Janzen et al., 1980).

These studies made indirect inferences about the impact of reciprocal selection by

analyzing spatial patterns of trait co-variation among populations and by conduct-

ing comparative and phylogenetic analyses of ecologically interacting groups. These

initial investigations strongly suggested that coevolution played a significant role in

driving natural selection and influencing the structure and functioning of communi-

ties. Yet, being only observational and without controlling other parameters, they

did not provide conclusive proof of reciprocal evolutionary changes.
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In order to address the limitations of fieldwork, the study of coevolution has been

brought to the laboratory. The controlled environment in the lab enables the exclu-

sion of extraneous sources of selection, and the use of rapidly reproducing organisms

such as microbes enables direct real-time observation of coevolutionary processes.

An exciting method to study coevolutionary dynamics is the use of time-shift experi-

ments in which parasites can be tested against hosts from different evolutionary time

periods, i.e. the past, present or future (Gaba and Ebert, 2009; Gandon, Buckling,

et al., 2008). This allows in particular the study of the effect of environment change

on adaptation and the term we called ∆rec in equation (19), by comparing fitness (or

a linked trait like infectivity) across the different environments experienced through

time by a pathogen population. However time-shift experiments come with caveats.

They do not distinguish between specific or general adaptation, in other words it

can be difficult to identify the selection pressure which drove adaptation. A ‘future’

pathogen being very fit when exposed to ‘past’ hosts could be due to coevolutionary

forces driving phage adaptation, but also by adaptation of the phage to the specific

medium in which it is cultured. In cases where adaptation to abiotic conditions can

be discarded, time-shift experiments can also fail to distinguish between different

coevolutionary dynamics, such as ARD of FSD described above. Depending on the

studied time scale, it is predicted that those two coevolutionary scenarios could yield

similar pattern of adaptation in time-shift experiments (Gandon, Buckling, et al.,

2008). More particularly with FSD, the cyclical dynamics can completely blur the

signal of adaptation depending on the time scale of the experiment relative to the

period of the dynamics.

Local adaptation

In parallel with time-shift experiments, local adaptation experiments can be car-

ried out to determine whether a pathogen is better adapted to infect hosts from

the same or from a different population. The idea behind such studies is in com-

mon with time-shift experiments: that pathogen will be better adapted to host that

they have often encountered recently. The selection process should favor any para-

site that can infect commonly occurring genotypes among its local host population.

Consequently, a well-adapted population of parasites is one that is capable of in-

fecting a relatively high proportion of host genotypes within the local population. If

there is some spatial structure in the distribution of host and parasite populations,

with limited migration between sites, and if there is genetic specificity involved in

the infectivity of parasites and the resistance of hosts (meaning that there are no
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Figure 4: Allele frequency changes driven by co-evolution. a, A series of selective

sweeps by host (blue line) and pathogen (red) alleles derived by mutation. Selection

is directional, that is, genetic change accumulates in both populations. At any given

stage of the process there may be polymorphism in either, both or neither of the

two populations. b, Dynamic polymorphism in both host (blue) and pathogen (red)

acting on existing genetic variation. Evolution is non-directional. At all stages of

the process both populations are polymorphic. A large range of models predict, at

least for certain parameter combinations, the kind of lagged limit cycles shown here.

Figure from (Woolhouse, Webster, et al., 2002)
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parasites universally capable of infecting all hosts nor hosts universally resistant to

all parasites), the process of parasite adaptation should lead to parasites that, on

average, perform better on local host genotypes than on genotypes from other host

populations.

Although seemingly appealing, this hypothesis that pathogens will tend to be

locally adapted is not a general rule. The same reasoning on pathogen adaptation

to recent sympatric host can be applied to the adaptation of hosts to recent sym-

patric pathogens. It is then difficult to make prediction on whether host or pathogen

will be locally adapted as it depends on the underlying genetic determinism of the

interactions, the mutation rate, the generation time etc. There are documented

examples of both pathogen local adaptation and local maladaptation (equivalent to

host local adaptation) (Woolhouse, Webster, et al., 2002). This viral maladaptation

to local hosts is well illustrated in the case of HIV viruses which were found to

have a significantly lower fitness when confronted to the antibodies of the patient

in which they were recovered, compared to other patients (Blanquart and Gandon,

2013). For bacteria and phages interactions, (Buckling and Rainey, 2002) showed

that when coevolving 12 pairs of pseudomonas fluorescens with a naturally associ-

ated phage, the coevolved bacteria were more resistant to the phages with which

they had coevolved than phages from other populations.

Coevolution in CRISPR systems

Many studies of coevolution, including time-shifts and local adaptation experiments,

have used phenotypic measures to characterize adaptation. In particular, coevolu-

tion in host-pathogens systems has been studied by estimating proxies for pathogen

fitness and host resistance. These phenotypic measurements are a natural first step

to study such systems, as they do not require precise knowledge of the underlying

genetic determinism of the host-pathogen interaction. Indeed measuring host resis-

tance, and conversely pathogen infectivity, can be done without information on the

mechanisms dictating the outcome of the host-pathogen interaction. However, such

phenotypic approaches are insufficient to answer all the questions about coevolu-

tionary dynamics (Gandon, Buckling, et al., 2008). Only measuring phenotypes has

shortcomings as it only provides data at the population level, eg. a measure of infec-

tivity of one population of bacteriophages against one population of bacterial hosts.

When populations are diverse, assessing this diversity and obtaining the frequency

of every phenotype can only be done repeating experiments on as many clones as
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possible. Practically, these phenotypic approaches also require massive amounts of

work to carry out the adaptation experiments we have in the two previous sections,

for instance time-shift experiments require cross-infections from many pairs of time

points in many replicates to provide meaningful insights (Koskella, 2014). Besides,

it is necessary to decipher the genetic aspects underlying the interaction, such as

the number of loci and alleles involved, to obtain a comprehensive understanding of

the host-parasite interaction. This additional information is crucial in completing

the overall understanding of the coevolution, and allows for the use of sequencing

to monitor coevolutionary dynamics instead of phenotypic testing.

For these reasons, CRISPR-resistant bacteria and bacteriophages are a great

system to study coevolution. The genetic determinism of the interaction is well

known, which means that the phenotypes of resistance and infectivity of hosts and

pathogens can be thoroughly described with high-throughput sequencing data. For

hosts, deep sequencing of the CRISPR locus will provide the frequency of each

spacer in the population. This yields the frequency of host resistance against every

bacteriophage genotype. Conversely, whole-genome sequencing of the bacteriophage

population provide information on the frequency of each potential escape mutations

(i.e. mutations occurring in a protospacer). Coupling data on host resistance and

phage infectivity yields a complete picture of the network of infection arising when

a certain population of phages is confronted to a certain population of bacteria.

When using this approach in a coevolution experiment, phenotypes are known for

both hosts and pathogens at all potential time points and replicates. This means

that fitness (or proxies for fitness) can be computed for all possible combination of

host and pathogen populations, yielding in silico local adaptation and time-shift

experiments without further experimental work.

As we have pointed out before, a growing number of bacterial defense systems

against phages are being discovered, and many bacteria will carry several of these

defense systems, stacking layers of resistance. For instance, many experiments have

been carried out using Pseudomonas aeruginosa and its phage DMS3. Using this

system it has been possible to show how the level of diversity of spacers in the host

population can drive phage population to extinction (Common, Walker-Sünderhauf,

et al., 2020; Houte et al., 2016; Morley et al., 2017) or limit their emergence (Chabas

et al., 2018). Yet this experimental system has the limitation that P. aeruginosa can

also develop resistance to phage DMS3 through the loss of its pilus (Westra, Houte,

et al., 2015), which can interfere with the coevolution due to CRISPR resistance.
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However in another system, that of Streptococcus thermophilus and its viru-

lent phage 2972, the evolution of systems of resistance to the phage alternative to

CRISPR is almost never observed (Westra and Levin, 2020). Interestingly in this

system, the rate of acquisition of spacer by the host is lower compared to the P.

aeruginosa system, which can result in extended periods of coevolution (Common,

Morley, et al., 2019; Paez-Espino et al., 2015). As predicted by theory (Childs et al.,

2014), this lower rate of spacer acquisition increases the likelihood of coevolution

as spacer diversity is slower to build up. Phages are able to escape resistance with

point mutations which in turn leads to the acquisition of additional spacers of resis-

tance by the host population, resulting in Arms Race Dynamics. Yet in this system,

the Arms Race is not symmetric: bacteria can become resistant to the whole phage

population with the acquisition of one additional spacer. On the other hand, phages

need to track the different individual CRISPR genotypes in the host population,

with a specific combination of mutations granting escape to a single host genotype.

Thus this coevolutionary scenario does not fit neither Arms Race Dynamics nor

Fluctuating Selection Dynamics. A better representation for the polygenic coevolu-

tion in CRISPR pathosystems would be that of Chase Dynamics (Brockhurst et al.,

2014; Gavrilets, 1997; Kopp and Gavrilets, 2006): bacteria acquire new spacers,

thus resisting phages by moving in the multidimensional CRISPR genotypic space.

On the other hand, phages chase the bacteria in this genotypic space with the acqui-

sition of escape mutations. Again with this model, the phage population can only

chase a limited number of host genotypes, and is thus driven to extinction when the

host population becomes too diverse.

Objectives of Chapter 3

The Streptococcus thermophilus and phage 2972 host pathogen system offers unique

possibilities to monitor coevolution. With sequencing the CRISPR locus of the

bacteria and the whole genome of the phages, we can follow the frequencies of the

different CRISPR host genotypes as well as the frequencies of phage escape muta-

tions. With this information we can describe the infection network through time. In

this thesis, we design a experiment to monitor coevolution in this system, starting

from a diverse population of bacteria with 16 resistant as well as the fully susceptible

wild-type strain.

We observed that the resistant bacteria we use widely vary in terms of growth

rate, and that in a control without phages, host diversity was quickly lost through

competition. As these frequencies of host shape the selection coefficient associated
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with the escape mutations in the phage population, we can expect that this between-

host competition will dramatically affect the evolution of the phage population.

However it is not clear what this effect will be. A possible outcome would be a

Kill-The-Winner scenario (Thingstad, 2000; Weinbauer, 2004) which would yield

the following cycle:(1) a certain strain of bacteria outcompetes the other strains and

increases in frequency, (2) phages adapt primarily to this most frequent host and

the frequency of the corresponding mutation increases in the population, (3) these

most frequent hosts are massively targeted by the phage population and decreases

in frequency, being replaced by a new dominant bacterial strain. With our system,

we are able to track whether such a cycle arises. We also use sequencing data

to mimic time-shift and local adaptation experiments without requiring additional

experiments.
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adaptation

Martin Guillemet, Denis Roze, Guillaume Martin∗ and Sylvain Gandon∗

Abstract: Viral evolution is fueled by adaptive mutations that drive the adaptation

and the dynamics of the mean fitness of viral population. Yet, most mutations are 5

not adaptive and the increase of mean fitness is hampered by deleterious and lethal

mutations. This ambivalent role of mutations implies that it is unclear if a higher

mutation rate boosts or slows down viral adaptation. Here we study the interplay

between selection, mutation and epidemiological dynamics of viral populations under

the assumption that the mutation rate is high and the effects of non-lethal mutations 10

are small. We use this theoretical framework to show how the distribution of mutation

effects can alter the transient dynamics as well as the long-term evolutionary outcome of

viral populations. This work can be used to explore the feasibility of lethal mutagenesis

to treat viral infections.

Introduction 15

The witin-host dynamics of viral infections depends both on the availability of sus-

ceptible host cells and the ability of the virus to infect and exploit these cells. This

ability depends on multiple life-history traits and in particular on the transmission rate

of the virus which measures the rate at which an infected host cell produces new in-

fections. Mathematical epidemiology provides a theoretical framework to model how 20

these life-history traits affect the dynamics of viral populations (Anderson and May,

1992; Diekmann, Heesterbeek, and Britton, 2013; Nowak and May, 2000).

Many viruses undergo high mutation rates (Sanjuán, Nebot, et al., 2010) which

yields large amounts of genetic and phenotypic diversity within viral populations. This 25

influx of mutations challenges the simplicity of classical models of viral dynamics and
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has led to the concept of quasipecies to describe the dynamics of viruses with high mu-

tation rates (Andino and Domingo, 2015; Domingo and Perales, 2019). Yet, the effects

of high mutation rates can also be captured within the classical population genetics

framework. As most mutations have deleterious effects, the constant influx of muta-30

tions generates a mutation load where the mean fitness of the population is lower than

that of the fittest strain (Crow, 1989). In fact, some mutations can prevent viral replica-

tion and can be considered as lethal mutations (Sanjuán, Moya, and Elena, 2004). The

massive impact of deleterious mutations on viral fitness led to the “lethal mutagenesis

hypothesis” which states that there is a mutation rate above which viral population35

cannot grow and are driven to extinction (Bull, Sanjuan, and Wilke, 2007). Drugs

increasing mutation rates are a potential therapeutic solution for many viral infections

(Loeb and Mullins, 2000; Shiraki and Daikoku, 2020), including for SARS-CoV-2 (Dri-

ouich et al., 2021; Hadj Hassine, Ben M’hadheb, and Menéndez-Arias, 2022; Kaptein

et al., 2020; Swanstrom and Schinazi, 2022). A better evaluation of the therapeutic40

potential of these drugs relies on a better understanding of the underlying dynamics

leading to viral extinction when viral mutation rate is increased.

First, it is important to point out that viral extinction can occur from a fully de-

terministic model when the mutation load becomes overwhelmingly high (Martin and45

Gandon, 2010). But this effect can also be amplified in small and finite populations by

Muller’s ratchet (Felsenstein, 1974; Muller, 1964). In finite populations, the most fit,

least-loaded genotype will be lost as drift overwhelms the effect of natural selection.

This will result in a decreasing population, thus increasing the speed of the ratchet and

the drop of mean fitness. There is thus a synergy between the demographic and evolu-50

tionary dynamics (Lynch, Bürger, et al., 1993; Lynch and Gabriel, 1990; Matuszewski

et al., 2017). However, even a small influx of compensatory mutations can halt this

process and lead to a steady state of mean fitness (Poon and Otto, 2000). The present

work focuses on the analysis of deterministic models where we neglect the influence of

demographic stochasticity and genetic drift. Since these effects are expected to speed55

up the drop of viral fitness and the risk of extinction it is important to keep in mind

that our analysis is expected to yield more conservative estimations of the risk of viral

extinction.

Second, it is important to realise that increasing mutation rate is a double-edged60

sword because some of the mutations may be beneficial. Hence, higher mutation rates

induced by a mutagenic drug can potentially speed up adaptation (Bull, Joyce, et al.,
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2013; Paff, Stolte, and Bull, 2014). Many models of lethal mutagenesis, do not account

for beneficial and compensatory mutations, and this may amplify the efficacy of lethal

mutagenesis. Another aspect which is often overlooked in previous models is the epi- 65

demiological setting. Diminishing the mean fitness of the viral population is expected

to reduces the within-host growth rate. This could lead to an increased density of

susceptible host cells, which may yield a better environment for the virus (i.e. more

transmission opportunities), and eventually treatment failure. Both the influence of

compensatory mutations and epidemiological feed-backs have been analysed in (Martin 70

and Gandon, 2010). This study, however, focused on the long-term epidemiological

and evolutionary within-host dynamics to identify the critical mutation rates allowing

viral extinction. Yet, we currently lack a good understanding of the effects of higher

mutation rates on the transient within-host dynamics of viral adaptation.

75

In the present work, we study the joint epidemiological and evolutionary within-host

dynamics of a viral population subject to high mutation rates. We use Fisher’s Geo-

metric Model (FGM) to build a phenotype-to-life-history-trait map, which translates to

fitness values through the epidemiological dynamics (Martin and Gandon, 2010). This

geometric model of adaptation yields distributions of fitness effects of mutations that 80

allows us to account for both deleterious and beneficial effects of mutations (Martin

and Lenormand, 2006; Orr, 2000). Because, these fitness distributions depend on the

parental genotype, the model allows for pervasive fitness epistasis between mutations

(Tenaillon, 2014). In addition, we account for a distinct type of strictly lethal muta-

tions. We use this model to go beyond the analysis of the joint epidemiological and 85

evolutionary equilibrium of these populations (Martin and Gandon, 2010). In particu-

lar, we want to understand when an artificial increase of the mutation rate is expected

to increase or decrease the mean fitness of the viral population.

Model 90

We want to model the joint epidemiological and evolutionary dynamics of a virus pop-

ulation spreading within a host. The virus has access to a density S of susceptible host

cells and we want to model the dynamics of the density I of infected cells. We do not

explicitly model the dynamics of the free virus stage because we assume the lifetime

of an infected cell is much larger than a free virus particle (Martin and Gandon, 2010; 95

Nowak and May, 2000). Host cells are produced from a reservoir at a constant rate b
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and die at a per cell rate d. We assume that different strains (i.e. different phenotypes

x) may circulate within the host and Ix(t) refers to the density of host cells infected

by strain x. An infected cell of phenotype x infects susceptible cells with a transmis-

sion rate βx and dies at a rate (d + α + Uf) where α is the virulence and Uf is the100

rate of lethal mutations. Lethal mutations lead to cells that are infected with a non-

transmissible pathogen. As there is no density-dependence in our model, such cells do

not influence further the dynamics of the system. Thus we do not follow the density of

these cells, and we can simply treat lethal mutations as an additional death term . The

overall death rate is not affected by the phenotype of the infected cell. We assume that105

each host cell can only be infected with a single viral strain (i.e. no multiple infections).

The above life cycle yields the following system of ordinary differential equations (the

upper dot represents time derivation):

Ṡ = b− S ( β I + d)

İ = β S I − (α + d+ Uf)I
(1)

where I(t) =
∫
Ix(t)dx is the total density of infected cells, β =

∫
pxβxdx is the mean

transmission rate and px = Ix(t)/I(t) is the frequency of the phenotype x in the infected110

population. We can now introduce the per capita growth rate (i.e. malthusian fitness)

of the phenotype x and the mean growth rate of the pathogen (i.e. the mean fitness) :

rx = βxS(t)− (d+ α + Uf)

r =

∫
pxrxdx = βS(t)− (d+ α + Uf)

(2)

The sign of the mean fitness can tell us whether a population of infected cells can invade

a population of hosts of size S (r > 0) or if it drops to extinction (r < 0).

115

We define a phenotype x as a vector of size n, where each dimension refers to an

independent continuous trait. To model the dependence of the transmission rate βx on

x, we use a fitness landscape based on a quadratic Fisher's geometric model where the

transmission rate depends on the euclidian distance of the vector x to the optimum (at

the origin i.e. at x = (0, 0, .., 0)) such that :120

βx = β0 −
∥x∥2
2sβ

(3)

where ∥x∥2 is the squared norm of the phenotype vector x. The term sβ governs the

curvature of the fitness landscape and is inversely linked to the strength of the direc-

tional selection towards the optimum where the transmission rate is β0. Note that we
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use this quadratic form to approximate a Gaussian shape of the fitness landscape (Mar-

tin and Gandon, 2010). Indeed, equation (3) can yield a good approximation when the 125

virus is not too far from the optimum. Note that this approximation breaks in a certain

phenotypic space far from the optimum where transmission rate can become negative,

which corresponds to an additional set of lethal mutants that is ignored relative to

Uf . We show how this fitness landscape links the n underlying phenotypes with the

pathogens’ life-history trait (i.e. transmission rate) in Figure 1. In the following, we 130

will not work directly on the norm, but rather on the phenotypic traits themselves. We

show in the Supplementary Information that we can consider that all the components

xi of the phenotype vector x are equally distributed without loss of generality. Con-

sidering that the distribution of each phenotypic trait xi is Gaussian and the same for

all i, we can then describe the evolutionary dynamics by following just one dimension 135

with px the probability in the infected population that a phenotypic trait is of value x,

x =
∫
pxxdx the mean value of a phenotypic trait and Vx =

∫
px(x − x)2dx the phe-

notypic variance. This framework allows us to explicitly write the mean transmission

rate and the variance in transmission rate Vβ:

β = β0 − LL − LM

Vβ =
Vx(t)

sβ
(2LL + LM)

LL =
n

2sβ
x2

LM =
n

2sβ
Vx

(4)

where LL is the lag load andLM is the mutation load (Lande and Shannon, 1996). 140

The lag load LL depends on the phenotypic distance x to the optimum and repre-

sents the difference in transmission rate between the mean phenotype and the maximum

transmission rate β0. The mutation load LM depends on the phenotypic variance, and

represents the mean difference in transmission rate between a random phenotype in

the population and the mean phenotype. These load terms depend on the number of 145

dimensions n which corresponds to the so called “cost of complexity”: being away from

the optimum over more dimensions increases the overall burden. The flatness term sβ

decreases both the lag and mutation load, as it makes the fitness landscape flatter thus

less penalizing for phenotypes far from the optimum. The variance in transmission rate

depends on both the lag and the mutation loads, scaled again by the genetic variance 150

and the shape of the fitness landscape. This variance in transmission rate, and thus the

mutational and lag load, are what natural selection can act upon to increase the mean
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transmission rate.

Next we need to describe the dynamics of the density Ix(t) of cells infected by each155

phenotype where U is the rate of mutation of the virus. This mutation process is

assumed to be constant and unconditional on a transmission event. With probability f

this mutation is lethal and so Uf is an additional mortality term for the infected cells.

With probability 1 − f this mutation is non-lethal and the new phenotype becomes

x + y, where the mutation effect y is sampled in an isotropic multivariate normal160

distribution with mean 0 and variance λ. This mutation process yields the following

integro-differential equation:

İx(t) = βxS(t)Ix(t)− (d+ α + Uf)Ix(t)− U(1− f)Ix(t) + U (1− f)

∫
Ix−u(t)ρ (u) du .

(5)

where ρ is the multivariate Gaussian kernel of mutational effects on phenotypes. The

mutational variance λ is easily interpreted as it directly relates to the the mean effect

of random mutations on transmission rate µβ:165

µβ =

∫
ρ(u)

(
βx+u − βx

)
du = − nλ

2sβ
(6)

We can directly relate this to the mean effect of mutation on fitness µr = S(t)µβ which

is also dependent on the density of infected cells at time t. Note that this quantity is

always negative and independent of the phenotype x, meaning that mutated strains are

always, on average, worse than their parental strain.

170

In this paper, we use different approaches to monitor the epidemiological and evo-

lutionary dynamics described in (5). First for the sake of simplicity, we use a Weak

Selection Strong Mutation (WSSM) approximation which implies that adaptation is

the result of many mutations of small effects. In this regime, the distribution of pheno-

types remains Gaussian. Then we relax this assumption and we study how mutations175

of larger effect can affect the evolutionary dynamics of the virus using a moment closure

approximation. Finally we check the robustness of our approximations using numerical

simulations, where we study the dynamics of discrete phenotypes on a 2D grid, with or

without the assumption of small mutational effects.
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Results 180

We use equation (5) to derive the dynamics of the distribution of phenotypes x, through

equations describing the dynamics of the cumulants of this distribution. Assuming that

mutations are frequent and of small effects, we can neglect terms in higher order of the

mutational variance (i.e. λ2, λ3 etc.) to capture viral dynamics as a function of the

first two moments of the phenotypic distribution (Bürger, 2000). This is effectively the 185

Weak Selection Strong Mutation regime (WSSM) which also corresponds to a diffusive

approximation. We also assume that the distribution of underlying genetic traits x is

initially Gaussian, and it will remain so in the WSSM regime (shown in ref (Martin and

Roques, 2016) for asexuals). These derivations yield the following dynamical system:

ẋ =

selection︷ ︸︸ ︷
−Vx S

sβ
x

V̇x = −V 2
x S

sβ︸ ︷︷ ︸
selection

+U(1− f)λ︸ ︷︷ ︸
mutation

(7)

Note that this evolutionary dynamics is coupled with the epidemiological dynamics (1) 190

to form a closed system. The first equation shows how the mean phenotype goes to-

wards the optimum at a speed governed by (i) the amount of susceptible cells S(t), (ii)

the phenotype variance Vx(t) and (iii) the mean distance to the optimum x(t). The

dynamical equation for Vx captures the balance between the effect of natural selection

which decreases the variance, and the effect of mutation which introduces more genetic 195

variation. Interestingly, the number of dimensions n only appears in the epidemiolog-

ical equations through β in (4) and does not directly influence the dynamics of the

transmission rate, neither through selection nor mutation in the WSSM limit.

The equations on the dynamics x and Vx relate to the distribution of phenotypes 200

x. Using the assumption that this distribution is Gaussian, we can compute dynamical

equations for the mean transmission rate β:

β̇ =

selection︷︸︸︷
VβS +

mutation︷ ︸︸ ︷
U(1− f)µβ

(8)

The mean transmission rate is increased by natural selection with a speed controlled by

the variance in transmission rate, scaled by the density of susceptible cells. The direct

effect of mutations on the mean transmission rate is deleterious and equal to the rate 205

of non-lethal mutations times the mean effect of these mutations on transmission rate.
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Indeed, as discussed above, the expected effect on the life history-trait is deleterious

(see equation (6)). In other words, we obtain a simple dynamical equation by working

on the dynamics of the mean transmission rate. Then why not decide to describe

the evolutionary dynamics by working directly on the life-history traits β instead of210

the phenotype x? In the supplementary information, extending the approach used by

Martin and Roques, 2016 we show how it is possible to track the dynamics of the

Cumulant Generating Function of the distribution of transmission rates. Under the

assumption that the relative strength of selection is weak and mutation is frequent, as

expected, we recover equation (7).215

Evolutionary equilibrium

The long-term equilibrium of the viral populations is determined both by the epidemi-

ological and the evolutionary dynamics governed by equations (1) and (7), respectively.

The ultimate endemic equilibrium of the system is given by:

x(∞) = 0

Vx(∞) =

√
U(1− f)λsβ

S(∞)
=

√
U(1− f)λ (2γ − n

√
U(1− f)λ)

4 (α + d+ Uf)

S(∞) =
α + d+ Uf

β0

+
n
√

U(1− f)λ (2γ + n
√
U(1− f)λ)

8 sβ β2
0

I(∞) =
b

α + d+ Uf
− d

β0

− d

α + d+ Uf

n
√
U(1− f)λ (2γ + n

√
U(1− f)λ)

8 sβ β2
0

(9)

where γ =
√
4 sβ (α + d+ Uf)β0 +

n2U(1−f)λ
4

. Interestingly, we note that if the trans-220

mission rate of every infected cell was β = β0 then the equilibrium densities would be

S(∞) = α+d+Uf
β0

and I(∞) = b
α+d+Uf

− d
β0
. As expected, the constant influx of non-

lethal mutations introduces a mutation load that leads to a reduced density of infected

cells at equilibrium (and an increased density of susceptible cells).

The above equations can be used to identify the critical mutation rate above which

the viral population goes to extinction (see also supplementary information). Interest-

ingly, Figure 2 shows that the fraction of lethal mutations has a non-monotonous effect

on the critical mutation rate. We get for the equilibrium mean fitness of the infected

population:

r(∞) = S(∞)
(
β0 −

n

2

√
U(1− f)λ

S(∞) sβ

)
− (d+ α + Uf) (10)
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The critical mutation rate can be obtained solving this equation for r(∞) = 0 after 225

setting S(∞) = b/d, the density of susceptible cells in the absence of viruses. This ex-

pression is useful to discuss the effects of lethal mutations on viral dynamics. The final

term in (10) accounts for the direct effect of lethal mutations: increasing the proportion

of lethal mutations increases the death rate of infections, and consequently decreases

the critical mutation rate leading to viral extinctions. Yet, lethal mutations have an 230

additional effect on the birth rate of infections. Indeed, the first term in equation (10)

refers to the rate of new infections and this rate drops with the mutation load. This

mutation load drops when most mutations are lethal because only viable mutations

are accounted for in this load. Hence, increasing the proportion of lethal mutations

decreases the mutation load. This effect is relatively small when the number n of phe- 235

notypic dimensions is small, but it can overwhelm the direct effect of lethal mutations

when n becomes large. In other words, we find that the effect of the cost of complexity,

which is expected to decrease the critical mutation rate for larger values of n, is actually

dependent on the proportion of lethal mutations f . In fact, Figure 2 shows that beyond

a given level of complexity, increasing the proportion of lethal mutations requires larger 240

mutation rates to drive viral populations to extinction. We can also note that when

mutations are all lethal, the number of phenotypic dimension has no impact on the

critical mutation rate for pathogen extinction. An additional aspect which is hidden

in equation (10) is that increasing the proportion of lethal mutations can increase the

density of infected cells, thus providing a benefit for viral fitness. 245

Transient dynamics

We can jointly use equations (1), (4), (7) and (8) to follow the joint transient dynamics

of the hosts and viral populations. In Figure 3 we explore the dynamics of the mean

transmission rate β(t) from several initial conditions. We vary the initial distance of 250

the mean phenotype to the the optimal phenotype, and for each of these distances we

contrast a scenario where we start from a clonal population (Vx(0) = 0, black line)

and a scenario with some standing genetic variance (Vx(0) = 0.1, red line). Regardless

of these initial conditions, the dynamics converge to the same equilibrium, which is

given by (9). However, the initial condition dictates the initial dynamics and the speed 255

at which this equilibrium is reached. First, the standing genetic variance induces a

mutation load, which explains the drop in the initial value of β in Figure 3. Second,

the absence of a genetic variation in the clonal population implies that the speed of

adaptation is initially very slow. In fact, the mean transmission rate initially drops

9



because of the effect of deleterious mutations (see equation 8). Genetic variation first260

needs to build up before adaptation can act on the mean transmission rate. In contrast,

the speed of adaptation is faster with standing genetic variance. This faster adaptation

allows to rapidly overcome the initial mutation load and the mean transmission rate β

becomes rapidly higher than in initially clonal populations.

265

However, the epidemiological dynamics of the virus population is driven by r and not

by β. To better understand the dynamics of viral adaptation, it is useful to decompose

the dynamics of viral mean fitness into separate effects following the framework of

Gandon&Day (Gandon and Day, 2009):

ṙ = ∆rns +∆rm +∆rec (11)

270

with ∆rns, ∆rm and ∆rec refer to the changes in mean fitness due to natural selection,

mutation and environmental change, respectively.

∆rns = Vr = S2(t)Vβ =
Vx(t)S(t)

2

sβ
(2LL + LM) (12)

∆rm = −S(t)U(1− f)µβ (13)

∆rec = β(t)Ṡ(t) (14)

First, as expected from Fisher’s fundamental theorem the change of mean fitness from

natural selection is always positive and equal to the variance in fitness. This variance

increases with the lag load (the farther a phenotype is from the optimum, the larger275

the strength of selection towards this optimum) and the mutation load (even if this

load has a negative impact on mean fitness, it has a positive influence on the speed

of adaptation). Selection is also fueled by the population of susceptible cells and the

phenotypic variance, scaled by the shape of the fitness landscape, sβ. Second, the

effect of mutations on mean fitness is simply the mean effect of mutations on fitness µβ280

multiplied by the influx of non-lethal mutation U(1− f). This effect is always negative

in our model. Note that this quantity is exactly equal to the drop in mean fitness in

mutation accumulation experiments where the radical bottlenecking at each passage

ensures that natural selection does not operate (because the variance in fitness Vr = 0).

Finally, the third term accounts for the environmental change consecutive to a drop285

in the density of susceptible cells. This final term can be either positive or negative,

depending on the change in the density of susceptible host cells. During the initial
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phase of an infection, the density of susceptible cells is expected to drop and to have a

negative impact on the growth rate of the epidemic (density-dependent regulation). In

contrast, during the initial phase of therapy, drugs are expected to reduce the density 290

of infected cells and, consequently, the density of susceptible cells may increase. As

illustrated in Figure 4, this epidemiological feedback may have a huge impact on the

dynamics of mean fitness.

Relaxing the weak selection approximation

The above analysis relies on a weak selection assumption which allowed us to focus 295

on first order terms in λ and neglect higher order terms as λ ≪ U (see (Martin and

Roques, 2016)). In other words, we assumed that the adaptation of the pathogen

proceeds through the accumulation of many small-effect mutations, and that mutations

of strong effects are rare and can be neglected. This assumption implies that the

phenotypic distribution is always Gaussian. In the following, we explore what happens 300

when we relax this assumption and account for stronger effects of mutations. These

larger effect mutations induce a deviation from the Gaussian distribution of phenotypes

that can be captured as a first approximation by the dynamics of the third and fourth

cumulants. The dynamics of the phenotypic distribution satisfies (see supplementary

information): 305

ẋ(t) = −S(t)

2sβ
(K3(t) + 2Vx(t)x(t))

V̇x(t) = −S(t)

2sβ

(
K4(t) + 2x(t)K3(t) + 2V 2

x (t)
)
+ U (1− f)λ

K̇3(t) = −S(t)

sβ
(xK4(t) + 3K3(t)Vx(t))

K̇4(t) = −S(t)

sβ

(
4K4(t)Vx(t) + 3K2

3(t)
)
+ 3U (1− f)λ2 .

(15)

Where K3(t) and K4(t) are respectively the third and fourth cumulants of the distri-

bution of phenotypes. Note that we recover the dynamics of system (7) for the mean

phenotype and the phenotypic variance, but with the additional effect of K3 and K4,

the third and fourth cumulants of the phenotypic distribution. As expected, when larger

effects of mutations can be neglected (i.e. here λ2 = 0), both K3 and K4 converge to 0 310

and we recover (7). Yet, when λ2 cannot be neglected, the influx of new mutations in-

crease the cumulant K4. A positive K4 means that the phenotypic distribution is both

more peaked around the mean phenotype and more heavily tailed, with less intermedi-

ate phenotypes than in a Gaussian distribution. This fourth cumulant is also expected
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to generate transiently some skewness K3 (which sign is inverse to th sign of x). This is315

expected to transiently increase the variance in fitness and speed up viral adaptation.

In the long run, however, the skewness K4 is expected to vanish as the viral population

gets closer to the optimal phenotype. Yet, the kurtosis remains even at the equilibrium

and it decreases the equilibrium phenotypic variance. This lower phenotypic variance

results in a lower mutation load. As discussed above with the effect of lethal mutations,320

increasing λ has a similar effect as in the WSSM because it increases the efficacy of

natural selection and allows to get rid of deleterious mutations.

The above analysis breaks down when λ becomes too high relative to the stand-

ing variance (see Supplementary Information). But we can use another approximation325

to describe the viral dynamics under a regime of mutation where the variance of mu-

tation overwhelms the effect of the parental strain. The classical “House of Cards”

approximation has been used to derive the equilibrium mutation load (Bürger, 2000).

After incorporating the influence of epidemiological feedbacks we obtain the following

expectation for the phenotypic variance at equilibrium:330

V HC
x (∞) =

2U(1− f) sβ
nS(∞)

(16)

A striking feature of this regime is that the equilibrium phenotypic variance is inde-

pendent of the mutational variance λ. We compare in figure 6 the values of equilibrium

phenotypic variance predicted by our models and under the “House of Cards” (HC)

approximation with numeric simulations. We explore this with several values of sβ

which varies the strength of selection and thus increases the effect of mutations on335

transmission rate. We see that the variance predicted with the relaxed WSSM is very

accurate when the strength of selection is lower, but as previously mentioned, this ap-

proximation breaks down when the effect of mutations becomes high. In this case (low

sβ) the HC approximation is more accurate and the predicted variance is smaller than

that computed with a WSSM approximation. Different expectations on the equilib-340

rium phenotypic variance (and thus mutation load) leads to different thresholds for

the critical mutation rate. Indeed, if the expected load is lower, the mutation rate

required to achieve lethal mutagenesis is higher. We show how the critical mutation

rate changes with the strength of selection under the three approximations in the Sup-

plementary Information. Interestingly, the critical mutation rate predicted under the345

HC approximation depends only on the demographic parameters but not on parame-

ters that describe the fitness landscape. Overall, the critical mutation rate in the HC

approximation is the same as the one obtained under the WSSM approximation but if
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all mutations were lethal.

Discussion 350

In this work we built a model for the within-host adaptation of pathogens through

the evolution of the transmission rate. We assume an explicit model of mutations on

n underlying phenotypic traits determining transmission rate βx via an optimization

function. We couple this model of adaptation with an epidemiological model, and

demonstrate that the demographic response in density of susceptible cells imposes a 355

feedback on the adaptation of the pathogen. We use a modeling approach based on

the cumulants of the phenotypic or transmission rate distribution, either through the

Cumulant Generating Funcion, or by direct derivation of the dynamics of the cumulants.

This direct derivation approach is treated thoroughly by Bürger (Bürger, 2000) in a case

where the fitness is only dependent on the traits. We extended this work to a case of an 360

asexual pathogen, which fitness is dependent on the dynamic density of hosts. We also

chose an explicit mutational scheme with non-lethal mutations affecting the phenotype,

and lethal mutations which are treated as a genotype-independent additional mortality.

We explore the effects of the two types of mutation, and find a striking effect when the

effect of non-lethal mutations in strong. For example we find that at higher phenotypic 365

dimension - which increases the effect of mutations - non-lethal mutation can be more

deleterious than strictly lethal mutations to the survival of the pathogen. Indeed,

lethal mutations have a strong but instantaneous effect, whereas non-lethal deleterious

mutations can accumulate over time and bring down the mean transmission rate of

the virus, and thus its fitness. Thus we highlight the importance of the number of 370

phenotypic dimensions or phenotypic complexity, which can be defined as the number of

quasi-independant traits under optimizing selection. There have been several attempts

to estimate this value of complexity for different organisms (reviewed in (Tenaillon,

2014)) and estimates vary broadly with different methods. Yet some methods yield

complexity values of up to 40 for viruses, showing that considering relatively high 375

values of n could be relevant in studying evolutionary dynamics.

We also compare our results to the classical “House of Cards” approximation which

describes evolutionary equilibria when mutations are of strong effects (λ ≫ U). This

approach leads to a lower equilibrium phenotypic variance, which we show translates

into a higher critical mutation rate. Interestingly, in this regime, mutations that we 380

model as non-lethal have such strong effects that they are defacto considered lethal. In

fact, this prediction is the same as that obtained in the WSSM regime, when considering
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that all mutations are lethal (f = 1).

In this work we studied the effect of epidemiology and the demographic feedbacks it

imposes on the adaptation of a pathogen. This context leads to a pathogen fitness that385

is dependent on the density of susceptible cells and in return, the density of susceptible

cells changes with the fitness of the pathogen. We show that the speed of pathogen

adaptation increases with the availability of susceptible cells. As the mean fitness of

the pathogen population increases, the density of susceptible cell decreases which slows

down the speed of adaptation390

Effects of stochasticity

Our analysis does not account for the potential effects of demographic stochasticity,

which is expected to have major effects on the risk of extinction when the viral popula-

tion size becomes low. It is important to distinguish between two effects of stochasticity.

First, stochasticity could affect the demographic dynamics without altering viral395

evolution. Such an approach has been used to compute probabilities of extinction

when a deterministic model of evolution is coupled with stochastic growth rates in

the absence of feedbacks (Anciaux et al., 2019). Interestingly, this analysis allowed to

identify a maximal and a minimal value of the mutation rate allowing the population

to escape extinction. The maximal value is analogous to our critical mutation rate, but400

the minimal mutation rate results from the demographic stochasticity which may yield

viral extinction if beneficial mutations are not frequent enough to rescue an originally

maladapted population. This analysis, however, did not account for epidemiological

feedbacks on the viral population growth rates. These demographic feedbacks are likely

to limit the risk of extinction if viral maladaptation results in an influx of susceptible405

cells. It would be interesting to extend their analysis with our current model to see

how these feedbacks are expected to alter the predictions on the minimal mutation rate

allowing evolution rescue.

Second, as the viral population gets smaller, genetic drift is expected to alter evolu-

tionary dynamics. More specifically, Muller’s ratchet has often been invoked to explain410

how the accumulation of deleterious mutations eventually leads to the decrease of pop-

ulation mean fitness. Taking into account this additional layer of stochasticity would

further decrease pathogen mean fitness through an added drift load. Yet the magnitude

of this effect could be minimal, as it has been shown with the FGM that Muller’s ratchet

is effectively negligible, except in very small populations (Poon and Otto, 2000).415

14



Extension to the study of the evolution of two life-history traits

We built a model in which the phenotype of a virus only influences its transmission rate.

However we could consider a dependency to other life-history traits such as virulence.

In many studies, an explicit trade-off is used where transmission rate is a function of

virulence (or vice versa). The underlying hypothesis is often related to the viral load: 420

if there are more viral particles being produced, there is an increased cost on the host

cell or organism, which leads to an additional mortality. In our model, we could add an

additional dependence of virulence on the phenotype much like we did with transmission

rate, except that the optimum for virulence is a minimum. If the evolutionary optima

of several life-history traits are not superimposed on the landscape, we can expect 425

the emergence of a trade-off between maximising transmission rate and minimizing

virulence. An interesting aspect of this trade-off is that the effect of transmission

rate on fitness is scaled by the density of infected cells, which is not the case for the

effect of virulence (Day and Proulx, 2004; Gandon and Day, 2009). Thus selection is

dependent on the epidemiological environment and the optimal strategy may not be 430

the same according to the susceptible cells demographic parameters. Our model, which

takes into account the demography of susceptible hosts is then particularly suited to

study this behavior. However this would require additional analytic work to model

the effect of a mutation on two life-history traits simultaneously, which depends on

the angle between the direction to the two optima in the fitness landscape(Martin and 435

Lenormand, 2015).
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orkowski, K. Barthélémy, C. Laprie, B. Coutard, et al. (2021). “Favipiravir antiviral

efficacy against SARS-CoV-2 in a hamster model”. In: Nature communications 12.1,

p. 1735 (cit. on p. 2).

Felsenstein, J. (1974). “The evolutionary advantage of recombination”. In: Genetics465

78.2, pp. 737–756 (cit. on p. 2).

Gandon, S. and T. Day (2009). “Evolutionary epidemiology and the dynamics of adap-

tation”. In: Evolution 63.4, pp. 826–838 (cit. on pp. 10, 15).

Hadj Hassine, I., M. Ben M’hadheb, and L. Menéndez-Arias (2022). “Lethal mutagenesis

of RNA viruses and approved drugs with antiviral mutagenic activity”. In: Viruses470

14.4, p. 841 (cit. on p. 2).

Kaptein, S. J., S. Jacobs, L. Langendries, L. Seldeslachts, S. Ter Horst, L. Liesenborghs,

B. Hens, V. Vergote, E. Heylen, K. Barthelemy, et al. (2020). “Favipiravir at high

doses has potent antiviral activity in SARS-CoV-2- infected hamsters, whereas hy-

droxychloroquine lacks activity”. In: Proceedings of the National Academy of Sci-475

ences 117.43, pp. 26955–26965 (cit. on p. 2).

Lande, R. and S. Shannon (1996). “The role of genetic variation in adaptation and

population persistence in a changing environment”. In: Evolution, pp. 434–437 (cit.

on p. 5).

Loeb, L. A. and J. I. Mullins (2000). “Perspective-Lethal Mutagenesis of HIV by Mu-480

tagenic Ribonucleoside Analogs”. In: AIDS research and human retroviruses 16.1,

pp. 1–3 (cit. on p. 2).

Lynch, M., R. Bürger, D. Butcher, and W. Gabriel (1993). “The mutational meltdown

in asexual populations”. In: Journal of Heredity 84.5, pp. 339–344 (cit. on p. 2).

16



Lynch, M. and W. Gabriel (1990). “Mutation load and the survival of small popula- 485

tions”. In: Evolution 44.7, pp. 1725–1737 (cit. on p. 2).

Martin, G. and S. Gandon (2010). “Lethal mutagenesis and evolutionary epidemiology”.

In: Philosophical Transactions of the Royal Society B: Biological Sciences 365.1548,

pp. 1953–1963 (cit. on pp. 2, 3, 5).

Martin, G. and T. Lenormand (2006). “A general multivariate extension of Fisher’s 490

geometrical model and the distribution of mutation fitness effects across species”.

In: Evolution 60.5, pp. 893–907 (cit. on p. 3).

— (2015). “The fitness effect of mutations across environments: Fisher’s geometrical

model with multiple optima”. In: Evolution 69.6, pp. 1433–1447 (cit. on p. 15).

Martin, G. and L. Roques (2016). “The nonstationary dynamics of fitness distributions: 495

asexual model with epistasis and standing variation”. In: Genetics 204.4, pp. 1541–

1558 (cit. on pp. 7, 8, 11).

Matuszewski, S., L. Ormond, C. Bank, and J. D. Jensen (2017). “Two sides of the

same coin: A population genetics perspective on lethal mutagenesis and mutational

meltdown”. In: Virus evolution 3.1, vex004 (cit. on p. 2). 500

Muller, H. J. (1964). “The relation of recombination to mutational advance”. In: Muta-

tion Research/Fundamental and Molecular Mechanisms of Mutagenesis 1.1, pp. 2–9

(cit. on p. 2).

Nowak, M. and R. M. May (2000). Virus dynamics: mathematical principles of im-

munology and virology: mathematical principles of immunology and virology. Oxford 505

University Press, UK (cit. on pp. 1, 3).

Orr, H. A. (2000). “Adaptation and the cost of complexity”. In: Evolution 54.1, pp. 13–

20 (cit. on p. 3).

Paff, M. L., S. P. Stolte, and J. J. Bull (2014). “Lethal mutagenesis failure may augment

viral adaptation”. In: Molecular biology and evolution 31.1, pp. 96–105 (cit. on p. 3). 510

Poon, A. and S. P. Otto (2000). “Compensating for our load of mutations: freezing the

meltdown of small populations”. In: Evolution 54.5, pp. 1467–1479 (cit. on pp. 2,

14).

Sanjuán, R., A. Moya, and S. F. Elena (2004). “The distribution of fitness effects caused

by single-nucleotide substitutions in an RNA virus”. In: Proceedings of the National 515

Academy of Sciences 101.22, pp. 8396–8401 (cit. on p. 2).

Sanjuán, R., M. R. Nebot, N. Chirico, L. M. Mansky, and R. Belshaw (2010). “Viral

mutation rates”. In: Journal of virology 84.19, pp. 9733–9748 (cit. on p. 1).

17



Shiraki, K. and T. Daikoku (2020). “Favipiravir, an anti-influenza drug against life-

threatening RNA virus infections”. In: Pharmacology & therapeutics 209, p. 107512520

(cit. on p. 2).

Swanstrom, R. and R. F. Schinazi (2022). “Lethal mutagenesis as an antiviral strategy”.

In: Science 375.6580, pp. 497–498 (cit. on p. 2).

Tenaillon, O. (2014). “The utility of Fisher’s geometric model in evolutionary genetics”.

In: Annual review of ecology, evolution, and systematics 45, pp. 179–201 (cit. on525

pp. 3, 13).

18



  

Phenotypic traits

Life-history trait

Fitness

Figure 1: The fitness landscape links the underlying phenotypic traits with

life-history traits and malthusian fitness. We represent our phenotype to life-

history trait landscape in two dimensions (n = 2). A phenotype x is translated to a

transmission rate βx using equation (3). This life-history trait is translated to a fitness

value with equation (2), which depends on time through the number of susceptible cells

S(t). A black circle is shown around phenotype x, which is translated to a dashed red

circle of transmission rates, showing how the FGM distorts the distributions.
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Figure 2: Effect of the proportion of lethal mutations and the phenotypic

dimension of the fitness landscape on the critical mutation rate. The plot

shows the effect of both fraction of lethal mutations f and number of dimensions n on

the critical mutation rate required for lethal mutagenesis. The parameters used were

b = 2, d = 1, β0 = 2, α = 2, sβ = 1, λ = 0.005.
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Figure 3: Adaptation dynamics depend on the initial phenotypic variance. We

show the dynamics of mean transmission rate β(t) through time starting from a clonal

populations at different initial values of x. Represented in dashed black the infected

population is initially clonal with Vx(0) = 0 while in solid black the population is

initially diverse with Vx(0) = 0.025. The parameters were b = 4, d = 1, β0 = 4, α =

2, sβ = 1, U = 1, f = 0.4, λ = 0.005, n = 5. Initial conditions were I(0) = 0.1, S(0) =

b/d and we used three initial values for βx were 2, 3 and 3.5.
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Figure 4: The three forces driving the dynamics of mean fitness. Mean fitness r start-

ing from a clone (Vx(0) ≪ 1) is shown through time (a) and the different components

of its dynamics are represented in (b). The solid line in (b) shows the effect of natural

selection (∆rns), the dashed black line shows the effect of mutation (∆rmut) and the red

solid line represent the feedback from the demography of the susceptible cells i.e. the

environmental change (∆rec). The epiodemiological dynamics of the system are shown

in (c). The parameters were b = 3, d = 1, β0 = 4, α = 1, sβ = 1, U = 4, f = 0.4, λ =

0.005, n = 10. Initial conditions were I(0) = 0.001, S(0) = b/d, Vx(0) = 1e−8, β(0) = 2
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Figure 5: Higher moment mutations reduce genetic variance. The evolutionary

dynamics are shown according to the WSSM model (black) or taking into account

mutations of larger effect (red). We show (a) the mean phenotype x, (b) the phenotypic

variance Vx, (c) the genetic variance and finally (d) the third (dashed line) and fourth

cumulant (solid line) of the genetic distribution in the full model. The parameter values

used are: b = 4, d = 1, β0 = 4, α = 1, sβ = 1, U = 4, f = 0.4, λ = 0.1, n = 20. Initial

conditions were I(0) = 0.001, S(0) = b/d, Vx(0) = 1e− 8, β(0) = 2
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Figure 6: Comparison of the equilibrium variance under different regimes. The

equilibrium variance Vx is shown as a function of the selection parameter sβ in a log-log

scale. The results are shown for three derivations: the WSSM approximation in orange,

the results from the cumulant approach up to K4 in red, and the “House of Cards” (HC)

approximation in grey. Data from numerical simulations are shown as blue points. The

parameters used were: b = 3, d = 1, β0 = 4, α = 1, U = 4, f = 0.4, λ = 0.05, n = 2.
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Supplementary Information

In this supplementary information we detail the derivation of the theoretical results

presented in the main text. In section 1, we start by presenting the main assumptions

on the fitness landscape, the effects of mutations and the epidemiological dynamics.5

In sections 2 and 3, we present different ways to analyse the joint epidemiological and

evolutionary analysis of this model and obtain analytical approximations. In section

4, we detail the numerical model used to check our analytical approximations.

1. The model10

We model the within-host dynamics of of a viral population that spreads in a large

population of susceptible cells. We assume that different strains of the virus may have

different phenotypes. Each phenotype x is defined as a vector of size n, representing

n independent continuous phenotypic traits. Each host cell is assumed to be infected

by a single strain (no multiple infections) and the total density of infected cells is15

noted I =
∫
Ixd

nx iand px = Ix/I is the frequency of cells infected by strains with

phenotype x. We assume that the viral transmission rate βx is governed by the values

of the n underlying phenotypic traits through a Gaussian transmission function. This

Gaussian is well approximated with a quadratic function when phenotypes are not too

far from the optimum, ensuring no negative transmission rate values. This quadratic20

form yields:

βx = β0 −
∥x∥2
2sβ

(1)

where ∥x∥ is the norm of vector x and sβ measures the strength of selection towards

a single optimum at x = (0, 0, ..., 0) of maximum transmission rate β0 (see Figure 1

in the main text). Different virus strains may have different transmission rates βx and

the average transmission rate is given by:25

β =

∫
pxβxd

nx = β0 −
∑n

i=1 (Vx,i + xi
2)

2sβ
, (2)

1



where xi and Vx,i = E
[
(xi − xi)

2] are respectively the mean and the variance for the

phenotypic trait i.

We model the whithin-host spread of the viral population through the dynamics

of S and I the densities of uninfected and infected cells, respectively. We assume there30

is a constant influx b of susceptible cells which die at constant rate d. A cell infected

with a virus strain with phenotype x infects new susceptible cells at a rate βx and die

at a rate d+α where α measures the increased mortality rate induced by the infection.

Viral mutations may occur at a constant rate U and among those mutations a fraction

f may be lethal for the virus. Consequently, the rate of lethal mutation Uf may be35

treated as an additional mortality term for infected cells. Note that, in the following,

the dependence to t of most dynamical variables is dropped to simplify the notation.

This yields the following dynamical system:

Ṡ = b− (βI + d)S (3)

İ = βSI − (d+ α + Uf)I (4)

In the absence of the pathogen the density of the uninfected cells is equal to S0 = b/d.

In such a naive host population a pathogen with average transmission rate β can spread40

if and only if its basic reproductive ratio:

R0 =
βS0

d+ α + Uf
> 1 (5)

In other words a condition for the viability of the pathogen population at equilibrium

is β > d(d+α+Uf)
b

. We can write the dynamics of Ix the density host cells infected by

strain x using the following integro-differential equation:

İx = βxSIx − (d+ α + Uf)Ix − U(1− f)Ix + U(1− f)

∫
Ix-uρ(u)d

nu . (6)

The first two terms describe the birth rate and the death rate of infections, respectively.45

The following term describe the mutation away from strain x, and the last term de-

scribes the mutations from all other strains to strain x. At rate U(1 − f) (the effect

lethal mutations have already been accounted in the death rate of infections), strain

x-u mutates to phenotype x with a probability ρ(u) following an isotropic multivariate

normal distribution N (0, In
√
λ), where refers to the variance of the phenotypic effect50

on each phenotypic dimension.
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2. Dynamics of the cumulants of the distribution of phenotypes

In this section we use the integro-differential equation (6) to derive the cumulants of the

distribution of phenotypes x. Cumulants are quantities directly related to the moments

of the distribution as we show below. We use cumulants over moments because of a55

property of Gaussian distributions: their cumulants of order > 3 are equal to zero. We

will use this property for “moment closure”, ie. to neglect higher order cumulant in our

dynamical equations to obtain a closed system of differential equations. Interestingly,

one can relax this Gaussian approximation to a certain degree by taking into account

these high order cumulants. In all our derivations we will assume that cumulants of60

order ≥ 5 can be neglected.

In the following, Cij = E [(xi − xi) (xj − xj)] denotes the phenotypic covariance

between traits i and j, while Cijk = E [(xi − xi) (xj − xj) (xk − xk)], Cijkl... denote

higher-order moments. Cumulants KU can be defined in terms of moments CU from

the definition of the cumulant generating function. In particular, we have:

Kij = Cij (7)

Kijk = Cijk (8)

Kijkl = Cijkl − CijCkl − CikCjl − CilCjk (9)

Kijklm = Cijklm − CijkClm − CijlCkm − CijmCkl − CiklCjm − CikmCjl

− CilmCjk − CjklCim − CjkmCil − CjlmCik − CklmCij (10)

Kijklmn = Cijklmn −
∑

CijklCmn −
∑

CijkClmn + 2
∑

CijCklCmn (11)

where in the last expression the sums include all terms obtained by permuting indices.

If the distribution of phenotypes is Gaussian, all cumulants of order≥ 3 are zero. In the

following, we derive expressions for the dynamics of mean phenotypes (xi), phenotypic

variances and covariances (Cij) and cumulants of order 3 and 4 (Kijk, Kijkl).65

Changes in phenotype frequencies px = Ix(t)/Ix among the non-lethal viruses are given

by:

ṗx = S (t)
[
βx − β

]
px − U (1− f) px

+ U (1− f)

∫
px−uρ (u) d

nu .
(12)

2.1. Dynamics of mean phenotypes

Changes in mean phenotypes are given by:

ẋi =

∫
xi ṗxd

nx . (13)

3



From equations 12 and 2, this gives:70

ẋi = −S (t)

2sβ

[∫
xi

n∑

j=1

x2
j pxd

nx− xi

n∑

j=1

(
Vx,j + xj

2
)
]

− U (1− f)xi + U (1− f)

∫ ∫
xi px−uρ (u) d

nu dnx .

(14)

The last line of equation 14 cancels, while the integral on the first line may be written

as:

n∑

j=1

E
[
xi x

2
j

]
=

n∑

j=1

E
[
(xi − xi + xi) (xj − xj + xj)

2]

=
n∑

j=1

[
Kijj + 2Cij xj + xi

(
Vx,j + xj

2
)] (15)

Finally giving:

ẋi = −S (t)

2sβ

n∑

j=1

(Kijj + 2Cij xj) . (16)

2.2. Dynamics of second moments

Similarly, changes in phenotypic variances and covariances are given by:75

Ċij =

∫
(xi − xi) (xj − xj) ṗxd

nx

= −S (t)

2sβ

[∫
(xi − xi) (xj − xj)

n∑

k=1

x2
k pxd

nx− Cij

n∑

k=1

(
Vx,k + xk

2
)
]

− U (1− f)Cij + U (1− f)

∫ ∫
(xi − xi) (xj − xj) px−uρ (u) d

nu dnx .

(17)

The integral in brackets on the second line of equation 17 may be written as:

n∑

k=1

E
[
(xi − xi) (xj − xj) (xk − xk + xk)

2] =
n∑

k=1

(
Cijkk + 2xkKijk + Cijxk

2
)

=
n∑

k=1

(
Kijkk + CijVx,k + 2CikCjk + 2xkKijk + Cijxk

2
) (18)

(using equation 9) while the double integral on the third line of equation 17 may be

written as:
∫

px

[∫
ρ (u) (xi − xi + ui) (xj − xj + uj) d

nu

]
dnx = Cij + δijλ (19)

where δij = 1 if i = j, and 0 otherwise. Putting everything together yields:

Ċij = −S (t)

2sβ

n∑

k=1

(Kijkk + 2xkKijk + 2CikCjk) + δij U (1− f)λ (20)

4
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2.3. Dynamics of third cumulants

The change in Kijk = Cijk is given by:

K̇ijk =

∫
(xi − xi) (xj − xj) (xk − xk) ṗxd

nx

+

∫
d (xi − xi) (xj − xj) (xk − xk)

dt
pxd

nx

=

(∫
(xi − xi) (xj − xj) (xk − xk) ṗxd

nx

)
− ẋi Cjk − ẋj Cik − ẋk Cij .

(21)

As before, the integral on equation 21 writes:

− S (t)

2sβ

[∫
(xi − xi) (xj − xj) (xk − xk)

n∑

l=1

x2
l pxd

nx−Kijk

n∑

l=1

(
Vx,l + xl

2
)
]

+ U (1− f)

∫ ∫
(xi − xi) (xj − xj) (xk − xk) px−uρ (u) d

nu dnx

− U (1− f)Kijk .

(22)

The last two lines of equation 22 vanish under the assumption that third moments of

the distribution of mutational effects ρ are zero, while the integral on the first line can85

be written as:
n∑

l=1

E
[
(xi − xi) (xj − xj) (xk − xk) (xl − xl + xl)

2] =
n∑

k=1

(
Cijkll + 2xlCijkl +Kijkxl

2
)

(23)

The moments Cijkll and Cijkl can be expressed in terms of second-order moments and

third / fourth-order cumulants using equations 9 and 10 (assuming that the fifth-order

cumulant Kijkll equals zero). Putting everything together, one finally obtains:

K̇ijk = −S (t)

sβ

n∑

l=1

(xl Kijkl +Kijl Ckl +Kikl Cjl +Kjkl Cil) . (24)

90

2.4. Dynamics of fourth cumulants

Finally, from equation 9 we have:

K̇ijkl = Ċijkl − Ċij Ckl − Cij Ċkl − Ċik Cjl − Cik Ċjl

− Ċjk Cil − Cjk Ċil .
(25)

The change in Cijkl is given by:

Ċijkl =

∫
(xi − xi) (xj − xj) (xk − xk) (xl − xl) ṗxd

nx

+

∫
d (xi − xi) (xj − xj) (xk − xk) (xl − xl)

dt
pxd

nx,

(26)

5



the second line of equation 26 being equal to:

−ẋi Kjkl − ẋj Kikl − ẋk Kijl − ẋl Kijk, (27)

while the first line is:95

− S (t)

2sβ

[∫
(xi − xi) (xj − xj) (xk − xk) (xl − xl)

n∑

m=1

x2
m pxd

nx

− Cijkl

n∑

m=1

(
Vx,m + xm

2
)
]

+ U (1− f)

∫ ∫
(xi − xi) (xj − xj) (xk − xk) (xl − xl) px−uρ (u) d

nu dnx

− U (1− f)Cijkl .

(28)

The first integral is computed as before, and yields:

Cijklmm + 2xm Cijklm − Cijkl Vx,m . (29)

The moments Cijklmm, Cijklm and Cijkl can be expressed in terms of second-order

moments and third / fourth-order cumulants using equations 9, 10 and 11 (assuming

Kijklm = 0, Kijklmm = 0). From this, one obtains that the change in Kijkl is given by:

K̇ijkl = −S (t)

sβ

n∑

m=1

(
Kijkm Clm +KijlmCkm +KiklmCjm +Kjklm Cim

+KijmKklm +KikmKjlm +KilmKjkm

)

+ (δijδkl + δikδjl + δilδkj)U (1− f)λ2 .

(30)

100

2.5. Simplification for isotropic mutation and selection

If the initial distribution of phenotypes x is a multivariate normal N (0, In
√
Vx)

with In the identity matrix of size n, we have initially independence of all phenotypic

trait xi. This implies that only cumulants of the same phenotypic trait (eg. Ciiii) are105

non-zero. If these cumulants are initially zero, one can check with their dynamical

equations that they will remain zero throughout the dynamics because selection and

mutation do not generate anisotropy. Overall, this means that the dynamics of the

distribution of phenotypes x only depends on the dynamics of xi, Kii, Kiii, Kiiii. We

thus simplify our notations using, for all phenotypic dimensions i :110

6



x = xi (31)

Vx = K2 = Vx,i = Kii (32)

K3 = Kiii (33)

K4 = Kiiii (34)

Finally we can write the dynamical system for the cumulants as:

ẋ = − S

2sβ
(K3 + 2Vx x) (35)

V̇x = − S

2sβ

(
K4 + 2xK3 + 2V 2

x

)
+ U (1− f)λ (36)

K̇3 = − S

sβ
(xK4 + 3K3 Vx) (37)

K̇4 = − S

sβ

(
4K4 Vx + 3K2

3

)
+ 3U (1− f)λ2 . (38)

After some time the system reaches an equilibrium where x = K3 = 0 and S (t) = Seq.

The equilibrium values of Vx and K4 depend on U (1− f)λ (mutation) and on Seq

sβ

(selection).

With the isotropy in phenotypic traits, we can also rewrite the expression of the mean115

transmission rate as:

β = β0 −
nVx

2sβ
− nx

2sβ
(39)

The equilibrium values of Vx and K4 must satisfy:

Vx =

√
U (1− f)λ

A
−K4/2 (40)

K4 =
3U (1− f)λ2

4VxA
(41)

A =
Seq

sβ
(42)

We can express the equilibrium density of susceptible cells as a function of the

equilibrium phenotypic variance, yielding:120

A =
2(d+ α + Uf)

2β0sβ − nVx

(43)

First, we can work in the WSSM regime thus neglecting terms in λ2. In this

case we have K4 = 0 and we get the following expression for equilibrium variance:

7



V WSSM
x (∞) =

−X +

√
X
(
X + 16

β0sβ
n

)

4
(44)

with:

X =
nU(1− fL)λ

d+ α + Uf
(45)

We can also relax the WSSM approximation and consider higher order mutational

effects directly with equation (40). However, we cannot get a simple expression for the125

equilibrium variance in this case, but we can study the predictions numerically (Figure

in Main text). Interestingly, when λ or selection are very high the above dynamical

system does not reach a stable equilibrium with a positive Vx. A necessary condition

for a positive Vx to exist is Vx > 3
8
λ. In other words, the standing phenotypic variance

has to be substantially higher than the mutational variance. This yields threshold130

values on λ below which our resolution does not work and the distribution of the

phenotypic variation cannot be described by the first 4 moments.

On the other side of the spectrum, there are regimes where mutations are rare

but with larger effects. For this case, the ’House of Cards’ approximation has been

developed by Turelli (Turelli, 1984), based on the assumption that the effect of a135

mutation is independent on the original phenotype in which it appeared. This approx-

imation, applied to our model with demographic feedback, leads to a formula for the

equilibrium variance:

V HC
x (∞) =

2U(1− f) sβ
nS(∞)

(46)

which simplifies to:

V HC
x (∞) =

2 β0 (1− f) sβ U

n (α + d+ U)
(47)

The main difference with our previous results is that the equilibrium variance is inde-140

pendent of the mutational variance λ. We use our simulation model to compare the

different expressions for equilibrium variance in the different regimes. We see that the

cumulant approach up to K4 provides the best fit when sβ is high ie. when selection is

weak. In case of extremely low selection, this approximation becomes equivalent to the

WSSM regime because the term in λ2 vanishes. However, the fourth cumulant approx-145

imation crumbles with higher selection where it yields negative values for the variance.

In this case, the House of Cards approximation yields the best result. Indeed in this

regime, the distribution of phenotypes is more peaked around the optimum and the

distribution is very far from Gaussian, which is the basis of the WSSM approximation.

8



2.6. Critical Mutation Rates150

The critical mutation rate is the value above which the pathogen population

goes extinct because the mutation load is too high (i.e., the transmission rate is too

low). In this case the equilibrium density of susceptible cells is:

Seq =
d+ α + Uf

β
=

b

d
(48)

With:

Seq =
d+ α + Uf

β
β = β0 −

nVx

2sβ
(49)

The critical value of the phenotypic variance is:155

V c
x =

2sβ
n

(
β0 −

(d+ α + Uf)d

bβ0

)
(50)

Then one can use 44 to derive the critical value of the mutation rate Uc. We find that

when f > 0:

UWSSM
c =

A+B −
√
A(A+ 2B)

8f 2sβd
(51)

with:

A = (1− f)λβ0 b n
2 (52)

B = 8f sβ(β
2
0 b− d(d+ α)) (53)

In the special case when f = 0:

UWSSM
c =

4sβ(β0 b− d(d+ α))2

β0 b d λ n2
(54)

In the same way we can compute the critical mutation rate In the House of

Cards regime which gives:160

UHC
c =

bβ0 − d(d+ α)

d
(55)

Strinkingly, this threshold of critical mutation rate is not dependent on other

parameters affecting the effect of mutations λ, sβ, n and f . The critical mtuation rate

only depends on demographic parameters. This means that in this regime, mutations

that we model as ’non-lethal’ have such strong effects that they are de facto lethal

when computing a critical mutation rate. In fact, this critical mutation rate is exactly165

the one predicted in the WSSM regime with equation (51) when all mutations are

lethal i.e. f = 1.

We cannot get an explicit expression for the critical mutation rate in the model

where we consider more cumulants. We can however get these values numerically and

we compare the three models in figure S3.170

9



3. Evolutionary dynamics using a partial differential equation on the

CGF of the distribution of transmission rates

In this appendix we derive the evolutionary dynamics by following directly the dis-

tribution of transmission rates βx instead of the phenotypes x. To do so we follow

the dynamics of the Cumulant Generating Function of the distribution of transmission175

rate using the method from Martin&Roques (Martin and Roques, 2016). This type

of function is useful as it directly gives access to the cumulants of the distribution

such as the mean and the variance of the distribution of transmission rates. It could

also be used to easily explore other mutational regimes as one would just need to

plug the Moment Generating Function of another distribution of mutational effects to180

get the dynamics. In the following, we build a partial derivative equation (PDE) on

this Cumulant Generating Function. Finally we use a Gaussian approximation for the

phenotypes, and a WSSM approximation to linearize the PDE and obtain a system of

ordinary differential equations describing the evolutionary dynamics.

To elucidate the dynamics of the distribution of transmission rates we use par-185

ticular generating functions of the distribution. We define:

Mt(z) =

∫
Ixe

βxzdnx (56)

Ct(z) = log(Mt(z)) (57)

where Mt(z) and Ct(z) are respectively the density Moment Generating Function

(dMGF) and density Cumulant Generating Function (dCGF). The term “density”

refers to the use of Ix instead of px in these definitions. We use these functions instead

of ’regular’ generating functions because we are interested in following the density of190

infected cells, and not just the distribution of phenotypes. A consequence of the use

of of dMGF and dCGF is that:

Mt(0) = I (58)

Ct(0) = log(I) (59)

In the following we refer to the partial derivatives according to t (resp. z) with

∂t (resp. ∂z). Taking the first derivative with respect to z and setting z gives access

to the mean transmission rate:195
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∂zMt(z) =

∫
Ixβxe

βxzdnx (60)

∂zMt(0) =

∫
Ixβxd

nx = Iβ (61)

∂zCt(z) =

∫
Ixβxe

βxzdnx∫
Ixeβxzdnx

=
∂zMt(z)

Mt(z)
(62)

∂zCt(0) =

∫
Ixβxd

nx

I
=

∫
pxβxd

nx = β (63)

Going further, one can check that the nth derivative of Ct(z) with respect to z, evalu-

ated in z = 0 yields the nth cumulant of the distribution of β. Now we can describe the

dynamics of the distribution of transmission rates, neglecting the non-lethal mutations,

with a partial derivative equation on the dMGF or dCGF of this distribution:

∂tMt(z) =

∫
∂t(Ix) e

βxzdnx = S

∫
βxIxe

βxz − (α + d+ Uf)

∫
Ixe

βxz (64)

= S∂zMt(z)− (α + d+ Uf)Mt(z) (65)

∂tCt(z) =
∂tMt(t)

Mt(z)
= S

∂zMt(z)

Mt(z)
− (α + d+ Uf) = S ∂zCt(z)− (α + d+ Uf) (66)

We note that setting z = 0 in the above PDE yields exactly the dynamics of the200

density of infected cells as presented in the epidemiological model. Yet this PDE can

be used to go deeper in the description of the dynamics of the phenotypic distributions

of the viral population. In the next section we implement the mutational scheme of

non-lethal mutations by studying the effect of mutations on the dCGF Ct(z)

3.1. Adding non-lethal mutations

A non-lethal mutation of effect s in an infected cell of transmission rate βx has the

following effect on the dMGF of the transmission rate:

∆
mut

Mt(z|(s, βx)) = I U(1− f)∆t(e(βx+s) z − eβx z) = I U(1− f) eβx z(es z − 1) (67)

Taking expectations over the distribution of mutational effects s in background βx:205

∆
mut

Mt(z|βx) =

∫
∆
mut

Mt(z|(s, βx)) f(s|βx) ds = I U(1− f)∆t eβx z(M s(z, βx)− 1)

(68)

11



with f(s|βx) the distribution of mutational effects in background βx, and M s(z, βx)

the MGF of the distribution of mutational effects in background βx. Then taking

expectations over all phenotypes x:

∆
mut

Mt(z) =

∫
px ∆

mut
Mt(z|βx) d

nx = I U(1− f)∆t

∫
pxe

βx z(M s(z, βx)− 1)dnx (69)

= I U(1− f)∆t(eβx zM s(z, βx)− eβxz) (70)

Where the overbar refers to the average over all values of βx at time t. In continuous

time, as ∆t −→ 0, we use the fact that ∆
mut

Ct(z) = ∆
mut

Mt(z)/Mt(z) to obtain :210

∆
mut

Ct(z) = U(1− f)∆t(
eβx zM s(z, β)

eβx z
− 1) (71)

To go further with the expression, we need to express the MGF of the distribu-

tion of mutational effects M s(z, β). Note that it is not dependent on the number of

infected, and so this is a classic MGF and not a density MGF. In the next two sections

we derive an expression in the cases where the phenotype dimensions are n = 1 or

n > 1. We already note that the two expressions will be consistent.215

3.2. MGF of the DFE in one dimension (n = 1)

A mutation of effects s on β, can be expressed with the phenotype x in which it

happens and effect u of the mutation of the phenotype as follows:

(s|x) = βx+u − βx = −2xu+ u2

2sβ
(72)

When u ∼ N (0,
√
λ), we can express the distribution of (s|x) using a noncentral Chi-

squared distribution dependent on the distance to the optimum (Martin2014):

(s|x) ∼ s0(x)−
λ

2sβ
χ2
1

(
2 sβ (β0 − βx)

λ

)
(73)

The MGF of this distribution (s|g) is:

Ms(z, x) =
(
1 +

zλ

sβ

)− 1
2
Exp

(z2λ(β0 − βx)

sβ + zλ

)
= M∗(z) e

−ω(z)βx (74)

3.3. MGF of the DFE in higher dimension (n ≥ 2)

Similarly to the case n = 1, A mutation of effects s on βx, can be expressed with an

mutational effect u on the phenotype x in which it happens as follows:

(s|βx) = β(x+ u)− β(x) = −2x.u+ u.u

2sβ
(75)
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Using polar coordinates for the mutation u, let r = ∥u∥ and θ = cos((̂x,u)).




u.u = r2

u.x = r ∥x∥ θ
(76)

We want to compute the MGF of the distribution of fitness effects s which is

Ms(z, ∥x∥) = E (esz) = Er ,θ

[
e
z

(
− r2

2sβ
− r θ ∥x∥

sβ

)]
= Er

[
Eθ

[
e
z

(
− r2

2sβ
− r θ ∥x∥

sβ

)]]
(77)

As u ∼ N (0, In
√
λ) we then have that r 2 ∼ λχ2

n = Γ
(
n
2
, 2λ
)
and using the distribution220

of angles to one optimum in a n-sphere from (Martin and Lenormand, 2015) we get

Ms(z,x) =

(
λz

sβ
+ 1

)−n
2

Exp
( λz2∥x∥2
2s2β + 2λsβz

)
(78)

Finally by using the dependence of βx on ∥x∥ we get

Ms(z,x) =
(
1 +

zλ

sβ

)−n
2
Exp

(z2λ(β0 − βx)

sβ + zλ

)
= M∗(z) e

−ω(z)βx (79)

with M∗(z) =
(

λz
sβ

+ 1
)−n

2
e

λz2β0
sβ+λz is the MGF of the DFE in a phenotype at the

optimum (x = 0) and ω(z) = λ z2

sβ+λ z
is the linear effect of β on the CGF of the DFE

(Martin and Roques, 2016).225

3.4. An alternative way to derive the WSSM approximation

The MGF of the distribution of fitness effects Ms(z) computed above can be

plugged in (71) which yields:

∆
mut

Ct(z)

∆t
= U(1− f)

(
M∗(z)

eβx(z−ω(z))

eβx z
− 1
)
= U(1− f)

(
M∗(z) eCt(z−ω(z))−Ct(z) − 1

)

(80)

This expression is only dependent on the CGF of the distribution of transmission

rates β and thus we obtain a closed system. Adding this mutation term to the PDE

describing selection (66) yields:

∂tCt(z) = S ∂zCt(z)− (α + d+ U f) + U(1− f)
(
M∗(z) eCt(z−ω(z))−Ct(z) − 1

)
(81)

This PDE is not solvable analytically, but by differentiating it according to z and230

setting z = 0, we can access the dynamics of the cumulants of the distribution of

transmission rates βx.
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∂tCt(0) = ∂t log
(
I(t)

)
= −(α + d) + βS(t) (82)

∂t∂zCt(0) = ∂t β = −U(1− f)λ

2sβ
+ S(t)Vβ (83)

∂t∂
2
zCt(0) = ∂t Vβ =

U(1− f)λ
(
3λ+ 8sβ(β0 − β)

)

(2sβ)2
+ S(t) ∂3

zCt(0) (84)

However, we get that the dynamics of the cumulant of order n is dependent on the

value of the cumulant of order n + 1. In contrast to section 2, we focus here on the

distribution of transmission rates βx and not on the distribution of phenotypes x. The235

distribution of transmission rate is not Gaussian, and so we cannot neglect cumulants

of high order to close the dynamics. Thus we cannot get a closed system of differential

equations without further assumptions.

To simplify the resolution of the PDE, we first make the assumption that the

distribution of phenotypes x is Gaussian. With this assumption, we can compute the240

general form of Ct(z) the dCGF of the distribution of transmission rates. Knowing

the form of the dCGF and plugging it into the PDE (81), we directly compute the

partial derivatives according to z and t to obtain an ordinary differential equation.

We find the form of the dCGF of transmission rates much in the same way as we did

the MGF of mutational effects. Indeed, mutation is gaussian and centered around245

the phenotype in which it appears, and in parallel the distribution of phenotypes is

gaussian and centered around the mean phenotype. We study δβ = β (x̄+ u)− β (x̄)

where u ∼ N
(
0, In

√
Vx

)
with Vx(t) the variance in each phenotypic trait. Thus with

the same derivations as earlier, we get:

M δβ
t (z) =

(
1 +

zVx(t)

sβ

)−n
2
Exp

(z2Vx(t)(β0 − βx)

sβ + zVx(t)

)
= M∗(z) e

−ω(z)βx (85)

From which follows:250

Mt(z) =

∫
Ixe

βx zdnx =

∫
Ixe

(βx+u)zdu

= I
(
eβxz +M δβ

t (z)
) (86)

where x =
∫
pxgd

nx is the mean phenotype and thus βx is the transmission rate of

the mean phenotype (note that βx ̸= β). Finally, the dCGF on the distribution of

transmission rates βx, under the assumption that phenotypes x are Gaussian, is:

Ct(z) = Log(Mt(z)) =
z (sβ βx(t) + z β0 Vx(t))

z Vx(t) + sβ
− n

2
log

(
1 +

z Vx(t)

sβ

)
+ log(I) (87)
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The range of validity of this approximation is discussed by Martin&Roques

(Martin and Roques, 2016) and boils down in our model to a lower bound on the255

mutation rate relative to the strength of mutation and selection:

U ≫ n2λ

4sβ
(88)

The Gaussian approximation can only be valid when mutations have small effects.

Thus we linearize the PDE (81) using a Taylor Series of λ at the first order which

gives:

∂tCt(z) = S ∂zCt(z)− (α + d+ Uf) +
µ2 z2

(
β0 − ∂zCt(z)

)
− z µ2 n

2

sβ
(89)

This dCGF is dependent on time through parameters linked to the distribution of the260

underlying phenotypic traits: the transmission rate of the mean phenotype βx and the

phenotypic variance Vx. Finally, plugging the form (87) in (89) and solving for all z

and z2 finally gives:

β̇x(t) =
2Vx S

sβ

(
β0 − β(x)

)
(90)

V̇x(t) = −V 2
x S

sβ
+ U(1− f)λ (91)

(92)

Instead of the dynamics of the transmission rate of the mean phenotype βx, we prefer

to follow directly the dynamics of the mean phenotype x like in appendix A. From the265

expression of the dynamics of the transmission rate of the mean phenotype βx(t), the

dynamics of the mean phenotype is easily recovered and follows:

ẋ(t) = −Vx(t)S(t)

sβ
x(t) (93)

which is consistent with the dynamics recovered in section 2.

4. Numerical simulations

To check our analytic results, we compare them with phenotype-centered simulations270

in two dimensions n = 2. We build a grid of size l∗ l with l an odd number, where each

square of the grid corresponds to a phenotype. The phenotypic trait value goes from

−xmax to xmax and the phenotype step between each square is δx = 2xmax

l
as shown in
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Figure S1. To each square (i, j) of the grid is associated at a given time t a number of

infected individuals I(i, j, t) of phenotype (xi, xj).275

At each time interval dt, susceptible cells S(t) grow with a constant rate b and

die with rate d. Infected cells I(i, j, t) grow by infecting susceptible cells S(t) depending

on the transmission rate of their phenotype β(xi, xj), and die with d + α + Uf , such

that

I(i, j, t+ dt) = I(i, j, t) + dtI(i, j, t)
(
S(t)β(xi, xj)− (d+ α + Uf)

)

S(t+ dt) = S(t) + dt(b− S(t)(d+
∑

i,j

I(i, j, t)β(xi, xj)))

β(i, j) = β0 −
x2
i + x2

j

2sβ

(94)

To stick with our analytic model we use a quadratic link function between phenotypes280

and transmission rate that could lead to negative values of β. To add the effect of

mutations, we use two different model. The first modelMg features Gaussian mutation.

It is the exact transposition of the integro-differential equation describing the dynamics

of the distribution of phenotypes on a grid, such that by mutation:

I(i, j, t+dt) = I(i, j, t)+dt U (1−f)
((∑

k,m

I(i−k, j−m, t)ρ(k)ρ(m)
)
−I(i, j, t)

)
(95)

where ρ is the Gaussian kernel N (0,
√
λ). We make sure to normalize the kernel so285

that the sum of probabilities of the mutations from the center square of the grid is

equal to 1.

The second model Md models mutation as a diffusion in the phenotypic space and

represents the WSSM regime. Starting from the integro-differential equation (6), we

can take a Taylor expansion around Ix−u(t) in small u. The incoming mutation term290

in the integral then equals to:

∫ (
Ix(t)ρ(u)−uρ(u)∇Ix(t)+u.uρ(u)∇2Ix(t)+u.u.uρ(u)∇3Ix(t)+o(u.u.u)

)
dnu (96)

Where ∇Ix(t) is the gradient operator of Ix(t) according to phenotype x. As the

mutation kernel is symetric, the second and fourth term vanishes. Higher order terms

in u are neglected as they would lead to terms in higher orders of λ. The integral

yields:295

Ix(t) +
λ

2
∇2Ix(t) + o(λ) (97)
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The first term cancels out with the outgoing mutation term in (6) and we finally get

a diffusive form of the integro-differential equation:

∂Ix(t)

∂t
= βxSIx − (d+ α + Uf)Ix + U(1− f)

λ

2
∇2Ix(t) (98)

Modelling this equation with discrete phenotypes on the phenotype grid coupled with

the epidemiological dynamics yields:

I(i, j, t+ dt) = I(i, j, t) + dt U(1− f)
λ

2δ2x
∆I (99)

∆I = I(i+ 1, j, t) + I(i− 1, j, t) + I(i, j + 1, t) + I(i, j − 1, t)− 4I(i, j, t)

(100)

We compare these simulations to the analytic models we use in the main text in300

Figure??. We see that the diffusion model Md squarely fits the WSSM analytic predic-

tions for the two mutation rates considered. However, the cumulant model taking into

account larger mutational effects (λ and λ2) with K3 and K4 shows a faster adaptation

of the mean transmission rate and a reduced equilibrium mutational load. The Gaus-

sian mutation model Mg (considering all orders of λ) yields an even faster adaptation305

and even smaller equilibrium mutational load.
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Figure S1: Grid of phenotypes for numeric simulations. Example phenotype values

are represented in red on the grid.
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Figure S2: Comparison of the critical mutation rate for lethal mutagenesis under

different regimes. The critical mutation rate Uc is shown as a function of the selection

parameter sβ in a log-log scale. The results are shown for three derivations: the WSSM

approximation in orange, the results from the cumulant approach up to K4 in red, and

the House of Cards (HC) approximation in grey. Data from numerical simulations are

shown as blue points. The parameters used were: b = 3, d = 1, β0 = 4, α = 1, U =

4, f = 0.4, λ = 0.05, n = 2.
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Figure S3: Comparison of the analytic en numeric predictions for (a,c) the mean

transmission rate and (b,d) the phenotypic variance. The analytic models are depicted

with dashed lines, the numeric models with solid lines. Model Md (diffusion) is shown

in grey, model Mg (Gaussian mutation) in light red, the CGF model in black and the

cumulant model in red. Panels (a,b): λ = 0.005 ; Panels (c,d): λ = 0.05 The other

parameters common two all panels were: b = 4, d = 1, β0 = 4, α = 2, sβ = 1, U =

1, f = 0.4, n = 5
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Abstract

Mutations  allowing  pathogens  to  escape  host  immunity  promote  the  spread  of

infectious  diseases  in  heterogeneous  host  populations  and  can  lead  to  major

epidemics. Understanding the conditions that slow down this evolution is key for the

development  of  durable  control  strategies  against  pathogens.  Several  earlier

theoretical  studies have explored the efficacy of different deployment strategies of

host resistance across space and time in agriculture. Because these studies focus on

diverse optimization criteria,  they sometimes yielded contrasting recommendations

regarding their relative efficacy. Besides, these analyses are limited by the paucity of

experimental data on the durability of proposed control schemes. Here we use theory

and experiments to compare the efficacy of three resistance strategies: (i) a  mixing

strategy  where  the  host  population  contains  two single-resistant  genotypes,  (ii)  a

pyramiding strategy  where  the  host  carries  a  double-resistant  genotype,  (iii)  a

combining strategy where host population is a mix of a single-resistant genotype and

a double-resistant genotype. First, we use evolutionary epidemiology theory to clarify

the interplay between demographic stochasticity and evolutionary dynamics to show

that  the  pyramiding strategy  always  yields  lower  probability  of  evolutionary

emergence. We also show that when only single-resistance genotypes are available,

we  should  maximize  diversity  of  resistance  to  minimize  the  risk  of  evolutionary

emergence.  Second,  we  tested  experimentally  these  predictions  by  using  virulent

bacteriophages  introduced  into  bacterial  populations  where  we  manipulated  the

1



diversity and the depth of immunity using a CRISPR-Cas system. We showed that

pyramiding multiple defenses into the same host genotype and avoiding combination

with  single-defense  genotypes  is  a  robust  way  to  reduce  pathogen  evolutionary

emergence. These results have practical implications for the optimal deployment of

host  resistance  in  agriculture  and  biotechnology  but  also  for  vaccination  against

pathogens.

Keywords:  evolutionary  emergence,  epidemiology,  demographic  stochasticity,  host

resistance, CRISPR, infectious disease control.

Introduction

The spread of pathogen epidemics is driven by the composition of host populations and, in

particular, by the fraction f R of resistant hosts. Larger values of f R generate “herd immunity”

in well-mixed populations because a randomly chosen  susceptible host is expected to be

surrounded  by  many  resistant  neighbors.  Since  resistant  hosts  cannot  be  successfully

infected, their presence shields susceptible individuals from the risk of being infected and

reduce the spread of a given pathogen. In fact, the epidemic is expected to stop growing

when  f R>1−1/R0,  where  R0 refers to the basic  reproduction ratio of  the pathogen.  This

theoretical framework provides key guidelines for the deployment of control measures like

vaccination [1,2] or the deployment of resistant varieties of crops in agriculture [3,4].

The  efficacy  of  these  control  strategies,  however,  is  challenged  by  the  potential

acquisition of escape mutations allowing the pathogen to infect a resistant host. Whether

those variants will  appear,  establish,  and spread depend on multiple evolutionary forces,

including the composition of the host population. For instance, a larger fraction f R of resistant

hosts is expected to reduce the growth rate of the wild-type pathogen and, consequently, to

limit the influx of escape mutations. But a larger fraction f R of resistant hosts is also expected

to increase the fitness benefit  associated with an escape mutation. This will  increase the

probability of establishment of a given mutation (i.e. lower risk of stochastic extinction when

rare)  and  it  will  also  increase  the speed  at  which  this  variant  will  spread.  The  balance

between these two opposite effects may thus result in a higher risk of pathogen adaptation

for intermediate frequency of resistance. Hence, a better understanding of the influence of

the host  population  composition  on pathogen adaptation  may help  identify  more durable

control strategies. 

Many theoretical studies have explored complex ecological scenarios to evaluate the

impact of various strategies for the deployment of host resistance genotypes across space
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and  time in  agriculture  [3,5–14].  In  particular,  several  studies  contrasted  the  efficacy  of

mixing multiple  single  host  resistant  genotypes  with  the  efficacy  of  pyramiding multiple

resistant genes within a single genotype. Earlier models did not incorporate demographic

feedbacks  or  any  influence  of  demographic  stochasticity  and  focused  on  the  long-term

deterministic  evolutionary  outcomes.  Under  these  conditions  the  mixing strategy  can

outperform the pyramiding strategy because the former strategy can prevent the spread of

pathogens  carrying  multiple  escape  mutations  [5,6].  More  recent  studies  challenged  this

guidance  and  relied  on  more  realistic  simulation  models  to  highlight  the  importance  of

epidemiology, demographic stochasticity, and spatial structure on both the epidemiology and

the  evolution  of  the  pathogen  [9–11,14,15].  Taken  together,  the  available  theoretical

literature may appear confusing because distinct studies make different recommendations on

the optimal strategy for the deployment of resistance against a pathogen [16]. This confusion

stems from the different assumptions of the models (e.g. with or without demography, with or

without  stochasticity) but also on the different optimality criteria used to identify the most

effective pathogen control strategies (e.g. no evolution of multi-escape mutations, minimal

disease incidence) [8,17,18]. Besides, experimental studies needed to evaluate the durability

of  control  strategies  are  notoriously  difficult  to  carry  out  in  most  pathosystems,  and  in

particular in agriculture [8,13,19]. This lack of experimental studies does not help to elucidate

the pros and cons of distinct deployment of resistance strategies.

Here  we  develop  a  joint  theoretical  and  experimental  approach  to  analyse  the

durability of different strategies for the deployment of host resistance. We focus on a very

specific quantity to evaluate the efficacy of a control strategy: the probability of pathogen

emergence with (or without) viral adaptation. This quantity provides a relevant measure of

control  efficacy  because  it  accounts  for  both  short-term  (epidemiology)  and  long-term

(evolution)  dynamical  processes  [20].  Experimental  measurements  of  evolutionary

emergence, however, are challenging because the stochastic nature of pathogen extinction

requires a large number of replicate populations to measure the probability of emergence.

These  experiments  require  also  the  ability  to  manipulate  the  composition  of  the  host

population  and to track the evolution  of  the pathogen population.  These hurdles  can be

overcome by studying the evolutionary emergence of  virulent  bacteriophages in bacterial

populations that use the adaptive CRISPR immunity to prevent phage infections: (i) many

replicates can be carried out simultaneously using bacteria and phages in 96-well plates [20];

(ii) CRISPR immunity provides a very convenient way to manipulate both the diversity of host

immunity (different bacteria derived from the same population can carry different “spacers” in

their  CRISPR array  [20,21])  and  the  depth of  host  immunity  (multiple  “spacers”  can  be

stacked  within  the  CRISPR  array  of  the  same  multiresistant  bacterium  [22]);  (iii)  the

mechanism of  phage adaptation to CRISPR-based immunity is well  documented: virulent

3



phages  escape  CRISPR  resistance  through  mutation  in  their  target  sequence  (the

“protospacer”) [23–26].

In  the  next  sections  we  present  the  theoretical  framework  used  to  compute  the

probability  of  evolutionary  emergence  of  pathogens  after  being  introduced  in  a

heterogeneous  host  population.  We use  this  model  to  understand  the  effect  of  multiple

factors on the fate of the pathogen: (i) the number of viruses introduced, (ii) the proportion of

resistant hosts, (iii) the diversity and the depth of immunity of resistant hosts. This allows us

to contrast the influence of different strategies of resistance deployment on the probability of

pathogen evolutionary emergence. In a second step, we manipulated the heterogeneity of

bacterial  CRISPR  immunity  to  test  the  validity  of  our  theoretical  predictions  on  the

evolutionary emergence of phage populations.

Materials and Methods

Theory

Pathogen emergence is defined as the ability to escape early extinction and thus to initiate

an epidemic after the introduction a small quantity of pathogens in the host population. This

probability of emergence depends both on the host (e.g. proportion and diversity of resistant

hosts)  and  the  pathogen  (e.g.  inoculum  size,  genetic  composition)  [20,27–29].  For  a

pathogen  to  emerge,  we  assume that  the  host  population  contains  a  fraction  (1−f R ) of

individuals fully susceptible to the pathogen while the remaining fraction f R of the population

is resistant. Among the resistant hosts, we consider three alternative scenarios (Figure 1): 

(i) a mixing scenario, in which the resistant fraction of the population is a mix of two single-

resistance  genotypes  (A+B)  aiming  at  distinct  pathogen  target  sites  (a  target  site  is

defined here as a region of the pathogen genome recognized by immune effectors and

where a mutation or a deletion may allow escape recognition by host immunity). We allow

the frequency of the two resistant hosts to vary and  f A refers to the frequency of the

resistant host A among the resistant hosts (f B=1−f A is the frequency of the resistant host

B among the resistant hosts); 

(ii) a  pyramiding scenario, in which the resistant fraction of the population is monomorphic

with a double-resistance genotype (AB); 

(iii) a combining scenario, in which the resistant fraction of the population results from a mix

of single-resistance genotypes (say A) and a double-resistance genotype (AB). We allow

the frequency of the two resistant hosts to vary and f A refers to the frequency of resistant

host A among the resistant hosts (f AB=1− f A is the frequency of the resistant host AB
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among  the  resistant  hosts).  Note  that  the  pyramiding scenario  is  a  limit  case  of  the

combining scenario when f A=0.  

The efficacy of resistance is assumed to be complete (no infection if the host is resistant) but

the pathogen can evade recognition by acquiring escape mutations in  the corresponding

immunity  target sites. Therefore, a pathogen with escape mutation  i can infect a fraction

(1−f R )+ f R Pi of  the  total  host  population,  where  Pi= ∑
h∈ { A ,B , AB}

f h P i
h
 is  the  fraction  of  the

resistant hosts that can be infected by the pathogen with genotype i since Pi
h measures the

ability of the pathogen genotype i to infect  of the host genotype  h∈ {∅ , A ,B , AB }. In the

pyramiding scenario, pathogens with less than 2 escape mutations can only infect a fraction

(1−f R ) of the total host population and only pathogens with 2 escape mutations can infect all

the hosts. In the mixing and in the combining scenario, the fitness of a single escape mutant

depends on the identity of  the single-resistance genotype in the host population and the

composition of the resistant population (see supplementary information).

We  further  assume  a  classic  birth-death  process  to  model  the  epidemiological

dynamics  where  a  host  infected  with  a  pathogen  that  does  not  carry  escape  mutations

spreads this pathogen in a fully susceptible host population at rate b and dies at rate d . Host

resistance prevents infection and may thus affect the effective birth rate, but without affecting

d . Whereas escape mutations may allow the pathogen to infect a larger fraction of the host

population, they also carry a fitness cost c which causes pathogens with i escape mutations

to  reproduce  at  rate  b i=b (1−c )
i.  The  probability  of  acquiring  an  escape  genotype

i∈ { A ,B , AB } by mutation is noted μi and may vary among target sites. Crucially, the rate of

acquisition of 2 escape mutations is expected to be much smaller than the rate of single

escape mutations:  μAB ≈ μ A μB ≪μ A , μB. For the sake of simplicity, we assume that escape

mutations are fixed and cannot revert to the ancestral types. These reversions to the wild-

type  target  are  expected  to  have  a  negligible  effect  on  the  probability  of  evolutionary

emergence when the target site mutation rate remains small [20,30].

We detailed in the  supplementary information how we compute the probability of

emergence (with or without viral evolution) after the introduction of an inoculum of V  phage

particles in a heterogeneous bacterial host population. We also derive approximations for the

probability of evolutionary emergence inspired from models of evolutionary rescue. Those

approximations help to contrast the effects of the composition of the host population on the

risk of evolutionary emergence.

Experiments

5



We used the Gram-positive bacterial strain Streptococcus thermophilus DGCC 7710 which is

susceptible to the virulent phage 2972. We also used three CRISPR-resistant clones (also

referred as bacteriophage-insensitive mutants: BIMs) that were derived from S. thermophilus

DGCC 7710 and differ only in their CRISPR arrays (Tables S1 and S2). Two of these clones

carried a single additional spacer (strains A and B) targeting the genome of phage 2972,

while the remaining clone carried a combination of these two spacers (strain AB) precisely

obtained using the approach developed by Hynes et al. [22]. The addition of a single spacer

in the CRISPR1 array of  S. thermophilus DGCC 7710 provides a robust resistance against

infection by the wild-type virulent phage 2972 [23–25] (Table S2).  The rate at which phage

2972  acquires  mutations  allowing  to  escape  CRISPR  immunity  was  found  to  be

approximately equal to 2.8*10−7 mutations/locus/replication  [31]. The acquisition of a single

escape mutation may or may not yield significant fitness costs for the phage [24,31].

We monitored the dynamics of the phage population after introducing an inoculum of

V  viruses in each well of a 96-well plate containing 200 μL of replicate bacterial populations

with a proportion f R=90% of resistant cells and 1−f R=10 % of susceptible cells. This virus

inoculum was sampled from a lysate obtained after amplifying a single plaque of the wild-

type phage 2972 on S. thermophilus DGCC 7710 (the initial frequency of single and double

escape  mutants  was  estimated  in  Table  S3).  We  manipulated  the  composition  of  the

resistant bacterial population to produce three experimental treatments to test the predictions

of  the  theoretical  model  (Figure 1):  (i)  mixing (strains  A and  B in  equal  frequency),  (ii)

pyramiding (only strain AB), (iii)  combining strains A and AB in equal frequency (combining

A)  or  combining  strains B and AB in  equal  frequency (combining B).  After  an overnight

incubation (22 h) we quantified the abundance and the evolution of the phage after spotting a

fraction of each replicate (2μL) on a lawn of the different bacterial strains to measure: (i) the

presence/absence of phages using a lawn of susceptible cells (ii) the presence/absence of

escape mutations in the phage population using lawns of single-resistance bacteria (A or B)

and a lawn of double-resistance bacteria (AB) [20,31].

We  used  logistic  regression  models  with  the  presence/absence  on  susceptible

bacteria (or on resistant bacteria) as the response variable as a function of the inoculum size

and the composition of the host population (see supplementary information).

Results

Emergence and evolutionary emergence

We derive the probability of pathogen emergence after the introduction of an inoculum of V

pathogens. This inoculum is sampled in a population where some phage genotypes may
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already carry escape mutations: pi refers to the frequency of genotype i∈ {∅ , A , B , AB }. In

the following we focus mainly  on scenarios where the frequencies of  preexisting escape

mutations remain low (i.e.  p∅≈ 1).  Figure 2 shows the effect of the inoculum size and the

frequency of resistance on pathogen emergence under different deployment strategies. 

In the absence of pathogen mutations (p∅=1 and μ=0) the probability of pathogen

emergence is equal to  PE=1− (f R+1/R0 )
V  when  f R+1 /R0>1, where  R0=b/d  is  the basic

reproduction ratio of the pathogen  [20]. As indicated with a dashed line in  Figure 2,  this

probability  of  pathogen  emergence  drops  rapidly  with  the  increase  in  the  proportion  of

resistant hosts and pathogen emergence becomes impossible when f R>1−1/R0. Note that

this threshold is  independent of the deployment strategy because they all share the same

value of f R. 

However,  the pathogen population  may avoid extinction through the acquisition of

escape  mutations.  The  term  evolutionary  emergence refers  to  these  situations  where

emergence  is  consecutive  to  pathogen  evolution  [28,29].  In  Figure  2  we  compare  the

probabilities  of  evolutionary  emergence  in  a  symmetric  scenario  where  f A=1 /2 for

increasing values of  f R (Figure 2A) and  V  (Figure 2B).  Crucially,  the probability that the

pathogen adapts to host resistance depends on the deployment of host resistance strategies

and the pyramiding treatment always yields lower probability PEE of evolutionary emergence.

Indeed, in both the mixing and the combining treatments, the presence of a single-resistance

genotype provides  a “stepping  stone”  allowing  the acquisition  of  a  first  escape mutation

allowing  the  virus  to  recover  the  ability  to  grow  in  the  host  population.  Besides,  the

acquisition of this first escape mutation may allow the pathogen to acquire later on the ability

to escape both types of resistance. The lower probability to acquire both escape mutations at

the same time explains the step-like shape of the probability of emergence in Figure 2 (see

also  Figure  S1).  As  expected,  preexisting  mutations  always  increase  the  probability  of

pathogen emergence and allow the pathogen population to escape extinction even in the

extreme case where f R=1 and no fully susceptible hosts are present in the host population

(Figure 2A).

We  can  generalize  these  results  for  asymmetric  scenarios  where  f A ≠1 /2.

Interestingly, variations of  f A have different effects in the mixing and combining treatments

(Figure 3). In the  mixing treatment, the probability of emergence is minimized when  f A is

close to  ½ and thus when the amount of diversity is maximized in line with  the effect of

diversity discussed in Chabas et al [20]. In the combining treatment, the risk of emergence is
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minimized  when  f A=0 because  this  is  the  case where  all  the  resistant  hosts  carry  two

resistances (i.e. pyramiding treatment).

The influence of host composition on the probability of evolutionary emergence can

be captured within the framework of evolutionary rescue models. This framework is relevant

as  soon  as  f R>1−1/R0 because  the  wild-type  virus  is  doomed to  go  extinct  when  the

proportion  f R of  resistant  hosts  leads  to  a  negative  growth  rate  of  the  wild-type  virus

population . We derive approximations for the probability of evolutionary emergence under

the assumption that the viral  mutation rate is small  (supplementary information). In the

symmetric scenario (i.e. f A=1 /2) this yields:

Mixing:  PEE
M ≈ 2Vμ(1−

d
b (1−c ) (1−f R/2 ) )+O ( μ2 )

Combining:  PEE
C ≈ Vμ(1−

d

b (1−c ) (1− f R /2 ) )+O ( μ2)

Pyramiding:  PEE
P ≈ O ( μ2 )

(1)

This  approximation  captures  both  the  effect  of  a  larger  inoculum  size  and  the  effect  of

treatment on PEE illustrated in Figure 2. Note that larger inoculum sizes are also expected to

increase  PEE via the introduction of pre-existing mutants, not modelled in (1).  The above

approximation  is  particularly  useful  to  discuss  the  effect  of  the  composition  of  the  host

population. In particular, in the mixing strategy the PEE is expected to be twice larger than in

the combining strategy in the symmetric scenario. And both these strategies are expected to

have higher PEE than the pyramiding strategy because μAB is assumed to be much smaller

than μA and μB. 

Experiments

Increasing the size V  of the virus inoculum increased the ability to observe the presence of

phages on fully susceptible bacterial populations (Type II Anova: LR Chi-square =3744.2,

df=1, P<2.2×10-16) and reached its maximal value when V >103. We found an effect of host

treatment on the probability to detect phages on fully susceptible bacteria which is difficult to

interpret  because  it  interacts  with  the  inoculum  size  (supplementary  information).

Importantly, note that this treatment effect is not due to pathogen evolution since pathogen

evolution is not detectable when V <103. 
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It  is  tempting  to  equate  our  measure  of  the  presence  of  phages  on  susceptible

bacteria with the probability of emergence PE. Yet, as soon as the wild-type phages start to

replicate, the proportion of susceptible bacteria is expected to drop and f R is expected to be

≈ 1 after the overnight culture. So,  the presence/absence of phage on susceptible bacteria

may actually result from the detection of some of the phages that have been inoculated but

did not adsorb to a host cell yet. In the following, we prefer to focus on the analysis of the

presence/absence of phage able to replicate on different types of resistant hosts (i.e. host A,

B  or  AB)  because  it  provides  an  unambiguous  measure  of  the  probability  of  pathogen

adaptation to host immunity.

Our analysis of the probability of the phage to adapt to at least one type of resistance

confirms our predictions on the effect of inoculum and host composition (Figures 4 and 5). In

particular,  we recover  the predicted relationship  PEE
M

>PEE
C

>PEE
P  when we focused on the

Combining B treatment (i.e. a combination of strains B and AB): Tukey HSD test, PEE
M

−PEE
CB

=0.78, z=3.08, P=0.011 ;  PEE
CB

−PEE
P =2.67, z=9.40, P<0.001. However, we find no significant

differences between the probabilities of viral evolution in the Mixing and in the Combining A

treatments (i.e. a combination of strains A and AB): Tukey HSD test, PEE
M

−PEE
CA=0.12, z=0.49,

P=0.96. This suggests that the probability for a virus of acquiring an escape mutation against

resistance A is higher than against resistance B. Note that the expected twofold increase in

the probability of viral evolution in the Combining treatment relative to the Mixing treatment

(see  equation  (1))  lies  in  the  95%  confidence  intervals  we  compute:  PEE
M

/PEE
CA =  1.13

[0.60;2.13] ; PEE
M

/PEE
CA = 2.17 [1.14;4.15] (Figure 5B, red dashed line).

Interestingly,  similar  treatment effects were found when we analysed the ability of

phage 2972 to acquire both escape mutations (Figure S4). In particular, we found that the

Mixing treatment was most favourable for the emergence of double escape mutations (Tukey

HSD test, PEE2

M
−PEE2

CA
=1.75, z=6.71, P<0.001 ; PEE2

M
−PEE2

CB
=0.84, z=3.39, P=0.0039; PEE2

M
−PEE2

P

=1.78, z=6.81, P<0.001), even if none of the bacteria carry both resistance in this treatment.

This  effect  likely  results  from  the  sequential  acquisition  of  multiple  mutations,  which  is

facilitated in the mixing treatment. In other words, the mixing strategy is far less durable than

the  pyramiding strategy.  Besides,  as predicted by our theoretical model, the probability of

evolutionary  emergence  under  the  combining strategy  falls  in  between  the  two  other

strategies  and  confirms  that  the  presence  of  single-resistant  genotypes  speeds  up  the

acquisition  of  escape mutations  and promotes evolutionary emergence even when some

hosts are multiresistant.
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Discussion

In this study, we have  explored the influence of several factors such as pathogen life history

traits  (birth  and death rates),  mutation  rates,  pathogen initial  inoculum size,  fraction  and

depth of host resistance, on the ultimate fate of a pathogen introduced in a heterogeneous

host population. In particular, we showed that larger inoculum size favors the emergence and

the adaptation of the pathogen to the host population because of two main effects. First,

larger  inoculum size increases the probability  of  the introduction of  a preexisting escape

mutation  which  further  increases  the  evolutionary  potential  of  the  pathogen  population.

Second, even in the absence of preexisting mutations in the inoculum, a larger inoculum size

of  the  wild-type  pathogen  provides  more  opportunities  for  the  emergence  of  escape

genotypes by mutation.

Our theoretical analysis yielded clear predictions on the effect of the host composition

on the probability of evolutionary emergence of a pathogen: pyramiding is the most effective

way to reduce the risk of pathogen adaptation, even in the presence of preexisting escape

mutant  in  the  pathogen inoculum (Figure 2).  The worst  strategy is  the  fully  asymmetric

mixing strategy (e.g. f A=1) because it takes a single escape mutant to exploit the whole host

population. The fully symmetric mixing strategy is better than the asymmetric mixing strategy

because,  as  shown by  previous  studies,  higher  host  diversity  reduces  the probability  of

evolutionary emergence [20]. The efficacy of the combining treatment is intermediate and is

very sensitive to the relative proportion of single and multiple resistances. In particular, we

showed  that  the  overlap  between  the  resistance  genes  carried  by  single-  and  double-

resistant  host  genotypes  in  the  combining treatment  may  greatly  enhance  the  risk  of

evolutionary emergence because escaping single-resistance may provide a “stepping stone”

towards the acquisition of multiple escape mutations.

Our experimental results confirmed both the positive effect of larger inoculum size

and the hierarchy in the efficacy of different host treatments on the probability of pathogen

adaptation. Note, however, that our model oversimplifies several features of the pathogen

dynamics taking place in our experiments. First, we modeled viral growth as a “birth-death”

process while the reproduction of our virulent phage follows a “burst-death” cycle. The burst-

death process is expected to alter the variance associated with the reproduction event and

may  thus  alter  the  predictions  on  the  evolutionary  outcome  [32],  but  see  [20] for  a

comparison between these two ways to model pathogen dynamics. Second, we assumed the

fraction of the different host genotypes to be constant throughout the experiment. This is a

very rough approximation because we know that the fraction of the susceptible hosts will

drop relatively rapidly when the wild-type genotype spreads. Consequently, the fraction f R of

resistant hosts is expected to increase rapidly through time. Similarly, the relative fraction of
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the  different  types of  hosts is  expected to vary  with  time after  the  emergence  of  single

escape mutations that will exploit specifically a fraction of these resistant hosts. Yet, the good

match between our theoretical predictions and our experimental results suggests that the

conclusions  of  our  model  are  robust  to  the  specific  details  of  the  epidemiology  of  the

pathogen. 

Our conclusions are also consistent with a review of the available empirical studies on

the durability of different crop protection programs which concluded that  pyramiding is the

most durable strategy [8]. For instance, the durability of wheat cultivars was associated with

the pyramiding of multiple resistant genes [7]. A few experimental studies have tracked the

evolution of the pathogens over several generations and demonstrated the beneficial impact

of the pyramiding strategy. A study on the evolution of plant-parasitic nematode showed that

the use of pyramided genotypes protected the plant-crop over several years  [33]. Another

study  on  transgenic  broccoli  plants  indicated  that  the  expression  of  multiple  Bacillus

thuringiensis (Bt) toxins hampered the epidemiology and evolution of a major insect pest, the

diamondback moth (Plutella  xylostella)  [34–36].  In  addition,  this  latter  study revealed the

detrimental effect of combining the same resistance genes in different plant varieties for the

durability of resistance. Indeed, as in our  combining strategy,  the advantage of using plant

genotypes  containing  two  dissimilar  Bt  toxin  genes  for  resistance  management  may  be

compromised  if  they  share  similar  toxins  with  single-gene  plants  that  are  deployed

simultaneously. 

Conclusions and broader implications

Microbes  carrying  CRISPR-Cas  immunity  against  virulent  bacteriophages  provide  ideal

biological models to obtain experimental measures of the probability of pathogen emergence

and evaluate their ability to escape host resistance under different control strategies  [20].

Besides,  the specificity of CRISPR-Cas immunity to bacteriophages is very similar  to the

classical gene-for-gene model of specificity driving the coevolution between many plants and

their  pathogens.  Our  biological  experiments  confirm  our  theoretical  predictions  on  the

influence of (i) the resistance strategy and (ii) the initial dose of the pathogen. In particular,

we find  that  the  pyramiding strategy is  a  more effective  way to  reduce the evolutionary

emergence of the pathogen. These microbiological assays confirm that exposing pathogens

to a mix of different host genotypes carrying a low number of resistance genes facilitate the

adaptation of the pathogen because it provides multiple routes (with slower slopes) towards

complex  pathogen  genotypes  carrying  multiple  escape  mutations.  This  result  does  not

conflict with the positive effect of host diversity for the reduction of pathogen evolutionary

emergence  [20,37]. But for a given amount of host resistance diversity, the present study

shows  that  stacking  this  diversity  in  a  limited  number  of  genotypes  is  a  more  effective
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strategy  than  using  a  mixture  of  single-resistance  host  genotypes  to  prevent  pathogen

emergence. The success of the pyramiding strategy may explain why many microbes carry

several  genes  coding  for  distinct  defence  systems in  their  genome  [38,39].  While  these

genomic defence islands may provide immunity against a wide variety of diverse phages,

they  may  also  limit  the  emergence  and  evolution  of  bacteriophage  variants,  thereby

increasing the persistence of microbes in various ecosystems.

While our results are relevant for several areas, including for crop management in

agriculture  [8,33,40] as  well  as  in  food  fermentation  [41],  they  may  also  hold  for  the

management of drugs and vaccines. In AIDS, for instance, the success of the combination

therapy is arguably due to the use of the  pyramiding strategy where the patient is treated

simultaneously  with  multiple  drugs  [42–44].  A  similar  conclusion  was  reached  with  a

theoretical  model  that  explored  alternative  treatment  strategies  against  bacteria  as  a

combination therapy (pyramiding) outperforms other ways to use available antibiotics  [45–

47]. In malaria, the use of artemisinin-containing combination therapies (pyramiding) is also

believed to provide a way to slow the spread of antimalarial drug resistance [48–51]. These

results suggest also that the use of phage cocktails in phage therapy is likely to be more

effective because the pathogenic bacteria will have difficulties to evolve resistance against

multiple phages [52,53]. 

The durability of vaccines may also be explained by the  pyramiding  effect.  Unlike

therapeutic  drugs,  some vaccines often elicit  multiple  immune responses against  several

pathogen targets and this could explain why resistance to vaccines evolves usually more

slowly than drug resistance [54]. The recognition of the value of immune diversity could lead

to new vaccination  strategies.  For example,  the deployment  of  different  vaccines among

different  individuals  to  create  a  mosaic  of  vaccination  has  the  potential  to  outperform

conventional  vaccination  [55].  Moreover,  several  studies  demonstrated  that  combining

multiple  immune response to  different  epitopes  can increase  significantly  the  efficacy  of

vaccination  [56–60]. The rise of mRNA vaccines  [61,62] may facilitate the development of

such new generation of multivalent vaccines that could use the pyramiding effect to increase

their durability. 

Pyramiding multiple defenses in the same host may thus provide a durable strategy

for both prophylactic and therapeutic control of infectious diseases. The recognition of the

value of  pyramiding is  ancient  [63] but  we hope our work clarifies the complex interplay

between  demography,  evolution,  and  stochasticity.  The  influence  of  many  other  factors

remains to be investigated. For instance, our model does not account for the change in the

composition of the host population after the start of a viral epidemic. Time-inhomogeneous

branching process models could be developed to better understand the influence of these

epidemiological  feedbacks  on  evolutionary  emergence.  In  addition,  the  importance  of
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epistasis in fitness among the escape mutations carried by the pathogen is expected to affect

the probability of emergence (see Figure S1). Patterns of epistasis are also likely to have an

impact on the influence of pathogen recombination  [64,65]. Our model does not allow for

coinfections and, consequently, does not allow for recombination. The influence of genetic

recombination on the robustness of the pyramiding effect remains to be investigated. Finally,

our joint theoretical and experimental study could be extended to explore a wider range of

deployment strategies in space and time [44,66–69]. This approach could thus be used to

identify and to test the durability of new strategies to limit the emergence and the evolution of

pathogens.
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Figure  1:  Schematic  representation  of  the  mixing,  pyramiding, and  combining

scenarios. In  each  scenario  the  host  population  is  a  mix  of  a  proportion  (1−f R ) of

susceptible  bacteria  (S) and a proportion  f R of  resistant  bacteria  (A,  B,  and AB).  In our

experiment we used f R=0.9. The composition of the population of resistant bacteria differs

between the mixing (1:1 mix of two single-resistant hosts A+B), the combining (1:1 mix of a
single-resistant host, A (combining A) or B (combining B), and a double-resistant host AB),
and the pyramiding (a double-resistant host AB) scenarios. After the inoculation of V  phages
the viral population may either go extinct or produce an epidemic. The virus epidemic may
either  result  from the replication  of  the ancestral  virus (no evolution)  or  in  the additional
replication of phage genotypes carrying escape mutations against A, B, or AB. We carried
out  these  experiments  in  96-well  plates  that  allowed  us  to  replicate  our  inoculation
experiment in 96 host populations (each replicate population was 200 μL). After an overnight
incubation  the cultures (22 h) we measured  (i)  the occurrence of  phage epidemics (i.e.,
emergence) by plating a fraction (2 μL) of each replicate population on a lawn of  sensitive
cells  (S. thermophilus DGCC 7710)  and (ii)  the presence of  escape phage mutants (i.e.,
evolutionary emergence) by plating a fraction (2 μL) of each replicate population on a lawn of
singly resistant (A or B) or doubly resistant (AB) bacteria (see Supplementary Information).
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Figure  2: Pathogen  emergence  under  the  mixing  (black),  combining (orange),  and

pyramiding (red) scenarios. In (A) we show the effect of f R, the fraction of resistant hosts in

the host population,  on the probability of pathogen emergence after the introduction of a
single virus (V=1) with or without preexisting mutations (full or dotted lines, respectively).
The probability  of  emergence in the absence of  pathogen evolution is  indicated with the
dashed  black  line.  The  color  shading  refers  to  evolutionary  emergence in  the  different
scenarios (i.e., pathogen emergence resulting from pathogen evolution). In (B) we show the
effect of V , the size of the virus inoculum, on the probability of pathogen emergence with or

without preexisting mutations when f R=0.7. Other parameter values: b=1.66, d=1, c=0.01,

μ=10−6,  p∅=1−pA−pB−pAB,  pA=pB=10−6,  pAB=10−12 (without  preexisting  mutations:

p∅=1, pA=pB=p AB=0).
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Figure 3: Pathogen emergence under (A) the mixing and (B) the combining scenarios.

We show the effect of  f R, the fraction of resistant hosts in the host population, and f A, the

fraction  of  a  single-resistant  host  in  the  resistant  host  population  on  the  probability  of
pathogen emergence after the introduction of a single virus (V=1) and without preexisting

mutations (p∅=1, pA=pB=p AB=0). Other parameter values: b=1.66, d=1, c=0.1, μ=10−6.
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Figure 4: Probability of pathogen evolutionary emergence for different inoculum dose
(V ) and for different resistance treatments (mixing, combining, and pyramiding). We
plot the proportion of populations (among the 96 experimental replicates) that resulted in a
virus amplification on different hosts. The colored bars show the frequency of emergence of
pathogens which could infect resistant hosts A (red bars) or B (blue bars). The hatched red
and blue bars represent the frequency of emergence of double mutant pathogens able to
infect both types of resistant hosts. The three types of emergence are always stacked in the
same order from the bottom: AB, B, and A.
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Figure 5: Probability of evolutionary emergence is higher in the mixing treatment and
lowest in the pyramiding treatment. (A) We plot here the estimation of the probability of
evolutionary  emergence  (i.e.,  the  probability  to  evolve  at  least  one  escape  resistance)
against  the inoculum size V  and the resistance treatment.  The model can be written as

logit (PEE
T

) aT log(V )+bT ,  where  the slope parameter is  the same for  all  treatments (see

supplementary information). The lines indicate the prediction of the statistical model for the
different treatments and the shaded areas show 95% confidence interval. (B) We compare

the estimated values of bT for all pairs of treatment and we plot ebT 1−bT 2≈ PEE
T 1

/ PEE
T 2. The error

bars show 95% confidence interval and the red dashed line refers to a two-fold difference in
the probability of emergence. This two-fold effect is expected when we compare the mixing
and the combining treatments (see equation (1)). 
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Supplementary Information

In the following we give additional details on: 

(1) the experimental model and the experimental protocol used to monitor the adaptation of

phages introduced in a heterogeneous host population. 

(2) the derivation of the probability of evolutionary emergence when the composition of the

host  population  is  assumed  to  be  constant.  We  also  derived  an  approximation  of  the

probability of evolutionary emergence that allowed us to discuss more directly the influence

of the inoculum size and the composition of the host population on our experimental results.

1. Experiments

S. thermophilus DGCC 7710 and wild-type phage 2972  [70] were obtained from the Félix

d’Hérelle  Reference  Center  for  Bacterial  Viruses  (http://www.phage.ulaval.ca). Phage-

resistant strains A, B, and AB were generated using a published protocol  [22,71]. Briefly,

each of the two protospacers of interest (Table S2) was separately cloned into the plasmid

vector  pNZ123,  which  encode a  chloramphenicol  resistance marker.  The two sequence-

confirmed recombinant  plasmids  were  separately  electroporated  into  the  wild-type  strain

DGCC 7710, plated on M17 medium supplemented with 5 ug/ml of chloramphenicol,  and

incubated at 42˚C. The two resulting recombinant strains was separately infected with phage

2972, plated on M17 supplemented with 10 mM CaCl2 and incubated at 42˚C for two days.

The  resulting  colonies  representing  naturally-occurring  bacteriophage-insensitive  mutants

(BIMs) were checked by PCR and sequencing for the acquisition of the appropriate spacer

(from the protospacer cloned into the vector) into the CRISPR1 (CR1) array. The functionality

of the new immunity in strains A and B was confirmed by a phage resistance assay  [71].

Then, the recombinant plasmid containing the protospacer B was electroporated into strain A

as above. Of note, strain A had lost  the previous recombinant plasmid during the phage

infection assay [71]. The resulting recombinant strain was challenged with a phage-escaping

mutant isolated on strain A as described elsewhere  [24]. The CR1 of a resulting BIM was

analyzed for the acquisition of the second spacer and to confirm strain AB. Finally, phage-

escaping  mutants  on  strain  B  and  on  strain  AB  were  also  isolated  and  confirmed  as

previously described [24]. 

2. Statistics

We used a binomial GLM (Generalized Linear Model) to analyse the effect of the different

experimental  treatments and the inoculum size  (predictor  variables)  on the probability  to

observe phages on different types of bacteria (i.e. bacteria that carry 0, 1 or 2 resistances).

We used 4 treatment types T : Mixing (A+B), Combining A (A+AB), Combining B (B+AB) and
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Pyramiding (AB). We used 10 levels of inoculum size V : 10−2 ,10−1 …,106 ,107. Our statistical

models link the logit of the probability P of observing phages on susceptible bacteria (model

M1) on single resistance bacteria (model M2) and on double resistant bacteria (model M3) to

the effect of treatment T  and inoculum size V  as follows:

logit (P) aT log(V )+bT

where  aT is  the slope that  accounts for  the effect  of  the inoculum size  V  and  bT  is  the

intercept  corresponding  to  a  fixed treatment  effect.  The  binomial  GLM was  fitted  to  the

collected data using the R statistical software with the glm() function. For each model, we

test if there is an interaction between T  and V  by computing the AIC of the simplified model

(same effect of  V  in all  treatments:  aT=a) or the model with and interaction (effect of  V

depends on the treatment: distinct aT).

In a first model (M1), we study PE the probability of emergence of phages which can infect

the susceptible bacteria  (i.e.  detection of  phages on a lawn of  susceptible bacteria).  We

found that the model with interaction had a lower AIC than the simplified model (simplified

model:  AIC =  372.74;  interaction  model:  AIC =  318.54),  indicating  that  the  slope  is  not

constant between treatments.  Both predictor variables had a significant effect (Treatment:

Type II Anova: LR Chi-square =81.1, df=3, P<2.2×10-16; Inoculum size: Type II Anova: LR

Chi-square =3744.2, df=1, P<2.2×10-16). We show the estimates of the intercepts and slopes

for all treatments in Table S5 and the corresponding fitted curves in Figure S3.

In  a  second  model  (M2),  we  study  PEE the  probability  of  escape  mutant  evolution  (i.e.

detection of phages on a lawn of singly-resistant bacteria). The simplified model had a lower

AIC (AIC=139.25) than the model with interaction (AIC=144.46), indicating that the effect of

the inoculum on the probability of escape mutant evolution is independent of the treatment.

We found a significant effect on the probability of escape of both the treatment variable (Type

II  Anova:  LR Chi-square =219.46,  df=3,  P<2.2×10-16)  and the inoculum variable  (Type II

Anova:  LR Chi-square =3008.63 df=1,  P<2.2×10-16).  The estimates of  the intercepts and

slopes for all treatments are shown in Table S6 and the corresponding fitted curves are in

Figure 5.

In a third model (M3), we study PEE 2
 the probability of double escape mutant evolution (i.e.

detection of phages on a lawn of douby-resistant bacteria). The simplified model had a lower

AIC (AIC=97.99) than the model with interaction (AIC=103.20), indicating that the effect of

the inoculum on the probability of  double escape mutant  evolution is independent  of  the

treatment. We found a significant effect on the probability of escape of both the treatment

24



variable (Type II Anova: LR Chi-square =68.97, df=3, P=7.1×10-15) and the inoculum variable

(Type II Anova: LR Chi-square =2308.83, df=1, P<2.2×10-16). We show the estimates of the

intercepts and slopes for all treatments in  Table S7 and the corresponding fitted curves in

Figure S4.

3. Theory

3.1 Probability of evolutionary emergence: fixed composition of the host population

We are  interested in  the  fate (extinction  or  not)  of  a single  virus  particle  with  genotype

i∈ {∅ , A , B , AB } inoculated into a large host population with a proportion  f R of  resistant

hosts. Because we introduce a virus particle, its probability of extinction Qi is distinct from the

probability of extinction q i of the virus when it is already infecting a host. Indeed, a virus may

get extinct even before it manages to infect a single host if the virus particle adsorbs to a

resistant host. The relationship between the two quantities is given by:

Qi=(1−f R ) (P i
∅qi+(1−Pi

∅ ))+ f R ∑
h ∈{∅ , A , B , AB }

f h (Pi
hq i+(1−Pi

h ) ) (S1)

where Pi
h refer to the ability of genotype i to infect a host genotype h∈ {∅ , A ,B , AB }) given

in Table S2, and f h is the frequency of hosts of genotype h among the resistant hosts. For

instance, if we focus on the wild-type pathogen we get: Q∅=(1−f R )q∅+ f R.

Because the inoculum is sampled from a population of virus particles where some of them

may already carry  preexisting  mutations  (where  pi is  the frequency of  genotypes with  i

preexisting escape mutations) the ultimate probability of extinction after introducing a single

virus sampled from this population is equal to:

Q=∑
i

p iQi (S2)

Next,  we computed the probability  of  extinction  q i which depends both on the pathogen

genotype  i and  the  composition  of  the  host  population.  The  pathogen  that  carries  both

escape mutation can infect all  the hosts and its probability of extinction  q AB is simply the

extinction probability of a birth-death process (birth rate: bAB=b (1−c)
2, death rate: d) which

yields:
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q AB={
d

b (1−c )
2 if b (1−c )

2
>d

1 if b (1−c )
2
<d

(S3)

Next, to obtain q A,  qB and q∅, we focused on the probability q i (t ) at time t  that a pathogen

with genotype i in an infected host, will ultimately go extinct. In a small interval of time dt  five

different events may take place: (i) the pathogen may spread to a new host without additional

escape  mutations;  (ii)  after  a  single  mutation  event,  the  infected  host  may  transmit  a

pathogen with an additional escape mutation to a new host ; (iii) if  i=0, a double mutation

may occur and the infected host may transmit a pathogen with genotype AB to a new host ;

(iv) the infected host (and the pathogen in the host) may die ; (v) nothing may happen during

the interval of time dt . Collecting these different terms allowed us to write down recursions

for the probability q i (t ), at time t , as a function of the probability q i ( t+dt ) and q j ( t+dt ) (where

j refers to the pathogen genotypes produced by pathogen genotype after acquiring 1 or 2

escape mutations), at time t+dt. Under  the assumption that the pathogen never reaches a

high  prevalence,  the  composition  of  the  host  population  remains  constant  and  the

probabilities q i (t ) are invariant with time. We can thus set q i (t )=q i (t+dt ) to obtain a recursion

equation that allowed us to derive q i from q j. Hence, we first can derive q A and qB from q AB

using this recursion and, in a second step, q∅ from q A, qB and q AB. Ultimately, we obtained

the probability of emergence of an inoculum of V  free virus particles sampled in a population

with some preexisting mutations (using equation (S2)):

PE
V
=1−(Q )

V (S4)

We computed this probability of emergence for different composition of the host population in

a Mathematica 13.2.1 notebook available upon request. 

3.2 Probability of evolutionary emergence: depletion of the susceptible hosts

Here, we use another approach to describe the dynamics taking place in our experiments.

This dynamic can be summarized by a succession of three main steps that may eventually

lead to evolutionary emergence:

 First, when a wild-type virus is introduced in the host population, this virus cannot escape

extinction because the proportion of resistant host is so high that the basic reproduction

RØ=R0 (1− f R ) of  the wild-type (genotype  Ø ) is below 1 and the wild-type genotype is

doomed to go extinct.  Yet,  the wild-type virus may still  be able to infect  some of  the
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susceptible hosts before going extinct. The expected number of new infections induced

after  the  inoculation  of  a  virus  particle  of  the  wild-type  genotype  is  equal  to

N= (1−f R )∑
i=0

∞

RØ
i
=(1−f R ) (1−RØ )

−1
 where the  (1−f R ) term accounts for the probability

that the introduced viral particle lands on a susceptible host, and i refers to the position in

the epidemic chain that derives from the first case. 

 Second,  each  new  infection  by  the  wild-type  may  generate  new  escape  mutants

i∈ { A ,B , AB } and this will occur on average  RØ∑
i

μi times per host infected by the wild-

type.

 Finally,  each  of  these  escape  mutants  may  have  the  ability  to  induce  an  epidemic

(provided Ri>1) and the probability of each escape mutant to emerge is given by q i (see

above section for the derivation of q A, qB and q AB.

Taking into account  these three different steps,  we can express the probability  of

evolution emergence after introducing a single virus particle of the wild-type: 

PEE
1 ≈ N RØ ∑

i ∈{ A, B , AB }

μi (1−q i) (S5)

This approximation can be used to obtain the probability of evolutionary emergence after the

introduction of an inoculum of V  wild-type virus particles:

PEE=1−(1−PEE
1 )

V
≈ V PEE

1 (S6)

These  expressions  can  be  used  to  discuss  the  effect  of  the  composition  of  the  host

population. In particular, for simplicity, we can use the following assumptions regarding the

mutation rates: μA=μB=μ and μAB=μ2. In this case, we have:

q A={
d

b (1−c ) (1−f R (1−f A ))
if b (1−c ) (1− f R (1−f A ))>d

1 if b (1−c ) (1− f R (1−f A ))<d

qB={
d

b (1−c ) (1−f R (1−f B ) )
if b (1−c ) (1−f R (1−f B ))>d

1 if b (1−c ) (1−f R (1−f B ))<d

(S7)
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q AB={
d

b (1−c )
2 if b (1−c )

2
>d

1 if b (1−c )
2
<d

Mixing: 

Using (S6) and (S7) we obtain:

PEE
M ≈ Vμ(

d
b (1−c ) (1−f R (1−f A ))

+
d

b (1−c ) (1−f R (1−f B ) ))+O ( μ2 )
(S8a)

In the symmetric case where f A=f B=1/2 this yields:

PEE
M ≈ 2Vμ(1−

d
b (1−c ) (1−f R/2 ) )+O ( μ2 )

(S8b)

Combining:

PEE
C ≈ Vμ(1−

d
b (1−c ) (1−f A f R ) )+O ( μ2 )

(S9)

Pyramiding:

PEE
P ≈ O ( μ2 ) (S10)

Data and Code Availability

Data will be fully available in dryad.
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Figure  S1: Pathogen  emergence  under  the  mixing  (black),  combining (orange),  or
pyramiding (red)  scenarios when double escape mutations are lethal.  We used the
same parameters as in  Figure 2 except that double escape mutants were assumed to be
lethal so that  q AB=1.  This scenario refers to an extreme form of negative epistasis. This
figure  shows  that  evolutionary  emergence  is  still  possible  in  the  mixing and  combining
treatments  when  the  proportion  of  resistant  bacteria  is  below  a  threshold  value  (

f R<2 (1−1/ (R0 (1−c ) )) ≈ 0.79) but it becomes impossible in the pyramiding treatment. 
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Figure S2: Probability of phage emergence for different inoculum dose (V) and for
different host composition treatments (mixing, combining, and pyramiding). In gray, we
plot  the  proportion  of  populations  (among  the  96  experimental  replicates)  in  which  we
recovered viruses capable of infecting the wild-type host. In black, we indicate the fraction of
those populations, in which we detected at least one escape mutation (see Figure 4).
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Figure  S3:  Logistic  regression  model  for  the  probability  of  phage  emergence  for
different  inoculum dose (V)  and for  different  host  composition treatments (mixing,
combining, and pyramiding). The estimates for the slope and intercept parameters of each
treatment are presented in Table S5.
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Figure S4:  Probability  of  double  escape mutant  evolution is  highest  in  the  mixing
treatment. (A) We plot here the estimation of the probability of evolutionary emergence (i.e.,
the  probability  to  evolve  two  escape  mutations)  against  the  inoculum  size V  and  the
resistance  treatment.  The  model  can  be  written  as  logit (PE 2

T
) aT log (V )+bT ,  where  the

slope parameter is the same for all treatments (see supplementary information and Table
S7). The lines indicate the prediction of the statistical model for the different treatments and
the shaded areas show 95% confidence interval. (B) We compare the estimated values of bT

for all pairs of treatment and we plot ebT 1−bT 2≈ PEE
T 1

/PEE
T 2. The error bars show 95% confidence

interval.
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Table  S1:  Target  sites  (protospacer)  in  the  lytic  phage  2972  genome.  The PAM  is
indicated in bold and the spacer sequence (the sequence introduced in the CRISPR array of
the bacteria) is indicated in red.

Name Protospacer sequence (spacer + PAM, 5’-3’) Position Function
Targeted

phage
gene

A TTATCTGATTTTTTCCCCTTGATTTCGGGGATAGAA 16226-
16255

Tail protein  orf18

B TCGTTTTCAGTCATTGGTGGTTTGTCAGCGAAAGAA 29988-
30017

Replication
protein  orf37

Table  S2:  Specificity  of  the  different  resistance  genotypes  of  four  strains  of  S.
thermophilus against  four  variants  of  the  lytic  phage  2972. Table  indicates  the
susceptibility (black) or the resistance (white) of different bacterial clones against different
phages. The strain DGCC 7710 is susceptible to all phages. Single-resistance genotypes are
resistant to all phages except those that carry a mutation in their genomic sequence targeted
by CRISPR. The double-resistance genotype is resistant to all the phages except those that
carry a mutation in each of the two target sequences. The number indicates the ability Pi

j of

the pathogen genotype i to infect a host genotype j (where  i , j∈ {∅ , A , B , AB }).

Bacteria clones
DGCC
7710

A B AB

V
iru

s
st

ra
in

s 2972-Ø 1 0 0 0
2972-A 1 1 0 0
2972-B 1 0 1 0

2972-AB 1 1 1 1

Table S3: Frequency of preexisting escape mutations against the different resistant
bacteria in the population of phage 2972 used to inoculate the populations. 

Name Frequency of preexisting escape mutations [95% confidence interval]

A 3.67 10-6    [2.91 10-6, 4.43 10-6]

B 1.69 10-6    [6.37 10-7, 2.75 10-6]

AB 0

Table S4: Rate of escape mutations against resistance A and B estimated in Chabas et
al. [31].

Name Probability of escape mutations [95% confidence interval]

A 1.2 10-6    [6.2 10-7, 1.7 10-6]

B 7.1 10-7    [2.9 10-7, 1.1 10-6]
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Table  S5:  GLM  estimates  for  the  probability  of  emergence  for  the  different
treatments at different inoculum for model M1. The estimates for intercept (bT)
and slope (aT) parameters presented in methods is shown with the corresponding
standard error (see supplementary information).

Parameter Estimate Standard error

Intercept

bM -3.24 0.23
bCA -2.79 0.23
bCB -3.48 0.32
bP -3.92 0.41

Slope

aM 1.32 0.09
aCA 1.46 0.10
aCB 2.04 0.16
aP 3.00 0.29

Table S6:  GLM estimates for the probability of evolutionary emergence for the
different  treatments  at  different  inoculum  for  model  M2. The  estimates  for
intercept  (bT)  and slope (aT)  parameters presented in methods is shown with the
corresponding standard error for the simplified model with no interaction between
treatment and inoculum: a=aT  (see supplementary information).

Parameter Estimate Standard error

Intercept

bM -15.24 0.79
bCA -15.37 0.79
bCB -16.03 0.83
bP -18.69 0.95

Slope a 3.00 0.15

Table  S7:  GLM estimates for  the probability  of  evolutionary  emergence of  a
double mutant for the different treatments at different inoculum for model M3.
The estimates for intercept (bT) and slope (aT) parameters presented in methods is
shown  with  the  corresponding  standard  error  for  the  simplified  model  with  no
interaction  between  treatment  and  inoculum:  a=aT  (see  supplementary
information).

Parameter Estimate Standard error

Intercept

bM -16.57 0.87
bCA -18.32 0.95
bCB -17.41 0.91
bP -18.35 0.95

Slope a 2.92 0.15
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Coevolution is thought to be a powerful evolutionary 
force at the origin of biological diversity1–3. Negative- 
frequency-dependent selection generated by coevolution can 

promote the emergence and the maintenance of genetic diversity 
in interacting species2,4,5. On the other hand, maintenance of geno-
type diversity is also affected by intrinsic differences in competitive 
abilities among genotypes. If this asymmetric competition is strong 
it can lead to the exclusion of less competitive genotypes and to a 
drop in diversity. The interplay between coevolution and compe-
tition has been explored theoretically with models based on the 
‘kill-the-winner’ hypothesis that explicitly accounts for the influ-
ence of phages on diverse host communities6–8. This framework, 
however, is meant to describe the ecological dynamics of interacting 
host species. Several experimental studies have explored the influ-
ence of phages on interspecific competition among different bacte-
rial species9–12 but intraspecific competition is harder to monitor. 
Studying the interplay between competition among host genotypes 
and coevolution with pathogens is particularly challenging within 
a host species because it requires detailed knowledge of the genetic 
determinants of the specificity of the host–virus interaction to track 
the dynamics of different host genotypes13.

Here, we track the coevolutionary dynamics of CRISPR immu-
nity of the bacterial species Streptococcus thermophilus with its 
lytic phage 2972. This model system offers unique opportunities 
to explore the microevolutionary processes driven by competition 
among different bacteria and antagonistic coevolution between bac-
teria and their viral pathogens. In S. thermophilus, coevolution with 
phage 2972 is mainly driven by two (type II-A) CRISPR–Cas loci 
(CR1 and CR3), which allow the bacteria to incorporate 30-bp DNA 

sequences (spacers) from the genome of an infecting phage in the 
CRISPR array14–17. After transcription, each spacer RNA is used as a 
guide by Cas9 to target and cleave the corresponding target sequence 
(the protospacer) in the phage genome, thereby halting virus repli-
cation and reducing its titre. Phages can escape CRISPR immunity 
via mutations in the protospacers that avert recognition by the Cas 
complex. These mutations have been shown to be particularly effec-
tive at escaping immunity when they are located at specific positions 
in the protospacers such as the PAM (protospacer-adjacent motif) 
or the seed18,19. Crucially, the sequencing of the CRISPR array of the 
populations of bacteria and the whole-genome sequencing of the 
populations of phages allowed us to fully characterize the specificity 
of the infection network, without any phenotypic assays. Here we 
focus on the CRISPR array of the CR1 locus that has been shown 
to be the most active of the CRISPR loci of S. thermophilus against 
phage 2972 (ref. 15).

To study how host diversity affects the dynamics of CRISPR 
immunity, we designed a short-term coevolution experiment (pic-
tured in Fig. 1) where we followed the evolution of CRISPR immu-
nity in the absence of phages (treatment A), in the presence of an 
initially monomorphic population of phages (treatment B), in the 
presence of an initially polymorphic population of phages (treat-
ment C). We started each culture with a mix of 17 different bac-
terial strains in equal frequencies: one strain was fully sensitive to 
the wild-type lytic phage 2972 (strain DGCC 7710) and each of 
the remaining 16 strains carried a distinct single-spacer resistance 
in the CRISPR array at the CR1 locus (Supplementary Table 1). 
These strains were obtained from a previous study after exposing 
the susceptible strain DGCC 7710 to the phage 2972, leading to the  
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spontaneous acquisition of a single additional spacer targeting dis-
tinct protospacers in the phage genome20. Crucially, the bacteria may 
have acquired additional mutations in the bacterial genome outside 
the CRISPR locus during this selection procedure. We carried out 
whole-genome sequencing of all the strains to identify these muta-
tions (Supplementary Table 3). A previous study demonstrated that 
the ability of phage 2972 to escape CRISPR immunity differs among 
the 16 resistant strains20.

For each of the three experimental treatments, we transferred 
1% of each replicate culture to a fresh medium for four consecu-
tive days. In the absence of phages (treatment A), the change in 
the relative frequency of the different host genotypes informed us 
about the competitive abilities of the 17 bacterial strains. This treat-
ment allowed us to evaluate the ability to maintain diversity on the 
CRISPR locus in the absence of selection for resistance (Extended 
Data Fig. 1). If some strains are more competitive, they are expected 
to outgrow the others and induce a rapid drop of diversity. The two 
other treatments allowed us to follow the interplay between com-
petition and antagonistic interactions with phages on the evolu-
tion of the bacteria. At the beginning of each transfer, we added 
105 phages from a monomorphic or a polymorphic phage popula-
tions (treatments B and C, respectively). The monomorphic phage 
population was obtained from the amplification of the wild-type 
phage 2972 that infects only the sensitive host strain (about 6% of 
the host population at the onset of our experiment). In the poly-
morphic phage population, we used a mix of 16 escape phage  
variants (phage cocktail) that were previously selected to escape 
each of the 16 CRISPR CR1 resistances of the polymorphic popula-
tion of bacteria20 (Supplementary Table 2). This recurrent inocu-
lation of phages at each transfer was used to maintain a minimal 

amount of phage in treatments B and C. As pointed out below, this 
immigration of phages did not prevent phage adaptation and coevo-
lution with the host.

To monitor the demography and evolution of bacteria we used 
spacers as barcodes and sequenced the 5′-end of the CRISPR array 
of the CR1 locus of the bacteria (Methods). This sequencing strategy 
allowed us to identify the emergence and the spread of additional 
resistant strains with new spacers in the CRISPR array21. To moni-
tor the evolution of the phage populations we used whole-genome 
sequencing in the treatments exposed to the virus (treatments B  
and C) to identify new mutations and estimate their frequencies.

Results and discussion. Phage diversity drives infection dynamics. 
The treatments had great effects on both the bacteria and the phage 
densities (Fig. 2). The monomorphic phage treatment had a limited 
impact on bacterial growth the first day but led to a massive phage 
epidemic on the second day, marked by a drop in host density and 
an increase in the viral pathogen density. In contrast, the polymor-
phic phage treatment immediately led to a viral outbreak on the first 
day. Yet, under all phage treatments the bacterial populations even-
tually recovered and by day 4 they reached a density close to the 
no-phage treatment (Fig. 2a).

Evolution and diversification of CRISPR immunity. To monitor 
the evolutionary dynamics of bacteria, we tracked the diversity of 
CRISPR immunity at the CR1 locus and estimated the frequency hi 
of each resistance genotype i in the population. We computed the 
effective number of host genotypes22 across time for each replicate 
(Fig. 3). The effective number of host genotypes dropped very fast 
in the treatment without phage and remained very low until the 
end of the experiment. Experimental treatments had a significant 
effect on the mean effective number of host genotypes (Methods) 
(day 1 F2,20 = 1,431, P = 2.6 × 10−22; day 4 F2,20 = 7.80, P = 3.1 × 10−3). 
Compared to the treatment without phage at day 1 (effective num-
ber of genotype and 95% confidence interval (CI) 8.90 (8.72, 9.10)), 
exposure to a monomorphic phage population initially led to a 
faster drop in diversity (6.91 (6.74, 7.08)), but exposure to a poly-
morphic phage treatment maintained a high level of diversity (14.88 
(14.63, 15.12)). Both phage treatments led to the maintenance of 
more diversity at the end of the experiment than the treatment with-
out phage (day 4, no phage 1.96 (1.92, 1.99), monomorphic phage 
3.66 (2.79, 4.52) and polymorphic phage 5.33 (3.78, 6.98)). The 
maintenance of diversity in host populations exposed to phages sup-
ports the idea that coevolution can drive the diversification of host 
populations1,7,23,24. The variation in the dynamics of diversity among 
replicate populations exposed to phages illustrates the impact of 
demographic stochasticity on this coevolutionary dynamics, par-
ticularly after demographic bottlenecks caused by viral epidemics.

Next, to better understand what drives the dynamics of CRISPR 
diversity we examined the competition between the different bac-
terial strains using modified Muller plots that provide a descrip-
tion of both the changes in density and in the genetic composition 
for each replicate population of bacteria (Fig. 4). All the replicates 
followed very similar dynamics in the treatment without phage  
(Fig. 4): one of the strain (indicated in red, strain 31725) outcom-
peted the other strains and nearly reached fixation by day 2, but 
another strain (indicated in green, strain 16236) increased in fre-
quency towards the end of the experiment. These results indicate 
the main differences in competitive abilities among strains. The fit-
ter strain (in red) is not the phage-sensitive wild-type strain but one 
of the 16 resistant strains (Extended Data Fig. 1). Whole-genome 
sequencing of the 17 strains used at the beginning of the experi-
ment revealed the existence of other mutations across the bacterial 
genome outside the CRISPR locus (Supplementary Table 3). These 
mutations were acquired during the selection process that led to the 
natural acquisition of a new spacer on the CR1 locus25. For instance, 

No phagea

b

c

Day 0 1 2 3 4

4

4

Day 0 1 2 3

Monomorphic
phage

Polymorphic
phage

Day 0 1 2 3

Fig. 1 | The three treatments of our coevolutionary experiment. Bacterial 
cultures were inoculated with a mix of 17 different strains in equal 
frequencies: one strain (filled grey circle) was susceptible to the wild-type 
lytic phage 2972 and the remaining 16 strains (empty coloured circles) 
carrying a distinct single-spacer resistance in the CRISPR 1 (CR1) locus. 
a, The daily transfers of 1% of the bacterial culture with no exposure 
to phages, treatment A. b, The daily transfers of 1% of the bacterial 
culture with inoculation of 105 phages at each transfer sampled from a 
monomorphic population of the wild-type phage, treatment B. c, The daily 
transfers of 1% of the bacterial culture with inoculation of 105 phages at 
each transfer sampled from a polymorphic phage population, treatment 
C. This polymorphic phage population is a mix of 16 escape variants that 
were previously selected to escape each of the 16 CR1 resistances of the 
polymorphic population of bacteria.
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the ‘red’ strain has eight unique non-synonymous mutations in 
different genes. By contrast, the sequencing of the ‘green’ strain 
revealed only two unique synonymous mutations in different genes. 
The competitive ability of the ‘green’ strain is also more puzzling 
because this strain was initially less fit and only increased in fre-
quency towards the end of the experiment. A more detailed analysis 
of the contribution of each of these mutations on the competitive 
ability of the strains falls beyond the scope of this study. But these 
highly consistent measures of fitness among replicates in the treat-
ment without phage allowed us to study how competition affects 
the coevolutionary dynamics in the populations exposed to phages.

Figure 4 shows how phages affect both the density of bacteria 
and the evolution of CRISPR immunity. As expected from Fig. 3, the 
presence of phages maintains a higher number of strains. More spe-
cifically, we observe the emergence of several new resistant strains 
that carry up to three additional spacers in the CRISPR array, which 
are indicated by dark colours in Fig. 4. In all treatments exposed 
to phages, almost all the bacterial populations end up being domi-
nated by lineages that are descendants of the two most competitive 
strains identified in the absence of phages (Extended Data Fig. 2). 
In other words, the increase in diversity observed at the end of the  

experiment in the populations exposed to phages (Fig. 3) is not due 
to the initial diversity being restored, but to new resistance geno-
types that arose via the acquisition of new spacers in the CRISPR 
array of the winners of the competition among bacterial strains 
(Extended Data Fig. 3). It is unlikely that the per capita rate of acqui-
sition of new spacers differs among the different bacterial strains. 
Indeed, none of the mutations found in these strains were in the 
genes known to control the adaptation step of type II-A CRISPR–
Cas system (that is, cas1, cas2, csn2, cas9). Variation in the densities 
of bacteria provides a more parsimonious explanation for the faster 
acquisition of new spacers in the winners of the competition. Since 
the winners of the competition were more abundant, they were also 
more likely to acquire new spacers.

The comparison among replicate populations revealed very dif-
ferent dynamics in the presence of phages. To study this variation, 
we measured the amount of genetic differentiation among repli-
cate populations within each treatment (Extended Data Fig. 4).  
Complementary measures of host differentiation (FST and D) 
allowed us to quantify the changes in population composition due 
to drift and selection among replicates (Methods). As expected, 
differentiation remained very low in the treatment without phages 
because all replicates displayed very similar dynamics. In contrast, 
exposure to phages led to the acquisition of distinct spacers in dif-
ferent replicates, which led to a rapid increase in differentiation 
among host populations. This is particularly noticeable right after 
the massive demographic bottleneck that took place after the first 
day in the treatment exposed to a polymorphic phage population.

Another way to demonstrate the influence of phages on bacterial 
evolution is to detect the presence of negative-frequency-dependent 
selection. As expected, in the absence of phages the change in 
strain frequency between time t and t + 1 is independent of strain 
frequency at time t (Fig. 5a). Exposure to phages, however, yields 
a strongly negative relationship between these two quantities (the 
presence of phages has a highly significant effect on the slope of 
the regression line in both the monomorphic and the polymorphic 
phage treatments, Methods), which indicates that more frequent 
strains tend to be selected against because they are preferentially 
targeted by phages (Fig. 5b,c). All these results confirm the expected 
impact of viral pathogens on the diversification of host resistance23,26 
and highlight the relevance of the kill-the-winner hypothesis6,7.

Phage coevolution across space and time. The sequencing of the 
phage populations revealed the emergence and the spread of many 
mutations across the phage genome (Extended Data Fig. 5). Most 
of these mutations were located in the protospacer regions targeted 
by CRISPR immunity and particularly in the PAM or the seed of 
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protospacers (Extended Data Fig. 5). These mutations are expected 
to be strongly beneficial as they allow the virus to escape CRISPR 
immunity18. Knowing the genetic specificity of CRISPR immunity 
allows us to assign phenotypic effects to these mutations without 
any additional experimental measures. We combined sequencing 
data from the bacteria and the phages to compute the mean fitness 
w  of each phage population using:

w =

n∑

i=1
hipi (1)

where n is the total number of host genotypes, hi is the frequency 
of host genotype i and pi is the frequency of phage variants that can 
infect genotype i. Here, the mean fitness measures the mean frac-
tion of the host population available to a randomly sampled virus in 
the phage population. This in silico measure of phage mean fitness 
provides a powerful way to estimate phage adaptation to contempo-
raneous host populations (when phage and bacteria frequencies are 
sampled in the same replicate and at the same point in time) but also 
across space and time3,23.

Measures of phage adaptations across all time points revealed 
a striking pattern where levels of phage adaptation are maximal 
against host populations from the recent past (Fig. 6). In contrast, 
the degree of phage adaptation drops very rapidly against bacteria 
from the future in both phage treatments. This pattern is precisely 
the one expected under the rapid coevolution dynamics that are 
predicted to emerge in coevolutionary models3,27–29. The particu-
larly rapid drop of phage mean fitness when matched against bacte-
ria from the future shows how quickly bacteria are able to develop 
new resistance to the phages. This is consistent with the intrinsic 
asymmetry inherent to CRISPR specificity: bacteria have access 

to hundreds of different protospacers from the phage genome18 
allowing them to raise a diverse and distributed immune defence 
to the phage population at once30. In contrast, only mutations in the 
targeted viral genomic region (Extended Data Fig. 5) can provide 
an effective way for phages to escape CRISPR immunity, and only 
against one resistance (one spacer) at a time.

Measures of mean fitness across space allowed us to compute 
phage local adaptation to determine whether the phage is more 
adapted to sympatric (same replicate) than to allopatric (differ-
ent replicate) host populations (Methods)27,31. Figure 6 shows the 
buildup of local adaptation across time in the two phage treatments. 
Local adaptation remains very low in the treatment with the mono-
morphic phage population. In contrast, we detect a strong pattern of 
phage local adaptation in the treatment with a polymorphic phage 
population. In particular, phage local adaptation is extremely strong 
(0.53(±0.18)) at day 2, which coincides with the time at which host 
differentiation is maximal. Indeed, phage local adaptation can occur 
only when the composition of sympatric host populations differs 
substantially from allopatric host populations.

The dynamics of differentiation varied between the two phage 
treatments. Even if we detect significant differentiation among rep-
licate populations in the treatment with the monomorphic phage 
population, the QST that measures phenotypic differentiation 
(Methods) remains very low (Extended Data Fig. 6) because most 
escape mutations occur on the same protospacer (Extended Data 
Fig. 5). Indeed, the high number of escape mutations we observe 
(in the monomorphic phage treatment) in the terminal region of 
the phage genome (around 31 kb, Extended Data Fig. 5) can be 
explained by the presence of the protospacer associated with the ‘red’ 
resistant host (strain 31725). Selection to escape this resistance was 
very intense in this treatment (because this resistance strain was the 
most frequent) and each of these mutations correspond to different 
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solutions leading to the same escape phenotype. In contrast, in the 
treatment with a polymorphic phage population, both FST and QST 
are increasing on day 2 after the divergence of bacterial populations 
(Extended Data Fig. 6) and the distribution of escape mutations is 
more evenly distributed across the phage genome (Extended Data 
Fig. 5). Note, however, that the speed of phage adaptation seems 
too low to catch up with the build up of CRISPR immunity. Initial 
diversity in the polymorphic treatment yields faster adaptation but 
the number of phage mutations in protospacers stops increasing by 
day 1 (Extended Data Fig. 7). In the monomorphic treatment, the 
saturation in the number of mutations in protospacers is delayed 
(Extended Data Fig. 7). The drop in local adaptation with time is 
consistent with the overall drop in phage density we observed in 
most phage populations (Fig. 2b). This suggests that the phages are 

losing the coevolutionary arms race with their hosts, which is in 
line with previous studies showing that CRISPR immunity often 
yields phage extinction in this system32–34. Besides, we found some 
evidence that evolution of new resistance may also be due to the 
second active CRISPR–Cas system (CR3) in this host in which we 
detected spacer acquisition starting at day 3 or 4 (Supplementary 
Table 4). Accounting for evolution at the CR3 locus when esti-
mating phage fitness magnifies the drop of mean fitness of phage 
populations (Extended Data Fig. 8). The recurrent introduction of 
ancestral phages at the beginning of each transfer was used to avoid 
phage extinctions in treatments B and C. This recurrent immigra-
tion probably had a limited impact on the coevolutionary dynamics 
in our short-term experiment because immigrants were unable to 
infect bacteria that rapidly acquired new resistances. Yet, migration 
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could have more impact on long-term persistence as it would allow 
phages to recolonize susceptible host populations.

Host competition governs the coevolution-driven diversification. 
We can track the dynamics of phage adaptation across space and 
time but can we predict the speed at which the phage escapes the 
phage-resistant strains? The speed of adaptation is governed (1) by 
the rate of mutation, which has been shown to vary among proto-
spacers in a previous experiment20, (2) by the strength of selection 
associated with the ability to escape CRISPR immunity against a 
specific protospacer and (3) by the fitness cost of these escape muta-
tions. Because the fitness cost of these mutations has been shown to 
be a poor predictor of the durability of CRISPR–Cas immunity20 we 
focus on the first two points. In the treatment with a polymorphic 
phage population, the rate of mutation is not limiting because the 
mutations against the 16 original spacers are pre-existing. In this 
phage treatment, as expected, we do not find a correlation between 
the speed of phage adaptation and the rate of escape mutation for 
different protospacers (Pearson’s r = −0.26, P = 0.41) (Extended 
Data Fig. 9). In contrast, the speed of adaptation is governed by 
the competitive ability of the different resistant strains (Pearson’s 
r = 0.83, P = 7.5 × 10−5). Indeed, this competitive ability is a good 
predictor of the abundance of each resistant strain and, conse-
quently, a good predictor of the fitness benefit associated with the 
ability to exploit these resistant strains. We obtain a very similar pat-
tern in the monomorphic phage treatment (no correlation with the 
mutation rate: Pearson’s r = −0.02, P = 0.41; strong correlation with 
competitive ability: Pearson’s r = 0.95, P = 3.4 × 10−8). These results 
indicate that phage mutation is not limiting and phage adaptation is 
mostly driven by the more abundant (that is the more competitive) 
phage-resistant strains of bacteria.

Conclusion. Our short-term evolution experiment demonstrates 
that the coevolutionary battle taking place between bacteria and 
phages is a potent evolutionary force driving the rapid diversifica-
tion of interacting populations. The presence of phages generates 
strong negative-frequency-dependent selection, which prevents 
the loss of diversity of CRISPR immunity. This is consistent with 
the kill-the-winner hypothesis6,7 that states viruses can maintain 
the host diversity. Similar conclusions were reached from studies 
that explored the interplay between interspecific competition and 
coevolution with phages10,12. But here, we could track the emergence 
of new resistance mutations (new spacers in the CRISPR array) and 
these new mutations are not equally distributed among the bacterial 
strains present initially. Indeed, we see that the initial host diversity 
vanished rapidly (Extended Data Fig. 3) and in all but one repli-
cate population exposed to phages, the bacterial population at day 
4 is dominated by strains that descend from the most competitive 
strains (the ‘winners’) identified in the control (Fig. 4 and Extended 
Data Fig. 2). To understand these results, it is important to recall 
that host adaptation results from both the selection imposed by 
phages at the CRISPR locus and the selection imposed on the rest of 
the bacterial genome. The recurrent bottlenecks in the host popula-
tion size induced by phage infections may lead to a faster fixation 
of new mutations. Even if these additional mutations are expected 
to be often deleterious35, their effects on fitness will vary and intro-
duce variation in competitive abilities among strains35,36. In the 
absence of phages, fitter host genotypes consistently outcompete 
other strains. In the presence of the phage, viral adaptation targets 
preferentially more abundant and competitive strains. But the evo-
lution of CRISPR immunity allows the winners of the intraspecific 
competition to strike back after phage adaptation. Ultimately, this 
explains why diversity is generally maintained and originates from 
the descendants of the winners in populations exposed to phages. 
This feedback of competition on coevolutionary dynamics can also 
be discussed in the light of the recent ‘royal family model’37. In a 

classic version of the kill-the-winner framework, the most frequent 
host strain is preferentially targeted by the evolving population of 
pathogens and is driven to low frequency. Next, another host strain 
rises to high frequency and the cycle repeats. In the royal family 
model, intrinsic asymmetries in competitive abilities indicate that 
the newly rising host genotypes are likely to descend from the pre-
viously dominating genotypes. Our experimental results squarely 
fit within this framework as we can readily identify a royal fam-
ily in the bacteria population that often derives from the more 
competitive strains (the red and green strains in Fig. 4). Note, 
however, that our experiment also features the rise of a new royal 
family (strain 31065) in one population after a particularly strong 
demographic bottleneck (replicate C3 in Fig. 4 and Extended Data  
Fig. 2). Hence, the stochastic acquisition of new resistance may open 
up new opportunities for previously dominated strains of bacteria. 
As expected from the royal family model this evolutionary dynam-
ics within the population of bacteria implies that there is also a royal 
family of phages, which is particularly adapted to the royal family 
of bacteria (Extended Data Fig. 10). We stress that our short-term 
experiment focuses on a very specific scenarios where (1) the initial 
diversity in the host population was manipulated artificially with 
equal frequency among different strains and no multiresistance to 
the phage and (2) the initial diversity of the phage population was 
also manipulated experimentally (treatment B versus C). Yet, the 
distributions of CRISPR immunity and phage diversity are expected 
to build up naturally after a phage epidemic and the network struc-
ture of strain diversity may be very different from the one used 
in our experiment38. Our work should be viewed as an attempt to 
monitor coevolutionary dynamics experimentally and the relevance 
of the royal family model remains to be investigated in a more  
natural setting.

This short-term experiment demonstrates that ecological and 
evolutionary processes can take place on a similar time scale. A bet-
ter understanding of the coevolution between CRISPR immunity 
and phages requires a more comprehensive theoretical framework 
considering the mutations involved in the interaction as well as in 
the rest of the genome. Current models of host–parasite coevolution 
neglect possible asymmetries in competitive abilities among host 
genotypes carrying the same number of resistance genes. However, 
our experiment shows that the accumulation of mutations in loci 
not involved in interactions with the phages can lead to a drop in the 
immune diversity after a local extinction of the phage population. 
This drop in resistance diversity is likely to facilitate the evolution-
ary emergence of the phages when new viruses are introduced in the 
population24,39,40. We expect that this process may alter dramatically 
the coevolutionary dynamics studied with numerical simulations 
in ref. 38. The collapse of the diversity of CRISPR immunity in the 
absence of phages (or when phages are very rare) would shorten the 
duration of periods where the host controls the phage population 
and would speed up the coevolutionary dynamics between phages 
and CRISPR immunity. At the larger spatial scale, this succession 
of local phage extinction and rapid recolonization could ensure the 
long-term coexistence of bacteria and phages in spatially structured 
environments.

Methods
Bacteria and bacteriophage strains. S. thermophilus DGCC 7710 and phage 2972 
(ref. 41) were obtained from the Félix d’Hérelle Reference Center for Bacterial 
Viruses (www.phage.ulaval.ca). Sixteen derivative phage-resistant strains, each with 
an unique CRISPR spacer were generated previously20 and sequenced to look for 
mutations outside the CRISPR loci (Supplementary Table 1). Similarly, 16 phages 
carrying mutation to escape the resistance of these individual spacers were isolated 
after selection on each resistant bacteria (see the list of protospacer sequences in 
Supplementary Table 2)20.

Experimental procedure. Before the experiment, the 17 bacterial strains 
were mixed and grown during 6 h in LM17 + CaCl2 (37 g l−1 of M17 (Oxoid) 
supplemented with 5 g l−1 of lactose and 10 mM of CaCl2). Then, the bacterial 
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mix was transferred 1:100 into 10 ml of fresh LM17 + CaCl2 (no-phage treatment, 
seven replicates), infected with 105 wild-type 2972 phages (monomorphic phage 
treatment, eight replicates) or infected with the mix of 105 phages (polymorphic 
phage treatment, eight replicates), then incubated at 42 °C. We used only seven 
replicates in the control: because we were limited by the total number of replicates, 
we could sequence using the Nextera XT 96 samples prep kit (below). Every 
day (after 18 h of incubation), 1% of the cultures were transferred into 10 ml 
of LM17 + CaCl2 and 105 phages were inoculated from the same population of 
phage (monomorphic or polymorphic) used at the beginning of the experiment. 
Following each transfer, the bacteria and phages from each replicate were separated 
by filtration (0.2 μm) and titrated as described in ref. 20. To guarantee that there 
was enough DNA for sequencing, the phages were reamplified once on susceptible 
host bacteria (that is, DGCC 7710) over 5 h (after full lysis of the bacteria), then 
DNA was extracted using the ZYMO Quick-DNA Miniprep plus kit. Note that this 
amplification step may have introduced some bias in phage mutation frequencies 
if some phage genotypes were more fit than others in an environment with only 
susceptible hosts.

Bacteria sequencing. The CRISPR–Cas CR1 locus was amplified 
through PCR (primers 5′-3′: AGTAAGGATTGACAAGGACAGT; 
CCAATAGCTCCTCGTCATT) from the different populations from the three 
different treatments, the different replicates and the different time points. These 
PCR products were tagged using Nextera XT 96 samples prep kit and pooled before 
sequencing with Illumina MiSeq. The spacers were extracted from the sequences 
by searching for the flanking repeats allowing for a maximum of one mismatch. 
The spacers were then matched with their protospacers on the phage genome using 
Blast v.2.8.1 (ref. 42) and the protospacer database presented in the next section. 
After these steps, an average sequencing depth of around 95,700 was obtained. A 
minimum identical word size of 10, and a 70% identity threshold was used. The top 
result of the search, if any, was used to replace the name of the spacer by the middle 
position of the protospacer in the phage genome. A frequency cut-off of 1% was 
used to optimize the quality of our dataset. The resulting frequencies of genotypes 
over time in each replicate are available in the Supplementary Information. We 
found that in the treatment with the monomorphic phage population there has 
been significantly more acquisition of spacers that were already present in the 
original 16 bacterial strains than the other 677 potential spacers (Chi-square 
test, χ2 = 12.17, degrees of freedom 1, P = 4.8 × 10−4). This means that the spacers 
already present in the mix were acquired preferentially, which may be because 
of DNA transfer among bacteria. The CRISPR–Cas CR3 locus was amplified 
through PCR (primers 5′-3′: GGTGACAGTCACATCTTGTCTAAAACG; 
GCTGGATATTCGTATAACATGTC) and migrated on 1.5% agarose gel to 
check for spacer acquisition. The samples with additional bands indicating the 
acquisition of an additional spacer are given in Supplementary Table 4.

Phage sequencing. The phage DNA samples were sequenced (Illumina MiSeq) 
with 150-bp paired-end reads. Trimmomatic43 was used to clean and trim the 
sequencing reads yielding an average sequencing depth of around 650, before 
mapping them on the reference genome using Bowtie2 (ref. 44). The software 
FreeBayes45 was then used to detect single-nucleotide polymorphism and the phage 
reference genome41 was updated to include the single-nucleotide polymorphism 
with a frequency >0.45 in the initial mix to distinguish these pre-existing 
mutations from the ones that arose during the experiment. The read mapping and 
the single-nucleotide polymorphism detection were done a second time using 
this updated genome as reference. The resulting frequencies of phage mutations 
over time in each replicate are available in the Supplementary Information. To 
detect the protospacers in the phage genome, we looked for the CR1 specific PAM 
sequence ‘GGAA’ or ‘AGAA’ in both strands of this reference genome and found 
693 occurrences (281 and 412, respectively, for the two PAMs).

Fitness and adaptation estimates. We computed the mean phage fitness in a 
certain host population with equation (1). The frequencies of matching spacers 
and protospacer mutations are provided in the Supplementary Information. Our 
short-read sequencing data for the phages does not give linkage information 
between mutations so we need a linkage hypothesis to compute pi from the 
frequencies of escape mutation derived from whole-genome sequencing of phage 
populations. When the host resistance genotype i carried more than a single spacer 
we assumed that the genotype frequency of the phage variant able to infect host 
resistance genotype i was the product of the frequencies of the mutations on all the 
protospacers targeted by this set of spacers (that is, we assumed linkage equilibrium 
among these mutations). To check the robustness of our results we computed 
phage fitness under the alternative assumption that escape mutations are fully 
linked (by setting to the frequency of phage mutations providing escape to the last 
spacer in the CRISPR locus). We observed a maximum of 2.7% difference between 
the measures of mean fitness of the phage in sympatric (same replicate) and 
contemporaneous (same time point) host populations under the two alternative 
assumptions for linkage. Hence, since linkage seems to have a limited effect in our 
analysis, all the results computed are derived under the assumption of no linkage.

Phage local adaptation was obtained for each replicate r at time t by computing 
the mean fitness of the phage on contemporaneous hosts (same time point t) 

from the same replicate r and by subtracting the mean fitness of the phage on 
contemporaneous hosts (same time point t) from all other replicates:

LA(r, t) =

n∑

i=1
hi(r, t) pi(r, t) −

1
nr − 1

∑

j̸=r

n∑

i=1
hi(j, t) pi(j, t) (2)

where hi(r, t) and pi(r, t) are the frequencies of host and phage genotypes in replicate 
r at time t and nr is the number of replicates per treatment. Figure 6a shows phage 
local adaptation for different values of t after averaging over the nr = 8 replicates 
for the monomorphic and the polymorphic phage treatments. The shaded areas 
present the 95% confidence interval after bootstrapping over replicates.

Phage temporal adaptation (TA) was obtained for each replicate r at time t by 
computing the mean fitness of the phage on hosts from the same replicate r but 
sampled at a different time point in the past or in the future (τ measures the time 
delay between bacteria and the phage: when τ > 0 bacteria come from the future, 
when τ < 0 bacteria come from the past). This measure was averaged over time t:

TA(τ, r) =
1

nt − |τ|

min(nt ,nt−τ)∑

t=max(0,−τ)

n∑

i=1
hi(r, t + τ) pi(r, t) (3)

where nt is the number of time points in the experiments, here nt = 5 (that is, 0 to 4). 
Note that when we average over t we have to account for the fact that the number 
of elements we use for this calculation varies with τ. For instance, if τ = 0 there are 
nt = 5 points we can use (that is, the diagonal in Extended Data Fig. 8). In contrast,  
if τ = − 4 there is only one point (that is, the lower right corner in Extended Data  
Fig. 8). Hence, the number of elements in the sum over time in equation (3) is 
equal to nt − ∣τ∣. In Fig. 6b we present the phage temporal adaptation for different 
values of τ after averaging over the nr = 8 replicates for the monomorphic and the 
polymorphic phage treatments. The shaded areas present the 95% confidence 
interval after bootstrapping over replicates.

Differentiation measures. Jost’s D for bacteria was computed on the CR1 locus 
according to Jost46 with equation:

D =
HT − HS

1 − HS

nr
nr − 1 (4)

with nr the number of replicates, HT the mean heterozygosity of the pooled 
replicates and HS the mean within-replicate heterozygosity, considering each 
different set of spacers a different genotype. Phage FST, QST and bacteria FST was 
computed according to Weir and Cockerham47 to take into account unequal 
sample sizes among treatments. For the QST, which measures phenotypic rather 
than genetic differentiation, we pooled together phage mutations that led to the 
same phage phenotype, for example two mutations in the same protospacer, as a 
single phenotype. FST is the most usual measure of genetic differentiation, but D 
was computed too in Extended Data Fig. 4 as it better accounts for the change in 
the total number of resistances. Indeed, contrary to Jost’s D, the value of the FST 
is heavily constrained by the range of genotype frequencies and particularly by 
the highest frequencies48. This property explains why the FST drops after day 2 in 
treatment C while D remains very high (Extended Data Fig. 4).

Statistical analysis. The 95% confidence intervals displayed on Fig. 6, Extended 
Data Figs. 4 and 6 were computed using a bootstrap approach, by resampling the 
data from the different replicates within a treatment 1,000 times.

In Fig. 3, the effect of treatment on bacteria diversity (that is, the effective 
number of host genotypes22: 1/(

∑n
i=1 h

2
i )) was assessed for each day using an 

analysis of variance on the linear model: effective nb. of genotypes ~ treatment.
The linear regressions and the associated statistics for Fig. 5 and Extended 

Data Fig. 8 were computed using the SciPy49 and statsmodel50 Python packages. 
In Fig. 5, the statistical significance of the results was assessed by comparing 
separately each phage treatment to the treatment without phages. For each phage 
treatment, we built the following linear model: Δhi(t) ~ hi(t) × treatment, with 
Δhi(t) = hi(t + 1) − hi(t), including the data from that treatment and the treatment 
without phages.

To demonstrate the presence of negative-frequency-dependent selection we 
tested the interaction term in the linear model (this measures the effect of phage 
infections on the effect of hi(t) on Δhi(t)). This analysis confirmed the presence of 
negative-frequency-dependent selection induced by phages: the P values associated 
with the interaction term were 1 × 10−192 and 3 × 10−267 for the monomorphic and 
polymorphic phage treatments, respectively.

For all differentiation estimates (Extended Data Figs. 4 and 6), confidence 
intervals were generated with the Jackknife approach. This was done by 
computing the measures nr times, each time leaving a different replicate out of the 
calculation51. The analysis and plotting were carried out using R v.3.6.3 (ref. 52) and 
Python v.3.8.5 (ref. 53).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
The sequences of both phages and bacteria of this study have been deposited on 
National Center for Biotechnology Information under the BioProject of accession 
number PRJNA843584. Additional data such as the density measurements and the 
minimal dataset are available at https://zenodo.org/record/6646716.

Code availability
All codes used to process, analyse the data and make the figures are available at 
https://github.com/martingui/crispr_competition_coevolution.
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Extended Data Fig. 1 | Fitness distribution of the 16 resistant and the wild-type bacterial strains in the absence of the phage. The wild-type bacteria is 
shown in grey and the colors indicate the relative fitness of each of the 16 resistant strains. We used the same color code as the one used in Fig. 4. The 
fitness of strain i (relative to the wild-type wt) is computed with Wi-Wwt, where Wi = log10(

f1(1−f0)
f0(1−f1)

), f0 and f1 are the frequencies of strain i at day 0 and 
day 1, respectively. Hence, a positive (negative) value means that the strain grows faster (slower) than the wild-type at the beginning of the competition 
(in the first day of the experiment in treatment A).
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Extended Data Fig. 2 | Modified Muller plots of the bacterial populations based on the first spacer at the CR1 locus. Above each graph is the name of the 
replicate (‘A’ for the no phage control, ‘B’ for the monomorphic phage treatment and ‘C’ for the polymorphic phage treatment). The total height for each 
day shows the bacterial density (in cfu/ml) on a log scale, and the different colors show the proportion of the strains at each time point on a linear scale. 
The 17 strains that were added on day 0 (including the phage sensitive strain in grey) are shown in the legend (top-left corner). The blue-to-red color scale 
ranks the strains according to their initial fitness as detailed in Extended Data Figure 1. We used the same color code as the one used in Fig. 4. The lines are 
smoothed between each day.
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Extended Data Fig. 3 | Diversity of the first spacer of resistance in the bacterial population at the CR1 locus. The diversity is computed as the effective 
number of host genotypes using only the first spacer from the CR1 locus (compare with Fig. 3 where we used the whole array of new spacers on CR1). Blue 
points show the data in the absence of phages, orange and red show data for the monomorphic and polymorphic phage treatments, respectively.
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a b

Extended Data Fig. 4 | Measure of the differentiation of bacterial population between replicates of the same treatment with (a) FST and (b) Jost’s D (see 
Methods). As discussed by Jost46, the D statistics may be a more relevant measure of differentiation when the total number of allele varies (see Methods). 
Blue curves show the values of differentiation in the absence of phages (treatment A), orange and red curves show the values of differentiation in the 
monomorphic (B) or the polymorphic (C) phage treatments, respectively. The shaded areas show the bootstrap 95% confidence interval and the center of 
the bands show the mean value.
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a

d

b

c

Extended Data Fig. 5 | Phage mutations in (a,c) the monomorphic and (b,d) the polymorphic phage treatments. The histograms (a,b) show the number 
of mutations per region of 2-kb in the phage genome. The light colors show mutations that are not located in a protospacer. The black dashed line shows 
the density of PAM in the genome. The positions of the phage mutations falling inside a protospacer are shown in panels (c,d). The mutations falling into 
two overlapping protospacers were discarded. The PAM and the seed region of the protospacer are shown.
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a b

Extended Data Fig. 6 | Measure of phage differentiation among replicate populations of the same treatment using (a) FST and (b) QST (see Methods). 
Orange and red curves show the level of differentiation for the monomorphic (treatment B) and the polymorphic (treatment C) phage treatments, 
respectively. The shaded areas show the bootstrap 95% confidence interval and the center of the bands show the mean value.

Nature Ecology & Evolution | www.nature.com/natecolevol



Articles NaTuRE ECologY & EvoluTIonArticles NaTuRE ECologY & EvoluTIon

a b

Extended Data Fig. 7 | Number of phage mutations through time in (a) the monomorphic and (b) polymorphic phage treatments. The plain line shows 
the mutation in protospacers, the dashed line shows all of the mutations. Only mutations with frequencies over 0.025 are kept. The shaded areas show the 
bootstrap 95% confidence interval and the center of the bands show the mean value.
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a

d

b

c

Extended Data Fig. 8 | Phage fitness when confronting in silico phages and bacteria of each time points from the same replicate in the monomorphic (a,c) 
and polymorphic (b,d) phage treatments. The fitness was computed using equation (1). In panels c and d we try to correct the signal from the CR3 locus. To 
do this we selected all bacterial genotypes i with a frequency above 0.1 while the corresponding escape mutation i in the phage is at a frequency higher than 
0.5. The fact that these host genotypes keep growing (that is their frequency remain > 0.1) even in the presence of escape phages indicates that these host 
genotypes probably carry an additional resistance on the CR3 locus (see also Table S4). If these host genotypes are resistant to these phages we can correct 
the measure of mean fitness using hi pi =0 for these host genotypes and this yields figures (c) and (d). Note that this correction only affects measures of 
phage adaptation at late time points in the experiments (consistent with the emergence of CR3 resistance at the end of the experiment, Table S4).
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a

d

b

c

Extended Data Fig. 9 | Phage mutation frequencies correlate with host frequency in the control but not with the protospacer mutation rate. There is 
one point for the protospacers targeted by each of the 16 different resistant strains. We show the mean frequency of escape mutations in each of the 16 
protospacers (averaged over days 1 to 4 and over the eight replicates) against (a,b) the mean frequency of the corresponding host strain in the treatment 
without phages (averaged over days 1 to 4 and over the eight replicates) or (c,d) the protospacer mutation rates estimated by Chabas et al.23. The results 
are shown for the monomorphic phage treatment (a,c) and the polymorphic phage treatment (b,d). Log-linear regression lines (dashed lines) highlight the 
influence of strain frequencies on the frequencies of escape mutations in the phage population. In panels (c,d), the point on the upper left side was left out 
of the regression as it may be considered as an outlier (but this point is not left out of the Pearson’s r calculation given in the main text).
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Extended Data Fig. 10 | The ‘royal family’ model provides a conceptual framework to describe the coevolutionary dynamics in our experiment. First, 
selection imposed by phages leads to a diversification of CRISPR immunity. The competitive fitness of distinct resistant strains differ because they 
carry a variable number of beneficial and deleterious mutations (white and black dots on the bacterial chromosome, respectively). The resistant strain 
that carries the fewest number of deleterious mutations and the highest number of beneficial mutations is more competitive (that is, the winner in the 
‘kill-the-winner’ hypothesis) and constitutes the ‘royal family’ (most future bacteria will derive from this strain). Second, the phage will preferentially adapt 
to this abundant strain. The acquisition of escape mutations in the phage genome will impose negative-frequency-dependent selection and will contribute 
to the maintenance of CRISPR diversity. Third, the ‘royal family’ strain will acquire new spacers and become abundant again. Competition will take place, 
phages will adapt to the ‘royal family’ again and this coevolutionary cycle will continue. Spacers and their corresponding escape mutations in the phage are 
indicated with the same colors. The ‘royal families’ of bacteria and phages are represented with a crown symbol.
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Discussion

Life-history evolution

In the first chapter we have built a model that couples within-host epidemiological

dynamics with the evolutionary dynamics of the pathogen. We adapted Fisher’s

Geometric Model (FGM) of adaptation to link pathogen phenotypes to transmis-

sion rate. We are able to derive the evolutionary dynamics of the distribution of

phenotypes and of the mean transmission rate in a regime of Weak Selection Strong

Mutation (WSSM), which we show can be relaxed to allow for stronger mutational

effects. We use this modeling framework to investigate the possibility of lethal mu-

tagenesis: driving viral populations to extinction through an increase in mutation

rate. This higher mutation rate increases the influx of lethal mutations, which we

interpret as an additional mortality term, and of non-lethal mutations, which have

a negative mean effect on transmission rate and thus impart a mutational load: a

cost on fitness of the variance in transmission rates in the pathogen population. In

this work we show how mutations can lead to pathogen extinction but also to fitter

pathogens. Contrary to many studies on lethal mutagenesis, we also consider benefi-

cial mutations that increase transmission rate. We also incorporate the demographic

feedback from the epidemiological dynamics, and show that much like the dynam-

ics of the density of infected cells, the evolutionary dynamics is also scaled by the

density of susceptible cells. This feedback could have a strong effect in scenarios of

lethal mutagenesis, for when the infected cell population decreases, the susceptible

population increases, which helps the pathogen population evade extinction.
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Discussion

Perspectives

Demographic stochasticity and evolutionary rescue

In the first chapter, we used a deterministic model to study the evolution of trans-

mission rate and the possibility of lethal mutagenesis, i.e. driving the pathogen

population to extinction through an increased mutation rate. In such a determin-

istic framework, we can follow the transient evolution of transmission but we can

only detect extinction at the equilibrium state of the system. However demographic

stochasticity could have a significant impact on our results. When studying the

possibility of extinction, the most critical situations are when the pathogen popu-

lation is very low, which coincides with situations where stochasticity will have the

most significant effect. In our model, the pathogen population could have a very

small equilibrium density without going extinct. This also prevents our model from

being used in an evolutionary rescue setting. If the pathogen population is initially

maladapted with a negative mean fitness, it will always reach an evolutionary equi-

librium around the optimum of the FGM with any positive (potentially very low)

value of mutation rate, no matter how low the density will get transiently. In these

highlighted cases, demographic stochasticity would cause these populations to go

extinct. This means that the deterministic critical mutation rates for lethal muta-

genesis that we derive can be considered as upper bounds for the actual values.

To adress this issue, Anciaux et al. computed the fitness and demographic trajec-

tories of a (non-pathogen) replicating population deterministically, and subsequently

added demographic stochasticity with a noise term to the trajectory of the popula-

tion density (Anciaux et al., 2019). In our work, we do not obtain explicit trajectories

for the density of the infected population as it depends on the density of susceptible

cells. To explore the effect of stochasticity, we are developing an individual-based

simulation model based on a tau-leaping approach (Gillespie, 2001), where both the

demographic dynamics and the mutations are modeled stochastically using Poisson

distributions. With this approach, we hope to study the effect of epidemiological

feedback on the probability of pathogen extinction or evolutionary rescue. We ex-

pect that this feedback will help the pathogen to avoid extinction in both scenarios

of rescue or lethal mutagenesis, as when the pathogen population is decreasing, the

susceptible population (which can be considered the resource of the pathogen) in-

creases, which constitutes an additional rescue mechanism.
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Joint evolution of transmission rate and virulence

We have studied adaptation through the increase in mean fitness of the population.

In the experimental projects we have seen how this increase in fitness was due to the

optimisation of several qualitative traits: the ability to escape the resistance from

different distinct spacers in the host population. In the first chapter we studied

theoretically the evolution of one single quantitative trait: the transmission rate.

As described in the introduction, the evolution of pathogen transmission rate is of-

ten coupled with the evolution of another quantitative trait, the virulence, which is

the additional host mortality caused by the infection. This question has often been

described at equilibrium to find the Evolutionary Stable Strategy (ESS) defined as

a strategy (here a certain value of transmission rate and virulence) that cannot be

invaded by any other strategies (see Appendix C). It is possible to describe the

dynamics of the evolution of both of these traits using a Price equation (Day, Par-

sons, et al., 2020; Price, 1970). Using such an equation, the change in transmission

rate and virulence is dependent on the variance of each trait as well as their covari-

ance. Nevertheless, we are not aware of any study in which the dynamics of these

variances and covariance are explicitly modeled, and so the complete evolutionary

dynamics of the joint distribution of transmission rates and virulence is not resolved.

We developed a Partial Derivative Equation (PDE) approach to model the dy-

namics of the distribution of transmission rates based on the work of Martin and

Roques, 2016. We show in Appendix A how this approach can be extended to

model the distributions of both of these traits at the same time, by introducing in

our phenotype to life-history traits landscape an optimum for virulence (where it is

minimized), distinct from the optimum of transmission rate (where it is maximised).

With this framework, there is an emerging trade-off between the two traits as phe-

notypes cannot be simultaneously at the two optima. In our derivations, we recover

a Price equation and also provide expressions for the dynamics of the variance and

covariance, which allows us to draw a complete picture of the joint dynamics of

adaptation of transmission rate and virulence. We find with our model that mal-

adapted pathogens will first adapt quickly as the covariance between transmission

and virulence is initially negative, but decreases and eventually becomes positive

with adaptation.

In our modeling framework, we also couple the evolutionary with the epidemi-

ological dynamics. This point is crucial as the density of susceptible hosts S can

shape the direction of adaptation towards an optimisation of transmission rate or
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virulence. The selective pressure on transmission rate is scaled by S whereas the

selective pressure on virulence is independent from this density of hosts. Taking

into account the effect of the epidemiological dynamics is particularly important for

rapidly evolving pathogens such as viruses because evolutionary and epidemiological

changes happen on the same timescale.

Modeling other quantitative traits

This modeling approach could be used to model the evolution of other traits as

long as their contribution on fitness is linear. For instance it would be possible

to study the joint evolution of a quantitative vaccine escape trait with virulence

(which can be linked to transmission rate). The consequences of vaccination on

the evolutionary dynamics of both vaccine escape (Gupta, Ferguson, and Ander-

son, 1997; Lipsitch, 1997; McLean, 1995; Restif and Grenfell, 2007) and virulence

(André and Gandon, 2006; Gandon, M. Mackinnon, et al., 2003; Gandon, M. J.

Mackinnon, et al., 2001; Van Boven et al., 2005) have been extensively studied indi-

vidually. Yet the joint vaccine-induced evolution of these traits is rarely considered

(Bernhauerová, 2016). Recently, this question has been tackled using a multi-locus

adaptation model (McLeod and Gandon, 2022) which allowed the authors to in-

vestigate the effect of potential epistasis between the fitness effect of virulence and

escape alleles. Although our model does not incorporate such epistatic interactions,

it could be used to study the trajectories of vaccine-induced adaptation of escape

and virulence as quantitative traits with these different vaccine types. A feature of

our framework is that we can distinguish between the effects of direct and indirect

selection on these traits. These two forces appear when we use a Price equation

to model the evolution: a trait will change with a term depending on its variance

(direct selection) and another term depending on the covariance with the second

trait (indirect selection).

A major limitation of our work is the use of a certain mutational regime with

Weak Selection and Strong Mutation (WSSM). This regime is adapted for traits

that evolve in many multiple steps, and is for example unsuited for the modeling of

qualitative trait like protospacer mutations which immediately grant escape to host

resistance.

Another limitation is the shape of the distribution of phenotypes in the popu-

lation, which we model with a single Gaussian distribution as a consequence of the

WSSM regime. In particular this means that the distribution is unimodal. A possi-
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ble perspective would be to extend this framework to model several sub-populations,

which would each have a Gaussian distribution of phenotypes, thus resulting in a

potentially multi-modal distribution at the scale of the whole population. Such an

approach has been developed in a quantitative genetics framework, though with-

out an explicit modeling of mutations, by (Lion, Sasaki, and Boots, 2022). With

this approach which they call “oligomorphic dynamics”, they track the dynamics of

several distributions, which for example allows them to observe a whole population

splitting into two diverging sub-populations when the fitness landscape causes dis-

rupting selection. Such an approach could allow to track the emergence of several

co-existing strategies when the environment is heterogeneous, for instance with dif-

ferent susceptible populations, vaccinated or not, with varied doses of drugs etc.

Escaping host resistance

In the second chapter, we have studied the probability of pathogen emergence ac-

cording to the strategy of deployment of resistance on the host population. There are

known results on the effect of diversity in limiting pathogen spread, however here we

focused on the depth of resistance. It is also possible for hosts to be multi-resistant,

meaning that pathogens need several escape mutations to successfully infect them.

We have studied three strategies of resistance deployment in particular:

- A Mixing strategy where half of the resistant hosts carry the resistance A, and the

other half carry the resistance B (which requires a different escape mutation to be

escaped)

- A Pyramiding strategy where all hosts are double resistant AB, meaning that two

distinct escape mutations are required for pathogens for successful infection.

- A Combining strategy where half of the resistant hosts are single resistant A or B,

and the other half is double resistant AB

First, we find that larger inoculums increase the probability of emergence in two

ways: by increasing the number of inoculated pre-existing mutants, and by causing

a larger initial epidemic on the susceptible hosts, which allows for more replications

and possibly more mutants. We make clear analytic predictions showing that pyra-

miding is the most effective strategy in order to prevent the emergence of pathogens

as the necessary step of acquiring both escape mutations is limiting. In contrast,

the mixing strategy is the most prone to pathogen emergence through adaptation.

In this case, single escape mutations directly provide great fitness benefits and can

spread in the population. The intermediate combining treatment is also intermedi-
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ate in term of limiting emergence as only one of the two escape mutations (against

the single-resistant host) is associated with a strong fitness benefit, but it provides

a stepping stone which facilitates the acquisition of the other escape mutation to

infect the double-resistant hosts.

We tested these predictions with the experimental system of CRISPR-resistant

Streptococcus thermophilus and its virulent phage 2972. We confirmed the prediction

on the effect of inoculum size and the hierarchy of treatments that the probability

of emergence was higher in the mixing treatment, intermediate for one combining

treatment and the lowest in the pyramiding treatment. However we found that the

other combining treatment was not significantly different from the mixing treatment

in terms of probability of evolutionary emergence. This could be due to a difference

in mutation rate between the two protospacers of interest.

Perspectives

The dynamics of escape mutations with an heterogeneous host population

In Appendix B we describe an evolution experiment with the same bacteria and

phage system. In this work, we wanted to monitor the evolutionary dynamics of the

escape mutations after the initial emergence. We tested the effect on the evolution-

ary dynamics of the selection coefficient associated with the escape mutations, which

we manipulated through differences in the initial frequencies of different hosts. We

found that a higher frequency of hosts was associated with an increased frequency of

the corresponding escape mutations early in the experiment, but this effect vanished

in the later days. We also tested the effect of escape mutation rate by comparing

the frequency of escape mutations in two groups of protospacers that differ in mu-

tation rate. Contrary to our expectations, we did not find a significant effect of

mutation rate early in the experiment, however we found an effect in the later days.

We expected that mutation rate would be limiting early, but that once mutants

arose in the population, it would not be impactful at all. We observed that phages

carrying multiple escape mutations appeared early in the experiment, but that by

the end of the experiment, the frequency of escape mutations were still increasing

and we did not reach a point where all phages can infect all hosts. Therefore, we

can understand that mutation rate can play a role later in the experiment as it can

speed up the acquisition of additional escape mutations in phages already infecting

other resistant hosts.
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Interestingly, we find contrasting results with Chapter 2 where we predict that

in the Mixing treatment, the probability of emergence is minimized when fA = 1/2,

i.e. when the two resistant hosts are present in equal frequencies. In Appendix

B, we study the dynamics of escape frequencies after the emergence. In this case,

we find that the overall frequency of escape mutations is higher when the resistant

hosts are in equal frequencies (treatment B). Therefore heterogeneity in resistant

hosts frequency could favor pathogen emergence, but limit the subsequent spread of

escape mutants when emergence is achieved.

Multi-locus evolution of escape

We have studied the evolution of phage escape against a diversity of CRISPR-

resistant hosts in two separate (co-)evolution experiments. We have seen in these

conditions that phages acquired multiple escape mutations to be able to infect dif-

ferent hosts, but also multi-resistant hosts which had acquired additional spacers.

We could observe the emergence of phages with several escape mutations as the

total frequency of escape mutations could go above 1. In the coevolution experi-

ment, we also observed the increase in frequency of escape mutation corresponding

to the additional spacers of multi-resistant hosts. In this case, it is very likely that

these ’secondary’ escape mutations were present in the same phages that carried the

’primary’ escape mutations. In other words, if a bacteria with spacer A1 acquired

an additional spacer A2 and both escape mutations A1 and A2 are found in the

phage population, they are very likely to be found in the same phages (at least in

the case where there are no bacteria with only the A2 spacer). Thus we could find

strong indications which supported hypotheses of linkage between escape mutations

targeting spacers from the same bacterial CRISPR genotype. However in the case

where there are distinct hosts with different spacers (eg. A and B), and the two

corresponding escape mutations in the phage populations for example with each a

frequency of 50% , we lack the information to differentiate between the scenarios:

- 50% of phages with both A and B escape mutations and 50% of phages without

any of the two

- 50% of phages with escape mutation A and 50% of phages with escape mutation

B

- all possible intermediate cases

This limitation stems from the fact that we used Illumina short reads to monitor

evolutionary dynamics. This technology is well suited for the sequencing of the

CRISPR locus of the bacterial hosts which contains all the spacers and thus all the
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information relative to resistance, however in the phage, the protospacers targeted

by CRISPR are scattered throughout the genome (34 kb for phage 2972 which we

used). This leads to escape mutations in different protospacers being sequenced

independently from each other in different reads, which does not keep the linkage

information between mutations, i.e. whether they were found in the same phage

genome.

To circumvent these limitations and study more rigorously multi-locus adap-

tation, we want to use a long read sequencing technology so that we could get

sequencing reads that span over several protospacers, thus potentially containing

escape mutation against different spacers. This would allow us to get frequencies of

escape genotypes instead of simply independent mutations or small haplotypes. We

would like to use the PacBio HiFi sequencing method, which can be used to pro-

duce reads between 15 and 20kb with an accuracy above 99.5% (Hon et al., 2020).

However we face technical difficulties to get enough genetic material of good quality

to sequence and consider several possibilities:

- Directly sequence the phage DNA extraction

- Use restriction enzymes to produce fragments of known lengths, one of which con-

tains all protospacers

-Amplify the region of interest with all the protospacers using long-range PCR

We would like to use this sequencing technology to monitor the evolutionary

dynamics in the same CRISPR-resistant bacteria and phage system. In Appendix

B, we tried to limit host adaptation to follow the the dynamics of adaptation of

phage escape in a controlled environment as constant as possible. In this project,

we observed that the system had not reached an equilibrium and the frequency of

escape mutations was still increasing by the end of the experiment. To get a com-

plete picture of phage adaptation, we would like to carry out a longer experiment

to hopefully reach a point where the phage population remains constant in terms

of escape genotypes, where potentially the phage population is homogeneous and

all phages harbor escape mutations against all present hosts, which is what seem to

predict the results presented in Appendix B.
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Coevolution

In the third chapter we studied a similar experiment but this time allowing for co-

evolution of the bacteriophages and the bacterial hosts. We monitored both the

evolution of phage escape mutations and the CRISPR locus of the bacteria. In all

treatments, we used a mix of 16 resistant bacterial strains that differed in their

CRISPR locus, and a fully susceptible wild-type strain. We observed in a treatment

without phages that bacterial diversity was quickly lost due to intrinsic fitness dif-

ferences between the different strains. Particularly, we found two strains which were

more competitive and completely took over the the population in the 4 days of the

experiment in all replicates. With such repeatable host dynamics in the absence of

phages, we used our experiment to study the reciprocal effects of host competition

on pathogen adaptation and vice versa. We found that through negative frequency-

dependent selection (NFDS), phages limited the loss of host diversity. However this

NFDS did not lead to a kill-the winner scenario (Thingstad, 2000; Weinbauer, 2004).

What we found was that the most fit strains identified in the control outgrew the

others initially that was quickly followed by the increase in frequency of the corre-

sponding escape mutation in the phage population. Yet before going extinct, these

initially more competitive strains repeatedly acquired new spacers of resistance and

grew back in frequency. What we observed regarding the diversity of hosts was

therefore due to phages generating diversity at the CRISPR locus of the already

dominant strains, rather than a conservation of the initial diversity.

Using our system we are also able to track the dynamics of the mean fitness of

the phage population, using both the frequency of host resistance genotypes and the

frequency of escape mutations. We also compute the fitness of the phage population

when confronted to contemporary hosts, or hosts from past and future time points

thus mimicking time-shift experiments. We find that phages are the most fit against

hosts from the near past, but this fitness quickly drops against hosts from the fu-

ture. This highlights the adaptation of the phages to escape the spacers present

in the host population, as well as the adaptation of the hosts that quickly acquire

new spacers to resist the phages. We also find evidence of local adaptation of the

bacteriophages by comparing the fitness of phage populations against hosts from

the same replicate (sympatric) or against hosts from others replicates (allopatric).
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Perspectives

CRISPR coevolution and stochasticity

In our bacteria-bacteriophages experiments, we have been able to draw general con-

clusions on the evolutionary dynamics of escape mutations, with or without limiting

coevolution. We found general behaviours but we observed different trajectories

in the different replicates. In particular, we specifically find differentiation of both

phage and bacterial population from different replicates of the coevolution experi-

ment. In contrast, we observed very repeatable dynamics driven by between-host

competition in the control without phages. Adding phages generates on both the

host and pathogen population a strong selective pressure for spacer acquisition on

one side, and protospacer escape mutation on the other. These mutational events are

essentially stochastic and rare yet can completely change the evolutionary and de-

mographic trajectory of a host-pathogen system. In the treatments with phages, we

observe in all but one replicate that the descendants of the most fit strains detected

in the control still win the competition and make up most of the host population

after a few days. In just one replicate (C3), we find that these most competitive

strains apparently went extinct before the acquisition of new CRISPR spacers that

could have granted resistance. We find that in this replicate the host population

is completely dominated after a few days by a strain which was not particularly

successful in any other replicate. This observation and the large differentiation we

compute stem from stochastic events (or lack thereof), highlighting the relevance

of stochasticity in understanding but also modeling these types of host-pathogen

systems.

To explore the evolutionary dynamics of CRISPR coevolution we established a

collaboration with visiting PhD student Armun Liaghat and Pr. Mercedes Pascual

from the University of Chicago. They developed a stochastic model using a Gille-

spie approach for this system, close to the model presented in (Pilosof et al., 2020),

which could be used to explore the long-term dynamics of coevolution which are

more difficult to obtain experimentally. With our experimental data, we have a

thorough description of the composition of both the host and pathogen populations

through time, which can help to better adjust the model and its parameters to fit

observations. Following our work on competition, we also introduced variability in

host fitness in this model, which could be used to explore the long-term dynamics

of coevolution which we did not obtain experimentally. Consistent with what we

expected, we find using this model that an increased heterogeneity in host intrinsic

152



Discussion

fitness was associated with an increase in the probability of viral escape because

competitive asymmetry reduced host diversity. Additionally, we could study the

impact of the value of certain critical parameters, for instance the rate of acquisi-

tion of new spacers: we observed in one out of sixteen replicates that the most fit

strains did not acquire new spacers before extinction and so with a slightly lower

rate of acquisition, the dynamics we observe might have been completely different

without a lasting domination of the host lineages with the highest intrinsic fitness.

Conclusion

In this thesis we have studied different aspects of the dynamics of viral adaptation,

with a variety of approaches, both theoretical and experimental. If the different

chapters seem very distinct, like the theoretical model on the evolution of transmis-

sion rate and the coevolution experiment with CRISPR-resistant bacteria, in these

projects the evolution of viruses is driven by the same forces, which we can sum up

with the equation:

∆r = ∆rns +∆rm +∆rec (27)

The dynamics of malthusian fitness, or growth rate, is driven by natural selection

(∆rns), by the direct effect of mutation (∆rm) and by changes in the environment

(∆rec).

We have seen how natural selection can drive the evolution of quantitative traits

towards an optimum, or select for qualitative traits like resistance escape. Nat-

ural selection operates on the variance in the population, which is generated by

mutations. These mutations could provide escape to host resistance, or increase

transmission rate but could also lead to extinction due to their being deleterious

on average. Finally we have studied how biotic environmental change could impact

viral evolution: through the density of susceptible cells, changes in the frequency

of different hosts and even the appearance of new resistant hosts in coevolutionary

scenarios.

We have showcased with both theoretical and experimental approaches the in-

terplay between epidemiology and evolutionary dynamics, highlighting how these

processes could happen on the same timescales. This thesis shows that all these

processes must be jointly taken into account to better understand viral evolution
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and potentially design better therapeutic approaches or disease management poli-

cies.

Evolutionary dynamics of life-history traits and applications for disease

management

In this thesis we have modeled the evolutionary dynamics of transmission rate (and

virulence) in a framework which allows for feedback between evolution and epidemi-

ological dynamics. This feedback has been largely ignored with the more classic

framework of R0 maximisation. In the Adaptive Dynamics framework, ecological

feedback are taken into account but an assumption was made that the time scale of

evolutionary change was much higher than that of ecological change, and so the lat-

ter were considered immediate (Dieckmann, 2002). Additionally, in this framework,

mutations are considered rare events and are therefore not modeled explicitly, and

selection is fueled by a standing variance.

We have witnessed with the SARS-CoV-2 pandemic an example that this separa-

tion of timescale is not always well justified. We observed evolutionary changes with

the appearance and subsequent increase in frequency of several new variants during

the early phases of the pandemic, thus before any epidemiological equilibrium could

have been reached as for instance the proportion of immunized people was still rel-

atively low. This highlights the fact that epidemiological and evolutionary changes

must be studied in concert at least for epidemics the scale of the SARS-CoV-2 pan-

demic. Another aspect that is lacking in understanding the evolution of this virus

is the lack of prediction for the evolution of transmission rate or virulence. Without

a specific mutational model and phenotypic landscape, it proved difficult to predict

whether the initial variants would be associated with higher or lower transmission

rate and/or virulence. Our approach using FGM allows us to propose such predic-

tions, which could explain why initially a maladapted virus could evolve to both

increase transmission rate and reduce virulence, before a trade-off is reached which

limits the optimisation of both these of these traits simultaneously.

CRISPR host pathogen system: a model for epidemiology

In this thesis we have used the experimental system of Streptococcus thermophilus

and its virulent phage 2972. With this system we have explored the coevolutionary

dynamics of CRISPR resistance and escape. This system is worthy of interest on its
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own as this bacteria is massively used in the dairy fermentation industry (Samson

and Moineau, 2013). With the increasingly considered possibility of phage therapy –

which consists in treating (multi drug-resistant) pathogenic bacteria with a selected

cocktail of phages – it becomes increasingly important to study CRISPR and more

generally bacteria-bacteriophage coevolution.

We advocate that this experimental system is also a suitable model for the study

of the evolution of pathogen escape of host resistance in general. Bacteria can be

resistant with one or potentially more CRISPR spacers and we know exactly the

genetic determinism of escape mutations in the phages. We showed how it could

be used to explore the efficacy of certain strategies of resistance deployment in the

host population in limiting pathogen emergence. We believe that these conclusions

could hold for a variety of systems for which experimental data is hard to obtain

like crop-pathogen systems or a vaccinated human population. We also show that

after pathogen emergence, we can monitor the dynamics of escape pathogens with

sequencing while controlling to a certain extent the composition of the host pop-

ulation. Such an approach could be used to study dynamic resistance deployment

strategies such as the progressive rollout of potentially several vaccines, similar to

the scenario of the SARS-CoV-2 pandemic.
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1 Introduction5

Pathogen virulence, like any other life-history trait, can evolve in response to

the action of natural selection. A classical example of virulence evolution is

the evolution of myxomatosis that has been monitored after the introduction

of this virus in Australia to control rabbit population (Fenner and Marshall,

1957). The study of the evolution of pathogen virulence has led to devel-10

opment of many mathematical models. Most of these models rely on the

assumption that virulence is costly for the pathogen because host death re-

duces the duration of infection and, consequently, it reduces the time during

which the pathogen can be transmitted. Yet, virulence can be selected if

virulence is associated with other life history traits like higher transmission15

rates or lower recovery rates. In these situations, virulence can be selected in-

directly via its link with other pathogen traits. A classical way to model this

link is to assume a trade-off function that relates virulence and transmission

(Anderson and May, 1982, 1991). Under this assumption, one can identify

the Evolutionary Stable virulence strategy within the Adaptive Dynamics20

framework (AD book on infectious diseases). This framework assumes a sep-

aration of time scales between epidemiology and evolution and relies on the

assumption that the genetic variance of the pathogen population is minimal.

With higher genetic variance, the speed of adaptation can be faster and in

this case one can study the joint evolutionary and epidemiological dynamics25

during an epidemic. These models show that life-history evolution is gov-

erned by the gradient of selection and the genetic variance-covariance matrix

G (Lande, 1982; Roff, 1993). Both selection and the G matrix are dynamical

variables. In particular, the G matrix is expected to vary with the action of

natural selection and the influx of mutations.30

Here we developed a theoretical framework to study the joint evolution

of pathogen virulence and transmission. We extend the model developed in

2



the first chapter of this thesis on the evolution of pathogen virulence to ac-

count for the fact that pathogen fitness depends also on pathogen virulence.

This analysis allows us to model the evolution of the G matrix together with35

epidemiological dynamics and the dynamics of mean life-history traits. This

analysis might be particularly relevant to understand the evolution of newly

emerged pathogens. Those pathogens are expected to be far from their op-

timal virulence and their optimal transmission rate. One may thus expect

no trade-off between these two traits and our model could provide a way to40

understand the transient phase of pathogen adaptation.

.

2 Model

We build a model describing the within-host dynamics of adaptation of a

pathogen to a population of naive hosts. We suppose that pathogens can45

differ by their phenotype x, upon which depend both the transmission rate

and the virulence (additional mortality).

We use the framework of Fisher’s Geometric Model (FGM), and we con-

sider that a phenotype is a vector of n phenotypic quantitative traits. Note

that a bold notation such as x refers to vectors. We assume that transmis-50

sion rate βx and virulence αx vary through a Gaussian transmission function

with the distance of the phenotypes to the distinct respective optima of both

traits Oβ and Oα. Without loss of generality, we assume that the optimum

phenotype in regard to transmission rate (where transmission rate is maxi-

mized) is at the origin Oβ = {0, 0, ..., 0}. The optimum phenotype in regard55

to virulence (where virulence is minimized) is at a distance D. For the sake of

mathematical tractability, we approximate the Gaussian transmission func-

tion linking phenotype to life-history traits as a quadratic function. This

approximation is adapted when distances to the optima are small, which no-

3



tably prevents negative values of transmission rate. The phenotype to life60

history-traits transmission functions are thus:

βx = β0 −
∥x∥2
2sβ

(1)

αx = α0 +
∥x−Oα∥2

2sα
(2)

Where sβ and sα are parameters that govern the steepness of the landscape

for respectively for transmission rate and virulence. To ease the calculations

in building the model, we will use a new parameter for virulence δ = −α so

that fitness is an increasing function of δ, and the phenotype to life-history65

trait landscape has the same as that of transmission rate (concave, with a

maximum at the optimal phenotype Oδ = Oα) which gives:

δx = δ0 −
∥x−Oδ∥2

2sδ
(3)

with δ0 = −α0 and sδ = sα. The dynamics of the density of infected hosts

of phenotype x are then:

İx = Ix
(
βxS + δx − d

)
(4)

Note that we drop the dependence on time for clarity. By introducing70

the total number of infected cells I =
∫
Ixdx, the frequency of of phenotype

x in the infected population px = Ix/I, the mean transmission rate β =∫
pxβxdx and δ =

∫
pxδxdx, we can write the following system to describe

the epidemiological dynamics:

Ṡ = b− βSI − Sd

İ = I
(
βS + δ − d

) (5)

We make the the assumption that the underlying distribution of pheno-75

types x is gaussian and with an equal variance in all directions of the pheno-

4



typic space, i.e. it follows a multivariate normal distribution N (x(t), InVx(t))

where x(t) is the mean phenotype and Vx(t) is the phenotypic variance at

time t. We can write the mean transmission rate and the mean virulence as

a function of these phenotypic variables so that:80

β(t) = βx(t)−
nVx(t)

2sβ

δ(t) = δx(t)−
nVx(t)

2sδ

(6)

Where βx(t) and δx(t) are respectively the transmission rate and virulence

of the mean phenotype x. The mean life history traits in the population

are thus function of the distances of the mean phenotype to the two optima

through βx(t) and δx(t) and the phenotypic variance Vx.

In this work, we use Generating Functions to describe the distribution of85

life-history traits. We define the bivariate density Moment Generating Func-

tion (dMGF) Mt(z1, z2) and density Cumulant Generating Function (dCGF)

Ct(z1, z2) for transmission and virulence:

Mt(z1, z2) =

∫
Ixe

βxz1+δxz2dnx

Ct(z) = Log
(
Mt(z1, z2)

) (7)

These differ from usual CGF or MGF because they are computed us-

ing the density Ix instead of the frequency px of each phenotype. A direct90

consequence of this is that setting z = 0 yields:

Mt(0, 0) = I

Ct(0, 0) = log(I)
(8)

With the dMGF one can easily generate the moments and cumulants of

the distribution of β and δ by taking the derivatives in z1 and z2 and setting

these parameters to zero:
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∂z1Mt(z1, z2) =

∫
Ixβxe

βxz1+δxz2dnx

∂z1Mt(0, 0) =

∫
Ixβxd

nx = Iβ

∂z2Mt(z1, z2) =

∫
Ixδxe

βxz1+δxz2dnx

∂z2Mt(0, 0) =

∫
Ixδxd

nx = Iδ

(9)

and similarly with the dCGF:95

∂z1Ct(z1, z2) =

∫
Ixβxe

βxz1+δxz2dnx∫
Ixeβxz1+δxz2dnx

=
∂z1Mt(z1, z2)

Mt(z1, z2)

∂z1Ct(0, 0) =

∫
Ixβxd

nx

I
= β

∂z2Ct(z1, z2) =

∫
Ixδxe

βxz1+δxz2dnx∫
Ixeβxz1+δxz2dnx

=
∂z2Mt(z1, z2)

Mt(z1, z2)

∂z2Ct(0, 0) =

∫
Ixδxd

nx

I
= δ

(10)

One can check that taking the kth derivative of the dCGF according to

z1 (resp. z2) and setting z1 = z2 = 0 will yield the kth cumulant of the

distribution of β (resp. δ), and particularly:

∂z1∂z1Ct(0, 0) = Vβ

∂z2∂z2Ct(0, 0) = Vδ

(11)

Where the notations Vβ and Vδ refer to the variance of the distribution of

both distributions. Using the dCGF of the joint distribution of transmis-100

sion rate and virulence, it is also possible to differentiate according to the

two parmeters z1 and z2 at the same time to access cumulants of the joint

distribution of β and δ such that:

∂z1,z2Ct(0, 0) = βδ − β δ = Cov(β, δ) (12)
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where Cov(β, δ) = E
[
(β − β)(δ − δ)

]
is the covariance of the distributions

of β and δ.105

Using equation (4), we can write the time partial derivative of the dCGF

of the joint distribution such that:

∂tMt(z1, z2) =

∫
İxe

βxz1+δxz2dnx

=

∫
Ix
(
βxS + δx − d

)
eβxz1+δxz2dnx

= S∂z1Mt(z1, z2) + ∂z2Mt(z1, z2)− dMt(z1, z2)

(13)

From which follows the time partial derivative of the dCGF:

∂tCt(z1, z2) =
∂tMt(z1, z2)

Mt(z1, z2)
= S

∂z1Mt(z1, z2)

Mt(z)
+

∂z2Mt(z1, z2)

Mt(z)
− d

= S ∂z1Ct(z1, z2) + ∂z2Ct(z1, z2)− d

(14)

This partial derivative equation completely describes the dynamics of the110

distribution of β and δ in the absence of mutations. Taking the partial

derivative according to z1 (resp. z2) and setting z1 = z2 = 0, we can directly

recover the dynamics of the mean transmission rate and virulence:

∂t∂z1Ct(0, 0) = S ∂z1∂z1Ct(0, 0) + ∂z2∂z1Ct(0, 0)

β̇ = S Vβ + Cov(β, δ)
(15)

∂t∂z2Ct(0, 0) = S ∂z1∂z2Ct(0, 0) + ∂z2∂z2Ct(0, 0)

δ̇ = S Cov(β, δ) + Vδ

(16)

Similarly we can directly get a first expression by taking the appropriate

partial derivatives and setting z1 = z2 = 0 in the dynamics PDE (36) such115

that:
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∂2
z1
∂tCt(0, 0) = S(t)∂3

z1
Ct(0, 0) + ∂2

z1
∂z2Ct(0, 0)

V̇β(t) = S Coskew(β, β, β) + Coskew(β, δ, δ)

∂2
z2
∂tCt(0, 0) = S(t)∂z1∂

2
z2
Ct(0, 0) + ∂3

z2
Ct(0, 0)

V̇δ(t) = S Coskew(β, δ, δ) + Coskew(δ, δ, δ)

∂z1∂z2∂tCt(0, 0) = S(t)∂2
z1
∂z2Ct(0, 0) + ∂z1∂

2
z2
Ct(0, 0)

˙Cov(β, δ)(t) = S Coskew(β, β, δ) + Coskew(δ, β, δ)

(17)

Where Coskew(X, Y, Z) = E
[
(X −X)(Y − Y )(Z − Z)

]
is the coskewness of

the distribution X, Y and Z.

2.1 Modeling mutations

The goal in this section is to compute the effect of mutations on the dCGF of120

life history traits, to complete the PDE (14). In an infected cell of phenotype

x, a mutation of respective effects uβ and uδ has the following effect on the

dMGF of the joint distribution of β and δ:

∆
mut

Mt

(
(z1, z2)|

(
(uβ, uδ),x

))
= I U(1− f)∆t(e(βx+uβ) z1+(δx+uδ) z2 − eβx z1+δx z2)

= I U(1− f) eβx z1+δx z2(euβz1+uδz2 − 1)

= I U(1− f) eβx z1+δx z2(euβz1+uδz2 − 1)

(18)

Taking expectations over the distribution of mutational effects s in back-

ground βx:125
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∆
mut

Mt

(
(z1, z2)|x

)
=

∫ ∫
∆
mut

Mt

(
(z1, z2)|

(
(uβ, uδ),x

))
f
(
(uβ, uδ)|x

)
duβ duδ

(19)

= I U(1− f)∆t eβx z1+δx z2(Mu
(
(z1, z2)|x

)
− 1) (20)

with f
(
(uβ, uδ)|x

)
the probability density function of the joint distribution

of mutational effects on transmission rate and virulence in phenotype x, and

Mu
(
(z1, z2)|x

)
the MGF of the distribution of mutational effects in back-

ground βx. Then taking expectations over all phenotypes x:

∆
mut

Mt(z) =

∫
px ∆

mut
Mt

(
(z1, z2)|x

)
dnx

= I U(1− f)∆t

∫
pxe

βx z1+δx z2(Mu
(
(z1, z2)|x

)
− 1)dnx

= I U(1− f)∆t(eβxz1+δxz2Mu
(
(z1, z2)|x

)
− eβxz1+δxz2)

(21)

Where the overbar refers to the average over all phenotypes x at time t. In130

continuous time, as ∆t −→ 0, we use the fact that ∆
mut

Ct(z) = ∆
mut

Mt(z)/Mt(z)

to obtain :

∆
mut

Ct(z) = U(1− f)∆t(
eβxz1+δxz2Mu

(
(z1, z2)|x

)

eβxz1+δxz2
− 1) (22)

To go further with the expression, we need to express the MGF of the dis-

tribution of mutational effects Mu
(
(z1, z2)|x

)
. Note that it is not dependent

on the number of infected, and so this is a classic MGF and not a density135

MGF. In the next section we derive an expression of this MGF in with a

phenotypic dimensionality n > 1.

2.1.1 CGF of the distribution of mutational effects

A mutation of effect u on phenotype x has an effect uβ on transmission rate

and an effect uδ on virulence of:140
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(uβ|x) = β(x+ u)− β(x) = −2x.u+ u.u

2sβ

(uδ|x) = δ(x+ u)− δ(x) = −2 (x−Oδ).u+ u.u

2sδ

(23)

Using polar coordinates for the mutation u, let r = ∥u∥ and θβ = cos(̂x,u)

and θδ = cos ̂((x−Oδ),u).





u.u = r2

x.u = r ∥x∥ θβ

(x−Oδ).u = r ∥x−Oδ∥ θδ

(24)

We want to compute the MGF of the distribution of mutation effects u which

is

Mu
(
(z1, z2)|x

)
= E

(
ez1(uβ |x)+z2(uδ|x)) = Er ,θ

[
e
z1

(
− r2

2sβ
− r θβ ∥x∥

sβ

)
+z2

(
− r2

2sδ
− r θδ ∥x−Oδ∥

sδ

)]

= Er

[
e−

ar2

2 Eθβ ,θδ

[
e
θβ(

z1r∥x∥
sβ

)+θδ(
z2r∥x−Oδ∥

sδ
)
]]

= Er

[
e−

ar2

2 Mθβ ,θδ(
z1r∥x∥
sβ

,
z2r∥x−Oδ∥

sδ
)

]

(25)

With a = ( z1
sβ

+ z2
sδ
) and Mθβ ,θδ is the Moment Generating Function of the145

joint distribution of the cosine of angles from phenotype x between a random

mutation and the optima respectively Oβ and Oδ. Equation (A1.7) from

(Martin and Lenormand, 2015) gives the following form or this MGF:

Mθβ ,θδ(t1, t2) = 0F1(
n

2
,
t21 + t22 + 2ρ t1t2

4
) (26)

where 0F1 is the confluent hypergeometric function and ρ is the cosine of the

angle from phenotype x to the two optima ( ̂xOβ, xOδ) and θδ. Using the150

Law of cosines and equations (1) and (3), we get :
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ρ =
sβ(β0 − βx) + sδ(δ0 − δx)−mβδ

2
√

sβ(β0 − βx)
√
sδ(δ0 − δx)

(27)

with mβδ = ∥Oδ∥2/2 Now we can rewrite the last line of equation (25) using

equation (26) to get:

Mu
(
(z1, z2)|x

)
= Er

[
e−

ar2

2 0F1

(n
2
,
r2

4

(z21∥x∥2
s2β

+
z22∥x−Oδ∥2

s2δ
+

2ρz1z2∥x∥∥x−Oδ∥
sβsδ

))
]

= Er

[
e−

ar2

2 0F1

(n
2
,
r2

4

(z212sβ(β0 − βx)

s2β
+

z222sδ(δ0 − δx)

s2δ

+
2ρz1z2

√
2sβ(β0 − βx)

√
2sδ(δ0 − δx)

sβsδ

))
]

= Er

[
e−

ar2

2 0F1

(n
2
,
b r2

2

)]
(28)

with

b =
z21(β0 − βx)

sβ
+

z22(δ0 − δx)

sδ
+

2ρz1z2
√
sβ(β0 − βx)

√
sδ(δ0 − δx)

sβsδ

=
−z1 z2mβδ + (z2sβ + z1sδ)

(
z1(β0 − βx) + z2(δ0 − δx)

)

sβ sδ

(29)

The result of (28) is given by equation (A1.8) of (Martin and Lenormand,155

2015):

Mu
(
(z1, z2)|x

)
= e

bλ
1+aλ (1 + aλ)−

n
2 (30)

which finally gives for the CGF of mutational effects:
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Mu
(
(z1, z2)|x

)
=

(
1+

λz1
sβ

+
λz2
sδ

)−n
2
Exp

(
λ
(
−z1 z2mβδ + (z2sβ + z1sδ)

(
z1(β0 − βx) + z2(δ0 − δx)

))

sβ sδ + λ(z1sδ + z2sβ)

)

= M∗(X)Exp(tX.ω(z))

with

X =

(
βx

δx

)

z =

(
z1

z2

)

ω(x) =

(
λz1(z2sβ+z1sδ)

sβsδ+λ(z2sβ+z1sδ)
λz2(z2sβ+z1sδ)

sβsδ+λ(z2sβ+z1sδ)

)

M∗(X) =
(
1 +

λz1
sβ

+
λz2
sδ

)−n
2
Exp

(
λ (z1 z2mβδ + (z1 sδ + z2 sβ)(z1β0 + z2δ0))

sβ sδ + λ(z1sδ + z2sβ)

)

(31)

2.2 PDE with mutation

Now that we have computed the MGF of mutational effects, we can rewrite160

the effect of mutation on the dynamics of the dCGF of life history traits from

equation (22) as:

∆
mut

Ct(z)

∆t
= U

(
M∗(X)

etX.(z−ω(z))

etX.z
− 1

)
= U

(
M∗(X)eCt(z−ω(z))−Ct(z) − 1

)

(32)

Adding this mutation term to the first PDE (14) yields a PDE describing

the dynamics of the dCGF of the joint distribution of life history traits from

selection and mutation:165
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∂tCt(z) = S ∂z1Ct(z) + ∂z2Ct(z)− d+ U
(
M∗(X)eCt(z−ω(z))−Ct(z) − 1

)
(33)

Note that we may use the notations Ct(z1, z2) and Ct(z) interchangeably.

2.3 Gaussian form of the dCGF and WSSM approxi-

mation

The previous PDE (36) is not directly solvable analytically. In order to do so,

we must first find a general expression for the dCGF Ct(z). To this end, we170

make the assumption that at all times the underlying distribution of pheno-

types x is gaussian and with an equal variance in all directions of the pheno-

typic space, i.e. it follows a multivariate normal distribution N (x(t), InVx(t))

where x(t) is the mean phenotype and Vx(t) is the phenotypic variance at

time t.175

In a previous section, we have computed to MGF of the joint distribution

of mutational effects on life history traits arising in a phenotype x, in the

case of Gaussian mutations with variance λ. This was thus exactly the same

problem as the one described in the precedent paragraph with the only differ-

ences being: (i) λ is replaced by Vx(t), (ii) we need to add the dependence on180

the density of infected cells I(t) as we want to compute a dCGF and finally

(iii)replacing uβ and uδ by dβ and dδ, we now want the dCGF of the joint

distribution of ((βx(t) + dβ, δx(t) + dδ)|x) instead of simply ((uβ, uδ) |x). In-
corporating these differences, we thus get the following expression for the

joint dMGF of the distributions of transmission rates and virulence:185

Mt(z1, z2) = E
[
I(t) eβxz1+δxz2+dβz1+dδz2

]

= I(t)eβx(t)z1+δx(t)z2Mu
(
(z1, z2)|x

) (34)

from which follows the dCGF :
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Ct(z1, z2) = Log (Mt(z1, z2))

= Log
(
I(t)

)
− n

2
Log

(
1 +

z1
sβ

+
z2
sδ

)
+

sβ sδ (z1βx(t) + z2δx(t)) + Vx(t)
(
−z1 z2mβδ + (z2sβ + z1sδ)

(
z1 β0 + z2 δ0

))

sβ sδ + Vx(t)(z1sδ + z2sβ)
(35)

Alongside the approximation that the underlying distribution of phenotypes

is Gaussian and has the same variance in all phenotypic dimensions, we

also assume that there are many mutations of small effects, meaning that we

study the dynamics of our model in the WSSM regime (weak selection strong190

mutation). In this regime, we can linearize the mutation term in PDE (36)

using a Taylor expansion in the mutational variance λ, and neglecting the

terms in higher order of λ such that λ2 = λ3 = ... = 0.

∂tCt(z) = S ∂z1Ct(z) + ∂z2Ct(z)− d+

µ2

sβ sδ

(
(z1sδ + z2sβ)

(
z1(β0 − ∂z1Ct(z)) + z2(δ0 − ∂z2Ct(z))−

n

2

)
−mβδ z1 z2

)

(36)

where µ2 = Uλ.

We can also study the dynamics of the underlying phenotypes. Plugging195

the general expression for the dCGF Ct(z1, z2) computed in (35) into this

linearized PDE and solving for all values of z (or (z1, z2)) yields the follow-

ing system of Ordinary Differential Equations describing the evolutionary

dynamics:
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β̇x(t) = Vx(t)


S(t)

2(β0 − βx)

sβ︸ ︷︷ ︸
selection

+ T (t)︸︷︷︸
trade-off




δ̇x(t) = Vx(t)



2(δ0 − δx)

sδ︸ ︷︷ ︸
selection

+S(t)T (t)︸ ︷︷ ︸
trade-off




V̇x(t) = −
(
S(t)

sβ
+

1

sδ

)
Vx(t)

︸ ︷︷ ︸
selection

+ µ2

︸︷︷︸
mutation

(37)

with200

T (t) =
(β0 − βx)

sδ
+

(δ0 − δx)

sβ
− mβδ

sβsδ

=
1

sβ sδ
(ρ∥x∥∥x−Oδ∥)

(38)

Which is minimized when ∥x∥= ∥x−Oδ∥= ∥x−Oδ∥
2

and ρ = −1 which is the

case when x is exactly in the middle of the segment between the two optima,

that is x = 1
2
Oδ.

With the dynamical system (37), we now have access to the dynamics of

the three variables upon which depends the dCGF of the joint distributions205

of transmission rate and virulence. With these dynamics and recalling the

dependence of the mean life history traits on these parameters of equation

(6), we can now fully write the dynamics of the mean transmission rate and

virulence with mutation:

(
β̇(t)

δ̇(t)

)
=

(
Vβ(t) Cov(β, δ)(t)

Cov(β, δ)(t) Vδ(t)

)

︸ ︷︷ ︸
G

.

(
S(t)

1

)
− nUλ

2

(
1/sβ

1/sδ

)

(39)
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We specifically write the above equation to resemble a classic Price equa-210

tion (Day and Gandon, 2007; Price, 1970) with a variance covariance matrix

G, a selection vector and a mutation vector. Using the properties (11)-(12)

of the dCGF Ct(z1, z2) we can express the variances and covariance as a

function of the phenotypic parameters βx, δx and Vx(t):

Vβ =
2Vx(t)

sβ
(β0 − βx(t)) +

nV 2
x (t)

2s2β

Vδ =
2Vx(t)

sδ
(δ0 − δx(t)) +

nV 2
x (t)

2s2δ

Cov(β, δ) = Vx(t)T (t) +
nV 2

x (t)

2sβsδ

(40)

With the dynamical expression from system (37), we can compute the215

dynamics of these variance and covariance and express them as:

˙Cov(β, δ)(t) = −2Vx(t)

sβ sδ

(
Cov(β, δ)(t)

(
sβ + sδS(t)

)

+ Vx(t)
(
(β0 − βx) + S(t)

(
(δ0 − δx)

)))

+ Uλ

(
T (t) +

nVx(t)

sβ sδ

)
(41)

V̇β(t) = −2V 2
x (t)


S(t)

(
(β0 − β(t)) + 2(β0 − βx(t))

)

s2β
+

T (t)

sβ
+

(β0 − β(t))

sβsδ︸ ︷︷ ︸
Trade-off term




+ 2Uλ
(
β0 − β(t)

)

(42)
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V̇δ(t) = −2V 2
x (t)




(
(δ0 − δ(t)) + 2(δ0 − δx(t))

)

s2δ
+ S(t)

(
T (t)

sδ
+

(δ0 − δ(t))

sβsδ

)

︸ ︷︷ ︸
Trade-off term




2 + Uλ
(
δ0 − δ(t)

)

(43)
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Introduction

Biological adaptation is led by the emergence of mutations and their subsequent rise5

in frequency. With a large enough effective population, the speed at which a mutation

can emerge and grow in frequency is mainly determined by two parameters. First, the

mutation rate determines the probability of a mutation occurring and thus the influx of

mutation. Second, the selection coefficient (that is the additional fitness associated with

the mutation) influences the probability that a mutation will be initially lost through10

drift. If this mutation is not lost initially, then the selection coefficient also dictates the

speed of invasion of this mutation. However the relative contributions of mutation rate

and selection coefficient to the emergence of new dominating mutations can be hard to

determine. Particularly in epidemiology, it has become clear that the ability to predict

the evolution of pathogens and the successive rise of new variants is crucial.15

To address the question of the relative contribution of mutation rate and selection,

we used an experimental host pathogen system of CRISPR-resistant bacteria Strepto-

coccus thermophilus and its phage 2972. With the CRISPR adaptive immunity system,

S. thermophilus can acquire resistance to this phage by incorporating fragments of the20

phage genome in its CRISPR locus, which is used as template to cut phage genetic

material upon entry in the cell. These fragments are then called spacers. As CRISPR

resistance is based on identity between the spacer and the phage genome, this resistance

can be escaped by the phage with mutations in the targeted regions: the protospacers.

25

In a previous experiment, Chabas et al. measured the mutation rate in different pro-

tospacers of phage 2972 and found significant differences (Chabas, Nicot, et al., 2019).

However, in the third chapter of this thesis we found in a coevolution experiment that

phage adaptation to CRISPR immunity was driven by the frequency of hosts and found

no effect of mutation rate.30

Disentangling the contribution of mutation rate and selection coefficient is especially

difficult with mutations acting on the ability to escape host immunity. A common issue

is that the selection coefficient associated with a given mutation is dependent on time.

Indeed for a pathogen, a mutation granting escape to the immunity of a certain host35

will be more beneficial when this host is frequent in the environment. The change in

composition of the host population leads to a change in the selective pressures on the

pathogen population. An additional layer of complexity is from the feedback between

2



the composition of the pathogen population the evolution of the host population: if the

escape mutation towards a given host is frequent in the population, then this host will 40

tend to decrease in frequency, thus reducing the selection coefficient associated with

this escape mutation. Indeed, there is coevolution and frequency-dependent selection

at play, and so the pathogen dynamics cannot be decoupled from the epidemiological

dynamics.

45

To try to circumvent these issues, we designed an experiment where we limit the

evolution of the host population to focus on the evolutionary dynamics of the phage

population. The experiment is described in Figure 1. We used six strains of S. ther-

mophilus divided in two groups which differ in their durability, ie. the escape mutation

rate in the corresponding protospacer of phage 2972 according to (Chabas, Nicot, et al., 50

2019), to test for the effect of protospacer mutation rate. We call the two groups of hosts

LM (Low Mutation) and HM (High Mutation), referring to the mutation rate of the

corresponding protospacers in the phage: mutation rate in protospacers targeted by HM

hosts is higher than mutation rate in protospacers targeted by LM hosts (see Figure S1).

55

Our evolution experiment took place over five days 1. In a first treatment (A), we

only used wild-type bacteria, to observe a baseline level of phage adaptation without

host resistance. In treatment (B), we used a 1:1 ratio of LM and HM strains, in which

we could expect that the escape mutations associated with the HM strains would invade

the phage population the fastest. In another treatment (C), we manipulated the hosts 60

frequencies to go against the expected effect of the mutation rates: the LM strains were

more frequent than the HM strains, in a 80:15 ratio. To guarantee that the wild type

phage could grow, wild-type susceptible bacteria always made up 5% of the population.

Limiting the evolution of the hosts as discussed earlier was done by filtering phages

each day, and transferring them to a fresh-made mix of bacteria of constant frequen- 65

cies. Thus the phages evolved for 5 days in an environment which was reset to the same

conditions everyday. We used whole genome sequencing to monitor the frequencies of

bacteriophage escape of host immunity.
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Results70

Escape frequency

We first study the dynamics of the frequency of escape averaged over the six different

host strains without distinction between the two groups LM or HM. We observed in

Figure 2 that the mean frequency of escape mutations against all resistant hosts was

significantly higher in the treatment where LM and HM hosts were initially in the same75

frequency, than in the treatment where host frequency is initially heterogeneous (Day 1,

T = 3.90, df = 12, P = 2.11× 10−3 ; Day 2, T = 3.86, df = 10 P = 3.15× 10−3). From

day 3, we detected no significant differences between the two treatments. We found

that phages emerge quickly, as the mean frequency of escape against the six types of

hosts becomes higher than 1
6
. Above this threshold, we know that there is a portion80

of the phage population that harbors several escape haplotypes and is thus capable of

infecting different resistant hosts. There were multi-escaping phages in all replicates in

the homogeneous treatment after two days, and in the heterogeneous treatment after

3 days. At the end of our experiment, we observed that no plateau had been reached

as the escape haplotype frequencies kept increasing. We do not even notice a clear85

saturation, as the increase in mean escape mutation frequency seemed close to linear

until the end of the experiment. This supports the hypothesis that, with enough time,

the phage population will tend towards a population of generalist phages able to infect

all six resistant host strains.

90

We wanted to test the contribution of two parameters on the evolution of the phage

populations: escape mutation rate and frequency of the corresponding host (which

relates to the selection coefficient). In the homogeneous treatment (B), the six host

strains were mixed in equal frequencies to test the effect of mutation rate indepen-

dently. We show the mean escape mutation frequency per type of hosts in Figure95

3.a. We do not detect an effect of mutation rate on escape frequency after the first

day as the difference in mean frequency (HM: fescape = 0.136, LM: fescape = 0.082) is

not significant (T = −1.51,df = 12, P = 0.16). However we observe that the mean

frequency of escape mutation is higher against HM hosts later in the experiment at

day 3 (T = −2.49, df = 12, P = 0.028) and 4 (T = −4.56, df = 12, P = 6.5 × 10−1).100

This effect then disappears on the final day. This delayed effect was surprising, but

can be linked to the observation from Figure 2 that generalist phages which can infect

multiple resistant hosts appear in the first days and keep increasing in frequency after

that. Thus mutation is also limiting in the later days, as phages acquire more escape
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mutations to escape all different types of hosts. Indeed mutations should be limiting 105

until the appearance of a phage harboring escape mutations against all 6 types of host.

In Figure 3.b we show the results from the heterogeneous treatment, in which the re-

sistant bacterial hosts are initially present in contrasting frequencies. LM hosts initially

make up 80% of the host population compared to 15% for the LM hosts. There is then 110

a higher selective pressure selecting for escape mutant to frequent LM hosts rather than

rarer HM hosts, which translates to a higher selection coefficient for the former. There-

fore we expected that the mean escape mutation frequency would be higher against LM

than HM hosts throughout the experiment. We do observe this effect at the end of the

first day (T = 4.75, df = 12, P = 4.7 × 10−4) but not later in the experiment. Hence 115

the frequency of hosts only drove phage adaptation early in the experiment, before the

frequency of escape mutation against both types of host equalize. However, we found

in the homogeneous treatment that mutation rate favored the increase on HM escape

mutation frequency in days 3 and 4, so the equal frequencies that we find on days 3

and 4 in the heterogeneous treatment could be due to the effects of mutation rate and 120

host frequency cancelling each other.

Host frequencies

To better understand the dynamics of the frequency of escape mutations, we sequenced

the CRISPR locus of the bacterial host population at the end of each day. Indeed 125

to try to limit host evolution, we add a fresh identical mix everyday, yet during the

day we expect the frequencies of the hosts to vary. We present the results in Fig-

ure 4. Note that in this figure the frequency of wildtype bacteria, or bacteria which

acquired news spacers, is not represented. In the homogeneous treatment, we find a

significant difference in the frequencies of HM and LM hosts at the end of the first day 130

(T = 19.5, df = 12, P = 1.87 × 10−10). The tendency of LM hosts to have a higher

frequency after the first day could be due to a faster increase in the frequency of HM

escaping phages, although the difference we observed in Figure 3.a is not significant.

After the second day, we detect no difference between the frequencies of HM and LM

hosts at the end of each day. 135

In the second treatment, we find that at the end of the first day the composition

of the bacterial population is very similar to the initial mix (Figure 4.a). Strikingly,

although the bacterial mix is fresh at the start of each day and with very heterogeneous
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frequencies of hosts, we detect no significant differences between the frequencies of LM140

and HM hosts at the end of the growth phase from day 2, 4 and 5. Even more striking,

at the end of day 3 and opposite to the initial mix, there are more HM that LM hosts

(T = −2.75, df = 12, P = 0.017). Thus the pressure of the adapting phage population

seems to homogenize the bacterial population. Towards the end of the experiment,

there is balance between LM and HM host strains.145

Diversity of escape mutants

With our sequencing data of the phage protospacers, and particularly with the haplo-

type frequencies which keeps the linkage information between escape mutations on the

same protospacer, we can study the diversity of escape haplotypes through time. We150

define an escape haplotype as a set of mutations which are found in the same proto-

spacer, in the same sequencing reads, and thus initially in the same phage. We use

the frequency of escape haplotypes instead of individuals mutations because we find

occurrences of several escape mutations in the same read which inflate the escape mu-

tation frequencies, but not escape haplotype frequencies. Note that these haplotypes155

regroup mutations in the same protospacer, as we do not have linkage information for

mutations in different protospacers. We show the dynamics of the effective number of

escape haplotypes (Nei, 1973) in Figure 5. This measure is computed with the fre-

quencies of the different haplotypes. With n different haplotypes, this effective number

of haplotypes is maximized and equal to n when the frequencies of all haplotypes are160

equal. We find that this diversity stays relatively constant through time even though

we found that the overall frequency of escape haplotypes was increasing quasi linearly

(Figure 3 and 2). In the homogeneous treatment (Figure 5.a), we find on day 4 a

significantly higher diversity of escape haplotypes in HM rather than LM protospacers

(T = −4.56, df = 12, P = 6.5 × 10−4). In the heterogeneous treatment (Figure 5.b),165

at the end of the first day, the escape haplotype diversity is higher against the initially

more frequent LM than the HM hosts (T = 4.75, df = 12, P = 4.7 × 10−4). These

observations coincide with the observations from Figure 3 where we find significant

differences in frequency between LM and HM hosts, meaning that the difference in

haplotype diversity between LM- and HM- escaping phages correlates with the differ-170

ence in frequency.

This diversity of haplotypes can be observed in more details with the use of Muller

plots. We show examples of these plots for one replicate of both the homogeneous
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(Figure S2) and the heterogeneous (Figure S3) treatments. With these plots we can 175

precisely see the dynamics of the frequencies of each escape haplotypes against each of

the resistant hosts. We observe that the relatively low diversity shown in Figure 5 is

also quite static. Indeed against each resistant host, the escape haplotype composition

is relatively stable across time.

In Figure S4 we show the presence of each escape haplotypes over the different 180

replicates. With this representation, we can observe whether there are ubiquitous hap-

lotypes that appear in many replicates, or if there are enough mutational targets in

a protospacer so that escape haplotypes are different between replicates. This figure

shows that many escape haplotypes are found in different replicates. This supports

the hypothesis that the number of escape mutation against every host spacer is limited 185

and the same escape mutations are found to drive the viral adaptation to CRISPR

immunity.

Discussion

The impact of host CRISPR diversity driving bacteriophages to extinction(Common

et al., 2020; Houte et al., 2016; Morley et al., 2017) or limiting their emergence (Chabas, 190

Lion, et al., 2018) has been demonstrated and discussed before. However these earlier

studies manipulate diversity through the number of host present, and not their relative

frequencies. Manipulating the frequencies of hosts affects the strength of selection. Here

we find that in a CRISPR resistant bacteria and phage system, heterogeneity in host

frequencies initially reduces the global speed of acquisition of escape mutations in the 195

pathogen. We observe, as expected, that phages acquire escape mutations faster against

more frequent hosts, but this effect seems to be transient. Indeed we observe that the

initial heterogeneity in the host population vanishes as phages adapt, even with fresh

bacteria being added daily. Contrary to expectations, we do not find an effect of escape

mutation rate on phage adaptation early in the experiment, when mutations could be 200

thought to be limiting. However we find a delayed effect of mutation rate as later in

the experiment we do find a higher frequency of escape haplotypes for which mutation

rate is higher. This effect could be explained by multi locus adaptation. We find that

phages escaping the resistance from several hosts appear early in the experiment but

we do not a reach a point where the whole phage population can infect all hosts. This 205

explains why mutations could still be limiting later in the experiment, and thus why

mutation rate can still impact phage adaptation.

Another consequence of multi-locus adaptation is found on the diversity of escape
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haplotypes which we observe against a given spacer, within a replicate (Figure S2

and S3). We find that several escape haplotypes against the same spacer can co-exist210

across time, which we attribute to the possibility that these escape haplotypes are

found in phages which infect different sets of other hosts. Hence it is linkage with

other escape mutations against other hosts which would help conserve a diversity of

escape haplotypes against a given host. This finding highlights the need for long-read

sequencing methods to track multi-locus adaptation in this experimental system.215

The goal of our experiment was to test the relative importance of mutation rate

and host frequency on phage adaptation. To this end we tried to limit host adaptation

by resetting the bacterial composition each day. Yet this approach was not perfect as

we find that the host frequencies change drastically during each day of the experiment.

Besides, we find the emergence of bacteria with additional spacers of resistance (which220

explains why the sum of the frequencies of HM and LM hosts types in Figure 4 is not

equal to 1 at the end of the experiment). Yet this acquisition of new spacers is expected

to have a negligible effect on our conclusions. An emergent resistant bacteria would

need to grow to a high enough frequency for coevolution to be significant. Moreover, it

would be unlikely that the same spacer was acquired several times over in several days225

in the same replicate (there are more than 600 possible spacers against phage 2972) so

the increase in selection coefficient for the corresponding phage mutation would be a

one-time event.

Materials and Methods230

Bacteria and phages strains

S. thermophilus DGCC 7710 and phage 2972 (Lévesque et al., 2005) were obtained

from the Félix d’Hérelle Reference Center for Bacterial Viruses (www.phage.ulaval.ca).

Several derivative phage-resistant strains, each with an unique CRISPR spacer were

generated previously (Chabas, Nicot, et al., 2019). The ability of phages to mutate235

and escape the resistance from these strains was assessed. Based on these measures, six

strains were chosen, divided in two groups for high and low resistance durability values

ie. high and low protospacer escape mutation rate in the phage (see Figure S1).
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Experimental procedure

Prior to the experiment, the 7 bacterial strains (including the susceptible wild-type) 240

were grown separately during 6 hours in LM17+CaCl2 (37 g/l of M17 (Oxoid) supple-

mented with 5 g/l of lactose and 10 mM of sterile CaCl2). The bacterial mixes were

then made according to the three treatments described in Figure S1. Everyday, new

mixes were made to avoid growth and competition between the bacteria which could

lead to dramatic changes in relative frequencies. On the first day, the three bacterial 245

mixes were transferred 1:100 into 10 ml of fresh LM17+CaCl2 and infected with 105

wild-type 2972 phages then incubated at 42°C. There were 4 replicates for treatment

A, and 7 for both treatment B and C. Every day (after 18 hours of incubation), the cul-

tures were filtered (0.2 µm) to extract phages from the cultures. 100µl of these filtered

phages were used to infect the newly made mix each day. Following each transfer, the 250

bacteria and phages from each replicate, as well as the initial bacteria mixes, were kept

for sequencing.

Bacteria sequencing

The CRISPR-Cas CR1 locus was amplified through PCR (primers 5’-3’: AGTAAG-

GATTGACAAGGACAGT; CCAATAGCTCCTCGTCATT) and sequenced with Illu- 255

mina MiSeq. The spacers were extracted from the sequences by searching for the flank-

ing repeats allowing for a maximum of one mismatch. The spacers were then matched

with their protospacers on the phage genome using Blast version 2.8.1 (Camacho et al.,

2009) and the protospacer database presented in the next section. After these steps, an

average sequencing depth of around 126000 was obtained. A minimum identical word 260

size of 10, and a 70% identity threshold was used. The top result of the search, if any,

was used to replace the name of the spacer by the middle position of the protospacer

in the phage genome. A frequency cutoff of 1% was used to optimize the quality of our

dataset.

Phage sequencing 265

The phage DNA samples were sequenced (Illumina MiSeq) with 150-bp paired-end

reads. Trimmomatic (Bolger, Lohse, and Usadel, 2014) was used to clean and trim the

sequencing reads, before mapping them on the reference genome (Lévesque et al., 2005)

using Bowtie2 (Langmead and Salzberg, 2012). The software FreeBayes (Garrison

and Marth, 2012) was then used to detect mutations and their frequencies, filtering 270

with a 0.01 frequency threshold. In order to keep the linkage information between the
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escape mutations, we developed another approach using directly the aligned reads. We

selected the reads which contained entire protospacers to assess the escape haplotypes

against each of the bacterial hosts. We then only kept the reads with escape haplotypes

which were seen at least three times. We recovered on average 690 reads spanning each275

complete protospacer. With this read approach, we keep linkage information between

escape mutations in the same protospacer, which allows us to estimate escape haplotype

frequencies instead of independent mutation frequencies. For instance, this alleviates

the problem of escape mutation frequency becoming higher than one in a population,

when some viruses carry multiple escape mutations in the same protospacers.280
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Figure 1: Bacteriophage evolution experiment. On the first day, wild type phages

are added to a certain population of bacteria. At the end of each day, the lysate is

filtered to obtain only the evolved phages. Everyday, the recovered phages are used to

infect a new fresh population of bacteria. In the first treatment A, the bacterial mix

is made up of only susceptible cells. In the second treatment B, we add a mix of 5%

susceptible bacteria, and in equal frequencies the 6 resistant host strains. Finally in the

third treatment C, the bacterial mix is composed of 5% susceptible cells, 15% of the

three HM (high mutation) strains and 80% of the three LM (low mutation) strains.
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Figure 2: Escape frequency across time averaged over the six protospacers. This value

is averaged over the seven replicates of each treatment. The orange line corresponds to

the B treatment, where the frequency of HM and LM hosts in the mix is equal, and the

red line corresponds to the C treatment where the mix is made up of more LM than

HM strains. The dashed horizontal line shows y = 1/6 which represents the maximum

mean escape mutation frequency if all phages are specialists, that is only harbor escape

mutations against one of the six hosts. The shadowed areas denote the bootstrap 95%

confidence interval computed over the seven replicates.
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Figure 3: Escape frequencies across time averaged over the three protospacers of each

type. Frequency is shown in pink for HM protospacers and in blue for LM protospacers.

This value is then averaged over the seven replicates of each treatment. The (a) panel

corresponds to the B treatment, where the initial frequency of HM and LM hosts in the

mix is equal, the (b) panel corresponds to the C treatment where the mix is made up of

more LM than HM strains. The shadowed areas denote the bootstrap 95% confidence

interval computed over the seven replicates.
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Figure 4: Frequency of the bacterial hosts at the end of each day. The frequency of

HM hosts is shown in pink, the frequency of LM hosts is shown in blue. The error bars

denote the bootstrap 95% confidence interval computed over the seven replicates. The

(a) panel corresponds to the B treatment, where the initial frequency of HM and LM

hosts in the mix is equal, the (b) panel corresponds to the C treatment where the mix

is made up of more LM than HM strains.
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Figure 5: Escape haplotypes diversity. The value shown is the mean effective number

of haplotypes against the three different HM (in pink) or LM (in blue) host strains

respectively. The effective number of host genotypes is computed using : 1/(
∑n

i=1 p
2
i ),

where n is the number of escape haplotypes, and pi is the frequency of escape haplotype

i (Nei, 1973). This value is then averaged over the seven replicates of each treatment.

The shadowed areas denote the bootstrap 95% confidence interval computed over the

seven replicates. The (a) panel corresponds to the B treatment, where the initial

frequency of HM and LM hosts in the mix is equal, the (b) panel corresponds to the C

treatment where the mix is made up of more LM than HM strains.
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Figure S1: Escape mutation rate in the protospacers targeted by the six different

bacterial hosts. Spacers are named according to the position of the corresponding pro-

tospacer in the phage genome. The color represent the two groups LM (low mutation)

and HM (high mutation). Mutation rate was computed in ref (Chabas, Nicot, et al.,

2019).
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Figure S2: Muller plots of the phage escape haplotypes through time in one replicate

of treatment B (where HM and LM hosts are initially in equal frequencies). The

frequency of phage escape haplotypes is shown against every resistant host. Each colour

corresponds to one distinct escape haplotype. Note that two same colour in different

plots do not denote any relationship. The name of the host strain (corresponding to

the position of the corresponding protospacer on the phage genome) is written on each

plot, with the LM and HM hosts strains being respectively shown in the left and right

columns. The lines are smoothed between each day.
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Figure S3: Muller plots of the phage escape haplotypes through time in one replicate

of treatment C (where HM hosts are initially less frequent than LM hosts). The fre-

quency of phage escape haplotypes is shown against every resistant host. Each colour

corresponds to one distinct escape haplotype. Note that two same colour in different

plots do not denote any relationship. The name of the host strain (corresponding to

the position of the corresponding protospacer on the phage genome) is written on each

plot, with the LM and HM hosts strains being respectively shown in the left and right

columns. The lines are smoothed between each day.
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Figure S4: Heatmap of the different escape haplotypes in different replicates. We

show for each replicate of the B and C treatments the frequencies averaged over time

of every escape haplotype. The haplotypes are filtered to keep only those for which

the sum over all replicates of these averages frequencies are over 0.25. The haplotype

names denote the position of the mutation followed by the changed nucleotide. This

is repeated in case of a haplotype with two mutations. Haplotype ’24343multi’ is a

haplotype with more than 5 mutations. The blue line marks the haplotypes in LM

protospacers, and the pink line marks haplotypes in HM protospacers.
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Appendix C:

An introduction to evolutionary

epidemiology theory: Evolution of

virulence and transmission

During this PhD, I taught approximately 200 hours at the University of Montpel-

lier in the Biology and Ecology Department, to bachelor and master students. The

classes I taught were mostly focused on biostatistics, but also linear algebra and

evolutionary genetics.

I also co-developed a 3-hour practical course on evolutionary epidemiology for

the Winter school ”Quantitative viral dynamics across scales” held in Paris in 2022,

organized by Joshua Weitz. This work was done in collaboration with Sylvain Gan-

don and PhD student Wakinyan Benhamou. The “instructor” version of this class,

which includes the expected answers, is presented in this appendix as it squarely

fits the subject of this thesis.
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Introduction

The aim of the course is to provide an introduction to the analysis of the joint epidemiological and evolution-
ary dynamics of infectious diseases (i.e., evolutionary epidemiology theory). Throughout the course we have
combined an analytic approach with a numerical exploration of the models. The plan is to present/discuss
briefly the analytic part and ask the participants to work mainly on the numerical part. The goal is to show
how a little bit of analysis can help a lot to interpret numerical simulations.

There will be two main parts:

1. Epidemiology
1.1. Analytical approach

• Introduction of the SIR model.
• Derivation of the epidemic condition R0 > 1.
• Derivation of the disease-free equilibrium.
• Derivation of the endemic equilibrium.

1.2. Simulation approach

• Presentation of the simulation of the disease-free equilibrium.
• Simulation of the epidemic until the endemic equilibrium. Validation of the analytical results

(Q1).

2. Evolution
2.1 Dynamics of an epidemic with two pathogens

• Modification of the SIR model to account for a polymorphic pathogen population - the wild type
and the mutant - (Q2).

• Simulation of an epidemic with two pathogens (Q3).
• Analytical derivation from the analysis of the model.
• Computation of the selection coefficient (s(t)) and the density of susceptible hosts (S(t)) as func-

tions of time (Q4, Q5).

2.2 Adaptive dynamics (AD) approach - evolutionary invasion analysis

• Condition of invasion when the resident strain is at the endemic equilibrium.
• Numerical solution for the Evolutionary Stable Strategy (ESS) with a Pairwise Invasibility Plot

(PIP) and comparison with the analytical solution (Q6)
• Geometric construction for the ESS

2.3 Adaptive dynamics (long term) vs. evolutionary epidemiology (transient epidemic)

• We want to show and discuss scenarios where a mutant may transiently outcompete the ESS
strategy.
Test an ESS in a population at endemic equilibrium (Q7). Find a situation where an ESS may
transiently be outcompeted; discuss the results (Q8).
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1 Epidemiology

1.1 Analytical approach

Let’s assume that the dynamics of a host population is governed by the balance between an influx λ of new
individuals (birth and immigration) and a natural death rate δ. This host can be infected by a pathogen
characterised by three main life-history traits: the horizontal transmission rate β, the mortality rate induced
by the infection α (also called the virulence) and the recovery rate γ. The dynamics of this system - a
version of the famous Susceptible-Infectious-Recovered (SIR) model - can be described by the following set
of ordinary differential equations (ODE) where the dot refers to differentiation with respect to time:

Ṡ(t) = λ − βI(t)S(t) − δS(t)
İ(t) = βI(t)S(t) − (δ + α + γ)I(t)
Ṙ(t) = γI(t) − δR(t)

(1)

Before analysing the epidemiological dynamics of the pathogen, we need to characterise the host population
prior to the introduction of the pathogen. The above system reduces to:

Ṡ(t) = λ − δS(t)

The disease-free equilibrium (sometimes noted DFE) is:

S0 = λ

δ

If a pathogen is introduced at the DFE its dynamics will be governed by:

İ(t) =
(

βS0 − (δ + α + γ)
)

I(t)

The pathogen will grow if and only if r0 = βS0 − (δ + α + γ) > 0, where r0 is the instantaneous growth rate
of the pathogen.

This condition is equivalent to R0 = βS0
δ+α+γ > 1, where R0 is the basic reproduction number of the pathogen

(this is not a rate).

When the above condition is satisfied, the introduction of a small quantity of pathogen will lead to an
epidemic that will eventually reach an endemic equilibrium:

Se = δ + α + γ

β

Ie = λβ − δ(δ + α + γ)
β(δ + α + γ)

Re = γ

δ
Ie

3



1.2 Simulation approach

# Cleaning objects from the workplace
rm(list=ls())

# Packages (may first require installations: install.packages("name of the package"))
library(tidyverse)
library(ggplot2)
library(cowplot)
library(deSolve)
library(scales)
library(lattice)
library(knitr)

ODE_SIR <- function(t, y, parms){

# t, the current time
# y, the current state of the system (/!\ to the order of the state variables)
# parms, the parameters of the model

# State variables
S <- y[1]
I <- y[2]
R <- y[3]

# Parameters
lambda <- parms["lambda"]
delta <- parms["delta"]
beta <- parms["beta"]
alpha <- parms["alpha"]
gamma <- parms["gamma"]

# Temporal derivatives
dS <- lambda - delta*S - beta*I*S
dI <- (beta*S - (delta + alpha + gamma))*I
dR <- gamma*I - delta*R

result <- c(dS, dI, dR)

# Return
list(result)

}

# Time points

t0 <- 0 # initial time
tf <- 10 # final time
times <- seq(from=t0, to=tf, by=0.1)

# Parameters

lambda = 1
delta = 1

4



beta = 5
gamma = 0.1
alpha = 0.1

parms = c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma)

1.2.1 Disease-free population

# Initialization of each compartment (at time t = t0)

init_disease_free <- c("S" = 0.1, # S(t0), all the population is susceptible (S) to the disease
"I" = 0, # I(t0), disease-free population
"R" = 0) # R(t0), no recovered (R) individuals

Numerical integration

simul_disease_free <- lsoda(y = init_disease_free, times = times, func = ODE_SIR, parms = parms)

head(simul_disease_free, n = 2) # 2 first rows of the table

## time S I R
## [1,] 0.0 0.1000000 0 0
## [2,] 0.1 0.1856454 0 0

tail(simul_disease_free, n = 2) # 2 last rows of the table

## time S I R
## [100,] 9.9 0.9999548 0 0
## [101,] 10.0 0.9999591 0 0

Formatting of simulated data & graphical visualization

plot_simul <- function(simul, title = element_blank(), parms = NULL){

data <- data.frame("Time" = simul[,1] %>% rep(3),
"Compartment" = c("S", "I", "R") %>% rep(each = dim(simul)[1]),
"Density" = simul[,-1] %>% c)

data$Compartment <- factor(data$Compartment, levels = c("S", "I", "R"))

# Other possibility (more advanced in R):
#
# data <- simul %>% as.data.frame %>% tidyr::gather(Compartment, Density, -time) %>%
# dplyr::mutate(Compartment = factor(Compartment, labels = c("S", "I", "R"))) %>%
# dplyr::rename(Time = time)

caption <- ifelse(is.null(parms), yes = "",
no = paste("\n Parameters:", paste(names(parms), parms, sep = " = ", collapse = " ; ")))

return(ggplot(data, aes(x = Time, y = Density, color = Compartment)) +
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geom_line(cex = 1.3) +
labs(title = title, caption = caption) +
theme_bw() +
scale_color_manual(values = c("#619CFF", "#F8766D", "#00BA38")) +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(face = 'bold')))

}
plot_simul(simul_disease_free,

title = "Fig. 1. Simulation of the SIR model (1) for a disease-free population\n",
parms = parms) +

geom_hline(yintercept = lambda/delta, lty = 'dashed') + # disease-free equilibrium for S
annotate(geom="text", x=8, y=0.9*(lambda/delta), label="Disease-free equilibrium (DFE)")

Disease−free equilibrium (DFE)

0.00
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0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Time
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en

si
ty

Compartment

S

I

R

Fig. 1. Simulation of the SIR model (1) for a disease−free population

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1

1.2.2 Introduction of a low initial density of infected/infectious individuals in a population
at the disease-free equilibrium

Q1. Use the code given above, adding a low initial density of infected individuals to find the endemic
equilibrium - i.e. the values of Se, Ie and Re. Compare your results to the expected analytical values.

# Initialization of each compartment (at time t = t0)

I_t0 <- 0.001 # I(t0), (low) initial density of I

init_disease <- c("S" = (lambda/delta)-I_t0,
# S(t0), almost all the population is susceptible (S) at the DFE

6



"I" = I_t0, # I(t0), low initial density of infected (I) individuals
"R" = 0) # R(t0), no recovered (R) individuals

Numerical integration

simul_disease <- lsoda(y = init_disease, times = times, func = ODE_SIR, parms = parms)

head(simul_disease, n = 2) # 2 first rows of the table

## time S I R
## [1,] 0.0 0.9990000 0.001000000 0.000000e+00
## [2,] 0.1 0.9985145 0.001462207 1.162723e-05

tail(simul_disease, n = 2) # 2 last rows of the table

## time S I R
## [100,] 9.9 0.2399978 0.6333386 0.06333182
## [101,] 10.0 0.2399980 0.6333379 0.06333201

Formatting of simulated data & graphical visualization

plot_simul(simul_disease, title = "Fig. 2. Simulation of the SIR model (1)\n", parms = parms) +
geom_hline(yintercept = c((delta+alpha+gamma)/beta, # endemic equilibrium for S,

lambda/(delta+alpha+gamma) - delta/beta, # I,
(gamma/delta)*(lambda/(delta+alpha+gamma) - delta/beta)), # and R

lty = 'dashed') +
annotate(geom="text", x=7.5, y=0.45, label="Endemic equilibriums in dashed lines")

Endemic equilibriums in dashed lines
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Fig. 2. Simulation of the SIR model (1)

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1
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As expected from the analysis of the model, the density of infected hosts increases because R0 = 4.16 > 1.
After a transient phase, the dynamical variables S(t), I(t) and R(t) converge toward the equilibrium values
derived above (i.e., Se, Ie and Re).

1.2.3 Overview

To sum up this section, Fig. 3 shows the establishment of the disease-free equilibrium, then the introduction
of a small density of infected individuals, eventually leading to the endemic equilibrium.

n_row_df <- dim(simul_disease_free)[1]

simul_disease[,1] <- simul_disease_free[n_row_df,1] + simul_disease[,1]

plot_simul(simul = rbind(simul_disease_free[-n_row_df,], simul_disease),
title = "Fig. 3. Overview of the simulations of the SIR model (1)
before and after the introduction of the pathogen\n", parms = parms) +

geom_vline(xintercept = simul_disease[1,1], lty = 'dashed') +
geom_label(aes(x = simul_disease[1,1], y = 1.2*(lambda/delta),

label = "Introduction\n of the pathogen"), fill = "white", col = 'black') +
ylim(c(0, 1.25*(lambda/delta)))
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Fig. 3. Overview of the simulations of the SIR model (1)
           before and after the introduction of the pathogen

 Parameters: lambda = 1 ; delta = 1 ; beta = 5 ; alpha = 0.1 ; gamma = 0.1

rm(list=ls()) # Cleaning objects from the workplace
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2 Evolution

2.1 Dynamics of an epidemic with two pathogens

2.1.1 Analytical approach

Let’s assume that a new variant appears by mutation. Will this mutant invade and replace the previously
dominant form of the pathogen?

To answer this question we need to account for the circulation of this new variant which requires a new
system of ODE:

Q2. Write the system of ODE describing the epidemiological dynamics of two pathogenic strains, respectively
with parameters (β, α, γ) and (βm, αm, γm)

Ṡ(t) = λ − βI(t)S(t) − βmIm(t)S(t) − δS(t)
İ(t) = (βS(t) − (δ + α + γ))︸ ︷︷ ︸

r(t)

I(t)

˙Im(t) = (βmS(t) − (δ + αm + γm))︸ ︷︷ ︸
rm(t)

Im(t)

Ṙ(t) = γI(t) + γmIm(t) − δR(t)

(2)

Adding one strain requires an additional equation but do not forget to modify the other equations as the
presence of the mutant is also affecting the dynamics of S(t) and R(t).

2.1.2 Simulation approach

Q3. Using a modified version of the earlier code, simulate the epidemiological dynamics dictated by this new
system of ODE. Describe the dynamics of the two infected compartments. Did you expect this behaviour?

ODE_SIR.2 <- function(t, y, parms){

# t, the current time
# y, the current state of the system (/!\ to the order of the state variables)
# parms, the parameters of the model

# State variables
S <- y[1]
I <- y[2]
I_m <- y[3]
R <- y[4]

# Parameters
lambda <- parms["lambda"]
delta <- parms["delta"]
beta <- parms["beta"]
alpha <- parms["alpha"]
gamma <- parms["gamma"]
beta_m <- parms["beta_m"]
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alpha_m <- parms["alpha_m"]
gamma_m <- parms["gamma_m"]

# Temporal derivatives
dS <- lambda - delta*S - (beta*I + beta_m*I_m)*S
dI <- (beta*S - (delta + alpha + gamma))*I
dI_m <- (beta_m*S - (delta + alpha_m + gamma_m))*I_m
dR <- gamma*I + gamma_m*I_m - delta*R

result <- c(dS, dI, dI_m, dR)

# Return
list(result)

}

# Time points
t0 <- 0 # initial time
tf <- 15 # final time
times <- seq(from=t0, to=tf, by=0.01)

# Initialization of each compartment (at time t = t0)
I_t0 <- 0.001 # I(t0), initial density of I
I_m_t0 <- 0.001 # I_m(t0), initial density of I_m
I_T_t0 <- I_t0 + I_m_t0

init <- c("S" = 1-I_T_t0, # S(t0)
"I" = I_t0, # I(t0), individuals initially infected by the WT strain (ancestral)
"I_m" = I_m_t0, # I_m(t0), individuals initially infected by the variant
"R" = 0) # R(t0)

# Parameters
lambda = 1
delta = 1
beta = 10.5
gamma = 0.1
alpha = 1.1
beta_m = 12
gamma_m = 0.1
alpha_m = 1.5

parms = c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma,
"beta_m"=beta_m, "alpha_m"=alpha_m, "gamma_m"=gamma_m)

Numerical integration

simul <- lsoda(y = init, times = times, func = ODE_SIR.2, parms = parms)

head(simul, n = 2) # 2 first rows of the table

## time S I I_m R
## [1,] 0.00 0.9980000 0.001000000 0.001000000 0.000000e+00
## [2,] 0.01 0.9977861 0.001086352 0.001098356 2.081938e-06
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tail(simul, n = 2) # 2 last rows of the table

## time S I I_m R
## [1500,] 14.99 0.2127208 0.2099941 0.1247275 0.03335710
## [1501,] 15.00 0.2127194 0.2100646 0.1246684 0.03335825

Formatting of simulated data & graphical visualization

plot_simul.2 <- function(simul, title = element_blank(), parms = NULL){

compartments <- colnames(simul)[2:5]
data <- data.frame("Time" = simul[,1] %>% rep(4),

"Compartment" = compartments %>% rep(each = dim(simul)[1]),
"Density" = simul[,2:5] %>% c)

data$Compartment <- factor(data$Compartment, levels = compartments)
caption <- ifelse(is.null(parms), yes = "",

no = paste("\n Parameters:", paste(names(parms), parms, sep = " = ", collapse = " ; ")))

return(ggplot(data, aes(x = Time, y = Density, color = Compartment)) +
geom_line(cex = 1.3) +
labs(title = title, caption = caption) +
theme_bw() +
scale_color_manual(values = c("#619CFF", "#F8766D", "#A90B0B", "#00BA38")) +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(hjust = 0, face = 'bold')))

}
plot_simul.2(simul, title = "Fig. 4. Simulation of the SIR model (2)\n", parms = parms)
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Fig. 4. Simulation of the SIR model (2)

 Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1
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In the simulation example presented in Fig. 4, both strains are introduced at very low densities with a 1:1
ratio and the variant (or mutant strain m) differs from the ancestral strain by a higher transmission rate
and a higher virulence. In this case, the mutant strain grows much faster at the beginning of the epidemic
but is then gradually replaced by the ancestral strain which dominates from t = 8.5. However, note that a
change in I(t) or in the parameter values - e.g. the traits of the mutant, the initial densities - can have a
dramatic impact on the dynamics.

2.1.3 Population genetics approach - derivation of the selection coefficient

At this stage and to understand these dynamics, it is useful to rewrite the above system of 4 equations (2)
in the following way:

Ṡ(t) = λ − β(t)IT (t)S(t) − δS(t)
İT (t) = β(t)IT (t)S(t) − (δ + α(t) + γ(t))IT (t)
Ṙ(t) = γ(t)IT (t) − δR(t)

(3a)

where IT (t) = I(t) + Im(t) and β(t) = (1 − pm(t))β + pm(t)βm

α(t) = (1 − pm(t))α + pm(t)αm

γ(t) = (1 − pm(t))γ + pm(t)γm with pm(t) = Im(t)
IT (t)

ṗm(t) = pm(t)(1 − pm(t))︸ ︷︷ ︸
genetic variance

(rm(t) − r(t))︸ ︷︷ ︸
selection coefficient

(3b)

Note again that (2) and (3) are equivalent but the second formulation decoupled epidemiological dynamics
(3a) and evolutionary dynamics (3b). In particular, it is insightful to examine the selection coefficient
s(t) = rm(t) − r(t) (Day & Gandon). To understand the effect of each life-history trait, it is important to
write the selection coefficient as:

s(t) = (βm − β)S(t) + (α + γ) − (αm + γm) (4)

Strains favoured by selection:

• Larger transmission rate

• Lower virulence rate

• Lower recovery rate

Note that the first term acts on the production of new infections (i.e. birth rate of the infection) while the
last two points act on the duration of infection (i.e. lower death rate of the infection).

Q4. To understand the dynamics of the two pathogenic strains, plot the frequency pm(t) as well as the
selection coefficient s(t) each as a function of time.
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simul <- simul %>% as.data.frame

simul$p_m <- simul$I_m / (simul$I_m+simul$I) # compute p_m(t)

simul$selection_coef <- (beta_m-beta)*simul$S+(alpha+gamma)-(alpha_m+gamma_m) # compute s(t)

s_threshold_index <- simul$selection_coef %>% abs %>% which.min
# Index of the value of s(t) closest to 0 in our simulation

S_threshold <- ((alpha_m+gamma_m)-(alpha+gamma))/(beta_m-beta)
# Analytical value of S(t) such that the selection coefficient of the variant is: s(t) = 0

plot_grid(

ggdraw() + draw_label(
"Fig. 5. Temporal dynamics of the frequency (A) and of the selection coefficient (B) of the variant

and of the density of available hosts (C) based on a simulation of the SIR model (2)-(3)\n",
x = 0.025, hjust = 0, size = 13),

ggplot(simul %>% as.data.frame, aes(x = time, y = p_m)) +
geom_line(cex = 1.3, col = "#A90B0B") +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
labs(x = "Time", y = "p_m(t), frequency of the variant\n") +
scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),

axis.text.y = element_text(size=11)),

ggplot(data = simul, aes(x = time, y = selection_coef, color = selection_coef)) +
geom_hline(yintercept = 0, cex = 1) +
geom_line(cex = 1.3) +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
labs(y = "s(t), selection coefficient\n") +
scale_color_gradientn(colors = c("#AB0707", "white", "#169822"),

values = rescale(c(min(simul$selection_coef), 0,
max(simul$selection_coef)))) +

scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
annotate(geom="text", label = "- s(t) > 0 (green): variant favoured by selection",

x = 2.25, y = 1.067, size = 3.5, hjust = 0) +
annotate(geom="text", label = "- s(t) < 0 (red): variant disfavoured by selection",

x = 2.25, y = 0.917, size = 3.5, hjust = 0) +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),

axis.text.y = element_text(size=11), legend.position = 'none'),

ggplot(data = simul, aes(x = time, y = S)) +
geom_hline(yintercept = S_threshold, lty = 'dashed') +
geom_vline(xintercept = simul[s_threshold_index, 1], lty = 'dashed') +
geom_line(cex = 1.3, col = "#619CFF") +
geom_point(x = simul[s_threshold_index, 1], y = S_threshold, pch = 5, size = 2) +
scale_y_continuous(labels = scales::label_number(accuracy = 0.01)) +
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labs(x = "Time", y = "S(t), available susceptible hosts\n") +
xlim(c(0,4)) +
theme_bw() +
theme(axis.text.x = element_text(size=11), axis.text.y = element_text(size=11),

plot.caption = element_text(hjust = 0, face = 'bold')),

ggdraw() + draw_label(paste("Parameters:",
paste(names(parms), parms, sep = ' = ', collapse = ' ; ')),

size = 9, fontface = 'bold'),

labels = c("", "A)", "B)", "C)", ""), label_x = 0.03, label_y = c(0, 1.05, 1.05, 1.12, 0),
ncol = 1, rel_heights = c(0.3, 1, 1, 1, 0.1))

Fig. 5. Temporal dynamics of the frequency (A) and of the selection coefficient (B) of the variant
           and of the density of available hosts (C) based on a simulation of the SIR model (2)−(3)
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Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1
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Fig. 5-A and B show that the frequency of the variant increases at the beginning of the epidemic and
then gradually decreases (in this example, the maximum is reached around t = 0.86). When the frequency
of the variant increases, its selection coefficient is positive (the variant has a selective advantage). When
the variant no longer increases in frequency, its selection coefficient is zero. Eventually, when the variant is
progressively replaced by the other strain - i.e. the variant decreases in frequency -, its selection coefficient
becomes negative (and its value reflects the speed of this decay).

We added here the temporal dynamics of the S compartment (cf. Fig. 5-C). Note how the dynamics of
S(t) mirrors the dynamics of the selection coefficient. A particular value of S(t) is associated with the time
point when s(t) = 0 (i.e., when the variant reaches its maximum frequency).

Q5. Find the threshold value of S(t) for which the more selected strain changes, both analytically and
graphically (with a plot s(t) = f(S(t))).

The coefficient of selection of the mutant changes when s(t) = 0. Thus, we can define Ŝ(t) the threshold
value of S(t) where s(t) = 0 and using equation (4):

s(t) = 0 ⇐⇒ (βm − β)Ŝ(t) + (α + γ) − (αm + γm) = 0 ⇐⇒ Ŝ(t) = (αm + γm) − (α + γ)
βm − β

ggplot(data = simul, aes(x = S, y = selection_coef, col = selection_coef)) +
geom_hline(yintercept = 0, cex = 1) +
geom_line(cex = 1.3) +
labs(x = "\n S(t), available susceptible hosts", y = "s(t), selection coefficient\n",

title = "Fig. 6. Selection coefficient of the variant against the density of available hosts",
subtitle= "Based on a simulation of the SIR model (2)-(3)\n",
caption = paste("\n Parameters:", paste(names(parms), parms,

sep = " = ", collapse = " ; "))) +
geom_vline(xintercept = S_threshold, lty = 'dashed') +
scale_color_gradientn(colors = c("#C31515", "white", "#169822"),

values = rescale(c(min(simul$selection_coef), -0.1, 0.1,
max(simul$selection_coef)))) +

theme_bw() +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
legend.position = 'none',
plot.caption = element_text(hjust = 0, face = 'bold'))
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Fig. 6. Selection coefficient of the variant against the density of available hosts

 Parameters: lambda = 1 ; delta = 1 ; beta = 10.5 ; alpha = 1.1 ; gamma = 0.1 ; beta_m = 12 ; alpha_m = 1.5 ; gamma_m = 0.1

The selection coefficient of the variant s(t) is a linear function of S(t) as shown in Fig. 6 which is consistent
with (4). Here, the threshold density Ŝ(t) is about 0.27. Below this threshold, the selection coefficient is
negative (i.e. the variant is selected against), above, the selection coefficient is positive (i.e. the variant is
selected for). This is because this variant is more transmissible but more virulent than the other strain. As
shown in (4), this transmission advantage depends on the number of available hosts (S(t)). The selective
advantage of this kind of variant changes with the availability of susceptible hosts S(t). When there are no
longer enough susceptible hosts - i.e. below the calculated threshold density Ŝ(t) -, the virulence burden is
no longer compensated by the transmission advantage and the frequency of the variant drops.

rm(list = setdiff(ls(), lsf.str())) # Cleaning objects from the workplace except for the functions
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2.2 Adaptive dynamics (AD) approach - evolutionary invasion analysis

2.2.1 Analytical approach

Another classical approach to model the evolution of life-history is to focus on a situation where the mutant
is introduced when the epidemiological system is at the endemic equilibrium. This assumption makes sense
when the mutation rate is assumed to be very small. In this case, the epidemiology reaches the endemic
equilibrium before a new variant is introduced by mutation. In this case r = 0 and rm = βmSe−(δ+αm+γm).
In other words, the mutant can invade if and only if: rm > 0 which yields:

βm

δ + αm + γm
>

β

δ + α + γ
(5)

This condition is particularly useful when we want to assume some covariation among different life-history
traits (e.g., trade-off between transmission and virulence: impossible to increase transmission without higher
exploitation of the host). In this case, one can write the transmission rate as an increasing function of
virulence: β(α). Here we propose to use the trade-off function: β(α) = 10

√
α

The condition (5) means that adaptation is maximizing: R(α) = β(α)
δ+α+γ

The strategy α∗ that maximizes this ratio must verify:

dR(α)
dα

= 0 (6)

and d2R(α)
dα2 < 0

After some rearrangements (6) yields the following condition:

dβ(α)
dα

= β(α)
δ + α + γ

(7)

For the special case where β(α) = 10
√

α, one can find that:

α∗ = δ + γ

2.2.2 Numerical approach

Q6. Using the condition (5) and the trade-off function β(α) = 10
√

α, find if possible the parameters β∗ and
α∗ of a strain which cannot be invaded by any other strain. This strain is said to be at an Evolutionary
Stable Strategy (ESS). Compare your numerical approximation of α∗ with with the analytical solution. For
the sake of simplicity, use the following function for the trade-off:

Trade_off <- function(alpha, k=10, c=1/2){ # Concave relationship between transmission and virulence
return(k*alphaˆc) # = beta(alpha)

}

# Parameters

k <- 10
c <- 0.5

lambda <- 1
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delta <- 1
gamma <- gamma_m <- 0.1

alpha_vec <- seq(from=0, to=5, length.out = 500)
n_alpha <- length(alpha_vec)

Pairwise comparisons

PIP <- matrix(ncol = n_alpha, nrow = n_alpha) # matrix for Pairwise Invasibility Plot
diag(PIP) <- 0 # A variant cannot invade the resident strain with the same strategy

for(i in 1:(n_alpha-1)){

# Resident strain
alpha <- alpha_vec[i] # Virulence
beta <- Trade_off(alpha, k, c) # Transmission rate using the trade-off function

for(j in (i+1):n_alpha){

# Variant / Mutant strain
alpha_m <- alpha_vec[j] # Virulence
beta_m <- Trade_off(alpha_m, k, c) # Transmission rate using the trade-off function

# Eventually, can the mutant invade the resident strain: r_m > r ?
invasion <- ifelse(beta_m/(delta+alpha_m+gamma_m) > beta/(delta+alpha+gamma), # cf. equation (5)

yes = 1, no = 0)
PIP[i,j] <- invasion
PIP[j,i] <- 1-invasion

}
}
lim <- c(alpha_vec[1], alpha_vec[n_alpha])

levelplot(PIP, row.values = alpha_vec, column.values = alpha_vec, xlim = lim, ylim = lim,
colorkey = FALSE, col.regions = c('black', 'white'),
xlab = expression(paste(alpha, " (resident strain)")),
ylab = expression(paste(alpha[m], " (mutant strain)")),
main = list(label = "Fig. 7. Pairwise Invasibility Plot based on the the SIR model (2)-(3)",

cex = 1, font = 'plain'))
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Fig. 7. Pairwise Invasibility Plot based on the the SIR model (2)−(3)
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# Looking for the ESS (Evolutionary Stable Strategy)
ESS_index <- which(apply(PIP, 1, sum) == 0) # Only row with only '0'

if(length(ESS_index) == 0){
print("No Evolutionary Stable Strategy (ESS)")

}else{
alpha_approx_ESS <- alpha_vec[ESS_index]

tab <- c(alpha_approx_ESS, (alpha_vec[n_alpha]-alpha_vec[1])/(2*(n_alpha-1))) %>% round(3) %>%
paste(collapse=" +/- ") %>% c(delta+gamma) %>% as.data.frame

colnames(tab) <- "$\\alphaˆ{*} (timeˆ{-1})$"
rownames(tab) <- c("Numerical approximation", "Analytical solution")
kable(tab)

}

α∗(time−1)
Numerical approximation 1.102 +/- 0.005
Analytical solution 1.1

The virulence ESS α∗ may be found graphically on a Pairwise Invasibility Plot (PIP) where the diagonal is
intersected by the other boundary of the regions associated with an invasion of the resident strain (in white).
In this example, the PIP allows us to obtain a good approximation for virulence: α∗ ≈ 1.1.
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2.2.3 Geometric construction

Let’s simply note here that equation (7) yields a very useful geometric representation that one can use to
study the effect of various parameters on the evolutionary stable virulence strategy.

α*(ESS)

β*(ESS)

−(δ + γ)

0

10

20

30

0 2 4
α

β

Fig. 8. Geometric construction to find the Evolutionary Stable Strategy (ESS)

2.3 Adaptive dynamics (long term) vs. evolutionary epidemiology (transient
epidemic)

2.3.1 The ESS wins in the long term. . .

Q7. Starting from the endemic equilibrium of any pathogen with a strategy different from the ESS (Evolu-
tionary Stable Strategy), check with some simulations that it is always invaded by the ESS pathogen (both
strains following the same trade-off function).

# Time points
t0 <- 0 # initial time
tf <- 600 # final time
times <- seq(from=t0, to=tf, by=5)

# Parameters

k <- 10
c <- 0.5
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lambda = 1
delta = 1
gamma = gamma_m = 0.1

alpha <- 1.44 # different from the ESS
beta <- Trade_off(alpha, k, c)

alpha_m <- alpha_ESS # ESS
beta_m <- Trade_off(alpha_m, k, c)

parms <- c("lambda"=lambda, "delta"=delta, "beta"=beta, "alpha"=alpha, "gamma"=gamma,
"beta_m"=beta_m, "alpha_m"=alpha_m, "gamma_m"=gamma_m)

# Initialization at endemic equilibrium

S_e <- (delta+alpha+gamma)/beta
I_e <- lambda/(delta+alpha+gamma) - delta/beta
R_e <- (gamma/delta)*I_e

I_m_t0 <- 0.001 # I_m(t0), (very low) initial density of individuals infected by the variant

init_endemic <- c("S" = S_e, "I" = I_e, "I_m (ESS)" = I_m_t0, "R" = R_e)

# Simulation (long term)
simul_long_term <- lsoda(y = init_endemic, times = times, func = ODE_SIR.2, parms = parms)

plot_simul.2(simul_long_term, title = "Fig. 9. Simulation of the SIR model (2)-(3) in the long term\n",
parms = round(parms, 2))
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Fig. 9. Simulation of the SIR model (2)−(3) in the long term

 Parameters: lambda = 1 ; delta = 1 ; beta = 12 ; alpha = 1.44 ; gamma = 0.1 ; beta_m = 10.49 ; alpha_m = 1.1 ; gamma_m = 0.1
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We explore a scenario where the ancestral strain has reached the endemic equilibrium, the strain with the
ESS strategy is introduced at very low density. The latter gradually replaces the previously dominant strain
(it becomes dominant around t = 285). In this case, the replacement is quite slow. We can verify that the
ESS always invades when we use other ancestral strains. The speed of the invasion varies with the ancestral
strains.

2.3.2 . . . but the ESS can be outcompeted by other virulence strategies during transient
epidemics

Q8. Starting from the disease-free equilibrium, introduce two pathogen (one at the ESS) in small but equal
densities, both following the same trade-off function. Is the ESS pathogen always more selected than the
other pathogen? For the second pathogen, try with β < βm and β > βm. What do you notice? Suggest an
explanation.

# Time points
t0 <- 0 # initial time
tf <- 4 # final time
times <- seq(from=t0, to=tf, by=0.05)

# Initialization of each compartment
I_t0 <- I_m_t0 <- 0.001 # Initial density of infected individuals (resident and mutant strains)
I_T_t0 <- I_t0 + I_m_t0 # Total density of infected individuals

init_transient <- c("S" = 1-I_T_t0, "I" = I_t0, "I_m (ESS)" = I_m_t0, "R" = 0)

# Simulation (transient epidemic)
simul_transient <- lsoda(y = init_transient, times = times, func = ODE_SIR.2, parms = parms)

# Plot
Fig_transient <- plot_simul.2(simul_transient)

simul_transient <- as.data.frame(simul_transient)
simul_transient$p_m <- simul_transient[,4] / (simul_transient[,4]+simul_transient[,3])

plot_grid(

ggdraw() + draw_label(
"Fig. 10. Simulation of the SIR model (2)-(3) during a transient epidemic:

epidemiological dynamics (A) and temporal dynamics of the frequency of the variant (B)\n",
x = 0.025, hjust = 0, size = 13),

Fig_transient + theme(axis.text.x = element_blank(), axis.title.x = element_blank(),
legend.position = 'none'),

ggplot(simul_transient, aes(x = time, y = p_m)) +
geom_line(cex = 1.3, col = "#A90B0B") +
labs(caption = paste("\n Parameters:",

paste(names(parms), round(parms, 2), sep = ' = ', collapse = ' ; ')),
x = "Time", y = "p_m(t), frequency of the variant") +

theme_bw() +
theme(axis.text.x = element_text(size=11),

axis.text.y = element_text(size=11),
plot.caption = element_text(hjust = 0, face = 'bold')),
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ggplot() + theme_void(),

get_legend(Fig_transient),

ncol = 2, rel_heights = c(0.2, 1, 1), rel_widths = c(0.85, 0.15), byrow = FALSE,
labels = c("", "", "A)", "", "B)", ""), label_y = c(0, 0, 1.1, 0, 1.1, 0))

Fig. 10. Simulation of the SIR model (2)−(3) during a transient epidemic:
            epidemiological dynamics (A) and temporal dynamics of the frequency of the variant (B)
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B)

In this simulation example (same parameters as above (Q7)), starting with small densities for both strains
(ratio 1:1), the one at the ESS (here, the variant) is always dominated by the other strain (here, the resident
strain) (cf. Fig. 10-A). At the beginning of the epidemic, the frequency of the variant drops from 0.5 to
0.33. This shows that, even if a strain has the best strategy in the long term (ESS), it may be transiently
outcompeted (when the host population is not at the endemic equilibrium) by another strain. If we continue
the simulation, however, the ESS strain will eventually invade. We already see for example in Fig. 10-B
that (albeit weakly) the frequency of the variant rises from t = 0.9.

As in Q4-5, the strain favoured in the short term is the most transmissible (and the most virulent according
to our trade-off function) because the available host density S(t) is not limiting (beginning of the epidemic),
while in the longer term (when S(t) is much lower) the transmission advantage no longer compensates for
the burden of a higher virulence (more details in §2.1.3. Population genetics approach - derivation
of the selection coefficient).
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Theoretical results from the adaptive dynamics approach assume that evolutionary processes are much slower
than epidemiological dynamics and, therefore, that the system has always reached an equilibrium when a new
variant emerges. Evolutionary epidemiology does not rely on this assumption and allows us to understand
what factors affect the change in frequency of the mutant strain (e.g. the availability of susceptible hosts
S(t)) as discussed above in Q4-5.
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Dynamique de l’adaptation virale:

approches théoriques et

expérimentales

Introduction

Dans le cadre de cette thèse, nous avons mené plusieurs projets sous le thème général

de la dynamique de l’adaptation virale. Les virus peuvent muter et s’adapter en très

peu de temps, ce qui a un impact direct, par exemple, sur la manière dont les mal-

adies virales comme le VIH sont traitées ou dont les stratégies de vaccination sont

déployées. La pandémie de SARS-CoV-2 nous a brutalement rappelé la menace que

représentent les agents pathogènes émergents ou réémergents. Dans ce contexte, il

est crucial de comprendre les mécanismes d’adaptation virale afin de concevoir des

interventions prophylactiques, thérapeutiques ou non pharmaceutiques efficaces qui

limiteraient les conséquences indésirables de l’évolution virale.

Dans cette thèse, nous utilisons à la fois des approches théoriques et expérimentales.

Par la théorie, nous essayons de démêler les effets des différents mécanismes évolutifs

et de fournir des prédictions qualitatives et quantitatives pour le résultat de l’adaptation

virale. Nous utilisons également une approche expérimentale pour valider certaines

de ces prédictions et pour essayer de découvrir de nouveaux processus biologiques.

Dans cette thèse nous avons étudié plusieurs facettes de l’adaptation virale, liées
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à différents scénarios épidemiologiques. Dans une première partie, nous avons étudié

grâce à des modèles analytiques l’évolution de traits d’histoire de vie des pathogènes

comme le taux de transmission, et la possibilité d’utiliser la mutagénèse létale comme

approche thérapeutique. Ensuite, nous avons considéré l’adaptation virale quand la

population d’hôtes contient des hôtes résistants à l’infection. Nous avons modélisé la

probabilité d’émergence évolutive: que des mutations d’échappement à la résistance

se produisent après l’introduction de virus et mènent à une épidémie. Nous confir-

mons ces résultats expérimentalement. Enfin, nous avons étudié la dynamique des

fréquences de ces mutations d’échappement dans le cas où une épidémie se produit,

et plus particulièrement dans des scénarios de coévolution avec les hôtes.

Chapitre 1: Evolution des traits d’histoire de vie

Evolution du taux de transmission et mutagénèse létale

Dans le premier chapitre, nous avons construit un modèle qui associe la dynamique

épidémiologique à l’intérieur de l’hôte à la dynamique évolutive de l’agent pathogène.

Nous avons adapté le modèle géométrique de Fisher (Martin and Gandon, 2010;

Tenaillon, 2014) pour relier les phénotypes de l’agent pathogène au taux de trans-

mission. Nous sommes en mesure de dériver la dynamique évolutive de la dis-

tribution des phénotypes et du taux de transmission moyen dans un régime de

sélection faible et de mutation forte (WSSM), dont nous montrons qu’il peut être

assoupli pour permettre des effets mutationnels plus importants. Nous utilisons ce

cadre de modélisation pour étudier la possibilité d’une mutagénèse létale : con-

duire des populations virales à l’extinction par une augmentation du taux de mu-

tation (J. J. Bull, Sanjuan, and Wilke, 2007; Lynch, Bürger, et al., 1993). Cela

augmente l’afflux de mutations létales, que nous interprétons comme un terme de

mortalité supplémentaire, et de mutations non létales qui ont en moyenne un effet

négatif sur le taux de transmission et provoquent donc une charge mutationnelle :

un coût sur la fitness dûe à la variance du taux de transmission dans la population

pathogène. Dans ce travail, nous montrons comment les mutations peuvent conduire

à l’extinction des pathogènes, mais aussi à des pathogènes mieux adaptés. En effet,

contrairement à de nombreuses études sur la mutagenèse létale, nous considérons

également les mutations bénéfiques qui augmentent le taux de transmission. Nous

intégrons également la rétroaction démographique de la dynamique épidémiologique.

Nous montrons que, tout comme la dynamique de la densité des cellules infectées,

la vitesse d’adaptation est aussi conditionnée par la densité des cellules sensibles.
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Cette rétroaction pourrait avoir un effet important dans les scénarios de mutagénèse

létale. Lorsque la population de cellules infectées diminue, la population de cellules

sensibles augmente, ce qui pourrait aider la population pathogène à échapper à

l’extinction.

Evolution jointe du taux de transmission et de la virulence

Dans le premier chapitre, nous avons examiné l’évolution d’un seul caractère quan-

titatif, le taux de transmission, qui est habituellement lié à l’évolution d’un autre

caractère la virulence. Le concept de stratégie évolutivement stable a été utilisé

pour décrire l’état d’équilibre du taux de transmission et de la virulence. Pour la

période transitoire, la dynamique des traits moyens peut être calculée sur la base de

la matrice G de variance-covariance de ces traits avec une équation de Price (Day

and Gandon, 2006; Day, Parsons, et al., 2020). Cependant, cette solution est in-

complète car la dynamique de l’évolution des variances et des covariances n’est pas

explicitement modélisée.

Pour combler cette lacune, nous avons développé une approche par équations

aux dérivées partielles basée sur des travaux antérieurs (Martin and Roques, 2016).

Nous avons étendu cette approche pour modéliser simultanément les distributions

du taux de transmission et de la virulence, en incorporant des optima distincts pour

chacun de ces traits d’histoire de vie des pathogènes. Cela a permis d’introduire

un compromis entre les deux traits, car les phénotypes ne pouvaient pas être si-

multanément proches des deux optima. Grâce à nos dérivations, nous avons obtenu

une équation de Price et des expressions pour la dynamique de la variance et de la

covariance. Ceci nous a permis de comprendre la dynamique d’adaptation conjointe

du taux de transmission et de la virulence.

En outre, notre cadre de modélisation intègre les dynamiques évolutives et épidémiologiques,

en reconnaissant le rôle crucial de la densité des hôtes sensibles dans l’orientation de

l’adaptation vers l’optimisation du taux de transmission ou de la virulence. La pres-

sion sélective sur le taux de transmission est influencée par la densité d’hôtes, tandis

que la pression sélective sur la virulence reste indépendante de ce facteur. La prise

en compte de l’impact de la dynamique épidémiologique est donc particulièrement

importante pour les agents pathogènes à évolution rapide, tels que les virus, pour

lesquels les changements évolutifs et épidémiologiques se produisent à des échelles

de temps similaires.
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Chapitre 2: Evolution de l’échappement à la résistance

des hôtes

Le système expérimentale Streptococcus thermophilus et phage

2972

Ce système modèle offre des possibilités uniques d’explorer les processus microévolutifs

induits par la coévolution antagoniste entre les bactéries et leurs pathogènes viraux.

Contre le phage lytique 2972, S. thermophilus utilise comme seule système de défense

le système CRISPR-Cas. Ce dernier permet à la bactérie d’incorporer des séquences

d’ADN d’environ 30 paires de bases (nommées spacers) à partir du génome du

phage. Pendant l’infection, ces spacers sont utilisés comme guide par le complexe

Cas pour reconnâıtre et cliver le génome du phage à la séquence correspondante,

le protospacer, stoppant ainsi la réplication du virus. Les phages peuvent échapper

à l’immunité CRISPR par des mutations dans les protospacers qui empêchent la

reconnaissance par le complexe Cas. Le séquençage du locus CRISPR des popula-

tions de bactéries et du génome entier des bactériophages permettent de caractériser

pleinement la spécificité du réseau d’infection, sans aucun test phénotypique.

Quelle stratégie deploiement de la résistance chez les hôtes

pour limiter l’émergence d’un pathogène

Dans notre deuxième chapitre, nous nous sommes concentrés sur l’étude de la

probabilité d’émergence de l’agent pathogène en fonction de différentes stratégies

de déploiement de la résistance dans la population hôte. Alors que des études

antérieures ont exploré l’impact de la diversité des hôtes résistants sur la limitation

de la propagation des pathogènes, nous nous sommes concentrés sur la profondeur de

la résistance, en particulier sur le nombre de mutations d’échappement nécessaires

à la réussite de l’infection. Nous avons étudié trois stratégies de déploiement de la

résistance : Stratégie de mélange : la moitié des hôtes résistants sont porteurs de

la résistance A, tandis que l’autre moitié était porteuse de la résistance B, ce qui

nécessite pour le phage une mutation d’échappement différente pour échapper à la

résistance de chacun des hôtes. Stratégie de pyramidage : tous les hôtes sont dou-

blement résistants (AB), ce qui signifie que les agents pathogènes doivent acquérir
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deux mutations d’échappement distinctes pour réussir l’infection. Stratégie de com-

binaison : la moitié des hôtes résistants présentent une résistance simple (A ou B)

et l’autre moitié une résistance double (AB). Nos résultats ont révélé que des inocu-

lums plus importants augmentaient la probabilité d’émergence de deux manières.

Premièrement, ils augmentent le nombre de mutants préexistants dans la popula-

tion. Deuxièmement, ils provoquent une épidémie initiale plus importante parmi les

hôtes sensibles, ce qui permet une plus grande réplication et génère potentiellement

plus de mutants.

D’un point de vue analytique, nous avons prédit que la stratégie de pyramide

était la plus efficace pour empêcher l’émergence du pathogène, car l’acquisition si-

multanée des deux mutations d’échappement représentait un défi important. En

revanche, la stratégie de mélange était plus propice à l’émergence de pathogènes en

raison des avantages immédiats en termes de fitness que procurent les mutations

d’échappement uniques, qui peuvent se propager rapidement dans la population.

La stratégie de combinaison a démontré une efficacité intermédiaire, car l’une des

deux mutations d’échappement (contre des hôtes monorésistants) offrait des avan-

tages considérables en termes d’aptitude et servait de tremplin pour l’acquisition de

l’autre mutation d’échappement afin d’infecter des hôtes doublement résistants.

Nous avons testé ces prédictions avec le système expérimental de Streptococcus

thermophilus résistant à CRISPR et son phage virulent 2972. Nous avons confirmé la

prédiction sur l’effet de la taille de l’inoculum et de la hiérarchie des traitements selon

laquelle la probabilité d’émergence était plus élevée dans le traitement de mélange,

intermédiaire pour l’un des traitements de combinaison et la plus faible dans le

traitement de pyramide. Cependant, nous avons constaté que l’autre traitements

de combinaison n’était pas significativement différent du traitement de mélange en

termes de probabilité d’émergence évolutive. Cela pourrait être dû à une différence

de taux de mutation entre les deux protospacers concernés.

Dynamique de la fréquence des mutations d’échappement

Dans l’annexe B, nous décrivons une expérience d’évolution avec le même système

de bactéries et de phages. Dans ce travail, nous avons voulu suivre la dynamique

évolutive des mutations d’échappement après l’émergence initiale. Nous avons testé

l’effet sur la dynamique évolutive du coefficient de sélection associé aux mutations

d’échappement, que nous avons manipulé par des différences dans les fréquences ini-
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tiales des différents hôtes. Nous avons constaté qu’une fréquence plus élevée d’hôtes

était associée à une fréquence accrue des mutations d’échappement correspondantes

au début de l’expérience, mais que cet effet disparaissait les jours suivants. Nous

avons également testé l’effet du taux de mutation d’échappement en comparant

la fréquence des mutations d’échappement dans deux groupes de protospacers qui

diffèrent par leur taux de mutation. Contrairement à nos attentes, nous n’avons

pas trouvé d’effet significatif du taux de mutation au début de l’expérience, mais

nous avons trouvé un effet dans les jours suivants. En effet, nous nous attendions à

ce que le taux de mutation soit limitant au début de l’expérience, mais qu’une fois

les mutants apparus dans la population, il n’ait plus d’impact. Nous avons observé

que les phages porteurs de multiples mutations d’échappement apparaissaient au

début de l’expérience, mais qu’à la fin de l’expérience, la fréquence des mutations

d’échappement continuait d’augmenter et que nous n’avions pas atteint un point où

tous les phages pouvaient infecter tous les hôtes. Nous pouvons donc comprendre

que le taux de mutation peut jouer un rôle plus tard dans l’expérience, car il peut

accélérer l’acquisition de mutations d’échappement supplémentaires dans les phages

qui infectent déjà d’autres hôtes résistants.

Il est intéressant de noter que nous obtenons des résultats contrastés par rapport

au chapitre 2, où nous prédisions que dans le traitement Mélange, la probabilité

d’émergence est minimisée lorsque fA = 1/2, c’est-à-dire lorsque les deux hôtes

résistants sont présents à des fréquences égales. Dans l’annexe B, nous étudions la

dynamique des fréquences d’échappement après l’émergence. Dans ce cas, nous con-

statons que la fréquence globale des mutations d’échappement est plus élevée lorsque

les hôtes résistants sont en fréquences égales (traitement B). Ainsi, l’hétérogénéité de

la fréquence des hôtes résistants pourrait favoriser l’émergence du pathogène, mais

limiter la propagation ultérieure des mutants d’échappement une fois l’émergence

réalisée.

La somme des différentes fréquences des mutations d’échappement étant rapide-

ment supérieure à un, nous savons que les phages qui échappent à la résistance de

plusieurs hôtes émergent. Cependant, en utilisant une technologie de séquençage à

lecture courte, nous ne récupérons pas les informations de liaison entre ces mutations

d’échappement. Nous ne connaissons donc pas la composition de la population de

phages en termes de génotypes d’échappement et nous ne pouvons pas suivre avec

précision la dynamique de ces phages généralistes. Pour résoudre ce problème, nous

aimerions utiliser une technologie de séquençage à lecture longue pour suivre la
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dynamique évolutive dans le même système de bactéries et de phages résistants à

CRISPR.

Chapitre 3: Coévolution des virus avec leurs hôtes

Compétition entre les hôtes et conséquences sur l’évolution

de la population virale

Dans le troisième chapitre nous avons étudié une expérience similaire, mais cette fois-

ci en permettant la coévolution des bactériophages et des hôtes bactériens. Nous

avons surveillé à la fois l’évolution des mutations d’échappement des phages et le lo-

cus CRISPR des bactéries. Dans tous les traitements, nous avons utilisé un mélange

de 16 souches bactériennes résistantes qui différaient par leur locus CRISPR, et une

souche de type sauvage totalement sensible. Nous avons observé dans un traite-

ment sans phages que la diversité bactérienne était rapidement perdue en raison des

différences de fitness intrinsèques entre les différentes souches. En particulier, nous

avons trouvé deux souches qui étaient plus compétitives et qui ont complètement

envahi la population au cours des 4 jours de l’expérience dans toutes les répétitions.

Avec une telle dynamique répétée de l’hôte en l’absence de phages, nous avons utilisé

notre expérience pour étudier les effets réciproques de la compétition de l’hôte sur

l’adaptation du pathogène et vice versa. Nous avons constaté qu’à travers la sélection

négative dépendante de la fréquence, les phages ont limité la perte de diversité de

l’hôte. Cependant, cette NFDS n’a pas conduit à un scénario de ”Kill-the-winner”

(Thingstad, 2000; Weinbauer, 2004). Ce que nous avons constaté, c’est que les

souches les plus adaptées identifiées dans le contrôle ont d’abord dépassé les autres,

puis la fréquence de la mutation d’échappement correspondante dans la population

de phages a augmenté. Cependant, avant de s’éteindre, ces souches initialement plus

compétitives ont acquis à plusieurs reprises de nouveaux espaceurs de résistance et

ont vu leur fréquence augmenter à nouveau. Ce que nous avons observé concernant

la diversité des hôtes est donc dû au fait que les phages génèrent de la diversité au

niveau du locus CRISPR des souches déjà dominantes, plutôt qu’à une conservation

de la diversité initiale.

Notre système nous permet également de suivre la dynamique de l’aptitude

moyenne de la population de phages, en utilisant à la fois la fréquence des génotypes

de résistance de l’hôte et la fréquence des mutations d’échappement. Nous calcu-
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lons également l’aptitude de la population de phages lorsqu’elle est confrontée à des

hôtes contemporains, ou à des hôtes de périodes passées et futures, imitant ainsi

les expériences de décalage temporel. Nous constatons que les phages sont les plus

aptes face à des hôtes du passé proche, mais que cette aptitude diminue rapide-

ment face à des hôtes du futur. Cela met en évidence l’adaptation des phages pour

échapper aux espaceurs présents dans la population hôte, ainsi que l’adaptation des

hôtes qui acquièrent rapidement de nouveaux espaceurs pour résister aux phages.

Nous trouvons également des preuves de l’adaptation locale des bactériophages en

comparant l’aptitude des populations de phages contre des hôtes du même réplicat

(sympatrie) ou contre des hôtes d’autres réplicats (allopatrie).

Conclusion

Dans cette thèse, nous avons étudié différents aspects de la dynamique de l’adaptation

virale, avec une variété d’approches, à la fois théoriques et expérimentales. Si les

différents chapitres semblent très distincts, comme le modèle théorique sur l’évolution

du taux de transmission et l’expérience de coévolution avec des bactéries résistantes

à CRISPR, dans ces projets, l’évolution des virus est guidée par les mêmes forces

que nous pouvons résumer par l’équation suivante :

∆r = ∆rns +∆rm +∆rec (28)

La dynamique de la fitness malthusienne, ou taux de croissance, est déterminée

par la sélection naturelle (∆rns), par l’effet direct de la mutation (∆rm) et par les

changements dans l’environnement (∆rec).

Nous avons vu comment la sélection naturelle peut conduire l’évolution des car-

actères quantitatifs vers un optimum, ou sélectionner des caractères qualitatifs tels

que la résistance à l’échappement. La sélection naturelle opère sur la variance dans

la population, qui est générée par les mutations. Ces mutations peuvent perme-

ttre d’échapper à la résistance de l’hôte ou d’augmenter le taux de transmission.

Mais elles peuvent également conduire à l’extinction en raison de leur caractère en

moyenne délétère. Enfin, nous avons étudié la manière dont les changements en-

vironnementaux biotiques peuvent influer sur l’évolution virale : par le biais de la

densité des cellules sensibles, des changements dans la fréquence des différents hôtes

et même de l’apparition de nouveaux hôtes résistants dans des scénarios coévolutifs.
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Nous avons mis en évidence, à l’aide d’approches théoriques et expérimentales,

l’interaction entre l’épidémiologie et la dynamique évolutive, en soulignant comment

ces processus peuvent se produire aux mêmes échelles de temps, ce dont nous avons

également été témoins lors de la pandémie de SARS-CoV-2. Cette thèse montre que

tous ces processus doivent être pris en compte conjointement pour mieux comprendre

l’évolution virale et éventuellement concevoir de meilleures approches thérapeutiques

ou politiques de gestion épidémiologiques.

Dynamique évolutive des traits d’histoire de vie et applications à la ges-

tion des épidémies

Dans cette thèse, nous avons modélisé la dynamique évolutive du taux de transmis-

sion (et de la virulence) dans un cadre qui permet une rétroaction entre l’évolution

et la dynamique épidémiologique. Cette rétroaction a été largement ignorée dans

le cadre plus classique de la maximisation de R0. Dans le cadre de la dynamique

adaptative, les rétroactions écologiques sont prises en compte, mais on a supposé que

l’échelle de temps des changements évolutifs était beaucoup plus élevée que celle des

changements écologiques, et ces derniers ont donc été considérés comme immédiats.

En outre, dans ce cadre, les mutations sont considérées comme des événements rares

et ne sont donc pas modélisées explicitement, et la sélection est alimentée par une

variance permanente.

La pandémie de SARS-CoV-2 nous a montré que cette séparation des échelles

de temps n’est pas toujours justifiée. Nous avons observé des changements évolutifs

avec l’apparition et l’augmentation subséquente de la fréquence de plusieurs nou-

veaux variants au cours des premières phases de la pandémie, donc avant qu’un

(quasi-)équilibre épidémiologique n’ait pu être atteint puisque, par exemple, la pro-

portion de personnes immunisées était encore relativement faible. Cela souligne le

fait que les changements épidémiologiques et évolutifs doivent être étudiés ensem-

ble, au moins pour les épidémies de l’ampleur de la pandémie de SARS-CoV-2. Un

autre aspect qui fait défaut dans la compréhension de l’évolution de ce virus est

l’absence de prédiction de l’évolution du taux de transmission ou de la virulence.

En l’absence d’un modèle mutationnel et d’un paysage phénotypique spécifiques, il

s’est avéré difficile de prédire si les variantes initiales seraient associées à un taux de

transmission et/ou à une virulence plus ou moins élevés. Notre approche utilisant

le modèle de Fisher nous permet de présenter de telles prédictions, ce qui pourrait

expliquer pourquoi initialement un virus mal adapté pourrait évoluer pour à la fois

augmenter le taux de transmission et réduire la virulence, avant qu’un compromis
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ne soit atteint qui limite l’optimisation de ces deux traits simultanément.

CRISPR: un modèle expérimentale pour l’épidemiologie

Dans cette thèse, nous avons utilisé le système expérimental de Streptococcus ther-

mophilus et son phage virulent 2972. Avec ce système, nous avons exploré la dy-

namique coévolutive de la résistance et de l’échappement à CRISPR. Ce système est

intéressant en soi car cette bactérie est massivement utilisée dans l’industrie de la fer-

mentation laitière (Samson and Moineau, 2013). Avec la possibilité de plus en plus

envisagée de la thérapie par les phages - qui consiste à traiter les bactéries pathogènes

(multirésistantes aux médicaments) avec un cocktail sélectionné de phages - il de-

vient de plus en plus important d’étudier CRISPR et, plus généralement, la coévolution

bactéries-bactériophages.

Nous pensons également que ce système expérimental est un modèle approprié

pour l’étude de l’évolution de l’échappement des pathogènes à la résistance des

hôtes en général. Les bactéries peuvent être résistantes avec un ou potentielle-

ment plusieurs espaceurs CRISPR et nous connaissons exactement le déterminisme

génétique des mutations d’échappement dans les phages. Nous avons montré com-

ment cela pouvait être utilisé pour explorer l’efficacité de certaines stratégies de

déploiement de la résistance dans la population hôte pour limiter l’émergence du

pathogène. Nous pensons que ces conclusions pourraient s’appliquer à une variété

de systèmes pour lesquels il est difficile d’obtenir des données expérimentales, comme

les systèmes agronomiques ou encore une population humaine vaccinée. Nous mon-

trons également qu’après l’émergence d’un pathogène, nous pouvons suivre la dy-

namique des pathogènes échappés grâce au séquençage tout en contrôlant, dans une

certaine mesure, la composition de la population hôte. Une telle approche pourrait

être utilisée pour étudier les stratégies de déploiement dynamique de la résistance,

comme le déploiement progressif de plusieurs vaccins potentiels, à l’image du scénario

de la pandémie de SARS-CoV-2.
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Most living organisms on the tree of life can be infected by viruses. The ubiq-

uity of viruses is driven by different factors including high mutation rates, high

population sizes and low generation times, which allow for quick adaptation to very

different host species. The dynamics of adaptation - the rate of change of the mean

fitness of the viral population - results from the interplay between multiple evolu-

tionary forces that may promote or hamper viral adaptation. During this PhD we

developed a combination of theoretical and experimental approaches to disentangle

the influence of some of these factors on viral adaptation.

First, we explored the dynamics of viral adaptation to a homogeneous host pop-

ulation. We used Fisher’s Geometric Model of adaptation and studied the joint

evolutionary and epidemiological dynamics of a viral population spreading in a host

population. This modeled allowed us to explore the lethal mutagenesis hypothesis:

is it possible to treat viral infections with mutagenic drugs to increase the mutation

load of the viral population beyond a threshold that may result in the extinction of

the within-host population? We show which parameters affect the critical mutation

rate leading to viral extinction and we show how epidemiology and evolution can

affect the transient within-host dynamics of the viral population when a single virus

life-history trait (transmission rate) is under selection. We extend this modeling

framework to study the joint evolution of transmission and virulence during the

adaptation of an emerging pathogen.
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Second, we studied viral adaptation in heterogeneous host populations when the

virus spreads among a diversified population of resistance host. We studied the

evolutionary emergence of viruses: can viruses avoid extinction by the acquisition

of escape mutations allowing them to infect some of the resistant hosts in the pop-

ulation? We developed a birth-death process model to predict the probability of

evolutionary emergence as a function of the composition of the host population. In

particular, we show how the proportion of multiple resistant hosts can reduce the

risk of pathogen evolutionary emergence. We put some of these predictions to the

test using bacteriophages spreading in bacterial populations. We manipulate the di-

versity of CRISPR immunity in Streptococcus thermophilus bacteria and we confirm

the key influence of multiple resistance on the risk of viral adaptation.

Third, we also studied viral adaptation in time-varying environments where the

host population is allowed to coevolve with the virus. In this experimental project

we monitored the adaptation of bacteriophages as they coevolved with the CRISPR

immunity of S. thermophilus bacteria. We track reciprocal adaptive changes in

which bacteria acquire new layers of resistance (new spacers in the CRISPR array)

and phages acquire new escape mutations in the corresponding protospacers. This

experiment allows us to monitor the dynamics of viral adaptation across time and

space. Interestingly, we find a significant asymmetries in competitive abilities among

different bacterial strain in the absence of phage predation. This asymmetric compe-

tition has dramatic consequences on the maintenance of diversity of host resistance

and on the coevolutionary dynamics with the virus. This thesis demonstrates the

possibility to use experimental evolution with microbial microcosms to explore the

validity of some theoretical predictions on the dynamics of viral adaptation. This

experimental validation is particularly important if one wants to use evolutionary

models to make public-health recommendations.
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Adaptation des pathogènes, CRISPR, Bactériophages

La plupart des organismes vivants peuvent être infectés par des virus. Cette

omniprésence est due à différents facteurs, notamment des taux de mutation élevés,

des populations de grande taille et des temps de génération courts, qui perme-

ttent une adaptation rapide à des espèces hôtes très différentes. La dynamique

de l’adaptation des populations virales résulte de l’interaction entre de multiples

forces évolutives. Au cours de cette thèse, nous avons développé une combinaison

d’approches théoriques et expérimentales pour démêler l’influence de certains de ces

facteurs sur l’adaptation virale.

Tout d’abord, nous avons exploré la dynamique de l’adaptation virale face à une

population hôte homogène. Nous avons utilisé le modèle géométrique d’adaptation

de Fisher et étudié les dynamiques évolutive et épidémiologique d’une population

virale en modèle intra-hôte. Ce modèle permet d’explorer l’hypothèse de la muta-

genèse létale: est-il possible de traiter les infections virales avec des médicaments

mutagènes pour augmenter la charge de mutation au-delà d’un seuil qui peut en-

trâıner l’extinction de la population? Nous montrons quels paramètres affectent le

taux de mutation critique conduisant à l’extinction virale et nous montrons comment

l’épidémiologie et l’évolution peuvent affecter la dynamique transitoire de la popu-

lation virale à l’intérieur de l’hôte lorsqu’un seul trait du cycle de vie du virus (taux

de transmission) est soumis à la sélection. Nous étendons ce cadre de modélisation

à l’étude de l’évolution conjointe de la transmission et de la virulence au cours de

l’adaptation d’un pathogène émergent.
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Deuxièmement, nous avons étudié l’adaptation virale dans des populations d’hôtes

hétérogènes lorsque le virus se propage parmi une population diversifiée d’hôtes

résistants. Nous avons étudié l’émergence évolutive des virus : les virus peuvent-

ils éviter l’extinction par l’acquisition de mutations d’échappement leur permettant

d’infecter certains des hôtes résistants de la population? Nous avons développé

un modèle de naissance/mort pour prédire la probabilité d’émergence évolutive en

fonction de la composition de la population d’hôtes. En particulier, nous montrons

comment la proportion d’hôtes multi-résistants peut réduire le risque d’émergence

évolutive de l’agent pathogène. Nous mettons certaines de ces prédictions à l’épreuve

en utilisant des bactériophages se propageant dans des populations bactériennes.

Nous manipulons la diversité de l’immunité CRISPR dans les bactéries Streptococ-

cus thermophilus et nous confirmons l’influence clé de la résistance multiple sur le

risque d’adaptation virale.

Troisièmement, nous avons également étudié l’adaptation virale dans des envi-

ronnements variables dans le temps où la population hôte est autorisée à coévoluer

avec le virus. Dans ce projet expérimental, nous avons suivi l’adaptation des

bactériophages au fur et à mesure qu’ils évoluaient avec l’immunité CRISPR des

bactéries S. thermophilus. Nous suivons les changements adaptatifs réciproques

dans lesquels les bactéries acquièrent de nouvelles couches de résistance (nouveaux

spacers dans le locus CRISPR) et les phages acquièrent de nouvelles mutations

d’échappement dans les protospacers correspondants. Cette expérience nous per-

met de suivre la dynamique de l’adaptation virale dans le temps et l’espace. Nous

avons noté des asymétries significatives dans les capacités de compétition entre les

différentes souches bactériennes. Cette compétition asymétrique a des conséquences

dramatiques sur le maintien de la diversité de la résistance de l’hôte et sur la dy-

namique coévolutive avec le virus. Cette thèse démontre la possibilité d’utiliser

l’évolution expérimentale en microcosmes microbiens pour explorer la validité de

certaines prédictions théoriques sur la dynamique de l’adaptation virale. Cette vali-

dation expérimentale est particulièrement importante si l’on veut utiliser des modèles

évolutifs pour faire des recommandations de santé publique.
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