
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THESIS 

Presented and publicly supported for obtaining the degree of 

DOCTOR from the UNIVERSITY OF LILLE 

in Acoustics 

DOCTOR from the KU LEUVEN 

in Physics 

by 

Ravi VERMA 

defended on December 20, 2023 

Committee members: 

Supervisors:  Dr Vladislav Aleshin   CNRS researcher, IEMN, Lille 

  Dr. Koen Van Den Abeele  Professor, KU Leuven, Kortrijk 

President:  Dr. Nathalie Favretto-Cristini CNRS Research Director, LMA, Marseille 

Reviewers: Dr. Cédric Payan   Professor, LMA, Marseille 

  Dr. Mourad Bentahar  Associate professor, Le Mans University, Le Mans 

Examiner: Dr. Christ Glorieux  Professor, KU Leuven, Kortrijk  

Invited:  Dr. Olivier Bou Matar  Professor, Central Lille, Lille  

  Dr. Mathias Kersemans  Professor, Ghent University, Ghent 

Thesis title: 

Interaction of ultrasonic waves with frictional defects in 
the context of nondestructive testing of materials 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THÈSE 

Présentée et soutenue publiquement pour l’obtention du grade de 

DOCTEUR DE L’UNIVERSITE DE LILLE 

en Acoustique 

DOCTEUR DE KU LEUVEN 

en Physique 

par 

Ravi VERMA 

soutenue le 20 Décembre, 2023 

Composition du jury: 

Directeur de these:  Dr Vladislav Aleshin   Chercheur CNRS, IEMN, Lille 

Dr. Koen Van Den Abeele  Professeur, KU Leuven, Courtrai 

Présidente:   Dr. Nathalie Favretto-Cristini Directrice de Recherche CNRS, LMA, Marseille 

Rapporteurs:  Dr. Cédric Payan   Professeur, LMA, Marseille 

Dr. Mourad Bentahar  Maître de conférences, Le Mans Université 

Examinateurs:  Dr. Christ Glorieux  Professeur, KU Leuven, Courtrai 

Invité:   Dr. Olivier Bou Matar  Professeur, École Centrale Lille, Lille 

Dr. Mathias Kersemans  Professeur, Université Gent 

Titre de la thèse: 

Interaction des ondes ultrasonores avec les défauts de 
frottement dans le contexte du contrôle non destructif des 

matériaux 



  

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THESIS 

Voorgelegd en openbaar gepresenteerd voor het behalen van de graad  

van DOCTOR van de UNIVERSITEIT VAN LILLE 

in Akoestiek 

DOCTOR KU LEUVEN 

in de Wetenschappen: Natuurkunde 

door 

Ravi VERMA 

verdedigd op 20 december, 2023 

Samenstelling van de jury: 

Directeur onderzoek:  Dr Vladislav Aleshin   Onderzoeker CNRS, IEMN, Lille 

Dr. Koen Van Den Abeele  Gewoon Hoogleraar KU Leuven, Kortrijk 

Voorzitter:   Dr. Nathalie Favretto-Cristini CNRS Onderzoeksdirecteur, LMA, Marseille 

Rapporteurs:  Dr. Cédric Payan   Hoogleraar, LMA, Marseille 

Dr. Mourad Bentahar  Universitair hoofddocent, Universiteit van Le Mans 

Examinatoren:  Dr. Christ Glorieux  Hoogleraar KU Leuven, Kortrijk 

Invité:   Dr. Olivier Bou Matar  Hoogleraar, École Centrale Lille, Lille 

Dr. Mathias Kersemans  Hoogleraar, Universiteit Gent 

Titel proefschrift: 

Interactie van ultrasone golven met wrijvingsdefecten in 
de context van niet-destructief materiaalonderzoek 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Lille 
Doctoral school:  Engineering and Systems Sciences 

Department:  Micro/nano/biosystems, Waves, and Microfluidics Department  

Research unit:  Institute of Electronics Microelectronics and Nanotechnology (IEMN – UMR 8520) 

59650 Villeneuve-d'Ascq, France 

KU Leuven (Katholieke Universiteit Leuven) 
Doctoral school:  Arenberg Doctoral School 

Department:  Department of physics 

Research unit:  Wave Propagation and Signal Processing Research Group KU Leuven Kulak 

8500 Kortrijk, Belgium 

IEMN – CENTRAL LABORATORY OF THE INSTITUTE 

Cité Scientifique 

Avenue Henri Poincaré 

CS 60069 

59 652 Villeneuve d’Ascq Cedex, France 

Initiatives–Science Innovation Territories Economy (I-SITE) 

University of Lille North-Europe (ULNE) 

National Center for Scientific Research (Centre national de la recherche scientifique) - CNRS 



  

 

 

 

 

 

 

 

 

 

 

In memory of my grandmother "अ�ा." 

To my beloved parents and my uncle 

 

 

 

 

 

 

 

 

 



  



 i 

Acknowledgements 

This endeavor has become significantly more achievable due to the invaluable contributions 

of two remarkable individuals: Dr. Vladislav Aleshin and Prof. Dr. Koen Van Den Abeele. 

Their exceptional guidance and unwavering encouragement have left an indelible mark on 

this undertaking, and for their exceptional contributions, I extend my profound gratitude, 

which knows no bounds. 

I extend my profound appreciation to the National Center for Scientific Research (Centre 

national de la recherche scientifique, CNRS) and the governing bodies of Initiatives for 

Science, Innovation, Territories, and Economy (I-SITE) for their generous financial support, 

which sustained my entire doctoral journey. 

I reserve a special place of gratitude for the dedicated members of the IEMN laboratory for 

their steadfast assistance and support. I must acknowledge my exceptional colleagues, with 

whom I have cherished camaraderie, engaged in enlightening conversations, and shared 

hearty laughter. Our profound discussions, dedicated to tackling global challenges, have 

enriched my understanding in countless ways. My heart brims with profound gratitude 

towards cherished friends scattered across the globe, whose love and blessings have been a 

constant source of solace. I deeply value the friendships that blossomed with my colleagues 

from the IEMN laboratory, particularly Samir Al Mohammad and Ravindra Chutani, as we 

shared delightful moments over chai, lunch, and festive celebrations. Other colleagues, 

namely Andrea Cannizzo, Claudia Binetti, Jon Canosa Diaz, and Pinar Eribol, also left a 

lasting impact on my life by becoming friends. 

I wish to express my deep appreciation to Dr. Pushpendra Kumar at Graphic Era (deemed to 

be university), Dehradun, India, and Dr. Subhash Singh at the National Institute of 

Technology Jamshedpur, India, for their invaluable suggestions and motivating guidance. 

Friends from Lille city had a positive influence on my journey, standing by me in every good 

phase. I want to express my special thanks to Nagesh N. Prasad, Laila Ali, Gaurav 

Maheshwari, Rahul Kumar, Prakrit Saxena, Sahil Gehlawat, Ayush K. Singh, Chandan 

Kumar, and Anil P. Mohanan. I also had the pleasure of meeting a lovely couple who turned 

out to be my local guardians, named Laurent Quentin and Moy Lim. 

Lastly, I extend my deepest gratitude to my family, who have been my unwavering source of 

support, boundless love, and enduring affection. A special acknowledgment goes to my sister, 

Poonam Verma, a constant pillar of support in all my decisions. Greetings to my beloved 

people, Babita Kukreti and Rakhi Kapruwan-Shiv Kapruwan – you transcend friendship; you 



 ii 

are my chosen family! The biggest support came from my brother-in-law, Tarun Garg, and 

my childhood friend, Sachin Sharma, for their invaluable support through their presence, 

filling the gap in my absence with my parents. From the very core of my being, I appreciate 

their role as an unending wellspring of inspiration, courage, and continuity. Every family 

member has played a significant role in shaping my journey, and I am grateful for their 

contributions. As a final note, in the face of life's trials, solace found its haven in the 

remarkable Monika, the lady who holds the key to my heart. 



 iii 

Abstract 

This thesis concerns theoretical concepts, models, and experiments for elastic wave 

propagation and vibrations in solids containing internal contacts (cracks, delaminations, etc.) 

having frictional nature. The study is oriented to nondestructive testing and therefore focuses 

on the case where the material contains few cracks of known configuration, in contrast to 

microcracked solids in which a statistical ensemble of a large number of internal contacts is 

present. 

An essential part of the work is related to a development of a method of numerical acoustics 

capable of imitating elastic waves in an environment containing frictional cracks/contacts. 

These planar defects represent a sort of inner boundaries at which appropriate boundary 

conditions should be set. Depending on modeling hypotheses, crack surfaces can be 

considered as plane or rough. Here we elaborate in detail arguments showing that roughness, 

although introducing additional complexification, finally results in a more compact and 

elegant description in comparison to plane interfaces. In particular, contact of isotropically 

rough surfaces can be effectively represented as contact between two axisymmetric bodies. 

The latter situation closely resembles Cattaneo-Mindlin (or Hertz-Mindlin) mechanics in 

which two spheres are mechanically excited with certain normal and tangential forces. 

In the purpose of establishing boundary conditions at crack faces, the Cattaneo-Mindlin 

solution has been recently revisited to take into account non-spherical (but axisymmetric 

contact shapes) and excitation with non-constant but arbitrarily varying in time oblique action. 

The formulated load-displacement relationship for equivalent axisymmetric bodies is also 

approximately valid for rough surfaces and represents a sought-for boundary condition. 

Another component of the numerical acoustics model we present here is a standard finite 

element description for elastic waves in solid materials (solid mechanics unit in commercial 

FEM packages). Technical efforts have been made to integrate a user-defined contact model 

as a boundary condition into the solid mechanics unit. As a result, a complete model has been 

obtained that incorporates wave-induced contact frictional interactions described starting from 

first principles of contact mechanics. 

An essential progress in comparison to previous works is related to application of the 

elaborated model to a case that corresponds to a known technique of nonlinear acoustic 

nondestructive testing. The chosen technique is based on excitation of a sample with a 

harmonic wave that, after completion of a transient regime, results in a purely harmonic 

response if the sample is intact, whereas the response of a damaged one presents 
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anharmonicity. The generated harmonics form their own stationary wave pattern that can have 

a pronounced maximum around the defect. In practice, surface signal measurements are done 

via laser vibrometry; our modeling therefore represents an attempt to imitate the laser 

vibrometry NDT experiment in geometrically simplified conditions, but fully adhering to its 

concept. 

The simplified geometry is chosen in the sake of reducing the computational effort. The most 

important assumption is a 2D geometry that immediately disables a quantitative comparison 

to experiment. Other simplifications are discussed below in greater detail. Keeping, however, 

the general methodology close to experimental principles, we generate a large number of 

synthetic nonlinear images of an isolated crack immersed into a fragment of a solid plate. We 

analyze in detail the influence of geometric and physical parameters of the system in the cases 

of single- and dual-frequency excitations. Depending on these parameters, the result of 

imaging procedure can range from complete success (the crack position and extent is clearly 

identified) to total failure (not crack is visible in an image consisting of a sequence of maxima 

at wrong positions). Successes and failures are consequences of a complex pattern of the 

nonlinear stationary waves emitted by the crack being an object with highly nonlinear 

mechanical properties. 

Finally, we focus on the case close to real experimental conditions in terms of the sample 

geometry and boundary conditions selected. A preliminary qualitative theory and experiment 

comparison is presented. 

Generally, the results of this thesis could be of interest for researchers involved in nonlinear 

acoustic NDT experiments as well as for those who look for applications of modern semi-

analytical contact models based on Cattaneo-Mindlin principles. 
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Résumé 

Cette thèse porte sur les concepts théoriques, les modèles et les expériences concernant la 

propagation des ondes élastiques et les vibrations dans les solides contenant des contacts 

internes (fissures, délaminages, etc.) ayant une nature frictionnelle. L'étude est orientée vers le 

contrôle non destructif et se concentre donc sur le cas où le matériau contient peu de fissures 

de configuration connue, contrairement aux solides microfissurés dans lesquels un ensemble 

statistique d'un grand nombre de contacts internes est présent. 

Une partie essentielle du travail est liée au développement d'une méthode d'acoustique 

numérique capable d'imiter les ondes élastiques dans un environnement contenant des 

fissures/contacts à frottement. Ces défauts planaires représentent une sorte de frontière 

intérieure à laquelle il convient de fixer des conditions aux limites appropriées. Selon les 

hypothèses de modélisation, les surfaces des fissures peuvent être considérées comme planes 

ou rugueuses. Nous développons ici en détail les arguments montrant que la rugosité, bien 

qu'elle introduise une complexification supplémentaire, aboutit finalement à une description 

plus élégante du contact par rapport aux interfaces planes. En particulier, le contact de 

surfaces rugueuses isotropes peut être représenté efficacement comme un contact entre deux 

corps axisymétriques. Cette dernière situation ressemble beaucoup à la mécanique de 

Cattaneo-Mindlin (ou Hertz-Mindlin) dans laquelle deux sphères sont excitées 

mécaniquement par une force oblique. 

Dans le but d'établir des conditions aux limites aux faces des fissures, la solution de Cattaneo-

Mindlin a été récemment revisitée pour prendre en compte les formes de contact non 

sphériques (mais axisymétriques) et l'excitation avec une action oblique non constante mais 

variant arbitrairement dans le temps. La relation charge-déplacement formulée pour des corps 

axisymétriques équivalents est également approximativement valable pour les surfaces 

rugueuses et représente une condition aux limites recherchée. 

Une autre composante du modèle acoustique numérique que nous présentons ici est une 

description standard par éléments finis des ondes élastiques dans les matériaux solides (unité 

de mécanique des solides dans les logiciels FEM commercials). Des efforts techniques ont été 

faits pour intégrer un modèle de contact défini par l'utilisateur comme condition aux limites 

dans l'unité de mécanique des solides. On a ainsi obtenu un modèle complet qui incorpore les 

interactions de frottement de contact induites par les ondes et décrites à partir des premiers 

principes de la mécanique des contacts. 
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Un progrès essentiel par rapport aux travaux précédents est lié à l'application du modèle 

élaboré à un cas qui correspond à une technique connue d'essais non destructifs acoustiques 

non linéaires. La technique choisie est basée sur l'excitation d'un échantillon avec une onde 

harmonique qui, après l'achèvement d'un régime transitoire, donne une réponse purement 

harmonique si l'échantillon est intact, alors que la réponse d'un échantillon endommagé 

présentera une anharmonicité. Les harmoniques générées forment leur propre modèle d'onde 

stationnaire qui peut avoir un maximum prononcé autour du défaut. Dans la pratique, les 

mesures de signaux de surface sont effectuées par vibrométrie laser ; notre modélisation 

représente donc une tentative d'imiter l'expérience de contrôle non destructif par vibrométrie 

laser dans des conditions géométriques simplifiées, mais en adhérant pleinement à son 

idéologie. 

Les conditions simplifiées sont prises de manière à réduire le temps de calcul. L'hypothèse la 

plus importante est une géométrie en 2D qui empêche immédiatement toute comparaison 

quantitative avec l'expérience. D'autres simplifications sont discutées plus en détail ci-

dessous. Tout en conservant la méthodologie générale proche des principes expérimentaux, 

nous générons un grand nombre d'images synthétiques non linéaires d'une fissure isolée 

immergée dans un fragment d'une plaque solide. Nous analysons en détail l'influence des 

paramètres géométriques et physiques du système dans les cas d'excitations à une ou deux 

fréquences. Parfois, nous voyons clairement la fissure dans ces images et parfois non ; nous 

avons essayé de fournir une interopération adéquate de ces situations qui découle du fait que 

le modèle d'onde stationnaire ainsi qu'un diagramme de rayonnement non linéaire d'une 

fissure peuvent avoir une structure complexe. 

Enfin, nous nous concentrons sur le cas le plus proche des conditions expérimentales réelles 

en termes de géométrie de l'échantillon et de conditions aux limites sélectionnées. Une 

comparaison préliminaire entre la théorie et l'expérience est présentée. 

D'une manière générale, les résultats de cette thèse pourraient intéresser les chercheurs 

impliqués dans les expériences de CND acoustique non linéaire ainsi que ceux qui 

recherchent des applications de modèles de contact semi-analytiques modernes basés sur les 

principes de Cattaneo-Mindlin. 
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Samenvatting  

Dit proefschrift heeft betrekking op theoretische concepten, modellen en experimenten voor 

elastische golfvoortplanting en trillingen in vaste stoffen die interne contacten (scheuren, 

delaminaties, enz.) bevatten, gekenmerkt door wrijving. De studie focust zich op niet-

destructief onderzoek en richt zich daarom op het geval waarin het materiaal slechts enkele 

scheuren bevat in een bekende configuratie. Dit in tegenstelling tot microscheuren in vaste 

stoffen waarin een statistisch ensemble van een groot aantal interne contacten aanwezig is.  

Een essentieel deel van het werk is gerelateerd aan de ontwikkeling van een numerieke 

akoestisch model dat in staat is om elastische golven na te bootsen in een omgeving die 

wrijvingsscheuren/contacten bevat. Deze vlakke defecten vertegenwoordigen een soort 

binnengrenzen waarop de juiste randvoorwaarden moeten worden ingesteld. Afhankelijk van 

de modelleer hypothesen kunnen scheuroppervlakken als vlak of ruw worden beschouwd. 

Hier werken we in detail argumenten uit die aantonen dat ruwheid, hoewel het extra 

complexificatie introduceert, uiteindelijk resulteert in een compactere en elegantere 

beschrijving in vergelijking met vlakke interfaces. In het bijzonder kan contact van isotrope 

ruwe oppervlakken effectief worden voorgesteld als contact tussen twee axisymmetrische 

lichamen. Deze laatste situatie lijkt sterk op de Cattaneo-Mindlin (of Hertz-Mindlin) 

mechanica waarin twee bollen mechanisch worden onderworpen aan bepaalde normaal- en 

tangentiële krachten.  

Voor het vaststellen van randvoorwaarden bij scheurvlakken is de Cattaneo-Mindlin 

oplossing onlangs herzien om rekening te houden met niet-sferische (maar asymmetrische 

contactvormen) en excitatie met niet-constante maar willekeurig in tijd variërende schuine 

actie. De geformuleerde belasting-verplaatsingsrelatie voor equivalente axisymmetrische 

lichamen is ook bij benadering geldig voor ruwe oppervlakken en vertegenwoordigt de 

gezochte randvoorwaarde.  

Een andere component van het numerieke akoestische model dat we hier presenteren is een 

standaard eindige-elementenbeschrijving voor elastische golven in vaste materialen (vaste-

mechanica-eenheid in commerciële FEM-pakketten). Er zijn technische inspanningen 

geleverd om een door de gebruiker gedefinieerd contactmodel als randvoorwaarde te 

integreren in de vaste-stof-mechanica module. Hierdoor is een compleet model verkregen dat 

golfgeïnduceerde contactwrijvingsinteracties omvat die beschreven zijn vanuit de eerste 

principes van contactmechanica. 
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Een essentiële vooruitgang in vergelijking met eerdere werken is de toepassing van het 

uitgewerkte model op een geval dat overeenkomt met een bekende techniek vanuit niet-lineair 

akoestisch niet-destructief onderzoek. De gekozen techniek is gebaseerd op excitatie van een 

proefstuk met een harmonische golf die, na voltooiing van een transiënt regime, resulteert in 

een zuiver harmonische respons als het proefstuk intact is, terwijl de respons van een 

beschadigd proefstuk een inharmoniciteit vertoont. De gegenereerde harmonieken vormen 

hun eigen stationaire golfpatroon dat een uitgesproken maximum kan hebben rond het defect. 

In de praktijk worden oppervlaktesignaalmetingen gedaan met behulp van laservibrometrie; 

onze modellering is daarom een poging om het NDT-experiment met laservibrometrie na te 

bootsen in geometrisch vereenvoudigde omstandigheden, maar volledig volgens hetzelfde 

concept.  

De vereenvoudigde geometrie is gekozen om de computationele complexiteit te verminderen. 

De belangrijkste aanname is een 2D-geometrie die meteen een kwantitatieve vergelijking met 

het experiment onmogelijk maakt. Andere vereenvoudigingen worden hieronder in meer 

detail besproken. We houden de algemene methodologie echter dicht bij de experimentele 

principes en genereren een groot aantal synthetische niet-lineaire beelden van een geïsoleerde 

scheur, ingebed in een fragment van een massieve plaat. We analyseren in detail de invloed 

van geometrische en fysische parameters van het systeem in het geval van excitaties met één 

of twee frequenties. Afhankelijk van deze parameters kan het resultaat van de 

beeldvormingsprocedure variëren van volledig succes (de positie en omvang van de scheur 

wordt duidelijk geïdentificeerd) tot totale mislukking (er is geen scheur zichtbaar in een beeld 

dat bestaat uit een opeenvolging van maxima op verkeerde posities). Successen en 

mislukkingen zijn het gevolg van een complex patroon van de niet-lineaire stationaire golven 

die worden uitgezonden door de scheur.  

Tot slot richten we ons op een concreet voorbeeld dat dicht bij de echte experimentele 

omstandigheden ligt wat betreft de geometrie van het monster en de geselecteerde 

randvoorwaarden. Er wordt een eerste kwalitatieve vergelijking tussen theorie en experiment 

gepresenteerd.  

In het algemeen kunnen de resultaten van dit proefschrift interessant zijn voor onderzoekers 

die betrokken zijn bij niet-lineaire akoestisch gebaseerde niet-destructieve 

onderzoeksexperimenten en voor hen die zoeken naar toepassingen van moderne semi-

analytische contactmodellen gebaseerd op Cattaneo-Mindlin principes. 
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Introduction and objectives 

Context 

Only a tiny part of the materials produced, treated or used by mankind are free from any type 

of damage, defects, or internal structural features. Defects are often categorized into three 

types: 1D dislocations (e.g. irregularities, impurities, etc.), 2D inner contacts (e.g. cracks, 

delaminations, etc.) and 3D defects (e.g. pores, voids, etc.). All these defects particularly 

influence mechanical and physical properties of a material. However, inner contacts impact 

materials performance in the most crucial way. The reason lies in the inherent instability of 

the process of cracking, which can be illustrated using the following considerations. Suppose 

that an elastic continuum contains a circular crack of zero thickness, and that a uniform tensile 

stress σ is applied to each face of the crack. Then the critical stress σ0 at which the crack starts 

growing equals 

( )0 22 1

E

R

πσ
ν

Ω=
−

, 

[Sne-51] where Ω  [J/m2] is the surface energy (i.e. the energy needed to form a unit area of 

free surface), and E and ν are respectively Young's modulus and Poisson's ratio of the 

material. The instability effect is explained by the inverse proportionality to the crack radius 

R. Indeed, if the applied stress reaches σ0, the crack radius increases, and the new critical 

stress becomes even less than the applied one, so that the cracking process continues until the 

whole sample fails. For this reason, it is extremely important to develop realistic models that 

allow the mechanical behavior of solids with inner contacts to be accurately described. 

The presence of internal contacts in a material is the reason for contact acoustic nonlinearity 

that appears at both normal and tangential (relative to the crack faces) loading of the crack. 

During normal straining the elastic reaction of an open and closed crack is different. The 

tangential loading engenders friction and associated hysteretic effects. In addition, friction 

described via the Coulomb friction law [Des-15] couples normal and tangential behavior. A 

successful theory for contact acoustic nonlinearity should appropriately deal with those issues. 

Theoretical and numerical modeling approaches for elasticity in materials with inner contacts 

address at least two situations: distributed damage or localized damage. In the former case, 

the solid contains a large number of cracks whose exact positions are not known and not 

important. Typical examples of this case are geomaterials or construction materials consisting 

of consolidated grains with imperfect bounds between them, or fatigued metals. In this case, 
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contact nonlinearity shows up as nonlinear or, frequently, hysteretic stress-strain relationships 

that results from a cumulative influence of the crack ensemble or crack network. Materials 

belonging to the second case contain only a few cracks whose positions are important. Since 

the inner contacts represent unique or rare "events" in the material, a statistical analysis is not 

suitable in this situation. The response strongly depends on the geometry and locations of the 

cracks so that numerical models of finite element type (or similar based on a detailed meshing 

of the sample) are most appropriate. An inner contact constitutes an additional boundary at 

which proper boundary conditions should be defined. In the theoretical part of this thesis, 

issues related to a friction-induced load-displacement relationship at crack faces are 

considered in detail. 

A standard Finite Element Method (FEM) description together with the user-defined 

boundary conditions at inner contacts provides a complete model for elastic wave propagation 

in a material with frictional defects. In general, the use of such a model is beneficial from 

several points. First of all, modeling grants full digital transparency and an access to all 

calculated wave field characteristics, which is not the case in real experiments, when only 

restrained amount of data is available. A much more promising advance could be related to 

the use of the validated model not for imitating real experiments, but for improving their 

precision. Indeed, model crack parameters can be varied around their experimentally 

established values to quantitatively match the experimental response. Then it could be 

expected that the fitted crack parameters are closer to reality than just visualization data. 

In any case, the known link between the reason of nonlinearity (damage) and its measurable 

manifestations can greatly reduce the uncertainty in data interpretation. In practice, 

researchers tend to report “cleaner” images with no parasite peaks or distortions considering 

then as useless side effects. At the same time, if those imperfections are of physical nature and 

are reproducible both in modeling and experiments, they can become a valuable source of 

information. A successfully validated model can help deal with such issues on the regular 

basis. 

The above arguments are valid only in the case where the model is proven by experiments. 

The validation problem is extremely complex since in reality there exist a multitude of 

factors, such as crack shape or inner roughness features, possible prestress, etc, which are 

hard to take into account. In the present study we make a first step towards this objective. 

In general, it can be stated that the context of this study is related to frictional contact 

mechanics, numerical acoustics, and nonlinear nondestructive testing by ultrasound. 
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Objectives 

Summarizing these desired requirements we formulate the following objectives of the present 

study: 

Theoretical: elaborate a numerical model or, eventually, numerical tool for modeling wave 

propagation in materials containing defects 

• taking into account real complex geometries of samples 

• based on physically plausible contact models including roughness and friction 

Experimental: use an existing nonlinear acoustical NDT technique (laser vibrometry) 

• for generating nonlinear images of delamination in a composite plate 

• to assess damage geometries that can and cannot be seen via the chosen experimental 

technique 

Numerical: 

• perform a series of simulations for sample geometries gradually changing from 

idealized to more and more realistic 

• establish qualitative theory and experiment agreement 

• identify essential features in the simulated data that can improve the detection of defects 

Practical: 

• contribute to the creation of computer-assisted nonlinear NDT having an imaging 

potential stronger than pure experimental methods 

Dissertation structure 

The thesis contains four Chapters. In Chapter I, we briefly describe existing nonlinear 

acoustic imaging methods and select one of them especially suitable for comparison with 

modeling. It is concluded that a method based on formation of nonlinear stationary1 waves 

does not require fine focusing of acoustic energy and therefore an attempt to imitate it 

numerically is associated with coarser meshing and lower computational expenses. In a 

similar way, we review and classify known modeling approaches to wave propagation in 

                                                 

1 Here stationary wave is a propagative wave with amplitude independent of time. It can exist in a sample with 

low reflective boundaries, in contrast to domains with usual boundary conditions of the first, second or third 

kind, in which standing waves are formed. For the details see Chapter III. 
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materials with frictional cracks and demonstrate that quite a general physics-based method is 

necessary that would describe crack-wave interaction for a variety of geometries. 

In Chapter II, we utilize the previously developed MMD-FEM code from the IEMN (France) 

and the Wave Propagation Research Group (KU Leuven, Belgium) to simulate acoustic waves 

in materials with frictional contacts. We formulate the Method of Memory Diagrams (MMD) 

that originates from Cattaneo-Mindlin mechanics and provides a boundary condition linking 

contact loads and displacements at inner interfaces (cracks). It is essential that cracks are 

considered to have deformable micro-geometry (roughness) instead of having smooth 

surfaces. This feature results in a purely local description for the boundary condition at a 

single point without a necessity to satisfy additional conditions in a neighborhood, as it occurs 

with more traditional account for friction. We also show how to incorporate the MMD into a 

standard software package (COMSOL) based on the Finite Element Method (FEM). 

In Chapter III we apply the elaborated MMD-FEM code for description of wave propagation 

in idealized cases requiring relatively low computational effort. A fragment of a plate with 

low reflective boundary conditions at the left and right edges is considered in which a 

relatively large crack (or parallel to surface delamination) is positioned close to the surface, 

whereas the sample is excited by a transducer located not far from the crack. The plate 

fragment has comparable vertical and horizontal dimensions. We generate a large number of 

synthetic nonlinear images based on generated higher harmonics and on frequency mixing. 

Finally, in Chapter IV we attempt to compare modeling and experiments in a qualitative 

manner. Firstly, we briefly describe an existing nonlinear acoustic experiment with the use of 

laser vibrometry for measuring surface wave displacements (particle velocities). Then, in a 

subsequent series of numerical simulations, we gradually change the modeling geometry 

trying to better imitate the real one. In more realistic cases, the plate is thinner, the distance 

between the crack and the transducer is higher, etc. Finally, we perform modeling with 

geometric parameters indeed close to the experiment, but in a two-dimensional case instead of 

3D, and demonstrate that synthetic nonlinear images are qualitatively similar to real ones. 

Frequently used abbreviations, and variables 

Abbreviations 

NDT  nondestructive testing 

MMD   method of memory diagrams 

FEM  finite element method 
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MMD-FEM method of memory diagrams integrated into a finite element environment 

LDR  local defect resonance 

CFRP  carbon fiber reinforced polymer 

SLDV   scanning laser Doppler vibrometer or vibrometry 

1D, 2D, 3D one, two, and three dimensions or dimensional 

rms   root mean square 

Variables 

Here we include only variables that are involved in the original derivations. There are also 

some single formulas in the manuscript cited once and not related to the original model 

directly. All original notations are unique, whereas in single formulas used once the same 

notation can have a different meaning. For instance, in the original model, there is a unique 

parameter C that determines stiffness of the normal load-displacement curve for a crack and 

depends on composite roughness of crack faces. The same notation C independently appears 

in Eqs. 6 and 8 of Chapter I where it has two different meanings. These notations hold only 

locally. The list of unique notations valid for the entire manuscript is given below together 

with units of measurements. 

ρ  density of sample’s material, [kg/m3] 

E  Young’s modulus of sample’s material, [Pa] 

ν  Poisson’s ratio of sample’s material, dimensionless 

f  excitation frequency, [Hz] 

A  excitation amplitude, [m] 

Texc  excitation duration, [s] 

a  normal contact displacement, [m] 

b  tangential contact displacement, [m] 

µ   coefficient of friction of sample’s material, dimensionless 

ux  wave x-displacement, [m] 

uy  wave y-displacement, [m] 

Nt  number of time discretization points, dimensionless 

Nx  number of mesh elements per smallest structure size, dimensionless 

σxx  xx stress component in the convergence test, [Pa] 

σxy  xy stress component in the convergence test, [Pa] 
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N  normal load, [N] for axisymmetric bodies and [Pa] for rough surface fragments 

T  tangential load, [N] for axisymmetric bodies and [Pa] for rough surface 

fragments 

C  stiffness of the normal load-displacement curve depending on inner roughness, 

[Pa1/2 m-1] 

2w  excitation zone (transducer) length, [m] 

x0  excitation zone center x-coordinate, [m] 

b
η   bulk viscosity of sample’s material 

v
η   shear viscosity of sample’s material 

K  bulk modulus of sample’s material, [Pa] 

G  shear modulus of sample’s material, [Pa] 

cra
ε   mean first strain invariant near crack, dimensionless 

exi
ε   mean first strain invariant near transducer, dimensionless 

x
D   deviation of first and last fragment of the stationary tail of ux time records   

y
D   deviation of first and last fragment of the stationary tail of uy time records   

,
first

x yu   ux and uy wave displacements for the first fragment of the stationary tail, [m] 

,
last

x yu   ux and uy wave displacements for the last fragment of the stationary tail, [m] 

,
n

x yA   n-th harmonic amplitude of ux and uy of the measured signal, [m] 

,x y
I   nonlinear criterion (x and y-direction), dimensionless 

,
NL

x yI  nonlinear criterion based on nonlinear frequency mixing (x and y-direction), 

dimensionless 

,
LDR

x yI  nonlinear criterion based on nonlinear resonance (x and y-direction), 

dimensionless 

,x y
C   contrast (x and y-direction), dimensionless 

cr
C   crack center x-coordinate, [m] 

cr
L   crack length, [m] 

fI  first frequency for the case of frequency mixing, [Hz] 

fII  second frequency for the case of frequency mixing, [Hz] 
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AI  first excitation amplitude for the case of frequency mixing, [m] 

AII  second excitation amplitude for the case of frequency mixing, [m] 

fB  base frequency for the case of frequency mixing, [Hz] 

,
I

x yA   x and y amplitudes of the measured signal harmonics at first frequency fI, [m] 

,
II

x yA   x and y amplitudes of the measured signal harmonics at second frequency fII, 

[m] 

Np  number of quasi-periods considered in the stationary tail of signal, 

dimensionless 

fm  frequency number m in Fourier spectrum, [Hz] 

τ  shear stress, [Pa] 

σ  normal stress, [Pa] 

R  radius of spheres in the Cattaneo-Mindlin problem, [m] 

( )
*

22 1

E
E

ν
=

−
 

( )
2

2 1

νθ
ν

−=
−

 

c  contact zone radius, [m] 

s  stick zone radius, [m] 

( )w ρ    tangential displacement field, [m] 

( )τ ρ   shear stress field, [Pa] 

( ),u c ρ  normal displacement field, [m] 

( ),cσ ρ  normal stress field, [Pa] 

( )D ρ   memory function, dimensionless 

Q   reduced normal force, [N] for axisymmetric bodies and [Pa] for rough surface 

fragments 

q  reduced normal displacement, [m] 

0b   tangential displacement due total sliding, [m] 

bɶ   tangential displacement due to bodies’ shearing, [m] 

l
�

  unit vector in the direction of slip 
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z(ρ)  gap distribution characterizing axisymmetric contact shapes, [m] 

An  nominal contact area, [m2] 

Ag  geometric contact area, [m2] 

h′   rms of the random surface slope, dimensionless 

k  tangent to the random gap distribution ( )zϕ , [m-2] 
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Chapter I. Contact acoustic nonlinearity and 

nondestructive testing 

This Chapter briefly summarizes the available literature on contact acoustic nonlinearity in 

the context of nondestructive testing. The presented review supports the idea that despite of 

existence of a number of particular models (frequently phenomenological or simplified e.g. 

1D), an adequate model usable for the NDT purposes should account for a realistic contact 

with friction mechanically activated with an oblique action variable in time, in a way similar 

to the effect of an acoustic wave. 

1. Geometric, material and contact nonlinearities 

Section 1 offers a succinct analysis of mechanical nonlinearity, encompassing geometric, 

material, and contact aspects. Geometric nonlinearity pertains to changes in the distance 

between two points under external loads. Material nonlinearity arises from discord in 

interatomic potentials, while contact nonlinearity manifests in materials with internal contacts, 

like cracks, delaminations, and imperfect intergranular boundaries. 

1.1. Geometric nonlinearity 

Geometric nonlinearity occurs when trying to connect changes in distance between two points 

in a strained material with the displacement vector [Lan-93]. This connection is expressed by 

Eq. (1): 

2 2' 2
ik i k

dl dl dx dxε= +  ,     (1) 

where dl  and 'dl  are distances between close points in unstrained and strained bodies, 

respectively, ( 1,2,3)
i

x i =  are Cartesian coordinates, and ikε  is the strain tensor calculated as 

1

2
j ji k

ik

k i i k

u uu u

x x x x
ε

∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ 
,     (2) 

through the displacement vector iu . In the above formulas, the implicit summation is used. 

In mechanics and acoustics, strains are typically small, meaning that alterations in the sample 

size are much less significant than the size itself. This means that all derivatives of the kind 

/
i k

u x∂ ∂  are much smaller than 1. Hence, the product of the derivatives in Eq. (2) can be 

neglected and 
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1

2
i k

ik

k i

u u

x x
ε

 ∂ ∂= + ∂ ∂ 
.      (3) 

The term we're ignoring deals with geometric nonlinearity. Considering it leads to more 

complex equations in solid mechanics, as explained by [Gad-84]. However, accounting for 

geometric nonlinearity is only necessary for certain systems, like bending thin bars or plates 

and cable-stayed structures, which we won't be covering in this thesis. 

1.2. Material nonlinearity 

The source of material nonlinearity is linked to the inherent unharmonicity in the potential 

energy of interactions among atoms comprising the lattice. In an ideally linear material, the 

interatomic potential would exhibit a parabolic (harmonic) profile based on the distance 

between the atoms. A more practical representation is the Lennard-Jones potential [Len-24], 

which characterizes the interaction between a pair of neutral atoms or molecules: 

12 6

0( ) 2m m

LJ

r r
U r U

r r

    = −    
     

,     (4) 

depicted in Fig. 1. Here, 0U  represents the depth of the potential well, and mr  is the distance 

at which the potential reaches its minimum. It is straightforward to demonstrate, via Taylor 

expansion of ( )
LJ

U r  around rm that this potential exhibits a weak inharnonicity, becoming 

more significant as r deviates considerably from the rest radius mr : 

( )
2 3 4

0 1 36 252 1113m m m

LJ

r r r r r r
U r U

r r r

 − − −     ≈ − + − +      
       

.   (5) 

Here the value 2(( ) / )
m

r r r−  is related to strain ε in the simple 1D case, while the potential 

( )
LJ

U r  contributes directly to the strain energy U of a unit volume: 

( ) 2 3 4
0 1 36 252 1113U Uε ε ε ε − + − + ∼ .   (6) 

Now it evident that the stress /dU dσ ε=  becomes a nonlinear function of strain ε because of 

inclusion of the term with powers higher than 2 in Eq. (6). 

A more general form of the nonlinear stress-strain relationship corresponding to the material 

nonlinearity is easy to obtain [Lan-93] in the following way. The expression for the elastic 

energy  should not depend on the choice of the reference frame, therefore it must contain 

tensor invariants only. Symmetric 2-nd rank tensors have only two quadratic ( 2
ik

ε  and 2
ll

ε ) and 
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three cubic ( 3
ll

ε , 2
ll ik

ε ε ,
ik il kl

ε ε ε ) invariants in which the sum over indexes is meant. Hence in 

the isotropic case 

2 2 2 3

2 3 3 3ik ll ik il kl ll ik ll

K G A C
W G Bε ε ε ε ε ε ε ε = + − + + + 

 
,   (7) 

 

 

 

 

 

 

 

 

 

Fig. 1. The Lennard-Jones 6-12 potential approximates the intermolecular interactions of two 

atoms. Figure referred to [Tri-17]. 

where K and G are the bulk and shear moduli, respectively. This fact can be confirmed by 

differentiation of the first two components of W over its arguments ikε , which produces 

Hooke’s law for isotropic materials [Lan-93]: 

1
2

3ik ll ik ik ik ll
K Gσ ε δ ε δ ε = + − 

 
,     (8) 

where ikσ  is the stress tensor and ikδ  is the Kronecker delta. 

In Equation (7), three nonlinear constants, namely A, B, and C, have been introduced. 

Therefore, the complete constitutive model for material nonlinearity is constructed using only 

five constants, defining the stress-strain relationship. While the depiction of anisotropic 

materials demands additional material constants, the stress-strain relation can still be 

expressed as a closed-form expression. As the subsequent section will demonstrate, the case 

of contact nonlinearity is generally more intricate. 

1.3. Contact nonlinearity 

Contact nonlinearity constitutes the third category of mechanical nonlinearities examined in 

this context. Inner contacts within materials and structures can represent defects, such as 

cracks or delaminations, or other defect-like features like loose joints. Their impact on the 
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response to acoustic excitation is two-fold. Firstly, their response to normal loading exhibits 

bimodality, indicating significantly different stiffness in open (lost contact) and closed 

(contact occurs) states. Additionally, apart from the nonlinearity associated with bimodality, 

the normal load-displacement curve in the closed state is inherently nonlinear. This behavior 

arises because contact surfaces possess some relief, and with increasing compression, deeper 

material layers undergo strain. In fact, only two half-spaces filled with linear elastic continua, 

without edge effects, exhibit a purely linear loading curve. 

Another aspect of contact interaction is friction. Friction introduces a multifaceted tangential 

response, characterized not only by nonlinearity but also by hysteresis. This means that the 

response is not determined instantaneously by the excitation but depends on the excitation 

history. Essentially, friction leads to both sticking and sliding in different contact zones. In the 

stick state, the system "memorizes" a local tangential displacement (which remains unchanged 

as per the definition of stickiness). The presence of memory in a system contributes to its 

hysteric behavior. 

In the next sections we consider existing models for contact nonlinearity in more detail. 

2. Existing models for contact nonlinearity 

There are several models exist to describe the nonlinear elastic behavior of materials, with a 

specific focus on theories that generate nonlinear stress-strain relationships-critical for 

constructing numerical models simulating nonlinear wave propagation. The objective is to 

develop a numerical tool for nonlinear non-destructive testing (NDT). Notably, these models 

also predict characteristics such as wave dispersion, attenuation, parameter variations over 

time, and changes in linear elastic properties with damage. Beyond the conventional Landau 

theory [Lan-93], "nonclassical" models fall into two categories: phenomenological, 

postulating desired behavior in stress-strain relations, and physical, considering the actual 

internal contacts' physical behavior. Most of these models cater to one-dimensional (1D) 

scenarios, particularly in highly idealized wave propagation geometries. 

2.1. Phenomenological stress-strain models 

The models examined in the following sections have primarily been introduced by 

acousticians dealing with materials containing numerous internal contacts. This leads to a 

stress-strain relationship characterized by hysteresis, rather than a straightforward connection 

between load and displacement established at a single interface. These models are 

predominantly phenomenological, often simplistic, as they tend to assume the stress-strain 

behavior with ad hoc nonlinear properties rather than offering a physical explanation. 
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2.1.1. Clapping or bimodal model 

The basic phenomenological model focuses on a single contact, like a crack, perpendicular to 

the longitudinal wave direction. When the incident wave's stress exceeds the initial interface 

static stress, the crack opens, altering the material's overall stiffness. A simple method to 

model this involves assigning different stiffness values for positive and negative strains: 

( )1
C

C H
C

σ ε ε∆ = − 
 

,     (9) 

where H(ε) denotes the Heaviside step function (refer to [Sol-02], for the clapping or bimodal 

model, or similar relationships by [Naz-89], and [Ost-91]). 

2.1.2. Sliding friction model 

Although the earlier model focuses on normal wave incidence, the sliding friction model 

pertains to the interaction between tangential wave and interface. Consider an unbounded 

interface between two friction-coupled surfaces, experiences an oscillating tangential traction 

(shear wave scattering) of sufficient strength to induce sliding. Assume that gross sliding of 

the interfaces occurs when the shear wave stress ε surpasses a specific value ε1. Subsequently, 

the tangential stiffness, which has a value of C in the stick phase, reduces to zero in the 

sliding phase, so that 

( ) ( )( )11 sgn sgn sgn
2

d C

d

σ ε ε ε ε
ε

= − +  ɺ ɺ    (10) 

(see [Bal-02]). It's crucial to emphasize that, in contrast to the clapping model where both odd 

and even harmonics are produced, the sliding friction model exhibits symmetry concerning 

positive and negative ε, resulting in the generation of only odd harmonics. 

These fundamental mechanisms of contact nonlinearity are frequently found in a combined or 

mixed form. At a basic level, they provide a reasonable explanation for observed effects. 

Furthermore, if the sample's geometry favors one of these modes, it can be discerned through 

the presence or absence of even harmonics. 

2.1.3. Preisach model 

The Preisach model is a mathematical formalism suitable for the description of a wide class of 

hysteretic dependencies in 1D (see [Pre-35], [Kra-89]). Suppose we have a collection of 

bistable elements such that each of them can be open (contribution 1) or closed (contribution 

0). For each of them, there are two critical values of the argument x: xo and xc (xo>xc). By 

definition, the element (xo, xc) is open if x>xo and closed if x<xc. (see Fig. 2). A hysteretic 

function y is obtained then as a sum of all contributions of all elements (i.e. contributions of 
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the open elements since the closed ones do not contribute) weighted by a 2D weighting 

function ρ(xo,xc) called the Preisach density. 

In this formalism, the Preisach density represents the portrait of the system. By varying the 

density, the responses of a wide range of hysteretic systems can be imitated. The method 

allows one to obtain the response y(t) of a hysteretic system for any signal x(t) that makes it 

particularly suitable for complex acoustical excitations. 

 

 

 

 

 

 

 

Fig. 2. (a) Hysteretic element characterized by critical values xc and xo. (b) The Preisach 

space (xo,xc) containing three areas: triangles with open and with closed elements, and 

rectangle where the state of elements is determined by the history of the system. (c) Typical 

configuration of the history-dependent part of the Preisach space (refer to [Ale-04]). 

There are two identifying criterions for the Preisach system (see [May-85]); using these 

criterions it is possible to check if a particular hysteretic model represents the Preisach system 

or not. 

In addition, there exist procedures (see [Guy-97], [Ale-08]) for reconstructing the Preisach 

density from a sole particular hysteretic curve. The methods work well for high quasi-static 

loads where up-going and down-going branches of a hysteresis loop are clearly distinguished. 

However, many researchers used the Preisach formalism for acoustical simulations as well 

assuming a constant density or accepting some model density forms. The advantage of the 

approach is in its flexibility and possibility to imitate a wide class of hysteretic dependencies. 

The disadvantage is related to its phenomenological character; the theory becomes physical 

only when the Preisach density and other model characteristics are linked to physical and 

geometrical parameters of the material and damage. Assuming various forms for the Preisach 

density, it is possible to deduce (see [Van-12]) from the Preisach formalism a number of 

particular hysteretic models, such as the hysteretic quadratic nonlinearity, Nazarov, 

Davidenkov, and Granato-Lücke models (see below). 
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2.1.4. Hysteretic quadratic nonlinearity 

Derived from the Preisach formalism, this model is formulated by considering a harmonic 

excitation with the amplitude ∆ε, leading to the resultant expression for stiffness: 

( )( )1 2 sgn
d

C
d

σ βε α ε ε ε
ε

= + − ∆ +  ɺ    (11) 

where α and β are material constants. Due to its simplicity, several researchers have 

employed this model to examine the influence of hysteresis on wave shapes (see [Ale-04]), 

simulate resonance experiments, and explore theoretical amplitude dependencies for nonlinear 

resonant frequency shifts and higher harmonics in resonance (see [Van-00]), among other 

applications. 

2.1.5. Nazarov model 

The model, as outlined in [Naz-03], is designed for harmonic excitation with an amplitude ∆ε. 

It involves three parameters and provides separate descriptions for the up-going and down-

going branches: 

( ) ( ) ( )

( ) ( ) ( )

2 21 2 1

2 21 2 2

4 2

4 2

C

C

β β βσ ε ε α ε ε ε ε

β β βσ ε ε α ε ε ε ε

+

−

  +  = − ∆ + ∆ −   
   


 +   = − ∆ − ∆ −     

   (12) 

This model represents a variation of the method employing hysteretic quadratic nonlinearity. 

It can be derived from the Preisach formalism by setting: 

( ) 1 2
, 2o c

C
β βρ ε ε +=      (13) 

where εo and εc are strain-related arguments introduced instead of formal arguments xo and xc. 

2.1.6. Davidenkov model 

The adjusted Davidenkov model, detailed in [Dav-38], postulates the following expressions 

for the stress-strain curves: 

( ) ( ) ( )( )
( ) ( ) ( )( )

1

1

2

2

m mm

m mm

C
m

C
m

ασ ε ε ε ε ε

ασ ε ε ε ε ε

+ −

− −

  = + ∆ − ∆ + 
  


  = − ∆ − ∆ −   

.   (14) 

It can be obtained from the Preisach formalism by configuring 

( ) ( )( ) 2
, 1

m

o c o c
C mρ ε ε α ε ε −= − − .    (15) 
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2.1.7. Granato-Lücke model 

The Granato-Lücke model, as outlined in [Gra-56] and [Naz-09], is rooted in the physics of 

dislocations, which encompasses hysteretic behavior. The stress-strain curves within the 

(modified) Granato-Lücke model encompass four branches and can be formulated as follows: 

1

12 1 2

3

14 3 4

( ) 0, 0

( ( ) ) 0, 0
( , )

( ) 0, 0

( ( ) ) 0, 0

m

m m

m

m m

if
m

if
m m

C

if
m

if
m m

γε ε ε ε

γ γ γε ε ε ε ε ε
σ ε ε

γε ε ε ε

γ γ γε ε ε ε ε ε

−

−

 − ≥ ≥
 + + − ∆ ≥ ≤
= 
 + ≤ ≤

 +
 − + −∆ ≤ ≥


ɺ

ɺ

ɺ

ɺ

ɺ

  (16) 

Here the Preisach space is not constant (quadratic hysteretic, Nazarov) and does not depend 

only on the perpendicular coordinate ( ) / 2o cε ε ε⊥ = −  (Davidenkov), but equals 

( )
( )
( )

21
1 2

21
3 4

0

, 0

0

mm
o o cm

mm
o c c c om

C if

C if

otherwise

γ γ ε ε ε

ρ ε ε γ γ ε ε ε

−−

−−

 + > >
= + < <



    (17) 

Since the density equals 0 in a whole quadrant εc<0, εo>0, some internal loops within the large 

hysteresis loop can be actually non-hysteretic (reversible i.e. no difference between up-going 

and down-going branches). The original Granato-Lücke model does not have this property 

since it is not intended for non-harmonic signals at all. 

In contrast to the generic Preisach formalism, these models offer the advantage of fewer free 

parameters. Nevertheless, they remain purely phenomenological with an ad hoc character. 

Comprehensive graphical representations of the hysteretic quadratic, Nazarov, Davidenkov, 

and Granato-Lücke models are provided in [Van-12]. 

2.1.8. Vector and tensor Preisach models 

In the vector Preisach model, it is suggested (see [May-88]) that any direction of the output 

vector generates its own scalar Preisach space that depends on two switching values (xo, xc). 

The elementary hysteretic units are switched by the projection of the input vector on the 

direction of the output vector. As such, the Preisach density additionally depends on the polar 

angle in 2D case, ρ =ρ(xo,xc,ϕ), and on the spherical angles, ρ =ρ(xo,xc,θ,ϕ), in the 3D case. 

This also means that the distribution of open and closed elements can be different for each 

angle. 
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The tensorial model (see [Hel-01]) uses the Kelvin notations and representation of the stress 

and strain tensors as 6-component vectors. These vectors are linked with a 6x6 matrix that can 

be diagonalized thus presenting 6 eigenvectors. It is suggested that these 6 eigenvectors are 

separately multiplied by the stress vector which results in the appearance of 6 scalar 

quantities. Then, 6 independent Preisach spaces are introduced with the above 6 scalar inputs; 

the corresponding outputs are considered as weighting coefficients for the 6 eigenvectors in a 

linear combination that represents the global output of the model. 

The tensor Preisach model actually implied some additional simplifications compared to the 

vector model. They come from the imposed consideration of 6 eigenvectors in the Kelvin 

notations that brings into the model only 6 independent Preisach spaces, while in the vector 

model the number of Preisach spaces is continual. In any case, the number of free parameters 

is huge which makes the identification problem (retrieving material’s parameters from data) 

hardly solvable. 

2.1.9. Preisach-Arrhenius model 

This model, detailed in [Tor-02] and [Gus-05], represents one of the various potential 

extensions of the Preisach formalism. It introduces energy barriers separating the open and 

closed states of the hysteretic elements, proposed to be very weak (comparable to kT). This 

adjustment leads to several dynamic effects, including dispersion and spontaneous transitions 

between the two metastable states. It proves useful when a scalar representation of the stress-

strain relationship suffices, and accounting for dynamic effects and relaxation becomes 

essential. 

2.1.10. Conclusion 

In conclusion it can be noted that the models of the phenomenological class are suitable only 

for imitating contact nonlinearity (in a precise or qualitative way), but neither for explaining it 

nor linking it to the materials’ parameters. They can be very flexible, but for the price of high 

number of free parameters and associated difficulties in solving the identification problem. At 

the same time, the simplified versions can reproduce the nonlinear effects in a qualitative 

manner only. 

2.2. Physical stress-strain models 

Physical models adopt an approach that fundamentally diverges from pure phenomenological 

considerations. In this context, the assumption is made that one or more physical mechanisms 

are responsible for the observed nonlinear effects. By acknowledging a specific geometry, 
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even in a highly simplified form, for the defects, an appropriate model is selected for the 

fundamental physical mechanism (such as friction, adhesion, collective transformations of 

dislocations, etc.) that hypothetically underlies the nonlinear behavior. Below, we provide 

examples of several models within this class. 

2.2.1. Lawn and Marshall model 

In this model (refer to [Law-98] for the original version or [Ale-07a] for the modified model 

taking into account additional effects), an elastic continuum contains a large number of 

diversely oriented plane cracks. For each of them, the Coulomb friction law is postulated that 

assumes either stick state or total sliding (i.e. with no stick zones) of the crack surfaces. The 

choice of the state depends on the normal and shear stresses transmitted to the crack faces 

from distant boundaries of the sample, where external loading conditions are posed. Then, all 

displacements of the cracks faces (only tangential in the original model [Law-98] and both 

tangential and normal in the modified one [Ale-07a]) are summed up with the relevant 

orientational weighting coefficients to produce the total strain tensor. It is seen that a large 

number of cracks having the postulated behavior give rise to hysteretic responses of the 

Preisach type with internal loops for partial loading-unloading-reloading, etc. In other words, 

the model explains the macroscopic stress-strain hysteresis as a collective movement of 

individual cracks. Moreover, experimental results for complex quasi-static loading can be 

fitted by matching a very limited number of model parameters. This makes us believe that the 

suggested mechanism of internal friction is primarily responsible for the hysteretic 

constitutive behavior of micro-cracked solids. The model has not been tested for weak 

acoustical excitation, since at this level it most likely provokes only partial slip in micro-

contacts, which is neglected by the adopted friction model. In addition, small characteristic 

displacements of the cracks’ faces can bring into play adhesion effects. 

2.2.2. Micro-potential model 

The [Ale-05] model explores the hysteresis in stress-strain of materials by considering two 

key factors: adhesion forces requiring a force to separate surfaces in contact and a persistent 

gap between crack faces even without external strain. Notably excluding friction, this model 

introduces a double-well potential for internal cracks, existing in either "adhesive" states 

(faces trapped with a non-zero pull-off force) or "open" states (faces not in contact). Applying 

the Preisach formalism, each hysteretic element corresponds to a single crack, allowing for 

variability based on geometric factors. The model predicts theoretical stress-strain 
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relationships with hysteresis, qualitatively aligning with observed behavior in experiments on 

micro-cracked solids under mild acoustic excitation. 

2.2.3. Adhesion hysteresis model 

In this adhesion-based model (see [Sha-94], [Ale-07b]), the stress-strain hysteresis is deduced 

from hysteresis in adhesion. Indeed, introduction of the surface energy and related pull-off 

force leads to the formation and rupture of adhesive necks connecting two asperities 

belonging to the opposite crack faces. These necks are formed when two asperities that 

initially were in contact separate. The presence of a neck means that the asperities interact 

with some attraction force. When identical asperities, initially distant, are approaching each 

other, a neck will not form until atomic contact is reached, so that at the same distance 

between the asperities they do not interact. So the presence of the interaction force depends on 

the movement direction (approaching or separating) that actually corresponds to hysteresis at 

the micro-level. Again, it is possible to transfer this model to the Preisach description; a 

hysteretic element is represented in this case by a pair of contacting asperities. In this model, 

the decomposition of continuous roughness into a set of individual asperities presents an 

additional problem. 

Again, the model offers the opportunity to qualitatively describe nonlinear acoustic 

experiments in media with simple geometries. 

2.2.4. Soft-ratchet model 

The model presented in [Vak-05] aims to replicate acoustical experiments on both short and 

long timescales, specifically addressing the phenomena known as slow dynamics effects as 

discussed in [Ost-01]. The slow dynamics effect encompasses various timescales, 

characterized by a sudden reduction in elastic moduli following intense straining from a 

powerful acoustic wave or impact. Subsequently, the modulus experiences a gradual 

(logarithmic) recovery, approaching but not reaching its original value. In the model, this 

effect is attributed to the asymmetry in the creation and breaking of adhesive bonds at the 

micro-level. The assumption is that multiple paths exist for breaking a bond, as an individual 

atom can belong to different asperities after breaking. However, there is only one way to 

reunite two initially separated asperities. This implies that the process of breaking the bond is 

faster than the healing process, leading to a more likely drop in modulus during intense 

straining. 



 20 

2.2.5. Pack of Hertz-Mindlin spheres 

In the model detailed in [Nih-00], devised for isotropic materials with internal cracks like 

sandstones, the intricate geometry of the actual material is substituted with a collection of 

spheres interacting based on the Hertz-Mindlin laws (refer to [Min-53]; note that the term 

"Hertz-Mindlin" is conventional, although, historically, it is more accurate to designate this 

solution as Cattaneo-Mindlin [Cat-38]). Known force displacement relationships for elastic 

spheres in contact with friction were used for calculating the response of a face-centered cubic 

sphere pack subjected to uniaxial strain loading εzz. The spheres were considered as 

unconsolidated, so that, in order to model a solid material, the pack was confined from the 

sides, εxx=εyy=0. This greatly simplified system provides a hysteretic stress-strain response σzz 

vs εzz, similar to the experimental hysteretic curves for rocks. The model successfully predicts 

several experimentally observed phenomena, including the displacement of the first hysteresis 

loop concerning subsequent loops under periodic excitation and the strain-independent 

behavior of dynamic moduli. Despite its potential in describing micro-cracked materials, the 

model encounters challenges when considering the material's consolidation. 

2.3. Physical load-displacement models 

In the previous section, we have presented a brief review of existing models for a micro-

cracked material, whereas in the context of NDT, it is appropriate to discuss available 

approaches to mechanics of materials with a single crack or a number of cracks. As it was 

mentioned, for individual cracks boundary conditions related to contact loads and 

displacements should be set. 

2.3.1. Models for normal contact interaction of rough surfaces 

Contact mechanics started with the problem of normal contact of two elastic spheres solved 

by H. Hertz in 1882. Much later, in 1960s, this solution was applied to contact of rough 

surfaces. The idea is based on the assumption that a continuously rough surface can be 

represented as a collection of individual asperities whose summits are approximately 

spherical. In the simplest case considered by Greenwood and Williamson in 1966 [Gre-66], 

the spheres are identical but their heights are different and present a statistical ensemble. 

Analytical results were obtained for exponential and for Gaussian distributions of asperities’ 

heights that close resemble measurement data. Moreover, it was shown that the real contact 

area representing only a tiny part of the nominal one is exactly or approximately proportional 

to the contact load. This fact, established in 1930s (see [Bow-39] and references in [Gre-66]), 

can be used as a test for any contact model for rough surfaces. 
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As an improvement, Whitehouse and Archard [Whi-70] showed that a better approximation 

for the real surface roughness can be obtained by considering a collection of different spheres. 

The two key points in the Whitehouse and Archard contact mechanics model consist in (i) the 

introduction of a set of points spaced by a sampling interval comparable to the correlation 

radius of the random function representing roughness, and (ii) the treatment of a mutual 

distribution of heights at neighboring points. As such, the value of this model is that the 

procedure of roughness decomposition into a set of spherical asperities uses original statistics 

of the continuous roughness and its correlation properties. However, in this model, the 

continuity of the real rough surfaces is still not fully represented. 

Recently, other interesting approaches in contact mechanics have been developed, such as the 

introduction of fractality in the consideration of surface roughness ([Maj-91], [Yan-98]). 

Nonetheless, the problem of an adequate description of two rough surfaces in contact remains. 

Moreover, the substitution of a real fractal surface by a mathematical representation with 

certain postulated properties and similar behavior has led to discrepancies with experimental 

data. A fundamental approach in this field [Per-02], not using Hertz contact at all, targets the 

relationship between force and contact area. Unfortunately, this particular knowledge is 

insufficient for us, since our study compels to start from the force versus displacement 

relationship. 

2.3.2. Plane cracks governed by the Coulomb friction law 

The Amontons-Coulomb friction law (see [Zhu-40] and, for the historical review, [Des-15]) 

is a common approximation for frictional contact interaction originating from inelastic 

deformations of asperities in contact. It states that a material point posed on a substrate and 

experiencing a tangential loading can stick to the substrate or slip on it. In the former case, no 

relative movement occurs, and the tangential displacement that could appear during previous 

evolution, remains fixed. The friction force T equilibrates the external loading not exceeding a 

threshold value µ N, with N, the normal reaction force, and µ, the coefficient of friction. 

When the external tangential load reaches the threshold µ N, the friction force freezes at that 

level, and the material point starts sliding. The tangential displacement is unlocked and 

becomes a priori unknown, or, better to say, it is determined not by the contact system, but by 

external conditions. 

The same considerations hold for contact of two surfaces, except that forces and 

displacements become local stresses and local displacement fields, respectively. 

It can be immediately concluded that the Coulomb friction law does not provide the sought-

for boundary conditions in a unique way. More precisely, it produces the Dirichlet boundary 
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condition (for displacements i.e. of the first type) in the situation of stick, while in the slip 

case we have the Neumann boundary condition (for stresses i.e. of the second type). This 

means that, in a numerical implementation, it is necessary to check if the Coulomb threshold 

is achieved at every discretization point/element in the crack interface. In practice, at a certain 

moment, a condition T Nµ>  can re reached in some discretization element which is 

prohibited by the Coulomb friction law. In this case, the condition T Nµ=  should be 

enforced by redistributing all stresses and displacements in a neighboring area. This is doable 

[Bla-14]; however, the corresponding computational expenses can be quite high. In any case, 

the computational effort for a cracked sample is dramatically higher in comparison to an 

intact one. The obvious reason for that is in the implicit character of computations. 

2.3.3. Example of a purely numerical contact description: Kalker software 

In the previous section, principles of contact modeling with friction were sketched. In fact, 

nowadays, numerical contact mechanics is a vast discipline comprising a large number of 

methods [Yas-13]. The contact area itself as well as areas of stick and slip are a priori 

unknown and are calculated in the solution process. 

One of the oldest examples is presented by so-called Kalker software based on solutions 

found in 1980s [Kal-88], [Vol-23]. The software package contains two modules targeting as 

wheel-rail contact and systems of Hertzian type called basic contact by the authors. The latter 

is illustrated in Fig. 3 below. The numerical solver calculates stress and displacement fields at 

contact interfaces also providing the access to elastic field in the interiors of the bodies. 

 

 

 

 

 

 

 

 

Fig. 3. Contact geometry including a third body. Notations illustrate the degree of detail 

taken into account by Kalker software. 
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It is important to note that the friction coefficient in detailed numerical models can depend on 

slip velocity as well as on temperature. Moreover, complex phenomena such as friction 

coefficient memory and relaxation are taken into account. 

Full detailed numerical solutions can be used for describing the behavior of a system excited 

acoustically, as a particular case, but are clearly not intended for that. The associated 

computational expenses are extremely high. 

2.4. Conclusion 

The above review demonstrates the necessity of an efficient contact model, providing 

boundary conditions corresponding to an inner frictional contact (crack) in a solid material. 

The existing approaches are either not applicable for that purpose, either require significant 

computation effort. In Chapter II, we expect that the Method of Memory Diagrams (MMD) 

[Ale-15], formulated by the accomplished author, provides a well-balanced approach that 

combines essential physical principles with computational efficiency. 

3. Recently developed nonlinear acoustic imaging methods 

Since 1990s-2000s, there exist a growing interest to nonlinear acoustic methods for detecting 

the presence of damage in materials and structures. One of them (see more complete review 

[Ost-01]) uses the fact that frequency of an acoustic resonance becomes amplitude-dependent 

in nonlinear materials. Since contact nonlinearity, if existing is typically dominant over other 

nonlinearity types, amplitude-dependent resonances are good indicators of damage. 

The practical use of NDT requires, however, not only to detect the presence of damage but 

also to determine a damage location. Ideally, a robust image of damage should be obtained. In 

fact, the nonlinear imaging methods can be roughly categorized into two groups. 

The first group comprises techniques that use a continuous wave excitation with a 

characteristic wavelength comparable to the defect size. After the transient regime decay, a 

wave pattern is formed with stationary (i.e. independent of time) amplitude. The time 

dependence of the wave field contains a nonlinear component that can be used for calculating 

of a nonlinear criterion or image that is supposed to be concentrated in space near the defect. 

In that regard, the nonlinear wave pattern itself can indicate the position and extent of the 

defect. 

Methods belonging to the second group require sharp focusing and the wavelength 

considerably smaller than the defect, since it is the wavelength that determines the imaging 

resolution in this case. Formation of stationary waves is not required. 
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Computational expenses essentially depend on the mesh size which, in turn, is determined by 

the smallest element of geometry. From that point, it is preferable to numerically implement a 

method of the first group to keep the computational effort at a reasonable level. Indeed, sharp 

focusing would require having the mesh size smaller than the wavelength λ , the smallest 

spatial scale in that case. Therefore, the total number of mesh elements is proportional to 1/λ2 

in 2D. Since time stepping is linked to the mesh element size (see Section 2.2 of Chapter II 

for details), the total computational effort becomes proportional to 1/λ3 and is very high. This 

is the reason to prefer an experimental method from the first class, which are less demanding 

in terms of smallness of λ, even if they require a longer total calculation time necessary for 

adequate representing the stationary waves formation process. 

In this section we present several examples of methods belonging to both classes to justify our 

choice of the damage imaging localization technique most suitable for our first attempt to 

imitate a real imaging experiment starting from physical principles. 

3.1. Nonlinear imaging methods based of stationary wave formation 

3.1.1. Nonlinear resonant scanning laser vibrometry 

The method uses a continuous vibrational/wave excitation of a structure that activates hidden 

damage and produces higher harmonics. The sample’s surface is scanned with a laser beam 

for simultaneous measurements of surface displacements/velocities via a precise 

interferometric technique (Fig. 4). These fields contain higher harmonics that reach maximum 

amplitude in the vicinity of damage [Pfl-04]. It is also possible to use very high harmonics (up 

to 20th, [Bal-02]), as long as measurement conditions allow one to calculate them in a reliable 

manner. In addition, the nonlinear criterion (image) can be based on subharmonics [Sol-04] or 

proper nonlinear resonances of the damaged sample. 

The method should work for a large band of excitation frequencies; however, for obtaining a 

higher image contrast at moderate excitation intensity, the frequency can be specially 

optimized. Cracks or delaminations can create new resonances called Local Defect 

Resonances (LDRs); pumping at the LDR frequencies selectively activates these defects and 

produces at their locations considerable peaks of acoustic energy thus enhancing imaging 

contract [Sol-19], [Sol-20], [Ehr-17]. The use of the LDR explains the word “resonant” in the 

name of this technique. 

Laser interferometry is widely used in other NDT methods based on surface acoustic field 

measurements. However, this specific method used continuous wave excitation and 
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standing/stationary wave formation without need of sharp focusing thus making it especially 

suitable for MMD-FEM modeling, see details in [Ale-15]. 

 

 

 

 

 

Fig. 4. Nonlinear resonant scanning laser vibrometry system scheme. The laser beam was 

redirected by a pair of rotating mirrors. Figure reproduced from [Tri-17]. 

3.1.2. Scanning laser vibrometry with nonlinear frequency mixing 

This method represents a modification of the previous technique, with the only difference that 

the sample is excited with two frequencies instead on one, and the nonlinear effect underlying 

measurements is based on frequency mixing rather than on harmonics generation. The lower 

frequency can correspond to vibration [Gol-20], [Loi-22]. Vibrations in this nonlinear vibro-

acoustic modulation technique (Fig. 5) can initiate crack opening and closing thus 

considerably modifying the propagation conditions for the high-frequency probe wave. The 

presence of sidebands in the probing frequency signal indicates the nonlinear behavior of the 

material resulting from the existence of defects. Conversely, an intact system with no defects 

exhibits a linear response without generating sidebands. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Schematic representation of the nonlinear vibro-acoustic modulation technique. 

Figure taken from [Loi-22]. 
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In the nonlinear frequency-mixing photoacoustic imaging technique, a sample containing a 

crack is illuminated with two laser beams whose intensities are modulated at high and low 

frequencies (Fig. 6). Mixed-frequency signals are produced by the crack and are measured via 

laser vibrometry (actually, the third laser beam). An important advantage here is in a fully 

contactless detection. From the point of measuring procedure, this method can be seen as 

belonging to the class of laser vibrometry. The nonlinear response calculated on the basis of 

the generated mixed frequencies can have a maximum in the vicinity of the crack. 

The creators of this novel technique [Chi-10], [Mez-20] provide a comparison of 

experimental and theoretical curves to produce an estimate for geometric parameters of 

damage. Attempts made in this thesis are along the same line; however, our modeling tool is 

specially designed to have full geometric flexibility i.e. is oriented to a vast number of cases 

where no theoretical solution for wave propagation is possible. 

 

 

 

 

 

Fig. 6. Experimental setup for nonlinear frequency-mixing photoacoustic imaging to probe 

the crack state, sourced from [Mez-20]. 

3.1.3. Resonant thermosonics 

The method can be seen as a continuation of the previous ones that combines the ultrasonic 

excitation of a sample with a thermal measurement of the sample surface using a high 

sensitivity and a high-resolution infrared camera covering a large field of viewing area. 

Ultrasound-induced mechanical vibrations activate friction at the interfaces of the defect and 

finally generate local heating [Sol-13], [Cia-18]. The released frictional heat diffuses from the 

defect to the surface of the sample in a few milliseconds, and, as a result, the local surface 

temperature rises very soon after the ultrasound has activated the defect (Fig. 7). In this case, 

the measured temperature field is much less sensitive to a particular shape of the acoustic 

signal, and the measured scalar temperature field contains less information for damage 

identification. 

Again, the use of pumping frequencies corresponding to local defect resonances drastically 

increases the imaging efficiency and contrast, since the acoustic energy is concentrated 

around the defects and activates them in a selective manner. 
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Qualitative modeling for damage detection via thermosonics is reported in [Tru-22] with the 

use of the principles discussed in this thesis. 

 

 

 

 

 

Fig. 7. Schematic diagram of thermosonics, reproduced from [Tri-17]. 

3.2. Nonlinear imaging methods with the use of higher frequencies 

In this section, we briefly discuss nonlinear imaging methods which are based not on standing 

wave formation but on other principles. In most of cases, the latter methods use frequencies 

essentially higher than in the former ones, in particular, when they require focusing on a 

defect. In this situation, the image resolution is comparable to the wavelength, so high 

frequency signals are preferable. 

3.2.1. Nonlinear ultrasonic guided wave tomography 

This non-destructive imaging method is capable of inspecting large areas with a fixed number 

of permanently attached transducers playing the role of both transmitters and receivers (Fig. 

8). Multiple paths are analyzed via a special procedure that uses the difference between 

responses on strong and weak excitations with the proper amplitude factor to get a nonlinear 

damage signature [She-12], [Mar-19], [Can-21], [Lee-21]. The concept of “paths” involves 

high frequencies comparable to those of ray acoustics. The principle has been implemented in 

a number of modifications, such as a combination of Lamb waves in a plate and a so-called 

back-propagation algorithm [Ter-21] that scan the plate for defects. 

3.2.2. Nonlinear ultrasonic phased array 

The array generates a series of pulses with different and controllable delays which makes it 

possible to create a peak of acoustic energy in a given position in the sample (Fig. 9). In other 

words, the array works as an acoustic lens with an adjustable focal spot. Measuring a 

nonlinear response allows one to detect damage existing at this point; varying the focus 

coordinates produces an image [Oha-19], [Oha-20], [Bai-20], [Fie-20], [Hon-20]. Sharp 

focusing requires the use of high enough frequencies but provides high-contrast robust images 

of damage. 
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Fig. 8. Schematic of rays in the ultrasonic guided-wave based tests, figure from [Lee-21]. 

 

 

 

 

 

 

 

Fig. 9. Example of angled beam produced by flat probe using variable delay, figure copied 

from [Hon-20]. 

3.2.3. Nonlinear time reversal acoustics 

Due to the reciprocity principle, inverting all wave vectors in a wavefront results in focusing 

of the wave back at the source. Doing so with a nonlinear wavefield produces focusing on the 

nonlinear source i.e. on the defect. There exists a family of methods based on that principle 

[Fin-00]. 

An example is given by Wright et al [Wri-13], who introduced nonlinear time reversal 

acoustics, an advanced method for localizing defects within structures by harnessing the 

principle of reciprocity and exploiting the non-linear energy emitted by the defect. This 

technique involves a two-step process (Fig 10). 
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Firstly, the signal received by the transducer(s) is time-reversed, effectively reversing the 

propagation path of the waves. In the time-reversed state, the receiver transducers now 

function as transmitters, emitting the time-reversed signal as a stimulus. 

Secondly, this time-reversed stimulus is directed back towards the structure, where the non-

linear energy component automatically converges and returns to the defect. By carefully 

analyzing the received signals, the defect can be accurately located within the structure. 

To further enhance the effectiveness of the technique, the original stimulus is filtered from the 

time-reversed signal, resulting in an improved signal-to-noise ratio during the defect detection 

process. This filtering process helps to isolate the non-linear energy associated with the 

defect, enhancing the detection sensitivity and reducing interference from other signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (a) When a structure contains a non-linear defect, the damage site produces 

harmonics. (b) The transmission of time-reversed signals leads to the presence of two energy 

concentrations - one at the original source site and the other (harmonics) at the defect, figure 

copied from [Wri-13]. 

3.2.4. Nonlinear coda wave interferometry 

In numerous instances, the transmission of ultrasound through weakly attenuating materials 

gives rise to the emergence of coda waves, as detailed by [Aki-75]. These waves originate 

from the interference of acoustic waves, recurrently probing the same spatial region due to 
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multiple scattering induced by material inhomogeneities or reflections from the sample's 

boundaries. An acoustical receiver capturing a coda wave records a signal exhibiting quasi-

chaotic characteristics, yet possessing a deterministic nature. This signal is highly responsive 

to subtle variations in the material's geometry or properties. Essentially, throughout multiple 

reverberations or scattering events, information about these changes accumulates and 

eventually becomes quantifiable. The material effectively functions as a natural 

interferometer, leading to the utilization of the method known as coda wave interferometry, 

characterized by its sensitivity to alterations in material properties. 

By combining the above advantages with nonlinear ultrasonic techniques, a method called 

nonlinear coda wave interferometry has been recently proposed in [Sni-02]. In this case, a 

low-frequency pump wave is excited in the sample, while the corresponding low-frequency 

component in the coda signal is filtered out. If coda signals produced with and without pump 

wave are still different, the deviation can only be attributed to nonlinear frequency mixing due 

to contact acoustical nonlinearity that, in turn, reveals the presence of damage [Zha-17]. A 

combination of the technique with the time reversal principle (see Section 3.2.3) produces a 

method having an imaging potential [Sma-20], [Che-22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Schematic of overall experimental setup nonlinear coda wave interferometry, figure 

copied from [Sma-20]. 

 

Power 
Amplifier #1 

Power 
Amplifier #2 

PR
O

B
E

 (
H

F)
 

P
U

M
P

 (
L

F
) 

r1 

r2 

r3 

PUMP 
EMITTER 

PROBE 
EMITTER DEFECT 

0.5–1 MHz 

50–250 kHz 
PROBE 

RECEIVER 

AWG #2 

AWG #1 

PC
 

O
sc

ill
os

co
pe

 

P
U

M
P

 
PR

O
B

E
 

G
P

IB
 

G
PI

B
 

LAN 

LAN 
HPF 

PUMP 
RECEIVER(S) 

( )pumpr t

or 

HF probe chirp 

( )probe
s t

LF pump 

( )pumps t

( )pumpq t

( )probe
r t

 

          – Probe circuit 
          – Pump circuit 
  

              – Probe circuit 
              – Pump circuit 
  



 31 

As described in [Sma-20], the scheme is illustrated in Fig. 11 where ( )prober t  is a high-

frequency coda signal which is measured and analyzed together with low-frequency 

reverberation signal ( )pumpr t  that represents a reaction of the propagation medium on the 

excitation ( )pumps t  produced by the pump emitter. The low-frequency coda ( )pumpr t  is 

required for the calculation of signal ( )pumpq t  inverted in time. Then ( )pumpq t  is excited by 

the same pump emitter to produce so-called retro-focusing of acoustic energy at the pump 

receiver on which ( )pumpr t  was measured. The second pump wave emission is accompanied 

by the generation of a high-frequency signal ( )probes t  by the probe emitter and recording of 

the high-frequency coda ( )prober t  by the probe receiver. The above measurements are repeated 

in the presence and in the absence of the pump and for each pump receiver r1-r3. The 

difference between the reference and the perturbed codas indicates the presence of damage at 

the location of the pump receiver. 

It is appropriate to note that coda wave is a high-frequency signal that assumes strong 

computational requirements once the method is attempted to numerically model for. 

3.2.5. Fundamental wave amplitude difference imaging 

The fundamental amplitude difference technique refers to a measurement principle that 

focuses on the amplitude dependence of the distortion experienced by an incident ultrasonic 

wave due to non-linear scatterers, as opposed to the more traditional linear scatterers. Linear 

scatterers typically include features like holes, grains, or slits that backscatter the incident 

wave. On the other hand, nonlinear scatterers encompass micro-damages such as flaws, 

microcracks, partially closed cracks, or dislocations, which exhibit non-linear elastic behavior 

resulting from interactions like clapping, slipping, or friction at the micro or nano contact 

level. 

When an incident ultrasonic wave encounters nonlinear scatterers, a portion of the wave 

becomes distorted, leading to changes in its frequency content by introducing sub-harmonics 

and/or superharmonics. This distortion reduces the amplitude of the fundamental frequency. 

Importantly, this phenomenon is amplitude dependent, meaning that the response of the non-

linear scatterers does not follow a proportional relationship with the amplitude of the incident 

ultrasonic wave [Hau-17], [Hau-19], Fig. 12. 
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Fig. 12. Schematic of the amplitude modulation technique: sequential acquisitions with 

alternating element activation, filtered, shifted, and combined signals, copied from [Hau-17]. 

3.3. Conclusion 

The above brief review exemplifies several nondestructive testing and imaging methods that 

use the concept of contact acoustic nonlinearity. Typically they require precision 

measurements since the effect of acoustic nonlinearity is quite weak in real cases and can be 

masked by other effects. At the same time, even tiny acoustic nonlinearity detected in a purely 

linear system can be attributed only to presence in inner contacts and can be a manifestation 

of incipient damage hardly detectable by other NTD techniques. 

Most of experimental methods presented here require the use of a high-frequency excitation 

since it predominantly impacts the final resolution depending on the wavelength. As a first 

step in modeling, we are going to imitate the method having a weaker requirement to the 

wavelength smallness. Doing that, we intend to consider an excitation wavelength comparable 

to the crack size hoping that the stationary wave pattern of the generated harmonics will 

indicate the position and the extent of damage. This idea actually underlies the nonlinear 

scanning laser vibrometry technique. Here we use the name is this technique in accordance to 

the established tradition, fully accepting the fact that the idea of using interferometric methods 

for measuring surface velocity is widely applied in many other NDT imaging procedures. 
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Chapter II: MMD-FEM modeling 

In this chapter, we establish the cornerstone of our research by delving into the classical 

Cattaneo-Mindlin solution, also recognized as the Hertz-Mindlin solution. This exploration 

sets the stage for our work, which builds upon an existing framework—the Method of 

Memory Diagrams (MMD) and its extension, the MMD-FEM code. The finite element code 

for simulating acoustic waves in materials with frictional contacts was developed as a 

collaborative effort by researchers associated with the Joint International Laboratory 

LICS/LEMAC at the Institute of Electronics, Microelectronics and Nanotechnologies, UMR 

CNRS 8520, Villeneuve d’Ascq, France, and the Wave Propagation and Signal Processing 

Research Group at KU Leuven Kulak, Kortrijk, Belgium. The theoretical groundwork is 

outlined in [Ale-15], [Ale-16], [Ale-18] and the numerical implementation is detailed in [Del-

18]. This code seamlessly integrates MMD-type boundary conditions at inner contacts with 

the finite-element formulation of solid mechanics equations within a given volume. Our 

research relies on this well-established model, and for a comprehensive understanding, 

readers are encouraged to refer to the previously mentioned foundational publications.  

We express our gratitude for their collaborative efforts and valuable contributions to this 

research. 

1. Frictional contact model based on the Method of Memory 

Diagrams (MMD) 

Researchers at the Joint International Laboratory LICS/LEMAC, Institute of Electronics, 

Microelectronics, and Nanotechnologies, have extensively studied and developed a frictional 

contact model. This work is detailed in [Ale-15], [Ale-16], and [Ale-18], focusing on the 

principles of the MMD, as explained in [Ale-15]. In this Section, all components of the 

contact model based on deformability of surface roughness and on the MMD [Ale-15] are 

described. The approach includes the normal contact solution which is independent of 

tangential contact interaction, while the tangential one depends on the normal loading. As a 

result, we build up a link between the normal and tangential contact displacements (a, b) and 

the normal and tangential contact loads (N, T) for an arbitrary in time excitation signal in 

terms of displacements. The contact loads are defined as forces applied to the bulks of the 

both bodies. The displacements are also defined elative to bulk parts of the bodies in such a 

way that the full normal displacement equals 2a, and the tangential one equals 2b. The 
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derivation is done in 2D i.e. when tangential loading always stays in one plane; a 3D 

generalization that provides a link between vectors ( ),a b
�

 and ( ),N T
�

 is also discussed. 

1.1. Normal indentation of rough surfaces 

In a number of traditional models of Greenwood-Williamson type [Gre-66], contact between 

rough surfaces is described using a concept of a single asperity, i.e. an element of roughness 

approximating one of its summits. The asperity can be approximately seen as a sphere which 

immediately suggests the use of the Hertz solution linking the normal contact force and 

displacement. However, roughness is not something that has a certain number of summits. It 

represents a continuous profile or surface with actually undetermined number of individual 

asperities, since on top of one of them several others can be located. The approximation of 

continuous roughness with a fixed number of spheres, even if they are of different radii, is an 

ambiguous procedure. In that sense, the situation is similar to fractals that have no particular 

scale; any small feature hosts smaller features and so on. 

At the same time, despite that we cannot count asperities, we can count contact spots 

appearing once contact between two surfaces is established. Below we suggest a model that 

does not use the concept of asperity but considers contact spots only. 

The model is formulated for a physically small fragment of contact of nominal area An which, 

on one hand, is much less than the acoustic wavelength and the crack size, and, on the other 

hand, is much larger than microscopic scale related to roughness and contains a lot of 

roughness elements or features. At the scale of An, the surfaces are globally plane. At a given 

compression state, all contact spots form a real (atomic) contact area A, which is much smaller 

than the nominal one. At the same time, there can be introduced a geometric (truncated) 

contact area Ag obtained in a virtual situation when rough surfaces can freely penetrate into 

each other or, equivalently, when all roughness elements of each surface located higher than a 

certain height are virtually cut off. Two of these contact areas are also illustrated in Fig. 1. As 

it can be seen, Ag is also a tiny part of the nominal contact area An that corresponds to ideally 

plane surfaces. The real contact area A is a similar thing except that the roughness features do 

not penetrate into each others but recede under compression. 

For isotropic roughness those features do not depend on a direction along the surface, the 

areas A and Ag can be linked via a simple model relationship. Indeed, consider a pair of rough 

surfaces in a certain compression state. Although each of the surfaces cannot be approximated 

as a collection of asperities in a unique way, a given compression makes such an 

approximation possible. It comes from contact spots, each of them represented as a circle, and 
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having an overall normal displacement a. In a virtual situation of free interpenetration, an 

individual circle has radius cg, while in reality its value is different and equals c. 

 

 

 

 

 

 

Fig. 1. Illustration of the nominal contact area An and the geometric contact area Ag formed 

by all interpenetrations in a virtual situation when surfaces can freely penetrate into each 

other. In reality surfaces recede under compression forming the real contact area A. 

The free interpenetration case is illustrated in Fig. 2 in which values of cg, a, R, and h are 

shown. It is easy to conclude that 

( )22 2 2
g

h R c R a= − = − .    (1) 

Neglecting the small value a
2 we immediately get 2 2gc Ra= . At the same time, it follows 

from the Hertz solution (Eq. 8 given below) that for the physical contact when material 

recedes under load its squared radius 2
c Ra= . 

 

 

 

 

 

 

 

Fig. 2. Illustration for two rough surfaces that can freely penetrate into each other. They form 

a geometric contact spot approximated with a circle of radius cg and is characterized by an 

overall displacement a. 

These simple considerations provide the relation 

1

2
g

A

A
υ= =       (2) 
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cg 
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linking the real contact area and the geometric one. Despite the Hertz theory provides the 

coefficient ½, its value denoted υ  can be slightly different in reality. 

It is important to note that the radius R of the approximating sphere is uniquely determined 

from the above relationships. This means that the concept of asperity makes sense once the 

compression state is defined. 

Further, the proportionality N~A was proposed by Bowden and Tabor in 1939 [Bow-39]; a 

more recent discussion on the proportionality can be found in [Car-08]. Both empirical and 

theoretical arguments suggest that 

( )2

'

2 1

Eh
N A

κ ν
=

−
,     (3) 

with 'h equal to the root mean square of the random surface slope (dimensionless), and 2κ ≈  

(see [Hyu-07] and references therein for experiments, [Per-02] for theory, [Pag-10] for the 

discussion on the coefficient κ, [Pag-14] for theoretical and numerical examples). 

Finally, we introduce the random gap ξ between the surfaces (2ξ is the full gap, ξ is related to 

one body) and denote as ϕ(z) its distribution. Then it is easy to express the ratio Ag/An from 

purely geometric consideration as 

( )
0

a
g

n

A
z dz

A
ϕ=  .     (4) 

Combining Eqs. (2)-(4) we obtain an analytical expression linking N and a, 

( ) ( ) ( )
2

0

, 0
2 1

a

n

h E
N a A z dz a

υ ϕ
κ ν

′
= ≥

−  .    (5) 

In the case of negative normal displacement a, we set N equal to zero, which actually 

corresponds to the absence of adhesion. 

Eq. (5) means that the normal reaction of a crack section is determined by the gap (aperture) 

distribution which, in turn, depends on the nature of a crack. Since typical acoustic excitations 

can always be considered as small perturbations, the normal reaction in the acoustical strain 

range mainly depends on the tangent to the curve ϕ(z) at z=0 (i.e. the first-order Taylor series 

approximation). As such, three cases can be distinguished: a vertical tangent, a horizontal one, 

or a tangent with inclination angle between 0 and π/2. A vertical tangent implies that even for 

a small compressive displacement a, a non-zero contact area is immediately formed. In 

practice, this refers to highly conforming surfaces at the atomic level. Secondly, a horizontal 

tangent refers to an essentially open crack in which points in atomic contact practically do not 



 37 

appear. Finally, an intermediate tangent inclination coefficient k (0<k<∞) results in the 

approximation ( )z kzϕ ≈  which yields the following relationship: 

( ) ( )
2

2
, 0

4 1
n

h Ek
N a A a a

υ
κ ν

′
= ≥

−
    (6) 

The same second-order dependency ( ( ) 2
N a a∼ ) has been introduced by Biwa et al [Biw-04] 

based on existing experimental data for aluminum-aluminum contact and was already used by 

Yuan et al [Yua-15] for modeling the nonlinear interaction of a compressive wave with a soft 

contact interface between two solid blocks of aluminum. This suggests that the quadratic 

dependency is a possible approximation for two globally plane surfaces with uncorrelated 

roughness brought into contact. As an extension we assume that Eq. (6) is also approximately 

valid for fatigue cracks since the internal stresses released during cracking and the associated 

microscopic displacements result in a similar loss of conformity at the atomic scale. Micro-

scale composite roughness that mainly contributes to the acoustic response can thus be 

considered as uncorrelated. 

The quadratic approximation is not the only possible form for modeling the normal load-

displacement relationship. In [Poh-12], [Poh-13] it is shown that rough surfaces with various 

fractal dimensions correspond to different powers in approximation of the kind of Eq. (6). 

Nevertheless, based on experiments [Biw-04], we here accept Eq. (6) as a model equation for 

the normal reaction curve keeping in mind that, for the proposed theory, the specific form of 

N(a) is not essential. 

Certainly, a tangential excitation may considerably displace the contacting asperities in the 

lateral direction and therefore alter the normal reaction curve N(a). However, this effect can 

be neglected if we assume that the random gap between the crack surfaces is a stationary 

process of which the characteristics h′  and ϕ(z) do not depend on the tangential shift. 

Therefore, N(a) is supposed to be a portrait of the system which is not affected by any other 

interactions, and incorporates all geometric information about the rough surfaces in contact. 

1.2. Cattaneo-Mindlin problem 

Similarly to other semi-analytical methods in contact mechanics, the MMD can be regarded 

as a direct generalization of the classical Cattaneo-Mindlin [Cat-38], [Min-53] solution 

developed for elastic spheres in contact loaded by a subsequent application of constant normal 

and tangential forces. As it was shown, the contact zone consists of stick and slip areas that 

represent a central circle and outer annulus, respectively. In the stick zone, no relative 

tangential displacement between close points belonging to the opposite surfaces is possible. In 
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the slip zone, the shear stress τ equals the normal stress σ times the friction coefficient µ, in 

accordance to the Coulomb friction law. At the same time, in that zone, the relative tangential 

displacement is a nonzero vector that must be directed as the local shear stress vector. The 

latter condition can be called the orientation aspect or property of the Coulomb friction law. 

The most compact derivation [Jäg-95] is based on a superposition of the Boussinesq solutions 

for rigid punches straining an elastic half-space in both normal and tangential directions. The 

smallest punch in the superposition coincides with the stick circle that guarantees the no-slip 

condition in the stick zone, and the largest one has obviously the size of the contact zone 

itself. By a proper choice of "strengths" of the punches in the normal and tangential directions 

it is possible to satisfy the Coulomb condition τ=µ σ. However, the orientational property is 

satisfied only approximately. The matter is that for punches applied in the x-direction parallel 

to the half-space surface, the local vectors τ�  are all directed along the same x-axis, while the 

tangential displacement vector has a non-zero in-plane y-component (Eq. (28c) in [Jäg-95]. 

Another simplification is related to the neglect of the second term in the second line of Eq. 

(28b) in the cited paper. In addition, the Catteneo-Mindlin approximation disregards 

dissimilarity phenomena [Mun-94] which, if present, can produce local tangential 

displacement for purely normal compression, since the Poisson effect can be of the different 

magnitude for non-equal spheres of different materials. However, despite some assumptions 

in the analysis, the Cattaneo-Mindlin solution remains a good approximation to frictional 

contact interaction of axisymmetric bodies largely used since 1950s. For equal spheres of 

radius R with the elastic constants E and ν shown in Fig. 3 (contact forces N and T, 

displacements a and b understood hereafter as one-half of total displacements, contact zone 

radius c and stick zone radius s) the solution has the following form: 

*
34

3

E
N c

R
= ,      (7) 

21
a c

R
= ,      (8) 

( )
*

3 34

3

E
T c s

R

µ= − ,     (9) 

( )2 2
b c s

R

µθ= − .     (10) 

with *E  and θ defined as 

( )
*

22 1

E
E

ν
=

−
,     (11) 
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( )
2

2 1

νθ
ν

−=
−

.      (12) 

In this solution, all geometric features of the contact system are taken into account through the 

dependences ( )N N c=  and ( )a a c=  in Eqs. (7) and (8) that represent the classical Hertz 

solution. The result can be rewritten using these functions as 

( ) ( )( )
( ) ( )( )

b a c a c s

T N c N c s

θµ

µ

 = − =


= − =

     (13) 

where in the last terms of each equation the argument of functions ( )N ⋅  and ( )a ⋅  is the 

radius of the stick zone s. The result Eq. (13) is frequently referred to as the reduced elastic 

friction principle [Jäg-05]. The principal Eq. (13), in contrast to Eqs. (7)-(10), is valid for any 

axisymmetric contact geometry, not necessarily spherical. 

 

 

 

 

 

Fig. 3. Geometry of the Cattaneo-Mindlin problem and important parameters, figure taken 

from [Ale-20]. 

The same principle applies to local stresses and displacement fields. It has been shown [Jäg-

98], [Pop-15] that 

( ) ( ) ( )
( ) ( ) ( )

, ,

, ,

w u c u s

c s

ρ θµ ρ ρ

τ ρ µ σ ρ σ ρ

 = −   


= −   

    (14) 

where ( )w ρ  and ( )τ ρ  is the local tangential displacement field and shear stress, 

respectively, and ( ),u c ρ  and ( ),cσ ρ  are corresponding tangential characteristics obtained 

when the contact size equals c. In accordance to the accepted notations, ( ),u s ρ  and ( ),sσ ρ  

are the normal displacement field and the normal stress distribution existing in a virtual case 

where the contact size equals s, a smaller than c value that corresponds to the actual stick zone 

radius. 

It is straightforward to see that τ µσ=  in the slip zone s cρ< < , since the normal stress is 

nonzero only if its first argument is higher than the second one. At the same time, it is 

b
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s c ρ
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possible to check [Jäg-95] that in the stick zone sρ <  the tangential displacement field 

( )w ρ  is constant i.e. surface deformation on the stick zone is that of a rigid body. The above 

two properties are in accordance to the Coulomb friction law formulated locally i.e. at an 

arbitrary contact point.  

In Fig. 4, stress and local displacement distributions are illustrated for two spheres in contact. 

It is appropriate to cite here the corresponding exact solutions [Pop-15]: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Distributions of contact stresses σ(ρ) and τ(ρ) (a) and of local contact displacement 

fields u(ρ) and w(ρ) (b) for spherical profiles calculated in accordance to Eqs. (15)-(18). It is 

straightforward to verify the fulfillment of the Coulomb friction conditions: stresses coincide 

in the slip zone s<ρ<c with factor µ, while the tangential displacement field w(ρ) is constant 

and equal b in the stick zone ρ<s. Here the radial coordinates are normalized on the contact 

radius c. 

( )
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2 22E
c

R
σ ρ ρ

π
= −      (15) 
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( )
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(18) 

1.3. Method of memory diagrams for partial slip 

The above solution is valid in the case where a constant normal force/displacement is applied 

to the contact system followed by an application of constant tangential force/displacement. 

Since the solution is quasi-static, the actual time dependence of any signal is not important, 

and the instantly arising tangential action can be seen as monotonously increasing. This 

situation can be called “simple loading” and is illustrated in Fig. 5 (a). In addition, slip here 

can only be partial i.e. the stick zone, even of a tiny radius, must remain at the contact center. 

To mimic an acoustic excitation, both normal and tangential forces (or displacements, 

depending on what is considered as argument) should evolve simultaneously in a non-

monotonous way. Changes in the normal force or displacement are easy to take into account 

since the normal solution Eq. (6) is fully reversible once we neglect adhesion and plasticity. 

However, the tangential solution [Min-53] is hysteretic. It has a simple form Eqs. (13)-(14) 

only for positive direction of the tangential force that results in slip of positive (by 

convention) sign. If the tangential force starts decreasing, the slip occurs in the opposite 

direction. To account for that, a superposition of solutions [Min-53] should be considered that 

provides the condition τ µσ= ±  in the slip zone, with a proper sign. 

A more recent generalization of this principle is provided by the Method of Memory 

Diagrams, the MMD [Ale-15], [Ale-18]. The method develops the idea described in the 

previous section by applying it to more general loading histories which consist in arbitrarily 

changing oblique compression in 2D or in 3D (the former means that the normal and 

tangential forces stay in one plane). The calculation is organized with the use of an auxiliary 



 42 

internal dimensionless function ( )D ρ  called memory diagram that encodes all memory 

information in the frictional system. In 2D, the solution reads 

( )

( )

0

0

c

c

c

c

da
b D d

dc

dN
T D d

dc

ρ

ρ

θµ ρ ρ

µ ρ ρ

=

=


=



 =






.     (19) 

In the previously considered “simple loading case” (Fig. 5(a)) i.e. when the tangential action 

is added after application of constant normal compression, the memory diagram has a simple 

rectangular shape that corresponds to the classical result Eq. (13) after calculation of the 

integral in Eq. (19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Illustration for the MMD: loading histories at the left and memory diagrams at the 

right, for the simple loading (a), arbitrary loading in 2D (b) and in 3D (c). Here s<ρ<c is the 

slip annulus, see also Figs. 3 and 4. Rectangular fragments in (b) and (c) correspond to 

residuals of previous partial slip events of the kind (a). Curvilinear sections are explained in 

detail in [Ale-15]. 

An arbitrary loading history in 2D corresponds to a more complex shape of the memory 

diagram that can consist of positive and negative horizontal elements as well as from 

curvilinear sections (Fig. 5(b)). The algorithm [Ale-15] keeps track on the evolution of the 
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loading parameters and updates the diagram shape accordingly, in order to keep the balance 

equation Eq. (19). This formula does not require any additional assumptions in comparison to 

the reduced elastic friction principle Eq. (13). Limitations related to this principle are 

discussed by [Jäg-05] and also mentioned in the paper [Ale-15] where the MMD in described 

in more detail. 

If now the loading parameters are allowed to arbitrarily vary in 3D, the system can be 

described via a vector counterpart of Eq. (19), which reads 

( )

( )

0

0

c

c

c

c

da
b D d

dc

dN
T D d

dc

ρ

ρ

θµ ρ ρ

µ ρ ρ

=

=


=



 =






� �

� �
.     (20) 

A detailed analysis [Ale-16] show that the 3D solution should be considered as an 

approximation.  

Eqs. (19) or (20) together with algorithm governing the memory diagram evolution provide 

the possibility to calculate the hysteretic tangential load-displacement relationship through the 

known normal load-displacement relationship given by ( )N N c=  and ( )a a c= . It is easy to 

get rid of the radial coordinate ρ by a proper substitution of variable. For the force-driven 

system solutions Eq. (13) can be written as 

( ) ( )( )
( )

b a N a Q

T N Q

θµ

µ

 = −


= −
     (21) 

where a(N) is the normal displacement-load curve (inverted Eq. 6) and ( )Q N c s= =  in 

Eq. (13). Similarly, for the displacement-driven system 

( )
( ) ( )( )

b a q

T N a N q

θµ

µ

= −


= −
     (22) 

where N(a) is the normal load-displacement curve and ( )q a c s= =  in Eq. (13). 

Correspondingly, the MMD solutions read 

( )

( )

0
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N

N

N

da
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µ η η
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 =






     (23) 

and 
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( )
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=



 =






,     (24) 

for the force-driven and displacement-driven systems, respectively, with inner integration 

variables ( )N cη ρ= =  and ( )a cα ρ= =  in defined via functions N(c) and a(c). 

The use of Eqs. (23)-(24) simplifies the treatment since those equations do not contain any 

geometry-related variables explicitly. The contact geometry only contributes into the normal 

load-displacement curve N(a) or its inverted counterpart. The description Eq. (19) is fully 

symmetric with respect to forces and displacements. Each pair (a, b) or (N, T) can be 

considered as an argument thus making the other pair function. 

1.4. Account for total sliding and contact loss 

As it was mentioned, the method works when the forces are considered as arguments and 

displacements are unknown or vice versa. At the same time, it is important to emphasize that 

the MMD introduced above is only valid for partial slip i.e. when some stick zone remains 

around ρ =0. If T  reaches Nµ  or b  reaches aθµ , the stick zone disappears. The force-

driven system excited by a tangential force exceeding Nµ  will experience accelerated 

movement, which violates the current quasi-static character of description and generally 

complicates the problem. Fortunately, in the case where the system is driven by 

displacements, there exists a simple way to construct a quasi-static force-displacement 

relationship valid in all situations, which may be encountered: partial slip, total sliding, and 

contact loss. 

To do so, we introduce two displacement components of the total displacement 

0b b b= + ɶ .      (25) 

as illustrated in Fig. 6.; bɶ  reflects deformation of one of the contacting bodies due to 

shearing, while 0b  is a tangential shift between the contact centers that develops due to total 

sliding. Since we anyway consider small displacements in comparison to all geometric 

features, the effects of the slight drop of the upper body because of the tangential mismatch or 

contact plane rotation are neglected. 

For the 2D case, the algorithm that provides the unknown tangential force is shown in Fig. 7. 

When the contact is lost, there is no contact interaction, and the bodies are unstrained, i.e. 

0N T= = . When total sliding takes place, T Nµ= ±  with the sign depending on the sliding 



 45 

direction. Finally, for partial slip the MMD algorithm has to be applied, which is symbolically 

expressed as ( )T MMD b= ɶ . In each case, one of the components, 0b  or bɶ , is known directly, 

and the other one is immediately found since their sum equals the known argument. 

Numerically, the algorithm is applied to small increments ∆b and ∆a, and updates previous 

values with small changes calculated at the current step which become previous values at the 

next step, etc. 

 

 

 

 

 

Fig. 6. Partial tangential displacements due to shearing of the bodies and due to the shift 

between contact centers, figure taken from [Ale-20]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Three contact states (contact loss, total sliding, and partial slip) and the 

corresponding solutions for T obtained via repartition 0b b b= + ɶ  for loading in 2D (normal 

and tangential displacements always stay in one plane). More explanations in [Ale-20]. 

In the 3D loading case, tangential displacement b, its components 0b  and bɶ , and force T in 

Fig. 7 become vectors. In addition, the formulas for the total sliding case have to be further 

modified since sliding occurs not in the positive or negative direction as in 2D, but in a 
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direction given by the unit vector 0l b↑↑ ∆
� �

 where 0b∆
�

 is an infinitesimal slip vector, and 

symbol ↑↑  denotes collinearity. These vectors are also collinear with the tangential force, 

l T↑↑
� �

, since slip is caused by T
�

 (orientational aspect of the Coulomb friction law). From 

the previous considerations we also know that b aθµ=
�
ɶ  (assume s=0 in Figs. 3-5(a) or in Eq. 

(13)). Then the repartition Eq. (25) takes the form 

 

0 0pb b b l aθµ= + ∆ +
� � � �

      (26) 

in which 0 pb
�

 is the known component 0b
�

 at the previous step, and the two last vectors are 

collinear. Finally, l
�

 is obtained as a unit vector collinear to 

0 pl b b↑↑ −
� � �

,       (27) 

and then T l Nµ=
��

. The infinitesimal slip vector 0b∆
�

 becomes equal 0 0 pb b b l aθµ∆ = − −
� � � �

 

which means that all components of the repartition Eq. (26) at the current step are determined. 

For brevity, the term MMD comprises the extension to the contact loss and total sliding cases 

(Fig. 7), not only the partial slip situation in Eqs. (19), (23), and (24). The formulation shown 

in Figs. 5 and 7 illustrates the efficiency of the method. Indeed, instead of considering 

detailed evolving distributions of local stresses and displacements, it is enough to introduce 

and update one inner memory function (two functions in 3D). Moreover, the function 

frequently contains constant segments thus allowing to memorize only the beginning and the 

end of each segment and not all intermediate points. The MMD algorithm is based on an 

adaptive grid whose points are created and deleted following the loading protocol instead of 

being predefined at fixed positions. As a result, the method is especially suitable to complex 

loading protocols such as random or acoustical excitation. At the same time, the contact 

geometry should remain relatively simple in order to be imitated by axisymmetric shapes. 

In conclusion, it is instructive to provide an example of the tangential load-displacement 

curve calculated for an exemplar displacement history. In Fig. 8 we show it together with the 

normal one (a) which does not depend on loading history and is approximated here by the 

simple quadratic dependence Eq. (6). In contrast, the tangential curve (b) is hysteretic and is 

of complex shape depending on loading history shown at the left. 
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Fig. 8. Normal load-displacement curve considered (a) is independent on loading history 

while the tangential one depends on it (b). All forces and displacements are measured here in 

arbitrary units. 

1.5. Isotropically rough surfaces and axisymetric bodies 

Deriving the semi-analytical link between the tangential force and displacement we actually 

addressed axisymmetric bodies in the Cattaneo-Mindlin approximation. However, there exist 

arguments showing that the method should be approximately valid for rough surfaces as well. 

Indeed, suppose that contact of rough surfaces is represented as a collection of contacts 

between spherical asperities of different radii and height. The considered contact system will 

have a certain normal response N(a) determined as a superposition of Hertz solutions Eqs. (7)-

(8). It is possible to find another (effective) axisymmetric contact pair having the same normal 

response. This possibility is guaranteed by the known normal contact solution [Gal-61], [Jäg-

95] valid for an arbitrary contact profile characterized by the gap z(ρ) between bodies in 

contact: 

( )
2 2 2

0

2

1

c zE
N ca d

c

ρ ρ
ρ

ν ρ

 
 = −
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Eqs. (28)-(29) provide an indirect link between a and N for a given z(ρ) and potentially can be 

inverted to have the gap profile z(ρ) for a known (say, quadratic) dependence N(a). Then, the 

procedure of the tangential response calculation can be applied to that effective axisymmetric 

contact pair. In accordance to the reduced elastic friction principle Eqs. (13), two contact 

systems having the same normal response will also have identical tangential responses. The 

derivation [Ale-15] should be valid in this case as well. 

For axisymmetric bodies in contact the valued N and T represent forces. For fragments of 

rough surfaces with nominal area An, it is more convenient to introduce average contact 

stresses N/An and T/An. In what follows, we renormalize forces N and T on An and call then 

loads in order to avoid a confusion with stress distributions σ(ρ) and τ(ρ) for equivalent 

axisymmetric bodies. To comply with that, we rewrite Eq. (6) as 

( ) ( )
2 2 2

2
, 0

4 1

0, 0

h Ek
a C a a

N a

a

υ
κ ν

′ ≡ ≥ −= 
 <

   (30) 

dropping An here. The corresponding tangential load T will also have the dimension of 

pressure. 

Here parameter C introduced by Biwa [Biw-04] characterizes primarily the composite 

roughness of the crack faces. Remember that h′  is the root mean square of the random 

surface slope and k is the tangent to the random gap distribution, while the other parameters 

are approximate constants, 2, 1/ 2κ υ≈ ≈ . For two globally smooth aluminum blocks of 

unspecified roughness measurements presented in [Biw-04] produced an estimation 

6 1/ 2 16 10C Pa m−= ⋅ . It is expected that a gap between crack surfaces is broader than between 

two globally smooth blocks, which means that k can be considerably lower. Anyway, contact 

of rough surfaces should be less stiff than one of smooth blocks, therefore the reported value 

of C should be considered as the highest estimation. In our modeling we use lower values. 

2. Finite element description for acoustic waves in materials with 

frictional contacts 

Researchers from the Wave Propagation and Signal Processing Research Group at KU 

Leuven Kulak, Kortrijk, Belgium, worked together to create a finite element code for 

simulating acoustic waves in materials with frictional contacts. You can find more details 

about how it works in reference [Del-18]. The load-displacement relationship obtained in the 

previous section represents a semi-analytical description i.e. given by a number of analytical 



 49 

solutions with parameters determined by the algorithm. Previously [Del-18] it was coded as a 

user-defined boundary condition in a standard finite element package (COMSOL). In this 

thesis, the existing code has been modified to compute the solutions in a large number of new 

cases presented in the next Chapters. An important addition is a study of convergence of the 

numerical procedure accompanied by some optimization efforts. The latter results in a special 

selection of discretization parameters (time step and mesh element size) that produces a given 

precision for lesser computation time. 

2.1. Combining MMD and FEM 

The extended version of the MMD taking into account three possible contact states provides 

boundary conditions in the form of contact loads N and T calculated for any displacement 

history ( ) ( )( ),a t b t . COMSOL accepts user-defined boundary conditions, not necessarily 

expressed in closed form equations, but equally well as an external algorithm written in 

MATLAB and connected to COMSOL using the LiveLink feature for MATLAB [Liv-18]. 

This allows a relatively complex MMD-based algorithm to be directly incorporated in 

COMSOL and hence, ensures a simple and explicit procedure of data exchange between the 

crack model and the solid mechanics unit in COMSOL, organized as follows: 

(a) In the Structural Mechanics Module of COMSOL, normal and tangential stresses, 

defined by appropriate boundary conditions, are used for calculating normal and 

tangential displacements defined at each contact surface at a particular time step of the 

procedure. The relative normal and shear displacements calculated at the discretization 

points on the contact interface (called integration points or Gauss points) are stored as 

outputs of the COMSOL module and considered as an input for the MATLAB code. 

(b) The calculated relative displacement values at all Gauss points on the contact interface 

are used as an input in the displacement-driven crack model (MATLAB code), in order 

to determine the corresponding stress values at these positions, which in turn are 

transferred to COMSOL to update the boundary conditions at the contact interface. 

(c) Steps (a) and (b) are repeated for the next time step, until the desired calculation time is 

reached. 

Using this approach, the final model thus contains two components: the constitutive model for 

cracks with rough surfaces implemented in MATLAB and the wave propagation model 

implemented in the Structural Mechanics Module of COMSOL. It is important to stress again 

that accounting for roughness does not mean that internal roughness meshing is used. The 

roughness is only present on the microscopic level of the crack model, whereas at the 
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mesoscopic level crack faces are considered and modeled as globally flat. The scheme of data 

exchange is presented in Fig. 9. 

The simulations considered here are in 2D because of high computational demands associated 

to an attempt to reproduce a real experimental method. In a simpler case, first results in 3D 

geometries have been obtained [Ale-19] with the use of the 3D MMD version formulated in 

[Ale-16]. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Illustration of MMD-FEM code structure. 

2.2. Convergence studies and optimization 

Initiating our research, we build upon the previously developed MMD-FEM code for 

simulating acoustic waves in materials with frictional contacts. Our sincere thanks go to our 

researchers at the I.E.M.N. laboratory in France and the Wave Propagation and Signal 

Processing Research Group in Belgium. Their collaborative efforts and invaluable 

contributions have been instrumental in laying the essential foundation for this research. 

Before employing the existing code, we initiate our thesis work by executing two fundamental 

technical steps, thereby establishing a robust foundation for our research. Firstly, since the 

model generates unique results in the sense that they cannot be compared with any other 

model in any particular case, error estimation can be made only via convergence analysis. 

Secondly, the convergence analysis grants an opportunity to adjust space and time 

discretization in an optimal way. In other words, we have to avoid a situation when too fine 

time discretization is used together with very coarse spatial meshing and vice versa. 

Moreover, there is one more technical detail that should be checked. Ideally, values of N and 

T coincide with the respective stresses at all points where the boundary condition is posed. In 
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practice, they can be slightly different as the stresses are defined by an internal COMSOL 

solver. The corresponding error also characterizes the computational precision of the entire 

procedure. 

The study has been conducted in the following case. The model geometry consists of a 

rectangular aluminum domain of 150 mm width and 30 mm height, as illustrated in Fig. 10. 

The aluminum sample has density ρ = 2700 kg/m3, Young’s modulus E = 70 GPa, and 

Poisson’s ratio ν = 0.33. A vertical crack with a depth of 15 mm is positioned at distance of 25 

mm from excitation side. At the side boundary of the sample, a shear excitation with a 

frequency f = 80 kHz in a segment of 10 mm at height of 10 mm from bottom surface is 

defined by specifying a vertical (i.e. in y-direction) displacement boundary condition in the 

form 

( )sin 2 ,y excu A ft t Tπ= < ,    (31) 

where A the excitation amplitude (10 nm, corresponds to typical acoustics strains of 10-6) and 

Texc is the excitation duration of 125 µs (that equals about 5 times of time of flight with 

respect to the length). 

 

 

 

 

 

 

 

 

 

Fig. 10. Illustration of the geometry implemented in COMSOL, together with the generated 

mesh. The geometry consists of a rectangular aluminum domain with a crack of finite extent 

positioned vertically at a distance of 25 mm from excitation side of the aluminum domain. The 

geometry was meshed with triangular mesh elements. Smaller mesh elements were generated 

in the region of the crack to keep the boundary condition errors at a low level (Fig. 11). 

Time and space discretizations are characterized by two point numbers, Nt and Nx. The former 

one is a number of time steps per excitation period 1/f, while the latter one is the number of 

mesh elements per smallest spatial element of geometry. In the considered case it is the crack 
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size; a typical longitudinal wavelength of 80 mm is much longer. To keep boundary condition 

errors at a low value, mesh around the crack should be refined with some factor. The mesh 

refinement optimization is done separately and is not discussed here. The illustration in Fig. 

11 shows the boundary condition error for Nt=200 and Nx=12. In future, this error will be kept 

on an approximately the same level considered satisfactory as acoustic nonlinearity itself is 

usually quite small. 

Further, we performed a number of simulations with several values Nt=50, 100, 200, 400 and 

Nx=12, 19, 27, 35, 43. The convergence level was estimated by calculating normalized rms 

deviations between the responses at the observation point (see Fig. 10) for a current case and 

the best case Nt=400, Nx=43. The “responses” in our modeling were the x-component of 

displacement (ux) and stresses σxx and σxy. The results are given below in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The boundary condition error: contact loads N and T calculated by the MMD and the 

respective stress values deternimed by the FEM solver. 

These results show highest Nt, which is reasonable to take for each Nx, and the corresponding 

precision in terms of displacements and stresses. For instance, the last picture shows that for 

Nx=27 it is enough to select Nt=100 to get error of 0.5%, and further increase in Nt is useless. 

time, s 
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N and normal stress 
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If the desired precision is 0.3%, it is necessary to choose a higher Nx=35 and increase Nt up to 

200. 

The error in terms of stresses is usually higher than for the displacement. However, it is the 

normal displacement at the sample’s surface, which is measured in laser vibrometry 

experiment. In this case, for typical nonlinear responses exceeding 1% the precision obtained 

in our preliminary study is satisfactory. The results shown in Fig. 12 help optimize the code in 

terms of the space and time discretization. In each case, they indicate maximum Nt such that 

further time step decrease is useless. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Values of relative errors for σxx (a), σxy (b), and ux (c) at the observation point. 

Curves as functions of Nt are given for several Nx values. The error is calculated by 

comparison of each current case (Nt, Nx) with the best result for Nt=400 and Nx=43. 
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3. Conclusion 

In Chapter II we described the MMD-FEM modeling tool in detail. Firstly, it used a semi-

analytical solution of the Cattaneo-Mindlin type for contact of isotropically rough surfaces 

extended to take into account partial slip, total sliding, and contact loss. The Cattaneo-Mindlin 

approach generalized in the frameworks of the MMD provided calculation of contact loads 

directly from contact displacements and their histories at each point at the crack interface, 

with no need to adjust values at neighboring point for the fulfillment of the Coulomb friction 

law. 

Secondly, the MMD-based boundary conditions were integrated into a standard FEM 

environment (COMSOL) that provided the model for wave propagation in solid materials 

containing frictional cracks. 

We also presented some convergence analysis in one particular case that gave an idea on the 

degree of time and space discterizations required to achieve a certain final precision in terms 

of measurable characteristics. With the developed tool in hands, everything is ready for 

modeling for more or less realistic situations corresponding to the acoustic experiment with 

surface measurement of nonlinear stationary wave displacements (or velocities). 
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Chapter III: Modeling for nonlinear acoustic imaging 

of an isolated crack 

In this Chapter, we describe an extensive series of nonlinear computations of an isolated crack 

in a fragment of a plate considered in an easiest case from the point of numerical modeling. In 

the 2D geometry, we select boundary conditions disabling non-essential motion types e.g. 

bending modes. Besides, we assume a relatively large crack and a low aspect ratio for the 

sample thus not creating tiny geometric features requiring especially dense meshing. A 

collection of a large number of cases with different geometric and excitation parameters gives 

one an idea on detectable and non-detectable cracks as well as on the working range of 

parameters. 

1. Geometry and parameters 

Setting up 2D geometry and boundary conditions for the nonlinear acoustic problem is 

stipulated by the following considerations: 

• The Geometry should represent a fragment of a realistic structure, e.g. a fragment of a 

plate with edges having negligible reflections; 

• The Material attenuation should be high enough to build up stationary waves during 

reasonable time; 

• The top face should be free to imitate scanning by laser vibrometer; 

• Some boundaries should be fixed to avoid movement of a sample as a whole (in 

laboratory experiments, samples are usually suspended, which is not considered here). 

A simple case meeting those requirements is illustrated in Fig. 1. The 15x3 cm2 sample has 

free, fixed and low-reflecting boundaries. The crack has a specific length (we consider cracks 

of various lengths, including 3 cm, 2 cm, 1 cm and 0.5 cm) and is located at a depth of 0.5 

cm; mesh refinement around it is necessary for robust code functioning (see Fig. 11 of 

Chapter II). Further details about mesh refinement in problems related to cracks can be found 

in [Ras-98], [Kho-13]. Fixing the lower boundary for simplicity may limit the excitation of 

bending modes, which could have implications for the acoustic propagation within the 

system. 

It is important to mention that the numerical problem formulated in that way is related to two 

difficulties. One of those is unknown composite roughness statistics for the inner contact that 

makes the coefficient C unknown (see Eq. 21-22 in article published by Biwa et al. [Biw-04]). 
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In their literature, a value 10 1/ 2 16 10C Pa m−= ⋅  has been reported for two aluminum blocks of 

unspecified roughness. In reality, inner crack faces have much higher but partly conforming 

roughness. With no a priori information on it we use value 10 1/ 2 110C Pa m−=  having the same 

order of the value as a first guess corresponding to higher roughness. Further on, the influence 

of this important parameter on nonlinear acoustic images will be evaluated. 

 

 

 

 

 

 

 

 

Fig. 1. Meshed sample of 15x3 cm
2
 dimensions containing a crack. Free, fixed and low-

reflecting boundaries are indicated together with a zone of continuous excitation that has the 

length 2w and is centered at x0. The sample is excited by a vertical displacement uy those time 

dependence is defined by function f(t), figure source from [Ale-23]. 

The second difficulty has a more technical character and is associated to the necessity to have 

highly stable stationary waves, which should be perfectly harmonic in the absence of damage. 

Indeed, a remaining transient component introduces parasite frequency components 

(continuous spectrum), which are not related to nonlinear generation by damage, thus 

corrupting nonlinearity images. In real experiments this effect does not arise as even for low 

attenuation materials a waiting time of as few seconds is sufficient to make sure that no trace 

of the transient regime remains. In numerical modeling, such a delay is hardly possible as few 

real seconds correspond to days of computing on an average PC. Therefore, in our modeling, 

while having elastic parameters of the material equal to that of aluminum to be consistent with 

available data [Tal-79], we use highly exaggerated damping (bulk and shear viscosities 

167
b

Pa sη = ⋅  and 60
v

Pa sη = ⋅ , respectively). These values satisfy the common relationship 

/ /
b v

K Gη η = , with K and G, bulk and shear moduli. Thus, in our first MMD-FEM 

simulations for stationary waves, the material is assumed to have elastic properties of a metal 

but damping typical to composite materials with epoxy-based matrix. The influence of 

attenuation on the transient process decay is estimated in greater detail in Section 2.1. Note 
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that low-reflecting boundaries play a significant role for evacuating the acoustic energy in the 

sample, thus effectively shortening the transient period duration. 

The term stationary waves are used here since the sample has low-reflecting boundaries and 

represents a fragment of a plate, otherwise standing waves with non-moving amplitude pattern 

would be formed. Low-reflecting boundaries are designed to reduce the reflection of waves at 

the boundary of the computational domain, thereby mimicking the behavior of waves in an 

unbounded medium. This is achieved by modifying the boundary conditions to allow waves 

to pass through with minimal reflection. On the other hand, perfectly matched layers are an 

alternative approach where an absorbent layer is introduced around the computational domain 

to absorb outgoing waves, effectively preventing reflections from the boundary. Perfectly 

matched layers are known for their ability to handle wave’s incident at any angle and 

frequency, making them highly effective but computationally more demanding. 

It is well recognized that perfectly matched layers generally offers broader applicability than 

low reflecting boundaries and is often viewed as the superior alternative [Liv-18]. However, 

in our model, we chose low reflecting boundaries due to their simpler design, reduced 

computational demands, and enhanced performance in comparison to perfectly matched 

layers [Muh-21]. 

In what follows, we are focus on two different nonlinear techniques that use single and dual 

frequency excitation. In the former case, higher harmonics will be generated through the 

contact acoustic nonlinearity effect. The latter technique used frequency mixing i.e. the 

appearance of the combination frequencies in the spectrum. Moreover, for the high excitation 

amplitude selected, process of higher orders will take place when the combination frequencies 

interact with the fundamental ones. It is important to mention that, in addition to nonlinear 

interactions, proper nonlinear resonances in the sample are frequently exited which are absent 

in the absence of damage. Further we analyze these effects in more detail and show a series of 

simulated nonlinear images based on the selected criterions. 

2. Single frequency excitation 

The first sequence of results is obtained in a traditional case of a harmonic excitation with 

( ) sin 2f t A ftπ=  where the amplitude A is chosen equal to 86.6 10−⋅ m that provides strong 

but realistic value of acoustic strain 6~ 10
cra

ε −  in vicinity of the crack. The considered value 

of the strain εcra actually denotes the rms of the first strain tensor invariant averaged at a 

number of points near the crack. To ensure the decay of the transient process, the total 
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observation time was 300 excitation periods 1/f. The following damage images are generated 

on the basis of the harmonics generated by contact nonlinearity. 

2.1. Stationary regime identification 

Our analysis only concerns the stationary regime that takes place after the transient process is 

over. In the stationary regime, the wave signal at every point of the intact sample contains the 

same frequencies as the excitation signal. In the damages sample, new frequencies coming 

from nonlinear interactions or from nonlinear resonances will appear providing a source for 

building up images. Therefore, it is essential to correctly identify the stationary regime i.e. 

properly select the signal’s tail in which a residual of the transient process is negligible. 

The choice of the tail’s duration is determined by two contradictory factors. On one hand, it 

should be short enough to make sure that the transient process decayed. On the other hand, it 

should be long enough to represent a richer harmonic content. The latter factor is especially 

important when nonlinear resonances appear at frequencies which are not multiples of the 

fundamental ones thus breaking periodicity of the spectrum. This effect should not interfere 

with the stationary character of the concluding tail, therefore it makes sense to determine the 

stationary regime for the intact sample when those resonances are absent. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparing deviations ,x y
D  between the first and last fragment of the stationary tail 

calculated for different tail durations measured in the numbers Np of quasi-periods, for 

excitation frequencies f ranging from 180 kHz to 390 kHz in an intact sample. 

For signal’s tail containing the number Np of quasi-periods in the considered tail, we define a 
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x yu x t  and last ( ), ,last

x yu x t  quasi-periods of the tail as 
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where Nt is the number of time points per quasi-period, and the wave displacements are 

calculated at the top surface of the sample at the point corresponding to the crack center, Ccr.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Effect of damping on stationary wave formation in an intact sample at f=180 kHz. The 

original damping coefficients 167 , 60
b v

Pa s Pa sη η= ⋅ = ⋅ are multiplied by a factor of 0.2, 

0.5, 1, 2, and 5. The deviations are calculated for specified tail duration 30
p

N =  according 

to Eq. (1) and gradually decrease as long as this factor grows. The first and last fragments 

are illustrated in the upper right plot. 

In Fig. 2, the deviations ,x y
D  are plotted for different numbers Np of quasi-periods in the tail, 

as a function of excitation frequency f. As one can see, taking Np=30 is enough to guarantee a 
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reasonably low deviation ,x y
D  and, at the same time, have a sufficient number of points to 

represent spectral features. 

Note that the illustration Fig. 2 is made for the exaggerated bulk and shear viscosities values 

that equal 167
b

Pa sη = ⋅  and 60
v

Pa sη = ⋅ , respectively. It would be of interest to see the 

effect of material attenuation on the stationarity of the tail in terms of deviations ,x y
D  and to 

specify a reasonable range of damping coefficients suitable for the practical use of the MMD-

FEM model implemented here. Due to limited computational resources, it is preferable to use 

relatively high damping that shortens the stationary wave formation time. 

In the presented example of an intact sample excited at f=180 kHz, the original damping 

coefficients 167 , 60
b v

Pa s Pa sη η= ⋅ = ⋅  are multiplied by factors of 0.2, 0.5, 1, 2, and 5. Fig. 

3 shows the degree of stationarity that can be obtained for different attenuation levels. It is 

important to make sure that the deviations ,x y
D  are less than the nonlinear criterions used as 

images, otherwise the image robustness can not be guaranteed. In the next section we shall see 

how these criterions are defined. 

2.2. Signal processing 

The synthetic data for obtaining damage images represent the time-dependent horizontal ux 

and vertical uy wave displacement components calculated at a number of x-points (here 1000) 

located at the top surface of the sample (similarly to Fig. 3 but for a damaged sample). At 

each scanned x-point we apply the Fourier transform to the stationary solution i.e. the 

identified concluding signal’s tail containing Np quasi-periods each having the duration 1/f. 

Then the excitation frequency f will have number Np in the Fourier spectrum. 

As described in [Ale-23], we introduce the nonlinear criterion (called here image) as 

2

,
, 1

,

n

x y

x y

n x y

A
I

A

 
=   

 
 ,      (2) 

where ,
n

x yA  is the n-th harmonic amplitude shown in Fig. 4(a) and Fig. 5(a). In Eq. (2) the 

harmonics are numbered relatively the fundamental one with frequency f, but their actual 

numbers in the spectrum are n Np since it actually constants Np fragments. 

Ix and Iy images are shown in Fig. 4(b) and in Fig. 5(b), respectively. The full ux and uy 

records at the crack center Ccr are plotted in sets (c) in both figures, while the first and last 

fragments of the stationary tail are shown in sets (d). 



 61 

The definition Eq. (2) has the same metrics as Eq. (1) and also coincides with the criterion 

used in known laser vibrometry experiments (chapter 4 of [Jha-20]) that provide typical 

values of order of 10-3 for moderate damage level. The only important feature is that the first 

harmonic in the denominator of Eq. (2) is actually a complex stationary wave with nodes of 

almost zero amplitude. In this situation, images Ix,y have maxima at the positions of zeroes of 

1
,x yA  regardless of damage-related higher harmonics in the numerator. At the same time, 

normalization in Eq. (2) is essential as zones with lower acoustic intensity in the sample 

should not be penalized. To deal with the issue, we applied running averaging to 1
,x yA  as a 

function of x-coordinate on the top surface, with the result shown in Fig. 4(e) and in Fig. 5(e). 

After application of this simple procedure, it is indeed possible to use the criterion Eq. (2) as 

an image of damage. 

An essential feature of the obtained spectra is the presence of a significant zero harmonic 

0
,x yA . The effect is more pronounced for 0

yA  that can be explained by the strong asymmetry in 

the normal response curve Eq. (30) of Chapter II for positive and negative contact 

displacements a. In other words, the system “prefers” the open state with a<0 since in this 

case there is no contact interaction and the associated strain energy stored in asperities is zero. 

Roughly speaking, the sample globally thickens near crack under the action of the acoustic 

excitation that results in appearance of 0
yA . Further, the zero harmonic in uy engenders the zero 

harmonic in ux through Poisson’s effect and coupling via boundary conditions. 

As we have mentioned, image robustness require the fulfillment of the strong inequality 

, ,x y x y
D I≪ .      (3) 

In addition, image “quality” or robustness can be characterized by its contrast defined (refer to 

[Ale-23]) as the nonlinear criterion averaged for x-values inside the crack divided by an 

average outside of it: 

( )

( )

,
/ 2, / 2

,

, / 2, / 2

cr cr cr cr

cr cr cr cr

x y
x C L C L

x y

x y
x C L C L

I

C
I

∈ − +

∉ − +

= .    (4) 

Here Ccr is the crack center coordinate and Lcr is the crack length. 

Figures 4 and 5 illustrate signal processing leading from ux,y records to images. At the same 

time, one important feature appears in Fig. 5, namely a proper nonlinear resonance of the 

sample marked with green circle. In the next section, these resonances are shown in more 

detail. 
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Fig. 4. For the crack of 3 cm length buried at depth of 5 mm : (a) spectrum 
n

x
A  of 

displacement uy on the top surface at the crack center (x=Ccr, red dot in (b)), with the excited 

frequency f  marked with a red circle, and generated harmonics via nonlinear process 

marked with blue circles; (b) image 
x

I  calculated accordingly to Eq. (2) and the meshed 

sample with the crack indicated; (c) full record of ux as a function of time at the crack center, 

(d) first and quasi-periods of the stationary tail; (e) fundamental harmonic in the above 

spectrum on the entire top surface (original and smoothened via running average). 
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Fig. 5. Same as Fig. 4 but for uy. Here a proper nonlinear resonance at 30 kHz appears in the 

spectrum (green circle). 
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2.3. Proper nonlinear resonances of the sample 

In addition to higher harmonics, spectra on the displacement wave components for the 

damaged sample have another feature that consists in appearance of resonance frequencies 

showing up as maxima of the spectrum (see Figs. 6-8 (a) and (c)). It is essential that they do 

not exist in the intact sample and can occur only when damage is present. Therefore their 

appearance should be related to the crack. Crack is a nonlinear object since it engenders 

contact interactions strongly nonlinear in nature. In that sense, we call them proper nonlinear 

resonances of damaged sample. The phenomenon closely resembles that reported in [Sol-04], 

where the proper resonant frequencies of the sample were identified as the cause behind the 

generation of subharmonics. Their origin is also close to the one of Local Defect Resonances 

(LDR) described in more detail in [Sol-20] and in other relevant literature like [Seg-20]. 

The presence of nonlinear resonances can break the periodicity of the response. Whereas for 

weak resonances with the amplitudes less than the ones of higher harmonics (Fig. 6), their 

effect is also weak (fully superposing first and last fragment in Fig. 6 (b) and (d)), it starts to 

be visible in Fig. 7 (b) and (d) in which a small deviation becomes visible. Strong resonances 

(Fig. 8) completely break the periodicity. The effect occurs since in the considered cases the 

proper resonances have frequencies different from the fundamental one (f) and its multiples. 

This is the reason of the use of signal tails longer than just one period; for the completely 

periodic signals it would enough to consider the last periodic fragment only. 

It is important to mention that the criterion Eq. (2) does not take into account the possible 

nonlinear resonances; a more traditional form corresponding to the known results (chapter 4 

of [Jha-20]) is preferred. 

In section 3.2 the nonlinear resonances are considered in a more specific way; it is suggested 

to use then for a potential selective detection of crack sizes and lengths. 
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Fig. 6. For the crack of 1 cm length buried at depth of 5 mm : (a, c) spectra ,
n

x yA  of 

displacement ,x y
u  on the top surface at the crack center, with the excited frequency 

f =180 kHz marked with red circles, and generated harmonics via nonlinear process marked 

with blue circles, and with proper nonlinear resonances of the sample marked with green 

circles; (b, d) first and last quasi-periods of the signal’s tail. 
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Fig. 7. Similar to Fig. 6 but at excitation frequency 240 kHz. 
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Fig. 8. Similar to Fig. 6 but for a larger crack length (3 cm) excited at frequency 240 kHz. 
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2.4. Simulated nonlinearity images for various frequencies and damage 

parameters 

2.4.1. Convergence of numerical procedure at the level of nonlinear characteristics 

Before presenting a series of images for different parameters, it is important to check the 

modeling procedure for convergence. This was already done at the level of displacement and 

stress responses (Chapter II, Section 2.2). Here we want to make sure that the space and time 

discretization is sufficient for convergence in terms of nonlinear images Ix,y. To quantify the 

impact of additional decrease in the spatial element size, we have computed two damage 

images with the same time step and with mesh element size first original and then reduced 

with the factor of 1.5. The result is presented in Fig. 9 in which two solid lines almost 

coincide with two dotted curves indicating original and refined images, respectively. The 

insignificant difference between these curves characterizes the precision of the numerical 

method related to finite discretization. In Fig. 9, two examples are presented for various 

frequencies and crack sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Demonstration of convergence of the numerical method: solid curves for original 

images and dotted lines for images obtained on mesh globally refined with a factor of 1.5 

coincide with a reasonable precision. Two examples are given for various frequencies and 

crack sizes, figure taken from [Ale-23]. 
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2.4.2. Crack images for various frequencies and crack sizes 

In Figs. 10-17 we present a series of nonlinear images i.e. curves ,x y
I  as functions of x-

coordinate at the top surface for samples with given material properties (Young’s modulus 

107 10E Pa= ⋅ , Poisson’s ratio ν = 0.33, density of 2700 kg/m3, bulk and shear viscous 

damping 167 , 60
b v

Pa s Pa sη η= ⋅ = ⋅ , roughness-related coefficient 10 1/ 2 110C Pa m−= ), and 

for various crack lengths Lcr and frequencies f. All cracks are centered at the same value 

Ccr=3 cm. 

The x-coordinates corresponding to the crack are marked in Figs. 10-17 with two dashed 

vertical lines. The contrast is the principal characteristics related to imaging procedure: 

• High values of Cx,y indicate correct reconstruction of damage position and extent with 

weak or absent parasite peaks in the intact zone (see, for instance, images of 3 cm and 2 

cm cracks at f=300 kHz in Figs. 11 and 13). 

• Moderate Cx,y levels refer to a more ambiguous situation. For instance, there can be two 

or more peaks, one correct and the other ones parasite i.e. located at false position, etc. 

The correct peak can provide moderate Cx,y, but the presence of the false one generally 

indicates poor success of imaging (see e.g. Fig. 12, 2 cm crack at f=210 kHz, dotted 

curve). 

• Contrasts of about 1 or less signify failure of the imaging procedure (for instance, in 

Fig. 16, 0.5 cm crack at f=240 kHz,). 

Results shown in Figs. 10-17 indicate that the detection success (Cx or Cy reaching values of 

101, 102 or more) strongly depends on both frequency and crack size. The dependence on the 

crack size is obvious; larger cracks generally produce images of higher contrast and are 

therefore easily detectable. As for the frequency dependence additionally illustrated in Fig.18, 

it is less evident since at each frequency a nontrivial pattern of stationary waves for each 

harmonics is formed. There are preferable frequencies such as 300 kHz in our examples at 

which imaging is successful for any crack sizes considered. At very low frequencies detection 

is generally worse since the wavelength becomes comparable to the crack size thus poorly 

activating relative movement of crack faces. Indeed, at 180 kHz the longitudinal and 

transverse wavelengths equal 3.4 cm and 1.7 cm, respectively. Very high frequencies are also 

less suitable for imaging as most of acoustic energy is located near the source in that case. 

Therefore higher excitation amplitudes are needed to maintain a relevant strain 6~ 10
cra

ε −  at 

the crack. The frequency range shown in Fig. 18 is selected in accordance to the above 

limitations. It should also be mentioned that the selection of several frequencies does not 
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reveal the entire frequency dependence. Restrained computational recourses allowed us to 

perform computations only for several exemplar frequencies belonging to the range that is 

most promising for detection. Technically, the calculation time comprising 300 periods 

corresponds to a COMSOL file size of the order of 30 Gb. The use of frequency sweep to 

determine optimal excitation frequencies in accordance to the LDR methodology would 

require even larger calculation time; the COMSOL file will be hard to process in that case. 

In Figs 10-17 it can be seen that the nonlinear wave pattern defined in the sense of Eq. (2) 

generally has a non-trivial structure. In some cases, nonlinear quantity Ix,y is concentrated near 

the crack, whereas in other situations it can be more smeared. The 2D pattern calculated at the 

top surface can contain additional (parasite) peaks that mask real crack location. However, 

they reflect physical reality and not result from calculation artifacts. In real experiments 

images showing parasite peaks are often attributed to imperfect experimental conditions and 

are disregarded. 

Anyway, it seems obvious that, in order to have high-contrast detection, the crack can be 

efficiently activated and, moreover, the nonlinear wave pattern at that particular frequency 

should be concentrated near crack and not smeared. 
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Fig. 10. Nonlinear images ,x y
I  of damage calculated at the top surface (at the top of each 

series) and in the entire sample (in the middle); meshed sample is shown at the bottom. Here 

excitation frequency f ranges from 180 to 270 kHz, and crack depth is 0.5 cm. 
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Fig. 11. Similar to Fig. 10 but for the excitation frequency f ranging from 300 to 390 kHz. 
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Fig. 12. Same is in Fig. 10 but for 2 cm crack size 
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Fig. 13. Same as in Fig. 11 but for 2 cm crack size 
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Fig. 14. Same as in Fig. 10 but for 1 cm crack size 

 

1 cm 1 cm 

Ix 

f = 180 kHz 

f = 210 kHz 

f = 240 kHz 

f = 270 kHz 

Iy 

3.9xC =  6.6
y

C =  

0.7xC =  1.1
y

C =  

3.5xC =  7.4
y

C =  

0.6xC =  6.1
y

C =  



 76 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Same as in Fig. 11 but for 1 cm crack size 
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Fig. 16. Same as in Fig. 10 but for 0.5 cm crack size. 
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Fig. 17. Same as in Fig. 11 but for 0.5 cm crack size. 
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Fig. 18. Frequency dependences of image contrasts Cx,y defined as average values Ix,y within 

x-range corresponding to the crack divided by the related averages outside of the crack (Eq. 

4). Four different curves in each graph are plotted for various crack sizes, explained in 

details [Ale-23]. The data correspond to Figs. 10-17. 

Another conclusion drawn from Fig. 18 is that the contrast Cy is generally higher than Cx, with 

a possible reason related to the highly asymmetric normal reaction curve Eq. (30) of Chapter 

II in compression and in tension. The effect of totally different normal crack stiffness in the 

open or closed state can produce a higher nonlinear contribution than friction, while the latter 

remains an important and non-negligible component of the entire contact interaction. 

2.4.3. Effect of roughness parameter C and of viscous damping ηb,v on damage images 

The previous section reveals the influence of frequency and crack size on image robustness; 

however, the impact of two other parameters remains to be evaluated. These are roughness-

related coefficient C and viscosities ,
b v

η η . 

The former one is an essential part of the contact model and represents a combination of 

several characteristics describing, amongst others, composite roughness of inner crack faces, 

while the other one is a priori known material constant. As mentioned, here we use a guessed 

but realistic value of C coefficient, and examplar magnitudes for ,
b v

η η  which are highly 

exaggerated for metals and realistic for epoxy-based composites. In this situation, it is 

important to make sure that the uncertainty related to the choice of these parameters does not 

considerably impact the final images of damage. 
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Fig. 19. Impact of roughness parameter C and attenuation ,b νη  on nonlinear images of 

damage at f=300 kHz. For each crack size, three images are plotted: one with original values 

of C and ,b νη , and two with increased C and ,b νη , respectively. The crack depth is 0.5 cm in 

each case. Figure corresponds to [Ale-23]. 

In Fig. 19 it is shown that a considerable variation in each of C and ,b νη  results in a weak 

shape change in Ix,y together with an appearance of a scaling factor. Correspondingly, the 
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image contrast is also affected slightly that makes us hope that the possibility to detect a crack 

in a certain configuration weakly depends on these two parameters. The illustration is made 

for the optimal frequency f=300 kHz found in the previous section. 

2.4.4. Crack images for various crack depths 

Another question that remains unanswered so far is about an influence of a crack depth on 

crack visibility via surface stationary wave measurements. Without pretending to present a 

full parametric study, here we discuss some results for large cracks (3 and 2 cm length) buried 

at different depths (Fig. 20). 

As in Section 2.4.3, the excitation frequency f is fixed at 300 kHz to potentially maximize the 

contrast, although for various depths the optimal frequency can shift. As expected, visibility 

of cracks generally drops as long as their depth increases. There are, however, two exceptions 

encountered for a crack of 2 cm length buried at 2 cm and 2.5 cm (two last plots at the right in 

Fig. 20, dotted curve for Cx). 

A possible explanation can be related to specific features of stationary wave patterns at higher 

harmonics. Indeed, our earlier numerical results [Del-18] indicate a nontrivial radiation 

diagram of a crack insonified by a sinewave signal of finite duration. For infinite in time 

sinewave excitation, a complex radiation diagram should remain including several maxima 

and minima (or “petals”) as well as diffused components. From that point of view, all peaks in 

images shown in Figs. 10-17, 19 and 20 can eventually be interpreted as “petals” in the 

radiation diagram. For cracks located close to the surface, the petals could not diverge far 

away as for deep cracks and therefore produce higher contrast. 
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Fig. 20. Nonlinear images for samples containing a crack of 3 cm and 2 cm length (at the left 

and at the right, respectively) buried at depths of 0.5, 1, 1.5, 2, and 2.5 cm. The samples are 

excited by a continuous wave of a frequency 300 kHz. Figure source [Ale-23]. 
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Fig. 21. Nonlinear images of cracks having the same length/depth ratio in samples excited at 

300 kHz. Figure taken from [Ale-23]. 

It is important to mention that the radiation diagram for stationary waves depends not only on 

geometric parameters of the crack but also on geometry of the entire calculation domain as it 

represents a result of global interference in the sample. To illustrate this fact we plotted four 

damage images for cracks having the same length/depth ratio (Fig. 21). In these particular 

cases, the results indicate that crack depth is more important than the length; tiny cracks 

located very close to the surface are still visible. 

2.5. Conclusions 

In Section 2, we applied the previously developed numerical MMD-FEM method of solving 

acoustic problems in materials with frictional cracks to imitate nonlinear acoustic imaging 

techniques. As a first step, we considered a number of 2D plate fragments with a crack 

parallel to plate’s surfaces. The samples were excited by a harmonic acoustic wave having a 

certain frequency. After decay of the transient regime, the solution is presented in a form of a 

stationary wave whose harmonics are generated by contact acoustic nonlinearity associated 

with the presence of crack. These results have been recently published in [Ale-23]. 

Numerical modeling allowed us to identify cases where successful detection of crack position 

and extent is possible or not. To quantify the image quality, we introduced image contrasts 

with respect to ux and uy wave components. Then, through a series of examples, we studied 

their dependences on the excitation frequency, on the crack length and depth, as well as on 

length 3 cm, depth 1.5 cm 

18.4 1.5yxC C= =

Iy Ix 

length 2 cm, depth 1 cm 

length 1 cm, depth 0.5 cm 

length 0.5 cm, depth 0.25 cm 

4.54.8x yCC ==

2.61.9x yCC ==

15. 18 69 .x yCC ==
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parameters related to crack roughness and material attenuation. Numerous computer 

simulations suggest the following conclusions: 

• In the framework of the proposed MMD-FEM model, it is possible to detect a vast 

multitude of cracks with different lengths and depths in a way similar to real 

experiments (e.g. via laser vibrometry). 

• There exist optimal frequencies at which imaging is more robust. 

• Image quality does not depend on material and geometry parameters in a simple and 

monotonous way; rather, examining crack depth proves more crucial than its length in 

accurately assessing structural strength and avoiding misidentification of surface-level 

issues. This complexity arises from the formation of a complex stationary wave pattern 

in the generated harmonics in each case. 

• Even small cracks but located close to the surface are visible via nonlinear analysis of 

the surface fields. 

• There is an important technical limitation related to the time of stationary wave 

formation; in real experiments this waiting time does not impose any difficulty while in 

numerical modeling the calculation time becomes high unless strong material 

attenuation combined with low-reflecting boundary conditions are used. 

3. Frequency mixing 

Besides the methodology based on the single frequency excitation and on detection of the 

generated harmonics, there exists also a method that uses two sinusoidal signals on input. 

While exiting two frequencies fI and fII, one expects that damage-related nonlinearity will 

generate signal components with mixed or combination frequencies, 
I II

f f± . From an 

experimental point of view, such an approach is preferable since higher harmonics can be 

generated in the measuring system due to its imperfect linearity, while the combination 

frequencies can appear only due to damage. 

In this Section, we extend our MMD-FEM model onto this case also by assuming 

( ) sin 2 sin 2I I II IIf t A f t A f tπ π= +  (see Fig. 1). It is convenient to relate fI and fII through 

some base frequency fB by assuming, for instance, 3 , 5
I B II B

f f f f= = . In that case, all 

combination frequencies, even of higher order, will coincide with one of the frequency grid 

node. 

The period of such a signal is 1/fB. Keeping other modeling parameters values as in the 

previous section, we observe 100 periods of acoustic excitation, having in mind that the level 
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of attenuation ensures stable stationary waves formation with lower anharmonicity than the 

one generated by the damage-induced nonlinearity. Low-reflecting boundaries aid energy 

dissipation, effectively shortening transient phase. Other parameters here take the same values 

as previously: Young’s modulus 107 10E Pa= ⋅ , Poisson’s ratio ν = 0.33, density of 2700 

kg/m³, bulk and shear viscous damping 167 , 60
b v

Pa s Pa sη η= ⋅ = ⋅ , and roughness-related 

coefficient 10 1/ 2 110C Pa m−= . All cracks are positioned with a uniform center at Ccr =3 cm. 

The variable excitation amplitudes AI,II (with AI = 86.6 10−⋅ m and AII = 1.2 AI) have been 

implemented across all frequencies to ensure a strain value 
cra

ε  approximately at 10-6 or 

higher within the vicinity of the crack. 

As previously, the transition process duration and the beginning of the stationary solution is 

established for the intact sample. The related deviation is guaranteed to be less that a typical 

image value. The aperiodicity can only be created by proper nonlinear resonances related to 

damage, which is discussed in the next section in more detail. 

3.1. Generated harmonics and excited nonlinear defect resonances 

As previously, our consideration is based on the synthetic ux and uy time curves at various x-

points (specifically 1000 points) situated on the upper surface of the sample and on the 

subsequent Fourier analysis of the stationary solution i.e. the concluding signal’s “tail” free of 

the transient regime influence. 

Suppose that the stationary tail of the signal determined for the intact sample has the duration 

Np times the quasi-period fB. Then the base frequency fB will have number Np in the Fourier 

spectrum. Excitation at fI and fII will produce mixed frequencies 
I II

f f±  and, if nonlinearity 

and the excitation amplitudes are strong enough, second-order interactions as well. Anyway, 

frequencies fm generated as a result of such a process will be multiples of fB (fm=m fB), where 

m= 1, 2,…, and the wave field will remain periodic at any point of the sample. 

This frequency content cannot be modified by the presence of linear resonances in the system, 

however, if it comprises some nonlinear resonance features, new frequencies can appear. 

Since the resonances are nonlinear and therefore amplitude-dependent, the new frequencies 

will differ from fm=m fB. Correspondingly, the signal tail will loose periodicity. 

It is remarkable that the nonlinear resonances are more frequent for the frequency mixing case 

than for the harmonic generation. A possible reason is that the spectrum contains a lot of 

strong harmonics fm=m fB, whereas the higher harmonics generated in the single frequency 
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excitation case quickly weakens as long as their order increases. Richer harmonic content has 

more chances to excite proper nonlinear resonances. 

In accordance with the above considerations, it makes sense to introduce two separate 

nonlinear criterions based on the nonlinear frequency mixing:  

( )
( ) ( )

2

,

, 2 2
,

, ,
B

n

x yNL

x y
I II

n I II
x y x yn mf

A
I

A A≠
=

=
+

 ,     (5) 

and on the nonlinear resonances 

( )
( ) ( )

2

,

, 2 2

, ,B

n

x yLDR

x y
I II

n mf
x y x y

A
I

A A≠

=
+

 .     (6) 

As indicated above, the criterion ,
NL

x yI  based on frequency mixing comprises all harmonics 

multiples of fB, except the excitation frequencies fI and fII. In contrast, the second criterion 

contains all other frequency components i.e. it takes into account resonances. 

Each of these criterions as well as their sum 

, , ,
NL LDR

x y x y x yI I I= +      (7) 

can be indicators of damage. In what follows as consider them separately. 

Figs. 22-35 illustrate the spectra of the stationary solution (a) and the nonlinear images Eqs. 

(5)-(7) plotted together with the meshed sample with the crack indicated (b). As in the 

previous section about harmonic generation (Section 2.2, Figs. 4-5) we added also the entire 

record of ,x y
u  (c) as well as their first and last fragments shown together in set (d). The 

following exemplar cases with at the same frequency fB=40 kHz are illustrated: 

• Figs. 22-23: crack of 2 cm length and 5 mm depth, weak resonance in the ux spectrum; 

• Figs. 24-25, crack of 3 cm length and 2.5 mm depth, no resonance; 

• Figs. 26-27, crack of 3 cm length and 5 mm depth, strong resonance in the ux spectrum 

and very strong resonance in the uy spectrum; 

• Figs. 28-29, crack of 3 cm length and 10 mm depth, resonances are masked by stronger 

harmonics; 

• Figs. 30-35, crack of 1 cm length and 2 mm depth, for the original amplitudes as well as 

for amplitudes 10  and 10 times weaker, resonances occur in the ux spectrum at 

frequencies independent on the excitation amplitudes, and they also occur in the uy 

spectrum at other frequencies, which are also independent on the excitation amplitudes. 
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It can be seen that the structures of resonances is quite complex, and that a more profound 

study is necessary that would requite many more examples that would possibly allow to 

associate the resonance frequencies with damage features. The resonances can be very strong 

as in Fig. 27 where they completely destroy the periodic behavior, or they can be masked by 

stronger harmonics as in Figs. 24-25. Due to this fact, the ,
LDR

x yI  criterion is of secondary 

importance, since in many situations its value is negligible while the ,
NL

x yI  criterion identifies 

damage in a robust way (Fig. 23). 

One important feature deserves more attention. The concluding series Figs 30-35 is made for 

the same sample geometry, same frequency as the other images, and for three different 

amplitude levels. It can be immediately seen that the presence of the crack strongly modifies 

the propagation conditions for the excitation frequencies whose values at the crack are not 

proportional to their relative strengths (factor 1.2) near the transducer. We clearly identify 

three resonance frequencies for the ux-component (51.2, 129.2, and 209.2 kHz) and three 

partly intersecting resonance frequencies for the uy-component (51.28, 70.7, and 129.2 kHz). 

The resonance strengths can vary due to different excitation conditions, but the resonance 

frequencies do not depend on the excitation amplitude. This feature makes them similar to 

subharmonics [Sol-04] experimentally found for strongly excited damages materials. Note 

also that resonance frequencies for multi-cracked solids [Ost-01] usually depend on the 

excitation amplitude (they decrease as long the amplitude increases indicating softening 

amplitude-dependent behavior). However, we still prefer call these resonances nonlinear since 

their amplitudes depend on the excitation level in a nonlinear way. 
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Fig. 22. For the crack of 2 cm length buried at depth of 5 mm : (a) spectrum 
n

x
A  of 

displacement ux on the top surface at the crack center (x=Ccr, red dot in (b)), with the excited 

frequencies ,I II
f  marked with red circles, combination frequencies 

I II
f f±  marked with 

orange circles, and other frequencies generated via nonlinear process marked with blue 

circles, and LDR components with green circles; (b) images ,NL LDR

x x
I I  calculated accordingly 

to Eqs. (5)-(6) (pink and green lines) together with their sum 
x

I  (black dotted line); (c) full 

record of ux over time on the top surface at the crack center; (d) first and last quasi-periods of 

the stationary signal’s tail. 
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Fig. 23. Same as Fig. 22 but for the y-component. 
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Fig. 24. Same as Fig. 22 but for the crack of 3 cm length buried at depth of 2.5 mm. 
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Fig. 25. Same as Fig. 24 but for the y-components. 
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Fig. 26. Same as Fig. 22 but for the crack of 3 cm length buried at depth of 5 mm. 
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Fig. 27. Same as Fig. 26 but for the y-components. 
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Fig. 28. Same as Fig. 22 but for the crack of 3 cm length buried at depth of 10 mm. 
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Fig. 29. Same as Fig. 28 but for the y-components. 
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Fig. 30. Same as Fig. 22 but for the crack of 1 cm length buried at depth of 2 mm. 
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Fig. 31. Same as Fig. 30 but for the y-components. 
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Fig. 32. Same sample geometry as in Fig. 30 but for the excitation amplitudes AI and AII both 

reduced in 10  times. 
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Fig. 33. Same as Fig. 32 but for the y-components. 
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Fig. 34. Same sample geometry as in Fig. 30 but for the excitation amplitudes AI and AII both 

reduced in 10 times. 
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Fig. 35. Same as Fig. 34 but for the y-components. 
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3.2. Characterizing different types of resonances 

The nature of the nonlinear resonances has to be better understood. However, it is possible to 

suggest some hypotheses. There exist at least two mechanisms having resonant and nonlinear 

properties at the same time. Firstly, a crack parallel to the surface represents a resonator of 

Fabry-Pérot type. Its nonlinear character follows from the fact that the crack interface is not a 

usual boundary of free or fixed kind, but an entity with highly nonlinear boundary conditions. 

Correspondingly, the resonance condition can represent a relationship analogous to the one 

concerning the number of half-wavelengths per distance between faces, but having an 

important nonlinear component. The resonance Fabry-Pérot type is essentially determined by 

the crack depth and not by its length. 

Secondly, the crack is not just a sound reflecting inner boundary, but an interface with contact 

interaction. An attempt to enlarge the crack aperture results in elastic deformation of a 

material zone surrounding the crack. At the same time, an attempt to shrink it also produces 

strain in material together with activation of contact interaction at the interface. In the both 

cases, a kind of nonlinear restoring force appears that assumes the existence of some spring 

constant (or curve). Father, the strained surrounding material zone has some inertia. In this 

situation, it can be concluded that the crack interface has properties of nonlinear mass-spring 

resonator. Its resonance frequency will essentially depend on the crack length and not on its 

depth. 

There could also be a case of a membrane resonance appearing when the layer of material 

located above the crack is very thin. As for the mass-spring resonator, the resonance here is 

also of mechanical type. However, strong dependence both on depth and size is expected in 

that case, since the depth determines the membrane thickness and therefore its stiffness, while 

the length remains an essential parameter affecting the stiffness as well. Note that a very thick 

membrane tends to the case of mass-string resonance. 

 

 

 

 

Fig. 36. Illustration for possible mechanisms of nonlinear resonances in a solid with a crack. 

With this hypothesis on the resonance nature in mind, we consider a specific resonance shown 

in Fig. 35 at moderate excitation level corresponding to the first strain invariant of order of 

Fabry-Pérot type resonance mass-spring type resonance 

m k e.g. membrane resonance 
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76 10−⋅  near the crack. Namely, it is the resonance frequency of 51.2 kHz appearing in the 

n

y
A  spectrum. To attribute it to a certain resonance type, we performed a series of 

computations for different crack lengths and constant crack depth, and then for different crack 

depths and constant crack length. The result is depicted at Fig. 37. It can be concluded that the 

resonance in Fig. 36 is of the mass-spring type. This is not surprising since the longitudinal 

and transverse wavelengths equal 15.5 cm and 7.8 cm for that frequency that excludes a 

Fabry-Pérot type resonance formation for the crack depth of several millimeters. 

 

 

 

 

 

 

Fig. 37. The dependences of resonant frequency identified at Fig. 34 (see set (a) showing 

resonance at 51.2 kHz) on crack depth and on crack length. In set (a), the crack depth varies 

between 1.6 and 2.4 mm at fixed crack length 2 cm. In set (b), the crack length varies between 

1 and 3 cm at fixed crack depth 2 mm. 

Analysis of the resonance type can present an additional opportunity for modeling-based 

diagnostics. Suppose that, even with absent modeling and experiment agreement at the level 

of particular wave displacements, the resonance type and frequency is reproduced by the 

model correctly. Then, by performing the MMD-FEM modeling for different crack lengths 

and depths in order to match the calculated resonance frequency with the experimental one, 

actual crack parameters can be reconstructed in a way complementary to imaging on the basis 

of nonlinear criterions. 

3.2. Crack images for various base frequencies 

Figs. 38-43 portray a sequence of nonlinear images i.e. curves ,
NL

x yI  and ,
LDR

x yI , computed at the 

top surface. These images correspond to samples possessing designated material properties. 

The contrast values Cx,y introduced in Section 2.1 are calculated for the total criterion 

, , ,
NL LDR

x y x y x yI I I= + . The main distinguishing features of the imaging procedure are represented 

by the contrast in values: a high value signifies a successful imaging outcome, a medium 

value indicates a situation that is unclear, and a low value denotes a failure. 
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As depicted in Figs. 38-43, the contrast illustrates the interpretation of imaging procedure 

success in the following manner: 

• Elevated Cy values signify accurate reconstruction of both the position and extent of 

damage, characterized by weak or nonexistent parasite peaks in the undamaged zone (as 

observed in images for fB=30 kHz for 3 cm crack length). However, some instances with 

relatively lower Cx values compared to Cy raise uncertainties regarding the efficacy of 

the imaging procedure. 

• Intermediate Cx,y values suggest accurate reconstruction of both damage position and 

extent, accompanied by faint or non-existent parasite peaks within the undamaged zone 

(illustrated, for instance, in images corresponding to fB=60 kHz, fB=70 kHz and fB=80 

kHz for 3 cm crack length). 

• Contrasts measuring approximately 10 or below indicate a situation that is less clear. 

This scenario might involve the presence of multiple peaks, with one being accurate and 

the others being parasitic - meaning they are situated at incorrect positions, etc. The 

accurate peak might yield moderate Cx,y values, but the existence of the incorrect one 

usually signifies limited success in imaging effectiveness (as observed, for instance, at 

fB=90 kHz for 3 cm crack length and fB=30 kHz for 2 cm crack length) 

As we have seen before for imaging based on harmonic generation, the structure of the 

nonlinear acoustic field is not necessarily concentrated near the crack. This is additionally 

illustrated by the nonlinear criterion ,
NL

x yI  calculated in the entire 2D domain. Depending on 

the damage parameters and the excitation frequencies, the ,
NL

x yI  distribution can have a clear 

maximum around the crack, as in Fig. 39 for NL

x
I  at fB=60 kHz, or it can be completely 

smeared, as in Fig. 42 for NL

x
I at fB=80 kHz. Multiple parasite extrema can also appear in the 

calculation domain as in Fig. 41 for NL

x
I at fb=40 kHz. Note that 2D images for the nonlinear 

criterions are not available experimentally; this is a point when numerical simulations can be 

of use. 

In many cases, such as all instances in Fig. 39, 
y

I  at fB=70 and 80 kHz, etc, strong nonlinear 

resonances are present. They can tremendously increase the image contrast in comparison 

with the nonlinear criterion (see, for instance, 
y

C  at fB=50 kHz in Fig. 38), but does not 

change the situation when damage detection is unsuccessful (
x

I  at fB=40 kHz in Fig. 38). 

They can also enhance parasite extrema as in the case illustrated in Fig. 42 with 
x

I  at fB=80 

kHz.
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Fig. 38. Nonlinear images , ,,NL LDR

x y x yI I  calculated accordingly to Eqs. (5)-(6) (pink and green 

lines) together with their sum ,x y
I  (black dotted line) at the top surface of sample with 3 cm 

crack. Images ,
NL

x yI  are also presented alone both at the top surface and in the entire 

calculation domain.
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Fig. 39. Same as Fig. 38 but for a frequency ranging from 60 to 80 kHz. 
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Fig. 40. Same as Fig. 38 but for a frequency ranging from 90 to 100 kHz. 
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Fig. 41. Same as Fig. 38 but for the crack of 2 cm length 
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Fig. 42. Same as Fig. 39 but for the crack of 2 cm length. 
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Fig. 43. Same as Fig. 40 but for the crack of 2 cm length. 

3.3. Conclusions 

The two-frequency mixing process with parameters considered here generate strong sum and 

difference harmonics, as well as proper nonlinear vibrations in many cases, producing very 

high values of the nonlinear criterion Ix,y defined on the basis of all harmonics which are not 

present in the excitation signal. In some situations, the nonlinear resonant vibrations dominate 

and become comparable with the excitation amplitudes in the spectrum. This behavior can be 

seen as a typical feature of extremely nonlinear barely open cracks (with no prestress). 
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Generally, the use of the frequency mixing process results in a clear high-contrast detection of 

at least of relatively large cracks, as considered here. In addition, a hypothesis on the nature of 

nonlinear resonances, once validated, can help detect crack depth or length separately. 
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Chapter IV: Qualitative comparison of model and 

experiment 

Geometry and model parameters considered in the previous Chapter were most “comfortable” 

from the point of modeling, meaning that their choice was in the sake of geometric simplicity 

and reasonable computation time. Here our task is to gradually modify geometric parameters 

in order to get closer to a real case for which experimental vibrometry data are available. The 

resemblance is not, however, complete, since our MMD-FEM modeling is limited to a 2D 

situation in the framework in this thesis, whereas real samples are three-dimensional. In what 

follows we will show a series of modeling results that will progressively tend to the 

experimental conditions at least at the level of sample sizes. Despite the gap between 

experimental and modeling situations remains, it is possible to establish a qualitative 

agreement between synthetic and real images of damage. 

1. Available experiment on laser Doppler vibrometry 

In this section, we followed findings on delamination detection in composites through local 

defect resonance done by Segers [Seg-20]. His research work contributed to non-destructive 

testing by extending the capabilities of methods that use the local defect resonance (LDR) 

phenomenon, which enable precise visualization of cracks and delaminations in materials at 

moderate acoustic excitation levels. 

As the author explained in his article [Seg-20], a delamination in carbon fiber reinforced 

polymer sample generates acoustic nonlinearity. The excitation at the LDR frequency allows 

one to focus the acoustic energy near the defect i.e. to activate it in a most efficient way. 

Then, standing waves generated in the sample via a continuous sinewave source excite higher 

harmonics that can be detected from shallower and deeper side of the sample. In this thesis, 

we used a similar methodology that makes it possible to compare experimental and modeling 

results at least in the qualitative manner. Unfortunately, quantitative comparison is still not 

possible due to significant differences in sample geometry and material parameters. 

The experiment has been performed on a sample with dimensions of 290x140x2.2 mm³ 

having a delamination of 20x20 mm² in size. This delamination is created by putting metal 

foil of a 25 µm thickness in between plies. An LDR frequency in such a system was found to 

be 27 kHz; this was the frequency of the continuous sinewave excitation in the imaging 

experiments [Seg-20]. Of course, due to differences in parameters this frequency does not 
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fHH2 fHH3ffund

LDR@defect

PZT PZT PZT PZT PZT PZT

correspond to the LDR in our modeling case. However, for qualitative comparison, we cite 

here the results of the imaging procedure (Fig. 1) 

 

 

 

 

 

 

 

 

Fig. 1. Observations from experiments on particle velocity patterns (a)-(f) made at the 

fundamental excitation frequency ffund as well as at the second (fHH2) and third (fHH3) 

harmonic frequencies. The images are taken on the shallow and deep plate sides relative to 

the delamination position [Seg-20]. 

As it can be seen from Fig.1, the delamination, when subjected to harmonic excitation at the 

LDR frequency, can be detected from both side of the sample via the harmonics imaging.  

During this PhD research I got an opportunity to collaborate with the NDT & SHM laboratory 

at Ghent University. The goal of this collaboration was not to present new experimental 

results but to gain exposure to experiments. Getting proficiency in applying established 

methodologies, specifically the scanning laser Doppler vibrometer (SLDV) measurement 

techniques detailed in [Seg-21], forms a crucial foundation. This contributes to better 

understanding of future simulations. 

The use of images from [Seg-20] ensures transparency, contributing insights without 

introducing new experimental results. Using the same setup used by J. Segers in his research 

([Seg-20], [Seg-21]) for laser Doppler vibrometry, we present the experiment details: 

• A sample of composite fiber reinforce polymer CFRP used with a delamination. 

• For inducing vibrations, two low-power piezoelectric actuators (EPZ-20MS64W Ekulit) 

are affixed to the deep side surface using phenyl salicylate adhesive. Throughout the 

experiments, both actuators receive identical signals.  

• Amplification of the voltage supplied to the actuators is achieved using a Falco Systems 

wma-300 voltage amplifier. 

Opposite side 

(a) (c) (e) 

(b) (d) (f) 

Side closer to 

delamination 
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• The 3D infrared scanning laser Doppler vibrometer from Polytec (PSV-500-3D-Xtra) is 

utilized to capture full-field surface vibrations. 

• In this investigation, only the out-of-plane velocity component VZ is considered. 

Vibrations are measured from both the shallow side and the deep side. 

 

 

 

 

 

 

 

 

Fig. 2. Experimental setup (a) SLDV control unit (b) Visualization of a test specimen 

positioned in front of a 3D scanning laser Doppler vibrometer setup. 

Fig. 2. illustrates the arrangement for scanning a delaminated sample with 3D scanning laser 

Doppler vibrometer. With this initial overview of the experiment, our understanding was 

significantly enhanced, aiding us in the development of a more realistic geometry during our 

modeling process. Additionally, Segers’s research findings served as a foundation, prompting 

us to transition from comfortable conditions to a more realistic representation, as detailed in 

the following section of this chapter. 

2. MMD-FEM simulations in conditions closer to the experiment 

In this Section we describe a set of modeling results obtained in conditions progressively 

approaching the real experimental situation discussed in Section 1. It is important to mention 

that there is still a gap in parameters and conditions between theory and experiment. The 

primary difference is in the number of dimensions: the simulations are in 2D due to high 

computational expenses related to the stationary wave formation, although a 3D code has 

already been developed [Ale-19]. Another feature is that the experimental methodology use 

the LDR concept i.e. the excitation frequency is specially adjusted to excite the defect is a 

most optimal way. In contrast, in our modeling we do not try to optimize the excitation in 

terms of frequency because of time-domain nature of our calculations and their computation 

cost. Anyway, in 2D and in 3D the LDR frequencies are different that does not allow to 

compare the results directly in the quantitative manner. However, we gradually modify 

sample 

3D SLDV 

(b) (a) 
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sample length and thickness in order to make them more realistic. In addition, we consider an 

effect of distance between the transducer and the crack on the image quality. 

2.1. Geometry and parameters 

To imitate a configuration similar to the experiment, we consider a fragment of a much 

thinner plate of 3 mm and, later, of 2 mm thickness, add again the low-reflecting boundary 

conditions at the left and right edges, and drop the assumption of fixed low boundary (see Fig. 

3). The center Ccr of a crack of fixed size Lcr=3 mm is located at 3 mm from the left edge. 

To start with, we keep same values of elastic properties and the roughness-related coefficient 

C as in the previous numerical tests: the Young’s modulus 107 10E Pa= ⋅ , Poisson’s ratio ν = 

0.33, density of 2700 kg/m³, and roughness-related coefficient 10 1/ 2 110C Pa m−= . However, 

ten times decrease in all sample dimensions make it possible to use more realistic values of 

bulk and shear viscous damping coefficients, 16.7 , 6
b v

Pa s Pa sη η= ⋅ = ⋅ , while keeping the 

same rate of transient process decay measured in excitation periods. In this situation, the 

transducer generates Lamb waves in the presence of attenuation. 

 

 

 

 

 

Fig. 3. Sample of 60x2 mm
2
 dimensions containing a crack. Free boundaries are indicated 

together with a zone of continuous excitation (amplitude A and frequency f) by vertical 

displacement uy. The excitation zone (transducer) has the length 2w and is centered at x0. 

2.2. Simulated nonlinear images 

Based on the previous study presented in Chapter III with a substantial sample size, this study 

aims to optimize geometry and frequency settings to achieve qualitative validation, aligning 

with real experimental samples. To accomplish this, a series of computational results are 

presented to streamline experimental parameters. Following the methodology outlined in 

Section 2.1 of Chapter III for computing the nonlinear criterion Ix,y, and contrast Cx,y, Fig. 4 

depicts a set of damage images “scanned” on the x-coordinate at the upper surface.As before, 

the excitation amplitude is maintained at a level that sustains a potent yet typical acoustic  

 low 
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crack zone 

Scanning laser beam 
measures ux and uy 

free boundary 

free boundary 

continuous excitation 

( )( )4

0exp 0.8 / sin 2
y

u A x x w ftπ = − −
 



 116 

  

  

  

  

  

strain 6~ 10
cra

ε −  value in the proximity of the crack. In what follows, we keep the same 

amplitude A of vertical displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Nonlinear images of damage calculated in accordance to Eq. (2) of Chapter III at the 

top surface of samples (3x60mm) with 3 mm crack buried at 0.5 mm excited by a continuous 

harmonic wave of a frequency ranging from 27 kHz to 3 MHz via a transducer depicted as a 

red line. 

The results depicted in Fig. 4 reveal that the success of detection, characterized by Cx or Cy 

attaining values of 101, 102 or higher, exhibits a strong dependence on frequency. Notably, 

our examples demonstrate that certain frequencies, such as 100 kHz, facilitate successful 

imaging for the considered crack size. The choice of frequencies up to 3 MHz is due to the 

previous experience (Section 2 of Chapter III, larger sample) when f=300 kHz was found 

optimal (remember of 10 times scaling). At the same time, the low value of f=27 kHz 

corresponds to the experimentally established LDR frequency. Certainly, due to the difference 

in geometry and parameters this optimum frequency will not hold in the numerical case, but 

such a radical decrease in frequency would be of interest to consider. Indeed, even for such 
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low frequencies corresponding to long wavelengths of 23 cm (longitudinal) and of 12 cm 

(transverse), the successful detection is still possible. Note that 10-times scaling with respect 

to the previous case do not provide the exactly same results since we have modified the 

boundary condition at the bottom surface. Generally, for frequencies between 27 kHz and 100 

kHz a reliable detection is possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Nonlinear imaging: effect of sample length variation on detecting a 3 mm-long crack 

buried at 0.5mm depth, excited by a continuous wave of 100 kHz frequency. Note that the 

excitation zone shifts following the extension in size. 
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Fig. 5 illustrates the effect of sample size and the distance between the transducer and the 

crack on the detection success. It is curious that the clear detection is possible once the 

distance does not exceed a value of about 4 cm and fails at distances of about 5 cm. The effect 

should be related not only to attenuation but also to features of nonlinear stationary waves 

emitted by the crack. At the same time, we remark that MDD-FEM modeling still accepts a 

relatively high aspect ratio of the sample that equals 20 (3x60 mm²) for this specific 

frequency. 

 

 

 

 

 

 

 

 

 

 

Fig.6. Nonlinear imaging of a 3 mm-long crack buried at depths of 0.5 mm (top) and 0.25 mm 

(bottom). 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Similar to Fig. 6, but with the excitation source positioned at a considerable distance. 
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Fig. 8. Nonlinear imaging of 3 mm-long cracks buried at 0.5 mm (top) and at 0.25 mm 

(bottom) in the sample of 2mm thickness. The distance between the transducer and the crack 

is about 4 cm. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Similar to Fig. 8, but with the excitation source positioned at a considerable distance. 

The revealed particular threshold effect deserves more attention. Maintaining the sample size, 

subsequent investigations focused on varying crack depths and experimenting with an 

excitation source positioned at a considerable distance. In Fig. 6 we see that at a shorter 

distance of 4 cm a shallow (0.5 mm depth) and a very shallow (0.25 mm depth) crack are 

equally detected, whereas in Fig. 7, at longer distance, only a very shallow crack is seen. Such 

examples illustrate a combined effect of various factors influencing the imaging success; 

“worsening” one of them can be compensated by a favorable change in another one. Of 
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course, such dependences are also affected by features of the nonlinear stationary wave 

patterns, as it was frequently seen before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Same geometry as in Fig. 9 for a shallow crack (at the bottom), nonlinear images 

presented at the top surface and in the entire calculation domain at frequencies f=100 and 80 

kHz. 
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Fig. 11. Same as Fig. 10 but for the excitation frequency 56 kHz and 54 kHz. 
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Fig. 12. Same as Fig. 10 but for excitation frequency 28 kHz and 27 kHz. 
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The encountered situation is further illustrated in Figs. 8 and 9 plotted in the same case as 

Figs. 6 and 7, but for the plate thickness of 2 mm instead of 3 mm. The MMD-FEM code is 

still functional at that high aspect ratio; however, a significantly altered structure of 

extenuative Lamb modes affects the result. Indeed, a crack at 0.5 mm depth becomes 

detectable, although with a strong parasite peak. 

The last series of computations (Figs. 10-12) concerns the closest to the SLDV experiment 

geometry ever considered in this thesis. We investigated a sample with a height of 2 mm and 

length of 6 cm excited by harmonic signals with frequencies ranging from 100 kHz down to 

27 kHz. The lowest frequency chosen if formally equal to the LDR frequency in the 

experiment presented in Section 1, although the structure of resonances in the modeled 

situation should be absolutely different. It can be seen that generally the defect is detectable 

under frequencies reasonable from the experimental point of view with the contrast of about 

101-102. A comparison of Figs. 10-12 and Fig. 1 allows one to establish a qualitative 

conclusion between modeling and experiment. Potential further progress and the necessary 

actions are discussed in the concluding part of the thesis. 

2.3. Conclusion 

Initially, we downsized the geometry by a factor of 10 (Section 1, Chapter III), analyzing 

results across a frequency spectrum. Encouraged by satisfactory outcomes, we extended the 

sample length, exploring crack position with varying excitation sources with positive results. 

In the subsequent step, we optimized the sample thickness to better approximate real plate 

dimensions and conducted simulations with the excitation source positioned at a significant 

distance. Successfully identifying shallow cracks, we lowered the excitation frequency to 

reach the low-frequency range while maintaining the same crack position. Despite variations 

in parameters compared to real experiments, our results demonstrated some satisfactory 

outcomes. 
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Discussion and perspectives 

In the concluding part of the thesis, we draw general conclusions by outlining the conducted 

research actions and results, as well as discuss a numerous difficulties encountered. Then 

potential further progress is sketched; in that purpose, we identify additional factors that were 

neglected in the present study whereas the account for them can substantially improve things. 

Finally, this research can be placed in more a global context of a program that would lead 

from traditional detection of damage to novel modeling-assisted diagnostics-prognostics. 

1. General conclusions 

The theoretical part of this thesis is based on the semi-analytical contact model of the 

Cattaneo-Mindlin type i.e. applicable for axisymmetric or similar contact geometries with 

friction accounted for as the Coulomb friction law. An obvious conclusion should be made 

concerning the efficiently of the explicit local procedure of load-displacement boundary 

conditions calculation. Indeed, it does not require adjusting elastic fields in a neighborhood in 

order to satisfy the Coulomb friction condition at a given point. 

As an experimental component, we enhanced the clarity on experimental in nonlinear laser 

vibrometry tests. By integrating [Seg-20]'s findings, we established key connections in terms 

of geometric similarities (in 2D) despite variations in simulation conditions. Segers’s results, 

particularly concerning delamination in CFRP composite material, could have been detectable 

on both the shallow and deep sides of the sample with proper excitation through the LDR 

frequency. Since we did not specifically address the LDR frequency in our study, our primary 

focus is to align geometric criteria with Segers’s work, marking the initial phase of our 

comprehensive investigation. 

The principal part of the thesis concerns numerical modeling with the help of the MMD-

FEM code. A vast variety of cases have been considered with parameters’ values and 

conditions ranging from highly idealized to more and more realistic. It is important to note 

that due to numerous technical difficulties a gap in geometric parameters between modeling 

and experiment still remains. The most important difference is in the number of dimensions 

(2D modeling vs 3D experiment). However, with those remarks made, it is possible to 

establish a qualitative agreement at the level of synthetic and real nonlinear images of 

damage. 

A particular feature of modeling results is related to generation of constant acoustic field i.e. 

zero harmonic for single frequency excitation. In the dual frequency numerical tests, strong 
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low frequency components also appear. A possible reason for that is the consideration of 

barely opened cracks those faces experience no prestress but touch each other at the entire 

interface length. Such a contact system “prefers” to stay in open state with no contact 

interaction rather than be stressed by the acoustic field. This highly pronounced bi-modality in 

the normal and related tangential responses can disappear once crack faces are prestressed at 

least partially. 

From the practical point of view, a conclusion is the necessity of further efforts in the 

purpose of establishing more quantitative modeling-experiment agreement. An experimentally 

validated code opens a number of opportunities including better identification of crack 

properties or an eventual possibility to add a prognostics tool capable of predicting further 

evolution of damage. 

2. Encountered difficulties and possible solutions 

Certainly, our novel approach based on a physically plausible model of contact acoustic 

nonlinearity including interface roughness encounters a number of difficulties of essential and 

technical character. The essential issues are related to unknown conditions or factors which 

are accounted for in a simplified way for now. 

2.1. Unknown factors 

One of the important difficulties is unknown properties of the inner roughness represented 

here as parameter C. Indeed, in the absence of proper data, we use a value measured in a 

different case while the real magnitude can deviate substantially. Remember that C 

characterizes not roughness of a single crack face but composite roughness i.e. statistical 

properties of a random gap between faces. Additional mechanical measurements can help 

estimate this parameter for a given sample containing a crack. 

Another problem we encountered is related to possible prestress of crack faces. In reality, 

even in the absence of external action, the crack surfaces are prestresses due to cracking 

process itself. Indeed, once separated, the crack faces will not be ideally conforming at the 

atomic scale, while globally they can match. This feature can be described as an appearance 

of a thin layer of material between the crack coasts or spontaneous thickening of material in 

vicinity of a crack. The thickness of this effective layer depends on an atomic-size mismatch 

and is to be evaluated separately. An attempt to virtually insert a sheet of material inside a 

delamination will result in clamping near the tips i.e. prestress application whereas at a central 

zone a nonzero aperture can appear. In the same way, for a surface breaking crack the atomic-

scale mismatch will produce prestress at the crack tip while the part ending up at the surface 
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will open. This behavior is easily seen in images generated by the nonlinear phased array 

technique [Oha-20]. 

Partial prestress can considerable decrease the intensity of the zero harmonic that reaches 

extremely high values (see Fig. 25 of Chapter III) in our modeling for barely open cracks. 

Indeed, distributed prestress means that some fragments of the crack will always be in 

contact, and the tendency for the system to “prefer” the contact loss state can disappear. At 

the same time, central fragments which are always open will not produce any nonlinear 

signal, same as strongly prestressed crack tips in which friction is disabled. All those effects 

depend on the crack size and the atomic mismatch level and should be evaluated to get more 

realistic description. 

2.2. Technical issues 

We also faced a bunch or technical difficulties related to limited computational resources, 

both in terms of calculation time and disk space. On a modern “average good” PC COMSOL 

files larger than 30-40 Gb are hard to process. The computation time is seriously affected by 

multiple switching between MATLAB and COMSOL calculations that drastically reduces the 

efficiency of MMD-FEM code in the current implementation. Programming in a unique 

environment e.g. using open source implementations of the Discontinuous Galerkin Method 

[Hes-08] can be a huge relief. Indeed, boundary conditions are set on a geometrical entity 

having one dimension less than the equation in volume and should not increase the calculation 

time considerably. Using the current MATLAB-COMSOL version of the code, calculations 

for a cracked sample are approximately 13-15 longer than for an intact one. 

Besides, in the current MATLAB-COMSOL version there is a feature we encountered during 

the optimization stage and call boundary condition error (Fig. 11 of Chapter II). This error is 

coming from the fact that between the boundary condition and the same variables at the crack 

interface but processed by the FEM code in the volume there is an internal time stepping. To 

keep the boundary condition error low we have to use very dense mesh which can be made 

coarser otherwise as we do for intact samples. This inefficiency factor can also be dealt with 

by using a single programming environment. 

The mentioned disadvantages of the current implementation give rise to a number of technical 

limitations. One of them is the difficulty of treating very long signals. Existing in numerical 

acoustics in general, this factor becomes important once stationary waves are considered 

which is required by the chosen methodology. To shorten the transient process, we are forced 

to limit ourselves to materials with high attenuation. Whereas in real experiments waiting for 

a second to make sure that the transient process is over is no problem at all, in modeling long 
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acoustic signals become hard to operate. High attenuation, in turn, leads to a situation 

different from the case of classical Lamb waves in plates and make the known analytical 

results hardly applicable, etc. 

The relative inefficiency resulting from switching between two programming subsystems also 

makes if difficult to perform simulations in 3D which is necessary for a more qualitative 

modeling and experiment comparison. 

3. Perspectives of computer assisted nonlinear acoustic imaging 

In this thesis we made a step towards an experimental validation of the MMD-FEM modeling 

and established a qualitative agreement. Moving in the same direction and achieving a 

quantitative agreement would open new perspectives outlined below. 

Suppose we have a validated code capable of producing synthetic nonlinear data for a known 

damage configuration. Then, by comparison of modeling and actual experimental data it 

would be possible to reconstruct damage in a more precise way. Indeed, experiments produce 

images that approximately indicate damage location and extent. More detailed information 

such as vector data on the measured fields or energy repartition between the generated 

harmonics is not used. Hypothetically, it would be possible to adjust the location, orientation, 

and extent of the crack to better match the available data ignored by the existing imaging 

methods. Generally speaking, it is expected that known link between damage and its 

measured signatures can help better reconstruct the former. 

An obvious next step will not require nonlinear acoustic measurements or modeling but the 

applications of fracture mechanics methods. Once damage is identified, its further evolution 

in known conditions can be predicted by using modern methods describing crack growth 

under certain stresses or factors of environmental character. The creation of a prognostics tool 

on the basis of nonlinear acoustic imaging would complete the NDT strategy and produce a 

number of practical benefits. 

 

 

 

 

Fig. 1. A validated MMD-FEM tool can open new perspectives: known techniques of damage 

detection and imaging can be upgraded by adding a possibility of more precise damage 

identification followed by the creation of a prognostics tool using modern methods of fracture 

mechanics. 
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