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Title: Statistical Interpretation of High-Dimensional Complex Prediction Models for BiomedicalData
Keywords: Interpretability, Machine learning, Statistics, Deep learning
Abstract: Modern large health datasets rep-resent population characteristics in multiplemodalities, including brain imaging and socio-demographic data. These large cohorts makeit possible to predict and understand indi-vidual outcomes, leading to promising re-sults in the epidemiological context of fore-casting/predicting the occurrence of diseases,health outcomes, or other events of interest.As data collection expands into different scien-tific domains, such as brain imaging and ge-nomic analysis, variables are related by com-plex, possibly non-linear dependencies, alongwith high degrees of correlation. As a re-sult, popular models such as linear and tree-based techniques are no longer effective insuch high-dimensional settings. Powerful non-linear machine learning algorithms, such asRandom Forests (RFs) and Deep Neural Net-works (DNNs), have become important tools forcharacterizing inter-individual differences andpredicting biomedical outcomes, such as brainage. Explaining the decision process of ma-chine learning algorithms is crucial both to im-prove the performance of a model and to aidhuman understanding. This can be achievedby assessing the importance of variables. Tra-ditionally, scientists have favored simple, trans-parentmodels such as linear regression, wherethe importance of variables can be easily mea-sured by coefficients. However, with the use ofmore advanced methods, direct access to theinternal structure has become limited and/oruninterpretable from a human perspective. Asa result, these methods are often referred toas "black box" methods. Standard approachesbased on Permutation Importance (PI) assessthe importance of a variable by measuring thedecrease in the loss score when the variableof interest is replaced by its permuted ver-sion. While these approaches increase thetransparency of black-box models and provide

statistical validity, they can produce unreliableimportance assessments when variables arecorrelated.
The goal of this work is to overcome the lim-itations of standard permutation importanceby integrating conditional schemes. Therefore,we investigate twomodel-agnostic frameworks,Conditional Permutation Importance (CPI) andBlock-Based Conditional Permutation Impor-tance (BCPI), which effectively account for cor-relations between covariates and overcomethe limitations of PI. We present two new al-gorithms designed to handle situations withcorrelated variables, whether grouped or un-grouped. Our theoretical and empirical resultsshow that CPI provides computationally effi-cient and theoretically sound methods for eval-uating individual variables. The CPI frameworkguarantees type-I error control and produces aconcise selection of significant variables in largedatasets.
BCPI presents a strategy for managing bothindividual and grouped variables. It integratesstatistical clustering and uses prior knowledgeof grouping to adapt the DNN architecture us-ing stacking techniques. This framework is ro-bust and maintains type-I error control evenin scenarios with highly correlated groups ofvariables. It performs well on various bench-marks. Empirical evaluations of our meth-ods on several biomedical datasets showedgood face validity. Our methods have alsobeen applied to multimodal brain data in ad-dition to socio-demographics, paving the wayfor new discoveries and advances in the tar-geted areas. The CPI and BCPI frameworksare proposed as replacements for conventionalpermutation-based methods. They provide im-proved interpretability and reliability in estimat-ing variable importance for high-performancemachine learning models.



Titre: Interprétation statistique des modèles de prédiction complexes à haute dimension pourles données biomédicales
Mots clés: Interpretabilité, Apprentissage, Statistiques, Apprentissage approfondi
Résumé: Les grands jeux de données de santéproduits, qui représentent les caractéristiquesde la population selon de multiples modalités,permettent de prédire et de comprendre lesrésultats individuels. À mesure que la col-lecte de données s’étend aux domaines scien-tifiques, tels que l’imagerie cérébrale, les vari-ables sont liées par des dépendances com-plexes, éventuellement non linéaires, ainsi quepar des degrés élevés de corrélation. Par con-séquent, les modèles populaires tels que lestechniques linéaires et à base d’arbres de dé-cision ne sont plus efficaces dans ces con-textes à haute dimension. De puissants al-gorithmes d’apprentissage automatique nonlinéaires, tels que les forêts aléatoires et lesréseaux de neurones profonds, sont devenusdes outils importants pour caractériser les dif-férences interindividuelles et prédire les résul-tats biomédicaux, tels que l’âge du cerveau. Ilest essentiel d’expliquer le processus de déci-sion des algorithmes d’apprentissage automa-tique, à la fois pour améliorer les performancesd’un modèle et pour faciliter la compréhen-sion. Cet objectif peut être atteint en évalu-ant l’importance des variables. Traditionnelle-ment, les scientifiques ont privilégié des mod-èles simples et transparents tels que la ré-gression linéaire, où l’importance des variablespeut être facilement mesurée par des coeffi-cients. Cependant, avec l’utilisation de méth-odes plus avancées, l’accès direct à la structureinterne est devenu limité et/ou ininterprétabled’un point de vue humain. C’est pourquoi cesméthodes sont souvent appelées méthodes"boîte noire". Les approches standard baséessur l’importance par permutation (PI) évalu-ent l’importance d’une variable en mesurant ladiminution du score de perte lorsque la vari-able d’intérêt est remplacée par sa version per-mutée. Bien que ces approches augmentent latransparence des modèles de boîte noire et of-frent une validité statistique, elles peuvent pro-duire des évaluations d’importance peu fiableslorsque les variables sont corrélées.

L’objectif de ce travail est de surmonterles limites de l’importance de permutationstandard en intégrant des schémas condition-nels. Par conséquent, nous développons deuxcadres génériques, l’importance par permuta-tion conditionnelle (CPI) et l’importance par per-mutation conditionnelle basée sur des blocs(BCPI), qui prennent efficacement en compteles corrélations entre les covariables et sur-montent les limites de l’importance par per-mutation. Nous présentons deux nouveauxalgorithmes conçus pour traiter les situationsoù les variables sont corrélées, qu’elles soientgroupées ou non. Nos résultats théoriques etempiriquesmontrent que CPI fournit desméth-odes efficaces sur le plan du calcul et solidessur le plan théorique pour l’évaluation des vari-ables individuelles. Le cadre de CPI garantitle contrôle des erreurs de type-I et produitune sélection concise des variables significa-tives dans les grands ensembles de données.BCPI présente une stratégie de gestion desvariables individuelles et groupées. Elle intè-gre le regroupement statistique et utilise laconnaissance préalable du regroupement pouradapter l’architecture du réseauDNNà l’aide detechniques d’empilement. Ce cadre est robusteet maintient le contrôle de l’erreur de type-Imême dans des scénarios avec des groupesde variables fortement corrélées. Il donne debons résultats sur divers points de référence.Les évaluations empiriques de nos méthodessur plusieurs jeux dedonnées biomédicales ontmontré une bonne validité apparente. Nousavons également appliqué ces méthodes à desdonnées cérébrales multimodales ainsi qu’àdes données sociodémographiques, ouvrant lavoie à de nouvelles découvertes et avancéesdans les domaines ciblés. Les cadres CPIet BCPI sont proposés en remplacement desméthodes conventionnelles basées sur la per-mutation. Ils améliorent l’interprétabilité del’estimation de l’importance des variables pourles modèles d’apprentissage à haute perfor-mance.
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Synthèse en français

L’accumulation de données au cours des dernières décennies dans
divers domaines, notamment l’imagerie médicale, la surveillance de la santé
publique et la génomique, a entraîné une augmentation exponentielle du
nombre de variables fortement interconnectées, ce qui a rendu difficile le
traitement efficace des interrelations entre différents prédicteurs par de sim-
plesmodèles linéaires ou arborescents. Cesmodèles, qui fournissaient aupar-
avant des explications transparentes sur leurs résultats, ont été largement
utilisés dans les premiers temps de la science des données. Cependant, ils
s’efforcent aujourd’hui de faire face à la complexité accrue des données. Avec
l’émergence de l’apprentissage automatique (ML), de nouveaux modèles non
linéaires à haute capacité ont été introduits, tels que les forêts aléatoires (RF)
et les réseaux de neurones profonds (DNN). Ces méthodes se caractérisent
par un accès limité et/ou ininterprétable à leurs paramètres, ce qui leur vaut
d’être perçues comme des "boîtes noires" du point de vue humain. Il est donc
nécessaire d’élaborer des méthodes d’explication spécifiques pour compren-
dre leur comportement. Si les méthodes basées sur les permutations sont
largement utilisées dans les environnements à faible dimension en raison
de leur efficacité de calcul et de leurs garanties statistiques, elles risquent
d’interpréter à tort des prédicteurs non pertinents comme étant pertinents
dans des environnements à forte corrélation. En outre, dans les cas à haute di-
mension tels que la neuro-imagerie avec unemultitude de régions du cerveau,
l’itération sur tous les régions pour évaluer leur degré de signification est une
tâche coûteuse.

Pour remédier aux limites de haute-dimensionnalité et de haute-corrélation,
nous avons développé un cadre statistiquement valide pour l’importance
des variables, qui peut être appliqué à des cohortes biomédicales à grande
échelle. Cette thèse se compose de deux parties : la première partie four-
nit un contexte et une justification essentiels pour la deuxième partie, qui
présente les nouveaux cadres développés.

Dans le chapitre 1, les défis rencontrés dans les environnements à haute
dimension et la nécessité de modèles d’apprentissage automatique à haute
capacité et non interprétables, communément appelés "boîtes noires", sont
examinés. Ensuite, le concept d’importance des variables au niveau individuel
et au niveau du groupe est introduit, ce qui est essentiel pour améliorer la
transparence de ces modèles. Bien que l’inférence marginale soit largement
utilisée, nous discutons de la nécessité de recourir plutôt à l’inférence con-
ditionnelle, car le fait d’ignorer les dépendances entre les prédicteurs con-
duit à déclarer à tort les prédicteurs comme significatifs. Bien que de nom-
breuses méthodes d’explication aient été introduites, le maintien d’un con-
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trôle statistique sur l’importance des variables reste le facteur clé pour instiller
la confiance dans les méthodes d’IA afin que les praticiens puissent compren-
dre les enseignements tirés des modèles d’apprentissage automatique. Il se
peut que ce besoin n’ait pas été considéré comme prioritaire dans les travaux
précédents. Dans le chapitre 2, nous examinons la littérature afin d’identifier
les méthodes de pointe pour déterminer l’importance des variables, en con-
sidérant différentes perspectives (local vs global, modèle-spécifique vs agnos-
tique), et en déterminant si des garanties statistiques sont fournies. Pour les
environnements à haute dimension, chap. 3 répond au besoin de méthodes
basées sur les groupes, où les variables sont regroupées par data-driven ou
knowledge-driven a priori. Enfin, le chapitre 4 présente diverses modalités de
données au niveau de la population au sein de grandes cohortes biomédi-
cales, allant de l’imagerie cérébrale aux données sociodémographiques. Ces
modalités sont utilisées pour obtenir des informations dans le domaine des
neurosciences.

La partie contribution de cette thèse s’articule autour de trois axes princi-
paux, qui sont présentés comme suit.

1 . Les Schémas Conditionnels, le Remède aux Fausses Vari-
ables Significatives

À l’heure actuelle, l’approche de l’évaluation de l’importance fondée sur
la suppression est la méthodologie la plus largement acceptée, en particulier
lorsque des garanties statistiques sont recherchées pour justifier l’inclusion
de variables. Cette approche est souvent mise en œuvre à l’aide de sché-
mas de permutation variables. Toutefois, ces approches risquent d’identifier
à tort des variables sans importance comme étant importantes en présence
de corrélations entre les covariables. Dans le chapitre 5, nous présentons
une approche systématique pour l’étude de l’importance de la permutation
conditionnelle (CPI) qui est agnostique et calculatoirement légère, ainsi que
des repères réutilisables d’estimateurs d’importance variable de pointe. Nous
démontrons théoriquement et empiriquement que CPI surmonte les limites
de l’importance de la permutation standard en fournissant un contrôle pré-
cis de l’erreur de type I. Lorsqu’il est utilisé avec un réseau de neurones pro-
fond, CPI fait preuve d’une grande précision sur l’ensemble des critères de
référence. Une expérience d’analyse de données réelles dans un ensemble de
donnéesmédicales à grande échelle a démontré queCPIpermet une sélection
plus parcimonieuse des variables statistiquement significatives. Nos résultats
indiquent que CPI peut être facilement utilisé pour remplacer les méthodes
basées sur la permutation.
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Travail publié Chamma, A., Engemann, D., & Thirion, B.. (2023). Statis-
tically Valid Variable Importance Assessment through Conditional Permuta-
tions. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS 2023). DOI: 10.48550/arXiv.2309.07593..

2 . Le Regroupement est la Clé des Paramètres à Haute-
Dimension

Comme indiqué précédemment, l’importance de la permutation condi-
tionnelle (CPI) contourne les limites de l’importance de la permutation (PI)
dans les cas de forte corrélation. Toutefois, dans des contextes à haute dimen-
sion où les corrélations élevées entre les variables annulent leur importance
conditionnelle, l’utilisation de CPI, ainsi que d’autres méthodes, aboutit à des
résultats peu fiables et à des coûts de calcul exorbitants. Le regroupement
des variables par le biais d’une classification ou d’une connaissance préal-
able offre un certain degré de résilience et facilite des interprétations plus
robustes. Dans le chapitre 7, nous présentons BCPI (importance de permu-
tation conditionnelle basée sur les blocs), un nouveau cadre générique pour
le calcul de l’importance variable avec des garanties statistiques qui peuvent
être appliquées à la fois aux cas individuels et collectifs. En outre, le traitement
de groupes à cardinalité élevée (comme un ensemble d’observations d’une
modalité donnée) est à la fois long et gourmand en ressources. C’est pourquoi
nous introduisons également une nouvelle approche d’empilement étendant
l’architecture DNN avec des couches sous-linéaires adaptées à la structure du
groupe. Nos résultats démontrent que l’approche qui en découle, étendue à
l’empilement, contrôle l’erreur de type I, même avec des groupes fortement
corrélés, et qu’elle présente une précision optimale dans tous les points de
référence. En outre, une analyse de données réelles est effectuée sur un en-
semble de données médicales à grande échelle dans le but de démontrer la
cohérence entre nos résultats et ceux rapportés dans la littérature pour la
prédiction d’une sortie biomédicale.
Travail Publié Chamma, A., Thirion, B., & Engemann, D.. (2024). A Variable
Importance in High- Dimensional Settings Requires Grouping. In Proceedings
of the 38th Conference of the Association for the Advancement of Artificial Intelli-
gence (AAAI 2024). DOI: 10.48550/arXiv.2312.10858..
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3 . Importance des Variables pour les Applications de Neuro-
imagerie

Dans le chap. 8, nous utilisons le cadre construit pour l’importance des
variables, BCPI (Cadre construit pour l’importance des variables avec des
garanties statistiques), sur des entrées corrélées et des groupes entiers de
variables (tels que les lots, les régions cérébrales et les bandes de fréquence)
pour déduire quels prédicteurs sont importants. Nous étudions son poten-
tiel pour améliorer les modèles de prédiction d’apprentissage automatique
adaptés aux applications neuroscientifiques dans quatre grands ensembles
de données multimodales, dans le but de répondre aux questions persis-
tantes concernant l’influence des prédicteurs dans ce domaine. Les résultats
de notre étude sont cohérents avec ceux des recherches antérieures sur l’âge
du cerveau, tout en fournissant des indications sur l’importance statistique-
ment valable des prédicteurs individuels.
En Préparation Chamma, A., Engemann, D., & Thirion, B.. (2024). Con-
ditional Permutation Algorithms for Interpretable Machine Learning in Neu-
roimaging. To be submitted

4 . Conclusion

Enfin, dans le chapitre 9, nous concluons la thèse en résumant nos con-
tributions et en offrant des perspectives plus larges sur les questions non
résolues qui méritent d’être approfondies.

5 . Autres Travaux

Dans le contexte de l’importance des variables, il y a un manque de don-
nées de base pour les variables significatives et non significatives, ce qui né-
cessite des simulations supplémentaires. Pour garantir le réalisme de ces sim-
ulations, deux facteurs clés sont primordiaux : (1) l’inclusion dedivers types de
variables (continues, ordinales et nominales) et (2) l’incorporation de dépen-
dances entre les différentes variables. Dans le chapitre .6, nous présentons
un nouveau cadre itératif pour l’échantillonnage de variables corrélées con-
tinues, ordinales et nominales dans un ordre unique. Nous démontrons que
la corrélation entre les différentes variables est préservée lors de l’utilisation
de variables extraites d’un ensemble de données biomédicales réelles.
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6 . Logiciel

Afin de faciliter la reproductibilité scientifique, nous avons implémenté les
méthodologies présentées dans cette thèse dans un paquetage Python con-
vivial et interopérable au sein d’un logiciel open-source, qui est disponible en
téléchargement sur: https://github.com/Parietal-INRIA/hidimstat. En
outre, nous avons préparé une version R de ces méthodologies.
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Overview

The accumulation of data over the past decades in various fields, includ-
ing medical imaging, public health surveillance, and genomics, has led to an
exponential increase in the number of highly interconnected variables, which
made it challenging for simple linear or tree-based models to effectively pro-
cess the interrelationships betweendifferent predictors. Thesemodels, which
previously provided transparent explanations of their output, have been used
extensively in the early days of data science. However, they are now strug-
gling to cope with the heightened complexity of the data. With the emergence
machine learning (ML), new high-capacity non-linear models have been intro-
duced, such as random forests (RF) and deep neural networks (DNN). These
methods are characterized by a limited and/or non-interpretable access to
their parameters, which has led to them being perceived as "black boxes"
from the human perspective. As a result, it is necessary to build dedicated ex-
planation methods to understand their behaviour. While permutation-based
methods are widely used in low-dimensional settings due to their compu-
tational efficiency and statistical guarantees, they risk misinterpreting non-
relevant predictors as relevant in high-correlated settings. Furthermore, in
high-dimensional cases such as neuroimaging with a multitude of brain re-
gions, iterating over all regions to gauge their degree of significance is a costly
task.

To address both high-dimensionality and high-correlation limitations, we
have developed a statistically valid framework for variable importance that
can be applied to large-scale biomedical cohorts. This thesis is comprised of
two parts: the first part provides essential background and rationale for the
second part, which presents the new developed frameworks.

In chap. 1, the challenges encountered in high-dimensional settings and
the necessity for high-capacity, non-interpretable machine learning models,
commonly referred to as "black boxes," are discussed. Subsequently, the
concept of variable importance at both the single and group levels is intro-
duced, which is essential for improving the transparency of these models.
While marginal inference is widely used, we discuss the need to deploy con-
ditional inference instead, as ignoring dependencies among predictors leads
to wrongly reporting predictors as significant. While numerous explanation
methods have been introduced, maintaining statistical control on variable im-
portance remains the key factor to instill confidence in AI methods for prac-
titioners to comprehend the insights derived from machine learning models.
This needmight not have been prioritized in previous works. In chap. 2, we ex-
amine the literature to identify the state-of-the-art methods for determining
variable importance, considering different perspectives (local vs global, model-
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specific vs agnostic), and whether statistical guarantees are provided. For high-
dimensional settings, chap. 3 addresses the need for group-based methods,
where variables are grouped by either data-driven or knowledge-driven prior
grouping. Finally, chap. 4 introduces various population-level data modal-
ities within large biomedical cohorts, ranging from brain imaging to socio-
demographics. These modalities are used to extract insights in neuroscience.

The contribution part of this thesis is organized around three major direc-
tions, which are presented as follows.

1 . Conditional Schemes, The Remedy for Fake Significant Vari-
ables

At present, the removal-based approach to importance assessment is the
most widely accepted methodology, particularly when statistical guarantees
are sought to justify variable inclusion. This approach is often implemented
with variable permutation schemes. However, these approaches riskmisiden-
tifying unimportant variables as important in the presence of correlations
among covariates. In chap. 5, we present a systematic approach for study-
ing conditional permutation importance (CPI) that is model agnostic and com-
putationally lean, as well as reusable benchmarks of state-of-the-art variable
importance estimators. We demonstrate theoretically and empirically that
CPI overcomes the limitations of standard permutation importance by provid-
ing accurate type-I error control. When used with a deep neural network, CPI
consistently shows top accuracy across benchmarks. An experiment on real-
world data analysis in a large-scale medical dataset demonstrated that CPI
provides a more parsimonious selection of statistically significant variables.
Our results indicate that CPI can be readily used as drop-in replacement for
permutation-based methods.
Published work Chamma, A., Engemann, D., & Thirion, B.. (2023). Sta-
tistically Valid Variable Importance Assessment through Conditional Permuta-
tions. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS 2023). DOI: 10.48550/arXiv.2309.07593..
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2 . Grouping is The Key for High-Dimensional Settings

As previously stated, conditional permutation importance (CPI) circum-
vents the limitations of permutation importance (PI) in high-correlation cases.
However, in high-dimensional settings where high correlations between vari-
ables negate their conditional importance, the use of CPI, as well as other
methods, results in unreliable outcomes and exorbitant computational costs.
The grouping of variables via clustering or prior knowledge provides a degree
of resilience and facilitates more robust interpretations. In chap. 7, we intro-
duce BCPI (block-based conditional permutation importance), a new generic
framework for variable importance computation with statistical guarantees
that can be applied to both single and group cases. Furthermore, the han-
dling of groups with high cardinality (such as a set of observations of a given
modality) is both time-consuming and resource-intensive. Therefore, we also
introduce a new stacking approach extending the DNN architecture with sub-
linear layers adapted to the group structure. Our results demonstrate that the
ensuing approach extended with stacking controls the type-I error even with
highly-correlated groups and shows top accuracy across benchmarks. Fur-
thermore, a real-world data analysis is conducted on a large-scale medical
dataset with the objective of demonstrating the consistency between our re-
sults and those reported in the literature for a biomarker prediction.
Published work Chamma, A., Thirion, B., & Engemann, D.. (2024). A Vari-
able Importance in High- Dimensional Settings Requires Grouping. In Proceed-
ings of the 38th Conference of the Association for the Advancement of Artificial
Intelligence (AAAI 2024). DOI: 10.48550/arXiv.2312.10858..

3 . Variable Importance for Neuroimaging Applications

In chap. 8, we utilize the constructed framework for variable importance,
BCPI (Built Framework for Variable Importance with Statistical Guarantees),
on correlated inputs and entire groups of variables (such as batches, brain re-
gions, and frequency bands) to infer what predictors are important. We inves-
tigate its potential to enhancemachine learning predictionmodels tailored for
neuroscience applications within four big multimodal datasets, aiming to ad-
dress lingering questions regarding the influence of predictors in this domain.
The findings of our study are consistent with those of previous research on
brain age, while also providing insights into the statistically valid importance
of individual predictors.
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In Preparation Chamma, A., Engemann, D., & Thirion, B.. (2024). Con-
ditional Permutation Algorithms for Interpretable Machine Learning in Neu-
roimaging. To be submitted

4 . Conclusion

Finally, in chap. 9, wewrap up the thesis by summarizing our contributions
and offering broader perspectives on unresolved questions that deserve fur-
ther investigation.

5 . Other Works

In the context of variable importance, there is a lack of ground truth
data for significant and non-significant variables, necessitating additional sim-
ulations. To ensure the realism of these simulations, two key factors are
paramount: (1) the inclusion of diverse types of variables (continuous, ordinal,
and nominal) and (2) the incorporation of dependencies among the different
variables. In chap .6, we present a novel iterative framework for the sampling
of continuous, ordinal, and nominal correlated variables in a single order. We
demonstrate that the correlation among the different variables is preserved
when using variables extracted from a real biomedical dataset.

6 . Software

In order to facilitate scientific reproducibility, we have implemented the
methodologies presented in this thesis within a user-friendly and interoper-
able Python package within an open-source software, which is available for
download on: https://github.com/Parietal-INRIA/hidimstat. Addition-
ally, we have prepared an R version of these methodologies.
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1 - Motivation and Problem Statement

Summary The use of Machine Learning (ML) techniques in various scien-
tific fields is due to their ability to predict outcomes based on complex input
data. However, for the purpose of advancing scientific understanding, ML
should not be used exclusively as a prescriptive tool. Instead, it should be
leveraged to generate scientific explanations. This necessitates the incorpo-
ration of explainable AI (XAI) methodologies, particularly variable importance
(VI) analysis. Variable importance has evolved into an essential instrument,
furnishing valuable perspectives for selecting features, interpreting models,
and debugging them. By identifying the most relevant variables, researchers
can simplify the modeling process and potentially improve performance. Un-
derstanding how different variables contribute to amodel’s predictions is cru-
cial for explaining its logic and building trust in complex AI systems. Further-
more, metrics that gauge variable importance can help identify irrelevant or
redundant variables, thus preventing overfitting. In this chapter, we provide
a thorough examination of the motivation behind our research, articulate the
problem statement, and introduce the foundational concepts utilized in the
following chapters.

1.1 . Machine Learning & High-Dimensional Settings

Machine learning (ML) algorithms are widely used in various scientific
fields, including biomedical applications [Strzelecki and Badura, 2022, Alber
et al., 2019], neuroscience [Kora et al., 2021, Knutson and Pan, 2020], and so-
cial sciences [Lundberg et al., 2022, Chen et al., 2021]. The use of machine
learning is of growing interest in biomedical research [Iniesta et al., 2016, Tay-
lor and Tibshirani, 2015, Malley et al., 2011] for predicting biomedical out-
comes from heterogeneous inputs [Giorgio et al., 2022, Sechidis et al., 2021,
Hung et al., 2020]. Biomarker development is increasingly focusing on multi-
modal data including brain images, genetics, biological specimens, and behav-
ioral data [Yang et al., 2022, Coravos et al., 2019, Castillo-Barnes et al., 2018,
Siebert, 2011, Ye et al., 2008]. The growing significance of machine learning
in society has raised concerns about accountability, which has led to research
on interpretable machine learning.

Indeed, the field of health and life sciences is undergoing exponential
growth in both the volume and complexity of data. The analysis of this data,
often referred to as high-dimensional, presents a complex and multifaceted
challenge for researchers and practitioners. It encompasses diverse formats
and emerges from various contexts, requiring advanced analytical methods
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for examination. For instance, comprehending treatment response in can-
cer patients requires navigating a complex network of interconnected vari-
ables. These variables include patient characteristics such as age, genetic
makeup, and lifestyle factors, disease characteristics such as subtype and
stage, treatment protocols such as dosage and frequency, biomarkers such as
hormone receptor status and genetic mutations, adverse effects, supportive
caremeasures, andmethods for response assessment such as imaging scans
and blood tests. When evaluating the effectiveness of a new chemotherapy
drug for breast cancer, researchers must consider how these variables inter-
act to determine which patients are most likely to benefit from the treatment,
what factors contribute to treatment success or failure, and how to optimize
treatment strategies for improved outcomes. Large cohort studies, such as
repositories like the UK Biobank [Sudlow et al., 2015], generate vast amounts
of complex data due to the large volume and heterogeneity of the variables
captured. The data encompasses a rich array of diverse modalities, from dis-
crete binary or categorical indicators to continuous variables that reflect vari-
ous physiological parameters.

This inherent complexity is further amplified by the high dimensionality
of the data, especially in domains like brain imaging and genomic analysis.
These fields involve a multitude of variables, posing significant challenges
for researchers attempting to extract meaningful insights from the data. For
example, a researcher investigating heart disease may first examine patient
demographics and medical history. By utilizing more advanced methods, re-
searchersmay discover subtle genetic variations or lifestyle habits that have a
significant impact onheart health. This could lead to thedevelopment ofmore
targeted prevention strategies. In these domains, the data not only increases
in scale but also forms a complex web of interrelationships. The variables’
intricate relationships result in highly correlated features and patterns that
are challenging to detect. To comprehend these relationships, researchers
require powerful analytical tools. High-dimensional settings with correlated
inputs can put strong pressure on model identification.

Accordingly, when dealing with large samples where the number of obser-
vations greatly exceeds the number of variables, it is of interest to use com-
plex prediction models [Biecek, 2018]. While complex, often high-capacity
nonlinear models, offer greater predictive power compared to simpler lin-
ear or tree-based models, they concurrently present challenges in obtain-
ing relevant explanations [Mi et al., 2021], thus it becomes harder to assess
the role of features in the prediction [Casalicchio et al., 2019, Altmann et al.,
2010]. Additionally, in epidemiological and clinical studies, one is interested
in population-level feature importance, as opposed to instance-level feature
importance. There’s a fundamental contrast between the two approaches:
local methods seek explanations specific to individual instances or samples,
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whereas global methods seek overarching explanations regarding the under-
lying mechanism generating the observed data.

Medical research seeks to identify a limited number of crucial factors for
diagnosis or risk assessment by utilizing large observational datasets and ro-
bust predictivemodels. This approach aids in efficiently targeting populations
and reducing the costs associatedwith extensive phenotyping inmedical stud-
ies. Similarly, in studies focusing on treatment response prediction for a given
disease [Hines et al., 2023], the emphasis is placed on deriving predictions
from a restricted set of variables, enhancing practical applicability.

1.2 . Single Variable Importance

When a patient presents with symptoms such as fever, cough, and fa-
tigue, it is crucial to identify the relevant variables for their condition. For
instance, the presence of fever may indicate a possible infection or inflam-
matory response, cough may indicate respiratory problems like pneumonia,
and fatigue may indicate various underlying conditions. This information is
critical for formulating an accurate diagnosis and treatment plan. Failure to
do so could result in a misdiagnosis, leading to ineffective or even harmful
interventions. Consider also a scenario where researchers analyze a massive
dataset of brain scans, cognitive tests, sleep patterns, and social interactions
from thousands of people to determine the factors that contribute to amental
health disease like depression. In both cases, the challenge is to distinguish
the truly influential factors from the available information. This is where Vari-
able Importance comes into play.

According to Zien et al. [2009], variable importance (VI) can be introduced
as the process of "estimating the influence of a given input variable to the
prediction made by a model", thus reaching a comprehensive understanding
of the decision process which is crucial for providing statistical and, ideally,
scientific insights to the practitioner [Gao et al., 2022, Molnar et al., 2021a,
Fleming, 2020, Hooker et al., 2019].

The concept of variable importance has a rich historical background that
is closely linked to the development of statistical modeling, despite its appar-
ent simplicity. Since the early days of scientific investigation, researchers have
aimed to identify the significance of specific factors through isolation in exper-
iments [Hepburn and Andersen, 2021]. With the rise of statistical modeling,
particularly linear regression [Galton, 1886], amore quantitative approach for
evaluating the importance of variables has been developed. The magnitude
and significance of a variable’s coefficient offered a measurable gauge of its
impact. Methods such as stepwise regression were developed to systemati-
cally identify the most influential variables by adding or removing them from
the model. Nonetheless, these methods focus primarily on individual vari-
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ables and linear relationships, which can make it challenging to identify com-
plex interactions between variables that may be crucial for understanding the
underlying connections in the data. Therefore,more advanced techniques are
needed. These advanced techniques are necessary for uncovering complex
patterns and relationships among the variables.

A significant moment occurred in the 1990s with the introduction of spe-
cific metrics designed for tree-based models, such as Random Forests. In
his influential paper, Breiman [2001] introduced theMean Decrease Accuracy
(MDA)metric. This metric evaluated the reduction in amodel’s accuracy when
the values of a variable were randomly permuted, effectively quantifying the
variable’s importance in accurate prediction. This progress led to the devel-
opment of various metrics for evaluating the significance of variables, which
will be detailed in the next chapter. It is relevant to note the difference be-
tween analyzing a model, which involves identifying variables that contribute
to a specific outcome, and analyzing the process that produces the data. This
study aims to identify relevant predictors for the model by using non-causal
techniques based on the statistical relationships observed between the vari-
ables. However, the quality of interpretation heavily relies on themodel used,
emphasizing the importance of selecting an appropriate fitting model. This
highlights the rationale for using model-agnostic approaches, which give sci-
entists the chance to explain the decision-making process of any model.

Several model-agnostic methods have been proposed [Molnar, 2022,
Ribeiro et al., 2016]. Examples include Permutation Feature Importance (PFI)
[Breiman, 2001], Conditional Randomization Test [Candes et al., 2017] and
Leave-One-Covariate-Out (LOCO) [Lei et al., 2018]. All these instances constitute
removal-based approaches [Covert et al., 2020], and are so far, the only ones
known to provide statistically sound measures of significance. The need for
statistical significance in hypothesis testing is discussed in the following sec-
tions. Importantly, removal-based approaches require retraining the model
after removing the variable of interest and are, therefore, time-consuming.
Moreover, the common Permutation Importance (PI, Breiman 2001) risks mis-
taking insignificant variables for significant ones when variables are corre-
lated [Hooker et al., 2021].
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1.3 . Hypothesis Testing

Almost a century ago, Ronald Fisher introduced the concept of hypothesis
testing in his seminal works [Fisher, 1992, 1936]. Hypothesis testing involves
using observed data to make decisions regarding the characteristics of the
underlying data-generating model. A hypothesis test sets out rules specifying
forwhich sample values the decision ismade to acceptH0, the null hypothesis,and for which sample valuesH0 is rejected andHα, the alternative hypothesis,is accepted.

An early instance of hypothesis testing is recounted in Fisher [1936]’s book
"Design of Experiments". The renowned statistician sought to evaluate a fe-
male colleague’s assertion that she could discern whether milk or tea was
poured first into a cup based solely on taste. Fisher devised an experiment
in which his colleague was presented with eight cups of tea, four prepared
with milk first and four with tea first, in random sequence. Subsequently, one
might inquire about the probability of her correctly identifying the origins of
the beverages purely by chance. The null hypothesis, denoted asH0, positedthat the lady lacked the ability to distinguish between the order of preparing
a tea cup, while the alternative hypothesis, Hα, suggested that she could ac-
curately classify the order of tea cup preparation.

Usually, in conducting hypothesis testing, we define a test statistic, indi-
cated by T . An example of a test statistic is the sample mean: T (x1, . . . , xn)= ∑n

i=1
1
nxi. Once the test statistic is computed, a decision must be made to

determine whether the outcome of the hypothesis test holds statistical signif-
icance. One approach involves comparing the test statistic to a specific quan-
tile of its null distribution, known as the significance level (denoted by α). This
significance level represents the probability of rejecting the null hypothesis
H0 under the assumption that it is true. Alternatively, one may present the
outcomeof a hypothesis test using a pvalue which satisfies underH0 the follow-ing property: PH0(pvalue ≤ t) ≤ t ∀t ∈ [0, 1]. As a consequence, it is feasible to
create a test statistic at the significance level α, for any α ∈ (0, 1). Essentially,
the smaller the pvalue , the greater the confidence with which the statistician
can rejectH0.In any testing scenario, there are two potential errors that can occur. A
false positive, also known as a type I error, happens when we incorrectly re-
ject a true null hypothesis. Conversely, a false negative, or type II error, occurs
when we fail to reject an alternative hypothesis. Ideally, one aims to minimize
both the occurrences of type I and type II errors simultaneously. However,
achieving this balance is often impractical, necessitating a trade-off between
the two. Typically, this trade-off entails minimizing type II errors while adher-
ing to a constraint on type I errors. Minimizing false negatives can also be
interpreted as maximizing true discoveries, which represents the statistical
power of the hypothesis test. The statistical power of an individual hypothesis
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test refers to the likelihood that the test accurately rejects the null hypothesis
H0 when the alternative hypothesisHα is true.

1.4 . Statistical Control

In the latter part of the 20th century, there was a surge in the develop-
ment and deployment of sophisticated machine learning models. The field
of interpretable machine learning focuses on obtaining statistical guarantees
for variable importance under these models. The goal is to identify the key
variables that drive a model’s predictions using mathematically proven meth-
ods. These guarantees are a crucial in linking a model’s complexity to human
comprehension, which enables trust in the model’s interpretations. They en-
sure that identified important variables are not merely bystanders or victims
of spurious correlations. Moreover, these guarantees facilitate model opti-
mization by discarding irrelevant features, enhancing efficiency.

One aspect often neglected in much of the literature on variable impor-
tance is the crucial need tomanage error rates during the process. The poten-
tial costs of errors can be large; for instance, in genetic analysis, the expense
of investigating a wrongly identified gene could be unbearable [Zhao et al.,
2022, Candes et al., 2017]. As the identification of relevant variables is model-
dependent and potentially unstable, point estimates of variable importance
are misleading. One needs confidence intervals of importance estimates or
statistical guarantees, such as type-I error control, i.e. the percentage of non-
relevant variables detected as relevant (false positives). This control depends
on the accuracy of the p-values on variable importance being non-zero [Crib-
bie, 2000].

Within the family of removal-based importance assessment methods
[Covert et al., 2022], a popular model-agnostic approach is permutation vari-
able importance, thatmeasures the impact of shuffling a given variable on the
prediction [Janitza et al., 2018, Breiman, 2001]. By repeating the permutation
importance analysis on permuted replicas of the variable of interest, impor-
tance values can be tested against the null hypothesis of being zero, yielding p-
values that are valid under interactions among variables. Yet, statistical guar-
antees for permutation importance assessment do not hold in the presence
of correlated variables, leading to selection of unimportant variables [Molnar
et al., 2021b, Hooker et al., 2021, Nicodemus et al., 2010]. For instance, the
method proposed in [Mi et al., 2021] is a powerful variable importance evalu-
ation scheme, but it does not control the rate of type-I error.

As models play an increasingly central role in critical decision-making,
the need for trust and interpretability becomes more important. Statistical
guarantees can increase trust in AI techniques and even democratize inter-
pretability, making it possible for wider audiences to understand the insights
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obtained from machine learning models. Researchers have developed new
approaches, such as Conditional Permutation Importance (CPI) [Watson and
Wright, 2021, Debeer and Strobl, 2020], to address these challenges, aiming
for robust guarantees that apply to all model types. These guarantees repre-
sent a significant step towards responsible and trustworthy AI, transforming
machine learning models from powerful black boxes into transparent part-
ners in unraveling the world’s complexities.

1.5 . Conditional Inference

As previously mentioned, the main challenge in analyzing variable impor-
tance is accounting for dependencies among variables. In many cases, these
dependencies appear as correlations, while the underlying relationships be-
tween variables, often represented by a directed acyclic graph, can only be
partially inferred from existing knowledge or fundamental principles. It is of
interest to assess whether a given measurement is worth acquiring, on top of
others, for a diagnostic or prognostic task. A conventional differentiation, as
outlined in the work by Candes et al. [2017], must be made between the eas-
ily accessible methods assessing marginal feature importance and conditional
feature importance.

Marginal feature importance assesses the marginal relationship between a
single variable xj and the response y, without considering interactions with
other variables x−j. However, as datasets become more complex with ad-
vancements in data acquisition technologies, it is increasingly apparent that
focusing solely on individual variables is inadequate [Smith andNichols, 2018].
Instead, attention must be directed towards uncovering and comprehend-
ing the nuanced relationships and dependencies that emerge through inter-
actions between variables [Akogul, 2023]. Ignoring these interactions risks
oversimplification and can lead to incomplete or evenmisleading conclusions
[Strobl et al., 2008]. For example, in the case of fMRI scans, it is widely acknowl-
edged that neighboring brain voxels exhibit positive correlations. During cog-
nitive activities such as watching a video, activation usually occurs. observed
across multiple brain voxels simultaneously. Hence, it is more relevant to in-
vestigate the conditional relationship between y and xj : When watching a
video, does the activation of voxel xj in the brain predict a specific feature
in the video, taking into account its interactions with other brain voxels x−j?
This concept is known as conditional feature importance or conditional infer-
ence. Fig. 1.1 provides an illustration of this concept within the context of
neuroscience.

Conditional inference builds upon the concept of conditional probability,
which was first introduced in the 17th century as part of the early devel-
opments in probability theory [Bayes and Price, 1763]. Significant contribu-
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tions to statistical theory and methodology were made in the early 20th cen-
tury [Neyman and Pearson, 1933], particularly in areas such as experimen-
tal design, which further strengthened the foundation for conditional infer-
ence. However, the widespread adoption and formalization of conditional
inference truly flourished in the latter half of the 20th century [Stigler, 1999,
Nelder andWedderburn, 1972]. This coincidedwith significant advancements
in computing power and the development of more sophisticated statistical
methodologies. Conditional inference became a powerful tool for address-
ing the challenge of controlling for confounding variables to extract valid con-
clusions from observational and experimental data [MA and JM, 2020]. In
fact, the recent decades have witnessed a surge in the application of condi-
tional inference across diverse fields [Liu et al., 2012, Chatterjee and Carroll,
2005]. This includes epidemiology, economics, and the social sciences, where
researchers deal with intricate datasets. These datasets often necessitate so-
phisticated analytical techniques to disentangle causal relationships amidst a
web of influencing factors. Conditional feature importance can overcome the
limitations of marginal importance [Chamma et al., 2023, Blesch et al., 2023,
Watson and Wright, 2021, Debeer and Strobl, 2020, Fisher et al., 2019]. It con-
tinues to evolve alongside advancements in statistical theory and computa-
tional methods.

x1

x2

x3 y? ?

Figure 1.1: Conditional Inference in Neuroscience: Visualization of the in-terplay among three brain voxels within cognitive neuroscience and a behav-ioral variable y, usually induced by a controlled stimulus. The objective is toexplore whether the activation in one voxel causes a certain mental task, tak-ing into account its interaction with the other two brain voxels. Figure is de-rived from [Weichwald and Peters, 2020, Weichwald et al., 2015].

22



1.6 . Group Variable Importance & Stacking

Although the field ofmachine learning has a long history, the idea of group
variable importance is a relatively recent development. In high-dimensional
settings, single variable importance computation suffers from very high cor-
relation between the variables [Chevalier et al., 2021]. More precisely, this
makes conditional importance estimation less informative, as it remains un-
clear how much information each variable adds. In the extreme case where
variables are duplicated, conditional importance can no longer be defined.
More generally, correlations larger than .8 are known to present a hard chal-
lenge, at least for linear learners [Chevalier et al., 2021]. Importance analy-
sis then typically yields spuriously significant variables, which ruins its abil-
ity to statistically control the false positive rate [Strobl et al., 2008]. As pre-
viously mentioned, the huge increase in data volume over the past decades
has led to datasets becoming significantly larger and more complex, with nu-
merous variables. Examining each of the hundreds or thousands of variables
separately would result in prohibitively high computation costs [Covert et al.,
2020] —removal procedures typically have cubic complexity due to the refit-
ting process— and defy model interpretability.

Group variable importance provides a solution by evaluating the impor-
tance of clusters of variables. For instance, in a study that investigates the neu-
ral correlates of depression severity in adolescents, researchers use group
variable importance analysis to clarify the relative contributions of various
brain regions to depressive symptomatology. Neuroimaging variables are cat-
egorized into three main groups: structural measures, functional connectiv-
ity patterns, and task-based activation patterns. Structural measures include
gray matter volume and cortical thickness. Functional connectivity patterns
refer to resting-state functional connectivity between key brain regions. Task-
based activation patterns involve activation levels during emotion processing
tasks. By concentrating on groups, a more comprehensive understanding of
how variables interact and collectively influence themodel’s performance can
be achieved. Group-based analysis can regularize power estimates and lead
to reduced computation time [Molnar et al., 2021b, Bühlmann, 2013]. This can
improve inference as it helps handle the curse of correlated variables in high-
dimensional settings. So far, common group-based methods have neglected
investigating statistical guarantees, in particular, type-I error control, i.e. the
percentage of irrelevant variables identified as relevant (false positives). Sta-
tistical error control for groups obviously requires information on variable
grouping available through two strategies: Knowledge-driven grouping, where
the variables are grouped based on their domain-specific information rather
than their shared statistical properties and Data-driven grouping, where clus-
tering approaches are used such as hierarchical or divisive clustering.

Grouping has also been successfully performed for multimodal learning
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problems [Albu et al., 2023, Engemann et al., 2020, Rahim et al., 2015] via
model stacking [Wolpert, 1992] which is typically based on pipelines of dis-
connectedmodels. The variables from each group are combined into stacked
features, integrating diverse sources of information.

1.7 . Problem Setting

1.7.1 . Single Case
We consider the regression or the classification problem where the re-

sponse vector y ∈ Rn or ∈ {0, 1}n respectively and the design matrix X ∈
Rn×p (encompasses n observations of p variables) where the ith row and the
jth column are denoted xi and xj respectively. LetX−j = (x1, . . . ,xj−1,xj+1,
. . . , xp) be the design matrix, where the jth column is removed, and X(j) =

(x1, . . . ,xj−1, {xj}π,xj+1, . . . ,xp) the design matrix with the jth column shuf-
fled. The rows of X−j and X(j) are denoted x−j

i and x
(j)
i respectively, for i

∈ JnK.
1.7.2 . Group Case

Let J = {j1, . . . , jr} be a subset of r variables with consecutive indices
in JpK, r ≤ p. We indicate the J th subset of columns by XJ . Let X−J =

(x1, . . . ,xj1−1,xjr+1, . . . ,xp) be the design matrix with the J th subset of vari-
ables is removed. Let X(J ) = (x1, . . . ,xj1−1, {xj1}π, . . . , {xjr}π, . . . ,xp) be
the design matrix with the J th subset of variables is shuffled. The rows of
X−J andX(J ) are denoted x−J

i and x
(J )
i respectively, for i ∈ JnK.

Across this work, we rely on an i.i.d. sampling train/validation/test parti-
tion schemewhere the n samples are divided into ntrain training and ntest testsamples. The train samples were used to train µ̂ with empirical risk minimiza-
tion. This function is utilized for appraising the importance of variables on a
novel dataset (test set).

1.8 . Conclusion

The concept of variable importance, at both single and group levels, has
evolved from its rudimentary beginnings to become a fundamental pillar of
modern data science. It empowers researchers not only to construct intri-
catemodels but also to comprehend their inner workings. By tackling hurdles
such as correlated variables and curse of dimensionality, variable importance
stands ready to assume an even more significant role in encouraging trust
and ethical advancement in the constantly evolving domain of AI. Further-
more, there is interest in exploring conditional independence relationships
e.g. among brain regions and cognitive or behavioral outcomes, highlighting
the diverse applications of this research approach.
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2 - Variable Importance Methods

Summary Analyzing the importance of individual variables is a complex
issue within the spectrum of model interpretability. The employed model
can be in certain situations a transparent-box, providing simple and inter-
pretable access to its internal architecture and parameters such as the co-
efficients of the Linear Models and the depth of the conditioning feature in
the Decision trees. In other situations, the chosen model can be seen as a
black-box because of its complex architecture and massive number of pa-
rameters, thus limiting the understandable access to only the input/output
sources, a.k.a. Sensitivity Analysis. Sensitivity analysis is a set of techniques
aimed at quantifying the influence of each variable or group of variables on
the model predictions. In addition, there is no one-size-fits-all interpretation
method for different tasks. With Non-perturbative sensitivity analysis meth-
ods, the VI is examined directly without introducing any changes to the in-
put/output sources, such as saliency maps. Nevertheless, Perturbative sensi-
tivity analysis or Removal-basedmethods evaluate the impact of the single fea-
tures by themean of some perturbation introduced to the variable of interest.
Thesemethods canbe instance-basedor population-based, specifically tailored
for a deployed model or agnostic without any assumptions related to the pre-
dictive model, either through a single fit or conducting a refitting process. In
this chapter, we explore the literature to highlight the state-of-the-art meth-
ods for assessing single variable importance. Table 2.1 provides a summary
of the methods employed in this chapter. These include model-agnostic vs
model-specific approaches, removal-based vs non-perturbative approaches,
global-based vs instance-based approaches, which provide or do not provide
statistical guarantees.

25



Method Model-
agnostic?

Removal
based?

Global? Statistical
guarantees?

Marginal No No Yes FPRMDI No No Yes NoBART No No Yes NoSaliency No No Yes NoLIME Yes No No No
d0CRT No Yes Yes FPRHoldOut No Yes Yes FPRPermuting y No Yes Yes FPRConditional-RF No Yes Yes NoDeepPINK No Yes Yes FDRALE Yes Yes No NoSHAP Yes Yes No NoSAGE Yes Yes Yes NoKnockoff Yes Yes Yes FDRMDA-Permfit Yes Yes Yes FPRLOCO Yes Yes Yes FPR
Table 2.1: Summarizing table for single-based methods: This tableprovides a summary of the methods presented in this chapter, catego-rizing them into three main groups: model-agnostic vs model-specific,removal-based vs non-perturbative and global vs instance-based ap-proaches. It indicates whether each method provides statistical guar-antees or not. FDR: False Discovery Rate. FPR: False Positive Rate.

2.1 . Non-perturbative Sensitivity Analysis

2.1.1 . Model Specific Methods
Marginal Importance [Jamshidian et al., 2007]
Because there is a need for a baseline to compare with in dealing with the dif-
ferent methods, we integrate the Marginal Importance scores of the different
predictors. Each variable xj ∈ Rn is fitted separately to predict the response
y using a Linear Regressionmodel as:

y = β0 + β1x
j

The coefficient β1, extracted from the model, reflects the V I score of
the variable xj. The F-test (H0 : β1 = 0 vs H1 : β1 ̸= 0) is used to
extract the corresponding p-values. The F-statistic is computed as F =
Mean Squared Regression(MSR)Mean Squared Error(MSE) whereMSR =

∑n
i (ŷi−ȳ)2

1 having ȳ the mean of the
observed values of the outcome y and MSE =

∑n
i (yi−ŷi)

2

n−2 . Using the com-
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puted F-statistic and the degrees of freedom of the numerator (1) and the
denominator (n − 2) from the F-Table, we can extract the corresponding p-
value denoted as pj . This method offers statistical guarantees by controlling
the type-I error rate for the significance of individual variables, a.k.a the False
Positive Rate (FPR).
Mean Decrease Impurity (MDI)
As outlined in the work of [Sutera et al., 2021, Louppe et al., 2013], the vari-
able of interest’s importance is revealed through MDI as the impact it has on
the impurity function used in building the RF model. An impurity function is a
metric used in decision tree algorithms to evaluate the quality of a split in the
dataset. It measures how effectively a split separates the data into homoge-
neous groups. Common impurity functions used to create classes based on
the target variable include Gini impurity, entropy, and misclassification error.
The importance score is computed using:

VI j =
1

NTree

∑
Tree

∑
t∈Tree:υ(st)=j

p(t)∆i(st, t)

where p(t) is the proportion Nt
N of samples reaching the node t,N is the size

of the learning sample, υ(st) is the variable used in the split st and∆i(st , t) isthe decrease in the impurity as:
∆i(st, t) = i(t)− pLi(tL)− pRi(tR)

where i(t) is the impurity measure in the corresponding node t, pL =
NtL
Ntand pL =

NtR
Nt

. L and R stands respectively for the Left and Right childs of the
corresponding node t. This method does not offer statistical guarantees.
Bayesian Additive Regression Trees (BART)
Chipman et al. [2010] unveiled BART as a method inspired by the boosting al-
gorithms, consisting of a sum-of-trees, where each is constrained by a prior
regularization to be a weak learner. The fitting and inference are accom-
plished via an interactive Bayesian backfitting Markov Chain Monte Carlo
(MCMC) algorithm.

A collection of trees is built, with each tree designed to avoid handling high
levels individually, as the inclusion of large tree components could overpower
the intricate structure of the sum-of-treesmodel. The problem is defined as

yi =
∑
Tree

g(xi;Tree,MTree) + ϵi ∀i ∈ JnK, ϵ ∼ N(0, σ2)

where g(xi;Tree,MTree) is the function that allocatesm ∈MTree to xi,MTreeis a set of parameter values associated with each of the terminal nodes of tree
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Tree and σ2 ∼ νλ
X 2

ν
. The prior df ν and scale λ are calibrated using a rough data-

based overestimate, denoted σ̂ of σ. There are two options for calculating σ̂

(1) the naive approach, which derives σ̂ from the sample standard deviation
of y, and (2) the linear model approach, which derives σ̂ from the residual
standard deviation obtained from a least squares linear regression of y on
the original X variables. A value of ν between 3 and 10 is selected to shape
the distribution. Regarding λ, it is chosen to ensure that the qth quantile of
the prior distribution on σ corresponds to σ̂, guaranteeing that P(σ < σ̂) = q.
Different values of q, such as 0.75, 0.9 or 0.99, are considered to effectively
position the distribution below σ̂.

By keeping track of covariate inclusion frequencies, BART can identify
which components are more important for explaining y i.e. the proportion
of all splitting rules that utilize the jth component ofX. This method does not
offer statistical guarantees.

2.1.2 . Model Agnostic Methods
Saliency Maps
A saliency map is a topographic map used in computer vision to represent
the saliency of various locations in an image. Itti et al. [1998] introduced the
concept of saliency, which refers to how distinct a stimulus is compared to
its surroundings. This makes it possible to highlight regions that have a sig-
nificant impact on the understanding of visual content. The saliency map is
computed by combining feature maps that represent intensity, color, and ori-
entation. As an example, a self-driving car that is equippedwith a camera uses
a convolutional neural network (CNN) to identify pedestrians. Once a person
is successfully detected on the crosswalk, a saliency map can be generated to
highlight their figure [Simonyan et al., 2014]. This helps engineers determine
if the CNN focused on relevant parts, such as the body, rather than distracting
elements like a colorful bag. This ensures that the car prioritizes the most im-
portant information for safe navigation. Thismethod does not offer statistical
guarantees.
Local Interpretable Model-agnostic Explanations (LIME)
Interpreting a black-box model can be complex because its internal workings
are not easily understandable. To address this issue, Ribeiro et al. [2016]
proposed the use of local surrogate models to explain black-box predictions
through an interpretable local model. Rather than training a global surrogate
model, LIME emphasizes training local surrogate models to provide explana-
tions for individual predictions.

The dataset is divided following a train/test scheme. Each observation in
the test set is regarded as point of interest.

explanation(x) = argmin
g∈G

L(µ, g, πx) + Ω(g)
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where G is the family of local interpretable models (e.g. linear regression
model), L is the loss function, πx specifies the size of the neighborhood sur-
rounding instance of interest x, and Ω(g) is the model complexity. After se-
lecting the instance of interest, the train set is perturbed, yielding black-box
predictions for the modified points. These new samples are weighted based
on their proximity to the instance of interest. Subsequently, a weighted inter-
pretable model is trained using the dataset incorporating the variations. The
prediction is interpreted by examining the explanations provided by the local
model. The result is a (ntest, p) matrix. Finally, the average of the explanations
per variable is computed. This method does not provide statistical guaran-
tees.

2.2 . Removal-based Methods

Many methods can be subsumed under the general category of removal-
based approaches [Covert et al., 2022].

2.2.1 . Model Specific Methods
d0CRT
As defined in the work by Liu et al. [2021], d0crt is a method proposed for
fast Conditional Randomization Testing (CRT) [Candes et al., 2017]. With the
CRT proposed by Candes et al. [2017], the association between the outcome
y and the variable of interest xj conditioned on X−j is estimated. The vari-
able of interest is sampled conditionally on the other covariatesmultiple times
to compute a test statistic and p-values. However, this solution is limited to
generalized linearmodels and is computationally expensive. Thus, distillation
serves as an acceleration through the computation of the common parts.

For the distillation of X, the chosen index j is dropped resulting in X =
(X−j, xj). xj is predicted by providing the remaining components ofX as the
predictors as shown in eq. 2.1. The residuals of the prediction of xj denoted
xresj are along with the standard deviation of the residuals σxj as in 2.2 and
2.3.

xj = X−j.β + ϵ (2.1)
xresj = xj − x̂j (2.2)

σxj =
1

n

n∑
i=1

(x
resj
i )2 (2.3)

For the distillation of y, the chosen index j is dropped again resulting inX

= (X−j, xj). The outcome vector y is predicted by providing the remaining com-
ponents using the RF model. The residuals of the outcome and the standard
deviation of the residuals labeled respectively yresj and σyj are computed in
eqs. 2.2 and 2.3.
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For the computation of the test statistic, the resampling-free approach of
d0crt is applied where

V Ij =
yresj .xresj

n× σxj × σyj

Finally, for the computation of p-values, it is assumed that the test statistic V I

is standard Gaussian. In this case, p-values are computed using the Gaussian
distribution bilateral test with the cumulative distribution function of the stan-
dard Gaussian distribution Fnorm as pj = 1−Fnorm(V Ij). This method offers
statistical guarantees by controlling the type-I error rate for the significance
of individual variables.
HoldOut
Janitza et al. [2018] proposed a new fast variable importance test when deal-
ing with high-dimensional data. They declared that, on one hand, a non-
positive importance score is sufficient to highlight the non-relevance of the
variable. On the other hand, positive importance score is not a sufficient evi-
dence for the relevance of the variable of interest. Therefore, a testing proce-
dure is required to verify if the variable is truly relevant or the result of some
randomness.

First, the training data with n samples is split into 2 non-overlapping parts
used separately for building two RF models. The second part is used in a later
phase for the computation of the variable importance.

O1, O2, O3, . . . , On
2︸ ︷︷ ︸

Building Forest2

VI for Forest1

On
2
+1, . . . , On−1, On︸ ︷︷ ︸
Building Forest1

VI for Forest2

Thus, in a classification setting, each variable has two variable importance
scores, one for each split, computed as:

V Ij,l =
1

NTree

NTree∑
Tree=1

1

#Sl

∑
i∈Sl

{I(yi ̸= ŷ∗,T ree
i )− I(yi ̸= ŷTree

i )} (2.4)

with S l is the set of observations not used to build the l th forest and ŷTree and
ŷ∗,Tree denoting the predictions by theTreeth tree before and after permuting
the values of the variable j respectively. The variable importance scores over
the RFs per variable are averaged as V Ij = 1

2

∑2
l=1 V Ij,l. As a result, 3 sets,

M1, M2 and M3, are extracted designating the negative, zero and negative
multiplied by −1 variable importance scores. Next, the null distribution F̂0 isapproximated as the empirical cumulative distribution function ofM =M1 ∪
M2 ∪M3. Finally, the p-value is determined as pj = 1− F̂0(V Ij).

To sum up, they approximate the null distribution based on the observed
importance scores to provide p-values. Yet, this coarse estimate of the null
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distribution can give unstable results. This method provides statistical guar-
antees by controlling type-I error rate for the significance of individual vari-
ables.
Permuting y
Altmann et al. [2010] proposed an alternative method for the HoldOut impor-
tance when the reconstruction of the null distribution F̂0 lacks non-positiveimportance scores. They constructed an original RF model where the impor-
tance variable scores of the different predictors were computed as in eq. 2.4
by replacing the set of observations not used to build the RF model (S l ) with
the OOB (Out-Of-Bag) samples. These scores are denoted V Iorg.

Subsequently, the outcome y is randomly permuted. Consequently, a
novel RF model is constructed with the predictor variables and the permuted
outcome, where the importance scores are calculated in accordance with the
aforementioned methodology. This process is repeated B times, resulting in
each variable j carrying a set of B variable importance scores, designated as
VIj. Finally, the p-values are computed using the non-parametric approach
as: pj = 1

B

∑B
i=1 1V Iji >V Iorg

. This method offers statistical guarantees by con-
trolling the type-I error rate for the significance of individual variables.
Conditional-RF
In their work, Strobl et al. [2008] proved empirically that the importance score
method for the RF model is biased in favor of the non-relevant variables cor-
related with the relevant ones. They proposed a newmethod based on condi-
tioning on the remaining variables (or a subset of these variables) which can
reflect the true impact more reliably.

First, in each tree, they compute the Out-of-bag (OOB) prediction accuracy
before permuting (bp) the values of the variable of interest with:

pred
(Tree)
bp =

∑
i∈B(Tree) I(yi = ŷ

(Tree)
i )

#B(Tree)

where Tree is the corresponding tree, I is the identity function and B (Tree)

is the Out-of-bag sample for tree Tree.
For all variables Z to be conditioned on, they extract the breakpoints that

split each of these variables in the current tree (Tree) and create a grid by bi-
secting the sample space in each breakpoint. Within this grid, they permute
the values of xj and recompute the Out-of-bag (OOB) prediction accuracy af-
ter permutation (ap):

pred (Tree,j )
ap =

∑
i∈B(Tree) I(yi = ŷ

(t)

i,πj |Z)

#B(Tree)

where ŷ(Tree)

i,πj |Z = µ̂(Tree)(Xi,πj |Z) is the predicted class for observation i after
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permuting the values of the variablexj within the grid defined by the variables
Z.

Finally, they compute the variable importance of the variable of interest
xj in one tree Tree as the difference of the prediction accuracy before and
after the aforementioned permutation, i.e. VITree,j = pred

(Tree,j )
ap − pred

(Tree)
bp .

The variable importance of xj across the forest is the mean of the variable
importance scores per tree (Tree) as VI j = ∑NTree

Tree=1 VITree,j

NTree
.

This method is specific to Random Forests, as it is based on bisecting the
space with the cutpoints extracted during the building process of the forest.
Furthermore, it does not provide statistical guarantees.
DeepPINK
Drawing on the insights of knockoffs, Lu et al. [2018] exhibited feature se-
lection in deep neural networks by means of pairwise competition. Both the
original variables X and their corresponding knockoffs X̃ are fed to an MLP
model augmented using a "pairwise-connected" layers with linear activation,
also called filters.

Let Z ∈ Rp×2 and w ∈ Rp×1 be the weights connecting the variables and
their counterparts to the filters and to the output y through the MLP hidden
layers respectively. The importance measures zimp and z̃imp are defined as:

[zimp, z̃imp] = Z×w

highlighting the competition of each variable against its own knockoff counter-
part and the variables against each other. The importance scores are denoted
asVI = zimp

2− z̃2imp. This method controls the false discovery rate (FDR) but
does not provide a quantitative measure of the importance of individual vari-
ables.

2.2.2 . Model Agnostic Methods - Instance based
A popular approach to interpret black-box predictive models is based on
locally interpretable, i.e. instance-based, models. Examples include SHAP
[Burzykowski, 2020] which is a popular package that measures local feature
effects using the Shapley values from coalitional game theory. Additional in-
formation can be found in the subsequent paragraphs.
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Accumulated Local Effects (ALE)
Accumulated Local Effects [Apley and Zhu, 2019] is an instance-based method
that describes how variables influence the prediction of a machine learning
model on average. It is mainly used when predictor variables are correlated.
ALE plots are used to visualize how the predicted outcome changes as a vari-
able’s value changes while accounting for interactions with other features.
The key idea is to accumulate the average model prediction differences over
small intervals of the variable of interest.

The observed values of the variable of interest xj are divided into K in-
tervals N j(k) = (zjk−1, z

j
k] (k = 1, . . . ,K ). The effect of the feature j on the

prediction of one instance is computed as:

∀i ∈ JnK, ĝjAL(xi) =

kj(x)∑
k=1

1

nj(k)

∑
i:xj

i∈Nj(k)

{µ̂(xj|=zjk
i )− µ̂(x

j|=zjk−1

i )}

where k j (x ) is the index of interval N j (k) in which x falls, i.e. the jth com-
ponent of xi belongs to this interval, n j (k) is the number of observations xjibelonging to N j (k) and x

j|=c
i corresponds to the same observation by replac-

ing the jth component with the constant c. The result is a (n, p) matrix denoted
ALEm. Finally, The importance score for the jth component is computed as
the average ofALEm per variable, V Ij = 1

n

∑n
i=1ALEm

i . This method does
not provide statistical guarantees.
SHapley Additive exPlanations (SHAP)
Shapley [1952] introduced Shapley values as a means derived from cooper-
ative game theory, which aims to fairly allocate the contributions of a group
of players in a cooperative game. Štrumbelj and Kononenko [2010] used the
Shapley values with the goal of assigning the impact of each input feature in
the cooperative prediction per instance of interest. Lundberg and Lee [2017]
provided an efficient implementation of this approach with Shapley Additive
exPlanations (SHAP) [Burzykowski, 2020]. As an instance-basedmethod, an ag-
gregation is integrated at the final phase, thereby promoting the method to
the population level.

First, the dataset is divided following a train/test scheme. Each observa-
tion in the test set is considered as an instance of interest. Following this, the
Shapley values per instance of interest x∗ are computed according to

ϕ(x∗, j) =
1

p

p−1∑
s=0

∑
S⊆{1,...,p}\{j}

#S=s

(
p− 1

s

)−1

∆j|S(x∗)

where S is a possible subset of explanatory variables excluding the jth com-
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ponent of size s and

∆j|S(x∗) =
1

ntrain

ntrain∑
i=1

µ̂(xi|xS1
i = x∗,S1 ,xS2

i = x∗,S2 , . . . ,x
S#S

i = x∗,S#S , xji = x∗,j)

− µ̂(xi|xS1
i = x∗,S1 ,xS2

i = x∗,S2 , . . . ,x
S#S

i = x∗,S#S).

SHAPmeasures the conditional effect of including a particular variable on the
model’s output, while considering interactionswith other variables. The result
is a (ntest, p) matrix. Finally, the average of the Shapley values per variable is
computed. This method does not offer statistical guarantees.

2.2.3 . Model Agnostic Methods - Population level
Global, i.e. population-level, explanations are better suited than instance-
level explanations for epidemiological studies and scientific discovery in gen-
eral.
Mean Decrease Accuracy (MDA)
First introduced by Breiman [2001],MDA grabbed the attention of multiple re-
searches for its simple principle and efficient implementation [Bracher-Smith
et al., 2022, Covert et al., 2022, Debeer and Strobl, 2020, Nicodemus et al.,
2010].

To retrieve the impact of one variable on the prediction of the outcome,
the key idea was first, to break the relation between this variable and the out-
come by integrating some perturbation within the variable (e.g. permutation)
followed by the comparison of the loss function before and after this applied
perturbation. A severe drop in the performance reflects the degree of impor-
tance of the variable of interest for the prediction.

Another recent paper by Mi et al. [2021] has introduced model-agnostic
explanation for black-box models based on the permutation approach. Per-
mutation importance can work with any learner. Moreover, it relies on
a single model fit, hence it is an efficient procedure. In order to ascer-
tain the significance of the variable of interest xj , a series of permutations
are conducted, with the importance score computed according to m̂j =

1
ntest

∑ntest
i=1

(
(yi − µ̂(x

(j)
i ))2 − (yi − µ̂(xi))

2
). Subsequently, the Wald statistic

zj = mean(m̂j)
std(m̂j)

is derived under the assumption that it follows a standard nor-
mal distribution. Finally, the corresponding p-values can be calculated. This
method offers statistical guarantees by controlling the type-I error rate for the
significance of individual variables in settings where these variables are not
correlated.
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Shapley Additive Global importancE (SAGE)
While SHAP focuses on the local interpretation by aiming to explain a model’s
individual predictions and the need for a post-aggregation step to promote
the method to the population level, SAGE [Covert et al., 2020, Kumar et al.,
2020] is an extension to SHAP assessing the role of each feature in a global
interpretability manner. The SAGE values are derived by applying the Shapley
value to a function that represents the predictive power contained in subsets
of features as

ϕ(j) =
1

p

∑
S⊆{1,...,p}\{j}

(
p− 1

#S

)−1

MI(y,XS∪{j})

whereMI represents themutual information i.e. the decrease in y uncertainty
when integrating the jth component into different subsets S . This method
does not provide statistical guarantees.
Knockoff
As described in [Candes et al., 2017, Barber and Candès, 2015], the knockoff
filter is a variable selection method for multivariate models that controls the
False Discovery Rate (FDR).

The knockoffs X̃ are a family of randomvariableswith two important prop-
erties:

∀S ⊂ JpK, (X, X̃)swap(S) d
= (X, X̃) and X̃ ⊥⊥ y|X.

Thus, the first step of this procedure involves sampling extra null variables
that have a correlation structure similar to that of the original variables. A
statistic is then calculated to measure the strength of the original variables
versus their knockoff counterpart with l1-regularization path or cv lasso.

For l1-regularization path, the following problem is solved:
argmin

w

1

2n
||y − [X, X̃]w||22 + λ||w||1 (2.5)

through a set of λ entries. If the corresponding coefficient wj > 0, the maxi-
mum λ value is returned.

For cv lasso, the same problem in (2.5) is solved without the regularization
component where a vector w of coefficients is returned. Subsequently, the
importance scores are set to as VI = |w:p| − |wp:| where p is the number of
features.

Finally, a recent paper by [Watson andWright, 2021] showed the necessity
of conditional schemes and introduced a knockoff sampling scheme, whereby
the variable of interest is replaced by its knockoff to monitor any drop in per-
formance of the leaner usedwithout refitting. Thismethod is computationally
inexpensive, and enjoys statistical guarantees from [Lei et al., 2018]. However
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it depends on the quality of the knockoff sampling where even a relatively
small distribution shift in knockoff generation can lead to large errors at infer-
ence time. Although knockoffs are subject to randomness due to sampling,
they permit control over the false discovery rate (FDR) of the selection pro-
cedure. However, they do not provide a quantitative measure of individual
variable importance.
Leave One Covariate Out (LOCO)
Rather than performing a perturbation to the variable of interest in order to
break its relation with the outcome for a model fitted once, the complete re-
moval of the variablewas proposed by [Williamson et al., 2021, Lei et al., 2018],
while refitting the core learner.

The importance of variable xj is measured as the change in the perfor-
mance by comparing the full model with the refittedmodel excluding the vari-
able of interest as

V Ij =
1

ntest

ntest∑
i=1

L(µ̂(xi), yi)− L(µ̂(x−j
i ), yi)

where L the loss function. The p-values are computed under the standard
Gaussian distribution assumption. This method does provide statistical guar-
antees in terms of controlling the type-I error rate for the significance of indi-
vidual variables.

Regardless of whether they show the asymptotic consistency of themodel,
their approach is intractable, given that it requires refitting themodel for each
variable.

Gao et al. [2022] applied the aforementioned removal method to a DNN
model by integrating linear assumptions to accelerate the training process.
However, statistical guarantees may be lost due to the alteration of variable
importance in the linearized model.

2.3 . Conclusion

A multitude of methodologies have been proposed for the assessment of
the relative importance of individual variables across diverse contexts. Con-
versely, other studies have concentrated on the comparison of specific mod-
els within distinct communities [Altenmüller et al., 2021, Liu et al., 2021, Mi
et al., 2021, Janitza et al., 2018, Chipman et al., 2010]. However, these compar-
isons lack conceptualization from a unified perspective.

Furthermore, previous work has established potential advantages of con-
ditional permutation schemes for inference of variable importance. Although
there is a clear need to understand how different permutation schemes im-
pact model performance, this has not been extensively explored due to a lack
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of efficient computationalmethods. This limitation impedes researchers from
conducting a comprehensive comparison of these schemes with other tech-
niques across a broader spectrum of predictive modeling scenarios.
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3 - Group Variable Importance Methods

Summary Differentmethods have been presented in the previous chapter
to assess the importance of individual variables across different domains and
understand their impact on the decision-making process. In high-correlation
settings, conditional schemes such as conditional permutation were pro-
posed as a solution to the appearance of fake relevant variables highly cor-
related with the true relevant ones. Nevertheless, given two extremely-
correlated variables, the conditional permutation results in themutual cancel-
lation of the conditional importance scores due to a limitation in the definition.
Therefore, moving from the single to the group level have been proposed as
a remedy. Additionally, when dealing with high-dimensional settings having
hundreds or thousands of variables (example in Neuroimaging), grouped in-
terpretations are preferred to reduce the need for expensive computations.
Moreover, when dealing with categorical variables that have been dummy
or one-hot encoded, it is important to treat them as a single group in order
to maintain relationship between the different categories. Before applying
group-based methods, it is necessary to group variables based on some do-
main knowledge in a particular field or shared statistical properties derived
from the data. One initial thought is to consolidate each group into one indi-
vidual variable via summarization or stacking. To gain deeper insights at the
group-level, various perspectives on importance scoring methods are avail-
able. On one hand, grouped non-perturbative methods rely on the architectual
or statistical properties of themethod such asMarginal Importance or Random
Forests. On the other hand, grouped removal-based methods involve pertur-
bations, such as complete removal, exposed to the group of interest within
one fit or a refitting process respectively. In this chapter, we study the litera-
ture of the state-of-the-art methods for group-based variable importance. Ta-
ble 3.1 provides a summary of the methods employed in this chapter. These
include model-agnostic vs model-specific approaches, removal-based vs non-
perturbative approaches, global-based vs instance-based approaches, which
provide or do not provide statistical guarantees.
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3.1 . Variables Grouping

Before deploying group-level methods, the first step is to group variables.
This can be done using a custom knowledge-driven approach based on spe-
cialized knowledge within a particular field. Conversely, the absence of this
information leads to a data-driven approach where the degree of correlation
serves as the splitting criterion. In both cases, an instance may belong to one
or more groups depending on the technique used.

3.1.1 . Data-driven grouping (Clustering Methods)
Agglomerative Clustering [Müllner, 2011, Johnson, 1967]
By considering each instance as its own cluster, the method is based on an
iterative merging of the closest pairs of clusters to compose larger ones. The
merging process continues until reaching a predetermined number of clus-
ters or until a certain linkage criterion (e.g., distance threshold) is satisfied.
Divisive Clustering [Reddy et al., 2017, Kaufman and Rousseeuw,
1990]
Instead of merging pairs of clusters, this method considers all the observa-
tions attached to one big cluster followed by an iterative division into smaller
clusters until the pre-defined condition is reached. It constructs a hierarchy of
clusters in a dendrogram, with each level representing a different partitioning
of the data
Fuzzy Clustering [Jaeger et al., 2003]
Rather than taking part in one cluster as in the aforementioned techniques,
Fuzzy clustering allows instances to belong to multiple clusters under varying
degreeswhen these instancesmay exhibit ambiguity or uncertainty regarding
their cluster assignments.

However, these groups depend only on the statistical similarity which
might not coincide with domain-specific interpretations [Chakraborty and Pal,
2008].
K-means Clustering [MacQueen, 1967]
K-means clustering partitions a dataset into a pre-specified number (k) of clus-
ters by minimizing the within-cluster variance. Each data point is assigned to
the cluster with the closest centroid, which represents the mean of the points
within that cluster. The algorithm iteratively refines the cluster centroids and
reassigns data points until a convergence criterion is met, typically minimal
changes in cluster assignments or centroid locations. While computationally
efficient and straightforward to implement, k-means clustering exhibits sen-
sitivity to the initial selection of cluster centroids and can converge to locally
optimal solutions that may not be globally optimal.
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3.1.2 . Knowledge-driven grouping

Variables are grouped based on their thematic attributes (e.g., measure-
ment device) rather than on patterns or statistical properties observed in the
data. This grouping can enhance the effectiveness and interpretability of the
grouping process, leading to more meaningful insights. An illustration is the
PhoneStudy dataset in the work by Stachl et al. [2020] where the variables
have been categorized based on specific behaviors, such as app usage, music
consumption, or overall phone usage.

3.2 . Solo Group Representative

Given that the variables are associated with a cluster, it is possible to iden-
tify a single representative of each group via aggregation or stacking. Conse-
quently, by returning to the single level, the application of the methods elab-
orated in the previous section is now feasible.

3.2.1 . Cluster Summarization via Aggregation

[Aggarwal and Han, 2014] One intuitive idea is to apply an aggregation
step over the data points in a cluster by computing the mean, median or max-
imum values across the variables of the group of interest.

3.2.2 . Stacking Approach

A different angle can bemotivated by a recent line of work that developed
model-stacking techniques [Wolpert, 1992] which combine different input do-
mains and groups of variables rather than aggregating different estimators
on the input data. This approach has been used in various applications rang-
ing from video analysis [Zhou et al., 2021] over protein-protein interactions
[Albu et al., 2023] to neuroscience applications [Rahim et al., 2015].

A key benefit of multimodal or group stacking is that it allows for modality-
specific encoding strategies andwhile approaching inference at the simplified
level of the 2nd level model combining themodality-wise predictions or activa-
tions. This strategy has been used to explore importance of distinct types of
brain activity at different frequencies for age prediction [Sabbagh et al., 2023,
Engemann et al., 2020].
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Method Model-
agnostic?

Removal
based?

Global? Statistical
guarantees?

GroupedMarginal No No Yes FPR
Grouped MDI No No Yes No
Grouped Shap Yes Yes No NoGPFI Yes Yes Yes NoGOPFI Yes Yes Yes NoGrouped Pertur-bations Yes Yes Yes FDR
LOGO Yes Yes Yes NoLOGI Yes Yes Yes No
Table 3.1: Summarizing table for group-based methods: This tableprovides a summary of the methods presented in this chapter, catego-rizing them into three main groups: model-agnostic vs model-specific,removal-based vs non-perturbative and global vs instance-based ap-proaches. It indicates whether each method provides statistical guar-antees or not. FDR: False Discovery Rate. FPR: False Positive Rate.

3.3 . Grouped Non-perturbative Methods

Grouped Marginal Importance
Given the necessity for a reference point when evaluating various methods,
we incorporate the Grouped Marginal Importance scores of the various predic-
tors. Each group XJ ∈ Rn×#J is fitted separately to predict the response y

using a Multivariate Linear Regressionmodel as:
y = β0 + β1X

J

The F-test (H0 : β1 = 0 vsH1 : β1 ̸= 0) was used to extract the correspond-
ing p-values. The F-statistic is computed as F = Mean Squared Regression(MSR)Mean Squared Error(MSE)

where MSR =
∑n

i (ŷi−ȳ)2

#J having ȳ the mean of the observed values of the
outcome y and MSE =

∑n
i (yi−ŷi)

2

n−#J−1 . Using the computed F-score and the de-
grees of freedom of the numerator (#J ) and the denominator (n−#J − 1)
from the F-Table, we can extract the corresponding p-value denoted as pJ .
This method offers statistical guarantees by controlling the type-I error rate
for the significance of groups.
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Grouped Mean Decrease Impurity
Wehenkel et al. [2018] have introduced group-based variable importance for
Random Forests, extending the seminal work of Louppe et al. [2013] onMean
Decrease Impurity (MDI) presented in section (2.1.1). A feature is defined as
important by appearing more often in the forest and at top nodes and/or by
strongly reducing the impurity at the nodes where it belongs.

Once all the variables have their corresponding impurity function scores,
the importance score of the group of interest follows three aggregation func-
tions of the impurity scores among the participating variables:

• The sum where the significance of the group of interest is determined
by the total reduction in class impurity achieved by the variables it con-
tains.

• The average which prevents bias arising from variations in group size.
• The maximum where the variable deemed most important serves as
the sole representative of the group’s significance.

Despite that, (1) the sum displays bias in favor of larger-sized groups, (2)
the average diminishes a group’s significance when only a small fraction of its
variables hold importance and (3) the maximum suggests that one variable
reflects the collective importance of the group. Also, this method does not
offer statistical guarantees.

3.4 . Grouped Removal-based Methods

3.4.1 . Grouped Shapley Values
Built upon SHAP detailed in section (2.2.2) that has been introduced to

explain the prediction of a new instance on the single-variables level, Jullum
et al. [2021] altered the definition of the offered explanation so as to shift to
the group level.

In this work, the shapley value of the group of interest J is defined as
ϕ(x∗,J ) =

∑
τ⊆S\J

#τ !(#G −#τ − 1)!

#G!
(υ(τ ∪ J )− υ(τ))

υ(τ) = E[µ̂(x)|xτ = x∗τ ]

where τ runs over the groups (not the individual variables) in S.
An alternative approach is to simply aggregate the single Shapley val-

ues in order to obtain the related explanations of the groups, i.e. ϕJ =∑
j∈J ϕj . This approach is equivalent to the previous approach in certain cir-

cumstances.
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Serving as an instance-based method, an aggregation step is applied to
retrieve the population-level explanations of the different groups or SAGE de-
tailed in section (2.2.3) can be utilized once its definition has been upgraded.
this method does not offer statistical guarantees.

3.4.2 . Grouped Permutation-based Methods
Grouped Permutation Feature Importance (GPFI)
Mi et al. [2021] proposed an efficient model-agnostic procedure for black-box
models’ interpretation. It uses the permutation approach [Fisher et al., 2019,
Breiman, 2001] with the importance score computed as the reduction in a
model’s performance when randomly shuffling the variable of interest. To ac-
count for group-level structure, Gregorutti et al. [2015] suggested taking into
account all the variables of the group of interest in the permutation scheme
jointly, known as Group Permutation Feature Importance(GPFI).

V IJ = E(L(µ̂(x̃J ,x−J ), y))− E(L(µ̂(x), y))

Grouped Only Permutation Feature Importance (GOPFI)
Au et al. [2021] proposed Group Only Permutation Feature Importance (GOPFI)
which examines the level of the group’s individual contribution to the model’s
performance. The random joint shuffling is performed for all the variables of
the different groups expect the ones of the group of interest.

Hence, a group of interest J is regarded as relevant by observing a de-
crease in the expected loss between the joint permutation of all the variables
and the joint permutation except the considered group cases.

V IJ = E(L(µ̂(x̃), y))− E(L(µ̂(xJ , x̃−J ), y))

However, according to Strobl et al. [2008], simple permutation ap-
proaches yield poor accuracy and specificity in high correlation settings.
Grouped Global Perturbations
Whereas the aforementioned methods apply the joint permutation of all the
variables of the groupof interest, Lee et al. [2018] proposed abroader concept
for the applied perturbations to the variables and groups of interest while
providing p-values under hypothesis testing.

Nevertheless, they did not address the degree of correlation between the
variables (and the groups), which increases the difficulty of the problem. This
method offers statistical guarantees by controlling the false positive rate (FDR)
while providing a quantitativemeasure of the importance of individual groups
in terms of p-values.
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3.4.3 . Grouped Refitting-based Methods
Leave One Group Out (LOGO)

While Williamson et al. [2021] proposed a model-agnostic approach based on
refitting the learner after the removal of a variable of interest also called LOCO
(Leave-One-Covariate-Out) by Lei et al. [2018], Au et al. [2021] have adapted this
work to the group-level by considering the removal of all the variables of the
group of interest jointly.

Thus, a group of interest J is considered as relevant when observing an
increase in the expected loss compared to the fullmodel’s expected losswhen
leaving out a group of variables and performing a refit. The importance score
is denoted as:

V IJ = E(L(µ̂(x−J ), y))− E(L(µ̂(x), y))

This method does not offer statistical guarantees.
Leave One Group In (LOGI)

In lieu of removing the group of interest J as mentioned in section (3.4.3),
Au et al. [2021] established Leave-One-Group-In (LOGI) that assesses the solo
impact of the group of interest on the prediction when removing all the re-
maining variables.

As a result, a group of variables (e.g. all measurements from a specific
medical device) is deemed as relevant when reducing the expected loss in
contrast to the null model. The importance score is defined as:

V IJ = E(L(µ̂null, y))− E(L(µ̂(xJ ), y))

where µ̂null provides the prediction as the average of the outcome.
However, both approaches become intractable due to the necessity of re-

fitting the learner for each group, particularly in the case of low cardinality
groups. This method does not offer statistical guarantees.

3.5 . Conclusion

The utilization of various methods to perform group-based variable im-
portance analysis via simple fit perturbation or refitting removal has been
demonstrated to lack statistical control or to be computationally expensive in
high-dimensional cases due to the need of retraining the involved model. Ad-
ditionally, the identification of conditional variants on the group-level that are
both theoretically and empirically demonstrated to be effective has not been
identified in the literature. Consequently, there is a necessity for the develop-
ment of a sensitive, non-linear, agnostic method with statistical guarantees,
which is equipped with good computational performance.
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While stacking is straightforward to implement with standard software,
for instance, scikit-learn [Pedregosa et al., 2011], the inference process with
stacking has not yet been formalized. Moreover, it necessitates the fitting
of multiple disconnected estimators, which may restrict the capacity of the
model.
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4 - Variable Importance for Population Imag-
ing in Neuroimaging

Summary The field of interpretable AI/explainable AI (XAI) is a rapidly de-
veloping area that bridges the gap between AI and human-computer inter-
action [Ali et al., 2023]. Its core objective is to make AI systems understand-
able by humans, thereby fostering trust and transparent decision-making. In
the past, researchers have traditionally analyzed brain activity in a marginal
manner, examining each voxel individually (mass univariate statistics). This
approach has been linked to the marginal importance discussed earlier, with
a focus on individual variables. However, this method has limitations in cap-
turing interactions between variables. To address this, clustering statistics
or anatomical atlases have been employed to provide regions of interest
(ROIs), which do not offer a comprehensive global view of the brain. The pre-
ceding chapters provided an overview of the current state-of-the-art meth-
ods for variable importance. However, these methods lacked a statistically
rigorous groundwork that considers dependencies between variables. Addi-
tionally, the chapters addressed the utility of potential alternatives based on
conditional inference. Consequently, the current XAI literature may not be
sufficiently effective for addressing the challenges encountered with neuro-
science or neuroimaging data characterized by both high-dimensionality and
high-correlation among variables. Furthermore, the utility of brain imaging in
characterizing brain connectivity and structure for the prediction of individual-
based traits has been a subject of debate in the literature. Brain imaging
modalities have been analyzed to provide additional insights into the com-
plex challenge of comprehending brain and mental disorders. In this chapter,
the focus is put on providing the necessary background on the challenges of
dealing with population-level datasets and clarifying the necessity of incorpo-
rating statistical inference into established ML applications in neuroscience.

4.1 . Brain Imaging Modalities (Neuroimaging)

Neuroimaging encompasses a wide range of brain mapping techniques
that are a fundamental tool in the field of cognitive neuroscience to visualize
both the structure and function of the brain [Friston, 2009]. These techniques
are central to clinical neuroscience for their ability to provide insight into brain
health and pathology. For example, Magnetic Resonance Imaging (MRI) has
proven its ability to study the details of brain structures in individuals afflicted
with neurological or psychiatric disorders [Kolbeinsson et al., 2020]. Clinicians
and researchers can gain valuable information for diagnosis, or to unravel the
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underlying mechanisms of various diseases. These indicators have proven
beneficial in understanding the extent of neurological conditions across var-
ious demographic groups, thereby increasing the accuracy of diagnosis and
prognosis. Fig 4.1 illustrates the various brain imagingmodalities acquired us-
ing the brain that will be discussed in greater detail in the following sections.

Figure 4.1: Segmentation of the brain: This figure presents a variety of neu-roimagingmodalities that interact with one another to clarfiy underlying brainnetworks. Figure is derived from [Edelman et al., 2015].

4.1.1 . Magnetic Resonance Imaging (MRI)
Magnetic resonance imaging (MRI) is a non-invasive imaging technique

that provides detailed images of the brain’s anatomy and function [Edelman
Robert R and Warach Steven, 1993, Lauterbur, 1989]. It delineates various
types of tissue, such as white and grey matter. Unlike traditional X-rays,
MRI does not use ionizing radiation, rendering it a safer option for scrutiniz-
ing brain tissue. The MRI machine generates a strong magnetic field, which
causes the hydrogen atoms in the body to align in a specific direction. Ra-
dio waves are then emitted, causing these aligned atoms to produce signals
that are detected by the MRI machine’s receiver. By analyzing these signals,
the machine constructs highly detailed images of the brain’s structures and
any abnormalities present. The utilization of different MRI sequences, such
as T1-weighted, T2-weighted, and diffusion-weighted imaging, leads to the
acquisition of complementary information regarding the brain’s tissues and
pathology. The acquisition process typically spans between 15 minutes and
an hour, depending on the complexity of the scan and the specific protocols
employed. MRI is crucial in diagnosing numerous neurological disorders such
as tumors, infections, strokes, developmental anomalies, and degenerative
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illnesses. Nonetheless, access to MRI technology and participation in neu-
roscientific research vary across different regions and demographic groups,
potentially resulting in selection bias [Fry et al., 2017].

4.1.2 . Functional Magnetic Resonance Imaging (fMRI)
Functional magnetic resonance imaging (fMRI) is a non-invasive neu-

roimaging technique that is utilized to decipher brain activity patterns by cap-
turing alterations in blood flow and oxygenation levels [Ogawa et al., 1990].
It operates within a magnetic resonance imaging (MRI) scanner, where it em-
ploys powerful magnetic fields and radiofrequency pulses to manipulate and
detect changes in the alignment of hydrogen atoms in the body, particularly
in the brain. When neural activity increases in specific brain regions, it trig-
gers a surge in blood flow to meet the heightened metabolic demands, a
phenomenon known as the hemodynamic response. This increase in blood
flow results in a corresponding alteration in themagnetic properties of blood,
which fMRI equipment can discern with remarkable precision. By analyzing
the blood flow signal within each voxel over time, fMRI generates detailed spa-
tial maps of brain activity, unveiling which regions are actively engaged during
particular tasks, sensory inputs, or cognitive processes. However, movement
within the scanner can disrupt the signal, and the high cost and limited acces-
sibility restrict its use. Consequently, the acquisition process necessitates a
series of preprocessing steps, including motion correction, spatial normaliza-
tion, and temporal filtering. These steps are employed to enhance data qual-
ity and extract reliable signals from the raw data. Over time, fMRI has become
an indispensable tool in neuroscience research, enabling scientists to explore
the intricacies of brain function, map neural networks, investigate neurologi-
cal disorders, and evaluate the effects of interventions or treatments on brain
activity and connectivity.

4.1.3 . Electrophysiological Methods (M/EEG)
Magnetoencephalography (MEG) [Cohen, 1972] and electroencephalog-

raphy (EEG) [Berger, 1969] are non-invasive neuroimaging techniques used
to offer insights into brain health by directly measuring the electrical activity
of the brain without penetrating the skull. EEG records the electrical signals
produced by neurons using electrodes placed on the scalp, while MEG mea-
sures themagnetic fields generated by these electrical currents using sensors
placed around the head. BothMEG and EEG providemillisecond temporal res-
olution, allowing researchers to capture the rapid dynamics of neural activity
associated with various cognitive processes, sensory inputs, and motor func-
tions. The acquisition of MEG and EEG involves positioning the sensors or
electrodes on the scalp according to a specific layout, typically based on inter-
national standards such as the 10-20 or 10-5 systems for EEG and a helmet-
shaped array for MEG. Signal preprocessing steps, including artifact removal,

49



noise reduction, and spatial filtering, are applied to enhance the quality of
the data. The combined use of MEG and EEG offers unique benefits. MEG pro-
vides excellent spatial resolution, although it is sensitive to superficial sources
[Hämäläinen et al., 1993]. EEG, on the other hand, is more sensitive to deeper
brain activity but has poorer spatial resolution [Luck, 2005]. Collectively, these
techniques offer valuable insights into the dynamics of brain function and are
widely used in cognitive neuroscience, clinical research, and brain-computer
interface applications. MEG and EEG enable the assessment of brain health
on a broad scale, potentially advancing preventive public health initiatives.

4.1.4 . Combining brain imaging modalities
Electroencephalography (EEG) has demonstrated its utility across a broad

spectrum of specialized domains, encompassing surgical environments
[Samanta, 2022] and sleep studies [Desjardins et al., 2017]. Although both
EEG andMEG serve as valuable instruments, their capacity to capture intricate
anatomical details is limited. Consequently, clinical research in neurology fre-
quently combines EEG and MEG with complementary neuroimaging modali-
ties possessing superior spatial resolution. Such modalities include magnetic
resonance imaging (MRI), and functional magnetic resonance imaging (fMRI).
The integration of expert-derived features derived from all three modalities
(M/EEG, fMRI, and MRI) can enhance the learning algorithms utilized to iden-
tify surrogate biomarkers, potentially leading to more robust and informative
brain assessments.

4.2 . Extending the reach of neuroscientific researchwith inter-
pretable machine learning

Neuroscience plays a pivotal role in elucidating the workings of the hu-
manmind and nervous system. It employs a diverse array of brainmodalities,
including high-resolution imaging techniques such as MRI and electrophysio-
logical recordings such as M/EEG, to investigate the intricate structure and
function of the brain. Its investigations have the potential to revolutionize
our understanding of consciousness, behavior, and cognition. This, in turn,
could pave the way for advancements in healthcare and our overall grasp
of the human experience and the societal burden of brain disorders such as
Alzheimer’s dementia1 or epilepsy2. Neuroscience has historically employed
simple, transparentmodels for the analysis of brain data. Thesemodels, such
as linear regressions or ANOVA, are relatively straightforward to use thanks to
modern software; these models have quite some heavy theory behind them,

1https://www.who.int/news-room/fact-sheets/detail/dementia2https://www.who.int/news/item/20-07-2023-new-global-action-plan-on-epilepsy-and-other-neurological-disorders-published
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and it is possible to ascertain the direct contribution of each variable in the
model (e.g., the activity of a specific brain region) to the final result (e.g., the
prediction of memory performance). In light of the previous utilization of
smaller datasets and the reliance on clustering statistics to group intercon-
nected variables, the marginal importance approach continues to be a valu-
able tool. However, the complex nature of the brain, with its complex neural
networks comprising numerous connections between neurons and dynamic
processes [Bassett and Gazzaniga, 2011], and its integration of information
from various sources, which results in highly correlated inputs [Eggermont,
1990], presents challenges for simple models [Badrulhisham et al., 2024]. Us-
ing such models, it is difficult to capture the complex interactions and hidden
patterns [Räz, 2024]. To address this issue, researchers have employed group-
ing techniques and brain maps to identify specific regions of interest (ROIs).
The selection of regions of interest (ROIs) presents a challenging decision, as
the optimal selection may differ depending on various conditions or patholo-
gies [Smith et al., 2011]. Pre-defined reference anatomical atlases, such as
Automated Anatomical Labeling (AAL) [Tzourio-Mazoyer et al., 2002] or sulci-
based atlases [Perrot et al., 2009, Desikan et al., 2006], provide examples of
such resources. However, these methods do not provide a comprehensive
understanding of the entire brain. As illustrated in Fig. 4.3, there are around

Figure 4.2: Segmentation of the brain: This figure presents a decompositionof the brain into voxels. Left: volume rendering of an excavated T1-weightedMR image. Right: voxel grid with isotropic, i.e., cubic, voxels overlaid on theMRI. Figure is derived from [Burgos, 2023].
120 billions of neurons in the human brain [Herculano-Houzel, 2009], yet only
hundreds of thousands of voxels are analyzed. This demonstrates the ne-
cessity for multivariate models combined with multimodal data to gain more
profound insights with larger datasets, which are necessary to capture hid-
den brain functions [Woo et al., 2017]. In addition, Fig. 4.2 highlights the chal-
lenge of brain imaging data through parcellations and correlation connectivity
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Figure 4.3: Whole-brain functional connectivity data: This figure visualizesthe data derived from fMRI timecourses in cortical areas (a), and calculation ofa correlation matrix between every pair of these regions (b). Figure is derivedfrom [Böttger et al., 2014], © [2014] IEEE.

matrices, which requires the application of processing pipelines compared to
tabular data.

Machine Learning (ML) is a promising tool for the discovery of novel
biomarkers from heterogeneous data sources, including omics, imaging and
multimodal data. This could lead to the development of newmedications and
personalized diagnostics and treatments [Dara et al., 2022, Newby et al., 2021].
This is particularly important in the context of brain health and the global
effort to develop medicines for brain disorders, including dementias [Shan
and Lagopoulos, 2023, Singh et al., 2022]. The expansion of biobanks and
the advancement of statistical learning techniques have led neuroscientists
to increasingly employ sophisticated machine learning algorithms to analyze
brain activity. However, the complex machine learning models employed to
perform this analysis frequently exhibit a notable absence of interpretability,
which remains paramount in neuroscience [Hofmann et al., 2022]. A model
that simply produces outcomes without clarifying the underlying reasoning,
commonly referred to as a "black box," obstructs scientific understanding and
limits its usefulness in clinical contexts [McKelvey et al., 2018]. XAI facilitates
the unpacking of these "black box" models, thereby revealing the underlying
reasoning that leads to conclusions about brain function or disease risk. This
high transparency is of paramount importance in medicine, where decisions
based on AI can have significant consequences. By giving importance to both
interpretability and the power of machine learning, neuroscientists can study
the brain while upholding scientific integrity and instilling trust in their discov-
eries.

With regard to the challenge of predicting at the individual level using
diverse neuroimaging modalities, each governed by unique data-generating
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mechanisms, recent advancements have employed model-stacking tech-
niques [Karrer et al., 2019, Liem et al., 2017]. Rahim et al. [2015] studied clas-
sification of Alzheimer’s diagnosis by merging fMRI and PET data through a
stacking approach [Wolpert, 1992], where the stacked models utilized input
from various modalities. Subsequently, Liem et al. [2017] employed a compa-
rable approach for age prediction and observed that integrating anatomical
MRI with fMRI markedly reduced errors while enhancing the identification of
cognitive impairment.

In high-dimensional neuroscience settings, where there is a vast array of
brain phenotypes, the process of iterating through all variables is both time-
consuming and almost impractical. Consequently, the necessity for grouping
in high-dimensional settings becomes apparent. Finally, there is a need for
a robust statistical model with high capacity, at both single and group levels,
that considers the interconnections between variables with a preference for
agnostic interpretability. This is because researchers want to have insights
into their models based on tested principles.

4.3 . Proxy Measures

Proxy measures are indirect indicators or substitutes employed to esti-
mate or infer the value of an underlying construct or phenomenon that can-
not be directly measured [Roydhouse et al., 2022, Hrisos et al., 2009]. These
measures are often employed when direct assessment is impractical, expen-
sive, or impossible. Proxy measures rely on the assumption that they are cor-
related with the target variable of interest, allowing researchers to make in-
ferences about the target variable based on the observed proxy. For instance,
income level may be employed as a proxy measure for socioeconomic status,
while heart rate variability could serve as a proxy for stress levels. Proxy mea-
sures are frequently utilized in various fields, including economics, sociology,
and public health, to study complex phenomena and inform decision-making
in the absence of direct measurements.

In recent years, there has been a notable increase in interest surrounding
the concept of brain age as a potential indicator of brain health [Sone and Be-
heshti, 2022]. This interest has prompted the development of the brain age
delta, which highlights the difference between an individual’s predicted brain
age and their actual chronological age [Smith et al., 2019]. Studies have indi-
cated that this brain age delta may serve as an indicator of both physical and
cognitive decline in adults, offering insights into neurodegenerative processes
[Liem et al., 2017]. The encouraging findings with brain age as a brain-derived
biomarker necessitated further investigation beyond the construct of patho-
logical aging.

Dadi et al. [2021] predict the chronological age with fMRI modality and
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socio-demographic data as inputs. The authors demonstrate that the appli-
cation of machine learning to population modeling enables the extraction
of mental health indicators from a range of sources, including brain signals
and questionnaire responses. These derived measures have the potential to
enhance or even replace traditional psychometric evaluations within clinical
populations. Nevertheless, the researchers lacked the requisite tools to as-
sess the true impact of each brain modality or sociodemographics on the
prediction of brain age. This is due to the current limitations status of XAI,
which lacks a high-capacity, statistically rigorous method that can effectively
control for the appearance of spurious relevant predictors. Furthermore, it
is not always clear that brain data represents the most crucial source of in-
formation, particularly when complex psychological traits or social outcomes
are predicted. Variable importance can help separating signals and clarifying
what is not redundant.

4.4 . Conclusion

While machine learning offers a suite of sophisticated algorithms for gain-
ing deeper insights into the complex nature of the brain through the use of
brain imaging modalities and socio-demographic data, these models are still
"black boxes" from a human perspective. Interpretable AI/explainable AI (XAI)
has developed a range of statistical-based explanation methods to enhance
the transparency of such models, thereby building trust and accountability
for the decision-making processes. Nevertheless, this field lacks a sensitive,
non-linear, agnostic method with statistical guarantees to provide statistically
valid insights across different applications. The absence of suitable tools has
resulted in the inability to ascertain the true impact of brain variables.

4.5 . Scientific goals of the thesis

The discussion up to now shows that the complexity of the human brain
together with the high-dimensionality of neurosciencemethods poses special
challenges to ML/XAI methods, which I wish to study in this thesis. In light of
these challenges, the following contributions have been made:

1. Find algorithm that is expressive to detect important variables in non-
linear models.

2. Deal with extremely correlated variables in high-dimensional settings.
3. Revisit previous appliedML literature to investigate the potential impact

of statistically controlled methods.
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Part II

Contributions
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Preliminaries

Experiments Setting

In the following chapters, in order to ensure a fair comparison across ex-
periments, all methods are employed with their original implementations. As
for {CPI, BCPI}-DNN, {CPI, BCPI}-RF and {Permfit, BPI}-DNN particularly, the de-
fault behavior consists of a 2-fold internal cross validation where the impor-
tance inference is performed on an unseen test set. The scores from the var-
ious splits are then aggregated to compute the final variable importance. All
experiments are conducted with 100 runs.

Evaluation Metrics

AUC score [Bradley, 1997] The variables are ordered by increasing p-
values, yielding a family of p splits into relevant and non-relevant at various
thresholds. AUC score measures the consistency of this ranking with the
ground truth (psignals predictive features versus p− psignals).
Type-I error Somemethods output p-values for each of the variables, that
measure the evidence against each variable being a null variable. This score
checks whether the rate of low p-values of null variables exceeds the nominal
false positive rate (set to 0.05).
Power This score reports the average proportion of informative variables
detected (when considering variables with p-value < 0.05).
Computation time The average computation time per core on 100 cores.
Prediction Scores As some methods share the same core to perform in-
ference and with the data divided into a train/test scheme, we evaluate the
predictive power for the different cores on the test set.
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5 - Statistical Valid Importance: the Case of
Single Variables

Summary In this chapter, we propose a comprehensive framework for
studying the properties of Conditional Permutation Importance (CPI) in
biomedical applications alongside tools for benchmarking variable impor-
tance estimators:

• Building on the previous literature on CPI, we develop theoretical re-
sults for the limitations regarding Permutation Importance (PI) and ad-
vantages of conditional Permutation Importance (CPI) given correlated
inputs (section 5.1).

• We propose a novel implementation for CPI allowing us to combine the
potential advantages of highly expressive base learners for prediction
(a deep neural network) and a comparably lean Random Forest model
as a conditional probability learner (section 5.2).

• We conduct extensive benchmarks on synthetic and heterogeneous
multimodal real-world biomedical data tapping into different correla-
tion levels and data-generating scenarios for both classification and re-
gression (section 5.3).

5.1 . Permutation importance and its limitations

5.1.1 . The permutation approach leads to false detections in the
presence of correlations

A known problem with permutation variable importance is that if features
are correlated, their importance is typically over-estimated [Strobl et al., 2008],
leading to a loss of type-I error control. However, this loss has not been pre-
cisely characterized yet, which we will work through for the linear case. We
use the setting of [Mi et al., 2021], where the estimator µ̂, computed with
empirical risk minimization under the training set, is used to assess variable
importance on a new set of data (test set). We consider a regression model
with a least-square loss function for simplicity. The importance of variable xj

is computed as follows:

m̂j =
1

ntest

ntest∑
i=1

(
(yi − µ̂(x

(j)
i ))2 − (yi − µ̂(xi))

2
)
. (5.1)
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Let εi = yi − µ(xi) for i ∈ JntestK. Re-arranging terms yields
m̂j =

1

ntest

ntest∑
i=1

(µ̂(xi)− µ̂(x
(j)
i ))(2µ(xi)− µ̂(xi)− µ̂(x

(j)
i ) + 2εi). (5.2)

Mi et al. [2021] argued that these terms vanish when ntest → ∞. But it is
not the case as long as the training set is fixed. In order to get tractable
computation, we assume that µ and µ̂ are linear functions: µ(x) = xw and
µ̂(x) = xŵ. Let us further consider that xj is a null feature, i.e. wj = 0. This
yields xw = xjwj + x−jw−j = x−jw−j which leads to
m̂j =

1

ntest

ntest∑
i=1

(µ̂(xi)− µ̂(x
(j)
i ))(2µ(xi)− µ̂(xi)− µ̂(x

(j)
i ) + 2εi) (5.2)

=
1

ntest

ntest∑
i=1

(����
x−j
i ŵ−j + xji ŵ

j −����
x−j
i ŵ−j − {xji}

πŵj)(2x−j
i w−j − 2x−j

i ŵ−j

− (xji ŵ
j + {xji}

πŵj) + 2εi)

=
2ŵj

ntest

ntest∑
i=1

(xji − {x
j
i}

π)(x−j
i (w−j − ŵ−j) + εi)−(((((((((((

ŵj((xji )
2 − ({xji}

π)2)

=
2ŵj

ntest

ntest∑
i=1

(xji − {x
j
i}

π)(x−j
i (w−j − ŵ−j) + εi)

=
2ŵj

ntest

〈
xj − {xj}π,X−j(w−j − ŵ−j) + ε

〉
as (∥xj∥2 − ∥{xj}π∥2) = 0. Next, 1

ntest
⟨{xj}π,X−j(w−j − ŵ−j)⟩ → 0 and

1
ntest
⟨xj − {xj}π, ε⟩ → 0 when ntest → ∞ with speed 1√

ntest
from the Berry-

Essen theorem, assuming that the first three moments of these quantities
are bounded and that the test samples are i.i.d. Let us assume that the corre-
lation withinX takes the following form: xj = X−ju+ δ, where u ∈ Rp−1 and
δ is a random vector independent of X−j. By contrast, 2ŵj

ntest
⟨xj,X−j(w−j −

ŵ−j)⟩ has a non-zero limit 2ŵjuTCov(X−j)(w−j − ŵ−j), where Cov(X−j) =

limntest→∞
X−jTX−j

ntest
(remember that bothw−j and ŵ−j are fixed, because the

training set is fixed). Thus, the permutation importance of a null but corre-
lated variable does not vanish when ntest → ∞, implying that this inference
scheme will lead to false positives.
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5.2 . Conditional sampling-based feature importance

5.2.1 . Main result
We define the permutation of variable xj conditional to x−j, as a variable

x̃j that retains the dependency of xj with respect to the other variables in
x−j, but where the independent part is shuffled; x̃(j) is the vector x where xj

is replaced by x̃j . We propose two constructions below (see Fig. 5.1) that we
compare in the additional experiments (section 5.5.4), one of which is faster
than the other. In the case of regression, this leads to the following impor-
tance estimator:

m̂j
CPI =

1

ntest

ntest∑
i=1

(
(yi − µ̂(x̃

(j)
i ))2 − (yi − µ̂(xi))

2
)
. (5.3)

As noted by Watson and Wright [2021], this inference is correct, as in tradi-

Figure 5.1: Construction of CPI: Constructing the variable of interest x̃j isdone either (A) by the additive construction where a shuffled version of theresiduals is added to the predicted version using the remaining predictorswith the mean of a Random Forest (RF) or (B) by the sampling constructionusing a Random Forest (RF) model to fit xj from X−j and then sample theprediction within the leaves of the RF.
tional permutation tests, as long as one wishes to perform inference condi-
tional to µ̂. However, the following proposition states that this inference has
much wider validity in the asymptotic regime.
Proposition. Assuming that the estimator µ̂ is obtained from a class of functions
F with sufficient regularity, i.e. that it meets conditions (A1, A2, A3, A4, B1 and B2)
defined in additional proofs, the importance score m̂j

CPI defined in (5.3) cancels
when ntrain → ∞ and ntest → ∞ under the null hypothesis, i.e. the jth variable
is not significant for the prediction. Moreover, the Wald statistic zj = mean(m̂j

CPI)

std(m̂j
CPI)

obtained by dividing the mean of the importance score by its standard deviation
asymptotically follows a standard normal distribution.
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This implies that in the large sample limit, the p-value associated with zj

controls the type-I error rate for all optimal estimators in F .
The proof of the proposition is given next (section 5.2.2). It consists in ob-

serving that the importance score defined in (5.3) is 0 for the class of learners
discussed in [Williamson et al., 2021], namely those that meet a certain set
of convergence guarantees and are invariant to arbitrary change of their jth
argument, conditional on the others. In the proof, we also restate the precise
technical conditions under which the importance score m̂j

CPI used is (asymp-
totically) valid, i.e. leads to a Wald-type statistic that behaves as a standard
normal under the null hypothesis.

It is easy to see that for the setting in Sec. 5.1.1, all terms in Eq. 5.3 vanish
with speed 1√

ntest
.

5.2.2 . Conditional Permutation Importance (CPI) Wald statistic
asymptotically controls type-I errors: hypotheses, theorem
and proof

Outline The proof relies on the observation that the importance score de-
fined in (5.3) is 0 in the asymptotic regime, where the permutation procedure
becomes a sampling step, under the assumption that variable j is not condi-
tionally associated with y. Then all the proof focuses on the convergence of
the finite-sample estimator to the population one. To study this, we use the
framework developed in [Williamson et al., 2021]. Note that the major differ-
ence with respect to other contributions [Watson andWright, 2021] is that the
ensuing inference is no longer conditioned on the estimated learner µ̂. Next,
we first restate the precise technical conditions under which the different im-
portance scores considered are asymptotically valid, i.e. lead to a Wald-type
statistic that behaves as a standard normal under the null hypothesis.
Notations Let F represent the class of functions from which a learner µ :

x 7→ y is sought.
Let P0 be the data-generating distribution and Pn is the empirical data

distribution observed after drawing n samples (noted ntrain in the previous
section; in this section, we denote it n to simplify notations). The sepa-
ration between train and test samples is actually only relevant to alleviate
some technical conditions on the class of learners used. M is the general
class of distributions from which P1, . . . , Pn, P0 are drawn. R := {c(P1 −
P2) : c ∈ [0,∞), P1, P2 ∈ M} is the space of finite signed measures gen-
erated by M. Let l be the loss function used to obtain µ. Given f ∈ F ,
l(f ;P0) =

∫
l(f(x), y)P0(z)dz, where z = (x, y). Let µ0 denote a populationsolution to the estimation problem µ0 ∈ argminf∈F l(f ;P0) and µ̂n a finite

sample estimate µ̂n ∈ argminf∈F l(f ;Pn) =
1
n

∑
(x,y)∈Pn

l(f(x), y).
Let us denote by l̇(µ, P0;h) the Gâteaux derivative of P 7→ l(µ, P ) at P0 inthe direction h ∈ R, and define the random function gn : z 7→ l̇(µ̂n, P0; δz −
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P0)− l̇(µ0, P0; δz − P0), where δz is the degenerate distribution on z = (x, y).
Hypotheses

(A1) (Optimality) there exists some constant C > 0, such that for each se-
quence µ1, µ2, · · · ∈ F given that ∥µn−µ0∥ → 0, |l(µn, P0)− l(µ0, P0)| <
C∥µn − µ0∥2F for each n large enough.

(A2) (Differentiability) there exists some constant κ > 0 such that for each
sequence ϵ1, ϵ2, · · · ∈ R and h1, h2, · · · ∈ R satisfying ϵn → 0 and ∥hn −
h∞∥ → 0, it holds that

sup
µ∈F :∥µ−µ0∥F<κ

∣∣∣∣ l(µ, P0 + ϵnhn)− l(µ, P0)

ϵn
− l̇(µ, P0;hn)

∣∣∣∣→ 0.

(A3) (Continuity of optimization) ∥µP0+ϵh−µ0∥F = O(ϵ) for each h ∈ R.
(A4) (Continuity of derivative) µ 7→ l̇(µ, P0;h) is continuous at µ0 rela-tive to ∥.∥F for each h ∈ R.
(B1) (Minimum rate of convergence) ∥µ̂n − µ0∥F = oP (n

−1/4).
(B2) (Weak consistency) ∫ gn(z)

2dP0(z) = oP (1).
(B3) (Limited complexity) there exists some P0-Donsker class G0 suchthat P0(gn ∈ G0)→ 1.
Proposition (Theorem 1 in [Williamson et al., 2021]) If the above condi-
tions hold, l(µ̂n, Pn) is an asymptotically linear estimator of l(µ0, P0) and
l(µ̂n, Pn) is non-parametric efficient.

Let P ⋆
0 be the distribution obtained by sampling the jth coordinate of x

from the conditional distribution of q0(xj |x−j), obtained after marginalizing
over y:

q0(x
j |x−j) =

∫
P0(x, y)dy∫

P0(x, y)dxjdy

P ⋆
0 (x, y) = q0(x

j |x−j)
∫
P0(x, y)dx

j . Similarly, let P ⋆
n denote its finite-sample

counterpart. It turns out from the definition of m̂j
CPI in Eq. 5.3 that m̂j

CPI =

l(µ̂n, P
⋆
n) − l(µ̂n, Pn). It is thus the final-sample estimator of the population

quantitymj
CPI = l(µ̂0, P

⋆
0 )− l(µ̂0, P0).Given that m̂j

CPI = l(µ̂n, P
⋆
n) − l(µ̂0, P

⋆
0 ) − (l(µ̂n, Pn)− l(µ̂0, P0)) +

l(µ̂0, P
⋆
0 ) − l(µ̂0, P0), the estimator m̂j

CPI is asymptotically linear and non-
parametric efficient.

The crucial observation is that under the j-null hypothe-
sis, y is independent of xj given x−j. Indeed, in that case
P0(x, y) = q0(x

j |x−j)P0(y|x−j)P0(x
−j) and P0(x

j |x−j, y) = P0(x
j |x−j),

so that P ⋆
0 = P0. Hence, mean/variance of m̂j

CPI ’s distribution provide
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valid confidence intervals for mj
CPI and mean(m̂j

CPI) →n→∞
0. Thus, the

Wald statistic ẑjCPJ defined in section (4.2) converges to a standard normal
distribution, implying that the ensuing test is valid.

In practice, hypothesis (B3), which is likely violated, is avoided by the use
of cross-fitting as discussed in [Williamson et al., 2021]: as stated in the main
text, variable importance is evaluated on a set of samples not used for train-
ing. An interesting impact of the cross-fitting approach is that it reduces the
hypotheses to (A1) and (A2), plus the following two:
(B’1) (Minimum rate of convergence) ∥µ̂n − µ0∥F = oP (n

−1/4) on each fold
of the sample splitting scheme.

(B’2) (Weak consistency) ∫ gn(z)
2dP0(z) = oP (1) on each fold of the sample

splitting scheme.
5.2.3 . Practical estimation

Next, we present algorithms for computing conditional permutation im-
portance. We propose two constructions for x̃j , the conditionally permuted
counterpart of xj . The first one is additive: on test samples, xj is divided into
the predictable and random parts x̃j = E(xj |x−j)+

(
xj − E(xj |x−j)

)π , where
the residuals of the regression of xj on x−j are shuffled to obtain x̃j . In prac-
tice, the expectation is obtained by a universal but efficient estimator, such
as a random forest trained on the test set.

The other possibility consists in using a random forest (RF) model to fit xj
from x−j and then sample the prediction within leaves of the RF.

Random shuffling is applied B times. For instance, using the additive con-
struction, a shuffling of the residuals ϵ̃j,b for a given b ∈ JBK allows to recon-
struct the variable of interest as the sum of the predicted version and the
shuffled residuals, that is

x̃j,b = x̂j + ϵ̃j,b. (5.4)
Let X̃j,b = (x1, . . . ,xj−1, x̃j,b,xj+1, . . . ,xp) ∈ Rntest×p be the new design ma-
trix including the reconstructed version of the variable of interest xj. Both
X̃j,b and the target vector y are fed to the loss function in order to compute
a loss score lj,bi ∈ R defined by

lj,bi =

{
yi log

(
S(ŷi)

S(ỹbi )

)
+ (1− yi) log

(
1−S(ŷi)

1−S(ỹbi )

)
(yi − ỹbi )

2 − (yi − ŷi)
2

(5.5)
for binary and regression cases respectively where i ∈ JntestK, j ∈ JpK, b ∈ JBK,
i indexes a test sample of the dataset, ŷi = µ̂(xi) and ỹbi = µ̂(x̃j,b

i ) is the new
fitted value following the reconstruction of the variable of interest with the bth
residual shuffled and S(x) = 1

1+e−x .The variable importance scores are computed as the double average over
the number of permutations B and the number of test samples ntest (line 15
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of Alg. 1), while their standard deviations are computed as the square root of
the average over the test samples of the quadratic deviation over the num-
ber of permutations (line 16). Note that, unlike Williamson et al. [2021], the
variance estimator is non-vanishing, and thus can be used as a plugin. A zjCPIstatistic is then computed by dividing the mean of the corresponding impor-
tance scores with the corresponding standard deviation (line 17). P-values are
computed using the cumulative distribution function of the standard normal
distribution (line 18). The conditional sampling and inference steps are sum-
marized in Algorithm 1. This leads to the CPI-DNN method when µ̂ is a deep
neural network, or CPI-RF when µ̂ is a random forest. Supplementary anal-
ysis reporting the computational advantage of CPI-DNN over a remove-and-
relearn alternative a.k.a. LOCO-DNN, can be found in additional experiments
(section 5.5.1), which justifies its computational leanness.
Algorithm 1 Conditional sampling step: The algorithm im-plements the conditional sampling step in place of the permu-tation approach when computing the p-value of variable xj

Input: X ∈ Rntest×p, y ∈ Rntest , µ̂: estimator, l: loss function, RFj :learner trained to predict xj from x−j

1 B ← number of permutations
2 X−j ←X with jth column removed
3 for i = 1 to ntest do
4 x̂j

i ← RFj(x−j
i )

5 end
6 Residuals ϵj ← xj − x̂j

7 for b = 1 to B do
8 ϵ̃j,b ← Random Shuffling(ϵj)
9 x̃j,b ← x̂j + ϵ̃j,b

10 for i = 1 to ntest do
11 ỹbi ← µ̂(x̃j,b

i )

12 compute lj,bi

13 end
14 end

15 mean(m̂j
CPI) =

1
ntest

1
B

ntest∑
i=1

B∑
b=1

lj,bi

16 std(m̂j
CPI) =

√
1

ntest−1

ntest∑
i=1

(
1
B

B∑
b=1

lj,bi −mean(m̂j
CPI)

)2

17 zjCPI =
mean(m̂j

CPI)std(m̂j
CPI)

18 pj ← 1− cdf(zjCPI)
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5.3 . Experiments & Results

5.3.1 . Experiment 1: Type-I error control and accuracy when in-
creasing variable correlation

We compare the performance of CPI-DNN with that of Permfit-DNN by ap-
plying both methods across different correlation scenarios. The data {xi}ni=1follow a Gaussian distribution with a prescribed covariance structure Σ i.e.
xi ∼ N (0,Σ)∀i ∈ JnK. We consider a block-designed covariance matrix Σ of
10 blocks with an equal correlation coefficient ρ ∈ {0, 0.2, 0.5, 0.8} among the
variables of each block. In this experiment, p = 100 and n = 300. The first
variable of each of the first 5 blocks is chosen to predict the target y with the
following model, where ϵ ∼ N (0, I):

yi = x1i + 2 log(1 + 2(x11i )2 + (x21i + 1)2) + x31i x41i + ϵi, ∀i ∈ JnK

The AUC score, type-I error, power and computation time are presented in
Fig. 5.2. Based on the AUC scores, Permfit-DNN and CPI-DNN showed virtually
identical performance. However, Permfit-DNN lost type-I error control when
correlation in X is increased, while CPI-DNN always controlled the type-I er-
ror at the targeted rate. Considering power, both methods Permfit-DNN and
CPI-DNN have almost similar power. In high correlation regime, Permfit-DNN
yields more detections, but it does not control type-I errors (Fig. 5.2). Regard-
ing computation time, CPI-DNN is slightly more computationally expensive
than Permfit-DNN.

5.3.2 . Experiment 2: Performance across different settings
In the second setup, we check if CPI-DNN and Permfit-DNN control the type-

I error with an increasing total number of samples n. The data are generated
as previously, with a correlation ρ = 0.8. We fix the number of variables p to
50 while the number of samples n increases from 100 to 1000 with a step size
of 100. We use 5 different models to generate the outcome y fromX: classifi-
cation, Plain linear, Regression with ReLu, Interactions only and Main effects with
interactions.
Classification The signal Xβmain is turned to binomial variables using
the probit function Φ. βmain and βquad are the two vectors with different
lengths of regression coefficients having only nsignal = 20 non-zero coeffi-
cients, the true model. βmain is used with the main effects while βquad is
involved with the interaction effects. Following [Janitza et al., 2018], the β val-
ues ∈ {βmain,βquad} are drawn i.i.d. from the set B = {±3,±2,±1,±0.5}.

yi ∼ Binomial(Φ(xiβ
main)), ∀i ∈ JnK
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Figure 5.2: CPI-DNN vs Permfit-DNN: Performance at detecting importantvariables on simulated data with n = 300 and p = 100. (A): The type-I er-ror quantifies to which extent the rate of low p-values (p < 0.05) exceeds thenominal false positive rate. (B): The AUC score measures to which extent vari-ables are ranked consistently with the ground truth. (C): The power reportsthe average proportion of informative variables detected (p-value< 0.05). (D):The computation time is in seconds with (log10 scale) per core on 100 cores.Dashed line: targeted type-I error rate. Solid line: chance level.

Plain linear model We rely on a linear model, where βmain is drawn as
previously and ϵ is the Gaussian additive noise∼ N (0, I) with magnitude σ =
||Xβmain||2

SNR
√
n

: yi = xiβ
main + σϵi, ∀i ∈ JnK.
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Regression with ReLu An extra ReLu function is applied to the output of
the Plain linear model: yi = Relu(xiβ

main + σϵi), ∀i ∈ JnK.
Interactions only model We compute the product of each pair of vari-
ables. The corresponding values are used as inputs to a linear model: yi =
quad(xi,β

quad) + σϵi, ∀i ∈ JnK, where quad(xi, β
quad) =

psignals∑
k,j=1
k<j

βquad
k,j xki x

j
i .

The magnitude σ of the noise is set to ||quad(X,βquad)||2
SNR

√
n

. The non-zero βquad

coefficients are drawn uniformly from B.
Main effects with Interactions We combine both Main and Interaction
effects. Themagnitude σ of the noise is set to ||X betamain+quad(X,βquad)||2

SNR
√
n

: yi =
xiβ

main + quad(xi, β
quad) + σϵi, ∀i ∈ JnK.

Figure 5.3: Model comparisons across data-generating scenarios: The (A)type-I error and (B) AUC scores of Permfit-DNN and CPI-DNN are plotted asfunction of sample size for five different settings. The number n of samplesincreased from 100 to 1000 with a step size of 100. The number of variables pwas set to 50. Dashed line: targeted type-I error rate. Solid line: chance level.
The AUC score and type-I error of Permfit-DNN and CPI-DNN are shown

as a function of sample size in Fig. 5.3. The accuracy of the two methods
was similar across data-generating scenarios, with a slight reduction in the
AUC scores of Permfit-DNN as compared to CPI-DNN. Only CPI-DNN controlled
the rate of type-I error in the different scenarios at the specified level of 0.05.
Thus, CPI-DNN provided an accurate ranking of the variables according to their
importance score while, at the same time, controlling for the type-I error in all
scenarios.
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5.3.3 . Experiment 3: Performance benchmark across methods
In the third setup, we include Permfit-DNN and CPI-DNN in a benchmark

with other state-of-the-art methods for variable importance using the same
setting as in Experiment 2, while fixing the total number of samples n to 1000.
We consider the following methods:

• Marginal Effects. A univariate linear model is fit to explain the response
from each of the variables separately. The importance scores are then
obtained from the ensuing p-values.

• Conditional-RF [Strobl et al., 2008]: A conditional variable importance
approach based on a Random Forest model. This method provides p-
values.

• d0CRT [Liu et al., 2021, Nguyen et al., 2022]: The Conditional Random-
ization Test with distillation, using a sparse linear or logistic learner.

• Lazy VI [Gao et al., 2022].
• Permfit-DNN [Mi et al., 2021].
• LOCO [Lei et al., 2018]: This method applies the remove-and-retrain
approach.

• cpi-knockoff [Watson and Wright, 2021]: Similar to CPI-RF, but permu-
tation steps are replaced by a sampling step with a knockoff sampler.

• CPI-RF: This corresponds to the method in Alg. 1, where µ̂ is a Random
Forest.

• CPI-DNN: This corresponds to the method in Alg. 1, where µ̂ is a DNN.
The extensive benchmarks on baselines and competing methods that pro-
vide p-values are presented in Fig. 5.4. For type-I error, d0CRT, CPI-RF, CPI-
DNN, LOCO and cpi-knockoff provided reliable control, whereas Marginal ef-
fects, Permfit-DNN, Conditional-RF and Lazy VI showed less consistent results
across scenarios. For AUC, we observed that marginal effects performed
poorly, as they do not use a proper predictive model. LOCO and cpi-knockoff
behave similarly. d0CRT performed well when the data-generating model
was linear and did not include interaction effects. Conditional-RF and CPI-RF
showed reasonable performance across scenarios. Finally, Permfit-DNN and
CPI-DNN outperformed all the other methods, closely followed by Lazy VI. Ad-
ditional inspection of power showed that across data generating scenarios,
CPI-DNN, Permfit-DNN and conditional-RF showed strong results. Marginal and
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Figure 5.4: Extended model comparisons: CPI-DNN and Permfit-DNN werecompared to baseline models (outer columns) and competing approachesacross data-generating scenarios (inner columns). Prediction tasks were sim-ulated with n = 1000 and p = 50. (A): Type-I error. (B): AUC scores. (C): Power.Dashed line: targeted type-I error rate. Solid line: chance level.

d0CRT performed only well in scenarios without interaction effects. CPI-RF, cpi-
knockoff, LOCO and Lazy VI performed poorly. To sumup, Permfit-DNN and CPI-
DNN outperform the alternative methods. Thus, the use of the right learner
leads to better interpretations.

We also benchmarked the following methods deprived of statistical guar-
antees i.e. not providing p-values:

• Knockoffs [Candes et al., 2017, Nguyen et al., 2020]
• Approximate Shapley values [Burzykowski, 2020].
• Shapley Additive Global importancE (SAGE) [Covert et al., 2020, Kumar
et al., 2020].

• Mean Decrease of Impurity [Louppe et al., 2013].
• BART [Chipman et al., 2010].
The performance of these methods in terms of AUC score is reported

in Fig. 5.5. Based on AUC, we observe SHAP, SAGE and Mean Decrease of
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Impurity (MDI) perform poorly. These approaches are vulnerable to correla-
tion. Next, Knockoff-Deep and Knockoff-Lasso perform well when the model
does not include interaction effects. BART and Knockoff-Bart show fair per-
formance overall.

Figure 5.5: Extendedmodel comparisons-noPval: State-of-the-art methodsfor variable importance not providing statistical guarantees in terms of p-values are compared (outer columns) and to competing approaches acrossdata-generating scenarios (inner columns) using the settings of experiments2 and 3. Prediction tasks were simulated with n = 1000 and p = 50. Solid line:chance level.
The computation time of the different methods mentioned in this work

(with and without statistical guarantees) is presented in Fig. 5.6 in seconds
with (log10 scale).

First, we compare CPI-RF, cpi-knockoff and LOCO based on a Random For-
est learner with p=50. We see that cpi-knockoff and LOCO are faster than CPI-
DNN. A possible reason is that CPI-DNN uses an inner 2-fold internal validation
for hyperparameter tuning (learning rate, L1 and L2 regularization) unlike the
alternatives. Next, The DNN-based methods (CPI-DNN and Permfit-DNN) are
competitivewith the alternatives that control type-I error (d0CRT , cpi-knockoff
and LOCO) despite the use of computationally lean learners in the latter.

Finally, to put estimated variable importance in perspective with model
capacity, we benchmarked prediction performance of the underlying learning
algorithms in Fig. 5.7, where the results for computing the prediction accuracy
using the underlying learners of the differentmethods are reported. Marginal
inference performs poorly, as it is not a predictive approach. Linear models
based on Lasso show a good performance in the no-interaction effect sce-
nario. Non-linear models based on Random Forest and BART improve on the
lasso-basedmodels. Nevertheless, they fail to achieve a good performance in
scenarios with interaction effects. The models equipped with a deep learner
outperform the other methods.
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Figure 5.6: Extendedmodel comparisons: The computation times for the dif-ferent methods (with and without statistical guarantees in terms of p-values)are reported in seconds with (log10 scale) per core on 100 cores. Predictiontasks were simulated with n = 1000 and p = 50.

5.3.4 . Experiment 4: Permfit-DNN vs CPI-DNN on Real Dataset
UKBB

Large-scale simulations comparing the performance of CPI-DNN and
Permfit-DNN are conducted in additional experiments (section 5.5.2). We con-
ducted an empirical study of variable importance in a biomedical application
using the non-conditional permutation approach Permfit-DNN (no statistical
guarantees for correlated inputs) and the safer CPI-DNN approach. A recent
real-world data analysis of the UK Biobank dataset reported successful ma-
chine learning analysis of individual characteristics. The UK Biobank project
(UKBB) curates phenotypic and imaging data from a prospective cohort of vol-
unteers drawn from the general population of the UK [Constantinescu et al.,
2022, Bycroft et al., 2018]. Nearly half a million people between the ages of
40 and 69 participated in the UK Biobank study, which began in 2006. These
participants underwent various assessments, including physical tests, surveys
about their background and lifestyle, cognitive tests, and medical examina-
tions. The longitudinal study included two imaging visits where the number of
participants dropped significantly to around 36 thousand and 8 thousand re-
spectively. The data is provided by the UKBB operating within the terms of an
Ethics and Governance Framework. The specifics of the processing pipeline
are outlined below. The work focused on age, cognitive function and mood
from brain images and social variables and put the ensuing models in rela-
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Figure 5.7: Evaluation of predictive performance: Performance of the dif-ferent base learners used in the variable importance methods (Marginal ={Marginal effects}, Lasso = {Knockoff-Lasso}, Random Forest = {MDI, d0CRT,CPI-RF, Conditional-RF, cpi-knockoff, LOCO}, BART = {Knockoff-BART, BART}and DNN = {Knockoff-Deep, Permfit-DNN, CPI-DNN, Lazy VI}) on simulateddata with n = 1000 and p = 50 in terms of ROC-AUC score for the classificationand R2 score for the regression.

tion to individual life-style choices regarding sleep, exercise, alcohol and to-
bacco [Dadi et al., 2021].

A coarse analysis of variable importance was presented, in which entire
blocks of features were removed. It suggested that variables measuring brain
structure or brain activity were less important for explaining the predictions
of cognitive or mood outcomes than socio-demographic characteristics. On
the other hand, brain imaging phenotypes were highly predictive of the age
of a person, in line with the brain-age literature [Cole and Franke, 2017]. In
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this benchmark, we explored variable-level importance rankings provided by
the CPI-DNN and Permfit-DNNmethods.

Figure 5.8: Real-world empirical benchmark: Prediction of personal char-acteristics (age, cognition, mood) and life-style habits (alcohol consumption,sleep, exercise & smoking) from various sociodemographic and brain-imagingderived phenotypes in a sample of n = 8357 volunteers from the UK Biobank.
(A) plots variable rankings for Permfit-DNN (x axis) versus CPI-DNN (y axis)across all outcomes. Color: variable domain (brain versus social). Shape:variables classified by both methods as important (squares), unimportant(crosses) or by only one of the methods, i.e., CPI-DNN (circles) or Permfit-DNN(triangles). (B) presents a detailed breakdown of percentage and counts ofvariable classification split by variable domain.

The real-world empirical benchmarks on predicting personal character-
istics and life-style are summarized in Fig. 5.8. Results in panel (A) suggest
that highest agreement for rankings between CPI-DNN and Permfit-DNN was
achieved for social variables (bottom left, orange squares). At the same time,
CPI-DNN flagged more brain-related variables as relevant (bottom right, cir-
cles). We next computed counts and percentage and broke down results by
variable domain (Fig. 5.8, B). Naturally, the total relevance for brain versus so-
cial variables varied by outcome. However, as a tendency, CPI-DNN seemed
more selective as it flagged fewer variables as important (blue) beyond those
flagged as important by bothmethods (light blue). This wasmore pronounced
for social variables where CPI-DNN sometimes added no further variables. As
expected by the impact of aging on brain structure and function, brain data
wasmost important for age-prediction compared to other outcomes. Interest-
ingly, most disagreements between the methods occurred in this setting as
CPI rejected 16 out of 66 brain inputs that were found as important by Permfit.
This outlines the importance of correlations betweenbrain variables, that lead
to spurious importance findings with Permfit. We further explored the util-
ity of our approach for age-prediction from neuromagnetic recordings [Enge-
mann et al., 2020] and observed that CPI-DNN readily selected relevant fre-
quency bands without fine-tuning the approach (Additional experiments sec-
tion 5.5.3).

74



Processing pipelines
Structural MRI High-resolution brain volumes were extracted from

T1-weightedMRI scans acquired using aMagnetization-Prepared Rapid Acqui-
sition with Gradient Echo (MPRAGE) sequence at spatial resolution of 1x1x1
mm. Following de-identification, field distortion correction, reduction of Field
of View (FoV), and skull-stripping using Brain Extraction Tool (BET) [Smith,
2002], the images were spatially normalized to MNI 152 T1 template space
using non-linear registration method (FNIRT) [Andersson and Sotiropoulos,
2015] and segmented into most prominent tissue types such as gray mat-
ter, white matter, and cerebrospinal fluid volumes using FAST segmentation
method [Zhang et al., 2001]. These bias-corrected images then underwent
further processing to generate 157 Imaging Derived Phenotypes (IDPs) repre-
senting volumes of various cortical and subcortical structures, modeled using
SIENAX [Smith et al., 2002] and FIRST [Patenaude et al., 2011] tools. We incor-
porated the 157 structural sMRI features, comprising the total brain volume,
gray matter volume, and subcortical structures, into our analysis. These fea-
tures were pre-extracted by the UKBB brain imaging team [Miller et al., 2016]
and are included in the downloaded data. We utilize them in their original
form, stacking them with other MRI features for predictive analysis.

Diffusion MRI Diffusion-weighted imaging, employing EPI sequences,
was utilized for in-vivo measurement of local structures by tracking the move-
ment of water molecules along fiber tracts. The dMRI data, acquired at a reso-
lution of 2x2x2mmwith 50 diffusion-encoding directions and varying b-values
(1000 and 2000), underwent preprocessing steps. These include correction
for eddy current distortions, head motion, and removal of non-brain image
slices [Andersson and Sotiropoulos, 2015]. Subsequently, gradient distortion
correction is applied. The preprocessed images were then further processed
to generate IDPs. This involved feeding the images into the Diffusion Ten-
sor Imaging (DTIFIT) tool to model the diffusion directions, yielding IDPs such
as Fractional Anisotropy (FA), Tensor Mode (MO), Mean Diffusivity (MD), and
NODDI (Neurite Orientation Dispersion and Density Imaging) estimates uti-
lizing Accelerated Microstructure Imaging via Convex Optimization (AMICO)
[Daducci et al., 2015]. This process also allowed for modeling the biological
properties of fiber tracts, represented as IDPs including Intra-Cellular Volume
Fraction (ICVF), Isotropic Volume Fraction (ISOVF), and Orientation Dispersion
index (OD).

To enable cross-subject comparisons on fiber tract-based IDPs, all out-
puts were aligned to a common space using tract-based spatial statistics
(TBSS) [Smith et al., 2006]. We integrated 432 skeleton features derived from
diffusion MRI (dMRI) data, encompassing Fractional Anisotropy (FA), Tensor
Mode (MO), Mean Diffusivity (MD), as well as Intra-Cellular Volume Fraction
(ICVF), Isotropic Volume Fraction (ISOVF), and Orientation Dispersion index
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(OD). These features were modeled across various white matter structures.
rfMRI Resting-state functional magnetic resonance imaging (rfMRI)

measures spontaneous low-frequency blood oxygen level-dependent (BOLD)
signal fluctuations, which reflect ongoing interactions between large-scale
brain networks [Biswal et al., 1995]. rfMRI data acquired using echo-planar
imaging (EPI) sequences with multi-band acceleration was employed, yield-
ing 490 brain volumes over a 6-minute scan. Preprocessing steps included
motion correction, intensity normalization, high-pass filtering, EPI distortion
correction, co-registration to a T1 template and grand-mean intensity normal-
ization, and removal of structured artifacts via Independent Component Anal-
ysis (ICA) and FIX strategy. Subsequently, group-Principal Component Analysis
(PCA) was applied for dimensionality reduction to facilitate the identification
of high-resolution resting-state networks (RSNs) using ICA implemented in the
MELODIC tool [Beckmann and Smith, 2004]. Artifactual components were ex-
cluded, and subject-specific time series signals were extracted through dual
regression analysis. Regularized covariance was employed to estimate con-
nectivity matrices, which were then mapped into a Euclidean space using tan-
gent space embedding. Features for supervised learning were obtained by
vectorizing the lower triangular portions of the connectivitymatrices. Notably,
Nilearn [Abraham et al., 2014] was utilized to implement the tangent space
parametrization.

Resting-state connectivity features were incorporated based on the time-
series derived from 55 ICA components representing diverse brain networks.
Functional connectivity was assessed in terms of between-network covari-
ance. In order to account for the fact that covariance matrices reside within
a specific manifold, namely a curved non-Euclidean space, the tangent-space
embedding was utilized to project the matrices into a Euclidean space [Varo-
quaux et al., 2010]. Subsequently, the connectivity matrices were trans-
formed into a feature space of 1485 dimensions by vectorizing them, focusing
on the lower triangular part for predictive modeling.
Socio-demographic data

This study builds upon the work of Dadi et al. [2021] and, in addition to brain
scans, considers 86 pieces of non-imaging data. This data serves as a repos-
itory of information regarding each participant’s background and social cir-
cumstances. Examples of the variables included in the study are age, sex,
birthdate, body mass index, ethnicity, early life events (breastfeeding, mater-
nal smoking, adoption), education level, lifestyle factors (occupation, income,
household size, smoking habits), and any prior history of mental health con-
ditions. The entire set of 86 variables is grouped into five clusters, with each
cluster comprising variables that exhibit correlation associations with each
other. These clusters are designated as follows: The first cluster comprises
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age and sex, which are considered primary demographic variables. The sec-
ond cluster encompasses early life experiences, while the third cluster encom-
passes education. The fourth cluster encompasses lifestyle factors, and the
fifth cluster encompasses mental health.

5.4 . Discussion

In this work, we have developed a framework for studying the behavior of
marginal and conditional permutation methods and proposed the CPI-DNN
method, that was inspired by the limitations of the Permfit-DNN approach.
Both methods build on top of an expressive DNN learner, and both methods
turned out superior to competing methods at detecting relevant variables,
leading to high AUC scores across various simulated scenarios. However, our
theoretical results predicted that Permfit-DNN would not control type-I error
with correlated data, which was precisely what our simulation-based analyzes
confirmed for different data-generating scenarios (Fig. 5.2 - 5.3). Other pop-
ular methods (Fig. 5.4) showed similar failures of type-I error control across
scenarios or only worked well in a subset of tasks. Instead, CPI-DNN achieved
control of type-I errors by upgrading the permutation to conditional permuta-
tion. The consequences were pronounced for correlated predictive features
arising from generative models with product terms, which was visible even
with a small fraction of data points for model training. Among alternatives,
the Lazy VI approach [Gao et al., 2022] obtained an accuracy almost as good
as Permfit-DNN and CPI-DNN but with an unreliable type-I error control.

Taken together, our results suggest that CPI-DNN may be a practical de-
fault choice for variable importance estimation in predictivemodeling. A prac-
tical validation of the standard normal distribution assumption for the non im-
portant variables can be found in additional experiments (section 5.5.5). The
CPI approach is generic and can be implemented for any combination of learn-
ing algorithms as a base learner or conditional means estimator. CPI-DNN has
a linear and quadratic complexity in the number of samples and variables, re-
spectively. This is of concern when modeling the conditional distribution of
the variable of interest which lends itself to high computational complexity. In
our work, Random Forests proved to be useful default estimators as they are
computationally lean and their model complexity, given reasonable default
choices implemented in standard software, can be well controlled by tuning
the tree depth. In fact, our supplementary analyses (section 5.5.6) suggest
that proper hyperparameter tuning was sufficient to obtain good calibration
of p-values. As a potential limitation, it is noteworthy the current configuration
of our approach uses a deep neural network as the base learner. Therefore, in
general, more samplesmight be needed for goodmodel performance, hence,
improved model interpretation.
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Our real-world data analysis demonstrated that CPI-DNN is readily appli-
cable, providing similar variable rankings as Permfit-DNN. The differences ob-
served are hard to judge as the ground truth is not known in this setting.
Moreover, accurate variable selection is important to obtain unbiased inter-
pretations which are relevant for data-rich domains like econometrics, epi-
demiology, medicine, genetics or neuroscience. In that context, it is inter-
esting that recent work raised doubts about the signal complexity in the UK
biobank dataset [Schulz et al., 2020], which couldmean that underlying predic-
tive patterns are spread out over correlated variables. In the subset of the UK
biobank that we analysed, most variables actually had low correlation values
(Fig. 5.3.4-S2), which would explain why CPI-DNN and Permfit-DNN showed
similar results. Nevertheless, our empirical results seem compatible with our
theoretical results as CPI-DNN flagged fewer variables as important, pointing
at stricter control of type-I errors, which is a welcome property for biomarker
discovery.

When considering two highly correlated variables x1 and x2, the corre-
sponding conditional importance of both variables is 0. This problem is linked
to the very definition of conditional importance, and not to the CPI procedure
itself. The only workaround is to eliminate, prior to importance analysis, de-
generate cases where conditional importance cannot be defined. Therefore,
possible future directions include inference on groups of variables, e.g, gene
pathways, brain regions, while preserving statistical control offered by CPI-
DNN.

5.5 . Additional Experiments

5.5.1 . Exp. 2 - Computational scaling of CPI-DNN and leanness

Figure 5.3.2-S1: CPI-DNN vs LOCO-DNN: Performance at detecting importantvariables on simulated data with n = 1000, p = 50 and ρ = 0.8 in termsof (AUC score), Type-I error, Power and Time. Dashed line: targeted type-Ierror rate. Solid line: chance level.
78



Computationally lean refers to two facts: (1) there is no need to refit the
costly MLP learner to predict y unlike LOCO-DNN (A removal-based method
provided with our learner) as seen in Fig. 5.3.2-S1. Both CPI-DNN and LOCO-
DNN achieved a high AUC score and controlled the Type-I error in a highly cor-
related setting (ρ=0.8). However, in terms of computation time, CPI-DNN is far
ahead of LOCO-DNN, which validates our use of the permutation scheme. (2)
The conditional estimation step involved for the conditional permutation pro-
cedure is done with an efficient RF estimator, leading to small time difference
wrt Permfit-DNN; Overall we obtain the accuracy of LOCO-type procedures for
the cost of a basic permutation scheme.

5.5.2 . Exp. 4 - Large scale simulations

Figure 5.3.4-S1: Semi-simulation with UK Biobank: (Top panel) Perfor-mance of CPI-DNN and Permfit-DNN is compared in terms of AUC score, Type-I
error, Power and Time on the data fromUKBBwith n = 8357 and p = 671. (Bot-
tom panel) Correlation strength among the variables in the UKBB dataset.

Figure 5.3.4-S2: Large scale simulation: Performance ofCPI-DNN and Permfit-
DNN is compared in terms of AUC score, Type-I error, Power and Time onsimulated data with n = 10000, p = 50 and ρ = 0.8.
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In Figs. 5.3.4-S1 and 5.3.4-S2, we provide a comparison of the perfor-
mance of both Permfit-DNN and CPI-DNN on the semi-simulated data from UK
Biobank, with the design matrix consisting of the variables in the UK BioBank
and the outcome is generated following a random selection of the true sup-
port, where n=8357 and p=671, and a large scale simulation with n=10000, p =
50 and block-based correlation of coefficient ρ = 0.8. For the UKBB-based sim-
ulation, we see that CPI-DNN achieves a higher AUC score and Power. How-
ever, both methods control the type-I error at the targeted level. To better
understand the reason, we plotted (Fig. 5.3.4-S1 Bottom panel) the histogram
of the correlation values within the UKBB data: in this case, we consider a
low-correlation setting which explains the good control for Permfit-DNN. In
the large scale simulation where the correlation coefficient is set to 0.8, the
difference is clear and only CPI-DNN controls the type-I error.

5.5.3 . Exp. 4 - Age prediction from brain activity (MEG) in Cam-
CAN dataset

Figure 5-SE1: Age prediction from brain activity: Predicting age from brainactivity in different frequencies with n = 536 and p = 4032.
Following the work of Engemann et al. [2020], we have applied CPI-DNN

to the problem of age prediction from brain activity in different frequen-
cies recorded with magnetoencephalography (MEG) in the Cam-CAN dataset.
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Without tweaking, the DNN learner reached a prediction performance on par
with the published results as seen in Fig. 5-SE1. The p-values formally confirm
aspects of the exploratory analysis in the original publication (importance of
beta band).
Dataset description
Launched in 2010, the Cambridge Center for Ageing and Neuroscience (Cam-
CAN) [Taylor et al., 2017, Shafto et al., 2014] is a major collaborative research
project investigating ageing and neuroscience. The study sought 3000 adults
aged 18 and over to take part in a multi-stage manner. The first stage re-
quested participants to participate in interviews about their health, lifestyle
and life experiences, along with a cognitive assessment and a physical ac-
tivity questionnaire. In the second stage, a subset of 700 participants, with
100 individuals representing each age group from 18 to 89, underwent addi-
tional cognitive assessments and brain imaging to measure both structural
and functional characteristics. The cognitive tests assessed various domains,
such as attention, memory, language, emotion and learning. This sample en-
compassedMEG (task and rest), fMRI (rest), anatomical MRI and neuropsycho-
logical data from 674 individuals (female = 340), aged between 18 (female =
18) to 88 (female = 87) under an average of 54.2 ± 18.7 (female = 53.7 ± 18.8)
years.
Processing pipeline
MEG
MEGdatawas captured using a 306 VectorView system fromElektaNeuromag
in Helsinki. This system facilitated the recording of magnetic fields employing
102 magnetometers and 204 orthogonal planar gradiometers within a lightly
magnetically shielded room. Throughout the recording process, an online fil-
ter was implemented between 0.03Hz to 1000Hz. Following band-pass filter-
ing between 0.1 and 49 Hz to isolate the neural signal of interest, the data un-
derwent decimation by a factor of five. This resulted in a sampling frequency
of 200 Hz during the subsequent epoching stage. To mitigate the influence of
environmental magnetic noise on the MEG signal, the temporal signal space
separation (tSSS) method was implemented [Taulu et al., 2005]. The analysis
employed harmonic decomposition with default settings, incorporating eight
components to capture internal sources and three components for external
sources within a sliding window of ten seconds.

In order to ensure the quality of the data, data segments were excluded
where the correlation between the inner and outer signal components fell
below a threshold of 98%. Subsequently, a high-pass filter with a cutoff fre-
quency of 0.1 Hz was applied to the signal, and the dimensionality of the data
was reduced to approximately 65 dimensions. It is noteworthy that Maxwell
filtering techniques, such as temporal signal space separation (tSSS), inte-
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grate the signals from both magnetometers and gradiometers into a unified,
low-rank representation. As a consequence of applying tSSS, the signal sub-
sequently observed on magnetometers becomes a linear transformation of
the signals initially observed on the gradiometers. This characteristic results
in near-identical analytical outcomes when employing solely magnetometer
data compared to gradiometer data [Garcés et al., 2017]. To optimize compu-
tational efficiency, themagnetometerswere evaluated as a benchmark. To ad-
dress the reduced data rank, a PCA projection was implemented to a shared
rank of 65.

5.5.4 . Compare CPI’s constructions: Residuals vs Sampling

Figure 5-SE2: Residuals vs Sampling: Comparison of CPI’s constructions, Resid-
uals vs Sampling, in terms of AUC score, Type-I error, Power and Time onsimulated data with n = 1000 and p = 50. Dashed line: targeted type-I errorrate. Solid line: chance level.

5.5.5 . Practical validation of the normal distribution assumption
In Fig. 5-SE3, we compared the distribution of the importance scores

of a random picked non-significant variable using CPI-DNN and Permfit-DNN
through histogram plots, and we can emphasize that the normal distribution
assumption holds in practice.

Also, in Fig. 5-SE4, we plot the distribution of the p-values provided by
CPI-DNN and Permfit-DNN vs the uniform distribution through QQ-plot. We
can see that the p-values for CPI-DNN are well calibrated and slightly deviated
towards higher values. However, with Permfit-DNN the p-values are not cali-
brated.
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Figure 5-SE3: Normal distribution assumption: Histogramplots of the distri-bution of the importance scores of a random picked non-significant variablewith n = 1000 and p = 50.

5.5.6 . Random Forest for modeling the conditional distribution
and resulting calibration

Figure 5-SE5: Random forest calibration: Calibration of the p-values for CPI-
DNN (left panel) and the control of type-I error (right panel) as a function ofthe complexity of the Random Forest (the max depth of the trees). Dashedline: targeted type-I error rate. Solid line: uniform distribution.

The use of the Random Forest model was to maintain a good non-linear
model with time benefits for the prediction of the conditional distribution of
the variable of interest. In Fig. 5-SE5, We can see that reducing the depth to
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Figure 5-SE4: CPI-DNN vs Permfit-DNN p-values calibration: Q-Q plot for thedistribution of the p-values vs the uniform distribution with n = 1000 and p =
50.

1 or 2, thus making the model overly simple, breaks the control of the type-
I errors at the targeted level. With larger depths, the model becomes more
conservative. Therefore, themaxdepth of the RandomForest is chosenbased
on the performance with 2-fold cross validation.
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6 - Sampling of Continuous, Ordinal and Nom-
inal Correlated Variables

6.1 . Background and Challenges

There is a growing interest in examining the influence of single variables
on outcome prediction, a.k.a. Variable Importance, in real data applications
across different domains. This requires utilizing a performance metric and
ground truth to examine the validity of the deployed method. Neverthe-
less, a major challenge is the lack of necessary ground truth in real datasets,
which forces us to consider simulations as an alternative. The variables in a
dataset can be classified as either (1) Continuous, (2) Categorical-ordinal or (3)
Categorical-nominal. The Ordinal and Nominal types are both defined by a lim-
ited number of values, with the former characterized by a natural order, such
as rank vs color. Another challenge that arises is preserving the correlation be-
tween different variables. Therefore, a framework is needed to sample data
with the same correlation among variables, meaning to simulate correlated
variables with different types.

To perform the sampling procedure, the correlation matrix is a prerequi-
site. This matrix is computed using the Ledoit-Wolf estimator implemented in
Scikit-learn [Pedregosa et al., 2011]. The sampling procedure started with the
Continuous variables, followed by the Categorical-ordinal and finished with the
Categorical-nominal. For the Categorical types, it is essential to maintain the
marginal distributions along with the correlation structure.

6.2 . Sampling of Continuous and Ordinal variables

We focused on the sampling of Continuous and Ordinal variables, the for-
mer having a natural order as mentioned earlier. As stated in [Amatya and
Demirtas, 2015], the generation of the Ordinal variables correlated with the
Continuous variables went through Normal latent variables. Therefore, we
aimed at this step to create

#Normal = #Continuous+#Ordinal variables.
The procedure initiated by standard scaling the Continuous columns. Next,

the generation of the targeted Normal variables was accomplished via the
Cholesky decomposition. To illustrate, we considered one Ordinal variable
o1 = {0, 1, 2, 3} and its correspondingNormal latent version l1. The procedureproceeded by finding the empirical cumulative distribution function (Fecdf ) of o1,i.e. Fecdf (o1) and the normal cumulative distribution function (Fnorm) of l1, i.e.
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Fnorm(l1). To finish, under the equal distribution consideration, we searchedfor the corresponding category of the latent variable l1.

0 1 2 3Categories

Ecdf 0

Figure 6.2.1: Category specification of the latent variable with distribu-
tion equality

In Fig. 6.2.1, we provided an example of the stated step where the latent
variable l1 was assigned the category (1).

6.3 . Sampling of Nominal variables

At this point, we assumed that the Continuous and Ordinal variables have
already been sampled. The following step focused on the sampling of the
Nominal variables distinguished by its iterative nature while considering the
multiclass classification case. Hereafter, we used the logistic regressionmodel
for prediction purposes.

The logistic regression model fit the first Nominal variable using the Con-
tinuous and Ordinal variables and resampled a new copy of the variable. The
resampled versionwas one-hot encoded and concatenatedwith the originally
used variables (Continuous and Ordinal). Finally, the model moved to the next
Nominal variable using the concatenated input variables.

Note that the sampling of Binary variables followed the same workflow as
Nominal variables without the one-hot encoding step.
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6.4 . Illustrative example

To provide an example for the whole procedure, we took the UK Biobank
dataset [Constantinescu et al., 2022] where we extracted 10 Continuous, 2 Or-
dinal and 3 Nominal variables (one-hot encoded to 19 variables). We aimed
to compare the computed correlation matrix under the Ledoit-Wolf method
for the original and sampled variables. The results presented in Fig. 6.4.2-A
demonstrated the effectiveness of the proposed regeneration procedure. To
better illustrate the results, we applied the cross-correlation between the orig-
inal and sampled observations in Fig. 6.4.2-B. The outcomewas a noisymatrix,
highlighting the fact that the observations were different after sampling while
preserving the correlation structure.
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Figure 6.4.2: Correlation-Adjusted Sampling: Comparsion of the correlationstructures after the sampling via the aforementioned procedure. (A) Corre-lation matrices of the original and sampled observations respectively fromUKBB using Ledoit-Wolf. (B) Cross-correlation of the original and sampled ob-servations.
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7 - Statistical Valid Importance: the Case of
Grouped Variables

Summary In this chapter, we propose Block-Based Conditional Permuta-
tion Importance (BCPI), a new framework for variable importance computation
(group levels) with explicit statistical guarantees (p-values).

• Following our review of the literature, we provide theoretical results on
group-based conditional permutation importance (section 7.1).

• We propose a novel internal stacking approach by extending the archi-
tecture of our default Deep Neural Network (DNN) model with the use
of a linear projection of the groups, which can significantly reduce com-
putation time (section 7.2).

• We conduct extensive benchmarks on synthetic and real world data
(section 7.3) which demonstrate the capacity of the proposed method
to combine high prediction performance with statistically valid identifi-
cation of important groups of variables.

7.1 . Block-Based Conditional Permutation Importance (BCPI)

7.1.1 . Define more notations for the groups

Let S ′ = {G′k, k ∈ JKK} be the set ofK new subset of variables following
linear projections with a set P of projection matrices, J ∈ (S ∪S ′). Projection
matrices are meant to produce a group summary of the information. Let P =

{Uk, k ∈ JKK} be the set of projection matrices Uk ∈ R|Gk|×|G′k|. Let X′ be
the linearly projected version ofX via P where p′ =

∑K
k=1 |G′

k|.
7.1.2 . Group conditional variable importance

We define the joint permutation of group xJ conditional to x−J , as a
group x̃J that preserves the joint dependency of xJ with respect to the other
variables in x−J , although the independent part is shuffled. The reconstruc-
tion of x̃J is done via two approaches, both, based on fast approximationwith
a lean model: (1) Additive construction combines the prediction of a Random
Forest using the remaining groups and a shuffled version of the residuals i.e.
x̃′J = E(x′J |x′−J )+ (x′J −E(x′J |x′−J ))π where the residuals of the regres-
sion of x′J on x′−J are shuffled. (2) Sampling construction uses a Random
Forest model to fit x′J from x′−J , followed by sampling the prediction from
within its leaves. When dealing with regression, this results in the following
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Figure 7.1.1: Block-Based Conditional Permutation Importance: Frame-work for single/group variable importance computation with statistical guar-antees. (Learner Block) The learner used to predict the outcome y from thedesign matrixX. Internal stacking linearly projects each group by the mean ofan extra linear sub-layer. (Importance Block): Reconstruction of the group ofinterestX′J is accomplished via CP (Conditional Permutation) block with (CP1)the additive or (CP2) the sampling constructions as stated in section 7.1.2. Thepermutation scheme can be changed to standard permutation (SP).

importance estimator:
m̂J

CPI =
1

ntest

ntest∑
i=1

(
(yi − µ̂(x̃

(J )
i ))2 − (yi − µ̂(xi))

2
)
, (7.1)

where X̃(J ) = (x1, . . . ,xj1−1, x̃j1 , . . . , x̃jr ,

. . . ,xp) ∈ Rntest×p be the new design matrix including the remodeled version
of the group of interestXJ .

In Fig. 7.1.1, we introduce BCPI a novel general framework for variable im-
portance, at both single and group levels, yielding statistically valid p-values.
It consists of two blocks: a Learner Block defined by the prediction model of
interest Importance Block reconstructing the variable (or group) of interest via
conditional permutation (CP) – m̂J

CPI . The implementation provided with this
work supports estimators compatible with the scikit-learn API for both blocks.
Yet, our default method BCPI-DNN is adapted with: (1) a DNN as a base learner
for its high predictive capacity inspired fromMi et al. [2021] and (2) a Random
Forest, a less powerful, but much simpler, yet, still generic model as a condi-
tional probability learner. For study purposes, the framework is also adapted
with the standard permutation scheme through the (SP) block (labeled BPI).
Proposition. Assuming that the estimator µ̂ is obtained from a class of functions
F with sufficient regularity, i.e. that it meets conditions of A1: optimality, A2: dif-
ferentiability, A3: continuity of optimization, A4: Continuity of derivative, B1: Mini-
mum rate of convergence and B2: Limited complexity, the importance score m̂J

CPI
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defined in (7.1) cancels when ntrain → ∞ and ntest → ∞ under the null hypoth-
esis, i.e. the J th group is not significant for the prediction. Moreover, the Wald
statistic zJ =

mean(m̂J
CPI)

std(m̂J
CPI)

obtained by dividing the mean of the importance score
by its standard deviation asymptotically follows a standard normal distribution.

The theoretical limitations of Permutation Importance (PI) have been ex-
plained in sections 5.1.1 considering a group of interest instead of a variable
of interest. This implies that in the large sample limit, the p-value associated
with zJ controls the type-I error rate for all optimal estimators inF . The proof
of the proposition is given in the additional proofs (section 5.2.2) with a group
of interest. It entails making sure that the importance score defined in (7.1) is
0 for the class of learners that meet specific convergence guarantees and are
immutable to arbitrary change in theirJ th arguments, conditional on the oth-
ers. We also state the precise technical conditions under with m̂J

CPI used is
(asymptotically) valid, i.e. leads to a Wald-type statistic that behaves as a stan-
dard normal under the null hypothesis. As a result, all terms in Eq. 7.1 vanish
with speed 1√

ntest
from the Berry-Essen theorem, under the assumption that

the test samples are i.i.d.

7.2 . Internal Stacking Approach

The vector x ∈ X is composed of K groups in S , each considered as an
independent input modality. Performing column slicing on x, according to
S , yields the set {xGk

, k ∈ JKK}. A linear transformation to a lower space is
applied on each input modality xGk through the set of projection matrices P
producing a linear variant denoted x′k as:

x′k =< xGk
,Uk >,

where k ∈ JKK.
Concatenating the set of linear variants {x′k, k ∈ JKK} provides the lin-

early projected version of x i.e. the vector x′. If the new space is a one-
dimensional Euclidean space i.e. x′ ∈ RK , a group summary of the informa-
tion within all groups is returned, and the problem is reduced to the single-
level case. However, if the new space is not unidimensional, we then have
a dimension reduction, where the group summary of information is exclu-
sive per group (multioutputs per group). In this case, the new groups con-
tained in x are denoted G′k with the corresponding linear variant x′G′k as
seen in Fig. 7.1.1. Instead of performing stacking in a separate estimation
step under a different learner, we have incorporated it to the inference pro-
cess, thus learning a consistent new presentation of the groups. This is sim-
ply implemented as an initial linear sub-layer without activation in the µ̂ net-
work. Therefore, x′k can be seen analogous to the predictions from the input
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Figure 7.3.2: Benchmarking grouping methods: BCPI-DNN is compared tobaseline models and competing approaches for group variable importance.
(A) AUC score (correct ranking of variables) and Type-I error (p-val < 0.05)for methods providing p-values. (B) AUC scores for methods not providingp-values. Prediction tasks were simulated with n = 1000 and p = 50. Dashedline: targeted type-I error rate at 5%. Solid line: chance level.

models in a classical stacking pipeline that are forwarded to the meta learner,
hence, x′k can be treated like a regular data column by permutation algo-
rithms.

7.3 . Experiments

7.3.1 . Experiment 1: Benchmark of grouping methods

We include BCPI-DNN in a benchmark with other state-of-the-art methods
for group-based variable importance. The data {xi}ni=1 follow a Gaussian dis-
tribution with a predefined covariance structure Σ i.e. xi ∼ N (0,Σ)∀i ∈ JnK.
We consider a block-designed covariance matrixΣ of 10 blocks with an intra-
block correlation coefficient ρintra = 0.8 among the variables of each block
and an inter-block correlation coefficient ρinter ∈ {0, 0.2, 0.5, 0.8} betweenthe variables of the different blocks. Each block is considered as a separate
group. In this experiment, n = 1000 and p = 50 i.e. we have 5 variables per
block/group. We defined an important group as a group having at least one
variable that took part in simulating the outcome y. Thus, to predict y, we rely
on a linear model where the first variable of each of the first 5 groups is used
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in the following model:
yi = xiβ + σϵi,∀i ∈ JnK (7.2)

where β is a vector of regression coefficients having only 5 non-zero coeffi-
cients (the true model), ϵ ∈ N (0, I) is the Gaussian additive noise with magni-
tude σ = ||Xβ||2

SNR
√
n
. We used the same setting from Janitza et al. [2018] where

theβ values are drawn i.i.d. from the setB = {±3,±2,±1,±0.5}. We consider
the following state-of-the-art baselines:

• Marginal Effects: A multivariate linear model is applied to each group
separately. Importance scores correspond to ensuing p-values.

• Leave-One-Group-In (LOGI) [Au et al., 2021]: Similar to Marginal Effects
using a Random Forest. Provides no p-values.

• Leave-One-Group-Out (LOGO) [Williamson et al., 2021]: Refitting of the
model is performed after removing the group of interest.

• Group Only Permutation Feature Importance (GOPFI) [Au et al., 2021]:
Joint permutation of all variables except for those of the group of inter-
est.

• Group Permutation Feature Importance (GPFI) [Gregorutti et al., 2015,
Valentin et al., 2020]: Joint permutation of all variables of the group of
interest.

In addition, we benchmarked the three variants of our proposed method:
• BPI-DNN: Similar to GPFI based on a DNN estimator. It is also reinforced
by the new internal stacking approach.

• BCPI-RF: This corresponds to the method in Alg. 1, considering a group
of interest, where µ̂ is a Random Forest.

• BCPI-DNN: This corresponds to the method in Alg. 1, considering a
group of interest, where µ̂ is a DNN. It is also reinforced by the new
internal stacking approach.
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Figure 7.3.3: Impact of Stacking: Performance at detecting important groupson simulated data with n = 1000 and p = 1000 with 10 blocks/groups, eachgroup having a cardinality of 10. AUC scores and Type-1 error as in Fig. 7.3.2.The (Power) provides information on the average proportion of detected in-formative variables (p-value < 0.05). The (Time) presents the time cost inseconds with log10 scale per core on 100 cores. Dashed line: targeted type-Ierror rate. Solid line: chance level.

7.3.2 . Experiment 2: Impact of Stacking
To assess the impact of performing stacking regarding accuracy in infer-

ence and computation time, we conducted a comparison restricted to BCPI-
DNN. We relied on the same covariance structure setting as in Experiment 1
with an intra-block correlation coefficient ρintra = 0.8 and an inter-block cor-
relation coefficient ρinter = 0.8. The number of samples n and the number of
variables pwere both set to 1000 i.e. the number of variables per block/group
increased to 100 in order to build groups with high cardinality. The outcome y
was simulated using the samemodel as in Eq. 7.2 where a group is predefined
as important having at least 10% of its variables taking part in computing the
outcome.

7.3.3 . Experiment 3: Age prediction with UKBB
We conducted an empirical benchmark of the performance of BCPI-DNN

combined with internal stacking in a real-world biomedical dataset. The UK
Biobank project (UKBB) encompasses imaging and socio-demographic de-
rived phenotypes from a prospective cohort of participants drawn from the
population of the UK [Constantinescu et al., 2022, Littlejohns et al., 2020]. In
the past years, the UKBB dataset has enabled large-scale studies investigat-
ing associations between various phenotypes (physiological, cognitive) and
environmental or life-style factor. This has given rise to successful analysis
of factors associated to personal well-being and health [Newby et al., 2021,
Mutz and Lewis, 2021] at an epidemiological scale. In the context of machine
learning with brain data, age-prediction is an actively studied task which can
provide a normative score when applying a reference model on clinical co-
horts [Cole and Franke, 2017]. State-of-the-art models were based on con-
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Figure 7.3.4: Brain Age prediction in UKBB: Prediction of brain age from var-ious socio-demographic and brain-imaging groups of phenotypes in a sampleof n = 8357 volunteers from the UK BioBank. (Degree of significance) plotsthe level of significance for the different brain (in blue) and social (in green)groups in terms of -log10 of the derived p-values. Dashed line: targeted type-Ierror rate at p = 0.001. (R2 score & MAE score) checks the predictive perfor-mance of the trained learnerwhen retaining all the groups and after removingthe non-important groups (having p-value > 0.05 or 0.001).

volutional neural networks and report mean absolute errors between 2-3
years [Roibu et al., 2023, Jonsson et al., 2019]. Recent extensions have fo-
cused on MRI-contrast and region-specific insights, often based on informal
inference [Roibu et al., 2023, Popescu et al., 2021]. Another line of work [Dadi
et al., 2021, Anatürk et al., 2021] has focused on other sources of normative
ageing information, highlighting cognitive social and lifestyle factors. In this
context, the analysis of importance ofmultimodal inputs has so far been ham-
pered by the lack of formal inference procedures and the high-dimensional
setting with highly correlated variables.

We approached this open task using the proposed method, reusing the
pre-defined groups in the work by Dadi et al. [2021] (supplement, section 7.7).
We focused on data from participants who attended the imaging visit (n =
8357) to study the group-level importance rankings provided by BCPI-DNN. We
defined important groups by p-value threshold of < 10−3. While this setting
lacks an explicit ground truth for the important groups, we explored the ap-
propriate group selection through model performance in terms of (R2 &MAE
scores, 10-fold cross-validation) after removing the non-significant groups.
We accessed the UKBB data through its controlled access scheme in accor-
dance with its institutional ethics boards [Bycroft et al., 2018, Sudlow et al.,
2015].
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7.4 . Results

We benchmarked state-of-the-art baselines and the proposed methods
across data-generating scenarios under increasing inter-block correlation
strength {0, 0.2, 0.5, 0.8} (Fig. 7.3.2). BCPI-DNN andBPI-DNNwere implemented
in two variants: with or without the novel internal stacking. For the AUC score,
we observed that (BCPI-DNN& BPI-DNN - based on the DNN) and (BCPI-RF, GPFI
& LOGO - based on Random Forests) showed the highest performance across
the different scenarios, hence, accurately ordering the variables according to
their significance. As expected, the Marginal baseline performed lowest as it
could not access any conditional information. GOPFI and LOGI both suffered
when the correlation between the groups increased, which is not surprising.
Considering false positive rate, BCPI-DNN controlled the type-I error at the tar-
geted rate (5 %) while BPI-DNN— based on the standard permutation of the
group of interest— failed to do so in the setting of high correlations between
the groups, and thus provided spurious results. Interestingly, for BPI-DNN,
internal stacking slightly increased its capacity to control the type-I error. BCPI-
RF—based on the conditional importance with Random Forests— better con-
trolled the type-I error compared to BPI-DNN. Nevertheless, in the presence of
strong correlations, it did not fully reach the target rate. The supplement de-
tails the prediction performance for the different algorithms (section 7.6.1),
suggesting that the marginal approach fails in the current setting, whereas
on average, the DNN had higher scores (R2 ∼ 0.95) than the Random Forest
(R2 ∼ 0.8). Performance in terms of power and computation time of these
methods is reported in the additional experiments (section 7.6.1). The re-
sults showed that BCPI-DNN, BPI-DNN, BCPI-RF and Marginal attained a high
performance. Grouped Shapley values, presented in additional experiments
(section 7.6.2), showed a drop in the performance with the high-correlated
settings. An extra simulation introducing more complexity with pair interac-
tions of variables was conducted in additional experiments (sections 7.6.3 &
7.6.4).

The AUC score, type-I error, power and computation time for Experi-
ment 7.3.2 are presented in Fig. 7.3.3. BCPI-DNN with internal stacking per-
formed similarly to the same approach without stacking. Thus, both ap-
proaches showed comparable inferential behavior in identifying the signifi-
cant groups. Nevertheless, in terms of computation time, the dimension re-
duction brought by stacking added significant benefits (around a factor of 2).
In fact, in the importance blockwithout stacking, all the variables of the remain-
ing groups are used to predict those of the group of interest. Groupswith high
cardinality (of variables) are challenging in terms of memory resources and
required computation, suggesting that internal stacking can help to reduce
computational burden. The performance with groups of different cardinali-
ties was conducted in the additional experiments (section 7.6.5).
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Real-world empirical application of BCPI-DNNwith internal stacking for age-
prediction from brain imaging and socio-demographic information are sum-
marized in Fig. 7.3.4. Results in (Degree of Significance) ranked the groups
according to their corresponding level of significance. We choose a conserva-
tive significance level of p = 0.001 (Dashed line at log10(0.001) = 3). Using the
stacking approach, we scored the heterogeneous brain and social input vari-
ables regarding their predictive importance. As expected, we found that the
brain groups - excluding Brain DMRI MD (see Table 7.7 for group description) -
were highly important for age prediction. Interestingly, Lifestyle and Education
were among the top predictive variables, conditional on the brain groups, sug-
gesting the presence of complementary information. To challenge the plau-
sibility of the selected groups, we investigated prediction performance after
excluding non-significant groups. We used 10-fold cross validation with signif-
icance estimation and refitting the reducedmodel using the training set while
scoring with the reduced model on the testing set. The reduced model did
not perform visibly worse than the full model (R2 = 0.8,MAE = 2.9), sug-
gesting that our procedure effectively selects predictive groups. Of note the
performance is in line with state-of-the art benchmarks on the UKBB based
on convolutional neural networks (MAE ∼ 2-3 years, e.g., Roibu et al. [2023],
Jonsson et al. [2019]). Consequently, results suggest that the proposed ap-
proach combined good prediction performance with effective identification
of relevant groups of variables. Despite setting default behavior of the internal
stacking approach to have one output neurone per group in the framework, a
supplementary analysis considering multi-outputs per group is discussed in
additional experiments (section 7.6.7).

7.5 . Discussion

In this work, we proposed BCPI, a novel and usable framework for comput-
ing single- and group-level variable importance. Our work provides statistical
guarantees based on results from Conditional Permutation Importance (CPI),
whereas our implementation supports arbitrary regression and classification
models consistent with the Scikit-learn API. We developed our approach by
reproducing the known fact that standard Permutation Importance (PI), rep-
resented by the BPI-DNN approach, lacks the ability to control type-I error
[Williamson et al., 2021] with high correlated settings in Fig. 7.3.2, despite the
high AUC score [Mi et al., 2021]. We extended these results, theoretically and
empirically, to the group setting by proposing BCPI-DNN, which is built on top
of an expressive DNN model as a base learner. This recipe led to high AUC
scores while maintaining the control of type-I error across different correla-
tion scenarios (Fig. 7.3.2).

Inspired by recent applications of model stacking for handling multiple
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groups or input domains [Albu et al., 2023, Zhou et al., 2021, Engemann et al.,
2020], we proposed internal stacking which implements stacking inside the
DNN model, hence, avoiding separate optimization problems performed by
common stacking pipelines. This was achieved by adding extra sub-linear lay-
ers to create a linear summary for each group of variables. Our benchmarks
suggested that stacking maintained inferential performance of the full model
while bringing time benefits (at least up to a factor of 2), especially for groups
with high cardinality of variables (Fig. 7.3.3). Moreover, supplementary anal-
yses of calibration of BCPI-DNN versus BPI-DNN (supplement, section 7.6.6)
suggested that the p-values for BCPI-DNN showed a slightly conservative pro-
file for BCPI-DNN. On the other hand, BPI-DNN showed poor calibration, once
more underlining the relevance of conditional permutations.

Our empirical investigation of age prediction using heterogeneous inputs
on the UKBB dataset suggests that the proposed framework facilitates con-
structing strong predictions models alongside trustworthy insights on the im-
portant predictive inputs. The prediction performance of our model was in
line with state-of-the art benchmarks on the UKBB based on convolutional
neural networks (MAE ∼ 2-3 years, e.g., [Roibu et al., 2023, Jonsson et al.,
2019]) At the same time, the results provided a statistically grounded confir-
mation for the conclusions drawn in [Dadi et al., 2021] which were based on
a less formal approach consistent with the LOGI approach.

Several limitations apply to our work. BCPI-DNN utilizes a DNN model
as the base estimator for its high predictive accuracy. However, when the
amount of training data is limited, the network can potentially memorize
the training examples instead of learning generalizable patterns and a sim-
pler base learner might be preferable, e.g. a Random Forest. By comparing
the computation time for BCPI-DNN with the internal stacking approach be-
tween Fig. 7.3.3 and supplement Fig. 7.6.1 where the groups have a high car-
dinality (100) and a low cardinality (5) respectively, we can see that the use
of internal stacking is preferable for high-cardinality situations. This is due
to the extra training of the added sub-linear layers. Our work made use of
pre-defined groups, which may not always be available. Instead, statistically
defined groups could be used e.g. obtained from clustering algorithms. A
possible issue might then be that the groups mix heterogeneous variables,
which makes their interpretation challenging. On the flip side, reliance on
pre-defined groups may lead to poor inference if the group structure does
not track variable importance: if important variables are disseminated in all
groups, the inference problem becomes much more challenging. This topic
deserves careful investigation in the future. Moreover, here we only per-
formed internal stacking by applying linear projection on the input data. It will
be interesting to better understand the potential of non-linear projections.

Finally, additional possible future directions include studying the impact
98



of missing and low values on the accuracy, also across different group defini-
tions. We hope that our results, resources and tools will facilitate the future
study of the importance of groups of variables in prediction models.
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7.6 . Additional Experiments

7.6.1 . Exp. 1 - Power & Computation time

Figure 7.3.1-S1: Benchmarking grouping methods: BCPI-DNN is comparedto baselinemodels and competing approaches for group variable importanceproviding p-values. (Power) indicates the mean proportion of informativevariables identified. (Time) reports the computation time in seconds with
log10 scale per core on 100 cores. (Prediction scores) presents the perfor-mance of the different base learners used in the group variable importancemethods (Marginal: {Marginal effects}, Random Forest: {BCPI-RF, LOGI, LOGO,GPFI &GOPFI},DNN: {BPI-DNN&BCPI-DNN}). Prediction taskswere simulatedwith n = 1000 and p = 50.
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7.6.2 . Exp. 1 - AUC score for Grouped Shapley values

Figure 7.3.1-S2: Grouped Shapley values: Prediction tasks were simulatedwith n = 1000 and p = 50. Solid line: chance level.
The grouped version of SAGE (Global Importance with Shapley values

[Covert et al., 2020]) was assessed with AUC scores (for detecting impor-
tant variables) as it does not provide p-values. SAGE performed well in
low-correlation settings (mean = 0.95) but the performance dropped in high-
correlation settings (mean = 0.76).

7.6.3 . Exp. 1 - AUC score & Type-I error (Non linear case)

Figure 7.3.1-S3: Benchmarking grouping methods: BCPI-DNN is comparedto baselinemodels and competing approaches for group variable importance.It encompasses two panels: (A) for the methods providing p-values used tocheck for AUC score and for statistical guarantees (Type-I error control), and
(B) for themethods deprived of p-values, thus the importance scores are usedto check for AUC score. Prediction tasks were simulated with n = 1000 and p= 50. Dashed line: targeted type-I error rate at 5%. Solid line: chance level.

To make the data-generating process more complex, we have added pair
interactions to the regression simulation introduced in Fig. 7.3.2. The new out-
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come is set to: yi = xiβ
main+quad(xi, β

quad)+σϵi, ∀i ∈ JnKwhere themag-
nitude σ of the noise is set to ||Xβmain+quad(X,βquad)||2

SNR
√
n

and quad(xi, β
quad) =

psignals∑
k,j=1
k<j

βquad
k,j xki x

j
i . The results show that BCPI-DNN outperforms all the alter-

nativesmethods presenting high AUC performance coupled with a control for
type-I error under the predefined nominal rate. BCPI-RF, where the inference
estimator is a Random Forest, showed an almost similar good performance
with a little drop in high-correlated settings which can be explained by the
drop in the predictive capacity following the plug of the Random Forest.

7.6.4 . Exp. 1 - Power & Computation time (Non linear case)

Figure 7.3.1-S4: Benchmarking grouping methods: BCPI-DNN is comparedto baselinemodels and competing approaches for group variable importanceproviding p-values. (Power) indicates the mean proportion of informativevariables identified. (Time) reports the computation time in seconds with
log10 scale per core on 100 cores. (Prediction scores) presents the perfor-mance of the different base learners used in the group variable importancemethods (Marginal: {Marginal effects}, Random Forest: {BCPI-RF, LOGI, LOGO,GPFI &GOPFI},DNN: {BPI-DNN&BCPI-DNN}). Prediction taskswere simulatedwith n = 1000 and p = 50.

The results showed that BCPI-DNN, BPI-DNN, BCPI-RF andMarginal attained
a high performance.
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7.6.5 . Exp. 2 - Groups with different cardinalities

Figure 7.3.2-S1: Groups of different cardinalities: The performance of BCPI-
DNN and Permfit-DNN at detecting important groups on simulated data with
n = 1000 and p = 1000 with 10 blocks/groups, each group having a cardinal-ity of 10 with or without the stacking approach. The (AUC score) evaluatesthe extent to which variables are ranked consistently with the ground truth.The (Type-I error) assesses the rate of low p-values (p-val < 0.05). (Power)provides information on the average proportion of detected informative vari-ables (p-value < 0.05). The (Time) panel displays computation time in sec-onds with log10 scale per core on 100 cores. Dashed line: targeted type-I errorrate. Solid line: chance level.

The results showed that BCPI-DNN’s capacity to achieve high AUC perfor-
mance coupled with a control of Type-I error under the predefined nominal
rate was maintained while providing groups of different cardinalities.

7.6.6 . Calibration of p-values between BCPI-DNN and BPI-DNN

Figure 7-SE1: P-values calibration: The calibration of p-values ensuing from
BCPI-DNN with the conditional permutation approach is compared to that of
BPI-DNN with standard permutation approach. The p-value’s distribution ofone randomly selected non significant variable is compared to the uniformdistribution. Prediction task was simulated with n = 1000 and p = 50.
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7.6.7 . Impact of multi-output neurons on variable importance

Figure 7-SE2: Age prediction in UKBB with multi-output neurones: Predic-tion of brain age from various socio-demographic and brain-imaging groupsof phenotypes in a sample of n = 8357 volunteers from the UK BioBank. Itplots the level of significance for the different groups in terms of -log10 of thederived p-values in terms of a changing number of output neurones for the
internal stacking approach.

In Fig. 7-SE2, we compare the impact of having more output neurons fol-
lowing the linear projections with the suub-layers. The results indicated that
the degree of significance of the different groups can change according to the
level of information extracted per group, i.e. high vs low group cardinalities.
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7.7 . Pre-defined groups in UK BioBank

Index Name # variables

1 Connectivity (FMRI) 14852 Brain DMRI FA 483 Brain DMRI ICVF 484 Brain DMRI ISOVF 485 Brain DMRI L1 486 Brain DMRI L2 487 Brain DMRI L3 488 Brain DMRI MD 489 Brain DMRI MO 4810 Brain DMRI OD 4811 Brain SMRI 15712 Early-Life 813 Education 214 Lifestyle 4515 Mental Health 2516 Demographics 2
Table 7.1: Knowledge-based groups in UK BioBank: Imaging andsocio-demographic formed groups within the data from UK Biobankwith their corresponding cardinalities. FMRI: Functional Magnetic Reso-nance Imaging. Following Tae et al. [2018], Chen et al. [2016], DMRI: Dif-fusion Magnetic Resonance Imaging, FA: Fractional anisotropy (a mea-sure of the degree of anisotropy of water diffusion in tissue), ICVF: Intra-Cellular Volume Fraction (a measure of the amount of space in tissueoccupied by intracellular water), ISOVF: ISOtropic Volume Fraction (ameasure of the amount of space in tissue occupied by freely diffusingwater), L1: The largest eigenvalue of the diffusion tensor and indicatesthe rate of diffusion in the direction of the greatest diffusion, L2: Anintermediate in size eigenvalue of the diffusion tensor and indicatesthe rate of diffusion in the direction perpendicular to the direction ofthe greatest diffusion, L3: The smallest eigenvalue of the diffusion ten-sor and indicates the rate of diffusion in the direction perpendicular tothe first two directions,MD: Mean Diffusivity (a measure of the averagerate of water diffusion in all directions), MO: Mode (a probabilistic trac-tography measure for crossing white matter fibers), OD: A measure ofthe angular difference between two sets of directions, SMRI: StructuralMagnetic Resonance Imaging.
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8 - Applications to Brain Imaging

Summary The tools developed in the previous chapters have the potential
to enhance the application ofmachine learning in neuroscience. They provide
a statistical framework that is rigorous and can be used to upgrade existing
prediction models without imposing new types of architectures. This frame-
work addresses the challenges in neuroscience and is applicable to both high-
correlated and high-dimensional cases.

The absence of formal inference tools prevented promising ML applica-
tions from reaching insightful conclusions regarding the true parts of the
decision-making process. Consequently, they were limited to the prediction
capacity without statistically-based human comprehension. In this chapter,
we revisit some results from the ML literature equipped with the built frame-
work for variable importance with statistical guarantees, BCPI, within an at-
tempt to provide clear answers to lingering questions related to the impact of
the different predictors.

Throughout the next sections, we inserted both the standard permutation
(BPI-DNN) and conditional permutation (BCPI-DNN) schemes in the prediction
pipeline of existing real-world cases to monitor the impact of the correspond-
ing predictors. This impact was measured by means of −log10 of the group-
wise p-values provided by the two methods respectively. In all the following
experiments, to ensure that the selected groups are the statistically-based
relevant ones, we performed a performance test following the removal of the
detected non-important groups thresholding at 5% and 0.1% respectively.

8.1 . Exploring the influence of multimodal heterogeneous
data on biomedical outcome prediction

8.1.1 . Challenge: inference of significant multimodal heteroge-
neous data

Several works made use of the brain phenotypes and socio-demographic
data provided by the UKBB project with the aim of explaining the relationship
between the health-based information and the individual traits [Gao et al.,
2021, Kochunov et al., 2021, Mutz and Lewis, 2021]. These works demon-
strate the pivotal role of accessible data in the generation ofhigh-quality pre-
dictions, thereby paving the way for the explanation of decision-making pro-
cesses based on the various variables. With such big dataset (n ∼ 8300 and
p ∼ 2300), iterating over all the variables in a perturbation-based process is
costly, particularly for high-dimensional brain imaging data. Additionally, the
high degree of correlation between brain imaging variables undermines the
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Figure 8.1.1: Biomedical outcome prediction in UK Biobank: Applica-tion of the standard permutation (BPI-DNN) and the conditional permutation(BCPI-DNN) to retrieve the impact of predefined brain and socio-demographicgroups in UKBB for the prediction of (A) age, (B) fluid intelligence and (C) neu-roticism respectively. (Top Panel) The degree of significance of the differentgroups by means of −log10 of the pvalues. (Bottom Panel) Predictive perfor-mance after removing the non-important groups (having p-value > 0.05 or0.001).

effectiveness of conditional permutation, as discussed in the previous chap-
ter [XUE et al., 2010]. Thus, grouping is a proposed solution based on the
pre-defined groups detailed in table 7.7 introduced in the work by Dadi et al.
[2021]. A description of the UKBB dataset and its processing pipelines are
provided in section 5.3.4 of chap. 5.
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8.1.2 . Study & Results
We reanalyze the work by Dadi et al. [2021] on studying the impact of the

mix of functional connectivity (fMRI) with Riemannian tangent-space embed-
dings (Connectivity), MRI diffusion-based data (DMRI) and socio-demographic
data sources on the prediction of chronological age, fluid intelligence and neu-
roticism in the UK Biobank project. While presenting clear evidence of ML-
based prediction, their work lacks any controlled statistical proof of the in-
fluence of the different inputs. Therefore, in Fig. 8.1.1, we conduct the same
study while analyzing themarginal and conditional importance with statistical
guarantees. We observed that both brain and socio-demographic factors had
a statistically significant impact age prediction, whereas for fluid intelligence
and neuroticism, the prediction was more reliant on socio-demographic fac-
tors, either partially or entirely. We should mention that the conditional
scheme classified less groups as statistically relevant as compared to the
permutation scheme, especially for the connectivity group considered as the
group with the highest cardinality. This is due to the fact of the controlled
selection of non-relevant predictors as relevant provided by the integration
of the conditional scheme. As for the performance test, at the 5% level and
across the different biomedical outcomes, we noted that the performance
either remained constant or increased. At the 0.1% level, with age and neu-
roticism, we also watched a steady or an improved performance, while for
intelligence the performance dropped significantly. One key explanation for
this case is the level of fine-tuning of the integrated importance model, i.e.
Random Forest model, making it highly-conservative with a negative effect on
the final performance.

8.2 . Multimodal brain data: illuminating age prediction in-
sights

8.2.1 . Challenge: inference of significant brain imaging modali-
ties

Following the work by Engemann et al. [2020], predicting biomedical re-
sults through Magnetoencephalography (MEG) is pivotal in various applica-
tions such as monitoring neurodegenerative diseases, epilepsy surgery plan-
ning, or biomarker development, and is enhanced by supervised machine
learning techniques. While themajority of the literature focused on the event-
level outcomes, Sabbagh et al. [2020] concentrated on individual-based anal-
ysis predicting age under multimodal brain imaging modalities. A significant
challenge in leveragingmachine learning effectivelywithin psychiatry andneu-
rology, such as single-subject prediction from diverse neuroimaging modali-
ties each with distinct data generation mechanisms, lies in the limited avail-
ability of extensive, high-quality datasets [Woo et al., 2017]. This challenge
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Figure 8.2.2: Age prediction in Cam-CAN from Brain imaging modalities:Application of the standard permutation (BPI-DNN) and the conditional permu-tation (BCPI-DNN) to retrieve the impact of brain imaging (A) modalities and
(B) sub-modalities in Cam-CAN for the prediction of age. (Top Panel) The de-gree of significance of the different imaging modalities subgroups by meansof−log10 of the pvalues. (Bottom Panel) Performance check after retrieving thenon-important groups (having p-value > 0.05 or 0.001).

has been tackled recently with model-stacking techniques [Liem et al., 2017,
Rahim et al., 2015]. In their study, Engemann et al. [2020] sought to iden-
tify the most informative electrophysiological markers of aging among fMRI,
MRI and MEG. To this end, they imployed a traditional permutation-based im-
portance approach, which has been demonstrated to provide non-controlled
detection of relevant variables in high-correlated settings, thus achieving low-
quality insights. Therefore, what remainedwas to integrate a statistically guar-
anteed importance indicator to the different brain modalities in the afore-
mentioned pipeline. A description of the Cam-CAN dataset and its processing
pipeline for MEG data are provided in section 5.5.3 of chap. 5. The follow-
ing section provides a detailed overview of additional processing pipelines
for MRI and fMRI data.
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8.2.2 . Processing pipelines
MRI
A number of features listed below were extracted from MRI data using the
established strategy outlined in the work by Liem et al. [2017]. This strategy
relies on cortical surface reconstruction via FreeSurfer software.
Cortical thickness In a well-established association, cortical thinning is
recognized as a hallmark of age-related brain atrophy [Thambisetty et al.,
2010]. The cortical thickness is employed as a measure, defined as the dis-
tance between thewhite and pialmater surfaces. Cortical thickness datawere
extracted from FreeSurfer segmentation [Fischl, 2012], which utilizes a sur-
face mesh with 5124 vertices in the standard fsaverage4 space. No further
reduction in vertex count was implemented.
Cortical surface area Consistent with established findings of age-related
decline [Lemaitre et al., 2012], the cortical surface area reduction was inves-
tigated. Estimates of cortical surface area at each vertex (vertex-wise) were
computed by averaging the areas of faces surrounding each vertex on the
whitematter surface. This analysiswas conductedusing FreeSurfer segmenta-
tion software [Fischl, 2012] on a standardized surfacemesh with 5124 vertices
in fsaverage4 space. The mesh was employed without any further reduction
in vertex count.
Subcortical volumes Building on the recognized association between ag-
ing and subcortical volume reduction [Murphy et al., 1992], the automated
procedure using FreeSurfer generated 66 volumetric measures for each par-
ticipant, without any further data reduction.
fMRI
Recent research has demonstrated that large-scale neuronal interactions be-
tween different brain networks undergo changes during healthy aging. To
address the challenge of heterogeneity and dimensionality reduction, partic-
ularly in small- to medium-sized datasets like Cam-CAN with fewer than 1000
observations, fMRI-based predictive modeling has utilized functional atlases
consisting of 50 to 1000 regions of interest (ROIs). These atlases serve as a
foundational component [Dadi et al., 2019]. To estimate macroscopic func-
tional connectivity, a departure was made from the 197-ROI BASC atlas [Bel-
lec et al., 2010] used in the work by Liem et al. [2017]. Instead, a 256-ROI
atlas with sparse and partially overlapping regions was adopted from Mas-
sive Online Dictionary Learning (MODL) [Mensch et al.]. Preliminary investi-
gations indicated that both methods produced similar results, average with
slightly reduced variance observed for theMODL atlas. Bivariate amplitude in-
teractions were computed using Pearson correlations from the average time-
series of each ROI. Subsequently, tangent space projection was employed to
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vectorize the correlation matrices, resulting in 32, 640 connectivity values ex-
tracted from the lower triangle of each matrix. No additional reduction was
performed.

8.2.3 . Study & Results
In Fig. 8.2.2, we studied the impact of different brain imaging modalities

MRI, fMRI andMEG on the prediction of age for the participants in the cam-CAN
study. The left panel studied the global impact of the different modalities by
considering one group per modality, whereas the right panel further investi-
gated the impact of the sub-groups composing each modality. We observed
that the three brain modalities had a significant global impact on age pre-
diction, and the significance score dropped when employing the conditional
scheme. This result confirms the conclusion previously announced by Enge-
mann et al. [2020] regarding the significance of integrating the three modal-
ities for age prediction. At the sub-groups level, both permutations had an
agreement with different scores for fMRI andMRI. However, forMEG, the stan-
dard permutation classified 3 sub-groups as relevant (Alpha, Beta low and
Theta) while the conditional permutation didn’t classify any sub-group as rele-
vant. Although the permutation-based approach does validate the role of the
MEG frequency bands that were previously identified in the original work, the
conditional-based approach fails to do so. A plausible explanation is the small
effects of the sub-groups that needs a more powerful importance model to
capture it. Yet, we noticed that the performance following the removal of the
non-relevant groups remained steady or slightly decreased. Further investi-
gation is needed to pave the way for capturing the small effects which could
introduce some improvements for the interpretation with the application of
the conditional perturbation.

8.3 . Unlocking age prediction: insights from cortical brain re-
gions

8.3.1 . Challenge: detection of predictive brain regions
Predicting age through brain scans involves examining the intricate folds

of the cortex, the brain’s convoluted outer layer responsible for functions like
memory, focus, and higher cognition. Using MRI scans, scientists capture de-
tailed images of the cortex, assessing its thickness, surface area, and volume
across different brain regions in individuals spanning various age groups. In-
terestingly, these cortical attributes display discernible patterns as individu-
als age, reflecting both the brain’s developmental trajectory and its natural
aging process. Using machine learning techniques, researchers build com-
puter models that analyze these patterns and learn to differentiate charac-
teristics linked to various age groups, allowing them to predict an individual’s
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Figure 8.3.3: Brain regions/parcels significantly contributing to age pre-
diction: Detection of predictive cortical brain regions for age prediction inCam-CAN under different views. (Surface) shows the statistically validatedrelevant regions with their corresponding degree in terms of−log10 of pvaluesunder a threshold of 0.05. (A) and (B) stands respectively for the applicationof the conditional and standard permutations (R2 = 0.639,MAE = 8.606).

age with exceptional accuracy [Madan and Kensinger, 2018, Cole and Franke,
2017]. Thismethod goes beyond just guessing age as it gives valuable informa-
tion about how healthy brains age and provides a reference point for future
comparisons [Teissier et al., 2020]. By comprehending the typical changes in
a healthy cortex, scientists can differentiate between normal aging and the
impacts of diseases that may accelerate or alter these patterns [Smith et al.,
2015]. This research holds significant promise for the future, potentially rev-
olutionizing neuroimaging studies by enhancing our understanding of how
brain disorders influence cortical structure and aging [Gautherot et al., 2021].
Furthermore, this research isn’t just about predicting age. It could also be
used in clinics to help diagnose brain diseases [Franke and Gaser, 2019]. Ulti-
mately, it sheds light on the amazing process of brain development and aging,
and might even lead to new ways to keep our brains healthy throughout our
lives [Koutsouleris et al., 2014]. In the following section, we revisit the work by
Engemann et al. [2020] on identifying the impact of brain imaging modalities
on age prediction without a statistically-based inference. Therefore, we focus
on the influence of the cortical brain regions equipped with the developed
framework to highlight the ability of detecting predictive parts.
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8.3.2 . Study & Results
Brain imaging is a high-dimensional settingwith hundreds of thousands of

voxels [Bzdok et al., 2015]making it almost impossible to loop over each voxel
to compute its impact on the prediction. As a result, in Fig. 8.3.3, we explored
the influence of the different cortical regions on age prediction using the cor-
tical thickness group in Cam-CAN. We used the atlas introduced in the work
by Destrieux et al. [2010] gathering a sum of 75 Region of Interest (ROI). The
results presented an agreement between both permutation schemes in classi-
fying the anterior and posterior subcentral sulci, inferior temporal gyrus, circular
sulcus of the insula anterior, medial orbital sulcus and superior temporal sulcus
as relevant for the prediction of age while providing a decline in the degree
of significance in comparison with the standard permutation. Nevertheless,
the standard permutation scheme considered 20 more regions as relevant
for this prediction which means the conditional perturbation highlighted less
regions as relevant. The disagreement arose from the high correlation ob-
served among the brain regions, as demonstrated in the work by Chevalier
et al. [2021]. In this context, the conditional scheme has showcased its abil-
ity to more effectively regulate the true non-relevant predictors identified as
relevant.

8.4 . Significant frequencies bands for age prediction

8.4.1 . Challenge: inference of the important frequencies from
EEG models

Multiple studies have illustrated that EEG characteristics, such as rhythmic
activity (e.g., delta, theta, alpha, beta, and gamma), vary with age [Al Zoubi
et al., 2018, Cragg et al., 2011, Ashburner, 2007]. Sabbagh et al. [2020] dis-
cussed the effect of the EEG features’ preprocessing for subject-level age pre-
diction. The Source Power Comodulation (SPoC) is an algorithm that involves
leveraging the information embedded in the outcome variable to direct the
decomposition process, prioritizing source signals whose power correlates
with the outcome [Dähne et al., 2014, Koles et al., 1990]. The authors intro-
duced filterbankmodels derived from Riemannian geometry offering a viable
substitute forMRI-based source localization, albeit with slightly inferior perfor-
mance. Unlike individual-specific source estimates, where variations in head
and sensor positions are explicitly accounted for, the Riemannian embedding
assumes a constant linear field spread, which may not hold true across dif-
ferent recordings [Congedo et al., 2017]. These embeddings were used to
measure the impact of EEG features on age prediction without retrieving the
standalone effects of the different frequency bands. Al Zoubi et al. [2018]
tended to search for the impact of each frequency band on the prediction of
individual-based age. In their work, they used a thorough approach aimed at
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Figure 8.4.4: Significant frequencies for age prediction under Rieman-
nian/SPoC projectors in TUAB: Application of the standard permutation (BPI-
DNN) and the conditional permutation (BCPI-DNN) to retrieve the impact ofdifferent frequencies under (A) Riemannian and (B) SPoC projectors respec-tively in TU for the prediction of age. (Left Panel) The degree of significanceof the different groups by means of −log10 of the pvalues. (Right Panel) Per-formance check after retrieving the non-important groups (having p-value >0.05 or 0.001).

examining all characteristics across every channel and frequency band with-
out the reduction of features through averaging. The importance scores of
the different predictors were fetched from the stack-ensemble model used in
a nested cross validation manner without a statistical-base for the extracted
insights. Using the filterbank provided embeddings along with statistically-
based approach to measure the impact of the different frequency bands on
subject-level age prediction remains an open question.
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8.4.2 . Dataset description
The Temple University Hospital Abnormal EEG Corpus (TUAB/TUH-EEG) is

a data collection initiative, including 14 years of clinical EEG data gathered
at Temple University Hospital which offers a valuable resource for studying
brain activity in a diverse population. This dataset primarily includes partic-
ipants from Latin American and African American backgrounds [Obeid and
Picone, 2016]. Each recording is subsequently labeled as either "normal" or
"abnormal" by medical experts. Due to its clinical and social variety, TUAB is
considered crucial for developing electrophysiological models that can be ap-
plied to diverse populations [Gemein et al., 2020, Sabbagh et al., 2020]. This
study exclusively examined EEG recordings categorized as "normal" yielding
a subset of 1385 individuals (775 females and 610 males). Ages ranged from
newborn (minimum: 0 for females, 1 for males) to elderly (maximum: 95 for
females, 90 for males) with an average age of 44.4± 16.5 years. The EEG data
is provided in Volts with a standard deviation of 9.7microvolts. The data pro-
cessing procedures mirror the previous work by Engemann et al. [2022].

8.4.3 . Processing pipeline
EEG

EEG data were acquired using a variety of Nicolet EEG devices (Natus Medi-
cal Inc.) equipped with 24 to 36 channels. Channel placement followed the
10-5 system [Oostenveld and Praamstra, 2001] across all recordings. The ini-
tial sampling rate for the EEG data was 500 Hz. After applying a band-pass
filter between 0.1 and 49 Hz, the data was resampled to a consistent rate of
200 Hz for further analysis. A common reference electrode was used during
all recording sessions. We focused our analysis on a subset of 21 common
channels. Due to inconsistencies in channel numbering across recordings, re-
referencing with an average reference was necessary to ensure consistency
across the entire EEG dataset. Additionally, variations in sampling frequencies
necessitated resampling all data to a common rate of 200 Hz. In cases where
multiple recordings were available for a participant, only the first recording
was included for simplicity.

8.4.4 . Study & Results
We reanalyze the work in [Engemann et al., 2022, Sabbagh et al., 2020] on

identifying the significant frequency bands from 0.1 Hz to 49 Hz for subject-
level age prediction in the TUAB dataset. While this work provides insightful
conclusions, it does not provide statistical-based inference about the impact
of the frequency bands. Consequently, in Fig. 8.4.4, we conducted an exam-
ination of the marginal and conditional influence of the different frequency
bands on chronological age. The features were extracted under the Rieman-
nian and SPoC projectors respectively applying the filterbank models from
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Sabbagh et al. [2020]’s work. With the Riemannian projector, the conditional
permutation classified the beta mid frequency band as non-relevant as com-
pared to the standard permutation. It offered also a drop in the degree of
relevance for low and beta high. As for the SPoC projector, all the frequency
bands were classified as relevant with a drop within the conditional permuta-
tion for low, delta and beta high. Thus, in both cases, the conditional permu-
tation reduced the importance degree of Low and beta high frequency bands.
Additionally, classifiying the beta mid band as non-relevant didn’t affect the
performance as shown in the bottom panel. These results are in agreement
with the work by Bomatter et al. [2024] illustrated in Fig. 5. It is also notewor-
thy that the features obtained with the Riemannian embeddings improved
the performance in terms of R2 in comparison with SPoC.

8.5 . Significant frequencies for identifying the status of the
eyes

8.5.1 . Challenge: inferring significant frequency contributions in
EEG prediction models

The Berger effect is a well-established EEG phenomenon that refers to the
increase in the alpha-band power over the occipital/parietal areas when in-
dividuals close their eyes compared to when they open their eyes [?Berger,
1969]. Barry et al. [2007] verified the utilization of the mean alpha level as
an indicator of resting-state arousal during both eyes-closed and eyes-open
states. Li [2010] uncovered the lack of impact of the beta bands in identifying
the condition of the eyes. Michel et al. [2015] confirmed that thetawaves indi-
cate developmental shifts in the processing of eye gaze in infants. Assessing
the influence of various frequency bands on individual-level eye state through
the utilization of provided filterbank embeddings and statistical methodolo-
gies remains unresolved. The present study concerns a well-understood land-
mark, for which the 8-12 Hz band is expected to be of significance.

8.5.2 . Dataset description
The Leipzig Study for Mind-Body-Emotion Interactions (LEMON) focuses

on awell-defined groupof healthy young and elderly adults recruited from the
general population, as described in the study by Babayan et al. [2019]. Simi-
lar to the Cam-CAN data, the LEMON research was conducted in a controlled
research setting using high-quality equipment. Additionally, participants un-
derwent extensive neurocognitive and behavioral assessments, providing
valuable insights into their mental and behavioral functioning. The LEMON
dataset incorporated resting-state Electroencephalography (EEG) from 227

healthy individuals consisting of 82 females (mean age = 42) and 145 males
(mean age = 36), indicating a noticeable disparity in gender representation.
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Figure 8.5.5: Significant frequencies for eyes’ status under Rieman-
nian/SPoC projectors in LEMON: Application of the standard permutation(BPI-DNN) and the conditional permutation (BCPI-DNN) to retrieve the impactof different frequencies under (A)Riemannian and (B) SPoCprojectors respec-tively in LEMON for the prediction of the status of the eyes. (Left Panel) Thedegree of significance of the different groups bymeans of−log10 of the pvalues.(Right Panel) Performance check after retrieving the non-important groups(having p-value > 0.05 or 0.001).

The age range spanned from 20 to 77 years, with an average age of 38.9±20.3

years. An important aspect of the LEMONdataset is its division of participants
into two specific age ranges: 20-35 years and 55-77 years. This structuremakes
the overall average age a less accurate representation of the true age distribu-
tion. Furthermore, the publicly available version of the dataset offers age data
only in 5-year intervals as a measure to safeguard participant confidentiality,
although their impact on the modeling results proved to be minimal [Enge-
mann et al., 2022]. Finally, the EEG data is provided in Volts with a standard
deviation of 9.1microvolts.
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8.5.3 . Processing pipeline
EEG
EEG data acquisition employed a 62-channel active electrode system (ActiCAP)
with an initial band-pass filter set between 0.015 Hz and 1 kHz. To further re-
fine the signal, an additional band-pass filter between 0.1 Hz and 49 Hz was
implemented. Consistent with the previous dataset, channel placement ad-
hered to the 10-5 system [Oostenveld and Praamstra, 2001]. The data were
initially sampled at a high rate of 2500 Hz. Subsequently, to improve man-
ageability for further analysis, the data were decimated by a factor of 5, yield-
ing a final sampling frequency of 500 Hz. It is noteworthy that resting-state
recordings within this dataset included samples from two distinct conditions:
eyes closed and eyes open. The data processing pipeline explicitly consid-
ered these separate conditions. To maximize data utilization and potentially
identify a wider variety of distinguishable EEG sources, the data from both
conditions were pooled prior to feature extraction.

8.5.4 . Study & Results
In Fig. 8.5.5, we studied the corresponding frequency bands responsible

for determining the status of the eyes (open/close) in a classification-based
problem. Again, we deploy the filterbankmodels implemented in the work by
Sabbagh et al. [2020] to attain the projected embeddings of the EEG features.
Through the Riemannian projector, both permutation schemes reached a
good agreement to classify the different frequency bands into relevant and
non-relevant categories. All the beta bands were considered as non-relevant
with a slight difference in the degree of significance. Additionally, the condi-
tional permutation pointed a drop in the degree for low, delta and alpha. Re-
garding the SPoC projector, this agreement didn’t remain solid with the stan-
dard perturbation highlighting the relevance of the beta bands. A bigger drop
in the degree was watched for both theta and alpha bands, as the conditional
alternative is characterized by controlling for type-I error. Consequently, with
both projectors, alpha is a relevant frequency band for the condition of the
eyes. These results are consistent with the previous work in the literature.
The removal of the non-relevant frequency bands with both projectors had
no effect on the performance measured in terms of AUC score. The EEG fea-
tures extracted with both projectors achieved a high AUC score of 0.97.
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8.6 . Conclusion

The application of machine learning (ML) techniques with complex, high-
capacity models is becoming increasingly prevalent in the field of neuro-
science. However, there is a lack of understanding regarding the effect of
different predictors on the prediction of biomedical outcomes with statisti-
cal guarantees. While the standard permutation scheme is straightforward
to implement, it can lead to the misinterpretation of non-relevant predictors
as relevant. Consequently, in this study, we employed the block-based con-
ditional scheme (BCPI) to regulate the false positive rate (FPR) with four dis-
tinct biomedical datasets: UK Biobank, Cam-CAN, TUAB, and LEMON. With UK
Biobank, the method validated statiscally the utility of an entire or partial mix-
ture of brain and socio-demographic data for the prediction of age, fluid in-
telligence and neuroticism, as discussed in the previous work, while offering
a statiscally validated reduction in the number of variables. Regarding the
Cam-CAN dataset comprising multimodal brain data, the fMRI, MRI, and MEG
frequency bands had a global impact on age prediction, which confirms the
impact of combining the three brain imaging modalities. However, there was
a notable absence of the role of the MEG modality’s frequency bands cap-
tured by the conditional approach in comparison to the marginal one. This is
due to the fact that the signal is distributed, andmeasuring separate variables
may result in detecting only small effects. With regard to the TUAB and LEMON
datasets, where the frequency analysis is of interest for both age prediction
and the state of the eyes, the Riemannian projected embeddings of the EEG
features were found to be more suitable for the predictions, indicating that
the beta bands were not involved.
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9 - Conclusion

With machine learning (ML) becoming increasingly prevalent in scientific
domains such as neuroscience, and the integration of high-capacity models
capable of detecting non-linear patterns in data and generating high-quality
predictions, there is a growing need to gain a deeper understanding of its
decision-making process from a human perspective in order to draw mean-
ingful conclusions. However, the current status of XAI literature lacks the re-
quested tools with a highly sensitive statistically rigorous method controlling
for flaws in the detection of relevant variables. Therefore, in this thesis, we
have developped a framework for variable importance with statistical guar-
antees. It is applicable for both single and group levels within large, high-
dimensional datasets. The scenario we have addressed involves a combina-
tion of high-dimensionality and high-correlation cases, which are two major
challenges in neuroscience.

First, in chap. 5, we discussed the theoretical limitations of the standard
permutation importance (Permfit) approach, which does not control the type-I
error rate with correlated data. We then presented a new algorithm for condi-
tional permutation importance (CPI), which assesses the impact on the target
loss function when a variable is permuted. However, the permutation is ap-
plied specifically to the residuals of the regression of the variable of interest
on the others, resulting in a conditional approach. A series of simulations have
demonstrated that this procedure is accurately controlling type-I error while
achieving a high AUC score, which is based on a DNN learner. Our applica-
tion on the big heterogeneous biomedical dataset UK Biobank has highlighted
the efficiency of the method. It detects fewer significant variables, which is
compatible with the theoretical results. While CPI overcomes the limitation
of standard Permfit in high-correlated settings, a new limitation arises from
the definition of the conditional inference. With two extremely correlated and
significant variables, their conditional importance is cancelled out, leading to
their identification as non-significant.

Next, in chap. 7, we extended the aforementioned approach to introduce
an improved framework, block-based conditional permutation importance
(BCPI), which utilises a prior grouping of the variables. This grouping may be
either data-driven or domain knowledge-driven. Given the time-consuming
nature of dealing with high-dimensional cases, we introduced a new stack-
ing approach that expanded the architecture of the DNN learner to integrate
sub-linear layers. This linearly projecting the variables of each group to a
low-dimensional trainable space. Through a series of simulations, we demon-
strated that BCPI maintains control of type-I error with a high AUC score
across different correlation scenarios. Furthermore, the novel stacking ap-
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proach enabled the preservation of the achieved performance while offering
an advantageous improvement in time-consumption. Our empirical study on
age prediction using diverse inputs from the UK Biobank dataset indicates
that the proposed framework has enabled the development of robust predic-
tion models with the identification of the significant predictive inputs. The re-
liance on pre-defined groups may result in suboptimal inference if the group
structure does not accurately reflect variable importance. If important vari-
ables are distributed across all groups, addressing the inference challenge be-
comes significantly more difficult, which merits further investigation in future
research. Additionally, our current approach involves only internal stacking,
achieved through linear projection on the input data. Exploring the potential
of non-linear projections would be of great interest. Furthermore, a potential
future direction involves examining how missing and low values affect accu-
racy, as well as exploring various group definitions.

Finally, having acquired the requisite tools for both high-correlation and
high-dimensional scenarios, we return to the primary objective of the com-
munity: the extraction meaningful interpretations from real-world biomedi-
cal datasets composed of diverse sources of data. In chap. 8, we apply the
developed framework for variable importance, equipped with statistical guar-
antees BCPI on four bigmultimodal biomedical cohorts: UK Biobank, Cam-CAN,
TUAB and LEMON. The framework is suitable for drawing inferences on corre-
lated input variables and even on entire groups of variables simultaneously.
With the UK Biobank dataset, the method demonstrated the efficacy of inte-
grating a combination of brain and socio-demographic data in order to pre-
dict age, fluid intelligence, and neuroticism, while also statistically reducing
the number of variables. In the Cam-CAN dataset, which includes multimodal
brain data, such as fMRI, MRI, and MEG frequency bands, age prediction was
significantly impacted. However, the frequency bands within the MEG modal-
ity appeared to be of lesser importance, suggesting a need for further inves-
tigation to capture small effects distributed among frequency bands. Addi-
tionally, in the TUAB and LEMON datasets, where frequency analysis is cru-
cial for age prediction and eye state assessment, EEG features obtained by
Riemannian emebddings features outperformed other methods. This is also
particularly highlighted the limited involvement of beta bands.

This thesis makes a compelling case for the community of researchers
to utilize this tool to address unresolved conclusions for ML applications,
thereby enhancing the potential for new discoveries.
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