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Maitre de Conférence, Ecole Spéciale Militaire de Saint-Cyr Examinateur

Laurent Rota
Ingénieur, Stellantis Examinateur

Nicolas Triantafyllidis
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Introduction

0.1 Motivation

Mechanical metamaterials have attracted a strong interest, fueled largely by the
transport industry, where composites and honeycomb’s exceptional stiffness-to-mass
ratios are greatly appreciated. Early work focused mainly on metamaterials showing
exceptional mechanical properties according to classical criteria such as strength or
stiffness.

More recently, these ideas have been extended to functional metamaterials that
have the possibility to change their properties when subjected to non-mechanical
external loadings. One such example is the application of magnetic fields to a spe-
cially designed metallic-rubber composites, obtained by embedding magnetizable iron
particles in a polymeric matrix to create magnetorheological elastomers. Other tech-
niques have also been proposed to create magneto-mechanical coupling in solids
using permanent magnets Slesarenko (2020). In addition to metamaterials involv-
ing magneto-mechanical couplings, applications have also been proposed involving
coupling between mechanical and electric properties (e.g. electroactive composites
Kumar et al. (2020)).

However, to the best of the author’s knowledge, there is very little work on appli-
cations involving current carrying magnetizable metamaterials, thus motivating the
present investigation. As the ecological transition is driving up the number of systems
carrying high electrical power densities, exploring the potential of using lightweight
architected metamaterials seems of great interest. The objective of this thesis is to
explore the response of magnetizable metamaterials under external magnetic fields,
currents and mechanical loadings.

Solving such problems first requires knowledge of the magneto mechanical con-
stitutive laws of the material. This is a widely investigated research area but not
the main focus of this thesis, where we will consider some simple, non-hysteretic
magneto-mechanical constitutive laws. The second important element of this thesis
is a consistent coupled formulation of the problem. One approach, commonly found
in the field of electrical engineering (see for instance Reyne et al. (1988)) for the
couple analysis of an electrical engine) , is to solve the mechanical and magnetic
problem separately in a stepwise process. To avoid the inconsistencies of this ap-

1
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proach, Hanappier et al. (2022) have recently proposed coupled magneto-mechanics
variational principles that form the basis for robust numerical solution algorithms.
Using the direct approach of continuum mechanics, a general framework that couples
the electromagnetic and mechanical fields is derived for the applications of interest
here, using the basic principles of thermodynamics.

As an application to the general theory, two different designs will be considered
as simple metamaterials involving electric current-carrying magnetizable conductors
subjected to external magnetic fields: a planar grid and a two dimensional layer
of magnetizable metallic sheets separated by elastomeric layers. The never before
addressed (to the best of the author’s knowledge) problem of the influence of magnetic
response of the conductors on the Lorentz forces in the grid is the object of a separate
investigation.

Moreover, and given that nonlinear geometric effects are important in architected
metamaterials (large strains are possible in the applications of interest), one has also
to consider the stability of these materials when subjected to external loads. The
stability of the two different designs considered has been addressed using Bloch wave
theory, given the periodic geometry of the composites considered. Limitations of the
simple designs considered here have been established and ideas for further research
based on the general methodology introduced are being proposed.

0.2 Some experimental considerations

To test our analytical and numerical results, we were expecting to use the experi-
mental setup available at the Laboratoire de Mécanique des Solides (LMS). In the
end, due to both the values obtained by numerical simulation and experimental con-
straints, a proper experimental campaign has not been carried out, but as those
experimental constraints guided our choice of parameters for the first two chapters,
we have to clarify what those constraints were.

As the point is to mix exterior magnetic field and electrical current, the elec-
tromagnet and current generator have been the two most critical elements. The
electromagnet displayed in Figure 1a has two possible configurations : one with a air
gap of 1 cm length and a region of uniform field corresponding to a circle of radius
1 cm, and a second one with a air gap of 8.2 cm length and a region of uniform
field corresponding to a circle of radius 4.5 cm. The region of homogeneous field is
a strong constraint as it imposes the maximum size of the system to study. The
maximal value achieved by the magnetic field also depends on the configuration: 0.8
Tesla for the large configuration, and 2T for the narrow one. To generate current,
we can use a DC current generator that can achieve constant currents up to 40 A.

The sample considered for those potential experiment was a mesh as shown in
Figure 2. It is composed of two types of beams: In grey, magnetizable current
carrying beams that generates the forces, but as they are metallic, they are too stiff
to generates interesting mechanical behaviour. In green, soft plastic beams will show

2
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(a) Electromagnet available using the strong
field small volume configuration

(b) Experimental setup using the weaker field
and larger volume configuration

Figure 1: Depiction of the Electromagnet in both configurations

more significant deformation and are transparent in the electromagnetic problem.
When considering only the metallic wires, we will use the term beam array. When
considering all the wires we will use the term mesh.

Figure 2: wire mesh composed of magnetizable current carrying beams and softer
plastic beams under external magnetic load

To measure the obtain impact of the electro-magnetic loading, two approaches

3
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have been considered : first, as depicted in Figure 3a, using a camera and digital
image correlation to obtain the displacement field, and thus the forces. Second,
transferring the forces vertically with a thin plastic sheet and finding the weight that
equilibrate the system as depicted in Figure 1b and Figure 3b. We implemented
the second system to check the orders of magnitude, not to provide actual usable
scientific data as it is not precise enough.

(a) schematics of the setup
considered to use DIC

(b) schematics of the setup
considered to use mass

Figure 3: Schematics of the Electromagnet for both measurement methods

To summarize, we provide in Table 1 the key experimental constraints.

configuration close far

max current (A) 40 40

max magnetic field (T) 2 0.8

max vertical dimension (cm) 1 8,2

max horizontal dimension (cm) 2 9

Table 1: summary of the experimental constrains

0.3 outline

The goal of the current thesis is to explore the possibilities offered by magneto-
mechanical metallic metamaterials with non-linear magnetization laws, under both
external magnetic fields and electric currents. The novelty of the present work lies
in the fact that no previous work has addressed electric current carrying and mag-
netizable metamaterials, to the best of the author’s knowledge.

We provide a general, coupled magneto-mechanical model for this problem in
Chapter 1, with some adjustment in Chapter 3 for the case when an external magnetic

4
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field is imposed in current configuration. As an application to the general theory, two
different designs will be considered as simple metamaterials involving electric current-
carrying magnetizable conductors subjected to external magnetic fields: a planar grid
and a two dimensional layer of ferromagnetic sheets separated by elastomeric layers.

In Chapter 1 we address the problem of the influence of magnetic response of
the conductors on the Lorentz forces generated between them for the case of two
parallel conductors and also for the case of infinite arrays of parallel conductors. A
surprising find of this investigation is that in the case of an infinite array of same
direction parallel conductors their magnetic properties have no influence at all, while
for an infinite array of alternating direction parallel conductors the Lorentz forces
are lower than in the case of non-magnetizable materials!

In Chapter 2 we study a square unit-cell geometry current-carrying planar truss
under an external magnetic field perpendicular to its plane. We investigate the
principal solution and its stability and find the instability patterns for an infinite
grid.

Finally, in Chapter 3, we investigate the case of a 2D fully coupled composite
made of magnetizable conductive layers connected by non-conductive elastomeric
layers under an external magnetic field, currents, and mechanical loadings. For this
analytically tractable, simple geometry we find that the current, and to a lesser extent
the external magnetic field, have only a minor impact on the principal solution and
its stability, unlike the imposed axial compression.

With the present thesis we show that using electric currents and magnetic fields
to control the behavior of new metamaterials is possible. In the simple geometries
considered here, obtaining significant mechanical effects requires unrealistically high
electric currents and magnetic fields. However, different, more complex geometries
can be analyzed, where lower currents are required to obtain significant overall me-
chanical strains, such as in solenoids (see Elliott and Triantafyllidis (2023)). It would
be interesting to investigate different composite geometries that might enhance the
electro-mechanical coupling and investigate the stability of such designs, based on
the general theory proposed here.
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Chapter 1

Forces in Interacting
Ferromagnetic Conductors
Subjected to Electrical Currents
and Magnetic Fields

1.1 Introduction

We revisit here the topic of Lorentz forces on electrical current carrying conductors
subjected to a remote magnetic field with particular attention to the influence of the
conductors’ magnetic properties is an interesting topic. The case of a single conductor
has been discussed by Lowes (1973) who shows that the Lorentz force per unit length
is independent of magnetic properties as well of the shape of the conductor for the
case of a conductor placed in a uniform magnetic field perpendicular to its axis. The
same result is obtained by Casperson (2002) who in addition presents some careful
experiments to back the same conclusion.

The magnetization law of common ferromagnetic conductors have been the sub-
ject of many research, with plenty of approaches: multi scale vs energetical (Aydin
et al. (2017)), varied formulation : direct (Kovetz (2000)) or variational (Hanap-
pier et al. (2022)), and various effect considered : magnetostriction (Anderson et al.
(2007)), Villari effect (Bieńkowski and Kulikowski (1980)), dissipation (Perevertov
(2017)), anisotropy (Lopez et al. (2009)), impact of residual stresses (Baudouin et al.
(2002)), multi axial loading (Pearson et al. (2000), Daniel and Hubert (2009)) and
dynamic behavior (Bao et al. (2017)) to name only a few. As explained in the in-
troduction, as this is not the primary focus of this work, we use a simple model
proposed by Danas (2017).

They are several methods to obtain the electromagnetic resultant forces, and
the interested reader could find an extensive review in (McDonald (2003)) . We
are going to use the maxwell tensor contour integral that avoid having to consider

7
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simultaneously the integral of bulk forces and the integral of surfaces forces. This
requires to obtain maxwell stress tensor and thus a magneto mechanical constitutive
law for the material considered. Obtaining the maxwell stress will be discussed in
detail in Section 1.2, but the key insight come from (Kovetz (2000), Hanappier et al.
(2021), Hanappier et al. (2022) and Thomas and Triantafyllidis (2009)).

Finally, some literature exist relating to the interaction between wires : Magne-
tizable nano wire embedded in materials have been studied as well as the impact of
their interaction on the magnetization law have been a subject of several research
such as Raposo et al. (2000). But thoses wires do not carry current, and the resul-
tant forces are not considered, only the impact on magnetization. The mechanical
behaviour and stability of current carrying wire array have been studied as part of
the development of Z-pinch technique (see for instance Hammer and Ryutov (1999)),
but those works do not consider magnetization of the wires, and the regime is very
different (µm wires, Mega amperes of current, very strong thermal effect, etc...)

However, the influence of magnetic constitutive law on the forces between two or
more (periodic array) parallel conductors subjected to a uniform external magnetic
field and current density has received considerably less attention to the best of the
author’ knowledge and is the main object of study of this work.

The outline of this chapter is a follows: after the motivation in Section 1.1 comes
the general variational theory of the eddy current approximation in Section 1.2. The
stresses are subsequently simplified for the case of small strains but arbitrary mag-
netic fields and then applied to the analytically tractable case of a single conductor
with linear magnetic response subjected to an electric current and a magnetic field.
We then give an efficient way to calculate the total force on a conductor using contour
integrals (see Lowes (1973)). The numerical implementation is given in Section 1.3
followed by the applications in Section 1.4. For a single conductor, where the mag-
netic properties do not influence the force exerted, we calculate the magnetization
and magnetic stress fields. For two parallel conductors the magnetic properties affect
significantly the Lorentz forces when the conductors are placed close to each-other,
as the magnetic fields outside them are significantly influenced by the conductors’
magnetic response. For the case of an infinite array of parallel conductors there is
no influence of their magnetic properties on the Lorentz forces when same direction
currents are applied while only a small magnetic effect is found for currents applied
in alternating directions, even for closely spaced conductors. Conclusion is presented
in Section 1.5.

1.2 Theory

Coordinate-free (dyadic) continuum mechanics notation is used with bold symbols
referring to tensors and script ones to scalars; all field quantities are functions of the
reference position X and when appropriate on time t. Lagrangian field quantities are
denoted by capital letters, e.g. magnetic potential A, magnetic flux B, h-field H ,

8
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current density J , first Piola-Kirchhoff stress Π, while their corresponding Eulerian
counterparts are denoted by script letters, e.g. magnetic potential a, magnetic flux
b, h-field h, current density j, Cauchy stress σ1. Moreover, the gradient operator
∇ is defined with respect to the reference configuration, i.e. ∇ ≡ ∂/∂X, while its
current configuration counterpart is ∇ ≡ ∂/∂x.

1.2.1 Variational Approach

Ω

R3 \Ω

𝜕Ω

𝜕ΩT 𝜕ΩA

𝜕Ωu

N𝜕ΩK

J

f

T

K

X

Figure 1.1: Schematics of the boundary value problem (reference configuration).
Conductor occupies domain Ω ⊂ R3 while a magnetic field exists in the entire space
R3.

The schematics of the general boundary value problem are given in Figure 1.1. The
solid occupies a volume Ω ⊂ R3 in the reference configuration with boundary ∂Ω and
an outward normal N . The solid is subjected to a reference current density J and
an externally applied mechanical body force (per unit mass) f . On the boundary
we apply a mechanical traction T and a current sheet K (per unit reference surface
area). Surface tractions are applied on part of the boundary ∂ΩT and the current
sheet on part of the boundary ∂ΩK ; displacement u and magnetic potential A2 can
also be applied on parts of the boundary ∂Ωu and ∂ΩA respectively 3.

Neglecting the electric charge and the electric field energy contributions, the
reference configuration “Lagrangian density” l (per unit reference volume) for the

1The capital-script letter rule is not applicable to field quantities relating the two configurations,
where no ambiguity is possible and hence the usual standard notation is adopted, i.e. F for the
deformation gradient or u for the displacement field.

2The Dirichlet condition in magnetics consists of prescribing N×A.
3This formulation assume an external loading in reference configuration. If the loadings are

in current configuration, this variational approach has to be slightly altered. We will provide
the adaptation in Chapter 3 in the case where an external magnetic field is applied in current
configuration. In this chapter this adaptation is not necessary as we will assume small strain, so
loadings in reference of current configuration will provide identical results.
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eddy current approximation (see Thomas and Triantafyllidis (2009)) is given by

l ≡ − 1

2µ0J
B·C·B+J·A−ρ0ψ(C,B)+

1

2
ρ0(

.
u· .u)+ρ0f·u ; B ≡∇×A , C ≡ F T·F ,

(1.2.1)

where B the reference magnetic field, A the reference magnetic potential4, ψ(C,B)5

the specific (per unit mass) Helmholtz free energy andC the right Cauchy-Green ten-
sor, expressed in terms of the deformation gradient F . Following standard notation,
ρ0 is the reference mass density of the solid and

.
u denotes the time-derivative (ve-

locity) of the displacement u. Moreover, µ0 is the magnetic permeability of vacuum
and J = det(F ) denotes the deformation-induced volume change.

Based on (1.2.1), the reference configuration “total Lagrangian” L of the system
becomes6

L ≡
∫
R3

l dV +

∫
∂Ω

[T ·u+K ·A] dS . (1.2.2)

We also generalize the reference mass density ρ0 in the definition of the Lagrangian
density l in (1.2.1) over the entire space R3 as follows: ρ0(X) ̸= 0 for X ∈ Ω
and ρ0(X) = 0 for X ∈ R3\Ω. Integration over R3 is necessary to account for the
electromagnetic field in both the body Ω and its surrounding space R3\Ω.

We proceed with the definition of the “action integral” F(A,u), obtained by
integration of the Lagrangian L in (1.2.2) between arbitrary times t1 and t2. By
Hamilton’s principle it is stationary

F(A,u) ≡
∫ t2

t1

L dt , δF = 0

; δA(ti) = δu(ti) = 0 , i = 1, 2 =⇒ F,A[δA] = F,u[δu] = 0 . (1.2.3)

Consequently the corresponding variations with respect to the independent variables
A and u yield respectively the magnetic and mechanical governing equations and
interface/boundary conditions.

4An additional condition is needed for a unique A, termed “gauge condition”; Coulomb gauge
∇·A = 0 is a typical choice.

5Dissipative phenomena (e.g. magnetic hysteresis or plasticity) are ignored and thus no internal
variables are needed in ψ. Temperature dependance is ignored as well. The specific free energy
used here depends on (C,B = JF−1 ·b), as opposed to (C, b·F ) in Hanappier (2021); Hanappier
et al. (2021, 2022); Kovetz (2000). Our choice, motivated by the fact that B is the Lagrangian
counterpart of Eulerian b, still complies with the angular momentum balance argument made in
Kovetz (2000). For a detailed explanation of this point, see Hanappier (2021).

6Without loss of generality, we can define the applied mechanical traction T and current sheet
K on the entire boundary and impose a zero value when applicable.
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Magnetics Equations: Variations with Respect to Magnetic Potential A

Lagrangian version
Following (1.2.3), setting to zero the variation of F with respect to A one obtains

F,A[δA] =

∫ t2

t1

{∫
R3

[
J ·δA− 1

µ0

(B ·C)·(∇×δA)− ρ0
∂ψ

∂B
·(∇×δA)

]
dV

+

∫
∂Ω

[K ·δA] dS

}
dt = 0 .

(1.2.4)

The domain R3 is separated into the volume Ω occupied by the body and the sur-
rounding space R3\Ω. Taking into account the discontinuity of ρ0 across ∂Ω, inte-
gration by parts of (1.2.4) yields

F,A[δA] =

∫ t2

t1

{∫
R3

[
(J −∇×H)·δA

]
dV +

∫
∂Ω

[
(K−N×JHK)·δA

]
dS

}
dt = 0 ,

(1.2.5)

where H is the reference configuration “h-field” (see Hanappier (2021)) and is given
by

H ≡ − ∂l
∂B

=


ρ0
∂ψ

∂B
+

1

µ0J
C ·B ; ∀X ∈ Ω ,

1

µ0J
C ·B ; ∀X ∈ R3\Ω .

(1.2.6)

The arbitrariness of δA, (1.2.6) implies the following differential equation and bound-
ary/interface condition

∇×H = J ; ∀X ∈ R3 , N×JHK = K ; ∀X ∈ ∂Ω , (1.2.7)

where one recognizes the reference configuration Maxwell-Ampère law in the eddy
current approximation.

To the above governing equation and boundary condition for H one should also
add its counterpart for the reference configuration magnetic field B, a consequence
of (1.2.1)

∇·B = 0 ; ∀X ∈ R3 , N·JBK = 0 ; ∀X ∈ ∂Ω , (B = ∇×A) . (1.2.8)

Eulerian version
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The reference configuration h-field, magnetic potential and field and current sheet
are related via the deformation gradient F to their current configuration counterparts
by (e.g. see Lax and Nelson (1976))

A = a·F , H = h·F , B = JF−1 ·b , K = JF−1 ·κ . (1.2.9)

Consequently, the current configuration version of the magnetic constitutive relation
(1.2.6) gives

h =


ρ0
∂ψ

∂B
·F−1 +

b

µ0

; ∀ x ∈ ω ,

b

µ0

; ∀ x ∈ R3\ω ,

(1.2.10)

and the current configuration version counterpart of (1.2.7) becomes

∇×h = j ; ∀x ∈ R3 , n×JhK = κ ; ∀x ∈ ∂ω . (1.2.11)

while the current configuration version counterpart of (1.2.8) is

∇·b = 0 ; ∀x ∈ R3 , n·JbK = 0 ; ∀x ∈ ∂ω , (b = ∇×a) , (1.2.12)

where ω is the current configuration domain of the conductor, ∂ω its boundary and
n its outward normal.

To equations (1.2.10) to (1.2.12) governing the magnetic response of a conductor,
we must add the constitutive relation for the magnetic field m which is defined in
the reference configuration and follows from (1.2.10)

b = µ0(h+m) ; ∀ x ∈ R3 , m = −ρ0
∂ψ

∂B
·F−1 ; ∀ x ∈ ω , m = 0 ; ∀ x ∈ R3\ω .

(1.2.13)

Mechanics Equations: Variations with Respect to Displacement u

Lagrangian version
Once again, from Hamilton’s principle (1.2.3), setting to zero the variation of F

with respect to u gives

F,u[δu] =

∫ t2

t1

{∫
R3

[(
1

µ0J

(1
2
(B ·C ·B)I −B(C ·B)

)
·F−1 − ρ0

(
∂ψ

∂C

)
·F T

)
: (∇δu)

+ ρ0
.
u· d

dt
(δu) + ρ0f ·δu

]
dV +

∫
∂Ω

[T ·δu] dS
}

dt = 0 .

(1.2.14)

12



CHAPTER 1. FORCES IN FERROMAGNETIC CONDUCTORS

As before, the domain R3 is separated into the volume Ω occupied by the body
and the surrounding space R3\Ω. Taking into account the discontinuity of ρ0 across
∂Ω, integration by parts of (1.2.14) in the space and the time domains (recalling also
the end conditions at t1, t2 in (1.2.3)) yields

F,u[δu] =

∫ t2

t1

{∫
R3

[ (
∇·Π− ρ0

..
u+ ρ0f

)
·δu

]
dV+

∫
∂Ω

[
(T−N·JΠK)·δu

]
dS

}
dt = 0 ,

(1.2.15)

where Π is the “total first Piola-Kirchhoff ” stress tensor (see Hanappier (2021))

Π ≡ −
(
∂l

∂F

)T

=


ρ0

(
∂ψ

∂C

)
·F T +

1

µ0J
B(F ·B)− 1

2µ0J
(B ·C ·B)F−1 ; ∀X ∈ Ω ,

1

µ0J
B(F ·B)− 1

2µ0J
(B ·C ·B)F−1 ; ∀X ∈ R3\Ω .

(1.2.16)

The arbitrariness of δu, (1.2.16) yields the following differential equation and bound-
ary/interface condition

∇·Π+ ρ0f = ρ0
..
u ; ∀X ∈ R3 , N ·JΠK = T ; ∀X ∈ ∂Ω , (1.2.17)

where one recognizes the reference configuration linear momentum balance of con-
tinuum mechanics.

Eulerian version
We complete (1.2.9) by recording the relation between the total stress measure

of the reference configuration, the first Piola-Kirchhoff stress Π to the Cauchy stress
tensor σ, its current configuration counterpart as well as the reference mechanical
(pseudo-)traction vector T and the current mechanical traction vector t

Π = JF−1 ·σ , TdS = tds , (nds = JN ·F−1dS) . (1.2.18)

Consequently, the current configuration version of the mechanical constitutive rela-
tion (1.2.16) gives

σ =


2ρF · ∂ψ

∂C
·F T +

1

µ0

[
bb− 1

2
(b·b)I

]
; ∀ x ∈ ω ,

1

µ0

[
bb− 1

2
(b·b)I

]
; ∀ x ∈ R3\ω .

(1.2.19)

The current configuration equilibrium equation and boundary/interface condition
counterpart of (1.2.17) is

∇·σ + ρf = ρ
..
u ; ∀x ∈ R3 , n·σ = t ; ∀x ∈ ∂ω . (1.2.20)
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1.2.2 Constitutive Choices

For isotropic materials in 3D, the most general form of their specific free energy
can be expressed as a function of six invariants, three purely mechanical I1, I2, I3
and three magneto-mechanical J1, J2, J3. Since we are interested in 2D problems, we
only need four invariants for the free energy, namely

ψ(C,B) = ψ(I1, I2, J1, J2) ;

I1 ≡ tr(C) , I2 ≡ det(C) = J2 , J1 ≡ B ·B , J2 ≡ B ·C ·B .
(1.2.21)

The specific free energy, or equivalently the reference energy density W (C,B),
is decomposed into a purely mechanical part and a magneto-mechanical part (see
Hanappier et al. (2021)),

ψ(C,B) = ψmech(C) + ψmag(C,B) ;

ρ0ψ(C,B) ≡ W (C,B) = Wmech(C) +Wmag(C,B) .
(1.2.22)

Mechanical energy density
For the mechanical reference energy density Wmech(C), a neo-Hookean behavior

is chosen,

Wmech(I1, I2) = G

[
1

2
(I1 − 2− ln I2) +

ν

1− 2ν
(
√
I2 − 1)2

]
, (1.2.23)

where ν denotes the 3D Poisson ratio7 (−1 < ν < 0.5) and G the shear modulus.
More refined choices may be relevant for modeling metals (e.g. see Thomas and
Triantafyllidis (2009)) but the neo-Hookean model is perfectly adequate here, given
the small strains expected (see Hanappier et al. (2022)).

Magnetic energy density
The magnetization law for ferromagnetic conductors is an old and well-researched

topic that depends on many external factors: dissipation (e.g. see Perevertov (2017)),
anisotropy (e.g. see Lopez et al. (2009)), residual stresses (e.g. see Baudouin et al.
(2002)), multi axial loading (e.g. see Daniel and Hubert (2009); Pearson et al.
(2000)), rate and inertia effects (e.g. see Bao et al. (2017)) to name but a few.
As explained in the introduction, and given that the magnetization response of the
conductor is not the primary focus of this study, we use a simple model proposed by
Danas (2017).

The magnetic reference energy density Wmag used subsequently in the calcula-
tions assumes an non-hysteretic magnetic behavior (no dissipative phenomena con-
sidered). For small strains and an isotropic energy density Wmag depends, at first
approximation, solely on the magnitude of the magnetic field. An appropriate choice

7A more appropriate expression should involve the 2D Poisson ratio ν′ ≡ ν/(1 − ν) in which
case the coefficient of the volumetric part should read ν′/(1− ν′).

14



CHAPTER 1. FORCES IN FERROMAGNETIC CONDUCTORS

(see Hanappier et al. (2022)) is Wmag(C,B) = Wmag(I2, J2) = Wmag(∥b∥), since
from (1.2.9) b·b = ∥b∥2 = J2/I2.

For small magnetic fields the model must capture the linear magnetization be-
havior of the material, i.e. predict its initial magnetic susceptibility χ0

8. The model
should also account for saturation, i.e. asymptotically approach the saturation mag-
netization ms at large h-fields. To this effect, the following simple saturation mag-
netization law is used (see Danas (2017))

Wmag(∥b∥) =
µ0m

2
s

χ0

ln

[
cosh

(
χ0∥b∥
µ0ms

)]
. (1.2.24)

For small strains i.e. when ∥ϵ∥ ≪ 1, where ϵ ≡ (1/2)(∇u + u∇), but arbitrary
magnetic field amplitudes ∥b∥ and recalling that C = I+2ϵ+O∥ϵ∥2, the expressions
for the magnetization m and the total stress σ simplify considerably. It has been
shown by Hanappier et al. (2021), using asymptotic expansions in (1.2.13), (1.2.19)
and (1.2.21), that for the energy densities adopted in (1.2.22), (1.2.23) and (1.2.24),

the total stress σ can be approximated by the sum of a purely elastic part
e
σ(ϵ) and

a purely magnetic part
m
σ(b)

m =

−
∂Wmag(∥b∥)

∂b
=

χ(∥b∥)
µ0[1 + χ(∥b∥)]

b ; ∀ x ∈ ω ,

0 ; ∀ x ∈ R3\ω ,

σ =
e
σ +

m
σ ; ∀ x ∈ R3 ,

e
σ =

{
λtr(ϵ)I + 2Gϵ ; ∀ x ∈ ω ,
0 ; ∀ x ∈ R3\ω .

m
σ =


1

µ0

[bb− 1

2
(b·b)I]− χ(∥b∥)

µ0[1 + χ(∥b∥)]
[bb− (b·b)I] ; ∀ x ∈ ω ,

1

µ0

[bb− 1

2
(b·b)I] ; ∀ x ∈ R3\ω .

(1.2.25)

where χ(∥b∥) is the material’s “magnetic susceptibility”9 since m = χ(∥b∥)h. The
initial magnetic susceptibility introduced in (1.2.24) is χ0 = χ(0).

8It has been shown in Hanappier et al. (2021) that for small strains and magnetic fields the mag-
netic response is consistently characterized by two constants: magnetic susceptibility χ - considered
here - and magnetostriction Λ - set to zero by selection of the energy density in (1.2.24).

9We note here that for a more general magnetic energy densityWmag the linearization procedure

would have added an additional term to
m
σ in (1.2.25) Λ(∥b∥)/[µ0(1 + χ(∥b∥))]bb where Λ(∥b∥) a

magneto mechanical coupling coefficient which gives the curvature of the strain vs magnetic field
in a stress-free uniaxial magnetostriction experiment.

15



CHAPTER 1. FORCES IN FERROMAGNETIC CONDUCTORS

Based on (1.2.24), one obtains from (1.2.25) the following magnetization as a
function of the applied h-field, depicted in Figure 1.2 in dimensionless form where
the reference magnetization has the saturation value mref = ms and the reference
h-field is taken to be href = ms/χ0. It is also useful to establish a range where the
linear magnetic response is a reasonable approximation; to this effect we set hl =
0.6×10−2href as the limit for the linear range for the magnetic response 0 ≤ h ≤ hl,
as seen in Figure 1.2a.
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(a) Low h-field response: 0 ≤ h/href ≤ 1.6×
10−2.
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(b) Full h-field response: 0 ≤ h/href ≤ 5×
103.

Figure 1.2: Non linear magnetization law in dimensionless form: magnetization as a
function of applied h-field.

As seen from (1.2.25) for small strains, the determination of the magnetic stresses
m
σ depends solely on the magnetic field b which in turn requires only finding the
magnetic potential a by solving the Eulerian version of the magnetics equations
(1.2.10) to (1.2.13) in conjunction to (1.2.24) and (1.2.25)1. The determination of the

elastic stresses
e
σ in (1.2.25)3 requires the determination of the displacement u which

can be found by solving the Eulerian version of the mechanics equations (1.2.20) in
conjunction with (1.2.25). Since only the total forces exerted on the conductors are
of interest, the determination of the displacement field is not necessary, as will be
discussed in Section 1.2.4.

1.2.3 Analytical Solution for a Single Conductor with Linear
Magnetic Response

Assume a circular section conductor of radius R subjected to a current of uniform
density j along the cylinder’s axis (j = jez) and a remote h-field of magnitude
h0 along the y direction (h0 = h0ey) as shown in Figure 1.3. Of interest are the
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resulting h-field h, magnetization m and magnetic stress
m
σ, which for the case of a

linear magnetic constitutive law can be calculated analytically.

x

y

r
R θ

h0

j
z

Figure 1.3: Cross section of a cylindrical conductor of radius R subjected to a current
of uniform density j = jez and a remote h-field of magnitude h0 = h0ey .

By superposing the solutions for the remote h-field h0 and the uniform current
density j, one can verify that the solution of Ampère’s equation in (1.2.11) is

r > R :


hx =

(
R

r

)2 [
(h0 − hin) sin(2θ)−

jr

2
sin θ

]
,

hy = h0 +

(
R

r

)2 [
(hin − h0) cos(2θ) +

jr

2
cos θ

]
,

0 ≤ r ≤ R :


hx = −jr

2
sin θ ,

hy = hin +
jr

2
cos θ .

(1.2.26)

For the case of a linear, isotropic magnetic response, i.e. m = χ0h and recalling
that inside the conductor b = µ0(h+m) and outside b = µ0h one obtains by using
the boundary condition for the magnetic field b

hin =
2(1 + χ0)

2 + χ0

h0 ; 0 ≤ r ≤ R :


mx = −χ0

jr

2
sin θ ,

my = χ0

[
2

2 + χ0

h0 +
jr

2
cos θ

]
.

(1.2.27)
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From (1.2.26) and (1.2.27), the magnetic field b is thus found to be

r > R :


bx = µ0

(
R

r

)2 [
χ0

2 + χ0

h0 sin(2θ)−
jr

2
sin θ

]
,

by = µ0

{
h0 −

(
R

r

)2 [
χ0

2 + χ0

h0 cos(2θ)−
jr

2
cos θ

]}
,

0 ≤ r ≤ R :


bx = −µ0(1 + χ0)

jr

2
sin θ ,

by = µ0(1 + χ0)

[
2

2 + χ0

h0 +
jr

2
cos θ

]
.

(1.2.28)

The above solution is valid as long as the linear magnetic constitutive response is
a reasonable approximation, i.e. ∥b∥max ≤ bl, where bl = µ0hl (see Figure 1.2a). A
straightforward calculation of the magnetic field norm ∥b∥ = (b2x + b2y)

1/2 gives from
(1.2.28) that the maximum occurs at the boundary (r, θ) = (R, 0)

∥b∥max = µ0(1 + χ0)

[
2

2 + χ0

h0 +
jR

2

]
= bl , (1.2.29)

thus establishing the maximum value combination of the remote h-field and current
density for a near-linear magnetic response.

Having obtained the magnetic field b inside and outside the conductor, we can

calculate the magnetic stress
m
σ, both inside and outside the conductor from (1.2.25).

1.2.4 Calculating Forces on Conductors Using Contour In-
tegrals

Single conductor

18
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h0

j

n

𝜕𝜔 n

σ = σ
m

σ = σ + σ
me

𝜕𝛾𝛾

𝜔

Figure 1.4: Calculating the Lorentz forces F
L
on a conductor subjected to a current

of density j and a remote h-field of magnitude h0 using contour integrals.

We start by defining the total force per unit length F
L
on a conductor occupying

domain ω with boundary ∂ω subjected to a current of density j and a remote h-field
h0 as shown in Figure 1.4.

Since the traction exerted by the magnetic field on the conductor is n·σ the force
is

F
L
≡

∫
∂ω

n·σ dl . (1.2.30)

Using Gauss’ divergence theorem in the domain γ\ω and recalling that the total

stress there is the magnetic stress (i.e. σ =
m
σ) and recalling the equilibrium equation

(1.2.20) for that domain ∇·mσ = 0 since the material density in vacuum (the domain
γ\ω) is ρ = 0∫

∂(γ\ω)
n·σ dl =

∫
γ\ω

∇·σ ds =

∫
γ\ω

∇·mσ ds = 0

=⇒
∫
∂γ

n·σ dl =

∫
∂ω

n·σ dl = F
L
,

(1.2.31)

where γ is an arbitrary domain completely surrounding ω, i.e. γ ⊃ ω as seen in
Figure 1.4.

Taking the contour ∂γ as far as possible from ∂ω, one can consider a circle of
radius r ≫ R in which case the dominant terms in the remote h-field h∞ and the
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remote total stress σ∞ yield10 from (1.2.26)1 and (1.2.25) respectively the following
expressions

h∞ = −I sin θ
2πr

ex+

[
h0 +

I cos θ

2πr

]
ey , σ∞ = µ0

[
h∞h∞ − 1

2
(h∞ ·h∞)I

]
. (1.2.32)

From (1.2.30), the force/length F
L
exerted on the conductor, comes with no

surprise to be the textbook result of electromagnetics for the force on a conductor
carrying a current I and subjected to a remote magnetic field of strength b0 normal
to the conductor

F
L
=

∫
∂γ

n·σ∞ dl

= µ0

∫ 2π

0

(ex cos θ + ey sin θ)·
[
h∞h∞ − 1

2
(h∞ ·h∞)I

]
rdrdθ = −b0Iex .

(1.2.33)

It is important to note that the above result is independent of the cross section of
the conductor as well as of its magnetic properties, since the method of calculating
the Lorentz force F

L
is based on the Maxwell stresses σ∞ generated by the remote

magnetic field b0 and the current I.

Two parallel conductors

The Lorentz force on each of the two conductors of radius R separated by a
distanceD is calculated from the contour integrals on the two corresponding domains
γ1 ⊃ ω1 and γ2 ⊃ ω2 as shown in Figure 1.5. Each domain consists of half a disc of
radius r > D and γ1 ∩ γ2 is the [−r, r] interval of the y-axis.

10The magnetic field for r ≫ R is independent of the magnetic properties of the conductor and
depends solely on the total current I = πR2, thus justifying using the linear result in (1.2.26) to
find the dominant terms.
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h0

R

j

R

j

D

𝛾1 𝛾2

x

y

𝜔1 𝜔2

Figure 1.5: Calculating the Lorentz forces on two parallel conductors subjected to
same or opposite direction currents of density j and a remote h-field of magnitude
h0 using contour integrals.

The h-field for r ≫ D in the case of currents of same h∞
S
or opposite h∞

O
direction,

is given by

h∞
S

= −2I sin θ

2πr
ex +

[
h0 +

2I cos θ

2πr

]
ey , h∞

O
= h0ey , (1.2.34)

since in the first case (same direction currents designated by S) the influence of the
electric currents on the magnetic field is additive and in the latter case (opposite
direction currents designated by O) they cancel each other. The Maxwell stress σ∞

at r ≫ D is given in terms of h∞ by (1.2.32).
Calculating the contour integrals on ∂γ1 and ∂γ2 in clockwise direction11, we

obtain for the corresponding Lorentz forces F 1,2
L

F 1,2
L,S

=

[
−b0I ±

1

2µ0

∫ +∞

−∞
[b2x(0, y)− b2y(0, y) + b20]dy

]
ex ,

F 1,2
L,O

=

[
± 1

2µ0

∫ +∞

−∞
[b2x(0, y)− b2y(0, y) + b20]dy

]
ex . (1.2.35)

Unlike the single conductor, we do expect in the two conductors case that the mag-
netic properties of the conductors will influence the Lorentz forces due to the change
of the magnetic field b along the y-axis, as seen from (1.2.35).

11Due to symmetry considerations one can show that the ex component of the Lorentz forces is
zero.
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Infinite array of parallel conductors

We consider next an infinite array of parallel cylindrical conductors of radius R
equally spaced from each other at a distance D and subjected to a remote h-field h0

as shown in Figure 1.6. The conductors are subjected to uniform current densities
j, either all in the same direction or in alternating opposite directions.

An immediate result of periodicity is that for D ≫ R the Lorentz force in each
conductor is F

L
= ±b0Iex (where the current I = jπR2 and the ± sign depends on

the current direction of the conductor at hand) since the magnetic field contribution
at the center of any given conductor due to a conductor at distance +nD is cancelled
by its counterpart at distance −nD, where n ∈ N, thus leaving the magnetic field
there equal to the remote magnetic field b0.

h0

x

y

D D D
R

j
R

j
R

j
R

j

A B B’

Δ Γ Γ’

𝜔1 𝜔2

Figure 1.6: Calculating the Lorentz forces on parallel conductors subjected to same
or alternating direction currents of density j and a remote h-field of magnitude h0
in an infinite array using contour integrals.

A more refined result is obtained in the case of the periodic array with same
direction currents. The Lorentz force on each conductor can be calculated from the
contour integral along ABΓ∆ as seen in Figure 1.6,

F
L
=

∫ B

A

[−ey·σ∞] dx+

∫ Γ

B

[ex·σ] dy+
∫ ∆

Γ

[ey·σ∞] dx+

∫ A

∆

[−ex·σ] dy (1.2.36)

From periodicity the stress σ is the same on the BΓ and A∆ segments of the contour
but given the opposite direction of the normal there (n = ±ex) the sum of these
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two integrals vanishes. For the h-field12on segments AB and Γ∆ as well as the stress
there (recall (1.2.32)) we have

h∞ = ±I
2
ex + h0ey , σ∞ = µ0

[
h∞h∞ − 1

2
(h∞ ·h∞)I

]
, (1.2.37)

and hence the nontrivial contribution from these segments to the Lorentz force gives
F

L
= ±b0Iex depending on the direction of the current I. It is interesting to

note that the Lorentz force in an infinite, periodic array of conductors, all with
currents in the same direction is independent of the conductors’ magnetic properties,
irrespectively of how close they are!

For the case of currents with alternating directions, a similar argument on the
contour ABΓ′∆′ will give a zero total Lorentz force F

L
= F 1

L
+ F 2

L
= 0 since

h∞ = h0ey, where the superscripts refer to the left and right conductors in the
ABΓ′∆′ contour. As previously discussed for D ≫ R, F 1

L
= −F 2

L
= ±b0Iex, but

for closer spacing of the conductors, their magnetic properties will influence their
Lorentz force.

1.3 Numerical (FEM) Implementation

We apply here the general theory developed in Section 1.2.1 and Section 1.2.2 to
the boundary value problem of the ferromagnetic conductors subjected to a remote
magnetic field and an electric current. The numerical solution is based on an FEM
discretization of a 2D, quasistatic problem and solved by extremization of a sim-
plified version of the Lagrangian (1.2.2) based on the energy density adopted in
Section 1.2.2. Due to the small strains involved and the simplified expression for the
total stress in (1.2.25), only the magnetic field b – and hence the magnetic potential

a – needs to be calculated in order to determine the magnetic stress
m
σ which is the

basis for calculating the total force applied in each semiconductor, as discussed in

Section 1.2.4. Had one been interested in calculating also the elastic stress
e
σ, the

fully coupled problem would have to be solved to also determine the displacement
field u (see Hanappier et al. (2022)).

Solution method is based on a 2D model (plane strain assumed, see Figure 1.1),
where all field quantities are assumed independent of z. It involves no external
body forces, no mechanical tractions nor current sheets and has negligible induced
currents and acceleration terms, thus requiring only a spatial discretization of the
corresponding quasistatic problem. Moreover, since we are not interested in calculat-
ing the displacement field u, the current configuration (Eulerian) formulation of the
problem is adopted with all field quantities functions of the current position vector
x.

12The ± sign corresponds to each different x-segment of the contour.
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The Lagrangian of the system defined in (1.2.2) (kinetic minus potential energy:
L = K−P), in the absence of the kinetic energy (K = 0) equals minus the potential
energy (L = −P), which for the case of no external body forces no mechanical
surface tractions nor current sheets becomes

P =

∫
R2

W (∥b∥) ds−
∫
ω

(j ·a) ds ; W (∥b∥) ≡ Wmag(∥b∥)+
1

2µ0

∥b∥2 , b = ∇×a ,

(1.3.1)

whereW (∥b∥) is the system’s total energy density. The conductor’s magnetic energy
density in only defined in the domain ω, i.e. Wmag(∥b(x)∥) ̸= 0 ; ∀ x ∈ ω and
Wmag(∥b(x)∥) = 0 ; ∀ x ∈ R2\ω.

Since a plane strain boundary value problem is considered, integration over the
entire domain involves R2 and the cross-section of the stator domain has boundary
∂ω. Moreover, the in-plane magnetic field (b = ∇×a, see (1.2.12)) is derived from the
magnetic vector potential a = a(x, y)ez, requiring only one scalar field variable for
its determination i.e. b = a,yex− a,xey. Consequently the Coulomb gauge condition
∇·a (see footnote 4) is automatically satisfied. As a result of Ampère’s law (1.2.11)
and the in-plane h-field, the externally applied currents can only be of the form
j = jz(x, y)ez, thus automatically satisfying charge conservation ∇·j = 0. Thus, the
solution of the magnetic boundary value problem, based on the FEM discretization
of (1.3.1) requires only one scalar field variable a(x, y)13.

(a) Mesh for the magnetic poten-
tial a in ω and R\ω.

(b) Mesh for the magnetic potential a in ω1 ∪ ω2

and R\(ω1 ∪ ω2)

Figure 1.7: Typical FEM meshes used for calculating the magnetic potential a inside
and outside the conductor domain. In (a) for a single conductor of radius R and in
(b) for two conductors of same radius R at a distance D = 4R.

13For added simplicity, the numerical code is based on the discretization of the perturbation field
â(x, y) ≡ a(x, y) − a0(x, y) resulting from the presence of the conductor; in its absence a(x, y) =
a0(x, y) = −xb0.
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For the sake of simplicity and meshing flexibility, the elements chosen for the FEM
spatial discretization are quadrilateral 2D elements with a second order polynomial
interpolation and nine nodes, using a 3× 3 Gauss numerical integration scheme. The
corresponding UEL (user element) is provided to “DealII ” in the final assembly of the
global force vector and stiffness matrix of the problem. The accuracy of the numerical
code is verified using the analytical solution for the single conductor with a linear
magnetization law presented in Section 1.2.3. The boundary condition imposed on
the computational domain is â(x, y) = 0. To ensure that this assumption does not
affect the accuracy of the results, we use rectangular domains of minimum dimensions
120R × 120R, so that their boundaries are at least 60R away from the center of each
conductor. Numerical simulations typically require 50, 000 d.o.f. meshes. Only the
central section of the much larger computational domain is shown in Figure 1.7, to
better depict the denser mesh inside and near the conductors.

1.4 Results

We start with a remark about the validity of the uniform current assumption that
is typically adopted in the electrical engineering literature and hence in the ensuing
numerical calculations. In order to satisfy the Maxwell-Gauss equations pertaining to
the electric field resulting inside the conductor due to the electric current (in addition
to the Maxwell-Ampère equations presented in Section 1.2), we make the simplifying
assumption of a negligible conductor resistivity, resulting in a negligible electric field
inside (and hence outside of) the conductor. In a simulation that accounts for ohmic
dissipation in the conductor Hall effects Hall (1879) will have to be considered,
resulting in non-uniform current densities inside a conductor.

In presenting the results we adopt a dimensionless form and hence we define
the following reference quantities based on the conductor’s material properties and
geometry i.e. its radius R

mref = ms , bref = msµ0 , href =
ms

χ0

, jref =
href
R

=
ms

Rχ0

,

Fref = brefjrefπR
2 =

m2
sµ0πR

χ0

.

(1.4.1)

We have in mind a typical ferromagnetic wire of radius 1.5mm as the base case and
hence all subsequent numerical calculations presented here use the values: R = 1.5×
10−3 m, χ0 = 2.5×103, ms = 1.7×106 Am−1 and µ0 = 4π×10−7 NA−2. The reference
values in the MKSA system of units are: href = 0.68 Am−1, jref = 0.45×106 Am−2

and bref = 2.14 T .
A remark about the range of magnetic fields and electric currents used in the

ensuing calculations is in order. As the most upscale laboratory magnets generate
magnetic fields of the order of 1 T to 2 T , we investigate magnetic fields up to
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0.7 bref . To avoid excessive ohmic heating of the conductors and by assuming (to
be on the conservative side) adiabatic heating, the current density is related to the
temperature increase rate θ̇ (in ◦K sec−1) by

j = (γρ0cpθ̇)
1/2 ≈ 3.13×106(θ̇)1/2 Am−2 , (1.4.2)

where γ is the electric conductivity, cp is the specific heat and ρ0 is the mass density
of the conductor and where we have also assumed typical values for a ferromagnetic
material. We present calculations here for current densities up to 6.36 jref , which
correspond to a temperature increase rate of about 0.83◦K sec−1.

1.4.1 Single Conductor Under Magnetic Field and Electric
Current

(a) ∥m∥/ms Near linear magnetic re-
sponse.

(b) ∥m∥/ms Near saturation magnetic re-
sponse.

Figure 1.8: Contours of the magnetic field norm ∥m∥/ms for a conductor subjected
to an electric current and a remote magnetic field. In (a) for low remote magnetic
field b0 = 0.52×10−4 bref and current j = 2×10−4 jref where the entire section is
in the near-linear regime of magnetization. In (b) for high remote magnetic field
b0 = 0.66 bref and current j = 5.25 jref , where the entire conductor is near the
saturation regime of magnetization.

We start by presenting in Figure 1.8 the magnetic field for a single conductor with
a circular section of radius R, subjected to a uniform current density j = jez and
a remote external magnetic field b0 = b0ey (see geometry in Figure 1.3). More
specifically, contours of the dimensionless magnetic field norm ∥m∥/ms are depicted
in Figure 1.8a for near-linear magnetic response (low values of external magnetic
field and current, respectively b0 = 0.52×10−4 bref and j = 2×10−4 jref ) and in
Figure 1.8b for near saturation magnetic response (high values of external magnetic
field and current, respectively b0 = 0.66 bref and j = 5.25 jref ).
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For a rigid, isotropic ferromagnetic material of circular section in 2D or spheri-
cal shape in 3D subjected to an external magnetic field it is known (e.g. see Brown
(1966)) that the h-field and hence the magnetization inside the conductor is uniform,
independently of the magnetic constitutive law. It is the presence of the magnetic
field gradient due to the applied current that introduces a gradient of the magne-
tization field inside the conductor, as seen for the special case of a linear magnetic
response from (1.2.27).

For the near-linear magnetic regime, we observe in Figure 1.8a that the magneti-
zation is minimized (near zero) at the left side, since the external and current-induced
magnetic fields are in opposite directions in that location, and maximized on the right
side when these same fields act in the same direction, as expected from (1.2.27). For
the near saturation response we observe from Figure 1.8b that the entire domain has
a nearly uniform magnetization of about 0.82ms) and the influence of the current
on the magnetization is almost negligible. Numerical simulations with much higher
currents j ≈ 102 jref (not reported here) produce non-uniform magnetization fields
with a strong gradient that increases with an increasing current.

(a)
m
σxx/µ0m

2
s Near linear response. (b)

m
σxy/µ0m

2
s Near linear response.

(c)
m
σyy/µ0m

2
s Near linear response.

Figure 1.9: Contours for the dimensionless magnetic stress
m
σ/µ0m

2
s components for a

conductor subjected to an electric current and a remote magnetic field. Low remote
magnetic field b0 = 0.52×10−4 bref and current j = 2×10−4 jref where the entire
section is in the near-linear regime of magnetization.
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(a)
m
σxx/µ0m

2
s Near saturation response. (b)

m
σxy/µ0m

2
s Near saturation response.

(c)
m
σyy/µ0m

2
s Near saturation response.

Figure 1.10: Contours for the dimensionless magnetic stress
m
σ/µ0m

2
s components for

a conductor subjected to an electric current and a remote magnetic field. For high
remote magnetic field b0 = 0.66 bref and current j = 5.25 jref , where the entire
conductor is near the saturation regime of magnetization.

Next we present the magnetic stress field components in Figure 1.9 for the same
single conductor. More specifically, contours of the dimensionless magnetic stress

field
m
σ/µ0m

2
s components are depicted in Figure 1.9a, Figure 1.9b, Figure 1.9c, for

near-linear magnetic response (low values of external and current-induced h-fields,
same as in Figure 1.8a) and in Figure 1.10a, Figure 1.10b, Figure 1.10c for near
saturation magnetic response (high values of external and current-induced h-fields,
same as in Figure 1.8b).

As expected from Figure 1.8 where the highest value of the magnetic field for
the near-linear magnetic regime loading occurs on the right end of the conductor’s
cross section, the highest value of the normal components of the magnetic stress
also occur in the same location, as depicted in Figure 1.9a and Figure 1.9c. For the
high magnetic field and current, again as expected from the results in Figure 1.8,
the normal components of the magnetic stress are uniform over the entire conductor:
m
σxx/µ0m

2
s = 0.30 in Figure 1.10a and

m
σyy/µ0m

2
s = 0.68 in Figure 1.10c.

Notice also that the dimensionless shear component of the magnetic stress is
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significantly lower inside the conductor compared to its magnitude outside for both
loadings: three orders of magnitude lower order in Figure 1.9b (3×10−12 vs 3×10−9),
and two orders of magnitude lower order in Figure 1.10b (3×10−3 vs 3×10−1). The
maximum normal magnetic stresses occur always inside the conductor. In contrast
the maximum magnetic shear stress always occurs on the outside of the conductor’s
boundary and is the shear component of the Maxwell stress in vacuum. Notice also
the rotated by ±π/4 two symmetry axes of the shear stress fields as compared to the
unique symmetry x-axis for the normal ones.

1.4.2 Two Conductors Under Magnetic Field and Same Di-
rection Electric Currents

We continue with the investigation of the Lorentz forces on two parallel ferromagnetic
conductors of circular section of radius R, subjected to parallel currents of the same,
uniform current density j = jez and a remote external magnetic field of magnitude
b0 = b0ey (see geometry in Figure 1.5). The results are presented in Figure 1.11 and
Figure 1.12 in dimensionless form, according to (1.4.1).

(a) F 1,2
L
/Fref vs (b0/bref , j/jref ) for

D/R = 4.0

h0

j
𝜔1

j
𝜔2

(b) F 1,2
L
/Fref vs (b0/bref , j/jref ) for

D/R = 20.0

Figure 1.11: Dimensionless forces per unit length F 1,2
L
/Fref as function of the remote

magnetic field b0/bref and the current density j/jref on two conductors with equal,
same direction parallel currents I = πjR2; in (a) at distance D/R = 4 and in (b)
at distance D/R = 20. Lorentz force for the single conductor −b0I/Fref depicted in
green for comparison.

Of interest is the influence of the conductor’s magnetic properties on the Lorentz
forces per unit length as function of their distance D. It is expected that for the
closely spaced case (D/R = 4), the conductor’s magnetic properties will be strongly
influencing these forces, while for larger separation distances (D/R = 20) this in-
fluence will be considerably reduced, as these forces approach F 1,2

L
= −b0Iex (plane
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colored in green and depicted for comparison purposes in Figure 1.11). More specif-
ically in Figure 1.11a we present the dimensionless forces per unit length F 1,2

L
/Fref

as function of the remote magnetic field b0/bref and the current density j/jref for
D/R = 4 and in Figure 1.11b for D/R = 20.

As expected from (1.2.35)1 the forces on each conductor have different absolute
values. For the closely spaced conductors D/R = 4 in Figure 1.11a, notice that in
the absence of current (j = 0)14 the Lorentz forces have opposite signs as expected
for two adjacent magnetic dipoles with the same orientation; the forces increase in
magnitude with increasing magnetic field b0. As the electric currents increase, for a
given external magnetic field, the Lorentz forces are only slightly affected, since the
magnetic field is dominated by the magnetic properties of the conductor.

For the remotely spaced conductors D/R = 20 in Figure 1.11b notice that the
Lorentz forces are an order of magnitude lower than their counterparts in Fig-
ure 1.11a. Although of different sign in the absence of currents (dipole repulsion),
the Lorentz forces in the two conductors eventually share the same sign as the cur-
rents increase and converge to the single conductor limit −b0I, as one can observe
in Figure 1.11b. It is also worth mentioning at this point that average between of
two Lorentz forces is independent of the conductors magnetic properties, since from
(1.2.35)1 one has that (F 1

L
+ F 2

L
)/2 = −b0I.

We can thus conclude that for the closely spaced conductors in Figure 1.11a the
Lorentz forces are dominated by the dipole repulsion effect due to the conductors’
magnetic behavior, while for the remotely spaced conductors Figure 1.11b the Lorentz
forces are practically unaffected by it.

14In the absence of an external magnetic field (b0 = 0) the maximum value of the dimensionless
Lorentz forces (F 1,2

L
/Fref ≈ ±µ0I

2/2πDFref ) are negligible – of the order of 10−3 – and hence not
perceptible at the scale of the plots in Figure 1.11.
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(a) F 1,2
L
/Fref vs b0/bref for j/jref = 0.42,

4 ≤ D/R ≤ 20
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(b) F 1,2
L
/Fref vs b0/bref for j/jref = 6.36,

4 ≤ D/R ≤ 20

Figure 1.12: Influence of distance D/R on the dimensionless force per unit length
F 1,2

L
/Fref between two conductors with equal, same direction parallel currents I =

πjR2 as a function of the remote magnetic field b0/bref at two different current
densities; in (a) for j/jref = 0.42 and in (b) for j/jref = 6.36. Results for conductor
1 (left) are plotted in dashed lines while for conductor 2 (right) are plotted in solid
lines (see Figure 1.5).

The influence of distance on the Lorentz forces per unit length for two identical
parallel ferromagnetic conductors of circular section, subjected to currents of the
same direction, as function of the applied remote external magnetic field b0, and for
different distancesD/R, is presented in Figure 1.12. The results for conductor 1 (left)
are plotted in dashed lines while for conductor 2 (right) are plotted in solid lines.
More specifically Figure 1.12a corresponds to a low current density j/jref = 0.42
while Figure 1.12b corresponds to a high current density j/jref = 6.36.

By comparing Figure 1.12a to Figure 1.12b one can conclude that the ferromag-
netic response of the conductors dominates the Lorentz forces, for the close distance
and low current density case, while for the same distance an increase in the current
density reduces these forces for conductor 1 and increases them for conductor 2. As
the conductor distance increases, for a given external magnetic field both forces are
significantly decreased, act in the same direction and converge to their common limit
F 1

L
= F 2

L
= −b0I. The dominant factor influencing the Lorentz forces is the magnetic

response of the conductor (hence the marked nonlinearity of the force-magnetic field
curves for low values of D) and not the magnitude of the current, as evidenced by
the results in Figure 1.12.
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1.4.3 Two Conductors Under Magnetic Field and Opposite
Direction Electric Currents

Next follows the investigation of the Lorentz forces on two parallel ferromagnetic
conductors of circular section of radius R, subjected to parallel currents of the op-
posite direction, with a uniform current density and a remote external magnetic
field of magnitude b0 = b0ey, as depicted in Figure 1.5. Two possibilities exist:
j1 = jez, j2 = −jez (case i) and j1 = −jez, j2 = jez (case ii). The results are
presented in Figure 1.13 and Figure 1.14 in dimensionless form according to (1.4.1).

(a) F 1,2
L
/Fref vs (b0/bref , j/jref ) for D/R = 4.0

h0

j
𝜔1

j
𝜔2

✕

(b) F 1,2
L
/Fref vs (b0/bref , j/jref ) for D/R = 20.0

(c) F 1,2
L
/Fref vs (b0/bref , j/jref ) for D/R = 4.0

h0

j
𝜔1

j
𝜔2

✕

(d) F 1,2
L
/Fref vs (b0/bref , j/jref ) for D/R = 20.0

Figure 1.13: Dimensionless forces per unit length F 1,2
L
/Fref as function of the remote

magnetic field b0/bref and the current density j/jref on two conductors with equal,
opposite direction parallel currents I = πjR2 for j1 = jez, j2 = −jez (case i, (a)
and (b)) and j1 = −jez, j2 = jez (case ii, (c) and (d)); in (a) and (c) at distance
D/R = 4 and in (b) and (d) at distance D/R = 20. Lorentz force for the single
conductor −b0I/Fref depicted in green for comparison.
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Of interest again is the influence of magnetic properties on the Lorentz forces
per unit length on each conductor as function of their distance D. More specifi-
cally in Figure 1.13a and Figure 1.13c we present the dimensionless forces per unit
length F 1,2

L
/Fref for cases (i) and (ii) respectively as function of the remote magnetic

field: b0/bref and the current density: j/jref for D/R = 4 and in Figure 1.13b and
Figure 1.13d their counterparts for D/R = 20.

As expected from (1.2.35)2 the forces on the two conductors always have opposite
signs but the same absolute value. For the closely spaced conductors D/R = 4 in
Figure 1.13a and Figure 1.13c, notice that in the absence of current (j = 0)15 the
Lorentz forces due to the interaction of two adjacent magnetic dipoles with the same
orientation are the same as in Figure 1.11. As the electric currents increase, for a
given external magnetic field, the Lorentz forces are only slightly affected since the
magnetic field is dominated by the magnetic properties of the conductor.

For the remotely spaced conductors D/R = 20 in Figure 1.13b and Figure 1.13d
the Lorentz forces are an order of magnitude smaller than their counterparts in Fig-
ure 1.13a and Figure 1.13c. Moreover these forces show very small sensitivity to the
conductors’ magnetic behavior, as one can observe in Figure 1.13b and Figure 1.13d.
Moreover, in comparing the last two figures notice that the change of the current
direction in each conductor results in a change of the sign of the Lorentz force.

We can thus conclude, like in the parallel current direction case, that for the
closely spaced conductors in Figure 1.13a and Figure 1.13c the Lorentz forces are
dominated by the dipole repulsion effect due to the conductors’ magnetic behavior
while for the remotely spaced conductors Figure 1.13b and Figure 1.13d the Lorentz
forces are close to the single conductor limit ±b0I i.e. practically unaffected by
magnetic properties.

15For no external magnetic field (b0 = 0) see remark in footnote 14.

33



CHAPTER 1. FORCES IN FERROMAGNETIC CONDUCTORS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b0/bref

30

20

10

0

10

20

30
F1,

2
L

 /F
re

f

D/R
4
5
6
8
12
20

(a) F 1,2
L
/Fref vs b0/bref for j/jref = 0.42,

4 ≤ D/R ≤ 20

h0

j
𝜔1

j
𝜔2

✕

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b0/bref

30

20

10

0

10

20

30

F1,
2

L
 /F

re
f

D/R
4
5
6
8
12
20

(b) F 1,2
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/Fref vs b0/bref for j/jref = 6.36,

4 ≤ D/R ≤ 20
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(c) F 1,2
L
/Fref vs b0/bref for j/jref = 0.42,

4 ≤ D/R ≤ 20
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(d) F 1,2
L
/Fref vs b0/bref for j/jref = 6.36,

4 ≤ D/R ≤ 20

Figure 1.14: Influence of distance D/R on the dimensionless force per unit length
F 1,2

L
/Fref between two conductors with equal, opposite direction parallel currents

I = πjR2 for j1 = jez, j2 = −jez (case i, (a) and (b)) and j1 = −jez, j2 = jez

(case ii, (c) and (d)) as a function of the remote magnetic field b0/bref at two different
densities; in (a) and (c) for j/jref = 0.42 and in (b) and (d) for j/jref = 6.36. Results
for conductor 1 (left) are plotted in dashed lines while for conductor 2 (right) are
plotted in solid lines (see Figure 1.5).

The influence of distance on the Lorentz forces per unit length for two identical
parallel ferromagnetic conductors of circular section, subjected to currents of the
opposite direction, as function of the applied remote external magnetic field b0, and
for different distances D/R, is presented in Figure 1.14. The results for conductor
1 (left) are plotted in dashed lines while for conductor 2 (right) are plotted in solid
lines. More specifically Figure 1.14a and Figure 1.14c for cases (i) and (ii) respectively
correspond to a low current density j/jref = 0.42 while Figure 1.14b and Figure 1.14b
for cases (i) and (ii) respectively correspond to a high current density j/jref = 6.36.
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By comparing Figure 1.14a and Figure 1.14c to Figure 1.14b and Figure 1.14d one
observes that the ferromagnetic response of the conductors dominates the Lorentz
forces for the closely spaced case. Due to this dominance of the magnetic properties
for the closely spaced conductors, by comparing Figure 1.14a to Figure 1.14c we
observe that for the low current density, reversing of the current direction has no ob-
servable effect on the Lorentz forces. As the conductor distance increases the (always
opposite direction) forces converge to the same absolute value (non ferromagnetic)
limit b0I.

However the change of the current direction has a noticeable effect for the high
current density, as one can observe by comparing Figure 1.14b to Figure 1.14d. Ac-
cording to Figure 1.14d, the absolute value of the forces are significantly lower for
case (ii) where they eventually change sign as the distance between the conductors in-
creases, while as seen for case (i) in Figure 1.14b the Lorentz forces in each conductor
are always of the same sign.

1.4.4 Periodic Array of Conductors Under Magnetic Field
and Alternating Directions Electric Currents

(a) F 1,2
L
/Fref vs (b0/bref , j/jref ) for

D/R = 4.0
(b) F 1,2

L
/Fref vs (b0/bref , j/jref ) for

D/R = 20.0

Figure 1.15: Dimensionless forces per unit length F 1,2
L
/Fref as function of the remote

magnetic field b0/bref and current density j/jref in an infinite array of equally spaced
conductors with alternating direction parallel currents I = πjR2; in (a) at distance
D/R = 4 and in (b) at distance D/R = 20. Lorentz force for the single conductor
−b0I/Fref depicted in green for comparison.

We conclude with the investigation of the Lorentz forces on a parallel array of equally
spaced ferromagnetic conductors of circular section of radius R, subjected to same
magnitude currents in alternating directions, with a uniform current density j =
±jez and a remote external magnetic field of magnitude b0 = b0ey, as depicted in
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Figure 1.6. The results are presented in Figure 1.18 and Figure 1.16 in dimensionless
form according to (1.4.1).

Of interest once again is the influence of magnetic properties on the Lorentz forces
per unit length on each conductor as function of their distance D. More specifically
in Figure 1.18a we present the dimensionless forces per unit length F 1,2

L
/Fref as

function of the remote magnetic field: b0/bref and the current density: j/jref for
D/R = 4 and in Figure 1.18b for D/R = 20.

Unlike for the two conductors presented in Section 1.4.2 and Section 1.4.3, in the
absence of electric currents (j = 0), symmetry dictates the Lorentz forces in each
conductor to vanish for any value of the external magnetic field, as one can observe in
Figure 1.18. In addition, the Lorentz forces for the two different conductor spacings
are of the same order of magnitude. Moreover for given current density and magnetic
field, the Lorentz forces are smaller for the more closely spaced conductors D/R = 4
than for their more remote counterpart D/R = 20, as one can see by comparing
Figure 1.18a to Figure 1.18b. The presence of magnetization in the conductor has
the counterintuitive effect of weakening the Lorentz forces. Moreover, these forces
are almost linearly dependent on the magnetic field and current, as seen from the
almost flat surfaces in Figure 1.18.
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(a) F 1,2
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(b) F 1,2
L
/Fref vs b0/bref for j/jref = 6.36 and

4 ≤ D/R ≤ 20

Figure 1.16: Influence of distance D/R on the dimensionless force F 1,2
L
/Fref between

two adjacent conductors in an infinite array with alternating direction parallel cur-
rents I = πjR2 as a function of the remote magnetic field b0/bref at two different
current densities; in (a) for j/jref = 0.42 and in (b) for j/jref = 6.36. Results for
conductor 1 (left) are plotted in dashed lines while for conductor 2 (right) are plotted
in solid lines (see Figure 1.6).

The influence of distance on the Lorentz forces per unit length for on a parallel
array of equally spaced ferromagnetic conductors of circular section of radius R,
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subjected to same magnitude parallel currents in alternating directions, as function
of the applied remote external magnetic field b0, and for different distances D/R, is
presented in Figure 1.16. The results for conductor 1 are plotted in dashed lines while
for conductor 2 are plotted in solid lines. More specifically Figure 1.16a corresponds
to a low current density j/jref = 0.42 while Figure 1.16b corresponds to a high
current density j/jref = 6.36. The significant current density increase dictated the
different scales for plotting the Lorentz forces in Figure 1.16a and Figure 1.16b.

By comparing Figure 1.12 and Figure 1.14 to Figure 1.16 one can draw two con-
clusions. The first is that the magnetic properties of the conductors have considerably
less influence on the Lorentz forces in the periodic arrangement, as evidenced by the
almost linear force vs magnetic field response which is rather insensitive to the dis-
tance between conductors: difference with the non-magnetic case ranging from 18%
for D/R = 4 and rapidly decreasing to 3% for D/R = 10. The second conclusion is
the counterintuitive result of an increasing force as the distance between conductors
increases, a result of the repulsive dipole-dipole interaction magnetization-induced
forces that decrease with increasing distance between conductors. Observe that Fig-
ure 1.12 and Figure 1.14 are plotted at a different scale than Figure 1.16, due the
significant reduction in the Lorentz forces for the periodic conductor case.

1.4.5 2D periodic array of conductors Subjected to Magnetic
Field and Alternating Direction Electric current

One simple extension to the previous work is to study what would happen if we were
considering an array of wires periodic in the x and y direction as depicted in ??.
In this conficuration, we will concider that the current in the bottom left and top
right wires is positive, and the one in the bottom right and top left wires id negative.
Taking the opposite convention is equivalent and would simply gives the opposite
forces. In this configuration an analysis simmilar to the ones carried out before gives
that the sum of all four forces is null. In addition, by symmetry and periodicity, it
is immediate that the forces in wires subjected to the same current will be identical.
We will cal F 1

L
the force over the bottom left and top right wires and F 2

L
the force

over the bottom right and top left wires.

The results for the resultant forces in x are presented in Figure 1.18 and Fig-
ure 1.16 in dimensionless form according to (1.4.1). There are no resultant forces in
the y direction.
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Figure 1.17: Calculating the Lorentz forces FL on a a 2D array of conductor subjected
to current of density j of alternating direction and a remote h-field of magnitude h0
using contour integrals.

(a) F 1,2
L
/Fref vs (b0/bref , j/jref ) for

D/R = 4.0
(b) F 1,2

L
/Fref vs (b0/bref , j/jref ) for

D/R = 20.0

Figure 1.18: Dimensionless forces per unit length F 1,2
L
/Fref as function of the remote

magnetic field b0/bref and current density j/jref in an infinite array of equally spaced
conductors with alternating direction parallel currents I = πjR2; a) at distance
D/R = 4 and b) at distance D/R = 20. Lorentz force for the single conductor
−b0I/Fref depicted in green for comparison purposes.
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Of interest once again is the influence of magnetic properties on the Lorentz forces
per unit length on each conductor as function of their distanceD. More specifically in
Figure 1.18a we present the dimensionless forces per unit length F 1,2

L
/Fref as function

of the remote magnetic field: b0/bref and the current density: j/jref for D/R = 4
and in Figure 1.18b for D/R = 20. The key take away of this caculation is that
adding infinite layers has negligable impact on the resultant forces. The conclusions
about the single periodic layer of conductors stays true.

1.5 Conclusion

Although the problem of Lorentz forces on electrical current carrying conductors
subjected to a remote magnetic filed is a classical one, the impact of the conductors’
magnetic properties on the forces between two or more (in a periodic array) parallel
conductors subjected to a uniform external magnetic field and current density has
not been the subject of investigations to the best of the authors’ knowledge, thus
motivating the present study.

As discussed in Section 1.2.4, the calculation of Lorentz forces requires solely the
determination of the Maxwell stresses in vacuum, i.e. the magnetic field b outside
the conductors. Consequently the continuum 2D numerical calculations (FEM) are
considerably simplified for this multiphysics problem, since they involve only the
scalar magnetic potential a(x, y) (recall a = a(x, y)ez).

The case of two closely spaced conductors D/R = 4 is particularly interesting,
since the magnetic fields outside the conductors are strongly influenced by the mag-
netic constitutive law and the resulting magnetic dipole repulsion between the to
conductors far outweighs the current-induced forces as one can see in Figure 1.12
and Figure 1.14. At large distances D/R = 20 the Lorentz forces reduce to the clas-
sical result of a single wire in a uniform magnetic field (F 1,2

L
= ±b0I). One can thus

significantly enhance the Lorentz forces in two closely-spaced parallel conductors by
using ferromagnetic materials.

The results for an infinite array of parallel, equally spaced conductors are rather
surprising, if not counterintuitive. For currents in the same direction the conductors’
magnetic properties have no influence on the Lorentz forces due to symmetry argu-
ments. For the case of currents in alternating directions, the magnetic properties of
the conductors only slightly reduce the Lorentz forces due to dipole interactions and
these forces are essentially linearly dependent on both the magnetic field and applied
current, as attested by the flat surfaces results in Figure 1.18 and the straight lines
in Figure 1.16. More complicated, multilayer arrays of conductors can be analyzed
in exactly the same manner as the single layer array considered here.

The results of this investigation pertain to unsupported conductors, since they
are surrounded by vacuum, which in view of the linear momentum equation (1.2.20)
will induce motion, as an acceleration term will result from the Lorentz forces. In
case when the conductors are imbedded in a non-conducting elastomeric matrix,
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mechanical tractions will appear on the boundaries of the conductors and the fully
coupled mechanical-electromagnetic problem presented in Section 1.2 must be solved
to concurrently obtain both the magnetic field b and the displacement field u. From

this equilibrium solution one could find the elastic stresses
e
σ inside the conductors as

in Hanappier et al. (2022) for small strains or Lefevre et al. (2020) for large strains.
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Chapter 2

Analysis of a partially
magnetizable current carrying
mesh subjected to magnetic fields

The study of the mechanical behavior of honeycomb and more generally architected
materials has seen strong interest, especially since their ever increasing use in the
industry where their remarquable mechanical properties (stiffness to mass ratio in
one direction for instance) are greatly appreciated. A review of recent advances can
be found in Surjadi et al. (2019). However, such materials require great care when
it comes to their mechanical stability, which is often their failure mode far before
fracture. The theory behind those buckling analysis and its application to truss
configurations can be found in Triantafyllidis and Schnaidt (1993). The buckling
modes are often characterized by their pulsations (one per direction), i.e. the ratio
of the buckling mode length and the cell length regarding each direction. Then the
bifurcations are grouped in two categories. First, local bifurcations which correspond
to a non 0 pulsation and that can be obtained through the Bloch theorem. Second,
global modes that can be obtained either by studying bloch waves with pulsations
ωc → 0 or, as shown in Müller et al. (1993), by looking at the loss of rank one
convexity of the homogenized modulus. In this chapter we will use the first option.
More discussion about the second one will be provided in Chapter 3 Focusing on our
geometry, square honeycombs, there are plenty of works including both experimental
and analytical approaches. As this geometry has been identified as very efficient for
shock absorption, a significant part of the literature studies the dynamic behavior
both under out of plane loadings (see Xue and Hutchinson (2006)) and in plane
loadings (see Tao et al. (2019)), but it is not the focus of this work. In the quasistatic
case, the load cases studied in the literature include both in plane (Russell et al.
(2008)) and out of plane (Côté et al. (2004)) compression. But as far as the author
is aware, no work has been conducted considering the type of load generated by
our electromagnetic forces: loads that apply only to part of the beams. Finally,
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there are several works focusing on mixed structure such as Tao et al. (2019) with
hierarchical structure and Côté et al. (2009) with square honeycomb composed of
sandwich panels, but, once again only homogeneous loadings are considered. For the
sake of completeness, we point out that two aspects of the study of the stability of
architected materials often found in the literature won’t be addressed in this chapter.
First, The geometry will be considered perfect, without initial perturbation. An
example of a study tackling this problem in the case of a ductile media with periodic
micro-structures under finite strains can be found in Schraad and Triantafyllidis
(1997). Second, the first bifurcation does not necessarily indicate a catastrophic
failure. Understanding the behavior of the material after the initial loss of stability
is called post-bifurcation analysis and can be achieved either by imperfection methods
or by analytical group theory methods. An example of the latter, in the case of a
two-dimensional infinite perfect periodic honeycomb can be found in Combescure
et al. (2016). In our case, as we will show that the first instability requires a loading
higher than what can be achieved experimentally, we won’t study the behavior past
the first loss of stability. The outline is the following: After describing the system
and its parameters in Section 2.1, we compute the principal solution in Section 2.2.
In Section 2.3 we show the method used to study the mechanical stability of the
system, and the resulting results are provided in Section 2.4.

2.1 Problem description

In the previous chapter we obtained the resultant forces in several configurations.
However the only configuration which created significant compressive forces is the
array of periodic wires with alternating current directions. Indeed when considering
two wires the dominant forces for reasonably close wires are repulsive, and in a
periodic array of wires with parallel currents all the resultant forces share the same
direction. As a consequence, this stability analysis will focus on the first configuration
mentioned. The global problem is described in Figure 2.1. We will use v for quantities
related to the vertical beams and h for quantities related to the horizontal ones. We
consider an elastic magnetizable horizontal beam of radius rh carrying a current ±Iey
with the sign alternating between each layer. The vertical beams are elastic, non
magnetic, non conductive and their radius is rv. These beams form squares of size
lv×lh. An exterior magnetic field b0 along ez is added. The Young’s moduli of each
beam are respectively Ev and Eh According to the previous section, we know that
the resultant forces per unit of length q will be of equal magnitude but alternating
direction between the horizontal layers (q = ±f , f ≥ 0). As we do not consider
pre stress in the absence of magnetic loading and we let the global system compress
axially freely, we get that the exterior forces applied to the system lead to no axial
forces in the horizontal beams, a constant axial force λ = flh in half the vertical
beams, and no axial forces in the other half. As explained previously, when needing
a specific configuration, we will consider the system composed of the metallic beam
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studied in chapter 2 as horizontal beams, and plastic beams whose radius is half the
radius of the horizontal beams. The length of the beam will vary between 1cm and
10 cm for experimental constraints.

Figure 2.1: Schematic of an infinite mesh under an exterior magnetic field and cur-
rents. The red beams are magnetizable conductors carrying the current. The black
ones are non conductive and non magnetizable.

2.1.1 Unit cell

In order to solve this infinite problem, we can study the unit cell shown in Figure 2.2.
Its dimensions are Lx = lh and Ly = 2lv. We are going to treat this problem as an
elastic planar truss loaded by the magnetic forces obtained in the previous chapter.
This truss is composed of 7 different beams named based on their edge point. For
instance we call (28) the beam linking point 2 and point 8. As shown in Figure 2.2,
there are 3 types of beam:

� 4 horizontal beams (37,76,28,85) of length lh/2, radius rh, elasticity modulus
Eh and subject to no axial force and a tangential force per unit of length ±f .
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� 2 vertical beams (18,74) of length lv/2, radius rv, elasticity modulus we will
call Ev and subject to no axial force and no tangential forces.

� one vertical beam (87) of length lv/2, radius rv, elasticity modulus we will call
Ev and subject to an axial force λ and no tangential forces

Figure 2.2: Schematic of the unit cell with the numbering of the points, the d.o.f
and the geometrical parameters

This problem is fully described by the position and orientation at the edge of each
beams. Thus it can be described by 24 d.o.f : x displacement, y displacement and ro-
tation angle at each of the 8 points. The global d.o.f vector is [U ] = [u1, v1, θ1, ..., u8, v8, θ8]

T
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2.2 Principal solution

The principal solution of this problem is very straightforward : there is an axial
compression in the beam (78) and deflections in the horizontal beams (37,76,28,85).
We consider the point 1 fixed at coordinates (0,0) (ie u1 = v1 = 0) to get rid of the
rigid body movement. It comes immediately from balance of forces and moments
and from the equations for a a 2D beam that :

� θ1 = 0

� As the moments from the beams (28) and (85) balances out, and there is no
axial stress in (18), u8 = v8 = θ8=0

� As the moments from the beams (3) and (6) balances out, and the axial stress
in the beam (18) is λ, v7 = −λlv/(EvAv) and u7 = θ7=0

� As there is no axial load in (74), v4 = v7 = −λlv/(EvAv) and u4 = θ4=0

� u2, v2, θ2 are obtained by solving the beams equations with the boundary con-
ditions obtained for the points 7 and 8

The equations for a beam of length L, of axial stiffness EA and bending stiffness EI
under an axial force λ and a tangential force per unit of length q are the following.

d(EAϵ(x))

dx
= 0⇔ ϵ(x) =

du

dx
(x) +

1

2
(
dv

dx
(x))2 =

−λ
EA

(2.2.1)

EI
d4v

dx4
(x)− d

dx
[EAϵ(x)

dv

dx
(x)] = q ⇔ EI

d4v

dx4
(x) + λ

d2v

dx2
(x) = q (2.2.2)

In the horizontal beam, as we do not lock horizontal displacement, there is no axial
load. Thus the relations becomes

du

dx
(x) +

1

2
(
dv

dx
(x))2 = 0

EI
d4v

dx4
(x) = q

(2.2.3)

The boundary conditions for the horizontal beams considered are
u(0) = 0

v(0) = v(L)

θ(0) = θ(0) = 0

It leads to

u(x) = −1

2

∫ x

0

(
dv

dx
(s))2ds; v(x) =

q

24EI
(L2x2 − 2Lx3 + x4) + v(0) (2.2.4)
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By using boundary conditions, we obtain the following results for the main path :

u1 = 0 v1 = 0 θ1 = 0

u2 =
l9hf

2

1451520EhIh
; v2 =

l4hf

384EhIh
; θ2 = 0

u3 =
l9hf

2

1451520EhIh
; v3 = −

l4hf

384EhIh
− flhlv
EvAv

; θ3 = 0

u4 = 0; v4 = −
flhlv
EvAv

θ4 = 0

u5 = −
l9hf

2

1451520EhIh
; v5 =

l4hf

384EhIh
; θ5 = 0

u6 = −
l9hf

2

1451520EhIh
; v6 = −

l4hf

384EhIh
− flhlv
EvAv

; θ6 = 0

u7 = 0; v7 = −
flhlv
EvAv

θ7 = 0

u8 = 0 v8 = 0 θ8 = 0

In the considered case of steel beams of radius 1,5mm, and the maximum magnetic
forces considered in the previous chapter (b0 = 0.7bref , j = 6.36jref , ie b0 = 1.5T, I =
20A, f = 30N/m), and even for a a beam length of 10 cm, the deflection is under
10−5 m. Similarly, the horizontal changes are very small, below 10−12 m. Considering
a plastic Young’s modulus of Ev=2 GPa, and a radius for the plastic wires of rv =
0, 75mm, and large cells of lh = lv = 10 cm, the vertical displacement is still under
10−4 m Those results stand as long as the system stays mechanically stable. As the
displacement in the horizontal beam is very small, we are going to neglect it when
computing the stability of the system.

2.3 Stability analysis

In order to study the stability of this cell, we need to get the sign of determinant
of the global stiffness matrix about the principal solution depending on the loading
λ ie [K](λ) = [ ∂2E

∂[U ]∂[U ]
|0](λ). As there is no prestress, the global stiffness matrix is

positive definite when λ = 0. The critical load λc is the lowest value of the load λ
where the global stiffness loses its positive definiteness, as the load increases from
zero.

Det[K(λc)] = 0 , ∀λ ∈ [0, λc[ Det[K(λ)] > 0 ; (2.3.1)

As usual when dealing with truss, we will find the global stiffness matrix [K] by
assembling the stiffness matrix of all the beams such that [K] [U] = [F] with [F] the
global load vector.
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Figure 2.3: Principal solution for the unit cell under the considered load. The faded
red beams indicate the reference configuration

2.3.1 Single beam

For the sake of completeness, we derive the general solution of a single elastic beam
of length l aligned in the global x direction, of radius r, of constant axial stiffness
EA = Eπr2 and of constant bending stiffness EI = E πr4

4
as depicted in Figure 2.4.

This beam will be under an axial load λ and no tangential forces. To be fully accurate,
we should take into account the impact of the deflection due to the force f in the
horizontal beams, but as they have to be magnetizable conductors, and considering
the mechanical properties of common metallic materials, those deflection will be very
small in amplitude. We will neglect this effect. We call [u] the vector of d.o.f of this
beam such that [u] = [u1, v1, θ1, u2, v2, θ2]

T Using a variational approach to solve the
stability problem, we need to express the second derivative of the energy about the
principal solution and in terms of our d.o.f [u] and the loading λ. The energy of a

47



CHAPTER 2. STABILITY ANALYSIS OF THE MESH

1 2
λ λ

l

u1 u2

v1 v2
θ1 θ2

x

u(x)

v(x)

Figure 2.4: Schematic of an axially loaded beam and its d.o.f

2D beam with axial and normal displacement u(x) and v(x) as shown in Figure 2.4
is given by :

E =
1

2

∫ l

0

(EA(ϵ(x))2 + EI(ky(x))
2)dx,

with ϵ(x) =
du

dx
(x) +

1

2

(dv
dx

(x)
)2

and ky(x) = −
d2v

dx2
(x)

(2.3.2)

To be able to assemble the different matrices, we need to express this energy as a
function of our d.o.f [u]. This is achieved by solving the following boundary value
problem:

E,uδu = 0

E,vδv = 0

u(0) = u1, v(0) = v1, θ(0) = θ1

u(l) = u2, v(l) = v2, θ(l) = θ2

(2.3.3)

The two euler lagrange equations leads to

E,uδu = 0⇒ d(EAϵ(x))

dx
= 0⇔ ϵ(x) =

du

dx
(x) +

1

2
(
dv

dx
(x))2 =

−λ
EA

(2.3.4)

E,vδv = 0⇒ EI
d4v

dx4
(x)− d

dx
[EAϵ(x)

dv

dx
(x)] = 0⇔ EI

d4v

dx4
(x)+λ

d2v

dx2
(x) = 0 (2.3.5)

Assuming a compressive load (λ ≥ 0), and using µ =
√

λ
EI

, we get the following

solutions :

u(x) = C0−
λx

EA
− 1

2

∫ x

0

(
dv

dx
(s))2ds; v(x) = C1sin(µx)+C2cos(µx)+C3µx+C4
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(2.3.6)

By plugging Equation 2.3.6 in Equation 2.3.2, we obtain the following expression for
the energy :

E =
µ3EI

2

∫ µl

0

(C1sin(s)+C2cos(s))
2ds+

EA

2l

(
u2−u1+

µ

2

∫ µl

0

(C1cos(s)−C2sin(s)+C3)
2ds

)2

(2.3.7)

It comes as no surprise that C0 and C4 do not appear in this energy as they correspond
to rigid body displacement of the beam. The constant C1, C2, C3 can be expressed
in terms of v1, v2, θ1, θ2 using the boundary conditions in Equation 2.3.3. Those
boundary conditions can be expressed as :


u1 = C0 , u2 = C0 −

λl

EA
− µ

2

∫ µl

0

(C1 cos y − C2 sin y + C3)
2 dy ,

v1 = C2 + C4 , v2 = C1 sin(µl) + C2 cos(µl) + C3(µl) + C4 ,

θ1 = µ(C1 + C3) , θ2 = µ(C1 cos(µl)− C2 sin(µl) + C3) .

(2.3.8)

which leads to the following formulas



C1 =
(θ1 − θ2) cos(lµ) + µ(v1 − v2) sin(lµ)− θ1 + θ2

2µ(cos(lµ)− 1)

C2 =
cos2

(
lµ
2

)
csc(lµ)(−µ(v1 − v2) cot(lµ) + µ(v1 − v2) csc(lµ) + θ1 − θ2)

µ

C3 = −−(θ1 + θ2) cos(lµ) + µ(v1 − v2) sin(lµ) + θ1 + θ2
2µ(cos(lµ)− 1)

(2.3.9)

The principal solution is obtained when C1 = C2 = C3 = 0 which correspond to
u2− u1 = − λl

EA
, v2− v1 = θ1 = θ2 = 0 To study the stability we will need the second

derivative of the energy about the principal solution.

[k] =

[
k11 k12

k21 k22

]
=


∂2E

∂[u1]∂[u1]

∣∣∣
0

∂2E

∂[u1]∂[u2]

∣∣∣
0

∂2E

∂[u2]∂[u1]

∣∣∣
0

∂2E

∂[u2]∂[u2]

∣∣∣
0


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where |0 means an evaluation about the principal solution. We use [u1] = [u1, v1, θ1]
T

and [u2] = [u2, v2, θ2]
T After some lengthy algebra, we obtain that

[k]11 =



EA

l
, 0 , 0

0 ,
12EI

l3
Φ1 ,

6EI

l2
Φ2

0 ,
6EI

l2
Φ2 ,

4EI

l
Φ3


, [k]12 =



−EA
l

, 0 , 0

0 , −12EI

l3
Φ1 ,

6EI

l2
Φ2

0 , −6EI

l2
Φ2 ,

2EI

l
Φ4


,

[k]21 =



−EA
l

, 0 , 0

0 , −12EI

l3
Φ1 , −

6EI

l2
Φ2

0 ,
6EI

l2
Φ2 ,

2EI

l
Φ4


, [k]22 =



EA

l
, 0 , 0

0 ,
12EI

l3
Φ1 , −

6EI

l2
Φ2

0 , −6EI

l2
Φ2 ,

4EI

l
Φ3


,

(2.3.10)

Where Φi are the influence functions depending only on ζ = l
√
λ/EI given by the

following expression :

Φ1(ζ) =
ζ3

12

sin ζ

2(1− cos ζ)− ζ sin ζ
, Φ2(ζ) =

ζ2

6

1− cos ζ

2(1− cos ζ)− ζ sin ζ
,

Φ3(ζ) =
ζ

4

sin ζ − ζ cos ζ
2(1− cos ζ)− ζ sin ζ

, Φ4(ζ) =
ζ

2

ζ − sin ζ

2(1− cos ζ)− ζ sin ζ
,

(2.3.11)

2.3.2 Assembling of the global matrix

Using the stiffness matrix of a single beam, we can assemble the global matrix of the
unit cell shown in Figure 2.2. Let’s consider a beam linking the points i and j and
having a direction forming an angle ψ with the x axis. First we define a rotation
matrix:

[Q] =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


We decompose [U ] = [u1, v1, θ1, ..., u8, v8, θ8]

T with sub-matrices [Ui] = [ui, vi, θi]
T ,

and similarly we decompose the global stiffness matrix [K] = [[Ki,j]] where [Ki,j] is
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a 3× 3 matrix. Then the only non 0 sub-matrices of [K] linked to this (ij) beam are
the following :

[Kii] = [Q].[k11].[Q]
T , [Kij] = [Q].[k12].[Q]

T ,

[Kij] = [Q].[k21].[Q]
T , [Kjj] = [Q].[k22].[Q]

T ,

(2.3.12)

Applying this method to all d.o.f, we provide the non 0 sub-matrices of the upper
right half of [K]. The sub matrices of the lower left half can be obtained by symmetry.

[K11] =


96EvIv
l3v

0 −24EvIv
l2v

0
2EvAv

lv
0

−24EvIv
l2v

0
8EvIv
lv

 , [K18] =


−96EvIv

l3v
0 −24EvIv

l2v

0 −2EvAv

lv
0

24EvIv
l2v

0
4EvIv
lv



[K22] =


2EhAh

lh
0 0

0
96EhIh
l3h

24EhIh
l2h

0
24EhIh
l2h

8EhIh
lh

 , [K28] =


−2EhAh

lh
0 0

0 −96EhIh
l3h

24EhIh
l2h

0 −24EhIh
l2h

4EhIh
lh



[K33] =


2EhAh

lh
0 0

0
96EhIh
l3h

24EhIh
l2h

0
24EhIh
l2h

8EhIh
lh

 , [K37] =


−2EhAh

lh
0 0

0 −96EhIh
l3h

24EhIh
l2h

0 −24EhIh
l2h

4EhIh
lh



[K44] =


96EvIv
l3v

0
24EvIv
l2v

0
2EvAv

lv
0

24EvIv
l2v

0
8EvIv
lv

0

 , [K47] =


−96EvIv

l3v
0

24EvIv
l2v

0 −2EvAv

lv
0

−24EvIv
l2v

0
4EvIv
lv


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[K55] =


2EhAh

lh
0 0

0
96EhIh
l3h

−24EhIh
l2h

0 −24EhIh
l2h

8EhIh
lh

 , [K58] =


−2EhAh

lh
0 0

0 −96EhIh
l3h

−24EhIh
l2h

0
24EhIh
l2h

4EhIh
lh



[K66] =


2EhAh

lh
0 0

0
96EhIh
l3h

−24EhIh
l2h

0 −24EhIh
l2h

8EhIh
lh

 , [K67] =


−2EhAh

lh
0 0

0 −96EhIh
l3h

−24EhIh
l2h

0
24EhIh
l2h

4EhIh
lh



[K77] =


4EhAh

lh
+

12EvIvΦ1(ζ)

l3v
+

96EvIv
l3v

0
6EvIvΦ2(ζ)

l2v
− 24EvIv

l2v

0
3EvAv

h
+

192EhIh
l3

0

6EvIvΦ2(ζ)

l2v
− 24EvIv

l2v
0

16EhIh
lh

+
4EvIvΦ3(ζ)

lv
+

8EvIv
lv



[K78] =


−12EvIvΦ1(ζ)

l3v
0

6EvIvΦ2(ζ)

l2v

0 −EvAv

lv
0

−6EvIvΦ2(ζ)

l2v
0

2EvIvΦ4(ζ)

lv



[K88] =


4EhAh

lh
+

12EvIvΦ1(ζ)

l3v
+

96EvIv
l3v

0
24EvIv
l2v

− 6EvIvΦ2(ζ)

l2v

0
3EvAv

lv
+

192EhIh
l3

0

24EvIv
hl2v

− 6EvIvΦ2(ζ)

l2v
0

16EhIh
lh

+
4EvIvΦ3(ζ)

lv
+

8EvIv
lv


2.3.3 Boundary conditions

To study the stability of the full system, one may at first think of using periodic
boundary conditions on the unit cell, witch would give the following constraints over
the d.o.f :

u1 = u4, v1 = v4, θ1 = θ4,

u2 = u5, v2 = v5, θ2 = θ5,

u3 = u6, v3 = v6, θ3 = θ6,

(2.3.13)
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However this method would fail to detect potential instability modes whose wave-
length does not divide the unit cell size. And thus it risks overestimating the critical
load. To study the stability of a periodic system for general wavelength the classical
approach is to use Bloch wave analysis as described in Triantafyllidis and Schnaidt
(1993) for planar truss model. We provide a brief explanation of the method. It
can be shown that for a periodic system with unit cell dimension Lx×Ly, the first
bifurcating mode u|1 can be expressed as u|1(x, y) = ei(ωxx+ωyy)ũ(x, y) where ũ is
periodic over the unit cell (ie ∀p, q ∈ Z, ũ(x+ pLx, y+ qLy) = ũ(x, y)) and where wx

and wy are the pulsation of the bifurcation mode in the x and y direction. For our
case, Bloch boundary conditions lead to the following constraints

u1 = eiωyLyu4, θ1 = eiωyLyθ4,

v2 = eiωxLxv5, θ2 = eiωxLxθ5,

v3 = eiωxLxv6, θ3 = eiωxLxθ6,

(2.3.14)

The previous constraints relations can be rewritten as [uc] = [A][uu], where uc and
uu respectively correspond to the constrained and unconstrained d.o.f We define the

matrix P =

[
[Id]

[A]

]
. Thus, we get that [u] =

[
[uu]

[uc]

]
=

[
[Id]

[A]

]
[uu] = [P ][uu] Then,

subdividing the stiffness matrix according to whether or not the d.o.f is constraint
(and reordering if needs be), we can write it as

[K] =

[
[Kuu] [Kuc]

[Kcu] [Kcc]

]
Finally, solving [K][U ] = [F ] under the constraints [P] is equivalent to solving the
unconstrained system [K̂][uu] = [P ]†[K][P ][uu] = [P ]†[F ]. Using all those relations
we obtain a stiffness matrix of size 15×15, depending on the geometry of the system,
the bending stiffness of each material, the pulsations ωx and ωy and the magnetic
loading. In order to find the critical load and the critical buckling mode, we now
want to scan for all ωx ∈ [0, π/lh/2] and ωy ∈ [0, π/lv/4] the lowest value of λ that
make the reduced stiffness matrix to lose a rank. We do so numerically by selecting
a small enough pulsation step and for each couple of ωx and ωy we progressively
increase the determinant of the stiffness matrix for increasing values of λ.

2.4 Results

2.4.1 Simplified cases

In order to check our full results, we want to get the axial critical loads that would be
obtained in a simpler but similar system. The full results have to provide a critical
load that is lower than the ones obtained with stricter boundary conditions, and
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Figure 2.5: K and ζc values for various boundary conditions and related buckling
modes for slender beams

higher than the ones obtained with looser boundary conditions. We first looked at
what would be the critical load if we were only considering the (78) beam. The
very common result of the slender beam under axial loading of length L and bending
stiffness EI is that the critical axial load is λcr =

π2EI
L2K2 , where K is a factor depending

on the boundary conditions. It corresponds to ζc = π/K. The most common values
are given in Figure 2.5 and can be obtained purely analytically. We are not providing
the derivation of those results, but the method simply is demonstrated in one slightly
more complex case. We consider a single beam locked in translation with two fixed
springs at the boundary i.e., a proportional relation between the moment and the
angle at each extremity. The value of those springs is based on the rotation resistance
due to the beams of the unit cell other than (78). Using the notation used when
studying the single beam, the boundary conditions can be written as

v(0) = v(L) = 0,

k δv
δx

′
(0) = −M(0) = EI δ2v

δx2 (0),

k δv
δx

′
(L) =M(L) = −EI δ2v

δx2 (L)

(2.4.1)

As we consider slender beams, the full problem in Equation 2.3.4 in Equation 2.3.5
reduces to

EI
d4v

dx4
(x) + λ

d2v

dx2
(x) = 0 (2.4.2)

54



CHAPTER 2. STABILITY ANALYSIS OF THE MESH

Still assuming a compressive load (λ ≥ 0), and using µ =
√

λ
EI

, we get the following

solutions :

v(x) = C1sin(µx) + C2cos(µx) + C3µx+ C4 (2.4.3)

Solving the stability problem using boundary conditions Equation 2.4.2 we obtain
the following values and conditions for Ci

C4 = −C1

C3 =
−C2 sin[ζ]− C1 cos[ζ] + C1

L
;

C1 = C2
sin[ζ]− ζ

ζ2EI
kL

+ 1− cos[ζ]
;

C2(EIζL cos[ζ/2] +K sin[ζ/2])(−Kζ cos[(ζ)/2] + (2K + EIζ2/L) sin[(ζ)/2]) = 0

(2.4.4)

As a consequence, the first non trivial solution is obtained that the critical load is
obtained by finding the lowest value of ζ such that

(EIζL cos[ζ/2]+K sin[ζ/2])(−Kζ cos[(ζ)/2]+(2K+EIζ2/L) sin[(ζ)/2]) = 0 (2.4.5)

As a sanity check, we check that for k = 0 and k → inf we get the results corre-
sponding to Figure 2.5. If k = 0, the relation becomes Sin[ζ] = 0 which is true for
ζ = π or equivalently K = 1 as expected. If k →∞, the relation becomes :

(2 sin[ζ/2]2 − ζ sin[ζ/2] cos[ζ/2]) = 0

sin[ζ/2] = 0 or sin[ζ/2] = ζ/2 cos[ζ/2]

ζ = 2π or ζ ≈ 9

Thus the critical load is ζc = 2π which corresponds to K = 1/2 as expected. Using
the notation of the unit cell, the relation becomes

ζ(2k2l2v−2klv(ζ2EvIv+klv) cos[ζ]+ζ(ζ
2EvI

2
v +klv(2EvIv−klv)) sin[ζ]) = 0 (2.4.6)

The value of those spring k = M
θ
being obtained thanks to the initial global stiffness

matrix and is k = 16EhIh
lh

+ 4EvIvΦ3(ζ)
lv

+ 8EvIv
lv

. As it cannot be solved analytically,

we will illustrate it with the usual test case (1.5 mm radius metal horizontal beam,
0.75mm radius vertical plastic beam, 5cm × 5 cm cell). We obtain a critical load
extremely close to ζc = 2π, which correspond to λc = ( ζc

L
)2EI or K = 1/2. It is

expected as the horizontal beam is far stiffer than the vertical one, so the results
are very close to the case where the horizontal beam is rigid. As the difference in
bending stiffness is extreme, we are very close to the K → ∞ case. Thus the size
of the cell has very little impact on the result (at least for lh, lv ∈ {1cm, 10cm}.
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It must be pointed out that this limited impact is due the fact that we are using
ζ that is adimensionned. Given the definition of ζ = lv

√
(λ/(EI)), lv will have a

very significant impact on the critical axial load λc). Obviously the critical axial force
changes with the geometry. A more general study of that effect can be found in Wang
et al. (2014). All those results are obtained focusing on the beam (78). To get closer
to the periodic cell we should take into account the other vertical beams. In this
situation they would act as a doubling of the bending stiffness of the central beam,
leading to a multiplication of the critical load ζc by

√
2 Finally, as an even more

precise estimation, we can consider the full periodic system (ωx = ωy = 0). In this
configuration, solving the reduced stiffness matrix, we obtain the lowest eigenvalues
depending on ζ shown in Figure 2.6 for the same test case. As there are rigid body
modes, we eliminate them by fixing u7 = v7 = 0. Similarly to the spring case,
the geometry has little impact on the critical ζc = 4.41. The critical mode has the
following shape :

[u1, 0,−θ1, u2, 0, θ2, 0, 0, θ3, u1, 0,−θ1, u2, 0, θ2, 0, 0, θ3, 0, 0, θ7, u8, 0, θ8]

All ui, vi, θi are taken positive. This mode is depicted in Figure 2.7. Fixing a point
different from 7 will lead to the same eigenmode short of a horizontal and vertical
translation. By neglecting the smallest terms of the eigenmode, we get that the
solution is is very close to :

[u1, 0,−θ1, 2u1, 0, 0, 0, 0, 0, u1, 0,−θ1, 2u1, 0, 0, 0, 0, 0, 0, 0, 0, 2u1, 0, 0]

It corresponds to the third case in Figure 2.5. Once again, as the bending stiffness
of the horizontal beams dwarf the one of the vertical one, the results obtained are
very close to those we would obtain if horizontal beam were infinity rigid, ie would
be similar to the third case shown in Figure 2.5, but with double the axial stiffness.
It would lead to a value of ζc =

√
2π = 4.44. With our very rigid but not infinitely

rigid beams, we get a critical load slightly inferior. Similarly to the previous case, as
long as we keep the same order of magnitude in the length, lv and lh will have little
impact on ζc.
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Figure 2.6: lowest eigenvalue (except rigid body) of the reduced stiffness matrix
under periodic boundary conditions depending on the loading ζ

Figure 2.7: schematic of the critical mode for periodic boundary conditions
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2.4.2 Complete case : Bloch analysis

We now consider the full problem with Bloch boundary conditions for the previously
mentioned geometry : lv, lh ∈ {1cm, 10cm}, rh = 1.5mm, rv = 0.75mm, Eh =
210GPa and Ev = 2GPa. For a given ωx and ωy, the lowest value of ζ that leads to a
significantly negative eigenvalue is called ζm. We computed the value of ζm for various
ωx ∈ [0, 2π/Lx] and ωy ∈ [0, 2π/Ly]. The lowest value of ζm is the critical load ζc
The determinant of K(λ, ωx, ωy) is symmetric in ωx and ωy, i.e. det(K(λ, ωx, ωy)) =
det(K(λ,−ωx, ωy)) = det(K(λ, ωx,−ωy)) = det(K(λ,−ωx,−ωy)). Thus, we can
reduce the range of pulsation to test to ωx ∈ [0, π/Lx] and ωy ∈ [0, π/Ly]. This
symmetry is shown in Figure 2.8 in the lv = lh = 3cm case. In the following
discussion, we will only plot one quarter of of the full plot. We use the reduced
pulsations ωxlx and ωyly. Those results tend to indicate that the lowest modes are
located for very low values of ωx. To get a clear picture of what happens at low
ωx, we provide in Figure 2.9 the same plot but zoomed in term of ωx as for any
superior value of ωx superior to those shown, the results will be higher and thus
more stable. First, we observe that when ωx and ωy get close to 0, we obtain the

Figure 2.8: ζm(ωx, ωy) using bloch boundary conditions for lv = lh = 3cm, rh =
1.5mm, rv = 0.75mm, Eh = 210GPa and Ev = 2GPa. The full range of pulsation
are ωx,red = ωxLx ∈ [0, 2π] and ωy,red = ωyLy ∈ [0, 2π]

periodic results as expected. The most unstable mode (ζc = 3.12) is achieved for
ωx = 0 and ωy = π/Ly. The results are especially dependent on ωx, which is due
to the very high relative stiffness of the horizontal beam : imposing deformation in
them is very costly in terms of energy. Once ωx is significant, we lowest mode requires
to keep at 0 the displacement and rotation for the horizontal beams which leads to
the first case depicted in Figure 2.5, where rotation and translation at the ends of
the central beam (78) are fixed at 0 and thus the first critical mode is obtained at
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Figure 2.9: ζm(ωx, ωy) using bloch boundary conditions for lv = lh = 3cm, rh =
1.5mm, rv = 0.75mm, Eh = 210GPa and Ev = 2GPa. The full range of pulsation
areωx,red = ωxLx ∈ [0, 0.012] and ωy,red = ωyLy ∈ [0, π]

ζm = 2π. Contrary to ωx, the system is less sensitive to a small variation in ωy.
Similar analysis for other values of lv and lh have been carried out and are shown in
Figure 2.10. The main takeaway is that the minimal and maximal values of ζm stay
very close to the previous case, once again as the difference in bending stiffness is
massive, small variations of it will have little impact on the resulting critical mode.
The main difference is observed on the impact of low ωx, geometries that reduce the
impact of the horizontal beam’s bending stiffness are a bit more tolerant to ωx in
term of adimentionned pulsation ωx,red = ωxLx, but less tolerant in terms of absolute
ωx.

(a) lv = 1cm vs lh = 1cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(b) lv = 1cm vs lh = 1cm, ωx,red = ωxLx ∈
[0, 0.016] and ωy,red = ωyLy ∈ [0, π]
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(c) lv = 10cm vs lh = 1cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(d) lv = 10cm vs lh = 1cm, ωx,red = ωxLx ∈
[0, 0.08] and ωy,red = ωyLy ∈ [0, π]

(e) lv = 1cm vs lh = 10cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(f) lv = 1cm vs lh = 10cm, ωx,red = ωxLx ∈
[0, 0.001] and ωy,red = ωyLy ∈ [0, π]

(g) lv = 10cm vs lh = 10cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(h) lv = 10cm vs lh = 10cm, ωx,red = ωxLx ∈
[0, 0.002] and ωy,red = ωyLy ∈ [0, π]

Figure 2.10: critical load ζ for various values of lh and lv and rh = 1.5mm, rv =
0.75mm, Eh = 210GPa and Ev = 2GPa.
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The value of the critical load stays very close to the global minimum for a signif-
icant range of ωy. The critical mode will vary depending on geometry and pulsation,
but we can generalise some properties. All critical modes keep deformation in the
rigid beams minimal with significant horizontal displacement. However the relative
displacement of those horizontal beams varies depending on ωy. The vertical beams
are under large rotation. We obtain modes similar to the periodic mode depicted
in Figure 2.7 but the relaxation of the vertical periodic boundary condition lowers
ζc and the horizontal displacement of the horizontal beams no longer are opposite
relative to the centre of the vertical beams. It can be easily understood in the w1 = 0
case, the periodic case imposes that the loading in one beam buckles two equivalent
vertical beams with the same displacement, which is equivalent to one single beam
with double the bending stiffness. However if the displacement of the beams (18)
and (74) can be different, there is no extra stiffness and we get back to a single
beam, which according to Figure 2.5 has a critical load of ζc = π. We get a slightly
lower value (ζc = 3.12) as our horizontal beams are not perfectly rigid. This value is
not impacted by geometry as long as the horizontal bending stiffness stays very high
compared to the vertical one. The eigenmode for ωx = 0 and ωy = π/Ly is displayed
in Figure 2.11

2.4.3 Beams of identical stiffness

It is important to highlight that previously discussed behavior is heavily influenced
by the assumption that horizontal beams are significantly stiffer that the vertical
ones. To show the extent of this influence, we provide in Figure 2.12 the results
for bloch stability, but considering this time that the vertical beam have the same
stiffness as the horizontal ones. Under that hypothesis, the values of ζc varies greatly,
from as low as 1.414 when considering lh = 1cm and lv = 10cm to as high as 3.091
when considering lh = 10cm and lv = 1cm. The dependency in ωy is also greatly
affected ωy = π/Ly no longer being the critical mode in several cases. However
ωx ̸= 0 is still strongly penalysed.
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Figure 2.11: schematic of the critical mode for bloch boundary conditions, ωx = 0
and ωy = π/Ly

(a) lv = 1cm vs lh = 1cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(b) lv = 1cm vs lh = 1cm, ωx,red = ωxLx ∈ [0, 0.2]
and ωy,red = ωyLy ∈ [0, π]
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(c) lv = 10cm vs lh = 1cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(d) lv = 10cm vs lh = 1cm, ωx,red = ωxLx ∈
[0, 0.6] and ωy,red = ωyLy ∈ [0, π]

(e) lv = 1cm vs lh = 10cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(f) lv = 1cm vs lh = 10cm, ωx,red = ωxLx ∈
[0, 0.02] and ωy,red = ωyLy ∈ [0, π]

(g) lv = 10cm vs lh = 10cm, ωx,red = ωxLx ∈ [0, π]
and ωy,red = ωyLy ∈ [0, π]

(h) lv = 10cm vs lh = 10cm, ωx,red = ωxLx ∈
[0, 0.12] and ωy,red = ωyLy ∈ [0, π]

Figure 2.12: critical load ζ for various values of lh and lv and rh = rv = 1.5mm and
Eh = Ev = 210GPa
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2.4.4 Required electromagnetic loading

Considering the case of weaker vertical beams, the lowest modes for the five ge-
ometries are reported in Table 2.1 with a precision of 10−3. From them, material
parameters and geometry, we compute the related axial forces, the force per unit
of length in the conductors, and current required to achieve this force considering a
magnetic field of 0.7T that our experimental setup can achieve. The main takeaway

test case 1 2 3 4 5

lh (cm) 3 1 1 10 10

lv (cm) 3 1 10 1 10

ζc 3,142 3,142 3,142 3,139 3,143

λc(N) 5,452 4,907 101 4,907 10−1 4,897E+01 4,91010−1

fc(N/m) 1,817 102 4,907 103 4,907 101 4,897 102 4,910

Ic(A) 2,596 102 7,009 103 7,009 101 6,996 102 7,014

θ̇ (K/s) 1,377 102 1,004 105 1,004 101 9,999 102 1,005 10−1

Table 2.1: Summary of critical load for various geometry and their related magnetic
requirement

of those results is that it is not possible to make an experiment with our setup. The
thermal and current limitation impose large cells, but the size of the zone in which
we achieve a constant magnetic field is only 8*8 cm. As the generation of force is
dependant on the ”infiniteness” of the array, to obtain experimental results we would
have a significant number of cells, which is incompatible with the other constraints

2.5 Conclusion

In this chapter we studied the mechanical behaviour of an infinite mesh of wires
loaded vertically by the wires considered in the previous chapter. Using common
methods, we determine that the deformations for the principal solution are small
even when considering using plastic instead of metal for the vertical beams. The
onset of buckling has been determined using Bloch theorem, and these results are
consistent with those obtained with simplified models. The required values of critical
electromagnetic load are not achievable in the experimental setup we considered. We
made this analysis assuming that the buckling would have no long range compression
(as usual using Bloch theorem). The interested reader could find ways to look for
these types of modes in Elliott et al. (2006).
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Chapter 3

2D layered composite with current
sheets

In this Chapter we consider a different geometry, a 2D composite made of magne-
tizable conductive fibers and a non conductive matrix under an external magnetic
field, currents, and mechanical loadings. This study tries to achieve two different ob-
jectives. First, we want to use the coupled model derived in Chapter 1 in a different
context to see if we can obtain an interesting behaviour in a composite that is very
stable to non axial loadings. The fiber reinforced composite under axial mechanical
load has already been treated which will enable us to compare the results. Second,
we planned to use this simple case to qualify a FE code that would enable us to
study more complex geometries such as hexagonal honeycombs. That is why we are
going to make some assumptions detailed latter enabling us to solve analytically this
system. The FE code is currently being worked on, and applying this code to more
complex geometries is left as a future expansion. The coupled magneto-mechanical
theory has already been established in Chapter 1 along the required bibliography
and we won’t repeat it here. The fundamental ideas about stability analysis have
been provided in Chapter 2, but we are going to precise them with results specific to
this geometry. We focus on axial mechanical load, as this is the most used, the most
unstable, and thus the most studied configuration. Literature separates two major
categories of instabilities when it comes to such composite : microscopic instabilities
( buckling of the fiber ) and macroscopic buckling (loss of ellipticity of the homog-
enized incremental moduli). Several works such as Budiansky and Fleck (1993),
Kyriakides et al. (1995), Vogler et al. (2001) found that buckling instability acted as
an onset of instability and evolved into localized macroscopic deformation pattern
(kinkband). While very interesting, we won’t study that evolution and simply look
at the onset of both instabilities separately. Similarly, we won’t consider the impact
of imperfection on the system. The interested reader could find some element about
their impact in the purely mechanical case in Budiansky and Fleck (1993). To study
the microscopic instabilities we will use the same tools presented in Chapter 2 i.e.

65



CHAPTER 3. 2D LAYERED COMPOSITE WITH CURRENT SHEETS

Bloch theorem. Several papers, such as Santisi d’Avila et al. (2016),Triantafyllidis
and Maker (1985),and Geymonat et al. (1993) implement the Bloch theorem to study
the local modes of 2D axially compressed composite. In this chapter we will adapt
their work to the fully coupled magneto-mechanical case. When it comes to the
global mode, as explained in Chapter 2, it has been shown that the long wavelength
(ω → 0) corresponds to the homogenised loss of ellipticity. As homogenisation is
popular when studying composite, and contrary to Chapter 2, we will use the ho-
mogenised moduli instead of small ω to study the global buckling. The presentation
is organized as follows: The geometry studied is detailed in Section 3.1. Then, in
Section 3.2 we applied the general equations derived in Chapter 1 to this particular
case. It leads to the principal solution discussed in Section 3.3. Then the methods
used to study the stability of the system are presented in Section 3.4. Finally, we
present the results in Section 3.5. First we compare our purely mechanical results
to those obtained from Triantafyllidis and Maker (1985), then we look at the impact
of purely magnetic loading and prove that those loadings are not strong enough to
create instability under reasonable conditions. Finally, we provide results with both
magnetic and mechanical loadings. Before the conclusion, some explanations are
provided about the planned FE expansion.

3.1 Problem description

The problem under consideration is shown in Figure 3.1. It is composed of alter-
nating layers of soft non conductive non magnetizable matrix and strong current
carrying magnetizable fibers stacked in the y direction. The constitutive laws for
both mechanics and magnetization are non linear and will be detailed later. The
system has translation invariances in the e1 and e3 directions and the currents in the
wires are in the ±e1 direction, with alternating sign between each fibers. We consider
a plane strain hypothesis and thus a 2D problem in the e1 and e2 directions. Because
of the translation symmetry in the e1 direction, except for the stability analysis, it
is a 1D problem. The entire system is under an exterior magnetic field bext = bexte3
(current configuration). As all magnetic quantities will be purely in e3, we will use
the bold letters (B,b,H, ...) for the vectors and the normal ones (B,b,H, ...) for the
e3 component. The mechanical boundary conditions are an imposed strain in the
horizontal direction λ1 for all layers, and a vertical total stress σext22. As seen in the
Chapter 1, we expect the current to have a homogenous repartition in the conductor.
However, as the analytical solving of the stability problem relies on having constant
coefficients in each layers, we are going to adapt the setting. We are going to consider
that the fiber is itself a composite of two current carrying layers of thickness 0 at the
boundaries of the fiber, and a magnetizable material between them. Experimentally,
it could be accomplished by separating the sub layers with non conductive glue. The
end result is that the current is now modelled by current sheets between the matrix
and the fiber of value K = ±κe3. Using that model, we reduce the problem to a 2D
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Figure 3.1: Schematic of the composite under consideration. The fibers are repre-
sented in dark grey, the matrix in light grey. The electromagnetic loading is composed
of an external magnetic field bext and currents I

unit cell shown in Figure 3.2. The unit cell is composed of 4 layers:

Figure 3.2: Schematic of the composite unit cell under consideration. The fibers are
represented in dark grey, the matrix in light grey. The electromagnetic loading is
composed of an external magnetic field bext and surface currents κ. The h-field in
reference configuration is plotted in blue.

� layers A and C : soft non magnetizable non conductive material, the out of plane
magnetic fields in reference configuration B3A and B3C and vertical strains λ2A
λ2C are different if the current is non zero. Their thicknesses are LA = LC =
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Lm. Their mechanical properties, detailed later, are named Gm and νm. The
horizontal strains are λ1. Their H fields in the reference configuration are HA

and HC .

� layer B and D : magnetizable current carrying material, the out of plane mag-
netic fields B3B and B3CD and strains λ2B λ2D are identical. Their thicknesses
are HB = HD = Hf . Their mechanical properties, detailed later, are named
Gf and νf . The horizontal strains are λ1. Their H fields in the reference
configuration are HB and HD. Interface conditions will impose that HB = HD

3.2 Theory

3.2.1 Variational principle

We largely reuse the work done in Chapter 1, but we provide here the simplified
version of those expressions using the fact that the displacements are in plane and the
magnetic fields are out of plane and thus displacements are orthogonal to magnetic
fields. Using the expression of the lagrangian density in Equation 1.2.1, the total
lagrangian in Equation 1.2.2 and the potential energy Equation 1.3.1 provided in
Chapter 1, we obtain the expression provided in Equation 3.2.1 for the potential
energy in reference configuration P. W is the system total energy density and S the
surface of the unit cell and ∂S the boundaries between layers. J is the current
density vector and K is the surface current vector.

P =

∫
S

W (A,F )dS −
∫
∂S

K ·Adl

=

∫
S

[
−A·J +

1

2ξ
(∇·A)2 +

J1

2µ0I
1
2
2

+ ρ0ψel(I1, I2) + ρ0ψm(J
∗
1 )
]
dS −

∫
∂S

K ·Adl

(3.2.1)

We use the usual mechanical quantities, the 2D deformation gradient F = Id+∇u
and the right Cauchy green tensor C = FT ·F. The magnetic potential is defined as
B = ∇×A The invariants used are :

I1 = tr(C)

I2 =
1

2
(tr(C)2 − tr(C)) = det(C)

J1 = B2, (we will also use J∗
1 =

J1
I2
for convenience as explained later)

However, contrary to Chapter 1, we have to take into account that the magnetic
loading is imposed in current configuration. The simplest way to handle that is to
split the magnetic field B = B̃ + det(F)F−1 ·b0 between the magnetic perturbation
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B̃ due to the effect of the materials (deformation, magnetization) and a magnetic
loading term det(F)F−1 ·b0 that takes into account the loading in current config-
uration. b0 is the value of the magnetic field in the absence of material effect, so
only considering bext and κ. Thus b0 is constant in each layer, but not across layers.
As the magnetic quantities and the mechanical ones are orthogonal, F−1 ·b0 = b0.
The variables of the problem are the in plane displacement u = u1e1 + u2e2 and the
out of plane magnetisation perturbation in reference configuration B̃. The magnetic
potentials are defined as B̃ = ∇×Ã , and B = ∇×A. As A = a·F the magnetic
potential in reference configuration is written as A = Ã+ a0·F Using the perturbed
magnetic quantities, Equation 3.2.1 becomes Equation 3.2.2

P =

∫
S

W (Ã,F )dS −
∫
∂S

K ·Ãdl −
∫
∂S

K ·(a0 ·F )dl

=

∫
S

[
− a0 ·F ·J −Ã·J︸ ︷︷ ︸

W1

+
1

2ξ
(∇·Ã)2︸ ︷︷ ︸
W2

+
J1

2µ0I
1
2
2︸ ︷︷ ︸

W3

+ ρ0ψel(I1, I2)︸ ︷︷ ︸
W4

+ ρ0ψm(J
∗
1 )︸ ︷︷ ︸

W5

]
dS

−
∫
∂S

K ·Ãdl −
∫
∂S

K ·(a0 ·F )dl

(3.2.2)

About the two terms containing a0, they have no dependence in Ã so they won’t
appear in P,δÃ. As κ and J are constant, as the system is invariant by translation
in the e1 direction and as in this configuration and with coulomb gauge a0 is purely
in the e1 direction, integration by part and straightforward algebra gives that when
considering P,δũ, these terms become 0. For clarity, we split the remaining terms as
shown in Equation 3.2.2 : W1 is the current term, W2 is a penalisation to impose
coulomb gauge (∇.A = 0), W3 the maxwell energy in the vacuum, W4 the elastic
energy and W5 the magnetisation energy of the material. W1 is only relevant for the
main solution and has no direct impact on stability. In addition we replaced current
density by current sheet, so this term is 0. W2 would be important when we solve in
Ã, but considering the orientations of the currents and magnetic fields, it is easier
to solve directly in B̃ as it has only one non 0 component. We set those terms to 0
in the following calculation. The complete expressions for each energy derivative is
provided in Appendix A

3.2.2 Governing equation and interface conditions

In a similar manner to Chapter 1, we obtain the Governing equation and interface
conditions by taking the first derivatives of Equation 3.2.2. The euler lagrange equa-
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tion are :

P,δÃ =

∫
S

[
−∇×H ·δÃ

]
dS +

∫
∂S

(K −N×JHK)·δÃdl

P,δu =

∫
S

[
(∇·Π)δu

]
dS −

∫
∂S

(
N ·

r(∂Wi

∂F

)Tz)
·δudl

(3.2.3)

values for reference configuration h-field H and reference configuration stress Π by
taking the first derivatives of Equation 3.2.2. Those values are provided in Equa-
tion 3.2.4, with the details of the derivative of each term being provided in Ap-
pendix A.

H =
5∑

i=3

ρ0
∂Wi

∂B̃
=

B̃ + det(F )b0
µ0det(F)

+ ρ0
∂ψm

∂B̃

Π =
( 5∑

i=3

ρ0
∂Wi

∂F

)T

(3.2.4)

As the current density and mechanical body forces are 0, the governing equations
are :

∇×H = 0

∇·B = 0

∇·Π = 0
(3.2.5)

The interface conditions are :

n×JHK = K

n·JBK = 0

n·JΠK = T = 0
(3.2.6)

For α ∈ {A,B,C,D}, b0α are the magnetic field in the absence of material effect.
Thus we obtain immediately that :

b0B = b0D = bexte3

b0A = (bext + µ0κ)e3

b0D = (bext − µ0κ)e3
(3.2.7)
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Constitutive relations We will use the same constitutive relations as Chapter 1 with
the same magnetic parameters (χ = 2.5×103 and ms = 1.7×106Am−1). The expres-
sions for the energy in reference configuration have been provided in Equation 1.2.23
and Equation 1.2.9. The magnetisation law depends on b2 which corresponds to
J1/I2 = J∗

1 . That is why ψm is a function of J∗
1 in W5. We will use various parame-

ters for the mechanical constitutive laws ranging from weak foam to steel.

3.3 Principal solution

First let’s focus on the principal solution, that is by design constant in each layers.
For a given λ1, external magnetic field bext and surface current κ the eight unknowns
are λ2A,λ2B,λ2C ,λ2D,B̃A,B̃B,B̃C ,B̃D. Those values are obtained by using the interface
conditions Equation 3.2.6 which leads to:

JHK = κ

JΠ22K = 0 (3.3.1)

Where the expression of H and Π are given in Equation 3.2.4 Ir corresponds to
6 equations, as the interface conditions between layer A and layer D is a linear
combination of the other interface conditions :

HB −HA = κ

HC −HB = κ

HD −HB = −κ
Π22B − Π22A = 0

Π22C − Π22B = 0

Π22D − Π22C = 0

(3.3.2)

We need two additional equations. One comes from the far field loading σ22 =
b2ext/(2µ0) (in current configuration) that correspond to maxwell stress in the vacuum
considering the average of b0, i.e. bext. In reference configuration we have Π22 =
J(F−1.σ)22 = λ1σ22 (when considering the principal solution, we have that F =
λ1e1e1 + λ2e2e2). The second comes from magnetism. As the average current in the
unit cell is 0, and as the divergence of the magnetic field is null, we have that the
average of the perturbation (current configuration) of the magnetic field is 0, which
leads to

∫
S
bdS =

∫
S
b0dS. A similar argument is used in Danas (2017). Even if the

variable we are solving for are the B̃α, we will use Bα when it is possible to simplify
notation. The system expressed with the layers values is :

HB −HA =
BB

µ0λ1λ2B
+

2BB

λ21λ
2
2B

∂ψm

∂J∗
1

( B2
B

λ21λ
2
2B

)
− BA

µ0λ1λ2A
− 2BA

λ21λ
2
2A

∂ψm

∂J∗
1

( B2
A

λ21λ
2
2A

)
= κ

71



CHAPTER 3. 2D LAYERED COMPOSITE WITH CURRENT SHEETS

HC −HB =
BC

µ0λ1λ2C
+

2BC

λ21λ
2
2C

∂ψm

∂J∗
1

( B2
C

λ21λ
2
2C

)
− BB

µ0λ1λ2B
− 2BB

λ21λ
2
2B

∂ψm

∂J∗
1

( B2
B

λ21λ
2
2B

)
= κ

HD −HC =
BD

µ0λ1λ2D
+

2BD

λ21λ
2
2D

∂ψm

∂J∗
1

( B2
D

λ21λ
2
2D

)
− BC

µ0λ1λ2C
− 2BC

λ21λ
2
2C

∂ψm

∂J∗
1

( B2
C

λ21λ
2
2C

)
= −κ

∫
S

bdS =
D∑

α=A

bα
Lα

λ1λ2α
=

∫
S

b0dS = bext

D∑
α=A

Lα

λ1λ2α
(the integral are in current configuration)

Π22A =
5∑
3

∂Wi

∂F22

(λ1, λ2A, B̃A, b0A) = λ1
b2ext
2µ0

Π22B =
5∑
3

∂Wi

∂F22

(λ1, λ2B, B̃B, b0B) = λ1
b2ext
2µ0

Π22C =
5∑
3

∂Wi

∂F22

(λ1, λ2C , B̃C , b0C) = λ1
b2ext
2µ0

Π22D =
5∑
3

∂Wi

∂F22

(λ1, λ2D, B̃D, b0D) = λ1
b2ext
2µ0

(3.3.3)

Where, as shown in Appendix A, and considering a principal solution having a shape
F = λ1e1e1 + λ2e2e2, we get this expression :

∂W3

∂F22

(λ1, λ2α, B̃α, b0α) =
Bα

µ0λ2α

(
b0α −

Bα

2λ2αλ1

)
∂W4

∂F22

(λ1, λ2α, B̃α, b0α) = Gα

(
λ2α −

1

λ2α

)
+

να
(1− 2να)

Gα(λ
2
1λ2α − λ1)

∂W5

∂F22

(λ1, λ2α, B̃α, b0α) = 2
( B

λ1λ22α
b0α −

B2

λ21λ
3
2α

)∂ψm

∂J∗
1

( B2

λ21λ
2
2α

)
(3.3.4)

The fully coupled problem has to be solved numerically, and this is what we do for
all the rest of the chapter. But we provide here the simplified equations for the
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small strain case to get a rough idea of the result. Such approximation would be
reasonable when λ1 is close to 1 and the materials are close to incompressibility.
Considering Equation 3.3.3 with λ1 = 1 and only the lowest order of λ2, we get for
small deformation and arbitrary magnetic field the following simplified system :

BB

µ0

+ 2BB
∂ψm

∂J∗
1

(B2
B)−

BA

µ0

+ 2BA
∂ψm

∂J∗
1

(B2
A) = κ

BC

µ0

+ 2BC
∂ψm

∂J∗
1

(B2
C)−

BB

µ0

+ 2BB
∂ψm

∂J∗
1

(B2
B) = κ

BD

µ0

+ 2BD
∂ψm

∂J∗
1

(B2
D)−

BC

µ0

+ 2BC
∂ψm

∂J∗
1

(B2
C) = −κ

D∑
α=A

BαHα = bext

D∑
α=A

Hα

(3.3.5)

BA

µ0

(
b0A −

BA

2

)
+ 2GA(λ2A − 1) +

νA
(1− 2νA)

GA(λ2A − 1) + 2BA(b0A −BA) =
b2ext
2µ0

BB

µ0

(
b0B −

BB

2

)
+ 2GB(λ2B − 1) +

νB
(1− 2νB)

GB(λ2B − 1) + 2BA(b0B −BB) =
b2ext
2µ0

BC

µ0

(b0C −
BC

2

)
+ 2GC(λ2C − 1) +

νC
(1− 2νC)

GC(λ2C − 1) + 2BA(b0C −BC) =
b2ext
2µ0

BD

µ0

(
b0D −

BD

2

)
+ 2GD(λ2D − 1) +

νD
(1− 2νD)

GD(λ2D − 1) + 2BA(b0D −BD) =
b2ext
2µ0

Under the small strain assumption, the magnetic equations can be solved separately,
decoupling the magnetic and mechanical parts even if the latter still depends on
the magnetic solution. However, given the non linear law for magnetisation, solving
the problem purely analytically is still very difficult. As previously stated,we now
only consider the fully coupled system under finite strain. To illustrate this principal
solution, we provide numerical results in one specific case. We consider a steel
fiber (Ef = 210 GPa, νf = 0.3), a weaker plastic or foam matrix (Em = 20 MPa
and νm = 0.4) and a volume fraction of fiber of 10%. For bext=1T, we provide in
Figure 3.3 the values of ϵ2α = λ2α−1 and b2α for various values of current. Similarly,
we provide in Figure 3.4 the values of ϵ2α and b2α for κ = 250000A/m and various
values of external magnetic field. The values considered for κ are very high because
it is necessary to display significant effect, but those values would lead to thermal
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issues as explained in Equation 1.4.2. For a fiber thickness of 1 mm, a maximum
value of current density of 106A/m2 (as imposed in Chapter 1) would correspond
to a maximum value for the current sheet of 103A/m. The main takeaway is that
reasonable values of current will lead to little effects.

Figure 3.3: Principal solution considering 10% of steel fiber (Ef = 210 GPa, νf = 0.3)
and 90% od plastic matrix (Em = 20 MPa and νm = 0.4) for bext=1T

Figure 3.4: Principal solution considering 10% of steel fiber (Ef = 210 GPa, νf = 0.3)
and 90% od plastic matrix (Em = 20 MPa and νm = 0.4) for κ=25000A/m
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3.4 Stability analysis

3.4.1 Problem simplification

As discussed in Chapter 2, studying the stability of the problem corresponds to
looking for non-trivial solutions to the system Equation 3.4.1. Here and subsequently,
Latin indexes range from 1 to 2. Einstein’s summation convention is implied over
repeated indexes unless indicated explicitly.[

∂2P

∂Fij∂Fkl

∣∣∣∣∣
0

(λ1, κ, bext)∆uk,l +
∂2P

∂Fij∂Ãkl

∣∣∣∣∣
0

(λ1, κ, bext)∆Ãk,l

]
δui,j = 0 ∀i

[
∂2P

∂Ãij∂Fkl

∣∣∣∣∣
0

(λ1, κ, bext)∆uk,l +
∂2P

∂Ãij∂Ãkl

∣∣∣∣∣
0

(λ1, κ, bext)∆Ãk,l

]
δÃi,j = 0 ∀i

(3.4.1)

For the sake of clarity, we will now omit the |0(λ1, κ, bext) in the following derivations.
As in our problem the magnetic fields are purely in the e3 direction, we can simplify
the problem by not using the magnetic potential but the magnetic field B̃ = ϵijÃi,j

and ∂2P
∂Ãij∂Ãkl

= ∂2P
∂B̃∂B̃

ϵijϵkl,
∂2P

∂Ãi,j∂Fkl
= ∂2P

∂B̃∂Fkl
ϵij and ∂2P

∂Fkl∂Ãi,j
= ∂2P

∂Fkl∂B̃
ϵij. Then we

obtain :[
∂2P

∂Fij∂Fkl

∆uk,l +
∂2P

∂Fij∂B̃
∆B̃

]
δui,j = 0 ∀i

[
∂2P

∂B̃∂Fkl

∆uk,l +
∂2P

∂B̃∂B̃
∆B̃

]
δB̃ = 0

(3.4.2)

As the problem has a translation symmetry in X1, we use a Fourier transform in X1

that decomposes the solution as a periodic solution in X1 and a function of only X2

:

∆ui = exp(iω1X1)Ui(X2)

∆B̃ = exp(iω1X1)U3(X2)
(3.4.3)

Without loss of generality, we consider U3 real. In general Ui are complex numbers.
To further clarify expressions, we will use the following notations

Luuijkl =
∂2P

∂Fij∂Fkl

Lbuij = Lubij =
∂2P

∂Fij∂B̃
=

∂2P

∂B̃∂Fij

Lbb =
∂2P

∂B̃∂B̃

(3.4.4)
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First we deal with the specific case where Lbb=0. According to Appendix A, it

means that
∑5

3 4
∂2Wp

∂J2
1
B + 2∂Wp

∂J1
= ρ0

∂2ϕm

∂J∗2
1

1
I22
B + 2ρ0

∂ϕm

∂J∗
1

1
I2

+ 2 1
2µ0
I
− 1

2
2 = 0 Using our

magnetisation law, we obtain numerically that in theory, for some very specific values
of loading parameters, it could indeed be 0. However, in the vast majority of cases
we can consider Lbb ̸= 0, and this is what we do in the following. It could lead to
some numerical instabilities if we try to solve the system too close from such loading
parameters, so in the code we check the value of Lbb, but in practice the problem
never arises. We now assume thatLbb ̸= 0. Then, using the new notations and
integrating by part the first line, we get that :[

Luuijkl∆uk,l + Lubij∆B̃
]
,j
= 0 ∀i

Lbukl∆uk,l + Lbb∆B̃ = 0
(3.4.5)

Then, using the periodic decomposition on the second line[
Luuijkl∆uk,l + Lubij∆B̃

]
,j
= 0 ∀i

Lbu11iω1U1(X2) + Lbu12U1,2(X2) + Lbu21iω1U2(X2) + Lbu22U2,2(X2) + LbbU3(X2) = 0

(3.4.6)

Using the Fourier decomposition provided in Equation 3.4.3[
Luuijkl∆uk,l + Lubij∆B̃

]
,j
= 0 ∀i

U3(X2) = − [Lbu11iω1U1(X2) + Lbu12U1,2(X2) + Lbu21iω1U2(X2) + Lbu22U2,2(X2)] /Lbb

(3.4.7)

Plugging in the value of U3(X2) in the first equations and using the periodic decom-
position

−ω2
1 [Luui1k1Uk − Lubi1[Lbuk1Uk]/Lbb]

+iω1[Luui1k2Uk,2 − Lubi1Lbuk2Uk,2/Lbb + Luui2k1Uk,2 − Lubi2Lbuk1Uk,2/Lbb]

+Luui2k2Uk,22 − Lubi2[Lbuk2Uk,22]/Lbb = 0 ∀i
U3 = −[Lbui1iω1Ui + Lbui2Ui,2]/Lbb

(3.4.8)

As Lub = Lbu

−ω2
1[Luui1k1 −

Lubi1Lbuk1

Lbb

]Uk + iω1[Luui1k2 + Luui2k1 − 2
Lubi1Lbuk2

Lbb

]Uk,2

+[Luui2k2 −
Lubi2Lbuk2

Lbb

]Uk,22 = 0 ∀i

U3 = −[Lbui1ω1Ui + Lbui2Ui,2]/Lbb

(3.4.9)
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Finally, using L̂uuijkl = Luuijkl −
LubijLbukl

Lbb

, we obtain that :

−ω2
1L̂uui1k1Uk + iω1[L̂uui1k2Uk,2 + L̂uui2k1Uk,2] + L̂uui2k2Uk,22 = 0 ∀i (3.4.10)

We now consider the boundary conditions : First of all, the mechanical continuity
of the materials imposes that [|∆ui|] = 0. The initial integration by part of the
equations leads to :

JLuui2kl∆uk,l + Lubi2∆B̃K = 0 ∀i
JLbukl∆uk,l + Lbb∆B̃K = 0 ∀i

(3.4.11)

As ∆B̃ = −Lbukl/Lbb∆uk,l on both sides, the second jump condition is automatically
respected and the first relation becomes [|Luui2kl∆uk,l − Lubi2Lbukl/Lbb∆uk,l|] = 0∀i,
which corresponds to [|L̂uui2kl∆uk,l|] = 0∀i To summarize, the boundary condition
to respect are

J∆uiK = 0 ∀i
JL̂uui2kl∆uk,lK = 0 ∀i

(3.4.12)

3.4.2 Analytical solution to the stability problem

As we have reduced the problem to an equivalent mechanical problem, we can use
the method found in Santisi d’Avila et al. (2016) or Triantafyllidis and Maker (1985)
to solve the analytical problem. The method was used in those articles with only 2
different layers, an adaptation of the method for 4 different layers is described here.
The interested reader could find a more comprehensive discussion in the previously
cited articles. The various buckling modes considered are illustrated in Figure 3.5.

Local modes

We first focus on local modes. Using the Fourier decomposition, the problem to solve
is 

ω2
1L̂uui1k1Uk − iω1[L̂uui1k2Uk,2 + L̂uui2k1Uk,2]− L̂uui2k2Uk,22 = 0 ∀i

JUiK = 0 ∀i
JiωL̂uui2k1Uk + L̂uui2k2Uk,2K = 0 ∀i

(3.4.13)

Using Bloch analysis as described in Chapter 2, the Bloch boundary condition is
Uk(L) = eiω2LUk(0) with ω2L ∈ [0, 2π[ and H = 2Lf + 2Lm. L being the vertical of
the unit cell. For each layer α ∈ {A,B,C,D}, solving Equation 3.4.13 leads to the
solution :

Uk(X2) =
∑4

j=1

α

C
(j)

k exp

(
iω1

α

Z(j)X2

)
; X2 ∈ [

∑α−1
β=A Lβ,

∑α
β=A Lβ] ,

(3.4.14)
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Figure 3.5: Different types of bifurcation modes in axially compressed layered media.
Taken from Santisi d’Avila et al. (2016)

The values of
α

C and
α

Z are obtained from the matrix
α

M(Z) =
α

L̂i2k2Z
2 + (

α

L̂i2k1 +
α

L̂i1k2)Z+
α

L̂i1k1.
α

L̂ is L̂ across the layer α,
α

Zj are the four roots of the determinant of
α

M, and
α

Cj is the eigenvector of
α

M associated to
α

Zj. We define
α

D as
α

Dj =
α

Cj2/
α

Cj1

with
α

Cji the i-th component of the eigenvector
α

Cj We now have to take into account
the boundary conditions. As shown in Santisi d’Avila et al. (2016) it can be done

using the following method. For each layer we build the three matrix
α

Z,
α

V and
α

K
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according to Equation 3.4.15 :

α

V1j = 1

α

V2j =
α

D(j)

α

V3j = L̂1212

α

Z(j) + L̂1221

α

D(j)

α

V4j = L̂2211 + L̂2222

α

Z(j)

α

D(j)

α

Zij = δijZ(j)

α

K =
α

Vexp(iω1

α

Z
α

H)
α

V
−1

(3.4.15)

And then,we define the K matrix by K =
D

K
C

K
B

K
A

K The stability problem taking into
account boundary conditions becomes :

det[K(λ1, bext, κ, ω1L)− exp(iω2L)I] = 0 (3.4.16)

Finally, to study the stability of the system, we have to look at the two (real)
invariants IK1 and IK2 define in Equation 3.4.17. It should be noted that those
invariants,like K, depends on ω1, the loadings and the problem parameters, but no
longer on ω2

IK1 ≡ trK , IK2 ≡
1

2

[
(trK)2 − trK2

]
(3.4.17)

The critical local load is reached when one of the conditions in Equation 3.4.18 is
reached. The condition reached also provides the value of ω2 for the buckling mode.

2IK1 − IK2 − 2 = 0, (ω2H)c = 0,

2IK1 + IK2 + 2 = 0, (ω2H)c = π,

1

4
(IK1 )2 − IK2 + 2 = 0 and|IK1 | ≤ 4 , (ω2H)c = cos−1(IK1 /4).

(3.4.18)

Long wavelength (global) bifurcation

We now consider global modes (ω1 → 0, but ω1 ̸= 0). According to Santisi d’Avila
et al. (2016), the stability criteria can be obtain equivalently either by considering
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the asymptotic expansion of the local case, or by looking at the loss of rank one
convexity of the homogenized incremental moduli LH . For the sake of completeness
the expression for both method are presented here, but when it comes to the results
provided later, we only used the homogenized incremental moduli. It is important
to point out that the relations given in Santisi d’Avila et al. (2016) stays true only
because the main solution is still orthoptic (L̂1211|0 = L̂1222|0 = L̂2111|0 = L̂2122|0 =
0 and corresponding principal symmetries). Asymptotic expansion We define the
matrix G by doing the asymptotic expansion of K with respect to ω1H. Using ⟨⟩ as
the average of a quantity weighed by volume fraction, Equation 3.4.16 becomes :

det [G(λ)− (ω2/ω1) I] = 0 ;

G11(λ) = G22(λ) = G33(λ) = G44(λ) = 0,

G12(λ) = −⟨L̂1221(L̂1212)
−1⟩, G21(λ) = −⟨L̂1122(L̂2222)

−1⟩,

G13(λ) = ⟨(L̂1212)
−1⟩, G31(λ) = −⟨L̂1111 − (L̂1122)

2(L̂2222)
−1⟩,

G24(λ) = −⟨(L̂2222)
−1⟩, G42(λ) = ⟨L̂2121 − (L̂1221)

2(L̂1212)
−1⟩,

G34(λ) = ⟨L̂1122(L̂2222)
−1⟩, G43(λ) = ⟨L̂1221(L̂1212)

−1⟩,

G14(λ) = G41(λ) = G23(λ) = G32(λ) = 0.

(3.4.19)

Then, the invariants becomes:

IG2 (λ) = −(G12G21 +G13G31 +G24G42 +G34G43) ,

IG4 (λ) = (G12G43 −G13G42)(G21G34 −G31G24) .

(3.4.20)

And the stability criteria become

IG4 = 0, (ω2/ω1)c = 0,

1

4
(IG2 )

2 − IG4 = 0, (ω2/ω1)c =
[
−(IG2 /2)

]1/2
.

(3.4.21)
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Homogenized incremental moduli The homogenized incremental moduli is

L̂H
1111(λ) = ⟨L̂1111 − (L1122)

2(L2222)
−1⟩+ ⟨L1122(L2222)

−1⟩2⟨(L2222)
−1⟩−1,

L̂H
1122(λ) = ⟨L̂1122(L2222)

−1⟩⟨(L2222)
−1⟩ = L̂H

2211(λ),

L̂H
2222(λ) = ⟨(L̂2222)

−1⟩−1,

L̂H
2121(λ) = ⟨L̂2121 − (L1221)

2(L̂1212)
−1⟩+ ⟨L̂1221(L̂1212)

−1⟩2⟨(L̂1212)
−1⟩−1,

L̂H
1221(λ) = ⟨L̂1221(L̂1212)

−1⟩⟨(L̂1212)
−1⟩ = L̂H

2112(λ),

L̂H
1212(λ) = ⟨(L̂1212)

−1⟩−1.

(3.4.22)

The corresponding invariant are :

IH2 (λ) = (L̂H
1111L̂

H
2222 + L̂H

1212L̂
H
2121)− (L̂H

1122) + L̂H
2222)

2(L̂H
1212L̂

H
2222)

−1 ,

IH4 (λ) = (L̂H
1111L̂

H
2121)(L̂

H
1212L̂

H
2222)

−1 .

(3.4.23)

Those invariants are equal to the previous ones, i.e IG2 (λ) = IH2 (λ) , IG4 (λ) = IH4 (λ)

X1 independent bifurcations

The last type of bifurcation considered are the truly 1D ones, i.e ones obtained when
ω1H = 0. In this case, using the same governing equations, we get that Uk are
piecewise linear functions in X2 within each layer. A non trivial solution Uk(0, X2)
exists when L̂1212(λ) = 0 or L̂2222(λ) = 0 in any layer. Thus the buckling criteria is

α

L̂1212(λ) = 0,
α

L̂2222(λ) = 0 (3.4.24)

However, given the previous relations, and according to Santisi d’Avila et al. (2016),
if such critical mode exists it will always be after the homogenized mode, so we no
longer consider it.

3.5 Results

3.5.1 Purely mechanical loading

The equations provided in the previous part have to be solved numerically. We do
that using the numpy library in python. First, to check our software implementation,
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we compare our results to those already available in the literature. We are going to
use the results from Triantafyllidis and Maker (1985) that provides the global buck-
ling load, local buckling load and local buckling pulsation for a composite. According
to section 4.2 of this article, when considering a Mooney-Rivlin Material (equivalent
to our constitutive relation in the incompressible limit), the global mode critical load
λ1c(0

+) is obtained with the following relations :

λ1c(0
+) = [(s− 1)/s]1/4

s = [(1− ϵ)/µm + ϵ/µf ][(1− ϵ)µm + ϵµf ] (s ≥ 1)

Vf = Lf/(Lm + Lf )

(3.5.1)

In the incompressible limit (ν = 0.49995) and for a ratio of mechanical stiffness
µm/µf = 0.07, the results from Triantafyllidis and Maker (1985) are reproduced in
Figure 3.6 in solid line. We added our results as red dots (global mode) and green dots
(local mode). As expected, those results are very similar. We also compare results

Figure 3.6: Solid line : Dependence of the microscopic (I) and macroscopic (II)
critical stretch ratio λ on the fiber volume fraction Vf for the hyperelastic composite
with µm/µf = 0.07 (Taken from Triantafyllidis and Maker (1985) Fig.6)
Red dots : global buckling results obtained using the previously described method.
Green dots : local buckling results obtained using the previously described method.
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with Fig 5 from Triantafyllidis and Maker (1985) that is reproduced in Figure 3.7.
It shows the critical compression λ1c(ω1) to obtain a local critical mode for various
values of ω1 at Vf = 1/10 and µm/µf = 0.07. The reader should be aware that in the
article the definition of H is not similar to ours. To avoid confusion, in this figure
we plot our results using the articles definition. The slight differences probably come
from our imperfect incompressibility.

Figure 3.7: Solid line :Dependence of the critical stretch ratio X on the non-
dimensionalized eigenmode frequency ω H for the hyperelastic composite with
µm/µf = 0.07, Vf = 0.1 (Taken from Triantafyllidis and Maker (1985) Fig.5)
Green dots : same but using the previously described method.
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3.5.2 Electric and magnetic loading under no axial stretch

We now consider the results of the stability analysis under a purely magnetic loading
(λ1 = 1). We do not expect instabilities as the loading will be purely vertical,
which is extremely stable in this geometry. And indeed, for the range of parameters
provided in Table 3.1, we detect no instability either global or local. Considering
larger loading would not be reasonable given the ranges of validity of the constitutive
laws (especially the mechanical one). In detail, we considered a fiber close to steel
in properties, thus a Poisson ratio of 0.3 and a Young’s modulus of 210 GPa. We
considered a wide range of values for the matrix. The matrix Poisson ratio is limited
to 0.4999 as numerical stability is fragile for a more incompressible material. The
minimum Poisson ratio is taken at 0.1 as materials below that are very uncommon.
The matrix Young’s modulus is taken between 2 MPa, a value corresponding to
the weakest foams, and 100 GPa, a value very close to the fibers one. The volume
fraction of fiber considered is above 5% for numerical stability. The maximum value
for bext is given by the electromagnet. The maximum value of κ is far above anything
reasonable, it is chosen to show the extreme stability of the system under this loading.

minimum value tested maximum value tested

νm 0.3 0.4999

Em (Pa) 2×106 1×1011

νf 0.3

Ef (Pa) 2×1011

Vf 5% 50%

w1 0.01 100

bext(T ) 0 2

κ(A/m) 0 1×108

Table 3.1: range of the various parameters considered when looking for potential
buckling mode

3.5.3 Impact of electric and magnetic loading on the buck-
ling caused by axial compression

In this part we focus on the more reasonable case where for a given magnetic loading,
we progressively increase axial compression and study both local and global buckling
modes. Then we compare the critical λ1c to the case where no magnetic loading
is applied. We will consider steel fiber (Ef = 210 GPa and νf = 0.3) and some
weaker plastic or foam (Em = 20 MPa and νm = 0.4) Global mode First we look
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at the global modes for various values of volume ratio of fiber. The results are
provided in Figure 3.8 for various magnetic loadings. The key takeaway is that the
magnetic loadings can make the material easier to destabilize, but it requires strong
magnetic loadings to achieve something significant. In particular, the current seems
to have a destabilizing effect, while the external magnetic fields seems to have a
smaller stabilizing effect. Overall, the required current is absolutely not thermally
reasonable. Local mode Doing the same analysis for the local modes, we will provide

Figure 3.8: Dependence of the macroscopic critical stretch ratio λ1 on the fiber vol-
ume fraction Vf for the hyperelastic composite with (Ef = 210 GPa, νf = 0.3,Em =
20 MPa and νm = 0.4) for various magnetic loading.

results for Vf = 0.1. We consider the same materials. The results are provided
for various loadings in Figure 3.9. The results are very similar to the global mode,
currents having a small but noticeable destabilizing effect. However the required
current is far too high to be reasonable. Once again it is possible to affect the stability
of the system in a measurable way, but at the cost of enormous and unreasonable
loads. This result stays true for other values of Vf .
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Figure 3.9: Dependence of the macroscopic critical stretch ratio λ1 on the pulsation
ω1 H for the hyperelastic composite with (Ef = 210 GPa, νf = 0.3,Em = 20 MPa
and νm = 0.4) for various magnetic loading and a fiber volume fraction Vf of 0.1.
The orange line is slightly above the red one. The bleu line is slightly above the
green line.
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3.6 Conclusion and future work

We provided a detailed analysis of the stability of a 2D composite made of magne-
tizable conductive fibers and a non conductive matrix under an external magnetic
field, currents, and mechanical loadings. Under reasonable electromagnetic loadings
as described in Chapter 1, the impact of those on stability is very limited. Given the
geometry, the behaviour laws and the directions of the loadings, it is not surprising.
As a rule of thumb, the Lorentz forces (without magnetisation) leads to a stress that
can be approximated by bextκ. For this stress to have a significant impact compared
to the Young’s modulus (at the very least 106 Pa), we need massive surface current.
Such high currents are not compatible with the thermal limits derived in Section 1.4,
as κ = 106A/m correspond for a fiber of 1mm thickness an equivalent current density
of j = 109A/m that would burn the composite in no time. It must be pointed out
that this result is caused by the choice of geometry, as in a different case, namely
conductive solenoid, Elliott and Triantafyllidis (2023) obtains significant instabili-
ties for reasonable loadings. However the effect on stability of the electromagnetic
loadings in our geometry is strong enough to enable us to test a FE code solving
the same problem. The work on this code is largely done, and will be finished in
the future. This implementation is straightforward with polynomial quadrilateral
elements for both magnetic potential and displacement. To study stability it im-
plements the Bloch theorem with a significant performance improvement described
in Triantafyllidis et al. (2005) that enables us to study for each pulsation only the
eigenvalues of a system with a size of half the boundary d.o.f.s.
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Conclusion

The goal of the current thesis is to explore the possibilities offered by magneto-
mechanical metallic metamaterials with non-linear magnetization laws, under both
external magnetic fields and electric currents. The novelty of the present work lies in
the fact that, to the best of the author’s knowledge, no previous work has addressed
metamaterials that are both current carrying and magnetizable.

We provide a general, coupled magneto-mechanical model for this problem in
Chapter 1, with some adjustment in Chapter 3 for the case when an external magnetic
field is imposed in current configuration. As an application to the general theory,
two different designs will be considered as simple metamaterials involving electric
current-carrying magnetizable conductors subjected to external magnetic fields: a
planar grid and a two dimensional layer of metallic sheets separated by elastomeric
layers.

� In Chapter 1 we address the problem of the influence of magnetic response of
the conductors on the Lorentz forces generated between them for the case of two
parallel conductors and also for the case of infinite arrays of parallel conductors.
A surprising find of this investigation is that in the case of an infinite array of
same direction parallel conductors their magnetic properties have no influence
at all, while for an infinite array of alternating direction parallel conductors
the Lorentz forces are lower than in the case of non-magnetizable materials!

� In Chapter 2 we study a square unit-cell geometry current-carrying planar truss
under an external magnetic field perpendicular to its plane. We investigate
the principal solution and its stability and find the instability patterns for an
infinite grid.

� Finally in Chapter 3, we investigate the case of a 2D fully coupled compos-
ite made of magnetizable conductive layers connected by non-conductive elas-
tomeric layers under an external magnetic field, currents, and mechanical load-
ings. For this analytically tractable, simple geometry we find that the current,
and to a lesser extent the external magnetic field, have only a minor impact on
the principal solution and its stability, unlike the imposed axial compression.

With the present thesis we show that using electric currents and magnetic fields
to control the behavior of new metamaterials is possible. In the simple geometries
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considered here, obtaining significant mechanical effects requires unrealistically high
electric currents and magnetic fields. However, different, more complex geometries
can be analyzed, where lower currents are required to obtain significant overall me-
chanical strains, such as in solenoids (see Elliott and Triantafyllidis (2023)). It would
be interesting to investigate different composite geometries that might enhance the
electro-mechanical coupling and investigate the stability of such designs, based on
the general theory proposed here. Finally we would like to offer some general sug-
gestions for potential long-term expansions of the research presented in this thesis.
First, one could consider a metamaterial already easy to destabilize, and use the mag-
netic loadings to nudge the post-bifurcation behavior in one direction rather than the
other. By doing so, the limited amplitude of the magnetic forces is no longer an issue.
Alternatively, the usage of both electric currents and magnetization while keeping
somewhat soft materials could be made possible by using Magnetorheological Elas-
tomers for the magnetization aspect, and pairing them with thin current-carrying
wires or sheets. Such a solution would enable the generation of Lorentz forces while
minimizing the associated mechanical stiffness. However it would lead to significant
thermal limitations.
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Appendix A

Complete formulation of the
energy in the case of the composite

We provide all the non null derivatives required to solve the problem studied in chap-
ter Chapter 3. First the ones required for the analytical solvers, then the additional
terms used in the finite element software

Derivative of I1 by Fij and B̃

∂I1
∂Fkl

=
∂I1
∂Cij

∂Cij

∂Fkl

= δij(δliFkj + δljFki) = 2Fkl

∂2I1
∂Fij∂Fkl

= 2δikδjl

Derivative of I2 by Fij and B̃

As ∂I1
∂C

= Id and ∂I2
∂C

= I1Id −CT

∂I2
∂Fkl

=
∂I2
∂Cij

∂Cij

∂Fkl

= (I1δij − Cij)(δliFkj + δljFki) =
∑
o

[(I1δol − Col)]2Fko

∂2I2
∂Fij∂Fkl

= (
∂2I2

∂Cpj∂Cdl

+
∂2I2

∂Cpj∂Cld

+
∂2I2

∂Cjp∂Cdl

+
∂2I2

∂Cjp∂Cld

)FipFkq + (
∂I2
∂Clj

+
∂I2
∂Cjl

)δik

where
∂2I2

∂Cij∂Ckl

= δijδkl − δkjδil

Rq : ∂I2
∂C

is symmetric, however, ∂I2
∂CpjδCdl

only symmetry is exchanging both p←→
j and d←→ l

91



APPENDIX A. COMPLETE FORMULATION OF THE ENERGY IN THE
CASE OF THE COMPOSITE

Derivative of B by Fij and B̃

∂B

∂Fkl

=
1

2
I
−1/2
2

∂I2
∂Fkl

b0 =
1

2
I
−1/2
2 (

∑
o

[(I1δol − Col)]2Fko)b0

∂B

∂B̃
= 1

∂2B

∂F 2
=

1

2
I
−1/2
2

∂I22
∂F 2

b0 +
−1
4
I
−3/2
2

∂I2
∂F

∂I2
∂F

b0

Derivative of J1 by Fij and B̃

∂J1
∂Fkl

= 2B
∂B

∂Fkl

= 2B
1

2
I
−1/2
2 (

∑
o

[(I1δol − Col)]2Fko)b0

∂J1

∂B̃
= 2B

∂B

∂B̃
= 2B

∂2J1
∂F 2

= 2
∂B

∂F

∂B

∂F
+ 2B

∂2B

∂F 2

∂2J1

∂F∂B̃
= 2

∂B

∂F
∂2J1

∂B̃2
= 2

Derivative of P5

∂P5

∂I2
= ρ0

∂ϕm

∂J∗
1

J1
−1
I22

∂P5

∂J1
= ρ0

∂ϕm

∂J∗
1

1

I2
∂2P5

∂I22
= ρ0

∂2ϕm

∂J∗2
1

J2
1

I42
+ ρ0

∂ϕm

∂J∗
1

2J1
I32

∂2P5

∂J2
1

= ρ0
∂2ϕm

∂J∗2
1

1

I22
∂2P5

∂J1∂I2
= ρ0

∂2ϕm

∂J∗
1∂J

∗
1

J1
−1
I32

+ ρ0
∂ϕm

∂J∗
1

−1
I22
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Derivative of P4

∂P4

∂I1
= ρ0

∂ϕel

∂I1
∂P4

∂I2
= ρ0

∂ϕel

∂I2
∂2P4

∂I21
= ρ0

∂2ϕel

∂I21
∂2P4

∂I22
= ρ0

∂2ϕel

∂I22
∂2P4

∂I1δI2
= ρ0

∂2ϕel

∂I1∂I2

Derivative of P3

∂P3

∂I2
= − J1

4µ0

I
− 3

2
2

∂P3

∂J1
=

1

2µ0

I
− 1

2
2

∂2P3

∂I22
=

3J1
8µ0

I
− 5

2
2

∂2P3

∂J1∂I2
= − 1

4µ0

I
− 3

2
2

Full system

We now focus on the terms P3, P4, P5, as P2 and P1 are dependent on Ã dealt with
latter.

For any p ∈ {3, 4, 5}, the first and second derivatives of the Pp are obtained by
using

∂Pp

∂Fij

=
∂Pp

∂I1

∂I1
∂Fij

+
∂Pp

∂I2

∂I2
∂Fij

+
∂Pp

∂J1

∂J1
∂Fij

∂Pp

∂B̃
=
∂Pp

∂I1

∂I1

∂B̃
+
∂Pp

∂I2

∂I2

∂B̃
+
∂Pp

∂J1

∂J1

∂B̃
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∂2Pp

∂Fij∂Fkl
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∂2Pp

∂I21

∂I1
∂Fij

∂I1
∂Fkl

+
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∂I1
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Finite element

For the sake of completeness, we add the the expressions for a finite element imple-
mentation where N I are the shape functions and qIi the related coefficients.

ui =
∑
I

qIiN
I(x, y)

Ãi =
∑
I

qIi+2N
I(x, y)

ui,j =
∑
I

qIiN
I
,j(x, y)

Ãi,j =
∑
I

qIi+2N
I
,j(x, y)
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first derivative of Fij and B̃

∂ui
∂qIm

= δimN
I(x, y)

∂Ãi

∂qIm+2

= δimN
I(x, y)

∂B̃
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=
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first derivative of P3, P4, P5
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first derivative of P1
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= − ∂A
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Résumé en Francais

L’objectif de cette thèse est d’explorer les possibilités offertes par les couplages
magnéto-mécaniques dans des métamatériaux métalliques ayant des lois de magné-
tisation non linéaires, sous l’influence à la fois de champs magnétiques extérieurs,
de courants électriques et de chargements mécaniques. La principale nouveauté de
ce travail réside, selon les connaissances de l’auteur dans le fait qu’aucun travail
antérieur n’a abordé les métamatériaux porteurs de courant électrique et magné-
tisables.

Nous proposons tout d’abord un modèle général magnéto-mécanique couplé pour
ce problème. Les ajustements nécessaires pour le cas où un champ magnétique ex-
terne est imposé en configuration déformée et non en configuration de référence sont
aussi présentés. Pour traiter des géométries plus complexes, une approche variation-
nelle est fournie pour une analyse par la méthode des éléments finis. En utilisant cette
théorie générale, deux exemples de métamatériaux simples impliquant des conduc-
teurs magnétisables porteurs de courant électrique soumis à des champs magnétiques
externes seront considérés : une grille plane et une couche bidimensionnelle de feuilles
ferromagnétiques séparées par des couches élastomères.

Dans le premier cas, la grille plane, nous étudions l’effet de la réponse magnétique
des conducteurs sur les forces de Lorentz générées, tant pour deux fils conducteurs
parallèles que pour un réseau infini de fils conducteurs parallèles. Notre premier
résultat est de montrer que, dans ce cas précis, il est possible de découpler les
problèmes magnétique et mécanique. Il découle de ce découplage que le calcul
des forces électromagnétiques peut être réalisé uniquement à partir d’une intégrale
de contour des contraintes électromagnétiques. Les résultats pour un réseau infini
de conducteurs parallèles, espacés de manière égale, sont plutôt surprenants, sinon
contre-intuitifs. Pour des courants orientés dans la même direction, les propriétés
magnétiques des conducteurs n’ont aucune influence sur les forces de Lorentz en
raison des arguments de symétrie. Dans le cas où les courants d’un fil sur deux
sont orientés dans la direction opposée, les propriétés magnétiques des conducteurs
réduisent seulement légèrement les forces de Lorentz en raison des interactions dipo-
laires, et ces forces dépendent essentiellement de manière linéaire à la fois du champ
magnétique et du courant appliqué. Des réseaux plus complexes, multicouches de
conducteurs, peuvent être analysés de la même manière.
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Utilisant ces résultats, et dans le but d’étudier le comportement mécanique de
la grille complète, nous étudions une cellule unitaire rectangulaire sous l’effet des
forces de Lorentz calculées précédemment. Nous examinons la solution principale et
fournissons une solution analytique. En utilisant le théorème de Bloch, la stabilité
peut être étudiée et nous identifions les modes d’instabilité pour une grille infinie. Ces
modes, ainsi que leurs chargements critiques, sont cohérents avec ceux estimés par
des modèles plus simples. Les valeurs de chargement électromagnétique requises pour
obtenir une instabilité ne sont pas atteignables avec nos équipements expérimentaux.
Nous avons fait cette analyse de stabilité en supposant que le flambage n’aurait pas
de compression à longue portée.

Enfin, nous étudions le cas d’un composite 2D constitué de couches conductrices
magnétisables reliées par des couches élastomères non conductrices sous l’effet d’un
champ magnétique externe, de courants et de charges mécaniques. Dans ce cas, le
problème magnéto- mécanique est traité directement comme un problème couplé.
Pour cette géométrie simple, nous sommes capables de fournir une résolution an-
alytique et nous constatons que le courant, et dans une moindre mesure le champ
magnétique externe, n’ont qu’un impact mineur sur la solution principale et sa sta-
bilité, contrairement à la compression axiale imposée. Cependant, l’effet sur la sta-
bilité des charges électromagnétiques dans notre géométrie est suffisamment fort pour
nous permettre de tester un code par éléments finis résolvant le même problème. Le
travail sur ce code est en grande partie réalisé, et sera achevé dans le futur.

En conclusion, cette thèse démontre la possibilité d’utiliser des courants électriques
et des champs magnétiques pour contrôler le comportement de nouveaux méta-
matériaux et fournit les outils nécessaires à cet effet. Dans les configurations sim-
ples étudiées, la génération d’effets mécaniques significatifs nécessite des courants
électriques et des champs magnétiques irréalistement élevés. Toutefois, des config-
urations plus complexes pourraient nécessiter des courants plus faibles pour induire
des déformations mécaniques significatives. Il serait bénéfique d’explorer différentes
géométries composites pour améliorer le couplage électromécanique et d’analyser la
stabilité de ces conceptions à partir de la théorie générale proposée.
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Résumé : Des développements récents qui ont
lieu dans les domaines des meta-matériaux et des
couplages magnéto-mécaniques visent à la fois à
améliorer des propriétés existantes ainsi que de créer
de nouveaux comportements. Le but de cette thèse
est d’étudier plus particulièrement les couplages
entre matériaux magnétisables, courants électriques
et comportements mécaniques. Tout d’abord nous
détaillons le modèle multi-physique requis pour trai-
ter ce problème. Lorsque c’est possible une résolution

analytique est fournie. Néanmoins, pour traiter des
géométries plus complexes une approche variatio-
nelle est fournie pour une analyse par éléments fi-
nis. Nous traitons alors deux cas concrets : un treillis
partiellement magnétisable et parcouru par des cou-
rants unidirectionnels, puis un composite 2D partielle-
ment magnétisable et conducteur. Nous en étudions
le comportement sous sollicitation magnétique et
mécanique ainsi que leur stabilité.
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Abstract : Recent developments in the fields of meta-
materials and magneto-mechanical couplings aim to
both enhance existing properties and create new
behaviors. The goal of this thesis is to specifically
study the interactions between magnetizable mate-
rials, electric currents, and mechanical behaviors.
Firstly, we detail the multi-physics model required to
address this issue. Whenever possible, an analytical

solution is provided. However, to handle more com-
plex geometries, a variational approach is employed
for finite element analysis. We then examine two prac-
tical cases : a partially magnetizable mesh subjected
to unidirectional currents and a partially magnetizable,
conductive 2D composite. We investigate their beha-
vior under magnetic and mechanical loading, as well
as their stability.
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