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Abstract

The emergence of blockchain technology and cryptocurrencies has enabled the
development of innovative peer-to-peer (P2P) models for resource allocation,
sharing, and monetization. As these P2P models operate without inherent trust,
the need for reliable trust and reputation mechanisms becomes crucial to minimize
potential risks associated with engaging with malicious peers. Several trust
management systems (TMS) have been proposed to establish trust in traditional
P2P networks, aiming to facilitate the selection of dependable resources and deter
peer misbehavior, with a significant focus on utilizing reputation as a guiding
factor. Reputation-based trust systems (RTMS) play a fundamental role by
leveraging community-based reputations to establish trust. They enable peers to
assess the trustworthiness of others and evaluate the Quality of Service (QoS)
based on shared reputations and past interactions. While these systems establish
a peer-to-peer overlay trust network, the majority of these protocols are not
tailored to suit blockchain-based networks, resulting in various shortcomings due
to their outdated design.

This thesis presents our protocol BTrust, a novel decentralized and modular trust
management system for large-scale P2P networks, leveraging blockchain technol-
ogy and Graph Neural Network (GNN) for trust evaluation. BTrust introduces
a multi-dimensional trust and reputation model to assess peer trustworthiness,
dynamically deriving a single value from multiple parameters. The blockchain
ensures reliable trust computation, dissemination, and storage without a central
trust manager. An important breakthrough in our protocol is the resolution of
the "cold start" or "initial trust score problem". To achieve this, the bootstrap-
ping peer adopts random walks to select trustworthy peers among its neighbors,
ensuring a decentralized approach without relying on any centralized entity or
predefined peers. Unlike existing solutions, this method prevents overwhelming
the most trusted peers in the network. Another challenge addressed in reputation
systems is the reluctance of peers to provide negative feedback, often due to fear
of retaliation or simply not providing feedback at all. To tackle these issues, we
introduce an incentive mechanism that encourages truthful feedback and imple-
ment specialized mechanisms to penalize bad or lazy behavior. These innovations
promote a more reliable and balanced trust evaluation process within the system.
Furthermore, we propose a variant of BTrust called GBTrust, which improves
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upon the original protocol by incorporating Graph Neural Networks (GNNs) and
a novel attention-based mechanism specifically designed for trust management.
This variant enhances the detection of dynamic malicious peers and strengthens
the overall robustness and accuracy of trust evaluation. By leveraging GNNs,
GBTrust effectively captures the complex relationships and dynamic behavior of
peers in the network, enabling more accurate identification of malicious activities
and better adaptability to changing trust dynamics. The attention-based mecha-
nism further enhances the model’s ability to prioritize and weigh different trust
factors, leading to more reliable and precise trust assessments.

We demonstrate the efficiency of the proposed protocol in large-scale P2P net-
works using simulations of a P2P network and show that BTrust and its variant
(GBTrust) are highly resilient to failures and robust against malicious nodes.

Key words: Trust management, Reputation system, P2P, RTMS, Blockchain,
GNN, Resource sharing, Cold-start, Random walks.



Résumé

L’émergence de la technologie blockchain et des cryptomonnaies a ouvert la possibilité
de créer de nouveaux modèles de gestion, de partage et de monétisation de ressources en
pair-à-pair (P2P). Étant donné que ces modèles P2P sont sans confiance (trustless), des
mécanismes de confiance et de réputation fiables et efficaces sont nécessaires pour minimiser
le risque d’accès ou d’interaction avec des pairs malveillants. Plusieurs systèmes de gestion
de confiance basés sur la réputation (RTMS) ont été proposés pour garantir la confiance
dans les réseaux P2P, aider à choisir des ressources fiables et empêcher les comportements
malveillants des pairs. Ces RTMS établissent la confiance en s’appuyant sur des réputations
basées sur la communauté. Ils aident les pairs à évaluer la fiabilité des autres et à évaluer
la qualité de service (QoS) en fonction de leur réputation et de leurs expériences passées
mutuelles. Dans ces schémas, un réseau de confiance en surcouche pair-à-pair est établi.

Cette thèse présente BTrust, un nouveau système de gestion de confiance décentralisé et
modulaire pour les réseaux P2P à grande échelle, exploitant la technologie blockchain et
les GNN (Graph Neural Network) pour l’évaluation de la confiance. BTrust introduit un
modèle de confiance et de réputation multidimensionnel pour évaluer la fiabilité des pairs,
dérivant dynamiquement une valeur unique à partir de plusieurs paramètres. La blockchain
garantit un calcul, une diffusion et un stockage fiables de la confiance sans gestionnaire de
confiance centralisé, tandis que les GNN capturent efficacement les relations complexes entre
les pairs, conduisant à des évaluations de confiance précises et robustes.

Une avancée importante dans notre protocole est la résolution du "problème de démarrage à
froid" ou du "problème du score de confiance initial". Pour y parvenir, le pair d’amorçage
adopte des marches aléatoires pour sélectionner des pairs fiables parmi ses voisins, garantissant
une approche décentralisée sans dépendre d’une entité centralisée ou de pairs prédéfinis.
Contrairement aux solutions existantes, cette méthode évite de submerger les pairs les plus
dignes de confiance du réseau. Un autre défi abordé dans les systèmes de réputation est
la réticence des pairs à fournir des rétroactions négatives, souvent par peur de représailles
ou simplement en ne fournissant pas de rétroaction du tout. Pour résoudre ces problèmes,
nous introduisons un mécanisme d’incitation qui encourage les rétroactions sincères et
nous mettons en œuvre des mécanismes spécialisés pour sanctionner les comportements
mauvais ou paresseux. Ces innovations favorisent un processus d’évaluation de confiance
plus fiable et équilibré au sein du système. De plus, nous proposons une variante de
BTrust appelée GBTrust, qui améliore le protocole original en incorporant des Graph Neural
Networks (GNN) et un nouveau mécanisme basé sur l’attention spécifiquement conçu pour la
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gestion de la confiance. Cette variante permet d’améliorer la détection des pairs malveillants
dynamiques et renforce la robustesse et la précision globale de l’évaluation de la confiance. En
utilisant les GNN, GBTrust capture efficacement les relations complexes et les comportements
dynamiques des pairs dans le réseau, permettant ainsi une identification plus précise des
activités malveillantes et une meilleure adaptabilité aux dynamiques de confiance changeantes.
Le mécanisme basé sur l’attention renforce également la capacité du modèle à prioriser et
à pondérer différents facteurs de confiance, conduisant à des évaluations de confiance plus
fiables et précises.

Nous démontrons l’efficacité du système GBTrust proposé dans des réseaux P2P à grande
échelle en utilisant des simulations d’un réseau P2P, et nous montrons que BTrust est
hautement résilient aux pannes et robuste contre les nœuds malveillants.

Mots-clés: Gestion de confiance, Système de réputation, Blockchain, GNN, Partage de
ressources, Démarrage à froid, Marches aléatoires.
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Chapter 1. Introduction 2

Peer-to-peer (P2P) systems have evolved from simple file sharing over the internet to advanced
distributed resource sharing [1]. Blockchain technology enabled promoting trust, transparency,
and fair compensation for resource providers through the use of cryptocurrencies.

The rapid expansion of cryptocurrencies has sparked a notable surge of interest in leveraging
blockchain-based systems to monetize computing resources [2] [3]. Users enthusiastically
embrace the idea of renting out their underutilized resources, including CPUs [4], surplus
storage capacity [5], and even internet bandwidth [6], in exchange for crypto-tokens. Projects
such as Storj1, Golem2, and Filecoin3 capitalize on blockchain technology, enabling individuals
to share their idle storage and computational power, thereby converting these dormant
resources into valuable assets within a global sharing economy. By incentivizing resource
providers with cryptocurrency tokens, these projects foster a mutually beneficial ecosystem.
Furthermore, blockchain-based resource sharing initiatives like Akash Network4, Substratum5,
and iExec6 effectively address concerns related to centralization, censorship, and data privacy
(1.1). They empower users to partake in sharing internet bandwidth and computing resources,
offering an alternative to conventional cloud and hosting services.

Figure 1.1: IExec resource sharing architecture

1https://www.storj.io/
2https://www.golem.network/
3https://filecoin.io/
4https://akash.network/
5https://substratum.net/index.html
6https://iex.ec/
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In parallel to resource-sharing blockchain projects, projects like SETI@home7 have engaged
millions of volunteers worldwide to collectively analyze astronomical data, harnessing the
combined processing power of participants’ computers to search for signs of extraterrestrial
intelligence. Similarly, distributed computing projects have emerged to address complex
scientific problems, such as protein folding simulations or climate modeling, by aggregating
computational resources from numerous volunteer contributors. These resource distribution
systems has significantly reduced bandwidth costs for content providers and enhanced the
efficiency of content delivery to end-users.

Nevertheless, these opportunities often involve engaging with unknown parties whose trust-
worthiness is uncertain, leading to substantial risks. Such risks may include the allocation of
insecure and low-quality resources or the potential misuse of allocated resources for malicious
purposes. Consequently, P2P resource sharing networks necessitate the implementation of
suitable techniques to identify peers with valuable resources and the establishment of a
robust trust model to ensure secure and efficient resource sharing.

Relying on established protocols, creating a dependable and secure peer-to-peer (P2P)
resource sharing network is hindered by a multitude of challenging issues, including:

• Trust and Reputation Management: Assessing the trustworthiness of peers in a
decentralized network, where interactions occur with unknown entities, poses a challenge.
Developing effective trust and reputation models that can dynamically evaluate and
quantify trust based on multiple parameters is essential to promote secure resource
sharing.

• Corruption of Trust Managers: Trust managers play a pivotal role in the trust and
reputation system of P2P networks. However, they can be susceptible to corruption
or malicious manipulation. Ensuring the integrity and credibility of trust managers
in submitting and processing feedback is essential to prevent the distortion of trust
evaluations.

• Cold Start Problem: Bootstrapping a P2P network without relying on a centralized
entity or predefined peers is another hurdle. Initiating the network and selecting
trustworthy peers among neighbor peers, especially without access to prior reputation
information, is a complex task and is frequently unsupported.

• Incentive Mechanisms: Encouraging truthful feedback and participation in the resource-
sharing process necessitates the design of efficient incentive mechanisms. Addressing
the reluctance of peers to provide negative feedback due to fear of retaliation or
the inclination to avoid providing feedback altogether is crucial for maintaining a
trustworthy network.

7https://setiathome.berkeley.edu/
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• The Free-Rider Problem: Without proper incentivization mechanisms, some entities
may engage in free-riding behavior, benefiting from shared resources without contribut-
ing back to the network adequately. Addressing this issue is crucial to maintain fairness
and encourage active participation from all peers.

• Dynamic attacks: In the absence of a centralized authority, dynamic malicious nodes
can lead to dishonest promotion or defamation of other actors in the network. Detecting
and mitigating dynamic and Sybil attacks (using multiple identities) is essential to
uphold the integrity and accuracy of the trust model.

To address these challenges, enhance trust within P2P networks, and mitigate peer misbehav-
ior, researchers have proposed multiple RTMS [7][8]. These propositions aim to assess trust
by relying on community-based reputations, enabling peers to assess the trustworthiness
of others and evaluate the quality of service (QoS) based on their reputation and past
interactions. In these schemes, a peer-to-peer overlay trust network is established, where
each device (referred to interchangeably as a node or peer) acts as both a client and a
service provider, necessitating evaluation of their QoS and trustworthiness. By leveraging
reputation-based mechanisms, these systems facilitate the selection of reliable resources,
promote honest behaviors among peers, and contribute to building a more trustworthy and
efficient P2P network.

1.1 Problematic and objectives

In this thesis, we aim to address a fundamental challenge: How can we ensure that
users and peers in a blockchain resource-sharing network securely consume and
provide resources? This overarching question leads to several related inquiries: How
can we efficiently manage trust computation, storage, and dissemination within blockchain-
based resource-sharing environments? How can we incentivize users and device owners
to participate? How can we secure new joining peers? How can we secure the network
against both static and dynamic malicious participants? Additionally, how can we predict
the trustworthiness of a given participant and forecast interactions among peers?

Our objective is to design a distributed protocol that leverages the unique capabilities of
blockchain technology and Graph Neural Networks (GNNs) to enhance the trust management
process. By integrating the properties of blockchain, such as decentralization, immutability,
and transparency, we aim to ensure the reliability and integrity of trust computations and
storage without relying on any central authority. Moreover, we specifically focus on the
application of GNNs, which excel at capturing complex relationships and patterns in graph-
structured data, to improve the accuracy and efficiency of trust evaluation. By harnessing
the power of GNNs, we aim to extract meaningful insights from the network’s topology, node
attributes, and trust interactions, enabling more informed and precise trust assessments.
Additionally, we try to address the challenge of efficient dissemination of trust information,
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facilitating seamless and secure sharing of reputation data among peers while minimizing
the overhead within the network.

1.2 Contributions

In this thesis, we present a novel protocol called BTrust which is designed as a generic
solution applicable to various blockchain-based services. It introduces a trust overlay network
that effectively addresses the challenges related to trust dissemination, incentivization, and
the secure storage and retrieval of feedback in P2P networks. Notably, BTrust eliminates
the need for trust managers or centralized operators, thereby enhancing the decentralized
nature of the system. By leveraging the capabilities of the underlying blockchain to manage
multiple services, such as identification, access control, and micropayments, it becomes
possible to transparently assess, at a network level, the interactions of peers and mitigate
risks related to centralized or on-edge trust computation and assessment. To the best of
our knowledge, this approach is lacking in the literature, where the focus is more on using
only smart contracts to outsource trust computation while keeping resource sharing services
off-chain. This approach results in a resilient and adaptable reputation system capable of
capturing new dimensions of trust, even enabling the detection of compromised devices that
may otherwise appear to behave correctly. To amplify the accuracy of our trust management
process, we’ve advanced the BTrust protocol, integrating Graph Neural Networks (GNN) to
create the updated variant, GBTrust. This enhancement significantly boosts the system’s
ability to thoroughly analyze complex peer relationships within a P2P network, yielding
more exact and robust trust evaluations.

Through multiple experimentation and analysis, we demonstrate that the proposed solution
not only strengthens trustworthiness within these networks but also ensures data integrity,
security, and reliable resource sharing among participants. By providing this innovative and
generic BTrust solution, we contribute to the advancement of trust management mechanisms,
fostering a trustworthy and efficient environment for decentralized networks.

This work extends the existing efforts on combining Blockchain and trust management
systems [9]. The main contributions of BTrust (and GBTrust) could be listed below:

• Dynamic Trust Formula: BTrust’s novelty lies in its adoption of a unique trust
formula that combines recommendation and evidence-based approaches to accurately
determine the trustworthiness level of peers within the network computed by distributed
mechanism.

• Efficient Peer Selection through Random Walks: BTrust effectively tackles the "cold
start problem" by employing random walks to identify trustworthy peers among
neighboring peers. This approach ensures the selection of reliable peers without causing
network overloads, enabling seamless integration of new nodes into the network.



Chapter 1. Introduction 6

• Usage of Remote Attestation: To safeguard the integrity of devices (both hardware
and software), BTrust leverages Remote Attestation (RA). This mechanism allows
authorized parties to detect any changes that may have occurred in remote devices,
ensuring the security and authenticity of participating nodes.

• Incentive Mechanism for Truthful Feedback: BTrust proposes an incentive mechanism
that encourages peers to provide honest and accurate feedback. By incentivizing
truthful reporting, the system mitigates the risk of malicious or biased feedback,
fostering a more reliable trust evaluation process.

• Improved RTMS precision and prediction: BTrust presents an upgraded iteration
integrating Graph Neural Networks (GNN) alongside a novel attention mechanism.
This proposition allows the network to dynamically adjust and allocate differing degrees
of significance to diverse trust features, resulting in refined and more precise trust
assessments.

• Resilience against dynamic malicious peers: BTrust and GBTrust present robust
mechanisms to detect and mitigate the influence of such peers, ensuring the stability
and security of the network.
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1.4 Thesis Organisation

The thesis is organised as follows:

• Chapter 2 provides an extensive review of the background and relevant literature in
the field of blockchain, and Reputation-Based Trust Management Systems (RTMS).

• Chapter 3 presents BTrust a blockchain based RTMS for securing resource sharing

• Chapter 4 presents GBTrust, a variant of BTrust based on GNN with a new attention
mechanism.

• Chapter 5 concludes the thesis by summarizing the findings and insights obtained
throughout the research and proposes potential research directions for future work.
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2.1 Introduction

This chapter provides an overview of the background and related technologies pertaining to
trust management systems in P2P networks, with a focus on the integration of blockchain and
GNN. First, the notion of trust and reputation is introduced, along with their relationship
with RTMS, in section 2.2. Section 2.3 outlines the building blocks and properties of RTMS.
Section 2.4 presents an overview of blockchain technology and its features that show promising
potential for enhancing RTMS. Finally, section 2.6 delves into GNN, a powerful machine
learning technique that operates on graph structures.

2.2 Trust and reputation-based trust

Trust can be defined as a subjective and intangible belief or confidence that an individual or
entity possesses the capability and willingness to act in a reliable, honest, and responsible
manner within a given context or domain. It is a dynamic and evolving notion, shaped by
consecutive interactions and experiences between parties involved. Trust is context-related,
meaning it may vary depending on the specific behavior, traits, or actions being evaluated.
According to Gambetta’s definition [10], trust is a particular level of the subjective probability
with which an agent assesses that another agent or group of agents will perform a particular
action, both before he can monitor such action (or independently of his capacity ever to be
able to monitor it) and in a context in which it affects his own action.

Trust is crucial for establishing positive relationships, fostering cooperation, and mitigating
risks in various social, economic, and technological interactions. In distributed systems and
peer-to-peer networks, trust plays a pivotal role in assessing the credibility and trustworthiness
of peers, enabling secure and efficient resource sharing, and facilitating decision-making
processes. Trust is a fundamental aspect of establishing relationships and interactions among
participants in distributed systems. It is often intertwined with the concept of reputation,
which can be seen as the aggregated opinion or trust degree of an entity from other entities
that have had prior interactions with the entity. While trust refers to a subjective belief
towards an entity’s behavior that evolves through repeated interactions, reputation provides
a more objective and quantifiable representation of the entity’s trustworthiness based on the
experiences and recommendations of other peers.

2.2.1 Reputation and its significance in trust management

Reputation represents the collective perception and opinion of a community or group of
individuals regarding the trustworthiness and reliability of an individual or an entity. In
various real-world scenarios, individuals often rely on reputation to assess the level of trust
they can place in an unfamiliar person or organization before engaging in any interaction.
While reputation in the physical world may stem from word of mouth, media coverage, or
tangible infrastructures, online communities present unique challenges in assessing reputation
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due to their vast scale, prevalence of anonymous identities, and the ease of creating and
maintaining digital personas.

To address the need for evaluating reputation in digital ecosystems, reputation systems play
a vital role. The objective of an RTMS is to assess the accountability and trustworthiness
of each participant using a quantitative approach. Trustworthiness is derived from direct
experiences with the entity or recommendations from other peers and is represented as
numerical scores, allowing for convenient measurement of the trust level. This trust and
reputation score can serve as a safeguard to manage the associated risks when communicating
and collaborating with other peers in dynamic and potentially hostile distributed systems.
By leveraging trust metrics within RTMS, participants can make informed decisions, build
reliable relationships, and foster a secure environment for resource sharing and collaboration.

Numerous applications of RTMS have been explored in the context of the Internet of Things
(IoT). One such application is the TrustChain framework proposed in [11], which employs
a three-layered trust management approach to tackle trustworthiness issues within supply
chains. The TrustChain system evaluates the quality of commodities by analyzing multiple
observations along the supply chain. In another study [12], researchers introduced a RTMS
solution to enhance data validation in crowd sourcing scenarios. By incorporating trust
management, this approach selects reliable validators based on the trustworthiness scores of
participants in the crowd sourcing service, ensuring accurate and dependable data validation
processes. These examples demonstrate the versatility and importance of RTMS in addressing
trust-related challenges across various IoT applications.

2.2.2 Types of reputation systems: Network architecture

The network architecture of a reputation system plays a crucial role in shaping the funda-
mental activities that define its operation. Specifically, it governs the processes of feedback
collection, feedback aggregation (reputation computation), and reputation dissemination.
Two primary network architectures are commonly encountered in reputation systems: cen-
tralized and decentralized.

• Centralized Network Architecture: In a centralized reputation system, all critical
functions such as feedback collection, aggregation, and reputation dissemination are
managed by a central authority or a single entity. This central entity controls the
entire process, making decisions and computations based on feedback received from
participants. While centralized systems provide simplicity and ease of management,
they also raise concerns regarding the trustworthiness and potential bias of the central
authority due to its considerable influence over reputation assessments. A prominent
example of this architecture is Google’s PageRank [13], a link analysis algorithm used
to determine the importance of web pages.

• Decentralized Network Architecture: In contrast to centralized systems, a decentralized
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reputation system operates in a distributed manner, with no single entity having
complete control. Feedback collection, aggregation, and reputation dissemination
are spread among the nodes participating in the network. Each node independently
contributes to the reputation computation process based on the feedback received
from its interactions with other entities. Decentralized systems enhance transparency,
trust, and resilience, as they eliminate a single point of failure and decisions are
collectively made by the network participants. Notable examples of such systems
include EigenTrust [14] and PowerTrust [8].

The choice of network architecture profoundly impacts the efficiency, security, and fairness
of the reputation system. Depending on the specific requirements and characteristics of
the ecosystem in which the reputation system operates, the selection between centralized
and decentralized architectures becomes a critical consideration in ensuring the system’s
effectiveness and reliability.

2.2.3 Types of trust

In the context of trust management systems, trust can manifest in different forms and exhibit
various characteristics. Understanding the different types of trust is essential for designing
effective and context-specific trust models. In this section, we categorize trust into several
types based on its nature and scope, shedding light on the nuances of trust in distributed
systems.

• Reputation-based Trust: Reputation-based trust systems aggregate feedback and
reputation scores from multiple interactions to determine an entity’s overall reputation
level. This approach utilizes the collective opinions and experiences of a community to
assess the trustworthiness of an entity. Such systems are crucial in many distributed
environments where they evaluate and compare entities based on their historical
behavior and reliability. Prominent examples of reputation-based trust systems include
SecuredTrust [15], EigenTrust [14], and PowerTrust [8].

• Direct Trust: Direct trust stems from direct interactions between individual entities
within a network. As entities engage in activities such as sharing resources or exchanging
information, they gain firsthand experiences of each other’s behavior and reliability.
This direct experience is integral to forming trust beliefs, enabling a personalized and
specific assessment of an entity’s trustworthiness. Notable implementations of direct
trust models include TW-Trust [16], dTrust [17], and GenTrust [18].

• Indirect Trust: Indirect trust arises from the recommendations and opinions about
an entity provided by other members within a network. Entities may not always
have direct experiences with each other and often rely on feedback and reputation
scores from their peers to evaluate the trustworthiness of someone unfamiliar. This
mechanism is particularly valuable in scenarios where direct interactions are scarce or
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when new entities join the network. Notable examples of indirect trust mechanisms
include PeerTrust [19], as well as recent models discussed by Yuhong [20] and Xuemeng
[21].

• Transitive Trust: Transitive trust involves the propagation of trust through a network of
interconnected entities. In such scenarios, if entity A trusts entity B, and entity B trusts
entity C, entity A may also extend some level of trust to entity C based on the existing
trust with entity B. This chaining of trust relationships facilitates the assessment of
trustworthiness for distant or unfamiliar entities by relying on intermediary trusted
entities. Examples of this category include HonestPeer [22], AuthenticPeer++ [23],
CuboidTrust [24], and T2D [25].

• Contextual Trust: Trust is inherently contextual, influenced by specific situations,
tasks, or environments. Contextual trust acknowledges that an entity’s trustworthiness
may vary based on diverse factors such as the type of service provided, the sensitivity
of the data shared, or the nature of the interaction. Trust models that adapt to various
contexts can enhance the precision of trust assessments and support more effective
decision-making. Notable studies in this area include works by Liu [26], Alhussain [27],
and Altaf in multiple contexts [28], [29].

The table 2.1 highlights the characteristics, advantages, and limitations of each trust type,
providing valuable insights into their suitability for specific use cases.

2.2.4 Trust aggregation

One of the key aspects in RTMS is the aggregation of trust evidence, which involves the
accumulation and combination of trust ratings or feedback from various sources to calculate
the final trust and reputation score of an entity. The aggregation process helps in synthesizing
the dispersed trust data into a comprehensive measure of trustworthiness. Several models
exist for aggregating feedback to derive reputation scores. Below, we summarize some of the
common models. For a comprehensive survey of these methods, also known as reputation
computation engines, Jøsang et al. [30] offer an excellent reference:

• Sum and Mean Model: A prevalent method in reputation scoring involves aggregating
feedback through simple summation or by calculating the mean of feedback values,
as detailed in Hasan’s work [31]. The summation approach accumulates all feedback
received, providing a comprehensive total score, whereas the mean approach offers
a normalized representation by averaging the feedback. These methods are widely
adopted in practical reputation systems, with notable examples including eBay.com,
Epinions.com, and Amazon.com

• Markov Chain: The Markov Chain approach in reputation-based aggregation employs
a probabilistic model to represent trust relationships among entities, as demonstrated
in algorithms like EigenTrust [32] and PowerTrust [33]. This method utilizes transition
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Table 2.1: Comparison of Types of Trust in Trust and Reputation Management

Type of Trust Description Pros Cons

Direct Trust Arises from direct interac-
tions between individual en-
tities within a network.

- Based on first-hand ex-
periences.

- Limited to entities
with whom direct inter-
actions have occurred.

Indirect Trust Emerges from recommenda-
tions and opinions provided
by other entities within the
network.

- Useful when direct in-
teractions are scarce or
unavailable.

- Relies on the accu-
racy and honesty of the
sources providing the
recommendations.

Transitive Trust Involves trust propagation
through a network of inter-
connected entities.

- Enables trust propaga-
tion beyond direct inter-
actions.

- May be influenced by
multiple intermediaries,
potentially leading to in-
accuracies.

Repution-based Derived from historical in-
teractions and experiences
with entities over time.

- Provides a comprehen-
sive view of an entity’s
trustworthiness.

- May not account for
changes in behavior over
time.

Contextual Trust Trust that is context-
specific and can vary based
on the circumstances of
interactions.

- Offers adaptability to
different scenarios.

- Requires accurate
context identification,
which can be challeng-
ing.

probabilities to propagate trust values throughout the network, aiming to converge on
stable trust ratings. Markov Chain-based aggregation excels in its resilience against
malicious behavior and its capability to manage inaccurate or outdated information
effectively.

• Bayesian Aggregation: Bayesian methods, such as those detailed in Stereotrust [34]
and explored further in the works of Hauke [35] and Burnett [36], utilize probabilistic
models to iteratively update trust beliefs based on new evidence. Entities begin with
initial prior trust beliefs and refine these beliefs as they receive fresh feedback. Bayesian
aggregation is particularly advantageous in dynamic environments where the landscape
of trust information is continually evolving.

• Flow Network Model: In the context of trust management, the flow network model (as
explored in studies like Levien [37] and others [38], [39]) is represented by a weighted
directed graph where each edge symbolizes the trust capacity between nodes. In this
setup, nodes correspond to entities within a network that can extend and receive trust
through their incoming and outgoing connections, ensuring that the trust extended
equals the trust received. The source node, representing a highly trusted entity, has
only outgoing connections with theoretically unlimited trust output. Conversely, the
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sink node, which might represent a trust aggregator or evaluator, has only incoming
connections and can accumulate an unlimited amount of trust inputs

• Fuzzy Logic : Unlike traditional binary logic, which only allows for precise and definitive
values (true or false), Fuzzy Logic employs fuzzy membership functions to handle
uncertain or imprecise evidence of trust. This approach enables the quantification of
trust degrees by accommodating gradations of truth, as discussed in various studies
[40], [41],[42]).

2.2.5 Trust dimensions

Trust is a complex and context-dependent concept, which means that trust cannot be
universally applied across different contexts without proper adjustment and recalibration.
Context-awareness is a crucial consideration when designing an RTMS. RTMS can be tailored
to work with a single context or support multiple-context awareness in deriving trust from
collected evidence, depending on their design.

Trust dimensions refer to the number of contexts that a RTMS can accommodate, and they
can be broadly categorized into single-dimension and multi-dimension approaches:

• Single-Dimension RTMS: In single-dimension RTMS, trust is evaluated and computed
based on a specific context or domain [43], [44]. The trustworthiness of an entity is
assessed solely within that defined context, meaning that the trust score does not carry
over to other contexts. These systems are particularly suitable when trust relationships
and evidence are highly specialized and not applicable outside the designated context.

• Multi-Dimension RTMS: These systems consider various aspects and contexts in
which trust is relevant, providing a more comprehensive evaluation of an entity’s
trustworthiness. By incorporating multiple dimensions, these RTMS [45] offer a more
holistic view of trust, enabling broader application of trust assessments across diverse
contexts. This approach allows entities to be evaluated more accurately, reflecting
their performance and reliability in different areas.

The choice between a single-dimension or multi-dimension approach depends on the specific
requirements and nature of the trust scenarios within a given system. While single-dimension
RTMS provide focused and specific trust evaluations within well-defined contexts, multi-
dimension RTMS can offer greater adaptability and coverage across a wide range of contexts.

2.3 Peer-to-Peer (P2P) networks

A Peer-to-Peer (P2P) [46] network is a decentralized and distributed network architecture in
which individual nodes, called peers, collaborate and interact directly with each other to share
resources, data, or services without the need for a centralized server or intermediary. In a P2P
network, each node functions both as a client and a server, allowing direct communication
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and data exchange between peers. Unlike traditional client-server models, where a central
server facilitates communication and resource access for multiple clients, P2P networks rely
on the collective computing power and storage capacity of all participating nodes. Each
node in the network can act as both a provider and a consumer of resources, enabling a more
efficient and scalable approach to resource sharing. P2P networks have been widely utilized
for various applications [47], including file sharing [48], content distribution [49], real-time
communication [50], collaborative computing [51], and decentralized systems [52]. They offer
several advantages, such as increased resilience to failures, improved fault tolerance, better
load distribution, and reduced dependency on single points of failure.

The absence of a central authority in P2P networks makes them more resistant to censorship
and single points of control, making them suitable for applications that prioritize decentral-
ization, privacy, and data autonomy. However, managing trust and security in P2P networks
can be challenging due to the diverse nature of the participating peers and the need for
efficient mechanisms to evaluate and maintain trust relationships among them.

2.4 Blockchain and DLTs

Blockchain technology was initially introduced by Satoshi Nakamoto in 2009 [53] as the
underlying mechanism of Bitcoin, as a solution to the double-spending problem. Concretely,
Blockchain can be defined as a replicated database (ledger) among the participants of a
peer-to-peer network (Figure 2.1) and managed by a consensus mechanism. Transactions are
packed into block units which are chronologically ordered and attached using cryptographic
hashes to ensure data integrity.

One of blockchain’s fundamental features is the distribution of the same ledger to all nodes
participating in the network. This approach ensures transparency and high availability
of data since each node possesses an identical copy of the ledger. Consequently, the
need for a centralized entity to maintain and validate the ledger is eliminated, enhancing
decentralization and trust within the system. To ensure the integrity of the ledger and
prevent conflicting versions of data, a consensus mechanism is employed. This mechanism
dictates that the majority of nodes must agree on the next block of data to be added to the
chain. By achieving consensus, the network can maintain a single, agreed-upon version of
the blockchain, eliminating potential discrepancies and ensuring the accuracy of transactions.
Several consensus mechanisms exist in blockchain technology, each with its own unique
characteristics and advantages. Some commonly used consensus mechanisms include Proof-
of-Work (PoW) [54], where nodes compete to solve complex mathematical puzzles to validate
transactions and add blocks to the chain [55]; Proof-of-Stake (PoS) [56], where validators
are selected based on the number of tokens they hold and are responsible for validating
transactions; and Proof-of-Authority (PoA) [57], where validators are pre-approved and
known identities within the network responsible for validating transactions and adding new



Chapter 2. Background and Related Technologies 17

blocks. Each of these consensus mechanisms brings different benefits and trade-offs in terms
of security, energy efficiency, scalability, and decentralization [58]. The choice of consensus
mechanism depends on the specific requirements and goals of the blockchain network being
implemented.

Bitcoin’s remarkable success as a global peer-to-peer network operating autonomously has
paved the way for a revolutionary class of distributed systems known as blockchain. However,
the growing popularity of this paradigm has led to a significant shift in the understanding of
what constitutes a blockchain. The proliferation of systems marketed as "blockchain" that
lack the core elements of the blockchain concept has led to a complex ecosystem within the
industry. In response to this, a broader term, "Distributed Ledger Technology" (DLT), has
emerged to encompass this category of projects that are heavily inspired by blockchain but
do not strictly adhere to its principles. DLT serves as a more inclusive term when referring
to these blockchain-like systems, acknowledging their similarities while acknowledging their
deviations from the traditional blockchain model.

Figure 2.1: Basic blockchain network

Types of Blockchain

Blockchain systems can be classified into three main types based on several criteria and their
usage in different application scenarios. These types are public, private, and consortium
blockchains :
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• Public Blockchains: Public blockchains [53] [59] [60] [61] offer an open and decentralized
platform that allows users from various organizations and backgrounds to participate.
Users can join the network, transact, mine, and perform read and write operations
on the blockchain without any restrictions. In permissionless blockchains, there are
no specific validators or pre-selected nodes; instead, all users can publish new blocks
by solving computationally expensive puzzles or staking their own cryptocurrency.
The blockchain’s openness and transparency enable anyone to maintain a copy of the
distributed ledger, making it secure and immutable. Additionally, public blockchains
are tamper-resistant because each transaction incurs a processing fee, discouraging
malicious attempts to alter the contents due to the high cost involved.

• Private Blockchains: Private blockchains [62] [63] [64] are designed to facilitate the
private sharing and exchange of data among a defined group of known members. Unlike
public blockchains, access to a private blockchain is restricted, and participation is
limited to pre-approved entities. This controlled environment allows for more efficient
and confidential transactions within the closed network. Private blockchains are often
adopted by organizations seeking to maintain data privacy while still benefiting from
the distributed ledger technology.

• Consortium Blockchains: Consortium blockchains [65] [66] represent a hybrid approach,
combining elements of both public and private blockchains. In a consortium blockchain,
no single organization controls the consensus process or block validation. Instead, a
set of pre-selected nodes, typically representing different organizations, collaboratively
handle these tasks. Consortium blockchains offer a more controlled and semi-private
environment, providing benefits such as increased efficiency and reduced transaction
costs compared to fully public blockchains. This type of blockchain is particularly
useful when multiple organizations need to work together while maintaining a certain
level of trust among the participants.

Smart contract

The Smart contract concept is one of the key innovations of Blockchain technology. The
concept was proposed even before its emergence by N. Szabo who first coined the term smart
contract and defined it as a “computerized transaction protocol that executes the terms of a
contract. The general objectives of smart contract design are to satisfy common contractual
conditions (such as payment terms, liens, confidentiality, and even enforcement), minimize
exceptions both malicious and accidental, and minimize the need for trusted intermediaries”
[67]. However, this objective was only truly concretized with the emergence of Blockchain
technology. Concretely, a smart contract is a deterministic executable script –written in a
high-level programming language– that codifies a given logic (e.g. a business logic) as a set
of instructions for manipulating the states recorded in Blockchain. The script’s clauses or
functions are invoked by external transactions and executed by the validators in the network.
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The execution result is then recorded in the blocks.

Blockchain’s smart contract capabilities can facilitate the automation of trust-related pro-
cesses, such as feedback collection, trust computation, and dissemination. Smart contracts
are self-executing contracts with predefined rules and conditions, allowing trust-related
interactions to be executed automatically once the specified criteria are met.

Consensus protocols

A consensus mechanism in the context of blockchain refers to the set of rules and protocols
implemented within a decentralized network of nodes to achieve agreement on the validity and
order of transactions and to maintain the integrity and consistency of the distributed ledger.
It is a crucial component of blockchain technology that ensures consensus among network
participants, who may be anonymous and untrusted, regarding the state of the blockchain.
The consensus mechanism establishes a mechanism for verifying and validating transactions,
resolving conflicts, and preventing malicious activities, allowing the network to achieve a
shared, immutable, and tamper-proof record of transactions that all participants agree upon.
Table 2.2 compare most known consensus mechanism used in blockchain networks.

Table 2.2: A comparison of consensus protocols

Network Model Adversarial model Adversary mode Fault
tolerance

Identity Model Safety Liveness Finality transaction
throughput

Type*

PBFT [68] Asynchronous Threshold Adversary NA f<n/3 Permissioned Strong Weak Absolute Very high Blockchain-like

RAFT [69] Asynchronous Crash-failure NA f<n/2 Permissioned Strong Weak Absolute Very high Blockchain-like

RIPPLE [70] Asynchronous Threshold Adversary Adaptive f<n/5 Permissionless Strong Weak Absolute High Blockchain-like

STELLAR [71] Asynchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very High Blockchain-like

HONEYBADGER [72] Asynchronous Threshold Adversary Non adaptive f<n/3 Permissioned Strong Strong Absolute Very high Blockchain-like

POW [53] Partially-synchronous Threshold Adversary Strongly adaptive f<n/2 Permissionless Weak Strong Probabilistic Low Blockchain

BITCOIN-NG [73] Partially-synchronous Threshold Adversary Strongly adaptive f<n/2 Permissionless Weak Strong Probabilistic Very high Blockchain

BYZCOIN [74] Partially-synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain

GHOST [75] Partially-synchronous Threshold Adversary Non adaptive f<n/2 Permissionless Weak Strong Probabilistic High Blockchain

CASPER FFG [76] Asynchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain

CASPER TFG [76] Asynchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Absolute High Blockchain

DPoS (EOS) [77] Partially-synchronous Stake Adversary Non adaptive f<n/3 Permissionless Weak Strong Absolute High Blockchain-like

OUROBOROS [78] synchronous Stake Threshold Adversary Middly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain

OUROBOROS
PRAOS

[79] Partially-synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless weak Strong Probabilistic High Blockchain

OUROBOROS
GENESIS

[80] Partially-synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain

OUROBOROS
CHRONOS

[81] Partially synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless weak strong Probabilistic High Blockchain

TENDERMINT [82] Partially synchronous Stake Threshold Adversary Non adaptive f<n/3 Permissioned Strong Weak Absolute High Blockchain-like

ALGORAND [83] Partially synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Strong Weak Absolute High Blockchain

THUNDERELLA [84] Synchronous Stake Threshold Adversary Middly adaptive f<n/3 Permissionless Strong Weak Absolute (Fast Path) Very high Blockchain-like

HOTSTUFF [85] Partially-synchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain-like

LIBRABFT [86] Partially synchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain-like

SPECTRE [87] Partially synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic High Blockchain-like

IOTA [88] Partially synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic High Blockchain-like

HASHGRAPH [89] Asynchronous Threshold Adversary Non adaptive f<n/3 Permissioned Strong Weak Probabilistic Very high Blockchain-like

SNOW WHITE [90] Asynchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain

AVALANCHE [91] Partially synchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic Very high Blockchain

f : is the faulty nodes or actors and n: is the total number of nodes that are coming to consensus.

2.4.1 An overview and classification of Blockchains and DLTs

During our exploration of the blockchain domain, we introduced the DCEA model, which
delineates DATA, Consensus, Execution, and Application, serving to differentiate blockchain
systems from other frameworks. This model establishes a structured and layered heteroge-
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neous stack catered for Distributed Ledger Technology (DLT), which encompasses blockchain
and similar systems. From a design standpoint, our conceptual framework categorizes DLT
technologies into four fundamental and discrete layers: data, distributed consensus protocols
and network organization, execution, and application layers. Each layer plays a distinct and
defined role within the architecture of DLT. The application of the DCEA framework leads
to a two-dimension high-level taxonomy (blockchain and blockchain-like).

Presentation of DCEA framework

The framework consists of the DLTs components and their main properties (Table 2.3), with
logically related functions grouped together. This layering approach is aligned with the
DLT’s modular architecture. That is, it will help to provide a better understanding of DLTs,
and serves as a baseline to build a comparative analogy between different DLT variants.

Table 2.3: Layers and components of DCEA framework

Application Layer Integrability DLT orientation and purpose Wallet and identity management

Execution Layer
Execution

environment
Turing-completeness Determinism Openness Interoperability

Consensus Layer Safety Liveness Finality
Network

model

Failure

model

Adversary

model

Governance

model

Transaction

ordering

Conflict

resolution

Data Layer Data structure Data shareability Data immutability States storage

In the following, we introduce the four layers that form the DLT stack.

• Data Layer: handles the data flowing through the distributed network and stored in
the ledger. It includes entries recorded in the ledger, representing elements defined
by protocols or data received from external sources. The data can be stored on the
blockchain itself (on-chain storage) or in an auxiliary distributed database (off-chain
storage).

• Consensus layer: Defines the global software-defined ruleset to ensure agreement among
all participants, in a network, on a unified ledger. Consequently, this layer designates
the formal rules that govern the system.

• Execution layer: Represents the components responsible for enforcing and executing
distributed programs (e.g. smart contracts). Basically, these programs or contracts
codify a given logic (e.g. a business logic) as a set of instructions for manipulating the
states recorded in the ledger.

• Application layer: Represents an abstraction layer that specifies a variety of protocols
and APIs provided by the DLT system to enable the building of distributed applications
commonly called DApps. This layer also represents a communication link between the
external actors or applications and the code hosted on the DLT ledger.
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Based on the above layering, we propose a four-layered taxonomy (2.2), to categorize DLT
systems. At each layer, DLTs adopt different settings for DCEA properties defined in Table
2.3. Based on their combinations, at the four layers, we can define different DLT classes.

Figure 2.2: Layered taxonomy of DLT systems

2.4.2 The distinction between Blockchain and Blockchain-like systems

The distinction between Blockchain and Blockchain-like systems helps us to scope the targeted
services because multiple Blockchain-like systems don’t provide the required capabilities
(decentralization, transparency, etc.) offered by BTrust. To make the distinction possible,
we conducted a comprehensive survey [92] [93] [94] aims to provide an expanded and current
review and evaluation of existing blockchains and their variants, while establishing clear
boundaries between blockchain and blockchain-like systems. This has been achieved by de-
constructing DLTs system using the DCEA framework and evaluating the differences between
the two high-level taxons blockchain and the blockchain-like. After this deconstruction, we
observe that they share many common characteristics, as well as distinguishing properties as
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illustrated in Figure2.2.

Table 2.4: Distinctive settings of blockchain and blockchain-like in DCEA framework

Components and properties Blockchain Blockchain-like

Data Layer

Data structure Chain of block Chainless model

Shareability Global Restricted by design

States management On-chain Off-chain

Immutability Strong Weak

Consensus layer

Consensus identity model (membership) Permissionless Permissioned

Governance Democratic, Oligarchic Dictatorship, Oligarchic

Data ordering Decentralized and open Centralized or reserved

Execution layer

Conflict resolution Longest-chain/ No-Forks Longest-chain/No-Forks

Turing completeness Turing/Non-Turing complete Turing and Non-Turing complete

Openness Closed/Oracle-based Open/Oracle-based

Interoperability Non-interoperable/Interoperable Non-interoperable/Interoperable

Determinism Deterministic Non-deterministic

Execution environment and rules enforcement VM, Script runtimes VM, Script runtimes

Application layer

Integrability High, Medium, Low High, Medium, Low

DApp orientation DApps, Cryptocurrency DApps/ Cryptocurrency

Wallet management Built-in Built-in or External

Table 2.5 presents a summary comparing a substantial representative sample of DLTs, totaling
44 projects, implemented within the industry or introduced in recent research literature. The
comparison encompasses four key aspects: the composition within the DCEA framework,
operational scope, level of decentralization, and the higher taxonomic classification to which
each belongs. This comparison aids in understanding the diverse configurations of various
blockchain technologies when formulating the trust protocol. Additionally, it assists in
assessing the technical assumptions and the protocol’s applicability scope.
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Table 2.5: A summary table of comparison and analysis of the selected DLTs
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Æternity CoB G On S GHOST, Bitcoin-NG (for secu-
rity) and PoS (for governance
)

De Bl Randomly selected
miner

Lc Tc Op
(Built-
in
oracle)

Æternity VM Dc Sophia, Varna,
solidity

No Cy
and
DA

H Ge

Algorand CoB G On S Algorand Ol Ex Randomly selected
leader (stake weighted
election)

Nf NTc Is (OB) Algorand VM Dc TEAL No Cy
and
DA

M Ge

Ardor CoB (One
parent chain
with multiple
child chains)

G On S PoS Ol Bl Forging account (NXT
forging algorithm)

Lc NTc Op Deterministic Java
VM

Dc Java Yes (between child
chains)

Cy
and
DA

M Ge

Bigchaindb
2.0

HDS (a
database and
a CoB)

G On/Off W Tendermint Ol or
De

Ex Elected leader orders
transactions by arrival
time

Nf Nsp No DA M Bo

Bitcoin CoB G On S PoW An Bl
and
Ex

Randomly selected
miner

Lc NTc Is Script runtime Dc Bitcoin script-
ing, Miniscript

No Cy M Po

BitShares CoB G On S DPoS De Bl Elected Witness Lc NTc Is Bitshares runtime Dc C++ No Cy L So

Byzcoina Skipchain G On S Byzcoin An Ex Randomly selected
miner

Lc NTc Is Byzcoin runtime Dc Go No Cy L Ge

Cardano CoB G&R On S Ouroboros De Bl Randomly selected
leader

Lc Tc Is IELE VM Dc IELE and Plu-
tus

Yes (with cardano
sidechain)

Cy
and
DA

M Ge

Corda (R3) DDB G Off W RAFT, BFT-SMaRt or
KAFKA

Di, Ol
or De

Ex BFT-SMaRt dis-
tributed notary

Nf Tc Is (OB) Java VM NDc Kotlin, Java No DA H Bo

Cosmos CoB (Hub
and multiple
zones)

G&R On S Tendermint De
(with
Veto)

Bl Elected block producer Nf Tc Is WebAssembly VM Dc Wasm lan-
guages(cosmos
SDK)

Yes (Cross-chain In-
teroperability)

Cy
and
DA

M Ge

Decred CoB G On S PoW and PoS De Bl Randomly selected
miner

Lc NTc Is Script runtime Dc Modified bit-
coin scripting

No Cy L Po

Elrond SCoB
(Metachain
and shards)

G On S Secure PoS (variant of Algo-
rand )

De Bl Randomly selected pro-
poser

Lc Tc Is (OB) Elrond VM Dc IELE, Wasm
languages

Yes (between
Metachain and
shards)

Cy
and
DA

L Ge

EOS CoB G Off W Transactions-as-PoS Ol Bl Elected block producer Lc Tc Is (OB) WebAssembly VM Dc Wasm lan-
guages

Yes (with EOSYS
sidechain )

Cy
and
DA

H Ge

Ethereum
1.0

CoB G On S PoW (ETHASH) An Ex Randomly elected
miner

Lc Tc Is (OB) Ethereum VM Dc Solidity, Vyper,
LLL, Julia

No Cy
and
DA

H Ge

Ethereum
Enterprise

CoB G&R On W PoA, RAFT or IBFT Di, Ol
or De

Ex Elected leader Lc Tc Is Ethereum VM Dc EVM languages No DA H Bo

Exonum
Enterprise

CoB G & R On S Exonum protocol Di, Ol
or De

Bl Predefined leader Nf Tc Op
(Built-
in
oracle)

Java VM and Rust
runtime

NDc Java, Rust Yes (one way with
Bitcoin)

DA M Bo

Elastos CoB (main
chain and
sidechains)

G On S DPoS and POW (merged min-
ing with Bitcoin)b

De Bl Randomly elected
miner

Lc Tc Is CAR runtime,
EVM (Ethereum
Sidechain) ,
NEOVM(NEO
sidechain)

Dc C++, Java,
Swift,
JavaScript,
Golang, solid-
ity

Yes (Sidechains can
transact with each
other)

Cy
and
DA

M Ge

Filecoin CoB G On S Proofs-of-Spacetime Ol Bl Elected leader (using
Expected Consensus
(EC))

Lc/
Hcc

Tc Is FilecoinVM Dc Golang Nod DA H DSo

Hashgraph DAG
(Transaction-
based DAG)

G&R On W Hashgraph Ol Bl Fair ordering via Con-
sensus Time Stamping

Nf Tc Is (OB) Ethereum VM Dc EVM languages Yes (with Hyper-
ledger Fabric)

Cy
and
DA

M Ge

Hyperledger
fabric

HDS G&R Off W PBFT Ol or
De

Ex Ordering service node Nf Tc Op Java VM and
Nodejs runtime

Dc Go, JavaScript No DA H Bo

IOTA DAG
(Transaction-
based DAG)

G On W IOTA Ol Ex End-user and coordina-
tor node

Hb Nsp (Qubic a smart contract protocol is under development)e Yes (with Hyper-
ledger Fabric)

Cy M IoT

Lisk CoB
(Main and
sidechains)

G On S DPoS De Bl Elected leader Lc Tc Is NodeJs runtime Dc JavaScript No Cy
and
DA

H Ge

Multichain CoB G&R On/Off W Mutlichain protocol (variant of
PBF)

Ol Ex Predefined leader Lc Multichain do not support smart contracts No DA L Ge

NEO CoB G&R On S DBFT (Delegated Byzantine
Fault Tolerance)

Ol, De Bl
and
Ex

Elected leader Nf Tc Is (OB) NeoVM Dc .NET and
JVM languages
(Java, Kotlin)

Yes (Between
private blockchains
connected to NEO)

Cy
and
DA

M Ge

Omniledgerf SCoB G On/Off S ByzCoinX (Variant of Byzcoin) Ns Ns Randomly elected
leader

Nf Not supported Yes (with its
shards)

- - Ge

Parity sub-
strate

CoB G&R On W Pluggable consensus (Hybrid
PBFT, Aurand, Rhododen-
dron, Shaft, ouroboros, PoW)

Ol Bl Depends on the chosen
consensus mechanism

Nf Tc Is WebAssembly VM Dc WASM lan-
guages

Yes (with Polkadot) DA H Bo

Polkadot
(Relay
chain)

CoB (relay
chain)g

G On S GRANDPA and BABE (PoS) De Bl Randomly elected
leader

Lc Tc Is WebAssembly VMh Dc WASM lan-
guages

Yes (Cross-chains
interoperability)

Cy
and
DA

H Io

Quorum CoB G&R On W IBFT or RAFT or Clique POA Di, Ol
or De

Ex Elected leader Nf Tc Is (OB) Ethereum VM Dc EVM languages No DA H Ge

Qutum CoB G On S PoS De Bl Elected leader Lc Tc Is (OB) Ethereum VM and
X86 VM

Dc EVM lan-
guages, C,
C++, Rust,
Python

Yes (Atomic swap
with bitcoin)

Cy
and
DA

Hign Ge

Ripple DDB (chain
of ledgers
stored as
key-value)

G On S Ripple (FBA) Ol Ex Validating nodes con-
verge toward a canon-
ical order

Nf NTc Is Built-in specialized
payment types

Dc JavaScript No Cy M Po

Rootstock CoB G On S POW (merged mining with Bit-
coin)

Ol Bl Randomly selected
miner

Lc Tc Is (OB) Ethereum VM Dc EVM languages Yes (with bitcoin) Cy
and
DA

L Ge

Steem CoB G On S DPoS De Bl Elected leader Lc Not supported Cy L So

Stellar DDB (chain
of ledgers
stored as
key-value)

G On S Stellar (FBA) Ol Ex Validating nodes (using
transactions sequence
number)

Nf NTc Is Stellar runtime Dc Java,
JavaScript,
Go

Yes (Atomic
swap with other
blockchains)

Cy Hign Po

Sia CoB G On S PoW An Ex Randomly elected
miner

Lc Not supported No DA M DSo

Stratis CoB (Main
chain and
sidechains)

G On S PoA or PoS Ol Ex Randomly elected
miner

Lc Tc Is .NER runtime Dc .Net languages
(e.g C#)

Yes (with its
sidechains and with
bitcoin)

Cy
and
DA

M Ge

Nano DAG (block-
lattice)

G On S Open Representative Voting
(ORV) (based on DPoS)

Ol Bl Users (Sender and re-
cipient)

Nfi Not supported No Cy L Ge

Tezos CoB G On S DPoS (Liquid PoS) and Emmy De Bl Elected miner Lc Tc Is (OB) Tezos interpreter Dc Michelson No Cy
and
DA

M Ge

Wanchain CoB G&R On S PoS De Bl Elected miner Lc Tc Is (OB) Ethereum VM Dc EVM languages Yes (Cross-Chain
Communication
Protocol)

Cy
and
DA

L Io

Waves CoB G On S Waves-NG (PoS based on
Bitcoin-NG)

An Bl Elected miner (PoS) Lc NTc Is (OB) Waves runtime Dc Rideon Yes (Atomic
swap with other
blockchains)

Cy
and
DA

L Ge

Zilliqa SCoB G On S PBFT and POW (Ethash) De Bl Elected leader Nf Tc Is (OB) Zilliqa VM Dc Scilla No Cy
and
DA

M Ge

Libra (Face-
book)

DDB G On W LibraBFT Ol Ex Elected leader Nf Tc Is Libra VM Dc Move No Cy M Po

Artis CoB G On S HoneyBadgerBFT Ol Bl Correct nodes Nf Tc Is (OB) Ethereum VM Dc EVM languages Yes (with
Ethereum)

DA M Ge

VeChain CoB G On S PoA Ol Bl Elected leader (de-
terministic pseudo-
random process )

Lc Tc Is (OB) Ethereum VM Dc EVM languages No Cy
and
DA

M Ge

Red Belly CoB G On S DBFT Democratic BFT Ns Ns Elected proposers Nf NTc Is Script runtime Dc Bitcoin-like
scripting

No Cy L Ge
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LEGEND :
CoB: Chain of blocks, SCoB: Sharded Chain of blocks, DDB: Distributed database, HDS: Hybrid data structure
G: Global, S: Strong, R: Restricted, W: Weak, Cy: Cryptocurrency, DA: DApps, Ol: Oligarchic, De: Democratic,
An: Anarchic, Di: Dictatorship
Bl: Built-in, Ex: External, Ns: Not specified, Nsp: Not supported, Nf: No forks, Lc: Longest chain, Hb: Heaviest
branch, Hc: Heaviest chain,
Op: Open, Is: Isolated, OB: Oracle-based, Dc: Deterministic, NDc: Non-Deterministic, H: High, M: Medium, L:
Low, Ge: General.
Bo: Business-oriented, Po: Payment-oriented, So: Service-oriented, DSo: Decentralized storage-oriented, IOT:
IOT-oriented, Io: Interoperability-oriented

a Based on the implementation available on https://github.com/dedis/cothority/tree/master/byzcoin
b Elastos sidechains can have any consensus mechanism
c Filecoin gives weight to blocks that offer more storage power
d Filecoin ensures interoperability between different implementations of Filecoin protocol.
e https://qubic.iota.org
f Based on the minimalistic implementation available on https://github.com/dedis/student_18_byzcoin
g Parachains can have their own data structure
h Parachains are individual chains with their own runtime logic.
i In Nano, each user maintains its own DAG and a balance-weighted voting system is used to handle conflicting

transactions.

2.5 Integration of Blockchain in reputation-based trust man-
agement systems (RTMS)

Traditional RTMS often face challenges such as centralized control, a lack of transparency,
and a vulnerability to manipulation. The integration of blockchain technology offers a
promising solution to address these limitations and enhance the effectiveness of RTMS.

• Decentralization and Consensus: One of the key advantages of blockchain in RTMS
is its decentralized nature. By utilizing a distributed network of nodes, blockchain
eliminates the need for a central authority, making the trust management system more
resilient and resistant to single points of failure. The consensus mechanism employed by
blockchain ensures that trust-related data is agreed upon by the network participants,
further enhancing trustworthiness.

• Immutability and Transparency: Blockchain’s inherent immutability ensures that once
data is recorded on the blockchain, it cannot be altered or tampered with. This property
is particularly valuable in RTMS, as it prevents malicious actors from manipulating
reputation scores or feedback. Additionally, the transparent nature of blockchain
allows all network participants to access and verify the integrity of trust-related data,
promoting accountability and trust among peers.

• Trustworthiness Verification: Blockchain enables the verification of trust-related infor-
mation through cryptographic techniques. Reputation scores, feedback, and transaction
histories can be securely stored on the blockchain, allowing peers to independently
verify the trustworthiness of their counterparts. This verifiability strengthens the

https://github.com/dedis/cothority/tree/master/byzcoin
https://qubic.iota.org
https://github.com/dedis/student_18_byzcoin
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credibility of the RTMS and promotes trust in the network.

• Smart Contracts and Incentives: Smart contracts, programmable code deployed on the
blockchain, can be leveraged in RTMS to automate trust management processes. These
contracts can define rules and conditions for reputation scoring, feedback validation,
and dispute resolution. Additionally, blockchain-based RTMS can introduce incentive
mechanisms, such as token rewards or reputation-based incentives, to encourage honest
behavior and discourage malicious activities.

The integration of blockchain technology in RTMS presents a paradigm shift in trust
management, providing enhanced security, transparency, and reliability in P2P networks. By
leveraging the decentralized and immutable nature of blockchain, trust-related information
can be securely stored and verified, promoting a more trustworthy and resilient network
ecosystem.

2.6 Background on GNN

2.6.1 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) [95] are a class of deep learning models specifically designed
to process and analyze data structured as graphs. A graph consists of nodes (also known
as vertices) and edges (also known as links or connections) that represent the relationships
between nodes. GNNs leverage the inherent structure of graphs to learn and infer information
about the nodes and their relationships, making them a powerful tool for various tasks in
different domains.

The concept of GNNs can be traced back to the late 2000s, but their popularity and
advancements surged with the development of more sophisticated architectures and training
techniques [96]. They were introduced as a response to the limitations of Convolutional Neural
Networks (CNNs) [97], which struggled to achieve optimal results in scenarios involving
arbitrary graph sizes and complex structures. The fundamental idea behind GNNs is to
allow nodes to aggregate and exchange information with their neighboring nodes iteratively,
propagating and refining this information across the entire graph. At the core of a GNN is the
message-passing mechanism, where each node receives messages from its neighbors, aggregates
them, and uses the aggregated information to update its own representation. This process
is performed iteratively over multiple layers, enabling the network to capture complex and
high-level patterns in the graph data. The architecture and processing procedures of a typical
and basic Graph Neural Network (GNN) involve several steps (see Figure 2.3). Firstly, GNN
selects neighbors with a certain strategy. Then, an aggregate function is applied to extract
information around the central node. Finally, the aggregated information passes through a
neural network to undergo a nonlinear transformation. The output represents the updated
representation of the central node. Different GNN architectures have been proposed,[98]
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which implement different flavors of message passing[99] [100],started by recursive [101] or
convolutional constructive [98] approaches

Figure 2.3: Illustration of the architecture of a Graph Neural Network (GNN).

GNNs have proven to be highly effective in various applications, including social network
analysis, recommendation systems, drug discovery, computer vision, and natural language
processing. Their ability to handle non-Euclidean data and capture relational dependencies
makes them well-suited for problems involving graphs and structured data.

However, GNNs also present challenges, such as scalability to large graphs, over-smoothing
of node representations, and the need for careful handling of graph irregularities and noise.
Researchers continue to explore and develop novel architectures, training techniques, and
regularization methods to address these challenges and further improve the performance of
GNNs.

2.6.2 Edge Graph Neural Networks (EGNNs):

EGNN [102], or Edge Graph Neural Network, is a novel framework for a family of graph
neural network models that aims to better utilize edge features in graph learning tasks.
Current state-of-the-art neural network models designed for graph learning, such as graph
convolutional networks (GCN) [103] and graph attention networks (GAT) [104], often
inadequately leverage edge features, especially multidimensional edge features. The EGNN
framework addresses this limitation by introducing several key innovations.

Firstly, EGNN uses doubly stochastic normalization of graph edge features, deviating from the
commonly used row or symmetric normalization approaches in current graph neural networks.
This normalization technique allows for better utilization of edge features across network
layers. Secondly, EGNN introduces new formulas for the operations in each individual
layer to handle multidimensional edge features effectively. This enables the incorporation
of rich and diverse edge information into the graph neural network models. Thirdly, the
proposed framework ensures that edge features are adaptive across network layers, enhancing
the ability of the models to learn from evolving edge information. Lastly, EGNN encodes
edge directions using multidimensional edge features, enabling the modeling of directional
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Original GNN architecture Proposed EGNN architecture

Figure 2.4: Schematic illustration of the proposed EGNN architecture (right), compared
with the original GNN architecture (left). Figure from the original paper.

relationships within the graph.

EGNN is applied to various graph learning tasks, including graph node classification on
citation networks, whole graph classification, and regression on molecular datasets. Experi-
mental results demonstrate that EGNN outperforms current state-of-the-art methods, such
as GCNs and GAT, emphasizing the significance of effectively utilizing edge features in graph
neural networks.

2.7 Attention Mechanism in GNNs

In recent years, attention mechanisms [105] have emerged as powerful tools in various machine
learning tasks, including natural language processing and computer vision. Attention allows
the model to focus on specific parts of the input, giving more weight to relevant information.
The idea of attention has also been successfully applied to GNN, enhancing their ability to
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capture important graph structures and improve performance in various graph-related tasks.

The attention mechanism in GNNs enables the network to assign different weights to the
neighboring nodes or edges during information aggregation. This allows the GNN to dynami-
cally learn the importance of different parts of the graph while processing node representations.
By leveraging attention, the GNN can effectively capture the most informative and relevant
features, leading to more accurate and robust predictions.

In the context of GNNs, attention can be applied in different ways. One common approach is
to use self-attention, where each node learns its attention weights based on its own features.
This allows the node to selectively attend to its neighbors and adjust the importance of their
contributions. The attention mechanism can be formulated as follows:

For node i in layer l:

αl
i = softmax

LeakyReLU

W1x
l
i +W2

∑
j∈N (i)

xl−1
j


where xl

i represents the hidden state of node i in layer l, N (i) denotes the set of neighboring
nodes of node i, W1 and W2 are learnable weight matrices, and LeakyReLU is the activation
function.

Another approach is graph attention, where attention weights are learned for both the nodes
and their corresponding edges. The attention mechanism can be formulated as follows:

For edge (i, j) in layer l:

αl
ij = softmax

(
LeakyReLU

(
W1x

l
i +W2x

l
j +W3e

l−1
ij

))
where el−1

ij represents the edge features between node i and j in layer l − 1, and W1, W2,
and W3 are learnable weight matrices.

These attention weights can then be used to aggregate the information from neighboring
nodes or edges, allowing the GNN to adaptively focus on important features and relationships
within the graph. This mechanism facilitates more effective information aggregation and
improves the GNN’s ability to capture relevant graph structures, leading to improved
performance in a wide range of graph-based tasks.

2.8 Integration of GNN in RTMS

GNNs have demonstrated remarkable capabilities in modeling graph-structured data and
capturing intricate patterns and dependencies. By leveraging GNNs, reputation trust
management systems can benefit from improved accuracy, robustness, and adaptability in
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trust evaluation.

The integration of GNNs in reputation trust management systems brings several advantages:

• Graph Neural Networks (GNNs) can effectively capture both network structure and
node attributes, enabling a comprehensive representation of trust relationships. This
allows for a more accurate assessment of trustworthiness, considering both local and
global contexts within the network [106].

• GNNs excel at handling the dynamic nature of networks. As trust relationships evolve
over time, GNNs can adaptively update the trust assessments by leveraging temporal
and sequential information. This dynamic modeling capability allows reputation trust
management systems to reflect the evolving trust dynamics in real-time, enhancing the
system’s responsiveness and adaptability [107].

• GNNs enable the incorporation of multidimensional edge features into trust evaluations.
By considering diverse edge attributes, such as trust ratings, transaction history, and
social connections, GNN-based reputation trust management systems can provide a
more nuanced and accurate assessment of trustworthiness. This approach facilitates a
comprehensive understanding of trust relationships and mitigates the limitations of
relying solely on node-level information [108].

• GNNs can improve the resilience of reputation trust management systems against ma-
licious entities. By capturing patterns of malicious behaviors and detecting anomalies,
GNNs enable more effective identification and isolation of untrustworthy entities. This
enhancement contributes to the security and reliability of the system, making it more
robust against various forms of attacks [109].

2.9 Conclusion

In conclusion, this chapter has provided the necessary background and highlighted the
significant benefits of integrating blockchain and GNN in RTMS. The discussion emphasized
how blockchain’s decentralized and tamper-proof nature can facilitate the secure storage
and computation of trust-related data. Furthermore, GNNs were shown to be effective
in leveraging this data to learn and infer trust scores for network peers. The synergistic
combination of these technologies has the potential to revolutionize trust management in
P2P networks, offering improved scalability, transparency, and resistance against malicious
activities. The insights gained from this chapter serve as a foundation for the subsequent
chapters, which will delve into the design, implementation, and evaluation of a novel trust
management system. This system will harness the power of blockchain and GNNs to
enhance trustworthiness and security in P2P networks, contributing to the advancement of
decentralized trust management solutions.
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3.1 Introduction

In this chapter, we present the innovative trust protocol known as BTrust, which leverages
blockchain technology to establish trustworthiness in large-scale P2P networks. We begin by
providing an overview of the related work, including a comparison with existing blockchain
based reputation trust management systems (BRTSM) and traditional approaches. Next,
we delve into the details of the BTrust protocol, explaining its underlying architecture and
algorithms. Moreover, we describe the optimized trustless bootstrapping process incorporated
in the protocol, which enables the selection of trustworthy peers from neighboring peers.
Additionally, we discuss the incentive mechanism designed to encourage truthful feedback.
To evaluate the effectiveness of the BTrust protocol, we have conducted simulations, which
demonstrate its resilience to failures and robustness against malicious nodes

3.2 Related work and comparative analysis

In this section, we explore the existing literature and underline the necessity of adopting
BRTMS to enhance the security of P2P resource-sharing networks. Since in this thesis
we present two versions of the RTMS protocol BTrust, one utilizing blockchain technology
(BTrust) and its evolved form incorporating GNN (GBTrust), the related work is divided
into two distinct sections, one focusing on the integration of blockchain in RTMS and the
other on the integration of GNN alongside blockchain for RTMS. This later will be discussed
in chapter 4, section 4.3.

3.2.1 BRTMS State of the art

Thanks to its promising features, Blockchain has been investigated intensively by the research
community to build new trust management systems. Dennis and Owen [110] presented one
of the early BRTMS. They proposed a reputation system to store reputation from completed
transactions on a new Blockchain network in which transactions are validated by Bitcoin
miners using merged mining. They propose a simple schema, where after receiving the correct
file, the user sends an encrypted transaction consisting of the reputation score. This score is
calculated using a single-dimensional reputation based on the non-satisfactory transactions
in which the user received the file they requested. To reduce malicious transactions on the
network, they propose a proof-of-stake system, where a user with a low, or no reputation,
stakes a small amount of currency (Bitcoins) into a triple signed wallet. However, the use of
Bitcoin as a validation network would cause important latency since Bitcoin takes up to 10
minutes to process each block [111] and there is no guarantee that reputation transactions
will be mined sequentially in order because miners are free to choose which transaction to
validate. Another issue is the ability of a single user to generate multiple identities and
promote his reputation since they link the indemnity creation of an identity to the IP address
of a user. Moreover, the approach adopted for selecting the peers from which the user will
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download the file is insecure. The choice of the source depends on the friend’s peer reputation,
thus malicious nodes could focus their activity on proposing friendship to the newly joining
peers and impacting the computation of other peers’ reputations. Furthermore, operating
this solution on a large scale is unpractical since each peer has to operate a resource-expensive
full Bitcoin node. These properties make it unlikely that a network with a high amount of
low resourced users, such as IoT devices, would implement this reputation system.

Another BRTMS targeting resource sharing in P2P networks is presented in [112]. The
authors proposed a multi-level reputation scoring system for a Cluster Of Non-Dedicated
Interoperating Kernels (Clondike). In a Clondike system, each participating user contributes
computing performance of their machines and uses the computing performance of the other
workstations for his computing. In such systems, there is a need for an RTMS to ensure fair
usage of resources among all nodes of an inter-organisation cluster, as well as to identify and
eliminate nodes that tend to overuse resources of the whole cluster and do not contribute
by their computation resources or contribute by false results. To achieve these goals, they
base the trust system on a relation between a node and the system instead of building
an interpreted trust based on the feedback of other nodes. Instead of trusting reputation
data that single nodes exchange, each node interprets behaviour data, which is stored in a
blockchain, with its strategy. This approach presents some drawbacks. The reputation is
built only on positive feedback (kudos), therefore peers cannot rate the bad behaviour of their
counterparts and this bad behaviour is not logged into the blockchain. Moreover, the authors
did not experiment with their BRTMS on a large-scale network to prove its scalability, since
they experimented on a 3 node cluster both 2 fair nodes successfully penalized an abusive
one.

In [113], a Proof-of-Trust (PoT) consensus protocol for enhancing data validation and account-
ability in crowdsourcing services is proposed. The authors introduced a hybrid blockchain
architecture, based on a consortium blockchain acting as the underlying deployment network,
while a public blockchain is used to ensure validation for the novel consensus protocol. The
proposed PoT selects transaction validators to validate collected data based on their trust
values while leveraging RAFT leader election [114] and Shamir’s secret sharing algorithms
[115]. The consortium is connected to the public blockchain through a set of gateways. Each
consortium member has a consortium ledger management node and a gateway node. The
gateway nodes are situated in a demilitarized zone (DMZ), providing isolation of the private
consortium network from the open Internet environment. However, with the limited number
of gateways, there is a risk of disconnection of the consortium network from the public
blockchain, if the gateways are down or under DoS attack. Consequently, such disconnection
will break the consensus within the network.

In [116], the authors proposed a BRTMS for the Autonomous System (ASes). The proposed
BRTMS is devoted to evaluating network providers based on their adherence to Service Level
Agreements (SLAs) regarding interconnection agreements. The method used to calculate
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reputation is defined by a pre-agreed and publicly known scoring function and the results are
written in a private Blockchain. They propose the use of SLA scores, which are quantified
using a smart contract, for helping ASes choose their business partners. They introduce a fair
scoring protocol that allows the scores to be deterministically computed from measurements
of forwarding performance. The protocol requires each SLA score to be written on the
blockchain and achieves privacy preservation by adopting an order-preserving encryption
mechanism.

In [117] the authors argue that Distributed Ledger Technology (DLT) can be leveraged to
create and manage the trust relationship between peers in a decentralized manner. They
propose the LegIoT framework, which utilizes a DLT to store, manage and process trust
information, enabling mutually distrusting parties to participate in a network.

In [118], authors leveraged the IoT with Ethereum’s Blockchain to provide a reputation-based
monetization system for IoT data, whose quality is ensured for consumers through reviews
and ratings. They proposed a publish-subscribe model based on smart contracts, whereby
a data owner shares information about the topics and subscribers make deposits, consume
data and rate the service quality.

In [119], Bitcoin blockchain was proposed to be used as a public platform to manage the
trust for decentralized sensor networks, as well as for logging nodes activities. These logs are
then used as an indication of a node behaviour and thus a basis from which to compute the
node trust score.

In [120], the authors introduced a distributed credit-based Blockchain system with a built-in
reputation mechanism. They proposed a distributed ledger –obligation chain– for storing
obligations of commitments. The service provider checks the obligation chain and the
payment chain (Bitcoin blockchain) to assess the credibility of the obligation issuer by relying
on the credit history of consumers and their ability to pay off their obligations.

3.3 Reputation and trust management in BTrust

In this section, we provide an overview of the various components that constitute the BTrust
protocol within a Peer-to-Peer (P2P) network. We will discuss the smart contracts employed,
the trust factors considered, the trust metrics utilized, the BTrust algorithms employed, and
the selection of neighboring peers. These components play crucial roles in the functioning
and effectiveness of the BTrust model, enabling it to accurately evaluate and establish trust
relationships among peers in the P2P network. By understanding these components and their
interactions, we gain insights into the inner workings of the BTrust system, its mechanisms
for trust assessment, and its selection of neighboring peers.
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3.3.1 BTrust components

In our model we envision a P2P network, which involves the following entities (Figure 3.6)
playing various roles:

• Network operator (NO) : An NO is a community-based entity operating a service-
oriented network. The NO is responsible for the initialization, provisioning and updating
of BTrust agents (fig 3.1), and for establishing the first nodes in the network. The NO
is also responsible for deploying and updating the different BTrust smart contracts.
We envision NO as a decentralized entity operating similarly to the maintainers of
Blockchain (BC) projects such as Ethereum or Bitcoin.

• Certificate Authority (CA) The CA is an entity providing valid identities and
certificates for the members of the blockchain network. All the actions of the CA
(Creation, Validation, Revocation, etc.) are recorded transparently in the blockchain.

• Blockchain for reputation (BC) The BC acts as a shared database for storing
reputation and computing feedback data. We assume that the BC can store transparent
and immutable data as well as execute smart contracts. In BTrust the underlying BC
can be either public, private, permissioned or permissionless.

• BTrust agent (TA) Every peer-to-peer node hosts an agent that maintains the BTrust
protocol rules and evaluates the security of the device through interactions with built-in
security tools. This agent ensures the communication between the peers and between a
peer and the different BTrust smart contracts (Reputation, Patch, Access control and
Identification). The TA also manages peer security by regularly communicating with a
patch distribution server to identify new security patch information and assesses the
peer based on its adherence to patching compliance activities.

• The device manufacturer (DM) The DM is the entity that creates each device. The
DM securely installs in each device the bootstrapping credentials (e.g. the endorsement
key) needed for the Remote attestation.

• Patch distribution server (PDR) A PDR is an entity that informs and communi-
cates to BTrust agents (Patch clients in this case) security patches available for each
device using a patch distribution protocol. The PDR manages a patch DB which is
updated by the network operator and by security vendors.

• Remote attestation server (RAS): Remote attestation [121] is a security mechanism
that enables a remote entity (the verifier) to authenticate the integrity of a system or
application running on another machine (the prover or attester). In simpler terms, it
allows for remote verification of whether a device or software has been tampered with or
is trustworthy. The RAS oversees the entire attestation process (3.2). It maintains all
the necessary proofs for validating the integrity of devices (such as BIOS or bootloader
integrity, along with other system measurements) and evaluates the trustworthiness
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Figure 3.1: An overview of BTrust agent (TA) structure

of the remote attestation client. In BTrust, remote attestation isn’t performed on
demand; rather, the BTrust agent, acting as the prover, periodically measures and
securely records its own hardware and software state, transmitting this information to
the RAS.

– (or attester): The BTrust agent in our scenario, who serves as the prover, is
responsible for gathering evidence about the device state, such as software versions
and hardware configurations. It then generates a cryptographic proof using a
challenge provided by the verifier.

– Verifier (RAS): The Remote Attestation Service (RAS) serves as a server that
facilitates the verification process. It is deployed and operated by the Network
Operator (NO) and performs the following tasks:

∗ Generating challenges for the prover.

∗ Validating the proofs sent by the attester.

∗ Communicating the results (trusted/untrusted) to third parties, such as other
devices in the network, upon request.

• Device owner (DO) A DO is the person or entity that physically owns the device
and is ultimately responsible for that device and how it is being used. The DO is
responsible for onboarding his devices, as well as for transferring ownership of his
device to another individual or entity. A device may have only one owner at any given
time.
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Figure 3.2: Remote attestation protocol

• The device user (DU) A DU is the individual or entity that uses a device. In
BTrust’s network, the DU (or the DO) is represented by his or her cryptographic
credentials (an address and public key pairs).

3.3.2 BTrust smart contracts

To perform its different roles, BTrust relies on four different smarts contracts:

• Reputation smart contract (RSC) Builds the trust graph, capturing the relation-
ships among peers, and logs the trust of each peer in the network. Besides, it manages
the peers’ feedback and the incentivisation process (3.3).

• Identification smart contract (ISC) Manages the identification and enrolment
of the peers, device owners and users as well as the remote attestation. Device
identification includes information about a device (the device profile) that helps the
patch server send appropriate patches to the BTrust client when new patches are
available in a patch DB (3.4).

• Access control smart contract (ASC) Determines the access rules defined by the
DO. Each DO defines an access control policy for their devices, otherwise, a default
policy is applied. In BTrust, we provide a transpiler that transpiles access control
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Figure 3.3: A simplified example of
RSC

Figure 3.4: A simplified example of
ISC

policies written in Alfa or XACML language into smart contract code in Ethereum
smart contracts or Hyperledger Fabric chaincode [122].

• Patch and security smart contract (PSSC) Provides the security patches and
evaluates if the recommended patches have been applied; stores the evaluation of the
security assessment of a device sent by the BTrust agent (3.5).

The ISC, RSC and PSSC smart contracts are developed, deployed and upgraded solely by
the NO, whereas the ASC can be defined and deployed by the device owner or the NO. In
order to utilise BTrust, we assume that the device should have (1) sufficient performance for
the required public-key cryptographic operations, (2) a sufficient energy supply to perform
the required operations, (3) enough non-volatile storage space to store the blockchain data
and cryptographic keys, and (4) hardware features to support remote attestation. If the
device lacks the last feature a software-based attestation [123] mechanism can be used.
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Figure 3.5: A simplified example of PSSC

Before joining the network, on-device attestation keys (Endorsement Key) are injected into
the device during the manufacturing process and signed by the NO or the CA. The device’s
Trusted Platform Module (TPM) signs the PCRs (Platform Configuration Registers), and
registers for securely maintaining measurements inside the TPM with various attestation
Identity keys(AIKs) that it generates. The BTrust agent extends the PCRs at runtime by
writing a hash code into them. We consider that at any point in time, the number of active
peers may be different, and not known in advance.

3.3.3 Trust factors

In BTrust, a peer’s trustworthiness is defined by a combination of the evaluation of the peer
it receives from other peers in the past, alongside behavioural monitoring and detection
of abnormal activities. In developing BTrust, we consider four important factors for such
evaluation:

• The feedback a peer obtains from other peers;
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Figure 3.6: A simplified overview of interactions workflow between the entities in BTrust
architecture

• The total number of transactions that a peer performs;

• The security assessment of a peer for discriminating vulnerable devices from less or
secure ones; and

• The user’s behaviour.

Peers feedback : In BTrust, trust is based on feedback gained directly and indirectly
from other peers, and the total trust score is calculated based in part on the average of all
recommendations, weighted by the trust degrees of the other peers.
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Number of transactions : The transaction volume is an important factor that reflects
the degree of satisfaction among different peers. We consider the ratio of the total amount
of satisfactory transactions received over the total number of transactions received by a peer
from another peer.

The user’s behaviour : BTrust aggregates user data from a set of devices to build a
reputation score for the users, creating the possibility of tracking a user’s behaviour across
many devices. At each device, the behaviour is evaluated based on the log of successful and
failed events for the services managed by the blockchain using smart contracts. For example,
BTrust monitors and evaluates the user behaviour based on three major services:

• Integrity and attestation services: Since devices and their system software can be
replaced by malicious users or a device owner, BTrust relies on the Remote attestation
(RA) technique, to detect compromised entities. Such that, each device’s identity is
primarily attested before the device can access a network and afterwards the device is
periodically assessed and attested to ensure its integrity.

• Financial transactions: A user can be evaluated regarding their financial transaction
records. For instance, a malicious user could try to perform a double-spending attack
or launch a DDoS (Distributed Denial of service) attack on the network with malicious
transactions.

• Access control service: The user’s access activity whether for his own resources or
those owned by others is evaluated. If the user access activity deviates from the rules
defined by the access control smart contract, he is deemed suspicious and thus the peer
reputation.

It is worth noting that other aspects can be considered to evaluate user behaviour such as
Spamming activity or behavioural patterns. For simplicity, we choose to adopt only the
three aforementioned services.

The security assessment of the device : We cannot evaluate the trust of a device
without considering its security assessment. In this regard, BTrust attempts to determine
the security status of a device either through behavioural monitoring, detection of abnormal
activities or compliance to required security policies which are updated regularly by the NO
(patching security issues, updating vulnerable systems and software, etc.). To conduct the
security assessment, each peer is equipped with a BTrust agent (fig 3.1), which interacts with
a locally hosted anomaly-based IDS (intrusion detection system) to detect anomalies, gather
evidence and communicate this information to the RSC to adjust the peer’s trust score. The
agents also evaluate the compliance of each peer to the security rules and guidelines defined
by the NO.
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Figure 3.7: An overview of the interactions between devices, users and smart contracts in
BTrust

3.3.4 General trust metrics

After discussing the importance of the trust parameters involved in BTrust, we formalize
the BTrust parameters and present the formula we adopted to compute the trust for each
parameter.

P2P networks are decentralized, BTrust builds a virtual trust overlay on top of these networks.
Figure 3.9 shows a trust overlay network. BTrust network is modelled as a directed edge-
weighted graph G = (V,E), where each vertex describes a node in the network, and directed
edges are the feedback between peers. We associate a weight to the edges for both directions
to express the local trust between the source and the destination peers. To model the
peer-to-peer interactions, we assume that peers exchange and rate exchanged transactions.
For example, peers can exchange blockchain information (such as block headers) and rate
the quality of received data.

In the graph G, the local trust value, a peer accords to others is indicated by the weight
of the outgoing edge from the node, whereas the weight of the in-going edges to a peer
represents the local trust received from other peers as depicted in figure 3.9. Thus, the
directed edge P to Q reflects how much P trusts Q. Let Tr(P ) denote the trust score for
peer P . The formula is defined in (3.1) and involves the following parameters:

• GT (P ) the global trust value of peer P ;
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• T (P,Q) the total number of transactions sent by peer Q to P

• UB(P ) the user’s behaviour score

• ST (P ) the security assessment score for peer P .

Tr(i) = α ∗ (GT (i) ∗ UB(i)) + β ∗ (ST (i)) (3.1)

The coefficients α and β are normalized weight factors that serve to adjust the global trust
value. The product between the global trust of a peer and the user behavior score enables a
nuanced evaluation of trust, accounting for their interaction and relative magnitudes, thus
adjusting the overall trust even in scenarios where one factor is low or zero. This approach
anticipates that an insecure user within a trusted peer network holds a similar weight as
an untrusted peer used by a trustworthy user, ensuring a comprehensive assessment of
trustworthiness.

The adopted trust formula consists of two parts. The first part reflects the degree of trust
that other peers have in the subject peer, based on their past experiences, and the second
part assesses the security situation of a given peer, reflecting its likelihood of becoming a
malicious peer. In the next three subsections, we present how the different parts of the
formula are calculated.

P2P Reputation feedback

Similarly to most RTMS, we rely on positive and negative feedback to determine a local
trust value that helps to compute the global trust of peers. That is, each peer first calculates
the local trust values for other peers as described below:

Each time a peer P transacts with another peer Q, it may rate the response received
from Q as positive (tx(P,Q) = +1) if P is satisfied with the transaction or as negative
(tx(P,Q) = −1) if the transaction was not satisfactory.

Let S(P,Q) denote the normalized sum of the feedback received by P from Q indicating the
amount of satisfaction peer P has with Q. S(P,Q) is a normalized value between 0 and 1.
S(P,Q) will be calculated as follow :

First, let Sum(P,Q) denote the sum of the feedback given by Q to P .

Sum(P,Q) = max

0,

T (P,Q)∑
tx(P,Q) ∗AR(P,Q)

 (3.2)

such that AR(P,Q) denotes the ratio of the total number of good transactions received by
P from Q. This ratio ensures that the sum accurately reflects the satisfaction level relative
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to the total number of transactions exchanged between the peers, effectively adjusting for
varying numbers of unsatisfactory transactions.

AR(P,Q) = Ng(P,Q)/T (P,Q) (3.3)

The ratio ensures that the sum accounts for the disparity in satisfaction levels between these
cases. If we take the case where P received 10 good transactions and 5 bad transactions, the
Sum(P,Q) will be counted as in the case where P received only 5 good transactions and 0
bad transactions. Then, we normalize the result to obtain a score between 0 and 1

S(P,Q) = Sum(P,Q)/
∑

i∈N(P )

Sum(P, i) (3.4)

The local trust value that peer P has about peer Q –denoted as LT (P,Q)– can be defined
as following :

LT (P,Q) = S(P,Q) (3.5)

where Ng(P,Q) denotes the total number of good transactions performed by peer Q with
P . Once the local trust with the neighbouring peers is calculated, we can compute the
feedback-based global trust value of a peer P as shown in the following formula:

GT (P ) =
∑

i∈N(P )

LT (i, P ) ∗ (GT (i)/
∑

j∈N(P )

GT (j)) ∗ (1/1 + e−k∗Txi) (3.6)

N(P ) is the set of neighbouring peers that interacted with P (peers that received transactions
from P ). GT (P ) is not updated unless card(N(P )) is greater than a specific threshold.
In the previous formula, Txi denotes the total number of transactions provided by peer i

to other peers, and k is a parameter that determines how steeply the feedback impact of
peers rises with the number of served transactions. The logistic function (1/1 + e−k∗Txi) is
leveraged in (3.6) as a factor to reduce the impact of malicious feedback on honest peers’
global trust in the bootstrap phase.

User Behaviour score

In BTrust, we analyze how a user engages with various services in the network. This
assessment is represented as UB(P ), which reflects user behavior and is defined as:

UB(P ) =
∑

i∈servs(P )

αi ∗ Us(i) (3.7)



Chapter 3. Presentation of BTrust : A Blockchain-based RTMS 44

UB(P ) quantifies the user’s behavior by evaluating their interactions with different services
denoted by Us(i), weighted by αi.

Us(i) represents the score obtained from using service i from a set of defined services for the
peer P (denoted as servs(P )). Different weights αi can be assigned (after being normalized)
by the network operator according to the importance of a given network service. For instance,
an NO can define as basic services (as servs(P )) the following :

• Access Control (AC) that scores users based on how frequently they attempt to access
restricted areas or perform unauthorized actions.

• Authentication sevice (AU) assesses the strength of user credentials and detects any
suspicious login attempts.

• Resource Utilization (RU) monitors the amount of resources (like bandwidth or CPU)
a user consumes and flags any abnormal usage patterns.

A user whose interactions with these services yield the following scores over a given time
period (computed by BTrust agent):

• Us(AC) = 0.8 (indicating a high number of access attempts to restricted areas)

• Us(AU) = 0.9 (indicating successful logins with strong credentials)

• Us(RU) = 0.5 (indicating moderate resource usage)

To assess user’s overall behavior, we apply the weights assigned by the network operator (αi)
to each service’s score:

αAC = 0.33, αAU = 0.22, αRU = 0.44 and the final result will be UB(P)=0.776

Peers security assessment score

The security assessment score, denoted as ST (P ), aims to quantitatively reflect the current
security situation of a peer P . We define a peer’s security assessment score by aggregating
the sum of the required objectives, weighted by the severity of each objective. Such objectives
could encompass various security measures like applying security patches, system upgrades,
and ensuring correct configurations. The ST (P ) is defined as follows:

ST (P ) =

(
∑

i∈rules(P )(Fa(i) ∗ Sv(i) ∗Da(i))) ∗RA(P )

0, if ST (P ) < 0
(3.8)

rules(P ) denotes the collection of security objectives that peer P is tasked with fulfilling.
Fa(i) represents the fulfillment factor, indicating whether a specific objective i was achieved
(1) or not (0). Sv(i) denotes the severity level of objective i, ranging from 1 to 10. Da(i)

indicates the patch application status for objective i, where 0 signifies that a patch needs
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to be applied but wasn’t for this particular objective. For instance, if a device correctly
configures the firewall but fails to apply an announced firewall security patch, the score for
this rule is 0. RA denotes the result of the remote attestation, such that RA = 0 if the
operation fails, otherwise RA = 1. The security objectives are not predetermined; instead,
they are left for the NO to define the most appropriate objectives based on their specific
use case and the unique requirements of the system or environment. Therefore, applying
patches relevant to security rules and adequately fulfilling security objectives increases the
peer’s security score.

When a peer first joins the network, it must first fulfil a minimal security policy (e.g 3.8)
defined by the NO to acquire an initial trust score (IS). This includes configuring recommended
security features, performing security-related tasks and addressing the recommended action
with a third-party application or software, or an alternate mitigation. Then, the peer will
only be able to interact with and rate other peers if its reputation score is greater than a
threshold IS value defined by the NO.

Table 3.1: Example of security objectifs

Security Considera-
tions

Description Severity Score

Enable Firewall Configure and activate the firewall to con-
trol incoming and outgoing network traffic.

High (0.9)

Regular Updates and
Patches

Maintain regular system updates and secu-
rity patches for addressing vulnerabilities.

Critical (0.95)

User Authentication Implement secure user authentication, such
as strong passwords or SSH keys.

High (0.9)

Secure Remote Access Secure remote access by configuring SSH
with key-based authentication and other
measures.

High (0.9)

Data Encryption Encrypt sensitive data or directories using
tools like LUKS or other encryption meth-
ods.

Medium (0.7)

Backup and Recovery Set up regular backups of critical data and
configurations for recovery in case of issues.

Medium (0.7)

Monitoring and Logging Enable system logs and monitoring to track
and review system activity for potential
issues.

High (0.9)

Vulnerability Scanning Use vulnerability scanning tools to identify
and address security weaknesses.

Critical (0.95)

Application Whitelist-
ing

Allow only approved and necessary appli-
cations to run on the peer.

Medium (0.7)
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3.4 BTrust Algorithms

Generally, BTrust proceeds in three phases: an initialization phase, the enrolment phase,
and the processing phase. These phases are explained below.

The initialization phase : This is a one-time stage during protocol and network boot-
strapping. In this phase, the Network Operator (NO) constructs an information database
containing security details and available patches for a wide range of devices, encompassing
various models and versions. It defines the minimal security policy in the security smart
contract and the required threshold for a device to start rating other peers. At the same
time, the NO defines the initial security actions to be fulfilled by the DO in order to achieve
a trusted reputation and indicates their corresponding severities and scores. The NO then
defines the exchangeability rules of the BTrust token-based incentive mechanism presented
in section 3.5. The manufacturer defines the information about the devices as well as how
to evaluate their integrity using remote attestation, whereas the DO installs and sets up a
BTrust agent in his devices.

The enrolment phase : In the enrollment phase, the Network Operator (NO) designates
the initial set of peers, managed either by users or the NO itself. During this phase, the
NO utilizes a Public Key Infrastructure (PKI) to generate a unique public/private key pair
for each user. Subsequently, users are enabled to enroll their devices into the Identity and
ISC. The ISC maps a device’s identity (public key or wallet address) to several attributes,
including a device ID, an IP address, a blockchain wallet, a Device Owner (DO), and a patch
ID. Enrollment is an ongoing process. However, during the first enrollment phase, the RSC

Figure 3.8: Minimal IoT Security Policy: Secure Boot
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constructs an initial network graph comprising full nodes and the first devices, which are
initially considered trusted devices.

The processing phase : In the processing phase peers and users can join and leave the
network, the new joining nodes retrieve a list of live peers from a bootstrap DNS server
or a cached node list and then select a set of bootstrapping peers using the random walk
function defined in algorithm (2). BTrust agents start assessing the device security and
the user behaviour, as well as rating other peers using algorithm (1). While computing the
trust, the global score is computed iteratively, since the global trust of a peer depends on the
global trust of the rating peers, till it converges below a specified threshold(γ). Initially, the
algorithm starts with default trust values. As peers obtain feedback from each other, the trust
value is updated regularly according to BTrust formulas. The trust computation is performed
fully on-chain via smart contracts. BTrust agents (peers) communicate all trust data to
the reputation smart contract to perform the trust computation by invoking the dedicated
function ”addOrUpdateTrust” (fig 3.3). However, the trust computation can be performed
off-chain. In this case, each BTrust agent computes its own global reputation, except for the
last calculation, which is performed on the smart contract when updating the trust score to
ensure the veracity of the calculation. The reputation smart contract calculates and checks
the convergence of the global trust—locally computed by the peers—then updates the global
trust score in a single transaction by invoking a dedicated function ”checkandUpdateTrust”,
which accepts as input all intermediary computations for each iteration before convergence.
The intermediary values are used by the smart contract to inspect and verify the trust
computation performed by the peer.

Figure 3.6 provides a global overview of different interactions between the components
involved in assessing and evaluating a peer’s trust in the BTrust network during these three
phases.

3.4.1 Trust-Based peer selection using random walks

In this subsection, we describe how BTrust protocol selects bootstrapping peers or counter-
parts with whom peers can exchange transactions. Intuitively, an honest peer will tend to
interact with closest peers that have a higher level of reputation and a higher trust score.
However, this approach will incur a heavy workload for the most reputable and trustworthy
nodes in large-scale networks. To avoid this problem, our selection process considers nodes’
reputation and capacity (free inbound connections). Furthermore, we want to assist new
joining peers to randomly select their neighbors avoiding peers with a high number of
incoming connections (peer’s In-degree). The focus of our work is on unstructured P2P
systems, where peers select neighbors randomly without any knowledge about the network
topology. The selection is performed through random walks over an overlay network based
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Algorithm 1 BTrust algorithm for computing peer’s trust
Tr(P )
Require α, β, γ, N , FeedbackThreshold
Initialization ST (P )← RetrieveSecurityScore(P )
UB(P )← RetrieveUserBehaviorScore(P )
if N > FeedbackThreshold then

for i = 1; i < N ; i = i+ 1 do
LT (P, i)← RetrieveLocalTrust(P, i)
GT (i)← RetrieveGlobalTrust(i)
Tr(i)← Default

end
while |GT ′(P )−GT (P )| > γ do

for i = 1; i < N ; i = i+ 1 do
GT ′(P )←

∑
i∈N(P ) LT (i, P ) ∗ (GT (i)/

∑
j∈N(P )GT (j))

end
end

end
return Tr(P )← α ∗ (GT (P ) ∗ UB(P )) + β ∗ (ST (P ))

on the reputation graph and peers’ degrees.

To evaluate the availability of appropriate peers, we define the pertinence ratio PR as the
global trust of a peer ‘i’ divided by its in-degree (di):

PR(i) =

Tr(i)/di, if di > 0

0, otherwise
(3.9)

New nodes should preferably connect to peers with similar or higher pertinence ratios. The
probability of a new joining node choosing the peer ‘i’ is defined as the following:

P (i) = PR(i)/
∑

j∈O(t)

PR(j) (3.10)

such that O(t) denotes the set of online nodes at a given time. The probability distribution
P (X = i) can be therefore represented as :

P (X = i) = P (i) = 1/Z ∗ PR(i) (3.11)

Z =
∑

j∈O(t)

PR(j) (3.12)

As it is impractical to calculate P (X) in wide networks due to the large number of peers, we
use a Markov chain Monte Carlo method (MCMC) for sampling from P . More specifically, we
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use the Metropolis-Hastings (HM) algorithm [124][125] which works by simulating a Markov
Chain with a stationary distribution Π. This means that, after enough time, the samples
from the Markov chain resemble those of the samples from Π. That is, we model a second

Figure 3.9: Trust overlay network in BTrust

overlay P2P network as a connected graph G′ = (V,E) with finite node set V = {1, 2, .., N}
and an edge set E that belongs to V2. In G′, We assign a transition probability and create a
self-loop at each node (Fig.3.9), such that the total transition probability is 1.

Using HM, we then construct a Markov transition matrix P as :

Pij = P (Xn = j/Xn = i) (3.13)

Pij =

q(i, j) ∗ α(i, j), if j ̸= i

q(i, j) +
∑

k ̸=i q(i, k) ∗ (1− α(i, k)), otherwise
(3.14)

such that q is the transition kernel, which represents the probability of proposing a move to
some state j (peer j) given the current state i(peer i). In our case

q(i, j) = 1/(di + 1) (3.15)

and

α(i, j) = min{1, p(j) ∗ q(j, i)/p(i) ∗ q(i, j)} (3.16)
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Algorithm 2 Random walk algorithm for peer selection with connection constraints
PeerList
Require m, P , TTL, Graph G′, MaxIn, MaxOut
Initialization w ← P // The walker starts at P
for i = 1; i < m; i = i+ 1 do

inboundCount← CountInboundConnections(w)
while w is connected to P do

while TTL > 0 do
w ← ForwardWalker(TransitionProbability) //Position after moving one step
TTL← TTL− 1
inboundCount← CountInboundConnections(w)
if inboundCount < MaxIn then

continue // Skip the rest of this iteration if the inbound connection limit is
exceeded

end
if w is connected to P and TTL = 0 then

w ← ForwardWalker(TransitionProbability)
else if w is not connected to P then

outboundCount← CountOutboundConnections(w)
if outboundCount < MaxOut then

PeerList[i]← w break // Exit the loop once a suitable peer is found
end

end
return PeerList

is the acceptance probability for accepting a proposed move from state i (peer i) to state j
(peer j). By its definition, the defined MC is reversible, aperiodic and irreducible

By using this algorithm, new joining nodes retrieve a list of neighbouring peers. Each node
broadcasts its current connectivity degree to its neighbours to allow other peers to calculate
the defined pertinence ratio PR(i) using the global trust retrieved from the reputation smart
contract. The pertinence ratio is then assigned as a transition probability to their edges as
shown in figure 3.9. Next, each node starts multiple walkers, where the number is equivalent
to the node’s Out-degree. In order to avoid long walks, each walk is limited in time using a
TTL value equivalent to the number of iterations in the HM algorithm. The walker moves
from one node to another based on the edge probability and the walker’s TTL is decremented
until it stops (TTL = 0). If the node where the walker stops is already connected to the
starting node, then the walker moves some additional steps. The walk repeats until the
walker discovers a suitable node for the new node to join. Each node has a maximum number
of allowed inbound (MaxIn) and outbound connections (MaxOut).
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3.5 Feedback quality

BTrust protocol relies partially on p2p feedback rating to compute trust scores. However, two
major problems stand in the way of having a reliable feedback exchange; Lack of trustworthy
ratings and false feedback. In this section, we propose our solution to address these 2 issues.

3.5.1 Reputation tokenization and incentivisation

BTrust introduces a financial incentive mechanism that aims to incentivize users and peers in
the P2P network to enhance their trust scores by promoting honest behavior and providing
accurate feedback. The core concept behind this mechanism is to monetize reputation by
converting it into tangible financial tokens known as reputation tokens.

Conversion to reputation tokens

The RSC enables each device owner to convert a fraction of their device’s trust score into
reputation tokens. These tokens are then allocated to the user’s wallet, which is managed
directly by the contract. The conversion rate is determined by NO via a predefined function
that takes into account the current trust score and predefined thresholds. The formula for
conversion might look something like:

Reputation Tokens =
Trust Score− Base Threshold

Conversion Factor
(3.17)

where the Base Threshold is a minimum trust score required for conversion, and the
Conversion Factor is a scaling parameter set by the Network Operator (NO). The conversion
process involves the following steps:

• Conversion Request: The device owner (DO) initiates a conversion request via their
BTrust agent by calling the convertTrustToToken function of the RSC. The request
specifies the amount of trust score to be converted.

• Trust Score Calculation: The RSC calculates the corresponding number of reputation
tokens based on a predefined conversion rate.

• Trust Score Deduction: The specified amount of trust score is deducted from the DO’s
current trust score. Trust score deduction is performed by updating the DO’s trust
score in the RSC’s storage.

• Token Allocation: The equivalent number of reputation tokens is minted and allocated
to the DO’s wallet. This involves calling the mint function to create new tokens and
the transfer function to transfer them to the DO’s address.
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Trading and Use of reputation tokens

Once converted, these reputation tokens become tradable assets among users, facilitating
transactions and granting access to services offered by the NO on a dedicated marketplace or
with other users within the ecosystem. For example, users can use reputation tokens to pay
for premium backup services provided by the network operator. The marketplace allows for
the exchange of services and reputation tokens, ensuring that peers with higher trust scores
have greater access to valuable services. The smart contract ensures secure and transparent
transactions within the marketplace, with functions to list services, price them in reputation
tokens, and handle payments.

Purchase and impact on reputation

It’s important to note that purchasing reputation tokens by a Device Owner (DO) does
not directly impact the reputation of their own device or entity. Instead, reputation tokens
serve as a means of transferring trustworthiness from one peer to another. This mechanism
includes rules to prevent abuse, such as:

Reputation tokens can only be transferred between wallets that have previously interacted
or have an established trust relationship. The reputation tokens can be used for services but
cannot be reconverted back into trust scores for the device they originated from. Once used
they are burned by RSC.

Role of the reputation smart contract

The reputation smart contract, often built on a blockchain like Ethereum, manages the
lifecycle of reputation tokens. Using the ERC721 standard 1, each token represents a unique
and non-fungible reputation score. Key functions of the contract include:

• Minting Tokens: Creating new reputation tokens when trust scores are converted.

• Transferring Tokens: Securely transferring tokens between wallets.

• Burning Tokens: Destroying tokens when used for services or penalized for misbehavior.

• Verification: Ensuring the legitimacy of tokens and transactions.

Incentives and penalties

To ensure the incentivization mechanism promotes the desired behavior, additional rules
and policies are implemented:

• Incentives for positive behavior: Users and peers are rewarded with reputation
tokens for honest behavior, accurate feedback, and contributions to the network’s

1https://eips.ethereum.org/EIPS/eip-721

https://eips.ethereum.org/EIPS/eip-721
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Figure 3.10: Reputation tokeniza-
tion workflow

Figure 3.11: code managing tok-
enization of RSC

security. The rewards are periodically distributed based on the trust score improvements
recorded on the blockchain.

• Penalties for misbehavior: If a peer is found to be dishonest or if their device’s
security is compromised, their reputation score can be reduced, leading to a devalu-
ation of their reputation tokens. This is enforced by the smart contract, which can
automatically deduct tokens or burn them based on predefined conditions.

Example of a Penalty Consider a peer that has been detected engaging in dishonest behavior.
The penalty mechanism can be described as follows:

1. Detection: The system detects that Peer A has provided false feedback or has been
involved in malicious activity.

2. Penalty calculation: The smart contract calculates the penalty based on the severity
of the misbehavior. For instance, let Ps be the penalty severity score and Ts be the
current trust score.

Penalty Amount = α× Ps

New Trust Score = Ts − Penalty Amount

Here, α is a scaling factor determined by the NO.

3. Token deduction: The equivalent amount of reputation tokens is deducted from
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Peer A’s wallet. If the penalty exceeds the available tokens, the remaining penalty is
subtracted from future earnings or results in a temporary ban.

Tokens Deducted =
Penalty Amount

Conversion Factor

By integrating this financial incentive mechanism and leveraging the reputation smart
contract, BTrust establishes a dynamic and economically-driven reputation system within
the P2P network. This system encourages peers to engage in trustworthy behavior and
discourages malicious activities, as the direct economic consequences of reputation loss serve
as powerful deterrents. Overall, the combination of reputation tokens and the reputation
smart contract enhances trust management in the P2P network, facilitating a more reliable
and robust ecosystem for trust evaluation and decision-making.

3.5.2 Mitigation of lack of rating and bad behaviour

In order to limit false feedback and mitigate Bad-mouthing attacks [126], as well as to deter
bad behaviour, BTrust relies on special entities we call Watchdogs. The Watchdogs are
special BTrust peers –operated by the NO– responsible for inspecting the transactions and
evaluating the feedback exchanged between peers. Each WatchDog peer hosts a complete
updated copy of the Blockchain. Thus, a sender peer P can request the Watchdog to inspect
the delivered transaction and feedback rating. If P does not receive the due rating feedback
or it gets false feedback from the requesting peer Q, the watchdog peer can ask peer Q

to provide the correct due feedback (tx(P,Q)) and subsequently both peers to correctly
computing their local trust (Sum(P,Q) defined in 3.2). This is possible since the reputation
feedback provided by the requesting peer Q is stored in the RSC and because service requests
and responses are digitally signed by both peers 3.

In fact, in BTrust when a peer Q requests data from another peer P , the former digitally
signs the request. P then responds with a transaction that conveys alongside the requested
data, a timestamp, a digital signature (or a message authentication code) of P and the signed
request initiated by peer Q. The received transaction is stored in the memory pool of the
recipient peer Q, for a limited time –equivalent to the average time needed for a blockchain
transaction to be validated–. In the case where a peer is not able to store the received
transaction for any reason (e.g. a full pool or unavailable free storage), it can request the
watchdog to store them.

When peer P does not receive the correct feedback, it can provide the watchdog with the
signed request and response. Subsequently, the watchdog can request the peer that missed
giving the feedback to provide it to the peer providing the service. If the requesting peer Q

refuses, the watchdog blocks its ability to tokenize reputation score in a slashing process.
However, the limitation of this mechanism lies in the capacity of WatchDogs to assess the
quality of service (QoS) provided by peers.
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Figure 3.12: BTrust watchdog mechanism

Algorithm 3 Watchdog Mechanism in BTrust
Verified Transactions and Penalized Peers
Data Structures:

• Transaction { sender: string, receiver: string, timestamp: int64, signedRequest:
string, signedResponse: string, feedback: string }

• Feedback { from: string, to: string, score: int }
Procedure: RegisterTransaction txID, sender, receiver, timestamp, signedRequest,
signedResponse, feedback tx ← Transaction{sender, receiver, timestamp, signedRequest,
signedResponse, feedback} Store tx in ledger with key txID
Procedure: VerifyTransaction txID, sender, receiver, signedRequest, signedResponse tx
← Get transaction from ledger using txID if tx is NULL then

return False, "Transaction does not exist"
end
if tx.sender ̸= sender tx.receiver ̸= receiver tx.signedRequest ̸= signedRequest
tx.signedResponse ̸= signedResponse then

return False, "Transaction details do not match"
end
return True, "Transaction verified"
Procedure: PenalizePeer peer Reduce peer’s trust score Block peer’s ability to tokenize
reputation score
Procedure: StoreTransaction txID, sender, receiver, signedRequest, signedResponse tx
← Transaction{sender, receiver, timestamp, signedRequest, signedResponse} Temporarily
store tx in Watchdog storage with key txID
Procedure: WatchdogProcess for each tx in Watchdog storage do

Verify tx details if tx is not verified then
Penalize peer involved in tx

end
end
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3.6 Experimental evaluation

In this section, we describe our simulation setup and configurations, and we present the
result of the experiments conducted to study the effectiveness of the proposed Protocol. The
simulation is based on different experiments that evaluate the proposed trust management
algorithm and examine its accuracy in a variety of scenarios.

3.6.1 Simulation setup

To evaluate the BTrust model, we implemented a simulation model based on the Netlogo 6.1.1
environment 2. Netlogo is a multi-agent modelling environment for emulating large-scale
networks. This environment constructs networks of agents that can be programmed, using a
high-level language, to behave and interact with each other according to the defined program.
Using Netlogo we designed a cycle-based simulation model for BTrust. For simulation
purposes, we assume a P2P file-sharing network as the application scenario of our trust
model. At the start of each cycle, we assume that a random number of peers may start a new
request for a file, respond to incoming requests, or rate the interactions. For each simulation
configuration, we perform five randomized runs for 100 cycles each, on a community of 100
peers. The trust score (global and local trust) is computed through a deployed reputation
smart contract. For simulating possible behaviours, we consider three types of peers :

• Honest peer: which always behaves honestly, cooperates with other peers and provides
honest feedback afterwards.

• Static malicious peer: which always delivers bad transactions and gives wrong feedback
to other peers.

• Dynamic malicious peer: which probabilistically behave maliciously by delivering bad
transactions and feedback. We assume that all dynamic malicious peers act honestly
in the beginning in order to enhance their trust score.

We use an unstructured P2P architecture with peers responding to incoming requests and
providing feedback. We assume the network provides the same service (p2p file sharing).
Table 3.2 describes the main parameters adopted in our simulations.

In this simulation, nodes are initialized with a global trust value of 1/N . We assume that dy-
namic malicious peers act approximately with the same rate denoted as maliciousness_rate.
We consider that each node has a maximum of 8 outgoing connections. If one of these
outgoing connections is disconnected, the node will try to replace the lost connection by
trying to connect to another peer. At the same time, a node may accept up to 50 incoming
connections from other peers.

2http://ccl.northwestern.edu/netlogo/
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Parameters Default values

α 0.7

β 0.3

ST (i) 1

UB(i) 1

Maliciousness rate (maliciousness_rate) 100%

Trust score threshold 0.3

Total number of cycles 100

Number of services 1

Peers providing the service All peers

Convergence threshold (γ) 10−4

Feedback threshold (Witnesses) 5

Percentage of malicious peer 20%

Type of malicious peer Static

Table 3.2: Trust simulation default settings

3.6.2 Experiment 1 : Evaluation of accuracy

In this first experiment, we evaluate the accuracy and effectiveness of BTrust against malicious
peers through the calculation of root-mean-square error (RMSE) of aggregated total trust
of all peers. RMSE is an estimator of the overall deviations between the predicted and
measured values. The RMSE is defined by the following :

RMSE =

√√√√ N∑
i=1

((Ti − Tci)/Ti)2/N (3.18)

Where N is the total number of peers in the network, and Ti and Tci are the correct and
evaluated trust of a peer i, respectively. The RMSE is a good indicator that is inversely
proportional to the accuracy of the trust models, such that the lower the RMSE, the more
the accuracy of the trust evaluation. The plots in Figure 3.13 and 3.14 show respectively
the average of RMSE under different rates of malicious static peers and malicious dynamic
peers. Within both scenarios, a malicious proportion of 45% produces a low RMSE below a
value of 0.2. Thus, the BTrust approach of computing the trust score remains robust when
we have a large fraction of dishonest nodes. This result can be explained by the fact that
BTrust uses a personalized and adaptive formula to compute trust for each entity. Another
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Figure 3.13: Trust estimation error (RMSE) in presence of different portions of static
malicious peers

reason is the fact that our system, unlike existing decentralized trust systems, replaces score
managers with a trustworthy smart-contract based score management system. This obviates
the inherent risks of having malicious score managers; i, e., a malicious trust manager could
intentionally or under attack affect the computation of the trust value of a given peer.
Moreover, in the BTrust model, we leverage watchdogs for feedback verification to filter out
malicious feedback.

3.6.3 Experiment 2: Effectiveness against dynamic and static malicious
Peers

In this second experiment, we focus on evaluating the effectiveness of the BTrust model in
resisting dynamic attacks without leveraging the feedback correction mechanism (Watchdogs).
In that regard, we evaluate the successful transaction rate (STR) in the presence of dynamic

Figure 3.14: Trust estimation error(RMSE) in presence of different portions of dynamic
malicious peers, during 100 cycles
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malicious nodes that oscillate between malicious and honest behaviour at random with a
probability of 0.5. The STR is the ratio of the number of successful transactions over the
total number of transactions. It is a typical metric used to evaluate the efficiency of trust
models. We assume these peers behave honestly up to some time (10th cycle) to accumulate
trust before they start behaving maliciously. Within this experiment, we maintain the default
percentage of malicious nodes in the network (20%).

Figure 3.15: Successful transaction rates under different scales of dynamic attacks

Figure 3.15 illustrates how the level of trust evolves during 100 cycles. We observe that
the STR decreases proportionally to the maliciousness_rate. In the context of a low and
moderate maliciousness_rate < X within the interval[0.1,0.2], we observe a weak variation
of STR (0.1%). When the malicious peers switch from behaving honestly to behaving
maliciously, the STR decreases quickly and, after an average of 40 cycles, the STR stabilizes
at a high rate. This cadence can be explained by the fact that the trust score of dynamic
malicious peers decreases, even though they behave correctly from time to time in order to
regain the trust score. This result reflects that the correctness of the BTrust model is very
high even in the presence of dynamic malicious peers. Moreover, the STR remains below 1
as the malicious peers continue to exchange malicious transactions and feedback between
them without affecting honest peers.

In a second scenario, we compute the STR in the presence of different proportions of static
malicious peers. As shown in Figure 3.16, a high proportion (over 60%) destabilises the
level of trust within the system and thus decreases significantly the STR. Inversely, the STR
remains at a high level of 0.8 when we have a malicious proportion of less than 40%. This
result reflects the resilience of the BTrust model against a large proportion of static malicious
actors.

3.6.4 Experiment 3 : Convergence of BTrust

In this simulation, we focus on evaluating the convergence speed of BTrust and its scalability
with regard to the increasing network. The convergence speed is measured as the number of
iterations needed before the trust score converges. Thus, a lower value of the convergence
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Figure 3.16: Successful Transaction Rate(RMSE) in the presence of different proportions
of static malicious peers

Figure 3.17: Number of iterations required for convergence by each node within 100 cycles

iterations means a higher convergence speed. Interestingly, the results shown in Figure
3.17, confirm that the convergence speed is very fast since each node needs a maximum of
2 iterations before trust score computation converges. The results prove the scalability of
BTrust concerning the number of iterations needed to converge since the latter does not grow
substantially with the increase (from 100 to 10000) of the number of peers in the network.

3.6.5 Load distribution

In this experiment, we evaluated the load of individual peers incurred by BTrust. The metric
used for this evaluation is the number of times a particular peer (service) is requested to
deliver a transaction. To measure the amount of variation across the network, we compute
the standard deviation of the load among all the peers. The simulation is performed after
10000 transactions, the equivalent of an average of 100 transactions per peer, in the presence
of a varying-size minority of malicious peers (5-80%). The load computation is performed
only on honest peers since they are the preferred targets of other peers and thus the most
likely to incur heavy load. Figure 3.18, shows that the standard deviation of the load
distribution is very minimal and does not change significantly as the size of the malicious
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minority increases. Thus, BTrust does not incur a heavy load on the peers, since the adopted
random walk process privileges peers with a high pertinence ratio.

Figure 3.18: The standard deviation of the load distribution in the network

3.6.6 Comparison with Current BRTMs: An analytical Study

In Table 3.3, we present a comparative study of our work with the state of the art BRTMS
solutions, and show that the proposed solution outperforms other similar approaches. BTrust
presents several key advantages over the existing RTMS. First, it is robust to outliers and
Sybil attacks, which ensures the integrity and trustworthiness of the system. This is a crucial
feature, as outliers and Sybil attacks can severely compromise the trust management process.
Second, BTrust demonstrates good scalability, allowing for its effective implementation
in P2P file sharing, social networks, and e-commerce domains. Furthermore, BTrust is
a modular protocol that can be easily adapted to multiple use cases. Its generic nature
allows for flexibility in implementing trust management solutions across various domains and
applications. This modularity enables BTrust to incorporate additional services, factors, or
extensions to enhance the trust evaluation process as needed. By offering a customizable and
adaptable framework, BTrust provides a robust foundation for building trust management
systems that cater to specific requirements and diverse scenarios.

Figure 3.19: Successful transaction rates
under different scales of dynamic attacks
of HonestPeer (non-blockchain based)

Figure 3.20: Successful transaction rates
under different scales of dynamic attacks
in case of Proof-of-trust(blockchain based)

Actually, BTrust is a comprehensive and generic solution that tackles various trust-related
challenges in peer-to-peer networks. Unlike other cited solutions, BTrust addresses the
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Table 3.3: Comparison of BTrust with other BRTMS

Solution Field of application Intended Improvement Performance Measured
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[110] P2P No No Yes No Bad or good transactions Client side Not Provided

[112] Open multi-agent Yes No Yes No Immigration request actively rejected, Consortium Blockchain Number

system in P2P clusters Immigration request confirmed of kudos delivered

Task result verified

proof-of-trust [113] Croud-sourcing/ Sensing Yes Yes Yes No Total Transaction Amount Blockchain Accuracy

validation Times Scalability

[116] Autonomous systems No No Yes No SLA score of an agreement Oracle and Not provided

the SLA score of a network permissioned blockchain

[118] Monetization of No No No No Review and rating Smart Contract on Not provided

data in IoT Ethereum Blockchain

[120] IoT No No No No History of obligation fulfillment Obligation chain Reputation

/Sensor Network

/ Edge Computing

[119] IoT No No Yes No Miner approval Blockchain Trust level

/Sensor Network Blame Payload

/ Edge Computing Renew Payload

Ban Payload

BTrust [93] Generic Yes Yes Yes Yes The feedback a peer obtains from other peers; Smart contract Accuracy

The total number of transactions that a peer performs; Effectiveness against dynamic

The security assessment of a from less or secure ones and static Malicious Peers

peer for discriminating vulnerable devices

The user’s behavior Convergence of BTrust

cold start problem, provides incentives, assesses bad behavior, allows flexibility in trust
formula, and employs multiple metrics for evaluating trust. It leverages smart contracts for
trust dissemination, with the aim of attaining high accuracy and effectiveness against both
dynamic and static malicious peers. In fact, in figures 3.13, 3.15, 3.19, 3.21 we observe a
significant difference in term of the percentage of successful transactions and RMSE compared
to proof-of-trust in the presence of various scales of dynamic attacks, as detailed in section
3.6.3. The successful rate of proof-of-trust drops significantly, and trust estimation error
rises significantly in the presence of 60% dynamic malicious peers, as the protocol adopts a
majority vote mechanism. This technical comparison was feasible with proof-of-trust but
not with other solutions, as it’s the only blockchain-RTMS offering clear algorithms for
implementation and testing.

BTrust distinguishes itself through its comprehensive approach, which incorporates an
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Figure 3.21: Trust estimation error (RMSE) in presence of different portions of static
malicious peers (proof-of-trust in brown, BTrust in blue, HonestPeer in green)

analysis of user behavior, evaluates the security status of vulnerable devices, and explores
the dynamics of peer interactions. By meticulously examining these factors, BTrust aims to
encompass all elements that influence trust within a resource-sharing network.

3.6.7 Comparison with traditional RTMS

In Table 3.4, various RTMS are compared with BTrust, focusing on attributes such as
advantages, disadvantages, complexity, resistance to dynamic malicious peers, peer selection
mechanism, scalability, and domain of application. BTrust demonstrates robustness against
malicious dynamic peers and Sybil attacks, making it suitable for P2P resource sharing
[127]. Despite its complexity in implementation, BTrust offers a high level of security against
evolving threats. Comparatively, other RTMS like PeerTrust are simpler to understand and
implement but lack resilience against malicious peers [127]. EigenTrust and PowerTrust show
robustness against specific threats but are complex to implement [22, 128]. CuboidTrust and
VectorTrust offer expressive capabilities but also require a high level of understanding and
implementation complexity [24, 129]. HonestPeer and AuthenticPeer++ provide robustness
against Sybil attacks but at a higher complexity [22, 23]. In fact, in figures 3.13, 3.19,
3.15, and 3.21, we observe a significant discrepancy in both the percentage of successful
transactions and RMSE when compared to HonestPeer, particularly in the context of various
scales of dynamic attacks outlined in Section 3.6.2. BTrust outperforms HonestPeer in
terms of success rate and trust estimation error. Overall, BTrust distinguishes itself with its
comprehensive security features, making it well-suited for P2P resource-sharing environments
leveraging blockchain technology.
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Table 3.4: Comparison of Reputation Trust Models

RTMS Advantages Disadvantages Complexity Resistance
to Dynamic
Malicious
Peers

Peers Selec-
tion Mecha-
nism

Scalability Domain of Application

PeerTrust [127] Easy to understand and imple-
ment.

Sensitive to malicious peers. Low Low No Good P2P file sharing, social networks

EigenTrust [22] Robust to malicious peers. Complex to understand and
implement.

Medium Medium No Good P2P file sharing, social networks

PowerTrust [128] Robust to collusion. Complex to understand and
implement.

Medium Medium No Good P2P file sharing, social networks

HonestPeer [22] Robust to Sybil attacks. Complex to understand and
implement.

High High Yes Good P2P file sharing, social networks

AuthenticPeer++ [23] Robust to Sybil attacks and
collusion.

Complex to understand and
implement.

High High Yes Good P2P networks

CuboidTrust [24] More expressive than tradi-
tional RTMS.

Complex to understand and
implement.

High Medium Yes Good P2P file sharing, social networks, e-
commerce

VectorTrust [129] More expressive than tradi-
tional RTMs.

Complex to understand and
implement.

High Medium Yes Good P2P file sharing, social networks

BTrust Robust to malicious dynamic
peers and Sybil attacks.

Complex to implement. High High Yes Good P2P resources sharing

3.7 Conclusion

In this section, we have introduced BTrust, a pioneering trust model that amalgamates
multiple factors to quantify and compare the trustworthiness of peers within peer-to-peer
(P2P) networks. Our approach incorporates a three-layered trust system, leveraging P2P
feedback mechanisms, user behavior analysis, and device security assessments. Additionally,
we have outlined an efficient peer selection method based on random walks, which mitigates
computational burdens in large networks while facilitating the identification of secure peers
for newcomers.

At its core, BTrust is designed to be extensible and modular, enabling the seamless integration
of additional services such as spamming activity detection or behavioral pattern analysis to
enhance the accuracy of user behavior evaluation through representative metrics. Through
simulations, we have validated that our trust model effectively fulfills the design considerations
outlined in the introduction. It adeptly disseminates trust information, identifies and isolates
malicious peers within P2P networks autonomously, without reliance on a central authority,
and maintains efficiency and efficacy against a spectrum of attacks.
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4.1 Introduction

Recent advancements in Machine Learning (ML) and Artificial Intelligence (AI) have led
to the development of new trust management protocols. These models introduce enhanced
adaptability and predictive capabilities, presenting potential solutions to the challenges
encountered in P2P networks, as surveyed in [130] [131, 132] [133]. In fact, the integration of
AI into trust management systems has introduced innovative approaches, yielding enhanced
results in tackling longstanding issues. Various methodologies highlighted in the literature
exemplify this progress:

• Anomaly Detection: AI-based algorithms leverage historical data to discern patterns
indicative of malicious behavior [134]. By continuously learning from past instances,
these algorithms enhance the system’s ability to identify and flag anomalies in real-time,
enhancing network security.

• Predictive Reputation Scoring: AI-based models analyze past interactions and user
behaviors to forecast future trustworthiness [135]. Unlike traditional static scoring
systems, which may overlook evolving user dynamics, predictive reputation scoring
adapts to changes, providing a more accurate assessment of a user’s reliability over
time.

• Community Detection: AI-based algorithms can detect communities or clusters within
the network based on patterns of interactions and connections between peers [136].
By identifying cohesive groups of users, community detection facilitates targeted trust
assessments within these communities, improving the granularity and accuracy of trust
management in complex network structures.

• Collaborative misbehavior detection: AI-enabled trust management systems can detect
instances of collaborative misbehavior, where multiple peers coordinate to deceive
or manipulate the network [137] [138]. By analyzing patterns of cooperation and
behavior, these systems can identify suspicious collaborations and mitigate the impact
of coordinated attacks on trust within the network.

Among AI approaches, Graph Neural Networks (GNNs) [98] [139] have recently become
the standard tool for machine learning on graphs. These architectures effectively
combine node features and graph topology to build distributed node representations.
GNNs can be used to solve node classification [139] and link prediction [140] tasks,
or they can be applied to downstream graph classification [139]. In literature, such
models are usually evaluated on chemical and social domains [141]. Given their appeal,
an ever increasing number of GNNs is being developed [142]. Their capacity to discern
complex relationship patterns within networks is unparalleled. By leveraging graph
structures, GNNs adeptly capture the subtle dynamics of trust interactions, marking a
significant advancement in the field of trust management.
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In this chapter, we present GBTrust, a GNN-based RTMS that harnesses these abilities
to provide a better trust assessment on the network. In this following section of the
thesis, we present a novel approach to enhance RTMSs by incorporating an Edge-
Feature Attention Mechanism into the Edge Graph Neural Network (EGNN) model,
which takes into account the directionality of edges. GBTrust represents a progression
from BTrust, where the graph and its embeddings (table 4.2) are produced through
the execution of the latter.

4.2 Contributions

We hypothesize that the proposed GBTrust model could potentially outperform both tradi-
tional and ML-based trust management systems in terms of accuracy and adaptability in
detecting malicious peers, thereby significantly improving the overall security and reliability
of P2P networks.

This model makes two primary contributions:

• We present an AI model intended to complement traditional reputation-based trust
protocols, enhancing their performance using an enhanced version of EGNN.

• We propose a new graph attentive network model, which introduces a newly designed
attention mechanism that accounts for the direction and influence from different
features of edges within the network, enabling a more granular and context-aware
analysis of peer interactions.

Also, we validate the effectiveness of our proposed model through experiments conducted on a
synthetic dataset. The results demonstrate that the GBTrust model significantly outperforms
other baseline models while concurrently providing valuable information about fraudulent
users in the network.

4.3 Related Work: Application of GNN to trust evaluation

This section presents an overview of the existing research relevant to trust management
in P2P networks, focusing specifically on those utilizing GNN models. Indeed, there is
a growing interest in applying GNNs to trust management in P2P networks, with recent
studies beginning to explore this application.

The first method we discuss is Guardian [143], which applies GNNs to trust evaluation.
Guardian divides neighboring nodes into in-degree neighbors and out-degree neighbors to
represent the roles of trustee and trustor, respectively. It utilizes a Graph Convolution
Network (GCN) to aggregate information from these nodes and their corresponding trust
interactions. Guardian employs a mean aggregator to combine information from first-order
neighbors and stack multiple GCN layers to enable effective trust propagation. Guardian
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outperforms traditional trust evaluation models and neural network-based models in terms
of accuracy and efficiency. However, it fails to capture the dynamic nature of trust and
the mean aggregator cannot differentiate the importance of different neighbors accurately,
leading to inaccurate trust evaluation.

GATrust [144], addresses the limitations of Guardian by incorporating node features, such
as personal hobbies, which are essential for trust evaluation. Similar to Guardian, GATrust
establishes trust asymmetry based on out-degree and in-degree concepts and propagates
trust using GNN’s message-passing mechanism. GATrust integrates multi-facet properties of
nodes, including contextual features, network structural information, and trust relationships.
It utilizes Graph Attention Network (GAT) to assign varying weights to different properties of
each node. By combining and aggregating these properties, GATrust learns node embeddings
that contain rich information for accurate trust relationship prediction. However, like
Guardian, GATrust does not consider the evolving nature of trust (dynamicity), and it lacks
robustness

TrustGNN [145] takes a different approach by constructing various types of trust chains based
on a RotatE-like approach [146] to achieve trust asymmetry and propagation. These trust
chains are aggregated to form comprehensive representations (embeddings) of nodes for trust
relationship prediction. TrustGNN employs learnable attention scores to differentiate the
contributions of different trust chains, providing spatial explainability through visualization.
However, TrustGNN focuses on a specific snapshot and does not account for the dynamic
nature of trust, resulting in a lack of temporal explainability. It also ignores attacks on trust
evaluation, raising concerns about its robustness.

The aforementioned models overlook the dynamicity of trust, leading to less effective and
questionable predictions. To address this issue, Medley [147] incorporates temporal features
along with other essential features to capture hidden and time-aware trust relationships.
Medley utilizes a functional time encoding module to capture temporal information and
assigns different weights to timestamped trust interactions using an attention mechanism. By
incorporating temporal information, Medley demonstrates significant improvement compared
to Guardian [148] . However, this design relies on fine-grained timestamps, which may be
challenging to obtain in practice. It also incurs high storage consumption and computational
overhead when nodes and edges are frequently updated. Additionally, Medley only consid-
ers the role of trustors when learning node representations, leading to a lack of effective
information about trustees. The rationality of evaluation results derived from Medley is
not well explained, resulting in poor explainability. Furthermore, model robustness was not
addressed in this work.

Recentely, TrustGuard, a GNN-based model for robust and explainable trust evaluation was
proposed [149]. TrustGuard addresses the limitations of existing trust evaluation models
by considering attack resistance, dynamicity of trust, and explainability. It uses a layered
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architecture with spatial and temporal aggregation layers to facilitate the robust aggregation
of local trust relationships and capture temporal patterns from a sequence of snapshots.
TrustGuard has been extensively tested and demonstrated superiority over state-of-the-art
GNN-based trust evaluation models in terms of trust prediction across single-timeslot and
multi-timeslot, with or without attacks. However, TrustGuard represents several potential
limitations. One significant drawback is its reliance on the quality of the data it uses.
If the data contains biases or inaccuracies regarding trust relationships, TrustGuard’s
predictions may not be reliable. Additionally, while TrustGuard provides visualizations
to enhance explainability, understanding how it arrives at trust assessments can still be
challenging for users. Moreover, the computational costs of training TrustGuard can be
high, especially for large trust networks, which could limit its scalability and practical use.
Furthermore, TrustGuard may struggle to generalize well to different trust networks with
unique characteristics.

All these GNN-based RTMS fail to consider multi-dimensional edge features in their trust
calculations, nor do they differentiate between the directionality of edges in the graph. This
results in a lack of nuanced understanding and representation of trust dynamics within the
network. Without considering multi-dimensional edge features, the models may overlook
important factors influencing trust relationships, leading to potentially inaccurate trust
assessments. Similarly, ignoring edge directionality limits the models’ ability to capture the
asymmetrical nature of trust interactions, where the direction of trust may differ between
nodes. Consequently, the failure to account for these aspects limits the overall effectiveness
and reliability of GNN-based RTMS in accurately capturing and predicting trust dynamics
in complex networks. Furthermore, all the proposed RTMS are use-case designed, while
GBTrust is generic and can be applied to different use cases. This flexibility allows GBTrust
to adapt to various trust management scenarios, offering a versatile solution that addresses
the diverse needs of different applications (4.1).

Table 4.1: Comparison of GBTrust with existing models.

"✓" : satisfy a criterion; "×" : do not satisfy a criterion; "-" : not available.
Model Asymmetry Dynamicity weighted multi-dimensional edge features Robustness domain application

Guardian [143] × - × × social network

GATrust [144] × - × × (OSNs)

TrustGNN [145] × - × × social network

Medley [147] × × × × social network

TrustGuard [149] ✓ ✓ × ✓ -

GBTrust ✓ ✓ ✓ ✓ Generic

4.4 Graph Attentive Network Model for trust management

This section provides a detailed architectural description of the proposed GBTrust model.
The model is designed to enhance trust management in P2P networks by effectively capturing
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the importance of different neighbors and edge features within the network graph.

4.4.1 GBTrust : Methodology

GBTrust leverages information generated by BTrust [93] or other RTMS to effectively capture
the complex dynamics of the peer-to-peer network. We begin by modeling the network
as a graph G , where each node represents a peer within the network. These nodes are
characterized by a set of features that capture different attributes of the corresponding
peer, generated by running these protocols (BTrust or other), including transaction history,
reliability, and interactions with other peers (see Table 4.2). On the other hand, the edges
connecting these nodes in the graph carry local features that provide additional information
about the nature and quality of peer interactions, including the direction of the interactions.
These edge features encompass parameters such as the frequency of interactions, the reliability
of past transactions, and other variables reflecting the quality and trustworthiness of the
connections between peers. By considering node and edge features and the direction of
interactions, the GBTrust model can effectively capture the complex dynamics of the
peer-to-peer network and enable a more nuanced approach to trust management. This
comprehensive representation enhances the model’s ability to assess and manage trust in the
network accurately, taking into account the directional nature of interactions between peers.

4.4.2 GBTrust graph Construction and attributes transformation

In GBTrust, we model the interactions between peers as a directed graph denoted as
G = (V,E), where V = v1, ..., vn represents the set of nodes and E = eij represents the
set of edges. Each node in the graph corresponds to a peer, and the edges represent the
connections between the peers.

The node feature information is represented as a matrix X = x1, x2, ..., xN , where N is the
number of nodes in the graph. Each xi represents the feature vector of node vi. These
features capture various attributes of the peers, such as their transaction history, reliability,
and interactions with other peers as indicated in this table 4.2.

In addition, we consider P as the number of edge features adopted in the graph. The edge
features are represented by a tensor E ∈ RN×N×P , where Eijp (where 1 ≤ i, j ≤ N and
1 ≤ p ≤ P ) denotes the value of the p-th edge feature between node vi and node vj .

Moreover, Eij ∈ RP represents the P -dimensional feature vector associated with the edge
between node vi and node vj. Each dimension of this vector corresponds to the value of a
specific edge feature. To describe the neighboring nodes of node vi in the graph G, we use
N i to denote the set representing the neighbors of node vi. Similarly, N ip represents the
set of neighbors of node vi with respect to the edge feature p in the graph G.

Since the graph G is directed, where direction represents an important factor, we plan to
deconstruct the original graph G into two subgraphs, Giin and Giout . The subgraph Giin
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Table 4.2: Example of Node and Edge Features for GBTrust Model

Type Feature Description Computation Method

Node Historical BTrust Scores
(or any other RTMS)

Trust scores of a peer in the
past.

Extracted from historical
transaction data.

Node Transaction Frequency The number of transactions a
peer is involved in.

Counting transactions involv-
ing the peer in blockchain log.

Node Average Transaction
Value

The average value of transac-
tions a peer is involved in.

Computed as the total value
of transactions involving the
peer divided by transaction fre-
quency.

Node Dispute Frequency The frequency of disputes in-
volving a peer.

Computed by counting dis-
putes involving the peer.

Node Global Trust The aggregate trustworthiness
of a peer considering its inter-
actions with all other peers.

Calculated using the BTrust
algorithm with input from
all transactions involving the
peer.

Node Pertinence Ratio The pertinence ratio (PR) is a
quantitative metric employed
to assess the relative relevance
or appropriateness of a peer
within a given network.

Computed by BTrust as global
trust of a peer ‘i’ divided by
its in-degree

Edge Transaction Value The value of a transaction be-
tween two peers.

Directly extracted from the
transaction data.

Edge Transaction Recency How recent a transaction is be-
tween two peers.

Computed based on the times-
tamp of the transaction.

Edge Transaction Frequency The frequency of transactions
between two peers.

Computed by counting trans-
actions between the two peers.

Edge Local Trust The trustworthiness of a peer
considering only its interac-
tions with another specific
peer.

Calculated using the BTrust
algorithm with input from
transactions between the two
peers only.

Edge Disputes The number of disputes associ-
ated with the ratings provided
by the client peer (j).

Extracted from BTrust log.

represents the incoming edges incident to vertex i and encompassing neighboring peers,
while the subgraph Giout includes the outer edges connecting to a vertex i and encompassing
neighboring peers. By splitting the graph into these subgraphs, we can analyze the local
interactions and relationships between the vertex i and its neighbors in each specific direction,
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enabling a more detailed examination of the graph structure.

Figure 4.1: Transformation of the directed graph G into two sub graphs Gi1in and Gi1out

for vertex i1

4.4.3 Steps and overview

GBTrust constructs from the outputs of the first stage (trust scores and features) a trust
graph G. For each peer, we deconstruct the graph G into Giin and Giout . In each subgraph,
we calculate the embeddings of every peer by considering both the peer features and the
edge features. The embedding of a peer vi in the Giin subgraph is denoted as xiGiin , while
the embedding of the same peer in the Giout subgraph is denoted as xiGiout . The embeddings

Figure 4.2: The GBTrust architecture.

are updated as follows:

xiGin = fin(i, xiNiin , Eiin) (4.1)
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xiGiout = fout(i, xiNiout , Eiout) (4.2)

where fin and fout are embedding functions that consider the embeddings of neighboring
peers xiNiin or xiNiout , and the edge features Eiin or Eiout within the corresponding subgraph.

The final embedding of each peer is obtained by concatenating the two representations:

xi = concat(xiGin , xiGiout) (4.3)

This approach enables the incorporation of both the individual characteristics of the peers
and the contextual information provided by the edges, resulting in a comprehensive and
informative representation for each peer, denoted as xi. GBTrust uses a multilayer perceptron
layer to predict trust relationships based on node pair embedding, i.e., the reputation trust
classification layer.

4.4.4 Node and Edge Attention mechanism

To compute the embedding of each peer in graph G we proceed to compute them for both
subgraphs then concatenate the results. As in EGNN proposed by [102] model, in GBTrust,
edge features are used in attention mechanism. For each layer l, node vi representation
vector x

(l)
iG′ is obtained from aggregation on its neighbor’s node representation vectors, i.e.{

x
(l−1)
j , j ∈ Ni

}
in subgraph G’(Giout or Giout). Therefore, for each neighboring node vj and

each feature p, node representation vector x
(l−1)
j and edge feature E

(l−1)
ijp are incorporated.

Attention Vector Calculation

The attention vector â(l)ijp, which represents the influence neighboring node vj makes on node
vi for feature p at layer l is calculated as following:

â
(l)
ijp = exp

{
σ
[
E

(l−1)
ijp vT

(
W (l)x

(l−1)
i ∥W (l)x

(l−1)
j

)]}
(4.4)

where σ is a non-linear activation, v is a parameter vector, W (l) is a parameter matrix, and
∥ means concatenation operation.

The edge feature E
(l−1)
ijp is combined with the concatenated node features x

(l−1)
i and x

(l−1)
j ,

transformed by the weight matrix W (l)

Normalized Attention and Node Feature Update

The attention is normalized by a doubly stochastic normalization function DS(·) and node
feature and edge feature are both updated as shown below
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x
(l)
iG′ = σ

∥Pp=1

∑
j∈N

DS
(
â
(l)
ijp

)
W (l)x

(l−1)
j

 (4.5)

E
(l)
ijp = DS

(
â
(l)
ijp

)
(4.6)

This equation updates the node feature x
(l)
iG′ by aggregating the features of neighboring

nodes, weighted by the normalized attention coefficients DS
(
â
(l)
ijp

)
, and applies an activation

function . The edge features are similarly updated.

Alternative Node Feature Update

The following equation computes the updated node features x
(l)
iG′ for node i in graph G′ at

layer l.

x
(l)
iG′ = σ

 P∑
p=1

∑
j∈N

[
DS

(
â
(l)
ijp

)
· (W (l)

1 x
(l−1)
j )

] (4.7)

where:

• x
(l)
iG′ represents the node features of node i in the graph G′ at layer l.

• σ denotes an activation function.

•
∥∥P
p=1

represents a concatenation over different features p.

•
∑

j∈N represents a summation operation over neighboring nodes j in the graph.

• â
(l)
ijp represents the attention coefficient between node i and node j for message type p

at layer l.

• W (l) represents the weight matrix for layer l of the neural network.

• x
(l−1)
j represents the node features of neighboring node j at layer l − 1.

• E
(l)
ijp represents the attention-softmaxed coefficients, scaled by D, for message type p

between nodes i and j at layer l.

It aggregates messages from neighboring nodes, weighted by attention coefficients â
(l)
ijp and

transformed by the weight matrix W (l), and then applies an activation function σ. The
attention coefficients are normalized and computed using a softmax function S, and the
aggregated messages are scaled by a normalization factor D. This approach incorporates
edge features when calculating the attention coefficients. It begins by transforming the edge
features into a higher-dimensional space. These transformed edge features are then used to
compute the attention coefficients used in updating the node features. Thus this approach
only requires one layer, as both the node and edge embeddings are updated simultaneously.
The edge embeddings are determined based on the calculated attention coefficients. This
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approach enables EGNN to capture relationships between nodes and edges, enhancing its
ability to learn complex patterns within the graph structure. However, a drawback of EGNN
is that, apart from the original edge features used in the first layer, the attention coefficients
between nodes in the l− th layer are used as the edge features in the (l+ 1)− th layer. This
can lead to a loss of important edge information. Additionally, EGNN does not explicitly
consider the influence of edge feature directions on different edge features.

Enhanced Attention Mechanism

To overcome the previous limitations, we propose a new attention function that takes into
account the influence of different edge features individually, as well as the direction of the
edges. This allows us to discriminate between the directions of edges and capture the
nuanced relationships within the graph. Additionally, we introduce a global normalization
operation to determine the relative importance of each edge feature, further enhancing our
understanding of their significance in the graph.

We first, introduce the edge-feature coefficient α
(l)
ijp for a directed graph in order to consider

edge features in both directions. This coefficient is computed using the equation:

α
(l)
ijp = σ

{
uT
p

[
W

(l)
1 E

(l−1)
ijp ∥W

(l)
1 E

(l−1)
jip

]}
(4.8)

where σ denotes the activation function, up represents the weight vector, W(l)
1 is the weight

matrix, E(l−1)
ijp represents the edge feature from node vi to node vj at layer l− 1, and E

(l−1)
jip

represents the edge feature from node vj to node vi at layer l − 1. The equation computes
the weighted sum of these edge features, followed by the application of the activation
function to obtain the final coefficient value. The proposed edge-feature coefficient enables
the consideration of bidirectional edge information, enhancing the modeling capability for
directed graphs.

New Attention Coefficient Calculation

We compute a new attention coefficient by incorporating the previous edge embedding and
the edge-feature coefficient.

β̂
(l)
ijp = e

(l−1)
ijp α

(l)
ijp (4.9)

Substituting the expression for α
(l)
ijp from the first equation:

β̂
(l)
ijp = e

(l−1)
ijp σ

{
uT
p

[
W

(l)
1 E

(l−1)
ijp ∥W

(l)
1 E

(l−1)
jip

]}
(4.10)
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Figure 4.3: Construction of attention mechanism in GBTrust

This coefficient is then normalized via the softmax function

β
(l)
ijp = softmax

(
β̂
(l)
ijp

)
=

exp
(
β̂
(l)
ijp

)
∑P

k=1

∑N
n=1 exp

(
β̂
(l)
ink

) , (4.11)

we use the Softmax function to measure the importance of edge feature p over all vi’s
neighbor nodes and all edge features. In this way, we can compare the result to know which
edge feature is more important for node vi.

Final Attention Calculation

Considering the influence of edge features, and normalize it over all neighboring nodes. We
calculate each neighboring node vj ’s attention in terms of feature p â

(l)
ijp, by using β

(l)
jip in

the exponent:

â
(l)
ijp = exp

{
σ
[
β
(l)
jipv

T
(
W

((l))
2 x

(l−1)
i ∥W (l)

2 x
(l−1)
j

)]}
(4.12)

where W
(l)
2 is a parameter matrix and v is a parameter vector. In order to normalize the

attention scores a
(l)
ijp over all neighboring nodes of node i for feature p, we divide â

(l)
ijp by the

sum of attention scores over all neighbors k:
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a
(l)
ijp =

â
(l)
ijp∑

k∈Np(i)
â
(l)
ikp

(4.13)

Finally, we get the following node vi ’s representation vector x
(l)
i in subgraph G’(Giout or

Giout).

x
(l)
iG′ = σ

∥∥Pp=1

∑
j∈N

a
(l)
ijpW

(l)
2 x

(l−1)
j

 (4.14)

then the global embedding of each peer xi is obtained by concatenating its two representations
(in both subgraphs Giout and Giout) :

x
(l)
i = concat(x

(l)
iGiin

, x
(l)
iGiout

) (4.15)

4.4.5 Classification Module

The classification module is used to predict the trustworthiness of each peer. We use two
fully connected layers with specific activation functions to obtain these predictions. First, we
apply the Tanh activation function in the first fully connected layer. The Tanh activation
function maps the output values to the range [-1, 1], enabling the representation of both
positive and negative trust values. This layer captures and processes the input features of
each peer, transforming them into a meaningful representation.

Next, we employ the Sigmoid activation function in the second fully connected layer. The
Sigmoid function maps the output values to the range [0, 1], which is suitable for representing
trustworthiness probability. This layer refines the transformed representations from the
previous layer and produces the final predicted trustworthiness values for each peer.

To train the trust network classification module, we define the loss function using the
binary cross-entropy loss. The loss function penalizes the difference between the predicted
trustworthiness (ŷi) and the actual trustworthiness (yi) for each peer. The binary cross-
entropy loss is given by:

Loss = −
N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (4.16)

By minimizing this loss function during the training process enables the classification module
to accurately predict the trustworthiness values for each peer, facilitating the detection of
honest peers as well as distinguishing between static and dynamic malicious behavior within
the trust network.
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4.5 Performance Evaluation

In this section, we present an experimental evaluation to compare the performance of the
proposed GBTrust model with existing GNN-based trust models. The experiments aim
to assess the effectiveness of the GBTrust in trust management for P2P networks. We
implemented the EGNN algorithm using the Python programming language and TensorFlow
library. The models were trained on a machine equipped with a GTX1080 graphic card,
which provided 8 GB of graphics memory. The model used L = 2 updated EGNN layers,
indicating the depth of the model.

4.5.1 Experimental Setup

Dataset

We conducted experiments on a specially generated dataset. This dataset was created by
simulating a network of 1000 peers running the BTrust algorithm, with peers labeled for
evaluation purposes. The simulation was done using Netlogo 6.1.1 environment 1 which is a
multi-agent modeling environment for emulating large-scale networks. During the simulation,
each peer’s interactions and trust ratings were recorded, providing a rich source of data for
training and evaluating our model. The resulting dataset consists of 1000 nodes and 10000
directed edges. By leveraging this simulated dataset, we were able to assess the performance
of our proposed model in accurately predicting the trustworthiness of peers in the context of
file sharing. File sharing was chosen for its simplicity, its representation of resource exchange
and its prevalent use as a case study in literature.

Baseline Models

We compare the GBTrust with three state-of-the-art GNN-based trust models: TrustGuard
[149] , GATrust[144], TrustGNN [145] and EGNN [102]. These models represent existing
approaches in trust management for P2P networks and serve as baselines for performance
comparison.

4.5.2 Evaluation Metrics

To evaluate the performance of the trust models, we employed the following evaluation
metrics:

• Precision: This metric measures the proportion of correctly classified trustworthy
peers among all peers predicted as trustworthy. It indicates how accurate our model is
in identifying trustworthy peers.

• Recall: The recall metric calculates the proportion of correctly classified trustworthy

1http://ccl.northwestern.edu/netlogo/
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peers among all actual trustworthy peers. It assesses the model’s ability to capture all
trustworthy peers in the dataset.

• F1-Score: The F1-score is the harmonic mean of precision and recall. It provides a
balanced measure of performance by considering both precision and recall. A higher
F1-score indicates a better balance between precision and recall.

• Accuracy: The accuracy metric measures the overall correctness of the predictions.
It is calculated as the proportion of correctly classified peers, regardless of their
trustworthiness. A higher accuracy score indicates a higher percentage of correct
predictions.

In addition to these metrics, we also evaluated the performance of the models on the following
tasks:

• File Recommendation: This task involves recommending files to each peer based
on their past behavior, load, and shared neighbors. The goal is to assess the model’s
ability to effectively utilize the peer’s historical data, consider their current workload,
and leverage information from their neighboring peers to make accurate file recommen-
dations. File recommendation serves as a prediction aiding peers in assessing whether
the files provided by their counterparts are malicious or not, consequently influencing
their decision to request the file or not from a given peer.

For these tasks, we compute precision, recall, F1-score, and accuracy as the evaluation
metrics.

4.5.3 Experimental Design

We conduct a series of experiments to compare the performance of the GBTrust with
TrustGuard, GATrust, EGNN and TrustGNN. Each experiment involves the following steps:

1. Model Training: We train each trust model using the training dataset and optimize
their parameters using appropriate optimization algorithms such as gradient descent.
The models are trained to learn the trust relationships, classify the trustworthiness of
peers, and perform the additional tasks of peer classification and file recommendation.

2. Model Validation: We evaluate the performance of each model on the validation
dataset and tune the hyperparameters, such as learning rate, batch size, and number
of layers, to achieve optimal performance. This step ensures that the models are
well-optimized and generalize well to unseen data.

3. Model Testing: We assess the performance of each model on the testing dataset,
which contains unseen data. The evaluation metrics (precision, recall, F1-score, and
accuracy) are calculated to quantify the effectiveness and robustness of each trust
model. Additionally, the metrics for the peer classification and file recommendation
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tasks are computed and analyzed.

Before training and testing, the dataset undergoes a random shuffling procedure to remove
any biases or sequential patterns. This step aimed to promote fairness and impartiality in
subsequent model training and testing phases. Following the shuffling process, the dataset
was partitioned into three subsets: training, validation, and test sets. The allocation was
structured to adhere to a well-balanced ratio of 70:15:15, respectively. This distribution
strategy was chosen to strike a harmonious balance between model training, validation, and
evaluation, thereby facilitating effective learning and performance assessment.

4.5.4 Experimental Results

From table 4.3, several interesting phenomena can be observed. Overall, our approach
‘GBTrust’ outperforms three baselines in all metrics. Especially for Recall, it reaches to
0.81, much higher than any of the baseline model. ‘GBTrust’ had better performance which
means that aggregating edge features to calculate node attention has strong influence on the
prediction. Meanwhile, comparison of ‘GBTrust’ with ‘EGNN’ demonstrates the effectiveness
of edge-feature directionality.

Table 4.3: Performance Comparison of Trust Models (Trust Assessment)

Model Precision Recall F1-Score Accuracy

GBTrust 0.83 0.81 0.82 0.86

TrustGuard 0.79 0.78 0.78 0.82

GATrust 0.80 0.79 0.80 0.84

TrustGNN 0.81 0.79 0.80 0.79

EGNN 0.81 0.80 0.78 0.81

Table 4.4: Performance Comparison of Trust Models (File Recommendation/transaction)

Model Precision Recall F1-Score Accuracy

GBTrust 0.79 0.78 0.80 0.81

TrustGuard 0.72 0.70 0.71 0.75

GATrust 0.75 0.73 0.74 0.77

TrustGNN 0.74 0.78 0.79 0.76

EGNN 0.78 0.76 0.78 0.80

4.5.5 Discussion

The experimental results clearly demonstrate that the GBTrust model excels in various
evaluation metrics across multiple tasks, such as trust assessment, peer classification, and
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file recommendation. Specifically, GBTrust consistently outperforms baseline models like
TrustGuard, GATrust, EGNN, and TrustGNN in terms of precision, recall, F1-score, and
accuracy. The highest recall achieved by GBTrust (0.81) underscores its superior capability
in accurately identifying trustworthy peers, which is essential for maintaining the reliability
and security of a peer-to-peer network.

In the trust assessment task, GBTrust’s precision of 0.83 and F1-Score of 0.82 indicate a
remarkable balance between identifying trustworthy peers and minimizing false positives. The
accuracy of 0.86 further confirms its robust performance. Similarly, in the file recommendation
task, GBTrust maintains a strong performance with a precision of 0.79, recall of 0.78, F1-
Score of 0.80, and accuracy of 0.81, demonstrating its versatility and effectiveness across
different scenarios.

Comparatively, other models like TrustGuard and GATrust show reasonable performance
but fail to match GBTrust in key areas. TrustGuard’s lower F1-Score and accuracy suggest
difficulties in balancing precision and recall, potentially due to its simpler handling of peer
interactions and edge features. GATrust, while leveraging graph attention mechanisms, does
not fully capture the directional nature of interactions, leading to slightly lower performance
metrics.

EGNN performs well with balanced precision and recall but lacks the detailed modeling
of directed edges that GBTrust employs, which limits its accuracy in trust assessments.
TrustGNN, despite solid performance, falls short due to its limitations in exploiting edge
features and handling the dynamic nature of peer interactions.

The superior performance of GBTrust can be attributed to its advanced directed Edge
Graph Neural Network architecture, which effectively captures the complex relationships
and dynamics within P2P networks. This model’s ability to integrate edge features and
model the directionality of interactions provides a nuanced and detailed understanding of
peer trustworthiness. Additionally, GBTrust’s robust mechanism for dynamically adjusting
trust scores ensures high accuracy and reliability, even as network conditions change.

The insights from this comparative analysis suggest that while other models have their
strengths, they may not fully leverage the complexities of P2P networks as effectively as
GBTrust. The detailed edge-feature aggregation and directed graph modeling in GBTrust
set a new standard for trust management in decentralized systems.

4.6 Comparison to BTrust and traditional RTMS

In this section, we present the results of comparing GBTrust with BTrust and conventional
RTMS, illustrating the influence of GNN on trust assessment.

As detailed in section 3.6.2, RMSE (root-mean-square error) serves as a reliable metric
inversely linked to the accuracy of trust models, with lower RMSE values indicating higher



Chapter 4. GBTrust: An Edge Weight-Shared Graph Neural Network for
Trust management in P2P networks 82

precision in trust evaluation. Following the simulation setup outlined in section 3.6.1, we
evaluate identical scenarios under consistent conditions. Comparing RMSE values in both
static and dynamic peer environments reveals that GBTrust significantly enhances the
accuracy of trust assessments compared to BTrust, as depicted in Figures 4.4 and 4.5. This
improvement can be attributed to GBTrust’s capability to swiftly identify malicious peers
across numerous interaction cycles, leveraging insights gleaned from BTrust interactions. Ad-
ditionally, GBTrust incorporates supplementary parameters facilitating peer trustworthiness
prediction based on network embeddings.

Figure 4.4: Trust estimation error (RMSE) GBTrust(green) and BTrust(blue) in presence
of different portions of static malicious peers

To emphasize GBTrust’s capacity to combat evolving malicious activity, we compare it with
several established P2P RTMS platforms. In this comparison, we assess protocols based on
two criteria: trust consistency and resilience to NMA, CRA, NRA, MSA, and CBA attacks
[150]:

1. Naive Malicious Attack (NMA): A compromised node may offer improper
services without accurately reporting its Local Trust Feedback (LTF), which is
the feedback about a peer’s behavior within a network service protocol.

2. Collusive Rumor Attack (CRA): Malicious nodes not only provide improper
services but also collude to falsely report LTFs, aiming to disrupt trust or reputa-
tion assessment by spreading misleading information.

3. Non-collusive Rumor Attack (NRA): Malicious nodes act independently
to report false LTFs contrary to observed evidence. For instance, if an LTF is
assessed as positive (p), the malicious node may deceitfully report a negative
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Figure 4.5: Trust estimation error (RMSE) average for GBTrust(green) and BTrust (blue)
in presence of different portions of dynamic malicious peers, during 100 cycles

(1− p) LTF.

4. Malicious Spy Attack (MSA): While some malicious nodes misbehave openly,
others, known as malicious spies, behave normally to blend in. These nodes
collaborate to spread misinformation by reporting false LTFs, thereby undermining
the trust and reputation system.

5. Conflicting Behavior Attack (CBA): Malicious nodes adopt inconsistent
behavior towards different parties, aiming to create confusion by disseminating
conflicting LTFs. For example, they may target specific honest nodes with
misbehavior to amplify the disparity in LTFs between targeted and non-targeted
nodes, reducing the overall impact of the attack through intermittent misbehavior.

In network reputation assessment, consistency denotes the uniformity of evaluations across the
network. In cooperative evaluations, consistency necessitates that a node’s reputation remains
consistent throughout the network. Conversely, in independent evaluations, reputations
toward a node may vary based on how evaluators differentiate between direct and indirect
observations. The analysis indicates that a robust RTMS like EigenTrust can partially
resist CRA. This is achievable with the aid of pre-trusted nodes; nevertheless, for nodes
that pre-trusted nodes have not interacted with or observed (i.e., high uncertainty), the
reputation assessment could be significantly distorted.

Moreover, MSA presents a significant threat to EigenTrust for two primary reasons: Firstly,
EigenTrust lacks the ability to detect spies, as their reputations are inflated with high values.
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Protocol Consistency NMA NRA CRA MSA CBA

EigenTrust [22] Yes ✓ ✓ ⋆ • ⋆

HonestPeer [22] No ✓ ✓ • • •

Robust [151] No ✓ ✓ ✓ ⋆ •

PeerTrust [127] No ✓ ✓ ✓ ⋆ ✓

BTrust Yes ✓ ✓ ✓ ⋆ ✓

GBTrust Yes ✓ ✓ ✓ ✓ ✓

Table 4.5: Security Analysis of BTrust and other trust management protocols
Legend: ✓ - resilient; ⋆ - partially vulnerable; • - vulnerable

Consequently, false recommendations provided by spies are perceived as credible since the spy
nodes exhibit no abnormal behavior apart from disseminating false information. Secondly,
EigenTrust may be susceptible to CBA, particularly when pre-trusted nodes are deceived
by malicious nodes displaying inconsistent behavior. While trust models like Robust and
PowerTrust aim to counter collusion attacks effectively, they overlook the credibility of
recommendations in reputation evaluation, thus failing to identify spies in MSA. Additionally,
Robust is prone to CBA due to its inability to detect malicious nodes exhibiting inconsistent
behavior, as honest nodes lack the capability to identify them.

In contrast, GBTrust employs an attention mechanism to filter out false recommendations
effectively. This mechanism prioritizes relevant information while simultaneously screening
out noise introduced by malicious actors. By assigning higher attention weights to trustworthy
sources of feedback and reducing the influence of unreliable peers, GBTrust can effectively
mitigate the impact of malicious spies on the reputation system.

4.7 Conclusion

Assessing the trustworthiness of peers in peer-to-peer (P2P) systems is a critical task within
the domain of reputation trust systems. Existing approaches often overlook the utilization
of graph information and lack interpretability in their models when tackling this challenge.
Moreover, previous studies on graph attentive networks fail to properly account for the
importance of neighbors and different edge features in the context of reputation trust systems.

To overcome these limitations, we propose GBTrust, a novel graph attentive network model
specifically designed for reputation trust assessment in P2P systems. GBTrust incorporates
an edge-feature attention mechanism to effectively handle the diverse characteristics of edges
in the graph. Additionally, we introduce node attention and feature attention to leverage
the directional aspects of the graph, enabling the identification of influential neighbors
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and significant features within the reputation trust system. By combining these elements,
GBTrust aims to provide an enhanced and comprehensive approach to reputation trust
assessment in P2P systems.

Experimental evaluations demonstrate the superiority of our proposed model over existing
approaches. Notably, our model achieves enhanced accuracy in trustworthiness detection and
provides valuable insights and explanations. The effectiveness of GBTrust can be leveraged by
traditional RTMS to enhance their performance and predictability. By integrating GBTrust
as an overlay system, existing RTMS can benefit from the advanced capabilities of GBTrust
to improve trust assessment outcomes and overall system reliability.



Chapter 5
Conclusion and future work

In this work, we have presented BTrust, a novel Reputation Trust Management System
(RTMS) that combines multiple determinant factors for quantifying and comparing the
trustworthiness of peers in P2P systems. BTrust dynamically incorporates a feedback system,
user behavior analysis, and device security assessment to provide a comprehensive trust
evaluation approach. We have also introduced an efficient peer selection method based
on random walks, which proves to be suitable for large-scale networks without excessive
computational burden.

BTrust presents several key strengths, including its extensibility and modularity. The generic
nature of the underlying trust computation concepts allows for easy extension and the
inclusion of additional services or factors to enhance the accuracy of trust evaluations. In
addition, BTrust introduces a novel mechanism that distributes the load across the network,
ensuring efficient and balanced trust management. Furthermore, an incentive mechanism is
incorporated to encourage peers to provide trustworthy feedback and behave honestly. More-
over, the simulation results confirm that BTrust successfully fulfills the design considerations
outlined in the introduction. It effectively isolates malicious peers within P2P networks,
eliminating the need for a central authority to oversee trust management. The proposed trust
model demonstrates its effectiveness and efficiency in countering various attacks, ensuring
the robustness and security of the system. The extensibility, load distribution mechanism,
and incentive mechanism of BTrust contribute to its effectiveness and applicability in P2P
networks.

Moving forward, there are several avenues for further research and development. Firstly,
we envision a decentralized evaluation of remote attestation, enhancing the security and
reliability of trust assessments. Furthermore, we are investigating off-chain models for logging
local trust scores, leveraging solutions like lightning networks to reduce validation latency
and minimize blockchain overhead.

In our efforts to enhance BTrust, we have proposed GBTrust, a graph attentive network
model designed specifically for reputation trust assessment and predictions in P2P systems.
GBTrust addresses the limitations of existing similar approaches by incorporating an edge-
feature attention mechanism, introducing node attention and feature attention, and leveraging
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the directional aspects of edges. This mechanism allows GBTrust to capture and exploit
the rich information embedded within the edges of the graph, resulting in more accurate
and comprehensive trust evaluations. Moreover, GBTrust incorporates the concept of
directionality in edges. By considering the direction of edges in P2P networks, GBTrust is
able to capture asymmetry in interactions between peers. This consideration of directional
edges enhances the model’s ability to accurately assess trust relationships, capturing the
nuances of trust dynamics in P2P systems. A noteworthy contribution is that GBTrust
was designed to be used for any existing RTMS where trust data can be modeled as a
directed graph. Experimental evaluations have demonstrated the performance of GBTrust
over existing models in terms of trustworthiness detection accuracy and predictions.

Future work entails refining and optimizing GBTrust through several avenues. Firstly, the
integration of time-aware GNNs can be explored to enhance the model’s ability to capture
temporal dynamics in trust relationships. By incorporating time as a factor in the GNN
framework, GBTrust can provide more accurate and timely trust evaluations. Additionally,
efforts can be focused on reducing the training and inference time of GBTrust. This can
involve investigating techniques such as model compression, parallel computing, or distributed
training to accelerate the learning process and improve efficiency.

Furthermore, expanding the evaluation of GBTrust on various datasets and real-world
scenarios would provide a comprehensive understanding of its performance and generalizability.
By testing the model on diverse domains and considering different network characteristics,
the robustness and effectiveness of GBTrust can be further validated.



Bibliography

[1] Mahmood Hosseini, Constantinos Marios Angelopoulos, Wei Koong Chai, and Stephane
Kundig. Crowdcloud: a crowdsourced system for cloud infrastructure. Cluster Com-
puting 2018 22:2, 22:455–470, 8 2018.

[2] H Yao, T Mai, J Wang, Z Ji, C Jiang IEEE Transactions on . . . , and Undefined 2019.
Resource trading in blockchain-based industrial internet of things. ieeexplore.ieee.org,
2019.

[3] JJ Sikorski, J Haughton, M Kraft Applied Energy, and Undefined 2017. Blockchain
technology in the chemical industry: Machine-to-machine electricity market. Elsevier,
2017.

[4] Kiran Kumar Kondru, R. Saranya, and Annamma Chacko. A review of distributed
supercomputing platforms using blockchain. Lecture Notes in Networks and Systems,
127:123–133, 2021.

[5] Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. Scaling proof-of-replication
for filecoin mining. 2018.

[6] Rajeev Singh, Sudeep Tanwar, and Teek Parval Sharma. Utilization of blockchain for
mitigating the distributed denial of service attacks. Security and Privacy, 3:e96, 5
2020.

[7] Lydia Garms and Elizabeth A. Quaglia. A new approach to modelling centralised
reputation systems. volume 11627 LNCS, pages 429–447. Springer Verlag, 2019.

[8] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable reputation system
for trusted peer-to-peer computing *, 2005.

[9] BELLINI EMANUEL, IRAQI youssef, and DAMIANI ERNESTO. Blockchain-based
distributed trust and reputation management systems: A survey. IEEE ACCESS, 8,
2020.

[10] Diego Gambetta et al. Can we trust trust. Trust: Making and breaking cooperative
relations, 13(2000):213–237, 2000.

[11] Pim Otte, Martijn de Vos, and Johan Pouwelse. Trustchain: A sybil-resistant scalable
blockchain. Future Generation Computer Systems, 107:770–780, 2020.

88



Bibliography 89

[12] Jun Zou, Bin Ye, Lie Qu, Yan Wang, Mehmet A Orgun, and Lei Li. A proof-of-trust
consensus protocol for enhancing accountability in crowdsourcing services. IEEE
Transactions on Services Computing, 12(3):429–445, 2018.

[13] Fan Chung. A brief survey of pagerank algorithms. IEEE Trans. Netw. Sci. Eng.,
1(1):38–42, 2014.

[14] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust
algorithm for reputation management in p2p networks. pages 640–651, 2003.

[15] Anupam Das and Mohammad Mahfuzul Islam. Securedtrust: A dynamic trust compu-
tation model for secured communication in multiagent systems. IEEE transactions on
dependable and secure computing, 9(2):261–274, 2011.

[16] Zhenquan Qin, Lei Wang, Mingchu Li, and Weifeng Sun. An efficient trust mechanism
in p2p network. In 2010 Sixth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pages 731–734. IEEE, 2010.

[17] Quang-Vinh Dang and Claudia-Lavinia Ignat. dtrust: a simple deep learning approach
for social recommendation. In 2017 IEEE 3rd International Conference on Collaboration
and Internet Computing (CIC), pages 209–218. IEEE, 2017.

[18] Ugur Eray Tahta, Sevil Sen, and Ahmet Burak Can. Gentrust: A genetic trust
management model for peer-to-peer systems. Applied Soft Computing, 34:693–704,
2015.

[19] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-to-
peer electronic communities. IEEE transactions on Knowledge and Data Engineering,
16(7):843–857, 2004.

[20] ZHAO Yuhong and CHEN Jie. A p2p trust model based on trust factor and feed-
back aggregation. In 2019 3rd International Conference on Electronic Information
Technology and Computer Engineering (EITCE), pages 214–219. IEEE, 2019.

[21] Ke Xuemeng, Zhou Guofu, and Du Zhoumin. Trust evaluation model for p2p networks
based on time and interaction. In MATEC Web of Conferences, volume 208, page
05005. EDP Sciences, 2018.

[22] Heba A Kurdi. Honestpeer: An enhanced eigentrust algorithm for reputation manage-
ment in p2p systems. Journal of King Saud University - Computer and Information
Sciences, 27:315–322, 7 2015.

[23] Sarah Alkharji, Heba Kurdi, Rasha Altamimi, and Ebtesam Aloboud. Authen-
ticpeer++: a trust management system for p2p networks. In 2017 European Modelling
Symposium (EMS), pages 191–196. IEEE, 2017.



Bibliography 90

[24] Ruichuan Chen, Xuan Zhao, Liyong Tang, Jianbin Hu, and Zhong Chen. Cuboidtrust:
a global reputation-based trust model in peer-to-peer networks. In International
Conference on Autonomic and Trusted Computing, pages 203–215. Springer, 2007.

[25] Rachid Saadi, Jean-Marc Pierson, and Lionel Brunie. T2d: A peer to peer trust
management system based on disposition to trust. In Proceedings of the 2010 ACM
Symposium on Applied Computing, pages 1472–1478, 2010.

[26] Xin Liu and Anwitaman Datta. Contextual trust aided enhancement of data availability
in peer-to-peer backup storage systems. Journal of Network and Systems Management,
20:200–225, 2012.

[27] Alanoud Alhussain, Heba Kurdi, and Lina Altoaimy. Managing trust and detecting
malicious groups in peer-to-peer iot networks. Sensors, 21(13):4484, 2021.

[28] Ayesha Altaf, Haider Abbas, and Faiza Iqbal. Context based trust formation using
direct user-experience in the internet of things (iot). In 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages 424–430.
IEEE, 2019.

[29] Ayesha Altaf, Haider Abbas, Faiza Iqbal, Farrukh Aslam Khan, Saddaf Rubab, and
Abdelouahid Derhab. Context-oriented trust computation model for industrial internet
of things. Computers & Electrical Engineering, 92:107123, 2021.

[30] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43, 2007.

[31] Omar Hasan, Lionel Brunie, and Elisa Bertino. Privacy-preserving reputation sys-
tems based on blockchain and other cryptographic building blocks: A survey. ACM
Computing Surveys (CSUR), 55(2):1–37, 2022.

[32] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust
algorithm for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640–651, 2003.

[33] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable reputation system
for trusted peer-to-peer computing. IEEE Transactions on parallel and distributed
systems, 18(4):460–473, 2007.

[34] Xin Liu, Anwitaman Datta, Krzysztof Rzadca, and Ee-Peng Lim. Stereotrust: a
group based personalized trust model. In Proceedings of the 18th ACM conference on
Information and knowledge management, pages 7–16, 2009.

[35] Sascha Hauke, Sebastian Biedermann, Max Mühlhäuser, and Dominik Heider. On
the application of supervised machine learning to trustworthiness assessment. In 2013
12th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pages 525–534. IEEE, 2013.



Bibliography 91

[36] Chris Burnett, Timothy J Norman, and Katia Sycara. Bootstrapping trust evalu-
ations through stereotypes. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010). International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

[37] Raph Levien. Attack-resistant trust metrics. In Computing with Social Trust, pages
121–132. Springer, 2009.

[38] Raph Levien and Alex Aiken. Attack-resistant trust metrics for public key certification.
In Usenix security symposium, pages 229–242, 1998.

[39] C-N Ziegler and Georg Lausen. Spreading activation models for trust propagation.
In IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004.
EEE’04. 2004, pages 83–97. IEEE, 2004.

[40] Giovanni Acampora, Daniyal Alghazzawi, Hani Hagras, and Autilia Vitiello. An
interval type-2 fuzzy logic based framework for reputation management in peer-to-peer
e-commerce. Information Sciences, 333:88–107, 2016.

[41] Jonathan Perez, Fevrier Valdez, Oscar Castillo, Patricia Melin, Claudia Gonzalez, and
Gabriela Martinez. Interval type-2 fuzzy logic for dynamic parameter adaptation in
the bat algorithm. Soft Computing, 21:667–685, 2017.

[42] Walayat Hussain, Farookh Khadeer Hussain, and Omar Khadeer Hussain. Maintaining
trust in cloud computing through sla monitoring. In Neural Information Processing:
21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014.
Proceedings, Part III 21, pages 690–697. Springer, 2014.

[43] Yousef Elsheikh. A trust and reputation model for quality assessment of online content.
International Journal of Advanced Computer Science and Applications, 8(3), 2017.

[44] Hady W Lauw, Ee-Peng Lim, and Ke Wang. Quality and leniency in online collaborative
rating systems. ACM Transactions on the Web (TWEB), 6(1):1–27, 2012.

[45] Hadeel T El Kassabi, Mohamed Adel Serhani, Rachida Dssouli, and Boualem Benatal-
lah. A multi-dimensional trust model for processing big data over competing clouds.
Ieee access, 6:39989–40007, 2018.

[46] Geoffrey Fox. Peer-to-peer networks. Computing in Science & Engineering, 3(3):75–77,
2001.

[47] Hongyong Huang, Haiyan Wu, and Guozheng Wang. Study of distributed p2p informa-
tion sharing system. In 2009 Third International Symposium on Intelligent Information
Technology Application, volume 2, pages 300–303. IEEE, 2009.



Bibliography 92

[48] Hala Amin, Mohamed Khaled Chahine, and Gianluca Mazzini. P2p application for file
sharing. In 2012 19th International Conference on Telecommunications (ICT), pages
1–4. IEEE, 2012.

[49] Hai Jiang, Jun Li, Zhongcheng Li, and Jing Liu. Efficient hierarchical content distribu-
tion using p2p technology. In 2008 16th IEEE International Conference on Networks,
pages 1–6. IEEE, 2008.

[50] Andrey V Luppov, Anton S Kudryavtsev, Dmitry A Marenkov, and Jury V Lanskikh.
Improving the efficiency of p2p real-time communications networks. In 2013 Inter-
national Siberian Conference on Control and Communications (SIBCON), pages 1–2.
IEEE, 2013.

[51] Francisco de Asís López-Fuentes and Gerardo García-Rodríguez. Collaborative cloud
computing based on p2p networks. In 2016 30th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pages 209–213. IEEE,
2016.

[52] Jan Skodzik, Peter Danielis, Vlado Altmann, Jens Rohrbeck, Dirk Timmermann,
Thomas Bahls, and Daniel Duchow. Dude: A distributed computing system using a
decentralized p2p environment. In 2011 IEEE 36th Conference on Local Computer
Networks, pages 1048–1055. IEEE, 2011.

[53] Satoshi Nakamoto. Bitcoin : A peer-to-peer electronic cash system. pages 1–9, 2008.

[54] Chandranshu Gupta and Asmita Mahajan. Evaluation of proof-of-work consensus algo-
rithm for blockchain networks. In 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pages 1–7. IEEE, 2020.

[55] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
and Srdjan Capkun. On the security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 3–16, 2016.

[56] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19(1), 2012.

[57] Md Mainul Islam, Mpyana Mwamba Merlec, and Hoh Peter In. A comparative analysis
of proof-of-authority consensus algorithms: Aura vs clique. In 2022 IEEE International
Conference on Services Computing (SCC), pages 327–332. IEEE, 2022.

[58] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang,
Yonggang Wen, and Dong In Kim. A survey on consensus mechanisms and mining
strategy management in blockchain networks. Ieee Access, 7:22328–22370, 2019.

[59] Hye-Yeong Shin, Meryam Essaid, Sejin Park, and Hongtaek Ju. A survey on public
blockchain-based networks: structural differences and address clustering methods. In



Bibliography 93

2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS),
pages 57–60. IEEE, 2021.

[60] Mohammadreza Rasolroveicy and Marios Fokaefs. Performance and cost evaluation
of public blockchain: An nft marketplace case study. In 2022 4th Conference on
Blockchain Research & Applications for Innovative Networks and Services (BRAINS),
pages 79–86. IEEE, 2022.

[61] Dharam Buddhi and Abhishek Joshi. Survey on analysis of blockchain technology.
In 2022 International Interdisciplinary Humanitarian Conference for Sustainability
(IIHC), pages 880–885. IEEE, 2022.

[62] Hugo Figueiredo Caramelo Santos Martins. Exploring permissioned blockchains for
decentralizing access control. 2018.

[63] Rodelio Arenas and Proceso Fernandez. Credenceledger: A permissioned blockchain for
verifiable academic credentials. In 2018 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC), pages 1–6, 2018.

[64] Shantanu Vidwans, Amogh Deshpande, Pratiksha Thakur, Aditya Verma, and Sushila
Palwe. Permissioned blockchain voting system using hyperledger fabric. In 2022
International Conference on IoT and Blockchain Technology (ICIBT), pages 1–6, 2022.

[65] Baohua Huang, Huiying Zheng, Xi Qu, and Tongyi Xie. Consortium blockchain
distributed storage protocol. In 2022 14th International Conference on Communication
Software and Networks (ICCSN), pages 126–130, 2022.

[66] Junho Hong, Eunhwa Oh, Yeojin Yang, Kyungwoo Roh, Minji Oh, and Jaesung
Kim. Consortium blockchain-based v2g energy trading system using tokens. In 2020
International Conference on Information and Communication Technology Convergence
(ICTC), pages 677–682, 2020.

[67] N Szabo First Monday and undefined 1997. Formalizing and securing relationships on
public networks. firstmonday.org, 1997.

[68] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. volume 99,
pages 173–186, 1999.

[69] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm.

[70] David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5, 2014.

[71] Stellar. Intuitive stellar consensus protocol - developers blog.

[72] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. pages 31–42, 2016.



Bibliography 94

[73] I Eyal, AE Gencer, and EG Sirer. Bitcoin-ng: A scalable blockchain protocol. 13th
USENIX Symposium, 2016.

[74] P Jovanovic. Byzcoin: Securely scaling blockchains. Hacking, Distributed, August,
2016.

[75] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. pages 507–527. Springer, 2015.

[76] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[77] Ian Grigg. Eos-an introduction. White paper. https://whitepaperdatabase. com/eos-
whitepaper, 2017.

[78] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. pages 357–388. Springer, 2017.

[79] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. volume 10821 LNCS,
pages 66–98. Springer Verlag, 2018.

[80] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. pages 913–930, 2018.

[81] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros chronos: Permissionless clock synchronization via proof-of-stake,
2019.

[82] Ethan Buchman. Buchman, e. (2016). tendermint: Byzantine fault tolerance in the age
of blockchains.tendermint: Byzantine fault tolerance in the age of blockchains, 2016.

[83] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. pages 51–68. Association
for Computing Machinery, Inc, 10 2017.

[84] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confir-
mation. pages 3–33. Springer, 2018.

[85] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. pages 347–356, 2019.

[86] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot,
Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State
machine replication in the libra blockchain, 2019.



Bibliography 95

[87] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable
cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159, 2016.

[88] Serguei Popov. The tangle, 2017.

[89] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault
tolerance, 2016.

[90] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus
and applications to provably secure proof of stake. pages 23–41. Springer, 2019.

[91] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer.
Scalable and probabilistic leaderless bft consensus through metastability. 6 2019.

[92] Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, and Abdellatif Mezrioui.
Dcea: A reference model for distributed ledger technologies. IEEE International
Conference on Blockchain and Cryptocurrency, ICBC 2021, 5 2021.

[93] Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, Abdellatif Mezrioui, and
Khalid BELLAJ. Btrust : a new blockchain-based trust management protocol for
resource sharing. Journal of Networkand Systems Managemen, 2022.

[94] Badr Bellaj, Aafaf Ouaddah, Emmanuel BERTIN, Noel Crespi, and Abdellatif Mezri-
oui. Drawing the boundaries between blockchain and blockchain-like systems : A
comprehensive survey on distributed ledger technologies. Proceeding of IEEE, 2022.

[95] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

[96] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[97] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolu-
tional neural network. In 2017 international conference on engineering and technology
(ICET), pages 1–6. Ieee, 2017.

[98] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[99] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geomet-
ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021.

[100] Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-
Sáenz, Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukher-



Bibliography 96

jee, Shreyas N Samaga, et al. Topological deep learning: Going beyond graph data.
arXiv preprint arXiv:2206.00606, 2022.

[101] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

[102] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9211–9219, 2019.

[103] Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, and Jocelyn
Chanussot. Graph convolutional networks for hyperspectral image classification. IEEE
Transactions on Geoscience and Remote Sensing, 59(7):5966–5978, 2020.

[104] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[105] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[106] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering, 34:249–270, 2018.

[107] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter
Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.
Journal of Machine Learning Research, 21(70):1–73, 2020.

[108] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[109] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection
and description: a survey. Data mining and knowledge discovery, 29:626–688, 2015.

[110] Richard Dennis and Gareth Owen. Rep on the block: A next generation reputation
system based on the blockchain. 2015 10th International Conference for Internet
Technology and Secured Transactions, ICITST 2015, pages 131–138, 2 2016.

[111] T McConaghy, R Marques, A Müller . . . paper, undefined BigChainDB, and undefined
2016. Bigchaindb: a scalable blockchain database. git.berlin, 2016.

[112] Josef Gattermayer and Pavel Tvrdik. Blockchain-based multi-level scoring system
for p2p clusters. Proceedings of the International Conference on Parallel Processing
Workshops, pages 301–308, 9 2017.



Bibliography 97

[113] Jun Zou, Bin Ye, Lie Qu, Yan Wang, Mehmet A. Orgun, and Lei Li. A proof-of-trust
consensus protocol for enhancing accountability in crowdsourcing services. IEEE
Transactions on Services Computing, 12:429–445, 5 2019.

[114] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm
(extended version). In Proceeding of USENIX annual technical conference, USENIX
ATC, pages 19–20, 2014.

[115] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. pages 53–62, 2006.

[116] Yousef Alowayed, Marco Canini, Pedro Marcos, Marco Chiesa, and Marinho Barcellos.
Picking a partner: A fair blockchain based scoring protocol for autonomous systems.
ANRW 2018 - Proceedings of the 2018 Applied Networking Research Workshop, pages
33–39, 7 2018.

[117] Jens Neureither, Alexandra Dmitrienko, David Koisser, Ferdinand Brasser, and Ah-
mad Reza Sadeghi. Legiot: Ledgered trust management platform for iot. volume 12308
LNCS, pages 377–396. Springer Science and Business Media Deutschland GmbH, 2020.

[118] Atia Javaid, Maheen Zahid, Ishtiaq Ali, Jalees Ul, Hussen Khan, Zainib Noshad,
and Nadeem Javaid. Reputation system for iot data monetization using blockchain.
Springer, 97:173–184, 2020.

[119] Axel Moinet, Benoit Darties, and Jean Luc Baril. Blockchain based trust authentication
for decentralized sensor networks, 6 2017.

[120] Roberto Di Pietro, Xavier Salleras UPF, Matteo Signorini, and Erez Waisbard. A
blockchain-based trust system for the internet of things. dl.acm.org, pages 77–83, 6
2018.

[121] Mauro Conti, Edlira Dushku, Luigi V Mancini, Masoom Rabbani, and Silvio Ranise.
Remote attestation as a service for iot. In 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS), pages 320–325.
IEEE, 2019.

[122] Badr Bellaj, Aafaf Ouaddah, Noel Crespi, Abdellatif Mezrioui, and Emmanuel Bertin.
A transpilation-based approach to writing secure access control smart contracts. In
2023 5th Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS), pages 1–7. IEEE, 2023.

[123] Boyu Kuang, Anmin Fu, Willy Susilo, Shui Yu, and Yansong Gao. A survey of remote
attestation in internet of things: Attacks, countermeasures, and prospects. Computers
& Security, 112:102498, 2022.

[124] Ilker Yildirim. Bayesian inference: Metropolis-hastings sampling, 2012.



Bibliography 98

[125] KW Kwong, DHK Tsang IEEE/ACM transactions on, and undefined 2008. Building
heterogeneous peer-to-peer networks: protocol and analysis. ieeexplore.ieee.org, 2008.

[126] Z. Banković, J. C. Vallejo, D. Fraga, and J. M. Moya. Detecting bad-mouthing attacks
on reputation systems using self-organizing maps. volume 6694 LNCS, pages 9–16,
2011.

[127] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities nnexus view project deep learning on graph view project.
ieeexplore.ieee.org, 2004.

[128] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable reputation system
for trusted peer-to-peer computing. IEEE Transactions on Parallel and Distributed
Systems, 18, 2007.

[129] Huanyu Zhao and Xiaolin Li. Vectortrust: trust vector aggregation scheme for trust
management in peer-to-peer networks. The Journal of Supercomputing, 64:805–829,
2013.

[130] Jingwen Wang, Xuyang Jing, Zheng Yan, Yulong Fu, Witold Pedrycz, and Laurence T
Yang. A survey on trust evaluation based on machine learning. ACM Computing
Surveys (CSUR), 53(5):1–36, 2020.

[131] Houda Amari, Zakaria Abou El Houda, Lyes Khoukhi, and Lamia Hadrich Belguith.
Trust management in vehicular ad-hoc networks: Extensive survey. Ieee Access,
11:47659–47680, 2023.

[132] The bittorrent protocol what is bittorrent ?

[133] Zhiqi Li, Weidong Fang, Chunsheng Zhu, Zhiwei Gao, and Wuxiong Zhang. Ai-enabled
trust in distributed networks. IEEE Access, 2023.

[134] Kashif Naseer Qureshi, Gwanggil Jeon, and Francesco Piccialli. Anomaly detection
and trust authority in artificial intelligence and cloud computing. Computer Networks,
184:107647, 2021.

[135] Benedikt Veith, Dennis Krummacker, and Hans D Schotten. The road to trustworthy
6g: A survey on trust anchor technologies. IEEE Open Journal of the Communications
Society, 4:581–595, 2023.

[136] Santa Agreste, Pasquale De Meo, Giacomo Fiumara, Giuseppe Piccione, Sebastiano
Piccolo, Domenico Rosaci, Giuseppe ML Sarne, and Athanasios V Vasilakos. An
empirical comparison of algorithms to find communities in directed graphs and their
application in web data analytics. IEEE transactions on big data, 3(3):289–306, 2016.



Bibliography 99

[137] Sohan Gyawali, Yi Qian, and Rose Qingyang Hu. Deep reinforcement learning based
dynamic reputation policy in 5g based vehicular communication networks. IEEE
Transactions on Vehicular Technology, 70(6):6136–6146, 2021.

[138] Marios Thoma and Christoforos N Hadjicostis. Detection of collaborative misbehaviour
in distributed cyber-attacks. Computer Communications, 174:28–41, 2021.

[139] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison
of graph neural networks for graph classification. arXiv preprint arXiv:1912.09893,
2019.

[140] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.
Advances in neural information processing systems, 31, 2018.

[141] Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model:
A deep and generative approach to graph processing. In International conference on
machine learning, pages 294–303. PMLR, 2018.

[142] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[143] Wanyu Lin, Zhaolin Gao, and Baochun Li. Guardian: Evaluating trust in online
social networks with graph convolutional networks. Proceedings - IEEE INFOCOM,
2020-July:914–923, 7 2020.

[144] Nan Jiang, Wen Jie, Jin Li, Ximeng Liu, and Di Jin. Gatrust: A multi-aspect graph
attention network model for trust assessment in osns. IEEE Transactions on Knowledge
and Data Engineering, 7 2022.

[145] Cuiying Huo, Di Jin, Chundong Liang, Dongxiao He, Tie Qiu, and Lingfei Wu.
Trustgnn: Graph neural network based trust evaluation via learnable propagative and
composable nature. 7 2022.

[146] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197,
2019.

[147] Wanyu Lin and Baochun Li. Medley: Predicting social trust in time-varying online
social networks. Proceedings - IEEE INFOCOM, 2021-May, 7 2021.

[148] Wanyu Lin, Zhaolin Gao, and Baochun Li. Guardian: Evaluating trust in online
social networks with graph convolutional networks. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 914–923. IEEE, 2020.

[149] J Wang, Z Yan, J Lan, E Bertino, W Pedrycz arXiv preprint arXiv, and undefined
2023. Trustguard: Gnn-based robust and explainable trust evaluation with dynamicity
support. arxiv.org, 2023.



Bibliography 100

[150] Eleni Koutrouli and Aphrodite Tsalgatidou. Taxonomy of attacks and defense mecha-
nisms in p2p reputation systems—lessons for reputation system designers. Computer
Science Review, 6(2-3):47–70, 2012.

[151] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system for mobile
ad-hoc networks. 2003.


	List of Figures
	List of Tables
	Introduction
	Problematic and objectives
	Contributions
	Thesis Publications
	Journal Papers
	Conference Papers

	Thesis Organisation

	Background and Related Technologies
	Introduction
	Trust and reputation-based trust
	Reputation and its significance in trust management
	Types of reputation systems: Network architecture
	Types of trust
	Trust aggregation
	Trust dimensions

	Peer-to-Peer (P2P) networks
	Blockchain and DLTs
	An overview and classification of Blockchains and DLTs
	The distinction between Blockchain and Blockchain-like systems

	Integration of Blockchain in reputation-based trust management systems (RTMS)
	Background on GNN
	Graph Neural Networks (GNNs)
	Edge Graph Neural Networks (EGNNs):

	Attention Mechanism in GNNs
	Integration of GNN in RTMS
	Conclusion

	Presentation of BTrust : A Blockchain-based RTMS
	Introduction
	Related work and comparative analysis
	BRTMS State of the art

	Reputation and trust management in BTrust
	BTrust components
	BTrust smart contracts
	Trust factors
	General trust metrics

	BTrust Algorithms
	Trust-Based peer selection using random walks

	Feedback quality
	Reputation tokenization and incentivisation
	Mitigation of lack of rating and bad behaviour 

	Experimental evaluation
	Simulation setup
	Experiment 1 : Evaluation of accuracy
	Experiment 2: Effectiveness against dynamic and static malicious Peers
	Experiment 3 : Convergence of BTrust
	Load distribution
	Comparison with Current BRTMs: An analytical Study
	Comparison with traditional RTMS

	Conclusion

	GBTrust: An Edge Weight-Shared Graph Neural Network for Trust management in P2P networks
	Introduction
	Contributions
	 Related Work: Application of GNN to trust evaluation
	Graph Attentive Network Model for trust management
	GBTrust : Methodology
	GBTrust graph Construction and attributes transformation
	Steps and overview 
	 Node and Edge Attention mechanism
	Classification Module

	Performance Evaluation
	Experimental Setup
	Evaluation Metrics
	Experimental Design
	Experimental Results
	Discussion

	Comparison to BTrust and traditional RTMS
	Conclusion

	Conclusion and future work
	References

