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1

INTRODUCTION

1.1/ AUTONOMOUS VEHICLES CONTEXT

Autonomous vehicles (AV), also known as self-driving cars, have become an important

breakthrough in today transportation field. Since the last century, this topic has been one

of the main research topics in both industry and academia regarding the advantages it

can provide [1]. First, it can improve safety by reducing the number of accidents caused

by human errors. Second, it reduces traffic congestion and travel time while increasing

the efficiency of the transportation system [2]. In addition, it enables better comfort and

security for drivers and passengers. Finally, it has a social inclusion impact because it

allows mobility for everyone, including the underlay and handicapped people [3].

1.1.1/ AUTONOMOUS DRIVING LEVELS

An AV may only be considered as “autonomous" when it can handle all dynamic driving

tasks in an environment [4]. According to the Society of Automotive Engineers (SAE) [5],

there are five different levels of automation in vehicles, ranging from level 0 (no automa-

tion) to level 5 (complete automation) represented in Figure 1.1. At level 0, the driver

controls every part of the car, whereas at level 1, multiple forms of driver assistance, such

as adaptive cruise control, are used. Level 2 includes partial automation, where the ve-

hicle can perform some tasks, but driver assistance is still required. In level 3 conditional

automation is introduced, where the vehicle can handle the majority of assignments but

may need human assistance occasionally. High automation is achieved at level 4, allow-

ing the vehicle to handle multiple situations without human intervention. Finally, level 5 is

the symbol of complete automation, without human involvement. In this context, there are

already some Advanced Driver Assistance Systems (ADAS) that are currently integrated

into commercial vehicles, such as adaptive cruise control, Lane Keeping Assist Systems

(LKAS), and Automatic Emergency Braking (AEB). These ADAS functions correspond to

level 2 automation. Furthermore, some taxis and low-speed shuttles are examples of
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level 4 vehicles that already exist, but they are trial projects that are only allowed to run

in specific locations and at specific speeds while being continuously tested to demon-

strate their effectiveness. However, level 5 vehicles, which to the best of our knowledge

do not yet exist, are claimed to have no operational limitations and to be able to navigate

anywhere at any time according to the SAE [5].

To reach high levels of automation, a strong and structured AV system is required. This

system must properly observe, detect, and understand its surroundings to make decisions

that are similar to those of a human. In the following section, we present a general

overview of the AV systems’ architecture.

1.1.2/ AUTONOMOUS VEHICLE SYSTEM ARCHITECTURE

A self-driving vehicle must perform four fundamental tasks to operate without human

assistance: localization and mapping, perception, path planning, and control [6]. Lo-

calization and mapping tasks involve the construction of a map representing the vehicle

environment and maintaining continuous awareness of the vehicle location in relation to

that map. Perception is considered the main component of an intelligent system and aims

at modeling the environment. To perceive its surroundings effectively, the vehicle should

perform several key tasks. First, the vehicle perception system uses a set of onboard

sensors, such as cameras, lidar, radar, etc., to obtain raw data from the environment.

The next crucial step involves the transformation of raw sensor data into useful informa-

tion. The raw data collected by these sensors are processed by advanced algorithms

and computer vision techniques. By interpreting, filtering, and processing the data, these

algorithms enable the vehicle to detect, identify, and determine the depth, direction, as

well as position of the surrounding objects of the environment. Path planning combines

the outcomes of perception and localization to choose the most secure and effective path

for the AV, considering all potential obstacles [7]. Finally, the control element outputs the

acceleration, torque, steering angle values, and other actions required for the vehicle to

follow the selected path [8].

Every component of the AV systems’ architecture contributes efficiently to ensure the

smooth functioning and safety of the system. Perception, localization, path planning, and

control collectively collaborate to make the vehicle fully autonomous. However, from our

perspective, among these crucial elements, perception stands as the heart and core of

the entire system. This is because it plays an important role in interpreting the surround-

ings, enabling the vehicle to make informed decisions and navigate complex environ-

ments. In this context, it has been demonstrated that environmental perception perfor-

mance directly affects the performance of autonomous driving technology [9]. Without an

accurate and precise perception system, the AV cannot make informed decisions or take

2
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Figure 1.1: Autonomous driving levels

appropriate actions. All subsequent processes are built based on a robust perception

system.

Within the AV perception system, computer vision tasks refer to specific techniques and
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algorithms used to extract useful information from the visual data collected from the sen-

sors. These tasks are essential to analyze visual information, detect objects and pat-

terns, and ultimately help the vehicle understand its surroundings. In this context, the

development of computer vision has progressed from basic image processing methods in

the 1960s to Deep Learning (DL) models able to identify and analyze complicated visual

patterns nowadays. In the next section, we will provide an overview of the evolution of

computer vision techniques along with an analysis of current challenges in the field.

1.2/ COMPUTER VISION: EVOLUTION, ADVANTAGES AND CHAL-

LENGES

To understand the environment, humans rely primarily on their senses. We can recog-

nize individuals, identify objects, and fully understand the emotions of others, thanks to

the abilities of our visual system. For decades, scientists have been fascinated by au-

tomating and representing this complex process, which led to the development of the

well-known computer vision [10]. This field considerably transformed the way machines

detect and interpret visual data. Over the years, it has developed through two main

phases. This journey began with traditional or feature-based techniques to reach the era

of DL approaches. In computer vision, features refer to patterns and characteristics within

an image that enable machines to understand and analyze visual data. Feature descrip-

tors, on the other hand, are techniques and algorithms used to encode these distinct

features in a suitable way for computer vision tasks.

Traditional computer vision techniques relied on feature descriptor methods such as Scale

Invariant Feature Transform (SIFT) [11], Speeded Up Robust Features (SURF) [12], and

Features from Accelerated Segment Test (FAST) [13], to perform various computer vision

tasks. In traditional approaches, a critical step involves feature extraction, especially in

tasks like image classification or object detection. Various techniques, including edge de-

tection and threshold segmentation, were used for feature extraction. These techniques

aim to recognize and identify visual features present within an image. Let us take the ex-

ample of an object detection task. For each detected object class or category, a distinct

representation is generated using the extracted features. A term from Natural Language

Processing (NLP), the “bag-of-words" model [14], was frequently used to describe this

structure. When used in this context, it denotes that image features were viewed as a set

of visual words that collectively described an object or scene.

Hand-crafted methods have multiple advantages, mainly in efficiency and simplicity.

These algorithms often need few lines of code and processing resources, which makes

them particularly useful in resource-constrained contexts. Additionally, they provide a
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high degree of transparency, which makes it simple for users to adjust and fine-tune their

parameters to suit different scenarios. However, a significant challenge associated with

traditional methods lies in the need to manually select discriminative features from im-

ages. As the number of classes increases and when dealing with huge datasets, this

task becomes more challenging. It heavily depends on the perspective of computer vi-

sion experts and involves an extensive process to define the adequate features [12].

Although traditional methods could be sufficient for smaller datasets and easier applica-

tions, they are often limited when it comes to more challenging applications, such as AVs

that operate in urban environments. In these complex scenarios, the need for methods

and algorithms that can handle challenging environments becomes apparent and impor-

tant. In this context, DL offered a more powerful solution with generalization capability to

address the challenges mentioned above. This involves introducing the theory of “end-to-

end" learning, in which the machine is provided with a dataset that includes input samples

paired with corresponding annotations. As a result, a DL model is trained on the input

data, where Deep Neural Networks (DNNs) identify the underlying patterns in the input

and automatically define the most descriptive features for each instance. In this case, a

significant part of the computer vision task process is performed automatically by the DL

model, reducing the need for human intervention, as shown in Figure 1.2.

Input

Input

Output

Output

Features

Feature 
engineering

End-to-end learning

Classifier

Figure 1.2: Traditional computer vision workflow vs. deep learning workflow

Compared to traditional computer vision techniques, DL approaches offer distinct ad-

vantages. It enables computer vision experts to achieve higher accuracy on multiple

tasks. The key difference is that DNNs are trained rather than explicitly programmed.

This means that DL applications often require less expert analysis and fine-tuning, mak-
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ing them more adaptable to various scenarios. In addition, DL approaches provide ex-

ceptional flexibility. For example, Convolutional Neural Network (CNN) [15] models and

frameworks can be re-trained with custom datasets for specific use cases. This stands in

contrast to traditional algorithms, which are often more domain-specific and less flexible

in accommodating different applications [16].

Despite these advantages, there are also some challenges related to DL methods. While

the most recent approaches can significantly improve the accuracy, there is a cost as-

sociated with this progress. Such improved performance requires billions of extra math-

ematical calculations, increasing the need for computational resources. Therefore, Ar-

tificial Intelligence (AI) developers need to have available specialized hardware, includ-

ing Graphics Processing Units (GPUs) [17] and Tensor Processing Units (TPUs) [18] for

training. Moreover, DL approaches are heavily dependent on large datasets. Consider

the example of some famous computer vision datasets such as the PASCAL VOC dataset

[19], which has 500k images covering 20 object categories, or ImageNet [20], which has

1.5 million images covering 1000 object categories. This means that when large datasets

or powerful computing resources are not available, DL methods are not the best choice.

Another limitation of DL approaches is their total dependence on visual features and data

characteristics during training. When considering that computer vision tasks aim to em-

ulate human understanding and interaction with the environment, this total dependence

covers just the way humans “see" their surroundings. However, to fully understand their

environment, make decisions, and take actions, humans rely not only on what they “see"

but also on what they “know", i.e., their accumulated and pre-acquired knowledge. Al-

though recent advances have shown that DL models can implicitly learn some rules and

basic knowledge through neural connections during training, this implicit knowledge ac-

quisition remains imprecise, time-consuming, and strongly dependent on training data.

To achieve the highest levels of accuracy and closely emulate human behavior, it is nec-

essary to explicitly incorporate knowledge into DNNs. This need is particularly important

in sensitive applications like autonomous driving, where the priority lies in ensuring a high

level of safety.

1.3/ ROLE OF KNOWLEDGE INTEGRATION IN PERCEPTION FOR AU-

TONOMOUS NAVIGATION

Human perception is a dynamic system that allows us to understand the world. It operates

through our senses which continually gather an extensive array of information from the

surrounding environment. Consider, for instance, the act of driving, human perception

here involves the eyes that capture the road, assess traffic, and monitor pedestrians
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[21; 22]. This input is then processed by our brain, where it is integrated, interpreted,

and combined with our existing knowledge and past experiences. Human perception

goes beyond recognizing visual cues; it involves context and a deep understanding of

the world. This includes the ability to identify objects even in unusual situations, such as

when visibility is low due to adverse weather conditions or obscured by other factors. In

such situations, humans combine their pre-acquired knowledge with limited visual cues

to navigate safely and make informed decisions.

On the other hand, machine perception, as seen in the actual AI and DL models, primar-

ily relies on data-driven approaches. Machines can process massive amounts of data

and recognize patterns efficiently but often struggle to understand the context, extract

meaningful insights, or incorporate prior knowledge. Although AI systems can succeed at

specific tasks, they typically need the holistic understanding and generalization capability

linked to human perception. The gap between machine and human perception highlights

the need for AI research and development to move beyond data-driven approaches to-

wards the incorporation of contextual understanding and explicit knowledge, to bridge this

gap and bring machines closer to human-like perception.

As illustrated in Figure 1.3, the main difference between human and machine vision be-

comes more apparent during the interpretation phase. In human vision, this step is de-

pendent on the human brain, which combines knowledge with visual information. How-

ever, machine perception focuses only on processing visual features. Although a well-

trained DL model does improve accuracy and reduce errors, this enhancement can be

further optimized by incorporating additional knowledge into the model.

Certainly, bridging the gap between human and machine perception in computer vision

involves answering some fundamental questions. First, we must define the most effective

way to combine knowledge with visual cues. This involves developing robust frameworks

and algorithms that combine domain-specific knowledge with raw visual data. Second,

we need to define the specific knowledge that should be integrated into each computer

vision task. Different tasks may require different forms of knowledge. For example, recog-

nizing emotions in facial expressions might require psychological insight, while estimating

depth might benefit from some geometric and semantic knowledge. Finally, it is crucial

to decide where this knowledge integration should occur in the DL process. Should it

be incorporated at the data input stage, during the model training phase, or directly in

the architecture of the DNNs? Striking the right balance is important for optimizing the

performance of DL models in various computer vision tasks. The strategy to reduce the

gap between human and machine perception in computer vision lies in answering three

essential questions, “how", “what", and “where" when it comes to integrating knowledge

into the DL process.

The concept of combining Machine Learning (ML) or DL with domain-specific knowledge
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Figure 1.3: Comparison of human vision and computer vision using a classification ex-
ample. The red block illustrates the gap between the two visions.

is often referred to as hybrid AI. This field represents an intersection between traditional

Knowledge-Based Systems (KBS) and data-driven approaches. In hybrid AI, the goal

is to take advantage of both knowledge-based techniques and data-driven approaches

to improve overall performance and understanding of AI systems. Hybrid AI has found

considerable success in various fields, especially in physics [23], hydrology [24] and en-

vironment [25]. In these domains, hybrid AI has been instrumental in solving complex

problems by combining the deep knowledge of domain experts with the data processing

capability of AI systems. However, its adoption in more challenging applications, such as

computer vision and, more specifically, AVs, has been somewhat limited. In the context

of AVs, the integration of knowledge in perception-decision-making processes remains a

relatively unexplored border. While it has promising potential to improve the safety and

reliability of autonomous driving systems, it also presents unique challenges, such as

knowledge definition and integration, which require further research and development.

1.4/ PROBLEM FORMULATION

It is worth noting that in computer vision, some approaches have been proposed to com-

bine DNNs with KBS. Many of these approaches use knowledge bases or ontologies as

references to validate the results generated by DNNs [26; 27; 28]. While this verifica-

tion and validation approach does contribute to enhancing the robustness and reliability
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of computer vision systems, it primarily focuses on post-processing and confirming the

output rather than effectively integrating knowledge into the DL training process. The

challenge lies in going beyond the verification step and finding innovative approaches to

integrate prior knowledge into the training process of DNNs. Achieving this integration

could lead to a more context-aware and adaptable computer vision model.

Additionally, it is important to note that while the approaches mentioned earlier have been

proposed effectively for various computer vision tasks, their application within the context

of autonomous driving remains limited because of the related challenges. One possible

reason is the dynamic nature of urban environments, which presents a unique set of com-

plexities that make it difficult to define and integrate the relevant knowledge into DNNs. In

the context of urban environments, this includes changing traffic patterns, unpredictable

pedestrian behavior, changing weather conditions, and a multitude of possible road sce-

narios. These dynamic factors make it complex to pre-define the precise knowledge that

should be integrated into DL models.

1.5/ FUNDAMENTAL CONCEPTS OF DEEP NEURAL NETWORKS

Neural networks were created to imitate the human nervous system in machine learn-

ing, guiding artificial neurons in a manner similar to how human neurons work. Neural

networks are used for a wide range of tasks, including image and speech recognition,

natural language processing, and various other applications in artificial intelligence. The

term “deep learning" is often used when referring to neural networks with multiple hidden

layers, which have proven highly effective in capturing complex patterns in data.

In a single-layer network, a set of inputs is directly linked to an output through a gener-

alized form of a linear function. This fundamental form of a neural network is commonly

known as a perceptron that is shown in Figure 1.4. The perceptron is based on the con-

cept of weighted sum of inputs followed by an activation function. The perceptron model

is the set of weights to be optimized through a learning process considering a training

observation of form (X, y) where X is the features vector [x1, x2, . . . , xm] with a length of m

and y is its annotation. The m features are linked to the node through a set of weights

W = [w1, . . . .,wm] calculating the weighted sum that can include a bias b0 to emphasis the

non-linearity then applying an activation function, hence defining the output value of the

perceptron as delighted in Eq. 1.1.

ŷ = f (X,W) = g(b0 +

m∑
i=1

wi.xi) (1.1)

In the case of multi-layer neural networks, neurons are organized in a layered structure
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Figure 1.4: Representation of a perceptron

where input and output layers are positioned on either side of one or more hidden layers.

This structured arrangement of layers in the neural network is also called a feed-forward

network. The optimization process of a perceptron, that is generalized to neural networks,

relies on finding the optimal set of weights to minimize the prediction error between ŷ and

the annotation y using a loss function such as L1 or Mean Squared Error (MSE) errors

overall the training set D with n observations forming the objective function represented

in Eq. 1.2.

Ŵ∗ = argminW
1
n

n∑
i=1

loss( f (Xi; W), yi) (1.2)

While the objective function is defined over the entire training data D, the optimization

algorithm of neural networks, referred to as backpropagation algorithm, relies on feeding

each input data instance X into the network one by one (or in small batches) to create the

prediction ŷ. The next step consists of updating the set of weights as defined in Eq. 1.3

based on the gradient of the error value E(X) = loss(ŷ, y). The parameter lr regulates the

learning rate of the neural network that can be seen as a freedom factor influencing how

quickly or slowly the model converges to the optimal set of parameters. High learning

rate values can lead the model to overshoot the minimum of the loss function and diverge

instead of converging. On the other hand, very low learning rates can result in slow con-

vergence, which might require a large number of iterations to reach the optimal weights

combination.

Wnew = WCurrent − lr.
∂E(x)
∂WCurrent

(1.3)

1.5.1/ CONVOLUTIONAL NEURAL NETWORKS

The learning capacity of perceptron in its basic form motivated the machine learning com-

munity to extend the perceptron concepts and adapt them for more complex task such

as natural language processing with Recurrent Neural Networks (RNNs), time-series pat-

tern recognition with Long Short-Term Memory (LSTM) networks, and also Convolutional

Neural Networks (CNNs) that are widely serving computer vision in which this thesis is

interested.

In contrast, CNNs are more complex architectures designed for tasks such as image

recognition and scene visual perceptions. While the basic perceptron is not directly used

in CNNs, the fundamental concepts of neurons, weights, and activation functions are

10



extended and adapted in CNNs for more sophisticated operations. The main extensions

can be summarized in the following:

• Neurons and Activation Functions: In a perceptron, each input is connected to a

neuron, and the weighted sum is passed through an activation function to produce

the output. In a CNN, the basic processing unit is still a neuron, but these neurons

are organized in layers, and the activation functions used are often nonlinear (e.g.,

Rectified Linear Unit (ReLU)).

• Weights and Convolution: In a perceptron, each input has an associated weight.

In CNNs, weights are used in convolutional layers to detect features in localized

regions of the input. Convolutional operations involve sliding a filter (also called

a kernel) over the input to perform element-wise multiplications and summing the

results. This process replace the weighted sum in a perceptron.

• Pooling layers: CNNs often include pooling layers to downsample the spatial di-

mensions of the input. Max pooling, for example, selects the maximum value from

a set of values in a region. This operation helps reduce the computational load and

focuses on the most important features.

• Multiple Layers and Hierarchical Features: CNNs typically consist of multiple

convolutional and pooling layers arranged hierarchically. Each layer extracts higher-

level features from the input. This hierarchical feature extraction is similar to the way

multiple layers in a neural network process information in a more abstract manner.

• Fully Connected Layers: While convolutional and pooling layers capture spatial

features, fully connected layers at the end of a CNN combine these features for

classification. These layers are like the structure of a traditional neural network,

with neurons connected to all neurons in the previous layer, similar to a perceptron

architecture.

• Transposed Convolution Layers: Transposed convolutions are often employed in

the decoder part of CNNs to generate high-resolution feature maps or images from

the encoded spatial features from earlier convolution and pooling layers. They are

crucial in architectures like U-Net and various generative models where upsampling

is needed to produce detailed outputs.

Similar to the perceptron backpropagation learning algorithm, CNNs are learned in the

same way but they require more iterations and training samples regarding their set of

weights that can reach millions of trainable parameters even with basic architectures. The

computer vision experienced the proposal of different architectures of CNNs defining how

the convolution-based blocks (convolution, pooling and normalization layers) are linked
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to each other. Three architectures are commonly used in the literature that are plain,

residual, and sparse connections as illustrated in Figure 1.5.

Figure 1.5: Representation of CNNs architectures

In plain or standard connections, each layer output is directly connected to the subse-

quent layer input. The convolutional layers typically use regular convolution operations to

process input data. The information flows sequentially from one layer to the next. This is

the basic and most common type of connection in CNNs and is used in AlexNet [29] and

VGG [30] models. Residual connections, introduced in the context of Residual Neural

Networks (ResNets) [31], involve adding a shortcut or skip connection that bypasses one

or more layers. This allows the network to learn residual functions, making it easier to

train deep networks. Residual connections help mitigate the vanishing gradient problem

and enable optimal and fast training of very deep networks. DenseNet models [32] also

adopted the residual connections but using the channel-wise concatenation instead of the

sum operation. However, this concatenation results in high computational cost compared

to ResNets. Sparse connections employ the definition of a set of convolution with differ-

ent configurations (kernel, stride, padding) in the same level which can help the model

to capture different features. The computed responses are then concatenated and fed

to the next block until reaching a latent space. Inception models [33] are the well-known

architectures with sparse connections.

Scene visual perception, which is the targeted topic is this thesis, relies CNN encoder-

decoder architecture leveraging the power of deep learning to process and interpret com-

plex visual scenes. The encoder-decoder architecture is commonly used for tasks like

semantic segmentation, depth estimation, and scene parsing. The encoder is a set of

convolution and pooling layers that extract relevant features from the input image, which

reflects the scene in our case. Moreover, the encoder tries also to perform the dimension-
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ality reduction by keeping only the discriminant features and downsampling the spatial

resolution of the input image. On the other hand, the decoder accepts the encoded fea-

tures and reconstructs their respective prediction through transposed convolutions and

upsampling layers. The backpropagation is adjusting the weights of the encoder and the

decoder to minimize the error between the prediction and the ground truth. Therefore,

the encoded features will be adapted to the intended task. The last layer of the decoder

(decoder head) should be adapted to fit the nature of the prediction (depth estimation,

semantic segmentation, instance segmentation, etc). Residual-based convolution blocks

are often used in the encoder parts to ensure discriminant features extraction with low

computational complexity.

1.6/ FUNDAMENTAL CONCEPTS OF KNOWLEDGE-BASED SYS-

TEMS

1.6.1/ DEFINITION AND GENERAL CONCEPTS

Knowledge-based systems (KBS) refer to computer systems that leverage explicit knowl-

edge and reasoning mechanisms to make decisions. These systems are designed to cap-

ture, represent, and apply human expertise in a specific domain. Unlike traditional sys-

tems that rely on explicit programming, KBS use a knowledge base, which contains facts,

concepts and rules to draw inferences and make informed decisions. The knowledge

base is typically created by domain experts to improve other systems performance. KBS

are commonly employed in areas where human expertise is crucial, such as medicine

and engineering. Building a KBS involves several steps, ranging from defining the prob-

lem domain to implementing the whole system. The general outline of the key steps in

developing a KBS is described as follows:

1. Define the Problem Domain: In the initial phase, it is crucial to precisely identify

the specific problem or task that the KBS is intended to address. This involves set-

ting clear boundaries and defining the scope of the problem domain. A well-defined

problem statement ensures that the subsequent development process remains fo-

cused and results in a system that effectively meets its intended objectives.

2. Knowledge acquisition: Following the definition of the problem domain, knowl-

edge acquisition involves gathering expertise from domain experts. The goal is to

extract relevant facts, rules and other essential information related to the problem

domain. This knowledge forms the basis for the subsequent construction of the

general KBS.

3. Knowledge representation: Once the important and necessary information has
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been gathered, it is essential to choose an appropriate knowledge representation

scheme. This could involve employing rules, frames, semantic networks, or ontolo-

gies to structure and organize the knowledge. The selected representation scheme

should be well-suited to the nature of the problem domain and facilitate effective

reasoning within the system.

4. Define the inference mechanism: The inference mechanism is a critical compo-

nent that defines how the system processes and draws conclusions from the con-

structed knowledge base. This step involves selecting or designing an inference

engine dedicated to the specific needs of the KBS. Additionally, the rules, algo-

rithms, or reasoning methods that guide the inference process need to be explicitly

specified. This ensures that the system can effectively take advantage from the

knowledge to make informed decisions.

1.6.2/ EXAMPLES OF KNOWLEDGE REPRESENTATION

As mentioned in the previous section, the representation of knowledge is a fundamental

aspect of building KBS, and various methodologies have evolved to effectively capture

and organize information. Among these, graph networks [34], ontologies [35] or gen-

eral knowledge bases stand out as prominent forms of knowledge representation. Graph

networks use graph structures to represent entities and relationships to organize informa-

tion. Specifically, it is based on nodes and edges structures to represent the entities and

the relationships. Ontologies, meanwhile, provide a formal and explicit specification of

a shared conceptualization, defining the vocabulary and relationships within a particular

domain. Finally, a knowledge base is essentially a repository of structured information, in-

cluding facts, rules, and other pieces of knowledge relevant to a particular domain. It acts

as a centralized source from which a system can draw information to conduct reasoning

and make informed decisions. Each of these approaches serves distinct purposes, offer-

ing unique advantages in modeling knowledge and facilitating reasoning. This diversity

in knowledge representation methods ensures adaptability to different domains, provid-

ing a foundation for developing sophisticated KBS that can interpret, reason, and make

informed decisions.

1.6.2.1/ ONTOLOGIES

In this thesis, we are focusing on using ontologies as a key element of the proposed KBS

in our first contribution. In the aim of clarification, we introduce in this section some basic

concepts about ontologies.

Ontologies are a powerful knowledge representation technique that structures information
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in a way that captures the relationships and dependencies within a domain. An ontology

is essentially a formal, explicit specification of a shared conceptualization, providing a

common understanding of a domain vocabulary and relationships. The key concepts and

definitions related to ontologies are described as follows:

• Classes: They represent categories or sets of objects that share common charac-

teristics. For example, in an ontology representing urban driving environment, “Traf-

ficSign" could be a class that includes instances such as “RedSigne" and “Green-

Signe".

• Individuals: They represent specific instances of classes, representing particular

objects or entities in the domain. For example, an individual instance could be

“VehicleX" belonging to the class “Vehicle"

• Object properties: They represent relationships between individuals or between

individuals and classes. They connect instances of classes in the ontology, indi-

cating some form of object-to-object relationship. For example, an object property

“isLocatedOn" linking the class “Person" to the class “Sidewalk" could be used to

represent the relationship that a person is on the sidewalk.

• Data properties: They are relationships that link individuals to data values, such

as strings, numbers, or dates. These properties are used to attribute specific data

values to instances. For example, a data property “hasAverageHeight" can link the

class “Person" to a numeric value, representing the average height of a person.

• Rules: A rule is a statement that defines a relationship or constraint between dif-

ferent entities in the ontology. For example, a rule could be “If the traffic light is red,

then the vehicle must come to a complete stop".

• Reasoning: Reasoning involves the logical processes used by the system to ex-

tract new information from existing knowledge. For example, reasoning could in-

volve defining the optimal route for an autonomous vehicle based on real-time traffic

conditions and vehicle capabilities. In the context of ontologies, reasoners play an

important role in making logical inferences. Examples of reasoners include Pellet

[36], HermiT [37], RacerPro [38], Fact++ [39] and Jena Reasoner [40].

Ontology encoding To encode ontologies, various languages and frameworks are

available, with different complexity levels. One widely used language is the Resource

Description Framework (RDF) [41], which uses triples that consist of three parts: the sub-

ject, the predicate, and the object to represent relationships and concepts. RDF Schema

(RDFS) [42] extends RDF by providing a basic vocabulary for defining ontologies. Addi-

tionally, the Web Ontology Language (OWL) [43] offers a more expressive and compre-
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hensive means of encoding ontologies. OWL allows the specification of classes, proper-

ties, and relationships with varying degrees of complexity, making it suitable for a wide

range of applications. Common serialization formats for RDF and OWL include RDF/XML

[44], Turtle [45], and JSON-LD [46]. The choice of encoding language depends on many

factors such as the level of expressiveness needed, the complexity of the domain, and

interoperability requirements with existing systems. Each language has its strengths and

trade-offs, providing knwoledge experts with many options for encoding the ontology to

represent knowledge in a machine-readable and format.

Ontology querying Ontology querying refers to the process of retrieving information

from an ontology or using specific queries. Querying involves expressing questions or

requests for information in a way that the system can understand and interpret. Ontol-

ogy querying typically employs query languages designed for ontological data, such as

SPARQL [47] for RDF-based ontologies. The goal of ontology querying is to extract rele-

vant and precise information to answer specific questions. Queries may involve search-

ing for instances of classes, relationships between entities, or exploring the hierarchy and

properties defined in the ontology.

1.7/ CONTRIBUTIONS

In this thesis, we propose new approaches to enhance the performance of DNNs by

incorporating domain-specific knowledge for autonomous driving applications. When we

talk about “performance", we are considering a range of improvements. This includes

not only getting better computer vision task results based on evaluation metrics but also

speeding up the training process, reducing the need for extensive resources, and making

more efficient use of raw data. This collectively contributes to more efficient and effective

DL models. Our research work involves addressing three fundamental questions:

• What? The first question involves defining what constitutes meaningful knowledge

for a specific computer vision task. This includes identifying the domain-specific

knowledge that can significantly improve the task performance.

• How? The second question is about how we represent and combine this knowledge

with the DL process. We explore various ways to present this information, such as

using semantic knowledge, ontologies, or knowledge bases.

• Where? The last question tackles where in the DL process we should incorporate

this knowledge to get the best results. Should it be part of the initial data, into

the model architecture, or introduced during the models training? Finding the right

integration points is the key to optimizing the performance of DNNs.
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To address these research questions effectively, one approach is to define specific com-

puter vision tasks and develop frameworks designed to not only outperform the current

task performance in the State Of The Art (SOTA) but also enhance the overall DNNs per-

formances. Consequently, our thesis focuses on two major and novel tasks within the

field of computer vision: Monocular Depth Estimation (MDE) and panoptic segmentation

in urban environments. These tasks are of significant relevance, as they are essential for

the development of robust autonomous driving systems. Depth estimation plays a critical

role in understanding the three-dimensional aspects of the urban environment, which is

essential for safe navigation. On the other hand, panoptic segmentation offers a holistic

view of the surroundings by identifying object instances and their semantic categories,

a crucial aspect of decision-making in complex urban scenarios. Although these two

tasks have some similarities, they also have distinct characteristics that highlight the re-

quirement for different knowledge systems to enhance their performance effectively. Our

research, by centering on these tasks, aims to offer valuable insights into how integrating

knowledge can improve the performance of DNNs in addressing a wide range of com-

puter vision challenges. In doing so, we contribute to the advancement of more robust

and reliable autonomous driving systems.

1.8/ OUTLINE OF THE PHD THESIS DISSERTATION

To offer a comprehensive overview of the contributions outlined in this thesis, the remain-

der of this manuscript is structured as follows.

• In Chapter 2, we review knowledge-based approaches for computer vision tasks.

In the first part, we discuss the use of ontologies as knowledge bases to combine

with DNNs, either to verify the results of the networks or to directly enhance the

training process. In the second part, we explore other state-of-the-art approaches

that combine various forms of knowledge, aside from ontologies, with DNNs.

• In chapter 3, we introduce a new approach that uses an ontology model in a DL

context to represent the urban environment as a structured set of concepts linked

with semantic relationships. Monocular cues information is extracted through rea-

soning performed on the proposed ontology and is fed together with the RGB image

in a multi-stream way into the DNN for monocular depth estimation.

• In chapter 4, we introduce a new informed DL approach that combines the strengths

of DNNs for panoptic segmentation with additional knowledge about spatial relation-

ships between objects. The proposed approach involves introducing a process for

extracting and representing spatial relationship knowledge, which is incorporated

into the training using a specially designed loss function.
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• In chapter 5, we present a general conclusion including the summary of the thesis,

and discuss perspectives and future work.
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2

STATE OF THE ART

2.1/ INTRODUCTION

In the AI field, significant attention has been given to the fusion of KBS with DNNs,

giving rise to the concept of hybrid AI. This chapter provides an overview of the latest

approaches that use the power of hybrid AI by combining KBS with DL approaches to

enhance the accuracy of different tasks. This hybrid approach represents a fundamental

transition in AI research, bridging the gap between structured knowledge and data-driven

insights. In the SOTA, two predominant approaches have become well known in hybrid

AI: the use of knowledge to improve DL models [48; 49; 50; 51] and the use of DL models

to enrich KBS [52; 53; 54; 55]. In the context of our thesis, we will mainly focus on the

first category where KBS plays a crucial role in enhancing DL model performance.

Within this category of hybrid AI, we come across various KBS, each with its unique rep-

resentation and different ways of integrating and combining this knowledge with DNNs.

We will categorize the state-of-the-art approaches into two main categories: Level 1 (L1)

and Level 2 (L2) approaches. In L1 methods, KBS serve as tools and referees for the

validation and the verification of the DL results rather than directly enhancing the train-

ing process of the models. In this case, the KBS act as post-processing mechanisms,

ensuring the constancy and interpretability of DL outputs. On the other hand, we will ex-

plore L2 approaches, where the knowledge is deeply integrated into the training process

of the DL models. In this subcategory, KBS plays a more active role in improving the

model performance. These approaches frequently involve knowledge at different stages

of the training process, significantly impacting the DL model from different perspectives.

While we will provide a brief overview of L1 approaches, our primary focus will be on L2

methods. We are particularly interested in exploring approaches where KBS and DNNs

are seamlessly integrated into the entire pipeline, working in collaboration to enhance the

model performances.

Within this diverse landscape, we propose in the aim of this thesis a categorization of
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L2 approaches based on the integration level in the DNNs. These levels include various

dimensions, such as integration in early training stages, in the DNNs architecture, or in

the last stage.

• Early stage: In this category, we present approaches that use knowledge extracted

from KBS during the early stages of the DNN training process. This may involve

incorporating knowledge into the input of the model through additional data or inte-

grating additional information to enhance the initial training stages.

• Architecture: In this category, we explore approaches where KBS are integrated

into the architecture of DNNs as an integral component or block. This level of in-

tegration enables direct interaction between the model and the knowledge system,

improving its performance during the training process.

• Last stage: This category includes techniques where KBS are not limited to con-

ventional input or architectural modifications but have a role in the last stage, directly

in the prediction of DNNs, by proposing some new loss functions.

2.2/ L1 APPROACHES: KBS FOR DNNS RESULTS VALIDATION

In this section, we present some approaches that make use of KBS to verify and validate

the results produced by DNNs. Instead of directly helping with the DNNs training, KBS

act like trusted referees, ensuring that the DNNs outcomes are not only accurate but

also understandable and explainable. This attention to interpretability is crucial because

it allows one to gain insights into how AI systems take decisions, making them more

transparent and reliable.

2.2.1/ OVERVIEW OF THE L1 APPROACHES

The approach presented in [28] automated the process of reasoning about errors that

emerge from ML algorithms. The goal is to provide explanations for ML errors by using

spatial and geometrical reasoning between objects in a scene. The system is demon-

strated in the remote sensing domain [56], specifically in pixel-wise semantic segmen-

tation of objects in satellite images [57]. Misclassification is a real challenge in this do-

main due to visual similarities between classes. For instance, urban infrastructures like

buildings or roads often share similar characteristics, contributing to potential misclassi-

fications. The methodology proposed in this paper focuses on spatially explaining the

errors in terms of their structure and neighborhood, aiming to improve understanding and

interpretation of the learning process. The approach outlines the use of Convolutional Au-

toencoders (CAE) [58] as the primary ML classifier. Furthermore, the system integrates
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ontology-based reasoning using OntoCity [59], which plays an important role in error ex-

planation. OntoCity improves the analysis by decoding the semantics and relationships

within the satellite image data, enhancing the capability of the proposed framework to

explain errors. While the approach in this paper mainly focuses on explaining ML er-

rors using ontologies, the authors propose some interesting future work. Subsequent

research includes using these explanations to not only understand but also improve algo-

rithms performances.

Another approach [27] proposed a method for the classification of healthy fundamental

tissues and organs in histological images using an existing histological ontology of the

human cardiovascular system [60]. In this paper, two main strategies are presented.

The first strategy involves defining discriminant classes that correspond to tissues as-

sociated with specific organs, e.g., cardiac muscle, the smooth muscle of arteries, and

non-discriminant classes that include tissues that are not directly linked to organs. Re-

source Description Framework (RDF) triples [41] are constructed based on this ontology,

and a reasoner, such as Pellet [36] or FaCT++ [39], is used to perform inference. If the

inference outcome is empty, indicating uncertainty, the relevant image blocks are sub-

ject to reclassification based on the behavior of false positives. The second strategy

addresses the recognition of epithelial tissue through ontology. This category of tissues

is typically identified based on the presence of light regions in histological images. The

proposed approach extends this recognition to images captured with a 10× objective by

considering factors such as the size of light regions and their proximity to specific muscle

tissues. RDF rules are generated, and SPARQL queries [47] are used with the ontology

reasoner to define the presence of epithelial tissues. Possible outcomes include iden-

tifying the type of existing epithelial tissue or defining a high probability of its absence.

The paper reports results on F-scores [61] for both organ classification and epithelial tis-

sue recognition. These F-scores are used to evaluate the performance of the proposed

methods in classifying various tissue classes. Finally, the paper outlines potential future

research directions, including the exploration of CNN [62] strategies and the application

of ontology-based classification to various medical problems.

Another paper introduces an approach to explain the behavior of trained artificial neural

networks by using semantic web technologies and ontologies [63]. The method aims to

provide human-understandable explanations for the network input-output behavior. The

authors use description logic and the DL-learner tool to generate explanations based

on background knowledge obtained from structured data available on the web. Using

the Suggested Upper Merged Ontology (SUMO) [64] as the symbolic knowledge model,

the DL-Learner demonstrates the capacity to classify the images through the process

of reasoning about the objects based on the ontology defined concepts. Similarly, the

methodology introduced in [65] leverages a general purpose ontology, ConceptNet [66],

for image retrieval task. The ontology plays an important role in the scoring and ranking
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of images during retrieval. When a query includes words that lack pre-trained object

detectors, ConceptNet is employed to estimate the likelihood of these words appearing in

images. The ontology knowledge is used to enrich the scoring process, allowing for more

informed ranking and retrieval of images.

The approach presented in [67] highlights a method for integrating color knowledge into

DNNs for indoor object recognition. The process begins by merging two datasets: the

public indoor dataset and a private dataset consisting of Frames from Videos (FoVs).

This combined dataset is used to train a CNN for object recognition. To incorporate

color knowledge, mean images are generated for each object class within the indoor

dataset. These mean images serve as representations of typical colors associated with

each class. When the network receives a detection request during inference, it uses color

knowledge by computing the distance between the input image and the mean images of

all classes. This calculation produces a class weight vector, which essentially quantifies

how close the input images match the typical colors of different object classes.

2.2.2/ DISCUSSION AND ANALYSIS

The application of KBS to validate and verify DNNs has gained significant attention in

recent research. This type of approach is promising, especially in terms of providing ex-

planations for the perception and decision-making process of DNNs systems. By using

KBS, researchers have shed light on the black-box nature of DNNs, making their out-

comes more transparent. We have also noticed that the majority of studies in this domain

have indeed chosen ontologies over other KBS representations for this category of ap-

proaches.

Other KBS representations often fall short in comparison to ontologies when used for the

validation of DNNs. One key reason is their formal and structured nature, which provides

a well-defined framework for representing complex domain knowledge. Unlike other KBS

representations that may lack standardized relationships and semantic consistency, on-

tologies offer more effective methods for organizing and representing knowledge. Their

ability to capture rich, interconnected domain information with clearly defined taxonomies

and logical inferences makes them especially effective for the complex reasoning and ex-

planation required in DNNs validation. Moreover, ontologies are more flexible to use in

conjunction with semantic web technologies, making it easier to access and query large

knowledge bases.

However, while the use of KBS to verify DNNs is a promising initial step, the true potential

lies in moving beyond explanation and validation toward collaboration. Integrating knowl-

edge directly into the main pipeline of DNNs allows active collaboration and better results.

This integration enables DNNs to use domain-specific knowledge during the perception
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process, leading to more accurate and context-aware predictions. In the next section

(Section 2.3), we will delve deeper into state-of-the-art methods that integrate KBS into

the main pipeline of DNNs to improve their results and performance.

2.3/ L2 APPROACHES: KBS TO IMPROVE DNNS PERFORMANCES

In this section, we present state-of-the-art approaches that use KBS to enhance the

performance of DNNs. To provide a comprehensive overview, we categorize these ap-

proaches into three distinct subsections, each representing a different integration stage

of KBS into DNNs (presented in the introduction of this section).

2.3.1/ EARLY STAGE INTEGRATION

An approach to improve the accuracy of video tagging is introduced in [68]. The method

is based on the integration of ontology knowledge into CNN. The key innovation lies in

incorporating a video scene ontology, which serves as a structured knowledge represen-

tation of the relationships between different classes and concepts within video content.

Integration of the ontology occurs at both the input and output layers of the network. In

the input stage, each keyframe is labeled with specific ontology classes that represent the

content or context of the frame. This labeling is performed through a process known as

one-hot encoding [69], where each class is represented as a binary vector. In this vector,

1 corresponds to the class, and 0 is placed at all other positions. These one-hot encoded

class vectors are then concatenated with the feature representations of the keyframes.

This process reinforces the input data with semantic context extracted from the ontology.

In the same context, another approach is proposed to improve semantic segmentation

task through ontology knowledge integration [70]. In this paper, the authors propose a

Collaborative Boosting Framework (CBF) that combines data-driven deep learning with

knowledge-guided ontological reasoning to improve semantic segmentation in Remote

Sensing imagery (RS). The core of this approach lies in the use of ontology knowledge,

particularly Remote Sensing Ontology (RSOntology), which serves as a formal represen-

tation of domain-specific knowledge. This ontology describes the attributes of objects

in the images and the relationships between them, providing a structured foundation for

knowledge integration. The DL model used in the CBF is based on a U-Net structure [71].

On the other hand, ontology knowledge is integrated into the DNN in a two-step process.

First, intra-taxonomoy ontology reasoning is applied. This involves the direct correction of

misclassification in the DNN output based on ontology reasoning rules. These rules are

designed to address inconsistencies and improve the accuracy of the initial classification
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results. Second, extra-taxonomoy ontology reasoning is used. In this step, additional

information such as shadow and elevation is extracted, guided by ontological reasoning

rules. This information represented as inferred channels, in addition to the raw image, is

integrated as input into the DNN for further iterations that improve both the interpretability

and classification accuracy of the DL model.

Other categories of papers have recognized the potential of KBS in enhancing the per-

formance of DNNs in the initial training stages by integrating data extracted from KBS to

enrich DNNs. An application of this approach in the SOTA is the generation of synthetic

data through simulations based on KBS [72]. This synthetic data serves as a valuable

resource for training and testing DNNs. An example of this approach can be observed in

the field of AVs, where the synthetic data extracted from KBS are used to augment the

training dataset, addressing scenarios that are not represented in the available dataset.

A hybrid modeling method was proposed to integrate ML and simulation techniques [73].

The approach highlights the benefit of combining the two components, with ML strength

to handle data and simulation expertise to represent relationships. The authors discuss

various integration strategies, such as using simulations to augment training data. This

strategy involves creating simulation models to mimic real-world systems, generating syn-

thetic data through simulations, and then combining these synthetic data with real-world

training data. The augmented dataset is used to train ML models, improving their per-

formance by providing a more diverse and comprehensive set of examples. An example

of this strategy was proposed in the SPIGAN framework that addresses the challenge

of unsupervised domain adaptation [74], i.e., an ML algorithm where a model trained on

a source domain with labeled data is adapted to perform well on a target domain with

unlabeled data without direct supervision in the target domain, in the context of com-

puter vision, with a particular focus on the semantic segmentation task [72]. Specifically,

SPIGAN introduces an auxiliary Privileged Network (P) designed to predict crucial infor-

mation, such as depth, from a simulator. This extracted knowledge, which is not available

in real-world data, is then used to train the DNN for semantic segmentation. This knowl-

edge, referred to as Privileged Information (PI), effectively solves issues like artifacts and

enhances the DNN capacity to generalize and reduce the domain gap between synthetic

and real images. Other approaches also follow the same approach of using KBS to gener-

ate synthetic data [75; 76]. These approaches take advantage of the Social Force Model

[77] (SFM) as a KBS. This model simulates interactions between individuals and is used

to generate realistic scenarios allowing for more robust DNN training and hyperparameter

optimization processes.
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2.3.2/ INTEGRATION OF KNOWLEDGE INTO THE DNNS GENERAL ARCHITEC-
TURE

In this section, we present state-of-the-art models techniques that seamlessly integrate

knowledge from KBS into the structure and architecture of DNNs.

To improve Zero-Shot learning (ZSL) [78], i.e., an ML approach where a model is trained

to recognize classes it has never seen during training, an approach based on ontology

knowledge is proposed [79]. It is applied to two distinct tasks: Animal Image Classifica-

tion (AIC) and Visual Question Answering (VQA). For AIC, a dedicated ontology is con-

structed, including taxonomic relationships between animals and their visual characteris-

tics. This ontology serves as a fundamental resource for semantic understanding. In the

case of VQA, a specialized ontology is extracted from the ConceptNet knowledge graph

[80] to model the relationships between answer concepts in VQA questions. The integra-

tion of ontology knowledge takes place during the training process. Ontology embedding

is used to translate logical axioms and textual information from the ontology into vectors

that effectively represent the semantics of class labels. The embedding process involves

mapping logical axioms into a geometric space, with loss functions calculated based

on geometric inclusion and translation operations, using simple axioms from the ontol-

ogy. These ontology embeddings are subsequently concatenated with other semantic

encoding, such as label word vectors or attribute vectors, depending on the specific task

requirements. Ultimately, during the prediction phase, the trained model benefits from

the integrated ontology knowledge to classify data into both seen and unseen classes,

thereby improving its accuracy by establishing a better understanding of class semantics.

The methodology presented in [81] describes an innovative approach to fine-grained vi-

sual classification, specifically targeting the identification of different varieties of fruits

within the images. The approach uses a designed ontology to represent essential infor-

mation about fruit varieties, their attributes, and contextual relationships. In this paper,

the ontology integration occurs at multiple stages of the DL pipeline. First, during the

training of Mask R-CNN [82] for object detection, ontology plays a crucial role in guiding

the network. The ontology provides guidance on what constitutes target objects, e.g., fruit

varieties, and their contextual objects such as leaves. This knowledge helps the network

focus on accurately identifying these objects within images. Second, when extracting vi-

sual attributes from the detected objects, the ontology helps to define which attributes

are relevant for each specific object type. For example, it guides the system to recognize

attributes like “FruitStripes" for fruit varieties and “LeafEdge" for leaves. These attributes

are essential for fine-grained classification. Finally, the structured knowledge from the on-

tology is integrated into a belief propagation network. This network uses the probabilistic

relationships defined by the ontology to refine the classification process. The ontology

role here is to provide a structured, domain-specific context that informs the relationships
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between objects and their attributes. This context is used to compute the initial evidence

in the Bayesian graph [83] and propagate belief for an accurate classification. Integrating

the ontology into the entire DL pipeline significantly enhances the model ability to per-

form fine-grained visual classification by providing critical guidance to object detection,

attribute extraction, and belief propagation.

Another paper proposed an algorithm that effectively merges DNNs with first-order logic

rules, i.e., they provide a flexible declarative language for communicating high-level cog-

nition and expressing structured knowledge, to enhance the performance of DNNs in var-

ious applications [84]. The core of this algorithm includes training the DNNs using labeled

data while seamlessly incorporating logical rules to capture some structured knowledge

and intentions. The method is based on a unique iterative distillation process [85] that

gradually transfers rules-based insights into the DNNs parameters. This transfer process

is carried out through the construction of a teacher network that includes the concept

of posterior regularization [86]. Namely, the algorithm offers the capacity to find a bal-

ance between two important aspects of training DNNs. First, during the early stages of

training when the student network is not trained and produces low-quality predictions, the

algorithm leans more towards imitation. In other words, it pushes the student networks

to mimic the predictions made by the teacher network, which is constructed based on

predefined rules. Second, as training progresses and the student network improves its

predictive abilities, the algorithm allows the student network to gradually shift its focus

toward emulating the teacher predictions. This means that as the student network be-

comes more trained, it relies less on imitation and more on closely matching the predic-

tions made by the teacher network. This adaptability in balancing imitation and emulation

is a crucial feature of the algorithm that ensures effective knowledge transfer. The pa-

per demonstrates the effectiveness of the proposed algorithm on sentiment analysis and

entity recognition tasks, showing significant improvement over the base networks.

A paper introduced an approach that uses the SFM [77] as a fundamental knowledge

base to improve human motion prediction within a DNN framework [87]. In this fusion of

physics-based knowledge and DNNs, the SFM, which includes the fundamental dynamics

that control human motion, is integrated into the DNN during the training process. Integra-

tion involves incorporating the SFM equations directly into the DNN structure. Within the

network architecture, distinct branches are designed to handle various scenarios, such

as open and structured environments. Throughout the training phase, the DNN learns

how to align its predictions with the knowledge encoded within the SFM. This combina-

tion helps the DNN to predict human motion while following the SFM concepts, which

leads to better predictions and adaptability to various scenarios beyond the training data.

Other approaches have been proposed in the same context of human motion or pedes-

trian trajectory prediction, leveraging physics-based models, mainly SFM, in combination

with DNNs during training [88; 89]. The integration of physics knowledge is important for
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such tasks because it provides a deep understanding of the dynamics and interactions

in the real world. Physics-based models describe how individuals or agents move based

on physics fundamentals, such as forces of attraction and repulsion. By incorporating

these insights into DNNs during training, the models gain a more comprehensive under-

standing of human behavior, leading to more accurate predictions, especially in complex

scenarios.

Many researchers are focusing on Gated Graph Neural Networks (GGNNs) [90], a type

of DNNs based on earlier Gated Neural Networks (GNNs) [91]. The goal is to include

contextual knowledge during model training through the network structure. GNNs are

designed to handle information organized in a graph where each node corresponds to a

hidden state vector that is updated iteratively. GGNNs allow information to move in both

directions (forward and backward) and can update multiple nodes simultaneously at each

step. In this context, an approach was proposed to use contextual information, including

object types and spatial relationships [92]. This approach aimed to detect action-object

affordances effectively. Furthermore, another method proposed a two-step process that

employs a CNN to identify functional areas within indoor scenes [93]. More recently, a

GGNN was used to consider the overall context of a scene for object detection. This

approach also suggested the most suitable object for a specific task [94]. Finally, the

approach proposed in [95] focused on situation recognition tasks. The goal is to identify

human-object interactions within a given context by predicting the most suitable verb that

describes the ongoing activity in a scene. The authors used a GGNN, that integrates

reasoning about verbs and their corresponding roles by iteratively transmitting messages

along the graph edges.

The approach proposed in [96] introduced a framework that combines DL with additional

knowledge represented as a knowledge graph to improve visual recognition. The frame-

work consists of two main modules: a local module that uses spatial memory and a

global graph-reasoning module. The knowledge graph encodes semantic relationships

between object classes, providing valuable structured information. Edge weights in the

graph capture relationships and influence information flow. The model performs mes-

sage propagation on the graph for reasoning, allowing it to consider both local and global

contexts. Cross-feed connections ensure collaborations between local and global mod-

ules. During training, the model learns to use the knowledge graph. This combination of

spatial and semantic reasoning, along with attention mechanisms, improves recognition

performance.

An approach to enhance DL models for image classification of real-world event types is

presented in [97]. This approach is based on the integration of structured knowledge

extracted from an ontology into the DL model. The ontology is constructed using a

large knowledge base, providing a rich taxonomy of event types. The DL model used
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in this study is based on the ResNet-50 architecture [31], fine-tuned for event classifica-

tion tasks. In the proposed method, DNN processed the input images, while the ontology

improves the model understanding of event semantics. This fusion involves two main

components: a classification approach and an ontology-driven network. The classifica-

tion approach predicts a leaf node vector, providing probabilities for a subset of event

nodes that can be used directly for classification. The ontology-driven network, on the

other hand, outputs a sub-graph vector with probabilities for all event nodes in the on-

tology. The specific mechanisms of the ontology integration into DNNs involve multiple

strategies, such as measurements of cosine similarity [98] and elements-wise products,

to combine the output of the classification approach and the ontology-driven network.

A multi-modal framework for autonomous robotics environment representation is pre-

sented in [51], aiming to bridge the gap between data-driven methods and semantic un-

derstanding. The approach consists of three main units: perception, instance, and knowl-

edge. In the perception unit, a modified AlexNet / VGG model [99] processes raw sensor

data for scene segmentation, object detection, and instance tracking. The knowledge

unit constructs an ontology using WordNet [100] and syntactic analysis. It represents

concepts and relations about objects descriptions and functions. Finally, the instance

unit links real-world observations to semantic concepts and serves as a bridge between

sensor data and knowledge. User requests destined for the robot are converted into dy-

namic Prolog predicates [101], initiating tasks, and reasoning between spatial relations

between instances. The system combines ontology-based knowledge with DNNs during

task execution, improving the robot ability to understand and interact with its environment.

The methodology outlined in [102] presents an Ontology-Based Semantic Image Seg-

mentation (OBSIS) approach that aims to improve image segmentation by bridging the

gap between low-level visual features and high-level semantic knowledge. OBSIS em-

ploys a combination of techniques, including a DL model, semantic ontology, and prob-

abilistic graph model. In OBSIS, a DL model, specifically a CNN, is used to analyze

and extract low-level features from images. A semantic ontology is constructed using the

OWL 2 DL language [103], representing high-level semantic knowledge and relationships

between objects, their parts, and visual features. The knowledge integration step occurs

in the intermediate semantic space. After extracting low-level features, Dirichlet process

mixture models [104] and Conditional Random Fields (CRFs) [105] are used to transform

the visual features into this higher-level space. In this space, the features are repre-

sented as intermediate labels associated with color, texture, and shape. The ontology is

then used for the final inference, enabling the extraction of semantic labels by capturing

interactions between semantic concepts and visual features in a semantic context model.
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2.3.3/ INTEGRATION OF KNOWLEDGE IN THE LAST STAGE

A widely employed method for enhancing the outcomes of DNNs involves the use of

knowledge-guided loss functions. These loss functions are designed to ensure that the

model outputs align with knowledge bases and rules, eliminating unrealistic predictions

that are incompatible with real-world scenarios. The approach proposed in [106], pro-

vides a methodology for constructing physics-guided DL models. It identifies the expand-

ing interest in this field, with diverse applications in many domains. The authors explore

the design of loss functions that incorporate physics-based constraints. These loss func-

tions guide the training of DNNs to produce results that are not only data-driven but also

physically consistent.

Another approach introduced in [107] focuses on improving the performance of DNNs

for constrained problems, specifically the Partial Latin Square (PLS) completion problem.

The main goal is to improve the ability of DNNs to general practical solutions by integrating

domain knowledge into the training process. This integration is achieved through a novel

loss function that goes beyond typical data-driven terms. The loss function incorporates

both data-driven terms, such as cross-entropy, and additional terms inspired by Seman-

tic Based Regularization (SBR)[108], i.e., an ML technique that incorporates semantic

information such as class relationships or embeddings, as a regularization term during

training to enhance model generalization, and Constraint Programming (CP) [109], i.e., a

declarative programming paradigm focused on expressing and solving complex problems

through constraints and variables. These additional terms penalize the model based on

domain-specific constraints, guiding the network to produce solutions that are not only

data-driven.

A widely acknowledged challenge associated with Generative Adversarial Networks

(GANs) is their sample complexity, which demands a large amount of data for effective

training. GANs are type of ML models that include two neural networks, a generator,

and a discriminator, trained simultaneously through adversarial training. The generator

aims to create realistic data, while the discriminator tries to distinguish between real and

false data, leading to a dynamic learning process that enhances the generator ability to

produce increasingly realistic outputs. There is a research area dedicated to enhancing

GANs by incorporating prior knowledge of physics, using physical laws and invariance

properties. For example, in the context of predicting turbulent flows, GAN-based models

have shown improved performance when integrating physical constraints, such as ad-

hering to conversation laws [110] and the energy spectrum [111] into the loss function.

In this context, the work proposed in [112] applied a physics-based morphology con-

straint to a VAE-based GAN model to simulate artificial material samples. In the same

context, many approaches have shown great success in enhancing DNNs through the

integration of physics-based loss functions. For example, in lake temperature modeling,
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a proposed approach added a physics-based penalty term to make sure that the pre-

dictions followed a straightforward pattern: denser water should be predicted to be at

lower depths compared to less dense water [113]. Other works went a step further in this

research direction by using more intricate physical relationships [114; 115]. They intro-

duced a physics-based constraint in the loss function to maintain the balance of thermal

energy in the lake over time, aligning it with the net thermodynamic exchanges between

the lake and its surroundings.

Another approach introduced a hybrid modeling methodology that integrates domain-

specific knowledge into DNNs by incorporating it directly into the loss function [116]. This

approach aims to enhance the accuracy and generalization capability of DNNs, particu-

larly when dealing with sparse and noisy process data. The hybrid model leverages prior

knowledge through the inclusion of simple process models and first-principles equations,

effectively integrating this knowledge as constraints within the global loss function. These

constraints guide network predictions in regions of the input space with limited training

data.

2.3.4/ DISCUSSION AND ANALYSIS

In Section 2.3, we have explored the integration of KBS into DNNs from three distinct

stages: early stage, during training, and last stage integration. We also presented a sum-

mary of the described approaches in Table 2.1. Each of the three integration methods

brings its own set of advantages and limits. Early stage integration approaches involve

incorporating structured knowledge directly into DNNs at the input stage. This approach

offers a strong foundation for DNNs by enhancing raw data with additional knowledge.

One important advantage is the ability and potential to improve predictions since initial

iterations. However, a significant challenge in early stage integration is that the effec-

tiveness of the approach relies heavily on the quality and completeness of the integrated

knowledge. It should be strong, precise, and adequate for the target task to ensure that

the information injected into the DNN is helpful and meaningful. This requires accurate

knowledge expertise to keep the knowledge relevant.

During training integration approach is more dynamic since it actively involves KBS in the

training process. Rather than just enhancing input data, it integrates knowledge into the

architecture of DNNs or guides their learning through specialized loss functions. This

approach allows for iterative knowledge injection, enabling DNNs to correct wrong pre-

dictions and acquire additional information during training. The adaptability it offers is

a significant advantage, as it allows DNNs to continuously refine their understanding.

However, it is important to note that this approach can lead to increased computational

complexity and longer training time, especially when dealing with complex knowledge
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structures. Last stage integration provides flexibility by introducing KBS into the final

stages of DNN training, directly influencing the model output. This approach is advanta-

geous for integrating domain-specific knowledge into existing DNN architectures without

requiring major architectural changes. However, it may not provide the same level of

interpretability and knowledge fusion as the first two approaches.

In summary, the choice of when and how to integrate knowledge into DNNs depends on

the specific task, resource availability, and the desired trade-offs between interpretability,

accuracy, and computational complexity. KBS integration has shown significant promise

in enhancing DNN performance, but ongoing research is needed to address challenges

such as knowledge representation, particularly in dynamic and complex domains like AV.

2.4/ CONCLUSION

In conclusion, this state-of-the-art chapter provides a comprehensive overview of the lat-

est approaches in the field of hybrid AI, where KBS are seamlessly integrated with DNNs

to enhance the accuracy and interoperability of AI systems. Hybrid AI represents a sig-

nificant transition in AI research, bridging the gap between structured knowledge and

data-driven insights. The chapter classified hybrid AI approaches into two main cate-

gories: L1 and L2 approaches. In L1 methods, KBS primarily serve as tools for validation

and verification of DNNs results, ensuring the reliability and interoperability of DL outputs.

On the other hand, L2 approaches involve deep integration of knowledge into the DNNs

training process, significantly impacting model performance.

Within L1 approaches (Section 2.2), we explored various strategies, particularly the use of

ontologies and other structured knowledge, to explain and validate DNNs results. These

approaches have shed light on the interpretability of AI systems and their decision-making

process. Ontologies have proven to be effective in organizing and representing complex

domain knowledge for improved validation. Moving beyond L1, L2 approaches (Section

2.3) directly integrate the knowledge from KBS into DNNs at different stages of the train-

ing process. Early stage integration enhances training data with additional information

extracted from knowledge structures, improving the training from its initial stages. Inte-

gration during the training process actively involves KBS in the training pipeline, enabling

DNNs to leverage domain-specific knowledge. Last stage integration allows KBS to influ-

ence the final output of DNN, which impacts the overall performance of the model.

Our primary focus in this exploration of hybrid AI has been oriented toward L2 ap-

proaches, primarily due to the belief that these methods represent a more advanced

concept to seamlessly combine KBS with DNN. L2 approaches demonstrate a deeper in-

tegration of structured knowledge through the entire DNN training pipeline, allowing active
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collaboration between KBS and DNNs to enhance network performance. An important

observation is that these approaches initially found widespread use in fields like physics,

environmental sciences, and other scientific domains where physics-based knowledge is

helpful. However, over time, these approaches have also shown effectiveness in com-

puter vision, where semantic understanding and context-aware predictions are essential.

Nevertheless, it is interesting to note that these approaches are relatively less common

in the AV field. This can be attributed to the complexity and dynamic nature of the au-

tonomous driving environment, making it challenging to define and integrate the knowl-

edge required effectively.

In the context of this thesis, our research will align with the general methodology of L2

approaches, particularly when applied to the challenging domain of AV. Our primary goal

is to propose innovative approaches combining KBS with DNNs to enhance the percep-

tion capability of AVs operating in dynamic outdoor environments. The challenge lies in

defining and acquiring knowledge that holds meaningful relevance for computer vision

tasks in these complex outdoor scenarios. This environment is characterized by many

factors, including changing weather conditions, unpredictable traffic patterns, and diverse

road structures. Within this general framework, we will explore multiple strategies for in-

tegrating knowledge into DNNs, with a particular focus on incorporating knowledge both

statically at the input stage and dynamically during the training process.
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3

INTEGRATION OF ONTOLOGY

REASONING-BASED MONOCULAR CUES

IN DEEP LEARNING MODELING FOR

SINGLE IMAGE DEPTH ESTIMATION IN

URBAN DRIVING SCENARIOS

3.1/ INTRODUCTION & CONTEXT

In this chapter, we present our first contribution within the scope of this thesis. We pro-

pose a new hybrid approach that combines KBS with DNNs to improve monocular depth

estimation task in the context of urban driving. In this section, we introduce the gen-

eral context of this work, with a focus on depth estimation task. The existing categories

of methods, their strengths, and limitations are presented. Afterward, we delve into the

motivations and intuitions behind the proposed approach.

Depth estimation has long been acknowledged as a fundamental task in the computer

vision field, improving the ability to perceive and understand scenes in various applica-

tions, including autonomous driving [118]. However, the process of generating accurate

depth maps is usually expensive and requires considerable computing resources. Con-

sequently, depth estimation based on computer vision techniques has become a focus of

interest in the scientific community [119]. In this context, we classify image-based depth

estimation techniques into three main categories: traditional, ML-based techniques, and

DL ones.

Traditional methods rely mainly on geometric relationships between visual features gath-

ered from multiple viewpoints, as seen in techniques such as stereo vision matching [120]

and vanishing points [121]. The effectiveness of these techniques is highly dependent on
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the accurate detection, matching, and tracking of features, which in turn depend on the

quality of the image sequence. These approaches tend to be complex, less practical, and

not well-suitable for real-time applications [118].

The second category that represents ML approaches is based on methods and algo-

rithms that use parametric and non-parametric ML, such as Markov Random Field (MRF)

[122] and Pyramid Histogram of Oriented Graph (PHOG) [123], to name just a few. These

methods offer some advantages, including the correlation between scene depth and tex-

ture cues obtained from computed texture features at various scales [124]. However,

these methods are often criticized for their high complexity, dependence on texture infor-

mation, and the challenge of real-time execution.

Finally, the most recent advancement in this field can be seen in the third category of

DL-based techniques. These approaches, whether supervised, non-supervised, or semi-

supervised, stand out for their practicality, accuracy, and efficiency, especially in multi-

scene and real-time applications [118]. Within the context of DL, we identify two main

categories of depth estimation models: binocular-based and monocular-based.

When it comes to binocular depth estimation models, many researchers have turned to

stereo vision to achieve accurate depth estimation results [125; 126]. This approach

is based on a binocular rig that allows one to acquire a pair of images to estimate the

disparity by stereo matching [127]. However, it is worth noting that this approach requires

at least one stereo camera. It is also difficult to capture enough features in the image

to generate dense depth maps when the scene has few or no textures [128]. In this

context, some researchers have suggested alternative methods to estimate the depth,

motivated by the need to reduce the required hardware resources. According to recent

work, pixel-wise depth maps could be generated end-to-end from a single image [129].

Several DNNs, including CNNs [130] and VAE [131]), have demonstrated outstanding

performance and effectiveness. These promising results have inspired the community to

investigate the process performed by DL models to identify the factors that impact MDE.

According to [132; 133], DNNs have demonstrated their ability to learn visual depth cues

or any information sent from a two-dimensional image that provides a three-dimensional

impression to the observer. These cues, also known as monocular cues, are used to

evaluate depth from a single image. Examples of these cues include texture gradients

and the apparent size of objects. They represent how a single eye allows us to see and

process what we perceive in our environment. For humans, these monocular cues are

based not only on the visual aspect of the objects but also on previously learned and

acquired knowledge. For example, the following reasoning is automatically performed if

a driver perceives a car to be larger than a truck in an urban environment:

1. Perception: The car appears to be larger than the truck.
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2. Knowledge: The absolute size of the car is smaller than the absolute size of the

truck.

3. Reasoning: According to the perception and the pre-acquired knowledge, we con-

clude that the car is closer than the truck.

This reasoning is based on the apparent size of the objects, one of the monocular cues,

and the knowledge regarding the absolute size of those objects.

According to the SOTA (Section 3.2), many works have shown that DNNs can learn more

effectively when they are trained with both semantic and visual information, which helps

in depth estimation tasks. Also, it has been shown that DNNs can implicitly learn visual

depth cues during their training process. In light of these findings and the above ob-

servations, we were inspired in the context of this work to explore the explicit and direct

integration of knowledge during the training of DNNs for MDE. We hypothesize that by

incorporating meaningful knowledge directly and explicitly during DNN training, we can

further enhance the model ability to understand and learn depth cues, leading to im-

proved performance for the considered computer vision task. Consequently, we propose

a new DL approach that directly incorporates monocular cues representations as addi-

tional inputs into the MDE process. Specifically, we use semantic segmentation to identify

objects in the urban scene and extract the relevant knowledge for each pixel in the im-

age. This basic human-like knowledge that leads to monocular cues is obtained thanks

to an ontology and rules that use different geometric and spatial information related to the

urban environment. These are then fed with the RGB image into a DL model for depth

estimation.

The contributions described in this chapter are as follows.

• the definition and implementation of an ontology and a rule base for monocular cues

extraction,

• the implementation of the proposed monocular cues on two deep neural networks

for monocular depth estimation,

• the validation and evaluation of our approach on various urban scene datasets,

including unseen scenes.

To present our approach, the remainder of this chapter is organized as follows. Work

related to MDE is introduced in Section 3.2. Section 3.3 outlines the proposed approach.

The methodology including ontology reasoning and monocular cues extraction is de-

scribed in Section 3.4. The DNNs considered for MDE are presented in Section 3.5.

Section 3.6 presents the performed experiments, the comparison of the results with the

SOTA, and the ablation study. Finally, the last section concludes the work in this chapter

and provides directions for future work.
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3.2/ MONOCULAR DEPTH ESTIMATION STATE-OF-THE-ART

Many approaches have been introduced to tackle monocular image-based depth estima-

tion. In [134], the authors improved the performance of the MDE DNNs through a straight-

forward but well-designed model for this specific task. The technique includes the use of

minimal re-projection loss to address occlusion, and the incorporation of full-resolution

multiscale sampling to reduce visual artifacts. Another method for single image depth

estimation without the need for ground truth data was introduced in [135]. This method

relies on epipolar geometry constraints to generate disparity maps through network train-

ing with an image reconstruction loss. Among the various works related to monocular

image depth estimation, the method proposed in [136] is currently considered the SOTA

in supervised MDE, to the best of our knowledge. In this work, the authors introduced a

novel transformer-based architecture block known as AdaBins. It adaptively divides the

depth range into bins to estimate the center value for each image. Ultimately, a linear

combination of these bin centers is used to estimate the final depth values.

Since the quality of depth estimation from a single image has rapidly increased, some

works [132; 133] have analyzed the process performed by DNNs to understand how the

depth is estimated. Their goal has been to identify the factors that DNNs implicitly take

into account during the learning process, enhancing their efficiency and precision in depth

estimation. In [132], a comprehensive analysis of various DNNs was conducted, focus-

ing on the monocular visual cues employed in depth estimation. Their findings revealed

that DNNs primarily rely on perceived monocular depth cues, such as relative size, linear

perspective, overlap, and elevation. Practical evaluations of the influence of each depth

cue demonstrated that DNNs mainly rely on the vertical position in the image space of

objects in driving scenarios. Furthermore, another work [133] also considered CNN infer-

ence visualization to gain insights into the depth inference process from single images.

Applying their method to different depth estimation networks on outdoor scene datasets,

the authors made several key observations. First, CNN behavior indicated that it selects

image edges based on the geometry of the scene objects; this means that geometric

specifications such as size, volume, length, and height are mainly used in the object

edges selection in the image. In addition, DNNs take into account information located

within specific regions of each individual object to estimate depth accurately.

Acknowledging the importance of leveraging supplementary information to enhance

MDE, various works have introduced approaches to take advantage of this idea. To im-

plement this concept, semantic information has been used to identify the visual content

within an image by establishing connections between low-level features and the scene

content. This integration of semantic information enables additional knowledge transfer

to the depth estimation models, helping them to accurately perform their learning. In this

context, a first set of papers [137; 138] proposed adding semantic information to address
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the challenges caused by dynamic objects. Furthermore, another work attempted to in-

tegrate both semantic segmentation and depth estimation networks into a unified frame-

work. This architecture allows insights issued from the first network (semantic segmenta-

tion) to be considered for the enhancement of the subsequent network (depth estimation)

[139]. Including semantic information within the process improves depth estimation. This

is mainly because semantic information brings additional knowledge to the task workflow.

From a broad perspective, the practice of integrating supplementary data and information

to enhance the performance of computer vision tasks has consistently yielded promising

results. For example, a novel multi-task DL architecture for face pose estimation was pro-

posed in [140]. This method employs a deep CNN-based feature extraction to represent

facial images and a multi-task learning-based model to establish the correlation between

images and corresponding poses. The incorporation of multimodal features within the

context of multi-task learning further improves performance. Furthermore, the authors

in [141] proposed a method for 3D object recognition based on the fusion of multi-view

data. This multi-view fusion technique optimizes the performance by computing a refined

weighted combination of data, thus enhancing the overall results. Another approach was

introduced for 3D human pose recovery [142]. This method relies on the integration

of additional information concerning 2D silhouettes. It also introduces the concepts of

locality-sensitive constriction and the combination of multi-view features to improve re-

sults. Finally, it has also been proposed to improve 3D human pose recovery through the

introduction of a Multimodal Deep Autoencoder (MDA) and a nonlinear Backpropagation-

Neural Network (BP-NN) [143]. The autoencoder adeptly combines diverse feature types

by leveraging multi-view hypergraph Low-Rank Representation (LRR) learning, further

enriching the capabilities of the system.

The various approaches discussed in this section shed light on the growing importance of

leveraging additional knowledge to enhance the performance of MDE DNNs. The incor-

poration of extra information stands out as an effective strategy for addressing challenges

related to the task and refining depth estimation. Similarly, the analysis of DNNs behav-

ior provided valuable insights into the implicit factors guiding depth estimation. These

methodologies, however, have some limitations and challenges. The success and useful-

ness of integrating additional knowledge depend on the specific task and also the quality

of the considered information. Additionally, the computational cost of incorporating this

information should also be considered. In light of these findings and considerations, we

were motivated to take advantage of the usefulness of contextual knowledge in monoc-

ular depth perception and propose a new approach consisting of integrating monocular

cues in the learning process of DNNs for MDE. Such an approach may not only enhance

the performance of depth estimation but also contribute to a more comprehensive under-

standing of the context.
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In the SOTA chapter of this thesis (Chapter 2), we discovered that one effective way to

represent knowledge is through the use of ontologies. They offer many advantages, in-

cluding structured knowledge representation, semantic clarity, and the ability to capture

complex relationships within a specific domain. However, although several papers con-

sider ontologies to enhance DNNs for various computer vision tasks applied in multiple

domains, to the best of our knowledge, there is an important gap in the literature con-

cerning the use of ontology knowledge for MDE. Consequently, in this contribution, we

aim to propose a methodology that integrates monocular cues knowledge extracted from

ontologies into DNNs to improve MDE. This approach has the potential to leverage the

structured knowledge represented in ontologies to enhance the performance and contex-

tual understanding of MDE models.

3.3/ OVERVIEW OF THE PROPOSED METHODOLOGY

The general system of the proposed approach is illustrated in Figure 3.1. The system

takes as input an RGB image captured within an urban environment. This image is sub-

sequently processed through a pretrained semantic segmentation network, leading to the

generation of a semantic segmentation map. The latter is considered to formulate reason-

ing on the concepts implemented within the proposed ontology. This ontology refers to

various geometric, contextual, and semantic information related to the urban road context

to represent basic and essential human knowledge.

Figure 3.1: General pipeline of the integrated system for monocular depth estimation :
Ontology reasoning and deep learning.

Based on this knowledge, ontology reasoning, which imitates human-like reasoning, is

performed to extract monocular cues information from the semantic segmentation. Addi-

tional insights into the process of ontology creation, ontological reasoning, and monocular

cues extraction can be found in Section 3.4. The extracted monocular cues, along with

the original RGB image, are seamlessly integrated in a multi-stream way into a DL model
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designed for MDE. To validate the proposed approach, we considered two different DNNs,

which are detailed in Section 3.5.

3.4/ ONTOLOGY REASONING FOR MONOCULAR CUES EXTRAC-

TION

As part of our contribution, our goal is to emulate human-like reasoning in the context of 
depth estimation. To achieve this, we have chosen to create an ontology for extracting the 
required knowledge related to various monocular cues. We have opted for this approach 
because an ontology is well-suited for defining c oncepts, p roperties, a nd relationships 
providing a structural and geometrical framework for modeling the urban environment.

3.4.1/ ONTOLOGY CREATION

In this work, we have specifically c hosen t o e mploy OWL a s t he o ntological language. 
OWL is based on descriptive logic and functions that divide knowledge bases into two es-

sential components: the T-Box and the A-Box. The T-Box describes the domain through 
concepts and relationships, while the A-Box is composed of factual assertions that are 
interconnected with the conceptual model defined in the T-Box. Within the scope of this 
work, we have established a T-Box relying on expert knowledge. This T-Box consists 
of concepts and relationships designed to model the necessary knowledge to enhance 
depth estimation. This knowledge is general and can be applied regardless of the scene. 
To further enhance the performance of our ontology and enable more sophisticated rule-

based reasoning, we have incorporated Semantic Web Rule Language (SWRL) [144] 
into our framework. SWRL extends OWN by allowing the creation of rules and adding 
inference capability to the ontology. These rules facilitate the representation of complex 
relationships and dependencies, providing a powerful tool for refining our ontology model 
and supporting challenging applications such as MDE. The creation of an ontology typi-

cally involves two key stages: knowledge acquisition and knowledge modeling.

3.4.1.1/ KNOWLEDGE ACQUISITION

In the process of acquiring ontological knowledge for a specific use case, the first step is 
to determine the domain and scope of the ontology [35]. To do so, two essential skills 
questions are involved: “Which concepts exist in the domain concerned by the 
ontology develop-ment?" and “Which concepts are the most relevant to the application?". 
To address these inquiries, we first defined the domain of our ontology, which centers 
around the urban driv-ing context. Subsequently, we enumerate the important terms in 
the ontology and identify
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concepts related to our specific domain. These concepts are linked to the various compo-

nents and objects within urban driving scenes. In practice, we characterized the essential

contextual, geometric, and semantic knowledge associated with each pertinent object,

embedding this information into the ontology to obtain additional relevant indices that will

help improve MDE. To ensure the precision and reliability of the knowledge represented

within the proposed ontology, we refer to urban environment regulations, extracting the

laws governing the construction, layout, and deployment of the different elements in ur-

ban environments. We integrate this type of knowledge because the challenges related

to MDE are mainly due to the inability to transfer some essential knowledge only from

visual information coming from the camera. Hence, the proposed ontology is based on

the knowledge that, when processed through ontology reasoning, generates monocular

cues (see Section 3.4.2) able to enhance depth estimation.

3.4.1.2/ KNOWLEDGE MODELING

The knowledge modeling step involves the creation of ontology concepts and the es-

tablishment of connections between them. This step aims to formalize the conceptual

entities identified during the acquisition stage, i.e., to identify the relationships among the

ontology concepts and define their properties. The modeling process depends mainly

on the needs required by the creation of the ontology. It is important to create generic

concepts and a hierarchy to organize the ontology by regrouping concepts with shared

characteristics. Typically, these concepts are linked together with a “hasSubClass" rela-

tionship. For example, the generic concept “Human" is linked to more specific concepts

such as “Rider" and “Pedestrian" via the relationship “hasSubClass", creating a hierar-

chical tree structure with each concept as a child of a parent concept. Moreover, to model

the characteristics of these concepts, we define the properties of classes by introducing

data properties that connect a single concept to attribute data, and object properties that

establish relationships between two concepts. Within the proposed ontology, we have

represented the structural aspects of an urban environment to acquire knowledge rel-

evant to the target application domain. Consequently, our choices for data and object

properties are made to capture the most generic structural elements and the most typical

scenarios found in urban environments, e.g., bikers ride on the roads, roads have side-

walks on both sides, etc. For example, within the proposed ontology, the “Pedestrian"

concept (as described in Figure 3.2) is associated with data properties such as volume,

height, and distance from the road center, in addition to object properties such as the

“isOn" relationship that connects the “Pedestrian" to the “SideWalk" concept.
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Figure 3.2: Part of the overall ontology and example of data properties on the pedestrian
concept.

3.4.2/ MONOCULAR CUES

In the upcoming sections, we outline the general process for extracting monocular cues

maps (Section 3.4.2.1). A detailed description of the proposed monocular cues maps and

the ontology reasoning process is provided in Section 3.4.2.2.

3.4.2.1/ GENERAL PIPELINE FOR MONOCULAR CUES MAPS EXTRACTION

The proposed ontology is primarily built on open concepts representing objects within the

urban environment. In this context, it is crucial to define the target classes specific to the

urban environment, allowing the proposed ontology to encapsulate these classes as con-

cepts with their associated knowledge for subsequent ontology reasoning. As illustrated

in Figure 3.3, the introduced workflow takes as input an RGB image captured by a vehicle

equipped with an onboard camera operating within an urban environment. Considering a

state-of-the-art pretrained DNN, we generate a pixel-wise semantic segmentation. While

the primary focus of this work is not semantic segmentation itself, we have chosen to use

a pretrained state-of-the-art model to assign the relevant class to each pixel in the image.

Once the semantic segmentation is obtained, we proceed to create our monocular cues
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Figure 3.3: Ontology-based process for monocular cues extraction. Example of an abso-
lute size map.

maps.

Let us take the practical example represented in Figure 3.3 to identify the upcoming steps

in creating the monocular cues maps. We have considered a specific pixel in the image,

located at position (i, j), to illustrate the entire process. In this case, semantic segmen-

tation has classified this pixel as a “Car". This classification directly links the classified

pixel with the “Car" concept in our previously established ontology. From the ontology

point of view, the “Car" concept includes various data properties, such as “hasWidth",

“hasHeight", and others. Leveraging this knowledge, along with the ontology rules de-

tailed in Section 3.4.2.2, information representing monocular cues could be extracted. In

the proposed example, the ontology reasoning indicated that an instance categorized as

a “Car" concept has an absolute size of 10.5m3. Subsequently, we store this information

on a map of the same dimensions as the RGB image, precisely at position (i, j) corre-

sponding to the considered pixel. These steps are repeated for all pixels in the image,

resulting in the creation of a map that effectively represents the monocular cue “Absolute

size" (Further insights into the proposed monocular cues are provided in Section 3.4.2.2)

3.4.2.2/ DESCRIPTION OF THE PROPOSED MONOCULAR CUES MAPS

In the following sections, we explain each of the proposed monocular cues maps, as well

as the ontology reasoning used for their extraction.

Distance from the road center The monocular cue referred to as “Elevation" is a mea-

sure of an object distance in relation to the horizon in the image space. This concept

significantly contributes to improved depth perception, as objects closer to the horizon

tend to appear more distant, while those located further from the horizon are perceived

as closer and more proximate. Taking inspiration from this monocular cue, we have in-
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troduced a map that specifically represents the horizontal distance between each object

within the urban scene and the center of the road. Figure 3.4c shows an example of this

map representation.

Let us begin by examining the straightforward human reasoning applied to estimate the

distance of an object from the road center. As an example, consider the estimation of

distance, denoted as d, between a “SideWalk" and the road center. Human reasoning

is based on the geometric knowledge of the environment, specifically the dimensions of

the “Road" and the “SideWalk". Assuming an average width of the “Road" as a and the

“SideWalk" as b, humans deduce that the “SideWalk" is positioned at a distance of a+b
2

from the road center. To model this human reasoning process, we have encoded this

pre-existing knowledge at the core of the proposed ontology. More precisely, we have

incorporated the “SideWalk" and the “Road" widths as data properties, each assigned

defined values that represent the typical average widths of roads and sidewalks within a

standard urban environment, as regulated by laws. The reasoning rule within the ontology

subsequently calculates the “SideWalk" distance from the “Road center". It is defined as

follows.

SideWalk(?s) ∧ Road(?r) ∧ hasWidth(?s,?a) ∧ hasWidth(?r,?b) ∧

swrlb:add(?x,?a,?b) ∧ swrlb:divide(?d,?x,2)-> hasCenterRoadDistance(?s,?d)

This rule is structured as an implication between an antecedent (the body or left part of

the rule) and a consequent (the head or right part of the rule). Essentially, the rule oper-

ated as follows: when the conditions specified in the rule body are met, the conclusions

specified in the rule head must also hold true. Within the rule body, we introduced a

variable denoted as “?s” to represent the concept “SideWalk". This variable serves as

a means to browse the ontology and retrieve instances associated with the “SideWalk"

class. In our specific case, we have defined a generic instance named “SideWalkx" to

encapsulate the properties of the “SideWalk" concept. In the same way, we introduce a

variable “?r” for the concept “Road". Furthermore, the rule body contains a statement

related to the data property “hasWidth". For instance, the statement “hasWidth(?s, ?a)”

allows the definition of a variable “?a” to store the width of the instance “?s”, representing

the “SideWalk". Additionally, the statement “swrlb : add(?x, ?a, ?b)” generates a variable

“?x” that holds the summation of the values stored in “?a” and “?b”, essentially calcu-

lating the sum of the “SideWalk" and “Road" widths. Similarly, “swrlb : divide(?d, ?x, 2)”

performs the division operation and saves the result in the variable “?d”. Consequently,

within the rule body, these conditions enable us to retrieve the widths of the “Road" and

“SideWalk" concepts from the ontology and execute the necessary operations to define

the distance between the sidewalk and the road center. Subsequently, the extracted

distance information is attributed to the “hasCenterRoadDistance" data property of the
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“SideWalk" concept through the rule head.

While developing the “distance from the road center" map, we also performed alternative

forms of reasoning, primarily driven by the objects properties of the considered concepts.

Consider again the example of the “isOn" relationship that establishes a connection be-

tween the “Pedestrian" concept and the “SideWalk" concept. In this scenario, when we

want to deduce the ontology-based distance from the road center of a pedestrian, there

is no need to recalculate it based on the pedestrain specific data properties. Instead, we

can leverage the object property “isOn", which inherently yields information regarding the

equality of distances from the road center for both the “SideWalk" and the “Pedestrian".

The rule governing this reasoning can be summarized as follows.

Human(?h)∧isOn(?h,?i)∧hasCenterRoadDistance(?i,?d) ->

hasCenterRoadDistance(?h,?d)

It is important to note that this rule is not limited only to the context of “Pedestrian" and

“SideWalk". It extends its functionality to all concepts that are part of the generic con-

cept “Human", which has a “isOn" relationship with another concept (see Figure 3.2).

Considering similar ontology reasoning, we have applied the same methodology to ex-

tract relevant information for the creation of the remaining monocular cues maps. These

monocular cues maps are briefly outlined below.

Absolute size The concept of an object absolute size significantly contributes to the

depth perception process. In practical terms, this monocular cue enables us to measure

the distance of an object based on its size relative to its surroundings. In the human

context, our familiarity with an object size directly influences our depth perception. For

instance, while driving, our knowledge of a typical car size helps in defining the positions

of other vehicles on the road. Figure 3.4d serves as an example of the absolute size

maps, with information in each pixel extracted from ontology reasoning. This information

represents the absolute size of objects within the urban driving environment.

Verticality and horizontality The “Linear perspective" is a monocular cue in which

parallel lines appear to converge at a distant point known as the “vanishing point". For

example, when driving, the edges of a road, which are parallel, seem to approach each

other until they appear to meet, even though parallel lines do not interest by definition.

To help the DNN in learning the linear perspectives of urban scene components, we

have represented the vertical and horizontal orientation of urban environment objects in

relation to the road. Figure 3.4e represents an example of this map.
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(a) RGB image (b) Semantic segmentation

(c) Distance from the road center (d) Absolute size

(e) Verticality and horizontality (f) Height

Figure 3.4: RGB image, semantic segmentation, and monocular cues maps built from
ontology reasoning. A color map is used for visualization purposes, where warmer colors
indicate higher information values within each pixel. In Figure 3.4d, the red color, denoting
the warmest tone on the map, is allocated to pixels belonging to the vegetation class since
it has the largest absolute size compared to the other scene objects. Conversely, black
pixels denote classes that do not have associated monocular cues.

Height With the road as a reference point, the “height" map represents the height of

objects in the urban scene with respect to the road. Height information about objects also

plays a role in influencing depth perception. Consequently, if we consider two objects

of the same type located at different positions, the farthest object from a reference point

will appear shorter than the closest object when viewed from the same standpoint. Even

in the field of art, artists simulate this effect, artists simulate this effect by representing

distant objects as both smaller and shorter within the scene perspective. Figure 3.4f

represents an example of the height monocular map.

3.5/ DEEP NEURAL NETWORK FOR MONOCULAR DEPTH ESTIMA-

TION

The monocular cues maps, generated through ontology reasoning, are integrated into

a DNN for depth estimation, alongside the RGB image. In this context, we explore the

validation of the proposed approach using two distinct models. The first model is a basic

DNN, constructed based on a ResNet autoencoder architecture [31]. This choice aims to
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examine the influence of monocular cues maps on the performance of a typical state-of-

the-art network. The second considered DNN is the AdaBins model [136], recognized as

the state of the art in supervised MDE. The aim of considering this model is to leverage a

high-performing state-of-the-art model that exclusively relies on the monocular image for

depth estimation and to feed it with the proposed monocular cues maps to further validate

the idea of our contribution. It is worth noting that we conducted a complete and integral

analysis of the ResNet-based approach. This analysis includes training and evaluation

on two benchmark datasets, evaluation on the unseen dataset, and evaluation of the pro-

posed monocular cues maps impact. This extensive evaluation was possible due to the

light nature of resNet architecture and its minimal computational resource requirements.

In contrast, the experiments on AdaBins, a significantly heavier and computationally in-

tensive model, remain basic including training and evaluation specifically on the KITTI

Eigen split dataset.

3.5.1/ MULTISTREAM PIPELINE

Given the variety of inputs, including the RGB image, semantic segmentation map, and

monocular cues maps, intended for integration into the DNNs, our architecture is thought-

fully designed as a multistream pipeline. This design allows each input to be indepen-

dently injected into the network, as illustrated in Figure 3.5a. The main goal behind

adopting this approach is to preserve the quality of the potentially valuable information

encapsulated within each input, thereby enhancing MDE results. In practice, each input

is injected into the DNN in parallel with the others, initiating the feature extraction pro-

cess. Once these features are extracted, they are aggregated through an element-wise

sum operation. The combined filters are then fed into the final depth decoding stream,

which generates the depth map. For a more in-depth exploration of the distinct blocks

constituting the ResNet and AdaBins models, refer to the next paragraphs.

ResNet-based deep neural network The first considered DL model has a ResNet-

based autoencoder architecture. This choice is based on its simplicity and widespread

use in the research community [145] [146]. Among the various ResNet configurations,

studies such as [147] have demonstrated that ResNet versions with 6 and 9 blocks con-

sistently provide good performances. Additionally, the performed experiments in [147]

work have shown that these variants are the most optimal. It is worth noting that us-

ing too many blocks can introduce training challenges, such as the vanishing gradient

problem. As illustrated in Figure 3.5b, each input feature extraction stream includes an

encoder block, which is composed of a series of downsampling and residual blocks. Sub-

sequently, the output filters from all encoders are aggregated to feed the depth decoding

stream. This component acts as the decoder and is based on upsampling blocks.
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(a) General multistream pipeline architecture

(b) ResNet-based deep neural network blocks (c) AdaBins-based deep neural network blocks

Figure 3.5: Deep neural network architecture for monocular depth estimation: (a) an
overall view of the multi-stream pipeline, (b) the feature extraction stream, and depth
decoding blocks for the ResNet-based deep neural network, and (c) the feature extraction
stream and depth decoding blocks for the AdaBins-based deep neural network.

AdaBins-based deep neural network The second considered DL model to validate

our approach is the state-of-the-art model of supervised MDE: AdaBins [136]. We have

kept the core architecture of the AdaBins model unchanged, including its blocks and

components. However, to accommodate the multiple inputs we intend to introduce into

the model, we have organized the architecture into a multistream pipeline. As represented

in Figure 3.5c, each input feature extraction stream uses the EfficientNet-B5 backbone

[148], which follows an encoder-decoder architecture and is trained on the ImageNet

dataset [20]. Following the same approach, the output filters are aggregated to feed the

depth decoding stream, i.e., the AdaBins module.

3.6/ EXPERIMENTS AND RESULTS

To validate and demonstrate the effectiveness of the proposed methodology, we present a

series of experiments in this section. These experiments aim to illustrate the advantages
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and value of incorporating ontology knowledge into both a traditional DNN (ResNet) and

a state-of-the-art model (AdaBins) for depth estimation.

3.6.1/ IMPLEMENTATION DETAILS

In the context of knowledge modeling, as discussed in Section 3.4.1, our choice for con-

ceptualizing the ontology led us to the use of Protégé software [149]. This software offers

a robust platform for modeling ontology concepts, defining their properties, and establish-

ing relationships among them. It further provides a wide range of options for extracting

the ontology in various languages. In our case, we chose to extract the ontology in OWL

(Web Ontology Language) language [43] to represent the knowledge in a structured for-

mat. This language allows us to seamlessly load the knowledge and ontology rules into

the Python environment using the OwlReady2 python library [150]. The adoption of OWL

serves not only to structure the information but also to enable the practical integration of

the proposed ontology within Python. When it comes to the ontology rules, we used the

Semantic Web Rule Language (SWRL)[144].

The implementation of the ResNet model was performed using Pytorch 1.7 Neural Net-

work Libraries, with the support of CUDA GPU Toolkit 11 for enhanced computational

efficiency. The training was conducted with the Adam optimizer, using a learning rate of

0.0001. The training process was executed on a high-performance system, the Alien-

ware Aurora R11 i9-10900KF equipped with Dual RTX2080Ti, each boasting 22GB of

22GB VRAM. To ensure a comprehensive training process, the model was trained for

20 epochs, and a batch size of 8 was considered. As for the inference computational

time, the processing of a single image is performed in about 0.059s, equivalent to over 16

Frames Per Second (FPS).

The implementation of AdaBins was carried out using Pytorch 1.7 Neural Network Li-

braries with the support of CUDA GPU Toolkit 11 for optimal GPU acceleration. The

official codebase for AdaBins is publicly accessible [151]. In our implementation, we pre-

served the hyperparameters as specified by the original authors. However, it is worth

noting that the AdaBins model, as described in the original paper, was trained on a ma-

chine with four NVIDIA V100 GPUs, each equipped with 32GB of VRAM. The training

setup featured a batch size of 16 and was executed for 25 epochs. In terms of inference,

the AdaBins model processes a single image in approximately 0.448 seconds, which is

equivalent to an effective frame rate of 2 FPS. Due to the difference in our hardware

setup, with a single NVIDIA GPU boasting 24 GB of VRAM, we encountered constraints

in using the same batch size. To address this, we adopted the gradient accumulation

technique [152] in which the final step of the training process was adjusted. Instead of

updating the network weights after each batch, we saved the gradient values and aggre-
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gated them over a set number of batches before performing weight updates. In our case,

we processed 16 batches before updating the model weights. This approach allowed us

to simulate a batch size of 16 while accommodating the computational performances of

our machine.

Finally, to extract the semantic segmentation necessary for generating the proposed

monocular cues maps from the acquired RGB images, we considered the semantic seg-

mentation model outlined in [153]. The model, a Feature Pyramid Network (FPN), is

based on a ResNet backbone that had been pretrained on the CityScapes dataset [154].

This pretrained network achieved a mean Intersection over Union (mIoU) score of 75%

on the validation set, as reported in [155]. The model enables segmenting 19 primary

classes within the urban environment. It is important to highlight that the weights of this

semantic segmentation network remained fixed and were not subject to updates during

the training of the DNNs for MDE.

3.6.2/ DATASETS AND EVALUATION METRICS

3.6.2.1/ KITTI DATASET

We used the KITTI Vision benchmark suite [156] as the primary dataset for both training

and evaluation. The choice of this dataset was based on its widespread use for depth

estimation tasks, allowing for fair and meaningful comparisons with state-of-the-art ap-

proaches. More precisely, we demonstrated the effectiveness of our approach on the

KITTI Eigen split [157]. We chose this split as it represents the most commonly used

benchmark for the evaluation of MDE models [158; 136]. Consequently, we could directly

evaluate the impact of integrating monocular cues maps in the proposed and considered

DNNs. The training subset of this dataset includes approximately 23K RGB images, each

paired with its corresponding ground truth depth map. Additionally, 697 samples are de-

voted to the test.

3.6.2.2/ CITYSCAPES DATASET

For a comprehensive evaluation, we extended our experimentation to include the

CityScapes dataset [154]. This dataset includes a training set with 2975 images with

their respective disparity maps ground truth. Afterward, 1525 images are dedicated for

testing. We chose this dataset because it offers a diverse range of urban environments

in different conditions compared to the KITTI one, which allows us to generalize the ef-

fectiveness of our approach. Furthermore, some state-of-the-art models [159; 160] also

referenced the CityScapes dataset in their evaluations, which enables us to compare our

approach on two benchmarks for outdoor scenarios.
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3.6.2.3/ APPOLLOSCAPE DATASET

Lastly, we considered the ApplloScape dataset for autonomous driving [161] to evaluate

the performance of our models on unseen driving data. This dataset includes 1300 images

and their corresponding ground truth depth maps. The AppolloScape dataset captures

data from four distinct regions in China with a range of different times of day and weather

conditions, enhancing the dataset diversity which is suitable for evaluating our models

performance.

3.6.2.4/ EVALUATION METRICS

For the evaluation of our results, we used common metrics for evaluating the quality of

depth estimation [136; 162]. To quantitatively measure the performance of our models,

we calculated four key error metrics that compare the predicted depth map to the ground

truth one, in line with the definitions in [157]. These metrics include the Absolute Relative

error (AbsRel), Squared Relative error (SqRel), Root Mean Square Error (RMSE), and

log mean square error (logRMSE). Their specific equations are defined as follows.

AbsRel =
1
N

N−1∑
i=0

|di − di|

di
(3.1)

S qRel =
1
N

N−1∑
i=0

(
di − di

)2
di

(3.2)

RMS E =

√√√
1
N

N−1∑
i=0

(
di − di

)2
(3.3)

logRMS E =

√√√
1
N

N−1∑
i=0

(
log di − log di

)2
(3.4)

With N being the number of test images, di the predicted depth, and di the depth of the

ground truth. Additionally, we computed three accuracy metrics, which give the fraction τ

of predicted depth values inside an image whose ratio and inverse ratio with the ground

truth are below the thresholds 1.25, 1.252 and 1.253. They are, respectively, defined as

follows:

τ < 1.25 :
1
N

N−1∑
i=0

max
di

di
,

di

di

 < 1.25
 (3.5)

τ < 1.252 :
1
N

N−1∑
i=0

max
di

di
,

di

di

 < 1.252
 (3.6)
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τ < 1.253 :
1
N

N−1∑
i=0

max
di

di
,

di

di

 < 1.253
 . (3.7)

3.6.3/ TRAINING AND TESTING PROCESS

Throughout the training phase, we used the traditional Least Absolute Deviation Func-

tion, denoted as L1, to compute the error between the ground truth depth map and the

predicted one at each iteration. The L1 equation is defined as follows.

L1 = |di − di| (3.8)

During the testing phase, the trained model was supplied with both the RGB images

and their corresponding monocular cues maps. Subsequently, we obtained the predicted

depth map, which was compared directly with the ground truth to evaluate the model

performance. We decided to use the L1 loss because the main goal of the proposed

approach is to demonstrate the added value of monocular cues extracted from ontologies

on a simple and basic model in terms of architecture and learning process. Therefore,

we fixed all the elements other than the injected monocular cues that can enhance the

model accuracy such as the loss function, the model layers, etc. Regarding the AdaBins

model, the same training and testing protocol described in [136] was followed.

3.6.4/ EXPERIMENTS AND EVALUATION OF RESNET-BASED DEEP NEURAL NET-
WORK

This section includes two main parts. First, we present the results of our experiments

with the ResNet model on two different datasets (Section 3.6.4.1 and Section 3.6.4.2).

In the first part, we focus on the analysis and discussion of results obtained through the

proposed approach. Subsequently, we provide a comparative analysis with state-of-the-

art models in Section 3.6.4.4.

3.6.4.1/ EVALUATION ON KITTI EIGEN SPLIT

To validate our approach, we report in Table 3.1 “Proposed approach (supervised)" the

results of four experiments that consisted of training and evaluating the ResNet model

according to different subsets of inputs, mainly:

• (M): single use of the monocular image,

• (M+Sem): monocular image + semantic segmentation,
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• (M+Sem+Onto): monocular image + semantic segmentation + the 4 proposed

monocular cues maps extracted from ontology reasoning,

• (M+Onto): monocular image + the 4 proposed monocular cues maps extracted from

ontology reasoning.

We would like to remind you that the primary aim behind considering the ResNet archi-

tecture is to evaluate the influence and impact of monocular cues maps on a typical and

basic state-of-the-art network. The central focus of this section is to study the impact of

the monocular cues maps independently, without drawing comparisons with state-of-the-

art models. However, the discussion and the comparison with the state of the art are

presented in Section 3.6.4.4.

Based on the results of the initial experiment (M), it is evident that the exclusive use of the

monocular image yields promising results in terms of accuracy (95% for the third thresh-

old) and also shows minimal errors (with Abs Rel at 0.184). This validates the assumption

that DL models implicitly leverage additional information from monocular images dur-

ing their learning process for depth estimation, as previously suggested in [133]. In the

second experiment, involving the inclusion of semantic segmentation during the ResNet

training (M+Sem), considerably better results are achieved compared to the first exper-

iment (M), especially in terms of accuracy. In this context, we observe an improvement

of 5%, raising the accuracy from 95.0% to 97.1%. This outcome validates the idea that

providing the model with additional information about the semantic attributes of objects

significantly helps DNNs in MDE. It is essential to understand that the goal of this experi-

ment (M+Sem) is to define a base for validating and evaluating the impact of incorporating

monocular cues maps explored in the next experiment (M+Sem+Onto). Therefore, the im-

proved results observed when comparing the experiments (M+Sem) and (M+Sem+Onto)

can be attributed to the additional ontology knowledge injected into the model, rather than

the semantic information.

The experiment (M+Sem+Onto), which involves the simultaneous injection of the RGB

image, the semantic segmentation, and the monocular cues maps, stands as the core of

the approach presented in this chapter. As evident in Table 3.1, the results obtained from

this experiment (M+Sem+Onto) outperform the results from the other experiments (M)

and (M+Sem), in terms of accuracy across all thresholds. In this regard, the accuracy for

the first threshold, considered the most strict, reaches 89.1% (M+Sem+Onto) compared

to 86.2% for the experiment (M+Sem). Furthermore, a reduction in all error metrics is

observed, indicating that the model fits the dataset more effectively. This performance

was expected because the knowledge transfer through the monocular cues maps pro-

vided the depth estimation model with additional insights about the urban environment

and its components. Consequently, the network could explicitly and directly acquire the

required cues for depth estimation. Without adding the monocular cues maps, the results
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Method Depth Estimation Evaluation

Model
Errors Accuracy

AbsRel SqRel RMSE logRMSE τ < 1.251 τ < 1.252 τ < 1.253

State-of-the-art supervised methods
Saxena et al. [158] 0.280 3.012 8.734 0.361 0.601 0.820 0.926

Liu et al. [163] 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Eigen et al. [157] 0.203 1.548 6.307 0.282 0.702 0.898 0.967

Kuzniestov et al. [164] 0.122 0.763 4.815 0.194 0.845 0.957 0.987
Gurram et al. [165] 0.100 0.601 4.298 0.174 0.874 0.966 0.989

Gan et al. [166] 0.098 0.666 3.933 0.173 0.890 0.964 0.985
Fu et al. [146] 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Yin et al. [167] 0.072 – 3.258 0.117 0.938 0.990 0.998

Song et al. [162] 0.059 – 2.446 0.091 0.962 0.994 0.999
Bhat et al. [136] 0.058 0.190 2.360 0.088 0.964 0.995 0.999

Proposed approach (supervised)
ResNet (M) 0.184 0.903 3.602 0.153 0.843 0.928 0.950

ResNet (M+Sem) 0.165 0.701 3.104 0.131 0.862 0.953 0.971
ResNet (M+Sem+Onto) 0.098 0.572 2.791 0.118 0.891 0.964 0.986

ResNet (M+Onto) 0.094 0.551 2.775 0.117 0.891 0.964 0.986
State-of-the-art self-supervised and unsupervised methods

Godard et al. [134] 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Gur et al. [168] 0.110 0.666 4.186 0.168 0.880 0.966 0.988
Bian et al. [169] 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Table 3.1: Comparison with state-of-the-art models on KITTI Eigen Split. “M”, “Sem” and
“Onto” respectively refer to the ResNet model trained using monocular images, semantic
segmentation, and the four proposed monocular cues maps extracted from ontology rea-
soning.

(M+Sem) show that trying to explore monocular cues only from the RGB image and its

semantic map is less accurate and leads to higher errors.

The validation of our approach through the final experiment (M+Sem+Onto) inspired us to

conduct another experiment that consists of excluding the semantic segmentation map.

This time, the model was trained only using the RGB image and the monocular cues

maps. The results (M+Onto) from this experiment are approximately equivalent to those

of the prior experiment (M+Sem+Onto) in terms of accuracy. However, considering the er-

ror metrics, the results improved slightly. Consequently, training the model using only the

RGB image and the monocular cues maps, without the inclusion of the semantic segmen-

tation map, appears to be a more efficient approach. This confirms our initial assumption,

or at least one can say that the semantic map is not needed when the monocular cues

are included, which guides the model to a shorter training path, resulting in a lower error

rate.
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3.6.4.2/ EVALUATION ON CITYSCAPES DATASET

Our choice to conduct experiments on the CityScapes dataset involved using three dis-

tinct semantic segmentation models, each with varying performance levels: DeepLabV3

[170], ICNet [171] and Fast-SCNN [170]. This selection was made to later evaluate the

influence of the semantic segmentation accuracy on the proposed approach. These mod-

els were trained on the CityScapes dataset, resulting in respective mIoU scores of 79, 4%,

74.5%, and 72, 3%.

The results obtained, as presented in Table 3.2, reaffirm the significant contribution

of the proposed monocular cues maps towards enhancing depth estimation accu-

racy. In this context, the performance levels improved from 85.6% (M+Sem) to 87.7%

(M+Sem+Onto), particularly when employing the best-performing semantic segmenta-

tion model, DeepLabV3. Furthermore, our ability to reduce the model error (Abs Rel)

from 0.119 (M+Sem+Onto) to 0.111 (M+Onto) by excluding the semantic segmentation is

evident.

Semantic segmentation Inputs Depth Estimation Evaluation
Proposed approach

Model mIoU M/Sem/Onto
Error Accuracy

Abs Rel τ < 1.251 τ < 1.252 τ < 1.253

DeeplabV3 [170] 79.40%
M+Sem 0.134 0.856 0.951 0.976

M+Sem+Onto 0.119 0.876 0.957 0.980
M+Onto 0.111 0.877 0.957 0.980

ICNet [171] 74.50%
M+Sem 0.130 0.857 0.952 0.977

M+Sem+Onto 0.119 0.874 0.956 0.979
M+Onto 0.112 0.874 0.956 0.979

FastSCNN [170] 72, 30%
M+Sem 0.140 0.834 0.944 0.973

M+Sem+Onto 0.125 0.874 0.954 0.978
M+Onto 0.119 0.873 0.954 0.978
State-of-the-art methods

Wang, Lijun, et al. [159] (S) 0.227 0.801 0.913 0.950
Laina, Iro, et al. [145] (S) 0.257 0.765 0.893 0.940
Xu, Dan, et al. [172] (S) 0.246 0.786 0.905 0.945

Zhang, Zhenyu, et al. [173] (S) 0.234 0.776 0.903 0.949
Saeedan, Faraz, et al. [160] (S-S) 0.178 0.771 0.922 0.971

Table 3.2: Comparison with state-of-the-art methods on CityScapes. Results of [145;
172; 173] were implemented and evaluated by [159] and [160].

On the other hand, we find that the more performant the semantic segmentation model

(higher mIoU), the better the depth estimation results. This mainly comes down to the

fact that semantic segmentation is used to carry out the mapping between the classes

assigned to the objects of the urban environment and the concepts of ontology. Conse-

quently, the quality of the monocular cues maps extracted from ontology benefits from the

improved semantic segmentation model.
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3.6.4.3/ EVALUATION ON UNSEEN DATASET

To perform a comprehensive evaluation of our model performance, we went one step

further and analyzed how well our ResNet-based approach generalizes to an unseen

dataset. To this end, we evaluated on the AppolloScape dataset for autonomous driv-

ing [161]. More specifically, we inferred our model on 1300 images from the considered

dataset and proceeded to compare the results with their respective ground truth depth

maps. We performed this experiment with the following models: ResNet model pre-

trained on KITTI and ResNet model pretrained on CityScapes. Furthermore, we used

the best semantic segmentation model (DeepLabV3) for the experiment (M+Sem+Onto)

considering the ResNet model pretrained on CityScapes.

The results shown in Table 3.3 provide more evidence that the monocular cues maps

extracted from the ontology reasoning contribute to improving the overall model per-

formance. This can be seen from the enhanced accuracy results with the experiment

(M+Onto) that reached 46.2% for the first threshold, compared to the 44.9% achieved by

the experiment (M+Sem) for the model trained on KITTI. The same effect is observed

when applying the ResNet-based model pretrained on CityScapes and evaluating it on

the AppolloScape dataset.

Method
Accuracy

τ < 1.251 τ < 1.252 τ < 1.253

Model trained on KITTI
ResNet (M) 0.441 0.836 0.904

ResNet (M+Sem) 0.449 0.845 0.913
ResNet (M+Sem+Onto) 0.460 0.847 0.918

ResNet (M+Onto) 0.462 0.847 0.919
Model trained on CityScapes

ResNet (M) 0.450 0.849 0.921
ResNet (M+Sem) 0.461 0.853 0.940

ResNet (M+Sem+Onto) 0.472 0.861 0.948
ResNet (M+Onto) 0.472 0.862 0.948

Table 3.3: Evaluation of the ResNet-based approach on unseen scenarios from the Ap-
polloScape dataset.

3.6.4.4/ COMPARISON WITH THE STATE OF THE ART

To evaluate the effectiveness of our ResNet-based model, we conducted a comparative

analysis against state-of-the-art models for MDE, considering two key benchmarks: KITTI

Eigen split and CityScapes. It is important to note that we did the comparison with ap-

proaches that have proposed models trained with a supervised pattern. However, for

a more comprehensive view and a larger perspective, we have also reported the best

models for unsupervised and self-supervised approaches.
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Comparison with the state-of-the-art models trained and evaluated on KITTI Eigen
split We can notice from the results of the Table 3.1, that our ResNet-based approach

outperformed some of the leading supervised models in depth estimation, such as [166]

and all the earlier models. However, more recent models, such as [174] or [136], which

are currently considered the state of the art in the target task, obtained more perfor-

mant results, especially for the first threshold. We can say that this result is logical and

expected since our model is based on an original ResNet autoencoder without any mod-

ification of its architecture. Furthermore, the state-of-the-art works propose approaches

that aim to improve the performance of the neural networks with several techniques such

as the modification of layers, the proposition of new loss functions, etc. For this reason,

experiments on a more efficient model have also been performed and will be discussed

in Section 3.6.5.

Comparison with the state-of-the-art models trained and evaluated on CityScapes
The top results of the state of the art in MDE as well as those provided by our approach,

all evaluated on CityScapes, are reported in Table 3.2. The proposed approach outper-

formed all the state-of-the-art models, regardless of the semantic segmentation model

used. One can see that our method reached an accuracy of 98% for the third thresh-

old using DeepLabV3 as a semantic segmentation model. Considering the state of the

art, the best supervised model [159] reached 95% accuracy, and 97.1% was obtained re-

garding the best model based on self-supervised training pattern and using semantic and

instance segmentation [160].

3.6.4.5/ ABLATION STUDY

Additional experimentations were performed to evaluate the influence of individual

monocular cues maps on the depth estimation outcomes. This evaluation includes all

the possible combinations as shown in Table 3.4. It is important to note that all the exper-

iments mentioned in Table 3.4 exclude the semantic segmentation map and include the

monocular image (+M) as input to the model.

Our ResNet-based model was first trained based on the KITTI dataset, with dedicated

experiments considering each of the proposed monocular cues maps separately. The

findings, as presented in the four first rows of Table 3.4 (designated as MC#1) represent

experiments that consider only one monocular cue. The results highlight the influence of

objects absolute size knowledge on enhancing depth estimation outcomes.

Experiment #1 which exclusively uses the absolute size map stands out with the highest

accuracy among these individual experiments when compared to the remaining monocu-

lar cues maps tested independently in experiments #2, #3, and #4. The second-best re-
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MC# Exp#
Model inputs (+M) Accuracy results

Abs. size Height Dist. from RC Vert. and horiz. τ < 1.251 τ < 1.252 τ < 1.253

1

1 X 0.855 0.941 0.983
2 X 0.841 0.923 0.974
3 X 0.736 0.897 0.971
4 X 0.704 0.877 0.954

2

5 X X 0.851 0.930 0.978
6 X X 0.858 0.949 0.983
7 X X 0.852 0.940 0.983
8 X X 0.849 0.929 0.978
9 X X 0.847 0.926 0.977

10 X X 0.739 0.899 0.957

3

11 X X X 0.858 0.950 0.984
12 X X X 0.857 0.946 0.983
13 X X X 0.891 0.963 0.986
14 X X X 0.888 0.960 0.985

4 15 X X X X 0.891 0.964 0.986

Table 3.4: Evaluation of the monocular cues maps impact on our ResNet-based model
using KITTI dataset. “Abs. size", “Height", “Dist. from RC" and “Vert. and horiz." refer to
the four proposed monocular cues maps. “MC" refers to the number of monocular cues
maps included in the combinations of each experiment block.

sults among these four first experiments were obtained by training the model only with the

height map. These results confirm the hypothesis that DL models implicitly use height in-

formation to estimate depth [132]. We also noticed that the absolute size map performed

better results than the height map because the object absolute size information includes

its height, so obviously the first map contains the knowledge of the second one with ad-

ditional geometric information. The results provided by the distance from the road center

map reported in experiment #3 or the verticality and horizontality map in experiment #4

are promising but less interesting than the two remaining maps, since the accuracy with

the first threshold is approximately 10% lower compared to the other maps regarding ex-

periments #1 and #2. Indeed, these two maps have been inspired by the concepts of

monocular cues and do not represent them directly.

The experiment results reported in rows 5 to 10 (designated as MC#2) represent all the

possible combinations of two monocular cues maps. The majority of these combinations:

experiments #6, #8, #9, and #10, show that the addition of a second monocular cue map

improves the results when compared to the integration of a single map. However, the

result reported in experiment #6 indicates that the addition of the verticality and horizon-

tality map to the absolute size map has almost no effect on the result compared to the

accuracy obtained through experiment #1, which relies on the single integration of the

absolute size map. Furthermore, experiment #5 shows that the combination of the abso-

lute size map and height map is also not performing well, which is probably because the

information included in the height map is redundant.
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Finally, experiment results with a combination of 3 monocular cues maps are reported in

rows 11 to 14 (designated as MC#3). Mainly, we can say that the combinations adopted

in the experiments #11, #12, and #14 have a significant impact on the results. On the

other hand, if we compare the results of experiment #13 with #15, which represents the

combination of the four proposed maps, we can say that the height map brings only a

minor improvement in the performance.

According to the above results, one can say that the association of the four proposed

monocular cues maps leads to obtaining the best results. This association makes them

cooperate to obtain a strong model for depth estimation based on different knowledge

complementing each other. We also performed the same experiment considering the

CityScapes dataset and obtained results leading to the same conclusion.

3.6.5/ EXPERIMENTS AND EVALUATION OF ADABINS-BASED DEEP NEURAL NET-
WORK

To validate and confirm the effectiveness of our proposed approach, we conducted an

evaluation using the AdaBins model, which stands as the leading state-of-the-art model

in MDE. This evaluation involved training the AdaBins model according to our approach,

wherein we incorporated the ontology-based monocular cues maps with the RGB image.

This integration was achieved using a multistream pipeline, aligning with the approach we

adopted for the ResNet-based model.

3.6.5.1/ EVALUATION ON KITTI EIGEN SPLIT

The results presented in Table 3.5 report the different experiments performed on the

AdaBins model considering the KITTI Eigen split. For reference only, we have reported

in the first row the results published in [136] paper. The result reported in the second row

of Table 3.5, shows a gap in terms of performance compared to the paper results [136].

This is due to the difference between the specifications of our machine and the one used

in [136] for the training; more details have been mentioned in the implementation details

(Section 3.6.1). Therefore, the other performed experiments including the monocular

cues maps (Onto) and semantic segmentation (Sem) are compared with the AdaBins

results obtained with our local implementation (Table 3.5, row 2).

According to the results obtained and reported in Table 3.5, we can notice an improve-

ment in terms of accuracy with the addition of extra knowledge and information. We first

experimented with adding semantic segmentation to the RGB image (M+Sem). As ex-

pected, the results were improved from 88.3% to 90.1% considering the first threshold.

Concerning the experiment (M+Sem+Onto), we identify once again a significant improve-
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Model
Errors Accuracy

Abs Rel Sq Rel RMSE RMSE log τ < 1.251 τ < 1.252 τ < 1.253

AdaBins (Paper) “M" [136] 0.058 0.190 2.360 0.088 0.964 0.995 0.999

AdaBins (Our Impl.) “M" 0.104 0.470 3.457 0.128 0.883 0.973 0.992
AdaBins “M+Sem" 0.101 0.352 3.241 0.120 0.901 0.982 0.993

AdaBins “M+Sem+Onto" 0.095 0.328 3.109 0.115 0.923 0.983 0.993
AdaBins “M+Onto" 0.089 0.310 3.008 0.112 0.922 0.983 0.993

Table 3.5: Performances on AdaBins-based deep neural network in the KITTI Eigen Split
against the baseline. The first row represents the AdaBins results reported in the official
paper [136] for context.

ment in the model performances. The accuracy results have increased according to the

three thresholds. For example, an enhancement of 2.2% has been observed about the

first threshold. However, there is only a slight improvement considering the second and

third thresholds since the results obtained only with the RGB image concerning the same

thresholds are almost saturated, reaching more than 98%.

Concerning the error metrics which also show the performance of the model and its learn-

ing abilities, we can say that the monocular cues maps contribute to lowering the error

rates. For example, the Abs Rel error reached a value of 0.095 following the experiment

(M+Sem+Onto) instead of 0.101 considering the experiment (M+Sem). Finally, the last

experiment excluding the semantic segmentation (M+Onto), further confirms that the use

of the proposed monocular cues maps with the RGB image provides very good results.

There is mainly no difference considering the accuracy results. However, a slight im-

provement can be noticed in error evaluation metrics. Consequently, this configuration is

once again the most advantageous, as we consider one less input (Sem) in the training

of our model while keeping the best performances.

3.6.5.2/ EVALUATION ON UNSEEN DATASET

To evaluate the performance of our AdaBins-based approach on an unseen dataset,

we evaluated our pretrained model on KITTI Eigen Split according to the different pro-

posed configurations: (M), (M+Sem), (M+Sem+Onto) and (M+Onto) on the AppoloScape

dataset. The results, as presented in Table 3.6, reaffirm our initial assumption, claiming

that the monocular cues maps, extracted from the ontology reasoning, indeed enhance

the performance of the DNN, even in the unseen scenario case. The improvement in

the accuracy of the model can be identified, especially for the strictest threshold. The

addition of ontology-based knowledge allowed us to achieve an improvement from 56%

(M+Sem) to 57% (M+Sem+Onto) in an unseen environment, which is encouraging and

promising regarding the proposed approach. Concerning the last experiment (M+Onto),

we were also able to keep the same accuracy while excluding the semantic segmentation,
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validating again the independent contribution of the ontology knowledge injected into the

model. Finally, we would like to mention that the basic experiments realized on AdaBins

allowed us to validate our approach and to have a complete view of the impact of the

proposed monocular cues maps on a basic model (ResNet) and a heavy and powerful

one (AdaBins).

Method
Accuracy

τ < 1.251 τ < 1.252 τ < 1.253

AdaBins (M) 0.552 0.900 0.923
AdaBins (M+Sem) 0.561 0.909 0.931

AdaBins (M+Sem+Onto) 0.570 0.913 0.932
AdaBins (M+Onto) 0.571 0.913 0.932

Table 3.6: Evaluation of our AdaBins-based model trained on KITTI Eigen split on unseen
scenarios of AppolloScape dataset.

3.7/ CONCLUSION AND FUTURE WORK

This chapter introduces a novel approach for MDE that leverages knowledge of the ur-

ban environment through ontology reasoning. The proposed system [175; 176] extracts

monocular cues based on reasoning performed on the proposed ontology. It contains

different concepts of the urban environment as well as several geometric and spatial

information representing basic human knowledge. Furthermore, all the information con-

tained in the acquired RGB image related to the urban environment and the extracted

knowledge from the ontology is fed into a DNN model as separate inputs in a multistream

way. Several experiments were performed to validate and evaluate the impact of adding

monocular cues maps and human-like reasoning to the depth estimation process. The

proposed approach was deployed in two DL models: a basic model (ResNet) and a

heavy powerful one (AdaBins). These models have been trained based on three main

experimentations: taking as input the RGB image and the semantic segmentation map,

conserving those two inputs and adding the monocular cues maps, and finally excluding

the semantic segmentation and conserving only the RGB image and the monocular cues

maps. The results have shown that a model trained based on the monocular cues maps

achieves better results compared to the other performed experiments. On the other hand,

experimentations performed on both seen and unseen challenging real-world datasets,

show that the DNNs, trained based on the monocular cues maps extracted from ontol-

ogy reasoning, consistently improve the state-of-the-art MDE results. This confirms the

initial hypothesis that integrating human knowledge into a DNN has a beneficial impact

on the target task. In addition, it confirms the fact that the direct integration of monocu-

lar cues as input in the DNN training process leads to faster model learning. Our future
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research directions include leveraging other monocular cues, such as texture gradient,

shading, and lighting, as well as performing more advanced ontology reasoning to extract

other relevant information for depth estimation. Furthermore, we aim to investigate other

hybrid strategies for combining knowledge with DNNs to enhance computer vision task

performance. These strategies can include alternative knowledge representations and

also different knowledge integration methodologies into the DNNs. This will be the focus

of our next chapter, within the context of our second contribution to this thesis.
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4

HYBRID AI FOR PANOPTIC

SEGMENTATION: AN INFORMED DEEP

LEARNING APPROACH WITH

INTEGRATION OF PRIOR SPATIAL

RELATIONSHIPS KNOWLEDGE

4.1/ INTRODUCTION & CONTEXT

In the last chapter, we successfully confirmed our hypothesis that integrating knowledge

into a DNN as input to the model significantly enhances its performance. This validation

was achieved specifically within the context of the MDE task. Having established the

efficiency of this hybrid approach, the present chapter introduces another novel strategy.

This strategy involves the integration of knowledge directly during the training loop of

the model, with the primary goal of investigating how knowledge integration can further

enhance the performance of a DNN. For this strategy, we have selected the panoptic

segmentation task as our target application.

Panoptic segmentation, as shown in Figure 4.1d, is a computer vision task designed to

recognize and categorize all elements within an image by integrating information from

both semantic and instance segmentation. Semantic segmentation, as illustrated in Fig-

ure 4.1b, divides an image (Figure 4.1a) into regions associated with non-quantifiable

object classes, often referred to as “Stuff", which can include elements like the sky or

the road. It is also able to categorize quantifiable objects, but it does not provide indi-

vidual distinction. In contrast, instance segmentation (Figure 4.1c), involves the precise

identification of individual quantifiable objects in the image, referred to as “Things", such

as cars or pedestrians. Panoptic segmentation ability to comprehensively describe and
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analyze images offers practical solutions across a range of applications. In the domain of

mobile robotics, for example, it plays a pivotal role in the detection and tracking of moving

objects [177]. Furthermore, this task significantly contributes to the field of autonomous

driving, empowering vehicles to gain a deep understanding of their surroundings and

make precise decisions [178; 179]. Figure 4.1 illustrates a scene captured in the context

of autonomous driving, along with its corresponding semantic, instance, and panoptic

segmentation.

(a) RGB image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 4.1: Panoptic segmentation of an image can be considered as a combination of
semantic and instances of perceived objects.

Since 2018, there has been a growing interest within the scientific community regarding

the prediction of panoptic segmentation [180]. This approach is recognized as a collab-

orative one that combines the strengths of both the semantic and instance segmentation

methods. Panoptic segmentation techniques find common use in image data, relying on

various DL-based strategies. Some of these methods involve employing distinct neural

sub-networks for semantic and instance predictions [180]. However, this dual-network ap-

proach can be complex and have limitations in terms of effectiveness, often necessitating

complicated post-processing to merge the associated predictions [181]. To address these

limitations, a novel category of panoptic segmentation techniques has emerged, based

on the use of a shared backbone [181]. These approaches enhance the training process
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by facilitating the exchange of features between the semantic and instance segmentation

modules through a common backbone encoder. This feature exchange significantly en-

hances the outcomes of panoptic segmentation. Moreover, these methods outperform

alternative approaches when it comes to reducing the complexity of post-processing for

panoptic prediction [181].

Previous studies have demonstrated the significant impact of contextual information and

object relationships in enhancing computer vision tasks, particularly in the domain of

object detection [182; 183]. These investigations have primarily used post-processing

techniques to reevaluate identified objects taking into account object relationships, such

as co-occurrence [184; 185; 186]. For example, certain objects, such as a sofa and a

traffic sign, are not typically expected to co-exist within the same scene due to their asso-

ciations with different environments, indoors and outdoors, respectively. It is worth noting

that most of these studies were conducted before the widespread integration of DL tech-

niques. Within the realm of DL research, there has been limited progress in employing

object relations to enhance object detection tasks. Most current methods remain primarily

focused on the recognition and identification of objects, regardless of their relationships

[187]. One of the main challenges in this context lies in the complexity of modeling the

spatial relations between objects, considering their potential disparities in position within

an image, varying scales, and diverse shapes, to cite just a few.

On the other hand, some studies [188; 189], have demonstrated that CNNs have cer-

tain abilities to acquire contextual insights autonomously and implicitly during the training

process [190]. Through the use of local receptive fields, [191], CNNs capture contex-

tual details within small local regions connected to each neuron. As the network delves

deeper, these receptive fields expand, thereby facilitating the assimilation of more exten-

sive global contextual information. These outcomes highlight the importance of providing

DNNs with explicit access to contextual information to further enhance their performance

and accuracy. While DNNs can learn some level of contextual information through their

architecture, the incorporation and transfer of this knowledge in a more explicit way can

offer significant advantages. First, explicit integration of contextual knowledge enables the

models to capture fine-grained cues that may be missed with implicit learning. Second,

it helps empower models to make more accurate predictions, especially in challenging

scenarios where implicit learning struggles to capture complex relationships effectively.

As deep network research continues to explore their capacity to learn contextual infor-

mation, it becomes clear that further enhancing their performance and accuracy can

be achieved by incorporating explicit access to contextual knowledge. This concept is

aligned with the principles of hybrid intelligent systems [192; 193; 194] which aim to

combine the strengths of artificial intelligence with human expertise. Within the domain

of hybrid AI, an outstanding approach is informed DL [195; 196], which leverages prior
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knowledge or domain expertise to improve the learning performance of DL models. This

prior knowledge can take various forms, including expert rules, ontologies, and statistical

information, among others as mentioned in Chapter 2. By incorporating this pre-existing

knowledge, DL models can make more informed predictions and enhance the decision-

making process. Informed DL represents a significant advancement in hybrid AI, as it

combines the data-driven effectiveness of DL with valuable insights from human expertise

and existing knowledge. This integration ultimately results in more robust and effective AI

systems able to tackle complex real-world problems.

The integration of contextual information into DL models should be advantageous for

computer vision tasks. Contextual information can be globally defined as the surround-

ing cues in the environment that provide additional insights and understanding to aid

in accurate estimations and predictions. This includes considering spatial relationships

between objects, which are crucial contextual information that can highly benefit object

detection tasks for several reasons. First, incorporating spatial relations enables a more

comprehensive understanding of the scene, as objects in the real world are not isolated,

but rather interact and exist with each other. By capturing spatial relationships such as

overlapping and relative positions to name just a few, DNNs can better understand the

context and improve their performances. Second, object relations help to resolve ambi-

guities that may arise when objects share similar visual characteristics. For example, in

a crowded scene where objects may occlude or partially overlap, understanding spatial

relationships can help identify individual objects. By analyzing the spatial arrangement

of objects, the network can differentiate between overlapping instances and assign cor-

rect labels to each object, thereby reducing confusion and improving object detection

accuracy. Furthermore, in urban scenarios, objects such as traffic lights and traffic signs

are often located on roads or sidewalks. By considering the spatial relationship between

these objects and the road or sidewalk regions, DNNs can effectively detect and classify

traffic-related objects. Moreover, in urban scenes, the sky regions are typically externally

connected to vegetation or building regions since these objects are the tallest in urban

environments. Learning the spatial relationship that connects the sky to vegetation and

buildings can help the network understand that the sky is usually associated with tall ob-

jects. It is also important to mention that in urban scenes, some spatial relationships can

serve as cues for identifying unrealistic or impossible scenarios. By analyzing the spatial

connections between objects, it becomes possible to identify the presence or absence of

certain configurations that are unlikely or impossible in urban environments. For exam-

ple, the presence of a pedestrian region within a sky region is a configuration that would

rarely, if ever, occur in reality. This spatial relationship is incoherent with the typical ar-

rangement. By recognizing this inconsistency, DNNs can leverage spatial relationships to

identify and differentiate between realistic and unrealistic configurations in urban scenes.

In this context, we have observed that panoptic prediction in urban environments is partic-
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ularly challenging because of the complex relationships between regions within an image.

To address this issue, the key contributions of this chapter are as follows.

• the extraction and integration of knowledge about spatial relationships into a deep

neural network for panoptic segmentation,

• the modeling of the spatial relationships as a loss function to optimize the network

training,

• the validation and evaluation of the proposed approach on various urban scene

datasets.

To present our approach, the remainder of this chapter is organized as follows. Work

related to panoptic segmentation is introduced and discussed in Section 4.2. The spatial

relationships considered are described in Section 4.3. The proposed methodology that

includes the modeling of spatial relationship loss functions is described in Section 4.4.

Section 4.5 presents the performed experiments, results analysis, and comparison with

the SOTA, ablation study, generalization capability, and quantitative analysis of the inter-

est in integrating spatial relationships into the learning process. Finally, the last section

concludes the chapter and provides directions for future work.

4.2/ SHARED BACKBONE MODELS FOR PANOPTIC SEGMENTATION

In this section, we present an overview of existing panoptic segmentation methodologies,

with a specific focus on those built upon a shared backbone architecture. These tech-

niques use a single neural network backbone for both “Stuff" and “Things" segmentation

to achieve a unified panoptic segmentation of the image.

Over the years, many frameworks have been developed following different techniques

for panoptic segmentation. An effective approach is to use a shared backbone to en-

code features [197; 198; 199; 200], as it has been shown to produce high performance

on benchmark datasets [201; 154; 202]. Within this category of techniques, two primary

approaches are illustrated in Figure 4.2. The first involves sharing a backbone between

the two heads of semantic and instance segmentation and merges the outputs for the

final panoptic generation. In addition to the shared backbone, the second category in-

cludes explicit connections between the two heads. Many methods have been proposed

in the state of the art and can be classified into one of these two categories. In this sec-

tion, we review some of the most important methods in each category and present their

contributions to panoptic segmentation.

The approach proposed in [180] performs the instance and semantic segmentation sep-

arately and then applies the Non-Maximum Suppression (NMS) technique to obtain the
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Figure 4.2: Comparison of two sharing backbone architectures for panoptic segmenta-
tion. The whole flowchart represents the architecture with a shared backbone and explicit
connections. The arrows enclosed with dashed lines can be excluded to obtain the archi-
tecture without explicit connections.

Panoptic Quality (PQ) metric. The NMS procedure is used to produce non-overlapped in-

stance regions, which are then combined with the semantic segmentation. The problem

of conflicts that may arise within the instance segmentation branch due to overlapped pre-

dictions was highlighted in [203]. The proposed contribution consists of adding a branch,

called the occlusion head, responsible for making decisions regarding the stacking order

of instance masks to resolve occlusions during the fusion process. The Efficient Spatial

Pyramid of dilated convolutions (ESPnet) was introduced in [199]. This method involves

several stages, including a shared backbone that consists of a Feature Pyramid Network

(FPN) [153] and a Residual Network (ResNet) [204]. To enhance the input features, the

method uses a Cross-Layer Attention (CLA) fusion module, which combines multi-layer

feature maps in the FPN layer. The approach proposed in [197] introduces the Efficient

Panoptic Segmentation (EfficientPS) architecture for scene understanding. The general

architecture of the network consists of a shared backbone that encodes and fuses se-

mantically rich multi-scale features. It includes a new semantic head that aggregates fine

and contextual features consistently. For the instance segmentation head, a new variant

of Mask R-CNN [197] augmented with depth-wise separable convolutions [205] is consid-

ered. Finally, a novel panoptic fusion module is introduced to generate the final panoptic

output. A new system called Panoptic-DeepLab for panoptic segmentation is presented

in [198]. The approach employs a shared backbone network (Xception-71 [206]) aug-

mented with an atrous convolution in the final block. The architecture is based on dual-

Atrous Spatial Pyramid Pooling (ASPP) and dual-decoder structure specific to semantic

and instance segmentation respectively. The semantic branch follows the standard de-

sign of a semantic segmentation model, while the instance branch is class-agnostic and

uses a simple instance-center regression. The predicted semantic segmentation and

instance segmentation are fused to generate the final panoptic segmentation result by

the majority vote algorithm proposed by DeeperLab [207]. Another approach entitled
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PanopticDepth [208] introduced a unified framework designed for depth-aware panoptic

segmentation (DPS), a complex task with scene understanding. DPS aims to reconstruct

a 3D scene with instance-level semantic understanding from a single image, assigning

each pixel a depth value, a semantic class label, and an instance ID. Unlike conventional

approaches that add a dense depth regression head to panoptic segmentation networks

as an independent branch, PanopticDepth employs a dynamic convolution technique to

predict instance-specific depth and segmentation masks. The methodology highlights the

advantage of the mutually beneficial relations between panoptic segmentation and depth

estimation. While the paper primarily focuses on DPS, the model has also the ability to

estimate individually panoptic segmentation and depth, offering flexibility in its applica-

tion. The joint learning of panoptic segmentation and depth suggests that the knowledge

gained in one task enhances the performance of the other.

Some alternative cooperative techniques for panoptic segmentation have been proposed

[209; 210; 211]. These techniques are also based on a shared backbone architecture in

addition to explicit connections between the instance and semantic segmentation heads.

The approach outlined in [209] involves using a ShuffleNet [212] for feature extraction, as

well as establishing explicit connections between the instance and semantic segmenta-

tion stages. These steps are followed by combining the results to produce the final panop-

tic output. A deep panoptic segmentation method that relies on a bidirectional learning

technique is presented in [211]. To capture the intrinsic interaction between semantic and

instance segmentation, the authors introduce a Bidirectional Aggregation Network called

BANet [211]. This network performs panoptic segmentation by leveraging two modules

that extract rich contextual features from semantic and instance segmentation for recog-

nition and localization. Finally, the bidirectional paths are used for feature aggregation,

enhancing the overall segmentation performance. On the other hand, the architecture

proposed in [210] allows information exchange between the branches to take advantage

of both. Specifically, it involves leveraging semantic information to improve the instance

segmentation. The output of the semantic segmentation branch is normalized and con-

catenated with the normalized features of the feature map. This concatenated information

is passed through a convolutional layer and used as input to the instance segmentation

branch. This allows relevant data from one branch to flow through the other, improving

the performance of both semantic and instance segmentation branches.

The first category with a shared backbone and no explicit connections offers several ad-

vantages [197; 204; 199]. It provides a straightforward implementation compared to the

second category. Additionally, removing explicit connections between the two heads re-

duces computational complexity during training. The separate heads offer flexibility in

optimizing each task independently, allowing for more control over the model behavior.

Despite these advantages, this category has also its limitations. The lack of explicit inter-

action between the heads can result in potential misalignment between the semantic and
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instance segmentation tasks. Furthermore, the absence of explicit connections limits the

direct exchange of information between the two heads, which may affect the model ability

to leverage fine-grained semantic information for accurate instance segmentation or vice

versa. On the other hand, the second category also has its advantages [209; 210; 211].

First, the explicit connections enable better integration and information exchange between

the tasks. The interaction allows for contextual refinement, where the predictions from one

task can help refine the predictions of the other, leading to more accurate and coherent

results. However, it is important to note that this architecture comes with increased com-

plexity. The design and implementation of explicit connections are more challenging, and

there may be computational overhead during training and inference due to information

exchange between the heads. Moreover, the increased interaction between the heads

may introduce the risk of over-fitting, as the model can excessively rely on the information

exchange and lose generalization capability.

Based on the introduced papers and contributions, it is difficult to definitively conclude

that one architecture always outperforms the other in all aspects considering panoptic

segmentation. The choice depends on various factors such as the specific DNN architec-

ture, the characteristics of the dataset, etc. Different datasets, tasks, and contexts may

favor one architecture over the other. Ultimately the selection should be based on a care-

ful consideration of the trade-offs between simplicity, computational efficiency, integration,

and performance, as well as the available resources for training and inference.

Additionally, from the state-of-the-art chapter (Section 2), it has been demonstrated that

the collaborations between knowledge and DL models lead to improved performances

and results. By making use of external knowledge sources, DL models can benefit from

additional contextual cues, enhancing their capabilities in various computer vision tasks.

These integrations have shown promising outcomes, proving the potential of combin-

ing knowledge-driven approaches with DL techniques. Building upon these insights, we

propose in this chapter to integrate spatial relationship knowledge between objects in ur-

ban scenes into DL models dedicated to panoptic segmentation. By incorporating this

extra knowledge, we aim to take advantage of the spatial and contextual relationships

between objects in urban scenes, which can provide valuable cues for accurate segmen-

tation and scene understanding in complex urban environments. Traditional DL models

may struggle to capture the complex spatial arrangements and semantic associations

between objects, leading to inefficient segmentation results. However, by explicitly incor-

porating spatial relationship knowledge, we can enhance the models ability to perceive

the overall scene and capture the underlying structure. We propose to deeply incorporate

spatial relationships directly into the DNNs training process through the loss function to

further advance knowledge integration. This enables the DNN to learn both from the vi-

sual data and the extra knowledge simultaneously, leading to a more comprehensive and

effective learning process. By jointly optimizing the segmentation task with the spatial re-
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lationship knowledge, the model can benefit from the contextual information and refine its

predictions consequently. This integrated approach not only enhances the segmentation

accuracy but also advances a deeper understanding of the urban scene by considering

the relationships between objects.

4.3/ QUALITATIVE SPATIAL RELATIONSHIPS (QSRS)

The 3D objects of an urban scene are projected into acquired 2D images as geometric

regions of different shapes, visual aspects, and sizes. To integrate knowledge represent-

ing spatial relationships between these objects, we refer to Qualitative Spatial Relation-

ships (QSRs) [213]. Our approach involves extracting all spatial relationships that exist

between every pair of regions within an image and integrating this information into the

training process of a DNN as extra knowledge. This integration of complementary rela-

tions is expected to enhance the model ability to better understand the spatial structure

of the urban environment objects and improve the accuracy of panoptic segmentation

prediction results.

Specifically, we are interested in Region Connection Calculus (RCC) [214], which is a

standardized set of spatial relations that is used to capture the possible connections and

arrangements between regions, allowing for a comprehensive representation of their spa-

tial interactions. There are many versions of these Region Connection Calculus such as

RCC-5 and RCC-8. In our case, we considered RCC-8 which describes 8 fundamental

relations (Figure 4.3). It offers a fine level of detail that enables a precise representation

of the relationships between two regions in an image. Consequently, it enables a more

comprehensive spatial understanding of the environment.

(a) Disconnected (b) Equal (c) Partially
overlapping

(d) Externally
connected

(e) Tangential Proper
Part inverse

(f) Non-Tangential
Proper Part inverse

(g) Tangential Proper
Part

(h) Non-Tangential
Proper Part

Figure 4.3: Representation of RCC-8 relations
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RCC-8 specifically defines eight distinct relationships. Let U denote the set of non-empty

regular closed sets, also known as regions. Within the RCC-8 algebra, 8 topological re-

lations serve as its foundation [215]. The Disconnected (DC) relationship (Figure 4.3a)

signifies that two regions do not have shared points or boundaries. The Externally Con-

nected (EC) relationship (Figure 4.3d) denotes one region surrounding or enclosing an-

other. The Tangential Proper Part (T PP) relationship (Figure 4.3g) implies that one region

is entirely contained within another, with at least one shared boundary point. On the other

hand, the Non-Tangential Proper Part (NT PP) relationship (Figure 4.3h) indicates com-

plete containment without shared boundaries. The Partially Overlapping (PO) relationship

(Figure 4.3c) suggests that the regions have some common points or boundaries, without

one region entirely encompassing the other. When both regions are identical in shape

and size, they are considered Equal (EQ) (Figure 4.3b). Finally, the Tangential Proper

Part Inverse (T PPi) (Figure 4.3e) and Non-Tangential Proper Part Inverse (NT PPi) (Fig-

ure 4.3f) relationships mirror their respective counterparts but with the roles of the regions

reversed.

Consider the following examples of common possible and impossible spatial relationships

between objects in an urban environment. For example, regions representing a building

in an image are typically partially overlapping (Figure 4.3c) with regions corresponding

to vegetation class. We can also say that regions representing the sky and buildings are

usually externally connected (Figure 4.3b). This relationship means that the sky region

surrounds or encloses the building region, as buildings are typically taller structures that

are externally connected to the sky. Furthermore, the road and sidewalk regions are often

externally connected, indicating their spatial relationship (Figure 4.3d). This relationship

means that the sidewalk region is adjacent to and connected to the road region. More-

over, the sidewalk region is always disconnected from the sky region (Figure 4.3a). It

means that there are no shared points or boundaries between the sidewalk and the sky.

The sidewalk, which is at ground level, is a horizontal surface that is separate from the

overhead expanse of the sky. Additionally, a region representing a pedestrian or a car

cannot be fully included (Figure 4.3g) within a region of the sky. This is because the sky

and the pedestrian or car regions have distinct spatial characteristics and occupy differ-

ent areas in the scene. A truck region cannot be fully included within a car region (Figure

4.3g). While there may be areas where the truck and car regions partially overlap (Figure

4.3c), the complete inclusion of a truck region within a car region is unlikely due to their

different dimensions.

In conclusion, the eight relations we have presented provide a comprehensive and de-

tailed representation of spatial relationships between objects in the urban environment.

These relations serve as a formal logic that captures essential spatial knowledge of the

components within the environment. By combining this knowledge with the performances

of a DNN, we can create an informed DL framework to enhance the network understand-
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ing and reasoning abilities. In the next section, we describe the methodology to extract

the RCC-8 relations and integrate them into a DNN.

4.4/ SPATIAL RELATIONSHIPS INTEGRATION FOR PANOPTIC SEG-

MENTATION

This section presents the proposed DNN architecture that integrates RCC-8 relations be-

tween objects perceived in images. It is important to mention that the proposed approach

is general and can be applied to any two-head (one for semantic segmentation and the

other for instance segmentation) panoptic segmentation model.

As mentioned previously, the main idea of the proposed technique is to optimize and

enhance the performance of panoptic segmentation models by incorporating additional

knowledge on the spatial relationships between different objects in an urban scene di-

rectly during the model training. We aim to integrate this knowledge by introducing a

novel loss function that captures and represents the spatial relationships between ob-

jects. By incorporating this loss function into the training process, the model gains a com-

prehensive understanding of the urban environment, improving its ability to accurately

segment objects by considering their contextual interactions. To extract the RCC-8 rela-

tions between the various object types of the image, including both “Stuff" and “Things",

we integrated the proposed module in both heads during the training of the DNN (Figure

4.4). This module is designed to extract the RCC-8 relations between regions to de-

fine and compute the proposed LRCC−pano loss function. To do so, distinct image regions

should be separated, and then the different regions should be approximated before ex-

tracting the RCC-8 relations. An example of the overall methodology to extract the 8 RCC

relationships between “Stuff" regions is presented in Figure 4.5.

Separation of distinct regions The proposed module takes as input the “Stuff" re-

gions from the predicted semantic segmentation map and those from the ground truth

(Figure 4.5). In the semantic map, “Stuff" regions belonging to the same class are la-

beled with a common label, even though they are not connected. For example, in Figure

4.5, the two separate regions belonging to the class “Vegetation" were both labeled with

the same label (V), despite being distinct and not connected. However, it is important

in our case to consider each region independently of the others to accurately represent

and integrate the spatial relationships between all the distinct regions in the scene. To

solve this problem, we implemented an algorithm that separates all the distinct visible

“Stuff" regions from the semantic maps. We also added some identifiers to reference the

distinct regions belonging to the same label in both the prediction and the ground truth
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(Figure 4.5: Separation of distinct regions). Since the concept of instance segmentation

itself involves identifying and separating individual objects within an image, we did not

face the problem of identifying distinct regions regarding the “Things" regions related to

the instance segmentation branch. Thus, each region belonging to an instance is basi-

cally segmented separately from the other instances of the same class. At the end of this

step, we consider a set of distinct regions for each of the predicted maps (semantic and

instance segmentation), along with their respective ground truths regions.

Region approximation To identify the spatial relationships between regions, we initially

extracted the primary features and characteristics of each region. Specifically, the cen-

troid coordinates and their principal and secondary axes are computed, which are used to

generate a polygon approximation with a maximum of 50 vertices for each region (Figure

4.5: Region approximation). The polygons are used to establish the spatial relationships

between each pair of regions. Once again, this technique is applied to both the predicted

semantic and instance segmentation maps, as well as their corresponding ground truth

regions.

RCC-8 extraction The computed regions properties are used to extract the RCC-8 re-

lations (Figure 4.5: RCC-8 extraction). The goal is to introduce a new penalty term to the

global loss function of the panoptic segmentation DNN by comparing the 8 RCC spatial

relations in the semantic and instance segmentation prediction maps with their corre-

sponding ground truths. To incorporate these comparative elements into the network

training, we propose the addition of two new penalty terms to the loss function, namely

LRCC−S and LRCC−I which respectively correspond to the semantic and instance segmen-

tation heads (Figure 4.4). These penalty terms aim to penalize the network errors made

among the 8 RCC relations between the image regions during training. Mathematically,

LRCC−S and LRCC−I represent the average of the 8 penalty terms of the 8 RCC relations

(Figure 4.3):

LRCC−S em =
1
8

(LPO−S +LEC−S +LT PP−S +LNTT P−S +LDC−S +LEQ−S +LT PPi−S +LNTT Pi−S ). (4.1)

LRCC−Inst =
1
8

(LPO−I + LEC−I + LT PP−I + LNTT P−I + LDC−I + LEQ−I + LT PPi−I + LNTT Pi−I). (4.2)

LRCC−S and LRCC−I range between 0 and 1 and represent the ability of the neural network

to verify the 8 RCC relationships between objects in images. The penalty terms corre-
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sponding to the 8 RCC relations are defined as the ratio between the errors made by

the model in the corresponding RCC relation and the sum of the wrong and the correct

matches of the same relation with the ground truth. For example, if we consider the RCC

relation “PO" (Partially Overlapping), the penalty term is defined as follow:

LPO =
ErrorsPO

ErrorsPO +CorrectPO
. (4.3)

To provide a clear illustration, consider the example provided in Figure 4.5. We have

an image with its corresponding semantic segmentation ground truth, which contains

the following pairwise object “EC" relations: (B0,V0) and (V0, S 0). On the other hand,

the semantic segmentation map prediction of the same image does not include these

relations and instead, it contains the pairwise object “NTTP" relation: (S 1, B0). From the

comparison, we can identify two types of errors made by the model. The first error is

the presence of the “NTTP" relation for the pairwise (S 1, B0), which does not exist in

the ground truth. This can be considered as a false positive since the model incorrectly

identified a relationship between the region S 1 and the region B0. The second error is

the failure to detect the (B0,V0) and (V0, S 0) relations, where the model did not recognize

the “EC" connections between each pair of regions. These errors can be seen as a

false negative since the model missed a true relation that should have been identified.

Following the same methodology, all penalty terms for the 8 RCC relations are computed.

In general, DL models for panoptic segmentation that follow an architecture with two

heads -one for semantic segmentation and the other for instance segmentation- typically

employ a global loss function. The global loss function for these models is commonly

defined as the sum of two individual loss functions: LS em, which optimizes the semantic

segmentation head, and LInst, which optimizes the instance segmentation branch (Figure

4.4). Therefore, the general form of the loss function for such models can be expressed

as:

LPano = LS em + LInst. (4.4)

Using the proposed penalty terms, the new global loss function for optimizing the whole

network while considering the integration of the spatial relationships knowledge between

the objects is defined as follows :

LRCC−Pano = LS em + LInst + LRCC−S em + LRCC−Inst. (4.5)
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4.5/ EXPERIMENTS AND RESULTS

To validate, evaluate, and demonstrate the performance of integrating spatial relation-

ships knowledge into a DNN for panoptic segmentation, we consider a state-of-the-art

panoptic segmentation network (EfficientPS [197]) as our base network. EfficientPS is a

robust model that demonstrates exceptional performance in panoptic segmentation com-

pared to other state-of-the-art approaches. It is also highly extensible, making it suitable

for making modifications and adding modules to implement the proposed approach. The

architecture of the model is presented in Section 4.5.1. The implementation details are

described in Section 4.5.2. The panoptic segmentation evaluation metrics are introduced

in 4.5.3. In Section 4.5.4, we present the different considered datasets for training and

evaluation. The analysis of the quantitative results and the comparison with the state of

the art considering the three datasets for urban environments are respectively highlighted

in Section 4.5.6, 4.5.7 and 4.5.8. Qualitative results are presented in Section 4.5.9. In

Section 4.5.10 we highlight an evaluation on unseen datasets. Ablation study is presented

in Section 4.5.11. Generalization capability of the proposed approach and the quantita-

tive analysis of the integration interest of spatial relationships into the learning process

are given in Section 4.5.12 and Section 4.5.13 respectively.

4.5.1/ ARCHITECTURE OF THE EFFICIENTPS MODEL

The EfficientPS architecture [197] includes a shared backbone with a 2-way FPN. The

shared backbone is based on the EfficientNet architecture [148], which uses mobile in-

verted bottleneck units [216] and compound scaling to enhance its representational ca-

pacity with fewer parameters compared to other similar networks. Instead of using the

conventional FPN as most of the state-of-the-art works [180; 217], EfficientPS incorpo-

rates a 2-way FPN that effectively fuses multi-scale features in both directions. This is

achieved by spreading information flow in multiple directions. After the 2-way FPN, two

heads work in parallel: the semantic segmentation head and the instance segmentation

head. The instance head is based on a variant of the Mask R-CNN architecture [82], while

the semantic segmentation is based on three modules dedicated to the capture of fine

features, long-range contextual features, and correlating distinct features for improved

object boundary refinement. To produce the panoptic segmentation output, EfficientPS

employs a panoptic fusion module that combines the outputs from the semantic and in-

stance heads. This module integrates the predictions from both heads to yield the final

panoptic segmentation result. It combines predictions from the semantic and instance

segmentation heads to create the panoptic segmentation output. It first considers ob-

ject instances from the instance segmentation head, then reduces their number based

on confidence scores and handles overlapping instances. The masks for each object
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instance are combined with the “stuff" to produce intermediate panoptic prediction, from

which the final panoptic segmentation output is produced.

4.5.2/ IMPLEMENTATION DETAILS

Regarding the implementation of the algorithm for the extraction of the RCC-8 spatial

relationships between objects (Section 4.3), we used the Measure Region Properties

module of the Scikit-image library [218]. Additionally, we considered the QSRLIB Library

[219] to infer the RCC-8 spatial relationships.

The official implementation code is available online. The EfficientPS model [197] is im-

plemented using PyTorch 1.7 Neural Network Libraries with CUDA GPU Toolkit 11.2. The

hyper parameters set by the authors have remained unchanged. However, on the Ef-

ficientPS paper [197], the training was performed on 16 NVIDIA Titan X 12GB GPUs.

The batch size was set to 1 and the number of epochs to 160. Due to our less powerful

GPU resources available (2 NVIDIA GeForce RTX 2080 Ti 11GB GPUs), we were unable

to train the model under the same conditions. To address this technical challenge, we

chose to use the “EfficientNet-b4" as the shared backbone instead of the “EfficientNet-

b5" used in [197]. Indeed, the b4 version is lighter than the b5 version, allowing us to train

the model based on available computational resources. Table 4.1 presents a complexity

comparison between the two Efficient-Net versions.

Encoder Parameters (M) FLOPs (B)
EfficientNet-b5 30 250.97
EfficientNet-b4 19 156.49

Table 4.1: Complexity comparison among different versions of the Efficient-Net backbone.

4.5.3/ EVALUATION METRICS

We use the standard Panoptic Quality metrics of the state of the art [180] to evaluate the

performance of the proposed approach. These metrics are presented below.

The Panoptic Quality (PQ) metric quantifies the accuracy of object instance segmentation

as well as the correct prediction of the “Stuff" class. It is calculated as follows:

PQ =

∑
(p,g)∈T P (IOU(p, g))

|T P| + 1
2 |FP| + 1

2 |FN |
. (4.6)

where
∑

(p,g)∈T P represents the sum over all pairs of prediction and ground truth objects

that belong to the set T P, which represents the True Positives. FP, and FN, respectively,

represent False Positives and False Negatives. IOU denotes the Intersection Over Union
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(IOU) ratio, defined as:

IOU =
T P

T P + FP + FN
. (4.7)

The Segmentation Quality (SQ) metric indicates the accuracy of the predicted segments

in comparison to the ground truth. It is calculated by averaging the IOU scores of all

the TP segments. A higher SQ value or a value closer to 1 indicates that TP segments

closely align with their corresponding ground-truth segments, while a lower value means

poor matching. The SQ metric is defined as:

S Q =

∑
(p,g)∈T P IOU(p, g)

|T P|
. (4.8)

However, SQ focuses on evaluating the accuracy of TP, without considering the FN nor

FP segments. To consider the impact of incorrect predictions, the Recognition Quality

(RQ) is introduced as a metric that combines precision and recall. RQ aims to provide a

comprehensive assessment of the model effectiveness in correctly identifying objects in

the image, considering both the ability to avoid false positives and false negatives. The

RQ metric is defined as:

RQ =
|T P|

|T P| + 1
2 |FP| + 1

2 |FN|
. (4.9)

Following the standard benchmarking criteria for panoptic segmentation, we calculate

PQ, S Q, and RQ for all the dataset classes, and also report them separately for “Stuff"

classes (PQst,S Qst and RQst) and “Things" classes (PQth,S Qth and RQth).

4.5.4/ DATASETS

In this section, we introduce the considered datasets for our experiments. We chose to

use a range of challenging urban datasets to validate and demonstrate the effectiveness

of the proposed approach across multiple scenarios and different conditions.

CityScapes The CityScapes dataset [154] is a challenging dataset for panoptic seg-

mentation, as it consists of diverse urban street scenes from more than 50 European

cities, captured under different conditions. The scenes are crowded with dynamic ob-

jects such as pedestrians and cars that are mostly grouped and occluded, making the

panoptic segmentation task challenging. Recently, the CityScapes dataset introduced a

benchmark for panoptic segmentation, with pixel-level annotations for 19 object classes,

including 11 “Stuff" classes and 8 “Things" classes. The dataset contains 5000 finely
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annotated images captured using a stereo camera with a resolution of 2048× 1024 pixels.

These images are divided into 2975 images for training, 500 images for validation, and

1525 images for testing. However, the annotations for the test set are not publicly avail-

able. Following the state-of-the-art protocol, we evaluated our model on the validation

set.

KITTI The KITTI panoptic segmentation dataset for urban scene understanding was

introduced by the authors of [197]. It includes panoptic annotations for a subset of 1055

images from the KITTI Vision Benchmark Suite [156]. These images are divided into

855 images for training and 200 images for validation. The dataset provides annotations

for 11 “Stuff" classes and 8 “Things" classes, following the distribution of classes in the

CityScapes dataset [154].

Indian Driving Dataset The Indian Drivind Dataset (IDD) [220] addresses the scene

understanding challenge of unstructured environments. This dataset contains more

“Things" classes per scene compared to other datasets such as KITTI or CityScapes.

However, the categories for traffic objects are somehow limited. The images of this

dataset were captured using a front-facing camera, gathering data from two Indian cities.

IDD includes a total of 10003 images with 6993 images for training, 981 for validation, and

2029 for testing. The images have a resolution of either 1920 × 1080 pixels or 720 × 1280

pixels.

4.5.5/ TRAINING PROTOCOL

As indicated in the training protocol of the original EfficientPS [197], we initialized the

backbone of the proposed model with weights pre-trained on the ImageNet dataset [20].

For training, we used Stochastic Gradient Descent (SGD) with a momentum of 0.9 and

employed a multistep learning rate schedule. We started with an initial base learning

rate of 10−4, then, at each milestone, we reduced the learning rate by a factor of 10 and

continued training until convergence. We trained the proposed model with a batch size of

2 on 2 NVIDIA GeForce RTX 2080Ti 11GB GPUs.

4.5.6/ EVALUATION ON CITYSCAPES DATASET

In this section, we present a comparative analysis of the proposed approach against cur-

rent state-of-the-art panoptic segmentation methods. We evaluated and compared our

technique on the CityScapes dataset [154] and report the performance metrics in Table
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4.2 and Table 4.3 with the results mentioned in the corresponding papers of the state-of-

the-art methods. For a complete evaluation, we evaluated both the CityScapes dataset

validation and test sets. However, as mentioned in Section 4.5.2, we were unable to train

the EfficientPS model [197] with its original configuration due to the limitations of our com-

putational resources. Instead, we used the officially released implementation provided by

the authors of EfficientPS and retrained the model according to our resources. Specif-

ically, we retrained the model using the “EfficientNet-b4" backbone, which is a lighter

version compared to “EfficientNet-b5" (see Table 4.1).

Evaluation on CityScapes validation set To build a comprehensive benchmark for

our model performance, we first performed our evaluation on the CityScapes validation

set. We made this choice because the CityScapes validation set is publicly available

and widely adopted by most state-of-the-art methods as a common reference for eval-

uation. By focusing on this subset, we can compare it with other approaches, allowing

us to position our method among the existing ones. In Table 4.2, the baseline approach

“EfficientPS-b4" yields a PQ of 60.6, an SQ of 80.3, and an RQ of 74.3, with a PQ(th)

and a PQ(st) of 56.3 and 63.8 respectively. However, the proposed approach, which in-

corporated additional knowledge about spatial relationships between objects in the loss

function during model training, achieved higher scores. Specifically, it provided a PQ of

64.2, an SQ of 81.6, and an RQ of 77.5. The PQ(th) and the PQ(st) also respectively im-

proved to 59.8 and 67.6. Furthermore, in comparison with prior state-of-the-art works, the

proposed approach demonstrates superior performances regarding the panoptic evalua-

tion metrics. These results highlight the effectiveness of integrating spatial relationships

into the panoptic segmentation neural network. The improved PQ, SQ, and RQ scores

signify that the proposed approach outperforms the baseline in terms of overall panoptic,

segmentation, and recognition quality. More specifically, the improved RQ score indi-

cates an enhanced recognition quality, suggesting that the proposed approach is better

at accurately identifying and classifying objects in the scene. This means that the model

developed a higher ability to recognize and assign correct labels to instances and seman-

tic classes within the image thanks to the integrated RCC knowledge. Similarly, the higher

SQ score indicates improved segmentation quality. This suggests that the proposed

approach achieves more precise and accurate object boundaries, resulting in a better

overall representation of the scene. Another observation is that the proposed approach

“EfficientPS-b4-RCC" not only outperforms the baseline implementation “EfficientPS-b4"

but also achieves higher performance compared to the original architecture of the paper

with a heavy backbone “EfficientPS-b5". This demonstrates that we can achieve high per-

formance without being reliant on a powerful computational infrastructure. Instead, we

can leverage other methods, such as incorporating meaningful knowledge, to enhance

the network performance. Despite the overall out-performance of the proposed approach
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Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)

WeaklySupervised 47.3 – – 39.6 – – 52.9 – –
[221]

DeeperLab [207] 56.3 – – – – – – – –
Panoptic FPN [222] 58.1 – – 52.0 – – 62.5 – –

AUNet [223] 59.0 – – 54.8 – – 62.1 – –
UPSNet [224] 59.3 79.7 73.0 54.6 79.3 68.7 62.7 80.1 76.2

Seamless [217] 60.3 – – 56.1 – – 63.3 – –
SSAP [225] 61.1 – – 55.0 – – – – –

AdapTIS [226] 62.0 – – 58.7 – – 64.4 – –

Panoptic-DeepLab 63.0 – – – – – – – –
[198]

EvPSNet [227] 63.7 81.3 77.5 – – – – – –
EfficientPS-b5 [197] 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2
PanopticDepth [208] 64.1 – – 58.8 – – 68.1 – –

EfficientPS-b4 60.6 80.3 74.3 56.3 79.2 70.9 63.8 81.1 76.7
EfficientPS-b4-RCC 64.2 81.6 77.5 59.8 80.3 73.8 67.6 82.4 80.2

Table 4.2: Comparison of panoptic segmentation performance on the CityScapes valida-
tion set. (st) and (th), respectively, denote the “Stuff" and “Things" classes. “–" indicates
the unreported metric for the corresponding method.

that reaches respectively a PQ, an SQ, and an RQ of 64.2, 81.6, and 77.5 compared to

the “EfficientPS-b5" with a PQ of 63.9, SQ of 81.5 and a RQ 77.1, it is important to ana-

lyze the specific challenges associated to the Things-based metrics, where the proposed

approach is somehow similar to the original one. Our approach reaches a PQ(th), an

SQ(th), and an RQ(th) respectively of 59.8, 80.3, and 73.8 while “EfficientPS-b5" provided

a PQ(th) of 60.7, an SQ(th) of 81.2 and an RQ(th) of 74.1. However, considering “Stuff"

objects, our approach reaches a PQ(st), an SQ(st) and an RQ(st) respectively of 67.6,

82.4 and 80.2 while “EfficientPS-b5" provided a PQ(st) of 66.2, an SQ(st) of 81.8 and an

RQ(st) of 79.2. One possible explanation could be the nature of the scene composition

itself. In the majority of urban scenes, the pixels related to “Stuff" objects, such as sky,

vegetation, and road are numerous than the “Things" objects which makes it more difficult

to reach an improvement considering the instance-level objects. Furthermore, the pro-

posed approach focuses on integrating knowledge about spatial relationships between

objects in the loss function during model training. This integration enables the model

to learn the overall composition of the scene, which could be particularly advantageous

for segmenting “Stuff" objects. They often have distinct boundaries and homogeneous

regions, making them more receptive to contextual cues and spatial relationships. For

example, knowing that the sky usually appears above vegetation or buildings helps the

model refine the segmentation boundaries and produces more accurate results for “Stuff"

objects. However, when it comes to instance-level object segmentation, the situation

is more complex. For example, it is challenging to establish a fixed spatial relationship

between pedestrians and cars, as pedestrians can be found in various locations, move

dynamically, and have diverse interactions with their surroundings.
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Evaluation on CityScapes test set After evaluating our approach on the Cityscapes

validation set and observing promising results, we proceeded to extend our analysis to the

Cityscapes test set (Table 4.3). Similarly to our findings on the validation set, we observed

that our proposed approach, “EfficientPS-b4-RCC", consistently outperformed the base-

line, “EfficientPS-b4", and also the original architecture, “EfficientPS-b5" which employs a

heavier backbone. This suggests that our approach can deliver high performance without

the need for extensive computational resources, highlighting the efficacy of incorporating

meaningful knowledge to enhance network performance. In terms of panoptic segmenta-

tion metrics, our approach maintained its superior performance, achieving a PQ, an SQ,

and an RQ of 64.5%, 83.0%, and 77.30% respectively, compared to “EfficientPS-b5" with

a PQ of 64.1%, an SQ of 82.6%, and an RQ of 76.8%. To conclude, the integration of

spatial relationships in the loss function during the training of the EfficientPS model likely

facilitated the model ability to capture contextual information, mainly the spatial layout

of scene objects, which enhanced its panoptic segmentation accuracy. This additional

knowledge allowed the model to better understand and use the spatial context of objects

in the image, resulting in improved performance in terms of PQ, SQ, and RQ metrics.

In addition to the global PQ metric that has been increased thanks to our approach, the

RQ and SQ metrics were also improved. This means that incorporating the 8 RCC rela-

tionships into the model loss function has also increased the model ability to accurately

recognize and distinguish between instances of different objects, leading to higher RQ

scores. Furthermore, the models ability to precisely segment objects has significantly

enhanced as indicated by the SQ metric.

Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)
SSAP [225] 58.9 82.4 70.6 48.4 – – 66.5 – –

Unifying [228] 61.0 81.4 73.9 52.7 79.6 66.2 67.1 82.8 79.6

Panoptic-DeepLab 62.3 82.4 74.8 52.1 – – 69.7 – –
[198]

PanopticDepth [208] 62.0 – – 55.0 – – 67.1 – –
EfficientPS-b5 [197] 64.1 82.6 76.8 56.7 – – 69.4 – –

EfficientPS-b4 61.1 81.6 73.9 53.3 80.4 66.3 66.9 82.5 79.5
EfficientPS-b4-RCC 64.5 83.0 77.3 56.6 83.7 69.7 70.2 85.8 82.8

Table 4.3: Comparison of panoptic segmentation performance on the CityScapes test set.
(st) and (th), respectively, denote “Stuff" and “Things" classes. “–" indicates unreported
metric for the corresponding method.

Evaluation of the model complexity In section 4.5.2, we have presented the complex-

ity of different backbone architectures (Table 4.1). In Table 4.4, we present a comprehen-

sive comparison of the entire proposed model “EfficientPS-b4-RCC" with other state-of-

the-art methods and the original EfficientPS architecture employing EfficientNet-b5 as its

backbone.
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Method Input Size (pixels) Parameters (M) FLOPs (B) Inference time (ms)
DeeperLab[207] 2049 × 1025 – – 463
UPSNet [224] 2048 × 1024 45.05 487.02 202

Seamless [217] 2048 × 1024 51.43 514.00 168
Panoptic-DeepLab [198] 2049 × 1025 46.73 547.49 175

EfficientPS-b5 [197] 2048 × 1024 40.89 433.94 166
EfficientPS-b4 2048 × 1024 29.89 339.46 159

EfficientPS-b4-RCC 2048 × 1024 29.89 339.46 159

Table 4.4: Comparison of the model complexity with state-of-the-art panoptic segmenta-
tion architectures. “—" indicates unreported metric for the corresponding method.

The comparison table provides insights into several key metrics, including the number of

parameters, FLOPs, and inference time while considering the input data size. We observe

that the proposed model, “EfficientPS-b4-RCC", has a lower number of parameters, re-

duced FLOPs, and better inference time compared to other state-of-the-art approaches.

Furthermore, it is essential to highlight that both “EfficientPS-b4" and “EfficientPS-b4-

RCC" share identical parameters and inference times. Indeed, the main factor that af-

fects inference time is the model architecture and its computational requirements. Since

the architecture of the two models is identical, the forward pass during inference will in-

volve the same operations for both models and therefore the inference times are similar.

The only major difference is that EfficientPS-b4-RCC has a different loss during training,

which does not impact the inference time.

4.5.7/ EVALUATION ON THE KITTI DATASET

In this section, we present a comparative analysis of the proposed approach against cur-

rent state-of-the-art panoptic segmentation methods trained and evaluated on the KITTI

dataset. However, there have been only a few state-of-the-art panoptic segmentation

methods trained and evaluated on the KITTI, due to the recent proposal of the dataset

for panoptic segmentation task in [197]. To compare our proposed approach against the

current state-of-the-art methods, we report the results in table 4.5.

Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)
Panoptic FPN [222] 38.6 70.4 51.2 26.1 68.3 40.1 47.6 71.9 59.2

UPSNet [224] 39.1 70.7 51.7 26.6 68.5 40.6 48.3 72.4 59.8
Seamless [217] 41.3 71.7 52.3 28.5 69.2 42.3 50.6 73.6 59.6

EfficientPS-b5 [197] 42.9 72.7 53.6 30.4 69.8 43.7 52.0 74.9 60.9

EfficientPS-b4 38.7 72.8 48.7 29.2 69.2 41.5 45.6 71.8 56.4
EfficientPS-b4-RCC 43.3 74.8 53.6 30.1 69.8 43.1 52.6 75.1 61.1

Table 4.5: Comparison of panoptic segmentation performance on the KITTI validation set.
(st) and (th), respectively, denote the “Stuff" and “Things" classes.

We follow the same protocol used in our experiments on the CityScapes dataset (Section

4.5.6). The obtained results with “EfficientPS-b4-RCC", showed a significant improve-
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ment in all metrics compared to the base experiment “EfficientPS-b4". Specifically, we

observed an improvement in the PQ metric from 38.7% to 43.3%. In addition, we achieved

better results in terms of SQ and RQ metrics, providing more evidence about the effec-

tiveness of knowledge integration in enhancing region segmentation and recognition.

When comparing our approach with “EfficientPS-b5", we consistently outperformed the

global (PQ, SQ, and RQ) evaluation metrics. These findings further validate our initial

observations regarding the impact of knowledge integration on model performance for

panoptic segmentation, without the need for complex architectures. Furthermore, our ap-

proach successfully outperformed all other state-of-the-art methods (Table 4.5). Even if

the “Things" evaluation metrics are almost similar to the original model for the reasons

mentioned in Section 4.5.6, our approach still demonstrates various advantages. First,

the key comparison lies in evaluating the same model architecture with and without knowl-

edge integration to effectively define the impact of the proposed approach, which always

consistently yields valuable improvements. Secondly, while there may be slight variations

when analyzing "Stuff" and "Things" separately we observe an important enhancement

regarding the global panoptic quality metric (PQ) which is the most important.

4.5.8/ EVALUATION ON IDD DATASET

The evaluation results on the IDD dataset are presented in Table 4.6, and their anal-

ysis reveals several observations. First, it is evident that the proposed approach con-

sistently outperforms the base implementation “EfficientPS-b4" and the state-of-the-art

approaches. We succeeded in reaching a global PQ of 51.2% considering the proposed

approach compared to 48.5% with the base implementation. Additionally, the improve-

ment in the Panoptic Quality metrics indicates the effectiveness of the proposed approach

in capturing the complex structures of the IDD dataset, which contains unstructured ur-

ban environments and scenes with limited road infrastructure boundaries. These findings

confirm the robustness of the proposed approach, as it demonstrates its ability to outper-

form existing methods and achieve enhanced results even in challenging scenarios.

Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)
Panoptic FPN [222] 45.9 75.9 60.8 46.1 77.8 60.9 45.8 74.9 60.7

UPSNet [224] 46.6 76.5 60.9 47.6 78.9 61.1 46.0 75.3 60.8
Seamless [217] 47.7 77.2 61.2 48.9 79.5 61.5 47.1 76.1 61.1

EfficientPS-b5 [197] 50.1 78.4 62.0 50.7 80.6 61.6 49.8 77.1 62.2

EfficientPS-b4 48.5 76.6 61.1 47.8 77.8 61.0 48.9 76.0 61.1
EfficientPS-b4-RCC 51.2 78.9 64.4 50.2 80.3 61.6 52.1 79.8 64.8

Table 4.6: Comparison of panoptic segmentation performance in the IDD validation set.
(st) and (th), respectively, denote the “Stuff" and “Things" classes.
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4.5.9/ QUALITATIVE RESULTS

To evaluate the effectiveness of the proposed approach, we performed a qualitative com-

parison between the visual results generated using the original “EfficientPS-b4" and the

proposed “EfficientPS-b4-RCC". Specifically, the proposed approach helped to achieve

better segmentation of objects in the image and also improved the recognition ability of

their corresponding classes.

(a) (b) (c)

Figure 4.6: First and second rows represent qualitative comparisons on the CityScapes
validation set. The third and fourth rows represent qualitative comparisons on the KITTI
validation set. The fifth and sixth rows represent qualitative comparisons in the IDD vali-
dation set. (a) RGB images, (b) the visual results generated with “EfficientPS-b4" and (c)
the visual results generated with “EfficientPS-b4-RCC".

In the first image from the CityScapes dataset (Figure 4.6, row 1), our approach success-

fully detected and segmented the pole region surrounded by two regions of the class car.

These pixels belong to a portion of the image that contains multiple regions of different
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classes with complex spatial relationships, i.e., the pixels belonging to the pole region are

externally connected to the car regions. In contrast, the visual result obtained using the

original model failed to accurately segment this region. In the second image, we provided

an example of a crowded scene (Figure 4.6, row 2) with numerous pedestrians crossing

the road simultaneously. Due to the overlapping instances of pedestrians, accurately seg-

menting them may be challenging. Upon reviewing the visual results, the original model

failed to detect several regions of pedestrians. In contrast, the “EfficientPS-b4-RCC"

demonstrated a significant improvement in accurately detecting those regions.

Our findings also indicate a significant visual enhancement considering the proposed

approach when evaluating its performance on the KITTI dataset (Figure 4.6). The qual-

itative results show that our method successfully detects objects and classes that were

previously undetectable using the base implementation such as the bicycles and pole

regions in the first example (Figure 4.6, row 3). Furthermore, we observed an impor-

tant improvement in accurately segmenting object boundaries, particularly in complex

and dense populated areas. For example, we can observe an improvement in accurately

segmenting the traffic light compared to the baseline approach (Figure 4.6, row 4). Ad-

ditionally, the proposed approach effectively captures the lower part of the pedestrians

body, providing more precise segmentation results.

Considering the visual results of the IDD dataset, we can observe important enhance-

ments in accurately detecting pole and truck regions in the first image (Figure 4.6, row

5) when considering the proposed approach. Moreover, in the second image of the IDD

dataset (Figure 4.6, row 6), we have a crowded scene where multiple regions were de-

tected correctly with “EfficientPS-b4-RCC" such as motorcycles and cars. The qualitative

results presented in this section further validate the findings concluded from the quan-

titative results (Sections 4.5.6, 4.5.7 and 4.5.8). They provide evidence that integrating

spatial relationships in the training of a model through its loss function can significantly

improve the performance of the model and the quality of the panoptic segmentation.

4.5.10/ EVALUATION ON UNSEEN DATASETS

The evaluation of a DNN on unseen data is an important step to ensure that the network

is robust, can generalize well, and is efficient for real-world applications. In this context,

and to further validate our conclusions, we performed additional experiments on unseen

datasets. The results are presented in Table 4.7.

Cross-validations were performed to ensure comprehensive testing across various

datasets. Specifically, we evaluated the models “EfficientPS-b4" and “EfficientPS-b4-

RCC" trained on the CityScapes dataset, the KITTI dataset, as well as the IDD dataset.

Additionally, we evaluated the performance of the models trained on the KITTI dataset on
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Method PQ SQ RQ PQ(th) PQ(st)
Models trained on CityScapes and evaluated on KITTI

EfficientPS-b4 33.1 70.1 46.3 24.1 41.7
EfficientPS-b4-RCC 36.2 71.6 49.9 26.8 44.3

Models trained on CityScapes and evaluated on IDD
EfficientPS-b4 37.6 65.4 51.2 37.5 39.2

EfficientPS-b4-RCC 39.2 68.1 52.6 39.3 41.7
Models trained on KITTI and evaluated on CityScapes

EfficientPS-b4 45.1 72.5 57.3 39.8 48.4
EfficientPS-b4-RCC 49.4 77.2 61.9 44.0 53.4

Models trained on KITTI and evaluated on IDD
EfficientPS-b4 39.8 67.1 53.0 39.5 41.3

EfficientPS-b4-RCC 41.8 70.5 56.4 42.1 44.6
Models trained on IDD and evaluated on KITTI

EfficientPS-b4 32.8 68.5 45.1 23.2 40.1
EfficientPS-b4-RCC 35.9 71.2 48.4 26.2 43.5

Models trained on IDD and evaluated on CityScapes
EfficientPS-b4 44.2 70.9 55.6 37.8 46.6

EfficientPS-b4-RCC 47.1 72.9 57.5 39.1 48.9

Table 4.7: Evaluation of panoptic segmentation performance of the proposed
“EfficientPS-b4-RCC" on unseen datasets.

the CityScapes and the IDD. Finally, we evaluated the models trained on the IDD dataset

considering the KITTI and the CityScapes datasets.

Considering all the experiments performed on unseen datasets (Table 4.7), we identify

better performances when employing the proposed approach compared to the basic im-

plementation. Specifically, there was an average improvement of 3% on the Panoptic

Quality metric (PQ) when incorporating spatial relationship knowledge. This improve-

ment is particularly important given the challenges of unseen urban environments. Fur-

thermore, the ability of the “EfficientPS-b4-RCC" model to demonstrate improvement on

unseen datasets, where it is evaluated on completely different datasets, proves its capac-

ity to learn and adapt to the general context of urban environments, particularly in terms

of spatial object relationships. This indicates that the “efficientPS-b4-RCC" model has

developed a deeper understanding of the layering of objects in urban scenes and can

successfully apply this knowledge across different environments and datasets. By con-

ducting evaluations on unseen datasets, we validate the effectiveness and applicability of

our approach beyond the training domain.

4.5.11/ ABLATION STUDY

In this section, we present an ablation study to investigate the impact of adding additional

knowledge about spatial relationships between objects in either the semantic segmen-

tation head or instance segmentation head, or both heads. The improvement of the

Panoptic Quality metrics (PQ, SQ, and RQ) when integrating spatial relationships in both
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the semantic and instance segmentation heads suggests that the additional information

provided is useful and advantageous for the overall panoptic segmentation task. This

is mainly because spatial relationships can provide meaningful information and help dis-

ambiguate spatial arrangements between objects, especially in crowded and complex

scenes. Since the architecture of the considered DNN is based on two separate heads

for instance and semantic segmentation with a shared backbone, we conducted addi-

tional experiments to identify and analyze the impact of adding the spatial knowledge in

each of the two heads.

Based on the results reported in Table 4.8, we observe that the integration of spatial

relationships in the semantic segmentation head leads to better results (a PQ of 63.4)

compared to the incorporation of the same type of knowledge in the instance segmen-

tation head (a PQ of 62.1). One hypothesis is that the reason why the first experiment

“EfficientPS-b4-RCC-Sem" performed better could be that the “Stuff" classes are more

numerous and diverse than the “Things" classes, and incorporating spatial relationships

can help to better distinguish between them. This is because these regions are usually

larger compared to “Things" classes regions and occupy a significant portion of the im-

age. Therefore, improving the panoptic segmentation accuracy of these “Stuff" regions

will automatically have a significant impact on the panoptic segmentation overall quality.

Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)
EfficientPS-b4 60.6 80.3 74.3 57.0 79.2 70.9 62.8 81.1 76.7

EfficientPS-b4-RCC-Inst 62.1 80.9 75.6 58.6 79.6 72.8 64.8 81.7 78.0
EfficientPS-b4-RCC-Sem 63.4 81.3 76.7 59.3 80.1 73.2 66.7 82.6 79.5

EfficientPS-b4-RCC 64.2 81.6 77.5 59.8 80.8 73.8 67.6 83.1 80.2

Table 4.8: Ablation study: “EfficientPS-b4-RCC-Int" refers to adding spatial relationships
knowledge only on the instance segmentation head. “EfficientPS-b4-RCC-Sem" refers
to adding spatial relationships knowledge only on the semantic segmentation head. All
the experiments are performed considering training and evaluation on the CityScapes
dataset.

Moreover, we can say that the smaller improvement in the performance of the instance

segmentation head when incorporating spatial relationships could be explained by the

fact that the instance segmentation task itself is more focused on capturing precise ob-

ject boundaries and relationships compared to semantic segmentation. Therefore, the

addition of spatial knowledge may provide less significant additional information for in-

stance segmentation. However, the combination of both heads with integration of spatial

relationships still leads to an overall improvement in panoptic segmentation (a PQ of 64.2).

This suggests that the two heads are complementary and provide different types of infor-

mation that are both useful for panoptic segmentation. In addition, by incorporating spatial

knowledge in both heads, we can say that additional meaningful and important features

are provided and transferred to the shared backbone of the model. This certainly has led

to better feature representation and extraction for both heads, which contributes to the
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overall improvement in panoptic segmentation performance.

4.5.12/ GENERALIZATION CAPABILITY

To ensure the impact of integrating spatial relationships within the loss function on DNN

performance regardless of both the model architecture, we expanded and applied our

methodology to include two additional state-of-the-art models: Panoptic DeepLab [198]

and PanopticDepth [208]. In particular, we considered the evaluation of the abovemen-

tioned state-of-the-art methods that are different in terms of architecture and performance

when compared to EfficientPS model. The goal is to evaluate these models on the

CityScapes dataset, a benchmark for panoptic segmentation in urban driving scenarios.

This evaluation aims to demonstrate the effectiveness of our approach across various

DNNs architectures.

4.5.12.1/ EVALUATION OF PANOPTIC DEEPLAB ON CITYSCAPES VALIDATION SET

The authors of Panoptic DeepLab [198] introduce a novel approach to panoptic seg-

mentation that combines semantic and instance segmentation into a unified framework.

Panoptic DeepLab employs two distinct heads dedicated to semantic and instance seg-

mentation predictions. The predicted semantic segmentation and instance segmentation

are fused to generate the final panoptic segmentation result. Further details about the

architecture of Panoptic DeepLab are provided in Section 4.2.

Experimental setup We follow the same training protocol as in the original paper [198].

Specifically, we use the "poly" learning rate policy [229] with an initial learning rate set

at 0.001. The training process involves fine-tuning the batch-normalization parameters,

implementing random scale data augmentation, and optimizing the model using Adam

optimizer, excluding weight decay. For the CityScapes dataset, the optimal configuration

is achieved by training with whole images (size equal to 2049×1025) and using a batch size

of 32. We conducted training iterations for a total of 60k steps. The baseline results are

derived from single-scale inference. Integration of spatial relationships and subsequent

loss calculation remains consistent with the proposed methodology in Section 4.4.

Results and discussion In our analysis, we initially conducted training on our com-

putational resources using the original Panoptic DeepLab model without any modifica-

tions. This preliminary step is consistently performed to establish a baseline specific to

our computational environment. The goal behind this approach is to ensure consistency

and eliminate potential variations introduced by different environments and machines, as
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these factors may lead to slightly different model performances. The results of this ex-

periment are presented in Table 4.9: Panoptic DeepLab-Orig (Our Impl.). These results

provided a reference for future comparisons. Following this, we refined and trained our

model by incorporating the proposed loss function with the integration of RCC relation-

ships, resulting in Panoptic DeepLab-RCC. In particular, our approach demonstrated an

important improvement over baseline, achieving an increase of 2.5% in the general PQ

evaluation metric. It also demonstrated higher values for all the stuff and things-related

metrics. This enhancement further validates the results obtained from the experiments

conducted on the EfficientPS model and proves that the approach is effective regardless

of the model architecture.

Method PQ SQ RQ PQ(th) SQ(th) RQ(th) PQ(st) SQ(st) RQ(st)

Panoptic DeepLab-Orig 63.0 – – – – – – – –
[198]

Panoptic DeepLab-Orig 62.7 81.3 75.8 59.6 80.0 73.2 65.1 80.7 78.2
(Our Impl.)

Panoptic DeepLab-RCC 65.2 83.7 78.1 62.1 82.4 75.7 67.7 83.2 80.5

PanopticDepth-Orig 64.1 – – 58.8 – – 68.1 – –
[208]

PanopticDepth-Orig
63.7 82.5 76.6 57.7 81.6 70.4 68.0 83.1 81.1

(Our Impl.)
PanopticDepth-RCC 65.1 83.2 77.8 60.0 83.1 72.5 68.7 83.3 81.7

Table 4.9: Comparison of panoptic segmentation performance of Panoptic DeepLab [198]
and PanopticDepth [208] models on the CityScapes validation set. (st) and (th), respec-
tively, denote “Stuff” and “Things” classes. “—” indicates unreported metric for the corre-
sponding method.

4.5.12.2/ EVALUATION OF PANOPTIC DEPTH ON CITYSCAPES VALIDATION SET

The authors of PanopticDepth [208] introduce a unified framework designed for depth-

aware panoptic segmentation (DPS), a complex task with scene understanding. DPS

aims to reconstruct a 3D scene with instance-level semantic understanding from a single

image, assigning each pixel a depth value, a semantic class label, and an instance ID.

More details about the architecture of this model are presented in Section 4.2. The model

can individually evaluate the panoptic segmentation task with its metrics. In this context,

to evaluate our approach on the PanopticDepth model, we consider comparing the per-

formance of our method with the results of this model on the CityScapes dataset for the

panoptic segmentation task. This is particularly interesting for our approach. Indeed, if

the proposed methodology, consisting of the integration of knowledge related to spatial

relationships, succeeds in improving performance, it means that even when the model

is helped with additional information beneficial to the task, such as depth in this case,

the knowledge related to RCC-8, represented as a loss function, remains valuable and
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useful.

Experimental setup We follow the same training protocol as in the original paper [208].

The training process of the panoptic segmentation model (PanopticFCN [230]) is divided

into two distinct steps. In the initial step, a large mini-batch of small cropped images is

employed. During this phase, the model is trained with the Adam optimizer [231] for 130k

iterations, with synchronized batch normalization. The learning rate is initialized at 0.0001,

and a poly schedule with a power of 0.9 is adopted. Images are resized with random

factors within the range of [0.5, 2.0], followed by cropping to the 1024×512 dimension. Each

mini-batch contains 32 samples. Color augmentation and horizontal flipping are applied

during training. In the second phase, the panoptic segmentation model is fine-tuned with

images scaled by [1.0, 1.5] and cropped into dimensions of 2048 × 1024 for additional 10k

iterations. The batch size is reduced to 8. The integration of spatial relationships and

the subsequent calculation of loss remain consistent with the methodology proposed in

Section 4.4.

Results and discussion PanopticDepth-Orig (Our Impl.), as reported in Table 4.9, ini-

tially achieved a PQ of 63.7% with a PQ(st) of 68.0% and a PQ(th) of 57.7%. Training the

model with the proposed approach (Panoptic Depth-RCC) demonstrates improvement

across all metrics, including things and stuff-related metrics. This suggests a significant

enhancement in the model ability to detect and classify the objects regardless of their

type thanks to the proposed methodology. Specifically, the proposed integration of the

RCC loss function contributes to this improvement, highlighting the importance of spatial

relationships in panoptic segmentation.

To conclude, the experiments conducted in Sections 4.5.12.1 and 4.5.12.2 validate

the generalization capability of our approach, showcasing its effectiveness in improv-

ing panoptic segmentation models regardless of their architectures. Whether applied to

EfficientPS [197], Panoptic DeepLab[198], or PanopticDepth [208], our approach consis-

tently yields improved results. Despite variations in initial performance and architectural

differences among the three models, the generalization capability of our approach, focus-

ing on spatial relationships between objects in the environment, is evident.

4.5.13/ QUANTITATIVE ANALYSIS OF RCC INTEREST

In this section, we aim to show the effectiveness of the proposed approach in improving

the models ability to learn and understand knowledge about spatial relationships (RCC-

8) through an analytical study. To perform such an analysis, we performed additional

experiments. Specifically, we focus on the Cityscapes validation set, considering three
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key outcomes: the ground truth of panoptic segmentation, the panoptic segmentation

prediction maps of the “EfficientPS-b4" model, and the predictions of the “EfficientPS-b4-

RCC" model.

Our analysis involved calculating the delta or absolute value of the difference between

the percentages of each pair representing the existence of specific RCC relations. For

example, let us consider the pair of regions (road, car). In the ground truth, this pair

exists with a percentage of 72%, considering the Partially Overlapping (PO) relationship

between the regions classified as road and cars. In the prediction of “EfficientPS-b4", the

percentage is 65%, and in the predictions of “EfficientPS-b4-RCC", it is 68%.

The calculated delta reveals that “EfficientPS-b4-RCC" has learned the relationship PO

more effectively for the connection between road and cars compared to “EfficientPS-b4".

Specifically, the delta between the ground truth and “EfficientPS-b4-RCC" is 4%, while the

delta between the ground truth and EfficientPS-b4 is 7%. This suggests that our model,

“EfficientPS-b4-RCC", shows better performance in capturing this specific relationship

between this pair of regions.

We extended this analytical process to all 19 classes of the Cityscapes dataset, con-

sidering the two most frequent relationships: PO and DC (Disconnected). The general

conclusion from the two analyses regarding PO and DC remains consistent. It highlights

the effectiveness of the proposed approach in improving the models understanding of

spatial relationships. The results demonstrate the value and usefulness of incorporating

knowledge into the model concerning the spatial connections between pairs of regions.

Further details of the conducted analysis are provided in the Appendix A.

4.6/ CONCLUSION

In conclusion, we propose a new informed DL approach as part of hybrid AI, to enhance

the performance of DNNs for panoptic segmentation. By integrating prior knowledge

into the DL networks, specifically focusing on spatial relationships between objects, our

approach offers significant improvements. The integration of this additional knowledge

allows the models to gain a deeper understanding of the scene beyond the visual cues

present in the images. This integration enhances the models performance and accu-

racy by enabling them to capture complex object relationships, resolve ambiguities, and

overcome panoptic segmentation challenges.

Our approach offers several contributions, including the introduction of a new training

methodology, the development of a new loss function, and the validation and evaluation

of the proposed approach on various urban scene datasets. The results of our exper-

iments and evaluations consistently show that the proposed approach outperforms the
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SOTA and achieves better results with respect to Panoptic Quality metrics (PQ). More-

over, we demonstrate the ability of the model to generalize based on the results of the

proposed approach in unseen datasets. The model trained with the additional knowledge

shows improved performance even in challenging datasets. This suggests that the model

has learned to understand the general context of urban environments and to apply its

knowledge effectively across different datasets.

By incorporating meaningful knowledge during the training process, the proposed ap-

proach enables the model to better understand the context of the target environment.

This leads to better performance and accurate decision-making. The significance of in-

tegrating additional knowledge is not limited to panoptic segmentation alone, it extends

to other computer vision tasks where understanding context is important. As part of our

future work, we aim to enhance the panoptic segmentation results by introducing a local

loss function that specifically targets problematic regions. The goal is to provide the net-

work with more precise and explicit knowledge transfer. Additionally, we aim to integrate

other types of knowledge, beyond RCC-8, to further enhance the panoptic segmentation.
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5

CONCLUSION

5.1/ THESIS SUMMARY

In the computer vision domain, the integration of Deep Neural Networks (DNNs) with

Knowledge-Based Systems (KBS) has primarily focused on post-processing and valida-

tion, leaving room for improvement in effectively incorporating knowledge into the DNN

training process. The challenge lies in extending beyond simple verification and find-

ing innovative ways to integrate prior knowledge into DNN training, using context-aware

knowledge and adaptable computer vision DNNs.

Moreover, while existing approaches have demonstrated effectiveness in various com-

puter vision tasks, their application in autonomous driving has some limitations due to

the dynamic nature of urban environments. Challenges such as changing weather con-

ditions, moving objects, and unpredictable pedestrian behavior to cite just a few make it

intricate to pre-define precise meaningful knowledge for integration into DNNs.

In behave to these challenges, this thesis proposed novel approaches to enhance DNN

performance by incorporating knowledge for autonomous driving context. The focus goes

beyond achieving superior computer vision task results, expanding on speeding up the

training process, reducing resource requirements, optimizing data utilization, and espe-

cially building strong DNNs that can understand the general context of the urban environ-

ment. Three fundamental questions guided the research: defining meaningful knowledge

for a specific task, properly representing this knowledge, and defining the optimal integra-

tion strategy into the DNN process.

The research addressed these questions by focusing on two computer vision tasks:

monocular depth estimation and panoptic segmentation in urban environments. Monocu-

lar depth estimation plays a crucial role in understanding the three-dimensional aspects of

the urban environment, which is essential for safe navigation, while panoptic segmenta-

tion gives a holistic and complete view of the environment which aids in decision-making.

For monocular depth estimation, we proposed an approach based on knowledge ex-

99



tracted from ontology reasoning to enhance the performance of DNNs for MDE. The

proposed system extracts monocular cues based on human-like reasoning performed on

an ontology representing various knowledge of the urban environment. The extracted

monocular cues are fed to the model as additional inputs to improve the training process.

Experimental validation on diverse datasets of urban environments, using both basic and

powerful models, demonstrates that models trained on monocular cues maps consistently

outperform other state-of-the-art models. In the second work, an informed deep learning

approach was introduced to augment the performance of DNNs for panoptic segmenta-

tion. This approach integrates prior knowledge, with a specific focus on spatial relation-

ships between objects. The innovation in this work lies in representing the knowledge as

a new loss function to ensure the integration of spatial relationship information directly in

the training process.

In conclusion, our research introduces various strategies for the representation and in-

tegration of knowledge into DNNs. The first work employs ontology representation and

direct integration as input, focusing on MDE. This choice aligns with the pre-acquired

knowledge used in human perception to estimate depth using only one eye. By imitating

the human depth estimation process, we enhanced DNN performance, demonstrating

the importance of knowledge integration. The second contribution focuses on panop-

tic segmentation, using spatial relationships represented as a specialized loss function

integrated during training iterations. The choice of spatial relationships addresses the

challenges posed by complex spatial layouts in urban scenarios, where standard models

often struggle. Through this strategic representation and integration, we successfully im-

proved the network understanding of intricate spatial relationships, leading to enhanced

panoptic segmentation accuracy. Ultimately, our findings underscore the importance of

selecting meaningful knowledge aligned with the target task. The choice of monocular

cues for MDE and spatial relationships for panoptic segmentation proved the significance

of thoughtful knowledge transfer in building more context-aware DNNs.

5.2/ FUTURE WORK AND PERSPECTIVES

Looking toward future work, one key perspective involves introducing a joint learning strat-

egy through a comprehensive global approach. This methodology aims to enhance both

monocular depth estimation and panoptic segmentation within a single framework. To

achieve this, we propose merging the two distinct methodologies presented in this thesis.

First, incorporating knowledge extracted from an ontology as input to a DNN to enhance

monocular depth estimation. Second, enhancing panoptic segmentation by integrating

knowledge represented as a loss function. The goal is to capitalize on the improved model

performance achieved in monocular depth estimation to reinforce and assist the panop-
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tic segmentation, and vice versa. This approach is designed to leverage the strengths

of each of the proposed knowledge integration methodologies to mutually enhance the

performance of the DNNs. This promising direction holds the potential to further advance

the combination of KBS and DNNs for more accurate and improved results.

The second perspective involves integrating knowledge at another level of the process.

As we presented in the state-of-the-art section (Section 2), we categorized the integration

levels of the KBS into DNNs in three stages: as input to the model, during the training of

the DNNs, or at the last stages. During this thesis, we investigated two ways of combining

KBS with DNNs, namely representing the knowledge as images and feeding them as

input to the model, and representing the knowledge as a loss function. The latter can

be considered as an integration during the training process, as the knowledge integration

is a part of the optimization process of the DNN. One key perspective in this context is

to integrate knowledge into the basic architecture of the DNN. In this case, we aim to

represent the knowledge and integrate it into the framework in a suitable way to interact

with and analyze the output features at different stages of the DNN layers. We believe

that this integration stage would provide more information to the DNN, thereby enhancing

their performance, speeding up their training, and enabling better characteristics learning

that leverage knowledge to perform the target task.

The third proposal consists in exploring other approaches to combine KBS and DNNs. In

this thesis, the primary focus was on integrating KBS into DNNs, where the knowledge

serves the deep neural networks. Another interesting perspective is to delve deeper into

this idea and shift towards joint learning. However, unlike the previous perspective on si-

multaneously enhancing the performance of multiple computer vision tasks, this perspec-

tive aims to elevate the capabilities and performance of both DNN and KBS collectively.

The proposed bidirectional learning strategy seeks to further develop this concept, allow-

ing for a dynamic interaction between the two modules or components. The objective is

not only to enhance the performance of both DNN and KBS but also to create a strong

training relationship where each benefits from the strengths of the other. We believe that

adopting a bidirectional learning approach would lead to improved, more precise, and

updated knowledge that aligns more closely with the specific needs of the target task.

Simultaneously, we anticipate that the DNN would produce enhanced results, given its

collaboration with a more rich and adaptable KBS.
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A

RCC-8 ANALYSIS

Table A.2 shows the analysis of regions regarding the RCC relation PO. In this table,

∆1 represents the difference between the ground truth and the model “EfficientPS-b4"

predictions, and ∆2 represents the difference between the ground truth and the model

“EfficientPS-b4-RCC" predictions. All values are in percentages. We have highlighted in

green the results indicating that our model “EfficientPS-b4-RCC" behaves better than the

baseline “EfficientPS-b4", specifically when ∆2 is smaller than ∆1. The yellow cells indi-

cate results where the baseline and our model behave the same in terms of the number

of errors, precisely when ∆2 equals ∆1. Finally, the cells highlighted in red correspond to

results where ∆2 is greater than ∆1, indicating that our proposed model is less better than

the baseline. The cells in grey represent pairs of regions that we did not consider due to

the reversible nature of the relationship PO. In other words, if region A is PO with region

B, it is equivalent to saying that region B is PO with region A. To avoid redundancy, we

reported the results for one example of such pairs.

In table A.2, we first observe that most cells are highlighted in green, indicating that

the model trained according to the proposed approach successfully learned the spatial

relationship PO for the majority of pairs of regions. While there are some red cells where

our model performs less better than the baseline, these instances are minor compared

to successful ones (green cells). Additionally, when our model outperforms the baseline

(green cells), this is often with high percentage values, while the percentages are slight in

the opposite case (red cells). Furthermore, there are instances where ∆2, the difference

between our model “EfficientPS-b4-RCC" and the ground truth, reached 0%, indicating

an exact matching with the ground truth. Examples of such relationships include (traffic

light, sidewalk), (fence, wall), and (traffic sign, motorcycle). This suggests that the model

successfully learned situations where these types of regions are connected or not by the

relationship PO.

Table A.1 shows the analysis of regions regarding the RCC relation DC. The spatial re-

lationship DC (Disconnected) is recognized as one of the most frequent spatial relation-

ships in the environment. In the images, objects often have a disconnected relationship
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with all other objects that are not explicitly connected with them. This characteristic under-

scores the widespread occurrence of independent entities within the environment, high-

lighting the significance of the Disconnected spatial relationship in describing the layout

and arrangement of objects in images.

Table A.1 presents the delta percentage between the outcomes of the models (ours and

baseline) and the ground truth considering the pair of regions for the DC relationship.

Once again, most results demonstrate that the model trained with the proposed RCC

loss function succeeds in outperforming the baseline by accurately recognizing the DC

relationship between objects. This indicates that the model developed an enhanced ability

to define whether a pair of objects could be linked with DC relationship, which is mainly

important, especially for a spatial relationship that is dominant in different environmental

contexts.

In summary, our analysis underscores the effectiveness of the proposed approach in help-

ing the models understanding of spatial relationships. The presented tables, focusing on

the two key spatial relationships, clearly illustrate the usefulness of integrating knowledge

into the model regarding how pairs of regions are spatially connected. While some pairs

show more improvement than others, this variation could be linked to the distribution and

complexity of class categories in the dataset as well as the frequency of pairs of regions

according to certain spatial relationships. However, the overall results indicate improve-

ment in the majority of classes, directly increasing the model overall task performance.
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Abstract:

Computer vision has made an important evolution
starting from traditional methods to advanced Deep
Learning (DL) models. One of the goals of
computer vision tasks is to effectively emulate
human perception. The classical process of
DL models is completely dependent on visual
features, which only reflects how humans visually
perceive their surroundings. However, for humans
to comprehensively understand their environment,
their reasoning not only depends on what they
see but also on their pre-acquired knowledge.
Addressing this gap is essential as achieving human-
like reasoning requires a seamless combination of
data-driven and knowledge-driven methods. In this
thesis, we propose new approaches to improve
the performance of DL models by integrating
Knowledge-Based Systems (KBS) within Deep
Neural Networks (DNNs). The goal is to empower
these networks to make informed decisions by
leveraging both visual features and knowledge
to emulate human-like visual analysis. These
methodologies involve two main axes. First, define
the representation of KBS to incorporate useful
information for a specific computer vision task.
Second, investigate how to integrate this knowledge
into DNNs to enhance their performance. To do
so, we worked on two main contributions. The
first work focuses on monocular depth estimation.
Considering humans as an example, we can say that
they can estimate their distance with respect to seen
objects, even using just one eye, based on what is
called monocular cues. Our contribution involves
integrating these monocular cues as human-like
reasoning for monocular depth estimation within
DNNs. For this purpose, we investigate the
possibility of directly integrating geometric and
semantic information into the monocular depth
estimation process. We suggest using an ontology
model in a DL context to represent the environment
as a structured set of concepts linked with
semantic relationships. Monocular cues information
is extracted through reasoning performed on the

proposed ontology and is fed together with the RGB
image in a multi-stream way into the DNNs for depth
estimation. Our approach is validated and evaluated
on widespread benchmark datasets. The second
work focuses on panoptic segmentation task that
aims to identify and analyze all objects captured
in an image. More precisely, we propose a new
informed deep learning approach that combines
the strengths of DNNs with some additional
knowledge about spatial relationships between
objects. We have chosen spatial relationships
knowledge for this task because it can provide
useful cues for resolving ambiguities, distinguishing
between overlapping or similar object instances, and
capturing the holistic structure of the scene. More
precisely, we propose a novel training methodology
that integrates knowledge directly into the DNNs
optimization process. Our approach includes a
process for extracting and representing spatial
relationships knowledge, which is incorporated into
the training using a specially designed loss function.
The performance of the proposed method was
also evaluated on various challenging datasets.
To validate the effectiveness of the proposed
approaches for combining KBS and DNNs regarding
different methodologies, we have chosen the urban
environment and autonomous vehicles as our main
use case application. This domain is particularly
interesting because it is a challenging and novel
field in continuous development, with significant
implications for the safety, comfort and mobility of
humans. As a conclusion, the proposed approaches
validate that the integration of knowledge-driven and
data-driven methods consistently leads to improved
results. Integration improves the learning process
for DNNs and enhances results of computer vision
tasks, providing more accurate predictions. The
challenge always lies in choosing the relevant
knowledge for each task, representing it in the
best structure to leverage meaningful information,
and integrating it most optimally into the DNN
architecture.
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Résumé :

La vision par ordinateur a connu une évolution
importante, passant des méthodes traditionnelles
aux modèles d’apprentissage profond. L’un des
principaux objectifs des tâches de vision par
ordinateur est d’émuler la perception humaine.
En effet, le processus classique effectué par
les modèles d’apprentissage profond dépend
entièrement des caractéristiques visuelles, reflétant
simplement la manière dont les humains perçoivent
visuellement leur environnement. Cependant, pour
que les humains comprennent l’environnement
qui les entoure, leur raisonnement dépend non
seulement de leurs capacités visuelles, mais aussi
de leurs connaissances pré-acquises. Combler
cette différence entre la perception humaine et
celle des machines est essentielle afin de parvenir
à un raisonnement similaire à celui des humains.
Dans cette thèse, nous proposons de nouvelles
approches pour améliorer les performances des
modèles d’apprentissage profond en intégrant les
systèmes basés sur les connaissances dans les
réseaux de neuronaux profonds. L’objectif est d’aider
ces réseaux à prendre les bonnes décisions en
exploitant à la fois les caractéristiques visuelles et
les connaissances pour émuler l’analyse visuelle
de l’être humain. Ces méthodologies impliquent
deux axes principaux. Premièrement, définir la
représentation des connaissances pour incorporer
des informations utiles à une tâche spécifique
de vision. Deuxièmement, examiner comment
intégrer ces connaissances dans les réseaux de
neurones pour améliorer leurs performances. La
première contribution porte sur l’estimation de la
profondeur monoculaire. En effet, les humains sont
capables d’estimer leur distance par rapport aux
objets perçus, même en n’utilisant qu’un seul œil,
et ceci en se basant sur les indices monoculaires.
Nous proposons d’intégrer ces indices au sein des
réseaux de neurones comme un raisonnement
similaire à celui des humains pour l’estimation
de la profondeur. À cette fin, nous suggérons

d’exploiter un modèle ontologique pour représenter
l’environnement comme un ensemble de concepts
liés par des relations sémantiques. Les informations
sur les indices monoculaires sont extraites grâce à
un raisonnement effectué sur l’ontologie proposée et
sont transférées dans les réseaux de neurones. Le
deuxième travail porte sur la tâche de segmentation
panoptique qui vise à identifier toutes les instances
d’objets capturées dans une image. Nous proposons
une approche qui combine les avantages des
réseaux de neurones avec des connaissances
sur les relations spatiales entre les objets. Nous
avons choisi ce type de connaissances car elles
peuvent fournir des indices utiles pour résoudre
les ambiguïtés et distinguer entre les instances
d’objets similaires. Plus précisément, nous
proposons une stratégie d’entraînement qui intègre
les connaissances dans le processus d’optimisation
des réseaux de neurones. L’approche comprend
un processus d’extraction et de représentation
des connaissances sur les relations spatiales, qui
sont incorporées dans l’entraînement sous forme
d’une fonction de perte. Afin de valider l’efficacité
des approches proposées, nous avons choisi
l’environnement urbain et les véhicules autonomes
comme principale cas d’application. Ce domaine
est particulièrement intéressant car il s’agit d’un
axe de recherche novateur en développement
continu, avec des implications significatives pour
la sécurité et la mobilité des humains. En
conclusion, nous avons étudié diverses approches
pour représenter les connaissances et les intégrer
aux réseaux de neurones. Ces approches valident
que l’utilisation combinée de méthodes basées sur
les connaissances et celles basées sur les données
conduit de manière constante à des résultats
améliorés. Le défi principal réside toujours dans le
choix des connaissances pertinentes pour chaque
tâche, leur représentation et leur intégration de
la manière la plus optimale dans l’architecture du
réseau de neurones profond.
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