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RÉSUMÉ EN FRANÇAIS

Le terme d’Intelligence Artificielle (IA) est apparu en 1956. Il peut être défini comme le
développement d’algorithmes, de modèles ou de systèmes capables d’effectuer des tâches qui
requièrent traditionnellement l’intelligence humaine. Mais comme l’a dit Pamela McCorduck,
"l’IA a commencé avec l’ancien désir de jouer à Dieu" et créer une machine imitant la cog-
nition humaine remonte à plus loin, comme on peut le voir dans les automates d’Héphaïstos,
les premières tentatives de réplication d’entités vivantes. Bien que la terminologie ait évolué,
l’ambition sous-jacente est restée la même.

Ce n’est qu’au cours des dernières années que ces contes ont commencé à prendre vie.
L’IA est devenue une révolution comparable au Web 2.0 du début des années 2000. Selon Bill
Gates, l’IA est la progression la plus remarquable depuis l’introduction de l’interface utilisateur
graphique pour les ordinateurs personnels. Cette perspective se reflète dans l’intérêt que nous
portons à l’IA. Cette expansion englobe des domaines tels que les véhicules autonomes [260]
et des innovations plus récentes, notamment des modèles génératifs tels que ChatGPT [171] et
StableDiffusion [192]. Par exemple, selon les estimations de McKinsey, l’IA générative pourrait
générer une valeur économique annuelle comprise entre 2, 6 et 4, 4 billions de dollars [30].

La tâche d’IA la plus courante est la classification, dans laquelle un modèle est formé et
utilisé pour prédire les labels pour des données d’entrée. Cependant, l’IA englobe de nom-
breuses autres tâches telles que la segmentation [275], le clustering [32] et la régression [76].
Ces systèmes d’IA apprennent des modèles et des relations à partir de données d’apprentissage
en utilisant diverses techniques. Ils impliquent la création de modèles mathématiques capa-
bles de se généraliser à partir des données d’apprentissage pour faire des prédictions sur de
nouvelles données. L’essor de l’IA dans notre vie quotidienne est en partie dû au succès des
réseaux de neurones, qui excellent dans la manipulation de divers types de données tels que les
images [262, 23], l’audio [165, 222] et le texte [274, 159, 286]. Par conséquent, cette thèse se
concentrera sur les réseaux de neurones, le domaine des images et la tâche de classification en
raison de leur importance dans la recherche moderne en IA.

Chaque révolution comporte des défis et des faiblesses, et l’IA ne fait pas exception. L’attention
importante entourant l’IA a incité à renforcer sa législation. Le récent acte européen sur l’IA 1

1. Acte de l’UE sur l’IA : https://www.europarl.europa.eu/news/en/headlines/society
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en est un excellent exemple, puisqu’il s’agit de la première loi réglementant l’IA. La priorité du
parlement est de veiller à ce que les systèmes d’IA utilisés en Europe soient "sûrs, transparents,
traçables, non discriminatoires et respectueux de l’environnement". La législation proposée in-
troduit une classification des risques liés à l’IA. Bien que l’IA soit aujourd’hui principalement
utilisée dans des domaines à faible risque ou sans risque, la liste des domaines à haut risque est
impressionnante, englobant des domaines tels que la catégorisation des individus, l’utilisation
de l’IA dans l’éducation, les services publics et privés, et l’application de la loi.

À mesure que les gouvernements s’impliquent dans le débat, la sécurité de l’IA et de ses
composantes devient une préoccupation majeure dans son développement et sa prolifération.
Cela devient un véritable problème lorsqu’il s’avère que l’IA peut être facilement manipulée,
modifiée ou volée. Cette thèse s’aligne parfaitement sur le problème de la sécurité de l’IA dans
les applications du monde réel et s’y attaque.

Dans un scénario réaliste de la sécurité de l’IA, une configuration en boîte noire prévaut,
comme il sera expliqué dans le chapitre 1.4.2. Cela implique une absence d’informations sur le
modèle. Même dans cette hypothèse, les vulnérabilités potentielles sont nombreuses:

— Récupération des données d’apprentissage: elles peuvent être inférées ou récupérées par
des méthodes telles que l’inférence d’appartenance [84, 29] et l’inversion de modèle [48,
107, 63].

— Vol de propriété intellectuelle: les algorithmes d’IA peuvent être volés [276, 71, 102], ce
qui porte atteinte à la propriété intellectuelle et aux efforts investis dans leur conception.

— Attaque par évasion [187]: les données d’entrée peuvent être manipulées et engendrer
une mauvaise classification en utilisant des exemples adverses [221].

— Exploitation des ressources: les entrées peuvent être falsifiées pour augmenter la con-
sommation d’énergie, pouvant entraîner un ralentissement du système voire des pannes,
comme le montrent les exemples éponges [213].

— Porte dérobée: les données d’entraînement peuvent être manipulées pour insérer une
porte dérobée [10, 232], permettant à une entité en possession de la clé de manipuler les
sorties.

Une vue plus complète des possibilités est présentée dans Table 1

Sur cette base, nous entrons dans l’organisation de ce document. La première partie de cette
thèse comprend trois chapitres qui, ensemble, établissent le contexte de l’ensemble du travail.
Ces chapitres comprennent des définitions essentielles et un examen de la littérature scientifique
sur ce sujet. Les deux parties suivantes seront respectivement consacrées aux contributions sur

/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
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Confidentialité Intégrité Disponibilité

Modèle
Extraction de

Modèle [71, 102]
et d’Attributs [11, 53]

Données
d’Apprentissage

Inversion de
modèle [48, 63]

Inférence
d’Appartenance [84, 29]

Données Radioactives [196]
Porte Dérobée [10, 232]

Inférence Attaque par
Evasion [146, 221]

Données
Eponges [213, 31]

Table 1 – Vulnérabilités des réseaux de neurones sous scénario réaliste (Voir Section 1.4.2)
organisé en fonction de la triade CID (Voir Section 1.4.1).

les exemples adverses et à la contribution sur la confidentialité des modèles.

Organisation du Manuscrit

Partie I: Introduction aux Vulnérabilités des Réseaux de Neurones

Le Chapitre 1 jette les bases de ce manuscrit. Il présente les réseaux de neurones largement
utilisés pour la tâche de classification ainsi que les différentes propriétés de leurs frontières de
décision. Les principes de la sécurité sont également abordés, en utilisant la triade CID (Confi-
dentialité, Intégrité, Disponibilité) couramment employée dans le domaine de la cybersécurité
pour classer les différentes vulnérabilités. Cette triade est adaptée ici pour traiter les vulnérabil-
ités liées à l’apprentissage automatique. Enfin, le chapitre introduit le scénario réaliste qui sera
étudié tout au long du manuscrit, suivi d’une brève liste des vulnérabilités potentielles dans ce
contexte.

Le Chapitre 2 se concentre sur les vulnérabilités pouvant compromettre la confidentialité du
modèle. Il présente diverses attaques, classifiées selon les objectifs des attaquants tels que le
vol de paramètres, le vol d’architecture ou la création d’un modèle copiant le modèle attaqué.
Ensuite, les défenses sont introduites, en mettant l’accent sur la vérification des propriétés d’un
modèle et les défenses visant à augmenter la complexité des attaques.

Le Chapitre 3 suit une structure similaire au chapitre précédent en se concentrant sur les
exemples adverses. Après une brève définition et une introduction à leurs propriétés, l’hypothèse
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principale de leur existence est exposée. Ensuite, les attaques et les défenses sont présentées.

Partie II: Contribution aux Exemples Adverses

Le Chapitre 4 présente une nouvelle attaque boîte noire basée sur la décision. Il met en
lumière l’utilisation excessive de requêtes dans les attaques boîtes noires actuelles pour estimer
le gradient de la frontière de décision. En utilisant une approche géométrique et en réduisant le
coût d’estimation au minimum, ce chapitre introduit SurFree [146], qui permet la génération
d’exemples adverses avec un nombre significativement plus faible de requêtes que les attaques
boîtes noires existantes.

Le Chapitre 5 explore la transférabilité des exemples adverses. Parmi les nombreuses at-
taques proposées, le choix du modèle source et cible est souvent arbitraire. Cette contribution
met en évidence la grande variabilité du succès du transfert en fonction du couple de modèles
considéré, de l’image attaquée et de l’attaque utilisée. En se basant sur cette observation, ce
chapitre introduit une estimation de la qualité de la transférabilité de l’exemple adverse trouvé
par l’attaque. Cette mesure est ensuite utilisée pour permettre à l’attaquant de sélectionner le
meilleur modèle source et la meilleure attaque, permettant la plus faible perturbation pour une
image donnée.

Le Chapitre 6 évalue une méthode de certification appelée Randomized Smoothing en tant
que défense contre les attaques d’évasion en boîte noire. Il met en évidence son efficacité, mais
également que les paramètres recommandés pour garantir une bonne certification s’opposent à
ceux qui assurent son efficacité contre les attaques d’évasion.

Partie III: Contribution à la Confidentialité du modèle

Le Chapitre 7 est la seule contribution qui s’intéresse à prouver la propriété d’un modèle
en proposant une nouvelle empreinte de réseaux n’utilisant que des images naturelles. Cette
approche repose sur une observation simple: bien que les méthodes d’empreintes de réseaux
existantes soient efficaces, elles nécessitent la construction d’exemples adverses avec des pro-
priétés particulières, parfois complexes. L’idée d’utiliser des images bénignes a été rapidement
abandonnée dans la littérature car jugée inefficace et peu informative. Cette contribution montre
cependant l’inverse en utilisant la théorie de l’information, qui permet de mesurer la dépendance
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statistique entre deux réseaux. Le travail s’appuie sur l’hypothèse que deux modèles qui ont des
prédictions statistiquement dépendantes proviennent d’un même modèle parent.

Conclusion

L’objectif principal de cette thèse était d’étudier les vulnérabilités de l’IA dans un cadre
réaliste. Dans ce scénario particulier, les capacités de l’attaquant sont sévèrement limitées, à la
fois en termes de connaissances et de ressources.

Dans le premier chapitre, ce scénario et ses définitions associées ont été présentés. Il est
remarquable que, même dans ce contexte restreint, un nombre important de vulnérabilités iden-
tifiées à l’origine dans la littérature "boîte blanche" soient également réalisables dans la con-
figuration "boîte noire". Le scénario dans lequel nous nous sommes placés a donné lieu à trois
axes principaux: la confidentialité du modèle, la manipulation des entrées d’inférence et la con-
fidentialité des données d’entraînement.

Chacun de ces domaines a été brièvement présenté, l’accent étant ensuite mis sur deux
aspects importants, à savoir les exemples adverses et la confidentialité des modèles, explorés
respectivement dans les chapitres 2 et 3. Ce sont des domaines dans lesquels des contributions
importantes ont été apportées tout au long de cette thèse.

Le chapitre 1 aborde également les subtilités de la frontière de décision et ses caractéris-
tiques, qui servent de porte d’entrée aux attaques. Étant donné le manque d’informations ac-
cessibles dans ce scénario, de nombreuses stratégies tirent parti de ses propriétés. Elle reflète
essentiellement le processus d’apprentissage du modèle et ses interactions avec les données.
Une compréhension approfondie de la frontière de décision donne lieu à une meilleure com-
préhension des vulnérabilités du modèle. Par exemple, les exemples adverses occupent une
position centrale dans cette thèse, à la fois dans l’aperçu de l’état de l’art dans Chapter 3 et
à travers les nombreuses contributions présentées dans la partie II. La prémisse fondamentale
de leur existence et les nombreuses méthodes présentées soulignent l’importance critique de la
compréhension de la frontière de décision en termes de vulnérabilités du modèle.

Le point focal de cette thèse a été la sécurité des réseaux de neurones, en se concentrant
spécifiquement sur la tâche de classification d’images. Ce choix est motivé par l’importance de
ces tâches dans la littérature existante. Néanmoins, les menaces et les méthodologies présentées
tout au long de cette thèse sont applicables à diverses tâches et ensembles de données. Par
exemple, une étude récente [291] démontre que le concept d’exemples adverses s’étend aux
modèles de langage. Dans de tels contextes, les entrées peuvent être manipulées pour produire
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des sorties indésirables ou interdites.

Limitations

Enfin, cette thèse a pris en compte un scénario réaliste. Cependant, il existe des raisons
de remettre en question si le scénario présenté dans Section 1.4.2 est réellement "réaliste".
Plusieurs facteurs peuvent susciter des doutes quant à ce scénario et à notre définition associée.
Tout d’abord, l’utilisation d’ImageNet dans la majorité de nos expériences peut être remise en
question. En effet, les images, en raison de leur taille et surtout de leurs classes, ne représentent
pas nécessairement des images du monde réel. Par exemple, au sein d’ImageNet, il existe 118
races différentes de chiens sur un total de 1000 classes. Certaines classes présentent une grande
similitude, comme "projectile, missile" et "missile", entraînant, aussi bien pour l’humain label-
lisant le jeu de données que pour le modèle d’apprentissage, des erreurs fréquentes [163]. Cela
soulève des questions sur l’applicabilité de toutes les expériences de nos contributions et de la
plupart des travaux dans un contexte réel.

De plus, le déploiement futur des modèles en production devrait être dynamique plutôt que
statique. Les pratiques MLOps, conçues pour faciliter l’intégration des modèles d’IA dans les
applications de la vie quotidienne et s’adapter à l’apport continu de nouvelles données, gagnent
en importance. Les capacités de MLOps permettent la révision automatique et continue des
modèles d’apprentissage selon un calendrier défini. Par conséquent, les modèles sont soumis à
des changements fréquents, rendant les attaques potentiellement plus complexes. Par exemple,
dans une configuration en boîte noire, les attaques basées sur l’historique des requêtes peuvent
devenir obsolètes. De plus, les résultats d’une attaque d’inférence d’appartenance pourraient
varier en fonction du moment où l’attaque a été menée.

Une autre limite vient des attaques par évasion. Lors de l’élaboration d’exemples adverses,
les attaques boîte noire basées sur la décision impliquent une dichotomie pour se placer sur la
frontière de décision, comme le montre la section 3.4.3. Au cours de cette phase, l’attaquant
oscille entre la classe qu’il souhaite éviter et la classe cible. Dans le monde que nous avons
défini, il n’y a pas de distinction dans les résultats des requêtes; toutes les réponses sont égales.
Cependant, dans un contexte plus sensible, cela peut poser des problèmes. Dans de tels scénar-
ios, l’attaquant peut générer de nombreuses requêtes "indésirables" au cours du processus de
création d’exemples adverses. Par exemple, dans un cas décrit dans [45], un attaquant visant à
télécharger une image avec un contenu inapproprié pourrait utiliser une attaque par évasion con-
tre le modèle conçu pour détecter un tel contenu. Néanmoins, les méthodes actuelles d’attaque
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par boîte noire basées sur la décision sont susceptibles de générer un grand nombre de ces
requêtes "indésirables", principalement au cours de l’étape de dichotomie. Une seule de ces re-
quêtes peut entraîner l’interdiction de l’attaquant ou, pire, une action en justice. Le développe-
ment futur des attaques de boîte noire basées sur la décision doit se concentrer sur l’atténuation
de ces risques en limitant le nombre de requêtes associées à une classe particulière.

Perspectives

Le domaine des exemples adverses est le sujet le plus exploré dans le domaine de la sécu-
rité de l’apprentissage automatique. De nouvelles méthodologies pour les générer, de nouveaux
mécanismes de défense et des théories sur leur existence sont fréquemment formulées. Cepen-
dant, il est plausible que ces défis ne possèdent pas de solution universellement applicable. Les
caractéristiques inhérentes aux données d’entrée de haute dimension que nous traitons, la sur-
paramétrisation qui prévaut dans la plupart des modèles, ainsi que la qualité et la quantité des
données d’entraînement disponibles contribuent à leur existence et pourrait ne pas donner lieu
à une solution. Mais la question est peut-être de savoir s’il est problématique de ne pas disposer
d’une solution unique. L’interrogation elle-même est peut-être mal formulées. Les exemples
adverses, tout comme leurs équivalents humains dans le monde réel (comme l’illustrent les il-
lusions d’optique dans le chapitre 3), pourraient être un aspect inhérent de l’IA. L’idée n’est
peut-être pas de les éliminer purement et simplement, mais plutôt de coexister avec eux, d’en
démêler les subtilités et de les gérer par des stratégies spécifiques au cadre d’utilisation.

Le paragraphe précédent s’interroge sur la pertinence des exemples adverses et le désir de
les éliminer. Cependant, cela ne remet pas en question leur valeur. La guerre entre l’attaquant
et le défenseur n’a pas de fin, mais les exemples adverses constituent également un outil pré-
cieux pour comprendre le fonctionnement interne des réseaux de neurones [170]. Par exemple,
considérons les exemples contrefactuels [103]. Ces exemples révèlent les changements néces-
saires dans une entrée pour obtenir une sortie prédéfinie. Bien qu’ils soient adverses, leur ob-
jectif n’est pas de tromper un modèle, mais plutôt de l’interpréter. De plus, c’est une relation
gagnant-gagnant; les exemples adverses contribuent à l’interprétation du modèle, et cette inter-
prétation, à son tour, améliore notre compréhension et notre capacité à lutter contre les exemples
adverses [17, 62]. Ainsi, la recherche sur les exemples adverses doit se poursuivre, mais peut
être sous un angle différent.

L’ambition d’une mesure d’évaluation complète et équitable a été exprimée par les contribu-
tions faites dans cette thèse. Les contributions de RoBIC [144] dans Appendix A et FiT dans
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Chapter 7 introduisent respectivement une nouvelle mesure de la robustesse du modèle et un
cadre pour évaluer la transférabilité entre modèles source et cible. Compte tenu du flux constant
de documents de recherche, l’absence de mesures objectives est souvent flagrante.

Dans le domaine de l’apprentissage automatique, la confidentialité est d’une importance
capitale, notamment en ce qui concerne les modèles et les données. La protection des modèles
est vitale en raison des implications financières et des avantages concurrentiels technologiques.
Mais il est tout aussi important de s’aligner sur les demandes et les attentes des clients. Une
statistique de l’INSEE révèle qu’environ 82% des individus protègent leurs données person-
nelles sur internet 2. Des initiatives telles que la loi de l’Union européenne sur l’IA et le règle-
ment général sur la protection des données (RGPD) soulignent l’impératif de la sécurité des
données. Au cours de cette thèse, nous n’avons pas eu le temps d’étudier en profondeur la
confidentialité des données. Cependant, dans la section 1.4.3, nous avons présenté l’inférence
d’appartenance et les attaques par inversion de modèle comme des méthodes permettant d’extraire
des informations sur les données d’apprentissage dans un scénario réaliste. Des solutions visant
à sécuriser, contrôler et superviser ces actifs ont été proposées pour répondre à ces préoccupa-
tions. De grands travaux restent encore à faire.

Derniers Mots: Nouveaux Défis, Anciens Problèmes

Cette thèse est parfaitement en phase avec son époque. L’IA est sur toutes les lèvres, et sa
sécurité est devenue un sujet actuel et pressant. Cependant, bon nombre des problèmes abordés
ne sont pas nouveaux. Tout au long de cette thèse, nous avons fait référence à des travaux an-
térieurs qui précèdent l’utilisation généralisée des réseaux de neurones. Par exemple, le concept
de tatouage de modèle puise son inspiration dans des techniques de tatouage d’images datant
de 1990 [226]. Les attaques contre les tatouages peuvent être considérées comme des exemples
adverses, où l’objectif est de tromper un détecteur. Les moyens de s’en prémunir sont toujours
d’actualité et pertinentes contre les attaques par évasion actuelles, mais elles ne sont pas prises
en compte (voir Section 3.5). La notion d’empreinte de réseau a été appliquée précédemment,
dans le domaine des sites web, pour ne citer que cet exemple. De nombreux exemples existent.
De nombreuses méthodes ont été réintroduites et appliquées aux réseaux de neurones, même si
des améliorations avaient été proposées précédemment.

Certains travaux antérieurs ont tenté d’établir des liens avec des recherches antérieures,
servant ainsi de rappel sur ce qui a d’ores et déjà été réalisé et montrant que la recherche

2. https://www.insee.fr/fr/statistiques/6475020
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en sécurité n’a pas commencé en 2012. Un exemple parmi les contributions est la méthode
SurFree [146]. Il s’appuie sur une idée de John Earl de 2007 [55]. Dans le but de combler le
fossé entre les domaines du tatouage numérique et de l’apprentissage automatique, une étude
menée par Erwin Quiring et al. [183] a présenté une notation unifiée pour les attaques en boîte
noire sur l’apprentissage automatique et sur le tatouage numérique. Ils ont démontré l’efficacité
des stratégies de chaque domaine dans leurs homologues respectives. Par exemple, ils ont
souligné comment les contre-mesures du tatouage numérique pouvaient atténuer les récentes
attaques d’extraction de modèle.

Dans la course à la publication, l’examen des travaux précédents est parfois négligé. Cepen-
dant, plonger dans la littérature existante, même la plus ancienne, est essentiel pour comprendre
les origines des problèmes et des solutions proposées. Ce processus permet d’identifier des la-
cunes dans les connaissances et d’éviter de réinventer des solutions existantes. La négligence
des recherches antérieures peut résulter d’un manque de familiarité avec la littérature ou même
d’un désir de dissimuler les origines d’une méthode. Dans les deux cas, une telle négligence
est préjudiciable à la progression de la recherche et à la communauté scientifique dans son
ensemble.

Naviguer sur ce terrain est certainement un défi. Néanmoins, le domaine de la sécurité de
l’IA est étroitement lié à divers autres domaines. Par conséquent, il est essentiel de ne pas nég-
liger les contributions des chercheurs précédents, mais plutôt de les exploiter afin d’améliorer et
de peaufiner les méthodologies existantes. Cette approche pourrait entraîner des gains de temps
et des améliorations significatives.
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The term artificial intelligence (AI) emerged in 1956. It may be defined as the development
of algorithms, models, or systems capable of performing tasks that traditionally need human
intelligence. But as Pamela McCorduck said ’AI began with the ancient wish to forge the gods’
and create a machine mimicking human cognition dates back further as observed in the automa-
tons of Hephaestus, early attempts at replicating living entities. Although the terminology may
have evolved, the underlying ambition remains consistent.

It’s only in recent years that these tales have started to come to life. AI has become a rev-
olution comparable to the Web 2.0 of the early 2000s, and we are merely at the beginning of
it. According to Bill Gates, AI is the most remarkable progression since the introduction of
the graphical user interface for personal computers. This perspective is mirrored in our fervent
interest in AI. This expansion encompasses domains like autonomous vehicles [260], and more
recent innovations, including generative models like ChatGPT [171] and StableDiffusion [192].
For instance, McKinsey’s estimation suggests that generative AI could generate an annual eco-
nomic value ranging from 2.6 to 4.4 trillion dollars [30].

The most common AI task is classification, wherein a model is trained and employed to
predict labels for a given input data. However, AI encompasses numerous other tasks such as
segmentation [275], clustering [32], and regression [76]. These AI systems learn patterns and
relationships from training data using diverse techniques. They involve the creation of mathe-
matical models capable of generalizing from training data to make predictions on unseen data.
The rise of AI in our daily lives is partly due to the success of neural networks, which excel in
manipulating various data types such as images [262, 23], audio [165, 222] and text [274, 159,
286]. Consequently, this thesis will concentrate on neural networks, the image domain, and the
classification task due to their prominence in AI research.

Revolution brings challenges and weaknesses, and AI is no exception. The sensitivity sur-
rounding AI has prompted the strengthening of its legislation. The recent European AI Act 3 is
a prime example, being the first law regulating AI. The priority for the parliament is to ensure
that AI systems used in Europe are ’safe, transparent, traceable, non-discriminatory, and envi-

3. EU AI Act: https://www.europarl.europa.eu/news/en/headlines/society/20230
601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
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ronmentally friendly’. The proposed legislation introduces a classification of AI risks. Although
AI is predominantly employed in low-risk or non-risk domains today, the list of high-risk do-
mains is impressive, encompassing areas such as the categorization of individuals, AI usage in
education, public and private services, and law enforcement.

As governments become involved in the AI debate, the security of AI and its components
emerges as a paramount concern in its development and proliferation. It becomes a real issue
when AI is shown to be easily manipulated, modified, or stolen. This thesis aligns perfectly and
tackles the problem of the security of AI in real-world applications.

In a realistic perspective of AI security, a black-box setup prevails, as elucidated in Sec-
tion 1.4.2. This implies a lack of information about the model. Even under this assumption, the
potential vulnerabilities are numerous and include:

— Retrieval of training data: Training data can be inferred or retrieved through methods
such as membership inference [84, 29] and model inversion [48, 107, 63].

— Intellectual property theft: AI algorithms can be stolen [276, 71, 102], undermining
intellectual property and the efforts invested in their design.

— Evasion attacks [146, 187]: Input can be manipulated to induce misclassification using
adversarial examples [221].

— Resource exploitation: Inputs can be forged to increase power consumption, potentially
leading to system crashes, as demonstrated by sponge examples [213].

— Backdoor: Training data can be manipulated to insert a backdoor [10, 232], allowing an
entity in possession of the key to manipulate outputs.

A more complete view of the possibilities is depicted in Table 2

Confidentiality Integrity Availability

Model Model Extraction [71, 102]
Attributes Extraction [11, 53]

Training
Data

Model Inversion [48, 63]
Membership Inference [84, 29]

Radioactive Data [196]
Backdoor [10, 232]

Inference Evasion Attack [221]
Sponge Examples [213]
Sponge Poisoning [31]

Table 2 – Vulnerabilities of neural networks under a realistic scenario (See Section 1.4.2) orga-
nized in function of the CIA triad (See Section 1.4.1).

With this foundation, we delve into the organization of this manuscrip. The initial part of
this thesis comprises three chapters, which collectively establish the context for the entire work.
These chapters encompass essential definitions and a comprehensive review of related literature.
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The two following parts will respectively focus on the contribution on adversarial examples and
the contribution on model confidentiality.

Organization of the Manuscript

Part I: Introduction to Neural Network Vulnerabilities

Chapter 1 lays the foundation of this manuscript. It introduces widely used neural networks
for classification tasks and discusses various properties of their decision boundaries. Principles
of security are also introduced, employing the CIA triad (Confidentiality, Integrity, Availability)
commonly used in the cybersecurity domain to categorize different vulnerabilities. This triad is
adapted here to address vulnerabilities related to machine learning. Finally, the chapter intro-
duces the realistic scenario that will be studied throughout the manuscript, followed by a brief
list of potential vulnerabilities within this context.

Chapter 2 focuses on vulnerabilities that could compromise the confidentiality of the model.
It presents various attacks categorized according to attackers’ objectives, such as parameter
theft, architecture theft, or creating a model copying the target model. Subsequently, defenses
are introduced, emphasizing model property verification and defenses aimed at increasing the
complexity of attacks.

Chapter 3 follows a similar structure to the previous chapter, focusing on adversarial exam-
ples. After a brief definition and an introduction to their properties, the main hypothesis behind
their existence is presented. Then, both attacks and defenses are discussed.

Part II: Contributions to Adversarial Examples

Chapter 4 introduces a novel decision-based black-box attack. It highlights the excessive
use of queries in current black-box attacks to estimate the decision boundary gradient. By
employing a geometric approach and minimizing the estimation cost, this chapter introduces
SurFree [146], which enables the generation of adversarial examples with significantly fewer
queries than existing black-box attacks.

Chapter 5 explores the transferability of adversarial examples. Among the numerous pro-
posed attacks, the choice of source and target models is often arbitrary. This contribution reveals
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the considerable variability in transfer success based on the considered model pair, attacked im-
age and used attack. Based on this observation, the chapter introduces an estimation of the
transferability quality of the adversarial example found by the attack. This measure is then uti-
lized to enable the attacker to select the best source model and attack, resulting in the least
perturbation for a given image.

Chapter 6 assesses a certification method called Randomized Smoothing as a defense against
black-box evasion attacks. It highlights its effectiveness but also reveals that the recommended
parameters for ensuring good certification contradict those that ensure effectiveness against
evasion attacks.

Part III: Contribution to Model Confidentiality

Chapter 7 stands as the sole contribution addressing model property verification by propos-
ing a novel network fingerprint using only natural images. This approach is rooted in a simple
observation: while existing network fingerprinting methods are effective, they often require the
construction of adversarial examples with specific and sometimes complex properties. The idea
of using benign images was quickly dismissed in literature due to being considered inefficient
and uninformative. However, this contribution demonstrates the opposite by utilizing informa-
tion theory to measure statistical dependence between two networks. The work builds upon the
assumption that two models with statistically dependent predictions originate from a common
parent model.

A concise summary of all the notations is provided at the conclusion of this manuscript..

The reader can refer to it for a quick reminder. Readers seeking a quick reference can turn to

this section, organized by contribution, with the global notation available at Table 7.9.
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CHAPTER 1

CLASSIFIER MODEL

1.1 Introduction

0 Car Tulip Basset

9 Frog Forest Cello

Figure 1.1 – Samples from different image datasets. From left to right: MNIST [229], CIFAR-
10 [115], CIFAR-100 [115], and ImageNet [46].

Machine learning is a broad field that encompasses methods to enable computers to learn
from data, identify patterns, and make decisions with minimal human intervention. It is a sub-
field of artificial intelligence and covers a wide range of tasks, including classification. Classi-
fication is a fundamental learning task that aims to find a function that can predict the class of a
given input. This task applies to various types of data, such as image with object identification,
text with sentiment analysis, and sound with speaker identification, among others.

In the domain of Computer Vision, the main objective is image classification. Images are
represented as tensors with dimensions D = Nc × H × W , where Nc denotes the number
of channels, H represents the image’s height, and W signifies its width. Several image datasets
exist for this purpose, including MNIST [229], which contains 60,000 images of size 1×28×28
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(a) Single Neuron (b) MultiLayer Perceptron

Figure 1.2 – From the idea of the neuron to the MultiLayer Perceptron.

distributed across 10 classes, and CIFAR-10 [115], comprising 60,000 images of size 3× 32×
32 across 10 classes. ImageNet [46] is another significant dataset in this field, consisting of
14 million images split into 1,000 classes. Examples of different image datasets are shown
in Figure 1.1. ImageNet includes real-sized images, making it the widely used dataset in most
recent works on classification tasks [23, 290, 24, 280, 144, 156]. In this thesis, the focus will be
on images of size 3× 224× 224 from the ImageNet dataset.

As we delve into the field of machine learning, one method stands out and captures most
of the attention: deep neural networks [44, 113]. Over the past decade, neural networks have
emerged at the forefront of high-performing models in various tasks, particularly in classifica-
tion. Let’s explore their history and some of their key properties.

1.2 Neural Networks

1.2.1 Their Hegemony

Difficult Beginnings

Neural networks, a type of machine learning model inspired by the human brain’s structure
and function, were first introduced in 1943 when Warren McCulloch and Walter Pitts defined
the initial mathematical model of a neuron [151]. The concept was simple, as depicted in Fig-
ure 1.2a: a neuron is composed of a weighted sum of its inputs and a non-linear activation
function. The output was binary, determined by a threshold function. Initially, neural networks
were capable of computing simple logical functions.

It was the first step in creating artificial neural networks that could learn from data. In the
1950s and 1960s, researchers like Frank Rosenblatt and Bernard Widrow pioneered early ver-
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sions of neural networks, such as the perceptron [194] and the multi-layer perceptron [100]
shown in Figure 1.2b. These networks were capable of learning to classify patterns. How-
ever, several limitations emerged, including the lack of computational power, large annotated
datasets, and advancements in neural network training. As a result, this field declined in the
1970s and 1980s.

A Sensational Comeback

The resurgence of interest in neural networks began at the end-1980s when Geoffrey Hinton
and David Rumelhart laid the foundations for backpropagation [195, 88, 69], which enabled the
training of deep networks. This breakthrough allowed algorithms, layers, and architectures that
were conceptualized 40 years ago to be used for solving real-world problems.

An example of this revolution is LeNet-5 [121], which was developed by Yann LeCun and
his colleagues in 1998. LeNet-5 combined the idea of convolutional neural networks (CNNs)
imagined by Kunihiko Fukushima with the NeoCognitron [64] and the backpropagation algo-
rithm. This CNN architecture was particularly well-suited for image classification tasks and
found applications in various domains, including banks, where it was used to recognize hand-
written numbers of size 32× 32 on checks [229].

Figure 1.3 – Top-5 error evolution for ImageNet Classification Competition.

With the increasing computational power and the new advances in training, two of the three
former limitations have been solved. The lack of labeled data, the last remaining challenge, was
overcome with the introduction of the ImageNet dataset [46] in 2009. This dataset was used for
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

In 2012, the ILSVRC competition was won by the CNN AlexNet [116] with a large margin
over the other methods. In subsequent years, neural networks’ presence in the competition grew
steadily, culminating in a major milestone in 2015 when the winning model’s error rate was
lower than the human error rate. This significant achievement is illustrated in Figure 1.3.
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From this point, the number of publications on neural networks has exploded. Each year,
the number of publications on neural networks has doubled. It reached 100 new publications on
machine learning per day in 2019 [44, 113].

This excitement in neural networks has also led to a plethora of new architectures. Time
series, like images with CNNs, have seen significant advancements with the introduction of
recurrent layers [90], while overfitting issues have been mitigated through the use of regular-
ization layers [217]. Attention layers, a recent innovation, have further revolutionized model
performance [238] by capturing important parts of the input data. However, the detailed con-
struction of the neural networks is not the main focus of this manuscript.

1.2.2 Mathematical Definition

Despite significant advancements, the fundamental concept behind neural networks remains
largely unchanged. A neural network can be viewed as a sequence of feature maps, denoted as
zl, for each layer l = 1, ..., L, where L represents the total number of layers. The term Deep

Neural Networks (DNN) will refer to neural networks with more than two layers. Mathemati-
cally, a layer can be defined as follows:

zl+1 = σ(W l × zl + bl). (1.1)

Here, σ represents the activation function, W l denotes the weight matrix, and bl represents
the bias vector for the l-th layer. The activation function, a non-linear function such as the
Rectified Linear Unit (ReLU) function (ReLU(x) = max(x, 0)), introduces non-linearity to
the network. The weight matrix and bias vector are the parameters of the neural network.

The classifier can be seen as the composition of L layers, each transforming the input to pro-
duce increasingly complex representations. Despite their simplicity, neural networks can learn
highly complex functions. They are known as universal approximators [91, 39]. This means that
neural networks can approximate any continuous function on a compact subset of Rn with ar-
bitrary precision, given sufficient training. The power of neural networks lies in their capability
to learn a wide range of functions, including complex ones. They can even memorize the entire
data set [279]. For instance, a DNN trained of a random dataset can perform 0 training errors.
However, it will not generalize well. This inherent flexibility and approximation ability have
contributed to the widespread success and popularity of neural networks in various domains.

In practice, the statements made in the previous discussions are partly true. If that were the
case, a basic DNN with two layers could effectively learn any functions, and modern models

28



1.2. Neural Networks

would either witness a decline or stagnation in the number of their parameters. However, in
reality, the exponential growth of parameters in current models is explained by their better gen-
eralization. This ability is called the model capacity [237] and the number of parameters is one
feature among others playing a crucial role. One way to measure the model capacity is through
the Vapnik-Chervonenkis (VC) dimension, which quantifies the largest number of data points
that a model can correctly categorize for all possible binary classifications. In simpler terms, the
VC dimension represents the maximum number of points that a model can successfully classify
into two classes, regardless of how those points are labeled or combined.

1.2.3 Model Notation

Let’s assume an image classifier f represented as a function that maps an input x to an
output y as follows:

f : x 7→ y

[0, 1]D → RC .

where D represents the input dimension and C the number of classes. Considering the em-
phasis on ImageNet images in this manuscript, the input x is indeed a vector of dimension
D = 3× 224× 224, and the classification task involves C = 1000 classes.

When images are displayed on a screen, they are represented as tensors of pixels, with each
pixel comprising three values corresponding to the red, green, and blue (RGB) channels. Each
channel is represented by an integer value ranging from 0 to 255. In this work, we consider the
input of the classifier to be a tensor of continuous values in [0, 1]. To achieve this normalization,
the pixel values are divided by 255. This normalization is a common practice in neural network
applications [23]. For real images, therefore, only a small set of possible values is taken.

The classifier function f takes the normalized input tensor and produces a vector of logits

in RC . To obtain probabilities for each class, the SoftMax function is commonly applied to
the logits vector. The predicted class is determined by selecting the index corresponding to the
highest probability (or highest logit value) in the output vector. The predicted class cl(x) is
given by:

cl(x) = arg max
i∈J1,CK

fi(x), (1.2)

where fi(x) represents the i-th element of the vector f(x).
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1.3 Decision Boundary of Neural Network Classifiers

1.3.1 Definition

The concept of decision boundary is not exclusive to neural networks but is a fundamental
concept in all classification models. When a classifier is trained on a dataset, it learns to divide
the input space into distinct regions, known as classification regions. Each of these regions
corresponds to a specific label, and the classifier assigns that label to any input falling in this
region. The boundary that separates these regions, known as the decision boundary denoted ∂f ,
determines where the classifier changes its predictions. For instance, for the decision boundary
between the class k and l, the logits vector will satisfy fk(x) = fl(x). In other words, it is
also the set of points where there exist at least a small perturbation η can cause the classifier to
change labels:

x ∈ ∂f, cl(x + η) 6= cl(x− η). (1.3)

Once the model is trained, the decision boundary remains fixed and applies to all inputs. Under-
standing decision boundaries could help to train models more efficiently [4, 112, 86] or compare
models [97, 189].

1.3.2 Visualization

The visualization of decision boundaries can naively be approached by randomly sampling
two directions in the input space. However, it is important to consider the findings highlighted
in [215, 169] and shown in Figure 1.4. According to these findings, the behavior of the model
beyond the data manifold is almost uniform. In other words, the model produces similar outputs
for inputs outside the data manifold, constituting a huge portion of the input space. DNNs only
create decision boundaries in regions where they identify discriminative features in the training
data. As a result, the visualization of decision boundaries should primarily concentrate on the
data manifold and center the visualization around a specific image. This approach allows to
focus on the representation of the decision boundaries in a relevant region.

Different methods have been proposed for visualizing decision boundaries in machine learn-
ing models. One-dimensional (1D) visualization approaches exist. The method described in [83]
measures the distance to the boundary in multiple orthogonal random directions and [169]
proposed to use directions on particular frequencies given by the Discrete Cosine Transforms

(DCT) which is commonly used in image compression. This provides insights into the global
structure of the margin to the decision boundary for a given point. However, two-dimensional
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(a) Random Directions (b) Adversarial Plan [157] (c) Images Plan [215]

Figure 1.4 – Visualizations of the decision boundary centered on the image. The first row shows
the predicted label in the input space. The second row shows the probability of the top-1 label
in the input space.

(2D) representations are more commonly used.

In the context of understanding decision boundaries, [215] provides a suitable method in-
spired by the MixUp method. Because decision boundaries are created in the data manifold,
they propose to visualize the decision boundary by considering a plan given by three images.
It allows for a detailed examination of the decision boundary and its behavior in various input
regions. A similar method is used by [271] to visualize the boundary between two classes.

In contrast, when the focus is on evaluating the local behavior of the model around a specific
input, the approach used in [157] is more appropriate. This method considers the directions
given by the closest point of a different label from the central image and a random direction. By
doing so, it allows for an analysis of how the model reacts when the input is perturbed slightly.
This visualization will be particularly relevant in this thesis, as it seeks to understand a concept
explained in Chapter 3: the model’s robustness to adversarial examples.

1.3.3 Characteristics

Characterizing the decision boundary is a key focus in understanding the behavior of classi-
fiers. Adversarial examples have been widely explored to probe the decision boundary [73, 108,
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Figure 1.5 – Binary classification using a shallow model with 20 hidden units (solid line) and a
deep model with two layers of 10 units each (dashed line) obtained in [154].

86]. But more exotic techniques have been employed to define and analyze it such as tropical
geometry [4] and power diagrams [8] to define the partitioning of the input space.

These techniques provide insights into the structure and complexity of the decision bound-
ary, enabling a deeper understanding of how the classifier separates different classes in the input
space. This section sums up some important characteristics such as the curvature, the partition-
ing, and the geometric properties of the decision boundary.

Succession of Hyperplanes

If we revisit the definition of a layer as discussed in Section 1.2.2, the linear component
W l × x + bl = cst corresponds to the equation on a hyperplane. From a local perspective, the
model effectively identifies hyperplanes to create regions in the input space. The effectiveness
of DNNs can be attributed to the abundance of hyperplanes they generate.

Let’s consider a neural network with a single hidden layer, commonly called a shallow
network. The input size of the layer is denoted as n, and the output size as m, denoting W 0 ∈
Rm×n and b0 ∈ Rm. This layer creates m hyperplanes to separate the input space. If we assume
that DNNs utilize piece-wise linear activation functions, the configuration of these hyperplanes
can yield

∑n
j=0

(
m
j

)
regions [175, 154].

As we increase the number of hidden layers, the count of hyperplanes and regions grows
exponentially. For example, a network with 3 hidden layers, each consisting of 100 neurons, pro-
duces 1 million hyperplanes and an astronomical number of regions. This phenomenon explains
why DNNs can learn complex functions, as they leverage an extensive array of hyperplanes to
partition the input space.

It also reveals why current neural networks are deep. With the same number of parameters,
a DNN can create a more complex decision boundary than a shallow neural network. In Fig-
ure 1.5, the function found by the neural network of two layers of 10 units each is more complex
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than the function found by the neural network of 20 units.

Curvature of the Decision Boundary

Understanding the curvature of the decision boundary is crucial for gaining insights into the
behavior of neural networks. Various measures and techniques have been proposed to analyze
the curvature, including those based on tropical geometry [4], power diagrams [8], points close
to the boundary [73] or analyze the features of the last layer [271, 157].

We could expect that the decision boundary would be highly complex [206] because neural
networks are the resultant of a succession of millions of hyperplanes. However, this is not the
case. Contrary to expectations, overparameterization of DNNs leads to simple decision bound-
aries. Instead, prior research consistently demonstrates that the decision boundary is predomi-
nantly flat [60, 157, 108, 206]. For natural images, the decision boundary is mostly flat in the
majority of directions, with only a small subset of directions exhibiting significant curvature.
Notably, the directions with significant curvature are data-dependent, indicating that they are
shared among different images.

While the decision boundaries of well-trained deep models tend to be approximately linear,
the complexity of the boundaries during the training process may initially appear. As the model
becomes well trained, the decision boundaries gradually become linear [271]. This observation
is echoed in the findings of [73], which establishes a correlation between boundary complexity
and the generalizability of the model.

Stability

Despite the vast number of parameters in DNNs, the decision boundary exhibits remark-
able stability across different random initializations and diverse architectures. Prior works [215,
169] have shown that the decision boundary remains consistent and reproducible under these
variations. However, the width of the model can impact the level of reproducibility, with wider
models tending to exhibit higher consistency.

Interestingly, even within the same architecture family, such as Convolutional Neural Net-
works (CNNs), the decision boundary remains close across different architectures [215]. This
implies that the overall separation of the classification regions is similar, regardless of impor-
tant architectural differences, which is particularly impressive given the vast number of ways to
distinctly separate the training data.

But, fortunately, this statement does not hold comparing models from different architecture
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families. For models with the same accuracy, the classification regions and decision boundaries
are distinct [215]. This observation suggests that achieving significant performance improve-
ments, such as increased accuracy, in deep learning may require substantial changes to the
architecture of new models rather than minor tweaks or adjustments.

1.4 The Vulnerabilities of Neural Network Classifiers

1.4.1 Definition of Security

The remarkable capabilities of neural networks also come with inherent vulnerabilities. In
the context of machine learning security, vulnerabilities refer to weaknesses in models that
can be exploited by malicious actors. These vulnerabilities can lead to various security risks.
Some common vulnerabilities in machine learning security include the manipulation of the
input for certain profit, the stealing of the model, or the retrieval of the training data that are
supposed to be confidential. Machine learning security aims to safeguard these models and
data, preventing unauthorized access, manipulation, or exploitation, and thereby ensuring the
reliability and trustworthiness of the entire system.

To delve into the security aspects of machine learning, it is essential to define what we mean
by security. While security is a broad concept with various interpretations, its application in
the context of machine learning is relatively new. To grasp the essence of security, insights can
be drawn from the field of cybersecurity. This section briefly introduces how these principles
can be adapted and applied to machine learning systems. A more detailed explanation of these
concepts in the scenario considered in this thesis will be provided in Section 1.4.3.

CIA Triad. In the 1970s, the concept of cybersecurity began to take shape, and the United
States Department of Defense played a significant role in defining its fundamental princi-
ples [200]. They articulated computer security as the safeguarding of computer systems and
information from harm, theft, and unauthorized use. To establish a comprehensive framework,
they introduced the CIA triad, which comprises three essential principles: Confidentiality, In-
tegrity, and Availability. Even though the CIA triad was conceived fifty years ago, well before
the machine learning revolution, its relevance in today’s cybersecurity landscape remains intact.
The principles of confidentiality, integrity, and availability can be effectively applied to secure
machine learning systems. Let’s explore what each element of the CIA triad entails.
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Confidentiality refers to the assurance that information is accessible only to authorized in-
dividuals or entities. It involves preventing unauthorized access, disclosure, or leakage of sen-
sitive information. In the context of machine learning, confidentiality may involve protecting
proprietary models, algorithms, or datasets. For example, a company developing a deep learn-
ing model for facial recognition may take measures to prevent the extraction of its training data
in order to maintain its confidentiality.

Integrity focuses on the accuracy, consistency, and completeness of data and models. It en-
sures that information is trustworthy and has not been tampered with or modified in an unautho-
rized manner. For instance, applied to machine learning, it may verify the integrity of models,
ensuring that they have not been altered during transmission or storage. A potential consequence
of this lack of integrity is a significant decrease in accuracy, as each input may intentionally be
modified to be misclassified by the model. Additionally, this integrity can be applied to the
training and testing data, ensuring that the data remains unmodified.

Availability refers to ensuring that information and systems are accessible and usable when
needed. When considering the unavailability of a model, the first thought might be about De-

nial of Service (DoS) attacks, which are common when models are accessed through an API.
However, from a machine learning perspective, attackers can also optimize inputs to increase
the energy consumption and latency of neural networks during testing [213, 31]. Once these
crafted inputs are submitted to the model, it will take more time to process them, resulting in
slow access or even a system crash.

1.4.2 A Realistic Scenario

Now that we have delved into the realm of security, it is evident that a vast array of vulner-
abilities exists, each with its unique potential to disrupt the smallest grain that makes up any
machine learning model. However, many of these vulnerabilities may seem unrealistic due to
their assumptions. For example, some attacks assume that the attacker has full access to the
training data or can modify the model at will. While these approaches serve their purpose of
discovering and comprehending the vulnerabilities of DNNs, they do not align with real-world
scenarios and the genuine threats that DNNs face.

In contrast, a growing body of research focuses on developing realistic attacks that avoid
such assumptions and are more aligned with practical scenarios. Realistic security takes cen-
ter stage in multiple papers, as they offer a better representation of how the security of DNNs
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is truly threatened in the real world [218] such as self-driving cars [260] or medical applica-
tions [89, 50].

A realistic scenario in machine learning security does not exclusively pertain to physical
attacks, although such attacks have been explored in research [57, 117, 257]. Many models are
commonly deployed on the cloud through APIs or integrated into various applications, and they
continue to be used in a real-world setting.

We have already taken a step towards the goal of examining security in a realistic scenario
by centering our results on real-sized images from the ImageNet dataset (See Section 1.1). This
section now provides a definition of a realistic scenario for the security of classifiers.

Black-Box Setup

Figure 1.6 – Different setup illustration from [23].

The initial consideration when assessing the security is to determine what knowledge the
attacker possesses about the model and what information is accessible from the model’s outputs.
Commonly, three setups are examined, depicted in Figure 1.6. The level of security in DNNs is
influenced by the extent of information available to the attacker in each setup:

— White-box setup: It is the most permissive and idealistic case. In this setup, the attacker
has full knowledge of the model. He has access to the architecture and the weights. It
leads to the most powerful attacks such as BP [280, 15], DeepFool [156], and CW [22]
as far as adversarial examples are concerned, i.e. integrity of testing data.

— Grey-box setup: The attacker has partial knowledge of the model. In this scenario, the
attacker possesses some information about the target model depending on the assump-
tions. For instance, the architecture and the weights may be partially known [276], the
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model may be unknown but the training phase known [269, 182], or the model and
its parameters may be known but the attacker ignores the defense mechanisms [158].
Grey-box setup lay between white-box and black-box setup, without having a common
definition on the prior knowledge of the attacker about the attacked DNN.

— Black-box setup: The attacker has no access to the internal details of the target model.
In other words, the attacker only has access to the input-output behavior of the model
and does not possess knowledge about its architecture, parameters, or defenses applied
to overcome vulnerabilities [174]. This setup is often divided into two sub-categories.
First, the score-based scenario refers to the case where the attacker has access to the
score resulting from the input. Second, the decision-based scenario refers to the case
where the attacker only has access to the final decision of the model. It may also be
referred to as label-only setup [289, 231] and hard-label setup [27, 24, 28].

A clarification is necessary. Currently, there is a substantial number of models trained on
large datasets that are easily accessible. Companies might opt to use these pre-trained models as
a foundation and fine-tune them to suit their specific tasks 1 2. One often picks a model available
on the shelf as a pre-trained model that one fine-tunes for a specific use case. However, the
model is still unknown to the attacker, even if the architecture is publicly available.

Among all scenarios considered in the literature, the decision-based black-box setup
stands out as the most realistic and relevant for real-world applications concerning DNN
security. Therefore, this thesis focuses on the decision-based black-box setup to address
these concerns.

Limited Attacker Capabilities

In a black-box setup, the attacker’s ability to understand and exploit the model’s vulnerabil-
ities is based on observing the model’s outputs by submitting inputs. By analyzing the outputs,
the attacker tries to gain insights into the model’s behavior and identify potential weaknesses
that can be exploited.

However, in a real-world scenario, there are limitations on the number of queries the attacker
can make to the model. In our context, a query refers to the process of sending inputs to the
model and recording the corresponding observations. These limitations are driven by factors

1. https://blogs.nvidia.com/blog/2022/12/08/what-is-a-pretrained-ai-model/
2. https://medium.com/the-web-tub/how-to-build-an-intelligent-chatbot-usi

ng-openais-pre-trained-models-with-javascript-207558b62b2f
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such as cost [23], the risk of detection [61, 128, 26], and being banned by the API hosting the
black-box attacked model. For example, some vulnerabilities may require a significant number
of queries, as much as 250, 000 [283], to be successfully exploited. Each attack made by the
attacker comes at a cost, for instance, 200$ for a single attack 3, which adds up to the overall
attack expense.

This limitation forces the attacker to be strategic and selective in choosing the queries to
maximize the chances of successful attacks while minimizing the number of queries made. It
also highlights the importance of effective defense mechanisms that can detect and mitigate
attacks even under limited query access.

No Access to the Training

The access to the training data can vary in terms of its extent, ranging from partial to total
access, and read or write capabilities. In certain cases, the attacker may even have access to
the training phase itself, allowing them to exploit vulnerabilities that are typically associated
with white-box attacks. However, it is important to note that the confidentiality of the training
data is a crucial aspect of the success of the security of DNNs, and is generally in consequence
well-protected. Infrastructure breaches are not considered in this thesis; we will consider these
to be robust. It means that there is no access to the training data, and there is no leak. While the
attacker may have access to publicly available data, such as images, text, or audio, he cannot as-
certain whether this data has been used for training the model or not. Unless the attacker discov-
ers this independently (during attacks for instance, such as membership inference attacks [84,
29]), he has no clue of whether the data has been part of the model’s training set.

For this thesis, we have chosen to focus on realistic scenarios where the attacker does not
have access to the training data [6, 174]. This constraint, although not always explicitly consid-
ered in the literature, clearly implements the more stringent and hardest setup for attackers in
the security of DNN-embedding applications.

1.4.3 The Existing Vulnerabilities

When companies invest in machine learning-based software and models, they access three
valuable assets. The first and most apparent asset is the model itself. An accurate DNN holds
significant industrial value due to the expertise required to train it and the computational re-
sources needed to optimize its parameters during the training phase.

3. https://cloud.google.com/vision/pricing?hl=fr
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The second asset is the training data. Their value stems from two reasons. Firstly, the quality
and quantity of labeled data highly contribute to the model’s accuracy. Acquiring such data is
challenging and often costly. Secondly, the training data often comprise sensitive or confiden-
tial information. Any unauthorized access or data breach could lead to legal and ethical conse-
quences. Lastly, the infrastructure supporting the trained model is another valuable asset. Once
the model is trained, it needs to be deployed in an efficient and scalable manner. The infras-
tructure hosting the model should be capable of handling a large volume of requests effectively.
The infrastructure is out of the scope of this thesis; we prefer to focus on the vulnerabilities
associated with the data at testing time.

The next section provides a brief overview of the different vulnerabilities of each asset that
can arise in real-world scenarios, focusing on the CIA triad (See Section 1.4.1). Certain use
cases, such as the confidentiality of the testing data, have been intentionally excluded from
consideration due to their absence in recent legal cases.

About Confidentiality

Training Data. We understand their confidentiality’s importance by looking at past legal
cases involving the training data. In 2019, IBM sued Zillow for the use of more than 20, 000
images from IBM’s Flickr account without permission from or compensation to IBM 4. More
recently, in 2023, Getty Images sued Stability AI for the use of more 12 million photographs
from Getty Images’ collection without permission or compensation 5.

Regarding the confidentiality of the training data, the attacker’s capability is measured by
his ability to steal. These attacks based their findings on the model’s overfitting and its lack of
generalization [279, 21, 212]. The high capacity of DNNs makes them memorize the training
data (as random data in Section 1.2.2), which is exploited by the attacker to steal it.

In a realistic scenario, the attacker may use the model’s predictions to reconstruct the train-
ing data, known as model inversion [48, 107, 63] or data extraction attacks [21]. To reconstruct
the data associated with a particular label of index i, the attacker aims to find an input x that
maximizes the model’s probability of predicting this label for that input [162]:

x̂training = arg max
x

fi(x). (1.4)

4. https://www.nbcnews.com/tech/internet/facial-recognition-s-dirty-littl
e-secret-millions-online-photos-scraped-n981921

5. https://news.bloomberglaw.com/ip-law/getty-images-sues-stability-ai-ov
er-art-generator-ip-violations
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Figure 1.7 – An image obtained with a model inversion attack (left) and a corresponding training
set image of the target model (right) from [63]. The attacker has access only to the person’s name
and a facial recognition system.

Formulated this way, the attacker may find a local maximum outside the data manifold,
which may lead to poor results. To mitigate this issue, the attacker can incorporate a prior on
the input x to constrain the search space. For example, in the case of image inputs, Kahla et

al. [107] use a style-GAN to generate an image that lies within the data manifold. As shown
in Figure 1.7, this approach is applied to a facial recognition system, allowing the reconstruction
of training data for a specific individual.

A simpler version is the membership inference attack [84, 29] where the attacker just deter-
mines whether a specific data point was part of the training dataset.

Model. The confidentiality of the model is determined by the attacker’s ability to steal
the model and all its components, including the architecture, hyperparameters, and parameters.
In a model extraction attack [276, 71, 102], the attacker aims to obtain a surrogate mimicking
the target model. Both models exhibit the same behavior. During a model extraction attack, the
attacker uses various techniques to gather information about the target model, querying it and
analyzing its outputs. Once the attacker has successfully extracted the model, he can use it to
make accurate predictions or to gain insights into the model’s decision-making process in order
to prepare an evasion attack.

This aspect will be discussed in more detail in Chapter 2.

About Integrity

Training Data. The integrity of training data encompasses various techniques aimed at
either protecting the data or preventing the model from being trained effectively. This concept
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covers a wide range of methods and approaches. One such technique is backdooring [10, 232],
where the training data is deliberately poisoned with a specific signal. Once this signal is present
in the input, the model’s decision will always be biased toward a predetermined outcome. From
a defensive standpoint, radioactive data [196] is an approach that allows us to determine if a
particular dataset has been used to train a model.

While the integrity of training data may exist under realistic scenarios, certain challenges
remain. For an attacker to modify the training data, he needs to have access to the data and be
able to manipulate it. This level of access can be difficult to obtain in a real-world scenario. An
attacker may poison a public dataset as well. This could be an effective strategy since models in
production are typically based on models trained on large databases and fine-tuned for specific
tasks [70, 56]. However, it still requires the attacker to specifically choose and manipulate the
dataset among a vast number of existing datasets with the hope that this precise dataset will be
leveraged for the training of the target system.

Testing Data. Evasion attacks, which focus on the integrity of the testing data through
the creation of adversarial examples, have emerged as one of the most famous and extensively
studied fields in the security of DNNs. Adversarial examples are crafted by introducing imper-
ceptible perturbations to the input data, causing misclassification [146, 187, 221]. As depicted
in Figure 1.8, the research on adversarial examples has garnered significant attention and nu-
merous studies, making it a highly developed subject in DNN security. Between the start of
this thesis in 2020 and its completion, the number of papers published in this field has quadru-
pled, from 1,500 to 6,000 papers per year. Understanding and addressing adversarial examples
is crucial for enhancing the robustness and reliability of machine learning models in real-world
applications. This subject will be discussed in more detail in Chapter 3.

About Availability

The availability of the model refers to the attacker’s ability to make the model unavailable,
typically through a Distributed Denial of Service attack (DDoS attack). This type of attack
is common in the field of cybersecurity and aims to overwhelm the model or the underlying
infrastructure, causing it to become unresponsive or unavailable.

Traditional DDoS attacks, where a large number of bots overwhelm a system with requests
to cause a crash, are out of the scope of this thesis. However, in the context of machine learning,

6. Source: https://nicholas.carlini.com/writing/2019/all-adversarial-exampl
e-papers.html
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Figure 1.8 – Number of scientific papers investigating adversarial examples per year 6.

there are inputs that can be crafted to exploit the resources of the model. An example of such at-
tacks is Sponge Examples [213], where inputs are designed to increase the energy consumption
and latency of DNNs at testing time. DNNs with a high number of parameters can be computa-
tionally expensive and time-consuming to infer. To improve efficiency, techniques like skipping
zero operations are used to avoid unnecessary computations. To find Sponge Examples, [213]
employs a genetic algorithm in a black-box setup to find inputs that significantly increase the
model’s latency. These crafted inputs activate more neurons than regular inputs.

Moreover, Antonio Cinà et al. [31] introduce sponge poisoning to demonstrate that these
sponge examples can also be applied during training to increase the inference time for all inputs.
Although it may be assumed that this attack is primarily related to the integrity of the training
data, it turns out that the model can still be trained without any noticeable effects on its accuracy.
The primary consequence of this attack is a significant increase in testing time. As a result, the
model remains functionally effective but becomes somewhat inconvenient to use.

However, as far as we know, these works represent the only contributions that address avail-
ability concerns from a machine-learning perspective. This aspect mainly pertains to the infras-
tructure, which is not the primary focus of this thesis.

1.5 Conclusion

In this chapter, we delved into the world of machine learning and classification, emphasizing
the significant role of neural networks in achieving remarkable performance in various domains
over the last decade. Neural networks’ capability to create effective decision boundaries in high-
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dimensional data has propelled them to become the dominant tool in the field of classification.

However, despite their dominance, neural networks are not without weaknesses. These
weaknesses become apparent when we delve into the inner workings of DNNs, such as their
decision boundaries, which are exploited by malicious actors. In a realistic scenario, access
to the model is constrained. Its weights and its outputs are locked in a black box. The only
available means to comprehend the decision-making process of the neural network is by ob-
serving and analyzing the characteristics of the decision boundary itself. To better comprehend
and exploit some vulnerabilities, a closer look will be done at their relation with the decision
boundary. Understanding the decision boundary is instrumental in comprehending the origins
of these vulnerabilities, providing valuable insights for the subsequent sections.

Upon introducing the vulnerabilities within DNNs in this chapter, one might be inclined to
believe that these issues are novel and confined to DNNs. However, it is incorrect. Many of these
vulnerabilities can trace their lineage back to previous studies that researchers have explored
over the years, which might have occasionally been forgotten. Novel terminology may have
hidden these historical roots, yet the underlying issues and potential solutions persist. An illus-
trative instance is the domain of watermarking and the corresponding attacks launched against
watermarked content. Watermarking initially emerged in the 1990s, applied to images and au-
dio. For instance, creators introduced minor perturbations to their content to assert intellectual
property rights. Subsequently, detection mechanisms were employed to validate the presence
of these watermarks. However, attacks were mounted on these mechanisms, termed as oracle

attacks, which in essence constitute evasion attacks. Techniques emerged to eliminate these
watermarks, rendering the content undetectable. Such methods involved manipulating the input
through conventional image processing techniques or manipulating the decision boundary that
segregates watermarked from non-watermarked content. Model fingerprinting presents another
illustration of this historical continuum. It serves as a means of establishing model ownership
and similar principles have been explored in the context of browser fingerprinting. Throughout
this thesis, numerous references to the past will be drawn, emphasizing the connection between
historical precedent and contemporary challenges.

The upcoming chapters focus on two major of these realistic vulnerabilities that pose sig-
nificant threats to the security of machine learning models. Firstly, we address the issue of
confidentiality of the model. In this context, each component of the model is susceptible to po-
tential theft, ranging from the model’s architecture to the actual parameter values. The extent of
vulnerability depends on the number of queries the attacker can make to the model. Secondly,
we explore the vulnerability related to the integrity of the testing data through adversarial ex-
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amples. Their connection to the decision boundary of the model is inspected and an overview
of various attack and defense mechanisms is introduced.

Although not covered in this thesis, it is crucial to acknowledge the significance of the
confidentiality of the training data in a realistic scenario.
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CHAPTER 2

CONFIDENTIALITY OF MACHINE

LEARNING MODELS

2.1 Introduction

When we think about the biggest tech companies, names like Amazon, Google, Facebook
and Alibaba, come to mind. They are known for their efficient machine learning models pow-
ering various services such as Google’s search engine, Amazon’s recommendation system, and
Facebook’s face recognition system, among others. Achieving top-level efficiency in machine
learning models is a coveted goal for many companies, but it is not an easy task. It requires
significant resources, time, and expertise, which not all companies possess.

Accordingly, some companies might be tempted to resort to reprehensible practices, such
as stealing a competitor’s model or simply obtaining information about it. Such actions may be
seen as a way to gain a competitive advantage without investing the huge required efforts in
research and development or simply as a means of reducing cost if the target system is a paid
service [166]. However, it is important to emphasize that such practices are illegal and unethical.

Stealing a model not only constitutes a direct attack on the model’s confidentiality but can
also serve as an indirect means of compromising the model’s inference in a black-box scenario.
By constructing a similar model, the attacker effectively gains white-box access to the model’s
behavior even if the attacker initially had a total ignorance about the model’s internal workings.
This raises concerns about the integrity of model inference. A more in-depth exploration of this
aspect will be made in Chapter 3.

Despite being illegal, the act of stealing a model or any valuable information is still possible.
In this section, we explore various methods that attackers might employ to steal a model or its
parameters, along with the different strategies available to protect against such threats.
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2.2 Attacks

In a practical scenario, a potential attacker might endeavor to duplicate a target model or its
attributes through querying it, a practice known as model extraction, model stealing or attributes

extraction. Attackers might have their sights set on specific attributes of the model, such as its
architecture, parameters, or hyperparameters. The level of difficulty in stealing each of these
attributes varies, which is typically measured by the number of queries required by the attacker.
The primary objective behind such endeavors is to gain a deep understanding of the model,
facilitating its precise recreation.

As we delve into this, it will become evident that precisely extracting all model attributes
can be a hard task, possibly even unattainable within a realistic context for large models. An
alternative approach to undermining model confidentiality involves replicating its behavior in-
dependently of its internal working. Here, the attacker’s aim is not to replicate the model per se
but rather to acquire a model that reproduces the same decision boundaries. Both of these attack
types are expounded upon in this section.

2.2.1 Extract Exact Model Attributes

While many attacks under a realistic scenario primarily target the model’s output to com-
promise its confidentiality, side-channel attacks exist. These attacks exploit information that is
not directly related to the model’s output. For instance, side-channel attacks can leverage extra
information, such as the runtime at inference [53] or the power consumption [11] during the
model’s execution. They are mostly used to steal a few properties of a model such as the ar-
chitecture and can not be used to steal the model’s behavior. However, some of these attacks
may not be practical in a real-world scenario, as they require access to the model’s execution
environment. They will be shortly debate.

Architecture. Inferring the model architecture involves determining the type and number of
layers, and any specific characteristics of these layers, such as the kernel size of a convolutional
layer. In a hard-label setting, the attacker may need to assume some properties. For instance,
the authors in [164] uses a meta-model. The meta-model is a classifier of classifiers that can es-
timate hyperparameters. It works by taking outputs for a given set of inputs and estimating the
corresponding hyperparameters. The meta-model is also responsible for selecting the most in-
formative inputs. However, the meta-model must know the global structure of the victim model.
For example, if the victim model uses convolutional layers, the meta-model needs to be aware

46



2.2. Attacks

of it.

Side-channel attacks have also been explored to infer the model architecture. For instance,
in the work by Duddu et al. [53], the depth of the network is inferred by exploiting the inference
time. Based on this information and a list of architecture candidates, they can eliminate models
that do not fit. Another approach by Batina et al. [11] uses timing, power consumption, and elec-
tromagnetic emanations to retrieve the entire architecture and even the model’s parameters. For
instance, they infer which activation function is used by measuring the minimum, maximum,
and mean computation time.

This thesis investigates this attack scenario under the assumption that the attacker
possesses a list of models. Our contribution, FBI [147], which is developed in Chapter 7,
calculates a distance metric between the black-box model and each model within its list.
This approach allows us to infer the architecture of a known model and even detect any
modifications made to the model in comparison to what the attacker possesses.

Parameters. The attacker queries the black box and extracts the exact parameters of the
model. The architecture of the model is usually known in this scenario. However, if the architec-
ture is unknown, the attacker may need to perform a preliminary step: architecture extraction.
Although some attempts have been successful, it remains a first challenging step [153, 20].

One approach proposed in [20] relies on the fact that ReLU neural networks are piecewise
linear functions, and querying at critical points reveals information about the model parame-
ters. However, in all these methods, when an image is submitted, the gradient for this image is
obtained. Even in this case, [20] successfully extracted a neural network of 100,000 parameters
trained on the MNIST dataset with more than three million queries.

Considering that modern models often have millions or even tens of millions of parameters,
the task of stealing the exact parameters of such models seems unfeasible in a hard-label black-
box setup.

Hyperparameters. Part of machine learning training relies on hyperparameters, which are
configuration settings determined before the training process. Unlike model parameters that are
learned during training, hyperparameters are predefined by humans. For instance, they include
key settings like the optimizer, the learning rate, and the batch size. These hyperparameters
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Figure 2.1 – Overview of a Model Extraction Attack.

significantly influence the model’s training dynamics and performance, such as the learning
rate [228, 241].

A few works have been successful on images. For instance, MMA [164] uses a meta-model
as described above. More than architecture it can predict any hyperparameters that significantly
impact the model’s behavior such as the learning rate and the batch size.

To train the meta-model, multiple architectures are tested during training. For instance, it
required testing 10,000 CNN architectures on MNIST to achieve 80% correct hyperparameters
for a single model, and this process took 40 days to complete.

2.2.2 Approximate behavior

The primary objective of extracting the model from the black box is to replicate the behav-
ior of the target model. The model constructed by the attacker is commonly referred to as the
substitute model, clone model, or surrogate model. The process of building such a model shares
similarities with other fields such as distillation, and some methods may draw inspiration from
these related areas. These approaches leverage the available information to construct a substitute
model that approximates another model’s behavior. For example, the distillation technique in-
volves transferring the knowledge of a complex teacher model to a simpler student model [87].
This approach aims to create a smaller model that achieves comparable performance on the
same task, potentially resulting in energy savings. However, in these scenarios, the teacher and
student models are both under the control of the same entity, which possesses complete knowl-
edge of all aspects (architectures, training data, logits, etc.). In the context of model extraction,
the attacker lacks access to any such information or resources.

The efficiency of a model extraction attack is assessed through the surrogate model’s top-1
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accuracy [167, 233, 102, 253] on the victim’s test dataset. While the surrogate model might not
achieve the same performance as the victim model due to its inability to create new knowledge,
the objective is to minimize the drop in accuracy as much as possible.

Data is the Key. Illustrated in Figure 2.1, the unique information accessible to the attacker is
the data submitted, which serves as the foundation for constructing their training dataset. Let’s
imagine that the attacker enjoys unrestricted query access. In such a scenario, the attacker could
adopt a greedy strategy by querying every possible image in the input space, constructing a
training set, and eventually creating a model that impeccably imitates the victim model’s be-
havior in that input domain. However, this notion is far from being realistic. The center of most
research articles lies in addressing the question: "How can I intelligently select (or generate) the
input data to submit to the black-box system in a way that I explore the input space and yield a
trained model that effectively emulates the victim model’s behavior?"

Now, let’s consider the data acquisition aspect. Having complete access to the original train-
ing data is rarely assumed. Instead, some studies grant access to a subset of the data [106, 174],
samples that resemble the original training data distribution [35], a distinct dataset but publicly
available [167, 253], or a huge number of synthetic data generated using Generative Adversarial
Networks (GANs) designed to align with the underlying data manifold [231, 202, 248]. Among
these approaches, the last two are the most realistic since they eliminate the need for access to
or understanding the original training data. The subsequent sections will delve into these two
approaches in greater detail.

Data from Publicly Available Dataset. Utilizing publicly available datasets is a common
strategy, although adjustments might be necessary to be accepted by the target model [253, 167]
such as the input size. However, random sampling from this dataset may not provide sufficient
information. This approach could also be easily detected since the submitted images might fall
outside the data manifold [167].

In the work of [167], the approach begins with a pre-trained model on a publicly avail-
able dataset, which has labels that are not correlated with the labels of the victim model. They
employ a reinforcement learning strategy to efficiently select queries. These queries are cho-
sen to encourage images where the victim model displays high confidence, images to obtain a
balanced training set for the attacker’s model, or images that cause disagreement between the
substitute model and the victim model. This results in a newly created model with good accu-
racy on the victim model’s test set. However, this approach necessitates around 60,000 queries
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Figure 2.2 – Overview of the Data-Free Model Extraction Approach [233].

for dataset copying, such as Caltech256 with access to ILSVRC, an image dataset with 4 times
more classes and 40 times more images than Caltech256.

Another approach under hard-label setup leverages the attention maps generated by the sub-
stitute model to selectively erase important portions of samples [253]. If both the substitute and
target models focus on the same regions, removing the area of interest from a input would likely
lead to a change in prediction by the victim model. Conversely, if the attention differs between
the two models, the erased sample is integrated into the training set with a label chosen by the
victim model.

Synthetic Data. Another strategy involves the utilization of GANs to generate data. In partic-
ular, we focus on Data-Free GANs [233, 202] as they operate without requiring access to actual
data, making them particularly relevant in realistic scenarios.

In a GAN framework, there are two main components. The generator function is a forger,
crafting synthetic data that do not come from real sources. On the other hand, the discriminator
acts as an investigator, aiming to differentiate real data from fake data. These two components
engage in a competitive process, intending to enhance each other’s performance. In the context
of model extraction, the student model takes on the role of the surrogate, while the generator
is responsible for creating informative data that facilitates the efficient replication of the victim
model.

DFME [233] uses the advancements in data-free knowledge distillation in a context where the
attacker has access to the victim’s output probabilities and depicted in Figure 2.2. The discrim-
inator’s role is to minimize disagreement between the surrogate and victim models, while the
generator’s role is to maximize these discrepancies. Although operating in a black-box environ-
ment without access to gradients, Zero-Order Optimization [25, 235] is employed to estimate
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the victim’s gradients. The successful application of this technique led to the extraction of a
model achieving 92% of the victim model’s accuracy with 20 million queries on the CIFAR-10
dataset, as demonstrated in Figure 2.2.

In a hard-label setup, DFMS-HL [202] uses a GAN to generate images close to the victim
dataset but suppose access to a training dataset to pretrain his GAN. In this setting, the attacker
does not have access to gradients, so the clone model is trained using the cross-entropy loss
with the output of the victim model as the ground truth. These techniques and methods help
the attacker generate or select informative data for the model extraction process, even when full
access to the original training data is not available to align the attention between the substitute
and the victim model.

A Huge Cost. To decrease the number of queries required to copy the model, attackers adopt
strategies to select the most informative samples or make samples more informative. For exam-
ple, they may pick samples close to the decision boundary [231] or even generate adversarial
samples on the boundary [272]. Fortunately, extracting models is still highly expensive.

Notably, model stealing techniques have been tested on small datasets like MNIST, CIFAR-
10, or CIFAR-100, providing an estimate of the cost involved on real-world models for which
they use larger data. In terms of queries, [253] used 30,000 queries to create a substitute model
on CIFAR-10. However, this number grows exponentially as the model’s size increases. For
instance, DFMS-HL [202] requires 8 million queries to clone a model on CIFAR-100, which is
a considerable improvement compared to ZSDB3KD [255], which requires 4 billion queries.

Another factor in the number of queries is the output available from the attacker. While
most methods consider access to probabilities or logits [166, 231, 109, 35, 167], the hard-label
setup significantly impacts the number of queries required [166, 53]. To illustrate this point,
Dast [289] needed an enormous number of 20, 000, 000 queries on Microsoft Azure to attack
a MNIST model in a hard-label setup. However, in the probability-only setup for the same
scenario, only 2, 000, 000 queries were required. We understand why hard-label setup has been
poorly studied.

2.3 Defenses

Defenses can be classified into two categories: reactive and proactive. Reactive methods are
designed to detect ongoing attacks or if an attack has already occurred, and they typically rely
on analyzing the model’s output. Proactive methods, on the other hand, aim to mitigate potential
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attacks before they happen by modifying various aspects of the model, such as its architecture,
learned parameters, or decision boundary.

2.3.1 Reactive Defenses

Reactive defenses aim to detect ongoing attacks, and one of the most commonly used ap-
proaches is ownership verification. It is a process used to demonstrate the ownership of a stolen
model and is often accomplished through model fingerprinting or watermarking. Its primary
purpose is to provide evidence of past attacks on the model. The defender suspects that the
model has been stolen and wants to prove it. To resist model stealing, ownership proof must
endure throughout the attack and appear in the substitute model as well.

Watermarking. Watermarking achieves ownership verification by incorporating hidden in-
formation into the model that only the legitimate owner can extract. A watermark detector is
a two-class classifier checking for the presence or absence of the mark in an image. One ap-
proach to achieve this is by embedding secret backdoors during the model’s training. While
watermarking has been a common practice for decades in the field of image processing [220,
34, 179, 256], it has just recently been incepted into the machine learning domain.

Uchida et al. [236] first proposed to watermark a DNN by embedding it into the weights and
biases of the model. Quickly after this initial proposal, works instead focused on a black box
model, where the presence of a watermark can be assessed by the owner from remote interaction
with the suspected DNN. In [120], authors insert information by altering the decision boundaries
through finetuning. In [2], authors also retrain the model to obtain the wrong labels for a so-
called trigger set of inputs, that constitutes the watermark. Please refer to [135] for a complete
overview of the domain.

The watermark itself can become a target for attacks. This community called oracle attacks
what we now call black box attacks: the attacker has the secret-keyed detector in hand as a black-
sealed box, and calls it iteratively to either estimate the secret key or remove the watermark from
protected images. As the watermark serves as proof of ownership for a model, an attacker may
attempt to remove or copy it. For instance, in the case of BNSA [34], the goal is to deceive the
detector so that it identifies the input as watermarked, while it has been created by another party.
By doing so, the attacker can falsely claim ownership of the model or, in this case, an image.
While most of the research on this topic has been focused on images, there is no reason why it
cannot be extended to other domains, such as machine learning models.
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Model Fingerprinting. Fingerprinting is another technique used to uniquely identify a model.
The idea is to identify a distinctive model property, but unlike watermarking, the owner does
not actively embed this property, as it is an inherent characteristic of the model. It commonly
provides a similarity score between two models by looking at similar decisions in submitted
queries, such as cosine similarity score [134].

Most fingerprinting methods start with a small collection of benign inputs (except [247]
starting from random noise images) and forges examples that lie close to the decision bound-
aries [22], which are considered as the signatures of a model. These examples are called adver-
sarial and will be detailed in the next chapter.

Two trends are connected to two applications. The first one is linked to the integrity of the
model, where the goal is to verify if a model has not been altered. The goal is to sense a fragile

fingerprint. Any modification of a model is detectable because it changes the fingerprint. In that
light, methods in [85, 119] create sensitive examples that are triggered only by modifications of
the vanilla model.

The second application is called robust fingerprint, which refers to a fingerprint that re-
mains valid for any modification of the model while being more specific to the victim model.
IP-Guard [19] and Frontier Stitching [120] were the pioneers in providing model
fingerprinting by creating examples close to the decision boundary to define the fingerprint.
The goal is to frame the decision boundary of a model and detect any variation in it. Subse-
quent works based on these ideas continue to use adversarial examples [178, 140, 284, 172].
Lukas et al. [140] introduced the concept of conferrable examples, which are adversarial ex-
amples that transfer only to variations of the targeted model. AFA [284] and TAFA [172] use
dropout as a cost-effective surrogate of model variants when generating adversarial examples
for fingerprinting purposes.

All the methods discussed so far use adversarial examples for creating a model’s
fingerprint. However, generating adversarial examples with specific properties can be a
challenging task. In addressing this challenge, this thesis presents an innovative approach
called FBI [147], which is introduced in Chapter 7. It stands out as the only method that
utilizes unmodified images. It estimates the mutual information to measure the statistical
dependence of two models’ predictions.
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2.3.2 Proactive defenses

Proactive defenses are primarily aimed at reducing the effectiveness of attacks, making them
more difficult to execute. While these defenses may not completely make attacks impossible,
they increase the number of queries and time required to successfully steal the model. Proactive
defenses encompass a wide range of methods such as:

— Hard-label output: It is a simple yet highly effective approach. As discussed in Sec-
tion 2.2.2, by only revealing the predicted label without any additional information, it
significantly increases the number of queries required for efficient model extraction.
This increase makes it considerably time-consuming for attackers to steal a model;

— Input perturbation: To enhance the difficulty of model stealing, one effective approach is
to add perturbations to the input, which can obscure the model’s true attention and make
the extraction process more challenging [252]. For instance, Guiga et al. [74] use noise
on unimportant pixels identified by the Gradient-weighted Class Activation Mapping
(Grad-CAM) method to protect image models.

— Output perturbation: It is another technique that introduces noise to the output of the
model. While many methods in this category add noise to logits or probabilities [168],
it does not have an impact on decision-based black-box methods. Implementing output
perturbation for decision-based black-box attacks in a way that does not significantly
affect accuracy requires a clever approach. For instance, Kariyappa et al. [110] only
randomize the model’s output when the query lies outside the original data distribution.
This ensures that the output remains reliable within the known data distribution while
adding uncertainty for queries that fall outside it.

2.4 Conclusion

This chapter provided a brief overview of model confidentiality. While all components of
a model may be stolen, the majority of the literature focuses on models that output probabil-
ities. However, even in such cases, most attacks are expensive in terms of queries and time.
Additionally, side-channel attacks are another option but require hardware access.

It appears challenging to believe that stealing a model is possible in a realistic scenario
without any prior knowledge about it. However, it is worth noting that part of the knowledge
may already be available. Many models used in production are based on models trained on large
publicly available databases, which are then fine-tuned for specific tasks. The real accessible
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challenge may lie in identifying the correct architecture among all the existing ones.
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CHAPTER 3

ADVERSARIAL EXAMPLES

3.1 Introduction

3.1.1 Illustration

Figure 3.1 – Adversarial example for human perception.

As discussed in Section 1.2.1, neural networks have demonstrated impressive performance
on various classification tasks, surpassing human accuracy in some cases [82]. However, these
high-performing networks are also highly sensitive to adversarial examples.

The existence of adversarial examples, introduced by Szegedy [221] in 2013, is a counter-
intuitive feature of neural networks. Despite the high accuracy of DNNs on classification tasks,
a small imperceptible perturbation added to an image can cause a change in the predicted la-
bel. These so-called adversarial examples can be found in various types of data, including
images [262, 23], audio [165, 222] and text [274, 159, 286]. They pose a security issue for the
deployment of neural networks in real-world applications, particularly in safety-critical domains
such as autonomous driving [260] or medical diagnosis [89, 50].

Misclassifying an input with a perceptible perturbation is indeed a known concept. For in-
stance, optical illusions are a well-known example of this phenomenon and can be consid-
ered adversarial examples of human perception. In Figure 3.1, the interpretation of the image
changes. It plays with the human perception of juggling between a rabbit and a duck. The
characteristic of adversarial examples is the same but for DNNs. They are imperceptible to the
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Figure 3.2 – Adversarial example of a panda misclassified as a gibbon [221].

human eye while causing misclassification by DNNs. This is demonstrated by the famous ex-
ample of a panda image being misclassified as a gibbon, as shown in Figure 3.2. Notably, DNNs
are generally robust to random perturbations but vulnerable to carefully crafted adversarial per-
turbations [58, 221].

With the wide range of models imagined, different DNNs exhibit varying degrees of sen-
sitivity to adversarial examples. The ability of a model to withstand adversarial examples is
referred to as its robustness. Investigating and understanding this concept can contribute to en-
hancing model robustness. Before delving further, let us explore the mathematical definition of
adversarial examples.

3.1.2 Definition

An adversarial example xadv can be defined as a perturbed input sample that is designed to
deceive a machine learning model f . An adversarial perturbation δ is added to the original input
sample xo of label y to cause misclassification:

xadv = xo + δ s.t cl(xadv) 6= y (3.1)

Adding a large random noise to the image may work but it is not very informative or inter-
esting. The goal is to find the optimal adversarial x?adv with the minimal perturbation δ? leading
to misclassification.

The perturbation is typically constrained within a certain norm or distance metric such as the
`p norm. Three choices of the `p norms are retrieved in the literature. The `0 norm measures the
number of pixels modified. The `2 norm measures the Euclidean distance between the original
image and the adversarial example. The `∞ norm measures the maximum difference between
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the original image and the adversarial example.

This thesis focuses on the `2 norm which is the most common norm used in the adversarial
literature as far as images are concerned [23, 156]. It corresponds to the straight-line distance
between two points, these two points representing images in a high dimensional space. This
geometric interpretation aligns well with human perception of image similarity. The term of
distortion, denoted dist, is used to describe the magnitude of the perturbation. The distortion is
defined as the root mean square error:

dist(xadv,xo) := ‖xadv − xo‖2/
√
D, (3.2)

where D is the number of pixels.

This is easily interpretable: if xadv,i = xo,i ± ε, for all pixel i in the integer interval J1, DK,
then dist(xadv,xo) = ε. It is easily translated into a PNSR as image processing professionals
do: PSNR = 48.13 − 20 log10(dist(xadv,xo)) dB. Adversarial perturbations usually spread all
over the image and have a small amplitude like in invisible watermarking. This is a case where
measures based on `2 norm remain good indicators of the quality. A perceptual similarity is
obviously better, but more complex and less interpretable.

The goal is to find the optimal adversarial x?adv:

x?adv = arg min
xadv

dist(xadv,xo). (3.3)

This definition holds for untargeted attacks, where the goal is to cause misclassification,
whatever the arrival label. In the case of targeted attacks, the goal is to cause misclassification
to a specific class yt:

x?adv = arg min
xadv∈{RD:cl(xadv)=yt}

dist(xadv,xo). (3.4)

3.1.3 Quality of Evasion Attacks

To assess an evasion attack, a set of n images is considered. These images are represented
as X = {x1

o,x2
o, . . . ,xno} with corresponding labels {y1,y2, . . . ,yn}. The attack generates n

adversarial examples denoted as {x1
adv,x2

adv, . . . ,xnadv}.
Subsequently, various metrics are employed to gauge the effectiveness of the attack. The

most commonly used metrics include the attack success rate (ASR), the mean distortion (MD),
and the operating characteristic (OC).
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Attack Success Rate (ASR) under Distortion Constraint. When conducting an evasion at-
tack, the goal is to achieve a certain level of success. Typically, this is quantified by imposing a
specific distortion constraint often denoted as ε. The ASR is a metric that calculates the proba-
bility of adversarial examples being misclassified by the target model f while staying under the
threshold ε. This can be formulated as:

ASR(ε) := P(dist(xadv,xo) < ε). (3.5)

In other words, ASR(ε) represents the fraction of adversarial examples successfully mis-
classified within a given distortion budget ε. This is evaluated by using the Iverson bracket over
the set of adversarial examples:

ASR(ε) := n−1
n∑
i=1

[dist(xiadv,xio) < ε]. (3.6)

Usually, the threshold ε is predefined, and the ASR is often referred to simply as ASR.
This metric is commonly applied in the context of white-box attacks [280, 142, 22, 156] with
relatively modest thresholds, frequently set as `∞ lower than ε = 8/255 if x ∈ J0, 1KD (if
x ∈ J0, 255KD, it means ε = 8). When dealing with black-box setups, this measure is also
employed, particularly in cases involving transferable attacks [265, 52, 244].

Mean Distortion under Success Constraint. The concept of Mean Distortion pertains to the
average magnitude of perturbations required to induce misclassification through an attack. For
this score, the ASR is usually supposed to be 100%. This metric is calculated as follows:

dist := n−1
n∑
i=1

dist(xiadv,xio). (3.7)

Operating Characteristic. The operating characteristic provides insights to gain a compre-
hensive understanding of the interplay between the attack and the model. This characteristic es-
tablishes a relationship between the distortion D and the probability of attack success ASR(D),
defined by the equation:

ASR(D) := P(dist(xadv,xo) < D). (3.8)

It may also be seen as the cumulative distribution function of the distortion. Compared to the
ASR and the mean distortion, the operating characteristic is a more general metric that does not
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require a predefined threshold on the success or the distortion. It is worth noting that, unlike the
prevalent practice of measuring ASR for a specific distortion level within the literature [38], the
present thesis considers the entire spectrum of D values. Empirically, this operating character-
istic is computed over the set of adversarial examples using the following formula:

ASR(D) := n−1
n∑
i

[dist(xiadv,xio) < D]. (3.9)

3.2 Existence of Adversarial Examples

Understanding adversarial examples is a critical challenge for promoting the widespread
adoption of deep learning in security-critical applications. However, the scientific community
remains divided on this subject because of the high dimensionality in which DNNs work. Sev-
eral theories have been put forth to explain the existence of adversarial examples. We focus
on one particular hypothesis gaining acceptance and extensively utilized in the literature to de-
velop new attack and defense strategies. Readers are invited to read the survey of [77] for a
more complete overview of the different theories.

Initial Idea. When adversarial examples were first introduced, the initial hypothesis by Szegedy et

al. [221] regarding their existence was based on the idea of low-probability pockets in the clas-
sification regions. These pockets are difficult to find, which helps explain why models are robust
to random noise. Indeed, it is observed that the neighborhood of adversarial examples possesses
unique characteristics compared to benign images. Adversarial examples are found to be sit-
uated close to decision boundaries in all directions and are surrounded by the class of their
original image [83].

Initially, Szegedy et al. [221] suggested that these pockets are a result of the high non-
linearity present in deep networks. However, further investigations into adversarial examples
within the data manifold have led to additional explanations [77].

Data Manifold Hypothesis. When we perceive images with our human vision, we are ex-
posed to a vast array of shapes, colors, and objects, leading us to believe that the number of
possible natural images is infinite. However, as mentioned in Section 1.3, this is not the case.
The high-dimensional data, which serves as input to the model [101], actually lies in a lower-
dimensional smooth manifold. The majority of the space J0, 1KD is out of this data manifold.
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Adversarial examples are predominantly found in this empty space, outside the data man-
ifold [216, 199, 227]. They exploit the fact that the model is not adequately trained in this
region [204], resulting in the creation of inaccurate decision boundaries. Essentially, the vul-
nerabilities in the model’s behavior arise from the training process itself, leaving ambiguous
or "grey" areas in the input space, close to the data manifold, which adversarial examples can
exploit to mislead the model’s predictions.

Piece of Evidence. Based on this line of reasoning, it can be deduced that the availability
of more diverse data for training contributes to the model’s ability to effectively generalize
and develop robustness against adversarial examples. This idea is substantiated by research
findings [68, 203], which have demonstrated that when the model is trained on diverse and
abundant data, its robustness is significantly improved.

Non-linearities within the model’s architecture play a crucial role in enabling effective learn-
ing from limited training data [203, 239]. However, this characteristic can also be seen as a form
of overfitting, where the model learns to perform exceptionally well on the training data but may
struggle with unseen or perturbed inputs.

On the other hand, models that exhibit increased robustness against adversarial examples
tend to display a low curvature [157]. These characteristics indicate the model’s ability to gen-
eralize well and avoid overfitting the training data. By maintaining a smoother decision bound-
ary, the model becomes less susceptible to being misled by small perturbations, making it more
resilient to adversarial examples.

3.3 Properties of Adversarial Examples

Adversarial perturbations can be intentionally designed with specific properties to evaluate
the robustness of a model or to expose potential vulnerabilities. These properties serve as im-
portant indicators. In this section, we discuss and explore the key properties associated with
adversarial perturbation which are summarized in Figure 3.3.

Universal Adversarial Perturbations (UAPs) are input-agnostic perturbations. In other words,
they can be applied to a wide range of input samples to deceive a machine-learning model.
Unlike traditional adversarial examples that are specific to individual input samples, universal
adversarial examples are designed to generalize across different inputs, potentially fooling the

62



3.3. Properties of Adversarial Examples
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(x1, ..., xn)
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(a) Universal Perturbation
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(b) Transferable Perturbation
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f2f1 fm...

(c) Sensitive Perturbation

Figure 3.3 – Diagram of the different properties of a single adversarial perturbation.

model consistently. With the notations in Section 3.1.3, the UAP δa leads to incorrect predictions
for all images in the set:

yi 6= f(xio + δa); ∀ xio ∈ X . (3.10)

The concept of UAP has been introduced by Moosavi-Dezfooli [155] on images but has
been extended to other fields such as audio [160], text [148] and even image retrieval [130]. It
can be easily obtained on a subset of images as shown in Figure 3.4. The universal perturbation
is crafted iteratively. At each iteration, one image is selected and the perturbation is updated to
fool the model on this image plus the current universal perturbation.

UAPs have significant implications for the security and robustness of machine learning mod-
els. If it exists, it means that an attacker could generate a single perturbation that can consistently
fool the model regardless of the input [277].

Transferable Adversarial Perturbations (TAPs) have been discovered soon after the rev-
elation of adversarial examples [72]. They refer to perturbations that can be crafted on one
machine learning model, known as the source model fs, and successfully transfer their adver-
sarial properties to other models f1, f2, . . . , fm performing on the same task. This TAP δt can
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Figure 3.4 – Process of finding universal adversarial perturbations for three images from [155].
Each color represents the classification region of an image.

be expressed as:

fj(xo + δt) 6= y; ∀ fj ∈ {f1, f2, . . . , fm}. (3.11)

TAPs are an intriguing phenomenon in the field of adversarial machine learning. It demon-
strates that certain adversarial perturbations can exploit vulnerabilities or common weaknesses
across different models, leading to consistent misclassification or incorrect predictions. This
property has led to the development of a whole category of attacks [250, 136, 94, 265, 52, 96],
which is discussed in Section 3.4.1.

Sensitive perturbations , as the name suggests, are specifically forged to deceive a specific
machine learning model. Unlike TAPs, these perturbations are crafted to exploit the unique
vulnerabilities or weaknesses of a particular model, resulting in consistent misclassification or
incorrect predictions for that specific model. By keeping the notation in Figure 3.3, the model-
unique perturbation δs can be expressed as:

fs(xo + δs) 6= y; fj(xo + δs) = y; ∀ fj ∈ {f1, f2, . . . , fm}. (3.12)

This property is not as attractive for attackers compared to transferability or universality, as it
is limited to a specific model. However, it holds significance in defense strategies. Specifically,
this property becomes relevant when the models under consideration are slight modifications
of the target model f . It has been utilized under the term Sensitive Examples [85] to
establish the intellectual property of a model and to ensure that the model remains unaltered.
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3.4 Adversarial Attacks

The discovery of adversarial examples has posed challenges in forging them. Various attacks
(i.e. processes to craft adversarial examples) have been developed to generate these perturba-
tions. Many of these attacks are gradient-based, utilizing the gradient of the loss function to
determine the direction in which to modify the input and create an adversarial example [280,
181, 22, 156, 142, 72, 193]. While these gradient-based attacks are powerful, they often rely
on unrealistic assumptions and may not be applicable in real-world scenarios. In this work, we
focus on exploring attack methods under realistic assumptions.

3.4.1 Transfer-Based Attacks

The threat analysis related to adversarial examples usually considers two scenarios: the
white box assumption where the attacker knows the internals of the target model, and the black
box assumption where he does not but has limited access to the target.

White box attacks are now performing very well in terms of Attack Success Rate and dis-
tortion. We distinguish two kinds of attacks: 1) attacks constrained by a distortion budget like
PGD [142] whose performance is measured by the ASR, and 2) attacks yielding almost surely
an adversarial example like DeepFool [156] and CW [22] whose performance is measured by
the distortion. The trend is to make them speed efficient as well with fewer computations of the
gradient of the neural network, like FMN [181] and BP [280, 15].

Transferable attacks leverage the transferability of adversarial examples, which are crafted
to deceive one machine learning model, intending to transfer this adversarial property to a dif-
ferent model performing the same task (as discussed in Figure 3.3). To elaborate on this, the
assumption underlying transferable attacks is that the attacker possesses knowledge of another
model, referred to as the source model, which is trained for the same classification problem as
the target model. The attacker then conducts a white-box attack on the source model, hoping
that the resulting adversarial example also deceives the target model.

Nevertheless, in practice, this direct transfer of adversarial examples from the source to the
target model often yields poor results. The reason for this lies in the specificity of the adversarial
perturbation generated for the source model. Adversarial perturbations are highly tailored to the
specific characteristics and decision boundaries of the source model, making them less effective
when directly applied to the target model. This is where transferable attacks stand.

Transferable-based attacks increase the Attack Success Rate (ASR) by avoiding the overfit-
ting of examples on the source. Input transformations have been purposed by DI [265], TI [52],
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and Admix [249]. Papers [250, 136, 94] stabilized the gradient while [254, 93, 282, 290] focus
on the importance of intermediate features. The combination of several methods has also been
investigated [292, 96]. For instance, TAIG [96] uses input transformation, integrated gradients,
and attention reduction.

Ensemble-model attacks assume that the attacker leverages not a single source but several
source models. Paper [250] averages the logits of several sources and run a white box attack on
this aggregation of models, whereas [267] reduces model variance. The main obstacle to these
methods is the computational complexity. To counteract this drawback, some methods design a
specific ensemble of sources like ghost networks [133] or pruned networks [244]. This amounts
to creating several sources without the need to compute the gradient of each model.

The biggest assumption of these transferable attacks is that they own a model and
expect that this model has good average transferability with the target. But it may be too
optimistic. The contribution FiT in Part III focuses on this property.

3.4.2 Model Surrogate-Based Attacks

These attacks are similar to transfer-based attacks as they leverage the transferability prop-
erty to move the adversarial example from one model to another. However, the key distinction
lies in the ownership of the models. In this case, the attacker does not have access to any existing
model. He uses model extraction techniques (see Section 2.2.2) to create his surrogate model to
gain a white-box access to the target model, allowing for more effective attacks. An introduc-
tion to model extraction attacks is provided in Section 2.2.2. This section focuses on techniques
specifically oriented towards adversarial examples. However, it is worth noting that the methods
in this section [289, 248, 219] also fall under the category of model extraction attacks.

Nevertheless, there exists a nuanced distinction in their objectives. The attacks outlined
in Section 2.2.2 were designed to obtain a model that matches the victim model’s accuracy.
Conversely, model surrogate-based attack [289, 248, 219] have a different focus: to acquire a
model with high transferability to the victim model, specifically to facilitate evasion attacks.
This distinction is shown in the choice of the metrics (accuracy for the former and Attack Suc-
cess Rate or perturbation distortion for the latter), and it’s further highlighted by the heightened
emphasis on the decision boundary within this section.
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Early days black-box attacks used a surrogate model that mimics the targeted model. Ini-
tially, real data was employed to create the surrogate model [231, 174]. But, recent research
has highlighted the challenges of accessing large databases of real data. For instance, it can
be difficult for tasks like speech recognition to obtain a vast amount of data. To address this
limitation, a new class of attacks called data-free attacks has emerged. One of the pioneering
approaches in data-free attacks was introduced by Dast [289], where they utilized Generative
Adversarial Networks (GANs) to generate synthetic data. The GAN’s generator produces im-
ages from noise, which are then fed to the target model to obtain the output as the ground truth
for training the substitute model. The generator is further used to create new samples to explore
the differences between the surrogate and the victim model, covering all possible labels. This
approach has been further refined [248, 219], which aimed to find more informative data points
and ensure that the decision boundaries of the two networks are close. In terms of query effi-
ciency, Dast [289] required a massive number of 20, 000, 000 queries on Microsoft Azure to
attack a MNIST model in a hard-label setup.

A more accessible approach has been proposed by [283], which adopts a two-stage method
to reduce the number of required queries. In the first stage, no queries are made to the black
box. Instead, the generator generates images solely using the substitute model, which provides
the ground truth and the gradient. The generator’s loss function includes a term to maximize the
information entropy in the pseudo-labels given by the surrogate, resulting in data diversity with
an equal generation of samples for each class. Once correct images are generated, the second
stage involves training the surrogate model. This two-stage approach significantly improves the
number of queries required. Under the decision-based setup, only 20,000 queries are needed on
the MNIST dataset and 250,000 queries on CIFAR-10.

The adversarial examples found with these attacks have low distortion. However, while
a considerable amount of queries is spent for training the surrogate, not a single adversarial
example is forged.

3.4.3 Query-Based Attack

In query-based attacks, the attacker does not have access to a model initially. He iteratively
queries the black-box to minimize the perturbation’s distortion. These attacks often leverage the
low curvature of the decision boundary near the data point [187, 23, 126]. The attack process
typically begins with a large random noise as an initial perturbation, sufficient to be adversarial.
Subsequently, a line search is employed to approach the decision boundary of the target model.

67



Partie I, Chapter 3 – Adversarial Examples

Figure 3.5 – Gradient Estimation for query-based attacks by HSJA [23].

Once in proximity to the boundary, most attacks [187, 23, 126, 25, 235, 285, 139] attempt
to estimate the gradient of the boundary S, which is not directly accessible to the attacker.
With a Monte-Carlo estimation and by treating the decision boundary as a hyperplane, they
approximate the direction of the gradient as follows:

∇̃S(x, µ) = 1
K

K∑
k=1

f(x + µ× ub)× ub, (3.13)

where µ is a parameter controlling, the range of the estimation, ub is a random direction sampled
from a standard normal distribution, and K is the number of samples. Then, a step is made in
the direction ∇̃S as depicted in Figure 3.5.

Improving the query efficiency is an important area of research [187, 24, 126]. Attackers
employ various strategies, such as:

— Reducing the dimensionality of the search space: If we consider ImageNet input space,
the adversarial stands in an input space of ≈ 150, 000 dimensions. For our problem,
it’s like finding a needle in a haystack with the eyes closed. Works tried to reduce the
dimension by focusing on important input features. In the context of images, a common
approach is to select some frequencies [126, 187, 251]. Low-frequency components,
imperceptible to human perception, can significantly impact model predictions [243,
208]. Using the Discrete Cosine Transform (DCT), the works [126, 187] specifically
target low-frequency perturbations to explore this phenomenon.

— Leveraging query-history: The information gathered from previous queries, whether
they were successful or failed, improves the perturbation generation process [211, 129,
251]. While traditional attacks use random directions from a standard normal distribu-
tion to update the adversarial, AHA [129] introduces a more efficient approach by using
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the query history as a prior. The mean of the Gaussian distribution used to generate the
direction follows the last direction if it was successful or its opposite if it failed.

— Leveraging geometrical properties of the input-space: In Section 1.3, we explore the
specific properties of the decision boundary. The attackers leverage them to simplify the
problem and reduce the number of queries [28, 251]. For instance, in [251], a triangle
is constructed using the original image xo, the current adversarial example at iteration
t xadv,t, and the next adversarial example xadv,t+1, where two points are adversarial.
By leveraging geometric properties, they formulate an optimization problem to find the
optimal angle of the triangle to obtain the new adversarial point xadv,t+1.

— Improving initialization: The initial step for any query-based attack involves obtaining
the first adversarial point, and a common approach is a random initialization, resulting
in a distant starting point from the original image. For instance, [211] utilizes a transfer-
based attack to initialize the first noise.

All the ingredients used nowadays were already present in this literature dating back to
1997 [36, 137]: surjection onto the boundary with binary search, estimation of the gradient
at a ‘sensitive’ point lying on the boundary, dimension reduction. The new HopSkipJumpAt-
tack [23] is indeed very similar to the old Blind Newton Sensitivity Attack [34] introduced
in Section 2.3.1. The last work on this subject by this community [55] surprisingly does not use
any gradient estimate but random directions; like the very first decision-based attack [18].

The state-of-the-art attacks use gradient estimation. As it will be shown in Figure 4.1
in Chapter 4, a large number of queries are used for estimating the gradient direction in a
high dimensional space. During this gradient estimation process, no progress is made in re-
ducing the perturbation distortion. The contribution SurFree [146] developed Chapter 4
introduced during this thesis avoids this period of stagnation with a geometric approach,
providing a faster attack. It demonstrates how a prior work can be successfully adapted
to the context of deep learning highlighting that certain challenges faced today might have
been addressed in the past in another field.

3.4.4 Comparison of Numbers of Queries Required

When comparing attacks within the same category, the number of queries needed to craft
an adversarial example is a common metric. The more queries are required, the more time the
defender has to detect the attack, and it becomes more expensive for the attacker as well. Let’s
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Figure 3.6 – Estimation of the required number of queries as a function of the number of
attacked images using CIFAR-10 for transfer-based attacks, surrogate-based attacks, and query-
based attacks.

compare the average number of queries to attack an image on each category as a function of the
number of attacked images with a 100% ASR. Unfortunately, no prior work on surrogate-based
attacks or even model extraction has learned a surrogate on the ImageNet dataset. Even when
CIFAR-10 is tested, the number of queries required to train the surrogate may not be provided.
The CIFAR-10 dataset is considered for the analysis.

Based on the results from state-of-the-art attack [210], query-based attacks achieve good
results after approximately 400 queries on CIFAR-10. For the analysis, we consider this value
for the number of queries required by query-based attacks to attack a single image.

When using transferable attacks, by assuming a model possessed by the attacker, the number
of queries required is notably reduced. In a few cases, a single query may be enough to transfer
the adversarial example from the source model to the target model. However, to ensure a 100%
attack success rate (ASR) on the target model, attackers may use a few additional queries to
position the adversarial example on the decision boundary of the target model. We assume that
10 queries are adequate to achieve a 100% ASR.

The most effective surrogate-based attack methods typically require at least 250,000 queries
to successfully clone the model in the black-box [283]. Once the model is cloned, it is assumed
that the decision boundary of the surrogate model closely resembles that of the target model.
As a result, any adversarial example crafted on the surrogate model is likely to be adversarial
on the target model as well.

Figure 3.6 presents a estimated number of queries required to attack multiple images on
CIFAR-10 for each category of attacks based on the number of queries selected above. Transfer-
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based attacks are the most effective, but they require that the attacker possesses a model on the
same task. When the attacker has no prior information, surrogate-based attacks become inter-
esting compared to query-based attacks after approximately 600 attacked images. Before this
point, query-based attacks outperform surrogate-based attacks in terms of required queries. Un-
fortunately, the literature does not provide the number of queries required to train the surrogate
model on ImageNet. However, it is expected to increase with the model’s complexity. Therefore,
the gap between query-based attacks and surrogate-based attacks may be even more significant
on ImageNet.

It is worth noting that this short analysis does not consider distortion, as it was purposely
left out. Even though surrogate-based attacks may be more efficient in terms of distortion, all
methods obtained distortion within a similar range of values.

3.5 Defenses

The adversarial examples involve an ongoing game between the attacker and the defender.
The attacker continuously develops new innovative attack techniques to find the most effective
and efficient adversarial perturbations. On the other hand, the defender attempts to find ways
to prevent the attacker from finding such perturbations. This adversarial relationship drives the
advancement of both attack and defense methods in the field of adversarial machine learning
with always a step ahead for the attacker.

In the previous section, we explored various attack methods used to craft adversarial ex-
amples under realistic scenarios. In this section, we shift our focus to defense methods. We
distinguish three main types of defenses against realistic attacks: pre-processing, detection, and
training. Other defenses exist such as obfuscation [7, 47] which consist in masking the param-
eters and the gradients of the model. However, these methods did not show efficiency or are
almost useless against evasion attacks.

3.5.1 Pre-preprocessing defenses

These defense mechanisms aim to enhance the model’s robustness by applying transforma-
tions to the input before it is fed to the model. A diverse range of input transformations have
been proposed, including image cropping and rescaling, bit depth reduction [268], JPEG com-
pression [207, 75, 41, 54, 117], histogram equalization[185, 177], and more. However, some of
these defenses have been shown to be inefficient or not effective as soon as the attacker knows
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the defense [16, 7]. Additionally, some transformations may lead to a drop in model accuracy
and require retraining to maintain performance [278, 75].

Randomization has emerged as a promising strategy to enhance the robustness of deep learn-
ing models against evasion attacks [75, 264]. The randomness induces instability in the decision
boundary. A strategy has been proposed by BaRT [185] to address the limitations of individual
pre-processing defenses. It takes a comprehensive approach by randomly combining 25 differ-
ent transformations. This multi-defense strategy aims to enhance overall robustness effectively
by leveraging a diverse set of techniques.

However, it is important to note that while randomization significantly increases the cost of
decision-based black-box attacks, it may not truly increase the robustness of the model com-
pared to other defenses [67]. Evasion attacks are still possible despite the presence of random-
ization. One common way to bypass randomization is by using Expectation Over Transforma-

tion (EOT). EOT computes the "correct output" of the model by averaging the model’s output
over all possible transformations [7]. It means that the attacker must query a single input multi-
ple times and then aggregate the gradients for reliable outputs. This technique has been used to
break several randomized defenses [75, 264], as demonstrated by Athalye et al. [7].

The effectiveness of randomization as a defense strategy against the creation of adversarial
examples was demonstrated a long time ago. As far back as 1998, this approach had already
proven to be successful in countering oracle attacks in the context of watermarking [138]. In
the work [138], the authors suggested introducing random perturbations to the input data as a
means to thwart attackers from pinpointing the decision boundary.

This thesis studies the effect of randomization through randomized smoothing, a tech-
nique commonly employed to certify the robustness. It involves aggregating the model’s
predictions on a set of random perturbations added to the input. In Chapter 6 with the
contribution RS, its effectiveness is illustrated in mitigating decision-based black box at-
tacks [145].

3.5.2 Detection

When discussing detection in decision-based black-box scenarios, there are two main strate-
gies. The first strategy, applicable to any evasion attack, involves detecting adversarial exam-
ples themselves. The second strategy, specific to query-based attacks, focuses on detecting the
presence of the attacker. This section is an overview of detection methods. See Ahmed Aldah-
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dooh [3] for a more complete survey.

Adversarial Detection Defenders have various methods to detect adversarial inputs. One ap-
proach is based on analyzing the properties of the decision boundary. For example, He et al. [83]
utilize neighborhood analysis, considering the distance to decision boundaries and the number
of different classes nearby, to distinguish between benign and adversarial examples. Another
strategy involves measuring the consistency of the model’s output when the input is modified.
For example, Li et al. .[131] use context inconsistency by removing parts of the images to detect
adversarial examples. Another approach known as Feature Squeezing[268] reduces the
color bit depth of the input (although any transformation discussed in Section 3.5.1 could be
used).

However, a majority of detectors concentrate on the data manifold [209, 101, 216, 152, 198,
37, 104]. Adversarial examples are assumed to lie in lower probability regions, away from the
data manifold, and this property is exploited by many detectors. It amounts to measuring the
distance of the input from the manifold. For instance, [101] identifies the nearest neighbors in
the data manifold to detect adversarial examples, while [216] employs generative models to
model the training data distribution, and [152] uses a generative model to recreate the input and
detect if it is adversarial or not.

Stateful defenses Evasion attacks under a realistic scenario often query inputs that are ex-
tremely close, for instance, to estimate the gradient of the decision boundary or to perform a
binary search. One way to overcome this issue is to use a stateful defense [61, 128, 26]. These
defenses operate by tracking a history of incoming queries, and rejecting those that are suspi-
ciously similar. To do it, they need a similarity engine to compare the incoming query and to
store a history of the queries. Chen et al. [26] firstly propose to encode the query with a deep
similarity encoder and then performs a k-nearest neighbors (kNN) algorithm in the encoded
space with the previously seen examples. The high complexity of this technique is addressed by
Li et al. [128] which replace the similarity engine with a hash-based approach.

This defense has previously been explored in earlier literature within a different domain [9,
230]. As previously mentioned in Section 1.5, evasion attacks resemble oracle attacks, and anal-
ogous strategies have already been advanced in this context. For example, Mauro Barni et al. [9]
imagined a detection mechanism to counteract an attack. They concentrated on the presumption
that the majority of oracle attacks aim to find examples located near the decision boundary.
They also suggested a method to identify the line search employed by the attacker to position
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themselves on the decision boundary. This assumption remains valid in recent works on evasion
attacks [23, 24]. Therefore, the defense mechanism would remain effective.

3.5.3 Data Augmentation

A potential explanation for the existence of adversarial examples is that the model’s training
data might not fully cover the input space, leading to overfitting (as discussed in Section 3.2).
To address the issue of overfitting, a straightforward solution is to augment the training data.
This approach, known as data regularization or data augmentation, aims to prevent overfitting
by providing the model with a more diverse and representative training dataset.

Adversarial training is the most famous of these methods for improving the robustness
where the training dataset is augmented with adversarial examples [203]. Considered the most
powerful defense against adversarial examples, adversarial training has been early proposed by
Szegedy et al. [221] and Ian Goodfellow et al. [72] but has been successfully applied 5 years
later by Madry et al. [143]. During the training process, the model is exposed to both clean
examples from the original dataset and adversarial examples generated using various attacks.

Unfortunately, it is not a free ride. Two main drawbacks need to be considered. Firstly, the
process involves higher complexity compared to traditional training methods due to the compu-
tation of adversarial examples at each model update. Researchers have made efforts to address
this issue [259, 288, 49, 205]. For instance, Zheng et al. [288] introduce a strategy to limit
the training by accumulating adversarial perturbations through epochs, leveraging the transfer-
ability of adversarial perturbations over time. A similar idea is used by [205] on the gradients.
Another challenge lies in the selection of the training data to generate adversarial examples.
Dolatabadi et al. [49] argue that constructing adversarial examples for each individual data
point in the training set can be inefficient and costly. Instead, they propose a coreset selection

approach to choose a weighted subset of training data that can approximate the full gradient.
This helps to reduce the computational burden of adversarial training while still achieving mean-
ingful robustness for the model.

The second drawback of adversarial training is the loss of accuracy on clean examples. This
trade-off between standard accuracy and robustness is well-documented and can be considered
as an instance of the "No Free Lunch" theorem in machine learning [234]. For example, when a
model is trained on the CIFAR-10 dataset using adversarial training, its standard accuracy may
drop from 93.6% to 87.3% [186].

Adversarial training is not the only way to augment the training set. Other augmentation
methods [123, 239, 281] are efficient in increasing model robustness. For instance, MixUp [281]
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and Manifold MixUp [239] are two methods that augment the training set with linear combina-
tions of examples. Two images xi and xj of labels yi and yj are mixed to create a new training
image x̃ with label ỹ such as:

x̃ = λxi + (1− λ)xj
ỹ = λ1yi + (1− λ)1yj ,

with 1yi and 1yj the one-hot encoding of the labels yi and yj and λ ∈ [0, 1].
Data augmentation, particularly through adversarial training, has emerged as a promising

approach to enhance the model’s robustness. Despite its drawbacks, adversarial training remains
the most effective defense against adversarial examples.

3.6 Conclusion

This section offered a brief introduction to adversarial examples to understand their proper-
ties, their creation, and how to protect against them. This section remains a short overview of a
wide subject.

The interplay between the defender and the attacker is far from futile; in fact, it is crucial in
the development of DNNs. Adversarial examples provide a unique opportunity to gain insights
into the vulnerabilities of DNNs. While concerns about confidentiality, integrity, and availability
are paramount, understanding these weaknesses can lead to more effective and secure real-
world applications. Real-world data often differ from idealistic datasets, introducing distribution
shifts and noisy inputs that were not encountered during training. As we have observed, our
understanding of adversarial examples is still far from complete.

During this thesis, special attention has been given to the topic of adversarial examples,
considering its predominance in the security of machine learning. The surrogate-based attacks
have been left aside. Their huge cost (computational and in queries) has led us to look at query-
based and transferable attacks that offer more realistic attacks on a large number of different
data types. Part II is dedicated to discussing the contributions made during this thesis to the
field of adversarial examples.
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CHAPTER 4

SURFREE [146]: A FAST

SURROGATE-FREE BLACK BOX ATTACK

4.1 Introduction

It is striking that black box attacks mostly use substitution to replace information that are
missing. Early black box attacks used a surrogate model (trained from a huge number of in-
put and output pairs) mimicking the targeted model [173, 174] to perform white-box attacks
(See Section 3.4.1). Almost all recent score-based attacks resort to gradient estimation to com-
pensate for the lack of back-propagation, which is the key instrument of any white-box at-
tack [25, 235, 99, 285]. Works on score-based attacks managed to reduce the query amount
from millions of requests [98] to less than a thousand with most recent approaches [285]. The
number of queries became a key point in the research of new attacks. Surprisingly, this impres-
sive decrease has not reached comparable levels in the hard-label setup.

This chapter first highlights that the recent attacks in that setup, HSJA [23], QEBA [126]
and GeoDA [187] all perform costly gradient surrogate estimations. SurFree [146] proposes
to bypass these, by instead focusing on careful trials along diverse directions, guided by precise
indications of geometrical properties of the classifier decision boundaries. We motivate this
geometric approach before performing a head-to-head comparison with previous attacks with
the number of queries as a first-class citizen. SurFree [146] exhibit a faster distortion decay
under low query amounts (a few hundred to a thousand).

This argument should challenge any substitution mechanisms. They all consume a fair
amount of queries and it is not clear whether they are worth the gain in terms of distortion.
Especially, many techniques trade some query amount for an accurate gradient estimate giving
birth to good perturbation directions [187, 23]. During this step, the adversarial is not updated
and the distortion stalls as Figure 4.1 shows.

This chapter considers the query amount as a central criterion. It presents a fast black box
decision-based attack, named SurFree [146], motivated by practical applications in which a
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Figure 4.1 – The perturbation distortion (`2 norm) vs. the number of queries for image ‘lizard’.
The estimation of a gradient surrogate results in plateaus of distortion fo GeoDA [187],
QEBA [126], and HSJA [23]. SurFree [146] avoids this waste of queries with a random walk
and geometric approximation.

low amount of queries is key. Fast means that it outperforms the state of the art when it comes
to the distortion of adversarial under a low query budget (as exemplified in Figure 4.1 with the
purple curve).

The main contributions of this chapter are:

— SurFree [146], a black box decision-based attack not using any substitution mecha-
nism: no surrogate of the target model, no score reconstruction, and no estimation of a
gradient. It is inspired by the early works [55, 18].

— a geometrical mechanism to get the biggest distortion decrease for a given direction to
be explored under the assumption of a hyperplane boundary [60].

— a head-to-head comparison of the recent approaches with distortion as a function of
query number.

Experimental results show that SurFree [146] overcomes state of the art on the query amount
factor (a thousand queries), while remaining competitive with unlimited queries (normal sce-
nario for competitors).

All the notations unique to this chapter are listed in Table 7.11 at the conclusion of this

manuscript. Additionally, for general notation, please refer to Table 7.9.
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4.2 Problem statement

The attacker does not know the function f and can only observe the decision cl(x) for any
image x. From an original well-classified image xo, the attack is untargeted as it looks for an
image xadv close to xo and s.t. cl(xadv) 6= cl(xo). This defines the outside region O := {x ∈
RD : cl(x) 6= cl(xo)} and the optimal adversarial image:

x?adv = arg min
x∈O
‖x− xo‖. (4.1)

This is a hard problem and the attack is indeed an efficient algorithm for finding an approximate
solution.

We assume that when knowing a point x ∈ O, it is possible to find a point xb on the
segment xox that lies on the boundary denoted by ∂O. This is usually done by a line search
in the literature [23, 126, 187]. There has been experimental evidence that the boundary is a
rather smooth low curvature surface for DNNs [59]. This justifies that the boundary is often
approximated by a hyperplane locally around a boundary point: in other words, locally around
xb ∈ ∂O, there exists n ∈ RD, ‖n‖ = 1 s.t. x ∈ O if x>n ≥ x>b n.

4.3 Our Approach

The study of the recent attacks [23, 187, 126] under the query budget viewpoint, reveals the
presence of plateaus (see Figure 4.1). These are due to the construction of a surrogate for gra-
dients and appear to be particularly costly. Moreover, the budget allocated to gradient estimate
in [23] does not impact the speed of convergence: fewer queries give less accurate gradient esti-
mates yielding a smaller distortion decrease but at a higher rate. Our rationale is to set this query
budget to its extreme value, i.e. zero. We thus trade this budget for more directions investigated
with the hope that their multiplication allows for a faster distortion decrease. We now develop
this idea.

4.3.1 Basic idea

Let us assume that we know a point on the boundary: xb ∈ ∂O. We define d := ‖xb − xo‖
and u := (xb − xo)/d so that ‖u‖ = 1. We restrict the search for a closer adversarial point in
a random affine plane P of dimension 2. This plane P contains the point xo and is spanned by
vector u and a random orthogonal direction t ∈ RD, ‖t‖ = 1, t>u = 0. Note that xb ∈ P .
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In polar coordinates, we consider a point in P that is at a distance d(1 − α) from xo and
makes an angle θ with u:

z(α, θ) = d(1− α) (cos(θ)u + sin(θ)t) + xo, (4.2)

with α ∈ [0, 1] and θ ∈ [−π, π]. Note that z(0, 0) = xb and z(1, θ) = xo,∀θ. If z(α, θ) is
adversarial, then the distortion decreases by 100× α%.

This section shows how to choose (α, θ) to raise the probability of z(α, θ) being adversarial.
This study makes a clear cut with [55, 18] which also considers random directions.

This section assumes that the intersection ∂O ∩ P is a line passing by xb and with normal
vector n ∈ P , ‖n‖ = 1. Without loss of generality, n is pointing outside s.t. a point z ∈ P
is adversarial if (z − xb)>n ≥ 0. In polar coordinates, n := cos(ψ)u + sin(ψ)t with ψ ∈
(−π/2, π/2).

The point z(α, θ) ∈ ∂O ∩ P minimizing the distance from xo is the projection of xo onto
this line, obtained for θ = ψ and α = 1− cos(ψ). The attacker can not create this optimal point
because angle ψ is unknown. Note that

— If ψ = 0, then n = u, t>n = 0, (z(α, θ) − xb)>n = d((1 − α) cos(θ) − 1) < 0, and
z(α, θ) is not adversarial. This corresponds to the case where ∂O ∩ P is a tangent line
of the circle of center xo and radius d. This implies that xb is already optimum because
it is the projection of xo onto ∂O ∩ P .

— If θ = 0 and α > 0, then (z(α, 0) − xb)>n = α(xo − xb)>n < 0 because xo is not
adversarial. Therefore, z(α, 0) is not adversarial.

For θ 6= 0, calculation shows that z(α, θ) is adversarial if

gα(θ) :=
∣∣∣∣∣1− (1− α) cos(θ)

(1− α) sin(θ)

∣∣∣∣∣ ≤ tan(ψ)sign(θ). (4.3)

Point z(α, θ) might be adversarial only if ψ and θ share the same sign s.t. the rhs (4.3) is positive.
In this case, the surprise is that (4.3) separates parameters (α, θ) that the attacker controls from
the unknown angle ψ.

Minimizing gα(θ) raises the chances that (4.3) holds. Its derivative cancels for θ = θ?(α) :=
± arccos(1− α) (according to the sign of ψ) so that

gα(θ?(α)) =

√
1− (1− α)2

1− α = | tan(θ?(α))|. (4.4)

82



4.3. Our Approach

O ∩ P

∂O ∩ P

n

ψ

θ

d

d(1− α)

u

t

xo
xb

z?(θ)

z?(θ?)

Figure 4.2 – The geometrical configuration of the problem in P .

This quantity is an increasing function of α ranging from 0 (α = 0) to +∞ (α→ 1). From now
on, we denote by z?(θ) := z(1− cos(θ), θ) a point created with this coupling.

Property 1 Consider the mid-point z = (xo + xb)/2. The locus of the points z?(θ) ∈ P is the

circle of center z and radius d/2. Indeed, z?(0) = xb and z?(±π/2) = xo.

A little algebra shows that ‖z?(θ)− z‖ = d/2,∀θ ∈ [−π/2, π/2]. This circle is depicted in red
in Figure 4.2.

Property 2 If z?(θ) is adversarial, then so is z?(φ) for φ ∈ [0, θ]. Conversely, if z?(θ) is not

adversarial, then so is z?(φ) for φ ∈ [θ, sign(θ).π/2].

This is due to the monotonicity of function α→ gα(θ?(α)).

Property 3 θ? = ψ is the angle yielding a maximum distortion decrease of α = 1−cos(ψ). The

point z?(θ?) is indeed the projection of xo on the boundary line ∂O∩P: z?(θ?) = d cos(ψ)n +
xo.

This is shown by injecting (4.4) in (4.3).
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4.3.2 Iterations over orthonormal directions

This section assumes that the boundary ∂O is an affine hyperplane passing through xb,1 in
RD, with normal vector N. We consider a random basis of span(xb,1−xo)⊥ composed of D−1
vectors {ti}D−1

i=1 . The normal vector is decomposed in spherical coordinates:

N = sin(ψD−1)tD−1 + cos(ψD−1) sin(ψD−2)tD−2 +

. . . + cos(ψD−1) . . . cos(ψ2)n1, (4.5)

where n1 := sin(ψ1)t1 + cos(ψ1)u1 is the `2 normalized projection of N onto hyperplane P1

spanned by t1 and u1 := (xb,1−xo)/d. Note that N>u1 = cos(ψD−1) . . . cos(ψ1). Then Prop. 3
finds xb,2 := z?(θ?) ∈ O ∩ P1 and defines u2 := (xb,2 − xo)/d cos(ψ1) = n1. We iterate on P2

spanned by (t2,u2) to get N>u2 = cos(ψD−1) . . . cos(ψ2) ≥ N>u1.

Property 4 Iterating this process converges to the adversarial point with minimal distortion.

Iterations increase the scalar product between N and (xb,k − xo) ∝ uk given by:

N>uk =
D−k∏
i=1

cos(ψD−i). (4.6)

At the end, xb,D ∈ O and xb,D − xo is colinear with N, thus pointing to the projection of xo to
the hyperplane boundary.

A clever strategy browses the directions according to the decreasing order of their angles
(|ψk|)k (biggest distortion decreases first). This is out of reach for the attacker oblivious to N
and not willing to spend queries for its estimate.

4.3.3 Convex boundary

Our procedure can be seen as a coordinate descent on a random basis. If the boundary ∂O is
not a hyperplane but a smooth and convex surface, then cycling over the vectors {ti}D−1

i=1 mul-
tiple times ensures convergence to a local minimum [161]. On one hand, this reference shows
that the rate of convergence of the random coordinate descent (on expectation) is essentially the
same as the worst-case rate of the standard gradient descent (when it is available). On the other
hand, estimating the gradient in the black box setting costs more queries than the coordinate
descent of Section 4.3.1. These conflicting arguments deserve investigation.
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4.4 The SurFree [146] attack

This section presents the attack based on the ideas explained in Section 4.3. One iteration of
SurFree [146] is summarized in pseudo-code Algorithm 1.

4.4.1 The algorithm

Initialisation. The algorithm needs an initial point xb,1 ∈ ∂O. It first generates a point
y0 ∈ O. As done in [187, 126], y0 is one image from the targeted class (targeted attack) or a
noisy version of xo (untargeted attack). Defining yλ = λxo + (1 − λ)y0, a binary search over
λ ∈ (0, 1) results in xb,1 adversarial and close to the boundary.

New direction. At iteration k, the point xb,k ∈ O and close to ∂O defines uk ∝ xb,k − xo,
‖uk‖ = 1. Line 3 generates pseudo-randomly tk ∼ T (see Section 4.4.2). A Gram-Schmidt pro-
cedure makes it orthogonal to uk and to the L (at most) last directions Vk−1 := {tj}k−1

j=max(k−L,1),
producing the new direction tk in line 4.

Sign Search. The algorithm considers points z(α, θ) as defined in (4.2) with u = uk, t = tk,
dk := ‖xb,k − xo‖, and the coupling cos(θ) = 1 − α. The sign of θ depends on the sign of
unknown ψ (see Section 4.3.1). Hence, we test T angles starting with the biggest amplitudes,
alternating + and - sign, as stored in the vector θmax.τ with:

τ := (1,−1, (T − 1)/T,−(T − 1)/T, . . . , 1/T,−1/T ) . (4.7)

The search stops as soon as an adversarial image is found. If this fails, line 17 decreases
θmax, direction t is given up (line 18), and another direction is generated.

Binary Search. When the sign search finds an adversarial image at θ = θmaxt/T , the binary
search (line 12) refines the angle θ over the interval θmax[t, t + sign(t)]/T within ` steps. The
result is θ? and z?(θ?) is the new boundary point xb,k+1 provoking a distortion decrease α? =
1− cos(θ?).

4.4.2 Distribution of the directions

The algorithm is a random process as it draws directions from distribution T according to
Algorithm 2. This has two roles: dimension reduction and adaptivity to the content of xo.

Dimension reduction is implemented with the help of a reversible image transformation
(DCT 8 × 8, or full frame DCT in Table 4.1). Line 3 selects a fraction ρ of the transform coef-
ficients, typically in the low-frequency subband. We draw ρD samples uniformly distributed
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over {−1, 0, 1}, the other transform coefficients being set to 0. The inverse transform yields the
direction t in the pixel domain.

Adaptivity to the visual content makes the perturbation less perceptible thanks to the mask-
ing effect well known in watermarking [55]. It shapes the adversarial perturbation like the visual
content of xo. The following is a simple implementation of this principle: denote the i-th trans-
form coefficient of image xo by Xo,i. Line 5 modulates the amplitude of a random variables by
A(|Xo,i|), where A : R+ → R+ is a non-decreasing function. The goal is to shape the power
distribution of the perturbation as one of the images.

4.4.3 Interpolation

Section 4.3 motivated our design assuming the boundary is a hyperplane. This extra interpo-
lation is an option of SurFree [146] inspired by the watermarking attack [55], which tackles
convex surfaces with small curvature as in Figure 4.3.

A given iteration starts with xb,k ∈ ∂O at angle θ = 0 and distance d. The binary search
in line 12 gives the angle θ? of a boundary point at distance d cos(θ?). This option finds a third
point on the boundary at angle θ?/2 thanks to a binary search between xo and z?(θ?/2). This
point, depicted in blue in Figure 4.3, is at distance δ ≤ d cos(θ?/2).

Thanks to these three boundary points resp. at angle 0, θ?/2, and θ?, we interpolate the
mapping from angle to distance (of the surjection of z(α, θ) onto the boundary) by a second
order polynomial and find its minimum at:

θ̂ = θ?

4
4δ − d(cos(θ?) + 3)
2δ − d(cos(θ?) + 1) . (4.8)

This option concludes by a binary search finding the point on the boundary between xo and
z?(θ̂). The new point xb,k+1 is the closest point we found on the boundary.

4.5 Experimental Work

We first specify the experimental setup and the parameters of our approach. We then perform
an ablation study on SurFree [146] (Section 4.5.2), for it allows to precise gains on the two
considered metrics. Section 4.5.3 performs a head-to-head comparison of all the competing
approaches.

86



4.5. Experimental Work

Algorithm 1 One iteration of SurFree [146]
Require: Original image xo, boundary point xb,k ∈ ∂O, previous directions Vk−1 :=
{tj}k−1

j=max(k−L,1)
Ensure: Output xb,k+1 ∈ ∂O, Vk

1: New direction
2: uk = η(xb,k − xo) . η(x) := x/‖x‖
3: tk ∼ T . Algorithm 2
4: tk = η

(
projspan(Vk−1∪uk)⊥(tk)

)
. Gram-Schmidt

5: Vk = Vk−1 ∪ {tk}
6: Sign Search
7: j = 1, τ = (T,−T, (T − 1),−(T − 1), . . . , 1,−1) /T
8: while z?(θmax.τj) /∈ O ∧ j ≤ 2T do
9: j ← j + 1

10: if j < 2T then
11: Binary Search
12: θ? = BS(θmax.τj ; θmax(τj + sign(τj)/T ))
13: θmax ← θmax/(1− κ)
14: Return xb,k+1 = z?(θ?)
15: or Interpolation Section 4.4.3
16: else . Sign Search failed
17: θmax ← θmax × (1− κ) . Geometric decay
18: Go to line 3 . Give up

Algorithm 2 Draw direction t ∼ T
Require: Original image xo, frequency subband F s.t. |F| = ρD, A(·) shaping function
Ensure: A random direction t perceptually shaped as xo

1: Xo = DCT(xo)
2: for j = 1 : n do
3: if j ∈ F then
4: r ∼ U{−1,0,1} . r ∈ {−1, 0,+1}
5: Tj = A(|Xo,j|)× r
6: else
7: Tj = 0
8: Return t = η (DCT−1(T)) . η(x) := x/‖x‖
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Figure 4.3 – Interpolation mechanism to refine the boundary point.

4.5.1 Datasets and Experimental Setup

Datasets For MNIST, we use a pre-trained CNN network that is composed of 2 convolutional
layers and 2 fully connected Layers. Its accuracy is 99.14%. A subset of 100 correctly classified
images has been randomly chosen to perform the ablation study. Our attack generates directions
on the pixel domain without any dimension reduction.

The ImageNet dataset is tackled by a pre-trained ResNet18, made available for the PyTorch
environment [176]. Its top-1 accuracy is 0.6976. We randomly selected n = 350 correctly

classified images from the ILSVRC2012’s validation set with size D = 3× 224× 224.

Setup and Code We now detail the specific parameters of SurFree [146], for both MNIST
and ImageNet. We set empirically the following values in Alg. 1: T = 3, L = 100, θmax = 30,
κ = 0.02, at most ` = 10 steps for the binary search (with an early stop if the range is lower
than 1% of d). We develop SurFree [146] on top of the FoolBox library.

Evaluation Metrics The two core evaluation metrics are the amount of queries, and the re-
sulting distortion on the attacked image defined. The distortion is measured with the `2 norm
and the mean distortion defined in Section 3.1.3. The scores defined in Section 3.1.3 are updated
to take into account the number of queries. For a given xo, it is the smallest distortion obtained
over the sequence of queries (qj)Kj=1 that happen to be adversarial:

dist(K,xo) := min
1≤j≤K :cl(qj)6=cl(xo)

‖qj − xo‖2 (4.9)
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The mean over n original images gives a characteristic of the attack efficiency revealing its
capacity to find an adversary close to the original image and especially its speed.

dist(K) := 1
n

n∑
i=1

dist(K,xo,i) (4.10)

We define the success rate as the probability of getting a distortion lower than a target distt
within a query budget K:

ASR(distt, K) := |{i ∈ J1, nK : dist(K,xo,i) ≤ distt}|
n

(4.11)

4.5.2 Ablation Studies

Impact of the components - MNIST This first ablation evaluates how the hyperplane hypoth-
esis [60] meets practical experimentation, and how the interpolation mechanism of Section 4.4.3
is able to compensate this hypothesis. To this end, four variants of our attack are tested in Fig-
ure 4.4 and 4.5: SignSearch stops at line 10 of Alg. 1 whereas SurFree [146] is the regular
attack, ‘+Interpolation’ uses the option 4.4.3.

Our attack is highly random due to the generation of directions. This may yield unstable
results with adversarial images of scattered distortion. Figure 4.4 shows the distortion decrease
averaged over 100 images and Figure 4.5 the standard deviation for one image attacked 20
times.

This outlines the trade-off between the complexity of one iteration in terms of query num-
ber and the gain in the distortion decrease. The Interpolation option may yield a substantial
decrease depending on the direction. This explains its large standard deviation. Yet, its costs (2
more binary searches) slow down the speed. SignSearch is less costly and offers competi-
tive distortions only at the beginning. SurFree [146] strikes the right trade-off both in terms
of averaged distortion and standard deviation. Compared to SignSearch, it always exhausts
the explored direction giving the best gain under the hyperplane boundary assumption. The first
important insight is that this hypothesis seems to be good enough to ensure a rapid decay.

The ablation study also tested different values for some parameters of SurFree [146]. The
value of κ has no significant impact provided that κ > 0. Parameter T does not benefit from
higher value because of the finer search in line 12.

Impact of the direction generation domain - ImageNet The literature reports that black box
attacks have difficulty in handling large images like ImageNet. Attacks become slow because

89



Partie II, Chapter 4 – SurFree [146]: a fast surrogate-free black box attack

0 200 400 600 800 1000

3

4

5

6

7

8

9

10
SignSearch
SurFree [146]
SurFree [146] + Interpolation
SignSearch+ Interpolation

Number of queries

D
is

to
rt

io
n

Figure 4.4 – Ablation study on SurFree [146]. Mean distortion d(K) (4.10) vs. number K of
queries on MNIST.

the space is too large to be explored efficiently. All competing attacks resort to a dimension
reduction, typically by leveraging a full DCT transform [126, 187]. Yet, dimension reduction
lowers the degrees of freedom for the attacker: the closest adversarial as defined in (4.1) has
a bigger distortion under this constraint. The distortion supposedly converges faster but to a
bigger limit.

SurFree [146] is no exception. Table 4.1 shows that the distortion in the full pixel domain
is bigger within the first thousand queries. For the same query budget, constraining the pertur-
bation to lie in a smaller low-frequency subspace defined with the full DCT as in [126, 187]
is beneficial. Yet, this frequency reduction has to be controlled, at the risk of suppressing too
many frequencies and obtaining a more important distortion: distortion reported for a reduction
of ρ = 25% are always larger than those for 50%.

We now question the type of DCT transform. Indeed, while the DCT full frame is widely ac-
claimed, we prefer the block-based DCT as used in JPEG. It gives a better space-frequency local-
ization trade-off. Table 4.1 shows that it does change the distortions a lot. The 4 last rows of Ta-
ble 4.1 focus on the adaptivity to the visual content of the original image (see Section 4.4.2).
Amplitude function A(x) = x concentrates the perturbation power too much on some high
amplitude coefficients when the original image has sharp edges. tanh(x) is a good compromise
between the constant and the identity functions. It offers an early distortion drop and reaches
similar levels to A(x) = cst in the long run. Our design is driven by the small query budget
requirement so we choose tanh and ρ = 50% on DCT8×8.
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Figure 4.5 – Ablation study on SurFree [146]. The deviation of the distortion over 20 runs of
SurFree [146] on one MNIST image.

4.5.3 Benchmarking

We compare to recent algorithms considered as state-of-the-art decision-based black box
attacks: HSJA [23], GeoDA [187] and QEBA [126]. These 3 algorithms leverage gradient sur-
rogates. The benchmark does not include older attacks like OPT [27] and BA [18] because they
have proven less efficient than the three above-mentioned references.

We use the author’s code for these algorithms: HSJA [23] is integrated into the FoolBox li-
brary [190, 191]. For GeoDA [187] and QEBA [126], we pull implementations from their respec-
tive GitHub repositories 1 2 with default parameters. For GeoDA [187], the number of queries
devoted to the gradient estimates follow a geometric progression of common ratio λ−2/3 with
λ = 0.6, and the dimension reduction focuses on 5,625 coefficients of the full DCT transform.
Concerning QEBA [126], ρ = 25% dimension reduction on low frequency full DCT coefficients.
HSJA [23] works on the pixel domain, the number of queries devoted to gradient estimates
scales as N0

√
j with j the iteration number. We tested two versions with N0 ∈ {10, 100},

which is directly observable with the larger plateaus on Figure 4.6.

A very important point is that all attacks are initialized with the same first adversarial exam-
ple to avoid favouring a competitor by giving it an easier initialization.

1. QEBA:https://github.com/AI-secure/QEBA
2. GeoDA:https://github.com/thisisalirah/GeoDA
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Space Shaping A(x) Dim. Reduc. ρ K = 100 K = 1000
Pixel _ 100% 27.23 17.20

DCTfull cst 50% 26.50 15.35
DCTfull cst 25% 32.08 21.23
DCT8×8 cst 50% 19.49 10.69
DCT8×8 cst 25% 18.26 9.93
DCT8×8 x 50% 20.11 11.96
DCT8×8 x 25% 20.29 12.22
DCT8×8 tanh(x) 50% 17.38 10.22
DCT8×8 tanh(x) 25% 18.20 10.61

Table 4.1 – Mean distortion dist(K) when random directions are generated with different sub-
spaces and shaping (ImageNet).

target K = 500 queries K = 1, 000 queries K = 2, 000 queries
distt HSJA [23] GeoDA [187] QEBA [126] SurFree [146] HSJA [23] GeoDA [187] QEBA [126] SurFree [146] HSJA [23] GeoDA [187] QEBA [126] SurFree [146]
30 0.56 0.79 0.71 0.90 0.88 0.93 0.88 0.96 0.98 0.96 0.97 0.99
10 0.13 0.25 0.32 0.44 0.23 0.52 0.46 0.57 0.40 0.70 0.69 0.73
5 0.07 0.14 0.17 0.23 0.09 0.21 0.30 0.31 0.13 0.39 0.47 0.50

Table 4.2 – Success rate ASR(distt, K) for achieving a targeted distortion distt under a limited
query budget K (ImageNet).

Performance evaluation: distortion vs. queries Figure 4.6 displays the distortion of the per-
turbation (`2 norm) versus the number of queries. SurFree [146] presents a smooth curve,
resulting from averaging over 350 images. Even with this averaging, the other attacks still show
large plateaus (as highlighted in Figure 4.1 for one image) because gradient estimates are sched-
uled at the same instants for any image. Note that these plateaus are not shown in the papers
because the distortion is seen as a function of the iteration number, not the query number. The
two most recent attacks, QEBA [126] and GeoDA [187] indeed beat HSJA [23] as reported in the
corresponding papers. SurFree [146] dives significantly faster than all attacks to lower distor-
tions (notably from 1 to 750 queries), while QEBA [126] prevails at around 3, 750 queries. Note
that SurFree [146] is also first with DCT full but for a shorter period (≈ 800 queries). For com-
pleteness, here are the scores at 10,000 queries: 2.09 (QEBA [126]) < 2.72 (SurFree [146])
< 3.48 (HSJA_10) < 4.63 (GeoDA [187]). Although a small query budget drives its design,
SurFree [146] is not off in the long run. Similar results are observed for MNIST (pixel do-
main, without dimension reduction) where SurFree [146] is ahead up to ≈ 5, 000 queries.

Performance evaluation: Success rate We now consider three query budgets,K ∈ {500, 1, 000, 2, 000},
which are rather low with regards to the state-of-the-art.
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attack K = 100 K = 500K = 1000 K = 100 K = 500K = 1000 K = 100 K = 500 K = 1000

SurFree [146]
amer. dipper- 2.6 amer. dipper- 1.3 amer. dipper- 0.9 stone wall- 14.9 stone wall- 8.7 stone wall- 5.4 cliff dwelling- 21.9 cliff dwelling- 18.4 triceratops- 13.5

QEBA [126]
stingray- 60.6 stingray- 33.7 stingray- 20.8 stone wall- 25.2 stone wall- 4.8 stone wall- 2.6 wombat- 58.3 wombat- 24.3 wombat- 13.6

GeoDA [187]
brambling- 18.9 brambling- 9.7 brambling- 5.8 stone wall- 15.8 megalith- 4.5 megalith- 2.6 armadillo- 49.4 tusker- 31.3 tusker- 18.9

Table 4.3 – Visual trajectories for an easy (chickadee), a medium (king penguin), and a difficult
image (warthog) - predicted label and distortion

Table 4.2 details how the success rate asr(distt, K) varies for some setup (distt, K) (4.11). Fig-
ure 4.7 shows the success rate ASR(distt, 500) increase with distt. GeoDA [187] is superior to
QEBA [126] for large target distortions only. Both schemes outperform HSJA [23]. SurFree [146]
remains the best attack for any target distortion up to this 2, 000 query budget.

Finally, Table 4.3 displays the visual trajectories of three attacked images witnessed as easy,
medium, and difficult to attack for SurFree [146]. While all three attacks affect differently
the images, SurFree [146] gives relatively less annoying artefacts. We also note a drawback
of QEBA [126]: the adversarial often keeps the label of the random starting point (e.g. stingray),
hence sometimes converging to a local minimum which is far from the optimal solution (4.1).

4.6 Conclusion

The performance of black box decision-based attacks reveals important gaps when it comes
to the required amount of queries. Core to the three state-of-the-art approaches these papers
consider is the estimation of gradients. This step is particularly costly, with regards to our novel
geometrical attack SurFree [146]. The trial of multiple directions together with a simple
mechanism getting the best distortion to decrease along a given direction allows a fast conver-
gence to qualitative adversarial, within an order of hundreds of queries solely. This sets a new
stage for future works.
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Figure 4.6 – Benchmark on ImageNet. The amount of queries K (x-axis) w.r.t. mean distortion
dist(K) (y-axis).
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Figure 4.7 – Success rate ASR(distt, K) (4.11) vs. target distortion distt with K = 500 queries
over ImageNet.



CHAPTER 5

HOW TO CHOOSE YOUR BEST ALLIES

FOR A TRANSFERABLE ATTACK?

5.1 Introduction

Transferability is usually measured by the Attack Success Rate (ASR), i.e., the probability
that the adversarial example crafted for the source model also deludes the target model. We ar-
gue that this measure leads to an unfair evaluation of transferability. In the context of adversarial
examples, it is not just a matter of discovering data that is not well classified, but rather iden-
tifying the perturbation that can fool a classifier with minimal distortion. This principle should
also apply to transferable attacks.

For illustration purposes, let us consider two models, one is robust in the sense that the
necessary amount of adversarial perturbation is large, whereas the other model is weak. If the
attacker uses the robust model as the source to attack the weak target network, the ASR of the
transferable attack will certainly be big. It does not mean that this is the right choice. The ASR
is high because the robust source model needs large perturbation to be deluded, which will fool
any weaker model. The ASR alone does not reflect the overshooting in distortion. The converse,
using the weak to attack the robust, would yield a low ASR. To summarize, the ASR fails to
capture the relevance of the perturbation direction given by the source for attacking the target.

The first contribution of this chapter is to put distortion back into the picture. Section 5.2
evaluates transferability by comparing the distortion of a transferable attack to the ones of two
reference attacks: On one hand, the strongest attack, i.e., the white box attack directly applied
on the target model; on the other hand, the weakest attack, i.e., the black box attack.

The second contribution shows the great variability of the performance of transferable at-
tacks. Figure 5.1 summarizes this observation by plotting the ASR as a function of the distortion
(the experimental protocol is explained in Section 5.3.1). Naturally, the black box attack needs
much more distortion than the white box attack. For instance, the white box attack yields an
ASR of 50% with a distortion of 0.19, whereas the black box attack needs a distortion of 9.7.
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Figure 5.1 – Evaluation of transferability by comparing the Attack Success Rate vs. distortion
trade-off of a white box, transferable, and black box attacks against model CoatLitesmall
(See Section 5.3.1 for details). The blue area is the range of trade-offs operated by a transferable
attack with random source models. A transferable attack may be worse than a black box attack
without a good source selection (like FiT).

The surprise is that if the attacker resorts to a transferable attack and picks a source model at
random, there is almost a 50% chance that the attack performs even worse than the black box
attack. Section 5.3 outlines a triad of factors: input, source model, and attack.

All this literature uses the ASR as the figure of merit for a given distortion while this chapter
draws the full operating characteristic of ASR vs. distortion. Moreover, the performance of the
transferability is compared neither to the white box nor the decision-based black box attack.

This observation challenges the prevalent notion that adversarial examples transfer easily
between models, and highlights the need to carefully choose the source model to attack a target.
Under the assumption that the attacker has indeed several candidate models, our third contribu-
tion, named FiT in Section 5.4, provides an affordable measure for model selection, allowing
the attacker to choose a good source model with only a few queries to the target.

All the notations unique to this chapter are listed in Table 7.13 at the conclusion of this

manuscript. Additionally, for general notation, please refer to Table 7.9.
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5.2 Methodology

This chapter introduces a new way to gauge transferability. The main motivation is that
transferability should indicate whether a source s is useful for attacking a target t, independently
from the inherent robustness of t.

5.2.1 Notations

This chapter follow the general notation in Section 1.2.3 For a given input x of class y, the
adversarial example xa is the result of an attack (be it white box, black box, or by transferability)
such that

arg max
1≤k≤C

fk(xa) 6= arg max
1≤k≤C

fk(x) = y. (5.1)

In the case of transferable attacks, the attacker uses a source model fs to build a transferable
adversarial example against the target model ft. This chapter considers a collection of m source
models denoted by Fs = {f 1

s , ..., f
m
s }, and a set of n inputs X .

5.2.2 Measurement

5.2.3 Transferability

Given a white box and a black box attacks, The proposed methodology first computes the
operating characteristic Pwb

t (D) of a state-of-the-art white box attack directly applied to the
target model, and the operating characteristic P bb

t (D) of a state-of-the-art black box attack. It
then measures where the operating characteristic of the transferable attack from the source s to
the target t lies in between the two characteristics as follows:

Ts,t :=
∫∞

0 Ps,t(u)− P bb
t (u)du∫∞

0 Pwb
t (u)− P bb

t (u)du. (5.2)

The proposed score is calculated as the ratio of the areas between the different operational
characteristics, which are defined as Cumulative Distribution Functions (CDFs). The numerator
is therefore close to the 1-Wasserstein distance [43] between the ASR function of the distortions
of the transferable attack and that of the black box attack, where the absolute value is removed to
obtain a signed score. If the transferable attack performs as well as the white box attack (resp. as
bad as the black box attack), then Ts,t = 1 (resp. Ts,t = 0). Figure 5.1 shows that the numerator
of (5.2) can indeed be negative as transferability can be even worse than the black box if the
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source s is not well chosen. Therefore, zero is not a lower bound for Ts,t. In the denominator,
the 1-Wasserstein distance is obtained exactly between the white box and the black box because
the white box consistently generates adversarial examples with lower distortion.

5.2.4 Practical implementation

Attacks. We only consider state-of-the-art attacks which almost surely deliver an adversar-
ial example. As said in Section 3.4.1, this is usually the case for black box attacks, but we are
limited to using white box attacks that are not subject to a distortion budget. As for transferabil-
ity, the attack uses the publicly available model s and input x to craft an adversarial direction
ux,s of Euclidean norm

√
N . The use of

√
N for the norm is for the sake of simplicity in nota-

tion. We assume that there is an oracle giving the minimal distortion along this direction to fool
the target t. In other words, xa = x+ d ux,s, with

d = min{δ : arg max
k

ft,k(x+ δ ux,s) 6= y}. (5.3)

Note that dist(xa, x) = d. This definition favours transferability as its best. In practice, such an
oracle does not exist but the attacker finds a good estimate of (5.3) thanks to a line search within
a few queries to the target.

Transferability. We run a given attack over a collection X of n inputs correctly classified
by the target model. We compute the distortions d(j) = dist(xa,j, xj) with xj ∈ X and sort
them so that d(1) ≤ d(2) ≤ . . . ≤ d(n). We set d(0) = 0 and d(n+ 1) =∞ to properly define
the empirical operating characteristic by the following step function:

P̂ (D) := j/n ∀D ∈ [d(j), d(j + 1)). (5.4)

It is then easier to estimate the integrals appearing in (5.2), which are indeed areas under two
curves, by a Lebesgue sum rather than a Riemann sum. This gives:

T̂s,t :=
∑n
j=1 ds,t(j)− dbb

t (j)∑n
j=1 d

wb
t (j)− dbb

t (j) , (5.5)

where the distortions (dbb
t (j))j (resp. (dwb

t (j))j) resulting from the black box (resp. white box)
attack against model t are also sorted in increasing order.
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5.3 Triad of transferability: data, model, attack

This section is an experimental investigation of the factors affecting transferability.

5.3.1 Experimental setup

The study assesses transferable attacks on a total of 48 models, with 47 of them sourced
from the Timm library [258] and one very robust, namely ResNet50AdvTrain, obtained from
the GitHub repository 1. Section C.1 lists all the models. The experiments utilize 100 images
from the validation set of ILSVRC’12, all of which are correctly classified by all models under
consideration.

The study considers three transferable attacks - DI [265], TAIG [96], and DWP [244]- each
using a different approach to improve transferability (see Section 3.4.1). These attacks are se-
lected as the best in their categories in [287]. They all share an ε parameter to control the
maximum perturbation added per pixel. The effect of the parameter ε indeed happens to be
negligible in our protocol, as demonstrated in Section C.2.1. We choose ε = 8.

To measure transferability (5.5), we need state-of-the-art black box and white box attacks.
Certain methods may exhibit a preference towards one model over the other, necessitating the
use of multiple attacks. Our study employs four white box attacks (BP [280, 15], DeepFool [156],
I-FGSM [117], and PGD [142]) and three black box attacks (SurFree [146], RayS [24], and
GeoDA [187]). All black box attacks are run with 2,000 queries, which has been determined
to be sufficient for achieving convergence. For distortion-constrained white box attack, the ε
parameter is set to 4. We record the smallest perturbation distortion over the black box (white
box) for each image and draw the operating characteristic (5.4) as appearing in green (resp. red)
dashed line in Figure 5.1.

As for the transferable attack, for a given target model, the attacker has access to a subset of
all the other models whose architecture differs from the target. This amounts to an average of
45 models out of 48. For instance, in Figure 5.1, CoatLitesmall being the target, we exclude
all other CoatLite models from being a source. The light blue area delimits the operating
characteristics of transferable attack DI [265] using as the source one of the 45 remaining
models.
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Figure 5.2 – Transferability score T̂s,t matrix of 48 sources and 48 targets listed in App. C.1
with attack DI [265].

5.3.2 Model dependence

Large transferability variation. Figure 5.2 shows the matrix T̂s,t, where s and t are any of
the 482 pairs, for attack DI [265]. Not all models possess the same transferability capabilities.
At first look, the figure contains more blue than red cells which means that transferability takes
a negative value more often.

Some rare models, like PiTsmall-dist, exhibit good transferability towards any target. On
the contrary, DPN68b is always a bad source. On the other hand, ResNet50AdvTrain is a very
difficult target (note however that its accuracy is low), followed by PiTlight and ConViTtiny,
whereas the family of ResNet are a fairly easy target.

Prior works have shown that models with architectures similar to the target transfer bet-
ter [261, 180]. The red squares appearing in the matrix confirm this (models are ordered ac-
cording to architecture family). For instance, MobileNetV2 and RexNet architectures ex-
hibit transferability close to 0.7. However, this is not an absolute truth. EfficientNet-B0
has better transferability against MixNetlarge than MixNetmedium, even though they have sim-

1. https://github.com/MadryLab/robustness
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Figure 5.3 – T̂s,t function of the number of available sources and attack DI [265]. The best or
worst model selected per image (solid line) or on average (dashed line).

ilar architectures. ConViT transfers exceptionally well to Twins although their architectures
are very different. Similar observations hold for the other attacks but with lower transferability
scores (see Appendix C.3).

From now on, we exclude models whose architecture is similar to the target.

Impact on the attack. Selecting the right source among several available models is critical
for achieving high transferability. Figure 5.3 displays the transferability score (5.5) for the best
and the worst choices (shown in dotted lines) as the number of source candidates increases. In
this evaluation, a single model is selected as the source for building all adversarial examples.
On average, the transferability is lower than zero, regardless of the attack method. This means
that transferable attacks perform worst than black box attacks on average. If the attacker knows
how to select the best source model, T̂s,t quickly converges to a maximum which is positive
but below 0.5. This means that transferability at its best performs closer to a black box attack
rather than a white box attack. These remarks highly mitigate the threat of transferability and
put emphasis on the crucial selection of the best source model. As far as we know, these facts
are not reported in the adversarial examples literature.

5.3.3 Image dependence

The difficulty of transferring adversarial examples from a source to a target varies signifi-
cantly depending on the input x. This is illustrated in Figure 5.4, which shows the distribution
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Figure 5.4 – Distribution of best image-model selection function of the number of sources.
Adversarial examples obtained with DI [265].

of the best-performing model for each image based on the available sources. Even with a large
number of sources available, there is typically one source that performs significantly better than
the others, but only over 60% of the images on average. However, this superiority decreases
rapidly as the number of available sources increases. It means that a better source exists for
40% of the images on average.

Supposing that the attacker knows the best source of each input, Figure 5.3 shows in solid
line that the transferability converges to a value close to 0.5. The performance of the transferable
attack lies halfway between the ones of the white box and black box attacks. This highlights the
importance of selecting an appropriate source model for a given target and input.

5.3.4 Attack dependence

Transferable attack. Figure 5.5 compares transferable attacks with a 2D histogram of the
distortion pair for two attacks. This is computed over all inputs in X and all pairs of source
and target models. The results show that DWP [244] exhibits poor transferability compared to
DI [265] and TAIG [96], which produce adversarial perturbations with similar distortion. Ad-
ditionally, regardless of the attack complexity or method, the challenging images remain con-
sistent. If one attack requires a high distortion for a given input / source / target, other attacks
are likely to encounter similar difficulties.

Traditional white box attack. We now compare the methods designed for transferability
with a naive approach. A white box attack (ie. not specific to transferability) is executed on
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Figure 5.5 – 2D Histogram of the minimum distortion for transferable and white box attacks.

the source, and then the direction found serves as ux,s to place the adversarial examples on
the target boundary with (5.3). The best T̂s,t score is 0.27 for BP [280, 15] compared to 0.52
for DI [265]. This confirms the superiority of the recent methods designed for transferability.
However, even though DI [265] is on average better, Figure 5.5 shows that when the neces-
sary distortion is small, traditional white box attacks like DeepFool [156] and BP [280, 15]
indeed beats DI [265]. On the other hand, DI [265] performs better for inputs requiring more
distortion.
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5.4 How to choose the best source

Section 5.3 outlines that the choice of the source is of utmost importance thanks to the
transferability measure defined in Section 5.2. This section investigates whether the attacker
can guess which model is the best source.

We now propose a procedure which combines the dependences with respect to the source
and target models (Section 5.3.2), and the input (Section 5.3.3). Model dependence is measured
by evaluating the similarity between the source and target models, which is denoted as ModSim.
On the other hand, the image dependence is measured by the quality of the adversarial example,
denoted as TransQ. Both metrics are combined into the following score:

FiT(s, t,x) := ModSim(s, t)× TransQ(s,x). (5.6)

These indicators should be easy to compute. We especially pay attention to the number of
queries to the target. This score opens the door to a new strategy for the attacker which first
selects the best source among the available models

s?(t,x) = arg max
σ∈Fs

FiT(σ, t,x), (5.7)

and then crafts the adversarial direction ux,s?(t,x).

5.4.1 Criterion ModSim(s, t)

Section 5.3.2 highlights the correlation between the transferability and the similarity be-
tween the source and target models. Gauging model similarity has been previously studied in
the context of fingerprinting as a defense to protect intellectual property (see Section 2.3.1).
This chapter uses fingerprinting methods as an attack that leaks information about the target.

We consider the fingerprinting method [147] because it works in a decision-based setup
since the target is a black box in our application. Querying two models s and t with few natural
images, it computes a distance Dist(s, t) ∈ [0, 1] by comparing their outputs. Since we look
for a similarity, we set ModSim(s, t) = 1− Dist(s, t). However, this provides a symmetrical
similarity, ie. ModSim(s, t) = ModSim(t, s), while transferability is not (see Figure 5.2). This
shows that this criterion alone is not sufficient.
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5.4.2 Criterion TransQ(s, x)

This criterion evaluates the general transferability of a given adversarial example crafted
by a source. Our idea is to leverage the assumption that the attacker has a set of models Fs.
Consequently, we can evaluate the transferability thanks to the other models of this set, without
querying the target.

For a given input x, the source s provides the adversarial direction ux,s and we compute
the distortion ds,σ necessary to delude classifier σ ∈ Fs with (5.3). We then aggregate these
distortions into a single score with two flavours:

TransQ(1)(s,x) :=
 1
|Fs|

∑
σ∈Fs

ds,σ

−1

. (5.8)

A good source for input x gives birth to lower distortions, so that TransQ(1)(s,x) is large.

TransQ(2)(s,x) :=
∑
σ∈Fs ds,σ − dbb

σ∑
σ∈Fs d

wb
σ − dbb

σ

. (5.9)

This measure is similar to (5.5) except that it is computed over the set of models instead of a set
of inputs.

5.4.3 Results

The experimental setup is the same as in Section 5.3.1. We select the fingerprinting method
FBI [147] with 200 benign natural images to compute the criterion ModSim(s, t). It implies
that the attacker first makes 200 queries to the target in a preliminary step before forging any ad-
versarial example. Appendix C.4.1 shows that more images improve the fingerprinting accuracy
hence the model selection, but the results converge after 200 images.

This section is structured as follows: we use FiT to select the best model for single-model
attacks, and then we employ it to identify the best subset of models for ensemble-model attacks
and different combinations of attacks.

Single-model attacks

Criterion ModSim(s, t). Table 5.1 indicates that architectural similarity is a reliable mea-
sure of transferability between two models. It can drive the selection of a good source giving
birth to a transferable attack outperforming the black box attack since T̂s,t is larger than 0 (except
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Table 5.1 – Transferability T̂s,t for DI [265], TAIG [96] and DWP [244] for single and ensemble-
model attacks.

Category Selection Method DI [265] TAIG [96] DWP [244]

Single-model attack

Best 0.52 0.46 0.34
Random -0.16 -0.12 -0.72

ModSim FBI [147] 0.18 0.12 -0.39

TransQ
ASR -0.21 -0.24 -1.14

TransQ(1)(5.8) 0.38 0.24 0.10
TransQ(2)(5.9) 0.37 0.23 0.08

FiT
TransQ(1)(5.8) 0.40 0.27 0.12
TransQ(2)(5.9) 0.39 0.25 0.10
Best 0.72 0.62 0.46

Random 0.43 0.40 0.02
ModSim FBI [147] 0.59 0.49 0.05

Ensemble-model attack
TransQ

ASR 0.53 0.45 0.06
with three sources TransQ(1)(5.8) 0.62 0.54 0.33

TransQ(2)(5.9) 0.61 0.54 0.33

FiT
TransQ(1)(5.8) 0.64 0.55 0.35
TransQ(2)(5.9) 0.64 0.57 0.36
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Figure 5.6 – T̂s,t as a function of the number of available sources for several selection methods.
Dotted lines refer to the selection of a unique model for all images and solid lines refer to a
model selected per image. Attack is DI [265].

for DWP [244]). Yet, the results remain low compared to the best results obtained. As discussed
in Sec 5.3.2, similarity may not suffice because it implies the selection of a unique source for a
given target. Better results are achieved when adapting the source to the input.

Criterion TransQ(s, x). Improving transferability without querying the target model in a
preliminary step is possible thanks to TransQ(s, x). Adversarial examples that exhibit good
transferability on multiple models are more likely to also deceive the unknown targeted model.
Figure 5.6 shows that a significant improvement in transferability is achieved even with only
a few available models. Table 5.1 confirms this observation for the two other attack methods.
This strategy is indeed better than the selection based on model similarity.

Score FiT (s,t,x). Combining both criteria together as in (5.6) leads to a slight improvement
in transferability compared to TransQ(s, x) alone. Figure 5.6 confirms this holds over a wide
range of numbers of available sources. For single-model attacks, TransQ(1)gives slightly better
results than TransQ(2).

Visual results Table 5.2 visually demonstrates the impact of different model selection meth-
ods on the quality of adversarial examples. Even when FiT is not accurate, the resulting ad-
versarial examples are still close to the best ones obtained from the source models, and the
perturbation remains imperceptible. However, random selection generates noisy perturbations,
and the worst-case scenario destroys the image entirely.
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Table 5.2 – Visual impact of the source selection with DI [265] attacking ConViTbase (first
row) and DPN92 (second row).

Original Best FiT (TransQ(1)) Random Worst

label mouse oil filter purse purse jigsaw puzzle
source PiTsmall-dist ConViTbase MobileNetV2110d DenseNet121

distortion 5.62 8.13 35.9 87.8

label tram elec. locomotive elec. locomotive racing car jigsaw puzzle
source ResNetV250x1-dist PiTsmall-dist DLA60 MixNetmedium

distortion 6.94 7.50 33.3 128.7

Ensemble-model attacks

Importance of model selection in ensemble-model attack. Ensemble attacks remain an
under-studied area due to the significant computational resources required for evaluating at-
tacks. Consequently, these attacks have only been evaluated with a limited number of sources. Sec-
tion C.4.2 shows that increasing the number of sources is not necessarily beneficial. The FiT
score provides a scalable solution: we select a small subset of sources based on their FiT scores
(top-3) from the bigger set of available sources. In a way, it is better to put quality above quan-
tity. For example, when running an ensemble-model attack against xCiTnano, selecting only
the three best models using the FiT measure can lead to a significant improvement in transfer-
ability compared to using a larger set of models. In our experiments, an ensemble-model of 20
random models achieved a T̂s,t of 0.47, while an ensemble-model of only three models selected
with FiT was able to achieve a T̂s,t of 0.56 against the same target.

Performance of ensemble-model attacks. Table. 5.1 shows that ensemble-model transfer-
ability surpasses that of single-model attacks. While the average results over a random selection
of 3 sources increase, they remain closer to the black box results than the white box ones (trans-
ferability lower than 0.5). Choosing the top-3 sources returned by our scores for leading the
ensemble-model attack yields better performance, comparable to the best possible results ob-
tainable with ensemble-model attacks. Notably, the DI [265] and TAIG [96] methods approach
the performance of white box results (transferability greater than 0.5).
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White box vs. transferable attacks

Our last result is that the selection of a single source with the FiT score does not make tra-
ditional white box attacks transferable. Table 5.3 shows that BP [280, 15], DeepFool [156],
PGD [142], and I-FGSM [117] yield negative transferability values. More precisely, BP [280,
15], I-FGSM [117], and PGD [142] perform better with FiT than the transferable attacks with-
out any selection mechanism (ie. on average with a random source). However, Section 5.3.4
highlights that the traditional white box attacks may be competitive for some inputs demanding
low adversarial perturbation distortion. It is valuable to add them to the options of the attacker
and let the FiT score decide the preferable option (source and attack method). This provides
our best transferability score for a single model attack, close to 0.5.

5.5 Conclusion

Transferability is a crucial feature of adversarial examples as it allows a single perturbation
to deceive multiple models. However, solely relying on Attack Success Rate (ASR) to measure
transferability overlooks the degree of distortion needed to fool a model. This chapter introduces
a novel approach to assess transferability by comparing it to the distortion of two reference
attacks: white box and black box attacks. We show that transferable attacks can perform worse
than black box attacks without an appropriate selection of the source model, highlighting the
need to choose the best source model to target a specific model.

The proposed solution, named FiT, allows the attacker to choose one of the best source
models with minimal queries to the target. Our experiments demonstrate that the proposed so-
lution performs well in multiple attack scenarios.

This study has highlighted the differences in transferability between images for the same
source model and their particularity for this specific network. Further research could focus on
addressing this issue and investigating its underlying causes, with the hope of designing an even
better selection mechanism able to spot the best source model.
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Table 5.3 – Transferability T̂s,t for white box and transferable attacks (single-model). The FiT
score uses TransQ(1).

Attack Best FiT

White Box

BP [280, 15] 0.27 -0.06
DeepFool [156] 0.03 -0.34

PGD [142] 0.29 -0.01
I-FGSM [117] 0.29 -0.03

Transferable
DI [265] 0.52 0.40
TAIG [96] 0.46 0.27
DWP [244] 0.34 0.12

All Attacks 0.65 0.48



CHAPTER 6

RANDOMIZED SMOOTHING UNDER

ATTACK: HOW GOOD IS IT IN
PRACTICE?

6.1 Introduction

After the contributions on adversarial attacks and the forge of adversarial examples, let’s
delve into the defense.

To defend against adversarial examples, many techniques have been proposed as shown
in Section 3.5. A novel proposal is to certify the robustness of classifiers, within particularly ran-
domized smoothing [165, 122, 125, 33]. Certification is a general and model-agnostic paradigm,
which can be applied without additional retraining. Its advantage is to theoretically certify a
level of robustness to attacks, with a correctness guarantee for the elected label in some radius
around inputs sent to the classifier.

Randomized smoothing is without a doubt an important advance to approach the robustness
of classifiers. Nevertheless, its application as a defense (and not only as a theoretical guarantee)
comes with blind spots: i) The exact certified robustness is impossible to compute due to the
dimensionality of the input space handled by current classifiers. Monte Carlo methods are used
to estimate this certified robustness. There is a lack of understanding of the interplay between
the theoretical certification for a radius that is fully spanned, and the practice where a limited
amount of samples is key to tractability. In addition, since this defense is randomized in essence,
the classic definition of an adversarial [221] is not applicable anymore. The defender lacks
a definition of an adversary in the case of her randomized defense (since no attack trials is
100% adversarial). ii) The amount of samples required by this sampling approach is unclear
and varying in the papers: between 100 [197, 124] and 100 000 [33, 105]. No results to date
have shown the importance of this quantity on the effectiveness of attacks. iii) Finally, although
this defense is in principle applicable without retraining, it is yet recommended [33] to mitigate
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the accuracy drop involved. Indeed, the larger the noise radius certified, the more robust the
classifier, at the price of an important accuracy drop that can be limited by retraining on noisy
data. The relation of the radius with the final accuracy and the effectiveness of the attacks is
also unclear.

This chapter tackles these three issues, in a dedicated attempt to consider randomized smooth-
ing as a practical defense. We first confront theory and practice for certification and defense in
the context of randomized smoothing. We then evaluate the practical robustness of this defense
with regard to the impact of the Monte Carlo sample sizes and the noise variance parameter.
This study highlights the effectiveness of randomized smoothing in defeating state-of-the-art
black-box attacks with much smaller parameters that are suggested in the papers limited to
considering it as a mere theoretical certification only.

All the notations unique to this chapter are listed in Table 7.12 at the conclusion of this

manuscript. Additionally, for general notation, please refer to Table 7.9.

6.2 Related Work - Randomized smoothing (RS)

Introduced by Lecuyer et al. [122], RS is a model-agnostic method to obtain a certified
local robustness of a model. It guarantees a correct prediction within a certain radius around
a given input. In other words, it certifies that no adversarial example lies at a distance smaller
than this radius. The beauty of this literature is that evasion attacks are no longer considered
since the robustness is formally guaranteed. In practice, RS is merely a Monte Carlo simulation
requiring a large number of calls to the model. It produces a lower bound of robustness and
spoils accuracy. Papers [125, 33, 79] found stronger bounds while [122, 197] improved the
noise tolerance of classifiers. None of them considers attacking RS.

6.3 Randomized smoothing: from theory to practice

This section summarizes RS certification for `2 norm robustness, focusing on the differences
between theory and practice.
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6.3. Randomized smoothing: from theory to practice

6.3.1 A primer on random smoothing

For the sake of simplicity, consider a trained binary classifier f : RD → {0, 1}. RS defines
a new classifier gσ as follows:

gσ(x) = arg max
y∈{0,1}

P[f(x + σN) = y], N ∼ N (0, I). (6.1)

The main advantage of gσ is that its robustness is certified. Assume that a genie reveals the
value of the two probabilities π0(x) := P[f(x + σN) = 0] and π1(x) := 1 − π0(x), then x is
classified according to (6.1) with a certified robustness:

R(x, σ) = σΦ−1(πgσ(x)(x)). (6.2)

where Φ is cumulative distribution function of the standard normal distributionN (0, I). All
points at a distance from x lower than R(x, σ) are classified in the same way. Note that despite
the term ‘randomized smoothing’, gσ is indeed a deterministic classifier. Its frontier ∂gσ is the
locus of the points s.t. π0(x) = 1/2. For instance, if the base classifier f is linear, then gσ = f .

In practice, there is no genie and the defender uses a Monte Carlo simulation over nmc

random i.i.d. samples ni distributed as N yielding nmc decisions yi with i in J1, nmcK.

The final predicted class is an aggregation of these nmc ‘micro’-decisions such as the ma-
jority vote. They also give a confidence interval π0(x) < π0(x) up to a given confidence level.
This defines the classifier gσ,nmc , a practical implementation of the ideal gσ function. The robust-
ness is assessed up to the confidence level using (6.2) with π0, which yields R(x, σ) < R(x, σ).
Maximizing the certified robustness around a given point x with a high confidence level requires
large nmc and σ [122, 33, 197].

6.3.2 A critical point of view

The main argument of RS is the following: Leading evasion attacks to gauge the security of
a classifier is no longer needed since its robustness is certified. This has to be clarified: R(x, σ)
certifies the robustness of the theoretical classifier gσ which does not exist in practice. The
practical classifier gσ,nmc behaves as gσ only when nmc →∞.

More importantly, gσ,nmc is not a deterministic function. For x ∈ ∂gσ, gσ,nmc(x) acts as a
random variable from one call to another since π0(x) = π1(x) = 1/2 even for large nmc. This
challenges the concept of frontiers hence the definition of adversarial examples.
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Figure 6.1 – Probability of being adversarial by following the direction xadv − xo, Image xo
attacked with BP [280, 15] to get the best adversarial xadv on the boundary of ResNet50.

6.3.3 Pushing the frontiers

Consider a point x s.t. f(x) = 1 and at a distance δ = βσ from the frontier ∂f of the base
classifier. The so-called SORM in statistical reliability engineering approximates

π0(x) ≈ Φ(−β)
d−1∏
i=1

1√
1 + βκi

, (6.3)

where {κi} are the signed principal curvatures of the surface ∂f . If flat, all the curvatures
equal 0, and x lies on the boundary ∂gσ of the ideal RS classifier if π0(x) = 1/2 implying
δ = 0. If ∂f is convex onward x, the curvatures are all negatives, the second term gets larger
and compensates Φ(−β) so that π0(x) = 1/2 for some β > 0. This shows that the frontier
∂gσ is closer than ∂f when lying in a convex region, and thus further away when sitting in a
concave region. If the original images lie in concave regions, then RS pushes the frontier and
thus increases the norm of the adversarial perturbation. In Figure 6.1, a white-box attack against
model f first finds an adversarial xadv ∈ ∂f . We see that going along the direction xadv − xo,
we cross the frontier ∂gσ (i.e. π0(x) = 0.5) after xadv ∈ ∂f for a x s.t. ‖x − xadv‖ ≈ 4.0. This
is also illustrated in Figure 6.2 on a 2D cut of Rd.
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(a) No RS (b) nmc = 10, σ = 0.05 (c) nmc = 50, σ = 0.05(d) nmc = 200, σ = 0.05

Figure 6.2 – 2D slice in the image space of ResNet50 with and without RS. Each point is an
image, his color represents the elected label. Centered on a real image, 2 random directions are
taken.

6.3.4 Adversarial example with confidence level

We propose a new definition for untargeted attack: an adversarial example of xo of level
Pa ∈ [0, 1] is a point xadv s.t.

P[gσ,nmc(xadv) 6= gσ(xo)] ≥ Pa. (6.4)

If the attacker is satisfied with a level Pa = 1/2, then the closest adversarial example lies on
the frontier of gσ at a distance bigger than R(x, σ) > R(x, σ). We believe that attackers are
requiring stronger guarantee Pa > 1/2, hence the closest adversarial example is at an even
bigger distance. Eq. (6.4) requires that

∑
yi ∼ B(nmc, 1 − π0(xadv)) takes a value greater than

nmc/2 (due to the majority vote) with a probability larger than Pa. This holds for:

π0(xadv) < 1− I−1
Pa (ñ, ñ) < 1/2, (6.5)

with ñ = 1 + bnmc/2c and I−1
p (a, b) is the inverse incomplete beta function. Applying (6.2) onto

xo and xadv, it comes that

‖xo − xadv‖ = ‖xo − xb‖+ ‖xb − xadv‖

≥ R(xo, σ) + σΦ−1(I−1
Pa (ñ, ñ)), (6.6)

where xb ∈ [xo,xadv] ∩ ∂gσ. To conclude, the robustness R(xo, σ) certified by the practical
implementation of RS is even less tight in practice.
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Figure 6.3 – Distribution of the output of a binary search with RS.

6.3.5 Jeopardizing black box attacks

Black box attacks usually make two assumptions. First, from a point outside the class region,
a binary search can find a point xb right on the boundary within a controlled accuracy. However,
RS classifier gσ,nmc is random in practice especially when n is small and this jeopardizes the
binary search. Figure 6.3 shows the distribution of the result of the binary search. It concentrates
around ∂gσ only when n is large.

Second, the boundary is smooth so that it is possible to estimate the normal vector of the
tangent hyperplane locally around xb on the boundary. This is usually done by bombarding the
classifier with noisy versions of xb and observing its outputs. Yet, RS randomizes the immediate
neighborhood of boundaries, as seen in Figure 6.2. This indeed does not spoil the estimation.
We notice that normal vector estimations for xb ∈ ∂gσ with and without RS correlate very well,
provided that the noise variance used for the estimate is larger than the variance σ2 of RS. A
large σ2 may spoil the estimation but it is detrimental to the natural accuracy of gσ,nmc . Yet, the
estimation is true of poor quality due to the violation of the first assumption: the binary search
may yield a point xb not exactly on the boundary and this biases the estimate. For instance, we
notice that HSJA [23] may crash because all the noisy versions of xb give the same output.

6.4 Black Box Attacks vs. RS

6.4.1 Experimental Setup

We attack the classifier models with 200 random images from the ILSVRC2012’s validation
set with size D = 3× 224× 224.
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Figure 6.4 – Certification for ResNet50 and RandTrain.

Classifiers The base classifier is ResNet50 [80]. RS is performed with two noise standard
deviations: σ = 0.05 gives an acceptable drop of the accuracy of 3%, whereas σ = 0.15 yields
larger certified robustness value but with a loss of 12% of accuracy (see Figure 6.4).

Paper [33] proposes to re-train the model with noisy datato use a bigger σ without sacrificing
too much accuracy. This new model is called RandTrain. With σ = 0.25, the accuracy loss
is also around 12% but it delivers larger certified robustness (see Figure 6.4).

We compare RS to the adversarially trained ResNet50 from [142] that we denote AdvTrain.

Black-box attacks Three state-of-the-art attacks are considered. RayS [24], SurFree [146],
and HSJA [23] achieve good results within 1, 000 calls to the classifier, but we use up to 2, 000
queries to be sure they reach their full potential.

Protocol The distortion is measured as the Euclidean norm of the adversarial perturbation in
the domain [0, 1]D. To assess that a point xadv complies with (6.4), the attacker needs to query
` = O(1/Pa) times the classifier gσ,nmc . We speed up the simulation by considering that (6.4)
holds if dnmcPae micro-decisions are not correct.

6.4.2 Evaluation Results

Certified robustness vs. practice The gap between theory and practice is salient when con-
sidering Figure 6.4 and Figure 6.5: Figure 6.5 reports distortions at least 30 times larger than
the certified robustness in Figure 6.4.
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Figure 6.5 – Average adversarial `2 distortion vs. Accuracy

New definition of adversarial needed Attacks are not disturbed by level Pa (6.4). Being 80%
adversarial forces to move away a little (Figure 6.1) especially for small nmc. The robustness is
only slightly better.

A small amount of noise is enough Regardless of the attack, a large σ does not robustify the
network whereas it spoils its accuracy. This is true even if the network has learned to handle
noise: RandTrain has the same robustness and the same accuracy as the vanilla ResNet50
with RS σ = 0.15. The situation is even worse against RayS [24]: noticeably RandTrain is
less robust than ResNet50 without RS.

A small number of samples is enough A big number of samples is key to getting ‘large’
certified robustness. Figure 6.5 shows another reality. The robustness against all 3 attacks is
better with fewer samples. This confirms explanations in Section 6.3.5. Fewer samples make
the prediction at the boundary more random which jeopardizes more black box attacks.
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6.5. Conclusion

Binary search is the only tool common to the 3 attacks. A point exactly on the boundary
is crucial for HSJA [23] since it estimates the gradient. SurFree [146] does not do that but
relies on the smoothness of the boundary. As for RayS [24], the binary search improves the
distortion but it is not crucial for the convergence. It explains why RayS [24] is not as impacted
as SurFree [146] and HSJA [23].

6.5 Conclusion

Certification with randomized smoothing is an important advance to apprehend the robust-
ness of classifiers. Yet it was not considered as a practical defense; this chapter chose this angle
to reveal its real robustness facing state-of-the-art black-box attacks. We i) illustrated formally
the gap between a theoretical certification and a practical defense, and redefined what is an ad-
versarial that faces a randomized defense. We found that the recommendations made in order
to have larger certified bounds are often antagonistic with the concrete actions for obtaining
a robust and accurate classifier in practice: ii) a low amount of samples is enough to fuzzy the
frontiers; this is key to bother black box attacks, and iii) a high noise variance does not robustify
the classier much, while it make accuracy drop; a small variance is enough.
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PART III

Contribution on Model Confidentiality
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CHAPTER 7

FINGERPRINTING CLASSIFIERS WITH

BENIGN INPUTS

7.1 Introduction

Fingerprinting classifiers aims at deriving a signature uniquely identifying a machine learn-
ing model, like the human fingerprint’s minutiae in biometry. This is essentially a black-box
problem: the classifier to be identified is in a black-box in the sense that one can just make
some queries and observe the resulting model outputs. For instance, this is the case when the
model is embedded in a chip, or accessible via an API.

The main application that related works [245, 19, 178, 172, 284] target is the proof of
ownership. An accurate deep neural network is a valuable industrial asset due to the know-how
for training it, the difficulty of gathering a well-annotated training dataset, and the required
computational resources to learn its parameters. In this context, the entity identifying a black-
box wants to detect whether it is not a stolen model of her.

Another at least critical application is information gain. For instance, an attacker willing to
delude the classifier first gains some knowledge about the remote model, or a company wants
to determine which model is in use in a competitor’s production system. This aspect has been
left aside as of today, and we tackle it under the notion of the fingerprinting identification task.

For clarity, we name Alice the entity willing to identify the model that Bob has embedded
in the black-box.

7.1.1 Challenges

We hereafter name a model a reference architecture, together with its set of hyperparameters
tuned by its designers. When any of these components are modified, we coin the resulting model
a variant. The biggest difficulty is that there exist plenty of ways to modify a model while
maintaining its intrinsic good accuracy. These procedures simplify a network (quantization of
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the weights and/or activations, pruning, see e.q. [78]), or make it more robust (preprocessing of
the input, adversarial re-training [66]). These mechanisms were not a priori designed to make
fingerprinting harder but they leave room for Bob to tamper with the fingerprint of a model.
We assume that Alice also knows some of these procedures. Yet, they are often defined by
many parameters and among them scalars so that there is virtually an infinity of variants. Like
in biometry, the fingerprint should be discriminative enough to be unique per model but also
sufficiently robust to identify a variant.
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Figure 7.1 – A t-SNE representation of the pairwise distances of 1081 different models: 10 types
of variation applied on 35 off-the-shelves vanilla models for ImageNet with different parameters
(listed in App. B.1).

The approaches in the literature have two common pillars. They use the boundaries in the
input space drawn by a classifier as the fingerprint, i.e. the unique signature identifying the
model [19, 172, 284]. Two neural networks sharing the same architecture, the same training
set and procedure are different because the training is stochastic (like the Stochastic Gradient
Descent). This causes their boundaries in the input space not to overlap fully. Most of the papers
in the literature are looking for discriminative deviations of these boundaries. Second, the key
task is detection: Alice makes a guess about the model in the black-box and then she sends
specific queries to test whether her hypothesis holds [19, 85, 172, 284].

7.1.2 Our Rationale and Contributions

Our work differs from related works on two key aspects: i) we do not forge any specific
input but use regular benign inputs, and ii) we directly identify models using their intrinsic
classification behavior.
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7.1. Introduction

We thoroughly investigate the use of benign inputs for fingerprinting models contrary to the
previous works crafting specific inputs. We thus do not need to probe the input space to discover
the decision boundaries. Benign inputs constitute a certain advantage, as it removes the need
of often complex crafting procedures. It is less prone to defenses being implemented on Bob’s
side (e.q. rejection based on the distance to the decision frontier [152]).

The second salient observation is the restriction of previous works on the detection task. The
more general possibility to identify a model or a family of models inside the black-box remains
unstudied.

In a nutshell, when Bob has picked a model among a set of networks known by Alice, then
our solution is essentially deterministic: Alice has to find a sequence of inputs of minimum
length to identify the black-box. We apply a greedy algorithm that carefully selects the input to
iteratively narrow down the set of suspects, i.e. candidate models, until it becomes a singleton.
Approximation theory tells that this is suboptimal but we report that in practice many networks
are indeed identified within less than three input queries.

When Bob has made a variant of a model, its output may not match the output of any known
model by Alice. We then use C.E. Shannon’s information theory to measure the statistical sim-
ilarity between the outputs of two models. This approach is common in the field of Information
Forensics and Security, especially in biometry [270, 42], PUF [12], content identification [273,
240], or traitor tracing [65, 95].

As an appetizer, Figure 7.1 depicts the t-SNE representation from the pairwise distances
within a set of 35 vanilla models and their variants. The model families are well clustered in
the sense that variants are closer to their original network than any other model. Alice may not
identify precisely the variant of the model but at least she can accurately identify its family, i.e.
infer which was the original vanilla model and even which kind of variation Bob applied.

Our contribution is fourfold.

1. We demonstrate that the mere use of benign images is enough to accomplish high suc-
cess rates for fingerprinting modern classification models. This is to be opposed to the
computationally demanding task of crafting inputs for that same goal.

2. The fingerprinting detection task, introduced by state-of-the-art works, is complemented
with the introduction of the identification task. We frame the latter as an information
theoretical problem.

3. We present a distance based on the empirical Mutual Information, gauging how close
two models are. This distance permits generalizing the notion of modifications (also
coined as attacks) on models through the concept of model families and variants.
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4. We perform extensive experimentation by considering more than 1,000 classification
models on ImageNet. A head-to-head comparison with the two related works reports
significant improvements w.r.t. accuracy in the detection task.

Section 7.2 is a threat analysis listing all the working assumptions in our work. The next two
sections deal both with detection (Alice verifies her hypothesis about the black-box) and identi-
fication (Alice discovers which model is in the black-box) but under two scenarios: Section 7.3
builds on the fact that Bob has picked a model among the set known by Alice, whereas Sec-
tion 7.4 assumes that the black-box may be an unknown model. Both sections contain experi-
mental results.

All the notations unique to this chapter are listed in Table 7.14 at the conclusion of this

manuscript. Additionally, for general notation, please refer to Table 7.9.

7.2 Threat Model

This section details the goals of Alice and Bob.

7.2.1 Bob: Keeping his Model Anonymous

Goals

Bob is playing first by secretly selecting a model and putting it in the black-box under
scrutiny. This model can be a vanilla model or a variant of a known model. A variant is created
by applying on a given vanilla model m the procedure V parametrized by θ ∈ Θ which describes
the type of modification and the associated parameters. This can be thought of as an attack by
Bob on the vanilla model to harden identification. We denote such a variant by v = V(m, θ).

The goal of Bob is to offer an accurate black-box classifier while maintaining the ‘anonymity’
of the model in use. The first requirement is that a small loss in the model performance is toler-
ated by Bob. If a variant does not comply with this criterion then Bob cannot consider it as an
option. In classification, the performance of a model m is often gauged by the top-1 accuracy,
denoted η(m). We formalize this requirement as

η(m)− η(V(m, θ))
η(m) < η, (7.1)

where η > 0 is the tolerance (15% in our experimental work).
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We also assume that the black-box performs the same classification task. As far as we know,
fingerprinting is not possible between two networks performing different tasks if only top-k
output is available. Transfer learning is therefore not considered as in previous works [178, 19,
246].

Resources

The second requirement is more subtle. We first need to limit the power of Bob. If Bob
creates an accurate model ex nihilo, then Alice can pursue neither detection nor identification.
We assume that Bob cannot train such a model from scratch because he lacks good training
data, expertise in machine learning, or computing resources. This also means that Bob can
retrain a model only up to a limited extent (typically using a small amount of new data). In
other words, the complexity of the procedure creating v = V(m, θ) ought to be much smaller
than the effort spent at training the original model m. Our experimental work considers two
kinds of procedures.

Modification of the Input v(x) = m(T(x, θ)). Classifiers are robust to light input modifica-
tions. For images, the transformation T can be JPEG compression, posterizing, blurring, etc.. In
the same spirit, randomized smoothing [33] consists in adding noise to the input and aggregating
the predicted classes into one single output.

Modification of the Model v(x) = T(m, θ)(x). The transform T slightly changes the model
weights by for instance quantization, pruning, adversarial retraining or finetuning. Some of
these procedures require small retraining with few resources so as not to lose too much accuracy.

In the sequel, the model in the black-box is denoted by b and B is the set of all possibilities,
defined as:

B := {v = V(m, θ) : m ∈ P , θ ∈ Θ, η(v) > (1− η)η(m)} , (7.2)

where P is a set of vanilla models and Θ a set of transformations (encompassing the identity
v = m).
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7.2.2 Alice: Disclosing the Remote Model

Goals

The task of Alice is to disclose which model is in the black-box. This has two flavours:
detection or identification.

Detection (denoted by det) means that Alice performs a hypothesis test. She first makes
a hypothesis about the black-box, then makes some queries, and finally decides whether the
hypothesis holds based on the outputs of the black-box. The outcome of the detection is thus
binary: Alice’s hypothesis is deemed correct or not. This is the nominal use case in the related
works [245, 19, 178, 172, 284].

Identification (denoted by I) means that Alice has no prior about the model in the black-box.
She makes queries and processes the outputs to finally make a guess. The outcome is either the
name of a model she knows, or the absence of a decision if she has not enough evidence.

Knowledge about the Black-Box

The second crucial point is her knowledge about the black-box. Alice can only detect or
identify a relation to a model she knows: it means she has an implementation of this model,
which she can freely test. We denote the set of models known by Alice by A.

As by the very definition of a variant, Alice may know some of them but not all of them. For
instance, some procedures V admit a real number as a parameter. Therefore, there is virtually
an infinite number of variants. This leads to the convenient notion of a model family, we now
introduce under three flavours:

— F(m): This family is the set of all variants made from the original vanilla model m:

F(m) := {v = V(m, θ) : θ ∈ Θ} . (7.3)

— F(m,Ψ): This family is the set of all variants made from the original vanilla model m
by a specific procedure:

F(m,Ψ) := {v = V(m, θ) : θ ∈ Ψ ⊂ Θ} , (7.4)

where Ψ denotes the subset of parameters related to this specific procedure.
— F(m, {θ}): This family is a singleton composed of a particular variant:

F(m, {θ}) := {v = V(m, θ)} . (7.5)
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With these definitions in mind, detection is based on the hypothesis that the black-box belongs
to a given family, while Identification looks for the family the black-box belongs to.

Resources

A third element is the resources of Alice. We already mention the set A containing some
vanilla models and few variants of theirs. She also has a collection of typical inputs, i.e. a
testing dataset. We suppose that these inputs are statistically independent and distributed as
the data in the training set of the models. In the sequel, the collection of inputs is denoted
X = {x1, . . . , xN}.

In the end, be it for detection or identification, Alice selects some elements ofX for querying
the black-box. We denote this by an ordered list of indices: q1:` = (q1, . . . , q`) ∈ JNK`, where
JNK := {1, . . . , N}. This means that Alice first queries xq1 , and then xq2 and so forth. The
outputs of the black-box are denoted as z1:` = (zq1 , . . . , zq`), with zqi = b(xqi).

7.2.3 The Classifier in the Black-Box

The black-box works as any classifier. We denote the set of possible classes C. The output
z = b(x) for input x is the first k classes ordered by their predicted probabilities (i.e. the top-k).
It means that z is an ordered list in Ck: z = (c1, . . . , ck). The set Zk of possible outcomes has a
size as big as (C)k := C(C− 1) . . . (C−k+ 1). The black-box only discloses the top-k classes
(i.e. this work does not build on the associated predicted probabilities). In the experimental
work, the size of C is C = 1, 000 (ImageNet) and k ∈ {1, 3, 5} which is usual in several image
classification APIs. We assume that the considered models and variants have an accuracy which
is not perfect; the typical accuracy of ImageNet classic models ranges from 70% to 85%.

7.2.4 Summary

This chapter considers scenarios which are labeled as (Task,F ,A, k) where Task ∈ {det, I}
(Detection or Identification), F is the kind of family that will be inferred by Alice, A is the set
of models known by Alice, and k indicates that the output of the black-box is the top-k classes.
There is a clear cut between the following two cases:

— Walled garden: A = B. We impose that the black-box is one of the networks known by
Alice.

— Open world: A ( B. The black-box may not be a model known by Alice. This is the
case when Bob uses an unknown variant, for instance.
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This distinction drives the structure of the next sections because our solutions are of different
nature.

7.3 Walled Garden
The Black-Box is a Known Model

Under the assumption that A = B, Alice achieves her goal when she correctly guesses
which family the black-box belongs to. The alternative is to fail to gather enough evidence to
make a decision. For the sake of clarity, we explain our procedure for a given family F ⊂ A,
which can be one of the three types of families presented in Section 7.2.2.

Alice has a set of models composed of some vanilla models P = {m1, . . . ,mM} and some
variants of theirs. Alice also has the collection of benign inputs X = (x1, . . . , xN). Offline, she
creates a database of |A|N outputs (m(xj))m∈A,j∈JNK.

Let D be a subset of A. We define by D(x) := {m(x) : m ∈ D} the set of labels predicted
by the models in D for input x. With abuse of notations, D(xq1:`) is the set of the concatenation
of labels predicted by the models inD for the entries (xq1 , . . . , xq`). Conversely,M(x, y,D) :=
{m : m ∈ D,m(x) = y} lists the models in D predicting y for input x.

7.3.1 Detection (det,F ,A = B, k)

Alice first makes a hypothesis about a family F , and her goal is to discover whether the
outcome is positive (b ∈ F) or negative (b ∈ A\F). We assume that Alice is convinced about
her hypothesis and that she hopes for a positive. Our procedure thus focuses on reducing the
number of models in A\F likely to be the black-box.

Alice uses a greedy algorithm which leverages the information about the black-box retrieved
from the previous queries. According to the outputs of the black-box, several models can be
discarded. At step `, (A\F)(`) (resp. F (`)) denote the subset of models in A\F (resp. F (`))
which agree with the previous outputs. These are candidates in the sense that they could be the
black-box model.

(A\F)(`) :=
⋂̀
i=1
M(xqi , b(xqi),A\F). (7.6)

Initially, all the models are candidates: (A\F)(0) = A\F and F (0) = F . At step ` + 1, the
greedy algorithm sorts the inputs that have not yet been queried according to a score. This score
s(`+1)(x) reflects how much the set of candidates (A\F)(`) reduces if input x is submitted next.
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We propose the expectation of the number of candidate models outside the family after querying
input x assuming that the black-box is randomly picked in F (`). This average is weighted by
the number of models in F (`) predicting a particular label:

s(`+1)(x) =
∑

y∈F(`)(x)

∣∣∣M(x, y, (A\F)(`))
∣∣∣ |M(x, y,F (`))|

|F (`)|
(7.7)

Alice then submits one of the inputs with the lowest score:

q`+1 ∈ arg min
k
s(`+1)(xk). (7.8)

Our procedure stops after L iterations when meeting one of the three stopping criteria:

— (A\F)(L) = ∅: The detection result is positive. No model outside the family responds
like the black-box. The black-box is in the family since we assume it belongs to A.

— F (L) = ∅: The detection result is negative. The responses of the black-box are different
from the ones of the models in the family F .

— mink s(L+1)(xk) = |(A\F)(L)|: The detection failed. All the remaining models in (A\F)(L)

and in F (L) produce the same prediction no matter which input is submitted. It is there-
fore impossible to discern them.

7.3.2 Identification (I,F ,A = B, k)

Identification means that Alice makes a partition of her set of models in disjoint families:
A = ∪nFi=1Fi. Her goal is to identify which family the black-box belongs to.

It is easy to base a verification procedure onto a detection scheme assuming there is no
failure. Alice arbitrarily orders the families, and sequentially tests the hypotheses until she finds
a match. The expected number of queries is given by (see the proof in App. C):

E(L) = 1
nF

nF∑
j=1

E
(
Lpos
j

)
+ nF − 1

2nF

nF∑
j=1

E
(
Lneg
j

)
(7.9)

where (E(Lpos
j ),E(Lneg

j )) are the expected number of queries necessary for taking a positive or
negative decision about the detection of the hypothesis Fj .

We propose a better approach based on a greedy algorithm similar to the detection one.
Suppose that Alice has already submitted ` queries to the black-box. By comparing the outputs
of the black-box and of the models she knows, she is able to distinguish models which are not
in the black-box from models likely to be in the black-box. This list of remaining models is
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denoted A(`). The goal of Alice is to reduce the set of candidates to a single family Fi, not
knowing in advance the model Bob placed in the black-box:

∃i,Fi ⊂ A(`). (7.10)

In the beginning, all the models are possibly in the black-box, i.e. A(0) = A. At step ` + 1,
the greedy algorithm chooses the best input to query next knowing A(`).

Alice may resort to the following heuristics. She supposes that the black-box is randomly
chosen uniformly in the set of remaining models A(`). For any input x not queried yet, she
computes the expectation of the number of remaining families if x were selected next, i.e.
|{Fi : Fi ∩ A(`+1) 6= ∅}|. She randomly chooses among the inputs minimizing this figure:

s(`+1)(x) =
∑

y∈A(`)(x)

nF∑
i=1

δ[
M(x,y,F(`)

i )6=∅
] |M(x, y,A(`))|

|A(`)|
,

where δ[E] is the indicator function of event E . The input to be submitted is sampled among the
ones with the lowest score:

q`+1 ∈ arg min
k
s(`+1)(xk). (7.11)

7.3.3 Experimental Work

Detection

A first experimental work measures the number of queries needed for detection with the
three types of family defined in Eq. (7.3), (7.4) and (7.5). It considers two cases: Alice’s hy-
pothesis is correct (positive case) or incorrect (negative case). The combinations are not ana-
lyzed exhaustively. For example, in the negative case for a singleton family (i.e. Alice is wrong
to suspect that the black-box is F(m, {θ})), there are |A|(|A| − 1) possible combinations, i.e.
more than a million. Instead, the experiment randomly picks 1,000 positive and 1,000 negative
among all these cases. Figure 7.2 shows the results obtained. As a side-product, Table 7.1 gives
the percentage of inputs in X answering the detection problem under the best case, i.e. when
one unique query is sufficient.

Few Queries are Enough When the detection succeeds (be it a positive or negative decision
about the hypothesis), at most three queries are needed, and in most cases, only one is sufficient.
This holds although the greedy algorithm is known to be suboptimal. When the greedy algo-
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Figure 7.2 – Probability distribution of the number of queries for (det,F ,A = B, k) when
the black box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5 (green). Family
considered from left to right: F(m) (7.3), F(m,Ψ) (7.4), and F(m, {θ}) (7.5).

rithm needs three inputs, another algorithm may only need two queries. Yet, when the greedy
algorithm needs two, no algorithm can do better because the greedy would have found an unique
input if existing. Positive and negative conclusions are roughly drawn within the same number
of queries, although our algorithm is designed to quickly prove positive detections.

Few Failures The inability to detect the model in the black-box as part of the family F hap-
pens when:

∃m ∈ F ,∃m′ ∈ A\F ,∀x ∈ X , m(x) = m′(x). (7.12)

The failures occur when the family corresponds to a set of variations (7.4) or an exact model (7.5).
It happens that the algorithm cannot distinguish a few pairs of different variations issued from
the same vanilla model. This is the only possible explanation: Otherwise, i.e. the indistinguish-
able models come from two different vanilla networks, a failure would also occur when detect-
ing families spanned from a vanilla model (7.5), but this is not reported in Figure 7.2. In other
words, Alice can always guess that the black-box is a variation of a given vanilla model, and
rarely she cannot guess which variation it is exactly.

On the other hand, failures should also happen in the negative case. None is reported in Fig-
ure 7.2 because they are statistically rare. For a given family F , suppose that the models m and

Table 7.1 – Percentage of inputs in X concluding detection (det,F ,A = B, k) within a single
query.

Family top-1 top-3 top-5
Vanilla F(m) (7.3) 0.28% 1.2% 12.5%

Variation F(m,Ψ) (7.4) 0.31% 4.8% 21.0%
Singleton F(m, {θ}) (7.5) 0.37% 8.3% 31.4%
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Figure 7.3 – Probability distribution of the number of queries for (I,F ,A = B, k) when the
black box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5 (green). Family
considered from left to right: F(m) (7.3), F(m,Ψ) (7.4), and F(m, θ) (7.5).

m′ in (7.12) are both unique. A failure happens in the positive case if Bob puts model m in the
black-box. This happens with probability 1/|F|. A failure happens in the negative case if Bob
puts model m′ in the black-box. This happens with probability 1/|A\F| < 1/|F|.

Experimentally, the number of queries to end up in a failure is similar to the number of
queries for getting a positive outcome.

A Bigger Top-k is Better When the output of the black-box is rich, i.e. top-k classes with
k > 1, one unique input is sufficient. Moreover, Table 7.1 shows that there are more of these
unique inputs in X . In this case, Alice no longer needs a large collection of benign inputs.

A Bigger Family is Harder to Detect Families of type (7.3) are bigger than families (7.4)
which are bigger than the singleton (7.5). Ignoring the failure case, Figure 7.2 and Table 7.1
show that it is harder to detect a large family. It is more frequent that some model members take
different outputs in large families. On the contrary, we observe that the variants of the same
model with the same variation but with different parameters often share the same output.

Identification

The protocol is similar to the previous one for detection. Figure 7.3 shows the results.

Identification vs. Detection Comparing Figure 7.2 and 7.3, two times more queries are nec-
essary for identifying a family rather than detecting it. It is possible to identify a model quickly
with at most five benign queries which are a lot less than the sequential procedure (7.9). Identi-
fication is a harder task than detection to a small extent.

The biggest difference is under the top-1 scenario where a unique query is rarely sufficient.
The 35 vanilla models considered here were trained on the same dataset. They have good accu-
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Figure 7.4 – Average number of queries as a function of the number of families nF for
(I,F ,A = B, k) with the expectation score (7.7) and when the black-box returns top-k classes
with k = 1 (blue), k = 3 (red) or k = 5 (green). The dotted lines represent the lin-
ear regressions (7.13). Family considered from left to right: F(m) (7.3), F(m,Ψ) (7.4), and
F(m, {θ}) (7.5).

racy (> 70%). If many unique inputs to identify existed, this would mean that for any of these
inputs, the 35 models give 35 different top-1 predictions. Assuming that one of these models
makes a correct classification, the other 34 models are wrong. If a lot of these inputs existed,
this would imply models with low accuracy. In other words, these inputs are necessarily rare, or
even non-existing.

A Bigger Top-k is Better In contrast to detection, the gain of information provided by top-3
and top-5 is substantial. When the top-5 is returned, 90% of the families are identified within
one query. The supervised training of the vanilla models only focuses on the top-1 s.t. it agrees
with the ground truth class. For k > 1, the top-k is almost specific of the model. This explains
the big improvement from top-1 to top-k.

Number of Families Figure 7.4 represents the evolution of the average number of queries
to identify one out of nF families. The more families, the bigger the number of queries on
average. But this number also depends on the size of the families and the top-k. We observe that
the increase is roughly linear (see dashed lines in Figure 7.4). As a rule of thumb, we observe
that the expectation of the number of queries roughly follows the empirical law:

E(L) ≈ 0.002× E(|F|)nF
k

+ β(k), (7.13)

where E(|F|) is the average number of elements in the family. This is a major improvement
w.r.t. (7.9). For instance, for singleton family, E(|F|) = 1 and the rate equals 0.002 under top-1,
whereas the rate in (7.9) cannot be lower than 0.5 since we need at least one query to discard a
hypothesis, i.e. E(Lneg

j ) ≥ 1.
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7.4 Open World:
The Black-Box is an Unknown Model

This section assumes thatA ( B because B contains models or variants of models unknown
by Alice.

7.4.1 Modeling

Assumptions

Our working assumptions are the following: When queried by random inputs, a variant
V(m, θ) produces outputs statistically

— independent from the outputs of a different model m′.
— dependent from the outputs of the original model m.

We consider a particular procedure for generating a variant as being like a transmission channel.
The output Z of the variant V(m, θ) is as if the output Y of the original model m were transmit-
ted to Alice through a noisy communication channel parametrized by θ. Like in C.E. Shannon’s
information theory of communication, we model this channel by the conditioned probabilities
Wθ(z, y) = P(Z = z|Y = y), ∀(z, y) ∈ Zk.

Surjection

One difficulty of this context is the big size of the set Zk of outcomes under the top-k
assumption: |Zk| = (C)k. It is then difficult to establish reliable statistics about the transition
matrix Wθ which is as large as (C)k × (C)k.

When working with top-k outputs, Alice resorts to a surjection Sk : Zk 7→ Sk with Sk :=
{0, 1, . . . , k}. This greatly reduces the set of outcomes. We denote z̃ = Sk(z) and ỹ = Sk(y).
We choose a function Sk slightly more complex than suggested by this simple notation. Indeed,
for any input x, we assume that Alice has a reference class c(x) ∈ C. It is the ground truth class
for annotated data. Otherwise, Alice computes the top-1 output of all the models she knows, and
takes a majority vote to decide on c(x). For this piece of data, a model gives m(x) = (c1, . . . , ck)
and the surjection makes:

Sk(m(x)) =

j if ∃j : cj = c(x)

0 otherwise.
(7.14)

136



7.4. Open World:
The Black-Box is an Unknown Model

In words, Sk(m(x)) is the rank of the reference class in the top-k output or 0 if the reference
class is not returned. In the end, Alice uses a transmission matrix (Wθ(z̃, ỹ)) which is only
(k + 1)× (k + 1).

7.4.2 Detection (det,F ,A ( B, k)

For the detection task, Alice first makes the following hypothesis: The black-box is a variant
of the vanilla model m ∈ A. This variant may be the identity (b = m), or a variant she knows,
or a variant she does not know.

Contrary to the previous section, Alice randomly chooses L inputs (X1, . . . , XL) ⊂ X
to query the black-box and compares the observations (Z̃1, . . . , Z̃L) to the outputs she knows
(Ỹ1, . . . , ỸL), with Z̃` := Sk(b(X`)), Ỹ` := Sk(m(X`)),∀` ∈ JLK. We use capital letters here to
outline that these are random variables since Alice randomly chooses the inputs.

There are two difficulties: i) to gauge the distance between the outputs observed from the
black-box and from model m (see Section 7.4.2) and ii) to randomly sample informative inputs
from the set X (see Section 7.4.2).

Discriminative Distance

Alice tests two hypothesis:

— H1: The black-box is a variant of model m. There is a dependence between Z̃ and Ỹ
which is captured by the statistical model of the variant:

P1(Z̃ = z̃, Ỹ = ỹ) := Wθ(z̃, ỹ)P(Ỹ = ỹ).

— H0: The black-box is not a variant of model m. There is no statistical dependence and

P0(Z̃ = z̃, Ỹ = ỹ) := P(Z̃ = z̃)P(Ỹ = ỹ).

The well-celebrated Neyman-Pearson test is the optimal score for deciding which hypothesis
holds. For L independent observations, it writes as

s =
L∑
j=1

log P1(Z̃ = z̃j, Ỹ = ỹj)
P0(Z̃ = z̃j, Ỹ = ỹj)

=
L∑
j=1

log Wθ(z̃j, ỹj)
P(Z̃ = z̃j)

. (7.15)
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We introduce the empirical joint probability distribution defined by

P̂Z̃,Ỹ (z̃, ỹ) := L−1|{j ∈ JLK : z̃j = z̃ and ỹj = ỹ}| (7.16)

in order to rewrite (7.15) as

s = L
∑

(z̃,ỹ)∈S2
k

P̂Z̃,Ỹ (z̃, ỹ) log Wθ(z̃, ỹ)
P(Z̃ = z̃)

. (7.17)

This formalization is not tractable becauseWθ is not known: Alice does not know which variant
θ is in the black-box, and indeed it might be an unknown variant. Yet, (7.17) guides us to a more
practical score function, the empirical mutual information:

Î(Z̃, Ỹ ) :=
∑

(z̃,ỹ)∈S2
k

P̂Z̃,Ỹ (z̃, ỹ) log
P̂Z̃,Ỹ (z̃, ỹ)
P̂Z̃(z̃)P̂Ỹ (ỹ)

, (7.18)

with the empirical marginal probabilities:

P̂Z̃(z̃) :=
∑
ỹ∈Sk

P̂Z̃,Ỹ (z̃, ỹ), P̂Ỹ (ỹ) :=
∑
z̃∈Sk

P̂Z̃,Ỹ (z̃, ỹ). (7.19)

In words, the model of the distributions (P0,P1) is replaced with empirical frequencies learned
on the fly. Resorting to the empirical mutual information to decode transmitted messages in
digital communication is known as Maximum Mutual Information (MMI), recently proven uni-
versally optimal [223].

The empirical mutual information is a kind of similarity (the bigger, the more Z̃ looks like
Ỹ ). Its value lies in the interval [0,min(Ĥ(Z̃), Ĥ(Ỹ ))] with the empirical entropy given by:

Ĥ(Z̃) := −
∑
z̃

PZ̃(z̃) logPZ̃(z̃). (7.20)

We prefer dealing with a normalized distance and we introduce:

dist(b,m) := 1− Î(Z̃; Ỹ )
Ĥ(Ỹ , Z̃)

∈ [0, 1]. (7.21)

This defines the Rajski distance [188] between the models b and m respectively producing Z̃
and Ỹ .

The distances between all the pairs of models is shown in Section B.2 in Figure B.1. The
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block diagonal shows that the distances between variants of the same vanilla models are small.
We clearly see the cluster of variants centered on each vanilla model. Indeed, Figure 7.1 in the
introduction is a t-SNE representation extracted from such pairwise distances between models
in B.

For a given model m, let us consider two extreme scenarios:

— The model m is in the black-box so that z̃j = ỹj , ∀j ∈ JLK. Then PZ̃,Ỹ (z̃, ỹ) = 1 if
z̃ = ỹ, and 0 otherwise, producing dist(b,m) = 0.

— The black-box and model m yield independent outputs so that PZ̃,Ỹ (z̃, ỹ) = PZ̃(z̃)PỸ (ỹ),
then dist(b,m) = 1.

In the end, Alice deemed the hypothesisH1 as being true when the distance is small enough:
dist(b,m) < τ → H1 is true. Alice makes two kinds of errors:

— False positive: dist(b,m) < τ whereasH1 is false.
— False negative: dist(b,m) ≥ τ whereasH1 is true.

Alice sets the threshold τ such that the probability of false positive is lower than a required level
α. The converse, i.e. controlling the probability of false negative, is an illusion. Appendix D
shows for instance that there is no way to theoretically upper bound the distance between a
variant and its original model, even if both of them share good accuracy. Our working assump-
tion is that this mutual information is indeed large enough for a reliable hypothesis test and the
experimental work confirms this in Section 7.4.4.

Selection of Inputs

The empirical mutual information is a consistent estimator of the mutual information which
depends on the channel transition matrix Wθ and the input probability distribution PỸ . A re-
sult of the theory of communication is that for a given transmission channel, there is an input
probability which maximises the mutual information. This is of utmost importance to design
a communication system achieving the channel capacity as defined by C.E. Shannon. In our
framework, this would make the distance between a model and its variant closer to 0 likely
avoiding a false negative.

However, this idea is not applicable to our scheme because Alice may suspect a plurality of
variants, each of them leading to a different optimal input distribution. The black-box may also
contain an unknown variant excluding any optimization.

Yet, when Alice chooses random inputs, she has the feeling that these inputs must not be too
easy to be classified otherwise any model outputs the same prediction. This is not discriminative
of a given model in the black-box and it may lead to a false positive. On the other hand, these
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inputs must not be too hard to be classified neither otherwise the prediction tends to be random,
destroying the correlation between a model and its variant. This may lead to a false negative.

Our experimental work investigates several selection mechanisms of the inputs. All of them
amount to randomly pick inputs from a subset X ′ of X .

— All. There is indeed no selection and X ′ = X .
— 50/50. Alice’s hypothesis concerns a family of variants derived from a vanilla model m.
X ′ is composed of 50% of inputs well classified by m (i.e. m(x) = c(x)), 50% inputs
for which m(x) 6= c(x).

— 30/70. The same definition but with 30% well classified and 70% wrongly classified by
m.

— Entropy. X ′ is composed of the inputs whose top-1 predictions are highly random. For
a given input, Alice computes the predictions from all the models in A and measures
the empirical entropy of these predicted labels. She then sorts the inputs of X by their
entropy, and X ′ contains the head of this ranking.

The second and third options are dedicated to the detection task since they only need the vanilla
model m at the root of Alice’s hypothesis. The last selection mechanism demands a long pre-
processing step depending on how big the set of modelsA is. It is dedicated to the identification
task.

In the worst-case, a model consistently predicts the ground truth at the same top-k position
for all submitted images. This situation results in PỸ (ỹ = k) = 1 leading to a null entropy and
an undefined distance dist. To mitigate this problem, Alice adopts a strategy where she ensures
that at least one correct and one incorrect classification are selected for all models, following
the introduced selection process. It highlights the limitation of our method for fingerprinting
models achieving perfect accuracy.

7.4.3 Identification (I,F ,A ( B, k)

The identification task is nothing more than an extension of the detection. Instead of a binary
hypothesis, Alice is now facing a multiple hypotheses test with M + 1 choices:

— Hi: The black-box is a variant of vanilla model mi, with 1 ≤ i ≤M ,
— H0: The black-box is a variant of an unknown model.

The usual way is to compute distance dist(b,mi) per vanilla model mi ∈ A, and to decide for
model i? = arg min1≤i≤M dist(b,mi), if dist(b,mi?) is lower than a threshold, otherwise Alice
chooses hypothesisH0. If a known model is in the black-box, only three events may occur:

— Alice makes a correct identification,

140



7.4. Open World:
The Black-Box is an Unknown Model

— Alice can not make any decision. She deemsH0 as true.
— Alice makes a wrong identification.

Again, by fine-tuning the threshold, Alice controls the probability of the last event. Note that
the probability of success is expected to be smaller than for the previous task. Identification is
more difficult since several hypotheses are competing.

Compound Model

Information theory helps Alice again thanks to an analogy with the communication over a
compound channel. In this communication problem, a message mi has been emitted and trans-
mitted through a channel Wθ. The receiver knows a compound channel, i.e. a set of channels
{θj}Vj=1 ⊂ Θ. It knows that the received signal has gone through one of them, but it does not
know which one. There exists an optimal decoder for each channel in the set. The receiver just
does not know which one to use. A theoretically grounded decoder is to decode the signal with
each decoder and to aggregate this decoding with a min operator [1].

The analogy is the following: the inputs go through all the models {mi} known by Alice, and
the outputs are like messages. Bob has chosen one model, i.e. one of these messages. Yet, Bob
uses a variant which emits noisy outputs observable to Alice. Now, suppose that Alice knows
a set of variants in a given family: {V(mi, θj)}j ⊂ F . She uses these variants for computing
distances dist(b,V(mi, θj)) that she aggregates into one distance w.r.t. the family:

dist(b,F) := min
j

dist(b,V(mi, θj)). (7.22)

Intuitively, the black-box might be a very degraded version of a model which is indeed ‘closer’
to a milder variant than to the original model mi.

7.4.4 Experimental Work

The previous experimental work in Section 7.3.3 considers three kinds of family concern-
ing the black-box as defined in Section 7.2.2. When the family is a singleton, because F =
F(m, {θ}) or F = F(m,Ψ) and |Ψ| = 1, then the distance between the black-box and this
unique model is exactly zero. This easy case is now excluded to focus on cases where Alice
does not know the variant in the black-box.

Contrary to Section 7.3.3, Alice now resorts to statistical tests. Any distance between models
is a random value since the queries are randomly selected. Our experimental protocol makes 20
measurements of any considered distance thanks to 20 independent inputs samples.
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Figure 7.5 – Histogram of the distance dist(m1,m2) when (m1,m2) ∈ F2(m) (orange),
(m1,m2) ∈ F2(m,Ψ) (green), or m1 and m2 are variants of different vanilla models (red).
Inputs randomly sampled in X (top) or in X ′ with Entropy(See Section 7.4.2) (bottom).

Assumptions about the Statistical Model

Section 7.4.1 makes two assumptions about the statistical dependence between the predic-
tions of models in the same family F and independence when coming from different families.
Figure 7.5 experimentally verifies these working assumptions.

The distances between two models V(m, θ) and V(m′, θ′) for two vanilla models m and m′

and any variants (θ, θ′) ∈ Θ × Θ are computed. This sums up to 583,740 combinations. Fig-
ure 7.5 shows the histogram of these distance values over 20 bins in red. A high number L
of queries makes the measured distance more precise. The selection of the inputs has a major
impact. When sampled on X (first row), the distance rarely values the maximum showing im-
perfect independance. This phenomenon has been revealed in [149]. Yet, when sampled on X ′

containing more inputs hardly correctly classified (second row), the distances are closer to one.
The models tend to be independent when queried with a good selection of inputs.

Figure 7.5 also shows the histogram of distances between models belonging to the same
family spanned by a vanilla model m, be it F(m,Ψ) (same type of variation) or F(m) (any
kind of variation). It is not possible to get a non-trivial upper bound of the distance in this
case (explained in Section B.4). We empirically observe that two models from the same type
of variation are usually closer. It is therefore easier to detect or identify families F(m,Ψ) than
F(m).
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7.4. Open World:
The Black-Box is an Unknown Model

Detection (det,F ,A ( B, k)

The experiment considers all combinations of hypothesis and model put in the black-box.
There are 35 vanilla models and 1046 variants. This makes 35 families of type F(m) with an
average of 30 members per family. This represents 1081 positive cases and 36,754 negative
cases. There are 377 families of type F(m,Ψ) of which 203 with a size bigger than 1. This
makes 907 positive cases and 218,536 negative cases. To assess the detection performance,
Alice leverages the negative cases to determine the threshold τ as the empirical α-quantile of
the False Positive Rate (FPR) (see Section 7.4.2).

Selection of Inputs Table 7.2 shows the TPR obtained when the black-box returns only top-

1 decisions. As expected, the performances for the families F(m,Ψ) are higher. The selection
Entropy is clearly the best option. Its drawback is that it needs statistics about the predictions
of many vanilla models. As far as the detection task is concerned, the other selections are to be
preferred. They only require the predictions of the suspected vanilla model. In the sequel, the
selection 30/70 is used for further experiments on the detection task.

The Delegate Model Alice measures a single distance in between the black-box and a del-
egate model of the hypothesis’ family F . Which member of the family is the best delegate?
Three choices are proposed based on the distance to the vanilla model spanning the family:
Close, Median, and Far. For instance, the Close option means that the delegate is the closest
member in the family to the vanilla model:

md = arg min
m′∈F

dist(m,m′). (7.23)

In the case where F = F(m), the closest member is m. It is not the case when F = F(m,Ψ),
because the vanilla model m is not in this family. Recall that the intersection between two
families has to be the empty set, otherwise Alice could not distinguish them.

Table 7.3 evaluates the three options. Only the 180 families with more than 3 members are

Table 7.2 – True Positive Rate for (det,F ,A ( B, 1) with L = 100 queries sampled in X ′
(See Section 7.4.2). The delegate model is the closest to m. False Positive Rate is set to 5%.

All 50/50 30/70 Entropy
F(m) 83.4± 1.4 92.6± 1.0 92.8± 0.8 94.7± 0.7
F(m,Ψ) 86.9± 0.9 95.3± 0.9 95.6± 0.8 97.2± 0.5
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considered here. For smaller families, the three options would give the same delegate.
The delegate greatly influences the results. The best choice is to select the delegate as lying

at the ‘center’ of the family. It means the Close option for the family F(m), which is indeed the
vanilla model m, or the Median option for family F(m,Ψ).

Top-k Observations The detection is evaluated for top-k outputs in Figure 7.6. The best re-
sults are surprisingly obtained for k = 1 in Table 7.4 for a few queries. As the number of queries
increases, the performance of k = 3 surpasses it and all top-k values converge to the same score
after 500 queries. Our explanation is the following. The bigger k the richer the model. Yet, the
empirical mutual information is calculated from (k + 1)2 estimated probabilities. For a given
number of queries, the fewer estimations the more accurate they are. The top-1 is faster to esti-
mate and reach good results quickly. Once the number of queries is enough, the top-3 takes the
lead. They quickly get very good results close to 100%, simultaneously as top-5.

To summarize, the TPR reaches 95% for 150 queries under top-1, 110 under top-3, and 140
for top-5.

Identification (I,F ,A ( B, k)

All conclusions obtained in the previous section are kept. Alice now has for delegate the
vanilla model m for F(m) and the Median model for F(m,Ψ). Images are sampled with En-
tropy as defined in Section 7.4.2.

Experimental Protocol We divide the identification task into three steps, each of them being
prone to errors.

In the first step, Alice decides whether to abstain or proceed with identification. In the neg-
ative case where b ∈ F(m′) but m′ /∈ A, the correct answer is to abstain and to consider the

Table 7.3 – True Positive Rate for (det,F ,A ( B, k) and different delegates with L = 100
queries in 30/70, FPR = 5%.

Delegate Close Median Far

F(m)
top-1 92.8± 0.8 91.3± 1.1 31.6± 2.8
top-3 94.2± 0.9 93.5± 0.2 36.8± 4.9
top-5 93.2± 0.7 92.9± 0.8 35.4± 3.5

F(m,Ψ)
top-1 95.6± 0.8 96.3± 0.7 82.2± 1.2
top-3 96.3± 0.6 97.7± 0.37 86.1± 1.3
top-5 96.0± 0.6 97.6± 0.4 85.7± 0.9
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Figure 7.6 – True Positive Rate for (det,F ,A ( B, k) function of the number of queries
randomly selected in 30/70, FPR = 5%, best delegate options for F(m) (dash) and F(m,Ψ)
(plain).

null hypothesisH0. If b belongs to F(m) and m ∈ A, the correct answer is to move to the next
step of identification. We set the probability of error in the negative cases to 5% by controlling
the threshold τ . Alice abstains if all distances are above the threshold. For this purpose, A con-
sists of 30 models, while the remaining 5 models are used to generate the negative cases. Alice
computes the distances between b and the 30 vanilla models in A. This process is repeated 20
times, with a random selection of 5 excluded models from P .

Once Alice decides that the black box is identifiable, the second step is to disclose the family
F(mi). She decides for the hypothesis Hi minimizing the distance. When multiple models
achieve this minimum distance, Alice is unable to make a decision and chooses to abstain. This
conservative choice is more likely to occur when few images are submitted.

Finally, Alice identifies the variation, knowing she has made a correct identification of the

Table 7.4 – True Positive Rate for (det,F ,A ( B, k) with random queries selected with 30/70,
FPR = 5%.

Number of queries L = 20 L = 50 L = 100 L = 500

F(m)
top-1 79.7 86.9 92.8 99.4
top-3 77.3 88.0 94.2 99.3
top-5 76.8 87.3 93.2 99.3

F(m,Ψ)
top-1 83.1 91.5 96.3 99.7
top-3 84.3 94.1 97.7 99.7
top-5 83.6 94.0 97.6 99.6
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Figure 7.7 – Probability distribution for (I,F(m),A ( B, 1) vs. numberL of queries. Threshold
set to have a maximum 5% errors in negative cases.

global family F(mi). In this case, Alice has to identify the correct variation among 6 fami-
lies {F(m,Ψj)}j=1:6: randomized smoothing, pruning (filter, all, last), JPEG, posterize (See
App. A).Alice thus computes 6 distances based on their delegates and identifies the family
i? = arg minj dist(b,F(m,Ψj)). No thresholding is needed here. For each family, 20 variants
with random parameters and complying with (7.1) are created. This leads to 700 new models
tested in the black-box, different from the 1,081 models considered so far.

Identifying F(m) Alice almost surely identifies the family F(m) of the black-box as shown
in Figure 7.7 and Table 7.5. She reaches her maximum success rate at around 300 queries.
After 200 queries, no incorrect identification is made but 10% of abstention remains. This is
due to the thresholding which prevents Alice from misclassification in the negative case. If no
thresholding is done, the success rate reaches 94.7% within 100 queries and 99.1% at 500.

The number of queries is higher than for detection. For equivalent performance, 4 times
more queries are necessary for identification than for detection. Nevertheless, identification
proceeded by sequential detection would take on average 3.000 queries (24 times more w.r.t.
detection) as foreseen by (7.9).

Identifying F(m,Ψ) With a single delegate, Table 7.5 and Figure 7.8 show a rather difficult
identification. Variants far from the vanilla model are correctly identified. The main difficulty
comes from the variations that slightly modify the model. These variants are close to m, which
is the center of the cluster F(m) (see Figure 7.1), therefore it is hard to distinguish them. The
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Figure 7.8 – Correct Identification Rate for F(m,Ψ) as a function of the number of queries.
One (plain) or two (dashed) delegates per family.

compound (7.22) with the median and the close delegates yields a boost if L is large enough.

Top-k Observations The best results are obtained for k = 1 in Table 7.5 on every task, like
for detection. For the family F(m), the information gained by top-k needs too many queries to
catch up with the top-1. For family F(m,Ψ), the difference is smaller. Indeed, top-k with k ≤ 3
gives slightly better results from ≈ 1, 000 queries and above.

7.5 State-of-the-Art Benchmark

7.5.1 Previous Works

Since the work of IP-Guard [19], all the fingerprinting papers leverage adversarial ex-
amples. They start with a small collection of benign inputs (except [247] starting from random
noise images) and apply a white-box attack like CW [22]. It forges adversarial examples that lie
close to the decision boundaries, which are the signatures of a model.

Two trends are connected to two applications. The first one deals with the integrity of the
model. In this scenario, Alice makes sure that Bob placed her model in the black-box without
any alteration. The goal is to sense a fragile fingerprint such that any modification of the vanilla
model is detectable because it changes the fingerprint. In that light, methods in [85, 119] create
sensitive examples which are triggered only by modifications of the vanilla model.
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The second application is robust fingerprint as considered so far in this chapter. The fol-
lowers of IP-Guard [19] forge adversarial examples which are more robust in the sense that
they remain adversarial for any variation of the model while being more specific to the vanilla
model. Paper [178] proposes to use the universal adversarial perturbations of the vanilla model.
Paper [140] introduces the concept of conferrable examples, i.e. adversarial examples which
only transfer to the variations of the targeted model. AFA [284] activates dropout as a cheap
surrogate of variants when forging adversarial examples. TAFA [172] extends this idea to other
machine learning primitives.

Our take in this article is that using benign images is sufficient, and we addressed the fin-
gerprinting problem without the need to rely on adversarial examples or any other technique to
alter images to get them nearby the boundaries. Indeed, crafting adversarial examples is rather
simple but forging them with extra specificities (fragile or robust to variation) is complex. It
happens that all above-mentioned papers consider small input dimensions like MNIST or CI-
FAR (32× 32 pixel images); none of them use ImageNet (224× 224) except IP-Guard [19].
Also, no paper considers that the inputs can be reformed by a defense (in order to remove an
adversarial perturbation before being classified) or detected as adversarial [111].

7.5.2 Fragile Fingerprinting

The application considered in [85] imagines that Alice wants to detect whether the black-
box is exactly m and not a variant. This corresponds to our scenario (det,F(m, {θ}),A = B, 1)
where θ is the identity variation, and A = F(m).

We create L = 20 sensitive examples per model with 200 iterations and two distortion bud-
gets (ε = 8/255 and 16/255) using the code 1 released by [85]. It happens that its performance
on ImageNet (reported in Table 7.6) is lower than the one reported in [85] on small input size
datasets (like CIFAR). Especially, this scheme can not distinguish the vanilla model and its
variants ‘JPEG’ or ‘Half precision’ even with a number of queries (L = 20) bigger than the
one recommended (L = 8) in [85]. Our scheme needs no more than two queries and perfectly
accurate, except when pruning the last layer for five out of thirty-five models.

1. Sensitive Examples’ GitHub: https://github.com/zechenghe/Sensitive_Sample_Finge
rprinting
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7.6. Related Work

7.5.3 Robust Fingerprinting

This application is related to our scenario (det,F(m),A ( B, k). IP-Guard [19] is the
only work showing to be tractable and effective on large input size like in ImageNet. It leverages
several white-box attacks to create adversarial examples. The best results demonstrated in the
paper are with the attack CW [22]. We instead use BP [280, 15] because it exhibits similar
performances while being much faster (only 50 iterations). The BP implementation is from
GitHub 2.

Table 7.7 compares the performances under 100 and 200 queries and top-1 observations.
Any selection of the inputs beats IP-Guard [19]. Detailed results are reported in Table 7.8.
Some variations are easier to detect (‘precison’, ‘pruning’) and the two methods are on par. On
the contrary, randomized smoothing which is a popular variation yet never considered in the
literature, is more difficult. IP-Guard [19] is based on crafting adversarial examples close
to the decision boundaries which are greatly crumpled by randomized smoothing. Not relying
on adversarial examples seems to be a clear advantage in this case. Our method offers more
stability in the results: No variation pulls the TPR below 85%.

7.6 Related Work

Having reviewed the previous works dedicated to the fingerprinting task in the section above,
we here review another closely related domain: the watermarking of models.

Watermarking is the active counterpart of fingerprinting: Instead of relying on specifics
of a fixed model to devise its unique fingerprint, watermarking modifies the model for which
ownership must be proven. While watermarking is a common practice for decades in the field
of image processing [220], it has just recently been incepted into the machine learning domain.
Uchida et al. [236] first proposed to watermark a deep neural network by embedding it into the
weights and biases of the model. Quickly after this initial proposal, works instead focused on
a black-box model, where the presence of a watermark can be assessed by Alice from remote
interaction with the suspected deep neural network, just like for fingerprinting. In [120], authors
insert information by altering the decision boundaries through finetuning. In [2], authors also
retrain the model to obtain the wrong labels for a so-called trigger set of inputs, that constitutes
the watermark. Please refer to [135] for a complete overview of the domain.

2. Boundary Projection’s GitHub: https://github.com/hanwei0912/walking-on-the-edge-
fast-low-distortion-adversarial-examples
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Some papers claim that robust fingerprinting could replace watermarking with the clear
advantage that no modification of the model is needed [284]. We strongly disagree. No finger-
printing scheme, including ours, brings any formal guarantee on what is in the black-box. It is
indeed the primary goal of watermarking to guarantee a certain level of trust.

7.7 Conclusion

The problem of accurate and efficient fingerprinting of valuable models is salient. This chap-
ter demonstrates that such a demand can be fulfilled by solely using benign inputs, in not only
the classic detection task, but also in the novel identification task we have introduced. This has
the important implication that we no longer need models in white-box access to compute their
fingerprints.

We provide the following takeaways.
i) In the walled garden setup of Section 7.3, less than ten inputs are needed but these are se-
quentially and carefully selected among a large collection depending on the previous outputs of
the black-box. In other words, the key is the interaction between the greedy algorithm and the
black-box. Observing top-1, top-3 or top-5 makes a difference. It is easier to spot inputs that
single out a model with richer outputs.

ii) In the open-world setup of Section 7.4, hundreds of inputs are necessary but the scheme
is not iterative and selection is less crucial. Surprisingly, observing richer outputs does not yield
any gain in this setup.

iii) The identification task is merely more complex than detection. Our identification schemes
are much more efficient than the naive sequential search.

iv) Bob’s best defenses in our experimental protocol are randomized smoothing for robust
fingerprinting and pruning the last layer for fragile fingerprinting. It means that the former
reduces the statistical dependence of the outputs, while the latter hardly perturbs the outputs
given by the vanilla model.

One limitation of our work is that it cannot handle classifiers whose accuracy is almost
perfect. This would happen for too easy classification setups where the value of models is lower,
and fingerprinting is less critical. We nevertheless expect future models and applications to
continue to be complex tasks, where reaching high accuracy levels will remain a struggle for
both the academia and industry.
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Table 7.5 – Correct Identification Rate for (I,F ,A ( B, k) with random queries selected with
Entropy.

Number of queries L = 50 L = 100 L = 500

F(m)
delegate = {close}

top-1 67.1 80.0 98.6
top-3 49.1 57.8 85.3
top-5 48.4 55.7 80.4

F(m,Ψ)
delegate = {median}

top-1 65.8 68.3 74.1
top-3 58.2 64.5 71.4
top-5 52.7 57.2 69.2

F(m,Ψ)
delegate = {close, median}

top-1 73.1 77.2 83.6
top-3 61.8 70.0 80.2
top-5 60.4 66.3 78.5

Table 7.6 – False Positive Rate for the (det,F = {m},A = B, 1) task.

Method Sensitive Examples [85] FBI [147]
Parameter ε = 8/255 ε = 16/255 L = 2

Finetuning
All 18.1 21.4 0
Last 20.3 1.8 0

Prune
All 0 0 0

Filter 35.7 31.0 0
Last 15.4 10.0 0

Half Precision 31.5 21.4 16.9
Histogram 57.4 48.5 0

JPEG 77.0 63.4 0
Posterize 100 97.1 0

Randomized Smoothing 100 97.1 0

Table 7.7 – True Positive Rate for (det,F(m),A ( B, 1), FPR set to 5%.

Fingerprinting
Parameter

Number of queries
scheme L = 100 L = 200

IP-Guard [19] BP [280, 15] & 50 iter. 66.9 72.7

FBI [147]
Random 83.4 95.0

30/70 92.8 97.8
Entropy 94.7 98.0



Table 7.8 – True Positive Rate per variation under (det,F(m),A ( B, 1). False Positive Rate
set to 5% and L = 100 queries.

Method IP-Guard [19] FBI [147]

Parameter
BP [280, 15]
50 iterations Random 30/70 Entropy

Finetuning
All 0.5 85.6 94.5 94.5
Last 92.3 91.5 97.3 97.3

Prune
All 72.7 65.0 87.4 91.9

Filter 89.2 87.8 97.3 99.5
Last 100 87.3 97.9 98.9

Half Precision 100 100 100 100
Histogram 27.3 64.2 89.4 92.0

JPEG 100 100 100 100
Posterize 9.2 88.3 95.9 98.5

Randomized Smoothing 26.1 60.0 78.1 85.5



CONCLUSION

The primary goal of this thesis is to investigate vulnerabilities in AI within a realistic setup.
In this particular setup, the attacker’s capabilities are severely restricted with regard to the usual
assumptions made in a white-box setup, both in terms of their knowledge and resources.

In the first chapter, this scenario and its associated definitions were introduced. Remarkably,
even within this constrained context, a significant number of vulnerabilities that were originally
identified in the white-box literature were also found to be feasible in the black-box setup.
As a result, the specific scenario we considered gave rise to three main focal points: model
confidentiality, manipulation of inference inputs, and the confidentiality of training data. Each
of these areas was briefly introduced, with subsequent emphasis on two significant aspects,
namely adversarial examples and model confidentiality, explored in Chapter 2 and Chapter 3,
respectively. These are domains in which substantial contributions have been made throughout
this thesis.

Chapter 1 also delves into the intricacies of the decision boundary and its characteristics,
serving as a gateway for potential attacks. Given the limited information accessible in this sce-
nario, numerous attack strategies leverage the properties of this decision boundary. It essentially
mirrors the learning process of the model and its interactions with the data. A profound under-
standing of the decision boundary equates to a more complete comprehension of the model’s
vulnerabilities. For instance, adversarial examples hold a central position in this thesis, occu-
pying a substantial portion, both in the state-of-the-art overview in Chapter 3 and through the
numerous contributions presented in part II of this thesis. The fundamental premise of their
existence and the plethora of methods introduced underline the critical importance of compre-
hending the relation between the decision boundaries and the model vulnerabilities.

The focal point of this thesis has been the security of neural networks, specifically concen-
trating on the task of image classification. This choice is driven by the extensive coverage of
these tasks in existing literature. Nevertheless, the threats elucidated throughout this thesis are
universally applicable to diverse tasks and datasets. For instance, a recent study [291] demon-
strates that the concept of adversarial examples extends to language models. In such contexts,
inputs can also be manipulated to produce undesired or forbidden outputs. Moreover, within the
scope of the black-box setup, the contents of the black box can vary widely, encompassing a
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neural network, a Support Vector Machine model, or even a human. As long as the assumptions
laid out in this thesis hold, the methodologies discussed can be effectively employed.

Limitations

This thesis considered a realistic scenario. However, there are reasons to question whether
the scenario presented in Section 1.4.2 is genuinely "realistic". Several factors may cast doubt
on this scenario and our associated definition. Firstly, the use of ImageNet in the majority of
our experiments may be questioned. This is because the images, due to their size and especially
their labels, do not necessarily represent true real-world images. For example, within ImageNet,
there are 118 different labels for dogs among a total of 1,000 labels. Some classes exhibit high
similarity, such as "projectile, missile" and "missile", resulting in frequent errors for both the
human labeling of the dataset and the trained model [163, 14]. This raises questions about the
applicability of the conclusions of the experiments in our contributions and most works in a
real-world context.

Furthermore, the future deployment of models in production is likely to be dynamic rather
than static. MLOps, designed to facilitate the integration of machine learning into daily-life
applications and adapt to the continuous influx of new data, is gaining prominence. MLOps ca-
pabilities enable the automatic and continuous retraining of machine learning models according
to a schedule. Consequently, models are subject to frequent changes, making attacks potentially
more challenging. For instance, in a black-box setup, attacks based on historical query data may
become obsolete. Moreover, the results of a membership inference attack could vary depending
on when the attack was conducted.

Another limitation arises from evasion attacks. When crafting adversarial examples, most
decision-based black-box attacks involve a line search to locate the decision boundary, as demon-
strated in Section 3.4.3. During this phase, the attacker oscillates between the class they wish to
evade and the target class. In the world we have defined, there is no distinction between query
outcomes; all responses are equal. However, in a more security-sensitive context, this can pose
significant risks. In such scenarios, the attacker may generate numerous "undesirable" queries
in the process of crafting adversarial examples. For example, in a case outlined in [45], an at-
tacker aiming to upload an image that raises concerns of inappropriate content might employ
an evasion attack against a model designed to detect such content. Nevertheless, the current
decision-based black-box attack methods are prone to generating these "undesirable" queries,
mainly during the line search stage when seeking the decision boundary. A single such query
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could result in the attacker being banned or, worse, facing legal action. Future developments in
decision-based black-box attacks may focus on mitigating these risks by limiting the number of
queries associated with a restricted class.

Perspectives

The realm of adversarial examples stands as the most extensively explored subject within
the domain of machine learning security. New methodologies for generating them, novel de-
fense mechanisms, and theoretical insights into their existence emerge frequently. However, it
is plausible that these challenges might not possess a universally applicable solution. The in-
herent characteristics of the high-dimensional input data we deal with, the overparametrization
prevalent in most models, and the quality and quantity of available training data collectively
contribute to a complex landscape that might not readily yield a definitive resolution. But per-
haps the critical question is whether it is inherently problematic to lack a unique solution. Ad-
versarial examples, much like their real-world human counterparts (as exemplified by optical
illusions in Chapter 3), might be an inherent aspect of the landscape. The notion might not be
to eliminate them outright but rather to coexist with them, unravel their intricacies, and manage
them through context-specific strategies.

The previous paragraph inquires about the relevance of adversarial examples and the as-
piration to eliminate them. However, this does not question their value. The war between the
attacker and the defender will never end but adversarial examples also serve as a valuable tool
for gaining insights into the inner workings of neural networks [170]. For instance, let’s consider
counterfactual examples [103]. These examples reveal what changes are required in an input to
achieve a predetermined output. While they are adversarial, their purpose is not to deceive a
model but rather to interpret it. Furthermore, it’s a win-win relationship; adversarial examples
aid in model interpretation, and this interpretation, in turn, enhances our understanding and
ability to fight adversarial examples [17, 62]. Thus, research into adversarial examples should
persist but from a different perspective, perhaps placing less emphasis on security concerns and
more on gaining a deeper understanding.

The aspiration for a comprehensive and equitable evaluation metric has been expressed by
the contributions made in this work. The introduction of RoBIC [144] in Appendix A and FiT
in Chapter 7 respectively introduces a fresh measure of model robustness and a framework for
quantifying transferability between source and target models. In light of the constant flux of
research papers, contemporary benchmarks and objective measures are often absent.
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In the realm of neural networks, confidentiality assumes paramount importance, particularly
concerning both models and data. Clearly, it holds significant importance due to the cost and
the competitive advantages in terms of technology. Equally important is the fact that it aligns
with customer demands and expectations. A statistic from INSEE reveals that approximately
82% of individuals protect their personal data on the internet 3. Initiatives like the European
Union AI Act and the General Data Protection Regulation (GDPR) underline the imperative
of data security. Throughout this thesis, there was not enough time to thoroughly investigate
data confidentiality. However, in Section 1.4.3, we introduced membership inference and model
inversion attacks as methods for extracting information about the training data within a realistic
scenario. To tackle these concerns, efforts have been made to advance solutions that focus on
securing, managing, and supervising these invaluable assets.

Last Words: New Challenges, Old Problems

This thesis is very much attuned to its time. AI is on everyone’s lips, and its security has
consequently become a current and pressing topic. However, many of the issues addressed are
not novel. Throughout this thesis, we have referenced works that precede the widespread use
of neural networks. For instance, the concept of model watermarking draws inspiration from
image watermarking techniques dating back to 1990 [226]. Attacks against watermarks can be
viewed as adversarial examples, where the objective is to deceive a detector. Defenses against
oracle attacks are still up-to-date and relevant against current adversarial attacks but are not
considered (See Section 3.5). The notion of network fingerprints was applied earlier, in the
realm of websites. There are plenty of examples. Many methods have been reintroduced and
applied to neural networks, even though improvements were previously proposed.

Some prior works attempted to establish connections with prior research, serving as a kind
reminder of how far we have come and that research on security did not start in 2012. An exem-
plary instance among the contributions is the SurFree [146] method. Its roots can be traced
back to the work of John Earl in 2007 [55]. In an effort to bridge the gap between watermarking
and machine learning domains, a study by Erwin Quiring et al. [183] presented a unified nota-
tion for black-box attacks on machine learning and watermarking. They demonstrated the effec-
tiveness of each field’s strategies in their respective counterparts. For instance, they highlighted
how countermeasures from watermarking could mitigate recent model-extraction attacks.

In the rush to publish new research, the examination of previous work may be sometimes

3. https://www.insee.fr/fr/statistiques/6475020
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neglected. However, delving into the existing literature, even the oldest, is crucial for gaining
insights into the origins of problems and proposed solutions, preventing the reinvention of ex-
isting solutions. The neglect of prior research can occur due to a lack of familiarity with the
literature or even a desire to hide the origins of a particular method. In either case, such neglect
is detrimental to the progress of research and the broader scientific community. Navigating this
complex landscape can indeed be challenging. Nevertheless, the field of AI security is intricately
connected to various other domains. As a result, it is of paramount importance not to disregard
the contributions of earlier researchers but rather to leverage them in order to enhance and refine
existing methodologies. This approach could yield substantial time savings and improvements.
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Table 7.9 – General notations.

Model Relative Notations
D Input dimension
Nc Number of channels of the input image
H Height of the input image
W Width of the input image
f Model
∂f Decision boundary of the base classifier f
C Number of classes
cl Elected class function
x Input
y Input label

Adversarial Examples Relative Notations
η(m) Accuracy of model m
n Number of images considered in attacks
xo Original image targeted for adversarial, well-classified initially
X = {x1

o, . . . ,xno} Set of images considered for the attack
xadv image adversarial
x?adv Optimal adversarial image
δ Perturbation
δu Universal perturbation
δt Transferable perturbation
δs Sensitive perturbation
K Number of queries

Measure Relative Notations
dist(xadv,xo) Distortion between xadv and xo in Eq. (3.2)
dist Mean Distortion in Eq. (3.7)
ASR(.) Operating Characteristic in Eq. (3.9)
ASR Attack Success Rate in Eq. (3.6)

Table 7.10 – Notations for the contribution on RoBIC [144] in Appendix A.

A Attack
Π Paramaters of the attack
D1/2 Half-distortion in Eq. (A.3)
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Table 7.11 – Notations for the contribution on SurFree [146] in Chapter 4.

O Outside region
∂O Boundary of the outside region
xb Point on the boundary
n Normal at the boundary
u Direction given by the xb and the original image xo
d Distance to the boundary
τ Angle Ratio for Sign Search
Vk List of former picked directions
L Size of the memory of directions
T Number of steps in sign search
z Point on the circle
t random direction orthogonal to u
P Affine plan of dimension 2 in which we work

Table 7.12 – Notations for the contribution in Chapter 6.

N Noise from Normal Distribution
σ Standard Deviation of Normal Distribution in Monte-Carlo Process
nmc Samples Number in Monte-Carlo Process
gσ deterministic classifier obtained by Randomized Smoothing
∂gσ Decision Boundary of gσ
ResNet50 ResNet50 Normally trained
AdvTrain ResNet50 adversarially trained
RandTrain ResNet50 randomly trained
R Certified Robustness
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Table 7.13 – Notations for the contribution FiT in Chapter 5.

s Source
t Target
ft Target model
fs Source model
m Number of source models owned by the attacker
Fs = {f 1

s , ..., f
m
s } Collection of source models

ux,s Adversarial direction obtained on the source for the image x
Pwb
t (D) Operating characteristic white box attack applied to the target model
P bb
t (D) Operating characteristic black box attack applied to the target model
Ts,t Transferability from the source to the target
ModSim Measure of the model similarity
TransQ Measure of the quality of the transferable adversarial example
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Table 7.14 – Notations for the contribution FBI [147] in Chapter 7 .

det The task of detection
I The task of identification
m A vanilla model as listed in Table B.1
V(m, θ) Variant obtained by applying procedure θ on m
Θ Set of all variation procedures and parameters
b The model in the black box
z Top-k output of the black box
C The set of classes labeled from 1 to C
Zk The set of top-k outcomes
(C)k Falling factorial (C)k := C(C − 1) . . . (C − k + 1)
B Set of models Bob can create as defined in (7.2)
A Set of models known by Alice
P Set of public vanilla models listed in Table B.1
F(m) Family spanned by vanilla model m (7.3)
F(m,Ψ) Family spanned by m and variation Ψ ⊂ Θ (7.4)
N Cardinality of X
q1:` An ordered list of indices in JNK
D(x) Set of outputs given by models in D for input x
M(x, y,D) Subset of models of D giving y for input x
(A\F)(`) Subset of candidate models at step ` (7.6)
s(`+1)(x) Score of input x at step `+ 1 when A = B
Lpos, Lneg Nb. of queries for a positive / negative detection
Sk Surjection from Zk to Sk := {0, 1, . . . , k}
z, y Top-k output of black box b or of model m
Z, Y Random top-k output when the input is random
z̃, Z̃, ỹ, Ỹ Similar outputs after the surjection
Wθ (k + 1)× (k + 1) Transition matrix
Î(Z̃, Ỹ ) Empirical mutual information in bits
ĤZ̃(z̃) Empirical entropy in bits
dist(m1,m2) Distance between models with L queries
dist(b,F) Distance of the black box from family F
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APPENDIX A

ROBIC [144]: A BENCHMARK SUITE FOR

ASSESSING CLASSIFIERS ROBUSTNESS

A.1 Introduction

The domain of evasion attacks is a very active research area. A deluge of research papers
now proposes defenses to block such an attacker and adaptive attacks against these defenses.
This is an endless arms race, and systematic benchmarks to evaluate the state of the threat are
greatly required.

It is currently extremely difficult to have a clear view of what is truly working in this do-
main. The cliché is that no two papers report the same statistics for the same attack against
the same model over the same image set. This is mostly due to that an attack is an algorithm
with many parameters. Its power is indeed highly dependent on these parameters. These val-
ues are rarely specified in research papers. There exist benchmarks in the litterature, such as
ARES [51], RobustBench [38], RobustVision [118], ADBD [24]. They aim to provide
a better understanding of the robustness of image classifiers. Yet, they fall short because their
slowness prevents them from tackling large image datasets like ImageNet. They only operate
on CIFAR-10 or MNIST. Also, they resort to attacks that are not all state-of-the-art.

This chapter develops RoBIC [144], a parameter-free benchmark to consider these con-
cerns. It fairly evaluates the robustness of image classifiers using a new half-distortion measure.
It gauges the robustness of the network against white and black box attacks, independently of
its accuracy.

All the notations unique to this chapter are listed in Table 7.10 at the conclusion of this

manuscript. Additionally, for general notation, please refer to Table 7.9.
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A.2 Difficulties

This section explains the difficulties of setting up a benchmark measuring the robustness of
image classifiers.

A.2.1 Notation

An attack is a process forging an image xadv = A(xo, f,Π), where xo is the original image,
f is the target model, and Π is a set of attack parameters. The ground truth label of xo is
denoted by yo. The boolean function 1(xadv,yo) = [cl(xadv) 6= yo] tells whether the attack
deludes classifier f in the untargeted attack scenario: the prediction f(xadv) is not the ground
truth. The distortion between xo and xadv is denoted by dist(xadv,xo).

Some statistics like the probability of success and the average distortion are extracted from
the adversarial images forged from the test set. They depend on the attack A and its set of
parameters Π. Therefore, it can not play the role of a measure of the robustness of a given
model. The first difficulty is to get rid of the impact of parameters Π.

A.2.2 The best-effort mode

The parameters Π have a huge impact on the power of an attack. For instance, some attacks
like FGSM, I-FGSM [117], PGD [142] are distortion constrained in the sense that Π is strongly
connected to a distortion budget. If this budget is small, the probability of the success of the
attack is small. If it is large, this probability is close to 1 but the distortion is too big. Hence, it
is hard to find the best setting to make these attacks competitive. Our strategy, so-called ‘best-
effort mode’, reveals the intrinsic power of an attack by finding the best setting for any image:
xadv = A(xo, f,Π?) with

Π? = arg min
Π:1(A(xo,f,Π),yo)=1

dist(A(xo, f,Π),xo). (A.1)

The best-effort mode makes the measurement of the robustness independent from an arbitrary
global setting Π. Yet, it is costly in terms of computations. Attacks with few parameters are
preferred since the search space is smaller.
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A.2.3 worst-case attacks

A second difficulty is to make the robustness score independent of the attack. Ideally, we
would like to know the worst-case attack to certify the robustness of a model. An option pro-
posed by benchmarks RobustVision [118] and ARES [51] is to consider a set of J = 11
attacks as outlined in table A.1.

This is again costly as each image of the test set has to be attacked J times. Yet, a benchmark
happens to be useful if it is fast enough to assess the robustness of many models. The best-effort
mode over an ensemble of attacks is out of reach. This is the reason why we need to focus
on fast worst-case attacks in the sense that they achieve their best-effort mode within limited
complexity. Section A.4 focuses on these attacks.

A.2.4 The choice of the metric

The game between attack A and model f over the test set is summarized by the operating
characteristic P defined in Equation 3.9 in Section 3.1.3. As reminder, P (D) is the fraction of
images that the attack succeeded in hacking within a distortion budget D. Many benchmarks
gauge the robustness by P (Db) at an arbitrary distortion Db: e.g. RobustBench [38] score is
P (D = 0.5). This measure is pointwise and dependent on η(0).

A.3 The benchmark

This section justifies the recommendations made in our benchmark and defines the measure
of robustness.

Pixel domain. Our benchmark is dedicated to image classification. As a consequence, the
distortion is defined on the pixel domain: An image x is defined in the space J0, 255KD with
D = NcHW pixels for Nc color channels, H rows and W columns. Most papers in the field
measure distortion after the transformation of the image in a tensor x ∈ XD. This is a mistake
preventing a fair comparison: for most models X = [0, 1] but for some others X = [−1, 1] or
X = [−3, 3].

We outline that an adversarial image is above all an image, i.e. a discrete object xadv ∈
J0, 255Kn. Again, most attacks output a continuous tensor xadv ∈ XD, neglecting the quanti-
zation. This is a mistake: in real life, the attacker has no access to xa, which is auxiliary data
internal to the model.

Distortion. The distortion measure is defined in Section 3.1.2
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Test set. The input of the model is a natural and large image. Assessing the robustness of
models on specific datasets like MNIST (almost black and white), or on tiny images like CIFAR
does not reflect the complexity of the problem. Our benchmark considers natural images of at
least 224× 224 pixels as provided in ImageNet.

Measure of robustness. Let us define the accuracy function η(D) := 1− P (D). The value
η(0) is the classical accuracy of the model over the original images. Function η(D) is by con-
struction non-increasing and should converge to 0 as the distortionD increases. After observing
many accuracy functions η for different models and attacks, we notice that they share the same
prototype:

η(D) = η(0) e−λD withλ ∈ R+. (A.2)

Like in nuclear physics, we define the half-distortion D1/2 as the distortion needed to reduce to
half the initial accuracy:

η(D1/2) = η(0)/2, D1/2 = λ−1 log(2). (A.3)

This approximation is verified experimentally with an average coefficient of determination
R2 of 99%. The half-distortion D1/2 will be the keystone of the proposed metric of robustness.
A model is then characterized by three separate concepts: its generalization ability η(0) and its
robustness D1/2 against black-box and white-box attacks.

A.4 Fast Attacks

The recent trend in adversarial examples is to design fast attacks with state-of-the-art per-
formances.

A.4.1 Fast black-box attacks

In the black-box decision-based setup, the attacker can query a model and observe the pre-
dicted class. The complexity of the attack is gauged by the number of queries K needed to find
an adversarial image of low distortion.

There has been a huge improvement in the number of queries recently. Brendel et al. report
in the order of one million queries for one image in one of the first decision-based black-box
BA [18, Fig. 6]. Then, the order of magnitude went down to tens of thousands [23, Fig. 4] [126,
Fig. 5] and even some thousands in [187, Fig. 2]. Current benchmarks use other black-box
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attacks, which are either decision-based (Square Attack [5] in RobustBench [38] is
score-based), or not state-of-the-art (like Gaussian noise in RobustVision [118], or BA [18]
in ARES [51]).

SurFree [146] and RayS [24] are the only decision-based papers with less than one thou-
sand calls on ImageNet. Yet, RayS [24] is designed to minimize the `∞ distortion, whereas
SurFree [146] targets `2. Section A.5 investigates which attack is the best candidate for a fast
benchmark.

A.4.2 Fast white-box attacks

In the white-box setup, the attacker can compute a loss function and its gradient thanks to
auto-differentiation and back-propagation. The complexity is usually gauged by the number of
gradient computations. Current benchmarks use different white-box attacks: RobustBench [38]
relies on PGD [142] (with 2 parameters Π), RobustVision [118] use DeepFool [156], and
ARES [51] CW [22].

Again, the need for powerful but fast attacks is of utmost importance for a practical bench-
mark. A promising attack is BP [280, 15] designed for a low complexity budget. Its first stage
finds an adversarial example as quickly as possible. It is nothing more than a gradient descent
of the loss L with acceleration. At iteration t+ 1:

x(t+1)
adv = x(t)

adv − αγ(t+ 1)η
(
∇L(x(t)

adv)
)
, (A.4)

where x(0)
adv = xo, η(x) = x/‖x‖2, and γ(t) is a series of increasing values, hence the accelera-

tion. Stage 1 finishes when x(t+1)
adv becomes adversarial. Stage 2 aims at lowering the distortion

while maintaining the image adversarial (see [280]).

We develop a variant to aggressively downsize the number of gradient computations. Pa-
rameter α is heuristically set up to 0.03 in [280]. This value is certainly too big for images
close to the class boundary and too small for those further away. One costly option is the best
effort mode which finds the best α thanks to a line search (see Section A.2). We propose the
following simple method inspired by DeepFool [156]. When applying (A.4) to the first-order
approximation of the loss:

L(xo + p) ≈ L(xo) + p>∇L(xo), (A.5)
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then η
(
∇L(I(t)

a )
)

= η(∇L(xo)) and BP cancels the loss for

α = L(xo)
‖∇L(xo)‖2

∑κ
j=1 γ(k) (A.6)

within κ iterations. We fix κ = bK/3c where K is the total iteration budget encompassing
stages 1 and 2.

Section A.5 compares these attacks to identify the worst case.

A.4.3 Quantization

The adversarial samples are quantified in the pixel domain to create images. The first option
considers the quantization as post-processing not interfering with the attack. These options are
tested on several black-and-white box attacks. The quantization will be post-processing for
white-box attacks as recommended in [13], whereas the second option gives better results on
black-box attacks.

A.5 Experiments

All the attacks are run on n = 1000 ImageNet images from the ILSVRC2012’s validation
set with size D = 3× 224× 224.

A.5.1 Selecting the worst case attacks

Black box attacks: Figure A.1 compares the evolution of the half-distortion (A.3) in func-
tion of the query amount for four decision-based black-box attacks: SurFree [146], RayS [24],
GeoDA [187], and QEBA [126]. SurFree [146] and RayS [24] reach their best effort within
K = 3000 queries, while QEBA [126] and GeoDA [187] do not since their D1/2 still decrease
after 5000 queries. Yet, SurFree [146] obtains quantified adversarial with much lower dis-
tortion. Therefore, our benchmark only needs this attack. The number of queries is kept at
K = 5000 to be sure to reach the optimal value of D1/2.

White box attacks: Figure A.2 compares three white-box-attacks in the best effort mode:
PGD [142], CW [22], and BP [280, 15] with our trick (A.6). They all reach the same D1/2 when
given a large complexity budget. Yet, BP [280, 15] converges faster than the others. Our bench-
mark uses this version of BP [280, 15] to evaluate the white-box robustness.
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Figure A.1 – Evolution of D1/2 with the complexity budget for black box setup. Attacks on
EfficientNet [224]

A.5.2 Comparison with other benchmarks

Table A.1 lists several benchmarks. Most of them evaluate the robustness as the success rate
under a prescribed `2 or `∞ distortion budget. But, these budgets are set arbitrarily or even not
constant within the same benchmark for RobustML. Our half-distortion (A.3) is parameter-
free. It returns an accurate, reliable and fair measurement of robustness.

Some benchmarks need many attacks to get a full vision of the robustness: ARES [51] and
RobustVision [118] use 11 attacks. This is too time-consuming. On the contrary, ADBD [24]
focuses on a single black-box attack, which is indeed outdated. RobustBench [38] condenses
four attacks in one measure elegantly: for a given image, if the first simple attack does not

Benchmark Domain Nb. attacks Measures Runtime
RoBIC [144] J0, 255KD 1 WB + 1 BB Half-distortion `2 43s

RobustBench [38] [0, 1]D 3 WB + 1 BB Success-Rate for 48s
fixed budget (`2 or `∞)

ADBD [24] [0, 1]D 1 BB Distance `∞ 360s
RobustVision [118] [0, 1]D 6 WB + 5 BB Median Distance `2 200s

ARES [51] [0, 1]D 5 WB + 10 BB Success-Rate vs Budget Too long
(`2, `∞ or queries)

Table A.1 – Benchmarks Comparison. Average Runtimes per ImageNet Image with
ResNet50 [142].
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Figure A.2 – Evolution of D1/2 with the complexity budget for white box setup. Attacks on
EfficientNet [224]

succeed within the distortion budget, then the second more complex one is launched etc. The
total runtime heavily depends on the distortion budget. Yet, black-box and white-box attacks
use different mechanisms. Our benchmark reports a measurement for each separately.

A.5.3 Benchmarking models

Table A.2 compares standard models from timm [258] and torchvision [150] libraries. Here
are some intriguing results.

Robustness in white box vs. black box. One does not imply the other. Figure A.3 even
shows a negative correlation. However, some models escape this rule. For instance, VGG16 is
neither robust in black-box nor in white-box. EfficientNet AdvProp [263] follows the oppo-
site trend. We believe that black-box robustness reveals the complexity of the borders between
classes, and white-box robustness indicates how close natural images are to the borders. This
highlights the importance of having two different measurements.

The importance of the training procedure. There is on average a factor of 20 between the
half-distortions in white and black box. This factor drops to 4 and 10 for the models adversari-
ally trained: ResNet50 [142], EfficientNet AdvProp [263].

Table A.2 lists four EfficientNet models sharing the same architecture but different training
procedures. Their accuracies are similar but there is up to a factor of 2 between the robustnesses.
The same holds for the three variants of Resnet50. The gaps in accuracy and robustness are
noticeable with standard models from timm [258] and torchvision [150]. It is even more visible
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Model Parameters Accuracy D1/2

(millions) η(0) white box black box
AlexNet [114] 62.38 56.8 0.19 2.17

CSPResNeXt50 [242] 20.57 84.6 0.13 4.48
DualPathNetworks 68b [132] 12.61 83.8 0.08 3.82

MixNet Large [225] 7.33 84.2 0.12 2.96
MobileNetV2 [201] 5.83 80.1 0.09 2.90

ReXNet 200 [40] 16.37 85.4 0.14 3.89
RegNetY 032 [184] 19.44 85.8 0.11 4.94

SEResNeXt50 32x4d [92] 27.56 85.9 0.12 5.01
VGG16 [214] 138.00 74.9 0.09 2.44

EfficientNet AdvProp [263] 5.29 84.3 0.31 4.35
EfficientNet EdgeTPU Small [224] 5.44 82.8 0.15 3.16

EfficientNet NoisyStudent [266] 5.29 82.7 0.19 2.37
EfficientNet [224] 5.29 82.8 0.17 3.56

ResNet50 (torchvision) [81] 25.56 77.9 0.10 2.77
ResNet50 (timm) [81] 25.56 80.5 0.15 4.35

ResNet50 AdvTrain [142] 25.56 60.8 2.56 9.88

Table A.2 – Benchmark of models with 1.000 ImageNet Images

with adversarial training from [142]: the gain in robustness is impressive but at the cost of a big
drop in accuracy.

A.6 Conclusion

The chapter introduces a rigorous benchmark based on a new and independent measurement
of robustness: the half distortion. RoBIC [144] is faster than the other benchmarks. This allows
for tackling larger images which is more realistic.

In addition to the accuracy, RoBIC [144] gives the black box robustness and white box
robustness. We believe that the first indicates how far away the class boundaries lie from the
images whereas the last reflects how curved are the boundaries. As with the other benchmarks,
two limitations hold: The network must be differentiable to run a white box attack, and deter-
ministic to run a black box attack.
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APPENDIX B

APPENDIX: FINGERPRINTING

CLASSIFIERS WITH BENIGN INPUTS

B.1 Description of the Set of Models

The core of the set A contains 35 ‘off-the-shelves’ vanilla models which were trained with
supervision for the task ImageNet over one million annotated 224 × 224 pixel images. These
models come from the Timm [258] and Torchvision [150] libraries. Among them, some are
very close. For instance, there are 6 versions of EfficientNet-b0. These models share the same
architecture but they result from different training session. Yet, they are considered as different
models and this proves the efficiency of our method.

To forge a variant, we have selected 8 transformations. These are simple procedures easily
applicable by Bob. They move the decision boundary of the model with a limited drop in ac-
curacy. As such, all of them have already proven themselves as a defense against adversarial
examples [185].

— Identity: The variant is an exact copy of the model.
— Model Precision: Deep neural networks usually encode weights and biases on 32 bits

floating point precision. The Torch class attribute half is used to reduce the precision
to 16 bits.

— JPEG Compression: Before being classified, the input image goes through a JPEG
compression. This has been proposed as a defense: JPEG coarsely quantizes the high
frequencies while adversarial perturbations are essentially composed of high frequen-
cies. JPEG compression and decompression act as a reformer [207, 75, 41]. No training
is needed because models are robust to JPEG compression. The quality factor ranges
from 30 to 90 in step of 10.

— Histogram Equalizer: This increases the contrast in an image and it has been pro-
posed as a defense against adversarial perturbation in [185, 177]. We use the function
transforms.functional.equalize from Torchvision.
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— Color Depth Reduction: Another defense is to reduce the depth of color channels to
less than 8 bits [268], here from 3 and 7 bits. The image is posterized with the function
transforms.functional.posterize from Torchvision.

— Randomized Smoothing: Randomized smoothing provides robustness guarantees [33,
122, 125] and is also efficient against black-box attacks [145]. We take the Github im-
plementation 1 of [33]. The number of samples is set to 100 as recommended in the
previous works. The standard deviations σ selected are: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1.

— Finetuning: Finetuning updates the weights of the model during a new training. We
consider finetuning all the layers or only the last one. Finetuning runs over 50 epochs
with SGD optimizer.

— Pruning: Pruning compresses the model by removing the less important weights. It
is applied with the function nn.utils.prune.l1_unstructured from Torch
package. It removes the weights with the lowest `1 norm. Pruning can be applied on
all the layers or just some particular ones. Filter pruning [127] cuts the less important
output channels of the convolutional layers. We consider three options with the following
fraction of weights removed:
— Pruning All layers: 1%, 2%, 3%, 4%
— Filter Pruning: 10%, 20%, 30%,
— Pruning the Last layer: 70%, 80%, 90%, 95%

This makes a total of 33 procedures, most of them being easily and quickly applicable to
any vanilla model. Few of them imply a light retraining which is done with a subset of 50,000
images of the ImageNet validation set. We end up with 1189 variants. The accuracy of each of
them is measured on the remaining part of the ImageNet validation set. If the drop of accuracy
is bigger than 15% compared to the original model, then the variant is discarded. Our final
collection contains 1081 models and variants.

Alice has a collection of 20.000 images randomly taken from the ImageNet test set. These
images are not annotated with a ground truth. These were not used for training the models or
retraining the variants.

B.2 Distance between Models

The distances between all the pairs of models is shown in Figure B.1. The block diagonal
shows that the distances between variants of the same vanilla models are small. This distance

1. Randomized Smoothing GitHub: https://github.com/locuslab/smoothing
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Figure B.1 – Distances between pairs of models.

matrix is the input of the t-SNE algorithm which creates the 2D representation of Figure 7.1.
We clearly see the cluster of variants centered on each vanilla model.

B.3 Proof of Equation (10)

Suppose that Bob selects b ∈ Fj . Alice makes a random permutation σ of the nF fami-
lies and sequentially tests them. Then, she spends Lneg

i queries to discover that the black-box
does not belong to Fi, for any i s.t. σ(i) < σ(j) (i.e. the families ranked by the permutation
before Fj) and Lpos

j queries to discover that the black-box is a member of Fj . Over all the ran-
dom permutations, there is statistically one chance out of two that Fi is ranked before Fj . On
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expectation, this makes the following number of queries:

E
(
Lpos
j

)
+ 1

2
∑
i 6=j

E (Lneg
i ) =

E
(
Lpos
j

)
+ 1

2

(
−E

(
Lneg
j

)
+

nF∑
i=1

E (Lneg
i )

)
. (B.1)

We now suppose that Bob select a family uniformly at random, to obtain the following
average:

E(L) = 1
nF

nF∑
j=1

E
(
Lpos
j

)
+ nF − 1

2nF

nF∑
j=1

E
(
Lneg
j

)
. (B.2)

B.4 Lower bound of the distance dist

This section provides an example of the computation of the distance between the outputs
of model m and the black-box b. It considers that these classifiers yield only top-1 outputs.
We assume that the surjection S1 is defined in (7.14) w.r.t. the ground truth: z̃ = 1 when the
black-box predict the ground truth. The joint probability distribution is denoted by:

P(Z̃, Ỹ ) Ỹ = 0 Ỹ = 1
Z̃ = 0 a b

Z̃ = 1 c 1− a− b− c

We suppose that the accuracies of both models are known, η(m) = A and η(b) = B, so
that:

η(m) = P(Ỹ = 1) = 1− a− c = A, (B.3)

η(b) = P(Z̃ = 1) = 1− a− b = B. (B.4)

These equations are constraints reducing the problem with three unknown parameters (a, b, c)
to a single one: From a, we can easily deduce (b, c) from the above equations. Since these joint
probabilities are between 0 and 1, this implies that

max(0, 1− (A+B)) ≤ a ≤ min(1− A, 1−B). (B.5)

The mutual information between Z̃ and Ỹ is given by I(Z̃; Ỹ ) = H(Z̃)+H(Ỹ )−H(Z̃, Ỹ ),
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so that the distance can be written as

dist(b,m) = 2− h(A) + h(B)
H(Z̃, Ỹ )

(B.6)

= 2− h(A) + h(B)∑
(z̃,ỹ)∈{0,1}2 f(P(Z̃ = z̃, Ỹ = ỹ)

(B.7)

where f(x) := −x log2 x and h(p) := f(x)+f(1−x) is the binary entropy in bits for p ∈ [0, 1].
Thanks to the constraints (B.3) and (B.4), the distance is a function of awhose derivative cancels
at only one value giving dist(b,m) = 1 achieved when Z̃ and Ỹ are independent, i.e.

a = (1− A)(1−B), b = A(1−B), c = (1− A)B, d = AB.

This is thus a global maximum and the minimum of dist(b,m) lies on the boundary of the range
of a. Suppose that A ≥ B and A+B > 1, then

H(Z̃; Ỹ ) ≥ f(1− A)

+ min (f(B) + f(A−B), f(1−B) + f(A+B − 1)) (B.8)
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which is converted into a lower bound of the distance dist(b,m)

2− h(A) + h(B)
f(1− A) + min(f(B) + f(A−B), f(1−B) + f(A+B − 1)) .

This function is illustrated in Figure B.3 where we see that dist(b,m) may cancel only when
A = B or A = 1 − B. Figure B.3 compares this lower bound with the actual measurements
for A = 0.45. It shows that most attacks considered are far from being the worst case. We
also plot the performance of the following attack: Bob modifies the decision of model m with a
probability ε ∈ [0, 1/2], which makes the following distribution:

P(Z̃, Ỹ ) Ỹ = 0 Ỹ = 1
Z̃ = 0 (1− A)(1− ε) Aε

Z̃ = 1 (1− A)ε 1(1− ε)
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APPENDIX C

APPENDIX: HOW TO CHOOSE YOUR BEST

ALLIES FOR A TRANSFERABLE ATTACK?

C.1 Experimental Setup

In this study, we evaluated the transferability of adversarial examples on a diverse set of 48
models trained for image classification on the ImageNet dataset with over one million annotated
224× 224 images. The models were obtained from the Timm library [258], with the exception
of ResNet50AdvTrain, which was obtained from the GitHub repository of the original paper 1.
To ensure adequate representation, we randomly selected models from each architecture, with
a minimum of three models per architecture. The only exception was the ReXNet architecture,
which had two distinct models. The 48 selected models are:

— ConViT architecture: ConViTbase, ConViTsmall, ConViTtiny
— LeViT architecture: LeViT192, LeViT256, LeViT128
— DenseNet architecture: DenseNet169, DenseNet121, DenseNet161
— PiT architecture: PiTsmall, PiTtight, PiTtight-dist, PiTsmall-dist
— MobileNet architecture (V2): MobileNetV2110d, MobileNetV2100, MobileNetV2120d
— CoaT architecture: CoatLitetiny, CoatLitemini, CoatLitesmall
— xCiT architecture: xCiTmedium, xCiTnano, xCiTsmall
— Twins architecture: Twinssmall, Twinslarge, Twinsbase,
— MixNet architecture: MixNetlarge, MixNetsmall, MixNetmedium, MixNetsmall-TensorFlow,

MixNetlarge-TensorFlow, MixNetmedium-TensorFlow
— EfficientNet architecture: EfficientNetB0, EfficientNetB0AdvProp, EfficientNetB0NS
— ResNet architecture: ResNet50, ResNet50d, ResNet50AdvTrain
— ResNetV2 architecture: ResNetV250x1-dist, ResNetV2101, ResNetV250
— ReXNet architecture: RexNet150, RexNet130

1. https://github.com/MadryLab/robustness
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(c) DWP [244]

Figure C.1 – Attack Success Rate function of the perturbation norm for different values of ε.

— DPN architecture: DPN92, DPN107, DPN68b
— DLA architecture: DLA60, DLA102, DLA169

C.2 Preliminaries

C.2.1 Epsilon Parameter

All transferable attacks share a common parameter ε. It controls the maximum perturbation
norm added on a single pixel for the adversarial example built. Figure C.1 demonstrates the
ASR obtained for various values of ε as a function of the perturbation norm. It shows that even
if more freedom is given to the perturbation, in the sense that a larger maximum perturbation
norm is allowed, the transferable directions remain consistent. Irrespective of the value of ε for
a given attack, all scores for a given norm of the perturbation are similar.

C.3 Transferability Dependences

The 48 models considered in C.1 are evaluated as both sources and targets in this study. For
each possible pair of models, each source model is evaluated for its ability to transfer to each
target model. This results in a total of 482 = 2304 evaluations. The transferability is evaluated
using the score defined in 5.2.2 and their matrices for the attacks DI [265], TAIG [96], and
DWP [244] are presented in C.2. Each matrix exhibits a similar structure, with models that have
high transferability values appearing in each matrix. However, the values achieved are different
for each attack. The DI [265] and TAIG [96] attacks achieve higher values than DWP [244],
indicating that these attacks create better quality transferable examples.
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Figure C.2 – Transferability score T̂s,t matrix of 48 sources and 48 targets listed in C.1 for
DI [265], TAIG [96] and DWP [244].

C.4 Results

C.4.1 Fingerprinting

Transferability can be divided into three components: the attack, the model, and the attacked
image. To estimate transferability, the FiT measure defined in 5.2.2 first estimate the similarity
between the source and the target models. In a defensive scenario, fingerprinting methods have
been proposed to estimate model similarity without accessing one of the models. These methods
do not modify the model during training but instead take an already trained model and find
images that are its signatures. They usually generate adversarial examples specially designed
for this model [19, 141, 178]. FBI [147] is the only method using benign images to assess
the similarity of two models by measuring the independence between the two models using
mutual information. All fingerprinting methods are sensitive to the number of images used for
fingerprinting. More images lead to more accurate similarity scores, but they also have a cost. In
the scenario considered here, the number of images submitted must be minimized. Figure C.3
shows the T̂s,t function of the number of images used for FBI [147]. Increasing the number of
images submitted provides a better estimation of the transferability. The score reaches a plateau
at 200 images submitted.

C.4.2 Ensemble model attack

When attackers have access to multiple models, they can perform an ensemble-model attack
to generate transferable adversarial examples. This approach has been shown to offer better
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Figure C.3 – T̂s,t function of the number of images used for FBI [147] to estimate the transfer-
ability between 45 sources and one target. Adversarial obtained with DI [265] and ε = 8.

transferability than the best single-model attack. However, existing methods for performing
ensemble-model attacks have only been evaluated with a limited number of source models,
typically with a maximum of three models. In this chapter, a high number of models is used to
build large ensemble-model attacks in the scenario described in the experimental setup in 5.3.1.
At each step of the attack, a model is randomly selected from the available sources and added
to the ensemble-model. To build transferable adversarial examples, the logits of the models
are averaged together, as proposed in [250]. Transferability is computed for ensemble-model
attacks of up to 20 models. Figure C.4 shows the FiT score as a function of the ensemble-
model size and compares the results with FiT scores obtained by selecting the three best models
for the ensemble-model among the 20 models available. Ensemble-model attacks demonstrate
significant improvements when only a few models are considered, but beyond 5 models, the
improvements become negligible. Additionally, the FiT score for the ensemble-model attack
with 20 models was lower than that of the ensemble-model attack with only three models,
which were carefully selected using FiT. These findings suggest that the quality of the selected
models is more crucial than the quantity of models for effective ensemble-model attacks.
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selecting the three best models for ensemble-model among the 20 models available.
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Cependant, ce succès remarquable s’ac-
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de confidentialité, d’intégrité et de disponibilité
de leurs composants. Les données d’entraî-
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Abstract: Artificial Intelligence is a hot topic
today, driven by the revolution of neural net-
works that have shown impressive perfor-
mances across various tasks. Notably, in
Computer Vision, they have even outper-
formed humans. This thesis centers on neural
networks applied to image classification tasks.

Yet, this remarkable success is not with-
out its vulnerabilities. Neural networks ex-
hibit weaknesses in terms of confidentiality,
integrity, and availability of their components.
The training data, the model, and the infer-
ence data, are susceptible to potential attacks.
Even in the realistic scenario considered in
this thesis where the model operates in a
black-box setup with limitations on the number

of queries, it remains possible for an attacker
to steal and reconstruct the model and training
data, as well as manipulate inference data.

This thesis places a particular empha-
sis on safeguarding the confidentiality of the
model, which can be compromised through
techniques such as model extraction and pa-
rameter extraction. Additionally, it delves into
the realm of adversarial examples, which pose
threats to the integrity of model inference. The
deliberate introduction of small, well-crafted
perturbations can result in misclassifications.
Consequently, a significant portion of this the-
sis is dedicated to exploring the origins of ad-
versarial examples, their creation, and strate-
gies for defending against them.
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