

Thèse Université de Haute Alsace

Auto-assemblage de copolymères à blocs induit par photo-polymérisation pour l'impression 3D (Annexes)

Présentée et soutenue par :

Loïc BUCHON

Le 30 Novembre 2023

Thèse pour l'obtention du titre de

Docteur en Chimie des Matériaux De l'UNIVERSITÉ DE HAUTE ALSACE Ecole Doctorale de Physique et Chimie-Physique (ED 182)

Membres du jury :

Pr. Odile FICHET	Université de Cergy-Pontoise	Rapporteur
Dr. Malek NECHAB	Université d'Aix-Marseille	Rapporteur
Dr. Anne-Laure BROCAS	Arkema GRL	Examinateur
Pr. Jacques LALEVEE	Université de Haute-Alsace	Directeur
Dr. Jean-Michel BECHT	Université de Haute Alsace	Co-Directeur
Dr. Laurent RUBATAT	Université de Pau et des Pays de l'Adour	Invité

Annexes

Sommaire

Annexe : Partie III photopolymérisation avec le Flexibloc Chapitre 1 : Ouverture du
Flexibloc par photopolymérisation
Figure S1 : Analyses SEC du Flexibloc CS1 dans le THF : A) Distribution en masse B) Chromatogramme
Figure S2 : Analyses SEC du Flexibloc DS1 dans le THF : A) Distribution en masse B) Chromatogramme
Figure S3 : Analyses SEC du Flexibloc D1 dans le THF : A) Distribution en masse B) Chromatogramme
Tableau S1 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résinescontenant 10% wt de Flexibloc CS1 et 1% wt de BAPO dans les différents monomères 8
Tableau S2 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant 10% wt de Flexibloc CS1, dans les monomères acryliques et avec une fraction variable de BAPO. 8
Tableau S3 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines contenant 25%wt de Flexibloc DS1, dans l'IBOA avec des fractions variable de BAPO, sous air et laminé
Tableau S4 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines contenant 25%wt de Flexibloc DS1, dans l'IBOA avec des fractions variables d'ITX, sous air et laminé. 9
Tableau S5 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines sansFlexibloc, avec des fractions variables de BAPO dans l'IBOA, sous air et laminé
Tableau S6 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résinescontenant 10% wt des différents Flexibloc, 89% wt d'IBOA, et 0,1% wt de BAPO10
Tableau S7 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant une fraction variable de Flexibloc DS1 et d'IBOA, avec 0,1%wt de BAPO10
Tableau S8 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines avecune fraction variable de Flexibloc DS1 et d'IBOA, avec 0,1%wt d'ITX.10
Tableau S9 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines avecune fraction variable de Flexibloc DS1 et de CTFA, avec 0,05% wt de BAPO11

Figure S4 : Spectre simulé des radicaux nitroxides (rouge) et du Flexibloc CS1 (noir) 11
Annexe : Partie III photopolymérisation avec le Flexibloc Chapitre 2 : Impressions 3D et
analyses mécaniques des matériaux
Figure S1 : Analyses en LAC des différents constituants des résines, utilisés lors de cette étude. Aucun pic n'est visible sur l'élugramme de l'homopolymère CTFA car celui-ci n'est pas soluble dans les solvants utilisés et ne peut donc pas être analysé
Figure S2 : Analyses LAC d'un polymère obtenu en impression 3D pour une résine contenant 10% wt de FlexiblocCS1 89% wt de CTFA et 1% wt de BAPO
Figure S3 : Analyses LAC d'un polymère obtenu en impression 3D pour une résine contenant 10% wt de Flexibloc CS1 89% wt de TCDA et 1% wt de BAPO
Figure S4 : analyses en LAC du Flexibloc D1
Figure S5 : Analyses LAC d'un polymère obtenu lors des suivis RT-FTIR pour une résine contenant 60%wt de Flexibloc D1 39,9%wt d'IBOA et 0,1%wt de BAPO
Figure S6 : Analyses LAC d'un polymère obtenu lors des suivis RT-FTIR pour une résine contenant 40%wt de Flexibloc DS1 59%wt d'IBOA et 1%wt d'ITX
Figure S7 : Analyse DSC pour un échantillon photopolymérisé contenant 99% wt de CTFA et 1% wt de BAPO
Figure S8 : Analyse DSC pour un échantillon photopolymérisé contenant 99% wt de TCDA et 1% wt de BAPO
Figure S9 : Analyse DSC pour un échantillon photopolymérisé contenant 99%wt d'IBOA et 1%wt de BAPO
Figure S10 : Mesure de la Tg du Flexibloc CS116
Figure S11 : Mesure de la Tg du Flexibloc DS117
Figure S12 : Mesure de la Tg du Flexibloc D117
Tableau S1 : Résumé des taux de conversion et des Tg pour différents polymères obtenusen photopolymérisation à base d'IBOA de Flexibloc DS1 et de BAPO
Tableau S2 : Résumé des taux de conversion et des Tg basses pour différents polymèresobtenus en photopolymérisation à base d'IBOA de Flexibloc D1 ou DS1 et d'ITX 18
Figure S13 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant 10% wt de Flexibloc CS1, 89% wt de CTFA et 1% wt de BAPO

Figure S14 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant 10% wt de Flexibloc DS1, 89% wt de CTFA et 1% wt de BAPO
Figure S15 : Tests de traction pour des éprouvettes obtenues en impression 3D avec des résines à base de :1% wt BAPO dans le TCDA avec : en cyan 10% wt de DS1, et en magenta 10% wt de CS1. A) modules de Young, B) contraintes à la rupture, C) allongements à la rupture
Figure S16 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant10% wt de Flexibloc CS1, 89% wt de TCDA et 1% wt de BAPO.20
Annexe : Partie III photopolymérisation avec le Flexibloc Chapitre 3 : Polymérisation par
voie photothermique
Figure S1 : Analyse DSC d'une résine contenant 30%wt de Flexibloc et 70% d'IBOA lors d'une montée en température
Annexe : Partie IV : Développement de nouveaux macro- coamorceurs comme agents
structurants Chapitre 1 : Synthèse de nouveaux macro-coamorceurs et applications en
photopolymérisation
Figure S1 : Spectre RMN ¹ H du Flexibloc D1. Les pics entre 6,30ppm et 5,67ppm, ainsi que les pics à 4,06-4,04ppm correspondent à de l'acrylate de butyle non polymérisé 22
Synthèse du composé LB-275 :
Synthèse du composé LB-277 :
Figure S2 : Spectre RMN ¹ H du composé LB-277
Figure S3 : Spectre RMN DOSY du composé LB-277
Synthèse du composé LB-289 :
Synthèse du composé LB-302 :
Figure S4 : Spectre RMN ¹ H du composé LB-302
Figure S5 : Spectre RMN ¹ H du DEAEA après 5h de chauffe à 115°C sous argon 27
Figure S6 : Spectre RMN ¹ H du DMAEMA après 5h de chauffe à 115°C sous argon. 27
Figure S7 : Spectre RMN DOSY du composé LB-302
Synthèse du composé LB-333 :
Figure S8 : Spectre RMN ¹ H du composé LB-333

Synthèse du composé LB-334 :
Figure S9 : Spectre RMN ¹ H du composé LB-334
Synthèse du composé LB-337 :
Figure S10 : Spectre RMN ¹ H du composé LB-337
Synthèse du composé LB-345 :
Figure S11 : Spectre RMN DOSY du composé LB-333
Figure S12 : Spectre RMN DOSY du composé LB-334
Figure S13 : Spectre RMN DOSY du composé LB-337
Figure S14 : Analyses DSC entre -90°C et 90°c des macro-coamorceurs synthétisés : [1] LB-333 ; [2] LB-345 ; [3] LB-334 ; [4] LB-337
Tableau S1 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillonsépais (2mm), de résines avec une fraction variable de LB-345 et d'IBOA, avec 0,1%wtd'ITX
Tableau S2 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillonsépais (2mm), de résines avec une fraction variable de LB-334 et d'IBOA, avec 0,1%wtd'ITX
Tableau S3 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillonsépais (2mm), de résines avec une fraction variable de LB-337 et d'IBOA, avec 0,1%wtd'ITX
Tableau S4 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillonsépais (2mm), de résines avec une fraction variable de LB-333 et d'IBOA, avec 0,1%wtd'ITX
Tableau S5 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillonsminces (100μm), de résines avec une fraction variable de LB-345 et d'IBOA, avec 0,1%wtd'ITX
Tableau S6 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons minces (100μm), de résines avec une fraction variable de LB-334 et d'IBOA, avec 0,1%wt d'ITX

Annexe : Partie	e IV : Développement de nouveaux macro- coamorceurs comme agents
structurants	Chapitre 2 : Impression 3D et influence du macro-coamorceur sur les
propriétés méca	aniques
Figure S1 :	Analyses en LAC d'un homoPBA
Figure S2 :	Spectre RMN ¹ H du composé LB-345
Figure S3 :	Spectre RMN ¹ H du poyIBOA obtenu en photopolymérisation
Figure S4 :	Analyse DSC pour un échantillon imprimé en 3D contenant 89%wt d'IBOA
10% wt de F	lexibloc D1 et 1% wt de BAPO40
Figure S5 :	Analyse DSC pour un échantillon imprimé en 3D contenant 99%wt d'IBOA
et 1% wt de	BAPO

Figure S1 : Analyses SEC du Flexibloc CS1 dans le THF : A) Distribution en masse B) Chromatogramme.

Figure S2 : Analyses SEC du Flexibloc DS1 dans le THF : A) Distribution en masse B) Chromatogramme.

Figure S3 : Analyses SEC du Flexibloc D1 dans le THF : A) Distribution en masse B) Chromatogramme.

 Tableau S1 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant 10% wt de Flexibloc CS1 et 1% wt de BAPO dans les différents monomères.

Systèmes	FlexiCS1 +	FlexiCS1	FlexiCS1 +	FlexiCS1 +	FlexiCS1 +	FlexiCS1 +
étudiés	CTFA+	+ TCDA	IBOA +	IBOMA +	TMCHMA	MMA +
	BAPO	+ BAPO	BAPO	BAPO	+ BAPO	BAPO
(Rp/[M] ₀) x100 (s ⁻¹)	4,93	2,73	5,48	2,94	1,30	0,42
kp.[P [•]] (s ⁻¹)	0,08	0,06	0,1	0,02	0,01	0,005
Opacité de l'échantillon	Transparent	Opaque	Transparent	Transparent	Transparent	Transparent
Photo	Pasin	h yr yer	Weich Par, ar wager	0	\bigcirc	

 Tableau S2 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant 10%wt de Flexibloc CS1, dans les monomères acryliques et avec une fraction variable de BAPO.

Systèmes	FlexiCS1 + CTFA+ BAPO			FlexiCS1 + TCDA + BAPO			FlexiCS1 + IBOA + BAPO		
étudiés									
Condition	0,05%wt	0,1%wt	1%wt	0,05% wt	0,1%wt	1%wt	0,05% wt	0,1%wt	1%wt
	BAPO	BAPO	BAPO	BAPO	BAPO	BAPO	BAPO	BAPO	BAPO
$(Rp/[M]_0) x100$	5,37	9,91	4,93	9,56	10,12	2,73	5,15	10,51	5,48
(s ⁻¹)									
kp.[P [•]] (s ⁻¹)	0,09	0,19	0,08	0,18	0,20	0,06	0,08	0,20	0,11
Opacité de	Transpar	Transpar	Transpar	Opaque	Opaque	Opaque	Transpar	Transpar	Transpar
l'échantillon	ent	ent	ent				ent	ent	ent
Photo	NeigAn Papier d	eighing p pier da p gepapie	Pasia	in	ni T	th at	Wei h Parjat	Weight Papist	Weich
1	Vvugepa	301 m	Dimate	A. Baha		-96	age	wager	wager

Systèmes étudiés	FlexiDS1	+ IBOA +	FlexiDS1	+ IBOA +	FlexiDS1 + IBOA +	
-	0,05%wt	de BAPO	0,1%wt d	e BAPO	1%wt de BAPO	
Condition	Lamine Sous air		Lamine	Sous air	Lamine	Sous air
$(\text{Rp/[M]}_{0}) \times 100 \text{ (s}^{-1})$	1,07	0,99	9,29	8,48	4,32	3,89
kp. [P [•]] (s ^{•1})	0,01	0,01	0,19	0,18	0,07	0,07
Opacité de l'échantillon	Trouble	Trouble	Trouble	Trouble	Trouble	Trouble
Photo	Coue:	Pi Code	V g F Code:	in d wpa	Papier is	V eigh ny Papier il V. apier il

 Tableau S3 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines contenant 25%wt de Flexibloc DS1, dans l'IBOA avec des fractions variables de BAPO, sous air et laminé.

 Tableau S4 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines contenant 25%wt de Flexibloc DS1, dans l'IBOA avec des fractions variables d'ITX, sous air et laminé.

Systèmes étudiés	FlexiDS1 + 0,05%wt d'	IBOA + ITX	FlexiDS1 + 0,1%wt d'l	+ IBOA + TX	FlexiDS1 + IBOA + 1%wt d'ITX	
Condition	Lamine	Sous air	Lamine	Sous air	Lamine	Sous air
(Rp/[M] ₀) x100 (s ⁻¹)	0,92	0,73	0,90	0,82	0,34	0,31
kp.[P [•]] (s ⁻¹)	0,01	0,01	0,01	0,01	0,004	0,004
Opacité de l'échantillon	Trouble	Trouble	Trouble	Trouble	Trouble	Trouble
Photo	g/m=		- Ggtm2	r e 2 g/m2	igimz.	h. 188563 (09

 Tableau S5 : Récapitulatif des Rp et des kp pour la photopolymérisation de résines sans Flexibloc, avec des fractions variables de BAPO dans l'IBOA, sous air et laminé

Systèmes	IBOA + 0	,05%wt de	IBOA +	0,1%wt de	IBOA +	1%wt de	
étudiés	BAPO		BAPO		BAPO		
Condition	Lamine	Sous air	Lamine	Sous air	Lamine	Sous air	
$(\mathbf{Rp}/[\mathbf{M}]_0)$	11,00	7,87	12,03 9,48		8,96	7,22	
x100 (s ⁻¹)							
kp.[P •] (s ⁻¹)	0,21 0,13		0,22	0,19	0,19	0,13	
Opacité de l'échantillon	Transparent Transparent		Transparent	Transparent	Transparent	Transparent	
Photo	Weigh in Papire/to	Veig in Papie o Väc pa	Weighung Papis de	Weigh ig Papier, de	Neigt i Papie	e dhing pa a ier de je a ier de je	

Tableau S6 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant 10)%wt des différents
Flexibloc, 89%wt d'IBOA, et 0,1%wt de BAPO.	

Systèmes étudiés	FlexiCS1 + IBOA +	FlexiDS1 + IBOA +	FlexiD1 + IBOA +	
	0,1%wt de BAPO	0,1%wt de BAPO	0,1%wt de BAPO	
(Rp/ [M] ₀) x100 (s ⁻¹)	10,51	7,81	12,29	
kp.[P'] (s ⁻¹)	0,20	0,14	0,22	
Opacité de Véchantillen	Transparent	Trouble	Opaque	
rechantinon				
Photo	Weight Papier wager		ghen	

 Tableau S7 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines contenant une fraction variable de Flexibloc DS1 et d'IBOA, avec 0,1% wt de BAPO.

Systèmes	10%wt	25%wt	40%wt	60%wt	
étudiés	FlexiDS1 +	FlexiDS1 +	FlexiDS1 +	FlexiDS1 +	
	89,9%wt IBOA	74,9%wt IBOA	59,9%wt IBOA	39,9%wt IBOA	
	+ BAPO	+ BAPO	+ BAPO	+ BAPO	
$(Rp/[M]_0) x100$	7.81	9.28	8.00	5.85	
(s ⁻¹)	.,		-,	-,	
kp.[P •] (s ⁻¹)	0,14	0,19	0,15	0,11	
Opacité de	Trouble	Trouble	Trouble	Transparent	
l'échantillon				1	
Photo	W di	v in b v - s pa	V olgtang Vapier Je Wagopap	Vir sighins Dier V Wag papi	

 Tableau S8 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines avec une fraction variable de Flexibloc DS1 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt FlexiDS1 + 89,9%wt IBOA + ITX	25%wt FlexiDS1 + 74,9%wt IBOA + ITX	40%wt FlexiDS1 + 59,9%wt IBOA + ITX	60%wt FlexiDS1 + 39,9%wt IBOA + ITX
(R p/[M] ₀) x100 (s ⁻¹)	0,54	0,82	0,79	0,51
kp. [P [•]] (s ⁻¹)	0,005	0,012	0,011	0,005
Opacité de l'échantillon	Trouble	Trouble	Transparent/ Trouble	Transparent
Photo	5(/m2 52/m2	r e _ 2 g/m2	e Finite	5 (Sana) 121 577

Systèmes	10% wt FlexiDS1 +	25%wt	10% wt PBA +	25% wt PBA +
étudiés	89,95% wt CTFA+	FlexiDS1 +	89,95% wt	74,95% wt
	BAPO	74,95% wt	CTFA+ BAPO	CTFA + BAPO
		CTFA + BAPO		
$(Rp/[M]_0) \times 100$	5.61	9.16	9.51	9.86
(S ⁻¹)				
kp.[P [•]] (s ⁻¹)	0.08	0.18	0,19	0,20
Opacité de	Transparent	Transparent	Opaque	Opaque
l'échantillon			- F 1	- F 1
Photo	eighing p pier da p i gepap/e	NeigAn Papie d Vrusepa		

Tableau S9 : Récapitulatif des Rp et des kp pour la polymérisation sous air de résines avec une fraction variable de
Flexibloc DS1 et de CTFA, avec 0,05%wt de BAPO.

Figure S4 : Spectre simulé des radicaux nitroxides (rouge) et spectre du Flexibloc CS1 (noir)

Figure S1 : Analyses en LAC des différents constituants des résines, utilisés lors de cette étude. Aucun pic n'est visible sur l'élugramme de l'homopolymère CTFA car celui-ci n'est pas soluble dans les solvants utilisés et ne peut donc pas être analysé.

Figure S2 : Analyses LAC d'un polymère obtenu en impression 3D pour une résine contenant 10%wt de FlexiblocCS1 89%wt de CTFA et 1%wt de BAPO.

Figure S3 : Analyses LAC d'un polymère obtenu en impression 3D pour une résine contenant 10% t de Flexibloc CS1 89%wt de TCDA et 1%wt de BAPO.

Auto-Scaled Chromatogram

Figure S4 : analyses en LAC du Flexibloc D1.

Auto-Scaled Chromatogram

Figure S5 : Analyses LAC d'un polymère obtenu lors des suivis RT-FTIR pour une résine contenant 60%wt de Flexibloc D1 39,9%wt d'IBOA et 0,1%wt de BAPO.

Figure S6 : Analyses LAC d'un polymère obtenu lors des suivis RT-FTIR pour une résine contenant 40%wt de Flexibloc DS1 59%wt d'IBOA et 1%wt d'ITX.

14

Figure S7 : Analyse DSC pour un échantillon photopolymérisé contenant 99% wt de CTFA et 1% wt de BAPO.

Figure S8 : Analyse DSC pour un échantillon photopolymérisé contenant 99% wt de TCDA et 1% wt de BAPO.

Figure S9 : Analyse DSC pour un échantillon photopolymérisé contenant 99% wt d'IBOA et 1% wt de BAPO.

Figure S10 : Mesure de la Tg du Flexibloc CS1.

Figure S11 : Mesure de la Tg du Flexibloc DS1.

Figure S12 : Mesure de la Tg du Flexibloc D1.

Systèmes étudiés	10% Flexil 89,9%w + 0,1 BA	%wt DS1 + ⁄t IBOA %wt PO	+ 25%wt FlexiDS1 + 1 OA 74,9%wt IBOA 59, t + 0,1%wt BAPO		40%wt FlexiDS1 + 59,9%wt IBOA + 0,1%wt BAPO		60%wt FlexiDS1 + 39,9%wt IBOA + 0,1%wt BAPO	
Taux de conversion (%)	9	90		5	9	3	9	2
Tg (°C)	-34,9	67,0	-28,8	92,3	-26,0	91,6	-25,2	92,0

 Tableau S1 : Résumé des taux de conversion et des Tg pour différents polymères obtenus en photopolymérisation à base d'IBOA de Flexibloc DS1 et de BAPO.

Tableau S2 : Résumé des taux de conversion et des Tg basses pour différents polymères obtenus en photopolymérisation à
base d'IBOA, de Flexibloc D1 ou DS1 et d'ITX.

Systèmes étudiés	10%wt Flexibloc + 89,9%wt IBOA + 0,1%wt ITX		25%wt Flexibloc + 74,9%wt IBOA + 0,1%wt ITX		40%wt Flexibloc + 59,9%wt IBOA + 0,1%wt ITX	
Macro- amorceur	D1	DS1	D1	DS1	D1	DS1
Tauxdeconversion (%)	92	95	92	97	92	98
Tg (°C)	-51,2	-36,7	-49,6	-27,6	-48,6	-24,1

Partie III : Photopolymérisation avec le Flexibloc Chapitre 3 : Impressions 3D et analyses mécaniques des matériaux

Figure S13 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant 10%wt de Flexibloc CS1, 89%wt de CTFA et 1%wt de BAPO.

Figure S14 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant 10%wt de Flexibloc DS1, 89%wt de CTFA et 1%wt de BAPO.

Figure S15 : Tests de traction pour des éprouvettes obtenues en impression 3D avec des résines à base de :1%wt BAPO dans le TCDA avec : en cyan 10%wt de DS1, et en magenta 10%wt de CS1. A) modules de Young, B) contraintes à la rupture, C) allongements à la rupture.

Figure S16 : Mesure de la Tg d'un polymère imprimé en 3D pour une résine contenant 10%wt de Flexibloc CS1, 89%wt de TCDA et 1%wt de BAPO.

Annexe : Partie III photopolymérisation avec le Flexibloc Chapitre 3 : Polymérisation par voie photothermique

Figure S1 : Analyse DSC d'une résine contenant 30% wt de Flexibloc et 70% d'IBOA lors d'une montée en température

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Annexe : Partie IV : Développement de nouveaux macro-

coamorceurs comme agents structurants Chapitre 1 : Synthèse de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S1 : Spectre RMN ¹H du Flexibloc D1. Les pics entre 6,30ppm et 5,67ppm, ainsi que les pics à 4,06-4,04ppm correspondent à de l'acrylate de butyle non polymérisé.

Synthèse du composé LB-275 :

Le Flexibloc D1 (0,1 mmol, 1,9643 g, 1 équiv.), le méthacrylate de 2-(diméthylamino)éthyle (18 mmol, 3 ml, 180 équiv.) et le styrène (1,5 mmol, 0,2 ml, 15 équiv.) ont été introduits dans un ballon de 50 ml sans solvant. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 80°C pendant 2h. Une fois la réaction terminée, le monomère restant a été précipité dans 60 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux jaune/orangé était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : polystyrène (chaine latérale) 7,16ppm-7,02ppm (5H ; CH aromatique) ; Flexibloc D1 (pBA) et poly(DMAEMA) (chaine latérale) 4,03ppm (2H ; CH₂) ; polystyrène (chaine principale) 3,28ppm (1H ; CH) ; poly(DEAEA) (chaine latérale) 2,55ppm (2H ; CH₂) ; Flexibloc D1 (pBA) (chaine principale) et poly(DEAEA) (chaine latérale) 2,27-2,16ppm (1H ; CH pour le Flexibloc ; 3H ; CH₃ pour le poly(DMAEMA)) ; pBA et poly(DMAEMA) (chaine principale) 1,89ppm-1,80ppm (2H ; CH₂) ; Flexibloc D1 (pBA) (chaine latérale) 1,37ppm-1,29ppm (2H ; CH₂) ; poly(DMAEMA) (chaine latéral) 1,02ppm (3H ; CH₃) ; Flexibloc D1 (pBA) (chaine latérale) 0,93ppm (3H ; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 2 lignes de diffusion : une correspondant à tous les protons du Flexibloc D1 à logD = -10,5 m².s⁻¹ et une correspondant aux protons caractéristique du poly(DEAEA) et du polystyrène à logD = -10,7 m².s⁻¹. Analyses SEC : Mn = 18 500 g.mol⁻¹ ; Mw = 23 800 g.mol⁻¹ ; Mp = 23 100 g.mol⁻¹ ; D = 1,26.

Synthèse du composé LB-277 :

Le Flexibloc D1 (0,1 mmol, 2,1835 g, 1 équiv.), le méthacrylate de 2-(diméthylamino)éthyle (18 mmol, 3 ml, 180 équiv.) et le styrène (1,5 mmol, 0,2 ml, 15 équiv.) ont été introduits dans un ballon de 50 ml sans solvant. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 5h. Une fois la réaction terminée, le monomère restant a été précipité dans 60 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux jaune/orangé était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : polystyrène (chaine latérale) 7,18ppm-7,02ppm (5H; CH aromatique) ; Flexibloc D1 (pBA) et poly(DMAEMA) (chaine latérale) 4,02ppm (2H; CH₂); polystyrène (chaine principale) 3,30ppm (1H; CH); poly(DEAEA) (chaine latérale) 2,54ppm (2H; CH₂); Flexibloc D1 (pBA) (chaine principale) et poly(DEAEA) (chaine latérale) 2,26-2,15ppm (1H; CH pour le Flexibloc ; 3H ; CH₃ pour le poly(DMAEMA)) ; pBA et poly(DMAEMA) (chaine principale) 1,93ppm-1,80ppm (2H; CH₂); Flexibloc D1 (pBA) (chaine latérale) 1,60ppm (2H; CH₂); Flexibloc D1 (pBA) (chaine latérale) 1,36ppm (2H; CH₂); poly(DMAEMA) (chaine latérale) 1,12ppm (3H; CH₃); Flexibloc D1 (pBA) (chaine latérale) 0,92ppm (3H; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 2 lignes de diffusion : une correspondant à tous les protons du Flexibloc D1 à logD = -10,85 m².s⁻¹ et une correspondant aux protons caractéristique du

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

poly(DEAEA) et du polystyrène à logD = -11,05 m².s⁻¹. Analyses SEC : $Mn = 8 400 \text{ g.mol}^{-1}$; Mw = 19 000 g.mol⁻¹; Mp = 21 900 g.mol⁻¹; D = 2,25.

Figure S3 : Spectre RMN DOSY du composé LB-277.

Synthèse du composé LB-289 :

Le Flexibloc D1 (0,1 mmol, 2,0642 g, 1 équiv.), et l'acrylate de 2-(diéthylamino)éthyle (18 mmol, 3 ml, 180 équiv.) ont été introduits dans un ballon de 50 ml sans solvant. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 5h. Une fois la réaction terminée, le monomère restant a été précipité dans 120 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux orange était obtenu. RMN ¹H, (CDCl₃), δ (ppm): Flexibloc D1 (pBA) et poly(DEAEA) (chaine latérale) 4,03ppm (2H; CH₂); poly(DEAEA) (chaine latérale) 2,69ppm (2H; CH₂); poly(DEAEA) (chaine latérale) 2,58ppm (4H; 2CH₂); Flexibloc D1 (pBA) et poly(DEAEA) (chaine principale) 2,27ppm (1H; CH); pBA et poly(DEAEA) (chaine principale) 1,90ppm (2H; CH₂); Flexibloc D1 (pBA) (chaine latérale) 1,59ppm (2H; CH₂); Flexibloc D1 (pBA) (chaine latérale) 1,37ppm (2H; CH₂); poly(DEAEA) (chaine latérale) 1,04ppm (3H; CH₃); Flexibloc D1 (pBA) (chaine latérale) 0,93ppm (3H; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 2 lignes de diffusion : une correspondant à tous les protons du Flexibloc D1 à logD = -10,3 $m^2.s^{-1}$ et une correspondant aux protons caractéristiques du poly(DEAEA) à logD = -10,2 m².s⁻¹ ¹. Analyses SEC : $Mn = 8\ 800\ g.mol^{-1}$; $Mw = 17\ 500\ g.mol^{-1}$; $Mp = 20\ 600\ g.mol^{-1}$; D = 1,99.

Synthèse du composé LB-302 :

Le Flexibloc D1 (0,1 mmol, 2,0642 g, 1 équiv.), et le méthacrylate de 2-(diméthylamino)éthyle (18 mmol, 3 ml, 180 équiv.) ont été introduits dans un ballon de 50ml sans solvant. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 5h. Une fois la réaction terminée, le monomère restant a été précipité dans 60 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux jaune/orangé était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : Flexibloc D1 (pBA) et poly(DMAEMA) (chaine latérale) 4,02ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 2,53ppm (2H ; CH₂) ; Flexibloc D1 (pBA) (chaine principale) et poly(DEAEA) (chaine latérale) 2,25ppm (2H ; CH₂ pour le Flexibloc ; 3H ; CH₃ pour le poly(DMAEMA)) ; pBA et poly(DMAEMA) (chaine principale) 1,88ppm-1,80ppm (2H ; CH₂) ; Flexibloc D1 (pBA) (chaine latérale) 1,56ppm (2H ; CH₂) ; Flexibloc D1 (pBA) (chaine latérale) 1,35ppm (2H ; CH₂) ; poly(DMAEMA) (chaine latérale) 1,02ppm (3H ; CH₃) ; Flexibloc D1 (pBA)

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

(chaine latérale) 0,90ppm (3H ; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 2 lignes de diffusion : une correspondant à tous les protons du Flexibloc D1 à logD = -11,03 m².s⁻¹ et une correspondant aux protons caractéristique du poly(DEAEA) à logD = -10,87 m².s⁻¹. Analyses SEC : Mn = 6 900 g.mol⁻¹ ; Mw = 15 600 g.mol⁻¹ ; Mp = 20 800 g.mol⁻¹ ; D = 2,26.

Figure S4 : Spectre RMN ¹H du composé LB-302.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S5 : Spectre RMN ¹H du DEAEA après 5h de chauffe à 115°C sous argon.

Figure S6 : Spectre RMN ¹H du DMAEMA après 5h de chauffe à 115°C sous argon.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S7 : Spectre RMN DOSY du composé LB-302

Synthèse du composé LB-333 :

L'acrylate de 2-(diéthylamino)éthyle (3,3 mmol, 0,6 ml, 1 équiv.) l'acrylate de butyle (84 mmol, 12 ml, 25 équiv.), et le BlocBuilder (0,4 mmol, 0,1511 g, 0,12 équiv.) ont été introduits dans un ballon de 50 ml avec 10 ml de toluène. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 2h, puis 120°C pendant 22h. Le toluène a été évaporé, ensuite, le monomère restant a été précipité dans 120 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux orange était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : pBA et poly(DEAEA) (chaine latérale) 4,03ppm (2H ; CH₂) ; pBA et poly(DEAEA) (chaine principale) 2,27ppm (1H ; CH) ; pBA et poly(DEAEA) (chaine latérale) 1,35ppm (2H ; CH₂) ; pBA (chaine latérale) 0,92ppm (3H ; CH₃), δ (m².s⁻¹. Analyses SEC : Mn = 1 400 g.mol⁻¹ ; Mw = 4 400 g.mol⁻¹ ; Mp = 6 000 g.mol⁻¹ ; D = 3.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S8 : Spectre RMN ¹H du composé LB-333.

Synthèse du composé LB-334 :

L'acrylate de 2-(diéthylamino)éthyle (13 mmol, 2,5 ml, 1 équiv.) l'acrylate de butyle (70 mmol, 10 ml, 5,4 équiv.), et le BlocBuilder (0,4 mmol, 0,1511 g, 0,03 équiv.) ont été introduits dans un ballon de 50 ml avec 10 ml de toluène. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 2h, puis 120°C pendant 22h. Le toluène a été évaporé, ensuite, le monomère restant a été précipité dans 120 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux orange était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : pBA et poly(DEAEA) (chaine latérale) 4,03ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 2,67ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 1,90ppm (2H ; CH₂) ; pBA (chaine latérale) 1,59ppm (2H ; CH₂) ; pBA (chaine latérale) 1,35ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 1,02ppm (3H ; CH₃) ; pBA (chaine latérale) 0,93ppm (3H ; CH₃). RMN DOSY, (CDCl₃), δ

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

 $(m^2.s^{-1})$: 1 ligne de diffusion correspondant à tous les protons à logD = -10,1 m².s⁻¹. Analyses SEC : Mn = 5 700 g.mol⁻¹; Mw = 10 500 g.mol⁻¹; Mp = 12 200 g.mol⁻¹; D = 1,8.

Figure S9 : Spectre RMN ¹H du composé LB-334.

Synthèse du composé LB-337 :

L'acrylate de 2-(diéthylamino)éthyle (27 mmol, 5 ml, 1 équiv.) l'acrylate de butyle (52 mmol, 7,5 ml, 2 équiv.), et le BlocBuilder (0,4 mmol, 0,1511 g, 0,015 équiv.) ont été introduits dans un ballon de 50 ml avec 10 ml de toluène. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 2h, puis 120°C pendant 22h. Le toluène a été évaporé, ensuite, le monomère restant a été précipité dans 120 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux orange était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : pBA et poly(DEAEA) (chaine latérale) 4,03ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 2,68ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 2,57ppm (4H ; 2CH₂) ; pBA et poly(DEAEA) (chaine principale) 2,27ppm (1H ; CH) ; pBA et poly(DEAEA) (chaine latérale) 1,59ppm (2H ; CH₂) ; pBA (chaine latérale) 1,37ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 1,04ppm

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

 $(3H ; CH_3)$; pBA (chaine latérale) 0,93ppm (3H ; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 1 ligne de diffusion correspondant à tous les protons à logD = -10,1 m².s⁻¹. Analyses SEC : Mn = 4 800 g.mol⁻¹; Mw = 8 800 g.mol⁻¹; Mp = 9 700 g.mol⁻¹; D = 1,8.

Figure S10 : Spectre RMN ¹H du composé LB-337.

Synthèse du composé LB-345 :

L'acrylate de 2-(diéthylamino)éthyle (6,6 mmol, 1,3 ml, 1 équiv.) l'acrylate de butyle (79 mmol, 11,3 ml, 11 équiv.), et le BlocBuilder (0,4 mmol, 0,1511 g, 0,06 équiv.) ont été introduits dans un ballon de 50 ml avec 10 ml de toluène. Le milieu réactionnel a été purgé trois fois avec de l'argon, placé sous une atmosphère d'argon, agité et chauffé à 115°C pendant 2h, puis 120°C pendant 22h. Le toluène a été évaporé, ensuite, le monomère restant a été précipité dans 120 ml de pentane froid pour l'éliminer. Après précipitation et évaporation du pentane sous vide, le polymère obtenu a été séché sous vide pendant 24h. Un liquide visqueux orange était obtenu. RMN ¹H, (CDCl₃), δ (ppm) : pBA et poly(DEAEA) (chaine latérale) 4,02ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 2,67ppm (2H ; CH₂) ; poly(DEAEA) (chaine

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

latérale) 2,56ppm (4H ; 2CH₂) ; pBA et poly(DEAEA) (chaine principale) 2,26ppm (1H ; CH) ; pBA et poly(DEAEA) (chaine principale) 1,89ppm (2H ; CH₂) ; pBA (chaine latérale) 1,59ppm (2H ; CH₂) ; pBA (chaine latérale) 1,35ppm (2H ; CH₂) ; poly(DEAEA) (chaine latérale) 1,02ppm (3H ; CH₃) ; pBA (chaine latérale) 0,92ppm (3H ; CH₃). RMN DOSY, (CDCl₃), δ (m².s⁻¹) : 1 ligne de diffusion correspondant à tous les protons à logD = -10,3 m².s⁻¹. Analyses SEC : Mn = 9 200 g.mol⁻¹ ; Mw = 17 000 g.mol⁻¹ ; Mp = 17 900 g.mol⁻¹ ; D = 1,8.

Figure S12 : Spectre RMN DOSY du composé LB-334.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S13 : Spectre RMN DOSY du composé LB-337.

Figure S14 : Analyses DSC entre -90°C et 90°c des macro-coamorceurs synthétisés : [1] LB-333 ; [2] LB-345 ; [3] LB-334 ; [4] LB-337.

Tableau S1 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons épais (2mm), à partir de résines
avec une fraction variable de LB-345 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-345 + 89,9%wt IBOA + ITX	25%wt LB-345 + 74,9%wt IBOA + ITX	40%wt LB-345 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,05	0,08	0,05
kp.[P [•]] (s ⁻¹)	3,44	4,77	3,31
Opacité de l'échantillon	Transparent	Trouble	Opaque
Photo	We ignue 1 p w gnc 45 p /r w contribut an	12 12 10 00	

 Tableau S2 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons épais (2mm), à partir de résines avec une fraction variable de LB-334 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-334 + 89,9%wt IBOA + ITX	25%wt LB-334 + 74,9%wt IBOA + ITX	40%wt LB-334 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,06	0,05	0,03
kp.[P *] (s ⁻¹)	3,66	2,73	1,93
Opacité de l'échantillon	Transparent	Trouble / Opaque	Opaque
Photo	Weight 22	2	eir Tr

Tableau S3	: Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons épais (2mm), à partir de résines
	avec une fraction variable de LB-337 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-337 + 89,9%wt IBOA + ITX	25%wt LB-337 + 74,9%wt IBOA + ITX	40%wt LB-337 + 59,9%wt IBOA + ITX	
(Rp/[M] ₀) x100 (s ⁻¹)	0,05	0,05	0,03	
kp.[P [•]] (s ⁻¹)	3,09	3,43	2,34	
Opacité de l'échantillon	Transparent	Trouble / Opaque	Opaque	
Photo	Weigh w weight + 2 mooth +	5. S.	n p n ac	

 Tableau S4 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons épais (2mm), à partir de résines avec une fraction variable de LB-333 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-333 + 89,9%wt IBOA + ITX	25%wt LB-333 + 74,9%wt IBOA + ITX	40%wt LB-33" + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,02	0,01	0,004
kp.[P [•]] (s ⁻¹)	1,22	0,94	0,38
Opacité de l'échantillon	Trouble/Opaque	Opaque	Opaque
Photo	de la companya de la	1000 C	10 - 19

 Tableau S5 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons minces (100μm), à partir de résines avec une fraction variable de LB-345 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-345 + 89,9%wt IBOA + ITX	25%wt LB-345 + 74,9%wt IBOA + ITX	40%wt LB-345 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,06	0,09	0,10
kp.[P •] (s ⁻¹)	3,89	5,11	5,54

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

 Tableau S6 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons minces (100μm), à partir de résines avec une fraction variable de LB-334 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-334 + 89,9%wt IBOA + ITX	25%wt LB-334 + 74,9%wt IBOA + ITX	40%wt LB-334 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,09	0,11	0,11
kp.[P •] (s ⁻¹)	4,26	5,96	5,74

 Tableau S7 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons minces (100µm), à partir de résines avec une fraction variable de LB-337 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-337 + 89,9%wt IBOA + ITX	25%wt LB-337 + 74,9%wt IBOA + ITX	40%wt LB-337 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,08	0,17	0,22
kp.[P [•]] (s ⁻¹)	4,24	12,17	13,38

 Tableau S8 : Récapitulatif des Rp et des kp pour la polymérisation sous air d'échantillons minces (100μm), de résines avec une fraction variable de LB-333 et d'IBOA, avec 0,1%wt d'ITX.

Systèmes étudiés	10%wt LB-333 + 89,9%wt IBOA + ITX	25%wt LB-333 + 74,9%wt IBOA + ITX	40%wt LB-333 + 59,9%wt IBOA + ITX
(Rp/[M] ₀) x100 (s ⁻¹)	0,10	0,15	0,11
kp.[P •] (s ⁻¹)	5,30	7,71	6,87

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 1 : Synthèses de nouveaux macro-coamorceurs et applications en photopolymérisation

Figure S15 : Suivis RT-FTIR de la photopolymérisation sous air, de résines contenant 0,1%wt d'ITX, dans l'IBOA, avec des fractions variables de macro-amorceur : [1] 10%wt de LB-334, [2] 25%wt de LB-334, [3] 40%wt de LB-334, [4] 10%wt de Flexibloc D1, [5] 25%wt de Flexibloc D1, [6] 40%wt de Flexibloc D1, [7] IBAO seul ; début de l'irradiation à t = 8 secondes.

Figure S16 : Suivis RT-FTIR de la photopolymérisation sous air, de résines contenant 0,1%wt d'ITX, dans l'IBOA, avec des fractions variables de macro-amorceur : [1] 10%wt de LB-337, [2] 25%wt de LB-337, [3] 40%wt de LB-337, [4] 10%wt de Flexibloc D1, [5] 25%wt de Flexibloc D1, [6] 40%wt de Flexibloc D1, [7] IBAO seul ; début de l'irradiation à t = 8 secondes.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 2 : Impression 3D et influence des macro-coamorceurs sur les propriétés mécaniques

Annexe : Partie IV : Développement de nouveaux macro-

coamorceurs comme agents structurants

Chapitre 2 : Impression 3D et influence du macro-coamorceur

sur les propriétés mécaniques

Figure S1 : Analyses en LAC d'un homoPBA.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 2 : Impression 3D et influence des macro-coamorceurs sur les propriétés mécaniques

Figure S2 : Spectre RMN ¹H du composé LB-345.

Figure S3 : Spectre RMN¹H du poyIBOA obtenu en photopolymérisation.

Partie IV : Développement de nouveaux macro-coamorceurs comme agents structurants Chapitre 2 : Impression 3D et influence des macro-coamorceurs sur les propriétés mécaniques

Figure S4 : Analyse DSC pour un échantillon imprimé en 3D contenant 89%wt d'IBOA 10%wt de Flexibloc D1 et 1%wt de BAPO.

Figure S5 : Analyse DSC pour un échantillon imprimé en 3D contenant 99%wt d'IBOA et 1%wt de BAPO.