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Mâıtresse de Conférences, EURECOM Rapportrice

Olivier Bernard
Professeur, INSA (CREATIS) Rapporteur
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learning plus d’une fois, et également merci pour ton immense aide lors de l’écriture du manuscrit. Encore
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lors de ces rushs avant les deadlines ISBI et MICCAI. Merci aux deux autres merveilleux membres de la
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de vos soutenances de thèses respectives (et bien sûr, j’ai hâte d’être là pour les soutenances qui restent à
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Résumé

Le cancer du pancréas est un enjeu de santé publique mondial croissant. Avec l’augmentation de son in-
cidence et son taux de survie à cinq ans (9%), cette maladie pourrait devenir la troisième cause de décès par
cancer d’ici à 2025. Le faible taux de survie s’explique principalement par des diagnostics tardifs, résultant
de l’absence de symptômes spécifiques et des difficultés à l’interprétation des images de tomodensitométrie
(TDM) en phase portale, qui est la modalité d’imagerie abdominale standard. Sur ces images, les petites
lésions sont fréquemment manquées par les radiologues, conduisant à un diagnostic tardif et limitant donc
les options thérapeutiques. Les patients diagnostiqués à un stade précoce sont, quant à eux, plus souvent
éligibles à une chirurgie du pancréas avec un taux de survie à cinq ans excédant 80%. Ces chiffres soulignent
l’importance d’assister les radiologues lors du diagnostic.

Cette thèse, en collaboration avec Télécom Paris et Guerbet, vise à développer des méthodes d’intelli-
gence artificielle (IA) pour assister les radiologues dans le diagnostic du cancer du pancréas. Les objectifs
de cette thèse incluent la détection des lésions pancréatiques sur les TDM portales, et la poursuite de la
détection précoce en identifiant les signes radiologiques secondaires qui sont visibles avant l’apparition de
masses. Ces objectifs visent à faciliter un diagnostic précoce, à augmenter l’éligibilité des patients à la
chirurgie et, in fine, à améliorer le taux de survie.

Pour atteindre ces objectifs, un grand nombre d’images de TDM en phase portale, acquises sur des
patients atteints de diverses maladies du pancréas, a été collecté. Cela a permis la création de l’une des
plus grandes bases de données annotées pour la recherche sur le cancer du pancréas, avec 2 800 examens
provenant de plusieurs régions géographiques. Ces données ont ensuite été exploitées pour développer
plusieurs méthodes d’IA selon trois pistes de recherche principales :

Premièrement, une méthode de segmentation automatique du pancréas a été développée. La segmenta-
tion automatique du pancréas est une étape essentielle pour permettre d’isoler une région d’intérêt dans
l’image. Le pancréas présentant une forme allongée et des extrémités difficiles à délimiter, la méthode
proposée utilise des informations géométriques pour ajuster localement la sensibilité de la segmentation
prédite. Les résultats montrent que cette approche corrige la sous-segmentation systématique des extrémités
générée par le nnU-Net, un modèle de segmentation de référence, tout en préservant la qualité globale de
la segmentation.

Deuxièmement, une méthode réalise la détection des lésions et de la dilatation du canal pancréatique
principal (CPP), deux signes cruciaux du cancer du pancréas. La méthode proposée commence par seg-
menter le pancréas, les lésions et le CPP à l’aide d’un nnU-Net. Ensuite, des caractéristiques quantitatives
sont extraites des segmentations prédites, puis utilisées par deux régressions logistiques pour prédire la
présence d’une lésion et la dilatation du CPP. La robustesse de la méthode est démontrée sur une large
base externe de 756 patients, et des études d’ablation montrent que l’utilisation des caractéristiques sur le
CPP permet d’améliorer la détection de lésions.

Dernièrement, afin de permettre un diagnostic précoce, deux approches sont proposées pour détecter des
signes secondaires du cancer du pancréas. La première approche consiste à apprendre un modèle normatif
des formes du pancréas. Pour cela, un auto-encodeur variationnel (AEV) est entrâıné à partir d’un grand
nombre de masques de segmentation de pancréas sains. Ce modèle est ensuite exploité pour détecter
des formes anormales, en utilisant des méthodes de détection d’anomalies avec peu ou pas d’exemples
d’entrâınement. En plus de la détection de formes anormales, le modèle obtenu peut aussi être utilisé
pour visualiser la différence de formes entre groupes. La seconde approche s’attaque aux signes secondaires
portant sur la forme et la texture. Pour cela, deux types de radiomiques sont utilisés : les radiomiques
profonds (RP), extraits automatiquement par des réseaux de neurones profonds, et les radiomiques manuels
(RM), calculés analytiquement à partir de formules prédéfinies. La méthode repose sur un AEV qui extrait
des RP non redondants par rapport à un ensemble prédéterminé de RM, afin de compléter l’information
déjà contenue par ces derniers. Ensuite, les deux types de radiomiques résultants sont concaténés et utilisés
par une régression logistique pour prédire la présence de signes secondaires : la forme anormale, l’atrophie,
l’infiltration de graisse et la sénilité. Les résultats, obtenus sur une large base de test indépendante, montrent
que cette méthode améliore les performances de prédiction par rapport à des approches de combinaison
qui ne minimisent pas la redondance. Ces deux approches présentent des perspectives prometteuses pour



8 Résumé

détecter les signes secondaires, ce qui pourrait faciliter la détection précoce du cancer du pancréas.
La principale perspective de cette thèse consiste à améliorer la précision du diagnostic en caractérisant

les types de lésions et la malignité des signes secondaires, deux tâches difficiles pour les radiologues.
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Abstract

Pancreatic cancer is recognized as a growing health concern worldwide. Due to the increase in its
incidence and five-year survival rates (9%), this disease could become the third leading cause of cancer-
related deaths by 2025. The low five-year survival rate primarily stems from late-stage diagnoses. Such
diagnoses result from the lack of specific symptoms, as well as challenges pertaining to the interpretation
of portal computed tomography (CT) scans which is the standard abdominal imaging modality for patients
with non-specific symptoms. Consequently, radiologists frequently overlook small and subtle lesions, leading
to late-stage diagnosis of pancreatic cancer, thereby limiting the treatment options. Yet, patients diagnosed
at early stages are more often eligible for pancreatic resection, leading to a five-year survival rate surpassing
80%. This highlights the importance of assisting radiologists at the diagnosis stage.

This thesis, in collaboration with Télécom Paris and Guerbet, aims to develop artificial intelligence (AI)
methods to help radiologists in the diagnosis of pancreatic cancer. The objectives include identifying pan-
creatic lesions on portal CT scans to prevent missed diagnoses, and pursuing early detection by identifying
secondary radiological signs, visible before the appearance of distinguishable masses. These objectives seek
to facilitate timely diagnosis, increase patient eligibility for resection, and ultimately enhance the survival
rate.

To reach these objectives, a large dataset comprising portal CT scans from patients with a variety of
pancreatic diseases was created. This effort resulted in one of the largest annotated databases for pancreatic
cancer research, currently consisting of over 2,800 examinations from multiple geographical regions. This
database was leveraged to accomplish the objectives, focusing on three primary research avenues.

First, a method for the automatic segmentation of the pancreas on portal CT scans was developed. To
deal with the specific anatomy of the pancreas, which is characterized by an elongated shape and subtle
extremities easily missed, the proposed method relied on local sensitivity adjustments using geometrical
priors. Experiments showed that geometrical priors corrected the systematic under-segmentation error
pattern generated by the nnU-Net, a state-of-the-art segmentation method. Then, the thesis tackled the
detection of pancreatic lesions and main pancreatic duct (MPD) dilatation, both crucial indicators of
pancreatic cancer. The proposed method started with the segmentation of the pancreas, the lesion and
the MPD. Then, quantitative features were extracted from the predicted segmentations and leveraged to
predict the presence of a lesion and the dilatation of the MPD. The method was evaluated on an external
test cohort comprising hundreds of patients, demonstrating its robustness.

Continuing towards early diagnosis, two strategies were explored to detect secondary radiological signs of
pancreatic cancer. The first approach leveraged large databases of healthy pancreases to learn a normative
model of healthy pancreatic shapes, facilitating the identification of anomalies. To this end, volumetric
segmentation masks were embedded into a common probabilistic shape space, enabling zero-shot and few-
shot abnormal shape detection. The second approach leveraged two types of radiomics : deep learning
radiomics (DLR), extracted by deep neural networks, and hand-crafted radiomics (HCR), derived from
predefined mathematical formulas. The proposed method sought to extract non-redundant DLR that would
complement the information contained in the HCR. Results showed that this method effectively detected
four secondary signs of pancreatic cancer : abnormal shape, atrophy, senility, and fat replacement.

Further development could focus on refining diagnostic precision by predicting lesion types and the
malignancy of secondary signs, which are challenging tasks for radiologists. From a technical perspective,
integrating multi-modal data, such as multi-phase CT scans or electronic health records, can be promising
for enhancing the models’ efficacy.
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Chapitre 1

Introduction

1.1 Preface

This introductory chapter lays the groundwork for this thesis, which is focused on applying artificial in-
telligence methods to detect pancreatic cancer. It begins by presenting the origins of this project, highlighting
the clinical and technical challenges that motivated its creation. Then, it outlines the main objectives of this
work and discusses the technical challenges it addresses. Moreover, the chapter offers an overview of the
thesis structure, providing readers with a structured guide to navigate the subsequent chapters. Lastly, the
chapter concludes with a comprehensive list of all the scientific works produced during the course of this
thesis.

17
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1.2 Genesis

This thesis originated from the initiative of Prof. Vullierme, a radiologist with over 25 years of experience
in abdominal imaging. Working at the Beaujon Hospital in Paris, which has a gastroenterology department
specializing exclusively in the treatment of pancreatic diseases, she was facing a high frequency of cases with
advanced and incurable stages of pancreatic cancer. Detecting these cases earlier would have broadened
the range of therapeutic options, thereby potentially increasing the survival rate. However, for many of
these cases, opportunities for timely diagnosis were missed : despite previous imaging studies, pancreatic
lesions often went unnoticed, either due to their subtle nature or due to the lack of suspicion surrounding
asymptomatic early-stage pancreatic cancer. Recognizing the potential of Artificial Intelligence (AI) to
systematically assist radiologists in identifying pancreatic cancers during routine clinical examinations,
Prof. Vullierme initiated contact with Guerbet during the 2019 edition of the Journées Francophones de
Radiologie (JFR). The collaboration aimed at launching a project for the development a computer-aided
detection system, empowering radiologists with systematic and accurate pancreas analyses, with a specific
emphasis on early pancreatic cancer detection.

This thesis played a pivotal role in the project genesis, contributing significantly to its conceptualization
and initiation. Starting from scratch in 2020, the project sought to leverage AI technology to enhance patient
outcomes within the complex landscape of pancreatic cancer diagnosis. Throughout this journey, several
open questions have emerged : Which imaging modality should be selected as input to maximize clinical
impact ? How can we accurately delineate the pancreas given its variable and elongated shape with indistinct
boundaries ? What strategies can be employed to develop a reliable algorithm capable of consistently detecting
pancreatic lesions, particularly when they are small and subtle ? Which radiological features should the
algorithm analyze ? We propose to address these crucial questions in this manuscript.

1.3 Thesis objectives

The aim of this CIFRE PhD, in collaboration with the Laboratoire de Traitement et Communication
de l’Information (LTCI) of Télécom Paris (Institut Polytechnique de Paris) and Guerbet, is to develop
AI-based methods to help radiologists in the diagnosis of pancreatic cancer.

Pancreatic cancer is characterized by a notably low five-year survival rate of 9%, primarily attributable
to missed or delayed diagnoses (Rawla et al., 2019). Several reasons explain these diagnostic failures. Given
that early stages of pancreatic cancer typically lack symptoms, patients are often diagnosed at late stages,
with approximately 90% of cases being diagnosed at stages for which the tumor is non-resectable 1 (Rawla
et al., 2019). As surgical intervention stands as the primary therapeutic option, delayed diagnoses signi-
ficantly correlate with diminished survival rates. Consequently, early detection emerges as the primary
avenue for augmenting survival rates. Yet, unlike breast or colon cancers, which benefit from screening
routines allowing for early detection, pancreatic cancer lacks recommended screening measures due to the
absence of blood tests capable of reliably and efficiently detecting the disease (John Hopkins Medicine, b).
Thus, one strategy for identifying pancreatic cancer at early stages involves incidental discovery during rou-
tine abdominal imaging (Goodman et al., 2012). However, the identification of cancer during such routine
exams is challenging : as the pancreas is not the primary target of investigation, it often lacks a thorough
examination. Consequently, small or subtle tumors are prone to being overlooked (Kang et al., 2021). Fur-
thermore, routine abdominal imaging frequently employs the portal Computed Tomography (CT) phase,
which is suboptimal for visualizing the pancreas as some lesions exhibit isodense patterns, making them
barely visible or even imperceptible on this imaging modality (Shrikhande et al., 2012). To overcome this li-
mitation, radiologists rely on secondary signs, which are radiological signs that may manifest before a tumor
becomes clearly discernible (Gonoi et al., 2017). These signs, related to the shape, texture, and appearance
of the Main Pancreatic Duct (MPD), play a pivotal role in detecting pancreatic cancer, particularly the
isodense lesions. However, without thorough examination, these signs may go unnoticed, contributing to
the numerous cases of missed early-stage cancers.

1. A resectable tumor is a tumor that can be removed by surgery.
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Therefore, supporting radiologists in the diagnostic process is crucial for identifying potential cases of
pancreatic cancer at early stages, ultimately enhancing overall survival rates. In this regard, computer-
aided detection systems using AI, which have shown efficacy in diseases such as breast cancer and lung
cancer (Fujita, 2020), offer significant promise for pancreatic cancer diagnosis given its challenging detec-
tion. Given this context, the general objective of this thesis is to propose AI-based methods designed to
assist radiologists in identifying pancreatic cancer on portal CT scans, which serve as the primary imaging
modality for abdominal examinations in clinical routines. The primary objectives encompass the systematic
identification of pancreatic lesions to prevent missed or delayed diagnoses, and the pursuit of early diag-
nosis by detecting secondary signs that could be visible before the clear appearance of pancreatic lesions.
The aim of these objectives is to facilitate timely diagnosis, increase eligibility for surgical intervention and
ultimately enhance patients’ survival.

To accomplish these goals, it is imperative to develop image analysis methods that address various
methodological questions. These questions include tasks such as segmenting elongated and small objects,
particularly under challenging conditions characterized by low contrast and indistinct contours. Additio-
nally, the process involves characterizing both shape and appearance through a combination of features
derived from expert prior knowledge and learned features. These questions are instantiated for the pancreas
as follows :

- Pancreas segmentation : Accurate delineation of the pancreas is essential to establish a reliable
Region of Interest (ROI) for subsequent analysis. The pancreas segmentation algorithm should ro-
bustly handle the organ’s elongated shape and effectively identify its extremities, which is challenging
due to the low contrast at its boundaries.

- Lesion detection : Developing a lesion detection method is critical for identifying all pancreatic
lesions, particularly small and/or isodense ones. Given the difficulty of this task, leveraging radiological
features derived from secondary signs should be considered.

- Secondary signs detection : Early cancer detection involves identifying secondary radiological signs
indicative of pathological abnormality. Identification of these signs would greatly assist radiologists,
as suggested by Kim et al. (2017). Various strategies can be explored, depending on the specific
secondary signs that need to be detected.

These methods aim to empower both expert and non-expert radiologists, ensuring the timely identifi-
cation of pancreatic cancer lesions and early detection of cases. They would not only mitigate diagnostic
errors but also alleviate the workload of radiologists while increasing their confidence diagnostic through
a “second opinion”. Most crucially, such methods could substantially increase the number of cases diagno-
sed at early stages, thereby contributing to an overall rise in survival rates (Barat et al., 2021). In order
to develop these methods and guarantee their robustness and reliability, the creation of a comprehensive
database emerged as a central component of this thesis. It involved outlining precise criteria for the data-
set (e.g., data type, clinical and geographical scope), alongside specifying the requisite annotations (e.g.,
segmentations, image-level labeling).
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1.4 Thesis outline and main contributions

This manuscript is organized as follows :

In Chapter 2, a comprehensive exploration of the clinical landscape sets the stage for an in-depth unders-
tanding of the challenges at hand. Epidemiological figures underscore the aggressive nature of pancreatic
cancer, and an exploration of its imaging characteristics elucidates the reasons behind delayed diagnoses.
The chapter concludes by outlining the current landscape of pancreatic cancer, emphasizing the potential
of AI for automated pancreas analysis.

Chapter 3 presents the current state of Deep Learning (DL) applications in pancreatic analysis. After a
brief introduction to fundamental concepts of DL, a thorough exploration of the state-of-the-art in DL for
pancreatic cancer is provided. This encompasses pancreas segmentation, lesion segmentation and detection,
and feature extraction. An exhaustive review of existing methods is conducted, concluding with identified
limitations and the proposed solutions outlined in this thesis.

Chapter 4 provides an in-depth overview of the datasets used throughout this study. It specifically details
DCAPA dataset, Guerbet’s proprietary dataset for pancreatic research. The process of data collection and
the definition of annotation protocols for DCAPA is part of the scientific work of this thesis. It required
collaboration and expertise in AI and radiology in order to get the necessary data for training
algorithms that could address significant clinical challenges. This resulted in the creation of
one of the largest annotated databases for pancreatic cancer research, currently comprising over
2, 800 portal CT scans from several geographical regions.

Following the examination of the clinical, technical, and material aspects within this thesis, Chap-
ters 5, 6, and 7 outline the main scientific contributions of this work :

Chapter 5 focuses on the first methodological step of this work, which concerns pancreas segmentation
on portal CT scans. A novel method is proposed to overcome the difficulties encountered when
segmenting elongated organs with ambiguous contours. This method, based on geometrical
priors that locally adjust the sensitivity of the segmentation, is illustrated in the case of the
pancreas. This work was selected for an oral presentation at ISBI 2022 [I1], and for a poster presentation
at GRETSI 2022 [N1]. The proposed segmentation model serves as a fundamental methodological tool
enabling the exploration of more intricate challenges, including the identification of pancreatic abnorma-
lities. Consequently, upon establishing this segmentation method, diverse research avenues were identified
to detect different key findings that contribute to predicting the development of pancreatic cancer.

Chapter 6 introduces a robust method for detecting two primary signs of pancreatic cancer :
the presence of a lesion and the dilatation of the main pancreatic duct (MPD). The method
relies on features extracted from the automatic segmentation of the pancreas, the lesions
and the MPD. It is trained on multi-centric cohorts, and extensively validated on a large
external dataset. To the best of our knowledge, this method represents the first AI-driven approach for
detecting MPD dilatation. Moreover, it demonstrates that enhancing lesion detection is achievable through
the incorporation of explicit features derived from the MPD segmentation. This work has been presented
at the JFR 2022 [N2] and published in Investigative Radiology [J1].

The next chapter work tackles early diagnosis through the detection of secondary cancer signs for
which only image-level labels were available. Therefore, different strategies are explored to leverage these
labels. Chapter 7 starts with the detection of abnormal pancreatic shapes. To this end, a method
to detect abnormal organ shapes through a normative model is proposed. This model is
learned on large databases of healthy shapes in an unsupervised setting. Once the model is
trained, the resulting distribution is leveraged to enable the detection of abnormal shapes in
both zero-shot and few-shot settings. The resulting model can also be used to visualize the
morphological differences between the organ shapes of different clinical groups. The method
is illustrated for the detection of abnormal pancreatic shapes. This led to a patent application [P1] and a
poster presentation at MICCAI’s main conference in 2022 [I2].

In the second part of the chapter, the focus extends to the use of radiomics for detecting four secondary
signs of pancreatic cancer : general shape, atrophy, fat replacement, and senility. To maximize the use
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of both existing types of radiomics, namely Deep-Learning Radiomics (DLR) and Hand-
Crafted Radiomics (HCR), a novel method is introduced to extract DLR features that are
non-redundant with a predefined set of HCR. The two types of radiomic features obtained
can then be combined and leveraged by a classifier to predict secondary signs of cancer from
an image. This work was selected for an oral presentation at the CaPTion workshop of MICCAI 2023
[I3], winning the best oral presentation award [A2], and a poster presentation at IABM 2024 [N3].

Chapter 8 concludes this thesis. It provides a summary and a discussion of key findings, and outlines
future perspectives.
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Chapitre 2

Medical Context

2.1 Preface

We begin this thesis by providing the clinical context for pancreatic cancer. Our introduction begins with
an exploration of the pancreas, emphasizing its anatomical characteristics. Then, we focus on pancreatic
cancer, using epidemiological figures to understand the magnitude of the issue and emphasize the importance
of early detection. We elaborate on diagnostic and therapeutic approaches, highlighting both the importance
and the challenges of early detection. Next, we look at the radiological signs that help with early detection
through imaging. Finally, we outline the current and future challenges of pancreatic cancer, paving the way
for the integration of artificial intelligence tools.

25
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2.2 Pancreas

2.2.1 Anatomy

2.2.1.1 General anatomy

The pancreas is a vital human organ, along with the brain, heart, lungs, liver, kidneys and skin. It is
a flat, oblong organ, about 18 cm long, 3 cm wide and 4 cm high. It lies at the heart of the abdomen,
between the stomach, the lumbar vertebrae, the duodenum 1 and the spleen. As shown in Figure 2.1, the
pancreas is divided into five distinct parts : the uncinate process, the head, the neck, the body and the tail.
The pancreas is traversed by two ducts : the main pancreatic duct, also referred to as the Wirsung duct,
and the accessory pancreatic duct, alternatively known as the Santorini duct (Bockman, 1993).

NECK

UNCINATE PROCESS

SPLEEN

PANCREAS

GALLBLADDER

DUODENUM

MAIN

COMMON BILE 
DUCT

Figure 2.1 – Anatomy of the pancreas and adjacent organs. The image provides a comprehensive depiction of the pancreas,
featuring its five distinct regions : uncinate process, head, neck, body, and tail. Adjacent structures such as the gallbladder, duodenum,
spleen, and the pancreatic ducts are also highlighted. The main pancreatic duct initiates at the tail, traverses through the various regions,
and culminates at the head. Notably, the main duct exhibits a gradual increase in diameter along its course and merges with the common
bile duct (also known as choledochus) before opening into the duodenum through the major duodenal papilla. Additionally, the accessory
pancreatic duct, which is thinner, runs across the head of the pancreas and terminates in the duodenum through the minor duodenal
papilla, positioned approximately 2 cm above the main duct. Illustration adapted from John Hopkins Medicine (a).

2.2.1.2 Variations

While Figure 2.1 illustrates a conventional depiction of pancreatic anatomy, it is important to acknow-
ledge that the pancreas exhibits considerable inter- and intra-individual variability (Borghei et al., 2013).
Radiologists need to be aware of these variations to effectively distinguish between normal and patholo-
gical conditions. Considering these anatomical differences is particularly crucial in surgical interventions
and diagnostic procedures within the abdominal region (Kozu et al., 1995). Such variations may arise from
congenital factors originating from embryological development, or result from physiological changes.

1. Upper part of the small intestine.
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Congenital variations The embryological development of the pancreas is complex and leads to numerous
congenital anatomical variations, mainly affecting the pancreatic duct system (Kozu et al., 1995). Various
classification systems exist to characterize the configuration of pancreatic ducts and the bile-pancreatic
junction (Dimitriou et al., 2018). Figure 2.2 illustrates a five-group classification, notably featuring pancreas
divisum. This anomaly, estimated to have a prevalence between 3-14%, arises from an abnormal fusion of
the two pancreatic ducts (Dimitriou et al., 2018) and is visible on imaging (see Figure 2.3.B). Anomalies
in the embryological development can also affect the entire gland or the vascular system. For instance,
ectopic pancreas is characterized by the presence of pancreatic tissue in an abnormal location, unrelated
anatomically to the main gland (see Figure 2.3.C). Its prevalence is estimated between 1-10% (Yu et al.,
2006). Additionally, pancreatic variations can be vascular, related to the position of the splenic artery and
hepatic portal vein concerning the pancreas (Orellana-Donoso et al., 2023).

Type 1 Type 2 Type 3 Type 4 Type 5

Figure 2.2 – Different pancreatic ducts configurations. Types 1 to 3 represent so-called “normal” configurations : type 1 exhibits
a configuration with Wirsung as the dominant duct, while type 2 features a configuration with Santorini as the dominant duct. Type 3
is marked by a rudimentary, non-draining, or absent Santorini duct. Type 4 corresponds to pancreas divisum. Type 5, known as ansa
pancreatica, is a rare variation where the accessory pancreatic duct takes a sinuous curve before merging with the main pancreatic duct.
Adapted from Dimitriou et al. (2018).

Figure 2.3 – Congenital variations of the pancreas seen on portal CT scans. A : Typical anatomy of the pancreas. The
pancreas is delineated in red, while the pancreatic ducts remain imperceptible. Image from the DNIH public dataset (Roth et al., 2016a),
presented in Chapter 4. B : Pancreas divisum. 46-year-old male with pancreas divisum. The image illustrates the two pancreatic ducts
(indicated by long white and black arrows) and the common bile duct (short black arrow). Adapted from Soto et al. (2005). C : Ectopic
pancreas. Soft-tissue attenuation focus (white arrows) originating from the pancreas, exhibiting similar attenuation to the tissue in the
pancreatic head (P). Adapted from Yu et al. (2006). CT : Computed tomography, DNIH : National Institute of Health dataset.

Other variations Beyond congenital variations, the pancreas displays significant inter- and intra-individual
variability in terms of size, shape, and contours. While the head and body have fixed positions, the left
pancreas is mobile, and the pancreatic tail can exhibit varying degrees of mobility within the abdomen (Pa-
rent, 2012). This can result in diverse shapes, as illustrated in Figure 2.4. Additionally, although the normal
pancreatic head typically features a smooth and continuous contour, some healthy pancreases may exhibit
heterogeneous contours in the head (Yu et al., 2006). Moreover, the pancreas can undergo physiological
changes, such as the replacement of pancreatic tissue with adipose cells. Elderly individuals (over 60 years)
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may experience fatty involution of the gland with progressive atrophy and harmonious dilatation of the
main duct : these pancreases are known as senile or ageing pancreases (Parent, 2012; Löhr et al., 2018).

Figure 2.4 – Variability of the pancreas in terms of size, shape and positions. Portal CT images showing the pancreas and lesion
delinated in red and blue, respectively. A : 67-year-old man with a hypo-enhancing mass. B : 61-year-old woman with a heterogeneous
pseudocyst. C : Patient with a hyper-enhancing PNET tumor. D : 73-year-old man with a hyper-enhancing PNET tumor. The pancreas
extends up to the position of the absent left kidney. Images A, B, D are sourced from the DCAPA dataset, while image C is from the
DMSD dataset (datasets detailed in Chapter 4). DCAPA : Care Advisor for Pancreas dataset, CT : Computed tomography, PNET :
Pancreatic neuroendocrine tumor, DMSD : Medical Segmentation Decathlon dataset.

2.2.2 Function

The pancreas functions as a gland, producing and secreting substances such as hormones and digestive
enzymes. As a mixed gland, the pancreas has both exocrine and endocrine functions, meaning that it
releases substances into ducts and directly into the bloodstream.

Its primary exocrine role involves producing digestive enzymes, which travel through the main pancreatic
duct into the duodenum. To safeguard against potential self-digestion of pancreatic tissue, these enzymes
are released in an inactive state within the gland, with activation occurring exclusively upon reaching the
digestive tract.

The pancreas also performs a minor endocrine function, producing hormones like glucagon and insulin
that regulate blood glucose levels.

The exocrine function, which is managed by serous acini 2, is crucial for digestion, while the endocrine
function is handled by islet cells and is vital for hormonal regulation. Despite the endocrine cells constituting
only 1% of the pancreas, both of these functions (endocrine and exocrine) are intricately intertwined.
Figure 2.5 illustrates these dual roles of the pancreas.

2.3 Pancreatic cancer

The term “pancreatic cancer” is commonly used as a synonym for Pancreatic Ductal Adenocarcinoma
(PDAC) due to its high prevalence, accounting for 80% of all pancreatic cancers (Krejs, 2010). However,
it is important to note that pancreatic cancer includes a broader spectrum of malignancies originating
from either the exocrine or endocrine tissues of the pancreas. In addition to PDACs, approximately 10%
of tumors originate from the exocrine pancreas, encompassing various histological types such as cystade-
nocarcinoma, giant-cell carcinoma, and intraductal papillary mucinous neoplasms (a type of cystic lesion
discussed in Section 2.4.1). Beyond these exocrine pancreatic cancers, there exists a distinct subset consti-
tuting 10% of all pancreatic cancers, known as Pancreatic Neuroendocrine Tumor (PNET). Emerging from
the endocrine cells of the pancreas, PNET represent a unique category with distinctive characteristics and
clinical behaviors (Krejs, 2010).

2. A grouping of serous cells that secrete serous fluid.
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Figure 2.5 – Dual role of pancreatic function. Exocrine function is characterized by acinar cells releasing digestive enzymes
transported through the pancreatic duct into the small intestine. Endocrine function involves pancreatic islets secreting insulin and
glucagon, regulating glucose metabolism in the body. Micrograph provided by the Regents of the University of Michigan Medical School,
2012. Adapted from Human Anatomy and Physiology (Betts et al., 2013).

2.3.1 Epidemiology

Incidence, Prevalence, Mortality In 2017, there were 447,665 new cases of pancreatic cancer worldwide.
The prevalence was estimated at 49.8 cases per million inhabitants, and the mortality at 55.7 cases per mil-
lion inhabitants (Lippi and Mattiuzzi, 2020). Among all cancers, pancreatic cancer ranks 14th in incidence,
27th in prevalence, but 9th in Disability-Adjusted Life Years 3 and 6th in cancer-related deaths (Lippi
and Mattiuzzi, 2020). These figures categorize pancreatic cancer as an uncommon yet highly aggressive
disease. Figure 2.6.A illustrates the close parallel between pancreatic cancer incidence and mortality rates,
underscoring its highly fatal nature with a mortality/incidence ratio of 94% (Rawla et al., 2019). Incidence,
prevalence, and mortality increase with age, peaking after 70 years (Bosetti et al., 2012; Malvezzi et al.,
2016), rendering it a disease primarily affecting elderly populations.

Survival The five-year survival rate for all types of pancreatic cancers stands at 9% (Rawla et al., 2019).
Nevertheless, diverse factors, including age, gender, lifestyle, treatment approaches, and healthcare systems,
have notable influences on survival rates. Table 2.1 illustrates the pivotal role of cancer type and staging
at the time of diagnosis in determining survival rates. PDAC manifests a considerably grim prognosis
compared to PNET, with five-year survival rates ranging from 13% to 1% for the former and from 61% to
16% for the latter (Rawla et al., 2019).

Clinical Stage
Five-year survival (%)

PDAC PNET treated with surgery
I 13 61
II 7 52
III 3 41
IV 1 16

Table 2.1 – Five-year survival rates according to the clinical stage of pancreatic cancer. Adapted from Rawla et al. (2019). PDAC :
Pancreatic ductal adenocarcinoma, PNET : Pancreatic neuroendocrine tumor.

Past and future trends Over the past 25 years, data revealed a substantial rise in both the incidence
(+55%) and mortality (+53%) rates of pancreatic cancer (Lippi and Mattiuzzi, 2020). By 2020, pancreatic
cancer accounted for 0.79% of all deaths, compared to 0.44% in 1992. Projections extrapolated from the

3. Disability-adjusted life-years (DALYs) are calculated as the sum of years of life lost and years lost due to disability.
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Figure 2.6 – Left : Worldwide prevalence, incidence, and mortality of pancreatic cancer during the last 25 years. Right : Future trends
of mortality for all causes, all types of cancers and pancreatic cancers. Charts from Lippi and Mattiuzzi (2020).

World Health Organization (WHO) databases reveal a continuing upward trajectory in both mortality
and incidence rates. Figure 2.6.B illustrates these projections, emphasizing an expected 1.97-fold rise in
pancreatic cancer deaths over the next four decades. Similarly, according to the GLOBOCAN 2018 4, the
incidence is projected to surge by +77.7% from 2018 to 2040 (Rawla et al., 2019) and similar patterns
emerge for mortality, with a global expected increase of +79.9%. The exact causes of this significant
increase are not thoroughly understood ; however, the surge in obesity rates and sedentary lifestyles are
considered primary factors (Mizrahi et al., 2020; Rawla et al., 2019). Risk factors will be further explored
in the following section.

2.3.2 Risk factors

To date, the causes of pancreatic cancer are still insufficiently known (Ilic and Ilic, 2016; Rawla
et al., 2019). Nevertheless, risk factors have been identified and can be classified into modifiable and
non-modifiable factors (Midha et al., 2016).

2.3.2.1 Modifiable risk factors

Modifiable risk factors associated with development of pancreatic cancer include obesity, diabetes, to-
bacco and alcohol use.

Obesity There is a well-established association between obesity and an elevated risk of pancreatic can-
cer (Mizrahi et al., 2020; Rawla et al., 2019). A comprehensive study conducted by the National Institute
of Health, involving a substantial cohort exceeding 500,000 individuals, provided strong evidence that indi-
viduals classified as overweight or obese (Body Mass Index (BMI) ≥ 30 kg/m2) face an increased likelihood
of developing pancreatic cancer compared to those within the normal BMI range with hazard ratios ranging
from 1.15 to 1.53 (Stolzenberg-Solomon et al., 2013).

4. GLOBOCAN 2018 is an online database providing estimates of incidence and mortality in 185 countries for 36 types of cancer, and
for all cancer sites combined (Globocan, 2018).
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Diabetes Both type I and type II diabetes have consistently been linked to an augmented risk of pancreatic
cancer (Mizrahi et al., 2020; Pereira et al., 2020; Rawla et al., 2019). Notably, new-onset diabetes is
recognized as a potential early indicator and a significant risk factor for the development of pancreatic
cancer (Mizrahi et al., 2020; Pereira et al., 2020; Rawla et al., 2019). Conversely, pancreatic cancer is also
considered a risk factor for the subsequent development of diabetes (Mizrahi et al., 2020; Pereira et al.,
2020).

Alcohol and tobacco High alcohol intake (more than three drinks per day) and smoking are associated
with an elevated risk of pancreatic cancer (Rawla et al., 2019). Smoking poses a two-fold higher risk
for pancreatic cancer in smokers compared to non-smokers, with increased risks observed in former and
passive smokers (Ezzati et al., 2005; Rawla et al., 2019). The complex relationship between alcohol and
smoking makes establishing alcohol as an independent risk factor challenging (Rawla et al., 2019). In
particular, Rahman et al. (2015) noted that smoking may modulate the association between alcohol and
pancreatic cancer, with alcohol significantly increasing the risk among current smokers but not among
non-smokers.

Other modifiable factors Additional modifiable risk factors include occupational exposures to substances
such as nickel, cadmium, and arsenic, contributing to 12% of pancreatic cancer risk (Rawla et al., 2019).
Dietary factors also play a role, with meta-analyses linking red meat consumption to an elevated risk of
pancreatic cancer (Larsson and Wolk, 2012; Paluszkiewicz et al., 2012). More generally, adopting healthy
lifestyles has been consistently associated with a reduced probability of developing pancreatic cancer, inde-
pendent of tobacco consumption (Naudin et al., 2020). This is particularly significant given the increasing
prevalence of metabolic syndromes 5 associated with obesity and sedentary lifestyles, contributing to the
global rise in pancreatic cancer incidence despite declining smoking rates (Mizrahi et al., 2020).

2.3.2.2 Non modifiable risk factors

Non-modifiable risk factors for pancreatic cancer include gender, age, ethnicity, family history of pan-
creatic cancer, genetic factors, and chronic pancreatitis.

Gender, age, ethnicity Epidemiological figures highlight that men face a higher risk than women (in-
cidence of 5.5 vs. 4.0 per 100,000 (Bray et al., 2018)). This gender discrepancy may be attributed to
environmental risk factors or habits such as alcohol or tobacco consumption. Yet, undiscovered genetic
factors may contribute to the variance in incidence and mortality between males and females. Age is an
incontestable risk factor, with the likelihood of developing pancreatic cancer increasing with age, typically
diagnosed at a median age of 70 (Bray et al., 2018). Ethnicity is another non-modifiable risk factor, with
the highest incidence rates observed in African-Americans and the lowest in Asian-Americans and Paci-
fic Islanders (American Cancer Society, 2014). While modifiable risk factors may explain these disparities,
population-based studies suggest additional contributions from genetic factors (Arnold et al., 2009; Pernick
et al., 2003).

Family history Approximately 5-10% of individuals with pancreatic cancer report familial pancreatic
cancer history, indicating a first-degree relative (parent, sibling, or child) diagnosed with pancreatic can-
cer (Rawla et al., 2019). A prospective analysis reveals that first-degree relatives of individuals with familial
pancreatic cancer face a nine-fold increased risk, doubling with two affected relatives and rising to 32-fold
with three or more. The highest risk is observed in families with a case of young-onset pancreatic cancer
(age < 50 years) (Brune et al., 2010).

5. Metabolic syndrome (also called insulin resistance syndrome) is a group of conditions that together raise the risk of coronary heart
disease, diabetes, stroke, and other health problems.
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Genetic factors Approximately 10% of all pancreatic cancers exhibit genetic variation or mutation (Ghiorzo,
2014). Several genetic mutations and familial cancer syndromes have been identified, including hereditary
breast and ovarian cancer syndrome, familial pancreatitis and Peutz-Jeghers syndrome 6 (Mizrahi et al.,
2020).

Pancreatitis Numerous studies establish longstanding chronic pancreatitis (inflammation of the pancreas,
further discussed in Section 2.4.2) as a risk factor for pancreatic cancer (Rawla et al., 2019). However, a
significant proportion of pancreatitis cases are considered to be the result of a ductal obstruction caused by a
tumor, highlighting its dual role as both a risk factor and an early disease indicator (Raimondi et al., 2010).
Furthermore, patients with hereditary pancreatitis syndromes exhibit a higher risk of developing pancreatic
cancer compared to those with other forms of pancreatitis or individuals without pancreatitis (Mizrahi et al.,
2020).

2.3.3 Diagnosis

2.3.3.1 Clinical signs

Pancreatic cancer often manifests insidiously, frequently exhibiting minimal or no symptoms until it
progresses to an advanced stage (Mizrahi et al., 2020). When symptomatic, patients typically present
with nonspecific manifestations, such as epigastric 7 or back pain, nausea, bloating, abdominal fullness, or
alterations in stool consistency. Yet, these symptoms are commonly attributed to benign causes, leading
to a potential delay in diagnosis (Macdonald et al., 2006; Walter et al., 2016).

Upon diagnosis, prevalent symptoms include abdominal pain (40-60%), abnormal liver function tests
(50%), jaundice (30%), new-onset diabetes (13-20%), dyspepsia 8 (20%), nausea (16%), back pain (12%),
and weight loss (10%) (Schmidt-Hansen et al., 2016). The manifestation of these signs and symptoms
depends on the tumor’s location within the pancreas : tumors situated in the body or tail of the pancreas
typically induce epigastric or back pain, while those located in the head and neck obstruct the main
pancreatic duct, resulting in jaundice. Additional symptoms may include gastric outlet or bowel obstruction,
weight loss, anorexia, depression, venous thrombosis, pancreatitis, or indications of pancreatic enzyme
insufficiency.

A comprehensive study, involving more than 3,400,000 patients in primary care, identified jaundice as
the only high-risk feature for pancreatic cancer, with a Positive Predictive Value (PPV) ranging from 4 to
13% (Schmidt-Hansen et al., 2016). Conversely, the PPVs for other individual symptoms were notably low,
with the highest PPV being 1% for repeated attendance with abdominal pain in patients aged 60 years or
older (Schmidt-Hansen et al., 2016). This underscores the challenges associated with identifying pancreatic
cancer based solely on isolated symptoms, emphasizing the need for a comprehensive diagnostic approach.

2.3.3.2 Imaging

Both diagnostic and interventional imaging play crucial roles in diagnosing pancreatic cancer. Presently,
pancreatic imaging modalities primarily include Ultrasound (US), Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Endoscopic Ultrasound (EUS), and Endoscopic Retrograde Cholangiopancrea-
tography (ERCP) 9 (see examples in Figure 2.7).

Diagnostic imaging

US stands as the most widely used imaging modality due to its cost-effectiveness and non-ionizing ra-
diation properties. However, suboptimal visualization of the pancreas may occur due to intestinal gases,

6. Peutz-Jeghers syndrome is a rare disorder in which growths called polyps form in the intestines.
7. Epigastric pain refers to pain below the ribs in the upper abdomen area.
8. Recurring symptoms of an upset stomach that have no obvious cause. Symptoms resemble those of an ulcer and include pain in the

upper abdomen, bloating, belching and nausea.
9. Invasive procedure that combines upper gastrointestinal endoscopy and x-rays to treat problems of the bile and pancreatic ducts.
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Figure 2.7 – A : US in 70-year-old male with pathologically-proven pancreatic cancer. Hypoechoic lesion (arrows) with
irregular borders in the body of the pancreas. B : EUS in 58-year-ole male patient with pancreatic cancer. The EUS shows
an approximately 3 cm, hypoechoic mass (arrows) in the pancreatic body. C, D : CT and MRI in a 73-year-old male with
pathologically-proven pancreatic head cancer. C : CT scan showing a low attenuating mass (arrow) at the pancreatic head.
D : After contrast media administration in a T1-weighted gradient echo sequence of MRI, the pancreatic head cancer (arrow) has poor
enhancement. Image A adapted from Radiopaedia (a), images B, C, and D adapted from Lee and Lee (2014). CT : Computed tomography ;
EUS : Endoscopic ultrasounds, MRI : Magnetic resonance imaging ; US : Ultrasounds.

and the examination remains operator-dependent. Various techniques such as respiratory maneuvers, dif-
ferent windows, patient positions, and oral contrast agents may enhance visualization, yet the procedure
remains inherently operator-dependent (Hanbidge et al., 2002). The sensitivity of US for pancreatic cancer
detection ranges from 75% to 89% (Elbanna et al., 2020).

CT has emerged as the preferred method for pancreatic examination, particularly with the advent of
multidetector scanners. This technology offers improved spatial resolution and allows detailed analysis
of the parenchyma 10, biliopancreatic ducts, and vessels. CT imaging of the pancreas can be performed
with and without contrast media. When contrast media is injected, several acquisitions are made over
time to capture variations in contrast enhancement as the contrast media circulates through the body.
Therefore, CT imaging typically involves an unenhanced acquisition, an arterial phase acquisition (20-
25 seconds after contrast injection), and a portal venous phase acquisition (70-80 seconds after contrast
injection). Sometimes, a pancreatic phase acquisition is taken approximately 40-45 seconds after contrast
injection (or 30-35 seconds for PNET) (Parent, 2012). This pancreatic phase is designed for the exploration
of the pancreas as it maximizes the pancreatic glandular enhancement. Arterial phase and particularly
pancreatic phase provide superior differentiation between normal pancreatic tissue and potential tumors,
making it more suitable for detecting pancreatic cancer. Nevertheless, the portal phase remains the standard
modality for routine abdominal examinations, making it a primary diagnostic tool for pancreatic cancer (Al-
Hawary et al., 2014). PDAC typically appear hypodense, particularly during the arterial phase, although a
proportion (11%) may be isodense (Shrikhande et al., 2012). The different enhancement patterns of PDAC
on portal CT scans can be seen in Figure 2.8. As isodense lesions are barely or not at all visible, their
detection is based on secondary signs. These signs, detailed in Section 2.3.5, are visible even before the clear
appearance of the tumor and are of primary importance for the detection of isodense cancers (Gonoi et al.,
2017; Kim et al., 2010). Sensitivity and specificity estimates for multi-phase CT vary, with reported ranges
of 75-100% and 70-100%, respectively, as indicated by several studies (Costache et al., 2017; Elbanna et al.,
2020; Valls et al., 2002). However, sensitivity decreases notably for small tumors (≤ 2 cm), with estimates
ranging from 58 to 77% across studies (Costache et al., 2017; Elbanna et al., 2020).

MRI, specifically Magnetic Cholangiopancreatography (MRCP) 11, is well-suited for detecting small
non-contour-deforming tumors and assessing the surrounding structures, including liver lesions and metas-
tases (Vachiranubhap et al., 2009). Sensitivity and specificity for MRI are reported at 81-99% and 70-93%,
respectively (Costache et al., 2017). MRI and MRCP present notable advantages, including the absence
of radiation exposure, enhanced contrast resolution, and the non-invasive exploration of the pancreatobi-
liary system facilitated by MRCP. However, their cost limits widespread use (Shrikhande et al., 2012).
Two meta-analyses found that CT and MRI/MRCP exhibit comparable sensitivity and specificity rates
for pancreatic cancer diagnosis and staging (Shrikhande et al., 2012; Treadwell et al., 2016).

10. The parenchyma is the functional parts of an organ.
11. A special type of MRI that uses computer software to image the pancreatic and bile ducts, areas where tumors often form.
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Interventional imaging

EUS is recommended for assessing lesions that are not clearly detected but are suspected based on
CT/MRI findings. It is also employed in tumors considered to be at the “borderline resectability” threshold
to evaluate vascular involvement and identify lymph nodes. Pancreatic cancer manifests as a hypoechoic
(darker) lesion compared to normal pancreatic tissue. EUS, coupled with fine-needle aspiration 12, can
offer tissue confirmation for patients with potentially resectable masses. EUS provides the highest rates
of precision and sensitivity for lesions under 2 cm (91% and 94% for EUS vs. 69% and 73% for CT, 82%
and 84% for MRI) (Costache et al., 2017). However, its added value depends on the operator’s skill (Lévy
et al., 2017). Additionally, this imaging modality cannot be used in isolation as it does not allow for the
detection of extra-abdominal metastases.

In cases of biliary or pancreatic duct obstruction, ERCP can be performed to place a biliary stent,
which is a medical device inserted into the bile duct to allow the flow of bile. Despite its superior sensi-
tivity and specificity exceeding 90% for pancreatic cancer diagnosis (Niederau and Grendell, 1992), this
invasive imaging technique is reserved for situations presenting ductal obstruction due to its high risk of
complications.

In the majority of cases, accurate interpretation of cross-sectional imaging eliminates the need for
invasive techniques like EUS. A well-performed CT scan with slices less than 2 mm, unenhanced and
contrast-enhanced phases, and digestive contrast with water can resolve a significant number of diagnos-
tic challenges (Lévy et al., 2017). Diagnostic tools and protocols vary among countries, contributing to
differences in incidence and mortality rates, especially between high and low human development index re-
gions (Rawla et al., 2019). Consequently, high incidence rates may result from accurate diagnostic protocols
rather than factors related to the causes or origins of pancreatic cancer.

Figure 2.8 – Enhancement patterns of pancreatic cancer on portal CT scans. A : Iso-enhancing PDAC. 70-year-old woman
with iso-enhancing PDAC (white arrow) in the head of the pancreas. B : Hyper-enhancing PDAC. Patient with hyper-enhancing
PDAC (white arrow) in the tail of the pancreas. C : Hypo-enhancing PDAC. 60-year-old woman with iso-enhancing PDAC (white
arrow) in the body of the pancreas. Upstream dilatation of the main pancreatic duct is indicated by a yellow arrow. On each image, the
pancreas is delineated in red. Images A and B are sourced from the DCAPA dataset, while image C is from the DMSD dataset (datasets
detailed in Chapter 4). DCAPA : Care Advisor for Pancreas dataset, CT : Computed tomography, DMSD : Medical Segmentation
Decathlon dataset, PDAC : Pancreatic ductal adenocarcinoma.

2.3.3.3 Screening

The low incidence of pancreatic cancer in the general population excludes the recommendation of
screening for asymptomatic individuals (Owens et al., 2019). However, research has demonstrated the
efficacy of screening for high-risk individuals with an inherited predisposition to pancreatic cancer (Lu
et al., 2015). A 2012 American study revealed that screening 225 asymptomatic high-risk individuals led
to the detection of neoplasms 13 in 85 patients, with results suggesting that MRI and EUS were more

12. Minimally invasive way to obtain a cell sample to confirm a diagnosis or guide treatment.
13. Any abnormal tissue growth that results in a benign or malignant tumor.
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sensitive than CT for detecting pancreatic abnormalities (Canto et al., 2012). In 2014, the International
Cancer of the Pancreas Screening Consortium recommended screening for high-risk individuals, concurring
that initial screening should involve MRI or EUS or a combination of both (Canto et al., 2013). However,
there was discord regarding optimal screening modalities, intervals for follow-up imaging, and criteria for
recommending surgery based on screening abnormalities. The role of screening is also under investigation
for the surveillance of patients with chronic pancreatitis or pancreatic cystic neoplasms (Del Chiaro et al.,
2014). Presently, several screening programs for high-risk individuals are in operation, even though the
precise screening protocols vary. They typically involve initial cross-sectional imaging and blood tests,
followed by annual non-radiating imaging, such as MRI or EUS (Pereira et al., 2020).

2.3.3.4 Incidental findings

In contrast to cases identified through systematic screening, where efforts are expressly directed at detec-
ting cancers, a significant number of cases are accidentally discovered in asymptomatic individuals or those
whose symptoms do not specifically align with pancreatic cancer manifestations (Goodman et al., 2012).
These incidental findings, termed pancreatic incidentalomas, have witnessed a surge in prevalence, likely
attributable to the increased frequency and enhanced quality of abdominal imaging examinations (Fitzge-
rald et al., 2003; Santo and Bar-Yishay, 2017). The prevalence of these incidental pancreatic lesions varies
depending on the lesion type and the imaging modality employed (Santo and Bar-Yishay, 2017). For solid
incidentalomas, diverse studies report prevalences of 0.6% among healthy kidney donors or 0.49% in pa-
tients undergoing FDG-PET 14 for various non-pancreatic-related reasons (Santo and Bar-Yishay, 2017).
These figures surpass official estimates as the GLOBOCAN 2018 database projected a maximum incidence
of 7.7 per 100,000 in Europe (Rawla et al., 2019). The primary reasons for the initial scans leading to
the discovery of incidentalomas predominantly involve the monitoring of extra-pancreatic malignancies,
evaluations for hematuria 15, and examinations related to abdominal or pelvic pain (Fitzgerald et al., 2003;
Goodman et al., 2012; Sachs et al., 2009). Although the portal phase is suboptimal for detecting pancreatic
cancer, most incidental findings are detected using this modality, given its role as the standard procedure
for routine abdominal examinations (Al-Hawary et al., 2014).

2.3.3.5 Serum biomarkers

Concerning biomarkers, Carbohydrate Antigen (CA)19-9 exhibits a sensitivity of 79-81% and specificity
of 82-90% for diagnosing pancreatic cancer in symptomatic patients (Ballehaninna and Chamberlain, 2012).
The monitoring of CA19-9 levels plays a pivotal role in evaluating the response to systemic treatment 16

and often serves as an early indicator of treatment response observed on imaging (Mizrahi et al., 2020).
While CA19-9 levels assist in identifying patients at a higher risk of surgery, they may also offer prognostic
value in inoperable pancreatic cancer patients. However, the diagnosis of pancreatic cancer cannot rely
solely on a single CA19-9 measurement as other benign conditions, such as biliary obstructions, can lead
to elevated CA19-9 levels (Mann et al., 2000).

2.3.4 Staging and therapeutic options

Staging is crucial to assess the extent of cancer, assessing factors like tumor size, invasion into adjacent
tissues, and the presence of distant metastasis. In pancreatic cancer, staging revolves around the concept
of tumor resectability, using a four-stage classification system (Mizrahi et al., 2020). Therapeutic options
are stage-dependent, with surgery being the only curative treatment (Millikan et al., 1999; Okasha et al.,
2017).

14. A fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) scan is an imaging test that is commonly used to look for
cancer in the body.
15. Presence of blood in the urine.
16. Systemic treatment is any medication that travels through the body in the bloodstream to find, damage or destroy cancer cells. It

includes chemotherapy, immunotherapy, hormone therapy or targeted therapy.
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Stage I and II Stage I involves resectable cancer confined to the pancreas, with a size less than 2cm (stage
IA) or than 4 cm (stage IB), while stage II includes borderline resectable cancer exceeding 4 cm but limited
to the pancreas (stage IIA) or nearby lymph nodes (stage IIB). Surgical resection, the primary treatment,
yields five-year survival rates ranging between 10 and 25% (Mizrahi et al., 2020). Tumors in the head
undergo resection with a pancreaticoduodenectomy, involving removal of the pancreatic head, duodenum,
proximal jejunum, common bile duct, gall bladder, and a segment of the stomach (Mizrahi et al., 2020).
Tumors in the body or the tail can be addressed with a distal pancreatectomy, often combined with a
partial or complete removal of the spleen when necessary. To ensure negative surgical margins 17, venous
and arterial resections are frequently performed, but the latter are associated with increased post-operative
morbidity (Mizrahi et al., 2020). Post-operative systemic therapy has shown improved overall survival in
phase 3 18 studies (Conroy et al., 2018; Neoptolemos et al., 2001), and neoadjuvant therapy 19 is increasingly
used in high-volume centers to enhance resection outcomes and identify patients unfit for surgery (Mizrahi
et al., 2020).

Stage III Stage III involves locally advanced cancer extending to adjacent blood vessels or nerves without
distant metastasis, affecting over 30% of patients. Primary treatment includes systemic chemotherapy,
supported by multiple studies (Versteijne et al., 2020). Surgery might be considered for a small subset of
responders, but for most, the cancer remains incurable (Philip et al., 2020). The role of chemoradiation in
these cases is debated due to conflicting study outcomes (Chauffert et al., 2008; Loehrer Sr et al., 2011).

Stage IV Finally, stage IV denotes cancer that has metastasized to other organs (Rawla et al., 2019) and
concerns approximately 50% of patients with diagnosed pancreatic cancer. For these patients, systemic
chemotherapy is the primary treatment, aiming to alleviate cancer-related symptoms and prolong life.
Supportive care, including interventions like metal stent placement for biliary obstruction, is a crucial
additional component of treatment. Various symptoms such as pancreatic insufficiency, depression, anxiety,
anorexia, and weight loss also need to be addressed with pharmacologic treatment, and palliative care
involvement can be considered (Mizrahi et al., 2020).

2.3.5 Secondary signs

Numerous studies have highlighted the presence of visible radiological indicators well before the clear
onset of tumors. Detecting these secondary signs is crucial as it can lead to early diagnosis of pancrea-
tic cancer. These indicators primarily concern the main pancreatic duct but also the appearance of the
pancreatic parenchyma.

2.3.5.1 Secondary signs affecting the main pancreatic duct

Dilatation of the main pancreatic duct The most extensively studied early marker is the dilatation of the
pancreatic duct, caused by small, invisible tumors blocking and dilating the pancreatic duct (Vasen et al.,
2019). Several retrospective studies of longitudinally monitored patients have observed the dilatation of the
pancreatic duct (Tanaka et al., 2010; Vasen et al., 2019). Notably, a case-control study (Tanaka et al., 2002),
retrospectively analyzing 39 pre-diagnostic US scans of cancer patients and 10244 control cases, revealed
that the proportion of cases with slight dilatation (≥ 2 mm in diameter) of the main pancreatic duct was
65% in the precancerous group, compared to 5.35% in age-matched control subjects. This dilatation was
visible more than 4 years before pancreatic cancer resection, with this proportion increasing over time
among pathological cases. Another case-control study (Gonoi et al., 2017) showed similar results, finding
that the incidence of ductal dilatation was significantly higher in the cancer group than in the healthy group
and gradually increased over the 15 months preceding the diagnosis. These findings collectively underscore

17. Negative surgical margin means that there are no cancer cells found at the edge of the tissue that was removed.
18. A Phase 3 clinical study is a large-scale, randomized, and controlled investigation conducted on a broad patient population to assess

the efficacy, safety, and overall performance of a new medical intervention before regulatory approval.
19. Neoadjuvant therapy refers to any treatment that is given for cancer before the main treatment, with the goal of making the main

treatment more likely to be successful.
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the potential of pancreatic duct dilatation as a valuable marker for early detection and risk assessment of
pancreatic cancer.

Other abnormalities of the main pancreatic duct In addition to duct dilatation, other anomalies of the
pancreatic duct have been identified. Case-control studies report that the dilatation of the pancreatic duct
is often accompanied by the abrupt interruption of the pancreatic duct (Gangi et al., 2004). Ahn et al.
(2009) estimated that the sensitivity and specificity of abrupt interruption are 45% and 82%, respectively.
Stenosis has also been reported as a pre-diagnostic sign with a predictive value estimated at 47% (Kanno
et al., 2019; Yamao et al., 2020). However, the radiological characteristics of the stenosis are insufficient to
distinguish between benign and malignant stenosis, and histological confirmation through pancreatic juice
cytology is the best way to characterize ductal stenosis (Kanno et al., 2019).

2.3.5.2 Secondary signs affecting the pancreatic parenchyma

Furthermore, other secondary signs related to the pancreatic parenchyma in general have been identified.
These signs include parenchymal atrophy, fatty infiltration, and parenchymal heterogeneity.

Parenchymal atrophy Numerous studies report that pancreatic atrophy is an indicator of pancreatic
cancer (Chen et al., 2020b; Miura et al., 2020; Yamao et al., 2020), with its sensitivity and specificity
being estimated at 45% and 96%, respectively (Ahn et al., 2009). The atrophy originates by the thinning
of the cell layer due to the disruption of flow in the pancreatic duct caused by cancer. This thinning is
followed by apoptosis 20 and/or cell death through necrosis. The loss of cells is replaced by fibrotic changes
and the infiltration of immune cells, visualized as atrophy. This atrophy can also result from chronic
inflammation (Yamao et al., 2020).

Fat infiltration Fatty infiltration, which can be evaluated through histological examination and medical
imaging (CT, MRI, EUS), is suspected to alter the cellular microenvironment of the pancreas and promote
tumor development (Khoury et al., 2017). Several studies demonstrated that the degree of pancreatic fat
infiltration is positively associated with cancer, even after adjusting for BMI, diabetes prevalence, and
other confounding factors (Khoury et al., 2017; Miura et al., 2020; Takahashi et al., 2018).

Parenchymal inhomogeneity The heterogeneous appearance of the parenchyma arises from inflammation
associated with the lesion (often small and non-visible) and desmoplasia 21. This alters the microenviron-
ment by decreasing the quantity of blood vessels and the oxygen supply, causing heterogeneity throughout
the parenchyma (Gonoi et al., 2017). Gonoi et al. (2017) reported that pancreatic parenchymal inhomo-
geneity seen in any CT phase is a pre-diagnostic factor identifiable up to 34 months before diagnosis.
Similarly, Kim et al. (2017) demonstrated that malignant ductal dilatations are characterized by a diffe-
rence in parenchymal density at the site of dilatation.

We provide, in Figure 2.9, examples of the different secondary signs as seen on portal CT.

2.4 Other pancreatic diseases

2.4.1 Pancreatic cystic neoplasms

Pancreatic cystic neoplasms are prevalent conditions : depending on the studies, their prevalence in the
general population undergoing MRI has been estimated at 13.5-20%, and consistent findings indicate that
this prevalence increases with age (Lee et al., 2010; Zhang et al., 2002). The category of cystic lesions in
the pancreas includes more than 20 entities, with four major types, namely Intraductal Papillary Mucinous

20. The programmed death of some of an organism’s cells as part of its natural growth and development.
21. Formation of excessive, dense, and often disorganized tissue around cancer cells.
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Figure 2.9 – Visualization of secondary signs of pancreatic cancer on portal CT. When visible, the pancreas, the lesion, and the
MPD are delinated in red, blue, and green, respectively. A : Parenchymal inhomogeneity. Patient with hypo-enhancing PDAC in the
head of the pancreas, exhibiting inhomogeneous texture (white arrow). B : Parenchymal atrophy. 77-year-old man with iso-enhancing
PNET. The pancreas exhibits atrophy (white arrows) and fat infiltration (yellow arrow). C : Fat infiltration. 60-year-old woman with
hypo-enhancing IPMN. The pancreas exhibits fat replacement (white arrows). D : MPD dilatation. 76-year-old woman showing a
dilatation of the MPD. E : MPD dilatation and stenosis. Patient showing an iso-enhancing mass blocking the MPD (white arrow).
F : MPD dilatation, stenosis and atrophy. Patient with a hypo-enhancing mass following the stenosis (yellow arrow) of the MPD.
The MPD is dilated and the pancreas is atrophic (white arrows). All images are sourced from the DCAPA dataset detailed in Chapter 4.
DCAPA : Care Advisor for Pancreas dataset, CT : Computed tomography, IPMN : Intraductal papillary mucinous neoplasms, MPD :
Main pancreatic duct, PDAC : Pancreatic ductal adenocarcinoma, PNET : Pancreatic neuroendocrine tumor.

Neoplasm (IPMN), Mucinous Cystic Neoplasm (MCN), Serous Cystic Neoplasm (SCN), and Solid Pseudo-
Papillary Neoplasm (SPN), constituting about 90% of all cystic tumors (Del Chiaro et al., 2013). While
some are benign, others exhibit a potentially malignant behavior or even serve as precursors to cancer,
such as IPMN or MCN. Specifically, the risk of cancer in IPMN varies from 42% to 60%, depending on
the type of involvement in the pancreatic ductal system (Del Chiaro et al., 2014). Given their substantial
prevalence (4.2% for those under 60 and 11.4% for those over 60), IPMN poses a significant public health
concern (Lévy et al., 2017). CT and/or MRI are recommended for all patients with cystic lesions of the
pancreas to facilitate differential diagnosis and identify signs suggestive of malignancy (Del Chiaro et al.,
2013).

2.4.2 Pancreatitis

Acute and chronic pancreatitis are currently recognized as distinct manifestations of pancreatic inflam-
mation (Whitcomb, 2004). The former is characterized by sudden inflammation of the pancreas, often
presenting with severe abdominal pain, while the latter involves recurrent inflammation leading to long-
term structural changes, including fibrosis and pancreatic dysfunction (Mitchell et al., 2003). During a
pancreatitis episode, digestive enzymes become active within the pancreas before being released into the
duodenum. As a result, these enzymes attack the pancreas, initiating an inflammatory process that can
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ultimately lead to complete pancreatic deterioration (Rawla et al., 2019). Pancreatitis can be visualized
with medical imaging techniques, and its various characteristics are assessed to diagnose and understand
the condition. As shown in Figure 2.10, specific features observed can vary between acute and chronic pan-
creatitis. The causes of pancreatitis are multifaceted, with tobacco playing a significant role and alcoholism
acting as an exacerbating factor that accelerates disease progression. Pancreatitis can stem from various
factors, including hereditary, idiopathic, autoimmune, post-endoscopic, and even tumor-related, concealing
a malignant cyst or cancer (1% of acute pancreatitis cases) (Lee and Papachristou, 2019; Lévy et al., 2017).
Consequently, any pancreatitis evaluation should include comprehensive imaging (CT or MRI), primarily
focusing on the pancreatic duct. This approach could help in identifying cases of undiagnosed cancers that
are operable at the initial stage of the first acute pancreatitis (Lévy et al., 2017).

Figure 2.10 – Pancreatitis seen on axial contrast enhanced portal venous CT scan. A : Chronic pancreatitis. Coarse
pancreatic calcifications are seen accompanied by duct dilatation, inferring chronic pancreatitis. B : Acute pancreatitis. Pancreatic
swelling and peripancreatic stranding. The pancreas is enhancing homogeneously, with no signs of necrosis on CT and no pancreatic duct
dilatation. Images from Radiopaedia (b). CT : Computed tomography.

2.5 Current and emerging challenges in the landscape of pancreatic
cancer

2.5.1 Current landscape of pancreatic cancer

Clinical challenges Pancreatic cancer poses significant challenges in the field of oncology due to its
aggressive nature, high mortality rates, and low five-year survival rates. The primary reason for these
statistics is the frequent occurrence of late-stage diagnoses, when the cancer has already spread beyond
resectable limits. Therefore, 80-90% of patients have unresectable tumors at the time of diagnosis (Rawla
et al., 2019). Late diagnosis of PDAC is a consequence of lack of specific symptoms coupled with hard
identification of pancreatic lesions, which is caused by several factors :

- First, the location of the pancreas, combined with its small size and variable shape, makes its exami-
nation challenging. Parts of the pancreas can be easily overlooked, especially during image readings
primarily focused on exploring other organs.

- Secondly, portal-phase CT, which is the first-line imaging modality for clinical routine of the abdomen,
does not maximize the density difference between the parenchyma and pancreatic lesions (Brennan
et al., 2007). Thus, for early and/or small lesions, this modality is less sensitive (58–77% for lesions
under 2 cm) (Shrikhande et al., 2012). Pancreatic-phase CT scans or EUS would be more appropriate,
yet their application is limited to suspected pancreatic cancer cases.

- The third difficulty related to pancreas imaging arises from isodense lesions for which the prevalence
is estimated at 27-33% (Elbanna et al., 2020; Goodman et al., 2012). Detection of these lesions can
only occur through secondary signs, but these can be missed if not actively investigated. Moreover,
these secondary signs are not always present, with studies reporting the absence of secondary signs
in 10-14% of cases (Tamada et al., 2016; Yoon et al., 2011).
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In addition to these difficulties which are specific to pancreatic imaging, radiologists also face more ge-
neral challenges such as heavy workload and varying levels of expertise which might further affect the
interpretation of CT scans (Mazur et al., 2014).

Improvements over the past year Despite these challenges, there have been notable improvements in
pancreatic cancer management. Technological enhancements in scanners, including improved resolution and
multi-phase imaging, have substantially improved diagnostic capabilities (Costache et al., 2017). Surgical
advancements, including refined techniques and preoperative chemotherapy, have contributed to improved
survival rates, especially in less-advanced cases (Lévy et al., 2017; Sauvanet et al., 2014). As depicted in
Figure 2.11, the overall survival following a diagnosis of PDAC exhibited improvement from 2004 to 2016
across all tumor stages. This enhanced survival outcome was facilitated by surgical progress, including
refined techniques and preoperative chemotherapy, particularly benefiting less-advanced cases (Lévy et al.,
2017; Sauvanet et al., 2014). Specifically, five-year overall survival for stage IA cases improved from 44.7%
(95% Confidence Interval (CI) = 34.1% to 63.7%) in 2004 to 83.7% (95% CI = 78.6% to 89.2%) in 2012
(see Figure 2.11 from Blackford et al. (2020)).

Figure 2.11 – Trends in five-year overall survival probabilities according to pancreatic cancer stage (2004–2012). Adapted
from Blackford et al. (2020).

2.5.2 Future directions

In spite of these improvements, there is a need for continued efforts. The anticipated surge in pancreatic
cancer incidence in the coming years necessitates a dual focus on prevention and early detection.

Prevention Emphasizing the role of modifiable factors, such as tobacco use, obesity, alcohol consumption,
and sedentary lifestyle, holds promise in reducing pancreatic cancer risk. Prevention strategies targeting
tobacco use alone could potentially avert 30% of pancreatic cancers (Rawla et al., 2019).

Early detection Research efforts should prioritize early detection, as most patients diagnosed with ad-
vanced or metastatic tumors have a significantly worse prognosis than those diagnosed with less advanced
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tumors (Gonoi et al., 2017; Mizrahi et al., 2020) : as depicted in Figure 2.11, the five-year survival rate
surpasses 70% for stage I tumors, whereas later stages do not exceed 20%. Therefore, facilitating early
diagnosis, which in turn allows for surgical intervention, represents the most effective approach to enhance
the five-year survival rate (Gonoi et al., 2017).

To this end, some studies explore the use of less invasive liquid biopsies, but these methods face chal-
lenges in terms of low specificity and sensitivity since tumor DNA is detectable in only 50% of less advanced
tumors (Bettegowda et al., 2014). Thus, imaging emerges as a critical area to further explore, with signifi-
cant potential interest in Artificial Intelligence (AI)-based methods for this purpose.

2.5.3 Role of artificial intelligence

Image interpretation could be facilitated through AI methods that systematically review images in
a clinical-routine scenario (Pereira et al., 2020). Such AI-based computer-aided detection systems have
been successfully applied to several diseases such as breast cancer or lung cancer (Fujita, 2020), and
their application to pancreatic cancer would be of the greatest importance due to the difficulty of its
detection (Barat et al., 2021). However, applying AI in the context of pancreatic cancer presents several
key challenges that need to be addressed :

- Data collection and annotation : Collecting and annotating the necessary data are paramount
for building AI models. This involves acquiring appropriate datasets that cover a diverse range of
cases, and establishing comprehensive yet effective annotation process to facilitate model training
and evaluation. Notably, decisions regarding the type of annotation, such as determining which ques-
tions warrant manual segmentation and which suffice with case-level labels, are crucial. This will be
addressed in Chapter 4.

- Accurate pancreas segmentation : A precise delineation of the pancreas is essential to establish
a reliable Region of Interest (ROI) for subsequent analysis. This necessitates the development of
a pancreas segmentation method capable of robustly handling the elongated shape of the organ.
Specifically, the method must effectively identify the pancreas extremities, which often pose challenges
due to their low contrast with surrounding tissues. This will be addressed in Chapter 5.

- Lesion detection : Building a robust lesion detection algorithm is crucial, especially for identifying
small and/or isodense lesions which are characteristic of early-stage pancreatic cancer. State-of-the-art
segmentation models combined with a large database including diverse pancreatic diseases, various
geographical origins, and multiple scanner manufacturers could help building such a robust algorithm.
In addition, the use of radiological secondary signs like Main Pancreatic Duct (MPD) dilatation can
enhance detection but it also introduces the challenge of efficiently extracting and integrating this
information. This will be addressed in Chapter 6.

- Secondary signs detection : In order to address early cancer detection, identifying secondary signs
suggestive of malignancy is crucial (Kim et al., 2017). However, while the dilatation of the MPD is
a clearly identifiable sign as it relies on the diameter of the MPD, the other secondary signs lack of
quantitative measure. Atrophy, abnormal shape, senility and fat replacement are crucial secondary
signs which are visually assessed, leading to variability between radiologists. Thus, predicting these
signs requires distinct methods compared to detecting MPD dilatation, as there is not explicit ana-
tomical information. Instead, we need to rely on strategies that extract discriminating features from
the image. This will be addressed in Chapter 7.

All the methods developed in this thesis are designed to use portal phase CT scans. As discussed in
Section 2.3.3.2, while arterial phase or pancreatic phase scans offer superior differentiation between normal
parenchyma and potential tumors, they are typically prescribed only when there is suspicion of pancreatic
disease, usually in symptomatic patients. Consequently, providing assistance to radiologists at this stage
may offer limited utility as thorough pancreas analysis is standard practice in such cases. Conversely, focu-
sing on portal phase scans, which are routinely conducted during abdominal examinations, could provide
substantial value to radiologists. This approach is underscored by findings by Kang et al. (2021), which
indicate that a majority of missed pancreatic cancer diagnoses occur in single-phase examinations during
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the portal venous phase. Enhancing radiologists’ capabilities during this critical phase, characterized by
reduced contrast, could help with difficult diagnoses and increase the likelihood of incidental findings—i.e.,
discoveries in patients not suspected of having pancreatic cancer, as detailed in Section 2.3.3.4. This, in
turn, could significantly elevate the chances of detecting early-stage cancers and improving patient survi-
val rates (Barat et al., 2021). For these reasons, this thesis centers on portal CT scans. Nevertheless, the
potential use of arterial scans during the training phase is explored as a prospective avenue in Section 8.
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Chapitre 3

Deep Learning Methods for Pancreatic
Cancer

3.1 Preface

The field of medical image analysis has witnessed remarkable progress with the advent of deep learning
techniques. In particular, the application of deep learning in pancreatic analysis has emerged as a critical
area of research, offering unprecedented opportunities for improved diagnostic. This chapter aims to provide
a comprehensive overview of the current landscape of deep learning applications in pancreas analysis.

We start by introducing fundamental concepts in deep learning, which are essential for a comprehen-
sive understanding of our literature review. This introduction unfolds through two primary tasks, namely
classification and segmentation. For each of these tasks, we will elucidate the principles, the main methods
and their application in medical image analysis.

Having laid down these aspects, we will explore the state-of-the-art of deep learning methods applied to
pancreas imaging. This section will be divided into three parts : pancreas segmentation, lesion segmentation
and detection, and feature extraction for pancreas analysis.

45
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3.2 Deep learning fundamentals

3.2.1 Introduction

Deep Learning (DL) is a subfield of Machine Learning (ML), itself a subset of Artificial Intelligence
(AI). DL encompasses methods using multi-layered Neural Network (NN)s, also known as Deep Neural
Networks (DNN)s. NNs consist of interconnected nodes (neurons) organized into layers to process input
data, such as images (LeCun et al., 2015). Each connection between neurons is associated with a weight,
adjusted during model training to achieve desired predictions. DL employs DNNs with multiple layers to
learn hierarchical representations, essential for addressing complex problems like image understanding (Cai
et al., 2020; LeCun et al., 2015). NN and DNN are depicted in Figure 3.1.

In the context of pancreatic analysis, DL has been employed for various purposes. We categorize these
applications into two tasks : classification and segmentation. We provide a concise overview of the funda-
mental principles and methods for both of these tasks.

Figure 3.1 – Deep learning architectures. A : Illustration of a Neural Network (NN). B : Illustration of a Deep Neural
Network (DNN). The NN, on the left, consists of a two hidden layers, while the DNN, on the right, comprises multiple hidden layers.
The additional depth allows the DNN to capture more complex hierarchical features.

Convolutional Neural Network (CNN)s are a type of DNNs. They are particularly powerful for feature
extraction from images as they automatically learn hierarchical representations of visual data, capturing
complex patterns and features at different scales (Albawi et al., 2017; LeCun et al., 1995). The learned
features from early to deep layers capture both low-level details and complex, abstract representations,
providing a rich and discriminative set of features for downstream tasks. As depicted in Figure 3.2, CNNs
use convolutional layers that apply filters to small input regions and preserve local spatial relationships
in images. Alongside convolutions, CNNs employ operations like pooling to reduce spatial dimensions and
extract relevant features. The convolutional and pooling layers are often followed by activation functions
that add non-linearity to the neural networks, enabling them to learn complex patterns in the data. The
succession of these operations serve to encode the information, and as such, CNNs are commonly referred to
as encoders. The resulting vector from this encoding is often referred to as the latent space : a compressed,
abstract, and often continuous representation of the input data.

3.2.2 Classification

3.2.2.1 Principle

Image classification involves assigning a class or label to an image. Typically, this process is carried out
using features that help summarize the information contained in the image. These features are extracted
from the images and then used to train a classification model. Through supervised training 1, the model
learns the relationships between these features and the different classes, enabling it to accurately classify
new images based on their distinctive features.

1. Supervised machine learning relies on labeled input and output training data. It is opposed to unsupervised learning that processes
unlabeled or raw data.
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Figure 3.2 – Illustration of a Convolutional Neural Network (CNN) for end-to-end image classification. Layers in a CNN
include convolutional layers, pooling layers, and dense layers. Through the application of filters to small input regions, convolutional layers
preserve local spatial relationships in images and enable the network to learn hierarchical features such as edges, textures, and complex
patterns. Pooling layers reduce the size of the feature maps, making the model more computationally efficient. Dense layers are typically
found after convolutional and pooling layers of a CNN, they connect all the neurons in a layer to all the neurons in the next layer, allowing
the model to learn possible non-linear combinations of the features learned. The successive layers contribute to the formation of a latent
space representation (in yellow), enhancing the ability of the model to process and classify images.

3.2.2.2 Methods

We distinguish two approaches to perform classification :

(i) Feature extraction followed by a down-stream supervised classification model. Typical ML algorithms
like support vector machines, decision trees, or random forests are commonly employed for this clas-
sification task due to their interpretability, efficiency, and effectiveness (Pedregosa et al., 2011).

(ii) Feature extraction and classification performed jointly by a single end-to-end DL model.

During the feature extraction phase, the goal is to distill a subset of features that effectively captures
the distinctive characteristics of the image, thereby simplifying the subsequent classification task. This
process is essential for converting raw image data into a more concise and informative representation,
which is crucial for accurate and efficient classification. In this manuscript we will consider two categories
of features :

- Hand-Crafted Radiomics (HCR), which are are pre-designed features, based on intensity, shape,
and texture (Kumar et al., 2012; Lambin et al., 2012). They have demonstrated diverse applications in
cancer-related tasks such as diagnosis, malignancy prediction, or survival prediction (Marti-Bonmati
et al., 2022). Numerous Python libraries or specialized software enable the computation of these HCR ;
however, their calculation is usually not entirely automatic, involving several steps like segmentation,
preprocessing, and feature selection (Van Griethuysen et al., 2017).

- Deep-Learning Radiomics (DLR), which can be obtained using DL models trained to extract
highly informative features in a fully automatic manner (Kumar et al., 2015; Shafiee et al., 2017).
CNNs are particularly well-suited for this task as they excel at processing structured grid data like
images, hence offering the potential to unveil complex patterns (Scapicchio et al., 2021). Therefore,
latent spaces of CNNs are typically used as DLR feature vector (Afshar et al., 2019).

3.2.2.3 Optimization

Classification models are typically trained by optimizing a suitable loss function. In the realm of possibi-
lities, two commonly employed loss functions for classification tasks are binary cross-entropy and categorical
cross-entropy.

Binary cross-entropy In binary classification, where the model assigns samples to one of two classes,
binary cross-entropy measures the dissimilarity between the true binary labels and the predicted probabi-
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lities :

Binary Cross-Entropy Loss = − 1

N

N∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)]

where N represents the number of samples in the dataset, yi is the true label (either 0 or 1) for the i-th
sample, and pi ∈ ]0, 1[ is the predicted probability that the i-th sample belongs to class 1.

Categorical cross-entropy For multi-class classification, categorical cross-entropy extends the concept of
binary cross-entropy to handle multiple classes. It quantifies the difference between the true class distribu-
tion and the predicted probabilities across all classes :

Categorical Cross-Entropy Loss = − 1

N

N∑
i=1

C∑
k=1

yki · log(pki )

where N is the number of samples in the dataset, C is the number of classes, yki is an indicator variable
that equals 1 if the i-th sample belongs to class k and 0 otherwise, pki ∈ ]0, 1[ is the predicted probability
that the i-th sample belongs to class k.

Minimization of the loss function Once an appropriate choice of the loss function is made, the next step
in training a classification model involves minimizing this function to achieve a well-performing model.
Some classical classification models such as logistic regression or linear discriminant analysis can be opti-
mized analytically. However, as the complexity of the models increases, numerical optimization methods
become necessary. For instance, in the case of DL classification networks, the widely used gradient-based
optimization methods such as stochastic gradient descent (Bottou, 2010) and Adam (Kingma and Ba,
2014) are employed. This optimization process also entails selecting hyperparameters, such as learning rate
or batch size, that significantly influence the model performance.

3.2.2.4 Evaluation measures

In the evaluation of classification models, several key evaluation measures are employed to quantify
their performance.

Accuracy Accuracy is a fundamental measure representing the ratio of correctly classified instances (true
positives and true negatives) to the total number of instances :

Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.

Sensitivity Sensitivity, also known as recall, measures the model ability in identifying positive instances :

Sensitivity =
TP

TP + FN

Specificity Specificity measures the model ability in identifying negative instances :

Specificity =
TN

TN + FP
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Area under the receiver operating characteristic curve The Area Under the Curve (AUC)-Receiver
Operating Characteristic (ROC) serves as a comprehensive measure for assessing a model discriminative
power across varying classification thresholds. This measure represents the area under the ROC curve, a
plot of the true positive rate (other name for sensitivity) against the false positive rate (1−specificity), with
values closer to 1 indicating superior performance. The AUC-ROC metric captures the trade-off between
sensitivity and specificity, providing insights into the robustness and reliability of a model.

3.2.2.5 Standard DL networks for classification

We introduce several conventional DL networks designed for classification tasks. We start with the
autoencoder and its variational variant, known as the variational autoencoder. These architectures enable
the extraction of features that can be further used by a downstream supervised classification model. We
then introduce the ResNet, a well-established CNN for end-to-end classification

Autoencoder Autoencoder (AE), depicted in Figure 3.3, are a type of NN designed for unsupervised
learning that extract meaningful features from input data (Bank et al., 2023). The key principle of an
autoencoder involves training the network to encode the input data into a latent space representation
and then reconstruct the input as accurately as possible. AEs consist of an encoder and a decoder : the
former compresses the input data into a lower-dimensional representation, while the latter attempts to
reconstruct the original input from this compressed representation. As the AEs learn to capture essential
features during the training process, they are commonly used for feature extraction purposes.

The most common loss function for training an AE is the Mean Squared Error (MSE) which measures
the mean squared difference between the input data and the reconstructed output :

MSE loss function =
1

N

N∑
i=1

(xi − x̂i)
2

where N represents the number of input samples, xi is the original input, and x̂i is the reconstructed
output.

Figure 3.3 – Illustration of an Autoencoder (AE). The AE is trained to perform two key processes : an encoding process compresses
input data into a lower-dimensional latent space (depicted in yellow), and a decoding process reconstructs the input from this latent
space. The resulting latent space vector serves as a compressed representation of the input data, offering a useful resource for classification
purposes.

After training, mapping an input image into the latent space of the AE allows for the extraction of a
feature vector that encapsulates the unique characteristics of the image. This resultant feature vector can
then be employed to address a classification problem.

Variational autoencoder Variational Autoencoder (VAE)s represent a powerful variant of AEs that in-
troduces probabilistic principles into the encoding-decoding framework (Kingma and Welling, 2014). The
fundamental principle of VAEs involves learning a probabilistic mapping from input data to latent space,
emphasizing the statistical distribution of latent representations. Unlike traditional AEs, VAEs generate a
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distribution of possible latent space representations for each input, allowing for more robust and expressive
feature extraction. The encoder in a VAE maps input data to the parameters of a probability distribution,
and the decoder samples from this distribution to reconstruct the input.

This probabilistic nature enables VAEs to capture the uncertainty inherent in real-world data. VAEs
are particularly beneficial for feature extraction as they not only provide a compact and meaningful re-
presentation but also offer a continuous and smooth latent space, enabling interpolation between different
data points. This capability is crucial in applications where understanding the variability and uncertainty
in data representations is essential.

The loss function for training a VAE consists of two main components : the reconstruction loss (RL)
function and the Kullback-Leibler (KL) divergence term. The former measures how well the model can
reconstruct the input data, it is often formulated as the negative log-likelihood of the data given the
parameters predicted by the model. The latter regularizes the latent space by encouraging it to follow a
specific distribution, typically a multivariate normal distribution. This term helps in making the latent space
more continuous and encourages the model to generate diverse and meaningful samples. Mathematically,
the VAE loss function can be expressed as :

VAE loss function = − 1

N

N∑
i=1

[RL(xi, x̂i) + KL(q(zi|xi)∥p(zi))]

where N is the number of input samples, xi is the original input, x̂i is the reconstructed output, q(zi|xi) is
the distribution of the latent variable zi given the input data xi, p(zi) is the prior distribution of the latent
variable zi. The specific form of the RL function and the KL divergence term depends on the nature of the
data (continuous or binary) and the chosen distributions for the latent space.

Similar to the AE, projecting an input image into the latent space of the VAE allows for the extraction
of a feature vector which can subsequently be used to tackle a classification problem.

ResNet Within the CNNs performing end-to-end classification, ResNet (short for Residual Networks) is
a notable architecture. Proposed by He et al. (2016), ResNet introduces the concept of residual learning,
which involves constructing blocks of layers that learn residual functions to be applied to the input. The
key innovation lies in the use of skip connections, or shortcuts, which allow the network to skip one or more
layers during training. This mitigates the vanishing gradient problem 2, making it easier to train extremely
deep networks.

For classification tasks, ResNet has demonstrated exceptional performance. Its ability to train very
deep networks helps in learning hierarchical features and representations, making it particularly effective
for image classification (Jiang et al., 2019; Sarwinda et al., 2021). The skip connections help with the
smooth flow of gradients during backpropagation, enabling efficient training of deep neural networks. As
a result, ResNet has become a popular choice for various computer vision applications (Baltruschat et al.,
2019).

3.2.3 Segmentation

3.2.3.1 Principle

The goal of segmentation is to correctly identify and delineate the boundaries of different objects present
in an image. In pratice, it involves the assignment of a predefined class to each pixel (or voxel in 3D) in an
image, as illustrated in Figure 3.4. These labeled pixels delineate either foreground objects or background,
collectively constituting the image (Sharma and Aggarwal, 2010). In classification, a class is linked to the
entire image or an object within it, whereas in segmentation, a class is assigned to each individual pixel.
This distinction underscores the finer level of detail achieved by segmentation, as it precisely identifies the

2. Challenge encountered during the training of very deep networks. It occurs when the gradients of the loss function with respect
to the parameters of the network become extremely small as they are backpropagated through the layers during the training process. It
prevents the effective update of weights in the early layers.
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classification for every pixel in the image. The resulting segmentation map provides detailed information
on the spatial distribution of objects in images, which is crucial for a precise semantic understanding of
the images.

Segmentation is a task of major interest in medical imaging (Sharma and Aggarwal, 2010). It enables the
precise identification and localization of complex anatomical structures such as organs or tumors, thereby
facilitating the detection of certain pathologies. The detailed anatomical understanding it provides aligns
with the development of personalized medicine and paves the way for more targeted approaches to surgical
interventions or radiotherapies (Wang et al., 2022). Furthermore, segmentation facilitates the quantitative
analysis of images as it allows the calculation of certain measures such as the size or volume of specific
structures. These quantitative measures are essential for monitoring disease progression or evaluating the
effectiveness of certain treatments (Djuric-Stefanovic et al., 2012; Yoon et al., 2020).

The advent of computer-aided diagnostic tools has automated the segmentation of medical images,
significantly reducing the workload of radiologists. Whether directly used by physicians or serving as inter-
mediaries for more complex methods, automatic segmentations are indispensable tools for the analysis of
medical images. Consequently, this is a highly active research area, and numerous methods and applications
have been proposed.

Figure 3.4 – Pancreas Segmentation on Portal CT Scan. Left : Original image. Right : Segmentation outcome. The pancreas
voxels are highlighted in red (label = 1), while the background is represented in black (label = 0). CT : Computed tomography.

3.2.3.2 Methods

Early segmentation methods include distinct categories, such as grayscale-based techniques, texture
features-based methods or atlas-based methods (Sharma and Aggarwal, 2010; Yao et al., 2020a). With the
explosion of computing capabilities and data storage, ML has gradually emerged as a tool that can be used
to replace or complement early segmentation methods to enhance their performance. While more traditional
machine learning methods (such as support vector machine or random forests) have been employed, DL
methods are now the most prevalent (Asgari Taghanaki et al., 2021). These methods use NN with multiple
layers, enabling the recognition of complex patterns.

Many DL approaches have been presented in the literature, with many relying on Fully Convolutional
Network (FCN)s. FCN, a type of CNN, is specifically designed to process input data of arbitrary sizes and
generate outputs of corresponding dimensions (Long et al., 2015). FCNs comprise an encoder complemen-
ted by a decoder with upsampling layers to restore the original resolution. The encoder captures image
context, increasing semantic understanding, while the decoder precisely locates contextual information ob-
tained from the encoder. FCNs are widely adopted for image segmentation tasks, and numerous reviews
detail variations in model types, cost functions, architectures, supervision modes, or training methodolo-
gies (Asgari Taghanaki et al., 2021; Sharma and Aggarwal, 2010; Wang et al., 2022).
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3.2.3.3 Optimization

Two loss functions widely employed for segmentation tasks are the cross entropy loss function and the
soft Dice loss function (Ma et al., 2021).

Cross entropy loss function Segmenting an image can be viewed as a pixel-level classification problem.
Thus, the cross-entropy loss function, presented in Equation 3.2.2.3 for a multi-class classification problem,
can be adapted for a segmentation task :

Categorical Cross-Entropy loss function = − 1

N

N∑
i=1

C∑
k=1

yki · log(pki )

where N is the number of voxels in the image, C is the number of classes, yki is an indicator variable that
equals 1 if the i-th voxel belongs to class k and 0 otherwise, pki is the predicted segmentation probability
for the i-th voxel belonging to class k.

Soft Dice loss function The soft Dice loss function is another commonly used loss function for segmen-
tation, aiming to maximize the Dice Similarity Coefficient (DSC) (Dice, 1945). The DSC measures the
similarity between a reference segmentation Y and a predicted segmentation P :

DSC = 2× |Y ∩ P |
|Y |+ |P |

(3.1)

The DSC ranges from 0 to 1, with a DSC of 1 indicating a perfect overlap between the two segmentations.
The soft Dice loss function seeks to maximize a differentiable reformulation of the DSC and is defined as :

Soft Dice loss function = 1−
2×

∑N
i=1

∑C
k=1 y

k
i p

k
i∑N

i=1

∑C
k=1 y

k
i +

∑N
i=1

∑C
k=1 p

k
i

Some studies combine the soft Dice loss function with the cross-entropy loss function, as this combi-
nation helps achieve a balanced trade-off between accurate pixel-wise predictions and spatially coherent
segmentation (Isensee et al., 2021a; Ma et al., 2021).

Minimization of the loss function Similar to classification models, when an appropriate loss function
is selected, the subsequent step in training a segmentation model is to minimize this function. DL-based
segmentation models commonly use gradient-based optimization methods, including stochastic gradient
descent (Bottou, 2010) and Adam (Kingma and Ba, 2014). As in classification tasks, this optimization
process involves tuning hyperparameters such as learning rate or batch size.

3.2.3.4 Evaluation measures

Although there are numerous evaluation measures available to quantify the performance of a segmen-
tation model, providing a detailed overview of all these measures is beyond the scope of this section.
Therefore, we will focus on the aforementioned DSC and the normalized surface Dice.

Dice similarity coefficient The DSC, defined in Equation 3.1), can also be defined using the definition
of true positive (TP), false positive (FP), and false negative (FN) as :

DSC =
2× TP

2× TP + FP + FN
(3.2)

Figure 3.5 provides an illustration of the DSC calculation.
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Figure 3.5 – Visualization of the Dice similarity coefficient (DSC) calculation. A higher DSC indicates a greater overlap
between the two segmentations masks (depicted in red and green). Panel A depicts no overlap, resulting in a 0% DSC. Panel B illustrates
partial overlap, leading to a 50% DSC. In Panel C, complete overlap is observed, resulting in a 100% DSC. Illustration from Barat et al.
(2021).

Normalized surface Dice Unlike the DSC which assesses the overlap of two volumes, the Normalized
Surface Dice (NSD) (Nikolov et al., 2018) assesses the overlap of two surfaces at a specified tolerance τ .
More specifically, the NSD measures the fraction of a segmentation boundary which is correctly predicted.
A boundary element is considered correctly predicted if the closest distance to the reference boundary is
smaller than or equal to the specified threshold τ , related to the acceptable amount of deviation in voxels.
It is calculated as follows.

For all the voxels belonging to the boundary of the predicted segmentation P , the nearest-neighbor
distances to the boundary of the reference segmentation Y are computed, resulting in a multiset of distances
DP . Then, D′

P is determined as the multiset of distances that are smaller or equal to the acceptable distance
τ :

D′
P = {{d ∈ DP | d ≤ τ}}

Then, the procedure is symmetrically repeated for Y , yielding DY and D′
Y . The NSD is then computed

as :

NSD =
|D′

Y |+ |D′
P |

|DY |+ |DP |
(3.3)

The NSD is bounded between 0 and 1, with 0 indicating that either the boundary is completely off,
or that the class is present in the image but has not been predicted. A NSD of 1 indicates that all the
distances are smaller than the acceptable deviation τ (Seidlitz et al., 2022). As illustrated in Figure 3.6, the
NSD can be thought as the fraction of a segmentation boundary that would have to be redrawn to correct
for segmentation errors. In this respect, it differs from the DSC which weighs all regions of misplaced
delineation equally and independently of their distance from the surface.

3.2.3.5 Standard DL networks for segmentation

U-Net The U-Net, introduced by Ronneberger et al. (2015), is a specific type of FCN featuring an
encoder with consecutive convolutional blocks and downsampling steps, and a symmetric decoder with
upsampling layers. The architecture, depicted in Figure 3.7, resembles a U-shape, and skip connections
connect corresponding layers of the encoder and decoder, facilitating information flow between layers with
varying semantic richness and spatial resolution.

Since its introduction in 2015, the U-Net architecture has emerged as one of the most widely adopted
models for medical image segmentation (Antonelli et al., 2022; Kelly et al., 2022; Ma et al., 2021). Several
variants have been proposed, demonstrating not only the adaptability and versatility of the original design
but also its inherent robustness. Some notable variants include Res-UNet (Xiao et al., 2018), Attention
U-Net (Oktay et al., 2022), UNETR (Hatamizadeh et al., 2022), U-Net 3+ (Huang et al., 2020), and
Swin-Unet Cao et al. (2022).
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Figure 3.6 – Visualization of the normalized surface Dice (NSD) calculation. Continuous line : predicted surface. Dashed
line : reference surface. Black arrow : the maximum margin of deviation τ which may be tolerated without penalty. Green : acceptable
surface parts (distance between surfaces ≤ τ ). Pink : unacceptable regions of the surfaces (distance between surfaces > τ ). The NSD
reports the correct surface parts compared to the total surface. Illustration from Nikolov et al. (2018).

Figure 3.7 – U-Net architecture as introduced by Ronneberger et al. (2015)

nnU-Net The nnU-Net, short for “no-new-Net,” is a self-adapting deep learning framework for medical
image segmentation proposed by Isensee et al. (2021a). Built upon the traditional U-Net architecture, the
nnU-Net stands out by its automatic adaptation and configuration based on the unique properties of a
given dataset. When faced with a new dataset, the nnU-Net systematically analyzes the training cases and
generates a unique “dataset fingerprint” captures parameters related to the image size, the spacing between
the different voxels, the type of imaging modality, the total number of classes, and the total number of
training cases. The segmentation pipeline is then defined based on three fundamental principles :

— Fixed parameters, such as data augmentation or learning rate, remain unaltered as the authors have
identified a robust configuration that proves effective across diverse scenarios.

— Rule-based parameters leverage the dataset fingerprint to adapt specific properties of the segmentation
pipeline through predefined heuristic rules. For instance, network topology, patch size, and batch size
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are jointly adjusted considering GPU memory constraints.

— Empirical parameters involve a trial-and-error approach, including tasks like selecting the optimal
U-Net configuration (2D, 3D full resolution, 3D low resolution, 3D cascade) and refining the postpro-
cessing strategy.

The nnU-Net also distinguishes itself through its image preprocessing pipeline, automatically configured
based on the rule-based parameters derived from the data fingerprint. Two automatic preprocessing steps
are defined :

1. Intensity normalization : The preprocessing pipeline includes intensity normalization, with two
supported schemes. For all modalities except Computed Tomography (CT) images, each image un-
dergoes independent normalization by subtracting its mean and dividing by its standard deviation
(z-score normalization). For CT images, where intensity values are in Hounsfield Unit (HU), reflec-
ting physical tissue properties, a global normalization is applied. To retain quantitative information,
nnU-Net uses the 0.5 and 99.5 percentiles of foreground voxels for clipping, along with the global
foreground mean and standard deviation for normalization across all images.

2. Resampling to a target spacing : Due to heterogeneous voxel spacing across diverse datasets, nnU-
Net resamples all images to a common target spacing, ensuring the CNN model operates on voxels with
the same physical spacing. For the 3D full-resolution U-Net, the default target spacing is the median
value of spacings in the training cases, computed independently for each axis. In anisotropic datasets
(maximum axis spacing / minimum axis spacing > 3), the default rule may lead to interpolation
artifacts or significant information loss. Therefore, the target spacing for the lowest resolution axis
is set to the 10th percentile of spacings. Once the target spacing is set, images and segmentation
maps are resampled to this spacing, and default resampling uses third-order spline interpolation.
For anisotropic images, out-of-plane axes are treated differently to reduce resampling artifacts : in-
plane resampling employs third-order spline, while out-of-plane interpolation uses nearest neighbor.
Resampling of the segmentation maps starts by converting them into one-hot encodings. Then, each
channel is interpolated using linear interpolation, and the segmentation map is obtained through an
argmax operation. Again, anisotropic cases are interpolated using “nearest neighbor” on the low-
resolution axis.

Thanks to this holistic approach, the nnU-Net has gained attention for its ability to achieve state-of-
the-art segmentation results in various medical imaging tasks, demonstrating its potential as a robust tool
for accurate and efficient medical image segmentation. Today, the nnU-Net is considered as a baseline and
method development framework : 9 out of 10 challenge winners at MICCAI 2020 (Antonelli et al., 2022)
and 5 out of 7 in MICCAI 2021 built their methods on top of nnU-Net (Isensee et al., 2021b).

3.2.3.6 Applications in medical imaging

Due to its important role in the development of diagnostic assistance tools, segmentation has been
applied across various domains and types of medical images. The most popular applications include liver
and hepatic tumor segmentation, brain and brain tumor segmentation, optic disc segmentation, cell seg-
mentation, lung and pulmonary nodule segmentation, and heart segmentation (Wang et al., 2022). The
most commonly used modalities are X-rays, CT images, Magnetic Resonance Imaging (MRI) images, and
ultrasound images (Wang et al., 2022).

Certain applications have gained popularity through challenges (such as BRATS 3, KiTS 4, or LiTS 5)
that provide public datasets and allow for quantitative comparisons of different proposed methods. Unlike
most of these challenges, which are specific to a segmentation task (an organ on a modality), the Medical
Segmentation Decathlon is a challenge including multiple tasks and modalities (Antonelli et al., 2022).
Launched in November 2018, it aims to identify a versatile algorithm for medical image segmentation,
capable of generalization and high performance across a multitude of organs. The challenge results confirm

3. Brain Tumor Segmentation challenge (BRATS)
4. Kidney Tumor Segmentation challenge (KiTS)
5. The Liver Tumor Segmentation benchmark (Bilic et al., 2023)
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the hypothesis that a method capable of achieving good results across multiple tasks generalizes well to
a new task, and may even outperform a method designed specifically for that application. Tables 3.1a
and 3.1b show the DSC obtained by the top five methods for organ segmentation and lesion segmentation
tasks, respectively. Task-specific performance reflect the intrinsic difficulty of different segmentation tasks.
For organ segmentations (see Table 3.1a), performance for the liver and spleen are high (DSC around 95%
and 97%, respectively) as these are large organs, easy to detect and delineate. By contrast, the methods
for segmenting the pancreas and the prostate achieve lower performance (DSC around 82% and 76%, res-
pectively), reflecting the difficulty of these tasks. For lesion segmentations (see Table 3.1b), lesions such
as non-enhancing brain lesions, pancreatic cancers, and colon cancers have been the most challenging to
segment (DSC around 49%, 59%, and 60%, respectively). These regions, characterized by small, heteroge-
neous, and subtle masses, are challenging for both algorithms and radiologists, showing high inter-annotator
variability on these tasks (Re et al., 2011; Sirinukunwattana et al., 2017).

Heart Liver Hippocampus Prostate Pancreas Spleen*
General
rank

Team Created
Mean

Position
MRI ce-CT

MRI multiparametric MRI
ce-CT ce-CT

Anterior Posterior Peripheral zone Transition zone
1st universal model Feb. 2023 5.6 0.93 (1) 0.95 (10) 0.90 (2) 0.89 (2) 0.76 (3) 0.76 (3) 0.83 (1) 0.97 (8)
2nd Swin UNETR Nov. 2021 10.1 0.93 (29) 0.95 (11) 0.90 (17) 0.88 (18) 0.76 (7) 0.76 (7) 0.82 (6) 0.97 (14)
3rd ahatamiz2 Nov. 2021 10.1 0.93 (29) 0.95 (11) 0.90 (17) 0.88 (18) 0.76 (7) 0.76 (7) 0.82 (6) 0.97 (14)
4th nnU-Net Dec. 2019 12.3 0.93 (4) 0.96 (1) 0.90 (5) 0.89 (7) 0.77 (1) 0.77 (1) 0.82 (10) 0.97 (1)
5th AndyL Nov. 2022 12.5 0.93 (27) 0.95 (15) 0.90 (16) 0.88 (16) 0.76 (5) 0.76 (5) 0.82 (2) 0.97 (20)

(a) Organ segmentation tasks

Brain Liver Lung Pancreas Liver-2* Colon*
General
rank

Team Created
Mean

Position
multiparametric MRI

ce-CT CT ce-CT ce-CT ce-CT
Edema Non-enhancing Enhancing

1st universal model Feb. 2023 5.6 0.70 (5) 0.46 (30) 0.68 (16) 0.79 (1) 0.80 (1) 0.62 (1) 0.76 (1) 0.63 (1)
2nd Swin UNETR Nov. 2021 10.1 0.70 (3) 0.53 (1) 0.71 (1) 0.76 (12) 0.77 (7) 0.58 (4) 0.72 (4) 0.59 (5)
3rd ahatamiz2 Nov. 2021 10.1 0.70 (4) 0.53 (2) 0.71 (2) 0.76 (12) 0.77 (7) 0.58 (4) 0.72 (4) 0.59 (5)
4th nnU-Net Dec. 2019 12.3 0.68 (20) 0.47 (25) 0.68 (7) 0.76 (11) 0.74 (21) 0.53 (23) 0.72 (9) 0.58 (13)
5th AndyL Nov. 2022 12.5 0.67 (39) 0.47 (15) 0.68 (25) 0.76 (16) 0.78 (2) 0.62 (2) 0.75 (2) 0.61 (2)

(b) Lesion segmentation tasks

Table 3.1 – Dice Similarity Coefficient values of the five best methods (out of 55) of the Medical Segmentation Decathlon
for the different organ and lesion segmentation tasks. * indicates a task and dataset that was not available during training. Rank for
each task is indicated in brackets. From post-challenge leaderboard, accessed on December 2023. ce : Contrast-enhanced, CT : Computed
tomography, MRI : Magnetic resonance imaging.

3.3 Application to pancreas

This section aims to give an exhaustive overview of existing DL methods for pancreas analysis, focusing
on three key tasks : organ segmentation, lesion segmentation and detection, and feature extraction for
pancreas analysis. Through these three axes, we explore the main methodological approaches that have
contributed to the evolving landscape of DL-based solutions for pancreatic image analysis. Finally, we will
conclude this bibliographic review with a concise review of more clinically oriented research.

3.3.1 Pancreas segmentation

As illustrated by the results of the Medical Segmentation Decathlon (see Table 3.1a), pancreas seg-
mentation is a complex task, relatively more challenging than the segmentation of other abdominal organs
such as the liver or spleen (Yao et al., 2020a). This complexity is attributed to the anatomical charac-
teristics of the pancreas. First, the pancreas is a small organ nested in the abdomen and surrounded by
numerous organs and vessels. Its anatomical position makes localization particularly challenging. Second,
its delineation is complicated by its lobulated and indistinct contours. These indistinct contours result
from limited contrast at the borders, explained by the close imaging-related physical properties of the
pancreas and its neighboring organs. For instance, the CT attenuation coefficients of the head and tail of
the pancreas are similar to those of the duodenum and spleen, respectively, making their differentiation
difficult. Finally, the pancreas exhibits significant inter- and intra-individual variability due to numerous

https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
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anatomical and physiological variations, as discussed in Section 2.2.1.2. These characteristics, illustrated
on Figure 3.8, render automatic pancreas segmentation challenging, leading to the proposal of various me-
thods to account for the complex geometry and anatomy of this small organ (Kumar et al., 2019a; Yao
et al., 2020a). Numerous methods have tried to adress these fundamental challenges, and DNNs are widely
employed today, as these methods achieve the best performance in terms of DSC (Kumar et al., 2019a). A
meta-analysis estimates that the average DSC for pancreas segmentation is 82.3 (95% confidence interval
(CI) 80.7-84.0%) for methods based on DNNs compared to an average DSC of 74.4 (95% CI 70.9-77.8%)
for all methods combined (Kumar et al., 2019a).

Figure 3.8 – Challenging case in pancreas segmentation. Left : Original portal CT scan. The pancreas is positioned among
adjacent organs with comparable CT density, resulting in ambiguous contours. Right : The outlined pancreas in red. CT : Computed
tomography.

We delve into the state-of-the-art approaches employed for pancreas segmentation using DL, as other
methods are beyond the scope of this work. We examine the trends, highlights and key methodological
innovations developed to achieve precise and reliable pancreas segmentation from medical imaging data.
This presentation will be conducted in two parts : first, the methods using CNNs, followed by those
employing transformers.

3.3.1.1 Methods using CNNs

CNNs have established themselves as a prominent DL method for automatic pancreas segmentation.
Most approaches use the U-Net (Ronneberger et al., 2015) as a starting point and subsequently apply
numerous technical or methodological variations, each addressing specific challenges. Thus, we categorize
these approaches based on the primary focus of the methodology : we sequentially explore methods cente-
red on dimension, those leveraging coarse-to-fine strategies, approaches optimizing coarse-to-fine strategies
collectively, methods incorporating attention mechanisms, and techniques integrating multi-scale informa-
tion.

Dimensionality Initially, much research focused on the dimensionality to adopt. Since medical images are
originally 3D, slicing them into 2D reduces the algorithmic complexity and the memory demand. However,
this transformation also alters the data use dynamics : in the 3D context, a data sample corresponds
to a collection of slices, whereas in the 2D context, one data sample corresponds to one individual slice.
This simplification leads to a significant loss of spatial context which is crucial for the pancreas due to
its elongated and variable nature. Consequently, 2D methods often require post-processing steps. Yet,
transitioning to 3D does not fully capture spatial information because computational limitations enforce
the use of 3D patches. To address this, some methods propose a compromise between 2D and 3D. Zhou
et al. (2017b) introduce a 2.5D multi-view model : three CNNs (axial, coronal, sagittal) are trained on
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inputs containing three consecutive slices and the results of the three models are merged. Li et al. (2020)
opt for seven consecutive slices and add an inter-slice DSC regularization term to the cost function. Fang
et al. (2019) propose a network that learns local 3D features and global 2D features : the former are
extracted through the encoding of 2.5D patches, while the latter are extracted through the encoding of
a down-sampled 2D slice. To enforce spatial smoothness consistency among successive slices, Cai et al.
(2017) train a Long Short-Term Memory 6 (Sherstinsky, 2020) network on segmentations generated by a
primary 2D CNN. Similarly, Li et al. (2021b) combine inter and intra-slice information to leverage 3D
spatial information while preserving low computational costs. Yan and Zhang (2021) propose a model that
combines 3D and 2D convolutions from a 2.5D input. Finally, Zhu et al. (2019a) employ a neural architecture
to automatically search for the best operation (2D or 3D convolution) at each layer. Presently, the optimal
dimension for pancreas segmentation remains an open question, even though current advancements in
computational and memory capacities allow for training fully 3D networks. Each method, characterized by
its distinct advantages and disadvantages, requires thorough examination in the context of computational
capabilities and available data.

Coarse-to-fine strategy for improved localization One of the challenges in automatic pancreas segmen-
tation arises from the small volume fraction occupied by this organ in the abdomen : pancreatic voxels
represent less than 1.5% in a 2D image and less than 0.5% in a 3D image (Zhang et al., 2021b). In such
configurations, CNNs can be distracted by the extensive background containing abundant information, lea-
ding to less accurate segmentation. To address this difficulty, numerous studies have tackled the pancreas
segmentation problem in two steps : first, a localization step from the entire image identifies a Region of
Interest (ROI) containing the pancreas. Second, a segmentation step from this ROI segments the pancreas.
This method, often referred to as Coarse-to-Fine (C2F) or cascaded networks, has been implemented in
various works (Liu et al., 2019d; Roth et al., 2016b; Zhao et al., 2019; Zhou et al., 2017b; Zhu et al., 2017)
and is depicted in Figure 3.9. Zhao et al. (2019) leverage image resolution for localization : the initial
coarse segmentation step works on a down-sampled 3D volume, and the subsequent fine segmentation step
uses the ROI at its original resolution. Roth et al. (2015) also perform segmentation in two steps but in
a “bottom-up” fashion. Starting from superpixels, an initial CNN generates a probability map obtained
from highly localized patches. Then, a second CNN segments larger areas using information provided by
the first CNN. Instead of using a CNN for the coarse step, Man et al. (2019) learn pancreas localization
by using a deep reinforcement learning strategy while Dogan et al. (2021) use a Mask R-CNN 7 (He et al.,
2017). Some methods introduce one or more additional steps to the localization and segmentation steps. For
instance, Zhang et al. (2021b) propose a three-step approach where the last step refines the segmentation
by smoothing it with a 3D level-set post-processing. Fang et al. (2022) introduce a final step composed of
an adversarial classifier which is trained to recognize the pancreas in both masked and unmasked images.
When the classifier successfully identifies the pancreas in masked images, the fine segmentation network
is penalized, indicating insufficient precision. This adversarial process, aimed at enhancing segmentation
accuracy, is also adopted by Li et al. (2021c) who introduce a discriminator that seeks to distinguish a
predicted segmentation from a manual segmentation.

While this two-step segmentation strategy allows obtaining a smaller input focused on the pancreas
(the ROI), it suffers from several drawbacks. First, these methods heavily rely on the coarse segmentation
step : if it fails to detect a suitable ROI, the final segmentation is entirely compromised. Second, these
methods exhibit an inconsistency between training and inference : the optimization of the two steps occurs
individually, whereas in inference, both models are used jointly. A third drawback of two-stage models
stems from their lack of efficiency : the number of parameters is doubled, and some low-level features are
extracted redundantly.

Joint optimization of coarse-to-fine networks As described above, C2F methods consist of two models
but lack a global cost function that would enable their joint optimization. To address this drawback, Yu

6. A type of recurrent neural network (RNN) aimed to deal with the vanishing gradient problem present in traditional RNNs.
7. Mask R-CNN is a deep learning model that combines object detection and instance segmentation
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Figure 3.9 – Illustration of the coarse-to-fine segmentation process. Initially, a first segmentation model processes the entire
image input, producing a preliminary coarse segmentation. This initial output allows for the isolation of a Region of Interest (ROI). Then,
a second segmentation model refines this initial segmentation, producing a fine-grained segmentation.

et al. (2018) propose connecting these two stages using a recurrent neural network : for iteration t, the
network takes the input image multiplied by a function of the output from iteration (t− 1) as input. This
function, among other things, crops the input image. Optimization occurs jointly across all iterations. In
practice, recurrence is constrained by GPU memory : the number of iterations cannot exceed five. Similarly,
a model where intermediate features are optimized iteratively is suggested by Mo et al. (2020) ; however,
the number of iterations is also limited by GPU memory.

Localizing the pancreas using attention To emphasize the learning of relevant characteristics, some
approaches propose the use of attention modules. These attention mechanisms have proven effective in
concentrating the learning of discriminative features, mimicking the human perception process. Attention
modules are trained to modulate the signal and retain only that from regions relevant to pancreas locali-
zation and segmentation. Lu et al. (2019), Oktay et al. (2022), Wang et al. (2021) and Yan and Zhang
(2021) eliminate the localization model and incorporate attention modules into a U-Net. These attention
modules can take various forms : Oktay et al. (2022) filter features from skip connections by coarser fea-
tures in order to remove irrelevant and noisy signal contained in skip connections. Lu et al. (2019) use an
attention module on channels to consolidate the problem of learning what, while a spatial attention module
consolidates the problem of learning where.

Integrating multi-scale information Although the localization step allows obtaining a smaller input more
adapted to the volume of the pancreas, it also deprives the fine segmentation model of a significant portion
of spatial context. Consequently, methods seek to modify the architectures of their CNNs to learn, within
a single model, features of variable sizes and shapes. A strategy involves increasing the receptive fields
of networks to incorporate maximum contextual information. Thus, Huang et al. (2021) propose using a
deformable U-Net where the convolutional receptive fields are learned to be adjusted to the size and shape
of the pancreas. As huge receptive fields come with high computational demand, Heinrich and Oktay (2017)
employ sparse binary convolutions to avoid excessive model complexity. Another strategy consists in using
feature maps from various spatial resolution (Li et al., 2021c; Hu et al., 2020b; Proietto Salanitri et al.,
2021). This allows analyzing the original image with filters of complementary fields of view, capturing
the pancreas and the relevant context at various scales. In the same vein, Fu et al. (2018) replace up-
sampling layers with multi-level up-sampling layers : instead of a single up-sampling directly to the desired
resolution, multiple up-sampling operations are performed to better integrate information from different
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scales. However, all these strategies come at a cost as they introduce a large number of parameters.

3.3.1.2 Methods using transformers

To overcome the limitations of convolutional operations, recent studies have focused on leveraging self-
attention models based on transformers. Unlike CNNs, which are constrained by their receptive fields,
transformers can model long-distance spatial relationships, a crucial aspect in medical image analysis. Ini-
tially proposed for natural language processing tasks, transformers are now widely used for computer vision
tasks through Vision Transformers (ViT), which use 2D patches and positional embeddings (Dosovitskiy
et al., 2020). Notably, the Swin-Transformer (Liu et al., 2021b) has emerged as a foundational architecture,
implementing a hierarchical transformer operating on shifted windows (Swin actually coming from “shifted
window”). By calculating self-attention only on local windows, this shifted window scheme achieves greater
efficiency while enabling connections between windows. Consequently, ViTs have demonstrated excellent
performance on both natural and medical images, although their applications for pancreas segmentation
remain limited. Cao et al. (2022) propose the Swin-Unet, where the encoder is replaced by a series of
Swin-Transformer blocks, and the decoder is symmetrically constructed. While this architecture effectively
captures global context, it struggles to model local information, crucial for accurate pancreas segmentation
due to its complex geometric shape. Therefore, various methods attempt to combine the advantages of a
CNN and a transformer. Qiu et al. (2023) introduce a two-step method. Initially, a residual transformer
block is used to identify the pancreas position, leveraging its ability to extract multi-scale features from a
global perspective. Then, a double convolution downsampling block is employed to obtain precise pancreas
shape and size features. However, this method only uses transformers as an external module instead of
seeking to integrate attention into CNN learning. Thus, Chen and Wan (2023) deploy a transformer on
skip connections to coordinate the learning of global features, while the rest of the U-Net architecture
is retained. To learn sequential representations of the input image, Hatamizadeh et al. (2022) opts to
substitute only the encoder with a Swin-Transformer. Fang et al. (2023) integrate a residual transformer
structure at the bottleneck of an autoencoder. In summary, transformers enable better modeling of in-
teractions between distant pixels and capturing global context. However, these methods struggle to learn
local features, leading numerous studies to combine transformers with CNNs. Moreover, these methods
face significant computational complexity (quadratic complexity based on input length). To address this,
some methods propose reformulating the self-attention mechanism using a linear approximation (Zhang
and Bagci, 2022).

3.3.1.3 Summary

In Table 3.2, we provide a summary of the methods presented, along with the evaluation measures
reported by the respective authors. While acknowledging that these performance measures may not be
entirely comparable, it is important to note that the majority of these methods underwent training and
evaluation on a consistent public dataset comprising 80 portal phase CT scans (DNIH dataset (Roth et al.,
2016a), presented in Section 4). The majority of methods employing this dataset were evaluated using a
four-fold cross-validation procedure.

3.3.2 Lesion detection

The ability to identify lesions is essential for early diagnosis and effective treatment planning. The
detection of pancreatic lesions introduces additional challenges compared to pancreatic segmentation. In
this section, we explore the latest advancements in DL techniques applied to pancreatic lesion detection.
We begin by examining methodologies that focus on lesion segmentation, as it represents the prevalent
initial step for automated detection tools. Then, we elucidate how this segmentation task is translated into
detection.
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Ref Summary Dataset Split DSC (%)

Roth et al. (2015) C2F strategy using 2.5D CNN and a bottom-up approach from superpixels. DNIH 4 CV 71.8 ± 10.7
Zhou et al. (2017b) C2F strategy using multi-view 2.5D CNNs. DNIH 4 CV 82.37 ± 5.68
Cai et al. (2017) Enforce spatial consistency on successive slices using a LSTM. DNIH NA 82.4 ± 6.7
Zhu et al. (2017) C2F strategy using 3D networks on 3D patches. DNIH 4 CV 84.59 ± 4.86

Heinrich and Oktay (2017) 2D U-Net using binary sparse convolutions to increase the receptive field. SMO30 6 CV 64.5
Roth et al. (2016b) C2F strategy using multi-view 2.5D HNNs. DNIH 4 CV 81.27 ± 6.27
Oktay et al. (2022) 3D U-Net with attention gates. DNIH 61/21 82.1 ± 5.7
Yu et al. (2018) Multi-view 2.5D recurrent CNN. DNIH 4 CV 84.50 ± 4.97
Fu et al. (2018) Multi-layer upsampling CNN. X59 5 CV 76.4 ± 14.3
Li et al. (2021b) Bi-directional recurrent 2.5D U-Net to optimize local 3D information. DNIH 4 CV 84.19 ± 5.73
Zhao et al. (2019) C2F strategy using 3D networks on downsampled volumes. DNIH 4 CV 85.99 ± 4.5
Man et al. (2019) Localization policy to produce a bbox of the pancreas, then segment using

a deformable multi-view 2D U-Net.
DNIH 4 CV 86.93 ± 4.92

Li et al. (2020) 2.5D U-Net using 7 consecutive slices + inter-slice regularization. DNIH 4 CV 85.7 ± 4.1
Lu et al. (2019) Use of channel and spatial attention to enhance the information exchange

between the encoder and decoder of a 2D U-Net.
DNIH 10 CV 88.32 ± 2.84

Zhu et al. (2019a) Neural architecture search to automatically find the best network architec-
ture.

DNIH 4 CV 85.15 ± 4.55

Liu et al. (2019d) C2F strategy, with fine segmentation done by ensembling five 2.5 CNNs
trained with different loss function.

DNIH 4 CV 84.1 ± 4.9

Fang et al. (2019) Two encoders extract 3D local and 2D global features, respectively. DNIH 53/29 85.46 ± 4.80
Zhang et al. (2021b) Three-stages framework : coarse (multi-atlas registration), fine (3D + multi-

view 2.5D CNNs), refine (level-set).
DNIH 4 CV 84.61 ± 5.21

Nishio et al. (2020) 2D Deep U-Net using intense data-augmentation (Random Image Cropping
and Patching and Mixup).

DNIH 4 CV 78.9 ± 8.3

Hu et al. (2020b) Coarse segmentation using Dense Atrous Spatial Pyramid Pooling, and
saliency-aware module to fully use the coarse segmentation in the fine seg-
mentation step.

DNIH NA 85.49 ± 4.77

Mo et al. (2020) A 3D U-Net with iterative refinement of features at multiple levels. DNIH 4 CV 82.47 ± 5.50
Zhang and Bagci (2022) Reduce the complexity of the transformer by using linear approximation. DNIH 72/10 85.5 ± 3.7

Huang et al. (2021) Deformable 2D U-Net (learnable receptive field). DNIH 4 CV 87.25 ± 3.27
Yan and Zhang (2021) A attention U-Net mixing 3D and 2D convolutions. DNIH 4 CV 86.6 ± 3.5

Li et al. (2021c) A 2D U-Net with multi-level pyramidal pooling and aversarial network. DNIH 4 CV 81.36
Proietto Salanitri et al. (2021) A 3D FCN which extracts features at different scales and decodes them

hierarchically.
DNIH 4 CV 88.01 ± 4.74

Dogan et al. (2021) C2F strategy using a Mask R-CNN for localization. DNIH 4 CV 86.15 ± 4.45
Wang et al. (2021) A dual-input FNC, which receives CT and images processed by contrast-

specific visual saliency, and combines attention.
DNIH 4 CV 87.4 ± 6.8

Fang et al. (2022) Enrich the C2F strategy by introducing an adversarial network. DNIH NA 87.50 ± 4.89
Chen and Wan (2023) Deploy transformer module on the skip connections of a U-Net. DNIH 4 CV 86.8 ± 4.1

Hatamizadeh et al. (2022) Replace the encoder of a 3D U-Net by a transformer sequence. SMO30 5 CV 76.7
Qiu et al. (2023) C2F strategy using a transformer for the location of the pancreas and a

CNN for the segmentation.
DNIH NA 86.25

Fang et al. (2023) Integrate the transformer structure into a 3D U-Net. DMSD 225/56 77.36 ± 0.11
Cao et al. (2022) Combine Swin transformer with a 2D U-Net. SMO30 18/12 56.58

Table 3.2 – Summary of deep learning-based methods for pancreas segmentation. Color corresponds to the primary focus of the

methodology : dimensionality , Coarse-to-Fine (C2F) network , joint optimization of C2F network , attention , multi-scale strategy ,

transformers . For each article, we report a summary of the approach, the dataset, the data split, and the mean ± standard deviation
of the DSC on the test data as reported by the authors. f CV means that performance was evaluated with a f fold cross-validation
procedure. t/v means that dataset was split into t and v for train and test, respectively. NA means the information was not reported.
DNIH and DMSD refer to public datasets containing 80 and 281 abdominal CT scans, respectively. These datasets are detailed in
Section 4. SMO30 refers to the public Synapse Multi Organ dataset (2013) containing 30 abdominal CT scans with 13 organs annotated,
including pancreas. X59 refers to a private dataset containing 59 abdominal CT scans. Performance in bold design performance reported
using the common test four fold cross-validation procedure on DNIH . C2F : Coarse-to-fine, CNN : Convolutional neural network, CT :
Computed tomography, CV : Cross validation, DSC : Dice similarity coefficient, FCN : Fully convolutional neural network, HNN :
Holistically nested network, LSTM : Long short-term memory, DMSD : Medical Segmentation Decathlon dataset, DNIH : National
Institute of Health dataset.

3.3.2.1 Lesion segmentation

Like pancreas segmentation, lesion segmentation methods can be categorized based on their primary
methodological approach. We initiate by introducing methods similar to those developed for pancreas
segmentation, specifically those exploring dimensionality and employing C2F strategies. We then present
strategies devised to address data scarcity, strategies combining various methodologies, and finally, strate-
gies integrating additional information via anatomical clues or multiple phases combination.
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Dimensionality As for pancreas segmentation, the search for the optimal architecture and dimensionality
for lesion segmentation has also been explored. Yu et al. (2020) and Zhu et al. (2019a) employ neural
architecture search to discover the most effective topology and combination of convolutional layers (2D
or 3D). Isensee et al. (2021a) dynamically adjust its U-Net architecture based on input image geometry
using heuristics. Chen et al. (2021) project 3D images onto a 2D plane using a spiral transformation. This
transformation enables the use of a 2D model while preserving spatial correlation among voxels.

Coarse-to-fine C2F methods have also been examined for the segmentation of cancers (Alves et al., 2022;
Turečková et al., 2020; Xia et al., 2022) or cysts (Xia et al., 2022; Zhu et al., 2019a) : initially, a first pancreas
segmentation model establishes a ROI, which is then input into a second algorithm for lesion segmentation.
In a similar vein, to address variations in sizes and textures exhibited by these lesions, multi-scale strategies
have been proposed (Xia et al., 2022; Zhang et al., 2020b; Zhu et al., 2019b). Specifically, Zhu et al. (2019b)
develop multiple models to segment the tumor from inputs of varying sizes, and average the results : this
allows for the combination of outcomes from models exhibiting high sensitivity (small input) with those
demonstrating high specificity (large input).

Data scarcity Numerous methods aim to address the data scarcity. While conventional data augmentation
techniques (rotations, flip, crop, scaling, mirroring, etc.) are commonly used (Isensee et al., 2021a), other
studies explore more innovative operations. For instance, Chen et al. (2021) employ a spiral transformation
to generate diverse 2D examples for a given 3D image. Xia et al. (2022) also demonstrate that augmentations
on the physical characteristics of scanners, such as slice thickness, enhance generalization power. In addition
to data augmentation, a strategy involves leveraging different types of data : Li et al. (2022) employ MRI
data to augment the training dataset for a CT lesion segmentation model. For this, a three-step framework
is proposed : first, a model generates intermediate images to continuously model the differences between
CT and MRI images. Then, a segmentation model is trained on all images (MRI, CT, and intermediates)
to enable the model to learn common pancreatic cancer characteristics across these images. Finally, a last
step focuses on learning distinctive lesion features in CT images. Moreover, Zhang et al. (2020a) train
a lesion segmentation model using multiple annotated and non-annotated databases. Several teaching
models are trained based on the available annotations, and these models are then used to generate pseudo-
annotations for non-annotated images. Ultimately, a student model is trained using the entire dataset,
including annotated and pseudo-annotated data. The authors demonstrate that this student model achieves
a 6.3% improvement in DSC compared to a model trained solely with annotated data (Zhang et al., 2020a).

Combining other approaches Other methods integrate various modules and/or approaches. For ins-
tance, Guo et al. (2018) show the value of combining graph-based segmentation methods with deep lear-
ning : initially, a U-Net generates tumor segmentation, which is then used to initialize a segmentation
graph. To jointly segment the pancreas and the lesion, Li et al. (2023) employ a temperature module to
prevent the model from overly focusing on learning the pancreas. Lastly, like done for pancreas segmenta-
tion, Qu et al. (2023b) propose to combine a transformer and a CNN through a dual-encoder segmentation
model : the first being a CNN extracting local features, while the second is a transformer extracting global
features. Both types of features are progressively merged in a decoder.

Adding information via anatomical cues Some approaches aim to explicitly incorporate additional ana-
tomical information, often conveyed through the segmentation of adjacent structures. Inspired by radiolo-
gists who use ductal structures for pancreatic cancer diagnosis, Viviers et al. (2022) integrate visual infor-
mation in the form of segmentations into a lesion segmentation model. Therefore, their 3D U-Net takes as
input the image, pancreas segmentation, main pancreatic duct segmentation, and common bile duct seg-
mentation. Adding these segmentation masks enhances the model sensitivity, increasing from 0.98 ± 0.03
(with the image alone) to 1.00± 0.00 (when the masks are provided as input) on their test split containing
59 patients. Liu et al. (2019c) propose reinforcing the use of shape and texture by incorporating both the
image and the pancreas segmentation mask generated by a preliminary segmentation model. Alves et al.
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Ref Summary Input Train Test DSC (in %)

Zhou et al.
(2017a)

C2F strategy : first segment the pancreas, then the cysts. portal CT 131 cysts 4f CV 64.44

Guo et al.
(2018)

Build a graph-based 3D segmentation model initiated by a mask
generated by a 2.5D U-Net.

arterial
CT

30 tumor ROIs Loc : 21 tumor ROIs 83.2 ± 7.8

Zhou et al.
(2019a)

Segment pancreas, PDAC and main pancreatic duct using a model
with 2 branches (one per phase) optimized jointly.

arterial +
portal CT,
aligned

239 PDACs 3f CV 63.98 ± 22.74

Turečková
et al.
(2020)

Ensemble two 3D CNNs using attention and trained on images with
different resolutions.

portal CT DMSD 5f CV 52.99 ± 2.05

Zhang
et al.

(2020a)

Increase the training dataset of a PDAC segmentation model using a
mix of annotated and unannotated venous or multi-phase CT images.

multiphase
CT

1071 (DMSD+ 700
PDACs)

5f CV 70.9 ± 15.9

Chen et al.
(2021)

Transform 3D volumes into 2D images using a spiral transformation
and segment PDAC tumors using a 2D U-Net.

portal CT DMSD 5f CV 66.62 ± 16.37

Yu et al.
(2020)

C2F strategy combined with neural architecture search to perform
PDAC segmentation.

portal CT DMSD 5f CV 54.41

Isensee
et al.

(2021a)

Automatic U-Net configuration based on the properties of the
training dataset, utilizing fixed, rule-based, and empirical parameters.

portal CT DMSD Dtest
MSD 52.27

Li et al.
(2022)

Make use of MRI data to improve a pancreatic cancer segmentation
model operating on CT.

portal CT DMSD 4f CV 57.62

Li et al.
(2023)

Leverage temperature guided modules to improve the joint
segmentation of pancreas and lesions.

portal CT DMSD 5f CV 59.16 ± 28.12

Table 3.3 – Summary of deep learning-based methods for the segmentation of pancreatic lesions. For each article, we report
a summary of the approach, the modality used as input, the train dataset, the test sets and the evaluation measures on the test sets as
reported by the authors. f CV indicates that the results were obtained doing a f fold cross-validation procedure. A local (loc) set consists
of data originating from the same source as the training dataset, usually a validation or test hold-out set. DMSD and Dtest

MSD refer to the
training and testing splits of the public MSD dataset containing 281 and 139 abdominal CT scans, respectively. The DMSD dataset is
detailed in Section 4. When reported by the authors, standard deviations are indicated by ±. C2F : Coarse-to-fine, CNN : Convolutional
neural network, CT : Computed tomography, MRI : Magnetic resonance imaging, DMSD : Medical Segmentation Decathlon dataset,
PDAC : Pancreatic ductal adenocarcinoma, ROI : Region of interest.

(2022) investigate the benefits of segmenting not only the lesion but also the pancreas and other nearby
anatomical structures, such as veins, arteries, the main pancreatic duct, and the bile duct. They notably
demonstrate that, at the patient level, there is a clear advantage in segmenting the pancreas and the le-
sion together. As for the segmentation of other nearby structures, it primarily helps to accurately localize
lesions, particularly through the segmentation of the main pancreatic duct.

Adding information via multi-phase CT Another strategy to add information involves using multiple
phases, as each of these phases carries complementary information. Thus, for lesion segmentation from CT
images, numerous studies explore the joint use of portal and arterial phases (Xia et al., 2020, 2022; Zhou
et al., 2019a; Zhu et al., 2021). The most straightforward way to use these two phases is to align the images
and employ a two-channel input. Xia et al. (2020) introduce two additional combination methods : late
and slow fusion. In the case of late fusion, each phase passes through an encoder, and the resulting two
latent spaces are merged and fed into a single decoder. Slow fusion also employs two encoders, but the
feature maps are gradually aligned at each downsampling step of the encoder. These slow or late fusions
enable coupling the two phases while overcoming the often-imperfect registration. Another strategy involves
training two segmentation models : one operating from the portal phase and the other from the arterial
phase. Zhu et al. (2021) train these two models independently, whereas Zhou et al. (2019a) connect the
two models by hyper-connections and train them jointly.

Table 3.3 compiles the methodology and outcomes of studies focused on the segmentation of pancreatic
lesions.

3.3.2.2 From lesion segmentation to cancer detection

Typically, lesion segmentation models are used to categorize patients into healthy or pathological, with
certain studies opting for a more nuanced approach, involving the identification of the lesion type. Thus,
lesion segmentations are converted into cancer detection at patient-level. For this purpose, most methods
apply a simple heuristic to go from segmentation to detection. These heuristics may consider the volume or
the number of main connected components of the predicted segmentation. For example, Zhu et al. (2021)
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Ref Summary Input Train Test Results

Zhu et al.
(2019b)

Ensemble three C2F segmentation models
with varying input sizes and apply a simple

rule to convert the segmentation into
detection.

portal CT
239 (136
PDACS)

4f CV on PDACs + 200 controls
- DSC : 57.3 ± 28.1

- Sen : 94.1
- Spe : 98.5

Xia et al.
(2020)

Ensemble three models with different
strategies to combine portal and arterial data.

arterial +
portal CT,
aligned

439 (136
PDACS)

3f CV
- DSC : 83.3 ± 8.2

- Sen : 97.1
- Spe : 96

Abel et al.
(2021)

C2F strategy to segment cysts, then a
heuristic transforms the segmentation into a

detection.
portal CT 221 cysts 5f CV Sen : 78.8 ± 0.1

Zhu et al.
(2021)

Train two segmentation models (one per
phase), apply a heuristic and fuse the results
to differentiate PNETs from healthy patients.

arterial +
portal CT,
aligned

376 (228
PNETs)

4f CV
- DSC : 43.11
- Sen : 89.47
- Spe : 81.08

Xia et al.
(2021)

Differentiate PDAC, non PDAC, and controls
pancreas on non-contrast CTs combining an

U-Net + transformer.

non
contrast
CT

1321 (450
PDACs,
394 non
PDACs)

Loc : 306 (108 PDACs, 80
nonPDACs)

-Sen : 95.2
- Spe : 95.8

Alves et al.
(2022)

C2F strategy using multiple surrounding
anatomical structures to guide the

segmentation of the tumors.
portal CT

242 (119
PDACs)

Ext : 363 (DNIH , DMSD)
AUC :

- Ext : 0.889
- Ext - lesions <2cm : 0.838

Viviers
et al.
(2022)

Segment lesion using a 3D nnU-Net taking as
input the image and the segmentation of the
common bile duct, the main pancreatic duct

and the pancreas.

portal CT
196 (99
PDACs)

- Loc : 30% of the training data
- Ext : 28 cases from DMSD

DSC / Sen / Spe :
- Loc : 31 / 100 / 90
- Ext : 31 / 99 / -

Xia et al.
(2022)

C2F strategy to segment pancreatic lesions.
Use of extensive data augmentation and

multi-scale processing for recognizing small
lesions.

arterial +
portal CT,
aligned

1592 (852
PDACs)

- Loc 1 : 513 (213 PDACs)
- Loc 2 : 1421 (213 PDACs, 450

PNETs, 458 cysts)
-Ext 1 : 481 (DNIH , 399 PDACs)

- Portal phase only
- Ext 2 : 242 (78 PDACs)

DSC / Sen / Spe :
- Loc 1 : 65 (58-85) / 97 / 99

- Loc 2 - PNETs : 57 (25-86) / 94
/ 95

- Loc 2 - Cysts : 66 (52-88) / 95 /
95

- Ext 1 : 58 (41-80) / 97 / 93
- Ext 2 : NA / 91 / 91

Qu et al.
(2023b)

Use a CNN encoder and a transformer
encoder to extract local and global features,

and progressively fuse them in a single
decoder to perform lesion segmentation.

portal CT
223 (8

classes, 27
PDACs)

- Loc : 90 (8 classes, 11 PDACs)
- Ext 1 : 53 (8 classes, 0 PDACs)
- Ext 2 : 50 (8 classes, 6 PDACs)

DSC :
- Loc : 80.51 ± 19.62
- Ext 1 : 67.17 ± 34.58
- Ext 2 : 69.25 ± 27.29

DR :
- All : 91.71

Table 3.4 – Summary of methods for cancer patient detection based on lesion segmentation. For each article, we report
a summary of the approach, the modality used as input, the train dataset, the test sets and the evaluation measures on the test sets
as reported by the authors. f CV indicates that the results were obtained doing a f fold cross-validation procedure. A local (loc) set
consists of data originating from the same source as the training dataset, usually a validation or test hold-out set. On the other hand,
an external set (ext) includes data from an institution different from the one that provided the training set. DNIH and DMSD refer
to public datasets containing 80 and 281 abdominal CT scans, respectively. These datasets are detailed in Section 4. The mean Dice
similarity coefficient (DSC) for the lesion segmentation, sensitivity (Sen), specificity (Spe), detection rate (DR) are given in %. When
reported by the authors, standard deviations and inter-quartile ranges are indicated by ± and parenthesis, respectively. NA means the
information was not reported. AUC : Area under the curve, C2F : Coarse-to-fine, CNN : Convolutional neural network, CT : Computed
tomography, DMSD : Medical Segmentation Decathlon dataset, DNIH : National Institute of Health dataset, PDAC : Pancreatic ductal
adenocarcinoma.

classify a case as pathological if the number of voxels in the tumor or main pancreatic duct exceeds a certain
threshold. Some models additionally apply more advanced post-processing strategy. For instance, (Xia
et al., 2022) use a post-processing algorithm that evaluates uncertainty, quality, shape, and geometry of
each predicted lesion to enhance specificity by eliminating false positives. Other methods perform cancer
patient detection as an auxiliary task to lesion segmentation. To achieve this, a transformer is combined
with a U-Net to simultaneously conduct image classification and segmentation. Xia et al. (2021) use this
combination to classify non-contrast CT images into three classes : healthy patients, cancer patients, and
abnormal patients without cancer. Similarly, (Zhou et al., 2023) use a model to segment lesions and classify
multi-phase scans between healthy and nine different types of lesions. To better guide segmentation, the
transformer takes patient metadata (gender and age) as well as feature maps from the U-Net as input.

Table 3.4 provides a concise overview of the methodology and findings presented in articles performing
pancreas cancer patient detection based on lesion segmentation.
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3.3.3 Feature extraction for pancreas analysis

The last focal point of this review delves into methodologies designed to extract features that can
be subsequently used to provide information about the organ functional and structural properties. As
elucidated in Section 3.2.2.2, features can be categorized into two types : HCR, acquired through predefined
mathematical definitions, and DLR, automatically computed by CNNs.

3.3.3.1 Using hand-crafted radiomics

Numerous studies highlight the use of intermediate HCR features for diverse applications related to
pancreas analysis. The most extensively studied application involves the differentiation between healthy
patients and those with cancer. This differentiation is achieved through HCR features extracted from various
sources, including CT scans (Chu et al., 2019a), biopsies (Momeni-Boroujeni et al., 2017), or Endoscopic
Ultrasound (EUS) (Das et al., 2008; Ozkan et al., 2016; Săftoiu et al., 2008). Ozkan et al. (2016) opt to
train an age-specific classifier and demonstrate that this age calibration significantly enhances diagnostic
performance : they achieve accuracies of 92%, 88.5%, and 91.7% for models concerning < 40 years, 40-60
years, and > 60 years, respectively, compared to an accuracy of 85.7% for a single unified model. Zhang
et al. (2020a) delve deeper into diagnostics, seeking to classify healthy and prediagnostic CT scans. The
authors show that a support vector machine trained on 34 HCR achieves an AUC of 98% (95% CI : 94-98%)
for identifying prediagnostic cases (median interval between examination and diagnosis : 398 days). They
demonstrate that this automated method outperforms the consensus reached by two radiologists, whose
classification AUC is 66% (95% CI : 46-86%) (P< 0.001). Other applications are also reported : from texture
features extracted from EUS images, Zhu et al. (2013) distinguish cases of pancreatic cancer from chronic
pancreatitis. Zhang et al. (2021a) train a classifier to determine the grade of Pancreatic Neuroendocrine
Tumor (PNET) based on HCR features extracted from lesions seen in CT images. Using HCR extracted
from MRI scans of patients with Pancreatic Ductal Adenocarcinoma (PDAC), Kaissis et al. (2019) train a
random forest to predict whether the patient’s survival will be below or above the median overall survival.
These applications, summarized in Table 3.5, collectively highlight that relatively straightforward HCR
features possess significant potential for addressing a range of tasks related to pancreatic cancer analysis.

3.3.3.2 Using deep-learning radiomics

The second approach to feature extraction relies on CNNs, which are directly trained on images. As
explained in Section 3.2.2.2, these networks exhibit significant potential for identifying complex patterns
that contribute to the analysis of pancreatic tissue images. Primarily, their application is notably prevalent
in distinguishing between healthy and cancerous scans. In a study by Liu et al. (2020), image patches from
portal phase CT scans were classified using a CNN. These patches, sampled within the pancreas or lesions
through manual segmentation, contribute to enhancing the volume of available data. Another notable
approach by Qu et al. (2023a) incorporates a contrastive learning module, constraining the network to
recognize two patches from the same lesion, thus mandating the model to restore the integrity of the lesions.
Additionally, Liu et al. (2019a) adopts a distinctive strategy by acknowledging that pancreatic cancer
induces alterations in organ shape. They classify healthy and cancerous cases using pancreas segmentation,
where a U-Net generates the pancreas segmentation, modeling the parenchyma shape, and this shape is
then classified using a neural network.

Beyond cancer differentiation, Dmitriev et al. (2017) integrates portal CTs and demographic information
to differentiate the four most common types of cysts. To achieve this, two classifiers operate independently :
a random forest using quantitative features (age, gender, etc.), and a CNN operating on 2D slices. Another
study by Corral et al. (2019) reveals that a DL-based method achieves comparable performance to radio-
logists in classifying Intraductal Papillary Mucinous Neoplasm (IPMN) grades from MRI images. CNNs
are also applied in histological image analysis : Klimov et al. (2021) predict the risk of metastasis from
histological sections of PNET, while Kriegsmann et al. (2021) automatically classify 11 structures, inclu-
ding cancer, in pancreatic tissue samples. Table 3.6 compiles the methods and results for pancreas analysis
based on features extracted by CNNs.
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Ref Summary Input Train Test Results

Das et al.
(2008)

Differentiate PDAC tissue from
non-neoplastic tissue using a
NN-based classification model

trained on HCR.

EUS 319 (99 CPs, 110 PDACs) 50% of the training data AUC : : 0.93

Săftoiu
et al.
(2008)

Differentiate benign from
malignant patterns using a NN
trained from hue histograms.

EUS 114 (11 CPs, 32 PDACs, 3 PNETs) 10f CV
AUC : / Acc :

- Benign vs malignant : 0.957 /
95.31 ± 6.25

- CP vs PDAC : 0.965 / 90.01 ±
12.31

Zhu et al.
(2013)

Train a SVM on HCR for the
differential diagnosis of PDAC and

CP.
EUS 388 (262 PDACs, 126 CPs) LOO

- Sen : 96.25 ± 0.4460
- Spe : 93.38 ± 0.2076
- Acc : 94.2 ± 0.1749

Ozkan
et al.
(2016)

Differentiate cancer from
non-cancer patients using

age-based classifiers trained on
HCR.

EUS
- <40 years : 43 (13 PDACs)

- 40 - 60 years : 75 (27 PDACs)
- >60 years : 189 (110 PDACs)

Loc :
- <40 years : 25 (8 PDACs)

- 40 - 60 years : 75 (14 PDACs)
- >60 years : 189 (30 PDACs)

Sen / Spe / Acc :
- <40 years : 87.5 / 94.1 / 92

- 40-60 years : 85.7 / 91.7 / 88.5
- >40 years : 93.3 / 88.9 / 91.7

Momeni-
Boroujeni

et al.
(2017)

Distinguish between benign and
malignant biopsies using a NN

trained on HCR.

FNA
biopsy

192 (118 benigns, 74 malignants) 30% of the training data Acc : 100

Chu et al.
(2019a)

Differentiate cancer from
non-cancer patients using a RF

trained on HCR.
portal CT 255 (130 PDACs) Loc : 125 (60 PDACs)

- AUC : : 0.999
- Sen : 100
- Spe : 98.5
- Acc : 99.2

Kaissis
et al.
(2019)

Classify the survival (above vs
below median overall survival)
using a RF trained on HCR.

MRI 102 PDACs Loc : 30 PDACs
- AUC : : 0.90

- Sen : 87 [67.3, 92.7]
- Spe : 80 [74.0, 86.7]

Zhang
et al.

(2021a)

Train ML classifiers for the
identification of pathological

grades of PNETs based on HCR.

arterial
CT

62 PNETs Loc : 20 PNETs
AUC : :

- Grade 1 vs Grade 2 : 0.82
- Grade 2 vs Grade 3 : 0.70
- Grade 1 vs Grade 3 : 0.85

Mukherjee
et al.
(2022)

Differentiate cancer from
non-cancer patients at the

prediagnostic stage using a SVM
on HCR.

portal CT 292 (110 PDACs)
- Loc 1 : 128 (45 prediagnostic

PDACs)
- Loc 2 : 176 controls

- Ext : DNIH

AUC : / Sen / Spe / Acc :
- Loc 1 : 0.98 [0.94-0.98] / 95.5
[85.5-100.0] / 90.3 [84.3-91.5] /

92.2 [86.7-93.7]
Sen :

- Loc 2 : 92.6
- Ext : 96.2

Table 3.5 – Summary of pancreatic cancer analysis methods based on hand-crafted radiomics (HCR). For each article,
we report a summary of the approach, the modality used as input, the train dataset, the test sets, and the evaluation measures on the
test sets as reported by the authors. f CV and LOO indicate that the results were obtained doing a f fold cross-validation procedure
and a leave-one-out procedure, respectively. A local (loc) set consists of data originating from the same source as the training dataset,
usually a validation or test hold-out set. On the other hand, an external (ext) set includes data from an institution different from the one
that provided the training set. DNIH refers to a public dataset containing 80 abdominal CT scans. This dataset is detailed in Section 4.
The mean sensitivity (Sen), specificity (Spe), accuracy (Acc) are given in %. When reported by the authors, standard deviations and
95% confidence intervals are indicated by ± and brackets, respectively. AUC : Area under the curve, CP : Chronic pancreatitis, CT :
Computed tomography, EUS : Endoscopic ultrasound, FNA : Fine needle aspiration, HCR : Hand-crafted radiomics, ML : Machine
learning, DNIH : National Institute of Health dataset, NN : Neural network, PDAC : Pancreatic ductal adenocarcinoma, RF : Random
forest, SVM : Support vector machine.

3.3.4 Pancreatic cancer detection from a clinical perspective

We conclude this literature review with a concise overview of four research articles that focus on clinically
oriented research : Cao et al. (2023); Chen et al. (2023); Korfiatis et al. (2023); Park et al. (2023). In contrast
to the articles presented above where the emphasis was on methodology, the articles in this section stand
out for employing simple yet extensively validated DL methods for pancreatic cancer detection. We detail
the results of these articles in Table 3.7 and discuss their commonalities : objectives, straightforward yet
robust methodological approaches, large training datasets, extensive validation studies across different
cohorts, and comparisons with the performance of radiologists.

3.3.4.1 Objectives

The four studies presented in this section aim to detect pancreatic cancer using DL methods. Specifi-
cally, Chen et al. (2023) and Korfiatis et al. (2023) classify a patient as cancerous/non-cancerous, while Park
et al. (2023) classify a patient as having a lesion (solid or cystic) or being healthy. Cao et al. (2023) seek to
detect and classify the seven most common types of pancreatic lesions. While Chen et al. (2023), Korfiatis
et al. (2023), and Park et al. (2023) use contrast-enhanced CT scans as input, Cao et al. (2023) develop a
model operating on non-contrast CT scans. This modality is well-suited for large-scale screening as it ex-
poses the patient to lower radiation doses and avoids the side effects of contrast agents. However, detecting
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Ref Summary Input Train Test Results

Dmitriev
et al.
(2017)

Train separately two classifiers : a
RF trained on meta-data and a

CNN trained on images. Combine
the two probability vectors to

classify the 4 most common cysts.

portal CT 134 (4 cyst classes) 10f CV Overall Acc : 83.6

Corral
et al.
(2019)

Identify neoplasia in IMPN using
CNN.

MRI 139 (60 high-grade dysplasia) 10f CV AUC : 0.78 [0.71-0.85]

Liu et al.
(2019a)

Differentiate cancer from
noncancer patients using the
pancreas segmentation mask.

portal CT 436 (136 PDACs) 4f CV - Sen : 80.2 ± 0.5
- Spe : 90.2 ± 0.2

Liu et al.
(2019c)

Differentiate cancer from
noncancer patients with a CNN
using the image combined with

the pancreas mask generated by a
first segmentation model.

portal CT 336 (126 PDACs) 4f CV - Sen : 92
- Spe : 97

Liu et al.
(2020)

Differentiate cancer from
noncancer patients using DL on

patches sampled from the
pancreas and tumor.

portal CT 551 (295 PDACs)
- Loc 1 : 139 (75 PDACs)
- Loc 2 : 189 (101 PDACs)
- Ext : 364 (DNIH , DMSD)

Sen / Spe / Acc :
- Loc 1 : 98.6 / 97.3 / 100
- Loc 2 : 98.9 / 99.0 / 98.9
- Ext : 83.2 / 79.0 / 97.6

Zhang
et al.

(2020b)

Detect pancreatic cancer using a
faster RCNN.

portal CT 2650 PDACs Loc : 240 PDACs
- AUC : 0.9455
- Sen : 83.76
- Spe : 91.79
- Acc : 90.18

Krieg-
smann
et al.
(2021)

Identification of different
anatomical tissue structures and
diseases on histopathological
images of pancreatic tissue

specimens.

WSI
81 164 patches (11 classes, including

16515 PDACs)
20% of the training data

BAcc :
- Malignant : 81.84
- Benign : 96.53

Zhou et al.
(2023)

Joint segmentation and
classification between controls

pancreas / PDAC / 8 other lesion
subtypes using a 3D U-Net and a
transformer. The latter takes the
feature maps of the former +

additional meta-data.

multiphase
CT

2372 (10 classes, 1088 PDACs) Loc : 724 (10 classes, 283 PDACs) - Acc : 82.9
- BAcc : 56.2

Qu et al.
(2023a)

Three-step framework based on
shape normalization, MIL and
fine-tuning of the classification

threshold.

portal CT 310 (164 PDACs)
- Loc : 5f CV

- Ext : 316 (150 PDACs)
- DMSD

AUC / Sen / Spe / Acc :
- Loc : 0.948 ± 0.004 / 88.8 ± 1.5

/ 89.1 ± 2.2 / 89.0 ± 0.8
- Ext : 0.960 ± 0.003 / 92.5 ± 2.4

/ 88.7 ± 2.6 / 90.6 ± 0.6
Sen / Acc :

- DMSD : 0.935 ± 0.020 / 93.5 ±
2.0

Table 3.6 – Summary of methods for pancreas classification based on CNNs. For each article, we report a summary of
the approach, the modality used as input, the train dataset, the test sets and the evaluation measures on the test sets as reported
by the authors. f CV indicates that the results were obtained doing a f fold cross-validation procedure. A local (loc) set consists of
data originating from the same source as the training dataset, usually a validation or test hold-out set. On the other hand, an external
(ext) set includes data from an institution different from the one that provided the training set. DNIH and DMSD refer to public
datasets containing 80 and 281 abdominal CT scans, respectively. These datasets are detailed in Section 4. The mean sensitivity (Sen),
specificity (Spe), accuracy (Acc), balanced accuracy (BAcc) are given in %. When reported by the authors, standard deviations and 95%
confidence intervals are indicated by ± and brackets, respectively. AUC : Area under the curve, CNN : Convolutional neural network,
CT : Computed tomography, DL : Deep learning, MIL : Multiple instance learning, MRI : Magnetic resonance imaging, DMSD : Medical
Segmentation Decathlon dataset, DNIH : National Institute of Health dataset, PDAC : Pancreatic ductal adenocarcinoma, RF : Random
forest, RCNN : Region-based convolutional neural network, WSI : Whole slide imaging.

pancreatic cancer in non-contrast images is challenging for radiologists, even experienced ones, making a
diagnostic aid tool essential.

3.3.4.2 Methods

These clinical papers employ simple methodological approaches : Park et al. (2023) opt for a basic
segmentation model based on a 3D nnU-Net, followed by a simple heuristic based on the number of voxels
belonging to the predicted lesion. Chen et al. (2023) and Korfiatis et al. (2023) develop a classification model
based on a 3D CNN. This CNN takes a two-channel ROI as input : the image and a binary segmentation
mask of the pancreas. This mask is generated by a first segmentation network performing pancreas and
lesion segmentation, but the resulting segmentations are combined into a binary mask to avoid negatively
impacting the classification model if the first model confuses the lesion with the pancreas. Cao et al.
(2023) propose a three-step methodology : pancreas localization, lesion detection, and lesion classification.
First, a pancreas segmentation model generates an ROI, which is then fed into a second model performing
segmentation and binary classification (normal vs. abnormal pancreas). If the classification score exceeds
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a certain threshold, the ROI is passed to a third model, a U-Net combined with a transformer, which
segments the lesion and classifies it into eight categories. As mentioned earlier, Cao et al. (2023) train
their models on non-contrast images. Since these images are challenging for radiologists to interpret, the
annotations required for model training are difficult to obtain. To overcome this challenge, annotations are
performed by radiologists on the portal phase and then transferred to the non-contrast phases through
registration.

3.3.4.3 Training data

The models are trained on large datasets, often exceeding 1000 samples : Cao et al. (2023), Chen et al.
(2023), Korfiatis et al. (2023), and Park et al. (2023) train their methods on 852, 1023, 1776, and 3,208
patients, respectively. The proportions of pathological cases vary : 39% (Korfiatis et al., 2023), 43% (Chen
et al., 2023), 59% (Park et al., 2023), 71% (Cao et al., 2023). For enhanced robustness, Chen et al. (2023)
and Park et al. (2023) train multiple models following a cross-validation approach and ensemble the different
models obtained during inference. After training, the models are validated on various test cohorts.

3.3.4.4 Validation of the methods

Local and external test sets In addition to testing on local data (i.e., data from the same source as the
training data), the methods are evaluated on external data to assess their generalization ability. Thus, the
methods of Cao et al. (2023), Chen et al. (2023), and Park et al. (2023), trained on single-center data,
are validated on external datasets consisting of 589, 1473, and 5337 patients, respectively. Notably, the
external dataset of Chen et al. (2023) includes data from multiple institutions in Taiwan, and the external
dataset of Cao et al. (2023) aggregates data from nine centers. Korfiatis et al. (2023) gather various public
datasets for external validation. We present the results on these different cohorts in Table 3.7.

Real-world cohorts While external cohorts allow assessing the model performance on unseen data, they
do not evaluate the model performance in real-world scenarios. To bridge the clinical translation gap, Cao
et al. (2023) and Korfiatis et al. (2023) test their methods on “real-world” cohorts, i.e., cohorts displaying
low lesion prevalence or prevalence comparable to those encountered in routine clinical practice.

Korfiatis et al. (2023) bootstrap their local test cohort to simulate a cancer prevalence like that in a po-
pulation with diabetes, ranging from 1 to 5%. The authors achieve an AUC of 0.97, similar to that obtained
on internal data. Additionally, Cao et al. (2023) use a cohort of 16,429 patients, with a lesion prevalence
of 1%, obtaining a sensitivity and a specificity of 84.6% and 99.0% for lesion detection, respectively. After
retraining the model using challenging examples and excluding control cases with peri-pancreatic diseases,
the updated model achieves a lesion detection and PDAC identification with a specificity of 99.9% on a
new cohort of 4,110 patients wherein the lesion prevalence is 4%. Their model successfully identifies PDAC,
IPMN and chronic pancreatitis with a sensitivity of 99.5%, 92.6%, and 99.0%, respectively.

Additional test cohorts Other test cohorts are assembled to further refine the analysis of the models
generalization capabilities. For instance, Korfiatis et al. (2023) create a local cohort comprising 100 pre-
diagnostic exams, with a median time of 475 days before clinical diagnosis. Despite being trained only on
large lesions, the method detects cancers in pre-diagnostic exams with an AUC of 0.91. Similarly, Cao et al.
(2023) form a cohort containing thoracic exams and demonstrate that, despite being trained on abdominal
images, their model can detect lesions with an AUC of 0.979. Notably, this performance is achieved without
the need for domain adaptation, signifying that the model operates effectively without specific tuning on
chest CT scans.

Subgroup analysis Subgroup analyses are systematically conducted on small lesions since their detection
implies early diagnosis. Cao et al. (2023) report sensitivities of 85.7% and 92.2% for the detection of PDACs
< 2cm in their internal and external test cohorts, respectively. Chen et al. (2023) report sensitivities of
38% and 16% for the detection of cysts < 1cm in their internal and external test cohorts, respectively. Park
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Ref Summary Input Train Test Results

Chen et al.
(2023)

Cross-validation ensembling CNNs
performing pancreas and tumor

segmentation and apply a
heuristic to differentiate cancer

from non-cancer patients.

portal CT 1023 (437 PDACs) - Loc : 256 (109 PDACs)
- Ext : 1473 (669 PDACs)

AUC / Sen / Spe :
- Loc : 0.96 [0.94, 0.99] / 89.9
[82.7, 94.9] / 95.9 [91.3, 98.5]
- Ext : 0.95 [0.94, 0.96] / 89.7
[87.1, 91.9] / 92.8 [90.8, 94.5]

Park et al.
(2023)

Cross-validation ensembling 3D
nnU-Nets performing pancreas

and lesion segmentation. Then, a
heuristic differentiates healthy
from pathological patients (solid

or cystic lesion).

portal CT
852 (503 with solid
and cystic neoplams)

- Loc : 603 (133 with solid and
cystic neoplams)

- Ext : 589 (114 with solid and
cystic neoplams)

AUC / Sen / Spe / Acc :
- Loc : 0.91 [0.89, 0.94] / 90.2
[83.9, 94.7] / 85.1 [81.6, 88.2] /

86.2 [83.2, 88.9]
- Ext : 0.87 [0.84, 0.89] / 83.3
[75.2, 89.7] / 82.7 [79.0, 86.0] /

82.9 [79.6, 85.8]

Korfiatis
et al.
(2023)

Differentiate cancer from
non-cancer patients using a CNN
which takes as input the image

and a binary pancreas mask. The
latter is generated by a first

segmentation model and includes
the tumor (if segmented).

portal CT 1776 (696 PDACs)

- Loc 1 : 1238 (409 PDACs)
- Loc 2 : 234 (100 prediagnostic

PDACs)
- Loc real-world : Loc 1

bootstrapped 1000 times to reach
a PDACs prevalence in 1-5%

- Ext public : 80 from DNIH , 152
from DMSD, 42 from CPTAC

AUC / Sen / Spe / Acc :
- Loc 1 : 0.97 [0.96, 0.98] / 88 [85,

91] / 95 [93, 96] / 92 [91, 94]
- Loc 2 : 0.91 [0.86, 0.94] / 75 [67,

84] / 90 [85, 95] / 84 [79, 88]
- Ext public : 0.90 [0.86, 0.95] / 88
[83, 92] / 83 [74, 90] / 86 [82, 90]

AUC / Sen / Pre / Acc :
- Loc real-world : 0.97 [0.94, 0.99]
/ 92 [86, 95] / 71.1 [60, 08] / 95

[94, 95]

Cao et al.
(2023)

Differentiate cancer from
non-cancer patients using a

three-steps approach : pancreas
localization (U-Net), lesion

detection (U-Net based), lesion
classification (U-Net +

transformer). Use manual
segmentations done on portal CT,

aligned on non-contrast CT.

non-
contrast
CT

3208 (1431 PDACs,
839 non-PDACs)

- Loc : 902 (475 PDACs, 311
non-PDACs)

- Loc chest CT : 492 (63 PDACs,
51 non-PDACs)

- Loc real-world : 16 429 (44
PDACs, 135 non-PDACs)

- Ext : 5337 (2737 PDACs, 932
non-PDACs)

AUC / Sen / Spe :
- Loc : 0.996 [0.991–1.00] / 94.9

[91.4–97.8] / 100 [100–100]
- Loc chest CT : 0.979

[0.962–0.993] / 86.0 [79.4–91.9] /
98.9 [97.8–100]

- Loc real-world : NA / 84.6
[79.4–89.9] / 99.0 [98.9–99.2]

- Ext : 0.984 [0.980–0.987] / 93.3
[92.5–94.1] / 98.8 [98.3–99.4]

Table 3.7 – Summary of clinical studies using deep learning-based methods for pancreas cancer classification. For each
article, we report a summary of the approach, the modality used as input, the train dataset, the test sets and the evaluation measures
on the test sets as reported by the authors. f CV indicates that the results were obtained doing a f fold cross-validation procedure. A
local (loc) set consists of data originating from the same source as the training dataset, usually a validation or test hold-out set. On
the other hand, an external (ext) set includes data from an institution different from the one that provided the training set. DNIH and
DMSD refer to public datasets containing 80 and 281 abdominal CT scans, respectively. These datasets are detailed in Section 4. CPTAC
refers to a public dataset containing 108 adbominal exams including 42 portal CTs (Consortium, 2018). The mean sensitivity (Sen),
specificity (Spe), accuracy (Acc), precision (Pre) are given in %. When reported by the authors 95% confidence intervals are indicated by
brackets. NA means the information was not reported. AUC : Area under the curve, CNN : Convolutional neural network, CT : Computed
tomography, DMSD : Medical Segmentation Decathlon dataset, DNIH : National Institute of Health dataset, PDAC : Pancreatic ductal
adenocarcinoma.

et al. (2023) report sensitivities of 87.5% and 74.7% for the detection of lesions < 2cm in their internal and
external test cohorts, respectively. Finally, Korfiatis et al. (2023) report sensitivities of 80% and 76% for
the detection of lesions < 2cm in their internal and external test cohorts.

3.3.4.5 Evaluating performance against radiologists

Finally, these clinically oriented papers propose to compare the performance of their DL-based methods
with the performance of radiologists. In particular, Park et al. (2023) show that their DL model exhibits
similar sensitivities to radiologists for the detection of solid lesions of any size. Regarding cystic lesions,
the DL model is comparable to radiologists for lesions measuring at least 1cm but shows significantly lower
sensitivity for sub-centimeter cystic lesions. However, these small cysts tend to remain stable and have
little clinical impact (Park et al., 2023).

From a cohort of 291 patients with surgical or biopsy pathology diagnoses, Cao et al. (2023) demonstrate
that their method performs significantly better than a pool of 33 radiologists for lesion detection : the
method outperforms them by +14.7% in sensitivity and +6.8% in specificity. The improvement is even more
pronounced for PDAC detection : +34.1% in sensitivity and +6.3% in specificity. A second analysis on the
same cohort shows that the DL method, operating on contrast-free scans, either matches or outperforms
the average performance of 15 radiologists using contrast-enhanced scans.
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3.4 Conclusion

In this section, we have reviewed various existing deep learning approaches for pancreas segmentation,
pancreatic lesion detection, and feature extraction for pancreas analysis.

Pancreas segmentation Pancreas segmentation encounters challenges due to its complex geometry and
surroundings. Its small and elongated volume, along with several nearby structures, and low contrast
at its extremities, require processing both global and local information. Multiple strategies have been
proposed in attempts to combine these different levels of information : 3D methods may not be inherently
suitable as the pancreas occupies a small fraction of abdominal CT, but 2D methods lack the essential
spatial context for pancreas localization. Various compromises have been attempted, including inter-slice
regularization, 2.5D inputs, and CNNs integrating both 2D and 3D operations. Coarse-to-fine approaches
(C2F), involving the division of the segmentation task into localization and fine segmentation, are the
most widely used. The first step benefits from the complete spatial context, while the second step obtains
information at the pancreas scale. However, these two steps are often optimized independently despite
their intrinsic interdependence. Some authors tried to optimize both steps end-to-end, but computational
capabilities limit this possibility. Moreover, the efficiency of C2F methods can be enhanced : the number
of parameters is significantly increased due to the introduction of two models, and the extraction of the
same low-level features is repeated in different stages. In response to this, methods aim to improve learning
efficiency through attention modules trained to filter and amplify relevant signals. Some papers have also
explored strategies to process information at different scales in a single model. For this purpose, methods
have proposed varying receptive field sizes or exploiting feature maps from different stages of a U-Net.
However, like C2F methods, these approaches introduce a large number of additional parameters. More
recently, authors have demonstrated the benefits of coupling transformers with U-Nets to combine the
global information extracted by transformers with the local information extracted by U-Nets. While all
these methods have tried to tackle the complexities associated with pancreas segmentation, there has been
little focus on rectifying segmentation errors that hold clinical significance. We analyzed a state-of-the-art
method, the nnU-Net proposed by Isensee et al. (2021a), and observed that problematic errors occur at
the extremities of the pancreas.

Consequently, this thesis introduces a novel approach to rectify these errors. The proposed method,
presented in Chapter 5, leverages geometric priors to locally adjust the sensitivity of the segmentation in a
model-agnostic manner. Notably, this approach succeeds in substantially improving the segmentation at the
extremities of the organ, without compromising the overall segmentation quality.

Lesion detection The detection of pancreatic lesions currently remains an active area of research. The
detection task typically involves an initial lesion segmentation step, facing similar challenges as paren-
chymal segmentation. As illustrated by Tables 3.3 and 3.1b, the DSC do not exceed 67% and 62% on
the training and testing splits of the Medical Segmentation Decathlon dataset, respectively. To facilitate
the segmentation, authors incorporate additional information, either through anatomical information (e.g.,
simultaneous pancreatic duct segmentation) or by adding imaging phases. The first strategy requires addi-
tional manual annotations, and the second strategy raises issues related to image registration. In any case,
these strategies underscore the value of adding information. This additional information is particularly
helpful in detecting isodense lesions or distinguishing lesions from other pathologies, such as fatty pancreas
or chronic pancreatitis. This rationale aligns with the radiologists’ practice of focusing on secondary signs,
as described in Section 2.3.5. Therefore, in Chapter 6, we propose a lesion detection method that explicitly
incorporates a secondary sign of significant importance, namely, the dilatation of the main pancreatic duct.

To achieve this, we suggest jointly segmenting the pancreas, the lesion and the main pancreatic duct.
The resulting segmentations are leveraged to extract features which are subsequently used to predict the
presence of a lesion and the dilatation of the main pancreatic duct. Developed on an extensive training
cohort of over 2000 patients, this method has been evaluated on an external test cohort comprising 756
patients, demonstrating its robustness.
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Feature extraction for pancreas analysis As seen in Section 3.3.3, most methods that extract radiomics
features (HCR or DLR) from images use them for detecting patients with cancer. However, quantitative
results show that segmentation-based methods are more effective for this task. Therefore, as presented
in Table 3.7, many large-scale clinical studies prefer to use segmentation for cancer patient detection.
Nonetheless, we posit that feature extraction can provide significant value in identifying secondary signs
of pancreatic cancer, which are essential for early detection as they may manifest before the clear onset of
the tumor.

In Chapter 7, we introduce two methods for detecting secondary signs of pancreatic cancer.
Starting with the detection of abnormal pancreatic shapes, we introduce a VAE-based approach to learn

a normative model of healthy pancreatic shapes. This normative model is then leveraged to detect abnormal
shapes. The model is learnt on a large database of 1200 healthy pancreas shapes and subsequently evaluated
on a separate test set of 224 pancreas from patients with mixed conditions.

Then, we expand this work to identify four secondary signs of pancreatic cancer : abnormal shape,
atrophy, senility, and fat replacement. Our method combines predefined HCR with DLR features. A non-
redundancy constraint between these two types of features is used in order to extract complementary DLR
features. Then, the two sets of radiomics are combined and used to detect the secondary signs. Experiments
highlight the value of combining non-redundant DLR and HCR features, as evidenced by an improvement
in the detection performance compared to methods that do not address redundancy or solely rely on HCR
features.



Chapitre 4

Datasets

4.1 Preface

The creation of a large database stood as the primary focus during the initial months of this thesis.
This phase was not only essential for this work but also aligned directly with Guerbet’s strategic objective of
product launch. Although less research-oriented, these activities played an indispensable role in implementing
high-quality experiments, ensuring the overall success of the thesis project.

The initiation of the database work involved the formulation of working hypotheses to identify the requi-
site data and annotations. Then, computer development efforts were undertaken to systematically collect,
clean, and organize the data. This process unfolded progressively as data were delivered by various suppliers,
leading to the utilization of distinct datasets for each of the articles published throughout this thesis. The
database went from zero patient exams in April 2021 to a total of over 2800 patient exams by January
2024, including the integration of two public databases into our repository.

In this section, we present the diverse datasets employed in this research project. Particular emphasis will
be placed on detailing the Care Advisor for Pancreas database (refered to as DCAPA), Guerbet’s proprietary
database specifically designed for pancreatic research. Subsequently, we detail the process of annotations
implemented for all the acquired images.
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4.2 Data

The work presented in this thesis leverages a combination of public and private datasets, the latter
belonging to Guerbet.

4.2.1 Public

The public datasets employed in this study include two datasets widely adopted by the scientific com-
munity for the development of Artificial Intelligence (AI) methods for pancreatic applications. We present
an overview of their content, acquisition parameters, as well as the provided annotations.

4.2.1.1 National Institute of Health

Overview The National Institute of Health (NIH) clinical center provides whole abdomen Computed
Tomography (CT) scans of healthy pancreases for public use (Roth et al., 2016a). This dataset is widely
used by the medical imaging community for the development of pancreas segmentation algorithms (see
Table 3.2). It is also commonly employed as a control cohort in problems involving the classification of
cancer versus non-cancer cases (see Tables 3.4, 3.5, 3.6 and 3.7).

Content This dataset contains contrast-enhanced 3D CT scans (approximately 70 seconds after intrave-
nous contrast injection in the portal-venous phase) of 80 subjects with morphologically normal pancreases.
We refer to this dataset as DNIH . Among the 80 subjects, 17 are healthy kidney donors scanned before
nephrectomy. The remaining 63 were selected by a radiologist from patients without major abdominal pa-
thologies nor pancreatic cancer lesions. The cohort consists of 53 males and 27 females, with ages ranging
from 18 to 76 years and a mean age of 46.8 ± 16.7.

Image Acquisition CT scans in this dataset were acquired using Philips and Siemens MDCT scanners
with a tube voltage of 120 kVp. More information about image resolutions and pixel sizes are shown in
Table 4.1.

Image Annotations Reference annotations for pancreas segmentations were performed through slice-by-
slice manual segmentation by a medical student, subsequently verified and modified by an experienced
radiologist.

Figure 4.1 shows a portal CT scan from the DNIH dataset, along with the corresponding manual
segmentation of the pancreas.

Figure 4.1 – Healthy pancreas from the DNIH dataset (Roth et al., 2016a). Portal CT image (left) and corresponding manual
segmentation (right). The pancreas is outlined in red. CT : Computed tomography, NIH : National Institute of Health dataset.
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4.2.1.2 Medical Segmentation Decathlon

Overview As previously detailed (see Section 3.2.3.6), the Medical Segmentation Decathlon (MSD) is
a renowned challenge launched to assess and compare the efficacy of medical image segmentation algo-
rithms across diverse anatomical structures and imaging modalities (Antonelli et al., 2022). Initiated in
2018 as part of the International Conference on Medical Image Computing and Computer Assisted Inter-
vention (MICCAI), this challenge includes ten segmentation tasks, each associated with a distinct anato-
mical structure. The datasets employed in these tasks have been made openly accessible to the research
community, promoting transparency, collaboration, and benchmarking. For this thesis, we used the MSD
pancreas dataset, specifically intended for pancreas and pancreatic lesion segmentation and therefore wi-
dely adopted by researchers developing pancreatic segmentation algorithms and lesion detection methods
(see Tables 3.2, 3.3, 3.4, 3.6, and 3.7).

Content The MSD pancreas dataset consists of 281 portal CT scans obtained from 281 distinct patients.
We denote this dataset as DMSD. These images are sourced from patients undergoing resection of pancreatic
masses (Intraductal Papillary Mucinous Neoplasm (IPMN), Pancreatic Neuroendocrine Tumor (PNET),
or Pancreatic Ductal Adenocarcinoma (PDAC)). Yet, information about the exact lesion type for a given
CT is not available.

Image Acquisition Data acquisition occurred at the Memorial Sloan Kettering Cancer Center in New
York, US, and portal venous phase CT scans were obtained for each patient. Some reconstruction and
acquisition parameters, as reported by Simpson et al. (2019), are shown in Table 4.1.

Image Annotations Expert abdominal radiologists manually segmented the pancreatic parenchyma and
pancreatic masses (cysts or tumors) using the Scout application (Dawant et al., 2007). Segmentations were
publicly available for the 281 cases of DMSD.

4.2.1.3 Discussion

While these two public datasets contribute significantly to the research community by providing manual
segmentations and facilitating benchmarking, they present notable limitations.

First, the total number of cases is highly insufficient for clinical applications. This raises concerns
regarding potential overfitting within the Deep Learning (DL) community working on pancreas imaging,
particularly in the domain of pancreas segmentation, where the majority of methods are benchmarked
against the DNIH dataset (see Table 3.2).

Secondly, both datasets lack essential information regarding patient demographics and clinical status.
Thirdly, the control cases within the DNIH dataset may not be fully representative of real-world pan-

creases, as they predominantly consist of a notably young and healthy population (mean age : 46.8 ± 16.7
years, with 20% being kidney donors). Despite some cases in the DNIH dataset exhibiting ageing characte-
ristics such as atrophy, fat replacement, and a visible main pancreatic duct (see Figure 4.2), these instances
are limited. Moreover, even with optimal image quality, some manual segmentations in the DNIH dataset
were found to underestimate and miss portions of the pancreas (Suman et al., 2021). Ultimately, while the
initial release of the DNIH dataset in 2015 included 82 cases, an updated version in 2020 revealed that
three cases originated from the same CT scan, differing only in minor cropping. Consequently, the dataset
was adjusted to a total of 80 unique cases. Prior studies using this dataset may have inadvertently included
these duplicates, potentially introducing bias into their findings. In this thesis, we exclusively used the
revised dataset, accounting for the corrected count of 80 distinct cases.

Regarding the pathological cases within the DMSD dataset, Suman et al. (2021) discovered that ap-
proximately 25% of them exhibited a biliary stent 1 (see Figure 4.3), and two cases showed imaging features
suggestive of post-chemotherapy status. The presence of biliary stents poses a significant challenge as it

1. A biliary stent is a thin, hollow tube that is placed in the bile duct. The stent holds the duct open after the duct has been blocked
or partly blocked.
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(a) Patient showing a healthy pancreas with fat replacement (yellow arrows).

(b) Patient with a healthy pancreas. The main pancreatic duct is not dilated but is visible (white
arrows).

Figure 4.2 – Healthy cases from DNIH exhibiting benign characteristics. Portal CT images (left) and their corresponding
manual segmentations (right). The pancreas is outlined in red. CT : Computed tomography, DNIH : National Institute of Health dataset.

can introduce biases in AI models (Rueckel et al., 2020) and create artifacts that obscure the delineation of
tumors. Furthermore, the DMSD dataset lacks information about the pathological status (clinical details,
treatment history, histopathology) of the patients. Specifically, information about the exact pathology of
pancreatic tumors in each CT scan within the DMSD dataset is not publicly available.

Figure 4.3 – Patient from the DMSD dataset with a heterogeneous area (outlined in blue) in the head of the pancreas.
A biliary stent is indicated by a white arrow. Portal CT image (left) and corresponding manual segmentation (right). The pancreas
is outlined in red. Image from the DMSD dataset (Antonelli et al., 2022). CT : Computed tomography, DMSD : Medical Segmentation
Decathlon dataset.

Therefore, the existing limitations in both the DNIH and DMSD datasets highlight the need for Guerbet
to gather more comprehensive datasets for pancreatic imaging, including diverse patient demographics,
detailed clinical information, and a broader spectrum of pathological cases. The acquisition of such data
aims to not only enhance the robustness and generalizability of Guerbet’s AI models but also contribute to
a more accurate representation of the complexities associated with pancreatic diseases in real-world clinical
scenarios.
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DNIH DMSD

Country USA USA
Number of patients 80 281

Gender Male : 53
Female : 27

NA

Age 46.8 ± 16.7 NA
Number of portal studies 80 281

Manufacturer Philips, Siemens NA
Voxel size in z (mm) 0.99 ± 0.06 2.90 ± 0.98

Voxel size in x-y (mm) 0.85 ± 0.09 0.81 ± 0.09
Tube voltage (kVp) 120 120

Scan delay (s) ≈ 70 80-85

Table 4.1 – Demographic and technical information per institution for the two public pancreas datasets, as reported
by Roth et al. (2016a); Simpson et al. (2019). If not specified, data are means ± standard deviations. Square brackets indicate
ranges. DMSD : Medical Segmentation Decathlon dataset, DNIH : National Institute of Health dataset, NA : Not available.

4.2.2 Private datasets

4.2.2.1 Pancreas database

Overview The Care Advisor for Pancreas database, refered to as DCAPA, was created exclusively for
Guerbet’s pancreatic cancer AI project. Its collection was seamlessly integrated into the initial half of
the thesis work, representing an important aspect of the research work. The creation of this database
required discussions with radiologists to define the needs in terms of data and annotations, and computer
development to clean and organize the data within the Guerbet database. We exclusively collected images
featuring pathological pancreas conditions, with a notable emphasis on PDACs.

The DCAPA dataset was annotated following the annotation process detailed in Section 4.3.

Technical specifications The primary focus of the database centers on portal phase scans, a systematic
modality in abdominal examinations and on which pancreatic cancers are frequently missed (see Chap-
ter 2), particularly when they display iso-enhancement, as depicted in Figure 4.4. Focusing on portal phase
scans holds the potential to significantly decrease the mortality rate of pancreatic cancer by enhancing
radiologists’ sensitivity in this specific modality. Consequently, the designated modality requirements were
defined as either a multi-phase exam, including at least a portal phase contrast CT scan, or a single-phase
exam featuring a portal phase contrast CT scan of the abdomen. Technical specifications stipulated that
images should be in DICOM format with a voxel size of less than 3mm in the z-axis.

Inclusion and exclusion criteria The formulation of inclusion and exclusion criteria was a meticulous
process guided by insightful discussions with radiologists. Inclusion criteria targeted patients showing solid
lesions (notably PDAC), patients with cystic pancreas (irrespective of benign or malignant nature) or
patients with normal yet ageing pancreas conditions. The diagnosis of PDAC was confirmed either by
examining biopsy reports or by referencing the C25 code in the International Classification of Diseases, 10th
Revision (ICD) (DiSantostefano, 2009). Similarly, cystic lesions were identified based on their respective
codes in the ICD. Figures 4.5a and 4.6a showcase examples of solid lesions, whereas Figure 4.5b illustrates a
case of a cystic lesion. In addition, efforts were made to include a broad spectrum of pancreatic conditions,
including cases of pancreatitis and fat replacement (see Figure 4.6). Rigorous exclusion criteria were applied,
excluding studies acquired post-treatment (drug or surgery) and patients with biliary stents.

Content The creation of DCAPA started at the beginning of the thesis and was then carried out pro-
gressively as data were delivered by the various suppliers. By January 2024, the dataset contained nearly
2500 portal CT scans sourced from five institutions, covering a spectrum of single-phase and multi-phase
acquisitions (non-enhanced, arterial, portal, and delayed). Distinct sub-datasets are identified based on
their originating institutions, categorized by their respective countries of origin : DBR,1 from Brazil, DFR,1

and DFR,2 from France, and DUS,1 and DUS,2 from the USA. The key characteristics for each institution
are summarized in Table 4.2.



4.2. DATA 79

(a) 71-year-old woman with iso-enhancing PDAC.

(b) 78-year-old woman with iso-enhancing PDAC.

Figure 4.4 – Images from DCAPA dataset showing iso-enhancing PDACs. Portal CT images (left) and their corresponding
manual segmentations (right). The pancreas and the lesion are outlined in red and blue, respectively. CT : Computed tomography,
DCAPA : Care Advisor for Pancreas dataset, PDAC : Pancreatic ductal adenocarcinoma.

(a) 79-year-old man with hypo-enhancing PDAC and densification of peri-pancreatic fat (yellow arrows).
The pancreas is atrophic (white arrows).

(b) 59-year-old woman with benign hypo-enhancing branch-duct IPMN.

Figure 4.5 – Solid and cystic lesions from DCAPA dataset. Portal CT images (left) and their corresponding manual segmentations
(right). The pancreas and the lesion are outlined in red and blue, respectively. CT : Computed tomography, DCAPA : Care Advisor for
Pancreas dataset, IPMN : Intraductal papillary mucinous neoplasm, PDAC : Pancreatic ductal adenocarcinoma.
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(a) Patient with hypo-enhancing PDAC. The pancreas shows severe atrophy (white arrows) and fat
replacement (yellow arrow) in the body and tail, as well as inflammatory stranding in the head (cyan
arrow) due to pancreatitis.

(b) 60-year-old woman with benign hypo-enhancing branch-duct IPMN. The pancreas exhibits fat
replacement (white arrows).

Figure 4.6 – Pathological cases from DCAPA dataset. Portal CT images (left) and their corresponding manual segmentations
(right). The pancreas and the lesion are outlined in red and blue, respectively. CT : Computed tomography, DCAPA : Care Advisor for
Pancreas dataset, IPMN : Intraductal papillary mucinous neoplasm, PDAC : Pancreatic ductal adenocarcinoma.

Institution DBR,1 DFR,1 DFR,2 DUS,1 DUS,2

Country of origin Brazil France France USA USA
Number of patients 1004 244 155 691 353

Gender Male : 429
Female : 575

Male : 133
Female : 112

NA : 155
Male : 301
Female : 284
NA : 106

Male : 175
Female : 178

Age 61.77 ± 14.43 NA NA NA 65.65 ± 10.65
Number of portal studies 1004 244 148 699 402

Manufacturer
GE : 52

Philips : 865
Siemens : 25
Toshiba : 47
NA : 15

NA NA
GE : 230

Philips : 133
Siemens : 236
Toshiba : 101

Canon : 1
GE : 184
Hitachi : 1
Philips : 163
Siemens : 47
Toshiba : 8

Voxel size in z (mm) 1.80 ± 0.45 1.31 ± 0.62 1.32 ± 0.25 2.52 ± 0.64 2.78 ± 1.32
Voxel size in x-y (mm) 0.81 ± 0.10 0.78 ± 0.12 0.77 ± 0.09 0.78 ± 0.10 0.76 ± 0.09
Tube voltage (kVp) 119.70 ± 6.70 NA 110.8 ± 12.62 118.26 ± 6.20 119.64 ± 4.58

X-Ray tube current (mA) 297.11 ± 133.27 NA 360.02 ± 160.01 249.70 ± 136.55 259.16 ± 136.70
Exposure (mAs) 176.81 ± 84.5 NA 140.04 ± 111.48 113.95 ± 98.31 113.33 ± 162.66

Table 4.2 – Demographic and technical information per institution for the private pancreas dataset DCAPA. Some data is
missing due to regulatory constraints related to anonymization or anonymization techniques that vary by country and/or provider. Data
are means ± standard deviation. DCAPA : Care Advisor for Pancreas dataset, GE : General Eletric, NA : Not available.

4.2.2.2 Cross-project databases

As the DCAPA dataset exclusively contains pathological pancreas data, additional private datasets were
used to include images of healthy pancreases. For this purpose, abdominal images collected for other
Guerbet projects were exploited. Two databases were employed : the Care Advisor for Liver (DCALV ) and
Care Advisor for Bone Metastasis (DCABO).

DCALV and DCABO datasets are proprietary collections containing 3270 and 2750 multi-institutional CT
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scans, respectively. These datasets contain both single-phase and multi-phase acquisitions (non-enhanced,
arterial, portal, and delayed) and were annotated by expert radiologists. In particular, DCALV includes
detailed liver and tumor annotations, and DCABO includes detailed bone lesion annotations.

In this thesis, only portal phase CT scans were used, and specific subsets of these databases were
chosen. A selection process involving automated report parsing was applied, excluding any scans indicating
pathological pancreas conditions. In addition, an experienced radiologist verified the selected scans to
confirm the healthy status of the pancreas. The final number of scans used from these databases depended
on each particular research project.

4.2.2.3 Patient consent

All patient data used in this work was obtained with explicit informed consent, and underwent a rigorous
anonymization process to ensure the privacy and confidentiality of individual information in each dataset
according to local regulation.

4.3 Annotations

4.3.1 Protocol

The annotation process for the pancreas was led in collaboration with radiologists to collect all pertinent
information for pancreas analysis. This process was systematically applied to all images in the DCAPA and
DMSD datasets, employing a two-level annotation approach :

- Segmentation-based annotation : Radiologists were asked to segment the pancreas, pancreatic
lesions and the pancreatic duct when visible. In order to accelerate the segmentation process, an
automatic segmentation of the parenchyma, generated by an in-house algorithm trained on public
annotated data (DNIH and DMSD), was presented to the radiologists for correction. The lesions
and the main pancreatic duct were fully manually segmented. Lesion size distributions, derived from
segmentations, can be visualized in Figure 4.9. Examples of segmentations are provided in Figure 4.7.

- Question-based annotation : Radiologists were asked to answer clinical questions related to the
pancreas, potential lesions, and the pancreatic duct, based on portal image visualization. These ques-
tions were designed to replicate the cognitive processes employed by radiologists during pancreas
diagnostics. Cases in which determining the lesion type proved inconclusive were denoted as unclassi-
fied. The responses to the full set of questions concerning the pancreas, lesions, and the duct can be
consulted in Tables 4.3, 4.4, and 4.5, respectively.

Each portal CT scan was reviewed and annotated by one in a group of 11 radiologists. In practice,
the annotation was done using a custom module of the 3D Slicer software (Fedorov et al., 2012; Kikinis
et al., 2013) that was developed internally. For each case, the reference 3D segmentation was generated
by segmenting the pancreas, lesions, and MPD slice by slice. The customized version of 3D Slicer also
allowed the radiologists to answer the clinical questions for the question-based annotation protocol. During
annotation, radiologists could also consult the radiological report whenever available, especially for the
precise characterization of pancreatic lesions.

4.3.2 Inter-annotator segmentation variability

To ensure a consistent annotation process across all our pathological data, DMSD dataset was re-
annotated using the same protocol, despite the availability of publicly shared manual segmentations from
the Medical Segmentation Decathlon challenge. The double annotation for 281 these cases enabled us to
estimate the inter-annotator variability at the dataset level. To do so, we computed for each case the
Dice Similarity Coefficient (DSC) between the annotator’s segmentation and the corresponding challenge
segmentation. Then, we computed the mean DSC for each annotator, helping us to define a global variability
between each annotator and the challenge reference segmentations for the subset of cases they reviewed.
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(a) Patient showing an iso-enhancing mass in the head of the pancreas, indicated by the cutoff of the
main pancreatic duct.

(b) Patient showing a severe dilatation of the main pancreatic duct.

Figure 4.7 – Portal CT images (left) and their corresponding manual segmentations (right). The pancreas, the lesion and
the main pancreatic duct are outlined in red, blue, and green, respectively. Images from DCAPA dataset. CT : Computed tomography,
DCAPA : Care Advisor for Pancreas dataset.

DBR,1 DFR,1 DFR,2 DUS,1 DUS,2 DMSD

Number of cases 1004 244 148 699 402 281

Atrophy
Yes 446 (44) 93 (38) 51 (34) 303 (43) 167 (42) 102 (36)

No 557 (56) 151 (62) 97 (66) 394 (56) 234 (58) 179 (64)

NA 1 (0) 0 (0) 0 (0) 2 (0) 1 (0) 0 (0)

Densification
Yes 451 (45) 84 (34) 107 (72) 336 (48) 144 (36) 109 (39)

No 553 (55) 160 (66) 41 (28) 362 (52) 257 (64) 171 (61)

NA 0 (0) 0 (0) 0 (0) 1 (0) 1 (0) 1 (0)

Fat replacement
Yes 88 (9) 129 (53) 92 (62) 214 (31) 93 (23) 87 (31)

No 915 (91) 115 (47) 56 (38) 484 (69) 308 (77) 194 (69)

NA 1 (0) 0 (0) 0 (0) 1 (0) 1 (0) 0 (0)

Focal fat loss
Yes 3 (0) 191 (78) 108 (73) 356 (51) 216 (54) 133 (47)

No 999 (100) 53 (22) 39 (26) 341 (49) 185 (46) 147 (52)

NA 2 (0) 0 (0) 1 (1) 2 (0) 1 (0) 1 (0)

General Shape
Normal 520 (52) 77 (32) 20 (14) 227 (33) 216 (54) 130 (46)

Abnormal 483 (48) 167 (68) 128 (86) 471 (67) 185 (46) 151 (54)

NA 1 (0) 0 (0) 0 (0) 1 (0) 1 (0) 0 (0)

Homogeneity
Yes 352 (35) 105 (43) 23 (16) 106 (15) 46 (11) 64 (23)

No 645 (64) 139 (57) 125 (84) 592 (85) 355 (89) 216 (77)

NA 7 (1) 0 (0) 0 (0) 1 (0) 1 (0) 1 (0)

Pancreatitis
Yes 28 (3) 19 (8) 11 (7) 48 (7) 7 (2) 11 (4)

No 976 (97) 224 (92) 137 (93) 650 (93) 394 (98) 269 (96)

NA 0 (0) 1 (0) 0 (0) 1 (0) 1 (0) 1 (0)

Senility
Yes 86 (9) 80 (33) 21 (14) 187 (27) 83 (21) 77 (27)

No 918 (91) 164 (67) 127 (86) 511 (73) 318 (79) 204 (73)

NA 0 (0) 0 (0) 0 (0) 1 (0) 1 (0) 0 (0)

Table 4.3 – Clinical information of the pancreatic parenchyma across diverse providers of the DCAPA dataset. Data are
number of patients with percentages in parentheses. Percentages are computed based on the number of cases for each respective provider.
DCAPA : Care Advisor for Pancreas dataset, NA : Not available.
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DBR,1 DFR,1 DFR,2 DUS,1 DUS,2 DMSD

Visible lesion
Yes 910 244 148 699 402 281
No 94 0 0 0 0 0

Denomination
MD-IPMN 23 (2) 0 0 0 0 1 (0)

BD-IPMN 55 (6) 1 (0) 0 12 (2) 0 15 (5)

MCN 23 (3) 0 1 (1) 0 2 (0.5) 1 (0)

Need further examination 0 (0) 18 (7) 13 (9) 32 (5) 12 (3) 37 (13)

Other 130 (14) 4 (2) 0 6 (1) 3 (1) 1 (0)

PDAC 526⋆ (58) 103⋆ (42) 98 (66) 508 (73) 357 (89) 124 (44)

PNET 112 (12) 6 (2) 4 (3) 12 (2) 10 (2) 15 (5)

SCN 39 (4) 1 (0) 1 (1) 2 (0) 0 3 (1)

SPN 0 (0) 0 0 0 1 (0) 1 (0)

NA 2 (0) 111 (45) 31 (21) 127 (18) 17 (4) 83 (30)

Enhancement
Heterogeneous 496 (54) 36 (15) 33 (22) 86 (12) 27 (7) 35 (12)

Hyper-enhancing 75 (8) 19 (8) 5 (3) 14 (2) 6 (1.5) 20 (7)

Hypo-enhancing 271 (30) 122 (50) 98 (66) 478 (68) 321 (80) 148 (53)

Iso-enhancing∗ 58 (6) 30 (12) 5 (3) 76 (11) 39 (10) 29 (10)

NA 10 (1) 37 (15) 7 (5) 45 (6) 9 (2) 49 (17)

Malignancy
Benign 156 (17) 5 (2) 1 (1) 24 (3) 3 (0.7) 36 (13)

Doubtful 58 (6) 8 (3) 7 (5) 29 (4) 14 (3.5) 19 (7)

Malignant 689 (76) 140 (58) 131 (88) 577 (82) 376 (94) 176 (63)

NA 7 (1) 91 (37) 9 (6) 69 (10) 9 (2) 50 (18)

Margins
Poorly defined 563 (62) 189 (78) 117 (79) 550 (78) 319 (80) 168 (60)

Well-defined 343 (38) 49 (20) 29 (20) 120 (17) 74 (18) 93 (33)

NA 4 (0.4) 6 (2) 2 (1) 29 (4) 9 (2) 20 (7)

Type
Cystic 186 (20) 16 (7) 10 (7) 33 (5) 9 (2) 61 (22)

Solid 704 (78) 206 (85) 128 (86) 611 (87) 384 (96) 190 (68)

NA 20 (2) 22 (9) 10 (7) 55 (8) 9 (2) 30 (11)

Texture
Heterogeneous 559 (62) 147 (61) 117 (79) 322 (46) 125 (31) 155 (55)

Homogeneous 342 (38) 81 (33) 31 (21) 345 (49) 268 (67) 106 (38)

NA 9 (1) 16 (7) 0 (0) 32 (5) 9 (2) 20 (7)

Table 4.4 – Clinical information of the pancreatic lesions across diverse providers of the DCAPA dataset. Data are number
of patients with percentages in parentheses. Percentages are computed based on the number of visible lesions for each respective provider.
⋆ indicates cases for which diagnosis was obtained via the biopsy report. ∗ A lesion was considered isodense when its density was similar
to the one of the adjacent pancreatic parenchyma and there was a secondary sign, such as abrupt cutoff of the main pancreatic duct or
the common bile duct, allowing to confirm lesion presence. BD-IPMN : Branch-duct intraductal papillary mucinous neoplasm, DCAPA :
Care Advisor for Pancreas dataset, MD-IPMN : Main-duct intraductal papillary mucinous neoplasm, MCN : Mucinous cystadenoma,
NA : Not available, PDAC : Pancreatic ductal adenocarcinoma, PNET : Pancreatic neuroendocrine tumor, SCN : Serous cystadenomas,
SPN : Solid-pseudopapillary neoplasms.

DBR,1 DFR,1 DFR,2 DUS,1 DUS,2 DMSD

Visible duct
Yes 576 227 125 554 328 208
No 428 17 23 145 74 73

Dilatation
Yes 400 (69) 159 (70) 82 (66) 417 (75) 278 (85) 135 (65)

No 176 (31) 68 (30) 43 (34) 137 (25) 50 (15) 73 (35)

Stenosis
Yes 394 (68) 176 (77) 92 (74) 434 (78) 277 (84) 144 (69)

No 182 (32) 51 (23) 33 (26) 120 (22) 51 (16) 64 (31)

Mass at the stenosis
Yes 391 (68) 177 (78) 91 (73) 430 (78) 273 (83) 138 (66)

No 185 (32) 50 (22) 34 (27) 124 (22) 55 (17) 70 (34)

Table 4.5 – Clinical information of the main pancreatic ducts across diverse providers of the DCAPA dataset. Data are
number of patients with percentages in parentheses. Percentages are computed based on the number of visible main pancreatic ducts for
each respective provider. DCAPA : Care Advisor for Pancreas dataset.

Only annotator who reviewed more than 10 cases on this dataset were considered. The number of cases
reviewed by each annotator is given in Table 4.6. We estimated that the average inter-annotator variability
ranged from 0 to 0.12 DSC points, which is a reasonable variability threshold for pancreatic lesions whose
contours can be hard to define.

Finally, we computed the difference between the mean DSC obtained between each annotator. While
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Annotator A2 A4 A5 A7 A8 A9

Number of cases 11 54 68 55 44 31

Table 4.6 – Number of cases reviewed by annotators on the DMSD dataset. Results are presented only for annotators who
reviewed more than 10 cases. DMSD : Medical Segmentation Decathlon dataset.

this number is not an estimation of the inter-annotator variability on the same cases, it may be considered
as a proxy measure at the dataset level. Results are illustrated in Figure 4.8 in which mean DSC diffe-
rences between annotators remain mostly below 0.05, thus indicating consistency in their way to segment
pancreatic lesions. While some deviation exists between the segmentations produced by the annotators,
they seem to be around a threshold of variability of 0.1 points of DSC. Given the difficulty of segmenting
pancreatic lesions whose margins can be poorly defined, this variability remains reasonable and should
increase the model robustness rather than inducing a bias.
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Figure 4.8 – Difference between the mean DSC of each annotator on the DMSD dataset. For each annotator (A2, A4, A5, A7,
A8, A9), the mean DSC has been computed for the cases they reviewed between their segmentation and the one provided by the Medical
Segmentation Decathlon challenge organizers. DSC : Dice similarity coefficient, DMSD : Medical Segmentation Decathlon dataset.

4.4 Discussion

Concerted efforts were undertaken to create a dataset characterized by a broad spectrum of institutions
and pathologies, thereby ensuring a representative and diverse composition. However, this dataset has its
limitations.

The primary limitation comes from the lack of small lesions. As illustrated in Figure 4.9, the median
and interquartile range for the 2D maximum lesion diameter is 31[22 − 43] mm, with only 55 lesions
falling below the subcentimetric threshold. This challenge is intricately linked to the delayed diagnosis of
pancreatic cancers, wherein the infrequent detection of small lesions results in a scarcity of corresponding
examinations in hospitals. Consequently, data providers face limitations in supplying such cases and tend
to provide more cases of larger lesions.

A secondary limitation is attributed to the absence of a double-annotation process, a methodology that
could have enabled us to estimate intra-annotator variability and identifying potential annotation errors.
While we used the segmentations from the DMSD dataset as a proxy to evaluate inter-annotator variability
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at the dataset level, the inability to apply this process to all our database limits our capacity to evaluate
the reliability and precision of annotations, both in terms of questions and segmentations.

Finally, the decision to employ a question-based annotation approach, while accelerating the annotation
process, introduces a trade-off with interpretability. For instance, if an image is annotated as exhibiting
atrophy, the precise location of the atrophy remains unmarked.

Despite these acknowledged limitations, this database stands as one of the most extensive annotated
resources available for advancing AI research in the field of pancreatic cancer.
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Figure 4.9 – Distribution of the maximum 2D lesion diameter in mm across diverse datasets. For each boxplot, low
whisker, first quartile, median, third quartile and high whisker values are displayed. The lower whisker is at the lowest datum above
Q1− 1.5× (Q3−Q1), and the upper whisker at the highest datum below Q3+ 1.5× (Q3−Q1), where Q1 and Q3 are the first and third
quartiles. Maximum lesion diameter was calculated using the maximum 2D Feret diameter (Van der Walt et al., 2014) across each axial
slice.
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Chapitre 5

Pancreas Segmentation

5.1 Preface

Organ segmentation is a crucial step for the development of automated decision support tools in medical
analysis. Automatizing this time-consuming task holds major potential for clinical applications such as diag-
nosis, surgery and therapy (Yao et al., 2020b). The first objective of this thesis was to perform automatic
pancreas segmentation from portal venous CT scans, which is the first line modality for abdominal imaging.
To deal with the elongated shape and ambiguous contours of the pancreas that cause under-segmentation at
the extremities, we propose a method that considers the pancreas specific morphology. This involves incor-
porating a geometrical prior into the segmentation task. This work was selected for an oral presentation
at the IEEE International Symposium on Biomedical Imaging (ISBI) 2022 (Vétil et al., 2022b).

Abstract. Deep neural networks are widely used for automated organ segmentation as they achieve
promising results for clinical applications. Some organs are more challenging to delineate than others,
for instance due to low contrast at their boundaries. In this chapter, we propose to improve the
segmentation of elongated organs thanks to geometrical priors that can be introduced during training,
using a local Tversky loss function, or at post-processing, using local thresholds. Both strategies do
not introduce additional training parameters and can be easily applied to any existing network.
The proposed method is evaluated on the challenging problem of pancreas segmentation. Results
show that Geometrical Priors allow us to correct the systematic under-segmentation pattern of a
state-of-the-art method, while preserving the overall segmentation quality.
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5.2 Introduction

Automated organ segmentation is an important methodological step for the development of automated
decision support tools in medical analysis. Yet, some organs are more difficult to segment than others
because of ambiguous contours or elongated shapes (Kumar et al., 2019b).

Several methods have been proposed, and deep Convolutional Neural Network (CNN)s are increasingly
recognized as the reference method as they achieve the best results in terms of Dice Similarity Coefficient
(DSC) (Kumar et al., 2019b). Most of the recently proposed CNNs derive from the U-Net (Ronneberger
et al., 2015), an encoder-decoder architecture which can operate on 2D and 3D images (see Section 3.2.3.5).
Lately, Isensee et al. (2021a) introduced the nnU-Net, where the focus is put on the pre-processing, training
strategy and post-processing steps rather than on the network architecture. It was ranked first in a series of
biomedical segmentation challenges, among which the Medical Segmentation Decathlon challenge (detailed
in Section 3.2.3.6).

While some automatic segmentation algorithms reach human-level performance (Bai et al., 2018), some
organs, such as the pancreas or the colon, still constitute an open technical challenge for state-of-the-art
models like the nnU-Net, as performance remains lower compared to those obtained on other abdominal
organs (Yao et al., 2020b). These organs exhibit elongated shape with low-contrast at their boundaries,
making the delineation of extremities difficult. Consequently, algorithms such as the nnU-Net may miss
the extremities of the organ. From a clinical point of view, this error can be critical if the automatic
segmentation task is part of a more complex tumor detection pipeline, since tumors at the extremities
could be missed, as illustrated in Figure 5.1.A. A possible methodological approach to tackle this challenge
is to perform multi-organ segmentation, delineating all the major structures close to the target one (Chu
et al., 2019b; Wang et al., 2019). The costs required to build such datasets motivated the study of semi-
supervised approaches (Zhou et al., 2019c). In particular, Zhou et al. (2019b) performed the segmentation of
13 abdominal structures using a loss function which embedded anatomical priors computed on unlabeled
data. More precisely, the outputs of the network were enforced to match a distribution of organ sizes,
learned on a small fully labeled dataset. Consequently, the quality of the prior was highly dependent on
the size of the fully labeled dataset, and the prior did not take the geometry of the organs into account.

In this work, we seek to improve the automatic segmentation of elongated organs. To this end, we
investigate geometry-based anatomical priors whose definitions would not depend on labeled data. We
illustrate our contributions on the pancreas segmentation problem, which is a key methodological objective
of this thesis as defined in Section 1.3. Besides having an elongated shape, the pancreas shows a strong
ambiguity at its extremities which are highly intertwined with the duodenum, the small intestine and the
spleen (see examples in Figure 5.1). As a result, automatic segmentation methods tend to underestimate the
pancreas by missing its extremities. To fix these systematic under-segmentation patterns, we propose two
strategies that control the sensitivity of the predictions using geometrical priors which can be introduced
either during training, using a local Tversky loss function (Salehi et al., 2017), or during post-processing,
using local thresholds. In order to compare with state-of-the-art methods, we evaluate our methods on the
public datasets DNIH and DMSD (see Chapter 4) and compare it with the nnU-Net.

5.3 Method

Consider an elongated shape organ Oel, whose extremities e0, e1 are difficult to delineate. Let R = {ri ∈
{0, 1}, i = 1...N} denote its segmentation of reference, with N being the number of voxels. Let P = {pi ∈
[0, 1] , i = 1...N} denote the probability output of a segmentation network. We define the Geometrical Prior
Gprior that gives for each voxel i the desired sensitivity boost ρi, i.e., Gprior = {ρi ∈]0, 1[, i = 1...N}. Taking
the illustrative example of pancreas segmentation, the extremities e0 and e1 will be referred to as the head
(H) and tail (T ) in the rest of this section.

This section introduces the Geometrical Priors and how to use them in practice.



90 CHAPITRE 5. PANCREAS SEGMENTATION

Figure 5.1 – Challenging segmentation cases at the extremities of the pancreas. A : Lesion at the extremity of the tail.
Portal CT scan of a 78-year-old man reveals a small iso-enhancing mass at the very end of the pancreatic tail (white arrow). Failure
to analyze the pancreas in its entirety may result in overlooking the lesion. B : Ambiguous contours with the duodenum. Portal
CT scan of a patient with hypo-enhancing lesion in the pancreatic head, displaying ambiguous contours (white arrow). C : Ambiguous
contours with the spleen. Portal CT scan of a patient with a hypo-enhancing mass in the head (yellow arrow), where the tail exhibits
similar density to the spleen (white arrow). On each image, the pancreas is outlined in red. CT : Computed tomography.

5.3.1 Geometrical Priors

Geometrical Priors assign a sensitivity boost to each voxel of a segmentation mask. As illustrated in
Figure 5.2, the construction of one Geometrical Prior Gprior follows three steps :

1. First, a Euclidean distance map assigns to each voxel i its distance to the head, noted di. The distance
map is normalized so that distance values are 0 and 1 at the head and the tail, respectively. Distance
values for voxels outside of the pancreas, i.e. ri = 0, are set to −1.

2. Secondly, a prior function fprior assigns to each voxel i its sensitivity boost ρi according to its distance
to the head di. The function fprior is designed to give regions prone to under-segmentation a higher
sensitivity boost, so as to favor their segmentation. For the pancreas, fprior is built as a piece-wise
linear function that emphasizes the extremities :

ρi = fprior(di) =


ρH + ρ∗−ρH

0.5 · di if 0 ≤ di ≤ 0.5

ρ∗ +
ρT−ρ∗
0.5 · (di − 0.5) if 0.5 < di ≤ 1

ρ∗ if di = −1

(5.1)

where di is the normalized distance to the head of voxel i, ρH , ρT , ρ∗ are three hyper-parameters
corresponding to the sensitivity boost in the head, the tail and the background, respectively. This
function is designed to decrease linearly from ρH to ρ∗ on the interval [0, 0.5], to increase linearly
from ρ∗ to ρT on the interval [0.5, 1], and remain constant at ρ∗ otherwise. In particular, this function
takes the value of ρH at di = 0 (i.e., at the head) and the value of ρT at di = 1 (i.e., at the tail). In
practice, ρH , ρT , ρ∗ are set so that ρi ∈]0, 1[.

3. Finally, the resulting Geometrical Prior Gprior = {ρi ∈]0, 1[, i = 1...N} can be used to define either a
local Tversky loss function or local thresholds. This will be detailed in the subsequent sections.

5.3.2 Local Tversky loss function

A first way to use Geometrical Priors is during training, through a local version of the Tversky loss
function. The Tversky loss function was introduced by Salehi et al. (2017) based on Tversky’s index S,
which measures the similarity between two sets P,R in an asymmetric way (Tversky, 1977) :

S(P,R, α, β) =
|P ∩ R|

|P ∩ R|+ α|P \ R|+ β|R \ P|
(5.2)
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Figure 5.2 – Construction of the Geometrical Prior. Starting from a binary segmentation, a normalized distance map is computed.
Then, a prior function transforms the distance map into a Geometrical Prior by assigning to each voxel a sensitivity boost. Finally, the
resulting Geometrical Prior can be translated either into local Tversky coefficients or into local threshold values.

where α, β ≥ 0 are parameters, and P \ R denotes the relative complement of R in P. When applied to
Boolean data, using the definition of True Positive (TP), False Positive (FP) and False Negative (FN), the
Tversky index can be written as :

S(P,R, α, β) =
TP

TP + αFP + βFN
(5.3)

Therefore, α and β influence the specificity and the sensibility as they control the FPs and FNs, respectively.
Note that in the case of α = β = 0.5, the Tversky index is equivalent to the DSC (defined in Equation 3.1).
Based on this index, Salehi et al. (2017) defined the corresponding loss function :

T (P,R, α, β) =

N∑
i=1

p0i r
0
i

N∑
i=1

p0i r
0
i + α

N∑
i=1

p0i r
1
i + β

N∑
i=1

p1i r
0
i

(5.4)

where p0i (respectively, p
1
i ) is the predicted probability of voxel i belonging to Oel (respectively, background).

Same notations go for ri ∈ R. We propose a local version of this loss to leverage the Geometrical Priors
during training :

T (P,R,GTversky
prior ) =

N∑
i=1

p0i r
0
i

N∑
i=1

p0i r
0
i +

N∑
i=1

αip0i r
1
i +

N∑
i=1

βip1i r
0
i

(5.5)

In contrast to Equation 5.4 that relies on global hyper-parameters (α, β), our methods uses local coefficients
(αi, βi) that control the trade-off between the specificity and the sensitivity for voxel i. In particular,
higher values of βi penalize more under-segmentation mistakes. In practice, αi = 1 − βi, and we use the

Geometrical Priors to define the local coefficients : GTversky
prior = {βi = ρi ∈]0, 1[, i = 1...N}. The GTversky

prior
values are computed for each patient once, before training, using their reference segmentation mask.

5.3.3 Local thresholds

The second way to use Geometrical Priors is in post-processing, using them to define local thresholds
ti which are applied on the probability output P, i.e., voxel i is classified as belonging to the pancreas if
pi ≥ ti. In particular, areas with high sensitivity boost will exhibit lower thresholds in order to facilitate the
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segmentation. Therefore, the local thresholds ti are defined as Gthreshold
prior = {ti = 1− ρi ∈ ]0, 1[ , i = 1...N}.

This time, the distance map {di ∈ {−1} ∪ ]0, 1[ , i = 1...N} is computed from the predicted segmentation
obtained with a global threshold t = 0.5 where the head and tail are differentiated using the orientation of
the images during acquisition. The final result is denoted by Pbin.

Both proposed methods were based on the same rationale : lower ti, just as larger βi, would boost the
sensitivity in desired areas, while keeping other areas unaffected. For the sake of simplicity, the sensitivity
boost ρ will be used to refer to local Tversky coefficients, as ρi = βi, or to local thresholds, as ρi = 1− ti,
depending on the context.

5.4 Experiments

5.4.1 Dataset

Two public datasets were used :

(i) DNIH , containing 80 healthy subjects,

(ii) DMSD, containing 281 pathological subjects.

These datasets, detailed in Section 4.2.1, are the two prominent public datasets commonly used as bench-
marks for pancreas segmentation tasks. To harmonize the datasets, DMSD tumor masks were merged into
the pancreas. The DNIH scans, with higher z-resolution than the DMSD scans, were resampled to halve
their z-resolution. After manual review by a radiologist with 25 years of expertise in abdominal imaging,
20 cases were put aside because their reference segmentation exhibited under-segmentation of the tail or
the head. The remaining 341 cases were divided into training, validation, and test sets, comprising 223, 55,
and 63 cases, respectively. Within each set, 75% of the cases were sourced from the DMSD dataset, while
the remaining 25% were obtained from the DNIH dataset.

5.4.2 Baseline

The pre-processing, network architecture, optimization and post-processing hyperparameters were auto-
matically selected for our dataset using the nnU-Net self-configuring procedure detailed in Section 3.2.3.5.
All default parameters from public implementation 1 were kept without modification in a baseline expe-
riment.

5.4.3 Settings

To evaluate the effect of our Geometrical Prior methods, experiments were run with different combi-
nations of sensitivity boosts (ρH , ρT , ρ∗), where each combination represented a specific prior function.
Values for ρx varied in [0.5, 0.7, 0.95], referred to as [ρ5x, ρ

7
x, ρ

95
x ]. Values smaller than 0.5 were not explo-

red as they would have emphasized specificity, which was unnecessary since over-segmentation was not a
common occurrence.

In addition, the proposed methods were compared against the original Tversky loss function (Salehi
et al., 2017), with global coefficients set to 0.7 and 0.95, chosen empirically.

5.4.4 Performance measures

The quality of the segmentation at the extremities was quantitatively evaluated with two measures. The
first is the error on the length of the organ, expressed in mm. To compute the length, the segmentation
mask was first converted into a voxel adjacency graph. In particular, nT was the node corresponding to
the tail, estimated as the closest point to the Left-Posterior-Superior corner in the abdomen, as shown in
Figure 5.2. Finally, the length was estimated as the eccentricity of nT , i.e., the maximum graph distance
from nT to other nodes. This also provided the coordinates of the other extremity, the head. The signed

1. github.com/MIC-DKFZ/nnUNet

github.com/MIC-DKFZ/nnUNet
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length error was then defined as Err Length = Length(Pbin) - Length(R), where Pbin and R refer to
the predicted and reference segmentation masks, respectively. As depicted in Figure 5.3, focusing on the
pancreas where extremities tend to be missed, we could estimate that negative length errors referred to
under-segmentation whereas positive errors to over-segmentation.

Figure 5.3 – Assessing the quality of the segmentation using the signed error on the length of the pancreas. The signed
length error is defined as Err = Length(Pbin) - Length(R), where Pbin and R refer to the predicted and reference segmentation masks,
respectively. Given that extremities are prone to being overlooked, negative errors indicate under-segmentation, while positive errors
indicate over-segmentation.

The second measure is the DSC at the extremities, defined as the mean of the DSCs computed on 5%
of the length of the pancreas, from each extremity. Finally, in order to ensure that the overall segmentation
quality was not deteriorated, the difference of the global DSC with respect to the baseline is also reported.

5.5 Results

In total, 10 experiments, in addition to the baseline, were conducted. In a first set of experiments A-E,
the baseline loss function was replaced by a local Tversky loss function. In a second set of experiments
A’-E’, the baseline post-processing procedure was changed for a local thresholding approach, while the
baseline loss function was kept. Details and qualitative results are reported in Table 5.1.

GLOBAL LOCAL
PRIOR ρ95 ρ7 ρ95H , ρ95T , ρ5∗ ρ95H , ρ7T , ρ

5
∗ ρ95H , ρ7T , ρ

7
∗

TVERSKY Experiment Baseline A B C D E
Length Error (mm) -3.2 (6.4) 1.2 (7.8) -2.0 (6.5) 2.3 (7.6) -0.4 (8.2) 0.2 (6.8)

DSC at Extremities (%) 70.0 (3.4) 67.5 (2.1) 71.0 (3.4) 68.0 (1.7) 72.5 (2.8)* 70.5 (3.2)
δDSC (%) w.r.t. Baseline - -4* 0.2 -1.3* 0.1 -2*

THRESHOLD Experiment Baseline A’ B’ C’ D’ E’
Length Error (mm) -3.2 (6.4) -0.3 (6.3) - 1.8 (7.2) -1.4 (7.6) -1.6 (7.3) -1.0 (7.7)

DSC at Extremities (%) 70.0 (3.4) 72.0 (2.3)* 75.0 (2.95)* 74.0 (2.5)* 74.0 (2.7)* 74.0 (2.6)*
δDSC (%) w.r.t. Baseline - -2* 0.3 0.1 -0.1 0.2

Table 5.1 – Evaluation measures obtained on the test set (65 cases). As the data are not normally distributed, we report the
median instead of the mean. The interquartile range is indicated in brackets. Median Dice Similarity Coefficient (DSC) for the Baseline
is 88.0 (5.0). Significant differences with baseline are indicated by *, except for the length error for which all the results are significant.
Statistical significance is obtained with paired t-tests at p = 0.05 level. For each evaluation measure, the best result, in bold, is selected
among the experiments that do not deteriorate significantly the DSC w.r.t. the baseline.

5.5.1 Baseline results

Baseline results were characterized by a great under-segmentation as they exhibited a negative median
length error of −3.2 mm. All the experiments A-E and A’-E’ managed to resolve this under-segmentation
issue, as the median error was significantly shifted towards positive values.
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5.5.2 Local Tversky

Experiments A-E, using global or local Tversky loss function, produced significant effects on the length
error. Yet, (A) showed that global β95 decreased the global DSC, meaning that the overall segmentation was
deteriorated. In addition, (A) also reported a drop of the DSC at the extremities. On the other hand, global
β7, as in (B), did not affect the quality of the segmentation but produced only slight improvement on the
length error. Both (A, B) illustrated the power but also the limitations of the global Tversky loss function,
that would prevent its use with strong coefficients. These drawback effects were mitigated by Geometrical
Priors : C-E did not result in a significant drop in the global DSC, while they strongly corrected the length
error. This mitigating capability was further illustrated in the upper row of Figure 5.4 : at the extremities,
(D) (yellow) behaved as (A), trained with a strong global Tversky loss coefficient (blue), and outperformed
the baseline (red). By contrast, near the body of the pancreas, where the sensitivity boost was lower, (D)
mimicked the baseline and avoided the substantial over-segmentation mistakes caused by (A). In addition
to reducing the length error, (D) also significantly increased the DSC at the extremities, suggesting the
extremities were not only better detected, but also better delineated. Additional qualitative results are
shown in Figure 5.5.

5.5.3 Local thresholds

Experiments A’-E’, using local thresholds, yielded slighter improvements on the length error, with the
best improvement in (A’) coming at the expense of the global DSC. Thus, best results were achieved by
the experiment (E’). We hypothesize that the difference in results between the two methods was due to
the distribution of the probabilities outputted by the network, where values were strongly pushed towards
0 or 1. Thus, regions missed by the baseline model tended to exhibit probabilities less than 0.05, and
were therefore difficult to be recovered by the post-processing method. In this regard, the local threshold
technique was less efficient than the local Tversky loss function, which corrected the under-segmentation
from the training. Yet, the local thresholding approach produced systematic and significant increase of the
DSC at the extremities, as well as qualitative improvements illustrated in Figures 5.4 and 5.5. In particular,
Figures 5.4.1’, 5.4.3’ and 5.5.1’ show total failures of the baseline that were successfully recovered by (E’).
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Figure 5.4 – Segmentation results obtained at the head, body and tail of the pancreas. (1/2) The first row shows local
Tversky loss function experiments, where blue and yellow correspond to experiment A and D, respectively. The second row shows local
thresholds experiments, where blue and yellow correspond to experiment A’ and E’, respectively. D and E’ were selected as our Proposed
Method, according to Table 5.1.

⊗
indicates void prediction for the baseline.
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Figure 5.5 – Segmentation results obtained at the head, body and tail of the pancreas. (2/2) The first row shows local
Tversky loss function experiments, where blue and yellow correspond to experiment A and D, respectively. The second row shows local
thresholds experiments, where blue and yellow correspond to experiment A’ and E’, respectively. D and E’ were selected as our Proposed
Method, according to Table 5.1.

⊗
indicates void prediction for the baseline.

5.6 Discussion and conclusion

We proposed two methods to boost the segmentation sensitivity in extremities of elongated organs,
which state-of-the-art algorithms tend to miss. Our methods rely on the computation of Geometrical Priors
that assign to each voxel a sensitivity boost. This boost can be used during training, as a local Tversky
coefficient, or at post-processing, as a local threshold. Quantitative results on the pancreas segmentation
problem demonstrated that both proposed techniques managed to significantly increase the segmentation
sensitivity at the extremities of the organ. This was supported by the improvement of both the length error
and the DSC at the extremities, which were achieved without deteriorating the overall segmentation.

The strengths of our work are threefold : first, the proposed methods are interpretable thanks to the
prior function that reflects the anatomical complexity of the organ. Specifically, the prior function that
defines the Geometrical priors is manually crafted based on medical expertise, explicitly emphasizing the
regions that are difficult to segment. Secondly, the general formulation of Geometrical Priors allows our
methods to be applied to any organ with regions that are difficult to segment. Last, our methods can
be easily applied to any existing network. In particular, the local thresholds strategy does not require
re-training the model.

The main limitation of our work is the introduction of hyper-parameters which, although guided by ana-
tomical knowledge, can make the search time-consuming. Thus, future work may explore the use of learnable
prior functions, whose parameters would be dynamically learned during training or post-processing.
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Chapitre 6

Lesion and Main Pancreatic Duct
Dilatation Detection

6.1 Preface

Once built an automatic pancreas segmentation tool (see Chapter 5), we focused on radiological findings
that may help radiologists identify the development of pancreatic cancer. We started by tackling the detection
of pancreatic lesions and the dilatation of the main pancreatic duct, both essential indicators for pancreatic
cancer. For this purpose, we constructed a predictive model leveraging a segmentation algorithm, which
was developed and tested using a combination of data from public and private databases. A first version of
this work was selected for an oral presentation at the 70èmes Journées Francophones de Radiologie
2022 (Vétıl et al., 2022), and was further extended with a publication in Investigative Radiology
2023 (Abi Nader et al., 2023).

Abstract. Pancreatic cancer is characterized by a low five-year survival rate of 9%, mainly due
to delayed diagnosis. While early detection promises improved survival rates, it faces numerous
challenges. Primarily, the initial stages of pancreatic cancer are often asymptomatic. Consequently,
the incidental detection of these lesions on portal Computed Tomography (CT) scans, the primary
imaging modality for abdominal examination, is crucial. However, detecting pancreatic lesions on
portal CT scans presents challenges due to their often subtle or iso-enhancing appearances. The-
refore, the detection of pancreatic cancer significantly benefits from the identification of secondary
signs, detailed in Section 2.3.5, which can be visible before the clear appearance of the tumor. To
address this, we propose a deep learning method for detecting pancreatic lesions and identifying
Main Pancreatic Duct (MPD) dilatation in portal venous CT scans. The proposed method is built
in three steps. First, a network segmenting the pancreas, pancreatic lesions and the MPD is trained
in a five-fold cross-validation manner. Secondly, outputs of this network are postprocessed to extract
imaging features : a normalized lesion risk, the predicted lesion diameter, and the MPD diameter
in the head, body, and tail of the pancreas. Thirdly, two logistic regression models are calibrated to
predict lesion presence and MPD dilatation, respectively. The proposed method is trained on 2134
portal CT scans from five institutions, and its performance is evaluated on an external test cohort
of 756 portal CT scans from four independent institutions. The Area Under the Curve (AUC) of the
model for detecting lesion presence in a patient is 0.98 (95% Confidence Interval (CI) : [0.97,0.99]),
with a reported sensitivity of 0.94 (469 of 493, 95% CI : [0.92,0.97]). Consistent performance is
observed across various lesion types and characteristics. Regarding MPD dilatation detection, the
model achieves an AUC of 0.97 (95% CI : [0.96,0.98]).
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6.2 Introduction

As presented in Chapter 2, pancreatic cancer is a major healthcare issue on the rise (Rawla et al., 2019).
Due to the increase of pancreatic cancer incidence, combined with its dramatically low five-year survival
rate of 9%, the disease could become the third leading cause of cancer-related deaths by 2025 (Sung
et al., 2021). The low five-year survival rate primarily stems from late-stage diagnoses. As explained in
Section 2.3.3, this delay results from the lack of specific symptoms and challenges in interpreting portal
venous Computed Tomography (CT) scans, which is the primary imaging modality for routine abdominal
examinations. In addition, radiologists’ heavy workload as well as their level of expertise and experience
might further affect the interpretation of a CT scan. As a consequence, pancreatic cancer is frequently
identified at advanced stages, limiting therapeutic options. Conversely, patients diagnosed with stage IA
pancreatic cancer (see Section 2.3.4) are more often eligible for pancreatic resection, leading to a five-year
survival rate surpassing 80% (see Figure 2.11). This underscores the critical importance of early pancreatic
cancer detection.

To identify findings that should alert radiologists about the potential presence of pancreatic cancer,
studies retrospectively analyzed CT scans of patients with pancreatic cancer before the histopathological
diagnosis (Gangi et al., 2004; Gonoi et al., 2017). As detailed in Section 2.3.5, subtle secondary signs, such
as Main Pancreatic Duct (MPD) dilatation, were often visible up to one year before the cancer diagnosis.
This is due to the fact that pancreatic cancer, primarily Pancreatic Ductal Adenocarcinoma (PDAC), often
leads to a constriction of the MPD, resulting in dilation upstream of the lesion. Dilatation is usually defined
as a duct larger than 3mm in the head and 2mm in the body and tail of the pancreas.

Deep Learning (DL) methods hold significant potential in supporting the diagnosis of pancreatic cancer
by issuing alerts for patients at risk of pancreatic cancer, which could facilitate radiologists’ daily prac-
tice. Our literature review identified two main categories of works : those approaching the task clinically
(summarized in Table 3.7) and those focusing on methodology (summarized in Table 3.3). While clinically-
oriented studies exhibited promising results, they primarily worked on lesion detection and did not leverage
secondary findings, such as MPD dilatation. Moreover, despite validation experiments being performed on
substantial external cohorts, these cohorts often originated from the same country as the training data,
and the training data itself was frequently obtained from a single center. These factors indicate a potential
lack of variability in terms of patients demographics, clinical conditions and scanners manufacturers, which
raises concerns about the generalizability of these methods when applied to scanners from new medical
centers. Conversely, some methodological approaches leveraged anatomical information from the MPD. For
instance, Zhu et al. (2021) and Alves et al. (2022) jointly segmented lesions and the MPD, while Viviers
et al. (2022) used MPD segmentation as an additional input to the portal CT scan. However, these me-
thods used information from the MPD solely to improve lesion detection, without explicitly targeting the
detection of MPD dilatation, which is an essential indicator for radiologists.

Given this context, this work presents and evaluates a DL pipeline designed to predict patients at risk
of pancreatic cancer. The contribution is two-fold :

(i) A lesion segmentation algorithm is combined with explicit information related to the lesion and MPD
size, thus improving pancreatic neoplasm detection performance compared to current state-of-the-art
DL models ;

(ii) The proposed method can also be used to predict MPD dilatation.

The entire pipeline is trained on a large multi-centric dataset, incorporating data from diverse geographic
regions. Similar to the clinical works detailed in Section 3.3.4, we validate the proposed method on a large
and external cohort.
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6.3 Data and annotations

6.3.1 Data

Information was gathered from the nine providers outlined in Chapter 4, namely DBR,1, DFR,1, DFR,2,
DUS,1, DUS,2, DMSD, DNIH , DCALV , and DCABO. These contributors span across Europe, the USA, and
Brazil, providing a diverse geographical coverage for the dataset. Inclusion criteria were as follows : (i)
presence of a portal venous CT scan ; (ii) maximum slice thickness of 3mm ; (iii) for patient with confirmed
pancreatic neoplasm, studies were acquired prior to any treatment or surgery. This led to a total of 2890
cases that were further split in training and independent testing sets of 2134 and 756 subjects, respectively
(see Figure 6.1).

Private data 1 (5 institutions)

Patients with biopsy-proven pancreatic neoplasm 
(𝐷𝐵𝑅,1) or  C25 ICD-10 code (𝐷𝐹𝑅,2 𝐷𝑈𝑆,1 𝐷𝑈𝑆,2)

 n = 1692

Controls with no radiologic evidence of pancreatic 
neoplasm  (𝐷𝐶𝐴𝐵𝑂)

n = 442

Training set (n = 2134)

Public data (2 institutions)

Controls (𝐷𝑁𝐼𝐻)
n = 80

Patients with biopsy-
proven pancreatic 
neoplasm (𝐷𝑀𝑆𝐷)

n = 281

Private data (2 institutions)

Patients with biopsy-
proven pancreatic 
neoplasm (𝐷𝐹𝑅,1)

n = 212

Controls with no 
radiologic evidence of 
pancreatic neoplasm 

(𝐷𝐶𝐴𝐿𝑉)
n = 183

Test set (n = 756)

Figure 6.1 – Composition of the training and testing sets. Data in the training and testing sets come from different institutions.
ICD : International Classification of Diseases.

The training set was composed of portal venous CT scans of 2134 patients from five providers (DBR,1,
DFR,2, DUS,1, DUS,2, DCABO, see description in Section 4.2.2), among which 1692 had a pancreatic neo-
plasm. The diagnosis was either obtained via the biopsy report for 78% of the subjects (coming from
DBR,1), or through the C25 code related to pancreatic neoplasms in the International Classification of
Diseases (ICD-10) (DiSantostefano, 2009) for the rest of the subjects. In addition, control portal CT scans
were extracted from DCABO, a private cohort of patients with bone lesions. The radiological reports of
these patients were inspected to only keep subjects without abnormalities in the pancreas. Then, their
portal CT scans were further reviewed to ensure that no pancreatic lesion was visible, thus leading to a
total of 442 control cases. Table 6.1 describes the patients characteristics. The 2134 subjects were composed
of 1174 (55%) women and 960 men (45%) and showed a median age of 64 years old (range [56, 73] years).
1184 patients had PDAC, 134 had Pancreatic Neuroendocrine Tumor (PNET) and 158 had unclassified
solid lesion. There were also 81 subjects with Intraductal Papillary Mucinous Neoplasm (IPMN), 34 with
mucinous cystic neoplasm and 42 with serous cystadenoma, as well as 59 subjects with unclassified cystic
lesion. Finally, 43% (907) of the subjects had dilated MPD.

The external test set included 756 subjects collected from both public and private data in four institu-
tions (see Figure 6.1). These institutions were different from the ones used in the training set. Public data
contained 361 portal venous CT scans among which 281 had a pancreatic lesion (DMSD, see Section 4.2.1.2)
and 80 were healthy cases (DNIH , see Section 4.2.1.1). The private dataset was composed of 212 portal
venous CT scans of patients from DFR,1 (see dataset description in Section 4.2.2.1) with histopathological
confirmation of pancreatic neoplasm. In addition, routine portal CT scans from DCALV (see dataset des-
cription in Section 4.2.2.2) were acquired. Scans were further reviewed by the radiologists pool to confirm
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that they did not have a pancreatic lesion, leading to a total of 183 control cases. Demographic information
was not available for the subjects from the test set. This database was composed of patients with PDAC
(n=360), PNET (n=48) and unclassified solid lesions (n=12), as well as IPMN (n=18) and unclassified
cystic lesions (n=53) (cf. Table 6.1). Finally, 276 subjects had dilated MPD.

Training set Test set
Number of cases 2134 756

Age* (year) 64 [56, 73] NA
Sex NA
M 960 (45)

F 1174 (55)

CT manufacturer
Philips 1113 (52)

Siemens 168 (8)

GE 309 (14) NA
Toshiba 114 (5)

Unknown 430 (21)

Pancreatic lesions
Yes 1692 (80) 493 (65)

No 442 (20) 263 (35)

Solid lesions 1476 (87) 421 (85)

PDAC 1184 (80) 360 (85)

PNET 134 (9) 49 (12)

Unclassified 158 (11) 12 (3)

Cystic lesions 216 (13) 72 (15)

IPMN 81 (38) 18 (25)

MCN 34 (16) 0 (0)

SCN 42 (20) 1 (1)

Unclassified 59 (26) 53 (74)

Lesions size (cm)* 3.4 [2.3, 4.9] 2.4 [2.0, 3.2]
MPD
Visible 1256 (59) 408 (54)

Dilated 907 (43) 276 (36)

Non dilated 1227 (57) 572 (64)

Diameter* (mm) 4.5 [3.5, 6.5] 6.0 [4.1, 8.8]

Table 6.1 – Demographic and clinical information for the different datasets. If not specified data are numbers of patients with
percentages in parentheses. * Data are medians with interquartile range in square brackets. GE : General Electric, IPMN : Intraductal
papillary mucinous neoplasm, MCN : Mucinous cystic neoplasm, NA : Not available, PNET : Pancreatic neuroendocrine tumor, PDAC :
Pancreatic ductal adenocarcinoma, SCN : Serous cystadenoma.

6.3.2 Annotations

6.3.2.1 Protocol

Each portal venous CT scan was reviewed and annotated according to the protocol described in Sec-
tion 4.3.1. The results of the annotation process for this dataset can be consulted in Table 6.1. In particular,
it shows that 80% of the training and 65% of the testing cases exhibited pancreatic lesions, with the majo-
rity (over 85% in both splits) being solid. Notably, solid lesions were mostly PDACs (80% in train, 85% in
test), whereas cystic lesions were predominantly IPMNs (38% in train, 25% in test). Lesions tended to be
smaller in the test set, with a median and interquartile range of 2.4 [2.0, 3.2] cm in the test set compared to
3.4 [2.3, 4.9] cm in the training split. Additionally, the MPD was visible in 59% and 54% of the training and
test cases, respectively. In the training set, MPD dilatation was more prevalent albeit less pronounced : 43%
of the MPDs exhibited dilation, with a median and interquartile diameter of 4.5 [3.5, 6.5] mm, compared to
36% in the test set with a median and interquartile diameter of 6.0 [4.1, 8.8] mm. Segmentation examples
can be visualized on Figure 6.2.

6.3.2.2 Inter-annotator variability

Lesion segmentation variability was investigated in Section 4.3.2. This analysis estimated that the
average inter-annotator variability ranged from 0 to 0.12 Dice Similarity Coefficient (DSC) points, which
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Figure 6.2 – Segmentation examples on portal CT scans. For clarity, segmentation masks are represented as contours. The
pancreas, lesion, and MPD are delineated in red, blue, and green, respectively, when visible. A : Patient with a hyper-enhancing PNET in
the tail of the pancreas. B : 59-year-old woman with a benign hypo-enhancing IPMN. C : Patient with a hypo-enhancing PDAC following
the dilatation of the MPD. D : Patient with a hypo-enhancing PDAC characterized by MPD cutoff (white arrow). Images A and B are
sourced from the DCAPA dataset and are used from training, while images C and D are sourced from the DMSD dataset and are used
for testing. Details about the DCAPA and DMSD datasets are provided in Chapter 4. DCAPA : Care Advisor for Pancreas dataset, CT :
Computed tomography, IPMN : Intraductal papillary mucinous neoplasm, DMSD : Medical Segmentation Decathlon dataset, MPD :
Main pancreatic duct, PDAC : Pancreatic ductal adenocarcinoma, PNET : Pancreatic neuroendocrine tumor.

is a reasonable variability threshold for pancreatic lesions whose contours can be hard to define.

6.4 Detection method

6.4.1 Segmentation

A segmentation model is trained to segment the pancreas, the pancreatic lesion (if any) and the MPD
(if visible). A 3D nnU-Net (Isensee et al., 2021a) is selected for its established robustness, as discussed in
Section 3.2.3.5. This model is trained in a five-fold cross-validation setting.

6.4.1.1 Image preprocessing

Image preprocessing is done according to the nnU-Net automatic preprocessing pipeline, which involves
intensity normalization and resampling.

Intensity normalization Based on the 2134 training scans, the mean µHU and standard deviation σHU

intensities are computed : µHU = 68.7 Hounsfield Unit (HU) and σHU = 51.0 HU, respectively. They are
subsequently used to perform a z-normalization on each training and testing case, based on the following
formula :

i′ =
i− µHU

σHU

where i′, i are the new and original intensity values of a given voxel, respectively.

Resampling Based on the 2134 training scans, the median voxel size for each spatial dimension is com-
puted. In this case, a median voxel size of (0.79 × 0.79 × 2) mm3 is obtained along the x, y and z axes,
respectively. During training, each input image is resampled to match this target spacing using a 3rd
order B-spline interpolation. This preprocessing procedure has demonstrated effectiveness across various
biomedical image segmentation tasks, including the segmentation of small lesions (Isensee et al., 2021a).

6.4.1.2 Architecture

The network architecture follows a standard 3D U-Net with a topology automatically inferred through a
set of heuristics defined within the nnU-Net framework. The precise network topology is shown in Figure 6.3.
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[32, 192, 128, 56]

[64, 96, 64, 56]

[128, 48, 32, 28]

[256, 24, 16, 14]

[320, 12, 8, 7]

[320, 6, 4, 7]

Input of size [1, 192, 128, 56]

(3 x 3 x 3) conv + instance norm + leaky ReLU

Skip connection

(1 x 1 x 1) conv + softmax – for deep supervision

(1 x 1 x 1) conv + softmax – final output

Strided / Transposed convolution

Figure 6.3 – Architecture of the U-Net segmentation network used to segment the pancreas, lesions, and the main
pancreatic duct. The U-Net architecture uses two blocks per resolution step in both the encoder and decoder modules, with each block
comprising a convolutional layer followed by instance normalization and a leaky ReLU activation function. Instance normalization is
preferred over batch normalization due to its superior performance with small batch sizes (Kickingereder et al., 2019). Downsampling is
achieved through strided convolutions, while upsampling is carried out using transposed convolutions. To balance performance and memory
consumption, the initial number of feature maps is set to 32 and doubled (or halved) with each downsampling (or upsampling) operation.
The network adopts deep supervision by incorporating additional auxiliary loss functions in the decoder, applied to all resolutions except
the two lowest ones. This strategy enables gradients to penetrate deeper into the network, facilitating the training of all layers effectively.

6.4.1.3 Training parameters

Once image preprocessing is performed, the nnU-Net looks for the best compromise to maximize both
the batch size and patch size given the available GPU budget (a Tesla V100 16 GB). In this case, the
obtained values are a batch size of 2 and patches of size (192× 128× 56) voxels along the x, y, and z axes,
respectively.

Regarding the loss function, the learning rate, and the optimizer, the default configuration of the 3D
nnU-Net is kept. The loss function consisted in the sum of the Cross-Entropy and Soft Dice loss functions.
The optimizer is Stochastic Gradient Descent with an initial learning rate of 0.01 and polynomial decay.

Data augmentation is used during training, following the standard transformations proposed in the nnU-
Net framework : translation, rotation, scaling, mirroring, gamma augmentation. Detailed implementation
and parameterization is provided in the original nnU-Net paper (Isensee et al., 2021a).

6.4.1.4 Inference

In inference, a new given image undergoes the image preprocessing procedure described in Section 6.4.1.1,
for which parameters were defined on the training samples. Then, when applied on a new image, the trai-
ned nnU-Net generates a segmentation of the pancreas, pancreatic lesion and MPD, as well as a lesion
probability map (output from the final softmax layer) assigning to each voxel a probability to be a lesion
(see Figure 6.4).

6.4.2 Feature extraction

Using the output of the nnU-Net, features are extracted as follows :
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1) Segmentation

Detection pipeline

2) Feature extraction per case

0 1

Segmentation

Lesion risk

Lesion diameter

3) Logistic Regression

Patient has lesion ? 
→ YES - NO.

Is MPD dilated ? 
→ YES - NO.

MPD diameter
(head, body tail)Portal venous CT

nnUNet
Segmentation

Lesion probability map

0 1

Figure 6.4 – Illustration of the detection pipeline. The algorithm is composed of three steps : 1) Based on a portal venous CT scan,
the nnU-Net generates a probability map as well as a segmentation of the pancreas (red), lesions (green) and MPD (blue). 2) Lesion and
MPD features are extracted. 3) Lesion presence and MPD dilatation are predicted using two logistic regression models. CT : Computed
Tomography, MPD : Main pancreatic duct.

- A lesion risk between 0 and 1, computed using the 3D probability map generated by the final softmax
layer of the nnU-Net. The computation is done as follows :

1. First, predicted lesions that form a connected component out of the predicted pancreas segmen-
tation mask are removed ;

2. Second, the resulting predicted probability map for the lesion segmentation is binarized using a
threshold at 0.01. From this binary lesion segmentation map, each lesion candidate (i.e., lesions
forming a connected component) is given a lesion probability equal to the average predicted
probability of the voxels within the connected component.

3. The lesion candidate is discarded if the lesion probability is below 0.05 or if the number of voxels
in the lesion is inferior to 10.

- The maximum diameter of the lesion segmented by the nnU-Net, computed as the maximum 2D axial
Feret diameter (Van der Walt et al., 2014) of the lesion segmented by the nnU-Net. If no lesion is
segmented, the maximum diameter is set to 0 ;

- The maximum 2D MPD diameter in the head, body, and tail of the pancreas. Computation is carried
out using the IMEA (Kroell, 2021) library. Details on how the head, body, and tail of the pancreas are
identified are provided in Appendix A.1. The maximum value of the MPD diameter in the pancreas
is also computed by taking the maximum diameter between head, body, and tail. For each region, the
MPD diameter is set to 0 if there is no predicted segmentation.

6.4.3 Logistic regression

We propose to predict lesion presence in a patient as well as MPD dilatation using two logistic regression
models relying on the features previously defined. In practice, the nnU-Net is applied on the validation
set of each fold, leading to a total of 2134 3D probability maps and segmentations, from which features
are extracted. Two logistic regression models are trained using the Scikit-Learn library (Pedregosa et al.,
2011). To reduce the potential impact of class imbalance, the two logistic regression models are regularized
by weighting the binary cross-entropy loss function with the inverse class frequencies :

Weighted Binary Cross-Entropy Loss = − 1

N

N∑
i=1

[w0 × yi × log(pi) + w1 × (1− yi)× log(1− pi)]

where N represents the number of samples in the dataset, yi is the true label (either 0 or 1) for the i-th
sample, and pi ∈ ]0, 1[ is the predicted probability that the i-th sample belongs to class 1. Additionally,
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w0 =
N

2×N0
and w1 =

N
2×N1

are inverse-class frequencies, where N0 and N1 are the number of samples with
true label 0 and 1, respectively.

Prediction of lesion presence The first logistic regression predicts lesion presence based on three features :
1) lesion risk ; 2) lesion diameter ; 3) maximum MPD diameter in the pancreas. These features are extracted
for all candidate lesions of each case. Candidate lesions matching a reference lesion (DSC greater than 0.1)
are considered as true positives, while candidate lesions that do not match a reference lesion are considered
as false positives. Based on these target classes the logistic regression can be calibrated on the training set.

Prediction of MPD dilatation The second logistic regression model predicts MPD dilatation using the
MPD diameter in the head, body, and tail of the pancreas.

6.4.4 Evaluation pipeline

Once the two logistic regressions are trained, evaluation of a test subject comprises three steps :

1. Generation of the lesion probability map and segmentation of the pancreas, lesion, and MPD using
the nnU-Net.

2. Extraction of features. As the focus is on lesion detection at the patient level, only the lesion with
the highest lesion risk among all candidate lesions is considered.

3. Application of the two previously trained logistic regression models to predict lesion presence and
MPD dilatation (see Figure 6.4).

6.4.5 Statistical analysis

To evaluate performance, the Receiver Operating Characteristic (ROC) curve is generated, illustrating
the trade-off between sensitivity and false positive rate across various thresholds of the predicted probability
from the logistic regression. The Area Under the Curve (AUC) is measured, as well as sensitivity, specificity,
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) at the operating point maximizing
the balanced accuracy.

As the primary focus is on achieving accurate cancer detection in patients, the evaluation is conducted
at the case level : in the case of lesion detection, sensitivity is defined as the ratio of the number of
patients correctly detected with a lesion by the model to the total number of patients with a pancreatic
lesion. Similarly, in the case of MPD dilatation detection, sensitivity is defined as the ratio of the number of
patients correctly detected with a dilatation by the model to the total number of patients with a dilatation.
The computation of the other evaluation measures is performed accordingly. Details on how each metric
is computed are provided in Appendix A.2 and A.3. Bootstrap sampling is used to provide median values
and 95% Confidence Interval (CI) for AUC, sensitivity, specificity, PPV and NPV.

Finally, the segmentation performance is evaluated by calculating the DSC and the Normalized Surface
Dice (NSD) scores, both defined in Section 3.2.3.4. As the NSD allows for a tolerance error between the
reference and predicted segmentations (Ostmeier et al., 2022), it is well-suited to evaluate structures such
as pancreatic lesions and the MPD, which can be hard to accurately delineate. In this study, the tolerance
error is set to 2 mm along each spatial dimension. To distinguish between segmentation error types, voxel-
level False Positive Rate (FPR) and False Negative Rate (FNR) are computed. The FPR is defined for
each class as the number of wrongly segmented voxels to the total number of segmented voxels. The FNR
is computed accordingly.
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6.5 Results

6.5.1 Detecting patients with pancreatic neoplasms

The model performance on the test set is reported in Figure 6.5 and Table 6.2. The model reached an
AUC of 0.98 (95% CI : [0.97,0.99]) as well as a sensitivity of 0.94 (469 of 493, 95% CI : [0.92,0.97]) and a
specificity of 0.95 (246 of 262, 95% CI : [0.92,0.98]). A boxplot showing the distributions of the evaluation
metrics is provided in Appendix A.4.

In order to compare with other methods, the model performance on public data (defined in Figure 6.1)
is also reported in Table 6.2. Evaluation measures provided similar values than the ones obtained on the
whole test set. The model was also evaluated on subjects with specific lesions characteristics and types.
Further examination was conducted on five particularly significant subgroups :

- patients with lesions less than 2cm in diameter, corresponding to stage IA tumors (refer to Sec-
tion 2.3.4), thereby indicating early detection ;

- patients with isodense lesions, defined as lesions with a density similar to adjacent pancreatic paren-
chyma, often accompanied by secondary signs like abrupt cutoffs of the MPD or common bile duct,
making their identification challenging on portal CT scans (Elbanna et al., 2020) ;

- patients with PDAC, constituting 80% of pancreatic cancers and typically appearing hypodense (see
Section 2.3) ;

- patients with PNET, representing 10% of pancreatic cancers and typically appearing hyperdense (see
Section 2.3) ;

- patients with IPMN, cystic lesions with the potential to become malignant, thereby requiring early
and appropriate diagnosis (refer to Section 2.4.1).

Performance obtained on these subsets is reported in Table 6.2. The AUC, sensitivity, and specificity
remained consistent across the subgroups and equivalent to the ones obtained on the whole test set. The
model performed best on the PNET subgroup with a sensitivity of 1.0 (95% CI : [0.98,1.0]). Specificity was
slightly lower on small lesions compared to the other subsets.

AUC Sensitivity Specificity PPV NPV

Test set (493/756) 0.98 [0.97, 0.99] 0.94 [0.92, 0.97] 0.95 [0.92, 0.98] 0.97 [0.96, 0.99] 0.90 [0.85, 0.94]

Public data (281/361) 0.99 [0.98, 0.99] 0.94 [0.88, 0.98] 0.95 [0.90, 1.0] 0.99 [0.97, 1.0] 0.82 [0.67, 0.94]

Lesions characteristics
D ≤ cm (123/386) 0.97 [0.95, 0.98] 0.94 [0.87, 0.98] 0.91 [0.85, 0.96] 0.83 [0.74, 0.92] 0.97 [0.94, 0.99]

Isodense* (56/319) 0.97 [0.95, 0.99] 0.95 [0.87, 1.0] 0.94 [0.85, 0.98] 0.78 [0.57, 0.90] 0.99 [0.97, 1.0]

Lesions types
PDAC (418/681) 0.98 [0.98, 0.99] 0.94 [0.91, 0.97] 0.96 [0.92, 0.98] 0.97 [0.95, 0.99] 0.92 [0.88, 0.96]

PNET (49/311) 0.99 [0.98, 1.0] 1.0 [0.98, 1.0] 0.96 [0.92, 0.98] 0.81 [0.69, 0.92] 1.0 [1.0, 1.0]

IPMN (18/290) 0.98 [0.95, 0.99] 0.96 [0.87, 1.0] 0.94 [0.91, 0.98] 0.56 [0.29, 0.8] 1.0 [0.99, 1.0]

Table 6.2 – Evaluation metrics obtained for lesion detection on the test set as well as on specific subsets of patients. In
parenthesis for each group, number of patients with pancreatic neoplasm to the total number of patients. Data are median values with
95% confidence interval in square brackets. * A lesion was considered isodense when its density was similar to the one of the adjacent
pancreatic parenchyma and there was a secondary sign, such as abrupt cutoff of the main pancreatic duct or the common bile duct,
allowing to confirm lesion presence. AUC : Area under the curve, D : diameter, IPMN : Intraductal papillary mucinous neoplasm,
PNET : Pancreatic neuroendocrine tumor, NPV : Negative predictive value, PDAC : Pancreatic ductal adenocarcinoma, PPV : Positive
predictive value.

6.5.2 Feature importance on lesion detection sensitivity

The logistic regression model used to predict lesion presence in a patient was based on three features :
lesion risk, lesion diameter and MPD diameter (see Section 6.4.2). To evaluate the effect of combining these
features on performance, an ablation study was carried out. Two additional logistic regression models were
trained : a first one with two features, lesion risk and lesion diameter ; and a second one using only lesion risk.
Table 6.3 reports the sensitivity of these three models on the test set, as well as on the subsets previously
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defined in Section 6.5.1. Using the MPD diameter and the lesion diameter systematically improved lesion
detection sensitivity across all groups. On the whole test set, adding the MPD diameter and lesion diameter
led to a sensitivity improvement of 4% compared to the baseline model using the lesion risk only. The effect
of these two features was particularly strong on isodense lesions with a sensitivity gain of 10% with respect
to the model with one feature only.

Lesion risk, lesion diameter, MPD diameter Lesion risk, lesion diameter Lesion risk

Test set (493/756) 0.94 [0.92, 0.97] 0.91 [0.86, 0.95] 0.90 [0.84, 0.94]

Public data (281/361) 0.94 [0.88, 0.98] 0.92 [0.86, 0.95] 0.91 [0.86, 0.95]

Lesions characteristics
D ≤ cm (123/386) 0.94 [0.87, 0.98] 0.91 [0.80, 0.97] 0.87 [0.77, 0.95]

Isodense (56/319) 0.95 [0.87, 1.0] 0.90 [0.91, 0.98] 0.85 [0.75, 0.96]

Lesions types
PDAC (418/681) 0.94 [0.91, 0.97] 0.91 [0.88, 0.95] 0.89 [0.85, 0.94]

PNET (49/311) 1.0 [0.98, 1.0] 0.98 [0.93, 1.0] 0.98 [0.93, 1.0]

IPMN (18/290) 0.96 [0.87, 1.0] 0.95 [0.83, 1.0] 0.90 [0.75, 1.0]

Table 6.3 – Sensitivity of the logistic regression predicting lesion presence depending on the features used to train it. In
parenthesis for each group, number of patients with pancreatic neoplasm to the total number of patients. Median values and 95% confidence
intervals in square brackets. D : Diameter, IPMN : Intraductal papillary mucinous neoplasm, PNET : Pancreatic neuroendocrine tumor,
PDAC : Pancreatic ductal adenocarcinoma.

6.5.3 MPD dilatation detection performance

Regarding MPD dilatation performance, the model of Section 6.4.3 was also evaluated on the test set.
Results are reported in Table 6.4. An AUC of 0.97 (95% CI : [0.96,0.98]) was reached as well as a sensitivity
of 0.94 (259 of 276, 95% CI : [0.89,0.97]) and a specificity of 0.90 (432 of 480, 95% CI : [0.86,0.94]). A
boxplot showing the evaluation metrics distributions is provided in Appendix A.4.

AUC Sensitivity Specificity PPV NPV

Test set (493/756) 0.97 [0.96, 0.98] 0.94 [0.89, 0.97] 0.90 [0.86, 0.94] 0.85 [0.79, 0.90] 0.96 [0.93, 0.98]

Table 6.4 – Evaluation metrics obtained by the logistic regression predicting main pancreatic duct dilatation. In paren-
thesis for each group, number of patients with pancreatic neoplasm to the total number of patients. Data are median values with 95%
confidence interval in square brackets. AUC : Area under the curve, NPV : Negative predictive value, PPV : Positive predictive value.

6.5.4 Segmentation performance

The segmentations predicted by the nnU-Net of Section 6.4.1 were evaluated both quantitatively and
qualitatively. The DSC between the reference and the nnU-Net segmentation maps is reported in Table 6.5
for the pancreas, lesions, and the MPD. The FPR and FNR were also computed for the three structures.
The NSD score was computed for lesions and the MPD. These measures were also measured on public
data only in order to compare our segmentation network to other works. Qualitative examples of model
segmentations are presented in Figure 6.6, where red, green, and blue voxels indicate the predicted pancreas,
lesion, and MPD regions, respectively. The top row displays a small PNET tumor located at the very end
of the pancreatic tail and correctly segmented by the model. The second and third rows depict correct
predicted segmentations of IPMN and PDAC lesions measuring 13mm and 18mm, respectively. The last
row illustrates a dilated MPD, with a diameter of 4mm, correctly segmented by the model.

On the whole test set, the mean DSC was 0.91 (± 0.06), 0.69 (± 0.34) and 0.58 (± 0.37) for the pancreas,
lesions, and MPD, respectively. The mean NSD score was 0.71 (± 0.39) and 0.77 (± 0.33) for the MPD
and lesions, respectively. While the FPR and FNR were similar for the pancreas on both the whole test set
and public data, the FNR was systematically higher than the FPR for lesions and the MPD. A boxplot
illustrating segmentation performance over the complete cohort is provided in Appendix A.5.
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Test set (n=756) Public data (n=361)
Pancreas Lesions Main Pancreatic Duct Pancreas Lesions Main Pancreatic Duct

DSC 0.91 ± 0.06 0.69 ± 0.34 0.58 ± 0.37 0.87 ± 0.06 0.63 ± 0.33 0.53 ± 0.37
NSD NA 0.77 ± 0.33 0.71 ± 0.39 NA 0.73 ± 0.32 0.65 ± 0.40
FPR 0.12 ± 0.09 0.20 ± 0.31 0.32 ± 0.38 0.15 ± 0.10 0.23 ± 0.31 0.37 ± 0.40
FNR 0.09 ±0.09 0.39 ± 0.33 0.49 ± 0.20 0.12 ± 0.10 0.45 ± 0.31 0.51 ± 0.20

Table 6.5 – Dice similarity coefficient (DSC), NSD score, FPR, and FNR measured on the whole test set and public
data. The DSC, the FPR, and the FNR were computed for the pancreas, lesions, and the main pancreatic duct. The NSD score was
measured for lesion and the main pancreatic duct only. Data are mean values plus/minus standard deviation. DSC : Dice similarity
coefficient, FPR : False positive rate, FNR : False negative rate, NSD : Normalized surface Dice.

Figure 6.5 – Quantitative results. Left : ROC curve of the logistic regression model predicting lesion presence. The central line
represents the average curve and shadowed areas the 95% confidence interval. Right : Confusion matrix of the model obtained at the
operating point maximizing the balanced accuracy. ROC : Receiver operating characteristic, AUC : Area under the curve.

6.6 Discussion

In this study, we presented a method to automatically detect patients with pancreatic neoplasms and
to identify cases with MPD dilatation. The proposed approach was validated on an independent cohort of
756 subjects. We showed that using the MPD dilatation information could improve sensitivity for lesion
detection compared to a baseline approach solely relying on a segmentation network output. Finally, we
evaluated the ability of our model to correctly localize the pancreas, lesions, and the MPD, by assessing
its segmentation performance.

Subgroup analysis for the detection of patients with pancreatic neoplasms The model was assessed
on subgroups of patients based on lesion characteristics and types. Similar AUC, sensitivity and specificity
were observed across the different subgroups, thus highlighting the robustness of our approach. A greater
variability was observed in the case of PPV and NPV, mostly due to the imbalance between healthy and
diseased subjects in some subgroups such as PNET (49 of 312) and IPMN (18 of 290). More generally, the
test set was mostly composed of subjects with pancreatic lesions (65% of the cases). Given this distribution,
a model that tends to over-detect lesions could be favored compared to an unbiased model. However, it
can be noticed in Table 6.2 that class imbalances change depending on the sub-analysis. In the isodense
subgroup only 18% of cases had a pancreatic lesion while the rest were control cases. Conversely, the public
data subgroup was mostly composed of pathological cases (78%). Yet, a median AUC of 0.97 and 0.99,
a median sensitivity of 0.95 and 0.94, and a median specificity of 0.94 and 0.95 were reported for the
isodense and public data subgroups, respectively. This result shows that, on two subsets with radically
different class distribution, the lesion detection model led to comparable results, highlighting its robustness
to class imbalance.

Comparison with other works on public data The results on public data can be compared to competing
DL models that used this database to test their approach. Alves et al. (2022) reported an AUC of 0.91
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MPD diameter: 4 mm

PDAC: 18 mm

IPMN: 13 mm

NET: 18 mm

Figure 6.6 – Qualitative results. Left column : Axial portal venous CT slices of four patients. White arrows indicate lesions location
for the first three rows and the MPD for the last row. Right column : Segmentation of pancreas (red), lesions (green) and MPD (blue)
output by our model. CT : Computed tomography, IPMN : Intraductal papillary mucinous neoplasm, MPD : Main pancreatic duct,
NET : Pancreatic neuroendocrine tumor, PDAC : Pancreatic ductal adenocarcinoma.

and Liu et al. (2020) obtained an AUC of 0.92 (95% CI : [0.89,0.95]). Our algorithm showed notably
higher performance with an AUC of 0.99 (95% CI : [0.98,0.99]). This might be explained by the size of our
training database (more than 2000 cases), which is larger than what competing DL approaches reported
so far (Chen et al., 2023; Park et al., 2023), thus allowing for better generalization on independent cohorts.
Moreover, generalization was also helped by the diversity of the training data which was composed of
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various types of tumors such as PDAC, PNET, or IPMN. However, improved performance can also be
attributed to the combination of specific features to predict lesion presence. While recent approaches tend
to either rely on a pure DL segmentation model or combined segmentation-classification networks, we used
the lesion risk, the MPD diameter, and lesion diameter to predict lesion presence via a separate logistic
regression. The advantage of this approach compared to end-to-end DL methods is two-fold : (i) it does
not require to modify the U-Net architecture by incorporating a classification module which may overfit ;
(ii) it relies on both a small number of interpretable features and an explainable classification method,
thus better allowing to understand the model predictions. To evaluate the effect of combining features, the
sensitivity of the logistic regression was measured according to the features used to train it. The logistic
regression model using only the lesion risk, the one most closely resembling state-of-the-art approaches,
had a lower sensitivity on all subsets compared to the models using two or three features. In particular,
using the MPD diameter systematically improved sensitivity, especially for isodense lesions (plus 10%).
This is probably due to the fact that MPD dilatation is often observed on CT scans during early stages
of pancreatic cancer, thus helping to identify iso-attenuating tumors (Yoon et al., 2011). Improvement of
sensitivity for PDAC detection (plus 5%) when using the lesion and MPD diameter was also observed.
Regarding pancreas PNET, a milder effect was observed (plus 2% sensitivity). However, as PNETs are not
linked to MPD dilatation, effect on sensitivity in patient with PNET was not anticipated. Finally, even
though adding MPD diameter and lesion diameter strongly improved sensitivity in the case of IPMN (plus
6%), the low number of cases (18 of 290) have prevented from drawing any conclusion.

MPD dilatation detection performance The segmentation network was also leveraged to design a logistic
regression model predicting MPD dilatation based on its diameter in the head, body, and tail of the pancreas
(see Section 6.4.3). An AUC of 0.97 (95% CI : [0.96,0.98]) was reported. We highlight that even if other DL
methods allow segmenting the MPD (Viviers et al., 2022; Xia et al., 2022), none of them took advantage of
the MPD segmentation to provide an alert on its potential dilatation, which is a key finding for radiologists
when assessing the pancreas.

Segmentation performance Segmentation performance of the algorithm on the pancreas, lesions, and
MPD was also assessed. Regarding the pancreas, there were no competing DL methods which evaluated
the DSC on the same datasets as in this study. However, three DL models which reported a mean DSC of
0.87 on their test set were found in (Zhou et al., 2019a; Zhu et al., 2019b, 2021). The segmentation network
presented in this work obtained a similar result on public data and a higher mean DSC on the whole test
set. As for lesion segmentation, a mean DSC of 0.63 was obtained on public data. This is a 9% improvement
over the nnU-Net trained by Isensee et al. (2021a) who reported a DSC of 0.54 on this dataset. Finally, we
could not find DSCs obtained by other DL approaches for the MPD. However, given the small size of the
MPD and compared to the DSC obtained on lesions, the model seemed to show satisfactory performance
corroborated by an NSD score of 0.71 on the test set. While higher than in published work, mean DSC
values remained below 0.7 for lesions and the MPD. The reason for this is two-fold : (i) for false negative
and false positive cases, the associated DSC will be 0, thus strongly deteriorating the mean value. We
show in Appendix A.5 that using the median instead of the mean is more robust to these extreme cases.
A median DSC of 0.83 and 0.69 were reported for lesions and the MPD, respectively ; (ii) Lesions and the
MPD are difficult to segment, with potentially few voxels, and contours hard to define. The DSC strongly
penalizes segmentation errors in this scenario. Using the NSD better highlights the predicted segmentation
quality for these structures. Compared to the DSC, a gain of 0.08 and 0.13 points was observed for the
NSD in the case of lesions and the MPD, respectively.

Limitations There are several limitations to this study. First, tumor type was visually assessed by the
radiologists, which, due to some cases being indeterminate, led to a significant number of unclassified lesion
types : 218 in the training set and 65 in the test set. These cases were not included for the subgroup analysis
in Tables 6.2 and 6.3. Secondly, the number of subjects with specific lesions characteristics or tumor types
was rather limited for some subgroups, especially in the case of isodense lesions (56 of 319), patients with
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PNETs (49 of 312), and patients with IPMN (18 out of 290). Future work should focus on creating more
diverse test cohorts to evaluate our algorithm. Thirdly, the reference label for MPD dilatation was derived
from visual assessments by radiologists rather than relying on a quantitative measurement of the MPD
diameter.

6.7 Conclusion

In conclusion, the presented DL approach showed promising results to detect subjects with pancreatic
neoplasm and to identify cases with MPD dilatation. In particular, the combination of the output of
a segmentation network with secondary features increased lesion detection performance. Future efforts
should focus on acquiring additional data with greater diversity of lesions characteristics to increase the
model robustness. The model should also be further validated on a test cohort more representative of typical
missed cases (small and isodense lesions). A different study design could also be proposed, by applying the
model on a longitudinal cohort of patients which were eventually diagnosed with pancreatic neoplasm. This
type of study would be of great interest to assess the ability of the model to detect early-stage pancreatic
cancer. Such an evaluation could be conducted via a retrospective study in collaboration with clinical
institutions having sufficiently large volume of patients.

Currently, the model can be used as a pipeline taking a portal CT scan as input and generating a
segmentation of the pancreas, lesion if detected, and the MPD if visible. It also generates an alert stating if
a lesion is present and if the MPD is dilated. However, this pipeline has not been industrialized yet and can
only be used in a research environment. Therefore, a software development effort needs to be undertaken
to reach clinical deployment.
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Chapitre 7

Towards early diagnosis : detection of
secondary signs

7.1 Preface

Following the detection of pancreatic lesions, our focus shifted towards identifying secondary signs of pan-
creatic cancer. We initiated this exploration with the identification of abnormal pancreatic shapes, presenting
a data-driven approach to learn shape distributions from large databases of healthy organs. Leveraging this
healthy shape distribution, we achieved the detection of abnormal pancreatic shapes in both zero-shot and
few-shot settings. This methodology, presented in Section 7.2, was patented and led to a poster communi-
cation at Medical Image Computing and Computer Assisted Interventions (MICCAI) 2022.
Then, we expanded this work with the detection of four secondary signs of pancreatic cancer using radio-
mics. Specifically, we tackled the challenge of extracting both hand-cratfed and non-redundant deep learning
radiomics to predict four secondary signs of pancreatic cancer : abnormal shape, atrophy, senility, and
fat replacement. This work, presented in Section 7.3, was selected for an oral presentation at Cancer
Prevention through Early Detection (CaPTion), a workshop of MICCAI 2023, and won the
best presentation award.

7.2 Learning shape distributions from large databases of healthy or-
gans : applications to zero-shot and few-shot abnormal pancreas
detection

Abstract. We propose a scalable and data-driven approach to learn shape distributions from large
databases of healthy organs. To do so, volumetric segmentation masks are embedded into a common
probabilistic shape space that is learned with a variational auto-encoding network. The resulting
latent shape representations are leveraged to derive zero-shot and few-shot methods for abnormal
shape detection. The proposed distribution learning approach is illustrated on a large database of
1200 healthy pancreas shapes. Downstream qualitative and quantitative experiments are conducted
on a separate test set of 224 pancreas from patients with mixed conditions. The abnormal pancreas
detection area under the curve reached up to 65.41% in the zero-shot configuration, and 78.97% in
the few-shot configuration with as few as 15 abnormal examples, outperforming a baseline approach
based on the sole volume.
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7.2.1 Introduction

Anatomical alterations of organs such as the brain or the pancreas may be informative of functional
impairments. For instance, hippocampal atrophy and duct dilatation are well-known markers of Alzheimer’s
disease and Pancreatic Ductal Adenocarcinoma (PDAC), respectively (Fox et al., 1996; Liu et al., 2019b).
In these examples, quantifying anatomical differences bears therefore a great potential for determining the
patient’s clinical status, anticipating its future progression or regression, and supporting the treatment
planning.

Since the seminal work of Thompson (1917), the computational anatomy literature proposed several
Variational Autoencoder (VAE) approaches, which embed geometrical shapes into metric spaces where
notions of distance and difference can be defined and quantified (Beg et al., 2005; Christensen et al., 1996;
Kendall, 1984). Taking advantage of these representations, statistical shape models were then proposed to
perform group analyses of shape collections. In particular, atlas models (Pennec, 2006) learn geometrical
distributions in terms of an “average” representative shape and associated variability, generalizing the
Euclidean mean-variance analysis. In medical imaging, learning atlases from healthy examples allows for
the definition of normative models for anatomical structures or organs, such as brain Magnetic Resonance
Imaging (MRI)s or subcortical regions segmented from neuroimaging data (Gori et al., 2017; Zhang et al.,
2013), thus providing a natural framework for the detection of abnormal anatomies.

In practice, leveraging an atlas model to compute the likelihood of a given shape to belong to the
underlying distribution either requires to identify landmarks (Cootes et al., 1995), or to solve a registra-
tion problem (Bône et al., 2018). To circumvent the computational cost of this shape embedding opera-
tion, Yang et al. (2017) proposed to train an encoder network to predict registration parameters from
image pairs. Dalca et al. (2018); Krebs et al. (2019) built on this idea and used the VAE of Kingma
and Welling (2014) to learn the embedding space jointly with the atlas model, instead of relying on pre-
determined parametrization strategies. However, the structure of the decoding network remained constrai-
ned by hyperparameter-rich topological assumptions, enforced via costly smoothing and numerical integra-
tion operators from a computational point of view.

Alternative approaches proposed to drop topological hypotheses by relying on variations of the Autoen-
coder (AE) or its variational counterparts (Kingma and Welling, 2014) to learn normative models that are
subsequently used to perform Anomaly Detection (AD). These methods compress and reconstruct images
of healthy subjects to capture a normative model of organs (Baur et al., 2021; Zimmerer et al., 2019). Yet,
they are usually applied on the raw imaging data, thus they entail the risk of extracting features related to
the intensity distribution of a dataset which are not necessarily specific to the organ anatomy. Therefore,
regularization constraints (Baur et al., 2021; Chen and Konukoglu, 2022) are introduced to improve the
detection performance compared to the vanilla AE. To further reduce the overfitting risk, these methods
artificially increase the dataset size by working on 2D slices.

Given this context, we propose a VAE-based method to learn a normative model of organ shape that can
subsequently be used to detect anomalies, thus bridging the gap between VAE and AD models. Although
VAE methods with explicit modeling constraints proved effective to learn relevant shape spaces from
relatively small collections of high-dimensional data, we propose to further reduce the set of underlying
hypotheses and leave the decoding network unconstrained in its architecture. With the objective to learn
normative shape models from collections of healthy organs, we argue that sufficiently large databases of
relevant medical images can be constructed by pooling together different data sources, see (Dufumier et al.,
2021) for instance. To reduce the risk of overfitting and focus on the anatomy of organs, the VAE is learned
from 3D binary segmentation masks and is coupled with a shape-preserving data augmentation strategy
consisting of translations, rotations and scalings. An approach to study and visualize group differences is
also proposed.

Section 7.2.2 details the proposed method, which is then illustrated on a pancreas shape problem in
Section 7.2.3. Section 7.2.4 discusses the results and concludes.
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7.2.2 Methods

7.2.2.1 Modeling organ shape

We consider an image acquired via a standard imaging technique. For a given organ in the image, its
anatomy can be represented by a binary segmentation mask X = {xi, i = 1...d} with xi ∈ {0, 1} and d
the number of voxels in the image. We are interested in studying the shape of this organ, and assume that
it is characterized by a set of underlying properties that can be extracted from the segmentation mask.
Therefore, we hypothesize the following generative process for the segmentation mask :

pθ(X | z) =
d∏

i=1

fθ(z)
xi

i (1− fθ(z)i)
1−xi (7.1)

where 00 = 1 by convention, and z is a latent variable generated from a prior distribution p(z). This latent
variable provides a low-dimensional representation of the segmentation mask embedding its main shape
features. The function fθ is a non-linear function mapping z to a predicted probabilistic segmentation
mask.

We are interested in inferring the parameters θ of the generative process, as well as approximating
the posterior distribution of the latent variable z given a segmentation mask X. We rely on the VAE
framework (Kingma and Welling, 2014), detailed in Section 3.2.2.5, to estimate the model parameters.
Hence, we assume that p(z) is a multivariate Gaussian with zero mean and identity covariance. We also
introduce the approximate posterior distribution qϕ(z | X) parameterized by ϕ, and optimize a lower bound
L of the marginal log-likelihood, which can be written for the segmentation mask Xp of a subject p as :

L = Eqϕ(z|Xp)[log pθ(X
p | z)]−KL[qϕ(z | Xp) | p(z)], (7.2)

where qϕ(z | Xp) follows a Gaussian distribution N (µϕ(X
p), σ2

ϕ(X
p)I) with I the identity matrix, and KL

is the Kullback-Leibler divergence.
To capture shape features, we use a convolutional network and adopt the U-Net (Ronneberger et al.,

2015) encoder-decoder architecture, detailed in Section 3.2.3.5. However, to align with the VAE framework,
skip connections are omitted, as depicted in Figure 7.1. In practice, the number of convolutional layers and
the convolutional blocks are automatically inferred thanks to the nnU-Net self-configuring procedure (Isen-
see et al., 2021a), detailed in Section 3.2.3.5. Due to this encoder-decoder architecture, the segmentation
masks are progressively down-sampled to obtain low-resolution feature maps which are mapped through
a linear transformation to the latent variable z. The latent code is subsequently decoded by a symmetric
path to reconstruct the original masks.

The model was trained on 800 epochs. We used the Stochastic Gradient Descent optimizer with an initial
learning rate of 10−4 following a polynomial decay. To avoid memory issues and mimic larger batch sizes,
better suited for VAEs (Kingma and Welling, 2014), we used a batch size of 8 with a gradient accumulation
step of 5.

7.2.2.2 Anomaly detection

We propose to learn a normative model of organ shapes by applying the VAE framework previously
presented on the segmentation masks of a large cohort of N healthy patients, allowing the model to
capture a low-dimensional embedding characteristic of a normal organ anatomy. In addition, we use a data
augmentation procedure consisting of random translations, rotations and scalings, in order to be invariant
to these transformations and force the network to extract shape features. Based on this learned model, we
propose two approaches to perform AD by leveraging the latent representation of normal organ shapes.

7.2.2.3 Zero-shot learning method

After training, the recognition model qϕ(z | X) can be used to project the segmentation maps Xp of the
cohort of healthy subjects and obtain an empirical distribution of normal shapes in the latent space. We
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Figure 7.1 – Architecture of the proposed variational autoencoder.

rely on this low-dimensional distribution of normality to detect abnormal shapes. To do so, we compute
the mean of the healthy subjects projection, and define abnormality through the L2 distance to this mean
latent representation.

7.2.2.4 Few-shot learning method

Another approach is to classify normal and abnormal shapes based on their low-dimensional represen-
tations. In practice, we project the segmentation maps from a set of healthy and pathological subjects in
the latent space using the recognition model qϕ(z | X). Therefore, we obtain for all these subjects a set of
low-dimensional organ shape features that we can use to learn any type of classifier (e.g., linear Support
Vector Machine (SVM)).

7.2.2.5 Studying organ shapes differences

Our framework can also be used to study organ differences between groups. Let us consider a set of
healthy and pathological subjects, as well as their segmentation masks. Based on the recognition model
qϕ(z | X), we can compute the average of the subject’s latent projection for each group, denoted by znormal

and zabnormal, respectively. We consider the line of equation (1 − t) × znormal + t × zabnormal with t ∈ R.
When moving along this line with increasing values of t, we progress from a healthy mean latent shape
representation to a pathological one, and can reconstruct the corresponding segmentation mask using the
probabilistic decoder pθ(X | z).

The comprehensive framework, along with its three applications, is depicted in Figure 7.2.
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Figure 7.2 – Framework of the proposed method. A variational autoencoder (VAE) is trained on many 3D segmentation masks
representing healthy pancreas. After training, we assume the model has captured a low-dimensional embedding, characteristic of a normal
shape. By projecting the training samples, we get an empirical distribution of normal shapes in the latent space (green circle). Based
on this model, we can perform anomaly detection in two ways : firstly, in a zero-shot setting. To do so, we compute the mean of the
projections of the healthy training samples. Then, we project the test shapes in the latent space, and we define abnormality through the
L2 distance to this mean latent representation. Secondly, in a few-shot setting, with very few samples. We train a classifier to classify
normal and abnormal shapes based on their low-dimensional representations. Lastly, our framework can also be used to visualize shape
differences between groups. For example, for a set of healthy and pathological subjects, we can compute the average of the healthy
and pathological latent projection : znormal and zabnormal. Then, we consider the line going through these two points, of equation
y = (1− t)× znormal + t× zabnormal with t ∈ R. When moving along this line, we progress from a healthy latent shape representation
to a pathological one. We can generate the shapes corresponding to each point on this line.

7.2.3 Experiments

In this section, we applied our method in the case of the pancreas. A normative model of pancreas shape
was learned on a large cohort of healthy subjects, and was then leveraged for AD on an independent test
cohort. Several configurations were proposed to assess the model performance, including the impact of the
number of training subjects and of the latent space dimensionality on the AD performance. Detection with
the few-shot learning method was performed using SVM. Finally, we showed how the proposed framework
can be used to visualize differences between the healthy and pathological pancreas.

7.2.3.1 Training

The training dataset DTrain was created from DCALV , our private cohort containing 3270 abdominal
Portal Computed Tomography (CT) scans of patients with potential liver cancer (see Section 4.2.2.2). To
ensure the healthy condition and shape of the pancreas, several exclusion criteria were applied :

— First, all patients with metastatic cancer or lesions reported as “unevaluable” were excluded.

— Secondly, in order to avoid overly large liver lesions, patients with lesion volumes exceeding the 99th

percentile were also excluded.

— Thirdly, cases in which lesions protruded from the liver were also removed from the study.

— Finally, the pancreas segmentation masks were automatically generated for the remaining patients,
and only the cases for which the mask consisted of one single connected component were retained,
this last criterion acting as a quality control on the segmentation masks.
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In the end, 1200 cases were retained to build the healthy pancreas database for training. To explore the
influence of the number of samples seen during training, subsets DN with a growing number of subjects were
created (see Table 7.1). For each DN , 80% and 20% of the samples were used for training and validation,
respectively. Splitting was done such that the pancreas volume distribution was balanced across the splits.

Name Ntot Ntrain Nval
Liver lesion Other abdominal

Benign Non suspicious Suspicious pathology
D300 300 240 60 ✓ ✗ ✗ ✗
D600 600 480 120 ✓ ✓ ✗ ✗
D900 900 720 180 ✓ ✓ ✓ ✗
D1200 1200 960 240 ✓ ✓ ✓ ✓

Table 7.1 – Individual splits of the different training sets DN , as well as their corresponding inclusion criteria.

7.2.3.2 Testing

The test database DTest was obtained by combining two datasets : (i) 144 cases from DBR,1, diagnosed
with pancreatic cancer, and for whom the pancreas shape was evaluated as abnormal by an expert radiolo-
gist ; (ii) DNIH , containing 80 CT scans of patients with healthy pancreas and for whom the assumption of
normal pancreas shape held. DBR,1 and DNIH are detailed in Chapter 4. Examples of normal and abnormal
shapes can be seen in Figure 7.3. Centers, machines and protocols differed among DTrain, NIH, and DBR,1.

Figure 7.3 – Examples of normal and abnormal pancreas shapes from DTest. Green and red figures are examples taken from
DNIH and DBR,1, respectively. DBR,1 and DNIH are detailed in Chapter 4.

7.2.3.3 Preprocessing

The first step consisted in obtaining the pancreas segmentation masks. For the public dataset DNIH ,
we used the reference pancreas segmentation masks publicly available. For DTrain

normal and DBR,1, the masks
were obtained semi-automatically using an in-house segmentation algorithm derived from the nnU-Net,
and validated by a radiologist with 25 years of expertise in abdominal imaging. Finally, all the masks were
resampled to 1× 1× 2 mm3 in (x, y, z) directions, and centered in a volume of size 192× 128× 64 voxels.

7.2.3.4 Zero-shot AD

We trained our model on the different datasets DTrain
N , with a growing number of latent dimensions

L ranging from 16 to 1024 (denoted by L16...L1024). For each experiment, we applied the zero-shot AD
procedure, as previously explained, on DTest. We report the Area Under the Curve (AUC), in %, in
Table 7.2. Increasing the dimension of the latent space L improved the classification performance on each
dataset DN . Moreover, for each dataset size the best result was consistently obtained when L was set at the
maximum value L1024. We also observed that the effect of the latent space dimension on the performance
seemed to attenuate as the dataset size increased. Indeed, we observed that when going from L16 to L1024,
the mean AUC for D300, D600, D900, D1200 improved by 10.7, 5.9, 4.0 and 3.1 points, respectively. Regarding
the effect of the database size, we observed that increasing the training set size seemed to globally improve
the AUC scores. For instance, going from D300 to D600 increased the classification performance for all the
experiments, particularly for L16 which gained 9.3 points. This beneficial effect of both larger training sets
and latent dimension was also observed on the Dice Similarity Coefficient (DSC) between the original and
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reconstructed segmentation masks, as shown in Table 7.3. Thus, for the following experiments, we chose
the model trained on D1200 with a latent dimension L1024 as it gave the best results in terms of AUC and
DSCs.

L16 L64 L256 L1024

D300 51.51 ±0.37 59.08 ±0.37 62.16 ±0.37 62.17 ±0.37

D600 59.24 ±0.38 60.97 ±0.36 64.32 ±0.36 65.11 ±0.36

D900 60.77 ±0.37 62.64 ±0.37 64.04 ±0.36 64.81 ±0.36

D1200 62.28 ±0.36 61.74 ±0.37 62.58 ±0.37 65.41 ±0.36

Table 7.2 – Results for zero-shot AD. For each experiment, corresponding to a specific training size D and latent space dimension
L, we report the mean and standard deviation of AUC scores (in %) obtained by bootstrapping with 10000 repetitions. Best results by
line are underlined and by column are in bold. AD : Anomaly detection, AUC : Area under the curve.

L16 L64 L256 L1024

D300 73.7 ±7.2 79.9 ±5.7 80.9 ±7.4 81.5 ±7.4

D600 75.5 ±7.5 83.4 ±5.4 85.0 ±5.8 83.9 ±5.9

D900 78.1 ±5.9 85.0 ±5.8 86.1 ±5.4 85.4 ±5.8

D1200 77.3 ±6.4 85.9 ±5.4 86.2 ±5.3 88.5 ±4.4

Table 7.3 – Results for segmentation masks reconstruction. For each experiment, corresponding to a specific training size and
latent space dimension, we report the mean and standard deviation of Dice Similarity Coefficients obtained by bootstrapping with 10000
repetitions. Best results by line are underlined and by column are in bold.

To visualize the separation between normal and abnormal shapes, we projected each subject from Dtest

using the recognition model qϕ(z|X). Based on the subjects’ latent representation, we applied three di-
mensionality reduction techniques, namely principal components analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE) and Isomap. Results are displayed in Figure 7.4, on which each point repre-
sents the latent projection of a test subject reduced on a 2D plane. We observed that, independently of
the projection technique, normal and abnormal shapes tended to be separated in two different clusters.

Figure 7.4 – 2D reduction of the latent representation of the test subjects DTest. The 80 samples from DNIH are in green,
and the 144 samples from DBR,1 are in red. PCA : Principal components analysis, t-SNE : t-distributed stochastic neighbor embedding.

7.2.3.5 Few-shot AD

We trained a linear SVM classifier on the latent representation of DTest with stratified k-fold cross-
validation. We varied the number k of folds to test the performance of the classifier depending on the
train/test samples ratio. Experiments ranged from a 0.05 train/test ratio to a leave-one-out cross-validation
and are presented in Table 7.4. We noticed that using only 8 healthy and 15 abnormal training samples
increased the performance to 78.9%. We also observed that the AUC scores and the balanced accuracy
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increased with the number of training samples, reaching a maximum of 91.1% and 83.2% respectively in
the leave-one-out configuration.

Train/Test ratio 0.05 0.11 0.25 1 223
Number of training samples 12 (8) 23 (15) 45 (29) 112 (72) 223 (144)

AUC 66.02 ±0.02 78.97 ±0.03 81.87 ±0.07 86.95 ±0.23 91.18 ±0.19

Balanced Accuracy 67.78 ±0.03 70.88 ±0.05 73.96 ±0.10 75.49 ±0.37 83.26 ±0.34

Table 7.4 – Results for few-shot AD. For each experiment, we indicate the number of training samples, as well as the number of
abnormal samples (in brackets). We report the means and standard deviations for AUC (in %) and balanced accuracy (in %), obtained
by bootstrapping with 10000 repetitions. AD : Anomaly detection, AUC : Area under the curve.

7.2.3.6 Comparison with a baseline method

We compared our approach with a baseline method classifying shapes based on their volume. We
applied this method on DTest with bootstrap sampling and obtained an average AUC of 51% with a 95%
confidence interval of [49.9; 51.7], below the maximum AUC scores of 65.4% and 91.1% previously reported
in the zero-shot and few-shot cases, respectively.

7.2.3.7 Comparison with other SSM methods

We also compared the proposed method with two state-of-the-art methods : Active Shape Models
(ASM) (Cootes et al., 1995) and Large Deformation Diffeomorphic Metric Mapping (LDDMM) using the
Deformetrica software (Bône et al., 2018). Concerning ASM, we computed the signed distance map of the
pancreas 3D contours of each subject. For LDDMM, we estimated a Bayesian Atlas (Gori et al., 2017)
parametrized by 576 control points. In both cases, we performed a PCA on the shape-encoding parameters
to obtain a latent vector of dimension 1024 for each subject. We compared them with our method also
using a latent dimension L = 1024. All methods were trained on D1200. Results, reported in Table 7.5, show
that our method outperforms ASM and LDMM when the number of training samples is small (Train/Test
ratio ≤ 0.05).

Configuration Zero-shot Few-shot
Train/Test ratio 0 0.05 1 223

Ours 65.41±0.36 66.02±0.02 86.95±0.23 91.18±0.19

LDDMM 54.6±0.36 58.68±0.02 89.43±0.19 95.41±0.11

ASM 58.42±0.36 61.1±0.02 82.64±0.26 93.79±0.14

Table 7.5 – Few-shot and zero-shot AD results. For each experiment, we report the mean and standard deviation for AUC (in %),
obtained by bootstrapping with 10000 repetitions. Best results by column are in bold. AD : Anomaly detection, ASM : Active shape
model, AUC : Area under the curve, LDDMM : Large deformation diffeomorphic metric mapping.

7.2.3.8 Studying pancreas shapes differences between groups

To model differences in the pancreas shape between healthy and pathological groups, we applied the
procedure presented in Section 7.2.2.5 on the subjects from DTest

normal and DTest
abnormal. Figure 7.5 shows the

pancreas shapes obtained for different values of t. When going from a healthy towards a pathological latent
representation, we observed a shrinkage of the shape in the body for the generated pancreas.

7.2.4 Discussion and conclusion

We presented a method based on a VAE to learn a normative model of organ shape. We hypothesized
that such a model could be learned from large databases of healthy subjects. The method was applied in
the case of the pancreas, for which morphological changes can be a marker of disease.
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Figure 7.5 – Generated pancreas shapes. Pancreas shapes generated by decoding latent representations lying on the line of
equation(1− t)× znormal + t× zabnormal.

We empirically observed that large training sets and latent dimensions were beneficial to the model
in terms of AD performance. Our results also demonstrated that the model captured features that dis-
tinguished between normal and abnormal shapes in the latent space, as illustrated in Figure 7.4. From a
quantitative point of view, we observed in the zero-shot case - i.e. without supervision - that the best model
obtained an AUC score of 65.41±0.36%, which significantly outperformed a naive model classifying shapes
based on their volume. In the few-shot experiments, we obtained a mean AUC score of 77.4% by training a
SVM with only 8 healthy subjects and 15 pathological subjects. These findings highlight the discriminating
properties of the latent normative model of pancreas shape estimated by our model. Moreover, classification
performance reached up to 91.1% AUC and 83.2% balanced accuracy when training the classifier on 223
samples in a leave-one-out fashion. These results are in line with Liu et al. (2019b), where the authors
reported a balanced accuracy of 85.2% on their private dataset. Yet, our approach differs from theirs by
its paradigm. Instead of training a supervised model for joint shape representation and classification, we
propose to learn a normative model of shape. The advantage of this approach is that it does not require
different types of patients to be trained but solely a database of healthy subjects. Moreover, it can be used
in an unsupervised manner (cf. zero-shot) or with few labeled data (cf. few-shot), with good performance
in both cases.

Finally, we also showed that our framework could be used to study and visualize the morphological
differences between the organ shape of different clinical groups, based on an exploration of the latent space.
The anatomical changes observed in Figure 7.5 seemed to concur with clinical evidence as the shrinkage
suggests partial parenchymal atrophy (Yamao et al., 2020). This hypothesis would require further medical
evaluation, and could be the subject of a proper clinical validation.

One limitation of this study lies in the experimental setup, particularly in the normal vs. abnormal
shape classification experiments where normal and abnormal shapes are sourced from distinct databases.
While the use of binary inputs significantly minimizes bias related to the data origin, it is important to
investigate potential implications further. Additionally, as our proposed method is grounded in a generative
approach, there is interest in exploring discriminative approaches, specifically contrastive learning methods.
The details of these limitations and preliminary results are elaborated in Appendix B.
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7.3 Detection of Secondary Signs of Pancreatic Cancer using Non-
Redundant Combination of Hand-Crafted and Deep Learning Ra-
diomics

Building on the work on abnormal pancreatic shapes, we further studied the identification of additional
secondary signs of pancreatic cancer using radiomics.

Abstract. We address the problem of learning Deep-Learning Radiomics (DLR) that are not redun-
dant with Hand-Crafted Radiomics (HCR). To do so, we extract DLR features using a variational
autoencoder while enforcing their independence with HCR features by minimizing their mutual in-
formation. The resulting DLR features can be combined with hand-crafted ones and leveraged by a
classifier to predict signs of cancer. We illustrate our method on four secondary signs of pancreatic
cancer and validate it on a large independent test set. Our results highlight the value of combining
non-redundant DLR and HCR features, as evidenced by an improvement in the area under the curve
compared to baseline methods that do not address redundancy or solely rely on HCR features.

7.3.1 Introduction

Computational methods in medical imaging hold the potential to support radiologists in the early
diagnosis of cancer, either by detecting small-size abnormal neoplasms (Litjens et al., 2017), or even earlier
in the disease course by recognizing indirect signs of malignancy. Such signs are usually subtle and organ-
dependent, thus requiring a time-consuming and demanding clinical assessment. For example, in the case
of pancreatic cancer, radiologists analyze the overall shape of the organ, check for fat replacement and
note whether the pancreas shows atrophy and/or senile characteristics (Khoury et al., 2017; Matsuda,
2019; Miura et al., 2020). The identification of cancerous signs using automated tools can be based on
radiomics, which are descriptors of texture and shape of a medical image, computed based on spatial
relationships between voxels and their intensity distribution (Kumar et al., 2012; Lambin et al., 2012).
Radiomics can be divided into two categories : (i) Hand-Crafted Radiomics (HCR), which are based on
predefined mathematical formulas (Kumar et al., 2012; Lambin et al., 2012) ; (ii) Deep-Learning Radiomics
(DLR), estimated using deep neural networks (Kumar et al., 2015; Shafiee et al., 2017), which may unveil
additional complex relationships between voxels. HCR are generally extracted by open-source frameworks
such as pyradiomics (Van Griethuysen et al., 2017). While such tools facilitate the standardization of the
HCR, they only provide a limited number of predefined features. On the other hand, DLR features are
typically extracted using either discriminative or generative models. Discriminative models frequently rely
on one or multiple simple Convolutional Neural Network (CNN)s (Antropova et al., 2017; Chen et al., 2016;
Huynh et al., 2016; Lao et al., 2017; Paul et al., 2016). To prevent overfitting, some methods extract DLR
by using pretrained models trained on large datasets like ImageNet (Antropova et al., 2017; Huynh et al.,
2016; Paul et al., 2016). The deep neural networks commonly employed for computing these DLR features
consist of multiple layers, with each layer producing potential features as its output. As a result, the choice
of the layers to retain varies, with each method employing different heuristics to identify them (Huynh et al.,
2016; Paul et al., 2016). In the realm of generative models, autoencoder networks are widely used (Afshar
et al., 2019). Autoencoders encode an image in a latent vector that is subsequently used to reconstruct the
original image. This latent vector is considered to encapsulate the most descriptive features of the input
image, making it a natural choice for representing the DLR (Kumar et al., 2015; Rav̀ı et al., 2016).

The two types of radiomics are complementary : the computation of DLR is data-driven, which ensures
that the extracted features are adapted to a specific problem or type of data. On the other hand, the
predefined and generic definitions of HCR may make them less adapted for a given specific task, but
favors generalization and interpretability. Therefore, it has been recently proposed to combine HCR with
DLR, arguing that this approach could result in an improved feature set for predictive or prognostic
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models (Afshar et al., 2019). As depicted in Figure 7.6, the literature reports two main approaches to
perform this combination : decision-level methods that train separate classifiers on DLR and HCR before
aggregating their predictions (Antropova et al., 2017; Huynh et al., 2016; Liu et al., 2017), and feature-level
methods that concatenate the two types of radiomics in a single feature vector which is then leveraged
by a classifier (Chen et al., 2016; Lao et al., 2017; Paul et al., 2016). These approaches extract HCR and
DLR features independently, without guaranteeing complementarity between the two sets of features. As a
result, the extracted DLR may be highly redundant with the HCR, limiting the value of their combination.

Given this context, we propose to extract DLR features that will complement the information already
contained in the HCR. Our contributions are two-fold :

— A deep learning method, based on the Variational Autoencoder (VAE) framework (Kingma and
Welling, 2014), that extracts non-redundant DLR features with respect to a predetermined set of HCR.
This is achieved by minimizing the mutual information between the two types of radiomics during the
training of the VAE. The resulting HCR and DLR features are leveraged to predict secondary signs
of cancer.

— Validation of the proposed approach in the case of pancreatic cancer, using 2319 training and 1094 test
subjects collected from 9 medical institutions with a split performed at the institution level. This is all
the more important as most combination approaches have been solely evaluated in a cross-validation
setting on mono-centric data (Antropova et al., 2017; Huynh et al., 2016; Liu et al., 2017).

Figure 7.6 – Existing methods for combining HCR and DLR. Combinations at the feature-level concatenate the two types of
radiomics in a single feature vector which is then leveraged by a classifier, while combinations at the decision-level train separate classifiers
on HCR and DLR before aggregating their predictions. DLR : Deep learning radiomics, HCR : Hand-crafted radiomics.

7.3.2 Method

Our method, illustrated in Figure 7.7, relies on a generative model that recreates a 3D input image
from the concatenation of HCR and DLR features. Feature extraction is done analytically for the HCR
and through a VAE encoder for the DLR. Independence between the features is encouraged through the
minimization of their mutual information, which is estimated by a discriminator relying on the density-
ratio trick (Kim and Mnih, 2018). Finally, the resulting features are given to a classifier for cancer marker
prediction.

7.3.2.1 Generative framework

Let x ∈ RV be a 3D image acquired via a standard imaging technique, and y ∈ {0, 1}V the corresponding
binary segmentation mask of a given organ, with V the number of voxels. In order to focus on a specific
organ and facilitate the extraction of specific features, we work on the masked image x∗ = x × y. We
postulate the existence of a generative model enabling us to create an image x∗ from a low-dimensional
representation space [h, d] where h ∈ RNh and d ∈ RNd represent the HCR and DLR features with Nh

and Nd being the number of hand-crafted and deep features, respectively. Assuming that x∗ follows an
independent and identically distributed Gaussian distribution, and that fθ is a non-linear function mapping
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Figure 7.7 – Overview of our method. Starting from a masked image, HCR are calculated analytically, while DLR are extracted by
the encoder of a VAE. These two types of radiomics are subsequently combined and given to the decoder for image reconstruction. The
independence of HCR and DLR is enforced by the minimization of the MI. The latter is approximated by the density-ratio trick (Kim
and Mnih, 2018), involving a discriminator Dλ. Following the training of the VAE, a classifier CM can be trained using both the HCR
and DLR features to predict a specific marker of interest. DLR : Deep learning radiomics, HCR : Hand-crafted radiomics, MI : Mutual
information, VAE : Variational autoencoder.

the concatenation of vectors [h, d] to the masked image x∗, we hypothesize the following generative process :

pθ(x
∗ | y, h, d) =

V∏
v=1/yv=1

1√
2πσ2

exp
(x∗v − fθ([h, d])v)

2

2σ2
(7.3)

7.3.2.2 HCR and DLR features computation

We place ourselves within the VAE framework (Kingma and Welling, 2014), detailed in Section 3.2.3.5,
and assume that p(d) follows a Gaussian distribution with zero mean and identity covariance. HCR features
are calculated analytically, while DLR features are computed by introducing the approximate posterior
distribution qϕ(d | x∗). We hypothesize qϕ(d | x∗) ∼ N (µϕ(x

∗), σ2
ϕ(x

∗)I), and maximize a lower bound of

the marginal log-likelihood log pθ(x
∗ | y). We obtain the following loss function :

LVAE = −Eqϕ(d|x∗)[log(pθ(x
∗ | y, h, d))] +KL[qϕ(d | x∗) | p(d)] (7.4)

where KL refers to the Kullback-Leibler divergence.

7.3.2.3 Mutual Information Minimization

To promote the independence between HCR and DLR features, we propose to minimize their Mutual
Information (MI), expressed here as KL[q(h, d) | q(h)q(d)], where q(h, d) represents the joint distribution of
the DLR and HCR features, and q(h)q(d) the product of their marginal distributions. These terms involve
mixtures with a large number of components, making them intractable. Moreover, obtaining the direct
Monte Carlo estimate necessitates processing the entire dataset in a single pass. Thus, we sample from
these distributions to compute the MI : to sample from q(h, d), we randomly choose an image x∗i , extract
its HCR features hi as well as its DLR features di using the VAE encoder, and concatenate them. Samples
from q(h)q(d) are obtained by concatenating vectors hk and dj with k ̸= j. Finally, to compute the MI, we
need to compute the density-ratio between q(h, d) and q(h)q(d). To do so, we resort to the density-ratio
trick (Kim and Mnih, 2018), which consists in introducing a discriminator Dλ([h, d]) able to discriminate



126 CHAPITRE 7. TOWARDS EARLY DIAGNOSIS : DETECTION OF SECONDARY SIGNS

between samples from q(h, d) and samples from q(h)q(d). Thus, we obtain :

KL[q(h, d) | q(h)q(d)] = Eq(h,d)

[
log

q(h, d)

q(h)q(d)

]
≈

∑
i

ReLU

([
log

Dλ(hi, di)

1−Dλ(hi, di)

])
. (7.5)

where the ReLU function forces the estimate of the MI to be positive, which prevents from back-propagating
wrong estimates of the density-ratio.

7.3.2.4 Estimating the Mutual Information

The MI is estimated following the density-ratio trick (Kim and Mnih, 2018) which requires to train a
discriminator Dλ predicting whether concatenated radiomics vectors [h, d] come from q(h, d) or q(h)q(d).
Samples for training Dλ are obtained following the procedure shown in Figure 7.8. In practice, Dλ is
modeled as a 2-layer Multi Layer Perceptron with ReLu activation, which is trained by minimizing a
binary cross-entropy loss term. Once the discriminator is trained, the MI between HCR and DLR features
can be approximated as follows :

MI(h, d) = Eq(h,d)

[
log

q(h, d)

q(h)q(d)

]
≈

∑
i

ReLU

([
log

Dλ(hi, di)

1−Dλ(hi, di)

])
. (7.6)

Figure 7.8 – Training the discriminator Dλ. Given three different input images x∗
i , x

∗
j and x∗

k, the corresponding HCR and DLR

features are computed : hj , hj , hk and di, dj , dk. Samples from q(h, d) are obtained by concatenating features of a same image (hi and di
for instance), while samples from q(h)q(d) are obtained by concatenating hk and dj with k ̸= j. DLR : Deep learning radiomics, HCR :
Hand-crafted radiomics.

7.3.2.5 Optimization

The final loss function is :

L = LVAE + κKL[q(h, d) | q(h)q(d)] (7.7)

This loss function is composed of two terms : the left-hand term, which is the common VAE loss function and
promotes the reconstruction of the masked image while regularizing the approximate posterior distribution ;
and the right-hand term which minimizes the MI between q(h, d) and q(h)q(d), and enforces the extraction
of DLR features which are not redundant with HCR features. The importance of the MI in the loss function
is weighted by κ, which we empirically set to 1 according to the results shown in Table 7.6. To ensure that the
density-ratio is well-estimated, as explained in (Kim and Mnih, 2018), we opt for an alternate optimization
scheme between the VAE model and the discriminator Dλ : every 5 epochs, we freeze the optimization of
the VAE, train the discriminator for 150 epochs, and continue the optimization of the VAE model.
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κ = 0.01 κ = 0.1 κ = 1 κ = 10
General Shape 70.44±0.07 70.01±0.07 70.07±0.07 71.03±0.07

Atrophy 80.82±0.05 81.43±0.06 82.57±0.06 80.77±0.06

Fat Replacement 69.52±0.08 70.5±0.07 71.05±0.07 68.65±0.08

Senility 73.14±0.08 72.36±0.08 72.44±0.07 72.38±0.08

Table 7.6 – Cancer marker prediction scores for different values of κ. For each experiment, we report the means and standard
deviations of the area under the curve (in %) obtained by bootstrapping with 10000 repetitions. For each line, best result is in bold.

7.3.2.6 Early cancer markers prediction

Once the VAE model is trained, DLR can be extracted and leveraged to predict cancer markers. We
propose to train, for each marker of interest, a classifier CM based on the concatenation of HCR and DLR
extracted by our model. Unlike VAE training, which is unsupervised and task-agnostic, CM training is
supervised and specific to a cancer marker.

7.3.3 Experiments

We illustrate our method on the pancreas, for which we aim to predict four secondary signs of abnor-
mality that manifest prior to the onset of visible lesions :

(i) Abnormal shape : Changes in the shape of the pancreas can be associated with pancreatic cancer
as the tumor growth can lead to various structural changes in the pancreas (Liu et al., 2019b; Vétil
et al., 2022a) ;

(ii) Atrophy : Pancreatic atrophy may signal pancreatic cancer (Miura et al., 2020) and can indicate small
isodense lesions (Yamao et al., 2020) ;

(iii) Fat replacement : Fat replacement is characterized by the accumulation of fat within the pancreas and
is associated with various metabolic diseases, pancreatitis, pancreatic cancer, and precancer (Khoury
et al., 2017; Majumder et al., 2017; Miura et al., 2020). While this mainly modifies the texture, severe
fat replacement can also affect the shape by inducing lobulated margins ;

(iv) Senility : Anatomical changes in the pancreas, such as pancreatic atrophy, fatty replacement and
fibrosis have been documented in elderly individuals and increase the susceptibility of individuals to
pancreatic cancer (Khoury et al., 2017; Matsuda, 2019).

These early signs are illustrated in Figure 7.9, and are further detailed in Section 2.9.

Figure 7.9 – Portal CT scans showing secondary signs of pancreatic cancer. Pancreas are delineated in orange. (A) shows a
normal pancreas. White arrows indicate an abnormal enlarged tail (B), a parenchymal atrophy (C), fat replacement in the neck of the
pancreas (D) and senile characteristics (E). CT : Computed tomography.

7.3.3.1 Dataset

Data were obtained from our public and private cohorts and split at the institution-level into two
independent datasets DTrain and DTest. DTrain contained 2319 portal Computed Tomography (CT) scans
from DBR,1, DFR,1, DFR,2, DUS,2, DCALV , and DCABO, while DTest contained 1095 abdominal portal
CT scans from DUS,1, DNIH , and DMSD. The reference labels regarding the secondary signs previously
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described were obtained based on the assessment of the CT scan by a pool of 11 radiologists. Details about
the datasets and the annotation process are given in Chapter 4. At the time of this work, reference labels
were available for 676 cases of DTrain and all the subjects from DTest.

7.3.3.2 Preprocessing

For all the subjects, pancreas segmentation masks were obtained using a segmentation model derived
from the nnU-Net ( Isensee et al. (2021a), detailed in Section 3.2.3.5) and manually reviewed by radiologists.
The CT images and corresponding masks were resampled to 1× 1× 2 mm3 in the (x, y, z) directions, and
centered in a volume of size 192×128×64 voxels. Images intensities were clipped to the [0.5, 99.5] percentiles
and standardized based on the percentiles, mean and standard deviation of the pancreas intensities in
DTrain.

7.3.3.3 Extracting HCR and DLR

32 HCR features were extracted using the pyradiomics library (Van Griethuysen et al., 2017), focusing
exclusively on shape and first-order intensity features (see Appendix C for the comprehensive list). Com-
plementary DLR features were extracted using the VAE model of Section 7.3.2. The architecture followed
the U-Net ( Ronneberger et al. (2015), detailed in Section 3.2.3.5) encoder-decoder scheme without skip
connections to align with the VAE framework. The number of convolutional layers and the convolutional
blocks were automatically inferred thanks to the nnU-Net self-configuring procedure (Isensee et al., 2021a),
resulting in 1, 110, 240 trainable parameters. The VAE was trained on DTrain for 1000 epochs with a batch
size of size 32. Every five epochs, the VAE was frozen and the discriminator Dλ was trained for 150 epochs
with a batch size equal to the total training dataset. The VAE and Dλ were optimized using two inde-
pendent Adam optimizers with a learning rate of 10−3. The dimension of DLR features d was set to 32,
resulting in a final latent space dimension for the VAE of 64. Data augmentation consisting of rotation and
cropping was applied during training.

7.3.3.4 Predicting early cancer markers

For each marker, a logistic regression was trained based on the concatenation of HCR and DLR features
extracted from the subjects in DTrain for whom reference labels were available. The logistic regression was
regularized using L2 penalty, with a default regularization coefficient of 1. Final predictions for DTest were
derived by ensembling models obtained through a four-fold cross-validation setup.

7.3.4 Results

7.3.4.1 Quantitative results

To demonstrate the usefulness of extracting DLR with MI minimization, two VAEs were trained. Both
followed the same procedure (detailed in Figure 7.7) but differed only in the presence or absence of the
MI minimization term in their loss function. Then, several logistic regression models with different inputs
were trained in order to assess the effect of combining HCR and DLR features. In total, the following
experiments were run :

— HCR only : H32 and H64. These two experiments use the 32 basic HCR features described in
Appendix C, and H64 uses a further 32 HCR gray-level features calculated by the pyradiomics li-
brary (Van Griethuysen et al., 2017) and selected by recursive feature elimination.

— DLR only : DMI
32 and D32. 32 DLR features extracted by a VAE with and without MI minimization,

respectively ;

— HCR + DLR : HDMI
64 and HD64. 32 basic HCR features + 32 DLR features extracted by a VAE

with and without MI minimization, respectively.
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Figure 7.10 – Architecture of the proposed variational autoencoder.

Thus, the logistic regressions of H32, D32 and DMI
32 used vectors of size 32, while those of H64, HD64 and

HDMI
64 used vectors of size 64. Prediction results for each of the four cancer markers are presented in

Table 7.7.

HCR only DLR only HCR + DLR

H32 H64 D32 DMI
32 HD64 HDMI

64

Abnormal Shape 68.38±0.07 68.11±0.07 67.66±0.07 72.41±0.07 71.2±0.07 70.07±0.07

Atrophy 81.05±0.06 81.57±0.05 74.08±0.07 79.08±0.06 80.82±0.06 82.57±0.06

Fat Replacement 70.55±0.07 69.78±0.08 65.96±0.08 65.74±0.07 69.28±0.08 71.05±0.07

Senility 71.63±0.08 70.21±0.08 70.18±0.07 69.1±0.08 72.28±0.08 72.44±0.07

δ w.r.t H32 - -0.48±0.07 -3.43±0.07 -1.32±0.07 0.49±0.07 1.13±0.07

Table 7.7 – Pancreatic cancer marker prediction. For each experiment, we report the means and standard deviations of the AUC (in
%) obtained by bootstrapping with 10000 repetitions. For each line, first and second best results are in bold and underlined, respectively.
The last row shows the difference in AUC compared with H32, averaged over the different markers. AUC : Area under the curve, DLR :
Deep learning radiomics, HCR : Hand-crafted radiomics.

The comparison between H32 and H64 showed that adding 32 gray-level HCR features was not beneficial
as results were similar, or even decreased : for instance, for senility, the Area Under the Curve (AUC) went
from 71.63% (H32) to 70.21% (H64). On average, the AUC of H64 lost -0.48 points compared with H32. These
experiments demonstrated the power of the 32 basic HCR features, and the need to find complementary
features that would add value.

Then, for almost all markers, H32 outperformed D32 and DMI
32 , meaning that no VAE, whether trained

with or without MI minimization, managed to automatically extract 32 DLR features as informative as
the 32 basic HCR features used by H32. For texture-related markers, such as fat replacement and senility,
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MI minimization did not produce clear differences. On the other hand, on shape-related markers, the DLR
features learned by DMI

32 were shown to be more relevant than those learned by D32 with a basic VAE.
Thus, on average, DLR features were better when extracted by a VAE trained with MI minimization, but
still proved less informative than HCR features.

Finally, experiments HD64 and HDMI
64 showed that combining the two types of radiomics is beneficial

since the average AUC gained 0.49 (HD64) and 1.13% (HDMI
64 ) compared to H32. Yet, results demonstrated

that minimizing the redundancy produced the best results compared with all other approaches. Indeed,
in HD64, adding 32 DLR features produced variable results depending on the markers : compared to H32,
the AUC increased by a maximum of 2.82% for abnormal shape prediction, and dropped by a maximum
of 1.27% for predicting fat replacement. On the other hand, HDMI

64 outperformed H32 on all prediction
problems, meaning that the non-redundant DLR features systematically provided useful information.

7.3.4.2 Influence of the latent space

To explore the influence of the latent space dimension on the prediction performance, we replicated the
HDMI

64 experiment with increasing size L of the latent space, and reported prediction results in Table 7.8.
Table 7.8 shows that increasing the latent space size resulted in lower classification performance. Specifically,
a latent space size of 32 provided the most relevant DLR features.

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048
Abnormal Shape 70.07±0.07 69.02±0.07 68.87±0.07 69.91±0.07 69.33±0.07 68.68±0.07

Atrophy 82.57±0.06 82.28±0.05 81.77±0.06 82.68±0.05 80.9±0.06 80.21±0.06

Fat Replacement 71.05±0.07 70.91±0.07 70.23±0.08 70.45±0.08 69.55±0.07 68.96±0.08

Senility 72.44±0.07 72.02±0.07 70.38±0.08 71.65±0.08 72.03±0.07 69.6±0.08

Table 7.8 – Pancreatic cancer marker prediction with varying latent space size. For each experiment, a VAE with MI
minimization and latent space size L was trained. Predictions were obtained after training logistic regressions on 32 basic hand-crafted
radiomics features + L deep learning radiomics features extracted by a VAE with MI minimization. We report the means and standard
deviations of the AUC (in %) obtained on the test set by bootstrapping with 10000 repetitions. For each line, first best results are in
bold. AUC : Area under the curve, MI : Mutual information, VAE : Variational autoencoder.

7.3.4.3 Qualitative results

To visualize the effect of the extracted DLR features, we looked at the absolute value of the logistic
regression weights for D32 and DMI

32 in two ways. In Figure 7.11-A, the absolute value of these coefficients
are displayed. The higher the absolute value of the coefficient, the higher its importance in the logistic
regression prediction. When the MI was not minimized, HCR features had stronger importance than DLR
ones. On the other hand, when we encouraged the independence between the two types of features through
MI minimization, the contribution of DLR features to the prediction increased. Figure 7.11-B shows the
number of DLR features among the k features with highest importance, for increasing values of k. HDMI

64

and HD64 are shown in blue and orange, respectively. In addition, two extreme scenarios are shown : one
where the logistic regression is predominantly influenced by the DLR features (in green), and another one
where the logistic regression is primarily driven by the HCR features (in red). We can see that the blue
curve approached the green curve, meaning that DLR features from HDMI

64 contributed more to the outcome
prediction. When the MI was not minimized, DLR features had less influence on the predictions as the
orange curve approached the scenario in which DLR would be ignored.

7.3.4.4 Reconstruction performance

To explore the reconstruction performance of the VAE, we computed the average L2 error per voxel
between the original test images and their corresponding reconstructions. Upon applying nnU-Net automa-
tic intensity normalization procedure (Isensee et al., 2021a), voxel intensities were observed to range from
−3 to 2.3. Specifically, we employed a VAE with a latent space dimension of L = 32 and MI minimization
during training. The resulting reconstruction error was found to be (4.4±1.4)×10−3, which was comparable
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Figure 7.11 – Qualitative assessment of the DLR and HCR features through the coefficients of the logistic regressions.
A : Absolute value of the coefficients of the logistic regressions. We plot, for each logistic regression corresponding to one marker,
the absolute value of the coefficient for each of the 64 features. The first 32 features corresponded to DLR, while the 32 remaining features
corresponded to HCR. B : Number of DLR features among the top k features. Dashed lines represent the extreme scenarios in
which all 32 DLR are more informative than all 32 HCR (green), or all 32 HCR are more informative than all 32 DLR (red). DLR : Deep
learning radiomics, HCR : Hand-crafted radiomics.

to the L2 error obtained from a VAE trained without MI minimization, amounting to (4.1 ± 1.4) × 10−3.
These observations suggest that the introduction of MI minimization did not significantly impact the qua-
lity of the reconstructed images, neither resulting in deterioration nor improvement. Additionally, Table 7.9
further explores the relationship between reconstruction performance and latent space sizes, demonstrating
that increasing the latent space size did not have a discernible effect on the quality of the reconstructions.

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048
L2 error ×103 4.4±1.4 4.4±1.4 4.4±1.4 4.4±1.4 4.3±1.4 4.3±1.5

Table 7.9 – Reconstruction performance with varying latent space sizes. For each experiment, a variational autoencoder with
mutual information minimization and latent space size L was trained. We report the L2 error per voxel between the original image and
its reconstruction, with voxel intensities varying in [−3, 2.3].

7.3.5 Discussion and conclusion

We presented a method to learn DLR features that are not redundant with HCR ones. The method
was based on the well-known VAE framework (Kingma and Welling, 2014) that extracted DLR features
from masked images in an unsupervised manner. The complementarity between the two types of radio-
mics features was enforced by minimizing their MI, and the resulting features were used to train classifiers
predicting different cancer markers. Experiments in the case of four secondary signs of pancreatic cancer in-
dicated that our method increased prediction performance with respect to two state-of-the-art approaches.
These findings suggest that our approach holds potential to improve patient survival outcomes. Qualitative
results confirmed the advantages of minimizing the MI during training, as it resulted in the generation
of DLR features that were complementary to HCR features and more prominently used for marker pre-
diction. These results were obtained on a large and independent test set, which is particularly important
as radiomics models require robust validation strategies to ensure their generalization and reproducibility
when applied to new datasets (Aerts et al., 2014). With this in mind, it might be interesting to further
encourage this feature efficiency by imposing independence between the DLR features themselves. Another
research avenue could be to simplify the proposed pipeline by developing an end-to-end network capable
of performing both feature extraction and classification tasks within a unified framework. Achieving this
objective would necessitate the simultaneous training of the feature extractor and multiple sub-networks
for each classification task. However, this approach might pose challenges in terms of training complexity,
particularly due to the presence of substantial class imbalances across the various classification tasks. Alter-
natively, another possibility is to train an end-to-end CNN. Although more direct in nature, this approach
would entail the training of a separate CNN for each question, which could be computationally heavier
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compared to the calibration of a logistic regression based on a single feature extractor, as suggested in our
current work. Future studies should also address the interpretability of the extracted DLR features, as this
aspect was not covered in the present work.



Chapitre 8

Conclusion and Perspectives

8.1 Preface

This last chapter aims to summarize the contributions made in this thesis and to outline potential
avenues for future research in this area. The future directions are categorized into clinical, technical, and
industrial perspectives.
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8.2 Main contributions

The purpose of this thesis was to propose Artificial Intelligence (AI)-based methods designed to assist
radiologists in identifying pancreatic cancer on portal Computed Tomography (CT) scans. The primary
objectives included the systematic identification of pancreatic lesions to prevent missed or delayed diag-
noses, and the pursuit of early diagnosis by detecting secondary signs that could be visible before the clear
appearance of pancreatic lesions. These objectives aimed to facilitate timely diagnosis, increase eligibility
for surgical intervention—currently the primary therapeutic option—and ultimately enhance the patients’
survival.

The pursuit of these objectives began with the creation of a database enabling the development of
efficient and robust AI methods for pancreatic cancer analysis. Extensive effort was put into creating
DCAPA, a large and multi-centric database with diverse pathologies, detailed in Chapter 4. This resulted
in the establishment of one of the largest annotated databases for pancreatic cancer research, currently
containing over 2, 800 portal CT scans. This database is planned for continuous expansion to serve Guerbet’s
research and development needs.

Then, an important methodological step was the development of an automatic pancreas segmentation
algorithm on portal CT scans. While pancreas segmentation was not an objective per se, achieving precise
segmentation was crucial as it provided a Region of Interest (ROI) for addressing more complex tasks.
Segmentation of the pancreas posed challenges due to its elongated shape and low contrast at its extre-
mities. In particular, ensuring accurate segmentation at these extremities was crucial as lesions could be
situated within these areas. The proposed method, detailed in Chapter 5, locally adjusted the sensitivity
of the segmentation by incorporating geometric priors. While the method was showcased on the pancreas,
its general formulation renders it applicable to any existing network and any organ presenting similar
segmentation challenges. The results demonstrated that geometrical priors effectively corrected the missed
extremity errors made by a state-of-the-art method, while also preserving the overall quality of segmen-
tation. However, this approach was constrained by the introduction of hyper-parameters, which, although
guided by anatomical knowledge, can lead to time-consuming search processes.

With these fundamental steps addressed, the thesis objectives shifted towards pancreatic cancer detec-
tion on portal CT scans.

Chapter 6 presented a method allowing for the identification of pancreatic lesions and Main Pancreatic
Duct (MPD) dilatation, crucial indicators of pancreatic cancer. As these two signs rely on clearly iden-
tifiable structures (the lesion and the MPD), the proposed method started with the segmentation of the
pancreas, the lesion and the MPD. Then, features were extracted from the predicted segmentations and le-
veraged to predict the presence of a lesion and the dilatation of the MPD. For this matter, a state-of-the-art
segmentation model was trained on 2134 patients from multi-centric databases covering multiple geogra-
phical regions. The model was thoroughly evaluated on 756 patients from independent cohorts, reaching
an Area Under the Curve (AUC) of 98% for the detection of lesions, with a sensitivity of 94%. Subgroup
analyses demonstrated similar sensitivities across different lesion types and characteristics. Regarding the
detection of MPD dilatation, the AUC was 97%. This method represents the first AI-driven approach for
detecting MPD dilatation, and demonstrated that enhancing lesion detection is achievable through the
incorporation of explicit features derived from the MPD. However, this method focused solely on detection
and did not address the task of characterization, namely identifying the lesion type or determining the
malignant nature of the MPD dilatation. Additionally, while the method underwent evaluation on a large
external cohort, this validation cohort lacked a sufficient number of cases with isodense or small lesions,
which are the lesions frequently overlooked during diagnosis. These limitations will be elaborated upon in
the subsequent section focusing on perspectives.

Continuing towards early diagnosis, Chapter 7 aimed at detecting secondary signs of pancreatic cancer
for which only image-level labels were available. Different strategies were explored.

The first approach proposed to address the detection of abnormal pancreatic shapes. To this end, a
method leveraged large databases of healthy pancreases in order to learn a normative model of healthy
shapes, hence facilitating the identification of abnormal shapes. Volumetric segmentation masks were em-
bedded into a common probabilistic shape space using a Variational Autoencoder (VAE). The resulting
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latent shape representations were leveraged to derive zero-shot and few-shot methods for abnormal shape
detection. Trained on 1200 healthy shapes and tested on 224 shapes with mixed conditions, the abnormal
pancreas detection AUC reached up to 65.41% in the zero-shot configuration, and 78.97% in the few-shot
configuration with as few as 15 abnormal examples, outperforming baseline approaches. Besides anomaly
detection, the resulting method could be used to study and visualize the morphological differences between
the organ shapes of different clinical groups. In addition to the suggested generative approach, alternative
discriminative methods could be explored in order to build similar normative models. Particularly, contras-
tive learning methods could be employed, as elaborated in the following Section 8.3.2.1 on perspectives.

The second approach went further and aimed to detect several secondary signs of pancreatic cancer
using radiomic features. To this end, a novel method closing the gap between Deep-Learning Radiomics
(DLR) and Hand-Crafted Radiomics (HCR) was proposed : DLR features were extracted using a VAE,
while their independence with HCR features was enforced by minimizing their mutual information. The
resulting DLR features were combined with the HCR ones, and leveraged by a classifier to predict four
secondary signs of pancreatic cancer : abnormal shape, atrophy, senility and fat replacement. Trained on
2319 cases and tested on 1094 subjects from independent institutions, this method demonstrated improved
diagnostic accuracy compared to baseline methods that did not address independence or solely relied on
HCR features. In addition, qualitative results confirmed that the generated DLR were complementary to
HCR features and more prominently used for the subsequent prediction. Despite these quantitative and
qualitative assessments, the interpretability of these DLR needs to be addressed to improve the clinical
utility of this method.

Both approaches proved efficient, requiring training only a single VAE, and the resulting latent space
was leveraged for multiple downstream tasks. Like the segmentation method proposed in Chapter 5, these
approaches were illustrated in the context of pancreatic cases but hold broader applicability. Yet, their
common limitation arises from the use of annotations that were obtained through visual assessment, without
quantitative measures. As a result, significant inter- and intra-annotator variability in the annotations can
complicate the training and validation of these methods. Further discussion of this topic will be presented
in Section 8.3.1.1.

8.3 Perspectives

We present here several general research directions related to the thesis topic. These research avenues are
categorized into clinical, technical, and industrial domains. The clinical section proposes several research
topics that may be pertinent from a clinical perspective. Technical perspectives emphasize three primary
areas, including the use of contrastive learning methods, exploration of the use of the arterial phase,
and development of multi-modality algorithms. Lastly, the industrial perspectives underscore essential
considerations for the integration of the proposed AI-based methods into clinical practice.

8.3.1 Clinical perspectives

8.3.1.1 Further study of secondary signs

The detection of secondary signs faces limitations due to the challenges and constraints associated with
annotations. As detailed in Chapter 4, all secondary signs were annotated using image-level labels, lacking
insight into which radiological feature indicated their absence or presence (with the exception of MPD
dilatation, for which manual segmentation of the MPD provided anatomical information). Therefore, since
these labels were assigned based on visual assessment, they lack quantitative measures (again excluding
MPD dilatation, which relies on the MPD diameter) and are subject to significant inter and intra-annotator
variability. This variability in the image-level annotation process could not be measured, as each case was
annotated by a single radiologist. Given this context, several avenues for improvement can be considered.
First, conducting an annotation process involving multiple experts to obtain consensus labels could enhance
the reliability of the annotations. However, due to the associated costs, this approach may be feasible only
for a subset of cases. Secondly, the accurate pancreas segmentations at hand could be used in clinical
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studies to derive automated measurements. These measurements could help to establish guidelines for
characterizing atrophy or fatty infiltration, for example.

8.3.1.2 Towards more precise diagnostic

Characterization represents a pivotal stage in refining the accurate and timely diagnosis of pancreatic
cancer. This characterization can concern lesions and secondary signs.

Lesion characterization The first step towards a more precise diagnosis consists in characterizing the
lesions. While lesion detection is necessary to prevent missing cancerous lesions, the critical aspect is deter-
mining the precise subtype of each lesion. This determination is essential not only for ensuring appropriate
patient care and follow-up but also for generating meaningful output from a computer-aided detection
system. The significance of differentiation becomes evident in the varying levels of concern associated with
different subtypes : for example, the alert level for Pancreatic Ductal Adenocarcinoma (PDAC) should not
be equivalent to that for a benign serous cystadenoma. Accurately diagnosing pancreatic lesions poses a
significant challenge for radiologists, especially considering the complexity introduced by various pancrea-
tic cancer mimics. Indeed, conditions like pancreatitis, Pancreatic Neuroendocrine Tumor (PNET)s, solid
pseudopapillary neoplasms, metastases, and lymphoma can mimic PDAC, complicating the differentiation
process due to shared imaging features. Consequently, radiologists frequently resort to biopsies, despite their
notable limitations including insufficient sensitivity (84%) and a relatively high morbidity rate (3%) (Zins,
2023). Even in cases where biopsies are negative for malignancy, the recommendation for resection persists
due to sampling error concerns (Santo and Bar-Yishay, 2017). Consequently, there is a tendency towards
excessive resections (Fitzgerald et al., 2003; Sachs et al., 2009). These challenges highlight the complexity of
achieving a precise diagnosis and underscore the importance of automated methods to enhance diagnostic
confidence (Barat et al., 2021). Therefore, addressing the automated characterization of lesions emerges
as a crucial step in developing a clinically applicable method. Initially, lesion characterization could be
conducted at broader levels (solid vs. cystic, or benign vs. malignant), although the ultimate goal would
be the development of a method capable of identifying precise lesion subtypes.

Secondary signs characterization Similarly, there is a need to delve deeper into the characterization
of secondary signs. While the current focus is on their detection, future work should shift towards their
differentiation or quantification. For instance, quantifying the degree of fatty infiltration (Hoogenboom
et al., 2021; Kim et al., 2014), assessing the malignant nature of the MPD dilatation (Chen et al., 2020b;
Kim et al., 2017), and characterizing parenchymal atrophy (Yamao et al., 2020) could provide additional
insights. This characterization is crucial for distinguishing between pathological and ageing pancreases,
which may exhibit similar features due to physiological evolutions (Löhr et al., 2018).

To tackle these two research topics aiming at refining diagnostics, a crucial step involves augmenting the
existing database to include a broader spectrum of cases. As the database currently contains approximately
60% and 80% of PDACs and solid lesions, respectively (see Table 4.4), efforts should be directed towards
incorporating more diverse cases in order to distinguish between various lesion subtypes and potential
mimics. Similarly, examples of both benign and malignant cases for a given secondary sign should be
added. However, even with the addition of these cases, the database may still exhibit imbalance across
certain classes. To address this imbalance, few-shot learning methods, as discussed in Chapter 7, can be
employed, enabling models to be trained with minimal examples of a class. Moreover, to train models that
could characterize different lesions or signs, pertinent features could be extracted using techniques such as
radiomics or contrastive learning (elaborated further below, in the technical perspectives Section 8.3.2.1).

8.3.1.3 Clinical validation

To further validate the proposed methods for early diagnosis, an essential step entails conducting a
clinical study. This necessitates the establishment of a specific validation database comprising distinct
cohorts, including :
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— Patients with small lesions : The inclusion of such cases is imperative for validating the effectiveness
of the methods in detecting early-stage lesions. The current Guerbet’s dataset inadequately represents
this cohort, as only 55 out of 2917 cases (1.9%) feature subcentrimetric lesions (see Section 4.4).

— Longitudinal cohorts : Incorporating follow-up examinations with pre-diagnostic images would be
essential to assess how early the cancer can be reliably detected.

— Real-life cohorts : Accessing cohorts with a low prevalence of pancreatic cancer (< 1%), as done
by Cao et al. (2023) and Korfiatis et al. (2023), is critical for affirming the practical applicability of
the proposed methods within routine clinical contexts.

The collection of these cohorts presents significant challenges due to the specific nature of the cases required.
Nonetheless, it is indispensable for extensive validation of the proposed algorithms in detecting early lesions.

8.3.1.4 Leveraging AI for pancreatic surgery

Ultimately, AI could be integrated into surgical workflows, serving both preoperative and postoperative
purposes (Schlanger et al., 2022). Potential applications encompass the assessment of tumor resectabi-
lity (Barat et al., 2021) and the prediction of postoperative complications based on imaging features.
Achieving this requires the development of a precise segmentation method able to identify various organs,
vessels, and arteries involved in pancreatic surgery. Moreover, the incorporation of multi-modal data could
highly benefit models predicting postoperative complications. In particular, clinical data such as age, sex
or diagnosis can significantly influence the prognostic. Integrating such diverse data sources into predic-
tive models has the potential to greatly augment the decision-making process (Schlanger et al., 2022).
Multi-modal models are further discussed in the technical perspectives (see Section 8.3.2.3).

8.3.2 Technical perspectives

8.3.2.1 Contrastive learning for improved detection of secondary signs

As detailed in Chapter 7, the two methods introduced for detecting secondary signs relied on features
extracted by a VAE. These features served as powerful descriptors used to determine the presence or absence
of a specific radiological sign within an image. Consequently, enhancing the feature extraction process
emerges as a crucial strategy for improving secondary sign detection. Recent studies have highlighted
the remarkable ability of self-supervised contrastive methods in extracting highly informative features,
underscoring their potential for improving the detection of secondary signs (Chaitanya et al., 2020). Self-
supervised contrastive methods aim to learn image representations without relying on annotations, by
contrasting positive and negative pairs (Liu et al., 2021a). They operate under the assumption that similar
instances (i.e., positive pairs) should be closer together in a learned embedding space, while dissimilar
instances (i.e., negative pairs) should be further apart. The pairs are generated using data augmentation
transforms : a positive pair would consist of different augmentations of a same instance, while a negative
pair would consist of two different instances. These transformations are carefully designed to encourage
the model to capture meaningful features and similarities in the data (Ruppli et al., 2022). Self-supervised
contrastive learning has demonstrated impressive results in various tasks, including image classification,
object detection, and image generation, across both natural and medical images (Chaitanya et al., 2020;
Liu et al., 2021a).

Preliminary experiments using contrastive methods have been conducted to predict abnormal pancreatic
shapes (see Appendix B). However, the exploration of their potential applicability to other secondary signs,
particularly those associated with texture, merits further investigation. Moreover, recent advances have
integrated weak labels into the contrastive framework, offering promising avenues for learning from noisy
image-level labels (Sarfati et al., 2023). This approach could be a technical solution to the inter and intra-
annotator variability discussed above (see Section 8.3.1.1). Finally, the application of contrastive learning
methods could also be considered for lesion characterization, as feature descriptors could be used to classify
lesions types (Li et al., 2021a).
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8.3.2.2 Use of the arterial phase for improved lesion detection

While the primary focus of this thesis centered on portal phase CT scans, it is acknowledged that this
modality may not be the most optimal for pancreas imaging. Indeed, during the portal phase (typically 60
seconds after contrast injection), the contrast enhancement between normal pancreas, pancreatic tumors,
and surrounding critical vascular structures is suboptimal (Boland et al., 1999). By contrast, the arterial
phase (typically 20-35 seconds after contrast injection) or the pancreatic phase (typically 40-45 seconds
after contrast injection) are considered more suitable, allowing for maximum differentiation between normal
parenchyma and potential tumors. For hypodense tumors such as PDACs, the contrast is most pronounced
in the pancreatic phase, whereas they may appear iso-dense (and barely visible) in the portal phase (Quencer
et al., 2013) as illustrated in Figure 8.1.

Therefore, several works addressing pancreatic lesion detection develop algorithms that use both arterial
and portal phases as input (Xia et al., 2020; Zhou et al., 2019a; Zhu et al., 2021). However, their direct
application is unsuitable for clinical use cases since they require both modalities in inference. In real-world
practice, patients without suspected pancreatic cancer typically undergo a portal CT examination. Given
this clinical context, the following question arises : is it possible to use both portal and arterial phases
during training, in order to improve lesion detection performance on portal phase during inference ? This
approach, where the arterial phase serves as additional input during training but not during inference, seeks
to enhance training by leveraging the distinct information present in each phase. We hypothesize that this
approach could significantly improve lesion detection and potentially extend to lesion characterization.

Figure 8.1 – Schematic diagram showing CT contrast enhancement over time for a PDAC mass and healthy parenchyma.
The enhancement pattern of the PDAC mass is characterized by a slow and gradual increase, reaching a plateau, whereas healthy paren-
chyma exhibits a rapid increase followed by a gradual decrease in enhancement. Maximal contrast between the two structures is reached
in the pancreatic phase. Adapted from Zhang et al. (2017). CT : Computed tomography, PDAC : Pancreatic ductal adenocarcinoma.

Before exploring strategies to tackle this research topic, preliminary experiments are essential to confirm
how useful the arterial phase is for detecting lesions. The next section introduces the dataset created for
these experiments and shares the results obtained. We then detail a few research avenues to address this
topic.

Dataset 1281 exams containing both arterial and portal CT phases are retrieved from DCAPA, Guerbet’s
private database, to form DTrain

PortArt. All the cases have segmentation masks for the pancreas, pancreatic
lesion (if any) and MPD (if visible). These masks are manually drawn by radiologists on the portal phase.
For each case, the arterial phase is registered on the portal phase using the Simple Elastix library (Marstal
et al., 2016). In particular, a rigid registration process is executed, employing the mean square loss function
optimized only within the pancreas region (determined as the union of the three reference segmentation
masks). DTrain

PortArt is split into four folds, stratified based on both the originating institution and the lesion
size.
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Experiments In order to assess the contribution of the arterial phase for the detection of pancreatic
lesion, a first set of experiments is run. It consists in training automatic segmentation models (nnUNet
by Isensee et al. (2021a), described in Section 3.2.3.5) with varying input :

- T1 : Portal CT scans,

- T2 : Arterial CT scans,

- T3 : Concatenation of Portal and Arterial CT scans.

Each model is trained to segment the pancreas, the lesion, and the MPD. As arterial images are rigidly
registered on the corresponding portal images, the reference segmentation masks used to train each model
are the portal phase masks. For each experiment, data preprocessing is automatically done according to
the nnU-Net procedure (described in Section 3.2.3.5). Each model is trained in a four-fold cross-validation
procedure for 1000 epochs.

To evaluate the models at the patient level (lesion detected or not), each case is assigned a lesion risk
score. To this end, a procedure similar to the one in Section 6.4.2 is proposed :

1. First, predicted lesions that form a connected component out of the predicted pancreas segmentation
mask are removed ;

2. Secondly, the predicted lesion probability map is binarized using a threshold at 0.01. Then, each
lesion candidate (i.e., lesion forming a connected component) is given a lesion probability equal to the
average voxel probability within the connected component ;

3. Thirdly, the candidate lesion is discarded if the lesion probability is below 0.05 or if the number of
voxels in the lesion is inferior to 10.

Finally, the lesion risk by patient corresponds to the maximum lesion probability among all the candidate
lesions.

Results Table 8.1 shows the results obtained on DTrain
PortArt by cross-validation. In addition, subgroup

analysis were conducted by analyzing results on isodense tumors, PNET and small lesions (with lesion
diameter inferior to 10 or 20 mm).

Validation set # of cases (# with lesions) T1 : Portal T2 : Arterial T3 : [Portal, Arterial]
All 1281 (1240) 91.28 ±1.91 89.62 ±2.19 92.12 ± 1.75

Isodense 136 (95) 82.94 ±3.89 81.01 ±4.14 84.79 ±3.56

PNET 133 (92) 86.04 ±3.4 82.93 ±3.64 88.76 ±3.02

Small (<10mm) 74 (33) 56.06 ±6.99 58.62 ±6.65 60.63 ±6.88

Small (<20mm) 243 (202) 77.92 ±3.92 75.98 ±4.27 80.93 ±3.61

Table 8.1 – Sub-group analysis obtained on DTrain
PortArt by cross-validation on the four folds. Means ± standard deviations of

the AUC (in %), obtained by bootstrapping with 1000 repetitions, are reported. Each column represents one experiment, with its input
type written in brackets. Each row represents one subgroup, with best results per row in bold. AUC : Area under the curve, PNET :
Pancreatic neuroendocrine tumor.

As shown in Table 8.1, detection performance went from 91.28% to 89.62% when going from a model
using portal phase images (T1) to a model using arterial phase images (T2). This result, which disagrees
with the initial hypothesis that arterial phases are better for lesion detection, can be explained by imperfect
registration and by arterial acquisition times that are not optimal for the observation of pancreatic lesions.

The best results were obtained by T3, which concatenates both phases as input, as the AUC reaches
92.12% (vs 91.28% on the baseline experiment T1). This suggests that the arterial phase brings additional
information that is useful for the lesion segmentation when used jointly with the portal phase. Sub-group
analysis results confirm the usefulness of using both phases as the AUC gains 1.85% on isodense tumors
and 2.72% on PNETs compared to a model using solely the portal phase. AUC improvements are even
higher on small lesions, with gains of 4.57% and 3.01% on lesions with diameter inferior to 10 and 20 mm,
respectively.
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Possible strategies As indicated by the preceding results, concatenating the arterial phase yields a tan-
gible improvement in lesion detection, particularly for isodense or small lesions. As the arterial phase is
not always available in clinical routine, different strategies can be considered to deal with this constraint.

A first strategy consists in building a feature space which is modality-invariant, as in HeMIS (Havaei
et al., 2016) where a feature extractor is trained for each modality. Then, feature maps are merged by
computing statistics (mean, variance) and these merged feature maps produce the final output of the
network. As these statistics do not depend on the number of maps being concatenated, the network can
work with any number of input modalities. However, when only one modality is available as input (which
would be our case), these methods are less performing than a model trained exclusively on that specific
modality (Hu et al., 2020a).

A second strategy consists in leveraging knowledge distillation methods (Hinton et al., 2015). These
methods typically involve a small student network learning to mimic a teacher network, which is usually
bigger and pre-trained. In Hu et al. (2020a), distillation is combined with the concept of Privileged Infor-
mation (Vapnik et al., 2015), where the teacher network contains additional information for each training
instance. Combination of both paradigms allows for knowledge transfer between a multi-modal teacher net-
work and a single-modal student network, and the method is illustrated on the BraTS 2018 dataset (BRATS;
Hu et al., 2020a). Several variations have been proposed with deep mutual learning (Zhang et al., 2018),
multi-view learning (Blum and Mitchell, 1998) and cooperative learning (Batra and Parikh, 2017), where
a pool of networks learn the same task simultaneously, but using inputs from different domains.

A third strategy consists in using a generative network that will generate the missing modality in in-
ference. This research avenue was explored in Appendix D, with initial attempts made to synthetically
generate the arterial phase using a Generative Adversarial Model (GAN). As our problem involved pai-
red data (i.e., both portal and arterial phases from the same acquisition), the state-of-the-art Pix2Pix
model by Isola et al. (2017) was employed. The details of the Pix2Pix model, including its principle and
architecture, are provided in Appendix D.1. Several experiments were conducted, and both qualitative and
quantitative results are outlined in Appendix D. However, none of the outcomes proved conclusive, and va-
rious challenges were encountered. First, the generated images exhibited either jagged edges or blurriness,
maybe due to imperfect registration. Cyclic GANs offer a potential solution to this issue : while they are
commonly applied in unpaired data scenarios, recent research by Wolterink et al. (2017) has highlighted
their effectiveness in paired data situations, particularly in addressing the problem of blurred images as they
do not rely on imperfect data pairing (in this case, registration). Secondly, we struggled to find an appro-
priate evaluation metric allowing to determine whether the synthetically generated arterial phase provided
additional information that could enhance a lesion segmentation model. In practice, this evaluation involves
training a GAN to generate synthetic arterial phase images, followed by training a segmentation model
using both the true portal image and the generated arterial image as inputs. The performance of lesion
detection can then be assessed. Given this context, conducting a hyper-parameter search to identify the
optimal generated images for lesion segmentation proves to be costly in terms of time and computational
resources, rendering this approach inefficient. Alternatively, the GAN could integrate a segmentation task
by directly introducing an additional Dice score loss function. This approach would prompt the GAN to
generate synthetic images that are directly useful for the downstream task of lesion segmentation, avoiding
the need for separate training steps. This concept aligns with the perspectives of Velikova et al. (2022)
and La Barbera et al. (2022), asserting that generating perfect images may not be imperative when focusing
on a downstream task.

8.3.2.3 Enhancing diagnosis with multi-modal data

Using the arterial phase represents a step towards harnessing the available imaging modalities ; however,
this potential can be further extended by leveraging all accessible data, particularly clinical data and
electronic health records (EHR). Indeed, the diagnosis of a specific pancreatic lesion is influenced by various
factors, including demographic, clinical, or biological data. Therefore, AI models should be constructed as
hybrid models that incorporate not only imaging features but also a comprehensive range of non-imaging
information (Barat et al., 2021). Such models have gained research interest, particularly for disease diagnosis
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and predicting different outcomes (e.g. mortality or survival prediction, treatment outcome prediction), and
a meta-review by Mohsen et al. (2022) found that multi-modal models combining EHR and medical imaging
data generally outperform single modality models for the same task. Many of these models employ early
fusion techniques, where each modality (imaging or non-imaging) is encoded in a vector given to a single
machine learning algorithm for training. Typically, a non-redundant combination of DLR and HCR, as
proposed in Chapter 7.2, could be employed to encode the images into vectors. Moreover, large language
models (LLM) could be leveraged to integrate the information contained in the EHR (Deng and Lin, 2022;
Thirunavukarasu et al., 2023). These models have recently demonstrated proficiency within the medical
field, with different applications ranging from determining the optimal imaging modality given specific
clinical presentations (Nazario-Johnson et al., 2023) to predicting differential diagnoses based on free text
describing imaging patterns (Kottlors et al., 2023). Thus, coupling LLMs with imaging features extracted
by deep learning models could be of major interest for pancreatic cancer analysis, although LLMs are data-
and computationally-intensive.

8.3.3 Industrial perspectives

Given that this thesis is part of an industrial project initiated by Guerbet, it is important to discuss
some perspectives related to the industrial development of an AI method for pancreatic cancer detection.
As with many AI applications in medical imaging, transitioning from research to clinical use raises several
questions :

— Displaying Results : The various works conducted in this thesis, along with the clinical perspec-
tives mentioned earlier, address numerous diagnostic questions. However, presenting the results of
all these analyses might burden radiologists, impeding their workflow efficiency. For example, while
segmentations may be valuable for interpretability, their display may add complexity to the diagnostic
workflow. Therefore, a balance between conciseness and interpretability must be found. For instance,
the outputs of AI algorithms could be combined to provide a binary output (alert or not), allowing
physicians to re-examine a case and display the segmentation if necessary. However, defining the alert
level remains an open question : should an alert be exclusively issued for PDACs or for any type
of abnormality, including pancreatitis and atrophy ? For this purpose, alert levels based on clinical
data may be beneficial. These considerations are essential and require thorough testing to assess user
experience qualitatively.

— Performance Expectations : It is necessary to establish the performance level at which a tool be-
comes genuinely useful for assisting radiologists in clinical practice. An under-performing tool may not
be used or could lead to diagnostic errors. Since global performance involves a trade-off between sensi-
tivity and specificity, the expected performance for each of these measures needs to be distinguished.
In this regard, Chu et al. (2023) conducted a survey of 161 radiologists to assess their expectations
for the clinical use of an AI tool for pancreatic cancer detection. Their study indicates that the ma-
jority of respondents prioritized sensitivity over specificity. Specifically, the most preferred cutoff for
sensitivity and specificity in an AI system was 99% sensitivity and 75% specificity. The same study
reports that, according to these 161 respondents, the minimum lesion size that an AI tool should
detect is 5 mm. However, these parameters could be user-dependent and determined beforehand by
each hospital or radiologist. These considerations must also be examined through an ethical lens, and
the consequences of prediction errors (whether false positives or false negatives) must be carefully
considered.

— Hardware Requirements : The industrial deployment of such tools also requires technical conside-
rations, given that DL algorithms demand significant computational resources. These computations
could be executed using dedicated hardware installed within the medical institution or through cloud-
based computing, each option presenting distinct challenges in terms of installation and maintenance.
These considerations are critical and necessitate careful planning regarding equipment installation
and staff training.
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— Regulatory Aspects : In addition to these questions, regulatory issues, particularly concerning the
clinical studies necessary for the market approval of such algorithms, must be addressed.

Thus, bridging the gap between research and application in clinical practice is a sensitive step, and
numerous challenges must be addressed by multidisciplinary teams to cover various clinical, technical,
ethical, regulatory, administrative, and user-related aspects. Despite these challenges, 50% of radiologists
surveyed by Chu et al. (2023) intend to integrate AI tools into their clinical practice within the next five
years, highlighting practitioners’ interest in these diagnostic aids.

8.4 Conclusion

This thesis led to the development of various AI-based methods aimed at detecting pancreatic cancer on
portal CT scans. It started with the development of a pancreas segmentation algorithm, and then addressed
the detection of several signs of pancreatic cancer, including lesions and secondary radiological signs which
are crucial for early diagnosis. These methodologies were presented in national conferences (GRETSI,
JFR, IABM), international conferences (ISBI, MICCAI), and journals (Investigative Radiology). Notably,
one of these methods has been patented, and two others have received awards, including the Best Oral
Presentation Awards at the CaPTion workshop, MICCAI 2023.

Our vision for the future research directions in AI-based pancreatic cancer detection includes a focus on
precise lesion characterization, and the creation of expansive databases with specialized validation cohorts.
These advances have the potential to significantly improve diagnostic accuracy and lead to enhanced
patients outcomes. From a technical standpoint, the incorporation of multi-modality approaches appears
to be of paramount importance in achieving these objectives.
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Annexe A

Lesion and Main Pancreatic Duct
Dilatation Detection

We present supplementary results and additional details related to Chapter 6.

A.1 Regional measurement of the main pancreatic duct diameter

The segmentation network presented in Chapter 6 generates a segmentation of the pancreas. Based on
this segmentation, the pancreas can be sub-segmented into head, body, and tail. To do so, the extremities
of the tail and head of the pancreas are identified, and the centerline going through the pancreas and
connecting these two points is estimated. The centerline is divided into tail, body, and head according to
the following heuristic : the tail represents 25% of the total length, the body represents the following 50%,
and the head the last 25% of the total length. An illustration of the pancreas sub-segmentation is shown
in Figure A.1.

Figure A.1 – Example of the sub-segmentation of the pancreas into head (green), body (blue), and tail (red).

Finally, to measure the Main Pancreatic Duct (MPD) diameter in the head, body, and tail, each MPD
voxel is assigned the region of its closest centerline point. Then, the MPD is also sub-segmented into
three parts and its size can be measured regionally using the IMEA library (Kroell, 2021) as explained in
Section 6.4.2.

147



148 ANNEXE A. LESION AND MAIN PANCREATIC DUCT DILATATION DETECTION

A.2 Measuring lesion detection performance

We detail how the evaluation measures of interest were computed for the logistic regression model
predicting lesion presence.

Sensitivity was defined as the ratio of the number of patients correctly detected with a lesion by the model
to the total number of patients with a pancreatic lesion. Specificity was computed as the ratio of healthy
subjects correctly identified by the model to the total number of healthy subjects. Positive Predictive Value
(PPV) was defined as the ratio of the number of patients with a pancreatic lesion correctly detected by
the model to the total number of patients for which the model detected a lesion. Negative Predictive Value
(NPV) was defined as the ratio of healthy subjects correctly found by the model to the total number of
healthy subjects predicted by the model.

A.3 Measuring main pancreatic duct dilatation detection performance

We detail how the evaluation measures of interest were computed for the logistic regression model
predicting MPD dilatation.

Sensitivity was computed as the ratio of the number of subjects with a dilated MPD detected by the
model to the total number of subjects with a dilated MPD. Specificity was defined as the ratio of the
number of subjects with a normal MPD identified by the model to the total number of subjects with a
normal MPD. PPV was defined as the number of subjects with a dilated MPD correctly detected by the
model to the total number of patients with a dilated MPD found by the model. NPV was computed as the
ratio of subjects without a dilated MPD correctly identified by the model to the total number of subjects
without a dilated MPD predicted by the model.

A.4 Visualizing the distribution of the evaluation measures

Regarding Tables 6.1, 6.3 and 6.4 in Chapter 6, it is important to clarify that the Area Under the Curve
(AUC), sensitivity, specificity, PPV, and NPV, were computed for the whole test set. Median values and
confidence intervals were calculated thanks to bootstrap sampling, which allows estimating the sampling
distribution of all the evaluated measures by using random sampling with replacement. We provide in
Figure A.2 a boxplot of the evaluation measures for both lesion detection and MPD dilatation detection
on the whole test set, thus giving a visualization of Tables 6.2 and 6.4.

A.5 Analyzing segmentation performance of lesions and the MPD

It can be observed in Figure A.3 that Dice Similarity Coefficient (DSC) and Normalized Surface Dice
(NSD) median values are higher than mean values for both lesions and the MPD. Regarding the DSC, a
median value of 0.83 is obtained compared to a mean value of 0.69. In the case of the MPD, a median
value of 0.67 is obtained compared to a mean value of 0.58. This can be explained by the fact that for false
negative and false positive cases, the associated DSC will be 0, thus strongly deteriorating the mean value.
Another reason that can explain the apparently low segmentation performance is due to the choice of the
evaluation measure. The DSC computes the overlap between the predicted and reference segmentations
and penalizes every wrongly detected voxel. When used on large and well-defined anatomical structures
such as the pancreas, this evaluation measure is adapted to evaluate segmentation performance. However,
pancreatic lesions can have poor margins and be small (63 of lesions in the test set had a diameter lower than
30mm), while the MPD is a thin structure which can be hard to accurately delineate for the annotators.
Moreover, these structures usually contain much less voxels than the pancreas. Therefore, the DSC can
strongly penalize the evaluation of segmentation performance on these structures, while the segmentations
generated by the model are acceptable. This is why we used the NSD, which allows for a tolerance of
2mm along the three spatial dimensions to measure segmentation performance. In Figure A.3, the median
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Figure A.2 – Boxplot of the AUC, sensitivity, specificity, PPV, and NPV obtained on the test set by the two logistic
regression models. Left : Lesion presence detection. Right : MPD dilatation detection. AUC : Area under the curve, MPD : Main
pancreatic duct, NPV : Negative predictive value, PPV : Positive predictive value.

NSD is 0.97 and 0.91 for lesions and the MPD, respectively. This result shows that the model generated
segmentation which were overall correctly overlapping the reference segmentations for both lesions and the
MPD.

Figure A.3 – Boxplot of the DSC and NSD obtained for the pancreas, lesions, and the MPD on each case of the test
set. The NSD is computed for the lesions and the MPD only, with a tolerance error of 2 mm along each spatial dimension. DSC : Dice
similarity coefficient, MPD : Main pancreatic duct, NSD : Normalized surface Dice.
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Annexe B

Learning shape distributions from large
databases of healthy organs

We present supplementary results and additional details related to Section 7.2.

B.1 Improving the experimental part

A limitation of the work presented in Section 7.2 lies in the experimental setup. Indeed, for the normal
vs. abnormal shape classification experiments, all normal shapes come from patients in database DNIH ,
while all abnormal shapes come from database DBR,1. Although the bias on the origin of the data is very
strongly limited by the use of binary inputs, it is worth studying its potential implications. To do this, a
first straightforward solution is to add a third database containing normal shapes. The expected behavior
of the model would be to accurately differentiate abnormal shapes from all normal shapes, irrespective of
their source institution. However, it is not expected to distinguish among normal shapes based on their
origin.

B.2 Contrastive learning for shape analysis

Contrastive learning falls within the field of self-supervised learning, where image representations are
learned without annotations. More specifically, contrastive methods aim to learn such representations by
contrasting positive against negative pairs. For instance, in SimCLR (Chen et al., 2020a), distance between
representations of positive pairs is reduced while distance between representations of negative pairs is
increased. Key ingredients for training contrastive models are heavy data augmentations and careful choice
of the negative samples, which is usually done with large batch sizes or memory banks.

Recent works explored non-contrastive paradigms, where the loss functions do not include any contras-
tive terms. By consequence, such models are trained without negative samples and do not require large
batch sizes. While asymmetry was introduced by Grill et al. (2020) and Chen and He (2021) in the fra-
mework to prevent collapse, trivial solutions are avoided by construction of its loss function in (Zbontar
et al., 2021), making the latter method more principled.

The direct transposition of our problem into the SimCLR framework (Chen et al., 2020a) would lead
us to learn an embedding space in which positive shape pairs (i.e., one single shape which would have
undergone two random isometric transformations 1) stay close to each other, while negative shape pairs
are far apart. In our setup, where the model is learned exclusively from healthy shapes, this formulation
would make two different shapes distant in the latent space, though both healthy. Actually, our working
hypothesis, which is the availability of a large database of healthy shapes for training the model, does not
allow for the definition of negative pairs since all the training examples are healthy. This motivated us to

1. A shape-preserving transformation in the plane or in space.
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explore the use of non-contrastive frameworks, such as in (Zbontar et al., 2021), for learning a distribution
of normal shapes. This is illustrated in Figure B.1. Besides of its formulation which seems more adapted
to our problem, Zbontar et al. (2021) claim that their model is robust to small batch sizes, which is our
case as we work with 3D inputs.

Figure B.1 – Left : Illustration of the contrastive paradigm on our problem. Two random isometric transformations are
applied to a single shape, and the distance between their latent representations (which constitute a positive pair) is minimized. If the
contrastive framework explicitly defines negative pairs, as it is the case in SimCLR (Chen et al., 2020a), then the objective function also
maximizes the distance between the latent representations of negative pairs. Right : Design of the desired latent space for our
problem. Green and red shapes represent normal and abnormal shapes, respectively. As shown with the green pairs, training the model
on healthy samples should make it able to encode healthy shapes properly. As pathologic pancreas exhibit different shapes, the model
should naturally encode them further away.

B.3 Preliminary results

We display here some preliminary results with the new experimental set-up described above. This time,
we tested the zero-shot and the few-shot classification with three databases. For the sake of clarity, we
adopt the following notations :

— DTest
normal : the 80 cases from DNIH , for whom the assumption of normal pancreas shape holds ;

— DTest
normal,2 : 80 Computed Tomography (CT) scans from DCABO who did not exhibit pancreatic lesions,

and for whom the assumption of normal pancreas shape was done ;

— DTest
abnormal : 144 cases from DBR,1, diagnosed with pancreatic cancer, and for whom the pancreas shape

was evaluated as abnormal by an expert radiologist.

DNIH , DCABO and DBR,1 are described in Chapter 4. For all the scans, segmentation masks of the
pancreas were automatically generated by the same in-house algorithm. The expected behavior of the
model would be to differentiate abnormal shapes from all normal shapes, i.e. differentiate DTest

normal from
DTest

abnormal, and DTest
normal,2 from DTest

abnormal. However, it should not to be able to distinguish DTest
normal from

DTest
normal,2.

We compared our Variational Autoencoder (VAE)-based method, presented in Chapter 7.2, with the
following methods : ASM (Cootes et al., 1995), LDDMM using the Deformetrica software (Bône et al.,
2018), SimCLR (Chen et al., 2020a) and Barlow Twins (BT) (Zbontar et al., 2021). Concerning ASM and
Large Deformation Diffeomorphic Metric Mapping (LDDMM), we used the same procedure as detailed in
Section 7.2.3, and we performed a PCA on the shape-encoding parameters to obtain a latent vector of
dimension 256 for each subject. The three other models under comparison (VAE, SimCLR, BT) also had
a latent dimension L = 256, and all methods were trained on the 600 subjets.

Results are reported in Table B.1. Tables B.1aand B.1b underline the superiority of contrastive me-
thods, specifically when the number of training samples is small. Yet, there is no clear superiority between
SimCLR and BT, and further experiments need to be carried out. Except for LDDMM, all models per-
form better at distinguishing DTest

normal from DTest
abnormal than DTest

normal,2 from DTest
abnormal, which can be easily

explained by the origin of the databases : DTest
normal are young, very healthy organ donors while patients

from DTest
normal,2 are more diverse and may exhibit some abdominal pathologies. In Table B.1c, the AUC is
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expected to be low as the classification between DTest
normal and DTest

normal,2 should not work. Although classi-
fication performance is significantly lower than in the other experiments, the AUCs still increase with the
number of training examples, suggesting that the models are able to capture some features related to the
origin of the database. The reasons for these results shoud be investigated. De-biasing techniques could be
explored, such as in (Tartaglione et al., 2021) where a regularization strategy disentangles the bias and the
relevant information during training.

CONFIGURATION Zero-shot Few-shot
- CV-20 CV-10 LOO-CV

# of train/test samples 0/224 12/222 112/112 223/1
LDDMM 63.51±0.34 75.95±0.02 80.06±0.03 89.5±0.2

ASM 63.22±0.34 60.33±0.02 63.1±0.04 84.13±0.26
VAE (Ours) 71.18±0.28 76.13±0.02 80.66±0.03 89.34±0.21
SimCLR 80.15±0.28 80.36±0.01 84.51±0.03 93.12±0.16

BT 76.83±0.29 89.46±0.01 90.43±0.02 92.26±0.18

(a) Few-shot and zero-shot AD results for DTest
normal vs DTest

abnormal

CONFIGURATION Zero-shot Few-shot
- CV-20 CV-10 LOO-CV

# of train/test samples 0/224 12/222 112/112 223/1
LDDMM 72.67±0.33 73.07±0.02 78.28±0.03 90.56±0.19

VAE (Ours) 68.00±0.3 72.88±0.02 77.92±0.03 89.09±0.21
SimCLR 76.91±0.3 73.74±0.02 79.32±0.03 89.76±0.22

BT 74.96±0.3 83.92±0.01 84.05±0.03 88.44±0.24

(b) Few-shot and zero-shot AD results for DTest
normal,2 vs DTest

abnormal

CONFIGURATION Zero-shot Few-shot
- CV-20 CV-10 LOO-CV

# of train/test samples 0/224 12/222 112/112 223/1
LDDMM 39.44±0.37 60.0±0.02 64.76±0.04 73.78±0.33

ASM 49.01±0.39 52.91±0.02 54.72±0.04 58.39±0.37
VAE (Ours) 51.03±0.3 57.77±0.02 62.45±0.04 73.06±0.32
SimCLR 57.97±0.4 57.31±0.02 61.1±0.04 71.51±0.34

BT 52.05±0.4 61.09±0.02 65.57±0.04 73.01±0.34

(c) Few-shot and zero-shot AD results for DTest
normal vs DTest

normal,2

Table B.1 – For each experiment, we report the mean and standard deviation for AUC (in %), obtained by bootstrapping with 10000
repetitions. Best results (in this experiment, AUC closest to 50%) by column are in bold. AD : Anomaly detection, ASM : Active shape
models, AUC : Area under the curve, BT : Barlow Twins, CV : Cross-validation, LDDMM : Large deformation diffeomorphic metric
mapping, LOO : Leave-one-out, VAE : Variational autoencoder.



154ANNEXE B. LEARNING SHAPE DISTRIBUTIONS FROM LARGE DATABASES OF HEALTHY ORGANS



Annexe C

Early Detection of Pancreatic Cancer
using Non-Redundant Combination of
Hand-Crafted and Deep Learning
Radiomics

The 32 hand-crafted radiomics used in Chapter 7.3 were the followings :

— 14 shape features describing the size and shape of the pancreas

— Mesh Volume

— Voxel Volume

— Surface Area

— Surface Area to Volume ratio

— Sphericity

— Maximum 3D diameter

— Maximum 2D diameter in the axial plane

— Maximum 2D diameter in the coronal plane

— Maximum 2D diameter in the sagittal plane

— Major Axis Length

— Minor Axis Length

— Least Axis Length

— Elongation

— Flatness

— 18 first-order intensity features describing the intensities distribution within the organ

— Energy

— Total Energy

— Entropy

— Minimum

— 10th percentile

— 90th percentile

— Maximum

— Mean

— Median

— Interquartile Range
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— Range

— Mean Absolute Deviation

— Robust Mean Absolute Deviation

— Root Mean Squared

— Skewness

— Kurtosis

— Variance

— Uniformity

These features were extracted using the pyradiomics library (Van Griethuysen et al., 2017). More details
about each feature can be found in the online documentation 1.

1. https ://pyradiomics.readthedocs.io/en/latest/features.html

https://pyradiomics.readthedocs.io/en/latest/features.html


Annexe D

Improving lesion detection using the
arterial phase

As shown in Table 8.1 in Section 8.3.2.2, the use of arterial phase brings a real gain for lesion detection,
especially when lesions are isodense or small. As this arterial phase is rarely available in clinical routine, we
begin by looking at synthetic generation of arterial phase using a Generative Adversarial Model (GAN).
Since we have paired training data (i.e., we have both portal and arterial phase from the same acquisition),
we rely on the state-of-the-art Pix2Pix model (Isola et al., 2017).

D.1 Pix2Pix

Pix2Pix model (Isola et al., 2017) is a start-of-the-art conditional GAN whose architecture is depicted
in Figure D.1. A conditional GAN is conditioned on an input image : the generator is constrained, via
an additional term in the loss function, to generate an output image which should be near the paired
ground-truth image. The principle of the Pix2Pix model is as follows :

1. First, starting from the real portal Irealportal, the generator G, which is a U-Net (Ronneberger et al.,

2015), generates a fake arterial Ifakearterial.

2. Then, the discriminator D is trained :

(a) It takes, as input, the concatenation of the real paired images Irealpair = [Irealportal, I
real
arterial]. D is a

PatchGAN discriminator which outputs a vector Preal of size [b, 1, 5, 14, 22], where b is the batch
size and 5, 14, and 22 depend on the input size and the discriminator architecture. This vector
represents 5 × 14 × 22 = 1540 patches of size 70 × 70 × 70, according to the receptive field of
D. Preal assigns a probability of each of the 1540 patches for being fake, and is used to compute
Lreal = MSE(Preal,1[b,1,5,14,22]) where MSE stands for the Mean Square Error function and
1[b,1,5,14,22] represents a size [b, 1, 5, 14, 22] vector of 1s.

(b) Then, D takes as input the concatenation of the fake paired images Ifakepair = [Irealportal, I
fake
arterial], and

outputs a vector Pfake that gives the probability for each of the 1540 patches of Ifakepair to be fake.

We compute Lfake = MSE(Pfake,0[b,1,5,14,22]) where 0[b,1,5,14,22] represents a size [b, 1, 5, 14, 22]
vector of 0s.

(c) D is optimized with the following loss function : LD = 0.5× (Lfake + Lreal).

3. Secondly, the generator G is updated with the objective to fool D (so to minimize Lfake) and to

minimize the L1 distance between Ifakearterial and Irealarterial. Therefore, the parameters of G are optimized

with the following loss function : LG = Lfake+λ×L1(I
fake
arterial, I

real
arterial), where λ is a hyperparameter

set to 100 in Pix2Pix original implementation.

4. D and G are updated in an alternate fashion until convergence.
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PREAL : (b, d, x, y, z)

PFAKE: (b, d, x, y, z)

𝕀[b, d, x, y, z] : np.ones([b, d, x, y, z])

𝕆[b, d, x, y, z] : np.zeros([b, d, x, y, z])

U
P

D
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TE
 D 𝑳𝒓𝒆𝒂𝒍 = 𝑴𝑺𝑬(PREAL , 𝕀[b, d, x, y, z] )

U
P

D
A

TE
 G

PFAKE: (b, d, x, y, z)

𝕆[b, d, x, y, z] : np.zeros([b, d, x, y, z])

𝑳𝟏( ,                )

𝑳𝒇𝒂𝒌𝒆 = 𝑴𝑺𝑬(PFAKE , 𝕆[b, d, x, y, z] )

𝑳𝑫 = 𝑳𝒓𝒆𝒂𝒍 + 𝑳𝒇𝒂𝒌𝒆 × 𝟎. 𝟓

𝑳𝑮 = 𝑳𝒇𝒂𝒌𝒆 + 𝑳𝟏 × λ

𝑳𝒇𝒂𝒌𝒆 = −𝑴𝑺𝑬(PFAKE , 𝕆[b, d, x, y, z] )

d, x, y, z depend on the input size and PatchGan architecture
b : batch size
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Figure D.1 – Overview of Pix2Pix (Isola et al., 2017). A generator G generates a fake arterial image Ifakearterial from a portal

image input Irealportal. Then, a PatchGan discriminator D is trained to distinguish real pairs (Irealpair = [Irealportal, I
real
arterial]) and fake pairs

(Ifakepair = [Irealportal, I
fake
arterial]). Then, G is trained to fool D and to minimize the L1 error between Ifakearterial and Irealarterial. MSE : Mean

square error.

D.2 Arterial phase images generation experiments

D.2.1 Description

A first series of experiments aims to synthesize arterial phase images from portal phase images using a
Pix2Pix model. The following experiments are run :

- A : Baseline experiment, consisting of the original implementation 1 of Pix2Pix but adapted for 3D
inputs. Use of a PatchGAN discriminator with receptive field 70 × 70 × 70. Use of a generator with
U-Net architecture. λ = 100.

- B, C, D : Trying several values for λ : 0.1, 1, 10.

- E : PatchGAN discriminator with a bigger receptive field (127× 127× 127).

- F : PatchGAN discriminator with a smaller receptive field (25× 31× 46).

- G : Making G generate δ = Irealarterial − Irealportal.

- H : Masking the input portal image by the reference pancreas region mask — determined as the
union of the three reference segmentation masks (pancreas, lesion, MPD).

- I : Masking the MSE loss function by the reference pancreas region mask.

- J : Conditions of experiments G + I

- K : Conditions of experiments G + I + F

Each experiment is run on one same fold of the dataset DTrain
PortalArt introduced in Section 8.3.2.2, resulting

in 954 and 327 samples for training and validation, respectively. Arterial images are rigidly registered on
the portal images, as described in Section 8.3.2.2. Data pre-processing follows the nnU-Net procedure (see
Section 3.2.3.5) except for intensity normalization, as a normalization between -1 and 1 is chosen instead.
Each model is trained for 1000 epochs.

D.2.2 Results

To assess the quality of the generated arterial phase, we perform qualitative and quantitative analysis
of the different experiments listed above.

1. https ://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure D.2 – Qualitative results of the different conditional GANs trained. We plot the fake arterial phase of a validation
sample generated by different models. A, B, C, D, E, F, G, H, I, J, K : Experiments described in Section D.2.1. Last row, right : Real
arterial phase. GAN : Generative adversarial network.

Qualitative results In Figure D.2, we display the synthetic arterial phase for a validation sample. Results
show that the images generated by the baseline experiment (A) tend to be blurry. Reducing the value of λ
(experiments B, C, D) or reducing the field of view of the discriminator (experiment F) reduced the blur
but rendered images with jagged edges. By masking the input images by the pancreas mask (experiment
H), the images were sharper but less realistic.

Quantitative results In Table D.1, we show the L1 error between the true and fake arterial images,
computed over all the validation samples. We also compute the ratio of the mean intensity within the
lesion to the mean intensity within the pancreas, computed across all validation samples. This metric
is intended to identify which generated images exhibit the highest contrast between the lesion and the
surrounding pancreatic tissue. Thus, ratios far from 1 suggest that the images generated present high
contrasts and may therefore be more useful for lesion detection, as explored in Section D.3.

The quantitative results do not reflect the qualitative results, and no experiment clearly stands out. We
nevertheless choose GAN K for further experiments as it demonstrated the lowest L1 error in the pancreas,
the furthest lesion/parenchyma ratio from 1, and satisfactory qualitative results.

D.3 Lesion segmentation experiments

D.3.1 Description

A second series of experiments aims to assess the value of these generated images for the final objective,
i.e. lesion detection.
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A - Baseline B C D E F

L1 0.23 ± 0.05 0.28 ± 0.05 0.26 ± 0.05 0.29 ± 0.05 0.23 ± 0.05 0.23 ± 0.05

L1 in the pancreas 0.16 ± 0.06 0.21 ± 0.06 0.19 ± 0.06 0.22 ± 0.08 0.16 ± 0.06 0.16 ± 0.06

Ratio lesion / pancreas 0.92 ± 0.49 0.87 ± 0.38 0.93 ± 0.42 0.85 ± 0.42 0.91 ± 0.44 0.94 ± 0.48

A - Baseline G H I J K

L1 0.23 ± 0.05 0.21 ± 0.05 0.45 ± 0.08 0.28 ± 0.05 0.27 ± 0.05 0.27 ± 0.05

L1 in the pancreas 0.16 ± 0.06 0.16 ± 0.06 0.19 ± 0.06 0.17 ± 0.06 0.17 ± 0.06 0.16 ± 0.06

Ratio lesion / pancreas 0.92 ± 0.49 0.85 ± 0.48 0.85 ± 0.37 0.94 ± 0.40 0.88 ± 0.43 0.84 ± 0.43

Table D.1 – Quantitative results of the different conditional GANs trained. The first and second rows show the L1 error
between the fake and the real arterial images in the whole image and in the pancreas only, respectively. The third row shows the ratio
of the mean intensity within the lesion to the mean intensity within the pancreas. Results are values computed over all the validation
samples. A, B, C, D, E, F, G, H, I, J, K : experiments described in Section D.2.1. GAN : Generative adversarial network.

To this end, GAN K is run in a four-fold cross-validation manner in order to get, for all the 1281 samples
of the database DTrain

PortArt, a generated arterial phase obtained by validation. Then, these generated arterial
phases are used as input for segmentation models trained to segment the pancreas, the lesion and the MPD.
In particular, the following experiments are carried out, extending the analysis of Table 8.1 :

- T1 : using portal CT scans as intput,

- T2 : using arterial CT scans as input,

- T3 : concatenation of portal and arterial CT scans as input,

- T4 : concatenation of portal phase CT and arterial phase CT generated by GAN K as input.

Experiment T4 is performed to evaluate the improvement in lesion detection performance brought by the
arterial images generated by GAN K. These experiments are carried out on DTrain

PortalArt. Data preprocessing
is automatically done according to the nnU-Net procedure. Each model is trained in a four-fold cross-
validation way for 1000 epochs.

To evaluate the models at the patient level (lesion detected or not), each case is assigned a lesion risk
score following the procedure detailed in Section 8.3.2.2. Table D.2 shows the results obtained on DTrain

PortArt
by cross-validation on the whole dataset. Subgroup analyses are conducted by analyzing results on isodense
tumors, Pancreatic Neuroendocrine Tumor (PNET) and small lesions (with lesion diameter inferior to 10
or 20 mm). Detection results are shown in Table D.2.

D.3.2 Results

Validation set # of cases (# with lesions) T1 : Portal T2 : Arterial T3 : [Portal, Arterial] T4 : [Portal, AGAN
H ]

All 1281 (1240) 91.28 ±1.91 89.62 ±2.19 92.12 ± 1.75 90.93 ±1.84

Isodense 136 (95) 82.94 ±3.89 81.01 ±4.14 84.79 ±3.56 83.24 ±3.77

PNET 133 (92) 86.04 ±3.4 82.93 ±3.64 88.76 ±3.02 82.33 ±3.54

Small (<10mm) 74 (33) 56.06 ±6.99 58.62 ±6.65 60.63 ±6.88 55.07 ±6.97

Small (<20mm) 243 (202) 77.92 ±3.92 75.98 ±4.27 80.93 ±3.61 76.79 ±4.01

Table D.2 – Lesion detection results obtained on DTrain
PortArt by cross-validation on the four folds. AGAN

K refers to arterial
images generated by GAN K. Means ± standard deviations of the AUC (in %), obtained by bootstrapping with 1000 repetitions, are
reported. Each column represents one experiment, with its input type written in brackets. Each row represents one subgroup, with best
results per row in bold. AUC : Area under the curve, GAN : Generative adversarial network, PNET : Pancreatic neuroendocrine tumor.

The results shown in Table D.2 reveal that the AUC of experiment T4 is lower than that of experiment
T3, meaning that the arterial images generated by GAN K fail to substitute real arterial images when used
in concatenation with portal images. Moreover, experiment T4 even achieves lower detection performance
than experiment T1 (using portal image input only), meaning that adding as input these synthetic arterial
images is not beneficial, if not detrimental.
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D.4 Conclusion

Preliminary experiments attempted to synthetically generate the arterial phase using a state-of-the-art
Pix2Pix GAN. The generated arterial images were then concatenated to portal images and used as input
to train a lesion segmentation model.

Despite several experiments, this work was limited by several factors. The generated images exhibited
either jagged edges or blurriness. A hyper-parameter search was carried out on the GANs to obtain realistic
arterial images, and one GAN experiment was selected for further investigation based on qualitative and
quantitative results. The generated images were used to train a lesion segmentation model. However,
analyses of the resulting model showed that the arterial images generated by the GAN did not bring any
performance gain compared to baseline experiments. This means that the evaluation measures used did
not allow to determine whether the synthetic images provided additional information that could enhance
a lesion segmentation model, and perhaps another GAN among the different ones tested would have been
more interesting. Identifying the optimal generated images for lesion segmentation proves to be costly in
terms of time and computational resources, as it involves training a GAN to generate synthetic arterial
phase images, followed by training a segmentation model using both the true portal image and the generated
arterial image as inputs. These problems and their potential solutions are discussed further in the main
body of the manuscript (see Section 8.3.2.2).
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jas, and A. Alberich-Bayarri. Pancreatic cancer, radiomics and artificial intelligence. The British Journal
of Radiology, 95(1137) :20220072, 2022.

Y. Matsuda. Age-related morphological changes in the pancreas and their association with pancreatic
carcinogenesis. Pathology International, 69(8) :450–462, 2019.

L.M. Mazur, P.R. Mosaly, L.M. Hoyle, E.L. Jones, B.S. Chera, and L.B. Marks. Relating physician’s
workload with errors during radiation therapy planning. Practical Radiation Oncology, 4(2) :71–75,
2014.

S. Midha, S. Chawla, and P.K. Garg. Modifiable and non-modifiable risk factors for pancreatic cancer : A
review. Cancer Letters, 381(1) :269–277, 2016.

K.W. Millikan, D.J. Deziel, J.C. Silverstein, T.M. Kanjo, J.D. Christein, A. Doolas, and R.A. Prinz.
Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas. The American
Surgeon, 65(7) :618–624, 1999.

R.M.S. Mitchell, M.F. Byrne, and J. Baillie. Pancreatitis. The Lancet, 361(9367) :1447–1455, 2003.

S. Miura, K. Kume, K. Kikuta, S. Hamada, T. Takikawa, N. Yoshida, S. Hongo, Y. Tanaka, R. Matsumoto,
T. Sano, et al. Focal parenchymal atrophy and fat replacement are clues for early diagnosis of pancreatic
cancer with abnormalities of the main pancreatic duct. The Tohoku Journal of Experimental Medicine,
252(1) :63–71, 2020.

J.D. Mizrahi, R. Surana, J.W. Valle, and R.T. Shroff. Pancreatic cancer. The Lancet, 395(10242) :2008–
2020, 2020.

J. Mo, L. Zhang, Y. Wang, and H. Huang. Iterative 3D feature enhancement network for pancreas seg-
mentation from CT images. Neural Computing and Applications, 32 :12535–12546, 2020.

F. Mohsen, H. Ali, N. El Hajj, and Z. Shah. Artificial intelligence-based methods for fusion of electronic
health records and imaging data. Scientific Reports, 12(1) :17981, 2022.

A. Momeni-Boroujeni, E. Yousefi, and J. Somma. Computer-assisted cytologic diagnosis in pancreatic
FNA : an application of neural networks to image analysis. Cancer Cytopathology, 125(12) :926–933,
2017.

S. Mukherjee, A. Patra, H. Khasawneh, P. Korfiatis, N. Rajamohan, G. Suman, S. Majumder, A. Panda,
M.P. Johnson, N.B. Larson, et al. Radiomics-based machine learning models can detect pancreatic
cancer on prediagnostic cts at a substantial lead time prior to clinical diagnosis. Gastroenterology, pages
S0016–5085, 2022.

S. Naudin, V. Viallon, D. Hashim, H. Freisling, M. Jenab, E. Weiderpass, F. Perrier, F. McKenzie, H.B.
Bueno-de Mesquita, and A. et al. Olsen. Healthy lifestyle and the risk of pancreatic cancer in the EPIC
study. European Journal of Epidemiology, 35 :975–986, 2020.

L. Nazario-Johnson, H.A. Zaki, and G.A. Tung. Use of large language models to predict neuroimaging.
Journal of the American College of Radiology, 20(10) :1004–1009, 2023.

J.P. Neoptolemos, J.A. Dunn, D.D. Stocken, J. Almond, K. Link, H. Beger, C. Bassi, M. Falconi, P. Peder-
zoli, C. Dervenis, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer :
a randomised controlled trial. The Lancet, 358(9293) :1576–1585, 2001.



BIBLIOGRAPHIE 175

C. Niederau and J.H. Grendell. Diagnosis of pancreatic carcinoma : imaging techniques and tumor markers.
Pancreas, 7(1) :66–86, 1992.

S. Nikolov, S. Blackwell, A. Zverovitch, R. Mendes, M. Livne, J. De Fauw, Y. Patel, C. Meyer, H. Askham,
B. Romera-Paredes, et al. Deep learning to achieve clinically applicable segmentation of head and neck
anatomy for radiotherapy. arXiv preprint arXiv :1809.04430, 2018.

M. Nishio, S. Noguchi, and K. Fujimoto. Automatic pancreas segmentation using coarse-scaled 2D model
of deep learning : usefulness of data augmentation and deep U-Net. Applied Sciences, 10(10) :3360, 2020.

H. Okasha, S. Elkholy, R. El-Sayed, M.N. Wifi, M. El-Nady, W. El-Nabawi, W.A. El-Dayem, M.I. Radwan,
A. Farag, Y. El-Sherif, et al. Real time endoscopic ultrasound elastography and strain ratio in the
diagnosis of solid pancreatic lesions. World Journal of Gastroenterology, 23(32) :5962, 2017.

O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y.
Hammerla, B. Kainz, et al. Attention U-Net : Learning where to look for the pancreas. In Medical
Imaging with Deep Learning, 2022.

M. Orellana-Donoso, D. Milos-Brandenberg, A. Benavente-Urtubia, J. Guerra-Loyola, A. Bruna-Mejias,
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Titre : Méthodes d’Intelligence Artificielle pour l’Aide au Diagnostic des Maladies du Pancréas en Radiologie
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Résumé : Avec l’augmentation de son incidence et
son taux de survie à cinq ans (9%), le cancer du
pancréas pourrait devenir la troisième cause de décès
par cancer d’ici à 2025. Ces chiffres sont notam-
ment dus aux diagnostics tardifs, limitant les options
thérapeutiques. Cette thèse vise à assister les ra-
diologues dans le diagnostic du cancer du pancréas
sur des images scanner grâce à des outils d’intel-
ligence artificielle (IA) qui faciliteraient un diagnos-
tic précoce. Pour atteindre ces objectifs, trois pistes
de recherche ont été explorées. Premièrement, une
méthode de segmentation automatique du pancréas
a été développée. Le pancréas présentant une forme
allongée et des extrémités subtiles, la méthode pro-
posée utilise des informations géométriques pour
ajuster localement la sensibilité de la segmentation.
Deuxièmement, une méthode réalise la détection des
lésions et de la dilatation du canal pancréatique
principal (CPP), deux signes cruciaux du cancer du
pancréas. La méthode proposée commence par seg-
menter le pancréas, les lésions et le CPP. Ensuite,
des caractéristiques quantitatives sont extraites des
segmentations prédites puis utilisées pour prédire la
présence d’une lésion et la dilatation du CPP. La ro-

bustesse de la méthode est démontrée sur une base
externe de 756 patients. Dernièrement, afin de per-
mettre un diagnostic précoce, deux approches sont
proposées pour détecter des signes secondaires. La
première utilise un grand nombre de masques de
segmentation de pancréas sains pour apprendre un
modèle normatif des formes du pancréas. Ce modèle
est ensuite exploité pour détecter des formes anor-
males, en utilisant des méthodes de détection d’ano-
malies avec peu ou pas d’exemples d’entraı̂nement.
La seconde approche s’appuie sur deux types de ra-
diomiques : les radiomiques profonds (RP), extraits
par des réseaux de neurones profonds, et les radio-
miques manuels (RM), calculés à partir de formules
prédéfinies. La méthode extrait des RP non redon-
dants par rapport à un ensemble prédéterminé de
RM afin de compléter l’information déjà contenue. Les
résultats montrent que cette méthode détecte effica-
cement quatre signes secondaires : la forme anor-
male, l’atrophie, l’infiltration de graisse et la sénilité.
Pour élaborer ces méthodes, une base de données
de 2800 examens a été constituée, ce qui en fait l’une
des plus importantes pour la recherche en IA sur le
cancer du pancréas.

Title : Artificial Intelligence Methods to Assist the Diagnosis of Pancreatic Diseases in Radiology

Keywords : Machine Learning, Medical Imaging, Pancreas, Cancer

Abstract : With its increasing incidence and its five-
year survival rate (9%), pancreatic cancer could be-
come the third leading cause of cancer-related deaths
by 2025. These figures are primarily attributed to late
diagnoses, which limit therapeutic options. This the-
sis aims to assist radiologists in diagnosing pancrea-
tic cancer through artificial intelligence (AI) tools that
would facilitate early diagnosis. Several methods have
been developed. First, a method for the automatic
segmentation of the pancreas on portal CT scans
was developed. To deal with the specific anatomy of
the pancreas, which is characterized by an elonga-
ted shape and subtle extremities easily missed, the
proposed method relied on local sensitivity adjust-
ments using geometrical priors. Then, the thesis tack-
led the detection of pancreatic lesions and main pan-
creatic duct (MPD) dilatation, both crucial indicators
of pancreatic cancer. The proposed method started
with the segmentation of the pancreas, the lesion and
the MPD. Then, quantitative features were extracted
from the segmentations and leveraged to predict the
presence of a lesion and the dilatation of the MPD.

The method was evaluated on an external test cohort
comprising hundreds of patients. Continuing towards
early diagnosis, two strategies were explored to de-
tect secondary signs of pancreatic cancer. The first
approach leveraged large databases of healthy pan-
creases to learn a normative model of healthy pan-
creatic shapes, facilitating the identification of anoma-
lies. To this end, volumetric segmentation masks were
embedded into a common probabilistic shape space,
enabling zero-shot and few-shot abnormal shape de-
tection. The second approach leveraged two types of
radiomics: deep learning radiomics (DLR), extracted
by deep neural networks, and hand-crafted radiomics
(HCR), derived from predefined formulas. The propo-
sed method sought to extract non-redundant DLR that
would complement the information contained in the
HCR. Results showed that this method effectively de-
tected four secondary signs of pancreatic cancer: ab-
normal shape, atrophy, senility, and fat replacement.
To develop these methods, a database of 2800 exa-
minations has been created, making it one of the lar-
gest for AI research on pancreatic cancer.
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91120 Palaiseau, France
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