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Stéphane GALLAND RapporteurProfessor, Belfort-Montbéliard University of Technology
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Mahdi ZARGAYOUNA Directeur de thèseResearcher-HDR, Univ Gustave Eiffel
Abderrezak RACHEDI Co-Directeur de thèseProfessor, Univ Gustave Eiffel
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nology and Prof. Marie-Pierre GLEIZES from Paul Sabatier University,
both of whom thoroughly reviewed my thesis and provided detailed com-
ments that greatly improved this revised version of the manuscript. My
heartfelt thanks also go to all the other members of the examination com-
mittee: Prof. Flavien BALBO from Mines Saint-Etienne and Dr. Fouzia
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”We are at the very beginning of time for the human race. It is not un-
reasonable that we grapple with problems. But there are tens of thousands
of years in the future. Our responsibility is to do what we can, learn what
we can improve the solutions, and pass them on.”

-Richard Feynman
Theoretical physicist
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Abstract
This thesis aims to improve planning and executing population evacuations by integrating
advanced simulation techniques within urban road networks. Although much research has
been conducted using analytical methods, this thesis addresses specific gaps, especially in
destination and route choices. It further introduces vehicular communication into evac-
uation planning, providing a more adaptive and realistic approach to various evacuation
scenarios.

The work underscores simulation as a pivotal tool, enabling dynamic modeling of
population evacuations. It links shelter allocation and traffic assignment to replicate
the movement patterns of individuals across transport networks. Moreover, this study
emphasizes the significant role of vehicular communication technology in amplifying the
efficiency of evacuation planning and execution. It highlights the importance of real-time
coordination and adaptive management in ever-changing conditions.

By exploring multiple scenarios, we show that online management, paired with ve-
hicular communication technology, can enhance the efficiency of evacuation processes.
This is especially true when integrated with well-structured Vehicular Ad-hoc Network
(VANET) architectures. The research also suggests that various VANET architectures
can influence the reliability of vehicular communication in emergencies, offering critical
insights for designing vehicular networks ideal for emergency evacuations.

Furthermore, this thesis successfully introduces dynamic risk modelling of hazard prop-
agation, facilitating a more detailed and adaptive approach to evacuee simulations. By
incorporating dynamic risk factors, the potential for more advantageous outcomes in evac-
uation planning and real-time operational management is unveiled, especially in rapidly
changing conditions.

Keywords: Dynamic Traffic Assignment, VANET, User Equilibrium, Inter-vehicle
Communication, Multi-agent System, Cloud Computing, Fog Computing, Simulation, Sys-
tem Optimal, Optimization, Operations Research.
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Résumé
Cette thèse vise à améliorer la planification et l’exécution des évacuations de population
en intégrant des techniques de simulation avancées dans les réseaux routiers urbains.
Bien que de nombreuses recherches aient été menées à l’aide de méthodes analytiques,
cette thèse aborde des lacunes spécifiques, notamment en ce qui concerne les choix de
destinations et d’itinéraires. Elle introduit en outre la communication véhiculaire dans la
planification des évacuations, ce qui permet une approche plus adaptative et plus réaliste
des différents scénarios d’évacuation.

Le travail souligne que la simulation est un outil essentiel, permettant une modélisation
dynamique des évacuations de population. Elle relie l’attribution des abris et l’affectation
du trafic afin de reproduire les schémas de déplacement des individus dans les réseaux de
transport. En outre, cette étude souligne le rôle significatif de la technologie de commu-
nication véhiculaire dans l’amélioration de l’efficacité de la planification et de l’exécution
des évacuations. Elle souligne l’importance de la coordination en temps réel et de la
gestion adaptative dans des conditions en constante évolution.

En explorant plusieurs scénarios, nous montrons que la gestion en ligne, associée à
la technologie de communication véhiculaire, peut améliorer l’efficacité des processus
d’évacuation. Cela est particulièrement vrai lorsqu’ils sont intégrés à des architectures de
réseaux ad hoc véhiculaires (VANET) bien structurées. La recherche suggère également
que diverses architectures VANET peuvent influencer la fiabilité de la communication
véhiculaire dans les situations d’urgence, offrant ainsi des perspectives essentielles pour
la conception de réseaux véhiculaires idéaux pour les évacuations d’urgence.

En outre, cette thèse introduit une modélisation dynamique de la propagation des
risques, facilitant une approche plus détaillée et adaptative des simulations d’évacuation.
En incorporant des facteurs de risque dynamiques, le potentiel pour des solutions plus
efficaces dans la planification de l’évacuation et la gestion opérationnelle en temps-réel est
mis en lumière, en particulier dans des conditions qui changent rapidement.

Mots-Clés : Affectation dynamique du trafic, VANET, équilibre utilisateur, Commu-
nication inter-véhiculaire, Système multi-agent, Cloud Computing, Fog Computing, sim-
ulation, Système optimal, Optimisation, Recherche Opérationnelle
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Chapter 1

General Introduction

1.1 Disaster impact
Natural disasters are adverse events of significant scale that arise from the Earth’s inherent
processes, encompassing geological and meteorological phenomena. These occurrences en-
compass a range of disasters, such as tornadoes, severe storms, earthquakes, volcanic erup-
tions, hurricanes, tropical storms, wildfires, floods, tsunamis, and droughts. The conse-
quences of these events often involve fatalities, traumatic experiences, and extensive prop-
erty destruction. According to the International Disaster Database, recorded natural dis-
asters have experienced an upsurge since the mid-20th century [Kokai et al., 2004]. Since
1970, the global occurrence of natural disasters has surpassed 9,800 incidents, resulting in a
devastating toll. Tragically, these events have claimed the lives of over 3.7 million individu-
als and have affected a shocking 5.8 billion people. The estimated economic damages stem-
ming from these disasters exceed a staggering $1.7 trillion [Kellenberg and Mobarak, 2011].
Notable recent events, including the Indian Ocean tsunami in 2004, Hurricane Katrina
in 2005, the Sichuan earthquake in China in 2008, the Haitian earthquake in 2009, and
the Japanese earthquake and tsunami in 2011, stand as vivid illustrations of the immense
economic ramifications triggered by such calamities [Kellenberg and Mobarak, 2011]. In
the summer of 2005, Hurricane Katrina’s flooding, which caused more than $108 billion in
damages, constituted the costliest natural disaster in U.S. history [Douglas et al., 2008,
Glago, 2021].

Natural disasters have exerted impacts in regions across the globe, emerging as a
matter of immense relevance in contemporary society. For instance, the occurrence of
hurricanes Katrina and Rita in 2005 within the Gulf of Mexico region inflicted exten-
sive damages upon approximately 611 industrial assets, including offshore platforms, oil
pipelines, and storage tanks [Krausmann and Cruz, 2017].Despite being historically per-
ceived as low-probability events, these incidents exhibit significant impact and complex-
ity in risk management, owing to their cascading nature [Nascimento and Alencar, 2016].
However, the frequency of such events has demonstrated temporal variation, with a higher
probability of occurrence observed in recent decades (cf Figure 1.1).

1.2 Evacuation as a solution
Over the last two decades, transportation has emerged as a crucial component in the
field of emergency management. When faced with various hazardous incidents, evac-
uations have become the predominant approach to safeguard the well-being of a sub-
stantial number of individuals [Wong et al., 2021]. The implementation of evacuations
plays a crucial role in preserving lives during disasters, mitigating the need for exten-
sive search and rescue operations, and enhancing the overall quality of life. Over the
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Figure 1.1: Number of reported disaster events [Mesa-Gómez et al., 2020]

past few years, a substantial number of large-scale evacuations have been conducted in
response to hurricanes [Maul, 2018], wildfires [Seto et al., 2022], and human-made inci-
dents [Huang et al., 2021]. Furthermore, projections indicate that certain natural events
are poised to worsen in the coming decades. While climate change has been associ-
ated with storm types such as hurricanes, tornadoes, and winter storms, the current
state of research does not yet offer a comprehensive understanding or firm consensus on
the matter [Impacts, 2018]. Devastating wildfires in California and worldwide have im-
parted profound lessons, underscoring the need for heightened awareness and prepared-
ness [Soga et al., 2021]. Unlike other hazards like hurricanes, wildfires pose unique chal-
lenges as they are difficult to predict and leave minimal time for evacuation. In certain
regions of California, the frequency of wildfires has escalated to the extent that they
can no longer be considered low-probability events [Str, 2019]. However, due to housing
shortages, relocating from high-risk areas is often not feasible for many residents. Conse-
quently, individuals must rely on proactive measures, such as utilizing fire-resistant con-
struction materials and creating defensible space around their properties. Furthermore,
being familiar with evacuation routes, devising written evacuation plans, and preparing
emergency kits assume paramount importance in situations that necessitate abrupt and
chaotic evacuations.

1.3 Evacuation and traffic management
Ensuring the safety of individuals in the face of potential disasters primarily relies on the
widely employed strategy of evacuation from affected areas [10]. Evacuation planning and
management constitute essential aspects of disaster management activities, encompassing
preparedness and response phases. According to reports from the US Federal Emer-
gency Management Agency (FEMA), approximately 45-75 disasters necessitate evacu-
ations each year [Board, 2008]. Effective traffic management is prominent among the
core capabilities required for the mass evacuation of people, as outlined in the National
Response Framework [Nat, ]. The management of evacuation traffic assumes critical im-
portance [Yao et al., 2009], given the inherent risk to people’s lives. If not meticulously
planned and executed, the surge in traffic demand, exceeding the transportation net-
work’s capacity [Dixit and Wolshon, 2014], can lead to congestion and leave evacuees
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vulnerable, potentially resulting in further losses. The hurricanes Katrina and Rita in
2005 [Board, 2008] witnessed the evacuation of millions of people, resulting in the largest
traffic congestion in US history. Effective evacuation management not only saves lives
but also contributes to the community’s swift and smooth recovery, restoring functional-
ity [Perry, 1979]. The authors in [Islam et al., 2023] examine the policies and methodolo-
gies related to evacuation planning, preparedness, and response. Their focus lies specifi-
cally on command and control strategies, as well as the criteria for implementation and
enforcement. Additionally, the authors provide an overview of evacuation management
operations, with particular emphasis on contraflow operations and the utilization of in-
telligent transportation systems, including connected and automated vehicles. In their
study, [Liu et al., 2021] aim to determine how to model and pre-plan emergency response
while addressing the critical concern of interaction. The study also focuses on reviewing
the interaction between the transportation network and facility location, highlighting the
critical concerns of the emergency response optimization problem. The effective imple-
mentation of evacuation strategies is crucial for ensuring the safety of individuals during
potential disasters. Evacuation planning and management play vital roles in disaster man-
agement activities, encompassing preparedness and response phases. The importance of
effective traffic management cannot be overstated, as it is a core capability required for
the mass evacuation of people, as outlined in the National Response Framework. Poorly
planned and executed evacuations can lead to congestion and further endanger evac-
uees, highlighting the need for meticulous planning to accommodate the surge in traffic
demand. The study of evacuation policies and methodologies, including command and
control strategies, implementation criteria, and contraflow operations, provides valuable
insights for enhancing evacuation management. Additionally, modelling and pre-planning
emergency response while addressing the interaction between the transportation network
and facility location is a critical concern that requires further exploration. Understanding
and improving the emergency response process is crucial for effective disaster mitigation,
as well as for preserving lives and ensuring the community continues to operate effectively.

1.4 Evacuation Planning
A typical framework of a transportation model in an evacuation context consists of five
sub-models [Pel, 2017], as follows:

• Evacuation Trip distribution: It focuses on determining the destinations to
which people will evacuate.

• Trip generation: This sub-model predicts the number of people who will evacuate
and determines the timing of their departure.

• Modal split: This sub-model identifies the mode of transportation individuals will
use for evacuation.

• Evacuation traffic assignment: It determines individuals’ specific routes during
an evacuation.

• Evacuation traffic flows: This sub-model describes the resulting traffic flows in
the transport network.

The purpose of the first four sub-models is to predict travel choices made by individ-
uals both before their departure and during their trip. The collective decisions resulting
from these sub-models yield travel patterns. Together, these sub-models provide insights
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into the decision-making process and help understand the overall travel behaviour during
evacuations. This thesis focuses primarily on the trip distribution task, traffic assignment,
and traffic flows within the transportation model framework. We have placed particular
emphasis on these aspects based on careful considerations. Firstly, the task of trip gen-
eration, which involves estimating the number of evacuees and their departure times, has
been extensively studied and modelled using a sigmoid distribution.

Moreover, we have opted not to delve deeply into the modal split task within the
framework. Instead, we make the assumption that all evacuees rely on private cars as
their mode of transportation during the evacuation process. This assumption allows us
to streamline our analysis and concentrate on the critical elements of trip distribution,
traffic assignment, and traffic flows.

By focusing on these specific aspects, our objective is to provide valuable insights into
the distribution of evacuees to different destinations, the efficient assignment of evacuation
routes, and the resulting traffic patterns within the transport network. Through this
research, we aim to enhance our understanding of evacuation dynamics and contribute to
the development of effective strategies for managing and optimizing evacuations during
disastrous events.

1.4.1 Shelter Allocation Problem
Different stages of disaster operations management have been studied, including miti-
gation, preparedness, response, and recovery [Altay and Green III, 2006]. An important
part of the preparedness phase is determining the location of emergency shelters. These
shelters serve two primary functions: to provide temporary housing for survivors to avoid
secondary damage, such as fires and diseases, and to allow first responders to perform
rescue operations efficiently.

After the 2010 Haiti earthquake, an estimated three million people were displaced
and about one-third of them became homeless [Plastun and Plastun, 2013]. The lack of
available shelters forced many victims to live on the streets, where their health and safety
were at risk. In contrast, after the 2011 Tohoku earthquake, more than 2,000 shelters were
quickly established [Urata and Hato, 2012], providing a safe place for 166,000 evacuees to
stay during the post-disaster recovery period. In addition, the shelters helped maintain
the dignity and emotional security of the victims, even though their homes had been
destroyed.

Despite the significant differences between Haiti and Japan, the planning of emergency
shelters should be integrated into urban resilience planning to reduce vulnerability to dis-
asters. This includes considering factors such as the location of shelters, their capacity,
and the availability of resources. Location selection has remained an intriguing problem
since its initial proposal in 1909 by [Weber and Friedrich, 1929], who concentrated on pin-
pointing a warehouse optimally positioned near all customers. The importance of facility
location spans various fields, contributing to societal progress and finding relevance in
disciplines like economics, mathematics, politics, science, and beyond. At first, research
on facility location was not systematic, but mainly involved solving problems about liv-
ing and production. Most early problems looked at choosing a spot for a facility in a
continuous space. The author in [Hotbllino, 1929] studied a different situation - finding
the locations of two competing companies along a line. Building on this, the authors
in [Smithies, 1941] and [Stevens, 1961] studied the problem more deeply by considering
elastic demand relative to competitors, who can move but are physically separated.

The collaborative selection of ideal locations from a pool of probable places for numer-
ous facilities has attracted the attention of academic researchers as the complexity of prac-
tical difficulties continues to increase. Conventional approaches designed to solve ongoing

15



problems are no longer appropriate in this situation. The author in [Hakimi, 1964] there-
fore developed the p-median and p-center approaches in 1964 to address discrete multi-
facility location problems inside network frameworks. This significant finding marked a
shift in academic discourse toward a more rigorous investigation of facility location. The
choice of locations for facilities, shelters, manufacturing plants, warehouses, logistics hubs,
and more, is covered under the facility location allocation.

1.4.1.1 p-Center and p-Median

The p-median and p-center location problems are classic discrete optimization models
used for facility location planning. As [Jia et al., 2007] explain it, the p-median model
aims to minimize the total weighted distance between demand nodes and their near-
est facilities, while the p-center model minimizes the maximum distance between a de-
mand node and facility. These models have been extensively studied in operations re-
search. Recent advances have developed more sophisticated solution algorithms, includ-
ing Lagrangian relaxation, Tabu search, and variable neighborhood search metaheuris-
tics [Brimberg et al., 2000, Irawan et al., 2016].

An important application of p-median and p-center models is planning the locations
of emergency shelters and supplies. A study by [Sherali et al., 1991] introduced a hybrid
model integrating a p-median approach for shelter placement with a network model. The
primary aim was to minimize the duration required for evacuating affected individuals to
hurricane shelters. This methodology considers hurricanes’ unique attributes and employs
a heuristic algorithm to derive optimal shelter locations along with effective evacuation
routes. The authors in [Ye et al., 2015] introduced a model to address the challenge of lo-
cating emergency warehouses in the context of Chinese national emergency preparedness.
The model was built upon the p-center problem framework and took into consideration
several constraints, including population distribution, economic factors, transportation
considerations, and the need for comprehensive coverage of critical zones. To tackle this
complex model, the researchers devised a heuristic algorithm based on a variable neigh-
bourhood search approach, which proved effective in solving the formulated problem.

1.4.2 Traffic Assignment Problem
The traffic assignment problem can be likened to a competitive game where each player
strives to come out on top. In this game, the players are the travellers (users) and the
transportation system itself. The objective is to find an equilibrium, if one exists, which
can be seen as a solution to the game.

The diagram in 1.2 illustrates the interconnection between game players. First is
the traveller’s decisions (the demand side), and the second is the congestion and delays
experienced within the system (known as the supply side) in the fundamental traffic as-
signment problem. Each of these aspects necessitates distinct models. Behavioral models
are employed for the demand side, aiming to understand the factors that influence travel
choices and how they are influenced. On the other hand, supply-side models commonly
draw upon traffic flow theory, queuing theory, computer simulation, or empirical formulas
to describe the formation of congestion.

The schema of 1.2 serves as the blueprint for all traffic assignment models, whether
static or dynamic. It depicts the reciprocal relationship between travellers’ choices, which
result in congestion patterns within the network (predicted by traffic flow models), and
how these patterns subsequently influence the choices made by travellers. The reciprocal
relationship depicted in the schema of 1.2 serves as a crucial link between the traffic assign-
ment models and Wardrop’s principles [Wardrop, 1952]. By illustrating how travellers’
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Figure 1.2: Traffic assignment as interacting systems [Boyles et al., 2020]

choices and resulting congestion patterns interact, the schema aligns with the principles
established by Wardrop.

The formulation of the traffic assignment problem has been significantly influenced by
Wardrop’s first and second principles, which were introduced in the early 1950s within
the context of traffic dynamics [Wardrop, 1952]. Wardrop’s first principle also referred to
as the user optimum principle, posits that travellers act as Nash agents who compete for
limited resources within the network, such as road and mode capacity. The user equilib-
rium represents a state where no user can further decrease their travel costs, reflecting a
self-interested scenario.

Wardrop’s second principle, on the other hand, pertains to the system optimum condi-
tions. It characterizes the situation where the total travel cost for all users is minimized.
In Wardrop’s own words, the principles can be summarized as follows:

• The User Equilibrium (UE), as expressed by Wardrop’s first principle, states that
”the journey times on all routes actually used are equal and less than those which
would be experienced by a single vehicle on any unused route.”

• The System Optimum (SO), corresponding to Wardrop’s second principle, refers to
the network state that ”minimizes the total travel time spent in the network.”

By incorporating these principles, researchers and practitioners can conceive effec-
tive strategies for traffic assignment, ensuring optimal utilization of the transportation
network and minimizing overall travel time. During a disaster situation, where there
is limited information on the road network and congestion levels, evacuees exhibit self-
interested behavior, similar to regular traffic conditions in daily life [Jahn et al., 2005,
Schulz and Moses, 2003, Correa et al., 2005, Schulz and Stier-Moses, 2006, Correa et al., 2007,
Chellapilla et al., 2023]. They tend to choose routes that allow them to reach the pre-
designated shelter site quickly.

1.4.2.1 Static and Dynamic

The difference between static and dynamic traffic assignment lies in the traffic flow models
used. Historically, static assignment models were the first to be developed, and research
into dynamic models arose from the need to improve earlier static models. Dynamic traffic
assignment thus has a large number of parallels with the static assignment; but where
they differ, this difference is often intentional and important [Boyles et al., 2020].
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Figure 1.3: Iterative process for dynamic traffic assignment

Static traffic assignment Evacuation models typically rely on traffic assignment mod-
els, particularly static models that can be traced back to the formulation initially proposed
by Beckmann in [Beckmann et al., 1956]. In the static assignment, the traffic flow model
is based on link performance functions, which map the flow on each link to the travel
time on that link. A variety of link performance functions exist, but the most popular
is the Bureau of Public Roads (BPR) function. The primary benefit of employing link
performance functions, such as the BPR function, is the relative ease with which the user
equilibrium and system optimum states can be determined, even in complex networks
comprising tens of thousands of links. Thanks to efficient algorithms, equilibrium states
can be identified within a matter of minutes even on extensive networks. Traffic planners
have employed static traffic assignment as a means to assess the present and future uti-
lization of transportation networks [Kalaee, 2010]. For planning purposes, static models
yield reasonably accurate estimations, and in cases involving extensive evacuation net-
works, they can be solved optimally using precise solution methodologies. These models
effectively capture no-notice evacuations where evacuees are simultaneously loaded into
the evacuation network. However, despite their merits, static models fall short of cap-
turing the intricacies of traffic dynamics, information dissemination, and user behaviour
that can vary over time due to changing conditions.

Dynamic traffic assignment The development of dynamic traffic assignment emerged
as an attempt to address the limitations identified in the static assignment, as discussed
in the preceding section [Batista et al., 2023]. Although dynamic traffic assignment is
increasingly being implemented, it has not entirely replaced static traffic assignment. This
can be attributed partially to institutional inertia but also to a few drawbacks associated
with employing more realistic traffic flow models. Dynamic traffic assignment involves an
iterative procedure wherein route choices are continually updated at each iteration until
an approximate dynamic user equilibrium solution is achieved [Ameli et al., 2020c]. This
iterative process typically comprises three steps, as illustrated in Figure 1.3:

• Calculate route travel times: This procedure involves utilizing a network loading
model to determine the time-dependent travel durations on each link, considering
the routes chosen and departure times of all drivers as inputs. In contrast to static
assignment, this step is more complex, requiring the calculation of link performance
functions for each network link.
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• Find shortest paths: After the completion of network loading, the travel time for
each link at every time interval is acquired. Using this information, we can identify
the shortest path from each origin to each destination for every departure time.

• Adjust route choices toward equilibrium: After determining the time-dependent
shortest paths for all origins, destinations, and departure times, vehicles can be redi-
rected from their current routes to these new, optimal paths. However, similar to
static assignment, this step must be executed carefully as the act of shifting vehicles
will alter the travel times of the paths.

There are two primary approaches to solving Dynamic Traffic Assignment (DTA)
problems: analytical and simulation-based approaches. The analytical approach, exten-
sively discussed by [Boyce et al., 2001], offers high accuracy but is primarily applicable
to small or medium networks with a limited number of Origin-Destination (OD) pairs.
This is due to the necessity of considering all path cost functions per OD pair and incor-
porating the impacts of travel paths and modes comprehensively [Szeto and Wong, 2012,
Ameli et al., 2019]. In the case of large-scale networks with numerous paths per OD pair
and a substantial number of ODs, the analytical approach becomes exceedingly challeng-
ing due to the complexity arising from multiple flow exchanges at nodes [Ameli et al., 2020b].
Consequently, we adopt the simulation-based approach to tackle DTA problems in large-
scale networks. This approach offers a practical solution by simulating and analyzing the
dynamic behaviour of traffic flows in a computationally feasible manner [Chen et al., 2021].

1.4.2.2 Analytical and Simulation-based Approaches

Dynamic Traffic Assignment (DTA) models can be broadly classified into two categories:
analytical (optimization-based) models and simulation-based models. A comprehensive
overview of DTA models is provided in the study [Peeta and Ziliaskopoulos, 2001]. An-
alytical models have evolved since the work [Merchant and Nemhauser, 1978]. Efforts in
this category include mathematical programming formulations, optimal control theory-
based formulations, and variational inequality approaches [Aziz, 2019, Bagloee et al., 2017,
Bahrami and Roorda, 2020, Wang et al., 2022, Xie and Liu, 2022]. Many analytical mod-
els are adaptations of static formulations. However, these models have limitations in ac-
curately representing time-dependent dynamic traffic characteristics and user behaviours,
particularly in larger and more realistic networks.

To address these limitations, simulation-based DTA models have been developed
at various levels, such as macroscopic, mesoscopic, or microscopic scales. Examples
of such models include SUMO [SUM, ], NETVAC [Hobeika and Kim, 1998], RouteSim
[Ziliaskopoulos and Waller, 2000], and DYNASMART [Mahmassani, 2001]. While these
models offer valuable insights, they require substantial time, ample data, extensive effort
to set up, and significant computational resources to run effectively [Ameli et al., 2021].
Additionally, the heuristic approaches employed in these models introduce the possi-
bility of converging to suboptimal solutions [Ameli et al., 2022a]. Nevertheless, these
simulation-based models are generally well-suited for real-time evacuation management
purposes, where capturing realistic traffic dynamics and user behaviours is critical.

1.4.2.3 Deterministic and stochastic

Traffic assignment models (TAMs) are tools that transportation planners use to esti-
mate and forecast traffic flows on road networks. Deterministic models, such as user
equilibrium (UE), provide point predictions about traffic volume based on fixed inputs,
such as travel demand and network capacity, and assumptions about route choice be-
havior [Sheffi et al., 1982, Ameli et al., 2022b]. For example, UE predicts travellers will

19



choose the shortest free-flow travel time path. However, in the real world, traffic flows are
subject to inherent variability due to daily changes in demand, weather conditions, acci-
dents, and driver behaviour. Deterministic models are unable to capture this variability.

Stochastic traffic assignment models treat key parameters as random variables. For
example, the authors in [Hazelton, 2003] developed a stochastic UE model with ran-
dom travel demand. Other stochastic extensions model random perceived travel times
[Chen and Zhou, 2010], route choice [Frejinger and Bierlaire, 2007], and capacity con-
straints [Sumalee et al., 2011]. Stochastic models can estimate probability distributions
of traffic volumes rather than fixed point flows. Recent research finds that stochastic
assignment better replicates empirical traffic patterns than deterministic models.

In summary, deterministic models are useful for general infrastructure planning but
cannot evaluate reliability or system performance under uncertainty like evacuation. Stochas-
tic models provide more behavioural realism and can assess variability in travel times,
congestion probabilities, and robustness of traffic control strategies. However, they re-
quire complex statistical and computational methods. The appropriate model depends
on the specific aims and needs of the transportation planning study.

1.4.3 Application in the Evacuation Context
Researchers have formulated different optimization frameworks for establishing suitable
shelter locations (strategic choices), orchestrating car-based evacuations (tactical choices),
and treating these as distinct issues. Nevertheless, the determinations emerging from ei-
ther of these challenges intricately impact the other (e.g., the availability of financial
resources and the utilization of road networks). This section aims to provide a concise
overview of optimization models that integrate the aspects of initiating shelters and exe-
cuting evacuations for at-risk communities. Most studies tackle evacuation planning ana-
lytically, coupling both shelter allocation and traffic assignment, but never in a simulation-
based setting, which obliges a sequential nature of the problem. For analytically tackling
evacuation planning, several innovative methodologies have been proposed to address the
complex challenges of evacuation and emergency response scenarios. Notably, the authors
in [Kongsomsaksakul et al., 2005] introduced a sophisticated two-tiered program specif-
ically tailored for flood scenarios. They successfully resolved the intricate optimization
problems inherent in such situations by employing a genetic algorithm. The practical
application of their framework was demonstrated on the complex Logan network situated
in Utah, USA.

Expanding the horizons of this research domain, the authors in [Alçada-Almeida et al., 2009]
undertook the task of formulating a multiobjective optimization model that offers a com-
prehensive solution encompassing both evacuee travel distance and risk assessment in the
face of fire catastrophes. Their pioneering approach took root in Coimbra, Portugal, a
setting prone to such events. Their methodology presents a robust decision-making frame-
work, enhancing urban preparedness against potential fire disasters. Shifting the focus
towards hurricane scenarios, the authors in [Li et al., 2011a, Lim et al., 2012] devised an
intricate scenario-dependent two-tiered program that seamlessly integrated driver route
preferences into the optimization process. With hurricanes posing unique challenges in
terms of evacuation planning, their model proved particularly invaluable in the state of
North Carolina, USA. By accounting for a wide array of variables and preferences, the
research offered a comprehensive and adaptable solution for handling hurricane-induced
emergencies.

The contributions of these researchers have significantly enhanced our ability to man-
age disasters and plan evacuations strategically, all while relying on analytical approaches
rather than simulation-based methodologies. While many studies have developed com-
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plex frameworks for evacuation planning, these plans often lack the flexibility to adjust to
unexpected events during a disaster. To enable adaptive decision-making, there is a need
for real-time communication with vehicles to update them on new decisions as situations
evolve.

1.5 Online Evacuation Management
To optimize the evacuation process to its fullest potential, the integration of real-time
online adjustments into the planning framework emerges as a requirement. While cre-
ating an offline evacuation plan serves as the foundational step, it is the initial phase of
a more complex and dynamic process. Recognizing the ever-changing nature of emer-
gency scenarios, it becomes evident that the ability to modify decisions in real-time is
paramount. This pertains not only to the selection of destinations but also to the intri-
cate choices of routes taken by evacuees. The concept of online adjustment encapsulates
the notion of adaptability, an indispensable trait when dealing with unpredictable events.
The static nature of a preconceived plan, while undoubtedly valuable, may fail in the face
of evolving circumstances. Factors such as traffic congestion, road closures, or unexpected
developments demand a level of responsiveness that can only be achieved through real-
time adjustments. The decision-making process undertaken during the planning phase,
though thoroughly informed, can never anticipate the entirety of variables that may arise
during an evacuation. Therefore, the introduction of online adjustments stands as an im-
perative enhancement to the traditional evacuation strategy. At the heart of this advanced
approach lies the utilization of intelligent transportation systems (ITS). These systems
leverage cutting-edge technologies to facilitate seamless communication and coordination
among vehicles. Through interconnectedness, vehicles gain access to up-to-the-minute in-
formation regarding traffic conditions, alternative routes, and emerging challenges. This
data exchange empowers vehicles to make informed decisions that optimize their trajec-
tories based on prevailing conditions, enhancing overall efficiency. The true potential of
online adjustment unfolds within this digital orchestration of cooperation. The profound
impact of this integration is evident in the realm of public safety. Timely evacuations
can mean the difference between life and death, particularly in the face of natural disas-
ters or other emergencies. By embracing online adjustments, we transition from a static
and potentially outdated evacuation plan to an agile and adaptive response system. This
transformation ensures that our efforts to safeguard lives are not confined by the limita-
tions of a predetermined course of action.

1.5.1 Intelligent Transportation Systems
Intelligent transportation systems (ITS), as presented in Figure 1.4, are a collection of ad-
vanced automated technologies that combine vehicles, people, and infrastructure. ITS first
came into focus in 1991 when industry experts began to discuss the potential of electronic
technologies to improve road transportation [Zhang et al., 2011, Bapaume et al., 2021,
Bapaume et al., 2023]. Many ITS technologies offer trip optimization through route guid-
ance, reducing unnecessary miles, reducing traffic congestion, and improving air qual-
ity [Alisoltani et al., 2022, Alisoltani et al., 2019]. ITS has been the focus of considerable
attention in recent times. This is largely due to the advantages of wireless devices and
various sensing technologies. These have enabled a range of innovations, such as the
tracking of freeway traffic [Zhu et al., 2019], the operation of traffic control centres, the
automated recognition of incidents, the screening of vehicles, and the implementation of
autonomous driving [Valle, 2021].
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Figure 1.4: General concept of the Intelligent Transport System [Drilo et al., 2009]

ITS, typically capable of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, are considered the future of Vehicular ad hoc networks (VANET) tech-
nology [Moubayed et al., 2020]. ITS are capable of supporting a large number of applica-
tions. These applications can provide a variety of services to drivers, including real-time
warnings to improve road safety, such as collision warnings, traffic information sharing to
avoid traffic jams, intelligent road signs, collaborative incident management, and speeding
strategy. detect, etc. [Yang and Pun-Cheng, 2018, Lee and Atkison, 2021]

1.5.2 Vehicular Communication Using VANET
The fundamental description of VANET, which stands for Vehicular Ad-Hoc Network, en-
tails equipping a vehicle with a communication node capable of initiating wireless commu-
nication with other nearby communication nodes within its radio coverage. Additionally,
an underlying notion is that vehicles are inherently mobile entities. As a result, the net-
work’s structure fluctuates unpredictably over time, although in this context, some fore-
casts can be generated regarding the movement of communication nodes, given that every
vehicle is expected to follow predetermined routes and roads [Annoni and Williams, 2015].
The progression of VANET substantially enhances ITS. Equipping vehicles with sensors,
global positioning systems (GPS), and communication capabilities enhances transporta-
tion safety and efficiency [Zeadally et al., 2020].

1.5.3 VANET Architectures
With the rise of transformative applications that have reshaped our daily routines, coupled
with growing driver expectations, vehicles have become increasingly voracious in terms
of analytical capacity, processing power, computational ability, and storage capacity. De-
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Figure 1.5: VANET Architectures

spite substantial efforts to address these demands, vehicular networks exhibit numerous
drawbacks, primarily stemming from the high mobility of nodes (vehicles), resulting in
elevated communication costs[Qin et al., 2012].

This pressing challenge necessitated a significant augmentation of vehicle resources
to accommodate and cater to all driver applications, ensuring their comfort and safety,
among other needs. Consequently, the concept of vehicular cloud computing (VCC)
emerged, enabling vehicles to tap into the advantages of cloud computing to fulfil specific
requirements [Pitsillides et al., 2012].

Furthermore, the notion of vehicular fog computing (VFC) was introduced to comple-
ment VCC, particularly for latency-sensitive applications [Hou et al., 2016].

The majority of vehicular cloud computing (VCC) and vehicular fog computing (VFC)
systems typically adopt a layered architecture, commonly consisting of three layers:

• The client layer is the end-user of the VCC/VFC application. The client layer can
be a vehicle, a passenger in the vehicle, a mobile phone, or an access device.

• The communication layer is the interface between the end-user and the traditional
cloud. The communication layer can be supported by a variety of technologies,
including the Internet, a GPS private network, a 3G/ 4G network, or a Remote
Service Provider (RSU).

• The cloud layer can be a traditional cloud composed of data centers, including the
conventional cloud computing infrastructure, or a temporary cloud where the servers
and data centers are deployed to meet customers’ requirements.

1.5.3.1 Vehicular Cloud Computing

The Vehicular Cloud Computing [Whaiduzzaman et al., 2014] paradigm encompasses the
utilization of cloud computing within VANETs. This concept stemmed from the increas-
ing demand to advance VANETs by integrating diverse applications, catering to drivers’
comfort and road safety. Given that these applications typically have moderate require-
ments for computing capacity and storage space, the idea was to harness cloud computing
resources to meet the needs of all these applications for drivers efficiently.

VCC can be implemented through conventional cloud resources accessed via the In-
ternet. Connected vehicles seeking support in terms of computing capacity or storage
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to serve their applications and meet drivers’ requirements utilize the traditional cloud to
fulfill their needs. The cloud provides vehicles with the necessary resources for a specific
duration, precisely when the vehicles require them. Furthermore, the concept of VCC
extends to situations where vehicles can lease their own resources to other vehicles when
they are not in use. Rather than letting their resources go to waste when parked, such
as in a shopping center parking lot, vehicles can make these resources available to other
vehicles or users for productive utilization.

1.5.3.2 Vehicular Fog Computing

Vehicular Fog Computing [Yousefpour et al., 2019] entails the application of fog comput-
ing within the vehicular context. It alleviates the burden on and reduces the data traffic
directed toward cloud data centres by relocating data storage and computing capabilities
to the network’s edge. Additionally, Roadside Units (RSUs) and other network elements
like traffic lights can serve as Fog Nodes (FNs) and promptly handle vehicle requests in
real-time without overburdening the network. This approach is particularly well-suited
for time-sensitive applications, such as road accident information, which necessitates im-
mediate communication with nearby residents and authorities. The incorporation of fog
computing in vehicular environments also proves advantageous in terms of bandwidth
conservation, offering significant savings compared to conventional cloud usage. You can
refer to Figure 1.5

for an illustration of the VFC architecture.
There is a lack of studies employing vehicular communication technology specifically

for evacuation rerouting and shelter reallocation. While vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication have been studied for intelligent trans-
portation applications, very little research has examined the potential of leveraging these
technologies during emergency evacuations. Most evacuation routing and shelter manage-
ment work relies on traditional systems and protocols with no real-time vehicular network
data integration. More interdisciplinary work is needed to explore the feasibility and po-
tential benefits of utilizing vehicular communication capabilities for evacuation rerouting
and shelter allocation purposes.

1.6 Open problems
Realistic planning Current evacuation management plans lack realistic solutions. A
truly comprehensive evacuation plan should go beyond optimal vehicle routing to include
the designation of safe destinations for evacuees. Furthermore, since evacuations are
rare and abnormal events, the resulting traffic flows cannot be accurately modelled using
analytical models based on normal traffic conditions. The rigid assumptions of these
analytical models make them unsuitable for formulating and solving complex evacuation
planning problems. A more effective approach may be using simulation-based models that
do not make oversimplified assumptions about traffic flow dynamics. Simulation models
can better capture the uniqueness and inherent unpredictability of evacuation traffic. By
leveraging simulation modelling rather than purely analytical techniques, more robust and
adaptive evacuation plans could be developed to account for diverse scenarios. Overall,
advancing evacuation planning requires transitioning from static analytical models toward
dynamic simulation capabilities that can represent the realities of irregular evacuation
events.

Limitations in simulation-based models There is a lack of studies that integrate
both traffic assignment and destination location problems within a unified simulation-
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based framework. Existing works have approached these problems separately. For exam-
ple, the authors in [Gama et al., 2016] proposed a facility location model without consid-
ering dynamic traffic assignment, while in [Zhu et al., 2018], the authors used MATSim to
solve a simulation-based dynamic traffic assignment model without integrating destina-
tion location decisions. However, evacuation planning requires simultaneously optimizing
destination selection and routing of vehicles under realistic traffic conditions.

Real-time evacuation management Developing optimal evacuation plans to trans-
port people from hazardous areas to safer destinations is crucial, yet many unpredictable
events and challenges can arise during implementation. While pre-planned routes and
protocols are important, effective real-time management and adaptation is also essential.
Vehicular communication technology has the potential to enable safer and faster evac-
uation by providing capabilities to handle emergent and unforeseen circumstances. By
allowing vehicles to exchange information during the evacuation, issues such as congestion,
accidents, or changing conditions could be detected and mitigated dynamically. Vehicular
networks could reroute vehicles based on real-time feedback, coordinate responses, and
help guide evacuees through the volatile evacuation environment. While proper planning
lays the groundwork, leveraging vehicular communication systems and intelligence could
provide the flexibility to execute evacuations under chaotic real-world conditions. The
focus should be on both optimizing pre-defined evacuation plans as well as integrating
communication networks and technologies to facilitate adaptable real-time coordination
and response management.

Scaling, securing, and standardizing cloud-vehicular integration The prevalent
cloud-centric model, where connected vehicles send data to the cloud for processing and
analysis, can introduce challenges. With numerous vehicles generating immense datasets,
massive bandwidth is required to transmit this data to the cloud and return solutions
to each device [Alippi et al., 2016]. Additionally, physically distant cloud data centres
lead to security, latency, and reliability concerns, especially for time-critical vehicle ap-
plications [Chiang and Zhang, 2016]. The long transmission distances and heavy network
loads strain the connectivity between vehicles and the cloud. Relying on external cloud
infrastructure creates dependencies that impact system responsiveness in safety-sensitive
vehicular scenarios. While clouds enable valuable analytics, their removal from the local
context results in bottlenecks, delays, vulnerabilities, and single points of failure. An
alternative approach may be distributing intelligence and processing to the network edge
in proximity to data sources through solutions like multi-access fog computing. This
could alleviate the issues of bandwidth strain, latency, and external dependency for time-
sensitive and context-aware vehicular applications.

Compliance to online orders While online platforms allow rapid dissemination of
evacuation orders, compliance varies across demographics. Internet access limitations,
lack of tech literacy, distrust in institutions, and unclear threat perception inhibit universal
adherence to online directives. This presents an open challenge.

Dynamic nature of the hazardous situation The evacuation creates a dynamically
changing situation by the rapidly evolving state of risk that needs to be considered while
planning for the process and also to be taken into account while exchanging information
in real-time. This kind of dynamic situation can have a big impact on the evacuation
operation’s success.
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1.6.1 The open problems considered in this dissertation
Dynamic population evacuation (DPE) optimizes evacuation operations to move people
from hazardous zones swiftly. DPE situations involve high demand and congestion across
transport networks. Considering evacuation operations’ importance and potential to im-
pede vehicle flow, researchers have modeled DPE as a planning dilemma. To reduce
gridlock, some researchers have focused on traffic routing, while others have explored
destination choices using shelter location-allocation models.

In this research, we propose a new simulation-based framework that accounts for the
dynamic nature of evacuations and lessens congestion risk. Our approach couples traffic
assignment and shelter allocation decisions to enhance DPE efficacy.

This research also examines the real-time management of evacuation operations to
improve efficiency. Vehicular communication enables real-time coordination and is critical
for enhancing many transportation domains, including object identification, congestion
avoidance, accident detection, etc.

In the context of evacuation, vehicular communication has been applied to address
challenges such as optimizing speed strategies and rerouting decisions. Additionally,
rerouting and accurate reallocation decision-making present challenges due to the sub-
stantial information and computational requirements involved. However, recent advances
in cloud computing and fog computing make addressing complex evacuation problems
more viable for researchers. Leveraging these technologies, this dissertation proposes con-
gestion prediction and avoidance techniques to mitigate risk by reducing vehicle presence
in hazardous situations.

We examine these techniques implemented within both centralized and decentralized
architectures. By accounting for large-scale information processing demands, our ap-
proach aims to optimize rerouting and destination allocation to minimize gridlock risks
during time-critical evacuations.

1.6.2 Research questions
A considerable amount of research has examined dynamic population evacuation planning
in various settings. However, current approaches appear to rely predominantly on ana-
lytical methods, while simulation-based techniques may be better suited for large-scale
urban road networks.

Notable gaps exist in simulation-based evacuation planning:

1. Most solutions address destination choice or route choice separately rather than
integrating both.

2. No studies have coupled evacuation planning with vehicular communication to im-
prove the initial plan’s execution. Incorporating vehicular communication could
significantly enhance evacuation efficiency by allowing real-time adjustments. Incor-
porating the hazard’s evolution and the network’s changing state into the planning
process could produce more adaptive evacuation plans. These potential improve-
ments merit exploration.

3. In practice, many strong assumptions used in mathematical formulations are vio-
lated in real urban networks. For instance, cost functions, signalized intersections
violating FIFO rules, and other common features break typical assumptions.

Interestingly, research rarely intersects evacuation planning and vehicular communica-
tion, as these problems fall under distinct emergency response and transportation research
silos. A more integrated approach considering both planning and communication could
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provide novel insights. This thesis aims to advance evacuation planning and execution
methods by addressing key knowledge gaps. Specifically, we will investigate the following
research questions to improve existing solutions and provide novel planning approaches
for real-world evacuation scenarios. Furthermore, we will integrate planning and real-time
decisions to develop new end-to-end solutions. The overarching goals of this thesis can
be summarized by the following questions related to dynamic population evacuation:

• The disaster evacuation process involves determining the optimal allocation of evac-
uees to shelters (the shelter allocation problem or SAP) as well as modelling time-
dependent traffic flow and congestion (the dynamic traffic assignment or DTA prob-
lem). Traditionally, these two problems have been solved separately, but some re-
search has proposed combining them into a single model. This raises the question:
Could coupling the SAP and DTA problems lead to increased overall efficiency of
the evacuation process? Challenges include the added computational complexity of
combining two NP-hard problems.

• Could connecting and coordinating vehicles via vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I) networks improve the efficiency of the evacuation process?
Online traffic management could impact efficiency gains. Factors like communica-
tion range and latency all may affect how well vehicles can share information and
coordinate.

• How can we optimize vehicular network architecture and address vital remaining
questions to maximize efficiency gains, determine suitable architecture, and provide
systems-level insights through comparative analysis of VANET specifications and
evacuation metrics that will guide efficient VANET design for emergency evacuation
safety?

• Disaster evacuation planning and real-time management could potentially be im-
proved by incorporating dynamic risk modelling. Traditional static plans and pro-
cedures may not account for the unpredictability and rapidly changing conditions
often present during evacuations. This raises the question: Could adding dynamic
risk factors to our modelling and solutions provide more beneficial results for both
evacuation planning and real-time operational management?

1.7 Research objectives
The main objective of this dissertation is to propose a Simulation-based framework to plan
and adjust real-time evacuation orders. The four following sub-objectives are considered
towards achieving the main objective of this dissertation:

• First, a planning framework integrating both shelter assignment and traffic assign-
ment models is proposed to generate optimal evacuation plans.

• Second, a real-time evacuation management system is developed to enable recali-
brated rerouting and reallocation decisions.

• Third, centralized and decentralized VANET architectures for vehicular communi-
cation are compared and contrasted.

• Finally, incorporating dynamic hazard state information to better optimize the evac-
uation process is explored.
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1.8 Thesis outline
The objective of this PhD thesis is to address the aforementioned research questions. The
remaining of the thesis is structured as follows. Chapters 2, 3, 4, and 5 address research
questions 1, 2, 3, and 4, respectively; and Chapter 6 concludes the thesis. Chapter 2
presents a simulation-based framework to model the dynamic evacuation of populations,
coupling shelter allocation and traffic assignment. The proposed framework is imple-
mented on a real road network to assess performance metrics, including clearance time,
mean speed, and more. In Chapter 3, we further develop an online management service
leveraging vehicular communication technology. Multiple scenarios are tested to evalu-
ate the online framework across varying market penetration rates of connected vehicles.
The simulation framework provides a novel approach to integrated modelling of key evac-
uation sub-problems. Meanwhile, the online service explores the potential of emerging
vehicular networks to enable real-time coordination and adaptive management under dy-
namic conditions. Together, these contributions provide new modelling capabilities and
reveal insights into improving future evacuation planning and operations. Chapter 4 in-
vestigates vehicular ad hoc network (VANET) architectures to enable reliable vehicular
communication during emergencies. Multiple VANET designs are analyzed to identify
the most suitable architecture based on transmission delay performance. The proposed
framework is then demonstrated on real-world, large-scale scenarios to further evaluate
the capabilities of the selected VANET architecture. This analysis provides important
insights into designing vehicular networks specifically optimized for robust performance
under emergency evacuation conditions. Chapter 5 incorporates dynamic modeling of
hazard risk propagation over time into the proposed framework. This allows the evacuee
simulations to account for the evolving disaster state. The model defines and integrates
risk progression to assess impacts on evacuees as the threat spreads. It is implemented for
real-world natural disaster scenarios to demonstrate adaptability to changing conditions.
Finally, Chapter 6 summarises and concludes the work. An overview of the thesis outline
is given in Figure 1.6
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Figure 1.6: Visualisation of the thesis outline
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Chapter 2

Evacuation Planning

Evacuating the population during crises to safe zones via optimal paths is vital. This
chapter investigates the state of the art of population evacuation management to identify
the gaps in providing an effective evacuation plan. Based on the review results, we
highlight the research gap in coupling the two main challenges of evacuation problems,
i.e., shelter allocation and traffic assignment. Thus, we design a framework that couples
both shelter allocation and traffic assignment in a dynamic context to consider the traffic
conditions.

We solve SAP following a linear formulation of the shelter allocation, considering the
number of opened shelters and their capacity. In addition, we deploy the SUMO simulator
to address the simulation-based DTA problem. We calculate multiple metrics to measure
the quality of the framework and compare the methodology with existing models in the
literature. We also establish multiple scenarios to look for the best optimization setting
through sensitivity analysis. Finally, we apply the proposed model to the real test case
of Luxembourg City.

This chapter is an updated version of the paper:

• H. Idoudi, M. Ameli, C. N. Van Phu, M. Zargayouna and A. Rachedi, ”An Agent-
Based Dynamic Framework for Population Evacuation Management,” in IEEE Ac-
cess, vol. 10, pp. 88606-88620, 2022, doi: 10.1109/ACCESS.2022.3199445.
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2.1 Introduction and motivation
Natural disasters and catastrophes endanger the lives of people in devastated areas. Evac-
uating people from those areas to safe places or shelters is a feasible solution to decrease
or avoid enormous losses[Yuan et al., 2019, Siyam et al., 2019]. Order and guidance are
crucial and decisive to running this process effectively and safely managing the evacuation
process [Jiang, 2019]. There are two main information pieces that each evacuee should
have during the evacuation process: (i) the destination (shelter) and (ii) the route toward
that shelter. Both information pieces are obtained by solving shelter allocation and traffic
assignment, respectively. Each problem can follow different principles. We can categorize
the models based on their principles into three groups [Bayram, 2015, Yuan et al., 2019]:
the first addresses the problem of the evacuation process considering the user equilib-
rium (UE). The second models the evacuation as a system optimal (SO) problem. The
third model uses the nearest allocation (NA) approach. These models differ mainly in
their objective function. In the UE model, each traveler aims to minimize his benefit by
minimizing his own cost. In other words, this principle assumes that the users are per-
fectly informed, rational and behave selfishly. The SO principle aims to optimize the total
benefit of all evacuees. To this end, evacuees may not be assigned to shelters or routes
that maximize their own benefits but shelters or routes that optimize the overall system
benefit. This principle can be difficult to get people to accept, especially in evacuation
situations. To minimize the total traveled distance, the NA approach assigns evacuees to
the closest shelter in terms of traveling distance between origins (hazardous zones) and
destinations (safe nodes). Such a model could not provide supportable results for both
evacuees and system operators [Bayram et al., 2015].

Multiple indicators are applied in the literature to identify and quantify the solution
provided by these models. Here, we mention the most common measures in developing
evacuation models. Most studies aim to minimize the following indicators:

• Network clearance time: It is defined as the arrival time of the last evacuee to the
shelter or safety zone [Bi et al., 2020, Hsu and Peeta, 2014, Lim et al., 2015].

• Total evacuation time: It denotes the sum of the evacuation time of all evac-
uees [Hajjem et al., 2017, Bayram and Yaman, 2018, Bayram et al., 2015].

• Total traveled distance: It is the sum of all trip lengths traveled by all evacuees
during the evacuation [Sheu and Pan, 2014, Alçada-Almeida et al., 2009].

The UE or SO route choice approach is represented formally as a traffic assignment
problem. The problem could be classified into two main categories: static and dynamic
models. Static traffic assignment (STA) models determine the number of vehicles selecting
each route between origins and destinations for the demand profile. However, solving the
problem of traffic assignment in a static setting cannot capture the changes in the number
of vehicles on routes over time. The dynamic traffic assignment (DTA) problem general-
izes the static setting to determine at each time instant the flow on each route over the
study period [Daskin, 1985]. Although static models are used for planning purposes, they
cannot accurately describe congestion and do not model spillbacks [Ameli et al., 2018].
DTA aims to determine the relationship between routes, time, and network characteristics.
It can produce stable and meaningful solutions, which are crucial for practical applica-
tions [Levin et al., 2015]. Traffic assignment models could also be seen as trip-based or
flow-based models. Flow-based models aim at determining the vehicular flow on each
route, while trip-based models’ objective is to specify the number of travelers (particles)
on each route, making the traffic assignment problem more challenging to solve because
of the discrete setting [Alisoltani et al., 2023]. We conduct a comprehensive literature
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review on all static and dynamic traffic assignment models used in evacuation problems,
either flow-based or trip-based.

In this chapter, we investigate the state of the art of population evacuation manage-
ment to identify the gaps in providing an effective evacuation plan. Based on the review
results, we highlight the research gap in coupling the two main challenges of evacuation
problems, i.e., shelter allocation and traffic assignment. Thus, we design a framework that
couples both shelter allocation and traffic assignment in a dynamic context to consider
the traffic conditions. We solve SAP following a linear formulation of the shelter alloca-
tion, considering the number of opened shelters and their capacity. In addition, we deploy
the SUMO simulator [Lopez et al., 2018a] to address the simulation-based DTA problem.
We calculate multiple metrics to measure the quality of the framework and compare the
methodology with existing models in the literature. We also establish multiple scenarios
to look for the best optimization setting through sensitivity analysis. Finally, we apply
the proposed model to the real test case of Luxembourg City.

Regarding the objectives of the evacuation process, the ultimate goal is to evacuate
all people from hazardous zones as fast as possible. In other words, we are looking for a
minimal network clearance time, considering the evacuees’ utilities. We consider the SO
objective for the shelter allocation without considering any attraction or individual pref-
erences to shelter as evacuees have no information about these shelters [Zhao et al., 2017].
We have also chosen Stochastic User Equilibrium (SUE) as the assignment principle to
consider the heterogeneity in the users’ decision-making process. In addition, UE is the
special case of SUE in which users have no error in their decision-making process, i.e.,
users have a perfect knowledge of the network, which is not the case during an emergency
period. Thus, we take into account this error with the SUE formulation. We consider two
types of decisions that could be conflicting, SO for shelter allocation and SUE for traffic
assignment. We compare the results of the proposed method with those of methods al-
ready used by multiple performance measures: mean evacuation time, network clearance
time, and average travel delay. We also propose a new measure called average evacuation
travel delay. It is noteworthy that our method considers a generic concept of risky areas
following most of the models proposed in the literature, i.e., the model is independent of
the hazard type [FEMA, 2010].

The rest of this chapter is organized as follows. The following section reviews the
literature on network evacuation problems, focusing on shelter allocation and traffic as-
signment. Then, it highlights our contributions. Section 2.3 presents our framework and
mathematical formulations. Section 2.6 presents the case studies, optimization scenar-
ios, and numerical results. We discuss the results in subsection 2.6.3, and we perform a
sensitivity analysis on both convergence metrics and planning and optimization intervals
in subsection 2.6.5. Afterward, we apply the framework to a real case scenario (sub-
section 2.6.6) using the best setting resulting from sensitivity analysis. We discuss the
results, and we provide concluding remarks in Section 2.7.

2.2 State of the Art

This section reviews the related works to the population evacuation problem in static and
dynamic contexts. It reviews studies that use STA formulation for evacuation problems
and then presents all studies in the dynamic context. Table 2.1 illustrates the results of the
literature review. Here, we present the most advanced methodologies for the evacuation
problem.
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2.2.1 Static models
Many studies using STA models applied bi-level optimization to address SAP and traffic
assignment problems with different objective functions [Idoudi et al., 2022b]. The upper
level formulates the shelter location-allocation problem to optimize the system’s objec-
tives, and the lower level represents the traffic assignment in a static setting following
the evacuee’s interests. [Sherali et al., 1991] used a p-median model to solve the problem
of shelter site selection with a traffic assignment model under the SO principle and de-
ployed a heuristic algorithm. [Kongsomsaksakul et al., 2005] proposed a model to study
the effect of shelter locations on evacuation management, taking into consideration the
interest of system operators and evacuees. At the upper level, they defined the objec-
tive to minimize the total network evacuation time based on shelter allocation. The
lower level represented the UE model that aims to minimize the individual travel time
of each evacuee. The authors have solved the problem with a version of the genetic
algorithm. [Ng et al., 2010] used the same formulation and solved the problem with a
simulated annealing algorithm. [Li et al., 2012] presented a scenario-based model. The
upper level is a two-stage model. In the first stage, they determine the shelter location,
and in the second stage, they choose the selected shelters, considering the hurricane con-
ditions. They solve the STA problem at the lower level using the Lagrangian relaxation
algorithm. [Xu et al., 2018] proposed a hybrid model based on scenarios in the central
area of Beijing. The upper level makes location-allocation decisions such that the total
evacuation distance is minimized subject to capacity and distance constraints. The lower-
level model minimized the individual evacuation distance. They have used a modified
particle swarm optimization algorithm with simulated annealing heuristics.

The main drawback of STA models is that they cannot capture the evolving state of
traffic conditions [Szeto and Wong, 2012]. In addition, the solution is calculated by heuris-
tic methods due to the complexity of the bi-level formulation. Before reviewing the dy-
namic studies, we present recent studies that formulate the evacuation process as a single-
level optimization problem. [Bayram et al., 2015] formulated the evacuation problem as a
single-level non-linear mixed-integer program. They have proposed a scenario-based ap-
proach to minimize the total evacuation time. The decision variables considered are both
shelter selection and route assignment variables. The authors propose an exact method
based on second-order conic programming to solve the problem. They applied the method-
ology to a realistic Istanbul traffic network test case. In [Bayram and Yaman, 2018], they
revised the formulation and solved it with Bender’s decomposition approach. Note that
many other studies in the literature addressed only one of the problems, either STA or
SAP, for the evacuation problem (see Table 2.1).

2.2.2 Dynamic models
Multiple time-dependent variables should be considered to formulate the evacuation prob-
lem dynamically, and consistent assumptions should be made. Due to this difficulty, many
studies formulated population evacuation solving only one sub-problem in a dynamic con-
text, either DTA or dynamic shelter allocation. For instance, [Hsu and Peeta, 2014] used
DYNASMART simulator [Peeta and Mahmassani, 1995b] to address the traffic conditions
in the evacuation process with a given risky zone and shelter allocation plan. [Gan et al., 2016]
coupled simulation and optimization to create an evacuation plan. They considered mul-
tiple stages for the iWays simulator with arc capacity penalties to simulate vehicles in
departure time intervals. The model aims to minimize the total evacuation time and the
sum of the arcs penalties. Besides, [Zhang et al., 2015] came up with a multi-period opti-
mization method including a status variable for the available network capacity, called pro-
ductivity. They have used the TRANSIMS simulator to represent the evacuation process
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and solve the network UE problem. However, [Jeihani, 2007] confirmed that TRANSIMS
had not received good exposure, and its capabilities are unknown to many researchers
in the transportation field. [Zhu et al., 2018] have used Matsim to solve simulation-based
DTA considering UE conditions of the problem. Authors considered the city of north New
Jersey and only one type of hazard (Hurricane). Note that all of the abovementioned re-
search studies used given shelter allocation and performed only traffic assignment or solved
DTA and SAP separately. we aim to fill this research gap by combining and solving both
simulation-based DTA and SAP.

Table 2.1 presents the characteristics of the evacuation planning method of 36 studies.
We define seven categories to classify the papers. Some papers formulated the problem
of shelter allocation as a facility location model by deciding how to allocate evacuees
to shelters. Some other studies considered the traffic assignment problem only or with
a given shelter allocation plan to decide the path distribution toward the destinations
(shelters). When considering the traffic assignment sub-problem, we should also decide
on multiple other factors, such as the static or dynamic setting of the problem and the
analytical or simulation-based nature of the solving. In addition, we should decide on
whether to assume the super sink principal or not. A super sink is an artificial node
connected to all destination nodes through artificial links with infinite capacity. The
objective function definition is also crucial in the mathematical model. Therefore, we
present different objectives of the evacuation problem in the literature. Finally, we show
the setting of our study compared to the state of the art. As shown in Table 2.1, the
evacuation process is tackled as a complex problem that is composed of different sub-
problems. In each paper, the authors try to solve a sensitive and decisive part of the
evacuation process.

Unlike the existing solutions, we propose a novel model to couple the SAP and the DTA
problem in this chapter. This model offers for the first time to formulate a fully simulation-
based dynamic evacuation problem that integrates the decision of system operators to
choose the best allocation of evacuees to shelters and evacuees’ interests while choosing
their routes to these shelters. Besides, we investigate the impact of the dynamic shelter
allocation on network evacuation problems using agent-based simulations. Our framework
considers the dynamic location-allocation model distinguished from most literature models
that solve the problem in a static setting. The proposed model is multi-period and
combines system operators and user needs. We also consider the problem with a realistic
network of Luxembourg City without any assumption of super origin or sink. Afterward,
we propose an iterative procedure to solve the problem for every time interval of the
evacuation horizon. In the next section, we formulate both problems and present our
methodology.

2.3 Coupling Traffic Assignment and Shelter Alloca-
tion

In this section, we first present the proposed methodological framework for the population
evacuation problem. Second, the mathematical problem formulation embedded in the
framework is presented and discussed. Finally, two quality metrics named the average
travel delay (ATD), and average evacuation travel delay (AETD) used to evaluate the
performance of the framework are presented.
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2.3.1 Assumptions
To facilitate the presentation of the essential ideas without loss of generality, the following
basic assumptions are made in this chapter:

• Users do not have perfect knowledge of prevailing and future traffic conditions.

• Users have no information about the locations and capacity of the shelters, so they
do not have preferences.

• Users have experiences with the network, and so they could choose their path by
C-logit mechanism (under SUE principle) at the beginning of the evacuation.

• Users departure times are preplanned and given.

2.3.2 Problem formulation

Table 2.2: Notations used in this chapter
O Set of origin nodes, subset of set of nodes, O ⊂ N .
S Set of destination nodes, subset of set of nodes, S ⊂ N .
T Set of small time intervals.
H Total duration considered.
o Index of origin node, o ∈ O.
s Index of destination node, s ∈ S.
α Time interval index.
ys Binary variable; it is set to 1 if shelter s is selected; 0 otherwise.
xos Number of evacuees allocated to the pair having origin o and des-

tination s.
wo Amount of demand from origin o.
cα

s Capacity of shelter s, limit number of evacuee allocated to shelter
s in time interval α.

P Maximum number of open shelters.
πos Set of all paths between origin o and destination s.
π Index of path, π ∈ πos.
Trα

os List of trips which travel between origin o and destination s in
departure time interval. α.

Trα
π List of trips which travel between o and s on path π in departure

time interval α, Trα
π ⊂ Trα

os.
tr Index of trip, tr ∈ Trα

os.
tα
tr,π Experienced travel time of trip tr on path π in departure time α.

tα
os

∗ Minimum experienced travel time form origin o and destination s
in departure time α.

t∗
os Global minimum experienced travel time form origin o and desti-

nation s; t∗
os = min{tα

os
∗}, ∀α ∈ T .

t̂α
tr,π Perceived travel time of trip tr on path π in departure time α.

ξα
tr,π Random error term for trip tr on path on π in departure time α,

and E
(
ξα

tr,π

)
= 0.

prπ Path choice probability for path π in the C-logit model.
n(A) Cardinality of set A.

Mathematically, two decision variables should be determined for each evacuee sequen-
tially: (i) shelter choice that determines the destination, and (ii) route choice toward that
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destination. The first choice problem is the SAP and the second one is the DTA prob-
lem. We aim to formulate the SAP to minimize the total evacuation time. However, we
formulate the DTA problem to find the SUE solution. Recall that the global objective of
our framework is to evacuate the risky nodes (origins) as fast as possible, i.e., minimizing
the network clearance time. In a sense, this scenario is equivalent to a real-world scenario
wherein vehicles are guided by the system to choose their shelter (destination) as they do
not have any information about the shelter conditions and capacities. Afterwards, they
choose their path rationally and selfishly to reach the shelter with minimum travel time.

Let us define the evacuation problem on a directed graph representing a traffic network
G = (N, A), where N is the set of nodes, A is the set of edges (links). We define O as the
set of origin nodes that determines the risky zone to evacuate and S as the destination
nodes representing safe locations, i.e., shelter sites. Without loss of generality, we assume
that O and S are disjoint subsets of N (O, S ⊂ N ; O ∩ S = ∅). We denote by wo the
amount of demand of each origin o (o ∈ O). This demand represents the number of
vehicles that should evacuate. We note xos the integer decision variable that determines
the number of evacuees allocated from origin o to destination s in the current time interval.
ys is a binary variable for the shelter selection. ys = 1 if a shelter is selected (xos > 0),
otherwise ys = 0. tα

os
∗ denotes the minimum travel time between origin o and destination

s in time interval α. Table 2.2 presents this chapter’s full list of important notations.

A large number of studies in evacuation planning calculate travel time based on the
STA using a convex travel time function, e. g., BPR function [Bayram, 2016]. Here, we
use a dynamic simulator to provide real-time information for the travel time. We used
that information to solve SAP and DTA sub-problems sequentially (cf. Figure 2.1).

The finite period of interest is the planning horizon H defined as the total duration
considered. This total duration is discretized into a set of small intervals of time, indexed
by α (α ∈ T = {α0, α0 + η, α0 + 2η, . . . , α0 + Mη} and α0 + Mη = H). η is the duration
of the time intervals. At each evacuation time step α, we need to solve SAP for a given
evacuation demand profile. In other words, we separate each two SAP problems by the
index of the time interval (α). Then we solve the simulation-based DTA based on the
results of SAP. Therefore, tα

os
∗ is defined as a time-dependent variable in this problem.

At each time interval α, tα
os

∗ calculated by the simulator and replaced as a fixed value in
Equation 2.1. This assumption transforms the model into a linear form. Thus, we can
formulate it with linear integer programming. We define cα

s as the capacity of shelter
s in time interval α and P as the maximum allowable number of opened shelters. For
simplicity, we do not use the time interval index for parameters and variables that are
not updated by the dynamic simulator, e. g., xos and wo. First, we propose to solve SAP
for each time interval α. The goal is to allocate evacuees to shelters for the minimum
total evacuation time (TET) based on the currently observed travel times (from risky
nodes to shelters). The p-median model is the most common approach to represent the
shelter location-allocation problem under different types of hazards [Ma et al., 2019]. The
model prioritizes efficiency and fairness over users’ preferences by minimizing the overall
evacuation time, equivalent to the SO optimization. We formulate the SAP based on the
p-median model proposed by [Hakimi, 1964]. In the following formulation, the α is fixed
to the current time interval when we are at Step 3 of the framework (cf. Figure 2.1).
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min
∑
o∈O

∑
s∈S

tα
os

∗xos (2.1)

s.t.
∑
s∈S

xos = wo; ∀o ∈ O, (2.2)∑
o∈O

xos ≤ cα
s ys; ∀s ∈ S, (2.3)∑

s∈S

ys ≤ P, (2.4)

xos ≤ woys; ∀o ∈ O, ∀s ∈ S, (2.5)
xos ≥ 0; ∀o ∈ O, ∀s ∈ S, (2.6)
ys ∈ {0, 1}; ∀s ∈ S. (2.7)

The number P is a predetermined parameter that restricts the number of shelter sites
that can open due to budgetary and management issues [Bayram, 2015]. In Objective
function (1), we minimize the total travel time of evacuees from all origins to all chosen
shelters. Constraint (2) ensures that all the demand from origin o is evacuated. Constraint
(3) forbids assigning evacuees to shelters exceeding the capacity of the shelter (cα

s ), taking
into account the used capacity in the previous time interval α−1 [Shimamoto et al., 2018].
Constraint (4) specifies a fixed number of open shelters. Constraint (5) forbids assign-
ing evacuees to non-opened shelters. Constraints (6) and (7) represent logical variable
restrictions. For each time interval, we are solving the above linear formulation where we
use a fixed capacity term that changes over time intervals. The residual shelter capac-
ity denotes the effect of the arrival of users on shelters. This capacity is updated after
the arrival of evacuees, and it is used afterwards in the next time interval based on the
following formula ∀s ∈ S :


cα

s = cα−1
s − ∑

o∈O
xos α ≥ 1

c1
s = c0

s − ∑
o∈O

xos

(2.8)

where c0 is the initial capacity that shelters have at the beginning of the process. The
presented model is an NP-hard problem [Sherali and Nordai, 1988]. The result of the
SAP is the demand from each origin o to each shelter s, i.e., the OD matrix needed for
the DTA model.

In the DTA model, we formulate the network equilibrium based on agent-based sim-
ulation. While we solve the SAP at a given time, the DTA problem has to be solved
time-dependently. For example, in time interval α, travel times and traffic conditions are
fixed based on the dynamic simulator for the SAP. Note that each evacuee’s departure
time is given in this study.

The SUE model is deployed to represent the network equilibrium. Because the UE
principle, [Wardrop, 1952], always supposes that all users have perfect knowledge of the
network information and consistently choose paths to minimize their travel costs. The
assumption is so rigorous for users that it cannot hold on to a realistic scenario. The prin-
ciple of SUE can further relax the assumption and be stated that all travelers cannot im-
prove their perceived travel cost by unilaterally changing paths [Daganzo and Sheffi, 1977,
Idoudi et al., 2021]. Based on the SUE principle, the perceived travel cost can be ex-
pressed by the actual travel cost and a random error for each traveler as follows:

t̂α
tr,π = tα

tr,π + ξα
tr,π, ∀π ∈ πos, α ∈ T, tr ∈ Trα

π (2.9)
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The C-logit SUE condition on the road network is expressed as follows for each de-
parture time interval (α) [Daganzo and Sheffi, 1977]:

Trπ = xosprπ, ∀π ∈ πos (2.10)

Note that xos is the number of evacuees allocated to the pair having origin o and desti-
nation s. xos denotes the solution of SAP. prπ corresponds to the path choice probability
of the employed route choice model.

In the simulation-based DTA, we tend to attain the SUE state at each departure
time interval so that each vehicle could not reduce their trip travel time by changing the
chosen route. To achieve this condition, we iteratively run both phases, optimization,
and simulation. The optimization determines the route choice of vehicles, while in the
simulation part, we simulate the trajectories on paths by executing a dynamic simulation
of vehicles taking specified routes. The model used to assign users to the route is the
C-logit mechanism [Cascetta et al., 1996].

The C-logit model is based on the logit model [Cascetta et al., 1996] with the assump-
tion that all route alternatives’ travel times are identically and independently distributed
Gumbel variates [Daskin, 1985]. C-logit presents a probability prπ for selecting path π.
The formula is shown below:

prπ = exp [θ · (tπ − CFπ)]∑
h∈πos

exp [θ · (th − CFh)]∀π ∈ πos (2.11)

where θ denotes the dispersion parameter of the travel time perception among vehicles. tπ

represents the travel time on path π. The set πos,α is the path set for the OD pair. CFπ

is the “commonality factor” of the route π that determines the degree of overlap between
the current path and all alternative routes. This commonality factor is calculated using
the following formula:

CFπ = β0 ln
∑

h∈πos

[
IDhπ

t0.5
h · t0.5

π

]γ

(2.12)

where IDhπ represents an identical part between path h and path π. The respective unit
can be travel time or other measures. th and tπ denote the travel time of Path h and
π respectively. β0 and γ are parameters of the model. With the path probability and a
network loading model, the general DTA calculation consists of the following steps:

• Step 1: Calculate the shortest paths for each OD pair.

• Step 2: Load vehicles onto the network for a defined time interval based on the
path probabilities calculated based on the chosen route choice model.

• Step 3: Recalculate the shortest paths considering the updated link travel times.

• Step 4: Go to step 2.

2.3.3 Optimization framework
The process of solving population evacuation planning comprises three main parts: the
SAP problem, the DTA problem, and the traffic simulation. Here, we propose a new
scheme for the sequence of execution of each step. We solve these steps in a time-
dependent manner. In each period, we optimize all of these parts iteratively based on the
data provided by the dynamic simulation until all the demand is satisfied. Recall that,
according to state of the art, these steps are solved together using static traffic assignment
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models as a single-level optimization [Bayram et al., 2015, Bayram and Yaman, 2018],
or bi-level programming problem originally proposed by [Von Stackelberg, 1934] (see,
e.g., [Ng et al., 2010, Li et al., 2011b, Kongsomsaksakul et al., 2005, Xu et al., 2018]).

In the dynamic setting, [Hsu and Peeta, 2014] proposed a dynamic evacuation frame-
work with multiple time intervals wherein they considered the evolution of the network.
They do consider the problem of risk assessment based on risk estimation; however, they
do not address the SAP, i.e., the shelters are predetermined in their methodology. Their
methodology is equivalent to solving the DTA under SO in multiple time intervals. Here,
we also address the SAP in addition to the DTA using a simulation-based approach.
Figure 2.1 presents the proposed methodology in this chapter.

Figure 2.1: Flowchart of the process of solving the evacuation problem

The proposed framework consists of two loops that combine all three mentioned parts.
The first loop, called the outer loop, represents the SAP under SO. The loop updates the
network information needed by the SAP at each time interval. The second loop inside
the outer loop addresses the simulation-based DTA. The solution method starts with
initialization and solves the SAP for the first departure time interval. The results of
the SAP are used as the input of the inner loop. The DTA calculation under SUE is
started by the all-or-nothing assignment. Then the dynamic simulation is executed, and
all users’ travel times are updated. Afterward, we check the convergence test for the SUE
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conditions (presented in the following subsection). If we do not converge, we reassign the
users to the new paths based on a DTA optimization method and rerun the simulation.

Regarding the outer loop convergence, we stop when we found the solution from the
SAP and inner loop for all evacuees. Otherwise, we go to the next time interval. After-
ward, we solve the SAP again, considering the updated network dynamics provided by the
simulation until the current departure time interval. The main advantage of this process
is to capture and consider the traffic state while we are solving the SAP for each time
interval. It means that we first solve dynamic SAP, and then for the OD matrix resulting
from the SAP, we solve the DTA problem. The steps of the framework are detailed as
follows:

2.4 Solution quality indicators

In this section, we define the metrics that we use to evaluate the optimality of our solution
and monitor the network performance. The first metric we use to compare the quality
of solutions is the network clearance time. We define the clearance time as the arrival
time of the last evacuee to his shelter. This metric gives us information about the total
duration of the evacuation process. Note that the best solution method provides the
minimum clearance time. The second metric we use is the mean evacuation time, defined
as the average travel time of all evacuees. The third metric we consider is the mean
waiting time calculated for each vehicle, defined as the amount of time the vehicle speed
was less or equal to 0.1 m/s. The fourth metric we consider is the network speed, which
is the mean speed of the network on all simulation time steps, to quantify the network
usage [Vickrey, 1994].

To evaluate the quality of the DTA solution, we define the average travel delay
(ATD), which is the mean amount of delay compared to the best evacuee of each OD
pair [Ameli, 2019].

ATD =

∑
α∈T

∑
o∈O

∑
s∈S

∑
π∈πα

os

∑
tr∈T rα

π

tα
tr,π − t∗

os∑
o∈O

wo

(2.13)

where t∗
os denotes the global minimum experienced travel time from origin o and desti-

nation s; t∗
os = min{tα

os
∗}, ∀α ∈ T ; wo denotes the total demand that depart from origin

o in hole time horizon. We have calculated this measure to compare the effectiveness of
the SUE assignment. In other words, the minimum value of this measure shows that all
users of the OD pair have almost the same travel time.

We also calculate a practical indicator called the average evacuation travel delay
(AETD), representing the mean amount of delay over the best evacuee of each origin.
This indicator is meaningful in the context of evacuation problems because the ultimate
goal of each evacuee is to reach any shelter as soon as possible.

AETD =

∑
α∈T

∑
o∈O

∑
s∈S

∑
π∈πα

os

∑
tr∈T rα

π

tα
tr,π − t∗

o∑
o∈O

wo

(2.14)

where t∗
o denotes the minimum travel time of the evacuation trip from origin o. Note

that both ATD and AETD are not time-dependent, and at the pure SUE state, ATD and
AETD are equal to zero; however, with the trip-based setting and network dynamics, it
is not trivial to find the pure SUE solution.
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Steps Description
Step 1. Input database:

a. Population distribution: the number of people that should be evacuated from
each node.
b. Network map: the city map is represented as a graph via a network file.
c. Risky zone: the set of all origins that will be considered.
d. Destination nodes set: the set of shelters. nodes.

Step 2. Selecting origin nodes: This step corresponds to selecting nodes of the current
time period, beginning with the highly risky nodes. This step offers us the
possibility to have dynamic origin node adding. In fact, as hazards progress, we
can add new origin nodes that are unknown at the beginning of the evacuation.

Step 3. Shelter location-allocation problem: This is the first optimization problem
following the SO principle and solving the SAP. The objective of this layer is
to assign users to the right destination. The output of this step is the demand
profile defining the origin-destination pair with the number of users of each pair
(OD matrix).

Step 4. Initial assignment: This step consists of the All-or-Nothing assignment and
the initialization of the iteration index.

Step 5. Dynamic traffic simulation: In this step, we simulate each vehicle from their
origin to the planned shelter by Step 3 based on the path that is determined
from Step 4 or Step 9. Note that any trip-based dynamic simulator can be used
in this step.

Step 6. Updating travel time information: This step is for updating the users travel
time and path travel time based on the result of the simulator. Moreover, we
calculate all metrics for the solution quality and network performance.

Step 7. SUE convergence check: Check if the quality of the SUE solution (ATD) is
below a threshold or not. OR Is the maximum number of iterations is reached
or not. The second condition is designed to skip the infinite loop problem when
arriving at the equilibrium. If we converge, we go to Step 10; otherwise, we go
to the next step.

Step 8. Update the iteration index: This step is for calculating the new iteration
number.

Step 9. Traffic assignment (second layer of optimization): The reassignment pro-
cedure follows the C-logit mechanism to generate routes to be simulated.

Step 10. Global convergence check: This step checks if all the demand is evacuated
or not. If that is true, we had to end the all process. Otherwise, we go to the
next step.

Step 11. Update the planning time interval In this step, we change the planning time
interval and move to the next departure time interval (α + 1).
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2.5 Tools and framework implementation
In the strategic formulation of crisis response plans for hazardous events that have the
potential to induce public panic, it is imperative to incorporate a comprehensive set of
key components. A multifaceted approach involves the integration of analytical location
planning techniques, which play a pivotal role in optimizing the positioning of critical
facilities geared towards effectively serving the affected populations.

2.5.1 SUMO Simulator
The Simulation of Urban MObility (SUMO), developed by the German Aerospace Cen-
ter (DLR), is a pivotal open-source microscopic traffic simulator. It is instrumental in
modeling and analyzing urban transportation systems. SUMO’s microscopic approach
facilitates real-time simulations of individual vehicles, offering critical insights into traffic
dynamics and congestion patterns, which are essential in planning effective evacuation
strategies.

SUMO’s selection is underpinned by its versatility and realism. It provides a de-
tailed representation of traffic flows and individual vehicle behaviors, enabling accurate
simulations of complex urban traffic systems. This level of detail is vital for simulating
evacuation scenarios and understanding the impacts of various management strategies.

SUMO’s customizability allows for the adaptation of simulations to specific evacua-
tion scenarios or urban contexts. It can model diverse road networks, traffic patterns,
and emergencies, enhancing its practical applicability. Moreover, its scalability is a sig-
nificant advantage, enabling the simulation of large-scale evacuations involving thousands
of vehicles.

The tool’s interoperability is also crucial for evacuation management. Its compatibility
with various programming languages and external applications through its TraCI API
allows for integrating additional data and models, aiding in developing comprehensive
evacuation plans.

Additionally, SUMO benefits from a robust community of users and developers, pro-
viding a wealth of shared knowledge and resources. This is invaluable for both novice and
experienced researchers working on evacuation management.

The use of SUMO in our study is driven by its capability to create a realistic, customiz-
able, and detailed simulation environment. This is essential for effectively planning and
analyzing population evacuation strategies in urban areas, ensuring that the research find-
ings are relevant and applicable to real-world challenges. The comprehensive overviews
by [Behrisch et al., 2011] and [Krajzewicz et al., 2012] further underscore SUMO’s capa-
bilities in this domain.

2.5.2 Implementation of the optimization framework
Analytical methodologies, such as traffic assignment with due consideration to stochastic
elements and p-median facility location modeling, offer robust frameworks for pinpointing
optimal facility sites. These techniques consider various factors, including the distribution
of demand and the intricacies of transportation networks. Planners can rigorously test
and refine location plans in simulated disaster scenarios by leveraging advanced tools like
transportation simulators —such as SUMO— in tandem with optimization solvers like
CPLEX.

The synergistic application of SUMO and CPLEX facilitates meticulous evaluation of
proposed facility sites, considering their accessibility during crises. This evaluative process
is essential for ensuring the resilience and efficiency of crisis response systems. Figure 2.2
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visually represents the intricate interplay between analytical location planning techniques
and simulation-based testing, offering a comprehensive overview of the strategic considera-
tions involved in optimizing facility locations for crisis response. This integrated approach
not only enhances the preparedness of response systems but also contributes to a more
effective and adaptive response to hazardous events, ultimately mitigating the potential
for public panic.

Figure 2.2: Proactive plan creation for evacuation.

2.6 Application

2.6.1 Case study
We implement our framework for the scenario [Codeca et al., 2015], representing the city
of Luxembourg (cf. Figure 2.3). We base the demand profile on synthetic data of the
evacuation scenario. To include the simulator in the optimization process, we implement
the rolling horizon approach [Peeta and Mahmassani, 1995a]. To solve the simulation-
based DTA problem, we use the SUMO simulator with its C-logit optimization func-
tion [Lopez et al., 2018a]. We set the simulation time step to 1 second. In addition, to
tackle the shelter location allocation problem, we employ ILOG CPLEX version 12.9. We
performed all simulations on a personal computer with 1.7 GHz and 16 GB of RAM.

Figure 2.3 presents the network of Luxembourg with the size of 155.95 km2 and the
traffic network graph considered by SUMO for dynamic simulation. We examine a hy-
pothetical threat in the center zone affecting people of the region colored in red (cf.
Figure 2.3(b)). While the origin nodes are in the same area, we do not assume a super
origin (source) node. We consider multiple origin nodes as evacuation sources in the risky
zone, as described in Figure 2.3(c). Vehicles carrying people should be evacuated to the
shelters, colored in green in Figure 2.3(b), located at the network’s periphery. In this
evacuation context and without a loss of generality, the S-shape response curve model is
employed based on [Na and Banerjee, 2019] with its parameter α= -0.005 and β= 15 for
the departure time of each evacuee. We have set each departure time interval (λ) to 5
minutes for the simulation. The demand at each node is 200 vehicles at each period. We
consider four origin nodes selected and four shelters, each with the capacity of holding
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(a) Luxembourg mapping data ©Google
2022

(b) Luxembourg sumo city network

(c) Luxembourg sumo city network hazard nodes

Figure 2.3: Evacuation network map
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Table 2.3: Performance metrics
Metrics Dynamic

shelter
allocation

Fixed shel-
ter alloca-
tion

Network clearance time(s) 1,946.00 2,850.00
Mean evacuation time(s) 1,107.71 1,517.22
Mean waiting time(s) 27.37 133.38
Average travel delay (ATD) 267.18 441.90
Average evacuation travel delay (AETD) 332.50 455.48

1,500 evacuees. Therefore, the total demand is 600 vehicles per origin for the planning
horizon H.

2.6.2 Scenario Definition
In this chapter, we consider the following scenarios to investigate the impact of the dy-
namic SAP on the evacuation planning problem. The scenarios are detailed below:

• Dynamic shelter allocation: This scenario includes our proposed framework
(illustrated in Figure 2.1). It sequentially solves the shelter allocation and the
traffic assignment coupled in a loop at multiple time intervals.

• Fixed shelter allocation: This scenario represents one of the advanced existing
approaches to address the evacuation problem in the literature via DTA (proposed
by [Hsu and Peeta, 2014]). In each departure time interval, the DTA problem is
solved without modifying the choice of shelters. Note that several studies choose
the shelters based on Euclidean distance or network distance, which is not realistic
compared to this setting as they do not consider the network’s characteristics, e.g.,
road capacities.

2.6.3 Comparison of Scenarios
This section presents the results for the two scenarios mentioned above—both scenarios
run with the same evacuation demand profile, source nodes, and shelter set. We measure
multiple performance indicators to evaluate the efficiency of the solution method in each
scenario. We use the metrics defined in the subsection 2.4. Table 2.3 presents indicator
values for the two scenarios. The results show a significant improvement in the quality of
the final solution obtained by our model compared to the fixed shelter allocation scenario.
For instance, we reduced the network clearance time by 15 minutes (31%). It means
that the dynamic allocation of evacuees to shelters, considering the network congestion,
improves the evacuation process. The high congestion level around shelters during the
evacuation could explain this difference. With the fixed shelter plan in all time intervals,
we observe a higher congestion level in paths leading to these shelters. However, solving
the dynamic allocation problem ensures that we assign evacuees to the shelters based
on the time-dependent shortest path and not the closest shelters by distance or free-flow
travel time.

Moreover, the reduction of mean evacuation time in Table 2.3 confirms that the dy-
namic allocation improves the evacuation planning solution. In addition, it also provides
better AETD for evacuees. The improvement amount is even higher for ATD, 39%, which
shows that the DTA solution of our method is closer to the SUE solution.
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(a) Number of active users in the network variation

(b) Network mean speed variation

Figure 2.4: Performance measures variation

Figure 2.4 illustrates the results graphically, comparing the two scenarios in terms
of active users in the network (Figure 2.4(a)) and network mean speed variation (Fig-
ure 2.4(b)).
Figure 2.4(a) presents the evolution of the number of vehicles evacuating in the network.
The network is initially empty; thus, we have the same solution for the SAP for both
scenarios for the first time interval. Then the two curves are separated because we have
different shelter allocation approaches. In addition, the curve representing our method
arrives at the final state of zero running vehicle before the second curve, proving that the
network clearance time is decreased compared to the other method.

Figure 2.4(b) presents the evolution of the mean speed in the evacuation process. The
network’s maximum speed is equivalent to the mean free-flow speed (75.6 km/h). At the
beginning of the evacuation, the speed curve is the same because the two scenarios had
the same solution in the first time interval. After that, the speed increases considering
dynamic shelter allocation and stays higher than fixed shelter allocation until the end.
It means that the dynamic shelter allocation scenario uses the network’s capacity better
than fixed shelter allocation and finishes the evacuation process faster. The network speed
for the dynamic allocation scenario (blue curve in Figure 2.4(b)) varies a lot at the end
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of the evacuation process. The multiple queues formed at the entrance of the shelters but
rapidly cleared explain this variation.

We illustrate in Figure 2.5 the variation of ATD and AETD measures and the number
of arrived vehicles over time intervals to capture the differences between the two scenarios.
Most studies use ATD to characterize the found solution of DTA under SUE principles.
ATD could be seen as the mean distance between the travel time of users and the mini-
mum travel time of that OD pair [Moghaddam et al., 2022]. Figure 2.5(a) illustrates the
evolution of this measure over time intervals. The difference in ATD between the sce-
narios becomes more significant in the second time period, indicating that having flexible
shelter allocation offers evacuees the possibility to reduce their travel time by changing
their choice of destination.

Figure 2.5(a) presents AETD variation over time intervals. Recall that the main
difference compared to ATD is that the user evacuation delay is calculated w.r.t minimum
evacuation time of all users from the same origin. In other words, we compute the average
difference between the travel time of each user and the shortest travel time having the
same origin node. Similar to Figure 2.5(a), AETD has the same shape as ATD. This
proves that our method is better than the second method, even for the destination-free
measure.

Figure 2.5(c) compares the number of evacuees that arrived at shelters at each time
interval. Our method evacuates vehicles faster than the second scenario by using the
remaining capacity of the network. That is why, in dynamic shelter allocation, more
evacuees finish their travel in the second interval.

Moreover, we measure the computation time for each optimization scenario (see Ta-
ble 2.4). The results show no significant difference between the two scenarios, so the
dynamic shelter allocation optimizer does not require a long calculation time. Note that
the shelter location-allocation is a simple linear formulation solved with the branch and
bound technique. In Table 2.4, the computation time of the shelter allocation is defined
only for the first scenario because the second scenario does not consider it. Note that
a small difference in the DTA calculation is due to the probabilistic nature of the C-
logit model. The computation time needed for DTA calculation in the second stage is
lower because the SAP generates a less computationally expensive allocation for the DTA
simulation.

As shown in Table 2.4, the major part of the computation time is the DTA calculation.
Therefore, it is worth performing a sensitivity analysis on DTA iterations because the
number of iterations directly impacts the computation time.

Table 2.4: Computation time of the solution methods
α Computation time [s] Dynamic shel-

ter allocation
Fixed shelter
allocation

1 Shelter location allocation 0.09 -
DTA Calculation 687.08 690.03

2 Shelter location allocation 0.09 -
DTA Calculation 632.54 698.31

3 Shelter location allocation 0.09 -
DTA Calculation 789.53 624.21

2.6.4 Convergence analysis
This section analyzes the effect of the convergence test threshold, i.e., the impact of
changing the maximum number of iterations in the DTA calculation on the final solution.
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(a) Average travel delay variation

(b) Average evacuation travel delay variation

(c) Number of evacuees arrived to shelters in time periods.

Figure 2.5: Delay and number of arrival measures variation
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We conduct our comparison based on performance measures used in subsection 2.6.4.
Table 2.5 presents the results. As expected, the ATD is minimized in addition to the
AETD and the mean evacuation time. However, the network clearance time oscillates in
the value of measures for many iterations (20 or 30). We expected this oscillation because
the optimizer aims to achieve the SUE, not the SO. Therefore, our algorithm minimizes
the individual travel time, which may affect the whole system’s performance. Table 2.5
shows that by increasing the number of iterations to search for the optimal solution for the
SUE, we decrease the network production factors. From these results, we can conclude
that if we fix the number of iterations to 20, we could have a good evacuation plan for
this test case from both points of view: users and the system.

SUMO uses a measure of convergence to test whether the simulation is in a state of
equilibrium or not. In Appendix 6.1, we report a sensitivity analysis performed on this
measure. The results prove the consistency of the final solutions provided by the SUMO
DTA calculator.

Table 2.5: The impact of the number of DTA iterations on the final solution.
Number of iterations 10 20 30
Network clearance time [s] 2,050.00 1,946.00 2,207.00
Mean evacuation time [s] 1,137.77 1,107.71 1,104.35
ATD [s] 303.27 267.18 246.00
AETD [s] 346.24 332.50 315.24

2.6.5 Sensitivity analysis on the rolling horizon approach
In our methodology, we use a rolling horizon approach for DTA solving. The idea behind
this approach is to use currently available information and near-term forecasts with some
degree of reliability to solve the assignment problem [Peeta and Mahmassani, 1995a]. We
consider simulation time intervals responsible for acquiring the near-term forecast of traffic
evolution and optimization time intervals for optimizing the current assignment problem.
This section evaluates the influence of the simulation duration and the optimization time
intervals on our optimization framework. First, we capture the impact of simulation time
intervals on the effectiveness of the population evacuation process while we fix the opti-
mization time interval. Second, we illustrate the influence of optimization time interval
variation on the efficiency of the process. Third, we highlight the most reasonable values
for the duration of time intervals for the rolling horizon configuration.

We rerun the optimization process using simulation time intervals ranging from 10
minutes to 30 minutes. We set the maximum iteration threshold to 20 for calculating the
DTA solution at each time interval in addition to the fixed 5 minutes interval for opti-
mization in all scenarios. To identify the differences found between each experiment, we
plot the figure presenting the dynamics of the evolution of active users (running vehicles)
over time (cf. Figure 2.6).

Having a long simulation period (e.g., 30 minutes time intervals) is inefficient in terms
of needed computational resources when considering people under evacuation conditions.
On the other hand, short simulation time is not beneficial either since it does not give
the vehicles of the current stage enough information about future events to optimize
their trips. Therefore, finding the appropriate duration for the simulation time interval
is crucial. Figure 2.6 illustrates the impact of simulation time interval on the evacuation
duration and network usage. It presents three curves for three different values of the
simulation time interval 30 (blue), 20 (orange), and 10 (green). Figure 2.6 specifies that
there is a remarkable effect, especially on clearance time measure. There is an increase in
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Figure 2.6: Active users for multiple simulation time intervals

network clearance of more than 5 minutes between the blue and the orange curve. This
figure also demonstrates that it is not beneficial for evacuation to take long simulation time
intervals. The network clearance time, our global objective, is higher when simulating 30
minutes than 20 minutes. In Figure 2.6, in the range between 1200 sec and 1700 sec, the
scenario with 20 min (orange curve) benefits from the network’s capacity compared to
other scenarios, and it leads to better results in terms of clearance time.

Figure 2.7: Active users for multiple optimization time intervals

For the second part of the analysis, we conduct multiple simulations, varying the op-
timization time interval and fixing 20 minutes for the simulation and 5 minutes for the
departure time. Figure 2.7 depicts the effect of the optimization time interval variation
on the number of active users in the network and the impact on the clearance time mea-
sure. The figure points out that fixing the optimization interval to 5 minutes provides
the minimum clearance time compared to the other curves. Indeed, having a short opti-
mization time, such as 2.5 minutes, needs more computation resources. It also prioritizes
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Table 2.6: Real case performance metrics
Metrics Dynamic

shelter alloca-
tion

Fixed shelter
allocation

Network clearance time(s) 40,565.00 74,929.00
Mean evacuation time(s) 15,991.98 31,433.40
Mean waiting time(s) 8,396.12 15,853.25
Mean speed(m/s) 4.74 6.83

users from the first and second departure time intervals to optimize their utilities. On
the other hand, the users in the third time interval cannot achieve a comparable value
for their objectives compared to the other users. Because after the two first intervals, the
evacuees experience a long ending queue (after 1500 sec).

In addition, the long optimization interval (10 minutes) leads to having a longer clear-
ance time than 5 minutes interval. We expected this effect because if users are not assigned
well due to the network dynamics in the previous time interval, we must wait for another
10 minutes to revise the optimization solution. Figure 2.7 highlights this point between
300 sec and 800 sec, where the two other curves are above the orange curve. We con-
clude that the best simulation time interval for this test case is 20 minutes and the best
optimization interval is 5 minutes.

2.6.6 Real case study
The proposed framework is applied to a more extensive demand profile to address a
realistic population of Luxembourg City. We conducted the simulation with the best
parameters of the optimization framework specified in the previous subsections. We con-
sider 60,000 vehicles, which represent 70% of the actual population of Luxembourg City
(125, 000 inhabitants [RTL, 2021]). Note that a vehicle carries a maximum of three indi-
viduals to evacuate [Eurostat and Commission, 2019].

Increasing the evacuation demand level significantly affects the simulation duration.
We consider the fixed shelter allocation methodology to benchmark our solution method
in the real test case. Table 2.6 shows that solving shelter allocation dynamically improves
the efficiency of evacuation planning. Table 2.6 illustrates a reduction of more than 9 hours
in network clearance time, and the mean evacuation time decreases by 49% between the
two methods of solving the problem. In addition, mean waiting time and mean speed are
two measures that allow us to monitor the speed of the evacuation process. Lower values
of these measures mean that solving SAP in each time interval provides a better solution.
The comparison between the final solutions shows that around 15% of the evacuees (more
than 10, 000) have different destinations. It means our framework switches the evacuees’
destination to another rapidly reachable shelter (less congestion in paths leading to new
shelters). Thus, the shelter allocation allows us to revise the current shelter allocation
plan for a new one that considers the evolving state of the network.

2.7 Discussion
This chapter focused on evacuation planning of people from risky zones to safe areas is one
of the urgent tasks that should be done to avoid life losses caused by these disasters. Each
evacuee must determine the destination (shelter) and evacuation path from hazardous
areas as quickly as possible. This chapter focuses on solving the population evacuation
problem to determine these two pieces of information. In this chapter, we performed a
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literature review and analyzed the different approaches and models used in the research
field to address the shelter choice and the route choice of evacuees. The first choice
problem is usually represented as a facility location problem. The second choice model
is formally known as traffic assignment, and it has two types of models: STA and DTA
models. Many studies have considered the static formulation of the population evacuation
problem, including a shelter allocation model, while few studies about the evacuation
problem in the dynamic context for traffic routing and shelter allocation. We proposed a
new planning framework to solve the dynamic population evacuation problem, including
both SAP and simulation-based DTA.

To solve the evacuation problem dynamically, we have considered multiple departure
time intervals by allocating shelters under the SO principle and assigning routes in the
SUE manner. To couple the two problems, we consider the network dynamics in solving
the SAP. We determine actual vehicle evacuation time using a trip-based dynamic simu-
lator that provides travel information every timestep. We apply our methodology to the
network of Luxembourg City and compare it with a model using a fixed shelter allocation
plan. The results show that the proposed model outperforms the model with the fixed
shelter plan by more than 31% reduction in network clearance time. We conclude that
using dynamic allocation improves the evacuation process because it provides the optimal
evacuation plan considering the dynamics of the network. Besides, the analysis of the
computation time shows that solving the SAP in each time interval needs tiny compu-
tational resources, while it significantly reduces the duration of the evacuation process.
The second main finding is that we can benefit from the capacity of the traffic network
by using dynamic shelter allocation (Figure 2.4).

Moreover, we have conducted a sensitivity analysis on optimization parameters used in
the framework, such as the maximum number of iterations, the simulation time interval,
and the optimization time interval. Afterward, we applied the best setting resulting from
the sensitivity analysis to a real case of Luxembourg City considering realistic demand.
The results show that the proposed framework can address a real test case with feasible
computation time.
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Chapter 3

Real-time Evacuation Operation

Based on the investigation in the previous chapter, we notice that most existing formula-
tion of the DPE problem does not include any online measures to improve the efficiency
of the original plan and provide readjustments during evacuation. Considering vehicular
communication can improve safety and situational awareness for evacuating vehicles by
providing up-to-date information about hazards or risks along the route. More specifi-
cally, the goal of this chapter is to overcome the drawbacks of only planning for solving
the DPE problem.

In this chapter, first, we conclude our review of the drawbacks and advantages of ex-
isting models designed to deal with emergency events in the literature. Second, a new
framework for online rerouting and shelter reallocation is proposed. Third, a list of scenar-
ios is designed to compare and assess the impact of vehicular communication. scenarios
are applied a realistic and large-scale networks. Finally, the best solution scenario is
highlighted.

This chapter is an updated version of the paper:

• H. Idoudi, M. Ameli, C. N. Van Phu, M. Zargayouna and A. Rachedi. Smart
Dynamic Evacuation Planning and Online Management Using Cloud Computing
for Population Evacuation. Computer-Aided Civil and Infrastructure Engineering,
(accepted to be published)
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3.1 Literature review on online and offline DPE
This section provides a comprehensive review of the literature on evacuation models and
classifies them into two main groups: (1) models that focus on minimizing costs for both
users and the system by addressing shelter allocation and traffic assignment issues and (2)
models that concentrate on vehicular communication techniques and protocols to manage
DPE. The research gaps are highlighted in these two groups and discuss the bi-level
problem formulation used in many studies to address the complexity of DTA and SAP
[Bayram, 2016]. Specifically, the upper level deals with shelter location allocation from
the system operator’s perspective, while the lower level focuses on routing and evacuee
route choice behavior [Li et al., 2012].

In the following, the studies employing a bi-level programming approach to address
these challenges are discussed. [Kongsomsaksakul et al., 2005] proposed a planning model
to study the effects of shelter locations on the evacuation process. They considered
the interests of system operators and evacuees at the same time. However, they ad-
dress the problem with a static formulation that does not consider traffic congestion
evolution. [Ng et al., 2010] used a hybrid model to tackle the problem of evacuation
planning. The upper level was dedicated to sheltering site selection in an SO fash-
ion, and the lower level was for static traffic assignment in a UE manner. The pre-
sented model was solved by employing a simulated annealing heuristic, and for calculating
the arc’s congestion level, they used the Bureau of Public Roads (BPR) static function
[Davazdah Emami and Khani, 2023].

[Li et al., 2012] presented a scenario-based model. The upper level is a two-stage
model. In the first stage, the shelter location is determined, and in the second stage, the
selected shelters are chosen, considering the hurricane conditions. Then the lower level is
for traffic assignment between origins and destinations selected by the upper one. They
solved the problem using the Lagrangian relaxation algorithm. For calculating each edge’s
travel time, they used the BPR function.

[Xu et al., 2018] proposed a hybrid model based on scenarios in the central area of
Beijing. They formulated the problem based on distance measures to choose the nearest
shelters and shortest path. In their solving method, they used a modified particle swarm
optimization algorithm with a simulated annealing heuristic.

Few studies considered both SAP and traffic assignment in the dynamic context.
[Hsu and Peeta, 2014] considered the evacuation planning process, including the DTA
problem with a fixed shelter allocation schema. The previous study of the authors
[Idoudi et al., 2022a] tackled both dynamic problems sequentially, minimizing the total
travel time in SAP, and calculating UE for DTA. However, this work did not consider
telecommunication networks. To the best of our knowledge, no study in the literature
addresses the population evacuation problem considering both the planning phase (opti-
mization methodology for SAP and DTA) and the online management phase (taking into
account vehicle communication).

However, the DPE problem is addressed with telecommunication technologies in the
literature, independently of the planning phase.

Indeed, many studies focus on evacuation models with vehicular communication ca-
pacity. They consider evacuation in different aspects using different communication ar-
chitectures, protocols, and types of emergency messages. Here, the related works to the
DPE problem are reviewed.

Some studies focused on network architectures used for emergency situations. They
aim to collect data rapidly and use it to ensure a successful evacuation process. For
instance, [Rego et al., 2018] used a Software Defined Network (SDN) to manage emergen-
cies. The control part of the SDN collects the data from the different Internet of Things
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(IoT) networks formed by traffic lights, traffic surveillance cameras, etc. It combines
them to obtain the best and fastest evacuation routes and access roads to the emergency
services units. In addition, the authors used the delay measure to quantify the quality
of their solution. However, this study did not propose any rerouting process. Other
studies target evacuation by proposing different and less redundant emergency message
exchange schema. For example, [Liu et al., 2018] focused on only highway scenarios and
proposed a novel safety-related message exchange protocol based on the Non-Redundant
Communication Range (NRCR).

[Alazawi et al., 2014] applied and evaluated an evacuation strategy called Speed Strat-
egy (SS) to quantify driver response to emergency evacuation pre-plans. To implement
this strategy, the authors deployed the VCC architecture. However, this chapter only con-
sidered the responsiveness of evacuees to SS orders and did not propose any replanning
orders to evacuees to change their routes or destinations. This study considers the VCC
architecture for rerouting and includes the bi-level programming in the initial planning
phase.

Our study offers two significant contributions. First, it investigates the impact of
VANET on the success of solving the DPE problem by leveraging an initial plan deter-
mined through solving the SAP and DTA. Second, it develops a novel planning model
that integrates vehicular cloud computing, SAP, and DTA to optimize the simulation-
based framework for the DPE problem while considering online orders, system operators’
decisions, and evacuees’ interests. The proposed methodology considers various factors,
such as vehicle travel time, VCC delays in telecommunication exchanges, and network
characteristics, to enable effective replanning. Furthermore, the methodology is applied
to the realistic network of Luxembourg City and a real evacuation scenario of Mill Valley
City to validate and evaluate its performance.

3.2 Problem formulation

Table 3.1: Specific notations in this chapter
Symbol Definition
tnis Estimated Travel time from node ni to node s, ni ∈ N \ S and

s ∈ S.
tn Average of the travel time of incoming edges to node n, n ∈ N
Di Distance separating vehicle i to the center of the hazard.
Dmax Maximal distance separating vehicle i to the center of the hazard.
Ni Number of vehicles in the following edge that evacuee i approach

to.
N i

max Maximum amount of vehicles in the following edge that evacuee i
approach to.

λ Safety threshold for rerouting vehicles.
|A| Cardinality of set A.

Efficient evacuation operations are critical in emergencies and require a systematic
approach to minimize evacuation time. The proposed approach consists of two phases:
an offline phase to generate an initial evacuation plan and address the SAP and DTA
problems and an online phase that considers vehicular communication within the cloud
computing paradigm. In the decision-making process, each evacuee must determine the
shelter they wish to reach and the optimal route to get there. The initial decision problem
involves the SAP, followed by the DTA problem. To optimize the evacuation process, the
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SAP is formulated to minimize evacuation time, which aligns with the system operators’
interests. The DTA problem is formulated to address the Stochastic User Equilibrium
(SUE), taking into account the tendency of evacuees to prioritize their perceived minimum
travel time when selecting their path to their chosen shelter.

The DPE problem is defined on a directed graph G = (N, A) that represents a traffic
network, where N is the set of nodes and A is the set of edges (links). Let us assume
that O ⊂ N and S ⊂ N are disjoint subsets of nodes representing the hazardous zone
to be evacuated and safe shelter sites, respectively. The demand of each origin o ∈ O
is denoted by wo, which represents the number of users to be evacuated. xos is defined
as the integer decision variable that determines the number of evacuees allocated to the
origin-destination pair os and ys as the binary decision variable for shelter selection. The
minimum travel time between origin o and destination s is denoted by t∗

os. Let us assume
that the shelter capacity cαs in time interval α and the maximum allowable number of
opened shelters are denoted by P .

Previous literature has typically used a static formulation of the traffic assignment
problem to calculate travel time with an analytical travel time function [Bayram, 2016].
However, a dynamic simulator is used to provide updated travel time for each edge in the
network at each time step. The important notations used in this chapter are presented
in Table 3.1.

The objective of the SAP is to minimize the total evacuation time and achieve the
desired outcome for the system operator. This involves assigning evacuees to shelters,
considering the travel time from hazardous nodes to the shelters. The objective function
for the SAP problem is presented in Equation 3.1.

min
∑
o∈O

∑
s∈S

tα
os

∗xos (3.1)

To solve the shelter location-allocation problem under a generic type of hazard, the
p-median model is deployed [Hakimi, 1964], a commonly used approach. The p-median
model involves selecting a set of p shelters from a list of candidates and assigning evacuees
to the selected shelters to minimize the total travel time. Equation 3.2 ensures that all
the demands are served, meaning that all evacuees exit the hazardous zone and enter a
shelter.

∑
s∈S

xos = wo; ∀o ∈ O. (3.2)

Our model accounts for the limited capacity of shelters and does not assume infinite
capacity. Thus, users must be assigned to shelters while respecting the capacity limitations
that change over time, concerning the assignment in the previous time interval, as shown
in Equation 3.3.

∑
o∈O

xos ≤ cα
s ys; ∀s ∈ S. (3.3)

Finally, a limited number of opened shelters (P ) is considered in the studied network:∑
s∈S

ys ≤ P. (3.4)

It is worth noting that the model presented in this chapter is classified as an NP-hard
problem [Sherali and Nordai, 1988]. Finding an optimal solution for SAP is computation-
ally challenging and requires sophisticated algorithms and techniques. Once the SAP is
solved, it provides the origin-destination (OD) matrix for the DTA model, which indicates
the demand from each origin o to each shelter s.
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The UE principle assumes that all users have perfect knowledge of network information
and consistently choose paths to minimize travel costs. However, this assumption is
unrealistic in emergency scenarios, where users may not have perfect knowledge or make
biased decisions based on various factors. To address this issue, the Stochastic User
Equilibrium (SUE) model is deployed in the DTA phase of the model. The SUE model
relaxes the UE assumption and ensures that all travelers cannot improve their perceived
travel cost by unilaterally changing paths [Daganzo and Sheffi, 1977].

In the proposed model, the departure time of evacuees is given in emergencies unless
the system forces them to evacuate, and the shortest path is defined as the path with
the minimum travel time. To generate the initial predictive evacuation plan, a trip-based
simulator is deployed.

In the following, the two main parts of the model are presented: planning, which con-
siders both DTA and SAP (cf. section 3.2.1), and online management (cf. section 3.2.2).

3.2.1 Predictive evacuation plan
The SUE model is used in the DTA phase of the model to represent the network equi-
librium. The SUE model incorporates a probabilistic route choice process, which is more
realistic than the deterministic approach used in the UE model. Specifically, in the SUE
model, the route choice model is derived by assuming a random component associated
with the travel cost [Daganzo and Sheffi, 1977].

t̂α
tr,π = tα

tr,π + ξα
tr,π, ∀π ∈ πos, α ∈ T, tr ∈ Trα

π (3.5)

where t̂α
tr,π is the perceived travel cost on route π. ξα

tr,π is a random term with E
(
ξα

tr,π

)
= 0

that represents the traveler’s perception error. Using the perceived travel cost concept,
the SUE conditions can be characterized by the following equation [Daskin, 1985]:

Trα
π = xosprα

π , ∀π ∈ πos (3.6)
where prα

π is the probability that travelers choose route π of os. In this case, the equilib-
rium model depends on the congestion and stochastic effects, which are associated with
the random terms’ distribution. An equivalent unconstrained optimization formulation
for the SUE problem was provided by [Daganzo, 1982] under a general distribution as-
sumption of random terms. During the simulation-based DTA process, the goal is to reach
the SUE state where vehicles cannot reduce their perceived travel time by altering their
selected route. To achieve this, an iterative approach is used to involve both optimization
and simulation phases. The optimization phase determines the most suitable route choice
for the vehicles. In contrast, the simulation phase involves simulating the vehicles along
their designated routes, which are determined by the output of the optimization process.
The model used to assign users to the route is the C-logit mechanism [Idoudi et al., 2022a]
that satisfied the SUE conditions at the convergence. All the models mentioned above
are defined in the planning phase and used to create the initial plan for evacuees. The
next model corresponds to online evacuation management, representing the evacuation
process over time.

3.2.2 Online management (reactive planning)
The proposed framework for online management aims to respond to unexpected events
and dynamically modify the initial evacuation plan during the evacuation by leveraging
vehicular communication capabilities. The communication capabilities enable evacuees to
receive and send new information and update their routes, improving the efficiency and
safety of the evacuation process.
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Our online evacuation guidance system comprises three components, as depicted in
Figure 3.1: The first component is a centralized traffic monitoring and rerouting ser-
vice, representing the cloud server (which can be physically distributed across multiple
servers). The second component is the Road-Side Units (RSUs) set, representing the
network infrastructure required to facilitate communication between the cloud server and
vehicles. The third layer is represented by vehicles or any transportation mode equipped
with OnBoard Units (OBUs), which allow vehicles to communicate with each other and
with infrastructure (Vehicle-to-Everything or V2X). The vehicles are considered end com-
munication nodes that periodically send and receive data (e.g., current position, speed,
and direction) via the OBUs, as shown by arrows in Figure 3.1.

3.2.2.1 Rerouting

Online rerouting of vehicles based on vehicular communication is a cutting-edge trans-
portation management system that leverages advanced technology to enhance traffic flow
and reduce road congestion. The system relies on a network of communication devices em-
bedded in vehicles to collect real-time data about the surrounding traffic, such as speed,
location, and direction. This data is transmitted to a central server, which uses it to
analyze the current traffic conditions and identify areas of congestion.

The proposed cloud-based evacuation guidance system implements a rerouting method
to evacuate hazardous zones as quickly and safely as possible. To achieve this goal, the
congestion level of each vehicle’s route is estimated by measuring vehicular road density.
The evolving risk is also considered by measuring the distance between the vehicle and
the hazardous zone, as shown in Equation 3.7.

Figure 3.1: Vehicular cloud computing.
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(1 − ∆i
t)(

Ni

N i
max

)( Dmax

Di + ϵ
) − λ < 0, ∀i ∈ M (3.7)

To determine whether vehicle i should be rerouted at time t, the binary variable ∆i
t is

introduced, which equals to 1 if the vehicle is rerouted and to 0 otherwise. Equation 3.7
uses various normalized fractions to calculate ∆i

t. Specifically, Ni

N i
max

represents the density
of vehicles in the next edge of vehicle i, which measures the congestion level that should
be avoided during evacuation. To prioritize vehicles close to the hazard, a normalization
function is applied to the distance between the current location of each vehicle and the
hazard by the maximum distance covered by the hazard, as shown by Dmax

Di+ϵ
. Combining

these factors allows us to determine whether rerouting is necessary and identify the safest
and most efficient route for each vehicle.

To ensure that the rerouting decision always prioritizes safety, a safety threshold λ is
defined, which limits the acceptable level of risk. In addition, several conditions must be
met for Equation 3.7 to be valid. Specifically, the distance Di must be positive and fall
within the hazard zone, i.e., 0 ≤ Di ≤ Dmax. Additionally, for ϵ, a small positive value
is set to avoid dividing by zero, such that 0 < ϵ ≤ 1. Considering these conditions, the
system can effectively reroute vehicles to avoid congestion and prioritize safety during
evacuation.

3.2.2.2 Shelter reallocation

Online shelter allocation of vehicles based on vehicular communication also uses the net-
work of communication devices embedded in vehicles, but to collect real-time data about
the surrounding shelters, such as their location, capacity, and availability. This data is
transmitted to a central server, which uses it, this time, to analyze the current shelter
situation and identify the most suitable ones for evacuees. The system can dynamically
allocate shelters to vehicles in real time, suggesting the most convenient and appropriate
ones for each evacuee. The allocation is based on various factors, such as the shelter’s
proximity to the vehicle’s current location, its capacity, and the driver’s original destina-
tion.

In some cases, vehicles may need to change their destination because the shelter they
are heading to is too far away or otherwise unsuitable. To address this issue, the shel-
ter reallocation concept is introduced, allowing the system to dynamically assign new
destinations to evacuees when necessary.

(1 − Ψi
t)

tnis

tnij

− α < 0, ∀i ∈ M, ∀s ∈ S, j ∈ S \ {s} (3.8)

To determine whether a vehicle needs to be reallocated, the binary variable Ψi
t is

defined, which equals 1 if vehicle i needs to be reallocated at time t and 0 otherwise.
Equation 3.8 uses the fraction tnis

tnij
to determine whether a new destination j is closer to

the vehicle’s current location than the initially planned shelter s. Specifically, this fraction
measures the gain between the time needed for vehicle i to travel from its current node ni

to the new shelter j and the time needed to arrive at the initially planned shelter s. To
be considered for reallocation, the gain must exceed a predetermined threshold ℵ, which
ensures that the reallocation is beneficial in terms of time saved.

This section presented the formulation for both the initial planning and the online
guidance to revise the solution to the DPE problem. However, finding an optimal solution
for the DPE problem is challenging and time-consuming. Therefore, multiple indicators
are required to measure the distance between the obtained solutions and the optimal
solution for evacuees without delay. Additionally, the evolution of the network during the
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evacuation should be analyzed to investigate the impact of the online guidance on the
entire network.

3.2.3 Solution quality indicators
This section will define the performance metrics utilized to evaluate the optimality of
the solution and track the network’s performance. To compare the quality of solutions
obtained using different methods, the network clearance time is calculated. It is deter-
mined as the point at which the final evacuee arrives at their designated shelter. This
measure provides insight into the speed of the evacuation operation, and the optimal so-
lution method should result in the shortest possible clearance time. In addition to the
network clearance time, the mean evacuation time is defined as the average travel time
for all evacuees. This metric allows us to assess the overall efficiency of the evacuation
process. Furthermore, the average network speed is measured to evaluate the network
usage rate [Vickrey, 1994]. A higher network speed indicates a more efficient network use,
which can result in faster and more reliable evacuations.

To successfully evaluate the DPE problem, multiple indicators are required to measure
the performance of the online management phase. The metric used in to evaluate the
performance is the Packet Delivery Ratio (PDR), defined as the percentage of data packets
successfully delivered to their intended destination [Fabian et al., 2021]. However, some
factors, such as disconnections of nodes or bad radio transmission conditions, can cause
a decrease in the PDR due to increased retransmissions. Therefore, it is essential to
investigate other metrics, such as the delay, to comprehensively evaluate the system’s
performance.

To evaluate the performance of the online management phase, many papers rely on the
transmission delay as a key metric [Sommer and Dressler, 2014]. This metric is relevant
to safety-critical and latency-sensitive applications, as it measures the time it takes for
a message to be transmitted from the source to the destination. The delay is usually
measured in seconds (s) or milliseconds (ms). Here, an interesting measure could be the
end-to-end delay, i.e., the time from creating a message until the destination node finally
receives it. Note that this measure depends on the quality of the radio conditions, and
many retransmissions will increase the PDR and delay. Generally, the best performance
is achieved when the PDR is high and the delay is low.

3.3 Methodology
The proposed methodology in this chapter follows a sequential process, consisting of two
main phases: the initial planning phase and the online evacuation management phase. The
initial planning phase adopts the methodology used in the previous chapter to provide
the initial plan. However, the planning model is modified for SUE instead of a pure
UE solution. In the online evacuation management phase, a network layer is added for
vehicular communication to capture the congestion of the network. This communication
network allows us to re-plan the evacuation route and shelter during the evacuation process
and provide them with instructions in real-time. A cloud computing scheme is used to
achieve this, as it has a low implementation cost compared to fog or edge architectures,
which require a large implementation budget [Gaouar and Lehsaini, 2021]. The proposed
methodology is presented in the Plan-Do-Check-Act (PDCA) diagram format in Figure
3.2 [Realyvásquez-Vargas et al., 2018].
The steps of the framework for online management of the evacuation process are detailed in
Table 3.2. The online management of the evacuation process provides several advantages
over just planning. Real-time access to data allows for quick identification and response
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Figure 3.2: flowchart of the solving the DPE problem

to emerging issues, which is particularly important in fast-paced environments such as the
emergency situation where delays in decision-making can have significant consequences.
Real-time data and analytics can also identify trends and patterns that may not have been
apparent during the planning stage, enabling faster and more effective decision-making.

To address this issue, the PDCA cycle is proposed for online problem-solving, which
allows us to leverage data and analytics to make decisions based on the real-time data
sent by evacuees [Isniah et al., 2020]. The planning unit can quickly identify patterns and
trends using this real-time data and analytics, enabling informed decisions on rerouting
and shelter reallocation, improving response times, and ensuring that network capacity is
used effectively.

The ”Plan” phase includes all the steps related to collecting and aggregating the
data needed for the process. The ”Do” phase updates risk and travel times based on the
aggregated data and new updates. The ”Check” phase determines whether a replanning is
needed based on the aggregated data and new updates. Finally, the ”Act” phase involves
sending new decisions to each evacuee. The execution of each phase of the PDCA cycle
is iterating until all demand is evacuated.

3.4 Vehicular communication tools and framework
implementation

The necessity of an online information technology (IT) structure for instantaneous data
collection, analysis, and communication cannot be overstated. Utilizing network simula-
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Table 3.2: The steps of the methodological process described in Figure 3.2
Initiating:

Step 1. Initial evacuation plan: This step corresponds to solving the multi-level
DTA and SAP to generate an evacuation plan. The SAP is going for SO, and
the DTA is formulated under SUE detailed in [Idoudi et al., 2022a].

Plan:
Step 2. Simulation for the current time step and set t=t+1: This step corre-

sponds to simulating the evacuation process that could be the same as proposed
by the plan, or new events could occur due to several decisions made by evacuees
in the previous time step.In addition, it is necessary to increase the simulation
time index. It should be noted that any dynamic simulator that is based on
trips can be utilized for this purpose.

Step 3. Data collection: This is the first part of the cloud computing architecture
wherein each vehicle (node) broadcasts data messages, using their OBU, to
RSUs that send it to the cloud server.

Step 4. Aggregation: This step aggregates messages from different RSUs. an evacuee
could be connected to more than one RSU and broadcast his message to all
RSUs in his range of communication.

Do:
Step 5. Risk update: This step updates the risk based on data from step 3. The

considered risk consists of two main components: the vehicle’s distance from
a hazardous area and the congestion levels of the vehicle’s location used in
equations.

Step 6. Prediction of new travel times: In this step, the travel time of edges might
change according to the risk and congestion evolving by Step 4. This step uses
a prediction model to predict new travel times. Here a classical prediction
model is deployed which is embedded in the simulator.

Check:
Step 7. Check for replanning: This step is for deciding whether a user i is con-

cerned by the rerouting process or not. For user i, the edge density is esti-
mated, including the road speed and traffic density based on the Greenshield
model [Pan et al., 2016]. The user i is considered to be in congestion if his
current edge density is above a certain threshold 3.7.

Step 8. Evacuees selection for replanning: This step corresponds to selecting vehi-
cles that to go to another safe destination or have to be rerouted before getting
inside a congested edge (road). The shelter reallocation process selects vehicles
if there is congestion in front of their original destinations, and the server asks
them to go to a less congested destination 3.8. For rerouting, all users with
the congested edge in the set of the next planned edges of their journey are
selected.

Act:
Step 9. Shelter reallocation and rerouting: This step prepares a message to the

targeted users to ask them to reroute to the path with the current shortest
travel time having their newly planned shelter as a safe destination.

Step 10. Sending notification to evacuees: This step represents the second essential
part of the cloud computing scheme where the cloud server sends its decisions
to the nearest RSU that forward the results to vehicles to react accordingly.

Finishing simulation:
Step 11. Check the stopping condition: This step checks if all the demand is evac-

uated, go to 12 otherwise, go to 2.
Step 12. End of the simulation: This step ends the simulation of the evacuation

process,
Step 13. Result calculation : After ending the simulation, all results, including all

performance metrics (presented in Section 3.2.3) are calculated.
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tors such as OMNeT++ in conjunction with vehicular communication models like Veins
enables the simulation of automated and connected vehicles and infrastructure perfor-
mance in crisis situations. This facilitates the evaluation of system capabilities in co-
ordinating responses among responders, officials, and the public as unfolding events are
tested.

3.4.1 OMNeT++ simulator and Veins project
The combination of the OMNeT++ simulation framework with the Veins project has
matured into a powerful and frequently used instrument in the field of vehicular com-
munication systems research. Since its 2008 introduction by [Varga and Hornig, 2010]
OMNeT++ which is distinguished by its architecture that is both modular and extensi-
ble—has established itself as a flexible discrete event simulation framework. Meanwhile,
Veins, an extension to OMNeT++, has been designed with the express purpose of tackling
the complexities involved in modeling communication protocols and vehicular networks.
The Veins project smoothly expands OMNeT++ to include realistic vehicle motion models
and communication protocols. The Veins project and OMNeT++ work together to im-
prove simulation capabilities for researchers studying vehicle ad hoc networks (VANETs).
The Veins project offers a specialized framework for modeling realistically vehicular sce-
narios, taking into account network protocols, vehicle motion, and communication range.
[Sommer et al., 2010] made a significant contribution to the literature by investigating
bidirectionally connected network and road traffic simulation in Veins to enhance the un-
derstanding of inter-vehicle communication (IVC). This integrated approach has become
a standard choice for researchers seeking to simulate and evaluate the effectiveness of
communication strategies in dynamic vehicular environments. The open-source nature
of both OMNeT++ and the Veins project, coupled with an active research community,
ensures continuous development of vehicular communication systems research.

3.4.2 Implementation of the optimization framework
Having an online IT architecture for real-time data gathering, analysis, and communica-
tion is essential. Network simulators like OMNeT++ coupled with vehicular communica-
tion models like Veins can simulate the performance of automated and connected vehicles
and infrastructure during a crisis. This allows testing of how well systems can enable
coordination between responders, officials, and the public as events unfold.

The flowchart of Figure 3.3 consists of three main components: SUMO, TraCI, and
OMNET++ Simulator. The SUMO Server is the central component that connects to
TraCI, which in turn interacts with both the SUMO Client and Launcher. The SUMO
Client generates mobility results in XML format, while the Launcher is associated with
result analysis in PY format and network results in CSV format generated by OMNET++
Simulator. The simulator includes car nodes, RSUs, and a cloud server written in C++.
The flowchart provides a visual representation of the subprocesses and interfaces involved
in the integration of SUMO with OMNET++ Simulator. It is a useful tool for under-
standing the interaction between these two simulators.

3.5 Numerical experiments
This section applies the methodology and framework described in the preceding section
to a real-world network to validate the proposed solution. It begins by selecting a test
case and then discussing the experimental design.
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Figure 3.3: Vehicular communication for reactive evacuation management.

3.5.1 Case study
This section discusses the hardware and software used to implement the proposed solution
and conduct the experiments. The experiments were performed on two different networks,
namely, the LuST scenario representing Luxembourg city [Codeca et al., 2015] and the
network of Mill Valley city in California. A laptop with 1.7 GHz and 16 GB of RAM was
used to generate all the results. A simulation-based dynamic traffic assignment (DTA)
method was used to implement the solution, and all simulations were performed using the
SUMO simulator. SUMO calculated the C-logit model and travel time prediction. The
SAP model was implemented using ILOG CPLEX version 12.9 and solved to optimize the
planning phase. To simulate the vehicular communication aspect, the Veins/Omnet++
simulator was used in conjunction with a cloud computing architecture based on previous
works [Wang et al., 2020].

3.5.1.1 Luxembourg city

Figure 3.4 depicts the evacuation network map of two cities, Luxembourg City and Mill
Valley, which are used for the simulation. The traffic network graph used for the dynamic
simulation is shown in Figure 3.4(a). This graph represents the Luxembourg network,
which covers an area of 155.95 km2. To assess the impact of a hypothetical threat, the
affected population in the central region is considered. This population is highlighted in
Figure 3.4(b). Note that there are no super source (risky) nodes. Four origin nodes were
considered evacuation sources in the risk zone (see Figure 2.3). The vehicles carrying peo-
ple needed to be evacuated to safe destinations (shelters) located on the border as shown
in Figure 3.4(b) and were located at the network’s border. Given the network’s size,
each planning departure time interval (η) is set to 20 minutes for the simulation. For the
planning horizon (H), a demand of 200 vehicles at each node is considered for every pe-
riod. There are four origin nodes and three shelters, each accommodating 1500 evacuees.
Thus, the total demand per origin was 600 vehicles. For the purpose of this evacuation
scenario, the S-shape response curve model is used (described in [Na and Banerjee, 2019])
with a parameter value of α = −0.005 and β = 15 to determine the departure time of
each evacuee. The departure time intervals for the simulation have been set at 5 minutes.
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(a) Luxembourg map-
ping data ©Google

(b) SUMO city network (c) OMNET++ commu-
nication network

(d) Communication be-
tween nodes in VANET

(e) Mill Valley map (f) OMNET Mill Valley
city network

Figure 3.4: Vehicular communication maps

There are four shelters in this test case, each with a capacity of accommodating up to
1500 evacuees. Figure 3.4(c) shows the vehicular communication network in the OM-
NET++ simulator, and the message exchange process between vehicles and the network
infrastructure is illustrated in Figure 3.4(d). The radius of RSU coverage is 4 km in the
model, and the value for λ is set to 0.2 due to the small penetration rate values. It is
assumed that the maximal radius of the risk scenario Rmax is 4km.

3.5.1.2 Mill Valley city

We apply the proposed framework to plan and manage the DPE problem in Mill Valley
in California (cf. Figure 3.4(e)). The state has determined that a large part of the
city is in an area of very high fire hazard [Chen et al., 2020]. The Mill Valley network’s
total length of residential roads is 337 km. To add the vehicular communication layer
to the traffic network graph, the Veins project of [Sommer et al., 2019] is deployed. The
evacuees depart their trip from their houses, with 6000 households on the Mill Valley
map. For shelter allocation, no super or artificial nodes, such as super source or super
destination nodes (risky or safety nodes) are considered. Only vehicles were considered
as a mode of transportation in this study. The safe destination is reaching roads to the
highway to escape the hazardous situation. The departure time distribution is defined
by the scenario, with an average demand of 2 vehicles for each household. Figure 3.4(f)
illustrates the vehicular communication network in the OMNET++ simulator.

3.5.2 Experiment design
In this chapter, we design four scenarios to investigate the impact of planning and online
orders on the DPE problem. The scenarios are detailed below:

• Scenario P+C: Scenario with both planning and vehicular communi-
cation: This scenario follows the proposed framework (demonstrated in Figure
3.2).The approach involves creating an initial plan for optimal shelter allocation
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and traffic assignment across several time intervals. Additionally, it utilizes vehicu-
lar cloud computing to provide updated instructions to vehicles, enabling them to
shorten their routes and reach safety quicker.

• Scenario P: Scenario with the initial plan only: This scenario illustrates the
case of just planning for evacuation without any communication between vehicles
or vehicles to RSUs. It means that evacuees are not rerouted during the evacuation
process; they just follow the initial plan.

• Scenario C: Scenario with vehicular communication only: This scenario
is the same as Figure 3.2 except in step 1 where evacuees consider the nearest
shelter and choose their routes following the SUE. This scenario describes a situation
where system operators do not have an optimal plan in place prior to starting the
evacuation process. Instead, they assign evacuees to the nearest shelter based solely
on distance without considering traffic optimization. Despite this, the scenario
provides an opportunity for system operators to receive new instructions for their
evacuation plans through vehicular cloud technology.

• Scenario N: Naive scenario without any optimal plan and vehicular com-
munication: This scenario represents the case where the system operators do not
provide guidelines for evacuees. It means that the evacuees choose the nearest shel-
ter and choose their routes following the SUE without rerouting.

3.6 Results
The four mentioned scenarios were executed on the same evacuation demand profile.
The evaluation metrics presented in 3.2.3 measure the solution quality provided by the
methodology. Section 3.6.1 highlights the results of our model applied to the Luxembourg
medium-scale test case. Section 3.6.1.1 analyzes the effect of different penetration rate
values of connected vehicles to VANET. Section 3.6.2 is dedicated to validating the model
on a large scale and real-world case of Mill Valley City.

3.6.1 Results for the Luxembourg case
The outcomes of the four scenarios are summarized in Table 3.3. The results indicate a
considerable advancement in the final solution quality obtained by the P+C scenario that
employed both planning and online guidance models. For instance, the network clearance
time was reduced by over 18 minutes (39%) compared to the naive scenario. Additionally,
there was an improvement of more than 2 minutes (10%) compared to the P scenario. The
findings reveal that the P scenario is the second-best solution. Comparing P+C and P
scenarios demonstrates that handling new orders resulting from unexpected events during
the evacuation planning process results in a more successful evacuation operation.

Besides, scenario C provides a better solution than scenario N, meaning that using
the telecommunication network can improve the evacuation solution, even without any
planning phase. This observation could prove the effectiveness of online communication
and highlights the importance of giving new orders to evacuees to revise their route
choice during the evacuation process. Inspecting the result for scenario P and scenario C
illustrates that planning contributes more than telecommunication during the evacuation
operation. One of the reasons behind this observation is that in scenario C, the shelter
allocation was done without considering the congestion level. Scenario C can provide a
better view and understand more of the effect of online evacuation guidance. It shows
that allocating all users to the same nearest shelters in all evacuation operation generate
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congestion that cannot be escaped even by using online vehicle rerouting. That is why
different shelters, like in scenario P in each state, will ensure the assignment of evacuees
to the closest destinations in terms of time-dependent shortest path and not distance
measure.

Table 3.3: Performance metrics
Metrics / Scenario P+C P C N
Network clearance time(s) 1775 1980 2765 2835
Mean evacuation time(s) 1071.54 1093.70 1407.92 1447.61
Average travel delay (ATD) 205.47 220.62 341.63 349.78
Average evacuation delay (AED) 241.32 366.65 366.65 392.12

The decrease in mean evacuation time in Table 3.3 shows that the online DPE improves
the evacuation solution. The proposed model used in scenario P+C generates better
ATD for evacuees with more than 6% of reduction compared to the second best. The
improvement is remarkable for AED (34%). Recall that including telecommunication
network provides us with some errors and delays in sending and receiving messages. Both
cases, P+C and C, have around 205.30 ms for the end-to-end delay and PDR around
74%, which is acceptable in this kind of latency-sensitive application with many network
users [Noor-A-Rahim et al., 2020].

Figure 3.5(a) presents four scenarios’ distribution accumulation over time. The ac-
cumulation at each time is the number of users traveling in the network. The figure
shows that the two scenarios with an initial evacuation plan outperform the others. The
clearance time and network capacity usage in scenario P+C are better than in scenario
P. There is a significant difference between scenarios P+C and scenarios N and C with
different penetration rates. Note that the gain of around 60 seconds in clearance time be-
tween scenarios C and N is remarkable in the test case which includes only 2400 evacuees.
It is expected that a better result by increasing the number of evacuees and deploying
larger networks. Figure 3.5(b) shows the evaluation of network mean speed during the
evacuation process. This figure followed the results of the distribution of accumulation
Scenario P+C outperforms other scenarios meaning that the blue curve representing sce-
nario P+C stands upper than the other curves in most cases. A dramatic decrease can
be observed in the speed before the end of evacuation because of queues formed in front
of shelter sites.

3.6.1.1 Sensitivity analysis on penetration rate

This section performs sensitivity analysis on simulation parameters to identify the best
in terms of results achieved and computation feasibility. First, a sensitivity analysis is
carried out on the penetration rate performing value variation of this parameter. The
sensitivity analysis on the penetration rate is performed on the Luxembourg City map.
Assuming that 100% of the evacuees are using connected vehicles is unrealistic but can
be reachable in the future. That is why multiple penetration rate values are considered.
Note that the connected vehicles are selected with a random distribution in the case of
x% of penetration rate. Only this x% is sending positioning information and receiving
online orders. Thus, the cloud server monitors and guides only this x% of the vehicles.
The proposed evacuation framework is executed for five values of penetration rate, and
the results are illustrated in Table 3.4.

There is no communication in the case of a 0% penetration rate, so the end-to-end
packet delay or the packet delivery ratio cannot be measured. Therefore, ”-” means that
there is no possible value. The DPE problem is solved in the proposed framework for all
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penetration rates. Table 3.4 presents the different values of the performance measures
used for multiple penetration values. The table clearly shows that the case of a 100%
of penetration rate is the best scenario. Table 3.4 also illustrates acceptable values of
PDR measure for 70%, 50%, and 30% scenarios. This PDR level means that around 75%
generated packets are received correctly in the range of network infrastructure and without
the need for retransmission. Also, the delay measure is crucial, especially in this case
dealing with population evacuation. The average end-to-end delay of packets considering
the vehicular cloud computing architecture employed is around 203 ms which is the same
in the literature with this number of nodes [Al Ridhawi et al., 2018]. In addition, each
scenario’s values of network clearance time show that communication positively impacts
the evacuation process by decreasing the clearance time. Table 3.4 shows fewer values
for ATD when having a bigger penetration rate. This demonstrates that increasing the
number of connected vehicles could enhance the traffic assignment by ordering evacuees
to choose the route that minimizes their travel time going more to the pure UE state.
Figure 3.5(c) illustrates the change in the number of vehicles evacuating in the network
for five different scenarios. The curves shown in this figure represent different penetration
rate values.

Table 3.4: Different penetration rate performance measures
Metrics PR 100% PR 70% PR 50% PR 30% PR 0%
Network clearance time(s) 1775.00 1833.00 1846.00 1873.00 1980.00
Mean evacuation time(s) 1071.54 1081.17 1084.90 1081.17 1093.70
Average travel delay (ATD) 205.47 220.24 219.68 228.88 220.62
Average evacuation delay (AED) 229.04 243.58 243.58 252.49 241.32
End-to-end delay (ms) 205.30 203.75 202.77 201.17 -
Packet Delivery Ratio 74.20% 75.80 76.24 75.50 -

In addition, Figure 3.5(d) depicts the evolution of the mean speed in the evacuation op-
eration. The maximum network speed limit is the free-flow speed (21 m/s) attained when
the network does not have any vehicles. This value is proposed by [Dixit and Wolshon, 2014].
The network speed illustrated by Figure 3.5(d) shows that having a 100% penetration rate
is the fastest curve by arriving at the free-flow speed in the shortest time. Also, the figure
presents the result of the mean speed variation of other penetration rates showing that
there is no considerable difference between 70% and 30% penetration rate on network
clearance time (the arrival to the free-flow speed). Figure 3.5(d) shows that adding the
communication layer, even with different penetration rates, positively affects evacuation.
It means that the online solving of DPE uses the network’s capacity better than just plan-
ning. Based on the results presented, the conclusion is that using 30% of the penetration
rate is more realistic, and its results are comparable to having 100%.

3.6.2 Results for the Mill Valley case
Based on the results of the Luxembourg case and sensitivity analysis on penetration rate,
the proposed model is implemented in the evacuation operation of the large-scale case of
Mill Valley City. Here just three scenarios (P+C, P, N) are considered as it was concluded
previously that there is not much difference between scenarios N and C. A vehicular com-
munication layer was included with a 30% adoption rate of vehicles in Mill Valley to
evaluate the effects of online vehicular management and accurately simulate real-world
scenarios. Figure 3.5(e) shows the cumulative percentage variation over the three consid-
ered scenarios. In Figure 3.5(e), it can be observed that there is a substantial improvement
in the P+C scenario compared to the naive scenario. The results clearly indicate that the
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(a) Variations in the number of active users in the
Luxembourg city network

(b) Variation in the mean speed of the Luxembourg
city network

(c) Variations in the number of active users in the
Luxembourg city network over different PR values

(d) Variation in the mean speed of the Luxembourg
city network over different PR values

(e) Cumulative percentage of evacuees variation in the network of Mill Valley city

Figure 3.5: Numerical results variation over the two networks
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difference between the two scenarios is significant, especially when subjected to greater
and more realistic demand. In other words, the figure provides evidence that the P+C
scenario effectively addresses the challenges posed by real-world demand situations. Ac-
cording to the figure, an evacuation operation conducted with online communication yields
significantly faster results compared to the scenario P evacuation approach. Specifically,
the graph displays a clearance time reduction of over 20% for the online communication
scenario, indicating a much quicker and more efficient evacuation process. In contrast,
relying solely on planning for the evacuation results in a longer clearance time, which can
potentially hinder the safe and timely evacuation of individuals in emergency situations.
Also, The figure demonstrates a significant contrast in the effectiveness of reducing con-
gestion between the three scenarios. This is evident in the graph’s steep decline in the
”P+C” scenario compared to the prolonged queue formed in the ”N” scenario. This indi-
cates that the combination of measures implemented in the ”P+C” scenario substantially
impacts mitigating congestion, leading to a more efficient and streamlined evacuation pro-
cess. On the other hand, the lack of such measures in the ”N” scenario results in a slower
and less effective reduction of congestion, leading to longer wait times and potentially
compromising the safety and well-being of the evacuees.

3.7 Discussion
During a disaster, efficient and quick evacuation of the affected population is crucial to
minimize the loss of life and reduce overall costs. This chapter addresses the dynamic
population evacuation (DPE) problem, which involves modeling and optimizing the evac-
uation process to save as many lives as possible faster and more efficiently. We provided a
comprehensive literature review and analysis of multiple models used in evacuation plan-
ning and VANET creation and execution in the context of an evacuation. Based on the
findings from the literature, the evacuation problem can be divided into two fundamental
parts. The first is creating an evacuation plan considering dynamic shelter allocation
and traffic assignment. The second involves considering new orders for the online guiding
system.

For the first part, evacuation planning, several models are described in the literature,
such as bi-level models. Many of these models utilize static traffic assignment and shelter
allocation formulation to address the network evacuation problem. Despite resolving both
planning problems of SAP and traffic assignment in a static setting, few consider the DPE
in a dynamic case for both shelter allocation and routing.

For the second part, researchers made different proposals to improve evacuation op-
erations by considering it from different sides of using architectures of a vehicular ad-hoc
network (VANET), modifying the emergency message routing techniques, considering dif-
ferent types of messages, and transferring data between nodes. We proposed a framework
to solve the DPE problem, creating an initial optimal plan and giving online orders con-
sidering unpredicted events not considered by the plan. To solve the DPE problem, the
PDCA diagram is proposed to structure the framework. The framework uses a traffic sim-
ulator to capture the dynamics of the evacuation process. A planning process is achieved
to determine shelters in the SO manner and routes in the SUE setting. Afterward, an
online management procedure is performed during the evacuation. To this end, vehicles
can send and receive data to update their route accordingly. To add this networking
layer, a cloud computing architecture is deployed, which is composed of vehicles repre-
senting final nodes, RSU representing the network infrastructure, and a distant, powerful
computer representing the cloud server.

In the implementation of the methodology, a trip-based dynamic simulator is utilized
to provide travel information at each time step. Additionally, a network simulator is incor-
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porated to enable vehicular cloud computing communication. The proposed methodology
is applied to the network of the city of Luxembourg and the large-scale and real evacua-
tion scenario of Mill Valley. The proposed model exceeds the model with only evacuation
planning by more than a 10% decrease in network clearance time in the medium-scale net-
work of Luxembourg City and more than 20% in the large-scale of Mill Valley city. This
means that using vehicular communication for giving new orders improves the evacuation
operation because it considers new events and emerging congestion not initially deter-
mined by the plan. Moreover, an analysis of the penetration rate of connected vehicles is
carried out. The results show that solving the online DPE, even with a low penetration
rate, could improve the quality of the proposed solution and use more of the network
capacity.
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Chapter 4

VANET Architectures

Online DPE allows evacuees to revise shelter and path choices during evacuation by com-
municating and getting updates. This is practical if vehicles connect to a vehicular ad
hoc network (VANET). Vehicular Cloud/Fog Computing concepts support drivers, en-
sure comfort and safety, and increase VANET resources In this chapter, we designs a
generic framework for DPE that will enable the evaluation of various telecommunication
network architectures in terms of their performance. The focus will be on examining
objective functions that are most effective for DPE planning, particularly in large-scale
scenarios. Additionally, the research will investigate the optimal Penetration Rate of
connected vehicles within a cloud computing setting, aiming to identify the ideal level
of vehicle connectivity for efficient evacuation processes. Furthermore, a comprehensive
benchmark will be conducted to compare and assess the performance of two commonly
used telecommunication network architectures. By evaluating and optimizing telecom-
munication systems for population evacuation, in this chapter aims not only to enhance
the scientific understanding in this area but also to provide practical insights that could
contribute to improving public safety during emergencies. The results may help inform
the design and implementation of evacuation strategies, guide policy-making, and serve
as a foundation for future research in this area.

This chapter is an updated version of the paper:

• Idoudi, H., Ameli, M., van Phu, C. N., Zargayouna, M., & Rachedi, A. (2023)
Streamlining Disaster Response: A Benchmark Study on Population Evacuation
Planning with Telecommunication Network. International Conference on Intelligent
Transportation Systems (ITSC). IEEE.
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4.1 Literature review on different architecture

The planning phase in disaster scenarios is crucial as it determines evacuation instructions
such as the shelter destination and the path taken to reach it [Supian and Mamat, 2022].
Traditional offline planning methods involve pre-determining these factors by solving
the Shelter Allocation Problem (SAP) and using Dynamic Traffic Assignment (DTA).
Solving SAP involves identifying the most suitable shelters for different groups of peo-
ple, such as families with children or individuals with special needs. While DTA is
a traffic management strategy that considers real-time traffic conditions to determine
path flow distribution. Several studies have investigated the use of traffic assignment
and shelter allocation problems for offline evacuation planning. For example, a study
by [Kongsomsaksakul et al., 2005] proposed a multi-objective DTA model for evacuation
planning that considers both evacuation time and congestion.In [Idoudi et al., 2022a], we
presented a comprehensive literature review on offline Dynamic Population Evacuation
(DPE) planning methods and proposed a dynamic framework to solve SAP and DTA
together using a simulation-based approach. However, offline planning alone may not be
sufficient to handle the dynamic nature of an evacuation.

In this context, online DPE is defined as a process of revising the evacuees’ shelter
and path choices during the evacuation process. It means evacuees can communicate
during the evacuation and receive new information to revise their decisions. From a prac-
tical point of view, this process can be feasible if vehicles are equipped to connect to
a vehicular ad hoc network (VANET). Generally, the concept of Vehicular Cloud Com-
puting (VCC) and Vehicular Fog Computing (VFC) have emerged in order to support
and serve all drivers’ needs, ensure their comfort and safety, and increase VANET re-
sources [Mekki et al., 2017]. VCC uses connected vehicles and cloud computing to reroute
vehicles and dynamically allocate shelters during an evacuation. Therefore, online solving
of the evacuation problem using VCC for rerouting vehicles and shelter reallocation may
further optimize the evacuation process. Several studies have investigated the use of VCC
for evacuation planning. For example, [Liu et al., 2018] proposed a safety-related message
exchange protocol for highway scenarios. However, their work does not revise the SAP
and DTA problems. In a study by [Alazawi et al., 2014], an evacuation strategy called
speed strategy was applied and evaluated using the VCC architecture. We quantified
driver responses to evacuation pre-plans in emergencies. However, the authors did not
propose any replanning orders to change their routes or destinations, a critical element
we introduced in [Idoudi et al., 2022d] and aim to address in this chapter. Regarding
VFC, most studies in the literature only mention the potential of this architecture for
emergency situation and do not apply it to the DPE process.

Another question to be addressed is which indicator should be optimized for the
DPE problem [Bayram, 2016]. In the literature, multiple studies have explored various
key performance indicators (KPIs) used to optimize and evaluate evacuation planning.
Evacuation orders serve several primary goals, which have been extensively studied by
[Bayram, 2016]. Combined KPIs that take into account multiple factors like total evacu-
ation time, network clearance time, and total traveled distance are also proposed in the
literature [Alçada-Almeida et al., 2009]. The combination of these KPIs for optimization
is mainly defined by the weighted sum function. However, there is no proof in the litera-
ture that shows optimizing one single KPI provides the optimal evacuation plan. These
varied objectives highlight the complexity of the DPE problem and the need for nuanced,
multi-faceted solutions. We seek to further investigate the effectiveness of single ver-
sus combined KPIs in optimizing the DPE process, thereby contributing to the ongoing
discussion in the field.

In addition to the KPIs, another crucial aspect that warrants attention is the telecom-
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munication network architecture within evacuation scenarios. In the literature applying
to non-emergency travel, multiple studies were made to assess the impact of various
telecommunication architectures on transportation systems. [Gaouar and Lehsaini, 2021]
studied the impact of different vehicular communication architectures, such as cloud com-
puting and fog/edge computing. They presented several applications of these architec-
tures, excluding evacuation. [Jeong et al., 2021] presented a comprehensive summary and
analysis of the latest research in smart transportation systems, focusing on standardiza-
tion activities, protocols, applications, and security. In addition, [Behravan et al., 2023]
describes the essential parts of a fog computing architecture and focuses on different
applications, architectures, and significant performance metrics using fog computing in
vehicular networks. All the aforementioned studies addressed normal conditions. How-
ever, understanding how these architectures perform during emergencies like population
evacuation is crucial, as these scenarios present unique challenges that may impact sys-
tem performance. Despite this, to the best of our knowledge, there is no previous study
that examines the performance of these telecommunication architectures in a population
evacuation context. In this chapter, we aim to fill this knowledge gap.

4.2 Framework for different architecture
Efficient evacuation operations are critical in emergencies and require a systematic ap-
proach to minimize evacuation time. The proposed approach consists of two phases: the
initial evacuation plan (solving the SAP and DTA problems) and the online manage-
ment process that considers vehicular communication. For the initial phase, we follow
the methodology developed in Chapter 2. In SAP, we minimize the overall evacuation
time, which aligns with the interests of system operators who prioritize efficiency in the
evacuation process. Subsequently, the DTA problem addresses the concept of Stochastic
User Equilibrium (SUE), considering the tendency of evacuees to prioritize their perceived
minimum travel time when choosing their path to their selected shelter. By formulating
and optimizing these decision problems, the evacuation process can be effectively stream-
lined, considering both the priorities of system operators and the preferences of individual
evacuees.

The proposed online management framework aims to address unforeseen events and
adapt the initial evacuation plan in real time by utilizing the communication capabilities
of vehicles. This framework leverages the power of vehicular communication to enable
evacuees to receive and transmit information, allowing them to update their routes as
needed. This dynamic modification of ways based on real-time information significantly
enhances the efficiency and safety of the evacuation process, ensuring that evacuees can
respond effectively to changing circumstances and navigate the most optimal paths to
their destinations. To use VANET, a network layer is introduced to incorporate vehicular
communication, enabling network congestion monitoring. This communication network
is crucial in re-planning evacuation routes and shelter allocation in real-time throughout
the evacuation process.

The proposed methodology is structured following Deming’s Plan-Do-Check-Act (PDCA)
cycle [Realyvásquez-Vargas et al., 2018], illustrated in Figure 4.1. This visual representa-
tion provides a systematic approach for continuously improving the evacuation plan and
offers an overview of the proposed methodological framework’s key steps. We first detail
the flowchart and subsequently, highlight the differences between VCC and VFC.

In the initial planning phase, Step 1 focuses on generating the initial evacuation plan.
This stage involves solving the multi-level DTA and SAP, thereby creating an evacuation
plan as described in [Idoudi et al., 2022a]. The objective function of SAP will be modified
in the next section for our benchmark.
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Figure 4.1: Flowchart of the proposed methodological framework to address the online
DPE problem using the PDCA Cycle.
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The PDCA cycle begins with the ”Plan” phase, which simulates the evacuation process
for the current time step and increments the simulation time index (t=t+1) in Step 2.
The simulation considers the proposed plan and any new events that have occurred due
to decisions made by evacuees in the previous time step. A trip-based or agent-based
dynamic simulator can be used for this purpose. Step 3 focuses on data collection as
part of the VCC architecture. Each vehicle (node) broadcasts data messages using its
On-Board Unit (OBU) to Roadside Units (RSUs), which transmit the data to the cloud
server. In step 4, the server has to aggregate the data sent from RSUs. This data could
have a lot of redundant and replicated data due to vehicles that connect to multiple RSUs
at the same time. The process of aggregation is achieved by unifying messages from the
same vehicle. In the ”Do” phase, the risk measure is updated based on the data collected
in Step 3. The risk calculation in Step 4 considers the vehicle’s distance from a hazardous
area and the congestion levels at the vehicle’s location. Afterward, new travel times are
predicted in Step 5, taking into account the evolving risk and congestion.

The ”Check” phase verifies the need for replanning. Step 7 determines whether a
vehicle should be included in the replanning process. It estimates edge density, including
road speed and traffic density, based on the Greenshield model [Pan et al., 2016]. Vehicles
with current edge density exceeding a certain threshold are considered to be in congestion
and are thus subject to rerouting. The shelter reallocation process selects vehicles when
congestion is detected in front of their original destinations. In Step 8, prioritization is
given to vehicles within a risky zone with a radius of 4 km, particularly focusing on those
closest to the center of the risky zone.

In the ”Act” phase of the PDCA cycle, two important steps are performed. Step 9
involves shelter reallocation and rerouting, where the content of a message is prepared
to be sent to targeted users, asking them to reroute their vehicles to the path with
the current shortest travel time, considering their possible newly planned shelter. This
step aims to optimize the evacuation routes for efficiency and safety. Step 10 focuses on
sending notifications to evacuees. In this step, the cloud server communicates its decisions
to the nearest RSU, which then forwards the results to the vehicles. The vehicles receive
these notifications and can react accordingly based on the instructions provided. This
communication process ensures effective coordination and timely response during the
evacuation, leveraging cloud computing and communication capabilities to improve the
overall evacuation process. Lastly, Step 11 verifies whether all evacuees have reached the
shelters. If not, the PDCA cycle restarts at Step 2, ensuring continuous improvements to
the evacuation process.

The aforementioned description outlines the communication process within a cloud
computing architecture, which bears a resemblance to that of a fog computing architec-
ture. However, a pivotal distinction resides in the decision-making locus. While the cloud
architecture consolidates decisions at the cloud server level, the fog architecture delegates
decision-making to the RSU level. This decentralization fosters prompt decision-making
and diminishes dependency on the cloud server, thereby bolstering the responsiveness of
the evacuation system. Moreover, another divergence between the two architectures lies
in the message aggregation process. In the cloud architecture, message aggregation is cen-
tralized at the cloud server level, while in the fog architecture, it occurs closer to the edge
at the RSUs. These disparities underscore how fog computing brings decision-making
and data processing closer to the network’s edge, thus enhancing system agility while
maintaining the overall communication framework established in the cloud computing
architecture.

This methodology outlines a comprehensive approach for dynamic population evacu-
ation using vehicular communication and different network architectures. By integrating
planning, real-time adjustments, and dynamic decision-making, the framework ensures an
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efficient evacuation process. Next, two city-scale case studies will be presented, applying
this framework to demonstrate the potential of the methodology under different configu-
rations, allowing a comprehensive cross-comparison of different optimization and VANET
configurations by evaluating their effectiveness.

4.3 Case Study
This section provides an overview of the hardware and software components deployed in
implementing the proposed solution and conducting the experiments. Two distinct net-
works were utilized for the experiments: the LuST scenario, which represents Luxembourg
City, and the network of Mill Valley City in California. The experiments were conducted
on a laptop with a processing speed of 1.7 GHz and 16 GB of RAM, which facilitated
the generation of all the results. The solution was implemented using a simulation-based
DTA method, employing the SUMO simulator [Lopez et al., 2018a]. SUMO facilitated
the calculation of the C-logit model and travel time prediction. The planning phase
was optimized using the SAP model implemented with ILOG CPLEX version 12.9. To
simulate vehicular communication, the Veins/Omnet++ simulator was utilized to imple-
ment the fog and cloud computing architectures, which were based on previous works
[Wang et al., 2020].

Figure 4.2 illustrates the evacuation network maps of Luxembourg City (covering an

(a) SUMO network of LuST (b) Mill Valley map

(c) OMNET Mill Valley network (d) VANET in OMNET++

Figure 4.2: VANET maps of Luxembourg and Mill Valley network
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area of 155.95 km2) and Mill Valley City (encompassed a total length of residential roads
spanning 337 km), serving as the simulation environments. In the LuST scenario, we focus
on the affected population in the central region, as shown in Figure 4.2(a). Similarly, the
real evacuation scenario of Mill Valley (Figure 4.2(b)) is detailed in [Chen et al., 2020].
The Veins project was integrated to incorporate the vehicular communication layer into
the traffic network graph. The vehicular communication network in the OMNET++
simulator is depicted in Figures 4.2(c) and 4.2(d).

4.4 Numerical Results
The proposed methodology is applied to both case studies using the scenario of Luxem-
bourg city and the large-scale scenario of Mill Valley city. In this section, we begin by
examining the influence of SAP’s objective on the effectiveness of evacuation planning.
Subsequently, we conduct a sensitivity analysis to determine the optimal penetration rate
of connected vehicles. Finally, we compare the VCC and VFC architectures to determine
the most appropriate vehicular communication architecture for this specific application.

4.4.1 SAP Objectives
In the previous chapter, we determined the effect of telecommunication compared to
just planning on the success of the evacuation process, and we noted that planning also
contributed a lot to this success. Hence, here we modify our planning methodology,
especially the model adopted in formulating the SAP. Recall that most studies that are
discussed in Section 4.1 are using the formulation of the p-median problem proposed
in [Hakimi, 1964]. The p-median problem aims to minimize the total evacuation time.
However, there is a similar formulation, known as the p-center model aims to determine the
optimal location for shelters, such that the maximum travel time between any demand
point and shelters is minimized. In other words, it minimizes the network clearance
time [Hsu and Peeta, 2014] which represents the most valuable quality indicator in the
evacuation process success. The research question is which objective function is more
suitable for the DPE problem considering other steps of DTA and real-time management
of the evacuation. Note that both models are known to be NP-hard [Bayram, 2016].

Initially, we address the SAP by utilizing the p-median problem in Chapter 2. Here,
a weighted sum operator is defined for the objective function, and we are progressively
transitioning toward the p-center problem in order to minimize the time required for
clearance. Hence, we define the following objective function for the SAP:

min z = wct. max
∀os

{tα
os

∗aos} + wtt

∑
o∈O

∑
s∈S tα

os
∗aos

|M |
(4.1)

This formulation allows us to capture both the p-median and the p-center problem. If
we set the weight wtt = 0, the problem becomes a p-center problem, whereas if we set the
weight wct = 0, it turns into a p-median problem, subject to the condition wtt + wct = 1.
In Equation 4.1, M represents the set of all evacuees. α denotes the time interval index,
α ∈ T . Furthermore, aos denotes the number of evacuees allocated to a particular origin-
destination pair os, and tα

os
∗ stands for the minimum experienced travel time for the os

pair within the time interval α. It is important to note that we have refrained from
introducing any modifications to the DTA model deployed for directing evacuees toward
their specified destinations, as determined by the shelter allocation solution. It means
the congestion evolution will impact our results. For example, the pure clearance time
optimization for SAP does not necessarily result in minimum clearance time for our test
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cases after DTA calculation and dynamic simulation. This fact emphasizes the complexity
of the problem and the impact of dynamic traffic conditions.

We conducted a sensitivity analysis on the network of Luxembourg City and the
Mill Valley network, where we systematically adjusted both the wtt and wct variables
to observe their impact on clearance time and mean speed of the network during the
evacuation planning phase.

Figure 4.3 displays the variation in clearance time across different scenarios with vary-
ing objective functions for Luxembourg City. The figure highlights that employing a pure
p-median formulation with wtt = 1.0 and wct = 0.0 yields the most favorable results
in terms of clearance time. Furthermore, the figure demonstrates that the simulations
having total travel time weights ranging from 0.2 to 0.8 have the same clearance time,
which can be explained by the fact that these weights generate the same solution to the
SAP problem, which could be expected for the medium-scale problem. In Figure 4.3, the
mean speed of the network is depicted. A higher value of mean speed indicates better
performance in terms of the efficiency of the evacuation process. The graph reveals a
combination of the two objectives with weights ranging from 0.2 to 0.8 that result in
more efficient use of the network.

The results for the Mill Valley network are presented in Figure 4.4. This figure shows
that going for a mixed p-center and p-median formulation with wtt = 0.1 and wct = 0.9
gives the best output in terms of clearance time. Regarding the mean speed of the network,
the results show optimizing clearance time provides less mean speed for the network. Note
that higher mean speed does not provide minimum clearance time as the departure time
distribution of evacuees is not uniform. In addition, Figure 4.4 shows that there is no
correlation between mean speed and clearance time, as all scenarios have different values
for clearance time measures.

The two optimization approaches, namely minimizing total evacuation time and min-
imizing clearance time, both play a significant role in the SAP formulation to address the
DPE problem. However, the effectiveness of these approaches can vary greatly depending
on the specific scenario or test case.

Figure 4.3: Network mean speed and clearance time variation over different objectives of
SAP of Luxembourg City.
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Figure 4.4: Network mean speed and clearance time variation over different objectives of
SAP of Mill Valley City

4.4.2 Penetration rate sensitivity analysis

While assuming that 100% of evacuees use connected vehicles may be unrealistic at
present, it is a potentially attainable scenario in the future. Hence, multiple penetra-
tion rate values for connected vehicles are considered for both test cases.Note that, This
sensitivity analysis is applied to scenarios with the best weights for each case determined
in the previous section. The connected vehicles are chosen randomly when considering
a certain percentage of penetration rate. Only this specific percentage is responsible for
transmitting positioning information and receiving online orders. Consequently, the cloud
server exclusively monitors and guides this subset of vehicles. The proposed evacuation
framework is executed for five penetration rate values, and the results are presented in
Tables 4.1 and 4.2 for the LuST and Mill Valley scenarios, respectively.

Table 4.1 presents the different values of the performance measures used for multiple
penetration values. The table clearly shows that the case of a 100% of penetration rate
is the best scenario in the LuST network. Table 4.1 also illustrates acceptable values of
Packet Delivery Ratio (PDR) measure for 70%, 50%, 30%, and 10% scenarios. This PDR
level means that around 75% generated packets are received correctly in the range of
network infrastructure and without the need for retransmission. Also, the delay measure
is crucial, especially in this case dealing with population evacuation. The average end-to-
end delay of packets considering the VCC architecture employed is around 203 ms.

Table 4.1: Different penetration rate performance measures
Metrics PR 100% PR 70% PR 50% PR 30% PR 10%
Network clearance time(s) 1775 1833 1846 1873 1923
Mean evacuation time(s) 1071.54 1081.17 1084.90 1081.17 1102.28
Average travel delay
(ATD)

205.47 220.24 219.68 228.88 234.47

Average evacuation delay
(AED)

229.04 243.58 243.58 252.49 254.34

End-to-end delay (ms) 205.30 203.75 202.77 201.17 200.25
Packet Delivery Ratio 74.20% 75.80% 76.24% 75.50% 76.44%
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Table 4.2 shows multiple values of the penetration rate of vehicles in the large-scale
scenario of Mill Valley City. The large network and the high demand considered put
limitations on simulating penetration rate high values. In this Table 4.2, we compare
scenarios with 0%, 10%, 20%, 30%, and 40%. Results demonstrate that the evacuation
process is optimized using vehicular communication, with a difference of more than 2
hours in terms of clearance time between scenarios with PR=0% and PR=40%.

Table 4.2: Different penetration rate performance measures
Metrics PR 40% PR 30% PR 10% PR 00%
Network clearance time(s) 23311 23387 23683 29826
Mean evacuation time(s) 14502.9 14570.34 14572.84 14719.26
Average travel delay (ATD) 520.29 511.37 363.99 449.57
Average evacuation delay (AED) 1204.16 1075.49 1004.29 942.92
End-to-end delay (ms) 405.30 403.75 401.17 -
Packet Delivery Ratio 70.20% 71.80 72.50 -

The outcomes presented in Table 4.1 and 4.2 demonstrate a noteworthy enhancement
in the quality of the final solution achieved through the scenario with only PR=30%,
where both planning and online guidance models are utilized. The results concerning
End-to-End delay and PDR indicate that with a 30% penetration rate, we achieve a
latency-sensitive application that exhibits limited delay and a high PDR value, thereby
meeting acceptable standards as the higher value than 30% for the PR does not improve
the results significantly.

4.4.3 Vehicular communication architectures

In this section, we use the results of the previous sensitivity analysis sections about
SAP’s best objective and a realistic penetration rate value of PR=30%. Our focus lies in
modifying the vehicular communication architecture and investigating its impact on the
success of evacuation operations. Therefore, we conduct a comparative analysis between
two well-known architectures, namely Vehicular Fog Computing (VFC) and Vehicular
Cloud Computing (VCC), to assess the effects of this alteration. By examining these
architectures, we aim to understand how changes in the communication infrastructure
can influence the overall efficiency and effectiveness of evacuation operations. VFC and
VCC are two distinct architectures for vehicular communication, each offering unique
characteristics and advantages. Due to its proximity to vehicles, VFC offers lower latency
and faster response times for real-time applications. Fog nodes in VFC can process and
analyze data locally, reducing the need for data transmission to remote cloud servers.
In contrast, VCC introduces higher latency as data has to travel to distant cloud data
centers for processing and storage.

As expected, Table 4.3 reveals an increase in network clearance time, 3.9% for medium
scale and 0.4% for the large scale, when deploying the fog computing architecture. How-
ever, it also demonstrates a significant decrease in the end-to-end delay. We can con-
clude that fog computing can achieve comparable results to cloud computing in terms of
transportation performance while offering the advantage of reduced latency. This finding
highlights the potential of fog computing in delivering efficient and timely communication
in transportation systems, bridging the gap between local processing capabilities and the
need for real-time data analysis and decision-making.

82



Table 4.3: Different architectures performance measures
Scenarios Luxembourg City Mill Valley City
Metrics / Telecom. architecture VCC VFC VCC VFC
Network clearance time (s) 1873.00 1948.00 23387.00 23488.00
Mean evacuation time (s) 1081.17 1110.53 14570.34 14541.81
Average travel delay (ATD) 228.88 221.11 511.37 431.70
Average evacuation delay (AED) 252.49 265.28 1199.52 1108.12
End-to-end delay (ms) 201.17 0.24 403.75 0.24
Packet Delivery Ratio 75.50% 65.01% 75.80% 49.88%

4.5 Discussion
We made an attempt to address the dynamic population evacuation (DPE) problem by
introducing a comprehensive framework incorporating both strategic planning and online
management via VANET. An analysis of various models used in evacuation planning and
VANET creation and execution in the context of evacuations is presented. We propose
a generic framework following the PDCA improvement cycle for the DPE problem. The
model is implemented for city networks, namely Luxembourg City and Mill Valley, and
a complete analysis is conducted to find the best configuration of the model for real
applications. Our sensitivity analysis suggests that the choice of the objective function
for the DPE problem can have significant implications for evacuation efficiency. The
results recommend that the pure p-median approach for minimizing total evacuation
time is suitable for medium-scale scenarios, and a weighted objective showing better
performance for large-scale evacuations. Another noteworthy finding is that even a low
penetration rate (e.g., 30%) of connected vehicles can provide substantial benefits in
managing the online DPE, leading to better utilization of network capacity. In our analysis
of vehicular communication architectures, we found that the Vehicular Fog Computing
(VFC) implementation results in lower message transmission delay, with clearance time
outcomes comparable to a centralized architecture deploying Vehicular Cloud Computing
(VCC).
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Chapter 5

Spatio-temporal Risk Evolution in
the Evacuation Process

The chapter proposes an integrated framework for wildfire evacuation combining fire mod-
eling, traffic simulation, optimization techniques, and vehicular communication networks.
Evacuation planning involves solving optimization models for shelter allocation and route
assignment. Real-time adjustments are enabled through a cloud architecture where ve-
hicles communicate to receive updates on routes and shelters. Experiments apply the
framework to evacuation scenarios based on the 2017 Tubbs Fire. Results show the
integrated approach reduces network clearance time, vehicles exposed to fire risk, and
congestion compared to models without real-time communication. The findings demon-
strate the value of combining evacuation planning with dynamic adjustments facilitated
by vehicular networks for more effective evacuation during wildfires. The framework pro-
vides a novel methodology [Idoudi et al., 2023a] integrating emerging technologies like
optimization, simulation, and networking to enhance evacuation management.
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5.1 Introduction
Wildfires have been a significant threat to US communities living in the wildfire-urban
interface (WUI) areas [Nauslar et al., 2018]. According to [Wong et al., 2020], from 2017
to 2019, a series of devastating wildfires affecting WUI regions led to the evacuations of
over one million people only in California. Moving a large proportion of residents to safety
points in a timely manner requires advanced emergency planning. Therefore, evacuation
modeling and simulation tools with real-time information are critical for such a process.

With the expansion of urban and suburban areas, the increase of WUI regions poses
wildfire threats to more communities [Kuligowski et al., 2022]. With unexpected fac-
tors such as winds or fire fuels in the region, wildfire would expand to the city level,
as in the 2017 Tubbs Fire, the 2018 Paradise Fire, and the 2019 Kincade Fire. With
this in mind, one could not neglect that when evacuating residents towards the urban
region is one of the viable planning measures, regular urban traffic would bear large
pressure [Soga et al., 2021].

Previous work has studied evacuation simulation using different methodological setups.
Simulating phased evacuation combined with fire modeling has been studied by [Beloglazov et al., 2016].
Integrating traffic simulation into evacuation has been developed by [Soga et al., 2021], [Melendez et al., 2021],
and [Grajdura et al., 2022], as further discussed in the next section. While these works ex-
plore different aspects of a wildfire evacuation, more emerging technologies such as smart
transportation, optimization, and real-time communication systems could be integrated
into an evacuation in planning for disaster management. Such technology could inform
transportation planning and shelter establishments when policymakers try to prepare for
a large-scale evacuation. To our knowledge, there has been no research that combines
fire data with emerging technology, such as real-time mobility and communication, with
disaster evacuations.

In the study, we proposed a framework that combines traffic simulation with daily
mobility, optimization systems, and cloud communication systems to represent and im-
plement wildfire evacuation scenarios. We used fire data directly derived from the 2017
Tubbs Fire in Calistoga, California. The focus of our study is to examine the potential
impact of integrating smart infrastructure and transportation planning on the evacuation
results of a region, specifically during extreme fire incidents when all inhabitants opt to
evacuate the area.

The remainder of this chapter is organized as follows. The next section discusses
relevant literature on fire risk management, transportation network optimization with
shelter allocation and dynamic traffic assignment, and communication systems. Section
”Problem Formulation” formulates the network optimization problem detailing problem
variable inputs and optimization constraints. Planning and online phases are presented
in this section. Section ”Methodological Framework” illustrates the architectural system
design to capture and manage the evacuation process. Sections ”Test case” and ”Re-
sults” cover our experiment setup, and results and discuss findings, respectively, before
concluding remarks in the ”Conclusion” section.

5.2 Literature review
Research in wildfire evacuation takes from both quantitative and qualitative perspectives.
Qualitative studies focus on understanding the factors behind the evacuation choices of
residents living in fire-prone regions. Meanwhile, quantitative research combines wildfire
modeling and transportation simulation to understand transportation network resilience
and the total travel time of a community to evacuate people to safe places.

In their review of wildfires between 2017 and 2019 in California, [Wong et al., 2020]
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conducted a survey to study evacuation choices of evacuees to offer a descriptive pic-
ture of evacuees’ behaviors including choices of destination and route. Researchers in
the study recommended that public shelters should be maintained across stakeholders to
increase evacuation efficiency. [Kuligowski et al., 2022] modeled behavior choices from
survey results of households that were involved in the 2019 Kincade Fire in the Sonoma
County of California. The survey found that pre-fire perception of safety proves to be
one of the factors impacting residents’ decision on whether to evacuate. Leaving your
property behind for a safe place is a significant decision for residents. For those who
decide to leave, many factors could affect their trips, such as departure time and destina-
tion choices. [Beloglazov et al., 2016] developed a comprehensive dynamic factors-based
simulation model in contrast with traditional static models to study evacuation per-
formance. [Soga et al., 2021] combined wildfire modeling, transportation planning, and
telecommunication modeling to study the evacuation of three communities in Califor-
nia and proposed tailored strategies for stakeholders in each community in wildfire plan-
ning. [Grajdura et al., 2022] developed an agent-based model which combined survey data
and transportation modeling with running evacuation scenarios of the 2018 Camp Fire in
Paradise, California. Differed from [Soga et al., 2021], which assumes two nearby towns,
Chico and Oroville, of the Camp Fire as destinations for evacuees, [Grajdura et al., 2022]
modeled public shelters as destinations in their simulations. While previous works studied
wildfire evacuation with various transportation planning models and explored dynamic
factors that could affect evacuation outcomes, they have not explored the interaction dy-
namics of evacuation planners and evacuees making use of communications between the
two ends during the process.

Combining mobility data with evacuation modeling has been emerging since the de-
velopment of using cellular data to model traffic. [Melendez et al., 2021] used cell phone
data to predict vehicle densities of traffic during the 2017 Lilac Fire in San Diego County
in California. [Wu et al., 2022] shows the GPS data collected from mobile devices during
the 2019 Kincade Fire is a valuable addition to existing methods and provides new in-
sights into evacuation studies. To our knowledge, no research has combined daily mobility
from phone data, vehicular communication, and fire evolution for tackling the evacuation
problem. This work is distinguishable from the previous work by taking into account the
impact of the dynamic evolution of the hazard on both the planning level and vehicular
communication level.

The literature addresses the Dynamic Population Evacuation (DPE) problem from a
telecommunication perspective by utilizing vehicular ad-hoc networks (VANETs) specif-
ically designed for emergency situations. Various telecommunication technologies have
been explored in the literature, regardless of the planning phase. Numerous studies ex-
tensively explore evacuation models incorporating vehicular communication capabilities.
These studies comprehensively cover various aspects of evacuation, employing different
communication architectures, protocols, and types of emergency messages.

[Alazawi et al., 2014] have presented a tool designed to examine ITS Services such as
VANET under a cloud computing architecture. The primary objective of this tool is to
enhance transportation evacuation speed strategies, thereby contributing to the preser-
vation of human lives during road disasters and facilitating efficient day-to-day transport
management and emergency response operations. Some studies have focused on network
architectures used for emergency situations, aiming to collect data rapidly and ensure a
successful evacuation process. For instance, [Nobre et al., 2019] used Software Defined
Network (SDN) to manage emergencies. The authors examined fog-enabled Vehicular
Software Defined Networking (VSDN) design principles, encompassing systems, network-
ing, and services. The evaluation was conducted using real data on a traffic management
system for fast accident rescue. A discussion of research challenges and opportunities
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for integrated fog-enabled VSDN was also included. Other studies target evacuation by
proposing different and less redundant emergency message exchange protocols. For ex-
ample, [Siddiqua et al., 2019] proposed an integrated Content-Centric Network (CCN),
iCAFE, for intelligent Congestion Avoidance and Fast Emergency services in smart cities.
It introduces a novel content-centric VANET-based protocol, efficient traffic control al-
gorithm, and unique packet headers. iCAFE achieves high packet delivery and minimal
rescue delay. [Khalid et al., 2016] highlighted the need for emergency evacuation prepa-
ration. They developed a cloud-based service that provides real-time route suggestions,
prioritizing rescue vehicles. Experimental evaluation of simulated traffic demonstrated
the service’s potential to improve traffic operations during evacuations. Efficient real-time
data management was a key advantage. The mentioned studies focused on the quality
of communication during the evacuation process. However, the content of the communi-
cation which supports the decision of evacuees is also crucial. [Idoudi et al., 2022d] also
included vehicular communication using VANET under a cloud-based architecture to add
rerouting capabilities in order to reduce evacuation time. However, this study does not
take into account the dynamic nature and evolving state of the hazard in their framework.

Here a brief literature review on evacuation planning and risk assessment models is
presented. The evacuation problem can be defined as an optimization problem to deter-
mine the optimal decisions for the destination and route of all evacuees. From applied
mathematics points of view, both decisions can be formulated separately by Shelter Al-
location Problem (SAP) and Dynamic Traffic Assignment (DTA) following the bi-level
structure of the problem [Wang et al., 2016b]. Hence the complexity of SAP and DTA
is often tackled in many studies using a bi-level problem formulation, as discussed in
Chapter 2. In this formulation, the upper-level perspective revolves around the alloca-
tion of shelter locations by the system operator. In contrast, the lower level is dedicated
to exploring routing strategies and the behavior of evacuee route choice, as highlighted
in [Ma et al., 2019].

In the dynamic context, only a few studies have considered both SAP and DTA simul-
taneously. [Hsu and Peeta, 2014] examined the evacuation planning process, incorporat-
ing the DTA problem with a fixed shelter allocation scheme. In a previous study by the
same authors, in [Idoudi et al., 2022a], both dynamic problems were addressed sequen-
tially, aiming to minimize the total travel time in SAP and calculating Stochastic User
Equilibrium (SUE) for DTA. However, these works did not take into account telecom-
munication networks or the evolving nature of the hazard. In [Idoudi et al., 2022d], a
VANET architecture is implemented for the DPE problem to revise the route choice dur-
ing the evacuation process; while the shelter assignment was static. Besides, the nature
and evolution of the hazard were not considered in that study. To the best of our knowl-
edge, no existing literature has addressed the population evacuation problem considering
the evolving hazard, constructing an optimization plan to solve both SAP and DTA, along
with the online management phase that incorporates vehicle communication.

5.3 Problem formulation
Evacuation operations have to be executed more safely considering the traffic dynam-
ics [Zockaie et al., 2014] and risk evolution. In order to maximize the safety of each evac-
uee, we solve the problem under an offline scheme for planning purposes and in an online
setting to readjust our plan towards safer evacuation, taking into account the evolving
state of the hazard considered.

The offline phase, representing the planning stage, aims to establish an initial evacu-
ation plan. In the online phase, vehicular communication is considered within the cloud
computing paradigm. Recall that from a planning perspective, evacuees face two crucial
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decisions in DPE: (i) selecting a shelter as their destination and (ii) choosing a route to
reach that destination. To achieve this, two main optimization problems, namely SAP and
DTA, must be solved. We formulate the SAP problem to minimize total evacuation time,
prioritizing the system operators’ interests. This scenario assumes limited knowledge of
shelter capacities and conditions, with the system guiding vehicles to their shelters. Con-
versely, the DTA problem addresses the Stochastic User Equilibrium (SUE), considering
evacuees’ biased decision-making process. In other words, evacuees selfishly select their
paths toward their chosen shelters, aiming to minimize their perceived evacuation time
[Idoudi et al., 2022b].

Table 5.1: Table of notations
M Set of all evacuees.
N Set of all nodes in the network.
A Set of edges (links) in the network.
T Set of all time intervals without overlap cover the total duration considered H.
O Set of origin nodes, a subset of the set of nodes, O ⊂ N .
S Set of destination nodes, a subset of the set of nodes, S ⊂ N .
F Set of hazardous nodes, a subset of the set of nodes, F ⊂ N .
i Index of evacuee, i ∈ M .
n Index of node, n ∈ N .
o Index of origin node, o ∈ O.
s, s′ Index of destination node, s ∈ S, s′ ∈ S \ {s}.
j Index of hazardous node, j ∈ F
µ Index of Time interval, µ ∈ T .
t Index of the exact clock time, i.e., hh:mm:ss.
ζo Risk level of each origin node o ∈ F
ys Binary variable; it is set to 1 if shelter s is selected; 0 otherwise.
xos Number of evacuees allocated to the origin-destination pair os.
wo Amount of demand evacuating from origin o.
Di Distance separating vehicle i to the center of the hazard.
Dmax Maximal distance separating vehicle i to the center of the hazard.
tn Average of the travel time of incoming edges to node n, n ∈ N
Di Distance separating vehicle i to the center of the hazard.
Dmax Maximal distance separating vehicle i to the center of the hazard.
Ni Number of vehicles in the following edge that evacuee i approach to.
N i

max Maximum possible amount of vehicles in the following edge that evacuee i
approach to, i.e., the edge maximum capacity.

tnis Estimated Travel time from node ni to node s, ni ∈ N \ S and s ∈ S.
λ Safety threshold for rerouting vehicles.
α Threshold for shelter reallocation for vehicles.
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5.3.1 Planning phase

The planning phase corresponds to the optimization problem composed of two subprob-
lems. These subproblems are solved inside a rolling horizon [Peeta and Mahmassani, 1995a]
loop to account for new origins or new hazardous zones corresponding to the evolving state
of the hazard. The first subproblem is finding the shelter allocation to minimize the total
travel time. SAP is formulated in literature as a subclass of the widely known facility
location problem [He and Xie, 2022]. The second subproblem objective is to find the op-
timal routes from origins to destinations that minimize the travel time for each user. You
can find more details on planning problem formulation in Section 2.3.

Let us define our DPE problem on a directed graph representing a traffic network
G = (N, A), where N is the set of nodes, and A is the set of edges (links). We define O
as the set of origin nodes that determines the hazardous zone, including evacuees to be
evacuated, S as the set of destination nodes representing safe locations, i.e., shelter sites,
and F represents the set of nodes under potential risk. Without loss of generality, we
assume that O, S, and F are disjoint subsets of N (O, S, F ⊂ N). We denote by wo the
amount of demand of each origin o, o ∈ O.

This demand represents the number of users that should be evacuated. We note by
xos the integer decision variable that determines the number of evacuees allocated to the
pair having origin o and destination s. We define the binary variable ys as the decision
variable of the shelter selection s. The t∗

os is the minimum travel time between origin
o and destination s. In most cases in the literature, the travel time is calculated with
a static formulation of the traffic assignment problem using an analytical travel time
function (e.g., BPR function) [Bayram, 2016]. In our case, we use a dynamic simulator
that provides the travel time of any edge in the network [Lopez et al., 2018b]. Therefore,
t∗
os is a given parameter at time t from the simulator’s time while solving this problem.

The full list of the important notations of this chapter is presented in Table 5.1. We solve
the shelter allocation problem described by the following steps in Algorithm 1.

Algorithm 1 Solving SAP
Require: State-to-destination mapping dictionary
Require: Capacities-to-locations dictionary
Require: Origins and destinations information
Ensure: Optimized allocation and selection solution

1: procedure OptimizeAllocationSelection
2: Create a dictionary of capacities mapped to locations.
3: Identify unique origins.
4: Create a dictionary of paths between origins and destinations.
5: if not initial state then
6: Load shelter new capacities.
7: Create a model.
8: Define decision variables x and y.
9: Define the objective function to minimize the total travel time as

min
∑
o∈O

∑
s∈S

tα
os

∗xos (5.1)

10: Add constraints to the model.
11: Solve the model and store the solution.
12: Output: The solution to the model represents optimized allocation and selection

based on the defined objective and constraints.
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The SAP solution assigns the demand from all sources (o) to all shelters (s), i.e., the
OD matrix of the DTA model. It should be noted that the UE principle always assumes
that all users have complete knowledge of the network information and consistently choose
routes to reduce travel expenses [Ameli et al., 2020a]. This presumption is untenable and
unrealistic in a rare event like an evacuation situation. The assumption can be further
relaxed in accordance with the SUE principle by asserting that no traveler can unilaterally
change their course to reduce their perceived travel cost [Lebacque et al., 2022]. In this
study, evacuees’ departure time is provided, and we define the shortest path as the one
with the least travel (evacuation) time. We deploy a trip-based simulator to produce this
first strategy. As a result, rather than the deterministic route selection process used in
UE, the dynamic traffic network equilibrium conditions with the given travel demand and
departure time distribution include a probabilistic route selection process. The stochastic
distribution is assumed to be random in the SUE model to represent the bias term in the
route choice model [Balzer et al., 2023].

Algorithm 2 Simulation-based Dynamic Traffic Assignment
Require: Network topology
Require: Origin-destination demand
Require: C-Logit route choice model parameters
Ensure: Optimal traffic assignment and travel times

1: procedure Dynamic Traffic Assignment
2: Initialize network topology and demand.
3: Assign initial traffic flow to each link.
4: while not converged do
5: Simulate traffic flow based on the current assignment.
6: Update link travel times using simulation results.
7: Calculate route choice probabilities using the C-Logit model.
8: Update traffic assignment based on route choice probabilities.
9: if convergence criteria met then

10: break
11: Calculate final travel times, and link flows.
12: Output: Optimal traffic assignment and travel times.

Algorithm 2 describes the process of computing the simulation-based DTA. In this
framework, the objective is to reach the SUE state, where each evacuee cannot reduce its
perceived evacuation time by changing its chosen route [Ameli et al., 2023]. To achieve
this condition, we deploy an iterative process that involves optimization and simulation
phases. The optimization phase determines vehicle route choices, while the simulation
phase involves simulating evacuees (vehicles) on the specified routes obtained from the
optimization phase. The C-logit mechanism [Cascetta et al., 1996] is used as the model
for assigning users to their respective routes.

5.3.2 Online phase
The preceding models were established during the planning phase to generate an initial
evacuation plan for evacuees. However, the subsequent model pertains to real-time evacu-
ation management, where we depict the ongoing evacuation process as it unfolds over time.
The primary objective is to effectively address unforeseen circumstances and dynamically
adapt the initial plan during the evacuation. This is achieved by taking into account
the communication capabilities of vehicles, enabling evacuees to receive and transmit new
information and accordingly update their routes. The focus shifts from a static plan to a
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responsive and adaptable approach ensuring optimal evacuation management throughout
the entire process.

The proposed online evacuation guidance system consists of three key components, il-
lustrated in Figure 1. The first component is a centralized traffic monitoring and rerouting
service, represented by the cloud server (which may be physically distributed across multi-
ple servers). The second component comprises roadside units (RSU), which establish the
required network infrastructure to facilitate communication between the cloud server and
vehicles. The third layer involves vehicles equipped with onboard units (OBU). These
vehicles serve as end communication nodes, periodically exchanging data such as cur-
rent position, speed, and direction with RSUs nodes through the vehicle-to-roadside unit
(V2R) communication [Guo et al., 2022], as Figure 5.1 depicts. Leveraging these three
fundamental components of our cloud architecture, we have devised a method to reroute
vehicles, ensuring congestion avoidance and prompt evacuation from hazardous areas.
This is achieved by estimating the level of congestion on the vehicles’ routes and taking
into account the updated propagation of risk over the network based on the evolution of
hazards.

Figure 5.1: Components of the online evacuation guidance system

The proposed cloud-based evacuation guidance system implements a rerouting method
to evacuate hazardous zones as quickly and safely as possible. To achieve this goal, the
congestion level of each vehicle’s route is estimated by measuring vehicular road density.
The evolving risk is also considered by measuring the distance between the vehicle and
the hazardous zone, as shown in Equation 5.2.

(1 − ∆i
t)(

Ni

N i
max

)( Dmax

Di + ϵ
) − λ < 0, ∀i ∈ M (5.2)

In order to assess the need for rerouting vehicle i at time t, we introduce the binary
variable ∆i

t. This variable takes on a value of 1 if the vehicle is to be rerouted, and 0
otherwise. Equation 5.2 deploys various normalized fractions to calculate the value of
∆i

t. More specifically, Ni

N i
max

represents the density of vehicles in the subsequent edge that
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vehicle i is approaching. This density measurement helps evaluate the level of congestion
to be avoided during the evacuation process.

To give priority to vehicles in close proximity to the hazard, a normalization function
is applied to the distance between each vehicle’s current location and the hazard. This
is achieved by dividing the maximum distance covered by the hazard, denoted as Dmax

Di+ϵ
,

where ϵ is a small positive value to avoid infeasibility fraction, 0 < ϵ << 1. By combining
these factors, we can determine the necessity of rerouting and identify the safest and most
efficient route for each vehicle.

The introduction of the binary variable and the utilization of normalized fractions
in Equation 5.2 enable us to make informed decisions regarding rerouting, taking into
account both congestion levels and proximity to the hazardous area. This approach
ensures that vehicles are directed toward the optimal routes that prioritize their safety
and efficiency during the evacuation process.

In certain situations, it may become necessary for vehicles to modify their intended
destination due to various factors, such as the distance being too far or the designated
shelter being unsuitable for their needs. To tackle this challenge, we introduce the concept
of shelter reallocation, which enables the evacuation system to dynamically assign new
destinations to evacuees whenever required.

The shelter reallocation mechanism serves as a flexible solution that accommodates
unforeseen circumstances and evolving conditions during the evacuation process. It en-
sures that evacuees are directed towards alternative shelters that are more feasible or
appropriate in terms of proximity, capacity, resources, or any other relevant considera-
tions. By updating the destination assignments in real-time, the system can effectively
respond to changing requirements and optimize the overall evacuation efforts.

In order to assess the need for reallocation, we introduce the binary variable Ψi
t. This

variable equals 1 if vehicle i requires reallocation at time t, and 0 otherwise. Equation
5.3 utilizes the fraction tnis

tnis′
to determine whether a new destination s′ is closer to the

vehicle’s current location compared to the initially planned shelter s. Specifically, this
fraction measures the time gain achieved by redirecting vehicle i from its current node ni

to the new shelter s′, relative to the time required to reach the initially planned shelter s.
In order to be considered for reallocation, the calculated gain must exceed a predetermined
threshold α, ensuring that the reallocation results in significant time savings.

(1 − Ψi
t)

tnis′

tnis

− α < 0, ∀i ∈ M, ∀s ∈ S, s′ ∈ S \ {s} (5.3)

By evaluating this fraction and comparing it against the threshold α, the system can
determine whether reallocation is advantageous in terms of minimizing travel time for the
vehicle. This approach allows for efficient decision-making regarding the reallocation of
vehicles to alternative shelters, maximizing the effectiveness of the evacuation process at
the individual vehicle level.

This section presented the formulation for both the initial planning and the online
guidance of the DPE problem. However, finding an optimal solution is challenging and
time-consuming. Multiple indicators are needed to measure the proximity of obtained
solutions to the optimal one for timely evacuation. Additionally, analyzing the network’s
evolution during evacuation helps assess the impact of online guidance on the entire
network.

5.3.3 METHODOLOGICAL FRAMEWORK
Let us recall that our model for solving the DPE problem taking into account the hazard
evolution, consists of two main components: constructing an evacuation plan while consid-
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Figure 5.2: Flowchart of the proposed DPE framework with hazard evolution

ering the expected hazard evolution by solving the SAP and DTA problems and providing
online guidance to vehicles in congested areas and in risky zones. In this section, we out-
line the step-by-step execution sequence of each component in our formulation. For the
planning phase, we adapt the methodology in Section 2.3 to include the risk dynamics.
This phase aims to modify the planning model to go for SUE, considering the poten-
tially hazardous region. In the online phase, we execute the proposed online optimization
model for rerouting and reallocation with three dynamical processes running in parallel:
(i) Trip-based (simplified agent-based) traffic simulator to capture congestion dynamics;
(ii) Telecommunication network synced with the traffic simulator; (iii) Fire simulator
which represents the spatiotemporal evolution of risk on the network. In other words, for
the online evacuation management phase, we add a network layer for vehicular communi-
cation to capture the congestion of the network and the spatiotemporal evolution of the
hazard. To this end, we use a cloud computing scheme due to its low implementation cost.
This is the main advantage of cloud computing compared to fog or edge architectures as
they require a large amount of implementation budget [Gaouar and Lehsaini, 2021]. The
proposed methodology of this study is presented in Figure 5.2.

The steps of the framework are detailed as follows:
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Step 1. Input database:
a) Population Distribution: The number of evacuees from each node, wo, o ∈ O.
b) Network Map: The city map is represented as a graph using a network file,
G(N, A).
c) Risky Zone: The set of origins to be considered as risky zones, F .
d) Destination Nodes Set: The set of shelters serving as destinations, S.

Step 2. Select safe destination: This step involves the selection of nodes as destination
nodes that satisfy the requirement of the evacuation type. Additionally, a shelter
located outside the potentially risky zone is chosen.

Step 3. Select origin in risky situation: From the list of nodes, origins located inside the
expected risky zone are selected. These origins are considered potentially hazardous
nodes that need to be evacuated.

Step 4. Sort origins: This step involves the prioritization of origins that are closer to
the hazard. The risk level value for each node is calculated in this step. We
denote ζo as the risk level of each origin node o. ζo varies based on the evolu-
tion of the risk represented by FMj and the distance to the expected risky zone.
ζo = max( F Mj

distance(o,j)), ∀j ∈ F .

Step 5. Solve SAP: This step involves a processing task where the SAP is solved. The
set of origins and the set of destinations are taken into account, and the optimal
allocation of demand is found using the SAP formulation in Section 5.3.1: Planning
phase.

Step 6. Solve DTA: This step presents a simulation-based method for solving the Dynamic
Traffic Assignment (DTA) problem. The solving method balances between simula-
tion and optimization phases using the c-logit route choice model. The DTA solver
aims to achieve the SUE (Section 5.3.1: Planning phase).

Step 7. Check last time interval: This step involves verifying if the last time interval has
been reached. If so, the process moves to the online phase; otherwise, it proceeds to
the next time interval.

Step 8. Move to next time interval: In this step, the travel time is updated to handle
the next interval with new risky zones.

Step 9. Update risky zone: This step represents the process of updating the potential
risky zone by adding or removing, or resizing (new) zones. The FMi for each node
in the new zones is updated accordingly.

Step 10. Simulating the evacuation process of all evacuees with vehicular commu-
nication and fire simulator: This step corresponds to the online phase, which
represents the real-life scenario. In addition to the fire simulator representing the
hazard evolution, a vehicular communication layer is added under the centralized
cloud architecture for rerouting and shelter reallocation services in order to readjust
the initial plan for a more effective evacuation operation.

Step 11. KPI generation: After completing the simulation, all results, including various
performance metrics (detailed later) are calculated.
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5.4 Case study
In the preceding section, our framework for addressing the online DPE problem was
introduced. In this section, we aim to apply this methodology to a real network in order
to validate the proposed solution. We first describe the test case under consideration and
subsequently outline the experimental design.

Figure 5.3 illustrates the fire progression georeferenced from [Coen et al., 2018], trans-
portation network from OpensStreetMap [OpenStreetMap contributors, 2017], and public
shelters from Federal Emergency Management Agency (FEMA).

Figure 5.3: Map of study area

5.4.1 Study case: 2017 Tubbs Fire in Calistoga, California
In October 2017, Northern California experienced several deadly large wildfires: the
Tubbs, the Nuns, and the Atlas fires. Altogether, these fires burned over 140,000 acres
with evacuations of 100,000 people [Wong et al., 2020]. Ignited near Calistoga, California,
the Tubbs fire was the first one of this series of fires and led to 22 fatalities. The fire started
around 9:45 pm on October 8th, and later in the event, the fire parameter was detected
at 3:09 am on October 9th past Highway 101 in Fulton, California. [Coen et al., 2018]
applied the CAWFE® fire modeling system to reconstruct the fire perimeter progression
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of the event. We georeferenced the perimeters derived from the model outputs and satel-
lite imagery from MODIS and VIIRS [Xiong and Butler, 2020] and added a buffer of 500
m to include the network at risk (see Fig. 5.3 ). The region that was impacted by the
fire was mostly residential areas with residential roads of up to two lanes.

5.4.2 Mobility data
Including urban mobility measures in planning for evacuation allows planners to under-
stand the traffic dynamics of a large region. However, high-resolution urban-scale mobility
data are not usually available [Jiang et al., 2016]. Previous work developed the TimeGeo
framework using Call Details Records (CDR) data to generate individual trajectories in
high spatial-temporal resolutions, which enables large-scale traffic modeling at the city-
scale level when combined with mobility simulation tools.

We computed a synthetic population of the study area of millions of CDR pro-
vided by an anonymized cell phone data provider. Each time a mobile phone makes
a call/SMS/data transaction, a CDR is generated, including metadata of the antenna
tower and the date-time of the activity. We applied the TimeGeo framework (designed
by [Jiang et al., 2016]) on the CDR data to simulate reliable mobility traces of users in
the study area. The data covers 6.4 million mobile phone users in the San Francisco
Bay Area. The framework simulated 27,000 residents with home locations within the
Tubbs Fire perimeters. Combining with vehicle usage rate on the census tract level
provided by National Household Travel Survey [NHTS, 2017], we applied SUMO traffic
simulation [Lopez et al., 2018b] on the simulated origin-destination (OD) data of a typical
weekday of the study area. Using the simulated results, we extracted the dynamic regional
population on an hourly basis in the studied area to account for the changing dynamics of
the transportation network at different times of the day. Based on our simulation, when
the fire comes, there are 30,000 people within the fire perimeters.

5.4.3 Scenarios
To account for the real-life evacuation situation, we assumed that 2 or 3 persons share one
vehicle, which makes sense based on the household size from the census data [Bureau, 2019]Ṫhe
departure time of the population follows a gamma distribution [Chen et al., 2020]. We
implemented four scenarios: a basic scenario and three other simulation scenarios with the
combination of fire progression, shelter allocation (SAP), and dynamic traffic assignment
(DTA), illustrated in Table 5.3.

• Scenario S1: A naive scenario that represents the basic scenario assumes that
people living in fire-prone regions choose to leave their current locations towards
the nearest shelter after receiving an evacuation order. We assume that policy
planners have an estimation of the current population based on daily mobility data
in fire-prone regions.

• Scenario S2: We coupled the Tubbs Fire progression with SAP and DTA. We
assumed that when a fire ignition is reported, evacuation planners would hold a
vision of the fire progression with the use of operational fire simulation models.
Using the predicted fire progressions, phased evacuation orders are sent out with an
estimate of the arrival time of the fire to inform fire risk and the latest departure
time. Coupling with both SAP and DTA, an evacuation order, a recommended
shelter resulting from SAP, and an evacuation route based on the current state of
the network are given out to the people in the fire-prone regions.
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• Scenario S3: We combined a static fire-prone region, SAP, DTA, and VANET
in our simulation. The VANET system is used to communicate with vehicles on
the network to inform changing routes and destinations. When a link becomes
congested, if an alternative route is available, the cloud system would communicate
with the vehicles to suggest rerouting without considering the fire’s progression.

• Scenario S4: This scenario activates all four components as changing dynamics
in the simulation system. The progressive Tubbs fire, SAP, DTA, and VANET are
integrated to optimize and simulate the evacuation process.

Table 5.3: Simulation scenarios

Scenario Fire Progression SAP DTA VANET
S1 Static Static Static no
S2 Dynamic Dynamic Dynamic no
S3 Static Dynamic Dynamic yes
S4 Dynamic Dynamic Dynamic yes

5.5 Results
In this section, we present and discuss the results of the four mentioned scenarios us-
ing the same evacuation demand profile. Our methodology’s effectiveness was assessed
based on metrics such as the exposure rate, the number of vehicles in gridlock, and the
clearance time. In the context of VANET scenarios, with a penetration rate set at 30%,
each vehicle transmits a message packet to the server approximately every 1.66 minutes.
We note that we use an RSU communication range of 1km [Siddiqua and Jahan, 2022,
Idoudi et al., 2023d]. For rerouting and shelter reallocation thresholds, we have set λ to
0.2 and α to 0.8 due to the small penetration rate values. The results for the four scenarios
are presented in Table 5.2. For the definition and formulation of metrics in this Table,
please refer to 3.2.3.

Table 5.2: Performance metrics
Metrics / Scenario S4 S3 S2 S1
Network clearance time [s] 98745.0 99846.0 99684.0 107723.0
Mean in gridlock time [s] 1.02 1.01 1.03 32.16
Mean evacuation time [s] 500.70 505.14 662.49 2966.62
Average evacuation delay (AED) [s] 104.04 103.78 101.93 1615.86
End-to-end delay [ms] 400.22 400.10 - -
Packet Delivery Ratio 80.20% 80.50% - -

The findings reveal a noteworthy enhancement in the quality of the ultimate solution
achieved through Scenario S4, which incorporated both planning and online guidance
models, taking into account the evolving state of the fire. For example, compared to the
basic Scenario S1, there is a reduction of over 2 hours (8%) in the time taken to clear the
network. Moreover, Scenario S4 exhibited an improvement of more than 15 minutes (1%)
compared to Scenario S2.

The decrease in mean evacuation time in Table 5.2 shows that the online DPE improves
the evacuation solution by providing routes with less average travel time. Also, the
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improvement is remarkable for the AED of S2 compared to Scenario S1 which proves the
positive impact and the effectiveness of the planning process. We mention that including
telecommunication networks provides us with some errors and delays in sending and
receiving messages. In both cases, S4 and S3, we have around 400 ms for end-to-end
delay and PDR around 80%.

Figure 5.4(a) presents the distribution accumulation over time for four scenarios. The
accumulation at each time is the number of users traveling in the network. The figure
shows that the scenarios having evacuation plans (S4, S3, S2) outperform the other sce-
nario (S1). The clearance time and network capacity usage in Scenario S2 and S4 are
better than in Scenario S1 and S3, which highlights the importance of including hazard
evolution estimation in the planning phase. There is a significant difference between Sce-
nario S2-S4 and Scenario S1. Note that the gain of more than 2 hours in clearance time
between Scenario S4 and S1 is remarkable in our test case. We expect a better result by
increasing the number of evacuees and deploying larger networks.

Figure 5.4(b) shows the evaluation of network mean speed during the evacuation pro-
cess. This figure followed the results of the accumulation distribution. Scenario S4 out-
performs other scenarios meaning that the blue curve representing Scenario S4 stands
upper than the other curves in most cases. We can observe a dramatic decrease in the
speed before the end of evacuation because of queues formed in front of shelter sites.

To comprehensively assess the influence of considering fire evolution in our study, we
employ the exposure rate to fire as a fundamental metric. This measurement, widely
recognized and utilized in the literature, plays a pivotal role in determining the number of
individuals exposed to hazardous situations [Soga et al., 2021]. As successful evacuation
operations aim to minimize the risk posed to people, fewer users exposed to potential
hazards signify more effective and safer evacuation strategies. In Figure 5.5, we present a
detailed visualization of the evolution of vehicles exposed to fire throughout the various
evacuation scenarios. A substantial disparity emerges between the results of the basic
Scenario S1 and Scenario S3, which have not considered the fire evolution over time, and
Scenarios S2 and S4, which incorporate advanced planning techniques in their evacua-
tion procedures. Figure 5.5 also shows the distinction in the maximal values observed
in Scenario S4 and S3. Remarkably, Scenario S4 demonstrates a reduction in the max-
imal value, indicating that a notably smaller number of users are exposed to fire risks
when compared to the results of Scenario S3. This compelling evidence derived from
the comparison unequivocally supports the conclusion that Scenario S4 represents the
most optimal evacuation strategy. By significantly reducing the number of users in the
risky zone, Scenario S4 showcases its superiority over other alternatives. Its integration
of both planning and online guidance models, accounting for the evolving state of the
fire, leads to more efficient and secure evacuation operations. Consequently, our findings
emphasize the importance of considering fire evolution in devising evacuation plans, ul-
timately enhancing overall safety and minimizing the potential harm to evacuees during
emergencies.

In Figure 5.6, we present the evolution of traffic network congestion, focusing on
Scenario S4, S3, and S2. Scenario S1, known for having significantly high congestion, is
excluded from the figure. Notably, Scenario S3 exhibits greater congestion levels compared
to Scenario S4. These results align with the exposure rate data shown in Figure 5.5,
revealing a correlation between safety outcomes and congestion patterns. Additionally,
the figure highlights that Scenario S2 experiences a comparable number of vehicles in
gridlock with Scenario S3 when comparing the maximum values of the graphs. However,
it takes a longer time to resolve all the congestion in this scenario. The second peak
observed in the congestion level curves can be attributed to the formation of queues in
front of shelters. As evacuees seek safety during emergencies, they tend to converge toward
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(a) Accumulative number of active users in the network variation

(b) Network mean speed variation

Figure 5.4: Performance measures variation over scenarios
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Figure 5.5: Exposure rate variation over time

designated shelter areas, leading to temporary accumulations of vehicles. These queues
may arise due to limited shelter capacity, causing delays in the entry process.

Figure 5.6: Gridlock rate variation over time

5.6 Discussion
The evacuation of people during a disaster is essential. The goal is to move people from
dangerous areas to safe areas as quickly as possible to reduce the loss of life and property.
We address the dynamic population evacuation (DPE) problem. We can save more lives
by successfully modeling and optimizing this problem more efficiently. In this chapter,
we examine the existing literature on models utilized for evacuation planning and Vehic-
ular Ad hoc Network (VANET) establishment and implementation during evacuations.
In addition to the existing research on evacuation planning and VANET implementation,
the field of wildfire evacuation brings valuable insights from both quantitative and quali-
tative perspectives. Qualitative studies delve into comprehending the underlying factors
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that influence the evacuation decisions of residents residing in fire-prone areas. Simultane-
ously, quantitative research is crucial in wildfire evacuation analysis by combining wildfire
modeling and transportation simulation. This integration allows for a comprehensive ex-
amination of transportation network resilience and the overall travel time required for a
community to evacuate its inhabitants to designated safe locations safely. By quantifying
the potential impacts of wildfires on evacuation routes and travel times, decision-makers
can make informed choices regarding optimal evacuation strategies and resource allocation
during emergencies. By incorporating insights from both qualitative and quantitative ap-
proaches, the proposed framework in this study aims to address the complexity of DPE.
By considering the challenges posed by unpredicted events and accounting for the hu-
man behavior aspect, the comprehensive approach strives to enhance evacuation using
planning and VANET systems.

To address the challenges posed by the DPE in evacuation scenarios, we present a
comprehensive framework that leverages a traffic simulator to capture the dynamic nature
of the evacuation process. The framework involves two key stages: first, a planning process
is devised to determine shelter allocation using the System Optimum (SO) approach and
route planning using the Stochastic User Equilibrium (SUE) setting. Second, an online
management procedure is implemented during the evacuation phase to enable real-time
adjustments to vehicle routes. This is facilitated by a networking layer, where vehicles
can exchange data to receive updates on the best routes and shelter. To establish this
networking infrastructure, we have designed a cloud computing architecture. Within this
architecture, vehicles act as the final nodes, Roadside Units (RSUs) serve as the network
infrastructure, and a powerful remote computer functions as our cloud server.

To implement our methodology, we used a trip-based dynamic simulator that provides
travel information at each time step. We coupled this simulator with a network simulator
to add vehicular cloud computing communication. This framework includes an additional
dynamic layer to capture the spatiotemporal evolution of hazards during the evacuation
process. We applied our proposed methodology to the real-world evacuation scenario from
the Tubbs fire in California.

The results show that the proposed model exceeds the model with only evacuation
planning by more than a 15-minute decrease in network clearance time. This means that
using vehicular communication for giving new orders improves the evacuation operation
because it considers new events and emerging congestion not initially determined by the
plan. More importantly, we analyzed the exposure rate of vehicles to fire. The results
show that solving the online DPE considering the fire-evolving state saves more lives
and shortens the evacuation operation. This is also confirmed by the results on the
number of vehicles in gridlock over time. Besides, we have calculated end-to-end delay
and packet delivery ratios to evaluate the performance of the cloud computing architecture
for vehicular communication. Results show acceptable values in the case of delay-sensitive
applications.
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Chapter 6

General Conclusion

Summary and global overview
This Ph.D. thesis proposed a framework to tackle the dynamic evacuation problem and
in particular real-time evacuation management. Our research has focused entirely on
simulation-based models. This research has concentrated exclusively on simulation-based
models, for which extensive and productive literature has emerged over the past decade,
as reviewed in the introductory chapter and the opening sections of subsequent chapters.
Simulation-based models are well-suited for extensive urban transportation networks. As
highlighted in the literature review, analytical models are still prevalent in some evac-
uation studies due to their simplicity and their ability to elucidate equilibrium condi-
tions. Nevertheless, depending solely on simulation-based traffic assignment methods is
not sufficient. It is equally vital to incorporate destination choice modelling to compre-
hensively formulate and solve for globally optimal plans. In order to develop truly coordi-
nated evacuation strategies, the decisions of selecting a destination and determining the
route to reach it must be integrated and addressed simultaneously. Treating destination
and routing as independent elements overlooks their intrinsic correlation. An integrated
destination-routing optimization framework is crucial to capture their inherent interde-
pendence and to jointly optimize for the ideal evacuation plans, taking into account both
components at the same time.

Furthermore, evacuations in response to natural or human-induced disasters are in-
herently dynamic events. Relying solely on planned strategies is insufficient due to this
unpredictability. To address such fluid situations, real-time management systems that
can recalibrate evacuation plans are critical. Accordingly, the objectives of this work are:
(i) constructing an evacuation planning framework; (ii) integrating a real-time service
for rerouting or reallocation orders atop initial plans; (iii) assessing alternative vehicu-
lar communication architectures to support evacuation operations; and (iv) accounting
for time-evolving risk in both planning and online adjustment phases. Parallel to these
objectives, the storyline of this manuscript encompasses constructing an optimization
framework to solve the dynamic planning and evacuation problem with efficiency. Re-
garding the first objective, the core contributions were benchmarking existing methods
and formulating an effective simulation-based framework to rapidly attain traffic network
equilibrium inclusive of destination allocation.

In Chapter 2, the initial focus was on conducting an in-depth investigation and anal-
ysis of the current state-of-the-art solution algorithms that have been utilized for this
problem area. Several potential improvements and modifications were proposed to the
existing algorithms with the goal of enhancing their performance and efficiency compared
to the most recent methodologies in the literature. This comprehensive examination and
assessment of current algorithms provided critical groundwork and served as a foundation
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for moving forward with the design and development of an innovative new computational
framework intended for application to large-scale evacuation networks. The knowledge
gained through the review of existing techniques and identification of limitations guided
the creation of the new framework to effectively address challenges at a large scale while
leveraging the advantages of the current approaches. Moreover, another significant con-
tribution of the present work was developing a new approach based on the online man-
agement of the evacuation process. Chapter 3 includes two major components designed
and adapted to address the disaster preparedness and evacuation problem. The first part
focuses on planning for evacuation operations, while the second part examines vehicu-
lar communication aspects. The vehicular communication architecture developed in this
chapter helped reduce network clearance times and mean evacuation times.

The work in Chapters 2 and 3 laid the foundation for developing an effective tool
to address the disaster preparedness and evacuation problem. To address the third re-
search objective, Chapter 4 provided the main contribution of developing and comparing
centralized and decentralized vehicle communication systems for evacuation scenarios.
Two different communication architectures were proposed and examined - one utilizing a
fog computing-based decentralized approach and one utilizing a cloud computing-based
centralized approach. The overarching goal was to analyze how these two vehicle commu-
nication systems could potentially improve the performance and efficiency of large-scale
evacuation processes, considering impacts on both mobility factors like traffic congestion
and communication factors like network latency. By creating and simulating these two
systems, the research aimed to determine if a decentralized fog-based model or a central-
ized cloud-based model would be better suited to enabling seamless vehicle coordination
and information sharing during evacuation events. With regards to our fourth objective
of developing a framework that incorporates how risk evolves over time into the process
of optimizing evacuation plans and online orders, as we outlined in Chapter 5, there are
multiple metrics we can use to quantify the success of an evacuation process. These met-
rics allow us to evaluate how efficiently and effectively people are evacuated from an area,
how orderly the evacuation takes place, and how well-prepared and informed evacuees
are throughout the process. By taking into account how various risks and uncertainties
change throughout an evacuation event, our framework aims to continuously update and
adapt evacuation plans and logistics to maximize the likelihood of a successful evacuation
according to these key measures of performance. The dynamic risk evolution compo-
nent is intended to make the framework responsive to changing conditions on the ground,
allowing for evacuation plans and online order systems to be optimized in real time as
an event unfolds. Tracking the progression of different risk factors enables data-driven
adaptation of plans and systems to best serve evacuees as the situation develops.

Finally, the practical output of our research was the development of an optimization
framework, presented in Section 3.4, that serves as a platform bringing together all of
the implementations and technical contributions made throughout this thesis work. A
major highlight of this framework is the inclusion of an automation tool we developed
to advance the field of evacuation simulation. This tool automates key aspects of the
simulation process, including model creation, experiment configuration, and result analy-
sis. The framework also encompasses our implementations of cloud-based and fog-based
computing projects that enable parallel execution of traffic and network simulators. By
leveraging cloud and fog resources, we are able to run large-scale, high-fidelity evacu-
ation simulations with integrated models of transportation networks, traffic flows, and
communication networks.
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Contributions to our initial research questions
According to the list of research questions that was presented in section 1.6.2, our main
contributions are listed below in the same order:

• we conducted a comprehensive benchmarking of all existing models and method-
ologies for the two key problems of evacuation planning: the Shelter Assignment
Problem (SAP) and the Dynamic Traffic Assignment (DTA) problem. This bench-
marking reviewed analytical and simulation-based approaches across the literature.
Based on the findings from this review, we proposed a novel framework that couples
SAP and DTA models to more realistically capture the entire evacuation process.
The core innovation of our framework is the integration of SAP and DTA through a
rolling horizon approach, where SAP solutions continually update DTA simulations.
Our experiments validated that this framework drastically reduces network clear-
ance times compared to purely static planning approaches. These results conclu-
sively demonstrate the benefits of dynamic, adaptive allocation during evacuations,
as opposed to reliance on pre-determined static plans. By repeatedly solving SAP at
each time interval, our framework provides an optimal evacuation routing that ac-
counts for transportation networks’ inherent dynamics and congestion during crisis
events. Moreover, our analysis showed that repeatedly solving SAP requires mini-
mal computational overhead while significantly shortening the evacuation duration.
In summary, the unique integration of SAP and DTA models within a rolling hori-
zon optimization framework marks a novel contribution, enhancing state-of-the-art
evacuation modelling research.

• Chapter 3 explored real-time adaptation and improvement of evacuation plans
through the lens of VANET architectures. Specifically, we proposed modifications to
emergency message routing techniques in VANETs to account for different message
types and enable enhanced data transfer between vehicles during evacuations. Build-
ing upon this, we developed a framework for dynamically solving the DPE problem
in real time. The framework creates an initial optimal evacuation plan but then pro-
vides online routing orders to evacuees that adapt based on unpredictable events not
captured in the original plan. Our experiments demonstrated that solving the DPE
problem online, even with low VANET penetration rates, can significantly improve
the quality of solutions and utilize more of the transportation network capacity.
The capabilities for real-time adaptation and communication between vehicles un-
lock the potential for more dynamic, responsive evacuation guidance to be provided
to citizens during crisis events. Rather than relying solely on static plans, the con-
nectivity offered by VANETs allows evacuation routes and shelter assignments to be
continuously optimized based on current road conditions and congestion. This work
represents an important advancement in leveraging vehicle-to-vehicle networks to
enable more effective real-time management of large-scale urban evacuations.

• Chapter 4 introduces a comprehensive framework to address the dynamic popula-
tion evacuation (DPE) problem. This framework incorporates strategic evacuation
planning as well as real-time management using VANET (vehicular ad hoc net-
work) technology. First, the chapter analyzes various models used for evacuation
planning and creating and executing VANETs in an evacuation context. A key
finding from this analysis is that even a low penetration rate of connected vehi-
cles can provide major benefits for managing real-time DPE, leading to better use
of network capacity. Next, in analyzing vehicular communication architectures, the
chapter compares Vehicular Fog Computing (VFC) and Vehicular Cloud Computing
(VCC) implementations. It finds that VFC results in lower message transmission
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delay, with evacuation clearance times comparable to the more centralized VCC
architecture.

• Chapter 5 develops a framework to account for the dynamic state and rapid evolution
of hazards during an evacuation. The framework adds a dynamic layer to capture
how hazards like wildfires change over time and location during an evacuation. We
applied this proposed methodology to a real-world case - the Tubbs fire evacuation in
California. The results demonstrate that incorporating the fire’s evolution into the
model, beyond just evacuation planning, decreases network clearance time. More
significantly, we analyzed vehicle exposure rates to the spreading fire. The results
show the model solving the online dynamic population evacuation (DPE) problem,
considering the fire’s state saves more lives and shortens the evacuation operation,
compared to a model without the hazard’s evolution.

Limitations
In the following part, we propose limitations for current work:

• One challenge encountered in the research was locating genuine, applicable data re-
garding evacuation situations that could be used for modelling and analysis. Evac-
uation scenarios encompass complex dynamics with many variables at play, from
traffic patterns to human behaviours. To accurately simulate and assess different
evacuation strategies and systems, access to real-world data that realistically reflects
the conditions of an evacuation is crucial. However, finding detailed data that cap-
tures the nuances and uncertainties of real evacuations proves difficult. Much data
remains proprietary or restricted. Other data offers only high-level approximations
rather than granular insights. This presents obstacles in acquiring comprehensive,
credible datasets that contain specific information on factors like traffic flows, rout-
ing decisions, vehicle densities, and congestion levels during evacuations. Without
such data richness and realism, modelling and analyzing evacuation scenarios be-
come more speculative and less grounded in real-world behaviours and constraints.

• When it came time to select a vehicular network simulator for smoothly and seam-
lessly simulating the VANET environment, the options were incredibly limited due
to compatibility requirements with the SUMO traffic mobility simulator. VANET
simulation necessitated identifying a network simulator sufficiently robust to handle
modelling the intricate dynamics and communications between large numbers of
vehicles in the network. Yet exhaustive investigations uncovered very few network
simulators capable of fulfilling this key criterion while integrating properly with
SUMO to enable joint traffic mobility and network modelling.

• The computational resources and time required to execute large-scale simulation
models using a simulation-based methodology proved extremely demanding. Simulation-
focused approaches aim to recreate complex real-world systems and scenarios in a
virtual setting. However, simulating intricate systems and interactions on a sizable
scale necessitates massive computing power. Detailed traffic simulations modelling
thousands of individual vehicles with advanced mobility and communication pat-
terns call for substantial processing capabilities. Sophisticated evacuation scenarios
covering wide geographic areas with whole cities of modelled entities push hardware
infrastructure to its limits. Exhaustive parametric studies and comparative analy-
ses can involve running simulations repeatedly across different configurations and
conditions, multiplying the computation times. The computational load became
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a major impediment with the project utilizing an agent-based modelling paradigm
across massive multi-agent simulations. Running simulations of such scale required
leveraging high-performance computing infrastructure and distributing simulations
across supercomputer processors and parallel cores. Yet even with such advanced
computing systems, simulation runtimes regularly spanned hours or days for indi-
vidual models.

Research perspectives
In the following part, we propose recommendations for future research:

• This study considers only rerouting and shelter reallocation to manage the online
evacuation process. However, departure time is another critical component that
could be optimized before and during an evacuation to further improve the overall
efficiency and effectiveness of evacuation planning and operations.

• For future work, we plan to build upon this framework by incorporating modelling
of additional modes of transportation such as privately owned vehicles, public tran-
sit buses, passenger rail, etc. Adding these additional options to the simulation
and optimization models would provide more flexibility and realism in analyzing
and designing evacuation plans. It would capture the transportation diversity and
complexity of real-world evacuations.

• We also aim to improve the predictive accuracy of the framework by implementing
a more sophisticated, data-driven travel time prediction model rather than solely
relying on the agent-based simulator’s simple model. By leveraging real-time and
historical traffic data, a more precise model could be developed to reflect better ac-
tual road speeds and congestion levels during evacuations under various conditions.
This would enhance the fidelity and reliability of the overall optimization.

• Another valuable extension is considering the human element and modelling be-
havioural reactions to evacuation orders. Public compliance and orderly evacuations
depend heavily on human psychology and behaviour under stress. Incorporating
models of how the population makes decisions, complies with orders, and moves
under varying conditions could allow for refinements that maximize safe and effi-
cient evacuations. This could draw on insights from social sciences and emergency
management research on human behaviours in disasters.

• Our future work aims to significantly expand the capabilities of the current frame-
work by incorporating customized safety protocols, instructions, and objectives that
account for varied hazardous scenarios. Specifically, we intend to program hazard-
specific response plans tailored to threats such as hurricanes, wildfires, chemical
spills, nuclear events, and other emergencies. The system would provide targeted
guidance to maximize public safety based on the unique risks, evacuation routes,
shelter needs, and countermeasures required for the hazard. To accomplish this,
we will integrate a wider array of data sources on hazard conditions and effects,
disaster management best practices, population vulnerabilities, and at-risk infras-
tructure. The end result will be an evacuation optimization framework equipped
with enhanced situation awareness, threat intelligence, and specialized safety re-
sponse features to protect lives and property against numerous dangers.

• In disaster situations, not only is physical road infrastructure impacted, but commu-
nication infrastructure like antennas and servers can also be disrupted, complicating
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evacuation coordination. As such, developing specialized system architectures re-
silient to these infrastructure disruptions should be a priority area for future work.
Specifically, we aim to build redundancy across servers in distributed geographic lo-
cations to minimize single points of failure. The system could automatically failover
to backup servers if primary evacuation coordination servers are disabled. The
system architecture will be designed for reliability, adaptability, and continued op-
eration even when infrastructure is degraded. Machine learning capabilities can
help the system dynamically and autonomously respond to these infrastructure dis-
ruptions and routing failures. With robust and fault-tolerant architectural design,
the evacuation optimization framework will be capable of maintaining coordination
and reducing risks even amidst infrastructure damages and loss of communications
capabilities. Planning for these disaster contingencies will improve system resilience
and public safety outcomes.

• A major area for future work is developing customized evacuation recommendations
for populations with special needs and vulnerabilities. The system could incorporate
modelling of different categories of evacuees, such as the elderly, disabled, hospital
patients, those without vehicles, people with medical dependencies, etc. Unique
preparations and response plans tailored to each group could be programmed into
the system. For example, evacuations for mobility-impaired individuals may need
paratransit vehicles dispatched with additional time buffers built into routes. Evac-
uations of hospital patients may require coordination with receiving facilities to
arrange ambulance transports and transfer of medical records. Elderly residents
may need door-to-door assistance registering for evacuation transit. By accounting
for diverse populations and needs, the optimization framework could provide tar-
geted guidance to authorities to help safely evacuate all groups, especially the most
vulnerable. Integrating awareness of demographics, resources, and response proce-
dures for specialized populations would enhance the system’s equity, inclusiveness,
and effectiveness. This ability to customize evacuation plans is a valuable domain
for researchers to explore further.
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[Bapaume et al., 2023] Bapaume, T., Côme, E., Ameli, M., Roos, J., and Oukhellou, L.
(2023). Forecasting passenger flows and headway at train level for a public transport
line: Focus on atypical situations. Transportation Research Part C: Emerging Tech-
nologies, 153:104195.
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A. APPENDIX FOR CHAPTER 2

SUMO uses a measure that integrates the mean travel time of all previous simulations.
It also uses the coefficient of deviation of average travel times for termination and tests if
the value of this measure is below a chosen threshold. Here, we present the formulas for
calculating this measure:

a =

∑
o∈O

∑
s∈S

∑
p∈πos

ttr,π∑
o∈O

∑
s∈S

n(πos)
(6.1)

CV = σ(a)
E(a) =

√
1

Nr

∑
i≤Nr

(ai − ∑
i≤Nr

ai

Nr
)2

∑
i≤Nr

ai

Nr

(6.2)

Note that Nr is the number of iterations considered. We test this measure on three
values: 0.1, 0.04, and 0.004 to understand the computation time needed to achieve each
of these measures and compare the found results.

Table 6.1: Convergence iterations
Maximum deviation 0.1 0.01 0.004
Computation time (s) 248.39 534.00 1730.35
Number of iteration 3 11 50

Table 6.1 shows the time difference between the tree solution calculated. Having
better results in terms of deviation requires surely more iteration calculation and more
consumed resources. We have set 50 iterations as the maximum number of iterations to
find the result, and we attain this limit while having a maximum deviation of 0.004. In
addition, Table 6.1 demonstrates no linear relation between the amount of computation
time needed for solution finding and the deviation measure. Results shown by Table 6.1
are only for the last time interval of the evacuation process.
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