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Apercu de la these

0.1 Motivation

Soit M, une variété lisse de dimension d. Un opérateur P est dit elliptique
d'ordre p dans M si Pu € H*(M) = w € H*'P(M). Les opérateurs
elliptiques généralisent les opérateurs de laplace, dont le cadre naturel est
la géométrie riemannienne. Une variété riemannienne est une variété lisse
munie d'un produit scalaire défini positif sur chaque espace tangent appelé
la métrique riemannienne. On peut la définir & 'aide d’'un ensemble de
champs de vecteurs qui engendrent ’espace tangent en chaque point.

L’ellipticité entraine que Pu € C*®(M) = wue C>®(M) (car u sera alors
dans H?(M ) pour tout p). Cependant, I’ellipticité est une condition suffisante
mais non nécessaire pour la régularité des solutions : un contre-exemple
est ’équation de la chaleur, qui est une équation aux dérivées partielles
parabolique mais qui posséde des solutions réguliéres). Ainsi, un opérateur
hypoelliptique est défini comme un opérateur P tel que Pu € C*(M) =
u € C>®(M). Le premier & introduire un tel opérateur fut Kolmogorov en 1934
dans [59], alors qu'il travaillait sur le mouvement de particules en collision.
En étudiant I’équation

oru — (20, + 2)u = f,
il observa que l'opérateur xd, + 02 est hypoelliptique. On définit aussi une
troisiéme classe d’opérateurs : les opérateurs sous-elliptiques. On dit qu’un
opérateur P est sous-elliptique d’ordre p avec une perte e de dérivées si

Pue H*(M) = we H**P~¢(M) pour un certain € €]0,1[. Une relation
entre ces différentes classes est la suivante: :

Elliptique = Sous-elliptique = Hypoelliptique.

x1
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Les opérateurs sous-elliptiques, qui ont été étudiés intensivement depuis le
vingtiéme siécle, sont donc intéressants car ils généralisent les opérateurs
elliptiques tout en continuant & satisfaire I’hypoellipticité.

Un exemple typique d’opérateur subelliptique est 'opérateur de Grushin.
Les opérateurs de Grushin ont été définis dans [44] en 1970, comme les opéra-

teurs de la forme :
P =0 — |a*02, (1)

pour certains k € N, agissant sur LQ(R;Z/). Ce fut le point de départ pour
définir un opérateur de type Grushin qui fut ensuite largement étudié par
de nombreux chercheurs (par exemple dans [21][28][37][53] ...). Un opérateur
de type Grushin intéressant est le suivant (il peut étre considéré comme la
généralisation pour le cas k = 1). Sur R? nous définissons I'opérateur de
Baouendi Grushin généralisé (simplement opérateur de Baouendi Grushin)
par :

P =—02—V(x)d2, (2)

pour V satisfaisant les conditions suivantes :

VelCR),V(z)=0,V(0)=V'(0)=0,V"0) > 0,| ‘lirfrl V(z) = +o00. (3)
Tr|—1T00

Certains chercheurs ont étudié ce type d’opérateurs de Baouendi Grushin
(et d’autres types) notamment du point de vue de leur contrdlabilité et/ou
observabilité dans différents domaines ([9][10][21](26][31][57]). La controla-
bilité et 'observabilité sont un type "fort" d’inégalités de concentration qui
impliquent d’autres inégalités "plus faibles" comme les inégalités de concen-
tration pour les fonctions propres.

L’étude des inégalités de concentration pour les fonctions propres a une
histoire riche qui s’étend sur plusieurs décennies, ou plusieurs facons de
mesurer les concentrations possibles ont été utilisées (voir [20][22]). Les in-
égalités de concentration pour les fonctions propres sont des estimations de
la probabilité que les fonctions propres d’un certain type d’opérateur soient
concentrées dans une région particuliére de ’espace sous-jacent. Plus pré-
cisément, on se demande si la masse des fonctions propres sur la variété peut
étre controlée par sa masse sur un sous-domaine.

Le lien direct entre les propriétés de concentration des fonctions propres et
la contrdlabilité/observabilité peut varier en fonction du systéme spécifique
et du cadre de contréle. Dans certains cas, on peut montrer que 'une est une
condition suffisante ou nécessaire pour la validité de l'autre. Par exemple,
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dans [12], 'auteur mentionne que sous certaines conditions, l'inégalité de con-
centration des valeurs propres est une condition suffisante pour I’'observabilité
exacte de I’équation des ondes associée a 'opérateur de laplace (voir page
1030 de [12]). D’un autre coté, de maniére plus générale, les auteurs de
[24] (ot I'inégalité de concentration des fonctions propres de opérateur de
Schrodinger est prouvée sur un tore) mentionnent que 'inégalité de concen-
tration des fonctions propres peut étre obtenue & l'aide de la formule de
Duhamel en partant de I'observabilité de I’équation de Schrodinger. On ren-
voie a [23][64] pour des études détaillées sur le lien entre I'observabilité et les
inégalités de concentration des fonctions propres.

Plusieurs auteurs ont étudié la concentration des fonctions propres de
l'opérateur de laplace, par exemple [17][20][23][33][46]. Ces études relient ce
type de de concentration a la validité de certains critéres géométriques. Une
condition suffisante bien connue est ainsi la condition de controle géométrique,
également appelée Condition de Controle Géométrique de Bardos-Lebeau-
Rauch, introduite dans [12]. Cette condition demande que toutes les trajec-
toires du flot géodésique généralisé rentrent dans la région de controle. Il est
connu que cette condition est équivalente a 1’observabilité dans certains cas,
tels que I’équation des ondes (voir [12][19]), et suffisante dans d’autres cas,
comme pour l'équation de Schrédinger (voir [60]). Cependant, cette condi-
tion n’est pas nécessaire en général. Dans [46], par exemple, les auteurs ont
montré que, sur un domaine polygonal arbitraire, la norme L? de la fonction
propre sur le domaine est controleée par la masse sur un voisinage U des som-
mets alors que U ne vérifie pas la condition de controle géométrique. Pour
obtenir ce résultat, les auteurs introduisent une autre condition géométrique
appelée condition cylindrique (voir [46]).

Dans notre travail, nous ne nous préoccupons pas des conditions géomé-
triques et nous examinons une condition purement spectrale qui sert de con-
dition suffisante pour la validité des inégalités de concentration pour les fonc-
tions propres des opérateurs de Baouendi Grushin sur une bande horizontale
arbitraire du cylindre infini. Plus précisément, notre principal intérét ici est
de relier I'inégalité de concentration a une certaine condition spectrale, puis
d’étudier cette condition pour l'opérateur généralisé de Baouendi Grushin
sur un cylindre. En fait, I'inégalité de concentration est déja connue dans de
nombreux cas, en utilisant des méthodes géométriques sophistiquées. Ainsi,
dans [62, Chapitre 3|, par exemple, 'auteur étudie le cadre suivant. Soit
M = (-1,1), x T, ou T est cercle, et soit v € R**. Définissons 'opérateur

Xlil
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de type Baouendi Grushin suivant
Ay =2+ a2, (4)
avec le domaine
D(A,) = {ue D'(M),%ue L*(M), |z[*0u e L*(M),u = 0 sur 0M}.
Il montre alors le théoréme.

Theorem 0.1 (Letrouit [62]). Soit v = 1 et soit w = (—1,1), x I pour un
certain intervalle 1. Alors, il existe C,hg > 0 tels que pour tout uw € D(A,),
et tout 0 < h < hy,

el zqany < € (el oy + AV + Dl ) - (5)

Ce théoréeme entraine le controle des fonctions propres :

Corollary 0.1.1. Soit v = 1 et soit w = (=1,1), x I pour un certain
intervalle I. Alors, il existe C' > 0 tels que pour toute fonction propre u de

A

o)
[ullr2ar) < Cllull 2y - (6)

Nous chercherons ici & montrer des résultats similaires pour ce type d’opé-
rateur, avec des méthodes spectrales.

La définition montre que I'opérateur généralisé de Baouendi Grushin
(et tout opérateur de type Baouendi Grushin) peut étre écrit comme la
somme du carré de deux champs vectoriels lisses X1 = 0, et Xy = /V(2)0,.
On l'appelle donc parfois opérateur sous-laplacien de Grushin. Plus généra-
lement, les sous-laplaciens sont des généralisations de l'opérateur de laplace
sur une variété riemannienne. On les définit de la fagon suivante.

Soient Xj, ..., X, des champs de vecteurs lisses sur une variété lisse M.
Nous disons que Xj, ..., X, sont générateurs par crochets itérés (ou satisfont
la condition de Hérmander) de rang r si les champs Xj,..., X}, complétés
par leurs crochets itérés [X;, X;], [Xi, [X;, Xk]]... jusqu’a une longueur r
engendrent l’espace tangent en chaque point m € M (voir [50]). Dans ce
cadre, le sous-laplacien par rapport & une mesure lisse w est alors défini
comme

P P
A=— ZX;‘XZ« = ZXZQ + div,, (X;) X5, (7)

i=1 i=1

X1v
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ou div,, (X;) désigne la divergence de X; relativement a w. Ces opérateurs sont
aussi appelés opérateurs de type 2 de Hormander (le type 1 étant simplement
la somme des carrés) car ils ont été largement étudiés par Hérmander. Il
a montré que sous la condition qui porte son nom, A est hypoelliptique
(voir [50]). Hérmander a prouvé cela en montrant que A est sous-elliptique

et satisfait I'estimation suivante (qui est la définition de sous-ellipticité) :
ds,C' > 0,Yu e CP(M),

lll ey < € (<At wnzany + Nl aqar) ) - (8)
et Rotschild et Stein ont montré dans le théoréme 17 de [5] que s = %
est optimal. Lorsque la variété M est compacte, alors implique que
(A,C*(M)) est essentiellement auto-adjoint sur les fonctions lisse, et la seule
extension auto-adjointe unique a une résolvante compacte. Il en découle que
le sous-laplacien a un spectre discret dans ce cadre.

Le cadre général pour de tels opérateurs est la géométrie sous-Rieman-
nienne.
La géométrie sous-riemannienne est une généralisation de la géométrie rie-
mannienne, dans laquelles toutes les directions ne jouent pas le méme role et
ol certaines contraintes sont imposées pour se déplacer le long de la variété.
Les variétés sous-riemanniennes servent ainsi dans 1’étude des systémes con-
traints en mécanique classique, tels que le mouvement de véhicules sur une
surface, le mouvement des bras de robots et la dynamique orbitale des satel-
lites. Plus précisément, si on munit une variété de champs de vecteurs qui
n’engendrent pas I'espace tangent, alors on ne peut pas définir une métrique
riemannienne. Cependant, lorsque ces vecteurs satisfont la condition de Hor-
mander, alors on dit que la variété est sous-riemannienne et on peut définir
la métrique sous-riemannienne associée a ¢ = {Xj, ..., X, }, sur TM par

gm(Xm) = inf {\u\ép; ueRP, ZuiXi(m) = X(m)} ; (9)

i=1

avec la convention que inf @ = +oo. La structure (M,%, g) est appelée
une structure sous-riemannienne. La géométrie sous-riemannienne est tres
étudiée depuis le milieu des années 80, en commencant par I’étude des groupes
de Heisenberg et en se concentrant sur les propriétés géométriquees des boules
et des géodésiques.
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Il existe de nombreuses questions qui se posent en géométrie sous-riemanienne,
notamment des questions de théiore du controle (voir [78]). Une autre ap-
proche consiste a considérer la structure sous-riemannienne comme une limite
singuliére des structures riemanniennes (voir [4][27][36][40] [43][67][76] [83]).
Ces approximations riemanniennes, lorsqu’elles sont associées a des esti-
mations uniformes, permettent d’étendre certains résultats riemanniens aux
contextes sous-riemanniens. Par exemple, les auteurs de [27| ont utilisé¢ de
telles approximations pour généraliser certaines estimations riemanniennes
connues (propriété de doublement, inégalité de Poincaré, estimations gaussi-
ennes, etc.) aux variétés sous-riemanniennes.

Cette convergence est souvent considérée en termes de convergence des
distances. Plus précisément, si (M, €, g) est une structure sous-riemannienne,
le théoréeme de Chow-Rashevskii, (aussi appelé de théoréme de Chow), garan-
tit que deux points quelconques d’une variété sous-riemannienne connexe,
dotée d'une distribution génératrice par crochets itérés, sont reliés par un
chemin horizontal dans la variété (voir [3][52]). Ainsi, la métrique sous-
riemannienne g définit une distance d sur M. Habituellement, dans le cadre
d’une approximation par une famille de métriques riemanniennes g" avec sa,
distance d" associée, on montre le théoréme suivant.

Theorem 0.2. La famille de distances d" converge uniformément vers d sur
chaque ensemble compact de la variété M.

Ainsi, la géométrie de la structure sous-riemannienne est la limite de la
suite des géométries riemanniennes et on aimerait savoir ce qu’il en est au
niveau spectral.

Maintenant, il est clair, d’aprés son expression, que l'opérateur sous-
laplacien dépend de la mesure choisie dans . Dans le cadre riemannien,
une mesure canonique est obtenue a ’aide de la métrique riemannienne. Ce
n’est pas le cas dans les variétés sous-riemanniennes, car les métriques sous-
riemanniennes ne sont pas définies sur I’ensemble de 1’espace tangent et il
n’existe pas de moyen canonique de ’étendre & I’ensemble de l'espace tan-
gent. Ainsi, une question trés naturelle se pose ici : comment définir une
mesure canonique sur une variété sous-riemannienne, de fagon & avoir un
sous-laplacien canonique ?

La question a été initialement soulevée par Brockett en 1982 dans son
article (see [I8]). Sa motivation venait du désir de construire un opérateur
de laplace sur une variété sous-riemannienne tridimensionnelle, qui serait in-
trinséquement lié a la structure métrique, analogue a l'opérateur de laplace-
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Beltrami sur une variété riemannienne. Plus récemment, Montgomery a
abordé ce probléme dans un contexte plus général [66]. Le volume de Popp,
le volume de Hausdorff et le volume sphérique de Hausdorff sont quelques
exemples intéressants de mesures sur une variété sous-riemannienne (voir
[2][42][65] et les références a l'intérieur).

Le volume de Popp, par exemple, a d’abord été défini par Octavian Popp
mais introduit seulement par Montgomery dans [66]. Le volume de Popp est
défini en induisant un produit scalaire canonique sur 1’espace vectoriel gradué
définie par la structure des crochets de Lie, puis en utilisant un isomorphisme
non canonique entre I'espace vectoriel gradué et ’espace tangent pour définir
un produit scalaire sur I’ensemble de I’espace tangent. En 2013, les auteurs de
[13] ont trouvé une expression pour le volume de Popp en termes d’une base
adaptée, et depuis lors, cette formule a parfois été utilisée dans ce contexte
comme la définition du volume de Popp. Plus précisément, on considére une
base adaptée Z1, ..., Z4 (définie au sens de [I3]) et on définit récursivement les
sous-espaces D; = D;_1 + [Dy, D;_1], ot Dy est le sous-espace engendré par
les champs vectoriels initiaux. On définit ensuite les constantes de structure
adaptées qui, de facon informelle, sont les coefficients des crochets des Z;
dans D; modulo D;_; (en ne considérant que les crochets de longueur 7).

Theorem 0.3 (Barilari-Rizzi[13]). Dans la base Z, ..., Zy, le volume de Popp

est donné par

1
dP = ————=dvy A ... A dyy, (10)

I, det(B))

ot B sont des matrices définies a l'aide des constantes de structure adaptées
et vy, ...,vq forment la base duale a la base adaptée.

Avec la famille de structures riemanniennes (et de métriques riemanni-
ennes) approchant la structure sous-riemannienne (resp. la métrique sous-
riemannienne), on peut définir la famille d’opérateurs de laplace associés A,.
Ces opérateurs Ay sont des opérateurs elliptiques, et donc, si M est com-
pacte, ils ont une résolvante compact et, par conséquent, un spectre discret.
On peut donc s’intéresser & la convergence de ce spectre.

Dans le cas ot la structure riemannienne dégénére sur une structure sous-
riemannienne, peu de choses sont connues sur la convergence du spectre des
laplaciens (voir [39][40][76]). Dans certains cas spécifiques, il a été démontré
que la famille A, converge vers A, et que chaque valeur propre de Ay converge
vers une valeur propre de A. Cela a d’abord été observé par Fukaya dans
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[39] puis démontré par Ge dans [40] (voir également [76] pour le cas des
variétés de contact). Plus précisément, soit M une variété compacte munie
d’une métrique riemannienne g. Soit H une distribution sur M de dimension
constante, et soit H la distribution orthogonale & H. Ecrivons ¢ = ¢u@®gy. .
On définit la famille de métriques riemanniennes pour h > 0,

gh = gu ® h gy

Theorem 0.4 (Ge [40]). Soit Ay, le laplacien associé a gp,. Alors, A con-
verge lorsque h — 0 vers un opérateur sous-elliptique de second ordre

AH = —Ze?,
ou e; est une base orthonormale pour H. De plus, si Aj(h) < Aa(h) < ... et

A < Ay < ... désignent les valeurs propres de Ay et de Ay respectivement,
alors A\(h) converge lorsque h — 0 vers \g.

On cherche a généraliser ce type de résultat pour une approximation
riemannienne mieux adaptée a la structure et une question se posera alors
relativement & la mesure utilisée.

Dans la section suivante, on présente les résultats de ce travail.

0.2 Résultats Principaux

Notre travail sera réparti en trois chapitres. Par conséquent, nous divi-
sons cette section en trois sous-sections, chacune contenant les résultats d’un
chapitre.

0.2.1 Inégalités de Concentration

Désignons par X = R x S! le cylindre infini et par w = R x [a, b], une bande
horizontale le long de X. Notons

Lg(X) = {u X - R; JX ]u(m,y)|2da:dy < oo,JSl u(z,y)dy = O} .

Soit Ve V = {2*W,W € C)R),W = 1} équipé de la norme ‘

SL’QWH =
5 v
HWH . Pour V € V| nous désignons par

PV = —05 — V(m)@i,
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Iopérateur généralisé de Baouendi Grushin sur le domaine D défini par
D = {ue L§(X);due L*(X),V(z)02u e L*(X)}.

Nous disons que l'inégalité de concentration est vérifiée pour Py s’il existe
une constante ¢ = c(w) telle que pour toute fonction propre u de Py, on a

[l 2 ary < ellull 2y -

Tout d’abord, nous donnons une condition suffisante pour que Py vérifie
I'inégalité de concentration. Nous montrons que

Theorem 0.5. Si mult(E) = 2 pour chaque valeur propre E de Py, alors
l'inégalité de concentration est vérifiée.

Ce théoréme sera reformulé en tant que théoréme [2.2] Observons qu’une
valeur propre de Py est toujours de multiplicité au moins 2

Nous montrons ensuite que la condition de la proposition (0.5 n’est pas
vraie en général en étudiant les opérateurs obtenus en posant V(x) = 2%+ s2.
Ceux-ci ne sont pas a proprement parler dans la classe définie précédemment
(pour s > 0, Popérateur est elliptique) mais ils préfigurent la partie sur
I'approximation riemannienne. Nous montrons les résultats suivants (Cor.

et Prop. [2.5)) .

Theorem 0.6. Si s? est rationnel, alors la multiplicité des valeurs propres
de P, n’est pas uniformément bornée.

Theorem 0.7. Si s* est irrationnel, alors mult(E) = 2 pour tous les E €
spec(Py2 g2).

En tant que corollaire des théorémes [0.5] et nous obtenons que

Corollary 0.7.1. Si s est irrationnel, alors l'inégalité de concentration est
vérifiée pour Py, .

Ces résultats aménent a se poser la question de la validité des inégalités
de concentration de maniére générique. L’idée d’étudier la condition spec-
trale de maniére générique réside dans le fait que cette condition est une
condition de ’simplicité’ sur les valeurs propres de 'opérateur non elliptique
Py,. Un résultat général de simplicité des valeurs propres pour les opérateurs
elliptiques a été introduit pour la premiére fois par Albert dans sa thése
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[6], puis généralisé ultérieurement pour le cas bidimensionnel dans son arti-
cle [7]. Plus tard, Uhlenbeck a montré que le théoréme était valable dans
toutes les dimensions [81][82]. Nous montrons une variation du théoréme
d’Albert [8] et d’'Uhlenbeck pour donner un résultat similaire pour 'opérateur
sous-elliptique Py,. Ainsi, nous étudions les perturbations de 'opérateur de
Baouendi Grushin et montrons le résultat suivant (Th. Désignons par
Vy = {V € V;3E € spec(Py), mult(F) > 2} les mauvais potentiels (pour
lesquels la condition spectrale n’est pas vérifiée).

Theorem 0.8. Le complément de V, est résiduel dans [’espace topologique
(V[ lly)-

Ce théoréme signifie que, génériquement, les valeurs propres d’un opéra-
teur de Baouendi Grushin sont de multiplicité 2. Selon le théoréme [0.5] cela
implique que l'inégalité de concentration est valable pour un opérateur de
Baouendi Grushin générique.

0.2.2 Etude d’une approximation riemannienne

Soient X% ..., X% des champs de vecteurs lisses sur M tels que X%, ..., X
véridient la condition de Hérmander de rang r, et supposons que

— tj
T M = span{ X" }o<i<r1<j<n;,

ot les vecteurs (X%); <y, sont une famille particuliére de crochets de longueur
i des X ..., X% Soit N = Ny+...+ N,. Nous définissons la métrique sous-
riemannienne ¢ comme suit

p
go(Xn) = inf 3 [ulfpiue R, Y u; X% (m) = X(m) ¢, (11)
j=1

et nous désignons par d° sa distance sous-riemannienne associée. Nous définis-
sons notre schéma d’approximation. Pour u € RY, nous écrivons v =
(ug, Uy, ..., ur), o0t chaque wu; est de longueur N;. Pour tout h € R\{0} et
tout u € RY, nous définissons la dilatation d;, comme suit

Sn(u) = (ug, h tuy, R 2ug, ..., h""u,). (12)
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Nous définissons la famille de métriques riemanniennes ¢" comme suit

g" (X (m)) = inf { |Spula;u e RN,Z 2 u;(m)X7(m) = X(m) p. (13)

i=0j=1

Désignons par d" sa distance riemannienne associée. Comme nous I’avons
mentionné précédemment, il est bien connu que la distance sous-riemannienne
est la limite des distances riemanniennes, uniformément sur les ensembles
compacts de la variété. Comme nous cherchons a étudier les mesures de
volume, il est naturel d’étudier la mesure associée a la famille de métriques
riemanniennes, dvolg”. Si nous fixons un certain repére, disons Zi, ..., Zg,

alors
dvolg" = /|det(G})|dvy A ... A dug,

ou G, est la matrice de représentation de ¢g" dans le repére et vy, ..., vy est
le repére dual a 7y, ..., Z4. C’est pourquoi nous nous concentrons sur ’étude
du déterminant de G. Pour tout 0 < i < r, désignons par A; la matrice de
représentation des vecteurs X% dans ces coordonnées. Nous démontrons la
formule suivante qui exprime G, ' en termes des A;:

Proposition 0.9. Nous avons
Gyt =) P ALA,
i=0

Cela sera reformulé en tant que théoréme [3.10] Nous étudions ensuite le
déterminant de Gj, . L’expression précédente implique que le déterminant
de G, ! est un polynéme en h. Cependant, cette information n’est pas suff-
isante pour étudier le comportement limite du déterminant. Nous décrivons
alors le spectre de Gj,”" en montrant le théoréme suivant (Thm. .

Theorem 0.10. Fizons un point m € M et notons (n;)o<i<r le vecteur de
croissance de la structure sous-riemannienne en m. Pour tout 0 < i <, il
existe n; — n;_1 branches propres {\ (h)hi<j<n;—n;_, de Gi,~" telles que

N (h) = h*'n] (h),

avec limy,_oni(h) # 0 pour tout i,j.
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En conséquence, nous obtenons que
det(Gy,t (m)) = fa(m)h>™,

avec ¢(m) = > i(ni(m) —n;—1(m)) (ou (no(m),ni(m),...,n,—1(m),d) est le
vecteur de croissance en un point m) et f, converge ponctuellement vers une
fonction positive f (a déterminer). Ensuite, nous énoncons le théoréme ci
dessous.

Theorem 0.11. Sous [l’hypothése d’équirégularité, la fonction m — f(m)
est lisse, strictement positive, et indépendante du choix des coordonnées.

En particulier, (1/4/f) définit une densité (1/4/f)dx, sur M (voir Cor.
3.19.1)).

Enfin, nous prouvons, en utilisant les propriétés intéressantes d’un repére
adapté, que ce volume obtenue par cette approximation est relié au volume
de Popp par le résultat suivant.

Theorem 0.12. Le volume dP, obtenue par l’approximation précédente coincide
avec le volume de Popp dP au un facteur /2" pres, c’est-a-dire

1

Ce résultat sera énoncé dans le corollaire [3.641

0.2.3 Sur la Convergence du Spectre

Nous supposons maintenant que M est compact et nous considérons le cadre
précédent. Définissons U'espace de Hilbert L2 (M) par rapport a une mesure
de volume fixée w comme suit :

L2(M) = {u: M — R; Jullly = f uf2dw < oo},
M
Sur L2 (M), nous définissons le sous-laplacien comme suit
p . .
By = Y (X)X, (14)
=0
ou *, désigne ’adjoint par rapport a dw.
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Définissons maintenant I’espace de Hilbert associé & dvolg" comme suit :
Li(M):={u: M —R; ||u||i}2l(M) = JM lul2h*dvolg" < oo} (15)

Pour tout h > 0, nous définissons sur L7 (M) la famille d’opérateurs ellip-

tiques :
r N;

A=Y TRF (X)X, (16)
i=0j=1
ol #;, désigne I’adjoint par rapport a dvolg”.
Nous commencons par adapter la preuve de Kohn pour démontrer une
version uniforme indépendante du paramétre de ’estimation sous-elliptique

locale célébre. En utilisant le calcul pseudo-différentiel, nous démontrons
(Prop. |4.12)).

Theorem 0.13. Sous les hypothéses précédentes. Je > 0,Vs € R,IC(s) >
0,Vh € [0,1],Yu € C°(M),

ol < €6 (B + g ) (7

D’une part, ce théoréme entraine les faits bien connus sur le sous-laplacien;
il est sous-elliptique, hypoelliptique, essentiellement auto-adjoint et a une ré-
solvante compacte, et donc un spectre discret. D’autre part, il implique une
estimation uniforme sur les fonctions propres de A,. En utilisant cette es-
timation et des théorémes spectraux standards, nous prouvons ce qui suit

(Thm. [£.20).

Theorem 0.14. Pour une structure sous-riemannienne équiréquliere. Soit
(hn)nso une suite qui tend vers 0 et (uy)n=0 une suite de fonctions propres
normalisées de Ahn. Soit (fin)n=0 la suite associée de valeurs propres. Sup-
posons que la suite (f,)n=0 est bornée. Alors, les assertions suivantes sont
Urales.

1. 1l existe une sous-suite (fi,, )k=0 qui converge vers une valeur propre de

Ag, disons \.

2. En extrayant éventuellement une sous-suite, (un, k=0 (correspondant
A (fin, )k=0) converge vers vy dans HL(M) pour tout I, et vy est une
fonction propre de Ay associée a .
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En tant que corollaire, nous obtenons alors le résultat (Thm. [£.21])

Theorem 0.15. Désignons par (Ag)k=o et (S\k(h))kzo le spectre ordonné de
Ao et Ay, respectivement, compté avec multiplicité. Alors, pour tout k = 0
fixé, nous avons
lim A (h) = Ag. (18)
h—0
Ce théoréme dit donc que, dans le cas équirégulier, le spectre du laplacien
riemannien associé¢ a g converge vers les spectre du laplacien sous-riemannien
relativement a la mesure de Popp. Dans le chapitre, nous montrerons un
résultat similaire pour la suite des laplaciens relativement a une mesure w
fixée. Ce dernier ne nécessite alors pas 'hypothése d’équirégularité.

0.3 Commentaires

Nous donnons quelques commentaires sur nos résultats. Ceux-ci seront pré-
cisés dans le manuscrit.

Nous soulignons que le théoréme (condition spectrale suffisante) ne
dépend pas directement de I'opérateur de Baouendi Grushin généralisé, mais
des propriétés de séparation des variables satisfaites par cet opérateur. Ainsi,
ce théoréme pourrait étre généralisé en tant que condition suffisante pour la
validité des inégalités de concentration pour d’autres opérateurs généraux.

En ce qui concerne le théoréme principal (théoréme , la théorie des
perturbations analytiques de Kato est nécessaire, car nous utilisons le théoréeme
de Hellmann-Feynman. Nous donnerons les éléments principaux de cette
théorie pour le cas de dimension finie dans les annexes, et nous prouvons une
généralisation dans le cas de dimension infinie adaptée a notre cadre. Nous
verrons également que ce théoréme fonctionne sur un tore.

En ce qui concerne la deuxiéme partie, il convient de noter que la mesure
induite par le schéma d’approximation (qui dépend du choix des champs de
vecteurs) n’est pas canonique (ou intrinséque) & la structure sous-rieman-
nienne. Nous verrons que cette mesure dépend de notre choix des champs de
vecteurs qui engendrent 1’espace tangent.

Enfin, commentons un peu sur la convergence du spectre. Tout d’abord,
notre principal théoréme concerne le spectre ordonné, et non les branches
analytiques de valeurs propres (bien que, nous verrons que dans le cas de la
mesure de volume fixe, la convergence des branches propres est vraie).
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Maintenant, pour prouver les théoréemes sur la convergence du spectre de
A}, nous prouvons d’abord les résultats pour A, qui est défini par rapport
a dw au lieu de dvolg”. Traiter avec dvolg” est une tache plus difficile en
raison de la présence de fonctions dépendant de h. Cette difficulté sera
surmontée grace a 'hypothése d’équiregularité. Sans cette hypothese, les
choses deviennent beaucoup plus difficiles et nos résultats sur la convergence
du spectre riemannien ne sont valides que dans le cadre équiregulier.

Dans le cadre non-équiregulier, ou ’ensemble singulier Z n’est pas vide,
de nombreuses choses cessent de fonctionner. Par exemple, M\ Z n’est plus
vide, et il n’est pas clair si I'estimation sous-elliptique reste vraie. Par
conséquent, nous n’avons aucune idée si (Ag, C°(M\Z)) est essentiellement
auto-adjoint. Il convient de noter que certains auteurs ont étudié cette ques-
tion et ont donné des conditions sur la structure sous-riemannienne qui im-
pliquent que 'opérateur (Ag, C°(M\Z)) est essentiellement autoadjoint (voir
[15][16][35][72]).

0.4 Comparaison Avec des Résultats Antérieurs

Bien que similaires, il existe plusieurs différences entre le corollaire [0.1.1
de Letrouit [62] et nos résultats. Tout d’abord, notre approche est purement
spectrale, tandis que I’approche de Letrouit est plus géométrique. Deuxiéme-
ment, les paramétres sont différents. En effet, ici, nous traitons I'opérateur
généralisé de Baouendi Grushin, pour une classe générale de potentiels V,
et nous prouvons la validité de l'inégalité de concentration sur le cylindre
infini, un domaine non borné, ce qui est généralement plus difficile que de
traiter avec des domaines bornés (nous verrons également que nos résultats
s’appliquent & un tore, par exemple).

En ce qui concerne le schéma d’approximation, comme indiqué précédem-
ment, bien que la mesure obtenue a la limite ne soit pas canonique pour la
structure sous-riemannienne, mais soumise a un bon choix de champs de
vecteurs, elle donne une mesure "naturelle" avec laquelle travailler.

De plus, le théoréme donne en réalité une maniére de calculer le vol-
ume de Popp, en plus de celle donnée par les auteurs dans [13]. 11 suffit en
effet d’écrire les matrices A;, d’écrire la matrice G;l en utilisant la propo-
sition et de calculer le déterminant. Ensuite, en utilisant le vecteur de
croissance, on en déduit la fonction f;, puis la mesure de Popp en utilisant le
théoreme [0.12] aprés avoir pris la limite lorsque h — 0. Il est intéressant de
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noter que ce calcul peut se faire dans n’importe quel systéme de coordonnées,
pas forcément adapté a la structure sous-riemannienne.

Notre résultat de convergence est aussi plus général que celui de Ge
dans [40]. Notre construction est aussi plus adaptée a la configuration sous-
riemannienne ; par exemple, la dilatation effectuée est associée au drapeau
des sous-espaces vectoriels D;, 0 < i < r. Dans [40], la configuration a été
adaptée d'une certaine maniére & la preuve ; la forme de volume & laquelle
il aboutit est, exprimée dans nos notations, h?dw. Une autre différence, qui
peut ne pas avoir une grande influence, est que dans [40], il était supposé
que les champs de vecteurs initiaux sont toujours un ensemble linéairement
indépendant (base), ce qui signifie que Dy a un rang constant. Ici, nous
n’avions aucune hypotheése sur le rang de Dy qui peut dépendre du point.

0.5 Plan du Manuscrit

Dans cette section, nous présentons le plan du manuscrit, ott nous expliquons
le contenu de chaque chapitre.

e Chapitre [2 Ce chapitre est consacré a I’étude de l'inégalité de con-
centration pour 'opérateur généralisé de Baouendi Grushin.

— Dans la section 2.1} nous donnons quelques définitions et nota-
tions. Nous reformulons ensuite et prouvons le théoréme [0.5]

— Dans la section 2.2 nous examinons 'exemple P,z > et prouvons
les théorémes et (et déduisons le corollaire 0.7.1)).

— Dans la section nous étudions le cas général et prouvons le

théoréme [0.8
— Dans la section [2.4] nous expliquons briévement pourquoi notre

résultat est valable sur un tore.

e Chapitre [3; Ce chapitre est dédi¢ a 'étude de I'approximation rie-
mannienne et de la mesure limite.

— Dans la section [3.1], nous rappellons quelques définitions impor-
tantes et nous présentons le cadre.

— Dans la section[3.2], nous introduisons notre schéma d’approximation.
En particulier, nous prouvons que ¢” est une famille de métriques
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riemanniennes, puis nous adaptons la preuve de [40] pour démon-
trer la convergence des distances.

— Dans la section , nous étudions la forme de volume dvolg". En
particulier, nous prouvons la proposition [0.9] et le théoréme [0.10]
ainsi que leurs conséquences.

— Dans la section [3.4] nous définissons la forme de volume de Popp
et la comparons a notre forme de volume. En particulier, nous
prouvons le théoréme [0.3]

e Chapitre [ Ce chapitre est consacré a 'étude de la convergence du
spectre.

— Dans la section [£.2] nous étudions les estimations sous-elliptiques
dans les deux cas : forme de volume fixe et dvolg”.

— Dans la section [4.3] nous prouvons les théorémes et [0.15]

Nous verrons que notre travail repose sur la théorie de la perturbation
en dimension finie et utilise certains théorémes fondamentaux de la
théorie spectrale. Pour cela, nous écrivons les annexes qui sont divisées
en :

e Chapitre [A} Dans ce chapitre, nous donnons quelques préliminaires de
base en théorie spectrale fréquemment utilisés dans le manuscrit.

— Dans la section nous présentons quelques théorémes bien con-
nus.

— Dans la section [A.2] nous étudions 'opérateur de Schrodinger.

— Dans la section [A.3] nous énongons quelques théorémes bien con-
nus de bornitude pour les opérateurs pseudo-différentiels.

e Chapitre [B} Dans ce chapitre, nous donnons briévement la théorie de
la perturbation de Kato dans le cadre de la dimension finie.

e Tout au long des chapitres [3 et [ je donne des exemples qui sont
courants dans le contexte de la géométrie sous-riemannienne. J’applique
essentiellement mes résultats aux cas Grushin, Heisenberg et Martinet,
qui sont tous des structures presque riemanniennes typiques (voir la

définition [3.1.1.2]).
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Chapter

Introduction

1.1 Motivation And Previous Results

Consider a smooth manifold M of dimension d. We say that an operator P is
an elliptic operator of order p in M if whenever Pu e H*(M) it implies that
u € H**P(M). Elliptic operators are a generalization of Laplace operators
and their natural framework is the Riemannian geometry. A Riemannian
manifold is a smooth manifold equipped with a positive-definite inner product
called the Riemannian metric, usually defined using a set of vector fields that
span the tangent space at every point.

If P is elliptic, then whenever Pu € C>(M) it implies that u € C>*(M) (as
u will be in HP(M) for any p). However, ellipticity is a sufficient condition
and not necessary for the smoothness of solutions (one can take as a counter-
example the heat equation which is a parabolic partial differential equation
but has smooth solutions).

So, a hypoelliptic operator is defined as the operator P such that whenever
Pu € C*(M) it gives that u € C*®(M). The first one to notice such an
operator was Kolmogorov back in 1934 in [59], while he was working on the
motion of colliding particles when he wrote down the equation

oru — (20, + 2)u = f,
and observed that the operator 20, + 0% is hypoelliptic.

A third class of operators also introduced are subelliptic operators. An
operator P is subelliptic of order p with € loss of derivatives, if whenever

1



Chapter 1. Introduction

Pu e H*(M), it implies that uw € H*"P~¢(M) for some € €]0, 1[. These classes
are related as follows:

Elliptic = Subelliptic = Hypoelliptic.

Subelliptic operators, which have been studied intensively since the 20th
century, are interesting as they are a generalization of elliptic operators that
implies hypoellipticity.

A typical example of a subelliptic operator is a Grushin operator. Grushin
operators were first defined in [44] in 1970, as the subelliptic operators of the

form
P =02 — |z[**o2, (1.1)

for some k € N acting on L*(R2 ). It was the starting point to define a
Grushin-type operator that was then studied widely by many investigators
(for instance in [21][28][37][53] and many others). An interesting Grushin-
type operator is the following (it can be seen as the generalization for the
case k = 1). On R?, the generalized Baouendi Grushin Operator (sometimes,
we will say Baouendi Grushin Operator) is defined as

P =—07—V(x)d2, (1.2)
for V satisfying the following;:

VeC(R),V(z)>0,V(0)=V'(0)=0,V"(0) >0, lim V(z)=-+o0.

|z|—+o0

(1.3)
Some investigators handled this kind of generalized Grushin operators (and
other types) and most of them studied their controllability and /or observabil-
ity in different domains (|9][10][21][26][31][57]). Controllability and observ-
ability are a ’strong’ type of concentration inequalities that seems to imply
another 'weaker’ inequalities like the concentration inequalities for eigenfunc-
tions.

The study of concentration inequalities for eigenfunctions has a rich his-
tory that spans several decades where several ways of measuring possible
concentrations were raised (see [20][22]). Concentration inequalities for eigen-
functions are estimates of the probability that the eigenfunctions of a certain
type of operator will be concentrated in a particular region of the underlying
space, more specifically whether the magnitude of the eigenfunctions on the
manifold can be controlled by its magnitude on some sub-domain.
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The direct link between concentration properties for eigenfunctions and
controllability /observability may vary depending on the specific system and
control framework, however, under some settings, some investigators showed
that one can be sufficient or necessary for the validity of the other. For
instance, in [12], the author mentions that under some conditions the con-
centration inequality for eigenvalues is a sufficient condition for the exact
observability of the wave equation associated with the Laplace operator (see
page 1030 in [I2]). On the other hand, more generally, the authors in [24]
(where the concentration inequality for eigenfunctions of the Schrédinger op-
erator is proved on a torus) mention that the concentration inequality for
eigenfunctions can be derived (using Duhamel formula) from the observabil-
ity of the Schrdinger equation. See [23][64] for detailed studies about the link
between observability and concentration inequalities for eigenfunctions.

Anyway, several authors studied this type of concentrations on eigen-
functions of Laplace operator as in [17][20][23][33][46]. These studies depend
usually on studying the validity of some geometric criteria called the geomet-
ric control criteria or conditions. Usually, a well-known sufficient condition
for the validity of the concentration inequality for Grushin-type operators
is the so-called Geometric Control Condition of Bardos-Lebeau-Rauch intro-
duced in [12]. This condition says that all the trajectories of the generalized
geodesic flow will enter the control region before some time. Although it is
well known that this condition is equivalent to observability in many cases
such as the wave equation (see [12][19]) and sufficient in others such as for the
Schrodinger equation (see [60]), however, this condition is not necessary in
general. In [46] for instance, the authors proved that the eigenfunction mass
of the Dirichlet (or Neumann) Laplacian on an arbitrary polygonal domain,
where the later condition fails to be true, cannot concentrate away from the
vertices; that is the L? norm of the eigenfunction on a neighborhood U of the
vertices is controlled by a constant ¢ = ¢(U) multiplied by the norm on the
polygonal domain. However, they introduced another geometric condition
called the cylindrical condition (see [46]). These all share the dependence of
the methods used on a certain geometric control condition.

Here, we do not care about geometric conditions. We investigate a purely
spectral condition that serves as a sufficient condition for the validity of
concentration inequalities for eigenfunctions of the Baouendi Grushin oper-
ators on an arbitrary horizontal strip of the infinite cylinder. Specifically,
our main interest here is to link the concentration inequality to some spec-
tral condition, and then study this condition for the generalized Baouendi
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Grushin operator. In fact, the concentration inequality could be known for
V(x) = z? using some involved geometric methods. In [62, Chapter 3| for
instance, the author considered a different case and proved the following:
Let M = (—1,1), x T where T is the 1 dimensional torus in the y-variable,
and let v € R*". Define the Baouendi Grushin type operator

A, = 0%+ |z, (1.4)
with domain
D(A,) = {ue D'(M),%ue L*(M), |z[*"0u e L*(M),u = 0 on 0M}.

Theorem 1.1 (Letrouit [62]). Let v = 1 and let w = (—1,1), x I for some
interval I. Then, there exists C,hy > 0 such that for any u € D(A,), and
any 0 < h < hy,

el oqary < € (el oy + 0020, + D o) - (15)

His proof for this theorem is geometric and depends on the validity of the
geometric control condition. Because we are interested in eigenfunctions, we
write a corollary of theorem [I.1]

Corollary 1.1.1 (Letrouit [62]). Let v > 1 and let w = (—1,1), x I for
some interval I. Then, there exists C' > 0 such that for any eigenfunction u
of A, we have

[l 2y < Cllull o) - (1.6)

Here, we are interested in proving similar results using analysis on the
spectrum of the operator, in a more general (or different) setup.

Observe from that the generalized Baouendi Grushin operator (and
any Grushin type operator) can be written as the sum of the square of two
smooth vector fields X; = 0, and Xy = /V(x)0d,, and it is called some times
the Grushin sublaplace operator. The model operator for these operators
(and subelliptic operators in general) is the sublaplacian. It is a generaliza-
tion of the Laplace operator in a Riemannian manifold.

Let X, ..., X, be smooth vector fields on a smooth manifold M. We say
that X1, ..., X, are bracket generating (or satisfy the Hérmander condition)
of step r if Xy, ..., X, with their iterative brackets [X;, X;], [ X, [X;, Xk]]...
up to length r span the tangent space at every point m € M (see [50]). The

4
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sublaplace operator with respect to a smooth volume form (a differential
form of degree equal to the degree of the manifold M) w is defined as

p p
A= =Y XX =Y X7+ dive (X)X, (1.7)
=1 =1

where div,(X;) denotes the divergence with respect to w of X;. These are
called type 2 Hormander operators (type one is just the sum of squares)
as they were extensively studied by Héormander. He proved that under the
bracket-generating condition, A is hypoelliptic (see [50]). Hormander proved
this by proving that A is subelliptic and satisfies the following estimate
(which is the definition of subellipticity): 3s,C > 0,Yu e CX(M),

el < € (Aot wnaany + o)) - (1)

In fact, Rothschild and Stein proved in theorem 17 of [75] that s = I is
optimal. If M is compact, then implies that (A,C*(M)) is essentially
selfadjoint, and the unique selfadjoint extension has compact resolvent. It
follows that it has a discrete spectrum.

The general framework for such operators is subriemannian geometry.
subriemannian geometry is a generalization of Riemannian geometry, where
not all directions play the same role and some constraints are put for moving
along the manifold. Subriemannian manifolds often occur in the study of
constrained systems in classical mechanics, such as the motion of vehicles on
a surface, the motion of robot arms, and the orbital dynamics of satellites (the
motion is always forced by some constraints). More precisely, if a manifold
is equipped with vector fields that don’t span the tangent space, then they
do not define a Riemannian metric. However, if these vectors satisfy the
Hormander condition, then we say that the manifold is subriemannian and
we can define the subriemannian metric associated to ¢ = {X1,..., X,},
defined on TM adll

g(m, X,,) = inf {|u|12Rp; u e RP, ZuzXl(m) = X(m)} : (1.9)

i=1

with the convention that inf{ @} = +oo. The structure (M, %, g) is called a
subriemannian structure. An interest in the study of subriemannian geom-

'We could define the subriemannian metric with respect to a general metric on RP, but
this will slightly make any difference throughout the manuscript.
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etry was increased in the mid-'80s, when it started by studying Heisenberg
groups focusing on geometries of balls and geodesics.

In general, there are many techniques for studying subriemannian geome-
try, including Subriemannian calculus and control theory (see [78]). Another
approach that a lot of investigators use is to see the sublaplace structure as
a singular limit of Riemannian ones (see [4][27][36] [40] [43][67][76][83]). These
Riemannian approximations when gathered with uniform estimates allow to
extend some Riemannian results into subriemannian settings. For example,
the authors in [27] considered such approximations to generalize some known
Riemannian estimates (doubling property, Poincare inequality, Gaussian es-
timates...) to subriemannian manifolds.

This convergence is seen in terms of convergence of distances. More pre-
cisely, let (M,%,g) be a subriemannian structure. The Chow—Rashevskii
theorem, known as Chow’s theorem, ensures that any two points of a con-
nected subriemannian manifold, endowed with a bracket generating distribu-
tion, are connected by a horizontal path in the manifold (see [3|[52]). So, g
defines a distance d on M. Usually, a family of Riemannian metrics g" with
its corresponding family of Riemannian distances d" are introduced, and then
d" is proved to satisfy the following.

Theorem 1.2. The family of distances d" converges uniformly to d on every
compact set of the manifold M.

It is clear from its expression, that the sublaplace operator depends on
the chosen volume in (1.7). In a Riemannian setting, a canonical volume
form can be obtained using the Riemannian metric. However, this is not the
case in subriemannian manifolds as subriemannian metrics are not defined
on the whole tangent space and there is no canonical way to extend it to the
whole tangent space. So, a very natural question arises here: Can we define
a canonical volume form on a subriemannian manifold?

The question was initially brought to attention by Brockett in 1982, in
his paper (see [18]). His motivation stemmed from the desire to construct
a Laplace operator on a three-dimensional Subriemannian manifold, which
would be intrinsically connected to the metric structure, analogous to the
Laplace-Beltrami operator on a Riemannian manifold. In more recent times,
Montgomery tackled this problem in a more general context[66]. Popp’s vol-
ume, Hausdorff volume and spherical Hausdorff volume are some interesting
examples of canonical volume forms on a subriemannian manifold (for infor-
mation on Hausdorff volume and spherical Hausdorff volume, see [2][42][65]

6
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and the references within).

Popp’s volume for instance was first defined by Octavian Popp but intro-
duced only by Montgomery in [66]. Popp’s volume is defined by inducing a
canonical inner product on the graded vector space using Lie brackets, and
then using a non-canonical isomorphism between the graded vector space and
the tangent space to define an inner product on the whole tangent space. In
2013, the authors in [I3] proved an expression for Popp’s volume in terms of
an adapted frame, and since then, this formula has sometimes been taken in
this context as the definition of Popp’s volume. More precisely, Consider an
adapted frame 71, ..., Z; (defined in the sense of [I3]) and define recursively
the subspaces D; = D;_1 + [Dy, D;_1], where Dy is the span of the initial
vector fields. Informally, the adapted structure constants are the coefficients
of the vector fields in D; modulo D;_; (only consider the coefficients of the
vector fields obtained by bracketing of length 7).

Theorem 1.3 (Barilari-Rizzi[13]). In the frame Zi, ..., Zq, Popp’s volume is
given by

1
dP = ———=dvy A ... A duyg, (1.10)

A/ Hj det(B;)

where B; are matrices that are defined using the adapted structure constants
and vy, ...,vq the frame dual to the adapted frame.

Usually, With the family of Riemannian structures (and Riemannian met-
ric) approximating the subriemannian structure (resp. subriemannian met-
ric), one can define naturally an associated family of Laplace operators Ay.
These Ay’s are elliptic operators, and so, if M is compact, they have compact
resolvent and consequently a discrete spectrum.

In this case, where the Riemannian structure collapses to a subrieman-
nian one, and where the limiting operator of the singular perturbation is
hypoelliptic, only a little is known about the convergence of the spectrum of
the Laplacians (see [39][40][76]). In some specific settings, it was shown that
the family A, converges to A, and that each eigenvalue of A}, converges to
those of A. This was first observed by Fukaya in [39] and then proved by
Ge in [40] (See also [76] for contact manifold case). More precisely, let M
be a compact manifold equipped with a Riemannian metric g. Let H be a
distribution on M of constant dimension and let H* denote the distribution
orthogonal to H. Write ¢ = gy @ gy1. Define the family of Riemannian

7
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metric for h > 0,
gn=9gu Oh gy

Theorem 1.4 (Ge [40]). Let Ay be the Laplacian associated to gn. Then,
Ay, converges as h — 0 to a second order subelliptic operator

AH = —26?,

i

where e; is an orthonormal frame for H. Moreover, if A\i(h) < Xa(h) < ...
and A\ < g < .... denote the eigenvalues of Ay and Ay respectively, then
Ai(h) converges as h — 0 to \.

In the next section, I state the results of my work.

1.2 Main Results

Our work will be distributed into three chapters. So, we will divide this
section into three subsections, each will contain the results of a chapter.

1.2.1 About Concentration Inequality
Denote by X = R x S! the infinite cylinder in R? and by w = R x [a, b], a
horizontal strip along X. Denote by

Lg(X) = {u X > R; fx ]u(x,y)|2dxdy < oo, | ulx,y)dy = 0} .

Sl

Let V e V = {22W, W e CO(R), W > 1} equiped with the norm‘

xZWH =
5 \%
HWH . For V €V, we denote by
PV = —5923 — V(CC)&;,
the generalized Baouendi Grushin Operator on D defined by
D = {ue L§(X);02ue L*(X),V(z)02u € L*(X)}.

We say that the concentration inequality holds for Py if there exist a constant
¢ = c¢(w) such that for any eigenfunction u of Py, we have

lull p2ary < cllull o) -

8
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First, we give a sufficient condition for P, to satisfy the concentration in-
equality. We prove that

Theorem 1.5. If mult(E) = 2 for every eigenvalue E of Py, then the con-
centration inequality holds.

This theorem will be restated as theorem 2.2

However, this is not always the case; the condition in proposition [1.5] is
not true in general. This will be ensured by studying the special case, where
V(x) = z* + s%. For instance, we prove the following.

Theorem 1.6. If s? is rational, then the multiplicity of the eigenvalues of
Py is not uniformly bounded.

This theorem will be restated as corollary [2.4.1]
Theorem 1.7. If s is irrational, then mult(E) = 2 for all E € spec(Py242).

This theorem will be restated as proposition 2.5 As a corollary of theo-
rems2.2] and [1.7] we get that

Corollary 1.7.1. If s? is irrational then the concentration inequality holds
for P, .

This gave the inspiration to ask about the validity of concentration in-
equalities generically. The idea of studying the spectral condition generi-
cally is the fact that this condition is a ’simplicity’ condition on the eigen-
values of the non-elliptic operator P,. A general result of simplicity of
eigenvalues for elliptic operators was first introduced by Albert in his the-
sis [6] and proved later for two dimensional case in his paper [7]. Later,
Uhlenbeck showed that the theorem does hold in all dimensions [81][82].
We prove a variation of Albert’s [§] and Uhlenbeck’s to prove a similar
result for the subelliptic operator P,. So, we study the perturbation of

the Baouendi Grushin operator and prove the following result. Denote by
Vy, = {V € V;3E € spec(Py), mult(E) # 2}.

Theorem 1.8. The complement of Vy, is residual in (V,||.||y)-

This theorem will be restated as theorem [2.20] This theorem says that
generically, the eigenvalues of a Baouendi Grushin operator have multiplicity
2. By theorem [I.5] it implies that the concentration inequality is valid for a
generic Baouendi grushin operator.
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1.2.2 About Approximation Scheme

Let X% ..., X% be smooth vector fields on M such that Dy = span{X%, ..., X}
satisfies the Hormander condition of step r. For 0 < ¢ < r, we define recur-
sively

D; = Di_y + [Dy, Di_1],
and we let n; = dim(D;). Then by Hoérmander condition, n, = d and D, =

T, M.
For some enumeration of the vector fields, we have

y
T,M = span{X J}O<i<r,1<j$Nu

where X% is a vector obtained by i iterative brackets of X, ..., X0
Let N = Ny + ... + N,. We define the subriemannian metric ¢° following
1.9 as

p
g(m, X)) = inf < |ulz,; u e RP, Z u; X% (m) = X(m) ¢,

j=1

and denote by d its associated subriemannian distance.

We define our approximation scheme. For u € RY, we write u = (ug, uy, ..., u,),
where each u; is of length N;. For all h € R\{0} and all u € RY, define the
dilation 6;, as

Sn(u) = (ug, h tuy, R 2ug, ..., h ;).

We define the family of Riemannian metrics ¢g" as

" (X)) = inf < |6pul3;u e ]RN,Z 2 u; (m)X7(m) = X(m) p.  (1.11)

i=0j=1

Denote by d" its associated Riemannian distance. As we said earlier, it is well-
known that the subriemannian distance is the limit of a family of Riemannian
distances uniformly on compact sets of the manifold. As we aim at studying
volume forms, it is natural to study the volume form associated to the family
of Riemannian metrics, dvolg”. If we fix some frame, say 71, ..., Z4, then

dvolg" = +/|det(G})|dvy A ... A dug,

10
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where G}, is the representation matrix of ¢” in the frame and v, ..., 74 is the
frame dual to 71, ..., Z4. That is why we focus on studying the determinant
of Gj,. For any 0 < ¢ < r, denote by A; the representation matrix of the
vectors X% obtained by bracketing of length i in these coordinates. Then we
prove an expression of G,;l in terms of the Als:

Proposition 1.9. We have

Ghil = i h22AfAZ

1=0

This will be restated as theorem . This is a nice expression of G;l, and
so we study the determinant of Gi; ' which conventionally implies information
about the determinant of Gj. This expression implies that the determinant
of G ! is a polynomial in h. However this information is not enough to
study the limiting behavior of the determinant, and so we aim to describe
the spectrum of G;l.

Recall that for 0 <i < r, n; = dim(D;), and set n_; = 0. We prove that

Theorem 1.10. Fix a point m e M. For any 0 <i < r, there are n; —n;_,
eigenbranches {X)(h)}1<j<n;—n,_, of Gy' such that
N (h) = h*n (h),
with limy,_oni(h) # 0 for any 0 <i<r,1<j<mn;—n;q.
This theorem will be restated as theorem [3.13] As a corollary, we get that
det (G, (m)) = fu(m)h>™,

with ¢(m) = >3] i(n;(m) — ni—1(m)) (where (no(m),ni(m),...,n,—1(m),d) is
the growth vector at a point m) and f,(m) converges pointwisely, as h — 0,
to a positive function f(m) (to be determinied). Also, we prove the following.

Theorem 1.11. Under the equiregularity assumption, the function m +—
f(m) is smooth, non-vanishing, and independent of the choice of coordinates.

In particular, (1/4/f) defines a volume form, (1/4/f)dz on M. This the-
orem will be restated as corollary [3.19.1]

We then recover the same result using the nice properties of an adapted
frame. We prove moreover, that this volume form, induced from the approx-
imation scheme, satisfies the following:

11
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Theorem 1.12. The volume form dP, induced from the approzimation scheme
coincides with Popp’s volume dP up to a multiplying by /2" ; that is,

1
AP = ——dP,.
V2"

This will be stated in corollary |3.64]

1.2.3 About Convergence Of Spectrum

Suppose M is compact and orientable. Consider the previous framework,
and suppose the subriemannian structure is equiregular. Define the Hilbert
space L2 (M) with respect to a fixed volume form w as follows:

L2(M) == {u: M - R; ||ul3, := f |u?dw < oo}
¢ M
On L2 (M), we define the sublaplace operator as

p
Ag = Y (XW)* X", (1.12)
j=0

where the star denote the adjoint with respect to dw.
Now, define the Hilbert space associated to h?dvolg”, by

Li(M):={u: M — R, ||u||i}21(M) = JM lul2h*dvolg" < oo},

For any h > 0, we define on L?(M), the family of elliptic operators:

T i

N,
Ah _ Z Z h2i<Xij)*hXij7

where the star denotes the adjoint with respect to dvolg”.

We adapt Kohn’s proof to prove a uniform parameter-dependent version
of the famous local subelliptic estimate using pseudo-differential calculus.
For instance, we prove the following:

Theorem 1.13. The following holds true: 3¢ > 0,¥s € R,3C(s) > 0,Vh €
[O, hl],Vu S COO(M),

lul

v < 06 (|3 Hllgan ) 013

&(M)

12
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This will be restated as proposition [4.12]

On one hand, this theorem covers the well-known facts about the sub-
laplacian; it is subelliptic, hypoelliptic, essentially selfadjoint, and has com-
pact resolvent, and thus a discrete spectrum. On the other, it implies a
uniform estimate on the eigenfunctions of A,. Using this estimate, and some
standard spectral theorems, we prove the following.

Theorem 1.14. Let (hy)n=0 be a sequence that goes to 0 and (up,)n=o be a
sequence of normalized eigenfunctions of A,. Let (tn)n=0 be the associated
sequence of eigenvalues. Assume that the sequence (fin)n=o is bounded. Then,
the following assertions hold true.

1. There exist a subsequence (fin, k=0 that converges to an eigenvalue of

Ao, say M.

2. Up to extracting a subsequence, (un, k=0 (that corresponds to (tin, )k=0)
converges to vy in HL(M) for any 1, and vy is an eigenfunction of Ag
associated to A.

This theorem will be restated as theorem [4.20l As a corollary, we get

Theorem 1.15. Denote by (Mp)rso and (Ap(h))rso the ordered spectrum of
Ao and Ay, respectively, counted with multiplicities. Then, for any k > 0
fized, we have

lim A (h) = Ag. (1.14)

h—0

This theorem will be restated as theorem [4.21]

1.3 Some Comments On The Results

We give some comments on our results. All these comments will be made
precise in the sequel.

We point out that theorem (spectral sufficient condition) does not
depend directly on the Baouendi Grushin operator, but on some properties
satisfied by this operator. So, this theorem could be generalized as a suffi-
cient condition for the validity of concentration inequalities for other general
operators.

Now, concerning the main theorem (theorem , Kato’s theory of an-
alytic perturbation is needed, as we use the Hellmann-Feynman theorem.

13
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However, what we do here, is that we give the theory for finite-dimensional
case in the appendices, and prove a generalization in the infinite-dimensional
case adapted to our framework. We shall see also, that this theorem works
on a torus.

Regarding the second part, we should point out, that the volume form
induced from the approximation scheme (which is in some sense adapted to
the subriemannian structure) is not canonical (or intrinsic) to the subrieman-
nian structure. We shall see that this volume form depends on our choice of
the vector fields that span the tangent space.

Finally, let’s comment a little about the convergence of the spectrum.
First notice that our main theorem is about ordered spectrum, and not about
eigenbranches (though, we shall see that in the fixed volume form case, the
convergence of eigenbranches is true).

Now, To prove the theorems on the convergence of spectrum of A, we
first prove the results for A, which is defined with respect to dw instead
of dvolg”. Dealing with dvolg” is a harder task because the presence of h-
dependent function f; will interrupt some uniform estimates. This difficulty
will be surpassed due to the equiregularity assumption mainly. Without
this assumption, things get much more difficult. Indeed, our results for the
convergence of spectrum works only in an equiregular settings.

In the non-equiangular setting, where the singular set Z is non-empty,
many things will fail to work. For instance, M\Z is not compact anymore,
and it is not clear whether the subelliptic estimate remains true. As
a consequence, we have no idea now if (Ag, CF°(M\Z)) is essentially self-
adjoint. It is worth noting that some authors have studied this question,
and proved that basically, some conditions on the singular set Z implies the
essential selfadjointness of (Ag, C°(M\Z)) (see [15][16][35][72]).

1.4 Comparizon With Previous Results

Although similar, there are several differences between corollary by
Letrouit [62] and our result. First of all, as explained to be the crucial point
here, is that our approach is purely spectral, while his approach is geometric
(depends on geometric conditions). Second, the settings are different. Indeed
here, we deal with the generalized Baouendi Grushin operator, for a general
class of potentials V, and prove the validity of the concentration inequality
on the infinite cylinder, an unbounded domain, which dealing with usually is

14
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harder than dealing with bounded domains (we will also see that our results
hold on a torus for instance).

Concerning the approximation scheme, as said earlier, although the vol-
ume form induced from it is not canonical to the subriemannian structure,
but subjected to a good choice of vector fields, it gives a 'nice’ volume form
to deal with.

Moreover, a particular (a very good) choice of the complement of D,
implies that this volume form induced from the approximation scheme is the
Popp’s volume. As we can see, theorem actually gives a way to compute
Popp’s volume, other than that given by the authors in [13]. What we have
to do, is to write the matrices A;, write the matrix G, ' using proposition
1.9 and compute the determinant. Then, using the growth vector we deduce
the function f;,. We deduce Popp’s volume using theorem after taking
the limit as h — 0.

Finally, our convergence result is much more general than that of Ge in
[40]. In fact, our setup is more adapted to the subriemannian setting; for
instance, the dilation taken is associated to the vector space D;, 0 < i < r.
It implies the existence of the function f;, which needs a special treatment.
In [40], the setting was adapted somehow to the proof; the volume form
he ended up with is, expressed in our notations, h°dw for some constant c.
This is because in [40], the author supposed that the initial vector fields are
always a spanning linearly independent set (basis) which means that Dy is
of constant rank. Here, we had no assumption on the rank of Dy, which can
be spanned with a random number of vector fields.

1.5 Plan Of The Manuscript

Here we give the plan of the manuscript, where we explain the contents of
every chapter.

e Chapter [2t This chapter is dedicated to studying the concentration
inequality for the generalized Baouendi Grushin operator.

— In section [2.1] we give some definitions and notations. We then
restate and prove theorem

— In section [2.2] we investigate the example P2, and prove theo-

rems [1.6] and [1.7] (and deduce corollary [1.7.1)).
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— In section [2.3] we study the general case, and prove theorem [I.8|
— In section [2.4] we briefly explain why our result holds true on a
torus.

e Chapter [3; This chapter is dedicated to studying the approximation
scheme, and the volume form it induces.

— In section 3.1}, I recall some important definitions, that form the
keywords for the chapter. I then introduce my framework.

— In section 3.2, we introduce our approximation scheme. In par-
ticular, we prove that g" is a family of Riemannian metrics, and
then adapt the proof of [40] to prove the convergence of distances.

— In section , we study the volume form dvolg”. In particular, we
prove proposition [I.9] and theorem and their consequences.

— In section (3.4 we define Popp’s volume and compare it to our

volume form. In particular, we prove theorem

e Chapter [ This chapter is dedicated to studying the convergence of
the spectrum.

— In section [£.2] we study the subelliptic estimates in both cases:
fixed volume form and dvolg".

— In section 4.3} we prove theorems and

We will see that our work is based on the finite dimensional pertur-
bation theory, and will use some fundamental theorems from spectral
theory. For that, we write the appendices that are divided into:

e Chapter[A} In this chapter, we give some basic preliminaries in spectral
theory that are frequently used in the manuscript.
— In section [AT] we give some general well-known theorems.
— In section [A.2] we study the Schrédinger operator.
— In section [A.3] we state some well-known boundedness theorems

for pseudo-differential operators.

e Chapter [B} In this chapter, we briefly give Kato’s perturbation theory
in the finite dimensional setting.
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e Throughout chapters [3|and [4] I give examples that are standard in the
context of subriemannian geometry. I basically apply my results to
the Grushin case, Heisenberg case, and the Martinet case which are all

typical almost Riemannian structures (see definition (3.1.1.2]).

Table 1.1: Table of Notation

card{} Cardinal of the set
f=0(g)at zo  limgu(f(2)/9(x)) < ¢
f=olg)atzo  limg.,(f(2)/g(x)) =0
f~g near xg f(x) = g(z) + o(g(x)) at xg
mult(E) multiplicity of an eigenvalue E
T will always denote an operator
spec(T) spectrum of T’
ker(7T) kernel of a function T’
Im(7) Image of a function T
i j kronecker delta
supp(u) support of a function u
At transpose of a matrix A
det(A determinant of a matrix A
M x5 space of ¢ x j matrices
dim(V) dimension of a vector space V/
3 there exist(s)
v for all
D(M) space of test functions on M
9'(M) space of distributions on M (dual space of Z(M))
|t Euclidean norm of a vector u € R™ given by (3", u? )2
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Chapter 2

Eigenvalue Multiplicity And
Concentration Properties Of
Baouendi-Grushin Operators

We prove a generic simplicity result on the multiplicity of the eigenvalues
of the generalized Baouendi Grushin operator that implies the validity of
concentration inequality for eigenfunctions.

2.1 Introduction

Studying concentration inequalities for eigenfunctions is studying whether
the magnitude of the eigenfunctions on the manifold can be controlled by
its magnitude on some sub-domain. Mathematically speaking, for a smooth
connected manifold M, an operator T defined on L?(M) is said to satisfy the
concentration inequality on a subset N of M (control region) if

Je(N) > 0,VE € spec(T), Vo € ker(T — E), 9]l 2pr) < e(N) 191l 12 -

(2.1)
Here, we consider the generalized Baouendi Grushin operator on an infinite
cylinder and study the validity of the concentration inequality on a horizontal
strip of the infinite cylinder. We prove that a certain spectral condition is
sufficient for the concentration inequality and that this spectral condition
holds for a generic Baouendi-Grushin operator. First, we introduce our setup
and define the Generalized Baouendi Grushin Operator.
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2.1.1 Definitions And Notations

Denote by X the infinite cylinder in R?, X = R x S', with fundamental
domain R x [—m, 7], and by w = R x [a, b], a horizontal strip along X. We
define the following (sub)spaces:

e Denote by L2(X), the Hilbert space defined as

L2(X) = { X > R; L (e, ) 2dady < oo, [ u(z, y)dy — o} |

(2.2)
equipped with the usual L? norm. Note that the last condition in the
definition of LZ(X) is equivalent to saying that LZ(X) is the orthogonal
complement, in L?(X), of the functions that only depend on z. We
will see later that this condition is necessary for Py to have a discrete
spectrum.

Sl

e Denote by C25(X) the set of smooth functions of compact support on
X that are in L3(X), equipped with the supremum norm on X.

e Define the uniform norm on R as follows
W lloo =Wl oo gy = sup W (z)]. (2.3)
TE
e Denote by CP(R) the space of continuous bounded functions on R,
equipped with the uniform norm on R.

e Denote by C°(R) the space of smooth functions with compact support
on R, equipped with the uniform norm on R.

e Denote by W the subspace of C*(R), W = {W e C*(R); W = 0},
equipped with the uniform norm defined by ([2.3]).

2.1.1.1 The Generalized Baouendi Grushin Operator
We introduce the set
V= {V = 2W; W e C)(R), W = 1}.
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For V e V, we set X; = 0, and X, = V'V 0y. We define the generalized
Baouendi-Grushin (hypoelliptic) operator as

Py =X} — X3 = —02 - V(x)d;. (2.4)
The operator Py with domain CZ§(X) is essentially self-adjoint on L§(X)
and the unique self-adjoint extension with domain

D ={ue L§(X);c2ue L*(X),V(z)d2u e L*(X)}, (2.5)

has compact resolvent (see remark below). Consequently, its spectrum
consists of an increasing sequence of positive (as the operator is self-adjoint
and bounded from below by 0) eigenvalues with finite multiplicity, that con-
verges to +00.

Although it is not our interest in this chapter, it is good to note that if
we denote by ¢ the subriemannian metric associated to € = { X1, X»}, then
(X, ¥, g) is a 2 almost-Riemannian structure (see subsection [3.1.1.2 Chapter

).

2.1.1.2 One Dimensional Schrodinger Operator

For a non-negative continuous function V' satisfying limg|_, 40 V(2) = 400,
define the one dimensional (parameter dependent) Schrodinger operator

Pt = -0 + K*V(z),

with domain C°(R), defined on L?(R) (the usual Sobolev space on R). Tt
is well-known that the operator (PF,C°(R)) is essentially self-adjoint, and
that the domain of the self-adjoint extension satisfies

Dy < {ue H'(R), Viu e L*(R)},

where H'(R) = {u € L*(R);u’ € L*(R)}. For k # 0, this operator has com-
pact resolvent. For sake of completion, we give a proof in Appendix
Consequently, the spectrum of P consists in an increasing sequence of posi-
tive (as the operator is self-adjoint and bounded from below by 0) eigenvalues
with finite multiplicity, that converges to +o00, and L?*(R) has an orthonormal
basis that consists of eigenfunctions.
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2.1.2 Geometric Control Condition

A well-known sufficient condition for the concentration inequality is the so-
called Geometric Control Condition of Bardos-Lebeau-Rauch introduced in
[12] (see also [23]). This condition says that all the trajectories of the gener-
alized geodesic flow will enter the control region before some time.

This condition is not necessary in general. In [46] for instance, the authors
proved that the L? norm of the eigenfunction on a neighborhood U of the
vertices, where the geometric control condition fails, is controlled by a con-
stant ¢ = ¢(U) multiplied by the norm on the polygonal domain (see also
[511).

In our case, the Hamiltonian associated to P is

H(x7y7§7n) = 7512 - (12 + 82)772’

where (£,7) are the coordinates dual to (z,y) (that is (z,y,&,n) are the
coordinated of the cotangent bundle 7*X). The geodesics between the points
(x0,%0) and (x1, 1) are the projections onto the (z, y)—plane of the solutions
to the Hamiltonian system

xr = Hg = —25
gz_ x:_2x772 .
n= _Hy _07

with the boundary conditions x(0) = zg,y(0) = yo, (1) = z1 and y(1) = v,
where the dot denotes the variation with respect to the time parameter ¢.
System (2.6]) implies that n = cst = ny and § = —2(2? + s%)ny. If n = 0, then
Yo = y1, and

z(t) = t(r1 — ) + 0, y(t) = o, te0,1]

is the unique geodesic joining (zg,yo) to (x1,yo) (for detailed information
about geodesics of Grushin operator, see [28][29]).
Thus, if yo ¢ [a,b], then the control domain w doesn’t satisfy the geometric
control condition (it will never enter w for any ¢t > 0).

Here, we investigate a purely spectral condition that serves as a sufficient
condition for the validity of concentration inequalities for eigenfunctions of
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the Baouendi Grushin operators on an arbitrary horizontal strip of the infi-
nite cylinder. To be more specific, our interest here is not the concentration
inequality itself (that could be known in the case where V(z) = z*® by us-
ing some involved geometric methods), but in deriving a spectral condition
leading to it.

2.1.3 Spectral Sufficient Condition

Let’s first note that there exists a basis of eigenfunctions of Py of the form

o(z,y) = pr(x)e™ keZ,

with ¢, € L3(R). Indeed, it is well-known that if two operators 7" and T
commute, that is 7T = TT, then one can find a joint eigenfunction for the
two operators (see [LI|[41]). As the potential V' is independent of y, then
Py and 02 commutes. The eigenfunctions of  have the form ¢y (x)e™ with
k € Z, so there exists k € Z* (the Hilbert space is LZ(X) and so functions that
are independent of y are excluded, which is the case when k& = 0) such that
or(1)e* is an eigenfunction of Py,. Substituting in the eigenvalue equation,
this implies that ¢y (x) is an eigenfunction of the one-dimensional Schrédinger
operator PF. Then ¢ (x) = ¢y ;(x) corresponds to the j™ eigenvalue of Pf
for some j € N. For a fixed k, we can choose a family of orthonormal
eigenfunctions {¢y j(2)};en that form a basis to L*(R).

Now, since {€™*¥},ez+ is an orthogonal basis to L?(S!), we get that

{@k,j (v )eiky } jeN, keZ*

is an orthogonal basis to L?(R x S'). Indeed, for any u € L*(R x S'), we can
write u(z,y) = >,z ur(z)e™, with

wla) = F@la. k) = 5- | ule.p)e .

where F(u) here denotes the Fourier transform of w on the circle. Suppose
now, that for any j € N, k € Z*,

(u, @1 ()™ L2 mxst) = 0. (2.7)
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We compute
@), prm = [ @)y
R

1 .
= Q_J J u(x,y)e_lkygokyj(x)dxdy
T R Jst
0,

where the last equality is by . Consequently, since for any k € Z*,
(¢k,;)jen is an orthonormal basis, we get that u, = 0 for any k& which implies
that u = 0.

So, {¢r;(2)e™*} ez jen is an eigenbasis for L?(R x S'), and so they cover
all the eigenvalues of Py,. The eigenvalue equation implies that

spec(Py) = U spec(PE). (2.8)

keZ*

This method is called separation of variables and it works for any second
order operator satisfying the above description, which shows the importance
of V' being independent of y.

Also, observe that PE = P;*, so if we denote by ¢;(x) an eigenfunction
corresponding to the ['" eigenvalue of P, then since we can write the eigen-
functions of Py using separation of variables, o;(z)e*¥ and o;(z)e~*¥ are
both eigenfunctions that correspond to the same eigenvalue of P, and so the
multiplicity of any eigenvalue of Py is at least two (we recall that k # 0).

Remark 2.1. Using this transition between Py and P, one can deduce that
Py with domain C3°(X) is essentially self-adjoint. Indeed, Py is positive
(semi-bounded from below), so it is enough to prove that
ker(Pj + 1) = {0}. (2.9)
Let uw e L§(X) be such that for any ¢ € C(X)
(us (Py + 1)¢)rax) = 0.

We write u = Y, .« ui(x)e™ and take the test function of the form (x)e™V,
then we have that

Vip € Co(R), Cug, (Py + 1)¢)r2m) = 0.
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As P is essentially self-adjoint, this implies that u, = 0 which gives that
u = 0. Then (2.9) holds true. Therefore, (Py,Ci°(X)) is essentially self-
adjoint.

Moreover, since (Py, D) is self-adjoint and has a discrete spectrum (which
is the union of the spectrum of PY), then it has a compact resolvent (using
the spectral theorem, the resolvent operator can be written as a limit of finite
rank operators).

A sufficient condition for Py to satisfy the concentration inequality is
given in the following proposition.

Theorem 2.2. Suppose that all the eigenvalues of Py are of multiplicity 2.
Then the concentration inequality holds true for w = Rx]a, b|:

3C >0, VE =0, Yo e ker(Py — E), [l2cx) < Clolr2w)-

Proof. Let E be an eigenvalue of Py. If mult(F) = 2, then any eigenfunction
of E can be written as

O, y) = apr(x)e™ + Bo_j(x)e™ = p(z)(ae™ + ™),
where the last equality is because ¢ = ¢_j (see the paragraph before this
proposition).
We will explicitly compute ||¢||iz(w). First, write
a = +ia; and B = By +if, o, a1, Po, P1 € R.

Observe that ¢(z,y) has the following expression:

o(x,y) = @r(x) [ (a0 + iar)(cos(ky) + isin(ky))
+ (Bo + 61 (cos(ky) — isin(ky))]
= () [(ag + Bo) cos(ky) + (B1 — aq) sin(ky)

+1 ((oq + 1) cos(ky) + (ap — Bo) Sin(ky))] )
Now, direct computation for |p(x,y)| gives that

6(x,y)]> = R(d(2,9))* + S((2,y))
= |gpk(a:)\2 [/ﬁ cos?(ky) + kg sin(ky) + 2k3 cos(ky) sin(k:y)] ,

25



Chapter 2. Eigenvalue Multiplicity And Concentration Properties Of
Baouendi-Grushin Operators

where k1 = (g + 5o)* + (o1 + 51)?, ke = (o — Bo)? + (a1 — £1)?, and

k3 = (o + Bo)(—a1 + B1) + (a0 — Bo)(ar + B1) = 2(aoB — a1 By).
We compute

b b
H¢Hi2(w) = H(Pk’li?(R) [’flf cos”(ky)dy + Hzf sin? (ky)dy

a a

b
+ 2/@;;[ cos(ky) sin(ky)dy

a

= ngkHiQ(R) [(lil — /ig)fi:) + (/‘il + /12) <b_Ta> + ﬁS@ 5

with f(k) = sin(20k) — sin(2ak) and g(k) = cos?(ak) — cos®(bk).
Taking a = —m and b = 7, we deduce that

2 2
|‘¢‘|L2(X) = 7TH90k”L2(R) (/il + /€2).

So, we get that,

2
||¢||L2(w) _ K1~ ke f(k) n b—a I g(k) (2.10)
K1 + ko ATk 21 K1+ Ky Tk

2
112 )

Note that the constants k1, ke and k3 depend on k. The functions f(k) and
g(k) are functions of sine and cosine so they are bounded. Also, the term

ng£;| is bounded above by 1 and so, the first term of 1' converges to 0
as k — oo.

Now, observe that
K1+ ko = 2(ad + B3+ af + BY).

Then, we have
K3

< (2.11)

DO | —

K1 + Ko
Indeed, we explicitly write

R3

2(af1 — 1)

K1 + Ko

 2(af + B3 +af + 87)
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and observe that, as

(ag + B85 + af + B7) — 2(apBi — a1Bo) = (g — B1)* + (a1 + Bo)* = 0
we get that
2(aof1 — a1fo) < a + 5 + af + B

This implies (2.11)). Thus, the last term of (2.10]) converges to 0 as k — oc.
We deduce that

2
lim H¢||L2(w) ~ lim [min (%1 — rg f(k) n b—ua

min
E—oo | 0#¢eker(Py —E) ||¢||i2(x) k—oo | a8 \ ki + ke 2Tk 21

s @)] :b—a>0.

K1+ ke Tk s
(2.12)

It remains to prove that implies that the concentration inequality
holds true. Suppose that the concentration inequality doesn’t hold, that
is, for all ¢ > 0, there exists E € spec(Py) and 0 # ¢ € ker(Py — E)
such that cHngQLQ(w) < H¢”i2(X). Take ¢ = ¢, = n. This implies that there
exists a sequence of eigenvalues (£, )ney and a sequence of corresponding
eigenfunctions (¢, )en of Py such that

. | ||2L?( ) < | ||2L2( ) L
ocker(Py—En)\(0} \ [| ]| 72 x) [onllLoy 7
We then observe that

2
112 )

vn, min 2
peker(Py —E,)\{0} ||¢||L2(X)

so that, necessarily, E,, — oo when n — co. We get that

2
. . ||¢||L2(w)
lim min —— =0,
En—oo | 0#¢eker(Py—Ey) H (bHLQ(X)
which contradicts ([2.12]). O

The condition in theorem is not true in general. For a better vision
of the problem of multiplicity, we study first the simple Grushin operator.
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2.2 Study Of An Example

We denote by Ps the operator

Ppye =~ — (2 + 8%,

x_

defined on D given by . For s = 0, this is a Baouendi-Grushin operator,
whereas for s > 0, it is elliptic. Since the preceding proposition principally
depends on separating the variables of eigenfunctions of the operator and not
really on the Baouendi Grushin operator itself, it also applies to any s.

In this section, we investigate the eigenvalues of P, and the multiplicities
of the eigenvalues according to s.

We first compute explicitly the spectrum of P,. Denote by PF the one
dimensional Schrodinger operator defined by

Pru(z) := Ph pu(x) = —0%u(z) + k* (2 + s%)u(x).

S T

Recall that P* with domain C°(R) is essentially self-adjoint and that the
domain of the unique self-adjoint extension is

D, c {ue H'(R), (2* + s*)"?u e L*(R)}.

Moreover, (P*,D,) has compact resolvent. Its spectrum is discrete and con-
sists of eigenvalues.

Proposition 2.3. The spectrum of P, is given by the set

spec(Py) = {E;,, = (2n + 1)[k| + k’s*:ne N, ke Z*}. (2.13)
An orthonormal basis of eigenfunction corresponding to Ej, is given by
¢k,n(xa y) = @k,n(x)eiky7 with

22 |k|
z e

iky
Y

Prnlw) = [K[H" (/M) €
where H™ is the Hermite polynomial of degree n, given by

22 o" g2

H"(x) = (—-1)"e PR
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Proof. Let ¢(x,y) = pr(x)e*, k € Z*, be an eigenfunction of P; and let E*
be its corresponding eigenfunction. The eigenvalue equation

P.¢p = E*¢

implies that E° = Ef is an eigenvalue of P¥ with a corresponding eigenfunc-
tion @g.
Observe that, the eigenvalue equation implies that Ef = EY +k*s? where E
is an eigenvalue of the 1-D harmonic oscillator —d% + k*z?, with correspond-
ing eigenfunction ;. The spectrum of the harmonic oscillator is well-known
and given by {(2n + 1)|k|;n € N, k € Z*}. Moreover, the function ¢y, given
by .
Prn(@) = [k H" (/TR (2.14)

is an eigenfunction corresponding to (2n + 1)|k|. Refer to [49, Chapter 11]
or [84], Chapter 6] for details about the harmonic oscillator.
Then, for every k € Z*, the n'" eigenvalue of P is E} |, = (2n + 1)|k| + k*s?,
with a corresponding eigenfunction is given by .

Therefore, the spectrum of Py is given by , with a set of correspond-
ing eigenvectors {pg ,(z)e*¥}rez«. Since these eigenfunctions span the space
L3(X), they cover all the eigenvalues of P,. We conclude. O

To study the multiplicity of eigenvalues, it is usually helpful to study the
Weyl law, which will be described here by studying the asymptotic behavior
of the counting function. The counting function Np, takes a positive real
number and counts the number of eigenvalues of P, less than or equal to this
number. In other words, we can write for £ > 0,

Np(E)= > 1,
Ej <E
where the sum is taken over the eigenvalues Ej |, of Pk.
Proposition 2.4. [Weyl Law] The following assertions hold true.
1. For s =0, Np,(F) = EIn(E) + O(FE) at infinity.
2. For s #0, Np.(E) = EIn(VE) + O(E) at infinity.

Proof. Denote by [.] the upper integer part function which takes a real num-
ber and gives the first integer greater than or equal to this number. Denote
by |.| the lower integer part function which takes a real number and gives
the first integer less than or equal to this number
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1. We compute

Np,(E) = card{(n,k) e Nx Z*/(2n + 1)|k| < E}
= 2card{(n, k) e N x N*/(2n + 1)|k| < E}

-2 ) card{neN/(2n+1) < %}

0<k<E
E
x4l
0<k<E 2k
Now, since
E E E 1
2k 2k 2k ’
then . 5
E - < [—} <E ) —+2E
0<k<Ek 0<k<FE 2k 0<k<E
As E — o0,
1
= In(E) + O(1)

Since E is negligible at infinity compared to E'In(E), we get Np,(E) =
El(E) + O(E).

VE
2. We set a = min (E, —> , and we compute
s

Np,(E) = card{(n, k) e N x Z*/(2n + 1)|k| + k*s* < E}
= 2card{(n, k) e N x N*/(2n + 1)|k| + k*s* < E}

E — k%s?
=2 d N/(2 )< —r—+
Z car {ne /(2n + 1) ’ }

0<k<a
E — k%s?
O<k<« 2k
Since
E — k?s? E — k?s? E — k?s?
< < 41,
2k 2k 2k
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then

N R IS

0<k<a 0<k<a 0<k<a

E — k?s?
2k

<FE Z%—SQ > k| +2E.

O<k<a O<k<a

Finally, we get

1 s?la)(la] + 1 E — k%s?
AEIE lJ(l2J+)<22[ zk }

0<k<a O<k<a

s 1) allol ey

<FE
2

O<k<a

As F — oo, we have a = ‘/TE, and so we get Np, (E) = Eln(vE) +
O(FE).

]

Corollary 2.4.1. If s is fized such that s is rational, then the multiplicity
1s not, in general, uniformly bounded.

Proof. If s* = 0, we write the prime factorisation EY, = 2p{*. pi~ for an
cigenvalue £} . With the convention that 3 =37 =0, we have

T

r r—1
mult(E) =2 | Y ai+ > a; | > ap |+1]. (2.15)
i=1 j=1

k=j+1

Indeed, for s = 0, the eigenvalues are of the form (2n + 1)|k| with n € N and
k € Z. The factor 2 outside the brackets is because of the fact that E} =
E?,. .. Now, every prime number but 2 (and that’s why we distinguished 2)
is an odd integer, and the product of two odd integers is odd. So,

the term 2n + 1 can be Hp‘l“ for any 0 < j; < «y.
i=1
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The first sum on the right-hand side of represents the number of the
cases with j; = 0 for all ¢+ but one. The second term of the right-hand side
covers the number of cases where j; is not zero at least for two i's, and k is
not 2%. Finally, the 1 is for the case where k = 2% (j; = o; for all i). This
covers all the cases. Formula implies that for s = 0, the multiplicity
is not bounded.

Take now s = g, with 1 as the greatest common factor of p and ¢ and

p # 0. Then, we have
1
spec(P,) = {(2n + 1)|k| + k?s%, (n, k) e N x Z*} < {a + Bs*, o, B € Z} < 5%.

Assume, for a contradiction, that the multiplicity is bounded above by some

M. Then, for any E, and since the spectrum is a subset of —Z, we have

Np,(2E) — Np,(F) < MqFE.
But the previous proposition implies that
Np,(2E) — Np,(E) = EmVE + O(E).
This yields the contradiction. O]

In particular, the multiplicity of eigenvalues of the simple Grushin oper-
ator P,z is not uniformly bounded.

Proposition 2.5. If s% is irrational, then the eigenvalues of Py are of mul-
tiplicity 2.

Proof. Suppose that P, has an eigenvalue of multiplicity greater than 2. Then
there exists k, k' > 0,n,n’ > 0 with &2 # &>, n # n’ such that

(2n + 1)|k| + k*s® = (2n + 1)|K| + K"*s*.

Then,
5 (2" + DK — (2n + 1)|k|
= L2 _ 2 )
which contradicts the fact that s? is irrational. O

Therefore, as a corollary of theorem [2.2] we have
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Corollary 2.5.1. If s? is irrational, then holds.

To sum up, we showed that whenever s? is irrational the multiplicity of
the eigenvalues of Py is 2, which implies by the spectral condition that the
concentration inequality holds. Moreover, we proved that whenever s? is
rational, the multiplicity is not uniformly bounded, and thus the spectral
condition fails. This means that the spectral condition is not true in general.
This example gave the inspiration to study the spectral condition generically

for general Grushin operators.

2.3 General Case

Let’s first briefly recall our setting. Recall that W = {W e C°*(R); W = 0}
equipped with the uniform norm on R, and that the set V is given by

V={V =2W; W eCOR);W > 1}.

On V, we put the following norm: for V = z?W € V, we define the norm
IV = W]l

For V € V, consider the generalized Baouendi-Grushin operator Py, = —0% —
V(2)02, with domain

D = {ue L§(X);0ue L*(X),V(z)02u e L*(X)}.

Recall that PE denotes the one dimensional Schrédinger operator Pf = —0%+
k*V (z).
Let (P) be the property:

Vk,l e Z*; k* # I? = spec(P}) nspec(Pl,) = & (P).

We can see from that if (P) holds, then mult(E) = 2 for all F €
spec(Py), thus holds by theorem . As said earlier in the general
introduction, we are studying the validity of a simplicity result for the non-
elliptic Baouendi Grushin operators that is of course not true in general
(as shown in section . However, we prove the validity of the spectral
condition for a generic Baouendi Grushin operator.

A general result of simplicity of eigenvalues for elliptic operators was first
discussed by Albert in his thesis [6] and published later for two dimensional
case in his paper [7]. Later, Uhlenbeck showed that the theorem does hold in
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all dimensions [81][82]. This work inspired us to prove a variation on Albert’s
methods in [8] to prove a similar result for the subelliptic operator Py .
Explicitly speaking, we prove that for a generic V', mult(Py) = 2, that is, if
we denote by V,, the set of bad V’s that do not satisfy the property (P);

Vp :={V € V; (P) doesn’t hold },

then the complement of V, in V is residual in (V,]|.||;) (the intersection of
open dense sets in V).

Informally speaking, the proof goes by constructing a countable fam-
ily of open and dense sets in V such that the complement of V, in V is
equal to the countable intersection of these sets. To prove the density, we

will need some lemmas whose proofs rely on the Hellmann—Feynman the-

orem (lemma below) applied to the family P"} L2y However, to use
the Hellmann—Feynman theorem, we have to prove that the eigenvalues and
eigenvectors of P{} Lez2yy are analytic in ¢.

In appendix [B] we state and prove the well-known Kato’s perturbation
theorem in finite dimensional case, which gives the analyticity of eigenquan-
tities of a perturbed finite dimensional operator (references are given there).

Here, we are dealing with infinite dimensional operators. Kato proved
that his theory applies to the infinite dimensional problems (see [54, Chap-
ter 7]). However, for the convenience of the reader and self-consistence, we
give a proof that is adapted to our settings; we prove a generalization of
Kato’s theorem into our -infinite dimensional- case, that guarantees the an-
alyticity of eigenvalues (and eigenvectors) of Pf W

Denote by H the Hilbert space L?(R), equipped with the usual L? norm.
For V € V, denote by A\f (V) the m'" eigenvalue of PJ.

2.3.1 Analyticity Of Eigenvalues And Hellmann—Feynman
Theorem

We will prove in this section, that for ¢ positive small enough, the spectrum
of P"j 1z2yy Coincides, in an interval, with the spectrum of a finite dimensional
analytic operator (theorem below).

In this section, we simply write \,,(V) for Ak (V) as there will not be any

confusion about the corresponding operator.
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Proposition 2.6 (Continuity Of Spectrum). Fiz V € V. Let (V,)n>1 be a
sequence of functions in V that converges to V in||.|y. Then, for any m and
any € > 0 there exist Ny, ., such that for all n = ny,,

Mn(Vi) = Am(V)] < 2. (2.16)

Proof. Write V,, = V 4+ 22W,,, where W, is a sequence of continuous bounded

functions that converge uniformly to 0 on R. Observe that

V,—-V
V

< ‘Wn‘7

since V(z)/2* = 1.
For F subset of the domain of P, denote by Ay the following map

Ay(F) = max{m}.

2
|l

Fix m and let F' be the subspace spanned by the first m eigenvectors of Py .
We compute

(P s uyy = (P, upy + kQJ W, |ul?
R

<AWR+HJVM:KMF
R Vv
< (T + [Walowo)Am (V).
Taking the maximum over all functions u € F', we get that
)‘m(Vn) - )‘m<v) < )‘m(v)HWnHOO'
Exchanging the roles of V,, and V', we obtain
An(V) = Am(Va) < An(Va) [Walloo < A (V) [Walloo (1 + [[Who0).
Since |W,|ls tends to 0, we conclude (2.16]). O

A crucial point for proving our main result in this chapter is theorem [2.10
below, which, as explained previously, is a generalization of analyticity result
to an infinite dimensional case adapted to our setting. Informally speaking,
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we prove that the eigenvalues of the operator Py ;21 in an interval coincide
with those of a finite dimensional analytic operator. For that, we define
an isomorphism using the spectral projection for the perturbed operator.
So, we need to define this spectral projection. Precisely, fix some m € N.
For W € W, we need to define the spectral projection Iy, for the operator
P, oy, defined as

1

Hy = i (Pvyo2w — )~ 1dl% (2.17)
) T

for some I' containing no eigenvalues of PV 2
Denote by k,, the distance from A, (V) to the rest of the spectrum of P,
le.

Km = dist ()\m(V),Spec(P(f—)\/\m(V)) :

For any W € W satisfying

=W ]| (2.18)

|/<¢!2’

we define the intervals J, and J_ as

J, = ])\m(V) k][22 ]| (V) + Hm[,

T = PonlV) = s V) = Il |

Proposition 2.7. For any W € W satisfying , forany J < J_u Jy
we have p € J implies p ¢ spec( VHQW)

Proof. Let W € W satisfying . PE is an unbounded self-adjoint opera-
tor. Then, for 1 € J (which is a subset of the resolvent set of PY), (Pk— )™t
is bounded normal operator and the spectral radius coincides with the norm
of the resolvent, that is,

1
1, spec(

[

_ Pk‘_ -1 =
o0 sup{WaNESpeC(( v 1) )} dist(

PY))’
(2.19)
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where L(#H) denotes the space of linear bounded functions from #H to H.
Let u € H, and let v = (P¥ — pu)"'u. We compute

2
H(P\]§+12W*Px]j)(P\’§ )~ H H V+x2W*P\];)UHH
= kWl < kW7 llvll5,
k4

2 2 2
|2 W[l -

<3 =y
dist (4, spec(Pf))
Now, for p e J_ u J,, we have that
dist(u, spec(Pf)) > |k‘|2Hm2WHOO (2.20)

Therefore,

k? )
L(H) S dist(u, spec(PE)) HI WHOO <

| (Pl = PEYPE = 1)

Then by Neumann lemma, (I + (P}, .y, — PE)(PF — p)™') is invertible.
Now, we have

= (P —w)(Py — )"

= (Py — ) (Py — )"+ (PY o — ) (PF — )™ = (P o — ) (PF — )"
= (P} Vi )Py — )™ = (P oy — o+ = PR (P — )™

( V+a2W N)(PV N)fl - (P\Iﬁ+x2w - P\];)(P\’; - /vb)fl-

This implies that
I+ (Pyogew — PO B — )™ = (Pyopew — w)(Py — )"

We conclude that P — p is invertible and thus p ¢ spec(PE, o). O

+z2W

Hereafter, whenever we use Ily, a convenient contour I' is taken, that is,
Frt)mnRc J_uJ,.
To prove analyticity, and besides defining the spectral projection, we will
need the following lemma concerning the convergence of the spectrum of the
family (Pf,, Ly )n>1-
We need first the following theorem which is standard in spectral theory, and
which will be used in this chapter and later in chapter [4]
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Theorem 2.8. Let T be a self-adjoint operator with domain D(T) in a
Hilbert space H equipped with the norm ||.|| ;. Then A € spec(T) if and only
if there exists a sequence (uy)n=1 € D(T) such that ||u,||; =1 and

lim ||[(T" — Nu, |l = 0.

Proof. First, let A € spec(T'). If A is an eigenvalue of T', we take u, = f/|| fl 5
for any f in the eigenspace of \.
If ker(T'— X\) = 0, then since T is self-adjoint, we have

Ran(T — \) = H,

and so we define the unbounded operator B = (T — \)™! as: dom(B) =
Ran(T) and For any y € dom(B), x = By is the unique element x such

that Tx = y. Consequently, there exists a sequence {v,} € D(T) such that
[vnlly =1 and H(T — )\)_lvnH — 00. Define

o (T — N,
T =Nl

Clearly, {u,} is the required sequence.
Conversely, let A be in the resolvent set of 7. Then there exists M > 0
such that for any v € H,

(T =Xl < Mol -
let u= (T —\)"'ve D(T). We have
lull g < MI(T = Nullg -

The existence of a sequence of normal vectors (u,), in D(T) such that
(7" — Nyl ; — 0 implies that 1 < 0 which is a contradiction. O

Lemma 2.9. Fix VeV and W € W. Let {t,},>1 be a sequence in R that
converges to 0. Let (¢4, )n=1 be a sequence of orthonormal eigenfunctions
of P"jﬂnxgw. Denote by (A,)ns1 the corresponding sequence of eigenvalues.
Suppose that there exists M € R such that for all n, |\,| < M. Then, up to
extracting a subsequence,

An — X € spec(P). (2.21)

Moreover, ;, has a subsequence that converges strongly in H to the eigen-
function of Pt corresponding to .
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Proof. By Bolzano-Weierstrass theorem, (A, )n>1 has a subsequence, say (A, );>1
that converges to some A € R as j — 0.

We have: gy, € Dy, aw = Dy (t2?W € L®(R)) With‘
over,

H(P\’j - )‘)%nj

<ptan = 1. More-
iy

<[P o = N, W,

< [An = AL+ B2ty ||| =W — 0.
By theorem we get .

Now, since the sequence (¢n;)j>1 = (SDtn]. )j=1 is bounded in H, it has a
subsequence that converges weakly to some ¢, € H. For any ¢ € Dy, we
compute

+ K|ty |
H H

<P\]3€017 S5>H = <(Px’; - P\’j+tnj:c2w)<ﬂ17 95>H + <P\I;+tnszw(%01 - @nj)a S5>7-t + <P‘Ij+tnj$2W<pn]’7 95>H
= <<P‘I; - P\ﬁ-i-tnijW)(ph @>’H + <(§01 - 9071]')7 P\];+tnjx2W¢>’H + Anj<(pnj7 927>H

As j — 400, the right-hand side converges to (A1, @)y for any ¢ € Dy, and
therefore, for all ¢ € Dy,

{P§ = N1, @yu = 0.

This implies that (), ¢;) is an eigenpair of the self-adjoint operator P&, pro-
vided that ¢, # 0.
Finally, we prove that ¢, converges to ¢; strongly in H (which will

also imply that [/ = 1). For any p ¢ spec(P"anjIQW), (P{j+tnjx2w)_1 is
compact which implies that

(P s, zow) " on, = (B) 1 as j — oo.

This implies, using the eigenvalue equations, that

1 1
Pn; —
Any — A— 1

¥1-
We conclude by observing that

1 1
Pn; —
Ay =7 A= p

”90”1 - (le”H < [An, =gl
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Now, we state the theorem that implies the analyticity of eigenvalues of

k
PVthmQW

Theorem 2.10. Fiz V €V and W € W and suppose without loss of gener-
ality that the support of W is [—1,1]. For any 0 < € < K,,,, denote by I, the
interval

I =\ (V) — e, A (V) + €.

Then, for all 0 < € < Ky, there exists § > 0, and an analytic family of finite
dimensional operators, P such that for all |t < min {6, km/(K2|W ]| )}, we
have

spec(Py) n I, = spec(PE, ,ow) 0 L. (2.22)

Proof. Denote by Vy the eigenspace corresponding to the eigenvalue A, (V),
and set dy = dim(}V,) (which is equal to the multiplicity of A,,(V")). For any

[t < ko / (K2 W] ), (2.23)

denote by Vf the total eigenspace corresponding to the operator Pv g2y 1D
I, and by by Il and II§ the orthogonal projections on V, and Vy respectively.
For all ¢ satisfying (2.23)), define the operator W§

\I’g : Vo — Vte
o — L.

We prove that V¢ is an isomorphism and then construct a family of operators

using V¢ satisfying ([2.22]).

First, we prove that for each €, the operator ¥ is an isomorphism from
to V5. One way to do it is to prove that V), and V; have the same dimension
and that U§ maps a basis of the subspace 1, to a basis of the subspace V;.
Fix some € > 0. We first prove that dim(V5) > dy. We compute

We = TI,II¢
(P agew — 2) (P —w) ™ dzdw

2
U f Powew =20 f J dzdw+Rt
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where

R: = f f (P‘];+thW - Z)_l(P\Ij'-&-tzQW — Pi)(P) — w)_ldzdw.
L Jr. zZ—w
If we choose I, inside I, (i.e. inside the area encircled by I'y,), then (P, oy, —
2)~!/(z — w) is holomorphic and so by Cauchy integral theorem, its integral
on I', is 0. Moreover, we apply the Cauchy integral formula on the second
term to deduce that
Ui =1y + R:.

Now, we compute
H(P\Ztﬁw_@il” H<P‘lﬁ_w)71H£(H

L(H)
IRl ey < [E1IEI||2* W] Lw LZ |z — w|

1 1 |dz||dw|
< |t||k|||=*W
]| |H$ HooLw Jrz dist(z, spec(Pk ) dist(w, spec(PE)) |z — w]

V+tx2W

)
|dz||dw|

< \tHk!HxQWH H—mﬁ—msup (

x5 5 ) A. A, = Ct,

|2 = w|

where A, and A, are the total arclengths of the contours I', and I',, respec-
tively, and C' is a constant that doesn’t depend on ¢.
So, for any ¢ € H, we get

IR:plly, = ollell,) as t — 0.

Now, let {¢?,...,¢3 } be an orthonormal basis for Vy. For 1 < i < dp, let
@i(t) = U(Y). For any 4,5 = 1, ..., dy, we compute

0 0 0 0
= {log; + Re;, How; + Repj)
= 61-,]» + 0(1) t— 0.

Thus, {@;(t)}i=1..4, is a set of linearly independent vectors in Vf, and so
Moreover, there exist & such that Py, .2y has exactly dy eigenvalues in I,
for all ¢ < 9. Indeed, suppose to contrary, that for all 4, there exist ¢t < 9
such that P"j tez2w has do + 1 eigenvalues in [.. Let 0, be a sequence that
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converges to 0. Then, there exist a sequence t,,, that converges to 0, such
that P"j w1, 22w Das do + 1 eigenvalues in I.. We denote these eigenvalues and
a corresponding set of orthonormal eigenfunctions by

{A]s s Mgy a1} and {@f, ..., g 1} Tespectively .

For 1 < j < dy + 1, consider the sequence (\}),>1. We get dy + 1 bounded
(by I.) sequences which by lemma [2.21] converge (up to a subsequence) to
an eigenvalue of the limiting operator Pf. If we consider now the set of
corresponding orthonormal sequences of eigenfunctions, then for any j =
1,...,do + 1, again by lemma , the sequence (¢7),>1 converges in H to
the eigenfunction of A; (the limiting eigenvalue). If we denote by ¢; the
eigenfunction corresponding to A; for j = 1,...,dp + 1, we get that for any

i,j = 1,dy + 1,
(i pim = im (@7, o7 = 8],

by the orthonormality of {¢7, ..., 0} 1}, and so, if i # j, we have {;, p;)n =
0 (which implies the orthonormality of {¢1, ..., @4,+1}). This implies that
dy = do + 1, which is a contradiction. Therefore, dim(Vf) = dy = dim(Vy).
Finally, we deduce that the set {@;()}i=1. 4, is a basis for V§ and therefore,
U¢ is an isomorphism form V, to V;.

Now, we introduce the family of finite dimensional operators ]5; as

Pt6 : VO - V()
o = (U) 7 P e Ui,
Then P satisfies (2.22)). Indeed, if £(t) € spec(Pf) n I, then £(t) € I, and

there exists u € Vy such that Pfu = £(t)u. So, by definition, we get that
(U5) ' PE, 2 Viu = &(t)u, which implies that

Pk

vz Yiu = () Viu.

Thus, £(t) is an eigenvalue of Pl , .. with eigenfunction Wiu € Vi. In
particular, £(t) € spec(Pl, , ay,) 0 Ie. Therefore

spec(Pf) N I. < spec(Pl, o) O ..

The same argument starting with £(¢) € spec(P; +o2w) O Ie implies the second
direction.
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It remains to prove that P, is analytic. If we denote by R(¢,() the resol-
vent operator

R(t,¢) = (P¥ypmew — )"

for ¢ spec(P"}szW), then, for (, ¢ spec(Pk) we get the relation

R(t,0)7" = (1= (¢ = Co = (PY a2 — PE)R(0,60)) (P — Co)-

So, for |t] small enough and ¢ close to (o, (1—(¢—Co—(PE, o — P1)) R(0, Co))
is invertible by Neumann’s lemma and we can write the inverse as Neumann
series. This implies the analyticity of R(¢,() near 0. Moreover, using the
formula (2.17), we get that the projection is analytic and thus W; is (see
section Then, P, is a composition of analytic functions and thus
analytic. [

The preceding theorem implies that for ¢ small enough, the eigenvalues of

the operator P{j Lez2yy coincide with those of the finite dimensional analytic

operator P;. Using the analytic perturbation theory in finite dimensional
case, the eigenvalues of PJ; L1p2yy are analytic.

Finally, we proved in the same theorem, that W, is an isomorphism from
V; to V,. Then ¥; ! is an isomorphism from V, to V,, and it maps the basis
of Vp to the basis of V,. This implies, by the analyticity of W, that the
eigenfunctions of Pl .., are analytic.

As we proved the analyticity of the eigenvalues and eigenfunctions of
P"j +1z2w» We can now apply the Hellmann-Feynman theorem, which we now

state and prove.

Lemma 2.11 (Hellmann-Feynman). Let A(t) be an eigenbranch of P
and denote by u(t) a normalized eigenfunction branch of \(t). Then,

%)\(t) = <u(t), (%PXI;HQ:QW) u(t)>

Proof. Write the eigenvalue equation:

+tax2W

Py owu(t) = At)u(t). (2.24)
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Multiply by u(t) and then differentiate in ¢ to get

d
dt At) = <u() V+tac2Wu

<Ccli (8), PY gt > < di V+mgwu(t)>>

= MO u(t). <>>+<u<t> (557 u<t>>

_ <u(t), (%Pémw) u(t)>~

Remark 2.12. Following the same proof, we can show that whenever u(t)
and v(t) are two orthogonal eigenfunction branches that correspond to A(t),
we have

(2.25)

]

(ult), (%Pémaw) v(t)) = 0.

This is because, by orthogonality, the left-hand side of 1S ZEro.

Finally, before proving the genericity of the spectral condition for Baouendi
Grushin operators, we give a very well-known lemma which will be essential
for what follows.

Lemma 2.13. Any two analytic functions on R either coincide or intersect
on a countable set of points.

Proof. By identity theorem for analytic functions, if two analytic functions
coincide on a subset of R that has an accumulation point, then the two func-
tions coincide on R. Since any uncountable subset of R has an accumulation
point, we conclude. O

2.3.2 Generic Simplicity Result

To prove our main theorem, we need to give a series of lemmas, that will
build the proof at the end.
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Lemma 2.14. Let g € L} (R) (locally integrable). If for all W € W,

loc

| Wt —o.

then g = 0 almost everywhere.

Proof. Denote by 1y, the indicator function of the interval [a, b], and by ¢
the standard mollifier

@ — ce?T if —l<az<1

v 0 elsewhere

where c is for normalization. For € < 1, the function

1 T
VVE = 906 * ]]-[a,b] = EQD <€> * ]]'[(Lb]
is in W: smooth, non-negative, its support is subset of [a — €,b + €] <
[a —1,b + 1]. Moreover, it converges as ¢ — 0 pointwise to L[ (this is
true by the properties of a mollifier, also called approximation of identity).
Now, since g is locally integrable, we apply Lebesgue dominated convergence
theorem to deduce that

lim | W(z)g(x)de = f g(x)du.

e—0 R a

The left-hand side of the preceding equation is 0 by assumption, so SZ g(x)dx =
0. This is true for arbitrary a,b which implies that ¢ = 0 a.e. in R. [

It is well-known that the Schrodinger operator has simple eigenvalues on
the line (see [70] for instance), but this is not the case on the circle nor on
R™ for n > 1. So, for a moment, we forget that we are working on R and we
prove the following lemma on R"™ for n > 1, which is a variation of Albert’s
arguments in [8] (also, it is not hard to see that it remains true on S'). In
the following lemma, 2> will denote ||z,

Remark that lemma [2.14] holds true on R™.

Lemma 2.15. Fiz V € V and k € Z*. Let \ be an eigenvalue of P& of
multiplicity m. Then, the following assertions hold true.
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1. There exists W € W such that P"}HIQW has an eigenbranch starting
from X\ of multiplicity strictly less than m.

2. If we denote by r = dist(\,spec(PE)), then there exists to > 0 and
W e W such that for all 0 <t < tg, P"ijQW has m simple eigenvalues
in I =]A—=5,A+5[

Proof. 1. Fix W e W. By analytic perturbation, the eigenvalue A\ splits
into m eigenbranches (not necessarily distinct) of Pj,, .y, (this fact
can be extracted from the proof of lemma [2.10| when we proved that

dim(Vy) = dim(Vy)) .

Suppose that the eigenbranches are identical, and denote this eigen-
branch by A(f) (A(0) = A). This means that we can find m orthonor-
mal eigenfunction branches {u;(t), ..., un ()} associated to A(t). If we
denote by E) the eigenspace of X in P&, then U = {u;(0), ..., u,,(0)} is
an orthonormal basis of F.

Denote by ¢ the quadratic form, defined on E) by

G(u) = ¥ f ) W (2)|u(x)|*dx.

Hellmann-Feynman theorem (theorem [2.11]) implies that at ¢ = 0, we
have '
A(0) = ¢(ui(0)), Vi<i<m,

where the dot represents the derivative with respect to t. Moreover,
using remark [2.12 we get that for any ¢ # j,

0 = q(u;(0),u;(0)),

where we used the same notation for the corresponding symmetric bi-
linear form. Thus the matrix Ay := [¢(u;(0),u;(0))]1<ij<m satisfies
Ay = M0)I, where I is the m x m identity matrix.

So, for any orthonormal basis V = {vq,...,v,,} of E), The matrix Ay
is a multiple of the identity matrix. Indeed, the matrices Ay and Ay
are related as follows: if we denote by P the matrix of change of basis
between U and V, then, as U and V are sets of orthonormal vectors, P
is orthogonal (that is PP = I), and

Ay = P Ay P = A0)P'P = A(0)1.
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Now, fix V = {v1, ..., v, } an orthonormal basis of F), and suppose that
for any W € W, the m eigenbranches of P} Liz2y are identical. Then,
for any W € W, there exists a constant that depend on W, ¢(WW), such
that

k2f LW (z)vi(x)v;(x)de = c(W)6]. (2.26)
This implies, by lemma [2.14] that for any i # j,
Vo e R, Jui(z)]? = |v;(2)].
Then,
Vo e R" v(x) = +vq(x). (2.27)
Moreover, implies that
Vo e R vy (x)ve(z) = 0. (2.28)

Thus, (2.27) and (2.28)) implies that Vo € R", 4wv;(z)?> = 0 which

implies that v; = 0; a contradiction as v; is normal.

. We prove this by induction on m. Assume first that m = 2. by part one
of this lemma, there is W € W such that Pf 122y has an eigenbranch of
multiplicity strictly less than 2. This means that the two eigenbranches
are sirnpleﬂ We choose t small enough so that by proposition , the
eigenvalues of Py .2y are simple and in /.

Suppose this is true for m—1. We prove it for m. Using part one of this
lemma, there exists a Wy € W such that P"j Le2w, Das an eigenbranch
of multiplicity strictly less than m.

Now, there might be several groups of identical eigenbranches. Lets
enumerate them as

Ay = DANE) = o = X)), A = {AL(8) = o = AT2(D)), ..

where 1 < m; < m—1forall 1 <i < . Now, since two analytic

functions are either identical for all ¢ or intersect only on countable
set (lemma , and since the eigenbranch representing A; is differ-
ent than those representing Ay, then by the analyticity of the eigen-
branches, we can choose t; small enough so that by proposition

'For eigenbranches, simple means there are no two identical eigenbranches. They may
intersect at a countable set of ¢t however.
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Py i 4y22w, has an eigenvalue of multiplicity m;, an eigenvalue of multi-
plicity mso, etc. in 1.

By induction hypothesis, there exists W; € W, such that the eigenvalue
of multiplicity m; of Py 4 2w, Will now split into m; distinct eigen-
branches of Py 2¢,w,+ewy) in I. Now, as these eigenbranches were
split by the first place from those in A; for 2 < i < %, then again by
analyticity of these eigenbranches, they can not, under a perturbation,
come back again identical (at least they are different at t = 0).

Now, choosing t; small enough (so that the condition of proposition
is now true for toyWy + t:W1), Pyis2@owo+wr) have my simple eigen-
values and another eigenvalues of multiplicity possibly greater than 1
in .

Proceeding with the same argument for any set of identical eigen-
branches for the resulting perturbed operator, we conclude in the last
step that we can choose t;, small enough and W;, € W such that
P 2 (b0 Wo oty Wig) has m distinct eigenvalues in I (where i is defi-

nitely less than or equal %).

in fact, the preceding construction of the W’s implies the following
statement: 3ig < 5,31, ..., iy, Vs; < tj,j < 4o, IW(s; — 1), such that
P

2 (50 Wk 1 W (30) 45 Wi (s1_1)) 18S simple eigenvalues in T. (2.29)

This concludes the proof. O

Lemma 2.16. Fiz V € V, and k,l € Z* such that k*> # [*>. Let X\ be a
common simple eigenvalue for Pl and P, (simple in both spectrums). Then,
there exists W € W, such that the eigenbranch starting from X of Pt and
the eigenbranch starting from X of P,y are not identical.

Proof. Suppose that for any W € W, the eigenbranch of P"j o2y Starting
from ) is identical to the eigenbranch of P, L2y Starting from A. Denote
this eigenbranch by A(t) (A(0) = A\), and denote by u(t, W) (resp. v(t, W)) a
corresponding normalized eigenfunction branch for P"j z2ew (TESD. P‘l/ a2t )
Then, if we denote by E¥ and E! the eigenspace that corresponds to A in P%
and P}, respectively, then u(0, W) and v(0, W) are orthonormal basis for E¥
and E} respectively.

Applying Hellmann—Feynman theorem at ¢t = 0, we get that

A0) = &2 J

Ra?W(x)\u(O, W) (z)|*dz = ZQJ W (2)|v(0, W)(z)[*dz. (2.30)

R
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Since Ef¥ and E! are one dimensional, then u(0, W) and v(0, W) are inde-
pendent of W. This implies that for any W € W,

2 JRIQW(:C)W(O)(:C)M _p JRxQW(x)|v(O)(x)|2dx. (2.31)

By lemma (2.31)) implies that
22 |u(0)(2)]* = P2?|v(0)(z)* ae.

Thus, as u(0) and v(0) are normalized, we get that k? = [? which is a
contradiction. O

We give now a lemma about the stability of simple eigenvalues under
small perturbations.

Lemma 2.17. Fiz V € V. Suppose that Pt has m simple eigenvalues in an
interval I. Then, for a small enough perturbation of the operator PE, the m
eigenvalues of the perturbed operator in I remain simple.

Proof. Define the set
T = {V e V; Pt has m simple eigenvalues in I}.

We want to prove that the set 7 is open in V. Let V € T and let V; e V
such that V; converges to V in (V,]|.||y)-

We first show that there exists jo > 0 such that for all j > jy, V; € T. Indeed,
by proposition , there is 7; small enough such that for all 7 < 7, P{jj has
m eigenvalues in [.

Denote by {A1(V),....; An(V)} and {\(V}), ..., \u(V;)} the m eigenvalues in
I of P and P& 1, (for j < 1) respectively.

Moreover, by proposition (continuity of the spectrum), for any € > 0
there exists j. > 0 such that for all j > j. we have

IN(V) = A(V)] < 2 i=1,..m.

Let
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)
and take € = 17 0. For any j > jo := min{ji, j.}, we compute

0 < |X(V) = M(V)]
< (V) = MVl + (Vi) = M Vi)l + (V) = Au(V))
<0+ (V) = M(V3)l-

Thus for any j = jo, |\i(V;) — Ai(V;)| > 0 which implies that X;(V;) # \(V;)
for any i # [. We deduce that for any j > jo, V; € T.

Now, suppose that 7 is not open in V. Then for any V € 7T, there exists
e > 0 such that B(V,e) & T. Apply the condition repeatedly with e = %, we
get that there is a sequence V; such that

[V =Vill, < > and ;e T

where 7°¢ is the complement of 7 in V. This implies that there exists a
sequence V; that converges to V' but is not in 7 for any j which is a contra-
diction. Therefore, 7 is open in V and we conclude. O

Finally, before (re-)stating and proving our main theorem, we define a
Baire space and state Baire’s category theorem.

Definition 2.18. A topological space is called a Baire space if every countable
intersection of dense open sets is dense.

Lemma 2.19 (Baire’s Category Theorem). Every completely metrizable topo-
logical space is a Baire space.

Proof. Refer to [55] for a proof. O

Corollary 2.19.1. For V = 2*W € V, we recall the norm ||V ||y = [|[W],..
The space V equipped with the norm||.||y is a Baire space.

Proof. We prove that the metric space (V,||.||y) is complete.
Let (Vi)ns1 = (22W,)n>1 be a Cauchy sequence in (V,]|.|ly). Then, for any
e > 0, there exist ng € N such that for all m,n > ng, we have

Vi = Viully <&
This implies that for any € > 0, there exist ng € N such that for all m,n > ny,

W = Wanlloe =[Va = Vaully <€

20
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which gives that (W,,),>1 is a Cauchy sequence in (CJ(R),||.||,,) which is a
complete space. So, W,, converges to some W in C{(R) uniformly. Finally,

we get, for V = x?W (which is clearly in V), that
Vo = Vlly =W = Wil — 0.

We conclude that (V},),>1 is convergent in (V,]|.||y) and therefore the space
(V,]|.ly) is a complete metric space (metric induced from the norm). Using
lemma [2.19) (V,|.||y;) is a Baire space. O

Recall that we say that a subset is residual in a metric space if it is the
countable intersection of open dense sets. We now state and prove our main
result in this chapter.

Theorem 2.20. The complement of Vy, in V is residual in V.
Proof. Define the set
Orin = {V € V;spec, (P nspec,(PL) = g} < V,

where spec, (PF) (resp. spec, (PF)) denotes the first n eigenvalues of Pf
(resp. PE) counted without multiplicity. By definition, the set of the good
V's satistying the property (P) is the intersection over all k, [, n of Oy, ,. We
prove that Oy, is open and dense in V.

The set Oy, is open in V. Indeed, take V € Oy ,. Let (V});>1 be a
sequence in V that converges to V' in ||.||,. We first prove that there exists
Jo > 0 such that for all j > jo, V; € Ok n.

Recall that A* (V) and Al (V) denote the m'" eigenvalue of P% and P}, re-
spectively. Since (V});>1 converges to V in V, then by proposition , for any

€ > 0, there exists jp > 0 and j; > 0 such that for all j > jx; := max{jx, ji}
the following inequalities hold true
N (Vi) = A (V)] < 2¢, and |X,,,(V)) = X, (V)] < 2e. (2.32)

Now, let I = {1,...,n} and denote by

6 = min {25 (V) = M, ()]} > 0.

11,7,261

For € = g, there exists ji; such that for all j > jj;, (2.32) implies that

0 J
<5+ PRIV = XV + 5 =0+ XL (V) = AL (V)

o1
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This implies that |Af (V) = XL (V})] > 01e. AE (V) # AL (V) for all i1,4s € 1,
which means that

specn(P‘lﬁj) N specn(P‘l,j) = .
Therefore, for any j = ji, V; € Ok n.
Now, suppose to contrary that Oy, is not open, then for any V € Oy,
there exists € > 0 such that B(V,¢) ¢ Ok,,. Applying this condition repeat-
edly with € = %, we get that there is a sequence V; such that

1
Vi —=V|, < 5 and Vj € O, ..

This implies that there exists a sequence V; that converges to V' but is not

in O, for any j which is a contradiction. Therefore, Oy, ,, is open.
Moreover, The set Oy, is dense in V. Indeed, let V € V with V' ¢ Oy ..
Require to prove that

Ve > 0,3V, € Oy, such that ‘

cl <e 2.33
L<e (2.3

We know that V' ¢ Oy, so there are some common eigenvalues between P{}
and P}, among the first n eigenvalues of each, some of which maybe be with
multiplicity greater than one. Take a common eigenvalue A of multiplicity
my and my in PE and P!, respectively. Let

K= min{dist()\, spec(Py)), dist(\, spec(P)))},

and denote by I =|A— By - ), dig < mT in N*), 3to, ..., t;,; Vs; <
tj,O g] <i0,E|Wj = W(S] 1) EW

Py sowor... i Wig has m4 simple eigenvalues in I.

Now, again we do the same to obtain my simple eigenvalues corresponding
to 1. SO, ElZl < % + %( in N*),Eltg,...,til;Vsj < tj,O < ] < il,HWj =
Wj (53;1) € W,

= G soWort...ts;, W;, 118S My simple eigenvalues in /.

By stability of simple eigenvalues under small perturbations (lemma [2.17)),
we get that 3i; < % + %2(in N*), 3o, ..., 1;;Vs; < 15,0 < j < ip, IW; =
W‘(Sj_l) € W,

Pk

1 . . .
V tsoWo .. tsi, Wi, and PVJFSOWOJF'”Jrsz,lWi1 has m, and my simple eigenvalues in [ resp. .

o2



Chapter 2. Eigenvalue Multiplicity And Concentration Properties Of
Baouendi-Grushin Operators

Now, suppose among these simple eigenvalues there are m common eigenval-
ues. Then, by lemmam, there exists iy < +52+m( in N¥), 3o, ..., 15,; Vs; <
tj,O < ] < iQ, E‘W] = VVj(ijl) S W,

Pk

1 . .
VtsoWo+...+5i, Wi and Py, , has no common eigenvalues in I resp. .

+50W0+...+Si2Wi

Now, this is true for any A in common between PF and P!,. Now, applying
the same argument for the second common eigenvalue, then the third, etc...,
it yields the following: 3¢ € N* 3¢, ..., ¢, Vs; < t;,7 <, IW; = W,(s; — 1),
such that

ﬂ spec,, (P\7}+x2(80W0+81W1(50)+--~+3<Wc(3c71))) - @
r=Fk,l

Note that after dealing with the first intersection, we can freely deal with
the next one; the eigenbranches that will be extracted from the simple (with
respect to k or [) disjoint (with respect to k£ and 1) eigenvalue we dealt with
in the previous step won’t come back identical because they were split at the
first place (by analyticity).

So, what we do to conclude, is that for any j < ¢, we choose s; small

enough so that

|51 ||*Wi(s;)|| < g

This construction implies ([2.33]).
Therefore, the set
b= ﬂ Okin

k,n

is residual in V. 0

2.4 Baouendi Grushin Operator On A Torus

Denote by T? = S' x S! the two dimensional flat torus with fundamental
domain [—m, 7], x [-7,7],. For any function f : T? — R (or C), there
corresponds one, and only one (27-)periodic function f : R* — R (or C)
given by f(z,y) = £(c, %),
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2.4.1 Baouendi Grushin Operator On Torus

In the previous section, when the infinite cylinder X was considered, it was
crucial to work on the space LZ(X) which is the usual L? space excluding the
functions that are independent on y. This is because we were working with
the one-dimensional parameter-dependent Schrédinger operator P, instead
of the two-dimensional Grushin operator whose spectrum is the union over
k of the spectrum of P, that at k = 0, doesn’t have a compact resolvent.
Here, however, we are working on a Torus which is a compact manifold, and
this guarantees the compactness of the resolvent. For that, we consider the

space
< oo} .
D

Denote by C°(S!) the space of continuous 27-periodic functions on R;

L*(T?) = L*(T* R) = {f ST? ]R;HfHLQ(TQ) ::‘ f L2

C'(s") = {f:S' > R; f e C"(R)}.

We define the Baouendi Grushin operator on T? for V' € C°(S!) that looks like

x? near 0, and vanishes nowhere in |-, 7[ but on 0. A typical example would

be sin*(z) (usually, investigators consider V (z) = 4sin*(£) for normalization
so that V”(0) = 2). For this, it is reasonable to define the set

V = {V(z) = sin®(z)W (z); W e CO(SY), W > 1}.

On V, we put the following norm: for V' = sin 2@)W(z) eV, |[Vils =W]
For V e V, we denote by Py the operator Py = —d2 — V ()02, defined on

= {ue L*(T?); 02u € L*(T?),V ()0} € L*(T?)}.
Take a strip of the torus,
w=[-m, 7|, x [a,b], < [-7, 7], x [-m, 7],

Finally, we define, for V' € V, the one dimensional Schrédinger operator
as Pf = —02 — k*V (x), with domain

Dy = {ue H'(S"); Viue L*(S")}.

The operator (ﬁ’ﬁ,]f)v) has compact resolvent. Its spectrum consists of an
increasing sequence of positive eigenvalues.
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2.4.2 Spectral Condition

As discussed in the introduction of subsection [2.1.3] theorem [2.2]do not really
depend on the operator P, but on the fact that the eigenfunctions of Py can
be written using separation of variables. Also, the same argument about the
eigenvalues of Py, being of multiplicity greater than or equal to 2 implies
that the multiplicity of the eigenvalues of P, are even. Thus, it follows that
theorem is true for the operator Py; that is, the spectral condition is
a sufficient condition for the validity of the concentration inequality for the
operator ]5V.

2.4.3 Analyticity Of Eigen-Quantities

The approach of proving the analyticity of the eigenbranches of the perturbed
operator PF. . for t € R and W € W, does not depend, neither on the
manifold X nor on the explicit expression of V. We may just say that having
a compact support for W was important so that the 22 coefficient wouldn’t
cause any problem when integrating over R. Here however, as we work on
S, this is not longer an issue, and so, for any t € R,V € V and

WeW:={Wec’SH); W =0},

the eigenpair of the operator P"j rsin? oy L€ analytic in . As a consequence,

we get the validity of the Hellmann—Feynman theorem.

2.4.4 Generic Simplicity Result

Now, denote by (P) the property:
Vk,l € Z* k* # 12 = spec(PE) n spec(Pl) = ¢ (P).

Again this property is equivalent to the validity of the spectral simplicity
condition.

As in the previous section, the general scheme is to prove that the set of the
good V's satisfying (P) is the intersection of open dense sets, @Mn (which
is defined in an obvious way like O.,), in the Baire space (V,|.]|¢)-

The proof of the openness in the previous section depends on proposition
which is a general lemma on the continuity of eigenvalues. This proposition
holds smoothly in this case and thus the openness is okay using the exact
same argument.
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For the density, we used several lemmas; lemma and lemmas [2.15
and that depend only on analyticity, Hellmann—Feynman theorem and
lemma [2.14] So, what we really want to check is the validity of a version of
lemma 2.14] here.

Proposition 2.21. Let g € L'(S'). If for all W e W,

—T

then g = 0 almost everywhere in [—m,|.

Proof. For any [a,b] < [—m, 7], denote by 1, the indicator function of
the interval [a, b], which is integrable. Let ¢ be any mollifies and denote by
¢e(x) = Lp(%). Then, the sequence W, := @, * 1[5y is in W. Moreover, it
converges as € — 0 pointwise to 1, Now, since g is integrable, we apply
Lebesgue dominated convergence theorem to deduce that

T b

lim | W (z)g(z)dz = J g(x)dx.

€—>
0 —T a

The left-hand side of the preceding equation is 0 by assumption, so S g(x)dx =
0. This is true for arbitrary —m < a,b < 7 which implies that g = 0 a.e. in
R. O

Finally, as explained, we need the fact that V equipped with ||. g is a
Baire space to conclude that the complement of V, is residual in V.

Proposition 2.22. On V, define the norm ||V|g = Wl oty for V=
sin?(z)W. Then the space (V,||.||5) is a Baire space.

Proof. By lemma [2.19] it is sufficient to prove that the metrizable space
(V,]|.]l5) is a complete space.

Let (V)ns1 = (sin?(2)W,)n=1 be a Cauchy sequence in (V,|.]|5). Then the
sequence (W,,),=1 is Cauchy in (C°(S"),|.[| ;o (1)), which is a complete space.
Thus, (W,,)n>1 is convergent to some W in (CO(Sl) || oo (g1y)- This implies
that (V,,)ns1 is convergent in (V,||.||5) to sin?(2)W. Therefore, (V,||.||5) is a
complete metrizable space and thus a Baire space. O
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Therefore, mimicking the same arguments in the proof of theorem [2.20]

if we denote by 3 o
Vg :={V € V;(P) holds true },

we prove that

Theorem 2.23. The set V, is residual in (V,]|.||5).
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Chapter

Riemannian Approximation Of
Subriemannian Structures

We present a general construction allowing us to see a subriemannian struc-
ture as a singular limit of Riemannian metrics. We then study how different
geometric or spectral quantities behave along this process. We prove that this
approximation scheme induces a volume form, that we compare to Popp’s
volume.

3.1 Introduction

Let M be a smooth connected manifold of dimension d and consider p smooth
vector fields X1, ..., X?, not necessarily independent, such that they satisfy
the Hormander condition: the vector fields X!, ..., X? and their iterated
brackets [ X% X7], [ X% [X7; X¥]],... span the tangent space T,,M at every
point m € M (see [50]).

Let g be the subriemannian metric associated to € = {X!,..., X?} (defined
by (L.9)). The structure (M, span(%), g) is called a subriemannian structure.
The metric g induces a length on the set of horizontal paths, and thus a dis-
tance on M called the subriemannian distance.

To analyze functions on subriemannian manifolds, it is necessary to define
an appropriate analog of the Laplace operator. We define the sublaplacian
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associated to a smooth volume w on M following ((1.7)):
A=Y XIX; =) X7+ divy, (X:) X, (3.1)

where div,(X;) is the divergence of X; with respect to w. As said earlier,
constructing an intrinsic Laplacian in this context is nontrivial due to the
lack of a globally defined metric (we can see from the expression of A that
its definition depends on the volume form w). Some natural volume forms
were defined since the question was asked in 1982 such as Popp’s volume
form [I3][66] and Hausdorff volume form [2][42][65].
Simultaneously at that time, approximation schemes of subriemannian struc-
tures made an appearance as an alternate approach to study properties on
subriemannian manifolds.

We study in this chapter the possibility that an approximation scheme
induces a volume form. Moreover, we compare the induced volume form with
Popp’s volume. We first recall some definitions.

3.1.1 Definitions

We recall in this section some definitions in Riemannian and subriemannian
geometry.

3.1.1.1 Riemannian Definitions

The Riemannian definitions can be found in any book that handles Rieman-
nian geometry (see [61][71] for instance).

A Riemannian metric G on a smooth manifold M is a smoothly chosen inner
product

G = G(m) : TuM x TuM — R,

on each of the tangent spaces T,,M of M. The smoothness of G is in the
sense that the map m — G,,, from M to the space of all symmetric positive
definite bilinear forms on TM x T M, is smooth. Whenever convenient, we
will consider, without loss of generality, G as a quadratic form (we use the
same notation for the quadratic form and its corresponding bilinear form).

For a smooth manifold M equipped with a Riemannian metric G, we define:
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e The length associated to G of an A.C. (absolutely continuous) curve
on M, ~:[0,1] - M as

160) = | y/G (030

e The Riemannian distance between two points x and y in M as:

d®(z,y) = inf{lg(v); v is A.C. connecting z to y}.

e The energy functional associated to G of an A.C. curve on M, = :
[0,1] - M as

1
&) = | G0
0
e A geodesic as a curve which is everywhere locally a length minimizer.

3.1.1.2 Subriemannian Definitions

We follow standard subriemannian references (see [3][14][52][66]).
Let M be a smooth connected manifold.

e A distribution D on M assigns to any point m € M a vector subspace
D(m) < T,,M, such that D(m) is the span of a set of smooth vector
fields evaluated at m.

e A distribution D is said to satisfy Hormander’s condition at a point
m € M if there exists r = r(m) (r(m) + 1 is called the step) such that
D,(m) = T,,M, where for each 0 <7 <r —1,

Diy1(m) = Di(m) + [D(m), Di(m)], (3.2)
where we have set Dy = D and

[D(m), D;(m)] = span {[X,Y] : X € D(m),Y € D;(m)}.
e We say that a set of smooth vector fields on M, {X1, ..., X, }, satisfies
Hoérmander’s condition if D = span{Xj, ..., X,,} satisfies the Horman-

der’s condition.
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e We say that two vector fields X,Y on M commute if [X,Y] = 0.
e The vector
(dim(Dgy(m)), dim(D1(m)), ..., dim(D,(m)))
is called the growth vector at the point m.

e We say that a point mg is regular if the growth vector is constant in
a neighborhood of mg. Otherwise, my is called singular. (M, D) is
equiregular if every point is regular.

e The equiregular region is the largest open set on which the sub-
riemannian structure is equiregular. The singular region Z of the
subriemannian structure is the complement of the equiregular region.

e We say that a vector X € TM is horizontal if X(m) e D(m) for any
m. We say that a curve 7 is horizontal if for every ¢, ¥(t) € D(y(t)).

Let X!, ..., X? be smooth vector fields and suppose that D = span{X!, ..., X7}
satisfies the Hormander condition. Then

e The subriemannian metric associated to the vector fields { X!, ..., X7}
is the function ¢° : D(m) — R U {+00} given by

@ (X(m)) := ¢°(m, X(m)) = inf {Z ulue Rp,ZuiXi(m) = X(m)} )

with the convention that inf{ @} = +o0.

e The length associated to ¢° of an A.C. path ~(¢),t € [0,1] is given by

o) = [ o G

e The subriemannian distance between x and y is defined as

d*"(z,y) = inf{l,o(v) : v is A.C. connecting z to y , is horizontal}.
(3.3)
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e The subriemannian structure is said to be almost Riemannian if
dim(Dy) = dim(M) at almost every pointfl]

The Chow—Rashevskii theorem, known as Chow’s theorem, asserts that any
two points of a connected subriemannian manifold, endowed with a bracket
generating distribution, are connected by a horizontal path in the manifold
(see [3][52]). So, d*% is a distance function on M. We set now our framework.

3.1.2 Framework

We recall that for any n € N, for any u = (uy, ..., u,) € R", |ul, denotes the
Euclidean norm. Denote by {.,.), the usual inner product on R". Hereafter,
m will always denote a point in the manifold M and for any vector field X,
X, will denote X (m).

Let M be a smooth connected manifold of dimension d. Consider p
smooth vector fields X%, ..., X% (there will not be any use for an exponent of
a vector field, so this notation won’t cause any confusion), and suppose that
Dy = span{X"! ..., X} satisfies Hormander condition at any point m € M
of step r(m) + 1. We assumd? that r(m) admits a maximum on M and we
denote this maximum by r; i.e

r = max{r(m);me M}.

We denote by ¢° the subriemannian metric associated to the vector fields
{XO1 ..., X} for any m € M and X,, € Dy(m), ¢° is given by

p
Im(Xm) = g°(m, X,,) = inf {\UIﬁ; we R u X)) = Xm} L (34
=1

Denote by d°, given by (3.3, the subriemannian distance associated to ¢°.
For 0 < i < r, Define D; as in (3.2)), and denote by

n;(m) := dim(D;(m)).

We simply write n; for n;(m) when m is fixed.
For 0 <i <, let J; = (j1, ..., ji+1), where for any 1 < k <, jp € {1, ...,i+1}.
Let

Xy, = [X0 [ X2 [LL[X% X% ).

IBut not at every point, otherwise the structure is Riemannian.
2This is true if M is compact
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For 0 <17 < r, we have
card{X; J; < {1,...,p}""1} = p"t1.

Hormander condition ensures that these vector fields (for all ) span the tan-
gent, space at every point.

Now, we make a selection of these vector fields that still span the tangent
space. This choice of vectors will make no significant or important difference
in the context but will make the examples we give throughout the chapter
easier (simpler) to write.

Among these vector fields, there might be a lot of zeros (either by bracketing
a vector field with itself, or by bracketing two commuting vector fields), but
whether we consider these zero vector fields or not will not make any differ-
ence in the context (see the first point of remark . So, without loss of
generality, we exclude the zero vectors.

Now, many of the vector fields X may be repeated the same, and many
may be colinear. This may happen in several cases. For instance, if X,Y, 7
are smooth vector fields such that Z — Y commutes with X, then [X, Z] =
(X, Y]+ [X,Z-Y]=[X,Y]

Another case is the following. It is clear that for any 7 and any J; =
(jl, s 7.ji7ji+1); if we define Jz = (jl; ce 7ji+17ji) then le = *XJi. In
this work, of these two vectors, we only keep one. Observe there may still
be the same vector several times but we will keep these pairs in any other
circumstances.

Since by Hérmander condition, the vectors in ( J; |, X, span the tangent
space, then the vectors we choose also span the tangent space. This is because
we only excluded zero vectors and colinear vectors.

Although Hormander condition is still true, this selection will make some
differences in the context below, and when it does, we will point it out (see
for instance the second point of remark , and remark .

So, for 1 < < r, we denote by N; the cardinal of the vectors obtained by
iterative brackets of length i, of the initial vector fields, among the vectors
we chose. We enumerate them as

(X1 XN

Set Ny = p. As we explained, by Hérmander’s condition, we have, for every
m € M that
TnM = span{ X} bocicr1<j<n;- (3.5)
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3.2 Approximation Scheme

3.2.1 Definition Of The Scheme

Let N = Ny + ... + N,. For ue RY, we write u = (ug, uy, ..., u,), where each
u; is of length N;. For all h € R\{0} and all u € RY define the dilation d, as

6n(u) = (uo, h  ur, K 2uy, ..., h "u,).

For m € M, denote by o,, the map o, : RV — T,,M, such that for u =
(ui)1<i<n € RY,

Om(u) = ) Z i X, (3.6)

i=0j=1

For m € M, and X,, € T,,M, we define the function g" as
g (X)) = g"(m, X,,) = inf{]dhuﬁ\,; ue RN, 0, (u) = Xm} ) (3.7)

The function h — g¢" is monotonically decreasing for any h > 0. Indeed, let
(m, X,,) € TM and fix u = (ug, ..., u,) € RY such that o,,(u) = X,,. Then,
as the function h € R™ — (1/h?) is strictly decreasing, we get that for all
0< hl < hg,

T T
9o (X)) < [Onulsy = D by |wil® < Y by ual* = [0, ul3
i=0 =0

Taking the infimum over all u € RY satisfying o,,(u) = X,,, we get that, for
all 0 < hy < ho,

QZf(XM) < ggwl (Xom)-

We first prove that ¢” is a Riemannian metric. We need the following lemmas.
The first one is basic linear algebra.

Lemma 3.1. Let T : V. — W be a linear map and let V' be a subspace of V
such that V' is a complement of K = ker(T) in V. Then

T =T, : V' - T(V)

s an isomorphism.
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Proof. Obviously, T" is linear and well-defined. We prove now that 7" is
bijective.
Let u,v € V' such that 7"(u) = T"(v). Then, T'(u—v) = T"(u —v) = 0. This
implies that

u—veV' nK={0}.
Thus u = v and so T” is injective.

Now, let w € T(V). Then there exist u € V such that T(u) = w. Asu eV,
then u = u; + uy with u; € V', uy € K. So,

w="T(u) =T(ur) +T(uz) = T(ur) =T (uq).
Then T is surjective and therefore bijective. So T” is an isomorphism.  []

Lemma 3.2. Let M be a smooth manifold. For m € M, let' V be a n
dimensional vector space equipped with a smooth inner product denoted by
(yom. Let {ex(m),...,ex(m)} be linearly independent vectors in V', smooth
in m, such that, for any m e M,

dim (span{e; (m), ..., ex(m)}) = constant.

Let W(m) = span{e;(m),...,ex(m)}. Then, there exist e'(m),...,e" *(m)
smooth in m, such that for all m € M, they form a basis of W(m)*, where
W(m)*t is the orthogonal complement of W(m) with respect to the inner

product (., .
Proof. Fix mg, and let {wy, ..., w,_} be a basis of the fixed subspace W (my)*.
As m moves in a neighborhood of mg, we have

Span{el<m)7 sy €k(m>, Wi, -y wnfk} =V

Indeed, if we denote by R(m) the representation matrix of
{er(m), ..., ex(Mm), w1, ..., w,_} in the basis {e1(my), ..., ex(mo), w1, ..., Wp_k},
then R(m) can be written as a block matrix

| Iy + P(m —my) © d(m—mg) | ©

where I,,_j is the n—k identity matrix, © is a k x n—k matrix and ®(m—my)
is a k x k matrix that, by the smoothness and the linear independence of
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e;, converges to 0 as m goes to mg. So, for m close enough to mg, and by
continuity of the determinant function, we have det(R(m)) # 0.
Define now, 7, as the projection on W(m), and let, for i = 1,...,n — k,

e'(m) = w; — Tpw;.

The family {e'(m)}i1<i<n_ is a basis of W (m)*. Indeed, let i — ,, be the
orthogonal projection on W (m)*, where i represents the identity. Restrict
i — mm to W(mg)t. So,

(1 — Wm)}W(mo)l W (mg)t — W(m)*,

where both W (mg)* and W (m)* are of dimension n — k. If u € ker(i — 7,,)
then u € W(m) n W (mg)* = {0}. This is due to the fact that
{er(m), ..., ex(m), wy, ..., w,_g} span V| which gives that

V = span{e;(m), ..., ex(m)} @ span{wy, ..., w,_1} = W(m) @ W (mg)*.

Thus, (i — m) ‘W(mo) | is an injective linear finite-dimensional operator whose
domain and range have the same dimension and so an isomorphism. So, the
image of the set {wy,...,w,_1} by ¢ — 7, which is the set {e'(m)}iz1, ok,
is a basis of W (m)=*.

It remains to prove that m — m,, is smooth. Let & be a fixed vector in V.
We can write

Tm(&0) = 2 bi(m)e;(m).

We need to prove that for any i € {1,...,k}, m — b;(m) is smooth. Since
T (&) — & € W(m)?t, then, for any j = 1, ..., k, we have

(T (&) €5(m))m = (o, €5 (M) )m-

This gives that

bi(m)<ei(m), e;(m))m = (o, €; (M) )m, (3.8)

k
=1

7

for any j = 1,...,k. The matrix corresponding to this linear system (which
we denote Y,,) is the gram matrix of {.,.),, on W(m) which is invertible.
Now, since for all m, T,, is non-singular, the determinant of T,, is not zero
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and is a polynomial of the entries of Y,,. Then by the smoothness of (the
entries of) Y,,, (1/det(Y,,)) is smooth in m. Using a similar argument, we
have that the adjugate matrix of T,, is smooth and so its inverse is. Then

b(m) := (bi(m))iz1...k = ({0, €5(M)m)j=1..6 L,

is the unique smooth solution of the linear system (3.8). Therefore, we con-
clude that 7, is smooth in m and therefore {e!(m), ...,e" ¥(m)} is a smooth
basis of W (m)*. O

Lemma 3.3. Let M be a smooth connected manifold of dimension d, and let
(XY ..., XN} be N smooth vector fields that span the tangent space at every
point. Recall the definition of o, given by (@

The function G defined on T M by

G (Xn) = inf{|u|?\,;u € RN,am(u) = X}
1s a Riemannian metric on M.

Proof. Let K,, = ker(0,,), and denote by K- the orthogonal compliment of
K,, with respect to (., ).

Since T,,M = span{X} ..., XN} for every m € M, K+ is a linear subspace
of RY of dimension d. Write RY as orthogonal decomposition as follows:

RY = K,, (P K,,.
Using lemma the map

. . 1
ol = 0m|K%n K, - T,M

is an isomorphism, and so, there exist a unique uyx,, € K> such that o,,(ux, ) =
X So, we can write

o ({ X)) = {ux,, +v;ve K}
This implies that for v € 071({X,,}), we have

lu|y = |ux,, +v|§
= |ux,,|v + 2ux,,, v)n + |[v|n§
= |ux,, |~ + |v|n
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Taking infimum over all u in RY satisfying o,,(u) = X,, gives that G,,(X,,) =
We define now the bilinear form. Let X,,,Y,, € T,,M. Define now,

gm(X'rTH Ym) = <uXm7 qu>N
We have:

e Linearity of the map X,, — ux,,. Since o/, is an isomorphism, then

(0! )71 X, — uy,, is also an isomorphism and in particular linear.

e Positive definiteness of the map G,,: This map is obviously positive.
Moreover, as o/ (uyx, ) = X, then by the injectivity of o/, , we have

X = 0if and only if ux, = 0. Since G, (X,) = |ux,, |4, then
Gm (X)) = 0 if and only if uyx, = 0 if and only if X, = 0.

e Smoothness of the map m — G,,: Choose some coordinates (z1, ..., 4)
on M. For any 2 = 1, ..., N, write

¢ 0
7=1

Since the vectors X! | ..., XV span T, M at every m, the matrix A(m) :=
(a; j(m));; is of rank d. So there is an invertible square submatrix of
A(m), say A;(m), of dimension d, and A(m) can be written, up to re-
ordering (multiplication by a permutation matrix), as a row of matrices

Am) = (Ai(m) B(m)).

for some d x (N — d) matrix B(m).
The subspace K, has a smooth basis. Indeed, let & € K,,, and write

& = (5{ £§>, where & and & are of dimensions d x 1 and (N —d) x 1

respectively. Since & € K,, = ker(o,,), we have

(Asim) BGm)) (g) 0.

Then, & = —A;(m)™'B(m)&. Fori =1,..., N — d, define the vectors

e;(m) = <_A1(m):lB(m)éi> :

€

69



Chapter 3. Riemannian Approximation Of Subriemannian Structures

where ¢é; is the (N — d) x 1 column vector

The vectors {e;(m)};=1,.. n—q are N —d linearly independent vectors (by
the independence of the vectors {€};<;<n_q) in the N — d dimensional
subspace K,,, and so they form a basis for K, that is smooth by the
smoothness of A (that implies the smoothness of A;(m)~! and B(m)).
By lemma [3.2] there exist smooth basis e*(m), ..., e?(m) for K+.

If we write ux,, as

ux,, = Z u'(m)e’(m),

we get, since ¢’ is an isomorphism, that

d
X = om(ux,,) = > u'(m)oy(e'(m)).

i=1

By smoothness of X,,, we get the smoothness of u*(m), and thus the
smoothness of uy, , which together, with the smoothness of (., )y,
concludes the proof.

]

Remark 3.4. An important feature of this proof is that it shows that the

infimum in the expression of g" (X,,) is attained at a unique u € (ker(o,,))*
RY.

C

As the vector fields in our settings satisfy the Hérmander condition (3.5]),
we get

Corollary 3.4.1. For any h € R\{0}, the function g" defined by is a

Riemannian metric on M.
Proposition 3.5. The following assertions hold true:

1. Fizme M. Then, gn|, < gh|p,

2. Fiz me M. Then we have limy,_, gfn‘DO = g?n‘DO.
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Proof. 1. We can see this by observing that, for a fixed m € M and
X € Dy, we have

¢ (X,,) = inf {|5hu|?v;u = (u0,0,...,0) e RY ,ug € R?, 0, (1) = Xm} :
and that
«{|(5hu\?\,;u = (uo, 0, ...,0) € RN ug € R?, 0,,, (u) = Xm}
c {|5hu|?\,; ue RN, o, (u) = Xm} :

2. Fix m € M and X,, € Dg. For any h > 0, there exists u(h) =
(ug(h), ..., u,(h)) € RY such that o,,(u(h)) = X,, and

I (Xom) = Ju(R)[% = uo(R)} + D P fus(R)[R, < gh(Xim),
i=1

where the last inequality is by part one of proposition [3.5] So, we get
that limy,_,ou;(h) = 0 for any i = 1,...,r. Thus,

Xm = opm(u(h)) = }lllil’(l) om(u(h)) = om((u(0),0,...,0)).

Finally, we have that
[uo (W)} < [uo(P)[} + Y B> [us(R)[%, = gh(Xim) < g (Xim).
i=1

Therefore, as h — 0, and by definition of ¢°, we get that

G (Xm) < Jim g7, (Xn) < gy (Xm)-

We conclude.

3.2.2 Convergence Of Distances

Denote by d”" the Riemannian distance corresponding to g"; for any x,y € M,
y

d"(z,y) = inf{l,n(7);7 is A.C. connecting z to y}. (3.9)
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Sometimes the distance function can be defined equivalently using different
notations. For instance, the authors in [68] introduced the metric on M as
follows. Let C'(d) denote the class of absolutely continuous curves 7y : [0, 1] —
M such that v satisfies

D=3 uy ()X (1), (3.10)

i=0 j=1

with .

Then, they defined the distance as
p(x,y) = inf{d > 0;3y € C(J) that connects = to y }.

In fact, the distance we defined by (3.9 . can be defined in the same way,
by changing (| - to a suitable condition. Denote by C”(§) the class of
absolutely continuous curves = : [0, 1] — M that satisfies

=2, Z ui (1) X7 (v(1)), (3.12)

i=0j=1
with

r N;
DD ()P < 6 (3.13)

i=0j=1

and define the distance
p"(x,y) = inf{d > 0,3y e C"(§) that connects z to y }.

Then, d"(x,y) = p"(x,y). Indeed, let § > 0 be such that there is v € C"(d).
This means v satisfies (3.12) and (3.13). Then, by the definition of d"(x,y)

we get
d"(x,y) f \/g o7 <.

Take the infimum over all § to get that d"(z,y) < p"(x,y).
Now, observe that

d"(z,y) = inf{l,;n(7); 7 is a geodesics from z to y }.
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Let v be a geodesic connecting = to y. Then, there exists ¢ = v € C*(d) for
6 =l (7). Indeed, v is a geodesic between x and y, and so, it has a constant
speed. Thus, we have that

g0 (1) = f oo G0t (3.14)

Also, we know that there exists u = (u;;)o<i<ri1<j<n; € RY such that

x

00 (3(0) = 3 S ug (1) (3.15)

i=0j=1

Equations and ([3.15)) implies that there exists ¢ € C"(I,n (7)) connect-
ing x to y. Thus, p"(z,y) < d"(z,y). We conclude.

So, a few differences are made with the authors in [68]. For instance,
our condition (3.13)) considers the euclidean norm of u while their condition
(3.11) considers the L> norm. Also, the scaling by ¢ is not exactly the same.

Recall that d° is the subriemannian distance associated to ¢°. As said
earlier, many authors proved that the subriemannian distance is the limit
of a family of Riemannian distances in the Gromov-Haussdorf sense (see
[4][36][40] [43][67] [83]). We adapt the proof of [40] in our case: we prove that
d" converges to d° uniformly on every compact set of M.

Definition 3.6. For a general Riemannian metric g on M, the Sobolev space

HY(([0,1], M), g) is defined as
HY(([0,1], M), g) = {7 :[0,1] — M; () < oo}

This definition is equivalent to say that for any chart ¢ on M, ¢ o~ €
H(]J0, 1], R™).

Lemma 3.7. For any two Riemannian metrics g1 and g, the Sobolev spaces
HY(([0,1], M), g1) and H'(([0,1], M), go) are equivalent; that is, for any ab-

solutely continuous curve 7 : [0,1] — M, we have
&y () < oo if and only if &, (7) < oo.

Proof. Denote by GG; and G5 the representation matrices of g; and gy re-
spectively. Also, for i = 1,2, denote by X’ . (m) > 0 and X!, (m) > 0 the

min max
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minimum eigenvalue and the maximum eigenvalue respectively of G;(m). We
compute

Thus, we get
! Allnlrl(t) R . ! )\rlnax<t> R .
fo S0 (4(0.5(0) < €, () < f B0 (105 0)r

(3.16)
Now, for i = 1,2, the eigenvalues of G;(m) are the roots of the characteristic
polynomial of G;(m), whose coefficients are smooth in m (as they consist of
the entries of GG, which is smooth). Now since the roots of a polynomial vary
continuously on the coefficients, then they are continuous on M (see [45]).

Therefore, (3.16]) implies that

. Arlnin ! N {
Jnf ( 5 ((?)> L 92y (V(£), 7(8)) < &g (7)dt

A (1)
< : f max
o (A?m(t))

Since M is compact, there exists ¢i, ¢y > 0 such that

J G20y (V(2), (1)) dt.

0

1&g, (7) < &gy (7) < €y, (7).
]

Here, we fix a reference Riemannian metric g*, on M, and we denote by
HY([0,1], M) := (H'([0,1], M), g'). We need the following lemma:

Lemma 3.8. Let M be a smooth Riemannian manifold, and let X', N2 be two
Riemannian metrics on M. Fixz some compact subset of M, say K. Then,
there exist ¢ > 1 such that for any m e K and v € T,, M, we have

1

R () < W(0) < X' (),
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Proof. Denote by A the unit sphere bundle of M restricted on K,
A={(m,v)eTM;me K,veT,M and R} (v) = 1}.

Since K is compact, A is also compact. Moreover, 82 is continuous on 7'M,
and so N2‘ ,, is continuous. A continuous map on a compact set is bounded
and so there is some ¢y, co > 0, such that

c < N2| < 0.

A

Choose some c such that % < ¢ < ¢g < ¢ . By definition of A, we get that
for any m e K and v € T,, M,

%Nl(v) < W2(0) < XL (v). (3.17)

Now let m € K and v € T;,, M. Then, v := (1/R! (v))v € A, so, applying
(3.17) to © and by homogeneity of quadratic forms, we get

1 1 c
— N () « ——=N?(1) < —— =N
mer S mer VS wmer
which implies that (3.17) is true for all m € K and v € T,,, M. O

Theorem 3.9. The distance d* converges to d° uniformly on every compact
set of M.

Proof. Suppose to contrary, there exist a compact K, ¢y > 0, such that for
every h, there exist xy,y, € K such that

|d" (2ns yn) — d°(n, yn)| > €o- (3.18)

First, observe that, since K is compact, then up to a subsequence, the se-
quences zj, and yy, are convergent to some xy and yo respectively (with respect
to d').

Now, For z,y € M, for all h > 0, we have that d°(z,y) = d"(z,y). Indeed,
let v be a horizontal curve connecting = to y. We have,

() = | 0 (GOAE > [ G0N = 1) > ).
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The second inequality holds because + is horizontal and gh‘ Dy S go‘ Do’ Tak-
ing infimum over all horizontal curves v connecting x to y, we get
d"(z,y) < d’(z,y). (3.19)
Thus, implies that for all h > 0,
d"(xn,yn) — d"(zh, yn) < —éo. (3.20)

Moreover, ([3.19) implies that there exists a constant ¢ = sup, yer {d°(z,y)}
such that all A > 0, we have

d"(zp, yn) < c. (3.21)

For h > 0, let v, : [0,1] — M be a minimizing geodesic connecting x;, and
yn parametrized such that

g2 (Y, 7n) = cst.

Now, denote by B(z, ¢), the ball of center x and radius ¢ with respect to the
reference distance d'; that is

B(z,c) = {ye M,d"(z,y) < c}.

Then, there exist hg > 0 such that for all 0 < h < hg and all ¢ € [0, 1],
Yu(t) € B(zo, 1+ ¢). Indeed, for all 0 < h < 1 and ¢ € [0, 1], we compute

d" (xn, (1)) < d"(zn, (1) < d"(zn,un) < c,
and so, v,(t) € B(xp, c). Moreover, we compute
d" (2o, V(1)) < d'(zo, z) + d' (xp, V(1)) < d' (2o, 21) + C.

Since x, converges to xg as h — 0, then there exist hy > 0 such that
d*(zo, ) < 1. Thus, for all 0 < h < hy,

Y < B(xo,1 4 ¢) € B(xg, 1 + ¢).

Then lemma , with the fact that ¢” is strictly decreasing for h > 0, implies
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that there exist a constant ¢; > 1 such that for all 0 < h < min{l1, hy}, we
have

1 1 1
| b, Guino)e < e | g, Gale) o) < o [ o8, (o) Anl0)a < 1
’ ’ ’ (3.22)
Thus, 7, is uniformly bounded in H([0,1], M) <<% ¢0([0,1], M). This
implies that 7, converges uniformly in C°([0, 1], M) and weakly in H'([0, 1], M).
By uniqueness of limit, the weak limit equals the uniform limit, which we de-
note by . The curve 7, is an absolutely continuous (as it is in H'([0, 1], M))
curve that connects x( to yp.
Moreover, vq is horizontal. Indeed, for any h > 0, we have

1
: . L
f Iy (Go(8), 0(1))2dt < d" (w0, 90) < d°(0, yo). (3.23)
0
From (the proof of) lemma [.3] we know that there exist unique ws,) =

U(t) = (uﬂ(t)7 "'7UT(t))7 U; € ker<0-,ly(t))J_ = RNZ such that

Fon (F0(t), 40 (1)) = [dnu(t)]i = Z W= ()[R, - (3.24)

Now, since 7y is an absolutely continuous function, then its derivative is
continuous almost everywhere in [0,1]. Also, as J;(t) is an isomorphism,
then it has a continuous inverse, and so

u(t) = (o4) " (3(1))
is continuous almost everywhere in [0,1]. So, w;(t) is continuous almost

everywhere in [0, 1] and w;(¢)? is integrable on [0, 1].
Thus, (3.24) and ([3.23)) implies that for all h > 0 and any 1 <i < r,

1
W%fhmmﬁﬁ<d%mwd
0

This gives that for any 1 <i <r

1
| toae~o.
0
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which in turn gives that u;(t) = 0 a.e. This implies that gzo(t) (Fo(t),Y(t)) =
|uo(t)|%, a-e. which implies that 7, is horizontal.
Now, we have that

Epo(70)Y? < liminf[Epn (v4)"2]. (3.25)

—

Indeed, using the Cauchy Schwartz inequality, with the fact that 7y is hori-
zontal, we have that for all h > 0,

1
J;) Gy (t) (711 (t)a ;YO (t>>dt < 5gh ('70>1/2‘S‘gh (7’1)1/2 = gg(’ (70)1/25gh ('Vh)l/Q'

Weak convergence in H'([0, 1], M) implies (3.25)). Finally, we get

d°(z0,90) < Ep(0)Y? < 11%1 iglf[ggh ()% = li%n iélf d"(xh, yn),

which contradicts (3.20]). O

Throughout this chapter, we give some examples, which are standard in
the context of subriemannian geometry.

Example 3.1 (The Grushin Case On R?). On R?, consider the smooth vector
fields
X1 = 0 and Xy = x0,.

On R*:\{z = 0}, X1 and Xy span R? (step 1). Denote by X5 = [X1, Xa] = 0.
On the singular line {x = 0}, X1, Xy and X3 span R? (step 2). Following
definition , define the subriemannian metric ¢° on R? as

2
gO(X) = mf{u% + U%, u = (ui)i:w € RQ, ZUZXl = X}

=1

Following definition , define the Riemannian metric ¢" on R? as

3
g"(X) = inf{u? +u2 + h2ud;u = (u;)iz1.23 € R?, Z w; X = X},
i=1
For X = (a,b) € R?, direct computation implies that
h 2 b’
b)) = -
Pl h) = 0"+
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clearly a smoothly defined inner product on R%. Moreover, if x # 0, then

0 2 62
¢((a,h) = a+ 7,

and so, as h — 0, g* — ¢°. On {x = 0}, for ¢° to be finite, b must be 0,
which means that X = aX,, that is X 1s horizontal.

Example 3.2 (The Heisenberg Case On R?). On R3, consider the smooth
vector fields

Xl = ﬁm and XQ = &y + xé’z

For any x € R3, X1, Xy and X3 = [X), Xs| = 0. span R® (equireqular case of
step 2). Following definition , define the subriemannian metric ¢° on
R? as
2
(X)) = inf{uf +u3; u = (u;)ie12 € R?, ZUZXZ = X}.

i=1

Following definition , define the Riemannian metric g" on R® as

3
gM(X) = inf{ud +uld + h%u2; u = (u;)iz103 € R?, Zui)(i = X}

i=1
For X = (a,b,c) € R3, direct computation implies that

— xb)?
o' ((ab.0)) = a2+ 12+ 0

which is clearly a smoothly defined inner product on R®. Moreover, for any
(a,b,c) € R3,
¢ ((a,b,¢)) = a* + b*.

For ¢°, which is the limit of ¢" as h — 0, to be finite, c —xb must be 0, which
means that X = aX, + bXs, that is X s horizontal.

Example 3.3 (The Martinet Case On R3). On R3, consider the smooth

vector fields
2

Xl = é’x and XQ = 8y + %83
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On R3\{z = 0}, X1, X, and X3 = [X),Xs] = x0, span R® (step 2). On
{r =0}, X1, X, X and Xy, = [X), s3] = 0. span R? (step 3). Following
definition , define the subriemannian metric ¢° on R3 as

2
(X)) = inf{uf + u3; u = (u;)i=12 € R?, Z%‘Xz‘ = X}

i=1

Following definition , define the Riemannian metric g" on R® as

4
gh(X) = mf{u% + Ug + h_2U§ + h_4Ui; u = (Ui)i=1,2,3,4 S R4, Z uzXz = X}
i=1

For X = (a,b,c) € R3, direct computation implies that

(2¢ — bz?)?

h b _ 2 b2
g ((av 7C>> a” + + 4h2(h2+x2)’

which is clearly a smoothly defined inner product on R®. Moreover, for any
(a,b,c) € R3,

¢°(a,b,c) = a® + b*.
For ¢°, which is the limit of ¢" as h — 0, to be finite, ¢ — %b must be 0,
which means that X = aX; + bAX,, that is X is horizontal.

3.3 The Volume Form dvolg”

As our goal is to find a volume form associated to the subriemannian struc-
ture, induced from the preceding approximation scheme, we consider the
volume form dvolg" and study its properties and behavior as h — 0. For a
general local frame (74, ..., Z4) of T,,, M, the volume form dvolg” is given by

dvolg" = A/|det(G})||dvr, ..., dvgl, (3.26)

where G}, is the representation matrix of g" in (71, ..., Zy) and (vy, ..., vg) is
the dual basis to (Z1, ..., Z4). From this expression, our study will aim at
analyzing the properties of the determinant of the matrix Gy,.
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3.3.1 Expression Of G,;l

We first give a general expression for G;' in the frame (Z,...,Z;). For
0 < i < r, denote by A; the N; x d matrices defined such that the j-th row
of A; are the coefficients of X% in this frame (so that A; has N; rows and d
columns). Denote by G}, the representation Gram matrix of ¢g" in this frame.
The A’s along side with G}, depend on the point m. The dependence will be
explicit when needed.

Theorem 3.10. For all h € R\{0}, we have
Gyt =) P ALA; (3.27)
i=0

where the matrices G,:l and A; fori=20,...,r have just been defined above.

Proof. Let ¥ be the representation matrix of the map o, defined by (3.6),
and observe that

> = <Ag AL A;ﬁ) . (3.28)
Denote by I" the block matrix
Iy, 0 0 0
o |0 [P [0 0
0 0 0o |
0 0 0 | h¥ly

where for i = 0, ...,r, Iy, is the N; x N; identity matrix. Note that (I")~! =
I,

Let X € T,,M. We define the functions:

.F . Mle d R
U— U,

and

f:Mle_’del
U—YU-X.
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We write

g"(X) = inf{|Spul%,ue RY, o (u) = X}
= inf{U'T"U; XU = &}

= inf{F(U); F(U) = 0}.

From lemma [3.3] there exists a unique Uy € (ker(3))* such that ¢"(X) =
f(Ug) Let

S:= {U S MNXl;ﬁ(U) =0= ﬁ(Uo)}
For any U € S, we have 0 = F(U) — F(Up) = (U — ), and so, S =
{Uy + U; U € ker(X)}, which means that S is an affine space. This implies
that it is a submanifold of dimension N — d. Moreover, we have

ker(X) = Ty, S. (3.29)

Indeed, let Y € Ty, S. By definition, there exist a curve y(t) on S such that
~v(0) = Uy and +/(0) = Y. Since y(t) € S, then X(v(t)) = X. Differentiate
with respect to ¢ to get that ) € ker(X), and so, Ty,S < ker(X). Now,
Hoérmander condition implies that o, is surjective and so dim(ker(X)) =
N — d. Moreover, for X € R%, X + X € R%. So since o,, is surjective, there
exists a unique U such that YU = X + X, which implies that there exists U
such that F(U) = X. Therefore F is also surjective and

dim(7y,S) = dim(S) = N — d = dim(ker (X)),
and we get (3.29)).

Since the infimum of F restricted to the constraint F = 0 is attained at Uy,
then the Lagrange Multiplier method implies that Uy is a critical point of the

function F — AF. In particular dF oy = A dF| . So, for any critical point
U

Up and any W € Ty, S, we have that dF|; (W) Z 0. On the other hand, we
have
dF|,, (W) = UI"W + W Uy = 2W* UL,

Thus, for any W € ker(X), one gets that WI"U, = 0. This implies that
I"Uy € (ker(X))* = Im(XY).

Then there exists V e My, such that I"U, = Xt*V. Since ]:"Ug = 0, we get
that X = 1YYV,
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We now observe that the square matrix T := S/V"¥? is invertible. Indeed,
let U be such that TU = 0. We set W = IY/"¥U. We have W € ker(%)
and X!U = I"W. So, I"W € Im(X!) = (ker(X))*. Then, W!I"W = 0 which
implies that W = 0 which implies that X'U = 0. Since X! is of rank d, we
get that U = 0. This implies that the square matrix T has a trivial kernel
and thus it is invertible.

Thus, we get

Uy = IV (s1Vhsth)y 1y,

We finally calculate:
X'GRX = g(X) = ULI"U,
S 1030 S0 b 30 L L R0 S0 S0 e 4
= X{(=rheh A
Using , we conclude that
Gyt = Z h2ALA;.
i=0

O

Remark 3.11. This theorem is true for a general frame on M. In particular,
it is true for a local coordinate frame or an adapted frame (definition .

Remark 3.12. We give two remarks concerning the choice of vectors made
in subsection [3.1.3.

1. Our work will all be based on the matrices ALA; and so we could include
the zero vectors obtained from the iterative brackets of the initial vector
fields in the definition of A;, as the matriz ALA; will not change by
adding a row of zeros for A;.

2. We recall that in setting our framework, we just included one of the

two vectors X, and X; = =X, for any i > 0. If we define A; as we
defined A; but including all the vectors with their opposite, we will have
that Vi > 0,

ALA; = (X)X 4 L+ XX (X (=X)L (XN (- X
—9 <(Xi1)tX“ bt (XiNi)tXiNi> — 2A!A,.
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Example 3.4. Following example we denote by G, the representation
matrix of gh. We compute

(10 - Lo (10
A0—<O x),/h-(O 1) and G _<0 hz”z)

and observe that, AL Ay + h?AL A, = G,

Example 3.5. Following example |3.4, we denote by G) the representation
matriz of g". We compute

0

10
A0=<(1)(1)2>,A1=(001> adGrl=101 = |,
0 = h%+ a?

and observe that, AL Ay + h?AY A, = G}

Example 3.6. Following example we denote by Gy, the representation
matriz of g". We compute

1 0 0
Ag = 22 ,A1=(00x>,A2=(00 1)
01 —
2
and
1 0 0
2
G1=10 1 T
h 2 )
a? BA 4 B2g2 a
0 ? + 1’+Z

and observe that, AL Ay + h?AY A + h*AL A, = G L.

3.3.2 Point-wise Limiting behavior Of det(G, ")

In this subsection, we aim at obtaining some information about det(G},), and
its behavior as h — 0. Since we have the nice expression of G,:l, we
study the determinant of G, ' instead, and deduce things for det(G},).

As a consequence of , the determinant of G,:l is a polynomial in h
with non-negative coefficients. This is because the determinant of a matrix

84



Chapter 3. Riemannian Approximation Of Subriemannian Structures

polynomial with Hermitian positive-semidefinite coefficients is a polynomial
with non-negative coefficients (see [38]). However, this expression provides
no more information on what happens near 0. For instance, we can’t know
what is the first non-zero coefficient (the leading term in the expansion) and
so we can’t know the power of A in the expansion near (. This is important
because we aim to prove that the determinant of G ! is asymptotic near 0 to
something of order h°(™ to be determined, with a coefficient that does not
vanish on the equiregular region.

Thus, we need another approach that allows us to obtain some knowledge
about this coefficient. We will present two approaches, one using a detailed
spectral description of the eigenvalues of G ' written in a local coordinates
frame, and one using the special properties of adapted coordinates (sub-
section . The spectral approach is more important than the second
one that depends on the type of the coordinates chosen. In this approach,
we study the spectrum of the metric which, besides our main interest, may
provide valuable insights into the geometry and curvature of the underlying
manifold. For that, we describe the spectrum of G} .

3.3.2.1 Spectral Approach

Choose some coordinates x = (x1,...,24) that are defined on an open set
U = U,. We define A; in the same way as in the previous subsection, with
respect to the coordinates x. Denote by G}, the representation Gram matrix
of ¢g" in the coordinate x.

Again, the A;’s, G and dvolg" depend on the point in the coordinates
chosen, so an appropriate notation will be introduced when convenient, but
for now, when no dependence is shown, this means that we work at a fixed
point in the fixed coordinate frame. Let Vy = Im(A§Ag) and let, for 1 < j <
T?

Vj = Vj,1 + Im(A]),

where
A= ALA; , 3.30
J i) (Vj—l) n ( )
where Vjl represents the orthogonal compliment of V; with respect to the
canonical inner product in R
Observe that, as G,:l is a polynomial in h (expression (3.10)), it is an ana-
lytic function in A and thus the analytic perturbation theory (Appendix
is applicable; the eigenbranches of the self-adjoint matrix G, ' are analytic

85



Chapter 3. Riemannian Approximation Of Subriemannian Structures

functions in h.
Recall that for 0 < i < r, we denote by n;(m) := dim(D;(m)). When we fix
a point m, we simply write n;.

Theorem 3.13. Fix some point m € U. For any 0 < j < r, there are
n; —nj_1 eigenbranches {N(h)}1<i<n;—n,_, of G;l such that

X (h) = h¥nl(h),

where for any j, the analytic functions {ng(h)}lgisnj,nj71 converges, as h —
0, to the nj — nj_1 non-zero eigenvalues of A;.

Proof. For 1 < k < r, let (Hy) be the following hypothesis: if we set
Se(h) = ALAg + h2AL AL + ...+ hP*F AL A, (3.31)

then, we have that

spec(Sk(h)) = {h*{p] (1)} }o<jriicn;—n, 1,0, -, O}, (3.32)
where, for any 0 < j < k, the analytic functions {p{(h)}lg@j,nrl converge
to the non-zero eigenvalues of A;.
Moreover, if {¢](h)}o<j<k,1<i<n;—n;_, is a set of orthonormal eigenfunctions
corresponding to the non-zero eigenvalues of Si(h), then

span{¢/(0),0 < j < k1 <i<nj—nja} =V

First, observe that for any k, rank(Sk(h)), is independent of h, for h # 0,
and is equal to ny. Indeed,

Si(h) = (Ag hAL .. hkA;g) (Ag hAL .. hkA;g)t
and so for h # 0, we have
rank(Sk(h)) = rank (Ag hAY .. hkA',;> :
Now, multiplying two linearly dependent (respectively independent) vectors
by a non-zero constant does not change the fact that they are linearly de-

pendent (resp. independent). So, the rank of Si(h) is independent of h for
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h # 0. For h = 1, the matrix Sy (1) is the representation matrix of the vectors
spanning Dy in local coordinates, which means that for any h > 0,

rank(Sk(h)) = rank(Sk(1)) = rank(Dy) = ng.

Also, for any k, the family of d x d matrices Si(h) is analytic (polynomials)
in h, and so applying analytic perturbation theory in the finite-dimensional
case, it implies that all eigenvalues of Si(h) for any 1 < k < r are analytic
in h.

We prove (Hy) by induction on k. We first prove (H;). By continuity of
the spectrum (see corollary, the difference between the i —th eigenvalue
of AL Ay and the i —th eigenvalue of Sy(h) = A{Ag+h?ALA; forany 1 < i< d
is of order h? ( O(h?)). So, by analyticity of the spectrum, we can write

spec(S1(h)) = {{€ (W)} 1<icne M*{€i (W) }1<i<d—no } (3.33)

where {€/(h)} are analytic for any j = 1,2 and any i, and for j = 0, it
converges to the ng non-zero eigenvalues of A} Ay. Moreover, let

{{&) (M) h<izno, (& (M) h<i<dno } (3.34)

be a set of orthonormal eigenfunctions corresponding to the eigenvalues in
(13.33)).
Fix ig € {1,...,d — no}, and write

6}0 (h) = 1/071'0 + h21/17i0 + ... and gllo(h) = 5071'0 + h2£1710 + ...

Writing the eigenvalue equation for any h > 0 and comparing coefficients
with respect to the powers of h, we get the following:

AbAoo,is = 0, (3.35)
and
AiAlgo,io + A6A0§1,io = VO,i()fO,iO' (336)

Equation ([3.35) implies that & ;, € ker(ALAy).
Denote by QY the orthogonal projection on ker(AfAq). Equation (3.35]) im-
plies that Q°¢y,, = &, Multiplying equation (3.36)) on the left by Q°, we
get

(Q0A§A1 QO - Vo,iO)Qofo,io = 0.
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Then, (vy4,,&o.i,) Is an eigenpair of the matrix A;.
Now, by orthogonality of the set of eigenvectors in (3.34), we get that, for
any 1 <1,7 < d— ny,

<€O,ia §O,E>Rd = }lll_%<€zl(h>v 5{1 (h)>]Rd =0

which implies that {£o;}1<i<d—n,, are orthogonal thus linearly independent.
Then, the d — ny linearly independent vectors {£o;}i1<i<a—n, form an eigen-
basis for VOL (which is of dimension d — ng) and thus, {vy;}1<i<d—n, cover all
eigenvalues of QOAtAl Q" Therefore,

SpeC Sl {{6 }1<z<noah2{€ ( )}léiénl—noao"'0}7

with {eg(h)}lgigm_no converging to the non-zero eigenvalues of QYA! A, Q°.
Moreover, let

(€ () Jozserrcicn, —ny 1 € hicom |
be a set of orthonormal eigenfunctions, where the first part corresponds to the
non-zero eigenvalues of spec(Sk(h)) and the second one corresponds to the
zero eigenvalues. By analyticity, {€2(0)}1<i<n, Span V. Now, we prove that
{€1(0) }1<i<ny —no SPan Im(Ay). First, since {£}(0)}1<icn, —n, are eigenfunctions
of Ay, then we clearly have

span{&; (0),1 <i < ny —ng} = Im(Ay).

Now let u € Im(A;). Then there exists v € Vi such that u = A;(v). In the
first part, we proved that

span{{§ }1<7,<n1 no7{§ }1<’L<d "1} VO

So, we can write v as a linear combination:

n1—no d—no
v= Y a0 2 b€z,
i—1
Then, because {£7}1<i<a—n, corresponds to the zero eigenvalues, we get
u=A;(v)
ni1—no d—no
= Z azAl Z b.A1
i=1
ni—no
= D e} (0)6(0) € span{¢}(0),1 < i < ny — no}.
i=1
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Therefore, we get
span{¢/(h),0 < j < 1,1 <i<nj—n;_1} =W,

This finishes the proof that (H;) is true.
Suppose now that (Hj) holds true. Write the spectrum of Si(h) as in
(13.32): '
spec(Sk(h)) = {{h2j{pg (h)}}oéjgk,lSKnj—njfm 0,..., O}a

and let {¢/ (h)}o<j<ki<i<n;—n;_, De set of orthonormal eigenfunctions corre-
sponding to the non-zero eigenvalues of Si(h). Denote by Ji(h) the subspace

Ji(h) :=span{¢/(h),0 < j < k,1 <i<nj—nj_}.
Then, by induction hypothesis, we have:
Je(0) = V. (3.37)

We prove (Hy,1). Again, by continuity and analyticity of the spectrum, we
can write

spec(Sy+1(h)) = {{hzjﬁg(h'>}0<j<k,1$i<nj—nj_17 (A2 55 (R Y cicdny )
(3.38)
with - '
12 (p1(R) = pl(h))| = O(R**2), (3.39)
and
¢l (0) = ¢(0), (3.40)

forall 0 < j<kand1<i<n,—ng_1, where

{18 (W) bosjepazian, —ny 1o 18 (W) haicin, | (3.41)

is a set of orthonormal eigenfunctions corresponding to the eigenvalues in
(3.38). This implies, by the induction hypothesis, that (5/(0),¢/(0)) is an

eigenpair of A; for any 0 < j < k,1 <@ <n; —n;_1.

Fix i1 € {1,...,d — ny} and consider g} (h) with corresponding eigenfunc-
tion ¢f™(h). Now, (3.37) and (3.40) implies that {¢/(0)}o<j<k i<i<n, IS an
orthonormal basis of Vj. So, we get

pEFL(h) = O(h™*2) and FT1(0) e Vi as h — 0. (3.42)

21
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Let PF and QF be the orthogonal projections on Ji(h) and (J;(h))* respec-
tively. Write

G (R) = PRcErH (h) + QG (h).

As Ji(h) is the span of analytic functions, it is analytic, and by lemma ,
(Jx(h))* is. Thus, PF and QF are also analytic, and by (3.42)), we have that

PreiH(h) = o(1) and QRCHT (h) = CTH(0) + o(1), (3.43)
as h — 0. Therefore, the eigenvalue equation implies that
h2k+20 CkJrl( )+h2k+2B <k+1( ) h2k+2ﬁfl+1< )QthJrl( )7 (3.44)

where

éh = Ql}iAZHAkHPﬁ

and .
By = QEAL Ay QL.

Equation (3.44) gives, after dividing by h2**2 and writing (JhC’“H( ) =o(1)
(by (3.43)), the following equation

o(1) + BuCh ™ (h) = At () QG ().

The subspace J(h) is analytic in h, and so By, is analytic, so at k = 0 we get

(QoAls1 Ak Qo — 757 (0)) QoG (0) = 0. (3.45)
Therefore, (3.37) and (3.45) imply that (A (0), 1-’?“(0)) is an eigenpair of

k+1-
Finally, the orthonormality of the eigenfunctions in (3.41]) implies the or-

thonormality of {C¥*(0)}i<i<g—n,. Therefore, the d — n; orthogonormal
(thus linearly independent) vectors {(F*(0)}1<i<q—n, form an eigenbasis of
Vi (which is of dimension d—ny, by ) So, they cover all the eigenvalues
of Ak+1.

It remains to prove that the span of the eigenvectors that correspond to the
non-zero eigenvalues of Sy, 1(h) span Vi1 at h = 0. We write the eigenvec-

tors in (3.41)) as follows

{EWosiracizn—n i A W heicnn, AG heicime |+ (3:46)
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where {5;}1<i<d_nk ., corresponds to the 0 eigenvalues. Again, 1) and
1} implies that {Cij(O)}Ogjsk’lsignjfnjil’q span V,. Now, we prove that
{Cf“(())}lgignk_nk_l span Im(Ay). Since {¢F™(0)}1<i<n,—n,_, are eigenvec-
tors of Ay, it is clear that

span{C"1(0),1 < i < ny — np_y} < Im(Ay).

Now, let u € Im(A). Then, there is v € Vi- such that u = Ax(v). We proved
that

So, we can write v as a linear combination

M1 "M d—ngyq ~
v="> @l + D b
i=1 i=1
Then, because {C7}iz1. . n,,, correspond to the zero eigenvalues, we get
u = Ai(v)
Nk4+1— Mk ~ d—ngi1 ~
= D @A)+ Y bAE)
i=1 i=1
Ngg+1—Nk B N
= > ap ™ 0)(¢F(0)) € span{CFT(0), 1 < i < ny — ngp_1 ).
i=1

Therefore, we get

span {{gg(h)}ogsk,lsignj—nj_la {§f+1<h’)}1<i$nk—nk71} = Vi1

We conclude (Hy1).
By Hormander condition, the induction stops at £ = r and we get the final
result. ]

Remark 3.14. The relevant part of the induction in the proof of theorem
is for 0 < j < r(m). For j > r(m), nj(m) = d and so the statement of
theorem indicates that there are 0 eigenbranches of order h¥. This is because
at m, Syam)(h) defined by generates all the d non-zero eigenbranches
of G;l(m), and with any further perturbation of higher order, the d new
eigenbranches will only be perturbed by a big O of this higher order, but the
behavior near h = 0 remains the same.
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As said before, expression ([3.27)) doesn’t give much information about the
behavior of det(G; ') as h approach 0. However, theorem implies that
the spectrum of G;l can be written as follows:

spec(G;H(m)) = {\Order\? terms, \Order\? terms ... Order Er terms},

no(m) ni(m)—mng(m) d—ny—1(m)

As the determinant of a matrix is the product of the eigenvalues we get
the following corollary.

Corollary 3.14.1. For a fized m € U, the determinant of G;,' has the fol-
lowing expansion

det (G, ' (m)) = fa(m)h>™,

where
I8

s(m) = Y i[ni(m) = nir (m)], (3.47)

and fr(m) is given by

r Nj—Nnj—1

fu(m) = m (h)(m),

j=0 i=1

~

with 17/ (h)(m) being introduced in theorem where we set [[_, = 1.
Moreover, fn(m) converges, as h — 0, to f(m) # 0, where f(m) is the
product of the non-zero eigenvalues of A;(m) (given by ) fori=0,...,r.

In other words, if we write
det(G ' (m)) = > a;(m)h*,
i>0

then, a;(m) = 0Vi < ¢(m) and f(m) = a¢um) > 0.

3.3.2.2 Dependence With Respect To The Point

In the previous section, we obtained the expansion near h = 0 for det(G;")
at a fixed point m € U; that is, theorem [3.13] was point-wise and the behavior
in corollary is a point-wise behavior. Now, we allow m to move in U
and we study the characteristics of the function f(m), that was defined in
corollary 3.14.1 We recall the definition of the singular set in subsection
and define the set Zy = U n Z.
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Proposition 3.15. On every connected component of the equireqular region
M\Z, ¢(m) is independent of m and is equal to QQ — d, where Q) denotes the
Hausdorff dimension on this component.

Proof. Let £ be a connected component of M\Z. The growth vector
(no(%% ceny nr_l(%), d)

is constant (independent of m). Thus, using the expression of ¢(m) in (3.47)),
¢(m) is a constant which we denote ¢(%").
The Hausdorff dimension on % equals

T

QUA) = Y (i + Dni(H) —nia (K],

1=0

where we set n_1(") = 0 (for information about the Hausdorff dimension,
see [65]). So we have

QUA ) —s(A) = D i+ D[ni(H) = nia (H)] = Y ilni(H) —ni 1 (H)] = d.

i=0 i=1
[

Proposition 3.16. The function f is a smooth function on each component
Of U\ZU

Proof. The matrix G;l is the inverse of the representation matrix of the Rie-
mannian metric on M, so its determinant is smooth in m and is independent
on the coordinates chosen. This implies that for each k, the coefficients a; in
are smooth in m. Now, corollary gives the asymptotic expan-
sion of det(G;'); in particular, it gives the first non-zero coefficient. So, on
a connected component # of M\ Z, this non-zero coefficient happens for a
power (%) of h independent of m, and so in this case f = ag) which is
smooth and non-zero. O]

Proposition 3.17. The function f vanishes on the singular region Zy.

Proof. Recall that (ng(m),ni(m), ..., nymm)—1(m), d) denotes the growth vec-
tor at a point in M. For any m € M, we can write the spectrum of G, (m)
as
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{h2 z( ) (m)+1 i < m(m)},

{hQr(m)’nr(m)_l(m) +1<1< d} }

with limy,_,0 A;(h,m) # 0 for 1 < ¢ < d. Therefore, on any connected com-
ponent # of M\Z, det(G; ' (m)) is of order h*(*) and if the determinant
of G *(m) has the expression

det(Gy, ' (m)) = > ag(m)h?, (3.48)

k=0

then ai(m) = 0 for all k£ < ¢(£") and ag)(m) = f(m) > 0 on 7.
Now, let 7 € Z. Then, there exist iy € {0, ...,7(m)} such that

Ny, (fn) < Ny, (%)
Then, there exist i1 € {ig + 1,...,r} such that
iy (M) — ngy 1 (M) > 1y, (H) —ngy 1 (H).

This is because for any m € M, n;(m) < n;.1(m) for any 0 < i < r(m), and
eventually, by Hormander condition, n,(,) = d.
Therefore, det(G,;, " () is of order hg(m) with ¢(m ) s(A). Thus, ar(m) =
0 for all & < ¢(m), in particular, a.(m) = f(m) =

The other direction follows the same reasoning; suppose m € £ such
that f(m) = 0. Then det(G,*(m)) is of order greater than h<*) which is a
contradiction. O

Proposition 3.18. The volume form induced is independent of the choice
of coordinates.

Proof. First, observe that the volume form induced from the approximation
scheme written in a local coordinate chart z is given by

(1/A/|f(z))|dxy A .o A dayg].
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Fix two coordinates z = (1, ...,x4) and y = (y1, ..., ya) and denote by ® the
canonical diffeomorphism between x and y (map of change of coordinates).
Let Y be a vector field and let ), and ), be such that

y = yzam = yyl?y‘

Then, YV, = (Jac(®))'Y,, where Jac(®) denotes the Jacobian matrix of ®.
This implies that

Aj(z) = A;(y) Jac(®),
where A;(x), A;(y), are the matrices defined in the introduction of this sec-

tion, in « and y respectively. By the expression given in (3.27)), this implies
that

Gy (2) = (Jac(®))' (G}, (y)) Jac(®),

where G} (z), G, (y) are the representation matrices of the metric g", rep-
resented in x and y respectively. Thus,

(@) = |det(Jac(®))[* fu(y). (3.49)
Letting h — 0 in (3.49), we get
(@) = |det(Jac(®))[* f (y).

Since
|dzy A oo A dag| = |det(Jac(P))||dys A ... A dyal,

we finally deduce that
(/A If@)Dldey A oo A dzal = (1/A/]f(y)DIdyy A .. A dyal.
O

Remark 3.19. In the preceding proposition, we re-proved the fact that the
determinant of a Riemannian metric is independent of the choice of coor-
dinates. Using this fact, we can say directly that f is the leading order of
det(G; ") as h — 0, and so it is independent of the coordinated chosen.

As a corollary, we deduce the following.
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Corollary 3.19.1. In an equireqular subriemannian setting, where Z = (J,
f is a smooth strictly positive function on M. Thus, it defines a smooth
volume form on M written in local coordinate x as

P, = ldzy A ... A dzg. (3.50)

1
VI@)
Example 3.7. Following example[3.4], we compute

spec(AhAp) = {1,2%} and spec(G; ') = {1,2° + h*}.
Away from the singular line {x = 0}, the two eigenvalues are of order 0. So
det(G;, ') = 2 + h*~2”.

In this case, ¢(x) = 0 and fu(x) = 2* + h* — f(z) = 2*. At {x = 0}, one
eigenvalue, 1, is of order 0 and one eigenvalue, x* + h?, is of order h?. So

det(G 1) = h2~h?.

This is expected as the growth vector equals (2) for x # 0, and (1,2) at
{z = 0}.

Example 3.8. Following example we compute
spec(AAg) = {0,1,2% + 1}, and spec(G;, ') = {\i(h, x), Xa(h, x), A3(h, 2)},
where \y(h,x) =1,

h 222 + /(R 22>+ h 2+ 1)2 —4h 2+ h ™2 + 1

2
)\Q(hu'r) = 2h—2 ~ 2(ZE + 1)7
and
h=2z? — h=222 + h=24+1)2—4h2+h24+1
Nl ) = =N b ) T R (140(h?)),.

2h—2

For any x, two eigenvalues, A\i(h,z) and Xo(h,x) are of order 0 and one
eigenvalue, A\3(h,x), is of order h*. This is expected, as this is the equiregular
case, and the growth vector equals (2,3) is constant everywhere. So, at any
x?

det(G; ) = h? ~ h2.
In this case, ¢(x) =1 and fr(x) =1 — f(z) = 1.
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Example 3.9. Following example we compute
spec(AhAg) = {0,1,2° + 1}, and spec(G; ") = {\i(h, z), Aa(h, x), A3(h, )},
where A\ (h,x) =1,

h=zt + 4h=* + 4h™ %z + A/H (h,z) + 4

)\3(h, .17) =

Sh—4 ’
and
h~4z* + 4h™* + 4h ™2z — \/H (h,x) + 4
)\2(h7 IE) = P
8h—4
with

H(h,z) = (R 'z + 4h™" + 4h ™22 + 4)? — 16h~(4h 2z + 4).

Away from the singular plane {x = 0}, two eigenvalues, A1 (h,x) and Aa(h,x)
are of order 0 and one eigenvalue, A3(h,z) is of order h* as A\3(h,z) =
h*(4x + o(h™2) + o(h™%)). So

det(G; ') = h*z? + h* ~ h?2*.
In this case, <(x) = 1 and fu(x) = 2* + h? — f(z) = 22, At {x = 0}, two

)
eigenvalues, A\ (h,x) and \a(h,x), are of order 0 and one eigenvalue, A3(h, x)

is of order h*, as A\3(h,z) = h*(4 + o(h™%)). So
det(G, ') = h* ~ ™.
This is expected as the growth vector equals (2,3) for x # 0, and (2,2,3) at
{z = 0}.
3.3.2.3 Second Approach

In this subsection, we recover corollary |3.14.1] using an adapted frame of the
tangent space. We first define an adapted basis.

Definition 3.20. Let D be a distribution on M such that D satisfies the
Hormander condition with step r + 1. Define D; following . We say a
local frame Z., ..., Zq is adapted if Z1, ..., Zy,, 1s a local frame for D;, for any
0 < i <r, where n; = dim(D;(m)), and Zy, ..., Zy, are orthonormal.
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In this subsection, we recover corollary using the special charac-
teristics of an adapted frame

So, fix some adapted frame Zi, ..., Z;. Consider our framework. Let A
be the N; x d matrix defined such that the j-th row of A is the coefficients
of X" in the adapted frame (so that Ag; has N; rows and d columns). We
first describe the matrix A.

For 0 < ¢ < r. The rows of the matrix A are the vectors X% for
1 < j < N; written in the adapted frame 7, ..., Z4. For each 1 < j < N;, the
vector X% is in D; which has {Z, ..., Z,,} as a basis. Thus, the last d — n;
columns of the matrix A(;) are zero columns. More precisely, if we denote by
ay; the coefficient of Zj in the expression of X*;

d
i k
k=1

then afj = 0 for all £k > n; and A has the following expression

ay, .. ay 0 .. 0
al, .. ay 0 .. 0

Ay = 0 0 (3.51)
ajy, - g 0 .. 0

Now, for any 0 <7 <r and 1 < j < N; define the coefficients dfj as follows:

i )

ak— O 1<k’<nl_1
ak. ni1+1<k<n

and define the matrix fl(i) = (afj)lgjg N, 1<k<n; With N; rows and n; columns
(A denotes the representation matrix of X% in D; mod D;_1, letting all
the coefficients that correspond to Zi, ..., Z,, , equal 0).

For 0 < ¢ < r, we introduce the matrix M; as the non-zero block of

o 0000 8 8 0 00
Ay - INE R RIS
0 00O 0 0 0 00
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The red-shaded region in /_l(i) corresponds to the vectors Z,,, 41, ..., Z,,, and
M; is the blue-shaded sub-matrix.

Proposition 3.21. Fizm e M. If we denote by Gy, the representation Gram
matriz of g" with respect to the adapted frame Z, ..., Zy, then, near h = 0,
we have

det(Gy") ~ B> | [ det(M;). (3.52)
i=1
Proof. By theorem [3.10, We have that
Gyl =D hM Al A, (3.53)
i=0

Using the characteristics of the matrix A; (description (3.51)), formula ([3.53))
implies that

My + O(h?) O(h?) O(R2r=1Y) | O(h?r)
O(h?) | h2M; + O(hY) O(h?) ;
Gyl = O(h%) Oy | WM, + O(RS) :
O(h?")
) O(h?) | h¥M,
(3.54)
Let
My| 0 1ol o
0 | n2M,| 0
Goyh)=1 0o | 0 |+, :
N I B
0 .. 10 [n7M,
and
Oom?) [om*) | ... OG>y Ooh*)
O(h?*) | O(h*) | O(h*) '
Goy(h) = G, =Gay(h) = | oY) | oY) | O(h®) :
O(h?")
om¥) | .. O(h?") 0
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Moreover, we have that M; is invertible, and so G(1)(h) is. Indeed, M; is an
n; — n;—1 matrix with

rank(M;) = rank <A€i)fl(i)> = rank (f_l(i)) )
As n; < Ni, then
rank (A(i)) <ng — ny_q.

As {Zn, 41, Zy,} are basis for D;, then rank(Ag)) = n; — n;—y. Thus,
rank(M;) = n; — n;_1, and so it has full rank (in particular, invertible).
Therefore, we have

det(G; 1) = det(Gy(h)(Is + (G (h) LGy (h)))
(

= det(Gyy(h))det(Ia + (Gy(h) ' Gz (h)). (3.55)

Now, as (G)(h)) ' G)(h) is simply multiplying the i row of G(9)(h) by
h=2 M for any 0 < i < r, then, the limit of (G(1)(h)) 'G(h), which we
denote by G, is a strictly lower triangular matrix. Then the spectrum of
I; + G is given by
spec(ly + G) = {1,..., 1},

——

d times
and so its determinant is 1. Since the determinant function is a continuous
function from My to R, then det(Iy+ (G 1y (h))'G2)(h)) ~ 1 and therefore,
near h = 0,

det(G;) ~ det(Gyy(h)) = h>m ndet

]

Finally, the same arguments as in subsection [3.3.2.2] give the charac-
teristics of the function [];_, det(M;(m)). Consequently, in an equiregular
setting, it defines a smooth volume form on M given in the local adapted
frame (Z1, ..., Zy) by

1
dP, = 2N 18 (3.56)

[ T;-y det(M;)
where we recall that (11 A ... A 1y) is the dual frame to (71, ..., Zy).
The thing that made this approach much easier than that used in the
first approach is the fact that the frame 71, ..., Z; is an adapted frame that
gives the nice structure of the matrix in [3.54]
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3.4 Relation With Popp’s Volume

In this subsection, we suppose that we are working in an equiregular setting.
We define Popp’s volume following [I3], where the formula of Popp’s volume
is given in terms of any adapted frame of the tangent bundle. We then
compare our volume form obtained by the approximation scheme to Popp’s
volume.

3.4.1 Definition: Popp’s Volume

Popp’s volume is defined by inducing a canonical inner product on gr,,(D)
via the brackets, and then using a non-canonical isomorphism between the
graded vector space gr,,(D) and the tangent space T}, M, to define an inner
product on the whole tangent space. We follow the definition given in [13] of
Popp’s volume with respect to an adapted basis.

Fix an adapted local frame Z1, ..., Z;. Denote by v, ..., vy the dual frame
to Z1,...,2q. For j = 1,...,r, we define the adapted structure constants
bl . € C>®(M) as follows:

11...05
n;
I -
[Zi1> [Ziza ooy [Zijv Zij+1]"']] = Z bim’z...ij Zl mod D’ 17 (3'57)
l:nj,1+1

where 1 < 41, ...,1; < ng. We define the n; —n;_; dimensional square positive
definite matrix B; as follows
no

[Bj]hl = Z b?liQ...z‘jbim...ija J=0,...,m, (3.58)

iy =1
where By is the ng x ng identity matrix.

Definition 3.22. The Popp’s volume is given by

1
dP = 2N 7] (3.59)

H;=1 det(B;)

3.4.2 Comparison With Popp’s volume

Now, we prove that the volume associated to the approximation scheme
coincides with Popp’s volume up to a constant to be determined. We need
the following proposition.
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Proposition 3.23. The matriz My defined with respect to the adapted frame
4y, ..., Zq 1s the identity matriz; that is My = I,,,.

Proof. Again, the fact that we are dealing with an adapted frame gives the
nice expression of C?,:l in that implies, with the invertibility of M; that
the matrix G, which is the limit of matrix (G1y(h))™*G ) (h) is strictly lower
triangular and that

lim det(; + (G (h) ™ Gz (h) = 1.

Thus, for h small enough, Iy + (G1y(h)) ' G(2)(h) is invertible. Since
Gy = Guy(h) s+ (Gy(h) ™ Gay(h), (3.60)

we get, taking the inverse of both sides in equation (3.60) and multiplying
by G(1y(h) on the right, that

GrGay(h) = (Ia + (Gy(h) T Gy (h) 7.

Thus,
My = GGy (h)] p, = a+ (G () ' Gay(m) 7Y, -

Since the limit of Iy + (G1y(h))"'G(2)(h) (which is I; + G) exists and is
invertible, we get -
My = (Id + G)il‘DO .

Now, as G is a strictly lower triangular matrix, it is nilpotent, say of index
n. So,

n—1
(Ia+ G =1+ ) (-1)FG.
k=1
Therefore, since for any k, Gk|DO = 0 we get that My = I,,,. O]

Recall the definition of M, in subsection [3.3.2.3] Recall that our volume
form is given by

1
vV [ [i—, det(M;)

Then, using , it is enough to compare the matrix M; to the matrix B;
defined by for any 1 < ¢ <r (My = By = I,), to deduce the relation
between dP, and dP. In the following theorem, we establish the relation
between the entries of M; and B;.

dP, =

U1 A Ayl

102



Chapter 3. Riemannian Approximation Of Subriemannian Structures

Theorem 3.24. Denote by (fi(i)xrs) 1<k ko<ni—n,_, the entries of the matriz
M;. Then, for every 1 < i <r, and any 1 < k1, ko < n; —n;_q, we have

1 K1K
H(i),k1k2 = §[Bl] B

where [B;]™"* are the entries of the matriz B; defined by (3.58).

Proof. Denote by J := {1,...,p}. For any j € J, write X% = > la i
Then, for 71, ..., Jix1 € J, we have

no

(X0 (X2 (X% XY = > ay a2 [ Z 2 2]

@)1 H0)jisa
lyelipr=1
(3.61)
Then, for any 1 < i < r, any n;,_; < n < n;, and any (Ji, ..., Jir1) € JH
we get that the coefficient of [ X% [X%2  [X%: X%1]. ] in Z, € D; mod
D;_; is given by

no
n o Iy lit1 n
iy, (1 ensivr) — Z a(O)jl"'a(O)jith,.-.,liH’ (362)
Iy lip1=1

where the b's are the adapted structure constants defined in . Denote
by J := {1,...,ng} and by J; a subset of J*! that enumerates the vectors X
We recall that that the difference between Ji*! and J; consists of getting rid
of the 0 and keeping one of the two vectors corresponding to (jo, - , Ji, Jis1)

and (j07 U 7j’i+17ji)-
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Therefore, for any 1 <7 < r and any 1 < k1, ko < n; — n;_1, we compute

HGi)mame = Z @), (1, s 1) U0 G 1)
(J1,-Jiv1)ETS
1
_ K1 K2
— 9 Z Q@) eendir ) H0), Gt en)
1

(J1, Jir1)eJ it

_ - l1 liv1 K1 mi Mitl pko
) Z Z Qo) 01 V0l A0) 1 C(0) o1 ot i
liylivred (J1sesdir1)eJiHL

N —

_ 1 mi Z lit1 mi41 K1 Ko
o Z Za(o)jla(())jl @(0)jir1%(0)jis1 blla---vli+1bm1v--»mi+1

ll,---yli+1€j~ jried Jivr]

N | —

_ m1 Mi+171K1 K2
B Z 5l1 "'6li+1 bll,---vli+lbm17~--»mi+1

l1,..lit1€J
MY yenes m;1€J

1
_ K1 %] _ R1R2
B Z bllv---ali-#lbll»---:li-#l - 2[BZ] )

l1,...,li+16j

N | —

(3.63)

where the Kronecker deltas are due to proposition [3.23] The factor (1/2)
popped out due to the choice made about choosing the vector fields the
matrices A(;) are representing (and that we considered in our framework).
Taking the sum over (ji,...,7J4+1) € J; means that we are considering the
enumeration of the vector fields we chose. When moving to (ji,...,jit1) €
J*1 it means that we now included all the vector fields that are formed by
the iterative brackets, and thus doubling the quantity on the right-hand side

of (3:63). O

Recall that dP denotes the Popp’s volume.

Corollary 3.24.1. Recall that dP, denotes the volume induced from our
approzimation scheme. We have

1
AP = —=dP,. 3.64
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Remark 3.25. If we define the Als including all these vectors (including
the ones we excluded in our framework), we get that dP = dP,. This is
following remark which is the reason why the constant 1/2 popped out

m our computation in .

Remark 3.26. We can deduce from corollary|3.24.1 that in the non-equiangular
case, the function f defined in corollary|(3.14.1}, is defined on M\Z.

Example 3.10. Following exzample [3.7, the volume form obtained from the
approximation scheme is given by

aP, = (1v/Fol@))ldz A dy| = (1/]a])lda A dy.

Now, R*\{x = 0} is the equireqular region with r = 0. We have

1 0

Direct computation shows that g"(X;, X;) = 5? fori,j =1,2. So, X, X, is
an adapted frame. Following , and as v = 0 on the equireqular region
of R?, we have

1 1

dy| = —ldw A dy| = dPo,

dP =11 A vy = |dz A
||

|z
where vy, vy are the dual frame to Xy, Xs.

Example 3.11. Following example 3.8, the volume form obtained from the
approximation scheme is given by

dP, = (1/7/ fo(x))|dz A dy A dz| = |dx A dy A dz|.

Now, this is an equireqular setting with r = 1. Using the expression of G,:l,
we get
1 0 0
Gpo=10 1+2%h2 —ah?
0 —xh2 h—2
Direct computation shows that g"(X;, X;) = 65 fori,j =1,2. So, X1, Xy, X3
15 an adapted frame. Following , and asr =1 on R?, we have
1 1 1
dP =vi A Avy = —=|dx Ady A (dz —xdy)| = —=|dx Ady A dz| = —=dP,,
LAV AV ﬁl yn( vl =%l y A dz| 7

where vy, v, v3 are the dual frame to Xy, Xy, Xs.
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Example 3.12. Following example the volume form obtained from the
approximation scheme is given by

dP, = (1/7/ fo(x))|dx A dy A dz| = (1/|x|)|dz A dy A dz|.

Now, R*\{z = 0} is the equiregular region with r = 1. We have

1 0 0
Gr=10 1—|—%2 —1
0o -1 3

Direct computation shows that g"(X;, X;) = 5g fori,j =1,2.. So, X1, X5, X3
is an adapted frame. Following , and asr = 1 on the equiregular region
of R3, we have

1 1 1 1
dP = Vi Ay Az = 7§|dx/\dy/\(mdz—%dy)| = \/§|x| |deAdyndz| = 7§

dp,,

where vy, 5, v3 are the dual frame to Xy, Xy, X3.

In each of the preceding standard examples, the initial vector fields are
orthonormal. Also, in all these examples, the coeflicient of 14 A ... A g IS
equal to a constant (1/4/27), and the function is obtained by calculating the
dual frame. We give an example where this is not the case.

Example 3.13. On R*, consider the following smooth vector fields: X; =
(%,XQ = ay, Xg = x(’}z +’y8t On R4\{$ = O}, Xl,XQ, Xg and X4 = [XQ, Xg] =
0y span R*. Then, this is an equireqular setting with r = 1. Following ,
we have

10 0 0

|01 0 0

h 0 0 z22+n*> ay
00 a2y y?+h?

So, det(G; ') = hA+h2(z?+y?) = hW2(h2+2%+y?). Asc = 1, then fu(z) = h®+
22 +1y* and so fo(x) = 22 +y>. Then, the volume given by the approzimation
1S grven by

dP, = (1/A/2? + y?)|dx A dy A dz A db|.
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Now, we have

10 0 0
01 0 0
TS = O 0 y2 +h2 —TY
h2+h(z?+y?) h2+h(12+y2)
O O —xyY +£D

h2+h(z2+y2) h2+h( 24+h?)
Then, direct computation shows that
2?2 + y2

1172+y2 :
L+ =

2

(%) = = alz,v)*

Now, setting
(X1, Xo, Xy, Xy} = {1, Ko, (a(z, ) Xs, X},

we get that gh(/ﬁ-,)%) =0/ fori,j = 1,..,4. Thus {221,222,223,224} is an
adapted frame. Then following , and as
1 .y -
[X1, 5] = 0. = ——— A + _yX47
za(z, y) x

we get that by = 1 and b}y = (y/z). Then, following (3.58), we get

By = <x22(a; +y ))

Thus, (3.59) implies that

2] =
———— V1 ANUo ANV ANVy =
\/5«/1132—1—3/2 PATRATAT \/>«/:U2+y

1
—dP,.

P =
V2

|da:Ady/\—dz/\dt|
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Chapter

Convergence Of Spectrum

We study the sublaplacian on a compact manifold and prove the convergence
of the spectrum in the previous approximation scheme.

4.1 Introduction

In this chapter, we suppose that M is a compact orientable manifold.

If we define the sublaplacian A, with respect to a fixed volume dw, a
natural question arises, whether one can construct a family of Riemannian
metrics such that the spectrum of the Riemannian Laplace operator defined
with respect to dw converges to the spectrum of (Ag, dw).

Another question that seems more challenging is whether we can construct
a family of Riemannian metrics such that the spectrum of the Riemannian
Laplace operator defined with respect to the volume form dvolg” of the metric
converges to the spectrum of (A, dw).

In fact, in these settings, only little is known about the convergence of the
spectrum of the Laplacians (see [39][40][76]). In some specific settings (which
implies that dvolg" = h%dw), it was shown that the family A, converges to a
hypoelliptic operator A, and that the eigenvalues of A, converge to those of
A. This was first observed by Fukaya in [39] and then proved by Ge in [40]
(See also [76] for contact manifold case).

Here, we prove the convergence theorem in our framework, which is much
more general. Suppose that the subriemannian structure is equiregular and
recall that dP denotes the Popp volume. We construct a family of Laplace
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operators A, such that the spectrum of (Aj,dvolg") converges to that of
(Ao, dP). It is logical to consider the Riemannian family associated to the
approximation scheme of chapter 3| as our candidate. This is because we
know from the previous chapter that the family A~°dvolg" converges to dP
(the main result of chapter [3)).

Using some uniform subelliptic estimates, and standard theorems of spec-
tral theory, we first prove the convergence in the fixed volume form case,
where the family of elliptic operators approximating (Ag, dw) is defined with
respect to dw. Then, by proving the validity of the uniform estimates, we
prove that the results remain true in the case where the family of elliptic
operators is defined with respect to the volume form of the family of Rie-
mannian metrics. We show that these estimates follow from the previous
case by proving nice properties on the function f;, and the adjoint taken
with respect to dvolg” of X¥.

Approaches using subelliptic estimates are usually popular in the context
of studying a subriemannian manifold, especially since uniform versions of
such estimates, when coupled with similar approximation schemes, allow to
extend known Riemannian results to the subriemannian setting (see [27][32]
for instance).

We first recall the definition of a hypoelliptic and subelliptic operator.

Definition 4.1. e An operator P is hypoelliptic on M if Pu € C>®(M)
implies that u € C®(M).

o An operator P is subelliptic of order p with € loss of derivatives if
Pu e H*(M) implies that w e H**P=<(M) for some e < 1.

Let’s define the divergence operator.

Definition 4.2. Fiz a volume form dw on M and let X be a smooth vector
field. The divergence div,,(X) is defined as the function satisfying: For any
u,v e C>®(M),

JM uXvdw = JM [(—X — div, (X)) u] vdw. (4.1)

We recall the chain rule for the divergence operator.

Corollary 4.2.1. Let dw be a Riemannian volume form on M. For any
vector field X on M and any function f, we have

div, (fX) = X(f) + fdiv,(X). (4.2)
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Proof. For any smooth functions u and v, we have
r

J(—fXU — divy,(fX)u) vdw = | u(fX)vdw

= | (=X (fu) — (div,X)fu) vdw

- r‘(_qu — (X fu — (divyX) fu) vdw.

J

We deduce our claim by identification. O

The divergence operator satisfies the following property.

Proposition 4.3. Let dw; and dws be two (non-vanishing) volume forms on
M and let o be such that dwi = adws. Then, the following assertions hold
true:

1. For any vector field X on M, we have

adivy, (X) = div,, (aX). (4.3)
2. For any vector field X on M, we have
1
div,,(X) = aX (&) + divy, (X). (4.4)

Proof. 1. By definition, div,,(aX) is the function satisfying

JM u(aX)vdwy = JM [(—aX — divy, (X)) u] vdws, (4.5)

for all u,v € C>(M). By the definition of « in proposition (4.3)), equa-
tion (4.5) implies that

JM uXvdw; — JM [(—X - édivm(aX)) u] vdor.  (46)

Finally, by definition, (4.6)) implies that
1
div,, (X) = —div,, (aX).
o

2. The second property follows by using the chain rule and (4.3]).

We introduce now the (sub)Laplace operators.
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4.1.1 Sublaplace Operator

We associate on the compact manifold M a fixed volume form that we denote
dw and we denote by ¢ the function such that locally, dw = ¢(x)dx. We
denote by L2(M) := L?((M,R),dw) the Hilbert space associated to dw,

given by
LE(M) := {u t M - R; |ull3, = J lu|?dw < oo} .
“ M

On L2 (M), we define the sublaplace operator as

P

i X0y X0 — Z <—(X0j)2 _ divw<X0j)X0j> 7 (4.7)

7=0

where the star denotes the adjoint with respect to dw. Hormander [50] first
proved, that under Hormander’s condition, the operator Ay, which is called
a type 1 Hérmander operator, is hypoelliptic. He proved this by proving that
Ag satisfies a subelliptic estimate (which implies that A is subelliptic and
thus hypoelliptic).

4.1.2 Family Of Riemannian Laplacians

For any h > 0, we define on L2 (M), the family of elliptic operators:

r N;
Ay = 3 S (X 2 Y Z P (= (XY = diva (X9)XT).

i=0j=1 i=07=1

where the star denotes the adjoint with respect to dw.
Recall that ¢(m) was given in corollary [3.14.1| by

r

s(m) = Y jilni(m) = nia (m))]. (4.8)

1

If the subRiemannian manifold is equiregular, then ¢(m) is constant on M,
and is denoted here after by .

Now, denote by LZ(M) := L2((M,R),dvolg") the Hilbert space associ-
ated to h*dvolg", given by

LI (M) := {u M — R; ||u||i%(M) = JM lu|?h* dvolg" < oo} :
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For any h > 0, we define on L? (M), the family of elliptic operators:

Ay = Z Z P2 (X)X — Z Z P (= (X)? — divi (X)X )

1=07j=1 1=07j=1

where the star denotes the adjoint with respect to dvolg” and div, denote
the divergence with respect to dvolg”.

For h > 0, the operators A, and A, are elliptic. Since M is compact, then Ay,
and A}, with domain C*(M) are essentially self-adjoint on L2 (M) and L3 (M)
respectively and their self-adjoint extensions have compact resolvents. Thus,
their spectrum consists of an increasing sequence of positive eigenvalues of
finite multiplicities that converge to +oo.

Hereafter, when we write X*, the = is taken with respect to the fixed volume
form; that is X™* = X*v,

4.2 Uniform Estimates

At some point in the proof of the convergence, we will need the boundedness
in any Sobolev space, of the eigenfunctions of Ay, and A,. One way of doing
this is to prove an estimate showing that the norm of the smooth functions
on M is controlled by the norm of A, and Ah. A useful tool will be the
so-called subelliptic estimate.
As said earlier, Hormander [50] first proved that the operator A (or any type
one Hormander operator) is hypoelliptic. Kohn [58] then proved this result by
proving a subelliptic estimate on A using pseudo-differential calculus. Since
then, many authors who worked with approximation schemes investigated
the validity of such uniform estimates applied to an approximating family of
operators (see for instance [30][48]).
Here, we prove a uniform parameter-dependent version of the famous local
subelliptic estimate, which allows us to obtain a uniform subelliptic estimate
and deduce some information about the operators defined above. In section
4.2.2] we deal with Ap; we adapt Kohn’s proof of subellipticity to prove
that a uniform estimate is true for A, and then, in section [.2.3] weuse the
nice properties of the functions f; obtained in chapter |3| to prove a uniform
estimate for Ay,.

It is worth mentioning that although in this proof we lose having an
optimal gain of regularity (optimal order of subellipticity, which is 1/r as
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proved in [75]), this is not important to us, as having any order will imply
the self-adjointness and the compactness of the resolvent of Ay, and the
boundedness of the eigenfunctions of A; and Ay,.

4.2.1 The Sobolev Space H*(M)

For s € R, denote by A® the following operator:
A= (Id+ A3, (4.9)

where Id is the identity operator. For s € R, we define the space H’ (M)
with respect to dw as

H (M) = {ue LE(M); ||ul

mgany = Al 3 0y < 00} (4.10)

In what follows, the constants may have the same notation though be of
different values.

4.2.2 First Case: Fixed Volume Form

As we said earlier, we adapt Kohn’s proof and prove a uniform version of the
subelliptic estimate. Thus our proof will mainly depend on some very well-
known facts in the pseudo-differential calculus, that we state in Appendix
A3l

We first prove a simple proposition.

Proposition 4.4. For any smooth u on M, for any 1 < j < p and for all
h € [0, 1], we have

TP 1
[xoull,, < 5 (1l + 1)

Proof. We compute

Zth

1
HXO,Ju X'y, ’ < (D uyg < 5 (HAhuHig +HuHig)-
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Our aim is to prove that: e > 0,Vs € R,3C(s),Vh € [0, 1], Vu € C>*(M),

il ggee < CCs) (1Al +lul ) - (411)

We first prove (£.11)) for s = 0 using mainly the results of section [A.3]

Theorem 4.5. There exist € > 0 and a constant C' > 0 such that for all
he[—-1,1] and all uw e C>*(M),

lul

g < C (18wull +lul) - (4.12)
Proof. In this proof, all inner products are with respect to L2 (M).
Denote by P the set of all pseudo-differential operators of order zero. For all

€ €]0, 1], let

P. = {P € P;||Pu|

e < C0) (I18nuly +llull, ) v e C=(a1), ¥he [0,1]).

We have the following properties:

(a) For all €, < €, P, € P.,. This is obvious as HS? is continuously
embedded in H' for all €; < €.

(b) If P € P, then P* € P, for any € < 1.
Indeed, let P € P.. We compute

1Pl

b = 1A P ul[7, = (A“P*u, AP*u)
= (P*u, A** P*u)
= ((PA**P* — P*A*P)u,u) + (P*A*Pu,u)
= ((PA*P* — P*A**P)u,u) +|| Pul

2
Hg -

Using theorem |A.13] PA%2P* — P*A%P is of order —1 + 2¢, which is
non-positive for € < 1. So, for € < 1, it is bounded in LZ(M) by

29
corollary [A.12.1] and we get

[1P*ul

s < Cu(©)lulzy +[1Pul

e < CO (1Al + el )

(c) For € < 1, P. is a left and right ideal in P.
Indeed, by theorem [A.12] pseudo-differential operators of order 0 are
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bounded in any Sobolev space. So we compute, for P € P, and every
AeP,

[APull g < Cle)][Pu|

which implies that P, is left ideal in P. Moreover, by @, P*e P, so
as P, is left ideal, A*P* € P.. By @ again, P*A* = (A*P*)* € P..
This implies that P, is right ideal in P.

€
He»

For all j =1,...,n¢ and all € < %, X%AteP.
Indeed, for € < 1, the operator A~ ! is of non-positive order. So it is
bounded in L2 (M) using corollary [A.12.1] We compute

HA‘lXO’ju

‘Ae—lXO,ju

< c(e)

L3

X%y

Lg,

< C(6) (| Anull g +lullz )

where the last inequality is due to proposition 4.4, Then A~* X%/ e P,
for any 7 =1, ..., ng.
Now, we observe that

XOAT = —(AT' X)) + div (XA

The first term is in P, using [(b)] Now, the functions div,(X%7) are
smooth on M, so bounded by some constant. Since A~! is of negative
order, it is bounded in L2 (M) by corollary So, the second term
is in P.. We get that for e < 3, X®/A~! e P..

If P e P, then [X%7, Pl € Py forall j = 1,...,np and € < §.
Indeed, let P € P and let o = 5. Let j = 1,...,n9, and denote by T
the pseudo-differential operator of order € defined as T := A% [ X%/ P]
We compute

2

X%, Plul| = (X%, Plu, Tw)

HL/J
= (X% Pu, Tu) — (PX%u, Tu)
< (X% Pu, Tu)| + [{(PX " u, Tu)|.
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Observe that P*T" and T P* are of order € and have the same principal
symbol. Then, by theorem we have that P*T — T P* is of order
¢ — 1 which is negative for € < 1. So, by corollary it is bounded
in L2(M).

Moreover, T is of order €, so by theorem [A.12] it is bounded from
HE(M) to L2(M).

It follows that

(PX%u, Tu)| = KX u, P*Tuw)|

2
<||X%ul| || P*Tul?,
L2 w

w

N

. 2
Xul[ TP ullgy + Cole)llullz

A

e+ Co(@)lullz2

2
X%y , T Ci(e)[[Prul
LUJ

CrOI P ull, + Cale)(|Anul gz + Jul?s)
Cs(e) (| Anulzz + Julzz)*

NN

since P* is in P..

For the second term, we write

(X% Pu, Tu) = (Pu, (X%)*Tu)
= (Pu, T(X")*uy + (Pu, [(X%)* T)u)
< T Pulpz [(X*) ul 2 + [[X™)", T1* Pull 2 |ul 2.

Since T™ is a pseudo-differential operators of order ¢ we have

|7 Pullz, < C|Pul

Hg

The same estimate applies to ||[[(X*7)*, T* Pu/ 2 since [(X*7)* T]* is
also of order e. Finally, we use the fact that (X%7)* = —X% + ¢; for
some smooth function ¢; and that P € P, to conclude.

For 0 <i<r, forall 1 <j <N, wehave XYA~!e P
2'L

We will show this for ¢ = 2. So, let 1 < 7,k < ng. Note that
[Xo’j,XO’k]A_l _ [Xo’j,XO’kA_l] . XO’kA_lA[XO’j,A_l].
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By parts @ and @,

(X7, X** AT ] e Py
Now, A[X%7, A71] is of order zero, so using parts [(c)] and [(d)]
XORFATIA[XY A1 e Pa.

3
Using part , we get that [X% XOFA-L €
get that XYA~leP

1. By recurrence, we
4

1 forall 0 <i<nr,1<j<N,.
21+

(g) We have P_,_ = P.
Indeed, using (4.9), the definition of A, we have that

T Ni
Id= A"+ ) Y AH(XY) XY,
i=0j=1
Using Hormander condition, the vector fields span the tangent space,
and so we have that A~ (X*)* e P_,_ for every j € {1, ..., N;}, and so,
by parts |(b)| and ﬁ, ATHX)*X¥A™ e P_1_. Observing that
27‘
A—Q(Xij)*Xij _ A—l(Xij)*XijA—l + A—l[A—l(Xij)*XijA—17 A],
we deduce that Id e P%.
2T
Therefore, we obtain (4.12]). n

Before proving the full uniform subelliptic estimate, we record a useful
result.

Proposition 4.6. The following holds true: V0 < ¢ < r,V1 < j < N;,V( >
0,Vh > 0,Yu e C>®(M),

Proof. We compute
2 r N;
| <22
L |

r N;
- 22h2i(Xij)*X”u,hiu> = (Apu, h'uype
Lg

i=0 j=1

R X"y (4.13)

¢ 1
< —||A + — .
2 \/§H hUHLg \ECHUHLEJ

Xy B Xy

2 S L

2

C 2 2
<lHAnullpe lullry < Sl AwulLy + 55 llullzs -

1
2¢
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Now, since for any a,b > 0, v/a + b < y/a + v/b, we deduce [

Theorem 4.7 (Uniform Subelliptic Estimate). The following holds true:
Je > 0,Vs e R,3C(s),Vh e [-1,1],Yu e C>®(M),

Jull e < ) (1null gy +lulgy) (1.14)
Proof. Let s € R and apply to Afu:
1A ull e < (AN ull s +][A%ull 2 ). (4.15)
Observe that
1Al <[[[An, AJull g + [ Anull gy - (4.16)

We calculate

1An ATulls < 30512 ¢

Xij)*Xi,j’As]u‘

i= Oj 1 L
Zth [(X7)* A*] X”u‘ —|—ZZ!7J2Z (X)X A*u
1=075=1 _
=1, + J,.
(4.17)
Combining (4.16) and - we have
[ARA | o < I (4.18)

We first deal with I;. Fix s € R. Using that [(X™)*, A]A™% and [ X7, AS]JA™*
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are bounded on L2, we compute

[(Xij)*, As]Xi,ju

r N;
Le S

i—0j=1 L
r N
_ Z Z h2i [(X”)*, As]AfsAin,ju
i=0j=1 L
r N;
< ¢(9) Z 2 R || A5 X By L (4.19)
i—0j=1 w
r N;
<c(s) Y <“Xi’jA5u ( + H[XW',AS]U )
i=0j=1 L L
r N
<e(s) Y > ¥ (“Xi’jAsu ( +O®s)||l H) .
i=0j=1 L ’
Using proposition de1(s)VC, A0 (s, C),Vh < 1,Vu € C®(M),
I, < ey(s)CI AUl + Ca(s, Ol (4.20)

We now deal with J,;. Observe that for any h < 1,

r N;
Jo= 20 2 W[ (X)X Al |

i=0j=1 w
r N; r N;

< RPN X AT (XY )|+ T R[(X)* (X A fu
i=0j=1 LS | L,
r N;

< Y RI[X AT (XY ) Lt c(s)l[ull gs
i=0j=1 w

= K + c(s)]|ul Hs >

(4.21)

where the second inequality is due to the fact that [(X¥)* [X®%, AS]JA* is
of order 0.
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Using the same steps as in (4.19)), we have that

T

o(s) Z i p2i (H(Xi’j)*/\su

i=0j=1

c(s) i i h* (HX”ASU
0j=1

K

N

.+ O

. + O

(4.22)

Ny

N

+

Hf,) )

where ¢ = div,,(X¥) are smooth functions on M. Thus, we get that

K, < c(s)i i h* (“Xi’j/\su

i=0j=1

‘Lg,

Hw> . (4.23)

4+ sup |9 (m)|C(s)llul
Lw meM

Then, again using proposition [4.6, we get that
dea(s), V¢, 3Cs(s,C), Vh < 1,YVu € C*(M),
Jo < ca(8)Cl[AnAul[ o + Cals, Olull 2 - (4.24)
Plugging and in , we get that
deyi(s), ea(s), V¢, 3C (s, (), Ca(s, ), Vh < 1,Yu e C(M),

[AnA Ul 2 < (er(s)+ca(s))CI ARA U]l o +(Ci(s, O)+Cals, O)lull o HIAnul| 7 -

(4.25)
Choose ¢ small enough so that (c¢i(s) 4+ ¢2(s))¢ < 1. Denote this ¢ by (p.
Then, (4.25) implies that for any h < 1, for any u € C*(M),

C1(s,Go) + Ca(s, Co) 1
rwq@+@@mﬂ”%+1—@wwmmmdmwk%)

Finally, plugging (4.26)) into (4.15), we get that: Jes(s) > OVh < 1,Vu €
c=(M),

[AnAul Ly <

e, < s(3) (1l + el )

This concludes the proof. O

[ull ggrs =l A%ul

We give some corollaries of the subelliptic estimate.

Corollary 4.7.1. There exist € > 0 such that for any n € N, there exists
C(n) > 0, for any u smooth on M, and any h € [—1, 1], we have,

lellgge < ) (|87l zg + A5 0l g + llAutlyg +lullz) - (4:27)
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Proof. Take s = € in (4.11)), we get

lull e < € (120

) <O (1am]

e+l g, 1Al g+l )
Now, apply (4.11]) for s=0 and A,u, to get that

| Anu|

e, < C (a0l 3 +12wulz )

We get (4.27) for n = 2. We go on recursively to get (4.27)) for any n. ]

Moreover, we recover the well-known characteristics of the sublaplacian:

Corollary 4.7.2. The operator Aq is hypoelliptic. Moreover, the operator
Ay with domain C®(M) is essentially self-adjoint on L*(M).

Proof. As A, is subelliptic, it is hypoelliptic.
Now, let u € L2(M) such that —Agu = Mu in the distributional sense,

for some A > 0. As Ay is subelliptic, —Agu = Au € L2(M) implies that
ue C®(M). For all ve C®(M), we have

)\<u, 'U>L£) = —<A0u, U>@(M)’@(M) = —<u, AOU>LEJ- (428)
Taking v = u in (4.28)), we get that
Mlull s + <(u, Aquprz =0, (4.29)

that implies, as both terms are non-negative, that ©u = 0. We conclude by

applying theorem [A.5.1] O

Denote by D(Ap) the domain of the unique self-adjoint extension.

Corollary 4.7.3. The operator (Ao, D(Ag)) has a compact resolvent.

Proof. Inequality (4.11) implies that D(A) < HS(M) compact, L*(M) by
Rellich—-Kondrachov theorem. We conclude. O

In particular, its spectrum consists of an increasing sequence of positive
eigenvalue of finite multiplicities converging to +o0o. Moreover, L2 (M) has
a basis of orthonormal eigenfunctions of Ag.
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4.2.3 Second Case: Equiregular Case

In this subsection, we assume that M is a compact orientable equiregular
subriemannian manifold. Moreover, we suppose that dw = dP,. We aim
now to prove a version of the estimate with A}, instead of Aj. The
family of Laplace operators A, are defined with respect to L?(M) and so,
some of the above estimates may now depend on h. As the main difference
between the two cases is the dependence of LZ (M) on h, we will compare it
with L2(M). Tt is evident that the two spaces are equivalent for any h, but
uniformity is needed.

4.2.3.1 Uniform Equivalence Between L? And L7

Recall from corollary |3.14.1] in chapter [3|that f, is the function such that lo-
cally, dvolg" = A/ fu(x)hs|dx| (the determinant of the matrix h=*G}). Also,
in the equiregular case, we have that

fu(m) = f(m) + Y b acir(m),

k=1

for some smooth functions ac,;. We recall that according to 38|, the func-
tions a. are non-negative.

Proposition 4.8. The functions f, and f satisfy the following assertions.
1. The convergence of fy to f is uniform.
2. The function (1/fy) is uniformly bounded on M.

Proof. 1. The function fj is a polynomial in h with smooth coefficients
and leading term f, so it is easy to see that

i (sup 1£4(m) — )] ) =

h—0 \ meMm

which implies uniform convergence.
2. Using the expression of f; and the fact that the coefficients a.,j is
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non-negative for all k£, we have that

1 B 1 ' 1 B 1
fu(m)  f(m) f(m) + Zkzl h*ac p(m)  f(m)
- Zk>1 h2k@c+k(m)
Fm)(f(m) + sy h**aciu(m))
< L )
|f(m)|

Then the function (1/f) is bounded above by (2/f) which is a constant
(in h) that blows up if and only if the subriemannian structure is non-
equiangular.

]
As a corollary, we have
Corollary 4.8.1. The exists ¢1,c3 > 0, hy > 0 such that for all h € [0, hy],
callull gz ary <lullz ar) < c2llull g ar) -

Proof. By proposition 4.8, fj, is uniformly convergent to f which implies that
there exists hg > 0 such that for any h € [0, ho], we have |f,| < |f| + 1. So,
for any h € [0, ho], we compute

2
Jull = | P

- [ ot h<x;¢<x)!dxl

dz
< sup (s0m/Fo +1) [ o) 2L = el

meM

On the other hand, we have

||U||i2 :f |u|2h2§dvolgh

u@)P—2E g
e

L 2 2 = c||ul?
< sup | ooy =2 | | u)Potade] = el
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Take hy = min{l1, ho}. We conclude. O

Let us first prove some straightforward properties of Ay,.

4.2.3.2 Relation Between A;, And A,

We investigate now the relation between Aj, and Ah. The two operators Ay,
and A, have the same ’principle part’ but differ in the lower order terms.
We will use the following proposition to prove that Ay, converges to Ag on
one hand and to obtain the subelliptic estimate for A, on the other hand.

Proposition 4.9. There exist N functions {f’ }o<icra<j<n, smooth on M
and analytic in h for any i,7 such that
Ap =Dy + ) Y PPRIXY. (4.30)
i=0j=1
Proof. By definition of A, and Ay, it is clear that
= div, (XY) — divy, (X7).

Moreover, we know that for any 0 <i < 7,1 < j < N, f,ij is smooth on M
by the smoothness of X*. So we prove that f,’ is analytic in h for any i, j.
Let ay, be such that h*dvolg" = ajdw. Locally,

ap = \/% (431)

Then, using the second part of proposition (.3 we have

4 divy, (X7) — divy(X7) = oy, X7 (a—) . (4.32)
h

Now, fp, is analytic in h and doesn’t vanish for any m € M and for any h,
then «y, and a—lh are analytic functions in h and thus f,7 is. O

Denote by £ the space of linear bounded functions from H?2(M) to L2 (M);
£ - L(HA(M), I2(M)).
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Corollary 4.9.1. The operator A} — Ah converges to 0 in operator norm,
that s,

HAh_AhHL 0 as h — 0. (4.33)

Proof. Since fj, converges to f as h — 0, then using expression (4.31)), aj, — 1
as h — 0, which implies using the expression of f;/ in (4.32) that f;’ — 0 as
h — 0. Therefore, using (4.30)), for any h > 0, we have

T NZ T N,L
o= 8, < 2 e < 3 3 (o)
i=0 j=1 i=0 j=1

— 0.
c

]

Now we prove a version of the uniform subelliptic estimate for Ay,.

4.2.3.3 Subelliptic Estimate

Recall that hg is such that for any |h| < hg, L2 (M) and L} (M) are uniformly
equivalent. Recall that h; = min{hy, 1}.

First, we have the validity of proposition with A,

Proposition 4.10. The following holds true: 3C' > 0,V0 < ¢ < r,Vh €
[—hl,hl],Vu € COO(M>,

o

2
<C (HAhuH +\|u||ig> :
L2 2 &

Proof. We compute

2

<c
Lz

X%y XYy

2 T Ni
<) ) h
L2

h i=0j=1

HXOJU

2
2
Ly,

2 2
"+l )

B

< c
< C<AhU,u>Li(M) < 3 <

~ 2 9
<C (HAWHLE a2, ) -

Where the constants are due to the uniform equivalence between the Sobolev
spaces. ]
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We also have a version of proposition (4.6)).

Proposition 4.11. The following holds true: 3C' > 0,V0 <1 <, V1 < j <
N;,V¢% > 0,Y|h| < hy,Yu e C>®(M),

e, < (gl

Proof. We compute

. \/1§<HUHL5> Y

L2
‘thw ‘ <CZZ WXy ‘ _CZZ@?Z (XY X0, 1)
1=0j=1 =0j=1
— (B Wy H Nully < O Al (439

CC2

AhuH +gaallullzs

where the constants are due to the uniform convergence between L2 (M) and
L%(M) for h e [—hl, hl]

Now, since v/a + b < y/a + /b for any a,b > 0, and since (4.35) is true for
any ¢ > 0, we deduce (4.34)). ]

Theorem 4.12. The following holds true: 3¢ > 0,¥s € R,3C(s) > 0,Yh €
[—hl, hl], Yu e COO(M),

il <€) (B, Hllusn ) - (430

Proof. Proposition [4.10]allows us to follow the same steps (a)-(g) in the proof
of theorem to prove for s = 0. This is because that proof didn’t
depend on the explicit expression of Aj,, and the adjoints and norms are
always taken with respect to dw. So, d¢ > 0,3¢ > 0,Yh € [—hy, hy],Yu €
COO<M)7

ol < e (|8, +lulizian ) (137

Now, apply (4.37)) to A®u to get that

|A%u||. <c <HAhASu

\Lg +||A8u||L3> . (4.38)

127



Chapter 4. Convergence Of Spectrum

As we did before, we now investigate HAhAsu ‘ L We have
LUJ

B, < 6B A, B

‘

— I+ +HAW]

H

e Ah,As]uHLa (T Aw ATl +“Ah“))H5 (4.39)

w

We deal with I, and J, separately. Consider first ;. Using proposition ,
we have

r N;

<2, 2l

LF7 X9, AJAT N
I

T———

where f,ij is a smooth function that is analytic in h by proposition . The
operator

[ijXij, AS]A—S
is a 0 order operator, whose symbol depends linearly on f}? Moreover, its
norm in £(L2) depends only on a finite number of derivatives of the symbol
(see [84, Theorem 4.23]). Then by the smoothness and the analyticity of f;l] )
its norm is uniformly bounded with respect to h, and we get that

<)

w

=H[Ah—Ah,As]u‘ )

(4.40)

Now, consider js. We know from the proof of theorem , that js < I+ J,
where we recall that

X”)*, AS]XZJU,

- X

i=0j=1 L
and that
Js = Zth (X)X A*]u ‘
i=0j=1
We deal with I, first. In , we proved that
r N . ..
I <c(s) Y31 0% (HXWASU \La +O(s)] H) .

i=0 j=1
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Using proposition 4.11} 3¢, (s)V¢, 3C (s, (), V|| < by, Yu € C*(M),
Is < 61(8>CHA}LASU

| GOl (wa)

We deal now with J;. In (4.21), we proved that Js < K + c(s)||ul| , where

r N;
K-35

i=0j=1

We then proved in (4.23)) that

(X", AT (X V) u

L

r

c(s) Z i h* <“Xi’jAsu

H;) .
i=0j=1

Therefore, again by proposition m, Jea(s), V¢, 30 (s, (), V|h| < hy,VYu €
C(M),

K

N

.+ s DOl

J, < CQ(s)cHAhASu

|+ Oals, Ol (1.42)

Then, by (4.41)) and (4.42]), we conclude that 3¢, (s), ca(s), V¢, IC1 (s, (), Ca(s, (), V|h| <
hy,Yu € C(M),

T, < (cr(s) + CQ(S))gHAhAsu

‘Lz +(C(s,0) + OQ(SvC))HUHLa . (4.43)

Now, plug (E40) and (E43) in (@39), we get that Ieg(s), ¥¢, 3Ch(s, €), V]h| <
hl, Yu e COO(M),

HA}LASU

<ol

GO s,

Choose ¢ small enough so that c3(s)¢ < 1, and denote it (;, we get that
- Cs(s, (1) N 1

o l-ca(s)a 1—ca(s)G

Finally, we conclude by plugging in . [
As a consequence, we get

Corollary 4.12.1. The following holds true: e > 0, VYn € N, 3C(n) >
0, YVu € C*°(M), Vh € [—hy, hy], we have,

HAhAsu

Ahu‘

4.45
o aa9)

An—1
‘LQ +HAh Y
w

Jull e < C(n) (HAZU ot ...HAWH% +||u||L5> . (446)
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4.3 Convergence Of The Spectrum

In this section, we answer the question we have been seeking. We start with
a fixed volume form case.

4.3.1 First Case: Fixed Volume Form

We almost have all the tools we need to proceed with the proof. We need
one more observation.

Proposition 4.13. The operator A, converges to g in L.
Proof. For any v € H2(M), we compute
T Nz

r N;
1(Ar = Ao)ull g2 (ar) = ZZ R (X)X S Z Z W2 ||(

=1 7=1 i=1j7=1
R Lz

L2(M)

Since (X%)*X% is of order 2 and so using theorem we get that

T Ni
(A, = Ao)ull 2y < ZZthHuHm <c | D00 [llull

i=1j=1 i=1j=1

Therefore, we get that

r N;
H(Ah - AO)Hﬁ(Hf,(M),L?(M)) < CZ Z h2l - O (447)

i=1j=1
O

Now, we have the family of Riemannian operators that converge in the
operator norm to Ay. We need one final lemma before we state and prove
our main theorems.

Lemma 4.14. Let (u,)n>0 be a bounded sequence in H.(M) for all | that
converges strongly in L? (M) to some u. Then, the sequence (uy)n=o con-
verges strongly to u in HL(M) for any .
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Proof. Fix some arbitrary [. Let (un,)r=o be an arbitrary subsequence of
(un)n=0- We prove that (u,, )r=0 has a subsequence that converges to u in
Fix I’ > [. The sequence (uy)n=o is a bounded sequence in H! (M) then
(tn, )r=0 iS. SO, (Un, )k=0 has a subsequence that converges weakly in H' (M)
to some v. By compact embedding of H! (M) in HY(M) as [ < I, this sub-
sequence converges strongly in H! (M) and L2(M) to v. By the convergence
of the original sequence to u in L2(M), and by the uniqueness of limit in this
space, we get that u = v.

Thus, for any [, every subsequence of (u,),=0 has a subsequence that con-
verges to u strongly in H!(M). This implies that (u,),=o converges to u
strongly in H. (M) (one can show this by contradiction or by the fact that
this implies that every convergent subsequence has the same limit).

Finally, as [ is arbitrary, we conclude. ]

Recall theorem 2.8

Theorem 4.15. Let (h,)n=0 be a sequence that goes to 0 and (uy,)n=o0 be a
sequence of normalized eigenfunctions of Ay, . Let (fn)n=0 be the associated
sequence of eigenvalues. Assume that the sequence (fin)n=o is bounded. Then,
the following assertions hold true.

1. There exist a subsequence (i, k=0 that converges to an eigenvalue of

Ag, say A.

2. Up to extracting a subsequence, (un, k=0 (that corresponds to (tin, )k=0)
converges to vy in HL (M) for any l, and vy is an eigenfunction of Ag
associated to \.

Proof. 1. Since the sequence (fi,,)n>0 is bounded, then by Bolzano—Weierstrass
theorem, it has a subsequence (p,, )k>0 that converges to some A.
Now, (un,)k=0 is a sequence of smooth functions as they are eigenfunc-
tions of elliptic Riemannian Laplace operators. If we apply the uniform
estimate to u,, we get that for any [,

= (a0, [[ = (L),

(4.48)
Again, as (ft,)n>0 is bounded, it implies that the sequence (uy, )k>o is
bounded in H! (M) for any . In particular in H2(M)

”u”k”HL < CH(Ah + 1)(r+1)lunk B

w

131



Chapter 4. Convergence Of Spectrum

Now we compute

H(AO A) umc H Ao = Ap,) u"k”]ﬂ

= ||A0 - Ahn“LHunkHHL%(M) + |:U’nk - >‘|

M) +H(Ahn — /\ unk

Iz 0y iz an

(4.49)
Thus, we get that

= 0.

lim [} (80 = Mt [ 0

k—o0

Therefore, by theorem [2.8] we get that A is an eigenvalue of Ay.

2. We prove that (un, )n=0 has a subsequence that converge to some v, in
any Sobolev space H. (M), and then prove that this v, is an eigenfunc-
tion corresponding to .

The sequence (up, )g=1 is bounded by in H!(M), then, it has a
subsequence, say (unkj )j=1, that converges weakly in H_ (M) to some vy.
As HL(M) is compactly embedded in L2 (M), it implies that (tiny, )j>1
converges strongly to vy in L2 (M). Moreover, by (]m , (unkj)j>1 is

bounded in any Sobolev space H. (M). Thus, by lemma [4.14} (unkj )j=1

is convergent to vy in any H! (M).
Now, for all p € C*(M), we compute

(B0 = N, 931z ] <180 = A, Jooll 3 19l + o0 —

=+ |:,unk] <unk]. ) 90>LE, - >‘<U07 90>L3,] :

o 18nglls

(4.50)

The right-hand side converges to 0 as & — co. We conclude that for
any p € C>*(M),
<AOU0a 90>L3 = )\<Uo, 90>L3,-

This implies, as A is self-adjoint, that vy is an eigenfunction of Ag
with corresponding eigenvalue \.
O

We prove now, the convergence of the ordered spectrum.
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Theorem 4.16. Denote by (Ag)g=o and (Ax(h))k=o the ordered spectrum of
Ao and Ay respectively, counted with multiplicities. Then, for any k = 0

fized, we have

,llig(l) Ae(h) = Mg (4.51)
Proof. Let (hy,)n=0 be an arbitrary sequence that converges to 0 as n — oc.
Fix k > 0. For n large enough, the sequence (Ag(hy,))n=0 is bounded above
by Ax(1). Indeed, denote by V] the vector space spanned by k eigenfunctions
of Ay corresponding to the first k eigenvalues; V; = span{u;(1), ..., ux(1)}.
For any v € V; and any h € [0, 1], we have

k
(Apuuyry < Ay wyry < A1) Y 1w w1z P < A1) full

Then, we deduce the bound using min-max theorem.

Now, by theorem [4.15] the sequence (A;(h,))n=0 has a subsequence, say
(Ak(hn;))j=0, that converges to an eigenvalue A of Ay. Remains to prove
that A = Ag.

We first observe that

AMe(Pn;) < A +0(1) as j — oo. (4.52)

Indeed, let {uy,...,ux} be an orthonormal set of eigenfunctions that corre-
sponds to the first k eigenvalues of Aj. Let Vy = span{uy,...,ux}. For any
v € Vy, we compute

T Ni
(A, v, 018 = (Bov,v)pz + ) ) W (X)X 90,0y

i=1j=1
Z il v, uipra [* + CZ Z R 10l 1ol 2
i=1j5=1
< Mllollz + o(L)l1oll 2 0l 72 as j — 0.
Taking maximum over all normal vectors v € Vy (satistying [jvf|;, = 1),

then minimum over all subspaces of dimension k, we get - by min-max
theorem.

Inequality (4.52)) implies that
im Ag(hn,) € {1, .0 Ak}

J—00
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Now, let {ug(hn;)}r=1 be an orthonormal sequence of eigenfunctions corre-
sponding to (Ax(hn,));=0 for any j.
For k = 1, we have lim;_,o A1(hyn;) = A1, For k = 2, we have by orthogonality
that

<11Hl u2<hnj>>u1>LE, = <111’I1 Ug(hnj), lim ul(hnj>>La

j—00 j—00 n—00

= lim (uy(hn, ), u1(h))rz = 0.

J—00

Then the eigenfunction corresponding to lim;_,o; A2(hy,;) is orthogonal to uy,
and so

lim Ag(hy,) = Ao

Jj—o0
Proceeding the same way, we conclude that the sequence (A(hn,));=0 con-
verges to \; as j — 0.
Finally the sequence h,, was arbitrary, so, any subsequence of A\i(h) has a
subsequence (the (Ax(hn;));j>0) that converges to Ay. We deduce (4.51). O

Of course, this all holds for any fixed smooth volume form on M. In
particular, in an equiregular case, we have the convergence if we consider the

volume form (1/4/f(z)dx).

Theorem {4.16| is about the convergence of ordered eigenvalues. This
doesn’t imply the convergence of eigenbranches in general. As a counter-
example, one can consider

Example 4.1. The family of Laplace operators Ay defined on a finite cylinder
in R, xRy (z,t and 6 variables represent the length of the cylinder, the radius
of the cylinder and the angle parameter of the cylinder respectively). Direct
calculations show that the eigenfuncions of A are given by

2imlo
sin(kx)e 1 kE<1,leZ,

and that the corresponding eigenbranch is given by

4Am]?

t2

As expected, for small t, the n'* eigenvalue \,(t) = n?, obtained for 1 = 0
converges to the n'" eigenvalue of the Laplacian Ao defined on a segment,
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which is well-known to be n?. However, for | # 0, the eigenbranch \(t)
diverges as t — 0.

In this case, however, we have

Proposition 4.17. Let A(h) be an eigenbranch of Ay,. Then, A(h) converges
to an eigenvalue of Ag.

Proof. Denote by g, the positive quadratic form given by

Qh(u) _ Z 2 h2i

i=1j=1

XYy

2
2’

and by A the usual norm operator (N (u) =|jul|;2). So, A is the Rieman-
nian Laplace operator associated to (on,N). Thus, as N is independent of
h, we have N' = 0 and we get

Ah) = én(u(h)) + NN (u(h)) = n(u(h)) = Y 2<2¢>h2i-1HXiju

i=1j=1

> 0.

‘Lg

Since A(h) is positive (bounded below) and increasing, and we are studying
the behavior of A(h) near h = 0, it is convergent as h — 0 (and thus bounded).
We then follow theorem O

Remark 4.18. All the results above hold true for an arbitrary fixed (refer-
ence) volume form dw. In particular, everything works for Popp’s volume.

4.3.2 Second Case: Equiregular Case

We suppose now that the reference volume form is the volume form induced
from the approximation scheme of chapter [3} that is dw = dP,. So now, the
sublaplacian is defined with respect to dP,, which can be written locally in
coordinates = as dP, = (1/4/f(z))dx (one of the main results of chapter 3)).
We prove in this section that the spectrum of A, converges to the spectrum
of (Ao, dP,).

First observe that A, converge to Ag.

Proposition 4.19. The operator A, converges to Aq in L.
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Proof. We compute
-, < B #1421

The first term converges to zero by corollary and the second one con-
verges to zero by proposition [£.13] We conclude. O

Theorem 4.20. Let (h,)n>0 be a sequence that goes to 0 and (u,),=o0 be a
sequence of normalized eigenfunctions of Ahn. Let (pin)n=0 be the associated
sequence of eigenvalues. Assume that the sequence (fin)n=o is bounded. Then,
the following assertions hold true.

1. There ezist a subsequence (i, )k>0 that converges to an eigenvalue of
Ao, say M.

2. Up to extracting a subsequence, (un, k=0 (that corresponds to (tin, )k=0)
converges to vy in HL (M) for any l, and vy is an eigenfunction of Ag
associated to \.

Proof. The proof exactly follows the proof of theorem

1. The convergence of Ahn to Ag in L, the convergence of (i, )r=0 to A,
and the boundedness of (uy,, )k=o in H2(M) (which is implied by the
subelliptic estimate (4.46])) imply that

JLIEOH(AO — AU, =0.

HLEJ(M)
Therefore, by theorem 2.8 we get that A is an eigenvalue of A,.

2. The same subsequence argument as in part 2 of theorem implies
that there is an eigenfunction vy of A such that (u,, )r=o0 has a subse-
quence that converges to vy in H! (M) for any .

]

As we just saw, the proofs of theorem and theorem [£.15] are the
same, because the proof depends on the convergence of the operators and
the boundedness of eigenfunctions which are valid in both cases. However,
the proof of theorem depends directly on the fact that we are dealing
with fixed volume form. Due to the uniformity between the spaces L2 (M)
and L? (M), the convergence of the ordered spectrum works in this case and
follows the same idea of the proof.
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Theorem 4.21. Denote by (Ay)k=0 and (;\k(h));@O the ordered spectrum of
Ao and Ay respectively, counted with multiplicities. Then, for any k = 0
fized, we have

lim Ae(R) = Ap. (4.53)
Proof. Let (h,)n=0 be an arbitrary sequence that converges to 0 as n — oc.
Fix k > 0. There exists a constant ¢ such that for n large enough, the
sequence (Ag(hy,))nso0 is bounded above by cAx(1). It is enough to observe
that for any wu,

r N;
(Ap,u, uyrz = Z Z h*

i=0j=1

XYy

12
X”u‘

r N;
<) ) n
L |
Min-max theorem implies that Ay (%, ) < M(hn) < eAp(1).
Now, by theorem 4.20, the sequence (Ay(hn))nso has a subsequence, say
(Ak(hn;))j=0, that converges to an eigenvalue A of Ag. Remains to prove

that A = \j.
We first observe that

2
‘Li = c(Ap,u, w2 .

S\k(hnj) < A +o(1) as j — oo. (4.54)

Indeed, let {uj,...,ur} be an orthonormal set of eigenfunctions that corre-
sponds to the first k eigenvalues of Ay. Let Vy = span{uy,...,ux}. For any
v € Vj, we compute

r N;
(A, u, wyrz = (Aou, wyr + Z Z hiﬂ-«X”)*hX”Ua uyrz

i=1j=1

r N;
= (Ayu, U>Li + Z Z h?jj

i=17j=1

T Nl
< Qou, wype + CZ 2 h?jj

i=1j=1

XYy

2
2
Lh

XYy

2
L2 (4.55)

< (Qou, upre + JU ulAou \/fhnj = - NITD) dm

s Nz ]
+enllullz D > b

i=1j=1
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By the (point-wise) convergence of f;, to f, we have the following point-wise
convergence

lim | u(m)Aou(m = 0.

Ime q/fhn VI

Moreover, we have

uNou

1 1 c
— <ulou| —— | € Li M).
\J o, (m) A/ f(m) = ( f (m>> 0

This implies by the Lebesgue dominated convergence theorem that

1
J ulAgu \/fh NGTD dm = o(1).

Applying min-max to (4.55)), we conclude (4.54)).

Finally, the same argument on the orthogonality of the limiting eigenfunction
implies that A = A;. we conclude (4.53)). O

Remark 4.22. Theorem [{.21] also holds for Popp’s volume as it is equal to
our volume form up to a constant.

Remark 4.23. Proposition[{.17 is not necessarily true anymore as now, the
norm operator depends on h and its derivative is not necessarily 0. However,
whenever the eigenbranch is increasing, the result holds true.
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Appendix A

Spectral Theory

Here, we state some well-known theorems in spectral theory that played an
important role in this manuscript. The reader can refer to [34][47][73][74] for
more details.

A.1 General Spectral Theorems

In this section, H denotes a general Hilbert space. We start with the min-
max theorem. This theorem is very standard in spectral theory and can be
found in many places. For instance, see [63, Chapter 12| [77, Chapter 1|[80,
Chapter 4].

Theorem A.1 (Min-Max Theorem For Matrices). Let A be d x d hermitian
matriz with eigenvalues Ay < ... < A\g. Then for any 1 < k < d,

Ay = min | max(Au,u) |.
dim(U)=k HuﬁU1
=

Corollary A.1.1 (Continuity Of Spectrum). Let A, B be d x d hermitian
matrices such that||A — B|| < € for some €. Then, for any 1 < k <d,

[Ak(A) = Au(B)| < e

Proof. Let U be a subspace of R? of dimension k. Then for u € U with
|lu|| = 1, we have by min-max that

(Au,u) = (Bu,u) + {(A — B)u,u) < (Bu,u) + €||ul]*.
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Taking infimum over all normal u € U and then over all U of dimension k we
get one direction. By symmetry, we get the inequality. O]

Theorem A.2 (Min-Max Theorem For Operators). Let T be a semibounded
self adjoint operator with compact resolvent with domain D(T) < H, and let
{Am}m=1 be its increasing sequence of eigenvalues. Then,

with

A(F) = max {M} . (A1)

Definition A.3. Let T' with domain D(T) be a closable operator in H. A
core of T is a subset D of D(T) such that the closure of the restriction of T
toD isT.

Theorem A.4. Let T be a semibounded self adjoint operator with compact
resolvent with domain D(T) < H, and let {\;,}m=1 be its increasing sequence
of eigenvalues. Let D be a core forT'. Then

with A(F) defined by (A.1)).
Proof. Let

S\m = inf max{M}.

. 2
et A W

Required to prove A, = An,. Clearly, since D < D(T), we have A\, < P
Now, Let U = vect{u!,...,u™} be a set of orthonormal eigenvectors of T'
that corresponds to the first m eigenvalues of T. By definition there
exist m sequences {(ul),>1, ..., (U™),=1} such that u! — v’ and Tui — Tu’,
in H for all i € {1,...,m}. Let U, = vect{u),...,u™}. For u, € U,, we write,

m m
Uy = Z%’U; = Zaiu; F Upo — Uoo,
i=1 i=1
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with us = D37, ayu’. We have

lusollz = 2 a (A.2)
i=1

Then, using the Cauchy Schwartz inequality after the triangle inequality, we
get

m

2 ;i (ul, —u')

=1

Hun_UOOHH = <HuooHHﬁm

H

- , 1/2
€, = Z‘ ul —u .
" . n "

where

=1

The last inequality gives us

[troolz (1= €n) < llunllyy < [tioolly, (1 + €n). (A.3)

Now, we compute
m ] ) m
(Tt )y = Y ey [Tl by = Y o167,
ij=1 ij=1
with 0;'; — Aid;; as n — oco. So, we get,
m m m
KTt g — Y Niad] < 7[00 = Ml + D e o7, .
i=1 i=1 i#j

The right-hand side converges to 0 at oo, so, for every € > 0, there exist ng
such that for all n > ng, we have

m
[T gy U Yy — Z Nad| < e
i—1

Hence, for all n > ng, we have

m
(Tt )y < > N0 + € < Alucolly, + € < ﬁnunnﬂ +e
i=1 "
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Therefore, for all n > ng, for every u,, € U,,

VTR TRy - A €

lualze =€) Jually,

———. Thus, for every € > 0, there
[ ool
exist n; > 0, such that for all n > max{ng,n1},

The right-hand side converges to A, +

<Tun ) un>7—[

2
[[nll3

+ €,

~

m
[0 13,

for all u,, € U,,. Therefore, there exist U, < D of dimension m such that

AU,) < A + + €,
[[tto 134
which implies that
A S A + ——— + €
HUOOHH
for any arbitrary €, €, and thus the result follows. O

We give, in corollary [A.5.1] a sufficient condition for an operator 7' to
be essentially self-adjoint. It is a direct corollary of the following theorem,
which is completely taken from [73, Theorem X.1].

Theorem A.5. Let T be a closed symmetric negative operator on a Hilbert
space H. Then, T is self-adjoint if and only if

dim(ker(Al —T7)) =0,
on the upper and the lower half-plane.

Corollary A.5.1. Let T be a closed symmetric operator on a Hilbert space
H. Then, T 1is self-adjoint if and only if there are no eigenvectors with
positive eigenvalue in the domain of T*.

We state now, without giving the proof, the Rellich-Kondrachov theorem
followed by the Kondrachov embedding theorem. Refer to [I, Chapter 6] (see
also [79]).
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Theorem A.6. Let Q2 be an open bounded Lipschits domain of R" and set
p* = ;. Then the Sobolev space WLP(Q) is compactly embedded in L(SQ)

for every 1 < q < p*. In particular, H*(Q) is compactly embedded in L?*(S2).

Theorem A.7. Let M be a compact manifold with C* boundary. Then if k >
[ and k—% > [— %, then the Sobolev space W*P(M) is compactly embedded in
WH(M). In particular, H*(M) is compactly embedded in H'(M) for every
k>1.

A.2 The Schrodinger Operator

We handle now the operator —A + V. Let X < R™ and let # = L*(X).
Denote by C2°(X) the space of smooth functions on X of compact support.
Let V be a non-negative smoothl] function, that converges to infinity at
infinity. It is well-known that —A+V is a self-adjoint operator with compact
resolvent on H (see [34][47] for instance).

We give a proof for the sake of completion.

Theorem A.8. The operator T = —A+V with domain C2°(X) is essentially
self-adjoint. Its unique self-adjoint extension is the operator T' with domain

Dc HY(X) = {ue H(X),V?u e H}.

Proof. We will first prove that D < H{,(X). The space H{is equipped with
the following norm
A
ullf, =MVl ull.,

For any u € C°(X), we have
2
(Tu iy = [Vulfy + |[VH20| (A1)

Now, let uw € D and let u,, € C°(X) such that w,, — u and Tw,, — Tu. Then,
(A.4) implies that u, is Cauchy in H'(X) and V'/?u,, is Cauchy in H. This
implies that u € H,(X).

!Continuity is enough for the results in this section to hold.
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Now, let f e (Ran(T + i))l, where the L is taken with respect to ||.||,,.
Then, for all u e CX(X), (T +i)u, f)» = 0. We have

0 =T +i)u, [ = LA+ V +0) f, 0o x)2(x)-
So (~A+V +1i)f =0. Since f € L?>(X) and Af € L? (X), it implies that

loc

fe HE.(X) (let x be a cutoff function. Compute (A + 1)xf and see that it
is an element of H~!'(X). Then, xf € H'(X) which gives that f € H. (X).
This will imply that (A + 1)xf € L*(M)).

Now, pick £ € C°(X) such that 0 < & < 1, £ = 1 on B(0,1) and

supp(§) < B(0,2). Denote by &.(x) = & (%) For any u € C°(X) we have

V(& f), V(fk“)%ﬁL GVuf = {f, T(§§U)>H+L |V§k!2Uf+Z L(féju—ué‘jf)fkéjfk.

This formula can be extended by density to u € H2_(X). Taking u = f, we

get loc
IVEIE + f SV = (fT(E ) + f Va2,
X X

Since (f, T(6)w = 0, we get
| 1 < [ v
X X

By the Lebesgue domination theorem, we get f = 0. Therefore (Ran(T +
z))l = {0}. This implies that Ran(7" + ¢) is dense in H. We conclude. [

Lemma A.9. If H)(X) is compactly embedded in H, then (T, D) has a

compact resolvent.

Proof. Let ( < 0. Note that
(T—¢)" i H — Dc HL(X) <% gy
Let we H and let f = (T — ¢{)"'u. We compute,
g0 = [ Q9S4 OV = QU)o < (=0 F)om = s P <l -
Then the map (T'— ¢)™' : H — D is continuous. We conclude. O]
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Theorem A.10. The operator (T, D) is of compact resolvent.

Proof. Let x € C2°(X) such that 0 < x < 1, x = 1 near 0 and supp(x) <
B(0,1). Define the following mappings

R, : H(X) — H'(B(0,n))
w— x(-/n)u(.)

Fn: H(B(0,n)) - H

u—Uu

By theorem F, is compact. Since R, is continuous, then the map
Tn = Fpn oR, is compact. Let

j:H&,(X)—fH

U — U
We compute, for u e H,(X),

(T = Tn)ully =11 = x)ully
(1= x)(@/n) P |u(x) *dz

(1= x)(@/m)*(V(2) "'V (@) |u(2)*dz

J

[
[

<[ sw (VD7) [ V)P
y=(n/2) X
< | sup (V)T lullz o) -
ly|=(n/2)
Hence,
T — jn”L(H‘l/(X),’H) < sup [(V(y) '|—0.
ly|=(n/2)
Therefore, J is compact. and by theorem we conclude. O
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A.3 Pseudo-differential operators

Pseudo-differential operators are a type of operator that generalizes the con-
cept of differential operators in calculus. The general theory of pseudo-
differential operators is not necessary here though. We give some essen-
tial theorems without proofs, for these theorems are basic in the context of
pseudo-differential operators and can be found in several places like [5][25]
and the references within. We briefly recall that

Definition A.11. A pseudo-differential operator is an operator which is de-
fined by u — Op(a)u as:

Op(a)u(e) 1= 7o [ e ale (e

Here, a is a C™ symbol on R*, which admits, as & — 0o, an expansion

a(z,§) = Z ap—j(z, ),

j=0

with aj(x, &) = Nay(z,€) for all X > 0 and every & € RAN\{0}. We call p the
degree of the symbol (or of the pseudo-differential operator).

Theorem A.12. Let a be a symbol of order p € R. The operator Op(a) is
bounded from H*(R%) to H*"P(R?) for alld > 1 and all s € R. In particular,
pseudo-differential operators of order 0 are bounded in any Sobolev space.

Theorem is true also for compact manifolds (see [69]).

Corollary A.12.1. For M being a compact manifold, a pseudo-differential
operator of non-positive order is bounded in L*(M).

Theorem A.13. Let P, and P, be two pseudo-differential operators with
the same principle symbol (thus same order p). Then, P — Ps is of order
p — 1. In particular, if Py, P, are two pseudo-differential operators of orders
p1 and ps respectively, then [Py, P] is a pseudo-differential operators of order

p1+p2— 1.
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Appendix

Analytic Perturbation Theory In
Finite Dimension

We give Kato’s proof for the analyticity of eigen-quantities in the finite-
dimensional cases.

B.1 Introduction

Perturbation Theory operates under the premise that if we cannot ascertain
precise solutions to a problem, we can derive an approximate solution by
utilizing solutions to an approximate version of the problem that can be
treated exactly. In chapter two of [54], Kato studied perturbations of linear
operators in finite-dimensional spaces. He uses the theory of Knopp [56] to
prove the analyticity of eigenvalues, but he didn’t mention the details. We’ll
explain a little as this theory was the base for a lot of our work.

We just note that another proof can be found in the first section of chapter
3 in [77], however, we choose to explain the proof using algebraic equations
(Knopp’s theory).

Let us first give a brief review of Riemannian surfaces. A Riemann surface
is a connected one-dimensional complex manifold that locally near every
point looks like patches (sheets) of the complex plane and globally looks like
several sheets glued together. Riemann surfaces are nowadays considered the
natural setting for studying the global behavior of multi-valued functions such
as the square root and other algebraic functions, or the logarithm. Important
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examples of Riemann surfaces are provided by analytic continuation are given
in figure

Consider for instance the function f(z) = 22 near the branch point 0 in
figure [B.1] The two horizontal axes represent the real and imaginary parts
of z, while the vertical axis represents the real part of \/z. The imaginary
part of /z is represented by the coloration of the points. Starting from the
right on the red region, and moving anti-clockwise, we pass by the yellow
region and reach after a while the place where the sheet is suddenly purple,
and this line (between the change of colors) is the place where the two sheets
were glued. If we pass down to the green region and continue moving anti-
clockwise, we will reach again this line. Passing to the purple region, we get
back to our initial position (see figure and figure .

Figure B.2: The Journey On The Riemann Surface Of 22

In general, for w = /2, the corresponding p—sheet Riemann surface is
mapped injectively to the 1-sheet representing w. So, let a be a branch
point, and suppose that f is a regular function that goes into itself after
p — fold continuation (of the way described before). Then f can be written

as a power series in (z — a)r%. Indeed, if we define the function f such that
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Figure B.3: The Behaviour Of f(z) When It Hit The Intersection Line

f(2) = f(2) where 3? := z—aq, then f is single-valued regular (hence analytic)
function in a neighborhood of Z = 0 and can be written in Laurent series as
f(Z) =27 cn2™

Now, we introduce the setup. Let X be a finite-dimensional vector spaceﬂ
of dimension N. Suppose that T'(x) is an operator-valued function that is
holomorphic in the complex plane. The operator T = T'(0) is called the
unperturbed operator and 7'M + 22T + .. is the perturbation (as T'(x)
can be written as T'(z) = T + 2T + 22T® + ..). The fundamental result
in perturbation theory is the following:

Theorem B.1 (Kato 1995). The eigenvalues and the eigenfunctions of T'(x)
are branches of analytic functions of x with only algebraic singularities (sin-
gularities exhibited by a radical function).

"'Whenever necessary, X will be considered as a normed space with a convenient norm.
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B.2 Analyticity Of Eigenvalues

Let us first study the first part of the theorem. It is well-known that the
eigenvalues of T'(x) are the roots of the characteristic equation:

G(z,() = det(T(z) — () = 0, (B.1)

which is an algebraic equation with coefficients that are analytic in x. We
write GG in the form

go(x) + 91(x)C + g2(2)* + .. + gn (@)Y,

with g;(z) analytic, depending only on x. Knopp in his book [56], in chapter
5 specifically, studied this algebraic equation and proved the analyticity
of the roots. We state a very important theorem of his and give the proof as
in [56]. Denote by D(x) the discriminant of G(z, ().

Theorem B.2. Let (xg,(y) be a solution of such that o is a root of
multiplicity 5. For all K. disc of sufficiently small radius e > 0 described at
Co, there exist a disc Ky with radius 6 > 0 described at xy such that for any
x # xo in K, the equation G(z,() = 0 has B distinct roots in K..

Proof. If we set ( = (( — (o) + (o, we may write

G(2,¢) = go(2) + g1 (2)(C = Co) + . + gn (@) (¢ — )Y,

with go(xo) = G1(z0) = ... = gs(zo) = 0,Gs(xo) # 0. By inverse function
theorem, we can describe a small disc Kg around the point xg, such that
D(x) and gs(z) are not zero within Ky and on its boundary. We have

G(x,¢) = gs(x)(¢ — )’[1+ A+ B,
where

A, ) = B¢ = o) e+ V(= )N,
gs gp

and ] _ )
90
Fot
gﬁ C Co 95 (€ = Go)?
Let M be an upper bound for all |g;(z)| in K, and set ¢ = inf,ex,, {{g5(2)]}.
Now, take

B(z,¢) =

<
6 —
AM
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1
Then, for all z € Ky and all ¢ € K, |A] < 3 Now, choose § small enough
that in the interior of Kj, we have g;(z) < p for all 0 <i < § — 1, with

C
20+ 5 +..+ %)

ILL:

Then we get that |B| < 3 for all z and ¢ satisfying |z —zo| < 6 and |[{—(o| < e.
Finally, we let x; be arbitrary in K. For all ¢ on the boundnary of K., we
have

195(21)(C = G0)°| > 1g5(21)(¢ = G0)*(Al1, Q) + Bl1, Q).

Apply Rouches theorem, to conclude that G(z1,() has precisely the same
number of zeros in the interior of K, as |gg(z1)(¢ — ¢o)?|, B zeros. All are
distinct because at xq, which is in Ky, D(z1) # 0. O

Now, we suppose further that D(xg) # 0, that is 8 = 1 at xg. Then, for
every z in Ky, there is one and only one root of G(z, () in Ke. Consequently,
this root is a single-valued continuous function fi(x) of . Moreover, we have

Theorem B.3. The function ( = fi(z) is reqular in K.

Proof. Let x; be an arbitrary point in the interior of Ks and let ¢; = fi(z1)
so that G(z1,(1) = 0. Let 21 + £ be a point in the interior of Ky such that
filz1 +&) = G+ w,G(xy + &,¢ +w) = 0. By continuity of f1, w — 0 as
¢ — 0. We have

o - gy (Mt OB ()

AN

We write
G(r14+E, G Hw) = G(21, () +EG (21, G ) +wGe (21, (1 )+ second order terms .
This implies that

G:c(%, C1)

= —————= + term that converges to 0 as § — 0 .

w
3 Ge(r1,G1)
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Therefore, there exist N analytic functions fi 4, ..., fnz, defined on K,
such that fi.,(2),..., fnu(x) are the N solutions of G(x,{) = 0. These
functions can be continued -by uniqueness of combination in Kj- analyti-
cally over every path not containing a critical point. Imagine that there is a
semiline issued from each critical point and denote by Y the union of these
semilines. Since C\Y is simply connected, monodromy theorem (principle
of analytic continuation) implies the existence of analytic continuation of
fiaos s fNm to C\L; the existence of NV analytic single-valued regular func-
tions, say Fi, ..., Fiy such that for all x € C\Y, {Fi(x),..., Fx(z)} are the N
solutions of G(z, () = 0.

Consider now a critical point, without loss of generality let’s say 0, with
K being a circle around 0. If we move Kj continuously then the functions
fi.205 > [Nz, fOr some regular point xg, can be continued along K, and they
undergo a permutation between each other. We group them as cycles:

{Fi(2), ... Fp(2)}, { Fpi1 (), oy Fppq(2)}, o

Each group (cycle at x = 0), undergoes a cyclic permutation (of period equals
to the number of elements in the cycle). The elements of a cycle of period
p constitute a branch of an analytic function with an algebraic singularity
(branch point) at x = 0, and we have the Piiisseux series

Fj(z) = F(0) + e’ z'? 4 cow™a®? 4 ., (B.2)

27e

j=1,...,p, with w = e » and ¢ are real constants for all k.

Proposition B.4. If the operator T(z) is self-adjoint, then cp in is
zero for k not multiple of p.

Proof. 1f T'(z) is self-adjoint, then Fj(x) is real for any x near 0. If k = np

for some n € N, then ¢,wz¥P = ¢,z is real. If k is not a multiple of p,
then for Fj(x) to be real, ¢, must be 0 as w*z*/P is not real. [

B.3 Analyticity Of Eigenfunctions

The eigenprojection is defined using the resolvent operator so let’s first con-
sider the perturbation of the resolvent.
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B.3.1 Analyticity Of The Resolvent
For any ¢ ¢ spec(T'(x)), we define the resolvent of T'(x) as the function

R(¢,z) = (T(z) = ¢)~".

Let (o be such that ¢y ¢ spec(T'). If we denote by
Alx) =T(z) =T = Z T,
i=1

and by R(¢) := R((,0) = (T — ¢)7 %, then we have
T(z)— (= (1 — (=G — A(z))R(Co)) (T = Co)-

For || and |¢ — (| small enough, we have |¢ — (| —||A(2)|| <||R()|| " and
so, (1—(¢C—¢ — A(a:))R(CO))_l exists and can be written as a convergent
Neumann series. Then, in a neighborhood of ¢ = (; and x = 0, R((, ) is
holomorphic and can be written as

R(¢, ) ) + Z z" (B.3)

B.3.2 Analyticity Of Eigenprojection

Let A be an eigenvalue of T" of multiplicity «, and let I" be a closed curve in the
resolvent set of 1" enclosing no eigenvalues but A. Continuity of eigenvalues
implies that for x small enough, I' contained no eigenvalues of T'(x). We

define the operator
1
P(z) = —o— | R((,z)dC.

21 r

This is a projection, that equals the sum of eigenprojections for all eigenvalues
of T'(x) inside I'. Integrating (B.3)), we get

P(x) P_Q_MZ J ¢)d¢ = P+Zx (B4)

The series (B.4)) is convergent for x small enough, and so P(x) is holomorphic
near z = 0. Moreover, this gives that the range of P(z) and P are isomorphic
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and that dim(P(z)) = dim(P). So if x = 0 is a non-critical point, then
((z) is the only eigenvalue of T'(z) and is of multiplicity . So, on C\L,
the eigenprojections P;(x) (that correspond to Fj(z)) are holomorphic for
i=1,..,N.

Now, near a critical point, again, the family {P;(z)} undergo, after one
revolution around the critical point, a permutation that Kato proved to be
identical for the two families (eigenbranches and eigenfunction branches).
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Mohammad Hussein Harakeh
Méthodes spectrales en géométrie sous-riemannienne

Résumé : Ce manuscrit traite de deux sujets qui convergent vers une idée : |'utilisation
des méthodes spectrales en géométrie sous-riemannienne. Tout d'abord, nous étudions la
validité des inégalités de concentration pour les fonctions propres de |'opérateur généralisé
de Baouendi-Grushin sur un cylindre infini. Nous démontrons que généralement, les valeurs
propres de |'opérateur de Baouendi-Grushin ont une multiplicité de 2, que nous prouvons étre
une condition suffisante pour la validité de I'inégalité de concentration. Ensuite, nous étudions
les structures sous-riemanniennes en les approximant par des structures riemanniennes. Nous
introduisons un schéma d’approximation et prouvons qu'il induit une forme de volume qui
coincide - & une constante prés - avec le volume de Popp. Nous démontrons ensuite que le
spectre de la famille des Laplaciens riemanniens associés au schéma d’approximation converge
vers le spectre du sous-Laplacien. Mots-clés : Théorie spectrale - Inégalité de concentration

- Opérateurs sous-elliptiques - Théorie de la perturbation - Géométrie sous-riemannienne.

Spectral Methods In SubRiemannian Geometry

Abstract : This manuscript handles two subjects that meet at one idea: using spectral
methods in subRiemannian geometry. First, we study the validity of concentration inequalities
for eigenfunctions, for the generalised Baouendi Grushin operator on an infinite cylinder. We
prove that generically, the eigenvalues of the Baouendi Grushin operator has multiplicity 2 which
we prove to be a sufficient condition to the validity of the concentration inequality. Second,
we study subRiemannian structures by approximating these structures with Riemannian ones.
We introduce an approximation scheme and prove that it induces a volume form that coincides
-up to a constant- with the Popp’s volume. We then prove that the spectrum of the family of
Riemannian Laplacians associated to the approximation scheme converges to the spectrum of
the subLaplacian. Keywords : Spectral theory- concentration inequality- Subelliptic operators-
Perturbation theory- SubRiemannian geometry.
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