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Aperçu de la thèse

0.1 Motivation

Soit M , une variété lisse de dimension d. Un opérateur P est dit elliptique
d’ordre p dans M si Pu P HspMq ùñ u P Hs`ppMq. Les opérateurs
elliptiques généralisent les opérateurs de laplace, dont le cadre naturel est
la géométrie riemannienne. Une variété riemannienne est une variété lisse
munie d’un produit scalaire défini positif sur chaque espace tangent appelé
la métrique riemannienne. On peut la définir à l’aide d’un ensemble de
champs de vecteurs qui engendrent l’espace tangent en chaque point.

L’ellipticité entraîne que Pu P C∞pMq ùñ u P C∞pMq (car u sera alors
dansHppMq pour tout p). Cependant, l’ellipticité est une condition suffisante
mais non nécessaire pour la régularité des solutions : un contre-exemple
est l’équation de la chaleur, qui est une équation aux dérivées partielles
parabolique mais qui possède des solutions régulières). Ainsi, un opérateur
hypoelliptique est défini comme un opérateur P tel que Pu P C∞pMq ùñ

u P C∞pMq. Le premier à introduire un tel opérateur fut Kolmogorov en 1934
dans [59], alors qu’il travaillait sur le mouvement de particules en collision.
En étudiant l’équation

Btu ´ pxBy ` B
2
xqu “ f,

il observa que l’opérateur xBy ` B2
x est hypoelliptique. On définit aussi une

troisième classe d’opérateurs : les opérateurs sous-elliptiques. On dit qu’un
opérateur P est sous-elliptique d’ordre p avec une perte ϵ de dérivées si
Pu P HspMq ùñ u P Hs`p´ϵpMq pour un certain ϵ Ps0, 1r. Une relation
entre ces différentes classes est la suivante: :

Elliptique ñ Sous-elliptique ñ Hypoelliptique.

xi



Chapter 0. Aperçu de la thèse

Les opérateurs sous-elliptiques, qui ont été étudiés intensivement depuis le
vingtième siècle, sont donc intéressants car ils généralisent les opérateurs
elliptiques tout en continuant à satisfaire l’hypoellipticité.

Un exemple typique d’opérateur subelliptique est l’opérateur de Grushin.
Les opérateurs de Grushin ont été définis dans [44] en 1970, comme les opéra-
teurs de la forme :

P “ ´B
2
x ´ |x|

2k
B
2
y , (1)

pour certains k P N, agissant sur L2pR2
x,yq. Ce fut le point de départ pour

définir un opérateur de type Grushin qui fut ensuite largement étudié par
de nombreux chercheurs (par exemple dans [21][28][37][53] ...). Un opérateur
de type Grushin intéressant est le suivant (il peut être considéré comme la
généralisation pour le cas k “ 1). Sur R2, nous définissons l’opérateur de
Baouendi Grushin généralisé (simplement opérateur de Baouendi Grushin)
par :

P “ ´B
2
x ´ V pxqB

2
y , (2)

pour V satisfaisant les conditions suivantes :

V P CpRq, V pxq ě 0, V p0q “ V 1
p0q “ 0, V 2

p0q ą 0, lim
|x|Ñ`∞

V pxq “ `∞. (3)

Certains chercheurs ont étudié ce type d’opérateurs de Baouendi Grushin
(et d’autres types) notamment du point de vue de leur contrôlabilité et/ou
observabilité dans différents domaines ([9][10][21][26][31][57]). La contrôla-
bilité et l’observabilité sont un type "fort" d’inégalités de concentration qui
impliquent d’autres inégalités "plus faibles" comme les inégalités de concen-
tration pour les fonctions propres.

L’étude des inégalités de concentration pour les fonctions propres a une
histoire riche qui s’étend sur plusieurs décennies, où plusieurs façons de
mesurer les concentrations possibles ont été utilisées (voir [20][22]). Les in-
égalités de concentration pour les fonctions propres sont des estimations de
la probabilité que les fonctions propres d’un certain type d’opérateur soient
concentrées dans une région particulière de l’espace sous-jacent. Plus pré-
cisément, on se demande si la masse des fonctions propres sur la variété peut
être contrôlée par sa masse sur un sous-domaine.

Le lien direct entre les propriétés de concentration des fonctions propres et
la contrôlabilité/observabilité peut varier en fonction du système spécifique
et du cadre de contrôle. Dans certains cas, on peut montrer que l’une est une
condition suffisante ou nécessaire pour la validité de l’autre. Par exemple,

xii



Chapter 0. Aperçu de la thèse

dans [12], l’auteur mentionne que sous certaines conditions, l’inégalité de con-
centration des valeurs propres est une condition suffisante pour l’observabilité
exacte de l’équation des ondes associée à l’opérateur de laplace (voir page
1030 de [12]). D’un autre côté, de manière plus générale, les auteurs de
[24] (où l’inégalité de concentration des fonctions propres de l’opérateur de
Schrödinger est prouvée sur un tore) mentionnent que l’inégalité de concen-
tration des fonctions propres peut être obtenue à l’aide de la formule de
Duhamel en partant de l’observabilité de l’équation de Schrödinger. On ren-
voie à [23][64] pour des études détaillées sur le lien entre l’observabilité et les
inégalités de concentration des fonctions propres.

Plusieurs auteurs ont étudié la concentration des fonctions propres de
l’opérateur de laplace, par exemple [17][20][23][33][46]. Ces études relient ce
type de de concentration à la validité de certains critères géométriques. Une
condition suffisante bien connue est ainsi la condition de contrôle géométrique,
également appelée Condition de Contrôle Géométrique de Bardos-Lebeau-
Rauch, introduite dans [12]. Cette condition demande que toutes les trajec-
toires du flot géodésique généralisé rentrent dans la région de contrôle. Il est
connu que cette condition est équivalente à l’observabilité dans certains cas,
tels que l’équation des ondes (voir [12][19]), et suffisante dans d’autres cas,
comme pour l’équation de Schrödinger (voir [60]). Cependant, cette condi-
tion n’est pas nécessaire en général. Dans [46], par exemple, les auteurs ont
montré que, sur un domaine polygonal arbitraire, la norme L2 de la fonction
propre sur le domaine est contrôleée par la masse sur un voisinage U des som-
mets alors que U ne vérifie pas la condition de contrôle géométrique. Pour
obtenir ce résultat, les auteurs introduisent une autre condition géométrique
appelée condition cylindrique (voir [46]).

Dans notre travail, nous ne nous préoccupons pas des conditions géomé-
triques et nous examinons une condition purement spectrale qui sert de con-
dition suffisante pour la validité des inégalités de concentration pour les fonc-
tions propres des opérateurs de Baouendi Grushin sur une bande horizontale
arbitraire du cylindre infini. Plus précisément, notre principal intérêt ici est
de relier l’inégalité de concentration à une certaine condition spectrale, puis
d’étudier cette condition pour l’opérateur généralisé de Baouendi Grushin
sur un cylindre. En fait, l’inégalité de concentration est déjà connue dans de
nombreux cas, en utilisant des méthodes géométriques sophistiquées. Ainsi,
dans [62, Chapitre 3], par exemple, l’auteur étudie le cadre suivant. Soit
M “ p´1, 1qx ˆ Ty où T est cercle, et soit γ P R˚`. Définissons l’opérateur

xiii



Chapter 0. Aperçu de la thèse

de type Baouendi Grushin suivant

∆γ “ B
2
x ` |x|

2γ
B
2
y , (4)

avec le domaine

Dp∆γq “ tu P D1
pMq, B2

xu P L2
pMq, |x|

2γ
B
2
yu P L2

pMq, u “ 0 sur BMu.

Il montre alors le théorème.

Theorem 0.1 (Letrouit [62]). Soit γ ě 1 et soit w “ p´1, 1qx ˆ I pour un
certain intervalle I. Alors, il existe C, h0 ą 0 tels que pour tout u P Dp∆γq,
et tout 0 ă h ď h0,

∥u∥L2pMq
ď C

´

∥u∥L2pwq
` h´pγ`1q

∥∥ph2∆γ ` 1qu
∥∥
L2pMq

¯

. (5)

Ce théorème entraîne le contrôle des fonctions propres :

Corollary 0.1.1. Soit γ ě 1 et soit w “ p´1, 1qx ˆ I pour un certain
intervalle I. Alors, il existe C ą 0 tels que pour toute fonction propre u de
∆γ,

∥u∥L2pMq
ď C∥u∥L2pwq

. (6)

Nous chercherons ici à montrer des résultats similaires pour ce type d’opé-
rateur, avec des méthodes spectrales.

La définition (2) montre que l’opérateur généralisé de Baouendi Grushin
(et tout opérateur de type Baouendi Grushin) peut être écrit comme la
somme du carré de deux champs vectoriels lisses X1 “ Bx et X2 “

a

V pxqBy.
On l’appelle donc parfois opérateur sous-laplacien de Grushin. Plus généra-
lement, les sous-laplaciens sont des généralisations de l’opérateur de laplace
sur une variété riemannienne. On les définit de la façon suivante.

Soient X1, ..., Xp des champs de vecteurs lisses sur une variété lisse M .
Nous disons que X1, ..., Xp sont générateurs par crochets itérés (ou satisfont
la condition de Hörmander) de rang r si les champs X1, ..., Xp complétés
par leurs crochets itérés rXi, Xjs, rXi, rXj, Xkss... jusqu’à une longueur r
engendrent l’espace tangent en chaque point m P M (voir [50]). Dans ce
cadre, le sous-laplacien par rapport à une mesure lisse ω est alors défini
comme

∆ “ ´

p
ÿ

i“1

X˚
i Xi “

p
ÿ

i“1

X2
i ` divωpXiqXi, (7)
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Chapter 0. Aperçu de la thèse

où divωpXiq désigne la divergence deXi relativement à ω. Ces opérateurs sont
aussi appelés opérateurs de type 2 de Hörmander (le type 1 étant simplement
la somme des carrés) car ils ont été largement étudiés par Hörmander. Il
a montré que sous la condition qui porte son nom„ ∆ est hypoelliptique
(voir [50]). Hörmander a prouvé cela en montrant que ∆ est sous-elliptique
et satisfait l’estimation suivante (qui est la définition de sous-ellipticité) :
Ds, C ą 0, @u P C8

c pMq,

∥u∥HspMq
ď C

´

x∆u, uyL2pMq `∥u∥L2pMq

¯

. (8)

et Rotschild et Stein ont montré dans le théorème 17 de [75] que s “ 1
r

est optimal. Lorsque la variété M est compacte, alors (8) implique que
p∆, C8pMqq est essentiellement auto-adjoint sur les fonctions lisse, et la seule
extension auto-adjointe unique a une résolvante compacte. Il en découle que
le sous-laplacien a un spectre discret dans ce cadre.

Le cadre général pour de tels opérateurs est la géométrie sous-Rieman-
nienne.
La géométrie sous-riemannienne est une généralisation de la géométrie rie-
mannienne, dans laquelles toutes les directions ne jouent pas le même rôle et
où certaines contraintes sont imposées pour se déplacer le long de la variété.
Les variétés sous-riemanniennes servent ainsi dans l’étude des systèmes con-
traints en mécanique classique, tels que le mouvement de véhicules sur une
surface, le mouvement des bras de robots et la dynamique orbitale des satel-
lites. Plus précisément, si on munit une variété de champs de vecteurs qui
n’engendrent pas l’espace tangent, alors on ne peut pas définir une métrique
riemannienne. Cependant, lorsque ces vecteurs satisfont la condition de Hör-
mander, alors on dit que la variété est sous-riemannienne et on peut définir
la métrique sous-riemannienne associée à C “ tX1, ..., Xpu, sur TM par

gmpXmq “ inf

#

|u|
2
Rp ;u P Rp,

p
ÿ

i“1

uiXipmq “ Xpmq

+

, (9)

avec la convention que inf H “ `∞. La structure pM,C , gq est appelée
une structure sous-riemannienne. La géométrie sous-riemannienne est très
étudiée depuis le milieu des années 80, en commençant par l’étude des groupes
de Heisenberg et en se concentrant sur les propriétés géométriquees des boules
et des géodésiques.
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Chapter 0. Aperçu de la thèse

Il existe de nombreuses questions qui se posent en géométrie sous-riemanienne,
notamment des questions de théiore du contrôle (voir [78]). Une autre ap-
proche consiste à considérer la structure sous-riemannienne comme une limite
singulière des structures riemanniennes (voir [4][27][36][40][43][67][76][83]).
Ces approximations riemanniennes, lorsqu’elles sont associées à des esti-
mations uniformes, permettent d’étendre certains résultats riemanniens aux
contextes sous-riemanniens. Par exemple, les auteurs de [27] ont utilisé de
telles approximations pour généraliser certaines estimations riemanniennes
connues (propriété de doublement, inégalité de Poincaré, estimations gaussi-
ennes, etc.) aux variétés sous-riemanniennes.

Cette convergence est souvent considérée en termes de convergence des
distances. Plus précisément, si pM,C , gq est une structure sous-riemannienne,
le théorème de Chow-Rashevskii, (aussi appelé de théorème de Chow), garan-
tit que deux points quelconques d’une variété sous-riemannienne connexe,
dotée d’une distribution génératrice par crochets itérés, sont reliés par un
chemin horizontal dans la variété (voir [3][52]). Ainsi, la métrique sous-
riemannienne g définit une distance d sur M . Habituellement, dans le cadre
d’une approximation par une famille de métriques riemanniennes gh avec sa
distance dh associée, on montre le théorème suivant.

Theorem 0.2. La famille de distances dh converge uniformément vers d sur
chaque ensemble compact de la variété M .

Ainsi, la géométrie de la structure sous-riemannienne est la limite de la
suite des géométries riemanniennes et on aimerait savoir ce qu’il en est au
niveau spectral.

Maintenant, il est clair, d’après son expression, que l’opérateur sous-
laplacien dépend de la mesure choisie dans (7). Dans le cadre riemannien,
une mesure canonique est obtenue à l’aide de la métrique riemannienne. Ce
n’est pas le cas dans les variétés sous-riemanniennes, car les métriques sous-
riemanniennes ne sont pas définies sur l’ensemble de l’espace tangent et il
n’existe pas de moyen canonique de l’étendre à l’ensemble de l’espace tan-
gent. Ainsi, une question très naturelle se pose ici : comment définir une
mesure canonique sur une variété sous-riemannienne, de façon à avoir un
sous-laplacien canonique ?

La question a été initialement soulevée par Brockett en 1982 dans son
article (see [18]). Sa motivation venait du désir de construire un opérateur
de laplace sur une variété sous-riemannienne tridimensionnelle, qui serait in-
trinsèquement lié à la structure métrique, analogue à l’opérateur de laplace-
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Beltrami sur une variété riemannienne. Plus récemment, Montgomery a
abordé ce problème dans un contexte plus général [66]. Le volume de Popp,
le volume de Hausdorff et le volume sphérique de Hausdorff sont quelques
exemples intéressants de mesures sur une variété sous-riemannienne (voir
[2][42][65] et les références à l’intérieur).
Le volume de Popp, par exemple, a d’abord été défini par Octavian Popp
mais introduit seulement par Montgomery dans [66]. Le volume de Popp est
défini en induisant un produit scalaire canonique sur l’espace vectoriel gradué
définie par la structure des crochets de Lie, puis en utilisant un isomorphisme
non canonique entre l’espace vectoriel gradué et l’espace tangent pour définir
un produit scalaire sur l’ensemble de l’espace tangent. En 2013, les auteurs de
[13] ont trouvé une expression pour le volume de Popp en termes d’une base
adaptée, et depuis lors, cette formule a parfois été utilisée dans ce contexte
comme la définition du volume de Popp. Plus précisément, on considère une
base adaptée Z1, ..., Zd (définie au sens de [13]) et on définit récursivement les
sous-espaces Di “ Di´1 ` rD0, Di´1s, où D0 est le sous-espace engendré par
les champs vectoriels initiaux. On définit ensuite les constantes de structure
adaptées qui, de façon informelle, sont les coefficients des crochets des Zi

dans Di modulo Di´1 (en ne considérant que les crochets de longueur i).

Theorem 0.3 (Barilari-Rizzi[13]). Dans la base Z1, ..., Zd, le volume de Popp
est donné par

dP “
1

b

ś

j detpBjq

dν1 ^ ... ^ dνd, (10)

où Bj sont des matrices définies à l’aide des constantes de structure adaptées
et ν1, ..., νd forment la base duale à la base adaptée.

Avec la famille de structures riemanniennes (et de métriques riemanni-
ennes) approchant la structure sous-riemannienne (resp. la métrique sous-
riemannienne), on peut définir la famille d’opérateurs de laplace associés ∆h.
Ces opérateurs ∆h sont des opérateurs elliptiques, et donc, si M est com-
pacte, ils ont une résolvante compact et, par conséquent, un spectre discret.
On peut donc s’intéresser à la convergence de ce spectre.

Dans le cas où la structure riemannienne dégénère sur une structure sous-
riemannienne, peu de choses sont connues sur la convergence du spectre des
laplaciens (voir [39][40][76]). Dans certains cas spécifiques, il a été démontré
que la famille ∆h converge vers ∆, et que chaque valeur propre de ∆h converge
vers une valeur propre de ∆. Cela a d’abord été observé par Fukaya dans
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[39] puis démontré par Ge dans [40] (voir également [76] pour le cas des
variétés de contact). Plus précisément, soit M une variété compacte munie
d’une métrique riemannienne g. Soit H une distribution sur M de dimension
constante, et soitHK la distribution orthogonale àH. Écrivons g “ gH‘gHK .
On définit la famille de métriques riemanniennes pour h ą 0,

gh “ gH ‘ h´2gHK .

Theorem 0.4 (Ge [40]). Soit ∆h le laplacien associé à gh. Alors, ∆h con-
verge lorsque h Ñ 0 vers un opérateur sous-elliptique de second ordre

∆H “ ´
ÿ

i

e2i ,

où ei est une base orthonormale pour H. De plus, si λ1phq ď λ2phq ď .... et
λ1 ď λ2 ď .... désignent les valeurs propres de ∆h et de ∆H respectivement,
alors λkphq converge lorsque h Ñ 0 vers λk.

On cherche à généraliser ce type de résultat pour une approximation
riemannienne mieux adaptée à la structure et une question se posera alors
relativement à la mesure utilisée.

Dans la section suivante, on présente les résultats de ce travail.

0.2 Résultats Principaux

Notre travail sera réparti en trois chapitres. Par conséquent, nous divi-
sons cette section en trois sous-sections, chacune contenant les résultats d’un
chapitre.

0.2.1 Inégalités de Concentration

Désignons par X “ Rˆ S1 le cylindre infini et par w “ Rˆ ra, bs, une bande
horizontale le long de X. Notons

L2
0pXq “

"

u : X Ñ R;
ż

X

|upx, yq|
2dxdy ă ∞,

ż

S1
upx, yqdy “ 0

*

.

Soit V P V “ tx2W̃ , W̃ P C0
b pRq, W̃ ě 1u équipé de la norme

∥∥∥x2W̃∥∥∥
V

“∥∥∥W̃∥∥∥
∞

. Pour V P V, nous désignons par

PV “ ´B
2
x ´ V pxqB

2
y ,
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l’opérateur généralisé de Baouendi Grushin sur le domaine D défini par

D “ tu P L2
0pXq; B

2
xu P L2

pXq, V pxqB
2
yu P L2

pXqu.

Nous disons que l’inégalité de concentration est vérifiée pour PV s’il existe
une constante c “ cpwq telle que pour toute fonction propre u de PV , on a

∥u∥L2pMq
ď c∥u∥L2pwq

.

Tout d’abord, nous donnons une condition suffisante pour que PV vérifie
l’inégalité de concentration. Nous montrons que

Theorem 0.5. Si multpEq “ 2 pour chaque valeur propre E de PV , alors
l’inégalité de concentration est vérifiée.

Ce théorème sera reformulé en tant que théorème 2.2. Observons qu’une
valeur propre de PV est toujours de multiplicité au moins 2

Nous montrons ensuite que la condition de la proposition 0.5 n’est pas
vraie en général en étudiant les opérateurs obtenus en posant V pxq “ x2`s2.
Ceux-ci ne sont pas à proprement parler dans la classe définie précédemment
(pour s ą 0, l’opérateur est elliptique) mais ils préfigurent la partie sur
l’approximation riemannienne. Nous montrons les résultats suivants (Cor.
2.4.1 et Prop. 2.5) .

Theorem 0.6. Si s2 est rationnel, alors la multiplicité des valeurs propres
de Ps n’est pas uniformément bornée.

Theorem 0.7. Si s2 est irrationnel, alors multpEq “ 2 pour tous les E P

specpPx2`s2q.

En tant que corollaire des théorèmes 0.5 et 0.7, nous obtenons que

Corollary 0.7.1. Si s2 est irrationnel, alors l’inégalité de concentration est
vérifiée pour Px2`s2.

Ces résultats amènent à se poser la question de la validité des inégalités
de concentration de manière générique. L’idée d’étudier la condition spec-
trale de manière générique réside dans le fait que cette condition est une
condition de ’simplicité’ sur les valeurs propres de l’opérateur non elliptique
PV . Un résultat général de simplicité des valeurs propres pour les opérateurs
elliptiques a été introduit pour la première fois par Albert dans sa thèse
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[6], puis généralisé ultérieurement pour le cas bidimensionnel dans son arti-
cle [7]. Plus tard, Uhlenbeck a montré que le théorème était valable dans
toutes les dimensions [81][82]. Nous montrons une variation du théorème
d’Albert [8] et d’Uhlenbeck pour donner un résultat similaire pour l’opérateur
sous-elliptique PV . Ainsi, nous étudions les perturbations de l’opérateur de
Baouendi Grushin et montrons le résultat suivant (Th. 2.20) Désignons par
Vb “ tV P V; DE P specpPV q,multpEq ą 2u les mauvais potentiels (pour
lesquels la condition spectrale n’est pas vérifiée).

Theorem 0.8. Le complément de Vb est résiduel dans l’espace topologique
pV,∥.∥Vq.

Ce théorème signifie que, génériquement, les valeurs propres d’un opéra-
teur de Baouendi Grushin sont de multiplicité 2. Selon le théorème 0.5, cela
implique que l’inégalité de concentration est valable pour un opérateur de
Baouendi Grushin générique.

0.2.2 Etude d’une approximation riemannienne

Soient X01, ..., X0p des champs de vecteurs lisses sur M tels que X01, ..., X0p

véridient la condition de Hörmander de rang r, et supposons que

TmM “ spantX ij
u0ďiďr,1ďjďNi

,

où les vecteurs pX ijqjďNi
sont une famille particulière de crochets de longueur

i des X01, ..., X0p. Soit N “ N0 ` ...`Nr. Nous définissons la métrique sous-
riemannienne g0 comme suit

g0mpXmq “ inf

$

&

%

|u|
2
Rp ;u P Rp,

p
ÿ

j“1

ujX
0j

pmq “ Xpmq

,

.

-

, (11)

et nous désignons par d0 sa distance sous-riemannienne associée. Nous définis-
sons notre schéma d’approximation. Pour u P RN , nous écrivons u “

pu0, u1, ..., urq, où chaque ui est de longueur Ni. Pour tout h P Rzt0u et
tout u P RN , nous définissons la dilatation δh comme suit

δhpuq “ pu0, h
´1u1, h

´2u2, ..., h
´rurq. (12)
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Nous définissons la famille de métriques riemanniennes gh comme suit

ghmpXpmqq “ inf

$

&

%

|δhu|
2
N ;u P RN ,

r
ÿ

i“0

Ni
ÿ

j“1

uijpmqX ij
pmq “ Xpmq

,

.

-

. (13)

Désignons par dh sa distance riemannienne associée. Comme nous l’avons
mentionné précédemment, il est bien connu que la distance sous-riemannienne
est la limite des distances riemanniennes, uniformément sur les ensembles
compacts de la variété. Comme nous cherchons à étudier les mesures de
volume, il est naturel d’étudier la mesure associée à la famille de métriques
riemanniennes, dvolgh. Si nous fixons un certain repère, disons Z1, ..., Zd,
alors

dvolgh “
a

|detpGhq|dν1 ^ ... ^ dνd,

où Gh est la matrice de représentation de gh dans le repère et ν1, ..., νd est
le repère dual à Z1, ..., Zd. C’est pourquoi nous nous concentrons sur l’étude
du déterminant de Gh. Pour tout 0 ď i ď r, désignons par Ai la matrice de
représentation des vecteurs X ij dans ces coordonnées. Nous démontrons la
formule suivante qui exprime Gh

´1 en termes des Ai:

Proposition 0.9. Nous avons

Gh
´1

“

r
ÿ

i“0

h2iAt
iAi.

Cela sera reformulé en tant que théorème 3.10. Nous étudions ensuite le
déterminant de Gh

´1. L’expression précédente implique que le déterminant
de Gh

´1 est un polynôme en h. Cependant, cette information n’est pas suff-
isante pour étudier le comportement limite du déterminant. Nous décrivons
alors le spectre de Gh

´1 en montrant le théorème suivant (Thm. 3.13) .

Theorem 0.10. Fixons un point m P M et notons pniq0ďiďr le vecteur de
croissance de la structure sous-riemannienne en m. Pour tout 0 ď i ď r, il
existe ni ´ ni´1 branches propres tλji phqu1ďjďni´ni´1

de Gh
´1 telles que

λji phq “ h2iηji phq,

avec limhÑ0 η
i
iphq ‰ 0 pour tout i, j.
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En conséquence, nous obtenons que

detpG´1
h pmqq “ fhpmqh2ςpmq,

avec ςpmq “
řr

1 ipnipmq ´ ni´1pmqq (où pn0pmq, n1pmq, ..., nr´1pmq, dq est le
vecteur de croissance en un point m) et fh converge ponctuellement vers une
fonction positive f (à déterminer). Ensuite, nous énoncons le théorème ci
dessous.

Theorem 0.11. Sous l’hypothèse d’équirégularité, la fonction m ÞÑ fpmq

est lisse, strictement positive, et indépendante du choix des coordonnées.

En particulier, p1{
?
fq définit une densité p1{

?
fqdx, sur M (voir Cor.

3.19.1).
Enfin, nous prouvons, en utilisant les propriétés intéressantes d’un repère

adapté, que ce volume obtenue par cette approximation est relié au volume
de Popp par le résultat suivant.

Theorem 0.12. Le volume dPo obtenue par l’approximation précédente cöıncide
avec le volume de Popp dP au un facteur

?
2r près, c’est-à-dire

dP “
1

?
2r
dPo.

Ce résultat sera énoncé dans le corollaire 3.64.

0.2.3 Sur la Convergence du Spectre

Nous supposons maintenant que M est compact et nous considérons le cadre
précédent. Définissons l’espace de Hilbert L2

ωpMq par rapport à une mesure
de volume fixée ω comme suit :

L2
ωpMq :“ tu :M Ñ R; ∥u∥2L2

ω
:“

ż

M

|u|
2dω ă ∞u.

Sur L2
ωpMq, nous définissons le sous-laplacien comme suit

∆0 “

p
ÿ

j“0

pX0j
q

˚ωX0j, (14)

où ˚ω désigne l’adjoint par rapport à dω.
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Définissons maintenant l’espace de Hilbert associé à dvolgh comme suit :

L2
hpMq :“ tu :M Ñ R; ∥u∥2L2

hpMq
:“

ż

M

|u|
2h2ςdvolgh ă ∞u. (15)

Pour tout h ą 0, nous définissons sur L2
hpMq la famille d’opérateurs ellip-

tiques :

∆̃h “

r
ÿ

i“0

Ni
ÿ

j“1

h2ipX ij
q

˚hX ij, (16)

où ˚h désigne l’adjoint par rapport à dvolgh.
Nous commençons par adapter la preuve de Kohn pour démontrer une

version uniforme indépendante du paramètre de l’estimation sous-elliptique
locale célèbre. En utilisant le calcul pseudo-différentiel, nous démontrons
(Prop. 4.12).

Theorem 0.13. Sous les hypothèses précédentes. Dϵ ą 0, @s P R, DCpsq ą

0, @h P r0, 1s, @u P C∞pMq,

∥u∥Hϵ`s
ω pMq

ď Cpsq

ˆ∥∥∥∆̃hu
∥∥∥
Hs

ωpMq
`∥u∥Hs

ωpMq

˙

. (17)

D’une part, ce théorème entraîne les faits bien connus sur le sous-laplacien;
il est sous-elliptique, hypoelliptique, essentiellement auto-adjoint et a une ré-
solvante compacte, et donc un spectre discret. D’autre part, il implique une
estimation uniforme sur les fonctions propres de ∆̃h. En utilisant cette es-
timation et des théorèmes spectraux standards, nous prouvons ce qui suit
(Thm. 4.20).

Theorem 0.14. Pour une structure sous-riemannienne équirégulière. Soit
phnqně0 une suite qui tend vers 0 et punqně0 une suite de fonctions propres
normalisées de ∆̃hn. Soit pµnqně0 la suite associée de valeurs propres. Sup-
posons que la suite pµnqně0 est bornée. Alors, les assertions suivantes sont
vraies.

1. Il existe une sous-suite pµnk
qkě0 qui converge vers une valeur propre de

∆0, disons λ.

2. En extrayant éventuellement une sous-suite, punk
qkě0 (correspondant

à pµnk
qkě0) converge vers v0 dans H l

ωpMq pour tout l, et v0 est une
fonction propre de ∆0 associée à λ.
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En tant que corollaire, nous obtenons alors le résultat (Thm. 4.21.)

Theorem 0.15. Désignons par pλkqkě0 et pλ̃kphqqkě0 le spectre ordonné de
∆0 et ∆̃h respectivement, compté avec multiplicité. Alors, pour tout k ě 0
fixé, nous avons

lim
hÑ0

λ̃kphq “ λk. (18)

Ce théorème dit donc que, dans le cas équirégulier, le spectre du laplacien
riemannien associé à gh converge vers les spectre du laplacien sous-riemannien
relativement à la mesure de Popp. Dans le chapitre, nous montrerons un
résultat similaire pour la suite des laplaciens relativement à une mesure ω
fixée. Ce dernier ne nécessite alors pas l’hypothèse d’équirégularité.

0.3 Commentaires

Nous donnons quelques commentaires sur nos résultats. Ceux-ci seront pré-
cisés dans le manuscrit.

Nous soulignons que le théorème 0.5 (condition spectrale suffisante) ne
dépend pas directement de l’opérateur de Baouendi Grushin généralisé, mais
des propriétés de séparation des variables satisfaites par cet opérateur. Ainsi,
ce théorème pourrait être généralisé en tant que condition suffisante pour la
validité des inégalités de concentration pour d’autres opérateurs généraux.

En ce qui concerne le théorème principal (théorème 0.8), la théorie des
perturbations analytiques de Kato est nécessaire, car nous utilisons le théorème
de Hellmann-Feynman. Nous donnerons les éléments principaux de cette
théorie pour le cas de dimension finie dans les annexes, et nous prouvons une
généralisation dans le cas de dimension infinie adaptée à notre cadre. Nous
verrons également que ce théorème fonctionne sur un tore.

En ce qui concerne la deuxième partie, il convient de noter que la mesure
induite par le schéma d’approximation (qui dépend du choix des champs de
vecteurs) n’est pas canonique (ou intrinsèque) à la structure sous-rieman-
nienne. Nous verrons que cette mesure dépend de notre choix des champs de
vecteurs qui engendrent l’espace tangent.

Enfin, commentons un peu sur la convergence du spectre. Tout d’abord,
notre principal théorème concerne le spectre ordonné, et non les branches
analytiques de valeurs propres (bien que, nous verrons que dans le cas de la
mesure de volume fixe, la convergence des branches propres est vraie).
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Maintenant, pour prouver les théorèmes sur la convergence du spectre de
∆̃h, nous prouvons d’abord les résultats pour ∆h qui est défini par rapport
à dω au lieu de dvolgh. Traiter avec dvolgh est une tâche plus difficile en
raison de la présence de fonctions dépendant de h. Cette difficulté sera
surmontée grâce à l’hypothèse d’équiregularité. Sans cette hypothèse, les
choses deviennent beaucoup plus difficiles et nos résultats sur la convergence
du spectre riemannien ne sont valides que dans le cadre équiregulier.

Dans le cadre non-équiregulier, où l’ensemble singulier Z n’est pas vide,
de nombreuses choses cessent de fonctionner. Par exemple, MzZ n’est plus
vide, et il n’est pas clair si l’estimation sous-elliptique (17) reste vraie. Par
conséquent, nous n’avons aucune idée si p∆0, C8

0 pMzZqq est essentiellement
auto-adjoint. Il convient de noter que certains auteurs ont étudié cette ques-
tion et ont donné des conditions sur la structure sous-riemannienne qui im-
pliquent que l’opérateur p∆0, C8

0 pMzZqq est essentiellement autoadjoint (voir
[15][16][35][72]).

0.4 Comparaison Avec des Résultats Antérieurs

Bien que similaires, il existe plusieurs différences entre le corollaire 0.1.1
de Letrouit [62] et nos résultats. Tout d’abord, notre approche est purement
spectrale, tandis que l’approche de Letrouit est plus géométrique. Deuxième-
ment, les paramètres sont différents. En effet, ici, nous traitons l’opérateur
généralisé de Baouendi Grushin, pour une classe générale de potentiels V,
et nous prouvons la validité de l’inégalité de concentration sur le cylindre
infini, un domaine non borné, ce qui est généralement plus difficile que de
traiter avec des domaines bornés (nous verrons également que nos résultats
s’appliquent à un tore, par exemple).

En ce qui concerne le schéma d’approximation, comme indiqué précédem-
ment, bien que la mesure obtenue à la limite ne soit pas canonique pour la
structure sous-riemannienne, mais soumise à un bon choix de champs de
vecteurs, elle donne une mesure "naturelle" avec laquelle travailler.

De plus, le théorème 0.12 donne en réalité une manière de calculer le vol-
ume de Popp, en plus de celle donnée par les auteurs dans [13]. Il suffit en
effet d’écrire les matrices Ai, d’écrire la matrice G´1

h en utilisant la propo-
sition 0.9 et de calculer le déterminant. Ensuite, en utilisant le vecteur de
croissance, on en déduit la fonction fh puis la mesure de Popp en utilisant le
théorème 0.12 après avoir pris la limite lorsque h Ñ 0. Il est intéressant de
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noter que ce calcul peut se faire dans n’importe quel système de coordonnées,
pas forcément adapté à la structure sous-riemannienne.

Notre résultat de convergence est aussi plus général que celui de Ge
dans [40]. Notre construction est aussi plus adaptée à la configuration sous-
riemannienne ; par exemple, la dilatation effectuée est associée au drapeau
des sous-espaces vectoriels Di, 0 ď i ď r. Dans [40], la configuration a été
adaptée d’une certaine manière à la preuve ; la forme de volume à laquelle
il aboutit est, exprimée dans nos notations, h2dω. Une autre différence, qui
peut ne pas avoir une grande influence, est que dans [40], il était supposé
que les champs de vecteurs initiaux sont toujours un ensemble linéairement
indépendant (base), ce qui signifie que D0 a un rang constant. Ici, nous
n’avions aucune hypothèse sur le rang de D0 qui peut dépendre du point.

0.5 Plan du Manuscrit

Dans cette section, nous présentons le plan du manuscrit, où nous expliquons
le contenu de chaque chapitre.

• Chapitre 2: Ce chapitre est consacré à l’étude de l’inégalité de con-
centration pour l’opérateur généralisé de Baouendi Grushin.

– Dans la section 2.1, nous donnons quelques définitions et nota-
tions. Nous reformulons ensuite et prouvons le théorème 0.5.

– Dans la section 2.2, nous examinons l’exemple Px2`s2 et prouvons
les théorèmes 0.6 et 0.7 (et déduisons le corollaire 0.7.1).

– Dans la section 2.3, nous étudions le cas général et prouvons le
théorème 0.8.

– Dans la section 2.4, nous expliquons brièvement pourquoi notre
résultat est valable sur un tore.

• Chapitre 3: Ce chapitre est dédié à l’étude de l’approximation rie-
mannienne et de la mesure limite.

– Dans la section 3.1, nous rappellons quelques définitions impor-
tantes et nous présentons le cadre.

– Dans la section 3.2, nous introduisons notre schéma d’approximation.
En particulier, nous prouvons que gh est une famille de métriques
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riemanniennes, puis nous adaptons la preuve de [40] pour démon-
trer la convergence des distances.

– Dans la section 3.3, nous étudions la forme de volume dvolgh. En
particulier, nous prouvons la proposition 0.9 et le théorème 0.10
ainsi que leurs conséquences.

– Dans la section 3.4, nous définissons la forme de volume de Popp
et la comparons à notre forme de volume. En particulier, nous
prouvons le théorème 0.3.

• Chapitre 4: Ce chapitre est consacré à l’étude de la convergence du
spectre.

– Dans la section 4.2, nous étudions les estimations sous-elliptiques
dans les deux cas : forme de volume fixe et dvolgh.

– Dans la section 4.3, nous prouvons les théorèmes 0.14 et 0.15.

Nous verrons que notre travail repose sur la théorie de la perturbation
en dimension finie et utilise certains théorèmes fondamentaux de la
théorie spectrale. Pour cela, nous écrivons les annexes qui sont divisées
en :

• Chapitre A: Dans ce chapitre, nous donnons quelques préliminaires de
base en théorie spectrale fréquemment utilisés dans le manuscrit.

– Dans la section A.1, nous présentons quelques théorèmes bien con-
nus.

– Dans la section A.2, nous étudions l’opérateur de Schrödinger.

– Dans la section A.3, nous énonçons quelques théorèmes bien con-
nus de bornitude pour les opérateurs pseudo-différentiels.

• Chapitre B: Dans ce chapitre, nous donnons brièvement la théorie de
la perturbation de Kato dans le cadre de la dimension finie.

• Tout au long des chapitres 3 et 4, je donne des exemples qui sont
courants dans le contexte de la géométrie sous-riemannienne. J’applique
essentiellement mes résultats aux cas Grushin, Heisenberg et Martinet,
qui sont tous des structures presque riemanniennes typiques (voir la
définition 3.1.1.2).

xxvii



Chapter 0. Aperçu de la thèse
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Chapter 1
Introduction

1.1 Motivation And Previous Results

Consider a smooth manifold M of dimension d. We say that an operator P is
an elliptic operator of order p in M if whenever Pu P HspMq it implies that
u P Hs`ppMq. Elliptic operators are a generalization of Laplace operators
and their natural framework is the Riemannian geometry. A Riemannian
manifold is a smooth manifold equipped with a positive-definite inner product
called the Riemannian metric, usually defined using a set of vector fields that
span the tangent space at every point.
If P is elliptic, then whenever Pu P C∞pMq it implies that u P C∞pMq (as
u will be in HppMq for any p). However, ellipticity is a sufficient condition
and not necessary for the smoothness of solutions (one can take as a counter-
example the heat equation which is a parabolic partial differential equation
but has smooth solutions).
So, a hypoelliptic operator is defined as the operator P such that whenever
Pu P C∞pMq it gives that u P C∞pMq. The first one to notice such an
operator was Kolmogorov back in 1934 in [59], while he was working on the
motion of colliding particles when he wrote down the equation

Btu ´ pxBy ` B
2
xqu “ f,

and observed that the operator xBy ` B2
x is hypoelliptic.

A third class of operators also introduced are subelliptic operators. An
operator P is subelliptic of order p with ϵ loss of derivatives, if whenever

1



Chapter 1. Introduction

Pu P HspMq, it implies that u P Hs`p´ϵpMq for some ϵ Ps0, 1r. These classes
are related as follows:

Elliptic ñ Subelliptic ñ Hypoelliptic.

Subelliptic operators, which have been studied intensively since the 20th
century, are interesting as they are a generalization of elliptic operators that
implies hypoellipticity.

A typical example of a subelliptic operator is a Grushin operator. Grushin
operators were first defined in [44] in 1970, as the subelliptic operators of the
form

P “ ´B
2
x ´ |x|

2k
B
2
y , (1.1)

for some k P N acting on L2pR2
x,yq. It was the starting point to define a

Grushin-type operator that was then studied widely by many investigators
(for instance in [21][28][37][53] and many others). An interesting Grushin-
type operator is the following (it can be seen as the generalization for the
case k “ 1). On R2, the generalized Baouendi Grushin Operator (sometimes,
we will say Baouendi Grushin Operator) is defined as

P “ ´B
2
x ´ V pxqB

2
y , (1.2)

for V satisfying the following:

V P CpRq, V pxq ě 0, V p0q “ V 1
p0q “ 0, V 2

p0q ą 0, lim
|x|Ñ`∞

V pxq “ `∞.

(1.3)
Some investigators handled this kind of generalized Grushin operators (and
other types) and most of them studied their controllability and/or observabil-
ity in different domains ([9][10][21][26][31][57]). Controllability and observ-
ability are a ’strong’ type of concentration inequalities that seems to imply
another ’weaker’ inequalities like the concentration inequalities for eigenfunc-
tions.

The study of concentration inequalities for eigenfunctions has a rich his-
tory that spans several decades where several ways of measuring possible
concentrations were raised (see [20][22]). Concentration inequalities for eigen-
functions are estimates of the probability that the eigenfunctions of a certain
type of operator will be concentrated in a particular region of the underlying
space, more specifically whether the magnitude of the eigenfunctions on the
manifold can be controlled by its magnitude on some sub-domain.

2



Chapter 1. Introduction

The direct link between concentration properties for eigenfunctions and
controllability/observability may vary depending on the specific system and
control framework, however, under some settings, some investigators showed
that one can be sufficient or necessary for the validity of the other. For
instance, in [12], the author mentions that under some conditions the con-
centration inequality for eigenvalues is a sufficient condition for the exact
observability of the wave equation associated with the Laplace operator (see
page 1030 in [12]). On the other hand, more generally, the authors in [24]
(where the concentration inequality for eigenfunctions of the Schrödinger op-
erator is proved on a torus) mention that the concentration inequality for
eigenfunctions can be derived (using Duhamel formula) from the observabil-
ity of the Schrd̈inger equation. See [23][64] for detailed studies about the link
between observability and concentration inequalities for eigenfunctions.

Anyway, several authors studied this type of concentrations on eigen-
functions of Laplace operator as in [17][20][23][33][46]. These studies depend
usually on studying the validity of some geometric criteria called the geomet-
ric control criteria or conditions. Usually, a well-known sufficient condition
for the validity of the concentration inequality for Grushin-type operators
is the so-called Geometric Control Condition of Bardos-Lebeau-Rauch intro-
duced in [12]. This condition says that all the trajectories of the generalized
geodesic flow will enter the control region before some time. Although it is
well known that this condition is equivalent to observability in many cases
such as the wave equation (see [12][19]) and sufficient in others such as for the
Schrödinger equation (see [60]), however, this condition is not necessary in
general. In [46] for instance, the authors proved that the eigenfunction mass
of the Dirichlet (or Neumann) Laplacian on an arbitrary polygonal domain,
where the later condition fails to be true, cannot concentrate away from the
vertices; that is the L2 norm of the eigenfunction on a neighborhood U of the
vertices is controlled by a constant c “ cpUq multiplied by the norm on the
polygonal domain. However, they introduced another geometric condition
called the cylindrical condition (see [46]). These all share the dependence of
the methods used on a certain geometric control condition.

Here, we do not care about geometric conditions. We investigate a purely
spectral condition that serves as a sufficient condition for the validity of
concentration inequalities for eigenfunctions of the Baouendi Grushin oper-
ators on an arbitrary horizontal strip of the infinite cylinder. Specifically,
our main interest here is to link the concentration inequality to some spec-
tral condition, and then study this condition for the generalized Baouendi

3



Chapter 1. Introduction

Grushin operator. In fact, the concentration inequality could be known for
V pxq “ x2 using some involved geometric methods. In [62, Chapter 3] for
instance, the author considered a different case and proved the following:
Let M “ p´1, 1qx ˆ T where T is the 1 dimensional torus in the y-variable,
and let γ P R˚`. Define the Baouendi Grushin type operator

∆γ “ B
2
x ` |x|

2γ
B
2
y , (1.4)

with domain

Dp∆γq “ tu P D1
pMq, B2

xu P L2
pMq, |x|

2γ
B
2
yu P L2

pMq, u “ 0 on BMu.

Theorem 1.1 (Letrouit [62]). Let γ ě 1 and let w “ p´1, 1qx ˆ I for some
interval I. Then, there exists C, h0 ą 0 such that for any u P Dp∆γq, and
any 0 ă h ď h0,

∥u∥L2pMq
ď C

´

∥u∥L2pwq
` h´pγ`1q

∥∥ph2∆γ ` 1qu
∥∥
L2pMq

¯

. (1.5)

His proof for this theorem is geometric and depends on the validity of the
geometric control condition. Because we are interested in eigenfunctions, we
write a corollary of theorem 1.1.

Corollary 1.1.1 (Letrouit [62]). Let γ ě 1 and let w “ p´1, 1qx ˆ I for
some interval I. Then, there exists C ą 0 such that for any eigenfunction u
of ∆γ, we have

∥u∥L2pMq
ď C∥u∥L2pwq

. (1.6)

Here, we are interested in proving similar results using analysis on the
spectrum of the operator, in a more general (or different) setup.

Observe from (1.2) that the generalized Baouendi Grushin operator (and
any Grushin type operator) can be written as the sum of the square of two
smooth vector fields X1 “ Bx and X2 “

a

V pxqBy, and it is called some times
the Grushin sublaplace operator. The model operator for these operators
(and subelliptic operators in general) is the sublaplacian. It is a generaliza-
tion of the Laplace operator in a Riemannian manifold.

Let X1, ..., Xp be smooth vector fields on a smooth manifold M . We say
that X1, ..., Xp are bracket generating (or satisfy the Hörmander condition)
of step r if X1, ..., Xp with their iterative brackets rXi, Xjs, rXi, rXj, Xkss...
up to length r span the tangent space at every point m P M (see [50]). The
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sublaplace operator with respect to a smooth volume form (a differential
form of degree equal to the degree of the manifold M) ω is defined as

∆ “ ´

p
ÿ

i“1

X˚
i Xi “

p
ÿ

i“1

X2
i ` divωpXiqXi, (1.7)

where divωpXiq denotes the divergence with respect to ω of Xi. These are
called type 2 Hörmander operators (type one is just the sum of squares)
as they were extensively studied by Hörmander. He proved that under the
bracket-generating condition, ∆ is hypoelliptic (see [50]). Hörmander proved
this by proving that ∆ is subelliptic and satisfies the following estimate
(which is the definition of subellipticity): Ds, C ą 0, @u P C8

c pMq,

∥u∥HspMq
ď C

´

x∆u, uyL2pMq `∥u∥L2pMq

¯

. (1.8)

In fact, Rothschild and Stein proved in theorem 17 of [75] that s “ 1
r

is
optimal. If M is compact, then (1.8) implies that p∆, C8pMqq is essentially
selfadjoint, and the unique selfadjoint extension has compact resolvent. It
follows that it has a discrete spectrum.

The general framework for such operators is subriemannian geometry.
subriemannian geometry is a generalization of Riemannian geometry, where
not all directions play the same role and some constraints are put for moving
along the manifold. Subriemannian manifolds often occur in the study of
constrained systems in classical mechanics, such as the motion of vehicles on
a surface, the motion of robot arms, and the orbital dynamics of satellites (the
motion is always forced by some constraints). More precisely, if a manifold
is equipped with vector fields that don’t span the tangent space, then they
do not define a Riemannian metric. However, if these vectors satisfy the
Hörmander condition, then we say that the manifold is subriemannian and
we can define the subriemannian metric associated to C “ tX1, ..., Xpu,
defined on TM as1

gpm,Xmq “ inf

#

|u|
2
Rp ;u P Rp,

p
ÿ

i“1

uiXipmq “ Xpmq

+

, (1.9)

with the convention that inftHu “ `∞. The structure pM,C , gq is called a
subriemannian structure. An interest in the study of subriemannian geom-

1We could define the subriemannian metric with respect to a general metric on Rp, but
this will slightly make any difference throughout the manuscript.
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etry was increased in the mid-’80s, when it started by studying Heisenberg
groups focusing on geometries of balls and geodesics.

In general, there are many techniques for studying subriemannian geome-
try, including Subriemannian calculus and control theory (see [78]). Another
approach that a lot of investigators use is to see the sublaplace structure as
a singular limit of Riemannian ones (see [4][27][36][40][43][67][76][83]). These
Riemannian approximations when gathered with uniform estimates allow to
extend some Riemannian results into subriemannian settings. For example,
the authors in [27] considered such approximations to generalize some known
Riemannian estimates (doubling property, Poincare inequality, Gaussian es-
timates...) to subriemannian manifolds.

This convergence is seen in terms of convergence of distances. More pre-
cisely, let pM,C , gq be a subriemannian structure. The Chow–Rashevskii
theorem, known as Chow’s theorem, ensures that any two points of a con-
nected subriemannian manifold, endowed with a bracket generating distribu-
tion, are connected by a horizontal path in the manifold (see [3][52]). So, g
defines a distance d on M . Usually, a family of Riemannian metrics gh with
its corresponding family of Riemannian distances dh are introduced, and then
dh is proved to satisfy the following.

Theorem 1.2. The family of distances dh converges uniformly to d on every
compact set of the manifold M .

It is clear from its expression, that the sublaplace operator depends on
the chosen volume in (1.7). In a Riemannian setting, a canonical volume
form can be obtained using the Riemannian metric. However, this is not the
case in subriemannian manifolds as subriemannian metrics are not defined
on the whole tangent space and there is no canonical way to extend it to the
whole tangent space. So, a very natural question arises here: Can we define
a canonical volume form on a subriemannian manifold?

The question was initially brought to attention by Brockett in 1982, in
his paper (see [18]). His motivation stemmed from the desire to construct
a Laplace operator on a three-dimensional Subriemannian manifold, which
would be intrinsically connected to the metric structure, analogous to the
Laplace-Beltrami operator on a Riemannian manifold. In more recent times,
Montgomery tackled this problem in a more general context[66]. Popp’s vol-
ume, Hausdorff volume and spherical Hausdorff volume are some interesting
examples of canonical volume forms on a subriemannian manifold (for infor-
mation on Hausdorff volume and spherical Hausdorff volume, see [2][42][65]
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and the references within).
Popp’s volume for instance was first defined by Octavian Popp but intro-
duced only by Montgomery in [66]. Popp’s volume is defined by inducing a
canonical inner product on the graded vector space using Lie brackets, and
then using a non-canonical isomorphism between the graded vector space and
the tangent space to define an inner product on the whole tangent space. In
2013, the authors in [13] proved an expression for Popp’s volume in terms of
an adapted frame, and since then, this formula has sometimes been taken in
this context as the definition of Popp’s volume. More precisely, Consider an
adapted frame Z1, ..., Zd (defined in the sense of [13]) and define recursively
the subspaces Di “ Di´1 ` rD0, Di´1s, where D0 is the span of the initial
vector fields. Informally, the adapted structure constants are the coefficients
of the vector fields in Di modulo Di´1 (only consider the coefficients of the
vector fields obtained by bracketing of length i).

Theorem 1.3 (Barilari-Rizzi[13]). In the frame Z1, ..., Zd, Popp’s volume is
given by

dP “
1

b

ś

j detpBjq

dν1 ^ ... ^ dνd, (1.10)

where Bj are matrices that are defined using the adapted structure constants
and ν1, ..., νd the frame dual to the adapted frame.

Usually, With the family of Riemannian structures (and Riemannian met-
ric) approximating the subriemannian structure (resp. subriemannian met-
ric), one can define naturally an associated family of Laplace operators ∆h.
These ∆h’s are elliptic operators, and so, if M is compact, they have compact
resolvent and consequently a discrete spectrum.

In this case, where the Riemannian structure collapses to a subrieman-
nian one, and where the limiting operator of the singular perturbation is
hypoelliptic, only a little is known about the convergence of the spectrum of
the Laplacians (see [39][40][76]). In some specific settings, it was shown that
the family ∆h converges to ∆, and that each eigenvalue of ∆h converges to
those of ∆. This was first observed by Fukaya in [39] and then proved by
Ge in [40] (See also [76] for contact manifold case). More precisely, let M
be a compact manifold equipped with a Riemannian metric g. Let H be a
distribution on M of constant dimension and let HK denote the distribution
orthogonal to H. Write g “ gH ‘ gHK . Define the family of Riemannian
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metric for h ą 0,
gh “ gH ‘ h´2gHK .

Theorem 1.4 (Ge [40]). Let ∆h be the Laplacian associated to gh. Then,
∆h converges as h Ñ 0 to a second order subelliptic operator

∆H “ ´
ÿ

i

e2i ,

where ei is an orthonormal frame for H. Moreover, if λ1phq ď λ2phq ď ....
and λ1 ď λ2 ď .... denote the eigenvalues of ∆h and ∆H respectively, then
λkphq converges as h Ñ 0 to λk.

In the next section, I state the results of my work.

1.2 Main Results

Our work will be distributed into three chapters. So, we will divide this
section into three subsections, each will contain the results of a chapter.

1.2.1 About Concentration Inequality

Denote by X “ R ˆ S1 the infinite cylinder in R2 and by w “ R ˆ ra, bs, a
horizontal strip along X. Denote by

L2
0pXq “

"

u : X Ñ R;
ż

X

|upx, yq|
2dxdy ă ∞,

ż

S1
upx, yqdy “ 0

*

.

Let V P V “ tx2W̃ , W̃ P C0
b pRq, W̃ ě 1u equiped with the norm

∥∥∥x2W̃∥∥∥
V

“∥∥∥W̃∥∥∥
∞

. For V P V, we denote by

PV “ ´B
2
x ´ V pxqB

2
y ,

the generalized Baouendi Grushin Operator on D defined by

D “ tu P L2
0pXq; B

2
xu P L2

pXq, V pxqB
2
yu P L2

pXqu.

We say that the concentration inequality holds for PV if there exist a constant
c “ cpwq such that for any eigenfunction u of PV , we have

∥u∥L2pMq
ď c∥u∥L2pwq

.

8
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First, we give a sufficient condition for PV to satisfy the concentration in-
equality. We prove that

Theorem 1.5. If multpEq “ 2 for every eigenvalue E of PV , then the con-
centration inequality holds.

This theorem will be restated as theorem 2.2.
However, this is not always the case; the condition in proposition 1.5 is

not true in general. This will be ensured by studying the special case, where
V pxq “ x2 ` s2. For instance, we prove the following.

Theorem 1.6. If s2 is rational, then the multiplicity of the eigenvalues of
Ps is not uniformly bounded.

This theorem will be restated as corollary 2.4.1.

Theorem 1.7. If s2 is irrational, then multpEq “ 2 for all E P specpPx2`s2q.

This theorem will be restated as proposition 2.5. As a corollary of theo-
rems2.2 and 1.7, we get that

Corollary 1.7.1. If s2 is irrational then the concentration inequality holds
for Px2`s2.

This gave the inspiration to ask about the validity of concentration in-
equalities generically. The idea of studying the spectral condition generi-
cally is the fact that this condition is a ’simplicity’ condition on the eigen-
values of the non-elliptic operator PV . A general result of simplicity of
eigenvalues for elliptic operators was first introduced by Albert in his the-
sis [6] and proved later for two dimensional case in his paper [7]. Later,
Uhlenbeck showed that the theorem does hold in all dimensions [81][82].
We prove a variation of Albert’s [8] and Uhlenbeck’s to prove a similar
result for the subelliptic operator PV . So, we study the perturbation of
the Baouendi Grushin operator and prove the following result. Denote by
Vb “ tV P V; DE P specpPV q,multpEq ‰ 2u.

Theorem 1.8. The complement of Vb is residual in pV,∥.∥Vq.

This theorem will be restated as theorem 2.20. This theorem says that
generically, the eigenvalues of a Baouendi Grushin operator have multiplicity
2. By theorem 1.5, it implies that the concentration inequality is valid for a
generic Baouendi grushin operator.
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1.2.2 About Approximation Scheme

LetX01, ..., X0p be smooth vector fields onM such thatD0 “ spantX01, ..., X0pu

satisfies the Hörmander condition of step r. For 0 ď i ď r, we define recur-
sively

Di “ Di´1 ` rD0, Di´1s,

and we let ni “ dimpDiq. Then by Hörmander condition, nr “ d and Dr “

TmM .
For some enumeration of the vector fields, we have

TmM “ spantX ij
u0ďiďr,1ďjďNi

,

where X ij is a vector obtained by i iterative brackets of X01, ..., X0p.
Let N “ N0 ` ...`Nr. We define the subriemannian metric g0 following

1.9 as

gpm,Xmq “ inf

$

&

%

|u|
2
Rp ;u P Rp,

p
ÿ

j“1

ujX
0j

pmq “ Xpmq

,

.

-

,

and denote by d0 its associated subriemannian distance.
We define our approximation scheme. For u P RN , we write u “ pu0, u1, ..., urq,

where each ui is of length Ni. For all h P Rzt0u and all u P RN , define the
dilation δh as

δhpuq “ pu0, h
´1u1, h

´2u2, ..., h
´rurq.

We define the family of Riemannian metrics gh as

ghmpXmq “ inf

$

&

%

|δhu|
2
N ;u P RN ,

r
ÿ

i“0

Ni
ÿ

j“1

uijpmqX ij
pmq “ Xpmq

,

.

-

. (1.11)

Denote by dh its associated Riemannian distance. As we said earlier, it is well-
known that the subriemannian distance is the limit of a family of Riemannian
distances uniformly on compact sets of the manifold. As we aim at studying
volume forms, it is natural to study the volume form associated to the family
of Riemannian metrics, dvolgh. If we fix some frame, say Z1, ..., Zd, then

dvolgh “
a

|detpGhq|dν1 ^ ... ^ dνd,

10
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where Gh is the representation matrix of gh in the frame and ν1, ..., νd is the
frame dual to Z1, ..., Zd. That is why we focus on studying the determinant
of Gh. For any 0 ď i ď r, denote by Ai the representation matrix of the
vectors X ij obtained by bracketing of length i in these coordinates. Then we
prove an expression of G´1

h in terms of the A1
is:

Proposition 1.9. We have

Gh
´1

“

r
ÿ

i“0

h2iAt
iAi.

This will be restated as theorem 3.10. This is a nice expression ofG´1
h , and

so we study the determinant of G´1
h which conventionally implies information

about the determinant of Gh. This expression implies that the determinant
of G´1

h is a polynomial in h. However this information is not enough to
study the limiting behavior of the determinant, and so we aim to describe
the spectrum of G´1

h .
Recall that for 0 ď i ď r, ni “ dimpDiq, and set n´1 “ 0. We prove that

Theorem 1.10. Fix a point m P M . For any 0 ď i ď r, there are ni ´ ni´1

eigenbranches tλji phqu1ďjďni´ni´1
of G´1

h such that

λji phq “ h2iηji phq,

with limhÑ0 η
i
iphq ‰ 0 for any 0 ď i ď r, 1 ď j ď ni ´ ni´1.

This theorem will be restated as theorem 3.13. As a corollary, we get that

detpG´1
h pmqq “ fhpmqh2ςpmq,

with ςpmq “
řr

1 ipnipmq ´ ni´1pmqq (where pn0pmq, n1pmq, ..., nr´1pmq, dq is
the growth vector at a point m) and fhpmq converges pointwisely, as h Ñ 0,
to a positive function fpmq (to be determinied). Also, we prove the following.

Theorem 1.11. Under the equiregularity assumption, the function m ÞÑ

fpmq is smooth, non-vanishing, and independent of the choice of coordinates.

In particular, p1{
?
fq defines a volume form, p1{

?
fqdx on M . This the-

orem will be restated as corollary 3.19.1.
We then recover the same result using the nice properties of an adapted

frame. We prove moreover, that this volume form, induced from the approx-
imation scheme, satisfies the following:

11
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Theorem 1.12. The volume form dPo induced from the approximation scheme
coincides with Popp’s volume dP up to a multiplying by

?
2r; that is,

dP “
1

?
2r
dPo.

This will be stated in corollary 3.64.

1.2.3 About Convergence Of Spectrum

Suppose M is compact and orientable. Consider the previous framework,
and suppose the subriemannian structure is equiregular. Define the Hilbert
space L2

ωpMq with respect to a fixed volume form ω as follows:

L2
ωpMq :“ tu :M Ñ R; ∥u∥2L2

ω
:“

ż

M

|u|
2dω ă ∞u.

On L2
ωpMq, we define the sublaplace operator as

∆0 “

p
ÿ

j“0

pX0j
q

˚ωX0j, (1.12)

where the star denote the adjoint with respect to dω.
Now, define the Hilbert space associated to h2ςdvolgh, by

L2
hpMq :“ tu :M Ñ R; ∥u∥2L2

hpMq
:“

ż

M

|u|
2h2ςdvolgh ă ∞u.

For any h ą 0, we define on L2
hpMq, the family of elliptic operators:

∆̃h “

r
ÿ

i“0

Ni
ÿ

j“1

h2ipX ij
q

˚hX ij,

where the star denotes the adjoint with respect to dvolgh.
We adapt Kohn’s proof to prove a uniform parameter-dependent version

of the famous local subelliptic estimate using pseudo-differential calculus.
For instance, we prove the following:

Theorem 1.13. The following holds true: Dϵ ą 0, @s P R, DCpsq ą 0, @h P

r0, h1s, @u P C∞pMq,

∥u∥Hϵ`s
ω pMq

ď Cpsq

ˆ∥∥∥∆̃hu
∥∥∥
Hs

ωpMq
`∥u∥Hs

ωpMq

˙

. (1.13)
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This will be restated as proposition 4.12.
On one hand, this theorem covers the well-known facts about the sub-

laplacian; it is subelliptic, hypoelliptic, essentially selfadjoint, and has com-
pact resolvent, and thus a discrete spectrum. On the other, it implies a
uniform estimate on the eigenfunctions of ∆̃h. Using this estimate, and some
standard spectral theorems, we prove the following.

Theorem 1.14. Let phnqně0 be a sequence that goes to 0 and punqně0 be a
sequence of normalized eigenfunctions of ∆̃h. Let pµnqně0 be the associated
sequence of eigenvalues. Assume that the sequence pµnqně0 is bounded. Then,
the following assertions hold true.

1. There exist a subsequence pµnk
qkě0 that converges to an eigenvalue of

∆0, say λ.

2. Up to extracting a subsequence, punk
qkě0 (that corresponds to pµnk

qkě0)
converges to v0 in H l

ωpMq for any l, and v0 is an eigenfunction of ∆0

associated to λ.

This theorem will be restated as theorem 4.20. As a corollary, we get

Theorem 1.15. Denote by pλkqkě0 and pλ̃kphqqkě0 the ordered spectrum of
∆0 and ∆̃h respectively, counted with multiplicities. Then, for any k ě 0
fixed, we have

lim
hÑ0

λ̃kphq “ λk. (1.14)

This theorem will be restated as theorem 4.21.

1.3 Some Comments On The Results

We give some comments on our results. All these comments will be made
precise in the sequel.

We point out that theorem 1.5 (spectral sufficient condition) does not
depend directly on the Baouendi Grushin operator, but on some properties
satisfied by this operator. So, this theorem could be generalized as a suffi-
cient condition for the validity of concentration inequalities for other general
operators.

Now, concerning the main theorem (theorem 1.8), Kato’s theory of an-
alytic perturbation is needed, as we use the Hellmann–Feynman theorem.

13



Chapter 1. Introduction

However, what we do here, is that we give the theory for finite-dimensional
case in the appendices, and prove a generalization in the infinite-dimensional
case adapted to our framework. We shall see also, that this theorem works
on a torus.

Regarding the second part, we should point out, that the volume form
induced from the approximation scheme (which is in some sense adapted to
the subriemannian structure) is not canonical (or intrinsic) to the subrieman-
nian structure. We shall see that this volume form depends on our choice of
the vector fields that span the tangent space.

Finally, let’s comment a little about the convergence of the spectrum.
First notice that our main theorem is about ordered spectrum, and not about
eigenbranches (though, we shall see that in the fixed volume form case, the
convergence of eigenbranches is true).

Now, To prove the theorems on the convergence of spectrum of ∆̃h, we
first prove the results for ∆h which is defined with respect to dω instead
of dvolgh. Dealing with dvolgh is a harder task because the presence of h-
dependent function fh will interrupt some uniform estimates. This difficulty
will be surpassed due to the equiregularity assumption mainly. Without
this assumption, things get much more difficult. Indeed, our results for the
convergence of spectrum works only in an equiregular settings.

In the non-equiangular setting, where the singular set Z is non-empty,
many things will fail to work. For instance, MzZ is not compact anymore,
and it is not clear whether the subelliptic estimate (1.13) remains true. As
a consequence, we have no idea now if p∆0, C8

0 pMzZqq is essentially self-
adjoint. It is worth noting that some authors have studied this question,
and proved that basically, some conditions on the singular set Z implies the
essential selfadjointness of p∆0, C8

0 pMzZqq (see [15][16][35][72]).

1.4 Comparizon With Previous Results

Although similar, there are several differences between corollary 1.1.1 by
Letrouit [62] and our result. First of all, as explained to be the crucial point
here, is that our approach is purely spectral, while his approach is geometric
(depends on geometric conditions). Second, the settings are different. Indeed
here, we deal with the generalized Baouendi Grushin operator, for a general
class of potentials V, and prove the validity of the concentration inequality
on the infinite cylinder, an unbounded domain, which dealing with usually is

14



Chapter 1. Introduction

harder than dealing with bounded domains (we will also see that our results
hold on a torus for instance).

Concerning the approximation scheme, as said earlier, although the vol-
ume form induced from it is not canonical to the subriemannian structure,
but subjected to a good choice of vector fields, it gives a ’nice’ volume form
to deal with.

Moreover, a particular (a very good) choice of the complement of D0

implies that this volume form induced from the approximation scheme is the
Popp’s volume. As we can see, theorem 1.12 actually gives a way to compute
Popp’s volume, other than that given by the authors in [13]. What we have
to do, is to write the matrices Ai, write the matrix G´1

h using proposition
1.9, and compute the determinant. Then, using the growth vector we deduce
the function fh. We deduce Popp’s volume using theorem 1.12 after taking
the limit as h Ñ 0.

Finally, our convergence result is much more general than that of Ge in
[40]. In fact, our setup is more adapted to the subriemannian setting; for
instance, the dilation taken is associated to the vector space Di, 0 ď i ď r.
It implies the existence of the function fh which needs a special treatment.
In [40], the setting was adapted somehow to the proof; the volume form
he ended up with is, expressed in our notations, hcdω for some constant c.
This is because in [40], the author supposed that the initial vector fields are
always a spanning linearly independent set (basis) which means that D0 is
of constant rank. Here, we had no assumption on the rank of D0, which can
be spanned with a random number of vector fields.

1.5 Plan Of The Manuscript

Here we give the plan of the manuscript, where we explain the contents of
every chapter.

• Chapter 2: This chapter is dedicated to studying the concentration
inequality for the generalized Baouendi Grushin operator.

– In section 2.1, we give some definitions and notations. We then
restate and prove theorem 1.5.

– In section 2.2, we investigate the example Px2`s2 and prove theo-
rems 1.6 and 1.7 (and deduce corollary 1.7.1).

15
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– In section 2.3, we study the general case, and prove theorem 1.8.

– In section 2.4, we briefly explain why our result holds true on a
torus.

• Chapter 3: This chapter is dedicated to studying the approximation
scheme, and the volume form it induces.

– In section 3.1, I recall some important definitions, that form the
keywords for the chapter. I then introduce my framework.

– In section 3.2, we introduce our approximation scheme. In par-
ticular, we prove that gh is a family of Riemannian metrics, and
then adapt the proof of [40] to prove the convergence of distances.

– In section 3.3, we study the volume form dvolgh. In particular, we
prove proposition 1.9 and theorem 1.10 and their consequences.

– In section 3.4, we define Popp’s volume and compare it to our
volume form. In particular, we prove theorem 1.3.

• Chapter 4: This chapter is dedicated to studying the convergence of
the spectrum.

– In section 4.2, we study the subelliptic estimates in both cases:
fixed volume form and dvolgh.

– In section 4.3, we prove theorems 1.14 and 1.15.

We will see that our work is based on the finite dimensional pertur-
bation theory, and will use some fundamental theorems from spectral
theory. For that, we write the appendices that are divided into:

• Chapter A: In this chapter, we give some basic preliminaries in spectral
theory that are frequently used in the manuscript.

– In section A.1, we give some general well-known theorems.

– In section A.2, we study the Schrödinger operator.

– In section A.3, we state some well-known boundedness theorems
for pseudo-differential operators.

• Chapter B: In this chapter, we briefly give Kato’s perturbation theory
in the finite dimensional setting.
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• Throughout chapters 3 and 4, I give examples that are standard in the
context of subriemannian geometry. I basically apply my results to
the Grushin case, Heisenberg case, and the Martinet case which are all
typical almost Riemannian structures (see definition 3.1.1.2).

Table 1.1: Table of Notation

cardtu Cardinal of the set
f “ Opgq at x0 limxÑx0pfpxq{gpxqq ď c
f “ opgq at x0 limxÑx0pfpxq{gpxqq “ 0
f„g near x0 fpxq “ gpxq ` opgpxqq at x0

multpEq multiplicity of an eigenvalue E
T will always denote an operator

specpT q spectrum of T
kerpT q kernel of a function T
ImpT q Image of a function T

δi,j kronecker delta
supppuq support of a function u

At transpose of a matrix A
detpAq determinant of a matrix A
Miˆj space of i ˆ j matrices

dimpV q dimension of a vector space V
D there exist(s)
@ for all

DpMq space of test functions on M
D 1pMq space of distributions on M (dual space of DpMq)

|u|n Euclidean norm of a vector u P Rn given by p
řn

i“1 u
2
i q

1
2
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Chapter 2
Eigenvalue Multiplicity And
Concentration Properties Of
Baouendi-Grushin Operators

We prove a generic simplicity result on the multiplicity of the eigenvalues
of the generalized Baouendi Grushin operator that implies the validity of
concentration inequality for eigenfunctions.

2.1 Introduction

Studying concentration inequalities for eigenfunctions is studying whether
the magnitude of the eigenfunctions on the manifold can be controlled by
its magnitude on some sub-domain. Mathematically speaking, for a smooth
connected manifold M , an operator T defined on L2pMq is said to satisfy the
concentration inequality on a subset N of M (control region) if

DcpNq ą 0, @E P specpT q, @ϕ P kerpT ´ Eq, ∥ϕ∥L2pMq
ď cpNq∥ϕ∥L2pNq

.

(2.1)
Here, we consider the generalized Baouendi Grushin operator on an infinite
cylinder and study the validity of the concentration inequality on a horizontal
strip of the infinite cylinder. We prove that a certain spectral condition is
sufficient for the concentration inequality and that this spectral condition
holds for a generic Baouendi-Grushin operator. First, we introduce our setup
and define the Generalized Baouendi Grushin Operator.

19



Chapter 2. Eigenvalue Multiplicity And Concentration Properties Of
Baouendi-Grushin Operators

2.1.1 Definitions And Notations

Denote by X the infinite cylinder in R2, X “ R ˆ S1, with fundamental
domain R ˆ r´π, πs, and by w “ R ˆ ra, bs, a horizontal strip along X. We
define the following (sub)spaces:

• Denote by L2
0pXq, the Hilbert space defined as

L2
0pXq “

"

u : X Ñ R;
ż

X

|upx, yq|
2dxdy ă ∞,

ż

S1
upx, yqdy “ 0

*

,

(2.2)
equipped with the usual L2 norm. Note that the last condition in the
definition of L2

0pXq is equivalent to saying that L2
0pXq is the orthogonal

complement, in L2pXq, of the functions that only depend on x. We
will see later that this condition is necessary for PV to have a discrete
spectrum.

• Denote by C∞
c,0pXq the set of smooth functions of compact support on

X that are in L2
0pXq, equipped with the supremum norm on X.

• Define the uniform norm on R as follows

∥W∥∞ :“∥W∥L∞pRq
:“ sup

xPR
|W pxq|. (2.3)

• Denote by C0
b pRq the space of continuous bounded functions on R,

equipped with the uniform norm on R.

• Denote by C∞
c pRq the space of smooth functions with compact support

on R, equipped with the uniform norm on R.

• Denote by W the subspace of C∞
c pRq, W “ tW P C∞

c pRq;W ě 0u,
equipped with the uniform norm defined by (2.3).

2.1.1.1 The Generalized Baouendi Grushin Operator

We introduce the set

V :“ tV “ x2W̃ ; W̃ P C0
b pRq, W̃ ě 1u.
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For V P V, we set X1 “ Bx and X2 “
?
V By. We define the generalized

Baouendi-Grushin (hypoelliptic) operator as

PV :“ ´X2
1 ´ X2

2 “ ´B
2
x ´ V pxqB

2
y . (2.4)

The operator PV with domain C∞
c,0pXq is essentially self-adjoint on L2

0pXq

and the unique self-adjoint extension with domain

D “ tu P L2
0pXq; B

2
xu P L2

pXq, V pxqB
2
yu P L2

pXqu, (2.5)

has compact resolvent (see remark 2.1 below). Consequently, its spectrum
consists of an increasing sequence of positive (as the operator is self-adjoint
and bounded from below by 0) eigenvalues with finite multiplicity, that con-
verges to `∞.

Although it is not our interest in this chapter, it is good to note that if
we denote by g the subriemannian metric associated to C “ tX1, X2u, then
pX,C , gq is a 2 almost-Riemannian structure (see subsection 3.1.1.2, Chapter
3).

2.1.1.2 One Dimensional Schrödinger Operator

For a non-negative continuous function V satisfying lim|x|Ñ`∞ V pxq “ `∞,
define the one dimensional (parameter dependent) Schrödinger operator

P k
V :“ ´B

2
x ` k2V pxq,

with domain C∞
c pRq, defined on L2pRq (the usual Sobolev space on R). It

is well-known that the operator pP k
V , C∞

c pRqq is essentially self-adjoint, and
that the domain of the self-adjoint extension satisfies

DV Ă tu P H1
pRq, V

1
2u P L2

pRqu,

where H1pRq “ tu P L2pRq;u1 P L2pRqu. For k ‰ 0, this operator has com-
pact resolvent. For sake of completion, we give a proof in Appendix A.2.
Consequently, the spectrum of P k

V consists in an increasing sequence of posi-
tive (as the operator is self-adjoint and bounded from below by 0) eigenvalues
with finite multiplicity, that converges to `∞, and L2pRq has an orthonormal
basis that consists of eigenfunctions.
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2.1.2 Geometric Control Condition

A well-known sufficient condition for the concentration inequality is the so-
called Geometric Control Condition of Bardos-Lebeau-Rauch introduced in
[12] (see also [23]). This condition says that all the trajectories of the gener-
alized geodesic flow will enter the control region before some time.
This condition is not necessary in general. In [46] for instance, the authors
proved that the L2 norm of the eigenfunction on a neighborhood U of the
vertices, where the geometric control condition fails, is controlled by a con-
stant c “ cpUq multiplied by the norm on the polygonal domain (see also
[51]).
In our case, the Hamiltonian associated to Ps is

Hpx, y, ξ, ηq “ ´ξ2 ´ px2 ` s2qη2,

where pξ, ηq are the coordinates dual to px, yq (that is px, y, ξ, ηq are the
coordinated of the cotangent bundle T ˚X). The geodesics between the points
px0, y0q and px1, y1q are the projections onto the px, yq´plane of the solutions
to the Hamiltonian system

$

’

’

’

’

&

’

’

’

’

%

9x “ Hξ “ ´2ξ

9y “ Hη “ ´2px2 ` s2qη
9ξ “ ´Hx “ ´2xη2

9η “ ´Hy “ 0,

(2.6)

with the boundary conditions xp0q “ x0, yp0q “ y0, xp1q “ x1 and yp1q “ y1,
where the dot denotes the variation with respect to the time parameter t.
System (2.6) implies that η “ cst “ η0 and 9y “ ´2px2 ` s2qη0. If η “ 0, then
y0 “ y1, and

xptq “ tpx1 ´ x0q ` x0, yptq ” y0, t P r0, 1s

is the unique geodesic joining px0, y0q to px1, y0q (for detailed information
about geodesics of Grushin operator, see [28][29]).
Thus, if y0 R ra, bs, then the control domain w doesn’t satisfy the geometric
control condition (it will never enter w for any t ą 0).

Here, we investigate a purely spectral condition that serves as a sufficient
condition for the validity of concentration inequalities for eigenfunctions of
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the Baouendi Grushin operators on an arbitrary horizontal strip of the infi-
nite cylinder. To be more specific, our interest here is not the concentration
inequality itself (that could be known in the case where V pxq “ x2 by us-
ing some involved geometric methods), but in deriving a spectral condition
leading to it.

2.1.3 Spectral Sufficient Condition

Let’s first note that there exists a basis of eigenfunctions of PV of the form

ϕpx, yq “ φkpxqeiky k P Z˚,

with φk P L2pRq. Indeed, it is well-known that if two operators T and T̃
commute, that is T T̃ “ T̃ T , then one can find a joint eigenfunction for the
two operators (see [11][41]). As the potential V is independent of y, then
PV and B2

y commutes. The eigenfunctions of B2
y have the form φkpxqeiky with

k P Z, so there exists k P Z˚ (the Hilbert space is L2
0pXq and so functions that

are independent of y are excluded, which is the case when k “ 0) such that
φkpxqeiky is an eigenfunction of PV . Substituting in the eigenvalue equation,
this implies that φkpxq is an eigenfunction of the one-dimensional Schrödinger
operator P k

V . Then φkpxq “ φk,jpxq corresponds to the jth eigenvalue of P k
V

for some j P N. For a fixed k, we can choose a family of orthonormal
eigenfunctions tφk,jpxqujPN that form a basis to L2pRq.
Now, since teikyukPZ˚ is an orthogonal basis to L2pS1q, we get that

tφk,jpxqeikyujPN,kPZ˚

is an orthogonal basis to L2pRˆ S1q. Indeed, for any u P L2pRˆ S1q, we can
write upx, yq “

ř

kPZ˚ ukpxqeiky, with

ukpxq “ Fpuqpx, kq “
1

2π

ż

S1
upx, yqe´ikydy,

where Fpuq here denotes the Fourier transform of u on the circle. Suppose
now, that for any j P N, k P Z˚,

xu, φk,jpxqeikyyL2pRˆS1q “ 0. (2.7)
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We compute

xukpxq, φk,jyL2pRq “

ż

R
ukpxqφk,jpxqdx

“
1

2π

ż

R

ż

S1
upx, yqe´ikyφk,jpxqdxdy

“ 0,

where the last equality is by (2.7). Consequently, since for any k P Z˚,
pφk,jqjPN is an orthonormal basis, we get that uk “ 0 for any k which implies
that u “ 0.
So, tφk,jpxqeikyukPZ˚, jPN is an eigenbasis for L2pR ˆ S1q, and so they cover
all the eigenvalues of PV . The eigenvalue equation implies that

specpPV q “
ď

kPZ˚

specpP k
V q. (2.8)

This method is called separation of variables and it works for any second
order operator satisfying the above description, which shows the importance
of V being independent of y.

Also, observe that P k
V “ P´k

V , so if we denote by φlpxq an eigenfunction
corresponding to the lth eigenvalue of P k

V , then since we can write the eigen-
functions of PV using separation of variables, φlpxqeiky and φlpxqe´iky are
both eigenfunctions that correspond to the same eigenvalue of PV and so the
multiplicity of any eigenvalue of PV is at least two (we recall that k ‰ 0).

Remark 2.1. Using this transition between PV and P k
V , one can deduce that

PV with domain C∞
0 pXq is essentially self-adjoint. Indeed, PV is positive

(semi-bounded from below), so it is enough to prove that

kerpP ˚
V ` 1q “ t0u. (2.9)

Let u P L2
0pXq be such that for any φ P C∞

c,0pXq

xu, pPV ` 1qφyL2
0pXq “ 0.

We write u “
ř

kPZ˚ ukpxqeiky and take the test function of the form ψpxqeiky,
then we have that

@ψ P CcpRq, xuk, pP
k
V ` 1qψyL2pRq “ 0.
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As P k
V is essentially self-adjoint, this implies that uk “ 0 which gives that

u “ 0. Then (2.9) holds true. Therefore, pPV , C
∞
0 pXqq is essentially self-

adjoint.
Moreover, since pPV , Dq is self-adjoint and has a discrete spectrum (which

is the union of the spectrum of P k
V ), then it has a compact resolvent (using

the spectral theorem, the resolvent operator can be written as a limit of finite
rank operators).

A sufficient condition for PV to satisfy the concentration inequality is
given in the following proposition.

Theorem 2.2. Suppose that all the eigenvalues of PV are of multiplicity 2.
Then the concentration inequality holds true for w “ Rˆsa, br:

DC ą 0, @E ě 0, @ϕ P kerpPV ´ Eq, }ϕ}L2pXq ď C}ϕ}L2pwq.

Proof. Let E be an eigenvalue of PV . If multpEq “ 2, then any eigenfunction
of E can be written as

ϕpx, yq “ αφkpxqeiky ` βφ´kpxqe´iky
“ φkpxqpαeiky ` βe´iky

q,

where the last equality is because φk “ φ´k (see the paragraph before this
proposition).
We will explicitly compute ∥ϕ∥2L2pwq

. First, write

α “ α0 ` iα1 and β “ β0 ` iβ1, α0, α1, β0, β1 P R.

Observe that ϕpx, yq has the following expression:

ϕpx, yq “ φkpxq
“

pα0 ` iα1qpcospkyq ` i sinpkyqq

` pβ0 ` iβ1qpcospkyq ´ i sinpkyqq
‰

“ φkpxq
“

pα0 ` β0q cospkyq ` pβ1 ´ α1q sinpkyq

` i
`

pα1 ` β1q cospkyq ` pα0 ´ β0q sinpkyq
˘

ı

.

Now, direct computation for |ϕpx, yq| gives that

|ϕpx, yq|
2

“ ℜpϕpx, yqq
2

` ℑpϕpx, yqq
2

“ |φkpxq|
2
“

κ1 cos
2
pkyq ` κ2 sin

2
pkyq ` 2κ3 cospkyq sinpkyq

‰

,
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where κ1 “ pα0 ` β0q2 ` pα1 ` β1q2, κ2 “ pα0 ´ β0q
2 ` pα1 ´ β1q

2, and

κ3 “ pα0 ` β0qp´α1 ` β1q ` pα0 ´ β0qpα1 ` β1q “ 2pα0β1 ´ α1β0q.

We compute

∥ϕ∥2L2pwq
“∥φk∥2L2pRq

«

κ1

ż b

a

cos2pkyqdy ` κ2

ż b

a

sin2
pkyqdy

` 2κ3

ż b

a

cospkyq sinpkyqdy

ff

“∥φk∥2L2pRq

«

pκ1 ´ κ2q
fpkq

4k
` pκ1 ` κ2q

ˆ

b ´ a

2

˙

` κ3
gpkq

k

ff

,

with fpkq “ sinp2bkq ´ sinp2akq and gpkq “ cos2pakq ´ cos2pbkq.
Taking a “ ´π and b “ π, we deduce that

∥ϕ∥2L2pXq
“ π∥φk∥2L2pRq

pκ1 ` κ2q.

So, we get that,

∥ϕ∥2L2pwq

∥ϕ∥2L2pXq

“
κ1 ´ κ2
κ1 ` κ2

fpkq

4πk
`
b ´ a

2π
`

κ3
κ1 ` κ2

gpkq

πk
. (2.10)

Note that the constants κ1, κ2 and κ3 depend on k. The functions fpkq and
gpkq are functions of sine and cosine so they are bounded. Also, the term
|κ1´κ2

κ1`κ2
| is bounded above by 1 and so, the first term of (2.10) converges to 0

as k Ñ ∞.
Now, observe that

κ1 ` κ2 “ 2pα2
0 ` β2

0 ` α2
1 ` β2

1q.

Then, we have
κ3

κ1 ` κ2
ď

1

2
(2.11)

Indeed, we explicitly write

κ3
κ1 ` κ2

“
2pα0β1 ´ α1β0q

2pα2
0 ` β2

0 ` α2
1 ` β2

1q
,
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and observe that, as

pα2
0 ` β2

0 ` α2
1 ` β2

1q ´ 2pα0β1 ´ α1β0q “ pα0 ´ β1q
2

` pα1 ` β0q
2

ě 0

we get that
2pα0β1 ´ α1β0q ď α2

0 ` β2
0 ` α2

1 ` β2
1 .

This implies (2.11). Thus, the last term of (2.10) converges to 0 as k Ñ ∞.
We deduce that

lim
EÑ∞

»

—

–

min
0‰ϕPkerpPV ´Eq

¨

˝

∥ϕ∥2L2pwq

∥ϕ∥2L2pXq

˛

‚

fi

ffi

fl

“ lim
kÑ∞

«

min
α,β

ˆ

κ1 ´ κ2
κ1 ` κ2

fpkq

2πk
`
b ´ a

2π

`
κ3

κ1 ` κ2

gpkq

πk

˙

ff

“
b ´ a

2π
ą 0.

(2.12)

It remains to prove that (2.12) implies that the concentration inequality
holds true. Suppose that the concentration inequality doesn’t hold, that
is, for all c ą 0, there exists E P specpPV q and 0 ‰ ϕ P kerpPV ´ Eq

such that c∥ϕ∥2L2pwq
ă ∥ϕ∥2L2pXq

. Take c “ cn “ n. This implies that there

exists a sequence of eigenvalues pEnqnPN and a sequence of corresponding
eigenfunctions pϕnqnPN of PV such that

min
ϕPkerpPV ´Enqzt0u

¨

˝

∥ϕ∥2L2pwq

∥ϕ∥2L2pXq

˛

‚ď
∥ϕn∥2L2pwq

∥ϕn∥2L2pXq

ď
1

n
.

We then observe that

@n, min
ϕPkerpPV ´Enqzt0u

¨

˝

∥ϕ∥2L2pwq

∥ϕ∥2L2pXq

˛

‚ą 0

so that, necessarily, En Ñ ∞ when n Ñ ∞. We get that

lim
EnÑ∞

»

—

–

min
0‰ϕPkerpPV ´Enq

¨

˝

∥ϕ∥2L2pwq

∥ϕ∥2L2pXq

˛

‚

fi

ffi

fl

“ 0,

which contradicts (2.12).

The condition in theorem 2.2 is not true in general. For a better vision
of the problem of multiplicity, we study first the simple Grushin operator.
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2.2 Study Of An Example

We denote by Ps the operator

Px2`s2 “ ´B
2
x ´ px2 ` s2qB

2
y ,

defined on D given by (2.5). For s “ 0, this is a Baouendi-Grushin operator,
whereas for s ą 0, it is elliptic. Since the preceding proposition principally
depends on separating the variables of eigenfunctions of the operator and not
really on the Baouendi Grushin operator itself, it also applies to any s.

In this section, we investigate the eigenvalues of Ps and the multiplicities
of the eigenvalues according to s.

We first compute explicitly the spectrum of Ps. Denote by P k
s the one

dimensional Schrödinger operator defined by

P k
s upxq :“ P k

x2`s2upxq “ ´B
2
xupxq ` k2px2 ` s2qupxq.

Recall that P k
s with domain C∞

c pRq is essentially self-adjoint and that the
domain of the unique self-adjoint extension is

Dx Ă tu P H1
pRq, px2 ` s2q

1{2u P L2
pRqu.

Moreover, pP k
s ,Dxq has compact resolvent. Its spectrum is discrete and con-

sists of eigenvalues.

Proposition 2.3. The spectrum of Ps is given by the set

specpPsq “ tEs
k,n “ p2n ` 1q|k| ` k2s2;n P N, k P Z˚

u. (2.13)

An orthonormal basis of eigenfunction corresponding to Es
k,n is given by

ϕk,npx, yq “ φk,npxqeiky, with

φk,npxq “ |k|
1{4Hn

´

x
a

|k|

¯

e
´x2|k|

2 eiky,

where Hn is the Hermite polynomial of degree n, given by

Hn
pxq “ p´1q

nex
2 Bn

Bxn
e´x2

.
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Proof. Let ϕpx, yq “ φkpxqeiky, k P Z˚, be an eigenfunction of Ps and let Es

be its corresponding eigenfunction. The eigenvalue equation

Psϕ “ Esϕ

implies that Es “ Es
k is an eigenvalue of P k

s with a corresponding eigenfunc-
tion φk.
Observe that, the eigenvalue equation implies that Es

k “ E0
k `k2s2, where E0

k

is an eigenvalue of the 1-D harmonic oscillator ´B2
x ` k2x2, with correspond-

ing eigenfunction φk. The spectrum of the harmonic oscillator is well-known
and given by tp2n ` 1q|k|;n P N, k P Z˚u. Moreover, the function φk,n given
by

φk,npxq “ |k|
1{4Hn

px
a

|k|qe
´x2|k|

2 , (2.14)

is an eigenfunction corresponding to p2n ` 1q|k|. Refer to [49, Chapter 11]
or [84, Chapter 6] for details about the harmonic oscillator.
Then, for every k P Z˚, the nth eigenvalue of P k

s is Es
k,n “ p2n` 1q|k| ` k2s2,

with a corresponding eigenfunction is given by (2.14).
Therefore, the spectrum of Ps is given by (2.13), with a set of correspond-

ing eigenvectors tφk,npxqeikyukPZ˚ . Since these eigenfunctions span the space
L2
0pXq, they cover all the eigenvalues of Ps. We conclude.

To study the multiplicity of eigenvalues, it is usually helpful to study the
Weyl law, which will be described here by studying the asymptotic behavior
of the counting function. The counting function NPs takes a positive real
number and counts the number of eigenvalues of Ps less than or equal to this
number. In other words, we can write for E ą 0,

NPspEq “
ÿ

Es
k,nďE

1,

where the sum is taken over the eigenvalues Es
k,n of Ps.

Proposition 2.4. [Weyl Law] The following assertions hold true.

1. For s “ 0, NP0pEq “ E lnpEq ` OpEq at infinity.

2. For s ‰ 0, NPspEq “ E lnp
?
Eq ` OpEq at infinity.

Proof. Denote by r.s the upper integer part function which takes a real num-
ber and gives the first integer greater than or equal to this number. Denote
by t.u the lower integer part function which takes a real number and gives
the first integer less than or equal to this number
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1. We compute

NP0pEq “ cardtpn, kq P N ˆ Z˚
{p2n ` 1q|k| ď Eu

“ 2cardtpn, kq P N ˆ N˚
{p2n ` 1q|k| ď Eu

“ 2
ÿ

0ăkďE

card

"

n P N{p2n ` 1q ď
E

k

*

“ 2
ÿ

0ăkďE

R

E

2k

V

,

Now, since
E

2k
ď

R

E

2k

V

ď
E

2k
` 1,

then

E
ÿ

0ăkďE

1

k
ď 2

ÿ

0ăkďE

R

E

2k

V

ď E
ÿ

0ăkďE

1

k
` 2E.

As E Ñ ∞,
ÿ

0ăkďE

1

k
“ lnpEq ` Op1q.

Since E is negligible at infinity compared to E lnpEq, we get NP0pEq “

E lnpEq ` OpEq.

2. We set α “ min

˜

E,

?
E

s

¸

, and we compute

NPspEq “ cardtpn, kq P N ˆ Z˚
{p2n ` 1q|k| ` k2s2 ď Eu

“ 2cardtpn, kq P N ˆ N˚
{p2n ` 1q|k| ` k2s2 ď Eu

“ 2
ÿ

0ăkďα

card

#

n P N{p2n ` 1q ď
E ´ k2s2

k

+

“ 2
ÿ

0ăkďα

S

E ´ k2s2

2k

W

.

Since
E ´ k2s2

2k
ď

S

E ´ k2s2

2k

W

ď
E ´ k2s2

2k
` 1,
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then

E

¨

˝

ÿ

0ăkďα

1

k

˛

‚´ s2

¨

˝

ÿ

0ăkďα

k

˛

‚ď 2
ÿ

0ăkďα

S

E ´ k2s2

2k

W

ď E

¨

˝

ÿ

0ăkďα

1

k

˛

‚´ s2

¨

˝

ÿ

0ăkďα

k

˛

‚` 2E.

Finally, we get

E

¨

˝

ÿ

0ăkďα

1

k

˛

‚´
s2tαuptαu ` 1q

2
ď 2

ÿ

0ăkďα

S

E ´ k2s2

2k

W

ď E

¨

˝

ÿ

0ăkďα

1

k

˛

‚´
s2tαuptαu ` 1q

2
` 2E.

As E Ñ ∞, we have α “
?
E
s
, and so we get NPspEq “ E lnp

?
Eq `

OpEq.

Corollary 2.4.1. If s is fixed such that s2 is rational, then the multiplicity
is not, in general, uniformly bounded.

Proof. If s2 “ 0, we write the prime factorisation E0
k,n “ 2k0pα1

1 ...p
αr
r for an

eigenvalue E0
k,n. With the convention that

ř0
1 “

ř´1
1 “ 0, we have

multpEq “ 2

»

—

–

r
ÿ

i“1

αi `

r´1
ÿ

j“1

αj

¨

˝

r
ÿ

k“j`1

αk

˛

‚` 1

fi

ffi

fl

. (2.15)

Indeed, for s “ 0, the eigenvalues are of the form p2n` 1q|k| with n P N and
k P Z. The factor 2 outside the brackets is because of the fact that E0

k,n “

E0
´k,n. Now, every prime number but 2 (and that’s why we distinguished 2)

is an odd integer, and the product of two odd integers is odd. So,

the term 2n ` 1 can be
r
ź

i“1

pjii for any 0 ď ji ď αi.
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The first sum on the right-hand side of (2.15) represents the number of the
cases with ji “ 0 for all i but one. The second term of the right-hand side
covers the number of cases where ji is not zero at least for two i1s, and k is
not 2k0 . Finally, the 1 is for the case where k “ 2k0 (ji “ αi for all i). This
covers all the cases. Formula (2.15) implies that for s “ 0, the multiplicity
is not bounded.

Take now s2 “
p
q
, with 1 as the greatest common factor of p and q and

p ‰ 0. Then, we have

specpPsq “ tp2n` 1q|k| ` k2s2, pn, kq P N ˆ Z˚
u Ă tα` βs2, α, β P Zu Ă

1

q
Z.

Assume, for a contradiction, that the multiplicity is bounded above by some

M . Then, for any E, and since the spectrum is a subset of
1

q
Z, we have

NPsp2Eq ´ NPspEq ď MqE.

But the previous proposition implies that

NPsp2Eq ´ NPspEq “ E ln
?
E ` OpEq.

This yields the contradiction.

In particular, the multiplicity of eigenvalues of the simple Grushin oper-
ator Px2 is not uniformly bounded.

Proposition 2.5. If s2 is irrational, then the eigenvalues of Ps are of mul-
tiplicity 2.

Proof. Suppose that Ps has an eigenvalue of multiplicity greater than 2. Then
there exists k, k1 ą 0, n, n1 ą 0 with k2 ‰ k12, n ‰ n1 such that

p2n ` 1q|k| ` k2s2 “ p2n1
` 1q|k1

| ` k12s2.

Then,

s2 “
p2n1 ` 1q|k1| ´ p2n ` 1q|k|

k2 ´ k12
,

which contradicts the fact that s2 is irrational.

Therefore, as a corollary of theorem 2.2, we have
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Corollary 2.5.1. If s2 is irrational, then (2.1) holds.

To sum up, we showed that whenever s2 is irrational the multiplicity of
the eigenvalues of Ps is 2, which implies by the spectral condition that the
concentration inequality holds. Moreover, we proved that whenever s2 is
rational, the multiplicity is not uniformly bounded, and thus the spectral
condition fails. This means that the spectral condition is not true in general.
This example gave the inspiration to study the spectral condition generically
for general Grushin operators.

2.3 General Case

Let’s first briefly recall our setting. Recall that W “ tW P C∞
c pRq;W ě 0u

equipped with the uniform norm on R, and that the set V is given by

V “ tV “ x2W̃ ; W̃ P C0
b pRq; W̃ ě 1u.

On V, we put the following norm: for V “ x2W P V, we define the norm
∥V ∥V :“∥W∥∞.
For V P V, consider the generalized Baouendi-Grushin operator PV “ ´B2

x ´

V pxqB2
y , with domain

D “ tu P L2
0pXq; B

2
xu P L2

pXq, V pxqB
2
yu P L2

pXqu.

Recall that P k
V denotes the one dimensional Schrödinger operator P k

V “ ´B2
x`

k2V pxq.
Let (P) be the property:

@k, l P Z˚; k2 ‰ l2 ñ specpP k
V q X specpP l

V q “ H (P).

We can see from (2.8) that if (P) holds, then multpEq “ 2 for all E P

specpPV q, thus (2.1) holds by theorem 2.2. As said earlier in the general
introduction, we are studying the validity of a simplicity result for the non-
elliptic Baouendi Grushin operators that is of course not true in general
(as shown in section 2.2). However, we prove the validity of the spectral
condition for a generic Baouendi Grushin operator.
A general result of simplicity of eigenvalues for elliptic operators was first
discussed by Albert in his thesis [6] and published later for two dimensional
case in his paper [7]. Later, Uhlenbeck showed that the theorem does hold in
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all dimensions [81][82]. This work inspired us to prove a variation on Albert’s
methods in [8] to prove a similar result for the subelliptic operator PV .
Explicitly speaking, we prove that for a generic V , multpPV q “ 2, that is, if
we denote by Vb the set of bad V 1s that do not satisfy the property (P);

Vb :“ tV P V; (P) doesn’t hold u,

then the complement of Vb in V is residual in pV,∥.∥Vq (the intersection of
open dense sets in V).

Informally speaking, the proof goes by constructing a countable fam-
ily of open and dense sets in V such that the complement of Vb in V is
equal to the countable intersection of these sets. To prove the density, we
will need some lemmas whose proofs rely on the Hellmann–Feynman the-
orem (lemma 2.11 below) applied to the family P k

V `tx2W . However, to use
the Hellmann–Feynman theorem, we have to prove that the eigenvalues and
eigenvectors of P k

V `tx2W are analytic in t.

In appendix B, we state and prove the well-known Kato’s perturbation
theorem in finite dimensional case, which gives the analyticity of eigenquan-
tities of a perturbed finite dimensional operator (references are given there).

Here, we are dealing with infinite dimensional operators. Kato proved
that his theory applies to the infinite dimensional problems (see [54, Chap-
ter 7]). However, for the convenience of the reader and self-consistence, we
give a proof that is adapted to our settings; we prove a generalization of
Kato’s theorem into our -infinite dimensional- case, that guarantees the an-
alyticity of eigenvalues (and eigenvectors) of P k

V `tx2W .
Denote by H the Hilbert space L2pRq, equipped with the usual L2 norm.

For V P V, denote by λkmpV q the mth eigenvalue of P k
V .

2.3.1 Analyticity Of Eigenvalues And Hellmann–Feynman
Theorem

We will prove in this section, that for t positive small enough, the spectrum
of P k

V `tx2W coincides, in an interval, with the spectrum of a finite dimensional
analytic operator (theorem 2.10 below).
In this section, we simply write λmpV q for λkmpV q as there will not be any
confusion about the corresponding operator.
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Proposition 2.6 (Continuity Of Spectrum). Fix V P V. Let pVnqně1 be a
sequence of functions in V that converges to V in ∥.∥V. Then, for any m and
any ϵ ą 0 there exist nm,ϵ, such that for all n ě nm,ϵ,

|λmpVnq ´ λmpV q| ă 2ϵ. (2.16)

Proof. Write Vn “ V `x2Wn, whereWn is a sequence of continuous bounded
functions that converge uniformly to 0 on R. Observe that

ˇ

ˇ

ˇ

ˇ

Vn ´ V

V

ˇ

ˇ

ˇ

ˇ

ď |Wn|,

since V pxq{x2 ě 1.
For F subset of the domain of P k

V , denote by ΛV the following map

ΛV pF q “ max
uPF
u‰0

#

xP k
V u, uyH

∥u∥2H

+

.

Fix m and let F be the subspace spanned by the first m eigenvectors of PV .
We compute

xP k
Vn
u, uyH “ xP k

V u, uyH ` k2
ż

R
x2Wn|u|

2

ď ΛV pF q ` k2
ż

R
V

|Vn ´ V |

V
|u|

2

ď p1 ` }Wn}8qλmpV q.

Taking the maximum over all functions u P F , we get that

λmpVnq ´ λmpV q ď λmpV q}Wn}8.

Exchanging the roles of Vn and V , we obtain

λmpV q ´ λmpVnq ď λmpVnq}Wn}8 ď λmpV q}Wn}8p1 ` }Wn}8q.

Since }Wn}8 tends to 0, we conclude (2.16).

A crucial point for proving our main result in this chapter is theorem 2.10
below, which, as explained previously, is a generalization of analyticity result
to an infinite dimensional case adapted to our setting. Informally speaking,
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we prove that the eigenvalues of the operator PV `tx2W in an interval coincide
with those of a finite dimensional analytic operator. For that, we define
an isomorphism using the spectral projection for the perturbed operator.
So, we need to define this spectral projection. Precisely, fix some m P N.
For W P W, we need to define the spectral projection ΠW for the operator
P k
V `x2W , defined as

ΠW “
1

2πi

ż

Γ

pPV `x2W ´ µq
´1dµ, (2.17)

for some Γ containing no eigenvalues of P k
V `x2W .

Denote by κm the distance from λmpV q to the rest of the spectrum of P k
V ,

i.e.
κm “ dist

´

λmpV q, specpP k
V qzλmpV q

¯

.

For any W P W satisfying ∥∥x2W∥∥
∞ ă

κm
|k|2

, (2.18)

we define the intervals J` and J´ as

J` “

ı

λmpV q ` |k|
∥∥x2W∥∥

∞ , λmpV q ` κm

”

,

J` “

ı

λmpV q ´ κm, λmpV q ´ |k|
∥∥x2W∥∥

∞

”

.

Proposition 2.7. For any W P W satisfying (2.18), for any J Ă J´ Y J`

we have µ P J implies µ R specpP k
V `x2W q.

Proof. Let W P W satisfying (2.18). P k
V is an unbounded self-adjoint opera-

tor. Then, for µ P J (which is a subset of the resolvent set of P k
V ), pP k

V ´µq´1

is bounded normal operator and the spectral radius coincides with the norm
of the resolvent, that is,∥∥∥pP k

V ´ µq
´1
∥∥∥
LpHq

“ sup
!

|µ|, µ P specppP k
V ´ µq

´1
q

)

“
1

distpµ, specpP k
V qq

,

(2.19)
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where LpHq denotes the space of linear bounded functions from H to H.
Let u P H, and let v “ pP k

V ´ µq´1u. We compute∥∥∥pP k
V `x2W ´ P k

V qpP k
V ´ µq

´1u
∥∥∥2

H
“

∥∥∥pP k
V `x2W ´ P k

V qv
∥∥∥2

H

“ k4
∥∥x2Wv

∥∥2

H ď k4
∥∥x2W∥∥2

∞∥v∥2H

ď
k4

distpµ, specpP k
V qq2

∥∥x2W∥∥2

∞∥u∥2H .

Now, for µ P J´ Y J`, we have that

distpµ, specpP k
V qq ą |k|

2
∥∥x2W∥∥

∞ . (2.20)

Therefore,∥∥∥pP k
V `x2W ´ P k

V qpP k
V ´ µq

´1
∥∥∥
LpHq

ď
k2

distpµ, specpP k
V qq

∥∥x2W∥∥
∞ ă 1.

Then by Neumann lemma, pI ` pP k
V `x2W ´ P k

V qpP k
V ´ µq´1q is invertible.

Now, we have

I “ pP k
V ´ µqpP k

V ´ µq
´1

“ pP k
V ´ µqpP k

V ´ µq
´1

` pP k
V `x2W ´ µqpP k

V ´ µq
´1

´ pP k
V `x2W ´ µqpP k

V ´ µq
´1

“ pP k
V `x2W ´ µqpP k

V ´ µq
´1

´ pP k
V `x2W ´ µ ` µ ´ P k

V qpP k
V ´ µq

´1

“ pP k
V `x2W ´ µqpP k

V ´ µq
´1

´ pP k
V `x2W ´ P k

V qpP k
V ´ µq

´1.

This implies that

I ` pP k
V `x2W ´ P k

V qpP k
V ´ µq

´1
“ pP k

V `x2W ´ µqpP k
V ´ µq

´1.

We conclude that P k
V `x2W ´ µ is invertible and thus µ R specpP k

V `x2W q.

Hereafter, whenever we use ΠW , a convenient contour Γ is taken, that is,
Γptq X R Ă J´ Y J`.
To prove analyticity, and besides defining the spectral projection, we will
need the following lemma concerning the convergence of the spectrum of the
family pP k

V `tnx2W qně1.
We need first the following theorem which is standard in spectral theory, and
which will be used in this chapter and later in chapter 4.
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Theorem 2.8. Let T be a self-adjoint operator with domain DpT q in a
Hilbert space H equipped with the norm ∥.∥H . Then λ P specpT q if and only
if there exists a sequence punqně1 P DpT q such that ∥un∥H “ 1 and

lim
nÑ∞

∥pT ´ λqun∥H “ 0.

Proof. First, let λ P specpT q. If λ is an eigenvalue of T , we take un “ f{∥f∥H
for any f in the eigenspace of λ.
If kerpT ´ λq “ 0, then since T is self-adjoint, we have

RanpT ´ λq “ H,

and so we define the unbounded operator B “ pT ´ λq´1 as: dompBq “

RanpT q and For any y P dompBq, x “ By is the unique element x such
that Tx “ y. Consequently, there exists a sequence tvnu P DpT q such that
∥vn∥H “ 1 and

∥∥pT ´ λq´1vn
∥∥ Ñ ∞. Define

un “
pT ´ λq´1vn

∥pT ´ λq´1vn∥H
.

Clearly, tunu is the required sequence.
Conversely, let λ be in the resolvent set of T . Then there exists M ą 0

such that for any v P H,∥∥pT ´ λq
´1v

∥∥
H

ď M∥v∥H .

let u “ pT ´ λq´1v P DpT q. We have

∥u∥H ď M∥pT ´ λqu∥H .

The existence of a sequence of normal vectors punqn in DpT q such that
∥pT ´ λqun∥H Ñ 0 implies that 1 ď 0 which is a contradiction.

Lemma 2.9. Fix V P V and W P W. Let ttnuně1 be a sequence in R that
converges to 0. Let pφtnqně1 be a sequence of orthonormal eigenfunctions
of P k

V `tnx2W . Denote by pλnqně1 the corresponding sequence of eigenvalues.
Suppose that there exists M P R such that for all n, |λn| ă M . Then, up to
extracting a subsequence,

λn Ñ λ P specpP k
V q. (2.21)

Moreover, φtn has a subsequence that converges strongly in H to the eigen-
function of P k

V corresponding to λ.
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Proof. By Bolzano-Weierstrass theorem, pλnqně1 has a subsequence, say pλnj
qjě1

that converges to some λ P R as j Ñ 8.

We have: φtnj
P DV `tnjx

2W “ DV (tx2W P L∞pRq) with
∥∥∥φtnj

∥∥∥
H

“ 1. More-
over,∥∥∥pP k

V ´ λqφtnj

∥∥∥
H

ď

∥∥∥pP k
V `tnjx

2W ´ λqφtnj

∥∥∥
H

` k2|tnj
|

∥∥∥x2Wφtnj

∥∥∥
H

ď |λn ´ λ| ` k2|tnj
|
∥∥x2W∥∥

∞ Ñ 0.

By theorem 2.8, we get (2.21).
Now, since the sequence pφnj

qjě1 :“ pφtnj
qjě1 is bounded in H, it has a

subsequence that converges weakly to some φ1 P H. For any φ̃ P DV , we
compute

xP k
V φ1, φ̃yH “ xpP k

V ´ P k
V `tnjx

2W qφ1, φ̃yH ` xP k
V `tnjx

2W pφ1 ´ φnj
q, φ̃yH ` xP k

V `tnjx
2Wφnj

, φ̃yH

“ xpP k
V ´ P k

V `tnjx
2W qφ1, φ̃yH ` xpφ1 ´ φnj

q, P k
V `tnjx

2W φ̃yH ` λnj
xφnj

, φ̃yH.

As j Ñ `8, the right-hand side converges to xλφ1, φ̃yH for any φ̃ P DV , and
therefore, for all φ̃ P DV ,

xpP k
V ´ λqφ1, φ̃yH “ 0.

This implies that pλ, φ1q is an eigenpair of the self-adjoint operator P k
V , pro-

vided that ϕ1 ‰ 0.
Finally, we prove that φnj

converges to φ1 strongly in H (which will
also imply that }φ1}H “ 1). For any µ R specpP k

V `tnjx
2W q, pP k

V `tnjx
2W q´1 is

compact which implies that

pP k
V `tnjx

2W q
´1φnj

Ñ pP k
V q

´1φ1 as j Ñ ∞.

This implies, using the eigenvalue equations, that

1

λnj
´ µ

φnj
Ñ

1

λ ´ µ
φ1.

We conclude by observing that

∥∥φnj
´ φ1

∥∥
H ď |λnj

´µ|

¨∥̋∥∥∥∥ 1

λnj
´ µ

φnj
´

1

λ ´ µ
φ1

∥∥∥∥∥
H

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

λnj
´ µ

´
1

λ ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

∥φ1∥H

˛

‚.
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Now, we state the theorem that implies the analyticity of eigenvalues of
P k
V `tx2W .

Theorem 2.10. Fix V P V and W P W and suppose without loss of gener-
ality that the support of W is r´1, 1s. For any 0 ă ϵ ă κm, denote by Iϵ the
interval

Iϵ “sλmpV q ´ ϵ, λmpV q ` ϵr.

Then, for all 0 ă ϵ ă κm, there exists δ ą 0, and an analytic family of finite
dimensional operators, P̃ ϵ

t such that for all |t| ă min
␣

δ, κm{pk2∥W∥∞q
(

, we
have

specpP̃ ϵ
t q X Iϵ “ specpP k

V `tx2W q X Iϵ. (2.22)

Proof. Denote by V0 the eigenspace corresponding to the eigenvalue λmpV q,
and set d0 “ dimpV0q (which is equal to the multiplicity of λmpV q). For any

|t| ă κm{pk2∥W∥∞q, (2.23)

denote by Vϵ
t the total eigenspace corresponding to the operator P k

V `tx2W in
Iϵ, and by by Π0 and Πϵ

t the orthogonal projections on V0 and Vϵ
t respectively.

For all t satisfying (2.23), define the operator Ψϵ
t

Ψϵ
t : V0 Ñ Vϵ

t

φ ÞÑ Πϵ
tΠ0φ.

We prove that Ψϵ
t is an isomorphism and then construct a family of operators

using Ψϵ
t satisfying (2.22).

First, we prove that for each ϵ, the operator Ψϵ
t is an isomorphism from V0

to Vϵ
t . One way to do it is to prove that V0 and Vϵ

t have the same dimension
and that Ψϵ

t maps a basis of the subspace V0 to a basis of the subspace Vϵ
t .

Fix some ϵ ą 0. We first prove that dimpVϵ
t q ě d0. We compute

Ψϵ
t “ Π0Π

ϵ
t

“
1

p2iπq2

ż

Γw

ż

Γz

pP k
V `tx2W ´ zq

´1
pP k

V ´ wq
´1dzdw

“
1

p2iπq2

«

ż

Γw

ż

Γz

pP k
V `tx2W ´ zq´1

z ´ w
dzdw ´

ż

Γw

ż

Γz

pP k
V ´ wq´1

z ´ w
dzdw ` Rt

ff

,
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where

Rt “

ż

Γw

ż

Γz

pP k
V `tx2W ´ zq´1pP k

V `tx2W ´ P k
V qpP k

V ´ wq´1

z ´ w
dzdw.

If we choose Γz inside Γw (i.e. inside the area encircled by Γw), then pP k
V `tx2W´

zq´1{pz ´ wq is holomorphic and so by Cauchy integral theorem, its integral
on Γz is 0. Moreover, we apply the Cauchy integral formula on the second
term to deduce that

Ψϵ
t “ Π0 ` Rt.

Now, we compute

∥Rt∥LpHq
ď |t||k|

∥∥x2W∥∥
∞

ż

Γw

ż

Γz

∥∥∥pP k
V `tx2W ´ zq´1

∥∥∥
LpHq

∥∥pP k
V ´ wq´1

∥∥
LpHq

|z ´ w|
|dz||dw|

ď |t||k|
∥∥x2W∥∥

∞

ż

Γw

ż

Γz

1

distpz, specpP k
V `tx2W qq

1

distpw, specpP k
V qq

|dz||dw|

|z ´ w|

ď |t||k|
∥∥x2W∥∥

∞
κm
2

κm
2

sup
z,w

ˆ

1

|z ´ w|

˙

AzAw :“ Ct,

where Az and Aw are the total arclengths of the contours Γz and Γw respec-
tively, and C is a constant that doesn’t depend on t.
So, for any φ P H, we get

∥Rtφ∥H “ op∥φ∥Hq as t Ñ 0.

Now, let tφ0
1, ..., φ

0
d0

u be an orthonormal basis for V0. For 1 ď i ď d0, let
φ̃iptq “ Ψϵ

tpφ
0
i q. For any i, j “ 1, ..., d0, we compute

xφ̃iptq, φ̃jptqy “ xΨϵ
tφ

0
i ,Ψ

ϵ
tφ

0
jy

“ xΠ0φ
0
i ` Rφ0

i ,Π0φ
0
j ` Rφ0

jy

“ δi,j ` op1q t Ñ 0.

Thus, tφ̃iptqui“1...d0 is a set of linearly independent vectors in Vϵ
t , and so

dimpVϵ
t q ě d0.

Moreover, there exist δ such that PV `tx2W has exactly d0 eigenvalues in Iϵ
for all t ă δ. Indeed, suppose to contrary, that for all δ, there exist t ă δ
such that P k

V `tx2W has d0 ` 1 eigenvalues in Iϵ. Let δn be a sequence that
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converges to 0. Then, there exist a sequence tn, that converges to 0, such
that P k

V `tnx2W has d0 ` 1 eigenvalues in Iϵ. We denote these eigenvalues and
a corresponding set of orthonormal eigenfunctions by

tλn1 , ..., λ
n
d0`1u and tφn

1 , ..., φ
n
d0`1u respectively .

For 1 ď j ď d0 ` 1, consider the sequence pλnj qně1. We get d0 ` 1 bounded
(by Iϵ) sequences which by lemma 2.21, converge (up to a subsequence) to
an eigenvalue of the limiting operator P k

V . If we consider now the set of
corresponding orthonormal sequences of eigenfunctions, then for any j “

1, ..., d0 ` 1, again by lemma 2.21, the sequence pφn
j qně1 converges in H to

the eigenfunction of λj (the limiting eigenvalue). If we denote by φj the
eigenfunction corresponding to λj for j “ 1, ..., d0 ` 1, we get that for any
i, j “ 1, ..., d0 ` 1,

xφi, φjyH “ lim
nÑ∞

xφn
i , φ

n
j yH “ δji ,

by the orthonormality of tφn
1 , ..., φ

n
d0`1u, and so, if i ‰ j, we have xφi, φjyH “

0 (which implies the orthonormality of tφ1, ..., φd0`1u). This implies that
d0 “ d0 ` 1, which is a contradiction. Therefore, dimpVϵ

t q “ d0 “ dimpV0q.
Finally, we deduce that the set tφ̃iptqui“1...d0 is a basis for Vϵ

t and therefore,
Ψϵ

t is an isomorphism form V0 to Vϵ
t .

Now, we introduce the family of finite dimensional operators P̃ ϵ
t as

P̃ ϵ
t : V0 Ñ V0

φ ÞÑ pΨϵ
tq

´1P k
V `tx2WΨϵ

tφ.

Then P̃ ϵ
t satisfies (2.22). Indeed, if ξptq P specpP̃ ϵ

t q X Iϵ then ξptq P Iϵ and
there exists u P V0 such that P̃ ϵ

t u “ ξptqu. So, by definition, we get that
pΨϵ

tq
´1P k

V `tx2WΨϵ
tu “ ξptqu, which implies that

P k
V `tx2WΨϵ

tu “ ξptqΨϵ
tu.

Thus, ξptq is an eigenvalue of P k
V `tx2W with eigenfunction Ψϵ

tu P Vϵ
t . In

particular, ξptq P specpP k
V `tx2W q X Iϵ. Therefore

specpP̃ ϵ
t q X Iϵ Ă specpP k

V `tx2W q X Iϵ.

The same argument starting with ξptq P specpP k
V `tx2W qXIϵ implies the second

direction.
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It remains to prove that P̃t is analytic. If we denote by Rpt, ζq the resol-
vent operator

Rpt, ζq “ pP k
V `tx2W ´ ζq

´1

for ζ R specpP k
V `tx2W q, then, for ζ0 R specpP k

V q we get the relation

Rpt, ζq
´1

“ p1 ´ pζ ´ ζ0 ´ pP k
V `tx2W ´ P k

V qqRp0, ζ0qqpP k
V ´ ζ0q.

So, for |t| small enough and ζ close to ζ0, p1´pζ´ζ0´pP k
V `tx2W ´P k

V qqRp0, ζ0qq

is invertible by Neumann’s lemma and we can write the inverse as Neumann
series. This implies the analyticity of Rpt, ζq near 0. Moreover, using the
formula (2.17), we get that the projection is analytic and thus Ψt is (see
section B.3.2). Then, P̃t is a composition of analytic functions and thus
analytic.

The preceding theorem implies that for t small enough, the eigenvalues of
the operator P k

V `tx2W coincide with those of the finite dimensional analytic
operator P̃t. Using the analytic perturbation theory in finite dimensional
case, the eigenvalues of P k

V `tx2W are analytic.
Finally, we proved in the same theorem, that Ψt is an isomorphism from

Vt to V0. Then Ψ´1
t is an isomorphism from V0 to Vt, and it maps the basis

of V0 to the basis of Vt. This implies, by the analyticity of Ψt that the
eigenfunctions of P k

V `tx2W are analytic.
As we proved the analyticity of the eigenvalues and eigenfunctions of

P k
V `tx2W , we can now apply the Hellmann–Feynman theorem, which we now

state and prove.

Lemma 2.11 (Hellmann–Feynman). Let λptq be an eigenbranch of P k
V `tx2W ,

and denote by uptq a normalized eigenfunction branch of λptq. Then,

d

dt
λptq “

C

uptq,

ˆ

d

dt
P k
V `tx2W

˙

uptq

G

.

Proof. Write the eigenvalue equation:

P k
V `tx2Wuptq “ λptquptq. (2.24)
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Multiply by uptq and then differentiate in t to get

d

dt
λptq “

d

dt
xuptq, P k

V `tx2Wuptqy

“

B

d

dt
uptq, P k

V `tx2Wuptq

F

`

B

uptq,
d

dt

´

P k
V `tx2Wuptq

¯

F

“ λptq
d

dt
xuptq, uptqy `

C

uptq,

ˆ

d

dt
P k
V `tx2W

˙

uptq

G

“

C

uptq,

ˆ

d

dt
P k
V `tx2W

˙

uptq

G

.

(2.25)

Remark 2.12. Following the same proof, we can show that whenever uptq
and vptq are two orthogonal eigenfunction branches that correspond to λptq,
we have

xuptq,

ˆ

d

dt
P k
V `tx2W

˙

vptqy “ 0.

This is because, by orthogonality, the left-hand side of (2.25) is zero.

Finally, before proving the genericity of the spectral condition for Baouendi
Grushin operators, we give a very well-known lemma which will be essential
for what follows.

Lemma 2.13. Any two analytic functions on R either coincide or intersect
on a countable set of points.

Proof. By identity theorem for analytic functions, if two analytic functions
coincide on a subset of R that has an accumulation point, then the two func-
tions coincide on R. Since any uncountable subset of R has an accumulation
point, we conclude.

2.3.2 Generic Simplicity Result

To prove our main theorem, we need to give a series of lemmas, that will
build the proof at the end.
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Lemma 2.14. Let g P L1
locpRq (locally integrable). If for all W P W,

ż

R
W pxqgpxqdx “ 0,

then g “ 0 almost everywhere.

Proof. Denote by 1ra,bs the indicator function of the interval ra, bs, and by φ
the standard mollifier

φpxq “

$

&

%

ce
1

x2´1 if ´ 1 ď x ď 1

0 elsewhere
,

where c is for normalization. For ϵ ď 1, the function

Wϵ :“ φϵ ˚ 1ra,bs :“
1

ϵ
φ

ˆ

x

ϵ

˙

˚ 1ra,bs

is in W: smooth, non-negative, its support is subset of ra ´ ϵ, b ` ϵs Ă

ra ´ 1, b ` 1s. Moreover, it converges as ϵ Ñ 0 pointwise to 1ra,bs (this is
true by the properties of a mollifier, also called approximation of identity).
Now, since g is locally integrable, we apply Lebesgue dominated convergence
theorem to deduce that

lim
ϵÑ0

ż

R
Wϵpxqgpxqdx “

ż b

a

gpxqdx.

The left-hand side of the preceding equation is 0 by assumption, so
şb

a
gpxqdx “

0. This is true for arbitrary a, b which implies that g “ 0 a.e. in R.

It is well-known that the Schrödinger operator has simple eigenvalues on
the line (see [70] for instance), but this is not the case on the circle nor on
Rn for n ą 1. So, for a moment, we forget that we are working on R and we
prove the following lemma on Rn for n ą 1, which is a variation of Albert’s
arguments in [8] (also, it is not hard to see that it remains true on S1). In
the following lemma, x2 will denote ∥x∥2.
Remark that lemma 2.14 holds true on Rn.

Lemma 2.15. Fix V P V and k P Z˚. Let λ be an eigenvalue of P k
V of

multiplicity m. Then, the following assertions hold true.
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1. There exists W P W such that P k
V `tx2W has an eigenbranch starting

from λ of multiplicity strictly less than m.

2. If we denote by κ “ distpλ, specpP k
V qq, then there exists t0 ą 0 and

W P W such that for all 0 ă t ď t0, P
k
V `tx2W has m simple eigenvalues

in I “sλ ´ κ
2
, λ ` κ

2
r.

Proof. 1. Fix W P W. By analytic perturbation, the eigenvalue λ splits
into m eigenbranches (not necessarily distinct) of P k

V `tx2W (this fact
can be extracted from the proof of lemma 2.10 when we proved that
dimpVϵ

t q “ dimpV0q) .
Suppose that the eigenbranches are identical, and denote this eigen-
branch by λptq (λp0q “ λ). This means that we can find m orthonor-
mal eigenfunction branches tu1ptq, ..., umptqu associated to λptq. If we
denote by Eλ the eigenspace of λ in P k

V , then U “ tu1p0q, ..., ump0qu is
an orthonormal basis of Eλ.
Denote by 9q the quadratic form, defined on Eλ by

9qpuq “ k2
ż

Rn

x2W pxq|upxq|
2dx.

Hellmann–Feynman theorem (theorem 2.11) implies that at t “ 0, we
have

9λp0q “ 9qpuip0qq, @1 ď i ď m,

where the dot represents the derivative with respect to t. Moreover,
using remark 2.12, we get that for any i ‰ j,

0 “ 9qpuip0q, ujp0qq,

where we used the same notation for the corresponding symmetric bi-
linear form. Thus the matrix AU :“ r 9qpuip0q, ujp0qqs1ďi,jďm satisfies

AU “ 9λp0qI, where I is the m ˆ m identity matrix.
So, for any orthonormal basis V “ tv1, ..., vmu of Eλ, The matrix AV
is a multiple of the identity matrix. Indeed, the matrices AU and AV
are related as follows: if we denote by P the matrix of change of basis
between U and V , then, as U and V are sets of orthonormal vectors, P
is orthogonal (that is P tP “ I), and

AV “ P tAUP “ 9λp0qP tP “ 9λp0qI.
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Now, fix V “ tv1, ..., vmu an orthonormal basis of Eλ, and suppose that
for any W P W, the m eigenbranches of P k

V `tx2W are identical. Then,
for any W P W, there exists a constant that depend on W , cpW q, such
that

k2
ż

Rn

x2W pxqvipxqvjpxqdx “ cpW qδji . (2.26)

This implies, by lemma 2.14, that for any i ‰ j,

@x P Rn, |vipxq|
2

“ |vjpxq|
2.

Then,
@x P Rn, v1pxq “ ˘v2pxq. (2.27)

Moreover, (2.26) implies that

@x P Rn, v1pxqv2pxq “ 0. (2.28)

Thus, (2.27) and (2.28) implies that @x P Rn, ˘v1pxq2 “ 0 which
implies that v1 “ 0; a contradiction as v1 is normal.

2. We prove this by induction onm. Assume first thatm “ 2. by part one
of this lemma, there isW P W such that P k

V `tx2W has an eigenbranch of
multiplicity strictly less than 2. This means that the two eigenbranches
are simple1. We choose t small enough so that by proposition 2.7, the
eigenvalues of PV `tx2W are simple and in I.

Suppose this is true for m´1. We prove it for m. Using part one of this
lemma, there exists a W0 P W such that P k

V `tx2W0
has an eigenbranch

of multiplicity strictly less than m.
Now, there might be several groups of identical eigenbranches. Lets
enumerate them as

Λ1 “ tλ11ptq “ ... “ λm1
1 ptqu,Λ2 “ tλ12ptq “ ... “ λm2

2 ptqu, ...

where 1 ď mi ď m ´ 1 for all 1 ď i ď m
2
. Now, since two analytic

functions are either identical for all t or intersect only on countable
set (lemma 2.13), and since the eigenbranch representing Λ1 is differ-
ent than those representing Λ2, then by the analyticity of the eigen-
branches, we can choose t0 small enough so that by proposition 2.7,

1For eigenbranches, simple means there are no two identical eigenbranches. They may
intersect at a countable set of t however.
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PV `t0x2W0
has an eigenvalue of multiplicity m1, an eigenvalue of multi-

plicity m2, etc. in I.
By induction hypothesis, there existsW1 P W, such that the eigenvalue
of multiplicity m1 of PV `t0x2W0

will now split into m1 distinct eigen-
branches of PV `x2pt0W0`tW1q in I. Now, as these eigenbranches were
split by the first place from those in Λi for 2 ď i ď m

2
, then again by

analyticity of these eigenbranches, they can not, under a perturbation,
come back again identical (at least they are different at t “ 0).
Now, choosing t1 small enough (so that the condition of proposition 2.7
is now true for t0W0 ` t1W1), PV `x2pt0W0`t1W1q have m1 simple eigen-
values and another eigenvalues of multiplicity possibly greater than 1
in I.
Proceeding with the same argument for any set of identical eigen-
branches for the resulting perturbed operator, we conclude in the last
step that we can choose ti0 small enough and Wi0 P W such that
P k
V `x2pt0W0`...`ti0Wi0

q
has m distinct eigenvalues in I (where i0 is defi-

nitely less than or equal m
2
).

in fact, the preceding construction of the W 1s implies the following
statement: Di0 ď m

2
, Dt1, ..., ti0 , @sj ď tj, j ď i0, DWjpsj ´ 1q, such that

P k
V `x2ps0W0`s1W1ps0q`...`si0Wi0

psi0´1qq has simple eigenvalues in I. (2.29)

This concludes the proof.

Lemma 2.16. Fix V P V, and k, l P Z˚ such that k2 ‰ l2. Let λ be a
common simple eigenvalue for P k

V and P l
V (simple in both spectrums). Then,

there exists W P W, such that the eigenbranch starting from λ of P k
V `tW and

the eigenbranch starting from λ of P l
V `tW are not identical.

Proof. Suppose that for any W P W, the eigenbranch of P k
V `x2tW starting

from λ is identical to the eigenbranch of P l
V `x2tW starting from λ. Denote

this eigenbranch by λptq pλp0q “ λq, and denote by upt,W q (resp. vpt,W q) a
corresponding normalized eigenfunction branch for P k

V `x2tW (resp. P l
V `x2tW ).

Then, if we denote by Ek
λ and El

λ the eigenspace that corresponds to λ in P k
V

and P l
V respectively, then up0,W q and vp0,W q are orthonormal basis for Ek

λ

and El
λ respectively.

Applying Hellmann–Feynman theorem at t “ 0, we get that

9λp0q “ k2
ż

R
x2W pxq|up0,W qpxq|

2dx “ l2
ż

R
x2W pxq|vp0,W qpxq|

2dx. (2.30)
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Since Ek
λ and El

λ are one dimensional, then up0,W q and vp0,W q are inde-
pendent of W . This implies that for any W P W,

k2
ż

R
x2W pxq|up0qpxq|

2dx “ l2
ż

R
x2W pxq|vp0qpxq|

2dx. (2.31)

By lemma 2.14, (2.31) implies that

k2x2|up0qpxq|
2

“ l2x2|vp0qpxq|
2 a.e.

Thus, as up0q and vp0q are normalized, we get that k2 “ l2 which is a
contradiction.

We give now a lemma about the stability of simple eigenvalues under
small perturbations.

Lemma 2.17. Fix V P V. Suppose that P k
V has m simple eigenvalues in an

interval I. Then, for a small enough perturbation of the operator P k
V , the m

eigenvalues of the perturbed operator in I remain simple.

Proof. Define the set

T “ tV P V;P k
V has m simple eigenvalues in Iu.

We want to prove that the set T is open in V. Let V P T and let Vj P V
such that Vj converges to V in pV,∥.∥Vq.
We first show that there exists j0 ą 0 such that for all j ě j0, Vj P T . Indeed,
by proposition 2.7, there is j1 small enough such that for all j ď j1, P

k
Vj

has
m eigenvalues in I.
Denote by tλ1pV q, ..., λmpV qu and tλ1pVjq, ..., λmpVjqu the m eigenvalues in
I of P k

V and P k
V `Vj

(for j ď j1) respectively.
Moreover, by proposition 2.6 (continuity of the spectrum), for any ϵ ą 0
there exists jϵ ą 0 such that for all j ě jϵ we have

|λipVjq ´ λipV q| ă 2ϵ i “ 1, ...,m.

Let

δ “ min
i‰l

i,lPt1,...,mu

|λipV q ´ λlpV q| ą 0
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and take ϵ “
δ

4
ą 0. For any j ą j0 :“ mintj1, jϵu, we compute

δ ď |λipV q ´ λlpV q|

ď |λipV q ´ λipVjq| ` |λipVjq ´ λlpVjq| ` |λlpVjq ´ λlpV q|

ă δ ` |λipVjq ´ λlpVjq|.

Thus for any j ě j0, |λipVjq ´ λlpVjq| ą 0 which implies that λipVjq ‰ λlpVjq
for any i ‰ l. We deduce that for any j ě j0, Vj P T .
Now, suppose that T is not open in V. Then for any V P T , there exists
ϵ ą 0 such that BpV, ϵq Ć T . Apply the condition repeatedly with ϵ “ 1

j
, we

get that there is a sequence Vj such that∥∥V ´ Vj
∥∥
V ď

1

j
and Vj P T c,

where T c is the complement of T in V. This implies that there exists a
sequence Vj that converges to V but is not in T for any j which is a contra-
diction. Therefore, T is open in V and we conclude.

Finally, before (re-)stating and proving our main theorem, we define a
Baire space and state Baire’s category theorem.

Definition 2.18. A topological space is called a Baire space if every countable
intersection of dense open sets is dense.

Lemma 2.19 (Baire’s Category Theorem). Every completely metrizable topo-
logical space is a Baire space.

Proof. Refer to [55] for a proof.

Corollary 2.19.1. For V “ x2W P V, we recall the norm ∥V ∥V :“ ∥W∥∞.
The space V equipped with the norm ∥.∥V is a Baire space.

Proof. We prove that the metric space pV,∥.∥Vq is complete.
Let pVnqně1 “ px2Wnqně1 be a Cauchy sequence in pV,∥.∥Vq. Then, for any
ϵ ą 0, there exist n0 P N such that for all m,n ě n0, we have

∥Vn ´ Vm∥V ă ϵ.

This implies that for any ϵ ą 0, there exist n0 P N such that for all m,n ě n0,

∥Wn ´ Wm∥∞ “∥Vn ´ Vm∥V ă ϵ,
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which gives that pWnqně1 is a Cauchy sequence in pC0
b pRq,∥.∥∞q which is a

complete space. So, Wn converges to some W in C0
b pRq uniformly. Finally,

we get, for V “ x2W (which is clearly in V), that

∥Vn ´ V ∥V “∥Wn ´ W∥∞ Ñ 0.

We conclude that pVnqně1 is convergent in pV,∥.∥Vq and therefore the space
pV,∥.∥Vq is a complete metric space (metric induced from the norm). Using
lemma 2.19, pV,∥.∥Vq is a Baire space.

Recall that we say that a subset is residual in a metric space if it is the
countable intersection of open dense sets. We now state and prove our main
result in this chapter.

Theorem 2.20. The complement of Vb in V is residual in V.

Proof. Define the set

Ok,l,n “ tV P V; specnpP k
V q X specnpP l

V q “ Hu Ă V,

where specnpP k
V q (resp. specnpP k

V q) denotes the first n eigenvalues of P k
V

(resp. P k
V ) counted without multiplicity. By definition, the set of the good

V 1s satisfying the property (P) is the intersection over all k, l, n of Ok,l,n. We
prove that Ok,l,n is open and dense in V.

The set Ok,l,n is open in V. Indeed, take V P Ok,l,n. Let pVjqjě1 be a
sequence in V that converges to V in ∥.∥V. We first prove that there exists
j0 ą 0 such that for all j ě j0, Vj P Ok,l,n.
Recall that λkmpV q and λlmpV q denote the mth eigenvalue of P k

V and P l
V re-

spectively. Since pVjqjě1 converges to V in V, then by proposition 2.6, for any
ϵ ą 0, there exists jk ą 0 and jl ą 0 such that for all j ě jk,l :“ maxtjk, jlu
the following inequalities hold true

|λkmpVjq ´ λkmpV q| ă 2ϵ, and |λlmpVjq ´ λlmpV q| ă 2ϵ. (2.32)

Now, let I “ t1, ..., nu and denote by

δ “ min
i1,i2PI

!

|λki1pV q ´ λli2pV q|

)

ą 0.

For ϵ “ δ
4
, there exists jk,l such that for all j ě jk,l, (2.32) implies that

δ ď |λki1pV q ´ λli2pV q|

ď |λki1pV q ´ λki1pVjq| ` |λki1pVjq ´ λli2pVjq| ` |λli2pVjq ´ λli2pV q|

ă
δ

2
` |λki1pVjq ´ λli2pVjq| `

δ

2
“ δ ` |λki1pVjq ´ λli2pVjq|.
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This implies that |λki1pVjq´λli2pVjq| ą 0 i.e. λki1pVjq ‰ λli2pVjq for all i1, i2 P I,
which means that

specnpP k
Vj

q X specnpP l
Vj

q “ H.

Therefore, for any j ě jk,l, Vj P Ok,l,n.
Now, suppose to contrary that Ok,l,n is not open, then for any V P Ok,l,n,
there exists ϵ ą 0 such that BpV, ϵq Ć Ok,l,n. Applying this condition repeat-
edly with ϵ “ 1

j
, we get that there is a sequence Vj such that∥∥Vj ´ V

∥∥
V ď

1

j
and Vj P Oc

k,l,n.

This implies that there exists a sequence Vj that converges to V but is not
in Ok,l,n for any j which is a contradiction. Therefore, Ok,l,n is open.

Moreover, The set Ok,l,n is dense in V. Indeed, let V P V with V R Ok,l,n.
Require to prove that

@ϵ ą 0, DṼϵ P Ok,l,n such that
∥∥∥V ´ Ṽϵ

∥∥∥
V

ă ϵ. (2.33)

We know that V R Ok,l,n, so there are some common eigenvalues between P k
V

and P l
V among the first n eigenvalues of each, some of which maybe be with

multiplicity greater than one. Take a common eigenvalue λ of multiplicity
m1 and m2 in P k

V and P l
V respectively. Let

κ “ mintdistpλ, specpP k
V qq, distpλ, specpP l

V qqu,

and denote by I “sλ´ κ
2
, λ` κ

2
r. By (2.29), Di0 ď m1

2
p in N˚q, Dt0, ..., ti0 ; @sj ď

tj, 0 ď j ď i0, DWj “ Wjpsj´1q P W;

P k
V `s0W0`...`si0Wi0

has m1 simple eigenvalues in I.

Now, again we do the same to obtain m2 simple eigenvalues corresponding
to l. So, Di1 ď m1

2
` m2

2
p in N˚q, Dt0, ..., ti1 ; @sj ď tj, 0 ď j ď i1, DWj :“

Wjpsj´1q P W;

P l
V `s0W0`...`si1Wi1

has m2 simple eigenvalues in I.

By stability of simple eigenvalues under small perturbations (lemma 2.17),
we get that Di1 ď m1

2
` m2

2
p in N˚q, Dt̃0, ..., t̃i1 ; @sj ď t̃j, 0 ď j ď i1, DWj :“

Wjpsj´1q P W;

P k
V `s0W0`...`si1Wi1

and P l
V `s0W0`...`si1Wi1

has m1 and m2 simple eigenvalues in I resp. .
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Now, suppose among these simple eigenvalues there are m common eigenval-
ues. Then, by lemma 2.16, there exists i2 ď m1

2
`m2

2
`mp in N˚q, Dt̃0, ..., t̃i2 ; @sj ď

t̃j, 0 ď j ď i2, DWj :“ Wjpsj´1q P W;

P k
V `s0W0`...`si2Wi2

and P l
V `s0W0`...`si2Wi2

has no common eigenvalues in I resp. .

Now, this is true for any λ in common between P k
V and P l

V . Now, applying
the same argument for the second common eigenvalue, then the third, etc...,
it yields the following: Dς P N˚, Dt0, ..., tς , @sj ď tj, j ď ς, DWj “ Wjpsj ´ 1q,
such that

¨

˝

č

r“k,l

specn

´

P r
V `x2ps0W0`s1W1ps0q`...`sςWςpsς´1qq

¯

˛

‚“ H.

Note that after dealing with the first intersection, we can freely deal with
the next one; the eigenbranches that will be extracted from the simple (with
respect to k or l) disjoint (with respect to k and l) eigenvalue we dealt with
in the previous step won’t come back identical because they were split at the
first place (by analyticity).

So, what we do to conclude, is that for any j ď ς, we choose sj small
enough so that

|sj|
∥∥x2Wjpsj´1q

∥∥
∞ ă

ϵ

ς
.

This construction implies (2.33).
Therefore, the set

Vc
b :“

č

k,l,n

Ok,l,n

is residual in V.

2.4 Baouendi Grushin Operator On A Torus

Denote by T2 “ S1 ˆ S1 the two dimensional flat torus with fundamental
domain r´π, πsx ˆ r´π, πsy. For any function f : T2 Ñ R (or C), there
corresponds one, and only one (2π-)periodic function f̃ : R2 Ñ R (or C)
given by f̃px, yq “ fpeix, eiyq.
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2.4.1 Baouendi Grushin Operator On Torus

In the previous section, when the infinite cylinder X was considered, it was
crucial to work on the space L2

0pXq which is the usual L2 space excluding the
functions that are independent on y. This is because we were working with
the one-dimensional parameter-dependent Schrödinger operator P k

V , instead
of the two-dimensional Grushin operator whose spectrum is the union over
k of the spectrum of P k

V , that at k “ 0, doesn’t have a compact resolvent.
Here, however, we are working on a Torus which is a compact manifold, and
this guarantees the compactness of the resolvent. For that, we consider the
space

L2
pT2

q “ L2
pT2,Rq “

"

f : T2
Ñ R;∥f∥L2pT2q

:“
∥∥∥f̃∥∥∥

L2pr´π,πsq
ă ∞

*

.

Denote by C0pS1q the space of continuous 2π-periodic functions on R;

C0
pS1

q “ tf : S1
Ñ R; f̃ P C0

pRqu.

We define the Baouendi Grushin operator on T2 for V P C0pS1q that looks like
x2 near 0, and vanishes nowhere in s´π, πr but on 0. A typical example would
be sin2pxq (usually, investigators consider V pxq “ 4 sin2px

2
q for normalization

so that V 2p0q “ 2). For this, it is reasonable to define the set

Ṽ “ tV pxq “ sin2
pxqW pxq;W P C0

pS1
q,W ě 1u.

On V, we put the following norm: for V “ sin2pxqW pxq P Ṽ,∥V ∥Ṽ “∥W∥∞.
For V P Ṽ, we denote by P̃V the operator P̃V “ ´B2

x ´V pxqB2
y , defined on

D̃ “ tu P L2
pT2

q; B
2
xu P L2

pT2
q, V pxqB

2
y P L2

pT2
qu.

Take a strip of the torus,

w “ r´π, πsx ˆ ra, bsy Ă r´π, πsx ˆ r´π, πsy.

Finally, we define, for V P Ṽ, the one dimensional Schrödinger operator
as P̃ k

V “ ´B2
x ´ k2V pxq, with domain

D̃V “ tu P H1
pS1

q;V
1
2u P L2

pS1
qu.

The operator pP̃ k
V , D̃V q has compact resolvent. Its spectrum consists of an

increasing sequence of positive eigenvalues.
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2.4.2 Spectral Condition

As discussed in the introduction of subsection 2.1.3, theorem 2.2 do not really
depend on the operator PV but on the fact that the eigenfunctions of PV can
be written using separation of variables. Also, the same argument about the
eigenvalues of PV being of multiplicity greater than or equal to 2 implies
that the multiplicity of the eigenvalues of P̃V are even. Thus, it follows that
theorem 2.2 is true for the operator P̃V ; that is, the spectral condition is
a sufficient condition for the validity of the concentration inequality for the
operator P̃V .

2.4.3 Analyticity Of Eigen-Quantities

The approach of proving the analyticity of the eigenbranches of the perturbed
operator P k

V `tW for t P R and W P W, does not depend, neither on the
manifold X nor on the explicit expression of V . We may just say that having
a compact support for W was important so that the x2 coefficient wouldn’t
cause any problem when integrating over R. Here however, as we work on
S1, this is not longer an issue, and so, for any t P R, V P Ṽ and

W P W̃ :“ tW P C0
pS1

q;W ě 0u,

the eigenpair of the operator P̃ k
V `t sin2 xW

are analytic in t. As a consequence,
we get the validity of the Hellmann–Feynman theorem.

2.4.4 Generic Simplicity Result

Now, denote by pP̃q the property:

@k, l P Z˚; k2 ‰ l2 ñ specpP̃ k
V q X specpP̃ l

V q “ ϕ pP̃q.

Again this property is equivalent to the validity of the spectral simplicity
condition.
As in the previous section, the general scheme is to prove that the set of the
good V 1s satisfying (P̃) is the intersection of open dense sets, Õk,l,n (which
is defined in an obvious way like Ok,l,n), in the Baire space pṼ,∥.∥Ṽq.
The proof of the openness in the previous section depends on proposition 2.6,
which is a general lemma on the continuity of eigenvalues. This proposition
holds smoothly in this case and thus the openness is okay using the exact
same argument.
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For the density, we used several lemmas; lemma 2.14, and lemmas 2.15
and 2.16 that depend only on analyticity, Hellmann–Feynman theorem and
lemma 2.14. So, what we really want to check is the validity of a version of
lemma 2.14 here.

Proposition 2.21. Let g P L1pS1q. If for all W P W̃,

ż π

´π

W pxqgpxqdx “ 0,

then g “ 0 almost everywhere in r´π, πs.

Proof. For any ra, bs Ă r´π, πs, denote by 1ra,bs the indicator function of
the interval ra, bs, which is integrable. Let φ be any mollifies and denote by
φϵpxq “ 1

ϵ
φpx

ϵ
q. Then, the sequence Wϵ :“ φϵ ˚ 1ra,bs is in W̃. Moreover, it

converges as ϵ Ñ 0 pointwise to 1ra,bs. Now, since g is integrable, we apply
Lebesgue dominated convergence theorem to deduce that

lim
ϵÑ0

ż π

´π

Wϵpxqgpxqdx “

ż b

a

gpxqdx.

The left-hand side of the preceding equation is 0 by assumption, so
şb

a
gpxqdx “

0. This is true for arbitrary ´π ď a, b ď π which implies that g “ 0 a.e. in
R.

Finally, as explained, we need the fact that Ṽ equipped with ∥.∥Ṽ is a
Baire space to conclude that the complement of Ṽb is residual in Ṽ.

Proposition 2.22. On Ṽ, define the norm ∥V ∥Ṽ :“ ∥W∥L∞pS1q
for V “

sin2pxqW . Then the space pṼ,∥.∥Ṽq is a Baire space.

Proof. By lemma 2.19, it is sufficient to prove that the metrizable space
pṼ,∥.∥Ṽq is a complete space.

Let pVnqně1 “ psin2pxqWnqně1 be a Cauchy sequence in pṼ,∥.∥Ṽq. Then the
sequence pWnqně1 is Cauchy in pC0pS1q,∥.∥L∞pS1q

q, which is a complete space.

Thus, pWnqně1 is convergent to some W in pC0pS1q,∥.∥L∞pS1q
q. This implies

that pVnqně1 is convergent in pṼ,∥.∥Ṽq to sin2pxqW . Therefore, pṼ,∥.∥Ṽq is a
complete metrizable space and thus a Baire space.
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Therefore, mimicking the same arguments in the proof of theorem 2.20,
if we denote by

Ṽg :“ tV P Ṽ; pP̃ q holds true u,

we prove that

Theorem 2.23. The set Ṽg is residual in pṼ,∥.∥Ṽq.
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Chapter 3
Riemannian Approximation Of
Subriemannian Structures

We present a general construction allowing us to see a subriemannian struc-
ture as a singular limit of Riemannian metrics. We then study how different
geometric or spectral quantities behave along this process. We prove that this
approximation scheme induces a volume form, that we compare to Popp’s
volume.

3.1 Introduction

Let M be a smooth connected manifold of dimension d and consider p smooth
vector fields X1, ..., Xp, not necessarily independent, such that they satisfy
the Hörmander condition: the vector fields X1, ..., Xp and their iterated
brackets rX i;Xjs, rX i; rXj;Xkss,... span the tangent space TmM at every
point m P M (see [50]).
Let g be the subriemannian metric associated to C “ tX1, ..., Xpu (defined
by (1.9)). The structure pM, spanpC q, gq is called a subriemannian structure.
The metric g induces a length on the set of horizontal paths, and thus a dis-
tance on M called the subriemannian distance.
To analyze functions on subriemannian manifolds, it is necessary to define
an appropriate analog of the Laplace operator. We define the sublaplacian
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associated to a smooth volume ω on M following (1.7):

∆ “

p
ÿ

i“1

X˚
i Xi “

p
ÿ

i“1

´X2
i ` divωpXiqXi, (3.1)

where divωpXiq is the divergence of Xi with respect to ω. As said earlier,
constructing an intrinsic Laplacian in this context is nontrivial due to the
lack of a globally defined metric (we can see from the expression of ∆ that
its definition depends on the volume form ω). Some natural volume forms
were defined since the question was asked in 1982 such as Popp’s volume
form [13][66] and Hausdorff volume form [2][42][65].
Simultaneously at that time, approximation schemes of subriemannian struc-
tures made an appearance as an alternate approach to study properties on
subriemannian manifolds.

We study in this chapter the possibility that an approximation scheme
induces a volume form. Moreover, we compare the induced volume form with
Popp’s volume. We first recall some definitions.

3.1.1 Definitions

We recall in this section some definitions in Riemannian and subriemannian
geometry.

3.1.1.1 Riemannian Definitions

The Riemannian definitions can be found in any book that handles Rieman-
nian geometry (see [61][71] for instance).
A Riemannian metric G on a smooth manifold M is a smoothly chosen inner
product

Gm :“ Gpmq : TmM ˆ TmM Ñ R,

on each of the tangent spaces TmM of M . The smoothness of G is in the
sense that the map m ÞÑ Gm, from M to the space of all symmetric positive
definite bilinear forms on TM ˆ TM , is smooth. Whenever convenient, we
will consider, without loss of generality, G as a quadratic form (we use the
same notation for the quadratic form and its corresponding bilinear form).
For a smooth manifold M equipped with a Riemannian metric G, we define:
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• The length associated to G of an A.C. (absolutely continuous) curve
on M , γ : r0, 1s Ñ M as

lGpγq “

ż 1

0

b

Gγptqp 9γptq, 9γptqqdt.

• The Riemannian distance between two points x and y in M as:

dRpx, yq “ inftlGpγq; γ is A.C. connecting x to yu.

• The energy functional associated to G of an A.C. curve on M , γ :
r0, 1s Ñ M as

EGpγq “

ż 1

0

Gγptqp 9γptq, 9γptqqdt.

• A geodesic as a curve which is everywhere locally a length minimizer.

3.1.1.2 Subriemannian Definitions

We follow standard subriemannian references (see [3][14][52][66]).
Let M be a smooth connected manifold.

• A distribution D on M assigns to any point m P M a vector subspace
Dpmq Ă TmM, such that Dpmq is the span of a set of smooth vector
fields evaluated at m.

• A distribution D is said to satisfy Hörmander’s condition at a point
m P M if there exists r “ rpmq (rpmq ` 1 is called the step) such that
Drpmq “ TmM , where for each 0 ď i ď r ´ 1,

Di`1pmq “ Dipmq ` rDpmq, Dipmqs, (3.2)

where we have set D0 “ D and

rDpmq, Dipmqs “ span
␣

rX, Y s : X P Dpmq, Y P Dipmq
(

.

• We say that a set of smooth vector fields on M , tX1, ..., Xpu, satisfies
Hörmander’s condition if D “ spantX1, ..., Xpu satisfies the Hörman-
der’s condition.
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• We say that two vector fields X, Y on M commute if rX, Y s “ 0.

• The vector

pdimpD0pmqq, dimpD1pmqq, ..., dimpDrpmqqq

is called the growth vector at the point m.

• We say that a point m0 is regular if the growth vector is constant in
a neighborhood of m0. Otherwise, m0 is called singular. pM,Dq is
equiregular if every point is regular.

• The equiregular region is the largest open set on which the sub-
riemannian structure is equiregular. The singular region Z of the
subriemannian structure is the complement of the equiregular region.

• We say that a vector X P TM is horizontal if Xpmq P Dpmq for any
m. We say that a curve γ is horizontal if for every t, 9γptq P Dpγptqq.

LetX1, ..., Xp be smooth vector fields and suppose thatD “ spantX1, ..., Xpu

satisfies the Hörmander condition. Then

• The subriemannian metric associated to the vector fields tX1, ..., Xpu

is the function g0 : Dpmq Ñ R Y t`∞u given by

g0mpX pmqq :“ g0pm,X pmqq “ inf

#

p
ÿ

i“1

u2i : u P Rp,
p
ÿ

i“1

uiX
i
pmq “ X pmq

+

,

with the convention that inftHu “ `∞.

• The length associated to g0 of an A.C. path γptq, t P r0, 1s is given by

lg0pγq “

ż 1

0

b

g0γptqp 9γptqqdt.

• The subriemannian distance between x and y is defined as

dsRpx, yq “ inftlg0pγq : γ is A.C. connecting x to y , γ is horizontalu.
(3.3)
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• The subriemannian structure is said to be almost Riemannian if
dimpD0q “ dimpMq at almost every point1.

The Chow–Rashevskii theorem, known as Chow’s theorem, asserts that any
two points of a connected subriemannian manifold, endowed with a bracket
generating distribution, are connected by a horizontal path in the manifold
(see [3][52]). So, dsR is a distance function on M . We set now our framework.

3.1.2 Framework

We recall that for any n P N, for any u “ pu1, ..., unq P Rn, |u|n denotes the
Euclidean norm. Denote by x., .yn the usual inner product on Rn. Hereafter,
m will always denote a point in the manifold M and for any vector field X,
Xm will denote Xpmq.

Let M be a smooth connected manifold of dimension d. Consider p
smooth vector fields X01, ..., X0p (there will not be any use for an exponent of
a vector field, so this notation won’t cause any confusion), and suppose that
D0 “ spantX01, ..., X0pu satisfies Hörmander condition at any point m P M
of step rpmq ` 1. We assume2 that rpmq admits a maximum on M and we
denote this maximum by r; i.e

r “ maxtrpmq;m P Mu.

We denote by g0 the subriemannian metric associated to the vector fields
tX01, ..., X0pu; for any m P M and Xm P D0pmq, g0 is given by

g0mpXmq :“ g0pm,Xmq “ inf

#

|u|
2
p;u P Rp,

p
ÿ

i“1

uiX
0i
m “ Xm

+

. (3.4)

Denote by d0, given by (3.3), the subriemannian distance associated to g0.
For 0 ď i ď r, Define Di as in (3.2), and denote by

nipmq :“ dimpDipmqq.

We simply write ni for nipmq when m is fixed.
For 0 ď i ď r, let Ji “ pj1, ..., ji`1q, where for any 1 ď k ď i, jk P t1, ..., i`1u.
Let

XJi “ rX0j1 , rX0j2 , r...rX0ji , X0ji`1s...ss.

1But not at every point, otherwise the structure is Riemannian.
2This is true if M is compact
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For 0 ď i ď r, we have

cardtXJi ; Ji Ă t1, ..., pu
i`1

u “ pi`1.

Hörmander condition ensures that these vector fields (for all i) span the tan-
gent space at every point.

Now, we make a selection of these vector fields that still span the tangent
space. This choice of vectors will make no significant or important difference
in the context but will make the examples we give throughout the chapter
easier (simpler) to write.
Among these vector fields, there might be a lot of zeros (either by bracketing
a vector field with itself, or by bracketing two commuting vector fields), but
whether we consider these zero vector fields or not will not make any differ-
ence in the context (see the first point of remark 3.12). So, without loss of
generality, we exclude the zero vectors.
Now, many of the vector fields XJi may be repeated the same, and many
may be colinear. This may happen in several cases. For instance, if X, Y, Z
are smooth vector fields such that Z ´ Y commutes with X, then rX,Zs “

rX, Y s ` rX,Z ´ Y s “ rX, Y s.
Another case is the following. It is clear that for any i and any Ji “

pj1, ¨ ¨ ¨ , ji, ji`1q, if we define Ĵi “ pj1, ¨ ¨ ¨ , ji`1, jiq then XĴi
“ ´XJi . In

this work, of these two vectors, we only keep one. Observe there may still
be the same vector several times but we will keep these pairs in any other
circumstances.

Since by Hörmander condition, the vectors in
Ť

i

Ť

Ji
XJi span the tangent

space, then the vectors we choose also span the tangent space. This is because
we only excluded zero vectors and colinear vectors.
Although Hörmander condition is still true, this selection will make some
differences in the context below, and when it does, we will point it out (see
for instance the second point of remark 3.12, and remark 3.25).

So, for 1 ď i ď r, we denote by Ni the cardinal of the vectors obtained by
iterative brackets of length i, of the initial vector fields, among the vectors
we chose. We enumerate them as

tX i1, ..., X iNiu.

Set N0 “ p. As we explained, by Hörmander’s condition, we have, for every
m P M that

TmM “ spantX ij
mu0ďiďr,1ďjďNi

. (3.5)
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3.2 Approximation Scheme

3.2.1 Definition Of The Scheme

Let N “ N0 ` ... ` Nr. For u P RN , we write u “ pu0, u1, ..., urq, where each
ui is of length Ni. For all h P Rzt0u and all u P RN , define the dilation δh as

δhpuq “ pu0, h
´1u1, h

´2u2, ..., h
´rurq.

For m P M , denote by σm the map σm : RN Ñ TmM, such that for u “

puiq1ďiďN P RN ,

σmpuq “

r
ÿ

i“0

Ni
ÿ

j“1

uijX
ij
m. (3.6)

For m P M , and Xm P TmM , we define the function ghm as

ghmpXmq :“ ghpm,Xmq “ inf
!

|δhu|
2
N ;u P RN , σmpuq “ Xm

)

. (3.7)

The function h ÞÑ gh is monotonically decreasing for any h ą 0. Indeed, let
pm,Xmq P TM and fix u “ pu0, ..., urq P RN such that σmpuq “ Xm. Then,
as the function h P R`˚ ÞÑ p1{h2q is strictly decreasing, we get that for all
0 ă h1 ă h2,

gh2
m pXmq ď |δh2u|

2
N “

r
ÿ

i“0

h´2i
2 |ui|

2
ă

r
ÿ

i“0

h´2i
1 |ui|

2
“ |δh1u|

2
N .

Taking the infimum over all u P RN satisfying σmpuq “ Xm, we get that, for
all 0 ă h1 ă h2,

gh2
m pXmq ď gh1

m pXmq.

We first prove that gh is a Riemannian metric. We need the following lemmas.
The first one is basic linear algebra.

Lemma 3.1. Let T : V Ñ W be a linear map and let V 1 be a subspace of V
such that V 1 is a complement of K “ kerpT q in V . Then

T 1 :“ T |V 1 : V
1

Ñ T pV q

is an isomorphism.
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Proof. Obviously, T 1 is linear and well-defined. We prove now that T 1 is
bijective.
Let u, v P V 1 such that T 1puq “ T 1pvq. Then, T pu´ vq “ T 1pu´ vq “ 0. This
implies that

u ´ v P V 1
X K “ t0u.

Thus u “ v and so T 1 is injective.
Now, let w P T pV q. Then there exist u P V such that T puq “ w. As u P V ,
then u “ u1 ` u2 with u1 P V 1, u2 P K. So,

w “ T puq “ T pu1q ` T pu2q “ T pu1q “ T 1
pu1q.

Then T 1 is surjective and therefore bijective. So T 1 is an isomorphism.

Lemma 3.2. Let M be a smooth manifold. For m P M, let V be a n
dimensional vector space equipped with a smooth inner product denoted by
x., .ym. Let te1pmq, ..., ekpmqu be linearly independent vectors in V , smooth
in m, such that, for any m P M,

dim
`

spante1pmq, ..., ekpmqu
˘

“ constant.

Let W pmq “ spante1pmq, ..., ekpmqu. Then, there exist e1pmq, ..., en´kpmq

smooth in m, such that for all m P M, they form a basis of W pmqK, where
W pmqK is the orthogonal complement of W pmq with respect to the inner
product x., .ym.

Proof. Fixm0, and let tw1, ..., wn´ku be a basis of the fixed subspaceW pm0qK.
As m moves in a neighborhood of m0, we have

spante1pmq, ..., ekpmq, w1, ..., wn´ku “ V.

Indeed, if we denote by Rpmq the representation matrix of
te1pmq, ..., ekpmq, w1, ..., wn´ku in the basis te1pm0q, ..., ekpm0q, w1, ..., wn´ku,
then Rpmq can be written as a block matrix

Rpmq :“

˜

Ik ` Φpm ´ m0q Θ
0 In´k

¸

“ In `

˜

Φpm ´ m0q Θ
0 0

¸

,

where In´k is the n´k identity matrix, Θ is a kˆn´k matrix and Φpm´m0q

is a k ˆ k matrix that, by the smoothness and the linear independence of
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ei, converges to 0 as m goes to m0. So, for m close enough to m0, and by
continuity of the determinant function, we have detpRpmqq ‰ 0.
Define now, πm as the projection on W pmq, and let, for i “ 1, ..., n ´ k,

eipmq “ wi ´ πmwi.

The family teipmqu1ďiďn´k is a basis of W pmqK. Indeed, let i ´ πm be the
orthogonal projection on W pmqK, where i represents the identity. Restrict
i ´ πm to W pm0q

K. So,

pi ´ πmq
ˇ

ˇ

W pm0qK
: W pm0q

K
Ñ W pmq

K,

where both W pm0qK and W pmqK are of dimension n ´ k. If u P kerpi ´ πmq

then u P W pmq X W pm0q
K “ t0u. This is due to the fact that

te1pmq, ..., ekpmq, w1, ..., wn´ku span V , which gives that

V “ spante1pmq, ..., ekpmqu ‘ spantw1, ..., wn´ku “ W pmq ‘ W pm0q
K.

Thus, pi ´ πmq
ˇ

ˇ

W pm0qK is an injective linear finite-dimensional operator whose

domain and range have the same dimension and so an isomorphism. So, the
image of the set tw1, ..., wn´ku by i ´ πm, which is the set teipmqui“1,...,n´k,
is a basis of W pmqK.
It remains to prove that m ÞÑ πm is smooth. Let ξ0 be a fixed vector in V .
We can write

πmpξ0q “

k
ÿ

i“1

bipmqeipmq.

We need to prove that for any i P t1, ..., ku, m ÞÑ bipmq is smooth. Since
πmpξ0q ´ ξ0 P W pmqK, then, for any j “ 1, ..., k, we have

xπmpξ0q, ejpmqym “ xξ0, ejpmqym.

This gives that

k
ÿ

i“1

bipmqxeipmq, ejpmqym “ xξ0, ejpmqym, (3.8)

for any j “ 1, ..., k. The matrix corresponding to this linear system (which
we denote Υm) is the gram matrix of x., .ym on W pmq which is invertible.
Now, since for all m, Υm is non-singular, the determinant of Υm is not zero
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and is a polynomial of the entries of Υm. Then by the smoothness of (the
entries of) Υm, p1{detpΥmqq is smooth in m. Using a similar argument, we
have that the adjugate matrix of Υm is smooth and so its inverse is. Then

bpmq :“ pbipmqqi“1,...,k “ pxξ0, ejpmqymqj“1,...,kΥ
´1
m

is the unique smooth solution of the linear system (3.8). Therefore, we con-
clude that πm is smooth in m and therefore te1pmq, ..., en´kpmqu is a smooth
basis of W pmqK.

Lemma 3.3. Let M be a smooth connected manifold of dimension d, and let
tX1, ..., XNu be N smooth vector fields that span the tangent space at every
point. Recall the definition of σm given by (3.6).
The function G defined on TM by

GmpXmq “ inft|u|
2
N ;u P RN , σmpuq “ Xmu

is a Riemannian metric on M .

Proof. Let Km “ kerpσmq, and denote by KK
m the orthogonal compliment of

Km with respect to x., .yN .
Since TmM “ spantX1

m, ..., X
N
mu for every m P M , KK

m is a linear subspace
of RN of dimension d. Write RN as orthogonal decomposition as follows:

RN
“ Km

à

KK
m.

Using lemma 3.1, the map

σ1
m :“ σm|KK

m
: KK

m Ñ TmM

is an isomorphism, and so, there exist a unique uXm P KK
m such that σmpuXmq “

Xm. So, we can write

σ´1
ptXmuq “ tuXm ` v; v P Kmu.

This implies that for u P σ´1ptXmuq, we have

|u|N “ |uXm ` v|N

“ |uXm |N ` 2xuXm , vyN ` |v|N

“ |uXm |N ` |v|N

ě |uXm |N ,
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Taking infimum over all u in RN satisfying σmpuq “ Xm gives that GmpXmq “

|uXm |2N .
We define now the bilinear form. Let Xm, Ym P TmM . Define now,

GmpXm, Ymq “ xuXm , uYmyN .

We have:

• Linearity of the map Xm Ñ uXm . Since σ
1
m is an isomorphism, then

pσ1
mq´1 : Xm ÞÑ uXm is also an isomorphism and in particular linear.

• Positive definiteness of the map Gm: This map is obviously positive.
Moreover, as σ1

mpuXmq “ Xm, then by the injectivity of σ1
m, we have

Xm “ 0 if and only if uXm “ 0. Since GmpXmq “ |uXm |2N , then
GmpXmq “ 0 if and only if uXm “ 0 if and only if Xm “ 0.

• Smoothness of the map m ÞÑ Gm: Choose some coordinates px1, ..., xdq

on M . For any i “ 1, ..., N , write

X i
m “

d
ÿ

j“1

aijpmq
B

Bxj
.

Since the vectorsX1
m, ..., X

N
m span TmM at everym, the matrixApmq :“

pai,jpmqqi,j is of rank d. So there is an invertible square submatrix of
Apmq, say A1pmq, of dimension d, and Apmq can be written, up to re-
ordering (multiplication by a permutation matrix), as a row of matrices

Apmq “

´

A1pmq Bpmq

¯

,

for some d ˆ pN ´ dq matrix Bpmq.
The subspace Km has a smooth basis. Indeed, let ξ0 P Km, and write

ξ0 “

´

ξt1 ξt2

¯

, where ξ1 and ξ2 are of dimensions dˆ 1 and pN ´ dq ˆ 1

respectively. Since ξ0 P Km “ kerpσmq, we have

´

A1pmq Bpmq

¯

˜

ξ1
ξ2

¸

“ 0.

Then, ξ1 “ ´A1pmq´1Bpmqξ2. For i “ 1, ..., N ´ d, define the vectors

eipmq “

˜

´A1pmq´1Bpmqẽi
ẽi

¸

,
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where ẽi is the pN ´ dq ˆ 1 column vector

ẽi :“ p0, ..., 1
Ò

i-th

, ..., 0q
t.

The vectors teipmqui“1,...,N´d are N´d linearly independent vectors (by
the independence of the vectors tẽu1ďiďN´d) in the N ´ d dimensional
subspace Km, and so they form a basis for Km that is smooth by the
smoothness of A (that implies the smoothness of A1pmq´1 and Bpmq).
By lemma 3.2, there exist smooth basis e1pmq, ..., edpmq for KK

m.
If we write uXm as

uXm “

d
ÿ

i“1

uipmqeipmq,

we get, since σ1 is an isomorphism, that

Xm “ σmpuXmq “

d
ÿ

i“1

uipmqσmpeipmqq.

By smoothness of Xm, we get the smoothness of uipmq, and thus the
smoothness of uXm , which together, with the smoothness of x., .yN ,
concludes the proof.

Remark 3.4. An important feature of this proof is that it shows that the
infimum in the expression of ghmpXmq is attained at a unique u P pkerpσmqqK Ă

RN .

As the vector fields in our settings satisfy the Hörmander condition (3.5),
we get

Corollary 3.4.1. For any h P Rzt0u, the function gh defined by (3.7) is a
Riemannian metric on M .

Proposition 3.5. The following assertions hold true:

1. Fix m P M . Then, ghm
ˇ

ˇ

D0
ď g0m

ˇ

ˇ

D0

2. Fix m P M . Then we have limhÑ0 g
h
m

ˇ

ˇ

D0
“ g0m

ˇ

ˇ

D0
.
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Proof. 1. We can see this by observing that, for a fixed m P M and
Xm P D0, we have

g0mpXmq “ inf
!

|δhu|
2
N ;u “ pu0, 0, ..., 0q P RN , u0 P Rp, σmpuq “ Xm

)

,

and that
!

|δhu|
2
N ;u “ pu0, 0, ..., 0q P RN , u0 P Rp, σmpuq “ Xm

)

Ă

!

|δhu|
2
N ;u P RN , σmpuq “ Xm

)

.

2. Fix m P M and Xm P D0. For any h ą 0, there exists uphq “

pu0phq, ..., urphqq P RN such that σmpuphqq “ Xm and

ghmpXmq “ |uphq|
2
N “ |u0phq|

2
p `

r
ÿ

i“1

h2i|uiphq|
2
Ni

ď g0mpXmq,

where the last inequality is by part one of proposition 3.5. So, we get
that limhÑ0 uiphq “ 0 for any i “ 1, ..., r. Thus,

Xm “ σmpuphqq “ lim
hÑ0

σmpuphqq “ σmppu0p0q, 0, ..., 0qq.

Finally, we have that

|u0phq|
2
p ď |u0phq|

2
p `

r
ÿ

i“1

h2i|uiphq|
2
Ni

“ ghmpXmq ď g0mpXmq.

Therefore, as h Ñ 0, and by definition of g0, we get that

g0mpXmq ď lim
hÑ0

ghmpXmq ď g0mpXmq.

We conclude.

3.2.2 Convergence Of Distances

Denote by dh the Riemannian distance corresponding to gh; for any x, y P M ,

dhpx, yq “ inftlghpγq; γ is A.C. connecting x to yu. (3.9)
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Sometimes the distance function can be defined equivalently using different
notations. For instance, the authors in [68] introduced the metric on M as
follows. Let Cpδq denote the class of absolutely continuous curves γ : r0, 1s Ñ

M such that γ satisfies

9γptq “

r
ÿ

i“0

Ni
ÿ

j“1

uijptqX
ij

pγptqq, (3.10)

with
|uijptq| ď δi (3.11)

Then, they defined the distance as

ρpx, yq “ inftδ ą 0; Dγ P Cpδq that connects x to y u.

In fact, the distance we defined by (3.9) can be defined in the same way,
by changing (3.11) to a suitable condition. Denote by Chpδq the class of
absolutely continuous curves γ : r0, 1s Ñ M that satisfies

9γptq “

r
ÿ

i“0

Ni
ÿ

j“1

uijptqX
ij

pγptqq, (3.12)

with
r
ÿ

i“0

Ni
ÿ

j“1

h´2i
|uijptq|

2
ď δ2 (3.13)

and define the distance

ρhpx, yq “ inftδ ą 0, Dγ P Ch
pδq that connects x to y u.

Then, dhpx, yq “ ρhpx, yq. Indeed, let δ ą 0 be such that there is γ P Chpδq.
This means γ satisfies (3.12) and (3.13). Then, by the definition of dhpx, yq

we get

dhpx, yq ď lghpγq “

ż 1

0

b

ghγptqp 9γptq, 9γptqq ď δ.

Take the infimum over all δ to get that dhpx, yq ď ρhpx, yq.
Now, observe that

dhpx, yq “ inftlghpγq; γ is a geodesics from x to y u.
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Let γ be a geodesic connecting x to y. Then, there exists φ “ γ P Chpδq for
δ “ lghpγq. Indeed, γ is a geodesic between x and y, and so, it has a constant
speed. Thus, we have that

gγptqp 9γptqq “

ż 1

0

b

gγptqp 9γptqqdt. (3.14)

Also, we know that there exists u “ puijq0ďiďr,1ďjďNi
P RN such that

gγptqp 9γptqq “

r
ÿ

i“0

Ni
ÿ

j“1

h´2i
|uijptq|

2. (3.15)

Equations (3.14) and (3.15) implies that there exists φ P Chplghpγqq connect-
ing x to y. Thus, ρhpx, yq ď dhpx, yq. We conclude.

So, a few differences are made with the authors in [68]. For instance,
our condition (3.13) considers the euclidean norm of u while their condition
(3.11) considers the L∞ norm. Also, the scaling by δ is not exactly the same.

Recall that d0 is the subriemannian distance associated to g0. As said
earlier, many authors proved that the subriemannian distance is the limit
of a family of Riemannian distances in the Gromov-Haussdorf sense (see
[4][36][40][43][67][83]). We adapt the proof of [40] in our case: we prove that
dh converges to d0 uniformly on every compact set of M .

Definition 3.6. For a general Riemannian metric g onM , the Sobolev space
H1ppr0, 1s,Mq, gq is defined as

H1
ppr0, 1s,Mq, gq “ tγ : r0, 1s Ñ M ; Egpγq ă ∞u.

This definition is equivalent to say that for any chart ϕ on M , ϕ ˝ γ P

H1pr0, 1s,Rnq.

Lemma 3.7. For any two Riemannian metrics g1 and g2, the Sobolev spaces
H1ppr0, 1s,Mq, g1q and H1ppr0, 1s,Mq, g2q are equivalent; that is, for any ab-
solutely continuous curve γ : r0, 1s Ñ M , we have

Eg1pγq ă ∞ if and only if Eg2pγq ă ∞.

Proof. Denote by G1 and G2 the representation matrices of g1 and g2 re-
spectively. Also, for i “ 1, 2, denote by λiminpmq ą 0 and λimaxpmq ą 0 the
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minimum eigenvalue and the maximum eigenvalue respectively of Gipmq. We
compute

Eg1pγq ă ∞ “

ż 1

0

g1γptqp 9γptq, 9γptqqdt

“

ż 1

0

p 9γptqq
tG1pγptqq 9γptqdt

“

ż 1

0

p 9γptqqtG1pγptqq 9γptq

p 9γptqqtG2pγptqq 9γptq
p 9γptqq

tG2pγptqq 9γptqdt.

Thus, we get
ż 1

0

λ1minptq

λ2maxptq
g2γptqp 9γptq, 9γptqq ď Eg1pγqdt ď

ż 1

0

λ1maxptq

λ2minptq
g2γptqp 9γptq, 9γptqqdt.

(3.16)
Now, for i “ 1, 2, the eigenvalues of Gipmq are the roots of the characteristic
polynomial of Gipmq, whose coefficients are smooth in m (as they consist of
the entries of Gm which is smooth). Now since the roots of a polynomial vary
continuously on the coefficients, then they are continuous on M (see [45]).
Therefore, (3.16) implies that

inf
tPr0,1s

˜

λ1minptq

λ2maxptq

¸

ż 1

0

g2γptqp 9γptq, 9γptqq ď Eg1pγqdt

ď inf
tPr0,1s

˜

λ1maxptq

λ2minptq

¸

ż 1

0

g2γptqp 9γptq, 9γptqqdt.

Since M is compact, there exists c1, c2 ą 0 such that

c1Eg2pγq ď Eg1pγq ď c2Eg2pγq.

Here, we fix a reference Riemannian metric g1, on M , and we denote by
H1pr0, 1s,Mq :“ pH1pr0, 1s,Mq, g1q. We need the following lemma:

Lemma 3.8. Let M be a smooth Riemannian manifold, and let ℵ1,ℵ2 be two
Riemannian metrics on M. Fix some compact subset of M, say K. Then,
there exist c ą 1 such that for any m P K and v P TmM, we have

1

c
ℵ1

pvq ď ℵ2
pvq ď cℵ1

pvq.
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Proof. Denote by A the unit sphere bundle of M restricted on K,

A “ tpm, vq P TM;m P K, v P TmM and ℵ1
mpvq “ 1u.

Since K is compact, A is also compact. Moreover, ℵ2 is continuous on TM,
and so ℵ2

ˇ

ˇ

A
is continuous. A continuous map on a compact set is bounded

and so there is some c1, c2 ą 0, such that

c1 ď ℵ2
ˇ

ˇ

A
ď c2.

Choose some c such that 1
c

ď c1 ď c2 ď c . By definition of A, we get that
for any m P K and v P TmM,

1

c
ℵ1

pvq ď ℵ2
pvq ď cℵ1

pvq. (3.17)

Now let m P K and v P TmM. Then, ṽ :“ p1{ℵ1
mpvqqv P A, so, applying

(3.17) to ṽ and by homogeneity of quadratic forms, we get

1

crℵ1
mpvqs2

ℵ1
pvq ď

1

rℵ1
mpvqs2

ℵ2
pvq ď

c

rℵ1
mpvqs2

ℵ1
pvq,

which implies that (3.17) is true for all m P K and v P TmM .

Theorem 3.9. The distance dh converges to d0 uniformly on every compact
set of M .

Proof. Suppose to contrary, there exist a compact K, ϵ0 ą 0, such that for
every h, there exist xh, yh P K such that

|dhpxh, yhq ´ d0pxh, yhq| ą ϵ0. (3.18)

First, observe that, since K is compact, then up to a subsequence, the se-
quences xh and yh are convergent to some x0 and y0 respectively (with respect
to d1).
Now, For x, y P M , for all h ě 0, we have that d0px, yq ě dhpx, yq. Indeed,
let γ be a horizontal curve connecting x to y. We have,

lg0pγq “

ż 1

0

b

g0γptqp 9γptq, 9γptqqdt ě

ż 1

0

b

ghγptqp 9γptq, 9γptqqdt “ lghpγq ě dhpx, yq.
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The second inequality holds because γ is horizontal and gh
ˇ

ˇ

D0
ď g0

ˇ

ˇ

D0
. Tak-

ing infimum over all horizontal curves γ connecting x to y, we get

dhpx, yq ď d0px, yq. (3.19)

Thus, (3.18) implies that for all h ě 0,

dhpxh, yhq ´ d0pxh, yhq ă ´ϵ0. (3.20)

Moreover, (3.19) implies that there exists a constant c “ supx,yPKtd0px, yqu

such that all h ě 0, we have

dhpxh, yhq ă c. (3.21)

For h ą 0, let γh : r0, 1s Ñ M be a minimizing geodesic connecting xh and
yh parametrized such that

ghγhp 9γh, 9γhq “ cst.

Now, denote by Bpx, cq, the ball of center x and radius c with respect to the
reference distance d1; that is

Bpx, cq “ ty P M,d1px, yq ă cu.

Then, there exist h0 ą 0 such that for all 0 ă h ď h0 and all t P r0, 1s,
γhptq P Bpx0, 1 ` cq. Indeed, for all 0 ă h ă 1 and t P r0, 1s, we compute

d1pxh, γhptqq ď dhpxh, γhptqq ď dhpxh, yhq ď c,

and so, γhptq P Bpxh, cq. Moreover, we compute

d1px0, γhptqq ď d1px0, xhq ` d1pxh, γhptqq ď d1px0, xhq ` c.

Since xh converges to x0 as h Ñ 0, then there exist h0 ą 0 such that
d1px0, xhq ď 1. Thus, for all 0 ă h ď h0,

γh Ă Bpx0, 1 ` cq Ă Bpx0, 1 ` cq.

Then lemma 3.8, with the fact that gh is strictly decreasing for h ą 0, implies

76



Chapter 3. Riemannian Approximation Of Subriemannian Structures

that there exist a constant c1 ą 1 such that for all 0 ă h ă mint1, h0u, we
have

ż 1

0

g1γhp 9γhptq, 9γhptqqdt ď c1

ż 1

0

g1γhp 9γhptq, 9γhptqqdt ď c1

ż 1

0

ghγhp 9γhptq, 9γhptqqdt ď c1c
2.

(3.22)

Thus, γh is uniformly bounded in H1pr0, 1s,Mq
compact

ãÝÝÝÝÑ C0pr0, 1s,Mq. This
implies that γh converges uniformly in C0pr0, 1s,Mq and weakly inH1pr0, 1s,Mq.
By uniqueness of limit, the weak limit equals the uniform limit, which we de-
note by γ0. The curve γ0 is an absolutely continuous (as it is in H1pr0, 1s,Mq)
curve that connects x0 to y0.
Moreover, γ0 is horizontal. Indeed, for any h ą 0, we have

ż 1

0

ghγ0ptqp 9γ0ptq, 9γ0ptqq
1
2dt ď dhpx0, y0q ď d0px0, y0q. (3.23)

From (the proof of) lemma 3.3, we know that there exist unique u 9γ0ptq “

uptq “ pu0ptq, ..., urptqq, ui P kerpσ1
γptqq

K Ă RNi such that

ghγ0ptqp 9γ0ptq, 9γ0ptqq “ |δhuptq|
2
N “

r
ÿ

i“0

h´2i
|uiptq|

2
Ni
. (3.24)

Now, since γ0 is an absolutely continuous function, then its derivative is
continuous almost everywhere in r0, 1s. Also, as σ1

γptq is an isomorphism,
then it has a continuous inverse, and so

uptq “ pσ1
γptqq

´1
p 9γptqq

is continuous almost everywhere in r0, 1s. So, uiptq is continuous almost
everywhere in r0, 1s and uiptq

2 is integrable on r0, 1s.
Thus, (3.24) and (3.23) implies that for all h ą 0 and any 1 ď i ď r,

h´2i

ż 1

0

|uiptq|
2
Ni
dt ď d0px0, y0q.

This gives that for any 1 ď i ď r,

ż 1

0

|uiptq|
2
Ni
dt “ 0,
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which in turn gives that uiptq “ 0 a.e. This implies that ghγ0ptqp 9γ0ptq, 9γ0ptqq “

|u0ptq|2N0
a.e. which implies that γ0 is horizontal.

Now, we have that

Eg0pγ0q
1{2

ď lim inf
hÑ0

rEghpγhq
1{2

s. (3.25)

Indeed, using the Cauchy Schwartz inequality, with the fact that γ0 is hori-
zontal, we have that for all h ą 0,

ż 1

0

gγhptqp 9γhptq, 9γ0ptqqdt ď Eghpγ0q
1{2Eghpγhq

1{2
“ Eg0pγ0q

1{2Eghpγhq
1{2.

Weak convergence in H1pr0, 1s,Mq implies (3.25). Finally, we get

d0px0, y0q ď Eg0pγ0q
1{2

ď lim inf
hÑ0

rEghpγhq
1{2

s “ lim inf
hÑ0

dhpxh, yhq,

which contradicts (3.20).

Throughout this chapter, we give some examples, which are standard in
the context of subriemannian geometry.

Example 3.1 (The Grushin Case On R2). On R2, consider the smooth vector
fields

X1 “ Bx and X2 “ xBy.

On R2ztx “ 0u, X1 and X2 span R2 (step 1). Denote by X3 “ rX1,X2s “ By.
On the singular line tx “ 0u, X1,X2 and X3 span R2 (step 2). Following
definition (3.4), define the subriemannian metric g0 on R2 as

g0pX q “ inftu21 ` u22;u “ puiqi“1,2 P R2,
2
ÿ

i“1

uiXi “ X u.

Following definition (3.7), define the Riemannian metric gh on R2 as

ghpX q “ inftu21 ` u22 ` h´2u23;u “ puiqi“1,2,3 P R3,
3
ÿ

i“1

uiXi “ X u.

For X “ pa, bq P R2, direct computation implies that

ghppa, bqq “ a2 `
b2

x2 ` h2
,
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clearly a smoothly defined inner product on R2. Moreover, if x ‰ 0, then

g0ppa, bqq “ a2 `
b2

x2
,

and so, as h Ñ 0, gh Ñ g0. On tx “ 0u, for g0 to be finite, b must be 0,
which means that X “ aX1, that is X is horizontal.

Example 3.2 (The Heisenberg Case On R3). On R3, consider the smooth
vector fields

X1 “ Bx and X2 “ By ` xBz.

For any x P R3, X1,X2 and X3 “ rX1,X2s “ Bz span R3 (equiregular case of
step 2). Following definition (3.4), define the subriemannian metric g0 on
R3 as

g0pX q “ inftu21 ` u22 ; u “ puiqi“1,2 P R2,
2
ÿ

i“1

uiXi “ X u.

Following definition (3.7), define the Riemannian metric gh on R3 as

ghpX q “ inftu21 ` u22 ` h´2u23 ; u “ puiqi“1,2,3 P R3,
3
ÿ

i“1

uiXi “ X u.

For X “ pa, b, cq P R3, direct computation implies that

ghppa, b, cqq “ a2 ` b2 `
pc ´ xbq2

h2
,

which is clearly a smoothly defined inner product on R3. Moreover, for any
pa, b, cq P R3,

g0ppa, b, cqq “ a2 ` b2.

For g0, which is the limit of gh as h Ñ 0, to be finite, c´xb must be 0, which
means that X “ aX1 ` bX2, that is X is horizontal.

Example 3.3 (The Martinet Case On R3). On R3, consider the smooth
vector fields

X1 “ Bx and X2 “ By `
x2

2
Bz.
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On R3ztx “ 0u, X1,X2 and X3 “ rX1,X2s “ xBz span R3 (step 2). On
tx “ 0u, X1,X2,X3 and X4 “ rX1,X3s “ Bz span R3 (step 3). Following
definition (3.4), define the subriemannian metric g0 on R3 as

g0pX q “ inftu21 ` u22 ; u “ puiqi“1,2 P R3,
2
ÿ

i“1

uiXi “ X u.

Following definition (3.7), define the Riemannian metric gh on R3 as

ghpX q “ inftu21 ` u22 ` h´2u23 ` h´4u24 ; u “ puiqi“1,2,3,4 P R4,
4
ÿ

i“1

uiXi “ X u.

For X “ pa, b, cq P R3, direct computation implies that

ghppa, b, cqq “ a2 ` b2 `
p2c ´ bx2q2

4h2ph2 ` x2q
,

which is clearly a smoothly defined inner product on R3. Moreover, for any
pa, b, cq P R3,

g0pa, b, cq “ a2 ` b2.

For g0, which is the limit of gh as h Ñ 0, to be finite, c ´ x2

2
b must be 0,

which means that X “ aX1 ` bX2, that is X is horizontal.

3.3 The Volume Form dvolgh

As our goal is to find a volume form associated to the subriemannian struc-
ture, induced from the preceding approximation scheme, we consider the
volume form dvolgh and study its properties and behavior as h Ñ 0. For a
general local frame pZ1, ..., Zdq of TmM , the volume form dvolgh is given by

dvolgh “
a

|detpGhq||dν1, ..., dνd|, (3.26)

where Gh is the representation matrix of gh in pZ1, ..., Zdq and pν1, ..., νdq is
the dual basis to pZ1, ..., Zdq. From this expression, our study will aim at
analyzing the properties of the determinant of the matrix Gh.
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3.3.1 Expression Of G´1
h

We first give a general expression for G´1
h in the frame pZ1, ..., Zdq. For

0 ď i ď r, denote by Ai the Ni ˆ d matrices defined such that the j-th row
of Ai are the coefficients of X ij in this frame (so that Ai has Ni rows and d
columns). Denote by Gh the representation Gram matrix of gh in this frame.
The A1

is along side with Gh depend on the point m. The dependence will be
explicit when needed.

Theorem 3.10. For all h P Rzt0u, we have

Gh
´1

“

r
ÿ

i“0

h2iAt
iAi, (3.27)

where the matrices G´1
h and Ai for i “ 0, ..., r have just been defined above.

Proof. Let Σ be the representation matrix of the map σm defined by (3.6),
and observe that

Σ “

´

At
0 At

1 ... At
r

¯

. (3.28)

Denote by Ih the block matrix

Ih “

¨

˚

˚

˚

˝

IN0 0 0 0
0 h´2IN1 0 0

0 0
. . . 0

0 0 0 h´2rINr

˛

‹

‹

‹

‚

,

where for i “ 0, ..., r, INi
is the Ni ˆNi identity matrix. Note that pIhq´1 “

I1{h.
Let X P TmM . We define the functions:

F : MNˆ1 Ñ R
U ÞÑ U tIhU,

and

F̃ : MNˆ1 Ñ Mdˆ1

U ÞÑ ΣU ´ X .
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We write

ghpX q “ inft|δhu|
2
N , u P RN , σmpuq “ X u

“ inftU tIhU ; ΣU “ X u

“ inftFpUq; F̃pUq “ 0u.

From lemma 3.3, there exists a unique U0 P pkerpΣqqK such that ghpX q “

FpU0q. Let
S :“ tU P MNˆ1; F̃pUq “ 0 “ F̃pU0qu.

For any U P S, we have 0 “ F̃pUq ´ F̃pU0q “ ΣpU ´ U0q, and so, S “

tU0 ` Ũ ; Ũ P kerpΣqu, which means that S is an affine space. This implies
that it is a submanifold of dimension N ´ d. Moreover, we have

kerpΣq “ TU0S. (3.29)

Indeed, let Y P TU0S. By definition, there exist a curve γptq on S such that
γp0q “ U0 and γ1p0q “ Y . Since γptq P S, then Σpγptqq “ X . Differentiate
with respect to t to get that Y P kerpΣq, and so, TU0S Ă kerpΣq. Now,
Hörmander condition implies that σm is surjective and so dimpkerpΣqq “

N ´ d. Moreover, for X̃ P Rd, X ` X̃ P Rd. So since σm is surjective, there
exists a unique U such that ΣU “ X ` X̃ , which implies that there exists U
such that F̃pUq “ X̃ . Therefore F̃ is also surjective and

dimpTU0Sq “ dimpSq “ N ´ d “ dimpkerpΣqq,

and we get (3.29).
Since the infimum of F restricted to the constraint F̃ “ 0 is attained at U0,
then the Lagrange Multiplier method implies that U0 is a critical point of the

function F ´ λF̃ . In particular dF |U0
“ λ dF̃

ˇ

ˇ

ˇ

U0

. So, for any critical point

U0 and any W P TU0S, we have that dF |U0
pW q “ 0. On the other hand, we

have
dF |U0

pW q “ U t
0I

hW ` W tIhU0 “ 2W tIhU0.

Thus, for any W P kerpΣq, one gets that W tIhU0 “ 0. This implies that

IhU0 P pkerpΣqq
K

“ ImpΣt
q.

Then there exists V P Mdˆ1 such that IhU0 “ ΣtV . Since F̃U0 “ 0, we get
that X “ ΣI1{hΣtV.
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We now observe that the square matrix T :“ ΣI1{hΣt is invertible. Indeed,
let U be such that TU “ 0. We set W “ I1{hΣtU. We have W P kerpΣq

and ΣtU “ IhW . So, IhW P ImpΣtq “ pkerpΣqqK. Then, W tIhW “ 0 which
implies that W “ 0 which implies that ΣtU “ 0. Since Σt is of rank d, we
get that U “ 0. This implies that the square matrix T has a trivial kernel
and thus it is invertible.
Thus, we get

U0 “ I1{hΣt
pΣI1{hΣt

q
´1X .

We finally calculate:

X tGhX “ gpX q “ U t
0I

hU0

“ X t
pΣI1{hΣt

q
´1ΣtIh

´1
IhI1{hΣt

pΣI1{hΣt
q

´1X
“ X t

pΣI1{hΣt
q

´1X .

Using (3.28), we conclude that

Gh
´1

“

r
ÿ

i“0

h2iAt
iAi.

Remark 3.11. This theorem is true for a general frame onM . In particular,
it is true for a local coordinate frame or an adapted frame (definition 3.20).

Remark 3.12. We give two remarks concerning the choice of vectors made
in subsection 3.1.2.

1. Our work will all be based on the matrices At
iAi and so we could include

the zero vectors obtained from the iterative brackets of the initial vector
fields in the definition of Ai, as the matrix At

iAi will not change by
adding a row of zeros for Ai.

2. We recall that in setting our framework, we just included one of the
two vectors XJi and XĴi

“ ´XJi for any i ą 0. If we define Âi as we
defined Ai but including all the vectors with their opposite, we will have
that @i ą 0,

Ât
iÂi “ pX i1

q
t
X i1

` ... ` X iNi
t
X iNi ` p´X i1

q
t
p´X i1

q ` ... ` p´X iNiq
t
p´X iNiq

“ 2
´

pX i1
q
t
X i1

` ... ` pX iNiq
tX iNi

¯

“ 2At
iAi.
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Example 3.4. Following example 3.1, we denote by Gh the representation
matrix of gh. We compute

A0 “

˜

1 0
0 x

¸

, A1 “

´

0 1
¯

and G´1
h “

˜

1 0
0 h2 ` x2

¸

and observe that, At
0A0 ` h2At

1A1 “ G´1
h .

Example 3.5. Following example 3.2, we denote by Gh the representation
matrix of gh. We compute

A0 “

˜

1 0 0
0 1 x

¸

, A1 “

´

0 0 1
¯

and G´1
h “

¨

˚

˝

1 0 0
0 1 x
0 x h2 ` x2

˛

‹

‚

,

and observe that, At
0A0 ` h2At

1A1 “ G´1
h .

Example 3.6. Following example 3.3, we denote by Gh the representation
matrix of gh. We compute

A0 “

¨

˝

1 0 0

0 1
x2

2

˛

‚, A1 “

´

0 0 x
¯

, A2 “

´

0 0 1
¯

and

G´1
h “

¨

˚

˚

˚

˚

˝

1 0 0

0 1
x2

2

0
x2

2
h4 ` h2x2 `

x4

4

˛

‹

‹

‹

‹

‚

,

and observe that, At
0A0 ` h2At

1A1 ` h4At
2A2 “ G´1

h .

3.3.2 Point-wise Limiting behavior Of detpG´1
h q

In this subsection, we aim at obtaining some information about detpGhq, and
its behavior as h Ñ 0. Since we have the nice expression (3.27) of G´1

h , we
study the determinant of G´1

h instead, and deduce things for detpGhq.
As a consequence of (3.27), the determinant of G´1

h is a polynomial in h
with non-negative coefficients. This is because the determinant of a matrix
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polynomial with Hermitian positive-semidefinite coefficients is a polynomial
with non-negative coefficients (see [38]). However, this expression provides
no more information on what happens near 0. For instance, we can’t know
what is the first non-zero coefficient (the leading term in the expansion) and
so we can’t know the power of h in the expansion near 0. This is important
because we aim to prove that the determinant of G´1

h is asymptotic near 0 to
something of order hςpmq to be determined, with a coefficient that does not
vanish on the equiregular region.

Thus, we need another approach that allows us to obtain some knowledge
about this coefficient. We will present two approaches, one using a detailed
spectral description of the eigenvalues of G´1

h written in a local coordinates
frame, and one using the special properties of adapted coordinates (sub-
section 3.3.2.3). The spectral approach is more important than the second
one that depends on the type of the coordinates chosen. In this approach,
we study the spectrum of the metric which, besides our main interest, may
provide valuable insights into the geometry and curvature of the underlying
manifold. For that, we describe the spectrum of G´1

h .

3.3.2.1 Spectral Approach

Choose some coordinates x “ px1, ..., xdq that are defined on an open set
U “ Ux. We define Ai in the same way as in the previous subsection, with
respect to the coordinates x. Denote by Gh the representation Gram matrix
of gh in the coordinate x.

Again, the Ai’s, Gh and dvolgh depend on the point in the coordinates
chosen, so an appropriate notation will be introduced when convenient, but
for now, when no dependence is shown, this means that we work at a fixed
point in the fixed coordinate frame. Let V0 “ ImpAt

0A0q and let, for 1 ď j ď

r,
Vj “ Vj´1 ` ImpAjq,

where
Aj “ At

jAj

ˇ

ˇ

ˇ

pVj´1qK
, (3.30)

where VK
j represents the orthogonal compliment of Vj with respect to the

canonical inner product in Rd.
Observe that, as G´1

h is a polynomial in h (expression (3.10)), it is an ana-
lytic function in h and thus the analytic perturbation theory (Appendix B)
is applicable; the eigenbranches of the self-adjoint matrix G´1

h are analytic
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functions in h.
Recall that for 0 ď i ď r, we denote by nipmq :“ dimpDipmqq. When we fix
a point m, we simply write ni.

Theorem 3.13. Fix some point m P U . For any 0 ď j ď r, there are
nj ´ nj´1 eigenbranches tλji phqu1ďiďnj´nj´1

of G´1
h such that

λji phq “ h2jηji phq,

where for any j, the analytic functions tηji phqu1ďiďnj´nj´1
converges, as h Ñ

0, to the nj ´ nj´1 non-zero eigenvalues of Aj.

Proof. For 1 ď k ď r, let pHkq be the following hypothesis: if we set

Skphq “ At
0A0 ` h2At

1A1 ` ... ` h2kAt
kAk, (3.31)

then, we have that

specpSkphqq “ tth2jtρji phquu0ďjďk,1ďiďnj´nj´1
, 0, ..., 0u, (3.32)

where, for any 0 ď j ď k, the analytic functions tρji phqu1ďiďnj´nj´1
converge

to the non-zero eigenvalues of Aj.
Moreover, if tζji phqu0ďjďk,1ďiďnj´nj´1

is a set of orthonormal eigenfunctions
corresponding to the non-zero eigenvalues of Skphq, then

spantζji p0q, 0 ď j ď k, 1 ď i ď nj ´ nj´1u “ Vk.

First, observe that for any k, rankpSkphqq, is independent of h, for h ‰ 0,
and is equal to nk. Indeed,

Skphq “

´

At
0 hAt

1 ... hkAt
k

¯´

At
0 hAt

1 ... hkAt
k

¯t

and so for h ‰ 0, we have

rankpSkphqq “ rank
´

At
0 hAt

1 ... hkAt
k

¯

.

Now, multiplying two linearly dependent (respectively independent) vectors
by a non-zero constant does not change the fact that they are linearly de-
pendent (resp. independent). So, the rank of Skphq is independent of h for
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h ‰ 0. For h “ 1, the matrix Skp1q is the representation matrix of the vectors
spanning Dk in local coordinates, which means that for any h ą 0,

rankpSkphqq “ rankpSkp1qq “ rankpDkq “ nk.

Also, for any k, the family of d ˆ d matrices Skphq is analytic (polynomials)
in h, and so applying analytic perturbation theory in the finite-dimensional
case, it implies that all eigenvalues of Skphq for any 1 ď k ď r are analytic
in h.

We prove pHkq by induction on k. We first prove pH1q. By continuity of
the spectrum (see corollary A.1.1), the difference between the i´th eigenvalue
of At

0A0 and the i´th eigenvalue of S1phq “ At
0A0`h2At

1A1 for any 1 ď i ď d
is of order h2 ( Oph2q). So, by analyticity of the spectrum, we can write

specpS1phqq “
␣

tϵ0i phqu1ďiďn0 , h
2
tϵ1i phqu1ďiďd´n0

(

, (3.33)

where tϵji phqu are analytic for any j “ 1, 2 and any i, and for j “ 0, it
converges to the n0 non-zero eigenvalues of At

0A0. Moreover, let

␣

tξ0i phqu1ďiďn0 , tξ
1
i phqu1ďiďd´n0

(

(3.34)

be a set of orthonormal eigenfunctions corresponding to the eigenvalues in
(3.33).
Fix i0 P t1, ..., d ´ n0u, and write

ϵ1i0phq “ ν0,i0 ` h2ν1,i0 ` ... and ξ1i0phq “ ξ0,i0 ` h2ξ1,i0 ` ....

Writing the eigenvalue equation for any h ą 0 and comparing coefficients
with respect to the powers of h, we get the following:

At
0A0ξ0,i0 “ 0, (3.35)

and
At

1A1ξ0,i0 ` At
0A0ξ1,i0 “ ν0,i0ξ0,i0 . (3.36)

Equation (3.35) implies that ξ0,i0 P kerpAt
0A0q.

Denote by Q0 the orthogonal projection on kerpAt
0A0q. Equation (3.35) im-

plies that Q0ξ0,i0 “ ξ0,i0 . Multiplying equation (3.36) on the left by Q0, we
get

pQ0At
1A1Q0

´ ν0,i0qQ0ξ0,i0 “ 0.

87



Chapter 3. Riemannian Approximation Of Subriemannian Structures

Then, pν0,i0 , ξ0,i0q is an eigenpair of the matrix A1.
Now, by orthogonality of the set of eigenvectors in (3.34), we get that, for
any 1 ď i, ĩ ď d ´ n0,

xξ0,i, ξ0,̃iyRd “ lim
hÑ0

xξ1i phq, ξ1
ĩ
phqyRd “ 0

which implies that tξ0,iu1ďiďd´n0 , are orthogonal thus linearly independent.
Then, the d ´ n0 linearly independent vectors tξ0,iu1ďiďd´n0 form an eigen-
basis for VK

0 (which is of dimension d´ n0) and thus, tν0,iu1ďiďd´n0 cover all
eigenvalues of Q0At

1A1Q0. Therefore,

specpS1phqq “
␣

tϵ0i phqu1ďiďn0 , h
2
tϵ1i phqu1ďiďn1´n0 , 0...0

(

,

with tϵ1i phqu1ďiďn1´n0 converging to the non-zero eigenvalues of Q0At
1A1Q0.

Moreover, let
!

tξji phqu0ďjď1,1ďiďnj´nj´1
, tξzi u1ďiďd´n1

)

be a set of orthonormal eigenfunctions, where the first part corresponds to the
non-zero eigenvalues of specpSkphqq and the second one corresponds to the
zero eigenvalues. By analyticity, tξ0i p0qu1ďiďn0 span V0. Now, we prove that
tξ1i p0qu1ďiďn1´n0 span ImpA1q. First, since tξ1i p0qu1ďiďn1´n0 are eigenfunctions
of A1, then we clearly have

spantξ1i p0q, 1 ď i ď n1 ´ n0u Ă ImpA1q.

Now let u P ImpA1q. Then there exists v P VK
0 such that u “ A1pvq. In the

first part, we proved that

span
␣

tξ1i p0qu1ďiďn1´n0 , tξ
z
i u1ďiďd´n1

(

“ VK
0 .

So, we can write v as a linear combination:

v “

n1´n0
ÿ

i“1

aiξ
1
i p0q `

d´n0
ÿ

i“1

biξ
z
i .

Then, because tξzi u1ďiďd´n1 corresponds to the zero eigenvalues, we get

u “ A1pvq

“

n1´n0
ÿ

i“1

aiA1pξ
1
i p0qq `

d´n0
ÿ

i“1

biA1pξ
z
i q

“

n1´n0
ÿ

i“1

aiϵ
1
i p0qξ1i p0q P spantξ1i p0q, 1 ď i ď n1 ´ n0u.
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Therefore, we get

spantξji phq, 0 ď j ď 1, 1 ď i ď nj ´ nj´1u “ V1.

This finishes the proof that pH1q is true.
Suppose now that pHkq holds true. Write the spectrum of Skphq as in

(3.32):
specpSkphqq “ tth2jtρji phquu0ďjďk,1ďiďnj´nj´1

, 0, ..., 0u,

and let tζji phqu0ďjďk,1ďiďnj´nj´1
be set of orthonormal eigenfunctions corre-

sponding to the non-zero eigenvalues of Skphq. Denote by Jkphq the subspace

Jkphq :“ spantζji phq, 0 ď j ď k, 1 ď i ď nj ´ nj´1u.

Then, by induction hypothesis, we have:

Jkp0q “ Vk. (3.37)

We prove pHk`1q. Again, by continuity and analyticity of the spectrum, we
can write

specpSk`1phqq “ tth2j ρ̃ji phqu0ďjďk,1ďiďnj´nj´1
, th2k`2ρ̃k`1

i phqu1ďiďd´nk
u,
(3.38)

with
|h2jpρ̃ji phq ´ ρji phqq| “ Oph2k`2

q, (3.39)

and
ζ̃ji p0q “ ζji p0q, (3.40)

for all 0 ď j ď k and 1 ď i ď nk ´ nk´1, where

!

tζ̃ji phqu0ďjďk,1ďiďnj´nj´1
, tζ̃k`1

i phqu1ďiďd´nk

)

(3.41)

is a set of orthonormal eigenfunctions corresponding to the eigenvalues in
(3.38). This implies, by the induction hypothesis, that pρ̃ji p0q, ζ̃ji p0qq is an
eigenpair of Aj for any 0 ď j ď k, 1 ď i ď nj ´ nj´1.
Fix i1 P t1, ..., d ´ nku and consider ρ̃k`1

i1
phq with corresponding eigenfunc-

tion ζ̃k`1
i1

phq. Now, (3.37) and (3.40) implies that tζ̃ji p0qu0ďjďk,1ďiďnj
is an

orthonormal basis of Vk. So, we get

ρ̃k`1
i1

phq “ Oph2k`2
q and ζ̃k`1

i1
p0q P VK

k as h Ñ 0. (3.42)
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Let Pk
h and Qk

h be the orthogonal projections on Jkphq and pJkphqqK respec-
tively. Write

ζ̃k`1
i1

phq “ Pk
h ζ̃

k`1
i1

phq ` Qk
hζ̃

k`1
i1

phq.

As Jkphq is the span of analytic functions, it is analytic, and by lemma 3.2,
pJkphqqK is. Thus, Pk

h and Qk
h are also analytic, and by (3.42), we have that

Pk
h ζ̃

k`1
i1

phq “ op1q and Qk
hζ̃

k`1
i1

phq “ ζ̃k`1
i1

p0q ` op1q, (3.43)

as h Ñ 0. Therefore, the eigenvalue equation implies that

h2k`2C̃hζ̃
k`1
i1

phq ` h2k`2B̃hζ̃
k`1
i1

phq “ h2k`2ρ̃k`1
i1

phqQk
hζ̃

k`1
i1

phq, (3.44)

where
C̃h “ Qk

hA
t
k`1Ak`1Pk

h

and
B̃h “ Qk

hA
t
k`1Ak`1Qk

h.

Equation (3.44) gives, after dividing by h2k`2 and writing C̃hζ̃
k`1
i1

phq “ op1q

(by (3.43), the following equation

op1q ` B̃hζ̃
k`1
i1

phq “ ρ̃k`1
i1

phqQk
hζ̃

k`1
i1

phq.

The subspace J phq is analytic in h, and so B̃h is analytic, so at h “ 0 we get

pQ̃0A
t
k`1Ak`1Q̃0 ´ ρ̃k`1

i1
p0qqQ̃0ζ̃

k`1
i1

p0q “ 0. (3.45)

Therefore, (3.37) and (3.45) imply that pρ̃k`1
i1

p0q, ζ̃k`1
i1

p0qq is an eigenpair of
Ak`1.
Finally, the orthonormality of the eigenfunctions in (3.41) implies the or-
thonormality of tζ̃k`1

i p0qu1ďiďd´nk
. Therefore, the d ´ nk orthogonormal

(thus linearly independent) vectors tζ̃k`1
i p0qu1ďiďd´nk

form an eigenbasis of
Vk (which is of dimension d´nk by (3.37)). So, they cover all the eigenvalues
of Ak`1.
It remains to prove that the span of the eigenvectors that correspond to the
non-zero eigenvalues of Sk`1phq span Vk`1 at h “ 0. We write the eigenvec-
tors in (3.41) as follows

!

tζ̃ji phqu0ďjďk,1ďiďnj´nj´1
, tζ̃k`1

i phqu1ďiďnk´nk´1
, tζ̃zi u1ďiďd´nk`1

)

, (3.46)
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where tζ̃zi u1ďiďd´nk`1
corresponds to the 0 eigenvalues. Again, (3.40) and

(3.37) implies that tζ̃ji p0qu0ďjďk,1ďiďnj´nj´1
span Vk. Now, we prove that

tζ̃k`1
i p0qu1ďiďnk´nk´1

span ImpAkq. Since tζ̃k`1
i p0qu1ďiďnk´nk´1

are eigenvec-
tors of Ak it is clear that

spantζ̃k`1
i p0q, 1 ď i ď nk ´ nk´1u Ă ImpAkq.

Now, let u P ImpAkq. Then, there is v P VK
k such that u “ Akpvq. We proved

that
span

!

tζ̃k`1
i p0qu1ďiďnk´nk´1

, tζ̃zi u1ďiďd´nk`1

)

“ VK
k .

So, we can write v as a linear combination

v “

nk`1´nk
ÿ

i“1

aiζ̃
k`1
i p0q `

d´nk`1
ÿ

i“1

biζ̃
z
i .

Then, because tζ̃zi ui“1,...,d´nk`1
correspond to the zero eigenvalues, we get

u “ Akpvq

“

nk`1´nk
ÿ

i“1

aiAkpζ̃k`1
i p0qq `

d´nk`1
ÿ

i“1

biAkpζ̃zi q

“

nk`1´nk
ÿ

i“1

aiρ̃
k`1
i p0qpζ̃k`1

i p0qq P spantζ̃k`1
i p0q, 1 ď i ď nk ´ nk´1u.

Therefore, we get

span
!

tζ̃ji phqu0ďjďk,1ďiďnj´nj´1
, tζ̃k`1

i phqu1ďiďnk´nk´1

)

“ Vk`1.

We conclude pHk`1q.
By Hörmander condition, the induction stops at k “ r and we get the final
result.

Remark 3.14. The relevant part of the induction in the proof of theorem
3.13 is for 0 ď j ď rpmq. For j ą rpmq, njpmq “ d and so the statement of
theorem indicates that there are 0 eigenbranches of order h2j. This is because
at m, Srpmqphq defined by (3.31) generates all the d non-zero eigenbranches
of G´1

h pmq, and with any further perturbation of higher order, the d new
eigenbranches will only be perturbed by a big O of this higher order, but the
behavior near h “ 0 remains the same.
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As said before, expression (3.27) doesn’t give much information about the
behavior of detpG´1

h q as h approach 0. However, theorem 3.13 implies that
the spectrum of G´1

h can be written as follows:

specpG´1
h pmqq “ t Order 0 terms

loooooooomoooooooon

n0pmq

, Order 2 terms
loooooooomoooooooon

n1pmq´n0pmq

... Order 2r terms
loooooooomoooooooon

d´nr´1pmq

u,

As the determinant of a matrix is the product of the eigenvalues we get
the following corollary.

Corollary 3.14.1. For a fixed m P U , the determinant of G´1
h has the fol-

lowing expansion
detpG´1

h pmqq “ fhpmqh2ςpmq,

where

ςpmq “

r
ÿ

1

irnipmq ´ ni´1pmqs, (3.47)

and fhpmq is given by

fhpmq “

r
ź

j“0

nj´nj´1
ź

i“1

ηji phqpmq,

with ηji phqpmq being introduced in theorem 3.13, where we set
ś0

i“1 “ 1.
Moreover, fhpmq converges, as h Ñ 0, to fpmq ‰ 0, where fpmq is the

product of the non-zero eigenvalues of Aipmq (given by (3.30)) for i “ 0, ..., r.

In other words, if we write

detpG´1
h pmqq “

ÿ

iě0

aipmqh2i,

then, aipmq “ 0 @i ă ςpmq and fpmq “ aςpmq ą 0.

3.3.2.2 Dependence With Respect To The Point

In the previous section, we obtained the expansion near h “ 0 for detpG´1
h q

at a fixed point m P U ; that is, theorem 3.13 was point-wise and the behavior
in corollary 3.14.1 is a point-wise behavior. Now, we allow m to move in U
and we study the characteristics of the function fpmq, that was defined in
corollary 3.14.1. We recall the definition of the singular set in subsection
3.1.1.2 and define the set ZU “ U X Z.
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Proposition 3.15. On every connected component of the equiregular region
MzZ, ςpmq is independent of m and is equal to Q´ d, where Q denotes the
Hausdorff dimension on this component.

Proof. Let K be a connected component of MzZ. The growth vector

pn0pK q, ..., nr´1pK q, dq

is constant (independent of m). Thus, using the expression of ςpmq in (3.47),
ςpmq is a constant which we denote ςpK q.

The Hausdorff dimension on K equals

QpK q “

r
ÿ

i“0

pi ` 1qrnipK q ´ ni´1pK qs,

where we set n´1pK q “ 0 (for information about the Hausdorff dimension,
see [65]). So we have

QpK q´ ςpK q “

r
ÿ

i“0

pi`1qrnipK q´ni´1pK qs´

r
ÿ

i“1

irnipK q´ni´1pK qs “ d.

Proposition 3.16. The function f is a smooth function on each component
of UzZU .

Proof. The matrix G´1
h is the inverse of the representation matrix of the Rie-

mannian metric onM , so its determinant is smooth in m and is independent
on the coordinates chosen. This implies that for each k, the coefficients ak in
(3.48) are smooth in m. Now, corollary 3.14.1 gives the asymptotic expan-
sion of detpG´1

h q; in particular, it gives the first non-zero coefficient. So, on
a connected component K of MzZ, this non-zero coefficient happens for a
power ςpK q of h independent of m, and so in this case f “ aςpK q which is
smooth and non-zero.

Proposition 3.17. The function f vanishes on the singular region ZU .

Proof. Recall that pn0pmq, n1pmq, ..., nrpmq´1pmq, dq denotes the growth vec-
tor at a point in M . For any m P M , we can write the spectrum of G´1

h pmq

as
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specpG´1
h q “

␣

tλiph,mq, 1 ď i ď n0pmqu,

th2λiph,mq, n0pmq ` 1 ď i ď n1pmqu,

...

th2rpmq, nrpmq´1pmq ` 1 ď i ď du
(

with limhÑ0 λiph,mq ‰ 0 for 1 ď i ď d. Therefore, on any connected com-
ponent K of MzZ, detpG´1

h pmqq is of order h2ςpK q, and if the determinant
of G´1

h pmq has the expression

detpG´1
h pmqq “

ÿ

kě0

akpmqh2k, (3.48)

then akpmq “ 0 for all k ă ςpK q and aςpK qpmq “ fpmq ą 0 on K .

Now, let m̃ P Z. Then, there exist i0 P t0, ..., rpmqu such that

ni0pm̃q ă ni0pK q.

Then, there exist i1 P ti0 ` 1, ..., ru such that

ni1pm̃q ´ ni1´1pm̃q ą ni1pK q ´ ni1´1pK q.

This is because for any m P M , nipmq ď ni`1pmq for any 0 ď i ď rpmq, and
eventually, by Hörmander condition, nrpmq “ d.
Therefore, detpG´1

h pm̃qq is of order hςpm̃q with ςpm̃q ą ςpK q. Thus, akpm̃q “

0 for all k ă ςpm̃q, in particular, aςpm̃q “ fpm̃q “ 0.

The other direction follows the same reasoning; suppose m P K such
that fpmq “ 0. Then detpG´1

h pmqq is of order greater than hςpK q which is a
contradiction.

Proposition 3.18. The volume form induced is independent of the choice
of coordinates.

Proof. First, observe that the volume form induced from the approximation
scheme written in a local coordinate chart x is given by

p1{
a

|fpxq|q|dx1 ^ ... ^ dxd|.
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Fix two coordinates x “ px1, ..., xdq and y “ py1, ..., ydq and denote by Φ the
canonical diffeomorphism between x and y (map of change of coordinates).
Let Y be a vector field and let Yx and Yy be such that

Y “ Yx.Bx “ Yy.By.

Then, Yx “ pJacpΦqqtYy, where JacpΦq denotes the Jacobian matrix of Φ.
This implies that

Ajpxq “ AjpyqJacpΦq,

where Ajpxq, Ajpyq, are the matrices defined in the introduction of this sec-
tion, in x and y respectively. By the expression given in (3.27), this implies
that

G´1
h pxq “ pJacpΦqq

t
pG´1

h pyqqJacpΦq,

where G´1
h pxq, G´1

h pyq are the representation matrices of the metric gh, rep-
resented in x and y respectively. Thus,

fhpxq “ |detpJacpΦqq|
2fhpyq. (3.49)

Letting h Ñ 0 in (3.49), we get

fpxq “ |detpJacpΦqq|
2fpyq.

Since

|dx1 ^ ... ^ dxd| “ |detpJacpΦqq||dy1 ^ ... ^ dyd|,

we finally deduce that

p1{
a

|fpxq|q|dx1 ^ ... ^ dxd| “ p1{
a

|fpyq|q|dy1 ^ ... ^ dyd|.

Remark 3.19. In the preceding proposition, we re-proved the fact that the
determinant of a Riemannian metric is independent of the choice of coor-
dinates. Using this fact, we can say directly that f is the leading order of
detpG´1

h q as h Ñ 0, and so it is independent of the coordinated chosen.

As a corollary, we deduce the following.
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Corollary 3.19.1. In an equiregular subriemannian setting, where Z “ H,
f is a smooth strictly positive function on M . Thus, it defines a smooth
volume form on M written in local coordinate x as

dPo “
1

a

fpxq
|dx1 ^ ... ^ dxd|. (3.50)

.

Example 3.7. Following example 3.4, we compute

specpAt
0A0q “ t1, x2u and specpG´1

h q “ t1, x2 ` h2u.

Away from the singular line tx “ 0u, the two eigenvalues are of order 0. So

detpG´1
h q “ x2 ` h2„x2.

In this case, ςpxq “ 0 and fhpxq “ x2 ` h2 Ñ fpxq “ x2. At tx “ 0u, one
eigenvalue, 1, is of order 0 and one eigenvalue, x2 ` h2, is of order h2. So

detpG´1
h q “ h2„h2.

This is expected as the growth vector equals p2q for x ‰ 0, and p1, 2q at
tx “ 0u.

Example 3.8. Following example 3.5, we compute

specpAt
0A0q “ t0, 1, x2 ` 1u, and specpG´1

h q “ tλ1ph, xq, λ2ph, xq, λ3ph, xqu,

where λ1ph, xq “ 1,

λ2ph, xq “
h´2x2 `

a

ph´2x2 ` h´2 ` 1q2 ´ 4h´2 ` h´2 ` 1

2h´2
„ 2px2 ` 1q,

and

λ3ph, xq “
h´2x2 ´

a

ph´2x2 ` h´2 ` 1q2 ´ 4h´2 ` h´2 ` 1

2h´2
„ h2p1`oph´2

qq.

For any x, two eigenvalues, λ1ph, xq and λ2ph, xq are of order 0 and one
eigenvalue, λ3ph, xq, is of order h2. This is expected, as this is the equiregular
case, and the growth vector equals p2, 3q is constant everywhere. So, at any
x,

detpG´1
h q “ h2 „ h2.

In this case, ςpxq “ 1 and fhpxq “ 1 Ñ fpxq “ 1.
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Example 3.9. Following example 3.6, we compute

specpAt
0A0q “ t0, 1, x2 ` 1u, and specpG´1

h q “ tλ1ph, xq, λ2ph, xq, λ3ph, xqu,

where λ1ph, xq “ 1,

λ3ph, xq “
h´4x4 ` 4h´4 ` 4h´2x `

a

Hph, xq ` 4

8h´4
,

and

λ2ph, xq “
h´4x4 ` 4h´4 ` 4h´2x ´

a

Hph, xq ` 4

8h´4
,

with

Hph, xq “ ph´4x4 ` 4h´4
` 4h´2x ` 4q

2
´ 16h´4

p4h´2x ` 4q.

Away from the singular plane tx “ 0u, two eigenvalues, λ1ph, xq and λ2ph, xq

are of order 0 and one eigenvalue, λ3ph, xq is of order h2 as λ3ph, xq “

h2p4x ` oph´2q ` oph´4qq. So

detpG´1
h q “ h2x2 ` h4 „ h2x2.

In this case, ςpxq “ 1 and fhpxq “ x2 ` h2 Ñ fpxq “ x2. At tx “ 0u, two
eigenvalues, λ1ph, xq and λ2ph, xq, are of order 0 and one eigenvalue, λ3ph, xq

is of order h4, as λ3ph, xq “ h4p4 ` oph´4qq. So

detpG´1
h q “ h4 „ h4.

This is expected as the growth vector equals p2, 3q for x ‰ 0, and p2, 2, 3q at
tx “ 0u.

3.3.2.3 Second Approach

In this subsection, we recover corollary 3.14.1 using an adapted frame of the
tangent space. We first define an adapted basis.

Definition 3.20. Let D be a distribution on M such that D satisfies the
Hörmander condition with step r ` 1. Define Di following (3.2). We say a
local frame Z1, ..., Zd is adapted if Z1, ..., Zni

is a local frame for Di, for any
0 ď i ď r, where ni “ dimpDipmqq, and Z1, ..., Zn0 are orthonormal.
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In this subsection, we recover corollary 3.14.1 using the special charac-
teristics of an adapted frame

So, fix some adapted frame Z1, ..., Zd. Consider our framework. Let Apiq

be the Ni ˆ d matrix defined such that the j-th row of Apiq is the coefficients
of X ij in the adapted frame (so that Apiq has Ni rows and d columns). We
first describe the matrix Apiq.

For 0 ď i ď r. The rows of the matrix Apiq are the vectors X ij for
1 ď j ď Ni written in the adapted frame Z1, ..., Zd. For each 1 ď j ď Ni, the
vector X ij is in Di which has tZ1, ..., Zni

u as a basis. Thus, the last d ´ ni

columns of the matrix Apiq are zero columns. More precisely, if we denote by
akij the coefficient of Zk in the expression of X ij;

X ij
“

d
ÿ

k“1

akijZk,

then akij “ 0 for all k ą ni and Apiq has the following expression

Apiq “

¨

˚

˚

˚

˝

a1i1 ... ani
i1 0 ... 0

a1i2 ... ani
i2 0 ... 0

... . . . ... 0 ... 0
a1iNi

... ani
iNi

0 ... 0

˛

‹

‹

‹

‚

. (3.51)

Now, for any 0 ď i ď r and 1 ď j ď Ni define the coefficients ākij as follows:

ākij “

#

0 1 ď k ď ni´1

akij ni´1 ` 1 ď k ď ni

,

and define the matrix Āpiq :“ pākijq1ďjďNi,1ďkďni
with Ni rows and ni columns

(Āpiq denotes the representation matrix of X ij in Di mod Di´1, letting all
the coefficients that correspond to Z1, ..., Zni´1

equal 0).
For 0 ď i ď r, we introduce the matrix Mi as the non-zero block of

Āt
piqĀpiq:

Āt
piqĀpiq “

¨

˚

˝

0 0 0 0
˚ ˚ ˚ ˚

0 0 0 0

˛

‹

‚

¨

˚

˚

˚

˝

0 ˚ 0
0 ˚ 0
0 ˚ 0
0 ˚ 0

˛

‹

‹

‹

‚

“

¨

˚

˝

0 0 0
0 ˚ 0
0 0 0

˛

‹

‚

.
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The red-shaded region in Āpiq corresponds to the vectors Zni´1`1, ..., Zni
, and

Mi is the blue-shaded sub-matrix.

Proposition 3.21. Fix m P M . If we denote by G̃h the representation Gram
matrix of gh with respect to the adapted frame Z1, ..., Zd, then, near h “ 0,
we have

detpG̃´1
h q „ h2ς

r
ź

i“1

detpMiq. (3.52)

Proof. By theorem 3.10, We have that

G̃´1
h “

r
ÿ

i“0

h2iAt
piqApiq. (3.53)

Using the characteristics of the matrix Apiq (description (3.51), formula (3.53)
implies that

G̃´1
h “

¨

˚

˚

˚

˚

˚

˚

˚

˝

M0 ` Oph2q Oph2q ... Oph2pr´1qq Oph2rq

Oph2q h2M1 ` Oph4q Oph4q ...
...

Oph4q Oph4q h4M2 ` Oph6q ...
...

... ... ...
. . . Oph2rq

Oph2rq ... ... Oph2rq h2rMr

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(3.54)
Let

Gp1qphq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

M0 0 ... 0 0

0 h2M1 0 ...
...

0 0 h4M2 ...
...

... ... ...
. . . 0

0 ... ... 0 h2rMr

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

and

Gp2qphq “ G̃´1
h ´Gp1qphq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

Oph2q Oph2q ... Oph2pr´1qq Oph2rq

Oph2q Oph4q Oph4q ...
...

Oph4q Oph4q Oph6q ...
...

... ... ...
. . . Oph2rq

Oph2rq ... ... Oph2rq 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Moreover, we have that Mi is invertible, and so Gp1qphq is. Indeed, Mi is an
ni ´ ni´1 matrix with

rankpMiq “ rank
´

Āt
piqĀpiq

¯

“ rank
`

Āpiq

˘

.

As ni ď Ni, then
rank

`

Āpiq

˘

ď ni ´ ni´1.

As tZni´1`1, ..., Zni
u are basis for Di, then rankpĀpiqq “ ni ´ ni´1. Thus,

rankpMiq “ ni ´ ni´1, and so it has full rank (in particular, invertible).
Therefore, we have

detpG̃´1
h q “ detpGp1qphqpId ` pGp1qphqq

´1Gp2qphqqq

“ detpGp1qphqqdetpId ` pGp1qphqq
´1Gp2qphqq.

(3.55)

Now, as pGp1qphqq´1Gp2qphq is simply multiplying the ith row of Gp2qphq by
h´2iM´1

i for any 0 ď i ď r, then, the limit of pGp1qphqq´1Gp2qphq, which we
denote by Ḡ, is a strictly lower triangular matrix. Then the spectrum of
Id ` Ḡ is given by

specpId ` Ḡq “ t1, ..., 1
loomoon

d times

u,

and so its determinant is 1. Since the determinant function is a continuous
function fromMdˆd to R, then detpId`pGp1qphqq´1Gp2qphqq „ 1 and therefore,
near h “ 0,

detpG´1
h q „ detpGp1qphqq “ h2ςpmq

r
ź

i“1

detpMiq.

Finally, the same arguments as in subsection 3.3.2.2 give the charac-
teristics of the function

śr
i“1 detpMipmqq. Consequently, in an equiregular

setting, it defines a smooth volume form on M given in the local adapted
frame pZ1, ..., Zdq by

dPo “
1

a

śr
i“1 detpMiq

|ν1 ^ ... ^ νd|, (3.56)

where we recall that pν1 ^ ... ^ νdq is the dual frame to pZ1, ..., Zdq.
The thing that made this approach much easier than that used in the

first approach is the fact that the frame Z1, ..., Zd is an adapted frame that
gives the nice structure of the matrix in 3.54.
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3.4 Relation With Popp’s Volume

In this subsection, we suppose that we are working in an equiregular setting.
We define Popp’s volume following [13], where the formula of Popp’s volume
is given in terms of any adapted frame of the tangent bundle. We then
compare our volume form obtained by the approximation scheme to Popp’s
volume.

3.4.1 Definition: Popp’s Volume

Popp’s volume is defined by inducing a canonical inner product on grmpDq

via the brackets, and then using a non-canonical isomorphism between the
graded vector space grmpDq and the tangent space TmM , to define an inner
product on the whole tangent space. We follow the definition given in [13] of
Popp’s volume with respect to an adapted basis.

Fix an adapted local frame Z1, ..., Zd. Denote by ν1, ..., νd the dual frame
to Z1, ..., Zd. For j “ 1, ..., r, we define the adapted structure constants
bli1...ij P C∞pMq as follows:

rZi1 , rZi2 , ..., rZij , Zij`1
s...ss “

nj
ÿ

l“nj´1`1

bli1i2...ijZl mod Dj´1, (3.57)

where 1 ď i1, ..., ij ď n0. We define the nj ´nj´1 dimensional square positive
definite matrix Bj as follows

rBjs
hl

“

n0
ÿ

i1,...,ij“1

bhi1i2...ijb
l
i1i2...ij

, j “ 0, ...,m, (3.58)

where B0 is the n0 ˆ n0 identity matrix.

Definition 3.22. The Popp’s volume is given by

dP “
1

b

śr
j“1 detpBjq

|ν1 ^ ... ^ νd|. (3.59)

3.4.2 Comparison With Popp’s volume

Now, we prove that the volume associated to the approximation scheme
coincides with Popp’s volume up to a constant to be determined. We need
the following proposition.

101



Chapter 3. Riemannian Approximation Of Subriemannian Structures

Proposition 3.23. The matrix M0 defined with respect to the adapted frame
Z1, ..., Zd is the identity matrix; that is M0 “ In0.

Proof. Again, the fact that we are dealing with an adapted frame gives the
nice expression of G̃´1

h in (3.54) that implies, with the invertibility ofMi that
the matrix Ḡ, which is the limit of matrix pGp1qphqq´1Gp2qphq is strictly lower
triangular and that

lim
hÑ0

detpId ` pGp1qphqq
´1Gp2qphqq “ 1.

Thus, for h small enough, Id ` pGp1qphqq´1Gp2qphq is invertible. Since

G´1
h “ Gp1qphqpId ` pGp1qphqq

´1Gp2qphqq, (3.60)

we get, taking the inverse of both sides in equation (3.60) and multiplying
by Gp1qphq on the right, that

GhGp1qphq “ pId ` pGp1qphqq
´1Gp2qphqq

´1.

Thus,
M0 “ GhGp1qphq

ˇ

ˇ

D0
“ pId ` pGp1qphqq

´1Gp2qphqq
´1
ˇ

ˇ

D0
.

Since the limit of Id ` pGp1qphqq´1Gp2qphq (which is Id ` Ḡ) exists and is
invertible, we get

M0 “ pId ` Ḡq
´1
ˇ

ˇ

D0
.

Now, as Ḡ is a strictly lower triangular matrix, it is nilpotent, say of index
n. So,

pId ` Ḡq
´1

“ Id `

n´1
ÿ

k“1

p´1q
kḠk.

Therefore, since for any k, Ḡk
ˇ

ˇ

D0
“ 0 we get that M0 “ In0 .

Recall the definition of Mi in subsection 3.3.2.3. Recall that our volume
form is given by

dPo “
1

a

śr
i“1 detpMiq

|ν1 ^ ... ^ νd|.

Then, using (3.59), it is enough to compare the matrix Mi to the matrix Bi

defined by 3.58 for any 1 ď i ď r (M0 “ B0 “ In0), to deduce the relation
between dPo and dP . In the following theorem, we establish the relation
between the entries of Mi and Bi.
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Theorem 3.24. Denote by pµpiq,κ1κ2q1ďκ1,κ2ďni´ni´1
the entries of the matrix

Mi. Then, for every 1 ď i ď r, and any 1 ď κ1, κ2 ď ni ´ ni´1, we have

µpiq,κ1κ2 “
1

2
rBis

κ1κ2 ,

where rBis
κ1κ2 are the entries of the matrix Bi defined by (3.58).

Proof. Denote by J :“ t1, ..., pu. For any j P J , write X0j “
řn0

l“1 a
l
p0qjZl.

Then, for j1, ..., ji`1 P J , we have

rX0j1 , rX0j2 ...rX0ji , X0ji`1s...s “

n0
ÿ

l1,...,li`1“1

al1
p0qj1

...a
li`1

p0qji`1
rZl1 , rZl2 , ...rZli , Zli`1

s...s.

(3.61)
Then, for any 1 ď i ď r, any ni´1 ă n ď ni, and any pj1, ..., ji`1q P J i`1,
we get that the coefficient of rX0j1 , rX0j2 ...rX0ji , X0ji`1s...s in Zn P Di mod
Di´1 is given by

anpiq,pj1,...,ji`1q “

n0
ÿ

l1,...,li`1“1

al1
p0qj1

...a
li`1

p0qji`1
bnl1,...,li`1

, (3.62)

where the b1s are the adapted structure constants defined in (3.57). Denote
by J̃ :“ t1, ..., n0u and by Ji a subset of J̃

i`1 that enumerates the vectorsX ij.
We recall that that the difference between J̃ i`1 and Ji consists of getting rid
of the 0 and keeping one of the two vectors corresponding to pj0, ¨ ¨ ¨ , ji, ji`1q

and pj0, ¨ ¨ ¨ , ji`1, jiq.
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Therefore, for any 1 ď i ď r and any 1 ď κ1, κ2 ď ni ´ ni´1, we compute

µpiq,κ1κ2 “
ÿ

pj1,...,ji`1qPJi

aκ1

piq,pj1,...,ji`1q
aκ2

piq,pj1,...,ji`1q

“
1

2

ÿ

pj1,¨¨¨ ,ji`1qPJ̃i`1

aκ1

piq,pj1,...,ji`1q
aκ2

piq,pj1,...,ji`1q

“
1

2

ÿ

l1,...,li`1PJ̃
m1,...,mi`1PJ̃

ÿ

pj1,...,ji`1qPJ̃i`1

al1
p0qj1

...a
li`1

p0qji`1
bκ1
l1,...,li`1

am1

p0qj1
...a

mi`1

p0qji`1
bκ2
m1,...,mi`1

“
1

2

ÿ

l1,...,li`1PJ̃
m1,...,mi`1PJ̃

¨

˝

ÿ

j1PJ̃

al1
p0qj1

am1

p0qj1

˛

‚...

¨

˚

˝

ÿ

ji`1PJ̃

a
li`1

p0qji`1
a
mi`1

p0qji`1

˛

‹

‚

bκ1
l1,...,li`1

bκ2
m1,...,mi`1

“
1

2

ÿ

l1,...,li`1PJ̃
m1,...,mi`1PJ̃

δm1
l1
...δ

mi`1

li`1
bκ1
l1,...,li`1

bκ2
m1,...,mi`1

“
1

2

ÿ

l1,...,li`1PJ̃

bκ1
l1,...,li`1

bκ2
l1,...,li`1

“
1

2
rBis

κ1κ2 ,

(3.63)

where the Kronecker deltas are due to proposition 3.23. The factor (1/2)
popped out due to the choice made about choosing the vector fields the
matrices Apiq are representing (and that we considered in our framework).
Taking the sum over pj1, ..., ji`1q P Ji means that we are considering the
enumeration of the vector fields we chose. When moving to pj1, ..., ji`1q P

J i`1, it means that we now included all the vector fields that are formed by
the iterative brackets, and thus doubling the quantity on the right-hand side
of (3.63).

Recall that dP denotes the Popp’s volume.

Corollary 3.24.1. Recall that dPo denotes the volume induced from our
approximation scheme. We have

dP “
1

?
2r
dPo. (3.64)
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Remark 3.25. If we define the A1
is including all these vectors (including

the ones we excluded in our framework), we get that dP “ dPo. This is
following remark 3.12 which is the reason why the constant 1{2 popped out
in our computation in (3.63).

Remark 3.26. We can deduce from corollary 3.24.1 that in the non-equiangular
case, the function f defined in corollary 3.14.1, is defined on MzZ.

Example 3.10. Following example 3.7, the volume form obtained from the
approximation scheme is given by

dPo “ p1{
a

f0pxqq|dx ^ dy| “ p1{|x|q|dx ^ dy|.

Now, R2ztx “ 0u is the equiregular region with r “ 0. We have

Gh “

˜

1 0
0 x2

¸

.

Direct computation shows that ghpXi,Xjq “ δji for i, j “ 1, 2. So, X1,X2 is
an adapted frame. Following (3.59), and as r “ 0 on the equiregular region
of R2, we have

dP “ ν1 ^ ν2 “ |dx ^
1

|x|
dy| “

1

|x|
|dx ^ dy| “ dPo,

where ν1, ν2 are the dual frame to X1,X2.

Example 3.11. Following example 3.8, the volume form obtained from the
approximation scheme is given by

dPo “ p1{
a

f0pxqq|dx ^ dy ^ dz| “ |dx ^ dy ^ dz|.

Now, this is an equiregular setting with r “ 1. Using the expression of G´1
h ,

we get

Gh “

¨

˚

˝

1 0 0
0 1 ` x2h´2 ´xh´2

0 ´xh´2 h´2

˛

‹

‚

.

Direct computation shows that ghpXi,Xjq “ δji for i, j “ 1, 2. So, X1,X2,X3

is an adapted frame. Following (3.59), and as r “ 1 on R3, we have

dP “ ν1 ^ν2 ^ν3 “
1

?
2

|dx^dy^ pdz´xdyq| “
1

?
2

|dx^dy^dz| “
1

?
2
dPo,

where ν1, ν2, ν3 are the dual frame to X1,X2,X3.
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Example 3.12. Following example 3.9, the volume form obtained from the
approximation scheme is given by

dPo “ p1{
a

f0pxqq|dx ^ dy ^ dz| “ p1{|x|q|dx ^ dy ^ dz|.

Now, R2ztx “ 0u is the equiregular region with r “ 1. We have

Gh “

¨

˚

˝

1 0 0

0 1 ` x2

2
´1

0 ´1 2
x2

˛

‹

‚

.

Direct computation shows that ghpXi,Xjq “ δji for i, j “ 1, 2.. So, X1,X2,X3

is an adapted frame. Following (3.59), and as r “ 1 on the equiregular region
of R3, we have

dP “ ν1^ν2^ν3 “
1

?
2

|dx^dy^p
1

|x|
dz´

|x|

2
dyq| “

1
?
2|x|

|dx^dy^dz| “
1

?
2
dPo,

where ν1, ν2, ν3 are the dual frame to X1,X2,X3.

In each of the preceding standard examples, the initial vector fields are
orthonormal. Also, in all these examples, the coefficient of ν1 ^ ... ^ νd is
equal to a constant p1{

?
2rq, and the function is obtained by calculating the

dual frame. We give an example where this is not the case.

Example 3.13. On R4, consider the following smooth vector fields: X1 “

Bx,X2 “ By,X3 “ xBz ` yBt. On R4ztx “ 0u, X1,X2,X3 and X4 “ rX2,X3s “

Bt span R4. Then, this is an equiregular setting with r “ 1. Following (3.27),
we have

G´1
h “

¨

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 x2 ` h2 xy
0 0 xy y2 ` h2

˛

‹

‹

‹

‚

.

So, detpG´1
h q “ h4`h2px2`y2q “ h2ph2`x2`y2q. As ς “ 1, then fhpxq “ h2`

x2 `y2 and so f0pxq “ x2 `y2. Then, the volume given by the approximation
is given by

dPo “ p1{
a

x2 ` y2q|dx ^ dy ^ dz ^ dt|.
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Now, we have

Υs “

¨

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0

0 0 y2`h2

h2`hpx2`y2q

´xy
h2`hpx2`y2q

0 0 ´xy
h2`hpx2`y2q

y2`x2

h2`hpx2`h2q

˛

‹

‹

‹

‹

‚

.

Then, direct computation shows that

ghpX3q “
x2 ` y2

1 `
x2`y2

h

:“ apx, yq
2.

Now, setting

tX̃1, X̃2, X̃3, X̃4u “ tX1,X2, p1{apx, yqqX3,X4u,

we get that ghpX̃i, X̃jq “ δji for i, j “ 1, ..., 4. Thus tX̃1, X̃2, X̃3, X̃4u is an
adapted frame. Then following (3.57), and as

rX1,X3s “ Bz “
1

xapx, yq
X̃3 `

´y

x
X̃4,

we get that b423 “ 1 and b413 “ py{xq. Then, following (3.58), we get

B2 “

ˆ

2

x2
px2 ` y2q

˙

.

Thus, (3.59) implies that

dP “
|x|

?
2
a

x2 ` y2
ν1^ν2^ν3^ν4 “

|x|
?
2
a

x2 ` y2
|dx^dy^

1

|x|
dz^dt| “

1
?
2
dPo.
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Chapter 4
Convergence Of Spectrum

We study the sublaplacian on a compact manifold and prove the convergence
of the spectrum in the previous approximation scheme.

4.1 Introduction

In this chapter, we suppose that M is a compact orientable manifold.
If we define the sublaplacian ∆0 with respect to a fixed volume dω, a

natural question arises, whether one can construct a family of Riemannian
metrics such that the spectrum of the Riemannian Laplace operator defined
with respect to dω converges to the spectrum of p∆0, dωq.

Another question that seems more challenging is whether we can construct
a family of Riemannian metrics such that the spectrum of the Riemannian
Laplace operator defined with respect to the volume form dvolgh of the metric
converges to the spectrum of p∆0, dωq.

In fact, in these settings, only little is known about the convergence of the
spectrum of the Laplacians (see [39][40][76]). In some specific settings (which
implies that dvolgh “ h2dω), it was shown that the family ∆h converges to a
hypoelliptic operator ∆, and that the eigenvalues of ∆h converge to those of
∆. This was first observed by Fukaya in [39] and then proved by Ge in [40]
(See also [76] for contact manifold case).

Here, we prove the convergence theorem in our framework, which is much
more general. Suppose that the subriemannian structure is equiregular and
recall that dP denotes the Popp volume. We construct a family of Laplace
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operators ∆h such that the spectrum of p∆h, dvolghq converges to that of
p∆0, dPq. It is logical to consider the Riemannian family associated to the
approximation scheme of chapter 3 as our candidate. This is because we
know from the previous chapter that the family h´ςdvolgh converges to dP
(the main result of chapter 3).

Using some uniform subelliptic estimates, and standard theorems of spec-
tral theory, we first prove the convergence in the fixed volume form case,
where the family of elliptic operators approximating p∆0, dωq is defined with
respect to dω. Then, by proving the validity of the uniform estimates, we
prove that the results remain true in the case where the family of elliptic
operators is defined with respect to the volume form of the family of Rie-
mannian metrics. We show that these estimates follow from the previous
case by proving nice properties on the function fh, and the adjoint taken
with respect to dvolgh of X ij.

Approaches using subelliptic estimates are usually popular in the context
of studying a subriemannian manifold, especially since uniform versions of
such estimates, when coupled with similar approximation schemes, allow to
extend known Riemannian results to the subriemannian setting (see [27][32]
for instance).

We first recall the definition of a hypoelliptic and subelliptic operator.

Definition 4.1. • An operator P is hypoelliptic on M if Pu P C∞pMq

implies that u P C∞pMq.

• An operator P is subelliptic of order p with ϵ loss of derivatives if
Pu P HspMq implies that u P Hs`p´ϵpMq for some ϵ ă 1.

Let’s define the divergence operator.

Definition 4.2. Fix a volume form dω on M and let X be a smooth vector
field. The divergence divωpXq is defined as the function satisfying: For any
u, v P C∞pMq,

ż

M

uXvdω “

ż

M

”

`

´X ´ divωpXq
˘

u
ı

vdω. (4.1)

We recall the chain rule for the divergence operator.

Corollary 4.2.1. Let dω be a Riemannian volume form on M . For any
vector field X on M and any function f , we have

divωpfXq “ Xpfq ` fdivωpXq. (4.2)
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Proof. For any smooth functions u and v, we have
ż

`

´fXu ´ divωpfXqu
˘

v dω “

ż

upfXqv dω

“

ż

`

´Xpfuq ´ pdivωXqfu
˘

v dω

“

ż

`

´fXu ´ pXfqu ´ pdivωXqfu
˘

v dω.

We deduce our claim by identification.

The divergence operator satisfies the following property.

Proposition 4.3. Let dω1 and dω2 be two (non-vanishing) volume forms on
M and let α be such that dω1 “ αdω2. Then, the following assertions hold
true:

1. For any vector field X on M , we have

αdivω1pXq “ divω2pαXq. (4.3)

2. For any vector field X on M , we have

divω2pXq “ αX

ˆ

1

α

˙

` divω1pXq. (4.4)

Proof. 1. By definition, divω2pαXq is the function satisfying
ż

M

upαXqvdω2 “

ż

M

”

`

´αX ´ divω2pαXq
˘

u
ı

vdω2, (4.5)

for all u, v P C∞pMq. By the definition of α in proposition (4.3), equa-
tion (4.5) implies that

ż

M

uXvdω1 “

ż

M

«

ˆ

´X ´
1

α
divω2pαXq

˙

u

ff

vdω1. (4.6)

Finally, by definition, (4.6) implies that

divω1pXq “
1

α
divω2pαXq.

2. The second property follows by using the chain rule and (4.3).

We introduce now the (sub)Laplace operators.
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4.1.1 Sublaplace Operator

We associate on the compact manifold M a fixed volume form that we denote
dω and we denote by ϕ the function such that locally, dω “ ϕpxqdx. We
denote by L2

ωpMq :“ L2
ωppM,Rq, dωq the Hilbert space associated to dω,

given by

L2
ωpMq :“

"

u :M Ñ R; ∥u∥2L2
ω
:“

ż

M

|u|
2dω ă ∞

*

.

On L2
ωpMq, we define the sublaplace operator as

∆0 “

p
ÿ

j“0

pX0j
q

˚ωX0j
“

p
ÿ

j“0

´

´pX0j
q
2

´ divωpX0j
qX0j

¯

, (4.7)

where the star denotes the adjoint with respect to dω. Hörmander [50] first
proved, that under Hörmander’s condition, the operator ∆0, which is called
a type 1 Hörmander operator, is hypoelliptic. He proved this by proving that
∆0 satisfies a subelliptic estimate (which implies that ∆0 is subelliptic and
thus hypoelliptic).

4.1.2 Family Of Riemannian Laplacians

For any h ą 0, we define on L2
ωpMq, the family of elliptic operators:

∆h “

r
ÿ

i“0

Ni
ÿ

j“1

h2ipX ij
q

˚ωX ij
“

r
ÿ

i“0

Ni
ÿ

j“1

h2i
´

´pX ij
q
2

´ divωpX ij
qX ij

¯

,

where the star denotes the adjoint with respect to dω.
Recall that ςpmq was given in corollary 3.14.1 by

ςpmq “

r
ÿ

1

irnipmq ´ ni´1pmqs. (4.8)

If the subRiemannian manifold is equiregular, then ςpmq is constant on M ,
and is denoted here after by ς.

Now, denote by L2
hpMq :“ L2

hppM,Rq, dvolghq the Hilbert space associ-
ated to h2ςdvolgh, given by

L2
hpMq :“

"

u :M Ñ R; ∥u∥2L2
hpMq

:“

ż

M

|u|
2h2ςdvolgh ă ∞

*

.
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For any h ą 0, we define on L2
hpMq, the family of elliptic operators:

∆̃h “

r
ÿ

i“0

Ni
ÿ

j“1

h2ipX ij
q

˚hX ij
“

r
ÿ

i“0

Ni
ÿ

j“1

h2i
´

´pX ij
q
2

´ divhpX ij
qX ij

¯

,

where the star denotes the adjoint with respect to dvolgh and divh denote
the divergence with respect to dvolgh.
For h ą 0, the operators ∆h and ∆̃h are elliptic. SinceM is compact, then ∆h

and ∆̃h with domain C∞pMq are essentially self-adjoint on L2
ωpMq and L2

hpMq

respectively and their self-adjoint extensions have compact resolvents. Thus,
their spectrum consists of an increasing sequence of positive eigenvalues of
finite multiplicities that converge to `∞.
Hereafter, when we write X˚, the ˚ is taken with respect to the fixed volume
form; that is X˚ “ X˚ω .

4.2 Uniform Estimates

At some point in the proof of the convergence, we will need the boundedness
in any Sobolev space, of the eigenfunctions of ∆h and ∆̃h. One way of doing
this is to prove an estimate showing that the norm of the smooth functions
on M is controlled by the norm of ∆h and ∆̃h. A useful tool will be the
so-called subelliptic estimate.
As said earlier, Hörmander [50] first proved that the operator ∆0 (or any type
one Hörmander operator) is hypoelliptic. Kohn [58] then proved this result by
proving a subelliptic estimate on ∆0 using pseudo-differential calculus. Since
then, many authors who worked with approximation schemes investigated
the validity of such uniform estimates applied to an approximating family of
operators (see for instance [30][48]).
Here, we prove a uniform parameter-dependent version of the famous local
subelliptic estimate, which allows us to obtain a uniform subelliptic estimate
and deduce some information about the operators defined above. In section
4.2.2 we deal with ∆h; we adapt Kohn’s proof of subellipticity to prove
that a uniform estimate is true for ∆h and then, in section 4.2.3, weuse the
nice properties of the functions fh obtained in chapter 3 to prove a uniform
estimate for ∆̃h.

It is worth mentioning that although in this proof we lose having an
optimal gain of regularity (optimal order of subellipticity, which is 1{r as
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proved in [75]), this is not important to us, as having any order will imply
the self-adjointness and the compactness of the resolvent of ∆0, and the
boundedness of the eigenfunctions of ∆h and ∆̃h.

4.2.1 The Sobolev Space HspMq

For s P R, denote by Λs the following operator:

Λs
“ pId ` ∆1q

s
2 , (4.9)

where Id is the identity operator. For s P R, we define the space Hs
ωpMq

with respect to dω as

Hs
ωpMq “ tu P L2

ωpMq; ∥u∥Hs
ωpMq

:“∥Λsu∥L2
ωpMq

ă ∞u. (4.10)

In what follows, the constants may have the same notation though be of
different values.

4.2.2 First Case: Fixed Volume Form

As we said earlier, we adapt Kohn’s proof and prove a uniform version of the
subelliptic estimate. Thus our proof will mainly depend on some very well-
known facts in the pseudo-differential calculus, that we state in Appendix
A.3.
We first prove a simple proposition.

Proposition 4.4. For any smooth u on M , for any 1 ď j ď p and for all
h P r0, 1s, we have ∥∥∥X0,ju

∥∥∥2

L2
ω

ď
1

2

´

∥∆hu∥2L2
ω

`∥u∥2L2
ω

¯

.

Proof. We compute

∥∥∥X0,ju
∥∥∥2

L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥X iju

∥∥∥2

L2
ω

ď x∆hu, uyL2
ω

ď
1

2

´

∥∆hu∥2L2
ω

`∥u∥2L2
ω

¯

.
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Our aim is to prove that: Dϵ ą 0, @s P R, DCpsq, @h P r0, 1s, @u P C∞pMq,

∥u∥Hϵ`s
ω

ď Cpsq
´

∥∆hu∥Hs
ω

`∥u∥Hs
ω

¯

. (4.11)

We first prove (4.11) for s “ 0 using mainly the results of section A.3.

Theorem 4.5. There exist ϵ ą 0 and a constant C ą 0 such that for all
h P r´1, 1s and all u P C∞pMq,

∥u∥Hϵ
ω

ď C
´

∥∆hu∥L2
ω

`∥u∥L2
ω

¯

. (4.12)

Proof. In this proof, all inner products are with respect to L2
ωpMq.

Denote by P the set of all pseudo-differential operators of order zero. For all
ϵ Ps0, 1s, let

Pϵ “ tP P P ;∥Pu∥Hϵ
ω

ď Cpϵq
´

∥∆hu∥L2
ω

`∥u∥L2
ω

¯

, @u P C∞
pMq, @h P r0, 1su.

We have the following properties:

(a) For all ϵ1 ď ϵ2, Pϵ2 Ď Pϵ1 . This is obvious as Hϵ2
ω is continuously

embedded in Hϵ1
ω for all ϵ1 ď ϵ2.

(b) If P P Pϵ then P
˚ P Pϵ for any ϵ ď 1

2
.

Indeed, let P P Pϵ. We compute

∥P ˚u∥2Hϵ
ω

“∥ΛϵP ˚u∥2L2
ω

“ xΛϵP ˚u,ΛϵP ˚uy

“ xP ˚u,Λ2ϵP ˚uy

“ xpPΛ2ϵP ˚
´ P ˚Λ2ϵP qu, uy ` xP ˚Λ2ϵPu, uy

“ xpPΛ2ϵP ˚
´ P ˚Λ2ϵP qu, uy `∥Pu∥2Hϵ

ω
.

Using theorem A.13, PΛ2ϵP ˚ ´ P ˚Λ2ϵP is of order ´1 ` 2ϵ, which is
non-positive for ϵ ď 1

2
. So, for ϵ ď 1

2
, it is bounded in L2

ωpMq by
corollary A.12.1, and we get

∥P ˚u∥2Hϵ
ω

ď C1pϵq∥u∥2L2
ω

`∥Pu∥2Hϵ
ω

ď Cpϵq
´

∥∆hu∥L2
ω

`∥u∥L2
ω

¯

.

(c) For ϵ ă 1
2
, Pϵ is a left and right ideal in P .

Indeed, by theorem A.12, pseudo-differential operators of order 0 are
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bounded in any Sobolev space. So we compute, for P P Pϵ and every
A P P ,

∥APu∥Hϵ
ω

ď Cpϵq∥Pu∥Hϵ
ω
,

which implies that Pϵ is left ideal in P . Moreover, by (b), P ˚ P Pϵ, so
as Pϵ is left ideal, A˚P ˚ P Pϵ. By (b) again, P ˚A˚ “ pA˚P ˚q˚ P Pϵ.
This implies that Pϵ is right ideal in P .

(d) For all j “ 1, ..., n0 and all ϵ ď 1
2
, X0,jΛ´1 P Pϵ.

Indeed, for ϵ ď 1, the operator Λϵ´1 is of non-positive order. So it is
bounded in L2

ωpMq using corollary A.12.1. We compute∥∥∥Λ´1X0,ju
∥∥∥
Hϵ

ω

“

∥∥∥Λϵ´1X0,ju
∥∥∥
L2
ω

ď cpϵq
∥∥∥X0,ju

∥∥∥
L2
ω

ď Cpϵq
´

∥∆hu∥L2
ω

`∥u∥L2
ω

¯

,

where the last inequality is due to proposition 4.4. Then Λ´1X0,j P Pϵ

for any j “ 1, ..., n0.
Now, we observe that

X0,jΛ´1
“ ´pΛ´1X0,j

q
˚

` divωpX0,j
qΛ´1.

The first term is in Pϵ using (b). Now, the functions divωpX0,jq are
smooth on M , so bounded by some constant. Since Λ´1 is of negative
order, it is bounded in L2

ωpMq by corollary A.12.1 So, the second term
is in Pϵ. We get that for ϵ ď 1

2
, X0,jΛ´1 P Pϵ.

(e) If P P Pϵ, then rX0,j, P s P P ϵ
2
for all j “ 1, ..., n0 and ϵ ď 1

2
.

Indeed, let P P Pϵ and let σ “ ϵ
2
. Let j “ 1, ..., n0, and denote by T

the pseudo-differential operator of order ϵ defined as T :“ Λ2σrX0,j, P s

We compute∥∥∥rX0,j, P su
∥∥∥2

Hσ
ω

“ xrX0,j, P su, Tuy

“ xX0,jPu, Tuy ´ xPX0,ju, Tuy

ď |xX0,jPu, Tuy| ` |xPX0,ju, Tuy|.
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Observe that P ˚T and TP ˚ are of order ϵ and have the same principal
symbol. Then, by theorem A.13, we have that P ˚T ´ TP ˚ is of order
ϵ´ 1 which is negative for ϵ ă 1. So, by corollary A.12.1, it is bounded
in L2

ωpMq.
Moreover, T is of order ϵ, so by theorem A.12, it is bounded from
Hϵ

ωpMq to L2
ωpMq.

It follows that

|xPX0,ju, Tuy| “ |xX0,ju, P ˚Tuy|

ď

∥∥∥X0,ju
∥∥∥2

L2
ω

`∥P ˚Tu∥2L2
ω

ď

∥∥∥X0,ju
∥∥∥2

L2
ω

`∥TP ˚u∥2L2
ω

` C0pϵq∥u∥2L2
ω

ď

∥∥∥X0,ju
∥∥∥2

L2
ω

` C1pϵq∥P ˚u∥2Hϵ
ω

` C0pϵq∥u∥2L2
ω

ď C1pϵq∥P ˚u∥2Hϵ
ω

` C2pϵqp}∆hu}
2
L2
ω

` }u}
2
L2
ω
q

ď C3pϵqp}∆hu}L2
ω

` }u}L2
ω
q
2

since P ˚ is in Pϵ.

For the second term, we write

xX0,jPu, Tuy “ xPu, pX0,j
q

˚Tuy

“ xPu, T pX0,j
q

˚uy ` xPu, rpX0,j
q

˚, T suy

ď }T ˚Pu}L2
ω
}pX0,j

q
˚u}L2

ω
` }rpX0,j

q
˚, T s

˚Pu}L2
ω
}u}L2

ω
.

Since T ˚ is a pseudo-differential operators of order ϵ we have

}T ˚Pu}L2
ω

ď C}Pu}Hϵ
ω

The same estimate applies to }rpX0,jq˚, T s˚Pu}L2
ω
since rpX0,jq˚, T s˚ is

also of order ϵ. Finally, we use the fact that pX0,jq˚ “ ´X0,j ` cj for
some smooth function cj and that P P Pϵ to conclude.

(f) For 0 ď i ď r, for all 1 ď j ď Ni, we have X ijΛ´1 P P 1

2i`1
.

We will show this for i “ 2. So, let 1 ď j, k ď n0. Note that

rX0,j, X0,k
sΛ´1

“ rX0,j, X0,kΛ´1
s ´ X0,kΛ´1ΛrX0,j,Λ´1

s.
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By parts (d) and (e),

rX0,j, X0,kΛ´1
s P P 1

4
.

Now, ΛrX0,j,Λ´1s is of order zero, so using parts (c) and (d),

X0,kΛ´1ΛrX0,j,Λ´1
s P P 1

2
.

Using part (a), we get that rX0,j, X0,ksΛ´1 P P 1
4
. By recurrence, we

get that X ijΛ´1 P P 1

2i`1
for all 0 ď i ď r, 1 ď j ď Ni.

(g) We have P 1
2r`1

“ P .

Indeed, using (4.9), the definition of Λ, we have that

Id “ Λ´2
`

r
ÿ

i“0

Ni
ÿ

j“1

Λ´2
pX ij

q
˚X ij.

Using Hörmander condition, the vector fields span the tangent space,
and so we have that Λ´1pX ijq˚ P P 1

2r`1
for every j P t1, ..., Niu, and so,

by parts (b) and (c), Λ´1pX ijq˚X ijΛ´1 P P 1
2r`1

. Observing that

Λ´2
pX ij

q
˚X ij

“ Λ´1
pX ij

q
˚X ijΛ´1

` Λ´1
rΛ´1

pX ij
q

˚X ijΛ´1,Λs,

we deduce that Id P P 1
2r`1

.

Therefore, we obtain (4.12).

Before proving the full uniform subelliptic estimate, we record a useful
result.
Proposition 4.6. The following holds true: @0 ď i ď r,@1 ď j ď Ni, @ζ ą

0, @h ą 0, @u P C∞pMq,∥∥∥hiX iju
∥∥∥
L2
ω

ď
ζ

?
2
∥∆hu∥L2

ω
`

1
?
2ζ

∥u∥L2
ω
. (4.13)

Proof. We compute∥∥∥hiX iju
∥∥∥2

L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

∥∥∥hiX iju
∥∥∥2

L2
ω

“ xhiX iju, hiX ijuyL2
ω

“

C

r
ÿ

i“0

Ni
ÿ

j“1

h2ipX ij
q

˚X iju, hiu

G

L2
ω

“ x∆hu, h
iuyL2

ω

ď∥∆hu∥L2
ω
∥u∥L2

ω
ď
ζ2

2
∥∆hu∥2L2

ω
`

1

2ζ2
∥u∥2L2

ω
.
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Now, since for any a, b ą 0,
?
a ` b ď

?
a `

?
b, we deduce (4.13).

Theorem 4.7 (Uniform Subelliptic Estimate). The following holds true:
Dϵ ą 0, @s P R, DCpsq, @h P r´1, 1s, @u P C∞pMq,

∥u∥Hϵ`s
ω

ď Cpsq
´

∥∆hu∥Hs
ω

`∥u∥Hs
ω

¯

. (4.14)

Proof. Let s P R and apply (4.12) to Λsu:

∥Λsu∥Hϵ
ω

ď c
`

∥∆hΛ
su∥L2

ω
`∥Λsu∥L2

ω

˘

. (4.15)

Observe that

∥∆hΛ
su∥L2

ω
ď∥r∆h,Λ

s
su∥L2

ω
`∥∆hu∥Hs

ω
. (4.16)

We calculate

∥r∆h,Λ
s
su∥L2

ω
ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚X i,j,Λs

su
∥∥∥
L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚,Λs

sX i,ju
∥∥∥
L2
ω

`

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥pX ij

q
˚
rX i,j,Λs

su
∥∥∥
L2
ω

“ Is ` Js.

(4.17)

Combining (4.16) and (4.17), we have

∥∆hΛ
su∥L2

ω
ď Is ` Js `∥∆hu∥Hs

ω
. (4.18)

We first deal with Is. Fix s P R. Using that rpX ijq˚,ΛssΛ´s and rX i,j,ΛssΛ´s
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are bounded on L2
ω, we compute

Is “

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚,Λs

sX i,ju
∥∥∥
L2
ω

“

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚,Λs

sΛ´sΛsX i,ju
∥∥∥
L2
ω

ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥ΛsX i,ju

∥∥∥
L2
ω

ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

`

∥∥∥rX i,j,Λs
su
∥∥∥
L2
ω

˙

ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

` Cpsq∥u∥Hs
ω

˙

.

(4.19)

Using proposition 4.6, Dc1psq@ζ, DC1ps, ζq, @h ď 1, @u P C∞pMq,

Is ď c1psqζ∥∆hΛ
su∥L2

ω
` C1ps, ζq∥u∥L2

ω
. (4.20)

We now deal with Js. Observe that for any h ď 1,

Js “

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥pX ij

q
˚
rX i,j,Λs

su
∥∥∥
L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rX i,j,Λs

spX ij
q

˚u
∥∥∥
L2
ω

`

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚, rX i,j,Λs

ssu
∥∥∥
L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rX i,j,Λs

spX ij
q

˚u
∥∥∥
L2
ω

` cpsq∥u∥Hs
ω

“ Ks ` cpsq∥u∥Hs
ω
,

(4.21)

where the second inequality is due to the fact that rpX ijq˚, rX i,j,ΛsssΛ´s is
of order 0.
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Using the same steps as in (4.19), we have that

Ks ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥pX i,j

q
˚Λsu

∥∥∥
L2
ω

` Cpsq∥u∥Hs
ω

˙

ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

`

∥∥∥cijΛsu
∥∥∥
L2
ω

` Cpsq∥u∥Hs
ω

˙

,

(4.22)

where cij “ divωpX ijq are smooth functions on M . Thus, we get that

Ks ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

` sup
mPM

|cijpmq|Cpsq∥u∥Hs
ω

˙

. (4.23)

Then, again using proposition 4.6, we get that

Dc2psq, @ζ, DC2ps, ζq, @h ď 1, @u P C∞
pMq,

Js ď c2psqζ∥∆hΛ
su∥L2

ω
` C2ps, ζq∥u∥L2

ω
. (4.24)

Plugging (4.20) and (4.24) in (4.18, we get that

Dc1psq, c2psq, @ζ, DC1ps, ζq, C2ps, ζq, @h ď 1, @u P C∞
pMq,

∥∆hΛ
su∥L2

ω
ď pc1psq`c2psqqζ∥∆hΛ

su∥L2
ω
`pC1ps, ζq`C2ps, ζqq∥u∥L2

ω
∥̀∆hu∥Hs

ω
.

(4.25)
Choose ζ small enough so that pc1psq ` c2psqqζ ă 1. Denote this ζ by ζ0.
Then, (4.25) implies that for any h ď 1, for any u P C∞pMq,

∥∆hΛ
su∥L2

ω
ď
C1ps, ζ0q ` C2ps, ζ0q

1 ´ pc1psq ` c2psqqζ0
∥u∥L2

ω
`

1

1 ´ pc1psq ` c2psqqζ0
∥∆hu∥Hs

ω
.

(4.26)
Finally, plugging (4.26) into (4.15), we get that: Dc3psq ą 0@h ď 1, @u P

C∞pMq,

∥u∥Hϵ`s
ω

“∥Λsu∥Hϵ
ω

ď c3psq
´

∥∆hu∥Hs
ω

`∥u∥L2
ω

¯

.

This concludes the proof.

We give some corollaries of the subelliptic estimate.

Corollary 4.7.1. There exist ϵ ą 0 such that for any n P N, there exists
Cpnq ą 0, for any u smooth on M , and any h P r´1, 1s, we have,

∥u∥Hnϵ
ω

ď Cpnq

´

∥∆n
hu∥L2

ω
`
∥∥∆n´1

h u
∥∥
L2
ω

` ...∥∆hu∥L2
ω

`∥u∥L2
ω

¯

. (4.27)
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Proof. Take s “ ϵ in (4.11), we get

∥u∥H2ϵ
ω

ď C
´

∥∆hu∥Hϵ
ω

`∥u∥Hϵ
ω

¯

ď C
´

∥∆hu∥Hϵ
ω

`∥∆hu∥L2
ω

`∥u∥L2
ω

¯

.

Now, apply (4.11) for s=0 and ∆hu, to get that

∥∆hu∥Hϵ
ω

ď C
´∥∥∆2

hu
∥∥
L2
ω

`∥∆hu∥L2
ω

¯

.

We get (4.27) for n “ 2. We go on recursively to get (4.27) for any n.

Moreover, we recover the well-known characteristics of the sublaplacian:

Corollary 4.7.2. The operator ∆0 is hypoelliptic. Moreover, the operator
∆0 with domain C∞pMq is essentially self-adjoint on L2pMq.

Proof. As ∆0 is subelliptic, it is hypoelliptic.
Now, let u P L2

ωpMq such that ´∆0u “ λu in the distributional sense,
for some λ ą 0. As ∆0 is subelliptic, ´∆0u “ λu P L2

ωpMq implies that
u P C∞pMq. For all v P C∞pMq, we have

λxu, vyL2
ω

“ ´x∆0u, vyDpMq1DpMq “ ´xu,∆0vyL2
ω
. (4.28)

Taking v “ u in (4.28), we get that

λ∥u∥L2
ω

` xu,∆0uyL2
ω

“ 0, (4.29)

that implies, as both terms are non-negative, that u “ 0. We conclude by
applying theorem A.5.1.

Denote by Dp∆0q the domain of the unique self-adjoint extension.

Corollary 4.7.3. The operator p∆0,Dp∆0qq has a compact resolvent.

Proof. Inequality (4.11) implies that Dp∆0q Ă Hϵ
ωpMq

compact
ãÝÝÝÝÑ L2pMq by

Rellich–Kondrachov theorem. We conclude.

In particular, its spectrum consists of an increasing sequence of positive
eigenvalue of finite multiplicities converging to `∞. Moreover, L2

ωpMq has
a basis of orthonormal eigenfunctions of ∆0.
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4.2.3 Second Case: Equiregular Case

In this subsection, we assume that M is a compact orientable equiregular
subriemannian manifold. Moreover, we suppose that dω “ dPo. We aim
now to prove a version of the estimate (4.11) with ∆̃h instead of ∆h. The
family of Laplace operators ∆̃h are defined with respect to L2

hpMq and so,
some of the above estimates may now depend on h. As the main difference
between the two cases is the dependence of L2

hpMq on h, we will compare it
with L2

ωpMq. It is evident that the two spaces are equivalent for any h, but
uniformity is needed.

4.2.3.1 Uniform Equivalence Between L2
ω And L2

h

Recall from corollary 3.14.1 in chapter 3 that fh is the function such that lo-
cally, dvolgh “

a

fhpxqhς |dx| (the determinant of the matrix h´2ςGh). Also,
in the equiregular case, we have that

fhpmq “ fpmq `
ÿ

kě1

h2kaς`kpmq,

for some smooth functions aς`k. We recall that according to [38], the func-
tions aς`k are non-negative.

Proposition 4.8. The functions fh and f satisfy the following assertions.

1. The convergence of fh to f is uniform.

2. The function p1{fhq is uniformly bounded on M .

Proof. 1. The function fh is a polynomial in h with smooth coefficients
and leading term f , so it is easy to see that

lim
hÑ0

ˆ

sup
mPM

|fhpmq ´ fpmq|

˙

“ 0,

which implies uniform convergence.

2. Using the expression of fh and the fact that the coefficients aς`k is
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non-negative for all k, we have that
ˇ

ˇ

ˇ

ˇ

1

fhpmq
´

1

fpmq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

fpmq `
ř

kě1 h
2kaς`kpmq

´
1

fpmq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

´
ř

kě1 h
2kaς`kpmq

fpmqpfpmq `
ř

kě1 h
2kaς`kpmqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

|fpmq|
.

Then the function p1{fhq is bounded above by p2{fq which is a constant
(in h) that blows up if and only if the subriemannian structure is non-
equiangular.

As a corollary, we have

Corollary 4.8.1. The exists c1, c2 ą 0, h1 ą 0 such that for all h P r0, h1s,

c1∥u∥L2
ωpMq

ď∥u∥L2
hpMq

ď c2∥u∥L2
ωpMq

.

Proof. By proposition 4.8, fh is uniformly convergent to f which implies that
there exists h0 ą 0 such that for any h P r0, h0s, we have |fh| ď |f | ` 1. So,
for any h P r0, h0s, we compute

∥u∥2L2
ω

“

ż

M

|u|
2dω

“

ż

U

|upxq|
2

a

fhpxq
a

fhpxq
ϕpxq|dx|

ď sup
mPM

´

ϕpmq
a

fpmq ` 1
¯

ż

U

|upxq|
2 |dx|
a

fhpxq
“ c∥u∥2L2

h
.

On the other hand, we have

∥u∥2L2
h

“

ż

M

|u|
2h2ςdvolgh

“

ż

U

|upxq|
2 ϕpxq
a

fhpxqϕpxq
|dx|

ď sup
mPM

¨

˝

1

ϕpmq

d

2

fpmq

˛

‚

ż

U

|upxq|
2ϕpxq|dx| “ c∥u∥2L2

ω
.
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Take h1 “ mint1, h0u. We conclude.

Let us first prove some straightforward properties of ∆̃h.

4.2.3.2 Relation Between ∆h And ∆̃h

We investigate now the relation between ∆h and ∆̃h. The two operators ∆h

and ∆̃h have the same ’principle part’ but differ in the lower order terms.
We will use the following proposition to prove that ∆̃h converges to ∆0 on
one hand and to obtain the subelliptic estimate for ∆̃h on the other hand.

Proposition 4.9. There exist N functions tf ij
h u0ďiďr,1ďjďNi

smooth on M
and analytic in h for any i, j such that

∆h “ ∆̃h `

r
ÿ

i“0

Ni
ÿ

j“1

h2if ij
h X

ij. (4.30)

Proof. By definition of ∆h and ∆̃h, it is clear that

f ij
h “ divωpX ij

q ´ divhpX ij
q.

Moreover, we know that for any 0 ď i ď r, 1 ď j ď Ni, f
ij
h is smooth on M

by the smoothness of X ij. So we prove that f ij
h is analytic in h for any i, j.

Let αh be such that h2ςdvolgh “ αhdω. Locally,

αh “

d

f

fh
. (4.31)

Then, using the second part of proposition 4.3, we have

f ij
h “ divωpX ij

q ´ divhpX ij
q “ αhX

ij

ˆ

1

αh

˙

. (4.32)

Now, fh is analytic in h and doesn’t vanish for any m P M and for any h,
then αh and 1

αh
are analytic functions in h and thus f ij

h is.

Denote by L the space of linear bounded functions fromH2
ωpMq to L2

ωpMq;

L “ LpH2
ωpMq, L2

ωpMqq.
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Corollary 4.9.1. The operator ∆h ´ ∆̃h converges to 0 in operator norm,
that is, ∥∥∥∆h ´ ∆̃h

∥∥∥
L

Ñ 0 as h Ñ 0. (4.33)

Proof. Since fh converges to f as h Ñ 0, then using expression (4.31), αh Ñ 1
as h Ñ 0, which implies using the expression of f ij

h in (4.32) that f ij
h Ñ 0 as

h Ñ 0. Therefore, using (4.30), for any h ą 0, we have

∥∥∥∆h ´ ∆̃h

∥∥∥
L

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥f ij

h X
ij
∥∥∥
L

ď

r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ

max
mPM

|f ij
h pmq|

˙∥∥∥X ij
∥∥∥
L

Ñ 0.

Now we prove a version of the uniform subelliptic estimate for ∆̃h.

4.2.3.3 Subelliptic Estimate

Recall that h0 is such that for any |h| ď h0, L2
ωpMq and L2

hpMq are uniformly
equivalent. Recall that h1 “ minth0, 1u.

First, we have the validity of proposition 4.4 with ∆̃h:

Proposition 4.10. The following holds true: DC ą 0, @0 ď i ď r,@h P

r´h1, h1s, @u P C∞pMq,∥∥∥X0,ju
∥∥∥
L2
ω

ď C

ˆ∥∥∥∆̃hu
∥∥∥2

L2
ω

`∥u∥2L2
ω

˙

.

Proof. We compute∥∥∥X0,ju
∥∥∥2

L2
ω

ď c
∥∥∥X0,ju

∥∥∥2

L2
h

ď c
r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥X iju

∥∥∥2

L2
h

ď cx∆̃hu, uyL2
hpMq ď

c

2

ˆ∥∥∥∆̃hu
∥∥∥2

L2
h

`∥u∥2L2
h

˙

ď C

ˆ∥∥∥∆̃hu
∥∥∥2

L2
ω

`∥u∥2L2
ω

˙

.

Where the constants are due to the uniform equivalence between the Sobolev
spaces.
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We also have a version of proposition (4.6).

Proposition 4.11. The following holds true: DC ą 0, @0 ď i ď r,@1 ď j ď

Ni, @ζ
2 ą 0, @|h| ď h1, @u P C∞pMq,∥∥∥hiX iju

∥∥∥
L2
ω

ď C

˜

ζ
?
2

∥∥∥∆̃hu
∥∥∥
L2
ω

`
1

?
2ζ

∥u∥L2
ω

¸

. (4.34)

Proof. We compute∥∥∥hiX iju
∥∥∥2

L2
ω

ď c
r
ÿ

i“0

Ni
ÿ

j“1

∥∥∥hiX iju
∥∥∥2

L2
h

“ c
r
ÿ

i“0

Ni
ÿ

j“1

xh2ipX ij
q

˚hX iju, uyL2
h

“ cx∆̃hu, uyL2´h ď c
∥∥∥∆̃hu

∥∥∥
L2
h

∥u∥L2
h

ď C
∥∥∥∆̃hu

∥∥∥
L2
ω

∥u∥L2
ω

ď
Cζ2

2

∥∥∥∆̃hu
∥∥∥2

L2
ω

`
C

2ζ2
∥u∥2L2

ω
,

(4.35)

where the constants are due to the uniform convergence between L2
ωpMq and

L2
hpMq for h P r´h1, h1s.

Now, since
?
a ` b ď

?
a `

?
b for any a, b ą 0, and since (4.35) is true for

any ζ ą 0, we deduce (4.34).

Theorem 4.12. The following holds true: Dϵ ą 0, @s P R, DCpsq ą 0, @h P

r´h1, h1s, @u P C∞pMq,

∥u∥Hϵ`s
ω pMq

ď Cpsq

ˆ∥∥∥∆̃hu
∥∥∥
Hs

ωpMq
`∥u∥Hs

ωpMq

˙

. (4.36)

Proof. Proposition 4.10 allows us to follow the same steps (a)-(g) in the proof
of theorem 4.5 to prove (4.36) for s “ 0. This is because that proof didn’t
depend on the explicit expression of ∆h, and the adjoints and norms are
always taken with respect to dω. So, Dϵ ą 0, Dc ą 0, @h P r´h1, h1s, @u P

C∞pMq,

∥u∥Hϵ
ωpMq

ď c

ˆ∥∥∥∆̃hu
∥∥∥
L2
ωpMq

`∥u∥L2
ωpMq

˙

. (4.37)

Now, apply (4.37) to Λsu to get that

∥Λsu∥L2
ω

ď c

ˆ∥∥∥∆̃hΛ
su
∥∥∥
L2
ω

`∥Λsu∥L2
ω

˙

. (4.38)
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As we did before, we now investigate
∥∥∥∆̃hΛ

su
∥∥∥
L2
ω

. We have∥∥∥∆̃hΛ
su
∥∥∥
L2
ω

ď

∥∥∥r∆̃h,Λ
s
su
∥∥∥
L2
ω

`

∥∥∥∆̃hu
∥∥∥
Hs

ω

ď

∥∥∥r∆̃h ´ ∆h,Λ
s
su
∥∥∥
L2
ω

`∥r∆h,Λ
s
su∥L2

ω
`

∥∥∥∆̃hu
∥∥∥
Hs

ω

“ Ĩs ` J̃s `

∥∥∥∆̃hu
∥∥∥
Hs

ω

.

(4.39)

We deal with Ĩs and J̃s separately. Consider first Ĩs. Using proposition 4.9,
we have ∥∥∥r∆̃h ´ ∆h,Λ

s
su
∥∥∥
L2
ω

ď

r
ÿ

i“0

Ni
ÿ

j“1

∥∥∥rf ij
h X

ij,Λs
sΛ´sΛsu

∥∥∥
L2
ω

,

where f ij
h is a smooth function that is analytic in h by proposition 4.9. The

operator
rf ij

h X
ij,Λs

sΛ´s

is a 0 order operator, whose symbol depends linearly on f ij
h . Moreover, its

norm in LpL2
ωq depends only on a finite number of derivatives of the symbol

(see [84, Theorem 4.23]). Then by the smoothness and the analyticity of f ij
h ,

its norm is uniformly bounded with respect to h, and we get that

Ĩs “

∥∥∥r∆̃h ´ ∆h,Λ
s
su
∥∥∥
L2
ω

ď cpsq∥u∥Hs
ω
. (4.40)

Now, consider J̃s. We know from the proof of theorem 4.7, that J̃s ď Is `Js,
where we recall that

Is “

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rpX ij

q
˚,Λs

sX i,ju
∥∥∥
L2
ω

,

and that

Js “

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥pX ij

q
˚
rX i,j,Λs

su
∥∥∥
L2
ω

.

We deal with Is first. In (4.19), we proved that

Is ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

` Cpsq∥u∥Hs
ω

˙

.
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Using proposition 4.11, Dc1psq@ζ, DC1ps, ζq, @|h| ď h1, @u P C∞pMq,

Is ď c1psqζ
∥∥∥∆̃hΛ

su
∥∥∥
L2
ω

` C1ps, ζq∥u∥L2
ω
. (4.41)

We deal now with Js. In (4.21), we proved that Js ď Ks ` cpsq∥u∥Hs
ω
, where

Ks “

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥rX i,j,Λs

spX ij
q

˚u
∥∥∥
L2
ω

.

We then proved in (4.23) that

Ks ď cpsq
r
ÿ

i“0

Ni
ÿ

j“1

h2i
ˆ∥∥∥X i,jΛsu

∥∥∥
L2
ω

` sup
mPM

|cijpMq|Cpsq∥u∥Hs
ω

˙

.

Therefore, again by proposition 4.11, Dc2psq, @ζ, DC2ps, ζq, @|h| ď h1, @u P

C∞pMq,

Js ď c2psqζ
∥∥∥∆̃hΛ

su
∥∥∥
L2
ω

` C2ps, ζq∥u∥L2
ω
. (4.42)

Then, by (4.41) and (4.42), we conclude that Dc1psq, c2psq, @ζ, DC1ps, ζq, C2ps, ζq, @|h| ď

h1, @u P C∞pMq,

J̃s ď pc1psq ` c2psqqζ
∥∥∥∆̃hΛ

su
∥∥∥
L2
ω

` pC1ps, ζq ` C2ps, ζqq∥u∥L2
ω
. (4.43)

Now, plug (4.40) and (4.43) in (4.39), we get that Dc3psq, @ζ, DC3ps, ζq, @|h| ď

h1, @u P C∞pMq,∥∥∥∆̃hΛ
su
∥∥∥
L2
ω

ď c3psqζ
∥∥∥∆̃hΛ

su
∥∥∥
L2
ω

` C3ps, ζq∥u∥L2
ω

`

∥∥∥∆̃hu
∥∥∥
Hs

ω

. (4.44)

Choose ζ small enough so that c3psqζ ă 1, and denote it ζ1, we get that∥∥∥∆̃hΛ
su
∥∥∥
L2
ω

ď
C3ps, ζ1q

1 ´ c3psqζ1
`

1

1 ´ c3psqζ1

∥∥∥∆̃hu
∥∥∥
Hs

ω

. (4.45)

Finally, we conclude by plugging (4.45) in (4.38).

As a consequence, we get

Corollary 4.12.1. The following holds true: Dϵ ą 0, @n P N, DCpnq ą

0, @u P C∞pMq, @h P r´h1, h1s, we have,

∥u∥Hnϵ
1

ď Cpnq

ˆ∥∥∥∆̃n
hu

∥∥∥
L2
ω

`

∥∥∥∆̃n´1
h u

∥∥∥
L2
ω

` ...
∥∥∥∆̃hu

∥∥∥
L2
ω

`∥u∥L2
ω

˙

. (4.46)
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4.3 Convergence Of The Spectrum

In this section, we answer the question we have been seeking. We start with
a fixed volume form case.

4.3.1 First Case: Fixed Volume Form

We almost have all the tools we need to proceed with the proof. We need
one more observation.

Proposition 4.13. The operator ∆h converges to ∆0 in L.

Proof. For any u P H2
ωpMq, we compute

∥p∆h ´ ∆0qu∥L2
ωpMq

“

∥∥∥∥∥∥
r
ÿ

i“1

Ni
ÿ

j“1

h2ipX ij
q

˚X iju

∥∥∥∥∥∥
L2
ωpMq

ď

r
ÿ

i“1

Ni
ÿ

j“1

h2i
∥∥∥pX ij

q
˚X iju

∥∥∥
L2
ωpMq

.

Since pX ijq˚X ij is of order 2 and so using theorem A.12 we get that

∥p∆h ´ ∆0qu∥L2
ωpMq

ď c
r
ÿ

i“1

Ni
ÿ

j“1

h2i∥u∥H2
ωpMq

ď c

¨

˝

r
ÿ

i“1

Ni
ÿ

j“1

h2i

˛

‚∥u∥H2
ωpMq

.

Therefore, we get that

∥p∆h ´ ∆0q∥LpH2
ωpMq,L2pMqq

ď c
r
ÿ

i“1

Ni
ÿ

j“1

h2i Ñ 0. (4.47)

Now, we have the family of Riemannian operators that converge in the
operator norm to ∆0. We need one final lemma before we state and prove
our main theorems.

Lemma 4.14. Let punqně0 be a bounded sequence in H l
ωpMq for all l that

converges strongly in L2
ωpMq to some u. Then, the sequence punqně0 con-

verges strongly to u in H l
ωpMq for any l.
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Proof. Fix some arbitrary l. Let punk
qkě0 be an arbitrary subsequence of

punqně0. We prove that punk
qkě0 has a subsequence that converges to u in

H l
ωpMq.

Fix l1 ą l. The sequence punqně0 is a bounded sequence in H l1

ωpMq then
punk

qkě0 is. So, punk
qkě0 has a subsequence that converges weakly in H l1

ωpMq

to some v. By compact embedding of H l1

ωpMq in H l1

ωpMq as l ă l1, this sub-
sequence converges strongly in H l

ωpMq and L2
ωpMq to v. By the convergence

of the original sequence to u in L2
ωpMq, and by the uniqueness of limit in this

space, we get that u “ v.
Thus, for any l, every subsequence of punqně0 has a subsequence that con-
verges to u strongly in H l

ωpMq. This implies that punqně0 converges to u
strongly in H l

ωpMq (one can show this by contradiction or by the fact that
this implies that every convergent subsequence has the same limit).
Finally, as l is arbitrary, we conclude.

Recall theorem 2.8.

Theorem 4.15. Let phnqně0 be a sequence that goes to 0 and punqně0 be a
sequence of normalized eigenfunctions of ∆hn. Let pµnqně0 be the associated
sequence of eigenvalues. Assume that the sequence pµnqně0 is bounded. Then,
the following assertions hold true.

1. There exist a subsequence pµnk
qkě0 that converges to an eigenvalue of

∆0, say λ.

2. Up to extracting a subsequence, punk
qkě0 (that corresponds to pµnk

qkě0)
converges to v0 in H l

ωpMq for any l, and v0 is an eigenfunction of ∆0

associated to λ.

Proof. 1. Since the sequence pµnqně0 is bounded, then by Bolzano–Weierstrass
theorem, it has a subsequence pµnk

qkě0 that converges to some λ.
Now, punk

qkě0 is a sequence of smooth functions as they are eigenfunc-
tions of elliptic Riemannian Laplace operators. If we apply the uniform
estimate (4.27) to unk

we get that for any l,∥∥unk

∥∥
Hl

ω
ď C

∥∥∥p∆h ` 1q
pr`1qlunk

∥∥∥
L2
ω

“ p1`µpr`1ql
nk

q
∥∥unk

∥∥
L2
ω

“ p1`µpr`1ql
nk

q.

(4.48)
Again, as pµnqně0 is bounded, it implies that the sequence punk

qkě0 is
bounded in H l

ωpMq for any l. In particular in H2
ωpMq

131



Chapter 4. Convergence Of Spectrum

Now we compute∥∥p∆0 ´ λqunk

∥∥
L2
ωpMq

“
∥∥p∆0 ´ ∆hnqunk

∥∥
L2
ωpMq

`
∥∥p∆hn ´ λqunk

∥∥
L2
ωpMq

ď∥∆0 ´ ∆hn∥L
∥∥unk

∥∥
H2

ωpMq
` |µnk

´ λ|.

(4.49)

Thus, we get that

lim
kÑ∞

∥∥p∆0 ´ λqunk

∥∥
L2
ωpMq

“ 0.

Therefore, by theorem 2.8, we get that λ is an eigenvalue of ∆0.

2. We prove that punk
qně0 has a subsequence that converge to some v0 in

any Sobolev space H l
ωpMq, and then prove that this v0 is an eigenfunc-

tion corresponding to λ.
The sequence punk

qkě1 is bounded by (4.48) in H1
ωpMq, then, it has a

subsequence, say punkj
qjě1, that converges weakly inH

1
ωpMq to some v0.

As H1
ωpMq is compactly embedded in L2

ωpMq, it implies that punkj
qjě1

converges strongly to v0 in L2
ωpMq. Moreover, by (4.48), punkj

qjě1 is

bounded in any Sobolev space H l
ωpMq. Thus, by lemma 4.14, punkj

qjě1

is convergent to v0 in any H l
ωpMq.

Now, for all φ P C∞pMq, we compute

|xp∆0 ´ λqv0, φyL2
ω
| ď∥p∆0 ´ ∆hnqv0∥L2

ω
∥φ∥L2

ω
`

∥∥∥v0 ´ unkj

∥∥∥
L2
ω

∥∆hnφ∥L2
ω

`

”

µnkj
xunkj

, φyL2
ω

´ λxv0, φyL2
ω

ı

.

(4.50)

The right-hand side converges to 0 as k Ñ ∞. We conclude that for
any φ P C∞pMq,

x∆0v0, φyL2
ω

“ λxv0, φyL2
ω
.

This implies, as ∆0 is self-adjoint, that v0 is an eigenfunction of ∆0

with corresponding eigenvalue λ.

We prove now, the convergence of the ordered spectrum.
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Theorem 4.16. Denote by pλkqkě0 and pλkphqqkě0 the ordered spectrum of
∆0 and ∆h respectively, counted with multiplicities. Then, for any k ě 0
fixed, we have

lim
hÑ0

λkphq “ λk. (4.51)

Proof. Let phnqně0 be an arbitrary sequence that converges to 0 as n Ñ ∞.
Fix k ě 0. For n large enough, the sequence pλkphnqqně0 is bounded above
by λkp1q. Indeed, denote by V1 the vector space spanned by k eigenfunctions
of ∆1 corresponding to the first k eigenvalues; V1 “ spantu1p1q, ..., ukp1qu.
For any u P V1 and any h P r0, 1s, we have

x∆hu, uyL2
ω

ď x∆1u, uyL2
ω

ď λkp1q

k
ÿ

i“1

|xu, uip1qyL2
ω
|
2

ď λkp1q∥u∥L2
ω
.

Then, we deduce the bound using min-max theorem.
Now, by theorem 4.15, the sequence pλkphnqqně0 has a subsequence, say
pλkphnj

qqjě0, that converges to an eigenvalue λ of ∆0. Remains to prove
that λ “ λk.
We first observe that

λkphnj
q ď λk ` op1q as j Ñ ∞. (4.52)

Indeed, let tu1, ..., uku be an orthonormal set of eigenfunctions that corre-
sponds to the first k eigenvalues of ∆0. Let V0 “ spantu1, ..., uku. For any
v P V0, we compute

x∆hnj
v, vyL2

ω
“ x∆0v, vyL2

ω
`

r
ÿ

i“1

Ni
ÿ

j“1

h2inj
xpX ij

q
˚X ijv, vyL2

ω

ď

k
ÿ

i“1

λi|xv, uiyL2
ω
|
2

` c
r
ÿ

i“1

Ni
ÿ

j“1

h2inj
∥v∥L2

ω
∥v∥H2

ω

ď λk∥v∥2L2
ω

` op1q∥v∥L2
ω
∥v∥H2

ω
as j Ñ 0.

Taking maximum over all normal vectors v P V0 (satisfying ∥v∥L2
ω

“ 1),
then minimum over all subspaces of dimension k, we get (4.52) by min-max
theorem.
Inequality (4.52) implies that

lim
jÑ∞

λkphnj
q P tλ1, ..., λku.
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Now, let tukphnj
qukě1 be an orthonormal sequence of eigenfunctions corre-

sponding to pλkphnj
qqjě0 for any j.

For k “ 1, we have limjÑ∞ λ1phnj
q “ λ1. For k “ 2, we have by orthogonality

that

x lim
jÑ∞

u2phnj
q, u1yL2

ω
“ x lim

jÑ∞
u2phnj

q, lim
nÑ∞

u1phnj
qyL2

ω

“ lim
jÑ∞

xu2phnj
q, u1phqyL2

ω
“ 0.

Then the eigenfunction corresponding to limjÑ∞ λ2phnj
q is orthogonal to u1,

and so
lim
jÑ∞

λ2phnj
q “ λ2.

Proceeding the same way, we conclude that the sequence pλkphnj
qqjě0 con-

verges to λk as j Ñ 0.
Finally the sequence hn was arbitrary, so, any subsequence of λkphq has a
subsequence (the pλkphnj

qqjě0) that converges to λk. We deduce (4.51).

Of course, this all holds for any fixed smooth volume form on M . In
particular, in an equiregular case, we have the convergence if we consider the
volume form p1{

a

fpxqdxq.

Theorem 4.16 is about the convergence of ordered eigenvalues. This
doesn’t imply the convergence of eigenbranches in general. As a counter-
example, one can consider

Example 4.1. The family of Laplace operators ∆t defined on a finite cylinder
in RxˆRθ (x, t and θ variables represent the length of the cylinder, the radius
of the cylinder and the angle parameter of the cylinder respectively). Direct
calculations show that the eigenfuncions of ∆t are given by

sinpkxqe

2iπlθ

t k ď 1, l P Z,

and that the corresponding eigenbranch is given by

λptq “ k2 `
4π2l2

t2
.

As expected, for small t, the nth eigenvalue λnptq “ n2, obtained for l “ 0
converges to the nth eigenvalue of the Laplacian ∆0 defined on a segment,
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which is well-known to be n2. However, for l ‰ 0, the eigenbranch λptq
diverges as t Ñ 0.

In this case, however, we have

Proposition 4.17. Let λphq be an eigenbranch of ∆h. Then, λphq converges
to an eigenvalue of ∆0.

Proof. Denote by ϱh the positive quadratic form given by

ϱhpuq “

r
ÿ

i“1

Ni
ÿ

j“1

h2i
∥∥∥X iju

∥∥∥2

L2
ω

,

and by N the usual norm operator (N puq “∥u∥L2
ω
). So, ∆h is the Rieman-

nian Laplace operator associated to pϱh,N q. Thus, as N is independent of
h, we have 9N “ 0 and we get

9λphq “ 9ϱhpuphqq ` λphq 9N puphqq “ 9ϱhpuphqq “

r
ÿ

i“1

Ni
ÿ

j“1

p2iqh2i´1
∥∥∥X iju

∥∥∥
L2
ω

ą 0.

Since λphq is positive (bounded below) and increasing, and we are studying
the behavior of λphq near h “ 0, it is convergent as h Ñ 0 (and thus bounded).
We then follow theorem 4.15.

Remark 4.18. All the results above hold true for an arbitrary fixed (refer-
ence) volume form dω. In particular, everything works for Popp’s volume.

4.3.2 Second Case: Equiregular Case

We suppose now that the reference volume form is the volume form induced
from the approximation scheme of chapter 3; that is dω “ dPo. So now, the
sublaplacian is defined with respect to dPo, which can be written locally in
coordinates x as dPo “ p1{

a

fpxqqdx (one of the main results of chapter 3).
We prove in this section that the spectrum of ∆̃h converges to the spectrum
of p∆0, dPoq.
First observe that ∆̃h converge to ∆0.

Proposition 4.19. The operator ∆̃h converges to ∆0 in L.
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Proof. We compute∥∥∥∆̃h ´ ∆0

∥∥∥
L

ď

∥∥∥∆̃h ´ ∆h

∥∥∥
L

`∥∆h ´ ∆0∥L .

The first term converges to zero by corollary 4.9.1, and the second one con-
verges to zero by proposition 4.13. We conclude.

Theorem 4.20. Let phnqně0 be a sequence that goes to 0 and punqně0 be a
sequence of normalized eigenfunctions of ∆̃hn. Let pµnqně0 be the associated
sequence of eigenvalues. Assume that the sequence pµnqně0 is bounded. Then,
the following assertions hold true.

1. There exist a subsequence pµnk
qkě0 that converges to an eigenvalue of

∆0, say λ.

2. Up to extracting a subsequence, punk
qkě0 (that corresponds to pµnk

qkě0)
converges to v0 in H l

ωpMq for any l, and v0 is an eigenfunction of ∆0

associated to λ.

Proof. The proof exactly follows the proof of theorem 4.15.

1. The convergence of ∆̃hn to ∆0 in L, the convergence of pµnk
qkě0 to λ,

and the boundedness of punk
qkě0 in H2

ωpMq (which is implied by the
subelliptic estimate (4.46)) imply that

lim
kÑ∞

∥∥p∆0 ´ λqunk

∥∥
L2
ωpMq

“ 0.

Therefore, by theorem 2.8, we get that λ is an eigenvalue of ∆0.

2. The same subsequence argument as in part 2 of theorem 4.15 implies
that there is an eigenfunction v0 of λ such that punk

qkě0 has a subse-
quence that converges to v0 in H l

ωpMq for any l.

As we just saw, the proofs of theorem 4.20 and theorem 4.15 are the
same, because the proof depends on the convergence of the operators and
the boundedness of eigenfunctions which are valid in both cases. However,
the proof of theorem 4.16 depends directly on the fact that we are dealing
with fixed volume form. Due to the uniformity between the spaces L2

ωpMq

and L2
hpMq, the convergence of the ordered spectrum works in this case and

follows the same idea of the proof.
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Theorem 4.21. Denote by pλkqkě0 and pλ̃kphqqkě0 the ordered spectrum of
∆0 and ∆̃h respectively, counted with multiplicities. Then, for any k ě 0
fixed, we have

lim
hÑ0

λ̃kphq “ λk. (4.53)

Proof. Let phnqně0 be an arbitrary sequence that converges to 0 as n Ñ ∞.
Fix k ě 0. There exists a constant c such that for n large enough, the
sequence pλ̃kphnqqně0 is bounded above by cλkp1q. It is enough to observe
that for any u,

x∆̃hnu, uyL2
h

“

r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥X iju

∥∥∥2

L2
h

ď c
r
ÿ

i“0

Ni
ÿ

j“1

h2i
∥∥∥X iju

∥∥∥2

L2
ω

“ cx∆hnu, uyL2
ω
.

Min-max theorem implies that λ̃kphnq ď λkphnq ď cλkp1q.
Now, by theorem 4.20, the sequence pλ̃kphnqqně0 has a subsequence, say
pλ̃kphnj

qqjě0, that converges to an eigenvalue λ of ∆0. Remains to prove
that λ “ λk.
We first observe that

λ̃kphnj
q ď λk ` op1q as j Ñ ∞. (4.54)

Indeed, let tu1, ..., uku be an orthonormal set of eigenfunctions that corre-
sponds to the first k eigenvalues of ∆0. Let V0 “ spantu1, ..., uku. For any
v P V0, we compute

x∆̃hnj
u, uyL2

h
“ x∆0u, uyL2

h
`

r
ÿ

i“1

Ni
ÿ

j“1

h2inj
xpX ij

q
˚hX iju, uyL2

h

“ x∆0u, uyL2
h

`

r
ÿ

i“1

Ni
ÿ

j“1

h2inj

∥∥∥X iju
∥∥∥2

L2
h

ď x∆0u, uyL2
h

` c
r
ÿ

i“1

Ni
ÿ

j“1

h2inj

∥∥∥X iju
∥∥∥2

L2
ω

ď x∆0u, uyL2
ω

`

ż

U

u∆0u

¨

˚

˝

1
b

fhnj
pmq

´
1

a

fpmq

˛

‹

‚

dm

` c1∥u∥2H1
ω

r
ÿ

i“1

Ni
ÿ

j“1

h2inj
.

(4.55)
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By the (point-wise) convergence of fh to f , we have the following point-wise
convergence

lim
jÑ∞

»

—

—

–

upmq∆0upmq

¨

˚

˝

1
b

fhnj
pmq

´
1

a

fpmq

˛

‹

‚

fi

ffi

ffi

fl

“ 0.

Moreover, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u∆0u

¨

˚

˝

1
b

fhnj
pmq

´
1

a

fpmq

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď u∆0u

˜

c
a

fpmq

¸

P L1
ωpMq.

This implies by the Lebesgue dominated convergence theorem that

ż

U

u∆0u

¨

˚

˝

1
b

fhnj
pmq

´
1

a

fpmq

˛

‹

‚

dm “ op1q.

Applying min-max to (4.55), we conclude (4.54).
Finally, the same argument on the orthogonality of the limiting eigenfunction
implies that λ “ λk. we conclude (4.53).

Remark 4.22. Theorem 4.21 also holds for Popp’s volume as it is equal to
our volume form up to a constant.

Remark 4.23. Proposition 4.17 is not necessarily true anymore as now, the
norm operator depends on h and its derivative is not necessarily 0. However,
whenever the eigenbranch is increasing, the result holds true.
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Appendix A
Spectral Theory

Here, we state some well-known theorems in spectral theory that played an
important role in this manuscript. The reader can refer to [34][47][73][74] for
more details.

A.1 General Spectral Theorems

In this section, H denotes a general Hilbert space. We start with the min-
max theorem. This theorem is very standard in spectral theory and can be
found in many places. For instance, see [63, Chapter 12] [77, Chapter 1][80,
Chapter 4].

Theorem A.1 (Min-Max Theorem For Matrices). Let A be dˆ d hermitian
matrix with eigenvalues λ1 ď ... ď λd. Then for any 1 ď k ď d,

λk “ min
dimpUq“k

¨

˝max
uPU

∥u∥“1

xAu, uy

˛

‚.

Corollary A.1.1 (Continuity Of Spectrum). Let A,B be d ˆ d hermitian
matrices such that ∥A ´ B∥ ď ϵ for some ϵ. Then, for any 1 ď k ď d,

|λkpAq ´ λkpBq| ď ϵ.

Proof. Let U be a subspace of Rd of dimension k. Then for u P U with
∥u∥ “ 1, we have by min-max that

xAu, uy “ xBu, uy ` xpA ´ Bqu, uy ď xBu, uy ` ϵ∥u∥2 .
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Taking infimum over all normal u P U and then over all U of dimension k we
get one direction. By symmetry, we get the inequality.

Theorem A.2 (Min-Max Theorem For Operators). Let T be a semibounded
self adjoint operator with compact resolvent with domain DpT q Ă H, and let
tλmumě1 be its increasing sequence of eigenvalues. Then,

λm “ min
dimF“m
FĂDpT q

tΛpF qu,

with

ΛpF q “ max
uPF
u‰0

#

xTu, uy

∥u∥2H

+

. (A.1)

Definition A.3. Let T with domain DpT q be a closable operator in H. A
core of T is a subset D of DpT q such that the closure of the restriction of T
to D is T .

Theorem A.4. Let T be a semibounded self adjoint operator with compact
resolvent with domain DpT q Ă H, and let tλmumě1 be its increasing sequence
of eigenvalues. Let D be a core for T . Then

λm “ min
dimF“m

FĂD

tΛpF qu,

with ΛpF q defined by (A.1).

Proof. Let

λ̃m “ inf
dimF“m
FĂDpT q

max
uPF
u‰0

#

xTu, uyH

∥u∥2H

+

.

Required to prove λm “ λ̃m. Clearly, since D Ă DpT q, we have λm ď λ̃m.
Now, Let U “ vecttu1, ..., umu be a set of orthonormal eigenvectors of T

that corresponds to the first m eigenvalues of T . By definition A.3, there
exist m sequences tpu1nqně1, ..., pu

m
n qně1u such that uin Ñ ui and Tuin Ñ Tui,

in H for all i P t1, ...,mu. Let Un “ vecttu1n, ..., u
m
n u. For un P Un, we write,

un “

m
ÿ

i“1

αiu
i
n “

m
ÿ

i“1

αiu
i
n ` u∞ ´ u∞,
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with u∞ “
řm

i“1 αiu
i. We have

∥u∞∥2H “

m
ÿ

i“1

ai. (A.2)

Then, using the Cauchy Schwartz inequality after the triangle inequality, we
get

∥un ´ u∞∥H “

∥∥∥∥∥ m
ÿ

i“1

αipu
i
n ´ uiq

∥∥∥∥∥
H

ď∥u∞∥H ϵn,

where

ϵn “

˜

m
ÿ

i“1

∥∥∥uin ´ ui
∥∥∥2

H

¸1{2

.

The last inequality gives us

∥u∞∥H p1 ´ ϵnq ď∥un∥H ď∥u∞∥H p1 ` ϵnq. (A.3)

Now, we compute

xTun, unyH “

m
ÿ

i,j“1

|αiαj|xTu
i
n, u

i
nyH “

m
ÿ

i,j“1

|αiαj|δ
n
i,j,

with δni,j Ñ λiδi,j as n Ñ ∞. So, we get,

|xTun, unyH ´

m
ÿ

i“1

λiα
2
i | ď

m
ÿ

i“1

|αi|
2
|δni,i ´ λi| `

m
ÿ

i‰j

|αiαjδ
n
i,j|.

The right-hand side converges to 0 at ∞, so, for every ϵ ą 0, there exist n0

such that for all n ą n0, we have

|xTun, unyH ´

m
ÿ

i“1

λiα
2
i | ď ϵ.

Hence, for all n ą n0, we have

xTun, unyH ď

m
ÿ

i“1

λiα
2

` ϵ ď λm∥u∞∥H ` ϵ ď
λm

p1 ´ ϵnq
∥un∥H ` ϵ.
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Therefore, for all n ą n0, for every un P Un,

xTun, unyH

∥un∥2H
ď

λm
p1 ´ ϵnq2

`
ϵ

∥un∥2H
.

The right-hand side converges to λm `
ϵ

∥u∞∥H
. Thus, for every ϵ̃ ą 0, there

exist n1 ą 0, such that for all n ě maxtn0, n1u,

xTun, unyH

∥un∥2H
ď λm `

ϵ

∥u∞∥H
` ϵ̃,

for all un P Un. Therefore, there exist Un Ă D of dimension m such that

ΛpUnq ď λm `
ϵ

∥u∞∥H
` ϵ̃,

which implies that

λ̃m ď λm `
ϵ

∥u∞∥H
` ϵ̃

for any arbitrary ϵ, ϵ̃, and thus the result follows.

We give, in corollary A.5.1, a sufficient condition for an operator T to
be essentially self-adjoint. It is a direct corollary of the following theorem,
which is completely taken from [73, Theorem X.1].

Theorem A.5. Let T be a closed symmetric negative operator on a Hilbert
space H. Then, T is self-adjoint if and only if

dimpkerpλI ´ T ˚
qq “ 0,

on the upper and the lower half-plane.

Corollary A.5.1. Let T be a closed symmetric operator on a Hilbert space
H. Then, T is self-adjoint if and only if there are no eigenvectors with
positive eigenvalue in the domain of T ˚.

We state now, without giving the proof, the Rellich-Kondrachov theorem
followed by the Kondrachov embedding theorem. Refer to [1, Chapter 6] (see
also [79]).
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Theorem A.6. Let Ω be an open bounded Lipschits domain of Rn and set
p˚ “

np
n´p

. Then the Sobolev space W 1,ppΩq is compactly embedded in LqpΩq

for every 1 ď q ă p˚. In particular, H1pΩq is compactly embedded in L2pΩq.

Theorem A.7. LetM be a compact manifold with C1 boundary. Then if k ą

l and k´ n
p

ą l´ n
q
, then the Sobolev space W k,ppMq is compactly embedded in

W l,qpMq. In particular, HkpMq is compactly embedded in H lpMq for every
k ą l.

A.2 The Schrödinger Operator

We handle now the operator ´∆ ` V . Let X Ă Rn and let H “ L2pXq.
Denote by C∞

c pXq the space of smooth functions on X of compact support.
Let V be a non-negative smooth1 function, that converges to infinity at
infinity. It is well-known that ´∆`V is a self-adjoint operator with compact
resolvent on H (see [34][47] for instance).
We give a proof for the sake of completion.

Theorem A.8. The operator T “ ´∆`V with domain C∞
c pXq is essentially

self-adjoint. Its unique self-adjoint extension is the operator T with domain

D Ă H1
V pXq :“ tu P H1

pXq, V 1{2u P Hu.

Proof. We will first prove that D Ă H1
V pXq. The space H1

V is equipped with
the following norm

∥u∥2H1
V

“∥∇u∥2H `

∥∥∥V 1{2u
∥∥∥2

H
.

For any u P C∞
c pXq, we have

xTu, uyH ě∥∇u∥2H `

∥∥∥V 1{2u
∥∥∥2

H
. (A.4)

Now, let u P D and let un P C∞
c pXq such that un Ñ u and Tun Ñ Tu. Then,

(A.4) implies that un is Cauchy in H1pXq and V 1{2un is Cauchy in H. This
implies that u P H1

V pXq.

1Continuity is enough for the results in this section to hold.
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Now, let f P
`

RanpT ` iq
˘K

, where the K is taken with respect to ∥.∥H.
Then, for all u P C∞

c pXq, xpT ` iqu, fyH “ 0. We have

0 “ xpT ` iqu, fyH “ xp∆ ` V ` iqf̄ , uyD 1pXqDpXq.

So p´∆ ` V ` iqf̄ “ 0. Since f P L2pXq and ∆f P L2
locpXq, it implies that

f P H2
locpXq (let χ be a cutoff function. Compute p∆ ` 1qχf and see that it

is an element of H´1pXq. Then, χf P H1pXq which gives that f P H1
locpXq.

This will imply that p∆ ` 1qχf P L2pMq).
Now, pick ξ P C∞

c pXq such that 0 ď ξ ď 1, ξ “ 1 on Bp0, 1q and

supppξq Ă Bp0, 2q. Denote by ξkpxq “ ξ

ˆ

x

k

˙

. For any u P C∞
c pXq we have

x∇pξkfq,∇pξkuqyH`

ż

X

ξ2kV uf “ xf, T pξ2kuqyH`

ż

X

|∇ξk|
2uf`

ÿ

j

ż

X

pfBju´uBjfqξkBjξk.

This formula can be extended by density to u P H2
locpXq. Taking u “ f , we

get

∥∇pξkfq∥2H `

ż

X

ξ2kV f
2

“ xf, T pξ2kfqyH `

ż

X

|∇ξk|
2f 2.

Since xf, T pξ2kfqyH “ 0, we get
ż

X

|fξk|
2

ď

ż

X

|∇ξk|
2
|f |

2.

By the Lebesgue domination theorem, we get f “ 0. Therefore
`

RanpT `

iq
˘K

“ t0u. This implies that RanpT ` iq is dense in H. We conclude.

Lemma A.9. If H1
V pXq is compactly embedded in H, then pT,Dq has a

compact resolvent.

Proof. Let ζ ă 0. Note that

pT ´ ζq
´1 : H Ñ D Ă H1

V pXq
compact

ãÝÝÝÝÑ H.

Let u P H and let f “ pT ´ ζq´1u. We compute,

∥f∥H1
V pXq

“

ż

X

`

|∇f |
2

` pV ´ ζq|f |
2
˘

dx ď xppT´ζqf, fqyH “ xu, fyH ď∥u∥H∥f∥H .

Then the map pT ´ ζq´1 : H Ñ D is continuous. We conclude.
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Theorem A.10. The operator pT,Dq is of compact resolvent.

Proof. Let χ P C∞
c pXq such that 0 ď χ ď 1, χ “ 1 near 0 and supppχq Ă

Bp0, 1q. Define the following mappings

Rn : H1
V pXq Ñ H1

pBp0, nqq

u ÞÑ χp.{nqup.q

Fn : H1
pBp0, nqq Ñ H

u ÞÑ u

By theorem A.6, Fn is compact. Since Rn is continuous, then the map
Jn :“ Fn ˝ Rn is compact. Let

J : H1
V pXq Ñ H

u ÞÑ u

We compute, for u P H1
V pXq,

∥pJ ´ Jnqu∥H “∥p1 ´ χqu∥H

“

ż

X

|p1 ´ χqpx{nq|
2
|upxq|

2dx

“

ż

X

|p1 ´ χqpx{nq|
2
pV pxqq

´1V pxq|upxq|
2dx

ď

˜

sup
yěpn{2q

|pV pyqq
´1

|

¸

ż

X

V pxq|upxq|
2dx

ď

˜

sup
|y|ěpn{2q

|pV pyqq
´1

|

¸

∥u∥2H1
V pXq

.

Hence,

∥J ´ Jn∥LpH1
V pXq,Hq

ď sup
|y|ěpn{2q

|pV pyqq
´1

| Ñ 0.

Therefore, J is compact. and by theorem A.9, we conclude.
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A.3 Pseudo-differential operators

Pseudo-differential operators are a type of operator that generalizes the con-
cept of differential operators in calculus. The general theory of pseudo-
differential operators is not necessary here though. We give some essen-
tial theorems without proofs, for these theorems are basic in the context of
pseudo-differential operators and can be found in several places like [5][25]
and the references within. We briefly recall that

Definition A.11. A pseudo-differential operator is an operator which is de-
fined by u ÞÑ Oppaqu as:

Oppaqupxq :“
1

p2πqd

ż

Rd

eixξapx, ξqûpξqdξ.

Here, a is a C∞ symbol on R2d, which admits, as ξ Ñ ∞, an expansion

apx, ξq “
ÿ

jě0

ap´jpx, ξq,

with alpx, λξq “ λlalpx, ξq for all λ ą 0 and every ξ P Rdzt0u. We call p the
degree of the symbol (or of the pseudo-differential operator).

Theorem A.12. Let a be a symbol of order p P R. The operator Oppaq is
bounded from HspRdq to Hs´ppRdq for all d ě 1 and all s P R. In particular,
pseudo-differential operators of order 0 are bounded in any Sobolev space.

Theorem A.12 is true also for compact manifolds (see [69]).

Corollary A.12.1. For M being a compact manifold, a pseudo-differential
operator of non-positive order is bounded in L2pMq.

Theorem A.13. Let P1 and P2 be two pseudo-differential operators with
the same principle symbol (thus same order p). Then, P1 ´ P2 is of order
p ´ 1. In particular, if P1, P2 are two pseudo-differential operators of orders
p1 and p2 respectively, then rP1, P2s is a pseudo-differential operators of order
p1 ` p2 ´ 1.
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Analytic Perturbation Theory In
Finite Dimension

We give Kato’s proof for the analyticity of eigen-quantities in the finite-
dimensional cases.

B.1 Introduction

Perturbation Theory operates under the premise that if we cannot ascertain
precise solutions to a problem, we can derive an approximate solution by
utilizing solutions to an approximate version of the problem that can be
treated exactly. In chapter two of [54], Kato studied perturbations of linear
operators in finite-dimensional spaces. He uses the theory of Knopp [56] to
prove the analyticity of eigenvalues, but he didn’t mention the details. We’ll
explain a little as this theory was the base for a lot of our work.

We just note that another proof can be found in the first section of chapter
3 in [77], however, we choose to explain the proof using algebraic equations
(Knopp’s theory).

Let us first give a brief review of Riemannian surfaces. A Riemann surface
is a connected one-dimensional complex manifold that locally near every
point looks like patches (sheets) of the complex plane and globally looks like
several sheets glued together. Riemann surfaces are nowadays considered the
natural setting for studying the global behavior of multi-valued functions such
as the square root and other algebraic functions, or the logarithm. Important
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examples of Riemann surfaces are provided by analytic continuation are given
in figure B.1.

Consider for instance the function fpzq “ z
1
2 near the branch point 0 in

figure B.1. The two horizontal axes represent the real and imaginary parts
of z, while the vertical axis represents the real part of

?
z. The imaginary

part of
?
z is represented by the coloration of the points. Starting from the

right on the red region, and moving anti-clockwise, we pass by the yellow
region and reach after a while the place where the sheet is suddenly purple,
and this line (between the change of colors) is the place where the two sheets
were glued. If we pass down to the green region and continue moving anti-
clockwise, we will reach again this line. Passing to the purple region, we get
back to our initial position (see figure B.2 and figure B.3).

(a) fpzq “ z
1
2 (b) fpzq “ z

1
3 (c) fpzq “ z

1
4

Figure B.1: Riemann Surface Of The Function fpzq

Figure B.2: The Journey On The Riemann Surface Of z
1
2

In general, for w “ p
?
z, the corresponding p´sheet Riemann surface is

mapped injectively to the 1-sheet representing w. So, let a be a branch
point, and suppose that f is a regular function that goes into itself after
p ´ fold continuation (of the way described before). Then f can be written
as a power series in pz ´ aq

1
p . Indeed, if we define the function f̃ such that
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w-sheet

z p-sheets

Figure B.3: The Behaviour Of fpzq When It Hit The Intersection Line

f̃pz̃q “ fpzq where z̃p :“ z´a, then f̃ is single-valued regular (hence analytic)
function in a neighborhood of z̃ “ 0 and can be written in Laurent series as
f̃pz̃q “

ř∞
´∞ cnz̃

n.

Now, we introduce the setup. Let X be a finite-dimensional vector space1
of dimension N . Suppose that T pxq is an operator-valued function that is
holomorphic in the complex plane. The operator T “ T p0q is called the
unperturbed operator and xT p1q ` x2T p2q ` ... is the perturbation (as T pxq

can be written as T pxq “ T ` xT p1q ` x2T p2q ` ...). The fundamental result
in perturbation theory is the following:

Theorem B.1 (Kato 1995). The eigenvalues and the eigenfunctions of T pxq

are branches of analytic functions of x with only algebraic singularities (sin-
gularities exhibited by a radical function).

1Whenever necessary, X will be considered as a normed space with a convenient norm.
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B.2 Analyticity Of Eigenvalues

Let us first study the first part of the theorem. It is well-known that the
eigenvalues of T pxq are the roots of the characteristic equation:

Gpx, ζq :“ detpT pxq ´ ζq “ 0, (B.1)

which is an algebraic equation with coefficients that are analytic in x. We
write G in the form

g0pxq ` g1pxqζ ` g2pxqζ2 ` ... ` gNpxqζN ,

with gipxq analytic, depending only on x. Knopp in his book [56], in chapter
5 specifically, studied this algebraic equation (B.1) and proved the analyticity
of the roots. We state a very important theorem of his and give the proof as
in [56]. Denote by Dpxq the discriminant of Gpx, ζq.

Theorem B.2. Let px0, ζ0q be a solution of (B.1) such that x0 is a root of
multiplicity β. For all Kϵ disc of sufficiently small radius ϵ ą 0 described at
ζ0, there exist a disc Kδ with radius δ ą 0 described at x0 such that for any
x ‰ x0 in Kδ, the equation Gpx, ζq “ 0 has β distinct roots in Kϵ.

Proof. If we set ζ “ pζ ´ ζ0q ` ζ0, we may write

Gpx, ζq “ g̃0pzq ` g̃1pxqpζ ´ ζ0q ` ... ` g̃Npxqpζ ´ ζ0q
N ,

with g̃0px0q “ g̃1px0q “ ... “ g̃βpx0q “ 0, g̃βpx0q ‰ 0. By inverse function
theorem, we can describe a small disc Kδ1 around the point x0, such that
Dpxq and g̃βpxq are not zero within Kδ1 and on its boundary. We have

Gpx, ζq “ g̃βpxqpζ ´ ζ0q
β
r1 ` A ` Bs,

where

A “ Apx, ζq “
g̃β`1

g̃β
pζ ´ ζ0q ` ... `

g̃N
g̃β

pζ ´ ζ0q
N´β,

and

B “ Bpx, ζq “
g̃β´1

g̃β

1

ζ ´ ζ0
` ... `

g̃0
g̃β

1

pζ ´ ζ0qβ
.

Let M be an upper bound for all |g̃ipxq| in Kδ1 , and set c “ infxPKδ1 t|g̃βpxq|u.
Now, take

ϵ ă
c

4M
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Then, for all x P Kδ1 and all ζ P Kϵ, |A| ă
1

2
. Now, choose δ small enough

that in the interior of Kδ, we have g̃ipxq ă µ for all 0 ď i ď β ´ 1, with

µ “
c

2p1
ϵ

` 1
ϵ2

` ... ` 1
ϵβ

q
.

Then we get that |B| ă 1
2
for all x and ζ satisfying |x´x0| ă δ and |ζ´ζ0| ă ϵ.

Finally, we let x1 be arbitrary in Kδ. For all ζ on the boundnary of Kϵ, we
have

|g̃βpx1qpζ ´ ζ0q
β
| ą |g̃βpx1qpζ ´ ζ0q

β
pApx1, ζq ` Bpx1, ζqq|.

Apply Rouches theorem, to conclude that Gpx1, ζq has precisely the same
number of zeros in the interior of Kϵ as |g̃βpx1qpζ ´ ζ0q

β|, β zeros. All are
distinct because at x1, which is in Kδ1 , Dpx1q ‰ 0.

Now, we suppose further that Dpx0q ‰ 0, that is β “ 1 at x0. Then, for
every x in Kδ, there is one and only one root of Gpx, ζq in Kϵ. Consequently,
this root is a single-valued continuous function f1pxq of x. Moreover, we have

Theorem B.3. The function ζ “ f1pxq is regular in Kδ.

Proof. Let x1 be an arbitrary point in the interior of Kδ and let ζ1 “ f1px1q
so that Gpx1, ζ1q “ 0. Let x1 ` ξ be a point in the interior of Kδ such that
f1px1 ` ξq “ ζ1 ` ω,Gpx1 ` ξ, ζ1 ` ωq “ 0. By continuity of f1, ω Ñ 0 as
ξ Ñ 0. We have

f 1
1px1q “ lim

ξÑ0

ˆ

f1px1 ` ξq ´ f1px1q

ξ

˙

“ lim
ξÑ0

ˆ

ω

ξ

˙

.

We write

Gpx1`ξ, ζ1`ωq “ Gpx1, ζ1q`ξGxpx1, ζ1q`ωGζpx1, ζ1q` second order terms .

This implies that

ω

ξ
“ ´

Gxpx1, ζ1q

Gζpx1, ζ1q
` term that converges to 0 as ξ Ñ 0 .
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Therefore, there exist N analytic functions f1,x0 , ..., fN,x0 defined on Kδ,
such that f1,x0pxq, ..., fN,x0pxq are the N solutions of Gpx, ζq “ 0. These
functions can be continued -by uniqueness of combination in Kδ- analyti-
cally over every path not containing a critical point. Imagine that there is a
semiline issued from each critical point and denote by Y the union of these
semilines. Since CzY is simply connected, monodromy theorem (principle
of analytic continuation) implies the existence of analytic continuation of
f1,x0 , ..., fN,x0 to CzL; the existence of N analytic single-valued regular func-
tions, say F1, ..., FN such that for all x P CzY , tF1pxq, ..., FNpxqu are the N
solutions of Gpx, ζq “ 0.

Consider now a critical point, without loss of generality let’s say 0, with
K being a circle around 0. If we move Kδ continuously then the functions
f1,x0 , ..., fN,x0 , for some regular point x0, can be continued along K, and they
undergo a permutation between each other. We group them as cycles:

tF1pxq, ..., Fppxqu, tFp`1pxq, ..., Fp`qpxqu, ....

Each group (cycle at x “ 0), undergoes a cyclic permutation (of period equals
to the number of elements in the cycle). The elements of a cycle of period
p constitute a branch of an analytic function with an algebraic singularity
(branch point) at x “ 0, and we have the Püisseux series

Fjpxq “ F p0q ` c1ω
jx1{p

` c2ω
2jx2{p

` ..., (B.2)

j “ 1, ..., p, with ω “ e
2πi
p and ck are real constants for all k.

Proposition B.4. If the operator T pxq is self-adjoint, then ck in (B.2) is
zero for k not multiple of p.

Proof. If T pxq is self-adjoint, then Fjpxq is real for any x near 0. If k “ np
for some n P N, then ckω

kjxk{p “ ckx
n is real. If k is not a multiple of p,

then for Fjpxq to be real, ck must be 0 as ωkjxk{p is not real.

B.3 Analyticity Of Eigenfunctions

The eigenprojection is defined using the resolvent operator so let’s first con-
sider the perturbation of the resolvent.
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B.3.1 Analyticity Of The Resolvent

For any ζ R specpT pxqq, we define the resolvent of T pxq as the function

Rpζ, xq “ pT pxq ´ ζq
´1.

Let ζ0 be such that ζ0 R specpT q. If we denote by

Apxq :“ T pxq ´ T “

∞
ÿ

i“1

xiT piq,

and by Rpζq :“ Rpζ, 0q “ pT ´ ζq´1, then we have

T pxq ´ ζ “
`

1 ´ pζ ´ ζ0 ´ ApxqqRpζ0q
˘

pT ´ ζ0q.

For |x| and |ζ ´ ζ0| small enough, we have |ζ ´ ζ0| ´∥Apxq∥ ď∥Rpζ0q∥´1 and
so,

`

1 ´ pζ ´ ζ0 ´ ApxqqRpζ0q
˘´1 exists and can be written as a convergent

Neumann series. Then, in a neighborhood of ζ “ ζ0 and x “ 0, Rpζ, xq is
holomorphic and can be written as

Rpζ, xq “ Rpζq `

∞
ÿ

n“1

xnRpnq
pζq. (B.3)

B.3.2 Analyticity Of Eigenprojection

Let λ be an eigenvalue of T of multiplicity α, and let Γ be a closed curve in the
resolvent set of T enclosing no eigenvalues but λ. Continuity of eigenvalues
implies that for x small enough, Γ contained no eigenvalues of T pxq. We
define the operator

P pxq “ ´
1

2πi

ż

Γ

Rpζ, xqdζ.

This is a projection, that equals the sum of eigenprojections for all eigenvalues
of T pxq inside Γ. Integrating (B.3), we get

P pxq “ P ´
1

2πi

∞
ÿ

n“1

xn
ż

Γ

Rpnq
pζqdζ “ P `

∞
ÿ

n“1

xnP pnq. (B.4)

The series (B.4) is convergent for x small enough, and so P pxq is holomorphic
near x “ 0. Moreover, this gives that the range of P pxq and P are isomorphic
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and that dimpP pxqq “ dimpP q. So if x “ 0 is a non-critical point, then
ζpxq is the only eigenvalue of T pxq and is of multiplicity α. So, on CzL,
the eigenprojections Pipxq (that correspond to Fipxqq are holomorphic for
i “ 1, ..., N .

Now, near a critical point, again, the family tPipxqu undergo, after one
revolution around the critical point, a permutation that Kato proved to be
identical for the two families (eigenbranches and eigenfunction branches).
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Méthodes spectrales en géométrie sous-riemannienne

Résumé : Ce manuscrit traite de deux sujets qui convergent vers une idée : l’utilisation
des méthodes spectrales en géométrie sous-riemannienne. Tout d’abord, nous étudions la
validité des inégalités de concentration pour les fonctions propres de l’opérateur généralisé
de Baouendi-Grushin sur un cylindre infini. Nous démontrons que généralement, les valeurs
propres de l’opérateur de Baouendi-Grushin ont une multiplicité de 2, que nous prouvons être
une condition suffisante pour la validité de l’inégalité de concentration. Ensuite, nous étudions
les structures sous-riemanniennes en les approximant par des structures riemanniennes. Nous
introduisons un schéma d’approximation et prouvons qu’il induit une forme de volume qui
coïncide - à une constante près - avec le volume de Popp. Nous démontrons ensuite que le
spectre de la famille des Laplaciens riemanniens associés au schéma d’approximation converge
vers le spectre du sous-Laplacien. Mots-clés : Théorie spectrale - Inégalité de concentration
- Opérateurs sous-elliptiques - Théorie de la perturbation - Géométrie sous-riemannienne.

Spectral Methods In SubRiemannian Geometry

Abstract : This manuscript handles two subjects that meet at one idea: using spectral
methods in subRiemannian geometry. First, we study the validity of concentration inequalities
for eigenfunctions, for the generalised Baouendi Grushin operator on an infinite cylinder. We
prove that generically, the eigenvalues of the Baouendi Grushin operator has multiplicity 2 which
we prove to be a sufficient condition to the validity of the concentration inequality. Second,
we study subRiemannian structures by approximating these structures with Riemannian ones.
We introduce an approximation scheme and prove that it induces a volume form that coincides
-up to a constant- with the Popp’s volume. We then prove that the spectrum of the family of
Riemannian Laplacians associated to the approximation scheme converges to the spectrum of
the subLaplacian. Keywords : Spectral theory- concentration inequality- Subelliptic operators-
Perturbation theory- SubRiemannian geometry.
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