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Abstract

The use of artificial intelligence, whose implementations are often based on artificial neural networks,
is now becoming widespread across a wide variety of tasks. These deep learning models indeed
yield much better results than many specialized algorithms previously used and are therefore being
deployed on a large scale. It is in this context of very rapid development that issues related to the
storage of these models emerge, since they are sometimes very deep and therefore comprise up to
billions of parameters, as well as issues related to their computational performance, both in terms of
accuracy and time- and energy-related costs. For all these reasons, the use of reduced precision is
increasingly being considered. On the other hand, it has been noted that neural networks suffer from
a lack of interpretability, given that they are often very deep models trained on vast amounts of data.
Consequently, they are highly sensitive to small perturbations in the data they process. Adversarial
attacks are an example of this; since these are perturbations often imperceptible to the human eye,
constructed to deceive a neural network, causing it to fail in processing the so-called adversarial
example.

The aim of this thesis is therefore to provide tools to better understand, explain, and predict
the sensitivity of artificial neural networks to various types of perturbations. To this end, we first
extended to artificial neural networks some well-known concepts from numerical linear algebra, such
as condition number and backward error. These quantities allow to better understand the impact of
perturbations on a mathematical function or system, depending on which variables are perturbed
or not. We then use this backward error analysis to demonstrate how to extend the principle of
adversarial attacks to the case where not only the data processed by the networks is perturbed but
also their own parameters. This provides a new perspective on neural networks’ robustness and
allows, for example, to better control quantization to reduce the precision of their storage. We then
improved this approach, obtained through backward error analysis, to develop attacks on network
input comparable to state-of-the-art methods. Finally, we extended approaches of roundoff error
analysis, which until now had been approached from a practical standpoint or verified by software, in
neural networks by providing a theoretical analysis based on existing work in numerical linear algebra.
This analysis allows for obtaining bounds on forward and backward errors when using floating-point
arithmetic. These bounds both ensure the proper functioning of neural networks once trained, and
provide recommendations on architectures and training methods to enhance the robustness of neural
networks.

Key words: artificial neural networks, floating-point, error analysis, adversarial attacks, rounding
errors, backward error
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Résumé

L’utilisation d’intelligences artificielles, dont les implémentations reposent souvent sur des réseaux
de neurones artificiels, se démocratise maintenant dans une grande variété de tâches. En effet, ces
modèles d’apprentissage profond produisent des résultats bien meilleurs que de nombreux algorithmes
spécialisés précédemment utilisés et sont donc amenés à être déployés à grande échelle. C’est dans
ce contexte de développement très rapide que des problématiques liées au stockage de ces modèles
émergent, car ils sont parfois très profonds et comprennent donc jusqu’à des milliards de paramètres,
ainsi que des problématiques liées à leurs performances en termes de calcul tant d’un point de vue de
précision que de coût en temps et en énergie. Pour toutes ces raisons, l’utilisation de précision réduite
est de plus en plus indispensable. D’autre part, il a été noté que les réseaux de neurones souffrent d’un
manque d’interprétabilité, étant donné qu’ils sont souvent des modèles très profonds, entraînés sur
de vastes quantités de données. Par conséquent, ils sont très sensibles aux perturbations qui peuvent
toucher les données qu’ils traitent. Les attaques adverses en sont un exemple ; ces perturbations,
souvent imperceptibles à l’œil humain, sont conçues pour tromper un réseau de neurones, le faisant
échouer dans le traitement de ce qu’on appelle un exemple adverse.

Le but de cette thèse est donc de fournir des outils pour mieux comprendre, expliquer et prédire la
sensibilité des réseaux de neurones artificiels à divers types de perturbations. À cette fin, nous avons
d’abord étendu à des réseaux de neurones artificiels certains concepts bien connus de l’algèbre linéaire
numérique, tels que le conditionnement et l’erreur inverse. Nous avons donc établi des formules
explicites permettant de calculer ces quantités et trouvé des moyens de les calculer lorsque nous
ne pouvions pas obtenir de formule. Ces quantités permettent de mieux comprendre l’impact des
perturbations sur une fonction mathématique ou un système, selon les variables qui sont perturbées
ou non. Nous avons ensuite utilisé cette analyse d’erreur inverse pour démontrer comment étendre le
principe des attaques adverses au cas où, non seulement les données traitées par les réseaux sont
perturbées, mais également leurs propres paramètres. Cela offre une nouvelle perspective sur la
robustesse des réseaux neuronaux et permet, par exemple, de mieux contrôler la quantification des
paramètres pour ensuite réduire la précision arithmétique utilisée et donc faciliter leur stockage.
Nous avons ensuite amélioré cette approche, obtenue par l’analyse d’erreur inverse, pour développer
des attaques sur les données des réseaux comparables à l’état de l’art. Enfin, nous avons étendu les
approches d’analyse des erreurs d’arrondi, qui jusqu’à présent avaient été abordées d’un point de
vue pratique ou vérifiées par des logiciels, dans les réseaux de neurones en fournissant une analyse
théorique basée sur des travaux existants en algèbre linéaire numérique. Cette analyse permet
d’obtenir des bornes sur les erreurs directes et inverses lors de l’utilisation d’arithmétiques flottantes.
Ces bornes permettent à la fois d’assurer le bon fonctionnement des réseaux de neurones une fois
entraînés, mais également de formuler des recommandations concernant les architectures et les
méthodes d’entraînement afin d’améliorer la robustesse des réseaux de neurones.

Mots clés : réseaux de neurones artificiels, virgule flottante, analyse d’erreur, attaques adverses,
erreurs d’arrondi, erreur inverse
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Introduction

The term Artificial Intelligence (AI) refers to the ability of a computer or a system to
perform tasks that are commonly associated with human intelligence or intelligent
beings, such as learning, reasoning, problem-solving, understanding natural language
and interacting with the environment. Artificial Intelligence has now a wide range
of applications, from virtual assistants and recommendation systems to autonomous
vehicles and medical diagnosis. This recent development of AI is largely due to Deep
Learning, a subset of Machine Learning (ML), which explains why those terms are
often confused. Machine learning is one of the fields of AI and consists in building
algorithms that are able to learn from available data and then generalize to unseen
data. Indeed, hard-coding knowledge in order to get AI systems seems impractical
and it is therefore natural that systems that are able to extract knowledge from data
are more desirable. We are therefore moving from a model-based design approach,
rooted on algorithmic logic, to a data-centric approach where it is much more difficult
to get explicit proof of accuracy or confidence bounds.

Deep Neural Networks (DNNs) are a specific type of ML model that achieve
state-of-the-art performance in many machine learning tasks and in various types of
applications. They are known to be universal approximators [59, 101]. In fact, many
results assert that a small approximation error can be achieved if the network size is
sufficiently large and provide upper bounds which depend on the network size. Those
theoretical results are often quoted to justify the empirical efficiency of deep neural
networks: indeed, they exceed human accuracy in many tasks and even in playing
games [104, 20, 81]. Their efficiency in solving complex problems has led to apply
deep learning techniques in safety-critical tasks, from medicine with the detection of
cancer [22] to driving cars [124]. However, DNNs are sensitive to various perturbations.
For example, the response of the neural networks can be sensitive to environmental
perturbations such as variations in image brightness, macroscopic transformations
that preserve the semantics of the data [52, 33, 34] (e.g. zoom level, translations,
rotations) and infinitesimal transformations of the adversarial type [108, 72, 40, 84]
but also to rounding errors, or quantization processes [24, 119]. This raises concerns
and has lead to high interest in finding new approaches to make them more robust.

However, the work on neural networks error analysis available in the literature is
mainly based on experimental approaches [77, 64, 90] and very few studies address a
more theoretical framework.
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Introduction

The objective of this thesis is therefore to propose a theoretical framework for the
error analysis in neural networks based on traditional work in numerical linear algebra.
We will hence develop numerical analysis methods and tools applicable in a context in
which errors may come from environmental perturbations, adversarial transformations,
and arithmetic constraints in order to estimate the prediction quality and stability
of neural networks. This allows us to understand what are the sources of errors and
instabilities, and thus to contribute to a more explainable AI.

We will start this manuscript by investigating mathematical tools that enable to
quantify a system’s sensitivity to perturbations. Developed and popularized by James
Wilkinson in the 1950s and 1960s [120, 122], with origins in the works of Neumann and
Goldstine [86] (1947) and Turing [114] (1948), backward error analysis is a fundamental
notion used in numerical linear algebra software, both as a theoretical and a practical
tool for the rounding error analysis of numerical algorithms. In numerical analysis,
backward error is a particularly well-established tool [56, 113], as it enables one to
know if an inexact solution to a problem is in fact the exact solution to a nearby
problem with slightly perturbed input data. Then depending on prior knowledge on
the problem, such as uncertainty on the input data, one can say that said problem is
backward stable if the backward error is close to these uncertainties which essentially
means that the algorithm has computed a solution which is as good as it can be. We
will hence begin by introducing different mathematical quantities typically used for
error analysis and robustness analysis in numerical linear algebra, such as backward
error and condition number.

As a first contribution, this thesis develops generic definitions of these quantities
for deep neural networks, as well as generic formulas for computing them numerically.
This theoretical framework enables us to have tools to quantify and better explain how
generic perturbations affect artificial neural networks. This leads us to have a closer
look at a more specific type of perturbations, adversarial attacks on neural networks,
since we will demonstrate that computing the backward error for classification neural
networks amounts to design adversarial attacks. First introduced in 2014 by Szegedy
et al. [108], adversarial attacks most frequently refer to carefully crafted perturbations
applied to input data with the intention of deceiving the neural network into making
incorrect predictions or classifications. These perturbations are often imperceptible to
the human eye but can still cause significant disruptions in the network’s computations.
Adversarial attacks may come in various forms, including adversarial examples, where
the adversary seeks to perturb input data to produce incorrect predictions, and
poisoning attacks [128], where the training data is manipulated to compromise the
integrity of the model. The existence of adversarial attacks challenges the robustness
and reliability of neural network models. Therefore, understanding the mechanisms
behind adversarial attacks is essential to develop more resilient and trustworthy AI
systems. The motivations for constructing adversarial attacks are diverse, ranging
from exploring vulnerabilities in neural network architectures to finding ways to make
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neural networks more robust via adversarial training [46, 60, 76] but also highlighting
the potential lack of integrity of AI-driven decision-making processes. We will therefore
introduce a new form of attacks, based on a backward error analysis, that consists in
perturbing at the same time the inputs of a neural network as well as its parameters.
We will then adapt this attack to be competitive with state-of-the-art attacks when
perturbing the input data.

Finally, the last type of perturbations we will be interested in are those which are
specific to the use of finite precision in computations. Indeed, machines perform the
computations with finite precision, so they make arithmetic errors, rounding errors.
Machine learning methods and their software implementations, even the most advanced
ones, are therefore subject to rounding errors resulting from the use of finite precision
arithmetic in calculations. Numerical accuracy dictates the precision and reliability of
computational results. In the context of AI, where algorithms process vast amounts of
data and execute complex computations, maintaining numerical accuracy is crucial.
The success of deep learning mostly relies on the increasing size of both the number of
parameters of the neural networks used but also on the size of training datasets. This
leads to higher energy and computational costs for the training of deep learning models,
as well as limiting their ability to be integrated into an embedded environment for
an inference phase with more constraining hardware than during training. Therefore,
in modern machine learning, low-precision arithmetics are becoming increasingly
attractive due to both their higher speed and their lower energy consumption [5, 50,
126]. Proposed solutions demonstrate significant enhancements in power consumption,
processing speed, and memory usage by recommending the replacement of widely used
32-bit floating-point arithmetic by a low-precision approach.

However, rounding errors can have a considerable impact on the robustness of
AI methods and tools, where robustness is defined as the ability to maintain correct
behaviour in the presence of disturbances of different nature and origin. To be able
to deploy neural networks in critical systems, we have to ensure that these errors do
not modify their functioning, their operation and properties. Hence, the ability to
measure the accuracy of numerical programs, to analyse the errors due to rounding in
the computations, and therefore to estimate which computations are more sensitive to
changes of arithmetic is essential [56, 19].

On a more practical level, software such as CADNA [39, 65] and FLUCTUAT [48]
can be used to assess, with some precision, how reliable the result of an algorithm
is. FLUCTUAT is used by many companies to check the robustness of their software.
Depending on the software used, the robustness and validity of the result obtained by
the algorithm will be assessed differently. CADNA is based on a stochastic approach
and can therefore produce unsatisfying results depending on the used algorithm,
whereas FLUCTUAT is more often chosen in industry, for example in fields such
as aerospace or nuclear engineering, when certifications require deterministic results,
since it provides both a worst-case analysis (interval semantics) and knowledge of the
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sources of errors (error series semantics) [78]. The extension of these types of verifier
for artificial neural networks is still in progress [105] and raises many questions in
terms of computation time as they are based on computationally expensive methods
such as SMT (Satisfiability Modulo Theories) solving [68] or mixed integer linear
programming [112], but also because of their own rounding error [66].

Although universities and industry are increasingly interested in the safety impli-
cations of artificial intelligence, the possibility of integrating these algorithms into
critical equipment has not yet received sufficient attention. In particular, what we will
be concentrating on now, is to produce theoretical and experimental results enabling
us to understand the propagation of rounding errors in neural network architectures.
We will therefore provide a rounding error analysis of artificial neural networks, which
leads us to obtaining bounds on backward and forward errors. Those bounds enable
us to better understand how sensitive to perturbations and rounding errors neural
networks are, depending on the choice of architecture, training and scaling.

This manuscript is organized as follows.
We will present in Chapter 1 a background on the use of floating-point arithmetic,

rounding error analysis and artificial intelligence.
In Chapter 2 we will first establish formulas and ways to compute the backward

error of artificial neural networks; existing work focuses on numerical linear algebra,
therefore our goal will be to extend it by integrating activation functions, which induce
nonlinearities. We also show how to compute the condition number, which, in turn,
helps in establishing bounds on the forward error once we have determined bounds on
the backward error.

In Chapter 3 we will show how the question of computing the backward error of a
classifier naturally leads to adversarial attacks. We will then show how we can extend
the use of adversarial attacks, which in the literature focus primarily on perturbing
the input data, to the classifier’s parameters. We will then propose an improvement
of this method to compete with state-of-the-art adversarial attacks on the input data.

In Chapter 4 we will focus on producing a rounding error analysis of neural
networks, therefore finding bounds on the backward and forward error. First using
the deterministic rounding error analysis approach and then showing how it can be
extended to probabilistic bounds that are sharper.

Finally, the manuscript concludes with a summary of the main findings and some
perspectives of future works.
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Chapter 1

Background

This manuscript will focus on the effects of perturbations on multilayered artificial
neural networks. In this chapter, we recall key notions and results that will serve
as the basis for our approach to quantify and predict the effects of perturbations on
artificial neural networks.

1.1 Measures of error
When solving a problem using numerical computations, uncertainties on the result
can have multiple sources.

The first one being uncertainties in the input data, which may be due to measure-
ment uncertainty at acquisition time, as well as errors coming from prior computations
and even errors due to the storage of this data, since they have to be stored using
finite precision.

This input data is then processed by an algorithm using finite precision arithmetic,
therefore rounding errors will occur within each performed operation.

In order to be able to quantify how these errors affect computations, we will
introduce different measures of error. For these quantities to be useful and not
overestimated, the choice of a relevant metric is crucial. In this work we will mainly
focus on a componentwise analysis as this metric enables to take into account the
structure of matrices, such as sparsity or scaling. Unlike normwise metrics, when
using componentwise metrics, each element of a perturbation on the data is measured
relatively to a given tolerance, which can for example be its absolute value.

1.1.1 Forward error
Let ŷ be a computed result that is an approximation of y = f(x), with f : Rn → Rm.
Multiple ways to estimate the quality of ŷ exists. Given a computed solution to a
problem, the most well-known measure of error is the forward error, which measures
directly the difference, or distance, between the computed solution ŷ and the exact
solution y; this quantity is therefore directly linked with a norm.
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Chapter 1. Background

Formally, for some given norm ∥ · ∥, we have the absolute forward error defined as

εabs
fwd(ŷ) = ∥ŷ − y∥

as well as the relative forward error, defined for y ̸= 0,

εrel
fwd(ŷ) = ∥ŷ − y∥

∥y∥
. (1.1)

The componentwise absolute forward error is widely used in error analysis and pertur-
bation analysis, and is defined as

εabs
fwd(ŷ) = max

i
|ŷi − yi|

and its associated componentwise relative forward error as

εrel
fwd(ŷ) = max

i

|ŷi − yi|
|yi|

. (1.2)

The relative forward error is undefined for y = 0, but has the property of being scale
invariant. It is therefore the most commonly used type of error measurement.

1.1.2 Backward error
When the forward error is large, we cannot distinguish if either the mathematical
problem is sensitive to perturbations or the algorithm used to solve the problem
behaves badly when perturbations exist on data or computations. The backward error
is a quantity that makes it possible to discriminate between these two cases. The
backward error is obtained by asking for what perturbed value of x the problem has
actually been solved, i.e. what is the perturbation ∆x such that ŷ is the exact solution
of f(x+ ∆x). The backward error is then defined as the smallest perturbation ∆x.

Formally we have ŷ = f(x+ ∆x), and we can define the normwise backward error
as:

εabs
bwd(ŷ) = min {ε : ŷ = f(x+ ∆x), ∥∆x∥ ≤ ε}

as well as the relative backward error

εrel
bwd(ŷ) = min {ε : ŷ = f(x+ ∆x), ∥∆x∥ ≤ ε∥x∥} . (1.3)

The absolute componentwise backward error is

εabs
bwd(ŷ) = min {ε : ŷ = f(x+ ∆x), |∆x| ≤ ε}
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and the relative componentwise backward error

εrel
bwd(ŷ) = min {ε : ŷ = f(x+ ∆x), |∆x| ≤ ε|x|} . (1.4)

It is then said that if there is an uncertainty in the data or computations (physical
measurements, approximations, rounding error...), it is sufficient that the backward
error is of the same order as this uncertainty for the computed solution ŷ to be as good
as one could expect. An algorithm which consistently generates a small backward error
is said to be backward stable. In a backward stable algorithm, any errors introduced
during its execution have a comparable impact to that of a minor perturbation in the
input data. We show in Figure 1.1 the difference between forward and backward error
when computing tanh for a given input x and perturbed input x+ ∆x.

tanh

x x+ ∆x

tanh(x)

tanh(x+ ∆x)

backward error

forward error

Figure 1.1: Backward error and forward error illustration.

Note that one can more generally define the componentwise backward error as:

εbwd(ŷ) = min {ε : ŷ = f(x+ ∆x), |∆x| ≤ εt}

where t, the tolerance against which the perturbations on x are measured, is assumed
to have nonnegative entries. In the rest of this work, the inequalities and absolute
values of matrices and vectors are to be taken componentwise. The same holds for
divisions when we want to switch to a relative error. For the particular choice of
tolerance t = |x|, εbwd is the componentwise relative backward error; in the following
sections we will focus on this choice of tolerance.

7
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1.1.3 Forward and backward error for a linear system
As a very well-known example, let us consider in this section a linear system Ax = b,
with A ∈ Rn×n and (x, b) ∈ Rn × Rn. We will illustrate in this case how to compute
the componentwise forward and backward error as we will later build on this approach
to extend it to the case of artificial neural networks.

Given an approximate solution x̂ to the linear system, obtaining a formula to
compute the forward error is quite straightforward since we have

εfwd = max
i

|x̂i − xi|
|xi|

. (1.5)

Whereas in this case the backward error is defined as:

εbwd = min{ε ≥ 0 : (A+ ∆A)x̂ = b+ ∆b, |∆A| ≤ ε|A|, |∆b| ≤ ε|b|} (1.6)

and obtaining an explicit formula is not as straightforward, as we have to find perturbed
data A+ ∆A and b+ ∆b such that x̂ is solution of the perturbed linear system.

To find a closed formula for the expression of the backward error we hence need
to solve the minimization problem of equation (1.6). The closed formula of the
componentwise backward error for a linear system is a well-known result of Oettli
and Prager [89]; the proof resorts to a now common approach which is to find a lower
bound of εbwd and then show that there exist perturbations such that this lower bound
is attained [54]. Let us define the residual r = b− Ax̂; we then have:

(A+ ∆A)x̂ = b+ ∆b

which leads to
∆Ax̂−∆b = r

and by taking the absolute value we have

|∆A||x̂|+ |∆b| ≥ |r|.

We know that εbwd has to verify the inequalities in equation (1.6), hence

εbwd(|A||x̂|+ |b|) ≥ |r|.

Therefore
εmin = max

i

|ri|
(|A||x̂|+ |b|)i

is a lower bound for εbwd.

8



1.1. Measures of error

Oettli and Prager [89] then define the perturbations

∆A = diag
(

ri

(|A||x̂|+ |b|)i

)
|A|diag(sign(x̂i))

and
∆b = −diag

(
ri

(|A||x̂|+ |b|)i

)
|b|.

We have |∆A| ≤ εmin|A| and |∆b| ≤ εmin|b| with equality for at least one component.
Moreover (A + ∆A)x̂ = b + ∆b, hence the lower bound εmin is attained for these
perturbations. Therefore, the componentwise relative backward error for the linear
system Ax = b is:

εbwd = max
i

|ri|
(|A||x̂|+ |b|)i

. (1.7)

Note that the equivalent result for the normwise relative backward error defined as

εbwd = min{ε ≥ 0 : (A+ ∆A)x̂ = b+ ∆b, ∥∆A∥ ≤ ε∥A∥, ∥∆b∥ ≤ ε∥b∥} (1.8)

is given by Rigal and Gaches [94] by

εbwd = ∥r∥
(∥A∥∥x̂∥+ ∥b∥) . (1.9)

Note that an interesting property of the backward error is that, unlike the forward
error, it does not depend on the exact solution x.

These results can be extended to derive formulas in the case of a matrix–vector
plus bias y = Ax+ b, where y ∈ Rn. This operation, essentially, corresponds to a layer
of a fully connected neural network with no activation function and will therefore be
of special interest to us for the coming chapters.

Indeed, assuming perturbations on the matrix A and bias b, the computed solution
in that case is ŷ, instead of x̂, and verifies

ŷ = (A+ ∆A)x+ b+ ∆b

and the componentwise relative backward error is

εbwd = min{ε ≥ 0 : ŷ = (A+ ∆A)x+ b+ ∆b, |∆A| ≤ ε|A|, |∆b| ≤ ε|b|}. (1.10)
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Using the same approach as Oettli and Prager [89] we get that the componentwise
relative backward error for a fully connected layer is given by

εbwd = max
i

|ŷ − y|i
(|A||x|+ |b|)i

.

Indeed, it is easy to show that

max
i

|ŷ − y|i
(|A||x|+ |b|)i

is a lower bound for εbwd and this bound is attained for the perturbations

∆A = diag
(

ŷi − yi

(|A||x|+ |b|)i

)
|A|diag(sign(xi))

and
∆b = diag

(
ŷi − yi

(|A||x|+ |b|)i

)
|b|.

1.1.4 Condition number
Forward error and backward error are linked by the condition number of the problem,
which measures how sensitive the solution to a problem is to perturbations in the
data. The use of condition number in numerical analysis is therefore particularly
prominent [106, 4, 55, 30, 29] to understand and diminish the impact of perturbations
on a system.

To define the problem conditioning let us say that we have y + ∆y = f(x+ ∆x),
with f : Rn → Rm twice differentiable, then there is θ ∈ ]0, 1[ such that:

∆y = f(x+ ∆x)− f(x) = f ′(x)∆x+ f ′′(x+ θ∆x)
2! (∆x)2.

So
∥∆y∥
∥y∥

≤ ∥f
′(x)∥∥x∥
∥f(x)∥

∥∆x∥
∥x∥

+O(∥∆x∥2) (1.11)

with
κf (x) = ∥f

′(x)∥∥x∥
∥f(x)∥ (1.12)

the relative condition number of f which measures the relative change in the output
for a given relative change in the input. The componentwise relative condition number,
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defined by Gohberg and Koltracht [44], is

κf (x) = ∥diag(f(x))−1f ′(x)diag(x)∥∞. (1.13)

We then have from equation (1.11) the following useful inequality:

forward error ≤ condition number× backward error. (1.14)

Note that, in our case, all quantities are taken relatively but this inequality holds
whether or not quantities are relative.

More generally, for a given function f : Rn → Rm, the condition number of the
problem f at x is defined by Rice [93] and Lyubich [75], in the case of absolute
normwise quantities we have

κf (x) = lim
ε→0

sup
∥∆x∥≤ε

(
∥f(x+ ∆x)− f(x)∥

∥∆x∥

)
(1.15)

and the relative condition number is

κf (x) = lim
ε→0

sup
∥∆x∥≤ε∥x∥

(
∥f(x+ ∆x)− f(x)∥

∥f(x)∥

/
∥∆x∥
∥x∥

)
(1.16)

while in the case of absolute componentwise quantities we have

κf (x) = lim
ε→0

sup
max

i
|∆xi|≤ε

(
max

i

|fi(x+ ∆x)− fi(x)|
|∆xi|

)
(1.17)

and the relative condition number is

κf (x) = lim
ε→0

sup
max

i
|∆xi|≤ε|xi|

(
max

i

|fi(x+ ∆x)− fi(x)|
|fi(x)|

/
max

i

|∆xi|
|xi|

)
. (1.18)

If f is differentiable then we have the formulas given in equations (1.12) and (1.13)
that stand.

It is said that a given problem is well conditioned when small perturbations on
the input variable lead to small changes in the output, which therefore means that
the condition number is small. Alternatively, when the condition number is large the
problem is said to be ill conditioned, in which case small perturbations on input data
will lead to large changes in output. The interpretation of “small” and “large” may
vary based on the context of the application. Specifically, there are instances where it
is more suitable to evaluate the scale of perturbations with an absolute approach and
others where it is more appropriate to evaluate it relatively to a given tolerance.
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1.2 Floating-point arithmetic

1.2.1 Floating-point number representation
In order to represent real numbers, a computer has a finite precision at its disposal;
numbers therefore have to be represented under this constraint. The typical choice
for storing numbers is to fix a constant number of bits, which are binary digits,
and use this number of bits to approximately represent a desired set of numbers.
Computers typically allow users to choose from a set of such representations or data
types, which can vary depending on the number of bits utilized but also on whether the
representation is done in a fixed-point format or floating-point format. Floating-point
formats are very popular since they enable to represent numbers of very different
orders of magnitude. In this work we will focus on floating-point representations as
defined in the IEEE 754 standard for binary floating-point arithmetic [63], since this
is the most widely used format.

A floating-point system representation [85] is hence a way of representing numbers
in finite precision and the set of numbers that can be represented is therefore a subset
of the real numbers. It is based on the scientific notation where a nonzero real number
y is expressed in decimal as:

y = s×m× 10E

where s = ±1 is the sign, m is the significand or mantissa, which is an integer such
that 1 ≤ m ≤ 9 and E an integer exponent. Note that requiring 1 ≤ m ≤ 9 allows
for having a unique representation for each number. In this case, the format is then
said to be normalized. It is always possible to find such m in this case by multiplying
or dividing by 10 as long as the requirement is not satisfied. For example, if we take
the real number 0.00012345, its scientific representation will be 1.2345× 10−4. It is
obtained by multiplying 4 times the number by 10, and hence the decimal point floats
4 times, which is why it is called a floating-point representation.

In a more generic case, let y be a floating-point number, for a given radix β, it can
then be expressed as:

y = s×m× βE (1.19)
or alternatively by expanding m in base β

y = s× (d0.d1d2 . . . dp−1)β × βE, (1.20)

where p is the precision, the exponent E is such that Emin ≤ E ≤ Emax and 1 ≤ d0 ≤
β − 1 in order to have a normalized representation. Note that in the case of binary
representation for computers β = 2 and therefore this digit d0 is not stored since it is
implicitly set to 1.

Because the mantissa has a fixed amount of digits, the representation’s precision
diminishes as the exponent of the number rises. This results in larger gaps between

12



1.2. Floating-point arithmetic

neighbouring representable numbers as we move away from zero. We illustrate that in
Figure 1.2 using a toy binary floating-point number system in which the precision p is
fixed to 3 and the exponent can take values in {−1, 0, 1}.

−4 −3 −2 −1 0 1 2 3 4

Figure 1.2: Representable numbers with a toy floating-point number
system.

In Figure 1.2 we can clearly see that there is an underflow gap around zero in
this floating-point arithmetic representation. The IEEE 754 standard make use of
subnormal numbers, also known as denormalized numbers, to extend the range of
floating-point number representation. This allows for preserving precision when very
small values are encountered and therefore spanning the gap observed around zero, as
seen in Figure 1.3. However, subnormal numbers are represented differently. Their
leading bit is zero and they are interpreted with the value of the smallest allowed
exponent. Moreover, they are usually not supported in hardware and, thus, their
occurrence may significantly degrade performance.

−4 −3 −2 −1 0 1 2 3 4

Figure 1.3: Representable numbers with a toy floating-point number
system including subnormal numbers.

1.2.2 Rounding
In the context of floating-point arithmetic, since a finite number of bits is used to
represent numbers, rounding principles are crucial for handling real numbers. Let us
define x ∈ R and fl(x) denotes a close representable number in floating-point precision;
the process of finding such a number is then called rounding. fl(x) therefore designates
the rounding of x in the rest of the manuscript. The IEEE 754 standard defines
rules for rounding to ensure consistency and predictability across different hardware
platforms. Four different rounding modes are defined as follows:

• Round down (or round towards negative infinity), where the number is rounded
to the nearest representable floating-point number that is less than or equal to
the original number.
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• Round up (or round towards positive infinity), where the number is rounded to
the nearest representable floating-point number that is greater than or equal to
the original number.

• Round towards zero, where the number is rounded down if it is greater than
zero and rounded up if it is smaller than zero.

• Round to nearest, where the number is rounded either up or down, depending
on which is nearer. In the case where the number falls exactly halfway between
two representable floating-point numbers two strategies exists. The ties to even
strategy consists in choosing the one with an even least significant digit. While
the ties to away strategy consists in rounding down if the number is smaller
than zero and rounding up if it is greater than zero.

1.2.3 Rounding errors
For any representation using finite precision, two quantities that dictate their usage
are the range of representable numbers as well as the machine epsilon or unit roundoff
u, which is an upper bound on the relative approximation error due to rounding.

The range of representation is the maximum and minimum positive numbers that
it can express. Back to equation (1.20) we clearly can state that the minimum positive
normalized number has to be

(1.00 . . . 0)β × βEmin = βEmin

while the maximum number is

((β − 1).(β − 1)(β − 1) . . . (β − 1))β × βEmax = (β − β−(p−1))βEmax .

Let us say that we have x ∈ R that is in the range of representation of the floating-
point numbers. Then the relative error introduced by the representation is defined
as:

|δ| = |x− fl(x)|
|x|

.

Theorem 1.1 (Theorem 2.2 from Higham [56]). If x ∈ R lies in the range of
representation of a floating-point representation then fl(x) = x(1 + δ), |δ| ≤ u, where
u is called the machine epsilon.

Proof. As defined in section 1.2.1, if x is in the normalized range then it can be
expressed as

x = (1.d0 . . . dp−1dp . . .)β × βE
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while, depending on the rounding, we have

fl(x) = (1.d0 . . . dp−2d
′
p−1)β × βE

therefore, regardless of the rounding mode, we have:

|δ| = |x− fl(x)|
|x|

≤ β−(p−1) × βE

βE
= β−(p−1),

and assuming round to nearest we have:

|δ| = |x− fl(x)|
|x|

≤
β−(p−1)

2 × βE

βE
= β−(p−1)

2 . (1.21)

The machine epsilon u therefore depends on the rounding mode. It is sometimes
also defined as the difference between one and the next larger floating-point number,
in which case

εM = β−(p−1)

and is an upper bound for the relative error due to rounding, independently of which
rounding mode is used.

Note that, as said in section 1.2.1, the fact that the relative error made when
representing a number in floating-point depends on u, shows that the absolute gap
between x and its representation increases as x becomes larger.

In fact, as seen in equation (1.21), for a given exponent E, assuming round
to nearest, the biggest absolute error that can be made for a given real number
(1.d0 . . . dp−1dp . . .)β × βE is

β−(p−1)

2 × βE.

Since the value of such a real number can fluctuate between βE and β × βE, this
means that the relative error ranges between

β−(p−1)

2

and
β−p

2 .

Therefore, the relative error can vary from up to a factor β for a couple of neighboured
real numbers, this phenomenon is called wobbling precision and is one of the reasons
why small bases such as β = 2 are often recommended.
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1.2.4 Floating-point formats
The IEEE 754 standard was established by the Institute of Electrical and Electronics
Engineers (IEEE) in 1985 and has been revised several times since then. IEEE 754
defines the format of floating-point numbers, the rules for arithmetic operations on
these numbers as well as representations for special values such as positive, negative
infinity, “Not a Number” (NaN) to handle exceptional conditions, subnormal numbers,
that are non normalized numbers, and also signed zero. This standard is followed
by almost all machines. The IEEE standard defines multiple floating-point number
representations including FP16, FP32, and FP64 (half, single and double precision
formats).

Table 1.1: Floating-point formats.

Format Emin Emax Mantissa Range u

BFloat16 −126 127 7 bits 1.18× 10−38 to 3.39× 1038 3.91× 10−3

FP16 −14 15 10 bits 6.10× 10−5 to 6.55× 104 9.77× 10−4

FP32 −126 127 23 bits 1.18× 10−38 to 3.40× 1038 5.96× 10−8

FP64 −1022 1023 52 bits 2.23× 10−308 to 1.80× 10308 1.11× 10−16

Single precision is widely used due to its balance between precision and storage
efficiency while double precision provides higher precision, making it more suitable
for tasks where numerical accuracy is critical. Half precision is used in scenarios
where reduced precision is acceptable, and storage or computational efficiency is
crucial. The unique requirements and challenges of AI applications have accelerated
the development and adoption of 16-bit formats, offering improved memory and
energy efficiency as well as compatibility with emerging industry’s hardware. The
BFloat16 [67] (Brain Floating-Point 16-bit) format is one of the most popular, it
is a floating-point number representation designed for neural network training and
inference in machine learning applications. It was introduced by Google as part of the
TensorFlow Processing Unit (TPU) architecture and is a shortened 16-bit version of
the 32-bit IEEE 754 single-precision floating-point format. In the specific context of
deep learning this format is attractive since the range of values it can represent is the
same as that of the FP32, but it also retains the advantages of a 16-bit format for
storage and computation speed.

1.3 Rounding error analysis
We have seen that representing real numbers with finite precision in a computer
system leads to discrepancies between the true value of a number and its computer
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Sign (1 bit) Exponent (11 bits) Mantissa (52 bits)

FP64

1 bit 8 bits 23 bits

FP32

1 bit 5 bits 10 bits

FP16

1 bit 8 bits 7 bits

BFloat16

Figure 1.4: Bits distribution on different arithmetic precisions.

representation. Those gaps are called rounding errors and can accumulate in com-
putations, especially in iterative processes or complex algorithms that involve many
arithmetic operations. Over time, these errors can affect the accuracy of the final
result. Rounding error analysis aims to quantify and understand the impact of these
errors on the stability and accuracy of algorithms but also provide guidelines to better
manage them.

1.3.1 Model of arithmetic
In order to evaluate the effect of rounding errors during computations the concept of
correctly rounded arithmetic is essential, it is one of the key aspects of IEEE 754; this
property aims to provide consistent and predictable results across different hardware
platforms. Indeed, most of the time, the result of an arithmetic operation between
two floating-point numbers is not a floating-point number. It is therefore necessary
to define a strategy which ensures that arithmetic operations behave similarly on a
wide range of computers. Hence the IEEE standard requires that, if the result of a
floating-point operation is not a floating-point number, the computed result has to be
the rounded value of the exact result. For example, if we note ⊕ the addition between
two floating-point numbers, we have

a⊕ b = fl(a+ b),

where fl(a+ b) is the floating-point representation of the exact result a+ b.
As defined in section 1.2.3, u, the unit roundoff is an upper bound for the relative

error due to rounding when using floating-point arithmetic. This typically means that
for a set of basic operations (op ∈ {+, −, ×, /, √}) we have the following classical
model for floating-point arithmetic [121]:

Model 1.1 (Standard model for floating-point computations).

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u.
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Note that in view of the IEEE 754 previously stated requirements, this model
stands for IEEE standard arithmetic.

1.3.2 Classical backward error analysis
Traditional error analysis in numerical linear algebra is typically based on bounds
obtained on the distance between one and the product

n∏
k=1

(1 + δk).

Indeed, for each operation between floats, Model 1.1 stands. Hence, a sequence of
basic operations will bring up such a product. These products are typically simplified
using the following lemma, which corresponds to Lemma 3.1 from Higham [56].

Lemma 1.2 (Deterministic error bound). If |δk| ≤ u and ρk = ±1 for k = 1, . . . , n,
and nu < 1, then

n∏
k=1

(1 + δk)ρk = 1 + θn, |θn| ≤ γn.

The constant γn is defined as

γn = nu

1− nu,

with nu < 1, n being the number of elementary operations considered, and u the
machine epsilon [56].

1.3.2.1 Inner product error analysis

To illustrate how rounding error analysis works, we will first analyse the inner product
operation, y = aT b, with (a, b) ∈ Rn×Rn. Assuming a left to right evaluation, we will
note yi = a1b1 + . . .+ aibi the i-th partial sum. From the standard Model 1.1 we have

ŷ1 = fl(y1) = fl(a1b1) = a1b1(1 + δ1)

with |δ1| ≤ u, and then

ŷ2 = fl(a1b1(1 + δ1) + a2b2(1 + δ2)) = (a1b1(1 + δ1) + a2b2(1 + δ2))(1 + ε2)

with |δi| ≤ u for i = 1, 2 and |ε2| ≤ u. Using a simple recurrence, we can then show
that

ŷ =
n∑

i=1
aibi(1 + δi)

n∏
j=max(i,2)

(1 + εj), (1.22)
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where each δi and εi are the rounding errors introduced, respectively, by multiplications
and additions between floating-point numbers. Applying Lemma 1.2 to equation (1.22)
we get

ŷ =
n∑

i=1
aibi(1 + ψi)

where |ψi| ≤ γn−max(i,2)+2 ≤ γn. It follows that γn is a bound for the backward error
of the inner product because we have

ŷ = fl(aT b) = (a+ ∆a)T b = aT (b+ ∆b), |∆a| ≤ γn|a|, |∆b| ≤ γn|b|. (1.23)

Accordingly, the inner product performed in finite precision will produce the same
result as the exact solution to a slightly perturbed version of the input data. Indeed,
γn is equivalent to nu when nu≪ 1, therefore, perturbations are, in this case, very
small. As explained in section 1.1.2, such a method with a small backward error will
typically be called backward stable. Note that the definition of small will be context
dependent. In our case, when using finite precision computations, having a backward
error close to the unit roundoff, shows that the result is as good as one could hope for.

Moreover, we can also bound the forward error since

ŷ − y =
n∑

i=1
aibiψi.

Therefore
|ŷ − y| ≤ γn

n∑
i=1
|aibi| = γn|a|T |b|

and
|ŷ − y|
|y|

≤ γn
|a|T |b|
|aT b|

. (1.24)

This shows that, if |aT b| ≪ |a|T |b|, one cannot guarantee that the relative forward
error will be small.

1.3.2.2 Matrix–vector product error analysis

We now take interest in the matrix–vector product operation since it represents the
basic operation in linear algebra and of many layers of neural networks. Here, finding
bounds on the backward error is a well-known result [56]. However, we will still show
how to obtain them and to then extend these results to less straightforward cases in
Chapter 4.

Let A ∈ Rm×n and x ∈ Rn. We are interested in the floating-point computation of
y = Ax. Without any loss of generality let yi = aT

i x, with ai the i-th row of A. We
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have
yi =

n∑
k=1

(aikxk),

then based on Model 1.1, assuming that the sum is evaluated from left to right, we
have

ŷi = (((ai1x1)(1 + δ1) + (ai2x2)(1 + δ2))(1 + ε2) + . . .+ (ainxn)(1 + δn))(1 + εn).

Hence
ŷi =

n∑
k=1

((aikxk)(1 + δk)
n∏

j=max(k,2)
(1 + εj)).

If we assume that |δk| ≤ u for k = 1, . . . , n, |εj| ≤ u for j = 2, . . . , n and nu < 1, then
Lemma 1.2 from Higham [56] can be applied and therefore

(1 + δk)
n∏

j=max(k,2)
(1 + εj) = 1 + ψk

with |ψk| ≤ γn−max(k,2)+2, which then implies that |ψk| ≤ γn. Therefore

ŷi = (ai + ∆ai)Tx

with |∆ai| ≤ γn|ai|. Combining the m rows gives

ŷ = (A+ ∆A)x

with
|∆A| ≤ γn|A|.

This result is a direct extension of the inner product case, which is logical since
each component of the output of a matrix–vector product is the result of an inner
product. This enables to show that each relative perturbation on the input matrix that
are needed to get the computed output ŷ are bounded by γn, hence the perturbations
are small when nu < 1 which shows that the algorithm is numerically stable.

1.3.3 Probabilistic backward error analysis
For large problems or computations in reduced precision, bounds found using classical
rounding error analysis, which are worst-case bounds, may be less useful because too
pessimistic. Indeed, these traditional bounds involve the number n of elementary
operations performed, which is empirically often replaced by its square root. Recent
approaches [57, 58, 23] enable to relax this constant by making probabilistic assump-
tions about the rounding errors. They state that deterministic results can easily be
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interchanged with their probabilistic counterparts, which essentially means that the
previous constant γn, with high probability, can be replaced with

γ̃n(λ) = exp
(
λ
√
nu+ nu2

1− u

)
− 1 = λ

√
nu+O(u2), (1.25)

when we can assume that the rounding errors done in computations can be modelled by
independent random variables of mean zero. We will later derive bounds for artificial
neural networks, which are based on the results from Connolly, Higham, and Mary
[23]. We will therefore introduce their main theorems and in some cases proofs, since
we will later base our approach on these same theorems and/or proofs.

From Higham and Mary [57] we have the main result in the following theorem:
Theorem 1.3 (Probabilistic error bound). Let δ1, . . . , δn be independent random
variables of mean zero with |δk| ≤ u for all k. Then for ρi = ±1, i = 1, . . . , n and any
constant λ > 0,

n∏
i=1

(1 + δi)ρi = 1 + θn, |θn| ≤ γ̃n(λ)

holds with probability at least

1− 2 exp
(
−λ2(1− u)2

2

)
.

Connolly, Higham, and Mary [23] show that the probabilistic assumptions made
in the previous theorem can be replaced by weaker ones given in Model 1.2.
Model 1.2 (Probabilistic model of rounding errors). Let δ1, . . . , δn be random variables
of mean zero such that E(δk+1 | δ1, . . . , δk) = E(δk+1) for any k = 1, . . . , n− 1.

In order to introduce this modified theorem, we will need to first provide the
concept of martingale.
Definition 1.1 (Martingale). A sequence of random variables E0, . . . , En is said to
be a martingale if it satisfies for all k

E(|Ek|) < +∞,
E(Ek | E0, . . . , Ek−1) = Ek−1.

We also introduce the Azuma–Hoeffding inequality.
Lemma 1.4 (Azuma–Hoeffding inequality). If E0, . . . , En is a martingale that satisfies
|Ek − Ek−1| ≤ ck for k = 1, . . . , n, then for all λ > 0,

Pr
|En − E0| ≥ λ

(
n∑

k=1
c2

k

) 1
2
 ≤ 2 exp

(
−λ2

2

)
.
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We can now state the following main result from [23]:

Theorem 1.5 (Probabilistic error bound). Let δ1, . . . , δn be random variables of
mean zero with |δk| ≤ u for all k such that E(δk+1 | δ1, . . . , δk) = E(δk+1) = 0 for
k = 1, . . . , n− 1, then for ρi = ±1, i = 1, . . . , n and any constant λ > 0,

n∏
i=1

(1 + δi)ρi = 1 + θn, |θn| ≤ γ̃n(λ)

holds with probability at least

1− 2 exp
(
−λ2

2

)
.

Proof. Let

Ek =
k∑

i=1
ρiδi

for k = 1, . . . , n and E0 = 0. Since |δk| ≤ u for k = 1, . . . , n, we have |Ek| ≤ ku, and
therefore E(|Ek|) < +∞. Moreover, for k = 1, . . . , n− 1,

E(Ek+1 | E1, . . . , Ek) = Ek + ρk+1E(δk+1 | δ1, . . . , δk) = Ek,

hence E0, . . . , En+1 is a martingale. Then, in order to apply the Azuma–Hoeffding
inequality, we need to bound |Ek+1−Ek|. Since we know that |Ek+1−Ek| = |ρk+1δk+1|,
and that |ρk+1δk+1| ≤ u, for k = 1, . . . , n− 1, we therefore can use Lemma 1.4, and get

Pr
|En − E0| ≥ λ

(
n∑

k=1
u2
) 1

2
 ≤ 2 exp

(
−λ2

2

)
.

Hence
|En| = |

n∑
i=1

ρiδi| ≤ λ
√
nu (1.26)

with probability at least

1− 2 exp
(
−λ2

2

)
.

Let
ϕ =

n∏
i=1

(1 + δi)ρi ,

then
log(ϕ) =

n∑
i=1

ρi log(1 + δi),
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yet for all i ∈ [1;n] we have |δi| ≤ u < 1, we can therefore use a Taylor expansion
which gives us

log(1 + δi) =
+∞∑
k=1

(−1)k+1δk
i

k

then we can get lower and upper bounds as

δi −
+∞∑
k=2
|δi|k ≤ log(1 + δi) ≤ δi +

+∞∑
k=2
|δi|k

and since |δi| ≤ u < 1 we therefore have

δi −
δ2

i

1− |δi|
≤ log(1 + δi) ≤ δi + δ2

i

1− |δi|

which can then be further weakened as

δi −
u2

1− u ≤ log(1 + δi) ≤ δi + u2

1− u.

For ρi = ±1 it is clear that

ρiδi −
u2

1− u ≤ ρi log(1 + δi) ≤ ρiδi + u2

1− u

and then summing the inequality for i = 1, . . . , n we get

En −
nu2

1− u ≤ log(ϕ) ≤ En + nu2

1− u.

We can then use the bound on En found on equation (1.26) to get

−λ
√
nu− nu2

1− u ≤ log(ϕ) ≤ λ
√
nu+ nu2

1− u,

with probability at least

1− 2 exp
(
−λ2

2

)
.

The bound is then further weakened by dividing λ
√
nu by 1− u, then, by taking the

exponential of those values, and using the definition of γ̃n(λ) in equation (1.25) we
obtain

1
1 + γ̃n(λ) = 1− γ̃n(λ)

1 + γ̃n(λ) ≤ ϕ ≤ 1 + γ̃n(λ).
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Yet
ϕ =

n∏
i=1

(1 + δi)ρi = 1 + θn

and therefore |θn| ≤ γ̃n(λ) holds with probability at least

1− 2 exp
(
−λ2

2

)
.

Theorem 1.5 can thus be interchanged with Lemma 1.2 provided that the proba-
bilistic assumptions hold. In the following sections, we will demonstrate the impact
this has on the bounds obtained on the inner product and matrix–vector product in
section 1.3.2.

Note that another significant result from Connolly, Higham, and Mary [23] is that
Model 1.2 holds when stochastic rounding [28] is used.

1.3.3.1 Application to the inner product

Theorem 1.5 allows saying that equation (1.22) can be written as

ŷ =
n∑

i=1
aibi(1 + ψi) (1.27)

where |ψi| ≤ γ̃n−max(i,2)+2(λ) ≤ γ̃n(λ) holds for any given i with probability at least

P (λ) = 1− 2 exp
(
−λ2

2

)
.

Let us define
Q(λ, n) = 1− n(1− P (λ)).

The bound fails to hold for a given i with probability at most 1− P (λ), therefore it
fails to hold for at least one i with probability at most

n(1− P (λ)).

Hence, the bounds hold for all i with probability at least Q(λ, n). This means that the
deterministic bounds obtained in equation (1.23) can be replaced by their probabilistic
counterpart γ̃n(λ), provided that the rounding errors satisfy the probabilistic model,
with probability at least Q(λ, n).
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1.3.3.2 Application to the matrix–vector product

Since for any given output component ŷi is obtained via an inner product, we know
from section 1.3.3.1 that

ŷi = (ai + ∆ai)Tx (1.28)
with |∆ai| ≤ γ̃n(λ)|ai|, holds with probability at least Q(λ, n). This means that the
bound fails to hold for a given i with probability at most 1−Q(λ, n), therefore it fails
to hold for at least one row i with probability at most m(1−Q(λ, n)). We can then
combine the m rows, as done on section 1.3.2.2, which means that

ŷ = (A+ ∆A)x

with
|∆A| ≤ γ̃n(λ)|A|,

holds with probability at least 1 −m(1 − Q(λ, n)) = Q(λ,mn). The deterministic
bounds obtained in section 1.3.2.2 can therefore be replaced by their probabilistic
counterpart, provided that the rounding errors satisfy the probabilistic model, with
probability at least Q(λ,mn).

1.4 Artificial intelligence
Ada Lovelace, who was perhaps the world’s first programmer, may also be the first
person to have foreseen the eventuality of AI back in 1842 in her notes from the first
ever published computer program [74, 99, 13]. But it is only after the World War II
that Alan Turing was the first person to conduct substantial research in this field,
driven by the first work, now generally recognized as AI, of the neurologist Warren
McCulloch and the logician Walter Pitts [79]. They proposed a model of artificial
neurons in which true/false values of logic were mapped onto the on/off activity of
neurons and the 0/1 of individual states in Turing machines. They also showed that
all the logical gates (and, or, not, etc.) could be implemented by simple structures
only composed of artificial neurons, that are neural networks. Last, but not least,
they demonstrated that any computable function could be computed by some neural
network. The link between Turing computation, human intelligence and mathematical
logic was therefore made in this unified theoretical approach.

Since the end of the 1990s AI has gained significant interest through the field of
machine learning; indeed breakthroughs in image and speech recognition, natural
language processing, and gaming were made using deep learning, helped by the
availability and usability of big data.
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1.4.1 Machine learning
Mitchell [80] provides the following definition of learning: “A computer program

is said to learn from experience E with respect to some class of tasks T and per-
formance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.” Machine Learning is now used in a wide variety of tasks from
regression, anomaly detection, denoising, to classification. While, at first, supervised
learning was the most widely used form of experience, there now exists a wide variety
of learning approaches, such as e.g. unsupervised, self-supervised, semi-supervised, or
reinforcement learning [45, 82]. Machine learning training encompasses a broad set of
algorithms and techniques used to enable computers to learn from data without being
explicitly programmed. It includes not only artificial neural networks but also other
algorithms like decision trees, support vector machines, clustering algorithms, etc.

In supervised learning, the algorithm is trained on a labelled dataset, where the
input data is paired with corresponding output labels. The goal is then to learn a
function that maps from input features to the correct output labels. In unsupervised
learning instead, the goal is to train a model on an unlabelled dataset; the algorithm
then tries to find patterns, structure within the data. Semi-supervised learning is a
combination of supervised and unsupervised learning, as the model is trained on a
dataset that contains both labelled and unlabelled examples. Reinforcement learning
involves a learning system interacting with its environment and making decisions.
Depending on the success of these actions, the system is receiving feedback in the
form of rewards or penalties.

In the context of classification, the machine is asked to provide a function, or model,
that will map an input vector to a category or class. In order to learn this function
the learning system is often provided by the user with a dataset which contains a set
of input vectors (xi)i=1,...,N , each belonging to Rn, and their associated ground-truth
label (yi)i=1,...,N , which is the desired output of the model, each belonging to the set
of labels [1;C], where C is the number of classes of the classification problem.

Solving a supervised learning problem means finding a function whose predictions
are as close as possible to the true labels. To formalise this, we introduce the notion
of cost function or loss function.

Definition 1.2 (Loss function). Let (yi)i=1,...,N ∈ Y be some given labels, x ∈ Rn a
given input vector, and f : Rn → Y a prediction model. A cost function L : Y×Y → R
is a function used to quantify the quality of f . The larger L(y, f(x)) is, the further
the predicted label f(x) is from the true value y.

In the context of supervised learning, the goal of the training will hence be, given a
cost function L, to look for a prediction function f which minimises this cost function
over all possible values of x. The machine often has a finite number of x values in
its dataset. These input data used to train the model are usually divided into three
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datasets: training, validation, and test sets. This division allows for the evaluation of
a model’s performance on different subsets of data and helps ensure that the model
generalizes well to new, unseen examples. The training set is the portion of the dataset
used to train the machine learning model. The model typically adjusts its set of
parameters θ, with f(x; θ) being the model, during the training phase, which consists
in minimizing the loss function which measures the error between the prediction of
the model and the desired output [53, 71].

Indeed, given a training set (xi, yi)i=1,...,N and a loss function, for example, the
mean squared error is defined as

L(θ) = 1
N

N∑
i=1

(f(xi; θ)− yi)2. (1.29)

The training of a neural network consists in finding parameters θ∗ such that:

θ∗ = arg min
θ
L(θ). (1.30)

A standard optimization method used to solve this problem is the gradient descent
which consists in performing steps in the opposite direction to the gradient. At each
iteration of this method, the model’s parameters are therefore updated with:

θ ← θ − α∇L(θ),

where the step size α is often referred to as learning rate in machine learning. In
modern machine learning and especially in deep learning, the number of parameters
and training points can be prohibitively large. It is therefore impossible to compute the
full gradient at each training iteration. To tackle this problem the simplest alternative
is to randomly choose, at each iteration, a single point k for which the gradient will
be computed, leading to the following modified iteration

θ ← θ − α∇Lk(θ),

where Lk is the loss function for N = 1 at the point (xk, yk). This method is called
stochastic gradient descent [95]. Many improvements on the basic stochastic gradient
descent algorithm have been proposed, among them Adagrad [37], RMSprop [111] and
Adam [69], which have shown excellent performance in deep learning applications [102].

During the model’s training, its parameters will therefore be iteratively updated
using the training dataset. The validation set is then used to fine-tune the model’s
hyperparameters, which can be, for example, the learning rate or the size of labelled
data it has access to during a training iteration, and to assess its performance during
training. Indeed, after each epoch (a certain number of training iterations), the model
is evaluated on the validation set, and the performance metrics are monitored. A
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fundamental issue in supervised machine learning is overfitting [110], which is the
fact that a model does not generalize well from training data to unseen data. This is
often the case when one trains the machine learning algorithm for too long and hence
gets predictions that fit perfectly the training dataset but do not capture information
and won’t be able to generalize to new data. The validation set hence helps prevent
overfitting. If the model performs well on the training set but poorly on the validation
set, adjustments to the model or its hyperparameters may be necessary.

Finally, the test set serves as a final evaluation to estimate how well the model
is expected to perform on new, unseen data. Since the validation set can be used to
modify hyperparameters and better adjust the learning model, it can hence gradually
be learnt by the model. The test set is therefore crucial for providing an unbiased
assessment of the model’s generalization ability and its performance in real-world
scenarios.

The performance of the model for a classification task is often evaluated by
measuring the accuracy of the provided function, which is the proportion of examples
in a given dataset that are correctly classified.

1.4.2 Artificial neural networks and deep learning
Artificial neural networks are a specific type of mathematical model that is commonly
used in machine learning. Artificial neural networks attempt to mimic the neurons
of the human brain in order to perform a wide range of tasks. The formalisation of
neurons as a mathematical object was done in 1943 by McCulloch and Pitts [79] but
it is in 1958 that Rosenblatt introduced the concept of perceptron [98], illustrated in
Figure 1.5. In a biological neuron, dendrites receive input signals from other neurons;
in the artificial neurons those inputs are represented as a vector x = (x1, x2, . . . , xn),
this incoming signal is then weighted so that some connection between neurons are
stronger than others; the neuron’s weights represented by a vector a = (a1, a2, . . . , an)
in a perceptron are used to simulate this behaviour. The core of the neuron, the soma,
then performs a weighted sum to which it adds a bias so that the signal that gets out
of the soma is y = aTx+ b. It is then processed by the axon, which gets its signal from
the summation behaviour which occurs inside the soma. Once the signal coming from
the soma reaches a certain potential, the axon will transmit it. In an artificial neuron,
this is done by adding an activation function ϕ such that the output of a neuron is
therefore y = ϕ(aTx+ b). Note that this expression can be simplified to y = ϕ(aTx)
by adding the bias to the weight vector a = (b, a1, a2, . . . , an) and one to the input
vector x = (1, x1, x2, . . . , xn).

Deep Learning is a field of machine learning which make use of deep neural networks,
also called deep feedforward neural networks or also Multilayer Perceptrons (MLPs),
which are artificial neural networks composed of multiple layers of artificial neurons
between the network input and output layers, to solve machine learning problems.
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Activation
function

∑

Sum

a2x2

......

anxn

a1x1

b1

Inputs Weights

Figure 1.5: Perceptron’s architecture.

As illustrated in Figure 1.6, each layer consists of a set of neurons, these neurons are
connected to neurons in the adjacent layers so that the connections between neurons
in one layer to neurons in the next layer are represented by weights which can then be
organized into a matrix, often referred to as the weight matrix for example in case of
a fully connected neural network or kernel for a convolutional neural network.

In this manuscript, we aim to apply a backward error analysis to artificial neural
networks. In order to do so, we will focus here on feed-forward neural networks whose
layers can be expressed as a matrix–vector product, which is immediate for fully
connected or convolutional layers. Let us say that we have a feed-forward network of
depth p ∈ N layers, each layer with its associated weight matrix Ai ∈ Rni×ni−1 and
activation function ϕi applied entrywise. For a given input x ∈ Rn0 we then have the
following expression for the output of this neural network:

y = m(x) = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .)). (1.31)

Note that, here, and in the following chapters, we simplify the expression of the
layers by integrating the potential layer’s bias bi in the weight matrix Ai. Moreover,
this expression also encompasses convolutional layers, since they can be expressed as
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matrix–vector products.
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Figure 1.6: Fully connected artificial neural network’s architecture.

1.4.3 Adversarial attacks
Despite their empirical efficiency, many works underline the sensitivity of DNNs to
adversarial attacks [108, 72, 40, 84]. Among adversarial attacks, artificial neural
networks are vulnerable to adversarial examples, which are perturbations applied to
an input that would not fool a human but are sufficient to fool the model into making
a wrong prediction. Figure 1.7 shows an example of how a slight perturbation on an
image can trigger an erroneous classification by a neural network which works correctly
on the unperturbed image. Adversarial examples are considered to be a significant
obstacle to the deployment of neural networks models in safety-critical tasks, due
to the clear security threat that these attacks represent; this also raises questions
regarding the robustness and ability of a neural network to generalize in the context of
new distributions. Exact computation of a neural network robustness, when possible,
does not scale well for large neural networks; for instance, the problem of verifying
the robustness of a ReLU (Rectified Linear Unit) neural network can be formalized
as a Mixed Integer Programming problem, which is NP hard [68, 112]. For this
reason, many different approaches have been developed to find adversarial examples
in order to more efficiently evaluate neural network robustness. Finding adversarial
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In this paper, we conduct an intriguing experimental study about the physical ad-
versarial attack on object detectors in the wild. In particular, we learn a camou-
flage pattern to hide vehicles from being detected by state-of-the-art convolutional
neural network based detectors. Our approach alternates between two threads. In
the first, we train a neural approximation function to imitate how a simulator ap-
plies a camouflage to vehicles and how a vehicle detector performs given images
of the camouflaged vehicles. In the second, we minimize the approximated de-
tection score by searching for the optimal camouflage. Experiments show that the
learned camouflage can not only hide a vehicle from the image-based detectors
under many test cases but also generalizes to different environments, vehicles,
and object detectors.

1 INTRODUCTION

Is it possible to paint a unique pattern on a vehicle’s body and hence hide it from being detected by
surveillance cameras? We conjecture the answer is affirmative mainly for two reasons. First, deep
neural networks will be widely used in modern surveillance and autonomous driving systems for au-
tomatic vehicle detection. Second, unfortunately, these neural networks are intriguingly vulnerable
to adversarial examples (Akhtar & Mian, 2018).

Szegedy et al. (2013) found that adding imperceptible perturbations to clean images can result in
the failure of neural networks trained for image classification. This motivates a rich line of work on
developing defense techniques for the neural networks (Akhtar & Mian, 2018) and powerful attack
methods to defeat those defenses (Athalye et al., 2018a). Moreover, the adversarial attack has been
extended to other tasks, such as semantic segmentation (Arnab et al., 2018), object detection (Xie
et al., 2017), image captioning (Chen et al., 2018a), etc.

Figure 1: A Toyota Camry XLE in the center of the image fools the Mask R-CNN object detector
after we apply the learned camouflage to it (on the right), whereas neither plain colors (on the left)
nor a random camouflage (in the middle) is able to escape the Camry from being detected.
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Figure 1.7: The camouflage fools the Mask R-CNN object detector
(on the bottom), whereas plain colours (on top) are being correctly

detected [130].

examples with small norm perturbations is crucial to assess the vulnerability of a neural
network against attackers. Indeed, such examples do not only provide for a better
understanding of a model’s robustness but also allow for improving it by integrating
them into the training process — a defence known as adversarial training [46, 76].
The literature on adversarial attacks is very abundant and many methods have been
proposed. A complete review is out of the scope of this manuscript but we make a
brief survey of some of the most popular and successful methods. Whereas adversarial
perturbations are mostly used on the input space, there are few approaches which
take interest on a similar notion for the model’s parameters [41, 116, 115] despite its
potential use to help robust generalization [125]. In this case, the adversarial attack on
a neural network’s parameters has been introduced and called stealth attack by Tyukin,
Higham, and Gorban [115].

In this work we will at first focus on adversarial examples which are inputs of a
neural network perturbed in such a way that they are classified in a different class
than expected whereas a human would still correctly recognize them and assign to
them the correct label. Finding targeted adversarial examples amounts to computing
the smallest norm perturbation on the input data x such that the perturbed input
x+ ∆x is misclassified by the neural network in a prescribed target class j instead of
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Chapter 1. Background

the expected true label i. Mathematically, the targeted adversarial perturbation is
defined as the solution of the following optimization problem:

minimize
∆x

∥∆x∥2

subject to Class(x+ ∆x) = j,
(1.32)

where j is the target class and Class(x+∆x) the class of the perturbed input. Different
types of norms can be used to measure the size of the perturbation and methods have
been proposed that can handle one or the other or even multiple types. In most cases
a classifier will associate with an input x the label j out of C classes when the j-th
component of the classifier’s output m(x) is the maximum of its C components, that
is:

arg max
i=1,...,C

mi(x) = j.

Hence, the constraints Class(x+ ∆x) = j can be formulated as

mi(x+ ∆x) ≤ mj(x+ ∆x), i = 1, . . . , C. (1.33)

In an untargeted attack, instead, one will search for a perturbation that leads to a
misclassification regardless of the output class. In this case, the constraints of the
minimization problem become

Class(x+ ∆x) ̸= i, (1.34)

where i is the true label associated with the input x. Hence for most classifiers the
constraints can then be formulated as

mi(x+ ∆x) ≤ max
j ̸=i

mj(x+ ∆x). (1.35)

In general the original problem (1.32) is too complex to be solved directly, hence
state-of-the-art methods to compute adversarial examples attempt to approximately
solve it. Numerous approaches that have been proposed and are commonly used to
generate adversarial examples resort to solving the following penalty problem:

minimize
∆x

∥∆x∥2 + c L(x+ ∆x, j), (1.36)

where L is a given loss function, potentially different from the one used to train
the neural network, of the input with respect to a given target class. This was first
introduced by Szegedy et al. [108] who formalized the minimization problem and
introduced the term of adversarial sample. In their work, they proposed an attack
using a Large Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm to solve the

32



1.5. Notations, definitions and properties

problem (1.36). The L-BFGS attack uses a line-search algorithm to find the optimal
value of the weight c, which makes it expensive; to overcome this limitation, Goodfellow,
Shlens, and Szegedy [46] proposed a so-called Fast Gradient Sign Method (FGSM).
This attack uses only one step in the direction of the sign of the gradient to generate
an adversarial example; hence, the obtained perturbation can be expressed as:

∆x = ε sign(∇xLf (x, j)) (1.37)

where Lf is the cost function used during training.
A more powerful direct alternative to FGSM is Projected Gradient Descent [76]

(PGD) which is an iterative version of FGSM, producing smaller perturbations at
the cost of being computationally more expensive. The most well-known state-of-
the-art adversarial attack using this so-called penalty method is the Carlini–Wagner
attack [18]. Penalty methods transform the constrained optimization problem into
an unconstrained one by coupling the need to minimize the perturbation norm and
the need to misclassify the input; the resulting optimization problem is easier to solve
than the problem in equation (1.32) but this comes at the expense of needing to find
an optimal loss function as well as an optimal weight c, which is, for the weight, often
achieved using expensive line-search algorithms.

All the above methods aim to optimize both the misclassification and minimal
norm criteria at the same time. This is often achieved using a line-search algorithm to
find the best balance between the two criteria. Other methods aim to accelerate the
generation of adversarial samples, tailoring algorithms specifically for a given norm.
Amongst them, DeepFool [84] iteratively perturbs the input by linearizing the model
around the current point and then find the closest decision boundary for the l2-norm
or l∞-norm. DDN-attack [97] is another method which decouples the two objectives by
using projections on a l2-ball centred on the original input at each iteration, whereas
FAB-attack [25] uses both projections and linear approximations of the neural network
to produce competitive adversarial examples.

A recent approach called ALMA [96] takes advantage of the Augmented Lagrangian
method to attenuate the drawbacks of penalty-based attacks. Indeed, with this method
the penalty is adaptively modified during the optimization iterations to estimate and
converge to the optimal penalty term, which corresponds to the Lagrangian multiplier
of the optimization problem.

1.5 Notations, definitions and properties
In this section notations, definitions and properties of quantities used in this thesis
are introduced.
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Chapter 1. Background

1.5.1 Neural networks notations
In this manuscript, when considering a generic feed-forward neural network, we define it
with a depth of p ∈ N layers, each layer has its associated weight matrix Ai ∈ Rni×ni−1

and activation function ϕi applied entrywise. For a given input x ∈ Rn0 we will denote
the output:

y = m(x) = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .)).
For the rest of this document, let us define yi ∈ Rni the output of the i-th layer of a
neural network, y0 being the input x. In this case we have, for example,

y = yp = ϕp(Apyp−1)

where ϕp(Apyp−1) is a vector since the activation function ϕp is applied entrywise, we
also define ϕ′

i(Aiyi−1), for i = 1, . . . , p, as the following diagonal matrix

[ϕ′
i(Aiyi−1)]j,j = ϕ′

i([Aiyi−1]j).

1.5.2 Operators and functions
We will use the “vec” operator which stacks the columns of a matrix one underneath
the others and note −→A = vec(A). Let A = (aij)1≤i≤m, 1≤j≤n ∈ Rm×n, we then have

vec(A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn) ∈ Rmn×1.

We will also use the “diag” operator which, when given a vector argument, creates
a matrix with the vector values along the diagonal. For example, given a vector
a = (a1, a2, . . . , an)

D = diag(a) = diag(a1, . . . , an) ∈ Rn×n

is a matrix whose entries outside the main diagonal are all zero and entries in the
diagonal are given by the vector a. The “sign” function of a real number is a function
which is defined as follows:

sign =


−1 if x < 0,
0 if x = 0,
1 if x > 0

and is meant to be applied componentwise if applied to vectors or matrices. More
generally, divisions and inequalities between vectors are also defined componentwise.
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1.5.3 Kronecker product definition and properties
Consider three matrices A ∈ Rm×n, X ∈ Rn×p and B ∈ Rp×q, then the Kronecker
product A⊗B is a specialization of the tensor product which produces the following
mp× nq matrix:

A
⊗

B =


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 .
We recall some properties of the Kronecker product which will be used in the remainder
of this document

(A
⊗

C)(B
⊗

D) = (AB)
⊗

(CD), (1.38)

∥A
⊗

B∥ = ∥A∥∥B∥, (1.39)

|A
⊗

B| = |A|
⊗
|B|, (1.40)

vec(AXB) = (BT
⊗

A) vec(X), (1.41)

(A
⊗

B)T = AT
⊗

BT . (1.42)

1.5.4 Notations
In our work, we will focus on the Frobenius norm for the matrices, and the l2-norm for
the vectors, and, for the sake of readability, we will drop the subscript on the ∥ · ∥F

and ∥ · ∥2 operators in the remainder of this document.
We note the distinction between the continuous and discrete intervals from a to b,

the former denoted by [a, b] and the latter represented by [a; b].
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Chapter 2

Backward error and condition
number for artificial neural
networks

Forward and backward errors are two quantities that enable to estimate the accuracy
of a given computed solution compared to the exact result. A third quantity, the
condition number, links the other two and enables to measure the sensitivity of a
system to perturbations. Unlike the forward error, which can be quite straightforward
to compute, the backward error and condition number often require a more detailed
analysis.

Indeed, the backward error represents the solution to a minimization problem,
which often means that closed formulas are not readily derived, as seen in section 1.1.3,
whereas for the condition number, even if formulas exist when the function is derivable,
there is still work to do in order to understand how to apply them depending on which
perturbations are considered to measure the sensitivity of a problem. The goal of this
chapter is therefore to explain how to establish explicit expressions of the backward
error as well as the condition number for artificial neural networks, depending on
which perturbations are considered.

For the sake of clarity, we will proceed in incremental steps. We will first show in
section 2.1.1 how the nonlinearity of the activation function affects the computation of
the backward error and we will provide formulas to compute the componentwise and
normwise backward errors, assuming perturbations on the neural network’s weights.
We will detail in section 2.1.2 how the condition number is obtained in a componentwise
and normwise case for a single layer.

These steps will provide the ingredients to produce the final, more generic results,
which shows how chaining layers in a general artificial neural network impacts compu-
tations, in section 2.2. These final results will provide a better understanding of how
assumptions that are made on which variables are perturbed impact formulas for the
backward error and condition number. In section 2.5 we will attempt to validate these
formulas; to do so we will, at first, compute the backward error and condition number

37



Chapter 2. Backward error and condition number for artificial neural networks

for random neural networks of small sizes, which have quasilinear behaviour. Moreover
from equation (1.14), one expects a direct link between forward, backward errors and
condition number, and because we know exactly how to compute the forward error,
comparing the forward error to the product of backward error by the condition number
will provide another way of validating our formulas.

2.1 Single layer neural network
An entire layer of a neural network is typically composed of a matrix–vector product
followed by an activation function, which can be written as y = ϕ(Ax), where the
application of ϕ is to be taken componentwise, A ∈ Rm×n and x ∈ Rn.

In order to compute the backward error and condition number, one has to assume
that perturbations are made on some given variables; in these first sections, we will
assume that perturbations are carried by the neural network’s parameters and not
by its input data. This choice allows us to have a better understanding of how the
activation function changes the approach which is typically used to obtain formulas
for the backward error by Oettli and Prager [89]. Indeed, in numerical linear algebra,
backward error and condition number are typically used to quantify the impact of
rounding errors on computations. Therefore, when encountering a matrix–vector
product, one would assume perturbations on the matrix. We will however later show
in section 2.2 how the computations of the backward error and condition number can
be extended to accommodate perturbations in any given parameters and/or input.

2.1.1 Backward error expression
This section focuses on the computation of the backward error for a single layer of
neural network with nonlinear activation function. When there are no activation
functions, and therefore no nonlinearities, backward error can be computed using
standard numerical linear algebra approaches, as shown in section 1.1.3.

However, in the machine learning context, activation functions are typically chosen
so that they are differentiable, since their gradient is necessary for the training phase.
Given that we typically focus on small norm perturbations (e.g. rounding errors,
adversarial attacks), the application of an activation function can therefore be reduced
to a linear case by using a first order approximation. This will enable us, in case of a
single layer neural network, to get back to standard backward error formulas.

Note that many methods already exist for dealing with functions that are not
differentiable at certain points, since gradients are needed during the training phase.
The most widely known example is ReLU, in which case one typically sets the value
of the derivative to zero at zero [7].
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2.1.1.1 Componentwise backward error

For a single layer neural network as previously defined, the componentwise relative
backward error is:

εbwd = min{ε ≥ 0 : ŷ = ϕ((A+ ∆A)x), |∆A| ≤ ε|A|}. (2.1)

For a given output component ŷi, let ai be the i-th row of A; assuming ϕ is differentiable
at aT

i x we have, with a first order approximation:

ŷi = ϕ((ai + ∆ai)Tx) = ϕ(aT
i x) + ϕ′(aT

i x)∆aT
i x,

which means that
ŷi − yi = ϕ′(aT

i x)∆aT
i x.

We are now ready to use a similar approach to that used in section 1.1.3, which means
finding a lower bound for the backward error and show that it is attained. Using
equation (2.1) we have

|ŷi − yi| ≤ εbwd|ϕ′(aT
i x)||aT

i ||x|,

which leads to
|ŷi − yi|

|ϕ′(aT
i x)||aT

i ||x|
≤ εbwd. (2.2)

Then
εmin = max

i

|ŷ − y|i
|ϕ′((Ax)i)|(|A||x|)i

is a lower bound for εbwd.
Let us define the perturbation

∆A = diag
(

sign(ϕ′(aT
i x)) ŷi − yi

|ϕ′(aT
i x)||aT

i ||x|

)
|A|diag(sign(xi)),

then |∆A| ≤ εmin|A|, with equality for at least one component and at first order we
obtain the desired equality ŷ = ϕ((A+ ∆A)x). This shows that the lower bound εmin
is attained for this perturbation, therefore the componentwise relative backward error
for such a single layer neural network is:

εbwd = max
i

|ŷ − y|i
|ϕ′((Ax)i)|(|A||x|)i

. (2.3)
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2.1.1.2 Normwise backward error

The normwise relative backward error is defined as:

εbwd = min{ε ≥ 0 : ŷ = ϕ((A+ ∆A)x), ∥∆A∥ ≤ ε∥A∥}. (2.4)

The approach to get a formula here is the same as in the previous section, we make
use of a first order expression which is given by

ŷ = ϕ((A+ ∆A)x) = ϕ(Ax) + ϕ′(Ax)∆Ax, (2.5)

to obtain a lower bound on the backward error with

∥ϕ′(Ax)−1(ŷ − y)∥
∥A∥∥x∥

≤ εbwd. (2.6)

Which therefore means that

εmin = ∥ϕ
′(Ax)−1(ŷ − y)∥
∥A∥∥x∥

is the lower bound for εbwd. Note that, since the application of ϕ is componentwise
the matrix ϕ′(Ax) is diagonal, therefore, assuming its entries are non-zero, ϕ′(Ax)−1

exists. Let us then define the perturbation

∆A = ∥A∥ϕ
′(Ax)−1(ŷ − y)xT

∥A∥∥x∥2 .

With this given perturbation, we have

∥∆A∥ = ∥A∥∥ϕ
′(Ax)−1(ŷ − y)xT∥
∥A∥∥x∥2 .

Since for any vectors a and b we have ∥abT∥F = ∥a∥2∥b∥2, we can then say that

∥∆A∥ = ∥A∥∥ϕ
′(Ax)−1(ŷ − y)∥
∥A∥∥x∥

.

Therefore ∥∆A∥ = εmin∥A∥, and at first order, we obtain the desired equality ŷ =
ϕ((A+∆A)x). This means that the lower bound εmin of the backward error is attained
and therefore the normwise relative backward error for a single layer neural network
is:

εbwd = ∥ϕ
′(Ax)−1(ŷ − y)∥
∥A∥∥x∥

. (2.7)
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2.1.2 Condition number expression
As seen in section 1.1.4, the condition number is quite straightforward to obtain when
one has access to first order information. Indeed, once we have equation (2.5) then we
get

ŷ − y = (xT
⊗

ϕ′(Ax))−→∆A+O((−→∆A)2) (2.8)
which then, depending on the metric, gives access to a direct relationship between
forward and backward error. We therefore detail in this section how to obtain the
condition number for each metric, knowing that in the more generic case of a deeper
neural network it will be derived similarly.

2.1.2.1 Componentwise condition number

In case of a componentwise metric, as defined in equation (1.18), the relative condition
number is

κϕ(A, x) = lim
ε→0

sup
max

i
|
−−→
∆Ai|≤ε|

−→
A i|

max
i

|ϕ((A+ ∆A)x)− ϕ(Ax)|i
|ϕ(Ax)|i

/
max

i

|
−→∆Ai|
|
−→
A i|

 .
Then, assuming all entries are non-zero, we can rewrite equation (2.8) as

ŷ − y
y

= diag(ϕ(Ax))−1(xT
⊗

ϕ′(Ax))diag(−→A )
−→∆A
−→
A

+O(−→∆A2),

where the divisions are meant componentwise. Moreover, we have

lim
ε→0

sup
max

i
|
−−→
∆Ai|≤ε|

−→
A i|

max
i

∣∣∣∣∣∣diag(ϕ(Ax))−1(xT
⊗

ϕ′(Ax))diag(−→A )
−→∆A
−→
A

∣∣∣∣∣∣
i

= lim
ε→0

sup
max

i
|
−−→
∆Ai|≤ε|

−→
A i|
∥diag(ϕ(Ax))−1(xT

⊗
ϕ′(Ax))diag(−→A )∥∞ max

i

|
−→∆Ai|
|
−→
A i|

which then means that we get the relative componentwise condition number of the
neural network in the form of:

κϕ(A, x) = ∥diag(ϕ(Ax))−1(xT
⊗

ϕ′(Ax))diag(−→A )∥∞. (2.9)

41



Chapter 2. Backward error and condition number for artificial neural networks

2.1.2.2 Normwise condition number

In case of a normwise metric, as defined in equation (1.16), the relative condition
number is

κϕ(A, x) = lim
ε→0

sup
∥∆A∥≤ε∥A∥

(
∥ϕ((A+ ∆A)x)− ϕ(Ax)∥

∥ϕ(Ax)∥

/
∥∆A∥
∥A∥

)
.

Yet from equation (2.8) it is clear that

κϕ(A, x) = lim
ε→0

sup
∥∆A∥≤ε∥A∥

∥(xT ⊗ϕ′(Ax))−→∆A∥
∥ϕ(Ax)∥

/
∥∆A∥
∥A∥

 ,
which then leads to

κϕ(A, x) = lim
ε→0

sup
∥∆A∥≤ε∥A∥

∥xT ⊗ϕ′(Ax)∥∥−→∆A∥
∥ϕ(Ax)∥

/
∥∆A∥
∥A∥

 .
Therefore, since ∥−→A∥2 = ∥A∥F , the relative normwise condition number of the neural
network is given by:

κϕ(A, x) = ∥x
T ⊗ϕ′(Ax)∥∥A∥
∥ϕ(Ax)∥ .

2.2 General neural network
Our work focuses on producing a general theoretical framework to evaluate a neural
network’s sensibility to various perturbations. We will therefore consider the case in
which both the input and the parameters are perturbed. In the previous section, we
showed how to compute the backward error and condition number for a single layer of
neural network. This will serve as the initial building block for constructing formulas
that enable to compute these quantities in case a given neural network is perturbed
on its input and parameters.

We will therefore show, in this section, how the chaining of layers impacts compu-
tations. These generic formulas will also allow us to explicitly define, for cases where
perturbations are applied only on the input or on a given set of parameters, how the
backward error and condition number are impacted.

Similarly to section 2.1, we will use a first order approximation of the model with
respect to the perturbed parameters. In order to get generic formulas, we will consider
perturbations on the parameters (Ai)i=1,...,p and input x. Consider a given neural
network model, assuming perturbations on the model’s parameters and on its input
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we have

ŷ = ϕp((Ap + ∆Ap)ϕp−1((Ap−1 + ∆Ap−1) . . . ϕ1((A1 + ∆A1)(x+ ∆x)) . . .)).

A first order approximation leads to the following equality:

ŷ − y = ϕ′
p(Apyp−1)∆Apyp−1 + . . .

+ ϕ′
p(Apyp−1)Apϕ

′
p−1(Ap−1yp−2) . . . Ai+1ϕ

′
i(Aiyi−1)∆Aiyi−1

+ . . .+ ϕ′
p(Apyp−1)Apϕ

′
p−1(Ap−1yp−2) . . . A2ϕ

′
1(A1x)∆A1x

+ ϕ′
p(Apyp−1)Apϕ

′
p−1(Ap−1yp−2) . . . A2ϕ

′
1(A1x)A1∆x.

(2.10)

For the sake of readability let us define, for i = 1, . . . , p, the Jacobian of our neural
network model m computed with respect to the parameters Ai

J i
m(A, x) = ϕ′

p(Apyp−1)Apϕ
′
p−1(Ap−1yp−2) . . . Ai+1ϕ

′
i(Aiyi−1)

and the Jacobian of the model with respect to the input

J0
m(A, x) = ϕ′

p(Apyp−1)Apϕ
′
p−1(Ap−1yp−2) . . . A2ϕ

′
1(A1x)A1.

Note that for p = 1 and no perturbation on the input we fall back to the case of
section 2.1.1 and J i

m(A, x) is a diagonal matrix.
Following equation (2.10) we therefore have

ŷ − y =
p∑

i=1
J i

m(A, x)∆Aiyi−1 + J0
m(A, x)∆x. (2.11)

This expression will be the starting point to derive backward error formulas.
We will however also need a different expression in which the terms are rearranged,

using the Kronecker product, to have the form of a linear system. Indeed, using the
property of equation (1.41) of the Kronecker product we have

ŷ = y +
p∑

i=1
(yT

i−1
⊗

J i
m(A, x)) vec(∆Ai) + J0

m(A, x)∆x. (2.12)

Let us then define the vector−→∆A as the concatenation of all the vectorized perturbations

−→∆A =


∆x
−→∆A1

...
−→∆Ap

 (2.13)
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and the Jacobian matrix of our model with respect to the input and parameters

Jm(A, x) =
[
J0

m(A, x), yT
0
⊗
J1

m(A, x), . . . , yT
p−1

⊗
Jp

m(A, x)
]
. (2.14)

We then can rewrite equation (2.12) as the following linear system

ŷ = y + Jm(A, x)−→∆A. (2.15)

2.2.1 Backward error expression
To obtain formulas for the backward error, we will therefore proceed in the same
manner as in section 2.1.1.

2.2.1.1 Componentwise backward error

We can define, using a first order approximation, the componentwise relative backward
error as:

εbwd = min{ε ≥ 0 : ŷ − y =
p∑

i=1
J i

m(A, x)∆Aiyi−1 + J0
m(A, x)∆x,

|∆Ai| ≤ ε|Ai|, i = 1, . . . , p, |∆x| ≤ ε|x|}.
(2.16)

Yet equation (2.11) implies

|ŷ − y| ≤
p∑

i=1
|J i

m(A, x)||∆Ai||yi−1|+ |J0
m(A, x)||∆x|.

Then from the definition of the backward error from equation (2.16) we get

|ŷ − y| ≤ εbwd

( p∑
i=1
|J i

m(A, x)||Ai||yi−1|+ |J0
m(A, x)||x|

)

which means that

|ŷ − y|
p∑

i=1
|J i

m(A, x)||Ai||yi−1|+ |J0
m(A, x)||x|

≤ εbwd.

Therefore
εmin = max

i

|ŷ − y|i
(

p∑
i=1
|J i

m(A, x)||Ai||yi−1|+ |J0
m(A, x)||x|)i

is a lower bound for εbwd.
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2.2. General neural network

So far, we have followed the same path as in the previous section; however, here,
finding perturbations that satisfy the equality case is much harder. Indeed, in the case
of a single layer followed by an activation function as in section 2.1.1, the Jacobian
matrix is diagonal and therefore finding a perturbation that satisfies the equality
ŷ = ϕ((A+ ∆A)x) = ϕ(Ax) + Jm(A, x)∆Ax was much easier. Whereas in the general
case, the Jacobian matrices are not diagonal anymore.

In order to compute the backward error, we will therefore need the expression of
equation (2.15), where Jm(A, x) is not diagonal.

In that case, finding the backward error defined as in equation (2.16) is equivalent,
at first order, to solving the following optimization problem

minimize−→∆A
∥
−→∆A∥∞

subject to ŷ − y = Jm(A, x)−→∆A,
(2.17)

where Jm(A, x) ∈ RM×N . Since we defined the sizes of the weight matrices and of the
output as in equation (1.31), we have

M = np,

N =
p∑

i=1
ni × ni−1 + n0

(2.18)

and therefore the system
ŷ − y = Jm(A, x)−→∆A

is underdetermined. We hence have no closed formula to compute the componentwise
backward error for a general neural network, however multiple methods [38, 1, 109,
17] focus on solving problems that are similar in form to the problem (2.17).

2.2.1.2 Normwise backward error

In the case where a first order approximation is given by equation (2.11), we cannot
easily get an equivalent of the equation (2.6) that we obtained in a single layer case.
However, knowing that equation (2.15) stands, since, as seen in equation (2.18),
Jm(A, x) has a number of rows much smaller than its number of columns, we can
make use of the Moore–Penrose generalized inverse, or, equivalently, Moore–Penrose
pseudoinverse [83, 91, 35, 118], which for our given expression, defines the matrix

Jm(A, x)† = Jm(A, x)T (Jm(A, x)Jm(A, x)T )−1
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that gives the minimum norm solution of the system in equation (2.15). Let us then
define the vector −→A as the concatenation of all the vectorized input and parameters

−→
A =


x
−→
A 1
...
−→
A p

 . (2.19)

Since the expression of the normwise backward error, knowing that ∥A∥F = ∥−→A∥2,
here is

εbwd = min{ε ≥ 0 : ŷ − y = Jm(A, x)−→∆A,

∥
−−→∆Ai∥ ≤ ε∥

−→
Ai∥, i = 1, . . . , p, ∥∆x∥ ≤ ε∥x∥}

(2.20)

then using the Moore–Penrose generalized inverse we have an explicit formula for the
normwise backward error in

εbwd = ∥Jm(A, x)†(ŷ − y)∥
∥
−→
A∥

. (2.21)

Note that for p = 1, if we assume perturbations only on the parameters, we have

ŷ − y = (xT
⊗

ϕ′(Ax))−→∆A

and

Jm(A, x)† = (xT
⊗

ϕ′(Ax))† = (x
⊗

ϕ′(Ax)T )(∥x∥2I
⊗

ϕ′(Ax)2)−1.

Which means that

(xT
⊗

ϕ′(Ax))†(ŷ − y) = ( x

∥x∥2

⊗
ϕ′(Ax)−1)(ŷ − y)

= ϕ′(Ax)−1(ŷ − y)xT

∥x∥2

and therefore the formula of equation (2.21), since for any given vectors a and b the
equality ∥abT∥F = ∥a∥2∥b∥2 stands, leads to

εbwd = ∥ϕ
′(Ax)−1(ŷ − y)xT∥
∥A∥∥x∥2 = ∥ϕ

′(Ax)−1(ŷ − y)∥
∥A∥∥x∥

,

which is the same backward error as the one defined in equation (2.7).
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2.2. General neural network

2.2.2 Condition number expression
Consider a given neural network model, assuming perturbations on the model’s
parameters and on its input, we have the equation (2.2) that stands. We can define the
vector −→∆A as in equation (2.13) and the Jacobian matrix Jm(A, x) as in equation (2.14).
This leads to the first order expression of equation (2.15)

ŷ − y = Jm(A, x)−→∆A

which serves as a starting point to express the condition number for each metric. Since
from here the approach to obtain formulas are the same as in section 2.1.2, we directly
get the following results.

2.2.2.1 Componentwise condition number

We can then define the absolute componentwise condition number as:

κm(A, x) = ∥Jm(A, x)∥∞

and the relative componentwise condition number is

κm(A, x) = ∥diag(m(x))−1Jm(A, x)diag(−→A )∥∞.

2.2.2.2 Normwise condition number

In the case of a normwise metric, we get the absolute normwise condition number of
the neural network in:

κϕ(A, x) = ∥Jm(A, x)∥
and the relative normwise condition number is

κϕ(A, x) = ∥Jm(A, x)∥∥A∥
∥m(x)∥ .

Note that equation (2.15) stands when we consider perturbations on the input
and all parameters. More generally, if we want to consider the backward error when
perturbations are carried by a given set of variables, the vector −→∆A has to contain all
those variables and the matrix Jm(A, x) has to be the Jacobian of the model with
respect to each of those variables. Depending on which variables are considered to
be perturbed, the expression of the Jacobian matrix and the vector containing the
perturbed variables varies. Therefore, in order to have the following relation between
forward, backward error and condition number

εfwd ≤ κm(A, x)εbwd,
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Chapter 2. Backward error and condition number for artificial neural networks

one must ensure that quantities are defined with the same appropriate metrics and
perturbations.

2.3 Link with artificial neural networks’ robustness
Recent research from Beerens and Higham [6], building on our work in Chapter 2 and
Chapter 3, uses the concept of componentwise backward error to generate adversarial
attacks that aim to alter the ink consistency of images and showed that an increase in
condition number is typically linked with a decrease in norm of adversarial attacks,
resulting in less robust neural networks. Indeed, the intuition is that a given problem
with high condition number will be more sensitive to small perturbations. Therefore, it
is not surprising that adversarial attacks, that are perturbations on input data which
lead the neural network to misclassify them, are more efficient on neural networks
with high condition number. We can hence expect well conditioned neural networks
to behave better in terms of robustness.

Other researches focus on using Lipschitz regularity of neural networks to better
understand their sensitiveness to adversarial attacks. This was first introduced
by Szegedy et al. [108]. Since then, k-Lipschitz neural networks [117, 8, 103] have
been popularized and make use of the Lipschitz constant, which is an upper bound on
the relationship between input perturbations and output variation, to obtain neural
networks that are more robust and explainable.

A function f : Rn → Rm is called Lipschitz continuous if there exists a constant k
such that for all (x, y) ∈ Rm × Rm

∥f(x)− f(y)∥ ≤ k∥x− y∥.

If there are such k’s, then the infimum of them exists and is called the Lipschitz
constant of f . Then Lip(f) is this constant and from Hutchinson [62] we have

Lip(f) = sup
x ̸=y

(
∥f(x)− f(y)∥
∥x− y∥

)
.

However, the absolute condition number of f is defined as in equation (1.15) by

κf (x) = lim
ε→0

sup
∥∆x∥≤ε

(
∥f(x+ ∆x)− f(x)∥

∥∆x∥

)
.

We therefore can say that for a given point x we have

κf (x) ≤ Lip(f).

48



2.4. Custom relative error

This link between condition number and Lipschitz regularity confirms previous expec-
tations that the condition number can be an important quantity to evaluate neural
networks’ robustness.

2.4 Custom relative error
As defined in sections 1.1.1 and 1.1.2, for a computed result ŷ that is an approximation
of y = f(x), with f : Rn → Rm, we formally have the relative forward error defined as

εfwd(ŷ) = max
i

|ŷi − yi|
|yi|

and the relative backward error as

εbwd(ŷ) = min {ε : ŷ = f(x+ ∆x), |∆x| ≤ ε|x|} .

For our error analysis and computations, in order to use the relative error we suppose
that the exact solution y or the input x is not zero in the case of a normwise metric,
and that all components of y and x are non-zero in the case of a componentwise
metric. In order to take these cases into account and tackle problems occurring for
small values, we introduce a custom relative error defined as

εfwd(ŷ) = max
i

|ŷi − yi|
|yi|+ εy

(2.22)

and similarly the custom relative backward error defined as

εbwd(ŷ) = min {ε : ŷ = f(x+ ∆x), |∆x| ≤ ε(|x|+ εx)} , (2.23)

with εy, εx ≥ 0 being arbitrarily fixed constants. In this case if |y| ≫ εy or |x| ≫ εx

then this custom relative error is equivalent to the one defined in sections 1.1.1
and 1.1.2, or else, if 1 ≫ |y| or 1 ≫ |x|, we can choose εy, εx = 1 and recover the
absolute error.

With this new metric of error comes a new relationship between backward and
forward error. Indeed at first order we have

ŷ − y = Jf (x)∆x

which means that

ŷ − y
y + εy

= diag(f(x) + εy)−1Jf (x)diag(x+ εx) ∆x
x+ εx
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and hence the custom condition number is

κm(x) = ∥diag(f(x) + εy)−1Jf (x)diag(x+ εx)∥∞.

2.5 Numerical experiments
In this section, we aim to validate the formulas which have been derived in the previous
sections. This typically involves computing the backward error, forward error and
condition number for a given neural network whose computations are done in some
given precision.

We choose to verify our formulas by applying them in the case where perturbations
are due to rounding errors since this will enable us to have preliminary results on
the effects of rounding errors for some given neural networks and to compare them
with results already known in linear algebra. For example, we expect that for a single
layer neural network with tanh activation function, when inputs and parameters are
close to zero, we should get backward and forward errors that align with those of the
matrix–vector product operation.

In these experiments we will focus on the componentwise metrics since they are
the one we will use for the rounding error analysis in Chapter 4.

2.5.1 Experimental setup
These experiments are carried out with Python 3.8. Computations are performed in
single precision while “exact” quantities are computed in double precision. In this
case, errors are coming from the use of reduced precision, we will therefore assume
that perturbations are carried by the neural network’s parameters when computing
backward errors and condition numbers.

We showed that in order to compute the backward error of deep neural networks,
an optimization problem needs to be solved; this will be done using the CVXPY
library [32, 2].

The experiments will at first be done on untrained neural networks randomly
initialized with different distributions. One being a Gaussian N (µ, σ) with

µ = 0,

σ = 1√
n
,
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2.5. Numerical experiments

n being the number of neurons of a given layer. The other two distributions we use
are uniform distributions U(a, b) where

a = 0,

b = 1√
n
,

which is hence not centred in zero and allows for observing different behaviours and
another one where

a = − 1√
n
,

b = 1√
n
.

These choices come from both the observation that trained layers’ weight values typi-
cally converge to these types of distributions and the Xavier’s initialization from Glorot
and Bengio [43] which is the most widely used type of parameters’ initialization before
training the neural networks. This type of distribution considers the number of pa-
rameters of each layer to determine the scale of the random initialization. This allows
the activation functions and gradients to work effectively during both the forward
phase and the backpropagation used during training.

For each neural network we randomly generate weights and inputs from these
distributions Ntest = 10 times and then compute the average εmean, maximum εmax,
backward εbwd and forward errors εfwd, as well as the condition number κm.

The trained neural networks architectures are provided in Table 2.1, they are
initialized with Xavier’s initialization and trained on FashionMNIST [127], this dataset
allows for a more challenging classification task than MNIST while maintaining
the same input sizes. Networks are trained using a cross entropy loss and Adam
optimizer with a default learning rate of 10−3 and batch size 128. Both networks attain
approximately 90% accuracy on the testing dataset when trained without overfitting.

2.5.2 Backward error computation
In order to assess the numerical solution obtained by solving the optimization problem
of equation (2.17), we compare it with the theoretical formula of the backward error
found in equation (2.3) for a single layer random neural network of size n and with
a tanh activation function. Figure 2.1 shows the evolution of the backward error,
computed either via the formula of equation (2.3) or via the optimization problem of
equation (2.17), as a function of the number of neurons in the layer. In Figure 2.1a we
compare the performance of different solvers that are available in the CVXPY library,
using the theoretical formula as a reference. Note that the ECOS [36] solver is the one

51



Chapter 2. Backward error and condition number for artificial neural networks

Table 2.1: Neural networks architectures details.

Convolutional model Fully connected model
Layer Shape Layer Shape
conv1-ReLU 1× 6× 25 linear1-tanh 784× 500
max-pooling 2× 2× s2 linear2-tanh 500× 500
conv2-ReLU 6× 12× 25 linear3-tanh 500× 500
max-pooling 2× 2× s2 linear4-ReLU 500× 10
linear3-tanh 192× 500
linear4-tanh 500× 120
linear5-tanh 120× 60
linear6-ReLU 60× 10

which is selected by default by CVXPY. Indeed, this library tries to automatically
select the most efficient solver depending on the optimization problem.

First we can remark that the backward error we get in Figure 2.1, as one could
expect, is close to the machine epsilon of the FP32 format, given in Table 1.1. These
initial findings also allow us to rule out certain solvers which do not perform well
compared to ECOS. The only solver that appears to give comparable results to ECOS,
namely GUROBI [51], in fact, at first, does not perform well, like OSQP [107], and then
CVXPY falls back on using ECOS since GUROBI raised an error. Using ECOS the
relative error between the backward error computed using the optimization problem
and using the formula is approximately of order 10−5 and, as seen in Figures 2.1b
and 2.1c, is negligible in our experiments that aim to validate the bounds found later
in Chapter 4. This is therefore the solver we will use in the following experiments of
this manuscript.

Note that we also tried different formulations of the optimization problem, as
described by Earle [38], and other solvers, such as MOSEK [3], but ultimately, using
built-in functions from CVXPY to express the optimization problem described by
equation (2.17) leads to better results.

2.5.3 Condition number and bound on the forward error
We have seen in section 1.1.4 that the inequality (1.14), which links condition number,
backward error and forward error, stands as long as quantities are consistently defined.
In Figure 2.2 we show the evolution of the backward error, forward error and the
product of the condition number by the backward error. Inequality (1.14) is clearly
satisfied, since the product of the condition number by the backward error follows the
same trend as, and bounds, the forward error. In Figure 2.2b, backward error, forward
error and its bound are very similar. Indeed, in case of a single layer neural network
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Figure 2.1: Backward error, computed via equation (2.3) vs. prob-
lem (2.17), for a single layer neural network of size n.
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Figure 2.2: Backward error, forward error and condition number for
a single layer neural network of size n with random parameters and

entries.

with tanh activation, the behaviour of the neural network is quasilinear around zero
and the condition number, which is the one defined in equation (2.9), is close to one.

To further validate our formulas, we will now apply them to a deeper fully connected
network whose architecture is given on the right side of Table 2.1. As with random
networks, we compare the forward error to its bound of inequality (1.14). For random
networks, we could easily generate networks of different sizes. Here, to have comparable
networks, we take different states of the same network architecture at various stages
of its training. Figure 2.3 therefore presents the evolution of the forward error and
its bound using the computed backward error and condition number during training.
Figure 2.3 clearly demonstrates that the forward error, which is computed exactly, is
sharply predicted by the product of the backward error and the conditioning.

Note that the forward error increases drastically from Figure 2.2a, when random
values are taken from a mean zero distribution, to Figure 2.2b. This is due to the
use of a relative forward error when the processed values are close to zero. Since
the matrix–vector product may result in arbitrary small values, then the relative
forward error may consequently be much larger in case of mean zero distributions.
This observation is in fact also true for the inner product, as shown in equation (1.24),
since for this particular choice of values’ distribution the absolute value of the inner
product can be arbitrarily smaller than the inner product of the absolute values.

In order to tackle this issue and have a more coherent metric for values that are
close to zero, we have introduced a custom relative error in section 2.4.

Since this new metric has been defined, we apply it to the case of a two-layer neural
network with tanh activation and same size n in Figure 2.4. When using parameters
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Figure 2.3: Backward error, forward error and condition number for
a small fully connected network during training.

and entries taken from a zero-mean distribution, we set the arbitrary constant of
equation (2.22) to one. This shows that backward and forward error are of similar
order of magnitude, which is to be expected in a quasilinear context. The condition
number multiplied by the backward error still bounds and follow the same increase
as the forward error. Moreover, in Figure 2.4b, the backward error increases as the
number of neurons in the layer increases. This is to be expected since the number of
neurons per layers defines the number of operations that will be performed by this layer.
Since the number of floating-point operations increases with n then the backward error
is also expected to increase. However, the backward error in Figure 2.4a does not grow
as the number of neurons n increases, this is in line with the results of Higham and
Mary [57], since the input and parameters both have mean zero. These behaviours
will be explored in more detail in Chapter 4, as we will specifically analyse the impact
of rounding errors in the computations of artificial neural networks.

Overall the results we get using the custom relative error are more coherent, we
will therefore use this metric in the following experiments of this manuscript when we
deal with values that are close to zero.

2.5.4 Condition number during neural network training
During our experiments on classification neural networks, we noticed that an increase
in the condition number of a neural network with respect to its parameters is directly
linked with overfitting during training. In order to confirm these findings, we trained
a convolutional network, whose architecture is given on the left side of Table 2.1, for a
sufficiently high number of epochs and with a learning rate 10 times larger than the

55



Chapter 2. Backward error and condition number for artificial neural networks

101 102

Layer size (n)

10−7
εmean

bwd

εmean
fwd

κm(A, x)× εmean
bwd

(a) Parameters and entries taken from a
N (0, 1√

n
) distribution.

101 102

Layer size (n)

10−7

6× 10−8

2× 10−7

3× 10−7

4× 10−7

εmean
bwd

εmean
fwd

κm(A, x)× εmean
bwd

(b) Parameters and entries taken from a
U(0, 1√

n
) distribution.

Figure 2.4: Backward error, forward error and condition number
for a two-layer neural network, each layer is of size n with random

parameters and entries.

regular training setup. We then computed at each epoch the average and maximum
condition number for a set of images.

Figure 2.5a shows the evolution of the condition number during such a training,
while Figure 2.5b shows the condition number of the same neural network for a regular
training setup without overfitting. Figure 2.5 should be compared with Figure 2.6
which shows the evolution of the training and testing losses during the training of
both neural networks.

Figures 2.5 and 2.6 allow us to clearly distinguish the change in behaviour between
the training phase without overfitting and the phase with overfitting. Indeed, in
Figure 2.6a the testing loss starts to increase after around 30 epochs due to the higher
learning rate, while in Figure 2.6b the learning rate is reduced and therefore there is
no overfitting. By comparing these curves with those of the conditioning in Figure 2.5,
a clear trend can be observed. When the network does not overfit, its conditioning is
typically of the order of 104. In Figure 2.6a the condition number quickly increases,
while in Figure 2.6b it is much more stable. As noticed in section 2.3, the condition
number of neural networks appears to be a clear indicator of their robustness, implying
that networks with higher condition numbers are less robust. These insights, combined
with the initial results on trained neural networks from Figure 2.5, led us to propose
an approach that involves using the condition number during the training of neural
networks. Indeed, since an increase in the condition number typically leads to a set of
undesirable properties, it is therefore a useful quantity to monitor, and even penalize,
during the training of the network. Since, as stated in section 1.4.1, the training of a
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Figure 2.5: Comparison of the condition number evolution for an
overfitting neural network and a regularly trained neural network.
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Figure 2.6: Comparison of the losses on training and testing dataset
for an overfitting neural network and a regularly trained neural network.
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neural network consists in finding parameters θ∗ such that:

θ∗ = arg min
θ
L(θ).

Our proposed approach consists in adding the condition number of the network with
respect to its parameters, which means that the problem becomes

θ∗ = arg min
θ
L(θ) + ακm(θ, x),

with α ∈ R+. Therefore, by introducing penalty when the condition number increases,
we aim to reduce overfitting, additionally this will produce neural networks with
smaller condition numbers, which also guarantees more robustness to perturbations,
such as adversarial attacks.

Note we have not yet fully explored this idea which is the subject of an ongoing
patent application.

2.6 Conclusion and discussion
We have shown in this chapter how significant quantities, that are commonly used
in numerical linear algebra to better understand and evaluate numerical stability
of algorithms, such as backward error and condition number, can be extended and
computed for artificial neural networks. This analysis takes into account any neural
network whose layers’ operations are equivalent to a matrix–vector product followed by
an activation function, such as fully connected or convolutional layers. We have shown
that, with a first order approximation, we can obtain closed formulas to compute the
componentwise and normwise backward errors for an entire layer of such a neural
network. However, for larger neural networks, it is necessary to solve an optimization
problem to obtain the componentwise backward error, whereas we can obtain an explicit
formula for the normwise backward error by using the Moore–Penrose generalized
inverse. On the other hand, the condition number can always be computed once we
have access to the Jacobian matrix of the neural network.

We have implemented a Python code that is generic enough so that, given a neural
network, it can compute all these quantities, regardless of the structure of the network.
Using this code, we were able to perform an initial validation of our formulas on both
randomly generated neural networks using known results from numerical linear algebra
and deeper trained neural networks using the inequality (1.14).

We then focused more specifically on the conditioning of neural networks. Indeed,
this quantity is commonly used to quantify the sensitivity of a system to perturbations
in its data. We highlighted the connection between this quantity and the Lipschitz
constant. In the particular case of neural networks, the Lipschitz constant is the
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subject of active research to improve the robustness and explainability of networks.
This link, combined with the experimental observations we made and those of Beerens
and Higham [6], led us to propose a method for training neural networks by taking into
account their condition number. The aim is to obtain more robust and explainable
networks.

All these quantities are generic enough to assess the robustness of neural networks
with respect to any parameter or input, as well as for a wide variety of perturbations.
Section 2.5 focuses particularly on perturbations coming from rounding errors because
it allows, for simple networks, a direct comparison with results obtained in linear
algebra, notably from Higham and Mary [57].

In the coming chapters, we will use the backward error and condition number to
better understand specific perturbations, such as adversarial attacks and rounding
errors.

59





Chapter 3

Adversarial attacks on artificial
neural networks

Section 1.4.3 introduced the concept of adversarial attacks on artificial neural networks.
These are small perturbations applied to the inputs of classification neural networks
designed to deceive their decision-making process. On the other hand, in Chapter 2,
the concept of backward error was developed for generic neural networks. This concept
also raises the question of finding small perturbations, but in that case it is to produce
a given computed output.

If we apply the concept of backward error to the particular case of a classification
neural network, the exact output value y leads to the ground-truth label. Then there
exist multiple computed output ŷ that lead to the same class as y. However, if the
class of ŷ is the same as y then the backward error is zero, since the minimal norm
perturbations to obtain this class are zero.

Therefore, computing the backward error for a classification neural network, whose
final outputs are discrete classes, amounts to finding the smallest perturbations on a
network’s parameters and/or input that changes the true output’s class. Hence, there
appears to be a close connection between adversarial attacks and backward error; we
will attempt to explore this further in this chapter.

To do so, we will present two novel approaches for creating adversarial attacks.
The first proposed approach relies on backward error analysis methods, presented
in Chapter 2, that are more commonly used in scientific computing to assess the
effects of finite precision computations or to measure the sensitivity of an algorithm to
perturbations on data. Section 3.1.1 demonstrates how, because of its generality, the
concept of backward error allows for computing targeted adversarial attacks on the
input data as well as on the neural network’s parameters; the latter correspond, for
example, to the case where a malicious user tampers with the values of the weights or
biases in order to alter the behaviour of the network. Section 3.1.2 shows how this
practically enables the creation of adversarial attacks. After establishing how the
backward error approach enables the creation of attacks, we will demonstrate how
this new type of attack compares, both theoretically in section 3.1.3 and practically in
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section 3.1.4 with pioneering adversarial attack algorithms.
The second approach aims to produce perturbations with smaller norms with

respect to existing, state-of-the-art methods. To tackle this objective, we propose an
approach that relies on second order information and, more precisely, on Sequential
Quadratic Programming (SQP), which is a well known and widely studied method for
solving constrained optimization problems. The base algorithm is presented in the
section 3.2.1. We discuss the practical limitations of a baseline SQP-based method
and propose some improvements to overcome them in section 3.2.2, which lead to a
hybrid approach, mixing first order and second order iterations in order to achieve
better convergence and lower execution time. Finally, in section 3.2.3, we present
experimental results showing how the proposed approach compares to the state of
the art, both in terms of performance in computation time and in creating efficient
attacks.

Section 1.4.3 showed that both targeted and untargeted schemes exist. It has
however been argued, notably by Carlini and Wagner [18], that computing an un-
targeted attack is often a less accurate approach than running a targeted attack for
each target class and then take the smallest perturbation. For this reason, in our
work we focus on computing a targeted attack, knowing that we can then use it in an
untargeted context using this method. Our method can easily be extended to the case
of untargeted attacks but we consider this is out of the scope of the present work. The
following sections will thus be based on the following formulation of the optimization
problem, equivalent to finding adversarial attacks for a given target label j,

minimize
∆x

∥∆x∥2

subject to mi(x+ ∆x) ≤ mj(x+ ∆x),
i = 1, . . . , C,

(3.1)

where
m(x) = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .))

is the output of the classifier with C classes.
Note that this chapter focuses on adversarial attacks for the l2-norm for the vectors,

which, along with the l∞-norm, is one of the most studied settings in the literature [27].
Moreover, the case of the l∞-norm has been addressed by Beerens and Higham [6],
whose work takes as a starting point the following study on the l2-norm which we
presented in [9].
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3.1. Adversarial attacks via backward error analysis

3.1 Adversarial attacks via backward error analysis
Chapter 2 provides explicit definitions, formulas and methods to calculate the backward
error, for different metric, for a generic deep neural network. This work will serve as
the starting point for this section, in which we aim to extend these definitions and
formulas to the case of classification networks. This extension of the results from the
previous chapter will lead us to delve into the concept of adversarial attacks and to
propose new approaches based on the backward error.

Note that we will focus on the normwise backward error expression, knowing that
the componentwise approach was later developed by Beerens and Higham [6].

3.1.1 Backward error and its application to adversarial at-
tacks

In this section, we will use the results of the previous chapter and generalize them to
the case of a deep neural network used for classification tasks. Section 1.1.2 states
that, for a given function f , input x and computed output ŷ, the backward error as
a quantity which is obtained by asking for what perturbed value of x the function
has actually been applied, i.e. what is the perturbation ∆x such that ŷ is the exact
solution of f(x + ∆x), and in this case the backward error is the smallest value of
∥∆x∥.

Usually, this measure of error is used to quantify rounding errors, so the computed
result ŷ is obtained after computations. Now, if we consider this concept from the
perspective of adversarial attacks, we could set a desired target output ŷ that we want
to achieve from a given input x. We then arrive at a question of the same order as the
backward error: what are the minimal perturbations necessary to achieve this result?
Therefore, in that case, using the backward error formulas that we obtained before,
we could compute the perturbations that are necessary to reach such a ŷ.

For a generic neural network with p layers, the computed result is

ŷ = m(x+ ∆x,A1 + ∆A1, . . . , Ap + ∆Ap)

and the normwise relative backward error was given, with a first order approximation,
by equation (2.20)

εbwd = min{ε ≥ 0 : ŷ = y + Jm(A, x)−→∆A,

∥
−−→∆Ai∥ ≤ ε∥

−→
Ai∥, i = 1, . . . , p, ∥∆x∥ ≤ ε∥x∥},

where Jm(A, x) is the Jacobian of the model with respect to its parameters and input.
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Then the Moore–Penrose generalized inverse gives an explicit formula to find the
backward error in:

−→∆A = Jm(A, x)T (Jm(A, x)Jm(A, x)T )−1(ŷ − y). (3.2)

Using the expression of the Jacobian in equation (2.14), this can be written
∆x
−→∆A1

...
−→∆Ap

 =


J0

m(A, x)T

y0
⊗
J1

m(A, x)T

...
yp−1

⊗
Jp

m(A, x)T

 (Jm(A, x)Jm(A, x)T )−1∆y. (3.3)

For the sake of readability, for i = 0, . . . , p, let us note

J†
i = J i

m(A, x)T (Jm(A, x)Jm(A, x)T )−1.

It follows from equation (3.3), and the property of equation (1.41) of the Kronecker
product, that the perturbations associated with the given output ŷ are:

∆x = J†
0∆y,

∆A1 = J†
1∆yxT ,

...
∆Ai = J†

i ∆yyT
i−1,

...
∆Ap = J†

p∆yyT
p−1.

(3.4)

Thanks to this backward error analysis of neural networks, we have thus obtained a
general expression for perturbations to yield a given approximate result. Our analysis
is for a general arbitrary network with any number of layers and with activation
functions, and computes perturbations on both the weights and the input of the
network. This method could therefore be applied to create adversarial attacks on
all kinds of networks by perturbing, depending on the context, either the input, a
given set of parameters, or both. Since adversarial examples were initially studied and
popularized in the context of classification neural networks, we will focus on applying
our method in this context in section 3.1.2.
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3.1.2 Proposed approach
In this section, we present a novel approach for producing adversarial attacks to
classification neural networks that relies on the backward error analysis presented in
section 3.1.1. The approach consists in computing the smallest norm perturbation on
input data or network weights such that, for a given input x, the computed ŷ results
in a misclassification, that is, it erroneously assigns the input to class j instead of the
expected one. As stated in section 1.4.3 the most common way for the classification
decision to be made in neural networks is based on the maximum component of the
output. Therefore, mathematically, the adversarial perturbation is defined as the
solution of the following minimization problem

arg min
∆Ai,∆x

p∑
i=1

∥∆Ai∥2

∥Ai∥2 + ∥∆x∥
2

∥x∥2

subject to ŷ = ϕp((Ap + ∆Ap)ϕp−1((Ap−1 + ∆Ap−1)
. . . ϕ1((A1 + ∆A1)(x+ ∆x)))),
ŷi ≤ ŷj, i = 1, . . . , C.

(3.5)

The optimization problem, in this form, is very challenging to solve because of the
equality constraint and the potentially very large size of the variables. However, from
section 3.1.1 we know that, we can express the minimum norm perturbations that
satisfy the equality constraint of problem (3.5) at first order as functions of ŷ with
equation (3.4). This allows to have the following equality

p∑
i=1

∥∆Ai∥2

∥Ai∥2 + ∥∆x∥
2

∥x∥2 =
p∑

i=1

∥J†
i ∆yyT

i−1∥2
F

∥Ai∥2
F

+ ∥J
†
0∆y∥2

2
∥x∥2 (3.6)

where all quantities are known except ŷ in ∆y = ŷ − y. This means that we can
alternatively use ŷ as a way to find adversarial attacks, therefore using it as an opti-
mization variable. Indeed, using backward error analysis, we express the perturbations
as variables which only depend on a given approximate result ŷ and on the network’s
parameters.

Since we can express the norm of the perturbations as in equation (3.6), we can
use the fact that for any given vectors a and b we have ∥abT∥F = ∥a∥2∥b∥2 to obtain

p∑
i=1

∥∆Ai∥2

∥Ai∥2 + ∥∆x∥
2

∥x∥2 =
p∑

i=1

∥yi−1∥2
2

∥Ai∥2
F

∥J†
i ∆y∥2

2 + 1
∥x∥2∥J

†
0∆y∥2

2

= ∥J†(ŷ − y)∥2
2

(3.7)
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with

J† =



∥x∥
∥A1∥

J†
1

...
∥yi−1∥
∥Ai∥

J†
i

...
∥yp−1∥
∥Ap∥

J†
p

1
∥x∥

J†
0



.

Since equation (3.7) is obtained for minimal norm perturbations that satisfy the
equality constraint of the optimization problem (3.5), this problem can therefore be
reduced to

arg min
ŷ

∥J†(ŷ − y)∥2

subject to ŷi ≤ ŷj, i = 1, . . . , C.
(3.8)

By using this formulation we are no longer directly seeking minimal-norm per-
turbations, but rather an output vector ŷ of size C, which, through the backward
error approach, allows us to obtain minimal-norm perturbations. Indeed, once the
optimization problem is solved and, thus, ŷ is computed, the adversarial perturbations
can be computed using equation (3.4).

Alternatively, we can reformulate the optimization problem using backward error
analysis to only simplify the constraints which reduces the problem to:

arg min
∆Ai,∆x

p∑
i=1

∥∆Ai∥2

∥Ai∥2 + ∥∆x∥
2

∥x∥2

subject to ∆y = Jm(A, x)−→∆A,
ŷi ≤ ŷj, i = 1, . . . , C.

(3.9)

This formulation can be further refined by iterating on the perturbations, for
example in the case where we attack the input data we solve at each iteration the
following optimization problem:

minimize
d

∥∆x+ d∥2

subject to ∆y = J0
m(A, x)d,

ŷi ≤ ŷj, i = 1, . . . , C

(3.10)
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and at the end of each iteration, the following modifications are applied:

∆x← ∆x+ αd,

x← x+ αd,

with α a fixed regularization term. This approach leads to the Algorithm 1.

Algorithm 1 Iterative backward error attack
1: Input: a starting point for the algorithm x; a number of iterations Niter.
2: x1 ← x
3: ∆x← 0
4: for k = 1, . . . , Niter do
5: minimize

d
∥∆x+ d∥2

6: subject to ∆y = J0
m(A, xk)d, ŷi ≤ ŷj, i = 1, . . . , C

7: ∆x← ∆x+ αd
8: xk+1 ← xk + αd
9: end for

10: Output: a perturbation ∆x.

Alternatively, we can also use this method to generate attacks on the network
parameters. In this case, we need to adapt the Jacobian matrix, which must then be
taken with respect to the perturbed parameters.

These two formulations enable us to compute targeted adversarial attacks either
on weights or on the input data and on both weights and input data. The formulation
of the problem as given in equation (3.8) has the clear advantage of greatly reducing
the size of the variable to be optimized, which could be a considerable advantage
when focusing on attacks on a neural network’s parameters. On the other hand, the
formulation in Algorithm 1 might be more suitable when the variable to optimize is of
smaller size, for example when considering attacks only on the input, or only on a
given small set of parameters. This version allows for taking small steps iteratively,
thus neglecting the effects of model linearisation.

Note that here we focus on the case where the classifier assigns the input data to
the j-th class when ŷi ≤ ŷj, i = 1, . . . , C, but this can easily be generalized to other
types of classification by modifying these constraints.

3.1.3 Comparison with other approaches
Most of the approaches that generate adversarial examples, including FGSM [46] or
FGSM-based approaches [72], SGD (Stochastic Gradient Descent) [76] or SGD-based
approaches [26], FAB [25], etc., use the gradient of the loss function in order to solve
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a given optimization problem. Usually the optimization problem can be generically
formulated as in equation (1.32):

minimize
∆x

∥∆x∥2

subject to Class(x+ ∆x) = j,

where j is the target class and Class(x+ ∆x) the class of the perturbed image. This
problem being difficult to solve, the above-mentioned approaches commonly resort to
solving the problem of equation (1.36)

minimize
∆x

∥∆x∥2 + c L(x+ ∆x, j)

where L is the loss of a given image with respect to a given target class.
Unlike these methods, our approach relies on a first order approximation of ∆x

or ∆Ai resulting from the backward error analysis. This enables us to simplify
equation (1.32) and formulate it as in equation (3.8) or equation (3.9).

Unlike most existing approaches, our method is generic enough to enable to
compute targeted adversarial attacks on both the neural network’s parameters and
input. Attacks on a network’s parameters should not be neglected. In fact, in a
context where cloud computing is rising in popularity, neural network’s inferences
which happen on the cloud are subject to multiple threats such as unauthorized access
through malicious co-located Virtual Machines (VM) on a same physical host or root
access via host organization. In these situations, an intruder can have access to a
neural network’s parameters and perturb them to launch adversarial attacks on specific
inputs using our approach.

Finally, a notable advantage of our approach is that it does not require the
knowledge of the loss function and of its gradient in order to find optimal perturbations;
unlike other gradient-based adversarial attacks, the proposed attack only depends
on the output information and the network’s parameters. Indeed, when a neural
network is deployed after being trained, no information on the loss function used to
train it is available. Although only a few loss functions (e.g. mean square error, cross
entropy) are most commonly used, there are still numerous cases where non-trivial
loss functions are used which are difficult, if not impossible, to guess. One commonly
occurring example is represented by Generative Adversarial Networks (GAN) [47],
where a discriminative network acts as a loss function.

3.1.4 Numerical experiments
In this section, the objective will be to evaluate the performance of the previously
defined attacks. Given that attacks on inputs are the most well-known and studied in
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the literature, we will first compare our method in the context where only the inputs
are perturbed. This allows us to assess the robustness of our method compared to
what is done in the literature and justify its extension to attacks on the parameters.

Finally, we will evaluate the performance of our attack when applying perturbations
to the parameters of neural networks by comparing it with the results previously
obtained on the inputs.

Note that these experiments will be done on neural networks whose task is to
classify images, since it is the most studied case.

3.1.4.1 Experimental setup

For all of our experiments we train a fully connected neural network, using tanh
activation functions. Neural network models are trained using the Keras library [21]
and Adam’s optimizer [69] with a sparse categorical cross entropy’s loss on Python.

We will apply our different versions of the backward error attack to image classi-
fication cases, using the MNIST [31] and CIFAR10 [70] datasets since they are the
most well-known and commonly used datasets for creating adversarial attacks.

The neural network’s structure is described in each subsection or on the first row
of the corresponding table. If the network is a fully connected neural network with
one hidden layer, with 784 nodes in the input layer and 100 nodes in the hidden layer
on MNIST then we use the following notation: (784, 100, 10).

Once the network is trained, we export its parameters and use them to compute
adversarial attacks as described before, using MATLAB R2020a. For each experiment
we take the 100 first images on the testing dataset, we first solve the optimization
problem of equation (3.8) or the iterative version of equation (3.9), as specified in
each case, using MATLAB’s lsqlin function from the optimization toolbox, and then
we find the corresponding perturbations on the input or on the model’s weight. The
Jacobian matrix is computed using the formula of equation (2.14).

For all these experiments, and for each adversarial-example-generating algorithm,
we set a same maximum number of iterations after which we consider the attack to
have failed for a fixed threshold ε.

The experimental approach is divided in two parts, one where we focus only on
attacks on the neural network’s input and one where we only want to attack the neural
network’s parameters. Neural networks for a given size and database are the same
across sections 3.1.4.3 and 3.1.4.2.

3.1.4.2 Adversarial attacks on a neural network’s input

In Figure 3.1 we show, for multiple input images and classes, the adversarial example
resulting from an attack on MNIST, using a (784, 100, 10) network with tanh activation
functions, computed with the approach proposed in Algorithm 1. For perturbations
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Figure 3.1: Adversarial examples found with BE Attack; above
each image is the obtained label and, in parentheses, the norm of the

perturbation.

of relative norm greater than approximately 0.1 slight white stains on the perturbed
image appear, although a human eye would still classify these perturbed images in
their true label.

It is interesting to notice that in the examples of Figure 3.1 we can get multiple
adversarial examples for a given input image that are obtained with perturbations
of relatively small norm; it clearly shows that our method is efficient in producing
adversarial examples for multiple given target classes. In the following comparison we
will only use non-targeted attacks to show that this method can compete with, and
even outperform, other attacks in an untargeted setting.

In this section we perform an attack only on the input and compare it to well-
know attacks such as Fast Gradient Method (FGM) which is the l2-norm variation
of FGSM [46], Projected Gradient Descent (PGD) [76] and DeepFool [84], using the
Foolbox library [92]. For each attack, we search for the best hyperparameter needed
on Foolbox before comparing the different methods. We give the network accuracy,
defined as the percentage of correctly classified inputs, for different ε assuming that
the attack is successful if:

∥∆x∥
∥x∥

< ε.

Hence, if we do not find any perturbations that change the network’s result for a given
image, such that

∥∆x∥
∥x∥

< ε
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then we report a network accuracy of 100%.

Table 3.1: Adversarial attacks on MNIST, (784, 10) neural network.

ε BE attack (3.8) BE attack (3.10)
0.2 70% 23%

0.1 90% 41%

0.05 97% 68%

As seen in Table 3.1, using the iterative version given in Algorithm 1 gives better
results than using the formulation of equation (3.8), hence we will use this one on the
following comparisons. In the case of Table 3.2 we compare the backward error attack

Table 3.2: Adversarial attacks on MNIST, (784, 10) neural network.

ε FGM L2PGD L2DeepFool BE attack
0.2 60% 31% 27% 23%

0.1 79% 71% 60% 41%

0.05 92% 91% 72% 68%

to other attacks, this results show that our method outperforms FGM and L2PGD,
while finding many more adversarial examples with relative norm smaller than 0.1
compared to DeepFool. In Table 3.3 we increase the size of the neural network, while

Table 3.3: Adversarial attacks on MNIST, (784, 100, 10) neural net-
work.

ε FGM L2PGD L2DeepFool BE attack
0.2 49% 34% 44% 41%
0.1 80% 81% 78% 72%

0.05 94% 96% 93% 90%

the backward error attack still gives satisfying results for smaller norm perturbations,
it shows that for perturbations of relative norm closer to 0.2 results of the different
attacks seem to even out. However, our attack still performs well in cases of smaller
norms.

In the next experiments, we will attempt to confirm these initial findings with a
network trained on a more complex database, namely CIFAR10. In Table 3.4 the
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Table 3.4: Adversarial attacks on CIFAR10, (3072, 768, 10) neural
network.

ε FGM L2PGD L2DeepFool BE attack
0.2 1% 2% 0% 0%

0.1 5% 7% 0% 1%
0.05 18% 27% 3% 5%
0.01 77% 79% 55% 55%

network is composed of two layers of 768 and 10 neurons each followed by hyperbolic
tangent as activation function, and it achieves 56% of accuracy on the CIFAR10
test data. For our computations we use the 100 first test images which are correctly
classified.

The results we get in Tables 3.2, 3.3, and 3.4 show that even by perturbing only
the input data our method still obtains satisfactory results, in the majority of the
cases outperforming PGD and FGSM, it is also performs better than Deepfool in
many instances, and otherwise, it at least compares well.

With this method, we are therefore able to generate effective attacks compared to
the attacks used as examples. However, one of the major contributions of our attack is
that it also allows for generating perturbations on the parameters. Unfortunately, to
our knowledge, there are no other attacks that allow for this but these results suggest
that this works compares well to existing attacks when perturbing the inputs.

3.1.4.3 Adversarial attacks on a neural network’s parameters

In this section, we perform an attack only on the neural network’s parameters by
applying perturbations on all of its weights. Note that, however, our attack is generic
enough to produce perturbations on any given set of parameters. For each attack we
give the network accuracy for different ε assuming that the attack is successful if:

max
i

∥∆Ai∥
∥Ai∥

< ε.

Hence, if we do not find any perturbations that change the network’s result for a given
image, such that

max
i

∥∆Ai∥
∥Ai∥

< ε

then we report a network accuracy of 100%.
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Table 3.5: Adversarial attacks on weights on MNIST, (784, 10) neural
network.

ε BE attack (3.8) BE attack (3.9)
0.5 30% 39%
0.2 38% 51%
0.1 50% 61%
0.05 64% 83%
0.01 88% 100%

Unlike what we have seen in section 3.1.4.2, in Table 3.5, formulation of equa-
tion (3.8) leads to better results than using the iterative version of equation (3.10),
even if this still gives satisfying results. This corresponds to what we expected, given
that in this case the optimization variable is large and thus the problem is more
difficult to solve. Hence, on the following comparisons we will use the version of
equation (3.8).

Table 3.6: Adversarial attacks on weights on MNIST.

(784, 10) (784, 100, 10)
ε BE attack BE attack
0.5 30% 37%
0.2 38% 64%
0.1 50% 72%
0.05 64% 84%
0.01 88% 95%

The results in Table 3.6 show that backward error can be used to efficiently fool a
given neural network by perturbing its weights, moreover it is interesting to note that
for a given ε the accuracy we can get by perturbing weights is typically of the same
order as the one we get before in section 3.1.4.2 by perturbing the input data.

In Table 3.7, the dataset is more complex and the neural network has more
parameters, these results show that perturbations on the parameters are, in that
case, more efficient than those on the input. Indeed, the accuracy we get here for a
given ε is typically a lot smaller than the one we get for an attack on the input in
section 3.1.4.2, despite using the same neural network for both attacks. This was not
the case for the neural networks trained on MNIST, which shows that some neural
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Table 3.7: Adversarial attacks on weights on CIFAR10, (3072, 768, 10)
neural network.

ε BE attack
0.05 0%
0.01 4%
5e-3 9%
1e-3 56%
5e-4 73%
1e-4 93%

network are less robust than others when it comes to perturbations on their parameters.
Moreover, some networks are more sensitive to parameters perturbations than to input
perturbations.

3.2 Adversarial attacks via Sequential Quadratic
Programming

In the previous section, we have used the backward error formulas obtained in Chapter 2
to create adversarial attacks on the parameters and inputs of a neural network. This
has led us to produce comparisons of the backward error attacks with some standard
methods of adversarial attacks on inputs. In order to do so, we proposed an iterative
version of the backward error attack, with Algorithm 1, which performed well compared
to DeepFool, FGSM and PGD. In this section, we will explain how this iterative
algorithm can be further refined using a well-known optimization method, namely
Sequential Quadratic Programming.

3.2.1 Local Sequential Quadratic Programming
Sequential Quadratic Programming (SQP) is one of the most well-known and successful
methods for constrained nonlinear optimization; the first reference to SQP-type
algorithms appears in the PhD thesis of Wilson [123]. An exhaustive review of this
method is out of the scope of this manuscript but, in this section, we will explain
the general idea behind it; we refer the reader to the above-mentioned thesis or to
any optimization textbook such as the one by Boggs and Tolle [14] or Nocedal and
Wright [87]. Although SQP is generic enough to solve optimization problems with both
equality and inequality constraints, in this work we will focus on the case where only
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inequality constraints are present because this is enough for computing adversarial
attacks, as explained in the next section. Therefore, our review of the SQP method
below is limited to this case for the sake of conciseness.

Let us assume that one has to solve the following minimization problem:

minimize
x

f(x)

subject to g(x) ≤ 0.
(3.11)

The idea behind SQP is to solve this problem iteratively: at each iteration xk the
problem is modelled by a constrained quadratic programming subproblem whose
minimizer is used to build iterate xk+1. One common choice is to solve the Karush–
Kuhn–Tucker (KKT) equations using Newton’s method. The Lagrangian of this
problem is

L(x, λ) = f(x) + λTg(x), (3.12)
where the vector λ corresponds to the Lagrangian multipliers.

To satisfy the KKT conditions one must find (x, λ) such that

∇L(x, λ) = 0
g(x) ≤ 0.

(3.13)

Applying Newton’s method to the above equation generates iterates that are identical
to those one gets by solving the following quadratic problem:

minimize
d

∇f(xk)Td+ 1
2d

T∇2
xxL(xk, λk)d

subject to ∇g(xk)Td+ g(xk) ≤ 0.
(3.14)

This leads to the local SQP method in Algorithm 2 where (dx, dλ) are the primal dual
solution of the quadratic optimization subproblem.

Algorithm 2 local SQP
1: Input: a starting point for the algorithm x1; a number of iterations Niter.
2: for k = 1, . . . , Niter do
3: minimize

d
∇f(xk)Td+ 1

2d
T∇2

xxL(xk, λk)d
4: subject to ∇g(xk)Td+ g(xk) ≤ 0
5: xk+1 ← xk + dx

6: λk+1 ← dλ

7: end for
8: Output: an approximate solution (xNiter+1, λNiter+1).
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3.2.2 Proposed approach
In this section, we will adapt the local SQP algorithm described in the previous section
to solve adversarial attack problems. Essentially, this amounts to defining an objective
function and inequality constraints that correspond to the problem in equation (1.32).
We will focus on a targeted formulation of this problem knowing that, as explained
before, an untargeted version can be obtained by applying the produced algorithm to
all classes and then taking the smallest successful perturbation.

Let us assume that m : Rn → RC is a classifier such that m assigns to an input
x ∈ Rn the label i, i being one of the C classes, when

mj(x) ≤ mi(x), j = 1, . . . , C. (3.15)

Then, as stated in equation (3.1), one must solve the following optimization problem
in order to find an adversarial perturbation:

minimize
∆x

1
2∥∆x∥

2

subject to mi(x+ ∆x) ≤ mj(x+ ∆x),
i = 1, . . . , C,

where j is a target class that is different from the true label of the input x.
Assuming xk = x+ ∆x is the perturbed input, for the specific case of adversarial

attacks on a neural network classifier, the objective function of the optimization
problem can be defined as

f : xk 7→
1
2∥x− xk∥2. (3.16)

Let us define IC the identity matrix of size C, ej the j-th canonical vector of
size C and 1C the all-ones vector of size C. Then the inequality constraints of the
optimization problem can be expressed as

g(xk) = (IC − 1C
T ej)m(xk) ≤ 0. (3.17)

3.2.2.1 Improvements to the basic SQP algorithm

Algorithm 2 can readily be used to solve the optimization problem with f and g
defined as in the previous section. Nevertheless, this naive approach suffers from some
limitations. First, SQP being a local algorithm, its convergence is not guaranteed
for any given starting point. This means that Algorithm 2 may fail to compute a
successful adversarial attack or to compute one with a small norm; this behaviour was
indeed observed in a preliminary experimental evaluation.
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The second major drawback relates to the use of the Hessian of the Lagrangian
∇2

xxL(xk, λk) which, essentially, amounts to computing second order derivatives of the
neural network function that appears in the constraints defined in equation (3.17).
Note that whether this term has to be explicitly computed depends on the optimizer
which is chosen to solve the quadratic subproblem on lines 3–4 of Algorithm 2. If
the optimizer relies on a direct method, this term has to be computed explicitly; for
other choices, it may be sufficient to provide the local optimizer with a function to
apply this operator to a vector. In all cases, computing or applying this term may be
excessively expensive (both in terms of operations and memory).

In order to overcome or mitigate these two limitations, we propose a few modifica-
tions.

The first improvement consists in using a hybrid approach where a first order
method is used prior to the SQP iterations. The objective is to provide SQP with
a better starting point so that it is more likely to converge. Let us say that one
seeks to solve the optimization problem (3.11). Using a first order development of the
constraints function we obtain

g(xk+1) = g(xk + d) = ∇g(xk)Td+ g(xk).

Then a first order iterative problem close in spirit to SQP would be the following:

minimize
d

f(xk + d)

subject to ∇g(xk)Td+ g(xk) ≤ 0.
(3.18)

This quadratic problem allows iterating on the perturbations while linearizing the
constraints and has therefore the same purpose as our approach in Algorithm 1. In
our case, where f is defined as in equation (3.16), we have:

f(xk + d) = 1
2∥x− xk − d∥2

= 1
2 ⟨x− xk|x− xk⟩ − ⟨d|x− xk⟩+ 1

2 ⟨d|d⟩ .
(3.19)

By noting that
∇f(xk)Td = −⟨d|x− xk⟩ (3.20)

we obtain

f(xk + d) = 1
2 ⟨x− xk|x− xk⟩+∇f(xk)Td+ 1

2d
T Id. (3.21)
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Hence, solving problem (3.18) is equivalent to solving

minimize
d

∇f(xk)Td+ 1
2d

T Id

subject to ∇g(xk)Td+ g(xk) ≤ 0.
(3.22)

This is achieved by performing iterations of Algorithm 2 where ∇2
xxL(xk, λk) in line 3

is replaced with the identity matrix.
A second minor improvement consists in adding regularization terms to the update

of the current solution at iteration k; these are called α for the first order iterations
updates and β for the second order iterations update. The use of these regularization
terms was found to drastically improve the convergence in practice and more will be
said in the experimental evaluation.

Finally, the choice of the starting point for the first order iterations is still critical
to speed up the convergence of the method. In a basic implementation a natural
choice would be to set x1 = x, that is, the starting point for the optimization solver is
the unperturbed input. Assuming that a targeted adversarial attack towards class j
must be computed, we have found that a better starting point is a randomly selected
input belonging to class j.

Combining all these improvements leads us to the final algorithm, which we called
Sequential QUadratic Programming AT tack (SQUAT) and which is described in
Algorithm 3. Here, a total number of Niter iterations is performed; alternatively, the
method can be stopped when a perturbation of small enough norm is computed. Out
of these iterations, the first N1 only use first order information; these are relatively
cheap and serve to get closer to an optimal solution. The remaining iterations, that
are based on the SQP method and, thus, rely on second order information, refine the
solution computed by the previous ones. The value of N1 as well as of α and β has to
be carefully chosen to achieve fast convergence. Some heuristics on the choice of these
parameters are presented in the experiment section.

3.2.3 Numerical experiments
3.2.3.1 Experimental setup

In order to compare our method with the current state of the art, we chose to use
the code provided by Rony et al. [96]. In the following comparisons we will only use
non-targeted attacks to show that our method can compete with, and even outperform,
state-of-the-art attacks on a non-targeted scheme. More precisely, we will compare our
method to state-of-the-art methods for the l2-norm: C&W from Carlini and Wagner
[18], DDN from Rony et al. [97], FAB from Croce and Hein [25], and finally ALMA
from Rony et al. [96]. The experiments are done on a SmallCNN neural network
from Zhang et al. [129], in order to evaluate our attack against defences, we use this
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Algorithm 3 SQUAT
1: Input: a target label j; a total number of iterations Niter; a number of iterations

before using second order information N1; a couple of fixed regularization terms α
and β for first and second order iterations respectively; an image xj belonging to
class j.

2: x1 ← xj

3: for k = 1, . . . , Niter do
4: if k = 1, . . . , N1 then
5: minimize

d
∇f(xk)Td+ 1

2d
T Id

6: else if k > N1 then
7: minimize

d
∇f(xk)Td+ 1

2d
T∇2

xxL(xk, λk)d
8: end if
9: subject to ∇g(xk)Td+ g(xk) ≤ 0

10: if k ≤ N1 then
11: xk+1 ← xk + αdx

12: else if k > N1 then
13: xk+1 ← xk + βdx

14: λk+1 ← βdλ

15: end if
16: end for
17: Output: an approximate solution (xNiter+1, λNiter+1).

network in different training setups. First it is trained regularly and then trained to
be robust to adversarial attacks: first using l∞-TRADES defence [129] and then using
l2-DDN defence [97] on the MNIST dataset [31]. We will denote these neural networks,
respectively, SmallCNN for the regularly trained model, SmallCNN-TRADES and
SmallCNN-DDN for the adversarially trained models.

3.2.3.2 Metrics

We assess the performance of an attack by how much the accuracy of a given neural
network decreases depending on how small perturbations are in terms of norm. This
is measured using a metric called robust accuracy, which measures the accuracy of the
neural network when all its inputs are subject to attacks of a given norm. Therefore,
for a given value ε, assuming all the inputs of a dataset are attacked with perturbations
of norms smaller than ε, it corresponds to the percentage of input data that have been
successfully classified to the ground-truth class. Hence, the lower the robust accuracy
for a given threshold, the better the attack. In Figures 3.3, 3.4 and 3.5 we plot curves
showing the robust accuracy as a function of ε.
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For all the experiments, we chose to evaluate the attacks on the first 500 images of
the testing dataset. To summarize these results, we also present the median distance
between the found adversarial example and the original input for multiple attacks
and neural networks in Table 3.9. The median distance here essentially represents the
threshold value ε such that the network achieves a robust accuracy of 50% for a given
attack.

3.2.3.3 Algorithm implementation and complexity

The complexity of an attack on a deep learning system can be measured in terms of
forward and backward evaluations of the model as these operations usually require
more computational power than other operations involved in these algorithms. In our
case, most of the operations are done computing first and second order derivatives of
the neural network model to define the quadratic subproblems given in lines 5 and 7 of
Algorithm 3. These subproblems are then solved using the Python CVXPY library [32,
2]. For the experiments reported in this section, the algorithm used by the solver is
the default one, namely, Operator Splitting Quadratic Program [107] (OSQP) which
implements an Alternating Direction Method of Multipliers [15] (ADMM) variant. In
this case, the solver requires the entire matrix involved in the problem’s formulation,
which, in our case, implies computing the Hessian of the Lagrangian. Other types of
optimizer could be used to solve the quadratic subproblem and other implementation
choices could be made in order to speed up the execution but exploring all these
parameters is out of the scope of this document as we aim to show how a simple
SQP-type approach could efficiently be used to create competitive adversarial attacks.

The choice of the number of iterations Niter has, clearly, a considerable impact
on the cost of our method. Essentially, we can afford to do many first order cheap
iterations (N1) in order to get as close as possible to an optimal solution, such that
only few expensive second order iterations are needed to reach convergence. In
our experiments, N1 is fixed to a relatively large number. As for the second order
iterations, the number is not fixed but we keep on iterating as long as the constraints
of the quadratic subproblem are satisfied because this means that the algorithm has
successfully improved the solution obtained at the previous iteration. The number of
second order iteration is, typically, of the order of a few tens.

For the following experiments we chose to use a budget of 4000 iterations per image
for ALMA, DDN, FAB and C&W while for SQUAT we use a budget of approximately
2000 iterations as those iterations can be more expensive. As an example, for the
SmallCNN-TRADES neural network, this typically results in a total of 4000 forward
and 4000 backward propagations for DDN and ALMA, 8000 forward and 40000
backward for FAB, 30000 forward and 30000 backward for C&W. In this case, the
SQUAT attack performed in average 20 iterations with second order information per
image while having set N1 = 2000 first order iterations per image. For the first order
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iterations one forward and C = 10 backward propagations are needed, while in order
to compute a Hessian matrix–vector multiplication one forward and one backward
propagations would be needed, but to compute the full Hessian here the cost scale
as the input size n so we make the assumption that computing the Hessian costs as
much as n forward and n backward propagations, which gives an average of 18000
forward and 36000 backward propagations in total.

The learning rate α used in the first order iterations, has to be carefully chosen. In
our experiments, in order to keep the computational cost comparable to other methods,
we chose not to use a line-search algorithm to find an optimal learning rate value;
instead, we only run the first order part of our attack with few iterations in order to
compare the algorithm performance depending on α. We compare, in Table 3.8, the
median distance of the attacks perturbations depending on the value of α, and, in
Figure 3.2, an example of how changes on α impact the final results of the SQUAT
algorithm by showing robust accuracy curves on the SmallCNN-TRADES. The results
presented in Table 3.8 are consistent in terms of median distances compared to which
defence is used. Indeed, our attack is based on the l2-norm, so it is logical that the
defence via DDN, which is a l2-norm defence, performs better in countering it than
the l∞-norm defence of TRADES and the regular training setup. This is confirmed by
the fact that the median distances are typically larger when using the DDN defence
compared to the other setups.

Training setup
Regular DDN TRADES

α Median dis-
tance

α Median dis-
tance

α Median dis-
tance

0.8 1.80 0.7 3.68 0.2 1.89
0.9 1.76 0.8 3.55 0.3 1.70
1 1.79 0.9 3.52 0.4 1.68
1.1 1.83 1 3.58 0.5 2.01

Table 3.8: Adversarial attack performance on SmallCNN depending
on the choice of α and the training setup.

As seen in Table 3.8, and particularly for the more robust networks, the behaviour
of the algorithm can be very sensitive to the choice of α. For the SmallCNN and
SmallCNN-DDN neural network we chose α = 0.9 but, as seen in Figure 3.2, the
median distance does not always give enough information and using robust accuracy
curves we chose in this case to use α = 0.3 as it gave a better performance trade-off
between smaller and larger norm. The second hyperparameter β, which is the learning
rate when using second order information, is fixed at β = 0.15 for all our experiments.
Indeed, tuning this parameter as it has been done for α can be costly; moreover the
goal here is to improve a good enough starting point, it is not an exploration phase
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Figure 3.2: Robust accuracy curves for the SmallCNN-TRADES
adversarially trained model on MNIST.

anymore, hence one does not want to make large steps and we found that usually any
β ≤ 0.2 can be a good choice, knowing that the smaller β is the more steps will be
needed to converge.

3.2.3.4 Results

As shown on the robust accuracy curves of all different attacks on Figure 3.3 and
on the median distances of Table 3.9 we observe that our proposed attack SQUAT
outperforms other state-of-the-art attacks on the regularly trained SmallCNN. Indeed,
for a given threshold, the robust accuracy is globally lower with SQUAT than with
other attacks. This is even clearer for smaller norms, as seen on the right panel of
Figure 3.3: for norms in the [0, 1] range, all other attacks have comparable results
and only our method stands out. Finally, it must be noted that SQUAT and ALMA
attain 100% attack success rate approximately at the same perturbation norm which
is smaller than the other methods.

On Figure 3.4 and Figure 3.5 which give robust accuracy curves on the SmallCNN-
DDN and SmallCNN-TRADES we can see that all the methods behave approximately
the same for norms belonging in the [0, 1] interval; this is not surprising as the neural
networks are much more robust and hence less affected by small norm perturbations.
On the l2-DDN adversarially trained network all the attacks are significantly less
efficient than for the regularly trained network, this is expected as these attacks
are designed for the l2-norm and the SmallCNN-DDN is designed to be robust to
these types of attacks. As seen in Figure 3.4, in this setup ALMA, SQUAT perform
similarly, with a slight advantage for ALMA when perturbations norm are in the [2, 5]
range. On the other hand, C&W, FAB and DDN all perform similarly for this neural
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Figure 3.3: Robust accuracy curves for the SmallCNN regularly
trained model on MNIST.
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Figure 3.4: Robust accuracy curves for the SmallCNN-DDN adver-
sarially trained model on MNIST.

network. Median distances obtained on the l∞-TRADES adversarially trained neural
network are closer to those we get on the regularly trained one except for the C&W
attack which performs poorly compared to other state-of-the-art attacks. In this case,
SQUAT perform similarly to FAB, outperforming DDN and C&W in terms of median
distance of adversarial perturbations, whereas globally ALMA get better results on
this training setup.

3.3 Conclusion and discussion
In section 3.1 we have performed a backward error analysis of generic deep neural
networks which provides formulas and a numerical algorithm that can be used to
construct adversarial attacks in a novel way, without any knowledge of the loss function
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Figure 3.5: Robust accuracy curves for the SmallCNN-TRADES
adversarially trained model on MNIST.

Training setup
Regular DDN TRADES

Attack Median dis-
tance

Median dis-
tance

Median dis-
tance

SQUAT 1.22 2.53 1.55
FAB 1.29 2.61 1.63
DDN 1.31 2.55 1.80
ALMA 1.24 2.48 1.44
C&W 1.28 2.59 2.41

Table 3.9: Adversarial attacks performances on SmallCNN depending
on the training setup.

used to train the neural network, on either the input data or the neural network’s
parameters.

As seen in section 3.1.4, our method can outperform well-known methods in the
case where the attack is performed on the input data of a given network. Moreover,
most significantly, this method is generic enough to consider attacks on any set of
inputs and parameters which enables to attack a network by perturbing its parameters
and hence, for a given input, target a given class.

Our analysis relies on first order approximations, which means that, in the case
where the perturbations needed to attain a given output vector are large, the not-so-
small second order terms could make the results inexact. However, this should not be
a problem in the context of adversarial attacks, which focus on small perturbations.

Our experiments focus on neural networks with few layers, trained on a couple of
simple datasets (MNIST and CIFAR10). The goal of this approach is to provide a first
proof-of-concept that successful adversarial attacks can be built via backward error
analysis. We have shown how our approach can compete with well-known attacks on
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the input, and how it can also create attacks on the network’s parameters, which, to
our knowledge, has not been the object of much investigation.

This discovery of adversarial attacks on a neural network’s parameters has led us
to take interest in the quantization of deep neural networks and propose a method for
quantizing a deep neural network. Quantization of deep neural networks refers to the
process of reducing the number of bits used to represent, for example, the weights of
the network. Indeed, the adversarial attack method we proposed in section 3.1.2 allows
for determining the smallest perturbation of the neural network’s parameters, beyond
which the output of the deep neural network is erroneous. Therefore, for a target
inference accuracy of the neural network, we can adjust the values of the parameters
as long as this does not result in larger perturbations than the adversarial limit. Thus,
one can vary the arithmetic precision according to the perturbation threshold while
maintaining the target accuracy. Note that this approach can be modulated since the
proposed attack can be applied to a subset or all of the parameters. This method has
been patented [11] and could be the subject of more in-depth future research.

These preliminary results illustrate the potential of backward error analysis, and
we expect that our method can be further improved and refined to target deeper
networks using more robust optimization solvers.

This leads us to the second part of this chapter, section 3.2, where we have proposed
an improvement of the iterative Algorithm 1 and shown how to compute adversarial
attacks on deep neural networks using a Sequential Quadratic Programming based
approach, adapting the basic algorithm to this specific case, in particular by first
using a first order variation of SQP in order to then use second order information to
improve the resulting perturbations.

The goal of this section is to provide a first look of how successful adversarial
attacks can be built using second order information and using existing optimization
algorithms. As seen in the experimental results section, we have shown that our
approach can compete and even outperform others state-of-the-art attacks on models
that are regularly and adversarially trained.

As seen in the work by Rony et al. [96], using existing optimization methods
to attack neural networks often requires substantial adjustments. Our approach,
proposed in [10], relies on few, simple, modifications of the original SQP algorithm,
which enable the use of this method in the specific case of adversarial attacks on a
neural network and still obtains competitive results.

Many SQP-type algorithms and solvers [16] have been developed and could be
used in our approach, notably Gill, Murray, and Saunders [42] designed a software
using algorithm with limited-memory quasi-Newton approximations to the Hessian
of the Lagrangian. Those types of solvers, using Hessian approximation or taking
advantage of Hessian–vector product could be of special interest for designing a more
robust and less expensive SQP-approach to create adversarial examples in the future.
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The existence of new types of adversarial attacks poses potential security threats
to machine learning models. Hence, designing adversarial attacks and defences is a
subject of great interest. Indeed, they enable to better understand neural networks
sensitivity and improve their robustness, notably by the means of adversarial training.
This work shows how to construct adversarial attacks on a neural network’s parameters
and input data. However, even if it is a new approach in development and we do
not expect it to have an immediate effect on existing robust models, it shows that
models stored on environments that could potentially be the target of an intruder,
such as cloud computing environments, could be very sensitive to this sort of attack.
Moreover, such attacks often enable to develop more robust deep learning systems by
using them to train neural networks.
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Chapter 4

Rounding error analysis for
artificial neural networks

This chapter presents a rounding error analysis for artificial neural networks. The goal
of such an analysis is to provide bounds on the backward error in order to explain
and quantify how the use of a given arithmetic precision impacts the stability and
accuracy of an algorithm. Using the backward error over the forward error provides
several advantages. Indeed, by focusing on backward error, the analysis can offer
insights into the root causes of instabilities in the neural network’s predictions and
behaviours. Moreover, once bounds on the backward error are found, bounds on the
forward error can be directly derived using the condition number of the problem, as
seen in Chapter 2.

The primary contribution of this chapter will be to explain in section 4.1 how to
integrate the nonlinear activation functions into the deterministic analysis of rounding
errors. This requires understanding how rounding errors produced by the computation
of the function can be interpreted as errors on the input of the function. Subsequently,
we will integrate this analysis to obtain bounds for the computations of a single layer
neural network and this will finally lead us to generalize these bounds to the case of
deeper neural networks.

In the second part of this chapter, namely section 4.2, we will focus on integrating
these functions in the probabilistic setting. Two versions will be proposed, one where
the interactions between the errors made during the layer application and those due
to the activation function is deterministic and one where these interactions are treated
in a probabilistic manner.

4.1 Deterministic bounds

4.1.1 Activation function
Here and for the remainder of this document we will assume that for all activation
functions, similarly to Model 1.1, the following model stands:
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Model 4.1 (Floating-point arithmetic model for activation functions).

fl(f(x)) = f(x)(1 + δf ), |δf | ≤ ℓu.

Knowing that for each activation function, the constant ℓ has to be evaluated for
each framework. As an example, for NVIDIA GPUs (Graphics Processing Units) the
constant for activation functions such as tanh or ReLU can be found on the Appendix
E of the documentation [88].

To integrate activation functions into the backward error analysis, we need to know
how the rounding error obtained by applying the function, according to Model 4.1,
can be interpreted back as a perturbation on the data.

Let us define f : Rn → Rn. Assuming that f is differentiable at the point x and
that f(x) ̸= 0, at first order, we have

f(x+ δ) = f(x) + δf ′(x),

which means that
f(x+ δ) = f(x)(1 + δ

f ′(x)
f(x) ).

Let us define
Kf (x) = xf ′(x)

f(x)
and note κf (x) = |Kf (x)|, which essentially represents the componentwise condition
number of f at x, then

f(x+ δ) = f(x)(1 + δ

x
Kf (x)). (4.1)

Here we want to use equation (4.1) to understand the impact of rounding errors,
in terms of perturbations on the input data x, when Model 4.1 stands. Let f be a
given activation function, differentiable at x, that satisfies this model. The computed
solution ŷ then satisfies

ŷ = f(x)(1 + δf ) = f(x)(1 + δf

x
Kf (x) x

Kf (x)).

Replacing δ in equation (4.1) by

∆x = δf
x

Kf (x) ,
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means that we have

ŷ = f(x)(1 + δf ) = f(x+ δf
x

Kf (x))

= f(x+ ∆x),

with
|∆x| ≤ ℓu

κf (x) |x|.

This result shows that the relative perturbation on the input that is needed to get
the computed output ŷ is bounded by

ℓu

κf (x) .

Therefore, the perturbations are small when κf (x) ≥ ℓu. This states that the bigger
the condition number of f is, the smaller the perturbation needed on the input will
be to attain a same output. This is consistent with the fact that functions with small
condition number are less sensitive to perturbations.

4.1.2 Entire layer
We now search to combine the results from section 1.3.2.2 and section 4.1.1 to obtain
rounding error bounds for a complete layer of artificial neural network.

Consider an entire layer composed of a matrix–vector product followed by an
activation function, let y = ϕ(Ax) with x a given input vector. Each output component
ŷi then satisfies:

ŷi =ϕ
 n∑

k=1
(aikxk) (1 + εk)

n∏
j=max(k,2)

(1 + δj)
 (1 + δϕ) .

Note that each rounding errors εk, δj and δϕ also depend on i but are not indexed to
simplify the notation.

From section 4.1.1 we know how to take into account rounding errors introduced
by the activation function in terms of perturbations on the input data, therefore

ŷi = ϕ

 n∑
k=1

(aikxk) (1 + εk)
n∏

j=max(k,2)
(1 + δj)

(1 + δϕ

Kϕ(aT
i x)

) ,
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which means that

ŷi = ϕ

(
n∑

k=1
(aikxk)(1 + ψk)

(
1 + δϕ

Kϕ(aT
i x)

))
. (4.2)

Equation (4.2) clearly shows two distinct perturbation terms, namely

(1 + ψk) = (1 + εk)
n∏

j=max(k,2)
(1 + δj)

and (
1 + δϕ

Kϕ(aT
i x)

)
arising from the rounding errors of the matrix–vector product and of the activation
function, respectively. The goal here is to express the product of these two terms

(1 + ψk)
(

1 + δϕ

Kϕ(aT
i x)

)
= 1 + ψk + δϕ

Kϕ(aT
i x) + ψkδϕ

Kϕ(aT
i x) ,

as 1 + Φk, where
Φk = ψk + δϕ

Kϕ(aT
i x) + ψkδϕ

Kϕ(aT
i x)

and to bound the absolute value of Φk. Yet from Lemma 1.2 we know that |ψk| ≤ γn,
therefore since |δϕ| ≤ ℓu, we have

|Φk| =
∣∣∣∣∣ψk + δϕ

Kϕ(aT
i x) + ψkδϕ

Kϕ(aT
i x)

∣∣∣∣∣ ≤ nu

1− nu + ℓu

κϕ(aT
i x) + ℓnu2

κϕ(aT
i x)(1− nu) .

Gathering all terms under the same denominator leads to

|Φk| ≤
κϕ(aT

i x)nu+ ℓu(1− nu) + ℓnu2

κϕ(aT
i x)(1− nu) ,

which means that

|Φk| ≤ κϕ(aT
i x)

nu+ ℓu
κϕ(aT

i x)

κϕ(aT
i x)(1− nu)

and therefore

|Φk| ≤
(n+ ℓ

κϕ(aT
i x))u

1− nu ,
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which can finally be further weakened to

|Φk| ≤
(n+ ℓ

κϕ(aT
i x))u

1− (n+ ℓ
κϕ(aT

i x))u
= γn+ℓ/κϕ(aT

i x).

This means that equation (4.2) can be written as

ŷi = ϕ

(
n∑

k=1
aikxk(1 + Φk)

)
,

where
|Φk| ≤ γn+ℓ/κϕ(aT

i x).

Combining the m rows gives us

ŷ = ϕ((A+ ∆A)x), |∆A| ≤ γn+ℓ/κϕ(Ax)|A|.

Note that the inequality is to be taken componentwise, with κϕ(Ax) being equal to
κϕ(aT

i x) if the component is on the i-th row. This result shows that each relative
perturbation on the input is bounded by γn+ℓ/κϕ(Ax). Hence, the perturbations are
small when (

n+ ℓ

κϕ(Ax)

)
u ≤ 1.

This can be interpreted as a combination of the results obtained in section 1.3.2.2
and section 4.1.1. The bounds reflect the fact that n basic operations are done by the
matrix–vector product and then the ℓ errors due to the activation are amplified or
reduced depending on its condition number.

4.1.3 General neural network
Bounds on the backward error were previously obtained for a single layer of artificial
neural network, we now take interest in the case of a general neural network of p
layers.

In order to better explain our main result, let us first develop how rounding error
propagates on a couple of layers. Let A ∈ Rm×n, B ∈ Rp×m and x ∈ Rn.

Assuming that we compute y = ϕ2(Bϕ1(Ax)) by first performing z = ϕ1(Ax) and
then y = ϕ2(Bz), we thus have two layer applications in a row. From section 4.1.2,
for a given output component ẑi, the following equation follows

ẑi =ϕ1(
n∑

k=1
(aikxk)(1 + ψk)(1 + δϕ1

Kϕ1(aT
i x))).
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Then for the second layer application, the output component ŷi satisfies

ŷi =ϕ2(
m∑

k=1
(bikẑk)(1 + ψk)(1 + δϕ2

Kϕ2(bT
i ẑ)

)).

Hence, applying the results of the previous section leads to

ŷ = ϕ2((B + ∆B)ϕ1((A+ ∆A)x)),

with
|∆A| ≤ γn+ℓϕ1 /κϕ1 (Ax)|A|, |∆B| ≤ γm+ℓϕ2 /κϕ2 (Bẑ)|B|.

This result enables us to distinguish a pattern for bounds on the backward error when
chaining neural networks’ layers. Indeed, for a given layer, the bound combines, first
the aggregation of errors due to the matrix–vector product, in the form of the number
of columns of the weight matrix, ni−1, and then the impact of the activation function.

Findings derived from a couple of layers imply, through induction, that the subse-
quent key result can be formulated:

Theorem 4.1 (Deterministic error bounds for artificial neural networks). Consider a
neural network composed of p layers whose output can be expressed as follows

y = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .)),

with Ai ∈ Rni×ni−1, for i = 1, . . . , p and x ∈ Rn0. Then, if y is evaluated in floating-
point arithmetic, the computed result ŷ satisfies

ŷ = ϕp((Ap + ∆Ap)ϕp−1((Ap−1 + ∆Ap−1) . . . (A2 + ∆A2)ϕ1((A1 + ∆A1)x) . . .)),

with
|∆Ai| ≤ γni−1+ℓϕi

/κϕi
(Aiŷi−1)|Ai|, i = 1, . . . , p.

These bounds are obtained by using both the standard model of arithmetic,
given by Model 1.1, for the matrix–vector computations, and the Model 4.1 for the
computation of the activation function. These results enable us to quantify the impact
of activation functions in the context of computations performed by neural networks
in finite precision. This impact appears in the form of the constant ℓϕi

, which, for
each activation function ϕi, corresponds to the rounding errors introduced by the
application of the function, and this constant is then amplified or not depending on
the condition number of the activation.
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4.2 Probabilistic bounds
The goal of this section is to show how the bounds obtained on artificial neural
networks in section 4.1.3 can be adapted to the probabilistic case. As shown in [57, 58,
23], Theorem 1.5 enables to directly replace the deterministic γn with its probabilistic
equivalent γ̃n(λ) in most numerical linear algebra operations when the performed
computations induce rounding errors that follow Model 1.2.

However, since activation functions are not standard numerical linear algebra
operations, as shown in section 4.1.2, we will demonstrate how this changes the
approach and results we had in Theorem 4.1.

Two different ways of integrating activation functions in the probabilistic error
analysis can be distinguished. In section 4.2.1 we will first take interest in the
case where we make probabilistic assumptions on the errors due to linear algebra
operations, such as matrix–vector product, and use only deterministic assumptions
for their interaction with errors made for the computation of the activation function.
In section 4.2.2 we will handle the interaction between the matrix–vector rounding
errors and those of the activation functions using a probabilistic model.

4.2.1 Deterministic activation function’s rounding error
As shown in section 4.1.2, the result of a neural network layer followed by an activation
function results in a product of rounding error terms of the following form, seen in
equation (4.2)

n∏
i=1

(1 + δi)ρi

(
1 + δn+1

Kϕ(x)

)
. (4.3)

From Theorem 1.5 we know that, if the first n rounding error terms satisfy Model 1.2,
then the following result stands:

n∏
i=1

(1 + δi)ρi = 1 + θn,

with |θn| ≤ γ̃n(λ), with probability at least

1− 2 exp
(
−λ2

2

)
.

The goal of this section is to find a similar result, expressing the rounding error product
terms of equation (4.3) as 1 + Ψn where the absolute value of Ψn is bounded by a
given constant with some given probability.

Theorem 4.2 (Deterministic error bounds for activation function). Let δ1, . . . , δn be
random variables of mean zero with |δk| ≤ u for all k such that E(δk+1 | δ1, . . . , δk) =
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E(δk+1) = 0 for k = 1, . . . , n− 1. Let |δn+1| ≤ ℓu. Then for ρi = ±1, i = 1, . . . , n and
any constant λ > 0,

n∏
i=1

(1 + δi)ρi

(
1 + δn+1

Kϕ(x)

)
= 1 + Ψn,

|Ψn| ≤ γ̃n(λ) + ℓ

κϕ(x)u+O(u2)

holds with probability at least

1− 2 exp
(
−λ2

2

)
.

Proof. From equation (4.3) we get
n∏

i=1
(1 + δi)ρi(1 + δn+1

Kϕ(x)) = (1 + θn)(1 + δn+1

Kϕ(x))

= 1 + θn + δn+1

Kϕ(x) + θn
δn+1

Kϕ(x) .

Then let
Ψn = θn + δn+1

Kϕ(x) + θn
δn+1

Kϕ(x) ,

we have
|Ψn| =

∣∣∣∣∣θn + δn+1

Kϕ(x) + θn
δn+1

Kϕ(x)

∣∣∣∣∣ ,
which implies

|Ψn| ≤ |θn|+
∣∣∣∣∣ δn+1

Kϕ(x)

∣∣∣∣∣+
∣∣∣∣∣θn

δn+1

Kϕ(x)

∣∣∣∣∣ .
Using Theorem 1.3, we get that

|Ψn| ≤ γ̃n(λ) + ℓu

κϕ(x) + γ̃n(λ) ℓu

κϕ(x)

≤ γ̃n(λ) + ℓu

κϕ(x) +O(u2),

holds with probability at least

P (λ) = 1− 2 exp
(
−λ2

2

)
.
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This theorem provides bounds on the expression in equation (4.2), which result
from rounding errors arising from both matrix–vector product and the application of
the activation function. It combines a probabilistic approach for the first n rounding
errors introduced by the matrix–vector product to a deterministic approach for their
interaction with errors arising from the activation function. Once this result is
established we are ready to give bounds for a general artificial neural network in the
following theorem:
Theorem 4.3 (Mixed error bounds for artificial neural networks). Consider a general
neural network composed of p layers whose output can be expressed as follows

y = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .)),

with Ai ∈ Rni×ni−1, for i = 1, . . . , p and x ∈ Rn0, when y is evaluated in floating-point
arithmetic and the computations occurring during the matrix–vector product generate
rounding errors that satisfy Model 1.2, the computed result ŷ satisfies

ŷ = ϕp((Ap + ∆Ap)ϕp−1((Ap−1 + ∆Ap−1) . . . (A2 + ∆A2)ϕ1((A1 + ∆A1)x) . . .))

with
|∆Ai| ≤ (γ̃ni−1(λ) + ℓϕi

u

κϕi
(Aiŷi−1)

)|Ai|, i = 1, . . . , p,

with probability at least

Q(λ,
p∑

i=1
nini−1),

where
Q(λ, n) = 1− n(1− P (λ)).

Proof. The proof to obtain the bounds is almost identical to the work of section 4.1.3,
replacing Lemma 1.2 by Theorem 4.2. For a given layer i the bound holds with
probability at least Q(λ, nini−1), by the same logic as in section 1.3.3.2. Therefore,
the bound fails to hold for a given i with probability at most 1−Q(λ, nini−1), where
Q is defined as in section 1.3.3.1, hence it fails to hold for at least one layer i with
probability at most

p∑
i=1

(1−Q(λ, nini−1))). This means that the bound holds for any
layer with probability at least

1−
( p∑

i=1
nini−1(1− P (λ))

)
= 1− (1− P (λ))

p∑
i=1

nini−1 = Q(λ,
p∑

i=1
nini−1).
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This result, which combines a probabilistic approach for errors arising from the
matrix–vector product and a deterministic approach for the accumulation of these
errors with those of the activation function, logically yields a bound reflecting the
approach. Indeed, we obtain a bound that adds to the usual bound on the matrix–
vector product, γ̃n(λ), a second term which reflects the addition of the errors coming
from the activation function, ℓu, which are amplified or not depending on the value of
the condition number.

Compared to the deterministic approach of Theorem 4.1, this approach only adds
the assumptions of the standard probabilistic Model 1.2 for the computations of the
matrix–vector product.

4.2.2 Probabilistic activation function’s rounding error
In order to fully use the potential improvement of probabilistic error analysis, we
want to adapt the proof of Theorem 4.6 from Connolly, Higham, and Mary [23] to
the particular case of a product of rounding errors of the form of equation (4.3). The
following proofs will thus be adaptations based on the proof from Theorem 4.6 of [23],
which has been introduced in section 1.3.3 as Theorem 1.5.

The result of a neural network layer followed by an activation function results in a
product of rounding error terms of the form

n∏
i=1

(1 + δi)ρi

(
1 + δn+1

Kϕ(ĉ)

)
. (4.4)

Where ĉ is the computed output of a matrix–vector product and δ1, . . . , δn its associated
rounding errors. To integrate rounding errors arising from the activation function into
our analysis, we will need to make assumptions about these errors.

In the following lemma we will make the assumption that the rounding errors
δ1, . . . , δn are random variables, then ĉ, which is a function of these rounding errors,
will be a random variable. Then the value of ĉ will fluctuate with respect to the values
of the rounding errors. We will assume that in this set of values there exists ζ > 0
such that κϕ(ĉ) ≥ ζ.

For the sake of readability, let us note for the remainder of this section Kϕ = Kϕ(ĉ)
and κϕ = |Kϕ(ĉ)| = κϕ(ĉ).

Lemma 4.4. Let δ1, . . . , δn+1 be random variables of mean zero with |δk| ≤ u for
all k = 1, . . . , n and |δn+1| ≤ ℓu, such that E(δk+1 | δ1, . . . , δk) = E(δk+1) = 0 for
k = 1, . . . , n. Let Kϕ be a function of δ1, . . . , δn and assume that there exists ζ > 0
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such that κϕ ≥ ζ. Let Ek =
k∑

i=1
ρiδi for k = 1, . . . , n, E0 = 0 and

En+1 =
n∑

i=1
ρiδi + ρn+1

δn+1

Kϕ

,

where ρi = ±1, i = 1, . . . , n+ 1. Then for any constant λ > 0,

|En+1| ≤ λ

√
n+ ℓ2

ζ2u

holds with probability at least

1− 2 exp
(
−λ2

2

)
.

Proof. Since |δk| ≤ u for k = 1, . . . , n, we have |Ek| ≤ ku, and since |δn+1| ≤ ℓu and
ζ ≤ |Kϕ| = κϕ, we have

|En+1| ≤ (n+ ℓ

ζ
)u.

Hence E(|Ek|) <∞ for all k = 1, . . . , n+ 1. Moreover, for k = 1, . . . , n− 1

E(Ek+1 | E1, . . . , Ek) = Ek + ρk+1E(δk+1 | δ1, . . . , δk) = Ek.

We also have

E(En+1 | E1, . . . , En) = En + ρn+1E(δn+1

Kϕ

| δ1, . . . , δn).

Since Kϕ depends only on δ1, . . . , δn, Kϕ is then fixed when δ1, . . . , δn are fixed,
therefore

E(δn+1

Kϕ

| δ1, . . . , δn) = E(δn+1 | δ1, . . . , δn)
Kϕ

= 0,

which implies that E(En+1 | E1, . . . , En) = En and hence E0, . . . , En+1 is a martingale.
Moreover, |Ek+1 − Ek| ≤ u for k = 1, . . . , n− 1 and

|En+1 − En| ≤
ℓu

ζ
.

By the Azuma–Hoeffding inequality, given by Lemma 1.4, we therefore have for any
λ > 0,

Pr
|En+1 − E0| ≥ λ

(
nu2 + ℓ2u2

ζ2

) 1
2
 ≤ 2 exp

(
−λ2

2

)
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which means that

Pr
(
|En+1| ≥ λ

√
n+ ℓ2

ζ2u

)
≤ 2 exp

(
−λ2

2

)

and concludes the proof.

We are then ready to state our main result:

Theorem 4.5 (Probabilistic error bound for activation function). Let δ1, . . . , δn+1
be random variables of mean zero with |δk| ≤ u for all k = 1, . . . , n and |δn+1| ≤ ℓu
such that E(δk+1 | δ1, . . . , δk) = E(δk+1) = 0 for k = 1, . . . , n. Let Kϕ be a function of
δ1, . . . , δn and assume that there exists ζ > 0 such that κϕ ≥ ζ. Then for ρi = ±1, i =
1, . . . , n and any constant λ > 0,

n∏
i=1

(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1 = 1 + θn, |θn| ≤ λ

√
n+ ℓ2

ζ2u+O(u2),

holds with probability at least

1− 2 exp
(
−λ2

2

)
.

Proof. Let Ek =
k∑

i=1
ρiδi for k = 1, . . . , n, E0 = 0 and

En+1 =
k∑

i=1
ρiδi + ρn+1

δn+1

Kϕ

.

From Lemma 4.4 we know that

|En+1| ≤ λ

√
n+ ℓ2

ζ2u,

holds with probability at least

1− 2 exp
(
−λ2

2

)
.

We now will use the bound we found for En+1 to bound the product of rounding
error terms of equation (4.4). By taking the logarithm of this product we have

log(
n∏

i=1
(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1) =
n∑

i=1
ρi log(1 + δi) + ρn+1 log(1 + δn+1

Kϕ

).
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Using the Taylor expansion of log(1 + δi), since |δi| ≤ u < 1, we have

log(1 + δi) =
+∞∑
k=1

(−1)k+1 δ
k
i

k
.

We can therefore bound log(1 + δi) since

−δi −
+∞∑
k=2

δk
i

k
≤ log(1 + δi) ≤ δi +

+∞∑
k=2

δk
i

k
.

These bounds can be further weakened to

−δi −
+∞∑
k=2

δk
i ≤ log(1 + δi) ≤ δi +

+∞∑
k=2

δk
i

and then, taking the closed form of these geometric series, we have

−δi −
|δi|2

1− |δi|
≤ log(1 + δi) ≤ δi + |δi|2

1− |δi|
, (4.5)

which then implies, since |δi| ≤ u, that

−δi −
u2

1− u ≤ log(1 + δi) ≤ δi + u2

1− u.

For ρi = ±1 we hence have

−ρiδi −
u2

1− u ≤ ρi log(1 + δi) ≤ ρiδi + u2

1− u

which, by adding the inequalities for i = 1, . . . , n, then means

−En −
nu2

1− u ≤
n∑

i=1
ρi log(1 + δi) ≤ En + nu2

1− u. (4.6)

At this point equation (4.6) enables us to obtain bounds on the error terms coming
from the n first rounding errors, we now need to incorporate the error term that comes
from the activation function. Assuming that

ℓu

ζ
< 1, (4.7)
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we have
log(1 + δn+1

Kϕ

) =
+∞∑
k=1

(−1)k+1 δ
k
n+1
kKk

ϕ

and hence, as in equation (4.5), we get

−δn+1

Kϕ

−
| δn+1

Kϕ
|2

1− | δn+1
Kϕ
|
≤ log(1 + δn+1

Kϕ

) ≤ δn+1

Kϕ

+
| δn+1

Kϕ
|2

1− | δn+1
Kϕ
|

which implies

−ρn+1
δn+1

Kϕ

−

(
ℓu
ζ

)2

1− ℓu
ζ

≤ ρn+1 log(1 + δn+1

Kϕ

) ≤ ρn+1
δn+1

Kϕ

+

(
ℓu
ζ

)2

1− ℓu
ζ

. (4.8)

Adding inequalities from equation (4.6) and equation (4.8) we get

− En+1 −
nu2

1− u −

(
ℓu
ζ

)2

1− ℓu
ζ

≤ log(
n∏

i=1
(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1)

≤En+1 + nu2

1− u +

(
ℓu
ζ

)2

1− ℓu
ζ

.

Then using the bound we computed for En+1 from Lemma 4.4 we can weaken the
inequality to obtain

− λ
√
n+ ℓ2

ζ2u−
nu2

1− u −

(
ℓu
ζ

)2

1− ℓu
ζ

≤ log(
n∏

i=1
(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1)

≤λ
√
n+ ℓ2

ζ2u+ nu2

1− u +

(
ℓu
ζ

)2

1− ℓu
ζ

which holds with probability at least

1− 2 exp
(
−λ2

2

)
.
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We now will exponentiate the previous inequality, knowing that

et ≤ 1 + t

1− t , t ∈ [0, 1[

and using the Taylor expansion of
t

1− t
we obtain the final bound on the rounding error term

1− (λ
√
n+ ℓ2

ζ2u+O(u2)) ≤
n∏

i=1
(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1 ≤ 1 + λ

√
n+ ℓ2

ζ2u+O(u2).

Hence, we can state that

n∏
i=1

(1 + δi)ρi(1 + δn+1

Kϕ

)ρn+1 = 1 + θn, |θn| ≤ λ

√
n+ ℓ2

ζ2u+O(u2)

holds with probability at least

1− 2 exp
(
−λ2

2

)
,

which concludes the proof.

We recall that by a deterministic approach in section 4.1.2 we were previously able
to bound the backward error for a layer of neural networks as follows

ŷ = ϕ((A+ ∆A)x), |∆A| ≤ γn+ℓ/κϕ(Ax)|A|.

Theorem 4.5 shows that the deterministic bound

γn+ℓ/κϕ(Ax) = (n+ ℓ

κϕ(Ax))u+O(u2)

can easily be replaced by its probabilistic counterpart assuming mean independence
of rounding errors, an assumption weaker than independence,

γ̃n+ℓ2/κϕ(Ax)2(λ) = λ

√√√√n+ ℓ2

κϕ(Ax)2u+O(u2),

with probability at least Q(λ,mn). This means that the result obtained for the bounds
on the backward error for a general neural network in Theorem 4.1 can be replaced by
the following theorem:
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Theorem 4.6 (Probabilistic error bounds for artificial neural networks). Consider a
general neural network composed of p layers whose output can be expressed as follows

y = ϕp(Apϕp−1(Ap−1 . . . A2ϕ1(A1x) . . .)),

with Ai ∈ Rni×ni−1, for i = 1, . . . , p and x ∈ Rn0, when y is evaluated in floating-
point arithmetic and the computations occurring during the layer application generate
rounding errors that satisfy Model 1.2, the computed result ŷ satisfies

ŷ = ϕp((Ap + ∆Ap)ϕp−1((Ap−1 + ∆Ap−1) . . . (A2 + ∆A2)ϕ1((A1 + ∆A1)x) . . .))

with
|∆Ai| ≤ γ̃ni−1+ℓ2

ϕi
/κϕi

(Aiŷi−1)2(λ)|Ai|, i = 1, . . . , p,

with probability at least

Q(λ,
p∑

i=1
nini−1).

This final theorem concludes this section in which we established two different
bounds, via a mixed and full probabilistic approach. We provide in Table 4.1 a brief
summary of the bounds we obtained in this chapter. The probabilistic approach

Theorem 4.1 Theorem 4.3 Theorem 4.6

Bound γn+ℓϕ/κϕ(Ax) γ̃n(λ) + ℓϕu/κϕ(Ax) γ̃n+ℓ2
ϕ

/κϕ(Ax)2(λ)

Equivalent (n+ ℓϕ

κϕ(Ax))u (λ
√
n+ ℓϕ

κϕ(Ax))u λ

√
n+ ℓ2

ϕ

κϕ(Ax)2u

Table 4.1: Summary of the obtained bounds and their equivalents
when nu≪ 1.

typically relaxes the deterministic bounds by reducing the impact of n consecutive
rounding errors from nu to

√
nu. This is the observed difference between bounds of

Theorem 4.1 and of Theorem 4.3 using probabilistic approach only on the matrix–
vector product. The bound is then further refined by taking into account the ℓϕ

rounding errors introduced by the activation function. These ℓϕ errors cannot be
assumed to be mean independent between each other. Therefore, we only assume
that the global rounding error δn+1, which encompasses all ℓϕ intermediate errors,
is of mean zero and is mean independent of the errors δ1, . . . , δn coming from the
matrix–vector product, which means that E(δn+1 | δ1, . . . , δn) = E(δn+1). This leads
to the bound of Theorem 4.6.
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Compared to the mixed bounds of Theorem 4.3, this approach thus adds the
assumption that there is mean independence between the errors made during matrix–
vector computations and errors made during the computation of the activation function.
Moreover, it also assumes that the condition number of the activation is strictly positive
at the computation point. This assumption should not be a problem, since if the
conditioning is zero, then the function is constant, in which case there are no rounding
errors.

Note that in the case of linear activation functions where each κϕi
= 1, the

backward error is bounded by γ̃ni−1+ℓ2
ϕi

(λ), which corresponds to the addition of ℓϕi

rounding errors due to the application of the activation function to the ni−1 errors
due to the first ni−1 basic operations. Probabilistic assumptions are made over the
mean independence of the rounding errors for each operation. Moreover, since the ℓϕi

rounding errors made during the activation are not necessarily independent, we did
not make any assumptions for these errors and the corresponding term is therefore
squared in the bound.

These bounds show that the activation function’s condition number is a quantity
that can dictate whether the backward error is large or not. Indeed, the ℓϕi

rounding
errors can be amplified or not by the condition number of ϕi.

We can interpret this in terms of adversarial attacks on the parameters. Since
we have shown, in Chapter 3, a direct link between backward error and adversarial
attacks on a neural network’s parameters, we can expect these two quantities to behave
similarly when the condition number varies. In section 2.2.2 we showed that a small
condition number is typically linked with more robust neural networks. This means
that when the condition number increases we expect adversarial attacks to be more
efficient, as demonstrated by Beerens and Higham [6] and Savostianova et al. [100],
and therefore have smaller norms. The bounds in Theorem 4.6 show that for a fixed ŷ
and a given layer, if the condition number of the activation function increases then
the backward error will decrease and therefore the perturbations needed on the layer’s
parameters will have smaller norm. This is consistent with the fact that in this case,
it will be easier to find adversarial attacks with smaller norm.

In terms of rounding error coming from the use of reduced arithmetic precision,
our bounds suggest that one should use higher precision for the activation functions.
Indeed, it seems that the error terms coming from the activation function can be
arbitrarily large depending on the condition number. For example, given a layer with
tanh activation, if the result of the matrix–vector falls within the threshold region of
the hyperbolic tangent function, the condition number tends to zero, and using low
precision on the activation function would result in quickly pushing all outputs to one
or minus one. In this context, it would be appropriate to use higher precision to avoid
this phenomenon. This finding seems to align with results of Hubara et al. [61] which
show that we expect neural networks with low precision to behave better when adding
more precision to its activation functions than to its parameters.
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4.3 Numerical experiments
In this section, we will seek to validate the bounds obtained in Chapter 4. To do so,
we will use the formulas obtained in Chapter 2 to compute the backward error and the
condition number for different neural networks. Once these quantities obtained, we can
compare the computed value of the backward error with its different theoretical bounds.
Additionally, we will compare the value of the forward error with its corresponding
bound, which is obtained by multiplying the condition number by the bound on the
backward error.

4.3.1 Experimental setup
The experimental setup is essentially the same as in section 2.5. The matrix–vector
product computations have been implemented in C using loops so that the code
corresponds to the floating-point Model 1.1 and to our analysis. If the matrix–vector
product is implemented differently, using blocking [12] for example, we typically expect
our bounds to be more pessimistic.

The experiments are first conducted with untrained neural networks, whose param-
eters and inputs are randomly generated in the same manner as in section 2.5. For
each randomly generated neural network we run the experiment Ntest = 10 times and
then compute the average, εmean, and maximum, εmax, errors, to compare them with
their associated deterministic and probabilistic bounds. The probabilistic bounds are
computed using λ = 1, as in the experiments of Higham and Mary [57]. Note that
κϕ(Ax) is a vector since it is a componentwise condition number, we therefore choose
to take its smallest component in order to get the worst-case componentwise bound.
Experiments on untrained neural networks enable us to better evaluate the sharpness
of the bounds since it makes it easier to vary some parameters, such as the size of
the layers. Moreover, it also allows for a more straightforward comparison of the
impact of either the number of layers with a fixed number of neurons, or the number
of neurons per layer with a fixed number of layers, on the computations performed by
the networks.

In this chapter, three different bounds have been obtained for the backward error: a
deterministic bound in Theorem 4.1, a mixed bound in Theorem 4.3, and a probabilistic
bound in Theorem 4.6 as shown in Table 4.1.

The aim of the initial experiments is to compare these bounds to better understand
the relevance of probabilistic approaches. To achieve this objective, we will revisit
the experiments conducted in section 2.5 and incorporate the bounds associated with
backward and forward errors. Next, these bounds are further analysed on both deeper
random and trained networks.
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4.3.2 Backward, forward errors and their bounds on random
neural networks

To obtain results showing the evolution of backward error for different network sizes,
we start the experiments with random neural networks generated using different
distributions. This setup allows a better understanding of the effect of the neuron
number and parameters distribution. Figure 4.1 presents the case of a single layer
neural network with tanh activation and size n. It shows the evolution of the backward
error and its corresponding theoretical bounds as a function of the number of neurons
n. Similarly, the results for the forward error with the theoretical bounds are shown
in Figure 4.2. We observe in Figure 4.1 that the probabilistic bound captures almost
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Figure 4.1: Backward error and its bounds for a single layer neural
network of size n with random parameters and entries.

exactly the behaviour of the backward error for input data and parameters taken
from a uniform positive distribution, in Figure 4.1b, while being more pessimistic
for the Gaussian distribution in Figure 4.1a. Higham and Mary [58] indeed showed
that when floating-point computations are performed between values that can be
represented by random variables of zero mean, then the backward error does not
increase with n but instead remains close to the unit roundoff. These results were
therefore expected since, in this case, the neural network has a quasi linear behaviour
and is therefore comparable to the case of a matrix–vector product [57]. Thus, in
the absence of any assumptions regarding the distributions of the parameters and
entries, the probabilistic bounds cannot be further enhanced in this case. Figures 4.1
and 4.2 clearly illustrate the differences between the various bounds obtained in this
chapter. The gain between the deterministic approach and the two bounds using
probabilistic assumptions is significant and is mostly due to the assumptions made
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Figure 4.2: Forward error and its bounds for a single layer neural
network of size n with random parameters and entries.

about the matrix–vector product operations. The full probabilistic approach allows
for having slightly sharper bounds, especially when n decreases since, in that case,
errors introduced by the matrix–vector product get smaller while errors introduced by
the activation function do not depend on n and therefore remain the same.

Next, the experiments focus on the case of deeper fully connected neural networks
with random initialization, and tanh as activation function. In this case, for a uniform
positive distribution of input data, we start to get nonlinear behaviour. Indeed after
few layers, or if the layer size is big enough, the accumulation of positive values will,
after a tanh activation function, results in an output close to one. We therefore expect
in this case the forward error to get smaller while the backward error will increase.
Indeed, when the input values are large enough it requires higher perturbations to get
an output smaller than one. Bounds on the backward error do not hold anymore in
Figure 4.3b. This expectation is reasonable given that the model utilized to derive
bounds on the backward error depends on the condition number not approaching
zero. Therefore, as the condition number approaches zero, the model becomes invalid.
However, it still indicates that the backward error is beginning to increase significantly,
suggesting potentially unexpected behaviour in the neural network. Figure 4.4 provides
confirmation on the behaviour of the forward error. Indeed, since we have an exact
formula to compute this quantity, the fact that the bound on the forward error captures
its behaviour confirms the validity of the computed bounds and condition number. In
Figure 4.4b, we can observe a significant decrease in the forward error, which aligns
with the observation that the output values are all pushed towards one by the tanh
activation function.

Figure 4.5 provides further insights since in that case the last layer’s activation is
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Figure 4.3: Backward error and its bounds for a three-layer neural
network, each layer is of size n with random parameters and entries.

101 102

Layer size (n)

10−7

10−6

10−5

10−4

10−3

εmean
fwd

εmax
fwd

κm(A, x)× γ̃
n+ `2

κφ(Ax)2

(λ)

κm(A, x)× γ
n+ `

κφ(Ax)

κm(A, x)× (γ̃n(λ) + `u
κφ(Ax)

)

(a) Parameters and entries taken from a
N (0, 1√

n
) distribution.

101 102

Layer size (n)

10−7

10−6

10−5

10−4

10−3

εmean
fwd

εmax
fwd

κm(A, x)× γ̃
n+ `2

κφ(Ax)2

(λ)

κm(A, x)× γ
n+ `

κφ(Ax)

κm(A, x)× (γ̃n(λ) + `u
κφ(Ax)

)

(b) Parameters and entries taken from a
U(0, 1√

n
) distribution.

Figure 4.4: Forward error and its bounds for a three-layer neural
network, each layer is of size n with random parameters and entries.
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switched from a tanh to a ReLU, in which case we expect that the last layer will not
cause the backward error to increase as much as in Figure 4.3b by pushing values to
one.
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Figure 4.5: Three-layer ReLU-ended neural network, each layer is
of size n with random parameters and entries taken from a U(0, 1√
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distribution.

4.3.3 Backward, forward error and their bounds on trained
neural networks

To better assess the robustness of the obtained bounds, we will apply our results
to trained networks, as previously shown in Chapter 2. Our experiments consist
in training a network and, for each training step, evaluating the backward error,
forward error, conditioning, and associated bounds on Ntest = 10 images from the
testing dataset. Figure 4.6b shows the results for the fully connected network given
on the right side of Table 2.1. We present in Figure 4.6a the backward error and its
bounds and in Figure 4.6b the forward error bounded by the product of the backward
error and the conditioning. Bounds on the backward error provide information that
is in good agreement with the errors’ behaviour. However, they seem to be rather
pessimistic. Since these neural networks are trained using Glorot and Bengio [43]
initialization, and that their parameters typically converge to a zero-mean Gaussian
distribution, we are therefore in a case where results from Higham and Mary [58] are
applicable. In Figure 4.6 we implement these results by integrating a bound that is
directly proportional to u.

In order to estimate the constant c in these results, we use the Theorem 3.3
of Higham and Mary [58]. Since in our case parameters typically follow a normal
distribution, let say N (0, σ), then with very high probability we know that these

108



4.3. Numerical experiments

0 50 100 150 200 250

Epochs

10−8

10−7

10−6

10−5

εmean
bwd

εmax
bwd

γ̃
n+ `2

κ
φ(Ax)2

(λ)

γ
n+ `

κφ(Ax)

γ̃n(λ) + `u
κφ(Ax)

c× u

(a) Backward error and its bounds.
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Figure 4.6: Errors evolution and their bounds during the training of
a small connected network on FashionMNIST.

parameters are bounded by 2σ. Moreover, the absolute value of these parameters then
follow the folded normal distribution of mean

√
2/πσ [73]. This implies that c will

typically be of the same order as

2σ√
2/πσ

=
√

2π.

The resulting bounds are in that case much sharper with respect to both the
computed forward and backward error. Figure 4.7 provides similar experiments for
the convolutional neural network given on the left side of Table 2.1. These results
show that the convolutional layer has an approximately 10 times lower backward error,
compared to the fully connected network of Figure 4.6, while maintaining the same
order of magnitude for the forward error. This means that the condition number of
this neural network is approximately 10 times larger than for the fully connected one,
suggesting that convolutional layers typically lead to networks that are more sensitive
to perturbations on their input and/or parameters.

Note that the backward error bound involves the number n of columns of a given
layer’s weight matrix. In case of a convolutional layer, since the weight matrix is
sparse, we can ignore a significant amount of columns, in fact a row comprises at most
k non-zero components, with k the kernel size. Therefore, for convolutional layers,
the number n is set to k = 5 in our case. This means that we expect convolutional
layers to have much smaller backward errors than fully connected ones.

However, in Figure 4.7, since the neural network also comprises fully connected
layers, the bounds do not benefit from these observations.
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Figure 4.7: Errors evolution and their bounds during the training of
a convolutional network on FashionMNIST.

4.4 Conclusion and discussion
Chapter 2 provided definitions and formulas to compute the backward error and
condition number of artificial neural networks. In Chapter 4 we build on these results
by establishing theoretical bounds for the backward error of artificial neural networks
for the first time. This chapter therefore lays the foundations for a theoretical analysis
of rounding errors in neural networks. This then allows us to construct bounds using
more assumptions, to obtain results that are more in line with practice and valid with
a certain probability. With this theoretical approach, we have therefore demonstrated
how to obtain deterministic bounds in Theorem 4.1, which were then further refined
using Model 1.2 into mixed bounds in Theorem 4.3, and probabilistic bounds in
Theorem 4.6.

Probabilistic bounds are in overall good agreement with the computed backward
error for both random and trained artificial neural networks. Furthermore, upon
obtaining these bounds on the backward error, we were able to derive bounds on
the forward error, as it is constrained by the product of the backward error and the
condition number. These bounds on the forward error are also consistent with the
computed results, confirming both our computation methods from Chapter 2 and
our bounds from Chapter 4. We however showed that, with further assumptions on
the neural network parameters, results from Higham and Mary [58] could be used to
improve bounds. These results shown in Figure 4.6 and Figure 4.7 are preliminary
and therefore need further investigation.

The derived bounds on the backward error allowed to provide insight on the
identification of layers or building blocks that have the most impact on a neural
network stability and sensitiveness to small perturbations such as rounding errors.
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This allows for a better understanding and control on the design or choice of neural
network architectures and training setup. Indeed, our results suggest that the use of
zero-mean and rightly scaled initialization, such as proposed by Glorot and Bengio [43],
in addition to maintaining the magnitudes of the activation functions from one layer
to another during the propagation phase, can also lead to significant rounding errors
reduction. Moreover, our results also suggest that while fully connected layers are fairly
resilient to changes in precision, activation functions should be given more priority in
terms of precision, particularly when applied to values that induce a condition number
close to zero.
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Summary of contributions
This manuscript has established three major axes of contributions. Firstly, in Chapter 1,
quantities enabling the evaluation of a neural network’s sensitivity to perturbations
have been identified. The first contribution, provided in Chapter 2, has therefore been
to establish direct formulas for computing these quantities, for different metrics, in the
case of artificial neural networks. This allows extending the concept of backward error
to neural networks, a well-known key concept in numerical linear algebra, and brings
with it a whole set of analysis and tools that can now be applied to these networks.
The first analysis that has been directly applied is related to conditioning, which links
backward and forward errors. This quantity is typically linked to the sensitivity of a
function. Preliminary experimental results and a theoretical connection established
with the Lipschitz constant directly led us to consider training methods to generate
networks with low conditioning, which are expected to be more robust and explainable.
A code designed to compute the backward error and the condition number for generic
neural networks was developed and allowed us to validate the obtained formulas.

After considering the backward error for generic networks, we naturally wondered
how this concept could extend to classification networks whose outputs are classes and
therefore integers. This led us, in Chapter 3, to take a deeper interest in adversarial
attacks. These are small perturbations of neural networks inputs, causing a change in
output class. Taking this problem from the perspective of backward error, we thus
focused on adversarial attacks that would perturb both the inputs and parameters of
the network. Therefore, in section 3.1, such an approach was proposed and was then
extended in section 3.2 to produce competitive adversarial attacks on input data using
a sequential quadratic programming-type algorithm. By creating an algorithm capable
of generating attacks on the parameters of a neural network, we have also paved the
way towards new quantization techniques, since these attacks make it possible to
define the smallest perturbations on the parameters allowing a change of class.

Finally, in Chapter 4 we returned to the most well-known application of the
backward error concept, the analysis of rounding errors in floating-point computations.
We have therefore demonstrated how existing analyses in numerical linear algebra,
notably from Higham [56], can be extended to artificial neural networks. This meant
taking into account the nonlinearities coming from the activation functions as well as
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the layering of neural networks to finally obtain deterministic bounds. These bounds
served as a basis for then using the latest results from Connolly, Higham, and Mary
[23] to derive mixed and probabilistic bounds. These bounds were then validated by
building on the code obtained in Chapter 2 to generate bounds for randomly generated
and trained convolutional and fully connected neural networks.

Perspectives
Many points remain open and deserve to be mentioned. Firstly, concerning the
computation of backward errors for neural networks, this manuscript started from
existing approaches in numerical linear algebra and thus employed a formulation
of layers as matrix–vector products. This establishes a foundation upon which to
work, both from the perspective of the computation of the error itself and from the
rounding error analysis. Indeed, most existing layers base their computations upon
such formulations, in other cases, the formulas and bounds obtained will need to be
adapted, building upon existing work.

By bridging the gap between error analysis in numerical linear algebra and error
analysis in neural networks, we believe that we can provide a set of tools that can
help both better explain and understand choices that have been made empirically.
Furthermore, in a context where the use of reduced and mixed precision becomes
increasingly indispensable, the theoretical understanding of the impact of rounding
errors on different elementary blocks of neural networks is becoming crucial. To this
end, Chapter 4 provides tools to better mitigate the impact of reduced precision by
identifying blocks that are more sensitive than others.

In the context of the increasingly widespread use of machine learning algorithms,
domains requiring high reliability in their algorithmic computations have so far
been hesitant to use machine learning algorithms, often because they are not easily
explainable, partly due to adversarial attacks, but also because of the very high
number of parameters and hence computations performed. Indeed, since these models
can be highly sophisticated, the cost of using verification tools such as CADNA or
FLUCTUAT, to ensure correct behaviour of algorithms when using finite precision, can
be prohibitively large. Recent research of Graillat et al. [49], presenting the PROMISE
algorithm, aims at using CADNA to produce mixed-precision quantization of neural
networks that ensure a given accuracy. To do so, a brute-force algorithm would consist
in exploring all possible precision configurations of the network’s parameters. Since
this approach is computationally infeasible, PROMISE makes use of a modified version
of the delta debugging algorithm based on a divide-and-conquer method. By providing
tools that can identify the most sensitive blocks of a given network, the rounding error
analysis performed in Chapter 4 could help in guiding such software so that they only
target robust layers and therefore gain significant computation time.
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The final point that certainly deserves more attention is related to adversarial
attacks. While this topic is highly active in the literature, it has so far mainly been
focused in terms of attacks on the network inputs. However, as shown in Chapter 3,
attacks on a neural network’s parameters should not be neglected. Indeed, these
attacks can be considered on one or multiple layers, as well as under different metrics
so that they provide important insights into the sensitivity of a network layers.
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Titre : Analyse inverse des erreurs des réseaux de neurones ar�ficiels avec applica�ons aux calculs en virgule flo�ante et aux a�aques adverses
Mots clés : Réseaux de neurones ar�ficiels, Virgule flo�ante, Analyse d'erreur, A�aques adverses, Erreurs d'arrondi, Erreur inverse
Résumé : L'u�lisa�on d'intelligences ar�ficielles, dont les implémenta�ons reposent souvent sur des réseaux de neurones ar�ficiels, se démocra�se
maintenant dans une grande variété de tâches. En effet, ces modèles d'appren�ssage profond produisent des résultats bien meilleurs que de
nombreux algorithmes spécialisés précédemment u�lisés et sont donc amenés à être déployés à grande échelle. 

 C'est dans ce contexte de développement très rapide que des probléma�ques liées au stockage de ces modèles émergent, car ils sont parfois très
profonds et comprennent donc jusqu'à des milliards de paramètres, ainsi que des probléma�ques liées à leurs performances en termes de calcul tant
d'un point de vue de précision que de coût en temps et en énergie. Pour toutes ces raisons, l'u�lisa�on de précision réduite est de plus en plus
indispensable. 

 D'autre part, il a été noté que les réseaux de neurones souffrent d'un manque d'interprétabilité, étant donné qu'ils sont souvent des modèles très
profonds, entraînés sur de vastes quan�tés de données. Par conséquent, ils sont très sensibles aux perturba�ons qui peuvent toucher les données
qu'ils traitent. Les a�aques adverses en sont un exemple ; ces perturba�ons, souvent impercep�bles à l'œil humain, sont conçues pour tromper un
réseau de neurones, le faisant échouer dans le traitement de ce qu'on appelle un exemple adverse. 

 Le but de ce�e thèse est donc de fournir des ou�ls pour mieux comprendre, expliquer et prédire la sensibilité des réseaux de neurones ar�ficiels à
divers types de perturba�ons. 

 À ce�e fin, nous avons d'abord étendu à des réseaux de neurones ar�ficiels certains concepts bien connus de l'algèbre linéaire numérique, tels que le
condi�onnement et l'erreur inverse. Nous avons donc établi des formules explicites perme�ant de calculer ces quan�tés et trouvé des moyens de les
calculer lorsque nous ne pouvions pas obtenir de formule. Ces quan�tés perme�ent de mieux comprendre l'impact des perturba�ons sur une
fonc�on mathéma�que ou un système, selon les variables qui sont perturbées ou non. 

 Nous avons ensuite u�lisé ce�e analyse d'erreur inverse pour démontrer comment étendre le principe des a�aques adverses au cas où, non
seulement les données traitées par les réseaux sont perturbées, mais également leurs propres paramètres. Cela offre une nouvelle perspec�ve sur la
robustesse des réseaux neuronaux et permet, par exemple, de mieux contrôler la quan�fica�on des paramètres pour ensuite réduire la précision
arithmé�que u�lisée et donc faciliter leur stockage. Nous avons ensuite amélioré ce�e approche, obtenue par l'analyse d'erreur inverse, pour
développer des a�aques sur les données des réseaux comparables à l'état de l'art. 

 Enfin, nous avons étendu les approches d'analyse d'erreurs d'arrondi, qui jusqu'à présent avaient été abordées d'un point de vue pra�que ou
vérifiées par des logiciels, dans les réseaux de neurones en fournissant une analyse théorique basée sur des travaux existants en algèbre linéaire
numérique. Ce�e analyse permet d'obtenir des bornes sur les erreurs directes et inverses lors de l'u�lisa�on d'arithmé�ques flo�antes. Ces bornes
perme�ent à la fois d'assurer le bon fonc�onnement des réseaux de neurones une fois entraînés, mais également de formuler des
recommanda�ons concernant les architectures et les méthodes d'entraînement afin d'améliorer la robustesse des réseaux de neurones.

Title: Backward error analysis of ar�ficial neural networks with applica�ons to floa�ng-point computa�ons and adversarial a�acks
Key words: Ar�ficial neural networks, Floa�ng-point, Error analysis, Adversarial a�acks, Rounding errors, Backward error
Abstract: The use of ar�ficial intelligence, whose implementa�ons are o�en based on ar�ficial neural networks, is now becoming widespread across
a wide variety of tasks. These deep learning models indeed yield much be�er results than many specialized algorithms previously used and are
therefore being deployed on a large scale. 
It is in this context of very rapid development that issues related to the storage of these models emerge, since they are some�mes very deep and
therefore comprise up to billions of parameters, as well as issues related to their computa�onal performance, both in terms of accuracy and �me-
and energy-related costs. For all these reasons, the use of reduced precision is increasingly being considered. 

 On the other hand, it has been noted that neural networks suffer from a lack of interpretability, given that they are o�en very deep models trained
on vast amounts of data. Consequently, they are highly sensi�ve to small perturba�ons in the data they process. Adversarial a�acks are an example
of this; since these are perturba�ons o�en impercep�ble to the human eye, constructed to deceive a neural network, causing it to fail in processing
the so-called adversarial example. 

 The aim of this thesis is therefore to provide tools to be�er understand, explain, and predict the sensi�vity of ar�ficial neural networks to various
types of perturba�ons. 

 To this end, we first extended to ar�ficial neural networks some well-known concepts from numerical linear algebra, such as condi�on number and
backward error. These quan��es allow to be�er understand the impact of perturba�ons on a mathema�cal func�on or system, depending on which
variables are perturbed or not. 

 We then use this backward error analysis to demonstrate how to extend the principle of adversarial a�acks to the case where not only the data
processed by the networks is perturbed but also their own parameters. This provides a new perspec�ve on neural networks' robustness and allows,
for example, to be�er control quan�za�on to reduce the precision of their storage. We then improved this approach, obtained through backward
error analysis, to develop a�acks on network input comparable to state-of-the-art methods. 

 Finally, we extended approaches of round-off error analysis, which un�l now had been approached from a prac�cal standpoint or verified by
so�ware, in neural networks by providing a theore�cal analysis based on exis�ng work in numerical linear algebra. 

 This analysis allows for obtaining bounds on forward and backward errors when using floa�ng-point arithme�c. These bounds both ensure the
proper func�oning of neural networks once trained, and provide recommenda�ons on architectures and training methods to enhance the
robustness of neural networks.
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