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Abstract

Although reinforcement learning has been recently primarily studied in the generic

case of Markov decision processes, the queueing systems case stands out in particular.

To deal with the potentially extremely large state space a priori, learning algorithms

must take into account the structure of the systems in order to extract as much

information as possible and choose the best control that optimizes the system

performance in the long run.

In this thesis, we present algorithms adapted from classical algorithms in the con-

text of queueing systems, and we study their performance to demonstrate a weak

dependence on the state space compared to results obtained in the general case.
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Résumé

Bien que l’apprentissage par renforcement ait été récemment principalement étudié

dans le cas générique des processus de décisions markoviens, le cas des systèmes

de files d’attente se dinstigue particulièrement. Pour compenser la taille de l’espace

d’état qui peut être extrêmement grande a priori, les algorithmes d’apprentissage

doivent tenir compte de la structure des systèmes afin d’en extraire le plus d’infor-

mation et de choisir le meilleur contrôle qui optimisent au mieux les performances

du système sur le long terme.

Dans cette thèse, nous présentons des algorithmes construits à partir d’algorithmes

classiques, adaptés au contexte des système de file d’attente, et nous étudions les

performances de ceux-ci pour montrer une dépendance faible à l’espace d’états

comparativement aux résultats obtenus dans le cas général.

iv



Contents

Acknowledgments i

Abstract / Résumé iii

Contents v

Notation Table ix

1 Introduction 1

1.1 Queueing and Learning . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Markov Decision Processes and Model-Based Reinforcement Learning 7

2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The Special Case of Birth and Death Processes: a Comparison

of the Bias and the Diameter . . . . . . . . . . . . . . . . . . 11

2.2 Model-Based Reinforcement Learning in a MDP . . . . . . . . . . . . 16

2.2.1 Reinforcement Learning Framework . . . . . . . . . . . . . . 16

2.2.2 Definition of the Regret . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Presentation of UCRL2 . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Classical Lemmas for UCRL2 . . . . . . . . . . . . . . . . . . . 20

3 Optimal Control of a Large Queue: the Case of a DVFS Processor 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 System Description, Problem Statement and Main Result . . . . . . . 26

v



3.3 Truncated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Proof of Theorem 3.4(ii): Monotonicity of the Optimal Speed 34

3.3.2 Proof of Theorem 3.4(iii): Upper Bound on the Optimal Speed 39

3.3.3 Proof of Theorem 3.4(i): Uniqueness of the Optimal Policy . . 40

3.4 Convergence of the Truncated MDPs . . . . . . . . . . . . . . . . . . 42

3.4.1 The Optimal Speed is Increasing in the Size of the State Space 42

3.4.2 Convergence Results and Proof of Theorem 3.2 . . . . . . . . 45

3.5 Cost and Deadline-Miss Probability Approximations . . . . . . . . . . 46

3.5.1 Approximation of the Average Cost . . . . . . . . . . . . . . . 47

3.5.2 Deadline-Miss Probabilities . . . . . . . . . . . . . . . . . . . 47

3.5.3 Accuracy Assessment . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 50

4 Reinforcement Learning in a Birth-and-Death Process: Breaking the

Dependence of the State Space 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Controlled Birth-and-Death Processes for Energy Minimization . . . . 55

4.2.1 Properties of M . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Applying UCRL2 in M . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Regret of the Adapted UCRL2 Algorithm on M . . . . . . . . . . . . . 59

4.3.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Comparison with Other Bounds . . . . . . . . . . . . . . . . . 61

4.3.3 Sketch of the Proof . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Extended Value Iteration . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Regret when M is out of the Confidence Bound . . . . . . . . 66

4.4.3 Regret Terms when M is in the Confidence Bound . . . . . . . 67

4.5 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Probability of the Confidence Bounds . . . . . . . . . . . . . . 77

4.5.2 Diameter and Span of MDPs in M . . . . . . . . . . . . . . . 78

4.6 Generic Lemmas on Ergodic MDPs . . . . . . . . . . . . . . . . . . . 80

4.6.1 Sensitivity of the Bias to the MDP Variations . . . . . . . . . . 80

4.6.2 A McDiarmid’s Inequality . . . . . . . . . . . . . . . . . . . . 84

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



5 Reinforcement Learning in a Partially Observable Queueing Network:

Optimal Admission 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Reinforcement Learning in POMDPs . . . . . . . . . . . . . . 88

5.1.2 Contribution and Methodology . . . . . . . . . . . . . . . . . 88

5.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Admission Control in a Queueing Network . . . . . . . . . . . . . . . 89

5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Motivating Applications . . . . . . . . . . . . . . . . . . . . . 91

5.3 MDP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Original MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Aggregated Model . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3 Comparison Between both MDPs . . . . . . . . . . . . . . . . 96

5.3.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 97

5.4 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 High-Level Description of the Proposed Algorithm . . . . . . . 98

5.4.2 Number of Modules: τmix . . . . . . . . . . . . . . . . . . . . 99

5.4.3 UCRL-M: Learning with τmix Modules . . . . . . . . . . . . . . 100

5.4.4 Confidence Region . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.5 Time Complexity of UCRL-M . . . . . . . . . . . . . . . . . . 102

5.5 Regret of UCRL-M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Outline of the Proof . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Controlling the Regret Bound Parameter ρ . . . . . . . . . . . . . . . 105

5.6.1 Bounds Using Mixing and Coupling Times . . . . . . . . . . . 105

5.6.2 Making the Algorithm Oblivious to ρ . . . . . . . . . . . . . . 107

5.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7.1 A Multi-Tier Queueing Network . . . . . . . . . . . . . . . . . 107

5.7.2 Regret of UCRL-M on the Multi-Tier Queueing Network . . . . 108

5.8 Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8.1 Terms for the Ramping Phases . . . . . . . . . . . . . . . . . . 111

5.8.2 Terms in the Confidence Bound . . . . . . . . . . . . . . . . . 111

5.8.3 Split of Confidence Bound . . . . . . . . . . . . . . . . . . . . 112

5.8.4 Bound on R
(m)
trans . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8.5 Bound on the Main Term . . . . . . . . . . . . . . . . . . . . . 116

5.8.6 Bound on R
(m)
diff . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



5.8.7 Bound on Rep . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8.8 Total Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.9 Lemmas on Extended Value Iteration . . . . . . . . . . . . . . . . . . 121

5.10 Probability of not Being in the Confidence Region . . . . . . . . . . . 122

5.11 Lemmas Specific to our Regret Computations . . . . . . . . . . . . . 126

5.11.1 Lemmas on the Bias Differences . . . . . . . . . . . . . . . . . 126

5.11.2 Visits of the Furthest State . . . . . . . . . . . . . . . . . . . . 130

5.12 Properties of the Aggregated MDP . . . . . . . . . . . . . . . . . . . . 132

5.12.1 Properties of the Policies in the Aggregated MDP . . . . . . . 133

5.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusions and Future Work 137

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

List of publications 141

Bibliography 141

viii



Notation Table

A Action space

A Size of the action space A
a Action in A
amax Maximal action for A = [0, amax]

c(s, a) Mean cost in state s under action a

D Diameter

E
π
s [·] Expectation with initial state s under policy π

Gπ Gain under policy π in a continuous-time MDP (Chapter 3)

gπ Gain under policy π

g∗ Optimal gain

hπ(s) Bias under a policy π in state s

h∗ Bias of an optimal policy, defined up to a constant

∂hπ(s) Variation of the bias hπ(s) − hπ(s − 1)

k Episode index

Kt Number of episodes until time t

L Routing matrix of a queueing network

L Learning algorithm

m Module index

M Class of MDPs

M MDP in M to be learned

Mk Confidence set of MDPs at episode k

Nt(s, a) Number of visits of the state-action pair (s, a) until time t

N Number of queues in the network (Chapter 5)

P (s′♣s, a) Transition probabilities

ps,s′ Transition probabilities when a is omitted

q(s′♣s, a) (or equiv. qs,s′(a)) Transition rates

r(s, a) Mean reward in state s under action a

R(s, a) Random reward in state s under action a

ix



rmax Maximal reward

S State space

S Size of the state space S
S′ S′ = S − 1, usually the maximal queue size

s, s′ States in S
T Time horizon

tk Starting time of episode k

ui Value vector at step i in Extended Value Iteration

U Uniformization constant

V Number of visit during episode

δr Maximal variation of the mean rewards

∆ Bound on the variation of the bias

ρ Mixing rate

Π Set of stationary deterministic policies

π Stationary deterministic policy in Π

π∗ Optimal policy

π0 Constant policy equal to 0 for each state

λ Arrival rate in a birth-and-death process

µ Leaving rate in a birth-and-death process

νπ Stationary measure under policy π

τmix Mixing time

1 Indicator function

ˆ Denote an empirical quantity

˜ Denotes an optimistic quantity

x



Introduction 1
In reinforcement learning, an operator aims to maximize a reward signal received

from a system with unknown characteristics. Using a trial-and-error method, unlike

in supervised learning, the operator does not access any preliminary training set

and must improve their decision over time, while acting on the system to optimize.

As foreseen in the seminal paper [Robbins, 1952], decisions and observations thus

depend on the history of the former ones and are interdependent.

1.1 Queueing and Learning

Reinforcement learning has become a mainstream tool optimization in various

setups. It has been taking off in the field of Markov Decision Processes (MDPs),

which are very generic tools to modelize many control problems. A natural follow-up

after the general case has been the study of structured MDPs, such as parametric

MDPs. A particularly important subclass of MDPs is the class of controlled queueing

systems; see, e.g., [Martin L. Puterman, 1994, Chapters 1–3] and [Q.-L. Li et al.,

2019], and [Walton and K. Xu, 2021, Section 5] for a review on learning problems

in queues. Distinguishing themselves among the MDPs, typical control problems on

queues have the following characteristics:

1. No discount. Discounting costs or rewards is common practice in the reinforce-

ment learning literature, especially in Q-learning algorithms [Sutton and Barto,

1998]. However, in the context of queueing, optimizing with respect to the

average reward is particularly interesting. Moreover, considering the average

reward criterion tends to highlight the importance of the structure instead of the

initial state.

2. Large diameter. Queueing systems are usually investigated under a drift condition

that makes the system stable, i.e., positive recurrent. This condition implies that

some states are hard to reach. In fact, for many queueing control problems, the

diameter, which measures the time needed to cross the MDP, is exponential in

the size of the state space. Even in the simple case of an M/M/1 queue with a

finite buffer, or equivalently a birth-and-death process with a finite state space

1



and constant birth and death rates, the diameter is exponential in the size of the

state space. With the state space possibly much larger in the queueing examples

than in the generic MDP toy examples, it is mandatory to find more accurate

ways to describe the difficulty of exploring an MDP.

3. Structured transition matrices. Queueing models describe how jobs join and

leave queues, and this yields bounded state transitions. As a result, MDPs on

queues have sparse and structured transition matrices. It allows more explicit

computations of typical quantities that appear in the performance bounds, such

as the bias.

To illustrate these specificities of the queueing systems, let us introduce a few

examples we will study separately in the next chapters. In Chapters 3 and 4, we

give the example of a Dynamic Voltage and Frequency Scaling (DVFS) processor

dealing with impatient jobs with soft Markovian deadlines: the operator needs to

choose the processor speed to find a balance between the energy consumption and

the abandonment. In this case, in the Markovian setting, under any speed policy,

the resulting Markov chain is a birth-and-death process, whose optimality properties

can be theoretically studied. In Chapter 5, we consider the now classical admission

control problem, where the operator chooses whether to admit a new job in the

queueing network or reject it, inducing a cost in the latter case. In these examples,

the number of states may be arbitrarily large, so our saving grace lies in exploiting

the structure of the system to learn the best policies efficiently.

1.2 State of the Art

Regarding reinforcement learning in MDPs, as stated previously, the setting is very

general. Using discounted rewards for the infinite horizon case enables better control

of the rewards in the long term, and it gives access to additional technical tools to

prove the convergence of algorithms, which ensures the convergence of Q-learning

algorithms, like in [Jin, Allen-Zhu, et al., 2018] in the finite horizon case, or in

[Dong et al., 2019] for the discounted case. Stronger assumptions are needed for

Q-learning algorithms with average rewards, as in [Wei et al., 2020], where the

knowledge of the mixing time of the ergodic MDP is available.

Besides model-free algorithms, in the average reward setting, a fundamental learning

algorithm is UCRL2 in [Jaksch et al., 2010], which can be seen as the MDP adaptation

of the Upper Confidence Bound (UCB) algorithm from the bandit problems. The

performance of this algorithm is measured by the regret, which is upper bounded

2 Chapter 1 Introduction



by Õ(DS
√

AT ), where S is the size of the state space, A is the size of the action

space, T is the time horizon, and D the diameter, a measure of the difficulty of

exploration in the MDP. Moreover, a lower bound for a class of MDPs with such

parameters has been proposed in Ω(
√

DSAT ). This lower bound became the target

for matching upper bounds: New algorithms inspired by UCRL2 have improved

regret bounds, Õ(D
√

SAT ) in [Azar et al., 2017] and even Õ(
√

DSAT ) according

to [Tossou et al., 2019; Zhang and Ji, 2019]. We can already remark that these

bounds concern a broad class of MDPs. We can expect these algorithms to have a

better performance than what their upper bounds suggest on a restricted class of

MDPs, for example queueing systems.

Other papers have been proposing different upgrades of the UCRL2 algorithm. A

possibility is to try to use a more accurate definition of the structure of the MDP,

taking into account the support of the transitions as in [Fruit, Pirotta, and Lazaric,

2020] or also introducing the local diameter as in [Bourel et al., 2020]. Another

and more straightforward way to involve the structure of the MDP in the learning

problem is to consider parametric MDPs. In [Jin, Yang, et al., 2020], linear models

with d parameters achieve a regret upper bound of Õ(
√

d3H3T ) in finite horizon. An

even broader extension of this concept is the class of linear mixture models: in the

discounted case in [Zhou et al., 2021], a regret upper bound of O(d
√

T/(1 − γ)2)

is proved, and in the average reward case a bound in O(d
√

DT ) is shown in [Wu

et al., 2022].

A natural extension of the problem of reinforcement learning in MDPs is to consider

the case of Partially Observable MDPs (POMDPs): at each time step, the state is not

fully known, and the learner only gets this information partially. For example in

a queueing network, they may only access the total number of jobs in the system

rather than the precise number of jobs in each queue. Generally, reinforcement

learning in POMDPs is intractable [Jin, Kakade, et al., 2020, Propositions 1 and 2],

so it is necessary to restrict this learning task to subclasses of POMDPs. Again some

of these works have been in the context of finite horizon or with discounted rewards

[Even-Dar et al., 2005; Ross et al., 2007; Poupart and N. A. Vlassis, 2008]. In

the case of the infinite horizon and undiscounted rewards, the dependence on the

diameter still appears in [Azizzadenesheli et al., 2016], so that the same difficulties

we noticed for queueing systems as MDPs emerge in the case of POMDPs.

1.2 State of the Art 3



1.3 Contributions

In this thesis, we show that leveraging the knowledge of the structure of the queueing

systems, despite their large number of states, yields interesting results to overcome

some of the limitations of reinforcement learning in generic MDPs. This will highlight

the importance of considering the structure of these MDPs when dealing specifically

with queueing systems.

We use the example of the DVFS processor as a basis to study the analysis of UCRL2

in a restricted class of stable birth-and-death processes. In this typical example,

the number of states may be arbitrarily large, and we show that the diameter is at

least exponential in the number of states. Therefore, the classical upper and lower

bounds in Ω(
√

DSAT ) for the general case are unsatisfactory. Since the analysis

in [Jaksch et al., 2010] uses a minimax approach, it considers the worst case for

MDPs in their class. We present an adapted analysis of a slightly tweaked version

of UCRL2 that uses the knowledge of the birth-and-death structure in order to get

an upper bound in Õ(
√

E2AT ), where E2 depends on the stationary measure of a

reference policy. Notably, the bound does not depend on the diameter D nor on S,

unlike in the parametric MDPs we presented earlier. The main observation is that to

learn the MDP, while the algorithm needs to make sure every state is visited linearly

often, the tail end of the state space is barely involved in the average reward, and in

consequence in the regret bound.

Another typical example we use to showcase the importance of the structure of

queueing systems is the admission control problem. Consider a queueing network

where the operator admits or rejects jobs entering the network depending only on

the total number of jobs: this process can be modelized as a POMDP. Rather than

attempting to directly learn on this POMDP, we present an algorithm that compares it

to an asymptotically equivalent MDP we can actually build and learn. This algorithm

relies on an equivalence theorem for product-form networks and on the ergodicity

of the POMDP to ensure the observations on the POMDP are valuable information

to build the equivalent MDP, a birth-and-death process. Using our previous result

on such a process, we eventually obtain an upper bound of the regret in Õ(ST ),

where the dependency on S comes from the ergodicity requirement. Once again,

exploiting the structure of the queueing network is an important step to show this

new bound.
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1.4 Organization of the Thesis

We describe how the thesis is organized and briefly present the content of each

chapter. In Chapter 2, we remind the main MDP definitions and lemmas that we will

use in this thesis. We also describe the classical reinforcement learning algorithm

UCRL2 and what the main ideas surrounding it are, as it will be the foundation

for the algorithms in the following chapters. This chapter barely contains any new

result, as its goal is to clarify and introduce the main objects we deal with.

Then in Chapter 3, without using reinforcement learning yet, we will consider the

example of a DVFS processor to study the structural properties of the optimal speed

policies.

We come back to the properties above in Chapter 4, where they are used to adapt the

analysis of the regret of the UCRL2 algorithm to the example of a birth-and-death

process MDP. In that case, we show that using this extra knowledge on the MDP lets

us derive bounds that showcase the importance of the structure of the queue and its

stationary measure under any policy, with a lower dependence on the size of the

state space itself.

Finally, in Chapter 5, we study an admission control problem on a more complex

queueing network. We show we can use ergodicity properties to fall back to learning

a simple birth-and-death process, as in Chapter 4. We present an algorithm inspired

by UCRL2 and compute a regret bound where the main dependence on the state

space comes from the ergodicity property.

In this thesis, for clarity, results that are not original work will be followed by their

reference to mark a difference between original results and what is already known.
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Markov Decision Processes

and Model-Based

Reinforcement Learning

2

We introduce in this chapter the main notations and definitions we will use in

the next chapters. More precisely, we present first some MDP definitions before

highlighting a few structural properties of birth and death processes. Then we

introduce the fundamentals of reinforcement learning on MDPs and expose the

classic algorithm UCRL2 with the ideas surrounding it. Indeed the same ideas will be

used in Chapters 4 and 5. Note that this chapter is not intended to be an exhaustive

presentation on MDPs or on model-based reinforcement learning.

2.1 Markov Decision Processes

In this section, the definitions are mainly based on those from [Martin L. Puterman,

1994, Chapter 8].

2.1.1 Definitions and Notations

Definition 2.1

A discrete-time MDP M is the tuple:

M =
(
S, A, P (s′♣s, a), R(s, a)

)
,

where S is the finite state space, A the finite action space, P (s′♣s, a) the transition

probability under action a to go from s to s′ and R(s, a) the reward distribution

under action a in state s.

We let S := ♣S♣ and A := ♣A♣ where ♣ · ♣ is the set cardinality operator.

7



The dynamic behaviour of the MDP M is as follows. At each time step, if the MDP

is in state s and action a is chosen, an immediate reward R(s, a) with distribution

R(s, a) is obtained independently of all else. Subsequently, the state changes to s′

with probability P (s′♣s, a) in a Markovian manner.

In the remainder of this thesis, we assume that the reward distributions have

bounded support. We will also be interested in measuring performance in expec-

tation. We therefore call r(s, a) = E[R(s, a)] the expected reward in state s under

action a.

We will mainly consider stationary deterministic policies, which are functions π : s ∈
S 7→ a ∈ A. Under such a policy, the MDP follows the dynamics of a Markov chain

with transition matrix (P (s′♣s, π(s)))s,s′ .

Gain

We will consider a unichain MDP M , that is, such that for every policy in Π := ¶π :

S → A♢ the set of stationary and deterministic policies, there is a single recurrent

class for the Markov chains, and possibly some transient states. Call st the random

variable of the state of the system at time t, with s1 = s a fixed initial state. In this

case, independently of this initial state, the gain or average reward induced by a

policy π ∈ Π is:

gπ(M) = g(M, π) := lim
T →∞

1

T

T∑

t=1

Eπ[r(st, π(st))♣s1 = s]. (2.1)

Since M has finite state and action spaces, the limit in (2.1) always exists. Notice

also that the restriction to stationary and deterministic policies is not a loss of

optimality [Martin L. Puterman, 1994, Theorem 8.4.5].

We will denote by g∗ := g∗(M) := maxπ∈Π g(M, π) the optimal average reward and

we denote by π∗ an optimal policy.

We recall that for queueing systems, we are specifically interested in the optimization

of the average reward rather than the finite horizon reward
∑H

t=1 Eπ[r(st, π(st))]

with horizon H, or the discounted reward limT →∞
∑T

t=1 γt−1
Eπ[r(st, π(st))] with

discount factor γ ∈ (0, 1).

Since the MDP M is unichain, for every policy we can define the stationary measure

νπ. We rewrite the gain:

gπ =
∑

s∈S
r(s, π(s))νπ

s , (2.2)

8 Chapter 2 Markov Decision Processes and Model-Based Reinforcement
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where νπ is the stationary measure under policy π.

Bias

For a policy π, we define the bias at state s by the following Cesarò sum:

hπ(s) := lim
N→∞

1

N

N∑

T =1

T∑

t=1

Eπ [(r (st, π(st)) − gπ) ♣ s1 = s] , ∀ 0 ≤ s ≤ S − 1. (2.3)

The bias at s can be seen as the initial offset before scoring the gain at every step in

the long run. In other words, asymptotically, the cumulative reward after T steps

starting from s is roughly equal to hπ(s) + T · gπ.

The bias is also related to the gain and the rewards through the Bellman equation:

gπ + hπ(s) = r(s, π(s)) +
∑

s′∈S
hπ(s′)P (s′♣s, π(s)) for s ∈ S,

furthermore, in the unichain case, the Bellman equation characterizes the gain gπ

and the bias hπ up to an additive constant.

Diameter

We define the diameter of a MDP, as given in [Jaksch et al., 2010], intuitively as

the average time needed to reach the furthest state from any other state with a

well-chosen policy.

Definition 2.2 (Diameter of a MDP [Jaksch et al., 2010])

Let π : S → A be a stationary policy of M with initial state s. Let

T (s′♣M, π, s) := min¶t ≥ 0 : st = s′♣s1 = s♢ be the random variable for

the first time step in which s′ is reached from s under π. Then, we say that the

diameter of M is

D(M) := max
s ̸=s′

min
π:S→A

E
[
T
(
s′♣M, π, s

)]
.

It should be clear that the diameter of an MDP can be large if there exist states that

are hard to reach: we will see that for a stable basic birth and death process, we

expect the diameter to scale exponentially in S. The diameter is a commonly used

parameter to characterize the difficulty to learn a specific MDP.
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Ergodicity Rates

Consider an ergodic MDP M under any policy π ∈ Π, that is, the Markov chain

defined by every policy π ∈ Π is ergodic over the state space S. Denote, again by νπ

its stationary measure under policy π. There exists C > 0, ρ(π) ∈ (0, 1) such that:

sup
s1∈S

∥Pπ
s1(st = ·) − νπ∥T V ≤ Cρ(π)t ∀t > 0, (2.4)

where P
π

s1(st = ·) is the probability distribution of st if the MDP starts at s1 and

applies the policy π. While the convergence rate ρ depends on the choice of π a

priori, we will show in Chapter 5 that we can bound it by a quantity independent of

π.

Continuous-time MDP and Uniformization

Common applications are usually given in continuous-time models. We therefore

give a quick overview of the continuous-time MDP and the unfirmization method. A

continuous-time MDP M ′ is defined by:

M ′ =
(
S, A, q(s′♣s, a), R′(s, a)

)
,

where S and A are respectively the state space and the action space, for s′ ̸= s,

q(s′♣s, a) ≥ 0 is the transition rate under action a to go to the state s′ from s and

R′(s, a) is the reward distribution under action a at s, with reward R′(s, a) and mean

reward r′(s, a). The reward is sampled when the action a is chosen. By definition of

the rates, we also require that q(s♣s, a) = −∑s′ ̸=s q(s′♣s, a).

We briefly explain the dynamics in M ′ in the context of stationary policies: for a

chosen fixed action a at state s, the MDP transitions to the next state s′ ̸= s after an

exponentially distributed random time τs′ with parameter q(s′♣s, a), whichever time

comes first. For such s′, the reward scored is τs′R′(s, a), and only then the controller

chooses the next action to be used in s′. In this setup, −q(s♣s, a)−1 is the mean time

spent at state s before the transition.

Rather than studying these continuous-time models, it is more practical and conve-

nient to focus on their discrete-time equivalent, by uniformizing the MDP, as follows:

let U ≥ (− maxs∈S,a∈A q(s♣s, a)) be the chosen uniformization constant, which is
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well defined as S is finite. To build the equivalent discrete-time MDP MU , we define

the transition matrix P such that:





P (s′♣s, a) = q(s′♣s, a)/U for s′ ̸= s

P (s♣s, a) = 1 −∑
s′ ̸=s P (s′♣s, a) otherwise

We also redefine the rewards R(s, a) = R′(s, a)/U . In this newly defined process, a

time step corresponds to an observation of the original MDP M ′ at a random time

with an exponential distribution of parameter U , while in the original process, we

had different exponential parameters for each transition.

This uniformization method preserves the relative performance of the policies so

that we can directly study the discrete-time MDPs and use algorithms designed for

these MDPs. In the remainder of the thesis, we will mainsly use discrete-time MDPs

and note them M instead of MU when no confusion is possible.

2.1.2 The Special Case of Birth and Death Processes: a

Comparison of the Bias and the Diameter

In algorithms based on episodes, the algorithm executes a policy πk for each episode

k, so that the cumulative reward for a given episode is roughly, as stated in the

definition of the bias: hπk + Tk · gπk , with Tk the length of the episode. To control

the reward scored by an algorithm, we therefore need to be able to control the bias,

possibly for any policy.

With little knowledge of the bias, it has been common to use the diameter D in

the learning bounds. However, as we work within classes of MDPs with a strong

structure, we can instead expect to control the bias of any policy and use this

knowledge to improve the bounds. We first study the scaling of the diameter in a

stable birth and death process as given in the following basic example.

We consider a birth and death process with Poisson arrivals with rate λs and leaving

exponential rate µs over the S states ¶0, . . . , S − 1♢. We can represent the dynamics

on the following continuous-time Markov chain:
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0 • • • s s + 1 S − 1

µs+1

λs

• • •

Figure 2.1: Markov chain diagram of the example queue.

Diameter Scaling in Birth and Death Processes

In this example, we assume that Figure 2.1 is a representation of the Markov chain

under the best policy to consider for the diameter, and we will choose the rates to

be λs = λ and µs = µ for some constants λ < µ.

We can expect here the diameter to be closely related to the worst expected hitting

times. These hitting times are intuitively close to the return times to the last states of

the queue, which scale exponentially in the size of the state space S. The diameter

should therefore also have this exponential scaling.

This discussion is formalized in the following result.

Lemma 2.3

For any MDP M and any policy π that induce a birth-and-death process, the

diameter Dπ under policy π as well as the local diameter defined as Dπ(s−1, s) :=

E
π [T (s♣π, s − 1)] grow exponentially in S.

Proof. Under policy π:

Dπ ≥ τπ(0, S − 1) ≥ τπ(S − 2, S − 1),

where τπ(s, s′) = E [T (s′♣π, s)] is the expected time to go from s to s′ under policy

π.

Denote by U the choice for the uniformization constant. Starting from S − 1, we

can write the hitting time equations:

τπ(S − 1, S − 1) = 1 + P π
S−1,S−2τπ(S − 2, S − 1),

and we notice that the left-hand side term actually is the inverse of the stationary

measure at S − 1, so that νπ(S − 1)−1 = τπ(S − 1, S − 1). We therefore obtain:

Dπ ≥ U
νπ(S − 1)−1 − 1

µS−1
≥ νπ(S − 1)−1 − 1.
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Now by reversibility, in our specific case, we have that: νπ(s) = νπ(0)λs

µs , with

νπ(0)−1 = 1−λS/µS

1−λ/µ , so that

Dπ ≥
1 − λS

µS

1 − λ
µ

(
µ

λ

)S−1

− 1.

As for the maximal local diameter, maxs Dπ(s − 1, s) ≥ maxs τπ(s − 1, s) ≥ τπ(S −
2, S − 1) and the same argument as before applies, so that both the local diameter

and the diameter scale exponentially in S, as λ < µ.

Variation of the Bias over the State Space

We show here how we control the bias in a birth and death process on the state

space S := ¶0, . . . , S − 1♢ with arrival rates λs and leaving rates µs for a fixed policy

π, as in figure 2.1. We will denote by P := P π the transition matrix for this fixed

policy.

We first show a bound on hitting times that will be used to control the variations of

the bias:

Lemma 2.4

Let π be any policy. Consider the Markov chain with policy π and transitions P

starting from any state s. Denote by τs the random time to hit 0 from state s.

Then:

E
π [τs] ≤ νπ(0)−1

s∑

i=1

U

µi
,

where U is the chosen uniformization constant

Proof. We write the expected hitting time equations. Let e be the unit vector. We

have the system:

E
π [τ ] = e + P E

π [τ ] , (2.5)

with τ the vector of hitting times, and adding to the system of equation τ0 = 0.

We will show the result by induction. The system gives for s = S − 1:

E
π [τs] = 1 + E

π [τs]
1 − µs

U
+ E

π [τs−1]
µs

U
,
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so that:

Eτs =
U

µs
+ E

π [τs−1] .

Then with an induction, we want to prove the equation for s < S − 1:

E
π [τs] = E

π [τs−1] +
U

µs

S−1∑

s′=s

s′∏

i=s+1

λi−1

µi
. (2.6)

For s < S − 1, assume (2.6) is true for Eπ [τs+1]:

E
π [τs] = 1 + E

π [τs+1]
λs

U
+ E

π [τs]
1 − µs − λs

U
+ E

π [τs−1]
µs

U

= 1 + E
π [τs]

1 − µs − λs

U
+ E

π [τs−1]
µs

U
+ Eτs

λs

U
+

S−1∑

s′=s+1

s′∏

i=s+1

λi−1

µi

=
U

µs
+ E

π [τs−1] +
U

µs

S−1∑

s′=s+1

s′∏

i=s+1

λi−1

µi
by gathering the τs terms

= E
π [τs−1] +

U

µs

S−1∑

s′=s

s′∏

i=s+1

λi−1

µi
,

the induction is therefore true, and by definition of νπ(0) we have:

E
π [τs] ≤ E

π [τs−1] +
U

µs
νπ(0)−1.

Proposition 2.5

For any policy π, define for s ∈ ¶1, . . . , S − 1♢ the variation of the bias

∂hπ(s) := hπ(s) − hπ(s − 1) =
∞∑

t=1

(
P t(s, ·) − P t(s − 1, ·)

)
r.

Assume that the sequences (λs) and (µs) are respectively non-increasing and

non-decreasing. Then:

∂hπ(s) ≤ 2δrνπ(0)−1
s∑

i=1

U

µi
,

where δr := maxs,a,a′ ♣r(s, a) − r(s − 1, a′)♣ is the largest reward variation

between neighbouring states.
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Proof. To control the difference of probabilities in the bias, we will define a coupling,

which will follow the inequality given in [Levin et al., 2008, Proposition 4.7]

∥∥∥P t(s, ·) − P t(s − 1, ·)
∥∥∥

TV
≤

inf
X,Y

¶P(X ̸= Y ) : (Xt, Yt) is a coupling of P t(s, ·) and P t(s − 1, ·)♢. (2.7)

More precisely, let X and Y be Markov chains with transition matrix P and starting

states X1 = s, Y1 = s − 1, coupled in the following way: For each time-step t ≥ 2,

let Ut ∼ U([0, 1]) be a sequence of independent random variables sampled uniformly

on [0, 1]. We have:

Xt+1 =





Xt − 1 if 0 ≤ Ut ≤ µXt

Xt if µXt ≤ Ut ≤ 1 − λXt

Xt + 1 if 1 − λXt ≤ Ut ≤ 1,

(2.8)

and define Yt+1 the same way from Yt. As (λs) and (µs) are respectively non-

increasing and non-decreasing, 0 ≤ Xt − Yt ≤ 1 for this coupling. Moreover, we

have from (2.7), reminding that δr := maxs,a,a′ ♣r(s, a) − r(s − 1, a′)♣:

(P t(s, ·) − P t(s − 1, ·))r ≤ 2P(Xt ̸= Yt)δr.

As τs is the time needed for Xt to hit 0 starting from s, the coupling time is lower

than τs:

P(Xt ̸= Yt) ≤ P (τs→0 > t) ,

so that summing over t gives:

∂hπ(s) ≤ 2δrE
π [τs] ,

and now using Lemma 2.4:

∂hπ(s) ≤ 2δrνπ(0)−1
s∑

i=1

U

µi
.

Remark 2.6

Without the assumption that (λs) and (µs) are respectively non-increasing and non-

decreasing, Proposition 2.5 still holds with rmax rather than δr in the inequality, with

rmax being the span of the reward in the MDP.
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In view of the previous lemma, with the example of figure 2.1 with rates λs = λ and

µs = µ with λ < µ constants, and we get that the variation of the bias is bounded in

the following way:

∂hπ(s) ≤ 2δrs
1 − λS

µS

1 − λ
µ

U

µ
.

We notice here that the span of the bias, being maxs h(s) − mins h(s), is bounded

by a quadratic function, which is much better than the exponential lower bound

we had for the diameter. For this reason, in the algorithms, we will try as much as

possible to use our knowledge of the span of the bias rather than resorting to the

diameter.

2.2 Model-Based Reinforcement Learning in a MDP

2.2.1 Reinforcement Learning Framework

We will consider a unichain discrete-time MDP M = (S, A, p, R) in discrete time.

The model-based reinforcement learning problem consists in finding a learning

algorithm L, or learner, that chooses actions to maximize a cumulative reward over

a finite time horizon T . At each time step t ∈ N, the system is in state st ∈ S and the

learner chooses an action at ∈ A. When executing at, the learner receives a random

reward rt(st, at) with mean r(st, at) and the system moves, at time step t + 1, to the

next state st+1 with probability p(st+1♣st, at). The learner also gets information on

the reached state s′. The learning algorithm does not know the MDP M except for

the sets S and A.

In different terms, an agent uses the algorithm L to act on the system (or environ-

ment). This is synthesized in Figure 2.2.

Note already that in Chapter 5, we will face the case of POMDPs, where the state

st+1 is not fully observed, and only partial information is retrieved from this next

state. We will continue this discussion in the concerned chapter.

In the model-based setup that we will consider, by opposition to the model-free

one, the learner relies on a model and its estimates to choose their next action.

Model-based algorithms need a large memory space to store the estimated transition

probabilities (S2A). Nevertheless, we will mainly focus on this kind of algorithm as

they are efficient for regret minimization.
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Agent: the

learner L

picks an action

Environment: the

MDP (S, A, p, R)
moves to the state

st+1 ∼ p(·♣st, at)

Action at

Observation (Rt, st+1)

Figure 2.2: Agent and environment interaction

In order to maximize the cumulative reward, the learner cannot afford to dedicate all

their time to learning the optimal policy, as many of the observed rewards would be

much worse than the best rewards. They also cannot commit to the empirically best

policy without regularly getting new information from the environment. Instead,

they must find a balance between exploration and exploitation to ensure optimal

performance in the long run. The performance metric we are interested in to match

this goal is called the regret, which we define in the next subsection.

2.2.2 Definition of the Regret

We remind that g∗ := g∗(M) := maxπ∈Π g(M, π) is the optimal average reward in

the MDP M .

Definition 2.7 (Regret)

The regret at time T of the learning algorithm L is

Reg(M,L, T ) := Tg∗(M) −
T∑

t=1

rLt , (2.9)

where rLt is the mean reward at time t under the algorithm L.

The regret given in 2.9 is sometimes called the pseudo-regret as it involves mean

rewards rather than random rewards. For bounded rewards R, this difference
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is negligible when T is large. The regret is a natural benchmark for evaluating

the performance of a learning algorithm. As stated in the previous subsection, in

order to minimize the regret, algorithms need to find a balance over time between

exploration and exploitation, as opposed to identification algorithms that need to

find an optimal policy as fast as possible, disregarding the possible disappointing

performance of some policies.

Remark 2.8

The definition of the regret depends a priori on the initial state of the algorithm. In the

following, we will consider the case of unichain MDPs, so that we can always work with

the regret with a reference initial state, which would only add a constant term to the

regret bound with respect to any initial state. For queueing systems, we will usually

choose the empty queue as the reference initial state.

In [Jaksch et al., 2010], a universal lower bound on Reg(M,L, T ) has been developed

in terms of the diameter of the underlying MDP.

Theorem 2.9 (Universal lower bound [Jaksch et al., 2010])

For any learning algorithm L, any natural numbers S, A ≥ 10, D ≥ 20 logA S,

and T ≥ DSA, there is an MDP M with S states, A actions, and diameter D

such that for any initial state s ∈ S,

E[Reg(M,L, T )] ≥ 0.015
√

DSAT. (2.10)

On this large class of MDP, the regret lower bound depends on the diameter. As seen

in the previous section, we expect the regret to be much lower when restricting the

class of MDP to birth and death processes for example, when we get to control and

know the variation of the bias for any policy. We discuss this point in Chapter 4.

2.2.3 Presentation of Ucrl2

We now present UCRL2, a classic reinforcement learning algorithm introduced

in [Jaksch et al., 2010] that is a variant of UCRL [Auer and Ortner, 2006]. Let us

present an intuition of this algorithm. UCRL2 aims to learn the transition probabilities

and mean rewards for each state-action pair (s, a). It is based on episodes so that

during an episode k, a policy πk is chosen and used until a stopping criterion is met.

To choose its next policy, the algorithm relies on the Optimism in Face of Uncertainty

(OFU) principle: from the empirical transition probabilities and rewards observed, a
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confidence set is built of the optimistic MDPs, so that with high probability, the true

MDP M belongs to this set. After each episode, this confidence set is updated, and

then the algorithm chooses a policy within this set with the highest gain, where the

optimism comes from.

We can already compare UCRL2 to the UCB algorithm, which also uses the OFU

principle for regret minimization in a bandit setting. In the former case however, a

new policy is chosen only after each episode as opposed to after each time step, the

idea being that we not only need to learn the reward, but the eventual target is the

gain, so that the episode length needs to grow over time to ensure exploration.

Let us now give a more technical presentation of the algorithm. For each episode k,

let tk denote its start time and πk the policy used during this episode. For each state

s and action a, let Vk(s, a) denote the number of visits of (s, a) during episode k and

let Nt(s, a) := #¶τ < t : sτ = s, aτ = a♢ denote the number of visits of (s, a) until

timestep t. Let Mk be the confidence set of MDPs with transition probabilities p̃ and

rewards r̃ that are “close” to the empirical MDP at episode k, p̂k and r̂k, i.e., p̃ and r̃

satisfy

∀(s, a), ♣r̃(s, a) − r̂k(s, a)♣ ≤ rmax

√
7 log (2SAtk/δ)

2 max ¶1, Ntk
(s, a)♢ (2.11)

∀(s, a), ∥p̃(·♣s, a) − p̂k(·♣s, a)∥1 ≤
√

14S log (2Atk/δ)

max¶1, Ntk
(s, a)♢ , (2.12)

where δ is a confidence parameter, technically necessary to compute upper bound

on the regret with high probability. It is usually of order 1/T .

With these quantities, a pseudocode for UCRL2 is given in Algorithm 1. We notice that

UCRL2 relies on Extended Value Iteration (EVI), that is a variant of the celebrated

Value Iteration (VI) algorithm [Martin L. Puterman, 1994]; for further details about

EVI, we point the reader to [Jaksch et al., 2010, Section 3.1]. Let us comment on

how UCRL2 works.
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Algorithm 1: The UCRL2 algorithm.

Input: A confidence parameter δ ∈ (0, 1), S and A.

1 Set t := 1 and observe s1

2 for episodes k = 1, 2, . . . do

3 Set tk := t and compute the estimates r̂(s, a) and p̂k(s′♣s, a) as in (2.14).

4 Use “Extended Value Iteration” to find a policy π̃k and an optimistic MDP

M̃k ∈ Mk such that

g(M̃k, π̃k) ≥ max
M ′∈Mk,π

g(M ′, π) − 1√
tk

(2.13)

5 while Vk(st, π̃k(st)) < max¶1, Ntk
(st, π̃k(st))♢ do

6 Choose action at = π̃k(st), obtain reward rt and observe st+1;

7 Vk(st, at) := Vk(st, at) + 1;

8 t := t + 1;

There are three main steps. First, at the start of each episode, UCRL2 computes the

empirical estimates

r̂k(s, a) :=

∑tk−1
t=1 rt1¶st=s,at=a♢

max ¶1, Ntk
(s, a)♢ , p̂k(s′♣s, a) :=

∑tk−1
t=1 1¶st=s,at=a,st+1=s′♢

max ¶1, Ntk
(s, a)♢

(2.14)

of the reward and probability transitions, respectively,

where 1E is the indicator function of E. Then, it applies Extended Value Iteration

(EVI) to find a policy π̃k and an optimistic MDP M̃k ∈ Mk such that (2.13) holds

true. Finally, it executes policy π̃k until it finds a state-action pair (s, a) whose

count within episode k is greater than the corresponding state-action count before

episode k. This method is sometimes referred to as the doubling trick, as the number

of visits for a state-action pair is at most doubled during an episode. Through this

criterion, we get an improved control over the number of episodes, and over the

regret induced by each state-action pair.

2.2.4 Classical Lemmas for Ucrl2

The two following lemmas are proved in [Jaksch et al., 2010, Appendix C.2 and

Appendix C.3] respectively. The first one bounds the number of episodes, using the

doubling trick.
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Lemma 2.10 ([Jaksch et al., 2010])

Denote by Kt the number of episodes up to time t, and let t > SA. It is bounded

by:

Kt ≤ SA log2

(
8t

SA

)
.

The logarithmic scaling on the number of episodes implies that the
√

T bound stems

from the confidence bounds rather than from the episode changes themselves.

The following lemma is used to simplify regret terms when summing over the

episodes for a single state-action pair.

Lemma 2.11 ([Jaksch et al., 2010])

For any fixed state action pair (s, a) and time T , we have:

∑

k=1

Vk(s, a)√
max¶1, Ntk

(s, a)♢
≤ 3

√
NT +1(s, a),

This lemma is the main ingredient to translate the confidence bounds into a quantity

of the same order of
√

T .

We now present a version of the Azuma-Hoeffding inequality that is mainly used to

control the regret coming from the episode changes.

Lemma 2.12 (Azuma-Hoeffding inequality [Williams, 1991])

Let X1, X2, . . . be a martingale difference sequence with ♣Xi♣ ≤ C for all i and

some constant C > 0. Then for all ε > 0 and n ∈ N:

P

{
n∑

i=1

Xi ≥ ε

}
≤ exp

(
− ε2

2nDC


.

These lemmas are now known tools to prove the regret bound for UCRL2 given in

Theorem 2.13. We will also rely on them to prove regret bounds in Chapters 4 and

5.
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Theorem 2.13 (Consequence of Theorem 4 in [Jaksch et al., 2010] )

Consider a MDP M with diameter D, S states and A actions. For any initial

state s ∈ S and T > 1, the expected regret of UCRL2 is bounded as follows:

E [Reg(M, UCRL2, T )] ≤ 35DS
√

AT log T .

In comparison with Theorem 2.9, the upper bound of the regret has the same

dependence in the time horizon T , up to a logarithmic factor. There is however an

extra
√

DS factor, that has been the main focus for improvement in [Fruit, Pirotta,

and Lazaric, 2020; Tossou et al., 2019]. In Chapter 4, we will also improve the

upper bound on the specific case of a birth-and-death process.
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Optimal Control of a Large

Queue: the Case of a DVFS

Processor

3

In the previous chapter, we saw how we would uniformize the state space to define

a discrete-time MDP from a continuous-time model. In this chapter, we study

the specific example of a DVFS processor: an operator changes the speed of the

processor, using real-time information on the system, in order to optimize the overall

performance of the system for lower energy consumption. In this model, the state

space is infinite and the uniformization method is impossible a priori. We show how

to fall back to this uniformization method on a cunningly truncated state space, and

we prove structural properties of the optimal policy that remain valid on the infinite

state space.

This chapter is based on the published work [Anselmi, Gaujal, and Rebuffi, 2021].

3.1 Introduction

3.1.1 Related Work

In the deterministic case where job sizes and arrival times are known, a vast literature

addressed the problem of designing both off-line and on-line algorithms to compute

speed profiles that minimize the energy consumption subject to hard real-time

constraints (deadlines) on job execution times; see, e.g., [Yao et al., 1995; Bansal et

al., 2007; M. Li et al., 2017] and the references therein. In a stochastic environment

where only statistical information is available about job sizes and arrival times, it

turns out that combining hard deadlines and energy minimization via DVFS-based

techniques is much more difficult. In fact, forcing hard deadlines requires to be

very conservative, i.e., to consider the worst cases. In spite of these difficulties, this

problem has been investigated in [Lorch and Smith, 2001] for a single job and in

[Gaujal et al., 2020] for multiple jobs. The former approach constructs the optimal

speed profile explicitly in “closed form” while the latter relies on the numerical
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solution of a discrete time Markov Decision Process (MDP) [Martin L Puterman,

2014]. The latter approach has several drawbacks: i) it requires a discretization of

both time and space, which introduces by itself an approximation on the optimal

solution, ii) deadlines and job sizes need to be bounded, and iii) the size of the state

space of the underlying MDP is exponential in the size of the maximal deadline.

These issues makes this approach unusable in practice.

The approach followed in this chapter circumvents the difficulties described above

by replacing the hard real-time constraints, i.e., jobs have hard deadlines that must

be satisfied, by soft real-time constraints, i.e., jobs may miss their deadlines, at

some cost. While the hard deadline of a job must be known at the job arrival,

soft deadlines allow for a different information structure: here, only the deadline

distribution is known at the job arrival. In this chapter, we further assume that jobs

missing their deadlines become obsolete and are dropped. Obsolescence is often

found in real-time systems where the information carried by jobs may not be valid

any longer after their deadline as it will be replaced by fresher input coming from

other jobs. Therefore, obsolete jobs become useless and can get discarded from the

queue. Dropping obsolete jobs can also model impatient customers: customers wait

for service for some time (deadline) and quit (are dropped) if not served before that

time.

3.1.2 Contribution

We investigate the problem above in a Markovian setting where jobs join the system

following a Poisson process and both the deadlines and sizes of jobs are exponentially

distributed. Under these assumptions, our goal is to minimize the average cost, i.e.,

the average energy spent by the processor per second plus the penalty due to jobs

missing their deadlines. We formulate this problem as an MDP in continuous time

where the state is the number of jobs in the system and the action is the processor

speed.

Our main result, Theorem 3.2, shows the existence of an optimal speed profile

that is increasing in the number of jobs in the system and upper bounded by some

constant. This constant is defined in (3.4) as the minimizer of a function that comes

out from our analysis. Surprisingly, our bound does not depend on the deadlines and

arrival rates. In other words, our bound on the optimal speed does not change upon

variations of these job characteristics. In addition, it yields a simple approximation

for the optimal policy and several numerical tests show that such approximation

is accurate in heavy-traffic conditions. Finally, the proposed approximation is used
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to control the proportion of jobs that leave the system because they missed their

deadline in a simple manner.

Underlying the proof of our main result, there are some technical challenges that

we now discuss. The proposed MDP satisfies the regularity assumptions (stability,

unichain) needed to establish an optimality equation as described in [X. Guo and

Hernandez-Lerma, 2009]. However, this is not enough to show structural properties

of the optimal policy. In fact, the common approach to do this is to uniformize

the MDP and to investigate the properties of the corresponding discrete time value

iteration operator. Unfortunately, this is not possible in our case because the transi-

tion rates are unbounded. To uniformize the MDP, a typical approach consists of

truncating the state space. Indeed, this is the approach we follow. However, we

notice that a naive truncation will not help because the truncation barrier has a

strong impact on the structure of the optimal policy in the sense that it would not

preserve any monotonicity property that it may have without truncation. This is

shown in Figure 3.2. Instead, we use the technique proposed by Blok and Spieksma

in [Blok and Spieksma, 2015], which smoothly scales down the upward rates of

the truncated system as a function of the size of its state space. This technique has

been successfully used in [Hyon and Jean-Marie, 2020; Bhulai et al., 2014] to show

structural properties of controlled queueing systems. However, these works focus

on discounted costs. Here, we use the same truncation technique but we apply it to

the average cost. To the best of our knowledge, this has never been done before. In

our specific case, the convergence to the infinite system will be guaranteed by the

monotone convergence theorem.

This chapter is organized as follows. In Section 3.2, our model and the corresponding

MDP are described in detail. We also present our main result (Theorem 3.2) as

well as some hindsight on the construction of the proof. Section 3.3 shows how

the MDP is truncated and scaled and shows the proof of the monotonicity as well

as the construction of the upper bound on the optimal speed. Section 3.4 focuses

on the convergence when the truncation point goes to infinity. Section 3.5 uses

Theorem 3.2 to provide an approximation on the optimal policy and estimate the

deadline-miss probability. Finally, Section 3.6 draws the conclusions of our work

and addresses further research.
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3.2 System Description, Problem Statement and Main

Result

The system described here is a model for the dynamics of a real-time device composed

of a single computing resource (a processor) where incoming jobs need to be

executed under a constraint on the amount of time that they spend in the system.

Processor This is a DVFS processor whose speed can continuously vary in the

interval [0, amax]. We consider that speed changes are immediate and induce no

energy cost. When the processor works at speed a, it processes a units of work per

second while its power dissipation is w(a) watts. The classic simple model for the

dynamic power dissipation of any CMOS circuit is w = KαV 2f , see, e.g., [Snowdon

et al., 2005], where K is a constant, α measures the activity of the logical gates,

V is the supply voltage and f is the clock frequency. The clock frequency of the

gates is often linearly related to the voltage and therefore DVFS processors adjust

both variables together. Within the model above, this means that w(a) is cubic in

the speed a. In this chapter, we just require that w(a) is continuous, increasing and

strictly convex in the speed a.

Jobs They form a stochastic point process, with Poisson arrivals with rate λ,

i.i.d. deadlines exponentially distributed with rate µ and i.i.d. sizes exponentially

distributed with rate σ. Without loss of generality, we assume that σ = 1.

Dynamics At any point in time t, the processor chooses its speed a(t) and executes

one of the jobs in its backlog queue. We notice that the choice of the job in

execution, named active in the following description, is irrelevant here because of

the memoryless property of the deadlines and of the sizes. Thus, at any point in time,

at most one job can be active. As mentioned above, this induces an instantaneous

energy cost of w(a(t)). Now, three events can happen in continuous time:

1. A new job may join the queue.

2. The active job is completed before its deadline. In this case, the job leaves the

system.

3. One job (active or inactive) reaches its deadline. In this case, this job becomes

obsolete, it is removed from the queue and an immediate cost equal to C is

paid.
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Cost Function If we denote by MT the number of missed deadlines in the time

interval [1, T ], the objective of this chapter is to study the speed profile a(t) of the

processor that minimizes the long-run average cost given by the missed deadlines

plus power consumption. Specifically, this is given by

E


lim sup

T →∞

1

T

(
CMT +

∫ T

1
w(a(t)) dt

]
. (3.1)

At this point, we claim that this problem can be modeled by a continuous time Markov

decision process with a discrete state space. To see this, let us consider the system at

time t under the speed profile a(·) and let s(t) denote the number of jobs present in

the system at time t. Each job is characterized by two values: (uk, vk), respectively,

the sojourn time of job k (how long the job has been present) and its service quantity

(how many elementary operations have already been executed on this job by the

processor). Also let et be the time elapsed since the last arrival. Then the state of

the system at time t is the tuple (et, (u1, v1), . . . , (us(t), vs(t))). From time t, the cost

function only depends on the expected future behavior of the system, namely, the

future arrivals, future services and future drops of packets due to deadline misses.

The memoryless property of the exponential distribution implies that this expected

future behavior does not really depend on (et, (u1, v1), . . . , (us(t), vs(t))), but only on

s(t), the current number of jobs. As a by-product, this implies that the choice of the

optimal speed at time t only depends on s(t), so that the optimal speed profile can

only change when s(t) changes, i.e., when an arrival, a service or a drop occur.

Markov Decision Process We now formulate the problem of interest as an MDP.

As mentioned before, the state space is N and a state represents the number of jobs

in the system. The action space is [0, amax], i.e., the set of available speeds for the

DVFS processor. Let π = (πs)s∈N denote a stationary and deterministic speed policy

adopted by the processor, i.e., πs ∈ [0, amax] is the speed used in state s. It is well

known that focusing on stationary and deterministic policies can be done with no

loss of optimality in our case [X. Guo and Hernandez-Lerma, 2009, Theorem 5.9]; in

other words, we may ignore the broader set of history dependent randomized policies

and rather focus on the stationary and deterministic policies. For s, s′ ∈ ¶0, . . . , S′♢,
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we will denote the transition rates qs,s′(πs) := q(s′♣s, πs) for the action πs. These

rates are given by:

qs,s′(πs) =





λ if s′ = s + 1 (arrival of a new job)

πs + sµ if s ≥ 1 and s′ = s − 1 (completion of the active job

or obsolescence of one job)

−λ − sµ − πs if s′ = s

0 otherwise.

Under the speed policy π = (πs)s∈N, the induced Markov chain, denoted by Xπ, is a

birth-and-death process that resembles an M/M/∞ queue but with an additional

decreasing rate, which comes from the processing speed policy; see Figure 3.1.

0 • • • s s + 1

(s + 1)µ + πs+1

λ

• • •

Figure 3.1: Markov chain diagram under policy π.

By ergodicity of the Markov chain Xπ under all policies π, the a priori random

long-run cost in the brackets in equation (3.1) is almost surely equal to the long-run

expected cost. Letting E
π
s1

denote the expectation given a speed policy π and starting

state s1, the long-run cost becomes:

G(s1, π) := lim sup
T →∞

1

T

∫ T

1
E

π
s1

c(Xπ(t), π) dt.

In this equation, the immediate cost function c(·, ·) is the expected cost incurred by

the system at time t. It only depends on the current state and the current speed.

Conditionally on the state (Xπ(t) = s), the obsolescence rate is sµ. Thus, the

expected cost is:

c(s, π) := Csµ + w(πs).

With a slight abuse of notation, we will use both notations c(s, π) or c(s, πs) since c

only depends on the speed used in state s and not on the whole policy.

As mentioned before, for given speed policy π, Xπ is ergodic so that the MDP is

unichain (all states are positive recurrent under all policies). This implies that
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the cost can be defined independently of the starting state. Moreover, for a given

π, there exists a unique stationary measure νπ for Xπ so that we can define the

cost independently of the initial state and express it as a function of the stationary

measure:

∀s1, Gπ := G(s1, π) = E
νπ

c(Xπ, π) =
∑

s

νπ
s c(s, πs). (3.2)

Here, Eνπ
is the expectation with respect to the invariant measure of Xπ. Stationary

policies that minimize (3.2) are optimal speed policies for the model. In particular,

they are also optimal over all policies (history dependent and randomized) [X.

Guo and Hernandez-Lerma, 2009, Theorem 5.9] . Also, our MDP satisfies all the

conditions given in [X. Guo and Hernandez-Lerma, 2009, Theorem 5.9] to assert the

existence of an optimal stationary deterministic policy π∗ and an optimality equation

of the form

G∗ = Gπ∗

= c(s, π∗
s) +

∑

s′

h∗(s′)qs,s′(π∗
s) (3.3)

= min
a∈[0,amax]

c(s, a) +
∑

j

h∗(s′)qs,s′(a), ∀s ∈ N,

where h∗ is a real-valued function on N, referred to as bias of the optimal policy.

Main result The goal of this chapter is to investigate structural properties on π∗

and G∗. First, let us define B as

B := arg min
a∈R+

(w(a) + C(λ − a)). (3.4)

This constant is well defined in R
+ ∪ ¶+∞♢ because w is strictly convex. In addition,

we have the following remark.

Remark 3.1

If w is super-linear, i.e., lima→∞
w(a)

a = ∞, then w(a) + C(λ − a) is also super-linear

and B is finite. In practice, all models of power dissipation are super-linear in a, e.g.,

[Chandrakasan et al., 1992]. In the simple case where w(a) = Ka3, we first notice

that the constant K can be set to 1 without loss of generality because to compensate

its effect one can adjust the missed deadline cost C accordingly. Then, in this case, we

obtain B =
√

C
3 .

Our main result is the following.
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Theorem 3.2

There exists a deterministic optimal policy π∗ = (π∗
s)s∈N that is increasing in s

and upper bounded by B.

Remark 3.3

The optimal speed policy of the processor is always bounded by a finite constant,

namely min(B, amax). By definition, B only depends on w (the power dissipation of

the processor) and C the cost of each missed deadline. Thus, we remark that B is

independent of the job characteristics (arrival rate, deadline and size distributions).

This is both surprising and helpful in practice. Indeed, if B is finite, one can set a priori

the maximal speed of the processor to amax := B. This guarantees that in all cases, no

cost reduction would be possible by using a more powerful processor. Further discussion

about parameter settings, in particular the link between C and the probability that jobs

miss their deadline under the optimal policy, will be discussed in Section 3.5.

A proof of Theorem 3.2 is developed in Sections 3.3 and 3.4. Before delving into the

proof, we devote the remainder of this section to explain the technical difficulties

underlying our problem and the general approach that we follow.

The optimality equation (3.3) cannot be uniformized because the rates qs,s(π) are

unbounded in s. Therefore, the study of structural properties of the optimal policy

must be done by constructing a sequence of truncated MDPs whose optimal policies

converge to π∗ and for which we can prove monotonicity and boundedness. This

approach has been proposed for the first time in [Blok and Spieksma, 2015] for

MDPs with discounted cost by truncating the state space and scaling the rates of all

the events that take the system out of the truncated space. This has been successfully

applied in, e.g., [Bhulai et al., 2014; Hyon and Jean-Marie, 2020], to show that

threshold type policies yield optimal admission control in one queue. However,

all these applications consider discounted costs. To the best of our knowledge,

no work has been done for the average cost. In the following, we will show that

in our case, the scaling technique of [Blok and Spieksma, 2015] also works for

the average cost and is the key ingredient to show Theorem 3.2, which gives new

hindsights on the optimal policy. Thus, our result is another evidence of the power

of this scaling approach, though our proof is quite different from the approach

used in the discounted case. In fact, the common approach is to show that the

value iteration operator preserves structural properties of the cost and of the policy

(typically convexity properties of the cost and level sets of the policy), so that

successive iterations of the operator will also preserve the properties and converge
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to the optimal cost/policy. Here, we will directly consider the fixed point optimality

equation and prove monotonicity of the policy by induction on the state (see Sections

3.3.1, 3.3.2, 3.3.3).

3.3 Truncated Model

As mentioned before, the original MDP cannot be uniformized because the transition

rates qs,s(π) grow to infinity when s goes to infinity. To construct a discrete time

model for a fixed maximal number of jobs S′ := S − 1, we truncate the state space

following the guidelines from [Blok and Spieksma, 2015] to construct a finite state

MDP MS′ with linearly decaying arrival rates. The new state space has S states

¶0, · · · , S′♢, with the same continuous action space [0, amax] and an average cost per

second Gπ
S′ defined as

Jπ
S′ := lim sup

T →∞

1

T − 1

∫ T

1
E

π
s0

c(Xπ(t), π) dt (3.5)

and with transition rates for all s, s′ ≤ S′ given by

qS′

s,s′(π) :=





λS′

s if s < S′ and s′ = s + 1

πs + sµ if s > 0 and s′ = s − 1

−λs − sµ − πs if s′ = s

0 otherwise,

where the decaying arrival rate is λS′

s := λ
(
1 − s

S′

)
. Using decaying arrival rates

will be a key ingredient in this chapter. To illustrate this, let us also consider a naive

truncated MDP, M′
S′ with fixed arrival rates in each state given by λ. The state

space is ¶0, · · · , S′♢, with the same continuous action space [0, amax] and the same

cost function but with modified transition rates given by

q′S′

s,s′(π) :=





λ if s < S′ and s′ = s + 1

πs + sµ if s > 0 and s′ = s − 1

−λ − sµ − πs if s′ = s

0 otherwise,

The two finite MDPs MS′ and M′
S′ have been solved numerically using the following

parameters: λ = 10, µ = 0.14, C = 200, w(a) = a3, S′ = 60.
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(a) MS′ with decaying arrival rates (b) M
′

S′ with no decay of the arrival rates

Figure 3.2: Optimal policies π∗ and π∗
′

for the two truncated MDPs, respectively, MS′ (a)
and M′

S′ (b).

The respective optimal policies π∗ and π∗′

are displayed in Figures 3.2(a)-(b). As

one can see, the two models behave very differently. At the last state of M′
S′ , the

speed does not need to be as high as the maximal speed, as the arrival rate drops

from λ to 0, so that the speed plummets near the last state. In contrast, the optimal

policy for MS′ is increasing from 0 to some bound slightly below
√

C
3 . Additional

numerical tests where we let S′ grow (reported in Figure 3.3) further suggest that

π∗ is increasing in the state s as well as in the level of truncation S′. The bound B

also appears to be rather tight when S′ is large in the example reported in Figure

3.3.
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Figure 3.3: Two optimal speed policies in MS′ , for S′ = 60 and S′ = 1000 and the bound

B =
√

C

3
.

This makes the study of MS′ promising and, in the remainder, we focus on this MDP

with decaying arrival rates.
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Since S′ is fixed here, we may remove it in the notation for simplicity. As the state

space is finite, we can uniformize this MDP to get a discrete time MDP. Choosing

U := λ + S′µ + amax (3.6)

as uniformization constant, we get a discrete time MDP DS′

with transition probabil-

ities given by

pS′

s,s′(π) =





1
U λs if s < S′ and s′ = s + 1

1
U (πs + sµ) if s > 0 and s′ = s − 1

1
U Ūs,πs if s′ = s

0 otherwise,

where the complementary probability to stay in state s is Ūs,πs := U − λs − µs − πs.

Again, we focus on stationary policies π that minimize the cost Gπ
S′ . The long-run

average cost per step for the discrete time MDP is

gπ := lim sup
K→∞

1

K

K∑

k=1

E
π
s1

c(Xπ(k), π).

A classic result for MDPs (see for example [Martin L Puterman, 2014, Section

11.5.3]) says that the discrete and continuous time MDPs are related by the following

relations: for any policy π, Ugπ = Gπ
S′ . This has the following consequences:

• Both MDPs have the same optimal policies.

• Optimal long-run average costs coincide up to the multiplicative uniformization

constant: Ug∗ = Ugπ∗

= Gπ∗

S′ = G∗
S′ .

We will first show the counterpart of Theorem 3.2 in the finite case. Let us define

BS′

:= arg min
a∈R+

(
w(a) +

C(λ − a)

1 + λ
µS′


, (3.7)

which is well defined in R
+ ∪ ¶∞♢ and unique because w is strictly convex.

We have the following properties for the optimal speed policy.
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Theorem 3.4 (i) The optimal speed policy π∗ minimizing (3.5) is unique.

(ii) The optimal speed policy is increasing in s: ∀s ≤ S′, π∗
s < π∗

s+1.

(iii) The optimal speed policy is upper-bounded: ∀s ≤ S′, π∗
s ≤ BS′

.

The proof of this result will be the object of Section 3.3.1 (monotonicity, item (ii)),

3.3.2 (upper-bound, item (iii) ), 3.3.3 (uniqueness, item (i)). Then, the relation

with the original infinite MDP will be shown in Section 3.4.

3.3.1 Proof of Theorem 3.4(ii): Monotonicity of the Optimal Speed

In this subsection, we denote by π∗ any optimal speed policy, X∗ the associated

Markov chain and G∗
S′ the optimal cost induced by π∗. Thus, the optimal long-run

average gain per step is

g∗ := lim
K→∞

1

K
E

π∗

K∑

k=1

1

U
c
(
Xπ∗

(k), π∗
)

. (3.8)

When the state space is finite, the bias h∗ ∈ R
S for the optimal speed π∗ is defined

up to an additive constant by

h∗(s) := E
π∗

s

∞∑

k=1

(
c
(
Xπ∗

(k), π∗
)

− Ug∗
)

, ∀s ≤ S′. (3.9)

To fix the value of the bias vector, we set h∗(0) := 0.

Since the MDP is finite, unichain, the action space is compact and the costs and tran-

sition probabilities are continuous and bounded in the actions, [Martin L Puterman,

2014, Theorem 8.4.7] guarantees the existence of the optimality equations for the

optimal cost and for the bias. Specifically, for any state s ∈ ¶0, . . . , S′♢,

g∗+h∗(s) =
1

U
min

a∈[0,amax]

{
w(a) + Csµ + (µs + a)h∗(s − 1) + Ūs,ah∗(s) + λsh∗(s + 1)

}

(3.10)

with h∗(−1) = h∗(S′ + 1) = 0 by convention.
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For each state s, an optimal action π∗
s is the choice of a speed minimizing the right

hand side term. Notice that necessarily, π∗
0 = 0 (the speed of the processor must be

0 when there is no work to do).

Using (3.10), for s ≥ 1, we can subtract h∗(s − 1) from h∗(s) and choose a = π∗
s−1

in (3.10) to get

U(h∗(s) − h∗(s − 1)) ≤ µC + λ

(
1 − s

S′

)
(h∗(s + 1) − h∗(s))

+

(
Ūs,π∗

s
− λ

S′

)
(h∗(s) − h∗(s − 1)) + (µ(s − 1) + π∗

s−1)(h∗(s − 1) − h∗(s − 2)),

(3.11)

Doing the same subtraction for a = π∗
s , we obtain

U(h∗(s) − h∗(s − 1)) ≥ µC + λ

(
1 − s

S′

)
(h∗(s + 1) − h∗(s))

+

(
Ūs,π∗

s
− λ

S′

)
(h∗(s) − h∗(s − 1)) + (µ(s − 1) + π∗

s)(h∗(s − 1) − h∗(s − 2)).

(3.12)

Combining both inequalities together we get the inequality

(
π∗

s − π∗
s−1

)
(h∗(s) − 2h∗(s − 1) + h∗(s − 2)) ≥ 0.

From this, we can deduce the following property of the model.

Proposition 3.5

If h∗ satisfies the following notion of discrete convexity:

∀s ≥ 2, (h∗(s) − 2h∗(s − 1) + h∗(s − 2)) > 0, (3.13)

then the optimal speed policy π∗ is increasing.

We give additional properties of the finite MDP needed to prove the main result.

Lemma 3.6

The asymptotic cost per second is upper-bounded: Ug∗ ≤ Cλ
1+ λ

S′µ

.

Proof. The cost Ug∗ is the optimal asymptotic cost per unit of time. Therefore, we

have that Ug∗ ≤ Ugπ0
, with Ugπ0

being the asymptotic cost per unit of time for policy

π0, when the speed is 0 for each state. Let νπ0
be the asymptotic distribution in that
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case. Computations of the stationary measure give νπ0

s =
(
1 + λ

S′µ

)−S′ (S′

s

) (
λ

S′µ

)s

(Lemma 4.8) and thus we can then compute the associated asymptotic cost as

follows:

gπ0
=

(
1 +

λ

S′µ

)−S′ S′∑

s=0

νπ0

s µsC = µC

(
1 +

λ

S′µ

)−S′ S′∑

s=0

s

(
S′

s

(
λ

S′µ

)s

= µC

(
1 +

λ

S′µ

)−S′ S′∑

s=1

S′
(

S′ − 1

s − 1

(
λ

S′µ

)s

= µC

(
1 +

λ

S′µ

)−S′

λ

µ

S′−1∑

s=0

(
S′ − 1

s

(
λ

S′µ

)s

= Cλ

(
1 +

λ

S′µ

)−S′ (
1 +

λ

S′µ

)S′−1

=
Cλ

1 + λ
S′µ

,

which concludes the proof.

We now want to show by backward induction on s that h∗ satisfies (3.13). For

0 ≤ s ≤ S′ − 1, the exact property P(s) that we will show is

h∗(s) − h∗(s − 1) < h∗(s + 1) − h∗(s) <
C

1 + λ
S′µ

. (3.14)

Before investigating the initialization step, we show the following preliminary

inequality on the optimal cost.

Lemma 3.7

Let π := E
π∗

[π∗
X∗ ] be the average speed under the stationary measure νπ∗

. Then,

Ug∗ > w(π) + C
λ − π

1 + λ
S′µ

.

Proof. Consider the optimal Markov chain X∗ displayed in Figure 3.4, where for

clarity we represented the continuous Markov chain, as its behavior is similar as the

uniformized discrete time Markov chain.

Using Jensen’s inequality, since w is strictly convex and the stationary measure νπ∗

is non trivial, we get the following strict inequality:

Ug∗ = G∗
S′ = E

π∗

[w(π∗
X∗)] + CµEπ∗

[X∗] > w(Eπ∗

[π∗
X∗ ]) + CµEπ∗

[X∗]

= w(π) + CµEπ∗

[X∗].
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0 • • • s s + 1

(s + 1)µ + π∗
s+1

λ
(
1 − s

S′

)

• • • S′

Figure 3.4: The transition rates of the Markov chain X∗.

Now, we calculate E
π∗

[X∗]. The underlying detailed balance equations are

νπ∗

s+1[µ(s + 1) + π∗
s+1] = νπ∗

s

(
λ − s

λ

S′

)
.

The LHS is 0 for s = −1, and the RHS is also 0 for s = S′. When we sum these

equations from 0 to S′ − 1, we can therefore write

S′∑

s=0

νπ∗

s (µs + π∗
s) =

S′∑

s=0

νπ∗

s

(
λ − s

λ

S′

)
,

which gives µEπ∗

[X∗] + π = λ − E
π∗

[X∗] λ
S′ , i.e.,

E
π∗

[X∗] =
λ − π

µ + λ
S′

. (3.15)

Thus, we finally have

Ug∗ > w(π) + C
λ − π

1 + λ
S′µ

as desired.

Remark 3.8

The computation of the expectation that gave (3.15) remains true for any speed policy,

and in that case π becomes the average speed of that policy. This formula of the

expectation will be needed later to rewrite the cost G∗
S′ in a different way.

For the initialization of the induction, we need the following lemma.

Lemma 3.9

h∗(S′) − h∗(S′ − 1) < C
1+ λ

S′µ

.
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Proof. For any π, the optimality equation (3.10) at s = S′ gives

U(g∗ + h∗(S′)) ≤ w(a) + CS′µ + (µS′ + a)h∗(S′ − 1) + (U − µS′ − a)h∗(S′),

which holds if and only if

Ug∗ + (µS′ + a)h∗(S′) ≤ w(a) + CS′µ + (µS′ + a)h∗(S′ − 1),

which holds if and only if

h∗(S′) − h∗(S′ − 1) ≤ w(a) + CS′µ − Ug

µS′ + a
, (3.16)

with equality if the chosen π is optimal. We therefore want to show the following

inequality for some a:

h(a) :=
w(a) + CS′µ − Ug∗

µS′ + a
<

C

1 + λ
S′µ

.

To show this, we use the inequality (3.7) on Ug∗ and choose s = π. This gives

h(π) < C

S′µ − λ−π
1+ λ

S′µ

µS′ + π
< C

S′µ + π

(µS′ + π)(1 + λ
S′µ)

<
C

1 + λ
S′µ

.

This concludes the proof by (3.16).

Therefore, for the initialization step we write the inequality (3.12) for s = S′ to

obtain

U
(
h∗(S′) − h∗(S′ − 1)

)
≥ µC +

(
U − µS′ − a − λ

S′

)
(h∗(S′) − h∗(S′ − 1))

+ (µ(S′ − 1) + a)(h∗(S′ − 1) − h∗(S′ − 2)),

which implies

(
µS′ + a +

λ

S′

)
(h∗(S′) − h∗(S′ − 1)) ≥ µC + (µ(S′ − 1) + a)(h∗(S′ − 1) − h∗(S′ − 2)),

which implies (using Lemma 3.9)

(
µ(S′ − 1) + a

)
(h∗(S′) − h∗(S′ − 1)) > (µ(S′ − 1) + a)(h∗(S′ − 1) − h∗(S′ − 2)),

which as desired gives h∗(S′) − h∗(S′ − 1) > h∗(S′ − 1) − h∗(S′ − 2). This new

inequality and Lemma 3.9 imply P(S′ − 1).
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Now, let us assume that the property P(s) is true for some i ≤ S′ − 1. We then have,

writing (3.12) with s = π∗
s and using the first inequality of P(s) (3.14),

U(h∗(s) − h∗(s − 1)) ≥ µC +

(
U − µs − a − λ

S′

)
((h∗(s) − h∗(s − 1))

+ (µ(s − 1) + a)(h∗(s − 1) − h∗(s − 2))

which implies

(
µs + a +

λ

S′

)
(h∗(s) − h∗(s − 1)) ≥ µC + (µ(s − 1) + a)(h∗(s − 1) − h∗(s − 2))

which implies

(µ(s − 1) + a) (h∗(s) − h∗(s − 1)) > (µ(s − 1) + a)(h∗(s − 1) − h∗(s − 2)) (3.17)

The inequality (3.17) comes from the second inequality of P(s) (3.14), and from its

first inequality we finally obtain both inequalities of P(s − 1).

Thus, h∗(s) − h∗(s − 1) > h∗(s − 1) − h∗(s − 2) and the backward induction is

complete. Since h∗ is strictly convex, with Proposition 3.5 we deduce that π∗ is

increasing.

3.3.2 Proof of Theorem 3.4(iii): Upper Bound on the Optimal Speed

We call for all a ≥ 0:

u(a) := w(a) + C
λ − a

1 + λ
S′µ

.

By definition, we recall that BS′

is the unique minimum of u, see (3.7). We also

have

Gπ
S′ =

∑

s∈S

νπ
s u(πs).

Proposition 3.10

If π∗ is an optimal increasing speed policy, then it is upper-bounded by BS′

, which

means π∗
s ≤ BS′

for all s ≤ S′.

Proof. We show this statement by contradiction. Let π∗ be an optimal increasing

speed policy. As π∗ is increasing, assume that π∗
S′ > BS′

. Let ν be the associated
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stationary measure. As π∗
S′ > BS′ ≥ 0 = π∗

0, we can define s0 > 0 as the smallest

state such that π∗
s0

> BS′

. Now, we can define the following policy

π̃s =





π∗
s if i < s0

BS′

if s ≥ s0

.

and let ν̃ denote its associated stationary measure. By definition, we notice that the

minimum of the function u is reached at BS′

. Moreover, for all i < s0, we get from

the local balance equations that νs > ν̃s. Indeed, when s ≥ s0 − 1:

νs+1

νs
=

λ
(
1 − s

S′

)

(s + 1)µ + π∗
s+1

<
ν̃s+1

ν̃s
,

with equality only when i < s0 − 1. It remains to show that the cost associated to

this new speed is lower than the original one. We have

Jπ∗ − J π̃ =
S′∑

s=0

νsu(π∗
s) −

S′∑

s=0

ν̃su(π̃s)

=
s0−1∑

s=0

(νs − ν̃s)u(π∗
s) +

S′∑

s=s0

νsu(π∗
s) −

S′∑

s=s0

ν̃su(BS′

)

>
s0−1∑

s=0

(νs − ν̃s)u(BS′

) +
S′∑

s=s0

νsu(BS′

) −
S′∑

s=s0

ν̃su(BS′

) > 0.

This contradicts the optimality of π∗ and concludes the proof.

3.3.3 Proof of Theorem 3.4(i): Uniqueness of the Optimal Policy

The following lemma gives a different expression for π∗
s using the notion of gen-

eralized inverse of the derivative w′ of w. First, since w is strictly convex, w′ is

continuous and well defined everywhere but on a countable subset Q ⊆ [0, amax].

Moreover, w′ is strictly increasing and diverges, so that we can correctly define the

inverse

w′−1 : y 7→ inf¶a ∈ [0, amax] \ Q, w′(a) ≥ y♢,

and w′−1 is increasing.
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Lemma 3.11

If π∗ is an optimal speed policy with bias function h∗, we can relate the variation

of the bias to the speed at a given state:

π∗
s = w′−1(∂h∗

s), ∀s ≥ 1

with ∂h∗
s := h∗(s) − h∗(s − 1) for s ∈ ¶1, . . . , S′♢.

Proof. Let π∗ be an optimal speed policy with bias function h∗. For s ≥ 1, the

optimality equation (3.10) can be written as

G∗
S′ = min

s
¶w(a) + Csµ − (µs + a)∂h∗

s + λs∂h∗
s+1♢, (3.18)

so that for any speed a:

w(π∗
s) − π∗

s∂h∗
s ≤ w(a) − a∂h∗

s.

This yields 



w(π∗

s )−w(a)
π∗

s −a ≤ ∂h∗
s for s ≤ π∗

s

w(π∗

s )−w(a)
π∗

s −a ≥ ∂h∗
s for s ≥ π∗

s .

Let Q = [0, amax] \ Q. These inequalities on ∂h∗
s give: w′(π∗−

s ) ≤ ∂h∗
s ≤ w′(π∗+

s ), so

that there are two possibilities. Either i) ∂h∗
s ∈ w′

(
Q
)

and w′(π∗
s) = ∂h∗

s, or ii) ∂h∗
s /∈

w′
(
Q
)
, so that π∗

s = w′−1(∂h∗
s) ∈ Q. In both cases, we have π∗

s = w′−1(∂h∗
s).

Proposition 3.12

The optimal speed policy is unique, and therefore Blackwell optimal.

Proof. Let π, π̃ be two optimal speed policies, h∗, h̃∗ their respective biases and

∂h, ∂̃h
∗

the respective variations of the biases. We will show by induction that the

variation of the speed and biases are equal.

We already have that π(0) = π̃(0) = 0. The optimality equation (3.10) for s = 0

then gives

∂h∗
1 = ∂̃h

∗
1 =

Ug∗

λ
=

G∗
S′

λ
.

Using Lemma 3.11, we then have π1 = w′−1(∂h∗
1) = w′−1(∂̃h

∗
1) = π̃1.
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Assume that for some s ≥ 1, πs = π̃s and ∂h∗
s = ∂̃h

∗
s. Writing (3.18) for both optimal

speeds, and using the assumption of the induction, we have ∂h∗
s+1 = ∂̃h

∗
s+1. Then

by using Lemma 3.11 again, πs+1 = w′−1(∂h∗
s+1) = w′−1(∂̃h

∗
s+1) = π̃s+1.

The induction is complete, so that the optimal speed policy is unique.

This completes the last part of the proof of Theorem 3.4.

3.4 Convergence of the Truncated MDPs

To show the convergence of the sequence of the truncated MDPs to the infinite one

as S′ goes to infinity, we first show monotonicity properties in S′. These guarantee

the existence of the limit and allow us to invoke the monotone convergence theorem

to show that this limit satisfies the optimality equation of the infinite MDP.

3.4.1 The Optimal Speed is Increasing in the Size of the State

Space

The next proposition states that the optimal cost is increasing in the number of

states.

Proposition 3.13

Let S′ ≥ 1. Then, G∗
S′ ≤ G∗

S′+1.

Proof. Let S′ ≥ 1 and let π be the optimal speed policy when the state space is

¶0, · · · , S′ + 1♢. Let π̃ be a speed policy for the MDP with state space ¶0, · · · , S′♢,

defined as the truncation of π: for s ≤ S′, π̃s = πs. Recall that X π̃ is the continuous

time Markov chain with speed policy π̃ on the reduced state space ¶0, · · · , S′♢, and

therefore cannot be compared directly with Xπ, which is defined on ¶0, · · · , S′ + 1♢.

42 Chapter 3 Optimal Control of a Large Queue: the Case of a DVFS Processor



Thus, let X̃ be the following discrete time Markov chain, with state space ¶0, · · · , S′+

1♢ and transition probabilities given by, for s ≤ S′ + 1,

p̃s,s′ =





1
U(S′+1) λ

(S′)
s if 1 ≤ s′ = s + 1 ≤ S′

1
U(S′+1) (πs + sµ) if 0 ≤ s′ = s − 1 ≤ S′ − 1

1
U(S′+1) Ū

(S′+1)
s if 0 ≤ s′ = s ≤ S′

1
U(S′+1) (U − (S′ + 1)µ − πS′+1) if s′ = s = S′ + 1

0 otherwise,

with U (S′+1) := 2λ+(S′ +1)µ+πmax, λ
(S′)
s := λ

(
1 − s

S′

)
and Ū

(S′+1)
s := U −λ

(S′)
s −

µs − πs.

With a slight abuse of notation, we denote by Xπ and X π̃ the uniformized Markov

chains with the same uniformization constant U (S′+1), so that we will be able to

compare both Markov chains defined with the same time step. Moreover, notice that

the Markov chain X̃ is not irreducible: the use of the last state is only to extend the

chain to a larger number of states while keeping the behavior of X̃ similar to the

one of X π̃.

In order to effectively compare X̃ and Xπ, we will now define a coupling (Ỹ , Y )

such that Ỹ and Y have the same distributions as X̃ and Xπ respectively. For each

time step k ∈ N, let A(k) be a uniformly distributed random variable on [0, U (S′+1)].

Ỹ (k+1) =





Ỹ (k) + 1 if A(k) ∈ [0, λ
(S′)

Ỹ (k)
] and Ỹ (k) ≤ S′

Ỹ (k) if A(k) ∈ [λ
(S′)

Ỹ (k)
, U (S′+1) − Ỹ (k)µ − π

Ỹ (k)
] and Ỹ (k) ≤ S′

Ỹ (k) if A(k) ∈ [0, U (S′+1) − Ỹ (k)µ − π
Ỹ (k)

] and Ỹ (k) = S′ + 1

Ỹ (k) − 1 if A(k) ∈ [U (S′+1) − Ỹ (k)µ − π
Ỹ (k)

, U (S′+1)] and any Ỹ (k),

and similarly:

Y (k + 1) =





Y (k) + 1 if A(k) ∈ [0, λ
(S′+1)
Y (k) ]

Y (k) if A(k) ∈ [λ
(S′+1)
Y (k) , U (S′+1) − Y (k)µ − πY (k)]

Y (k) − 1 if A(k) ∈ [U (S′+1) − Y (k)µ − πY (k), U (S′+1)].

By construction, if Ỹ (0) = Y (0), then we show by induction that for all n, Ỹ (k) ≤
Y (k).

We now check for all possible cases. For all s ≤ S′ + 1, λ
(S′)
s < λ

(S′+1)
s , therefore if

Ỹ (k) = Y (k), then Ỹ (k+1) ≤ Y (k+1). If Ỹ (k) = Y (k)−1 with Ỹ (k+1) = Ỹ (k)+1,
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then Y (k + 1) ≥ Y (k) by definition of U , as U − Y (k)µ − πY (k) ≥ λ ≥ λ
(S′)

Ỹ (k)
, and

therefore Y (k + 1) ≥ Ỹ (k + 1). In the remaining cases, Ỹ (k + 1) ≤ Y (k + 1).

Hence, for all k, Ỹ (k) ≤ Y (k), so that X̃ ≤st Xπ; here, ≤st denotes the stochastic

order [Shaked and Shanthikumar, 1994a]. As s 7→ c(s, πs) is increasing, this implies:

E
πc(X̃, π) ≤ E

πc(Xπ, π) = G∗
S′+1,

and we have

Gπ̃
S′ = E

π̃c(X π̃, π̃) = E
πc(X̃, π).

Therefore,

G∗
S′ ≤ Gπ̃

S′ ≤ Gπ
S′+1 = G∗

S′+1

as desired.

The next proposition states that the optimal speed policy is increasing in the size of

the state space.

Proposition 3.14

Let S′ ≥ 1 and let π(S′) be the unique optimal speed policy for the S′-th MDP.

Then, π
(S′)
s ≤ π

(S′+1)
s and ∂h

(S′)
s ≤ ∂h

(S′+1)
s for all s ≤ S′.

Proof. We use the expression of the optimal speed from Lemma 3.11 and the bias

function to show by induction on the states s ≥ 1 that:

∂h(S′)
s ≤ ∂h(S′+1)

s and π(S′)
s ≤ π(S′+1)

s , (3.19)

where ∂h
(S′)
s = h(S′)(s) − h(S′)(s − 1) and h(S′) is the bias function for the MDP with

state space ¶0, . . . , S′♢.

We first have that π
(S′)
0 = π

(S′+1)
0 = 0 and that

∂h
(S′)
1 =

G∗
S′

λ
≤ G∗

S′+1

λ
= ∂h

(S′+1)
1 ,

where the inequality comes from Proposition 3.13. Let us now assume that for some

s ≥ 1, ∂h
(S′)
s ≤ ∂h

(S′+1)
s and π

(S′)
s ≤ π

(S′+1)
s . ∂h

(S′)
s ≤ ∂h

(S′+1)
s , we directly have

that π
(S′)
s ≤ π

(S′+1)
s .
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To show the first inequality, we write the optimality equation (3.18) for S′ and S′ + 1

with their respective optimal speed, and subtract one from the other to get:

G∗
S′+1 − G∗

S′ = −(sµ + π(S′+1)
s )∂h(S′+1)

s + (sµ + π(S′)
s )∂h(S′)

s + λs(∂h
(S′+1)
s+1 − ∂h

(S′)
s+1).

Using Proposition 3.13 and the induction assumption, we get

λs(∂h
(S′+1)
s+1 − ∂h

(S′)
s+1) ≥ 0.

Then using Lemma 3.11, as ∂h
(S′)
s+1 ≤ ∂h

(S′+1)
s+1 and w′−1 is increasing,

π
(S′+1)
s+1 = w′−1(∂h

(S′+1)
s+1 ) ≥ w′−1(∂h

(S′)
s+1) = π

(S′)
s+1 .

The induction is therefore complete, and the optimal speed policy is increasing.

3.4.2 Convergence Results and Proof of Theorem 3.2

For the truncated MDP in discrete time, let g∗, π(S′) and h(S′) be the optimal average

cost, the optimal policy and its bias. They satisfy the optimality equation.

g∗ + h(S′)(i) =
1

U

(
c(s, π(S′)

s ) +
∑

s′

h(S′)(s′)pS′

s,s′(π(S′)
s )


∀s ≤ S′.

This implies that for the truncated model in continuous time, JS′ = Ug∗, π(S′) and

h(S′) also satisfy the optimality equation

GS′ = c(s, π(S′)
s ) +

∑

s′

h(S′)(s′)qS′

s,s′(π(S′)
s ) ∀s ≤ S′.

Furthermore, for all S′, GS′ ≤ Cλ by Lemma 3.6, π(S′) ≤ BS′ ≤ B by Theorem 3.4

and since the function w′ is increasing, h(S′)(s) ≤ sw′(B) for all s ≤ S′ by Lemma

3.11.

Now, by the monotonicity of GS′ (Proposition 3.13) and the monotonicity of π(S′)

and h(S′) (Proposition 3.14), they all converge to finite non-negative limits when S′

goes to infinity, denoted respectively by G∞, π(∞) and h(∞).

As for the rates, qS′

s,s′(a) also converges monotonically to qs,s′(a) and is continuous

in a. Finally, the immediate cost c is continuous in π. The monotone convergence

theorem implies that these limits satisfy an optimality equation,
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G∞ = c(s, π(∞)
s ) +

∑

s′

h(∞)(s′)qs,s′(π(∞)
s ) ∀s ∈ N.

This shows that these limits are respectively the optimal average cost (G∞), an

optimal policy (π(∞)) and its bias (h(∞)) for the original MDP. This completes the

proof of Theorem 3.2.

3.5 Cost and Deadline-Miss Probability Approximations

Our main result, Theorem 3.2, may suggest to consider the simple policy πB defined

by πB
s = B 1¶s>0♢ for all s ≥ 0, where B is defined in (3.4) and 1A is the indicator

function of the event A. Thus, πB uses constant speed B whenever the system is

busy. In this section, we numerically show that the dynamics induced by πB are

“close” to the ones induced by π∗ in the sense that the optimal average cost Jπ∗

is

very well approximated by GπB
. Then, we investigate mathematical properties of

the Markov chain induced by πB and we give an upper bound on the stationary

probability of missing deadlines as a function of the model parameters. In particular,

by varying the cost parameter C, this bound can be used to keep such probabilities

below a desired threshold.

In the following, we let νπB
denote the stationary probability of the Markov chain

induced by policy πB. Using the detailed balance equations, we obtain

νπB

s = νπB

0

λs

∏s
s′=1(µs′ + B)

, s ≥ 1

and, using
∑

s≥0 νπB

s = 1,

νπB

0 =


∑

s≥0

λs

∏s
s′=1(µs′ + B)




−1

=
µ

B

(
λ
µ

)B
µ

e
λ
µ γ
(

B
µ , λ

µ

) (3.20)

where γ(·, ·) is the lower incomplete gamma function.

We will refer to the following proposition, which can be proven by summing the

detailed balance equations of the underlying Markov chain as done in the proof of

Lemma 3.7; for this reason, we omit the proof.
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Proposition 3.15

Let X be distributed as νπB
. Then, E[X] = 1

µ(λ − B(1 − νπB

0 )).

3.5.1 Approximation of the Average Cost

By definition, the average cost induced by πB, GπB
, is an upper bound on the

optimal average cost, Gπ∗

. In particular,

Gπ∗ ≤ GπB
=
∑

s≥0

c(s, πB) νπB

s = Cµ
∑

s≥1

s νπB

s +
∑

s≥1

w(πB
s ) νπB

s (3.21a)

= C(λ − B(1 − νπB

0 )) + w(B)(1 − νπB

0 ). (3.21b)

where the last equality follows by Lemma 3.15.

3.5.2 Deadline-Miss Probabilities

Let us consider the probability pM that a job misses its deadline under the stationary

regime of policy πB. This is defined by

pM :=
∑

s≥1

νπB

s

1 − νπB

0

µs

µs + B
. (3.22)

Our objective here is to control pM by fine-tuning the model parameter C. In other

words, we want to design C such that pM remains below a given threshold. Though

the structure of νπB

0 in (3.20) implies that the exact relation between C and pM is

not trivial, this problem can be clearly solved numerically. Nonetheless, we aim at

developing an upper bound on pM allowing for a simple analytical evaluation.

The following proposition provides a first upper bound on pM .

Proposition 3.16

pM ≤ 1

1 − νπB

0

(
1 − µνπB

0

µ + B


− B

λ
. (3.23)
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Proof. This proposition is proven by the following inequalities

pM ≤
∑

s≥1

νπB

s

1 − νπB

0

µ(s + 1)

µ(s + 1) + B
=

µ

λ(1 − νπB

0 )

∑

s≥1

(s + 1)
λs+1

∏s+1
s′=1(µs′ + B)

νπB

0

=
1

1 − νπB

0

µ

λ

∑

s≥1

(s + 1)νπB

s+1 =
1

1 − νπB

0

(
1 − B

λ
(1 − νπB

0 )

)
− µ

µ + B

νπB

0

1 − νπB

0

(3.24)

=
1

1 − νπB

0

− B

λ
− µ

µ + B

νπB

0

1 − νπB

0

.

In (3.24), we have used Lemma 3.15.

By coupling the underlying Markov chain under πB with an auxiliary M/M/∞
queue with arrival rate λ and service rate µ + B, we notice that the state of the

former is stochastically dominated by the latter. Therefore, νπB

0 ≤ e
− λ

µ+B . Using that

the mapping x 7→ 1
1−x

(
1 − µx

µ+B

)
is increasing over [0, 1) and the previous inequality

on νπB

0 in (3.23), we obtain

pM ≤ pM =
1

1 − e
− λ

µ+B


1 − µe

− λ
µ+B

µ + B


− B

λ
. (3.25)

We notice that pM = 1 if B = 0 and that pM → 0 as B → ∞.

Now, this bound pM can also be used to adjust the cost of missed deadlines C so

that the proportion of jobs that miss their deadline will stay below some acceptable

level α.

Since Equation (3.25) cannot be inverted in close form, a first order Taylor expansion

gives pM ≈ µ
µ+B when B goes to infinity. Using the value B =

√
C/3 for the

classic power dissipation w(a) = a3 (see Remark 3.3), we get C ≈ 3µ2
(

1−pM
pM

)2
.

Therefore, C = 3µ2
(

1−α
α

)2
is the cost of missed deadlines that keeps the deadline-

miss probability below α.

3.5.3 Accuracy Assessment

By means of numerical calculations, we now evaluate the accuracy of the bound

in (3.21). For this purpose, we consider the two following set-ups. In the first one,

we focus on one acceptable value for the probability to miss a deadline under policy

πB and we consider that such an acceptable level is pM = 0.1. We let the deadline
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rate µ and the arrival rate λ vary in [0.1, 1] and [0.1, 50], respectively. Each value of

the couple (λ, µ) induces a unique value for B through equation (3.22) and for C

through equation (3.4). Then, for each value of (λ, µ), we compute the percentage

relative error

E :=
GπB − Gπ∗

Gπ∗
× 100 (3.26)

where GπB
and Gπ∗

are computed numerically by truncating the state space to some

S′ large enough so that increasing S′ does not change the average cost by more than

10−4; in all cases, S′ ≤ 250.

Figure 3.5 despicts the level sets for the values of E . We observe that E decreases
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Figure 3.5: Level sets of the percentage relative error E with a fixed miss probability
pM = 0.1. The darker (lighter) the zone, the higher (lower) the error.

as the arrival rate increases and that it is small under a wide set of parameters.

In particular, in heavy traffic conditions and with “large” deadlines the percentage

relative error can be smaller than 3%. Thus, we conclude that our approximation

is accurate within these conditions. On the other hand, in light load conditions

and with “short” deadlines, E can be above 20% and in this case the optimal speed

profile is more complex.

In the second set of experiments, we consider a fixed cost C instead of a fixed miss

probability. Specifically, we let C = 300, which implies that the upper bound on the

speed is B =
√

C/3 = 10. For each pair (λ, µ), we compute the relative error E for

policy πB compared with the optimal policy, π∗.

3.5 Cost and Deadline-Miss Probability Approximations 49



10 20 30 40 50

λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ

2
0
%

1
0
%

6
%

3
%

0

50

100

150

200

250

300

350

E

Figure 3.6: Level sets of the percentage relative error E with a fixed cost per deadline,
C = 300.

The corresponding results are displayed in Figure 3.6. Unlike for the case with fixed

probabilty, the error decreases sharply as the arrival rate λ increases. In particular,

the error is very small in heavy traffic (λ ≥ B = 10).

3.6 Conclusion and Perspectives

In a stochastic environment, it is well known that the problem of determining the

load-dependent speed profile that a DVFS processor should follow to minimize the

mean energy consumption under hard deadlines is difficult. In this chapter, the basic

idea is to follow a Lagrangian approach where hard deadlines are replaced by soft

deadlines, meaning that jobs are allowed to miss their deadline, though each missed

deadline comes with a penalty that can be fine-tuned to keep the proportion of jobs

missing their deadline as small as desired. The resulting advantage of this approach

stands in the ability of formulating the problem above as a Markov decision process

for which we can establish constructive structural results (Theorem 3.2). Beyond

the existence of monotone optimal policies, we have found that the optimal speed is

bounded from above by some constant that does not depend on the deadline and

the arrival rates, which may be quite surprising, and that such constant let us define

an extremely simple policy whose average cost is close to the optimal one.

There are some open questions that we leave as future research. First, we have

assumed that the available processing speeds vary continuously on a compact set.
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On the other hand, it may be convenient to consider the case where only a finite

number of speeds is available. Second, it is interesting to investigate whether our

results are insensitive to the job size and/or deadline distributions. This may be

justified by the fact that the proposed queueing system is somewhat similar, when

the speeds are bounded, to an M/M/∞ queue. Furthermore, if service times were to

follow a phase-type distribution, we could use again an MDP formulation to model

the problem but the analysis would require more work as the state space would

be much larger. Finally, we wonder whether the optimal policy could be “learned”

and, in this respect, how the proposed upper bound could speed up the learning

process.
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Reinforcement Learning in a

Birth-and-Death Process:

Breaking the Dependence of

the State Space

4

We introduced the example of a DVFS processor in Chapter 3 as a typical birth-and-

death process we could study, with an arbitrarily large number of states. In Chapter

2, we saw how we could compute bounds on the bias of any policy in this case, and

how the diameter would be exponentially large in a basic example. Considering

these particularities, we will discuss in this chapter how we can learn the transitions

and rewards in the DVFS example, were they unknown, using an adapted version

of UCRL2. This adaptation lets us tackle the diameter problem and use the specific

structure of a birth-and-death process to our advantage, despite the a priori longer

exploration time of the MDP.

4.1 Introduction

In the context of undiscounted reinforcement learning in Markov decision processes

(MDPs), it has been shown in the seminal work [Jaksch et al., 2010] that the total

regret of any learning algorithm with respect to an optimal policy is lower bounded

by Ω(
√

DSAT ), where S is the number of states, A the number of actions, T the

time horizon and D the diameter of the MDP. Roughly speaking, the diameter is

the mean time to move from any state s to any other state s′ within an appropriate

policy. In the literature, several efforts have been dedicated to approach this lower

bound. As a result, learning algorithms have been developed with a total regret

of Õ(DS
√

AT ) in [Jaksch et al., 2010], Õ(D
√

SAT ) in [Azar et al., 2017] and

even Õ(
√

DSAT ) according to [Tossou et al., 2019; Zhang and Ji, 2019]. These

results may give a sense of optimality since the lower bound is attained up to some

universal constant. However, lower bounds are based on the minimax approach,

which relies on the worst possible MDP with given D, A and S. This means that
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when a reinforcement learning algorithm is used on a given MDP, one can expect a

much better performance.

One way to alleviate the minimax lower bound is to consider structured reinforcement

learning, or equivalently MDPs with some specific structure. The exploitation of such

structure may yield more efficient learning algorithms or tighter regret analyses of

existing learning algorithms. In this context, a first example is to consider factored

MDPs [Boutilier et al., 2000; Guestrin et al., 2003], i.e., MDPs where the state

space can be factored into a number of components; in this case, roughly speaking,

S = Kn where n is the number of “factors’’ and K is the number of states in each

factor. The regret of learning algorithms in factored MDPs has been analyzed in

[Tian et al., 2020; Rosenberg and Mansour, 2020; Z. Xu and Tewari, 2020; Osband

and Roy, 2014] and it is found that the S term of existing upper bounds can be

replaced by nK. A similar approach is used in [Gast et al., 2021] to learn the

optimal policy in stochastic bandits with a regret that is logarithmic in the number

of states. There is also a line of research works that exploit the parametric nature

of MDPs. Inspired by parametric bandits, a d-linear additive model was introduced

in [Jin, Yang, et al., 2020], where it is shown that an optimistic modification of

Least-Squares Value Iteration, see [Osband, Van Roy, et al., 2016], achieves a regret

over a finite horizon H of Õ(
√

d3H3T ) where d is the ambient dimension of the

feature space (the number of unknown parameters). In this case, the regret does

not depend on the number of states and actions and the diameter is replaced by

the horizon. A discussion about the inapplicability of this approach to our case is

postponed to Section 4.3.2.

The regret bounds discussed above and the discussion on the scaling of the diameter

in Lemma 2.3 may suggest that the total regret of existing learning algorithm, when

applied to queueing systems, is large. However, they often work well in practice and

this bring us to consider the following question:

When the underlying MDP has the structure of a queueing system, do the diameter D

or the number of states S actually play a role in the regret?

Our Contribution. In this chapter, we examine the previous question with respect to

the class of control problems presented in Chapter 3. Specifically, an infinite sequence

of jobs joins a service system over time to receive some processing according to

the first-come first-served scheduling rule; the system can buffer at most S′ jobs

and in fact it corresponds to an M/M/1/S’ queue. In addition, each job comes

with a deadline constraint, and if a job is not completed before its deadline, then it

becomes obsolete and is removed from the system. The controller chooses the server
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processing speed and the objective is to design a speed policy for the server that

minimizes its average energy consumption plus an obsolescence cost per deadline

miss. Although this may look quite specific, this problem captures the typical

characteristics of a controlled queue: i) the transition matrix has the structure of

a birth-and-death process with jump probabilities that are affine functions of the

state and ii) the reward is linear in the state and convex in the action. For any

MDP in this class, defined in full details in Section 4.2, we show that the diameter

is D = Ω(SS−2); see Subsection 4.5.2. Thus, without exploiting the particular

structure of this MDP, the existing lower and upper bounds do not justify the reason

why standard learning algorithms work efficiently here.

We provide a slight variation of the learning algorithm UCRL2, introduced in [Jaksch

et al., 2010], and show in our main result that the resulting regret is upper bounded

by Õ(
√

E2AT ) where E2 is a term that depends on the stationary measure of a

reference policy defined in Section 4.2.1. Importantly, E2 does not depend on S.

Thus, efficient reinforcement learning can be achieved independently of the number

of states by exploiting the stationary structure of the MDP. Let us provide some

intuition about our result. First, one may think that any learning algorithm should

visit each state a sufficient number of times, which justifies why the diameter of

an MDP appears in existing regret analyses. However, this point of view does not

take into account the fact that the value of an MDP is the scalar product of the

reward and the stationary measure of the optimal policy. If this stationary measure

is “highly non-uniform”, then some states are rarely visited under the optimal policy

and barely contribute to the value. In this case, we claim that the learner may not

need to visit the rare states that often to get a good estimation of the value, and thus

it may not need to pay for the diameter.

This chapter is based on the published work [Anselmi, Gaujal, and Rebuffi, 2022].

4.2 Controlled Birth-and-Death Processes for Energy

Minimization

We place ourselves in the reinforcement learning framework presented in Sec-

tion 2.2.

We will focus on a specific class of MDPs that has been introduced in Chapter 3,

which provides a rather general example of a controlled birth-and-death process with

convex costs on the actions and linear rates. We will denote by M the set of MDPs
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with the structure described below. The MDPs in M have been proposed to represent

a Dynamic Voltage and Frequency Scaling (DVFS) processor executing jobs with soft

obsolescence deadlines. Here, jobs arrive according to a Poisson process with rate

λ ∈ [λmin, λmax] in a buffer of size S′ = S − 1. If the buffer is full and a job arrives,

then the job is rejected. Each job has a deadline and a size, i.e., amount of work,

which are exponentially distributed random variables with rates µ ∈ [µmin, µmax]

and one, respectively. Job deadlines and sizes are all independent random variables.

If a job misses its deadline, which is a real time constraint activated at the moment

of its arrival, it is removed from the queue without being served and a cost C is

paid. The processor serves jobs under any work-conserving scheduling discipline,

e.g., first-come first-served, with a processing speed that belongs to the finite set

¶0, . . . , amax♢. The objective is to design a speed policy that minimizes the sum of

the long term power dissipation and the cost induced by jobs missing their deadlines.

When the processor works at speed a ∈ ¶0, . . . , amax♢, it processes a units of work

per second while its power dissipation is w(a).

After uniformization, it is shown in Chapter 3 that this control problem can be

modeled as an MDP in discrete time with a “birth-and-death” transition matrix of

size S. Specifically, we have an MDP M = (S, A, P, r) where S = ¶0, . . . , S′♢, with

s ∈ S representing the number of jobs in the system, and A = ¶0, . . . , amax♢, with

a ∈ A representing the processor speed. Then, the transition probabilities under

policy π are given by

Ps,s′(π) =





1
U λs if s < S′ and s′ = s + 1

1
U (π(s) + sµ) if s > 0 and s′ = s − 1

Ps,s if s′ = s

0 otherwise,

where U := λmax + S′µmax + amax is a uniformization constant, Ps,s = 1
U (U − λs −

µs − π(s)) and λs := λ
(
1 − s

S′

)
is the decaying arrival rate. We have replaced the

constant arrival rate λ by a decaying arrival rate λi because we want to learn an

optimal policy that does not exploit the buffer size S′; see Chapter 3 for further

details. For conciseness, Figure 4.1 displays the transition diagram of the Markov

chain induced by policy π.

Finally, the reward is a combination of C, the constant cost due to a departing

job missing its deadline and w(a), an arbitrary convex function of a, giving the

energy cost for using speed a. The immediate cost c(s, a) in state s under action

a is a random variable whose value is w(a)/U + C with probability sµ/U (missed

deadline) and w(a)/U otherwise. To keep in line with the use of rewards instead of
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0 • • • s − 1 s s + 1

1
U (sµ + π(s))

λs
U

Ps,s

• • • S′

Figure 4.1: Transition diagram of the Markov chain induced by policy π of an MDP in M.

costs, we introduce a bound on the cost, rmax := C + w(amax)/µ so that the reward

in state s under action a is a positive and bounded random variable given by

R(s, a) := rmax − c(s, a). (4.1)

As defined in Chapter 2 g∗(M) is the optimal average cost and g(M, π) is the average

cost induced by policy π, where π belongs to the set of deterministic and stationary

policies Π. Since the underlying Markov chain induced by any policy is ergodic, we

observe that

g(M, π) =
S′∑

s=0

E[r(s, π(s))]νπ
s , (4.2)

where νπ is the stationary measure under policy π. In Chapter 3, it has been shown

that the optimal policy is unique and will be denoted by π∗.

4.2.1 Properties of M

In the following, we will use the “reference” (or bounding) policy π0(s) = 0 for all

s ∈ S, which thus assigns speed 0 to all states. This policy provides a stochastic

bound on all policies in the following sense. Let sπ
t be the state under policy π and

let ≤st denote the stochastic order [Shaked and Shanthikumar, 1994b]; given two

random variables X and Y on R+, we recall that X ≤st Y if P(X ≥ s) ≤ P(Y ≥ s)

for all s.

Lemma 4.1

Consider an MDP in M. For all t and policy π ∈ Π, sπ
t ≤st sπ0

t , provided that

sπ
1 ≤st sπ0

1 .

4.2 Controlled Birth-and-Death Processes for Energy Minimization 57



Proof. (sketch) The proof follows by a simple coupling argument between the two

policies. Roughly speaking, each time the Markov chain under π decreases from s to

s − 1 because of the speed π(s), it stays in state s under policy π0.

Therefore, P(sπ
t ≥ s) ≤ P(sπ0

t ≥ s) for all s and t, which also implies that the

respective stationary measures are comparable, i.e.,
∑S′

i=s νπ
i ≤ ∑S′

i=s νπ0

i .

Let us now consider hπ(s), the bias at state s of a policy π, defined by

hπ(s) := E
π

 ∞∑

t=1

(r (sπ
t , π(sπ

t )) − gπ(M)) ♣ sπ
1 = s

]
, ∀ 0 ≤ s ≤ S′. (4.3)

Let also ∂hπ(s) := hπ(s) − hπ(s − 1) be the local variation of the bias.

The following result on the variations of the bias holds (see Proposition 2.5):

Lemma 4.2

The local variation of the bias ∂hπ(s) is bounded: ♣∂hπ(s)♣ ≤ ∆(s) with ∆(s) :=

2rmaxeλ/µ(1 + log s) for all 1 ≤ s ≤ S′.

Both νπ0
and ∆ will play a major role in our analysis of the regret.

4.2.2 Applying Ucrl2 in M

We assume that the bounds λmin, λmax, µmin and µmax are fixed so that rmax is

known to the learner. This is a classical assumption, often replaced by assuming that

rewards live in [0, 1].

In the remainder, we will apply UCRL2 over an MDP in M with a change in the

confidence bounds to take into account the support of P . Indeed we impose that the

confidence set Mk only contains matrices with the same support as P . Moreover,

the confidence bounds of UCRL2 (see Chapter 2) are replaced by:

∀(s, a), ♣r̃(s, a) − r̂k(s, a)♣ ≤ rmax

√
2 log (2Atk)

max ¶1, Ntk
(s, a)♢ (4.4)

∀(s, a), ∥p̃(·♣s, a) − p̂k(·♣s, a)∥1 ≤
√

8 log (2Atk)

max¶1, Ntk
(s, a)♢ (4.5)
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Removing S in the confidence bounds does help to reduce the regret. However,

by using existing analysis, this only removes a factor
√

S in the regret bound (for

example, see [Azar et al., 2017]).

This adapted version of UCRL2 can be rewritten as follows:

Algorithm 2: The adapted UCRL2 algorithm.

1 Set t = 1, k = 1;

2 while t ≤ T do

3 Initialize episode k with tk := t

4 Compute the confidence region Mk as in (4.5);

5 Find a policy π̃k and an optimistic MDP M̃k ∈ Mk with “Extended Value

Iteration” such that

g(M̃k, π̃k) ≥ max
Mk∈Mk

max
π

g(Mk, π) − δmax√
tk

. (4.6)

6 Exploration: while Vk(st, π̃k(st)) < max¶1, Ntk
(st, π̃k(st))♢, do

1. Choose action at = π̃k(st);

2. Observe st+1;

3. Update Vk(st, at) := Vk(st, at) + 1;

4. Set t := t + 1.

Finally, note that Algorithm 2 does not benefit from the parametric nature of the

MDPs in M, which is essentially defined by three parameters (λ, µ and C) and the

real convex function w(·).

4.3 Regret of the Adapted Ucrl2 Algorithm on M

Our objective is to develop an upper bound on the regret of the learning Algorithm 2

when applied to MDPs in our class M. The driving idea is to construct a bound that

exploits the structure of the stationary measure of all policies, as they all make some

states hard to reach, and to control the number of visits to these states to get a new

type of bound.
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4.3.1 Main Result

The following theorem gives an upper bound on the regret that does not depend on

the classical parameters such as the size of the state space nor on global quantities

such as the diameter of the MDP nor the span of the bias of some policy. Instead,

the regret bound below mainly depends on the weighted second moment of the

stationary measure of the reference policy π0, which is bounded independently of

the size of the state space.

We consider the policy πmax such that πmax(s) = amax for all s and νπmax
its station-

ary measure.

Let us also recall that νπ0
is the stationary measure of the Markov chain under policy

π0(s) = 0 for all s and that ∆ : S → R
+ is a function bounding the local variations

of the optimal bias. Let E2 := F E
π0 [

(∆ + rmax)2 · f
]

with f : s 7→ max¶1,s(s−1)♢
(∆(s+1)+rmax)2

and F :=
∑

s∈S f(s)−1. Here, E2 is closely related to the second moment of the

measure νπ0
weighted by the bias variations and the maximal reward.

Theorem 4.3

Let M ∈ M. Define Qmax :=
(

10D
νπmax (S′)

)2
log

((
10D

νπmax (S′)

)4
)

. Then, assuming

T ≥ max¶ e8

2A , S2A2♢ and SA > 4,

E [Reg(M, Algorithm 2, T )] ≤ 19
√

E2AT log (2AT )

+ 97rmaxD2SA max¶Qmax, T 1/4♢ log2(2AT ). (4.7)

Here, E2 ≤ 60e2λ/µ r2
max

(
1 + λ2

µ2

)
, so that the regret satisfies

E [Reg(M, Algorithm 2, T )] = O


rmaxeλ/µ

√
AT

(
1 +

λ2

µ2

)
log (AT )


 .

Before giving a sketch of the proof, let us comment on the bound (4.7). Although

the first term is of order
√

T with a multiplicative constant independent of S - as

desired - the second term, of order T 1/4, contains very large terms. However, its

interest lies in the novel approach used in the proof that uses the stationary behavior

of the algorithm.
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4.3.2 Comparison with Other Bounds

Let us compare our upper bound with the ones existing in the literature, as we claim

that ours is of a different nature.

First, let us compare with the bound given in [Jaksch et al., 2010], which states

that with probability 1 − δ, Reg(M, T ) ≤ 34DS

√
AT log

(
T
δ

)
for any T > 1. For any

M ∈ M, the diameter grows as SS (see Subsection 4.5.2), thus this bound is very

loose here. More recent works have improved this bound by replacing the term D by

the local diameter of the MDP [Bourel et al., 2020]. In Subsection 4.5.2, we show

that the local diameter grows again as SS for any M ∈ M, and thus these results

do not yield significant improvements. Other papers show that the diameter can be

replaced by the span of the bias, see [Fruit, Pirotta, Lazaric, and Ortner, 2018; Zhang

and Ji, 2019]. This has a big impact because the span of the bias, for any M ∈ M,

is linear in S (instead of SS for the diameter); see Subsection 4.5.2. However,

this is still not as good as the bound given in Theorem 4.3, which is asymptotically

independent of S.

Now, let us compare with existing bounds for parametric MDPs, as mentioned in

the introduction. The d-linear additive model, d < S, introduced in [Jin, Yang,

et al., 2020] assumes that P (·♣s, a) = ⟨ϕ(s, a), θ(·)⟩, where ϕ(s, a) is a known feature

mapping and θ is an unknown measure on R
d. This form of P (·♣s, a) implies that

the transition kernel is of rank d. Unfortunately, this property does not hold true

in birth-and-death processes. In fact, the kernel of any M ∈ M has almost full

rank under all policies. The linear mixture model introduced in [Zhou et al., 2021]

assumes instead that P (s′♣s, a) = ⟨ϕ(s′♣s, a), θ⟩, θ ∈ R
d. This is more adapted to our

case, which can be (almost) seen as a linear mixture model of dimension d = 3. The

bound on the discounted regret of the algorithm proposed in [Zhou et al., 2021]

is Reg(M, T ) ≤ d
√

T/(1 − γ)2 where γ is a discount factor. In contrast to our work,

this regret analysis holds for discounted problems, where we remark that both the

diameter and the span are irrelevant. On the other hand, both are replaced by a

term of the form (1 − γ)−2, which implies that the previous bound grows to infinity

as γ ↑ 1. More recently, a regret bound of O(d
√

DT ) has been proven in [Wu et al.,

2022] in the undiscounted case, that is the case considered in our work. However,

the algorithm presented in that reference highly depends on the diameter and is

unsuitable for MDPs with a birth-and-death structure.

Finally, our bound depends on the second moment of the stationary measure of a

reference policy, i.e., E2, which can be bounded independently of the state space

size. This is structurally different from the ones existing in the literature. We believe
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that this structure holds as well in a class of MDPs much larger than M. In particular,

if ν is the stationary measure of some bounding/reference policy, and if the critical

quantity Eν [∆ · f ] is small for a well chosen function f , then the regret of a learning

algorithm navigating the MDP should also be small. A deeper analysis is left as

future work.

4.3.3 Sketch of the Proof

Our proof for Theorem 4.3 is technical and will be provided in Section 4.4. First, in

this section, we present the main ideas and its general structure. It initially relies on

the regret analysis of UCRL2 developed in [Jaksch et al., 2010], and the differences

are highlighted below. First, we consider the mean rewards and split the regret into

episodes to separately treat the cases where the true MDP is in the confidence set of

optimistic MDPs Mk or not. Thus, let Rk :=
∑

s,a Vk(s, a)(g∗ − r(s, a)) denote the

regret in episode k. This split can be written:

E [Reg(M, T )] ≤ E [Rin] + E [Rout] ,

where Rin :=
∑

k Rk1M∈Mk
and Rout :=

∑
k Rk1M /∈Mk

.

To control Rout, we use, as in [Jaksch et al., 2010], the stopping criterion and the

confidence bounds. This gives E [Rout] ≤ rmaxS, so that the regret due to episodes

where the confidence regions fail will be negligible next to the main terms. Then,

when the true MDP belongs to the confidence region, we use the properties of

Extended Value Iteration (EVI) to decompose Rin into

∑

k,s,a

Vk(s, a)(r̃k − r(s, a))

︸ ︷︷ ︸
Rrewards

+
∑

k

Vk

(
P̃k − I

)
h̃k

︸ ︷︷ ︸
Rbias

+
∑

k

Vk

(
P̃k − I

)
dk + 2rmax

∑

k,s,a

Vk(s, a)√
tk

︸ ︷︷ ︸
REVI

,

where we let Vk be also the vector of the state-action counts, P̃k and h̃k are respec-

tively the transition matrix and the bias in M̃k under policy π̃k, and dk is the profile

difference between the last step of EVI and the bias (see Subsection 4.4.3).
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We now show how to handle Rrewards, REVI, Rbias. First, we deal with the terms

that do not involve the bias. Using the confidence bound on the rewards (see

Subsection 4.4.3:

Rrewards ≤ rmax2
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
. (4.8)

Now, let us consider REVI. Since dk becomes arbitrarily small after enough iterations

of EVI (see Subsection 4.4.1), for T ≥ e8

2AT , we get

REVI ≤ rmax2
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
. (4.9)

The analysis of Rbias is different from the one in [Jaksch et al., 2010]: While in

[Jaksch et al., 2010] the bias is directly bounded by the diameter, we can use the

variations of the bias to control the regret more precisely. Using Pk and hk, i.e.,

the transitions and the bias in the true MDP under π̃k, Rbias is further decomposed

into:

∑

k

Vk

(
P̃k − Pk

)
hk

︸ ︷︷ ︸
Rtrans

+
∑

k

Vk

(
P̃k − Pk

) (
h̃k − hk

)

︸ ︷︷ ︸
Rdiff

+
∑

k

Vk (Pk − I) h̃k

︸ ︷︷ ︸
Rep

.

The term Rep can be treated in a similar manner as in [Jaksch et al., 2010] by

bounding the bias terms with the diameter to apply an Azuma-Hoeffding inequality

(see Subsection 4.4.3). Here, we obtain

E [Rep] ≤ SAD rmax log2

(
8T

SA

)
.

Next, we show in Subsection 4.4.3 that Rdiff does not contribute to the main term

of the regret. This is one of the hard point in our proof. First, linear algebra

techniques are used to bound ♣♣h̃k − hk♣♣∞ by D(2rmaxD♣♣P̃k − Pk♣♣∞ + ♣♣r̃k − rk♣♣∞).

Each norm is then bounded using Hoeffding inequality. This introduces the special

quantity Ntk
(xk, πk(xk)) that yields to the worst confidence bound in episode k.

Then, an adaptation of McDiarmid’s inequality to Markov chains is used to show

that Ntk
(xk, πk(xk)) ≥ (tk+1 − tk)νπmax

(S′)/2 with high probability, where νπmax
(S′)

is the stationary measure of state S′ under the uniform policy πmax(s) = amax. This

eventually implies that

E [Rdiff] ≤ 96rmaxD2SA max¶Qmax, T 1/4♢ log2(2AT ),
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where Qmax :=
(

10D
νπmax (S′)

)2
log

((
10D

νπmax (S′)

)4
)

.

Then, to deal with the main term Rtrans, we exploit the optimal bias. The unit vector

being in the kernel of P̃k − Pk, we can rewrite:

Rtrans =
∑

k

∑

s

∑

s′

Vk (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
·
(
h∗(s′) − h∗(s)

)

and, thus, using the confidence bound and the bounded variations of the bias,

Rtrans ≤ 4
√

2 log (2AT )
∑

k

∑

s,a

∆(s + 1)Vk(s, a)√
max¶1, Ntk

(s, a)♢
.

We can now aggregate Rtrans, Rrewards and REVI to compute the main term of the

regret (see Subsection 4.4.3). Here, the key ingredient is to bound

∑

k,s,a

(∆(s + 1) + rmax)Vk(s, a)√
max¶1, Ntk

(s, a)♢

independently of S. This is the second main difference with [Jaksch et al., 2010].

Instead of exploring the MDP uniformly, we know that the algorithm will mostly

visit the first states of the MDP, regardless of the chosen policy. As shown in [Jaksch

et al., 2010], for a fixed state s:

E


∑

a

∑

k

Vk(s, a)√
max¶1, Ntk

(s, a)♢


 ≤ 3

√
E [NT (s)] A.

Now, instead of summing over the states, we can use properties of stochastic ordering

to compare the mean number of visits of a state with the probability measure νπ0
;

here, we strongly rely on the birth-and-death structure of the MDPs in M. For any

non-negative non-decreasing function f : S → R
+, we obtain

E


∑

s≥0

f(s)Nt(s)


 ≤ t

∑

s≥0

f(s)νπ0
(s). (4.10)

Let us choose f : s 7→ max¶1,s(s−1)♢
(∆(s+1)+rmax)2 and let F :=

∑
s f(s)−1 ≤ 60e2λ/µr2

max. Define

also E2 := FE
π0 [

(∆ + rmax)2 · f
]
. Then,

E


∑

k

∑

s,a

(∆(s) + rmax)Vk(s, a)√
max¶1, Ntk

(s, a)♢


 ≤ 3

√
E2AT.
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In Subsection 4.4.3, we further show that E2 ≤ 60e2λ/µr2
max

(
1 + λ2

µ2

)
. Therefore,

for the three main terms, we obtain

E [Rtrans + Rrewards + REVI] ≤ 19
√

E2AT log (2AT ) (4.11)

and we conclude our proof by combining all of these terms.

4.4 Proof of Theorem 4.3

From now on, the following sections are organized as follows: We first provide some

insights on extended value iterations useful in our construction of the regret.Then,

the detailed proof of theorem 4.3 is given with bounds on the five terms in our

decomposition of the regret. A final section provides technical lemmas about MDPs

in M.

4.4.1 Extended Value Iteration

For each episode k, we use the extended value iteration algorithm described in

[Jaksch et al., 2010] to compute π̃k and M̃ ∈ Mk, an optimistic policy and MDP.

The values we iteratively get are defined in the following way:

u
(k)
0 (s) = 0

u
(k)
i+1(s) = max

a∈A

{
r̃(s, a) + max

p(·)∈P(s,a)

{
∑

s∈S

p(s′)u(k)
i (s′)

}}
, (4.12)

where r̃ is the maximal reward from (4.4) and P(s, a) is the set of probabilities from

(4.5).

Now, from [Jaksch et al., 2010, Theorem 7], we obtain the following lemma on the

iterations of extended value iteration.

Lemma 4.4

For episode k, denote by i the last step of extended value iteration, stopped when:

max
s

¶u
(k)
i+1(s) − u

(k)
i (s)♢ − min

s
¶u

(k)
i+1(s) − u

(k)
i (s)♢ <

rmax√
tk

. (4.13)
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The optimistic MDP M̃k and the optimistic policy π̃k that we choose are so that

the gain is rmax√
tk

− close to the optimal gain:

g̃k := min
s

g(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

g(M ′, π, s′) − rmax√
tk

. (4.14)

Moreover from [Martin L. Puterman, 1994, Theorem 8.5.6]:

∣∣∣u(k)
i+1(s) − u

(k)
i (s) − g̃k

∣∣∣ ≤ rmax√
tk

, (4.15)

and when the optimal policy yields an irreducible and aperiodic Markov chain, we

have that g̃k = g(M̃k, π̃k, s) for any s, so that we can define the bias:

h̃k(s1) = Es1

 ∞∑

t=1

(r̃(st, at) − g̃k)

]
. (4.16)

By choosing iteration i large enough, from [Martin L. Puterman, 1994, Equa-

tion 8.2.5], we can also ensure that:

∣∣∣u(k)
i (s) − (i − 1)g̃k − h̃k(s)

∣∣∣ <
rmax

2
√

tk
, (4.17)

so that we can define the following difference

dk(s) :=
∣∣∣u(k)

i (s) − min
s

u
(k)
i (s) −

(
h̃k(s) − min

s
h̃k(s)

)∣∣∣ <
rmax√

tk
. (4.18)

4.4.2 Regret when M is out of the Confidence Bound

Let us compute E[Reg], the expected regret. We will mainly follow the approach in

[Jaksch et al., 2010, Section 4], with a few tweaks. We start by splitting the regret

into a sum over episodes and states.

We remind that r(s, a) is the overall mean reward and NT (s, a) the total count of

visits. We also define Rk(s) :=
∑

a Vk(s, a)(g∗ − r(s, a)) the regret at episode k

induced by state s, with Vk(s, a) the number of visit of (s, a) during episode k and

KT the number of episodes at time T .

Let Rin :=
∑

s

∑KT
k=1 Rk(s)1M∈Mk

and Rout :=
∑

s

∑KT
k=1 Rk(s)1M /∈Mk

. We therefore

have the split:

E [Reg] ≤ E [Rin] + E [Rout] . (4.19)
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Now, let Vk(s) =
∑

a Vk(s, a) and denote by M(t) the set of MDPs Mk such that

tk ≤ t < tk+1. For the terms out of the confidence sets, we have:

Rout ≤ rmax

∑

s

KT∑

k=1

Vk(s)1M /∈Mk

≤ rmax

∑

s

KT∑

k=1

Ntk
(s)1M /∈Mk

using the stopping criterion

= rmax

T∑

t=1

∑

s

KT∑

k=1

1tk=tNt(s)1M /∈M(t) ≤ rmax

T∑

t=1

∑

s

Nt(s)1M /∈M(t)

= rmax

T∑

t=1

1M /∈M(t)

∑

s

Nt(s) ≤ rmax

T∑

t=1

t1M /∈M(t).

Taking the expectations:

E [Rout] ≤ rmax

T∑

t=1

tP ¶M /∈ M(t)♢

≤ rmax

T∑

t=1

tS

2t3
≤ rmax

T∑

t=1

S

2t2
by Lemma 4.7

≤ rmaxS. (4.20)

Thus, we have dealt with the cases where the MDP M did not belong to any

confidence set, for some episodes. We now need to deal with the rest.

4.4.3 Regret Terms when M is in the Confidence Bound

We now assume that M ∈ Mk and deal with the terms in the confidence bound, so

that we can omit the repetitions of the indicator functions. For each episode k, let

Rin,k :=
∑

s Rk.

We defined π̃k the optimistic policy computed at episode k, now define P̃k :=

(p̃k(s′♣s, π̃k(s))) the transition matrix of that policy on the optimistic MDP M̃k. We

also let Vk be the row vector of visit counts during episode k. Following the same
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steps as in [Jaksch et al., 2010], we get the inequality on the regret of episode k,

assuming M ∈ Mk, using Lemma 4.4:

Rin,k =
∑

s,a

Vk(s, a)(g∗ − r(s, a))

≤
∑

s,a

Vk(s, a)(g̃k − r(s, a)) + rmax

∑

s,a

Vk(s, a)√
tk

=
∑

s,a

Vk(s, a)(g̃k − r̃k(s, a)) +
∑

s,a

Vk(s, a)(r̃k − r(s, a)) + rmax

∑

s,a

Vk(s, a)√
tk

.

Then with (4.15) and using the definition of the iterated values from EVI, we have

for a given state s and as := π̃k(s):

∣∣∣∣∣(g̃k − r̃k(s, as)) −
(
∑

s′

p̃k(s′♣s, as)u
(k)
i (s′) − u

(k)
i (s)

∣∣∣∣∣ ≤ rmax√
tk

,

so that:

Rin,k ≤ Vk

(
P̃k − I

)
ui +

∑

s,a

Vk(s, a)(r̃k − r(s, a)) + 2rmax

∑

s,a

Vk(s, a)√
tk

.

Remember that for any state s: ♣dk(s)♣ ≤ rmax√
tk

, where h̃k is the bias of the average

optimal policy for the optimistic MDP, and:

dk(s) :=
(
u

(k)
i (s) − min

x
u

(k)
i (x)

)
−
(
h̃k(s) − min

x
h̃k(x)

)
.

Notice that the unit vector is in the kernel of
(
P̃k − I

)
. Therefore, in the first term,

we can replace ui by any translation of it. We get:

Vk

(
P̃k − I

)
ui = Vk

(
P̃k − I

)
h̃k + Vk

(
P̃k − I

)
dk.

so that:

Rin ≤
∑

k

∑

s,a

Vk(s, a)(r̃k − r(s, a))

︸ ︷︷ ︸
Rrewards

+
∑

k

Vk

(
P̃k − I

)
h̃k

︸ ︷︷ ︸
Rbias

+
∑

k

Vk

(
P̃k − I

)
dk + 2rmax

∑

k

∑

s,a

Vk(s, a)√
tk

︸ ︷︷ ︸
REVI

.
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Then, using reward boounds (4.4), as M ∈ Mk, and noticing that Ntk
≤ tk:

Rrewards ≤ rmax2
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
. (4.21)

For the term Vk

(
P̃k − I

)
dk, which does not appear in the analysis of [Jaksch et al.,

2010], we obtain

Vk

(
P̃k − I

)
dk ≤

∑

s

Vk (s, π̃k(s)) · ∥p̃k (·♣s, π̃k(s)) − 1s∥1 · sup
s′

♣dk(s′)♣

≤ 2rmax

∑

s

Vk (s, π̃k(s))√
tk

≤ 2rmax

∑

s,a

Vk (s, a)√
tk

≤ 2rmax

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
,

where in the last inequality we used that max¶1, Ntk
(s, a)♢ ≤ tk ≤ T . Thus, for

T ≥ e8

2A the regret term coming from the consequences and approximations of EVI

satisfies

REVI ≤ rmax2
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
. (4.22)

Now, by defining Pk and hk the transition matrix and the bias of the optimistic policy

π̃k in the true MDP M , we have the following decomposition of the middle term:

∑

k

Vk

(
P̃k − Pk

)
hk

︸ ︷︷ ︸
Rtrans

+
∑

k

Vk

(
P̃k − Pk

) (
h̃k − hk

)

︸ ︷︷ ︸
Rdiff

+
∑

k

Vk (Pk − I) h̃k

︸ ︷︷ ︸
Rep

.

Overall:

Rin ≤
∑

k

Vk

(
P̃k − Pk

)
hk

︸ ︷︷ ︸
Rtrans

+
∑

k

Vk

(
P̃k − Pk

) (
h̃k − hk

)

︸ ︷︷ ︸
Rdiff

+
∑

k

Vk (Pk − I) h̃k

︸ ︷︷ ︸
Rep

+ rmax4
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, Ntk

(s, a)♢
︸ ︷︷ ︸

REVI+Rrewards

. (4.23)

Bound on Rtrans

Let us deal with the first term Rtrans. To bound this term, we will use our knowledge

of the bias in the true MDP hk and on the control of the difference of the transition

matrices, and for the second term we will control the difference of the biases.
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Notice that for a fixed state 0 ≤ s ≤ S′:

∑

s′

p
(
s′♣s, π̃k(s)

)
hk(s′) =

∑

s′

p
(
s′♣s, π̃k(s)

) (
hk(s′) − hk(s)

)
+ hk(s).

The same is true for p̃k, and knowing the MDP is a birth-and-death process:

Rtrans =
∑

k

∑

s

∑

s′

Vk (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
· hk(s′)

=
∑

k

∑

s

∑

s′

Vk (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
·
(
hk(s′) − hk(s)

)

≤
∑

k

∑

s

Vk (s, π̃k(s)) · ∥p̃k (·♣s, π̃k(s)) − p (·♣s, π̃k(s))∥1 max¶∆(s), ∆(s + 1)♢

≤ 4
√

2 log (2AT )
∑

k

∑

s,a

∆(s + 1)Vk(s, a)√
max¶1, Ntk

(s, a)♢
,

where in the last inequality, we used the knowledge on the bounded variations of

the bias from Lemma 4.2, and that the optimistic MDP has transitions close to the

true transitions.

Bound on Rdiff

We now deal with the term involving the difference of bias, Rdiff. For each episode k

with policy πk, denote by xk the state such that the confidence bounds are at their

worst and denote by ak := πk(xk) the corresponding action used at this state, so

that Ntk
(xk, ak) is minimal. We therefore have that

√
log(2Atk)

max¶1,Ntk
(xk,ak)♢ is maximal

for episode k. The true MDP being within the confidence bounds, with a triangle

inequality:

∥P̃k − Pk∥∞ ≤ 4

√
2 log (2Atk)

max¶1, Ntk
(xk, ak)♢ ,

∥r̃k − rk∥∞ ≤ 2rmax

√
2 log (2Atk)

max¶1, Ntk
(xk, ak)♢ .

Then using Lemma 4.13, and noticing that the bias h̃k and the quantity ∥∑T
t=1 P̃ t

kr̃k∥
is bounded by the same diameter D, using the same argument as in [Jaksch et al.,

2010] (Equation (11)):

∥h̃k − hk∥∞ ≤ 12ThitrmaxD

√
2 log (2Atk)

max¶1, Ntk
(xk, ak)♢ . (4.24)
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Hence,

Rdiff ≤
∑

s

∑

s′

Vk (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
· (h̃k(s′) − hk(s′))

≤
∑

s

Vk (s, π̃k(s)) · ∥p̃k (·♣s, π̃k(s)) − p (·♣s, π̃k(s))∥1 ∥h̃k − hk∥∞

≤ 48D2rmax log (2AT ) Σ,

where in the last inequality we have used (4.24) and that by definition of D, for S

large enough

Thit := inf
s′∈S

sup
s∈S

Es τπk
s′ ≤ ES′ τπ0

0 ≤ D,

and we called

Σ :=
∑

s,a

∑

k

tk+1−1∑

t=tk

1¶st,at=s,a♢√
max¶1, Ntk

(s, a)♢
√

max¶1, Ntk
(xk, ak)♢

.

By the choice of xk, Ntk
(xk, ak) ≤ Ntk

(s, a) for any state-action pair (s, a), so that

we can rewrite, with Ik := tk+1 − tk the length of episode k:

Σ ≤
∑

s,a

∑

k

tk+1−1∑

t=tk

1¶st,at=s,a♢
max¶1, Ntk

(xk, ak)♢ ≤
∑

k

Ik

max¶1, Ntk
(xk, ak)♢ .

Now define Qmax :=
(

10D
νπmax

(S′)

)2
log

((
10D

νπmax
(S′)

)4
)

, and I(T ) := max
{

Qmax, T 1/4
}

.

We split the sum depending on whether the episodes are shorter than I(T ) or not,

and call K≤I the number of such episodes. This yields:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik

max¶1, Ntk
(xk, ak)♢ .

Using the stopping criterion for episodes:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik

max¶1, Vk(xk, ak)♢ .

Now denote by E the event:

E =

{
∀k s.t Ik > I(T ),

1

max¶1, ν(xk, ak)♢ ≤ 2

νπmax(S′)Ik

}
.
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By splitting the sum, using the above event, we get:

Σ ≤ K≤II(T ) + 1E
∑

k,Ik>I(T )

2

νπmax(S′)
+ 1Ē

∑

k,Ik>I(T )

Ik

≤ K≤II(T ) + 1E (KT − K≤I)
2

νπmax(S′)
+ 1ĒT.

We use Corollary 4.16 to get P(Ē) ≤ 1
4T , so that when taking the expectation:

E [Σ] ≤ E [K≤I ] I(T ) + E [(KT − K≤I)]
2

νπmax(S′)
+

1

4
.

Now using Lemma 2.10, SA ≥ 4, I(T ) ≥ 2
νπmax (S′)

and that 1
log 2 + 1

4 ≤ 2:

E [Σ] ≤ E [KT ] I(T ) +
1

4
≤ 2SA log(2AT )I(T ).

We therefore have that:

E [Rdiff] ≤ 96rmaxSAD2I(T ) log2 (2AT ) . (4.25)

Bound on the Main Terms: Exploiting the Stochastic Ordering

In Section 4.3.3 we have shown that:

Rtrans ≤ 4
√

2 log (2AT )
∑

s,a

∆(s + 1)Vk(s, a)√
max¶1, Ntk

(s, a)♢
. (4.26)

To control this term as well as REVI (4.22) and Rrewards (4.21), we need to control

the terms in the sum in a way that does not make the parameters D or S appear,

as this will be one of the main contributing terms. To do so, we need to sum over

the episodes and take the expectation, so that with Lemma 2.11 from Chapter 2, we

get:

E


∑

s,a

∑

k

Vk(s, a)√
max¶1, Ntk

(s, a)♢


 ≤ 3E


∑

s,a

√
NT (s, a)

]

≤ 3
∑

s

√
E [NT (s)] A by Jensen’s inequality.

We will use the following lemma to carry on the computations:
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Lemma 4.5

Let νπ0
be the stationary measure of the Markov chain under policy π0, such that

for every state s: π0(s) = 0. Let f : S → R
+ be a non-negative non-decreasing

function on the state space. Then for any state s ∈ S,

E


∑

s′≥s

f(s′)Nt(s
′)


 ≤ t

∑

s′≥s

f(s′)νπ0
(s′). (4.27)

Proof. Let s ∈ S. For any state s′, define Nνπ0
,π0

t (s′) the number of visits when the

starting state follows the initial distribution νπ0
, and the MDP always executes the

policy π0 at every time step instead of the policy determined by Algorithm 2. Notice

already that for any state s′:

E

[
Nνπ0

,π0

t (s′)


= tνπ0
(s′)

On the other hand, for x ∈ S, we have the stochastic ordering:

∑

s′≥x

Nt(s
′) ≤st

∑

s′≥x

Nνπ0
,π0

t (s′),

so that for any non-negative non-decreasing function f , with the convention f(−1) =

0:





(f(x) − f(x − 1))
∑

s′≥x Nt(s
′) ≤st (f(x) − f(x − 1))

∑
s′≥x Nνπ0

,π0

t (s′)

f(s − 1)
∑

s′≥s Nt(s
′) ≤st f(s − 1)

∑
s′≥s Nνπ0

,π0

t (s′),

(4.28)

and then summing the equation above for s ≤ x ≤ S′ and switching the sums yields:

∑

s′≥s

Nt(s
′)

s′∑

x=s

[f(x) − f(x − 1)] ≤st

∑

s′≥s

Nνπ0
,π0

t (s′)
s′∑

x=s

[f(x) − f(x − 1)],

which simplifies to:

∑

s′≥s

Nt(s
′)[f(s′) − f(s − 1)] ≤st

∑

s′≥s

Nνπ0
,π0

t (s′)[f(s′) − f(s − 1)].

Now summing with the second equation in (4.28), we get the following equation:

∑

s′≥s

Nt(s
′)f(s′) ≤st

∑

s′≥s

Nνπ0
,π0

t (s′)f(s′).
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Taking the expectation in this last inequality finishes the proof.

Now, we can conclude our bound on Rtrans. Since

E


∑

s,a

∑

k

(∆(s + 1) + rmax)
Vk(s, a)√

max¶1, Ntk
(s, a)♢


 ≤ 3

√
A
∑

s≥0

(∆(s+1)+rmax)
√
E [NT (s)],

(4.29)

let f be a non-negative non-decreasing function over the state space, such that

F :=
∑

s≥0 f(s)−1 exists. Then by concavity:

∑

s≥0

(∆(s + 1) + rmax)
√
E [NT (s)] = F

∑

s≥0

1

Ff(s)

√
f(s)2(∆(s + 1) + rmax)2E [NT (s)]

≤ F

√√√√
∑

s≥0

f(s)2(∆(s + 1) + rmax)2E [NT (s)]

Ff(s)
by concavity

=
√

F
∑

s≥0

f(s)(∆(s + 1) + rmax)2E [NT (s)]

≤
√

TF
∑

s≥0

f(s)(∆(s + 1) + rmax)2νπ0(s) using Lemma 4.5,

so that overall, (4.29) becomes:

E


∑

s,a

∑

k

(∆(s + 1) + rmax)Vk(s, a)√
max¶1, Ntk

(s, a)♢


 ≤ 3

√
ATF

√∑

s≥0

f(s)(∆(s + 1) + rmax)2νπ0(s).

(4.30)

This is the term mainly contributing to the regret.

Bound on the Main Terms: Introducing E2

Now, using Lemma 4.8 which gives the stationary distribution of ν0, we can compute

the expectation under νπ0
of a well-chosen function f :

Lemma 4.6

Choose the increasing function f : s 7→ max¶1,s(s−1)♢
(∆(s+1)+rmax)2 . Then F ≤ 60e2λ/µ r2

max

and
∑

s≥0(∆(s+1)+rmax)2f(s)νπ0
(s) = E

π0 [
(∆ + rmax)2 · f

]
≤
(
1 + λ2

µ2

)
, so

that:

E2 := FE
π0
[
(∆ + rmax)2 · f

]
≤ 60e2λ/µ r2

max

(
1 +

λ2

µ2


.
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Proof. For F , we obtain:

F ≤ (2eλ/µrmax)23




S′∑

s=0

1 + log(s + 1)

max¶1, ss(s − 1)♢


 ≤ 12e2λ/µ r2

max


3 +

S′∑

s=2

1 + log(s + 1)

s(s − 1)




≤ 12e2λ/µ r2
max

(
4 +

S−2∑

s=2

log(1 + 1/s)

s


≤ 60e2λ/µ r2

max.

Using the following computations:

S′∑

s=2

s(s − 1)

(
S′

s

(
λ

S′µ

)s

= (S − 2)S′
S∑

s=2

(
S − 3

s − 2

(
λ

S′µ

)s

= (S − 2)S′
(

λ

S′µ

)2 S−3∑

s=0

(
S − 3

s

(
λ

S′µ

)s

= (S − 2)S′
(

λ

S′µ

)2 (
1 +

λ

S′µ

)S−3

≤
(

λ

µ

)2 (
1 +

λ

S′µ

)S−3

,

and using that 1 + λ
µ ≤

(
1 + λ

S′µ

)S′

, we get:

(
1 +

λ

S′µ

)S′

E
π0
[
(∆ + rmax)2 · f

]
≤
(

1 +
λ2

µ2

(
1 +

λ

S′µ

)S′

,

so that finally

E
π0
[
(∆ + rmax)2 · f

]
≤
(

1 +
λ2

µ2


,

which concludes the proof.

Finally (4.30) becomes:

E


∑

s,a

∑

k

(∆(s + 1) + rmax)Vk(s, a)√
max¶1, Ntk

(s, a)♢


 ≤ 3

√
E2AT, (4.31)

and thus:

E [Rtrans + Rrewards + REVI] ≤ 12
√

2E2AT log (2AT ). (4.32)

In particular:

E [Rtrans + Rrewards + REVI] ≤ 132eλ/µrmax

√(
1 +

λ2

µ2

)
AT log (2AT ). (4.33)
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Bound on Rep

It remains to deal with the following regret term:

Rep =
∑

k

Vk (Pk − I) h̃k.

We will follow the core of the proof from [Jaksch et al., 2010]. Define Xt :=

(p(·♣st, at) − est) h̃k(t)1M∈Mk(t)
, where k(t) is the episode containing step t and ei

the vector with i-th coordinate 1 and 0 for the other coordinates.

Vk (Pk − I) h̃k =

tk+1−1∑

t=tk

Xt + h̃k(stk+1
) − h̃k(stk

)

≤
tk+1−1∑

t=tk

Xt + Drmax.

By summing over the episodes we get:

Rep ≤
T∑

t=1

Xt + KT Drmax.

Notice that E [Xt♣s1, a1, . . . , st, at] = 0, so that when taking the expectations, only

the term in the number of episodes remains.

On the other side, using Lemma 2.10, we get when taking the expectation:

E [Rep] ≤ SA log2

(
8T

SA

)
· Drmax.

Assuming SA ≥ 4, and using log(2) ≥ 1
2 :

E [Rep] ≤ 2rmaxSAD log(2AT ). (4.34)

We can now gather the expected regret terms when the true MDP is within the

confidence bounds. Using (4.25), (4.32) and (4.34):

E [Rin] ≤ 96rmaxSAD2I(T ) log2 (2AT )+12
√

2E2AT log (2AT )+2rmaxSAD log(2AT ),

which gives with (4.19) and (4.20), assuming that T ≥ S2:

E [Reg] ≤ 97rmaxSAD2I(T ) log2 (2AT ) + 12
√

2E2AT log (2AT ).
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which finally gives:

E [Reg] ≤ 97rmaxSAD2I(T ) log2 (2AT ) + 19
√

E2AT log (2AT ).

4.5 Technical Lemmas

4.5.1 Probability of the Confidence Bounds

This first lemma is from [Jaksch et al., 2010, Lemma 17] and adapted to our

confidence bounds.

Lemma 4.7

For t > 1, the probability that the MDP M is not within the set of plausible MDPs

Mt is bounded by:

P ¶M /∈ M(t)♢ <
S

2t3
.

Proof. Fix a state action pair (s, a), and n the number of visits of this pair before

time t. Recall that p̂ and r̂ are the empirical transition probabilities and rewards from

the n observations. Knowing that from each pair, there are at most 3 transitions, a

Weissman’s inequality gives for any εp > 0:

P ¶∥p̂(·♣s, a) − p(·♣s, a)∥1 ≥ εp♢ ≤ 6 exp

(
−

nε2
p

2


.

So that for the choice of εp =
√

2
n log (16At4) ≤

√
8
n log (2At), we get:

P

{
∥p̂(·♣s, a) − p(·♣s, a)∥1 ≥

√
8

n
log (2At)

}
≤ 3

8At4
.

We can do similar computations for the confidence on rewards, with a Hoeffding

inequality:

P ¶♣r̂(s, a) − r(s, a)♣ ≥ εr♢ ≤ 2 exp

(
−2nε2

r

r2
max


,
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and choosing εr = rmax

√
1

2n log (16At4) ≤ rmax

√
2
n log (2At), so that:

P

{
♣r̂(s, a) − r(s, a)♣ ≥ rmax

√
2

n
log (2At)

}
≤ 1

8At4
.

Now with a union bound for all values of n ∈ ¶0, 1, · · · , t − 1♢, we get:

P

{
∥p̂(·♣s, a) − p(·♣s, a)∥1 ≥

√
8 log (2At)

max¶1, Nt(s, a)♢

}
≤ 3

8At3
,

and

P

{
♣r̂(s, a) − r(s, a)♣ ≥ rmax

√
2 log (2At)

max¶1, Nt(s, a)♢

}
≤ 1

8At3
,

and finally, when summing over all state-action pairs, P ¶M /∈ M(t)♢ < S
2t3 .

4.5.2 Diameter and Span of MDPs in M

For completeness, and to support the discussion in Section 4.3.2, the section details

the behavior of the diameter and the span of MDPs in M, as functions of S.

Under policy π0, it is possible to get en explicit expression for the stationary distribu-

tion of the states.

Lemma 4.8

Under the stationary policy π0, the stationary measure νπ0
(s) of the MDP is given

by:

νπ0
(s) =

(S′

s

) (
λ

S′µ

)s

(
1 + λ

S′µ

)S′
.

This lemma is also presented in the proof of Lemma 3.6.

First, it should be clear that under any policy π, the diameter of the MDP under

π is extremely large because the probability to move from state s to state s + 1 is

smaller and smaller as s grows. Actually, this is also true for the local diameter, more

precisely the expected time to go from s to s + 1 grows extremely fast with s.

This discussion is formalized in the following result, which is a reminder of Lemma 2.3.
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Lemma 4.9

For any M ∈ M and any policy π, the diameter Dπ as well as the local diameter

Dπ(s − 1, s) grow as S′S′

.

Proof. Under policy π, the following sequence of inequalities follows from the

stochastic comparison with π0 and monotonicity under π0.

Dπ ≥ τπ(0, S′) ≥ τπ0
(0, S′) ≥ τπ0

(S′ − 1, S′),

where τπ(x, y) is the expected time to go from x to y under policy π. Starting from

S′, we can write the hitting time equations:

τπ0
(S′, S′) = 1 + P π0

S′,S′−1τπ0
(S′ − 1, S′),

and we notice that the left-hand side term actually is the inverse of the stationary

measure at S′, so that νπ0
(S′)−1 = τπ0

(S′, S′). We therefore obtain:

Dπ ≥ U
νπ0

(S′)−1 − 1

µS′

≥ νπ0
(S′)−1 − 1.

Now using Lemma 4.8, we have that, for s ∈ S:

νπ0
(s) =

(S′

s

) (
λ

S′µ

)s

(
1 + λ

S′µ

)S′
,

and assuming λ
S′µ ≤ e − 1, by concavity of the log function

(
1 + λ

S′µ

)S′

≥ exp
(

λ
2µ

)
,

so that:

Dπ ≥
(

S′µ
λ

)S′

e
− λ

2µ − 1.

As for the maximal local diameter, maxs Dπ(s−1, s) ≥ maxs τπ0
(s−1, s) ≥ τπ0

(S′ −
1, S′) and the same argument as before applies.

Let us now consider the bias of the optimal policy in M . From Chapter 3, the bias

h∗(s) is decreasing and concave in s, with increments bounded by C. Therefore, its

span, defined as span (h∗) := maxs h∗(s) − mins h∗(s), satisfies

(h∗(0) − h∗(1))S ≤ span (h∗) ≤ (h∗(S − 2) − h∗(S − 1))S ≤ C(S − 1).
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This implies that the span of the bias behaves as a linear function of S for all M .

4.6 Generic Lemmas on Ergodic MDPs

4.6.1 Sensitivity of the Bias to the MDP Variations

The three first lemmas of this subsection are used in the proof of Lemma 4.13. This

lemma is needed to obtain equation (4.24).

Lemma 4.10

For an MDP with rewards r ∈ [0, rmax] and transition matrix P , denote by

Js(π, T ) := E

[∑T
t=1 r(st, π(st))

]
the expected cumulative rewards until time T

starting from state s, under policy π. Let Dπ be the diameter under policy π. The

following inequality holds: span (J(π, T )) ≤ rmaxDπ.

Proof. Let s, s′ ∈ S. Call τs→s′ the random time needed to reach state s′ from state s

under policy π. Then:

Js(π, T ) = E


T∑

t=1

r(st)

]
= E




T ∧τs→s′∑

t=1

r(st) +
T∑

t=T ∧τs→s′ +1

r(st)




= E




T ∧τs→s′∑

t=1

r(st)


+ E




T∑

t=T ∧τs→s′ +1

r(st)




≤ rmaxE [τs→s′ ] + Js′(π, T )

≤ rmaxDπ + Js′(π, T ).

Lemma 4.11

Consider two ergodic MDPs M and M ′. Let r, r′ ∈ [0, rmax] and P, P ′ respectively

be the rewards and transition matrices of MDPs M and M ′ under policies π,

where both MDPs have the same state and action spaces. Denote by g, g′ the

average reward obtained under policy π in the MDP M and M ′. Then the

difference of the gains is upper bounded.

♣g − g′♣ ≤ ∥r − r′∥∞ + rmaxDπ∥P − P ′∥∞.
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Proof. Define for any state s the following correction term b(s) := rmaxDπ∥p(·♣s) −
p′(·♣s)∥. Let us show by induction that for T ≥ 0,

T −1∑

t=0

P tr ≤
T −1∑

t=0

P ′t(r + b).

This is true for T = 0. Assume that the inequality is true for some T ≥ 0, then

T∑

t=0

P tr −
T∑

t=0

P ′t(r + b) = −b + P
T −1∑

t=0

P tr − P ′
T −1∑

t=0

P ′t(r + b)

= −b + P ′
(

T −1∑

t=0

P tr −
T −1∑

t=0

P ′t(r + b)


+ (P − P ′)

T∑

t=0

P tr

≤ −b + (P − P ′)
T∑

t=0

P tr by induction hypothesis.

Notice that, for any state s:

(
(P − P ′)

T∑

t=0

P tr


(s) ≤ ∥p(·♣s) − p′(·♣s)∥ · span (J(T ))

≤ rmaxDπ∥p(·♣s) − p′(·♣s)∥ by Lemma 4.10

= b(s).

In the same manner we show that:

T∑

t=0

P tr ≥
T∑

t=0

P ′t(r − b).

Hence, as P ′ has non-negative coefficients, denoting by e the unit vector:

∥∥∥∥∥

T∑

t=0

P tr −
T∑

t=0

P ′tr

∥∥∥∥∥
∞

≤ ∥b∥∞

∥∥∥∥∥

T∑

t=0

P ′t · e

∥∥∥∥∥
∞

= ∥b∥∞(T + 1).

We can also show that:

∥∥∥∥∥

T∑

t=0

P ′tr −
T∑

t=0

P ′tr′
∥∥∥∥∥

∞
=

∥∥∥∥∥

T∑

t=0

P ′t(r − r′)

∥∥∥∥∥
∞

≤ ∥r − r′∥∞(T + 1).
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And therefore with a multiplication by 1
T +1 and by taking the Cesáro limit in∥∥∥

∑T
t=0 P tr −∑T

t=0 P ′tr′
∥∥∥

∞
, and with a triangle inequality:

♣g − g′♣ ≤ ∥r − r′∥∞ + ∥b∥∞,

where ∥b∥∞ = rmaxDπ∥P − P ′∥∞.

Lemma 4.12

Let P be the stochastic matrix of an ergodic Markov chain with state space

¶1, . . . , S♢. The matrix A := I − P has a block decomposition

A =

(
AS b

c d


;

then AS , of size S′ ×S′ is invertible and ∥A−1
S ∥∞ = supi∈S Ei [τS ], where Ei [τS ]

is the expected time to reach state S from state i.

Remark that this lemma is true for any state instead of S.

Proof. (Ei [τS ])i is the unique vector solution to the system:





v(S) = 0

∀i ̸= S, v(i) = 1 +
∑

j∈S P (i, j)v(j)

We can rewrite this system of equations as: Ãv = e − eS , where Ã is the matrix

Ã :=

(
AS b

0 1


,

e the unit vector and eS the vector with value 1 for the last state and 0 otherwise.

Then Ã and AS are invertible and we write:

Ã−1 =

(
A−1

S −A−1
S b

0 1


.

Thus, by computing Ã−1(e − eS), for i ̸= S, (Ei [τS ])i = A−1
S e. Notice that AS is an

M-matrix, that is a matrix whose off-diagonal components are non-positive and that

can be written AS = κI − B, where B is a matrix with positive components, and κ is

larger than the eigenvalues of B . Its inverse therefore has non-negative components,

and using the definition of the inifinite matrix norm: ∥A−1
S ∥∞ = supi∈S Ei τS .
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In the following lemma, we use the same notations as in Lemma 4.11 with a common

state space ¶1, . . . S♢.

Lemma 4.13

Let the biases h, h′ be the biases of the two MDPs verify their respective Bellman

equations with the renormalization choice h(S) = h′(S) = 0. Let sups∈S Es [τπ
s′ ]

be the worst expected hitting time to reach the state s′ with policy π, and call

Thit := infs′∈S sups∈S Es [τs′ ]. We have the following control of the difference:

∥h − h′∥∞ ≤ 2Thit(D
′rmax∥P − P ′∥∞ + ∥r − r′∥∞)

Remark 4.14

The renormalization choice made in Lemma 4.13 does not matter when we use it to

compute the bound on Rdiff as defined in (4.23). We can indeed write the bias term in

Rdiff as h̃k − hk + cbe, where cb is a real constant and e the unit vector, and then notice

that
(
P̃k − Pk

)
e = 0, so that the renormalization choice does not appear anymore in

the final computations.

Proof. The computations in this proof follow the same idea as in the proof of [Ipsen

and Meyer, 1994, Theorem 4.2]. The biases verify the following Bellman equations

r − ge = (I − P )h, and also the arbitrary renormalization equations, thanks to the

previous remark: h(S) = 0. Using the same notations as in the proof of Lemma 5.11,

we can write the system of equations Ãh = r̃ − g̃, with r̃ and g̃ respectively equal to

r and g everywhere but on the last state, where their value is replaced by 0.

We therefore have that h = Ã−1(r̃ − g̃), and with identical computations, h′ =

Ã′−1
(r̃′ − g̃′). By denoting dX := X − X ′ for any vector or matrix X, we get:

dh = −Ã−1(dr̃ − dg̃ + dÃh′).

The previously defined block decompositions are:

Ã−1 =

(
A−1

S −A−1
S b

0 1


and dÃ =

(
AS − A′

S b − b′

0 0


.

For s < S, dh(s) = −eT
s A−1

S (dASh′ + dr̃ − dg̃) and dh(S) = 0. Now by taking the

norm and using Lemma 4.10:

∥dh∥∞ ≤ ∥A−1
S ∥∞(rmaxD′∥dAS∥∞ + ∥dr̃∥ + ♣dg̃♣).
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Notice that ∥dAS∥∞ ≤ ∥dP∥∞, ∥dr̃∥ ≤ ∥dr∥ and ∥dg̃∥ = ♣dg♣. Using Lemma 4.11

and Lemma 5.11, and taking the infimum for the choice of the state of renormaliza-

tion implies the claimed inequality for the biases.

4.6.2 A McDiarmid’s Inequality

Lemma 4.15

Recall that νπmax
is the stationary measure of the Markov chain under policy

πmax, such that for every state s: πmax(s) = amax.

Let k be an episode, and assume that the length of this episode Ik is at least

I(T ) = 1 + max
{

Qmax, T 1/4
}

, with Qmax :=
(

10D
νπmax (S′)

)2
log

((
10D

νπmax (S′)

)4
)

.

Then, with probability at least 1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)Ik − 5D

√
Ik log Ik.

We will now prove Lemma 4.15:

Proof. Let k be an episode such that Ik ≥ I(T ). We will first condition its length to

be Ik = I, so that tk+1 = tk + I. Denote by r̊ the vector of reward equal to 1 if the

current state is xk and 0 otherwise. Denote by g̊πk
the gain associated to the policy

πk for the transitions p and rewards r̊, and similarly define h̊πk
the bias, translated

so that h̊πk
(S′) = 0. Notice in that case, that if we denote by νπk the stationary

distribution under policy πk, that νπmax
(S′) ≤ νπk(S′) ≤ νπk(s) for any state s, for

large enough S′ ≥ λ
µ . Then:

Vk(xk, ak) =
tk+I−1∑

u=tk

r̊(su)

=
tk+I−1∑

u=tk

g̊πk
+ h̊πk

(su) −
〈
p (·♣su, πk(su)) , h̊πk

〉
using a Bellman’s equation

=
tk+I−1∑

u=tk

g̊πk
+ h̊πk

(su) − h̊πk
(su+1) + h̊πk

(su+1) −
〈
p (·♣su, πk(su)) , h̊πk

〉
.
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By Azuma-Hoeffding inequality 2.12, following the same proof as in section 4.3.2

of [Jaksch et al., 2010], notice that Xu = h̊πk
(su+1) −

〈
p (·♣su, πk(su)) , h̊πk

〉
form a

martingale difference sequence with ♣Xu♣ ≤ D:

P





tk+I−1∑

u=tk

Xu ≥ D
√

10I log I



 ≤ 1

I5
.

Using that
∣∣∣̊hπk

(stk
) − h̊πk

(stk+I)
∣∣∣ ≤ D, with probability at least 1 − 1

I2 :

Vk(xk, ak) ≥
tk+I−1∑

u=tk

g̊πk
− 5D

√
I log I.

On the other hand:
tk+I−1∑

u=tk

g̊πk
= Vk(sk, ak)νπk(xk),

so that, using that νπk(xk) ≥ νπmax
(S′), with probability at least 1 − 1

I5 :

Vk(xk, ak) ≥ νπmax
(S′)I − 5D

√
I log I.

We now use a union bound over the possible values of the episode lengths Ik,

between I(T ) + 1 and T :

P

{
Vk(xk, ak) < νπmax

(S′)Ik − 5D
√

Ik log Ik

}
≤

T∑

I=I(T )+1

1

I5
≤

T∑

I=T 1/4+1

1

I5

≤ 1

4T
,

so that we now have that with probability at least 1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)Ik − 5D

√
Ik log Ik.

We can show a corollary of Lemma 4.15 that we will use for the regret computa-

tions:
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Corollary 4.16

For an episode k such that its length Ik is greater than I(T ),with probability at

least 1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)

2
Ik.

Proof. With Lemma 4.15, it is enough to show that 5D
√

Ik log Ik ≤ νπmax
(S′)

2 Ik, i.e.

that
√

Ik
log Ik

≥ 10D
νπmax (S′)

=: B. By monotonicity, as Ik ≥ Qmax = B2 log B4 we can

show instead that B2 log B4 ≥ B2 log
(
B2 log B4

)
. This last inequality is true, using

that log x ≥ log(2 log x) for x > 1. This proves the corollary.

4.7 Conclusions

For learning in a class of birth-and-death processes, we have shown that exploiting

the stationary measure in the analysis of classical learning algorithms yields a K
√

T

regret, where K only depends on the stationary measure of the system under a well

chosen policy. Thus, the dependence on the size of the state space as well as on

the diameter of the MDP or its span disappears. We believe that this type of results

can be generalized to other cases such as optimal routing, admission control and

allocation problems in queueing systems, as the stationary distribution under all

policies is uneven between the states.
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Reinforcement Learning in a

Partially Observable

Queueing Network: Optimal

Admission

5

We have seen in Chapter 4 how we could improve the analysis of the upper bound

of UCRL2 when restricting the class of MDPs to the MDPs that would modelize a

birth-and-death process MDP. This restriction allowed us to use queueing properties

of the bias, presented in Chapter 2, in order to remove the dependence on the

diameter of the MDP, and instead introduce a quantity referring to the stability

of the studied queue. We will now use the same properties on another classical

example, an admission control problem with only partial information on the current

state of the system. We will also need ergodicity properties of the queueing system

to make correct use of its structural characteristics.

5.1 Introduction

We now know that in the generic MDP setting, a regret bound in Õ(
√

DSAT ) has

been reached [Tossou et al., 2019], and there have been many leads for results in

MDPs with structure in the case of average rewards, as we have seen in Chapter 1

with [Fruit, Pirotta, and Lazaric, 2020; Bourel et al., 2020; Wu et al., 2022]. Since

this problem has reached a satisfactory solution, the following natural question

arises: Can one learn efficiently the optimal policy of an MDP not only when the

rewards and the transition kernel are unknown but also when the state is partially

observable? Recently, this question has been investigated under certain assumptions

on the structure of model parameters [Jin, Kakade, et al., 2020; Azizzadenesheli

et al., 2016; Z. D. Guo et al., 2016]. In this chapter, we address this question in the

context of queueing networks where we assume that the learner has only access

to the total number of jobs in the network, and this makes our problem fall in the

family of Partially Observable MDPs (POMDPs).
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5.1.1 Reinforcement Learning in POMDPs

It is well-known that POMDPs are prohibitively expensive to solve. If the parameters

are known, the problem of computing an optimal policy is PSPACE-complete even

in finite horizon [Papadimitriou and Tsitsiklis, 1987]. Furthermore, it is NP-hard to

compute the optimal memoryless policy [N. Vlassis et al., 2012]. In reinforcement

learning, where (some of) the model parameters are unknown, the lower bound on

the average-case complexity developed in [Jin, Kakade, et al., 2020, Propositions 1

and 2] confirms with no surprise that reinforcement learning in POMDPs remains

intractable. Matter of fact, the design of effective exploration–exploitation strategies

in POMDPs is still relatively unexplored; see [Azizzadenesheli et al., 2016, Section

1] for a detailed discussion. In the attempt to reduce this computational burden,

researchers focused on reinforcement learning in subclasses of POMDPs [Jin, Kakade,

et al., 2020], and we will also follow this approach. The algorithm in [Even-Dar

et al., 2005] assumes POMDPs without resets and has sample complexity scaling

exponentially with a certain horizon time. The Bayesian algorithms proposed in

[Ross et al., 2007; Poupart and N. A. Vlassis, 2008] learn POMDPs but bounds on

the mean regret remain unknown for these approaches. A sample-efficient algorithm

for episodic finite POMDPs is given in [Jin, Kakade, et al., 2020]. Here, it is assumed

that the number of observations is larger than the number of latent states.

The works above have focused on reinforcement learning over a finite or discounted

horizon. In contrast, we will be interested in the (undiscounted) infinite horizon

case, which is technically more challenging. In infinite horizon, a POMDP algorithm

based on spectral methods is proposed in [Azizzadenesheli et al., 2016]. For this

algorithm, the authors find an order-optimal regret bound with respect to the optimal

memoryless policy. However, it exhibits a linear dependence on the diameter D of

the underlying MDP. This dependence makes this type of bounds not interesting

in the context of queueing systems as the diameter is usually exponential in the

number of states, as seen in Chapter 2. Although the additional assumptions on the

structure of the model mitigate, to some extent, the intrinsic complexity of POMDPs,

learning algorithms with regret Õ(
√

DSAT ) have remained elusive for all but trivial

cases to the best of our knowledge.

5.1.2 Contribution and Methodology

In this chapter, we will propose a learning algorithm for the optimal job-admission

policy in a partially observable queueing network with regret Reg(T ) ≤ Õ(
√

ST ).

Thus, our main contribution is a learning algorithm with a regret bound that does
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not depend on the diameter D, and whose dependence on the state space is very

small.

Optimal admission control is one of the most classical control problems in queues. It

has been investigated in several works; see, e.g., [Borgs et al., 2014; Xia, 2014] and

the references therein. However, these works consider the case where the model

parameters are known, i.e., no learning mechanism is used. The novelty of our

approach is to leverage i) Norton’s equivalence theorem for closed product-form

queueing networks [Chandy et al., 1975] and ii) the efficiency of reinforcement

learning in MDPs with the structure of birth-and-death processes, as in Chapter

4. More specifically, our result is achieved by using Norton’s theorem to replace

the whole network by a single load-dependent queue in its stationary regime and

relies on the mixing time τmix of the network to apply this equivalence every τmix

time-steps. The key observation is that Norton’s theorem helps us to somewhat cast

the original partially-observable MDP to a standard (fully-observable) MDP. In other

words, the resulting asymptotically equivalent POMDP becomes an MDP with the

structure of a birth-and-death process. This structure is then exploited to construct

tight bounds on the regret of our algorithm by controlling the bias of the current

policy as well as its stationary measure.

5.1.3 Organization

The remainder of the chapter is organized as follows. The model of the queueing

network, its practical motivation and Norton’s equivalent queue are presented in

Section 5.2. Section 5.2.1 presents the problem addressed in detail, Section 5.4 is

dedicated to the presentation of our learning algorithm (UCRL-M) and Section 5.5

to the analysis of its regret. In the latter, we state our main result in Theorem 5.5.

Then, Section 5.6 discusses some technical aspects of our regret bound. Section 5.7

showcases the behaviour of the algorithm on a multi-tier queueing network. From

Section 5.8 to Section 5.12, we first prove the main theorem and then the lemmas

we get to use. Finally, Section 5.13 draws the conclusions of our work.

This chapter is based on the submitted work [Anselmi, Gaujal, and Rebuffi, 2023].

5.2 Admission Control in a Queueing Network

We consider a Jackson network with N queues (or stations) having service rates

µo
1, . . . , µo

N , a routing probability matrix L = [Li,j : 0 ≤ i, j ≤ N ] and exogenous
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arrivals occurring with rate λ. Here, L0,j (resp. Li,0) represents the probability that

a job joins queue j from outside (resp. leaves the network after service at queue i).

To guarantee stability, i.e., positive recurrence of the underlying Markov chain, we

require that λo
i < µo

i , for all i, where λo
i is the arrival rate at queue i. It is given by

the assumed unique solution of the traffic equations λo
i = λL0,i +

∑
j λo

jLj,i, for all

i.

We further assume that the total number of jobs in the network cannot exceed S′ :=

S − 1. Under this constraint, the global system can be seen as a closed network with

S′ jobs. This network is identical to the original one except for an auxiliary queue,

say queue 0, that represents the outside world with service rate λ. The departures

of queue 0 correspond to the arrivals of the initial open network (see Figure 5.1).

Control

λ

admit

reject

S′ − s jobs outside

Figure 5.1: Admission control: rejected jobs immediately return to the outside queue.

Jobs that want to enter the network are subjected to admission control. If a job is

rejected this can be modeled in the closed network as the job being sent back to the

outside queue (see Figure 5.1). The goal of the admission controller is to minimize a

cost function. For each job, the immediate cost ct is decomposed into a per-rejection

cost γreject and a per-time-unit holding cost γhold. This cost function is the long-run

average cost per time unit: limT →∞
1

T −1

∫ T
t=1 ct.

When the controller can observe the state of the network and knows the parameters

of the system (λ, µo, L), this classical problem has been solved in [Xia, 2014]. In the

case where the network is a single M/M/1 queue, there exists an explicit formula

(involving the Lambert W function) for the optimal admission policy [Borgs et al.,

2014].
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5.2.1 Problem Formulation

In this chapter, we consider an admission controller that can only observe arrivals to

and departures from the network. More precisely, the network topology, internal

service rates and routing probabilities are not known, and the movements of the

jobs inside the network are not observable. Our objective is to design a learning

algorithm that learns the optimal admission policy with a small regret in the sense

that its dependence on the network complexity is minimal.

For the cost to be minimized, we assume that:

• the controller may choose to reject jobs arriving in the network, at the price of

a fixed γreject for each rejected job;

• for every time unit in the system, each job induces a holding cost γhold (this is

the classical cost function for admission control, see [Borgs et al., 2014]);

• the controller takes decisions only relying on its set of observations up to time

t.

5.2.2 Motivating Applications

Our main motivation is the control of computer and software systems. These systems

are composed of multiple interconnected containers, where a container can be a clus-

ter of servers or a modular software system, and admission control mechanisms are

commonly employed to optimize performance. In the literature, containers are usu-

ally modeled via product-form queueing networks (for tractability) or layered queue-

ing networks [J.A. Rolia and Sevcik, 1995; Jerry Rolia et al., 2009], which justifies

our modeling approach. In serverless computing, for instance, users of the serverless

platform can control the overall number of simultaneous requests that can be pro-

cessed in a cluster of servers (each with its own queue) at any given time. In Knative,

a Kubernetes-based platform to deploy and manage modern serverless workloads

that is used among others by Google Cloud Run, admission thresholds are set via the

container-concurrency-target-default global key [Configuring Concurrency in

Knative 2022] and the upper limit on the number of jobs that can be active running

at the same time, i.e., S′, can be controlled via the max-scale-limit global key.

In Kubernetes, an open-source system for the management of containerized appli-

cations, admission controllers are configured via the –enable-admission-plugins

and –admission-control-config-file flags and can be leveraged in case the pod

(or application) is requesting too many resources.
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Because of the complex relationships among containers, which can also be nested in

multiple layers, i) a detailed knowledge of the current state is expensive to obtain at

any point in time and ii) the internal container structure is also subject to estimation

errors and may vary over time [Wang et al., 2022]. This leads us to our learning

model, which is meant to capture both of these aspects: we do not know the network

topology, routing probabilities and service rates as well as the current “state”.

5.3 MDP Model

This section is dedicated to the construction of an MDP model of the system as

well as an artificial aggregated MDP that is equivalent to the original MDP under

its stationary regime. Note however that the learning algorithm constructed in the

following only interacts with the original system, non-aggregated. The aggregated

system is only used for the performance analysis of the algorithm.

5.3.1 Original MDP

Let us model the problem as an MDP, Mo = (X o, Ao, P o, ro), where the super-index

o stands for “original” throughout the chapter. We first use uniformization to see the

process in discrete time. The uniformization constant U is lower bounded by the

sum of the rates: U ≥ λ +
∑N

i=1 µo
i . Thus, the time steps, which will be indexed by

t, follow a Poisson process with rate U , and events (arrivals, services, routings and

control actions) can only occur at these times. In the following 1/U will be seen as

one time unit.

• The state space X o is the set of all tuples (x1, . . . , xN ) given by the number of

jobs xi in each queue i.

• The action space is Ao := ¶0,1♢ where 0 stands for rejection and 1 for admis-

sion.

• The transition matrix P o is simply constructed by using the routing matrix L,

the arrival rate λ and the service rates (µo
i )i.

• The mean rewards ro are constructed from the cost function. The immediate

cost for each state-action pair (x, a), is Bernoulli distributed. It is decomposed

into:

- a deterministic part, 1
U (γhold

∑N
i=1 xi) (each present job incurs a cost γhold per
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time unit),

- and a stochastic part, γreject(1 − a)1job-arrival (if a job arrives and the action is

reject).

To be consistent with the learning literature, where rewards are used instead

of costs, we first define rmax :=
λγreject+γholdS′

U and for each state-action pair

(x, a), the reward are Bernoulli distributed with expected value

ro(x, a) := rmax − λγreject(1 − a) + γholds

U
=

λγrejecta + γhold(S′ − s)

U
, (5.1)

where s :=
∑N

i=1 xi.

Let Πo := ¶π : X o → Ao♢ denote the set of stationary and deterministic policies. A

stationary policy π is a deterministic function from X o to Ao.

Then, the MDP evolves under π in the standard Markovian way. At each time-step t,

the system is in state xt, the controller chooses the action at = π(xt) and receives a

random reward whose expected value is ro(xt, at), and the system moves to state x′

at time t + 1 with probability P o(x′ ♣ xt, at). The objective function is to minimize

the long run average cost.

The average reward induced by policy π is:

go(Mo, π) := lim
T →∞

1

T

T∑

t=1

E[ro(xt, π(xt))]. (5.2)

An optimal policy π∗ for the original MDP achieves the best average reward go(Mo, π∗) =

supπ∈Πo go(Mo, π).

5.3.2 Aggregated Model

Let us define an aggregated MDP M = (S, A, P, r) where the network is replaced by

a single queue.

Norton Equivalent Queue

In this subsection, let us consider the system defined in Section 5.2 without control

(all jobs are admitted).
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The stationary measure of the network can be connected to the stationary measure of

a birth-and-death process via Norton’s theorem of queueing networks [Chandy et al.,

1975], also known in the literature as Flow Equivalent Server (FES) method [Krieger,

2008]. Towards this purpose, let vi denote the average number of visits at queue

i relative to queue 0. Set v0 = 1 and let (v1, . . . , vN ) be the unique solution of

vi =
∑N

j=0 Lj,ivj , for all i = 1, . . . , N . Then, when containing S′ jobs, the vector

of the number of jobs in each queue forms a continuous-time Markov chain with

stationary measure [Krieger, 2008]

νo(x) =
1

G(S′)

N∏

i=0

(
vi

µi

)xi

, (5.3)

for all x ∈ ¶x ∈ N
N : ♣x♣ ≤ S′♢, where G(S′) is a normalization constant and ♣ · ♣

denotes the L1 norm.

The construction of our equivalent queue works as follows:

1. Given the closed Jackson network above, consider the (closed) network where

queue 0 is short circuited (this means set µo
0 = ∞) and let µ(s) denote

the throughput1 of the network with s jobs in total (see Figure 5.2 for an

illustration).

2. Consider the original network where all queues except 0 are all replaced by a

single queue that operates with rate µ(s) if it contains s jobs.

3. Then,

∑

x:♣x♣=s

νo(x) = ν(S′ − s, s), ∀s = 0, . . . , S′ (5.4)

where ν(S′−s, s), for all s = 0, . . . , S′, is the stationary measure of the reduced

network with two queues.

We remark that ν(S′ − s, s) is indeed the stationary measure of a birth-and-death

process with birth rate λ1s<S′ and death rate µ(s), a fact that will be key in the regret

analysis of our learning algorithm. In particular, we will use the following lemma,

which provides some known properties about the throughput function µ(s) [Kameda,

1984].

1The throughput of a closed Jackson queueing network with s jobs is the rate at which jobs flow

at a reference queue (queue 0 in our case) and is defined by µ(s) := G(s−1)
G(s)

where G(s) is the

normalizing constant appearing in the product-form expression (5.3) of the stationary measure mo.
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Norton equivalent queueJackson network

Figure 5.2: Illustration of Norton Equivalence theorem.

Lemma 5.1

The throughput function s 7→ µ(s) is increasing, concave and bounded by µmax :=
∑

i≤N µo
i .

The throughput bound µmax can be significantly improved [Krieger, 2008] but this

will not change the structure of our results.

Aggregated MDP

Notice that, in the original MDP Mo, the rewards do not depend on the state but

only on the number of jobs in the network, therefore, the Norton equivalent queue

can also be used to construct an equivalent MDP.

Define the simplified equivalent MDP M = (S, A, r, P ).

• The state space S = ¶0, . . . , S′♢ consists of all possible numbers of jobs in the

queueing network. We denote by S := S′ + 1 the number of states of the

aggregated MDP.

• The actions are the same as for the original MDP: A = Ao = ¶0,1♢ (reject or

accept).

• The original reward in (5.1) does not depend on the precise position of the

jobs in the network but only on their number. Therefore for s ∈ S and a ∈ A,

we can define the expected reward as

r(s, a) =
λγrejecta + γhold(S′ − s)

U
(5.5)

• The transition probabilities (P π) are defined as follows.

Let π be a policy (a function from S → A) on M . By convention, π will also

be seen as a policy in the original MDP Mo using the natural extension, i.e.,
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if x ∈ X o, then π(x) := π(♣x♣). We can now define the transition matrix for

policy π as the transition matrix in the aggregated MDP M under the stationary

measure νo,π:

P (s′ ♣ s, π(s)) =
∑

x,♣x♣=s

∑

y,♣y♣=s′

νo,π(x)

νπ(s)
P o(y ♣ x, π(x)), (5.6)

where νπ(s) =
∑

x,♣x♣=s νo,π(x) is the equivalent stationary measure. Under

this construction, these probabilities are those for the Norton equivalent queue.

Also, notice that the equivalent stationary measure νπ(s) is also the stationary

measure of the Norton equivalent queue with transition matrix P π under

policy π.

• Regarding the diameter as defined in Chapter 2, we will only consider the

diameter on the aggregated MDP for the computations of the regret bound, as

it is needed to control the bias terms of the aggregated MDP (see Section 5.12).

We will never need to consider the bias or the diameter of the original MDP.

Let Π := ¶π : S → A♢ denote the set of stationary and deterministic policies.

Definition 5.2

The average gain induced by policy π is:

g(M, π) := lim
T →∞

1

T

T∑

t=1

E[r(st, π(st))]. (5.7)

The optimal policy π∗ achieves

g(M, π∗) := g∗(M) := sup
π∈Π

g(M, π). (5.8)

5.3.3 Comparison Between both MDPs

It should be clear that the original MDP Mo has a greater set of policies than the

aggregated MDP M because it has more states. Therefore, go(Mo, π∗) ≥ g∗(M).

However, if we only consider the set of policies in the original MDP Mo that take the

same action (reject or accept) in all the states with the same total number of jobs,

then optimal gains coincide. More precisely, let Πo
sum be the subset of policies in Mo

such that for all π ∈ Πo
sum, π(x) = π(y) if ♣x♣ = ♣y♣. Then, the stationary measure on
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Mo under any policy π in Πo
sum, and the stationary measure under π on M satisfy

∑
x,♣x♣=s νo,π(x) = νπ(s). Therefore, we get for all π in Πo

sum,

go(Mo, π) =
∑

x

νo,π(x)ro(x, π(x))

=
∑

s

∑

x,♣x♣=s

νo,π(x)r(s, π(s))

=
∑

s

νπ(s)r(s, π(s)) = g(M, π).

Now taking the maximum over all policies in Πo
sum yields

max
π∈Πo

sum

go(Mo, π) = g∗(M).

As for learning when the full state is not observable, the best one can hope for is

to learn maxπ∈Πo
sum

go(Mo, π), so we will consider the regret with respect to the

optimal gain g∗(M), in the following.

5.3.4 Reinforcement Learning

Here, we consider a learner that can observe the arrivals and departures of jobs in

the original MDP and makes admission decisions for each arriving job.

What Does the Learner Know?

• As mentioned earlier, the learner can observe the external events: arrivals

and departures of jobs. This implies that at any discrete time-step t, the total

number of jobs in the system, st is known to the learner and will be seen as

the partially observed state.

• The expected cost in state-action pair (s, a) is unknown as it depends on the

unknown parameter λ (see (5.5)). However, the parameters γreject, γhold and

the uniformization constant U are known, and the learner knows how the cost

depends on λ, which will be important for the definition of the confidence

regions. We will often use an upper bound on the difference of rewards

between two neighboring states δmax := γreject + γhold
U . We will use δmax instead

of rmax in the following derivation of the regret, as δmax does not depend on

S′ and this will help us gain a factor S′ in the regret bound. We will also make
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the assumption that the learner knows the reward function up to the actual

value of the arrival rate λ, that must be learned.

• The learning algorithm knows T , the number of time steps where it can take

observations and actions. This is not a strong requirement as one can make

the algorithm oblivious to T by using a classical doubling trick on T .

Regret

We recall the definition of the regret, as in Chapter 2:

Definition 5.3 (Regret)

The regret at time T of the learning algorithm L is

Reg(M, L, T ) := Tg∗(M) −
T∑

t=1

rt. (5.9)

Here, g∗(M) is the optimal gain defined in (5.8). The reward rt is the reward of

the state visited at time t under the current policy used by the learning algorithm.

5.4 Learning Algorithm

5.4.1 High-Level Description of the Proposed Algorithm

Our algorithm is episodic, model-based and optimistic. More precisely, the interactions

of the learner with the MDP Mo are decomposed into episodes. In each episode k, of

duration [tk, tk+1 −1], one admission policy πk is used to control the network and the

learner observes the system (arrivals and departures) while collecting rewards under

πk. At the end of the episode, the estimation of the true transition probabilities and

rewards (the model), p̂k and r̂k respectively, as well as the confidence region Mk are

updated using the samples collected during the episode. This gives p̂k+1, r̂k+1 and

Mk+1. The next policy πk+1 is the best policy for the best MDP inside the confidence

region Mk+1 (optimism).

In our case with partial observations, the number of jobs at time t, (st)t≤T is not

Markovian, therefore it does not provide enough information to make good estimates

on the underlying MDP. Instead, we collect a set ¶s1, . . . , sτmix
♢ of observations and

try to learn using this extended information. If τmix is well chosen, i.e., larger
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than the mixing time of the MDP, then each subsequence si, si+τmix
, si+2τmix

, . . .

forms an “almost” independent sequence and therefore can be used for statistical

estimations.

Our learning algorithm is based on the following idea. It can be seen as a collec-

tion of τmix learning algorithms L1, . . . , Lτmix
, using respectively the subsequence

(si+kτmix
)k∈N of observations, which are called modules in the following. Each learn-

ing module Li behaves similarly as the classical optimistic algorithm described above.

There are no interactions between modules except for the number of visits that

contributes to the construction of the global confidence region, as detailed in Section

5.4.4. The main technical difficulties in the control of the behavior of the algorithm

are:

1. The observations used by the learning modules L1, . . . , Lτmix
are not indepen-

dent of each other, so one must be careful in assessing the interplay between

the modules.

2. For each learning module Li, its sequence of observations si, si+τmix
, si+2τmix

, . . .

is not really stationary and independent, but only weakly correlated.

5.4.2 Number of Modules: τmix

Let us first give a more precise definition of the τmix modules, where the number

τmix is yet to be chosen carefully. At the beginning of the algorithm, each time-

step t is attributed a module mt, so that these modules form a partition of the

time-steps. For 1 ≤ t ≤ τmix, the module mt is defined in the following way: first

t ∈ mt, then we wait τmix steps to add the next time-step to that module, so that

t, t + τmix, t + 2τmix, . . . ∈ mt, until time-step T is reached. More formally one can

identify, mt = t mod τmix.

The number of modules τmix is chosen using the following construction. Let us

consider the original MDP under any policy π, with stationary measure νo,π. There

exists C > 0, ρ ∈ (0, 1) such that:

max
π∈Π

sup
x1∈S

∥∥Po,π
x1

(xt = ·) − νo,π
∥∥

T V
≤ Cρt ∀t > 0, (5.10)

where P
o,π
x1 (xt = ·) is the distribution of the state at time t under policy π in the

original MDP, with initial state x1. Let us then define

τmix := ⌈5 log T/ log ρ−1⌉. (5.11)
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The reason for this precise choice will appear in the analysis of the regret (see

Section 5.5) but the general idea behind this choice comes from Lemma 5.7 given in

Section 5.10, that basically says that after τmix steps, the correlation between the

state at time t and the state at time t + τmix, under any policy, is smaller than C ′ρτmix ,

where C ′ is a constant.

The fact that the number of modules used by the algorithm depends on ρ can be seen

as a weakness of our approach because it means that the learner needs to know a

priori a bound on the mixing time of the unknown MDP. This point will be addressed

in Section 5.6.

5.4.3 Ucrl-M: Learning with τmix Modules

Algorithm UCRL-M (Upper Confidence Reinforcement Learning with several Mod-

ules) is given in Algorithm 3 below. First, the algorithm initializes the different

modules. Here, for each episode k and module m, it computes the empirical es-

timates of the reward and probability transition as in (5.15) and (5.14). Then, it

applies Extended Value Iteration (EVI) (Section 5.9) to find a policy π̃k and an opti-

mistic MDP M̃k ∈ Mk according to (5.12). Finally, to explore the MDP at episode k,

it first iterates on the MDP over τmix time-steps and discards these samples (ramping

phase) to start the observations from the stationary distribution of the current policy.

This phase is necessary to guarantee that observations within a module are nearly

independent. Afterward, UCRL-M explores the true MDP with the optimistic policy

π̃k and updates the empirical estimates with its observations.

The episode ends when the stopping criterion (5.18) is met. The next optimistic

policy for the episode k + 1 is found with respect to the observations inducing the

confidence region Mk that is built using all modules (see (5.17)).

5.4.4 Confidence Region

As mentioned earlier, the learning algorithm relies on the “Optimism in face of

uncertainty” principle. Here, we provide the explicit construction of a confidence

region Mk based on the observations, which depends on the visit counts. For each

state-action pair (s, a) and each module m, let N
(m)
tk

(s, a) be the cumulative number

of visits to (s, a) at all times t = m mod τmix smaller than tk, and excluding the

visits during the ramping phases Φ (see the UCRL-M algorithm).
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Algorithm 3: The UCRL-M algorithm.

Input: S and A.

1 Set t = 1, k = 1;

2 while t ≤ T do

3 Initialize episode k with tk := t
4 Compute for all (s, a) the modules mk(s, a) according to (5.13);

5 Compute the confidence region Mk as in (5.17);

6 Find a policy π̃k and an optimistic MDP M̃k ∈ Mk with “Extended Value

Iteration” such that

g(M̃k, π̃k) ≥ max
Mk∈Mk

max
π

g(Mk, π) − δmax√
tk

. (5.12)

7 Ramping phase (Φ): Iterate the MDP with policy π̃k for τmix time-steps,

discard the observations and set t := t + τmix.

8 Exploration: while V
(mt)

k (st, π̃k(st)) < max¶1, N
(mt)
tk

(st, π̃k(st))♢, do
1. Choose action at = π̃k(st);

2. Observe st+1;

3. Update V
(mt)

k (st, at) := V
(mt)

k (st, at) + 1;

4. Set t := t + 1.

We also define the most frequent module for each state-action pair (s, a): Let mk(s, a)

be a module with the highest visit count until episode k,

mk(s, a) ∈ arg max
m

N
(m)
tk

(s, a), (5.13)

so that for this module, the empirical observations are the most accurate, and we

can relate the number of observations for this module to the total number of visits

Ntk
(s, a) of the pair (s, a) with the inequality: N

(mk(s,a))
tk

(s, a) ≥ 1
τmix

Ntk
(s, a).

To define the confidence region Mk, first define r̂
(m)
k and p̂

(m)
k the empirical reward

and transition estimates in module m:

p̂
(m)
k (s′♣s, a) :=

∑tk−1
t=1 1¶st=s,at=a,st+1=s′,mt=m♢1¶t/∈Φ♢

max
{

1, N
(m)
tk

(s, a)
} (5.14)

r̂
(m)
k (s, a) := p̂

(m)
k (s + 1♣s, a)γreject + γhold

S′ − s

U
, (5.15)
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where Φ is the set of the time steps in the ramping phases defined in the algorithm.

Mk is the confidence set of MDPs whose rewards r̃ and transitions p̃ satisfy:

∀(s, a),
∣∣∣r̃(s, a) − r̂

(mk(s,a))
k (s, a)

∣∣∣ ≤ δmax

√√√√ 2 log (2Atk)

max
{

1, N
(mk(s,a))
tk

(s, a)
} ; (5.16)

∀(s, a), ∥p̃(· ♣ s, a) − p̂
(mk(s,a))
k ( · ♣ s, a) ∥1 ≤

√√√√ 8 log (2Atk)

max¶1, N
(mk(s,a))
tk

(s, a)♢
. (5.17)

Notice that for each state-action pair (s, a), we only need the empirical reward and

transition estimates for the module mk(s, a): this means that the confidence region

Mk is built from the comparison between modules from (5.13), and we do not build

a specific confidence region for each module.

The algorithm finds the best optimistic MDP and policy within this confidence set,

and executes the policy on the true MDP until the stopping criterion is met, that is

when for any module m the number of visits V
(m)

k (s, a) in the current episode of

a state-action pair (s, a) reaches the number of visits of this pair and module until

time tk. More formally, if at episode k we choose the policy π̃k, then the stopping

criterion gives the following guarantee:

∀(s, m) V
(m)

k (s, π̃k(s)) ≤ max¶1, N
(m)
tk

(s, π̃k(s))♢. (5.18)

5.4.5 Time Complexity of Ucrl-M

Proposition 5.4

The time complexity of UCRL-M is O(KSτmix+Ktevi+T ), where K is the number

of episodes and tevi the time complexity of extended value iteration. Furthermore,

E(K) = O(log T ).

Proof. The time complexity of lines 4 and 5 is O(KSτmix). The complexity of line

6 is O(Ktevi). The complexity of line 7 is O(Kτmix). The complexity of line 8 is

O(T − Kτmix), the number of useful observations. As for the expected number of

episodes, E [K] = O(log T ) because of the doubling trick used to end the episodes

(see [Jaksch et al., 2010] for example).

Note that the total number of useful samples (excluding the steps made during the

ramping phases ) is T − Kτmix, and each module uses T −Kτmix
τmix

samples. As for the
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time complexity of EVI, each iteration of EVI is O(S3) and the number of iterations

depends on the starting point and is more difficult to estimate. In total, the time

complexity does not really depend on τmix or tevi that only appears at the beginning

of each episode, and the number of episodes is small w.r.t. T .

5.5 Regret of Ucrl-M

5.5.1 Main Result

Let us recall that S′ is the global bound on the number of jobs, S = S′ + 1 is the

number of states, γreject is the rejection cost, γhold is the unit-time holding cost and

D is the diameter of the aggregated MDP. Also, νπmax
(s) is the stationary measure in

the aggregated MDP under the policy that accepts all jobs, ρ is defined in Section 5.4

and µ(i) is the service rate in the aggregated MDP when i jobs are in the system.

Define the constant C1 :=
∏i0−1

i=1
µ(i0)
µ(i) ≥ 1, where i0 is chosen such that µ(i0) > λ.

Such a i0 exists because the unconstrained network is assumed to be stable (see

Section 5.2) regardless of S. Hence, the flow equivalent queue is also stable

regardless of S. Define also C2 :=
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0)) .

Theorem 5.5

Let M ∈ M. Define Qmax :=
(

10C2S2

νπmax (S′)

)2
log

((
10C2S2

νπmax (S′)

)4
)

. Define also the

constant κ = 228(γreject + γhold

U ) U
µ(1)C1

(
1 −

√
λ

µ(i0)

)−3
. For the choice τmix =

5 log T
log 1/ρ , and A = 2, assuming τmixS ≥ 2 and T > max¶ e2

4T , τmix♢, we have:

E [Reg(M, UCRL-M, T )] ≤ κ log (2T )
√

T log−1(1/ρ) + RLO, (5.19)

where RLO := 138rmaxD2 max
{

Qmax, T 1/4
}

log4(4T )

log2 1/ρ
is a lower order term of

the regret.

Before diving into the proof, which involves many technical points, let us comment

on our result. In contrast with most bounds from the literature, the most remarkable

point is that both the diameter and the size of the state space do not appear in the

first order term of our bound. These are both replaced by log−1/2(1/ρ).

Although we do not know any explicit bounds on ρ for all possible networks, it is

quite reasonable to predict that log−1/2(1/ρ) can be of order
√

S. In fact, this can be
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shown for acyclic networks as well as for hyper-stable networks as it will be shown

in Section 5.6.

This implies that the regret of UCRL-M is Õ(
√

ST ), which is a major improvement

over the best bound for general MDPs, namely Õ(
√

DSAT ). This further confirms

the fact that exploiting the structure of the learned system actually leads to more

efficient algorithms as well as tighter analysis of their performance.

5.5.2 Outline of the Proof

To compute the expected regret E[Reg], we will mainly follow the strategy from

[Jaksch et al., 2010, Section 4]. First, we deal with the regret term corresponding to

the initialization phase of each episode, which depends on the number of episodes.

Then, for each episode k, we consider the case where the true MDP M does not

belong to the confidence region Mk, and use concentration inequalities along with

the independence Lemma 5.7 to show that this regret term will remain low. Then,

we consider the case where the true MDP belongs to the confidence region, and

for each episode, we split the regret into relevant comparisons. Here, we expose

terms depending on the difference of rewards and transitions between the true and

optimistic MDPs, terms depending on the difference of biases, a term depending

on the number of episodes and a term coming from the the computation of the

optimistic policy and MDP with EVI.

To achieve the first split, we need to define: R
(m)
k (s) :=

∑
a V

(m)
k (s, a)(g∗ − r(s, a))

the regret at episode k induced by state s in module m, with V
(mt)

k (s, a) the number

of visit of (s, a) during episode k in module m. We split the regret into terms where

the true MDP belongs to the confidence region, terms where it does not, and the

terms from initializing the episodes:

E [Reg] ≤ E [Rin] + E [Rout] + E [Rramp] (5.20)

with K the number of episodes and the regret where the MDP is in the con-

fidence region being Rin :=
∑

m

∑
s

∑K
k=1 R

(m)
k (s)1M∈Mk

, and when it is out-

side Rout :=
∑

m

∑
s

∑K
k=1 R

(m)
k (s)1M /∈Mk

and the regret of the ramping phases

Rramp =
∑

k

∑tk+τmix−1
t=tk

r(st, π̃k(s, t)). Each term is then bounded as explained in

Section 5.8.
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5.6 Controlling the Regret Bound Parameter ρ

The efficiency of UCRL-M is critically based on controlling τmix and ρ. In particular,

Theorem 5.5 says that the regret of UCRL-M depends on W := log−1/2(1/ρ).

5.6.1 Bounds Using Mixing and Coupling Times

In Section 5.4, the number of modules τmix is defined as τmix := 5 log T/ log ρ−1.

where ρ is such that

max
π

sup
x0∈S

∥∥Po,π
x1

(xt = ·) − νo(π)
∥∥

T V
≤ Cρt ∀t > 0. (5.21)

Let us first recall classical results from Markov chain theory [Levin et al., 2008]

relating ρ with the mixing and coupling time of a Markov chain. Let us consider any

Markov chain with transition matrix P and stationary distribution ν (in our case,

consider the Markov chain under the policy that attains the maximum in (5.21)). Let

us define d(t) := sup
x1∈S ∥Px1(xt = ·) − ν∥T V . Then, the mixing time of the chain is

defined as tmix := min¶t : d(t) ≤ 1/4♢.

A classical bound on ρ is then obtained by using the mixing time:

ρ ≤ 1

2t−1
mix

(5.22)

This implies that W ≤
√

tmix log(2).

Another bound on ρ can be obtained by using the coupling time. The coupling time

is τx,y := min¶t : Xt = Yt♢. If Xt and Yt are coupled and start at X1 = x and

Y1 = y respectively. Then, d(t) ≤ maxx,y P(τx,y > t). By using Markov inequality,

this implies that

tmix ≤ 4 max
x,y

E[τx,y]. (5.23)

Therefore, a bound on the expected coupling time translates into a bound on ρ.
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Acyclic Networks

In our model, if the queueing network is acyclic, then the coupling time is control-

lable because whenever a queue couples it stays coupled forever.

More precisely, since the total number of states in the network increases with

the admission threshold, the threshold policy under which the coupling time is

the largest is when all jobs are admitted. Under this policy, by monotonicity, the

coupling time is upper bounded by the coupling in an open network where all the N

queues have buffers bounded by S′. In this case, the coupling time has been studied

in [Dopper et al., 2006, Theorem 5.3], where the following result is proved in the

stable case. Using our notation,

max
x,y

E[τx,y] ≤
N∑

i=1

U2

(λo
i + µo

i )(µo
i − λo

i )
S′, (5.24)

where U is the uniformization constant and (λi)i≤N is the solution of the traffic

equations.

According to Equation (5.22) and (5.23), this induces the following bound on the

term W in the regret:

W ≤ κ0

√
NS′,

where κ0 is a constant: κ0 = maxi
∑N

i=1
U

λo
i +µo

i
.

Hyperstable Networks

This is another type of networks for which an explicit bound on the coupling time

exists. A network is called hyperstable if for each queue i,
∑

j Ljiµ
o
j + L0iλ < µo

i .

As in the acyclic case, the threshold policy under which the coupling time is the

largest is when all jobs are admitted. Under this policy, as for the acyclic case, the

coupling time is upper bounded by the coupling in an open network where all the

N queues have buffers bounded by S′.

Coupling times of hyperstable networks with finite buffer queues have been studied

in [Anselmi and Gaujal, 2014], where the following bound is given (Theorem 2):

max
x,y

E[τx,y] ≤ κ2N2S′
N∑

i=1

λo
i

µo
i − λo

i

, (5.25)
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where κ2 is a constant. Using Equation (5.22) and (5.23), this induces a similar

bound on the term W in the regret:

W ≤ κ3N
√

S′,

where κ3 is yet another constant.

5.6.2 Making the Algorithm Oblivious to ρ

By construction, the current version of UCRL-M uses explicitly τmix = 5 log T/ log ρ−1

modules. This can be a problem as it implies an a priori knowledge of ρ, and of the

mixing time (or at least an upper bound) of the network being learned.

These types of assumptions are sometimes made in the reinforcement learning

literature. For example, the UCBVI algorithm [Azar et al., 2017] requires the

knowledge of the diameter of the MDP being learned.

Here, we can patch UCRL-M to make it oblivious to ρ by making sure that τmix ≥
5 log T/ log ρ−1 for any large enough T . For example, one can chose τmix := log2(T ),

as it is asymptotically larger than the previous one. This patch adds a multiplicative

log(T ) term in the asymptotic bound of the regret given in Theorem 5.5.

5.7 Numerical Experiments

5.7.1 A Multi-Tier Queueing Network

To assess the performance of UCRL-M, we rely on a standard multi-tier queueing

network as displayed in Figure 5.3. The topology of this network is composed of

three tiers. Namely, tiers 1, 2 and 3 represent the web, application and database

stages of a typical web-application request. Each tier is composed of multiple servers,

each with its own queue. After accessing the web tier, a request may either return

back to the issuing user with probability 1 − p or flow through the application

and database tiers. This multi-tier structure is common in empirical studies of

computer systems [Urgaonkar et al., 2005] and is the default architecture of web

applications deployed on Amazon Elastic Compute Cloud (EC2) [AWS Architecture

Center 2022].
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Figure 5.3: A queueing network model with three interconnected tiers. Each tier contains
n queues and the total capacity is of S′ jobs.

This model may be studied as an example of the generic case described in Section 5.2.

Notice that given the routing from Figure 5.3, the stability condition is met if λ
1−p < µ,

where µ = µo
1 = . . . = µo

3n is the service rate of the queues in the network.

5.7.2 Regret of Ucrl-M on the Multi-Tier Queueing Network

We provide the performance of UCRL-M over the queueing network described above

when the number of queues per tier n and the total number of jobs S′ vary. In

Figure 5.4, we display the average regret over 66 runs of the UCRL-M algorithm

when n varies, and with parameters scaling with n to keep the systems proportionally

comparable. More precisely, the scaling in S′ and µ is such that as the number of

queues increases, the waiting time in each tier remains roughly identical for a job

in each tier, and the scaling in the holding cost is also consistent with the increase

of the number of jobs in the system. Notice that for our choice of parameters, the

network is not stable, so that we use the UCRL-M algorithm under more general

conditions than those assumed in Section 5.6 and even in Section 5.2.

In Figure 5.4, we remark that as we let the number of queues n (and the number

of jobs S′) scale multiplicatively, the regret is increasing in log(S′). Knowing that
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Figure 5.4: Regret of the UCRL-M algorithm on the queueing network for different values
of n and scaling parameters.
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Figure 5.5: Comparison between the average threshold and its Cesàro sum.

the dependency in S′ of the regret bound from Theorem 5.5 mainly comes from ρ,

this is much slower than the square root bounds given in Section 5.6 (under strong

assumptions). This can be interpreted as the bound of equation 5.21 being too large

as it considers the mixing from the worst state, while in average it is more likely for

the algorithm to mix from states that are visited the most, which are already close to

stationary states.

We see in Figure 5.5 that the chosen policy does not converge to the optimal

threshold, as the algorithm needs to ensure exploration phases. Its Cesàro sum

however does converge to the optimal threshold, for each value of n. It suggests

that the optimal threshold is scaling linearly with n, and that the convergence is

slower as S′ increases.
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In the previous experiments, the number of modules is arbitrarily fixed to τmix = 3.

Now, we perform another experiment to observe the dependency of the regret in the

choice of τmix for this queueing system. The intuition is the following: as explained

in the high-level description of the algorithm in Subsection 5.4.1, UCRL-M could

be compared to τmix instances of UCRL2 [Jaksch et al., 2010], where all modules

but the best one is discarded at each episode. This best module runs on roughly
T

τmix
time-steps, and its regret can be compared to 1

τmix
times the expected regret of

UCRL-M. With this intuition in mind, we plot in Figure 5.6 the regret of UCRL-M,

where we rescaled both the regret and the time-steps by a factor 1
τmix

.
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Figure 5.6: Rescaled regret of the UCRL-M algorithm on the queueing network for different
values of τmix.

Within the considered queueing model, we notice that the modules do not seem

to bring any practical upside because the regret is almost perfectly linear in the

number of modules. In this particular example, the observations behave as if they

were independent even if the algorithm only uses a single module. Intuitively, the

system remains close to stationarity despite the policy changes, which could explain

the limited effect of the modules.However, they remain necessary to guarantee the

correctness of the confidence sets and to get the theoretical bound on the regret

given in Theorem 5.5.
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5.8 Proof of Theorem 5.5

From this point onwards, we give the detailed proof of Theorem 5.5 and a term-by-

term analysis of the regret.

5.8.1 Terms for the Ramping Phases

We first briefly deal with the terms coming from the ramping phases Φ of the

episodes, Rramp. We have:

Rramp =
∑

k

tk+τmix−1∑

t=tk

r(st, π̃k(s, t)) ≤ KT τmixrmax ≤ rmaxSAτ2
mix log2

(
8T

SAτmix

)
,

(5.26)

where in the last inequality we used Lemma 2.10. Assuming τmixSA ≥ 4, and using

log(2) ≥ 1
2 , we rewrite it:

Rramp ≤ 2rmaxSAτ2
mix log(2T ). (5.27)

This term is therefore among the lower-order terms of the regret.

5.8.2 Terms in the Confidence Bound

We start with the terms coming from the case where the MDP is out of the confidence

regions Mk. For each episode k, we define:

• V
(m)

k (s) the number of visits of state s during episode k in module m.

• N
(m)
t (s) is the number of visits of state s until time-step t excluded, in module

m.

• M(t) the set of MDPs Mk such that tk ≤ t < tk+1
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For the terms out of the confidence sets, we have:

Rout ≤ rmax

∑

m

∑

s

K∑

k=1

V
(m)

k (s)1M /∈Mk

≤ rmax

∑

m

∑

s

K∑

k=1

N
(m)
tk

(s)1M /∈Mk
using the stopping criterion

= rmax

T∑

t=1

∑

s

K∑

k=1

1tk=tNt(s)1M /∈M(t) ≤ rmax

T∑

t=1

∑

s

Nt(s)1M /∈M(t)

= rmax

T∑

t=1

1M /∈M(t)

∑

s

Nt(s) ≤ rmax

T∑

t=1

t1M /∈M(t).

We now need Lemma 5.8 to control the probability that the MDP fails to be within the

confidence bounds P ¶M /∈ M(t)♢. Taking the expectations and using Lemma 5.8,

we obtain

E [Rout] ≤ rmax

T∑

t=1

tP ¶M /∈ M(t)♢ ≤ rmax

T∑

t=1

S + 16CSA

2t2
≤ rmax(S + 16CSA).

(5.28)

This term is constant in T and therefore it does not significantly contribute to the

regret.

5.8.3 Split of Confidence Bound

We assume that M ∈ Mk and to simplify the notations, we will omit the use of the

indicator functions 1M∈Mk
. For each episode k and module m, let us define for

simplicity

• R
(m)
in,k :=

∑
s R

(m)
k ,

• π̃k the optimistic policy,

• P̃k := (p̃k(s′♣s, π̃k(s))) the transition matrix of policy π̃k on the optimistic MDP

M̃k,

• V
(m)

k :=
(
V

(m)
k (s, π̃k

)
the row vector of visit counts,

• hk the bias vector of the Markov chain in the true MDP M with policy π̃k.
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Now, we split the regret term R
(m)
in into subterms that have different meaning.

Assuming M ∈ Mk and using Lemma 5.6 on the accuracy of EVI, we get:

R
(m)
in,k =

∑

s,a

V
(m)

k (s, a)(g∗ − r(s, a))

≤
∑

s,a

V
(m)

k (s, a)(g̃k − r(s, a)) + εk

∑

s,a

V
(m)

k (s, a)

=
∑

s,a

V
(m)

k (s, a)(g̃k − r̃k(s, a)) +
∑

s,a

V
(m)

k (s, a)(r̃k(s, a) − r(s, a) + εk).

In the next few steps, we will focus on rewriting the first sum. With (5.43) and

using the definition of the iterated values from EVI, we have for a given state s and

as := π̃k(s):

∣∣∣∣∣(g̃k − r̃k(s, as)) −
(
∑

s′

p̃k(s′♣s, as)u
(k)
i (s′) − u

(k)
i (s)

∣∣∣∣∣ ≤ εk,

so that:

R
(m)
in,k ≤ V

(m)
k

(
P̃k − I

)
ui +

∑

s,a

V
(m)

k (s, a)(r̃k(s, a) − r(s, a)) + εk

∑

s,a

V
(m)

k (s, a).

Again, with h̃k being the bias of the average optimal policy for the optimistic MDP,

define:

dk(s) :=

(
u

(k)
i (s) − min

s′

u
(k)
i (s′)

)
−
(

h̃k(s) − min
s′

h̃k(s′)
)

.

Then for any s: ♣dk(s)♣ ≤ εk.

Notice that the unit vector is in the kernel of
(
P̃k − I

)
. Therefore, in the first term,

we can replace ui by any translation of it. We get:

V
(m)

k

(
P̃k − I

)
ui = V

(m)
k

(
P̃k − I

)
h̃k + V

(m)
k

(
P̃k − I

)
dk.

so that, using the definition of εk, we have that overall:

R
(m)
in ≤

∑

k

V
(m)

k

(
P̃k − I

)
h̃k

︸ ︷︷ ︸
R

(m)

bias

+
∑

k

V
(m)

k

(
P̃k − I

)
dk + 2δmax

∑

k

∑

s,a

V
(m)

k (s, a)√
tk

︸ ︷︷ ︸
R

(m)
EVI

+
∑

k

∑

s,a

V
(m)

k (s, a)(r̃k(s, a) − r(s, a))

︸ ︷︷ ︸
R

(m)

rewards
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We can already further simplify the term related to EVI. Notice that:

V
(m)

k

(
P̃k − I

)
dk ≤

∑

s

Vk (s, π̃k(s)) · ∥p̃k (·♣s, π̃k(s)) − 1s∥1 · sup
s′

♣dk(s′)♣

≤ 2εk

∑

s

V
(m)

k (s, π̃k(s)) ≤ 2δmax

∑

s,a

V
(m)

k (s, a)√
tk

≤ 2δmax

∑

s,a

V
(m)

k (s, a)√
max ¶1, N

(mk(s,a))
tk

(s, a)♢
,

where in the last inequality we used that max¶1, N
(mk(s,a))
tk

(s, a)♢ ≤ tk ≤ T . Thus,

for T ≥ e2

2AT the regret term coming from the consequences and approximations of

EVI satisfies

R
(m)
EVI ≤ δmax2

√
2 log(2AT )

∑

k

∑

s,a

V
(m)

k (s, a)√
max ¶1, N

(mk(s,a))
tk

(s, a)♢
. (5.29)

Let us now deal with the term R
(m)
rewards, as it will be bounded by a similar term as in

equation (5.29). Indeed, as M ∈ Mk, we may use that both the optimistic and true

rewards are within the confidence region from equation 5.16, and use that tk < T ,

so that:

R
(m)
rewards ≤ δmax2

√
2 log(2AT )

∑

k

∑

s,a

Vk(s, a)√
max ¶1, N

(mk(s,a))
tk

(s, a)♢
(5.30)

On the other hand, we can also split more precisely the term that depends on the

bias. Define Pk as the transition matrix of the optimistic policy π̃k in the true MDP

M . We get

R
(m)
in ≤

∑

k

V
(m)

k

(
P̃k − Pk

)
hk

︸ ︷︷ ︸
R

(m)
trans

+
∑

k

V
(m)

k

(
P̃k − Pk

)(
h̃k − hk

)

︸ ︷︷ ︸
R

(m)

diff

+
∑

k

V
(m)

k (Pk − I)h̃k

︸ ︷︷ ︸
R

(m)
ep

+ δmax4
√

2 log(2AT )
∑

k

∑

s,a

V
(m)

k (s, a)√
max ¶1, N

(mk(s,a))
tk

(s, a)♢
︸ ︷︷ ︸

R
(m)
EVI

+R
(m)

rewards

. (5.31)
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Now that we split the regret into several terms, we still need to sum over the modules

and analyze for each term its contribution to the regret. For instance, we can sum

over the modules the terms depending on EVI and the reward differences to get:

REVI + Rrewards = δmax4
√

2 log(2AT )
∑

k

∑

s,a

Vk(s, a)√
max ¶1, N

(mk(s,a))
tk

(s, a)♢
. (5.32)

This term is related to the choice of the confidence bounds, and it will contribute

to the main term of the regret. Regarding the other terms, R
(m)
trans will also use the

confidence bounds on the transition as well as our knowledge of the bias in the true

MDP. R
(m)
diff will be a lower order term in the regret, using the confidence bounds

for both the comparisons between the transitions and the biases. Finally, R
(m)
ep will

be related to the count of episodes, so that it will also be a lower order term. The

discussion for each of these terms will be spread over the next subsections.

5.8.4 Bound on R
(m)
trans

To bound R
(m)
trans, we can follow the computations from Chapter 4. We will use our

knowledge of the bias hk and the control on the transitions in the optimistic MDP to

simplify the regret term.

Notice that for a fixed state 0 ≤ s ≤ S′:

∑

s′

p
(
s′♣s, π̃k(s)

)
hk(s′) =

∑

s′

p
(
s′♣s, π̃k(s)

) (
hk(s′) − hk(s)

)
+ hk(s).

The same is true for p̃k, and knowing the MDP is a birth-and-death process:

R
(m)
trans =

∑

k

∑

s

∑

s′

V
(m)

k (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
· hk(s′)

=
∑

k

∑

s

∑

s′

V
(m)

k (s, π̃k(s))
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
·
(
hk(s′) − hk(s)

)

≤
∑

k

∑

s

V
(m)

k (s, π̃k(s))∥p̃k (·♣s, π̃k(s))−p (·♣s, π̃k(s))∥1max
{
∆π̃k(s), ∆π̃k(s + 1)

}

≤ 4
√

2 log (2AT )
∑

k

∑

s,a

∆(s + 1)V
(m)

k (s, a)√
max¶1, N

(mk(s,a))
tk

(s, a)♢
,

where ∆ is the difference of bias in the last inequality, we used the bound on

the variations of the bias from Proposition 5.16, and that the optimistic MDP has

transitions close to the true transitions with inequality (5.17). Notice that the final

term looks similar to the term coming from EVI and rewards related computations
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(5.32). We will deal with these terms together in the next subsection, as they are

both mainly contributing to the regret.

5.8.5 Bound on the Main Term

In the previous Section 5.8.4, we have shown that:

R
(m)
trans ≤ 4

√
2 log (2AT )

∑

s,a

∆(s + 1)V
(m)

k (s, a)√
max¶1, N

(mk(s,a))
tk

(s, a)♢
.

Summing over the modules m, we get:

Rtrans ≤ 4
√

2 log (2AT )
∑

s,a

∆(s + 1)Vk(s, a)√
max¶1, N

(mk(s,a))
tk

(s, a)♢
. (5.33)

We now wish to control this term, REVI and Rrewards using our knowledge of the

bias, rather than bounding it directly with the diameter D. We first sum over

the episodes and take the expectation, so that with Lemma 2.11, and using that

N
(mk(s,a))
tk

(s, a) ≥ 1
τmix

Ntk
(s, a) we had from equation (5.13), we get:

E


∑

s,a

∑

k

√
τmixVk(s, a)√

max¶1, Ntk
(s, a)♢


 ≤ 3E


∑

s,a

√
τmixNT (s, a)

]

≤ 3
∑

s

√
τmixE [NT (s)] A, by Jensen’s inequality.

Therefore:

Rtrans ≤ 12
√

2Aτmix log (2AT )
S′∑

s=0

∆(s + 1)
√
E [NT (s)]. (5.34)

This is one of the terms mainly contributing to the regret, the other one being, doing

similar computations:

REVI + Rrewards ≤ 12δmax

√
2Aτmix log (2AT )

∑

s≥0

√
E [NT (s)] (5.35)

Now, let Nπmax

T be the number of visits when the starting state is sampled randomly

from the initial distribution νπmax
and the policy πmax is always chosen. By stochastic
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ordering, as NT (s) ≤st Nπmax

T , we have E [NT (s)] ≤ E
[
Nπmax

T

]
= Tνπmax

(s). We can

therefore rewrite the main contributing term to the regret as:

12
√

2AτmixT log (2AτmixT )
S′∑

s=0

(∆(s + 1) + δmax)
√

νπmax(s). (5.36)

Replace in the equation the choice τmix = 5 log T/ log ρ−1 and recall that we had,

from Proposition 5.16, ∆(s) := 2δmaxνπmax
(0)−1∑s

i=1
U

µ(i) ≤ 2δmaxνπmax
(0)−1 U

µ(1)s.

Using Lemma 5.15, since

S′∑

s=0

(∆(s + 1) + δmax)
√

νπmax(s) ≤ 3δmaxνπmax
(0)−1 U

µ(1)

S′∑

s=0

(s + 1)
√

νπmax(s)

≤ 3δmaxνπmax
(0)−1/2 U

µ(1)

√
C1

∑

s≥0

s

(
λ

µ(i0)

)s/2

≤ 3δmaxνπmax
(0)−1/2 U

µ(1)

√
C1

1
(
1 −

√
λ

µ(i0)

)2

≤ 3δmax
U

µ(1)
C1

1
(
1 −

√
λ

µ(i0)

)3 ,

then, assuming τmix ≤ T , the main term is upper bounded by:

72δmax
U

µ(1)
C1

(
1 −

√
λ

µ(i0)

−3

log (AT )
√

5AT log−1(ρ−1). (5.37)

5.8.6 Bound on R
(m)
diff

We now deal with the term involving the difference of bias R
(m)
diff , defined in equa-

tion 5.31. The proof mainly follows the one from Chapter 4, with a final tweak to

relate the visits from a module to the total number of visits. Notice that we cannot

directly use the confidence regions to control the difference between h̃k and hk, so

that we will need Lemma 5.12, and we are interested in controlling ∥h̃k − hk∥∞.

Fix the module m and the episode k, with policy π̃k. Choose a state minimizing

N
(mk(s,π̃k(s)))
tk

(s, π̃k(s)), and call this state xk, ak := π̃k(xk) and m′ := mk(xk, ak):

for this state, the confidence bounds are at their worst, and

√
log(2Atk)

max¶1,N
(m′)
tk

(xk,ak)♢
is

maximal for episode k. This means that controlling the number of visits of the worst

state lets us control the number of visits for any state. As the true MDP is within the

confidence bounds, with a triangle inequality we get:

5.8 Proof of Theorem 5.5 117



∥P̃k − Pk∥∞ ≤ 4

√√√√ 2 log (2Atk)

max¶1, N
(m′)
tk

(xk, ak)♢
.

We now want to use Lemma 5.12. In our case, notice that in the true MDP we have

D ≥ T π̃k
hit ≥ 1 for S large enough. Remark also that Dπ̃k can be replaced by D in the

last inequality of the proof of 5.12, as span(hπ̃k) ≤ D by construction of π̃k with EVI,

following the same argument as in [Jaksch et al., 2010, Equation (11)].

∥h̃k − hk∥∞ ≤ 8rmaxD2

√√√√ 2 log (2Atk)

max¶1, N
(m′)
tk

(xk, ak)♢
. (5.38)

Hence,

R
(m)
diff ≤

∑

s

∑

s′

V
(m)

k (s, π̃k(s)) ·
(
p̃k

(
s′♣s, π̃k(s)

)
− p

(
s′♣s, π̃k(s)

))
· (h̃k(s′) − hk(s′))

≤
∑

s

V
(m)

k (s, π̃k(s)) · ∥p̃k (·♣s, π̃k(s)) − p (·♣s, π̃k(s))∥1 ∥h̃k − hk∥∞

≤ 32D2rmax log (2AT ) Σ(m),

where in the last inequality we have used (5.38) and defined

Σ(m) :=
∑

s,a

∑

k

tk+1−1∑

t=tk

1¶st,at=s,a♢1¶t∈m♢√
max¶1, N

(mk(s,a))
tk

(s, a)♢
√

max¶1, N
(m′)
tk

(xk, ak)♢
.

By the choice of xk, N
(m′)
tk

(xk, ak) ≤ N
(mk(s,a))
tk

(s, a) for any state-action pair (s, a),

so that we can compute the sum Σ :=
∑

m Σ(m), with Ik := tk+1 − tk the length of

episode k:

Σ ≤
∑

m

∑

s,a

∑

k

tk+1−1∑

t=tk

1¶st,at=s,a♢1¶t∈m♢

max¶1, N
(m′)
tk

(xk, ak)♢
=
∑

k

Ik

max¶1, N
(m′)
tk

(xk, ak)♢
.

Now, define Qmax :=
(

10C2S2

νπmax
(S′)

)2
log

((
10C2S2

νπmax
(S′)

)4
)

where we defined the constant

C2 =
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0)) , and I(T ) := max
{

Qmax, T 1/4
}

. We split the sum depending

on whether the episodes are shorter than I(T ) or not, and call K≤I the number of

such episodes. This yields:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik

max¶1, N
(m′)
tk

(xk, ak)♢
.

118 Chapter 5 Reinforcement Learning in a Partially Observable Queueing Net-

work: Optimal Admission



Using the stopping criterion for episodes, and that we have chosen the module m′ in

equation (5.13) to have the inequality V
(m′)

k (xk, ak) ≥ 1
τmix

Vk(xk, ak):

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

τmixIk

max¶1, Vk(xk, ak)♢ .

Now we can end the computations as in Chapter 4. Denote by E the event:

E =

{
∀k s.t Ik > I(T ),

1

max¶1, Vk(xk, ak)♢ ≤ 2

νπmax(S′)Ik

}
.

By splitting the sum, using the above event, we get:

Σ ≤ K≤II(T ) + 1E
∑

k,Ik>I(T )

2τmix

νπmax(S′)
+ 1Ē

∑

k,Ik>I(T )

τmixIk

≤ K≤II(T ) + 1E (K − K≤I)
2τmix

νπmax(S′)
+ 1ĒτmixT.

We use Corollary 5.14 to get P
(
Ē
)

≤ 1
4T , so that when taking the expectation:

E [Σ] ≤ E [K≤I ] I(T ) + E [(K − K≤I)]
2τmix

νπmax(S′)
+

τmix

4
.

Now using Lemma 2.10, SA ≥ 4, I(T ) ≥ 2
νπmax (S′)

and that 1
log 2 + 1

4 ≤ 2:

E [Σ] ≤ E [K] I(T )τmix +
τmix

4
≤ 2SAτmix log(2AT )I(T ).

Therefore, we have that:

E

[
R

(m)
diff

]
≤ 64rmaxSAD2τmixI(T ) log2 (2AT ) . (5.39)

5.8.7 Bound on Rep

The last regret term we have to bound is related to the count of episodes.

R
(m)
ep =

∑

k

V
(m)

k (Pk − I) h̃k.

We first want to sum over the modules to get the same kind of term as in [Jaksch et al.,

2010], written as a martingale difference sequence, and then take the expectation.

Following that proof, we define Xt := (p(·♣st, at) − est) h̃k(t)1M∈Mk(t)
, where k(t) is
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the episode containing step t and ei the vector with i-th coordinate 1 and 0 for the

other coordinates. We obtain

∑

m

V
(m)

k (Pk − I) h̃k ≤ Vk (Pk − I) h̃k ≤
tk+1−1∑

t=tk

Xt + h̃k(stk+1
) − h̃k(stk

)

≤
tk+1−1∑

t=tk

Xt + Drmax,

and by summing over the episodes we get

∑

m

R
(m)
ep ≤

T∑

t=1

Xt + KDrmax.

Notice that E [Xt♣s1, a1, . . . , st, at] = 0, so that when taking the expectations, only

the term in the number of episodes remains.

On the other hand, using Lemma 2.10 on the number of episodes, when taking the

expectation we obtain

E


∑

m

R
(m)
ep

]
≤ SAτmix log2

(
8T

SAτmix

)
· Drmax.

As for the computation of (5.27), assuming τmixSA ≥ 4:

E [Rep] ≤ 2rmaxSADτmix log(2AT ). (5.40)

5.8.8 Total Sum

We remind that we showed in subsection 5.8.5 that the main term of the regret is:

72δmax
U

µ(1)
C1

(
1 −

√
λ

µ(i0)

−3

log (AT )
√

5AT log−1(ρ−1),

and it remains now to compute the lower order term of the regret RLO. Using (5.27),

(5.28), (5.39) and (5.40), the lower order term of the regret is upper bounded by,

omitting the rmax factor:

64SAD2τmixI(T ) log2 (2AT ) + 2SAτmix(D + τmix) log(2AT ) + (S + 16CSA),
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and for T large enough so that 1 + 16C ≤ log2(T ) the upper bound is :

rmax69SAD2τ2
mixI(T ) log2 (2AT ) ,

which concludes the proof of Theorem 5.5.

5.9 Lemmas on Extended Value Iteration

We remind the fundamental properties of the Extended Value Iteration (EVI) algo-

rithm, first described in [Jaksch et al., 2010], which is used to find the optimistic

MDP M̃k and the policy π̃k for each episode k given a confidence region Mk. These

properties are useful notably in the first splits of the regret terms in Section 5.8.3.

EVI iteratively computes values in the following way:





u
(k)
0 (s) = 0

u
(k)
i+1(s) = maxa∈A

{
r(s, a) + maxp(·)∈P(s,a)

{∑
s′ p(s′)u(k)

i (s′)
}}

,

where P(s, a) is the set of probabilities from (5.17), and the iterations are stopped

with respect to the following lemma [Jaksch et al., 2010, Theorem 7].

Lemma 5.6

For episode k and accuracy εk := δmax√
tk

, denote by i the last step of extended value

iteration, stopped when:

max
s

¶u
(k)
i+1(s) − u

(k)
i (s)♢ − min

s
¶u

(k)
i+1(s) − u

(k)
i (s)♢ < εk. (5.41)

The optimistic MDP M̃k and the optimistic policy π̃k at the last step of EVI are so

that the gain is εk− close to the optimal gain:

g̃k := min
s

g(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

g(M ′, π, s′) − εk. (5.42)

Moreover, from [Martin L. Puterman, 1994, Theorem 8.5.6]:

∣∣∣u(k)
i+1(s) − u

(k)
i (s) − g̃k

∣∣∣ ≤ εk, (5.43)
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and as the optimal policy yields an aperiodic unichain Markov chain, we have that

g̃k = g(M̃k, π̃k, s) for any s, so that we can define the bias:

h̃k(s0) = Es0

 ∞∑

t=0

(r̃(st, at) − g̃k)

]
. (5.44)

Rather than using the last value of EVI in the computations of the regret, we rely on

the bias to show that the last value and the optimistic bias are nearly equal, up to a

translation. By choosing iteration i large enough, from [Martin L. Puterman, 1994,

Equation 8.2.5], we can ensure that:

∣∣∣u(k)
i (s) − (i − 1)g̃k − h̃k(s)

∣∣∣ <
εk

2
, (5.45)

so that we can define the following difference

dk(s) :=

∣∣∣∣u
(k)
i (s) − min

s′

u
(k)
i (s′) −

(
h̃k(s) − min

s′

h̃k(s′)
)∣∣∣∣ < εk. (5.46)

5.10 Probability of not Being in the Confidence Region

We compute the probability that the true MDP M fails to be in the confidence

set. This lemma controls the corresponding regret terms in Section 5.8.2 when we

consider the episodes k with M /∈ Mk.

Let us first prove the key Lemma 5.7.

Lemma 5.7

Let us consider the original MDP under any policy π, with stationary measure νπ.

There exists C > 0, ρ ∈ (0, 1) such that:

max
π∈Π

sup
x0∈S

∥Pπ
x0(xt = ·) − νπ∥T V ≤ Cρt ∀t > 0. (5.47)

Let t, t′ > 0 such that t′ − τmix ≥ t, with t′ and t′ − τmix belonging to the same

episode. Let X be a function of the state of the original MDP until time t and

Y function of the state of the original MDP from time t′. Let Ŷ be a random

variable following the same distribution as Y independently from X. Let f be a

real-valued, bounded function. Then:

∣∣∣E [f(X, Y )] − E

[
f(X, Ŷ )

]∣∣∣ ≤ 4C∥f∥∞ρτmix .
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Proof. The proof is essentially the same as in [Bhandari et al., 2018, Lemma 9], but

as states are sampled from the original MDP and not a single Markov chain, we

cannot just assume that the starting distribution at time 0 is a stationary distribution.

Instead, we have to make sure that it is the case for each start of the episodes, hence

the initial phase where τmix samples of the aggregated MDP are discarded, so that

the original MDP is close to its stationary distribution. Due to this ramping time, we

can make sure that t′ and t′ − τmix belong to the same episodes and can therefore be

related to the same stationary distribution.

Let t, t′ > 0 such that t′ −τmix ≥ t, with t′ and t′ −τmix belonging to the same episode

k. Now, X is a function of the state of the original MDP until time t, so there are t

observed transitions but there might be many more that are hidden. In turn, Y is a

function of the state of the original MDP from time t′. Let Ŷ be a random variable

following the same distribution as Y and independent of X. Note that there are at

least τmix observed or hidden transitions between t and t′ on the original MDP.

We also define the distributions P := P ¶X ∈ ·, Y ∈ ·♢ and Q := P ¶X ∈ ·♢ ⊗
P ¶Y ∈ ·♢, and we define the total variation information

IT V (X, Y ) :=
∑

x

P ¶X = x♢ ∥P ¶Y = · ♣ X = x♢ − P ¶Y = y♢∥T V .

To simplify, assume that ∥f∥∞ ≤ 1
2 . By definition of the total variation distance, we

first have that: ∣∣∣E [f(X, Y )] − E

[
f(X, Ŷ )

]∣∣∣ ≤ ∥P − Q∥T V ,

Then, using the properties of the total variation information related to a Markov

chain described in [Bhandari et al., 2018], we obtain

∥P − Q∥T V ≤ IT V (X, Y ) ≤ IT V (xt, xt′) ≤ IT V (xt′−τmix
, xt′)

≤
∑

x

P
{
xt′−τmix

= x
} ∥∥P

{
xt′ = · ♣ xt′−τmix

= x
}

− P ¶xt = ·♢
∥∥

T V

then using a triangle inequality:

∥∥P
{
xt′ = · ♣ xt′−τmix

= x
}

− P ¶xt = ·♢
∥∥

T V ≤
∥∥∥P ¶xt′ = ·♢ − νπ̃k

∥∥∥
T V

+
∥∥∥P
{
xt′ = · ♣ xt′−τmix

= x
}

− νπ̃k

∥∥∥
T V

,

we get

∥P − Q∥T V ≤ 2Cρτmix ,
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where in the last inequality we used assumption (5.10) twice, as t′ and t′ − τmix

belong to the same episode, and therefore can be related to the same stationary

measure νπ̃k . To clarify, the exponent τmix in the inequality is loose, as τmix is the

number of time-steps in the aggregated MDP, so there are at least as many time

steps in the original MDP, and the mixing is confirmed.

We can now give the lemma that actually shows that M is likely to be in the

confidence set of MDPs.

Lemma 5.8

For t > 1, the probability that the MDP M is not within the set of plausible MDPs

M(t) is bounded by:

P ¶M /∈ M(t)♢ ≤ S

2t3
+

8CSA

t3
.

Compared to [Jaksch et al., 2010, Lemma 17], we notice that the first term comes

from the choice of the confidence bound adapted to the birth-and-death structure of

the MDP, but the second one comes from the imperfect independence of the obser-

vations. To prove this inequality, we will need Lemma 5.7 to consider independent

events again, and to be able to use concentration inequalities.

Let us now prove Lemma 5.8.

Proof. Fix a state-action pair (s, a), m any module and n the number of visits of

this pair within the module before time t. We will first consider the confidence

around the empirical transitions, and then the confidence around the rewards. Let

εp =
√

2
n log (16At4) ≤

√
8
n log (2At). Define the events:

An =

(
∥p̂(m)(·♣s, a) − p(·♣s, a)∥1 ≥

√
8

n
log (2At)


(5.48)

Here, we aim to control these events but the difficulty is that the observations from

the state-action pairs are not independent. On the other hand, we notice that the

observations within a fixed module are nearly independent, which is why we needed

to introduce these modules in the first place.
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Define p̂⊥(·♣s, a) the empirical transition probabilities from n independent obser-

vations of the state-action pair (s, a). Define events that are copies of An but with

independent observations:

A⊥
n =

(
∥p̂⊥(·♣s, a) − p(·♣s, a)∥1 ≥

√
8

n
log (2At)


. (5.49)

Similarly, define A⊥,k
n events such that the first n − k observations are the same as

the ones for An and the next k observations are independent, so that for example

A⊥,0
n = An and A⊥,n−1

n = A⊥
n . Then, applying n − 1 times Lemma 5.7:

∣∣∣P ¶An♢ − P

{
A⊥

n

}∣∣∣ ≤
n−1∑

k=1

∣∣∣P
{

A⊥,k−1
n

}
− P

{
A⊥,k

n

}∣∣∣ ≤ 4Cnρτmix ≤ 4CT 1−5.

We can therefore work on the events with independent observations. Knowing that

from each pair, there are at most 3 transitions, a Weissman’s inequality gives:

P

{
∥p̂(m)(·♣s, a) − p(·♣s, a)∥1 ≥ εp

}
≤ 6 exp

(
−

nε2
p

2



and we get

P

{
A⊥

n

}
≤ 3

8At4
,

and within our choice of τmix,

P ¶An♢ ≤ 3

8At4
+

4C

t4
.

We deal with the rewards in a similar manner. Define the events:

Bn :=

(
♣r̂(m)(s, a) − r(s, a)♣ ≥ δmax

√
2

n
log (2At)


. (5.50)

By definition of r̂(m)(s, a) = γrejectp̂
(m)(s + 1♣s, a) + γhold

U (S′ − s) 5.15, and using that

γreject ≤ δmax, we can write:

P ¶Bn♢ ≤ P

{
♣p̂(m)(s + 1♣s, a) − p(s + 1♣s, a)♣ ≥

√
2

n
log (2At)

}
.

Once again, we consider p̂⊥(s + 1♣s, a) the empirical transition probabilities from

independent observations of (s, a) to s + 1, and we look to control the probability of
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the events B⊥
n . With the independence, we may now use the following Hoeffding

inequality on the Bernoulli random variable of parameter p(s + 1♣s, a):

P

{
♣p̂(m)(s + 1♣s, a) − p(s + 1♣s, a)♣ ≥ εr

}
≤ 2 exp

(
−2nε2

r

)
,

where εr =
√

1
2n log (16At4) ≤

√
2
n log (2At). We therefore get:

P

{
B⊥

n

}
≤ 1

8At4
,

and with the previous choice of τmix,

P ¶Bn♢ ≤ 1

8At4
+

4C

t4
.

Overall:

P ¶An ∪ Bn♢ ≤ 1

2At4
+

8C

t4
.

Now, with a union bound for all values of n = max¶1, N
(m)
t (s, a)♢ ∈

{
0, 1, · · · ,

⌈
t−1
τmix

⌉}

and all τmix possible modules, and also summing over all state-action pairs:

P ¶M /∈ M(t)♢ ≤ S

2t3
+

8CSA

t3

as desired.

5.11 Lemmas Specific to our Regret Computations

In this section, we prove generic properties on the difference of biases between two

MDPs. This control on the difference is needed in subsection 5.8.6 to compare the

optimistic MDP and the true MDP.

5.11.1 Lemmas on the Bias Differences

The next four lemmas of this subsection are already proved in Chapter 4, for the

sake of completeness, we rewrite them in this subsection. They are used in the proof

of Lemma 5.12, to control the difference between the bias of the policy π̃k in the

optimistic MDP and in the true MDP.
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Lemma 5.9

For an MDP with rewards r ∈ [0, rmax] and transition matrix P , denote by

Js(π, T ) := E

[∑T
t=0 r(st, π(st))

]
the expected cumulative rewards until time T

starting from state s, under policy π. Let Dπ be the diameter under policy π. The

following inequality holds: span (J(π, T )) ≤ rmaxDπ.

Proof. Let s, s′ ∈ S be recurrent states under policy π. Call τs→s′ the random time

needed to reach state s′ from state s. Then:

Js(π, T ) = E


T∑

t=1

r(st)

]

= E

τs→s′∑

t=1

r(st)

]
+ E




T∑

t=τs→s′ +1

r(st)




≤ rmaxE [τs→s′ ] + Js′(π, T )

≤ rmaxDπ + Js′(π, T ),

which proves the lemma.

Lemma 5.10

Consider two unichain MDPs M and M ′. Let r = r′ ∈ [0, rmax] and P, P ′ be

the rewards and transition matrix of MDP M, M ′ under policy π, π′ respectively,

where both MDPs have the same state and action spaces. Denote by g, g′ the

average reward obtained under policy π, π′ in the MDP M, M ′ respectively. Then

the difference of the gains is upper bounded.

♣g − g′♣ ≤ rmaxDπ∥P − P ′∥∞.

Proof. Define for any state s the following correction term b(s) := rmaxDπ∥p(·♣s) −
p′(·♣s)∥1. Let us show by induction that for T ≥ 0,

T −1∑

t=0

P tr ≤
T −1∑

t=0

P ′t(r + b).
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This is true for T = 0. Assume that the inequality is true for some T ≥ 0, then

T∑

t=0

P tr −
T∑

t=0

P ′t(r + b) = −b + P
T −1∑

t=0

P tr − P ′
T −1∑

t=0

P ′t(r + b)

= −b + P ′
(

T −1∑

t=0

P tr −
T −1∑

t=0

P ′t(r + b)


+ (P − P ′)

T∑

t=0

P tr

≤ −b + (P − P ′)
T∑

t=0

P tr by induction hypothesis.

Notice that, for any recurrent state s for policy π:

(
(P − P ′)

T∑

t=0

P tr


(s) ≤ ∥p(·♣s) − p′(·♣s)∥1 · span (J(T ))

≤ rmaxDπ∥p(·♣s) − p′(·♣s)∥1 by Lemma 5.9

= b(s).

In the same manner we show that:

T∑

t=0

P tr ≥
T∑

t=0

P ′t(r − b).

Hence, as P ′ has non-negative coefficients, denoting by e the unit vector:

∥∥∥∥∥

T∑

t=0

P tr −
T∑

t=0

P ′tr

∥∥∥∥∥
∞

≤ ∥b∥∞

∥∥∥∥∥

T∑

t=0

P ′t · e

∥∥∥∥∥
∞

= ∥b∥∞(T + 1).

As r = r′, with a multiplication by 1
T +1 and by taking the Cesáro limit :

♣g − g′♣ ≤ ∥b∥∞,

where ∥b∥∞ = rmaxDπ∥P − P ′∥∞.

Lemma 5.11

Let P be the stochastic matrix of an ergodic Markov chain with state space

1, . . . , S. The matrix A := I − P has a block decomposition

A =

(
AS b

c d


;
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then AS , of size S × S is invertible and ∥A−1
S ∥∞ = supi∈S E [τi→S ], where

E [τi→S ] is the expected time to reach state S from state i.

Remark that this lemma is true for any state in S.

Proof. (E [τi→S ])i is the unique vector solution to the system:





v(S) = 0

∀i ̸= S, v(i) = 1 +
∑

j∈S P (i, j)v(j)

We can rewrite this system of equations as: Ãv = e − eS , where Ã is the matrix

Ã :=

(
AS b

0 1


,

e the unit vector and eS the vector with value 1 for the last state and 0 otherwise.

Then Ã and AS are invertible and we write:

Ã−1 =

(
A−1

S −A−1
S b

0 1


.

Thus, by computing Ã−1(e − eS), for i ̸= S, (E [τi→S ])i = A−1
S e. By definition of the

infinite norm and using that AS is an M-matrix and that its inverse has non-negative

components, ∥A−1
S ∥∞ = supi∈S E [τi→S ].

In the following lemma, we use the same notations as in Lemma 5.10 with a common

state space ¶0, 1, . . . S♢.

Lemma 5.12

Let the biases h, h′ be the biases of the two MDPs that verify their respective

Bellman equations with the renormalization choice h(S) = h′(S) = 0, and

respective policies π, and π′. Let sups∈S E [τπ
s→s′ ] be the worst expected hitting

time to reach the state s′ with policy π, and call Thit := infs′∈S sups∈S E [τπ
s→s′ ].

We have the following control of the difference:

∥h − h′∥∞ ≤ 2T π
hitD

π′

rmax∥P − P ′∥∞.

Notice that although the biases are unique up to a constant additive term, the

renormalization choice does not matter as the unit vector is in the kernel of (P −
P ′).
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Proof. The computations in this proof follow the same idea as in the proof of [Ipsen

and Meyer, 1994, Theorem 4.2]. The biases verify the following Bellman equations

r − ge = (I − P )h, and also the arbitrary renormalization equations, thanks to the

previous remark: h(S) = 0. Using the same notations as in the proof of Lemma 5.11,

we can write the system of equations Ãh = r̃ − g̃, with r̃ and g̃ respectively equal to

r and g everywhere but on the last state, where their value is replaced by 0.

We therefore have that h = Ã−1(r̃ − g̃), and with identical computations, h′ =

Ã′−1
(r̃′ − g̃′). By denoting dX := X − X ′ for any vector or matrix X, we get, as

r = r′:

dh = −Ã−1(−dg̃ + dÃh′).

The previously defined block decompositions are:

Ã−1 =

(
A−1

S −A−1
S b

0 1


and dÃ =

(
AS − AS b − b′

0 0


.

For s < S, dh(s) = −eT
s A−1

S (dASh′ − dg̃) and dh(S) = 0. Now by taking the norm

and using 5.9:

∥dh∥∞ ≤ ∥A−1
S ∥∞(rmaxDπ′∥dAS∥∞ + ♣dg̃♣).

Notice that ∥dAS∥∞ ≤ ∥dP∥∞ and ♣dg̃♣ = ♣dg♣. Using Lemma 5.10 and Lemma 5.11,

and taking the infimum for the choice of the state of renormalization implies the

claimed inequality for the biases.

5.11.2 Visits of the Furthest State

We also need the next lemmas to bound Rdiff by controlling the number of visits

of the state with the fewest visits. If we can guarantee that each state receives

enough visits, then we will have a good approximation of the biases and transition

probabilities. The proof can also be found in Chapter 4.

Lemma 5.13

Let νπmax
be the stationary measure of the Markov chain under policy πmax, such

that for every state s: πmax(s) = 1, so that every job is admitted in the network

until maximal capacity S′ is reached.

Let k be an episode and assume that the length of this episode Ik is at least

I(T ) = 1 + max
{

Qmax, T 1/4
}

, with Qmax :=
(

10C2S2

νπmax
(S′)

)2
log

((
10C2S2

νπmax
(S′)

)4
)

,

130 Chapter 5 Reinforcement Learning in a Partially Observable Queueing Net-

work: Optimal Admission



C2 :=
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0)) and C1 as in Lemma 5.15. Then, with probability at least

1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)Ik − 5C2S2

√
Ik log Ik.

We will now prove Lemma 5.13:

Proof. Let k be an episode such that Ik ≥ I(T ), and first consider it is of fixed

length I. Let xk ∈ S be a recurrent state, ak = π̃k(sk). Denote by νk the stationary

distribution under policy π̃k. Notice that νπmax
(S′) ≤ νk(xk) for S large enough.

Define a new Markov reward process: consider again the original state space S and

the transitions p′ with policy π̃k, but the rewards r̊, where r̊(s′) = 1 for states s′ such

that ♣s′♣ = xk and 0 otherwise. Denote by g̊π̃k
the gain associated to the policy π̃k

and similarly define h̊π̃k
the bias, translated so that h̊π̃k

(S) = 0. Then:

Vk(xk, ak) =

tk+1−1∑

u=tk

r̊(s′
u)

=

tk+1−1∑

u=tk

g̊π̃k
+ h̊π̃k

(s′
u) −

〈
p′ (·♣s′

u, π̃k(s′
u)
)

, h̊π̃k

〉
using a Bellman equation

=

tk+1−1∑

u=tk

g̊π̃k
+ h̊π̃k

(s′
u) − h̊π̃k

(s′
u+1) + h̊π̃k

(s′
u+1) −

〈
p′ (·♣s′

u, π̃k(s′
u)
)

, h̊π̃k

〉
.

By Azuma-Hoeffding inequality 2.12, following the same proof as in section 4.3.2 of

[Jaksch et al., 2010], notice that Xu = h̊π̃k
(s′

u+1) −
〈
p′ (· ♣ s′

u, π̃k(s′
u)) , h̊π̃k

〉
form

a martingale difference sequence with the bound ♣Xu♣ ≤ span h̊π̃k
:

P





tk+1−1∑

u=tk

Xu ≥ C2S2
√

10I log I



 ≤ 1

I5
.

With Proposition 5.16 proved in Section 5.12, we have span h̊π̃k
≤ C2S2 with

C2 =
(λγreject+γhold)C1

µ(1)(1−λ/µ(i0)) , so that with probability at least 1 − 1
I2 :

Vk(xk, ak) ≥
tk+1−1∑

u=tk

g̊π̃k
− 5C2S2

√
I log I.

On the other hand:
tk+1−1∑

u=tk

g̊π̃k
= Vk(sk, ak)νk(xk),
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so that, using that νk(xk) ≥ νπmax
(S′), with probability at least 1 − 1

I5 :

Vk(xk, ak) ≥ νπmax
(S′)I − 5C2S2

√
I log I.

We now use a union bound over the possible values of the episode lengths Ik,

between I(T ) + 1 and T :

P

{
Vk(xk, ak) < νπmax

(S′)Ik − 5C2S2
√

Ik log Ik

}
≤

T∑

I=I(T )+1

1

I5
≤

T∑

I=T 1/4+1

1

I5

≤ 1

4T
,

so that we now have that with probability at least 1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)Ik − 5C2S2

√
Ik log Ik.

We can show a corollary of Lemma 5.13 that we will use for the regret computa-

tions:

Corollary 5.14

For an episode k such that its length Ik is greater than I(T ),with probability at

least 1 − 1
4T :

Vk(xk, ak) ≥ νπmax
(S′)

2
Ik.

Proof. With Lemma 5.13, it is enough to show that 5C2S2
√

Ik log Ik ≤ νπmax
(S′)

2 Ik,

i.e. that
√

Ik
log Ik

≥ 10C2S2

νπmax
(S′)

=: B. By monotonicity, as Ik ≥ Qmax = B2 log B4 we

can show instead that B2 log B4 ≥ B2 log
(
B2 log B4

)
.

This last inequality is true, using that log x ≥ log(2 log x) for x > 1. This proves the

corollary.

5.12 Properties of the Aggregated MDP

In this section, we prove properties on the aggregated MDP that are needed to

control the average number of visits of the states of the MDP under any policy. We
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also prove a bound on the bias of the true MDP under any policy, which is eventually

needed to control the main term in subsections 5.8.4 and 5.8.5.

5.12.1 Properties of the Policies in the Aggregated MDP

We may only consider policies that are threshold policies, as we are mainly interested

in the average reward scored by these policies, so that we consider that the policies

chosen by EVI are threshold policies. We remind that the aggregated MDP is stable

(as seen in Section 5.2), so that there exists a i0 large enough for which i ≥ i0,

µ(i) ≥ µ(i0) > λ.

With the following lemma, we compute the stationary measures νπ and give a

comparison between any νπ with the stationary measure νπmax
of the maximal policy

πmax, that admits every job into the queue, by relating these Markov chains to the

M/M/1/S′ queue with rates λ and µ(i0).

Lemma 5.15

Denote by s̄ the last recurrent state of the MDP for policy π, so that π(s) = 0 for

s ≥ s̄. Define the constant C1 :=
∏i0−1

i=1
µ(i0)
µ(i) ≥ 1, independent of S.

We have the following inequalities

• On the stationary measure of the maximal policy:

νπmax
(0)−1 :=

S∑

s′=0

s′∏

i=1

λ

µ(i)
≤ C1

1 − λ
µ(i0)

,

• On the stationary measure of any policy:

νπ(0)−1 :=
s̄∑

s′=0

s′∏

i=1

λ

µ(i)
≤ νπmax

(0)−1 ≤ C1

1 − λ
µ(i0)

,

• Also we can compute for s ≤ S:

νπmax
(s) := νπmax

(0)
s∏

i=1

λ

µ(i)
= νπmax

(0)C1

(
λ

µ(i0)

)s

.

In order to control the variation of the bias of any policy π, we refer to Lemma 2.4

to first compute hitting times in the MDP under this policy, in order to show a more

complete version of Proposition 2.5. The variation of the bias indeed play a major

role in the computations of the main term of the regret (see 5.8.4).
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Proposition 5.16

For any policy π, define for s ∈ ¶1, . . . , S′♢ the variation of the bias

∂hπ(s) := hπ(s) − hπ(s − 1) =
∞∑

t=1

(
P t(s, ·) − P t(s − 1, ·)

)
r.

Remind that δmax := maxs,a,a′ ♣r(s, a) − r(s − 1, a′)♣ =
λγreject+γhold

U :

∂hπ(s) ≤ ∆(s) := 2δmaxνπmax
(0)−1

s∑

i=1

U

µ(i)
.

Using the monotonicity of the rates µ from Lemma 5.1, we therefore have :

∆(s) ≤ 2(λγreject + γhold)νπmax
(0)−1s

1

µ(1)

Proof. We continue the proof of Proposition 2.5 where it stopped. We can now use

the specific stationary measure we computed previously. We had:

∆π(s) ≤ 2δmaxEτs,

and using Lemma 2.4 and Lemma 5.15:

∆π(s) ≤ 2δmaxνπmax
(0)−1

s∑

i=1

U

µ(i)
.

5.13 Conclusion

In this chapter, we have shown that efficient learning in POMDPs is possible. Provided

that the learner’s objective is to learn the optimal admission control policy, which

is a problem appearing in a number of applications as discussed in Section 5.2, we

have proposed UCRL-M, an optimistic algorithm whose regret is independent of

the diameter D, i.e., a quantity that appears in most of the existing regret analyses

[Jaksch et al., 2010] and that is exponential in the size of the space S in most

queueing systems.
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While our result strongly relies on Norton’s equivalent theorem, which only applies

exactly to product-form queueing networks, our main perspective is that this type

of results under partial observations may be found in several other models from

queueing theory. In fact, Norton’s theorem has been generalized to multiclass

networks [Kritzinger et al., 1982] and also used in the context of non-product-form

queueing networks for approximate analysis [Krieger, 2008].
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Conclusions and Future Work 6
6.1 Conclusions

In this thesis, we mainly focused on highlighting the relevance of the queueing

structure in some model-based reinforcement learning problems in the average

reward setting. More precisely, we presented the example of a controlled birth-and-

death process and showed how an adapted version of the classical algorithm UCRL2

could take into account the structure of the queue. In this case, we found a regret

upper bound that is independent of the diameter and the size of the state space.

Instead, it depends on the number of relevant states to explore. To achieve this

bound, we controlled the bias variations for any policy of the MDP and used these

estimations of the bias rather than the diameter. We also showed that the diameter

increases exponentially in the size of the state space in simple queueing problems,

which is the main motivation to remove it from the regret bounds.

We then investigated the typical example of the admission control problem in a

queueing network whose states are not observed that leverages the structure of

the problem. Using Norton’s equivalence theorem and ergodicity properties, it is

possible to simplify the underlying POMDP by learning an asymptotically equivalent

MDP with a birth-and-death structure instead. In this case again, the proposed regret

upper bound does not depend on the diameter anymore, and it only depends on the

size of the state space through the mixing time of the original MDP.

6.2 Future Work

Improvement on the regret bound in the adapted Ucrl2 and Ucrl-M In these algo-

rithms, we observe that the regret bounds depend on the stationary measure and

on the mixing rate for the worst policies. Intuitively, the main contributions to the

regret stem from the execution of suboptimal policies that get closer and closer to

the optimal one in performance. We could expect that the stationary measures of

these policies also get close to the stationary measure of the optimal one, so that

only the optimal policy should be involved in the final regret term, rather than
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the reference policy we had in Chapter 4. Regarding the mixing rate of policies in

ergodic MDPs, we built modules in Chapter 5 according to the worst mixing time,

being the time needed to reach stationarity from the furthest state, which therefore

depends on S. However, by stability, the average queue size does not depend on S,

so that the average mixing time is much lower than S, and we could build modules

with this property in mind to improve the algorithm and its regret bound.

Lower bound of the regret for structured MDPs One of the most natural questions

about the algorithms in Chapters 4 and 5 is about finding a lower bound of the regret,

just like UCRL2 had a lower bound in Ω(
√

DSAT ), evaluate the tightness of our

upper bounds. To do so, it would require clearly defining and choosing the class of

MDPs we would like our algorithms to be applied to, while still keeping the question

relevant. The lower bound in [Jaksch et al., 2010] typically revolved around finding

a specific MDP with a given diameter D that would make the exploration as slow as

possible, so that we could expect in our case to find a queue within the given class

with a well-chosen stationary measure and rewards to hinder exploration.

Using the queueing structure in the parametric case The MDPs considered in [Wu

et al., 2022] are linear mixture MDPs where the goal is to learn an unknown feature

vector in R
d, with d the dimension of the parameter space. We recall that the regret

bound achieved in this case is in O(D
√

dT ) by using Hoeffding-type bounds, and in

O(
√

dDT ) with Bernstein-type bounds. While the latter bound is stronger, it seems

to rely on the knowledge of the diameter D to control the variance of the transitions.

Sticking to Hoeffding-type bounds, however, would be an interesting first step to

deal with linear mixture MDPs with a queueing structure. In this setting, it could

be expected to work around the diameter in the analysis as done in Chapter 4.

Moreover, it could still be interesting to study this algorithm with the Bernstein-type

bounds, keeping in mind that the algorithm UCRL2B [Fruit, Pirotta, and Lazaric,

2020] relies on the empirical variance and not directly on the diameter, so that we

could find an improvement on the bound, just like UCRL2B improved the regret

bound from being proportional to D to
√

D.

Additionally in the parametric case, we could also explore model-free algorithms,

that is, algorithms that do not compute and update estimates of every reward and

transition to learn an optimal policy. Such algorithms are interesting for queueing

systems where the state space is large, as the space complexity is larger for model-

based algorithms in comparison to model-free ones. Following the same ideas

from Chapter 5, we could use the ergodicity of the MDP in a Kiefer-Wolfowitz type
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of algorithm [Kiefer and Wolfowitz, 1952] where the reward to maximize would

depend on the stationary measure, as in the models of Chapters 3 or Chapter 5.

The ergodicity could be used to sample approximately a state from the stationary

measure and estimate the gradient of the average reward.

Involving other queueing properties to find algorithms The algorithms we pre-

sented relied so far on the birth-and-death structure of transitions to control the bias

of policies. Just like we used Norton’s equivalence theorem in Chapter 5, we could

hope to design reinforcement learning algorithms using specific queueing properties,

such as reversibility for example. The intuition is that these properties are connected

to the stationary measures, and the optimal gain itself depends on the stationary

measure of the optimal policy.
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Abstract
Although reinforcement learning has been recently primarily studied in the generic case of Markov decision

processes, the queueing systems case stands out in particular. To deal with the potentially extremely large

state space a priori, learning algorithms must take into account the structure of the systems in order to extract

as much information as possible and choose the best control that optimizes the system performance in the

long run.

In this thesis, we present algorithms adapted from classical algorithms in the context of queueing systems,

and we study their performance to demonstrate a weak dependence on the state space compared to results

obtained in the general case.

Résumé
Bien que l’apprentissage par renforcement ait été récemment principalement étudié dans le cas générique des

processus de décisions markoviens, le cas des systèmes de files d’attente se dinstigue particulièrement. Pour

compenser la taille de l’espace d’état qui peut être extrêmement grande a priori, les algorithmes d’apprentissage

doivent tenir compte de la structure des systèmes afin d’en extraire le plus d’information et de choisir le

meilleur contrôle qui optimisent au mieux les performances du système sur le long terme.

Dans cette thèse, nous présentons des algorithmes construits à partir d’algorithmes classiques, adaptés au

contexte des système de file d’attente, et nous étudions les performances de ceux-ci pour montrer une

dépendance faible à l’espace d’états comparativement aux résultats obtenus dans le cas général.
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