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Résumé: Acquérir les information d’état du canal
est indispensable dans un réseau cellulaire. Dans
les protocoles de communication actuels, le CSI en
liaison descendante est estimé par l’User Equip-
ment (l’équipement utilisateur - UE) via des pi-
lotes dédiés puis renvoyés à la station de base.
L’information retour du CSI nécessite la transmis-
sion d’une importante quantité de données sup-
plémentaire Over-The-Air (OTA) afin d’améliorer
la qualité du CSI acquis au niveau de la sta-
tion de base. La compression est l’une des solu-
tion utilisées dans les standards, mais elle dégrade
les performances d’acquisition du CSI. Des solu-
tions alternatives telles que l’intelligence artificielle
(AI) et l’apprentissage automatique (ML) sont ap-
parues récemment. Ces techniques sont promet-
teuses pour palier aux problèmes dus aux déficits
d’algorithmes et de modèles.

Cette thèse de doctorat propose d’utiliser les
techniques AI/ML pour améliorer les performances
du retour d’information CSI. La première partie de
la thèse développe un nouveau cadre ML, baptisé
CSIFB-PNet, qui exploite des prédicteurs à deux
canaux pour améliorer la rétroaction CSI. En util-
isant le mécanisme de retour CSI conventionnel,
les modèles ML sont entrainés aux deux extrémités
(BS et UE) de la chaine de communication. De
façon plus générale, le UE évalue le retour CSI
généré par le modèle ML. La solution proposée
permet de réduire la quantité d’information néces-
saire à la rétroaction du CSI tout en améliorant
sa précision. Cette solution est ensuite étendue
à l’entraînement unilatéral du modèle ML pour

améliorer davantage les performances. Le mod-
èle est généré au niveau du UE puis est partagé
avec la station de base. Les résultats observés con-
firment la validité de l’entraînement unilatéral du
modèle ML. Nous aborderons également divers al-
gorithmes ML pour la prédiction des canaux, car
elle joue un rôle central dans le travail proposé. Les
résultats sont évalués à l’aide des données réelles
enregistrées sur le campus de Nokia Bell-Labs à
Stuttgart, en Allemagne.

La mise en œuvre de modèle ML au niveau
du UE peut être impossible pour diverses raisons,
en particulier la consommation d’énergie. Motivés
par ce problème, nous proposons un mécanisme
d’apprentissage CSI au niveau de la station de
base, appelé CSILaBS, pour pallier à l’utilisation
de modèles ML au niveau du UE. La station de
base calcule une fonction prédictive légère (PF)
en exploitant les modèles ML, pour aider l’UE à
évaluer la rétroaction. Ce processus permet de ré-
duire la quantité de données supplémentaires OTA
tout en minimisant la complexité au niveau du UE.
Pour aller plus loin, dans un environnement multi-
utilisateurs, nous avons proposé plusieurs solutions
afin de planifier le retour CSI en utilisant des fonc-
tions prédictives légères tout en visant à améliorer
sa précision. Les résultats de simulation obtenus
montrent l’efficacité de la planification du retour
et que le seuil d’erreur de prédiction pour la boucle
retour de planification est un paramètre de concep-
tion important qui doit être affiné pour maximiser
la précision du CSI.



Titre:Amélioration du retour d’information des CSI à l’aide de l’apprentissage automatique
Mots clés: Intelligence Artificielle, Prédiction de Canal, Rétroaction CSI, Apprentissage Automatique,
Massive MIMO, RIS, Planification des Utilisateurs, 3GPP, 6G

Résumé:
Dans la deuxième partie de la thèse, nous ex-

ploitons les surfaces intelligentes reconfigurables
(RIS) pour améliorer les performances d’un pré-
dicteur de canal, qui est la composante principale
des schémas d’amélioration de retour du CSI. La
prédiction d’un canal très dynamique est une tâche
difficile. Pour résoudre ce problème, nous avons
utilisé l’amélioration des performances de prédic-
tion de canaux multi-utilisateurs en introduisant
une corrélation temporelle dans le canal compos-
ite. L’objectif a été atteint en exploitant le quasi-
RIS. Plus précisément, la motivation de notre tra-
vail est de prédire l’ensemble du canal composite

multi-utilisateurs à des moments temporels bien
définis en utilisant quasi-RIS. Le principal avantage
est la prédiction de l’ensemble du canal compos-
ite provenant de l’ensemble du RIS. De ce fait, la
complexité et le nombre de données d’information
supplémentaires nécessaire pour l’estimation des
canaux peuvent être réduits, ce qui es en principe
le problème majeur lié au RIS. Grâce à de nom-
breuses simulations approfondies, nous montrons
que le RIS intelligemment configuré améliore les
performances de prédiction des canaux tout en
économisant suffisamment d’éléments RIS pour
d’autres applications.
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Abstract: Acquisition of channel state informa-
tion (CSI) is indispensable in a cellular network. In
the current communication architecture, the down-
link CSI is estimated by the user equipment (UE)
via dedicated pilots and then fed back to the base
station (BS). CSI feedback requires immense over-
the-air (OTA) overhead to improve the quality of
CSI acquired at the BS. Compression is one of
the solutions used in the standards; however, it
degrades the performance of CSI acquisition. Al-
ternative solutions to compression may be found
in Artificial Intelligence (AI) and Machine Learn-
ing (ML), which have emerged as promising tech-
niques to bring benefits to algorithm-deficit and
model-deficit problems.

This thesis utilizes AI/ML to enhance the per-
formance of CSI feedback. The first part of the
thesis develops a novel ML framework, coined as
CSIFB-PNet, which exploits twin channel predic-
tors to enhance CSI feedback. By using conven-
tional CSI feedback mechanism, the ML models
are trained at both ends (BS and UE). Broadly,
UE evaluates the feedback with respect to ML
model. The proposed framework can reduce OTA
feedback overhead and improve the precision of
acquired CSI. This framework is then extended
towards one-sided training of the ML model to
further enhance the performance, using UE to
train the model and then reporting it to BS.
The observed results corroborate the validity of
one-sided ML training. We also address various
ML-based algorithms for channel prediction, as it
plays a pivotal role in the proposed framework.
This framework is evaluated using the real-world
data recorded at the Nokia Bell-Labs campus in
Stuttgart, Germany.

ML implementation at the UE can be infea-

sible for various reasons, in particular UE power
consumption. Motivated by this issue, we propose
a CSI learning mechanism at BS, called CSILaBS,
to avoid ML at UE. BS computes a light-weight
predictor function (PF) by exploiting ML, to assist
the UE to evaluate feedback. This process can
reduce OTA feedback overhead, and minimize UE
computation cost. Besides, in a multiuser envi-
ronment, we propose various mechanisms to select
the feedback by exploiting PF while aiming to en-
hance CSI accuracy. Simulation results show the
effectiveness of CSI feedback schemes and that the
prediction error threshold for CSI feedback selec-
tion is an important design parameter that can be
fine-tuned to maximize CSI accuracy.

In the second part of the thesis, we exploit re-
configurable intelligent surface (RIS) to enhance
the performance of a channel predictor, which is
the core component of proposed CSI feedback en-
hancement schemes. Prediction of a highly dy-
namic channel is cumbersome. To mitigate this
issue, we focus on enhancing multiuser channel
prediction performance by introducing time cor-
relation in the composite channel. The objective
is achieved by exploiting quasi-RIS. More specifi-
cally, the motivation of our work is to predict the
entire multiuser composite channel for desired time
slots by using quasi-RIS. The primary benefit is the
prediction of the whole composite channel arriving
from the entire RIS; hence, the complexity and
overhead for channel estimation can be reduced,
which is the major bottleneck in RIS. Through
extensive simulations, we show that intelligently
configured RIS enhances channel prediction per-
formance while saving sufficient RIS elements for
other applications.
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Résumé long en français

Globalement , le terme CSI (Channel State Information) est un terme utilisé pour
représenter la connaissance d’un canal de propagation . Qu’est-ce qu’un canal ? D’une
manière simplifié , tout system de communication sans fil est composé de trois éléments
: le transmetteur , le canal et le récepteur . Le transmetteur est une entité du réseau
, également appelé émetteur , qui génère le message et le transmet au récepteur . Le
message transmis se propage à travers le support , appelé canal de propagation . Le
canal est sensible à de nombreux obstacles qui peuvent entraver la communication . Par
conséquent , la connaissance du canal avant de transmettre les données est indispensable
.

Le CSI fournit des informations sur la façon dont le message transmis se propage entre
l’émetteur et le récepteur. La connaissance du CSI est d’une importance capitale pour
plusieurs raisons . Nous allons développer ce point à l’aide d’un exemple . Considérons
un récepteur UE (User Equipment) qui se déplace dans un environnement stationnaire
, voir Fig. 1 . La puissance du signal reçu par l’UE fluctue suivant sa position dans
l’environnement . Si l’on imagine qu’un émetteur , tel qu’une station de base BS ,
communique en permanence avec l’UE qui se trouve dans un évanouissement profond
du canal , la probabilité de perte de données est élevée car le gain du canal est très
faible . Par contre , si la station de base reçoit des informations au moment où ces
évanouissements du canal se produisent , les performances de la station de base peuvent
être nettement améliorées . Par exemple , dans le cas d’un évanouissement profond au
niveau d’un UE , la station de base peut programmer la communication avec un autre
UE dont le gain du canal est élevé . Par conséquent , l’efficacité spectrale globale du
système peut être maximisée .

Pour améliorer les performances d’un système de communication , de nombreuses
techniques de transmission , telles que la taille de la charge en bits , le codage , les
méthodes de précodage , la modulation adaptative , la planification en fonction du canal
, etc. , dépendent de la connaissance précise du CSI au niveau de l’émetteur . Un CSI
précis améliore nettement les performances de nombreuses technologies sans fil , telles
que le MIMO (Multiple Input Multiple Output) , les transmissions ultra-fiables , le relais
et la sécurité de la couche physique . Par conséquent , la connaissance du CSI au niveau

1



Figure 1: Illustration d’un modèle de canal stationaire à ligne à retard enregistrée(TDL:Tapped Delay Line) pour une entrée et sortie unique (SISO) canal .

de l’émetteur est d’une importance capitale . La question clé réside dans la manière
dont l’émetteur peut obtenir l’information sur le canal , c’est-à-dire le CSI , avant de
transmettre les données . Nous aborderons cette question dans la sous-section suivante
.

Afin d’acquérir le CSI sur la liaison descendante au niveau de la station de base ,
deux étapes sont nécessaires . Dans la première étape , l’UE estime le CSI à l’aide des
pilotes , également appelés symboles de référence ou CSI-RS (CSI-Reference Symbols)
, transmis par la station de base . Dans la deuxième étape , le CSI estimé est renvoyé à
la station de base via le canal de contrôle de la liaison montante . L’estimation du CSI
n’est pas au cœur de cette thèse . Par conséquent , en supposant que l’estimation du
CSI est parfaite , nous nous concentrons sur le renvoi du CSI à la station de base .

Qu’est-ce que le retour d’information CSI ?
Le concept de renvoi du CSI de la liaison descendante à la station de base est

largement connu sous le nom de feedback CSI . Le retour CSI standard se compose de
trois parties : l’indicateur de matrice de précodage PMI (Precoding Matrix Indicator) ,
l’indicateur de qualité du canal CQI (Channel Quality Indicator) et l’indicateur de rang
RI (Rank Indicator) . L’indicateur de matrice de précodage est le plus crucial , car il
aide la station de base à sélectionner un faisceau approprié . En résumé , le CSI-RS
offrant le meilleur rapport signal-sur-interférence-plus-bruit (SINR) est choisi , puis le
PMI correspondant au livre de codes est transmis à la station de base simultanément au
CQI et au RI . Pour réduire la charge associée aux communications par voie hertzienne
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(over-the-air (OTA) overhead) , le CSI estimé est compressé, c’est-à-dire que seul le
PMI est renvoyé . Par conséquent , le CSI acquis par la station de base est sujet à
des erreurs de compression . Une telle compression peut altérer les performances du
précodeur MIMO massif .

Objectif de la Thèse et Énoncé du Problèm

Actuellement, le ML (Machine Learning) est adopté dans les couches supérieures ,
telles que la couche réseau de la norme 5G , tandis qu’au niveau de la couche PHY , il
est considéré comme un outil d’optimisation , donc utilisé pour la mise en œuvre , mais
n’est pas intégré dans la norme . Cette thèse vise à identifier les domaines spécifiques
du standard qui pourraient bénéficier de l’utilisation du ML , ainsi que la manière dont
le ML peut être appliqué . L’objectif de cette thèse est d’élargir l’application du ML
en exploitant les outils utilisables au niveau de la couche PHY des réseaux 5G pour
améliorer les performances des systèmes de communication . Ces algorithmes devraient
fournir des méthodes normalisées pour réduire la charge de retour du CSI et améliorer
la qualité du CSI .

Dans les réseaux sans fil modernes , les degrés de liberté du système de commu-
nication (à savoir le temps, la fréquence et l’espace) sont soutenus par l’intelligence
, laquelle est considérée comme une ressource supplémentaire disponible et exploitée
pour améliorer l’efficacité des communications . Dans le cadre du 3GPP , les efforts
de normalisation ont principalement associé le ML aux couches supérieures , comme le
réseau , laissant au ML un rôle de détail pour la mise en œuvre dans la couche PHY .
Ainsi , dans les réseaux 5G , de nombreux aspects fonctionnels sont régis par des règles
prédéterminées , qui ne sont efficaces que si les hypothèses du modèle correspondent
précisément à l’environnement naturel . Cependant , une grande quantité de données
spécifiques , telles que le CSI , peuvent être exploitées par des mécanismes intelligents
pour s’adapter plus efficacement à l’environnement .

En mettant l’accent sur le retour d’information CSI , la problématique de la réduction
de la surcharge du retour d’information OTA reste à ce jour non résolue . Bien que des
méthodes standard basées sur un livre de codes aient été adoptées en tant que solution
, la précision du CSI est fortement impactée par la compression . De plus , les livres
de codes sont conçus en supposant une distribution spécifique des canaux . Or , cette
hypothèse sous-jacente peut différer de la réalité pratique , entraînant une diminution
des performances . Il est donc impératif d’introduire des algorithmes adaptatifs pour
contourner les problèmes rencontrés par les méthodes conventionnelles . Dans cette
thèse , notre objectif est de résoudre la problématique suivante : Comment réduire la
surcharge du retour CSI tout en améliorant la précision du CSI acquis au niveau de la
station de base ?
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Plan de la Thèse et Contributions

La thèse est structurée en cinq chapitres , chacun apportant des contributions spé-
cifiques :

Chapitre 1 (Introduction) , ce chapitre offre une vue d’ensemble de l’intelligence
artificielle et de l’apprentissage machine (IA/ML) ainsi que leur rôle dans les communi-
cations sans fil . Il aborde les défis majeurs liés au déploiement de l’IA dans ce domaine
. Le rôle crucial du CSI (Channel State Information) dans les communications sans fil
est mis en lumière , en discutant des travaux traditionnels et de leurs limitations . Enfin
, il présente les objectifs de la thèse et l’organisation du manuscrit .

Chapitre 2 (Amélioration du retour du CSI dans le cas d’un seul utilisateur)
, ce chapitre se concentre sur la réduction de la charge du retour du CSI en utilisant un
prédicteur de canal double CP (Channel Predictor) basé sur le ML , nommé CSIFB-PNet
(CSI feedback prediction network) . L’entraînement du ML est réalisé simultanément au
niveau de la station de base et de l’utilisateur . En utilisant ces prédicteurs , le retour
du CSI est évalué par rapport au canal prédit à l’UE . Par exemple , une prédiction et
une estimation parfaites du CSI peuvent éviter un renvoi inutile du CSI . Ce chapitre
explore également l’entraînement ML unilatéral , où le ML est entraîné au niveau de
l’UE , et le modèle appris est transmis à la station de base pour des prédictions à double
extrémité . Les résultats empiriques mettent en évidence : (i) la réduction des erreurs
dans le CSI acquis par la station de base ; (ii) la maximisation du gain de précodage ;
et (iii) la maximisation de la similarité cosinusoidale avec une surcharge de rétroaction
minimale . Enfin , différentes techniques de prédiction du CSI basées sur le ML sont
examinées , confirmant l’utilité du ML pour améliorer le retour du CSI tout en minimisant
la surcharge OTA .

Le Chapitre 3 (Amélioration du retour du CSI dans un environnement
multiutilisateur) Dans un contexte multiutilisateur, ce chapitre étudie les performances
du ML dans le Chapitre 2, envisageant son application à la fois au niveau de la station de
base et du terminal utilisateur UE pour améliorer la précision du CSI acquis . Cependant
, l’implémentation du ML au niveau de l’UE peut être difficile pour diverses raisons
, telles que la consommation d’énergie élevée de l’UE et les contraintes de stockage
liées à un réseau de neurones lourd . Pour résoudre ce problème , nous proposons une
méthode alternative appelée "l’apprentissage du CSI à la station de base" (CSILaBS) .
Cette approche vise à éviter le déploiement du ML au niveau de l’UE . En exploitant le
prédicteur de canal à la station de base , nous envisageons une fonction prédicteur (PF)
légère pour évaluer le retour d’information destiné à l’UE . Cette approche vise à réduire
la charge de retour d’information OTA tout en améliorant la qualité du CSI acquis par
la station de base . De plus , différents mécanismes sont proposés pour sélectionner
le retour d’information au niveau de l’utilisateur , exploitant la fonction prédictive pour
améliorer la précision du CSI sans nécessiter l’utilisation intensive de ressources au niveau
de l’UE .

Le Chapitre 4 (Rôle des surface intelligente RIS dans la prédiction du CSI)
focalise sur l’intégration des surfaces intelligentes réfléchissantes (RIS) dans le processus
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de retour des Channel State Information (CSI) . S’appuyant sur les avantages prometteurs
du prédicteur de canal (CP) dans l’amélioration du retour du CSI , ce chapitre explore
l’utilisation des RIS pour renforcer la prédiction des CSI . Étant donné que la prédiction
d’un canal hautement dynamique peut être complexe , cette section se concentre sur
l’amélioration de la performance de prédiction du CSI multiutilisateur en introduisant la
corrélation temporelle dans le canal composite . Plus spécifiquement , nous examinons
l’utilisation d’un quasi-RIS pour atteindre cet objectif . Nos recherches démontrent que
l’exploitation intelligente d’un RIS améliore considérablement les capacités de prédiction
du canal tout en conservant des éléments du RIS pour d’autres applications . Un avan-
tage supplémentaire réside dans la prédiction de l’ensemble du canal composite du RIS .
Cette approche permet de réduire la complexité et la charge liées à l’estimation du canal
, éléments souvent contraignants pour les RIS .

Le Chapitre 5 (Conclusion et perspectives d’avenir) le dernier chapitre de
cette thèse conclut l’étude en mettant en avant les perspectives futures prometteuses
, offrant des pistes pour une continuation des recherches proposées . De plus , une
solution proche des standards est présentée pour aborder la déclaration et la vérification
des données d’entraînement relatives au Channel State Information (CSI) . Il convient
de souligner que chaque chapitre comporte ses propres notations mathématiques ainsi
que son modèle de système spécifique .
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Chapter 1
Introduction

1.1 Background and Motivation

The wireless industry has revolutionized almost every sector, among which mobile
communications has brought tremendous achievements. The unabated growth of mo-
bile users and enormous data rate demands have already introduced the world to five
evolutionary generations of mobile networks. Recently, fast-growing deployment of fifth-
generation (5G) has opened up many challenges, including massive complexity in network
architecture, low latency, high cost, power consumption, and deployment of long-term
evolution (LTE) new radio (NR), leading to difficulties in network optimization. In such
a complex scenario, network intelligence has become a major focus as it will play a
pivotal role in complex problem solving [1], e.g., self-healing, self-optimization, and
self-configuration of a network [10]. On the other hand, unprecedented growth in global
cellular traffic (as sown in Fig. 1.1) have become a challenge, leading the wireless industry
to the next generation, called sixth-generation (6G).

With the deployment of 5G networks, standards organizations have started working
on the design phase for 6G networks. 6G-era will bring digital, physical and biological
worlds together with the goal to improve human experience and well-being. 6G will be
operating in TeraHertz (THz) frequencies (0.1-10THz), hence beneficial for multiple use
cases in industrial applications, providing immense data rates (≈ 1Tb/s), accelerating
internet-of-things, and wider network coverage. However, 6G networks will be immensely
complex, requiring more deployment time, cost and management efforts. On the other
side, mobile network operators demand these networks to be intelligent, self-organizing,
and cost-effective to reduce operating expenses. Today’s networks use model-based
methods to optimize various network functions providing characteristics of the process
involved. However, these models might be too complex to be implemented in a real-
istic time frame or they include a great level of abstraction to function in a general
environment.

To circumvent the challenges that will be faced by future cellular networks, Arti-
ficial Intelligence (AI)/Machine Learning (ML) is the answer providing pragmatic so-
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Figure 1.1: Estimation of global mobile subscriptions in machine-to-machine (M2M) andmobile broadband (MBB) from 2020 to 2030. Source: International TelecommunicationsUnion Radiocommunications Sector (ITU-R) Report M.2370-0 [1], [11].

lutions. AI/ML can entirely change the future of wireless network technologies [1].
Future networks will become “cognitive” in a way that many aspects such as spectrum
sensing/sharing, slicing, radio resource management, and mobility management, will be
ML-based. Further, it is expected that ML will impact 6G air interface fundamentally and
it will be designed to support ML natively [12]. ML will pave the way for THz commu-
nications at different layers [13], e.g., supporting channel acquisition [6] and modulation
classification [14] at the physical (PHY) layer. Similarly, at the link layer, beamform-
ing design and channel allocation can exploit ML [13]. In THz systems, a channel can
significantly vary at a micrometer scale, resulting in a tremendous increase in channel
estimation frequency and corresponding overhead. ML algorithms can counter this issue
by using, e.g., improved channel prediction techniques [2].

1.1.1 Why ML in Communication Systems?
ML is a process of training machines through data without explicit programming.

Broadly speaking, ML consists of three paradigms: unsupervised learning, supervised
learning, and reinforcement learning. All these paradigms have a training/exploration
phase to optimize a learning algorithm that later can be used in prediction/exploitation
phase to infer on unknown inputs.

Motivated by the considerable benefits of ML in various fields, its applications have
also been considered in wireless networks almost at all layers of communication. Focusing
on PHY, many optimization problems are non-convex, e.g., sum-rate maximization. ML
is a powerful tool to find solution(s) for such non-convex optimization problems. Based
on advanced learning algorithms, 6G networks provide following major advantages by
using ML.
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Figure 1.2: A generalized framework for 5G network automation in Release 16, repre-senting that NWDAF should be able to collect data from the operator OAM, AFs and 5GCnetwork functions [10]. Source: [1].

• ML can be effective to deal with network complexity. 6G networks will be more
complex due to numerous network topologies, immense growth in the cellular users,
staggering data rate demands, complex air interface, vast network coordination
methods, etc. Forecasting considerable complexity of 6G networks, the derivation
of optimum performance solutions is nearly infeasible without ML.

• ML can play a vital role to deal with model deficit problems. Current cellular
networks are amenable for mathematical derivation, for instance, information the-
ory gives closed-form expressions for various problems such as Shannon theorem.
However, the inherent complexity of 6G networks hinders the possibility of ex-
ploiting closed-form analytical expression(s), which can be due, for instance, to
non-linearities either in the channel or network devices. ML offers an efficient way
to deal with non-linearities, providing feasible solution(s) in a tractable manner.

• ML can cope with algorithm deficit problems. In current cellular networks, many
optimal algorithms, although well-characterized, are impractical to be implemented.
Considering the example of multiple-input multiple-output (MIMO) systems where
optimal solutions are known (e.g., dirty paper coding), they are overlooked in
favour of linear solutions, e.g., linear minimum mean-squared error. It is envisaged
that ML can pave the way to implement more efficient yet practical solutions.
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1.1.2 Role of ML in Standardization
The potential of ML for 5G has been widely acknowledged in the literature and appli-

cations made it even in the standard at higher levels, e.g., networking and security. Third
generation partnership project (3GPP) has introduced a specification, named network
data analytics function (NWDAF), in Release 15 and 16, as part of the 5G core (5GC)
architecture [10]. NWDAF is responsible for providing network analytics when requested
by a network function (NF). Data is collected via application function (AF), operation,
administration, and maintenance(OAM), NF, and data repositories. The specifications
have also addressed the problem of inter-working for automation and data collection,
which analytics vendors previously faced. 3GPP NWDAF framework for 5G systems is
depicted in Fig. 1.2. This automation gives leverage to network vendors for the deploy-
ment and testing of non-real-time ML-related use cases. In Fig. 1.2, inward interfaces
aggregate data from different network sources, where communication occurs using ex-
isting service-based interfaces. Outward interfaces provide decisions (analytics-based,
algorithmic) to AF and NF.

Regarding PHY, ML techniques lag behind, due to a number of issues. First, PHY
makes use of abstractions and mathematical models that are inferred from the physical
reality and electromagnetic principles. As long as such models describe the real-world
precisely, there is no need for ML. Nevertheless, in practice, models and fixed algorithms
are inefficient when facing rapidly changing and heterogeneous environments. For ex-
ample, using the same channel acquisition scheme to acquire channel state information
(CSI) from a laptop in line-of-sight (LoS) with a base station (BS), a tablet on a fast
train, or a mobile quickly moving in a super densely covered area might not be optimal.
Consequently, the standardization efforts of intelligent techniques have gained momen-
tum, and while 3GPP is ready to begin a study item on ML implementations, open-radio
access network (RAN) will be ML-native, defining a RAN intelligent controller, which
will enhance several RAN functions.

Motivated by the huge applications and promising benefits of ML in communication
systems, the thesis focuses on enhancing the performance of acquired CSI in the com-
munication system. In the following, we discuss what CSI is. How is it acquired, and
what is the associated problem with CSI acquisition?

1.2 Channel State Information

Broadly speaking, CSI is a term used to represent knowledge of a channel. What
is a channel? In the simplest form, any wireless communication process is composed
of three components: source, channel, and receiver. Source is a network entity, also
referred to as a transmitter, that generates the message and transmits it to the receiver.
The transmitted message propagates through the medium, called channel. The channel
is susceptible to many impediments that may hinder communication. Hence, knowledge
of the channel prior to data transmission is indispensable.
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Figure 1.3: An illustration of a standing wave pattern of a tapped delay line (TDL) single-input single-output (SISO) channel.

1.2.1 Quest for CSI
CSI gives information of how the transmitted message propagates between the trans-

mitter and the receiver. CSI is of predominant importance for several reasons. Let us
elaborate this point with an example. Consider a receiver, user equipment (UE), is
travelling through a standing wave pattern, as illustrated in Fig. 1.3, then the power of
the received signal at the UE will fluctuate. Imagine a transmitter, BS, is continuously
communicating with the UE. In the case of fading dip, there is a high probability of data
loss as channel gain is very low. If the BS gets the information about when these fading
dips occur, then the performance of communication system can be greatly improved. For
instance, in the case of deep fade at one UE, the BS can schedule the communication
with another UE with high channel gain. Consequently, spectral efficiency of the overall
system can be maximized.

To improve the performance of a communication system, many transmission tech-
niques, such as bit-loading, coding, precoding methods, adaptive modulation, channel-
aware scheduling etc., are bounded to have accurate CSI at the transmitter. Accurate
CSI, notably, improves the performance of many wireless techniques, for instance, MIMO,
ultra-reliable transmissions, relaying and PHY security. Hence, CSI at the transmitter
is of pivotal importance. The question is how the transmitter gets the CSI before data
transmission. In the following subsection, we answer this question.

1.2.2 CSI Acquisition at BS
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To acquire downlink CSI at the BS, there are two steps. In the first step, UE estimates
the CSI through pilots, known as CSI reference symbols (CSI-RS), transmitted by the
BS. And in the second step, the estimated CSI is fed back to the BS via the uplink
control channel. CSI estimation is beyond the scope of this thesis; therefore, assuming
perfect CSI estimation, we focus on CSI feedback.

1.2.3 What is CSI Feedback?
The concept of reporting downlink CSI to BS has been widely acknowledged as CSI

feedback. The standard CSI feedback is composed of three parts: precoding matrix
indicator (PMI), channel quality indicator (CQI), and rank indicator (RI). PMI is the
most important one, as it helps the BS to select an appropriate beam. Briefly speaking,
CSI-RS that gives the best signal-to-interference-plus-noise ratio (SINR) is selected, and
then the corresponding PMI from the codebook (explained in Section 1.4.1) is reported to
the BS along with CQI1 and RI2. To reduce over-the-air (OTA) overhead, estimated CSI
is compressed, i.e., reporting PMI; thereby, acquired CSI at BS is prone to compression
errors. Such compression can deteriorate the performance of a massive MIMO precoder.

1.3 Thesis Objective and Problem Statement

Currently, ML is adopted at higher layers, e.g., network layer of the 5G standard
and at PHY is regarded as an optimization tool, hence used for implementation but
non-standard relevant. The thesis will aim to identify the specific standard field that
can be enhanced by using ML and the relative standardization opportunities. The thesis
aims to expand the ML field, exploiting tool(s) that can be used at PHY of practical
5G networks to improve the performance of communication systems. Such algorithm(s)
should provide standard-relevant ways to reduce CSI feedback overhead and improve CSI
quality.

In modern wireless networks, the standard degrees of freedom of communication
(i.e., time, frequency and space) are being sided by intelligence, which is envisioned as
a further available resource that can be exploited to enhance communication efficiency.
In 3GPP, standardization efforts encapsulate ML at higher layers, such as networking,
leaving the role of implementation detail for PHY to ML. As a result, in 5G networks,
several functional aspects are driven solely by predetermined rules, which can perform
efficiently only if the model assumptions fit the natural environment. However, large
amounts of specific data, e.g., CSI, can be exploited by intelligent mechanisms to better
cope with the specific environment.

Focusing on CSI feedback, the problem of OTA feedback overhead reduction is yet to
be addressed. Though standard codebook-based methods have been opted as a solution;

1Used for the indication of channel quality to BS. It has a value between 0 to 15, indicating themodulation and coding level that UE can operate.2It is used to report the number of independent communication channels, which can help tounderstand how well multiple antennas work, i.e., is the signal transmitted by different antennascorrelated or not?
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nevertheless, CSI precision is greatly effected due to compression. Further, codebooks
are designed by assuming a given channel distribution. The underlying assumption may
differ from a practical environment, leading to performance drop. Therefore, there is
need to introduce adaptive algorithms to circumvent the issues faced by conventional
methods. In this thesis, we address the problem: How CSI feedback overhead can be
reduced while improving the precision of acquired CSI at the BS?

1.4 State-of-the-Art and Research Trends

CSI feedback overhead in a massive MIMO system occupies substantial uplink band-
width resources. A plethora of research work has been done on massive MIMO CSI
feedback overhead reduction. In this section, we will provide an overview of CSI feed-
back mechanisms given in the literature. To assist readers, we divide CSI feedback
literature into three categories: compressive sensing (CS), codebook, and deep learning
(DL). In the following, we give an overview of these techniques and their limitations.

1.4.1 Codebook-Based CSI Feedback
Codebook is a set of precoding matrices, and it was introduced in 2009 with the

release of the first LTE standard. In 5G, two types of codebook are defined: type-I and
type-II [15]–[17]. Type-I reports only the phase of the selected beam, whereas type-II
reports subband and wideband amplitude information. In comparison, type-II is more
detailed CSI reporting and is mainly designed for multiuser MIMO, hence supporting
multiple beams. In type-II, four beams can be reported at the expense of overhead.
Type-II linearly combines a group of beams within a group, while type-I selects one
beam from a group of beams [18].

Codebook-based CSI feedback is at the base of various commercial systems, such
as LTE/LTE-advanced and 5G-NR, that reduce OTA feedback [19]. In this technique,
a codebook is predefined by the standardization bodies and is known to both network
entities, i.e., BS and UE. Upon estimating the CSI, the UE maps the estimated CSI to
the codebook to search for the closest codeword. Then, the UE feedback the index of
the closest codeword. In the standardization terms, the index is called PMI, as already
explained in Section 1.2.3. The BS acquires the codeword by searching the PMI in
the codebook, and this codeword is assumed as an estimated CSI. This process shows
that the acquired CSI at the BS is massively compressed as we assume a codeword as
estimated CSI. Hence, CSI feedback overhead reduces by compromising on acquired CSI
quality.

Some studies have been done on codebook-based CSI feedback in [20]–[25]. For
example, by considering LoS and non-line-of-sight (NLoS) components between the BS
and UE, codebooks are designed by [21] and [20], respectively. In addition, an antenna
grouping-based feedback reduction method is proposed in [22], where multiple correlated
antenna elements are mapped to a single-value by exploiting predesigned patterns. A
codebook is designed in [23] to compress CSI by utilising CS theory. Similarly, in [24],
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an angle-of-departure (AoD)-based codebook design is proposed, compressing CSI more
accurately; nevertheless, overhead increases linearly with the AoDs.

There are several challenges associated with codebook-based CSI feedback. Here
we highlight some of them. First, the downside of a codebook is its environment-
dependence. The existing codebooks are designed on a given channel distribution, which
may vary depending on the propagation conditions of each cell. Second, CSI accuracy
improves with the size of the codebook. However, increasing the codebook size increases
the complexity of searching the codeword. Though some adaptive codebooks have been
introduced, CSI quality, complexity, and codebook-related overhead still need enhance-
ment [19]. Last but not least, type-II performs better than type-I at the expense of high
feedback bits to design the codebook.

1.4.2 Compressive Sensing-Based CSI Feedback
Compressive sensing (CS) is a signal processing technique that can acquire and

reconstruct CSI by exploiting underdetermined linear systems. The basic principle behind
this is sparsity of CSI can be exploited to acquire CSI using fewer samples than required by
Nyquist–Shannon sampling theorem. In a nutshell, CSI at the UE is compressed utilising
a sensing matrix [26]. In the literature, many algorithms have been proposed that use
CS for CSI feedback [27]–[31]. For example, the authors of [29] and [30] use spatial
and temporal correlation of CSI to reduce feedback overhead. This idea has inspired
the establishment of protocols for CSI feedback. Multi-dimensional CS theory, which is
based on spatial and frequency correlation of the channel and Tucker decomposition [32],
is used in [31] to reduce feedback overhead. Such algorithms do not recover accurate
CSI, and massive data processing is required, making them infeasible.

CS-based CSI feedback cannot fully recover compressed CSI due to the use of simple
sparsity prior while the channel matrix used is not perfectly but is approximately sparse
[27], [33]. Besides, the assumption of CSI sparsity may not hold in a realistic propagation
environment. Last, the computation cost of algorithms used for iterative reconstruction
makes them infeasible for deployment in a real-time scenario [33], [34].

1.4.3 Deep Learning-Based CSI Feedback
Deep learning (DL), a class of ML having multiple hidden layers, has also been utilized

to reduce CSI feedback overhead. The literature borrows the idea of autoencoder,
a DL technique used in image compression, for CSI feedback. Particularly, inherent
features of autoencoder, i.e., encoder and decoder, are used to compress and recover
CSI, respectively. The former, implemented at UE, encodes the estimated CSI into
codeword and the latter for reverse-engineering, i.e., recovering the estimated CSI, at
BS, from transmitted codeword. The training of autoencoder is done in end-to-end
manner.

In the literature [35]–[51], CSI matrix is treated as an image and then the concept
of autoencoder is used. For example, in [35], the CSI matrix is considered as an image
and then a DL-based encoder and decoder is designed, named Autoencoder-based CSI
network (CsiNet), to reduce feedback overhead. A more practical approach, i.e., com-
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pression of noisy (estimation noise) CSI, is studied in [40], where noisy features are first
removed, and then compression is performed. Due to a lack of structure among the
latent vectors in the standard autoencoder, it cannot be used in generative modelling.
To cope with this issue, [52] introduced the concept of variational autoencoder (VAE).
Briefly speaking, the input in VAE is encoded as a distribution over the latent space.
The encoded output is the mean and standard deviation, and a point from latent space
is sampled using a predefined distribution. Hence, a latent vector is reported as a code-
word to BS [36]. [52] proposed CSI feedback mechanism by exploiting VAE. Similarly,
in [53] compressed CSI is decoded with a generative adversial network (GAN) [54]. In
summary, the entire literature work exploits autoencoder for CSI feedback. Further, to
train the deep networks, a massive amount of synthetic datasets is considered [37], [42],
[49]. Therefore, the robustness of DL-based techniques remains a key challenge, as they
might perform well in a given distribution but fail in changing propagation conditions.

There are many disadvantages of autoencoder. First, it has high training costs,
e.g., huge dataset requirements, massive amounts of parameters for tuning, and model
validation. Second, it may lead to imperfect decoding, misunderstanding of influencing
variables, and preservation of irrelevant information [55]. Third, the complexity is high,
e.g., [35] require floating-point operations per second (FLOPs) 0.56M and convolutional
autoencoder require 58.52M [36]. Storage and training of massive neural network (NN)
architecture at, e.g., UE, can be nearly infeasible [8]. Last but not least, to deploy a
DL-based method, a collaboration between the BS and a UE is indispensable, which
poses new challenges for the standardization bodies [56]. In the following, we explain
ML/DL-related challenges more from a standardization perspective before addressing
the thesis outline and contributions of thesis work.

1.5 Challenges for Deploying ML in Cellular Networks

1.5.1 Data Availability and Benchmarking
One of the foremost challenges in wireless networks is data availability. Data avail-

ability concerns the problem of identifying a standard and accepted set of data (e.g.,
channel realizations) to test and benchmark ML algorithms. This problem is of pivotal
importance for standardization, where typically algorithms and proposals are tested using
agreed underlying physical models (e.g., urban macrocells/microcells channel models),
evaluation methodologies and calibrated simulators. Contrary to other fields, cellular
networks have no standard dataset to train and benchmark an ML algorithm. Therefore,
a synthetic or software-generated dataset is of predominant importance to train and
benchmark ML algorithm(s) and agree on a common evaluation methodology to rank
proposition and standard algorithms. Identifying key performance indicators in wireless
networks is another crucial task for ML standardization. It is necessary to design a set
of metrics to classify and rank ML algorithms and their performance. Classic approaches
such as throughput and SINR might not be sufficient since a slight improvement in these
values might come at the cost of huge complexity augmentation and exacerbated energy
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consumption.

1.5.2 Selection of ML versus Non-ML Solutions
ML tools are regarded as implementation-oriented rather than a standard relevant

aspect. The idea is that each vendor can efficiently implement each standard aspect as
long as the external interfaces are respected. A simple example of this is CSI feedback,
where a UE needs to select a specific PMI, but the standard does not specify how this
selection is performed. However, the idea of having ML-dedicated message exchanges
and performance that only an ML-aided algorithm can achieve will pave the way for the
standardization of ML algorithms [6], which is the focus of this thesis. This will open the
door for several issues, e.g., will the standard impose a specific ML structure, classifying
minimum performance and implementation structure, or will it remain far from the
implementation? Regarding NNs, there is still an open question, i.e., hyperparameters
will be left to vendor-specific implementation or will the standard set them.

1.5.3 Complexity of ML Algorithms
Considering the limited battery life, storage, computational capability, and commu-

nication bandwidth in most cellular network entities, an ML model’s cost-performance
tradeoff becomes a fundamental issue. Another issue is the speed/time-steps at which
the training and inference need to be performed. Whereas hard-wired BS has the suf-
ficient computational power to run complex ML algorithms, UEs need to face battery,
heating and stringent complexity limits. Possible solutions to such issues include but are
not limited to, the implementation of substitute rule-based algorithms at the UE side
and migrating the load all on the BS side, which we will explain in Chapter 3.

1.5.4 Stability and Adaptability of ML Techniques
ML algorithms applied to wireless networks must be adaptive, as they must deal with

dynamically changing parameters. Particularly, the weights of the NN are evaluated on-
line based on the trained data. However, this approach may not be applicable in wireless,
specifically in a standard, where coordination among entities belonging to different oper-
ators and provided by different vendors have to coexist, and the need for quick response
could prevent one or the other solution. Possible solutions include pre-trained or partially
trained NN (i.e., NN in which the starting point is pre-set); cloud-based downloadable
dataset for NN training; codebook-based NN, in which a codebook of different NNs is
used and agreed upon between the BS and UEs. Another related problem is detecting
an outdated ML model with high inference error and replacing it. Replacing an obsolete
model with a new model incurs further delay. Thus, there must be a proactive mecha-
nism to adapt the ML model to network conditions such that network functions suffer
minimum performance loss.

This thesis mainly addresses data availability challenges by exploiting data augmen-
tation algorithms, selecting ML versus non-ML solutions, and reducing ML complexity
by introducing rule-based approaches at the UE.
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1.6 Thesis Outline and Contributions

The thesis is composed of five chapters including this introduction chapter. The
major contributions of the rest of the chapters are given below.

In Chapter 2 (CSI Feedback Enhancement in Single-User), we consider the
problem of CSI feedback overhead reduction by using twin ML-based channel predictor
(CP), called CSI feedback prediction network (CSIFB-PNet). ML training is performed at
the BS and UE in parallel. With the trained CPs, CSI feedback is evaluated with respect
to the predicted channel at the UE. As a toy example, if CSI prediction and estimation are
perfect, then there is no need to feedback CSI. Alternatively, if the UE has to feedback
something, the overhead will be less than without ML, thanks to predicted CSI. Later, by
addressing the issues related to ML training at both ends, we extend our idea to one-sided
ML training. Specifically, ML training is performed at the UE, and the trained model is
reported to BS for twin predictions. The results, evaluated by exploiting empirical data,
hold (i) error reduction in the acquired CSI at the BS; (ii) precoding gain maximization;
and (iii) maximizing cosine similarity with minimum feedback overhead. Last, we will
focus on various ML-based CSI prediction techniques. The outcomes corroborate the
validity of exploiting ML for CSI feedback enhancement at minimum OTA overhead.

Chapter 3 (CSI Feedback Enhancement in Multiuser) investigates the perfor-
mance in a multiuser environment. Besides, in Chapter 2, ML is considered at the BS
and UE to improve the precision of acquired CSI. However, ML implementation at the
UE can be infeasible for various reasons, such as UE power consumption and storage
of heavy NN. Motivated by this issue, we propose CSI learning at BS (CSILaBS), to
avoid ML at UE. To this end, by exploiting CP at BS, light-weight predictor function
(PF) is considered for feedback evaluation at the UE, which can reduce OTA feedback
overhead and improve acquired CSI quality at the BS. In addition, various mechanisms
are proposed to select the feedback at a UE while aiming to improve CSI accuracy.

Chapter 4 (Role of RIS in CSI Prediction) addresses the use of reconfigurable
intelligent surfaces (RIS) in the proposed CSI feedback work. Particularly motivated
by the promising benefits of CP in CSI feedback enhancement, this chapter exploits
RIS for CSI prediction enhancement. As the prediction of a highly dynamic channel is
cumbersome, this chapter focuses on enhancing multiuser CSI prediction performance
by introducing time correlation in the composite channel. Specifically, we present the
use of quasi-RIS to achieve the objective. We show that the intelligently configured
RIS enhances channel prediction performance while saving sufficient RIS elements for
other applications. Another advantage is the prediction of the whole composite channel
arriving from the entire RIS; hence, the complexity and overhead for channel estimation
can be reduced, which is the major bottleneck in RIS.

Chapter 5 (Conclusion and Future Outlooks) concludes the thesis work and
shed light on the promising future directions, which can be taken as a continuation
of proposed studies. Besides, a standard-relevant solution is proposed to address the
reporting and verification of training data for the CSI frameworks. It is important to
highlight that each chapter has its own mathematical notations and the system model.
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1.7 Patents and Publications

The following patents were filed during the thesis. Furthermore, research publications
produced in the thesis work are provided.
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channel prediction: Does it work on real-world data?” IEEE Wireless Communi-
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to enhance multiuser channel prediction?” IEEE Wireless Communications Letters,
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cations Conference (GLOBECOM), 2021, pp. 1–6.
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Chapter 2
CSI Feedback Enhancement in
Single-User

2.1 Introduction

Over the past two decades, multi-antenna techniques dubbed massive MIMO have
been widely acknowledged as key enablers for future cellular networks [57]. Employing
a large number of antennas in a centralized [58] or distributed [59] configuration can
help in, e.g., reducing multiuser interference [60], multifold increase in channel capac-
ity [61], cost-effective and reliable coverage. To attain aforementioned gains, massive
MIMO technology requires downlink CSI. In the current communication architecture, the
downlink CSI is estimated by the UE via dedicated pilots and then fed back to the BS.
The feedback information is compressed to reduce OTA overhead. This compression
increases the inaccuracy of acquired CSI, thus degrading precoding quality. Different
from the existing DL-based strategies, i.e., designing encoders and decoders [35], and
accordingly transforming the CSI matrix into an image, we introduce channel prediction
for CSI feedback. This chapter introduces the use of ML to develop CSIFB-PNet, a
novel CSI feedback mechanism which exploits twin channel predictors to compress and
recover the CSI effectively. We call these predictors twins because they use the same
weights and test dataset for channel prediction. The twin channel predictors are partic-
ularly deployed at the BS and UE for CSI feedback. In summary, the feedback at the UE
is evaluated with respect to the predicted channel. Further, we provide a comparison
with state-of-the-art [35]. The major contributions of this chapter are:

• By considering a realistic scenario, we propose the idea of using CSIFB-PNet
to enhance CSI feedback. More specifically, the proposed approach is hybrid,
i.e., a combination of conventional CSI feedback and ML-based twin predictors.
CSIFB-PNet can help to eliminate the feedback if the prediction is aligned with the
estimation. Alternatively, it reaps the benefits of reducing OTA feedback overhead
and CSI compression errors.
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• CSIFB-PNet can train the ML model on two-sides as well as one-side, where in
the later UE reports the trained model to the BS. In this chapter, we discuss
both techniques. Further, CSIFB-PNet can support the possible standardization
in 3GPP. Therefore, we also cover the possible standardization points of CSIFB-
PNet.

• As CSI prediction is of pivotal importance in CSIFB-PNet, we also address ML-
based CPs. Specifically, we exploit time-series models of DL, e.g., bidirectional
long short-term memory (BiLSTM). In addition, we use NeuralProphet (NP), a
recently introduced time-series model composed of statistical components, e.g.,
auto-regression (AR), for CSI prediction. Furthermore, inspired by a statistical
model, we develop a novel hybrid framework comprising recurrent neural network
(RNN) and NP to achieve better prediction accuracy.

• To corroborate the validity of CSIFB-PNet, we use experimental data, which is
a huge value-addition over the existing work. The experimental dataset is based
on a measurement campaign performed at Nokia Bell-Labs and provides a real-life
setting for evaluating and providing interesting insights into our work.

2.1.1 Chapter Organization and Notations
The rest of this chapter is organized as follows. The system model and conven-

tional CSI feedback approach are presented in Section 2.2. In Section 2.3, CSIFB-PNet
is explained with two-sided as well as one-sided ML training. The proposed channel
prediction models are explained in Section 2.4. Measurement campaign is explained in
Section 2.5. Numerical results are presented in Section 2.6. Finally, Section 2.7 concludes
the chapter.

Throughout this paper, the matrices and vectors are represented by boldface upper
and lower-case, respectively. Also, scalars are denoted by normal lower and upper-case.
The estimated, compressed estimated, predicted, and true channel matrix are repre-
sented by Ĥ, ĤQ, H̃, and H, respectively, and their vectorized forms are respectively
denoted by ĥ, ĥQ, h̃, and h. The superscripts [·]† and [·]∗ denote the transpose and
conjugate transpose of a matrix/vector, respectively. In addition, E{·} and ∥·∥2FRO de-
note expectation operator and squared Frobenius norm, respectively. Furthermore, the
notations R and C are representing the real and complex numbers, respectively, and | · |
shows absolute value.

2.2 System Model and Conventional Approach

2.2.1 System Model
Consider the downlink scenario of a massive MIMO orthogonal frequency-division

multiplexing (OFDM) system, as depicted in Fig. 2.1, where a BS is serving multiple
UEs within a cell. For the sake of simplicity, we explain the communication between a
single BS-UE link. The BS and UE are equipped with Nt and Nr transmit and receive
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BS

UE

Figure 2.1: Single-cell massive MIMO-OFDM communication environment, where twonetwork entities are depicted, i.e., BS and a UE. To acquire the channel, BS is sendingCSI-RS; consequently, compressed estimated channel is fed back via dedicated feedbacklink.

antennas, respectively. Without loss of generality, the received signal1 at the UE can be
represented as

y(t) = H(t)p(t) + n(t) , (2.1)
where y(t) =

[
y1(t), y2(t), · · · , yNr(t)

]† having dimension Nr × 1, and t is the time
index. And,

H(t) =


h11(t) · · · h1Nt(t)
h21(t) · · · h2Nt(t)

... . . . ...
hNr1(t) · · · hNrNt(t)

 (2.2)

is the channel matrix, which has dimension Nr×Nt. In the above matrix, hnrnt ∈ C1×1 is
the channel gain between the nth

t transmit and nth
r receive antennas, respectively, where

1 ≤ nt ≤ Nt and 1 ≤ nr ≤ Nr. Further, p(t) =
[
p1(t), p2(t), · · · , pNt(t)

]† is an Nt × 1

symbol vector transmitted by the Nt antennas, and n(t) =
[
n1(t), n2(t), · · · , nNr(t)

]†
is the additive noise vector, which has dimension Nr × 1.

In the frequency-division-duplex system, H should be fed back to the BS by a UE,
requiring high OTA overhead. However, H must be estimated at the UE prior to feed-
back. Channel estimation is beyond the scope of this study; therefore, we assume perfect

1For the reader’s understanding, here we are referring to one OFDM symbol and subcarrier.
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channel estimation and focus on CSI feedback. In the following, we summarize the CSI
feedback process followed in the conventional approach. Then, we will explain CSIFB-
PNet, which combines conventional approach and ML-based channel predictors.

2.2.2 Conventional Approach
Conventionally, CSI at the BS is acquired by transmitting CSI-RS. Consequently, the

UE estimates the channel, denoted by ĤUE, and then feedback a compressed estimated
channel, expressed as

ĤQ
c (t) = Q

(
ĤUE(t)

)
, (2.3)

where Q(·) is the standard element-wise quantization function using BQ quantization
bits to compress the channel. Here, it is important to highlight that we aim at reducing
BQ as the higher value will result in higher overhead. ĤQ

c is degraded by two major
factors: estimation and compression or say quantization. Throughout the chapter, we
use these two terms interchangeably.

2.3 CSIFB-PNet

CSIFB-PNet considers twin channel predictors at both ends of the communication
system, i.e., BS and UE. The UE will evaluate the feedback with respect to the predicted
CSI. As a toy example, if there is no difference between the predicted and the estimated
CSI at the UE, then feedback is not required. Thus, feedback-related OTA overhead can
be eliminated or reduced if the UE decides to feedback something. In the following, we
explain two-sided CSIFB-PNet, which is later extended to one-sided CSIFB-PNet. We
refer to two-sided CSIFB-PNet as CSIFB-PNet2 and one-sided as CSIFB-PNet1 in the
rest of this chapter.

2.3.1 Two-sided CSIFB-PNet
In the two-sided CSIFB-PNet, ML models are trained at both ends by using the

same initialization parameters and training data etc. CSIFB-PNet2 is composed of
the following phases: assessment, initialization, prediction, estimation, compression,
feedback and recovery of compressed CSI. Below, we explain these phases.

2.3.1.1 Assessment Phase
In the beginning, the two network entities exchange a few messages: 1) BS and

UE perform a handshake to assess available capabilities, for instance, support of ML
algorithm 2) both agree to use ML-based algorithm for CSI prediction 3) both agree to
adopt the conventional approach to aggregate past CSI realizations to train ML algorithm
4) the length of the dataset (to be acquired in the initialization phase) is decided for
the training of ML model. The assessment phase is pictorially represented in Fig. 2.2.
Once such messages are exchanged, the BS and UE perform the initialization phase,
summarized below.
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Figure 2.2: Dedicated message exchanges, we call this assessment phase, between theBS and UE before adopting CSIFB-PNet2.

2.3.1.2 Initialization Phase
During the initialization phase, the BS and UE use the conventional approach, de-

tailed in Section 2.2.2. By using the conventional approach, a set of past CSI realizations
is established at both ends, where the dataset length is agreed upon in the assessment
phase. Let us denote the set of past CSI realizations as S =∆ {ĤQ(t), ĤQ(t−1), ĤQ(t−
2), · · · , ĤQ(t− d), · · · , ĤQ(t− S)}, where S is the total length of initialization phase.

2.3.1.3 Prediction Phase
Using the same dataset available at the BS and UE, both the network entities train

the ML-based channel predictor, e.g., RNN, which we explain later in Section 2.4. It is
important to mention that RNNs are twin, i.e., their initial configuration and training
dataset is the same. By having the trained RNNs at both sides, let us say at time instant
t, the BS and UE predict the CSI, denoted by H̃(t). The prediction is assumed to be the
same on both sides. For the sake of notational convenience, we rewrite the predicted
CSI at BS and UE as H̃BS(t) and H̃UE(t), respectively.

2.3.1.4 Estimation Phase

Suppose that the UE estimates the CSI at time t, which is denoted as ĤUE(t).
As alluded to earlier, we assume that there is no error in the CSI estimation; hence,
ĤUE = H. In the following, we explain CSI compression at the UE.

2.3.1.5 Compression Phase
Briefly, in the conventional approach, compression at the UE will be done in the

same manner as explained in Section 2.2.2, i.e., Equation (2.3). Whereas in CSIFB-
PNet, compression at the UE is done in the following manner. The UE computes an
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update function by exploiting predicted and estimated CSI as

U(t) = f
(
H̃UE(t), ĤUE(t)

) (2.4)
where f(·) is an update function which measures the distance between the predicted and
estimated CSI at UE. A simple implementation of such a function could be a difference.
Hence, Equation (2.4) can be rewritten as

D(t) = H̃UE(t)− ĤUE(t) . (2.5)
In succession, the updated function, D(t), is compressed at the UE using a standard
element-wise quantization function. The compressed CSI at the UE can be written as

ĤQ
p (t) = Q (D(t)) . (2.6)

By substituting Equation (2.5) into Equation (2.6), we obtain the compressed CSI as

ĤQ
p (t) = Q

(
H̃UE(t)− ĤUE(t)

)
. (2.7)

2.3.1.6 Feedback and Recovery Phase
The feedback and, correspondingly, the recovery of the compressed CSI are catego-

rized into two scenarios. In the following, we explain each scenario.

• In the first scenario, we consider the case of perfect CSI prediction, i.e., when the
estimated and predicted CSI at the UE are the same. In other words, H̃UE(t) =

ĤUE(t). In this case, the UE does not need to feedback anything, and hence,
feedback-related overhead is eliminated. Notably, the acquired CSI at the BS will
be the same, which it had predicted, i.e., H̃BS(t). Mathematically, the acquired
CSI at the BS is given as

H̄BS(t) = H̃BS(t) . (2.8)
• In the second scenario, we consider the case when the UE has to feedback some-

thing. In short, when H̃UE(t) ̸= ĤUE(t). Therefore, the UE feedback compressed
update, i.e., Equation (2.7). Correspondingly, the acquired CSI (or the recovered
CSI) at the BS can be calculated as

H̄BS(t) = H̃BS(t)−Q
(
H̃UE(t)− ĤUE(t)

)
, (2.9)

which is simply the difference between the predicted CSI at the BS and feedback
from the UE. In CSIFB-PNet, before reporting ĤQ

p (t), the UE computes the error,
Λ, and cosine similarity, ρ, between what will be acquired at BS, i.e., H̄BS(t),
and the estimated CSI at UE, ĤUE(t). Importantly, in the conventional approach,
H̄BS(t) = ĤQ

c (t). In the case when the error in the proposed approach, Λp, is
less than the error in the conventional approach, Λc, as well as cosine similarity
in the proposed approach, ρp, is higher than cosine similarity in the conventional
approach, ρc, then the UE will feedback ĤQ

p (t). Otherwise, UE reports ĤQ
c (t)

with a flag indicating the use of conventional approach.
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2.3.2 One-Sided CSIFB-PNet
In the two-sided CSIFB-PNet, we considered the training of ML models at both

ends, that is, BS and UE. Also, we exploit compressed data on both sides to train the
ML model. The reason for considering compressed data for the training is to remain
inline with the standards, i.e., if the UE and BS have the compressed data, then they
should only rely on that. The downsides of such methodology are synchronization of
two ML models, reporting of training data to BS, and exploiting compressed CSI for
identical outcomes on both sides. In addition, using the compressed CSI will not achieve
the case where the estimated and predicted CSI at the UE will be the same. It is,
nevertheless, possible when training data is reported to BS with excessive overhead,
i.e., no compression error. This approach is infeasible due to excessive OTA training
overhead. In light of the above issues, we summarize the one-sided CSIFB-PNet, denoted
with CSIFB-PNet1, below.

In CSIFB-PNet1, we exploit the uncompressed CSI for training the ML model, i.e.,
S =∆ {Ĥ(t), Ĥ(t− 1), Ĥ(t− 2), · · · , Ĥ(t− d), · · · , Ĥ(t− S)}, which is possible at the
UE. More specifically, we train the ML model only at the UE and report the trained model
to the BS for twin predictions. CSIFB-PNet1 benefits over two-sided model training,
e.g., synchronization of weight parameters and hyperparameters to initiate the training
process is not required. Further, the requirement of reporting the training data to BS
is eliminated. Furthermore, this helps to exploit the uncompressed CSI at the UE for
training the ML model. The considerable benefit of such an approach is the elimination
of feedback requirements from UE when estimated and predicted CSI at the UE are
identical. The rest of feedback mechanism remains the same as in CSIFB-PNet2. In the
following, we present pseudo-code of CSIFB-PNet.

The pseudo-code of CSIFB-PNet is given in Algorithm 1. In the first step of Algo-
rithm 1, the training data is accumulated at the BS and UE or only at the UE in the
case of one-sided CSIFB-PNet. Then ML model is trained. In step-2, the trained model
is reported to BS, and CSI is predicted on both sides. Importantly, in CSIFB-PNet2,
reporting of trained model is not required. Later, the CSI is acquired at the BS, which
is summarized in step-3 and step-4.

CSIFB-PNet needs to be supported by the standard as the invention requires the
establishment of a protocol between the BS and UE, which is currently not part of
the 3GPP specification. To this end, different prediction algorithms can be tabled and
standardized. Furthermore, the possible standardization points include algorithm(s),
memory, message exchanges, etc.

2.3.3 Remarks on CSIFB-PNet
There are threefold advantages of using CSIFB-PNet over the conventional approach.

First, the errors caused by compression can be smaller in ĤQ
p (t) than in ĤQ

c (t) due to
having low amplitude entries in ĤQ

p (t), thanks to CSI prediction. Therefore, a more
accurate version of the true CSI can be acquired at the BS. The second benefit can be
attained in quantization bits, BQ, required to send feedback from the UE. The better
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Algorithm 1: CSIFB-PNet
Input: ĤQ

c

Output: H̄BS(t)
// Step-1: Aggregate training data at BS and UE (or UE only in
case of CSIFB-PNet1), create a set S, and reverse its order
w.r.t. time index, i.e., most fresh entry will go at the end.

1: for s = 1 to S − 1 do
2: Train the ML model.
3: end for

// Step-2: Report the trained model to BS (this is not required
in CSIFB-PNet2). Also, predict the CSI at time t at BS and UE by
exploiting d past CSI realizations of ĤQ

c .
// Step-3: Estimate the CSI, ĤUE(t), at UE at time t.
// Step-4: Calculate Λp,Λc, ρp, and ρc, and acquire H̄BS(t).4: if Λp < Λc & ρp > ρc then5: Acquire H̄BS(t) using Equation (2.8) or Equation (2.9).6: else

7: H̄BS(t) = ĤQ
c (t)8: end if

the prediction at the UE, the fewer bits would be needed to send the feedback. Thus,
CSIFB-PNet can significantly reduce feedback overhead. Lastly, if the prediction at the
UE is perfect, feedback is unnecessary; hence, feedback-related overhead is completely
eliminated. This benefit can be attained in an environment where the UEs are static
(e.g., in a stadium or moving at a predictable speed). This is because when the UEs are
static, variations in the CSI can be very small; hence, prediction can be more accurate.

If the compression function, Q(·), uses an infinite amount of bits to send the feedback,
i.e., BQ = ∞, then there is no advantage of using CSIFB-PNet. In short, compression
followed in the conventional approach and CSIFB-PNet will be the same, i.e., Q(x̄) = x̄,
where x̄ is the input data for compression. In other words, we can say that there is no
compression while sending feedback. Hence, the real benefits can be acquired when the
CSI is highly compressed, which is true in a practical wireless environment, i.e., type-
I and type-II CSI feedback used in 3GPP are highly compressed [18], as explained in
Chapter 1.

2.4 CSI Prediction Models

Strictly speaking, CSI prediction predicts future CSI realizations by exploiting past
observations. For CSI prediction, two statistical algorithms, i.e., autoregressive (AR) and
parametric models, have been addressed in [62] and [63], respectively. Both models are
based on the statistical modeling of a wireless channel. Broadly, a parametric model esti-
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mates Doppler shift, the number of scattering resources, angles of arrival and departure,
and amplitude. The assumption is that a wireless channel is a superposition of a finite
number of complex sinusoids. Finally, CSI is predicted based on estimated parameters.
However, estimated parameters can expire quickly in a highly dynamic environment;
therefore, iterative re-estimation of parameters is required, increasing computation cost
[63]. In contrast, the AR model approximates the wireless channel as an AR process
[64], where the future CSI is extrapolated using a weighted linear combination of current
and past CSI [7]. The downside of AR is its vulnerability to impairments, e.g., additive
noise, making the AR model infeasible. Therefore, seeing the promising benefits of ML
in Chapter 1, we utilize ML for CSI prediction [2]. In the rest of this section, we highlight
the channel prediction models2 that we used in our study [9]. They are divided into RNN,
BiLSTM, and a hybrid model. In the following, we explain these models.

2.4.1 RNN for CSI Prediction
With the rapid advancements in ML algorithms, their applications have been con-

sidered in almost every field. For example, RNN, a class of ML, is a powerful technique
for time-series predictions [65]. RNNs differ from standard feed-forward NN since their
training and prediction are based on current and past information. In other words, their
decisions are influenced by past observations too. Contrarily, a standard NN’s output
is independent of previous input, which may not be the case in many scenarios, e.g.,
consider correlated fading channels in wireless communications. Channel realizations,
determined by the physical propagation of electromagnetic waves in the medium, show
a large correlation in the time domain. Therefore, RNN can be the right ML tool to
predict CSI [2].

Figure 2.3: The topology of a simple Jordan RNN [66].
2The proposed models are used to predict the channel of single-UE, and we will discuss CSIprediction of multiple UEs in Chapter 4.
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Figure 2.4: Pictorial representation of a fully connected Jordan RNN for massive MIMOchannel prediction. The external inputs of the RNN are the real and imaginary parts ofthe compressed CSI. In contrast, the internal inputs (denoted with blue units) are therecurrent components. The output shows the multi-step predicted real and imaginaryparts of compressed CSI for each antenna element.

The RNN has several variants [66], [67], among which we use a Jordan network [66].
The basic topology of a Jordan network is drawn in Fig. 2.3. The network consists of
an input layer, a hidden layer, and an output layer. The layers are connected in a feed-
forward configuration3. The hidden and output layers are also connected with a state
unit (internal input); this recurrent connection of the internal input provides a short-term
memory to the hidden unit. The hidden unit is influenced by external input, and its past
state obtaining via internal input, which helps the RNN find a time-series relationship
between the various inputs; thus, making it different from a standard NN.

By following the same structure of Jordan network, we reconstructed4 a massive
MIMO RNN, as drawn in Fig. 2.4, for the prediction of CSI [2]. The objective of the
RNN is to forecast D-step values of CSI, denoted by H̃(t + D), which are as close as
possible to true values, i.e., ĤQ(t + D). Here we explain the CSI prediction models
with respect to ĤQ, however, models are also trained using Ĥ as followed in one-sided
CSIFB-PNet. We assume the total (external and internal) numbers of neurons in the
input layer as Iu, the hidden layer as Ju, and the output layer as Ku. In terms of massive

3It is important to note that Jordan used the terms plan unit and state unit for external and in-ternal input, respectively, in his paper [66]. However, we use them for the reader’s understandingas external and internal input.4A similar configuration is also followed in [68] for SISO configuration.
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Figure 2.5: Pre and post-processing of CSI matrix for training and prediction using theRNN. The real and imaginary parts of CSI are represented byR and I , respectively.

MIMO channel prediction, the input of the RNN is the compressed channel, written as

ĤQ(t) =


ĥQ
11(t) · · · ĥQ

1Nt
(t)

ĥQ
21(t) · · · ĥQ

2Nt
(t)

... . . . ...
ĥQ
Nr1

(t) · · · ĥQ
NrNt

(t)

 , (2.10)

where ĥQ
nrnt

(t) ∈ C1×1 is the compressed estimated channel between nth
t and nth

r transmit
and receive antennas, respectively. Along with the compressed channel, ĤQ(t), its d-step
delayed versions, denoted by [ĤQ(t− 1), ĤQ(t− 2), · · · , ĤQ(t− d)], are also fed as an
external input to the RNN. RNN’s total external input is given as

ĤQ =
[
ĤQ(t), ĤQ(t− 1), ĤQ(t− 2), · · · , ĤQ(t− d)

]
. (2.11)

The classic RNN does not take matrices as input; hence pre-processing is required.
Below we provide some pre-processing steps, which are also depicted in Fig. 2.5. First,
the combined input ĤQ is converted from matrix-to-vector (M2V) form as

v̂Q = M2V(ĤQ) =
[
ĥQ
11, ĥQ

12, · · · , ĥQ
NrNt

]
, (2.12)

which represents a vector having complex entries. Currently, the ML algorithms are not
well implemented for complex values [69]; therefore, we use real-valued RNNs in our
study. For this purpose, the above complex vector can be converted into separate real
and imaginary parts through a dedicated function; we call it separator ; the outcome can
be represented in a vector form as

v̂ =
[
ĥR
11(t), · · · , ĥR

NrNt
(t− d), ĥI

11(t), · · · , ĥI
NrNt

(t− d)
]
, (2.13)

where ĥR
nrnt

∈ R1×1 and ĥI
nrnt

∈ R1×1 denote5 the real and imaginary parts of a complex
channel ĥQ

nrnt
∈ C1×1. These inputs can be seen in Fig. 2.4, where real and imaginary

5For notational convenience, we removed the superscript Q, which depicts the compressedchannel.
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parts are fed as an external input to the RNN. Besides, the recurrent6 (feedback or
internal inputs) components for time t, as depicted with blue units (or neurons) in
Fig. 2.4, are expressed in the vector form as

ṽ(t) =
[
h̃R
11(t), · · · , h̃R

NrNt
(t), h̃I

11(t), · · · , h̃I
NrNt

(t)
]
, (2.14)

where h̃R
nrnt

(t) and h̃I
nrnt

(t) show the real and imaginary parts of the channel, h̃nrnt(t) ∈
C1×1, predicted at time t, which acts as a recurrent component for the next iteration.
The above vector is fed into RNN internally, which can be seen as feedback in Fig. 2.4.
The total inputs, i.e., external and internal, of the RNN can be represented in a vector
form as

q(t) =
[
v̂, ṽ(t)

]
. (2.15)

In a nutshell, by feeding the total input into the RNN, the D-step ahead prediction of
CSI can be written as

h̃R,I(t+D) =
[
h̃R
11(t+D), · · · , h̃R

NrNt
(t+D),

h̃I
11(t+D), · · · , h̃I

NrNt
(t+D)

]
.

(2.16)
Next, by applying the post-processing steps, shown in Fig. 2.5, first, we combine the real
and imaginary parts using a function called combiner. Hence, the complex predicted
channel vector is given as

h̃(t+D) =
[
h̃11(t+D), · · · , h̃NrNt(t+D)

]
. (2.17)

Last, by performing vector-to-matrix (V2M) conversion, the above vector can be written
into the matrix form as

H̃(t+D) =


h̃11(t+D) · · · h̃1Nt(t+D)

h̃21(t+D) · · · h̃2Nt(t+D)
... . . . ...

h̃Nr1(t+D) · · · h̃NrNt(t+D)

 , (2.18)

which represents the massive MIMO predicted channel at time step t + D. Besides,
h̃nrnt(t+D) ∈ C1×1 denotes the predicted channel for the nth

t transmit and nth
r receive

antennas.
The prediction of the RNN is based on the weights (generally denoted with w) of

input and hidden layers and the applied activation function to the linear equation. In
summary, the weight, w, is randomly chosen for the connection between the output of a
neuron in the predecessor layer and the input of a neuron in the successor layer. Let us
denote the weight of ith input and jth hidden neuron as wji, and wkj depicts the weight
for the connection between kth output neuron and jth hidden neuron, where 1 ≤ i ≤ Iu,

6To get a deeper understanding of the recurrent block, the interested readers can refer to [66].
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1 ≤ j ≤ Ju, and 1 ≤ k ≤ Ku. The output of a neuron is calculated by applying the
activation function to the linear equation (combination of input and weight value); such
activation function introduces non-linearity. Generally, four common activation functions
are used in the ML domain: sigmoid, hyperbolic tangent, linear, rectified linear, leaky
rectified linear, and threshold. Experiments showed that the hyperbolic tangent function
gives the best result. However, addressing the results of different activation functions is
not the objective of our work, and the choice of activation function is problem-dependent.
The chosen activation function is expressed as

tanh(β) =
eβ − e−β

eβ + e−β
. (2.19)

where β is the value on which activation is applied, and it can be written as

β = wj · q(t) (2.20)
where wj = [wj1, · · · , wjJu ] represents the weights of hidden layer. The output of the
jth hidden layer neuron, at time instant t, can be calculated as

oj(t) = tanh (wj · q(t)) . (2.21)
Consequently, the above activation function is sent as an input to the next layer, which
in our case, is the output layer (see Fig. 2.4). In summary, the D-step ahead predicted
output at the kth output neuron can be written as

Ok(t+D) =
Ju∑
j=1

wkj · oj(t) . (2.22)
In the massive MIMO RNN model, the above output represents the real or imaginary
part of the nth

t and nth
r transmit and receive antennas, respectively.

2.4.2 BiLSTM for CSI Prediction
BiLSTM is composed of two independent long short-term memory (LSTM) networks.

In a BiLSTM model, information is learned from both ends of the input data vector, which
results in better prediction performance than traditional unidirectional LSTM. LSTM is
an advanced version of RNN. During model training, RNNs suffer from vanishing and
exploding gradient problems in backpropagation. In the training phase, the gradient often
becomes smaller and smaller when the backpropagation algorithm advances backwards,
i.e., from the output to the input layer of RNN. By the time gradient reaches the input
layer, it sometimes results in zero, not updating the weights of RNN; consequently, RNN
cannot learn. Contrarily, exploding gradient turns to increase the gradient, which results
in increasing weights of RNN; hence, gradient descent diverges. To this end, an LSTM-
based NN was developed by Hochreiter and Schmidhuber [70]. The core idea of an
LSTM is the introduction of a memory cell and multiplicative gates, which regulate the
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Figure 2.6: Graphical illustration of time-series NNs, i.e., LSTM and BiLSTM. Fig. 2.6ashows single-cell of an LSTM, where input is real-valued CSI realization for time instant
t. Fig. 2.6b depicts a fully connected BiLSTM-based NN, where inputs are learned in twoways. Circular shapes given in Fig. 2.6b denote a single-cell of LSTM, which is given inFig. 2.6a. The outputs of BiLSTM portray predicted CSI realizations. Source: [9].

flow of information (see Fig. 2.6a). Briefly, forget gate decides the amount of information
to be stored in the cell by utilizing the current input, xt, and the output of the previous
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LSMT cell, denoted by st−1. Mathematically,

ft = σ(Wfxt +Vfst−1 + bf ) , (2.23)
where σ(x) = 1

1+e−x is the sigmoid activation function, W and V are the weight
matrices, b is the bias vector, subscript f is associated with the forget gate. The input
gate determines the amount of information to be added into cell state ct−1 by exploiting
xt and st−1. Mathematically,

it = σ(Wixt +Vist−1 + bi) ,

gt = tanh(Wgxt +Vgst−1 + bg) ,
(2.24)

where subscript i and g are associated with input gate. By utilizing input and forget
gates, LSTM can determine the amount of information to be retained and removed.
Finally, the output gate calculates the output of an LSTM cell by using an updated cell
state, ct, and xt; the resultant output, given below, is then passed to the next LSTM
cell of the network:

ot = σ(Woxt +Vost−1 + bo) . (2.25)
As a result of the operations above, few information is dropped and a few is added, this
updates the next long-term state as follows:

ct = (ft ⊗ ct−1 + it ⊗ gt) , (2.26)
where ⊗ represents Hadamard product. Lastly, short-term memory state, st, is calculated
by passing long-term memory, ct, through output gate as

st = ot ⊗ ξ(ct) . (2.27)
In BiLSTM architecture, as depicted in Fig. 2.6, input information is learned in two

directions, i.e., left-to-right (forward layer) and right-to-left (backward layer). Impor-
tantly, notation t + 1 in BiLSTM architecture is only used for the illustration purpose,
such indexes are based on passed CSI observations. The output information of each
direction, denoted by s⃗ and ⃗s, respectively, is passed simultaneously to the output layer,
where predicted output is calculated as

ỹt = s⃗t ⊗ ⃗st . (2.28)

2.4.3 Hybrid Model for CSI Prediction
In the hybrid model, as shown in Fig. 2.7, we utilize an RNN-based CP, explained in

Section 2.4.1, NP, explained in the following subsection. In the beginning, the dataset
is cleaned, i.e., to check if there are corrupted/duplicate/missing data in the dataset.
Additionally, data splitting is performed, in which the dataset is divided into three sets,
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Figure 2.7: Flow diagram of the hybrid model, where dotted boxes show the predictionmodels used for the hybrid model. Processed data is the real-valued CSI realizations, andfinal prediction denotes the multi-step ahead predicted CSI realizations. Source: [9].

i.e., training, validation, and testing. Further, ML models transform the input sequences
into an acceptable format. The processed dataset is fed to the input of RNN and NP.
Then, we consider the predicted channel vector of RNN7, which is fed to NP along with
input feature vector8. NP learns to correct the predicted output with RNN’s prediction.
Later in Section 2.6, we demonstrate that NP can predict output more precisely when
used with RNN and outperforms all standalone models, notably BiLSTM, for different
cases. In the following, we explain the working functionality of NP.

2.4.3.1 NeuralProphet
Within a short span of time, NeuralProphet (NP) has emerged as a promising choice

for different time-series prediction tasks [71]. Several time-series models, e.g., RNN and
BiLSTM, have been developed in the context of DL. However, their internal functioning
is still a question mark despite demonstrating promising results. In contrast, NP is an
explainable and scalable prediction framework composed of statistical models, e.g., AR.

It is sometimes important to analyze the performance of a prediction model in the
form of different components. DL-based models are difficult to interpret due to their
black-box nature. Contrarily, NP is composed of different components9, where each
component contributes additively to predicted output, and their behaviour is well in-
terpretable. Further, each component is composed of individual inputs and modelling
methodology. The output of each component is D-step ahead future CSI realizations.
For the notational convenience, we summarize the model for D = 1 and h̃nrnt(t) ∈ R1×1.

7It is, however, important to mention that the predicted output of BiLSTM can also be consid-ered. But for the sake of lower computational complexity of the hybrid model, we used RNN, asBiLSTM is computationally more expensive than RNN. The rationale behind this is two-way learn-ing of BiLSTM and use of gates, e.g., input, forget.8In all CPs, input features, and corresponding labels are same.9In the documentation of NP, it is composed of six components. However, concerning ourapplication of CSI prediction, we dropped a few as some of them are irrelevant for CSI prediction,e.g., holidays. For more details, interested readers can refer to [71].
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In the context of CSI prediction, the predicted value of NP for time instant t can be
written as [71]

h̃nrnt(t) = Rt + At (2.29)
where Rt represents the trend function for the input data [71], and At is the AR effect
for time t based on previous CSI realizations [64]. The trend function, Rt, captures the
overall variation in the input data. It tries to learn the points where clear variation in
the data occurs; these points are called change-points, represented by {n1, n2, . . . , nm},
composed of a total of m change-points (tuned using grid search [72]). A trend function
can be expressed as

Rt = (ζ0 + (Γt)
†ζ) · t+ (ρ0 + (Γt)

†ρ) , (2.30)
where ζ = {ζ1, ζ2, . . . , ζm}, and ρ = {ρ1, ρ2, . . . , ρm}, are the vectors of growth rate
and offset adjustments, respectively, and ζ ∈ Rm×1 and ρ ∈ Rm×1. Besides, ζ0 and ρ0

are the initial growth rate and offset values, respectively. And, Γt = {Γ1
t ,Γ

2
t , . . . ,Γ

m
t },

where Γt ∈ Rm×1, which represents whether a time t is past each change-point. For a
mth change-point, Γm

t is defined as

Γj
t =

{
1, if t ≥ nm

0, otherwise
. (2.31)

A classic AR process of order d can be modeled as

At = Ω+
d∑

e=1

θe · At−e + ϵt , (2.32)
where Ω and ϵt are the intercept and white noise, respectively, and θ are the coefficients
of AR process. The classic AR model can only make one-step ahead prediction, and
to make multi-step ahead prediction, D distinct AR models are required to fit. To
this end, we utilize feed-forward NN along with AR (built-in feature of NP), termed as
AR-Net [73], to model AR process dynamics. NP-based AR-Net can produce multi-
step future CSI realizations by using one AR model. AR-Net mimics a classic AR
model, with the only difference of data fitting. AR-Net is a feed-forward NN that maps
AR model. In the AR-Net, d last observations of CSI realizations are given as input
z = {At−1, · · · , At−d}, which are processed by the first layer and then passed through
each hidden layer. Correspondingly, D-step ahead future CSI realizations, denoted by
z̃ = {At, At+1, . . . , At+D}, can be obtained at the output layer. Mathematically, z̃ is
obtained as

ωout
1 = α(U1z+ bNP

1 ) ,

ωout
i = α(Uiω

out
i−1 + bNP

i ) , for i ∈ [2, 3, . . . , l]

z̃ = Ul+1ω
out
l ,
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Figure 2.8: Image of the Nokia campus in Stuttgart, Germany. The transmit array’s loca-tion (resp. boresight direction) is marked on the left by a blue bar (resp. blue arrow). Themeasurement tracks along which the vehicle (mimicking a UE) wasmoved are depicted byblack lines. The corresponding arrowheads and numbers indicate the direction of move-ment and the measurement track number. Source: [2].

where α(·) is the rectified linear unit (ReLu) activation function, written as

α(γ) =

{
γ, γ ≥ 0

0, γ < 0
. (2.33)

Further, l is the number of hidden layers having nh hidden units in each layer, bNP ∈
Rnh×1 is the vector of biases, U ∈ Rnh×nh is the weight matrix for hidden layers, except
for the first U1 ∈ Rnh×d and last Ul+1 ∈ RD×nh layers. In the AR component of NP,
an important selection parameter is the order of AR, i.e., d, which is hard to select
in practice. In general, d is chosen such that d = 2D, i.e., twice the number of the
prediction horizon.

The operation of an ML-based channel predictor is divided into two phases: training
and prediction. After selecting the hyperparameters (e.g., learning rate, optimization
algorithm), the training phase can be started in the first phase. In this phase, channel
values are given at the input of CP, along with corresponding output labels. Conse-
quently, the CP processes each sample (or a batch of samples depending on the batch
size) and compares the predicted value with the true label. The weights are updated
through backpropagation, which is repeated until a certain convergence condition, e.g.,
mean-squared error (MSE), is minimized.

2.5 Measurement Campaign

Massive MIMO channel measurement campaign (see Figs. 2.8, 2.9) was conducted
on the Nokia campus in Stuttgart. In that area, the buildings of approximately 15
meter height are primarily arranged along streets, acting as reflectors and blockers for
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(a) Image of Track-1 of the measurement
campaign.

(b) BS antenna with 64 antenna elements is shown here. (c) A trolley, mimicking
a UE, is moving on

track-1.

Figure 2.9: A closer view of measurement track-1 and network entities is shown in thesefigures. Buildings of approximately 15m height can also be seen, acting as reflectors andblockers for the radio waves. Source: [3].
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the radio waves from the transmit antenna array, which was placed on the rooftop
of one of these buildings. The environment resembles well a NLoS urban-micro-like
propagation scenario. The geometry of 64-element transmit array had been adapted to
the propagation scenario; i.e., 4 rows with 16 (single-pol.) patch antennas each were
used, with a horizontal antenna spacing of λ/2, and a vertical separation of λ.

The array antennas transmitted 64 time-frequency orthogonal pilot signals at 2.18GHz
carrier frequency, using OFDM waveforms that followed 10MHz LTE numerology (i.e.,
600 subcarriers with 15 kHz spacing). The pilot signals had been arranged such that
the sounding on 50 separate subbands (each consisting of 12 consecutive subcarriers)
required 0.5ms. Within that pilot burst period, the propagation channel was assumed to
be time-invariant. The pilot bursts were sent continuously with a periodicity of 0.5ms.

The receiver cart (mimicking a UE), as shown in Fig. 2.9, consisted of a single
monopole antenna mounted at 1.5 meter height, a Rohde & Schwarz TSMW receiver
and a Rohde & Schwarz IQR hard disc recorder, which continuously captured the received
baseband signal. Both the transmit array and the receiver were frequency synchronized
via global positioning system. During the measurements, the receiver cart was moved
along several routes at walking speed (5 kmph), which corresponds to a spatial channel
sampling distance of less than 0.1mm.

2.6 Results and Analysis

By exploiting the dataset given in Section 2.5, this section evaluates the performance
of the proposed work. The results are divided into two parts, where the first focuses on
the performance of CSIFB-PNet and later on the proposed CSI prediction models.

To train CPs, we used dataset of track-1 (shown in Figs. 2.8, 2.9), which is composed
of 116k consecutive CSI realizations, i.e., {H(t)|t = 1, . . . , 116k}. The dataset (normal-
ized) is passed through necessary pre-processing and formatting steps using custom-built
input pipelines to be parsed through each ML model easily. Further, the dataset of track-
1 is divided into three parts: training (80%), validation (10%), and test (10%). Similarly,
the 10% dataset of track-2 and track-6 is taken randomly for the test. Unless stated
otherwise, the performance of CSIFB-PNet is evaluated on track-2, and simulation pa-
rameters are given in Table 2.1. The training process starts from an initial state, where
weights and biases are randomly initialized. At the tth time iteration, pre-processed10

channel vector is fed as an input to CPs. To train CPs, we use Huber loss as a cost
function, which is defined as

Lhuber(H, H̃) =

{
1
2τ
(H− H̃)2, for |H− H̃| ≤ τ

|H− H̃| − τ
2
, otherwise

(2.34)
where H and H̃ are the true labels and predicted CSI realizations, respectively. It
is important to highlight that the CPs are trained on compressed and true channels,

10Real and imaginary parts of channel are separated, delayed channel realizations and corre-sponding labels are created, etc.
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Table 2.1: Parameters of CSIFB-PNet
Parameter Value Parameter Value

{l, τ} {4, 1} ,ג} Ju}(NP) {0.001, 32}

Epochs 50 {d,D} {20, 10}
m 50 ,ג} Ju}(RNN & BiLSTM) 0.001, 200

e.g., CSIFB-PNet2 exploited compressed CSI, and CSIFB-PNet1 exploited true CSI. For
brevity, here we write the cost function with respect to true CSI. H will be replaced
by ĤQ

c in case of exploiting compressed CSI. By using Huber loss as a cost function, a
batch of 32 samples is fed into each CP, the predicted outcome is compared with true
labels, and error is backpropagated to update weights and biases using adaptive moment
estimation (Adam) as an optimizer [74]. The training iterations are repeated until the
cost function goes below a threshold value. Furthermore, open-source libraries such as
TensorFlow, Keras, and Scikit-learn are used for the implementation of CPs.

Selection of optimal training parameters, e.g., learning rate ,(ג) number of hidden
layers (l), and hidden neurons (Ju), play a pivotal role in enhancing prediction accuracy.
As a model does not directly learn hyperparameters, we manually define them before
fitting the model. Therefore, a well-known automated strategy, that is, grid search [72],
is used for hyperparameter tuning. For NP, linear growth function and 95% change-
point range gave the best results [71]. The remaining tuned parameters for NP and
other CPs are listed in Table 2.1. Also, the standard NP model only takes uni-variate
data to produce its output. In our hybrid model, we adapted the standard NP model
for multivariate data by adding an extra future regressor into the NP model and using
multiple parallel models depending on the MIMO configuration. Future regressors are
the variables which are known for the future. In our case, predictions of RNN are known
to us, and we included this information as a future regressor of the NP model. Thus, we
feed both RNN predictions and true sequences as multivariate inputs to the NP model
to enhance its prediction capability. Besides, in RNN and BiLSTM models, the dropout
layer is adapted, which drops hidden units randomly with a probability of 0.2, to prevent
over-fitting.

2.6.1 Performance of CSIFB-PNet
In this subsection, we compare CSIFB-PNet with the benchmark schemes by using

various evaluation parameters, which are given below. We utilize RNN as a channel
predictor with D = 1; later in Section 2.6.2, we will address the results of proposed CPs
with different values of D. Furthermore, to compare the performance of CSIFB-PNet
with the benchmark schemes, we present the results using the one-sided CSIFB-PNet
methodology. Later, we give a comparison between the one-sided and two-sided CSIFB-
PNet.

2.6.1.1 NMSE
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To observe the effectiveness of CSIFB-PNet, we use normalized mean-squared errorr
(NMSE), denoted by ΥFB, which is the difference between the true channel and the
acquired channel at the BS. Mathematically,

ΥFB = E

{ ∥∥H− H̄BS
∥∥2

FRO

∥H∥2FRO

}
, (2.35)

where H̄BS denotes the acquired channel at the BS. Importantly, in the case of CSIFB-
PNet, the acquired channel at the BS is the one given in Equation (2.9), whereas in
the case of the conventional approach, the acquired channel at the BS is a compressed
estimated channel, i.e., Equation (2.3). In some results, ΥFB is expressed in decible (dB),
calculated as 10 log10(ΥFB).

2.6.1.2 Precoding Gain
As the feedback CSI is used for precoding, we also measure the performance using

precoding gain. Let us denote the acquired or reconstructed complex channel vector at
the BS as h̄BS and true complex channel vector as h. By using this information, the
equivalent channel can be represented as

heq =

(
h̄BS∥∥h̄BS
∥∥
2

)∗

×
(

h

∥h∥2

)
. (2.36)

By using (2.36), precoding gain is calculated as

ΨFB = E {(heq)
∗ × heq} . (2.37)

2.6.1.3 Cosine Similarity
To measure the quality of the precoding vector, we consider the cosine similarity,

denoted by ϱFB, of the two vectors, calculated as

ϱFB = cos θ = E

{
|(h̄BS)

∗ · h|∥∥h̄BS
∥∥
2
|| h ||2

}
. (2.38)

Fig. 2.10 shows the gain of CSIFB-PNet1 over the conventional approach, where ΥFB

is plotted against different numbers of overhead bits used to feedback CSI. It can be
seen that CSIFB-PNet1 provides a gain of approximately 1.00 under high compression.
However, a smaller gain is observed when the feedback overhead is increased. For
example, the gain is low when BQ = 5, i.e., low compression. In short, using massive
feedback bits brings no advantage, which verifies our remark from Section 2.3.3. The
feedback followed in 3GPP is highly compressed; therefore, CSIFB-PNet1 is beneficial.
In a nutshell, CSIFB-PNet1 reduces OTA feedback overhead and improves acquired CSI
accuracy at the BS when feedback CSI from the UE is massively compressed.

Cosine similarity is another important evaluation parameter plotted in Fig. 2.11 for
both schemes. The results show that CSIFB-PNet1 gives cosine similarity of 0.95 by using

43



2 3 4 5
10

-3

10
-2

10
-1

10
0

Gain

Figure 2.10: Comparison of conventional CSI feedback approach vs. CSIFB-PNet1 withdifferent overhead bits used to feedback CSI.
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Figure 2.11: Performance evaluation using cosine similarity.
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Figure 2.12: Robustness of CSIFB-PNet1. Performance evaluation on track-6 of the mea-surement campaign.

2 overhead bits. In contrast, the conventional approach achieves a cosine similarity of
approximately 0.82. Similar to Fig. 2.10, the cosine similarity gain also reduces between
the two schemes with an increased overhead bit. It can be concluded from the results
that CSIFB-PNet1 improves CSI accuracy by approximately 16% when CSI is highly
compressed. And the gain reduces to approximately 3%, when CSI feedback is sent with
high overhead, i.e., 4 overhead bits.

To verify the robustness of CSIFB-PNet1, Fig. 2.12 reveals the performance using
NMSE and precoding gain on track-6, which is away from the trained track. The trend
of ΥFB, plotted in blue color on the left y-axis, shows that CSIFB-PNet1 provides a huge
gain of approximately 1.66 under low overhead, i.e., BQ = 2. And the gain reduces
with the increase in overhead. Thus, CSIFB-PNet1 is highly beneficial when feedback
information is massively compressed. In contrast, a similar gain can be observed for
precoding, plotted in red on the right y-axis. For instance, when BQ = 2, then CSIFB-
PNet1 has ΨFB = 0.87 whereas the conventional approach reaches CSIFB-PNet1 by
using 5 overhead bits.

To compare CSIFB-PNet1 with state-of-the-art, i.e., autoencoder-based CSI feed-
back, called as CsiNet in [35], Fig. 2.13 shows the comparison in terms of NMSE and
cosine similarity. We used a pre-trained CsiNet [75] to have a fair comparison. Ac-
cordingly, we have trained CSIFB-PNet1 on the same dataset as utilized in [75]. The
dataset is generated using Matlab 5G toolbox function nrCDLChannel, composed of 15k
samples. To get further details of the dataset and pre-trained CsiNet, please refer to
[75]. We compare the performance of CsiNet and CSIFB-PNet1 by using different over-
head bits used to compress the CSI11. In Fig. 2.13, we plot NSME and cosine similarity

11In CsiNet, generated codewords by the encoder are compressed. In CSIFB-PNet1, an updatefunction, i.e., the difference between prediction and estimation, is compressed.
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Figure 2.13: Comparison of CSIFB-PNet1 with CsiNet [35], [75].

between the recovered and the true channel. NMSE is plotted on the left y-axis in
blue color, and cosine similarity is plotted on the right y-axis in red color. It is evident
from the results that CSIFB-PNet1 recovers the CSI using only 2 overhead bits, and
CsiNet requires 6 bits predictably. The rationale behind this is CSIFB-PNet1 compresses
the update function (see Equation (2.7)); hence, less quantization noise. A negligible
NMSE shows that feedback from the UE can be completely eliminated as the prediction
is aligned with the estimated channel at UE. On the other hand, CsiNet compresses
the generated codewords, through which the decoder network cannot recover the CSI.
During the simulations, it is observed that without compressing the codewords, CsiNet
gives a similar performance as CSIFB-PNet1. The presented results corroborate that
CSIFB-PNet1 outperforms CsiNet.

Fig. 2.14 reveals the performance of one-sided CSIFB-PNet and two-sided CSIFB-
PNet with the number of overhead bits. The results show that CSIFB-PNet1 outperforms
CSIFB-PNet2. This is because of CSIFB-PNet1 training on the uncompressed CSI, which
is done at the UE. Thus, a more accurate CSI prediction model is obtained at the UE,
improving performance. Numerically, we observed a performance gain of approximately
3.25 dB using CSIFB-PNet1 when the feedback CSI is highly compressed, i.e., BQ = 2.
The issue with CSIFB-PNet1 is the reporting of the trained model to BS. In Chapter 3,
we will address a solution to overcome this issue.

In Table 2.2, a comprehensive comparison is given by using the dataset from the
measurement campaign (see Section 2.5). The best results are presented in bold font.
CsiNet is retrained using the dataset of track-1, where training parameters follow their
default setting in [75] and transmitted codewords are not compressed. It can be ob-
served that CSIFB-PNet1 outperforms benchmark schemes. For instance, CSIFB-PNet1
obtains the lowest NMSE values and outperforms benchmark schemes at all compression
levels. In comparison to CSIFB-PNet2, CSIFB-PNet1 also provides significant gains due
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Figure 2.14: One-sided versus two-sided CSIFB-PNet. The dataset of track-2 is used.
to the sophisticated ML architecture and utilizing uncompressed CSI at the UE to train
channel predictors. When the number of overhead bits is increased, benchmark schemes
give similar results to CSIFB-PNet1, showing that they require more overhead. Fur-
ther, CsiNet performs better than the conventional approach under low overhead, and
conventional performs better under high overhead cost. The reason for the worst perfor-
mance of CsiNet in high overhead bits is that it is not well trained on the measurement
campaign, and perhaps more effort is required to train CsiNet; nevertheless, even well-
trained CsiNet has lower performance in comparison to CSIFB-PNet1 (see Fig. 2.13). In
a nutshell, we have learned from the presented results that CSIFB-PNet gives the best
performance with having low overhead cost.

2.6.2 Performance of CSI Prediction Models
The performance of four CSI prediction models, i.e., NP, RNN, BiLSTM, and hybrid

model, is evaluated using NMSE and cosine similarity. NMSE of a CP is defined as

ΥCP = E


∥∥∥H− H̃

∥∥∥2
FRO

∥H∥2FRO

 . (2.39)

Similarly, by exploiting H and H̃, cosine similarity of a CP, denoted by ϱCP, is computed.
Fig. 2.15 shows the comparison of four CPs in terms of NMSE (ΥCP). Particularly,

performance is evaluated on three tracks unseen by the CPs during the training phase.
The trend reveals that RNN when used standalone, does not perform well; hence, it gives
the worst performance. On the other hand, BiLSTM outperforms RNN because BiLSTM
can retain information in their memory for longer periods and learns the input data in
both directions, thereby performing better. In contrast, the hybrid model performs better
than other CPs. The rationale is that NP learns better when RNN’s predicted values
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Table 2.2: Performance comparison using different evaluation parameters and bench-mark schemes
BQ Method ΥFB (dB) ΨFB ϱFB

2
Conventional 0.44 0.66 0.81CSIFB-PNet1 −9.88 0.90 0.94CSIFB-PNet2 −6.63 0.81 0.90CsiNet [35], [75] −2.46 0.44 0.66

3
Conventional −6.00 0.79 0.88CSIFB-PNet1 −15.80 0.97 0.98CSIFB-PNet2 −14.35 0.96 0.97CsiNet [35], [75] −2.46 0.44 0.66

4
Conventional −11.95 0.93 0.96CSIFB-PNet1 −21.86 0.99 0.99CSIFB-PNet2 −20.93 0.98 0.98CsiNet [35], [75] −2.46 0.44 0.66

5
Conventional −18.02 0.98 0.98CSIFB-PNet1 −27.87 0.99 0.99CSIFB-PNet2 −38.92 0.99 0.99CsiNet [35], [75] −2.46 0.44 0.66

1 2 12

Track Number

0

0.01
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NeuralProphet
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Figure 2.15: Performance of the CPs on different tracks followed by UE, where NMSE isindependent apropos track number as each track has different channel strength. Thenumber of predicted CSI realizations isD = 10, and uncompressed CSI is used for predic-tion.
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Table 2.3: Performance comparison of different CPs under various parameters
BQ ↓ Model→ Hybrid NP BiLSTM

Horizon→ D = 10 D = 1 D = 10 D = 1 D = 10 D = 1

∞ ΥCP 0.0077 0.0022 0.0093 0.0014 0.0271 0.0052
ϱCP 0.9975 0.9993 0.9974 0.9996 0.9923 0.9988

5
ΥCP 0.0337 0.0081 0.0413 0.0080 0.0398 0.0111
ϱCP 0.9895 0.9971 0.9864 0.9972 0.9874 0.9964

3
ΥCP 0.2188 0.0267 0.1550 0.0259 0.0502 0.0281
ϱCP 0.9416 0.9904 0.9435 0.9907 0.9838 0.9902

are passed as future regressors. For instance, on track-1, there is approximately 80%
reduction in NMSE when the hybrid model is used compared to RNN.

Table 2.3 presents a detailed comparison of CPs, where the best results are written
in bold numbers. The results are obtained using a test dataset of track-1 and for
different prediction horizons, i.e., D, and under different overhead bits used to compress
CSI. NMSE (ΥCP) and cosine similarity (ϱCP) are the two evaluation parameters used
to analyze the performance of CPs. The results show that NP is the best for small
prediction horizons, i.e., D = 1, and under any compression level. However, for long
prediction horizons, i.e., D = 10, the hybrid model is useful when the compression level
is low, e.g., 5 or no-compression (∞). The rationale behind the superior performance
of the hybrid model is the combination of RNN and NP. For instance, in the case of
D = 10, NP had shown bad performance when used standalone, but when combined
with RNN, it learned the information of RNN’s prediction to improve accuracy. That is
why the hybrid model has superior performance. Nonetheless, under high compression,
i.e., 1 and 3 compression bits, and D = 10, BiLSTM is the best choice, which is because
BiLSTM is suitable for long prediction horizons and handling non-linearities, thanks to
the memory cell and multiplicative gates (see Section 2.4.2).

2.6.3 Computational Complexity of CSIFB-PNet
To measure the complexity of CSIFB-PNet, we calculate the number of complex

multiplications required for the training and prediction of channel predictors. To get a
single-step prediction of the massive MIMO channel, the hidden layer has to perform
Iu × Ju complex multiplications, where Iu and Ju are the total number of neurons of
the input and the hidden layer, respectively. For two hidden layers, Ju × Ju complex
multiplications are performed. The complex multiplications at the output layer are Ju ×
Ku, where Ku are the total output neurons. Hence, the total complex multiplications
are

X = Ju × (Iu + Ju +Ku) . (2.40)
The total number of input neurons, Iu, depends on the number of massive MIMO sub-
channels, recurrent components, and the delayed channel matrix. Hence, Iu is calculated
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as
Iu = Nr ·Nt︸ ︷︷ ︸

ĤQ
c (t)

+d · (Nr ·Nt)︸ ︷︷ ︸
ĤQ

c (t− d)

+Nr ·Nt︸ ︷︷ ︸
Z−1

= (d+ 2) ·Nr ·Nt .

(2.41)

Conversely, the output layer’s neurons are equivalent to massive MIMO sub-channels;
therefore, Ku = Nr · Nt. By substituting Equation (2.41) and Ku = Nr · Nt into
Equation (2.40), X can be written in the simplified form as

X = Ju × [(d+ 2) ·Nr ·Nt + Ju +Nr ·Nt]

= Ju ×
[
Nr ·Nt

(
d+ 3 +

Ju
Nr ·Nt

)]
.

(2.42)

It is important to mention that the number of hidden layers and their neurons are depen-
dent on the optimization problem; they are called hyperparameters of an ML algorithm.
Generally, the same number of Ju is used in all hidden layers. Let us denote the size of
massive MIMO configuration by M = Nr ·Nt and the scale of the channel predictor by
C = 2dJu. Then the one-step prediction complexity of the channel predictor is O(MC).
The training complexity depends on the number of training examples (samples), denoted
by Ns, and the number of training epochs, represented by Ne. Therefore, the training
complexity of the channel predictor is O(MCNsNe). Besides, the total number of weight
parameters for single-step prediction is 0.35M. Furthermore, the number of FLOPs for
single-step prediction is 7.8M, which are very few in comparison to CsiNet (58.52M)
[36].

2.7 Conclusion

Motivated by the inaccurate CSI acquisition at the BS due to compression, this chap-
ter addressed an ML-based massive MIMO CSI feedback mechanism coined as CSIFB-
PNet. The presented results corroborated the validity of CSIFB-PNet. Specifically, the
evaluated results using empirical data and the 3GPP channel model showed that CSIFB-
PNet can reduce OTA overhead and effectively recover the compressed CSI in compari-
son to benchmark schemes. Furthermore, feedback is not necessary for a 3GPP channel
model as the prediction at the UE is approximately the same as the estimated channel.
The results showed the effectiveness of CSIFB-PNet compared to benchmark schemes.
Experimental evaluations on track-2 of the measurement campaign demonstrated an in-
crease of approximately 23% in precoding gain than without ML (conventional approach)
when 2 bits are used to provide feedback information, and CSIFB-PNet2 is exploited.
This gain increases to 36% when one-sided CSIFB-PNet is used. Similarly, an approxi-
mately 60% decrease in NMSE is observed for long-range uncompressed CSI prediction
when the performance of the hybrid model is compared to the advanced time-series
model, i.e., BiLSTM.
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Chapter 3
CSI Feedback Enhancement in
Multiuser

3.1 Introduction

In the previous chapter and particularly in the literature work, ML/DL has been opted
at the BS and UE to improve the precision of acquired CSI. However, ML/DL imple-
mentation at UE can be infeasible for various reasons, such as UE power consumption.
In addition to that, we have studied in the previous chapter that one-sided ML can help
to enhance the CSI precision but at the cost of reporting the entire ML model, which
includes a massive number of trained parameters and ML architecture etc. To overcome
these issues, this chapter proposes a CSI learning mechanism at BS, called CSILaBS,
to avoid ML at UE. Specifically, we exploit CP at BS to compute a light-weight PF.
This PF is reported to UE for feedback evaluation. The use of such light-weight PF
can reduce the computation cost of a UE and PF reporting overhead. Broadly, this
chapter proposes an alternative scheme for massive MIMO CSI feedback that circum-
vent the need for power-hungry ML implementation at the UE while maintaining the
overall ML gains. Besides, in a multiuser environment, we propose various mechanisms
to select the feedback by exploiting PF while aiming to improve CSI accuracy. The major
contributions of this chapter are:

• Motivated by the aforementioned issues, this paper considers a light-weight PF
for CSI feedback overhead reduction and to improve acquired CSI accuracy. More
specifically, assuming the limited power of a UE, we address the question: How to
remove ML from the UE while maintaining ML gains?

• In light of the above question, we consider the implementation of CSI prediction
at the BS for massive MIMO CSI feedback, where a light-weight PF is computed
by exploiting predicted and reported CSI realizations. Later on, PF, reported by
BS, can be used at the UE for feedback evaluation. Hence, training and storage of
a fully functional NN can be eliminated at the UE. The reporting of PF can help
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to create a set of matrices, i.e., a codebook, which can have a standardization
impact. Thus, an index can be reported to avoid the transmission overhead of PF.
To this end, we also cover possible standardization points of CSILaBS1.

• By extending the work to multiuser, we address feedback selection methodologies
to acquire more accurate CSI at the BS by exploiting PF at the UE. Particularly,
we propose CSI feedback schemes, which are based on, for instance, probabilis-
tic method, to avoid data loss because of collisions. Through simulations, we
show that the proposed methodologies can effectively improve CSI precision when
feedback is intelligently selected. We learn from the extensive simulations that
the prediction error threshold is an important feedback evaluation parameter in a
multiuser environment that can be carefully selected to improve CSI quality.

3.1.1 Chapter Organization and Notations
The rest of the chapter is organized as follows. In Section 3.2, the system model is

presented. CSILaBS is detailed in Section 3.3. The proposed feedback selection method-
ologies are addressed in Section 3.4. Results are analyzed in Section 3.5. The conclusion
is made in Section 3.6.

Throughout this chapter, matrices and vectors are represented by boldface upper
and lower-case, respectively. Also, scalars are denoted by normal lower and upper-case.
R and C denote the real and complex numbers, respectively. The superscripts [·]† and
[·]∗ denote the transpose, and the conjugate transpose of a matrix/vector, respectively.
E{·} denotes expectation operator, ∥·∥2FRO represents squared Frobenius norm, and | · |
shows absolute value. hk denotes the true channel for kth UE, where k = {1, 2, · · · , K}.
The acquired and predicted channel at the BS for kth UE are represented by h̄BS

k and
h̃BS
k ,respectively. Similarly, the predicted and estimated channel at a UE is denoted by

h̃k and ĥk, respectively. The matrix form of these vectors is represented in boldface
upper-case.

3.2 System Model

Consider a massive MIMO cellular network, where a BS is serving using M ≫ 1
transmit antennas to K single-antenna UEs. Without loss of generality, the received
signal, per subcarrier and OFDM symbol, at the kth UE can be expressed as

rk(t) = hk(t)ν(t) +ϖ(t) , (3.1)
where t is the time-index, hk(t) ∈ CM×1is the channel vector for kth UE, νk(t) =
[ν1(t), ν2(t) . . . , νM(t)]† is the pilot vector, and ϖ(t) is the noise. As discussed in the
previous chapter, estimated h should be fed back to the BS, and it requires high OTA
overhead. By assuming perfect CSI estimation, in the following, we address the CSI
feedback scheme coined CSILaBS.

1UE can also perform ML training for various reasons, e.g., BS does not have a dataset fortraining ML algorithm(s). This approach is subject to UE being capable of running ML [3].
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3.3 CSILaBS

This section details the proposed CSI feedback mechanism, CSILaBS, by exploiting
the predicted channel. The core idea is to have the same PF at both ends, that is, at BS
and at each UE. Such PF will be generated at the BS and reported to all UEs along with
the CSI-RS. The UEs will compute an update function by exploiting PF and CSI-RS,
which is then fed back to BS. Hence, a precise version of CSI can be acquired at the BS
by using a smaller OTA overhead or zero-OTA overhead if the prediction is perfect. For
the sake of simplicity, we explain CSILaBS for one UE, remarking that the same process
will be followed by all UEs. CSILaBS provides an efficient and light-weight way for the
UE and the BS to implement the same PF without having to report a massive number
of ML weights, as followed in CSIFB-PNet2 (see Chapter 2). To implement CSILaBS,
there are seven different stages: • Assessment • ML training at BS • PF reporting •
PF verification • CSI estimation • CSI compression and feedback • CSI retrieval. We
explain them in the following.

3.3.1 Assessment
In the first stage, BS informs the use of PF to UE and requests for the training

data. The UE sends acknowledgment(ACK)/negative acknowledgement (NACK) for
the availability of training data. If NACK is reported, then BS transmits CSI-RSs, which
UE uses for channel estimation. Consequently, a compressed version of the estimated
CSI is reported to BS. In the case of ACK, pre-existing training data can be reported to
BS.

3.3.2 ML Training at BS
At the beginning of this stage, training data for ML-based CP is acquired at the

BS. The training and prediction of CP have already been explained in Section 2.4 of
Chapter 2. For brevity, let us assume that the predicted channel2 at the BS for time
instant t is denoted by h̃BS

k (t), which we use to explain rest of the scheme.

3.3.3 PF Reporting
At this stage, BS reports a PF by exploiting the predicted channel from the previous

stage. PF reporting can be of different forms, which we address below.

3.3.3.1 Model-Based Representation
This method evaluates a certain number of matrix-based models for channel evolu-

tion, and the matrix composition is returned. For example, an AR model of order d can
be adopted as

h̃BS
k (t) =

d∑
e=1

F̂k,e(Q[ĥk(t− e)])† , (3.2)
2Recurrent neural network (RNN)-based CSI predictor is assumed in this chapter.
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where transition matrix F̂ (a PF) is reported to UE, and Q[·] is a standard element-wise
quantization/compression function. The reporting of the matrix (or set of matrices)
can be done by using a codebook (similar to PMI reporting in type-I/II followed in
the standards) and henceforth reporting only the index. For this purpose, predictor
matrices codebook can be established through standards. The BS reports the index that
approximates the set of matrices F̂.

3.3.3.2 Full Function Reporting
In this methodology, a NN is converted to an equation. This is simply done by

writing the input-output relationship, considering weights and activation functions. The
methods to convert NNs into equations are known in the literature and reported here
for completeness.

Y = κ(WX+ b) , (3.3)
where W and b represent the weights of a NN, X and Y depict the inputs (in the context
of ML, input features of a NN) and outputs of a NN, respectively. Also, κ(·) represents
the activation function, which can be ReLu, hyperbolic tangent (tanh), sigmoid, etc.
This is, however, a discouraged method, as the function itself can be too complex to be
implemented and reported. Therefore, in this study, we consider this function reporting
as a benchmark scheme, exploited in CSIFB-PNet1 explained in Chapter 2. To reduce
reporting overhead, the function index can be reported as follows. A certain number of
functions are reported into a codebook, which will be set at a standard level. A NN is
converted into an equation, and the function in the set that is closest, i.e., giving the
best prediction, to the NN is selected.

3.3.4 PF Verification
It is possible that the BS predicts the CSI with sufficient accuracy; however, the

generated PF is not accurate due to, e.g., changing network conditions. Therefore, PF
verification is essential before starting the CSI feedback mechanism. PF can be verified
by reporting it to UE. For example, UE can compute the error based on reported PF
and CSI-RS, using the former for CSI prediction and later for the latest CSI estimation.
The error can be computed in the form of, for instance, MSE between the predicted and
estimated CSI. The outcome can be sent to BS, which can retrain the NN if the error is
sufficiently larger than a threshold value.

3.3.5 CSI Estimation
If PF is nearly accurate, the BS can utilize the predicted channel for CSI acquisition.

To this end, BS transmits CSI-RS at, for example, time instant t, where UE can estimate
the channel by exploiting CSI-RS. As we assume perfect channel estimation, therefore,
in the following, we address CSI compression once the channel is estimated.

3.3.6 CSI Compression and Feedback
In CSILaBS, channel prediction at the UE is necessary to reduce CSI feedback over-

head and improve CSI precision acquired at the BS. One of the possible ways is to use
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ML at UE as well (see Chapter 2); however, it will increase computational cost. Also,
an extra amount of information will be required to synchronize the ML algorithm used
at both ends, i.e., BS and UE. To avoid this, we exploit reported PF, explained in Sec-
tion 3.3.3. Let us assume that the estimated CSI at the kth UE is denoted by ĥk(t).
Further, by exploiting the reported PF, explained in Section 3.3.3, predicted CSI at the
kth UE is represented by h̃k(t). Finally, CSI can be feedback to BS as

h̄k(t) = Q

[
f{h̃k(t), ĥk(t)}

]
, (3.4)

where f{·} is an update function, which is simply a difference between the predicted
and the estimated channel, as followed in Chapter 2. However, the channel prediction
is based on a light-weight PF, which significantly reduces the computation cost at UE
and reporting overhead of PF. The benefit of such compression is the reduction in
OTA overhead to feedback CSI. For example, if f{·} = 0, which is subject to perfect
prediction, then the feedback-related overhead is eliminated; hence, UE does not need
to feedback anything. Also, if f{·} ≠ 0 then quantization function, Q[·], will add less
noise, thanks to h̃k(t). It is important to mention that the above equation can also
serve as a verification for PF before compression due to the fact that UE can check if
the error is sufficiently large.

3.3.7 CSI Retrieval
CSI for time instant t can be acquired at the BS by exploiting predicted CSI at BS,

h̃BS
k (t), and the reported update h̄k(t). Therefore, if f{·} ≠ 0, then BS recovers the

CSI as
h̄BS
k (t) = h̃BS

k (t) + f−1{h̄k(t)} , (3.5)
where f−1 represents inverse of f . In this study, f−1 = −f . In the second scenario,
i.e., f{·} = 0, BS does not receive anything, indicating that the predicted CSI at BS is
perfect. Thus, the BS assumes that h̄BS

k (t) = h̃BS
k (t).

3.3.8 Remarks on CSILaBS
The major advantage of CSILaBS is the elimination of ML at the UE. This helps the

UE to use a light-weight PF to make CSI prediction; hence computation cost has been
reduced. If the training data is unavailable at BS or does not have sufficient resources
due to certain reasons, then UE can run ML at its end, similar to what is followed in
Chapter 2, helping the BS to not do ML training. Furthermore, in the case of using ML
at UE, UE will be responsible for reporting PF to BS for channel prediction at BS. In
that case, PF verification, discussed in Section 3.3.4, will be done locally at UE, and
BS has only to make predictions by exploiting reported PF. To reduce the reporting
overhead of training data to BS, data augmentation algorithm(s) can be considered at
BS to generate training data [76]. We shed light on reporting the training data to
BS later in this chapter. CSILaBS also reduces feedback overhead if the prediction is
not good enough and eliminates feedback if the prediction is perfect. Considering that
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the accurate PF is achieved, CP at the BS can keep running in the background, using
the newly acquired channel, h̄BS, as an input. The CP will be updated accordingly or
retrained if necessary. The BS will trigger an update in the PF whenever a threshold
is surpassed, and the updated PF will be reported to UE, where codebook entries can
be updated etc. This allows to track sudden changes in the ML model. For instance,
if the underlying channel evolution changes due to, e.g., UE passing behind a building.
In the following, we propose different algorithms to select the feedback in the multiuser
environment.

3.4 CSI Feedback Selection

In the multiuser scenario of CSILaBS, feedback selection becomes crucial when the
objective is to enhance the CSI feedback quality. In this section, we address the question:
How to efficiently select the feedback while improving the CSI accuracy of the overall
system? The problem of CSI feedback selection is similar to random access scheme,
where a UE senses the channel before data transmission. For example, in a random
access scheme, multiple users can transmit at the same time. In the case when two
neighbouring users transmit at the same time then we say that their messages collide
with each other, resulting in degrading the SINR of the overall system. Therefore, the
users require a distributed medium access control (MAC) for efficient scheduling such
that their messages do not collide. A plethora of research work has been proposed
on random access protocols, e.g., carrier sense multiple access protocols, which is an
important class of MAC protocols because of their simplicity, and have been widely used
in IEEE 802.11 wireless-fidelity. In random access protocols, one potential solution is
to use global dynamics. In global dynamics, the users transmit with a given probability,
e.g., exp(ω̃l(t))

1+exp(ω̃l(t))
as given in [77], where ω̃l(t) is the weight of link l at time slot t. In the

literature, random access-based approaches have proven to be throughput optimal [77],
[78].

In CSI feedback selection, one may also see the problem as a random access scheme
but the goal of our study is different, i.e., we do not transmit at a given rate to improve
throughput. As indicated in the objective of this thesis that we aim to enhance the CSI
feedback, therefore, we focus on using random access model to acquire precise CSI at
the BS. In a nutshell, we use random access model in CSILaBS to reduce the errors due
to compression imposed at the UE and to minimize OTA overhead cost. In the following,
we propose various algorithms to select feedback.

3.4.1 Probabilistic Feedback
In this scheme, the feedback from each UE is evaluated with a certain probability,

which depends on the error in the update function computed at the kth UE. Without
loss of generality, let us denote the set of available resource blocks to feedback the
CSI by N = {1, 2, · · · , N}. In the probabilistic feedback, the kth UE selects n ∈ N
resource block randomly and evaluates the feedback in the selected resource block with
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Figure 3.1: Pictorial representation of two feedback resources in probabilistic and error-bin feedback, where former utilizes both resources for CSI feedback and later uses oneto check contention and second to feedback CSI of UE winning the contention.

a probability

Pn
k =

exp(∆k)

1 + exp(∆k)
, (3.6)

where
∆k = E

{
|h̃k(t)− ĥk(t)|

} (3.7)
is the error between the predicted and the estimated channel at the kth UE. It can
be observed from (3.6) that higher ∆k will result in higher Pn

k . This will be helpful to
enhance CSI feedback as users having high error can be given priority so that an accurate
version of CSI can be retrieved at the BS. Importantly, feedback at a UE is evaluated
only when ∆k > ℘, where ℘ is the error threshold. The constraint ∆k > ℘ is put due to
nature of (3.6), e.g., a user may select the feedback with 50% success rate even when
there is no need to feedback CSI; in other words, when ∆k = 0. Later in Section 3.5,
we will show that the optimal value of ℘ is an important design parameter for feedback
selection, and that probabilistic feedback does help to enhance CSI feedback by using
CSILaBS.

3.4.2 Error-Bin Feedback
In the probabilistic feedback, we have learned that UEs with high error must be

selected more frequently; hence, we revised the random access methodology accordingly.
In the error-bin method, we tackle a similar problem as followed in the random access
schemes, i.e., avoiding collisions but our objective is to acquire CSI at the BS with high
precision. Considering the objective of acquiring precise CSI at the BS, we propose to
have a contention slot in addition with data slot or CSI feedback slot. The contention slot
can be further divided into mini slots, where the objective of mini slots is to prioritize CSI
feedback of UEs having high error. And the UEs winning the contention will be selected
to feedback CSI. To illustrate error-bin feedback, we have drawn Fig. 3.1, where the kth

UE uses one resource to check contention and another to feedback CSI. The contention
slot is composed of □Q mini slots. Correspondingly, there are a total of ∇Q bins, where

58



each bin is equally spaced ∆Diff and the error window of all bins is predefined, ranging
between ∆min and ∆max. For instance, ∆min and ∆max can be mapped between 0 and
1, respectively. And accordingly, ∆Diff = 0.10.

Focusing on the contention slot, the kth UE verifies the constraint ∆k > ℘ and
feedback 1 bit in a mini slot, depending on the error level. For example, if ∆k lies in
the first bin ∇1, i.e., 0 < ∆k < 0.10, then the UE transmits 1 bit in the last mini slot
□Q as error is minimum. Similarly, if ∆k belongs to last bin ∇Q, showing high error;
the UE feedback 1 bit in the first mini slot □1. Pictorial illustration of these allocations
is given in Fig. 3.1. We can learn from this allocation that UEs with high error will be
given priority to feedback. Besides, in the case where two or more UEs transmit in the
same mini slot, this indicates collision, but the advantage is we only lose 1 bit.

At the end of the contention slot, the UE winning the contention will send the CSI
in the CSI feedback slot. In the scenario where two or more UEs win the contention,
the UEs that transmitted in the earliest mini slots will be scheduled. This is because the
UE transmitting in the earliest slot indicates that its error is high. Notably, the selection
of winning UEs is dependent on the number of available data slots. For instance, if
there are two data slots and three UEs win the contention, the first two UEs with the
highest error will be selected, and the third UE will be dropped due to the unavailability
of the resource block. In this way, we prioritize UEs having high error, consequently, CSI
feedback performance can be enhanced. In contrast to error-bin feedback, probabilistic
feedback uses all resources for CSI feedback, i.e., there is no contention slot (see Fig. 3.1).

3.4.3 Deterministic Feedback
In the deterministic feedback, all the UEs transmit at the same time irrespective of

their error value and without any resource selection. Intuitively, there will be a high
number of collisions. Hence, CSI feedback performance can not be enhanced as the
BS will rely on open-loop CSI prediction, i.e., without any update from a UE. Later in
Section 3.5, we will show that deterministic feedback performs the worst in comparison
to error-bin and probabilistic feedback.

3.4.4 Periodic Feedback
This approach is used as a benchmark scheme to observe the performance gain of

proposed CSI feedback mechanisms. Briefly, we consider the feedback by exploiting the
conventional CSI feedback scheme, i.e., without ML, where the feedback from a UE is
simply the compressed version of the estimated channel. In other words, there is no
channel predictor in the network; thus, h̄BS

k (t) = Q[ĥk(t)]. The feedback without ML is
evaluated in a round-robin fashion, i.e., every UE feedback CSI on its turn without any
error threshold limit. For this purpose, the total UEs K are divided into the available
number of resources. For instance, if there are N = 10 resources and K = 30, then
K = 10 UEs are selected in each round; hence, the first group of UEs will get the
opportunity to retransmit in the fourth round and so on. In Section 3.5.2, we will discuss
the results of above CSI feedback selection mechanisms.
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3.5 Results and Analysis

In this section, we verify the effectiveness of CSILaBS. To give the comparison of
CSILaBS with the CSIFB-PNet (proposed in Chapter 2), we utilize the same dataset as
of Chapter 2, i.e., the dataset of measurement campaign performed at Nokia Bell-Labs.
In the case of multiuser, the dataset is generated using MATLAB, considering that the
underlying model is evolving using an AR process [64]. We compare the performance
of CSILaBS with two other schemes, i.e., CSIFB-PNet and without ML. In the case of
without ML, h̄BS

k (t) = Q[ĥk(t)], which has been explained in Chapter 2, and we called
it conventional approach. Besides, in CSILaBS and CSIFB-PNet, h̄BS

k (t) = h̃BS
k (t) +

f−1{h̄k(t)}. For an abuse of notation, we denote H̄BS ∈ CM×K and H ∈ CM×K as the
matrix form of h̄BS

k and hk, respectively, for all K UEs, and considering one-step ahead
prediction. By using this information, precoding gain can be obtained as

ΨFB = E
{
Trace(H∗

eq ×Heq)
}
, (3.8)

where

Heq =

(
H̄BS∥∥H̄BS
∥∥

FRO

)∗

×
(

H

∥H∥FRO

)
(3.9)

is the equivalent channel. Similarly, by using H̄BS and H, NMSE, denoted by ΥFB, is
calculated as

ΥFB = E

{∥∥H̄BS −H
∥∥2

FRO

∥H∥2FRO

}
. (3.10)

Likewise, cosine similarity, denoted by ϱFB, is calculated by using H̄BS and H.

3.5.1 Comparison of CSILaBS with CSIFB-PNet
Fig. 3.2 presents the accuracy of the acquired channel at BS in the form of cosine

similarity (ϱFB). The trend shows that the accuracy of the acquired channel increases
with the number of overhead bits used to feedback CSI. However, CSILaBS brings a
huge performance gain when feedback information is highly compressed, i.e., when 2
bits are used. Numerically, CSILaBS provides a gain of 11% in comparison to without
ML. Thus, CSILaBS is beneficial in practical wireless communications environments as
feedback evaluation methods, i.e., type-I/II, followed in the standards, are massively
compressed due to exploitation of the codebook. Further, CSILaBS retains ML gain,
i.e., CSILaBS gives nearly the same gain as using ML at both ends (CSIFB-PNet).
Nevertheless, the benefit of CSILaBS is the elimination of ML training at UE, which
can be costly in terms of UE’s power consumption. Also, CSILaBS uses a light-weight
PF at UE for feedback evaluation, and the overhead cost of PF reporting is small in
comparison to CSIFB-PNet. For example, CSIFB-PNet requires 0.35M parameters to
report, whereas CSILaBS requires only M ×M = 4096.

Recalling that feedback CSI is used for precoding, we now inspect the performance of
CSILaBS by using precoding gain, ΨFB, plotted on the right-side of Fig. 3.3. Furthermore,
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Figure 3.2: Cosine similarity (ϱFB) between the acquired channel at BS and correspondingtrue channel. The figure demonstrates that ϱFB increases with the number of overheadbits used to feedback CSI from UE to BS.
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Figure 3.3: NMSE (ΥFB) and precoding gain (ΨFB) of different CSI feedback schemes. Sim-ilar to Fig. 3.2, this figure reveals that the performance of feedback CSI improves with thenumber of overhead bits.
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Figure 3.4: NMSE (ΥFB) of different CSI feedback schemes versus the error threshold (℘).A comparison is provided with various numbers of UEs (K). N = 10.

the comparison is made by using NMSE, ΥFB, as an evaluation parameter. Fig. 3.3 reveals
that the CSILaBS gives high precoding gain using fewer overhead bits. This gain reduces
with the number of overhead bits. On the other hand, a similar trend can be observed
for ΥFB. Further, CSIFB-PNet has comparable performance with CSILaBS; nevertheless,
the former requires implementation of ML at UE too.

3.5.2 Performance of CSILaBS under Feedback Selection
Fig. 3.4 reveals the performance of ΥFB against the error threshold (℘) selected to

evaluate the feedback at a UE. It is important to mention that lower values of ℘ result
in high numbers of feedback and vice versa. A comparison is provided with various
numbers of UEs (K) and different feedback selection algorithms. First, we can observe
that ΥFB by using the deterministic method gives the worst performance, which is due
to an excessive number of collisions. Hence, the BS relies on the predicted channel, i.e.,
H̄BS = H̃BS. Also, ΥFB remains unchanged over different values of ℘, which is because
H̄BS = H̃BS is independent of ℘. In contrast, error-bin has slightly lower ΥFB, which
increases with ℘ as feedback frequency has reduced when ℘ is increased. Contrary to
error-bin and deterministic feedback, probabilistic feedback shows the best performance.
This is due to the fact that probabilistic feedback selects the feedback intelligently, i.e.,
when ∆ and P are high. It can also be observed that with an appropriate value of ℘, CSI
acquisition can be improved. For example, when K = 30, then ℘ = 0.30 is the optimal
choice to select the feedback using the probabilistic method. Numerically, we observe
a gain of approximately 8.7% and 13% in comparison to error-bin and deterministic
feedback, respectively. And this gain increases with the reduction in the number of UEs,
as a lower value of K results in fewer collisions. Importantly, in the case of deterministic
feedback, ΥFB will remain constant despite different values of K; hence, we only plotted
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Figure 3.5: Comparison with various number of resource blocks (N). K = 15.

for K = 15 for illustration purposes.
Fig. 3.5 reveals the performance when the number of resources is varied and K =

15. The results show that probabilistic feedback outperforms. And the performance of
probabilistic feedback improves with the number of resource blocks (N). However, in
the case of error-bin, ΥFB does not vary with the increase in the number of N , though it
remains low for lower values of ℘. Besides, we can see that the optimal value of ℘ can be
selected for probabilistic feedback depending on the available number of resources. For
instance, when N = 15, then ℘ = 0.10 is the optimal choice. In contrast, deterministic
feedback is once again showing the worst performance.

Fig. 3.6 shows the performance when the users are increased to K = 30 and when
the performance is compared with periodic feedback, i.e., without ML as explained in
Section 3.4.4. For illustration purposes, we have plotted the results of without ML on
Fig. 3.6b. The results show that the proposed feedback schemes, which are based on
channel predictors, give the best performance, as drawn on Fig. 3.6a.

3.6 Conclusion

This chapter investigated how ML can be avoided at UE for CSI feedback. In Chap-
ter 2, ML has been considered at BS and UE, which makes it hard to train computa-
tionally expensive ML algorithm(s) at UE. In contrast, in this chapter, we addressed
a novel method, coined CSILaBS, to efficiently recover compressed CSI without imple-
menting ML at the UE. When applied ML at the BS, the generated function raised
the idea of developing a codebook for downlink overhead reduction, which has shown
highly standard-relevant implementation. The results showed the effectiveness of CSI-
LaBS compared to benchmark schemes. The evaluations demonstrated an increase of
approximately 23% in precoding gain than without ML when 2 bits are used to feed-

63



0 0.2 0.4 0.6 0.8 1

Error Threshold ( )

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Deterministic: N=5

Probabilistic: N=5

Error-Bin: N=5

Probabilistic: N=10

Error-Bin: N=10

(a) Comparison of proposed schemes.

0 0.2 0.4 0.6 0.8 1

Error Threshold ( )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probabilistic: N=5

Error-Bin: N=5

Probabilistic: N=10

Error-Bin: N=10

Without ML: N=5

Without ML: N=10

(b) Comparison with the benchmark.

Figure 3.6: A comparison of all CSI feedback schemes with the different number of re-source blocks (N). K = 30.

back information. Furthermore, CSILaBS retains ML gains; that is, the performance of
CSIFB-PNet and CSILaBS is approximately similar. In the case of the multiuser scenario,
we observed that CSILaBS with the proposed probabilistic feedback method brings a gain
of approximately 32% compared to deterministic feedback when K = 15 and N = 10
are considered.
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Chapter 4
Role of RIS in CSI Prediction

4.1 Introduction

RIS, made of electromagnetic material, is capable of reconfiguring the properties of
a wireless signal impinging upon it [79]–[82]. This feature can improve the performance
of wireless PHY channel between transmitters and receivers, which usually suffers from
severe fading, degrading the overall system efficiency. An intelligently configured RIS
can help, for instance, to null out interference in a multiuser environment [83]. Imple-
mentation of RIS can be done through software-defined metasurfaces [80], composed of
reconfigurable sub-wavelength-sized elements. Though RIS has been applied in various
aspects of wireless communications, we focus on utilizing quasi-RIS for CSI prediction,
as we have studied from Chapter 2 and Chapter 3 that channel prediction plays a pivotal
role in enhancing CSI feedback.

Albeit ML has been utilized to improve the precision of channel prediction in Chap-
ter 2, however requiring computationally complex and time-consuming implementation.
For example, deployment of such an ML algorithm at a UE in CSIFB-PNet can be costly.
In addition, in a highly time-varying channel, simultaneous prediction of the multiuser
channel can become nearly impossible. In this chapter, we investigate a novel way to
utilize RIS by asking the following question: In a highly dynamic multiuser communi-
cation environment, is it possible to configure a quasi-RIS surface to make the channel
predictable for desired prediction length? The main outcome of this chapter shows that
this is indeed possible.

The motivation of this chapter is to predict the entire multiuser composite channel
for desired time slots by exploiting M RIS elements out of N , i.e., quasi-RIS. The
benefit is the prediction of the whole composite channel arriving from N RIS elements;
hence complexity and overhead for channel estimation can be reduced, which is the
major bottleneck in RIS. Further, using fewer RIS elements, i.e., M , the remaining RIS
elements can be utilized for other purposes, e.g., interference nulling in a multiuser
environment. In some recent studies, e.g., [84], channel estimation in RIS is done using
an exhaustive grid-search algorithm, which converts the composite channel from fast
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to slow. Similarly, Doppler effect and multipath fading mitigation are achieved in [85],
where Doppler frequency and RIS phases are assumed to be known. In [86], Doppler
compensation is done in a non-RIS environment by formulating a compressive sensing
problem, and the solution is obtained using Bayesian inference. We propose a completely
different solution to mitigate fading effects by making the channel predictable using fewer
RIS elements. The major contributions of this chapter are [5]:

• This chapter aims to enhance the performance of the channel predictor. To achieve
this, we focus on maximizing the time correlation of the composite channel received
at the UE by exploiting quasi-RIS.

• In a dynamic multiuser environment, we justify that the amalgamation of RIS and
ML can help to minimize the performance loss of a channel predictor. Further-
more, to meet the desired objective function, we define different methodologies to
partition the tuning part of RIS for multiuser.

4.1.1 Chapter Organization and Notations
The rest of this chapter is organized as follows. System model is presented in Sec-

tion 4.2. Proposed mechanism is explained in Section 4.3. Section 4.4 focuses on results
and Section 4.5 concludes the chapter.

Throughout this chapter, matrices and vectors are represented by boldface upper
and lower-case, respectively. Also, scalars are denoted by normal lower and upper-
case. Ĥ, H̃, and H, denote the RIS-assisted optimized composite channel, predicted
channel by ML, and corresponding true channel. Furthermore, the notations R and C
are representing the real and complex numbers, respectively. E{·} denotes expectation
operator, and∥·∥2FRO represents squared Frobenius norm.

4.2 System Model

Consider a single-antenna BS and K single-antenna UEs communicating via RIS.
We assume that direct-path between the BS and UEs is blocked. The RIS is a surface
consisting of N elements. Without loss of generality, the received signal at the kth UE
and ith time-index is expressed as

yki = Hk
i x

k
i + nk

i , (4.1)
where Hk

i = (gk
i )

∗Φgr
i ∈ C shows the composite channel, which is phase depen-

dent. gr
i = [gr,1i , gr,2i , . . . , gr,Ni ] ∈ CN and gk

i = [gk,1i , gk,2i , . . . , gk,Ni ] ∈ CN denote
the channels of the link between BS and RIS and the link between RIS and kth UE,
respectively. xk

i is the transmitted signal and nk
i ∼ NC(0, σ

2) is the noise variance.
Φ ≜ diag(e−jϕ1 , e−jϕ2 , . . . , e−jϕN ) is the diagonal phase shift matrix for RIS, where
ϕn ∈ [0, 2π) is the phase shift of the nth reflecting element.
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4.3 Proposed Mechanism

The proposed mechanism aims to enhance the channel prediction performance by
amalgamating RIS and ML. In particular, we utilize a portion of RIS elements to make
the composite channel, Hk, predictable for desire time intervals while leaving remaining
surface for other applications. As discussed in the previous section, the composite channel
is dependent on the phases of N RIS elements; therefore, we optimize phases for M < N
selective RIS elements to make the channel predictable. The proposed mechanism is
composed of two stages. In the first stage, we maximize prediction factor (Ω), which
represents the time correlation among I consecutive time instances of the composite
channel for {1, · · · , K} UEs. To define Ω, let us denote Ha ∈ C(I−1)×K as the composite
channel for time instances {1, · · · , I − 1} and K UEs. Also, let us represent one-step
ahead version (in time) of the composite channel by Hb ∈ C(I−1)×K for time instances
{2, · · · , I}. Further, Ω ∈ RK×K represents the prediction factor matrix, and an element
of Ω, denoted by Ωp,q, can be calculated as

Ωp,q =

∑I−1
i=1 [(v

p
i − v̄p) (vqi − v̄q)]√∑I−1

i=1 (v
p
i − v̄p)2

∑I−1
i=1 (v

q
i − v̄q)2

, (4.2)

which represents the similarity between the pth and qth columns, vp and vq, of Ha and
Hb, respectively, and I − 1 is the length of each column. v

(·)
i represents an entry of

column vector v(·), and v̄(·) denotes mean of v(·). Finally, Ω = 1
K

Trace(Ω) represents
the prediction factor of observed CSI realizations, and Trace(·) is depicting the trace
of matrix Ω. Ω is maximized by intelligently configuring M RIS elements, explained in
following subsection. In the second stage, the optimized composite channel is fed as
an input of the ML algorithm for channel prediction. For instance, in the case of four
instances, i.e., L = 4, of the composite channel, the fourth instance is predicted by an
ML model while exploiting past three observations (I = L − 1). To maximize Ω, we
assume that I < L instances of the composite channel are recorded at K UEs. In the
following, we explain each stage.

4.3.1 Stage-1: RIS Configuration
As alluded to earlier, this stage concerns configuring RIS elements to maximize Ω.

Mathematically, the optimization problem of stage-1 is formulated as

P1: max
Φ′

Ω =
1

K
Trace(Ω)

s.t. 0 ≤ ϕ
′

m ≤ 2π, ∀m = 1, 2, · · · ,M
(4.3)

where 0 ≤ ϕ
′
m ≤ 2π is the unit modulus constraint of RIS phase shifts. Φ

′
=

[e−jϕ
′
1 , e−jϕ

′
2 , . . . , e−jϕ

′
M ], where Φ

′ ∈ Φ is the subset containing M RIS elements se-
lected for optimization. We explain the selection of M elements in the following.
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RIS elements for other purposes,
e.g., interference nulling.

Random Phases

Fig. 4.1 (b): Non-partitioned RIS (NP-RIS). Fig. 4.1 (c): Partitioned-RIS (P-RIS). 

Fig. 4.1 (a): An illustration of full RIS. 
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RIS elements to solve

P1

Legends

Users

Figure 4.1: An illustration of RIS surface used in the study. (a) Showing a complete RISsurface having N RIS elements, with random phases (N −M), denoted with white color,and optimized phases (M), denoted with green color. (b) Representing the optimizedportion of RIS used for all UEs. (c) Depicting the division of the optimized portion of RISused for each UE. In both partitions (NP-RIS and P-RIS), random phases are also presentbut dropped for illustration purposes.
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To solve P1, first, we select M RIS elements using two different methodologies. In
the first methodology, coined as partitioned-RIS (P-RIS), we allocate a block of quasi-
RIS elements for each UE. Each block’s size depends on the total number of UEs, K,
and the number of chosen RIS elements for optimization, i.e., M . For instance, in the
case of M = 10 and K = 2, each block will be composed of 5 RIS elements, meaning
that the UE k ∈ K will use 5 RIS elements to optimize P1. The optimization of P1
will consider the remaining 5 elements for kth UE with random phases, which can be
used for other applications, e.g., interference cancellation. In the second method, called
non-partitioned-RIS (NP-RIS), the optimization problem sees a block of M RIS elements
as one. In other words, the optimization of K UEs is done collectively. It is important to
mention that, in both methods, NP-RIS and P-RIS, a part of the RIS surface is present
to use for other purposes. Hence, the composite channel arrived at a UE is comprised
of N RIS elements, as mentioned in Section 4.2. An illustration of RIS partitioning is
shown in Fig. 4.1.

Besides, to optimize phases for P1, we use a meta-heuristic optimization algorithm
[87], [88]. Nevertheless, exploration of various ML-based solution(s) can also be possible,
which we leave as future direction. Briefly, we use a genetic algorithm (GA), where M
random phases of RIS are initialized, Φ′ . Then an initial population of size Mp, where
each row (called a chromosome) represents a possible set of M RIS phases, is created.
The fitness function, Ω, is evaluated on each chromosome, where 5% elite chromosomes
remain unchanged, and the rest are mutated for the next generation. The algorithm
converges when the change in Ω ≤ λ, where λ is the tolerance value. Otherwise, the
algorithm halts when a maximum number of iterations, Tit, are completed. The pseudo-
code of the optimization process for stage-1 is summarized in lines 1-19 of Algorithm 2.
Briefly, the optimized RIS phases maximize the objective function, i.e., Ω. Consequently,
the optimized composite channel for K UEs with L instances of the channel can be
expressed as Ĥ. To generate training data for stage-2, various examples with L instances
of the composite channel are created for the channel prediction, described in the following
subsection.

4.3.2 Stage-2: Channel Prediction using ML
Channel prediction1 is the process of forecasting CSI realizations by exploiting past

observations. In this stage, we simultaneously predict the channel of K UEs by exploiting
RNN (explained in Chapter 2 for K = 1). The optimization problem of stage-2 is given
below.

P2: min
K∑
k=1

E
[ ∥∥∥ĥk − h̃k

∥∥∥2 ] (4.4)
s.t.

h̃k = cp(ĥ
k
i=1, · · · , ĥk

I ), ∀k = 1, 2, · · · , K (4.5)
1For details, please see Chapter 2.
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where {ĥk
i=1, · · · , ĥk

I} ∈ Ĥ is the optimized channel, having I past observations, for the
kth UE obtained in stage-1. cp(·) represents the single channel predictor for all UEs.
ĥk ∈ CD and h̃k ∈ CD are the true and predicted channel, respectively, for the kth UE,
where D = L− I is the length of predicted CSI realizations.

The operation of channel predictor is divided into two phases: training and prediction.
In the first phase, after selecting the hyperparameters, e.g., learning rate and optimization
algorithm, training data is fed into the channel predictor. Consequently, the channel
predictor processes each sample (or a batch of samples depending on the batch size)
and compares the predicted value with the true label. The objective of P2 is to forecast
multi-step ahead values of CSI, which are as close as possible to true values. To do
this, weights of RNN are recursively updated through backpropagation until a certain
convergence condition is met, i.e., MSE is minimized. The training phase is summarized
in lines 20-27 of Algorithm 2. The trained channel predictor can make multi-step ahead
predictions. Hence, at a time instant l, the channel of K UEs for D future steps,
denoted by H̃l+D ∈ CD×K , is predicted. In the following section, we will show that the
channel predictor can learn the channel with minimum training cost, i.e., epochs, thanks
to stage-1.

4.4 Simulation Results

This section evaluates the performance of the proposed mechanism. More specif-
ically, we validate the performance under two methodologies: i) when RIS is ran-
domly configured (random phases) and ii) when RIS is intelligently configured (opti-
mized phases). Unless stated otherwise, the BS is serving K = 10 UEs via a RIS
placed at a distance r of 50 m. The channel of BS-RIS is modelled using the 3D
Saleh-Valenzuela channel model [89], where 2 NLoS paths are assumed. The chan-
nel gain is taken as ∼ NC(0, 10

−0.1Λ(r)), where Λ(r) = 20 + 0.10 log10(r) + ξ, with
ξ ∼ N (0, σ2

ξ )
3. The transmit antenna gain is 9.60 dBi, σξ = 3.8 dB. The channel

between RIS-UE is tapped delay line (TDL) channel model in 3GPP 5G NR [90]. The
channel coefficients used in our study are generated with Matlab 5G Toolbox func-
tion nrTDLChannel, where the implementations are exactly following the aspects of
3GPP 5G NR standard protocol TR 38.901 [90]. In nrTDLChannel, the UE veloc-
ity is set to 100 km/h, which indicates that the channel is highly time-varying; the
rest of the parameters are set as default. The rest of the simulation parameters are:
L = 4, I = 3, N = 320, fc = 28GHz, λ = 0.01, γ = 10−3,M = N

2
, Tit = 100 × M ,

unless otherwise stated. For the training of channel predictor, 3-layer RNN architec-
ture is used: 1 input, 1 output, and 1 hidden layer. The input and output neurons are
chosen according to the values of I,D,K, whereas the hidden layer has 50 neurons.
The dropout layer is adapted to prevent over-fitting, which drops hidden units randomly
with a probability of 0.2. Adam optimizer is used to update weights of RNN, where the
learning rate is set to 10−3, activation function in the hidden layer is hyperbolic tangent,
the number of epochs Epochs = 50, and the batch size is set to 20. The dataset in

71



Algorithm 2: Pseudo-Code of the Proposed Mechanism
Input: Ha,Hb,L, N, M, K, γ , λ,Mp
Output: H̃l+D1: Choose number of RIS elements (M) to solve P1 → M = N

2
;

2: Select partitioning method to divide quasi-RIS→ P-RIS or NP-RIS;
3: if P-RIS then
4: M = M

K5: else
6: M
7: end if
8: Initialize Population:(0, 2π,M,Mp)9: Compute Ω for each chromosome: Ω = 1

K
Trace(Ω);

10: for tit = 2 : Tit do11: select 5% elite chromosomes from tit − 1
12: select remaining chromosomes from tit − 1 for mutation
13: Compute Ω for each chromosome
14: if change in Ω ≤ λ then
15: break for loop
16: end if
17: end for
18: Select the chromosome having max. Ω: Φ′

19: Compute composite channel using Φ
′ → Ĥ

20: for etr = 1 to Epochs do
21: Input features and output labels of RNN;
22: Calculate objective function using P2
23: Update weights of RNN [2];
24: if change in P2 ≤ γ then
25: break for loop
26: end if
27: end for
28: Obtain H̃l+D using I past observations of Ĥ and trained channel predictor
29: return H̃l+D

stage-2 is composed of 20 k examples and data distribution: 70%, 10%, 20%, for train-
ing, validation, and test dataset, respectively. Furthermore, all the simulation results are
obtained with TensorFlow 2.3.0, Python 3.6.13, and Matlab R2022b. The performance
of the proposed mechanism is evaluated using the prediction factor (Ω) of the composite
channel over I different CSI observations.

Fig. 4.2 plots the comparison between two partitioning methods of RIS, i.e., P-RIS
and NP-RIS. Further, the performance is compared with randomly and intelligently con-
figured RIS elements. We observe that the intelligent configuration of RIS shows better
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Figure 4.2: Comparison between RIS partitioning methods.

performance in both partitioning methods. However, NP-RIS outperforms P-RIS, which
is due to the fact that RIS elements are collectively optimized for all UEs. Also, in-
creasing the number of optimized RIS elements (M) clearly improves the performance.
For example, NP-RIS requires nearly M = 140 to maximize Ω, whereas P-RIS achieves
Ω ≈ 0.41 for same value of M . In contrast, randomly configured RIS does not improve
Ω, and it remains unchanged. In the rest of this section, we evaluate performance using
NP-RIS, and we drop the curves of random phases for the illustration purposes.

To observe the performance under different numbers of UEs, we have plotted the
results in Fig. 4.32 against the number of optimized RIS elements. The increasing trend
in the prediction factor can be observed with increasing M . Importantly, it can be
observed that fewer UEs, i.e., K = 2, require fewer RIS elements for optimization. For
instance, in the case of M = 10, K = 2 improves the prediction factor by approximately
31% in comparison to K = 4. Nevertheless, higher values of M depict no gain. We can
conclude that a higher number of UEs require more intelligently configured RIS elements.

In Fig. 4.4, we show the performance of observation intervals, I, by using different
values of M . It can be observed from Fig. 4.4 that the prediction factor increases with the
increase of M . Nevertheless, I = 3 requires only M = 25 RIS elements to maximize Ω,
the rationale behind this is channel predictability is only maximized among 3 consecutive
time instances of the channel. In contrast, to maximize channel predictability among
10 consecutive instances of the channel, approximately M = 70 intelligently configured
RIS elements are required. In summary, we have learned that a higher number of M is
required to maximize channel predictability among multiple instances of the channel.

During the training of channel predictor, we observed that intelligently configured
2For better illustration, we have dropped the curves of randomly configured RIS. As it is evidentfrom Fig. 4.2, randomly configured RIS does not improve performance.
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Figure 4.3: A comparison with different numbers of UEs. N = 140.
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RIS can quickly learn future channel realizations. To demonstrate this, in Fig. 4.5, we
have drawn MSE (between the true and predicted channel realizations) obtained during
the training of channel predictor against the number of epochs. The observations show
that at the end of the first epoch, intelligently configured RIS brings approximately 85%
reduction in MSE in comparison to randomly configured RIS. Further, by the end of
50 epochs, 92% reduction in the MSE is observed. Fig. 4.6 reveals the performance of
the channel predictor on the test dataset with various numbers of RIS elements. The
results are plotted for randomly as well as intelligently configured RIS elements. The
performance is evaluated using:

NMSE = E


∥∥∥Ĥ− H̃

∥∥∥2
FRO∥∥∥Ĥ∥∥∥2

FRO

 , (4.6)

which is calculated between the true and the predicted channel. The results of Fig. 4.6
show that the intelligently configured RIS can significantly predict future channel real-
izations, whereas randomly configured RIS is unable to predict the channel. Another
important observation is the accuracy of the predicted channel improves with the in-
crease in the number of intelligently configured RIS elements because higher M brings
a higher prediction factor, as explained in previous results. In contrast, randomly config-
ured RIS shows NMSE = 1 irrespective of the number of RIS elements. In summary, we
have concluded from the presented results that the proposed mechanism can improve
the performance of channel predictor by using fewer epochs and exploiting simple neural
network architecture.

4.5 Conclusion

A highly time-varying multiuser channel will always be challenging to predict, even
using a large-RIS-assisted communication system with random phase configuration. We
have provided an efficient mechanism to make the channel predictable by carefully con-
figuring a small portion of RIS, where a considerable part is dedicated to applications
other than channel prediction. The simulation results corroborated the validity of the
proposed mechanism. Thus we encourage using such an approach where RIS is con-
figured by considering other applications. The outcome showed that a simple channel
prediction model can learn the channel evolution of multiple UEs when RIS is intelligently
configured.
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Chapter 5
Conclusions and Outlooks

5.1 Conclusions

We have learned from the thesis that ML plays a pivotal role in future cellular
networks, and there is high potential to propose ML algorithms from standardization
perspective. In particular, we have shown that the performance of CSI feedback enhances
by using ML techniques. The novel idea of using channel prediction not only resulted in
CSI feedback overhead reduction but also improved the quality of CSI acquired at the
BS. In Chapter 1, motivated by the promise of the use of ML algorithms, we presented
an overview of the practical challenges of deploying ML techniques in wireless networks
and how to deal with them. We believe that overcoming these challenges, both in
research as well as at standardization levels, will pave the way for next-generation wireless
communication to be effective and sustainable.

Chapter 2 borrowed the idea of channel prediction and introduced its use towards
enhancing CSI feedback in a single-user massive MIMO system. To this end, a novel
algorithm, coined as CSIFB-PNet, is developed. We have learned that CSIFB-PNet
can be used on both sides as well as one-side of the communication system. Generally
speaking, higher gain in the acquired CSI at BS is achieved by using a minimum amount
of overhead bits, that is, 2. In contrast, the gain is negligible when ≥ 5 overhead bits
are considered. The rationale behind nearly zero-gain for ≥ 5 is minimum information
loss while compressing the CSI. Thus, CSIFB-PNet is the best choice when there is a
high compression error. We have also concluded that exploiting ML at the UE-only
brings a gain of approximately 3.25 dB in comparison to when using at both ends. The
improvement is due to exploiting uncompressed CSI at the UE. The chapter also evalu-
ated the capability of ML-based channel predictors to correctly predict CSI realizations
using real-world measurements. The analyzed ML techniques proved that prediction is
accurate when facing real-world data, and it can work under different settings, such as
quantization levels and representations. In addition, the channel predictors have proved
to be disentangled from the specific channel track, creating a prediction abstraction layer
that can be exploited to predict also physically diverse channels (e.g., a channel predictor
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trained in a LoS area and exploited in a NLoS area). Such techniques can hence pave the
way to advanced channel acquisition methods that will reduce dependency on channel
sounding and estimation.

Chapter 3 addressed a novel method, coined CSILaBS, to efficiently recover com-
pressed CSI without implementing ML at the UE. When ML was applied at the BS-only,
the generated function raised the idea of developing a codebook for downlink overhead re-
duction, which has shown highly standard-relevant implementation. The results showed
the effectiveness of CSILaBS compared to benchmark schemes. The results demon-
strated an increase of approximately 23% in precoding gain than without ML when 2
bits are used to feedback information. Thus, CSILaBS is the best choice when there is a
high compression error and UE is incapable of ML training and storage. By extending the
work towards multiuser, we proposed different techniques to evaluate feedback from UE
while aiming to improve acquired CSI accuracy. Particularly, we observed that CSILaBS
with the proposed probabilistic feedback method brings a gain of approximately 32%
when 15 users are considered and there are 10 resource blocks. Furthermore, the gain
drops to almost half when the number of users is doubled. In a nutshell, we have learned
that CSILaBS can retain ML gains without implementing ML on both sides or reporting
massive ML parameters while doing one-sided ML training.

Chapter 4 focused on exploiting RIS to enhance the performance of channel predictor.
By considering a highly time-varying channel of multiuser communication environment,
we proposed a scalable idea of utilizing quasi-RIS to make the channel predictable. The
outcomes of the work showed that RIS plays a predominant role in not only improving
the performance of channel prediction but also requiring fewer epochs to train the ML
model. We also showed that intelligently configured RIS can predict multi-step future
channel realizations while saving sufficient RIS elements for other applications. We have
learned that the number of required RIS elements to maximize the prediction factor is
dependent on the number of users within the network. For instance, in the experiments,
we observed that approximately 25 RIS elements are required to acquire perfect channel
prediction when 2 users are considered. The required RIS elements grow to 45 and 110
when there are 4 and 10 users, respectively. Nevertheless, performance improvement is
observed by saving sufficient RIS elements for other applications.

5.2 Future Research Directions

Although the thesis work showed promising results, however, there are still many
possible future directions that one can take as a continuation of this thesis. First,
the comparison of proposed works with standardized codebook-based techniques, that
is, type-I and type-II, can be a promising future direction. Second, the performance
evaluation of CSI feedback schemes can be tested on a variety of datasets. This is due
to the reason that in a practical environment, the users do not stay in a cell, and hence
underlying channel distribution may change. Thus, there is need for a standard dataset
which can be used as a benchmark to evaluate proposed work. Correspondingly, ML
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algorithms can be trained and designed to work in changing propagation conditions. Also,
system-level simulations can be carried out to observe the outcomes of deploying ML.
There is need to compare the proposed ML-based channel predictors against statistical
methods, for instance, Kalman filter [91], [92]. Besides, in wireless communication, we
have to deal with complex numbers; however, the proposed models are evaluated on
real-valued ML models. Therefore, a comparison of complex-valued ML models against
real-valued models can be a possible future direction [93], [94].

The design of a single-ML model for multiuser is the next big challenge, which
can be addressed in the continuation of this thesis work. This will help the network to
manage the ML training and probably reduce the computation cost. Thus, there is room
to propose adaptive ML algorithms to tackle the challenge of CSI feedback overhead.
Second, the existing standards for CSI feedback cannot be completely changed with
the deployment of ML. Hence, there is gap for revising existing standards from the
perspective of ML models. Besides, the selection of feedback in a multiuser scenario
can be revised and improved, for example, by proposing a hybrid framework composed
of error-bin and probabilistic feedback. On the other hand, the synchronization of twin
channel predictors is an important issue which has yet to be addressed. Though our
work considered using the same dataset at each time step to make a prediction, there
is a need to propose mechanisms to synchronize the ML models at BS and UE. For
instance, how do both models use the same training parameters, weights, and datasets?
There is a need to compare the results regarding the overhead required to train and
test the models against the CSI acquisition accuracy. Besides, in the proposed work,
we considered uniform quantization to compress CSI; however, a comparison of different
quantization schemes can also be done.

Though our work gave the introduction of RIS deployment to enhance CSI feedback
performance through channel prediction. Nevertheless, a detailed comparison with CSI
feedback schemes is important to take an insight look on the challenges that we can
face. For example, the CSI dimension will massively increase with the number of RIS
elements. Hence, ML-based frameworks must be revised to tackle such huge dimensions.
For instance, a RIS with 100 elements per dimension will require ML to tackle 10 k CSI
dimensions for a single-antenna UE. This number is huge in comparison to a massive
MIMO system. Therein, ML techniques can be revised to reduce the computation cost.
In addition to that, the design of an ML model can be one of the future directions to
fine-tune phases of RIS, which are handled through evolutionary algorithm in this thesis.
There is also requirement of proposing closed-form solutions (if possible) to make the
channel predictable. Besides, quasi-RIS is exploited to achieve the desired objective
in the thesis, one can analyze the performance by solving two different problems. For
example, interference mitigation and channel prediction in multiuser can be jointly solved
by exploiting entire RIS, where a portion of RIS is dedicated for channel prediction and
rest for interference mitigation. The proposed solution addressed in Chapter 4 can also
be applied to achieve channel hardening in RIS, similar to what is done in [95].

Besides, the reporting and verification of training data is a crucial issue in the pro-
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posed CSI feedback frameworks. For example, in the case of CSILaBS, addressed in
Chapter 3, training data must be acquired at the BS. However, there is a huge cost to
report this training data. In the following, we propose a standard-relevant solution to
acquire training data in CSILaBS and CSIFB-PNet.

5.2.1 How to Acquire Training Data for CSILaBS and CSIFB-PNet?
As we have learned from Chapter 1 and proposed CSI feedback schemes, that is,

CSILaBS and CSIFB-PNet, the availability of ML algorithms’ training data is a crucial
problem in a wireless network. For instance, CSILaBS, deployed at BS for CSI feedback,
requires training data to be reported by UE. This reporting of training data can cause a
huge OTA overhead. In other words, the problem to solve is to have identical training
data for ML-based CSI prediction at both ends (UE and BS) at minimum OTA overhead
without compromising much on the quality of CSI prediction. Considering such issues,
we address the use of data augmentation either at BS or at both ends, where fewer
CSI entries can help to generate huge training data by exploiting ML-based algorithm(s)
[96]. Motivated by this idea, we present two embodiments to verify the data generated
by data augmentation algorithms, e.g., GAN [96]. The embodiments can significantly
reduce the OTA overhead of training data compared to state-of-the-art solutions, e.g.,
reporting a bunch of compressed estimated CSI to BS. The proposed idea, called CSI
data for training ML (CSI-DTML), has the following main features:

• CSI-DTML focuses on the method of verification of data generated by GAN. To
this end, CSI-DTML proposes two embodiments for verifying generated data: BS-
Driven and UE-Driven.

• In embodiment-1 (BS-Driven), implementation of GAN is considered only at BS,
and 3GPP standardized codebooks help verify newly generated data.

• In embodiment-2 (UE-Driven), implementation of GAN is considered at both ends,
i.e., BS and UE. Also, twin GANs are considered. GAN at UE assists the BS in
collecting accurate data, whereas data verification is done locally at UE.

Both embodiments can help to verify the generated data effectively, limiting OTA over-
head, and have a substantial standard impact as it requires signalling and network sup-
port. Before explaining CSI-DTML, here we first summarize data augmentation. Data
augmentation is “a process to increase the amount of data by adding slightly modified
copies of already existing data or newly created synthetic data from existing data” [96].
The well-known data augmentation techniques are random cropping, shearing, rotation,
flipping, adding Gaussian noise, color shifting (+20 to −20 etc.), and GAN. GAN is a
popular ML algorithm that can generate new data by using existing data and random
noise (e.g., flipped CSI). GAN comprises two stages, i.e., generator and discriminator.
The generator generates new data, and discriminator verifies the newly generated data
by comparing it with the existing data. In the following, we address the two embodi-
ments.
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Figure 5.1: Implementation flowchart of BS-Driven CSI-DTML.

5.2.1.1 BS-Driven CSI-DTML
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The main steps of embodiment-1, BS-Driven CSI-DTML, are summarized below.

• BS informs the use of data augmentation algorithm at its end. Therefore, it
requests UE to send some initial samples of the CSI (compressed or uncompressed;
it depends on how much overhead a UE can afford).

• The UE feedback ACK/NACK for the request sent previously. An ACK indicates
that UE has the initial samples to share. In the case of NACK (indicating the
unavailability of initial samples), BS sends CSI-RS so that UE can generate some
initial samples using a CSI estimation algorithm.

• Once the data is available at UE, UE does not feedback the entire data as it
causes OTA overhead. Instead, it divides data into B batches such that the
data properties in each batch reflect the original distribution of data. Hence, UE
feedback one batch (size of each batch can be, e.g., 10% of entire data) out of B
batches. The reason to send the data in batches is to reduce overhead. Also, if
GAN can generate the rest of the batches by only using one batch, then it’s better
to report only one batch and save OTA training overhead by 90%. By exploiting
the reported batch, GAN generates the rest of the batches at the BS.

• At this stage, BS computes a few PMIs of the generated batches by exploiting
3GPP standardized codebook [18]. Then the BS reports PMIs, corresponding true
indices of the generated channel samples, and a reliability counter C (to count the
number of ACKs).

• By exploiting the information sent in step-4, UE computes the PMIs for the data
available at its end. Next, PMIs sent by the BS, denoted by IBS

p , and calculated
by the UE, IUE

p , are compared, and the number of ACKs is added to the counter
C. If the counter C reaches the value sent by the BS, UE transmits an ACK signal
or NACK (in case C does not reach the threshold set by BS).

• At this stage, UE sends an ACK to BS, which indicates that the generated data
at the BS is correct, and it can be used for training of an AI/ML algorithm, e.g.,
for channel prediction in the case of CSILaBS. Alternatively, in the case of NACK
(indicating that data generated by BS is incorrect), UE sends another batch from
the data, which can help GAN generate better data.

• Steps 4-6 are repeated (in case of NACK) until the BS receives an ACK. If ACK
is not received after reporting all batches, this shows that GAN did not bring any
advantage. Hence, we fall back to the conventional approach, i.e., the entire data
is reported to the BS by UE.

The implementation flowchart of BS-Driven CSI-DTML is given in Fig. 5.1.
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5.2.1.2 UE-Driven CSI-DTML
The main steps of embodiment-2, UE-Driven CSI-DTML, are summarized below.

• BS and UE agree to use twin GAN, where twin means that both algorithms have
the same initialization parameters, e.g., weights.

• The UE feedback ACK/NACK to initiate the process at its end. An ACK indicates
that UE has the initial samples to share.

• In the case of NACK (indicating the unavailability of initial samples), BS sends
CSI-RS so that UE can generate some initial samples using a channel estimation
algorithm.

• Once the data is available at UE, UE tries various combinations of batches to
generate new data by exploiting GAN. The newly generated data can be verified
locally at UE through different parameters, e.g., MSE and cosine similarity.

• Once the right combination of batches is computed in step- 3, UE reports the
correct number of batches to BS and informs to generate the remaining batches.
This is helpful for the BS as it does not need to ask for more data to train GAN.
Alternatively, BS does not need to send the signals to UE to verify data as the
right combination of training data has already been reported by the UE.

• BS generates the new data. Once the data is generated, it is unnecessary to verify
it as it has already been verified at UE. The newly generated data can be used to
train channel predictor for CSILaBS and CSIFB-PNet.

The implementation flowchart of UE-Driven CSI-DTML is given in Fig. 5.2. The im-
plementation process of GAN has also been provided, which will also be followed in
BS-Driven CSI-DTML when BS has to use GAN. Nonetheless, the performance gains
of data augmentation are still need to be tested and investigated. In the future, such
algorithms can be evaluated by exploiting the dataset used in our study.
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