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Résumé en francais

Les Protéines Intrinsequement Désordonnées représentent un tiers du protéome humain et sont
impliquées dans un grand nombre de mécanismes biologiques comme la signalisation cellulaire
etla formation de compartiments sans membrane vitaux pour la cellule en plus d’étre impliquées
dans de nombreuses maladies et infections virales. Etant donné qu’elles n’ont pas de structure
stable, leurs propriétés dynamiques jouent un réle important dans leur fonction biologique. Mal-
gré le fait que la caractérisation in vitro de ce type de protéines est relativement bien établie, leur
comportement dans des conditions physiologiques comme I’environnement cellulaire incluant
les compartiments sans membrane générés par séparation de phase liquide-liquide, hautement
concentrés en protéines et macromolécules, est encore mal compris. Dans cette these, la partie
C-terminale de la Nucléoprotéine du virus de la rougeole est utilisée en tant que modéle pour
étudier les propriétés dynamiques de cette prototypique protéine désordonnée en phase con-
densée générée par séparation de phase liquide-liquide ainsi qu’en milieu encombré par Réso-
nance Magnétique Nucléaire et simulation de Dynamique Moléculaire.

Dans un premier temps, il est montré que la séparation de phase liquide-liquide augmente les
temps de corrélation rotationnels associés a la dynamique du squelette peptidique de la protéine
et que la contribution de chaque mode dynamique est significativement redistribuée. Les simula-
tions de protéines concentrées ont montré que cette redistribution observée en phase condensée
est corrélée avec 'augmentation de la proximité non spécifique des chaines protéiques les unes
avec les autres, conduisant a des mouvements plus restreints dans le squelette peptidique. La
relaxation RMN de spin a aussi montré que les ralentissements de la dynamique au niveau de cer-
tains segments peptidiques sont corrélés avec un taux élevé de résidus chargés et aromatiques,
ce qui suggére une forte importance de ces résidus et de leurs interactions dans la stabilisation
de cette phase condensée en accords avec d’autres études.

Une construction plus courte de la partie C-terminale de la Nucléoprotéine du virus de la rouge-
ole a été utilisée pour étudier les effets de I'encombrement avec du PEG10000, un polymere a
longe chaine, a des concentrations qui approchent celles de certains milieux cellulaires et des
phases condensées. La relaxation de spin a montré que ce trés haut niveau d’encombrement
avait pour effet de redistribuer les modes dynamiques de fagon semblable a ce qui a été observé
en phase condensée, suggérant que des milieux suffisamment encombrés pourraient modifier
les propriétés dynamiques de certaines protéines intrinsequement désordonnées. Enfin, une in-
teraction protéine-protéine entre cette construction et son partenaire, la partie C-terminale de la
phosphoprotéine du virus de la rougeole, a été étudiée en milieu encombrée. Un ralentissement
important des propriétés cinétiques de cette interaction est observée et une étude plus poussée
de cette interaction devrait contribuer a une meilleure compréhension a I’échelle atomique des
effets de I'encombrement sur les interactions entre protéines, cruciaux pour les processus bi-
ologiques.

Cette étude apporte un apercu de l'effet de I'encombrement sur la dynamique des protéines in-



trinséquement désordonnées et est une étape supplémentaire vers une meilleure compréhen-
sion du comportement de cette classe importante de protéines dans les environnements phys-

iologiques incluant les compartiments sans membranes, omniprésents chez les cellules eukari-
otes et les machineries virales.



Abstract

Intrinsically Disordered Proteins represent a third of the human proteome and are involved in
numerous biological mechanisms from cell signalling to the formation of vital membraneless
organelles in the cells as well as playing a role in numerous diseases and viruses. Since they
lack a stable 3D structure, their dynamic properties play an important role in their biological
functions. While characterizing this class of proteins in vitro is well established, their behav-
ior in more physiological conditions from the crowded cellular milieu to the highly concentrated
liquid-liquid phase separated membraneless organelles is poorly understood. In this thesis, we
use the C-terminal domain of the Nucleoprotein of Measles Virus as a model system to inves-
tigate the dynamic properties of this prototypical disordered protein in its liquid-liquid phase
separated condensed phase as well as in crowded environments using Nuclear Magnetic Reso-
nance and Molecular Dynamics Simulations.

We first show that liquid-liquid phase separation increases the rotational correlation times as-
sociated with the backbone dynamics of the protein and that the contribution of local and long-
range motional modes is significantly redistributed. MD simulations of concentrated proteins
suggest that this redistribution is correlated with the increase of non-specific intermolecular
proximity or entanglement within the concentrated phase, leading to more restricted motions
within the protein’s backbone. NMR spin relaxation also showed that the distribution of slower
segmental motions is correlated with the position of charged and aromatic residues in some re-
gions, suggesting that the phase separation of our protein is stabilized by electrostatic and cation-
pi interactions, in agreement with previous proposals.

A shorter construct of the Measles C-terminal domain of the Nucleoprotein was further stud-
ied upon crowding with a high molecular weight PEG10000 polymer up to concentrations that
correspond to those found in biomolecular condensates. NMR spin relaxation measurements
showed that high levels of macromolecular proximity in super-crowded conditions redistribute
the dynamic modes of the protein backbone in a way that is not observed at lower levels of crowd-
ing, suggesting that significantly crowded conditions can modify the dynamic properties of cer-
tain IDPs. Finally, a protein-protein interaction between this construct and its partner in the
C-terminal domain of the Measles Virus Phosphoprotein was studied upon crowding and exhib-
ited a significant slow down of the kinetic properties of the interaction. Further studies of this
interactions by NMR should contribute to a better understanding of the atomic-resolution effects
of crowding on protein-protein interactions, crucial for biological processes.

This study provides insight into the effect of crowded environments on the backbone dynam-
ics of Intrinsically Disordered Proteins and is a step towards a better understanding of how this
crucial class of proteins behave in more physiological environments including the currently ac-
tively studied membrane-less organelles, ubiquitous in eukariotic cells and viral machineries.
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Introduction

“If we were to name the most powerful assumption of all, which leads
one on and on in an attempt to understand life, it is that all things
are made of atoms, and that everything that living things do can be
understood in terms of the jigglings and wigglings of atoms.” - Richard
Feynman
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As Richard Feynman liked to point out, all biological processes can be explained in the nanoscale
by the jiggling and wiggling of numerous macromolecules. All conventional living systems work
as follows: DNA encodes the biological information for a given species. This DNA is then tran-
scribed into RNA, which is going to carry this information towards a big molecular machine called
aribosome, to translate this information into what we call proteins. In fact, the process of trans-
duction and translation already involves numerous protein machineries such as the ribosomes
(which also contains RNA) and the DNA polymerase, which may make us wonder what came first
between the chicken and the egg. Proteins are the most important macromolecules in living or-
ganisms. They are responsible for nearly all the biological processes that maintain life. Among
famous types of proteins we can cite enzymes that trigger and facilitate biochemical reactions,
antibodies that are involved in the immune system, transport proteins, receptor proteins, signal-
ing proteins etc.

A protein is defined as a hetero-polymer composed of different amino-acids, forming a long poly-
mer chain. The atoms that are common to all amino-acids form the backbone of the protein in
which the relatively rigid covalent bonds between amino-acids are responsible for a planar topol-
ogy between the backbone atoms defining so-called peptide-planes. The amino-acid-specific
atoms on the other hand form the lateral side chains and determine all the sequence-specific
features of the protein. In living organisms, proteins are made of 20 different amino-acids that
all have different properties. This high degree of diversity allows the obtention of very different
species depending on the amino-acid composition. In fact for a protein with N residues, there
is 20" different possible combinations of amino-acids resulting in proteins with different struc-
tural and physical properties.

It took mankind several centuries to understand what drives biological processes from a single
cell to a whole multi-cellular species such as homo sapiens, although most of the major progress
have been done within the second half of the 20" century. The first step towards the "protein
revolution” was provided in 1789 by a French scientist, Antoine-Francois Fourcroy, with the de-
scription of "albumins”, a group of proteins including albumin, fibrin and others species [1]. This
study was followed by a more complete description of proteins by Mulder in 1838 [2] and the
proposition of the name "protéine” by Berzelius in a letter written in French to Mulder in the
same year [3]. At that time, very little was known about proteins, and most studies were focused
on the characterization of the atomic composition and molecular weights of these molecules [4].
Until the rise of X-ray crystallography, the description of proteins remained relatively simple. In
the early 20" century, proteins were found to be polypeptides [5], although it was only demon-
strated in 1949 with the first protein sequencing [6].

Early studies already proposed that proteins have a defined 3D structure [7, 8]. In 1958, Kendrew
and coworkers published the first 3D structure of a protein, the Myoglobin, by X-ray crystal-
lography [9]. In the following years, more and more protein structures were determined by X-
ray crystallography, Nuclear Magnetic Resonance (NMR) and later on cryo-Electron Microscopy
(cryo-EM). This era of structural biology saw the domination of the structure-function paradigm,
where protein function was believed to be essentially determined by the protein structure.

We can describe four levels of structure in a protein:

1. The primary structure that simply corresponds to the amino-acid sequence

2. The secondary structure that corresponds to local arrangements of amino-acid residues in
the chain. The main secondary structures one can encounter are a-helices, described by a
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helical arrangement of the poly-peptide chain stabilized by hydrogen bonds, and §-sheets,
described by strands that are laterally connected by several hydrogen bonds in the back-
bone.

3. The tertiary structure that corresponds to the overall 3D arrangement of the protein chain

4. The quaternary structure that is the assembly of several protein chains to form a larger
structure.

The highly dynamic proteins or protein regions that didn’t form any structure were ignored
for decades in structural biology. The importance of these proteins, long believed to be irrelevant
for biology, was reassessed only in the beginning of the 21" century when it was found that they
represent a third of the proteome in eukaryotic cells [10] and that they are in fact involved in bi-
ological processes as well as diseases [11-13]. These so-called Intrinsically Disordered Proteins
(IDPs) are described by a rather flat energy landscape, which allow them to sample a significant
amount of the conformational space, unlike folded proteins that are described with one or few
structures in native conditions. In fact, the amount of structure in a protein should be viewed as a
spectrum between order and disorder, rather than a discrete categorization, since some proteins
are only partially disordered, or exchange between different conformations with different lev-
els of structure. Intrinsic disorder was found to be involved in numerous biological mechanisms
including signal transduction, transcription and regulation [14, 15], the circadian cycle [16], cel-
lular protection against desiccation [17] as well as numerous diseases and infections including
neurodegenerative diseases [18-20], signaling disorders [21] and viral machineries [22-25].

Because of the lack of 3D structure, the structure-function paradigm alone is not sufficient to ex-
plain all the biological functions of Intrinsically Disordered Proteins. A tremendous amount of
effort has been made and is still being made to describe conformational ensembles of IDPs, with
the hope to find a clue towards function, interaction patterns and drugable sites. It was found that
two Kkey characteristics of IDPs define their function. First, their amino-acid composition define
their secondary structure propensity and the type of interaction they can make. Second, their
dynamic properties define the rate of conformational rearrangement at multiple timescales. A
relatively high amount of dynamics in IDPs can play an important role in numerous interactions.
Therefore, characterizing the dynamic properties of IDPs is crucial to understand their biological
functions.

Nuclear Magnetic Resonance is the most suited tool to study IDPs at atomic resolution. Unlike
crystallography and cryo-EM that look at fixed structures, NMR is powerful at obtaining ensem-
ble averaged information in highly dynamic systems at atomic resolution. In fact, the more dy-
namic the system is, the more suited the system is for NMR spectroscopy as we will see in chap-
ter 1, which make IDPs ideal systems. NMR provides both structural and dynamical information
at multiple timescales as illustrated in figure 2. For example, very fast chain dynamics can be
probed by NMR spin relaxation while slower processes including conformational changes and
protein interactions can be probed with chemical exchange techniques.

Complementary to NMR, computational techniques including classical Molecular Dynamics sim-
ulation allow a direct visualization of biological processes, and combination with experimental
data allow both validation of the simulations and further analysis of complex mechanisms that
are difficult to access by experiments. Just like NMR, MD simulation and computational meth-
ods in general can allow the study of protein dynamics at multiple timescales from the study of

13



Figure 1: Overview of the structure of a protein. Panel A: lllustration of a peptide chain with a highlighted
backbone. The carbon, nitrogen, oxygen, hydrogen and sulfur atoms are colored in green, blue, red, white
and gold respectively. Panel B: The 20 amino-acids with their one letter code. In blue and red are the pos-
itively charged and negatively charged residues respectively. Panel C: Example of a folded protein (left:
Measles Phosphoprotein XD domain) and an Intrinsically Disordered Protein (right, Measles Nucleopro-
tein C-terminal domain: Ntail).

Figure 2: Timescale axis illustrated some example of Biological mechanisms associated with protein dy-
namics (Top, green), NMR techniques (Center, red) and the main MD simulation methodologies (Bottom,
blue) to study these processes
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chemical reactions and bond vibrations by Quantum Mechanical calculations to the study of large
mesoscopic systems with Coarse Grained simulations and analytical methods.

In the last decades, the scientific community provided numerous methods to study IDPs in the
test tube, including NMR and computational methods but also fluorescence methods, SAXS and
other techniques that provide complementary information. A lot of effort and progress has been
made in understanding their function in biology. Nevertheless, the question of whether what is
studied in the test tube is perfectly transferable in the real physiological environment remains
only partially answered. Additionally, recent progress in cell biology unveiled the importance of
membrane-less organelles in eukariotic cells and viral machineries, which adds a new complexity
layer to the already complex cellular environment. These liquid-liquid phase separated compart-
ments, found to be composed of mostly IDPs and sometimes RNAs, are defined by a highly dense
environments with a composition that differs from the rest of the cell.

This thesis aims to study the dynamic properties of IDPs in so-called complex environments, that
include liquid-liquid phase separated system as well as crowded systems that aim at approaching
the conditions in the cell. It will be organized as follow:

1. The first chapter focuses on the theoretical aspects of Nuclear Magnetic Resonance, the
main technique of this thesis. We will start by describing NMR before explaining the phe-
nomenon of NMR spin relaxation and how it can be used to characterize the dynamic prop-
erties of a protein’s backbone. Then, slower processes will be discussed by introducing the
theory of chemical exchange in NMR and the main techniques that take advantage of this
process.

2. The second chapter focuses on the current experimental and computational challenges re-
garding the study of IDPs in complex environments. We first briefly introduce the exper-
imental observables allowing to study IDPs as well as the computational techniques that
allow their characterization, in the light of the current state of the art. Then, we discuss
the recent advances in studying IDPs in crowded and cellular environments to finish with
IDPs in liquid-liquid phase separated systems.

3. The third chapter addresses the study of the dynamic properties of MeV Ntail upon liquid-
liquid phase separation by combined NMR spin relaxation and MD simulation. We show
how LLPS can modulate the different relaxation-active dynamic modes of IDPs.

4. The fourth chapter further addresses the sequence-dependence of the dynamic behavior
of MeV Ntail in the condensed phase. An attempt to explain the effect of inter-molecular
interactions on the sequence-dependent dynamic modulation is made using NMR spin re-
laxation. Inter-molecular contacts and exchange processes are also further investigated by
NMR.

5. The fifth chapter deals with the effect of the concentration of polymer crowders on the
dynamic properties of MeV Ntail 465-525, a short construct that doesn’t phase separate
under the studied conditions. We show that a concentrated regime of polymer crowding
changed the dynamic properties of MeV Ntail 465-525.
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6. The sixth chapter is interested in the study of protein-protein interactions upon crowd-
ing. MeV Ntail 465-525 is studied with its partner MeV PXD as a model system to study
the effect of polymer crowding on this important interaction involved in the Measles Virus
replication machinery.

7. The seventh chapter aims to tackle several experimental challenges in studying complex
environments by NMR. A first part will discuss the measurement of cross-correlated relax-
ation rates in biomolecular condensates. In a second part, a method for measuring NMR
spin relaxation rates in highly concentrated mixtures is proposed to tackle the problem of
natural abundance contamination.
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Chapter 1

Protein Dynamics by NMR
Spectroscopy

“I have not yet lost a feeling of wonder, and of delight, that this del-
icate motion should reside in all the ordinary things around us, re-
vealing itself only to him who looks for it. | remember, in the winter of
our first experiments, just seven years ago, looking on snow with new
eyes. There the snow lay around my doorstep—great heaps of pro-
tons quietly precessing in the earth’s magnetic field. To see the world
for a moment as something rich and strange is the private reward of
many a discovery” - Edward Mills Purcell

Demonstrated in 1938 by Rabi et al.[26] and simultaneously discovered in bulk materials in
1945 by Purcell and Bloch [27, 28], the phenomenon of nuclear magnetic resonance has now nu-
merous applications in chemistry, biology and medicine including chemical compound charac-
terization, protein and RNA structure determination, magnetic resonance imaging, ligand screen-
ing for drug discovery and biomolecular dynamics and interactions. The aim of this chapter is
to introduce the important liquid-state Biomolecular NMR concepts and techniques used in this
thesis. We will first briefly see how NMR works by exploring the magnetic properties of atomic
nuclei. Then, we will see how NMR spin relaxation phenomena arise and how it can be used to ob-
tain insightful information on fast molecular dynamics, from simple rigid molecules to our highly
dynamic IDPs. Finally, we will see that it is possible to exploit so-called chemical-exchange phe-
nomena to probe slower motion processes that report on molecular interactions, large molec-
ular domain motions and conformational rearrangements, which are of high importance to un-
derstand biology at the nanoscale. Since NMR Spin relaxation is a fundamental concept in this
thesis, it will be treated with a relatively important amount of details, but the reader can still find
more exhaustive information in many excellent NMR textbooks [29-32].
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1.1 Principles of NMR Spectroscopy

1.1.1 Nuclear Magnetism

NMR spectroscopy deals with the resonance of the magnetization of an ensemble of nuclear spins
under amagnetic field. This magnetization arises from the properties of nuclear spin angular mo-
mentum, characterized by the nuclear spin quantum number /. This quantum number is defined
by the relative number of protons and neutrons in a given nucleus. Nuclei with a non-zero spin
quantum number possess a nuclear magnetic moment and have a number of associated energy
levels equal to 2] + 1. We can associate these energy levels with the magnetic quantum number
m € {—I,—I + 1..,I}. All these energy levels are degenerate except in the presence of a magnetic
field, where they are separated by a value proportional to the intensity of the magnetic field. This
phenomenon, called Zeeman splitting, is due to the slight preference for a spin magnetization to
point towards a given orientation depending on the magnetic field. By convention, we point the
applied static magnetic field along the z-axis of a fixed Cartesian frame that we call the laboratory
frame.

We may express the magnitude of the nuclear magnetic moment as ¢ = yI with y being the
gyromagnetic ratio of the given nucleus. This constant is different for each nucleus and deter-
mines the sensitivity of a nucleus to yield separated energy levels and, as a result, to be sensitive
to NMR. By definition, the equilibrium populations of the different energy states in an ensemble
of spins are given by the Boltzmann distribution:

Nm _ exp kT
N I —E;
Zi:—l exp (RB;)

Pm =

With p,, and N,,, being the proportion and number of nuclei in the mth state respectively, N the
total number of nuclei, kg the Boltzmann constant and T the temperature. The sum is over all
energy levels from —I to I, and E; is the energy associated to the ith state under a given magnetic
field By with:

Ei = _lhyBO

At the temperatures we are used to work with, the magnitude of the degeneracy is very small
and E,;,/kgT is much smaller than 1. Therefore, we can obtain an approximate expression for p;,
using a first order Taylor expansion:

1 14 mhyB,
Pm = 91+ 1 kT

This expression highlight the parameters that affect the different spin populations, namely y
and By. The overall magnetic moment M of a sample comprising an ensemble of spins can be
expressed as the sum of all the individual magnetic moments:
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I I
M =yh Z mN,, = yhN z mp,;,

m=-1I m=—I

By introducing Ap,, = Py — P—m, We got:

me{-1,..,1}
M =yhN Z mAp,,
m>0

Assuming that we work at temperatures around 298K, we can express Ap,, as:

2mhyB,

APm = I D) kT

From these equations, we can express the overall magnetic moment as:

me{-1,.,1}

2m2hyB NA2y2B, ~
M =~ yhN z SH OT Z m2
m>0 m=-—I

QI+ 1) kgT (21 + 1) kg

With this expression, we directly see that the overall magnetization of a sample is proportional
to the magnitude of the applied magnetic field, the total number of sensitive spins in the sample
and the square of the gyromagnetic ratio of the associated nucleus. The most important nuclei
in biomolecular NMR spectroscopy are the proton 1H, the nitrogen-15 °N, the carbon-13 3¢,
all with a spin quantum number of 1/2 and thus two energy levels, and the deuterium 2H with
a spin quantum number of 1. Unlike the proton, most of these nuclei cannot be found naturally
in high abundance. One must usually isotopically enrich the studied biomolecule with the nuclei
of interest in order to have enough overall magnetization during the experiment. In this thesis,
and in biomolecular NMR in general, we deal principally with systems comprising of nuclei with
spin quantum numbers of 1/2. Deuterated water is usually added to the samples as a reference
compound to lock and correct over time the slowly decaying magnetic field of the spectrometer.

1.1.2 Nuclear Magnetic Resonance

This section provides a phenomenological description of NMR. Given the fact that NMR deals
with quantum mechanical systems, this section is not able to describe all the phenomena arising
in NMR, but it gives a good picture of what is happening to the overall magnetization of a simple
spin ensemble. When no magnetic field is present in a sample, the orientation distribution of the
spin magnetic moments is isotropic. When an external magnetic field is applied, the response
of a spin magnetization is to rotate with a rotation axis colinear to the direction of the magnetic
field. This precession behavior arises because in addition to a magnetic moment, the nuclei pos-
sess angular momentum. Comparable behaviors can be observed on rotating objects such as a
spinning gyroscopes. It can be shown that the precession angular frequency of a spin magnetic
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moment wy, called Larmor frequency, is proportional to the gyromagnetic ratio and the applied
magnetic field:

wo = —YBy

If the system is comprised of purely isolated spins with no interaction with the environment,
the spin magnetic moments precess forever with the same angle with respect to the magnetic
field, and as the initial condition was an isotropic distribution of magnetic moments, upon appli-
cation of a magnetic field, the overall magnetization remains 0. In reality, a spin system often lies
in a very dynamic environment. for example, a tumbling molecule in a liquid is surrounded by
ions, water and other molecules that constantly collide and rotate at multiple timescales. Despite
the relatively high degree of isolation of an atomic nucleus, all this motion induces small varia-
tions in the local magnetic field surrounding our nucleus. These magnetic field variations induce
variations in the Larmor frequency as well as in the precession axis. At times longer than the pre-
cession period, these small fluctuations break the isotropy of the magnetic moment orientations
and a thermal equilibrium is progressively reached yielding the overall magnetization described
in the previous section. The build-up of longitudinal magnetization can often be expressed with
a single exponential. The rate at which the equilibrium is reached is called the longitudinal or
spin-lattice relaxation rate.

NMR signals are detected in the plane perpendicular to the magnetic field. At equilibrium un-
der a magnetic field, there is no transverse magnetization. In order to get magnetization in the
transverse plane, an oscillating magnetic field called radio-frequency pulse, with a frequency
close to the Larmor frequency (resonance phenomenon) is applied to trigger a rotation of the
spin magnetic momenta around the magnetic field induced by the pulse. If the duration is well
chosen, it can trigger a 90 degree rotation that puts the overall magnetization in the transverse
plane. After the pulse, once the overall magnetization is in the transverse plane, all the spins pre-
cess around the static magnetic field, therefore yielding a rotation of the overall magnetization
at the Larmor frequency in the transverse plane. This oscillating magnetization yields a signal
that can be detected. In the case where the spins don’t interact with the environment, the pre-
cession will go on forever. But since the local magnetic field is constantly fluctuating, the Larmor
frequency of each spins is fluctuating as well. As a result, each spin will not rotate at the same
speed at a given time, which induces a progressive dephasing of the spin orientation in the trans-
verse plane. In the long run, the transverse magnetization is decaying until reaching 0 at thermal
equilibrium. The rate at which the transverse signal vanishes is called transverse relaxation rate.

Phenomenologically, two processes are observed in an ensemble of single-spin systems: The
precession of the overall magnetization around the transverse plane, and relaxation, the return
to equilibrium of the magnetization. We identified two relaxation rates so far: longitudinal relax-
ation and transverse relaxation. These phenomena can be modeled for a single spin system by
the Bloch equations. Let’s consider our overall magnetization vector in a Cartesian coordinate

— T
system M = (Mx M, MZ) . The Bloch equations can be expressed as:

d M, —R, yB, —vBy\ [My 0
’n My, |=|-vyB, —R, VyBy My |+ 0
Mz VBy _VBx _Rl MZ RlMO
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With M; and B; (i € {x,y, z}) being the i component of the overall magnetization and the magnetic
field respectively, in the Cartesian frame, R; and R, the longitudinal and transverse relaxation
rates respectively, M, the equilibrium magnetization and y the gyromagnetic ratio of the studied
nucleus. This model is able to predict the behavior of a very simple spin system. If our spin sys-
tem of interest has more than one spin, and these spins are coupled via J-coupling, the behavior
of the spin system cannot be correctly predicted using the Bloch equations anymore: A quantum
mechanical description of NMR is necessary.

1.1.3 Quantum Mechanical Description of NMR

A quantum mechanical description of NMR provides a full description of the phenomena ob-
served in NMR including spin relaxation and J-coupling. The evolution of a quantum mechanical
system can be described using the Schrédinger equation:

d N
—W¥(t) = —ih THY (¢t
Z¥ (@ = —ih AV (0)

With W(t) being the wave function describing the system, A the Hamiltonian, 4 the reduced
Plank constant and i = v/—1. For convenience, we may work with so-called natural units in
which we can write A = 1. In addition, the Dirac notation will be used. We can express the wave
function as a linear combination of the elements of a conveniently chosen orthonormal basis of
the given Hilbert space:

N

%) = > el

=1

With |y;) the elements of the basis, c; the associated coefficients and N the number of eigen-
: o . .1
states in the system. For example, a wavefunction in a single spin-~ system can be expressed as

a combination of the vectors (1 O)T and (0 l)T describing the two eigenstates of the spin |a)
and |B). In NMR theory, we prefer to describe the evolution of our system in the Liouville space
composed by operators acting on the wavefunction as elements, since it allows us to describe the
time evolution of the spin ensemble with the density operator (vide supra). In this framework,
the hat notation is reserved for so-called super-operators, i.e. operators acting on our elements
of Liouville space. For a single-spin system, a Cartesian basis of Liouville space is composed by
the Pauli matrices {Iy, I, I, E /2} with the following matrix representations:

1/0 1 1/0 —i 1/1 0 1/1 0
[x_§<1 0)'1y_§<i 0>'IZ_E<0 —1>'E/2_§<0 1)

Another similar basis composed by the following operators is often used: {I*,17,I,, E/2}. Where
I* is defined as:
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1
It = > (I, +il,)

This so-called ”shift basis” is used to treat relaxation since its basis elements have convenient
rotation properties. In addition, such operators are convenient to describe coherence evolution.
A basis for a multiple spins system can easily be derived from the tensor products of elements of
the single-spin basis. For instance, a two-spin IS system will have the following basis operators
in a Cartesian basis:

(21,85, 21,5, 21, Sy, Sy, 21,Sy,, 21,S,,, 21,5y, Sy, 21,5, 21,S,, 21,55, S5, L, Ly, 1, E /23

Where we can calculate any operator representation of this basis as a function of the Pauli ma-
trices. For example, we have: I;S; = 2I; @ S;. These operators are thus represented with a 4x4
matrix. The factor 2 comes from normalization. Here, E is the 4x4 identity matrix. We can then
describe a spin system using the density operator o. Any density operator can be represented
as a linear combination of the basis elements that we just introduced. The matrix elements of ¢
are defined as:

oij = (i) (PIY;) = cicf

From this expression, we see that the diagonal elements of the density operator correspond to
the populations of each energy level. The non-diagonal elements correspond to the so-called "co-
herences” between the different spin states. The presence of non-zero coherence terms implies
that there is some overall spin polarization in the transverse plane. From the density operator
we can determine the expectation value of an observable property P in a system:

(P) = Tr (oP)

It can also be demonstrated from Schrodinger equation that the time evolution of the density
matrix can be expressed as:

d . 7
Eg(t) = —i[H,o(t)] = La(t)

With [H,o(t)] = Ho(t) — o(t)H the Liouvillian superoperator acting on the density operator.
This so-called Liouville-von Neumann equation is one of the most important equations in NMR.
It allows us to compute the time evolution of a spin system under a given magnetic field. If the
Hamiltonian is time-independent, the solution of this equation is:
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o(t) = exp (—iHt) a(0)exp (iHt)

If the Hamiltonian is time-dependent, it is often possible to perform a convenient frame trans-
formation allowing us to use this solution. Provided that the Hamiltonian is known, it is possible
to predict the evolution of a given spin system. In the general case, the total Hamiltonian has
numerous contributions, from the static magnetic field, the local electronic environment, and all
the other possible interactions that are taking place in the system. For example, we can have:

Hiot = Hstatic + Hes + Ho + Hpp + H;

With Hg; 4t the Hamiltonian for the applied static magnetic field, H.s for the chemical shift, rep-
resenting the small chemical shielding performed by the electronic environment, modifying the
magnetic field perceived by the nucleus. In the general case, the chemical shift is a tensor, which
means that there is a possible anisotropic contribution yielding time-dependent variations of
the local magnetic field upon tumbling of the molecule. Hj, is for quadrupolar interactions. This
term is non zero only if we have spin quantum numbers higher than 1/2. Hpp is the term report-
ing on the through-space interactions that can take place between different neighboring dipoles.
Hj is the term reporting on the J-coupling, an electron-mediated through-bond indirect dipolar
coupling between different nuclei of the same molecule.

From now on, we are going to consider that we are working with isotropic liquids, which means
that there is a uniform distribution of the molecular orientations in space. In this case, the time-
dependent dipolar and quadrupolar interactions are averaged out by the rapid tumbling of the
molecule. Because of this rapid isotropic tumbling, The J-coupling is averaged to a constant value

called scalar coupling and the chemical shift Hamiltonian experiences a similar averaging mech-
anism. We therefore end up with a total averaged isotropic Hamiltonian as follows:

Htigg = Hstatic + Hésso + H]iso

This Hamiltonian can usually be expressed as follows for a two-spin system in the Cartesian ba-
sis:

HE? = wl, + wsS, + nJ21,S,

With | being the scalar coupling between the spins I and S. Both the static magnetic field and
the chemical shift are encoded in the Larmor frequency wy for a spin X. It can be expressed as:

wx = =Yx (Bstatic + Binaucea) = —VxBstatic (1 + (S‘iso)

23



With Bg;atic and Bipqucea the static magnetic field of the spectrometer and the magnetic field
induced by the chemical shielding of the electronic environment surrounding the given nucleus
respectively. §'5° is the isotropic chemical shift, usually expressed in ppm.

The averaged Hamiltonian can be used to describe most of the averaged observable NMR phe-
nomena occurring up to the ms timescale in isotropic liquids including spin precession and J-
coupling, as described here. Relaxation mechanisms however are described by rapid rotations
from 10 ps to 10 ns timescales and cannot be described with an averaged Hamiltonian. To de-
scribe relaxation, the effects of the time-dependent Hamiltonian has to be examined in more
detail.

1.2 Theory of NMR Spin Relaxation

We saw in the previous section that the return to equilibrium of a spin system was mediated by
spin relaxation rates. We briefly discussed the fact that these mechanisms took place upon cou-
pling of the spin system with its dynamic environment. It is clear from our previous description
that the value of these rates are highly dependent on the dynamics of the spin system and its envi-
ronment. Therefore, it might be possible to extract valuable information from an analysis of NMR
spin relaxation rates. In this section, we are going to address the theory of NMR spin relaxation
and discuss how we can interpret these rates in terms of protein dynamics and interactions.

1.2.1 Origins of spin relaxation

We identified two spin relaxation mechanisms so far: longitudinal relaxation, corresponding to
the magnetization build-up in a magnetic field, and transversal relaxation, corresponding to the
progressive dephasing of the coherences leading to a loss of overall magnetization in the trans-
verse plane. Relaxation mechanisms appear because of rapid magnetic field fluctuations occur-
ring at timescales from 10 ps to 10 ns. Let’s express our overall Hamiltonian as a function of the
time dependent and time independent contributions:

Hior = Hseatic + H'S® 4 Haniso ®)

The averaged isotropic contributions to the Hamiltonian are time-independent. The remain-
ing time dependent contribution is thus an anisotropic contribution that averages to zero over
the ensemble in an isotropic liquid. This term is composed with the interactions that are im-
portant for relaxation. We can split this anisotropic Hamiltonian into a longitudinal contribution
HZ™s0(t) and a transverse contribution H,‘}},”SO (t):

HaniSO(t) — Hgmiw(t) + Hg}iw(t)

The term H,‘};,”S" (t) corresponds to transversal fluctuations of the magnetic field. These local
fluctuations, if containing the frequency corresponding to the energy difference between two
spin states, can induce transitions from one state to another. Longitudinal relaxation is caused
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by these magnetic fluctuations. In addition to this phenomenon, the spin state transitions in-
duced by transverse magnetic field fluctuations broaden the energy levels of the different possi-
ble spin states as a result of a Heisenberg uncertainty principle: The lifetime of a spin in a given
state being not infinite, the energy difference between each spin states cannot be perfectly de-
fined, yielding an intrinsic dephasing of the overall transverse magnetization. This term is thus
responsible for both longitudinal and transversal relaxation processes

The term HZ™S°(t) corresponds to longitudinal fluctuations of the magnetic field. These fluc-
tuations induce local variations in the larmor frequencies of the spins. As a result, a dephasing of
the spins in the transverse plane occurs leading to a loss of coherence. This is the main mecha-
nism for transverse relaxation. It is the so-called "Adiabatic” term, since it is not responsible for
any transition in energy levels. Both longitudinal and transversal magnetic field fluctuations are
thus responsible for transverse relaxation.

In order to extract information on the dynamics of our molecule, we must first understand what
are the interactions that lead to relaxation in the studied spin system. Then, we must know how
to calculate our relaxation rates assuming a given dynamic behavior. To do this, we can derive
an expression for the relaxation superoperator by looking at the behavior of the time-dependent
anisotropic Hamiltonian.

1.2.2 Semiclassical Theory of NMR Spin Relaxation

The physical description of NMR spin relaxation involves non-trivial mathematical manipula-
tions that are useful to address in order to introduce the important assumptions that are made
in this theory. A simple but sophisticated enough semi-classical formulation provides the wanted
results but a more complete full quantum mechanical description is possible and has been ad-
dressed [29, 33]. In this so-called Bloch-Wangsness-Redfield theory, we are going to treat the
spin system quantum mechanically, and the magnetic field fluctuations classically [33, 34]. For
this, we introduce in the Liouville von Neumann equation a time-dependent Hamiltonian H; (t)
corresponding to a stochastic magnetic fluctuation averaging to 0 over time and with a magni-
tude very small with respect to the static magnetic field associated with the time-independent
Hamiltonian Hy.

d
7D ity + 1 @,00)]

We can then conveniently transform this equation into the so-called interaction frame to get rid
of H, by defining o7 (t) = e'folg(t)e ot and HT (t) = e'fotH, (t)e~Hot, which yields after
some algebra:

d T
R T OXa0)

Integrating this differential equation yields:
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t
al(t) = exp (—if [HT (¢, ] dt’) aT(0)
0

To address NMR spin relaxation, we have to consider the entire system. We thus take the ensem-

ble averaged density matrix o7 (t). The random fluctuations that are responsible for relaxation
occur at very fast timescale: picoseconds to nanoseconds typically. On the other hand, relaxation
time constants are usually in the second timescale, therefore, we can consider the evolution of
the density matrix in the interaction frame and the stochastic fluctuations to be statistically inde-
pendent, which allows us to separate the averaged terms. After performing a Taylor expansion
up to second order and some operator algebra, one obtains the following equation. The overbars
indicate ensemble average:

t 1 rt t”
oT(t) = oT(0) — ij [HT (£"), a7 (0)]dt’ — EJ f [HT (¢"), [HT (£"), 0T (0)]]dt"dt’
0 0 Jo

Later, we are going to ignore the overbars for the density operator. After differentiation and
recalling that the ensemble average of HY (t) is 0, one obtains the following equation. We also
introducet =t —t':

do” '
O'dt(t) _ _J;) [H{(t), [HI(t -1), O'T(O)]]dT

At this point, we cannot easily go into further derivations without making more assumptions. As
said earlier, the timescales for magnetic fluctuations are much faster than the timescale that is of
interest for NMR spin relaxation. At times significantly greater than the typical magnetic fluctu-
ation correlation time, the value in the integral in the previous equation is close to 0. Therefore,
we allow ourselves to extend the limit of our integral to infinity. In addition, the timescales as-
sociated with relaxation-active mechanisms are much smaller than the relaxation time constant.
At those considered timescales, the density matrix evolution is very small, and we can allow our-
selves to replace o7 (0) with o7 (t) in the equation. It is legitimate to argue at this point that con-
sidering timescales smaller than the relaxation times is not justifiable since relaxation is what we
are interested in. To correct this we can consider a time period T higher than the relaxation time
constant. We can divide this time period into multiple smaller durations ¢t much shorter than
the relaxation time periods that satisfy our assumptions. If we proceed piece by piece to eval-
uate relaxation at time T, we obtain the expected result. Finally, a last adjustment needs to be
made. The limitation of the semi-classical treatment of this problem is that it implicitly assumes
an infinite temperature for the lattice, leading to no overall magnetization at equilibrium. It has
been shown that introducing the final equilibrium magnetization gy described in the first section
overcomes this problem and leads to the same result as a fully quantum mechanical treatment.
We thus replace ¢ (t) with o7 () — g, and obtain the following equation:

do” °°
Gdt(t) - ‘fo [H1 (©), [H{ (t = 1), 07 (1) — Gol]dt
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From here, we can allow ourselves to go back to the laboratory frame. In order to do so effec-
tively, we must express the stochastic Hamiltonian in a convenient way. We may express the
Hamiltonian as a linear combination of irreducible spherical tensors of our operator space. Such
a transformation can appear as a complication, but the irreducible spherical tensor transforma-
tions under rotations are fairly simple and allow a simple transformation back to the laboratory
frame. The elements of the shift basis of Liouville space defined earlier are all spherical tensors.
We define the irreducible spherical spin operators of rank k, T,g, and we express them as a com-
bination of elements of a spherical basis of our operator space:

Ty = Z T,?p
p

From this, we can express the stochastic Hamiltonian as:

k

H© =) Y DIFEOT,

q=-k p

F are random functions of spatial variables that carry the time-dependent stochastic behav-
ior of the Hamiltonian. The (—1)9 terms are taken out of the random functions by convention
and are sometimes inside the Fy! terms in older textbooks [29]. It can be shown that the elements

T,gp are eigenfunctions of the Liouvillian operator, with eigenvalues wg:

Lo (T8,) = [Ho T, | = wfTd,
From this property we can write:
exp (if,ot) T,fp = exp (iwgt) T,?p

Using the properties of this useful class of operators and assuming that the random functions

!
F,? and F,? are statistically independent, which implies that only terms with ¢’ = —q survive, we
can derive the following expression:

daT(t) z z exp L(a)p g,)t) [Tk_;, [T,?p,o—T(t) - Go]]

q=—kp,p’

X f FL®F (t — Dexp (—iwpt) dt
0
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wp = @
that are sufficiently greater than zero can be neglected since the factor exp(i(a)g - wg,)t) would
oscillate rapidly and average to zero faster than the timescales of relaxation. If there is no degen-
eracy in the eigenfrequencies, only the terms p = p’ would actually survive. We end up with the

following expression:

Finally, a so-called secular approximation is made to obtain the final result. The terms

daT(t)

Z Z[Tkp 78,07 (t) — oo | fo ) FIOF, (¢ — Dyexp (—iwlt) dr

q=-k p

The integral can be separated into its real part and its imaginary part. The term inside the in-
tegral is the correlation function of the F,f (t) depending on spatial variables and expressed as:

Fl(t)F, ?(t — 7). Since a correlation function is real and even, the real part of its Fourier trans-
form is even as well, and the imaginary part is odd. Therefore, we can rewrite the real parts
jq(wg) as the real parts of the Fourier transforms of the correlation functions of F! (t) the fol-
lowing way:

oo

j9(w}) = 2Re U Fl(t)F; ' (t — t)exp (—iwgit) dr]
0

j9(w}) = Re U_oo FL©F 1(t — Dexp (—iwpt) dr]

And we can rewrite the imaginary parts as follows:

k9(wd) = 2Im U“’ FLOF 1(t — t)exp (—iwit) dr ]
0

The fact that the imaginary part is an odd function permits convenient simplifications that al-
low us to rewrite our differential equation in the laboratory frame as follows:

do(t) _
dt

—i[Hp,0(0)] —i[A,0(t)] =T (a(t) — 0p)

with A being the so-called dynamic frequency shift coming from the imaginary part of our inte-
grand. This part can be conveniently incorporated into H,, yielding the final Liouville-von Neu-
mann equation:

do(t) _
dt

~i[Ho, 0(8)] = I (a(t) — 00)
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I" is the relaxation superoperator, expressed as:

=gy
)

k
q=—k

z [T,:If’, [Tlgp,” Re U‘” Fl(®)F, (t — Dexp (—iwit) dt
> —oo

The relaxation superoperator is thus a sum of products of two terms. One term is a double com-
mutation operator acting on the density operator. It acts like selection rule. There is relaxation
only if these terms yield non zero values. The second term is called the power spectral density
function, defined as the Fourier transform of the correlation function of F!. This correlation
function is key to extracting valuable information from spin relaxation rates. Relaxation rates
are thus expressed as a linear combination of spectral density functions.

1.2.3 Correlation Function and Spectral Density Function

In isotropic liquids and at our usual temperatures (high temperature limit), it can be shown that
the spectral density functions j4(w) can all be expressed as a function of one single spectral den-
sity function, such that [35]:

jA(w) = -19°(w)

Additionally, we recall that the mechanisms of interest for relaxation here are related to rota-
tions, and rotations are associated with traceless rank 2 tensors. Therefore, only rank 2 spin
operators are considered here. These mathematical considerations lead to the definition of a
unique spectral density function j(w) such that:

j(w) = Re U_OO F()F)(t — t)exp (—iwt) dt

The spectral density function can be interpreted as the (non normalized) density of probability

for a fluctuation of Fy to occur at a given frequency. The autocorrelation function Fy (£)Fy (t — 1)
is associated with the ensemble and time averaged correlation of the function Fy with itself over
time. If we assume that this function is associated with the orientation of a rigid molecule un-
dergoing rotational Brownian motion, a fast tumbling of the molecule will be associated with a
correlation function that decays to zero rapidly, since the orientation of each molecule becomes
quickly uncorrelated. On the other hand, a molecule that tumbles slowly will have a correlation
function that converges slowly to zero.

The random function FJ)(t) can be factored by a function that depends on spatial variable and
physical constant d (t) with another function related to time-dependent polar angles @, = (6(t), ¢(t))
expressed with respect to the magnetic field axis and associated with a vector that points to-
ward the principal axis of the considered interaction. We usually choose the modified second-
order spherical harmonic Yy for this function. The modified second-order spherical harmonics
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Y, are obtained by multiplying the conventional normalized spherical harmonics Y} by a factor
of \/4m/(2k + 1). We thus have, using the symmetry properties of the correlation function:

FR(OF(t — 1) = do()do(t + DY (0¥ (0r47) = G(1)

The function dy(t) depends on the interaction that is considered. Among the interactions re-
sponsible for relaxation, we have for example the dipolar interactions for which d,(t) would
depend on the distance between the two considered spins and their gyromagnetic ratios. The
principal axis for this interaction would be the vector pointing from one nucleus to the other.
Another interaction, related to the possible anisotropy of the chemical shift (CSA), would imply
a dy(t) term that depends on the magnetic field and the principal values of the chemical shift
tensor. The principal axis would consequently point toward the principal axis of this tensor.

In some cases, the terms in d,, are time-independent. For example, in a protein backbone amide
system comprising two %—spins: the nitrogen '°N and its proton, the two main mechanisms re-
sponsible for relaxation of the nitrogen magnetization are the dipolar interaction between these
two spins and the CSA of the nitrogen nucleus. In this case, we can assume the distance between
the two spins to be time-independent, as well as the other variables. If we do so, we can factorize
the correlation function as follows:

G(1) = do(t)do(t + DY (0)Y5 (Or17) = d§Y(0.)Y5 (Ors7) = d§C(7)

With C(7) the normalized time autocorrelation function of the modified second rank zero or-
der spherical harmonic Y. We can also define the orientational spectral density function J(w)
such that:

j(w) = dGRe U Y2 (0)Y7 (Or4r)exp (—iwt) dt| = dfj(w)

The auto-correlation function is always a decaying function that converges to zero in a liquid.
Consequently, the corresponding spectral density function will also yield a decaying function.
The form of these functions depend on the global and local dynamic properties of the axis of
interest in the considered molecule.

1.2.4 Analytical expression for relaxation of a spin system

To get an analytical expression for relaxation in a given spin system, one must know the mech-
anisms that are going to provoke relaxation. The main relaxation-active processes are through-
space dipolar interactions between nuclei, chemical shift anisotropy, ] couplings and quadrupo-
lar couplings. In an isotropic liquid, for a given relaxation mechanism, the relaxation superoper-
ator can be written as follows:
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L1 - * ,
= Ed(z’ z z [T [Ty, || Re U Y2(0)Y)(047)exp (—iwt) dT

q=-2 p

If we express the system’s density operator as a vector in one basis of Liouville space, we can
express the relaxation superoperator I' that contains all the relaxation contributions as a matrix.
Considering only relaxation, the equation for the evolution of the system can be written as:

do(t)
dt

=T (a(t) - o)

This equation implies that each element of the density matrix relaxes with its own relaxation
rate. The matrix representation of the relaxation operator in Liouville space is called relaxation
matrix or Redfield kite in the literature[31, 36]. The diagonal elements of this matrix are the
autorelaxation rate constants for each elements of the used basis. The off-diagonal elements,
if non-zero, correspond to cross relaxation rate constants between one operator and another.
Cross relaxation occurs in cases where the two considered operators have the same coherence
order and degenerate transitions. In other terms, if the two operators oscillate at very different
frequencies, the exchange in polarization between the two coherences is averaged out, leading
no apparent cross-relaxation. For the protein backbone amide system, the Redfield kite is shown
in Figure 1.1. To calculate a relaxation rate constant, one just takes the corresponding matrix el-
ement of the Redfield matrix. For a relaxation rate I;; between basis operators B; and B;, this
translates as:

(B;|['B;)

[, =~ J/
Y (BilBy)

If we look at the °N-labelled protein backbone amide spin system, the two main relaxation-
active mechanisms are the >N —! H dipolar interaction and the >N Chemical shift anisotropy.
These mechanisms are now going to be introduced

The dipolar interaction

Every nucleus with a non-zero spin possesses a magnetic moment and reacts to the presence of
another magnetic moment. When two nuclei with non-zero spin are close to each other,; these
two nuclei will interact though a dipole-dipole interaction. The strength of this interaction of
course depends on the distance between the two nuclei and the size of their magnetic moment.
The Hamiltonian for a dipolar interaction between two nuclei can be written as:

Haipotar = dij (3 (Ii - ei) (I - €ij) — Ii - I;)
with
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Figure 1.1: Redfield matrix for the backbone amide spin system. The black squares correspond to the
autorelaxation rates. The blue squares correspond to the dipolar longitudinal cross relaxation rate and
the red squares come from Dipole-CSA cross-correlated relaxation rates.
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Where e;; is a unit vector pointing in the direction of the axis between the nuclei i and j associ-
ated with their spin operator /; and I; and their gyromagnetic ratio y; and y;. 7;; is the distance
between the two nuclei. The factor d;; corresponds to the factor d, in the expression of the re-
laxation superoperator presented earlier. For the N-H system of the protein backbone amide, we
would have:

ddipolar _ _ﬂOhVHVN
0 Amryy

Where ryy is the N-H bond distance.

The Chemical Shift Anisotropy

The chemical shift comes from the local electronic environment. The electrons of the molecule
indeed modify the local magnetic field. The static external magnetic field creates a current in the
cloud of electrons. This current induces a magnetic field on its own that in turn alters the ex-
perienced magnetic field for the nuclei. We can write the experienced magnetic field for a given
nucleus as follows:

= =

Bexperienced = Bstatic + Binducea = Bo + 8By

Where § is chemical shift rank 2 tensor. If we time-average the chemical shift Hamiltonian in
an isotropic liquid, the observed effective chemical shift becomes a simple scalar. However, at
the relaxation-active timescales, the chemical shift is a tensor and the effective shielding depends
on the local orientation of the chemical shift tensor’s principal axis. The chemical shift tensor can
be written:

S5 = §iso + saniso

With §%° = g;,,E where E is the identity matrix and 0;5, = (0yx + 0yy + 0,,)/3 where o;;
are the matrix elements of the chemical shift tensor. The traceless anisotropic component of the
chemical shift tensor is the part responsible for relaxation.

For protons, the CSA is usually negligible, but it is important for some other nuclei like the
amide 1°N. If we assume that the CSA is uniaxial, we can write the following for the prefactor
associated with the relaxation superoperator associated with the protein backbone > N:
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By is the spectrometer magnetic field and Ac = o — 0, assuming an axially symmetric CSA
with principal values g,, = 0 and oy = 0,,, = 0,. A notable property of the CSA is that its
contribution to relaxation increases with the magnetic field of the spectrometer.

1.2.5 Relaxation in the rotating frame

Applying a constant rf field in an NMR experiment has interesting consequences to the system.
The rffield is defined as a rotating magnetic field component on the transverse plane, associated
with a Hamiltonian H,¢(t). To remove the time dependence of the total Hamiltonian, a transfor-
mation into the rotating frame associated with the rf field is necessary before the transfer into
the interaction frame. Ignoring the scalar coupling, this means that we transfer the system into
a double tilted frame. In this frame, the magnitude of the magnetic field experienced by a given

nucleus can be written as:
Beff = ’b% + ABg = Bl/Sln(g)

Where b, is the magnitude of the rf field and AB, is the reduced static magnetic field experi-
enced in the double tilted frame, which depends on the chemical shift of the considered nucleus
associated with the frequency w, with the relation: ABy = (w,f — wg)/y = Q/y. The term 6
corresponds to the angle between the effective field B, and the z-axis of the laboratory frame
(Figure 1.2) defined as:

W,
tan(0) = )

As a result of this, the terms wj} in the spectral density functions become w} + a)g(rf ) with:

N
Z Wrri [Izi,A;‘ip] = wg(rf)Azp
i=1

Where w,; is the rotating frame frequency associated with the it" spin and N the number of
irradiated spins in the spin system. With an rf field of strength w; with a correlation time . in

which w7, « 1, we can consider that j(wj + wg(rf)) ~ j9(wg). We can then calculate the
relaxation rate constants as follows:

<U-1A;U|f (U‘lA]’.U)>
LA VAV
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Figure 1.2: Representation of the effective magnetic field experienced by a nucleus (red) in the rotating
frame with a static magnetic field B, aligned with the z-axis and an orthogonal b, field.

Where 4; is our operator A; expressed in the rotating frame and U is a unitary transformation
operator defined as:

N
U=exp iz 01y
i=1

We assumed an rf field applied along x. 8; corresponds to the tilt angle between the laboratory
frame z-axis and the rotating frame z’-axis associated with the spin i. We can define the longitu-
dinal relaxation rate in the tilted rotating frame R, as the relaxation of the magnetization along
the axis z’ of the tilted frame. From our considerations, it follows that R; p can be expressed as a
function of Ry, R, and the tilt angle 6 for a given nucleus with the following expression assuming
no chemical exchange contribution to R,:

Ry, = Rycos* + Rysin?6

R;, is often used combined with R, to obtain R,. Another application of Ry, is it's measurement
with different rf field strengths and rf frequencies to characterize chemical exchange processes.
Similarly, we could define the transverse component R;,,.
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1.2.6 Longitudinal and Transversal auto-relaxation rates, application to protein
backbone °N

R, is the rate for which the magnetization in the transverse plane with respect to the magnetic
field decays to zero. The derivation for this rate using the formula derived with the semi-classical
theory yields, for two dipolar-coupled nuclei N and H with a CSA on the nucleus N:

1 (#0 hyuyn

2
R, = 20 ) (4] (0) + ] (wy — wy) + 3] (wy) + 6] (wy + wy) + 6] (wy))

3
ATy

1
+ =% (01— 0.)” (4 (0)+3] ()

We interpret this expression for the protein backbone amide but this formula is valid for any
dipolar-coupled nuclei with a CSA on the nucleus of interest. We can identify in the formula the
two contributions from the dipolar interaction and the 1> N CSA. We can also identify the 5 angu-
lar frequencies in the spectral density function for which this relaxation rate is sensitive: 0, wy,
wy + wy, wy and wy — wy in ascending order. These are the eigenfrequencies a)g derived from
the semiclassical treatment. In fact, the formula for all the relaxation rates in this system con-
tain spectral density function values evaluated exclusively for some of these eigenfrequencies. If
we examine spectral density functions (figure 1.5), we see that /(0) is the largest value in J(w).
Usually, in the case of biomolecules where tumbling is slow with respect to smaller molecules,
R, is dominated by J(0). In the simple case of a rigid molecule exhibiting isotropic tumbling,
J(0) is simply proportional to .. R, would in this case be proportional to the correlation time of
the molecule. Figure 1.3 illustrates the evolution of R, as a function of 7.. Most of the time, the
spectral density function cannot be modeled with a simple single Lorentzian, but it is a reason-
able approximation to say that the distribution of R, over the sequence gives an estimate of the
evolution of the tumbling of the N-H axis along the sequence of the protein.

On the other hand, R, is the build up of >N magnetization along the magnetic field axis. The
derivation yields:

1 <.U0 hyuyn

2
2
T = > (J (wy — wy) + 3] (wy) + 6] (wy + wy)) + Ea),zv (o — GL)ZJ (wy)

R, is expressed here as a linear combination of J(wy), J(wy), J(wy + wy) and J(wy — wy). For
this rate, J(wy) is the largest term. If we look at the evolution of R; as a function of the correla-
tion time in our simple rigid molecule example, we see that R; is more difficult to interpret with
a simple look. R, exhibits a maximum value for a specific correlation time, then it decreases if 7.
is increased or decreased with respect to this value (Fig. 1.3).

Measurement

The measurement of relaxation rates is performed with the following scheme: First, the pro-
ton spin is excited. Since it has a high gyromagnetic ratio compared to the nitrogen of carbon
nuclei, we obtain a significantly larger magnetization compared to a direct nitrogen or carbon
excitation. The magnetization is then transferred to the nucleus of interest, typically an INEPT
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scheme. Then, the magnetization is prepared for relaxation evolution. For R, and R, ,, the mag-
netization must be along the z-axis prior to relaxation. After the relaxation period, we let the
magnetization of our spin of interest to evolve with an incremented delay to encode the indirect
dimension to obtain a 2D spectrum. Finally, the magnetization is transferred back to proton for
acquisition, for example with a reverse INEPT scheme. In order to obtain our relaxation rate
of interest, different measurements of the NMR signal with different relaxation delays are per-
formed. To obtain a relaxation rate expressed as an exponential decay of the magnetization for
example, one performs this experiment with several relaxation delays, and then fit the intensity
of the NMR signal as a function of the relaxation delay with a decaying exponential function. The
rate of decay corresponds to the relaxation rate.

1.2.7 Cross-relaxation rate

The Redfield matrix in (figure 1.1) for the protein backbone amide NH two-spins system high-
lights the presence of a cross-relaxation term between the operators H, and N,. The derived
expression for this rate writes as follows:

2
1 (pohyny.

ONH = == O—I;N (6] ((UH + wN) _]((UH - wN))
10\ 4nryy

oyy only depends on J evaluated at high frequencies and thus reports on fast timescales dy-
namics exclusively. This cross relaxation is possible since both operators H, and N, correspond
to a zero-order coherence pointing along the same constant axis and thus not oscillating. This
term is the manifestation of a longitudinal magnetization exchange through dipolar coupling be-
tween the proton and the nitrogen-15. This effect is called the Nuclear Overhauser Effect (NOE).
It is the basis of the NOE SpectroscopY (NOESY) experiment in which two close dipolar-coupled
spins exchange magnetization during a mixing delay, allowing for instance to obtain the struc-
ture of a protein through restraint-based optimization. In our case, we take advantage of this
effect to obtain high frequency information on the spectral density function by measuring the
rate of magnetization exchange.

Measurement

To obtain this rate on a protein, we measure the steady-state NOE enhancement that we will
write nOe. The principle is to record two similar experiments where we observe a signal pro-
portional to the 1> N magnetization. In one experiment, we saturate the protein’s amide protons
with a weak selective radiofrequency field for a time sufficiently longer than the longitudinal
relaxation time to reach a steady-state. nOe is extracted by comparing the z-magnetization of
the steady-state nitrogen spin with and without saturation of the proton. Taking into account
auto-relaxation and cross-relaxation, the overall nitrogen z-magnetization evolves according to
the following equation:

dANSS
dt

= —R;y (N3° — N?) + oy H?

Where N3 stands for the steady-state z-magnetization of the >N nucleus and N? and HY are
the equilibrium z-magnetizations of 1N and H respectively. Since we consider a steady-state,
this derivative equals 0. Therefore, if we record two identical experiments with the exception
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of the saturation time present in only one of them, and where the signal is proportional to the
steady-state nitrogen z-magnetization, the ratio between the signal intensity of both experiments
equals:

ss
Isaturation _ N,

Ireference B Nz0 B Rl NZO RlVN

Since this parameter also depends on R;, extracting gy also requires the measurement of the
longitudinal relaxation rate.

1.2.8 Relaxation interference and cross-correlated relaxation rates

When more than one time-dependent Hamiltonian is causing relaxation of a given spin, inter-
ference between these different Hamiltonians may occur. We can rewrite the overall stochastic
Hamiltonian as:

k
H©) =) > > DIFRIOT,

i g=—k p

Where i stands for the different interactions responsible for relaxation. With this expression,
a given relaxation rate expressed as the matrix element of the Redfield kite is written as:

i#j

Lrs = Z Fris + Z Frlé
7 i

Where Fris is the relaxation rate constant due to the ith interaction and I} is the relaxation rate
constant coming from the cross-correlation between the ith and jth interactions. We can define
the cross-correlation spectral density functionjlqj (w) associated to the cross-correlation term as
follows:

J'qu(w) = Re [f_oo Ficllc(t)P}';q(t + 17)exp (—iwt) dt

When two relaxation mechanisms are correlated, the corresponding cross-spectral density func-
tion doesn’t quench: jlqj (w) # 0 and cross-correlated relaxation might occur. In protein back-
bone amides, the cross-correlation effect of interest comes from the correlation between the
15N CSA and the *H-'>N dipolar interaction. This effect yields a longitudinal and a transversal
component, 7, and 7, respectively (Figure 1.1). The derived expressions for these rates are as
follows:

1

_ = HohtYuYN
15

Nz 3
ATy y

P, (cos 9) ( > (o1 — 0.) wy (6] (wp))
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Figure 1.3: 5N relaxation rates as a function of the rotational correlation time in the case of a single
Lorentzian spectral density function. Left: R, (Blue), R, (Red), nxy (Dashed red) and n; (Dashed blue) as
a function of the correlation time. Right: Dipolar crossrelaxation rate (Orange) and nuclear Overhauser
enhancement (Blue) as a function of the correlation time. The calculations were done with a magnetic
field of 600 MHz proton frequency, a CSA tensor of -172 ppm, an NH bond distance of 1.02 Angstrém and
an angle between the CSA and the NH bond vector of 22°.
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1
Nxy = G —P, (cos 6) (

Where 6 is the angle between the CSA principal axis and the dipolar interaction principal axis,
and P, is the second order Legendre function P,(x) = %(sz — 1). 1y is often dominated by the
term J(0) and yields a similar pattern as R,. n, on the other hand depends on J(wy) and so gives
similar information to R; about the spectral density function (Fig. 1.3). We will see later that
it can be of interest to measure these rates as a complement, especially 7y,,. The drawback of
using these relaxation rates is that it requires a good knowledge of the relative orientation of the
CSA principal axis with respect to the NH bond vector, represented by the angle 6 here as well as
the level of anisotropy of the CSA tensor. In principle, these values are estimated around 22.5°
and 172 ppm for the angle and the tensor anisotropy respectively for backbone amide nitrogens,
but it can vary along the sequence and induce a bias in relaxation data analysis. The optimiza-
tion of this parameter for each site can be included in a relaxation analysis provided that enough
relaxation data is present.

measurement

If we examine the Redfield kite (Figure 1.1), we see that these rates translate to a magnetization
exchange between the operators N, and H, N, for the longitudinal contribution and between N+
and H,N* for the transverse contribution. The most accurate way of measuring cross-relaxation
rates is to use symmetrical reconversion [37, 38]. The principle is to measure four similar ex-
periments, allowing us to observe the rate of exchange between in-phase (N*) and anti-phase
(H,N*) terms. In each experiment, we prepare nitrogen magnetization, then we evolve it dur-
ing a relaxation period where we allow cross-relaxation. In one experiment, we evolve in-phase
magnetization and we observe the residual in-phase through a signal intensity proportional to it.
In another experiment, we observe the produced anti-phase instead. The two other experiments
are similar but starting with evolving anti-phase magnetization (Figure 1.4).

The chemical shift evolution taken apart, the components N* and N*H,, of the density opera-
tor evolve as follow:

dN* _

Fraie —in)yy2H,N* — (RD% + R$54)N* — 0, 2H,N*
d2H,N* csa
—ar = "Nt = (R2Ry + RE) 2H,N T — 1, N

Where RDY and R2R,; are the in-phase and antiphase transverse relaxation rate of the **N nu-
cleus from the dipolar interaction respectively and RS54 is the transverse relaxation rate from
the >N CSA. This can be translated into a matrix equation. If we ignore the J-coupling evolution
(if for example we refocus the J-coupling during the given relaxation period), we end up with the
following:

i N+ B R + RCSA nx N+
de \H,N* )~ Nxy RzNH"'RCSA H,N*
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If from this equation we calculate the intensity ratio associated with the signal intensity from
the anti-phase magnetization I;, with the signal intensity from the residual in-phase magneti-
zation I;; in an experiment starting with in-phase magnetization, we would obtain the following
result:

liq _
— = tanh(ny,T)
I

By symmetry, we obtain:
lgi _
— = tanh(ny,T)
Iaa

With T being the duration of the relaxation delay. If we combine the four experiments, we obtain:

1
Ny = ?arctanh

The advantage of measuring four experiments instead of only two is that such symmetrical scheme
cancels out some errors due to pulse miscalibrations and other uncontrolled sources of error
[37]- An implementation of this experiment is presented in figure 1.4.

Apart from providing insight into the spectral density function, cross-correlated relaxation
rates are also exploited in the widely used TROSY sequences. If we define H* and HP, corre-
sponding to the proton magnetizations in its two eigenstates responsible for the doublet in an
uncoupled nitrogen spectrum, we obtain the following matrix equation:

d <N+H“> _ (in]NH +Ry +1yy (R} —RRRY) /2 > <N+H“>

dt \N*HF (RER —R2Ru) /2 —imjyy + Ry — My

If we assume that 2nj3,; >> (RPR — R2R4)/2, the matrix becomes diagonal. We see that the
two peaks of the doublet don’t have the same relaxation rate. In a decoupled HSQC, we in fact
will have four peaks whose relaxation rates differ because of cross-correlated relaxation. One
peak ends up with a narrower linewidth. It is thus possible, by looking only at this narrow peak,
to improve the quality of the spectra in so-called TROSY (Transverse Relaxation Optimized Spec-
troscopY) sequences.
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Figure 1.4: Symmetrical reconversion pulse sequence for the measurement of DD/CSA transverse cross-
correlated relaxation rates in backbone amide nitrogens. The first block corresponds to the excitation of
the proton and transfer to nitrogen. The second blocks (Blue) corresponds to the conversion to in-phase
(top) or selection of antiphase (bottom) magnetization prior to the constant time relaxation period in the
third block (Red). Then, conversion or selection of magnetization is performed along with chemical shift
evolution on the nitrogen in a fourth block (Blue) before transfer back to proton and acquisition in the
last block. All the gradients are purging or artifact correction gradients, filled and unfilled bars are 90
and 180 degree hard pulses respectively with a phase x unless stated otherwise. The shaped filled and
unfilled domes are selective pulses on water for water suppression and adiabatic decoupling pulses on
carbon respectively. Ayy is a delay typically set to 1/(4/yn), 4y,, is the relaxation period and A, is the
incremented indirect dimension evolution period. @, is [x, X, X, X, -X, -X, X, -X], @1, is [X, X, -X, -X] and the
receiver phase is [x, -, -X, X, -X, X, X, -X].
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1.3 Analysis and Interpretation of 1> N NMR spin relaxation

A set of relaxation rates such as Ry, R, and oyy measured at different magnetic fields provides
valuable information on the spectral density function. Most of the relaxation analysis methods
are based on obtaining an approximate solution for the spectral density function so that it fits
the relaxation data. From high field NMR spin relaxation rates at different magnetic fields, one
still has little information compared to the intrinsically complex nature of the dynamics of pro-
teins (especially flexible parts). The information is restricted to specific locations in the spectral
density function. The main challenge of High-field NMR spin relaxation analysis is to find an anal-
ysis framework that gives a comprehensive understanding of the protein’s dynamics and that is
simple enough to be justifiable given the limited number of parameters that are known. Many
explicit models were derived in early studies and proposed a way to express the rotational cor-
relation function in protein systems assuming a given shape for the protein [39] or a given type
of motion like restricted diffusion and jump models [40-43] before a more general model-free
method was proposed by Lipari and Szabo in 1982 [44]. This method has been extensively used
and extended over the years until now and provided a valuable tool for understanding protein dy-
namics from 10 ps to 10 ns timescales [45-50]. In the meantime, numerous different techniques
were introduced as an attempt to propose a different approach to NMR spin relaxation analysis.
In this section, we discuss relaxation analysis techniques, by first examining the simplest case
of a rigid spherical molecule tumbling in an isotropic liquid. Then, the model-free analysis and
its extension to Intrinsically Disordered Proteins is introduced. The use of this method to model
IDP dynamics at different temperatures and viscosity will then be presented. Finally, alternative
and complementary methods are discussed.

1.3.1 Relaxation of rigid molecules undergoing rotational diffusion

Let’s consider a simple spin ensemble of spherical molecules of radius R associated with an NMR
signal relaxing via an interaction with a principal axis that depends only on the orientation of the
spherical molecule. This spherical molecule undergoes isotropic rotational Brownian motion.
We define P(0, t|®,) the probability for the interaction principal axis to be with an orientation
defined by the polar angles © at time ¢ knowing that it was with an orientation 0 initially. This
probability function obeys the rotational diffusion equation:

dpP(0,t]0,)

—— = D;AP(6,¢]6)

A is the angular Laplacian operator and D, is the rotational diffusion constant that can be ex-
pressed with the rotational Stokes-Einstein equation:

kT
" 8mR3p

Where kg is Boltzmann’s constant, T is temperature and 7 is the shear viscosity of the solution
experienced by the molecule. The initial conditions translate to the Dirac function P(0,0|0,) =
6(0 — 0y). We may look for solutions of the diffusion equation in the form of an expansion of
spherical harmonics since any square-integrable function on a sphere can be expressed this way:
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P(8,t10)) = ) D ch(t)V}(®)
k

I=—k

Where the c}, are time-dependent coefficients. This form is convenient since the spherical har-
monics are eigenfunctions of the angular Laplacian: AY,é (®) = —k(k + 1)Y,§ (®). The diffusion
equation thus simplifies to the following:

dek(t)
dt

= —D,k(k + 1)cL(t)
From this very simple first-order differential equation it follows that:
t
ch(t) = ch(0)exp (~tD k(k + 1)) = ck(0)exp (—T—>
k

Where we defined the correlation time 7, as:

3 1 _ 8mR%
T Dk(k+ 1) kpTh(k+ 1)

Tk

The final solution can then be inferred from the fact that Dirac functions can be easily expressed
as a function of spherical harmonics:

5(6 ~05) = Y YL (00)%(®)
K1
From this we can identify c. (0) = Y}*(0,) which yields the final solution for P:
& l t
P(®,1100) = ) 1 (@0 (@r)exp (-
Kl

As defined earlier, in NMR, spin relaxation is calculated from the correlation function associ-
ated with the relaxation-active interactions in the spin system ensemble. Looking at the orienta-
tional correlation function associated with the current example of a nucleus in a rigid spherical
molecule undergoing Brownian motion in an isotropic liquid, the correlation function would be
expressed as follows, by definition of the ensemble average:
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The expression for P(0, t|0,) comes from Brownian motion as described earlier and the a priori
probability P(0,) of finding the relaxation-active interaction’s principal axis at a given orienta-
tion is constant and equal to 1/4m from the isotropic properties of the solution. The expression
thus becomes:

1
€@ == f f YZO(G)O)YZO(@t)ZYk*(OO)YkI(Gt)exp< )d@d@)o
k,l

t
Tk

Since the spherical harmonics are orthogonal to each other and that they are modified from their
original normalized form by a factor of /41 /5, it follows that the correlation function is a mono-
exponential function expressed as:

1 t
C(r) = Texp <_E>

The correlation time 7, depends here on physical parameters that depend on the size of the
molecule, the nanoviscosity of the solution and the temperature as:

_ 4R
'2 = BT

This rotational correlation time corresponds by definition to the average time required for the
orientation of the axis of interest to rotate by one radian. The corresponding orientational spec-
tral density function, Fourier transform of this correlation function, is thus a single Lorentzian
expressed as:

(%)

2
J@) = 515302

Unfortunately, the fate of the factors 1/5 for the correlation function and 2/5 for the spectral
density function, not specific to this particular case, vary in the literature. Sometimes, it is in-
jected in the dy(t) factor in order to have a normalized correlation function, while sometimes
it is kept in the orientational correlation function and spectral density function respectively to
keep track of the origin of these factors. For consistency with the literature associated with this
thesis [51-53], the first mentioned convention will be used unless stated otherwise. An illustra-
tion of these functions are given in (figure 1.5) for correlation times of 0.2 and 2 ns in the case of
amono-exponential correlation function. For a shorter correlation time, the correlation function
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Figure 1.5: Left: Normalized time autocorrelation function for a single exponential decay with a correla-
tion time of 0.2 (Red) and 2 ns (Blue). Right: Associated spectral density functions. The grey and black
dots correspond to the spectral density function evaluated at the eigenfrequencies corresponding to a
magnetic field of 600 MHz and 950 MHz proton frequency respectively.

converges to zero faster. A shorter correlation time also exhibit a spectral density function that is
spread over a larger range of frequencies. Physically, for this system, it means that for a molecule
that has a shorter correlation time, the probability for the motion to contain higher frequencies
is higher and vice versa for low frequencies.

This simple example is a demonstration of the wealth of information NMR spin relaxation con-
tains. An example of application of these expressions is the treatment of water molecules in a
simple solution. Water molecules represent most of the time the majority of the molecules in a
biological solution. The behavior of the water molecules must therefore translate the properties
of the overall solution to a good extent. Anatole Abragam pointed out [29] that the longitudi-
nal relaxation rates of water protons may be proportional to the nanoviscosity of the solution
provided that some assumptions are verified. This proportionality relationship allows an NMR
spectroscopist to obtain valuable information on the nanoviscosity in a solution. NMR spin relax-
ation in water protons arises from the dipolar couplings with the neighboring proton of the same
molecule as well as with the protons from the surrounding water molecules. Let’s first consider
relaxation from intra-molecular dipolar coupling. The axis of interest is the proton-proton vector
in the water molecule. Let’s assume that water molecules are rigid and spherical with rotation
properties expressed with a rotational diffusion equation. The equation would give:

dP(Q, t)

= DAP(Q,1)

Where A is the angular Laplacian operator, P(£), t) is the probability of finding the proton-proton
axis in the direction Q at a time t, R is the radius of the spherical molecule and D, is the rotational
diffusion constant expressed according to the Stokes-Einstein equation as described earlier. This
equation was derived earlier and we showed that it yields a Lorentzian spectral density function.
From this and the BWR theory of NMR spin relaxation, the longitudinal relaxation rate associated
with the intramolecular proton-proton dipolar coupling is expressed as:
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If wyT, < 1, then the denominators in the Lorentzians are very close to 1 and the expression for
the relaxation rate may be simplified as:

2
intra _ 15 Iioh}’z[
Rj = — 3 T,
4 \4nrgy

This means that in this case, the longitudinal relaxation rate is proportional to the rotational
correlation time. In addition, we have from the diffusion and Stokes-Einstein equation:

1 4mR%y
6D,  3kgT

T =

Which means that the intramolecular contribution of the longitudinal relaxation rate is propor-
tional to the nanoviscosity provided that the correlation time is much smaller than the proton
Larmor period.

The intermolecular contribution to relaxation in water protons is more complicated to describe.
Abragam describes this contribution using the translational motions of water molecules and by
deriving the translational diffusion equation. For the intermolecular dipolar interaction between
two distant spins, since the distance between the two spins is time-dependent, this distance can-
not be separated from the orientational part in the correlation function as done in a previous
section. This yields the following correlation function:

P(r, t|r)d3ryd3r

ACHIACHIE Y, (0p) ¥, (8,)
G(t) _< T‘03 T3(t) >_ f_f T'03 r3(t)

With P(r, t|ry) the probability of being at a distance r from one spin considering the initial dis-
tance ry. It can be expressed using the translational diffusion equation where the initial probabil-
ity is P(r, 0|ry) = 6(r — 1p). This equation yields the following solution as derived by Abragam:

3 2
P(r,t|ry) = (8nDt) 2z exp <—%)

With D the translational diffusion constant. By integrating the correlation function for each spin
(considering a density of N spins per cm3) to obtain the spectral density function, Abragam ob-
tained the following expression for the intermolecular contribution of water proton longitudinal
relaxation:
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Once again, to obtain this expression, one must assume that wyz, « 1. In these conditions,
the relaxation of water protons can be considered proportional to nanoviscosity. We have, for A
and B two proportionality constants and 7 the nanoviscosity:

R{mter — Ri’nter + Ri’ntra =An+Bn = (A + B)Tl

We can define a parameter p called solvent friction, expressed as a function of a nanoviscosity
value of reference 1y and an effective nanoviscosity for a given solution with a different nanovis-
cosity 1, such that:

Where R; and R, ( are the longitudinal spin relaxation rates of the water protons in solutions
associated with nanoviscosities of n and 1, respectively. The required approximation allowing
us to simplify the spectral density function and obtain this proportionality relationship implies
that the spectral density function is constant around wy, which translates to a field-independent
R, of water protons. A good practice to make sure that this approximation is valid is thus to mea-
sure the R, of water at several magnetic fields. At a magnetic field of 600MHz proton frequency,
wy = 3.770.10°rad.s~*. For the relationship to be strictly valid, the water rotational correla-
tion time must thus be much smaller than 0.265ns. At 298K, the rotational correlation time of
water molecules in a simple water solution has been measured to be around 1.7ps [54], which
falls within the required condition.

Of course, not all rigid molecules are undergoing isotropic rotational diffusion. In the general
case, arigid molecule with any non spherical shape undergoes anisotropic diffusion, which means
that the diffusion equation becomes:

Z—IZ = div (Drm (AP))

Where D,. is now a diffusion tensor with three eigenvalues corresponding to its principal com-
ponents Dyy, Dyy D55. Woessner [39] showed that in this case, the correlation function can be
expressed as a sum of exponentials as follows:

1% (
C(r) = gZAl-exp -
i=1 ¢
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Where the A; are coefficients that depends on the relative orientation of the principal axis with
respect to the molecular or diffusion tensor frame and t; are the corresponding correlation times.
This gives the following Lorentzian:

5
2
](M)ZEZ 1+(u ‘L'

Of course, the more asymmetric the tensor is, the more different from each other the correlation
times are, and in the isotropiclimit everything is reduced to a single exponential. This description
is useful to analyze relaxation rates of rigid folded proteins [55]. However, it is rare that relax-
ation can only be described by pure overall motion since the motion of proteins is complex and
occurring at different scales in space and time. Numerous complicated explicit models that are
difficult to distinguish from each other were introduced in the past to attempt an interpretation
of NMR relaxation rates, before an analysis method finally provided a "model-free” description
of protein dynamics.

1.3.2 Model Free analysis of Folded Proteins

The Model Free Analysis for NMR spin relaxation rates of macromolecules in solution was intro-
duced in 1982 by Lipari and Szabo [44], quickly after similar work from Halle and Wennerstrom
[56]. The strength of this method is that it requires no initial assumption on the type of motion
occurring in the considered molecule, an explicit geometric model is unnecessary. The more
general required assumptions for the theory were presented later on by Bertil Halle [57]. Let’s
consider a folded protein were relaxation is triggered by overall tumbling and internal motion.
If we assume that the overall tumbling and the internal motion are statistically independent, the
correlation function associated to spin relaxation C(t) can be expressed as the product of the
correlation function associated to the overall tumbling of the protein C, (t) with the correlation
function for the internal motion C;(t):

C(t) = Co()C(2)

The second required assumption is that the overall tumbling of the protein is isotropic. In this
case, the overall rotational tumbling of the protein can be expressed as a single exponential corre-
lation function exp(—t/t.) as demonstrated earlier, where 7. is the correlation time associated
with the overall tumbling. No assumptions have been made for the internal auto-correlation
function so far. For a folded protein, the internal correlation function doesn’t decay to zero, but
rather towards an asymptotic value S? called order parameter. This order parameter represents
the amount of restriction for the internal motion. An order parameter of 1 would mean a fully
restricted condition where no internal motion can occur. An order parameter of 0 would mean a
fully unrestricted motion where the principal axis vector can sample the entire rotational spher-
ical space. These considerations lead to the following Model Free formula for the correlation
function:
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C(t) = exp(—t/7.) (S? + (1 = S?)Ci(b))

If we now assume that the internal motion correlation function can be modeled with a single
exponential, we obtain:

C(t) = exp(—t/t.) (S? + (1 — S?)exp(—t/7;)) = S2exp(—t/tc) + (1 — S?)exp(—t/7)

With 771 = 771 + 771, The corresponding spectral density function would correspond to a sum
of Lorentzians:

J(@) = S2———— 4 (1 - 5?)

1+ (wt)? 1+ (wT)?

This formula is relevant for folded proteins only. In the case of more dynamic molecules, the
method must be extended to account for the increased complexity of the proteins motion. Clore
and coworkers proposed an extension of this analysis where the internal motion, more complex,
is represented by two components instead of one [45].

Arigorous theoretical basis of the different model-free analyses was given by Bertil Halle in 2009
[57]. He introduces different approaches with different assumptions for these approaches. An
extensive mathematical description of each case was presented by decomposing the interaction
axis of interest into several components by defining several reference frames. He defines the lab-
oratory frame (L) and the global molecular frame (G) first. Then, he introduces the local frame
(I) associated with the internal motion of the protein. To account for possible anisotropy of the
internal motion, he introduces an alignment frame (D) fixed with respect to the molecular frame,
but aligned with the potential of mean torque (POMT) of the internal motion. Finally, he defines
the interaction frame (F), usually aligned (dipolar interaction for example) or slightly rotated
(CSA interaction for example) with the internal diffusion frame. In his paper, the so-called MF-A
refers to the model described above where there’s two statistically independent motions with
the slow motion undergoing isotropic tumbling. The so-called MF-B yields the same formula as
MF-A but comes from a different set of assumptions called "adiabatic approximation”, includ-
ing a separation of timescales for motion decoupling and an uniaxial potential of mean torque
(POMT) for the internal motion with respect to the alignment frame (D). He also defined a hy-
brid version containing three dynamic modes with a combined superposition approximation for
the two slowest components and an adiabatic approximation for the two internal motions. Such
extension to three dynamic modes instead of two corresponds to the model proposed by Clore
and coworkers [45].

1.3.3 Model Free analysis of Intrinsically Disordered Proteins

In disordered proteins, the concept of overall rotational tumbling is expected to be less relevant.
To illustrate this fact, let’s consider an IDP containing a highly extended N-terminus part contain-
ing a high amount of Glycine residues (the smallest and most flexible aminoacid). On the other
end, the C-terminus appears more globular-like and rich in heavy and bulky amino-acids. In such
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a case, we can expect the N-terminus chain of the protein to tumble rapidly, while the more bulky
part would undergo slower tumbling and thus exhibit higher correlation times. In the general
case, it is thus not possible to define a single overall correlation time for the protein. Instead, we
may define later a sequence specific correlation time associated with the motion that quenches
the correlation function. In addition, the internal motion is more complex and thus cannot be ex-
pressed by a single exponential. For intrinsically disordered proteins, the correlation function is
often modeled with three exponentials corresponding to three separated timescales. This yields
a spectral density function expressed as a sum of three Lorentzians:

I )—iA .
@ _k_1 1+ w212

Where 1, is the correlation time associated with the kth Lorentzian and ) A, = 1. The rele-
vance of this expression can be demonstrated by examining the considerations taken by Halle
[57]. All the considerations that were made in Halle’s paper assumed the existence of a fixed
global molecular frame (G). For Intrinsically Disordered Proteins, such consideration is irrele-
vant and another description of the theory is thus necessary. For IDPs, we allow ourselves to
describe the N-H bond vector with three dynamic modes possessing three distinct timescales
verifying the adiabatic approximation as defined by Halle as proposed by Briischweiler and col-
leagues and applied to IDPs in our laboratory by Abyzov & Salvi et al. [51]. We are going to write
the correlation function of interest as:

C(r) = Y7 (65)Y7 (1)

With ©5 and ©F the polar angles associated to the orientation of the interaction tensor of in-
terest (Dipolar or CSA) in the laboratory frame at lag times 0 and 7 respectively. We note that the
factor 1/5 associated with the orientational correlation function is encoded in this expression.
We will now define several reference frames that will allow us to transform our random function
from the laboratory frame (L) to the interaction frame. First, we define the slow motion frame
(S) corresponding to the fixed frame with respect to the slowest process quenching the orienta-
tional correlation function. Then, we define the intermediary motion frame (I) corresponding to
the fixed frame with respect to the intermediary process. In between, we define a director frame
aligned with the POMT of the intermediary process with respect to the frame (S). We then de-
fine the fast motion frame (I") fixed with respect to the fast process. We also define an alignment
frame (D) between (I) and (I'). Finally, the interaction frame (F) is pointing towards the princi-
pal axis of the relaxation-active interaction tensor. With such definitions, our random function in
the interaction frame can be transformed into the laboratory frame with the following equation,
using the convenient transformation properties of spherical harmonics:

V9Oh = ) > > DEOFIDE (O OR)D3(2P)D3 @R )DZ @1 Y (0,0)
k,l mn p,q
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Where k, I, m, n, p and q are summed from -2 to +2 and the Dizj (Q‘{‘B) are Wigner rotation matri-
ces evaluated at time t at Euler angles Q48 between the frames A and B. We assumed an isotropic
tumbling for the slowest component. Since the orientation Q!'F between the fastest motion axis
and the interaction axis is assumed constant and Y,! (0, 0) = 840, we can write the random pro-

cess as follows by defining the geometrical coefficient o, = D} Q'F):

V9Oh = > > DEQF)DE (°P)DE (0P )DF (P )DF @2 )y
kil mn p

With Zp loyp |> = 1. The adiabatic approximation implies that for two given degrees of freedom,
a time interval exists for which the slow process can be considered constant while the orienta-
tion associated with the fast process at the end of this interval becomes independent of its initial
orientation. The stochastic process expressed in the laboratory frame can be expressed as:

Y2(0F) = Vs(0p) + Vi(07) + Vr(07)

V,(0%) is the slow component of our random function expressed as:
(@) = (¥2(0D),,

Where the brackets correspond to an average over a time T; corresponding to a time interval
where the slow process is constant and the intermediary process is uncorrelated with its initial
condition as described in the adiabatic approximation. V;(0}) is the component associated with
the intermediary process, expressed as:

Vi(er) = (v2(0r) = Vs(0n),, = {¥7(01); —V:(®f)

Where the brackets correspond to an average over a time Ty corresponding to a time interval
where the slow and intermediary processes are constant while the fast process is uncorrelated
with its initial condition as described in the adiabatic approximation. The second equality arises
from the statistical independence of the two processes which arise from the timescale separa-
tion. V¢ (8%) is the component associated with the fastest processes. It is expressed as:

Vr(0%) = Y7 (0F) — Vi(6F) — Va(0F) = Y (07) — (¥ (0D)),,
The associated orientational correlation function can be expressed as:

C(7) = Gss(7) + Gsi(7) + G55 (T) + Gis(T) + Gy3(T) + Gy (T) + Gps(7) + Gy (T) + Grp ()
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With Ggp, (1) = V,(05)V,, (0L) the auto and cross-correlation functions for the different processes.
Due to the timescale separation, all the cross-correlations vanish and we end up with the follow-
ing correlation function:

C(7) = Gss(7) + Gii (D) + Gpp (7)

The slow fluctuating component associated with the slowest correlation function can be ex-
pressed as:

(R = > > > DEOIDE @) (DF(08) D3in(@") (D2 (281)) 0

kl mn p

If we assume now as done in Halle’s MF-B that the local POMT’s are uniaxial in both frames D
and D’, we can write:

(DEn(Q2D) = 810 (D& (Q21)
and
(p25@2"") = 800 (D83 021)
Which simplifies our expression for the slow process:

(0} = > DE(QEIDEO™) > > (D§ (081 DEo(@'") (D33 08")) o
m p

k

And G4 (7) can be expressed as:
Gss(7) = SZGslow(T)

With S a generalized order parameter define here as:
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This parameter can be factored as:

2

ZDZ o F)(DOP(QD')) ZDmomw Dgn(2PH)| = 5757

sz correspond to the scaling of the correlation function by the fast component, and S? corre-
spond to the scaling due to the intermediary process. The slow component correlation function
can be expressed as:

Gotow(®) = ) D DE(Q5IDE, (@) (D4 (05°)D3, (045))
k k'

From the isotropic solution and the orthogonality, normalization and unitary properties of the
Wigner rotation matrices [58], it follows that the slow correlation function Gg,,,, decays from
1/5 to 0. We can note that the uniaxiality of the local POMT in frame D’ is not necessary for de-
coupling the slow component normalized correlation function Gg;,,, (t) with a generalized order
parameter. In this case, the generalized order parameter becomes:

2
52 =1 0 (D3 @"")) D3n(0") (Dn(2°D)

mn,p

The intermediate component is expressed as:
Vi(07) = (Y5 (0f )) Vs (07)
Which translates, after factorization, to the following:

V@)= > DI @) (D (@8 - (DF(0°))) D3n(@") (D350"1)) o
kL mn,p

The associated correlation function becomes:
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For brevity we are going to define X,,, as:

X = Dgn (') (D5 (07")) 0,

We may write:

Vi(@H)k1m = D& (QE5)DZ; (QSPYDZ, (AP X,y — D3 (QES)DZ; (ASP) (D2 (QP1)) X,

This element is the time dependent component D2 (QP1)X,,, of the motion where the offset from
the slow motion has been removed. The intensity of this component still depends on the orien-
tation of the global slow motion frame at a given time, but thanks to the isotropy of the solution,
every a priori orientation of the slow motion has the same probability, which allows us to write
the correlation function associated to the intermediary motion as follows:

G = (i@HVOD) = D" > > > (DE(@BIDF,(921)

LI mm' nn' pp’

XD (P )DZ, , (QIP )<D,%,,(QD 1 )> o, <D§7p,(QD ! )> o,
Assuming the uniaxiality of the local POMT in the alignment frame D’, we obtain:

Git(@) = 7 )" D (DEA(ORIDF, (O21) P3G (@12 (") = P Gineer (7)

LU mm'

With:

2

57 = > D2y (3,0
p
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From the properties of the Wigner rotation matrices again, it follows that G;,;.,(0) is equal to
1/5. However, this correlation function doesn’t decay to zero, but towards an asymptotic value.
By noting that the Euler angles Q2! become independent of their initial condition after a long
time, we can write by invoking the uniaxiality of the POMT in the frame D:

2

Ginter(0) = ZD (27 (D3 (@°1)| = 57

Therefore, we can write, by defining the normalized intermediary correlation function Cjpter =
(Ginter — 512)/(1 - Siz):

Gii(1) = E 1—S?)S2¢;
ll(T) 5( 1) f Lnter(T)

Finally, using the same principle, we can derive the fast correlation function G¢(7) that can be
shown to be expressed as:

1
fo(T) = g(l - S})Cfast(r)

The total correlation function can finally be expressed as:
Lrczce 2 2 2
C(0) = g [S75?Cotow(®) + SFA = SDCinter (1) + (1 = SP)Crast (D]

If we make the further assumption that the three correlation functions can be expressed as single
exponentials, we can write the associated spectral density function as a sum of three Lorentzians
as follows:

T
52 slow + Sf (1 _ 52) Lnter + (1 _ Sf) fast2

2
J(w)= ¢ 22
5 ‘1 tw slow 1+ w Lnter Tfast

This formula may be written equivalently in terms of amplitudes of each three dynamic modes
rather than order parameters. The associated correlation function would be written as follows:

C(t) = A1C, (1) + Ay G5 () + A3C3(7)

The validity of the assumption that the POMT in the alignment frames associated with the two
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fast processes is uniaxial can be argued. However, even not perfect, the fitted amplitudes and
timescales of each dynamic modes provide a relevant sketch of the dynamics of intrinsically dis-
ordered proteins. The extracted order parameters can be seen as effective asymptotic values of
each term corresponding to the dynamic mode associated with fast and intermediate motion.
This provides information on the level of motional restriction at the timescales associated with
the fast and intermediate correlation times. The validity of this model has been confirmed sev-
eral times on Intrinsically Disordered Proteins [50-52]. In this thesis, the physical meaning of
the IDP Model-Free parameters are treated in several chapters. The model-free analysis provided
insight into the dynamics of countless systems from folded to intrinsically disordered proteins
[50-52, 59-64].

1.3.4 Temperature and Viscosity Dependence of IDP Backbone Dynamics

Intrinsically Disordered Proteins are much more in contact with the solution’s solvent than folded
proteins where only the surface is accessible. Their dependence on the solvent properties is thus
important and we can expect the dynamics of IDP to be highly coupled with the solvent. Abyzov,
Salvi and coworkers performed extensive NMR spin relaxation measurements of the disordered
C-terminus of the Nucleoprotein of Sendai Virus (SeV Ntail) at different temperatures [51]. Us-
ing an approach previously applied to the study of >N and 3C relaxation of proteins in the solid
state [65], they performed a Model-Free analysis and modeled the associated correlation times
with an Arrhenius relationship as a function of temperature such that:

Eox
Tk(T) = Tk,0€XP (_ Ra,}w )

With 7, o, the correlation time for infinite temperature, E, j the residue-specific activation ener-
gies associated to the given dynamic mode, T the temperature and R the ideal gas constant. The
amplitudes of each dynamic modes were also temperature dependent. In addition to making the
Model-Free fitting more robust, this analysis allowed them to propose the type of motion that
dominates each dynamic mode in the Model-Free analysis. The slowest timescale exhibited a
bell-shaped pattern with short-range correlations over the chain, indicating that chain-like mo-
tion might dominate the slow dynamic mode. The intermediary dynamic mode was associated
with peptide-plane fluctuations since the extracted activation energies corresponded to the ex-
pected range for this given type of motion. The fastest dynamic mode highlighted almost neither
sequence nor temperature dependence for the correlation time and was associated to libration
and vibrations of the N-H bond. This study shows that Model-Free analysis of IDPs provides
an unprecedented insight at atomic resolution on the behavior of the protein chain’s backbone
dynamics. A few years later;, Adamski and coworkers studied the effect of viscosity on IDP back-
bone dynamics by adding viscogens to the solution [52]. They had noted that it was possible to
obtain information on the solution nanoviscosity by looking at water relaxation, and proposed
to model the correlation times 7, as a function of the nanoviscosity of the viscous solution n and
the nanoviscosity of the reference solution ny. They defined the solvent friction p = (/1) — 1
and expressed the correlation time as:

T, (C) = Ty (exp(C) + 1)
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With, for the kth dynamic mode, 7, ¢ the correlation time of reference corresponding to no ad-
dition of viscogen and ¢ a friction coefficient. C is the concentration of viscogen and p(C) is
the solvent friction associated with the concentration C of viscogen. This relationship has im-
portant implications. It implies that the correlation times associated to the protein’s backbone
dynamics is linearly coupled with the behavior of the water molecules, with a proportionality
coefficient ;. They noted that the fast timescale had no viscosity dependence, while the inter-
mediary timescale’s €, was around 1, indicating that it was directly coupled with the water’s
friction. It was also observed that the slow timescale &3 was always around 3 to 4 times bigger
than ¢&,, indicating that the size of the group of atoms associated with the slow motion was big-
ger than the size for the intermediary motion in agreement with the length-scale dependence
of experienced viscosity in complex environments (vide supra). This observation supports what
has been hypothesized in the previous work on the type of motion associated to each dynamic
modes. They also tested two different viscogens: Dextran40 and PEG10000, two long chain poly-
mers, and observed that the coefficient g, was the same for both viscogens, indicating that these
coefficients might be independent on the type of viscogen used to alter the viscosity of the solu-
tion. A few measurements were performed in ovocyte cells and the predictions made with the
model reproduced the range of the experimental in cellulo data, indicating that the model can
work in physiological conditions. Assuming that the temperature and the viscosity-dependence
mechanisms are orthogonal to each other, one can model the correlation times extracted from
model-free analysis as follows:

_ Ea,k
T, (T) = Tg,0,00 (P (C) + 1) exp “RT

With 7, ¢ o the correlation time for infinite temperature and zero solvent friction.

1.3.5 Spectral Density Mapping

One useful method to analyse NMR spin relaxation data is Spectral Density Mapping. If one has
measured enough relaxation rates on a system, the spectral density function evaluated at spe-
cific frequencies can be estimated [66-69]. With 1°N relaxation data exclusively, it is possible to
have an estimate of / (0), / (wy) and, depending on the method, J (wgy),J(0.870wy) or J(0.858wy)
[69]. The principle relies on assuming a certain shape of the spectral density function at the high
frequency values around J(wy) allowing to estimate the spectral density function at a single ef-
fective high frequency value J(ewy) with € € [0, 1], instead of all the three J(wy + wy), J(wg),
J(wy — wy). This simplification allows the derivation of expressions for the spectral density
functions evaluated at the given frequencies as a function of the measured relaxation rates. For
example, Farrow and coworkers proposed a method based on the assumption that the spectral
density function at high frequencies could be approximated as [69]:

J(@) = A1 /0* + 4

Where the A, are real constants. This approximation is shown to be most accurate for folded
proteins with slow overall motion and fast internal motion with respect to the proton Larmor
period. A second requirement is the following relationship:
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6/(wy + wy) — J(wy — wy) = A (wq)

If this is valid, this system of equations gives A = 5 and w; = 0.870wy. With the same principle,
we also obtain the following relationships, where the combination of high-frequency terms are
simplified to a simpler single term:

With these simplifications, the three measured relaxation parameters R;, R, and nOe can be
expressed as:

dZ 2
Ry = 5 (3] (@) +7](0921wy)) + 7o (wn)

d? ?
Ry =5 (4J(0) + 3] (wy) + 13/(0.955wy)) + 25 (4/(0) + 3] (wn))
_ dZVH
nle =1+ T074R, 5/(0.870wy)

With d = (uohyyyy)/(4nriy) and ¢ = Acwy. Three simplification methods were proposed
from this system of equations. The first and simplest method consists of considering the high
frequency values of the spectral density function to be constant, thus yielding /(0.870wy) =
J(0.921wy) = J(0.955wy). A second method consist of estimating /(0.921wy) and J(0.955wy)
from J(0.870wy) by assuming that J (w) is proportional to 1/w?. This corresponds to the fastest
rate of decay of the spectral density function assuming it has a Lorentzian form. The required
assumptions of these two methods induce a non negligible bias in the calculated J (wy) and J (0).
The third method takes advantage nOe data measured at two different magnetic fields. In this
case, /(0.921wy) and J(0.955wy) can be extrapolated by doing a first order Taylor expansion
around /(0.870wy ), which translates into the following equation:

J(ewy) = J(0.870wy) + (¢ — 0.870) wH% J(w = 0.870wy)]

J(0.870wpy) is calculated as follows:

2R1Yn
d?yy

J(0.870wy) = (nOe — 1)
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With nOe at two magnetic fields, the derivative of J(w) evaluated at w = 0.870wy can be es-
timated as:

1 (2)
4 J(0.87wy”) — ](0.87wy;”)
(0 = 0.870ay)] = 0772 2T QT
w 0.87(wy’ — wg )

Where w,(,i) correspond to the proton Larmor frequency at a given field strength. J(wy) can then
be calculated as:

7d>?
Ry — W](0.92 lwgy)

3d? 2c2
CE+ )
10 15

J(wy) =

And finally, /(0) can be calculated as:

3d? 3c2 13d?

RZ - (E + E)](O)N) - 7](09550)1.1)

4d? | 4c?
(%)
20 45

Alternatively, one could apply the same principle with the exchange-free transverse cross-correlated
relaxation rate 7y,, giving the following relationship for J(0):

J(0) =

_ 3P (cos(0))cd

Mx J(wn)
](O) = g 4P, (C0155(9))Cd
(P57

Spectral density mapping is an efficient way of obtaining relevant information on the spectral
density function. Figure 1.6 gives an example of spectral density mapping performed on the
residue of an intrinsically disordered protein with a spectral density function extracted from MD
simulation. The results show a remarkable agreement with the real spectral density function at
the evaluated frequencies, especially for o = 0 and w = wy. However, sometimes, the replace-
ment of high frequency terms with an optimized effective value induces a systematic bias that can
be non negligible when the high frequency motion is significant like in Intrinsically Disordered
Proteins. Kaderavek and coworkers [70] proposed an alternative to the method of Farrow et al.
where they approximate the spectral density function with a straight line between J(wy + wy)
and J(wy — wy). Nothing else is assumed on the shape of the spectral density function. The
slope s of this line is calculated as before with several NOE data at different magnetic fields. In
this method, only the reduction associated with the NOE data is optimized with an effective fre-
quency of w; = 0.858wy and the bias arising from this reduction for the spectral density function
estimations at lower frequencies is compensated with correction terms that are proportional to
sand wy.
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Figure 1.6: Multi-Lorentzian fit of the NH bond vector spectral density function associated with the
residue 406 of an ensemble of MeV Ntail MD trajectories simulated with CHARMM36m force field. The
markers correspond to the estimated values of the spectral density function from reduced spectral den-
sity mapping using method 3 of Farrow et al. [69] given the calculated relaxation rates at two magnetic
fields (750 MHz and 950 MHz). The bars in the inserted figure are the real and estimated values of J(0)
using either R, or nxy with the 700 MHz or the 950 MHz data.
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1.3.6 Other Relaxation Analysis Techniques and concluding remarks

Among the other techniques that were introduced along the years, a lot are, strictly speaking,
"model free” in the sense introduced by Lipari and Szabo. Khan and coworkers proposed in
2015 to model the spectral density function as a sum of Lorentzians akin to the conventional
model-free analysis but by fixing the correlation times in a logarithmic scale prior to fitting the
associated amplitudes [71]. In this so-called IMPACT ("Interpretation of motions by a projection
onto an array of correlation times”) analysis, the distribution of correlation time for a given data
set is chosen with a statistical analysis of the fitting results for different combinations of num-
ber of correlation time and covered time window. In their paper, the combination giving the
best Akaike’s Information Criterion (AIC) is chosen for the analysis. In their case with the data
from the partially disordered chicken Engrailed 2 (146-259) measured at five different magnetic
fields, they found that 6 correlation times in a logarithmic scale between 21ps and 21ns was op-
timal given the statistical analysis. They showed that the results of IMPACT gave similar insight
with fewer measurements in a limited set of magnetic fields compared to five. These results pro-
vide information on the distribution of correlation times in the protein’s motion and thus give
information on the shape of the spectral density function. The goodness of fit was comparable
with conventional model-free analysis with a small improvement from IMPACT. One must how-
ever be careful with the analysis of such result. As correctly stated by the authors, the correlation
times in this analysis have no physical meaning, it just gives information on the correlation time
distribution of the motion around these values. From this analysis, they showed that the spectral
density function associated with disordered domains could exhibit a broad distribution of cor-
relation times compared to a folded domain, yielding a smoother decay of the spectral density
function.

Another, still “model-free” method, consists of modeling the correlation times with an inverse-
gaussian distribution [72]. This model was introduced for low-frequency analysis of the spec-
tral density function in the context of high-resolution relaxometry. Continuous correlation times
were already widely used in other systems like polymers [73], with different distribution models
exhibiting a non converging spectral density function around 0 [74]. Inverse-gaussian distribu-
tion allow a low-frequency analysis with a converging spectral density function.

A very recent approach developed for solid-states NMR mostly consists of using "dynamic de-
tectors”. It relies on calculating so-called sensitivities reporting on relaxation as a function of
correlation time. The main claim of this method is to provide accurate estimation of motional
timescales associated with the studied protein’s residue with respect to the conventional model-
free analysis. The interpretation of the results of this method remains challenging due to the
severe overlapping of the sensitivities associated to the dynamic detectors that are derived dur-
ing their analysis. Such method combined with MD-simulation may provide valuable insight.

So far, a significant number of analysis methods were proposed to analyze relaxation rates. From
explicit models to "model-free” frameworks involving different distribution of correlation times
and shapes of spectral density function. The physical limitations due to the necessary balance be-
tween spectral resolution provided by high-fields and low-frequency data provided by low-fields
is progressively being overcomed by the rise of high-resolution relaxometry, a principle based
on a device proposed by Redfield [75]. Such a device allows a sample to be transferred from a
high field position for magnetization buildup and detection to a low field location for relaxation
period. This allows the measurement of spin relaxation rates at multiple magnetic fields includ-
ing low magnetic fields in the range of tens of MHz and lower, provided that accurate corrections
are performed to account for the travel of the sample. The emergence of such devices already
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started to give insight in more refined details of the spectral densities in numerous spin systems
in biomolecules including side chains dynamics with the aid of molecular dynamics simulations
for the model choice [76, 77]. They showed that the information of multifield data including
low field for this system yielded deviations from a conventional model-free analysis. They pro-
posed a multi-site jump model based on MD simulation and successfully fitted the spectral den-
sity function. The continuous rise in computer efficiency will allow the emergence over time of
more molecular dynamics simulation studies. MD simulation is a powerful complement to NMR
spin relaxation data and the combination of both can provide unprecedented insight. Numerous
studies using MD simulation to analyze NMR spin relaxation were performed and will be dis-
cussed in the next chapter. Another important aspect concerning the current challenges related
to NMR spin relaxation is the understanding of the effect of the environment on the biomolecular
dynamics, namely temperature, viscosity and crowding. Protein dynamics is highly dependent
on its environment and the future of NMR spin relaxation also needs to provide an understand-
ing of the effect of these factors on protein dynamics. Some of these challenges were addressed
previously [51, 52] and some aspects are treated in this thesis.

1.4 Chemical Exchange Processes in NMR

The theoretical basis of NMR for studying protein dynamics at timescales from 10 ps to 10 ns
was introduced. These timescales are relatively fast with respect to timescales associated with
large conformational changes, ligand binding and other biologically relevant mechanisms. From
above tens of nanoseconds to higher timescales, NMR spin relaxation is blind since the relaxation-
active processes already quenched the correlation function. We will see that exchange events
occurring at timescales from microseconds up to seconds can be observed and characterized
using chemical exchange techniques. In this section, the basis of NMR chemical exchange will be
introduced, and the most used techniques taking advantage of this process to obtain information
on protein dynamics from us to ms timescales will be presented from CPMG to CEST experiments.

1.4.1 Theory of Chemical Exchange

Let’s consider for simplicity a protein that possess two distinct conformational states: A and B.
One visible NMR signal arising from one spin of the protein will have the angular frequency w,4
when the protein is in the state A and wz when the protein will be in the state B. We can define
Aw the difference between the two angular frequencies. Let’s assume now that there is an ex-
change between the two states, assumed to be associated with Markovian jumps, with associated
exchange rates of k,p and kg 4. We can write the following equation:

A2 p

kpa

We may define the exchange rate k., such that k., = k,p + kp,. If the exchange is very slow
with respect to the angular frequency difference, we would see two peaks in the NMR spectrum
corresponding to the two conformations of the protein as if they were not exchanging. On the
other hand, if the exchange is extremely fast with respect to the difference in angular frequency
between the two states, the exchange would be so fast that we would only observe a single peak
at the weighted average angular frequency. The exchange regime is determined by the exchange
rate and the difference in angular frequencies between the two states. If the two states are mag-
netically equivalent, we wouldn’t see any chemical exchange processes by NMR. On the other
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hand, if the two states exhibit a very big difference in angular frequency, it is likely that we would
observe two peaks unless the rate of exchange is significant enough to be bigger than the angu-
lar frequency difference. At an intermediate regime where the angular frequency difference is
close to the exchange rate k,,, the Fourier-transformed signal is broadened. This results from an
increase in the effective transverse relaxation rate due to the dephasing of the transverse mag-
netization induced by the random exchange between the two states in the sample. Let’s take
an ensemble of spins associated to our exchanging protein. At an initial condition, all the spins
are along the x-axis. During evolution, all the coherences will precess at an angular frequency of
either w, or wg. Without exchange, we will observe two relatively sharp peaks corresponding
to the two distinct coherences. If there is exchange between the two states, each spin will ran-
domly undergo exchange between the two states. This will induce a progressive dephasing of the
coherence independent from the relaxation-active rotational tumbling, leading to an increased
observed R,, and thus broader peaks. The observed effective R;ff can be expressed as:

Rgff = Ry + Rex

With R, the transverse magnetization corresponding to the signal without exchange and R,,
the exchange contribution due to exchange induced coherence dephasing. This behavior can be
modeled with the Bloch McConnell equation [78]. Assuming our signal without exchange can be
modeled with the Bloch equation, we can extend the equation to include the exchange between
the two spins using a kinetic equation as follows:

i <IA(t)> _ <_kAB kga ><IA(t)>
dt \Iz(t) kag  —kpa) \Ip(t)

With I, and Ip the signal intensities associated to the states A and B respectively. Combined
with the Bloch equation, the free evolution Bloch-McConnell equation for free evolution would
give:

A —kyp kga —w4 O 0 0 4
1B kag  —kgs O wg 0 0 1B
dlnp|_| wa 0 —kug kg 0 0 I
de| ;|7 0 wg  ksgg —kgs O 0 7
2 0 0 0 0 —kyp kga I
1B 0 0 0 0 kag —kga/ \IE

Relaxation would appear as additional diagonal elements in the matrix but was ignored in this
equation for simplicity. This consideration can be easily generalized to a more complex N-states
model. Figure 1.7 shows the lineshapes of Fourier-transformed NMR peaks with different ex-
change rates and different populations for the states A and B as calculated from the Bloch-McConnell
equation. At slow exchange, we see the two sharp peaks whose intensity depend on the state
populations. Then, at faster exchange rates we observe the previously described line broaden-
ing until k., is approximately equal to the angular frequency difference. In this case, we observe
a coalescence effect where the two peaks are almost invisible. At faster k., one single broad peak
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Figure 1.7: Fourier-transformed NMR signal of a single spin system exchanging between two states A and
B with equal population (left) or asymmetrical populations (right), with different exchange rates from 7 to
20000 s~ from top to bottom. The FIDs were obtained by numerical computation of the 2-states Bloch-
McConnell equations.

is visible. The peak dispersion is the strongest at the coalescence location. Then, at increasing
k., the peak becomes sharper until the exchange contribution to R, becomes negligible when
key » Aw. In cases where exchange broadens our NMR signal, numerous NMR techniques allow
us to obtain valuable information on our NMR signal. We will see that it is possible to obtain in-
formation on the exchange kinetics, on the chemical shift difference between the different states,
on the relative populations, and on the ground R, that only depends on the rotational tumbling
of the relaxation-active interactions.

Just like for the Bloch equation, in the case of a system involving several spins, J-coupling or any
quantum mechanical effect, the Bloch McConnell equation is not sufficient anymore. Instead, the
Liouville von-Neumann equation is used combined with an exchange matrix component, yield-
ing the Stochastic Liouville equation [79, 80]. We can model a stochastic jump process between
N states with the following equation:

dp(t)

a5 - Kp(t)

Where p is the vector of size N associated with the population of all the states at a given time
t, with the population for state j € {1,., N} at time t being the component p; of the vector. K is

65



the N X N exchange matrix composed by all the exchange rates between each states. the matrix
elements are Kj;, = kjj with kj, the exchange rate between states j and k and K;; = — %, k.
We can write the Liouville von-Neumann equation for a given exchange state j as follows:

do;(t A A
50 ity + B0

Where og; is the density operator, expressed as a vector whose coordinates are expres§ed in a
convenient basis of our Liouville space of dimension M (ex: Cartesian or Shift basis). L; is the
Liouvillian super-operator or commutation super-operator for the state j, and 13 is the relaxation
super-operator, both of size M X M and expressed as a matrix. The Stochastic-Liouville equation
is the combination of the markov jump equation with the Liouville equation as follows. We de-
fine an operator A associated with the Liouville operators for each given states with the following
expression:

N
A=) B @Gl +1)
J

Where P; is an N X N matrix that applies a projection into the exchange state j. The symbol
& represents a tensor product, resulting in a final matrix of size MN X MN in a space of dimen-
sion M X N. For the exchange, we define the operator Z defined as:

E=KQ Espin

Where K is the N X N exchange matrix and Ej,;, is the M X M identity matrix associated with the
considered spin system in Liouville space. The final Stochastic-Liouville equation is thus, after
defining the density operator in the Stochastic-Liouville space as 6(t) = [0y (t), .., an]T (¢):

dé@
- = (A + )3

We note that in a case of a single spin system or in a case with no quantum-mechanical com-
plications, the Stochastic-Liouville equation becomes the Bloch-McConnell equation. The latter
is usually enough to model most of the chemical exchange problems involved in biomolecular
NMR. Although the lineshapes of the observed peaks in NMR spectra already provide helpful
information [81, 82], specific techniques allow a quantitative description on the exchange oc-
curring in our system of interest. From relaxation dispersion to saturation transfer experiments,
one can characterize the exchange rates, the chemical shift differences and the state populations
in a given exchanging system.
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1.4.2 CPMG Relaxation Dispersion

The CPMG relaxation dispersion experiment is based on the Carr-Purcell-Meiboom-Gill spin echo
pulses technique developped in the 50s [83, 84]. A CPMG sequence consists of a series of re-
peating spin-echo periods. Let’s consider our two-state system described earlier. If we start
with our overall magnetization along the x-axis, the spins will precess at a randomly exchang-
ing angular frequency. The exchange induces a dephasing of the overall magnetization and thus
line-broadening. During a CPMG sequence, each 180° pulse will invert the sense of precession
of the nuclear spins. If the frequency of 180° pulses is close or higher than the rate of exchange,
then the dephasing is reduced. An illustration of this mechanism is presented in figure 1.8. For
15N nuclei, the frequency of 180° pulses v¢py; can usually go up to 1000Hz. vppg is limited
by physical constraints, a too high frequency could damage the NMR probe. v;pp ¢ also deter-
mine the maximum timescale for which CPMG is sensitive. If the rate of exchange is much faster
than v¢p¢, then the pulses are not applied frequently enough to reduce the exchange-induced
dephasing. On the other hand, if the exchange is too slow, too few exchange events will occur
during the CPMG period and nothing will be visible. The CPMG period is of course limited by the
ground transverse relaxation rate due to rotational tumbling.

A CPMG experiment can be modelled with a Bloch McConnell equation, and analytical expres-
sions for the effective transverse relaxation rate as a function of v.py; can be derived from it.
Let’s consider our transverse overall magnetization I*(t) = I,(t) + il (t). The Bloch-McConnell
equation considering only this transverse component can be reduced to:

d [Ii(t)] _ [_iwA —kap — R4 kpa ] [[X 0)
— Ryp

dt |IZ(©) kagp —lwg — Kpa I3 (0)

This equation can be analytically solved, giving a solution of the form:

[zm] _ [aAA(t) aAB(w] [IX(O) — P®) [1,4*(0)
I§ (0 apa(t) app(t)||I5(0) 15 (0)

With ayy (t) propagation functions depending on all the systems parameters. We can easily prop-
agate our system during free evolution with the propagation matrix P. A 180° pulse would have
the effect of inverting all the coherences. Propagation following the inversion pulse is then ex-
pressed with the complex conjugate of the initial propagation matrix: P*. Propagating the system
in a spin-echo of duration 7, thus translates as:

IF ()| _ ‘ I3 (0)
[Ig-(,[se) - P(Tse/Z)P (Tse/Z) [12—(0)

Finally, the propagation of our system during a CPMG of duration T¢p;, with a CPMG period
Tepme = 1/Vepme and an even number of pulses would be written:
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[Z} gzzg] = (P(tcpmc/2)P* (Tepme/2)" [Z—E Egg

Where n is the number of applied 180° pulses. From this, the transverse relaxation rate con-
stant can be expressed as a function of the spin-echo frequency v¢p . Such analytical solutions
involve relatively sophisticated functions. It is often easier to numerically integrate the Bloch-
McConnell equation. R;ff isequal to R, + R, when v¢eppye = 0, then it decreases until reaching
a plateau at higher CPMG frequencies corresponding to the ground transverse relaxation rate R,.
A CPMG relaxation dispersion experiment consists of measuring the transverse relaxation rate
with different CPMG frequencies to give a relaxation dispersion profile. Fitted with the appro-
priated model, it gives valuable information on the kinetics (k,,) and thermodynamics (bind-
ing affinity, populations) of the interaction as well as the absolute value of the chemical shift
difference between the different states. Usually, one must measure dispersion at several mag-
netic fields to have a proper fit of the different parameters. For binding studies, one can mea-
sure relaxation dispersion at different admixtures of ligand to extract the binding affinity and
the populations of free and bound state. Of course, it is possible to fit highly complex exchange
models, but the more complex the model, the more data is required [85]. Since the invention
of the CPMG sequence, the method has been widely applied and optimized in different biologi-
cal systems [86-89]. Physical limitations however makes some timescales inaccessible to CPMG
dispersion. Other methods exist for chemical exchange and were shown to be either a good al-
ternative, of a powerful complement to CPMG relaxation dispersion.

1.4.3 CEST Experiments

The Chemical Exchange Saturation Transfer experiment has been introduced in the 60s for study-
ing small exchanging systems [90]. It has then been used in biomolecules later on from the 70s
[91-93]. CEST has also been extensively applied in Magnetic Resonance Imaging (MRI) experi-
ments as a very large signal enhancement could be achieved from the water signal by a saturation
of small metabolites exchanging with water [94-96]. In 2011, Fawzi and coworkers developed
a method similar to CEST called Dark-state Exchange Saturation Transfer (DEST) that takes ad-
vantage of the strong difference in transverse relaxation between two states of a molecule [97].
They used it to probe exchange between Amyloid-f monomers and protofibrils and character-
ized for the first time an exchange between a visible monomer and an NMR-invisible fibril state.
Similarly, Vallurupalli and coworkers showed in 2012 that a CEST technique included in a multi-
dimensional biomolecular NMR experiment could allow the extraction of exchange parameters
as well as chemical shift differences with a great precision even with an invisible low populated
protein’s excited state. The principle of a CEST experiment is to apply a weak selective radiofre-
quency (rf) field (b1 field) during a given period of time to a spin system with magnetization
aligned with the z-axis. The rf field is selective enough to saturate only spins in a specific nar-
row chemical shift range. This frequency range depends on the strength of the applied rf field.
A stronger b1 field will affect a broader frequency range. Assuming that a spin at a state 4 is un-
dergoing exchange with a state B, if exchange occurs during the saturation, the intensity of the
signal associated with the B state will be altered as well, and vice versa. In a CEST sequence, a
whole chemical shift range is scanned with such experiment and the intensity of the given signal
is plotted against the chemical shift range. A dip at the original signal’s chemical shift should
be observed, and if exchange occurs at a proper timescale and if the chemical shift difference

68



Figure 1.8: A: Basic pulse sequences of a CPMG experiment with one (top), four (middle) and sixteen (bot-
tom) inversions during the CPMG period respectively. B: [llustration of the effect of the corresponding se-
quences on transverse magnetization. Simulated evolution of the phase of an ensemble of 500 oscillating
spins in the transverse plane exchanging between two states in a 32 ms long CPMG experiment containing
1, 4 and 16 inversion pulses respectively from top to bottom. The two exchanging states corresponded to
arbitrary angular frequencies of 0.5 and 2 rad/s respectively. One spin had a probability of 2% to switch
from one state to the other each 0.1 ms. A higher frequency CPMG train (bottom) will be more efficient at
preventing coherence dephasing than a simple spin-echo (top) as illustrated in this panel.
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is significant enough, a second dip should be observed at the chemical shift associated with the
second state. A basic CEST sequence is illustrated in Figure 1.9. Our spins of interest are along
the z-axis. A weak rf field is applied at a given frequency, then the magnetization is transferred
to the transverse plane for detection. The intensity associated with a given signal as a function of
the frequency of the weak rf-field can be modeled with a Bloch-McConnell equation taking into
account the weak b1 field:

E
I
Iy
_ 124 —
I7
Iy
I7

0
0
0
R{IZ,
0
0
RPIZ,

0
RY —kap
Wy
—w,
kap
0
0

0
o,
RS — kap
0
0

kap
0

0
wq
0
R{ —kyp
0
0

Kap

0
kpa
0
0
RF — kpa
Wp

kpa
0
—wg
R} — kpa
0

RY — kga

Where IV (i € x,y,z) is the i component of the angular momentum for state N € A, B. RY and
RY are the associated longitudinal and transverse relaxation rates respectively, k5 and kg, are
the rate of exchange between states A and B and B and A respectively and wy is the offset corre-
sponding to the signal associated with the protein state N. Iévq is the equilibrium z-magnetization
for state N and E is the identity operator. Finally, w, is the strength of the low-power radiofre-

quency field.

An advantage of the CEST experiment over the CPMG dispersion is that it provides a precise mea-
sure of the chemical shift difference including the sign of this difference. In addition, since the
magnetization of interest is along the z-axis during the relaxation period, this period is limited
by the longitudinal relaxation rates, which are smaller or equal to the transverse relaxation rates.
Therefore, slower exchange processes can be probed with CEST.

Scanning a whole frequency range with a CEST sequence requires a significant amount of points
and can be highly time consuming when implemented in a multidimensional experiment for
biomolecules. Recently, Yuwen and coworkers proposed a variant of the CEST experiment in
which the weak rf-field is replaced by a DANTE selective excitation scheme [98]. This scheme
provokes a periodic selective multi-site excitation over the frequency space instead of a selec-
tive single-site excitation [99], allowing to sample the whole frequency space with a significantly
shorter experiment time. In such experiment, the actual chemical shift associated with a dip can
however not be determined with only one frequency window. Usually, at least two DANTE-CEST
experiments are performed with two different frequency windows that are not a multiple of each
other in order to be able to extrapolate the real chemical shifts associated with the measured
dips. This multi-site excitation scheme allows a significant reduction of the spectrometer time
used to probe a given exchange process at a wide range of frequencies and is thus a significant
time-saving improvement over the conventional CEST experiment.

1.4.4 Other Chemical Exchange Techniques

Other NMR methods are able to probe NMR chemical exchange processes. Among them, on
and off-resonance Ry, dispersion allows to probe exchange processes in a significant range of
timescales, from what CPMG can probe to even faster processes. The application of a rotating b,
field for a system of exchanging states changes the effective exchange regime between the dif-
ferent states, and can quench the dispersion effect of exchange if the b, field is strong enough.
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Figure 1.9: A: Basic pulse scheme for CEST (left) and DANTE-CEST (right) experiments. The grey rectan-
gle corresponds to alow-power rf field applied for a duration Aggr folowed by a 90° pulse and acquisition.
The CPMG and CEST experiments in this thesis were performed with an HSQC encoding similar to the re-
laxation experiments. B: Simulated CEST profile at two different low-power radiofrequency (rf) fields.
The profiles were calculated with a Bloch-McConnell equation.
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Several reviews provide an extensive explanation of how R, dispersion work [100, 101]. Ad-
ditionally, ZZ-exchange [102, 103] and EXSY [104, 105] can be used to probe slower exchange
processes. The choice of which technique should be used depends on the dynamic range of the
given exchanging system and the exchange regime defined by the ratio between the exchange
rate k., and the chemical shift difference between the different states. All these techniques pro-
vide atomic-resolution information on relevant biological mechanisms and offer a direct window
towards the function of proteins in biology.

1.5 Conclusion

In this chapter, the NMR principles that are covered in this thesis for the study of protein dy-
namics were presented. | have shown that 10 picosecond to 10 nanoseconds dynamics could be
probed by NMR spin relaxation, providing insight into the rapid dynamics of proteins from fast
internal motion up to the timescales of rotational tumbling. I also presented the effect of chem-
ical exchange processes, observable at timescales from microseconds to seconds with different
NMR techniques, providing insight into the slow dynamics of large domains of proteins as well
as molecular interactions. This chapter shows the unique power of NMR in providing atomic-
resolution information on IDP dynamics. Several questions remain unanswered: Is it possible
to derive conformational ensembles of IDPs? How can we study the behavior of IDPs in differ-
ent conditions, from the test tube to more physiological environments? Can computational tools
help us understanding protein dynamics? These questions will be addressed in the next chapter.
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Chapter 2

Characterization of Intrinsically
Disordered Proteins from the test tube
to physiological environments

"Deux dangers ne cessent de menacer le monde: 'ordre et le désordre.”
- Paul Valéry

Since Intrinsically Disordered Proteins don’t have a fixed structure, ensemble methods are
necessary to describe their conformational sampling. So far, high-resolution structural tech-
niques such as cryo-EM and crystallography fail to obtain conformations of IDPs, despite re-
cent progress. On the other hand, NMR provides highly valuable information on the ensemble-
averaged conformational sampling of IDPs at atomic resolution, and other biophysical methods
such as SAXS and fluorescence methods provide complementary low-resolution information.
Computational tools like molecular dynamics simulations are powerful complements to exper-
imental methods since they allow the sampling of the conformational space of IDPs at atomic
resolution and can be combined with experimental data to derive accurate ensembles of IDPs. In
this chapter, we will first describe the useful experimental observables that provide valuable in-
formation on Intrinsically Disordered Proteins. Then, we will introduce the computational meth-
ods that are used to describe the conformational sampling and the dynamic properties of IDPs.
Finally, we will explore recent progress in investigating the properties of IDPs in crowded envi-
ronments and in liquid-liquid phase separated biomolecular condensates.
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2.1 Experimental observables

NMR is a unique tool for characterizing Intrinsically Disordered Proteins at atomic resolution.
In this section, the main NMR techniques for conformational and dynamical characterization of
IDPs at atomic resolution are presented. In addition, the complementary lower resolution tech-
niques are also introduced to provide a broad view on the field.

2.1.1 NMR Observables
Chemical Shifts

Experimental values of NMR Chemical Shifts are easy to measure and provide insightful infor-
mation on the averaged local conformational sampling of proteins. They report on the ensemble
averaged electronic environment surrounding the considered nuclei, which is directly related to
the local conformational space explored by the atom groups in the vicinity of each nucleus. IDPs
undergo fast conformational exchange with respect to the chemical shift timescales, with a wide
conformational space compared to folded proteins. As a result, the ensemble averaged chemical
shift experienced by several different amide protons for example is going to be similar along the
sequence of an IDP, unlike for folded proteins. Therefore, it is possible to identify if our protein
is an IDP or a folded protein with a single 1D proton NMR spectrum. The amide region of the
1D spectrum of an IDP can exhibit a very narrow chemical shift window between 8 and 8.5 ppm
while a folded protein can show amide proton peaks between 6 and 10 ppm (Fig. 2.1). Carbon
and Nitrogen chemical shifts exhibit a more disperse chemical shift window due to their stronger
amino-acid dependence.

While amide protons provide insight into the disordered or folded nature of our protein,
backbone carbon chemical shifts are extremely valuable since they report on the secondary struc-
ture propensities of proteins [106, 107]. In practice for IDPs, experimental backbone carbon
chemical shifts §,,, are compared to a set of random-coil chemical shifts &, determined for
each type of amino-acid. in order to obtain the so-called Chemical Shift Index (CSI) or Secondary
Chemical Shift: Sipgex = Oexp — ¢ [108, 109]. The reference random coil values can be pH,
temperature and buffer-dependent and must thus be carefully choosen [110]. CSI values close
to zero will indicate a conformational sampling close to random coil, while non-zero values will
indicate a propensity for helical or beta sheet structures. Positive and negative C, CSI values will
indicate propensities for alpha helices and beta sheets respectively.

Using chemical shift data, methods were developed to estimate secondary structure propensi-
ties. A secondary structure algorithm (SSP) were developed for this purpose by Forman-Kay and
coworkers [111]. A set of chemical shift data for random coil, fully formed alpha helices and fully
formed beta sheets is used in combination with the measured chemical shifts of several nuclei in
the molecule of interest to estimate the chemical shift propensity along the sequence, giving neg-
ative values for beta sheets and positive values for alpha helices. Similarly, a "neighbor-corrected
structural propensity calculator” (ncSPC) was developed to estimate such propensities, using
random-coil values [112, 113].

Residual Dipolar Couplings

RDCs are extremely powerful to provide insight into the structural ensemble of folded proteins
and IDPs. The dipolar coupling between two nuclei depends on the orientation of the inter-
nuclear vector with respect to the magnetic field and the internuclear distance. Therefore, ob-
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Figure 2.1: HSQC spectra of the Intrinsically Disordered MeV Ntail 465-525 (blue) and the folded XD
domain of the Measles Virus (MeV) Phosphoprotein (Orange). IDPs are characterized by a narrow proton
chemical shift range compared with folded proteins.

taining several RDC values for all residues along the sequence provide valuable restraints that
can be used to derive structural propensities, cooperativity and long-range interactions for both
folded proteins and IDPs. If we induce in a sample a weak potential of mean force that induces a
slight preference for our protein to align in a particular direction, the ensemble averaged dipo-
lar coupling component of the NMR Hamiltonian doesn’t vanish anymore and is expressed as
Hgpc = 2nDI1,S, in natural units with D the RDC [114]. The RDC Hamiltonian adds up with the
scalar coupling Hamiltonian. Measuring RDCs is done by measuring scalar couplings with and
without alignment media. The RDC is obtained by subtracting the measured scalar coupling in
aligned and isotropic condition. For folded proteins, the analysis approach is straightforward:
Defining a common molecular frame and assuming the considered inter-nuclear vectors related
to RDC values to be rigid within this frame while defining an alignment tensor to describe the
alignment of the molecule along the static magnetic field allows to easily obtain structural re-
straints [115, 116]. For IDPs, obtaining information is more difficult since each conformation
of the IDP possesses its own alignment tensor depending on its shape. In this case, an overall
RDC for a given internuclear vector in an IDP is described as an ensemble averaged RDC over all
conformations, taking into account the alignment properties of each conformation in an explicit
ensemble description [117-120].

RDCs are sensitive to timescales up to tens of milliseconds, which is usually the order of mag-
nitude for chemical shifts. Therefore, RDCs report on the whole sampling of the conformational
energy landscape at faster timescales. The ensemble averages obtained from RDCs can provide
information on the local dynamics of the protein in terms of so-called order parameters in a sim-
ilar way to NMR spin relaxation. Comparison with NMR spin relaxation order parameter proved
to be useful to study the amount of dynamics occurring between tens of ns (limits of the sensi-
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tivity of NMR spin relaxation) to tens of milliseconds, bridging the gap between spin relaxation
and chemical shift timescales [121-124].

Paramagnetic Relaxation Enhancement (PRE)

The PRE technique allows the characterization of long-range interactions in proteins. PRE in-
volves the incorporation of a paramagnetic label in the protein. The unpaired electrons in this
paramagnetic probe will undergo relaxation-active dipolar interactions with the surrounding nu-
clei, affecting the measured NMR spin relaxation rate of these nuclei. Since the magnetic moment
associated with unpaired electrons is relatively large, it can affect nuclei at distances up to 3.5
nm in space, allowing the detection of long-range contacts between different parts of the protein
[125, 126].

PREs are measured by subtracting the measured transverse relaxation rates between the para-
magnetically labelled sample and a control sample with no unpaired electrons. Another practice
is to look at the intensity ratio between the paramagnetically labelled sample and the control
spectra, which is sufficient for qualitative analysis.

Scalar couplings

Scalar couplings, or indirect spin-spin through-bond dipolar interactions between nuclear spins,
can provide insightful information on the secondary structure propensities since their value de-
pend on the local electronic structure and molecular conformation. Scalar couplings of backbone
nuclei are related to the backbone dihedral angles. Parametrized Karplus relationships can be
used to express an empirical expression between dihedral angles and the value of scalar coupling
constants [127]. The 3] scalar coupling between amide protons and H,, in a protein backbone are
for example related to the dihedral angle @, which allows an identification between alpha helical
and beta sheet propensities [128, 129]. Backbone scalar couplings provided insightful infor-
mation on the conformational sampling in IDPs [130-137]. Side-chain scalar coupling can also
provide information on side-chain conformations, although obtaining such information is more
challenging in IDPs due to important motional averaging [138-143].

NMR spin relaxation and chemical exchange

As presented in the previous chapter, NMR spin relaxation provides unique information on the
dynamics of a protein at atomic resolution from 10 ps to 10 ns timescales. In addition to provid-
ing information on IDP dynamics, it can be argued that NMR spin relaxation is also giving struc-
tural information through relaxation data analysis, for example with the Lipari-Szabo Model-Free
order parameter, which provides residue-specific insight into the amount of restriction of inter-
nal motion [44]. In addition, NMR spin relaxation allows the detection of protein interactions.
Indeed, the presence of an interaction often affects the local dynamics of the IDP and is some-
times responsible for chemical exchange contributions to R,, which is visible by NMR peak inten-
sity comparison, spin relaxation measurements and chemical exchange techniques. As described
earlier, chemical exchange NMR can give insight into conformational changes and interactions
occurring from microseconds to seconds timescales, as well as structural information on a bound
or excited state, through extraction of chemical shift differences.

2.1.2 Complementary approaches

It is well accepted that the more different kind of experiments are integrated in an ensemble
description of IDPs, the more reliable the resulting conformational ensemble ensemble is [144,
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145]. Numerous experimental methods provide complementary information to NMR.

Similar to NMR’s PRE, Electron Paramagnetic Resonance (EPR) spectroscopy also allows the
study of long-range distances between two paramagnetic spin labels incorporated in the protein
thanks to the double electron-electron resonance (DEER) experiment [146-149]. In such exper-
iment, the sample is flash frozen prior to the measurement and a distance distribution between
the two labels is obtained, giving information on long-range contacts.

Small Angle X-ray Scattering (SAXS) gives information on the average size and overall shape
of the conformational ensemble of Proteins and IDPs ([150-153]). SAXS can thus for example
help deciphering the presence of long-range structures within an IDP ensemble, study complex
formations [154] and structural ensembles [155].

Another low-resolution observable that showed to be useful to probe conformational features
and changes such as induced folding is Infrared Spectroscopy, and more specifically Fourier
Transform Infrared Spectroscopy (FTIR). Although limited to folded proteins for a long time,
progress in combining it with molecular dynamics simulation allowed the extraction of valuable
information in IDP’s conformational features [156, 157].

Single molecule fluorescence spectroscopy techniques also proved to be useful for studying
IDPs [158]. Single molecule approaches have the advantage of detecting individual molecules,
which is a powerful complement to all the previous ensemble average-based approaches. Among
them, Single molecule Forster Resonance Energy Transfer (FRET) experiments provides valuable
information on IDPs long-range conformation and even their dynamics and interactions [144,
145, 159-162]. In such experiment, two fluorophores, a donor and an acceptor, are attached
to two different regions of the protein. The donor is excited and the acceptor’s signal resulting
from a so-called "Forster Resonance Energy Transfer” between the fluorophores. The overall
efficiency of this transfer of course depends on the distance between these two labels. We will
see later that single molecule fluorescence methods are also powerful to obtain information on
protein dynamics and interactions in complex environments such as in cells or in crowded envi-
ronments.

Combining all these experimental observable that report on different structural features allows
an accurate description of IDPs at different levels. The question now is how to use all these data
to derive an ensemble of conformation that is in agreement with experimental data.

2.2 Insilico exploration of the energy landscape of IDPs

The main difference between structure refinement of folded proteins and ensemble determina-
tion of IDPs is that a folded protein is, in the ideal scholar case, unique, while an IDP ensemble is
a set of conformations that are representative of the IDP conformational space. It is, by nature,
not unique. The key challenges to derive IDP ensembles are first the effective sampling of the
IDPs energy landscape, using either MD simulation techniques or other smart tools. Then, one
needs to obtain experimental data that provide structural information. Then, one needs to be
able to predict these experimental observables based on a given set of structures. Finally, an op-
timization procedure is needed to find an appropriate combination of IDP conformations that is
representative of the conformational sampling of the IDP. First, the basic principles of MD sim-
ulation are going to be presented, then, we will briefly discuss the basic principles for deriving
conformational ensembles from conformational sampling to refining with experimental data. Fi-
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nally, we will see how MD simulation can be used along with NMR spin relaxation data to obtain
insight into the dynamic properties of folded and disordered proteins.

2.2.1 Introduction to MD simulation

Computational approaches such as Molecular Dynamics simulations have become a standard tool
for investigating molecules and biomolecules in a very broad range of timescales, from picosec-
onds with quantum mechanical calculations to microseconds and beyond for coarse-grained
models. In principle, the amount of detail and the timescale of the mechanisms we are studying
determine the type of simulation we are going to carry. In 2023, the paradigm is as follows: For
the study of chemical reactions and mechanisms that involve only a few atoms, a quantum me-
chanical simulation is perfectly suited. For the study of single biomolecules at timescales reach-
ing the microsecond, it becomes preferable to use classical atomistic simulations to improve the
computational efficiency at the cost of quantum mechanical details. For studying larger systems
like protein assemblies and longer timescales, coarse grained models offer a suitable compro-
mise between accuracy and computational cost. Finally, larger systems describing mesoscopic
phenomena can be studied with analytical models, at the cost of resolution and numerous as-
sumptions.

Classical MD simulations rely on solving the classical equations of motion for a model that mim-
ics areal system. Such "in silico laboratory” approach allows to study complex physical problems
that are difficult to tackle analytically or experimentally, such as the motion of macromolecules
in solution or on membranes for example. An advantage of in silico approaches is also that the
control parameters can easily be monitored, and extreme conditions are easy to tackle and don’t
require other precaution than the cooling of the processors that run the simulations. In addi-
tion, many physical and thermodynamical observables are easy to measure and control, and the
system can be calibrated to control a specific set of observables. Among such systems, the mi-
crocanonical or "NVE” ensemble is an isolated system in which we fix the number of particles,
the volume of the system and the energy that this system contains. In reality, a system is never
isolated. Many simulations are carried out in a system in which temperature is controlled with a
thermostat, which in practice is a procedure that regularly updates the particles kinetic energies
during the simulation to correct and adjust temperature towards the fixed value. The canonical
ensemble or "NVT” ensemble applies this principle. Similar other ensembles exist. For example
the isothermal-isobaric or "NPT” ensemble controls the pressure of the system instead of the vol-
ume. Such control can be useful to stabilize the simulation in complex systems, but in practice,
the results from an NPT ensemble will not deviate from the results obtained in an NVT ensemble
in similar conditions [163].

Proteins, and especially Intrinsically Disordered Proteins, are a typical example of molecules that
are well suited for MD simulation due to the high amount of interactions that need to be taken
into account and, for IDPs, the challenges of obtaining a relevant conformational ensemble. In
a classical MD simulations, the forces that rule the system’s dynamics are expressed in a "force
field” that takes into account all the interactions of the system. A typical potential energy func-
tion in an atomistic protein force field is given as follows:

bonds angles dihedrals
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In this function, we can identify two types of interactions: The protein bonded interactions and
the non-bonded interactions. The first type represents the interaction between two bonded
atoms. They are maintained together like two balls linked by a string of coefficient kf’ and equi-
librium distance r; . The angles and peptide plane improper angles are modeled with string-like
forces as well with coefficients k{* and K; and equilibrium angles 6, and ¢, respectively. Then, the
dihedral angles are modelled with an empirical relationship that depends on the vicinal atoms
that constitute the neighboring groups of the given dihedral angle. This relationship depends
mostly on the steric exclusion and electrostatic effects of these vicinal groups. Among the non-
bonded interactions, the Van der Waals interactions are often modelled with a Lennard-Jones
potential while the Coulomb interactions are modelled with Coulomb’s law. All these empirical
force-field coefficients are usually calibrated using extensive quantum mechanical calculations
[164-166]. From this, it is very easy to see what are the downsides of such approach. The clas-
sical MD force fields are a severe approximation of the complex quantum mechanical properties
of the interactions that rule molecular dynamics, and since the results can only be as good as
the numerical model, the resulting simulations are as accurate as the force field is to the un-
derlying quantum mechanical interactions. In addition to this intrinsic inaccuracy, MD simu-
lation remains nowadays highly computationally expensive, and for IDPs, sampling the whole
conformational space requires a large amount of computational power. In addition, the molec-
ular mechanisms that occur at large timescales such as domain motion and protein interactions
are challenging to study in terms of reaction kinetics since the timescales that can be simulated
are limited by the computational cost.

An additional challenge that arises with IDPs is that many of the modern force fields were primar-
ily designed for folded proteins. Their accuracy with unfolded proteins is often limited. A typical
problem of such force fields is the tendency of the IDP to collapse on itself during the simulation,
possibly because of the fact that force fields were initially designed to stabilize compact tertiary
structures. Fortunately, the development of force fields for IDPs is an active field of research and
many force fields were already proposed [166-169]. An ideal force field would however be able
to simulate both IDPs and folded proteins with good accuracy in order to be able to simulate
multidomain proteins with IDRs and more complex conditions. We will see that despite these
drawbacks and challenges, MD simulation remains extensively used in order to study IDPs, and
its use can help to sample their massive conformational space.

While atomistic MD simulations provide valuable high-resolution information on proteins in-
cluding IDPs, it remains nowadays too computationally expensive to use it to model large sys-
tems at timescales larger than the microsecond. To tackle this problem, numerous coarse grained
models have been developed through the years with a simplified representation of the molecules
of interest [170-173]. Different types of coarse grained models exist and have been reviewed
[174, 175]. Typically, a coarse grained model for proteins will describe one protein residue with
one or several beads that regroup several atoms. In addition to this simplification, the solvent,
classically represented with rigid water models [176] can be treated implicitly. To do so, the sys-
tem can for example be simulated with additional terms to represent the implicit solvent with
for example the so-called Langevin equation, the Newton’s second law with a time-dependent
random force 17 and a friction term A:
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ma(t) = —AB(t) + 7i(t) + Frp(t)

Where d, v, m are the acceleration, the velocity and the mass of the given particle respectively
and ﬁff is the sum of the forces coming from the force field. Among the most used protein coarse
grained models, we can cite the MARTINI force field [177-179], used in a wide variety of ap-
plications that are not restricted to proteins, including lipids, sugars, membranes and of course
proteins. Nowadays, coarse grained models are being developed for more specific tasks, like the
study of liquid-liquid phase separation, protein assemblies and many other applications (vide
supra).

Computational approaches are powerful at describing complex systems. Can this help us to de-
rive accurate ensembles of IDPs? Can this help us understanding complex mechanisms including
IDP dynamics? Can we combine these approaches with experimental data to obtain even more
accurate pictures of our systems? We will see in the next section how computation is used to de-
scribe ensembles of IDPs, before introducing the current state of the art regarding IDPs in more
physiological environments.

2.2.2 Sampling the conformational space

Sampling the entire conformational space of an IDP is rather challenging because of the number
of possible conformations. The structural properties of Intrinsically Disordered Proteins must
be described in terms of a representative set, a so-called "ensemble” that best represent the con-
formational space explored by the IDP. One straightforward approach to sample IDPs energy
landscape is the use of MD simulations, or Monte-Carlo simulations [180]. However, the force
field inaccuracies induces biases in the sampling, and an effective sampling of a sufficiently broad
area of the conformational space still remains challenging [181].

In 2005, Bernado and coworkers developed an alternative method consisting of generating random-
coil conformations of Intrinsically Disordered Proteins [182] with a statistical coil model. This
method, called Flexible-Meccano, is an efficient algorithm that samples the amino acid-specific
Ramachandran potentials of what would theoretically describe a random coil IDP. Each amino-
acid is generated iteratively with random dihedral angles taken from the given Ramachandran
distributions. The dihedral angle potentials were obtained from regions of protein X-ray struc-
tures exhibiting no secondary structure. In order to avoid steric clashes during the generation,
hard spheres were used for each amino-acid. This tool can be used to generate hundreds of thou-
sands of random-coil conformations in a reasonable amount of time with a standard computer.
In addition to random-coil IDPs, this tool was also designed to allow the addition of secondary
structure propensities, provided that it only affects the Ramachandran space sampled in these
regions. Finally, long-range contacts can be modelled by adding some long-range distance con-
straints to a certain percentage of generated structures. From such an ensemble, it is possible
then to predict resulting RDCs, chemical shifts, PREs, scalar couplings and even SAXS data. This
makes this tool highly useful for comparing experimental data to a random-coil behavior, analyz-
ing random-coil deviations in an IDP, and more importantly sample the conformational space of
a given protein to obtain an ensemble that can be used for molecular modeling including molec-
ular dynamics simulations. We will see that Flexible-Meccano is also the starting point for more
advanced "sample and select” tools that allows the generation of any ensemble matching exper-
imental data.
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2.2.3 Deriving conformational ensembles

One should note that deriving a finite ensemble to describe a continuous conformational sam-
pling does not yield a unique solution, it is in this sense "ill-defined” in many cases unless there is
a finite ensemble of structures such as a folded protein exchanging between several well defined
conformations. The derivation of conformational ensembles of Intrinsically Disordered Proteins
is still an active field of study [183, 184]. Nowadays, ensemble determination methods are some-
times divided into two categories: maximum entropy methods and maximum parsimony meth-
ods [183-186]. Maximum entropy methods rely on using the highest number of possible confor-
mations that together match the experimental data and such that it minimally perturbs the initial
ensemble. Maximum parsimony methods on the other hands are defined as methods based on
determining the minimum number of conformations that match the experimental data. Since the
conformational space of an IDP is broad and continuous, it is a high entropy system compared
with folded proteins with single of few possible structures. It is therefore argued that maximum
entropy methods are more suited for IDP’s ensembles to sufficiently sample the whole confor-
mational space. Numerous ensemble determination methods exist and are presented elsewhere
[183,187].

Using MD simulation to derive an experimental data based ensemble of conformations is pos-
sible by refining the conformational sampling to be in agreement with the experimental data.
Methods that bias the conformational sampling includes so-called restrained molecular dynam-
ics simulations or restrained replica-exchange MD (REMD). The force field is modified to bias
the conformational sampling towards an experimentally compatible sampling. These methods
remain limited by the fact that a full sampling of the energy landscape is challenging for IDPs and
that force fields are inaccurate by nature, although relatively efficient sampling of the conforma-
tional space can in principle be done with enhanced sampling methods such as metadynamics
[188].

Instead of biasing the sampling, a reweighting procedure can be performed. An efficient way of
deriving an ensemble is to select a set of IDP conformations from a pool of generated structures
such that it matches experimental data. Numerous ensemble algorithms were developed with
such principle like ENSEMBLE [189, 190], ASTEROIDS [120, 126, 191] and others [192-194].
ASTEROIDS (Selection Tool for Ensemble Representations Of Intrinsically Disordered States) for
example relies on a genetic algorithm that selects several ensembles from a large set of confor-
mations generated with Flexible-Meccano. The genetic algorithm finds an optimal combination
of conformations such that the derived ensembles match experimental data. This of course re-
quires an extensive sampling of the conformational space. The experimental datasets that are
used by ASTEROIDS to optimize the ensembles typically are diverse and complementary, with
local and long range structure from RDCs, local comformational sampling from chemical shifts,
long range contacts from PREs, global shape distribution with SAXS and more recently local and
long-range contacts complementary to PREs with single-molecule FRET data [145]. ASTEROIDS
is designed to generate a fixed number, usually very high, of conformations in the wanted en-
semble. This possibility to generate a significant number of conformations allows a significant
sampling of the conformational space of the IDP, therefore mechanically yielding a high entropy
solution and fewer biases.
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2.2.4 Combining NMR spin relaxation with MD simulation to understand IDP dy-
namics

Since NMR spin relaxation data gives only information on the spectral density function at specific
frequencies, analyzing the data to extrapolate information on protein’s dynamics requires impor-
tant simplifications to overcome the intrinsic complexity of a protein’s motion, as explained in
the previous chapter. With MD simulation, this issue is partially cancelled since MD simulation
provides a direct picture of the proteins dynamics, provided that the simulations are accurate
and that the calculated relaxation is in agreement with experiments. From an MD simulation
trajectory or an ensemble of trajectories, one can calculate the isotropic rotational time autocor-
relation function C(7) associated with the relaxation-active interaction. For amide nitrogen in
protein backbones, this vector is simply the N-H bond vector. One just has to calculate the fol-
lowing expression along the trajectory:

C(r) = (Yzo (@0)y20 (@t))

Where Y7 is the modified second order spherical harmonics presented in chapter 1 evaluated
at the angle 0, at time t representing the angle between the NH bond vector and the magnetic
field.

In 1981, Levy and coworkers performed MD simulations and computed 13 relaxation on amino-
acid side-chains [195]. They used these simulations to check the validity of numerous models for
the proteins internal motion. Following this, numerous studies used MD simulation with exper-
imental NMR spin relaxation rates to obtain insight into the internal motions of proteins [196-
198]. For instance, Bremi and coworkers proposed an MD-based protocol where they analyze
relaxation to successfully describe protein’s internal dynamics with a motional model. The pro-
tocol is based on analyzing MD trajectories and establishing the model before calculating the re-
sulting relaxation from the autocorrelation function and compare with experimental data. They
used it to describe a polypeptide’s side chains internal motion in terms of dihedral angle mo-
tion in a harmonic potential combined with infrequent jumps between different rotamers [199].
They described this as a Gaussian Axis Fluctuation (GAF) and jump model, based on a previously
derived GAF model [200]. This protocol was then successfully applied to the study of internal
backbone dynamics of a cyclic decapeptide [201] as well as anisotropic peptide plane motion in
ubiquitin [202].

Later on, Prompers and Briischweiler proposed a new analysis method called reorientational
eigenmode dynamics (iRED) where a principal component analysis of the covariance matrix as-
sociated with the relaxation-active spin interactions is performed from MD trajectories [203-
205]. In practice, this isotropically averaged covariance matrix is diagonalized, resulting in sev-
eral reorientational eigenmodes with associated amplitudes. Each eigenmode describes a cor-
related modulation of different relaxation-active spin interactions, with an eigenvalue that rep-
resents the variance associated with the fluctuation amplitude in the trajectory associated with
this eigenmode. Each eigenmode is also associated with a variable correlation time that is simul-
taneously optimized to reproduce experimental relaxation data. They applied this method to the
study of Ubiquitin’s native state and partially folded A-state. In the native state, they found that
internal and overall motion are separable given the obtained eigenmode distribution, whereas
the A-state exhibits poor separability with no evident gaps between internal and overall eigen-
modes.
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In 2011, Xue and Skrynnikov performed high-temperature rescaled MD simulation of denatured
Ubiquitin in implicit solvents and studied the resulting NMR paramagnetic relaxation enhance-
ments and 1°N spin relaxation [206]. Examining the time autocorrelation function of the vector
associated with the relaxation-active interactions, they identify three exponential components
with correlation times of 44 ps, 1.4 ns and 9.4 ns respectively. They attributed the first correla-
tion time to fast internal motion involving out of plane deviations of the N-H bond vector from the
peptide plane and rapid vibration, librations and fluctuations involving the dihedral angles. The
second was attributed to local rearrangements while the slowest correlation time was attributed
to larger scale conformational changes and tumbling. They observed that their results were con-
sistent with the Lipari-Szabo model-free analysis. It was seen in a later article that a three mode
model-free analysis in Intrinsically Disordered Proteins exhibit correlation times ranging around
these 3 values [51].

In addition to understanding protein dynamics, MD simulation combined with NMR spin relax-
ation is useful for MD force field development. Showalter and Briischweiler proposed to use NMR
Spin relaxation to validate MD simulation trajectories [207], since NMR spin relaxation provides
importantinformation on the protein’s motion at fast timescale. This approach allows the correc-
tion of backbone dynamics in flexible loops regions for instance. The use of NMR spin relaxation
is particularly useful for IDPs since a lot of their behavior from their dynamics to their long range
contacts can be reflected in NMR spin relaxation. Still nowadays NMR spin relaxation parame-
ters are used to validate MD force fields. For instance, Yu and coworkers used relaxation order
parameters extracted from MD using the iRED method among other NMR parameters to develop
the ff99SBnmr2 force field for accurate simulation of both folded and disordered proteins [168].

To tackle the inaccuracy of protein force fields, one method is to re-weight an ensemble of tra-
jectories so that it matches the experimental data. Salvi and coworkers developed ABSURD (Av-
erage Block Selection Using Relaxation Data), a genetic algorithm that, from a pool of MD trajec-
tory segments of a given IDP, selects the best combination of trajectories so that the relaxation
data from the chosen ensemble matches the reference experimental relaxation data [208]. Re-
markably, matching a given relaxation rate using this method also improves the agreement of
the other rates with respect to experimental data. In practice, the ABSURD procedure works as
follows: First, several MD simulations of our IDP is performed, with a length typically of several
hundreds of nanoseconds. Then, each trajectory is segmented into small trajectories of 100 ns.
The time auto-correlation function associated with the NH bond vector and then the theoreti-
cal field-dependent NMR spin relaxation rates are then calculated for each segment. Finally, the
ABSURD algorithm selects the best combination of rates to match experiment, using one of the
measured relaxation rate as a reference. For each step, ABSURD calculates the average relaxation
rates for a given combination and compares it with the experimental rates with the objective of
minimizing the overall sum of squares expressed as follow:

RSS(Rif) = ) | REZ() = D wiRE ()

n

where the experimental rates are summed over the n residues and the i trajectories included
in the combination. The calculation is done for the reference rate Rj evaluated at the magnetic
field f. Typically, the optimal reference to use depends on the force field and the protein, but
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one usually takes the less well reproduced rate. In the original paper introducing ABSURD, us-
ing the force field AMBER ff99SB-ILDN [167] on SeV Ntail, the best optimization was done using
R, evaluated at 850 MHz. Using this method, one can obtain exceptional reproduction of spin
relaxation dates with respect to experimental data, allowing a more detailed analysis of the tra-
jectories. Although this method provides well-behaved models of the autocorrelation functions
of NH bond vectors, it does not inherently provide more insight into the component dynamics. In
order to extract this information, and inspired by earlier work from Bremi et al. [199], Salvi and
coworkers then used this method to propose an explicit model to describe relaxation-active mo-
tions in IDPs [209]. They proposed to separate the NH rotational correlation function into three
components assuming that they are statistically independent. They first identify the correlation
function associated with fast bond and angles fluctuations of the NH bond vector with respect to
the peptide plane C¢(t). Then, they express the peptide plane fluctuations in terms of dihedral
angles fluctuations using a vesion of the GAF model [201], represented by the correlation func-
tion Cyy (t). Finally, they identify the correlation function of the Cy-Cy bond vector Crymp ().
This gives the following correlation function:

C(t) = Cr(£)Copop (1) Crrmp ()

The advantage of this model is that it allows a separate analysis of the different types of motions
in IDPs. Segmental motion for example is directly encoded in C;y,p, (t) while the effect of dihedral
angles fluctuations is directly in Cyy, (). Remarkably, the model correlation function reproduces
the original ABSURD-optimized ensemble of trajectories simulated with CHARMM36m [166]
correlation function relatively well. They found that Cs(t) converges rapidly after a few ps and
can be replaced by the corresponding order parameter S}? while the Cyy (t) and Cpypmp () terms,
analyzed with a Tikhonov regularization, exhibited multi-exponential behavior for both correla-
tion functions with high order terms occurring at similar timescales around 10s of nanoseconds.
This approach allow them to identify correlated segmental motions and the different contribu-
tions to NMR spin relaxation. With this method, they studied the importance of the solvent on
the description of IDP dynamics and found, from multi-temperature MD simulations of SeV Ntail
with different water models, that the water model is key for an accurate description of IDPs dy-
namics by MD simulation [210]. They found that TIP4P/2005 [211] is so far (in 2019) the best
water model along with the force field CHARMM36m for a relatively accurate description of IDP’s
dynamics, and more specifically the intrasegmental motion and pisosecond to nanosecond dy-
namics of IDPs in MD simulations.

Besides backbone dynamics in IDPs, MD simulation was very recently used in combination with
NMR high resolution relaxometry and high field spin relaxation measurement experiments to de-
scribe methyl-bearing side chain motion. The method lies on the use of MD simulation to derive a
relevant explicit motional model with unknown parameters, that can then be fitted to experimen-
tal relaxation data [212]. Cousin and coworkers used such method with the ff99SBnmr1-ILDN
force field and TIP3P water model [213] to describe the dynamics of isoleucine side chains with a
multi-site rotameric jump model [76], but some residues exhibited inaccurate model fitting due
to force field inaccuracies. Later on, Bolik-Coulon and coworkers, with the same system, per-
formed MD simulation with a modified Amber ff99SB*-ILDN force field [214] and TIP4P-2005
[211] along with DFT calculations (Density Functional Theory) to obtain precise isoleucine side-
chain rotamer conformations in water [77]. This improvement allowed them to obtain an ac-
curate model that describes the isoleucine side-chain’s motion and determine the population of
each rotamers and their associated exchange rate. In addition, this description gave clue to the
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link between order parameter and conformational entropy, here linked to the rotamer states dis-
tribution.

Since the rise of MD simulation, a lot of progress has been made, from describing internal mo-
tion in polypeptide and folded proteins. Recent advances provided insight into more challenging
systems such as the backbone motion of IDPs and methyl side chains. These examples show
how useful MD simulation can be to describe complicated mechanisms in IDPs and proteins in
general. The latter examples also show how important it is to have accurate MD simulation force
fields to obtain an accurate model of protein’s motion. Despite a lot of effort in force field and wa-
ter model developments for Disordered Proteins, optimizing MD simulation for IDPs remains an
active field of study, and it can be expected that further improvements in the future in combina-
tion with NMR spin relaxation and relaxometry measurements will improve our understanding
of IDP dynamics. Besides improving force field for conventional simulations, a growing interest
for physiological environments in addition with a constantly increasing computational power
invites the force-field developers and computational biologists to look into larger systems, since
biologically relevant mechanisms occur in crowded and complex environments. Numerous chal-
lenges remain in this perspective since the computational power available remains relatively lim-
ited, which forces scientists to look into Coarse-Grained solutions where extracting extremely
sensitive atomic-resolution information such as NMR spin relaxation is almost impossible.

2.3 IDPs with macromolecular crowding: Towards cellular envi-
ronments

Cellular media are extremely complex for, their properties can also vary depending on the lo-
cation in eukaryotic cells (cytosol, nucleus, mitochondria, etc.). The cytoplasm for example is
composed of hundreds of millimolars of inorganic ions including K+, Mg?*, Ca?* and CI~, but
also hundreds of millimolars of metabolites including peptides, ATP and sugars. Besides these
small species, cytoplasm has a significant volumic percentage of large macromolecules ranging
from 10 to 40% of the total volume. The volume of E.coli cytoplasms for instance contains 25% of
proteins in which 10% of it are cytoskeletal filaments and 90% are soluble proteins [215, 216].
In mammalian cells, protein concentration can go up to 250 g/L. Along with proteins, the cyto-
plasm also contains other macromolecules including RNA, DNA, lipids and glycans that can also
reach high concentrations [217]. Itis clear that understanding the modulation of each parameter
on IDP structural ensembles, dynamics and interactions is a massive task.

Macromolecular crowding can be described as the presence of soluble macromolecules in a so-
lution such that they represent a significant proportion of the total weight of the solution. From
a pure crowding point of view, e.g. assuming that the surrounding molecules can be modelled
by inert hard ellipsoids and/or chains exerting steric repulsion forces on other molecules, one
can predict that the change in free energy in the system will favor conformations that minimize
the occupied space of a given specie. For IDPs, this translates as a preference towards more com-
pact conformations [218, 219]. However, the presence of soft inter-macromolecular interactions
can as a consequence favor other conformations, depending on the environment and the type of
interaction [220-222]. The change in the conformational sampling of an IDP in crowded envi-
ronments with respect to a dilute buffer solution will therefore depend on the protein itself and
the nature of the crowder [223]. Balu and coworkers recently studied by small-angle scattering
methods the conformational sampling of Recl-resilin, an IDP, as a function of several crowding
agents [224]. Their results exhibit crowder-specific conformational changes involving either ex-
tension or compaction of the protein upon crowding, confirming the previous theory. We will see
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here that besides possible modulation of the global conformational sampling, macromolecular
crowding and cellular environments in general can affect viscosity and translational diffusion,
rotational diffusion and internal protein dynamics as well as protein-protein interactions.

2.3.1 Complex macromolecular crowding slows down translational diffusion in
a length-scale dependent manner

First of all, the presence of a great number of large macromolecules in a solution is obviously in-
creasing the viscosity and the translational diffusion properties of the molecules in the solution.
While attempting to demonstrate the existence of atoms, Einstein derived in his doctoral thesis
a first order approximation of the effective viscosity n of a solution comprising inert spherical
particles in suspension as a function of the volume ® occupied by these particles, assumed very
small:

5
n=no(1+ ECD)

Where 7, is the viscosity of the solution without any spherical particle in suspension. In a case
of high concentration of these molecules (e.g. crowding condition), a non-linear model can be
derived (Mendoza2009). Applied to inert sphere of hydrodynamic radius we may express the
Stoke’s relation expressed as:

kT
B 67T7']Rh

Where kg is Boltzmann'’s constant, T is temperature and D is the isotropic diffusion constant.
Since these expressions assumed a perfect spherical particle evolving in an homogeneous fluid,
it is clear that deviations are to be expected in more complex environments involving multiple
species of different size and shape such as polymer solutions and cellular environments. The un-
derstanding of the viscosity and diffusion properties of species in such complex environments is
in fact an active field of study [225-227].

One important aspect of the diffusion property of macromolecules in a complex environment, or
more specifically their effective viscosity as known as the viscosity experienced by these molecules,
is that it is dependent on the size of these macromolecules with respect to the size of the crowd-
ing molecules and/or polymers that constitute the environment [228-233]. Typically, molecules
with a smaller radius of gyration r; than monomers of radius of gyration R, constituting a poly-
mer solution, to take a relatively simple example, will experience deviations from the Stokes-
Einstein equation and a length-scale dependent viscosity. In fact, it was shown that when r; «
Ry, the experienced viscosity approaches the viscosity of the pure solvent (no polymer), while
when 7y, > R, the experienced viscosity approaches the measured macroscopic viscosity. Holyst
and coworkers for instance derived a model to describe the effective viscosity as a function of the
size of the studied macromolecule and the hydrodynamic radius of the polymer [230, 231, 234].
From this, a distinction must be made between nanoviscosity experienced by small molecules at
the nanoscale and macroviscosity, as known as the macroscopic friction properties of the solu-
tion experienced by relatively large probes (r; > Ry). In an NMR study on viscosity-dependent
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protein conformational exchange kinetics, Sekhar and coworkers pointed out this fact and re-
minded the importance of using small probes for obtaining reliable solvent-friction values [235].
Later on, Adamski and coworkers successfully used water molecules as a probe for solvent fric-
tion in polymer solutions by using the rotational correlation time extracted from longitudinal
relaxation rates of water protons [52].

The diffusion properties of macromolecules in complex environments, especially in cellular en-
vironments, are very difficult to predict. So far, the consensus in the literature is that a signif-
icant decrease in the diffusivity of macromolecules in physiological environment is observed
[236-238]. Interestingly, it was recently found by Kénig and coworkers that intrinsically dis-
ordered proteins have a higher diffusivity than folded proteins of similar hydrodynamic radius
in crowded cellular environments [238]. The same study found that the use of high molecular
weight polymer crowders better reproduced the protein’s diffusivity in cells than low molecu-
lar weight polymers. The development and improvement of experimental methods for probing
molecular diffusion in cellulo will in fine lead to a better understanding of the diffusion properties
of macromolecules in cells in and between the different cellular compartments [237-240].

2.3.2 Macromolecular crowding and physiological environments slow down in-
ternal protein dynamics in a length-scale dependent manner

Macromolecular crowding also affects rotational diffusion and internal protein dynamics. The
same study of Konig et al also probed rotational diffusion in crowded cells using nsFCS and ex-
tracted relative chain reconfiguration times in crowded cells [238]. It showed a two-fold slow
down in crowded cells. In comparison, translational diffusion time was seven times smaller in
crowded cells with respect to in vitro. This result was interpreted to be a manifestation of the
length-scale dependence of diffusivity. Again, larger objects between the nanoscale and the scale
of the radius of gyration of the crowder will be subject to a higher effective viscosity, therefore
exhibiting a higher translational and rotational correlation time than smaller objects. Here, the
length-scale of the chain dynamics probed by nsFCS is smaller than the length-scale of the full
protein, and therefore it experiences a smaller viscosity dependence compared with the full pro-
tein. This manifestation was also probed by NMR spin relaxation measurements in crowded en-
vironments. Adamski and coworkers studied the fast backbone dynamics of SeV Ntail in dextran
solutions and found that the three extracted rotational correlation times exhibited different be-
haviors with respect to solvent friction [52]. The slowest rotational correlation time, associated
with chain-like segmental motion, exhibited a higher dependence in solvent friction than the in-
termediary dynamic mode, attributed to be associated with peptide plane fluctuations. From the
perspective of the scale-dependence of viscosity, this study provided an additional clue on the
origins of the extracted dynamic modes fom NMR spin relaxation and confirmed the previous
theory on the attribution of these dynamic modes [51].

The effects of macromolecular crowding on the relative translational and rotational correlation
times of macromolecules are in fact highly related to viscosity. As long as solvent friction is
known, these viscosity effects can be well understood and characterized [52, 235]. However,
little else is known on the effect of the cellular environment on the relative dynamic properties
of proteins, especially regarding exclusion effects and soft interactions, since they are expected
to depend on the environment.
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Figure 2.2: Schematic representation of depletion interactions between two spherical macromolecules in
apolymer crowder solution in the dilute regime (left), the semidilute regime (center) and the concentrated
regime (right).

2.3.3 Macromolecular crowding and physiological environments affect protein
interactions

Because macromolecular crowding implies, in addition to an increase in viscosity and exclusion
volume, the presence of soft interactions that depend on the properties of the complex milieu
and the proteins of interest, the affinity and kinetic properties of protein interactions are ex-
tremely difficult to predict. Numerous binding studies have been performed in folded proteins
and yielded qualitative descriptions of the effect of macromolecular crowding [241-244]. Kozer
and coworkers studied the kinetic and thermodynamic properties of the interaction of TEM1-
B-lactamase with the f-lactamase inhibitor protein. They observe that the evolution of the as-
sociation rate k,, is not monotonic with respect to the crowder concentration, with an increase
first followed by a decrease in k,, with concentration. They found that the effect of crowding
on the interaction of these two species could be explained as a function of the crowding regime.
Indeed, a polymer crowder can be described as being in a dilute, semi-dilute or concentrated
regime depending on its concentration [228, 245]. In the dilute regime, the polymers are de-
scribed as coils delimited by solvated spheres and a size-dependent radius of gyration R,. Upon
increasing the concentration of crowder, the spheres of each polymer coil cannot be considered
separated and they start to overlap each-other in the so-called semi-dilute regime. In a system
comprising particles in suspension with polymer crowding in the dilute and semi-dilute regime,
a mechanism called depletion interaction occurs and exert an attractive force to two particles
close to each other [246-248]. To describe this mechanism, let’s consider a spherical particle in
such crowded environment. Each of these particles have a so called depletion layer in which the
center of mass of the crowder cannot enter. When two particles are close enough to each other,
the depletion layer of the two particles overlap. In this overlap, no crowder can enter, and colli-
sions with the crowder surrounding these two particles result in an attractive force. When these
two particles get closer to each other, the available volume for the polymers increases, increasing
entropy. The attractive interaction between the particles can be described by an osmotic pres-
sure [1 = nkgT where n is the molar concentration of crowder [246-248]. This entropic effect
increases the association rate between two interactants, and is also responsible for the expected
collapse in the global conformational sampling of IDPs upon crowding [218, 219]. In the con-
centrated regime however, there is much less solvent, the solution is very dense in polymer coils
yielding a high level of entanglement where the polymers can penetrate the depletion layer over-
lap between two particles, yielding a decrease in the association rate. The depletion interaction
phenomenon is illustrated in figure 2.2.
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As amean to provide a theoretical explanation of crowding effects on protein interactions, Berezhkovskii
and Szabo proposed a quantitative theory of crowded-modulated biomolecular reaction rates in

the case of low reactant concentration and arbitrary crowder concentration [249]. In their the-

ory, the reactant of size R is assumed to be spherical with a diffusion constant Dy and a reaction

rate k, with its partner in pure solvent solution. In this framework, they attribute the decrease

in the diffusivity upon crowding to two mechanisms:

1. Collisions with the crowder. To describe this, they define theoritical average "cavities” of
radius R, in which there is no crowder.

2. Non-specific reversible binding to the crowder. To describe this, they define the free dif-
fusion constant upon crowding D; and the bound-to-crowder diffusion constant D, such
that Dy > D; > D,.

Finally, they also describe the phenomenon of depletion interactions between two particles
close to each other upon crowding, assuming that they are close enough to each other such that
there is no crowder in between them. To describe this, they define a distance dependent po-
tential of mean force U(r) expressed as a square-well potential with U(r) = 0 if r > R, and
U(r) = —AU otherwise. In absence of interactions between the reactants and the crowder, the
final derived formula for k,,, is as follows:

1 1 1 1 1 1
— ==+ _ e—ﬁAU T —
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This theoretical framework describes the two important observables that can determine protein
interactions in crowded environments: The reduced translational mobility due to the crowder,
and the so-called "depletion interactions”, described as this effective attractive effect between
two particles that are close to each other in a crowded milieu [246-248].

With Berezhkovskii and Szabo’s theory in mind, Zosel and coworkers studied the effect of crowd-
ing on the interaction between two IDPs that fold upon binding using single-molecule spec-
troscopy [250]. They found a crowder size dependent increase in the interaction affinity where
higher molecular-weight PEG molecules appeared to induce a significantly stronger stabilisa-
tion of the interaction. They rationalize the increase in affinity using the theory of depletion
interactions. The effect of the size of the crowder on the affinity is explained by the fact that
a smaller crowder will induce smaller depletion layers than a larger crowder, which increase
the affinity to a lesser extend compared to large crowders. Additionally, they notice that the-
oretical calculations assuming spherical particles overestimate the volume of overlap V,yer1ap
between the two depletion layers. This is explained by the fact that IDPs and the crowder are
polymers, and they can enter each other’s hydrodynamic spheres. Interestingly, they observe
that the k,,, of the interaction yield non-bijective functions with respect to the concentration of
high molecular-weight PEG similarly to what was found with folded proteins [243]. Indeed, from
0to 100 g/L of PEG with a molecular weight higher than 1000, a non negligible increase in k,, is
observed, followed by a decrease at higher PEG concentrations. They explained this observation
using Berezhkovskii and Szabo’s theory in terms of a competition between a slow down due to
the slow down of diffusion and an acceleration effect due to the depletion interactions. Fitting
the experimental data with the equation above resulted in reasonable agreement, but technical
limitations prevented good experimental observations above 100 g/L of PEG.
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In this section, we observe that the effect of macromolecular crowding on the dynamic properties
of proteins has different sources. First, crowding induces length-scale dependent increasesin the
translational and rotational properties of proteins. Second, an entropic source often named "de-
pletion interaction” is responsible for increases in the binding affinities in protein interactions.
Then, at high concentrations, the density and high concentration in a crowded polymer solution
were found to cancel the depletion effects in both folded [243] and disordered proteins [250].
Finally, because crowding agents are never inert, crowder-dependent soft interactions between
the crowding agents are known to occur, and besides changing the conformational sampling in
IDPs, there is a possibility that they affect the protein’s dynamic and interaction properties. How-
ever, these soft interactions are not always detected. PEG for example is well known for exhibit-
ing soft interactions with proteins, but PEG remains widely used by the scientific community,
and these soft interactions are often not taken into account or not detected, suggesting that they
might have a negligible effect on the behavior of the studied proteins. It remains nevertheless
important to use several different crowding agents in a study if possible, to account for these soft
interactions.

In most of the studied examples, the main technique was based on single molecule fluorescence.
This set of techniques is extremely powerful for studying protein interactions in crowded en-
vironments and in cells, since it allows the study of multiple different conditions in a reason-
able amount of time. In addition, it can provide low-resolution information on the dynamics
of internal rearrangements in the protein as well as information on the translational and rota-
tional diffusion in crowded media. This method remains however limited by the use of fluo-
rophore, which can be complicated in very highly crowded solutions [250]. NMR spectroscopy
on the other hand is powerful at providing atomic-resolution information on protein dynamics
at multiple timescales, as well as protein interactions. However, NMR is limited by time since it
requires the equivalent of days of measurement time to extract valuable information on a pro-
tein interaction if we are to perform chemical exchange experiments or relaxation experiments,
which can compromise an extensive study if measurement time is limited. The strength of NMR
over fluorescence methods to study interactions in crowded environments remains neverthe-
less the possibility to study conditions with higher crowding concentration provided that our
protein of interest tumbles sufficiently rapidly, since it does not requires the detection of fluo-
rescence. NMR is therefore an interesting tool and while the viscosity effects on IDP dynamics
were well characterized with NMR, the atomic-resolution effects of depletion interactions and
concentrated polymer regimes on IDP’s dynamics and interactions are not well understood yet.

2.4 Liquid-Liquid phase separation of IDPs

While the existence of membrane organelles in eukaryotic cells is widely established, the impor-
tance and prominence of membrane-less organelles were discovered only recently [251, 252].
These structures are composed of proteins, nucleic acids and other small molecules that are
separated from the rest of the cell via liquid-liquid phase separation, without the need of any
membrane to stabilize it. It is widely suggested that these highly concentrated intracellular com-
partments are essential for numerous biological functions in addition to organizing the cell [251,
253, 254]. Intrinsically Disordered Proteins are notably present inside these very important dy-
namic assemblies, and are believed to play a role in their stabilization [255]. We will describe in
this section the features of biomolecular condensates by starting with a brief thermodynamical
description to explain how these membraneless compartments can form. Then, we will discuss
the intermolecular interactions that can be involved in their stabilization. Finally, we will discuss
the different techniques to characterize the condensate’s dynamic properties, with an emphasis
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on NMR spectroscopy.

2.4.1 Thermodynamic description

Liquid-liquid phase separation is a well established phenomenon. It is a spontaneous reversible
energy-driven process involving the demixing of several species resulting in a separation of these
species into distinct liquid phases. For example, we can consider the phase separation of an IDP
with a polymer. Thermodynamically speaking, the demixing process occurs when it is energeti-
cally favorable with respect to a mixed phase. This translates as a decrease of the system'’s free
energy upon phase separation, either by an enthalpic contribution or an entropic contribution.
Of course in a system with no interactions, the demixing is entropically favorable.

A thermodynamical description of such phase separation was described in 1942 by Flory [256]
and Huggins [257]. It is a very simple lattice model that can describe the energy of mixing per
unit volume in a diluted polymer solution as a function of the volume fraction of monomers and
the polymer-solvent interaction parameter y. The free energy change upon mixing AG,,;, can be
expressed as a function of the enthalpic AH,,;, and the entropic AS,,;, contributions:

AGpix = AHpix — TASpix

Where T is the temperature. Let’s consider a very simple case where our system is described
by a Cartesian lattice of volume equal to the number of sites N. In this framework, we are going
to assume a quasi-solid lattice with interchangeable sites over time for each elements occupy-
ing the lattice. This lattice is filled with N solvent molecules occupying one site each and N,
monomers of uniform size occupying x sites each so that we have N = Ny + xN,,,. Our lattice is
big enough so that we can consider that the concentration of polymer segments in the lattice is
uniform and independent from any local prior knowledge such as the presence of a segment at
a given coordinate. The entropic contribution can be determined as:

ASpix = —kg [Nsln(cbs) + len(q)m)]

Where kg is Boltzmann’s constant, and ®; = N;/N is a volume fraction. The enthalpic fraction
on the other hand depends on the relative interaction free energies between solvent-solvent,
solvent-monomer and monomer-monomer contacts. A favorable interaction between solvent
and monomer would favor a mixed solution while favorable interactions between solvent and
solvent and/or monomer and monomer would favor phase separation such that we can define a
mixing energy per contact as:

Ay = Usy — E(umm + Ugs)

Where u,,,, Ugs and ug,, are the energy terms for monomer-monomer, solvent-solvent and solvent-
monomer interactions respectively. From this, the enthalpic contribution to the mixing free
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Figure 2.3: Schematic representation of the Flory-Huggins theory. The free energy of mixing is calculated
between phase-separated polymer and solvent solutions (left) and the mixed phase (right).

energy is simply the demixing energy per contact multiplied by the total number of monomer-
solvent contacts in the lattice, that we can express as the number of monomer sites xN,, times a
coordination number z representing the number of nearest neighbors on a lattice site times the
proportion of solvent sites in the lattice ®,. We thus have:

AHp i = AuxNpyz®g = AuNg®,,,z = kTN D, x

Where we defined an interaction energies-dependent parameter y = zAu/kzT. The final re-
sult of Flory and Huggins for the mixing free energy as a function of the polymer volume fraction
and the interaction parameter y is thus given as follows:

AGpix = kgT [Nsln(q)s) + len(cbm) + qu)m)(]

This very simplistic model provides a remarkably good description of liquid-liquid phase sep-
aration of IDPs (Fig. 2.3). Of course, more sophisticated descriptions were developed later on
such as the Overbeek-Voorn theory taking into account electrostatic interactions [258] or the
random phase approximation [228, 245]. The key concept to keep in mind from these theories
is that the favorability of liquid-liquid phase separation of intrinsically disordered proteins is
determined by the relative intermolecular interaction energies of proteins with the solvent with
respect to proteins with themselves and solvent with itself, as manifested by the parameter y in
the Flory-Huggins theory.
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2.4.2 Inter-molecular interactions in biomolecular condensates

The few examples of studied biomolecular condensates of intrinsically disordered proteins were
shown to exhibit residue-specific intermolecular contacts which are believed to stabilize phase
separation. These interactions can be categorized in four groups [259]:

1. Coulomb interactions between residues with opposite charge
2. Electrostatic dipolar interactions between two dipoles
3. Cation-m interactions between a pi orbital bearing residue and a positively charged residue

4. m-m interactions between two pi orbital bearing residues

Of course, each possible combination of residue pairs exhibits a different interaction free
energy. A common framework to describe liquid-liquid phase separation of IDPs is the "sticker-
spacer” model [260], taken from the theory of associative polymers [261, 262] in which an IDP
in a condensed phase will have intermolecular interactions with sticker residues while the non-
interacting spacer regions will remain dynamic and flexible in the system. This framework al-
lows a good understanding of the protein-protein interactions that may stabilize a biomolecular
condensate and helps to understand the sequence dependence of biomolecular condensates’ sta-
bility.

Experimental insight into these intermolecular interactions were provided by Wang and cowork-
ers [260] where they performed an extensive study of liquid-liquid phase separation in the FUS
family of proteins composed by intrinsically disordered scaffold proteins. They found that FUS
phase separation is mostly governed by intermolecular interactions between tyrosine and argi-
nine residues complemented by some regulating electrostatic interactions. They also found that
glycine, glutamine and serine residues play an important role on the properties of the conden-
sate. Gycine residues contributed to accelerating the rearrangements in the condensates while
glutamine residues slowed down these rearrangements.

More direct evidence of intermolecular contacts were found by Brady and coworkers who char-
acterized the phase separation of Ddx4 and showed that the phase diagram was highly salt de-
pendent, suggesting that electrostatic and pi interactions [263] are important for phase sepa-
ration in this system [264]. In addition, they performed 13C-filtered '3C-edited NOESY experi-
ments and found a wide network of inter-molecular contacts. After counting the number of ob-
served contacts for each amino-acids, they found that the highest number of contacts are found
in the aromatic and charged residues, namely phenylalanines, lysines and arginines in descend-
ing order. Similarly, Murthy and coworkers reported intermolecular NOESY cross peaks using
13C —HSQC — NOESY —15 N — HSQC experiments on a mixture of 23C**N and '?C*°N labelled
FUS LC condensate [265]. In addition, they performed PRE experiments to probe long-range
intermlecular contacts in the condensate. The combined results suggest that inter-molecular
interactions in this condensed phase are not localized in particular areas. Complementary two-
chains MD simulations and salt-dependent turbidity assays suggested that the phase separation
of FUS LC is determined by a combination of nonspecific hydrogen bonds, hydrophobic effects
and pi-pi interactions involving all types of pi-bearing orbitals.

Pi contacts are often associated with aromatic residues. Vernon and coworkers from the group
of Forman-Kay pointed out the prevalence of pi contacts in proteins and demonstrated that a
massive proportion of pi-pi stacking interactions involved non-aromatic atoms, with a propor-
tion of 13 to 1 with respect to aromatic-aromatic stacking [266]. They used their quantitative
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data to create a predictor based on the proportion of these pi-pi interactions, and demonstrated
that liquid-liquid phase separation in some proteins could be predicted based on the presence
of these contacts, suggesting that pi-pi interactions involving non aromatic residues are more
important than previously thought.

LLPS-driving intermolecular contacts can also be regulated by post translational modifications,
which can be important for biological function [267, 268]. Qamar and coworkers for instance
studied cation-pi interactions in the phase separation of FUS and showed that methylation of
arginine side chains affects the dynamical properties of the FUS droplets [269]. Methylation in-
hibits intermolecular contacts, and over-methylation resulted in a dispersed phase of a highly
dynamic condensate. On the other hand, hypomethylation allows extensive intermolecular con-
tacts leading to a hydrogels or a fibrillary gel.

In this section, the diverse intermolecular interactions that can stabilize a biomolecular conden-
sate have been discussed. Numerous examples in the literature suggest that these contacts can
be different from system to system. Besides electrostatic coulomb and dipolar interactions and
pi-pi and cation-pi stacking, the driving forces of LLPS can be more difficult to detect, including
hydrogen bonding and hydrophobic effects [265, 270]. Because of this high level of complexity,
the prediction of the driving forces for LLPS is still a very active field of study.

2.4.3 Experimental characterization of the dynamic properties of biomolecular
condensates

We saw that biomolecular condensates are membraneless compartments stabilized by energet-
ically favorable intermolecular interactions. Experimental characterization of protein dynamics
in a condensate is challenging but possible. Translational and diffusive properties of IDPs in
the condensate can easily be characterized with ensemble methods like confocal fluorescence
imaging, NMR diffusion experiments or single particle methods. Protein structural and confor-
mational dynamics studies on the other hand remain possible by NMR spectroscopy and other
techniques like FRET. Although invasive techniques such as residual dipolar couplings are ex-
tremely challenging in a biomolecular condensate, conventional NMR observables such as chem-
ical shifts, NMR spin relaxation and any kind of non invasive experiments are still accessible pro-
vided that the NMR signal is still observable, which requires that the protein tumbles sufficiently
rapidly such that the transverse relaxation rates yield reasonable values

One of the most widely used microscale condensate characterization method is the Fluorescence
Recovery After Photobleaching (FRAP) experiment [271]. Briefly, a fluorescent dye is covalently
attached to the protein of interest, then while the condensate droplet is observed by confocal
fluorescence microscopy, a predefined region is bleached. The recovery of the signal is observed
and, using an appropriate model, information on the condensate’s fluidity and the protein’s dif-
fusion coefficients can be estimated. FRAP studies found diffusion coefficients for IDPs in con-
densates ranging from 0.001 to 1 um?s~1, which is at least 2 orders of magnitudes slower than
proteins in solution [272]. Among other used methods giving similar information, we can also
cite NMR diffusion experiments [265], ultrafast-scanning fluorescence correlation spectroscopy
(usFCS) [273] and single particle tracking methods [274, 275].

The microscale and nanoscale diffusion properties of biomolecular condensate is very variable
from system to system. Additionally, it is highly sensitive to the composition of the droplet. The
presence of RNA and other compounds indeed greatly alter the diffusion properties in such sys-
tems [276] and can greatly complicate their dynamic features [277]. It was for instance found
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with the disordered P granule protein LAF-1 that the presence of RNA molecules could decrease
the viscosity of biomolecular condensates [278]. In addition to its composition dependence, it
has been observed that some biomolecular condensates like FUS [274, 279] can evolve over time
[280, 281]. Reichheld and coworkers for example studied the dynamic properties of an elas-
tomeric protein in a condensed phase and observed with NMR spin relaxation and PFG diffusion
measurements a decrease in the protein’s rotational and translational motion over time, mani-
festing a "maturation” of the condensate in the days timescales.

While the methods for characterizing translational motions of proteins and other molecules in
biomolecular condensates are well established, characterizing internal protein dynamics at atomic
resolution requires non invasive methods that probe the behavior of highly disordered biomacro-
molecules in highly viscous and crowded environments. In principle, every IDP characterization
methods presented in the first section of this chapter can be leveraged to study IDPs in conden-
sates. NMR remains the unique atomic resolution experimental method for IDPs in the conden-
sates, while complementary techniques like FRET and other fluorescence experiments provide
additional information on protein long-range dynamics.

Burke and coworkers studied the FUS LC condensed phase. Carbon chemical shifts indicated
that the local backbone sampling is identical to a good extent compared to the dilute phase [282].
Measured >N Ry, R, and heteronuclear nOe at one single magnetic field provided insight into the
fast dynamics of this protein in the condensate. Transverse relaxation in the condensate ranged
around 20 s~ compared to 3 s~ in the dilute condition, suggesting a significant increase in the
chain segment tumbling correlation times along the chain, while nOes slightly increased as well
towards a value of 0.5 s ™! indicating a slight decrease in the representation of high frequency ps-
100 ps motion in the rotational correlation function of NH bond vector, which can be translated
as a slight increase in the rigidity of the protein [282]. Their findings suggest a still relatively
dynamic condensate modulated by weak inter-molecular interactions that stabilize the conden-
sate and at the same time maintain a certain level of chain mobility. The study of elastin-like pro-
teins [283] as well as Ddx4 [264] liquid-liquid phase separation gives similar conclusions with
increased diffusion coefficient and rotational correlation times but a maintained relatively high
amount of mobility, allowing the obtention of reasonably good NMR spectra in the condensate.
NMR spin relaxation experiments were also measured in the condensed phase of hnRNPA2 Low
Complexity (LC) domain at 65°C, yielding R, values comparable to the values in the dilute phase
at the same temperature, but much higher nOes indicating an increased rigidity of the IDP. These
interesting results suggest that conditions are possible where the tumbling correlation time of
IDPs in the condensate are similar to dilute state values.

Besides analyzing fast motion of IDPs in the condensed phase, NMR spin relaxation measure-
ments proved to be useful to probe intermolecular interactions. Kim and coworkers studied a
CAPRIN1 condensed phase and observed a correlation between the increased transverse relax-
ation rates and so called hot spots in the protein’s sequence where the residues are involved in
intermolecular contacts as shown by filtered-edited NOESY experiments [284]. These results
suggest that NMR spin relaxation experiments might be useful to find the regions involved in the
stabilization of biomolecular condensates.

In addition to fast ps-ns dynamics, NMR can probe chemical exchange events in the conden-
sate, as demonstrated by Yuwen and coworkers on a condensate of Ddx4 [285]. They performed
off-resonance >N Ry, dispersion in the condensed phase and observed a peculiar relaxation
rate behavior as a function of the nitrogen carrier offset characteristic of a relaxation exchange
mechanism. They characterized this exchange process with a rate ranging around 20 s~ (op-
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timal value 17.7 s~1) and a population around 30% (optimal value 26.7%). The model fitted a
relatively high relaxation difference, with a 4.5 times higher R, for the excited state, while no
chemical shift difference was present. This type of exchange would typically not be observed in
conventional CPMG or CEST experiments. The same group also successfully characterized in a
condensate a solvent exchange mechanism using a >N D-CEST experiment designed to measure
solvent exchange in proteins using 1N deuterium isotope shift [286] coming from a change in
the electronic environment at the vicinity of the amide nitrogen upon exchange from bound pro-
ton to bound deuterium [287]. Murthy and coworkers also looked for exchange processes using
CPMG which probe chemical exchange and DEST which probe relaxation exchange, yielding no
evidence for any exchange process in their FUS LC condensate [265].

In complement to NMR experiments, EPR, fluorescence anisotropy and FRET experiments can
provide valuable information on the dynamic properties of macromolecules in a biomolecular
condensate. Briefly, starting with an example from EPR, Zhang and coworkers demonstrated us-
ing EPR spectroscopy that Ataul87 remains highly dynamic in biomolecular condensate while
being involved in long-range interactions with RNA [288]. Another extensively studied IDP is a-
synuclein. Ray and coworkers studied a-synuclein in a biomolecular condensate using multiple
techniques [281]. They used fluorescence anisotropy to characterize the rotational correlation
time of the IDP in different conditions. Focusing only on the difference between the dilute state
and the condensate state, the extracted rotational correlation times yielded 1 and 1.6 ns respec-
tively. They also observed a slight increase of the rotational correlation time after 8 days which
is a manifestation of an evolution of the condensate over time. They also used FRET experiments
among other techniques to probe the interactions that drive LLPS. These experiments allowed
them to propose a model to describe the LLPS-mediated aggregation of a¢-synuclein [281].

Through numerous examples, we saw that NMR is a uniquely powerful technique to probe IDP
dynamics and interactions in biomolecular condensates. Recent studies used NMR and other
complementary techniques to obtain valuable insight on the dynamic properties of macromolecules
and their role in LLPS. There is a clear consensus on the property of these condensates that de-
scribe a non-negligible decrease of the protein’s diffusion constant and and increase in the rota-
tional correlation times, both due to the increase of viscosity and crowding as well as the pres-
ence of droplet-stabilizing inter-molecular contacts of multiple origins. However, IDPs remain
sufficiently dynamic in many of these condensates where they yield reasonable good NMR sig-
nals, suggesting that these intermolecular contacts are weak enough to allow a good rotational
and translational diffusion in the condensates. All these examples also show the enormous di-
versity of these dynamic assemblies. Indeed, each system is different and yield different features
and properties depending on the composition of the droplet and the sequence of the proteins in
it. In addition, biomolecular condensates can be time-dependent, as shown by many studies. As
NMR spectroscopists interested by the dynamics of IDPs in these condensates, it is therefore of
high importance to carefully characterize the studied biomolecular condensate and understand
the composition and time-dependent properties of it before studying the important stabilizing
mechanisms and the other dynamic features in the condensate.

2.4.4 Computational approaches for describing IDPs in biomolecular conden-
sates

In the recent years, a broad range of computational approaches were developed to describe
the properties of IDPs in biomolecular condensates. A significant amount of effort have espe-
cially been done in the quest of determining the sequence determinants in the stabilization of
IDP’s phase separation. In line with this effort, Dignon and coworkers designed a one bead per
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residue coarse grained model to study the sequence modulation of the phase behavior of IDPs
[289]. Using a hydrophobicity scale (HPS) to describe electrostatic and short-range interactions
[290], they were able to obtain IDP’s phase diagrams using slab simulations. Demonstrated with
FUS LC and LAF-1 to obtain chain length and sequence mutation modulations on the phase di-
agram as well as intermolecular interactions, the model has been widely used and extended to
take temperature effects into account [291-296]. Their model became increasingly popular to
study IDP’s phase separation. Several other improvements of this model were proposed later
on. Latham and Zhang proposed to implement experimental data to such models with an al-
gorithm that performs maximum entropy optimization and least-square minimization to adjust
the model parameters to fit the experiments with the simulation [297]. Dannenhoffer-Lafage
and Best proposed a new data-driven hydrophobicity scale model optimized from diverse data
taken from different IDPs that improves the description of pi-pi interactions [298]. Tesei and
coworkers also proposed a data-driven model that optimized the non-bonded interactions with
a Bayesian parameter-learning procedure that optimizes radius of gyration and PRE data [299].
The group of Mittal also proposed a new hydrophobicity scale to improve their model which they
validated against several IDPs [300]. Of course, besides HPS models, other coarse grained ap-
proaches were proposed to obtain phase diagrams such as the lattice-based approach proposed
by Choi et al. based on the sticker-spacer paradigm called LASSI (LAttice simulation engine for
Sticker and Spacer Interactions) [301]. Alternatively, one can also combine molecular dynamics
simulations with theoretical models [302, 303].

Despite these tremendous recent efforts, little has been done concerning the dynamic proper-
ties of IDPs in biomolecular condensates by simulation. One of the reasons is probably that ex-
perimental observables such as NMR spin relaxation or chemical shifts require high-resolution
simulations. Coarse Grained models often don’t grasp the full detail of the IDPs conformational
sampling. In this sense, itis of interest to develop higher resolution coarse grained model that are
applicable to large systems and allow the extraction of numerous atomic-resolution experimen-
tal observables. Wu and coworkers introduced such coarse-grained model, called AWSEM-IDP
based on a similar framework for folded proteins structure prediction [304, 305]. It is a three
bead per residue model where each residue is defined by the position of the C,, (g and O atoms.
The force field contains usual bonded and non-bonded terms as well as a "fragment memory”
term that is based on a distance-dependent potential taken from an ensemble derived from ei-
ther MD simulation or based on experimental data. In addition, another artificial term corrects
the tendency of the IDP to collapse. This model allows the extraction of secondary structure in-
formations that are not available with single-bead per residue models. It is likely that such mod-
els will rise as a good alternative to conventional coarse-grained model to study IDPs in complex
environments.

2.5 Conclusion

The highly dynamic class of intrinsically disordered proteins has been extensively studied both
experimentally and computationally. NMR techniques combined with fluorescence and SAXS
are well suited for experimental characterization in different environments, and computational
tools to derive ensembles and understand the experimental data are crucial to decipher the com-
plexity of their behavior in solution and in complex environments. While numerous ensemble
determination and characterization methods exist, the understanding of how IDPs work in vivo
is both crucial and under-explored so far, mainly because of experimental limitations. Because
of their simplicity, fluorescence methods seem to dominate the field of in vivo nanobiology of
IDPs, while in cell NMR techniques are more difficult and time consuming. Significant progress
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has been made in the understanding of the properties of IDPs in crowded environments using
fluorescence methods. However, fluorescence remains limited by the experimental constraints
in terms of crowding concentrations for example. High resolution information on the dynami-
cal properties of IDPs upon crowding is also still limited to a few studies, and understanding all
the parameters requires a significant effort from the whole scientific community. Besides con-
ventional cellular environments, a growing interest towards liquid-liquid phase separating sys-
tems can be observed from the current state of the art. This highly important mechanism is best
studied with NMR at high resolution. NMR along with computational tools and complementary
techniques provided extremely valuable insight into the intermolecular contacts that stabilize
the condensed phases. In addition, simulation methods are constantly being developed to pre-
dict phase diagrams of IDPs. Nevertheless, high resolution information on the dynamics of IDPs
in biomolecular condensate is currently lacking despite its importance to understand the rate
of interconversion between conformations, since it is related to the protein’s function in many
cases.

While a lot of progress has been made both experimentally and computationally on the interac-
tions and low-resolution dynamics of IDPs in crowded environments including phase separated
biomolecular condensates, a significant amount of work needs to be done on understanding the
effect of crowding and liquid-liquid phase separation on the dynamic properties of IDPs, from
their rate of interconversion to their interactions at slower timescales. A better knowledge in
this area will allow a better understanding of biological processes, improved parametrization of
simulation force fields and a step towards the comprehension of how in vitro data are transfer-
able in the context of the living cells.
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Chapter 3

Liquid-Liquid phase separation
modifies the dynamic properties of
Intrinsically Disordered Proteins

Dynamics of Intrinsically Disordered Proteins is key to their numerous functions in biology.
Although characterizing their dynamics in solution has been widely studied and well established,
a clear picture of their functional motions and mechanisms in highly condensed phases is yet
lacking despite its importance for understanding the physics and biology of these widespread
phase-separated crowded systems. Here, using the C-terminal domain of the MeV Nucleopro-
tein, we investigated the dynamics of IDPs in a biomolecular condensate using NMR spin relax-
ation and molecular dynamics simulations. We observed a significant slow down in the rota-
tional dynamics of the backbone chain in the condensate with respect to the dilute condition,
and important modifications of the relative amplitudes of the dynamic modes. This amplitude
modulation could be correlated with the increase of unspecific intermolecular contacts upon
crowding, showing the implication of entanglement and inter-chain contacts in the dynamics of
Intrinsically Disordered Proteins in condensed phase.

This collaborative work has been done along with Serafima Guseva and other cowork-
ers and was published recently ([53] see appendix. Most of the content of this chapter is
also in the article). S.G prepared the protein, performed NMR and fluorescence experi-
ments and analyzed the experimental data. V.S analyzed experimental data, prepared,
performed and analyzed MD simulations. Performed the 1D NMR experiment.
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3.1 Introduction

Membrane-less organelles, intracellular compartments formed by Liquid-Liquid Phase Separa-
tion (LLPS) were recently found to be essential to cellular function in biology [306-308]. These
recent findings encouraged extensive studies on the molecular mechanisms behind their forma-
tion and stability, with the aim of understanding their function in biology [252, 260, 309, 310].

LLPS is a spontaneous and therefore thermodynamically favorable demixing process of one or
several species with respect to the rest of the solution, often yielding a highly viscous and con-
centrated liquid phase. Such phase separation was described by Flory and Huggins in 1942 with
a very simple model that still allows a good thermodynamical description of phase separation
[256, 257]. The demixing process of a polymer with the solvent for instance depends on the rel-
ative affinity of this polymer with itself as well as the solvent with itself compared to the affinity of
the polymer with the solvent. Multivalent intermolecular interactions between several compo-
nents, often including IDPs and RNAs thanks to their relative flexibility, are thought to determine
the formation of membrane-less organelles.

In the current state of the art concerning biomolecular condensates, protein concentration in
condensates were found to be up to 3 orders of magnitude higher than in a mixed phase. The
recent studies also found that the conformational sampling of IDPs in the condensate were not
dramatically affected, meaning that they stay disordered in both phases. Residue-specific inter-
molecular interactions and long-range contacts were also extensively studied, giving diverse re-
sults. A common finding is that these intermolecular interactions are weak, and maintain a sig-
nificantly high level of dynamics, allowing rapid rearrangements which manifest as liquid-like
properties on the macroscale.

The remaining high-level of dynamics in biomolecular condensate was also extensively studied
since it should play an important role in the stability of the condensate and the kinetic properties
of molecular reactions and interactions. The translational diffusion was probed with FRAP and
NMR diffusion experiments and showed a significant slow down in the diffusion properties of the
molecules in the condensate. On the other hand, reorientational and internal dynamics of IDPs
was probed with PREs, EPR, FCS and FRET. The consensus being that the rotational correlation
time of proteins were slowed down in agreement with translational diffusion data.

Besides experimental studies, computational approaches have been successfully used to study
the behavior of biomolecular condensates. For instance, coarse-grained methods can be used to
predict the phase behavior of IDPs and some condensate properties. All-atom simulations also
can provide insight into the atomic-resolution behavior of proteins in a biomolecular conden-
sate, with the high cost of computational power.

Among all the techniques, NMR is a unique tool to study the dynamic properties of IDPs in a
biomolecular condensate. While it successfully probed conformational sampling, long-range
contacts and intermolecular contacts at atomic resolution, it can also probe rapid backbone dy-
namics from tens of picoseconds to tens of nanoseconds with the help of NMR spin relaxation.
The few studies that report NMR relaxation rates in condensates show a significant slow down
in the rotational correlation times, in agreement with fluorescence studies. NMR spin relax-
ation is uniquely suited to provide detailed information on the dynamic modes of IDPs at several
timescales. A high level of valuable information can be obtained with extensive NMR spin relax-
ation measurement at different magnetic fields.
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In this study, we performed multifield NMR spin relaxation measurements of the intrinsically
disordered MeV Ntail to characterize its dynamic properties in a biomolecular condensate. Addi-
tional extensive NMR spin relaxation measurements in dilute and crowded conditions allowed a
relevant comparison and characterization of the effect of phase separation on the dynamic prop-
erties of IDPs. Our findings show that MeV Ntail’s conformational sampling in the condensate is
relatively conserved. On the other hand, we find a significant slow down in the rotational cor-
relation times of the different dynamic modes of the IDP. In addition, the contribution of these
dynamic modes to the observed dynamics is significantly modified. Using atomistic MD simula-
tions of MeV Ntail in dilute and concentrated conditions, we could reproduce the effect of phase
separation on the dynamics of MeV Ntail, and we found a correlation between the amount of non-
specific inter-molecular contacts and the amount of redistribution of the IDP’s dynamic modes.
This combined experimental and computational study provides important insight into the dy-
namic properties of IDPs in biomolecular condensates.

3.2 Materials and methods

The work presented here has been performed as described in Guseva & Schnapka et al. [53]. The
content of the materials and methods section can be found in the article in the appendix section.

3.3 Results and discussion

3.3.1 MeV Ntail liquid-liquid phase separation

The C-terminus construct composed of residues 401 to 525 of the Measles Nucleoprotein was
found to phase separate upon addition of PEG10000. This construct is rich in arginines (10% of
the residues) and charged residues, suggesting a condensate stabilized by electrostatic interac-
tions. The mixing of two solutions of these polymers leads to a separation into two phases: One
rich in PEG and poor in protein content, and the other one rich in MeV Ntail, yellow in apparence,
and poor in PEG. Fluorescence microscopy of mixed PEG and MeV Ntail solution showed the pres-
ence of MeV Ntail in the formed droplets of condensed phase and FRAP experiments showed the
liquid nature of this condensed phase (Figure 3.1A,C). PEG acts here as a trigger for phase sep-
aration. Its role is probably to modify the solvent properties, which translates into modifying
the solvent-solvent and solvent-protein terms in the interaction parameter of the free energy of
mixing if we interpret it in the light of Flory-Huggins theory presented in chapter 2.

The concentration-temperature phase diagram of MeV Ntail was established at different salt con-
centrations and exhibited an upper critical solution temperature [53]. Concentration in the con-
densed phase varied from 39 mM at 288 K and 118 mM NacCl to approximatively 15 mM at 308
K and 377 mM. Both temperature and salt concentration affected MeV Ntail’s concentration in
the condensed phase, with higher concentrations at low salt concentration and low temperature.
Most interestingly, phase separation appeared to be more prominent at low salt concentration,
which again suggests that electrostatic interactions are important for demixing. The results were
fitted to the Flory-Huggins theory and yielded a positive interaction parameter y suggesting that
attractive interactions promote phase separation [53].

Overall, from these observations, MeV Ntail seem like an ideal model system for investigating
the properties of IDPs in a biomolecular condensate.
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Figure 3.1: MeV Ntail phase separates upon mixing with PEG10000. A: Fluorescence microscopy image
of a mixture of PEG and MeV Ntail with fluorescent-labeled MeV Ntail with FAM. B: Primary sequence of
MeV Ntail. Positively charged and negatively charged residues are colored in red and blue respectively.
C: FRAP data of MeV Ntail droplet. The intensity of a region of interest (Part of a dense phase droplet)
is monitored during a fluorescence bleaching experiment. D: NMR sample of Ntail exhibiting the dilute
phase (II) and the dense phase (I) in a 3mm shigemi tube. E: *H-'5N HSQC spectra of MeV Ntail in the
dense phase (red, 850 MHz) and in the dilute phase (blue, 950 MHz) at 298 K. Taken with permission
from [53]

3.3.2 NMR chemical shifts in the dense phase

NMR spectroscopy was performed in the condensed phase. A sample composed of a dense macro-
droplet was prepared with 10% carbon 13 and nitrogen 15 isotope labeling. The comparison of
the 1H-'>N HSQC of MeV Ntail in buffer solution (dilute state) and in the condensate show no
significant change in 'Hy and '°N chemical shifts in the protein (Figure 3.1E). Almost all peaks
remain visible in the condensed phase, suggesting a sufficiently extensive rotational tumbling of
NH-bonds throughout the protein to allow reasonable values of transverse relaxation rates. The
helical propensity domain is however invisible, either due to exchange mechanisms or slowed
down tumbling in this region. Carbon chemical shifts were also observed and show no significant
change in the conformational sampling of MeV Ntail in the condensed phase (Figure 3.2). These
results combined show that MeV Ntail remains disordered and maintains a reasonably similar
local sampling of Ramachandran space in the condensed phase with respect to the dilute state.

3.3.3 NMR spin relaxation of MeV Ntail upon phase separation

To study the backbone dynamic properties of MeV Ntail, NMR spin relaxation rates including R4,
R;, nOe and 7y, were measured at different magnetic fields. The dynamic properties of MeV
Ntail were first characterized in the dilute state and in crowded conditions corresponding to 0,
37 and 75 g/L of PEG10000 where MeV Ntail doesn’t phase separate. The results highlight the
helical propensity domain with elevated R, and nOe values with respect to the disordered re-
gions, and all the rates show typical values expected in IDPs (Figure 3.3).

NMR spin relaxation in the dense phase shows significantly different values compared to the
dilute conditions at the same temperature, with a general sequence-dependent trend that fol-
lows what is observed in the dilute conditions as we can observe for example with elevated nOe
values around residues 439 and 451 (Figure 3.3). Most notably, transverse relaxation rates are
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Figure 3.2: Carbon alpha (CA, top) and carbonyl (CO, bottom) secondary chemical shifts of MeV Ntail in
the dilute state (Blue) and in the dense phase (Orange).

particularly higher in the dense phase, with rates ranging around 15 s~1. A significant sequence
dependence is also observed, including regions with more elevated R, values such as 96 K497
or °16]7Y>18 in the terminal regions for instance.

3.3.4 Model-Free analysis reveals the modified dynamic properties of MeV Ntail
upon phase separation

Model-Free analysis was performed in both the dilute states and in the condensed phase. The
spectral density function was modeled as a sum of three Lorentzians as described in previous
studies [51, 52].

For the dilute state, the relaxation rates in the different PEG concentrations were fitted together
with a model based on the nanoviscosity of the solution [52]. 20 experimental relaxation rates
were fitted this way for each residue in the protein. The fitting results show a good agreement
with experiment (Figure A.2). Experimental measurements performed at 700 MHz were used
for cross validation (figure A.3). The resulting correlation times and amplitudes associated with
the three dynamic modes are similar to recent analyses performed on other IDPs [51, 52], with
correlation times fitted around 50 ps for fast motions, 1 ns for intermediate motions and 5 to 10
ns for motions associated with the slowest dynamic mode as we can see in figure 3.4. The vis-
cosity coefficient obtained thanks to the different viscogen concentrations also exhibit similar
results compared to other IDPs [52]. The slow motions are important to relaxation in the helical
propensity domain and a region between residues 435 and 441, where faster motion is more
restricted. Finally, the angle between the NH dipolar vector and CSA principal axes, also fitted,
yielded similar results to other IDPs, with an average of 26.5°.

For the dense phase, Model-Free analysis performed with n,,,, R; and nOe (without R;) at the
two fields exhibits a non negligible gap between correlation times back calculated from R, and
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Figure 3.3: Relaxation profiles of MeV Ntail in the dilute state (dark blue), with 75 g/L of PEG (light blue)
and in the dense phase (dark gold) at 600 (left) and 850 (right) MHz proton frequency.

from 7,,, suggesting a possible exchange contribution to R, (Figure A.4). The small exchange
contribution to R, extrapolated from this analysis appeared to show weak field dependence,
suggesting a slow/slow-intermediate exchange regime or a relaxation exchange. Such exchange
was characterized before on another protein involved in phase separation [285]. CPMG relax-
ation dispersion experiments performed in our dense phase did not show any exchange con-
tribution to R, and therefore no trace of chemical shift exchange (Figure A.5). An attempt to
exploit nanoviscosity as a means to predict rotational correlation times in the dense phase was
unsuccessful, possibly because of additional contributions to the measured R, of water protons,
invalidating the assumption of linearity between this rate and nanoviscosity [311]. Removing
one cross-correlated relaxation rates from the analysis yields accurate data compared with the
excluded rate, showing an overall consistency of the data sets at the two magnetic fields (Figure
A.6) despite the limited amount of experimental data.

Comparing Model-Free analysis in both the dense and dilute states reveals strong differences in

the fitted correlation times. First, the fast correlation time is fitted around 100 ps in the dense
phase against 50 ps in the dilute state. Then, the intermediate timescale, fitted around 1 ns in
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Figure 3.4: A: correlation times associated with the dilute state fitted from Model-Free analysis. B: Cor-
relation times associated with the dense phase fitted from Model-Free analysis. C: Amplitude of the dy-
namic modes over the sequence in the dilute state from Model-Free analysis. D: Amplitudes of the dynamic
modes in the dense phase (continuous lines) compared with the dilute state (dashed lines). Data associ-
ated with the fast, intermediary and slow dynamic modes are in blue, orange and red respectively.

the dilute state is fitted around 1.5 ns in the dense phase. Finally, the slow component, fitted
between 5 and 10 ns in the dilute state samples timescales over 20 ns in the dense phase (Figure
3.4 and A.7). Remarkably, a significant variation of the amplitude associated with each dynamic
mode is observed from the dilute state to the dense state. Associated with the parameters Sf and
S? presented in chapter 1, or more generally with the asymptotic values of the two fastest corre-
lation functions associated with the NH bond vector, this can be interpreted as more restricted
fast motions in the dense phase compared with a dilute state. As a result, the contribution to
relaxation of the slowest dynamic mode is significantly more important in the dense phase.

3.3.5 MD simulations of MeV Ntail in the dilute state

In order to better understand the effect of LLPS on MeV Ntail’s dynamic properties, MD simu-
lations of MeV Ntail were performed. As we saw in chapter 2, MD simulation is a powerful tool
for helping the interpretation of NMR relaxation data. Here, MD simulations of MeV Ntail were
first performed in the dilute state to obtain a trajectory ensemble that reproduces the dilute state
experimental data. 30 trajectories starting from a conformation taken from an ASTEROIDS en-
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semble were simulated for 200 ns with CHARMM36m force field and TIP4P/2005 water model,
the combination that showed to provide the best description of IDP dynamics so far [210]. Ex-
tracting the relaxation data on the resulting ensemble of trajectories yields an overestimated
transverse relaxation rate, as expected from recent studies of other IDPs [208, 210]. To obtain
an accurate ensemble, an ABSURD procedure was performed [208]. First, the 30 trajectories
of 200 ns were divided into 90 smaller trajectories of 100 ns. The reweighting procedure was
performed on this ensemble using R, measured at 850 MHz proton frequency as a reference,
yielding a more accurate representation of MeV Ntail dynamic properties as shown in figure 3.5.
The most remarkable feature of ABSURD optimization is that all the rates that were not included
in the optimization procedure also show a significant improvement in the agreement with exper-
imental data, as observed previously [208, 210]. Additionally, the local backbone sampling is in
agreement with experimental data (Figure 3.7). We therefore successfully obtained an accurate
representation of MeV Ntail dynamics in the dilute state with MD simulations.

Figure 3.5: Experimental (gray bars), simulates trajectories (orange) and ABSURD reweighted trajecto-
ries (blue) of MeV Ntail relaxation rates at 600 and 850 MHz proton frequency.

3.3.6 MD simulations of self crowded MeV Ntail

Simulating large systems at atomistic resolution is a challenging task. The accuracy of the force
fields being not guaranteed in the dilute conditions, obtaining good results with highly concen-
trated boxes of MeV Ntail was not expected. However, it is so far one of the only simulation
method available that allows us to extract relaxation parameters despite the rise of numerous
coarse grained models [289, 312]. To create self crowding conditions, several boxes made of
hundreds copies of MeV Ntail with concentrations of 5, 14 and 20 mM were prepared (Figure
3.6). The boxes were prepared by taking random conformations of MeV Ntail taken from the
ASTEROIDS ensemble and incorporating them in the box while avoiding steric clashes. Water
and ions are then added such that it neutralizes the charges in the system. Above 20 mM, steric
clashes are too important, preventing a proper box preparation. However, 20 mM, which cor-
responds to approximately 260 g/L of proteins, remains a sufficiently high concentration in the
range that can be expected in biomolecular condensates. MD simulations were performed for
at least 200 ns using the same force field and water model combination that was used in dilute
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simulations.

Figure 3.6: Boxes of concentrated solutions of MeV Ntail at 5 mM (left), 14 mM (center) and 20 mM (right).

First, the structural properties of MeV Ntail in each box were analyzed. Chemical shifts were
predicted for each conditions and exhibited no significant change with respect to the dilute and
experimental condition (Figure 3.7), indicating an accurate sampling of the local conformational
space with respect to the experimental observations. Then, the radius of gyration was exam-
ined and remained stable in each simulation (Figure A.8). The radius of gyration distribution
remained close to the ASTEROIDS ensemble (Figure A.9).

Figure 3.7: Experimental (gray bars) and simulated chemical shifts of MeV Ntail in the dilute state (blue)
and in self crowded boxes of 5 mM (yellow), 14 mM (orange) and 20 mM (red).

NMR spin relaxation rates associated with the different simulation conditions were extracted,
yielding highly robust data thanks to the high number of Ntail copies in each boxes. We observe
a consistent increase in transverse relaxation rates and transverse cross-correlated relaxation
rates with protein concentration (Figure 3.8). The highest concentration exhibits a similar base-
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line for J(0)-sensitive rates compared with experimental data in MeV Ntail’'s dense phase. We
note however the presence of specific regions were the experimental J(0)-sensitive rates exhibit
some spikes that are not reproduced by simulation. Additionally, nOe values also exhibit a con-
sistent evolution, with the highest simulated concentration exhibiting relatively consistent val-
ues with respect to experiments. However, R, is not well reproduced despite a consistent evolu-
tion with respect to protein concentration (assuming we are in the high 7, regime for R;). This
suggests that the motions associated with intermediate relaxation-active timescales are less well
reproduced compared to the fast and slow contributions.

Figure 3.8: Experimental (dashed lines) and simulated (continuous lines) relaxation profiles of MeV Ntail
in the dilute state (blue), at 5 mM (orange), at 14 mM (red), at 20 mM (dark red) and in the dense phase
(dashed dark gold) at 600 (left) and 850 (right) MHz proton frequency.

Model-Free analysis was performed on the calculated relaxation rates. The motional timescales
get higher as expected, and the amplitude modulation in the simulation analysis is akin to the
observations in the experimental analysis, as figure 3.9 shows.

The MD simulations were further analyzed to better understand the origins of this amplitude
redistribution. We should recall that at least qualitatively, the different amplitudes fitted from
Model-Free analysis are somehow related to the amount of orientational space explored by the N-
H bond vector at the given timescales. It was shown for folded proteins that the order parameter
52 was closely related to the amount of contacts between some specific atoms and neighboring
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Figure 3.9: Model-Free parameters from Experiments (Orange lines) in the dense phase (left) and in the
dilute state (right) and from MD simulations (Blue lines) in the 20 mM box (left) and in the dilute state
(right).

atoms in space. Briischweiler and coworkers were indeed able to predict the order parameters
of folded proteins from X-ray crystal structures using a contact model [313]. A related approach
was applied here on our trajectories in the different boxes: Contacts between amide protons and
the neighboring atoms were calculated over the simulations using the following relationship:

el 2)

Where the index i corresponds to a given residue, the index j corresponds to an atom in the vicin-
ity of the amide proton attached to the residue i, 7;; is the distance between these two atoms and
m; is the mass of the atom j. We noted that ignoring the neighboring protons and only taking into
account heavy atoms (Carbons, Oxygens, Nitrogens) didn’t significantly affect the results. The ex-
pression is averaged over the trajectories and over the ensemble for every given atom pairs. k
is an arbitrary tunable parameter expressed in units of mass over distance. The parameter W;
is used as an observable of the amount of promiscuity between a given N-H bond vector and the
surrounding atoms, and k tunes the sensitivity of this parameter with respect to distance. A high
value of k would imply that W; is sensitive to only very close atoms, while the lower the value of
k, the more sensitive W; is to more distant atoms (Supplementary figure 3.10A). After calculation
(Supplementary figure 3.10B), the parameter W; was then rescaled to be compared to the fitted
fast motion order parameter Sf = 1 — A, with the following relationship:

109



]

1— A, =S¢ hBZ LU0 PR D
(1A, = stan exp (2 -

Where B and C are variables and the tanh function serves only to restrain the values between
0 and 1. The results with k = 6 are shown in figure 3.10C and 3.10D and show that the distri-
bution of intermolecular distances over the sequence exhibits a similar evolution with protein
concentration. This suggests that the reduction of fast motional amplitude observed thanks to
NMR is related to an increase in motional restrictions due to a higher level of proximity between
the chains.

Figure 3.10: A: Distance (in Angstrom) dependence of the contribution to W; of a single atom with a mass
of 1 (light blue), 12 (orange), 14 (dark blue) or 16 (red) Daltons. B: Value of W; for each residues i over
the sequence calculated with k = 6 in MeV Ntail’s simulations in the dilute state (blue), at 5 mM (green)
and at 14 mM (orange). C: Superimposed fast motional mode order parameter and contact model in MeV
Ntail’s simulations in the dilute state (top), at 5 mM (center) and at 14 mM (bottom). D: Top: Fast motion
dynamic mode order parameter extracted from the simulations in the dilute state (dark blue), at 5 mM
(light blue) and at 14 mM (orange). Bottom: Contact model over the sequence.
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3.4 Discussion

Understanding the dynamic properties of IDPs in biomolecular condensates is crucial to under-
stand biological mechanisms taking place in such dynamic and nevertheless viscous and crowded
environments. Here, we combined NMR and MD simulation to investigate the dynamic proper-
ties of MeV Ntail, a prototypical IDP, in a liquid-liquid phase separated condensed phase.

MeV Ntail is the C terminal domain of the Measles Virus Nucleoprotein (MeV N) and is used here
as a model system. This construct is involved in the phase separation of MeV N with its partner
the Phosphoprotein (MeV P) through an interaction between the helical propensity domain and
the XD domain of MeV P [314]. This phase separation is believed to be important for the forma-
tion of Nucleocapsids in the MeV replication mechanisms. Studying the phase separation of MeV
N with MeV P by NMR spectroscopy would be interesting but challenging given the size of these
IDPs.

Using NMR, we measured NMR spin relaxation rates of MeV Ntail in dilute and crowded con-
ditions as well as in the dense phase at two distinct magnetic fields. The relaxation rates mea-
sured in dilute states are similar to those measured in other prototypical IDPs in previous stud-
ies [51, 52]. On the other hand, the measured rates in the dense phase are significantly different,
although sequence specific similarities in the relaxation profiles could be found. For instance,
the transverse relaxation profile in the dense phase, which exhibits much higher rates than in
the dilute state, presents some shared maxima with respect to the profile in the dilute state, in-
cluding the highly charged regions *33RRVK**! and *’°ESYRE*>3. However, additional maxima
observed in the dense phase were not present in the dilute state, including the aromatic ring
bearing regions *'8FLH*20 and >'7VYN>?, indicating the probable presence of dense phase-
specific intermolecular interactions as observed in other biomolecular condensates [264, 265,
284]. In addition to these maxima, the R, profile doesn’t exhibit the typical "bell shape” one
would expect in classic IDPs [315], which suggests that the typical reptation motion of the tails
of the protein chain is more restricted in the dense phase. While numerous research groups have
already characterized intermolecular contacts by NMR, a more detailed analysis of the sequence
specificity of the dynamic properties of MeV Ntail would be interesting to decipher the effect of
intermolecular interactions on IDP’s dynamics with respect to the more general characteristics
detailed in this study.

In order to interpret these relaxation data, Model-Free analysis was performed for the dilute
states and the dense phase. The extensive amount of data in the dilute state with different levels
of nanoviscosity allowed a robust analysis of the dynamic properties of MeV Ntail. In addition to
correlation times and amplitudes of the three dynamic modes, solvent friction coefficients could
be extracted, showing consistent values with respect to previous measurements [52]. Indeed,
the correlation time of the fast mode remains sequence and viscosity independent and ranges
around 45 ps, while the slowest motion remains around three times more sensitive to increased
viscosity compared to the indermediary mode, which is a manifestation of the length-scale de-
pendence of the experienced viscosity in complex environments, which further illustrates the
different length-scales of the motional mechanisms that are probed by NMR spin relaxation. In
the dense phase, the timescales increase significantly as expected, and a significant redistribu-
tion of the amplitudes of each dynamic mode is observed. A non-negligible systematic decrease
in A; and A, results in a more significant contribution of the slower motions to relaxation.

To further understand this amplitude modulation, atomistic MD simulations were performed.
First, simulations of MeV Ntail in salty water solutions were performed and reweighted with
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ABSURD to obtain a representative ensemble of trajectories that agree with experimental data.
Then, boxes of proteins at different concentrations of MeV Ntail allowed a characterization of
MeV Ntail in concentrated conditions. One should note that these boxes were not designed to
reproduce liquid-liquid phase separated biomolecular condensates. Rather, it simulates highly
self crowded conditions with concentrations that are analogous to a dense phase. The main dif-
ference with our simulations is that no dense phase-specific intermolecular interactions were
simulated, since the boxes were generated with random conformations taken from an ensem-
ble. Furthermore, being able to see intermolecular interactions in our simulations would have
required much larger timescales that are currently unfeasible in atomistic simulations. An inter-
esting approach for that would be to perform coarse grained simulations and then after phase
separation occured, translate the coordinates into all-atom and run simulations this way [316].
There is however no guarantee that it would yield accurate results since the current available
force fields cannot grasp some interactions, for example between pi orbitals bearing atom groups
[298]. Nevertheless, self crowded conditions on the other hand are useful to obtain information
on the dynamic response of MeV Ntail’s chains to self crowding, a key characteristic that is com-
mon with biomolecular condensates.

The chemical shifts and radius of gyration distribution extracted from simulation are in agree-
ment with experimental data, allowing further analysis. The relaxation rates associated with
the calculated trajectories in the different conditions were extracted. The R, and nOe profiles
showed similar patterns over the sequence, with the highest concentration box exhibiting sim-
ilar values to the experimental dense phase. R; however was not well reproduced, probably
because of force field and water modeling inaccuracies. Nevertheless, the Model-Free parame-
ters in the simulations showed the same evolution than in experiments, including the amplitude
distribution.

This observed amplitude redistribution is somehow related to a change in the amount of mo-
tional restriction experienced at fast and intermediary timescales. Here, a strong correlation
between the sequence-specific fast motion dynamic mode amplitude and the amount of inter-
molecular local promiscuity between the backbone amides and other atoms is found thanks to a
contact model, confirming the hypothesis that the increased intermolecular proximity is respon-
sible for more restricted motion and therefore fast and intermediary amplitude redistribution.
We should mention that the contact model presented here doesn’t assume anything regarding
atom groups-specific effects taking place when two atoms are close to each other. Since it only
considers the mass and the distance of atoms between each others, other effects involving Van
der Waals of Coulombic interactions for example are not taken into account, which can lead to dis-
crepancies in some regions. Additionally, the model doesn’t consider the increased or decreased
flexibility of some regions, for example the tails of the protein chain or the serine and glycine
rich regions that therefore exhibit lower order parameter values compared to the model. Never-
theless, this contact model shows a remarkable correlation between local heavy atoms density,
including a contribution from intermolecular chains, and order parameters, confirming the rela-
tionship between steric effects and order parameters already observed in folded proteins.

Overall, the global effect of liquid-liquid phase separation on the backbone dynamics of IDPs is
now better understood. A more detailed focus on the sequence-specific contacts and their effect
on backbone dynamics would be a useful addition to this work. In addition, it can be of interest
to attempt a study on the dynamic properties of the IDP’s side chains upon phase separation,
especially the side chains that are involved in crucial intermolecular contacts like arginines and
tyrosines.
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3.5 Conclusion and perspective

In this work, we characterized the dynamic properties of MeV Ntail in dilute states and biomolec-
ular condensates by NMR spectroscopy and showed that Liquid-Liquid Phase Separation induces
a significant change in the dynamic properties of MeV Ntail. Notably, a redistribution of the
contribution of each backbone motion timescale to the measured relaxation is observed with
a greater contribution of slow motional modes in the dense phase. MD simulation reproduced
this trend and exhibited a correlation between the local density of protein heavy atoms and the
amplitude of the dynamic mode associated with fast motion. This study is a step forward a better
understanding of the dynamic modulation of the ubiquitous phenomenon of phase separation on
IDPs.

113



Chapter 4

Inter-molecular interactions locally
slow down IDP’s local backbone

tumbling in biomolecular condensates
of MeV Ntail

In the previous chapter, we saw that the backbone dynamics of IDPs in condensates is slowed
down and that the amplitudes associated to the different dynamic modes is considerably mod-
ified due to a higher level of proximity between the atoms constituting the disordered proteins
in the condensate. Many other important questions remain unanswered on how IDPs behave
and how they keep the condensate stable. We saw that numerous studies have used NMR to
show the presence of amino-acid specific intermolecular contacts in condensates. Whether the
effect of these intermolecular interactions on IDP dynamics can be separated from the effect of
pure crowding and and viscosity remains an open question. In this chapter, we further study
biomolecular condensates of MeV Ntail by NMR and take a closer look on residue specific mod-
ulations of Ntail dynamics. The results of this study are in agreement with our previous work
presented in the previous chapter and provides additional insight into the effect of side-chain
intermolecular interactions on the backbone dynamics of IDPs.
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4.1 Introduction

Numerous studies have been performed on different biomolecular condensates to characterize
intermolecular interactions [264, 265, 269, 284]. The ensemble of these results show that the
stabilization of a biomolecular condensate could arise from diverse and multiple factors, such as
electrostatic, pi-pi, cation-pi and even hydrophobic contacts. The previous results on MeV Ntail
and more specifically the salt-dependent phase diagram suggest that this MeV Ntail’s phase sep-
aration is stabilized thanks to the numerous electrostatic interactions that can experience the
protein [53]. Highly heterogeneous values of transverse relaxation rates over the sequence sug-
gest the presence of specific hot spots where inter-molecular interactions take place in addition
to the possible variability of the CSA tensor over the sequence. In the literature, little has been
done on the characterization of the dynamics of IDPs in condensates in the light of these inter-
molecular interactions. Kim et al. observed significant increases in the >N transverse relaxation
rates of CAPRIN1 in specific regions upon phase separation [284]. They could correlate R, in
these regions, rich in arginines and tyrosines, with the presence of intermolecular interactions
that are important for phase separation. Importantly, the increased transverse relaxation rates
they observed could be explained by an increase in viscosity of the solution. In our previous
study, we characterized a condensate of MeV Ntail and identified non-specific amplitude modu-
lations of the backbone’s dynamic modes. MeV Ntail contains a significant proportion of charged
amino-acids, and only three aromatic residues.

Here, we performed further measurements of NMR spin relaxation rates on MeV Ntail in a con-
densed phase and further analyzed the sequence dependence of the backbone’s dynamics of MeV
Ntail. The obtention of robust high quality data allowed us to further characterize the sequence
specific effects of biomolecular condensation on the dynamic properties of MeV Ntail. We find
that the local segmental and peptidic motions in some regions of MeV Ntail are significantly
slowed down compared to the rest of the sequence, while the sequence modulation of faster
dynamic modes is relatively unaffected by the potential intermolecular interactions. This slow
down in the segmental motion is highly correlated with the regions rich in charged residues like
arginines and aromatic residues. Intermolecular NOE data suggests the presence of intermolec-
ular contacts in the backbone while NMR exchange experiments doesn’t provide any evidence
for microsecond-millisecond exchange processes.

This work provides a more clear picture of the different contributions of liquid-liquid phase sep-
aration on the dynamic properties of Intrinsically Disordered Proteins and invite us to further
study the dynamic properties of proteins’ side chains in biomolecular condensates, where these
crucial interactions take place.

4.2 Materials and Methods

Protein Preparation

MeV Ntail 402-525 The sequence of the C-terminal domain (residues 401-525) of the Measles
Virus Nucleoprotein was cloned in a pET22b vector with an N-terminal 6His-tag. The gene was
transformed into Escherichia coli Rosetta TM(IDE3)/pRARE (Novagen). The unlabeled and sin-
gle la