
HAL Id: tel-04622508
https://theses.hal.science/tel-04622508v1

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ordonnancement de sillons ferroviaires périodiques avec
affectation de voies à l’échelle mésoscopique

Guillaume Joubert

To cite this version:
Guillaume Joubert. Ordonnancement de sillons ferroviaires périodiques avec affectation de voies à
l’échelle mésoscopique. Recherche opérationnelle [math.OC]. Université de Technologie de Compiègne,
2023. Français. �NNT : 2023COMP2775�. �tel-04622508�

https://theses.hal.science/tel-04622508v1
https://hal.archives-ouvertes.fr

 Par Guillaume JOUBERT

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Periodic train timetabling with
mesoscopic tracks assignment

Soutenue le 20 novembre 2023
Spécialité : Informatique : Unité de recherche Heudyasic
(UMR-7253)
 D2775

Thèse CIFRE

présentée en vue d’obtenir le grade de

Docteur de l’UTC
Spécialité : Informatique

Champ disciplinaire : Recherche Opérationnelle

par Guillaume Joubert

Periodic train timetabling with mesoscopic tracks

assignment

soutenue le 20 novembre 2023
Composition du jury :

Mme. Feng Chu Professeure des Universités Rapportrice

M. François Clautiaux Professeur des Universités Rapporteur

Mme. Tifenn Rault Maîtresse de Conférences Examinatrice

M. Aziz Moukrim Professeur des Universités Examinateur, Président du jury

M. Dritan Nace Professeur des Universités Directeur de thèse

M. Antoine Jouglet Professeur des Universités Directeur de thèse

Membre invitée :

Mme. Marion Postec SNCF Réseau | DGEX DIGIT Co-encadrante de thèse

préparée en collaboration avec le laboratoire Heudiasyc, UMR 7253
déliverée par l’Université de Technologie de Compiègne

Ecole Doctorale 71 - Sciences pour l’ingénieur

ii

Remerciements

Comme vous pouvez vous en douter, cette thèse ne se résume pas exclusivement à l’ouvrage
que vous avez sous les yeux. Au cours de ces années, j’ai eu la chance de rencontrer beau-
coup de personnes passionnées, tant par la richesse des expertises dans les métiers du
ferroviaire en entreprise que par les systèmes complexes dans tous leurs états lors de mes
passages au laboratoire. Au départ, trouver tout à fait ma place, mon rythme et mon util-
ité dans ces environnements a été un défi à part entière. Au bout du compte, je m’essaie
à quelques mots en témoignage de ma reconnaissance envers ces personnes avec qui j’ai
beaucoup apprécié travailler et qui ont eu un rôle dans mon évolution vers la personne
que je suis devenu aujourd’hui.

Je remercie Feng Chu et François Clautiaux pour avoir accepté de rapporter cette
thèse et pour les précieux conseils qu’ils m’ont transmis. Je remercie Tifenn Rault pour
avoir examiné ma thèse, ainsi que Aziz Moukrim pour son rôle d’examinateur et de prési-
dent de mon jury dont je suis honoré.

J’adresse mes remerciements tout particuliers à Dritan Nace et à Antoine Jouglet.
Dritan et Antoine ont non seulement été des contributeurs de premier plan dans mon éd-
ucation en Informatique et en Recherche Opérationnelle, mais ils m’ont aussi guidé sans
relâche dans mon parcours de jeune chercheur pour mener à bien l’ensemble des étapes
qui ont permis l’aboutissement de cette thèse. Je retiendrai le dévouement dont ils ont
fait preuve à mon égard.

Je remercie chaleureusement Marion Postec pour avoir cru en mes compétences et
contribué à leur développement. J’ai rejoint Marion chez SNCF Réseau pour mon projet
de fin d’études de Master de Recherche, quand nous avons décidé de poursuivre en thèse.
Son suivi régulier, son écoute et nos échanges d’idées m’ont permis d’en apprendre beau-
coup sur le fonctionnement de l’entreprise et de rencontrer des experts métier qui nous
ont permis de mener à bien nos projets.

Je remercie Bertrand Houzel pour m’avoir permis d’effectuer ma thèse à la DGEX So-

iii

lutions, pour la liberté qu’il m’a laissé dans la conduite de mes travaux, et pour avoir fait
en sorte que je puisse encadrer deux stagiaires assistant-ingénieurs dans son service. Je
remercie Clément Raoux pour le suivi administratif de ma thèse à la DGEX Solutions et
pour m’avoir intégré comme un membre de ses équipes. Je remercie les chargés d’études
horaires de DGEX INCA qui ont eu tant de patience et d’intérêt à m’expliquer les rouages
du tracé horaire à la SNCF et à échanger régulièrement sur l’avancer de nos travaux. Je
remercie Frédéric Fevre, Loic Hamelin et Giuliana Barbarino pour avoir rendu possible
une passation de ces travaux de thèse afin de les réutiliser dans le cadre du projet Open
Source Railway Designer.

Les travaux de cette thèse ont été grandement facilités par les efforts de Eugène Pin et
de Damien Berthelon, qui ont l’un après l’autre pris le pari de venir prêter main forte à un
thésard pendant six mois. Eugène a fait naître l’interface graphique de l’outil OptiSillons,
Damien y a apporté des possibilités d’interaction complémentaires avec des gestes métier.
En plus de faciliter la visualisation et l’interprétation de mes résultats, leurs travaux ont
permis de faciliter les échanges avec mon encadrement, avec des spécialistes de l’horaire
dans l’entreprise ayant eu la patience de s’intéresser au projet, et avec la communauté
scientifique. Je leur en suis reconnaissant.

Je tiens à remercier Jacques Carlier, David Savourey et Ronan Bocquillon pour avoir
périodiquement animé mon Comité de Suivi Individuel Scientifique de thèse. Leurs recom-
mandations ont été inestimables lors de ces jalons. Je remercie par ailleurs Mylène Masson,
Bérengère Guermonprez, Benjamin Quost et Yves Grandvalet qui se sont continuellement
assurés du bon déroulement de ma thèse, et notamment pendant ma période de rédaction.

Je remercie à nouveau grandement Ronan Bocquillon, cette fois-ci pour m’avoir in-
vité à venir travailler avec lui, à Tours, dans le cadre d’une mobilité doctorale. Le fruit
de nos réflexions a littéralement insufflé une nouvelle dynamique pour ma thèse. Cette
mobilité a été possible grâce au concours des Actions Jeunes Chercheurs du Groupement
de recherche Recherche Opérationnelle et Décision du CNRS dirigées par Ayşe N. Arslan
que je remercie. Je suis aussi reconnaissant envers Yannick Kergosien et toute l’équipe
ROOT du LIFAT pour leur accueil chaleureux et pour les discussions autour de ma thèse.

Je remercie les enseignants-chercheurs du Master Parisien de Recherche Opérationnelle
pour m’avoir accepté en qualité d’auditeur libre dans leurs cours pendant ma première
année de thèse. Je garde également un excellent souvenir de trois Ecoles pour jeunes
chercheurs organisées par le GdR ROD. L’ensemble de ces événements a eu un impact
positif sur mon exploration de ce vaste domaine de recherche.

iv

J’ai eu le privilège, pendant ma thèse, d’avoir eu l’opportunité de consacrer quelques
heures hebdomadaires à l’enseignement en travaux dirigés de divers cours en Informa-
tique à l’Université de Technologie de Compiègne, allant des fondements scientifiques
de l’informatique, en passant par la programmation orientée objet, la Recherche Opéra-
tionnelle et la sûreté de fonctionnement. J’exprime ma gratitude envers Dritan Nace,
Antoine Jouglet, Walter Schön et Mohamed Sallak pour leur confiance et leur soutien
pour mener à bien ces missions. Je remercie l’entreprise de m’avoir permis cette flexibil-
ité. Je suis également redevable à Benoit Cantais, qui a été mon chargé de travaux dirigés
en Informatique à plusieurs reprises pendant mes études, et qui est sans aucun doute l’une
des inspirations qui m’a donné l’envie d’enseigner à mon tour.

Je remercie Franck Kamenga, Marie Milliet de Faverges et Sélim Cornet pour m’avoir
présenté leur sujet de recherche pendant leur thèse à la SNCF et pour m’avoir ainsi permis
de me projeter dans le démarrage de ma thèse. Je remercie les personnes qui m’ont intro-
duit à l’Association des Doctorant.e.s du Groupe SNCF, devenu Club des Doctorant.e.s,
et avec qui j’ai pris plaisir à animer cette communauté au sein du bureau. J’ai donc une
pensée particulière pour Capucine-Marin, Rémi, Mégane, Orphée, Jean, Tess et Louis. Je
salue les doctorants du Groupe que j’ai eu le plaisir de cottoyer. Je remercie la Direction
Technologies, Innovations et Projets Groupe de la SNCF et notamment François Ramond,
Christelle Lerin, Françoise Dubois et Allan Armougum pour l’organisation d’événements
scientifiques auxquels j’ai toujours été convié : je pense aux rencontres trimestrielles des
experts et chercheurs de la SNCF, aux Villages des Thèses, à la formation et au concours
Ma Thèse en 180 secondes.

J’adresse mes remerciements à Gary Burkhart, sans qui mes premiers pas dans la com-
munication et la rédaction en anglais scientifique auraient été périlleux. You were right
Gary, conferences are a very nice experience ! Special thanks are due to Anita Schöbel,
Michael Kümmling and Valentina Cacchiani, who kindly took the time to answer my
questions during my research and thus helped me realising the strength of the interna-
tional scientific community.

J’exprime toute ma reconnaissance à Dominique Kreikenmayer et à son équipe pour
l’organisation du programme de mentorat de Sorbonne Université, ainsi qu’à Philippe
Reymond, qui a été mon mentor à l’occasion de la première édition de ce programme et
m’a accompagné pendant un an sur ma fin de thèse. Merci Philippe pour ton écoute,
ton soutien et ton partage d’expérience qui m’ont aidé à garder le cap dans des moments
particulièrement charnières.

v

Je remercie l’ensemble des personnels du laboratoire Heudiasyc. Merci Philippe pour
m’avoir accepté au sein du laboratoire. Merci Nathalie, Sabine et Brigitte, pour votre
implication permanante pour les départs en missions. Merci Gildas pour ton appui tech-
nique. Merci Tom et Stefano pour ces discussions sur la PPC, les problèmes SAT et les
réseaux de neurones. Merci Marinela pour avoir été un exemple pour moi, ta soutenance
de thèse est la première à laquelle j’ai eu la chance d’assister. Merci Nader, Michaël et
Qing pour m’avoir supporté pendant ces années dans notre bureau. Merci à tous pour
m’avoir honoré à deux reprises du prix du meilleur poster de la journée du laboratoire.
Enfin, je remercie les Pifometrics pour l’aventure artistique que nous avons partagée à
l’occasion des 40 ans du laboratoire.

Je présente mes remerciements les plus amicaux à Isabel Barros Garcia. Isabel, tu
as été une binôme en or, il y a eu tant de découvertes avec toi : programmation de nos
algos d’arc-consistance, rédaction de nos premiers résumés pour la ROADEF, premières
expériences d’enseignement à l’UTC, excursion en Ecole du GdR ROD. Par-dessus tout,
merci pour ton éternel soutien lors de mes passages à Compiègne.

Je remercie les collègues de la DGEX Solutions pour l’ambiance de travail conviviale
que nous avons partagée au quotidien. A l’extérieur, certains d’entre vous n’ont pas hésité
à me suivre dans des paris fous. Merci à Firas avec qui nous avons sillonné l’Ile-de-France
à la conquête du classement 30/5. Merci à Arthur et à Pierre, avec qui nous avons pris
des départs sur la plus belle course parisienne.

Je remercie chaleureusement l’Association de Tennis Paris 13, et notamment Maryelle,
Stéphane, Thierry, Pascal, Fabia et Karim. Vous m’avez fait passer trois années extraor-
dinaires, sur les courts comme parmi le bureau du Conseil d’Administration.

Je suis reconnaissant envers mes amis qui ont toujours fait leur possible pour me té-
moigner leur soutien quand je pouvais les croiser. Du fond du coeur merci à vous. En
particulier, je tiens à remercier Lucas Warin pour sa présence lors de ma période de ré-
daction.

Je remercie infiniment ma mère Muriel, mon père Joël, ma soeur Manon, mes cousins
Paul, Claire, Caroline, Laurent, Eglantina, et mes anciens. A tout moment au cours de
ma thèse, j’ai pu trouver en votre compagnie un refuge. Vous n’avez cessé de croire en
moi et de me donner la force d’avancer. Merci pour votre soutien inconditionnel jusqu’à
la soutenance.

vi

J’exprime en dernier lieu ma gratitude envers Pauline. Merci ne pourrait suffire pour
tout ce que toi et tes proches m’apportez.

vii

Résumé

Le Gestionnaire d’Infrastructure SNCF Réseau produit annuellement un ordonnancement
de sillons pour permettre la circulation de trains répondant à une demande des Autorités
Organisatrices de Transports. Cette thèse s’inscrit dans une démarche d’aide à la déci-
sion pour les chargés d’études horaires produisant ces sillons. Nous traitons une phase de
structuration : il s’agit de trouver, s’il existe, un ordonnancement périodique répondant à
une demande de sillons et respectant les contraintes de circulation. Nous proposons deux
méthodes pour résoudre ce problème.

La première méthode se base sur un modèle en Programmation Linéaire en Nombres
Entiers inspiré de la littérature et décomposé pour faciliter sa résolution. La grille ho-
raire est décidée, suivie de l’affectation de voies. Une fonction d’évaluation de conflits
entre sillons sans connaître l’affectation de voies permet de construire une grille horaire
garantissant une affectation de voies compatibles. Nous résolvons les conflits des instances
difficiles avec une heuristique constructive et une recherche tabou.

La deuxième méthode s’appuie sur un modèle en Programmation Par Contraintes op-
timisant le temps de retournement des rames en gares terminus. Nous concevons des
algorithmes de filtrage améliorant la propagation des contraintes périodiques de précé-
dence et disjonctives. Nous proposons des bornes inférieures basées sur la contribution
de sous-ensembles de sillons à la fonction objectif pour améliorer la preuve d’optimalité.
Nous présentons une procédure de Branch-and-Check accélérerant la résolution.

Nous testons ces approches sur des instances fictives du problème et sur l’Etoile de
Savoie autour de Chambéry.

Mots-clés : Grilles horaires périodiques, Affectation de voies à l’échelle mésoscopique,
Programmation Linéaire en Nombres Entiers, Heuristique de recherche tabou, Program-
mation par Contraintes, Procédure de Branch-and-Check.

viii

Abstract

The Infrastructure Manager SNCF Réseau produces train timetables on a yearly basis,
to allow trains circulation fulfilling a mobility demand from the Transport Organisation
Authority : this is a periodic slot scheduling task. This PhD project aims at providing a
decision-aid tool to the timetable planners. We focus on a capacity structuration phase:
we look for a periodic scheduling fulfilling a slots demand and satisfying the safety con-
straints arising from rail operations. We propose two methods to solve this problem.

The first method is based on an Integer Linear Programming model inspired from the
literature and that we decomposed to ease the solution search. The timetable determina-
tion is then made before the tracks assignment. A conflict evaluation function that does
not require explicit tracks assignment knowledge is used to obtain conflict-free timetables
for which a tracks assignment is reachable. We solve the conflicts of challenging instances
with a constructive heuristic and a tabu search.

The second method relies on a Constraint Programming model that we use to optimise
the turnover time of rolling stock at terminus stations. We conceive filtering algorithms
to improve algorithms that maintain the arc-consistency of precedence and disjunctive
constraints of the problem, all having a periodic aspect. We propose lower bounds based
on the cost contribution of slots subsets to the objective function in order to improve
the optimality proof. Finally, we present branching strategies and a Branch-and-Check
procedure to improve the resolution performance.

We test these approaches on fictive instances of the problem and on the Savoie area
around Chambéry.

Keywords : Periodic train timetabling, Mesoscopic tracks assignment, Integer Linear
Programming, Tabu search heuristic, Constraint Programming, Branch-and-Check pro-
cedure.

ix

Contents

Résumé viii

Abstract ix

List of figures xiv

List of tables xvi

Résumé substantiel 1

1 Introduction 10
1.1 Industrial context . 11
1.2 Research objectives and contributions . 12
1.3 Outline of the thesis . 13
1.4 List of publications . 17

2 Operational Research in Railway planning: overview and positioning 19
2.1 Railway planning phases . 20

2.1.1 Strategic level . 20
2.1.2 Tactical level . 22
2.1.3 Operational level . 24
2.1.4 Integrated approaches . 25

2.2 Train Timetabling Problem . 29
2.2.1 Tactical nominal problem . 29
2.2.2 Performance indicators . 37
2.2.3 Real-time rescheduling . 46

2.3 Positioning . 51

3 Description of the periodic Train Timetabling with mesoscopic tracks
assignment problem 55
3.1 Background notions and notations . 56

3.1.1 Parameters . 56

x

3.1.2 Decision Variables . 60
3.2 Problem statement . 60

3.2.1 Decision problem . 60
3.2.2 Optimisation problem . 62

3.3 Instances . 63
3.3.1 Toy example . 65
3.3.2 Medusa network . 69
3.3.3 Savoie area around Chambéry station 72

3.A List of Symbols . 76

4 Integer Linear Programming approaches 78
4.1 Modelling the problem as an Integer Linear Program 79

4.1.1 Model formulation . 79
4.1.2 Experimental results . 84

4.2 Decomposing the model . 86
4.2.1 Conflict evaluation function using the timetable only 87
4.2.2 Solution approaches . 96
4.2.3 Experimental results . 105

4.3 Conclusion . 106
4.A List of Symbols . 108

5 Constraint Programming approach 110
5.1 Modelling the problem as a Constraint Optimisation Problem 111

5.1.1 Periodic operations . 111
5.1.2 Model formulation . 112
5.1.3 Model enhancements . 114

5.2 Branching strategies . 123
5.3 Experimental results . 126
5.4 Conclusion . 130
5.A List of Symbols . 131

6 OptiSillons, a prototype for interactive timetabling 133
6.1 Managing the input data . 134
6.2 Obtaining a solution and working on it . 135

6.2.1 Timetable representations. 135
6.2.2 Modifying a timetable. 136

7 Conclusion and future work 140
7.1 Synthesis . 141

xi

7.2 Perspectives . 142

Bibliography 145

xii

List of Figures

1.1 Thesis structure. 14

2.1 Influence of Train Timetabling on all railway planning levels. 52

3.1 Mesoscopic railway routes and their compatibilities derived from the mi-
croscopic scale of the infrastructure. 57

3.2 Automatic block signalling system, translated from the published AR02384
SNCF Réseau document. 59

3.3 Turnover cost function of a terminus station s ∈ St in the general case. . . 63
3.4 Toy example infrastructure. 66
3.5 Slots to be scheduled every 20 minutes on the toy example infrastructure. . 67
3.6 A netgraph like representation of a feasible solution for the toy example

instance. 69
3.7 Medusa network topology. 70
3.8 First three instances on the medusa network, with 10, 20 and 24 hourly

periodic fast and omnibus slots. 71
3.9 Savoie infrastructure area at a mesoscopic scale in star configuration around

Chambéry station (section 15). 73

4.1 Two scheduled slots without assigned tracks for which conflicts are to be
evaluated. 88

4.2 Determining capacity in potential crossing areas. 92
4.3 Variables and constraints generation procedure. 97
4.4 Tabu search conflict minimisation heuristic. 99
4.5 Initial timetable of slot s0 involved in 9 conflicts out of 17 in total in the

complete timetable. 102
4.6 After the local move of the first iteration, slot s0 is still involved in crossing

conflicts between sections B, B−D and B− C. 103

5.1 Periodic operation oi,j of constant duration pi,j, highlighted as a green
dashed rectangle in the 3 cases depending on the value of ti,j. 111

xiii

5.2 Detection of infeasible schedules without tracks assignment by using ex-
tended crossing constraints. 115

5.3 Improving the detection of inconsistent values in the domain of variables
related to operational constraints (5.1m) to (5.1o). 119

5.4 Components of the constraint-based approach at different phases of the
problem handling. 126

5.5 Space-time chart of an optimal timetable for Instance 2 on double track
sections between Culoz and Modane. 129

6.1 Routes and compatibilities around Chambéry station. 134
6.2 Modification of the duration (in half minutes) of operations of omnibus

slots between Chambéry and Modane stations. 135
6.3 Tracks occupation chart between Chambéry and Saint-André-le-Gaz stations.136
6.4 Adding run time supplements on the running operation of the red slot on

the line section from Saint-Pierre d’Albigny to Montmélian stations. 137
6.5 Visualisation of conflicts after adding 1 half minute to the red slot from

Saint-Pierre d’Albigny to Montmélian. 137
6.6 Visualisation of conflicts after adding 5 half minutes to the red slot from

Saint-Pierre d’Albigny to Montmélian. 138

xiv

List of Tables

3.1 Instance size and infrastructure configuration. 64
3.2 Time horizon settings. 64
3.3 Slot lengths and densities in busy stations on the largest instance for each

infrastructure. 64
3.4 Experiments conducted through this thesis. 65
3.5 Routes between the tracks of sections B− C and C. 65
3.6 Routes compatibility at the connecting point between sections B− C and C. 67
3.7 Parameters of the toy example instance. 68
3.8 Characteristics of instances 4 to 11 on the medusa network. 72
3.9 Bidirectional lines to be hourly timetabled on the Savoie area infrastructure. 74
3.10 Prescribed turnover times at terminus stations. 75
3.11 Values of cost and safety headway parameters. 75
3.12 Signification of symbols and notations used in Chapter 3. 76

4.1 Right-hand side of constraints (4.1m) depending on the slot duration. . . . 83
4.2 Computation time in seconds to find a solution for the decision problem

on the 11 medusa network instances using CPLEX 12.10. 84
4.3 Occupation variables of a fast and an omnibus slots on elements of the toy

example infrastructure, determined from their timetable in Figure 4.1. . . . 90
4.4 Use variables corresponding to the reuse occupations at station E. 90
4.5 Use variables corresponding to the crossing occupations in the potential

crossing area connecting sections B, B−D and B− C. 91
4.6 Heuristic state after the initialisation, slot s0 is involved in the maximal

number of conflicts. 101
4.7 Slot s0 involved in 8 conflicts in the single track line section A− B. 101
4.8 Slot s0 involved in 1 conflict at station B. 102
4.9 Slot s0 still involved in 2 crossing conflicts between sections B, B−D and

B− C. 104
4.10 Heuristic state after the first iteration, slot s3 is involved in the maximal

number of conflicts. 104

xv

4.11 Heuristic state after the second iteration, no conflicts remain. 105
4.12 Performance of the heuristic to find a conflict-free solution for the decision

problem on the second Savoie area instance with 20 random initial solutions
and using the constructive heuristic. 105

4.13 Signification of symbols and notations used in Chapter 4. 108

5.1 Expected and practical propagation on domains of variables end(αi,j), start(βi,j)

and end(βi,j) using constraints (5.1d) to (5.1f) given pi,j = 3 and start(αi,j) ∈
{T − 7, . . . , T − 2}. 117

5.2 Performance of the solver on instances 1 and 2 based on both number of
branches (br.) and computational time in seconds (t.) with a time limit of
300 s (lim.). 127

5.3 Performance of the solver with branching strategies of Section 5.2 on In-
stance 2 based on both number of branches (br.) and computational time
in seconds (t.) with a time limit of 300 s (lim.). 128

5.4 Signification of symbols and notations used in Chapter 5. 131

xvi

xvii

Résumé substantiel

Ces quelques paragraphes ont pour objet de rassembler les idées principales de ce manuscrit
de thèse sur l’ordonnancement de sillons ferroviaires périodiques avec affectation de voies
à l’échelle mésoscopique, afin d’en permettre l’accès aux lecteurs francophones. Ces
travaux s’intéressent à la conception de modèles mathématiques et d’algorithmes permet-
tant de calculer des horaires de trains pouvant se répéter dans le temps selon une certaine
fréquence ainsi qu’une affectation de voies pour ces trains sur le réseau ferré. Pour per-
mettre à un train de circuler, il est nécessaire de lui réserver des intervalles de temps tout
au long de son parcours sur l’infrastructure : on parle de sillon. Dans la littérature scien-
tifique, une majorité des modèles existants utilise une représentation de l’infrastructure
ferroviaire à l’échelle macroscopique, à l’échelle microscopique, ou en faisant interagir
ces deux niveaux de détail. Le premier est traditionnellement adapté à l’optimisation
d’horaires tactiques, plusieurs années à semaines avant l’exploitation ferroviaire. Le sec-
ond permet à la fois une simulation détaillée du trafic ferroviaire, et une optimisation de
décisions de replanification en temps réel afin de limiter les retards en cas de perturbation.
Ces modèles peuvent toutefois montrer certaines limites pour l’optimisation d’horaires
tactiques. En effet, à l’échelle macroscopique, le plan de voies modélisant l’infrastructure
ferroviaire est souvent simplifié, notamment dans la prise en compte des itinéraires com-
plexes reliant les voies en lignes aux voies à quai en gares. Ces approximations peuvent
conduire à des difficultés d’implémentation des horaires tactiques en pratique, nécessitant
un travail d’ajustement de l’horaire et une supervision plus délicate en opérationnel. D’un
autre côté, à l’échelle microscopique, l’infrastructure est représentée avec une granularité
suffisamment fine pour modéliser le fonctionnement dynamique de la signalisation ferrovi-
aire et l’occupation des zones de protection élémentaires par chaque essieu d’une rame
grâce au shuntage des circuits de voie. Une optimisation d’horaires tactiques à l’échelle
microscopique de l’infrastructure pourrait donc être implémentée en pratique en éliminant
les inconvénients liés à l’utilisation de l’échelle macroscopique. Néanmoins, le niveau de
détail requis pour les modèles microscopiques aboutit à des modèles de plus grandes tailles
en terme de nombre de variables et de contraintes pour la représentation de la même in-
stance d’un problème, comparé à un modèle à l’échelle macroscopique. Par conséquent,
il n’est pas envisageable d’utiliser des modèles microscopiques pour produire des horaires

1

tactiques sur des périmètres géographiques trop étendus. Quelques travaux de la décennie
écoulée ont introduit ou utilisé la modélisation de l’infrastructure ferroviaire à l’échelle
mésoscopique. Ce niveau de détail permet de prendre en compte la compatibilité des it-
inéraires entre les voies en lignes et les voies à quai en gares, sans toutefois aller jusqu’au
détail de la signalisation ferroviaire. L’échelle mésoscopique est donc un compromis in-
téressant entre les échelles macroscopique et microscopique, la première permettant une
prise en compte plus réaliste des conflits ferroviaires que la deuxième, tout en gardant des
tailles de modèles toujours assez avantageux comparé à la troisième. Dans les travaux de
cette thèse, nous nous inspirons des travaux de planification horaire utilisant des modèles
mésoscopiques, nous étendons ces modèles avec une classification de contraintes métiers
de SNCF Réseau, et nous proposons des méthodes originales pour résoudre ces prob-
lèmes. Nous allons maintenant explorer plus en détail le contenu de cette thèse, à savoir
un chapitre introductif, un état de l’art sur la planification ferroviaire et la Recherche
Opérationnelle, une description des problèmes traités ainsi que la structure des données
et les instances à résoudre, les deux familles d’approches de résolution basées sur un pro-
gramme linéaire en nombre entiers et un modèle de programmation par contraintes, ainsi
que quelques commentaires sur le prototype de planification interactive OptiSillons.

Le mode de transport ferroviaire a des atouts considérables en terme de sécurité, dé-
carbonation et de confort. Chaque jour, ce sont 5 millions de passagers et 250000 tonnes
de marchandises qui sont transportés par 15000 trains sur les 28000 kilomètres de voies
sur le réseau ferré en France, en majeure partie électrifié. Et cette base est sur une pente
ascendante avec le souhait d’un doublement du trafic ferroviaire d’ici aux années 2030.
Maintes étapes sont nécessaires à la possibilité de faire rouler un train. Il faut tout d’abord
investir dans le développement et la régénération du réseau. A partir du réseau existant
et projeté, des études socio-économiques permettent de prévoir la demande de mobilités
futures et de planifier les lignes à opérer sur le réseau. C’est ensuite que vient l’étape de
création de plans de transports sous forme de grilles horaires pour couvrir l’ensemble des
lignes planifiées, en respectant toutes les contraintes liées à l’utilisation de l’infrastructure
par les trains. Cette thèse s’intéresse à ce problème, qui consiste à concevoir des méthodes
permettant d’optimiser la création de plans de transport périodiques pour des lignes fer-
roviaires à opérer en heures de pointe dans le contexte d’un trafic mixte, c’est-à-dire avec
différents types de trains de passagers et des trains de fret. A partir de ces horaires, il est
nécessaire de planifier le matériel roulant à affecter sur ces trains, ainsi que les personnels
à bord, en escale et dans les centres opérationnels de gestion des circulations. Dans ces
centres opérationnels, des décisions de replanification du trafic ferroviaire sont prises en
temps-réel pour limiter les retards en cas de perturbations. Afin de limiter les risques
de pannes, la maintenance préventive du matériel roulant est aussi planifié en amont.

2

Les premiers outils d’aide à la conception pour les horairistes de la SNCF permettaient
d’effectuer des calculs de marches à partir de caractéristiques précises du matériel roulant,
et de déterminer les périodes de traction optimales afin de minimiser la consommation
énergétique du trajet. Les systèmes informatiques se sont améliorés, permettant peu à
peu aux horairistes de concevoir des plans de transport faisant interagir plusieurs train et
de visualiser les conflits potentiels grâce à une modélisation fine des systèmes de signali-
sation utilisés sur l’infrastructure. Plus récemment, l’essor de la recherche opérationnelle
a permis l’apparition d’outils d’aide à la décision pour les problèmes de planification
ferroviaire. A la SNCF, ces outils permettent de déterminer les voies à quai dans les
gares, de réaliser des études de robustesse, et de planifier la maintenance des rames et de
l’infrastructure, la supply-chain permettant de réaliser ces travaux de maintenance, les
circulations de trains de fret, les horaires des agents, l’affectation des passagers à bord
des trains, la replanification en temps-réel et le contrôle optimal de conduite sur les lignes
hyper denses. Bien que des travaux de recherche sur la conception des lignes ferroviaires
et de leurs horaires aient été conduits au sein de l’entreprise, notons que la conception de
grilles horaires périodiques est effectuée grâce à l’expertise des chargés d’étude horaires
de SNCF Réseau en utilisant des outils d’aide à la conception permettant la détection
de conflit entre les circulations planifiées. La motivation des travaux de cette thèse est
née de l’idée de fournir un outil d’aide à la décision aux chargés d’études horaires pour
obtenir des suggestions de plans de transports optimisés et ainsi permettre un processus
interactif de création de l’horaire à partir de ces suggestions.

La planification du système ferroviaire est décomposée en plusieurs problèmes classi-
fiés selon des horizons décisionnels hiérarchiques. Au niveau stratégique, correspondant
à des décisions sur le long terme, nous retrouvons les problèmes de conception du réseau
et des lignes ferroviaires à opérer. Les problèmes de planification des ressources viennent
au niveau tactique : il s’agit des grilles horaires, du matériel roulant et des personnels.
Enfin, le niveau opérationnel se concentre sur les problèmes de replanification en présence
d’aléas. Certains problèmes visent à intégrer plusieurs horizons décisionnels dans le but
d’obtenir des solutions de meilleure qualité. Ces problèmes intégrés sont d’autant plus
complexes, on pense par exemple à la planification conjointe des lignes ferroviaires, des
horaires des trains et du matériel roulant. Dans l’état de l’art de cette thèse, nous in-
téressons particulièrement aux problèmes de planification d’horaires de sillons ferroviaires.
Nous commencerons par présenter des problèmes du niveau tactique avec des durées de
transport nominale. Nous détaillerons ensuite les indicateurs de performance du système
ferroviaire. Enfin, nous présenterons les deux approches principales pour replanifier des
plans de transport en temps-réel.

Le problème tactique de planification de sillons ferroviaires consiste à déterminer

3

l’horaire pour un ensemble de trains sur les points remarquables de leur parcours, no-
tamment les départs et arrivées en gares, afin de répondre à une demande de mobilité
tout en respectant les contraintes de circulation liées à l’utilisation de l’infrastructure. Cer-
tains auteurs se sont intéressés à la version de ce problème utilisant un horizon de temps
linéaire, permettant par exemple de planifier les horaires d’une journée avec des demandes
de sillons hétérogènes au fil des heures. De nombreux travaux traitent la variante péri-
odique du problème, où tous les trains traversant la fin de la période coïncident avec ceux
planifiés en début de période. Cette configuration du problème permet la planification
des heures de pointe où la circulation ferroviaire est la plus dense, puis d’adapter la trame
obtenue pour planifier le reste de la journée. Le Periodic Event Scheduling Problem est
le modèle de prédilection pour ce problème. Une reformulation basée sur des variables de
cycles a permis la conception d’inégalités valides pour améliorer l’efficacité de méthodes
exactes de résolution. D’autres modèles intègrent des caractéristiques complémentaires
comme la flexibilité des horaires dans les solutions proposées, l’aspect dynamique de la
demande, ou encore la prise en compte de l’itinéraire emprunté par les passagers en fonc-
tion des horaires proposés. Tous ces modèles sont en grande majorité conçus pour une
infrastructure à l’échelle macroscopique. Néanmoins, quelques auteurs ont initié une ten-
dance dans l’utilisation d’infrastructures à l’échelle mésoscopique pour la modélisation du
problème tactique. Concernant la résolution de ces problèmes complexes, des méthodes
heuristiques ont été proposées pour traiter de problèmes de grande taille. Une technique
populaire consiste à ajouter des sillons dans une grille horaire et de résoudre les éventuels
conflits induits au fur et à mesure.

Pour mesurer la qualité des grilles horaires produites, une variété d’indicateurs de
performance ont été défini dans la littérature. L’occupation de l’infrastructure permet
de calculer si la densité de circulation ferroviaires sur un périmètre donné et durant une
certaine période ne dépasse pas un certain seuil dépendant notamment de la topologie
de l’infrastructure et des types de trains pour lesquels cette infrastructure est adaptée.
Un indicateur mesurant la possibilité d’absorber des retards est la stabilité : il s’agit de
déterminer si un certain nombre de minutes de retard sur un train peut être complètement
résorbée en l’espace d’une heure sans créer d’effet boule de neige et sans effectuer de
replanification des trains. La robustesse est un indicateur assez connexe, déterminant
entre quelles circulations et à quels points du réseau il est le plus intéressant de garder
des marges temporelles afin que les horaires soient le plus insensibles possibles aux légers
retards les plus fréquents. Un système ferroviaire résilient permet, en cas d’aléas, de
déclencher des actions comme par exemple la mise en service de rames de réserves afin
de retrouver un service nominal non perturbé le plus rapidement possible. Un indicateur
qui gagne en popularité est l’efficacité énergétique qui permet à un train de respecter des
horaires de passage donnés tout en optimisant la traction à fournir tout au long du trajet

4

de manière à minimiser l’énergie consommée.
Quand le système ferroviaire fait face à des aléas générant d’importants retards, il

est nécessaire de replanifier un ensemble de circulations en temps-réel de manière à lim-
iter l’impact des perturbations. Des modèles en programmation par contraintes et en
programmation linéaire en nombres entiers utilisant une infrastructure à l’échelle micro-
scopique ont été proposés dans la littérature pour minimiser le retard total des trains.
L’intégration de la gestion du retard subi par les passagers dans les décisions de replanifi-
cation a aussi intéressé des auteurs, donnant lieu à des modèles utilisant une infrastructure
macroscopique et prenant en compte la capacité de l’infrastructure, la possibilité de réori-
enter des passagers, et la capacité des trains. D’autres modèles visent à intégrer à la fois
la minimisation du retard des circulations et des passagers.

Les deux problèmes traités dans cette thèse permettent de décider des horaires et
une affectation de voies pour des sillons à un niveau tactique, sur un horizon de temps
périodique, et en utilisant une infrastructure à l’échelle mésoscopique. Dans la première
variante du problème, nous cherchons à obtenir des solutions réalisables, c’est à dire re-
spectant trois familles de contraintes que nous allons détailler ci-après. Dans la deuxième
variante du problème, nous modélisons une réoccupation du matériel roulant par les sil-
lons en gares terminus et nous optimisons les durées de stationnement en gares de sorte à
satisfaire au mieux les normes établies dans les référentiels de SNCF Réseau. Deux trains
ne pouvant occuper les mêmes portions de voies simultanément, les horaires de sillons
doivent respecter trois familles de contraintes appelées normes de tracé. Les contraintes
d’espacement permettent de garantir que deux trains circulant sur les mêmes voies dans
le même sens ne puissent le faire que s’ils sont espacés d’une certain nombre de minutes,
dépendant de caractéristiques de l’infrastructure, de la vitesse maximale des trains sur
cette infrastructure et de leur capacité de freinage. Les contraintes de réoccupation, qui
s’appliquent notamment sur les voies en gares et sur les voies uniques à double sens de
circulation, permettent de s’assurer qu’un premier train a libéré ces voies pendant une
certaine durée avant que le train suivant puisse s’engager sur ces voies. Enfin, les con-
traintes de cisaillement de cisaillement permettent d’empêcher que des trains empruntant
des itinéraires incompatibles sur l’infrastructure le fassent trop proche dans le temps. En
effet, ces trains seraient susceptibles de générer des perturbations sur le trafic en cas de
retard. Lors du déroulé des opérations, la signalisation ferroviaire est responsable du re-
spect de l’ensemble de ces contraintes. Le rôle de l’optimisation des horaires au niveau
tactique permet de créer un plan de transport sans conflit, où chaque mécanicien chargé
de la conduite des trains ne rencontrerait que des signaux à voie libre, lui permettant de
continuer son itinéraire sans provoquer de ralentissements. Nous modélisons ces problèmes
et les résolvons sur des instances utilisant trois infrastructures mésoscopiques aux carac-

5

téristiques différentes. La première infrastructure utilisée permet la création d’instances
jouets. Cette infrastructure est constituée de 4 gares satellites reliées à une gare centrale,
où 8 sillons sont à planifier périodiquement toutes les 20 minutes. Notre deuxième in-
frastructure fictive est constituée de plus d’une vingtaine de gares avec plusieurs lignes
entremêlées et une planification allant jusqu’à plusieurs dizaines de sillons par heure. En-
fin, nous avons reconstitué à l’échelle mésoscopique une infrastructure fidèle au périmètre
de l’Etoile de Savoie, configurée en étoile et centrée autour de la gare de Chambéry -
Challes-les-Eaux. Cette troisième infrastructure est plus contrainte que les précédentes,
notamment du fait de sa double voie desservant trois voies uniques à double sens de cir-
culation.

Nous modélisons le problème de décision par un programme linéaire en nombres entiers
inspiré de travaux de la littérature. En augmentant le nombre de sillons à planifier pour
une période de une heure sur notre deuxième infrastructure fictive, nous observons que le
temps de résolution par un solveur commercial devient de plus en plus long, jusqu’à ne
plus pouvoir déterminer en temps raisonnable si une instance à 40 sillons est insoluble ou
s’il aurait fallu davantage de temps de calcul pour trouver une solution réalisable. Afin de
pouvoir résoudre nos instances basées sur des données réelles, nous adoptons la stratégie
de décomposer le problème en commençant par décider les horaires des sillons avant de
procéder à une affectation de voies compatibles. En effet, nous avons observé que pour
des solutions réalisables, le solveur est efficace pour trouver une affectation de voies com-
patibles dès lors que les horaires des sillons permettent l’existence de cette affectation de
voies. La partie difficile de notre problème se réduit alors à la recherche de tels horaires qui
permettent ensuite de garantir la possibilité d’affectation des voies compatibles à partir de
ces horaires. Pour ce faire, nous avons conçu un modèle permettant d’évaluer les conflits
entre sillons à partir de leurs horaires et sans connaissance explicite de leur affectation de
voies. Puis, nous utilisons ce modèle afin de choisir les horaires de sillons en minimisant
les conflits ainsi évalués. Si des horaires sans conflits sont obtenus, alors ils sont injectés
dans le programme linéaire en nombre entiers qui se charge de calculer efficacement une
affectation de voies compatible avec ces horaires. Afin de résoudre des instances avec un
nombre de sillons croissant, nous concevons une méthode de recherche tabou permettant,
au lieu de chercher directement des horaires sans conflits pour la totalité des sillons, de
modifier itérativement l’horaire du sillon le plus conflictuel pour espérer aboutir à une
solution sans conflits. Cette méthode heuristique a été implémentée en deux versions, la
première sous la forme de matheuristique utilisant le solveur pour rechercher localement
le meilleur horaire du sillon le plus conflictuel avec les autres, la deuxième sous la forme
d’une métaheuristique où les conflits entre sillons sont évalués sans utiliser le solveur.
Cette dernière méthode, couplée au calcul de l’affectation de voies une fois les horaires

6

sans conflits déterminés, a permis de résoudre une instance sur l’infrastructure de l’Etoile
de Savoie en moins de deux minutes, alors que le solveur ne permettait pas d’aboutir à une
solution en plusieurs heures à partir du premier programme linéaire en nombres entiers
modélisé. Nous proposons des perspectives afin d’améliorer cette méthode, notamment en
concevant des opérateurs locaux complémentaire permettant de modifier simultanément
l’horaire d’un sous-ensemble de sillons judicieusement sélectionnés.

Nous nous sommes intéressés à la possibilité de traiter le problème de décision à par-
tir d’une modélisation en programmation par contraintes. Notre modélisation repose sur
l’utilisation de variables d’intervalle permettant de représenter la durée de l’occupation
de voies par un sillon. Le caractère optionnel de ces variables d’intervalle nous a permis
de modéliser naturellement le choix des voies à affecter pour les sillons dans chacune des
gares de leur parcours. Un défi intéressant a été la modélisation d’occupations de voies
ayant lieu à la fin d’une période et se poursuivant au début de la période suivante. Pour
ce faire, nous avons proposé une nouvelle structure de variable, l’opération périodique, qui
est une juxtaposition de deux variables d’intervalle liées avec des contraintes spécifiques
leur permettant de se comporter comme une seule variable d’intervalle ayant la possibilité
de s’exécuter sur deux périodes. A l’aide d’une formulation complète du problème mod-
élisant les mêmes contraintes que le programme linéaire en nombre entiers du début de
paragraphe précédent, nous avons résolu la même instance sur l’infrastructure de l’Etoile
de Savoie en quelques secondes seulement avec un solveur commercial de programmation
par contraintes avec des paramètres par défaut. Ce résultat nous a motivé à investiguer
une nouvelle variante de notre problème avec un degré de réalisme complémentaire. Par
la suite, nous nous sommes donc intéressés à un problème d’optimisation de la durée
de stationnement des rames en gares terminus. Cette variante du problème possède des
contraintes horaires additionnelles dans les gares terminus, où la durée de stationnement
est calculée comme la différence entre l’horaire de départ d’un sillon et l’horaire d’arrivée
d’un sillon précédent partageant la même rame. Les durées de stationnement optimales
sont définies dans les recueils d’exploitation des gares de SNCF Réseau comme respectant
des intervalles de temps minimaux, robustes et maximaux qui dépendent des gares con-
sidérées. Nous avons donc modélisé des coûts de pénalité correspondant à des durées de
stationnement ne respectant pas ces référentiels. Le problème est alors de produire une
grille horaire tactique respectant d’une part les normes de tracé entre les sillons, et d’autre
part minimisant la somme des coûts de pénalité liés au non respect des durées de station-
nement en gares terminus renseignées dans les référentiels métier de l’entreprise. Nous
avons amélioré notre modèle en renforçant la détection des contraintes de cisaillement et
en concevant un ensemble d’algorithmes de filtrage permettant d’améliorer le maintien
de l’arc-consistance des contraintes du modèle, et notamment des contraintes liées à la

7

périodicité temporelle et dont le solveur par défaut ne permettait pas de tirer profit d’une
propagation exhaustive. Nous avons aussi conçu une méthode pour dériver des bornes
inférieures à partir de la détermination du coût minimal lié à la durée de stationnement
de chaque couple de sillons utilisant les mêmes rames. Enfin, nous avons conçu des al-
gorithmes de branchement et une méthode de vérification de l’existence d’affectation de
voies permettant d’obtenir de meilleures performances que le solveur de programmation
par contraintes avec les paramètres par défaut. La conjonction de ces techniques nous
a permis d’optimiser l’instance de l’infrastructure de l’Etoile de Savoie en l’espace d’une
seconde. Ce résultat encourageant permettra d’envisager la résolution d’instances avec
plus de sillons et sur des périmètres géographiques plus importants. Une perspective
d’amélioration de notre approche est la conception d’un algorithme plus affiné pour la
vérification de l’existence d’affectation de voies à partir d’une solution partielle d’horaires
de sillons.

Les modèles et méthodes d’optimisation conçus et développés dans ces travaux ont
été interfacés avec l’outil OptiSillons, une interface graphique développée dans le cadre de
sujets de stages qui ont été menés par deux étudiants au cours de cette thèse. Cet outil
permet de créer, d’importer, de visualiser et de modifier des données d’infrastructures
ferroviaires à l’échelle mésoscopique ainsi que des demandes de sillons pour lesquels les
horaires et l’affectation de voies est à déterminer. Via l’interface graphique, il est alors
possible d’appeler les algorithmes d’optimisation de façon à obtenir des plans de transport
réalisables et optimisant les durées de stationnement des rames en gares terminus. Les ré-
sultats obtenus sont alors visualisables dans l’interface graphique. OptiSillons donne aussi
la possibilité d’effectuer des gestes métier à partir de ces suggestions de plans de trans-
port. Un chargé d’études horaires peut facilement faire glisser des sillons pour en changer
l’horaire de départ, ou modifier plus finement la durée du sillon sur certaines sections de
son parcours. L’affectation de voies peut également être modifiée depuis l’interface de
visualisation des graphiques d’occupation des voies. A tout moment, si la modification
d’horaires ou d’affectation de voies génère des conflits entre les sillons, ceux-ci sont alors
affichés à l’utilisateur. Un retour arrière permet d’annuler le dernier geste métier effectué
s’il s’avère insatisfaisant. Enfin, une fois le travail au graphique achevé, la session peut-
être enregistrée et les données exportées.

De multiples perspectives concernant la définition du problème pourraient être inté-
grées, comme la considération de plusieurs périodes avec un sous-ensemble de sillons non
périodiques, ou encore une meilleure considération de la durée de trajet des voyageurs
afin de suggérer des horaires et des affectations de voies assurant des correspondances
attractives et robustes aux aléas.

8

9

Chapter 1

Introduction

The aim of this thesis is to provide decision support to the timetable planners at SNCF
Réseau. This chapter provides motivations of our work. After giving elements of context
on the importance of the timetabling task in railway transport companies, we set the goals
we look to reach and describe the contributions that constitute the following chapters of
this manuscript.

Contents
1.1 Industrial context . 11

1.2 Research objectives and contributions 12

1.3 Outline of the thesis . 13

1.4 List of publications . 17

10

1.1 Industrial context

Railway is one of the most efficient transportation mode considering safety, decarbonisa-
tion and comfort. Everyday, 5 millions of passengers and 250 thousand tons of goods are
transported in 15000 trains [155] on the French railway network, composed by 28000 km
of tracks [154] in very large part electrified. Passengers and freight transportation demand
is expected to increase in Europe, like in France where the volume of railway circulations
is expected to double in the next one or two decades, see Farandou (2022) [72].

The railway planning process that allows a train to run on the infrastructure is com-
plex. Traditionally, this process is decomposed in sequential phases easier to handle. First,
decisions are made on the investments to renovate, modernise and develop the infrastruc-
ture. In 2023, 1600 projects are planned to contain the French network ageing [153]. Once
the infrastructure state is known for the upcoming years, railway lines to be operated are
decided 5 years before operations. This is achieved from socio-economic studies, mobility
forecasting, and coordination with several stakeholders including transport organisation
authorities, the Infrastructure Manager SNCF Réseau and Railway Undertakings like
SNCF Voyageurs that operate trains [156]. About 3 to 2 years before operations, peri-
odic timetables are built assessing the feasibility in peak hours of the line plans decided
at the previous planning phase. Generating periodic timetables automatically to provide
decision support to SNCF Réseau timetable planners through an interactive tool is the
topic of the work of this thesis. The subsequent timetabling steps include the construction
of daily timetables and the insertion of additional train demands in the residual capacity
of the timetable until few days before operations. In order to operate a timetable, neces-
sary resources are planned, namely the rolling stock composing the trains, and the crews
on board, at stations and in the operational traffic management centers. The latter men-
tioned assets are crucial to monitor the real-time traffic and to adapt operations in case of
potential delays or larger disruptions that could make the nominal timetable impossible
to operate. To avoid disturbances caused by material failures as much as possible during
daily operations, preventive maintenance of the rolling stock also needs to be scheduled.

At SNCF, the first purpose of the conception support tools for the timetable planners
was to determine the running time of a train on the infrastructure depending on its charac-
teristics like the mass of the train and the power of the locomotive. Lancien and Fontaine
(1981) [111] describe how to compute automatically minimal energy-consumption running
times to replace analog machines that were not convenient for industrial production. Two
years later, Quinchon (1983) [151] details the duties of a timetable planner and observes
that the only available automated tasks are the computation and the storage of train run-

11

ning times. The author mentions a new project that will allow conflict detection between
trains. Bertereix and Beurrier (1990) [9] present a tool suitable to assist timetable plan-
ners of dense suburban traffic areas. In this software, conflict detection is implemented for
several types of signalling systems, namely the automatic bloc signalling system, a track-
to-train transmission based system, and a moving block system. The first two systems
give speed instructions to train drivers depending on the number of free track sections
in front of them, whereas the third system updates continuously the drivers about the
latest moment they must brake to no overtake the preceding train. The latter one is still
particularly relevant. Indeed, an automated Communication Based Train Control system
will be installed in the upcoming years in the central portion of a dense railway line in
Paris to increase its frequency [71].

More recently, operational research techniques have been widely used to tackle railway
planning problems in academia. In particular, much effort has been dedicated to solve
timetabling problems. These achievements have also given new opportunities for the real-
isation of timetable planners duties in practice: not only the tools verify if a timetable is
conflict-free, but also they are able to provide automatised suggestions of such timetables.
Nowadays at SNCF, the current projects making use of operational research cover sub-
jects like platforming trains at stations from a given timetable, robustness simulations,
scheduling maintenance operations for rolling stock and on the infrastructure, supply-
chain planning for maintenance projects, freight operations planning, crew scheduling,
passengers place affectation aboard trains, decision support for real-time rescheduling and
optimal control in hyper dense lines. Research on line planning and periodic timetabling
has also been conducted in the company. However, these tasks are still mainly performed
by the expertise of timetable planners with modern conception-aid tools but without au-
tomated suggestions. The motivation of our work is therefore to initiate a movement
towards an upgraded experience for the timetable planners in the company. In one hand,
the determination of train running times and the robustness evaluations could still be
performed using existing tools. On the other hand, we propose an interactive decision
support process for the periodic timetabling task.

1.2 Research objectives and contributions

The aim of our work is to create a tool to provide decision support to timetable planners,
focusing on feasibility of the resulting periodic timetables with respect to the constraints
imposed by the railway infrastructure. The outcome of this thesis seeks to meet two
objectives:

• O1: Propose and develop efficient methods to generate periodic timetables respond-

12

ing to a line plan and satisfying rules that regulate railway operations on the infras-
tructure at the mesoscopic scale.

• O2: Allow timetable planners to benefit from algorithms to generate periodic
timetables through a user interface without needing programming skills.

These objectives are accomplished by the proposition of two main contributions (C1
and C2) in relation with objectives O1 and O2 respectively. Contribution C1 corresponds
to the formal definition of the problem (Chapter 3) and to the conception of models and
algorithms to solve them, using Integer Linear Programming (Chapter 4) and Constraint
Programming (Chapter 5) techniques. An adaptive procedure for periodic timetabling
and tracks assignment, detailed in Chapter 4, has been presented at the 11th Triennial
Symposium on Transportation Analysis (TRISTAN XI, 2022). The constraint-based ap-
proach presented in Chapter 5 is currently submitted to an international Journal. This
approach has also given rise to a communication to the 24th French Operational Research
and Decision Support Society annual congress (ROADEF, 2023). Contribution C2 cor-
responds to the conception and the development of a decision support tool (Chapter 6)
that integrates the approaches presented in Chapter 4 and Chapter 5 to allow timetable
planners to obtain automatic suggestions of periodic timetables. The front-end of the
application corresponding to this contribution has been realised in collaboration with two
intern students. The following section provides additional details on the contributions
through a description of the chapters that compose this thesis.

1.3 Outline of the thesis

The thesis structure is presented in Figure 1.1 and described as follows.

In Chapter 2, we provide an overview of techniques used in the literature to model and
solve railway planning problems. As it is the central topic of this thesis, we will mainly
focus on reviewing train timetabling research, that we place in perspective among other
problems that compose the whole railway planning process. Moreover, we will highlight
a growing trend towards an integration of some of these problems as a way to make a
better use of main resources.

In Chapter 3, we present background notions that will be used throughout this thesis.
We describe two variants of the periodic Train Timetabling with mesoscopic tracks assign-
ment problem. The advantage of the mesoscopic infrastructure scale is the consideration
of more detailed tracks occupation constraints than at the macroscopic scale, while the
model size remains smaller than for microscopic models. The first variant is a decision

13

problem, for which we assume that trains exit the railway system after their arrival to
their terminus station. The second variant is an optimisation problem with improved
realism by linking trains at their terminus stations and optimising the turnover time of
the rolling stock. The two subsequent chapters can be read independently.

Figure 1.1: Thesis structure.

In Chapter 4, the first variant of the problem introduced in Chapter 3 is modelled by
an Integer Linear Program (ILP) inspired from the literature. Instances of the problem
are solved by Branch-and-Bound techniques using a commercial solver. As the problem

14

is NP-complete, this exact generic approach becomes intractable when increasing the
number of trains to be scheduled. Therefore, we decompose the model by first solving
a new ILP formulation to find the time decisions that minimises a function evaluating
conflicts in a timetable without requiring an explicit knowledge of the tracks assignment.
Then, we inject this solution in the global model to find compatible tracks assignment.
The time decision model being still challenging to solve using a solver, we propose three
approaches to attempt getting solutions faster. The first method relies on a variables and
constraints generation framework. At the beginning of the procedure, a heuristic provides
starting times to the trains. Conflicts are evaluated and forbidden adding cuts. New pos-
sible starting times are sought and the ILP is solved again. The process is iterated until
a conflict-free solution is found. The second method is a matheuristic. We also begin
from a solution found heuristically. Iteratively, we select a train that is involved in the
maximum number of conflicts and we solve a specific ILP to find which new starting time
for this train allow the best conflict resolution improvements. The third method is similar
to the second one, except that we use specific algorithms to solve each iteration of the
conflict resolving faster than the solver. We indicate limitations of these methods and
propose perspectives in order to improve them.

In Chapter 5, we work on the second variant of the problem described in Chapter 3.
This variant increases the timetables realism by reusing the rolling stock and optimising
their turnover times at terminus stations using real exploitation rules. We propose a
Constraint Programming model that we solve with a solver propagation and branching
techniques. We observed that solving the instances of the first variant of the problem
with a solver is much faster than the best results obtained with the techniques described
in Chapter 4. This result is the motivation of the introduction of the second variant of
the problem, for which we find not only a conflict-free solution, but we desire the optimal
one respecting to a criterion, in our case the turnover time of trains at terminus stations.
In order to solve optimally our instances for this variant of the problem faster than the
solver, we propose several enhancements to our model. First, we improve the detection
of crossing constraints in particular settings, and we conceive families of filtering algo-
rithms that improve the propagation process. Second, we derive lower bounds by relaxing
the problem when considering the optimisation of turnover time of trains line by line at
terminus stations. Third, we adapt a technique from the literature to make as many
deductions as possible on inconsistent starting times during a preprocessing step to help
the propagation process. We observed that the best use of these enhancements is made
when integrated in a Branch-and-Check framework where we sequentially decide the start-
ing time of a train and verify if a feasible tracks assignment still exist for the chosen times.

15

In Chapter 6, we describe a decision support tool for interactive timetabling, intended
to be used by the timetable planners at SNCF Réseau. This software, resulting from a
work with two intern students, allows to create or import, visualise and modify an infras-
tructure at a mesoscopic scale and a line plan. Using these data, the user can launch the
automatic periodic timetable generation. If a conflict-free timetable along with compat-
ible tracks assignment is returned, the user is still able to operate any modifications to
the timetable and visualise potential conflicts that may appear. In particular, the user
can modify the starting time of a train, extend the duration of any running or dwelling
activity, modify the tracks assignment, and visualise the effect of these modifications.

Finally, in Chapter 7, we draw our conclusions about the contributions presented in
this thesis and propose perspectives for future research.

16

1.4 List of publications

Article submitted to a Journal

G. Joubert, A. Jouglet, D. Nace, M. Postec and R. Bocquillon. A constraint-based ap-
proach to model and solve the periodic train timetabling with mesoscopic tracks assign-
ment problem. Submitted.

International Conference communication

G. Joubert, A. Jouglet, D. Nace and M. Postec. An adaptive procedure for railway
periodic timetabling and tracks assignment. Proceedings of the 11th Triennial Symposium
on Transportation Analysis, Mauritius, 2022.

National Conference communication

G. Joubert, A. Jouglet, D. Nace, M. Postec and R. Bocquillon. Une approche basée sur la
Programmation par Contraintes pour résoudre le problème d’ordonnancement de sillons
périodiques à une échelle mésoscopique. Proceedings of the 24th French Operational Re-
search and Decision Support Society (ROADEF) annual congress, Rennes, France, 2023.

Miscellaneous communications

• Metaheuristics Summer School 2020+1 workshop, online event, June 2021

• Ma Thèse en 180 secondes contest (SNCF), Saint-Denis, December 2021

• Heudiasyc SCOP team seminar (UTC), Compiègne, December 2021

• LIFAT ROOT team day, Tours, June 2022

• DOR/REST common days (GDR ROD), Saclay, October 2022

• GOTHA day (GDR ROD), Metz, November 2022

• Forum DGEX Solutions (SNCF), Saint-Denis, April 2023

17

18

Chapter 2

Operational Research in Railway
planning: overview and positioning

In this chapter, we provide a literature review on research in railway planning. The
traditional railway planning phases, as well as approaches aiming at integrating several
planning phases, are described in Section 2.1. A focus on model and techniques to solve
the Train Timetabling Problem is given in Section 2.2. We present complexity results and
indicators assessing performance of railway schedules. When operations cannot be realised
as planned because of delays, it may be necessary to reschedule duties and resources in
real-time. Contributions in this direction are also presented. Finally, we position our
work in tactical timetabling among the depicted railway planning landscape in Section
2.3.

Contents
2.1 Railway planning phases . 20

2.1.1 Strategic level . 20

2.1.2 Tactical level . 22

2.1.3 Operational level . 24

2.1.4 Integrated approaches . 25

2.2 Train Timetabling Problem . 29

2.2.1 Tactical nominal problem . 29

2.2.2 Performance indicators . 37

2.2.3 Real-time rescheduling . 46

2.3 Positioning . 51

19

2.1 Railway planning phases

Railway is a convenient transportation mode for passengers and freight. Organising rail-
way circulations, though, is not a trivial task. Indeed, various resources are required to
be available at the right place and at the right moment in order to make trips possible.
These resources include the crews operating aboard trains, at stations and in operational
traffic management centers, the rolling stock and the infrastructure. The railway plan-
ning process implies the collaboration of numerous actors on different temporalities, from
several years until the day of operations. To handle this complexity, the scheduling of the
whole system has traditionally been separated in subsequent problems easier to solve but
still challenging, see Goossens et al. (2004) [88] for the planning stages of the Netherlands
Railways, and Bussieck et al. (1997) [29], Huisman et al. (2005) [99], Caprara et al.
(2007) [46], Lusby et al. (2011) [124] and Lusby et al. (2018) [123] for surveys on railway
planning. Each of these problems belongs to an identified level depending on the remain-
ing time before operations when the problem is solved. The strategic level corresponds to
decisions made several years before operations and includes the Network design and the
Line planning problems. The tactical level takes place some years to days before oper-
ations and includes several resource scheduling problems like Train timetabling, Rolling
stock planning and Crew management. The operational level deals with the monitoring
of operations in real-time and their rescheduling when necessary to limit the impact of
potential delays or failures on the network. Borndörfer et al. (2017) [18] present successful
implementations of decision support tools in the information systems of railway compa-
nies to solve problems of the three levels, i.e. a strategic freight train routing, a tactical
rolling stock rotation planning and an operational real-time train dispatching. The aim of
this section is to describe classic railway planning problems and to provide the interested
reader with relevant literature for further details. We also present approaches looking at
the integration of several planning problems to build solutions that make a better use of
the resources.

2.1.1 Strategic level

At the strategic level of the railway planning process, decisions are made for a long term
horizon and have a strong impact on the subsequent planning levels. Problems of the
strategic level include Network Design, when the infrastructure is conceived or improved
to satisfy future forecasted mobility flows, and Line Planning, when lines to be operated
on the infrastructure are decided.

20

2.1.1.1 Network Design

The Network Design Problem aims at determining tracks and stations of a railway infras-
tructure to be built while satisfying a budget and maximising the utility of the invest-
ments. Contributions focused on railway Network Design exclusively are scarce. Indeed,
most of railway networks have been built many decades ago, before the increasing pop-
ularity in the use of operational research techniques for railway planning. Magnanti and
Wong (1984) [125] survey models, algorithms and computational results on the Network
Design Problem for transportation planning. The authors describe a general model based
on a multi-commodity flow where potential arcs representing new tracks should be added
to the network to satisfy capacity constraints while minimising the construction costs.
Other possible constraints are described like the selection of necessary arcs or the impli-
cation of selection of an arc depending on the selection of another arc. The model can be
further specialised depending on the applications considered.

2.1.1.2 Line Planning

The goal of the Line Planning Problem is to determine an optimal set of railway lines to
be operated on a given infrastructure assumed to be known. Each chosen line has a service
frequency and a specific stop pattern i.e. a set dwelling operations at stations allowing
passengers to board and alight. A solution to this problem is called a Line Concept, or a
Service Intention when additional details like train connections to be ideally maintained
and ideal turnover times at stations are indicated. A review on models and methods to
solve this problem is proposed by Schöbel (2012) [169]. An operator-oriented objective can
be the minimisation of the cost of the lines, whereas a passenger-oriented model would put
a budget on the cost of the line concept and try to maximise the quality for the passengers
that can be seen as an important number of direct travellers or fast connections between
lines. A solution to the Line Planning Problem does not guarantee a priori that a feasible
train schedule exists for this line plan. Instead of looking for a line plan from scratch,
a classic method is to precompute a admissible line pool heuristically from which the
lines of the solution are selected. In both cases, constraints bounding the total frequency
of the selected lines on the infrastructure edges are also included in order to find more
reasonable line plans. Bussieck et al. (1997) [28] state that the problem of finding a
feasible line plan is NP-hard by a polynomial reduction to EXACT COVER BY 3-SETS.
The proof is given in Bussieck (1998) [27]. The authors present a MIP formulation for
the Line optimisation problem maximising the number of direct travellers. In order to
solve more instances, they simplify their model and adopt a cutting plane generation
approach. Goossens et al. (2004) [88] propose a Branch-and-Cut approach using valid
inequalities to minimise the cost of a hourly served line plan. Bull et al. (2019) [23] find

21

line plans minimising the estimated passenger travel time using an arc-flow formulation
and a heuristic based on its relaxation.

2.1.2 Tactical level

Problems of the tactical level of the railway planning process focus on scheduling resources
including crews, capacity on tracks and rolling stock, years to days before operations. The
Train Timetabling, Train Platforming and Train Routing problems are closely connected.
They aim at scheduling the departure and arrival time of trains at stations, at choosing
the tracks and platforms where the trains should dwell at served stations, and at deciding
the precise routes taken by trains between line tracks and platform tracks in stations.
Those problems are traditionally solved assuming known infrastructures and line plans.
However, the Train Timetabling Problem has recently also been addressed at the strategic
level to evaluate or improve scenarios given from the Network Design and Line Planning
problems, see Polinder et al. (2021) [148] and Sartor et al. (2023) [164]. Knowing the train
timetables, a subsequent task is to organise the schedule of the vehicles that will compose
the trains and to determine their movements from and to shunting yards. Other important
problems of the tactical level are the Maintenance Planning of the infrastructure and of
the rolling stock. Finally, crew schedules have to be set in order to perform all commercial
and technical duties.

2.1.2.1 Train Timetabling

Given a railway infrastructure and a set of lines to be operated, the Train Timetabling is
the problem of determining all the departure and the arrival times at the stations served
by the trains of these lines. Generally, lower and upper bounds are known for any activity
of running between a departure and an arrival, or any activity of dwelling at a station.
Headway constraints prevent trains from occupying the same portion of track at the same
moment. Cacchiani and Toth (2012) [38] survey the literature on Train Timetabling,
where both the periodic and the aperiodic versions of the problem are presented. Models
aiming at bringing robustness to the solutions are also discussed. In the periodic version
of the problem, departures and arrivals of trains, often called events, occur at the same
time of each period of T units of time, usually corresponding to one hour. Most of the
existing periodic timetabling models are based on the Periodic Event Scheduling Problem,
a suitable model presented in a seminal paper by Serafini and Ukovich (1989) [174]. A
more recent survey on Train Timetabling is given in Caimi et al. (2017) [41], where
several nominal and robust models are presented depending on the point of view of the
infrastructure manager or of train operator companies that own the rolling stock and
employ the crew on board. A more detailed focus on the Train Timetabling Problem is

22

provided in Section 2.2. We will recall basic complexity results, present existing models
and solving methods and detail performance indicators sought in timetabling optimisation.

2.1.2.2 Train Routing

The Train Routing Problem occurs on the railway infrastructure around a station area.
Given a train timetable, trains have to be routed through the station such that no two
trains occupy the same platform track too close in time nor circulate on incompatible
routes simultaneously. When all the considered trains have a stop at the station, the
problem is also called Train Platforming Problem (see Cacchiani et al. (2015) [35] for a
tutorial on the aperiodic version). In the decision problem, proved to be NP-complete in
Zwaneveld et al. (1996) [191], a conflict-free solution is thought including all considered
trains. In case of infeasibility, dummy tracks can be used at stations, as well as small
deviations of the timetable to gain flexibility. In the optimisation problem, the authors
propose to maximise the number of routed trains using a Node Packing formulation.
Zwaneveld et al. (2001) [192] model a Weighted Node Packing Problem to break ties with
technical preferences while maximising the number of routing trains. The authors worked
on a preprocessing step to speed-up the resolution. Caprara et al. (2011) [45] propose
an Integer Linear Programming formulation for the Train Platforming Problem with a
linearised quadratic objective function. The authors obtained good solutions using basic
heuristics based on the strong linear relaxation of their model. Sels et al. (2014) [173]
platform the maximum number of current trains on their preferred station tracks while
considering a new set of trains to be platformed as well. Bai (2015) [3] addresses the
Train Platforming Problem in the context of a dense railway traffic in complex stations.
Bešinović and Goverde (2019) [13] propose a multi-objective model to minimise the av-
erage train delays and balance the traffic over the infrastructure to increase its lifetime
before maintenance. Milliet de Faverges (2020) [129] solves a robust version of the Train
Platforming Problem by analysing train delay distributions from historical traffic data.
A survey on Train Routing problems is found in Lusby et al. (2011) [124].

2.1.2.3 Rolling Stock Planning

The Rolling Stock Planning or Vehicle Scheduling Problem is the task of deciding the
specific train units to compose trains to be assigned to the scheduled trips of a timetable.
According to the nominal problem described in Cacchiani et al. (2012) [31], important cri-
teria to be minimised are the number of unseated passengers by choosing appropriate train
compositions according to the expected demand, energy consumption and maintenance
costs directly impacted by the number of vehicles used, and the number of composition
changes at stations, e.g. operations of coupling or uncoupling of train units, that can have

23

a worsening effect on the robustness of a timetable in case of train delays. The authors
tackle a robust version of the problem where large disruptions on the infrastructure be-
tween stations are considered. Borndörfer et al. (2017) [18] model the problem using a
hypergraph to facilitate the expression of constraints representing in detail the possible
changes of train compositions between two trips. Not only the number and the position
of train units is indicated, but also their orientation conditioning the presence of the first
and second classes at the front or at the back of the vehicles. The authors point out
localisation constraints that rolling stock should also satisfy. First, at a given station area
including shunting yards, enough train units have to be present at the end of a day to
be able to operate all the scheduled trips of the beginning of the following day. Second,
the train units, that run hundreds of kilometers, have to arrive on time at their specific
maintenance site to realise their periodic maintenance operations.

2.1.2.4 Crew Management

The Crew Management is a famous problem in Operational Research, on wich Dantzig
(1963) [58] worked to improve the planning of the military operations of the US Air Force
and popularised the Linear Programming technique. The Crew Management Problem
is to build a schedule for crews in order to cover a set of planned tasks. It have been
widely used in airlines companies, as comment Caprara et al. (1997) [44]. The authors
describe the problem in the railway context, and present various models and methods to
solve it. Because of different temporalities regulating the time interval from the end of a
task and the beginning of a new task performed by a same crew, the Crew Management
Problem has naturally been decomposed in two subproblems. Let us consider a set of
trips to be covered by crews every day. The Crew Scheduling Problem allows to create
duties by grouping several trips which total span is no longer than a given maximum
duration, e.g. two days in the case of the authors. The duties are then packed in rosters
representing weeks in the Crew Rostering Problem, while details of each trip are not
considered anymore at this step. The main objective of those problems is to require
as less crew as possible to cover the set of trips, by a clever sequencing of the trips in
duties and of the duties in rosters. Caprara et al. (1998) [48] solve the Crew Rostering
Problem with a heuristic algorithm using lower bounds and find near optimal solutions
for real-world instances.

2.1.3 Operational level

The operational level of planning stands for monitoring the railway traffic in real-time and
making decisions to recover from degraded situations that may occur due to infrastructure
or rolling stock failures, train delays, or any unexpected events that could disturb the

24

nominal planned operations. Cacchiani et al. (2014) [36] survey optimisation models
and algorithms dedicated to re-schedule train timetables, rolling stock and crew plans
individually as well as in an integrated manner. In order to avoid heavy adaptations of
resource schedules in real-time as much as possible, performance indicators like timetable
robustness can be optimised during the tactical phase, as we will see in Section 2.2.2. If
these precautions are not sufficient with respect to the faced unexpected events, we will
focus on proposed strategies to manage optimally the timetable re-scheduling in real-time
in Section 2.2.3.

2.1.4 Integrated approaches

We saw that the railway planning process has traditionally been decomposed in subse-
quent problems easier to handle, but that each of these problems is already challenging.
In the following, we present research projects looking at the integration of several prob-
lems previously mentioned. The results generally show that the solutions found in the
integrated context make a better use of resources than solutions obtained when solving
the problems subsequently.

2.1.4.1 Network Design and Train Timetabling

Nachtigall and Voget (1997) [134] search to build particular timetables for which passenger
does not have to wait to take their connections. To attain this goal, the authors consider
the possibility to upgrade track sections to increase their speed limit and thus reduce the
running time on them. The objective is then a compromise between the waiting time
of the passengers at stations and the cost of the network upgrading plan. Sub-optimal
solutions are reached using a genetic algorithm. Qi et al. (2016) [150] work with a set
of stations along a corridor consisting of a single or a double track railway line either in
one-way or in two-way traversing mode. The authors show that for a given set of trains
to be timetabled on the corridor, adding siding tracks at stations allow a reduction of the
journey times thanks to the obtained extra dwelling capacity. The objective is to choose
the relevant sidings tracks to be added at relevant stations in order to find a compromise
between the cost of these extensions and benefits for the trip times.

2.1.4.2 Line Planning, Train Timetabling and Rolling Stock Planning

Schöbel (2017) [170] investigates the interaction between the Line Planning, the Train
Timetabling and the Vehicle Scheduling problems. She proposes an eigenmodel to explore
all the possible combinations to solve the three problems iteratively until convergence. A
path in the eigenmodel corresponds to the order in which the problems are solved at
each node on the path. The author points out that depending on the problems selected

25

at the beginning of the path, new Integer Linear Programming formulations could be
found because such paths do not necessarily follow the traditional sequence for solving
these problems. The author concludes that the eigenmodel could be extended to an
integration of more planning stages, by considering the problems traditionally occurring
before Line Planning and after Vehicle Scheduling. She also observes a possible use of
such eigenmodels in other areas like supply chain and production scheduling. Pätzold
et al. (2017) [137] explore three specific paths of the eigenmodel and derive methods to
integrate aspects of vehicle scheduling during the Line Planning Problem to avoid getting
bad quality solutions as it can be when the three problems are solved sequentially and
without iterative loop. We will now focus on problems integrating Line Planning and
Train Timetabling in the one hand, and on problems integrating Train Timetabling and
Rolling Stock Planning on the other hand.

Line Planning and Train Timetabling. Jiang et al. (2017) [102] search to increase
the number of train running on the high-speed highly congested double track corridor
JingHu between Beijing and Shanghai respecting to an actual timetable in order to meet
the future passenger demand. To do so, the authors allow an increase of dwelling times
and a modification of the stopping patterns, i.e. adding or removing few stops. The
latter option is usually a part of the Line Planning Problem. The problem is solved in
short computation time by a heuristic based on the one of Cacchiani et al. (2010) [33].
Qi et al. (2021) [149] integrate time-dependant passenger demand to this problem and
show the effect of this consideration on the resulting stop plans and timetables. Cacchiani
et al. (2020) [37] addressed the problem in the case of an uncertain passenger demand
distribution. Brethomé (2018) [22] presents a passenger-oriented multi-objective Line
Planning model integrated with a Train Timetabling model taking into account the route
choice of passengers, for the mass transit of the Île-de-France region. Burggraeve et al.
(2017) [24] look for robust timetables obtained from the construction of a line plan from
scratch. The line plan is questioned at each iteration of the process in order to improve the
buffer times between the trains. The authors validate their heuristic on instances of the
DSB S-tog network of Copenhagen. Yan and Goverde (2019) [185] propose an iterative
model to cope with strongly heterogeneous railway lines on a high-speed corridor. In their
Line Planning model, a wide flexibility is given for the frequency to be determined for
each line. The regularity of the train timetable is then optimised in a subsequent model,
that feeds back the Line Planning model with constraints on the frequency of the lines
for further improvements. Fuchs et al. (2022) [78] solve iteratively the Line Planning and
the Train Timetabling problems. A MIP and a SAT formulations are proposed for the
latter problem. In case of infeasibility of the timetabling model, constraints representing
conflicts between lines are added to the Line Planning model. The authors show that

26

banning a conflict between potentially numerous combinations of lines is more efficient
than banning a specific combination of lines for the convergence of the method. Zhang
et al. (2022) [188] integrate Line Planning and Train Timetabling using an ILP model
to cover the passenger demand along with a multi-commodity network flow model. The
authors develop a dual decomposition strategy based on the Alternating Direction Method
of Multipliers to solve efficiently the coupling constraints of the two models. The approach
is applied on a corridor with trains running in one direction.

Train timetabling and rolling stock planning. Kroon et al. (2014) [108] exploit
rolling stock flexibility constraints based on the Periodic Event Scheduling Problem model
to authorise vehicles to be scheduled in different lines and obtain a gain on the number of
necessary vehicles to cover the timetable. Carosi et al. (2019) [50] use a matheuristic to
solve a multicommodity-flow model for the integration of timetabling and vehicle schedul-
ing in the bus transportation context. The resolution of real-world instances show how
the possibility to use less vehicles and drivers. Grafe et al. (2022) [93] integrate vehicle
circulation decisions in real-time rescheduling and manage to reduce the delays incurred
by passengers in close-to real-world instances. The problem is solved by a heuristic using
derived bound in reasonable computation time.

2.1.4.3 Train Timetabling and Routing

In the following, we take a look at contributions on timetabling with platforming and
routing considerations. Petering et al. (2016) [144] present a Mixed-Integer Linear Pro-
gramming based approach to minimise the cycle time and the journey time of a train
timetable while considering the platforming of the trains on a single line traversed in
one-way with multiple tracks at stations. Using computed bounds and a preprocessing
step, life-size instances are solved within one hour with a commercial solver. Zhou et al.
(2020) [190] minimise the total travel times of trains timetabled on a high-speed one-way
network considering their platforming at stations. A constraint reduction strategy allows
the Mixed-Integer Linear Programming formulation of the authors to be solved faster.

Integration with Maintenance Scheduling. Some approaches consider an integra-
tion of Train Timetabling with Routing and Maintenance decisions. Wust et al. (2019)
[181] extend the Periodic Event Scheduling Problem to model track-choices at stations,
as well as flexibility in the timetable. That is, a solution for train arrival or departure
corresponds to an interval of times instead of a unique time. This flexibility allows to
find a feasible timetable by considering several track maintenance scenarios, i.e. some
double tracks are converted into two-way single tracks during the maintenance of the
other track. Zhang et al. (2022) [187] integrate the planning of maintenance tasks on the

27

infrastructure to the timetabling and routing optimisation. The authors take into account
different running times depending on the routes taken by the trains. The objective is to
minimise the deviation from the initial schedule of the maintenance tasks while minimis-
ing the weighted train running times. A heuristic is used to reduce the search space.
The approach presented by the authors outperforms the performance obtained using a
commercial solver.

Robust approaches. Several contributions look for an improvement of the available
buffer times between trains. Dewilde et al. (2014) [66] propose a tabu search framework
to improve the spread of the trains in the timetable. Using a simulation tool, the authors
observe a diminution of 25% in the delay propagation of their solutions. Dewilde et al.
(2013) [65] pursue the same objective with an iterative method consisting at optimising
the timetable, the routes taken by the trains, or their assigned platforms at stations. The
method has been validated on instances from two busy stations in Belgium. Burggraeve
and Vansteenwegen (2017) [26] present an approach in which the routing of the trains is
decided in the first place in order to minimise the maximum use of specific tracks in the
station area of Brussels. The timetable is built once the optimal routing has been sought.
The method is improved in Burggraeve and Vansteenwegen (2017) [25] by evaluating the
passenger robustness using a simulation tool in order to further adapt the buffer times
between trains.

2.1.4.4 Rolling Stock Planning and Train Unit Shunting

The Train Unit Shunting Problem aims to manage train units that are coupled or un-
coupled at stations due to Rolling Stock Planning decisions. As a consequence, the train
units that stay in station areas have to be parked in shunting yards composed of parallel
tracks that most of the time are accessible from one end only. The shunting movements
from stations tracks to shunting yard tracks and vice versa, the track assignment in the
shunting yard, and the train matching with an arrival and a departure train for a given
train unit, are the key features of the Train Unit Shunting Problem. As this problem
may easily be infeasible and thus provoking delays at stations, some approaches look at
the integration of the Rolling Stock Planning with the Train Unit Shunting Problem to
gain degrees of freedom. Haahr and Lusby (2017) [96] demonstrate that solving the in-
tegrated problem with Branch-and-Cut approaches, a solution can be found on instances
of the DSB S-tog that were infeasible when considering the two problems subsequently.
Kamenga (2020) [104] defines the Generalized Train Unit Shunting Problem by adding
rolling stock maintenance operation scheduling in the integrated problem of Rolling Stock
Planning with Train Unit Shunting. The author proposes a Mixed Integer Linear Pro-
gramming formulation, and obtains good solutions in about one hour of computation

28

for instances of the Metz-Ville station. Additional algorithmic contributions allowed the
author to speed-up the resolution.

2.1.4.5 Rolling Stock Planning and Crew Scheduling

We finalise our overview on integrated railway planning phases with approaches consid-
ering simultaneously the scheduling of rolling stock and crews. Freling et al. (2003) [77]
model the integrated problem in the context of bus transportation. The objective is to
minimise the number of used vehicles and the cost of scheduled crews. The problem is
solved using a column generation approach. The authors use the solutions obtained from
the sequential approach to evaluate the potential benefits of the integrated approach. It
turns out that the integration is beneficial, even more when the cost of a scheduled crew is
important with respect to the cost of a scheduled vehicle. Benhizia (2012) [8] proposes a
Mixed Integer Linear Programming model to integrate the railway Rolling Stock Planning
and the Crew Scheduling problems satisfying all the technical and legal requirements. The
problems are either considered separately and jointly by applying coupling constraints.
As the entire MILP struggles to be solved in reasonable amount of time for real-world in-
stances using a commercial solver, algorithmic contributions based on the decomposition
of the model are proposed to improve the performance of the approach.

2.2 Train Timetabling Problem

We dedicate this section to the Train Timetabling Problem, which is one of the keys of the
railway planning process. We saw in Section 2.1 that the problem can be addressed as early
as during the strategic level, when integrating Network Design or Line Planning decisions.
In Section 2.2.1, we focus on various models and methods dealing with the tactical nominal
problem. Several railway performance indicators that improve the quality of timetables
like robustness are presented in Section 2.2.2. Finally, we present two streams of research
aiming at solving the problem at the operational level in Section 2.2.3.

2.2.1 Tactical nominal problem

Solving the Train Timetabling Problem is the art of deciding departure and arrival times
to a set of trains running on a railway infrastructure while minimising the passengers
travel time and satisfying constraints modelling a conflict-free use of the tracks. This
problem is generally solved at the tactical level, years to months before actual operations.
Two variants can be identified, depending on the type of time horizon considered. Caprara
et al. (2002) [43] address the aperiodic version of the problem, for which the scheduled
arrival or departure times of trains are not enforced to repeat cyclically e.g. hourly within

29

the day. The notion of period is however mentioned in the contribution as the timetable
can be applied every day. A tutorial on the aperiodic Train Timetabling Problem is given
by Cacchiani et al. (2015) [35]. On the other hand, the periodic Train Timetabling Prob-
lem has also encountered a high interest from researchers thanks to the attractiveness of
the obtained timetables for the passengers. Indeed, such timetables offer several mobility
alternatives easily memorised for the same line. Serafini and Ukovich (1989) [174] in-
troduce the Periodic Event Scheduling Problem (PESP), a seminal contribution that has
been the basis of many more works on periodic Train Timetabling. The authors model
the train arrival and departure times by nodes of an event graph, in which arcs between
nodes stand for activities e.g. running from a departure event to an arrival event. The
nodes are the variables of the problem, a time to be decided in the domain [0,T− 1], so
that the events are repeated at the same time after at each period of duration T. The arcs
are the constraints of the model, representing the activities duration, bounded between
a minimal value and a maximal value. For instance, the travel time between stations A

and B has to take between 5 and 7 minutes. Or, the dwelling time at station B has to be
3 minutes, representing the case where the lower bound of the activity equals its upper
bound. The authors prove the NP-completeness of the problem by polynomial reduction
to HAMILTONIAN CIRCUIT, and propose a Branch-and-Bound procedure to solve the
feasibility problem. Odijk (1998) [136] also proved that the problem is NP-complete
by reduction to GRAPH COLOURING. Recent parameterised complexity results given
by Lindner and Reisch (2022) [122] show that deciding the feasibility of PESP is NP-
complete even for small instances with specific structural properties. Nachtigall (1996)
[130] adds an objective function to periodic programs and minimises the waiting time of
passengers during their connections at stations. The author proposes an improvement of
a Branch-and-Bound method to solve more efficiently instances for which operated lines
have different frequencies. Liebchen and Möhring (2002) [116] improve the timetables of
the Berlin underground by solving a PESP formulation using preprocessing steps and a
commercial solver. Liebchen (2004) [113] extends the PESP model by adding symmetry
constraints. This requirement is applied in practice, e.g. in Switzerland, in France, and
means that all arriving trains should be at a given station at a given symmetry minute
and leave the station after the symmetry minute. This nice property allows the passengers
to find comfortable connections, at the price of an increased rigidity in the timetable and
difficulty to find feasible solutions. Liebchen and Möhring (2007) [117] further extends
the PESP model to a vehicle scheduling aspect by showing how to minimise the number
of required vehicles in a timetable. Liebchen (2008) [114] presents the 2005 Berlin under-
ground timetable that is the first one to have been optimised in practice, saving travel
and connection times for passengers and one train for BVG, the operator company.

30

In the following, we present modelling specificities and solving techniques arising in
contributions on the Train Timetabling Problem.

Service intention. In periodic Train Timetabling, a line concept (see Schöbel (2012)
[169]) is a set of lines operated periodically on the railway infrastructure, for which we
know the stop pattern i.e. the list of stations served by the line, and the frequency of the
line. The notion of service intention (see Wust et al. (2008, 2019) [183, 181]) enriches the
line concept by also providing rotation times at terminus stations and desired connections
between trains. Caimi et al. (2011) [42] introduce the periodic service intention as a
manner to specify the periodicity of the lines and therefore to also deal with aperiodic
lines.

Fixed activity durations. The following contributions as well as a group of instances
in Fuchs et al. (2022) [78] have considered the case where the durations of the trains
activities are fixed, i.e. the upper bound is moved to the lower bound of the activity. The
authors observe that feasible solutions are harder to be found in this setup. Domschke
(1989) [70] presents a quadratic assignment model for the Synchronisation Problem and
heuristics to minimise the waiting time of passengers. Nachtigall and Voget (1996) [133]
address the same problem with a Mixed-Integer linear Program solved by a Genetic Algo-
rithm. The authors show that the problem is NP-Hard even with fixed activity durations.
Großmann et al. (2012) [95] encodes the PESP in a SAT formulation and concludes that
SAT solvers perform better than Constraint-based ones. Pätzold and Schöbel (2016) [138]
use the term of reduced PESP to call the PESP for which the activity durations are deter-
mined. The objective is to minimise the passengers waiting time. The authors formulate
the problem and propose an exact approach, a matching-based heuristic, and a hybrid
algorithm combining the two methods.

Mesoscopic infrastructure scale. The PESP is suited to build timetables at the
macroscopic scale of the infrastructure. At this scale, specific routing constraints are not
considered, and stations are seen as black boxes. The maximal number of simultaneous
authorised trains at a station can be given to increase the realism of the timetables. On
the other hand, the microscopic scale of the infrastructure describes faithfully the train
dynamics and the section blocking times on the tracks through a detailed representation of
the signalling system. A majority of contributions using at the microscopic scale address
the real-time Train Scheduling problem on a delimited sector, as we will see in Section
2.2.3. De Fabris et al. (2014) [62] introduce the mesoscopic infrastructure scale, an
compromise that eliminates some drawbacks of the two other scales. First, the mesoscopic
scale is more detailed than the macroscopic one as it explicitly allows to assign tracks to

31

trains at stations and to check for (mesoscopic) routes incompatibilities around stations.
Second, it is still possible to generate timetables on relatively expanded infrastructure
sectors at the mesoscopic scale, for which models are much less combinatorial than large
models of the microscopic scale. As an example in a railway node, several microscopic
routes between a given line track and a given station track would correspond to a unique
mesoscopic route. Wust et al. (2019) [182] extend the PESP by considering the possibility
to choose tracks at stations. Isobe et al. (2019) [100] generate periodic train timetables
at the mesoscopic infrastructure scale using a solver based on the Satisfiability Modulo
Theories. Masing et al. (2023) [127] address a periodic train timetabling problem using a
mesoscopic scale infrastructure to take into account more precisely headway constraints
in the context of construction sites that render some tracks unavailable.

Single track line. Heydar et al. (2013) [98] consider the problem of scheduling a set of
two different types of trains on a single track line with siding tracks at stations to allow
overtakings, and traversed in one-way direction. The objective is to minimise the cycle
time in which the lines periodically repeat. The authors solve a Mixed-Integer Linear
Program using a commercial solver. Petering et al. (2016) [144] extend this work by
adding more siding tracks at stations. Daudet (2017) [61] presents algorithms to solve the
train timetabling problem on single track lines of the tunnel under the Channel, between
Calais and Folkestone. The ticket pricing problem for the trains taking the Eurotunnel
has also be addressed by the author.

Flexible timetable. Caimi et al. (2011) [40] extend the PESP by providing flexibility
to the events. That is, conflict-free time intervals are searched for each train arrival and
departure instead of unique times. The authors conclude that this method only increase
the computation time moderately, while allowing to find feasible timetables easier at the
microscopic scale from the flexible macroscopic solutions.

Dynamic demand. Barrena et al. (2014) [5] address the Train Timetabling problem
of the Madrid suburban area where the dynamic nature of the mobility demand over time
is considered. Thus, the researched timetable is not periodic. The authors propose three
linear formulations based on flow variables and minimise the passenger waiting time using
a Branch-and-Cut technique.

Passenger routing. The Line Planning Problem for periodic timetables aims at select-
ing a relevant set of lines to be operated on the transport network in order to propose
high quality connections for passengers. However, two distinct feasible periodic train
timetables obtained from the same line concept can result in drastically different journey
times for specific origin-destination trips. Therefore, a research stream has emerged to

32

take into account the passenger routing so that the travel times remain comfortable for
most passengers. Siebert and Goerigk (2013) [175] present an iterative approach by re-
timetabling trains and changing line frequencies to improve the passengers journey times.
The authors use a quadratic formulation, choose the passengers paths by solving ran-
domised shortest paths in the transport network, and iterate until no improvement is
found during two iterations. Schmidt and Schöbel (2015) [166] point out the fact that
the Line Planning and Train Timetabling problems are solved assuming a knowledge on
the passenger routes while in practice these routes strongly depend on the timetable at
hand. The authors propose approaches to solve the timetabling problem simultaneously
with the passenger routing. Robenek (2016) [157] places the passengers at the centre of
timetabling process. To do so, the author develops models that decrease the passenger
waiting time and number of transfers, allow a partial periodicity in the timetable, and
integrate revenue management. Schiewe and Schöbel (2020) [165] argue that the Train
Timetabling Problem taking passenger routing into account is even harder than the clas-
sic version of the problem. They propose a preprocessing step to reduce the problem
size and a heuristic that considers a subset of the passengers to derive bounds on the
objective function. The method is evaluated on close-to-real-world instances. Grafe and
Schöbel (2021) [94] propose to solve the PESP with a larger non-periodic constraint net-
work. The authors show that this can have an interest for integrating PESP and Delay
Management which is presented in Section 2.2.3.2, and suppose that it is a promising
way to integrate PESP and passenger routing. Polinder et al. (2022) [146] minimise the
passenger travel times in a train timetable while also considering the waiting times at the
origin stations. The authors compute the ideal timetable from the passenger perspective
without taking the infrastructure constraints into account. Then, they restore the feasi-
bility of the timetable using a Lagrangian heuristic, and search for further improvements
for the passengers while conserving the feasibility of the timetable. Gattermann et al.
(2016) [81] use a SAT based approach to integrate passenger routing when solving the
periodic Timetabling Problem. Kümmling et al. (2016) [110] improve the traffic assign-
ment in train timetables using constraint propagation techniques. More recently, Yao et
al. (2023) [186] developped a multi-commodity flow model solved with the Alternating
Direction Method of Multipliers in order to integrate passenger routing and stop planning
in their train timetabling problem. The authors tested the algorithm on the high-speed
railway network of Shandong region in China.

Valid inequalities. Authors e.g. Peeters (2003) [139], Liebchen and Möhring [117]
or Lusby et al. (2011) [124] present the alternative Cycle Periodicity Formulation of
the PESP attributed to Nachtigall (1999) [131], a Habilitation Thesis that we did not
access. In this formulation, constraints are not any more applied on potentials (event

33

times), but on tension variables defined as the periodic difference between the potentials
at extremities of arcs of the PESP graph. Peeters (2003) [139] observes that the Cycle
Periodicity Formulation is solved more efficiently than the classic PESP formulation. To
further increase the solving performance of the PESP, various valid inequalities have been
explored. A necessary condition on the feasibility of periodicity variables of the PESP
depending on lower and upper bounds of activities forming cycles has been proposed as
the Theorem 2 in Serafini and Ukovich (1989) [174]. The authors however remark that
this condition is not sufficient, because of the existence a small infeasible PESP instance
for which all the cycles though meet the condition. Therefore, there is more room to
find properties able to better detect infeasible instances. Let S a set of linear inequalities
determining a polytope P. Chvátal (1973) [52] defines the closure S(1) of S such that
S(1) contains S and the smallest set of linear combinations of inequalities of S with the
right-hand side rounded down and while they have a role in cutting off a new part of P.
It is established that the polytope P(1) determined by S(1) contains all the integral points
of P. It is theoretically possible to search for the Chvátal closure of S(1) and so on until
determining a polytope equivalent to the convex hull of the integral points of P. The so-
called Chvátal rank of S is the minimum number of Chvátal closures necessary to determine
the convex hull of the integral points of P. Odijk (1996) [135] explores the first Chvátal
closure of the PESP polytope by introducing the cycle inequalities. A cycle inequality is a
linear combination of PESP constraint inequalities along an elementary cycle of activities
in the constraint graph, for which the right-hand side is rounded down. As the number of
these inequalities can be exponentially large in the number of arcs of the PESP constraint
graph, Odijk (1996) [135] implements a PESP Cut Generation procedure that iteratively
adds a cycle inequality to the constraints in the case where periodicity variables are found
without allowing to build a feasible timetable, thus returning an infeasible cycle to be
cut. Liebchen and Swarat (2008) [119] present the change-cycle inequalities introduced
in Nachtigall (1999) [131], which definition is more complex than the cycle inequalities
but use the same variables. The authors use the change-cycle inequalities to prove that
the Chvátal rank of the PESP is at least T

2
where T is the periodic time horizon. They

indeed showed that on a simple PESP instance, a specific change-cycle inequality could
not be generated earlier than at the T

2
-th Chvátal closure. The authors also explore the

second Chvátal closure by introducing the multi-circuit cuts. These cuts are obtained by
combining several cycle inequalities and by rounding down the obtained right-hand side.
The relevance of these cuts has been proved on a class of infeasible PESP instances forming
wheel graphs with an even number of nodes. The cycle inequalities and the change-cycle
inequalities turned out to be valid for these infeasible instances while the multi-circuit
cuts proved the infeasibility. The authors show that these new cuts are relevant to speed-
up the solving computation time on some PESP instances, but that heuristics should be

34

applied to better determine in which context these cuts should be generated during the
resolution. Borndörfer et al. (2020) [17] give an algorithm to separate cycle inequalities
in pseudo-polynomial time and a proof of pseudo-polynomial time separability for the
change-cycle inequalities. The authors also show that there is no algorithm with a better
complexity for the separation of this inequalities. Lindner and Liebchen (2020) [120] show
that flipping the orientation of some arcs of the PESP constraint graph, it is possible to
obtain flip inequalities enclosing both cycle and change-cycle inequalities.

Model decompositions. Several contributions describe strategies to decompose the
train timetabling problems to ease the resolution of large instances. Caimi et al. (2009)
[39] propose to decompose railway networks with condensation zones where the railway
network is the more complex and saturated like main railway stations, and compensation
zones where time supplements are easier to introduce. The authors also reduce the model
by adjusting the time granularity. They formulate the problem on condensation zones by
an independent set problem in a conflict graph and solve it heuristically. Zhou et al. (2017)
[189] formulate the Multi-periodic Train Timetabling problem on a double track railway
corridor between Bei-jing and Shang-hai stations. In this problem, a distinct periodicity
is to be optimised for different set of trains. The authors propose a Lagrangian relaxation
of the problem that allows a decomposition into several subproblems responsible for the
periodicity of one set of trains each. Herrigel et al. (2018) [97] present a sequential decom-
position for the PESP using two control parameters. The trains are scheduled by priority
groups which quantity depends on the first parameter. Once trains are scheduled, their
times can still be shifted by a number of minutes depending on the second parameter,
in order to allow flexibility for the last priority groups. If infeasibility occurs, a back-
track is performed and the shift parameter is increased. Leutwiler and Corman (2022)
[112] address the problem of aperiodic train timetabling at the microscopic scale of the
infrastructure, in which the network is composed by dense zones sparsely connected. The
authors propose a logic-based Benders decomposition for which the logic Benders cuts
are computed with a SAT-based algorithm. Other approaches based on Constraint Pro-
gramming (see Baptiste et al. (2001) [4]) have also been proposed. Tormos et al. (2006)
[179] propose three decomposition strategies to solve the Railway Scheduling problem
more efficiently. The distributed Constraint-based models are divised by a partition of
the constraint network, by trains or by contiguous stations. The second decomposition
performed the best. Salido et al. (2007) [160] qualifies the general constraint network de-
composition as domain-independent whereas the decompositions obtained from a deeper
problem study e.g. by trains or by contiguous stations are said domain-dependent and
provide better results.

35

Modulo network simplex. Nachtigall and Opitz (2008) [132] adapt the network sim-
plex algorithm to the case of programs dealing with modulo equations. The authors thus
introduce the modulo network simplex method that they use to minimise heuristically the
waiting time of passengers in a multi-periodic train timetabling problem. Goerigk and
Schöbel (2013) [86] improve the modulo network simplex algorithm by speeding-up the
running times of the inner loop of the algorithm and improving the quality of the cuts
found in the outer loop of the algorithm so that it is possible to escape from local op-
tima. The authors conclude that this method outperforms the classic one as well as a
state-of-the-art commercial solver. Goerigk and Liebchen (2017) [85] describe an heuristic
aggregation method to reduce the size of PESP instances, along with an iterative proce-
dure using the benefits of both the improved modulo network simplex algorithm and a
commercial solver. Indeed, the authors remark that the solutions are not encoded in the
same way in the two methods, and that switching form one method to the other thus
allows to better escape from local optima and to improve the overall performance. This
iterative approach allowed the authors to improve the objective value of a all PESPlib1

instances (16 at this time).

Conflict resolving. Polinder et al. (2018) [147] address the problem of resolving ini-
tially infeasible PESP instances by making the minimal number of allowed modifications
on the right-hand side of the PESP constraints to eliminate the conflicts. Reisch et al.
(2021) [152] present a local search algorithm to build the annual timetable for all freight
trains in Germany. A column generation approach allows to attribute time slots for a part
of freight trains to be scheduled. The problem is represented as a Maximum Independent
Set (MIS) problem where each conflicting slots are linked in a conflict graph. In order to
schedule more trains and escape local optima, the solution is perturbed, creating conflicts
that are then resolved. The approach of the authors performs better than a commercial
solver and has a comparable performance to the Iterated Local Search, that is the best
known MIS heuristic. The authors are able to schedule more than 5000 freight trains with
their method. Kümmling et al. (2015) [109] present a state-of-the-art method to com-
pute periodic train timetables of the German network including long distance trains, local
trains and freight trains. The solver used is applied on a SAT encoding of the instances.
In case of infeasibility, minimally unsatisfiable subformula are identified to perform slight
modifications on the data and restore the solution feasibility. The authors argue that this
method can be used to easily handle future modifications in the timetable requirements
without demanding much computation.

1https://num.math.uni-goettingen.de/~m.goerigk/pesplib/ (Accessed: 25 June 2023).

36

https://num.math.uni-goettingen.de/~m.goerigk/pesplib/

Heuristic approaches. Caprara et al. (2006) [47] address the Train Timetabling
Problem with additional requirements like the maximal number of trains simultaneously
present at stations, fixed timetables for a subset of trains, or maintenance on a set of
tracks. The authors incorporate and solve these new constraints using a Lagrangian
heuristic. Cacchiani et al. (2008) [32] propose both exact and heuristic approaches to
solve the periodic versions of the Train Timetabling Problem. The originality of their
methods rely on the variables expressing the full timetable of each train, allowing to ob-
tain a stronger LP relaxation of the integer formulation. Borndörfer et al. (2010) [20]
present a rapid branching approach to solve the maximal weighted railway track allo-
cation problem. Garrisi and Cervelló-Pastor (2020) [80] present a Mixed-Integer Linear
Programming formulation to model the Train Scheduling problem that aims to minimise
the train delays. A heuristic is used to build an initial population of solutions that are
then improved through a genetic algorithm.

Concurrent solver. Borndörfer et al. (2020) [19] introduce a PESP solver putting
algorithms in concurrency. Contrary to Goerigk and Liebchen (2017) [85] that solved
PESP by using iteratively the modulo network simplex method and a commercial solver,
the authors launch the two methods in parallel along with a heuristic based on maximum
cuts. This concurrent approach allowed to improve lower and upper bounds of all PESPlib
instances (20 at this time). Lindner and Liebchen (2022) [121] present two strategies to
merge a set of good quality periodic timetables. These strategies are implemented in the
concurrent solver. As a result, the authors improve the objective value of the first and a
last instances of the first set of PESPlib instances. Bortoletto et al. (2022) [21] propose
a heuristic based on tropical geometry that uses the min-plus algebra. The authors
implement their heuristic in the concurrent solver and improve the objective value of five
PESPlib instances.

2.2.2 Performance indicators

The main objective of tactical train timetabling that we have seen above is to find arrival
and departure times for a set of trains at traversed stations such that the resulting planned
operations are conflict-free and minimise the passengers travel time. However, timetables
implemented in practice should also prove an acceptable quality with respect to railway
performance indicators. These indicators inform about the ability of a timetable to cope
with delays occuring during railway operations. Among them, definitions of infrastruc-
ture occupation, robustness, stability and resilience are presented by Goverde and Hansen
(2013) [92]. In the following, we focus on contributions aiming at measuring or optimising
such railway performance indicators.

37

2.2.2.1 Infrastructure occupation

Given a train timetable in which all the train departures from their origin station span
a time horizon H, a method described in the UIC 406 Leaflet [180] allows to compress
the timetable, i.e. to minimise the span period of the same trains by removing all idle
times between trains without changing their speed profile. If the maximum span between
all train departures in the compressed timetable is h, then the infrastructure occupation
of a timetable is defined by the ratio of h over H, usually given as a percentage called
Occupancy Time Rate. The UIC 406 Leaflet [180] gives recommendations on the maxi-
mum Occupancy Time Rates tolerable depending on the topology of the infrastructure
considered, the type of traffic or homogeneity of the train speed profiles, and the period
during the day. Timetables for which the Occupancy Time Rate is superior to the pre-
scribed one should thus be difficult to be operated if delays occur, because of the lack
of residual capacity on the infrastructure to absorb the delays. Abril et al. (2008) [1]
use timetable compression methods and timetable saturation to evaluate the capacity of
Spanish railway infrastructures. The saturation of a timetable consists in adding as many
trains as possible in a timetable in order to evaluate its residual capacity. Other authors
worked on timetable saturation. Delorme et al. (2001) [64] use a Constraint Programming
model and a unicost set packing formulation, respectively solved by a greedy heuristic and
the GRASP metaheuristic (see Feo and Resende (1995) [73]), to saturate timetables on
the Pierrefitte-Gonesse junction near Paris. Sels et al. (2014) [173] measure the realistic
capacity consumption of a station by platforming a set of extra trains together with a
set of current trains. In several contributions, extra trains represent an increase of the
mobility demand to consider for the upcoming years. Cacchiani et al. (2016) [34] propose
an Integer Linear Programming formulation to solve the Train Timetabling Problem in
complex railway nodes linking several stations, from the Infrastructure Manager point of
view. From the ideal timetables requested by the Train Operators, the authors schedule
as many trains as possible while trying to satisfy the ideal times expressed. The au-
thors also apply a saturation iterative heuristic to try to schedule more trains and thus
to evaluate the saturation of railway nodes. This method allowed to conclude that the
available capacity was not sufficient to schedule all the Train Operator demands, even
when adding some new tracks in the railway nodes. Pellegrini et al. (2017) [142] use an
algorithm based on a Mixed-Integer Linear Program to saturate the railway line between
Rouen and Mantes-la-Jolie at the microscopic scale of the infrastructure, which represents
a large network at this scale of detail. Petering et al. (2016) [144] perform the capacity
analysis of a single line traversed in one-way with multiple tracks at stations by minimis-
ing the cycle time allowing to schedule a given set of periodic trains. Jensen et al. (2017)
[101] use compressing methods to assess the infrastructure occupation of a sequence of
trains. They also compute the capacity consumption of the sequence of trains by keeping

38

the critical headways during the compression. Results are obtained within little compu-
tation time and using a small amount of input data. The method allows to compare the
number of trains circulating in a given period for several infrastructure scenarios.

2.2.2.2 Stability

A timetable is said to be stable if, when a delay of few minutes occur on a train, the
consequences of this delay should be absorbed within a known settle time without need-
ing to reorder or reschedule trains in real-time. Goverde and Hansen (2013) [92] use the
example of the German norm stating that the consequences of a primary delay of ten min-
utes should be absorbed in two hours. It is therefore necessary to plan time allowances
additionally to the minimal required technical times to perform railway operations. In-
deed, normal small variations on the duration of some tasks are expected in practice
and not taking these variations into account makes it difficult for train drivers to catch
up a potential delay on their trip. Goverde (2007) [89] develop methods relying on the
max-plus algebra to compute the delay propagation in a large-scale railway network in
real-time and measure the duration of the perturbation. Goverde (2010) [90] improves
the previous method by also considering train arrival and passing events instead of only
departure events. The author develops a graph algorithm that allow computing the delay
propagation in the system proportionally to the number of delayed events. Delorme et
al. (2009) [63] present a multi-objective optimisation framework to obtain a timetable
which minimises the number of conflicts between a set of trains, maximises the set of
scheduled saturating trains, and maximises the preferences of the decision-maker like the
trains to be selected, their routes and arrival dates. The authors also measure the sta-
bility of the solutions depending on several durations of initial delays impacting trains.
Sparing and Goverde (2017) [177] propose a model optimising both the feasibility and the
stability of the timetable in a single step, by minimising the cycle time of the periodic
timetable within which operations every railway operation is repeated. Bešinović et al.
(2019) [15] work on the case where infrastructure capacity is not sufficient to schedule an
entire set of trains. To avoid generating unstable timetables, the authors solve heuristi-
cally a Mixed-Integer Linear Programming formulation minimising the cycle time of the
timetable while relaxing the train line journey times as few as possible and cancelling as
few trains as possible. The results show that higher transportation demand can be met
using this method. The common point with the work of Sparing and Goverde (2017) [177]
is that the minimisation of the cycle time allowed the authors of both contributions to
inject cleverly allowance times between the critical train operations of the timetable.

39

2.2.2.3 Robustness

Robustness is a very popular indicator for solutions of optimisation problems applied to
various industrial domains. Seeking for robust solutions to real-world problems is indeed
attempting to maintain feasibility of the solutions when the uncertainty of input data at
hand will be revealed. Several strategies has been set up to face uncertainty, we are now
describing classic ones.

Robust optimisation. Consider constraints of a convex linear program using param-
eters which values are delimited in uncertainty sets. Strict robustness (Soyster (1973)
[176]) aims at finding an optimal solution that remains feasible for all possible realisa-
tions of the parameters within the uncertainty sets. This technique is rarely applied in
practice because of its overconservatism. The objective value of strictly robust programs
can be heavily impacted, and even the existence of feasible strictly robust solutions can
be questioned in some cases. Moreover, in many settings it can be unrealistic to want a
protection against the worst case for each of the uncertain parameters. This first approach
inspired many researchers to search for methods to achieve robust solutions with a fair
objective value with respect to the nominal optimal solution. Ben-Tal and Nemirovski
(2000) [7] remark that optimal solutions for a set of linear programs are not feasible any
more when adding a slight level of uncertainty to the input data. The authors present
a Robust Counterpart of the problem as a conic formulation to find optimal solutions
having a parameterised probability to be feasible against a parameterised level of uncer-
tainty. The authors observe that the loss of optimality respecting to the nominal solutions
is small for a reasonable level of immunity against uncertain data. Bertsimas and Sim
(2004) [10] present a linear tractable method in which at most Γ parameters of the model
can be simultaneously subjected to uncertainty. A difficulty is to find the relevant value
of Γ to keep an acceptable probability to find feasible solutions after the uncertainty is
revealed, without decreasing too much the objective value of the robust solutions. This
compromise to be found is the so-called Price of Robustness. In some other settings, the
uncertain problems to be solved are such that a first set of decisions are to be taken under
uncertainty, while a second set of decisions called recourse decisions can be taken after the
uncertainty is revealed. The solutions obtained are therefore less conservative because of
the adaptation possibility in a second phase. This kind of two-stage robust optimisation
problems can be formulated as an Adjustable Robust Counterpart that integrates the two
sets of decisions. To make this problem tractable, Ben-Tal et al. (2004) [6] restrict the
second-stage variables to be an affine function of the uncertain data, thus formulating the
Affine Adjustable Robust Counterpart of the problem.

40

Stochastic Programming. A common characteristic of the robust methods described
above is that the values of the problem parameters are contained within given uncertainty
sets. In other contexts, however, such sets are unknown and parameters are instead
stochastic variables for which the distribution is either given or evaluated by sampling
methods. This second family uncertainty settings can be dealt with using Stochastic Pro-
gramming, a framework introduced by Birge and Louveaux (2011) [16]. The main idea is
to optimise the expected value of the objective function of a problem subjected to a set
of independent scenarios or realisations of the uncertain parameters. Considering many
scenarios in the formulation allows to find a more robust solution but is also more difficult
to solve because of the growth of the model.

Robustness is a goal that has been widely researched in the solutions of railway plan-
ning problems. In particular, the robust Train Timetabling Problem aims at determining
a clever distribution of buffer times between train circulations at their potential conflict
points in order to absorb as much as possible the propagation of potential delays. Cacchi-
ani et al. (2012) [38], Caimi et al. (2017) [41] and Lusby et al. (2018) [123] surveyed the
literature of train timetable robustness. In the following, we focus on the description of
some contributions looking for robust timetables. While many approaches are based on
the techniques mentioned above, we will see that new robust schemes like light robustness
or recoverable robustness, applicable in various industrial domains, emerged from railway
research.

Timetable robustness measures

According to Goverde and Hansen (2013) [92], a train timetable is considered robust
if it minimises both the occurrence of initial delays by planning a sufficient amount of
time allowance between each operation of a train, and the occurrence of secondary de-
lays (induced by other delayed trains) by distributing buffer times to protect optimally
the operations against the most potential delays. Many ways to capture the timetable
robustness have been proposed, among which we mention two examples in the following.

Robustness in Critical Points. Andersson et al. (2013) [2] present a measure that
quantifies Robustness in Critical Points. Such critical points correspond to dependencies
between two trains that overtake each other or run on incompatible routes relatively close
in time in a train timetable. Contrary to other previous approaches of the literature, this
one not only points out the sensible parts of the infrastructure where the timetable is
not robust, but it also gives indications on which train dependencies should be treated in
order to increase the timetable robustness. The Robustness of a Critical Point between

41

two trains at a station is computed as the sum of (i) the buffer time that the first train
disposes before entering the station, of (ii) the time difference between the departures of
the two trains from the station, and of (iii) the buffer time that the second train disposes
after leaving the station. That is, in case of delays, the more the value of this sum, the
more adaptations can be made to avoid propagating the delay too much. The authors
conclude that this measure could be included as an objective function in an optimisation
model in order to build robust timetables instead of solely evaluate timetables robustness.

Expected passenger time. Sels et al. (2016) [172] define the robustness of a train
timetable depending on the expected time that passengers should spend in the railway
network in practice. To do so, the authors use distributions for the initial delays of the
trains as well as for the secondary delays impacting two trains depending on the buffer
time between their conflicting activities. Resulting expected delays are explicitly penalised
in the (sum of picewise linear) objective function of a Mixed-Integer Linear Programming
formulation, weighted by the known number of passengers that should be impacted by
those delays. This method allowed to reduce the expected passenger time of the Belgian
timetable of about 3.8% in peak hours in about two hours of computation time. Sels et al.
(2015) [171] use the same objective function as a practical tool to evaluate and compare
the robustness of several existing timetables and determine the one to apply in practice.

In the following, we describe three families of contributions aiming at finding robust
train timetables. We classify them either among iterative, one-stage or two-stage ap-
proaches.

Iterative approaches using simulation

Kroon et al. (2008) [107] present an iterative approach to improve the robustness of
given train timetables for which the order of the trains (or timetable structure) remains
unchanged. The research question is how to re-allocate the buffer times in the timetable
so that it become less sensitive to delays. The authors use an iterative framework with
a stochastic program using delay realisations to re-allocate buffer times and a simulation
tool to evaluate the modified timetable. Convergence is obtained when no more improve-
ments are obtained. Bešinović et al. (2016) [14] solve a Linear Integer Program to obtain
a timetable at the macroscopic scale of the infrastructure, with both attractive passenger
travel times and safe buffer times between trains. A Monte Carlo simulation is used to as-
sess the robustness of the timetable. The process is repeated until the timetable is robust
enough. Afterwards, the timetable feasibility and stability of the timetable are evaluated
at the microscopic scale of the infrastructure. Additional time modifications are performed

42

through the various modules of the framework until obtaining a robust timetable at the
macroscopic scale that is also feasible and stable at the microscopic scale. Cornet (2020)
[57] presents a simheuristic to allocate buffer times optimally between suburban trains in
dense railway lines connected to Paris Saint-Lazare station. A timetable is given in input
with fixed train orders. The robustness of this timetable is evaluated with a simulation
tool. A simulated annealing metaheuristic is applied to optimise the re-allocation buffer
times. The framework is iterated until reaching a convergence criterion.

One-stage approaches

Lagrangian heuristic. Cacchiani et al. (2012) [30] studied the optimal distribution of
buffer time for a set of lines scheduled on a corridor using methods of Kroon et al. (2008)
[107]. The authors use a Lagrangian heuristic to solve the Robust Train Timetabling
Problem. Artificial parameters are added in the formulation to control the robustness
of the solutions. During the solving procedure, the weight associated to this control
parameters are progressively increased, in order to find a diversified panel of Pareto-
optimal solutions going from more efficient (in term of the cost of the solutions) to more
robust. The choice of the relevant solution to apply in practice is leaved to the final user.

Light Robustness. Fischetti and Monaci (2009) [74] introduce a framework called Light
Robustness to deal with optimisation under uncertainty. The authors comment that the
flexibility of the solutions obtained with Light Robustness is similar than when using two-
stage Stochastic Programming thanks to slack variables representing recourse actions to
be taken in case of important revealed uncertainty. However, the model is as simple to set
as a classic robust linear program. Indeed, Light Robustness consists in fixing (i) a limit
on the degradation of the objective value with respect to the one of the nominal optimal
solution, and (ii) the ideal level of additional conservatism of the parameters in the con-
straints. Slack variables are integrated in the formulation in case of impossibility to find
a fairly qualitative solution that respects the added conservatism. The objective of Light
Robustness is therefore to minimise the sum of the slack variables. The authors compared
this method with Stochastic Programming on instances of the Train Timetabling Prob-
lem. It turns out that for equivalent achieved level of robustness, the solutions are found
is less computation time using Light Robustness. Fischetti et al. (2009) [76] present
the design of an application aiming at computing nominal timetables, improving their
robustness and validate the robustness level of the improved solutions. The contribution
particularly concentrates on the step of robustness improving, given computed nominal
timetables. For the validation step, a tool based on Linear Programming is used. Re-
garding the robustness improvement step, the Light Robustness model is competitive in

43

term of computation time, gained robustness and implementation ease when compared
with three distinct Stochastic Programming settings. Liebchen et al. (2010) [118] im-
prove the robustness of timetables by slightly extending the Light Robustness model in
the sense that no slack variables are used but the objective function is adapted instead.
The achieved timetables are qualified delay resistant, meaning that realistic delays do
not propagate too much when testing the timetables in real-time conditions. More de-
tails about Delay Management are provided in Section 2.2.3.2. Goerigk et al. (2011)
[84] address the problem of robust Timetable Information corresponding to the selection
of particular trains to be taken by passengers from their origin to their destination and
that remain good options even in presence of delays. The authors analyse the journey
time difference with the nominal solutions when using strict robustness meaning that no
train connection should be broken under delays, and Light Robustness. The first method
turns out to be too conservative while the second provides relatively small journey time
supplements for most passengers.

Two-stage approaches

Recoverable robustness. Liebchen et al. (2009) [115] introduce a two-stage method
to find delay resistant timetables. Recoverable robustness of a solution is reached if for
all considered delay scenarios, an algorithm exists to recover the feasibility of the solution
with a limited effort. The recovery phase corresponds to the Delay Management problem.

Recovery-to-optimality. Goerigk and Schöbel (2014) [87] introduce the concept of
Recovery-to-optimality as a new two-stage approach to deal with uncertainty. Depending
on the application, finding a feasible solution can be not a requirement at the first stage.
Given a definition of distance between two solutions representing a recovery cost, the
objective is to find a solution for which the maximum distance to the optimal solution of
each uncertainty scenario is minimised. The main differences with Recoverable robustness
is that Recovery-to-optimality seeks to recover a not only feasible solution but an optimal
one, and that it is not specified in advance how the recovery should be done but it should be
possible thanks to the low recovery cost. The authors exemplify the concept by comparing
the resolution of the aperiodic Train Timetabling Problem in the nominal situation and
under uncertainty with strict robustness, Light Robustness, Recoverable robustness and
Recovery-to-optimality. The results show that Recovery-to-optimality solutions offer good
objective values without guaranteeing feasibility, and are hence useful if changes can be
done after the uncertainty is revealed.

44

Adjustable robustness. Polinder et al. (2019) [145] present an adjustable Robust
counterpart of the Periodic Timetabling Problem. That is, a timetable is found along
with a set of recourse variables that represent a selection of decisions rules to be taken
depending on a set of disturbances scenarios. Real-world instances are solved heuristically
by limiting the recourse variables to be linearly dependent to the disturbances.

2.2.2.4 Resilience and vulnerability

Resilience is defined in Goverde and Hansen (2013) [92] by the flexibility given to a
timetable to cope with delays by taking actions in real-time. In this sense, it is highly
connected with the two-stage robust approaches present above, as they prepare a timetable
to be easily operable to face disturbances. Mattson and Jenelius (2015) [128] survey two
related concepts called vulnerability and resilience of transport systems. The first concept
evaluates what are the risks for the system, their probability to happen and their conse-
quences for the society. It is summarised as knowing what to expect. It can be assessed
either by a topological study of the network, or either more in detail by analysing a larger
amount of data that describes the expected flows on the network and the consequences
of disruptions on them. The second concept represents the ability of a system to recover
its nominal state after undergoing a disruption. It is summarised as knowing what to
do. Bešinović (2020) [11] reviews the literature on resilience and related notions. The
evolution of a resilient system performance is described as follows. Robustness aims at
maintaining the system in its nominal states when facing small disturbances. If a dis-
ruption occurs, a phase of survivability begins where the performance of the system goes
from the nominal to a degraded state. Afterwards, a phase of response is launched with
actions to cope with the disruption while no drastic improvement of the system perfor-
mance is yet visible. Finally, the situation is handled and the performance of the system
is progressively restored to the nominal state during the recovery phase. vulnerability cor-
responds to the performance level difference between the nominal state and a potential
degraded state of the system. Szymula and Bešinović (2020) [178] model the problem
of vulnerability assessment in railway networks. A Mixed-Integer Linear Programming
formulation aiming at finding the location where a given number track failures has the
most impact for passengers is presented. The problem is solved heuristically by column-
and-row generation. Results show that the worst failure locations are more related to
the traffic demand than to the infrastructure topology in itself. Yan et al. (2019) [184]
propose a multi-objective model to minimise the vulnerability of periodic timetables while
minimising the journey times, the number of overtakings and maximising the trains reg-
ularity. Solutions approaches to build the four-dimensional Pareto frontier are tested on
two instances and a lower capacity utilisation is used to break the tie between equivalent
solutions in the Pareto frontier. Bešinović et al. (2022) [12] present an approach to ad-

45

dress the response phase of the resilience scheme presented in Bešinović (2020) [11] and
assuming that multiple disruptions occurring in a railway network make the survivability
phase duration negligible. The authors assess the resilience of the system when explicitly
considering infrastructure restoration additionally to traffic management. The method
helps decision makers to quantify adequately the impact of potential several disruptions
occurring simultaneously in the network.

2.2.2.5 Energy efficiency

On the top of the railway performance indicators presented above, Goverde and Hansen
[92] argue that the total energy required to operate a given timetable is also a valuable
objective to optimise. Chevrier et al. (2013) [51] compute optimal train running time
to be used as input for the Train Timetabling Problem. To do so, the authors use train
dynamics and minimise both the running time and the energy consumption of train trips
between stations by using an bi-objective evolutionary algorithm. Goverde et al. (2016)
[91] present a multi-level approach to compute train timetables that optimise most of
the performance indicators presented in Section 2.2.2, including energy efficiency. A
microscopic module is used to verify feasibility and the stability of the timetable. At
the macroscopic scale, journey times and robustness are optimised. Finally, robustness
is further improved in a fine-tuning mesoscopic model, as well as energy consumption.
The authors conclude that the integration of performance indicators during the timetable
construction avoids a cumbersome validation step using simulation to detect flaws that
are then not trivial to be resolved.

2.2.3 Real-time rescheduling

When important disturbances occur meaning that some operations take more time than
planned, even robust and stable timetables may no longer be feasible without the action
of train dispatchers in real-time. In this case, recoverable robust or resilient timetables
may provide the train dispatchers with more options to cope with the degraded situation
and eventually recover the nominal timetable as soon as possible. Cacchiani et al. (2014)
[36] survey the literature on Train Timetabling and Rolling Stock rescheduling under
disturbances and disruptions. The latter case designates larger perturbations caused by
failures or unexpected events and that could require rolling stock and crew rescheduling
and even train cancellations. In the following, we focus on contributions aiming to manage
the railway traffic in real-time under disturbances. Two streams of research have been
addressed in recent years. In the one hand, the Train Scheduling looks at the detection
and the resolution of conflicts at the microscopic scale of the infrastructure. On the other
hand, the Delay Management searches to answer the question if, given a known delay

46

occurring on a train, is it more beneficial for other trains to wait at stations so that
passengers of the delayed train could maintain their connection, or to depart on time to
avoid creating a snowball effect in the propagation of delays? We will present approaches
for each stream of research as well as contributions integrating Train Scheduling and Delay
Management.

2.2.3.1 Train Scheduling

Train Scheduling is a problem faced in real-time when railway operations are delayed at
such a point that the nominal planned timetable is no more operable. To recover from
this degraded situation, train dispatchers who monitor the railway traffic can reorder the
arrival of trains at specific points of the infrastructure by presenting restrictive signal
aspects to drivers or by giving them adapted speed indications. The dispatchers have also
the possibility to reroute the trains so that they avoid the conflicting zone. Among various
subjects, a review on real-time Train Scheduling is provided in Pellegrini and Rodriguez
(2013) [143]. The authors compare air and rail transportation in Europe, by analysing
the differences between the infrastructures, the strategic process of capacity allocation
on the infrastructure, and the real-time traffic management. In the following, we present
models and methods that have been used to solve Train Scheduling in real-time.

Integer Linear Programming formulations. D’Ariano et al. (2008) [59] model the
Conflict Resolution Problem using an alternative graph formulation, where priority deci-
sions are taken between trains in case of delays. The authors show the beneficial effect of
flexible timetables for the real-time rescheduling. In flexible timetables, a time interval
is planned for each arrival or departure event, letting more degrees of freedom to the
train dispatchers. It turns out that timetable flexibility can ease the reduction of delays
during real-time operations. D’Ariano and Pranzo (2009) [60] present a dispatching tool
able to solve the short-term Train Scheduling and evaluate the propagation train delays
for an upcoming time horizon of several hours, that is usually intractable. To do so, the
authors decompose the time horizon into smaller time windows and solve the problem in
cascade. The relevance of the approach has been validated on instances of a railway line
between Utrecht and Den Bosch. Corman et al. (2010) [54] improve the dispatching tool
by implementing new heuristics in a tabu search framework, indicating that better results
are found in less computation time compared with a previous version of the tool. Corman
et al. (2011) [56] extend the cases handled by their dispatching tool by addressing the
problem in the complex station area of Utrecht. The dynamic rerouting and reordering
possibilities implemented in their dispatching tool allow a diminution of train delays com-
pared to the basic management rules applied in practice. Gély (2010) [82] proposes a
continuous time model, a discrete time model and a hybridisation of both to solve the

47

real-time Train Scheduling on instances of lines between Paris and Lyon and between
Bordeaux and Toulouse, and a Parisian line between Saint-Lazare and Gare du Nord sta-
tions. The author observed that few minutes of perturbations could generate thousands
of seconds of delay in a network. Pellegrini et al. (2014) [141] introduce the real-time
Railway Traffic Management Problem as Mixed-Integer Linear Program. Random traffic
instances generated on the infrastructures of the triangle of Gagny near Paris and in the
area of Lille-Flandres station are solved. The authors observe statistically that the use
of a fine granularity of the infrastructure is crucial to be able to contain the delay prop-
agation. Pellegrini et al. (2015) [140] extend the previous approach. In particular, they
use valid inequalities and implement time-limited heuristics selected using an algorithm-
configuration procedure. High quality results satisfying the real-time requirements are
reported on instances based on three topologically different railway networks in France.
Samà et al. (2016) [162] formalise the real-time Train Routing Selection Problem, that
consists in selecting a relevant subset of routes to speed-up the resolution of the real-time
Railway Traffic Management Problem. The routes selection is done through Ant Colony
Optimisation. The authors observed an improvement of the results when using routes
selection before solving the real-time Railway Traffic Management Problem. Samà et al.
(2017) [163] wonder when is the most beneficial moment to compute an optimal subset
of routes to be used during the real-time Train Scheduling. The authors observe that
when computing routes at the tactical level right after constructing a Train Timetable,
then these routes are the optimal ones if the faced disturbances in real-time are similar
to historically known disturbances. A gain of computation time is therefore obtained in
real-time thanks to the subset of routes already available. However, if disturbances are
strong and different from usual ones, then the authors prefer computing dedicated routes
in real-time as it becomes more efficient. Samà et al. (2017) [161] solve the Conflict
Detection and Resolution problem using a Mixed Integer Linear Programming formula-
tion and metaheuristics like Variable Neighbourhood Search or Tabu Search to reroute
trains. The method is applied on various European busy railway networks. Fischetti and
Monaci (2017) [75] show that real-time Train Scheduling can be solved efficiently using
a Mixed Integer Linear Programming commercial solver on the top of which a heuristic
preprocessing method has been applied. Results on instances based on a UK network are
reported.

Constraint Programming approaches. Rodriguez and Kermad (1998) [159] address
the problem using Constraint Programming. An assumption taken in their model is that
all trains run at the maximum speed. Results on instances from the complex junction
of Pierrefitte-Gonesse near Paris-Nord station validate the method. Rodriguez (2007)
[158] improves the precedent approach by considering speed variation of the trains. Two

48

Constraint-based models are presented. The first one takes into account acceleration and
deceleration times and allows a diminution of up to 95% wasted time in the system com-
pared to actual decisions taken by the operators. The second model neglects acceleration
times, slightly reducing the quality of the solutions while accelerating the resolution and
allowing to tackle larger instances. Marlière et al. (2023) [126] present a new Constraint
Programming approach using interval variables to solve the real-time Railway Traffic
Management Problem. The authors compare the efficiency of their method with a MILP
model and propose an hybridisation of both approaches to obtain even better solving
performance.

2.2.3.2 Delay Management

Delay Management aims to minimise the overall time spent in the railway system by
passengers under disturbances. Most of the models dealing with Delay Management
are described using the macroscopic scale of the infrastructure, neglecting assuming the
feasibility of the taken decisions. The question is, considering the average benefit of all the
passengers, if connecting trains should wait for delayed trains, or if they should depart on
time to contain the effect of delay propagation. König (2020) [105] provides a review on
Delay Management contributions and classifies them following on a taxonomy describing
if the objective function is passenger oriented, the importance of the disturbances, the
infrastructure scale, the determinism and completeness of the input, and the exactness
of the approaches. The concept of Delay Management has been introduced in Schöbel
(2001) [167]. The author formulates an Mixed Integer Quadratic Program that is then
linearised. Upper and lower bounds are proposed and a Branch-and-Bound procedure is
indicated in perspective to solve the problem.

Tracks capacity constraints. Schöbel et al. (2009) [168] integrates macroscopic tracks
capacity constraints in Delay Management, a feature that had been neglected so far.
Solving the problem on instances with different headways and numbers of sources of
delays, the author shows that the headway constraints only have a small impact on the
sum of passengers delays and on the number of cancelled connections, while improving
the feasibility of obtained disposition timetables. The two proposed heuristics are fast
compared with the performance of a solver. The author remarks that an additional
microscopic model could indicate only few more adaptations to the solutions to validate
their microscopic feasibility. Indeed, the macroscopic headway constraints integrated to
the Delay Management model are not as accurate than ones representing microscopic
blocking times on specific locations of the infrastructure. However, the solutions obtained
while integrating macroscopic tracks capacity constraints to Delay Management are more
realistic than those obtained with the classic version of Delay Management.

49

Rerouting of passengers. Dollevoet et al. (2012) [69] present a model to incorporate
rerouting of passengers to Delay Management. Without this consideration in the model,
passengers who miss their connection have to wait for the next train of the same line,
what may not be the case in practice. An integer programming model is presented, in
which the decisions of waiting or departing for the trains are connected with a shortest
path problem for the passengers. Preliminary results are provided on a small instance of
the Dutch railway network, where the rerouting of passengers is observed in the solution.

Rerouting of passengers and tracks capacity constraints. Dollevoet et al. (2015)
[68] propose a model both considering the rerouting of passengers and improving the tracks
capacity constraints of Schöbel et al. (2009) [168] by taking into account the specificities
of tracks occupation at stations. A first approach is to constrain the maximum number
of trains that can be at a station at the same time, whereas a more powerful approach
is to explicitly assign trains to station tracks. An iterative heuristic is applied to solve
the problem. An optimal solution for the Delay Management problem is found with fixed
tracks assignment at stations. From this disposition timetable, a second module improves
the station tracks assignment in polynomial time.

Rerouting of passengers and train capacity constraints. König and Schön (2021)
[106] formulate a Mixed Integer Nonlinear Programming model to allow the rerouting of
passengers due to train delays and to the limited number of passengers that can be present
in a train. Several approaches using different linearisations of the model are tested and
compared to models of the literature that neglect the train capacity constrains. It turns
out that rerouting of passengers due to train capacity limits is observed in the solutions of
all considered scenarios. The results validate the impact of the train capacity constraints
in Delay Management decisions.

2.2.3.3 Integration of Train Scheduling and Delay Management

We saw that Train Scheduling in real-time allows to provide train dispatchers with optimal
decisions considering the microscopic scale of the infrastructure to recover from distur-
bances and eventually operating back the nominal planned timetable. However, these
solutions may not be the best from the passengers point of view. Delay Management ad-
dresses this issue by minimising the sum of delays of the passengers. Decisions are taken
on connecting trains that should wait, and if not, reroute passengers in other trains. This
approach is generally applied at the macroscopic scale of the infrastructure, and several
capacity constraints has been integrated to improve the feasibility of the solutions. Some
contributions bridge the gap between these two streams of research, in order to resolve
disturbances optimally for the passengers while assessing the feasibility of the decisions

50

at the microscopic scale of the infrastructure. Corman et al. (2012) [55] formulate a
bi-objective model to find a compromise between the minimisation of the overall train
delays and the minimisation of the sum of valued connections. Dollevoet et al. (2014)
[67] present an iterative approach for solving the macroscopic Delay Management problem
and validate the disposition timetable microscopically by solving the Train Scheduling and
adapt the solution if necessary. The approach is tested on real-world instances around
Utrecht station. Corman et al. (2017) [53] propose a Mixed Integer Linear Programming
formulation in which Delay Management and Train Scheduling are integrated. This single
model allows the authors to evaluate the optimality gap of the solutions found by fast
heuristics that they use to solve the problem. For large instances, the authors propose a
lower bound computation that outperforms the one found with a commercial solver. The
heuristics are based on the decomposition of the model into a Train Scheduling model
and a Passenger Routing problem. The results show the possibility to reduce passenger
delays in practice.

2.3 Positioning

We saw in this chapter that the railway planning process is a complex task often decom-
posed into well studied smaller problems that are themselves very challenging. Based
on these strong bases, however, many contributions have put their interest in integrating
planning phases, decreasing the computation times and improving the quality of the solu-
tions. The Train Timetabling Problem is an example of still very active topic of research
in all the strategic, tactical and operational planning levels, as can attest the numerous
recent works reviewed in this chapter. Several maps connecting railway planning problems
have been proposed in the literature e.g. in Lusby et al (2011) [124] and in König et al.
(2020) [105]. In Figure 2.1, we propose to emphasise the influence of Train Timetabling
in all the railway planning levels and its interaction with several problems.

At SNCF Réseau, the French Infrastructure Manager, the annual train timetables
are constructed through the expertise of timetable planners using conception tools, and
are then validated by microscopic conflict detection, by evaluation of the infrastructure
capacity consumption and by stability assessment under stochastic delay injections. In
this thesis, we aim to conceive algorithmic approaches to automatically generate periodic
train timetables, mainly focusing on feasibility of the solutions. We indeed believe that
generating conflict-free timetables is necessary to allow the drivers not to meet restrictive
signals and generate delays, as mention Goverde and Hansen (2013) [92]. Our work is
however intended to be extended, as we do not take passenger connections and solutions
robustness explicitly into account.

51

Figure 2.1: Influence of Train Timetabling on all railway planning levels.

We address the nominal tactical periodic Train Timetabling Problem integrated with
the Train Platforming Problem at the mesoscopic scale of the infrastructure (see De Fabris
et al. (2014) [62]). This infrastructure scale allows a fair consideration of track occupation
constraints that we will present in detail, while keeping a model size closer to a macro-
scopic formulation than to a microscopic one. Like in the reduced PESP (see Pätzold and
Schöbel (2016) [138]), we limit in this work our exploration of the timetables with nomi-
nal activity durations, i.e. the minimal technical durations plus already included classic
percentage robustness buffer times. This feasibility problem thus minimises the passenger
time for all direct travellers. It is still known to be NP-complete even if the activity dura-
tions are fixed. Moreover, in our context the PESP constraint graph is not entirely known
given that we also make mesoscopic routing decisions by choosing tracks for the trains in
stations. These elements comfort us in the idea that the periodic Train Timetabling with
mesoscopic tracks assignment problem is also NP-complete. It is therefore vain to hope
finding an algorithm to solve the problem in polynomial time (see Garey and Johnson [79]).

We start our investigations in Chapter 4 by proposing a model taking the assumption
that trains leave the system few minutes after the arrival at their terminus station. We
present a Mixed-Integer Linear Program for which we were inspired by works including
non exhaustively Serafini and Ukovich (1989) [174] for the periodic model, Wüst et al.
(2019) [182] for its mesoscopic track-choice extension, and Yan and Goverde (2019) [185]
for the choice of boolean periodicity variables. As larger instances are difficult to solve
in a reasonable amount of time, we decompose the model by deciding first the timetable
and then the tracks assignment. Our main contribution is a conflict evaluation objective

52

function that does not need explicit tracks assignment knowledge. We use this function
in a tabu search framework (see Glover (1986) [83]) to find timetables for which a meso-
scopic tracks assignment is reachable in most of the cases. Additional investigations are
necessary to detect more complex types of conflicts.

We improve the realism of the solutions in Chapter 5 by reusing the rolling stock at
terminus stations. This feature allows us to optimise the turnover times of the rolling stock
at terminus stations through the point of view of the Infrastructure Manager, using real
data describing the exploitation rules at stations. This optimisation can be viewed as one
ingredient towards the construction of robust solutions and should be extended to other
constraints of the model, namely the track occupation headway constraints. We present
a Constraint Programming (see Baptiste et al. (2001) [4]) formulation, lower bounds
and strengthening techniques, dedicated filtering algorithms based on feasibility-led dom-
inance rules (see Jouglet and Carlier (2011) [103]) and using edge finding techniques (see
Carlier and Pinson (1994) [49]), and branching strategies embedded in a Branch-and-
Check framework.

In the next chapter, we describe more into the details the problems and the instances
that we will solve in the two subsequent chapters using the methods mentioned in the two
previous paragraphs. Afterwards, we present the user application OptiSillons in Chapter
6, developed in collaboration with two intern students at DGEX Solutions, that is destined
to be used by timetable planners to automatically generate periodic timetables at the
mesoscopic infrastructure scale and optimal in the sense of the rolling stock turnover time
at terminus stations. We finally draw conclusive thoughts and future work in Chapter 7.

53

54

Chapter 3

Description of the periodic Train
Timetabling with mesoscopic tracks
assignment problem

This chapter presents a description of the problems studied in this thesis. We first in-
troduce background notions and notations in Section 3.1. Then, we succinctly describe
the differences between the decision problem and the optimisation problem. Finally, we
present instances in Section 3.3 that we will solve in Chapter 4 and in Chapter 5.

Contents
3.1 Background notions and notations 56

3.1.1 Parameters . 56

3.1.2 Decision Variables . 60

3.2 Problem statement . 60

3.2.1 Decision problem . 60

3.2.2 Optimisation problem . 62

3.3 Instances . 63

3.3.1 Toy example . 65

3.3.2 Medusa network . 69

3.3.3 Savoie area around Chambéry station 72

3.A List of Symbols . 76

55

3.1 Background notions and notations

In this section, we introduce notations to describe the problems addressed by presenting
the data in Section 3.1.1 and decision variables in Section 3.1.2.

3.1.1 Parameters

We present the mesoscopic infrastructure in Section 3.1.1.1, the Service Intention in Sec-
tion 3.1.1.2 and the safety headways in Section 3.1.1.3.

3.1.1.1 Infrastructure data

Sections. The infrastructure considered in our application is composed of sections con-
taining a set of parallel mesoscopic tracks Ks, with |Ks| ≥ 1. Each track is composed by
two rails on which a train can roll and an overhead catenary supplying traction power.
Let S be the set of sections. Each section s ∈ S is either a station or a line section. We
note Sl the set of line sections and St the set of stations, together defining a partition of
S.

Track directions. Depending on the mesoscopic track of the infrastructure, trains may
be allowed to circulate in direction + that we arbitrary call the downstream direction
from the left to the right in Figure 3.1. On the same track, trains may also be allowed to
circulate in direction −, called the upstream direction, from the right to the left in Figure
3.1. The set of allowed direction(s) of track k is noted Dk ⊆ {+,−}.

Routes. Two sections s1, s2 ∈ S are connected if and only if there is a track k1 ∈ s1 and
a track k2 ∈ s2 such that there is a mesoscopic route from k1 to k2 or from k2 to k1. By
existence of a mesoscopic route from a mesoscopic track to another, we mean there is at
least a route from the former track to the latter at a microscopic scale. When s1 and s2 are
connected, we say by extension that there are routes from s1 to s2 or vice versa, without
clarifying the tracks involved in the routes. The set of routes of the infrastructure R is
partitioned in two sets, namely the set of downstream routes R+ and the set of upstream
routes R−. Hence, R = R+ ∪R−.

Zones. Let Z, a partition of S, be the set of zones. That is, each section of S is
included in a single zone and a zone contains one or several sections. We call bizone a
couple < z1, z2 > with z1, z2 ∈ Z such that there is a section s1 ∈ z1 and a section s2 ∈ z2

such that s1 and s2 are connected. That is, there are routes of R+ from z1 to z2 and
routes of R− from z2 to z1.

56

Routes compatibility. Let us consider two mesoscopic routes r1, r2 ∈ R of a bizone
< z1, z2 > with z1, z2 ∈ Z. We say that r1 and r2 are compatible if and only if there are
routes r′1 and r′2 at the microscopic level corresponding to r1 and r2 and on which the
signaling system allows two trains to circulate simultaneously.

Figure 3.1: Mesoscopic railway routes and their compatibilities derived from the microscopic
scale of the infrastructure. Top left part: A microscopic representation of Saint-André-le-Gaz
station. Arrows on tracks 1 and 2 indicate that in absence of disruption or work on those tracks,
the direction on track 1 is downstream while the direction on track 2 is upstream. Blue dashed
lines represent planned microscopic tracks to be installed. Bottom left part: Mesoscopic in-
frastructure around Saint-André-le-Gaz station at section 2. Line sections 1, 3 and 4 go to Lyon,
Grenoble and Chambéry respectively. Section 4 has a single track. Sections 3 and 4 are both
elements of zone 3. Right part: Graph of routes compatibility. Vertices, representing the
mesoscopic tracks, are duplicated. On the top graph, red arcs represent downstream mesoscopic
routes between tracks of a bizone. On the bottom graph, green arcs represent upstream meso-
scopic routes between tracks of a bizone. Black edges show compatibility between two routes of
a bizone.

To illustrate those concepts, we derive a mesoscopic infrastructure from a microscopic
one in Figure 3.1, with 3 zones, 4 sections and 9 tracks. Section 2 is a station. Tracks 1
and 7 are circulated downstream only, whereas tracks 2, 6 and 8 are circulated upstream
only. Tracks 3, 4, 5 and 9 can be circulated in both directions. There is a downstream
mesoscopic route from track 1 to track 4 and an upstream mesoscopic route from track
5 to track 2. Even though these routes seem not to cross each other in the mesoscopic
representation, note that no compatibility edge is linking downstream route (1,4) with
upstream route (5,2). Indeed, the two microscopic routes corresponding to (5,2) are using

57

common portions of the infrastructure with the microscopic route corresponding to (1,4).
This example shows that pairwise compatibility between mesoscopic routes are taken into
account using microscopic considerations instead of only being deduced from the graph
of mesoscopic routes.

3.1.1.2 Service Intention

Let the Service Intention (SI) be a set of N
2

bidirectional lines to be timetabled within a
cyclic period. Each line of the SI corresponds to a downstream slot and to an upstream
slot that are scheduled on the same sections and that are potentially linked at terminus
stations. Depending on the period and on the chosen time granularity, we obtain a cyclic
time horizon of T time units. For example, a period of one hour with a granularity of half
a minute gives T = 120 time units.

Each slot i ∈ I = {1, . . . , N} circulates in one known direction provided by d(i) ∈ D

and is composed of ni successive operations. Each operation j ∈ Ji = {1, . . . , ni} of a
slot i ∈ I is noted oi,j and represents either a passing through or a dwelling activity at a
station, or a running activity on a line section. An operation oi,j has a known duration
pi,j. We note Ji− = {1, . . . , ni − 1} the set of operations of slot i except the last one. In
this work, we will assume that no additional slack time is added between operations, i.e.
operation oi,j+1 starts immediately at the end of operation oi,j, for all i ∈ I and j ∈ Ji−.
This assumption has previously been made in some realisations, see Domschke (1989)
[70], Nachtigall and Voget (1996) [133], Großmann et al. (2012) [95], Pätzold and Schöbel
(2016) [138], and a group of instances in Fuchs et al. (2022) [78]. Any operation oi,j takes
place on an identified section si,j ∈ S.

About the choice of operation term. In the problems studied through this thesis,
we borrow the term operation from the scheduling community. In this sense, an analogy
also exists between a slot and a task. We are aware that in the context of the Periodic
Event Scheduling Problem and its extensions, the term activity has been proposed. As
we do not explicitly consider passenger changeover activities between trains in this work,
the term operation has seemed a natural alternative option for us to describe a train that
runs on a line track, dwells at a station or passes through it.

3.1.1.3 Safety headways

On the railroad, a line section is microscopically decomposed into several block sections
separated by insulated joints and protected by signals. The role of a signalling system is
to give appropriate indications to the drivers depending on the location of the trains on
the infrastructure in order to guarantee the safety of the operations. Various signalling

58

systems exist. The simplest one, called Automatic block signalling system at 3 aspects,
is presented in Figure 3.2. A signal aspect is a combination of positions, colours and
continuity of the lights presented in a signal. A protection signal (red colour) indicates
that the protected block section is currently occupied by a train. A warning signal (yellow
colour) informs the driver that the train must be stopped before the following signal, that
presents a protection signal. A running signal (green colour) means that the train can run
at it scheduled speed. It can be observed in Figure 3.2 that when the first train releases
the insulated joint, then the former warning signal becomes a running signal. Therefore,
using the Automatic block signalling system at 3 aspects, a signal presents a green aspects
whenever its protected block section and the following one are not occupied by a train.
A train running at scheduled speed may run several hundreds of meters before being able
to stop. As soon as a driver perceives a warning signal, the train must begin breaking
instantaneously until reaching a limited speed at which it will be able to stop by perceiv-
ing a protection signal. To avoid such a situation where a following train looses precious
minutes by running at a limited speed during an entire section while the first train was
almost releasing the insulated joint two signals away, it is crucial to schedule enough free
track time before a train reaches a signal, by taking into account the visibility range of the
signal and an additional time margin. Other signalling systems may present more than
3 aspects, like Automatic block signalling systems that include blinking signals. Another
system, called the track-to-train transmission, is used for the high-speed lines and gives
precise speed indications directly in the cabin depending on the number of released block
sections ahead.

Figure 3.2: Automatic block signalling system, translated from the published AR02384 SNCF
Réseau document.

At the mesoscopic scale of the infrastructure, the dynamic of the signalling system

59

is not explicitly taken into account. Instead, sufficient safety headways are respected
between slots using shared infrastructure resource in order to satisfy all the blocking
times at the microscopic scale. More specifically in this work, we consider three types of
safety headways:

• Spacing headways: considering slots running in the same direction, a slot can be
scheduled on a line track ∆spa time units after a previous slot have been scheduled
on the same track.

• Reuse headways: (i) a slot can be scheduled on a station track ∆reu time units
after a previous slot has liberated this track; (ii) considering two slots running in
the opposite direction, the second slot can be scheduled on a line track ∆reu time
units after the first slot has liberated this track. This rule prevents two trains from
running face to face.

• Crossing headways: considering slots running on incompatible routes r1 and r2,
a slot can run on r1 (resp. on r2) ∆cro time units after a previous slot ran on r2

(resp. on r1).

3.1.2 Decision Variables

Starting times. Let ti,j ∈ {0, . . . , T − 1} be the starting time of operation oi,j, i ∈ I,
j ∈ Ji. Since all durations pi,j are known, then fixing any ti,j enforces the starting time
of all other operations of slot i.

Tracks assignment. Let xi,j,k be equal to 1 if operation oi,j is processed on track
k ∈ Ki,j = {1, . . . , |Ksi,j |} of section si,j, i ∈ I, j ∈ Ji and be equal to 0 in the other cases.
Contrary to the classical PESP model tackling the periodic TTP at a macroscopic level,
the constraint network of the periodic TTP at a mesoscopic level is not fully determined
but dynamically refined depending on the track choices.

3.2 Problem statement

In this section, we qualify a solution of the decision problem in Section 3.2.1 and we define
the criterion to be optimised in Section 3.2.2.

3.2.1 Decision problem

We search to attribute a value for each ti,j and xi,j,k, i ∈ I, j ∈ Ji, k ∈ Ki,j with si,j ∈ S

such that:

60

• Operations are assigned on tracks with a compatible running direction.

• Given a slot, precedence constraints between its operations hold.

• Tracks assignment for any two consecutive operations of a slot verifies the existence
of a corresponding mesoscopic route.

• All headways detailed in Section 3.1.1.3 are satisfied.

As commented by Pätzold and Schöbel (2016), even finding a feasible schedule at a
macroscopic level with all the running and dwelling times fixed is already a challenging
task.

Assumptions. It should be kept in mind that we state our problem under the following
assumptions:

• The infrastructures that we study in this work are not spatially cyclic. This does
not mean that, considering the stations as vertices and line sections as edges of a
graph, we only limit our study to trees. The medusa network presented in Section
3.3.2 is an example of infrastructure which topology is different from a tree. What
we mean, instead, is that our models do not fit with infrastructures that allow trains
to flip from downstream to upstream direction (or vice versa) while conserving a
strictly positive speed e.g. using a triangle structure or a loop. In other words,
a train that does not stop cannot traverse a same mesoscopic track twice in the
same run on our studied infrastructure topologies. The only way to run on a same
track for a given train is to turnover i.e. to stop and to be driven from the opposite
cabin. This assumption is a limitation when compared with the possible real-world
infrastructures. Nevertheless, our models can still apply on a wide variety of infras-
tructure topologies including corridors and even more complex networks, as we will
see in the following.

• In our decision problem, trains exit the system after accomplishing their last dwelling
operation i.e. few minutes after arriving at their terminus station. This is the case
in particular for the models presented in Chapter 4. The realism of the timetables is
improved in Chapter 5 by reusing the linking slots at terminus stations and reusing
the rolling stock.

• We limit our study to direct lines such that all operations of a given slot are per-
formed in the same direction i.e. we can classify slots to run either downstream or
upstream but not in both directions. In the French real-world instances however,
there may exist lines requiring a turnover at a station that is not the origin nor the

61

destination station. Such special slots can however be handled by artificially linking
two slots running on the opposite direction at a station.

3.2.2 Optimisation problem

A feasible schedule to our problem ensures minimising the travel time for direct travellers.
We now assume in the optimisation problem addressed in Chapter 5 that a schedule is
feasible if slots operating the same line in opposite directions are linked at their terminus
stations, use the same tracks on these stations and share the same rolling stock. In addi-
tion, we aim at optimising the turnover times at terminus stations. It means that we want
the schedule to respect as much as possible specified turnover time constraints. Moreover,
when so, we want turnover times to be slightly greater than the minimal prescribed value
in order to be robust to small potential delays. Typically, a terminus station s ∈ St is
associated with a minimal turnover time µs

min. Some of them are also characterised by a
robust turnover time µs

rob, with µs
rob > µs

min and by a maximal turnover time µs
max. We

note (i, i′, s) ∈ Ls if a slots i and i′ are linked at station s such that the arriving vehicle
of slot i is reused at the departure of slot i′ from station s. From these data, we design a
personalised turnover cost function for each terminus station. More specifically, for any
two slots i and i′ linked at a terminus station s ∈ St, we penalise the turnover time qsi,i′

by cost function csi,i′(q
s
i,i′) whose value depends on the following cases:

• (µs
rob−qsi,i′)∗crob when qsi,i′ ≥ µs

min but qsi,i′ < µs
rob, only if µs

rob is specified for station
s.

• (µs
min − qsi,i′) ∗ cbound when qsi,i′ < µs

min and qsi,i′ ≥ µfeas.

• (qsi,i′ − µs
max) ∗ cbound when qsi,i′ > µs

max, only if µs
max is specified for station s.

• cM when qsi,i′ < µs
feas.

To prioritise turnover time bounds compliance while increasing robustness of the sched-
ule when possible, we tune crob and cbound such that turnover costs are minimised in a
lexicographic-like fashion. To achieve this, we set crob = 1 and cbound >

∑
s∈St(µs

rob −
µs
min) ∗ |Ls|. To ease results interpretation, we set cbound to the power of 10 immediately

superior to
∑

s∈St(µs
rob − µs

min) ∗ |Ls|. It may be desired that turnover times are not too
short, so that passengers can alight and board, and crews get ready for the next trip. To
this end, we activate hard constraints using the minimal allowed turnover time µfeas in all
terminus stations. The value of µfeas is set to the maximum value inferior or equal to all
µs
min, s ∈ St, such that the instance of the problem is feasible. Then any feasible schedule

with two slots i and i′ linked at a terminus station s always verifies qsi,i′ ≥ µfeas. Lastly,
cM is a huge cost that never participates to the objective function of feasible schedules.
Figure 3.3 illustrates turnover cost functions in the general case.

62

Figure 3.3: Turnover cost function of a terminus station s ∈ St in the general case. In our case,
cbound > crob. Dashed lines indicate that the corresponding costs are applied only if a robust
turnover time µs

rob and maximal turnover time µs
max are specified for station s. The discontinuity

on the turnover time axis, that implies the second discontinuity on the cost axis, aims to reduce
the graphic size since generally, µs

max ≤ T
2 .

3.3 Instances

In this section, we present the instances that we consider in this work, all at the meso-
scopic scale of the infrastructure. In the first place, we describe a toy example that allows
to detail a Service intention and a possible representation for a solution. Then, we present
a larger fictive infrastructure on which we will try to schedule an increasing number of
periodic slots using CPLEX 12.10 on our Mixed-Integer Linear Program in Section 4.1.2.
Third, we present instances inspired from the Savoie area around Chambéry, which are
not solved in a reasonable amount of time using a MIP solver. Instead, we solve these in-
stances heuristically in Section 4.2.3, after presenting a didactic execution of the heuristic
on the toy example in Section 4.2.2.3. Finally, we also solve the Savoie instances using
our Constraint Programming approach in Chapter 5, that turned out to be more efficient.

Some characteristics of our three families of instances are summarised in three tables.
Table 3.1 compares the number of slots in the instances, the infrastructure shape and the
quality of the available routes as introduced in sections 3.3.1 to 3.3.3. We will see that our
fictive instances offer more compatible routes around stations that in the real-world Savoie
area infrastructure. Table 3.2 indicates the number of time units considered per instances
family. Finally, Table 3.3 provides descriptive statistics on the largest instance (with the
largest number of slots, solved and unsolved where applicable) for each instance family.
The number of operations per slot is indicated for these instances, as well as the number

63

of slots scheduled in the three most busy stations within the periodic time horizon. For
example, in the largest solved instance on the medusa network infrastructure, the number
of slots scheduled in the three most busy stations during one hour were 24, 16 and 14 slots
respectively. The longest slots get more operations in the lager infrastructures. However,
there is an heterogeneity in the Savoie area instance with roughly a half of small slots
around stations at extremities of the network and another half of long slots. Table 3.4
summarises our experiments. A check mark indicates that most of the instances of the
family are solved and even optimised depending on the focus. A check mark with a
plus symbol determines the method that worked best for the decision problem and the
optimisation problem respectively.

Table 3.1: Instance size and infrastructure configuration.

Instance Number of slots Topology Routes and compatibilities

Toy example 8 star ideal

Medusa network 10 to 40 network ideal

Savoie area 28 and 32 star more constrained

Table 3.2: Time horizon settings.

Instance Period Granularity Number of time units

Toy example 20 min minute 20

Medusa network 1 hour minute 60

Savoie area 1 hour half-minute 120

Table 3.3: Slot lengths and densities in busy stations on the largest instance for each infrastruc-
ture.

Slot lengths (number of operations per slot) Maximal number of slots

Instance Minimal Maximal Average Median in the three most busy stations

Toy example 3 5 4.5 5 8, 4 and 4

Medusa network 7 17
(feasible) 9.4

9
(feasible) 24, 16 and 14

(intractable) 9.7 (intractable) 26, 16 and 16

Savoie area 2 29 10.2 6.5 18, 14 and 14

64

Table 3.4: Experiments conducted through this thesis. The Constraint-based solver performs
better than our ILP-based approaches for the Decision problem, and our Branch-and-Check
procedure outperforms the solver for the Optimisation problem.

Approach ILP-based (Chapter 4) Constraint-based (Chapter 5)

Focus Decision Optimisation

Instance groups Solver Heuristic Solver Solver Branch-and-Check

Toy example demo

Medusa network ✓

Savoie area intractable ✓ ✓+ ✓ ✓+

3.3.1 Toy example

Sections and tracks. The toy example infrastructure illustrated in Figure 3.4 is com-
posed by 9 sections. Among these sections, 5 of them represent stations, alphabetically
ordered from A to E. These stations contain 2 to 3 station tracks ordered form the top to
the bottom of each station. The stations are connected by line sections that contain line
tracks. In particular, the line section A− B connecting station A and station B contains
a single line track. Almost all the tracks of this infrastructure can be circulated in both
directions, except the first station track of section B and the first line track of section
B− C that go downstream on the one hand, and the third station track of section B and
the second line track of section B− C that go upstream on the other hand.

Routes. On this infrastructure, all the possible mesoscopic routes between tracks exist.
This means that, given any two tracks of distinct adjacent sections, both a downstream
route and an upstream route exist between these two tracks by default, except if specified
circulation directions on the tracks prevent the existence of these routes. The sets of
existing routes between the tracks of sections B− C and C are given in Table 3.5 as an
illustrative example. In particular, only one route exists between any two tracks of these
sections because of the specified direction on the tracks of section B− C.

Table 3.5: Routes between the tracks of sections B− C and C. A right arrow (→) indicates a
downstream route whereas a left arrow (←) stands for an upstream route.

Tracks of section C C.1 C.2 C.3

section B− C Routes

B− C.1 → → →

B− C.2 ← ← ←

65

Figure 3.4: Toy example infrastructure.

Routes compatibility. Two routes are said compatibles if two trains are allowed to
circulate on these routes simultaneously. Verifying the compatibility between routes is
required at any point of the infrastructure where several sections connect, in order to
activate crossing constraints in case two trains take incompatible routes. A route is not
compatible with itself. Two distinct routes are incompatible if they connect the same
extremity of the same track. Moreover, in the toy example infrastructure, there is no
bridge nor tunnel, the altitude remains the same anywhere. We can thus observe that two
routes are also incompatible if they cross each other when trying to draw them in Figure
3.4. In any other case for this infrastructure, we will consider two routes as compatible.
Note that real-world French railway infrastructures may be more restrictive. Indeed, we
saw in Figure 3.1 that the routes (1,4) and (5,2) do not cross each other, but they are
incompatible because they use a common portion of microscopic track. The toy example
infrastructure thus represents an idealistic case where the network is built such that non
crossing routes in Figure 3.4 are compatible. Table 3.6 reports the compatibility between
routes of opposite directions at the connecting point between sections B− C and C. Note
that we also take into account compatibilities between routes of the same direction, giving
two additional compatibility matrices that are symmetric.

Service intention. We consider a period of 20 minutes. Each of the 8 slots presented
in Figure 3.5 has to be scheduled within this period. In particular, a start time is needed

66

Table 3.6: Routes compatibility at the connecting point between sections B− C and C. A green
cell indicates compatible routes whereas a red cell stands for incompatible routes.

Routes upstream B− C.2← C.1 B− C.2← C.2 B− C.2← C.3

downstream Compatibility

B− C.1→ C.1

B− C.1→ C.2

B− C.1→ C.3

for their first operation, and a track must be assigned for each of their operations on
the sections of the network. The slots are divided in two types. On the one hand, slots
s4 and s5 ensure a fast service between stations D and E, without stopping at station
B. Therefore, we take the rough hypothesis that the trains using these slots will spend
approximately 0 minutes to pass through station B. Slots s4 and s5 provide a running
time of 3 minutes on the line sections E− B and B−D. On the other hand, all the other
slots make a one minute stop at station B, and provide a running time of 5 minutes on
any line sections they traverse. Table 3.7 summarises these data. Finally, all slots spend
1 minute at their origin station before departing and 1 minute at their terminus station
after arriving.

Figure 3.5: Slots to be scheduled every 20 minutes on the toy example infrastructure.

67

Table 3.7: Parameters of the toy example instance.

Slots Dwell one minute at station B Running time on line sections

{s4, s5} no 3 min

{s0, s1, s2, s3, s6, s7} yes 5 min

A possible solution representation. We propose to represent a feasible solution
for the toy example instance in Figure 3.6 similarly to a netgraph1 style enriched with
mesoscopic tracks assignment. Note that in the original netgraph1, stations are displayed
macroscopically. Moreover, arrival and departure times are displayed near corresponding
stations borders, either inside for passing through events or outside otherwise. In Figure
3.6, however, we adopt a slightly different convention. The coloured tracks correspond to
the assigned track of any train running, dwelling or passing through operation. Then, the
minute displayed at the beginning of the track (depending on the slot direction) represents
the starting time of the operation. When the starting time of any operation of a slot is
decided, then the starting time of its other operations is deducted from the hypothesis
taken in the previous paragraph and in Table 3.7. For example, observe how slots s4 and
s5 spend no time at station B or how slot s6 runs 5 minutes on line section B− C. It
could be misinterpreted that slot operations do not respect precedence constraints, e.g.
the second operation of slot s0 starts at minute 15 while its third operation starts at
minute 0. This phenomenon is due to cyclicity of the schedule time horizon. Recall that
in this instance, each operation occurs every 20 minutes. Therefore the displayed minute
is always the principal one i.e. between 0 and 19 included. We set a headway time of
4 minutes for all the infrastructure constraints, namely the spacing, the track reuse and
the crossing constraints. It can be observed in Figure 3.6 that all these constraints are
satisfied. For example, the single track in the line section A− B is alternatively released
by slots s0 and s1 at least 4 minutes before the other one runs occupies the track again.
The solution is illustrated in 4 duplicates of the infrastructure, sorted by slots sharing the
same terminal stations. This representation simplifies the visualisation of the timetable,
but the infrastructure constraints apply on every pair of two slots, in particular at station
B. Finally, slots sharing two terminus stations are not necessarily scheduled on the same
track at their terminus stations in the context of our decision problem, where the trains
leave the system after their last arrival. A more realistic case where the rolling stock is
reused and the slots are linked at terminus stations is presented in Chapter 5.

1https://sma-partner.com/en/software/timetable-planning-with-viriato/functionality
(Accessed: 30 June 2023).

68

https://sma-partner.com/en/software/timetable-planning-with-viriato/functionality

Figure 3.6: A netgraph like representation of a feasible solution for the toy example instance.

3.3.2 Medusa network

Representation. The medusa network illustrated in Figure 3.7 is larger than the toy
example infrastructure and follows generally the same rules regarding the existence of
mesoscopic routes and their compatibilities. Moreover, we keep the hypotheses that all
the dwelling times span one minute, that trains spend approximately 0 minutes in sta-
tions where they do not stop, and that fast services run 3 minutes on line sections whereas
omnibus trains run 5 minutes on line sections. Yet, four slight differences with the con-
ventions of the previous instance are now introduced. First, small green dots on the
infrastructure indicate limitations on the routes existence. More precisely, the routes of
tracks connected by a small green dot uniquely pass through this dot. For example, a
downstream route and an upstream route exist between the first track of station n and
the first track of line section n−O, and the same apply for the second track of station n

and the second track of line section n−O. However, there is no route between the first
track of station n and the second track of line section n−O, nor between the second track
of station n and the first track of line section n−O. Second, stations are classified among
two levels of importance, indicated by the lower or upper case of their label. Anecdotally,
further indications allow to distinguish between stations I and l in Figure 3.7. The two last

69

differences relate to the representation of the slots to be scheduled in Figure 3.8. Third,
on coloured line now represent 2 distinct slots that share the same stops and terminus
stations. Fourth, contrary to the display of the toy example instance, the slot types are
now explicitly indicated. All the slots have several stops. The fast slots have large dots
at the stations where they stop, and also stop at their terminus station. The remaining
slots are omnibus and thus stop at every station they traverse.

Figure 3.7: Medusa network topology.

Service intentions. We set 11 instances of the decision problem on the medusa net-
work, in which the number of periodic slots to be scheduled within a period of 60 minutes
increases gradually. The first three instances are illustrated in Figure 3.8. A particularity
of the first instance is that slots running in the same direction only meet around stations
and not on line sections. Therefore, spacing constraints that prevent two trains running
in the same direction from caching up each other on line tracks are not activated. On the
other hand, track reuse constraints at stations and in line tracks when the trains run in
opposite direction, as well as crossing constraints between sections, apply and guarantee
that a found solution is conflict-free. In the second instance, the omnibus slots between
stations C and G passing by K are replaced by omnibus slots between stations A and
K and between K and I respectively. Moreover, 8 additional omnibus slots converge at
station E: between stations A and E, u and E, E and I and between stations E and v,

70

Figure 3.8: First three instances on the medusa network, with 10, 20 and 24 hourly periodic fast
and omnibus slots.

71

respectively. In the third instance, the slots between stations C and G passing by K are
restored and fast slots between stations M and R dwelling at stations O and P are also
included. Instances 4 to 11 are incremented in the same spirit and are specified in Table
3.8. For example, instances 4 and 5 are both built using the slots of the third instance
as a basis. Two slots, one in the downstream direction and the other in the upstream
direction, with terminus stations C and G and passing by E, are included. For instance
4, these slots are omnibus whereas for instance 5, they correspond to fast services with a
stop at station E.

Table 3.8: Characteristics of instances 4 to 11 on the medusa network.

Additional slots

Instance Number of slots Base instance Terminus stations Omnibus Stops if fast services

4 26 3 C and G by E ✓

5 26 3 C and G by E E

6 28 3 C and G by E ✓

C and G by E E

7 30 6 C and G by K K

8 32 7 A and R by t O and P

9 36 8 M and E O

E and R P

10 38 9 C and R E and P

11 40 10 M and I O, E and G

3.3.3 Savoie area around Chambéry station

Instance description. In our third family of instances, we consider the Savoie infras-
tructure area in star configuration around Chambéry station (section 15) illustrated in
Figure 3.9. This infrastructure includes double track line sections between Aix-les-Bains
(section 45) and Modane (section 34) stations (D), and single track line sections between
Saint-André-le-Gaz and Chambéry stations (S1), between Saint-Pierre-d’Albigny (section
19) and Albertville (section 41) stations (S2), and between Annecy (section 55) and Aix-
les-Bains stations (S3). Table 3.9 describes the Service intentions of two instances of the
problem. Some of the bidirectional hourly lines are planned on a large proportions of one
or several groups of tracks of the infrastructure. The remaining slots are scheduled at
extremities of the infrastructure and arrive from and go to other destinations. The latter

72

slots, even with few operations, are important because their turnover time participate
in the objective function, because they occupy station tracks, and because they activate
crossing constraints with the former slots. Instance 1 contains 28 slots per hour all having
at least one terminus station in the Savoie infrastructure. The line plan of Instance 2
has 4 additional slots per hour, i.e. one Intercity and one Freight lines served in both
directions for which origins and destinations are outside of the infrastructure of interest.
Other approaches in the literature solve instances with larger networks and more slots per
hour, see De Fabris et al. (2014) [62] at a mesoscopic level and Kümmling et al. (2015)
[109] at a macroscopic level. Still, our instances are challenging in finding feasible solu-
tions because of slots partially scheduled in single tracks, and because no additional time
is allowed between operations in our presented approaches. The performance obtained
when solving Instances 1 and 2 in Chapter 5 are encouraging to challenge our method
with additional instances. Table 3.10 provides minimal, robust and maximal prescribed
turnover times at terminus stations of the infrastructure. These reference times are used
to compute the objective function depending on the train timetable, and more precisely
on the turnover times. Table 3.11 specifies values used for costs and safety headways.

Figure 3.9: Savoie infrastructure area at a mesoscopic scale in star configuration around Cham-
béry station (section 15). Circled sections are stations and halts while the remainder are line
sections. Line sections 31 and 58 are represented twice.

Further considerations. Contrary to the case explained in Section 3.3.1 valid for the
toy example infrastructure and for the medusa network, the existence of mesoscopic routes
is not as systematic in the real-world Savoie area infrastructure. As an example, the last
track of Chambéry station (section 15) is not accessible to or from the southern end of the
station, corresponding to the right and side of station 15 in Figure 3.9. The same holds
regarding the compatibility between mesoscopic routes: they are much more permissive
in the toy example infrastructure and in the medusa network than in the Savoie area
infrastructure. This is because the 2 fictive infrastructure represent ideal topologies that
are not realistic since they should take too much space and being too costly if implemented
in reality. In the end, the multiple use of the same portion of track around stations make
routes be easily incompatible in our real-world Savoie area infrastructure. The detail

73

Table 3.9: Bidirectional lines to be hourly timetabled on the Savoie area infrastructure. Slot types
are Regional (R), Intercity (IC) and Freight (F). The infrastructure is displayed by increasing
order of sections id whenever at least one line is planned on it. Sections of group D contain
stations and double track line sections between Aix-les-Bains and Modane. Sections of group S1
contain stations and single track line sections between Saint-André-le-Gaz and Chambéry. Those
of group S2 contain stations and single track line sections between Saint-Pierre-d’Albigny and
Albertville. Finally, sections of group S3 contain stations and single track line sections between
Annecy and Aix-les-Bains. Zones are displayed at the junction of several groups of sections.
Squares represent terminus stations. Dots represent other dwelling operations at stations. Where
applicable, arrow dots specify the direction in which a stop is planned. Vertical bold lines are
running operations in line sections or passing through operations at stations.

SI lines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Type R R R R R R R R R R R R IC IC IC F
Instance 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D S1 S2 S3 Zones Sections Instance 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1: to Lyon

|||| 2 2: Saint-André-le-Gaz ■ ■ ■
3 3: to Grenoble

| 3 4
|| 5
| 6
|| 7 •
| 8
|| 9
| 10
|| 11 •
| 12
|| 13
| 13 14

|||||| |||||| 14 15: Chambéry ■ • ■ ■ • ■ ■ •
|| 16
|||| 16 17: Montmélian • • • • •
|| 17 18
||| ||| 18 19: Saint-Pierre-d’Albigny • •
|| 19 20
|| 21 •
|| 22
|| 23
|| 24 •
|| 25
|||| 26 •
|| 27
||| 28 •
|| 29
|| 30 •
|| 31
||| 32 •
|| 33
|||| 34: Modane ■
|| 35: to Italy

| 19 36
|| 37 •
| 38
|| 39 •
| 40

||||| 41: Albertville ■
17 43: to Grenoble

|| 41 44: to Culoz
||||||| ||||||| 42 45: Aix-les-Bains • • ■ ■ • •
||| 46
|| 47
|| 48 •
|| 49
|| 50
|| 13 51

| 54: to La-Roche-sur-Foron
||||| 55: Annecy ■ ■ ■ ■
| 56
|| 57
| 58
|| 59 • ↓
| 60
|| 61 • •
| 62
|| 63
| 64
|| 65 • •
| 66
|| 67 • • ↓
| 41 68

74

Table 3.10: Prescribed turnover times at terminus stations.

s µs
min (time units) µs

rob (time units) µs
max (time units)

Chambéry (section 15) 16 20 24

Albertville (section 41) and Annecy (section 55) 16 20 40

Aix-les-Bains (section 45) 24 30

Saint-André-le-Gaz (section 2) and Modane (section 34) 16

Table 3.11: Values of cost and safety headway parameters.

crob 1 arb. u.

cbound 100 arb. u.

cM 105 arb. u.

∆spa = ∆reu = ∆cro = µfeas 8 time units

of the existing routes and their compatibilities is not provided in this thesis, however
it is accessible to the timetable planners who navigate in the OptiSillons tool presented
in Chapter 6. About the Service intentions, we can qualify them to be close-to-real-
world. In fact, the 2 instances presented in our real-world infrastructure uniquely include
hourly served lines including both downstream and upstream slots. However, in real-world
settings, there are some lines with a two-hour frequency and for which the downstream
slot runs on a given single track line during odd hours whereas the upstream slot runs
on the same single track line during even hours. Our models only apply on a unique
parameterised period and thus we do not consider two-hourly railway services on single
track lines in our instances. Of course, we could set our period to 2 hours and double the
model size by including two slots when they are hourly served. However, there is certainly
a clever way to extend our models by instead considering two distinct but almost identical
hourly served timetables where the first one contains one two-hourly served slot and the
second timetable contains the remaining two-hourly served slot that runs in the opposite
direction.

75

3.A List of Symbols

The Table 3.12 summarises symbols and notations used in this chapter.

Table 3.12: Signification of symbols and notations used in Chapter 3.

Symbol Meaning

T Time period

SI Service Intention, set of bidirectional lines to be timetabled within period T

S = Sl ∪ St Set of sections, partitioned in the set of line sections and the set of stations

Ks Set of mesoscopic tracks of section s

Dk ⊆ {+,−}, d() Set of possible running directions on track k and running direction of a slot operand, respectively

R = R+ ∪R− Set of mesoscopic routes, partitioned by direction

Z Set of zones, a partition of S

< z1, z2 > A bizone containing mesoscopic routes in any direction between z1 and z2

I, Ji and Ji− Set of slots, set of operations of slot i and set of operations of slot i except the last one, respectively

oi,j , pi,j , si,j and ti,j Operation j of slot i, its known duration, the section on which it is processed and its starting time, respectively

| | Cardinal of a set operand inside the symbol

Ki,j = {1, . . . , |Ksi,j |} Set of alternative tracks for operation oi,j

xi,j,k Assignment of track k for operation oi,j

∆spa,∆reu and ∆cro Spacing, reuse and crossing safety headways, respectively

µmins , µrobs and µmaxs Minimal, robust and maximal prescribed turnover times at terminus station s, respectively

µfeas Unforced minimal turnover time at terminus stations

Ls Set of linked slots sharing the same track and using the same vehicle at station s

crob, cbound and cM Costs penalising turnover times at terminus stations that does not respect the prescriptions

qs
i,i′ Turnover time of slots i and i′ at terminus station s

cs
i,i′ () Cost function depending on the turnover time qs

i,i′ of linked slots i and i′ at station s

76

77

Chapter 4

Integer Linear Programming
approaches

In this chapter, we present approaches to solve the decision problem stated in Section
3.2.1 based on Integer Linear Programming. We formulate a model in Section 4.1 and
we solve it on the medusa network instances with a commercial solver. To improve the
tractability of the method, we propose a model decomposition in Section 4.2 such that
the timetable is decided before the tracks assignment. We conceived an objective function
to evaluate conflicts in a timetable without explicit tracks assignment knowledge, and we
developed an adaptive heuristic based on tabu search to address the problem.

Contents
4.1 Modelling the problem as an Integer Linear Program 79

4.1.1 Model formulation . 79

4.1.2 Experimental results . 84

4.2 Decomposing the model . 86

4.2.1 Conflict evaluation function using the timetable only 87

4.2.2 Solution approaches . 96

4.2.3 Experimental results . 105

4.3 Conclusion . 106

4.A List of Symbols . 108

78

4.1 Modelling the problem as an Integer Linear Pro-

gram

In this section, we model our decision problem as an Integer Linear Program. Among
the works that inspired our formulation, we can mention the Periodic Event Scheduling
Problem of Serafini and Ukovich (1989) [174], its track-choice extension by Wüst et al.
(2019) [182] and the use of boolean periodicity variables like in Yan and Goverde (2019)
[185]. We considered the possibility to investigate a flow formulation, however it seemed
more appropriate to adopt a model closer to job-shop problems because of the specificities
of the safety headway constraints arising from the infrastructure usage. As we saw in
Chapter 2, flow formulations are more suited for Network Design, Line Planning and
Passenger Routing problems. Our model is given is Section 4.1.1 and solved using CPLEX
12.10 on the medusa network instances in Section 4.1.2.

4.1.1 Model formulation

We address a decision problem, for which we want to determine if a feasible timetable
exists or not from a set of slots to be scheduled. Therefore, the formulation presented
in this section does not include an objective function. If we consider passenger origin-
destination data, our model can easily be extended with an objective function to minimise
the waiting time of passengers during changeovers, as it is proposed in Nachtigall and
Voget (1996) [133]. Note that as we enforce the travelling time to be minimal, solving the
decision problem already allows to minimise the travel time for all direct travellers.

4.1.1.1 Parameters

The input data of the decision problem, corresponding to some of the notations sum-
marised in Sub-appendix 3.A, are the following. The Service intention SI contains n slots
to be scheduled on a railway infrastructure described at the mesoscopic scale. Each slot
i is composed by ni operations that consist either in running on a line section, dwelling
or passing through a station. Each operation oi,j is scheduled in the section si,j of the
infrastructure and has a known duration pi,j. The remainder of the parameters includes
the safety headways constants ∆spa, ∆reu and ∆cro. The first is used in spacing constraints
to regulate the access to a section line track between two following trains. The second is
used in track reuse constraints at stations and to prevent the simultaneous access of two
trains in opposite direction on the same section line track. Finally, the third parameter
is used in crossing constraints to prevent two trains to run through incompatible routes
too close in time.

79

4.1.1.2 Variables

Every operation oi,j is associated with an integer variable ti,j representing its start time
in the range [0, T − 1]. Let ti,j and ti′,j′ be the start time of oi,j and oi′,j′ , we introduce
the boolean variable zi,i′,j,j′ that equals 0 if ti,j ≤ ti′,j′ and 1 otherwise. To obtain this
behaviour, we make the two following inequalities always hold for any two operations of
distinct slots (this is a disjunctive constraint):

ti,j ≤ ti′,j′ + zi,i′,j,j′ ∗ T

ti′,j′ + 1 ≤ ti,j + (1− zi,i′,j,j′) ∗ T

Each operation oi,j occurs in a determined section si,j containing Ki,j tracks. There
is one boolean variable xi,j,k per track k in the section si,j on which oi,j will potentially
be assigned. We have xi,j,k = 1 if oi,j is assigned on track k and xi,j,k = 0 otherwise. We
introduce the auxiliary boolean variables ys,i,i′,k to indicate the simultaneous assignment
of operations oi,j and oi′,j′ occurring in section s = si,j = si′,j′ on a same track k ∈ Ks.
To do so, the following equations hold for each track k of a shared section s among two
slots i and i′:

ys,i,i′,k ≤ xi,j,k

ys,i,i′,k ≤ xi′,j′,k

ys,i,i′,k ≥ xi,j,k + xi′,j′,k − 1

The first two above equations enforce ys,i,i′,k to be equal to 0 whenever xi,j,k or xi′,j′,k

equal 0. The third above equation enforces ys,i,i′,k to be equal to 1 if xi,j,k and xi′,j′,k

equal 1. These three equations thus implement a logical AND between xi,j,k and xi′,j′,k

which result corresponds to ys,i,i′,k. Now, consider any two incompatible routes (k1,k2)
and (k3,k4). These routes are either in the same direction or in the opposite direction. We
introduce the auxiliary boolean variables ycroi,i′,j,j′,k1..4

to detect the routes incompatibility,
i.e. if oi,j is assigned to track k1, oi,j+1 to track k2, oi′,j′ to track k3 and oi′,j′+1 to track k4.
In this case, ycroi,i′,j,j′,k1..4

equals 1, and equals 0 otherwise. The following equation enforces
ycroi,i′,j,j′,k1..4

to be equal to 1 if xi,j,k1 , xi,j+1,k2 , xi′,j′,k3 and xi′,j′+1,k4 are all equal to 1:

ycroi,i′,j,j′,k1..4 ≥ xi,j,k1 + xi,j+1,k2 + xi′,j′,k3 + xi′,j′+1,k4 − 3

Note that if at least two tracks among {k1, k2, k3, k4} are the same one, thus the
routes incompatibility can even be detected if only the two responsible track assignment
variables equal 1. So, if slots i and i′ run on the same direction, the following equations
independently hold if k1 = k3 or k2 = k4, respectively:

80

ycroi,i′,j,j′,k1..4 ≥ xi,j,k1 + xi′,j′,k3 − 1

ycroi,i′,j,j′,k1..4 ≥ xi,j+1,k2 + xi′,j′+1,k4 − 1

Symmetrically, if slots i and i′ run on the opposite direction, the following equations
independently hold if k1 = k4 or k2 = k3, respectively:

ycroi,i′,j,j′,k1..4 ≥ xi,j,k1 + xi′,j′+1,k4 − 1

ycroi,i′,j,j′,k1..4 ≥ xi,j+1,k2 + xi′,j′,k3 − 1

Contrary to auxiliary variables ys,i,i′,k for the detection of 2 assignment variables on
the same track, auxiliary variables ycroi,i′,j,j′,k1..4

do not exactly represent a logical AND
between 4 assignment variables. Therefore, we do not impose ycroi,i′,j,j′,k1..4

to be equal to
0 whenever one of the 4 corresponding assignment variables is equal to 0 because it can
be contradictory with one of the four last above equations and thus wrongly leads to
infeasibility. In the following, M refers to an arbitrarily large value (Big-M).

4.1.1.3 Constraints

Now that the variables of the model have been presented, the decision problem formulation
reads:

ti,j+1 = ti,j + pi,j − zi,i,j,j+1 ∗ T,∀i ∈ I,∀j ∈ Ji− (4.1a)

⌈
ti′,j′ − ti,j + zi,i′,j,j′ ∗ T + (1− ys,i,i′,k) ∗M ≥ ∆spa, (4.1b)∣∣ ti′,j′ − ti,j + zi,i′,j,j′ ∗ T ≤ T −∆spa + (1− ys,i,i′,k) ∗M, (4.1c)⌊
∀i ̸= i′ ∈ I, d(i) = d(i′), ∀j ∈ Ji,∀j′ ∈ Ji′ , si,j = si′,j′ , si,j ∈ Sl,∀k ∈ Ki,j

⌈
ti′,j′ − ti,j + zi,i′,j,j′ ∗ T + (1− ys,i,i′,k) ∗M ≥ pi,j +∆reu, (4.1d)∣∣ ti′,j′ − ti,j + zi,i′,j,j′ ∗ T ≤ T − (pi′,j′ +∆reu) + (1− ys,i,i′,k) ∗M, (4.1e)⌊
∀i ̸= i′ ∈ I,∀j ∈ Ji,∀j′ ∈ Ji′ , si,j = si′,j′ , si,j ∈ St || d(i) ̸= d(i′),∀k ∈ Ki,j

⌈
ti′,j′ − ti,j + zi,i′,j,j′ ∗ T + (1− ycroi,i′,j,j′,k1..4) ∗M ≥ ∆cro, (4.1f)∣∣ ti′,j′ − ti,j + zi,i′,j,j′ ∗ T ≤ T −∆cro + (1− ycroi,i′,j,j′,k1..4) ∗M, (4.1g)∣∣ ∀i ̸= i′ ∈ I,∀j ∈ Ji−,∀j′ ∈ Ji′−1,∀k1 ∈ Ki,j,∀k2 ∈ Ki,j+1,∀k3 ∈ Ki′,j′ ,∀k4 ∈ Ki′,j′+1,⌊
r1 = (k1, k2), r2 = (k3, k4) ∈ R, r1 and r2 not compatible

81

xi,j,k = 0, ∀i ∈ I,∀j ∈ Ji,∀k ∈ Ki,j, d(i) /∈ Dk (4.1h)

∑
k∈Ki,j

xi,j,k = 1,∀i ∈ I,∀j ∈ Ji (4.1i)

xi,j,k ≤
∑

k′∈Ki,j+1

(k,k′)∈R

xi,j+1,k′ ,∀i ∈ I,∀j ∈ Ji−,∀k ∈ Ki,j (4.1j)

Equations (4.1a) are the precedence constraints for the operations of each slot. Variables
zi,i,j,j+1 equal 1 whenever ti,j + pi,j ≥ T .

Constraints (4.1b) to (4.1g) ensure the safety headways between the start times of slot
operations. More precisely, these constraints are to be considered pairwise, i.e. constraints
(4.1b) and (4.1c) work for the spacing headways, constraints (4.1d) and (4.1e) work for the
track reuse headways, and constraints (4.1f) and (4.1g) work for the crossing headways.
All these constraints apply on the periodic time difference between ti′,j′ and ti,j, that has
to respect a lower bound in the case of constraints (4.1b), (4.1d) and (4.1f), and an upper
bound in the case of constraints (4.1c), (4.1e) and (4.1g). Indeed, as the time horizon is
cyclic, then not satisfying a lower bound or an upper bounds of these constraints both
means that operations start too close in time and create a conflict. The spacing headway
constraints (4.1b) and (4.1c) allow a following train to access a line track at least ∆spa

time units after the previous train entered the track. The track reuse constraints (4.1d)
and (4.1e) allow a new train to reuse a track at least ∆reu time units after a first train
has liberated the track. These constraints apply in stations and also for slots going in
opposite direction on line section tracks. Remark how in the spacing and in the track reuse
headway constraints (4.1b) to (4.1e), the Big-M like form using ys,i,i′,k variables allow to
inhibit the constraints while the operations are not assigned to the same track. Finally,
the crossing headway constraints allow the train to take a route that is not compatible
with a route taken by a previous train after at least ∆cro time units. If incompatible routes
are assigned to slot operations, then the variables ycroi,i′,j,j′,k1..4

activate these constraints.
However, we saw above that in case of compatible routes, we did not explicitly model an
enforcement for variables ycroi,i′,j,j′,k1..4

to be equal to 0. The model could thus be refined in
order to avoid branching errors on these variables that could imply backtracks and more
computation time in case the constraints are not appropriately activated for two slots
taking compatible routes simultaneously.

82

Constraints (4.1h) prevent operations to be assigned to tracks with an incompatible run-
ning direction. Constraints (4.1i) require exactly one track assigned by operation. Finally,
constraints (4.1j) guarantee the coherence of the tracks assignment i.e. the assigned tracks
have to correspond to existing mesoscopic routes of the infrastructure. The operations
successors are used for this purpose. Symmetric constraints could also use the operations
predecessors for additional enforcement.

Furthermore, some valid inequalities are added to the model:

⌈
ti,j + pi,j ≤ ti,j+1 + zi,i,j,j+1 ∗M, (4.1k)∣∣ ti,j+1 ≤ ti,j + (1− zi,i,j,j+1) ∗M, (4.1l)⌊
∀i ∈ I,∀j ∈ Ji−

∑
j∈Ji−

zi,i,j,j+1 ≤

⌈∑
j∈Ji

pi,j/T

⌉
,∀i ∈ I (4.1m)

Constraints (4.1k) to (4.1m) strengthen equations (4.1a). Indeed, depending on the
value of variables zi,i,j,j+1, variables ti,j+1 are enforced to be either greater than ti,j + pi,j

or less than ti,j in constraints (4.1k) and (4.1l). On the other hand, constraints (4.1m)
control the number of variables zi,i,j,j+1 that can equal 1 for a given slot depending on
the total duration of the slots, as presented in Table 4.1. Lower bounding the left-hand
side in constraints (4.1m) is also possible but less immediate because it depends on the
distribution of the durations of the slot operations and not only on the total of operations
durations.

Table 4.1: Right-hand side of constraints (4.1m) depending on the slot duration.

∑
j∈Ji

pi,j

⌈∑
j∈Ji

pi,j/T

⌉
0 0

[1, T] 1

[T + 1, 2T] 2
...

...

Assuming that T is strictly greater than any operation duration plus any headway
duration, we tried T as a candidate for the M value in constraints (4.1b) to (4.1g), (4.1k)
and (4.1l). It turned out that this value was not sufficient in practice, so we instead

83

applied a sufficient arbitrary large value for M .

4.1.2 Experimental results

We implement Formulation (4.1) in C++ using the IBM Concert Technology. The model
is solved using CPLEX 12.10 with a computer running on Windows 10, 64 bits with a
i5-8265U CPU at 1.60-1.80 GHz and 24 Go of RAM. We populated our set of instances on
the medusa network infrastructure gradually to evaluate improvements of model variants
that we will clarify in the following. The results summarised in Table 4.2 give the order
of magnitude in seconds to find a solution on medusa network instances depending on the
following model variants.

Table 4.2: Computation time in seconds to find a solution for the decision problem on the 11
medusa network instances using CPLEX 12.10.

Model variants

Instance Number of slots Reference Relaxation Linearisation Partial tracks assignment

1 10 1− 10 1− 10 0.1− 1 0.01− 0.1

2 20 100− 1k 100− 1k ≈ 10 1− 10

3 24 ≈ 10k 100− 1k ≈ 10 1− 10

4 26 10− 100 1− 10

5 26 10− 100 1− 10

6 28 1k− 10k 1− 10

7 30 1k− 10k ≈ 100

8 32 1k− 10k 100− 1k

9 36 1k− 10k

10 38 100− 1k

11 40 intractable

The Reference model variant uses all the constrained variables described above Formu-
lation (4.1), as well as constraints (4.1a) to (4.1j) such that headway constraints (4.1b) to
(4.1g) were not linearised yet i.e. without Big-M forms. For example, constraints (4.1b)
were instead written as these logical constraints: ys,i,i′,k ⇒ (ti′,j′− ti,j+zi,i′,j,j′ ∗T ≥ ∆spa).
The Relaxation model variant differs from the Reference variant only by the continuous
relaxation of all the start time variables ti,j. These two variants are tested on the medusa
network instances 1 to 3. We observe that the computation time has improved for the third

84

instance when the start time variables integrality is relaxed. The motivation for testing
the time relaxation was to find feasible solutions easier while still being valid. Moreover,
the time granularity is finer for Île-de-France region timetables, i.e. the decasecond, versus
the half-minute in other regions, and the minute for the fictive medusa network instances.
However, a solution rounding is then still necessary even for the decasecond granularity,
and this can be a cause of infeasibility. On the other hand, we temporary tried to add
slack variables to the operations durations of the model to be minimised, and to maximise
a unique robustness variable in supplement in all the headway constraints. In this special
experiment, we observed that the robustness variable value increases when the start time
variables integrality is relaxed. We did not explore more about time relaxation, slack vari-
ables and robustness maximisation using formulation (4.1). Instead, we were interested
to challenge the search of feasible solutions on larger instances. Therefore, in the two next
model variants, we go back with our decision problem with integral start time variables
without additional slack.

In the Linearisation model variant, constraints (4.1a) to (4.1j) are linearised as dis-
played in Formulation (4.1), and valid inequalities (4.1k) to (4.1m) are included. The
model is solved on the 3 previous instances and on 5 additional ones where slots are
included as indicated in Table 3.8. These modifications significantly improved the com-
putation time on the first three instances.

Finally, we experimented to enforce some symmetry breaking by arbitrary fixing a
partial tracks assignment for slots in some line sections. More precisely, in Figure 3.7,
we remark for example that to run between stations C and E in any direction, a train
can either take the first track in all sections C− d, d and d− E, or either the second
track in all these same sections. Indeed, the little green dots indicate the impossibility
to switch to another track, as discussed in Section 3.3.2. What we tried is to assign the
operations of the downstream slots to the first track of these sections and the operations
of the upstream slots to the second track of these sections a preprocessing step. Note
that the same setting is performed for slot operations on any other sections of the medusa
network infrastructure around little green dots. We solve the Partial tracks assignment
model variant and improve the computation time for the first eight instances. We also
solved two additional instances. However, the eleventh instance remained undecided after
hours of computation time.

Until here, we proposed an Integer Linear Program to model our decision problem and
solve it using an off-the-shelf solver while varying the settings of the solve by introducing
model variants. This approach is useful to begin the apprehension of the problem and to

85

solve small to medium instances, observing that it becomes harder to decide the problem
in reasonable time when the instance size grows. However, this model in itself is not
enough satisfactory to address real-world cases like the Savoie area which infrastructure
is even more constrained than the medusa network infrastructure. The remainder of this
thesis is therefore devoted to find faster techniques to be able to solve the problem on our
real-world infrastructure.

4.2 Decomposing the model

During the experiments undertaken to solve Formulation (4.1), we observed that once a
feasible solution is found, and if we try to solve the model again while fixing the timetable
from this solution and looking uniquely for tracks assignment, then this specific problem
is easily handled by an off-the-shelf solver on our instances. We take precautions about
this phenomenon by expressing the following comments. Finding the slot start times
allowing a conflict-free tracks assignment is a challenging task. When such a timetable
is obtained, the subsequent tracks assignment problem can be seen as a set of Train
Platforming Problems (TPP) on sections of the mesoscopic scale infrastructure. We saw
in Chapter 2 that the TPP is a difficult problem but in our case, we are not searching
to assign a maximal number of trains as we already know by assumption that a feasible
solution exists for all the trains. Moreover, the problem sizes stay reasonable because
we do not consider microscopic signalling, nor the aperiodic problem during a day time
span, and we do not address (yet) the main stations of the French railway infrastructure
e.g. the Parisian stations, Lyon Part Dieu, Lille Flandres or Marseille Saint-Charles to
give only few future interesting cases to consider. To summarise our main idea, we now
look at our decision problem from another point of view: the goal is to find a timetable
for which we can assume that a tracks assignment exists, and we then use an off-the-
shelf solver as an oracle in a second step to find the tracks assignment for this timetable.
Note that this approach can be extended if more challenging stations are included in
our instances, namely by conceiving dedicated tracks assignment algorithms if this task
becomes intractable using the solver. In Section 4.2.1, we present a method to evaluate
the conflicts in a timetable without explicit tracks assignment knowledge. This function is
used in the remainder of this section to find conflict-free timetables. Solution approaches
are presented in Section 4.2.2. More precisely, in Section 4.2.2.1, we present a variable-
and-constraint generation framework that progressively theoretically converges towards
a conflict-free solution if there is one. This method should however be refined to be
tractable and we provide some hints for that. In Section 4.2.2.2, we describe a tabu
search heuristic able to minimise timetable conflicts. A didactic execution of the heuristic
is given in Section 4.2.2.3. Finally, experimental results on our largest Savoie area instance

86

are presented in Section 4.2.3. Note that in the context of Section 4.2 and Section 4.1.2,
all the safety headway times are equal, e.g. parameterised to 4 minutes in our case. The
approach that we present can be extended in order to consider variable headway times
depending on the trains following each other and on infrastructure specificities.

4.2.1 Conflict evaluation function using the timetable only

This section aims at describing a method to evaluate the conflicts in a timetable containing
any scheduled slots but without requiring knowledge about the tracks assignment. The
benefit of the resulting conflict evaluation function is that a timetable evaluated to have
0 conflicts should allow the existence of tracks assignment satisfying all the constraints of
Formulation (4.1). To illustrate the mechanism of this function, we will consider the toy
example infrastructure on which we schedule the start time of a fast slot between stations
E and D and the start time of an omnibus slot between stations E and C, without assigning
tracks to the operations. This timetable is displayed in Figure 4.1, where the fast slot
is blue and the omnibus slot is red. In the following, we explain how we compute the
spacing conflicts, the track reuse conflicts and the crossing conflicts from this timetable.
To this end, we first introduce the notion of infrastructure occupation by the slots at the
mesoscopic scale in section 4.2.1.1. Then, we describe how we consider the capacity of the
infrastructure in Section 4.2.1.2. Finally, the conflicts evaluation is presented in Section
4.2.1.3.

4.2.1.1 Occupation and use variables

Occupation variables. As we search to evaluate conflicts between slots by just knowing
the timetable, we compute an additional needed ingredient that is a kind of footprint left
by the slots when traversing the infrastructure. We call these footprints the occupation
variables. The occupation of a given slot is measured depending on operations durations,
on the traversed infrastructure elements and on the corresponding safety headways. By
infrastructure element, we mean any infrastructure section and potential crossing areas
where mesoscopic routes connect several sections. As detailed in Chapter 3, the spacing
headway constraints apply on line sections, so we compute spacing occupations on line
sections. We saw that track reuse headway constraints apply at stations, but also in line
sections to avoid trains running in the opposite direction. Therefore, we compute reuse
occupations for each section traversed by slots. Finally, the crossing headway constraints
prevent any two trains to run on incompatible routes to close in time. Hence, we compute
crossing occupations for each traversed potential crossing area where mesoscopic routes
connect several sections. Table 4.3 presents the occupation of the slots scheduled in
Figure 4.1 on elements of the toy example infrastructure. Black squares indicate the

87

Figure 4.1: Two scheduled slots without assigned tracks for which conflicts are to be evaluated.

section where the rolling stock of the corresponding slot is located at the beginning of the
corresponding minute. Squares coloured in red, gold and turquoise correspond to spacing,
reuse and crossing headways, respectively. Several observations can be made from the
displayed occupations. First, the spacing occupations are only composed by the spacing
headways, that begin as soon as the rolling stock enter the line section. We indeed recall
that two following trains can be located on the same mesoscopic line track if the spacing
headway is respected at the track entrance. Second, the reuse occupations, however, are
composed by the time interval when the rolling stock is in the section, followed by the
track reuse headway. Indeed, two trains cannot occupy the same track at stations or in
line sections in the opposite direction. Finally, the crossing occupations are composed
by the crossing headways and start as soon as the rolling stock enters the corresponding
potential crossing area i.e. when the operation on the next section starts. In compliance
with our hypothesis made in Section 3.3.1 stating that trains passing through a station
without dwelling spend a negligible amount of time in this station, remark in Table 4.3
how the fast slot triggers occupations in many close infrastructure elements around station
B at minute 4.

Use variables. Now that we know the occupation left by individual slots on elements
of the infrastructure, we make the link with the global use of each infrastructure element.

88

The use variables can be seen as a numerical aggregation of the slot occupations variables.
Like for the occupation variables, there are 3 types of use variables depending on the safety
headways considered. Moreover, the aggregations are sorted on the one hand by running
direction in all the sections of the infrastructure, and on the other hand by connecting
sections in all potential crossing areas. To illustrate this concept from the timetable of
Figure 4.1, we compute the use variables corresponding to the reuse occupations at station
E in Table 4.4 and the use variables corresponding to the crossing occupations in the
potential crossing area connecting sections B, B−D and B− C in Table 4.5. We observe
in Table 4.4 that the use of station E in the downstream direction is equal to 1 track
from times 0 to 8, except at time 4 where this use is equal to 2 tracks. The same kind of
computations can be performed on line sections for the use variables corresponding to the
spacing and to the reuse occupations respectively, and are sorted by running direction. In
Table 4.5, the use variables corresponding to the crossing occupations are sorted depending
on the sections traversed by the slots. We observe that the use between sections B and
B−D is equal to 1 downstream route from times 4 to 7 and that the use between sections
B and B− C is equal to 1 downstream route from times 11 to 14. In the following,
we estimate the capacity infrastructure on each of its elements i.e. on sections and on
potential crossing areas connecting sections. Then, we will see how conflicts are computed
with the use variables and the infrastructure capacity estimations.

4.2.1.2 Infrastructure capacity

In this section, we propose a capacity measure of elements of the infrastructure. More
precisely, we search to determine how many tracks can be used depending on the direction
of the traffic on sections at any time, and how many routes can be run on potential crossing
areas at any time.

Capacity of sections. On a given section s of the infrastructure, we define the capacity
Caps of this section as an integer value equal to the number of tracks |Ks| of this section.
We also specify additional parameters tracking the number of tracks by allowed running
directions. The parameter

←−→
Caps indicates the number of tracks of section s that can be

run in both directions. Moreover, parameters
−−−→
Caps and

←−−−
Caps indicate the number of

tracks of section s that can be run uniquely in the downstream direction and uniquely in
the upstream direction, respectively. In the end, we have Caps =

←−→
Caps+

−−−→
Caps+

←−−−
Caps for

any section s of the infrastructure.

Capacity of potential crossing areas. A less straightforward task than defining the
capacity of infrastructure sections is to determine the capacity of potential crossing areas
where mesoscopic routes connect several sections. What we look for is the maximal sets

89

Table 4.3: Occupation variables of a fast and an omnibus slots on elements of the toy example
infrastructure, determined from their timetable in Figure 4.1.

Infra.
element

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Slot
∆reu

E

fast

om.
∆cro

E|E− B

fast

om.

∆spa

∆reu

E− B

fast

om.

∆cro
A− B/

E− B|B

fast

om.

∆reu

B

fast

om.
∆cro

B|B−D

/B− C

fast

om.
∆spa
∆reu
B−D

fast
∆cro B-D|D

∆reu D

∆spa
∆reu
B− C

om.
∆cro B-C|C

∆reu C

Table 4.4: Use variables corresponding to the reuse occupations at station E.

Infra.
element

Time
0 1 2 3 4 5 6 7 8

Slot

∆reu

E

fast

om.
−→u reu[E] 1 1 1 1 2 1 1 1 1

90

Table 4.5: Use variables corresponding to the crossing occupations in the potential crossing area
connecting sections B, B−D and B− C.

Infra.
element

Time
4 5 6 7 8 9 10 11 12 13 14

Slot

∆cro

B|B−D

/B− C

fast

omnibus

ucro[B to B−D] 1 1 1 1 0 0 0 0 0 0 0
ucro[B to B−C] 0 0 0 0 0 0 0 1 1 1 1

of routes that can be used by trains simultaneously without being incompatible. To do
so, we perform a preprocessing step that consists in dressing the list of maximal cliques in
the compatibility graph of routes in each potential conflict area. This preprocessing step
is represented in Figure 4.2 for the case of the potential crossing area between sections
B, B−D and B− C. The downstream routes in red and the upstream routes in green
are the nodes of the compatibility graph on the centre of Figure 4.2. The nodes are
clustered in four blue polygons depending on the initial and the terminal sections of the
routes. For example, the first, the second, the fourth and the fifth downstream routes
in red belong to the upper left blue polygon and go from section B to section B−D, as
indicated in the top-right part of Figure 4.2. The other nodes are clustered in the same
logic depending on the ordered sections that the corresponding routes traverse. Black
links represent a compatibility between two routes, indicating that two trains can run
these routes simultaneously. For example, the first red route between the first track of
station B and the first track of line section B−D is compatible with the third green route
between the second track of line section B−D and the second track of station B. Remark
that black links in the middle of the graph represent compatibilities between routes in the
opposite direction whereas black links in the sides of the graph represent compatibilities
between routes in the same direction. We search to find maximal sets of nodes such that
each pair of nodes in the sets are connected by a black link. Representative elements of
the list of maximal cliques is provided on the right side of Figure 4.2. We observe that
the largest cardinal of cliques in this list is 3, so up to 3 trains can run simultaneously
between sections B, B−D and B− C. For example, the first downstream route in red can
be run simultaneously with the third and sixth upstream routes in green. Next to each
displayed clique, we report a blue square with four positions, where we sum the routes
of the clique depending on the blue polygons in which they are included. For example,
in the first displayed clique, there is one route from section B to section B−D, another
route from section B−D to section B, and a third route from section B− C to section B.
Thus, the value of 1 is assigned to all positions of the blue square except the bottom-left

91

position where the value 0 is assigned because there is no route from section B to section
B− C in this clique. If several routes are compatible and going from and to the same
sections in the same clique, a greater integer value can be assigned in the corresponding
blue square, as it is the case for the second displayed clique in Figure 4.2. We can also
observe that distinct cliques can correspond to a same blue square because distinct routes
of these cliques can share the same initial and terminal sections. This is the case of the
third and the fourth displayed cliques.

Figure 4.2: Determining capacity in potential crossing areas.

There are some maximal cliques of cardinal 2, but only one of them corresponds to a
blue square which information is not already contained in the blue squares of cliques of
cardinal 3 is fifth displayed clique, composed by the first and the fourth upstream routes
in green. Indeed, another maximal clique of cardinal 2 is composed by the first and the
sixth upstream routes in green, but the corresponding blue square is composed of values
1 in the two right positions. The information provided by this square is already included
in the square of the first displayed clique. Therefore, the maximal clique of cardinal 2
composed by the first and the sixth upstream routes in green is not representative in this
context. We do not report maximal cliques of cardinal 1 because they do not represent
compatibility between several routes. We can assume that in the absence of cliques of
carnality greater than 1 in a potential crossing area, then a blue square is initialised with
a value 1 in a unique position corresponding to one existing route between sections. When
the search of representative maximal cliques is over, the resulting blue squares determine
the capacity of the potential crossing area. More precisely, each blue square indicates a

92

maximal number of trains that can run on routes from specific sections to specific other
sections simultaneously.

4.2.1.3 Conflicts evaluation

At this point, we defined the occupation and use variables from scheduled slots in a
timetable, and we also introduced a method to estimate the capacity of elements of the
infrastructure. We have all the ingredients to evaluate conflicts between scheduled slots in
a timetable and without knowing their tracks assignment explicitly. In the following, we
describe how we evaluate conflicts between slots in multi track sections, in line sections
containing a single track, and in potential crossing areas. Note that all use variables
and conflict evaluations are time indexed whereas infrastructure capacities are constant
at each time unit. In order to simplify the notations, the four conflict formulas that we
introduce in this section correspond to a given time unit i.e. the time indices are not
explicitly represented here.

Conflicts in multi track sections. In stations and line sections containing more than
one track, conflicts between slots are evaluated by comparing the value of use variables
at each unit of time with the capacity of the sections.

Given a multi track station s, the conflicts at this station at each time unit are com-
puted using the following formula:

vs = max(0,−→u reu[s] − (
−−−→
Caps +

←−→
Caps),

←−u reu[s] − (
←−−−
Caps +

←−→
Caps),

−→u reu[s] +
←−u reu[s] − Caps)

The conflict vs expresses a violation of the infrastructure capacity of station s during
a unit of time. We compute this conflict as the maximum of four terms. The first term
is 0 and indicates that there is no conflict in the case of negativity of the 3 subsequent
terms. The second term is the difference between the value of the use variable of station
s corresponding to the reuse occupations in the downstream direction and the number
of tracks allowing trains running downstream. The third term is symmetric with respect
to the second term and applies on the upstream direction. Finally, the fourth term is
the difference between the value of the use variable of station s corresponding to the
reuse occupations in both directions and the total capacity of station s. To illustrate this
calculation, we can look again to Table 4.5 where only two downstream slots occupy the
station E. By applying the above conflict evaluation formula to station E, we can observe

93

that vE equals 0 for all times from 0 to 8 included. This means that a track assignment
is possible in station E for the fast slot and the omnibus slot. In particular, the slots will
be assigned to 2 different tracks at station E because the value of the use variable at time
4 equals the total capacity of station E, so track reuse constraints of Formulation (4.1)
would not allow these slots to be assigned to the same track.

Given a multi track line section s′, the conflict vs′ is computed similarly to the conflict
vs at station s but using the use variables corresponding to the spacing occupations
instead. The formula reads:

vs′ = max(0,−→u spa[s′] − (
−−−→
Caps′ +

←−−→
Caps′),

←−u spa[s′] − (
←−−−
Caps′ +

←−−→
Caps′),

−→u spa[s′] +
←−u spa[s′] − Caps′)

We saw in Section 4.2.1.1 and in Table 4.3 that the spacing occupations are generally
shorter than the reuse occupations because the latter also includes the time interval when
the rolling stock is present in the section whereas the former does not. We indeed already
commented that two trains can follow each other on the same mesoscopic line track if
they respect spacing headways at the track entrance. We noticed that in some particular
cases on our fictive infrastructures where all the tracks of a line section can be run in
both directions like in line section E− B of the toy example infrastructure, a timetable
evaluated with no conflicts could result in an impossibility to assign tracks in the line
section using Formulation (4.1). This is due to the fact that trains running in the same
direction following each other to close in time at the entrance of line section E− B should
therefore be assigned to different tracks, thus making impossible for trains running in
opposite direction to enter the line section because of the track reuse constraints, even if
the spacing occupations terminated. However, our evaluation of conflicts in line sections
is accurate for real-world infrastructures since a preferred running direction is generally
provided for almost all tracks of multi track line sections i.e.

←−−→
Caps′ generally equals 0 in

a real-world multi track line section s′. In the next paragraph, we address more precisely
the relationship between use variables related to both spacing and reuse occupations in
line sections tracks containing a single track. In this case, indeed, it is more natural to
see trains running in different directions on a single track. We will see that the resulting
formula is more complex than the two previous ones, and that it can be further extended
in order to take into account the issue discussed above in this paragraph for the case of
multi track line sections with line tracks allowing trains in both directions.

94

Conflicts in single track line sections. Mesoscopic line sections containing a single
track should allow several trains to run on the track if they run in the same direction and
they respect spacing headway constraints, while also forbidding two trains from running on
the track in the opposite direction if they do not respect the track reuse constraints. Here,
a first alternative could be to use the same conflict formula as when we compute conflicts
in stations. However, this alternative is not satisfactory because it is too conservative as
it would not allow two trains to follow each other directly after the end of the spacing
headways. Instead, the following train would have to wait the first train to liberate the
whole track plus a track reuse headway. Therefore, we will describe a method to evaluate
accurately the conflicts on single track line sections while allowing to exploit the full
capacity i.e. by not being too conservative for trains following each other in the same
direction. We introduce auxiliary integer variables sims that indicate simultaneous reuse
occupations of slots running on the opposite direction in the single line track section s at
a given time. More precisely, we have sims =

−→u reu[s] ∗←−u reu[s]. That is, a strictly positive
value of sims at a given time is unacceptable as it would translate a simultaneous reuse
occupation of trains running in opposite direction on the single track. However, when
sims equals 0, then use variables corresponding to spacing occupations are sufficient to
evaluate conflicts on the single track. Hence, we use the following formula to evaluate
conflicts in single track line sections:

vs = max(−→u spa[s] − Caps,

←−u spa[s] − Caps,

sims)

The first two terms trigger a conflict detection if two trains follow each other to close in
time while the third term triggers a conflict detection when trains running in the opposite
direction activate reuse occupations at the same time. Note that as the third term is
never strictly negative, then the maximum with 0 is omitted in the computation of vs in
the case of single track line sections. Extending this method should be investigated in
future work in order to compute conflicts more accurately in the same fashion in multi
track line sections containing tracks allowing trains to run in both directions.

Conflicts in potential crossing areas. We finally describe how the conflicts between
slots are evaluated in potential crossing areas without knowing explicitly the routes on
which they run. Once again, we will compare use variables at each time unit with the avail-
able capacity of the infrastructure element. We recall that in the case of potential crossing
areas, the capacity corresponds to a maximal set of slots that can run simultaneously on
routes between specific initial and terminal sections, determined in a preprocessing step

95

detailed in Section 4.2.1.2. We note Cla the set of capacity blue squares corresponding
to representative maximal cliques of the crossing area a, illustrated in Figure 4.2 in the
case of the crossing area between sections B, B−D and B− C of the toy example in-
frastructure. Each blue square associated to a representative maximal clique contains a
set of positions p ∈ Posa that correspond to initial and terminal sections of routes in
the potential crossing area a. The conflicts in the potential crossing area a are computed
using the following formula:

va = min(
∑

p∈Posa

max(0, ucro[p] − Capclp) | ∀cl ∈ Cla)

We now provide a simple image of how this conflict computation can be understood,
and we use the potential crossing area between sections B, B−D and B− C of the toy
example infrastructure to illustrate these computations. We start from the timetable of
Figure 4.1 for which the use variables corresponding the our potential crossing area are
computed at each unit of time in Table 4.5. We observe in particular that as there are no
upstream slots in the timetable, then use variables ucro[B−DtoB] and ucro[B−CtoB] equal 0 at
all time units. Now, looking at the blue squares of Figure 4.2, we observe that the two
relevant positions of this study, corresponding to the downstream slots of the considered
timetable, are located at the top-left and bottom-left part of the blue squares. Let us
focus on a given unit of time and on a given blue square clique. We compute the difference
between the use variable and the capacity at each position and we replace these values by
0 if they are strictly negative. Then, we sum these values. The result corresponds to the
conflict of the use variables with respect to the considered blue square clique. However,
other blue square cliques could be more permissive for our use variables. Therefore, we do
the same computations considering the other blue square cliques, still for the same unit
of time. Finally, the minimal conflict value among the computations done for all blue
square cliques is kept, because each blue square clique corresponds to a set of compatible
routes that trains can run simultaneously. We repeat the whole process for all units of
times. In the case of use variables of Table 4.5, it can be established that there are no
crossing conflicts for all time units.

4.2.2 Solution approaches

In Section 4.2.1, we described a function able to compute conflicts between scheduled
slots in a timetable without using tracks assignment knowledge explicitly. About the
computation of the conflicts from a given timetable, we dispose of two methods. First,
we can solve an Integer Linear Program minimising the sum of all conflicts v described
in Section 4.2.1.3. The model is therefore linearised as follows: we replace the "max"

96

operations by "greater than" inequalities for each argument, and we replace the "min"
operations by Big-M forms to be able to select only one blue square clique i.e. the most
permissive one with respect to the use variables corresponding to crossing occupations.
Second, the computations can be done algorithmically by using the provided formulas in
Section 4.2.1.3.

In this section, we present two solution approaches using the conflict evaluation func-
tion of Section 4.2.1 to look for conflict-free timetables where we then use Formulation
(4.1) as a fast oracle to solve tracks assignment. In Section 4.2.2.1, we briefly describe
a variables and constraints generation approach that we believe to be a promising ap-
proach but that however needs more investigations on its components in order to become
tractable. We improve the problem resolution by proposing a second method that con-
sists in an adaptive heuristic embedded in a tabu search framework described in Section
4.2.2.2. A didactic execution of this heuristic on the toy example instance is proposed
in Section 4.2.2.3. Finally, experimental results on our largest Savoie area instance are
provided in Section 4.2.3.

4.2.2.1 Using variables and constraints generation

We present a first solution approach to obtain conflict-free timetables without using tracks
assignment decisions. This approach consists to begin with a small number of variables
and constraints and to include new columns and rows to the model as necessary. A
flowchart illustrating the method is given in Figure 4.3. We start by describing the
Timetabling Problem at the centre of the figure.

Figure 4.3: Variables and constraints generation procedure.

97

Timetabling problem. In the Timetabling problem, we solve a model similar to For-
mulation (4.1) but without the tracks assignment variables and without the safety head-
way constraints. Instead, we include the conflict evaluation function of Section 4.2.1 as
the objective function to be minimised. Another particularity is that the slot starting
times variables cannot take any value at the beginning of the procedure. Instead, each
slot has its own candidate starting times set that are progressively filled by the Adaptive
heuristic and by the Rotation problems that we describe later on. The Timetabling prob-
lem provides a starting time to each slots among their candidate starting time set such
that the objective function is minimised. If the objective value is strictly positive, we
saw in Section 4.2.1 that it means the presence of conflicts and then the impossibility to
launch the Tracks assignment problem. In this case, capacity cuts are added to the model
in the form of hard constraints to prevent a set of starting times to take values leading to
the same resulting conflicts in the objective function. The next step is to add new values
to some candidate starting times sets in order to attempt improving the solutions in the
next iteration of the Timetabling problem.

Adaptive heuristic and Rotation problems. The goal of the adaptive heuristic is
to schedule greedily as much slots as possible with the full range of possible starting
times and while enforcing the objective value to remain 0 and activating the current
capacity cuts. The heuristic is adaptive in the sense that at each iteration, the priority list
determining slots to be scheduled change depending on the emptiness of their candidate
starting times set and on the decreasing number of capacity cuts they are involved in.
When the largest scheduled subset of slots satisfying the capacity cuts is found, then the
objective value is not enforced anymore to equal 0 and the partial timetable obtained
is fixed. The rotation problem 0 aims at providing a starting time to the potential
remaining slots among their candidate starting times set while minimising the objective
function. The resulting objective value is recorded and the subsequent rotation problems
will attempt to improve it. In the rotation problem 1, the partial fixed timetable is shifted
by one minute later, and a starting time for the potential remaining slots is again checked
among their candidate starting times set. The procedure is repeated with the following
rotation problems for which the initial partial timetable from the adaptive heuristic is
always more shifted. The rotation problem with the best objective value allows to fill
the candidate starting times sets with the values of the corresponding shifted partial
timetable. If the objective value of the Timetabling problem is still strictly positive when
using the augmented candidate starting times sets, then new capacity cuts are added and
the heuristic is restarted with the updated priority list of slots to be scheduled first.

98

Drawbacks and possible improvements. This approach was able to solve the toy
example instance. However, when testing it on our real-world instances, it turned out
that the Timetabling problems have become intractable after already few iterations. We
suppose that adding the capacity cuts as hard constraints do not make this approach
simpler to solve than the original Formulation (4.1), and that the values added to the
candidate starting times sets are not impacting enough to obtain conflict-free solutions
fast. We take these observations into consideration and propose an improved method in
Section 4.2.2.2 that makes a smarter use of the conflict evaluation function of Section
4.2.1.

4.2.2.2 A tabu search heuristic to minimise the conflicts

We present a second solution approach to obtain conflict-free timetables without us-
ing tracks assignment decisions. Contrary to the previous approaches, additional hard
constraints are not considered any more and the full range of starting times is always
considered in this new approach. The procedure is illustrated in Figure 4.4.

Figure 4.4: Tabu search conflict minimisation heuristic.

Constructive heuristic. The procedure begins with a constructive heuristic. At each
step, a slot is selected and a starting time is chosen for this selected slot such that the
value of conflict evaluation function increases as less as possible. The heuristic is greedy,
so the remaining slots are scheduled step by step without modifying the schedule of the
previous slots. When the heuristic scheduled all the slots, the conflict evaluation value
can equal 0. In this case, the tracks assignment is performed by solving Formulation (4.1)
with the timetable provided by the heuristic. If however the conflict evaluation value is
strictly positive, then we enter in the tabu search framework in order to solve the existing
conflicts.

Local move. In order to solve the conflict and thus decrease the conflict evaluation
value, we select the slot that is involved in the maximal number of conflicts. We then
search to minimise the conflict evaluation function by finding the best new starting time
for the selected slot. We call this action a local move as it allows to navigate from
one solution to another by modifying the starting time of a slot. When a local move is

99

performed on a slot, the combination of this local move with the given slot becomes tabu
i.e. it is not immediately possible to modify the timetable using the same slot.

Tabu parameters update. A tabu countdown associated to each combination of local
moves and slots is decreased at each iteration until being equal to 0. When the tabu
countdown of a combination is equal to 0, it means that the associated local move can be
performed again on the associated slot. The tabu duration at which the tabu countdown is
initialised when a local move is performed on a slot may increase each time that the same
combination of a local move on a given slot is performed. These tabu durations updates
allow to escape potential local optima where the same local moves could be selected
again and again. Moreover, we also increase a multiplicative coefficient associated to the
remaining conflicts in which the modified slot is still involved, in order to concentrate
in hard conflicting areas on the infrastructure. If all conflicts are resolved, the tracks
assignment oracle can be launched. In the following, we show how this tabu search
framework can be applied on the toy example instance.

4.2.2.3 Heuristic execution on the toy example instance

We described a conflict evaluation function and solution approaches to obtain conflict-
free timetables without using tracks assignment variables explicitly. In this section, we
present a didactic execution of our tabu search framework on the toy example instance
of Section 3.3.1. This resolution is provided for 3 purposes. First, conflicts between slot
will naturally occur and they will be visualised on the infrastructure by displaying the
corresponding conflicts variables v. Second, this resolution gives a detailed view of the
heuristic mechanism introduced in Section 4.2.2.2. Third, we will see that the conflict-
free timetable obtained allows to find a tracks assignment satisfying all the constraints of
Formulation (4.1).

Initialisation. Our solution approach normally begins by a constructive heuristic aim-
ing at attributing starting times to slots in a greedy way while minimising the conflict
evaluation value for each slot added to the timetable. However, for this instance, the
constructive heuristic provided a timetable for which the conflict evaluation value already
equalled 0. In order to show how the tabu framework is applied, we therefore propose to
start from an initial solution obtained with random starting times. This initial solution
and the resulting heuristic state are presented in Table 4.6 and counts 17 conflicts in total.
These conflicts will be addressed by our tabu framework that works as follows. The tabu
countdown of each slot is equal to 0 i.e. the local moves associated to each slots can be
used. The tabu duration of each slot is initialised to value 1, thus the tabu countdown
of a slot will take value 1 as soon as the local move associated to this slot is used. At

100

each iteration of the procedure, a tabu duration may be increased in order to increase the
tabu countdown if the same local move is selected in a future iteration. We observe that
among the 17 conflicts aforementioned of this timetable, each slot can be involved in some
of these conflicts. The sum of the values in last line of Table 4.6 is not necessarily equal
to the total number of conflicts in the timetable, because several slots can be involved
in a same conflict. We select the slot on which we will perform a local move in the first
iteration. The selected slot is the one involved in the largest weighted sum of conflicts.
By weighted, we mean that we take into account the multiplicative coefficient associated
to any conflict variable, as specified in last the paragraph of Section 4.2.2.2. We observe
that slots s0 and s1 are involved in the same amount of conflicts. The tabu countdown of
these to slots is equal to 0, so we can apply a local move either on slot s0 or on slot s1.
Here, we arbitrarily select s0, but it would have been possible to select one of these two
slots randomly or using other tie breaking rules. The full timetable of slot s0, determined
by its starting time, is given in Figure 4.5. We also provide a visualisation of the conflicts
in which slot s0 is involved. More precisely, from Table 4.7 we observe that simA−B,
computed by −→u reu[A−B] ∗←−u reu[A−B], is equal to 1 from time 4 to time 10, thus explaining
8 conflicts in which slot s0 is involved. Looking at Table 4.8, we can see that −→u reu[B] is
strictly greater than

←−−→
CapB +

−−−→
CapB at time 10, thus clarifying the ninth conflict in which

slot s0 is involved.

Table 4.6: Heuristic state after the initialisation, slot s0 is involved in the maximal number of
conflicts.

Slots s0 s1 s2 s3 s4 s5 s6 s7

Starting time 2 17 4 15 13 11 6 13

Tabu countdown 0 0 0 0 0 0 0 0

Tabu duration 1 1 1 1 1 1 1 1

Conflicts involved in 9 9 4 8 0 0 2 8

Table 4.7: Slot s0 involved in 8 conflicts in the single track line section A− B.

Infra.
element

Time
3 4 5 6 7 8 9 10 11 12

Slot

∆reu

A− B

s0

s1
−→u reu[A−B] 1 1 1 1 1 1 1 1 1 0
←−u reu[A−B] 0 1 1 1 1 1 1 1 1 1
vA−B 0 1 1 1 1 1 1 1 1 0

101

Figure 4.5: Initial timetable of slot s0 involved in 9 conflicts out of 17 in total in the complete
timetable.

Iteration 1. We selected slot s0 to perform a local move, which consists in finding a
better starting time for this slot such that the overall timetable conflicts are minimised.
The new starting time of s0 after this local move is 14 instead of 2, and the amount of
conflicts passed from 17 to 8. However, even if the new starting time of slot s0 minimises
the overall conflicts in the timetable, we can observe in Figure 4.6 and in Table 4.9 that
slot s0 is still involved in 2 residual conflicts in the potential crossing area between sections
B, B−D and B− C. Indeed, if we look at top-left and at the bottom-right positions of
the blue square cliques in Figure 4.2, we observe that a train running from section B to

Table 4.8: Slot s0 involved in 1 conflict at station B.

Infra.
element

Time
6 7 8 9 10 11 12 13 14

Slot

∆reu

B

s0

s2

s6
−→u reu[B] 1 1 2 2 3 2 2 1 1
vB 0 0 0 0 1 0 0 0 0

102

section B−D and two other trains running from section B− C to B are never allowed
to take such routes too close in time. Therefore, when applying the last formula given in
Section 4.2.1.3 on the potential crossing area between sections B, B−D and B− C, we
obtain 1 crossing conflict from time 1 to time 2.

Figure 4.6: After the local move of the first iteration, slot s0 is still involved in crossing conflicts
between sections B, B−D and B− C.

Because slot s0 is still involved in conflicts after the application of a local move to
this slot, we increase the multiplicative coefficient associated to these conflicts. The con-
sequences of this action is a degradation of the conflict evaluation value of the timetable,
and in particular for slot s0 but also for slots s3 and s7 that are involved in the discussed
crossing conflicts as well. The goal of this multiplicative coefficient increase is to give more
focus on the identified conflicts in order to select future local moves that should be more
likely to solve them in the next iterations. Table 4.10 presents the updated heuristic state
at the end of the first iteration of the procedure. We observe that the tabu countdown of
slot s0 is updated to value 1. Therefore, it would have been impossible to perform a local
move on slot s0 if it has been involved in the maximum amount of conflicts. At each new
iteration of the procedure, the strictly positive tabu countdowns will be decremented. We
also increased the tabu duration of slot s0, thus the tabu countdown of this slot will be
updated to value 2 the next time a local move will be applied on it. Among the slots for
which the tabu countdown equals 0, those involved in the maximal amount of conflicts

103

Table 4.9: Slot s0 still involved in 2 crossing conflicts between sections B, B−D and B− C.

Infra.
element

Time
0 1 2 3 4 19

Slot

∆cro

B|B−D

/B− C

s0

s3

s7

ucro[B to B−D] 0 1 1 1 1 0
ucro[B−C to B] 1 2 2 1 1 1
vB|B−D/B−C 0 1 1 0 0 0

are slots s3 and s7. Again, we select a slot arbitrarily between these two, in this case we
select s3. The starting time of slot s3 will then be modified at the next iteration in order
to attempt improving the conflict evaluation value of the timetable.

Table 4.10: Heuristic state after the first iteration, slot s3 is involved in the maximal number of
conflicts.

Slots s0 s1 s2 s3 s4 s5 s6 s7

Starting time 14 17 4 15 13 11 6 13

Tabu countdown 1 0 0 0 0 0 0 0

Tabu duration 2 1 1 1 1 1 1 1

Conflicts involved in 6 2 3 9 0 0 1 9

Iteration 2 and tracks assignment. We repeat instructions executed in the last
iteration from the updated heuristic state presented in Table 4.10. The updated starting
time of slot s3 is 0 instead of 15. As a result, there is no more conflict in the timetable
and Table 4.11 presents the last heuristic state, obtained after the second iteration. At
this point of the procedure, a conflict-free timetable has been found without using tracks
assignment variables explicitly. Hence, we are now able to launch the tracks assignment
module that consists to solve Formulation (4.1) while fixing the starting time variables
provided by Table 4.11. A feasible solution returned by solving this problem by an off-the-
shelf solver correspond tho the timetable with mesoscopic tracks assignment presented in
Figure 3.6.

104

Table 4.11: Heuristic state after the second iteration, no conflicts remain.

Slots s0 s1 s2 s3 s4 s5 s6 s7

Starting time 14 17 4 0 13 11 6 13

Tabu countdown 0 0 0 1 0 0 0 0

Tabu duration 2 1 1 2 1 1 1 1

Conflicts involved in 0 0 0 0 0 0 0 0

4.2.3 Experimental results

We present the performance of our tabu search heuristic in solving the Savoie area instance
with the largest number of slots presented in Section 3.3.3. The heuristic is executed in
two distinct implementations in C++. The first implementation uses the IBM Concert
Technology and CPLEX 12.10 to execute the local moves, as briefly commented at the
beginning of Section 4.2.2. The second implementation uses dedicated algorithms to
compute each local move and tabu parameter updates. In this second implementation,
CPLEX 12.10 is used for the tracks assignment when a conflict-free timetable with respect
to the conflict evaluation function has been found. The experiments are performed on a
computer running under Windows 10, 64 bits with a i5-8265U CPU at 1.60-1.80 GHz and
24 Go of RAM. Table 4.12 summarises the performance of the two implementations. We
resolved conflicts of 20 randomly initialised timetables.

Table 4.12: Performance of the heuristic to find a conflict-free solution for the decision problem
on the second Savoie area instance with 20 random initial solutions and using the constructive
heuristic.

Tabu search Using CPLEX 12.10 Using dedicated algorithms

Initial conflicts #iterations time/it (min) #iterations time/it (sec)

Average on 20 random
≈ 468 ≈ 40 > 5 24

< 4
initial solutions

Using the
28 14

constructive heuristic

It turns out that several minutes to compute each local move while our dedicated
algorithms are able to compute a local move in few seconds only. Indeed, the linearised
max and min operators of formulas described in Section 4.2.1.3 might be challenging to
be solved to optimality when asking the solver to modify the starting time of a slot. Also,
we remark that using our algorithms, less iterations of the procedure are needed to find
conflict-free solutions. This can be explained because the Savoie area instances have a

105

period of one hour and a time granularity of half a minute, resulting in 120 time steps.
Therefore, several locally optimal solutions could exist for a given local move, and it may
appear that the two implementations do not find the same optimal solution, resulting
in significantly different executions in the next iterations. We tried to start the tabu
framework from a solution obtained by our constructive heuristic, having less conflicts in
average than the randomly initialised solutions. We observe that using the constructive
heuristic initial solution, less iterations of the tabu framework are needed in average to
find a conflict-free solution than when starting from a randomised solution.

Note that we slightly modified the conflict evaluation function by creating additional
artificial trigerrable conflicts before executing the experiments presented above. We indeed
had to face some situations where timetables were evaluated with no conflicts, but for
which the tracks assignment was not possible. We analysed these issues and they resulted
in more extended crossing conflicts that are not yet captured in our model and appearing
notably around Saint-André-le-Gaz, Aix-les-Bains and Montmélian stations. We discuss
and treat these extended constraints in Section 5.1.3.1.

4.3 Conclusion

In this chapter, we presented an Integer Linear Programming formulation inspired from
the literature to solve the periodic Train timetabling with mesoscopic tracks assignment
problem. In order to solve larger instances, we decomposed the problem by deciding first
the slot starting times and then the tracks assignment. To do so, we introduced a conflict
evaluation function able to detect most of the conflicts between slots without using tracks
assignment knowledge explicitly. The conflict resolution method of Reisch et al. (2021)
[152] inspired the solution approaches that we proposed to address the problem. Our
tabu search framework using dedicated algorithms is able to solve our largest Savoie area
instance in about two minutes.

The present work is open to several future improvements that we summarise. First,
it could be investigated how we can extend valid inequalities of the literature presented
in Section 2.2.1 to the case of periodic timetabling problem with mesoscopic tracks as-
signment in order to strengthen Formulation (4.1). Second, our variables and constraints
generation method could be improved, for example by banning conflicts as proposed in
Fuchs et al. (2022) [78] and by conceiving procedures that generate relevant new start-
ing time values for slots. Third, our methods should be extended to take into account
headways that can variate depending on train orderings and on traversed infrastructure
elements. Fourth, we would like to refine our conflicts evaluation in order to propose more

106

accurate conflict-free timetables for which a tracks assignment is effectively obtained. We
would like to solve more challenging instances on complex topologies for which a tracks
assignment heuristic could be necessary. Finally, we want to investigate a wider range of
local moves in our tabu framework in order to obtain conflict-free schedule in less iter-
ations and computation time. In particular, we consider a future local move consisting
in shifting the starting times of several slots at once. We hope that our contributions
give new perspectives to railway researchers and that we will extend the present work as
proposed in the future.

107

4.A List of Symbols

The Table 4.13 summarises symbols and notations used in this chapter.

Table 4.13: Signification of symbols and notations used in Chapter 4.

Symbol Meaning

T Time period

SI Service Intention, set of bidirectional lines to be timetabled within period T

S = Sl ∪ St Set of sections, partitioned in the set of line sections and the set of stations

Ks Set of mesoscopic tracks of section s

Dk ⊆ {+,−},d() Set of possible running directions on track k and running direction of a slot operand, respectively

R = R+ ∪R− Set of mesoscopic routes, partitioned by direction

Z Set of zones, a partition of S

< z1, z2 > A bizone containing mesoscopic routes in any direction between z1 and z2

I, Ji and Ji− Set of slots, set of operations of slot i and set of operations of slot i except the last one, respectively

oi,j , pi,j , si,j and ti,j Operation j of slot i, its known duration, the section on which it is processed and its starting time, respectively

| | Cardinal of a set operand inside the symbol

Ki,j = {1, . . . , |Ksi,j |} Set of alternative tracks for operation oi,j

xi,j,k Assignment of track k for operation oi,j

∆spa,∆reu and ∆cro Spacing, reuse and crossing safety headways, respectively

zi,i′,j,j′ Boolean variable equalling 0 if ti,j ≤ ti′,j′ and 1 otherwise

ys,i,i′,k Boolean variable equalling 1 if (xi,j,k AND xi′,j′,k) equals 1, and 0 otherwise

ycro
i,i′,j,j′,k1,k2,k3,k4

Boolean variable equalling 1 if routes (k1, k2) and (k3, k4) between

assigned tracks xi,j,k1
, xi,j+1,k2

, xi′,j′,k3
and xi′,j′+1,k4

are incompatible

M Arbitrarily large value to linearise disjunctive constraints using so-called Big-M forms
−→u spa[s] Use variables corresponding to spacing occupations in the downstream direction on section s

←−u spa[s] Use variables corresponding to spacing occupations in the upstream direction on section s

−→u reu[s] Use variables corresponding to reuse occupations in the downstream direction on section s

←−u reu[s] Use variables corresponding to reuse occupations in the upstream direction on section s

ucro[s to s′] Use variables corresponding to crossing occupations from section s to section s′

Caps Global tracks capacity at section s, equalling |Ks|
←−→
Caps Number of tracks of section s that can be run in both downstream and upstream directions
−−−→
Caps Number of tracks of section s that can be run in downstream direction only
←−−−
Caps Number of tracks of section s that can be run in upstream direction only

vs Conflicts detected at section s

sims Expression defined by −→u reu[s] ∗←−u reu[s]

va Conflicts detected in the potential crossing area a where mesoscopic routes connect sections of a bizone

108

109

Chapter 5

Constraint Programming approach

In this chapter, we present approaches based on Constraint Programming to solve the
rolling stock turnover times optimisation problem stated in Section 3.2.2. In Section 5.1,
we present a constraint-based model formulation and enhancements such as extended
crossing constraints, filtering algorithms, lower bounds, and a constraints strengthening
procedure. A Branch-and-Check framework to solve the problem is described in Section
5.2. Finally, Section 5.3 reports experimental results on Savoie area instances centred
around Chambéry station presented in Section 3.3.3. The decision problem of Section
3.2.1 is solved in few seconds with our Constraint Programming approach, a result which
has motivated the extension to the optimisation problem presented in this chapter.

Contents
5.1 Modelling the problem as a Constraint Optimisation Problem111

5.1.1 Periodic operations . 111

5.1.2 Model formulation . 112

5.1.3 Model enhancements . 114

5.2 Branching strategies . 123

5.3 Experimental results . 126

5.4 Conclusion . 130

5.A List of Symbols . 131

110

5.1 Modelling the problem as a Constraint Optimisa-

tion Problem

We model the problem described in Section 3.2.2 as a Constraint Optimisation Problem
using interval variables to represent operations of slots. Interval variables are defined by
start and end times, and deal with a presence status that can either be present, absent or
unfixed. In Section 5.1.1, we present how periodicity is tackled at the level of one oper-
ation of a slot. Then, the model is described in Section 5.1.2, showing how the presence
status of interval variables is a natural way to represent tracks assignment. Section 5.1.3
details model enhancements including extended crossing constraints, dedicated filtering
algorithms, lower bounds and a strengthening constraints procedure.

5.1.1 Periodic operations

Each slot of the SI is composed by operations to be assigned on mesoscopic tracks, given
that operation j of slot i has a known duration pi,j, i ∈ I, j ∈ Ji. Since the timetable
to be produced is periodic, it is frequent that operations of a same slot are scheduled
within more than one period. Even considering only one operation, it may occur that
ti,j + pi,j > T so the operation itself straddles to consecutive periods. In such cases and
assuming pi,j < T , then the end time of oi,j is lower than its start time due to periodicity.
However, the start time of an interval variable is conceptually lower or equal than its end
time. In order to model operations generically while capturing periodicity when needed,
we always model an operation oi,j relating two interval variables αi,j and βi,j to create a
seamless higher level object: the periodic operation. This structure is illustrated in Figure
5.1, where pi,j remains constant in all cases and ti,j varies.

Figure 5.1: Periodic operation oi,j of constant duration pi,j , highlighted as a green dashed rect-
angle in the 3 cases depending on the value of ti,j .

Variables pαi,j and pβi,j represent the length of interval variables αij and βi,j, respectively.
Equality pi,j = pαi,j+pβi,j always holds. The idea is to maximise pαi,j such that the end time

111

αi,j never exceeds T . As a result, pβi,j = 0 in the two firsts cases. As αi,j is executed until T
in cases 2 and 3, βi,j is then executed from time 0. The latter particularity facilitates the
expression of precedence constraints between periodic operations. Constraints allowing
this behaviour are derived in Section 5.1.2. From Figure 5.1, we remark that properties
end(αi,j) ≥ pi,j and end(βi,j) ̸= T always hold.

5.1.2 Model formulation

We use optional interval variables αi,j,k and βi,j,k to represent the assignment of operation
oi,j on one of the tracks k ∈ Ki,j for all i ∈ I and j ∈ J . The start and end times of
the chosen optional interval variables are then synchronised with the start and end times
of αi,j and βi,j. The constraint-based formulation of the periodic train timetabling with
mesoscopic tracks assignment problem optimising the turnover times at terminus stations,
reads:

Minimise
∑

(i,i′,s)∈Ls,s∈St

csi,i′(q
s
i,i′) (5.1a)

s.t.: qsi,i′ = (ti′,2 − ti,ni
+ T) % T, ∀(i, i′, s) ∈ Ls, s ∈ St (5.1b)

pr(αi,ni,k) = pr(αi′,1,k),∀(i, i′, s) ∈ Ls, s ∈ St,∀k ∈ Ki,ni (5.1c)

end(αi,j) = min(T, ti,j + pi,j),∀i ∈ I, ∀j ∈ Ji (5.1d)

start(βi,j) = end(αi,j) % T, ∀i ∈ I, ∀j ∈ Ji (5.1e)

end(βi,j) = (ti,j + pi,j) % T, ∀i ∈ I, ∀j ∈ Ji (5.1f)

alternative(αi,j , {αi,j,1, . . . , αi,j,|Ksi,j
|}),∀i ∈ I, ∀j ∈ Ji (5.1g)

synchronise(βi,j , {βi,j,1, . . . , βi,j,|Ksi,j
|}),∀i ∈ I, ∀j ∈ Ji (5.1h)

pr(αi,j,k) = pr(βi,j,k),∀i ∈ I, ∀j ∈ Ji,∀k ∈ Ki,j (5.1i)

startAtEnd(αi,j+1, βi,j),∀i ∈ I, ∀j ∈ Ji− (5.1j)

d(i) /∈ Dk ⇒ setAbsent(αi,j,k),∀i ∈ I, ∀j ∈ Ji,∀k ∈ Ki,j (5.1k)

112

pr(αi,j,k)⇒!pr(αi,j+1,k′),∀i ∈ I, ∀j ∈ Ji−,∀k ∈ Ki,j ,∀k′ ∈ Ki,j+1, (k, k
′) /∈ R (5.1l)

!pr(αi,j,k) || !pr(αi′,j′,k) || ((ti,j − ti′,j′ + T) % T ≥ ∆spa && (ti′,j′ − ti,j + T) % T ≥ ∆spa),

∀i ̸= i′ ∈ I, d(i) = d(i′),∀j ∈ Ji,∀j′ ∈ Ji′ , si,j = si′,j′ , si,j ∈ Sl,∀k ∈ Ki,j (5.1m)

!pr(αi,j,k) || !pr(αi′,j′,k) || ((ti,j − ti′,j′ + T) % T ≥ pi′,j′ +∆reu && (ti′,j′ − ti,j + T) % T ≥ pi,j +∆reu),

∀i ̸= i′ ∈ I, ∀j ∈ Ji,∀j′ ∈ Ji′ , si,j = si′,j′ , si,j ∈ St || d(i) ̸= d(i′), (i, i′, si,j) /∈ Ls,∀k ∈ Ki,j (5.1n)

!pr(αi,j,k) || !pr(αi,j+1,k′) || !pr(αi′,j′,k′′) || !pr(αi′,j′+1,k′′′) ||
(ti,j+1 − ti′,j′+1 + T) % T ≥ ∆cro

(ti′,j′+1 − ti,j+1 + T) % T ≥ ∆cro

,

∀i ̸= i′ ∈ I,∀j ∈ Ji−,∀j′ ∈ Ji′−1,∀k ∈ Ki,j ,∀k′ ∈ Ki,j+1,∀k′′ ∈ Ki′,j′ ,∀k′′′ ∈ Ki′,j′+1, (5.1o)

r1 = (k, k′), r2 = (k′′, k′′′) ∈ R, r1 and r2 not compatible

var.: αi,j and βi,j are present interval variables, ∀i ∈ I, ∀j ∈ Ji (5.1p)

ti,j = start(αi,j) ∈ {0, . . . , T − 1}, end(αi,j) ∈ {pi,j , . . . , T},∀i ∈ I, ∀j ∈ Ji (5.1q)

start(βi,j) ∈ {0, . . . , T − 1}, end(βi,j) ∈ {0, . . . , T − 1},∀i ∈ I,∀j ∈ Ji (5.1r)

αi,j,k and βi,j,k are optional interval variables, ∀i ∈ I, ∀j ∈ Ji,∀k ∈ Ki,j (5.1s)

The objective function (5.1a) minimises the total cost induced by the turnover times
at terminus stations. Symbol % stands for the modulo operation between two positive
expressions on its sides. Constraints (5.1b) define expressions qsi,i′ of turnover times at
terminus station s between the start of the last operation of slot i (i.e. arriving at station
s) and the start of the second operation of slot i′ (i.e. departing after dwelling at station
s) for each (i, i′, s) in Ls, s in St. Constraints (5.1c) make the last operation of an arrival
slot at its terminus station s having the same presence status on track k as that of the
first operation of the linked departing slot, for all tracks of station s. Indeed, symbol
pr() is a constraint that equals true if the interval variable in argument is set present and
equals false if the interval variable in argument is set absent. Note that we make use of
dedicated filtering algorithm to apply two additional families of constraints on turnover
times at terminus stations. First, we constrain qsi,i′ to be greater or equal than µfeas. Sec-
ond, we prevent operations of other slots from occupying the same track at station s as
that of slots i and i′ while their rolling stock dwells on it.

Constraints (5.1d) to (5.1f) link the interval variables of each operation oi,j so that

113

they implement the periodic behaviour described in Section 5.1.1.

Constraints (5.1g) to (5.1i) enforce the assignment of a unique track for all operations
oi,j among the tracks of si,j. More precisely, constraints (5.1g) ensure that only one interval
variable in {αi,j,1, . . . , αi,j,|Ksi,j |} is present while the other are absent, and that the chosen
interval variable has the same start and end times as that of αi,j. Constraints (5.1h) make
all present interval variables in {βi,j,1, . . . , βi,j,|Ksi,j |} having the same start and end times
as that of βi,j. Finally, constraints (5.1i) make that the only present interval variable in
{βi,j,1, . . . , βi,j,|Ksi,j |} corresponds to the interval variable in {αi,j,1, . . . , αi,j,|Ksi,j |} selected
in constraint (5.1g).

Constraints (5.1j) are the precedence constraints between the periodic operations of
the slots. Constraints (5.1k) and (5.1l) prevent slots from running on tracks in a not com-
patible direction and from running on successive tracks between which no route exists,
respectively.

Constraints (5.1m) to (5.1o) are operational constraints that implement capacity con-
sumption on the infrastructure using safety headway introduced in Section 3.1.1.3, with
symbol ! standing for the negation symbol || standing for the disjunction. More precisely,
constraints (5.1m) are the spacing constraints ensuring that any two slots can access a
same line track on the same direction with a time difference greater or equal to ∆spa.
Constraints (5.1n) are the reuse constraints applying on station tracks for any two slots
of any direction and on line tracks for any two slots running in the opposite direction. In
those conditions, reuse constraints allow a slot to occupy a track at least ∆reu units of
time after a previous slot has cleared the track. Note that reuse constraints do not apply
on two slots linked at a terminus station and sharing the same rolling stock. Finally, con-
straints (5.1o) are the crossing constraints ensuring that any two slots are able to run on
incompatible routes if and only if they access those routes with a time difference greater
than or equal to ∆cro. The presence of interval variables on the four tracks forming the
incompatible routes activates this constraints. Note that we can also detect incompati-
bility between two routes of a bizone if they share a common track, thus requiring the
presence of only two interval variables to activate the constraint.

5.1.3 Model enhancements

In this section, we describe techniques to improve the model formulated in Section 5.1.2.
Among those enhancements, extended crossing constraints that are detected at an up-
per level than constraints (5.1o) are presented in Section 5.1.3.1. Dedicated filtering
algorithms implementing feasibility-led dominance rules to deal with time periodicity are

114

detailed in Section 5.1.3.2. Lower bounds that speed-up the optimality proof are explained
in Section 5.1.3.3. Finally, a constraint strengthening procedure inspired from Kümmling
et al. (2016) is presented in Section 5.1.3.4.

5.1.3.1 Extended crossing constraints

We saw in the model and in Figure 3.1 that crossing constraints are activated whenever
two slots take incompatible routes of a same bizone. However, in some particular infras-
tructure configurations it is possible to detect induced routes incompatibility at an upper
level because of sections in which slots circulate.

Figure 5.2: Detection of infeasible schedules without tracks assignment by using extended cross-
ing constraints. We know that at least one route incompatibility will occur on bizones around
Saint-André-le-Gaz station (zone 2) between slot a to Grenoble and slot b from Chambéry, for
any tracks assignment at Saint-André-le-Gaz station. Horizontal axis represents relative time
from a time t. Periodicity still holds, thus the end of period T could either occur at any time
in {t, . . . , t + 22} or outside of this scope. Left part: oa,1 starts at time t and ob,1 starts rela-
tively as late as possible such that crossing headway times of the two slots still overlap over at
least one unit of time both on bizones < 1, 2 > and < 2, 3 >. As there are not simultaneous
compatible routes on both bizones for those slots, then this case leads to an infeasible schedule
or an opportunity to reduce starting times domains without using tracks assignment knowledge.
Right part: The same logic applies when scheduling slot b first and relatively delaying slot a
as much as possible such that the conflict is still present. Note that 5 other intermediary cases
leading to infeasible schedules between the two illustrated extreme cases are also detected.

Let us consider in Figure 5.2 a downstream slot a from Lyon to Grenoble and an
upstream slot b from Chambéry to Lyon, both dwelling to during 4 time units at Saint-
André-le-Gaz station and running 7 time units in line sections. Moreover, we will take
8 time units as a value for ∆cro. Since line sections 1 and 3 are one-way double tracks
and line section 4 has a single track, we deduce that slot a runs on track 1 at in line
section 1 and on track 7 in line section 3, and that slot b runs on track 9 in section 4 and
on track 2 in section 1. At station 2, a choice remains to be made among tracks 3 to 5
for slot a and among 3 to 6 for slot b. Without making this choice and considering the
crossing constraints of the model described in Section 5.1.2, no deduction can be made on
starting times of operations of slot b even if starting times of operations of slot a are fixed.

115

We remark there are compatible routes in bizone < 1, 2 > (e.g. routes (1,3) and (5,2))
and in bizone < 2, 3 > (e.g. routes (5,7) and (9,4)). However, those routes cannot be run
by slots a and b because downstream routes (1,3) and (5,7) don’t share the same track
in station 2, and because upstream routes (9,4) and (5,2) neither. In fact, it can be seen
in Figure 3.1 that if any allowed tracks are chosen at station 2 for slots a and b, then
this would always imply routes incompatibility at least on one of bizones < 1, 2 > and
< 2, 3 >, or even on both bizones. We can take advantage of this knowledge to perform
domain reductions on the starting time variables of operations of slots a and b. Figure 5.2
illustrates this phenomenon. Exploiting the fact that no tracks assignment for slots a and
b can ensure routes compatibility on both sides of zone 2, then fixing the start time of oa,1
e.g. at time 0 allows to forbid ob,1 from starting at times in {T − 3, T − 2, T − 1, 0, 1, 2, 3}
without using information on tracks assignment in zone 2.

5.1.3.2 Improving propagation using dedicated filtering algorithms

With the model of Section 5.1.2 at hand, we can use a CSP solver to solve instances of
the problem described in Section 3.2.2. We can also verify propagation quality of specific
constraints of the model, and to improve the propagation process conceiving dedicated
filtering algorithms when we observe that more deductions should be performed. In the
following, we will describe a filtering algorithm dedicated to a family of constraints to
manage propagation issues due to time periodicity. Then, we will mention other families
of constraints that we either improve or create using additional filtering algorithms.

Periodic operations constraints We now focus on the propagation behaviour of start
and end times of periodic operations of a slot when they are scheduled near the end of
period T . More precisely, we will resolve a situation where the domain of the start time
of αi,j (resp. the domain of the end time of βi,j) is not fully propagated to the domain
of the end time of βi,j (resp. to the domain of the start time of αi,j) so the propagation
is not performed on the successive (resp. preceding) operations of the slot. We consider
an operation oi,j of known duration pi,j = 3 and for which the start time is constrained
such that ti,j ∈ {T − 7, . . . , T − 2} so we are not able to decide in which of the 3 cases
of Figure 5.1 it corresponds. Then we know that start(αi,j) ∈ {T − 7, . . . , T − 2}, and
we look at the effect of the propagation of constraints (5.1d) to (5.1f) on the domains
of end(αi,j), start(βi,j) and end(βi,j). We expect that the size of the domain of variable
end(βi,j), domain which is shared with variable start(αi,j+1) after application of precedence
constraints (5.1j), should be equal to the size of the domain of variable start(αi,j). Table
5.1 reports the state of the domains that we expect to obtain for those variables and
the state of the domains that we obtain in practice using the propagation of a solver for

116

which the inference level has been parameterised to Extended value. We observe that
in practice, no values have been removed from the domains of variables start(βi,j) and
end(βi,j). Since values 0 and T − 1 are elements of the expected propagated domains
of those variables, we can deduce that the solver achieves bound-consistency, i.e. if two
values are consistent with respect to the constraints, then all values in between are also
conserved. This propagation mode is performed with an economic computational effort,
however in this case there is a loss of knowledge that implies no propagation on time
variables of next operation oi,j+1. Algorithm 1 achieves arc-consistency for the periodic
operations constraints, i.e. expected propagated domains of Table 5.1 are obtained if this
algorithm is used instead or in complement of constraints (5.1d) to (5.1f). Note that the
presented phenomenon is also observed when we know the domain of the end time of a
periodic operation that we try to propagate to its start time. In lines 4 to 17, Algorithm
1 performs forward propagation as follows. For each value in the domain of the start
time of αi,j, we compute the corresponding values of the end time of αi,j (nDomEα),
of the start time of βi,j (nDomSβ) and of the end time of βi,j (nDomEβ). Then, we
update the actual domains of the start time of αi,j and of the start and end times of
βi,j by applying the intersection with sets nDomEα, nDomSβ and nDomEβ respectively.
Backward propagation is performed in the same fashion in lines 20 to 33 by exploring the
domain of the end time of βi,j.

Table 5.1: Expected and practical propagation on domains of variables end(αi,j), start(βi,j) and
end(βi,j) using constraints (5.1d) to (5.1f) given pi,j = 3 and start(αi,j) ∈ {T − 7, . . . , T − 2}.

Variable end(αi,j) start(βi,j) end(βi,j)

Propagated domain Expected {T − 4, . . . , T} {0} ∪ {T − 4, . . . , T − 1} {0, 1} ∪ {T − 4, . . . , T − 1}

In practice {T − 4, . . . , T} {0, . . . , T − 1} {0, . . . , T − 1}

Operational headway constraints Operational headway constraints (5.1m) to (5.1o)
ensure that no two slots are using the same infrastructure resource too close in time. They
apply safety headways ∆spa, ∆reu and ∆cro described in Section 3.1.1.3 between train cir-
culations. Satisfying these constraints prevent any train from meeting a restrictive signal
during its journey. When propagating these constraints, we observed again, as detailed
in the last paragraph, that the propagation performs bound-consistency. That is, if we
consider 2 downstream slots assigned on the same line track, and if we timetable the start
time of the operation of one of those slots on this track, then values will be removed
by propagation of a spacing constraint (5.1m) from the domain of the start time of the
operation of the other slot only if the inconsistent values are located at the extremities of
the domain. We observe the same phenomenon for the propagation of reuse constraints
(5.1n) and crossing constraints (5.1o). We then specify how we can systematically remove

117

Algorithm 1: Maintain arc-consistency on the periodic operations constraints
(5.1d) to (5.1f)
1 Input: Dom(start(αi,j)),Dom(end(αi,j)),Dom(start(βi,j)) and Dom(end(βi,j))
2 Output: updated Dom(start(αi,j)),Dom(end(αi,j)),Dom(start(βi,j)) and Dom(end(βi,j))
3 Initialisation:

nDomSα = ∅; nDomEα = ∅; nDomSβ = ∅; nDomEβ = ∅; geqT = false; lt0 = false;
4 for v ∈ Dom(start(αi,j)) do
5 if v + pi,j < T then
6 nDomEα := nDomEα ∪ {v + pi,j};
7 nDomSβ := nDomSβ ∪ {v + pi,j};
8 nDomEβ := nDomEβ ∪ {v + pi,j};
9 else

10 if !geqT then
11 nDomEα := nDomEα ∪ {T};
12 nDomSβ := nDomSβ ∪ {0};
13 geqT = true;

14 nDomEβ := nDomEβ ∪ {(v + pi,j) % T};

15 Dom(end(αi,j)) := Dom(end(αi,j)) ∩ nDomEα;
16 Dom(start(βi,j)) := Dom(start(βi,j)) ∩ nDomSβ;
17 Dom(end(βi,j)) := Dom(end(βi,j)) ∩ nDomEβ;
18 nDomEα = ∅;
19 nDomSβ = ∅;
20 for v ∈ Dom(end(βi,j)) do
21 if v − pi,j ≥ 0 then
22 nDomSα := nDomSα ∪ {v − pi,j};
23 nDomEα := nDomEα ∪ {v};
24 nDomSβ := nDomSβ ∪ {v};
25 else
26 if !lt0 then
27 nDomEα := nDomEα ∪ {T};
28 nDomSβ := nDomSβ ∪ {0};
29 lt0 = true;

30 nDomSα := nDomSα ∪ {(v − pi,j + T) % T};

31 Dom(start(αi,j)) := Dom(start(αi,j)) ∩ nDomSα;
32 Dom(end(αi,j)) := Dom(end(αi,j)) ∩ nDomEα;
33 Dom(start(βi,j)) := Dom(start(βi,j)) ∩ nDomSβ;

inconsistent values even in the middle of variable domains, maintaining an arc-consistency
for operational constraints (5.1m) to (5.1o). In Figure 5.3, we describe a generic condition
to detect inconsistent values in the domain of constrained start time variables depending
on the specificities of constraints (5.1m) to (5.1o). We then implement an arc-consistency
propagation in the filtering Algorithm 2 using the inconsistent values detection for con-
straints (5.1m) and (5.1o). Note that in lines 6, 14, 23 and 34 of Algorithm 2, we add
another condition to also take into account the special case of the right part of Figure 5.3
where the start time of a constrained variable is fixed. Lines 4 to 20 are devoted to remove
inconsistent values in the domain of the 2 constrained variables, since the presence of the
interval variables activate the constraint. However, in lines 21 to 31 as well as in lines

118

32 to 42, one of the constrained variables is present but the other constrained still have
an undetermined presence status. We then check if the latter variable has a support i.e.
a value in its domain that is not inconsistent. Otherwise, we deduce that the presence
of this latter variable would violated the constraint, thus we can set its status to absent.
Note also that Algorithm 2 is slightly modified while keeping the same idea in the case
of crossing constraints (5.1o): the presence on tracks of up to four interval variables is
managed.

Figure 5.3: Improving the detection of inconsistent values in the domain of variables related to
operational constraints (5.1m) to (5.1o). The spacing, reuse and crossing constraints have slightly
different application contexts, but they all constrain the start time of two periodic operation
variables. If the domain of one constrained variable have γ + 1 values or less and that two
consecutive values v1 and v2 of the domain have at least a distance of T −γ, with γ = δ1+ δ2−2
and δ1 and δ2 depending on the family of constraints, then inconsistent values are detected and
can be removed from the domain of the other constrained variable. Left part: This is an
extreme case where the domain of a constrained variable has exactly γ + 1 values that are all
cyclically contiguous so the extreme values of the domain v1 and v2 have a cyclic distance of
T − γ. Then 1 inconsistent value is detected in the domain of the other constrained variable.
Right part: When the start time of a constrained variable is fixed, then γ+1 inconsistent value
are detected in the domain of the other constrained variable. Many other cases exist between
the 2 illustrated extreme cases. In particular, domains does not need to be contiguous. In
the general case, inconsistent values are detectable whenever 2 cyclically consecutive (but not
necessary contiguous) values v1 and v2 of the domain of a constrained variable have a distance
at least equal to T − γ, what is possible only if the domain contains at most γ + 1 values.

Additional filtering algorithms The filtering algorithms described in the 2 previous
paragraphs allow arc-consistency on constraints (5.1d) to (5.1f) and (5.1m) to (5.1o) to
be maintained. Additionally, we implement filtering algorithms that have the following
purposes not covered by the initial constraints of the model:

• Activate the extended crossing constraints presented in Section 5.1.3.1.

• Prevent any slot to be scheduled on a terminus station track while a rolling-stock
of linked slots is dwelling on this track.

119

Algorithm 2: Sketch of maintain arc-consistency on the operational headway
constraints (5.1m) to (5.1o)
1 Input: initial state of variables αi,j , αi′,j′ , αi,j,k and αi′,j′,k′
2 Output: updated state of variables αi,j , αi′,j′ , αi,j,k and αi′,j′,k′
3 Initialisation: minRemove = 0;maxRemove = 0;
4 if pr(αi,j,k) && pr(αi′,j′,k′) then
5 if |Dom(start(αi,j))| ≤ γ + 1 then
6 if ∃ v1, v2 ∈ Dom(start(αi,j)), (v2 − v1 + T) % T ≥ T − γ, v1 and v2 cyclically consecutive then
7 minRemove = (v1 + 1 − δ1 + T) % T ;
8 maxRemove = (v2 − 1 + δ2) % T ;
9 if minRemove ≤ maxRemove then

10 Dom(start(αi′,j′)) := Dom(start(αi′,j′)) − {minRemove, . . . ,maxRemove};
11 else
12 Dom(start(αi′,j′)) := Dom(start(αi′,j′)) − ({0, . . . ,maxRemove} ∪ {minRemove, . . . , T − 1});

13 if |Dom(start(αi′,j′))| ≤ γ + 1 then
14 if ∃ v′

1, v
′
2 ∈ Dom(start(αi′,j′)), (v

′
2 − v′

1 + T) % T ≥ T − γ, v′
1 and v′

2 cyclically consecutive then
15 minRemove = (v′

1 + 1 − δ1 + T) % T ;

16 maxRemove = (v′
2 − 1 + δ2) % T ;

17 if minRemove ≤ maxRemove then
18 Dom(start(αi,j)) := Dom(start(αi,j)) − {minRemove, . . . ,maxRemove};
19 else
20 Dom(start(αi,j)) := Dom(start(αi,j)) − ({0, . . . ,maxRemove} ∪ {minRemove, . . . , T − 1});

21 else if pr(αi,j,k) && !abs(αi′,j′,k′) then
22 if |Dom(start(αi,j))| ≤ γ + 1 then
23 if ∃ v1, v2 ∈ Dom(start(αi,j)), (v2 − v1 + T) % T ≥ T − γ, v1 and v2 cyclically consecutive then
24 minRemove = (v1 + 1 − δ1 + T) % T ;
25 maxRemove = (v2 − 1 + δ2) % T ;
26 if minRemove ≤ maxRemove then
27 if ∄ v′ ∈ Dom(start(αi′,j′)), v

′ < minRemove || v′ > maxRemove then
28 setAbsent(αi′,j′,k′);

29 else
30 if ∄ v′ ∈ Dom(start(αi′,j′)), v

′ > maxRemove && v′ < minRemove then
31 setAbsent(αi′,j′,k′);

32 else if !abs(αi,j,k) && pr(αi′,j′,k′) then
33 if |Dom(start(αi′,j′))| ≤ γ + 1 then
34 if ∃ v′

1, v
′
2 ∈ Dom(start(αi′,j′)), (v

′
2 − v′

1 + T) % T ≥ T − γ, v′
1 and v′

2 cyclically consecutive then
35 minRemove = (v′

1 + 1 − δ1 + T) % T ;

36 maxRemove = (v′
2 − 1 + δ2) % T ;

37 if minRemove ≤ maxRemove then
38 if ∄ v ∈ Dom(start(αi,j)), v < minRemove || v > maxRemove then
39 setAbsent(αi,j,k);

40 else
41 if ∄ v ∈ Dom(start(αi,j)), v > maxRemove && v < minRemove then
42 setAbsent(αi,j,k);

• Make the turnover time of any two slots linked at a terminus station at least equal
to µfeas.

• If a non proved optimal feasible timetable is found, its objective value is used as
an upper bound to cut off partial schedules with a greater evaluated lower bound
during the search of a potential better timetable.

5.1.3.3 Lower bounds

Proving optimality of a solution to an optimisation problem can be a tough task. Indeed,
when solving such a combinatorial minimisation problem, it could be difficult to prove
that no other variable affectations lead to a solution with better objective value. To cope
with this issue, one can try to obtain high quality lower bounds, i.e. the closest as possible
to the optimal objective value. If the lower bound computed for the global problem (at

120

route node, before branching decisions) is ever reached by the objective value of a feasible
timetable, then this timetable is proved to be optimal.

In our context, the objective function to be minimised is a cost penalising turnover
times at terminus stations if they are not robust, or worst if they do not respect minimal
or maximal turnover time prescriptions of the Infrastructure Manager. Among different
lower bounds that can be used, we experimented to solve the model of Section 5.1.2 while
optimising the terms that compose the objective function (5.1a) one by one. Indeed,
reaching optimality when optimising only one term is faster than optimising the whole
objective function (5.1a), because the compensation effects of terms of the sum in the par-
ticipation to the objective value then not occurs. The lower bound used in our approach
is the sum of the optimal values of each turnover time cost function optimised separately.

We focus on a particular turnover time cost term csi,i′(q
s
i,i′) of two given linked slots

i and i′ at a given terminus station s optimised separately. If the optimal value of this
cost is strictly greater than 0, it means that there are no variable affectations satisfying
all the constraints of the model while allowing a cost equal to 0 for this term of the
objective function (5.1a). Moreover, the optimal cost of csi,i′(qsi,i′) obtained when optimised
separately can only increase when optimising the whole objective function (5.1a). That
is, this value optimised separately participates as an additive term to the lower bound of
the whole objective function.

5.1.3.4 Constraints strengthening procedure

Before solving our problem, we can attempt to make as much deductions as possible us-
ing propagation of the constraints of the model in order to reduce the search space. To
this end, we will describe a constraints strengthening procedure inspired from approaches
presented in Kümmling et al. (2016) [110].

In Kümmling et al. (2016) [110], authors tackle the periodic train timetabling with
traffic assignment problem at a macroscopic scale of the infrastructure for long distance
passenger trains of all Germany with constraint propagation techniques. In their problem,
the duration of slot operations and transfer times are to be decided between minimal and
maximal values. A preprocessing step consists in fixing the time of an event (equivalent
to the start or the end time of an operation in our context) at 0 in a constraint graph
composed of transport and transfer arcs between events. Then, they use constraint propa-
gation in order to tighten minimal and maximal bounds of slot operation durations and of
transfer times by detecting inconsistencies. The process is iterated resetting the domain
of the events, fixing another event at time 0 and propagating the constraints while using

121

the previously tightened minimal and maximal bounds, until no new deduction can be
made.

Algorithm 3: Constraints strengthening procedure
1 Input: model of Section 5.1.2, possible activation of model enhancements of Section 5.1.3.1,

Section 5.1.3.2 and Section 5.1.3.3
2 Output: improved forbidden distances between variables start(αi,1),∀i ∈ I
3 Initialisation: oldNbForbiddenDistances := 0; newNbForbiddenDistances :=

0; forbiddenDistances = ∅; round = 1;
4 repeat
5 oldNbForbiddenDistances := newNbForbiddenDistances;
6 newNbForbiddenDistances := 0;
7 reset(forbiddenDistances);
8 for i ∈ I do
9 Dom(start(αi,1)) := {0};

10 propagate();
11 for i′ ∈ {i+ 1, . . . , N} do
12 if |Dom(start(αi′,1))| < T then
13 forbiddenDistancesi,i′ := {0, . . . , T − 1} −Dom(start(αi′,1));
14 newNbForbiddenDistances :=

newNbForbiddenDistances + |forbiddenDistancesi,i′ |;

15 Dom(start(αi,1)) := {0, . . . , T − 1};
16 if round > 1 then
17 Remove constraints posted before the end of last round;

18 for i ∈ I do
19 for i′ ∈ {i+ 1, . . . , N} do
20 if forbiddenDistancesi,i′ ̸= ∅ then
21 Post a new constraint: ((αi′,1 − αi,1 + T) % T) /∈ forbiddenDistancesi,i′ ;

22 round := round + 1;

23 until oldNbForbiddenDistances = newNbForbiddenDistances;

In our problem, the duration of slot operations is already known. As a consequence,
when fixing the start time of any operation of a slot, the propagations of the periodic
operation constraints (5.1d) to (5.1f) and of the precedence constraints (5.1j) fix the start
time of all other operations of this slot. In our problem, the constraint graph is not
fully determined at the beginning of the resolution since tracks assignment have to be
performed for numerous slot operations that have an impact on the activation of safety
headway constraints between slot operations. However, the constraint graph is partially
available specifically because of slots running in single track sections or in double tracks
sections with restricted circulated directions. That is, when fixing the start time of one
slot at time 0, it is possible to deduce inconsistent values in the domain of the start
time of some other slots using propagation since those specific slots are known to share
common resource of the infrastructure with the slot for which the start time has been
fixed. Thus, we use the technique inspired from Kümmling et al. (2016) [110] not for
tightening minimal and maximal values of operations duration that in our case are already

122

fixed to the minimum, but for feeding new constraint that learn forbidden time distances
between the start time of slots. Algorithm 3 implements this procedure. In lines 9 to
14, the start time of the first operation of slot i is fixed to time 0 and the constraints
of the model are temporarily propagated in order to store forbidden start times for the
first operation of other slots that represent forbidden time distances between the start
time of slot i and the start time of other slots. The forbidden time distances are then
applied and the whole process is repeated in further rounds until no new forbidden time
distances between start times of slots are found. As a result, we observe that using the
described constraints strengthening procedure and fixing the start time of slot i at time
0 allow inconsistent values to be detected in the domain of the start time of a slot i′ that
shares no constraints with slot i. This phenomenon is induced by transitivity because
some other slots share constraints with both slots i and i′. However, the impact on slot
i′ is not observed anymore when the constraints strengthening procedure is not used.

5.2 Branching strategies

When solving an instance of the problem described in Section 3.2.2, one can use an off-
the-shelf solver to solve the model presented in section 5.1.2, potentially making use of
enhancements detailed in Section 5.1.3. However, at the solving stage it is still possible
to take the control of the search and apply strategies to attempt converging faster to an
high quality solution. In this section, we describe a Branch-and-Check framework that
iteratively decide slot start times and check whether there is a feasible tracks assignment
for the current timetabled slots. Note that constraint propagation is performed after each
decision of start time for a new slot. As a result, a backtrack is done on previously made
decisions if the domain of the start time of a remaining slot to be timetabled becomes
empty. Algorithm 4 describes the recursive Branch-and-Check timetabling framework.
The overall procedure works as follows. The next slot to be timetabled is selected by
SelectSlot() procedure. Then, a start time is selected among the values still in the
domain of the selected slot branchSlot, using SelectTime(branchSlot) procedure. We
then apply the selected start time to the selected slot by recursively calling Timetable()
procedure while posting a new constraint. If a backtrack occurs, we then prevent the
start time of the selected slot from taking the wrong selected value. After propagation
has been performed, we then proceed to checking whether allowed tracks assignment
exist for the current timetabled slots. In the following, we describe SelectSlot(), Se-

lectTime(branchSlot) and CheckTracksAssignment(slotsToBeTested) procedures
in more details.

123

Algorithm 4: Branch-and-Check solving framework Timetable()
1 Input: Infrastructure and headway data, SI, model of section 5.1.2 with possible

enhancements of Section 5.1.3
2 Output: A timetable with mesoscopic tracks assignment which optimises the turnover times at

terminus stations
3 Timetable(){
4 oldFixedSlots := GetStoredFixedSlots();
5 newFixedSlots := ∅;
6 slotsToBeTested := ∅;
7 for i ∈ I do
8 if |Dom(start(αi,1))| = 1 then
9 if i /∈ oldFixedSlots then

10 slotsToBeTested := slotsToBeTested ∪ {i};
11 newFixedSlots := newFixedSlots ∪ {i}

12 if !CheckTracksAssignment(slotsToBeTested) then
13 Fail();

14 StoreFixedSlots();
15 branchSlot := SelectSlot();
16 branchTime := SelectTime(branchSlot);
17 Timetable(start(αbranchSlot,1) = branchTime) ||

Timetable(start(αbranchSlot,1) ̸= branchTime);}

SelectSlot() This procedure aims at selecting the next slot to be timetabled among
the non yet timetabled ones. The following steps are tried one by one until a slot is
eventually selected.

First, we verify if there is a terminus station where an arriving (resp. departing) slot
is timetabled while the linked departing (resp. arriving) slot is not. This linked slot is
selected in this case.

Second, we use a priority list to select the non yet timetabled slot for which starting
time have the smallest domain among the group of non yet timetabled slots of highest
priority. The priority criterion of the list can be as diversified as:

• The decreasing worst cost in which a slot can participate at a terminus station.

• The number of important sections on which slots are scheduled, like sections where
tracks from different origins converge and stations, with terminus stations counting
for 2.

• The decreasing number of operation of slots.

• The decreasing number of slots sharing the same sections.

• Combinations of those criteria.

124

Note that one priority list is used for the whole timetabling process. Additional lists
can be experimented based on other data properties. Not all slots have to be included in
the list. Even the empty list can be tried in order to evaluate the usefulness of priority lists.

Third, if not all slots are elements of the activated priority list, then the slot with the
smallest domain is selected. A tie breaking could still be added at this stage.

SelectTime(branchSlot) Once the next slot branchSlot to be timetabled is selected,
this procedure aims at selecting a start time among the values of its domain. We focus
on 3 cases that are treated distinctly. In the first case, the selected slot branchSlot is
linked with a slot that is not timetabled yet. The start time of slot branchSlot is then
selected while taking into account the possible start time values of the linked slot in order
to attempt minimising the turnover cost associated to those slots at their terminus sta-
tions. In the second case, the selected slot branchSlot is linked with a slot that is already
timetabled. We select the start time that minimises the associated turnover cost of those
slots. Note that during the solution search, when dealing with a partial timetable con-
struction, we can store the best achieved cost obtained for two linked slots at a terminus
station to explore more promising parts of the search space first. Finally, in the third case,
the selected slot branchSlot passes through the delimited infrastructure without having
a terminus station. Then, any start time value can be selected in the domain, e.g. the
minimum one. An additional strategy could be applied for this case.

CheckTracksAssignment(slotsToBeTested) When a slot has been timetabled
and the propagation process is terminated, we proceed to a tracks assignment check to
verify whether infeasibility is detected at this state of the search. Indeed, the propagation
process used the partially known tracks assignment, however there are timetabled slot
operations for which tracks assignment is still unknown. So, the goal of this procedure is
only to assess that there is at least a tracks assignment compatible with the previously
decided start times. We need this check procedure to be exhaustive, flexible and parsi-
monious. By exhaustive, we mean that tracks assignment is checked for all slots newly
timetabled, including slots for which the starting time has been induced by the propa-
gation process. More precisely, tracks assignment for those slots is checked on every line
section containing more than two tracks and on every stations where they are scheduled.
By flexible, we mean that if the check is a success, then the tracks assigned during the
check process are unassigned. This allow full flexibility for the time choice of the remain-
der slots to be timetabled. Indeed, keeping fixed tracks assignment among all possible
ones could over-constrain the search and close opportunities to find solutions. Finally, by

125

parsimonious we mean that we launch the check only when necessary. This may seem
obvious, but we technically have to deal with the case when a backtrack occurs so the
check that would have been performed at the beginning of the Timetable() procedure
is unnecessary. To make this possible, we memorise the slots that have been timetabled
only after a success of the check procedure. That is, it is possible to identify the sufficient
set of slots to be tested at the beginning of the Timetable() procedure, including when
Timetable() is called after a backtrack.

Putting all pieces together, the whole approach presented in Section 4 is summarised
in Figure 5.4.

Figure 5.4: Components of the constraint-based approach at different phases of the problem
handling.

5.3 Experimental results

We address the optimisation turnover times problem on instances based on the Savoie
area infrastructure, presented in Section 3.3.3. Our experiments are set up in our C++
application using CP Optimizer 12.10 to solve the model of Section 5.1.2. The dedicated
filtering algorithms of Section 5.1.3 and the branching strategies of Section 5.2 are im-
plemented using the extensions library of CP Optimizer 12.10. The computer used runs
on Windows 10, 64 bits with a i5-8265U CPU at 1.60-1.80 GHz and 24 Go of RAM.
We use 1 thread when controlling the search using branching strategies, otherwise the 8
available threads work. Table 5.2 reports the results without using branching strategies.
The model is solved in 8 configurations: when activated, improved constraints of Section
5.1.3.1 and 5.1.3.2 are indicated by C, lower bounds of Section 5.1.3.3 are indicated by
LB, and constraints strengthening procedure by cascade propagation of Setion 5.1.3.4 is
indicated by P. We set a time limit of 300 s to allow interactive planning with practi-
tioners. The columns of Table 5.2 are detailed as follows. The objective value of the best
found solution is indicated by obj. The number of branching decisions made when the
best solution is found or when the time limit is attained is indicated by br. The amount
of time is seconds to find the best solution is indicated by t: the value lim is printed when
the optimal solution is not found within the time limit. A check mark in the feas column

126

means that a feasible solution has been found before the time limit. When an optimal
solution is found before the time limit and when it is proved optimal by the solver, a
check mark is placed in columns opt and prov, respectively.

Table 5.2: Performance of the solver on instances 1 and 2 based on both number of branches
(br.) and computational time in seconds (t.) with a time limit of 300 s (lim.) and depending
on activated enhancements : improved constraints of Section 5.1.3.1 and Section 5.1.3.2 (C if
activated, C if not), lower bounds of Section 5.1.3.3 (LB if activated, LB if not) and constraints
strengthening procedure by cascade propagation of Section 5.1.3.4 (P if activated, P if not).

LB LB

obj br t feas opt prov obj br t feas opt prov

P C 4901 733k lim ✓ 4200 138k 40 ✓ ✓

Instance 1 C 4200 1.2M 188 ✓ ✓ ✓ 4200 1.9M 177 ✓ ✓

P C 5700 2.7M lim ✓ 6102 259k lim ✓

C 4200 646k 19 ✓ ✓ ✓ 4200 2.2M 65 ✓ ✓

P C 10305 394k lim ✓ 10000 773k lim ✓

Instance 2 C 5403 2.5M lim ✓ 13200 4.1M lim ✓

P C - 1.2M lim 8400 2.8M lim ✓

C 4200 3.3M 220 ✓ ✓ ✓ - 12.8M lim

As expected, we observe in Table 5.2 that for every solving configuration, it is harder
to solve Instance 2 than Instance 1. In particular, Instance 2 is proved optimal in the
configuration (LB,P,C), and so is Instance 1 but with less branches and a faster compu-
tation time. In other configurations that allow a feasible solution to be found for Instance
2, a feasible solution is also found for Instance 1 with a better objective function including
the optimal one. Finally in configurations (LB,P,C) and (LB,P,C), no feasible solution
is found for Instance 2 whereas a feasible and an optimal solution are found for Instance
1, respectively.

In the configurations for which an optimal solution is found, we observe that the use
of the lower bounds LB is crucial to prove optimality within the time limit. Indeed, op-
timality of solutions with optimal objective value obtained for Instance 1 without lower
bounds would not have been proved even in one hour. Surprisingly, proved optimal so-
lutions are obtained faster for both instances in configuration (LB,P,C), that is without
improved constraints. It means that the solver, without removing all inconsistent values
from the variable domains during propagation, is still able to take reasonable branching
decisions. Nevertheless, we observe that configuration (LB,P,C) allows to find an optimal
solution with the less number of branches for Instance 1, even if optimality is not proved
at this stage of the search. It means that the improved constraints C and the constraint

127

strengthening procedure P reduced the search space enough to help the solver take less
bad branching decisions. When looking at the first row of Table 5.2 i.e. for Instance 1 and
configurations (LB,P,C) and (LB,P,C), an optimal solution is found in the latter case
but is not proved optimal by the solver within the time limit because the lower bounds
are not used. Surprisingly, in the former case, an optimal solution is not even found
within the time limit when the lower bounds are activated, indicating that the branching
decisions should be better controlled.

As Instance 2 is more difficult to solve optimally within the time limit than Instance
1, we now present in Table 5.3 the results for Instance 2 when we apply the branching
strategies described in Section 5.2. We observe that controlling the search, Instance 2
can be solved to optimality and proved optimal in less than 103 branches and in about 1
second. This result represents a significant improvement compared with the solve without
branching strategies.

Table 5.3: Performance of the solver with branching strategies of Section 5.2 on Instance 2 based
on both number of branches (br.) and computational time in seconds (t.) with a time limit of
300 s (lim.). All enhancements C, LB and P are activated.

Priority list criteria obj. br. t.

Decreasing worst possible cost 4200 60681 6

Decreasing weighted sum of planned sections (*) 4200 558 1

(*) + tie break: slots with terminus stations first 4200 478 1

(*) + tie break: slots with terminus stations last 4200 579 1

Decreasing number of operations (**) 4200 3067 1

Decreasing number of slots on common sections (***) - 3.4M lim

Decreasing sum of (**) and (***) 4200 3083 2

(**) + tie break: (***) 4200 3067 2

(***) + tie break: (**) 4200 3036 2

Empty 4200 12862 21

We observe that the priority list used for SelectSlot() procedure have an impact on
the performance of the resolution. We recall that when the priority list is empty, the next
slot selected to be timetabled is either a linked slot at a terminus station to an already
timetabled slot, either the slot whose the start time has the smallest domain. Instead of
the latter case, using a priority list creates slot groups to be timetabled first, not only
relying on the domain sizes. Almost all priority criteria described in Section 5.2 improve
either the number of branches decisions or the computation time compared with the use
of the empty list. However, no solution has been found within the time limit when slots

128

are prioritised by decreasing number of slots on common sections. Note that other criteria
cloud be used to build new priority lists depending on the properties of the instances to
be solved.

All enhancements C, LB and P are activated when solving the problem with branch-
ing strategies. Indeed, without the filtering Algorithm 1 described in Section 5.1.1 that
helps arc-consistency to be maintained for constraints (5.1d) to (5.1f), the domain of start
time of operations at the middle of a slot fails to be propagated backward to the domain of
start time of the first operation of this slot. As a consequence, a value selected during the
SelectTime(branchSlot) procedure can be directly unvalidated because of this lack of
propagation completeness. This observation shows the importance of Algorithm 1 when
controlling the search. Once again, activating the lower bounds is crucial to prove the op-
timality of the found solutions. Finally, we tried to solve the problem without activating
the constraint strengthening procedure and we did not observe a significant loss of perfor-
mance. This can be explained because the branching strategies associated with filtering
algorithms are able to allow procedures SelectSlot() and SelectTime(branchSlot)
to take good decisions enough since the beginning of the controlled search. Figure 5.5
illustrates the space time chart of an optimal solution on double track sections between
Culoz and Modane.

Figure 5.5: Space-time chart of an optimal timetable for Instance 2 on double track sections
between Culoz and Modane. On this chart, time is represented in minutes with a granularity
of half a minute. Two periods of 60 minutes are printed, allowing to observe the timetable
periodicity.

129

5.4 Conclusion

In this chapter, we presented a constraint-based approach to model and solve the peri-
odic train timetabling with mesoscopic tracks assignment problem while optimising the
turnover times at terminus stations. The described model relate interval variables used
for timetabling decisions with optional interval variables that represent assignment of slot
periodic operations to tracks. Dedicated filtering algorithms have been described to im-
prove the detection of inconsistencies when dealing with time periodicity constraints. An
optimality-oriented Branch-and-Check procedure has been presented to allow controlling
the search and improving the resolution performance.

Future work includes modifications of the model to improve the realism of the solu-
tions. In one hand, spatial cyclicity could be handled as in other realisations like in Fuchs
et al. (2022) [78]. This would allow to integrate slots in the SI whose some operations
are downstream while other are upstream, e.g. a slot between Saint-André-le-Gaz (sec-
tion 2) and Annecy (section 59). On the other hand, it should be of a high interest to
authorise slack time between slot operations like in the classical PESP in order to find
feasible timetables for more instances while controlling the added slack time in the objec-
tive function. Moreover, the objective function could be improved to integrate transfer
times between lines.

Additionally to the turnover times robustness that we proposed to optimise, we could
extend the robustness optimisation to the safety headway constraints (5.1m) to (5.1o) by
adding complementary buffer times. Safety headway values should be personalised de-
pending on the slots and the infrastructure resource where constraints occur. Algorithm
2 is already designed for such a customisation of parameter values. While overtakings
constraints are not explicitly considered in our model, we check that none occur. In this
concern, an additional filtering algorithm could be added in the same way than those
presented in this chapter and could even improve the propagation process.

A promising perspective is the generation of minimal conflicts explanations before
backtracks occur. The deductions learned while solving the problem can then be ex-
ploited as new constraints to improve the reduction of the search space. This kind of
technique as been successfully applied in Kümmling et al. (2015) [109] and Fuchs et al.
(2022) [78].

130

5.A List of Symbols

The Table 5.4 summarises symbols and notations used in this chapter.

Table 5.4: Signification of symbols and notations used in Chapter 5.

Symbol Meaning
T Time period
SI Service Intention, set of bidirectional lines to be timetabled within period T

S = Sl ∪ St Set of sections, partitioned in the set of line sections and the set of stations
Ks Set of mesoscopic tracks of section s

Dk ⊆ {+,−},d() Set of possible running directions on track k and running direction of a slot operand, respectively
R = R+ ∪R− Set of mesoscopic routes, partitioned by direction
Z Set of zones, a partition of S
< z1, z2 > A bizone containing mesoscopic routes in any direction between z1 and z2

I, Ji and Ji− Set of slots, set of operations of slot i and set of operations of slot i except the last one, respectively
oi,j , pi,j , si,j and ti,j Operation j of slot i, its known duration, the section on wich it is processed and its starting time, respectively
| | Cardinal of a set operand inside the symbol
Ki,j = {1, . . . , |Ksi,j |} Set of alternative tracks for operation oi,j

xi,j,k Assignment of track k for operation oi,j

∆spa,∆reu and ∆cro Spacing, reuse and crossing safety headways, respectively
µmins , µrobs and µmaxs Minimal, robust and maximal prescribed turnover times at terminus station s, respectively
µfeas Unforced minimal turnover time at terminus stations
Ls Set of linked slots sharing the same track and using the same vehicle at station s

crob, cbound and cM Costs penalising turnover times at terminus stations that does not respect the prescriptions
qs
i,i′ Turnover time of slots i and i′ at terminus station s

cs
i,i′ () Cost function depending on the turnover time qs

i,i′ of linked slots i and i′ at station s

αi,j , βi,j Interval variables that compose operation oi,j

αi,j,k, βi,j,k Implementation of xi,j,k: optional interval variables that represent the assignment of operation oi,j on track k

pαi,j , p
β
i,j Duration variables of αi,j and βi,j which sum equals pi,j

start(), end() start and end time of an operand interval variable
% Modulo constraint between 2 positive expressions on both sides of the symbol
||,&&, !,⇒ Logical OR, AND, negation and implication symbols, respectively
pr() Constraint that succeeds if the operand interval variable is present
alternative() Constraint that makes exactly one interval variable to be present among a set of optional interval variables

and synchronises its start and end times with start and end times of a principal interval variable
synchronise() Constraint that synchronises start and end times of all present interval variables among a set of optional interval variables

with start and end times of a principal interval variable
startAtEnd() Constraint that make a first interval variable operand starting at the end of a second interval variable operand
setAbsent() Procedure that sets an interval variable to be absent
Dom() Set of values in the domain of a variable operand
γ Maximal cyclic distance between 2 surrounding values of the domain of a constrained variable of constraints (5.1m) to (5.1o)

to detect inconsistent values in the domain of the other constrained variable
δ1, δ2 Generic headways depending on the constraint (5.1m) to (5.1o) and on durations pi,j and pi′,j′

C Improved constraints of Sections 5.1.3.1 and 5.1.3.2
LB Lower bounds of Section 5.1.3.3
P Constraints strengthening procedure of section 5.1.3.4
D, S1, S2 and S3 Several groups of line sections of the Savoie infrastructure
R, IC and F Regional, Intercity and Freight line types, respectively
obj, br and t Objective value, number of branches and computation time in seconds, respectively
feas, opt and prov There is a feasible solution, the solution is optimal and the solution is proved optimal, respectively

131

132

Chapter 6

OptiSillons, a prototype for interactive
timetabling

This chapter aims to present an application allowing to compute automatically periodic
timetables without requiring algorithmic or programming skills. This work has been
realised with two intern students at SNCF Réseau | DGEX Solutions. In particular, the
implementation of the graphic user interface in JavaScript is integrally due to their work,
undertaken during the third and the fifth semesters of this PhD. In Section 6.1, we present
how the data is managed before calling the algorithms of Chapter 4 and Chapter 5. In
Section 6.2, we show how a timetable planner at SNCF Réseau is still able to work on
the suggested solution, thus providing an interactive experience.

Contents
6.1 Managing the input data . 134

6.2 Obtaining a solution and working on it 135

6.2.1 Timetable representations. 135

6.2.2 Modifying a timetable. 136

133

6.1 Managing the input data

All the data needed to set a periodic timetable problem can be created or imported in
OptiSillons and are saved in a json file. The parameters include the mesoscopic infrastruc-
ture containing sections, tracks, routes and their compatibilities in the one hand. In the
other hand, slots of the Service intention are indicated with the sections they traverse and
the duration of their operations. Spending a strictly positive time interval at a station
means dwelling at this station in our model. When an infrastructure is provided, it looks
like in Figure 3.9, but without the stars uniquely added to allow the infrastructure to
better fit in the document. If the user clicks on a section e.g. on Chambéry station at
section 15 of the Savoie area infrastructure, the page is scrolled and several view appear
like in Figure 6.1. On the right part of the figure, the user has also clicked on track 27,
making appearing blue downstream routes, red upstream routes, and green downstream
and upstream routes connected to this track. On the left part of the figure, compatibilities
between opposite direction routes on the left end of Chambéry station (the northern end)
are given. The tracks on the grey cells correspond to initial tracks of routes while the
tracks of the white cells correspond to terminal tracks of the routes. Note that compati-
bilities between several upstream routes and also between several downstream routes are
also available.

Figure 6.1: Routes and compatibilities around Chambéry station.

Modifications can be made to the parameters. Sections can be added in the infras-
tructure, as well as tracks and routes. The compatibilities between routes can also be
easily indicated or modified by the user. The same applies for the operation durations of
the slots included in the Service intention. In Figure 6.2, the given window show a subset
of operations of omnibus slots of a line to be operated between Chambéry and Modane
stations. The durations, displayed in half minutes, can be edited by the user. The first
column corresponds to the operation durations of the downstream slot of the line and the
second column corresponds to the operation durations of the upstream slot of the line.

134

Figure 6.2: Modification of the duration (in half minutes) of operations of omnibus slots between
Chambéry and Modane stations.

6.2 Obtaining a solution and working on it

6.2.1 Timetable representations.

When the infrastructure and the Service intention parameters are configured, solution
methods of Chapter 4 or Chapter 5 can be called and a periodic timetable is returned if
the instance is solved. The solution values are also saved in the aforementioned json file
that can be exported. In OptiSillons, the timetables are visualised in the two following
representations. First, a space-time chart like in Figure 5.5 gives the location of the slots
on the sections of the infrastructure depending on time. Second, a tracks occupation chart
informs about the mesoscopic tracks assignment for each slot operation. Traditionally,
tracks occupation charts are independently used for different stations. We chose instead
to represent all the tracks assignments in the same window, and also including the tracks
assignment in line sections. Figure 6.3 shows a sample of the tracks assignment on the
Savoie area infrastructure, namely on the single line track between Chambéry and Saint-
André-le-Gaz stations. The timetable partially shown in this figure has been optimised
to optimality by the Constraint Programming approach presented in Chapter 5. It means
that the turnover times at terminus stations respect as much as possible the durations
prescribed by the company presented in Table 3.10. The preferred turnover time at
Chambéry station is between 10 and 12 minutes. We can observe in Figure 6.3 that
indeed, most of the two-tone linked slots on Chambéry tracks are scheduled for a duration
that is not penalised. The only longer turnover time is due to slots visualised on the

135

single track line between Chambéry and Saint-André-le-Gaz stations, and for which the
turnover time in Chambéry could not be further optimised because of the restrictions
imposed by the single track line sections. We can also obesrve that is Saint-André-le-Gaz
station, turnover times might be significantly longer than is Chambéry station. Indeed, a
maximal turnover time is not prescribed in this station, thus the turnover times have not
be specifically optimised in this station because they are not penalised.

Figure 6.3: Tracks occupation chart between Chambéry and Saint-André-le-Gaz stations.

It is common for timetable planners to work on several screens on their desktop. The
infrastructure window can be used on a laptop while the space-time chart and the tracks
occupation chart are displayed on two additional screens.

6.2.2 Modifying a timetable.

At any moment of the navigation in OptiSillons, the control is left to the timetable
planners. Therefore, it is still an option to work on timetables returned by the tool.
Many possibilities are given to modify a timetable. The user can drag a slot and slide its
position horizontally on one of the two charts. This action modifies the start time of this
slot. The user can also modify the tracks assignment directly on the tracks occupation
chart. Moreover, it is possible to add run time and dwell time supplements to the duration
of slot operations. In any case, all modifications performed in the space-time chart are
replicated to the tracks occupation chart in real-time, and vice versa. Moreover, these
modifications are likely to temporarily create conflicts in the timetable. These conflicts
are visualised in both charts. From the solution of Figure 5.5, we select on the red slot the
line section from Saint-Pierre d’Albigny to Montmélian stations and we show in Figure
6.4 how to add run time supplements to the corresponding operation. These run time
supplements will create conflicts that we will detail in the following. When the user clicks
once in the plus button, 1 half minute is added to the duration of the operation, and the
resulting situation is depicted in Figure 6.5.

136

Figure 6.4: Adding run time supplements on the running operation of the red slot on the line
section from Saint-Pierre d’Albigny to Montmélian stations.

Figure 6.5: Visualisation of conflicts after adding 1 half minute to the red slot from Saint-Pierre
d’Albigny to Montmélian.

On the space-time chart, we observe that a crossing conflict between routes taken
by the red slot and by the pink slot appeared on the right end of Chambéry station
(southern end) to Montmélian. This conflict is also visualised on the tracks occupation
chart, where the conflicting routes are highlighted. When adding 4 additional half minutes
to the same operation, a new crossing conflict appears between routes on the same end of
Chambéry station, a track reuse conflict is created at Montmélian station, and a spacing
conflict is detected at the exit of the line track from Saint-Pierre d’Albigny to Montmélian
stations. These new conflicts are visualised in Figure 6.6, where the track reuse conflict
is highlighted in green and the spacing conflict is highlighted in red. These conflicts are
visible on both charts, however the spacing conflicts are more visible on the space-time
chart. The supplement of 2 additional minutes on the running operation from Figure 6.5
to Figure 6.6 can be observed on both charts. On the line charts, the slope of the red line

137

corresponding to this operation has changed, the slot is slower. On the tracks occupation
chart, this results in a longer occupation of track 38 for this operation.

Figure 6.6: Visualisation of conflicts after adding 5 half minutes to the red slot from Saint-Pierre
d’Albigny to Montmélian.

138

139

Chapter 7

Conclusion and future work

Through this thesis, we addressed the Periodic Train Timetabling with mesoscopic tracks
assignment Problem considering known running and dwelling durations, modelled and
solved by techniques based on Integer Linear Programming and Constraint Program-
ming. This chapter aims to provide a conclusive picture of the proposed approaches. We
summarise our contributions and discuss the completion of the research objectives in Sec-
tion 7.1. Afterwards, we draw future research directions that could be undertaken from
the present work in Section 7.2.

Contents
7.1 Synthesis . 141

7.2 Perspectives . 142

140

7.1 Synthesis

Our contributions can be summarised as follows.

After having presented an overview of the research landscape on railway planning in
Chapter 2, we formally described the Train Timetabling with mesoscopic tracks assign-
ment Problem considering known running and dwelling durations in Chapter 3, for which
we proposed two variants. This task belongs to the tactical planning level which corre-
sponds in our case to few years before operations.

The first variant is a decision problem for which we search to determine if there are
a start time and tracks assignment for each slot of a Service intention such that all the
constraints arising from the infrastructure use are respected, given that travel times are
enforced to be minimised for all direct passengers. This problem variant is addressed
in Chapter 4. We presented an Integer Linear Programming formulation to model this
problem and we solved instances of increasing size on a fictive infrastructure using an off-
the-shelf solver. To improve the tractability of the method, we decomposed the problem
such that the time decisions are made in a first stage and the tracks assignment decisions
are made in a second stage. We conceived a conflict evaluation function to assess con-
flicts between slots by knowing their timetable without knowing their tracks assignment
explicitly. We presented two solution approaches for this problem, along with a didactic
execution of our second approach that performed best to solve a close-to-real-world Ser-
vice intention on the real-world Savoie area infrastructure.

The second variant is an optimisation problem for which we search to optimise the
turnover time of rolling stock at trains terminus stations using real time prescriptions
from the company and while still satisfying the infrastructure use constraints and ensur-
ing minimal travel times for direct passengers. This problem variant is treated in Chapter
5. By linking the opposite directions slots of each line at their terminus stations, the
realism of the timetables is improved compared to the decision problem in which this
slots linking were not taken into account. We started our investigations by creating a
Constraint Programming model to the decision problem with an off-the-shelf solver, and
it turned out that solutions could be obtained in few seconds for the same instance Savoie
area instance. This result encouraged us to upgrade the formulation and to consider the
turnover time optimisation problem. As the solver struggled to prove the optimality of
the solutions, we proposed model enhancements including extended crossing constraints,
dedicated filtering algorithms, lower bounds based on the optimal cost contribution of
linked slots and a constraint strengthening procedure inspired from the literature. Fur-

141

thermore, we set up a Branch-and-Check procedure using branching strategies based on
priority lists between slot groups and starting times they should take, and checking rou-
tines verifying if tracks assignment are still possible whenever a new slot is scheduled. Our
method performed better than the default solver on our Savoie area instance, allowing to
find optimal solutions faster and with a small amount of branches.

We hope that Contribution entitled C1 including the problem formulation, the mod-
els and the solution approaches are a strong base to meet Objective O1 that consists in
proposing methods to generate feasible periodic timetables in a reasonable amount of time.

We embedded our solution approaches in a user-friendly application allowing timetable
planners to enter data corresponding to an infrastructure at the mesoscopic scale and a
Service intention, automatically obtaining timetabling suggestions with tracks assignment,
and to still being able to work on the solutions if further improvements are desired. The
graphic user interface OptiSillons, integrally developed by two intern students, is pre-
sented in Chapter 6.

We believe that Contribution entitled C2 corresponding to the prototype OptiSillons
is a first step towards the possibility to generate periodic timetables in practice in the
company by timetable planners without requiring algorithmic or programming skills, thus
meeting in part Objective O2.

There are plenty of opportunities to improve Contributions C1 and C2, leading to
the following perspectives.

7.2 Perspectives

The future research directions from our work are numerous.

Our solutions approaches will need additional investigation to solve larger instances.
The Integer Linear Programming methods should be upgraded to model the decision
problem with linked slots at terminus stations, as well as the turnover time optimisation
problem. This upgrade would imply slight modifications in Formulation (4.1) that can
be inspired from Formulation (5.1). As a result, the conflict evaluation function would
also be enriched by turnover conflicts. A bi-objective function may also be considered
to minimise the conflicts while looking for good turnover times. Another important as-
pect that the conflict evaluation should integrate is the possibility to deal with safety
headway parameters that could have different values. To solve the problem on larger

142

infrastructures, additional local moves may be integrated to our tabu search framework,
like start time modifications involving several slots at once. A local move type selection
heuristic could therefore be necessary. If more complex railway stations are present in
the infrastructure, a heuristic should also be investigated for the tracks assignment prob-
lem that for now works well when a conflict-free timetable is known with our stations sizes.

Specificities of each formulation may additionally benefit to each other as follows. On
the one hand, extended crossing conflicts presented in Section 5.1.3.1 could be translated
to refine the crossing conflict evaluation formula of Section 4.2.1.3. On the other hand, the
blue square cliques of Figure 4.2 determining the maximal capacity on potential cross-
ing areas should definitely be used to derive new dedicated filtering algorithms in the
Constraint Programming approach additionally to the existing ones described in Section
5.1.3.2.

The problem description in itself could be further adapted to improve the realism of
the resulting solutions. Namely, a multi-periodic should be considered to take into ac-
count a small proportion of slots which period is twice the period of the other slots of
the Service intention. Passenger data should be integrated to improve the quality of the
timetables from their point of view. Additional variables and constraints modelling train
composition modifications at stations and technical slots movements to shunting areas
and maintenance facilities would be challenging but should be valuable extensions.

Robustness of the timetable is in part implicitly addressed because the nominal op-
eration durations are larger than the minimal technically possible ones, and because the
safety headway parameters also include buffer times in real-world settings. However, this
is not sufficient to obtain an optimally robust timetable. Indeed, the time interval be-
tween slots heading to their conflict points should be optimised as well. We hope having
begun a work towards this direction by penalising non robust turnover times at terminus
stations. A natural extension of this work is therefore to translate this penalisation to the
headway constraints to obtain additional buffer times and cope better with uncertainty.

Our graphic user interface timetabling prototype demonstrated its relevance to the
timetable planners of SNCF Réseau. Additional work is however required to industri-
alise this tool i.e. to connect it with the data flows and the information systems of the
company. Our team currently considers to include the present work as a plug-in module
of a microscopic simulation tool already well established in the tools ecosystem of the
company.

143

144

Bibliography

[1] Montserrat Abril, Federico Barber, Laura Ingolotti, Miguel A. Salido, Pilar Tormos,
and Antonio Lova. An assessment of railway capacity. Transportation Research Part
E: Logistics and Transportation Review, 44(5), 2008.

[2] Emma V. Andersson, Anders Peterson, and Johanna Törnquist Krasemann. Quan-
tifying railway timetable robustness in critical points. Journal of Rail Transport
Planning and Management, 3(3), 2013.

[3] Lijie Bai. Train platforming problem in busy and complex railway stations. PhD
thesis, Ecole Centrale de Lille, 2015.

[4] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling
: applying constraint programming to scheduling problems. 2001.

[5] Eva Barrena, David Canca, Leandro C. Coelho, and Gilbert Laporte. Exact for-
mulations and algorithm for the train timetabling problem with dynamic demand.
Computers and Operations Research, 44, 2014.

[6] Aharon Ben-Tal, Alexander Goryashko, Elena Guslitzer, and Arkadi Nemirovski.
Adjustable robust solutions of uncertain linear programs. Mathematical Program-
ming, 99(2), 2004.

[7] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of Linear Programming
problems contaminated with uncertain data. Mathematical Programming, Series B,
88(3), 2000.

[8] Faten Benhizia. Optimisation du plan de transport par planification intégrée des
ressources. PhD thesis, Ecole Nationale Supérieure des Mines Saint-Etienne, 2012.

[9] Gérard Bertereix and Aline Beurrier. Conception des horaires assistée par ordinateur
(CHAO). Revue Générale des Chemins de Fer, 1990.

[10] Dimitris Bertsimas and Melvyn Sim. The Price of Robustness. Operations Research,
52, 2004.

145

[11] Nikola Bešinović. Resilience in railway transport systems: a literature review and
research agenda. Transport Reviews, 40(4), 2020.

[12] Nikola Bešinović, Raphael Ferrari Nassar, and Christopher Szymula. Resilience
assessment of railway networks: Combining infrastructure restoration and transport
management. Reliability Engineering and System Safety, 224, 2022.

[13] Nikola Bešinović and Rob M.P. Goverde. Stable and robust train routing in station
areas with balanced infrastructure capacity occupation. Public Transport, 11(2),
2019.

[14] Nikola Bešinović, Rob M.P. Goverde, Egidio Quaglietta, and Roberto Roberti. An
integrated micro-macro approach to robust railway timetabling. Transportation
Research Part B: Methodological, 87, 2016.

[15] Nikola Bešinović, Egidio Quaglietta, and Rob M.P. Goverde. Resolving instability
in railway timetabling problems. EURO Journal on Transportation and Logistics,
8(5), 2019.

[16] John R. Birge and François Louveaux. Introduction to Stochastic Programming. In
Springer Series in Operations Research and Financial Engineering. 2011.

[17] Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, and Niels Lindner. Sepa-
ration of cycle inequalities in periodic timetabling. Discrete Optimization, 35, feb
2020.

[18] Ralf Borndörfer, Torsten Klug, Leonardo Lamorgese, Carlo Mannino, Markus
Reuther, and Thomas Schlechte. Recent success stories on integrated optimiza-
tion of railway systems. Transportation Research Part C: Emerging Technologies,
74, 2017.

[19] Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to the
periodic event scheduling problem. Journal of Rail Transport Planning and Man-
agement, 15, 2020.

[20] Ralf Borndörfer, Thomas Schlechte, and Steffen Weider. Railway track allocation
by rapid branching. In OpenAccess Series in Informatics, volume 14, pages 13–23,
2010.

[21] Enrico Bortoletto, Niels Lindner, and Berenike Masing. Tropical Neighbourhood
Search: A New Heuristic for Periodic Timetabling. In OpenAccess Series in Infor-
matics, volume 106, 2022.

146

[22] Lucile Brethomé. Passenger-oriented modelling and optimization of the railway
transportation plan in a mass transit system. PhD thesis, Ecole Centrale de Lille,
2018.

[23] Simon H. Bull, Jesper Larsen, Richard M. Lusby, and Natalia J. Rezanova. Opti-
mising the travel time of a line plan. 4OR, 17(3):225–259, sep 2019.

[24] Sofie Burggraeve, Simon H. Bull, Pieter Vansteenwegen, and Richard M. Lusby.
Integrating robust timetabling in line plan optimization for railway systems. Trans-
portation Research Part C: Emerging Technologies, 77, 2017.

[25] Sofie Burggraeve and Pieter Vansteenwegen. Optimization of supplements and buffer
times in passenger robust timetabling. Journal of Rail Transport Planning and
Management, 7(3), 2017.

[26] Sofie Burggraeve and Pieter Vansteenwegen. Robust routing and timetabling in
complex railway stations. Transportation Research Part B: Methodological, 101,
2017.

[27] Michael R. Bussieck. Optimal Lines in Public Rail Transport. PhD thesis, 1998.

[28] Michael R. Bussieck, Peter Kreuzer, and Uwe T. Zimmermann. Optimal lines for
railway systems. European Journal of Operational Research, 96(1), 1997.

[29] Michael R. Bussieck, Thomas Winter, and Uwe T. Zimmermann. Discrete opti-
mization in public rail transport. Mathematical Programming, Series B, 79(1-3),
1997.

[30] Valentina Cacchiani, Alberto Caprara, and Matteo Fischetti. A lagrangian heuristic
for robustness, with an application to train timetabling. Transportation Science,
46(1), 2012.

[31] Valentina Cacchiani, Alberto Caprara, Laura Galli, Leo G. Kroon, Gábor Maróti,
and Paolo Toth. Railway Rolling Stock Planning: Robustness Against Large Dis-
ruptions. Transportation Science, 46(2):217 – 232, 2012.

[32] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. A column generation ap-
proach to train timetabling on a corridor. 4OR, 6(2), 2008.

[33] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Scheduling extra freight
trains on railway networks. Transportation Research Part B: Methodological, 44(2),
2010.

147

[34] Valentina Cacchiani, Fabio Furini, and Martin P. Kidd. Approaches to a real-world
Train Timetabling Problem in a railway node. Omega (United Kingdom), 58, 2016.

[35] Valentina Cacchiani, Laura Galli, and Paolo Toth. A tutorial on non-periodic train
timetabling and platforming problems. EURO Journal on Transportation and Lo-
gistics, 4(3), 2015.

[36] Valentina Cacchiani, Dennis Huisman, Martin P. Kidd, Leo G. Kroon, Paolo Toth,
Lucas Veelenturf, and Joris C. Wagenaar. An overview of recovery models and
algorithms for real-time railway rescheduling, 2014.

[37] Valentina Cacchiani, Jianguo Qi, and Lixing Yang. Robust optimization models for
integrated train stop planning and timetabling with passenger demand uncertainty.
Transportation Research Part B: Methodological, 136, 2020.

[38] Valentina Cacchiani and Paolo Toth. Nominal and robust train timetabling prob-
lems. European Journal of Operational Research, 219(3), 2012.

[39] Gabrio Caimi, Dan Burkolter, Thomas Herrmann, Fabian Chudak, and Marco Lau-
manns. Design of a railway scheduling model for dense services. In Networks and
Spatial Economics, volume 9, 2009.

[40] Gabrio Caimi, Martin Fuchsberger, Marco Laumanns, and Kaspar Schüpbach. Pe-
riodic railway timetabling with event flexibility. In Networks, volume 57, 2011.

[41] Gabrio Caimi, Leo G. Kroon, and Christian Liebchen. Models for railway timetable
optimization: Applicability and applications in practice. Journal of Rail Transport
Planning and Management, 6(4), 2017.

[42] Gabrio Caimi, Marco Laumanns, Kaspar Schüpbach, Stefan Wörner, and Martin
Fuchsberger. The periodic service intention as a conceptual framework for gener-
ating timetables with partial periodicity. Transportation Planning and Technology,
34(4), 2011.

[43] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Operations Research, 50(5), 2002.

[44] Alberto Caprara, Matteo Fischetti, Paolo Toth, Daniele Vigo, and Pier Luigi Guida.
Algorithms for railway crew management. Mathematical Programming, Series B,
79(1-3), 1997.

[45] Alberto Caprara, Laura Galli, and Paolo Toth. Solution of the train platforming
problem. Transportation Science, 45(2):246–257, 2011.

148

[46] Alberto Caprara, Leo G. Kroon, Michele Monaci, Marc Peeters, and Paolo Toth.
Chapter 3 Passenger Railway Optimization, 2007.

[47] Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida. A Lagrangian
heuristic algorithm for a real-world train timetabling problem. Discrete Applied
Mathematics, 154(5 SPEC. ISS.), 2006.

[48] Alberto Caprara, Paolo Toth, Daniele Vigo, and Matteo Fischetti. Modeling and
solving the crew rostering problem. Operations Research, 46(6), 1998.

[49] Jacques Carlier and Eric Pinson. Adjustment of heads and tails for the job-shop
problem. European Journal of Operational Research, 78(2), 1994.

[50] Samuela Carosi, Antonio Frangioni, Laura Galli, Leopoldo Girardi, and Giuliano
Vallese. A matheuristic for integrated timetabling and vehicle scheduling. Trans-
portation Research Part B: Methodological, 127, 2019.

[51] Rémy Chevrier, Paola Pellegrini, and Joaquín Rodriguez. Energy saving in rail-
way timetabling: A bi-objective evolutionary approach for computing alternative
running times. Transportation Research Part C: Emerging Technologies, 37, 2013.

[52] Václav Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4(4), 1973.

[53] Francesco Corman, Andrea D’Ariano, Alessio D. Marra, Dario Pacciarelli, and Mar-
cella Samà. Integrating train scheduling and delay management in real-time railway
traffic control. Transportation Research Part E: Logistics and Transportation Re-
view, 105, 2017.

[54] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A tabu
search algorithm for rerouting trains during rail operations. Transportation Research
Part B: Methodological, 44(1), 2010.

[55] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Bi-
objective conflict detection and resolution in railway traffic management. Trans-
portation Research Part C: Emerging Technologies, 20(1), 2012.

[56] Francesco Corman, Andrea D’Ariano, Marco Pranzo, and Ingo A. Hansen. Effec-
tiveness of dynamic reordering and rerouting of trains in a complicated and densely
occupied station area. Transportation Planning and Technology, 34(4), 2011.

[57] Sélim Cornet. Formalisation et résolution du problème de construction de grilles
horaires robustes pour les réseaux ferrés denses. PhD thesis, Université Gustave
Eiffel, 2020.

149

[58] George B. Dantzig. Linear Programming and Extensions. Technical report, 1963.

[59] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Assessment of flexible
timetables in real-time traffic management of a railway bottleneck. Transportation
Research Part C: Emerging Technologies, 16(2), 2008.

[60] Andrea D’Ariano and Marco Pranzo. An advanced real-time train dispatching sys-
tem for minimizing the propagation of delays in a dispatching area under severe
disturbances. In Networks and Spatial Economics, volume 9, 2009.

[61] Laurent Daudet. Algorithms for Train scheduling on a single line. PhD thesis,
Université Paris-Est, 2017.

[62] Stefano de Fabris, Giovanni Longo, Giorgio Medeossi, and Raffaele Pesenti. Auto-
matic generation of railway timetables based on a mesoscopic infrastructure model.
Journal of Rail Transport Planning and Management, 4(1-2), 2014.

[63] Xavier Delorme, Xavier Gandibleux, and Joaquín Rodriguez. Stability evaluation
of a railway timetable at station level. European Journal of Operational Research,
195(3), 2009.

[64] Xavier Delorme, Joaquín Rodriguez, and Xavier Gandibleux. Heuristics for railway
infrastructure saturation. In Electronic Notes in Theoretical Computer Science,
volume 50, 2001.

[65] Thijs Dewilde, Peter Sels, Dirk Cattrysse, and Pieter Vansteenwegen. Robust rail-
way station planning: An interaction between routing, timetabling and platforming.
Journal of Rail Transport Planning and Management, 3(3):68–77, 2013.

[66] Thijs Dewilde, Peter Sels, Dirk Cattrysse, and Pieter Vansteenwegen. Improving
the robustness in railway station areas. European Journal of Operational Research,
235(1):276–286, may 2014.

[67] Twan Dollevoet, Francesco Corman, Andrea D’Ariano, and Dennis Huisman. An it-
erative optimization framework for delay management and train scheduling. Flexible
Services and Manufacturing Journal, 26(4), 2014.

[68] Twan Dollevoet, Dennis Huisman, Leo G. Kroon, Marie Schmidt, and Anita Schö-
bel. Delay management including capacities of stations. Transportation Science,
49(2), 2015.

[69] Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schöbel. Delay man-
agement with rerouting of passengers. Transportation Science, 46(1), 2012.

150

[70] Wolfgang Domschke. Schedule synchronization for public transit networks. OR
Spektrum, 11(1), 1989.

[71] RER Eole. Pourquoi NExTEO ? https://www.rer-eole.fr/actualite/pourquoi-
nexteo/ (Accessed 12 May 2023).

[72] Jean-Pierre Farandou. Le fer contre le carbone - Doubler la place du train pour une
vraie transition climatique, 2022.

[73] Thomas A. Feo and Mauricio G.C. Resende. Greedy Randomized Adaptive Search
Procedures. Journal of Global Optimization, 6(2), 1995.

[74] Matteo Fischetti and Michele Monaci. Light robustness. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 5868 LNCS, 2009.

[75] Matteo Fischetti and Michele Monaci. Using a general-purpose Mixed-Integer Lin-
ear Programming solver for the practical solution of real-time train rescheduling.
European Journal of Operational Research, 263(1), 2017.

[76] Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. Fast approaches to
improve the robustness of a railway timetable. Transportation Science, 43(3), 2009.

[77] Richard Freling, Dennis Huisman, and Albert P.M. Wagelmans. Models and al-
gorithms for integration of vehicle and crew scheduling. In Journal of Scheduling,
volume 6, 2003.

[78] Florian Fuchs, Alessio Trivella, and Francesco Corman. Enhancing the interaction of
railway timetabling and line planning with infrastructure awareness. Transportation
Research Part C: Emerging Technologies, 142, 2022.

[79] M R Garey and D S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). Computers and
Intractability, 1979.

[80] Gianmarco Garrisi and Cristina Cervelló-Pastor. Train-scheduling optimization
model for railway networks with multiplatform stations. Sustainability (Switzer-
land), 12(1), 2020.

[81] Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Inte-
grating passengers’ routes in periodic timetabling: A SAT approach. In OpenAccess
Series in Informatics, volume 54, 2016.

151

[82] Laurent Gély. Modélisation et Optimisation de la Gestion Opérationnelle du Trafic
Ferroviaire en cas d’Aléas. PhD thesis, Université de Bordeaux, 2010.

[83] Fred Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13(5), 1986.

[84] Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and
Anita Schöbel. The price of robustness in timetable information. In OpenAccess
Series in Informatics, volume 20, 2011.

[85] Marc Goerigk and Christian Liebchen. An improved algorithm for the periodic
timetabling problem. In OpenAccess Series in Informatics, volume 59, 2017.

[86] Marc Goerigk and Anita Schöbel. Improving the modulo simplex algorithm for
large-scale periodic timetabling. Computers and Operations Research, 40(5), 2013.

[87] Marc Goerigk and Anita Schöbel. Recovery-to-optimality: A new two-stage ap-
proach to robustness with an application to aperiodic timetabling. Computers and
Operations Research, 52(PART A), 2014.

[88] Jan Willem Goossens, Stan P.M. Van Hoesel, and Leo G. Kroon. A branch-and-cut
approach for solving railway line-planning problems. Transportation Science, 38(3),
2004.

[89] Rob M.P. Goverde. Railway timetable stability analysis using max-plus system
theory. Transportation Research Part B: Methodological, 41(2), 2007.

[90] Rob M.P. Goverde. A delay propagation algorithm for large-scale railway traffic
networks. Transportation Research Part C: Emerging Technologies, 18(3), 2010.

[91] Rob M.P. Goverde, Nikola Bešinović, Anne Binder, Valentina Cacchiani, Egidio
Quaglietta, Roberto Roberti, and Paolo Toth. A three-level framework for
performance-based railway timetabling. Transportation Research Part C: Emerg-
ing Technologies, 67:62–83, jun 2016.

[92] Rob M.P. Goverde and Ingo A. Hansen. Performance indicators for railway timeta-
bles. In IEEE ICIRT 2013 - Proceedings: IEEE International Conference on Intel-
ligent Rail Transportation, 2013.

[93] Vera Grafe, Alexander Schiewe, and Anita Schöbel. Delay Management with Inte-
grated Decisions on the Vehicle Circulations. In OpenAccess Series in Informatics,
volume 106, 2022.

152

[94] Vera Grafe and Anita Schöbel. Solving the periodic scheduling problem: An as-
signment approach in non-periodic networks. In OpenAccess Series in Informatics,
volume 96, 2021.

[95] Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall, Jens Opitz,
and Peter Steinke. Solving periodic event scheduling problems with SAT. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 7345 LNAI, 2012.

[96] Jørgen Haahr and Richard M. Lusby. Integrating rolling stock scheduling with train
unit shunting. European Journal of Operational Research, 259(2), 2017.

[97] Sabrina Herrigel, Marco Laumanns, Jacint Szabo, and Ulrich Weidmann. Periodic
railway timetabling with sequential decomposition in the PESP model. Journal of
Rail Transport Planning and Management, 8(3-4), 2018.

[98] Mojtaba Heydar, Matthew E.H. Petering, and Dietrich R. Bergmann. Mixed integer
programming for minimizing the period of a cyclic railway timetable for a single
track with two train types. Computers and Industrial Engineering, 66(1), 2013.

[99] Dennis Huisman, Leo G. Kroon, Ramon M. Lentink, Michiel J.C.M. Vromans, Den-
nis Huisman, Leo G. Kroon, Ramon M. Lentink, and Michiel J.C.M. Vromans.
Operations research in passenger railway transportation. Statistica Neerlandica,
59(4):467–497, nov 2005.

[100] Yoshinao Isobe, Hisabumi Hatsugai, Akira Tanaka, Yutaka Oiwa, Takanori Ambe,
Akimasa Okada, Satoru Kitamura, Yamato Fukuta, and Takashi Kunifuji. Au-
tomatic generation of train timetables from mesoscopic railway models by SMT-
solver. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 2019.

[101] Lars Wittrup Jensen, Alex Landex, Otto Anker Nielsen, Leo G. Kroon, and Marie
Schmidt. Strategic assessment of capacity consumption in railway networks: Frame-
work and model. Transportation Research Part C: Emerging Technologies, 74, 2017.

[102] Feng Jiang, Valentina Cacchiani, and Paolo Toth. Train timetabling by skip-stop
planning in highly congested lines. Transportation Research Part B: Methodological,
104, 2017.

[103] Antoine Jouglet and Jacques Carlier. Dominance rules in combinatorial optimization
problems. European Journal of Operational Research, 212(3), 2011.

153

[104] Franck Kamenga. Combinatorial optimization for integrating rolling stock manage-
ment and railway traffic scheduling in passenger stations. PhD thesis, Université
Gustave Eiffel, 2020.

[105] Eva König. A review on railway delay management. Public Transport, 12(2), 2020.

[106] Eva König and Cornelia Schön. Railway delay management with passenger rerouting
considering train capacity constraints. European Journal of Operational Research,
288(2), 2021.

[107] Leo G. Kroon, Gábor Maróti, Mathijn Retel Helmrich, Michiel J.C.M. Vromans,
and Rommert Dekker. Stochastic improvement of cyclic railway timetables. Trans-
portation Research Part B: Methodological, 42(6), 2008.

[108] Leo G. Kroon, Leon W.P. Peeters, Joris C. Wagenaar, and Rob A. Zuidwijk. Flexible
connections in PESP models for cyclic passenger railway timetabling. Transporta-
tion Science, 48(1), 2014.

[109] Michael Kümmling, Peter Großmann, Karl Nachtigall, Jens Opitz, and Reyk Weiß.
A state-of-the-art realization of cyclic railway timetable computation. Public Trans-
port, 7(3), 2015.

[110] Michael Kümmling, Jens Opitz, and Peter Großmann. Improving traffic assignment
and periodic timetable optimization by constraint propagation. In Proceedings of
OR 2016 Conference, 2016.

[111] Daniel Lancien and Michèle Fontaine. Calcul de marche de trains minimisant
l’énergie de traction - Le programme MARECO. Revue Générale des Chemins
de Fer, 1981.

[112] Florin Leutwiler and Francesco Corman. A logic-based Benders decomposition for
microscopic railway timetable planning. European Journal of Operational Research,
303(2), 2022.

[113] Christian Liebchen. Symmetry for periodic railway timetables. In Electronic Notes
in Theoretical Computer Science, volume 92, 2004.

[114] Christian Liebchen. The first optimized railway timetable in practice. Transporta-
tion Science, 42(4), 2008.

[115] Christian Liebchen, Marco Lübbecke, Rolf H. Möhring, and Sebastian Stiller. The
concept of recoverable robustness, linear programming recovery, and railway appli-
cations. In Lecture Notes in Computer Science (including subseries Lecture Notes

154

in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5868 LNCS,
2009.

[116] Christian Liebchen and Rolf H. Möhring. A case study in periodic timetabling. In
Electronic Notes in Theoretical Computer Science, volume 66, 2002.

[117] Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic
event scheduling problem: Railway timetables - And beyond. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 4359 LNCS, 2007.

[118] Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and
André Prigge. Computing delay resistant railway timetables. Computers and Op-
erations Research, 37(5), 2010.

[119] Christian Liebchen and Elmar Swarat. The second Chvátal closure can yield better
railway timetables. In OpenAccess Series in Informatics, volume 9, 2008.

[120] Niels Lindner and Christian Liebchen. Determining all integer vertices of the PESP
polytope by flipping arcs. In OpenAccess Series in Informatics, volume 85, 2020.

[121] Niels Lindner and Christian Liebchen. Timetable merging for the Periodic Event
Scheduling Problem. EURO Journal on Transportation and Logistics, 11, 2022.

[122] Niels Lindner and Julian Reisch. An analysis of the parameterized complexity of
periodic timetabling. Journal of Scheduling, 25(2), 2022.

[123] Richard M. Lusby, Jesper Larsen, and Simon H. Bull. A survey on robustness in
railway planning, 2018.

[124] Richard M. Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway
track allocation: Models and methods, 2011.

[125] Thomas L. Magnanti and Richard T. Wong. Network Design and Transportation
Planning: Models and Algorithms. Transportation Science, 18(1), 1984.

[126] Grégory Marlière, Sonia Sobieraj Richard, Paola Pellegrini, and Joaquin Rodriguez.
A conditional time-intervals formulation of the real-time railway traffic management
problem. Control Engineering Practice, 133:105430, 2023.

[127] Berenike Masing, Niels Lindner, and Christian Liebchen. Periodic timetabling with
integrated track choice for railway construction sites. Journal of Rail Transport
Planning & Management, 28:100416, 2023.

155

[128] Lars-Göran Mattsson and Erik Jenelius. Vulnerability and resilience of transport
systems - A discussion of recent research. Transportation Research Part A: Policy
and Practice, 81, 2015.

[129] Marie Milliet de Faverges. Développement et implémentation de modèles apprenants
pour l’exploitation des grandes gares. PhD thesis, Conservatoire National des Arts
et Métiers, 2020.

[130] Karl Nachtigall. Periodic network optimization with different arc frequencies. Dis-
crete Applied Mathematics, 69(1-2), 1996.

[131] Karl Nachtigall. Periodic network optimization and fixed interval timetables. Ha-
bilitation Thesis. 1998.

[132] Karl Nachtigall and Jens Opitz. Solving periodic timetable optimisation problems
by modulo simplex calculations. In OpenAccess Series in Informatics, volume 9,
2008.

[133] Karl Nachtigall and Stefan Voget. A genetic algorithm approach to periodic railway
synchronization. Computers and Operations Research, 23(5), 1996.

[134] Karl Nachtigall and Stefan Voget. Minimizing waiting times in integrated fixed
interval timetables by upgrading railway tracks. European Journal of Operational
Research, 103(3), 1997.

[135] Michiel A. Odijk. A constraint generation algorithm for the construction of periodic
railway timetables. Transportation Research Part B: Methodological, 30(6), 1996.

[136] Michiel A. Odijk. Railway Timetable Generation. PhD thesis, Technische Univer-
siteit Delft, 1998.

[137] Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel. Look-ahead
approaches for integrated planning in public transportation. In OpenAccess Series
in Informatics, volume 59, 2017.

[138] Julius Pätzold and Anita Schöbel. A matching approach for periodic timetabling.
In OpenAccess Series in Informatics, volume 54, 2016.

[139] Leon W.P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus
Universiteit Rotterdam, 2003.

[140] Paola Pellegrini, Grégory Marlière, Raffaele Pesenti, and Joaquín Rodriguez.
RECIFE-MILP: An Effective MILP-Based Heuristic for the Real-Time Railway
Traffic Management Problem. IEEE Transactions on Intelligent Transportation
Systems, 16(5), 2015.

156

[141] Paola Pellegrini, Grégory Marlière, and Joaquín Rodriguez. Optimal train routing
and scheduling for managing traffic perturbations in complex junctions. Transporta-
tion Research Part B: Methodological, 59, 2014.

[142] Paola Pellegrini, Grégory Marlière, and Joaquín Rodriguez. RECIFE-SAT: A MILP-
based algorithm for the railway saturation problem. Journal of Rail Transport
Planning and Management, 7(1-2), 2017.

[143] Paola Pellegrini and Joaquín Rodriguez. Single European Sky and Single European
Railway Area: A system level analysis of air and rail transportation. Transportation
Research Part A: Policy and Practice, 57, 2013.

[144] Matthew E.H. Petering, Mojtaba Heydar, and Dietrich R. Bergmann. Mixed-integer
programming for railway capacity analysis and cyclic, combined train timetabling
and platforming. Transportation Science, 50(3), 2016.

[145] Gert-Jaap Polinder, Thomas Breugem, Twan Dollevoet, and Gábor Maróti. An
adjustable robust optimization approach for periodic timetabling. Transportation
Research Part B: Methodological, 128, 2019.

[146] Gert-Jaap Polinder, Valentina Cacchiani, Marie Schmidt, and Dennis Huisman. An
iterative heuristic for passenger-centric train timetabling with integrated adaption
times. Computers and Operations Research, 142, 2022.

[147] Gert-Jaap Polinder, Leo G. Kroon, Karen Aardal, Marie Schmidt, and Marco Moli-
naro. Resolving Infeasibilities in Railway Timetabling Instances. SSRN Electronic
Journal, 2018.

[148] Gert-Jaap Polinder, Marie Schmidt, and Dennis Huisman. Timetabling for strategic
passenger railway planning. Transportation Research Part B: Methodological, 146,
2021.

[149] Jianguo Qi, Valentina Cacchiani, Lixing Yang, Chuntian Zhang, and Zhen Di. An In-
teger Linear Programming model for integrated train stop planning and timetabling
with time-dependent passenger demand. Computers and Operations Research, 136,
2021.

[150] Jianguo Qi, Lixing Yang, Yuan Gao, Shukai Li, and Ziyou Gao. Integrated multi-
track station layout design and train scheduling models on railway corridors. Trans-
portation Research Part C: Emerging Technologies, 69, 2016.

[151] Claude Quinchon. Elaboration et tracé des horaires. Revue Générale des Chemins
de Fer, 1983.

157

[152] Julian Reisch, Peter Großmann, Daniel Pöhle, and Natalia Kliewer. Conflict re-
solving – A local search algorithm for solving large scale conflict graphs in freight
railway timetabling. European Journal of Operational Research, 293(3), 2021.

[153] SNCF Réseau. La modernisation du réseau. https://www.sncf.com/fr/reseau-
expertises/reseau-ferroviaire/sncf-reseau/modernisation-reseau (Accessed 03 May
2023).

[154] SNCF Réseau. Réseau. https://www.sncf-reseau.com/fr/reseau (Accessed 13 June
2023).

[155] SNCF Réseau. Tout savoir sur SNCF Réseau. https://www.sncf.com/fr/reseau-
expertises/reseau-ferroviaire/sncf-reseau (Accessed 03 May 2023).

[156] SNCF Réseau. Document de Référence du Réseau ferré national - Horaire de service
2024. Technical report, 2023.

[157] Thomáš Robenek. Behaviorally Driven Train Timetable Design. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, 2016.

[158] Joaquín Rodriguez. A constraint programming model for real-time train scheduling
at junctions. Transportation Research Part B: Methodological, 41(2), 2007.

[159] Joaquín Rodriguez and Lyes Kermad. Constraint programming for real-time train
circulation management problems in railway nodes. In Proceedings of the Interna-
tional Conference on Computer Aided Design, Manufacture and Operation in The
Railway and Other Advanced Mass Transit Systems, 1998.

[160] Miguel A. Salido, Montserrat Abril, Federico Barber, Laura Ingolotti, Pilar Tormos,
and Antonio Lova. Domain-dependent distributed models for railway scheduling.
Knowledge-Based Systems, 20(2), 2007.

[161] Marcella Samà, Andrea D’Ariano, Francesco Corman, and Dario Pacciarelli. A
variable neighbourhood search for fast train scheduling and routing during disturbed
railway traffic situations. Computers and Operations Research, 78, 2017.

[162] Marcella Samà, Paola Pellegrini, Andrea D’Ariano, Joaquín Rodriguez, and Dario
Pacciarelli. Ant colony optimization for the real-time train routing selection prob-
lem. Transportation Research Part B: Methodological, 85, 2016.

[163] Marcella Samà, Paola Pellegrini, Andrea D’Ariano, Joaquín Rodriguez, and Dario
Pacciarelli. On the tactical and operational train routing selection problem. Trans-
portation Research Part C: Emerging Technologies, 76, 2017.

158

[164] Giorgio Sartor, Carlo Mannino, Thomas Nygreen, and Lukas Bach. A MILP model
for quasi-periodic strategic train timetabling. Omega (United Kingdom), 116, 2023.

[165] Philine Schiewe and Anita Schöbel. Periodic timetabling with integrated routing:
Toward applicable approaches. Transportation Science, 54(6), 2020.

[166] Marie Schmidt and Anita Schöbel. Timetabling with passenger routing. OR Spec-
trum, 37(1), 2015.

[167] Anita Schöbel. A model for the delay management problem based on mixed-integer-
programming. In Electronic Notes in Theoretical Computer Science, volume 50,
2001.

[168] Anita Schöbel. Capacity constraints in delay management. Public Transport, 1(2),
2009.

[169] Anita Schöbel. Line planning in public transportation: Models and methods, 2012.

[170] Anita Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle
scheduling in public transportation. Transportation Research Part C: Emerging
Technologies, 74, 2017.

[171] Peter Sels, Dirk Cattrysse, and Pieter Vansteenwegen. Practical macroscopic eval-
uation and comparison of railway timetables. In Transportation Research Procedia,
volume 10, 2015.

[172] Peter Sels, Thijs Dewilde, Dirk Cattrysse, and Pieter Vansteenwegen. Reducing the
passenger travel time in practice by the automated construction of a robust railway
timetable. Transportation Research Part B: Methodological, 84:124 – 156, 2016.

[173] Peter Sels, Pieter Vansteenwegen, Thijs Dewilde, Dirk Cattrysse, B. Waquet, and
A. Joubert. The train platforming problem: The infrastructure management com-
pany perspective. Transportation Research Part B: Methodological, 61, 2014.

[174] Paolo Serafini and Walter Ukovich. A Mathematical Model for Periodic Scheduling
Problems. SIAM Journal on Discrete Mathematics, 2(4), 1989.

[175] Michael Siebert and Marc Goerigk. An experimental comparison of periodic
timetabling models. Computers and Operations Research, 40(10), 2013.

[176] Allen. L. Soyster. Convex Programming with Set-Inclusive Constraints and Appli-
cations to Inexact Linear Programming. Operations Research, 21(5), 1973.

159

[177] Daniel Sparing and Rob M.P. Goverde. A cycle time optimization model for gener-
ating stable periodic railway timetables. Transportation Research Part B: Method-
ological, 98, 2017.

[178] Christopher Szymula and Nikola Bešinović. Passenger-centered vulnerability as-
sessment of railway networks. Transportation Research Part B: Methodological, 136,
2020.

[179] Pilar Tormos, Montserrat Abril, Miguel A. Salido, Federico Barber, Laura Ingolotti,
and Antonio Lova. Distributed constraint satisfaction problems to model railway
scheduling problems. In WIT Transactions on the Built Environment, volume 88,
2006.

[180] UIC. UIC Code 406: Capacity, 2nd ed. Technical report, Paris, 2013.

[181] Raimond Wüst, Stephan Bütikofer, Severin Ess, Claudio Gomez, Albert Steiner,
Marco Laumanns, and Jacint Szabo. Maintenance timetable planning based on
mesoscopic infrastructure and the transport service intention. Journal of Rail Trans-
port Planning and Management, 11, 2019.

[182] Raimond Wüst, Stephan Bütikofer, Severin Ess, Claudio Gomez, Albert Steiner,
Marco Laumanns, and Jacint Szabo. Periodic Timetabling with ‘Track Choice’-
PESP Based on Given Line Concepts and Mesoscopic Infrastructure. In Operations
Research Proceedings 2018, pages 571–578. Springer International Publishing, 2019.

[183] Raimond Wüst, Felix Laube, Samuel Roos, and Gabrio Caimi. Sustainable global
service intention as objective for controlling railway network operations in real time.
In Proceedings of the 8th World Congress of Railway Research (WCRR), Seoul,
Korea, 2008.

[184] Fei Yan, Nikola Bešinović, and Rob M.P. Goverde. Multi-objective periodic railway
timetabling on dense heterogeneous railway corridors. Transportation Research Part
B: Methodological, 125, 2019.

[185] Fei Yan and Rob M.P. Goverde. Combined line planning and train timetabling
for strongly heterogeneous railway lines with direct connections. Transportation
Research Part B: Methodological, 127, 2019.

[186] Zhiyuan Yao, Lei Nie, Yixiang Yue, Zhenhuan He, Yu Ke, Yuxin Mo, and Hongda
Wang. Network periodic train timetabling with integrated stop planning and pas-
senger routing: A periodic time–space network construct and admm algorithm.
Transportation Research Part C: Emerging Technologies, 153:104201, 2023.

160

[187] Qin Zhang, Richard M. Lusby, Pan Shang, and Xiaoning Zhu. A heuristic ap-
proach to integrate train timetabling, platforming, and railway network mainte-
nance scheduling decisions. Transportation Research Part B: Methodological, 158,
2022.

[188] Yongxiang Zhang, Qiyuan Peng, Gongyuan Lu, Qingwei Zhong, Xu Yan, and
Xuesong Zhou. Integrated line planning and train timetabling through price-based
cross-resolution feedback mechanism. Transportation Research Part B: Methodolog-
ical, 155:240–277, 2022.

[189] Wenliang Zhou, Junli Tian, Lijuan Xue, Min Jiang, Lianbo Deng, and Jin Qin.
Multi-periodic train timetabling using a period-type-based Lagrangian relaxation
decomposition. Transportation Research Part B: Methodological, 105, 2017.

[190] Wenliang Zhou, Xiaorong You, and Wenzhuang Fan. A mixed integer linear pro-
gramming method for simultaneous multi-periodic train timetabling and routing on
a high-speed rail network. Sustainability (Switzerland), 12(3), 2020.

[191] Peter J. Zwaneveld, Leo G. Kroon, H. Edwin Romeijn, Marc Salomon, Stéphane
Dauzère-Pérès, Stan P.M. Van Hoesel, and Harrie W. Ambergen. Routing trains
through railway stations: Model formulation and algorithms. Transportation Sci-
ence, 30(3), 1996.

[192] Peter J. Zwaneveld, Leo G. Kroon, and Stan P.M. Van Hoesel. Routing trains
through a railway station based on a node packing model. European Journal of
Operational Research, 128(1), 2001.

161

	PDT JOUBERT Guillaume
	Soutenue le 20 novembre 2023
	Spécialité : Informatique : Unité de recherche Heudyasic (UMR-7253)

	Manuscrit_de_thèse_Guillaume_Joubert
	Résumé
	Abstract
	List of figures
	List of tables
	Résumé substantiel
	Introduction
	Industrial context
	Research objectives and contributions
	Outline of the thesis
	List of publications

	Operational Research in Railway planning: overview and positioning
	Railway planning phases
	Strategic level
	Tactical level
	Operational level
	Integrated approaches

	Train Timetabling Problem
	Tactical nominal problem
	Performance indicators
	Real-time rescheduling

	Positioning

	Description of the periodic Train Timetabling with mesoscopic tracks assignment problem
	Background notions and notations
	Parameters
	Decision Variables

	Problem statement
	Decision problem
	Optimisation problem

	Instances
	Toy example
	Medusa network
	Savoie area around Chambéry station

	List of Symbols

	Integer Linear Programming approaches
	Modelling the problem as an Integer Linear Program
	Model formulation
	Experimental results

	Decomposing the model
	Conflict evaluation function using the timetable only
	Solution approaches
	Experimental results

	Conclusion
	List of Symbols

	Constraint Programming approach
	Modelling the problem as a Constraint Optimisation Problem
	Periodic operations
	Model formulation
	Model enhancements

	Branching strategies
	Experimental results
	Conclusion
	List of Symbols

	OptiSillons, a prototype for interactive timetabling
	Managing the input data
	Obtaining a solution and working on it
	Timetable representations.
	Modifying a timetable.

	Conclusion and future work
	Synthesis
	Perspectives

	Bibliography

