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Abstract

Any perturbation in linear systems may severely degrade the performance of iterative methods
when conjugate directions are constructed. This issue can be partially remedied by lagged
gradient methods, which does not guarantee descent in the quadratic function but can
improve the convergence compared with traditional gradient methods. Later work focused on
alternate gradient methods with two or more steplengths in order to break the zigzag pattern.
Recent papers suggested that revealing of second-order information along with lagged steps
could reduce asymptotically the search spaces in smaller and smaller dimensions. This led
to gradient methods with alignment in which essential and auxiliary steps are conducted
alternately. Numerical experiments have demonstrated their effectiveness.

This dissertation first considers efficient gradient methods for solving symmetric positive
definite linear systems. We begin by studying an alternate method with two-dimensional finite
termination property. Then we derive more spectral properties for traditional steplengths.
These properties allow us to expand the family of gradient methods with alignment and
establish the convergence of new methods. We also treat gradient iterations as an inexpensive
process embedded in splitting methods. In particular we address the parameter estimation
problem and suggest to use fast gradient methods as low-precision inner solvers. For
the parallel case we focus on the lagged formulations for which it is possible to reduce
communication costs. We also present some new properties and methods for s-dimensional
gradient iterations.

To sum up, this dissertation is concerned with three inter-related topics in which gradient
iterations can be employed as efficient solvers, as embedded tools for splitting methods and
as parallel solvers for reducing communication. Numerical examples are presented at the
end of each topic to support our theoretical findings.
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Chapter 1

Introduction

1.1 Background

In this section we provide some general background information on iterative methods for the
solution of linear systems. The original development of this family of methods can date back
to 1823, when Gauss wrote a private letter to Gerling (translated by Forsythe):

I recommend this method to you for imitation. You will hardly ever again
eliminate directly, at least not when you have more than 2 unknowns.

Here, “this method” was later viewed as a relaxation process, called Gauss-Seidel method.
A general description with cyclic relaxation process was then formally published by Seidel
[136]. In 1845, Jacobi [94] proposed a variant of Gauss’ process now known as the Jacobi
method. As mentioned in [153], these two methods were originally called “method of
successive displacements” and “method of simultaneous displacements”, respectively, see
also [67, 148] for historical references.

Another direction of approach was based on the gradient methods, first proposed by Cauchy
[33] in 1847, which was later known as the steepest descent (SD) method or the Cauchy
method:

Il suffira donc, ou de résoudre cette dernière équation, ou du moins d’attribuer à θ

une valeur suffisamment petite, pour obtenir une nouvelle valeur de u inférieure
à u. Si la nouvelle valeur de u n’est pas un minimum, on pourra en déduire, en
opérant toujours de la même manière, une troisième valeur plus petite encore; et,
en continuant ainsi, on trouvera successivement des valeurs de u de plus en plus
petites . . . .

Here, u is the function value being reduced and θ later became known as the steplength of
gradient methods (see Chapter 2). Temple is quoted as having found in 1938 that the problem
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of solving a symmetric positive definite linear system is equivalent to that of minimizing a
quadratic function (see [153]). The Cauchy method was then formalized by Kantorovitch
in 1945 for solving such minimization problem (see [133]). This method is also referred to
as the one-dimensional projection process (see [131]).

In 1910, Richardson [130] proposed an iterative method for solving linear systems,
commonly called Richardson method, in which a sequence of extrapolation factors are
exploited to improve the convergence. Choosing a constant value for all factors yields the
stationary Richardson method (see [152]), or loosely called constant gradient method. The
word “relaxation” was likely first used by Southwell [140] in 1940. Ten years later, Frankel
[69] and Young [151] devised simultaneously the point successive overrelaxation (SOR)
method. This method was referred to as the extrapolated Liebmann method in Frankel [69].
Inspired by the finite difference solution of elliptic partial differential equations, in 1955,
Peaceman and Rachford [120] proposed the alternating direction implicit (ADI) method.
In Chapter 4, we shall discuss an analogous splitting method called Hermitian and skew-
Hermitian (HSS) method [11]. In the same year, Sheldon [137] introduced the symmetric
SOR (SSOR) method. The relationship between the basic methods and the Chebyshev
polynomials was also revealed at that moment, see Golub and Varga [82] and the references
therein. For a detailed overview of the above methods, see [153, 133].

At the present time, there are still many cases that direct methods based on matrix
factorizations can be effectively used for the solution of fairly large linear systems, see Duff
et al. [59] and the references therein for a detailed overview of these methods. After around
mid-1970s, however, Krylov subspace methods started gaining acceptance and became more
popular than both relaxation methods and direct methods for solving a wide variety of
problems. The original development of these methods can date back to 1950, when Lanczos
[101] started to investigate eigenvalue algorithms, resulting in a pioneering work on what is
now known as the Lanczos algorithm for finding eigenvalues of symmetric matrices. This
work was then extended by Arnoldi [4] to the nonsymmetric case, called Arnoldi algorithm.
For the solution of linear systems, in 1952, Hestenes and Stiefel [89] completed their seminal
work of conjugate gradient (CG) method. Lanczos [102] proposed a similar method as well
as the two-sided Lanczos procedure. These publications have enormous impact on scientific
research, as quoted from [133]:“These four papers together set the foundations of many
methods that were developed later”. The potential of CG was not generally recognized
until the work of Reid [129] in which CG was suggested as an iterative solver for sparse
linear systems arising from the solution of Laplace’s equation. See [81] for a chronological
overview of early publications. Since then, CG became the method of choice and led to
considerable research work in the solution of indefinite and nonsymmetric linear systems.



1.1 Background 3

See [84, 131, 146] for good overviews of Krylov subspace methods, see also Section 4.1 and
the references therein.

Another approach dealing with asynchronous iterations was considered by Chazan and
Miranker [35] in 1969 for linear problems, and further generalized with contraction properties
by Miellou [113], Baudet [18], El Tarazi [62], Miellou and Spiteri [114], Frommer and Szyld
[75], Frommer and Szyld [76], and El Baz et al. [61]. Some papers made use of the partial
ordering such as El Tarazi [63], El Baz et al. [60], and Miellou et al. [115]. Finally, Bertsekas
[23] (see also [24]) proposed a general model based on the nested sets. In the past few years
asynchronous iterative methods have received increasing attention, see Chau [34], Bahi et al.
[9], Gbikpi-Benissan [78], and Partimbene [119] for more details.

Experience reveals that it is not easy to formalize the asynchronous variants based on the
projection-type methods. Another direction to reduce communication in parallel environment
is based on the communication-avoiding Krylov methods, see Hoemmen [91] for a good
review. This strategy improves parallel properties for distributed environment, but leads to
increase in computational complexity. An important observation is that the technique used
in asynchronous iterations, termed “retards”, can be used for the construction of similar
coefficients for gradient methods, which leads to significant gains in efficiency.

In 1988, Barzilai and Borwein [17] proposed two gradient methods, later called Barzilai-
Borwein (BB) methods (they shall be denoted by BB and BB2, respectively, see Sec-
tion 2.3), that generates nonmonotone convergence curve, which means that the correspond-
ing quadratic function might increase in some points throughout the iterative process. The
irregular convergence led to so much suspicion about their robustness. It is interesting
to note that the BiCG method [64, 102] faced the same challenge in the late 1970s until
the introduction of the BiCGSTAB method [145]. Barzilai and Borwein [17] stated their
motivation:

The motivation for this choice is that it provides a two-point approximation to
the secant equation underlying quasi-Newton methods . . . .

They concluded by saying:

In view of the highly remarkable behavior of the new algorithms and the fact
that they are not monotone, it is probably not surprising that our analysis, too, is
entirely nonstandard. . . . Finally, note that, since the two-point algorithms are
not descent algorithms, they have an advantage in that the restriction to descent
algorithms often results in small step sizes for ill-conditioned problems.

This pair of methods is indeed the first trial of lagged gradient iterations. In 1999, Friedlander
et al. [74] presented a convergence framework, called gradient method with retards (GMR),
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including the BB methods, but also admitting other variants. This is the origin of the word
“retards” in the “iterative methods with retards”. See Chapter 2 for details.

Most of the efficient gradient methods use retards in the gradient vector without focusing
on the theoretical aspects. It is clear, however, that in many real problems they are less
convincing than the methods based on spectral properties, called gradient methods with
alignment. The challenge consists in finding more spectral properties other than the results
based on the steepest descent by Nocedal et al. [117], De Asmundis et al. [56] and De
Asmundis et al. [57], and proving the convergence of the new steplengths. On the other hand,
when using parallel computing environment, the need for gradient algorithms specifically
formalized for parallel processing is particularly important because communication among
the processors has to be controlled.

This thesis shall not address the issue of preconditioners, although in Sections 4.3.1
and 5.5 there exist analogous techniques that are mentioned for practical purposes. Overviews
for this topic can be found in [19, 149].

1.2 Summary

This thesis is organized as follows:

• In Chapter 2, we give an overview of gradient methods. We summarize the convergence
theories of monotone gradient methods as well as some general gradient frameworks
and the asymptotic results of steepest descent parameters upon the number of iterations.
We also present a new choice of alternate steplength motivated by the two-dimensional
finite termination property and the potential benefits of nonmonotone behavior.

• In Chapter 3, we derive the spectral properties of minimal gradient. We extend and
propose three new gradient methods with alignment based on asymptotically optimal
and minimal gradient steplengths, helping to extend the Cauchy-short framework to
general cases. We then establish the convergence of new methods for the solution
of symmetric positive definite systems. We show numerical experiments based on
randomly generated matrices, two-point boundary value problems and a matrix drawn
from a public collection.

• In Chapter 4, we introduce the application of gradient methods to the Hermitian and
skew-Hermitian splitting method. We show that the asymptotic properties of steepest
descent introduced in Chapter 2 hold for Hermitian systems. We propose several
approaches to estimate the optimal value of parameter γ in the splitting method based
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on gradient iterations. We also suggest low-precision lagged gradient methods as
inner solvers. We conduct numerical experiments on randomly generated matrices and
three-dimensional boundary value problems.

• In Chapter 5, we present parallel implementation of gradient methods. We focus on the
gradient variants which can reduce communication costs and provide the relevant algo-
rithms. For the s-dimensional gradient methods, we find two new properties related to
the range of the descent steplengths. As a result, we propose two lagged s-dimensional
methods based on the intermediate variables instead of the previous steplengths. Then
we compare three gradient iterative schemes (basic scheme, lagged scheme, asyn-
chronous scheme) and discuss the practical implementation issues. Numerical results
are shown in the end for randomly generated matrices and linear systems drawn from
a public matrix collection.

• Finally, in Chapter 6, we give some concluding remarks and discuss the future work.

1.3 Contribution

The primary contributions of this thesis include:

• We have proposed a new lagged gradient method with two-dimensional finite termi-
nation property. This method is faster than prior work for well-conditioned linear
systems. Our related publications include:

– Q. Zou, F. Magoulès, A new cyclic gradient method adapted to large-scale linear
systems, in Proceedings of 17th DCABES, IEEE, 2018 (see [159]).

• We have developed the spectral properties of minimal gradient. We have proposed
three new gradient methods with alignment and proved their convergence. These new
methods are competitive with prior work and generate smoother convergence curves.
Our related publications include:

– Q. Zou, F. Magoulès, Fast gradient methods with alignment for symmetric linear
systems without using Cauchy step, in progress.

• We have proposed several approaches to estimate the parameter in the Hermitian and
skew-Hermitian splitting method based on gradient iterations. We have suggested to
use lagged gradient methods as inner solvers. Our related publications include:
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– Q. Zou, F. Magoulès, Parameter estimation in HSS method using gradient itera-
tions, in progress.

• We have proposed two new properties for s-dimensional gradient methods. We have
proposed two new lagged s-dimensional methods and suggested to use cyclic formula-
tions to reduce communication costs. We have provided parallel algorithms for these
methods. Our related publications include:

– Q. Zou, F. Magoulès, Reducing the effect of global synchronization in delayed
gradient methods for symmetric linear systems, in progress.

– Q. Zou, F. Magoulès, Parallel iterative methods with retards for linear systems, in
Proceedings of 6th PARENG, Civil-Comp Press, 2019 (see [161])

During this thesis, we have also made the following contributions which shall not be discussed
in the following sections:

• We have formalized the asynchronous Laplace transform process for time discretization.
Our related publications include:

– F. Magoulès, Q. Zou, Asynchronous time-parallel method based on Laplace
transform, Int. J. Comput. Math., in review.

• We have implemented asynchronous convergence detection using a modified recursive
doubling algorithm. Our related publications include:

– Q. Zou, F. Magoulès, Convergence detection of asynchronous iterations based
on modified recursive doubling, in Proceedings of 17th DCABES, IEEE, 2018
(see [160]).

• We have written a book about parallel programming of asynchronous iterations. In
particular, this book explains how to use JACK (see [107]) to implement asynchronous
iterative methods. Our related publications include:

– G. Gbikpi-Benissan, Q. Zou, F. Magoulès, Asynchronous iterative methods:
programming models and parallel implementation, Institute of Computer Science,
2018 (see [79]).

• We have applied asynchronous Parareal time discretization method (see [108]) to the
Black-Scholes equation. Our related publications include:

– F. Magoulès, G. Gbikpi-Benissan, Q. Zou, Asynchronous iterations of Parareal
algorithm for option pricing models, Mathematics, 2018 (see [111]).
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– Q. Zou, G. Gbikpi-Benissan, F. Magoulès, Asynchronous Parareal algorithm
applied to European option pricing, in Proceedings of 16th DCABES, IEEE, 2017
(see [162]).

– Q. Zou, G. Gbikpi-Benissan, F. Magoulès, Asynchronous communications library
for the parallel-in-time solution of Black-Scholes Equation, in Proceedings of
16th DCABES, IEEE, 2017 (see [163]).





Chapter 2

Gradient methods

In this chapter, we present a detailed survey of gradient iterative methods, convergence
theories and asymptotic properties. Basic methods are monotone and sometimes optimal
in terms of specific norms. Lagged methods often achieve better performance due to their
nonmonotone behavior. Recent work suggests that spectral properties could be exploited to
accelerate convergence. In the last section, we provide a new method with two-dimensional
finite termination property.

2.1 Introduction

Consider the linear system
Ax = b, (2.1)

where A ∈ RN×N is symmetric positive definite (SPD) and b ∈ RN . Let {v1, . . . , vN} be the
orthonormal eigenvectors of A associated with the eigenvalues {λ1, . . . , λN}. We assume that

0 < λ1 ≤ ·· · ≤ λN ,

and thus the condition number is
κ =

λN

λ1
.

The solution x∗ is the unique global minimizer of strictly convex quadratic function

f (x) =
1
2

x⊺Ax−b⊺x. (2.2)



10 Gradient methods

For n = 0, 1, . . . , the gradient method is of the form

xn+1 = xn −αngn, (2.3)

where gn = ∇ f (xn) = Axn −b. This gives the updating formula

gn+1 = gn −αnAgn. (2.4)

The residual vector rn is defined as rn = b−Axn and thus rn =−gn. The error iterates are of
the form

en+1 = (I −αnA)en, (2.5)

where en = x∗− xn. There exist real numbers ξi,n and ζi,n such that

en =
N

∑
i=1

ξi,nvi, gn =
N

∑
i=1

ζi,nvi.

Thus,
ξi,n+1 = (1−αnλi)ξi,n, ζi,n+1 = (1−αnλi)ζi,n,

and
ζi,n =−ξi,nλi.

2.2 Basic gradient methods

The steepest descent (SD) method, proposed originally by Cauchy [33], defines the steplength
by the reciprocal of the Rayleigh quotient

α
SD
n =

g⊺ngn

g⊺nAgn
,

which is also called Cauchy steplength. It minimizes the quadratic function f or the A-norm
error of the linear system and gives theoretically an optimal result in each step

α
SD
n = argmin

α

f (xn −αgn) = argmin
α

∥(I −αA)en∥2
A .

This classical method is known to behave badly in practice. The directions generated tend to
asymptotically alternate between two orthogonal directions which leads to a low convergence
rate [1].
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The minimal gradient (MG) method was proposed by Krasnosel’skii and Krein [99] (see
also [98]) which is of the form

α
MG
n =

g⊺nAgn

g⊺nA2gn
.

It minimizes the 2-norm gradient value

α
MG
n = argmin

α

∥gn −αAgn∥2 .

Traditionally it does not have a specific name. From Kozjakin and Krasnosel’skii [98] we
know that it was originally called “minimal residues”. However, this term might cause confu-
sion since there exists a Krylov subspace method called MINRES [118] which minimizes the
norm of the residual through the Lanczos process. On the other hand, MG is also a special
case of Orthomin(k) method when k = 1 [84]. Here the name “minimal gradient” comes
from [50] since it gives an optimal gradient result in each step.

Dai and Yang [49] proposed a new gradient method of the form

α
AO
n =

∥gn∥
∥Agn∥

.

It asymptotically converges to the optimal steplength

lim
n→∞

α
AO
n = α

OPT
n =

2
λ1 +λN

,

which minimizes the coefficient matrix

α
OPT
n = argmin

α

∥I −αA∥ .

Thus we call it asymptotically optimal (AO) method.
In practice, SD usually performs better than MG, but both of them are badly effected by

ill-conditioning. Moreover, AO performs generally as bad as SD and MG.
Based on the aforementioned steplengths, several variants have been investigated. Raydan

and Svaiter [128] proposed the relaxed steepest descent (RSD) method as below

α
RSD
n = θnα

SD
n , θn ∈ (0, 2),

where the sequence {θn} should have an accumulation point. They found that the introduction
of relaxation might accelerate the convergence of the original SD method. In [50], similar
formulations are considered by Dai and Yuan under the name of shortened SD. The alternate
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minimization (AM) method which alternately minimizes the A-norm error value and the
2-norm gradient value was also proposed in [50], namely

α
AM
n =

αSD
n , for even n,

αMG
n , for odd n.

Further, as mentioned in Ascher et al. [5], more combinations are possible such as the
harmonic mean (HM) method

α
HM
n = 2

(
1

αSD
n

+
1

αMG
n

)−1

,

and the relaxed minimization (RM) method

α
RM
n = ωnα

SD
n +(1−ωn)α

MG
n , ωn ∈ (0, 1).

All methods described above are monotone methods, i.e., the steplength αn is such that
f (xn+1)< f (xn) for all n.

Finally, we make a slight digression for the conjugate gradient (CG) method [89]. Ac-
cording to the definition of gradient methods defined by Equation (2.3), obviously, CG
does not belong to this camp. CG is often the method of choice that will terminate in at
most N iterations theoretically. It is very attractive because of its high efficiency and low
storage requirement. Nevertheless, when low precision is required, CG often performs not
good [74]; if there exists a nonquadratic term in function f , other gradient methods can also
become competitive [65, 143]; moreover, any derivation such as roundoff errors can seriously
degrade its performance [47]. The purpose of this monograph is to investigate the properties
of gradient methods and develop new methods. We mention Saad [131] for more theoretical
arguments about CG and other Krylov subspace methods.

2.3 Fast gradient methods

The first lagged gradient method is the Barzilai-Borwein (BB) method that was originally
proposed in Barzilai and Borwein [17]. The BB method is of the form

α
BB
n =

g⊺n−1gn−1

g⊺n−1Agn−1
,
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which remedies the ill-conditioning problem in Cauchy method by using nonmonotone
steplength. The motivation arose in providing a two-point approximation to the quasi-Newton
methods, namely

α
BB
n = argmin

α

∥∥∥∥ 1
α

∆x−∆g
∥∥∥∥2

,

where ∆x = xn−xn−1 and ∆g = gn−gn−1. A similar method developed by symmetry in [17]
is of the form

α
BB2
n =

g⊺n−1Agn−1

g⊺n−1A2gn−1
,

which imposes as well a quasi-Newton property

α
BB2
n = argmin

α

∥∆x−α∆g∥2 .

Notice that αBB
n = αSD

n−1 and αBB2
n = αMG

n−1. Practical experience is somewhat in favor of
the first one. The convergence analysis of these methods was given in [125, 126, 48]. The
preconditioned version was established in [116]. While we address mainly the problem
of Equation (2.1) in this monograph, we note that the BB method has been successfully
applied to the general unconstrained minimization problems by Raydan [127], in which a
globalization strategy based on the line search condition of Grippo et al. [87] was introduced.
A more recent chapter by Fletcher [65] discussed the efficiency of the BB method.

In the years that followed numerous generalizations have appeared. An ingenious frame-
work called gradient method with retards (GMR) was introduced by Friedlander et al.
[74]. Given m a positive integer and given {q1, . . . , qm} a set of positive numbers, let
n̄ = max{0, n−m}. Then the GMR framework is defined as follows

α
GMR
n =

g⊺
τ(n)A

ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+1gτ(n)
, (2.6)

with
τ(n) ∈ {n̄, n̄+1, . . . , n−1, n} , ρ(n) ∈ {q1, . . . , qm} , q j ≥ 0.

Several promising methods can be derived from such formulation. For example, the alternate
step (AS) method [45] can be written as

α
AS
n =

αSD
n , for even n,

αBB
n , for odd n.
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In [74], the first cyclic gradient method under the name of cyclic steepest descent (CSD) was
proposed, which can be summarized as follows

α
CSD
n =

αSD
n , n mod d = 0,

αn−1, otherwise,
d ≥ 2.

Another important formulation called cyclic Barzilai-Borwein (CBB) was investigated in [45,
52], which is of the form

α
CBB
n =

αBB
n , n mod d = 0,

αn−1, otherwise,
d ≥ 2.

On the other hand, given υ a positive number, a generalization of the GMR framework
(DGMR) by Dai [45] covering the AO steplength was introduced as below

α
DGMR
n =

(
g⊺

τ(n)A
ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+υgτ(n)

) 1
υ

. (2.7)

Given ρ0 ∈ N, Yuan’s generalization of the GMR framework (YGMR) [156] can be written
as follows

α
YGMR
n =

[
min

|ρ|≤ρ0, n̄≤ j≤n

g⊺j A
ρg j

g⊺j Aρ+1g j
, max
|ρ|≤ρ0, n̄≤ j≤n

g⊺j A
ρg j

g⊺j Aρ+1g j

]
. (2.8)

To better choose the parameters and the appropriate steplengths for gradient methods,
some investigations were conducted towards the adaptive techniques. Lamotte et al. [100]
introduced an adaptive technique for the choice of the lagged parameter m in order to
improve the stability. Zhou et al. [158] proposed two adaptive methods based on SD and BB
respectively. The adaptive steepest descent (ASD) method is of the form

α
ASD
n =

αMG
n , αMG

n > θαSD
n ,

αSD
n −ωαMG

n , otherwise,
θ , ω ∈ (0, 1).
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Analogously, the adaptive Barzilai-Borwein (ABB) method is of the form

α
ABB
n =

αBB2
n , αBB2

n < θαBB
n ,

αBB
n , otherwise,

θ ∈ (0, 1).

Since ABB overcomes already the stagnation problem of SD, the relaxation term ω disappears
in the latter equation. According to the experimental results illustrated in [158], it is better to
choose the parameter θ slightly bigger than 0.5 for ASD, while slightly smaller than 0.5 for
ABB. Moreover, ABB performs better for very ill-conditioned problems and both of them
are comparable and generally preferable to other lagged gradient methods. Frassoldati et al.
[70] proposed two adaptive methods in terms of the shortened BB steplength. One of them
can be written as follows

α
MABB
n =

min
{

αBB2
j | j = max{0, n−d}, . . . , n

}
, αBB2

n < θαBB
n ,

αBB
n , otherwise,

θ ∈ (0, 1),

which belongs to the GMR framework as shown in [74]. It was denoted by ABBmin1

in [70]. Here we call it modified adaptive Barzilai-Borwein (MABB) method. In [156]
Yuan discussed a similar formulation using only the short BB2 step. There exists another
more complicated derivation which reveals the spectral properties of the coefficient matrix,
see [70] for details.

Besides, there exist several auxiliary steplengths acting as accelerators of other methods.
More precisely, we can conduct occasionally the auxiliary iterative steps to improve the
global performance. For example, in order to find the unique minimizer in finitely many
iterations in 2-dimensions, Yuan [154] proposed a ingenious steplength as follows

α
Y
n = 2


√√√√( 1

αSD
n−1

− 1
αSD

n

)2

+
4∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

+
1

αSD
n−1

+
1

αSD
n

−1

,

which is called Yuan steplength. It is worth mentioning that such steplength has been proved
to be much significant in terms of the underlying alignment property. Recently, a paper by De
Asmundis et al. [56] (see also [55]) proposed a gradient method that exploits the spectral
properties for choosing steps. The improvement resorts to the alignment of the gradient
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vector involving a special steplength

α
A
n =

(
1

αSD
n−1

+
1

αSD
n

)−1

,

and sometimes the double Cauchy steplength for the sake of monotonicity

α
D
n = 2α

SD
n (2.9)

In one direction, these steplengths lead to some efficient alternate gradient methods, especially
the second variant provided in [51]

α
DY
n =

αSD
n , n mod 4 = 0 or 1,

αY
n , otherwise,

(2.10)

which was shown as the most efficient variant according to the experiments. As usual, it does
not have a specific name. Here we call it Dai-Yuan (DY) method (see, e.g., [70]). A closer
examination of Yuan variants revealed that they have a distinguish property which is called
“decreasing together” [51]. It means that DY does not sink into any lower subspace spanned
by eigenvectors. BB has also such feature. Important differences come from the fact that BB
is a nonmonotone steplength, whereas DY is monotone thus being more stable.

On the other hand, the auxiliary steps lead to the gradient methods with alignment such
as

α
SDA
n =


αSD

n , n mod (d1 +d2)< d1,

αA
n , n mod (d1 +d2) = d1,

αSDA
n−1 , otherwise,

d1, d2 ≥ 1.

This method is called steepest descent with alignment (SDA). Here, we choose the version
described in [58] without using the original switch condition, and vary the form while
leaving the alignment property unchanged. The main feature of this method is to foster the
reduction of gradient components along the eigenvectors of A selectively, and reduce the
search space into smaller and smaller dimensions. The problem tends to have a better and
better condition number [57]. Shortly after, they presented another similar method based on
Yuan steplength [57], called steepest descent with constant steplength (SDC), which is of the
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form

α
SDC
n =


αSD

n , n mod (d1 +d2)< d1,

αY
n , n mod (d1 +d2) = d1,

αSDC
n−1 , otherwise,

d1, d2 ≥ 1.

They also provided the monotone versions by using the double SD steplength. The first one
called SDA with monotonicity (SDAM) can be written as follows

α
SDAM
n =


αSD

n , n mod (d1 +d2)< d1,

αA
n , n mod (d1 +d2) = d1,

min
{

αSDAM
n−1 , αD

n
}
, otherwise,

d1, d2 ≥ 1.

In that way, the second one is called SDC with monotonicity (SDCM)

α
SDCM
n =


αSD

n , n mod (d1 +d2)< d1,

αY
n , n mod (d1 +d2) = d1,

min
{

αSDCM
n−1 , αD

n
}
, otherwise,

d1, d2 ≥ 1.

Recall that the names and the notations are adjusted to better suit the following deductions.
We keep the core features in the aforementioned methods unchanged. These two methods
seem to be the state of the art of gradient methods and tend to give the best performance
among all of these. Recently, Gonzaga and Schneider [83] introduced a general framework of
Cauchy steplength with alignment, which breaks the Cauchy cycle by periodically applying
some short steplengths. Fletcher [66] proposed a new method called limited memory steepest
descent (LMSD) method. Convergence analysis has been discussed in [44].

2.4 Convergence theories

By the invariance property under any orthogonal transformation, we can give the following
assumption without loss of generality.

Assumption 2.1. A = diag(λ1, . . . , λN) with λ1 ≤ ·· · ≤ λN and λ1 = 1.

Remark. This assumption seems to be quite strict in practice. However, for the theoretical
analysis, we could simply add an orthogonal transformation that transforms A to a diagonal
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matrix of eigenvalues. Moreover, if λ1 ̸= 1, we could add a factor 1/λ1 to the matrix without
changing the convergence property. Hence, we make this assumption in some situations for
the sake of convergence analysis exclusively.

Lemma 2.1 (Kantorovich inequality). Let B be a symmetric positive definite matrix. Let
λmax and λmin be its largest and smallest eigenvalues. Then

(u⊺Bu)
(
u⊺B−1u

)
(u⊺u)2 ≤ (λmax +λmin)

2

4λmaxλmin
, ∀u ̸= 0.

Proof. See Saad [131].

Theorem 2.2. Let A be a symmetric positive definite matrix. Consider the SD method being
used to solve the linear system Ax = b. Then

∥en+1∥A ≤ κ −1
κ +1

∥en∥A .

Proof. See Saad [131].

Theorem 2.3 (Nocedal et al., 2002, Theorem 4.1). Let A be a symmetric positive definite
matrix. Consider the SD method being used to solve the linear system Ax = b. Then

∥gn+1∥ ≤
κ −1
2
√

κ
∥gn∥ .

Proof. See Nocedal et al. [117].

Theorem 2.4. Let A be a positive definite matrix. Let λmin be the smallest eigenvalue of
(A+A⊺)/2. Consider the MG method being used to solve the linear system Ax = b. Then

∥gn+1∥ ≤

√
1−

λ 2
min

∥A∥2 ∥gn∥ .

Proof. See Saad [131].

Theorem 2.5. Let A be a symmetric positive definite matrix. Consider the MG method being
used to solve the linear system Ax = b. Then

∥gn+1∥ ≤
κ −1
κ +1

∥gn∥ .

Proof. See Greenbaum [84].
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Theorem 2.6 (Friedlander et al., 1999, Theorem 2.1). Let A be a symmetric positive definite
matrix. Consider the gradient method with steplength (2.6) being used to solve the linear
system Ax = b. Then the sequence {xn} converges to x∗.

Proof. See Friedlander et al. [74].

Theorem 2.7 (Raydan, 2002, Theorem 2.1). Consider the linear system Ax = b where A is
symmetric positive definite. Assume that the sequence of solution vectors {xn} is generated
by the RSD method. If the sequence {θn} has an accumulation point θ∗ ∈ (0, 2), then the
sequence {xn} converges to x∗.

Proof. See Raydan and Svaiter [128].

Definition (R-linear convergence). Let {un} be a sequence of vectors which converges to u∗.
If there exists a sequence {εn} such that ∥un −u∗∥ ≤ εn for all n and there exists a constant c
such that

lim
n→∞

|εn+1|
|εn|

= c,

then un converges R-linearly to u∗.

Definition (Property A). Let gi,n be the ith component of gn and

G(n,µ) =
µ

∑
i=1

g2
i,n.

Suppose that Assumption 2.1 holds. If there exist constant c and ∃m0 ∈ N, ∃c1,c2 > 0, such
that ∀µ ∈ {1, . . . , N −1}, ∀ε > 0, ∀ j ∈ {0, . . . , min{n,m0}},

1. λ1 ≤ α−1
n ≤ c1;

2. if G(n− j,µ)≤ ε and g2
µ+1,n− j ≥ c2ε , then α−1

n ≥ 2
3λµ+1,

then the steplength αn has Property A.

Lemma 2.8 (Dai, 2003, Theorem 4.1). Consider the linear system Ax = b with Assump-
tion 2.1 holds. If the steplength αn has Property A, then the sequence {∥gn∥} generated by a
gradient method converges to zero R-linearly.

Proof. See Dai [45].

Theorem 2.9 (Dai, 2003, Page 408). Let A be a symmetric positive definite matrix. Consider
the gradient method with steplength (2.7) being used to solve the linear system Ax = b. Then
the sequence {xn} converges to x∗.
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Proof. See Dai [45].

Theorem 2.10 (Yuan, 2010, Theorem 7.2.2). Let A be a symmetric positive definite matrix.
Consider the gradient method with steplength (2.8) being used to solve the linear system
Ax = b. Then the sequence {xn} converges to x∗.

Proof. See Yuan [156].

2.5 Asymptotic properties

Assumption 2.2. The matrix A is symmetric positive definite satisfying 0 < λ1 < · · ·< λN

and the starting point x0 is such that ζ1,0 ̸= 0 and ζN,0 ̸= 0.

Remark. We point out that this assumption is not restrictive since if there exist some repeated
eigenvalues, then we can choose the corresponding eigenvectors so that the superfluous
ones vanish (see, e.g., Fletcher [65]). Moreover, if ζ1,0 or ζN,0 equals zero, then the second
condition can be simply replaced by the components involving inner indices without changing
the results discussed later on.

Lemma 2.11 (Akaike, 1959, Theorems 1 and 2). Let p0 be a probability measure attached
to {λ1, . . . , λN} where pi,0 = p0(λi) and 0 < λ1 < · · ·< λN . Consider a transformation such
that

pi,n+1 =

(
∑

N
j=1 λ j p j,n −λi

)2

∑
N
l=1

(
∑

N
j=1 λ j p j,n −λl

)2
pl,n

pi,n.

Then,

lim
n→∞

pi,2n =


p∗, i = 1,

0, i ∈ {2, . . . , N −1},

1− p∗, i = N,

and

lim
n→∞

pi,2n+1 =


1− p∗, i = 1,

0, i ∈ {2, . . . , N −1},

p∗, i = N,

for some p∗ ∈ (0, 1).

Proof. See Akaike [1], see also [68, 124].
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Theorem 2.12 (Akaike, 1959, Theorem 4). Consider the linear system Ax = b with Assump-
tion 2.2 holds. Assume that the sequence of solution vectors {xn} is generated by the SD
method. Then

lim
n→∞

ζ 2
i,2n

∑
N
j=1 ζ 2

j,2n
=


1

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

c2

1+c2 , i = N,

and

lim
n→∞

ζ 2
i,2n+1

∑
N
j=1 ζ 2

j,2n+1
=


c2

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

1
1+c2 , i = N,

for some constant c. Moreover, ζ1,2n, ζN,2n, ζ1,2n+1, ζN,2n+1 have fixed signs for large n.

Proof. See Akaike [1], see also [68].

Theorem 2.13 (Akaike, 1959, Page 11). Consider the linear system Ax = b with Assumption
2.2 holds. Assume that the sequence of solution vectors {xn} is generated by the SD method.
Then

lim
n→∞

f (xn+1)− f (x∗)
f (xn)− f (x∗)

=
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

for some constant c.

Proof. See Akaike [1].

Theorem 2.14 (Nocedal et al., 2002, Lemma 3.3). Consider the linear system Ax = b with
Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated by the
SD method. Then

lim
n→∞

α
SD
2n =

1+ c2

λ1(1+ c2κ)
,

and

lim
n→∞

α
SD
2n+1 =

1+ c2

λ1(c2 +κ)
,

for some constant c.

Proof. See Nocedal et al. [117].

Theorem 2.15 (Nocedal et al., 2002, Theorem 5.1). Consider the linear system Ax = b with
Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated by the
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SD method. Then

lim
n→∞

∥g2n+1∥2

∥g2n∥2 =
c2(κ −1)2

(1+ c2κ)2 ,

lim
n→∞

∥g2n+2∥2

∥g2n+1∥2 =
c2(κ −1)2

(c2 +κ)2 ,

and

lim
n→∞

∥gn+2∥2

∥gn∥2 = lim
n→∞

f (xn+1)− f (x∗)
f (xn)− f (x∗)

=
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

for some constant c.

Proof. See Nocedal et al. [117].

Theorem 2.16 (Nocedal et al., 2002, Theorem 5.2). The constant c in theorems 2.12, 2.13,
2.14 and 2.15 satisfies the following properties

1. c is given by the limits

c = lim
n→∞

ζN,2n

ζ1,2n
=− lim

k→∞

ζ1,2n+1

ζN,2n+1
;

2. c is uniquely determined by the starting point x0 and by the eigenvalues and the
eigenvectors of A;

3. if the set

I =

{
i = 2, . . . , N −1 | v⊺i g0 ̸= 0, λi ̸=

1
αn

, ∀n ≥ 0
}

is nonempty, and
ϕ
−1
δ

≤ c2 ≤ ϕδ ,

where

ϕδ =
2+ηδ +

√
η2

δ
+4ηδ

2
,

with

ηδ = 4
(

1+δ 2

1−δ 2

)
, δ = min

i∈I

∣∣∣∣∣λi − λN+λ1
2

λN−λ1
2

∣∣∣∣∣ .
Proof. See Nocedal et al. [117].

Theorem 2.17 (Dai and Yang, 2006, Theorem 2.1). Consider the linear system Ax = b with
Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated by the
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AO method. Then
lim
n→∞

α
AO
n =

2
λ1 +λN

.

Proof. See Dai and Yang [49].

Theorem 2.18 (De Asmundis et al., 2013, theorem 3.1). Consider the linear system Ax = b
with Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated
by the SD method. Then

lim
n→∞

α
A
n =

1
λ1 +λN

.

Proof. See De Asmundis et al. [56].

Theorem 2.19 (De Asmundis et al., 2013, theorem 3.2). Consider the linear system Ax = b
with Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated
by the gradient method with constant steplength

α̂ =
1

λ1 +λn
.

Then the sequence {xn} converges to x∗ for any starting point x0. Moreover,

lim
n→∞

ζi,n

ζ1,n
= 0, i = 2, 3, . . . , N.

Proof. See De Asmundis et al. [56].

Theorem 2.20 (De Asmundis et al., 2013, theorem 4.1). Consider the linear system Ax = b
with Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated
by the gradient method with steplength (2.9). Then,

lim
n→∞

gn+1

∏
n
j=0(1−α jλN)

= ζN,0vN ,

lim
n→∞

α
D
n =

2
λN

,

lim
n→∞

∇ f (xn −α
SD
n gn) = 0.

Proof. See De Asmundis et al. [56].

Theorem 2.21 (De Asmundis et al., 2014, Theorem 3.1). Consider the linear system Ax = b
with Assumption 2.2 holds. Assume that the sequence of solution vectors {xn} is generated
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by the SD method. Then

lim
n→∞

α
Y
n =

1
λN

.

Moreover,

lim
n→∞

(
1

αSD
n−1αSD

n
− ∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

)
= λ1λN .

Proof. See De Asmundis et al. [57].

2.6 First trial: two-dimensional finite termination

In this part, we show a simple way to extend the existing methods, which can lay the
foundation for the following chapters, see also [159]. We take the two-dimensional finite
termination property as an example since the pioneering work of Yuan step did not expect
that the revealing of second order information could result in alignment methods. In contrast,
the motivation was to develop an iterative method that could ensure convergence for a 2-by-2
SPD system within certain iterations.

Some literatures showed that Yuan steplength may lead to efficient algorithms [154, 51],
in which all methods have two-dimensional finite termination property. For example, if (2.10)
is applied to a linear system in two-dimensional space, then the algorithm will terminate in at
most 3 iterations. This property seems to be useless in practice. However, experience shows
that they often perform well in higher dimensions and are competitive with BB methods for
large-scale problems [51].

Inspired by the Yuan steplength, we suggest a simple way of modifying SD to a cyclic
gradient method. Consider a steplength of the form

α
YB
n =

αSD
n , n mod 3 = 0 or 2,

αY
n , n mod 3 = 1.

(2.11)

Here we have modified the order of steps compared to the original YB formula shown
in [154]. It keeps the two-dimensional finite termination property and performs as well as
BB for large-scale problems and better for small-scale ones. Given a positive number d, we
could add easily the cyclic behavior at the end of (2.11):

if n mod (3+d)> 2, then αn = αn−1.
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Additionally, we find that De Asmundis et al. [56] provides an interesting view about SD
iterations, in which the alignment technique was proposed to force the gradients into one-
dimensional subspace and avoid the zigzag pattern. Notice that the inverse of constant
Rayleigh quotient such as SD and BB steplengths has a chance to share similar property (For
details, see Theorem 3.7. Here we just give an example and will not pursue this property
further). Constant SD with retards may sometimes leads to alignment behavior and keeps
the nonmonotone benefit. On the other hand, we try to maintain the Yuan process in the first
several iterations. These motivations lead to a new method of the form

α
CY
n =


αY

n , n mod (d1 +d2 +2) = 1,

αSD
n , n mod (d1 +d2 +2)< d1 +2,

αn−1, otherwise,

(2.12)

where d1, d2 ≥ 1. This formula seems to be complex, but indeed easy to understand. There
are three components in (2.12): the first SD and Y are used to insure the finite termination
property; the parameter d1 acting on the second part of SD is used to keep several zigzag
iterations; finally, the lagged term d2 yields occasionally alignment behavior and provides
nonmonotone steps to leap from the lower subspace. The “magic number” d1+d2+2 comes
from the fact that d1 is the repeated times of SD, d2 is the repeated times of SD with retards,
and finally “2” represents we have two steps in the beginning: SD and Y.

We first provide the convergence result of CY in two-dimensional case, which can be
presented as follows.

Theorem 2.22. Consider the CY method being used to solve (2.1) where A is of size 2. Then
there exists n ≤ 3 such that the sequence {xn} converges to x∗.

The proof is similar to the other two-dimensional finite termination methods so that we
do not address again, see [154] for more details. Now we study the convergence in any
dimensions. By the invariance property under any orthogonal transformation, we can assume
without loss of generality that A is a diagonal matrix. We follow the convergence framework
established by Dai [45], as shown in Theorem 2.8. The resulting theorem is given as follows.

Theorem 2.23. Consider the CY method being used to solve (2.1). Then the sequence {xn}
converges to x∗.

Proof. Note that (2.12) has three alternate steplengths, whereas the SD updating process
and the constant process both follow the framework (2.6), which has been proven to satisfy
Property A in [45]. Therefore, we only discuss the Yuan steplength.
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Recall that Yuan steplength has the following property(
1

αSD
n−1

+
1

αSD
n

)−1

< α
Y
n < min

{
α

SD
n−1, α

SD
n

}
,

which was given in [154]. It follows that

λ1 ≤
1

αSD
n

<
1

αY
n
<

1
αSD

n−1
+

1
αSD

n
≤ 2λN .

Hence, the first condition of Property A follows by setting c1 = 2λN . For the second one, let
c2 = 2 and m0 = 1. It follows that j = 0. Assume that

G(n,µ)≤ ε, g2
µ+1,n ≥ c2ε,

for all µ ∈ {1, . . . , N − 1}, and ε > 0. Let gi,n be the ith component in nth iteration. The
inverse of Yuan steplength becomes

1
αY

n
>

1
αSD

n
=

∑
N
i=1 λig2

i,n

∑
N
i=1 g2

i,n
≥

λµ+1 ∑
N
i=µ+1 g2

i,n

∑
µ

i=1 g2
i,n +∑

N
i=µ+1 g2

i,n

≥
λµ+1

∑
µ

i=1 g2
i,n

g2
µ+1,n

+1
≥

λµ+1
ε

2ε
+1

=
2
3

λµ+1.

This completes the proof.

We conduct an experiment with a well-conditioned problem provided by the University
of Florida Sparse Matrix Collection [53], where N = 5×104 and the number of non-zero
values is 349968. All parameters are chosen under a training problem given in [17], such
that d1 = 4, d2 = 3 for CY, d = 3 for CSD, and d = 4 for CBB. The right-hand side b is
generated with random components in [−10, 10]. The residual threshold is defined as ε =

∥b−Axn∥/∥b∥. Results are shown in Table 2.1. We use bold numbers to indicate the most
efficient algorithms under each threshold. Backslash depicts slow convergence in which more
than 104 iterations are needed. From Table 2.1, we can see that the CY method performs
better than other methods except CG. CY is less efficient than CG in the highest precision,
but it is competitive in other situations.

Here we take CY as an example to illustrate two-dimensional finite termination methods.
Table 2.1 is only a specific case in favor of the new method. There exist other cases that could
lead to opposite results, depending on the distribution of eigenvalues and the elements of
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Table 2.1 Gradient methods with different residual thresholds for a well-conditioned problem.

10−1 10−2 10−3 10−4 10−5 10−6

CG 58 735 2617 4251 5786 7535
CY 13 208 1153 4275 6181 \
CSD 27 212 1470 4357 6713 \
CBB 31 241 1965 7534 \ \
DY 15 200 1595 6415 \ \
SD 61 5773 \ \ \ \

right-hand side. Hence, we conclude that CY is competitive with CG in a few special cases
and better than some other nonmonotone gradient methods for large-scale problems [159].
Nevertheless, our experience is that it is still less efficient than alignment methods and seems
to be as oscillating as BB.





Chapter 3

Gradient methods with alignment

The performance of gradient methods has been considerably improved by the introduction of
delayed parameters. After two and a half decades, the revealing of second-order information
within the Hessian matrix has recently given rise to the Cauchy-based methods with alignment.
They reduce asymptotically the search spaces in smaller and smaller dimensions and are
considered as the state of the art of gradient methods. This chapter reveals the spectral
properties of minimal gradient and asymptotically optimal steps, and then suggests three
new methods with alignment without using the Cauchy steplength. The convergence results
are provided, and numerical experiments show that the new methods provide competitive
and more stable alternatives to the classical Cauchy-based methods. In particular, alignment
gradient methods present advantages over the Krylov subspace methods in some situations,
which makes them attractive in practice.

3.1 Spectral analysis of minimal gradient

Recall that the minimal gradient (MG) method is of the form

α
MG
n =

g⊺nAgn

g⊺nA2gn
.

It minimizes the 2-norm gradient value

α
MG
n = argmin

α

∥gn −αAgn∥2 ,

where ∥·∥ denotes the Euclidean norm of a vector.
We know from [1] that the SD method is asymptotically reduced to a search in the

2-dimensional subspace generated by the two eigenvectors corresponding to the largest
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and the smallest eigenvalues of A. Eventually the directions generated tend to zigzag in
two orthogonal directions that gives rise to a slow convergence rate. Such argument was
demonstrated by using Theorem 2.12, see Chapter 2 for more details.

We now give our main result on the spectral properties of MG. These arguments lead to
the gradient methods with alignment which shall be described in Section 3.2. Theorem 3.1
has been proved in [124] for a framework called P-gradient algorithms, while Theorems 3.2
to 3.6 for the MG method have not appeared in any literature.

Theorem 3.1. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

λiζ
2
i,2n

∑
N
j=1 λ jζ

2
j,2n

=


1

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

c2

1+c2 , i = N,

and

lim
n→∞

λiζ
2
i,2n+1

∑
N
j=1 λ jζ

2
j,2n+1

=


c2

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

1
1+c2 , i = N,

where c is a fixed but unknown number. Moreover, ζ1,2n, ζN,2n, ζ1,2n+1, ζN,2n+1 have fixed
signs for large n.

Proof. Since
ζi,n+1 =

(
1−α

MG
n λi

)
ζi,n,

il follows that

ζi,n+1 =

(
1−

∑
N
j=1 λ jζ

2
j,n

∑
N
j=1 λ 2

j ζ 2
j,n

λi

)
ζi,n.

For any i and n, let us write p̂i,n = λiζ
2
i,n, it follows that

p̂i,n+1 =

(
1−

∑
N
j=1 p̂ j,n

∑
N
j=1 λ j p̂ j,n

λi

)2

p̂i,n.
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Moreover, we define a probability measure

pi,n =
p̂i,n

∑
N
j=1 p̂ j,n

,

from which we notice that ∑
N
i=1 pi,n = 1. Hence,

pi,n+1 =

(
∑

N
j=1 λ j p j,n −λi

∑
N
j=1 λ j p j,n

)2
p̂i,n

∑
N
l=1 p̂l,n+1

=

(
∑

N
j=1 λ j p j,n −λi

)2

∑
N
l=1

(
∑

N
j=1 λ j p j,n −λl

)2
p̂l,n

p̂i,n

=

(
∑

N
j=1 λ j p j,n −λi

)2

∑
N
l=1

(
∑

N
j=1 λ j p j,n −λl

)2
pl,n

pi,n,

Along with Lemma 2.11 the desired result follows.

The next theorem reveals the asymptotic behavior of quadratic function (2.2).

Theorem 3.2. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

f (x2n+1)− f (x∗)
f (x2n)− f (x∗)

=
c2(1+ c2κ2)(κ −1)2

(c2 +κ2)(1+ c2κ)2 ,

and

lim
n→∞

f (x2n+2)− f (x∗)
f (x2n+1)− f (x∗)

=
c2(c2 +κ2)(κ −1)2

(1+ c2κ2)(c2 +κ)2 ,

where c has the same value as in Theorem 3.1.

Proof. For any n, it follows from (2.2) that

f (xn+1)− f (x∗)
f (xn)− f (x∗)

=
g⊺nA−1gn +

(
αMG

n
)2 g⊺nAgn −2αMG

n g⊺ngn

g⊺nA−1gn

= 1+

(
g⊺nAgn

)3(
g⊺nA−1gn

)(
g⊺nA2gn

)2 −
2
(
g⊺nAgn

)(
g⊺ngn

)(
g⊺nA2gn

)(
g⊺nA−1gn

) .
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Let us write

pi,n =
λiζ

2
i,n

∑
N
j=1 λ jζ

2
j,n
,

which yields

f (xn+1)− f (x∗)
f (xn)− f (x∗)

= 1+
1(

∑
N
j=1 λ

−2
j p j,n

)(
∑

N
j=1 λ j p j,n

)2 −
2∑

N
j=1 λ

−1
j p j,n(

∑
N
j=1 λ

−2
j p j,n

)(
∑

N
j=1 λ j p j,n

) .
If n is an even number, from theorem 3.1, one finds that

lim
n→∞

f (xn+1)− f (x∗)
f (xn)− f (x∗)

= 1+
1(

κ2+c2

1+c2

)(
1+κc2

κ(1+c2)

)2 −
2
(

κ+c2

1+c2

)
(

κ2+c2

1+c2

)(
1+κc2

κ(1+c2)

)
= 1+

κ2(1+ c2)3 −2κ(c2 +κ)(1+ c2)(1+ c2κ)

(c2 +κ2)(1+ c2κ)2

= 1+
−κ2c6 −2κ3c4 +κ2c4 −2κc4 −2κ3c2 +κ2c2 −2κc2 −κ2

(c2 +κ2)(1+ c2κ)2

=
κ4c4 −2κ3c4 +κ2c4 +κ2c2 −2κc2 + c2

(c2 +κ2)(1+ c2κ)2

=
c2(1+ c2κ2)(κ −1)2

(c2 +κ2)(1+ c2κ)2 .

Similarly, if n is an odd number, it follows that

lim
n→∞

f (xn+1)− f (x∗)
f (xn)− f (x∗)

= 1+
1(

κ2c2+1
1+c2

)(
c2+κ

κ(1+c2)

)2 −
2
(

κc2+1
1+c2

)
(

κ2c2+1
1+c2

)(
c2+κ

κ(1+c2)

)
= 1+

κ2(1+ c2)3 −2κ(κc2 +1)(1+ c2)(c2 +κ)

(c2κ2 +1)(c2 +κ)2

= 1+
−κ2c6 −2κ3c4 +κ2c4 −2κc4 −2κ3c2 +κ2c2 −2κc2 −κ2

(c2κ2 +1)(c2 +κ)2

=
κ2c4 −2κc4 + c4 +κ4c2 −2κ3c2 +κ2c2

(c2κ2 +1)(c2 +κ)2

=
c2(c2 +κ2)(κ −1)2

(1+ c2κ2)(c2 +κ)2 .
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This completes our proof.

The next theorem gives the asymptotic behavior of MG steplength.

Theorem 3.3. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

α
MG
2n =

1+ c2

λ1(1+ c2κ)
,

and

lim
n→∞

α
MG
2n+1 =

1+ c2

λ1(c2 +κ)
,

where c has the same value as in Theorem 3.1.

Proof. By theorem 3.1, it follows that

lim
n→∞

α
MG
2n = lim

n→∞

∑
N
j=1 λ jζ

2
j,2n

∑
N
j=1 λ 2

j ζ 2
j,2n

=
1

λ1
1

1+c2 +λN
c2

1+c2

=
1+ c2

λ1(1+ c2κ)
.

Similarly,

lim
n→∞

α
MG
2n+1 =

1

λ1
c2

1+c2 +λN
1

1+c2

=
1+ c2

λ1(c2 +κ)
.

This completes our proof.

The next theorem gives the asymptotic property of the gradient vector.

Theorem 3.4. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

∥gn+1∥2

∥gn∥2 =
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

where c has the same value as in Theorem 3.1.

Proof. For any n, it follows from (2.4) that

∥gn+1∥2

∥gn∥2 =
∑

N
j=1
(
1−αMG

n λ j
)2

ζ 2
j,n

∑
N
j=1 ζ 2

j,n
.
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Combining theorem 3.1 and theorem 3.3 implies

lim
n→∞

∥g2n+1∥2

∥g2n∥2 =

(
1− 1+c2

1+c2κ

)2
λ
−1
1

1
1+c2 +

(
1− (1+c2)κ

1+c2κ

)2
λ
−1
N

c2

1+c2

λ
−1
1

1
1+c2 +λ

−1
N

c2

1+c2

=

(κ−1)2c4

(1+c2κ)2 κ + (κ−1)2

(1+c2κ)2 c2

c2 +κ

=
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

and

lim
n→∞

∥g2n+2∥2

∥g2n+1∥2 =

(
1− 1+c2

c2+κ

)2
λ
−1
1

c2

1+c2 +
(

1− (1+c2)κ
c2+κ

)2
λ
−1
N

1
1+c2

λ
−1
1

c2

1+c2 +λ
−1
N

1
1+c2

=

(κ−1)2

(c2+κ)2 c2κ + (κ−1)2c4

(c2+κ)2

1+ c2κ

=
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

which yields the desired conclusion.

Then, we present the relationship between the quadratic function and the gradient vector.

Corollary 3.5. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

f (x2n+2)− f (x∗)
f (x2n)− f (x∗)

= lim
n→∞

∥gn+1∥4

∥gn∥4 .

Proof. The desired conclusion follows immediately by combining theorem 3.2 and theo-
rem 3.4.

Finally, we give another property of the gradient vector.

Theorem 3.6. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

g⊺2n+1Ag2n+1

g⊺2nAg2n
=

c2(κ −1)2

(1+ c2κ)2 ,
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and

lim
n→∞

g⊺2n+2Ag2n+2

g⊺2n+1Ag2n+1
=

c2(κ −1)2

(c2 +κ)2 ,

where c has the same value as in Theorem 3.1.

Proof. Combining theorem 3.1 and theorem 3.3 implies

lim
n→∞

g⊺2n+1Ag2n+1

g⊺2nAg2n
=

(
1− 1+ c2

λ1(1+ c2κ)
λ1

)2 1
1+ c2 +

(
1− 1+ c2

λ1(1+ c2κ)
λN

)2 c2

1+ c2

=
c4(κ −1)2

(1+ c2κ)2
1

1+ c2 +
(κ −1)2

(1+ c2κ)2
c2

1+ c2

=
c2(κ −1)2

(1+ c2κ)2 ,

and

lim
n→∞

g⊺2n+2Ag2n+2

g⊺2n+1Ag2n+1
=

(
1− 1+ c2

λ1(c2 +κ)
λ1

)2 c2

1+ c2 +

(
1− 1+ c2

λ1(c2 +κ)
λN

)2 1
1+ c2

=
(κ −1)2

(c2 +κ)2
c2

1+ c2 +
c4(κ −1)2

(c2 +κ)2
1

1+ c2

=
c2(κ −1)2

(c2 +κ)2 ,

which completes our proof.

We point out that some results also hold for the SD method. Other results are similar,
though the left-hand sides require an extra operation with A, see Section 2.5 for the relevant
properties of SD.

3.2 New gradient methods with alignment

As far as we know, all existing gradient methods with alignment are based on the Cauchy
steplength. After a further rearrangement of steps, Gonzaga and Schneider [83] concludes
that one could break the Cauchy cycle by periodically applying some short steplengths to
accelerate the convergence of gradient methods. We show here that such condition is not
necessary and several methods that potentially possess the same feature without Cauchy step
can be derived.
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De Asmundis et al. [56] observed that a constant equal to 1/(λ1 +λN) could lead to
alignment property. Here we extend it to a more general case.

Theorem 3.7. Consider the linear system (2.1) and the gradient method (2.3) with a positive
constant steplength α̂ such that

α̂ ≤ 2
λ1 +λN

(3.1)

being used to solve (2.1). Then the sequence {xn} converges to x∗ for any starting point x0.
Moreover, if equality holds, then

lim
n→∞

ζi,n

ζ1,n
=


0, i = 2, 3, . . . , N −1,

ζN,0
ζ1,0

(−1)n, i = N;
(3.2)

otherwise,

lim
n→∞

ζi,n

ζ1,n
= 0, i = 2, 3, . . . , N. (3.3)

Proof. We have

α̂ ≤ 2
λ1 +λN

<
2

λN
≤ 2α

SD
n .

By [128], it is easy to deduce that the sequence {xn} converges to x∗ with a steplength
α < 2αSD

n . Hence, the first statement holds. One finds that

lim
n→∞

ζi,n

ζ1,n
=

ζi,0

ζ1,0
lim
n→∞

(
1− α̂λi

1− α̂λ1

)n

.

Let
ϕi =

1− α̂λi

1− α̂λ1
.

For (3.3) to be satisfied, we need to impose the condition |ϕi| < 1 for all i = 2, 3, . . . , N,
which yields

(λi +λ1)α̂ < 2, (λi −λ1)α̂ > 0.

The second one is obviously satisfied, while the first one leads to

α̂ <
2

λ1 +λN
.

If equality holds, then

ϕi =
λN +λ1 −2λi

λN −λ1
,
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It is clear that ϕN =−1. Then the second statement trivially follows, which completes the
proof.

Note that i = 1 leads to the trivial case ϕ1 = 1, and thus the limit in both (3.2) and (3.3)
equals 1. From Theorem 3.7 we find that condition (3.1) has twofold effect: driving the
alignment property when strict partial order holds, as shown in (3.3), and forcing the search
into a two-dimensional space in the equal case, as shown in (3.2). It means that if there
exist some steps asymptotically making the equality of (3.2) attainable, then it has similar
tendency with the SD method, namely, alternating between two orthogonal directions. On the
other hand, we can add a fractional factor to periodically break the cycle. This asymptotically
yields a constant steplength strictly smaller than 2/(λ1 +λN), leading to alignment process
in the subsequent several iterations according to (3.3).

Recall that Dai and Yang [49] proposed a gradient method of the form

α
AO
n =

∥gn∥
∥Agn∥

.

It asymptotically converges to the optimal steplength

lim
n→∞

α
AO
n = α

OPT =
2

λ1 +λN
,

which minimizes the coefficient matrix

α
OPT = argmin

α

∥I −αA∥ .

Thus we call it asymptotically optimal (AO) method. Notice that the following relationship
holds

α
MG
n ≤ α

AO
n ≤ α

SD
n , (3.4)

which can be easily proved by the Cauchy-Schwarz inequality

g⊺nAgn

g⊺nA2gn
≤ ∥gn∥∥Agn∥

∥Agn∥2 =
∥gn∥2

∥Agn∥∥gn∥
≤ g⊺ngn

g⊺nAgn
.

It is known that AO generates monotone curve and often leads to slow convergence.
We observe that the AO step satisfies condition (3.3) and may potentially be improved by

a cyclic breaking. For example, we can choose a shorter one to constantly align the gradient
vector to the one-dimensional space spanned by v1. Let α̃n = θαAO

n where 0 < θ < 1. It
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follows that
lim
n→∞

α̃n <
2

λ1 +λN
.

From Theorem 3.7, we observe that α̃n can asymptotically trigger the alignment behavior.
Hence, we can write a new gradient method called AO with alignment (AOA) as follows

α
AOA
n =


αAO

n , n mod (d1 +d2)< d1,

α̃n, n mod (d1 +d2) = d1,

αAOA
n−1 , otherwise,

(3.5)

with d1, d2 ≥ 1. Important differences between SDA and AOA come from the fact that the
Cauchy step in SDA zigzags itself in two orthogonal directions, while the AO step in AOA
converges to a constant and the constant leads later to the same feature.

On the other hand, since the spectral properties of MG have been studied in Section 3.1,
we are now prepared to propose our new methods based on them. We first give some notations

α
A2
n =

(
1

αMG
n−1

+
1

αMG
n

)−1

,

α
Y2
n = 2


√√√√( 1

αMG
n−1

− 1
αMG

n

)2

+
4g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

+
1

αMG
n−1

+
1

αMG
n

−1

.

Note that Y2 has been proposed in [51] as a component of the 2-dimensional finite termination
method.

Theorem 3.8. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

α
A2
n =

1
λ1 +λN

.

Proof. This conclusion follows immediately by theorem 3.3.

Theorem 3.9. Consider the linear system Ax = b with Assumption 2.2 holds. Assume that
the sequence of solution vectors {xn} is generated by the MG method. Then

lim
n→∞

α
Y2
n =

1
λN

.
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Moreover,

lim
n→∞

(
1

αMG
n−1αMG

n
− g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

)
= λ1λN .

Proof.

α
Y2
n = 2

√√√√(αA2
n )

−2 − 4
αMG

n−1αMG
n

+
4g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

+
(

α
A2
n

)−1

−1

.

By combining theorem 3.3 and theorem 3.6, we notice that

lim
n→∞

g⊺2n+2Ag2n+2(
αMG

2n+1
)2 g⊺2n+1Ag2n+1

= lim
n→∞

g⊺2n+1Ag2n+1(
αMG

2n

)2 g⊺2nAg2n

=
λ 2

1 c2(κ −1)2

(1+ c2)2 .

Hence, one can see that

lim
n→∞

(
1

αMG
n−1αMG

n
− g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

)
=

λ 2
1 (1+ c2κ)(c2 +κ)

(1+ c2)2 −
λ 2

1 c2(κ −1)2

(1+ c2)2

=
λ 2

1 (c
2 + c4κ +κ + c2κ2 − c2κ2 +2c2κ − c2)

(1+ c2)2

= λ1λN .

Further, along with theorem 3.8, we have

lim
n→∞

α
Y2
n = 2

(√
(λ1 +λN)2 −4λ1λN +λ1 +λN

)−1

=
1

λN
.

This completes our proof.

One may conclude from Theorems 3.8 and 3.9 that A2 and Y2 are similar to the auxiliary
steplengths discussed in [56] and [57]. However, since MG has shorter steplength than SD,
we expect that the former might be more smoother than the latter. After a substitution of
labels, we are able to define MG with alignment (MGA) and MG with constant steplength
(MGC) as follows

α
MGA
n =


αMG

n , n mod (d1 +d2)< d1,

αA2
n , n mod (d1 +d2) = d1,

αMGA
n−1 , otherwise,

(3.6)
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α
MGC
n =


αMG

n , n mod (d1 +d2)< d1,

αY2
n , n mod (d1 +d2) = d1,

αMGC
n−1 , otherwise.

(3.7)

with d1, d2 ≥ 1. Recall that the motivation in [56] is to align the algorithm search into the one-
dimensional space spanned by v1, which can be summarized by Theorem 3.7. On the other
hand, the strategy in [57] is to foster a special steplength towards the inverse of the largest
eigenvalue for which the gradient element has not vanished. One could easily conclude from
Theorem 3.7 that α̂ = 1/λN satisfies also the former motivation, while α̂ = 1/(λ1+λN) may
not satisfy the latter one which depends on the relative magnitude of λ1. This may explain
the superiority of SDC compared to SDA, and we will see later that this argument remains
true for MGA and MGC.

3.3 Convergence analysis

For the convergence analysis of the aforementioned methods, recall that a convergence frame-
work has been established in [45] which requires a tool called Property A. Inspired by the
pioneering work of BB, Friedlander et al. [74] proposed a general framework called gradient
method with retards (GMR), but AO can not be directly formalized by such framework.
Given m a positive integer, let n̄ = max{0, n−m}). Recall that a generalization of GMR [45]
can be defined as follows

α
DGMR
n =

(
g⊺

τ(n)A
ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+υgτ(n)

) 1
υ

.

with

τ(n) ∈ {n̄, n̄+1, . . . , n−1, n} , ρ(n) ∈ {q1, . . . , qm} , q j ≥ 0, υ > 0.

Here, we call it Dai’s generalization of GMR (DGMR). After a further selection of parameters
ρ(n) and τ(n), we observe that SD, MG, BB are both special cases of this framework, as well
as many other alternate and cyclic gradient methods (see, e.g, [45, 50, 52]). The convergence
of DGMR is summarized in Theorem 3.10. Dai [45] stated this result without proof. Here, a
complete proof is provided and shall also be exploited later by other theorems.

Theorem 3.10. Consider the gradient method (2.3) with steplength (2.7) being used to solve
the linear system (2.1). Then the sequence {xn} converges to x∗ for any starting point x0.
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Proof. Since gradient methods are invariant under orthogonal transformations, we assume
without loss of generality that A = diag(λ1, . . . , λN) and λ1 = 1. Let

R(A,u) =
u⊺Au
u⊺u

be the Rayleigh quotient for non-zero vector u. Let

u1 = A(ρ(n)+υ−1)/2gτ(n),

it follows that

α
DGMR
n =

(
1

R(A,u1)
·

g⊺
τ(n)A

ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+υ−1gτ(n)

) 1
υ

≤

(
1
λ1

·
g⊺

τ(n)A
ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+υ−1gτ(n)

) 1
υ

.

Applying this result recursively, one has

α
DGMR
n ≤

(
1

λ
υ−1
1

·
g⊺

τ(n)A
ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+1gτ(n)

) 1
υ

≤ 1
λ1

.

It follows from the similar deduction that

α
DGMR
n ≥ 1

λN
.

Thus we can choose c1 = λN , and then the first relationship of Property A trivially follows.
For the second one, we choose c2 of the form

c2 =

(2
3

)υ

1−
(2

3

)υ . (3.8)

Let q̄ = maxi∈[1,m0] qi and m0 = m. For all µ ∈ {1, . . . , N −1} and j ∈ {0, . . . , min{n,m0}},
one obtains that

(
α

DGMR
n

)−1
=

 ∑
N
i=1 g2

i,τ(n)λ
ρ(n)+υ

i

∑
µ

i=1 g2
i,τ(n)λ

ρ(n)
i +∑

N
i=µ+1 g2

i,τ(n)λ
ρ(n)
i

 1
υ

≥

 λ υ
µ+1 ∑

N
i=µ+1 g2

i,n− jλ
ρ(n)
i

λ
q̄
µG(n− j,µ)+∑

N
i=µ+1 g2

i,n− jλ
ρ(n)
i

 1
υ

.
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For all ε > 0, suppose that

G(n− j,µ)≤ ε, g2
µ+1,n− j ≥ c2ε.

Then, (
α

DGMR
n

)−1
≥

(
λ υ

µ+1λ
q̄
µg2

µ+1,n− j

λ
q̄
µε +λ

q̄
µg2

µ+1,n− j

) 1
υ

≥
(

c2

1+ c2

) 1
υ

λµ+1.

Substituting (3.8) into the above deduction it follows that(
α

DGMR
n

)−1
≥ 2

3
λµ+1,

which ensures the second condition of Property A. Thus, the desired conclusion follows by
imposing Lemma 2.8.

Notice that the case of ρ(n) = 0, τ(n) = k and υ = 2 recovers the AO steplength. As a
consequence of Theorem 3.10, the convergence result of AOA can be established.

Theorem 3.11. Consider the linear system (2.1) being solved by AOA. Then the sequence
{xn} converges to x∗ for any starting point x0.

Proof. The first part of AOA equals exactly the AO steplength which satisfies DGMR
framework, thus having the Property A. The second part can be written as follows

α̃n = θ

(
g⊺

τ(n)gτ(n)

g⊺
τ(n)A

2gτ(n)

) 1
2

.

As seen in the proof of Theorem 3.10, we obtain that

λ1 < α
−1
n ≤ λN

θ
.

Therefore, we can choose c1 = λN/θ . For the second condition, we can keep formula (3.8)
for c2, which gives the same result as the deduction for DGMR, and thus AOA has Property
A. Then the desired conclusion follows from Lemma 2.8.

For the convergence of MGA and MGC, we can give similar statements. Notice that the
analysis of SDA and SDC can be applied here without difficulty since SD and MG share
similar properties as discussed in Section 3.1.
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Theorem 3.12. Consider the linear system (2.1) being solved by MGA. Then the sequence
{xn} converges to x∗ for any starting point x0.

Proof. This proof follows as before with m0 = d2, c1 = 2λN and c2 = 2. For all j ∈
{0, . . . , min{n,m0}}, let αn = αA2

n− j+1. By the fact that

1
2λN

≤
min{αMG

n− j, αMG
n− j+1}

2
≤ αn ≤ min{α

MG
n− j, α

MG
n− j+1} ≤

1
λ1

, (3.9)

one can verify that the first property is true. In addition, since (3.9) implies that

α
−1
n ≥ 1

min{αMG
n− j, αMG

n− j+1}
≥ 1

αMG
n− j

=
g⊺n− jA

2gn− j

g⊺n− jAgn− j
,

by applying the proof of Theorem 3.10, it follows that

α
−1
n ≥ c2

1+ c2
λµ+1.

Substituting c2 yields the second property. Thus, the desired conclusion follows from
Lemma 2.8.

Theorem 3.13. Consider the linear system (2.1) being solved by MGC. Then the sequence
{xn} converges to x∗ for any starting point x0.

Proof. Let m0 = d2. Similar to the proof of Theorem 3.12, for all j ∈ {0, . . . , min{n,m0}},
we can write αn = αY2

n− j+1. It is clear that

αn ≤ min{α
MG
n− j, α

MG
n− j+1} ≤

1
λ1

. (3.10)

By using the Kantorovich inequality (see, e.g., Lemma 5.8 in [131]), it follows that

g⊺n− j+1Agn− j+1

g⊺n− jAgn− j
=

g⊺n− jAgn− j ·g⊺n− jA
3gn− j(

g⊺n− jA2gn− j

)2 −1 ≤ (λN −λ1)
2

4λNλ1
,

from which we can obtain that

αn ≥ 2
(√

(λN −λ1)2 +κ(λN −λ1)2 +2λN

)−1

. (3.11)
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Figure 3.1 Comparison of different θ in AOA where d1 = 4 and d2 = 4. We generate random
problems with N = 100: κ = 102 (left), κ = 103 (right).

Since the second member is a constant, combining (3.10) and (3.11) yields the first property.
Finally, comparing (3.10) with (3.9) implies that the second result can be obtained in the
same manner as that follows from the proof of Theorem 3.13. Thus, we arrive at the desired
conclusion.

3.4 Numerical experiments

In this section, we provide numerical experiments for different gradient methods by two
types of problems. The first one is generated randomly by MATLAB and the second one is
a two-point boundary value problem. In both examples, the right-hand side b of the linear
system (2.1) is computed by b = Ax∗ where x∗ is a random vector such that x∗ ∈ (−10, 10).
Furthermore, the tests are started from zero vectors and the stopping criterion is fixed with
∥gn∥< 10−6 ∥g0∥. All experiments are performed using MATLAB R2018b on a machine
with Double Intel Core i7 2.8 GHz CPU.

In the first example, we consider the random problem generated by the MATLAB built-in
function sprandsym, which has appeared in De Asmundis et al. [56]. We would like to know
the impact of parameters on the convergence behavior of alternate gradient methods. The
plots in Figures 3.1 and 3.2 show some examples where AOA, SDC and MGC are used
for solving random problems. Figs. 3.1 illustrates the impact of parameter θ on AOA
iterations. We can see that θ ∈ [0.5, 0.7] leads to the most efficient algorithm. In Figures 3.2,
we notice that the blue areas illustrate the situation where the choice of parameters leads to
fast convergence, while the red ones show the opposite results. It is convenient to propose
an adaptive way to select parameters according to the matrix dimension and the distribution
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Figure 3.2 Comparison of SDC (left), AOA (center) and MGC (right) through random
problems with N = 100: κ = 102 (top), κ = 103 (bottom).

of eigenvalues, but the spectral property is generally unknown to us and obtaining the
distribution of eigenvalues is as difficult as solving a linear system.

In the following experiments, we choose θ = 0.5 for AOA and d1 = 4 and d2 = 4 for all
methods since according to Figures 3.1 and 3.2 they often produce good results. Figure 3.3
shows the convergence behaviors of several typical gradient methods. Our tests reveal that
the basic methods such as SD, MG and AO are far less efficient than others. The traditional
gradient steps are unrealistic to be used in practice, especially for ill-conditioned problems.
In addition, the convergence results of SDA and SDC are not slower than BB and DY in most
cases. Notice that DY has nonmonotone curve in the residual figure, though it would show
monotone behavior when drawing the values of function f .

In Table 3.1, we provide the number of iterations required by SDA and SDC as well
as the new methods with κ = 102, 103, 104, 105 and N = 200, 400, 600, 800, 1000. In all
cases, we list only the final average results in the table for which 10 repeated experiments
were conducted to circumvent the extreme conditions. One finds that SDC and MGC give
better results than other three methods. On the other hand, SDA deteriorates when κ becomes
larger, and the comparison between AOA and MGA could not lead to a commun conclusion.
This observation is contrary to our expectations, as we speculated that AOA would always
have bad performance, due to its twofold asymptotically zigzag behavior, as mentioned in
Section 3.2. Further tests have shown that AOA is more sensitive to the choice of parameters
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Figure 3.3 Comparison of different gradient methods through the random problems: N =
100, κ = 100 (top), N = 100, κ = 1000 (bottom).

than MGA and MGC. The problem size seems to be a less critical issue in view of the test
results.

To show the correctness of our analysis, particularly, the comparisons between the aligned
methods and the basic gradient methods are illustrated in Figure 3.4. The problem size is
chosen as N = 1000. Each comparison consists of four pairs of plot: κ = 102, 103, 104, 105,
respectively. The figures show that in all cases, the aligned methods terminate in relatively
few iterations. Further insight into the plots can be gained by observing the oscillating
behavior, which reveals that SDA usually has large magnitude of oscillation, while MGA
is the smoothest one. It is known that the oscillation of a convergence curve is closely
related to the numerical stability (see, e.g., [100]). In view of the convergence performance
and the stability behavior for the three aligned methods, the use of the MGA step is more
recommended than the SDA step.
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Table 3.1 The follows results are obtained for the problems generated randomly by the
MATLAB built-in function sprandsym. In the table we illustrate the average number of
iterations among 10 tests with d1 = 4 and d2 = 4 for all methods.

Conditioning Size SDA SDC AOA MGA MGC

κ = 102 N = 200 68 67 80 73 70
N = 400 70 69 80 73 66
N = 600 73 72 83 73 73
N = 800 71 74 81 73 74
N = 1000 70 76 80 74 75

κ = 103 N = 200 199 177 197 209 187
N = 400 201 187 222 216 190
N = 600 199 195 226 205 181
N = 800 191 185 232 207 181
N = 1000 194 182 227 209 190

κ = 104 N = 200 614 479 571 536 507
N = 400 648 506 525 525 501
N = 600 602 497 560 540 490
N = 800 626 484 534 536 509
N = 1000 619 475 547 515 488

κ = 105 N = 200 1300 1118 1246 1225 1153
N = 400 1318 1176 1393 1299 1126
N = 600 1374 1228 1255 1253 1231
N = 800 1390 1190 1452 1269 1169
N = 1000 1381 1273 1490 1321 1251

The second experiment is a two-point boundary value problem (see, e.g., [74, 50]). The
tridiagonal matrix A after discretization by the finite difference method is of the form

A = tridiag(− 1
h2 ,

2
h2 ,−

1
h2 ),

where h = 11/N. Notice that with the augmentation of matrix dimension N, the condition
number κ will also increase. The purpose of this is to confirm the previous results obtained
for the new methods. Since SDA and MGA are as expected less efficient than SDC and MGC,
we shall not address them again and focus on other three methods. The AOA curve is retained
for the sake of comparison. Here, we provide results of the cases N = 102, 103, 104, 105 and
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Figure 3.4 Top: comparison of SDA and SD. Middle: comparison of AOA and AO. Bottom:
comparison of MGA and MG. Random problems are generated with N = 1000: κ = 102

(first), κ = 103 (second), κ = 104 (third), κ = 105 (fourth).

illustrate the residual curves. Figure 3.5 shows that MGC are quite competitive with SDC,
while AOA can not beat them in all cases.

Similar to the previous results, we can see that SDC oscillates mightily in all cases, while
AOA is slightly better than SDC emerging from the fact that it yields smoother transitional
curves between the spikes. MGC shows the most promising performance since it gives not
only a competitive convergence speed, but also a much smoother curve than other methods.
In one direction, the MG-based method minimizes indeed the residual value. On the other
hand, it is known that stability generally favors short steplengths. Along with (3.4), the
desired conclusion follows.

Finally, we compare our new methods with the conjugate gradient (CG) method [89].
Two examples are used to show the robustness and efficiency of the proposed methods.
The first example concerns the random problems with perturbation generated by MATLAB,
which have the following form

Ãx = b, Ã = A+δV,

where δ is a small positive value and V is a nonsymmetric matrix. Still, let κ be the condition
number of A. We choose δ = 10−4. V is generated by the MATLAB function sprand. We
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Figure 3.5 Comparison of different gradient methods through the two-point boundary value
problems: N = 102 (top-left), N = 103 (top-right), N = 104 (bottom-left), N = 105 (bottom-
right).

compare also our methods with the generalized minimum residual (GMRES) method [132]
in view of the perturbation. Here we use the restarted GMRES where algorithm is restarted
every l iterations. The computational results are shown in Figure 3.6. We observe that CG
curve decreases in the beginning but stagnates in the end, while our new methods are robust
and resistant to perturbation. Restarted GMRES is more efficient than our methods when
l > 30. However, it needs to store l more vectors, which means lN storage locations, and
requires about l more vector updates and dot products than gradient methods. The second
example is drawn from the University of Florida Sparse Matrix Collection [53] which is a
large-scale system with N = 1564794 and κ = 1.225×108. The matrix name is Flan_1565
with ID 2544. This is obtained from a 3D mechanical problem discretized by hexahedral
finite elements. The computational result is shown in Figure 3.7. The new methods perform
better than CG in this case and the best performance is realized by MGC. Figure 3.8 shows
a comparison of the performance of MGC with other efficient gradient methods through
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Figure 3.6 Comparison of the new methods with CG and restarted GMRES through random
problems with perturbation where N = 102 and κ = 104. GMRES is restarted every l
iterations: l = 10 (top-left), l = 20 (top-right), l = 30 (bottom-left), l = 50 (bottom-right).

the large-scale problem. From these plots, we can see that MGC solves the large problem
efficiently and its curves decrease smoothly.

3.5 Conclusion

We address first the spectral properties of the MG method. Our analysis effectively extends
that in [117] which includes only the SD method. In fact, it is possible to further extend the
current results based on the P-gradient framework as mentioned in Section 3.1. We introduce
here only the MG-based properties since it is the most promising candidate for a further
formulation. Additionally, our analysis shows that the Cauchy step is not an indispensable
component to trigger the alignment behavior. Hence, the Cauchy-short framework proposed
in [83] could be updated and generalized to our cases.
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Figure 3.7 Comparison of the new methods with conjugate gradient through a large-scale
problem: N = 1564794.
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Figure 3.8 Comparison of the new method MGC with other gradient methods through a
large-scale problem: N = 1564794.

In this chapter, we propose three new gradient methods with alignment, called AOA,
MGA and MGC, respectively. MGC shows great competitiveness to SDC, while SDA, AOA
and MGA have been proved to be less efficient than other methods in most cases. A closer
examination of AOA and MGC reveals that they are more stable than SDC. Such feature
may contribute to the problem of loss of precision [100]. The new methods with alignment
present several advantages over the Krylov subspace methods.

There exist two main heuristics to accelerate the gradient methods. One is to reveal the
spectral property, which yields eventually the alignment methods; the other depends on the
“decreasing together” behavior as presented in [51]. For example, BB and DY both possess
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such feature. According to our experiments, the former seems to be more effective than the
latter. Further investigation of different heuristics seems to be a good research topic in the
future.



Chapter 4

Parameter estimation in splitting
methods

This chapter presents enhancement strategies for the Hermitian and skew-Hermitian splitting
method based on gradient iterations. The spectral properties are exploited for the parameter
estimation, often resulting in a better convergence compared with the arbitrary choice. In
particular, gradient iterations with early stopping can generate a rough estimate of optimal
parameter, which is better than the traditional choice, since the latter often causes stability
problems or slow convergence. Additionally, lagged gradient methods are considered as
inner solvers for the splitting method. Experiments show that they are competitive with
conjugate gradient in low precision.

4.1 Hermitian and skew-Hermitian splitting

In this chapter we are interested in solving the linear system

Ax = b, (4.1)

where A is a non-Hermitian positive definite matrix of size N. For non-Hermitian but
symmetric systems, some algorithms such as COCG [147], modified QMR [71], CSYM [27],
COCR [139], and MHSS [13] could be used. It is well known that any square matrix is similar
to a complex symmetric matrix (see Theorem 4.4.24 in [92]). As a result, the eigenvalue
distribution of a complex symmetric matrix does not possess any special properties.

For the solution of general non-Hermitian linear systems, one approach is to apply
conjugate gradient method to the Hermitian normal equation AHAx = AHb where generally
an appropriate preconditioner is needed since its condition number is the square of the
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condition number of A. This method is sometimes called CGNR which minimizes the AHA-
norm of the error, i.e., the 2-norm of the residual b−Axn over the relative n-dimensional
affine space. Another similar method called CGNE is possible for the system AAHy = b
with x = AHy which minimizes the AAH-norm of the error in yn, i.e., the 2-norm of the error
x∗− xn where x∗ is the exact solution. We refer the reader to reference [131] for more details.
These approaches are often badly affected by ill-conditioning that makes them unappealing
in practice.

Another approach is to transform Equation (4.1) into real equivalent form and solve
the resulting real system by a Krylov subspace method such as BiCG [64], GMRES [132],
QMR [73, 72] and BiCGSTAB [145]. For good overviews, see [16, 133, 103, 138], see also
Section 1.1 and the references therein. We remark that the coefficients of Equation (4.1) have
the following form

A = Re(A)+ iIm(A), x = Re(x)+ iIm(x), b = Re(b)+ iIm(b),

where Re(·) extracts the real part and Im(·) extracts the imaginary part, and i is the imaginary
unit. It is possible to rewrite the system into real and complex parts that gives rise to the
2-by-2 block formulations

A∗

 Re(x)

Im(x)

=

 Re(A) −Im(A)

Im(A) Re(A)

 Re(x)

Im(x)

=

 Re(b)

Im(b)

 ,

A∗∗

 Re(x)

−Im(x)

=

 Re(A) Im(A)

Im(A) −Re(A)

 Re(x)

−Im(x)

=

 Re(b)

Im(b)

 .

While there exist several other real equivalent formulations, these two are basic and share
some common properties with other special cases. In view of the spectral properties, if λ

is an eigenvalue of non-Hermitian matrix A, then the complex conjugate pairs λ and λ̄ are
the eigenvalues of the real equivalent form A∗. Thus the spectrum σ(A∗) is symmetric with
respect to the real axis. For the second formulation, if λ ∈ σ(A), then λ , −λ , λ̄ and −λ̄ are
also the eigenvalues of A∗∗. Therefore, the spectrum is symmetric with respect to the origin.
It is sometimes the case that the coefficient matrix has only one-sided spectrum that makes
the second formulation problematic in practice. For example, if a matrix has only positive
eigenvalues, then the eigenvalues in the first formulation lie in a half-plane which excludes
the origin while the second one reflects the spectrum through the origin that degrades the
convergence rate. Theoretically, the convergence rate for the general case tends to be the
square root of the rate for the one-sided spectrum when using the same iterative method. We
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mention [6, 54, 21] and the references therein for more theoretical arguments and numerical
results.

It has been observed that splitting methods can be used with success. The traditional
alternating direction implicit method [120] has inspired the construction of alternate two-step
splittings A = M1 −N1 and A = M2 −N2, and this leads to an iteration called Hermitian
and skew-Hermitian splitting (HSS) [11] in which alternately a shifted Hermitian system
and a shifted skew-Hermitian system are solved. HSS has received so much attention
(see, e.g., [12, 10, 20, 13–15, 90, 134, 150, 121]), possibly due to its guaranteed convergence
and mathematical beauty.

Let H and S denote the Hermitian and skew-Hermitian parts of A, respectively. Let AH

be the conjugate transpose of matrix A. It follows that

H =
A+AH

2
, S =

A−AH

2
.

Let I be the identity matrix. In short, the HSS method is defined as (γI +H)xn+ 1
2
= (γI −S)xn +b,

(γI +S)xn+1 = (γI −H)xn+ 1
2
+b,

(4.2)

with γ > 0. It could be regarded as a stationary iterative process

xn+1 = T xn + p,

where x0 is a given vector. Following [11] let us set

M1 = γI +H, N1 = γI −S, M2 = γI +S, N2 = γI −H.

The coefficients T and p can be expressed as

T = M−1
2 N2M

−1
1 N1, p = M−1

2 (I +N2M
−1
1 )b.

Let σ(·) be the spectrum of a matrix and let ρ(·) be the spectral radius. Convergence result
for (4.2) in the non-Hermitian positive definite case was established in [11]

ρ(T )≤
∥∥N2M

−1
1

∥∥= max
λ∈σ(H)

|λ − γ|
|λ + γ|

, (4.3)
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where ∥·∥ denotes 2-norm. This shows that the spectral radius of iteration matrix T is less
than 1. As a result, HSS has guaranteed convergence for which the speed depends only on
the Hermitian part H. Let λi(·) be the ith eigenvalue of a matrix in ascending order. The key
observation here is that choosing

γ = γ∗ =
√

λ1(H)λN(H) (4.4)

leads to the well-known upper bound

ρ(T )≤
√

κ(H)−1√
κ(H)+1

, (4.5)

where κ(·) denotes the condition number. It is noteworthy that inequality (4.4) is similar to
the convergence result for conjugate gradient (CG) [89, 144] in terms of A-norm error. As
mentioned in [11], γ∗ minimizes the upper bound of ρ(T ) but not ρ(T ) itself. In some cases
the right-hand side of (4.3) may not be an accurate approximation to the spectral radius. Since
very little theory is available on direct minimization, we still try to approximate indirectly
the optimal parameter γ∗.

4.2 Asymptotic analysis of steepest descent

In this section we consider the Hermitian positive definite (HPD) linear system

Hx = b̂ (4.6)

of size N. The solution x∗ is the unique global minimizer of convex quadratic function

f (x) =
1
2

xHHx− b̂Hx. (4.7)

For n = 0, 1, . . . , the gradient method is of the form

xn+1 = xn −αngn, (4.8)

where gn = ∇ f (xn) = Hxn − b̂. This gives the updating formula

gn+1 = gn −αnHgn. (4.9)
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The steepest descent (SD) method proposed in [33] defines a sequence of steplengths as
follows

α
SD
n =

gHn gn

gHn Hgn
, (4.10)

which is the reciprocal of Rayleigh quotient. It minimizes the quadratic function f or the
A-norm error of the system (4.6) and gives theoretically an optimal result at each step

α
SD
n = argmin

α

f (xn −αgn) = argmin
α

∥(I −αH)en∥2
H ,

where en = x∗ − xn. This classical method is known to behave badly in practice. The
directions tend to asymptotically alternate between two orthogonal directions resulting in a
slow convergence [1].

The motivation for this chapter arose during the development of efficient gradient methods.
We notice that generally SD converges much slower than CG for HPD systems. However,
the spectral properties of the former could be beneficial to parameter estimation. Akaike [1]
provided a probability distribution model for the asymptotic analysis of SD. It appears that
standard techniques used in linear algebra are not very helpful in this case. The so-called two-
step invariance property led to the work of Nocedal et al. [117] in which further asymptotic
results are presented. Let vi(·) be the eigenvector corresponding to the eigenvalue λi(·).
Relevant properties in [117] which will be exploited in the following text can be briefly
described in Lemma 4.1. Note that a symmetric positive definite real matrix was used in [117].
Therefore, we give some remarks in the proof for Hermitian case.

Lemma 4.1. Assume that λ1(H)< · · ·< λN(H). Assume that vH1 (H)g0 ̸= 0 and vHN(H)g0 ̸= 0.
Consider the gradient method (4.8) with steplength (4.10) being used to solve (4.6). Then

lim
n→∞

α
SD
2n =

1+ c2

λ1(H)(1+ c2κ(H))
, (4.11)

lim
n→∞

α
SD
2n+1 =

1+ c2

λ1(H)(c2 +κ(H))
, (4.12)

and

lim
n→∞

∥g2n+1∥2

∥g2n∥2 =
c2(κ(H)−1)2

(1+ c2κ(H))2 , (4.13)

lim
n→∞

∥g2n+2∥2

∥g2n+1∥2 =
c2(κ(H)−1)2

(c2 +κ(H))2 , (4.14)

for some constant c.
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Proof. Let Re(·) and Im(·) be the real and imaginary parts, respectively. The coefficients of
system (4.6) have the following form

H = Re(H)+ ιIm(H), x = Re(x)+ ιIm(x), b̂ = Re(b̂)+ ιIm(b̂),

where ι denotes the imaginary unit. It is possible to rewrite system (4.6) into the real
equivalent form

H̃x̃ =

 Re(H) −Im(H)

Im(H) Re(H)

 Re(x)

Im(x)

=

 Re(b̂)

Im(b̂)

= b̃. (4.15)

By Lemma 3.3 and Theorem 5.1 in [117], it is known that results (4.11) to (4.14) hold in
the real case. To prove the desired result, it suffices to show that SD applied to (4.15) is
equivalent to that for (4.6), namely, they should yield the same sequences of gradient vectors
and steplengths. One finds that

gn = (Re(H)+ ιIm(H))(Re(xn)+ ιIm(xn))− (Re(b̂)+ ιIm(b̂))

= ϕn + ιψn,
(4.16)

where

ϕn = Re(H)Re(xn)− Im(H)Im(xn)−Re(b̂),

ψn = Re(H)Im(xn)+ Im(H)Re(xn)− Im(b̂).

Assume that the 2 blocks in x̃n is the same as the real and imaginary parts of xn, respectively.
Then, from (4.15) one obtains that

g̃n = H̃x̃n − b̃ =

 ϕn

ψn

 . (4.17)

On the other hand, let

α̃n =
g̃⊺n g̃n

g̃⊺nH̃g̃n
.

Combining (4.16) and (4.17) implies gHn gn = g̃⊺n g̃n. Since Im(H)⊺ =−Im(H), it follows that
u⊺Im(H)u = 0 for all u ∈ RN , from which one obtains that

Re(gn)
⊺Im(H)Re(gn) = 0, Im(gn)

⊺Im(H)Im(gn) = 0.
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Hence, the following result holds:

gHn Hgn = (Re(gn)+ ιIm(gn))
H(Re(H)+ ιIm(H))(Re(gn)+ ιIm(gn))

= Re(gn)
⊺Re(H)Re(gn)+ Im(gn)

⊺Re(H)Im(gn)

+2Im(gn)
⊺Im(H)Re(gn)

Along with (4.15), this implies that gHn Hgn = g̃⊺nH̃g̃n, according to which one finds that
α̃n = αn when the 2 blocks in g̃n are equal to the real and imaginary parts of gn, respectively.
Hence, the SD iteration for Hermitian system (4.6) and that for 2-by-2 real form yield exactly
the same sequence of solutions. Since properties (4.11) to (4.14) in the real case has been
proved in [117], we arrive at the desired conclusion.

Concerning the assumption used in Lemma 4.1, if there exist repeated eigenvalues, then
we can choose the eigenvectors so that the corresponding gradient components vanish [65]. If
vH1 (H)g0 = 0 or vHN(H)g0 = 0, then the second condition can be replaced by inner eigenvectors
with no effect on the theoretical results.

It took some time before the spectral properties described in [117] were applied for
solving linear systems. De Asmundis et al. [56] proposed an auxiliary steplength

α
A
n =

(
1

αSD
n−1

+
1

αSD
n

)−1

, (4.18)

which could be used for efficient implementations of gradient methods. The major result is
a direct consequence of (4.11) and (4.12). We state the lemma without proof, see [56] for
further discussion.

Lemma 4.2. Under the assumptions of Lemma 4.1, the following result holds

lim
n→∞

α
A
n =

1
λ1(H)+λN(H)

. (4.19)

Another direction of approach was based on a delicate derivation in [154]. Let us write
αRA

n =
(
αA

n
)−1 and

Γn =
1

αSD
n−1αSD

n
− ∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

. (4.20)
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Yuan [154] developed a new auxiliary steplength of the form

α
Y
n =

2

αRA
n +

√
(αRA

n )
2 −4Γn

. (4.21)

which leads to some 2-dimensional finite termination methods for solving system (4.6),
see [154]. Let us now introduce an alternative steplength

α
Z
n =

2

αRA
n −

√
(αRA

n )
2 −4Γn

. (4.22)

Let us write αRY
n =

(
αY

n
)−1 and αRZ

n =
(
αZ

n
)−1. It follows that

α
RY
n +α

RZ
n = α

RA
n , α

RY
n α

RZ
n = Γn.

The spectral properties of (4.20), (4.21) and (4.22) are shown in Lemma 4.3. Note that the
consequences (4.23) and (4.24) have appeared in [57] for the real case. We prove them in
full for completeness.

Lemma 4.3. Under the assumptions of Lemma 4.1, the following limits hold

lim
n→∞

Γn = λ1(H)λN(H). (4.23)

lim
n→∞

α
Y
n =

1
λN(H)

. (4.24)

lim
n→∞

α
Z
n =

1
λ1(H)

. (4.25)

Proof. Combining (4.11) and (4.12) implies

lim
n→∞

α
SD
n−1α

SD
n =

(1+ c2)2

λ 2
1 (H)(c2 +κ(H))(1+ c2κ(H))

. (4.26)

Combining (4.11) to (4.14), one could deduce that

lim
n→∞

1
(αSD

2n )2
lim
n→∞

∥g2n+1∥2

∥g2n∥2 = lim
n→∞

1
(αSD

2n+1)
2

lim
n→∞

∥g2n+2∥2

∥g2n+1∥2 ,
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from which one finds

lim
n→∞

∥gn∥2(
αSD

n−1
)2 ∥gn−1∥2

=
λ 2

1 (H)c2(κ(H)−1)2

(1+ c2)2 . (4.27)

The first equation follows by combining (4.26) and (4.27). Along with (4.19), this implies
that

lim
n→∞

((
α

RA
n

)2
−4Γn

)
= (λ1(H)−λN(H))2 ,

which yields the desired limits (4.24) and (4.25).

It is noteworthy that steplengths (4.21) and (4.22) could be expressed as the roots of a
quadratic function

Qn(α) = Γnα
2 −α

RA
n α +1, (4.28)

with
Qn(0) = 1, Qn(α

A
n ) = Γn

(
α

A
n

)2
,

Qn(α
SD
n−1) =− ∥gn∥2

∥gn−1∥2 , Qn(α
SD
n ) =−

(
αSD

n
)2 ∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

,

from which one could observe that Γn > 0 and

α
A
n < α

Y
n < min{α

SD
n−1, α

SD
n }.

As mentioned in [154], a slightly shortened steplength would improve the efficiency of SD.
This is one reason why the Yuan steplength could be fruitfully used in alternate gradient
methods [51, 57].

4.3 Application to HSS iterations

4.3.1 Preliminary considerations

In this section we first try to compute estimates for parameter γ in the HSS method. One
possible solution is to simply choose γ = 1 without resorting to special techniques, but
experience shows that it often leads to very slow convergence, depending on the system
being solved. Another approach is based on the observation that α was introduced to enable
the bounded convergence, as seen in (4.3), and it is possible to express it differently. As an
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example consider a positive definite diagonal matrix D such that (D+H)xn+ 1
2
= (D−S)xn +b,

(D+S)xn+1 = (D−H)xn+ 1
2
+b.

(4.29)

As a result, the iteration matrix is of the form

TD = (D+S)−1(D−H)(D+H)−1(D−S).

Notice that (4.29) is a special case of preconditioned HSS [22] when choosing α = 1 and
P = D. In particular, the fact that Theorem 2.1 in [22] holds for (4.29) implies ρ(TD)< 1,
yielding the guaranteed convergence.

By the similarity invariance of the matrix spectrum, we obtain

ρ(T̂D) = ρ(TD),

where
T̂D = (D−H)(D+H)−1(D−S)(D+S)−1.

Notice that DS = SD and so (D−S)(D+S)−1 is a unitary matrix. On the basis of similar
reasoning as in HSS [11], the spectral radius is bounded by

ρ(T̂D)≤
∥∥(D−H)(D+H)−1∥∥ .

A natural idea is to seek D so that the upper bound is small. At first glance we may choose D
as the diagonal elements of H. Inspired by the diagonal weighted matrix in [71], the Euclidean
norms of column vectors could also be exploited. However, the common experience is that
these strategies may lead to a stagnation of convergence, and sometimes perform much worse
than choosing γ = 1. We will not pursue them further in this chapter.

4.3.2 Parameter estimation based on gradient iterations

It is observed that (4.23) leads to a straightforward estimation of parameter γ∗ in (4.4). Our
goal now is to show that this approach is feasible. Assume that x0 = 0 and

H = diag(1, 2, 10, 20, 100, 200, 1000, 2000). (4.30)

Assume that b̂ is constructed by b̂=Hx∗ where x∗ is a vector of all ones. We plot in Figure 4.1
the curves of (4.28) for a few representative iteration numbers. This figure shows that the



4.3 Application to HSS iterations 63

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-500

0

500

1000

1500

2000

2500

3000

3500

Q
n
(

)

n=5

n=10

n=20

n=50

n=inf

Figure 4.1 Curves of Qn(α) for a few representative iteration numbers. SD is used for solving
system (4.6) where H satisfies (4.30) and b̂ is a vector of all ones

curves of Qn(α) corresponding to SD converges to the limit, as proved in Lemma 4.2 and
Lemma 4.3.

Hence, the optimal parameter in HSS could be actually approximated by SD iterations,
which is shown in the following theorem.

Theorem 4.4. Assume that the matrix H in system (4.6) is the Hermitian part of A in
system (4.1). If SD is used for solving (4.6), then the following limit holds

lim
n→∞

√
Γn = γ∗. (4.31)

Proof. Combining (4.4), (4.23) and the fact that Γn > 0 observed from (4.28), the desired
conclusion follows.

Another approach is to compute the approximation by combining Lemmas 4.2 and 4.3,
in which case γ∗ could be estimated without explicit access to operator H. This approach is
shown in Theorem 4.5.
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Theorem 4.5. Assume that the matrix H in system (4.6) is the Hermitian part of A in
system (4.1). If SD is used for solving M1x = b̂, then the following limit holds

lim
n→∞

√
Γn − γαRA

n + γ = γ∗. (4.32)

Proof. Recall that M1 = αI +H. Since

λi(M1) = γ +λi(H)

for i = 1, . . . , N, it follows that

γ∗ =
√

λ1(H)λN(H) =
√
(λ1(M1)− γ)(λN(M1)− γ)

=
√

λ1(M1)λN(M1)− γ(λ1(M1)+λN(M1))+ γ2

Combining (4.19) and (4.23) implies

γ∗ =
√

lim
n→∞

Γn − γ lim
n→∞

αRA
n + γ2

= lim
n→∞

√
Γn − γαRA

n + γ2.

This completes out proof.

Practically, obtaining γ∗ by (4.32) requires a predetermined parameter γ . One could
choose γ = 1 and give an integer k as the maximum number of iterations such that

γ∗ ≈
√

Γk −αRA
k +1,

in which case the HSS algorithm might be executed at reduced costs.
Another direction of approach is based on the minimal gradient (MG) steplength

α
MG
n =

gHn Hgn

gHn H2gn
,

the spectral properties of which have been discussed in Chapter 3. Let

α
A2
n =

(
1

αMG
n−1

+
1

αMG
n

)−1

, Γ̃n =
1

αMG
n−1αMG

n
− gHn Hgn(

αMG
n−1
)2 gHn−1Hgn−1

.

Let αRA2
n =

(
αA2

n
)−1. We state the following theorems without proof.
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Theorem 4.6. Assume that the matrix H in system (4.6) is the Hermitian part of A in
system (4.1). If MG is used for solving (4.6), then the following limit holds

lim
n→∞

√
Γ̃n = γ∗. (4.33)

Theorem 4.7. Assume that the matrix H in system (4.6) is the Hermitian part of A in
system (4.1). If MG is used for solving M1x = b̂, then the following limit holds

lim
n→∞

√
Γ̃n − γαRA2

n + γ = γ∗. (4.34)

4.3.3 Lagged variants in low precision

Although SD has remarkable spectral properties, as an iterative method, its popularity has
been overshadowed by CG. Akaike [1] exploited the fact that the zig-zag behavior nearly
always leads to slow convergence, except when initial gradient approaches an eigenvector.
This drawback can be cured with a lagged strategy, first proposed in [17], which was later
called Barzilai-Borwein (BB) method. Recall that BB is of the form

α
BB
n =

gHn−1gn−1

gHn−1Hgn−1
.

The convergence analysis was given in [126, 48]. For the Q-linear result, however, has never
been proved due to its nonmonotone convergence. It seems overall that the effect of this
irregular behavior is beneficial.

For the HSS method, two iterative procedures are needed at each iteration. Since the solu-
tion of subproblems in (4.2) is sometimes as difficult as that of the original system (4.1), the
inexact solvers with rather low precision are often considered, especially for ill-conditioned
problems. Friedlander et al. [74] made the observation that BB could often be competi-
tive with CG when low precision is required. An example is illustrated in Figure 4.2. We
solve (4.6) with different residual thresholds ε , where H is chosen as a diagonal matrix
of size 103 and b̂ is a vector of all ones. The diagonal entries have values logarithmically
distributed between 10−3 and 1 in ascending order, with the first and the last entries equal to
the limits, respectively, such that κ(H) = 103. The plot shows a fairly efficient behavior of
BB. It is known that CG is sensitive to rounding errors, while lagged gradient methods can
remedy this issue [65, 143] with less computational costs per iteration. Additionally, although
BB sometimes suffers from the disadvantage of requiring increasing number of iterations
for increasing condition numbers, its low-precision behavior tends to be less sensitive to the
ill-conditioning.
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Figure 4.2 Comparison of CG and BB for solving system (4.6) where H is a diagonal matrix
of size 103 with κ(H) = 103 and b̂ is a vector of all ones

4.4 Numerical experiments

In this section we perform some numerical tests with MATLAB R2018b. Assume that
iterative algorithms are started from zero vectors. The global stopping criterion in HSS is
determined by the threshold ε = ∥b−Axn∥/∥b∥ with a fixed convergence tolerance 10−6.
The inner stopping thresholds ε1 and ε2 for the two half-steps of (4.2) are defined in the
same way. For gradient iterations applied to system (4.6), similarly, the stopping criterion
is defined by the threshold ε = ∥b̂−Hxn∥/∥b̂∥ with the same tolerance. All tests are run in
double precision on the computer with 2.8GHz Intel Core i7 central processing unit.

4.4.1 Asymptotic results of gradient iterations

The goal of the first experiment is to illustrate how the spectral properties described earlier can
be used for providing a rough estimate of parameter γ∗. We have implemented SD and MG
iterations for several real matrices of size 1000 generated by MATLAB routine sprandsym.
The right-hand side is chosen to be a vector of ones. In Figure 4.3, parameter γ is plotted
versus iteration number, under which a red dotted line marks out the position of γ∗. As can be
seen, SD with limits (4.31) and (4.32) turns out to be a better strategy than MG in all cases.
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Figure 4.3 Parameter estimation with different matrix H generated randomly by MATLAB:
γ∗ = 0.8 (top), γ∗ = 3.1 (middle), γ∗ = 11.7 (bottom). Parameter γ is computed by two
approaches: Theorems 4.4 and 4.6 (left), Theorems 4.5 and 4.7 (right)

The indirect approximations based on (4.32) and (4.34) yield faster convergence for both SD
and MG.
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This test confirms Theorems 4.4 to 4.7. Recall that choosing γ∗ as parameter leads to an
upper bound of ρ(T ), for which it is not necessary to obtain an exact estimate. Experience
shows that this choice may sometimes cause overfitting, resulting in slow convergence or
even divergence, especially when γ∗ is small. One simple measure is to use early stopping in
gradient iterations. In the following, it is assumed that SD is used for parameter estimation
in HSS, called preadaptive iterations, and we consider only the direct approach (4.31).

4.4.2 HSS with different parameters

In this test we generate some matrices obtained from a classical problem in order to under-
stand the convergence behavior of HSS enhanced by SD iterations.

Example. Consider system (2.1) where A arises from the discretization of differential equation

−
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+θ

(
∂u
∂x

+
∂u
∂y

+
∂u
∂ z

)
= q (4.35)

on the unit cube Ω = [0, 1]3 with θ a positive constant. Assume that u satisfies homogeneous
Dirichlet boundary conditions. The finite difference discretization on a uniform m×m×m
grid with mesh size h = 1/(m+1) is applied to the above model yielding a linear system
with N = m3.

In the following we use the centered difference scheme for discretization. The right-
hand side b is generated with random components in [−10, 10]+ ι [−10, 10]. As thresholds
for inner iterations, ε1 = 10−4 and ε2 = 10−4 are chosen. CG is exploited for solving
the Hermitian inner system, while CGNE (see, e.g., [131]) is for the skew-Hermitian part.
Figure 4.4 shows the convergence behavior of HSS with different parameters. Here, we
set γ ∈ [0.5, 3.5] and m ∈ [9, 21]. The optimal parameters γ∗ with m = 9, 12, 15, 18, 21
are located by red lines. Notice that a path that zigzags through the bottom of the valley
corresponds to the best parameters. As already noted that the parameter estimates need not
be accurate, and thus the red lines are good enough in practice.

Then approximating γ∗ by inexact SD iterations yields the preadaptive HSS method
(PAHSS). Let η denote the number of preadaptive iterations. The convergence behaviors
and total computing times are illustrated in Figure 4.5. The left three show the residual
curves with several typical choices of η when m= 16, 32, 64, 128, namely, N = 4096, 32768,
262144, 2097152. Two observations can be made for all dimensions: the first is that larger
η yields faster convergence; the second is that η = 100 does not lead to significant gains
in efficiency compared with η = 50. The right three map total wall-clock times of PAHSS
iterations, measured in seconds, on to η from 10 to 160. It can be seen that substantial
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Figure 4.4 Solving problem (4.35) by HSS with γ ∈ [0.5, 3.5] and m ∈ [9, 21]. The optimal
parameters γ∗ are located by red lines

gains are made in the beginning, following a long period of stagnation. Experience shows
that a small number of SD iterations is sufficient and it is therefore appropriate to use early
stopping.

4.4.3 CG and BB as low-precision inner solvers

In order to verify that BB can be an alternative to CG as low-precision inner solver for
HSS, some tests proceed along the same lines as above but consider both CG and BB as
inner solvers for the Hermitian part. Results are shown in Tables 4.1 to 4.3. These three
tables illustrate: (1) numbers of outer iterations; (2) numbers of total iterations including
the inner ones; (3) wall-clock times, measured in seconds. In Table 4.3, we conduct 10
repeated experiments and print only the average results. As expected, BB is competitive with
CG in terms of computing times. As was seen, the optimal parameters γ∗ for (4.35) with
m = 10, 20, 30, 40 are between 1 and 2. BB performs slightly better than CG when γ < γ∗,
while the opposite is true when γ > γ∗. On the other hand, large γ leads to slow convergence
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Table 4.1 Number of outer HSS iterations problem (4.35) with ε1 = 10−1 and ε2 = 10−4.

γ = 1 γ = 2 γ = 5

m 10 20 30 40 10 20 30 40 10 20 30 40

CG 85 105 109 117 37 64 111 152 71 143 257 362
BB 72 62 84 91 40 75 117 156 71 143 257 362

Table 4.2 Number of total HSS iterations for problem (4.35) with ε1 = 10−1 and ε2 = 10−4.

γ = 1 γ = 2 γ = 5

m 10 20 30 40 10 20 30 40 10 20 30 40

CG 386 396 431 496 159 245 399 539 199 359 632 888
BB 410 298 533 578 196 450 776 889 212 391 700 986

Table 4.3 Average execution time (s) of HSS among 10 repeated experiments for prob-
lem (4.35) with ε1 = 10−1 and ε2 = 10−4.

γ = 1 γ = 2 γ = 5

m 10 20 30 40 10 20 30 40 10 20 30 40

CG 0.58 2.16 3.42 5.61 0.25 1.31 3.14 6.51 0.44 2.37 6.80 13.61
BB 0.51 1.39 2.84 4.94 0.28 1.71 3.85 7.91 0.44 2.35 6.98 13.70

in our case. It could smooth out the differences among inner solvers and ensure similar outer
iterations as seen in Table 4.1.

4.5 Conclusion

Gradient iterations provide a versatile tool in linear algebra. Apart from parameter estimates
related to the spectral properties, SD variants have also been tried recently with success
as iterative methods [56, 57, 83]. This chapter extends the spectral properties of gradient
iterations and gives an application in HSS. Note that this approach can be extended to other
splitting methods (see Section 1 and the references therein) where a parameter γ is to be
computed.

Lagged gradient methods play a significant role when nonsymmetric error occurs in the
Hessian matrix [143]. This chapter reveals that they are also appealing in situations where low
precision is required. The strategy discussed above can be also applied to the skew-Hermitian
system. Note that low-precision iterations may suffer from a lack of stability. The common
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experience is that it is desirable to choose γ > 1. Another direction of approach is based on
the nonstationary iterative scheme as discussed in [11] in which the inner stopping thresholds
satisfy ε j = max

{
0.1δ n, 10−6} where 0 < δ < 1 and j = 1, 2. On the other hand, CG is

practically better than BB as well as other lagged gradient methods when ε1 < 10−2. For the
high-precision solutions of ill-conditioned HPD systems, more precisely, preconditioned CG
is still the method of choice.

Our experiments confirm that the gradient-enhanced HSS method can be an attractive
alternative to the original one. The stability issue can often be remedied by setting a threshold
for the parameter γ . If the problem has large condition number, then a preconditioner should
be used for efficiency purposes (see, e.g., [19, 149]). The choice of good preconditioners for
non-Hermitian systems remains an open question.
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Figure 4.5 Parameter estimation for problem (4.35) with different mesh densities:
m = 16 (first), m = 32 (second), m = 64 (third), m = 128 (fourth), namely, N =
4096, 32768, 262144, 2097152, respectively. Left: convergence curves for different η .
Right: average wall-clock times for different η including that of SD iterations



Chapter 5

Reducing communication in lagged
gradient methods

Compared with arithmetic operation, communication cost is often the bottleneck on modern
computers, and thus should be paid increasing attention when choosing algorithms. Lagged
gradient methods are known for their error tolerance and fast convergence. It appears that the
parallel behavior of a number of variants is not well understood. In this chapter, we explore
the cyclic formulations of lagged gradient methods and s-dimensional methods for reducing
global synchronizations. We provide parallel implementations for these methods and propose
some new variants. A comparison is then reported for different gradient iterative schemes.
To illustrate the performance, we run a number of experiments, from which we conclude that
our formulations perform better than traditional methods in terms of both iteration count and
computing time.

5.1 Parallel lagged gradient methods

Real-life industrial applications often lead to large-scale linear systems, for which parallel
iterative solvers have been studied for decades. The performance of a parallel algorithm
is impacted by both floating point operations and communications performed during its
execution. On modern computers, however, communication is generally much slower than
computation, and this trend is likely to accelerate in future systems.

One way to remedy this issue is to recast parallel synchronous algorithms into asyn-
chronous formulations by breaking up the data dependencies, in which iterations and com-
munications are no longer synchronized. Asynchronous iterations were formally proposed
by Chazan and Miranker [35] and generalized by many later authors [113, 18, 62, 23]. Re-
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cently, much interest has been focused on programming libraries [7, 43, 105, 107], GPU
implementations [3, 36], space domain decomposition methods [109, 110] and time do-
main decomposition methods [111, 108]. Another direction to reduce communication is
based on the s-step Krylov methods, which can often reduce the amount of communications
per iteration by a factor of O(s) (see, e.g., [91]). Chronopoulos and Gear [38] suggested
an early specimen for the s-step formulation of the conjugate gradient (CG) method [89],
see [37, 96, 97, 41, 39, 40] for the follow-on work. Hoemmen [91] gave a complete treatise
of the relevant theory and proposed several new methods, which were later generalized
by Carson et al. [31], see also [2, 32, 30, 28, 93, 29]. There are other strategies for re-
ducing communication in iterative methods that can be found in much recent literature,
see, e.g. [80, 86, 157, 42]. In this chapter, we suggest some variants of gradient methods for
the purpose of reducing synchronization cost, for which parallel algorithms are provided by
complying the message passing interface (MPI) specification.

Concerning numerical implementation, one observes that SD and BB have similar op-
erations: matrix-vector multiplications, dot products, and vector updates. In parallel envi-
ronment, dot products require a combination of local dot products and a reduction over the
processors, which incur a costly global synchronization. Let ν be the number of processors
and i ∈ {1, . . . , ν}. Let xi,n and gi,n be the subvectors updated in the ith processors. Assume
that the matrix A and the vector b are partitioned into the banded submatrices Ai and the
subvectors bi, respectively. Assume that x0 = 0. This yields the parallel SD method described
in Algorithm 5.1. The potential bottleneck is in the reduction and the gather operations. The
parallel BB method can be similarly described. If one combines SD and BB, an alternate
step (AS) method can be derived (see [45]).

A famous publication by Friedlander et al. [74] considered a framework called gradient
methods with retards (GMR) and proved its global convergence. Let m be a positive integer.
Let n̄ = max{0, n−m}. Recall that this framework is of the form

α
GMR
n =

g⊺
τ(n)A

ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+1gτ(n)
,

with
τ(n) ∈ {n̄, n̄+1, . . . , n−1, n} , ρ(n) ∈ {q1, . . . , qm} , q j ≥ 0.

Notice that choosing τ(n) = n and ρ(n) = 0 yields SD, while τ(n) = n−1 yields BB. Assume
that m is the maximum delay. Let d = m+1. A communication-avoiding gradient method
can be derived from this framework by periodically fixing and recovering τ(n) = n within d
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Algorithm 5.1 Parallel SD method.
1: set gi,0 =−bi

2: γ = g⊺i,0gi,0

3: Allreduce(γ , SUM)

4: compute initial residual

5: for n = 0, 1, . . . do
6: Allgather(gn)

7: pi,n = Aign

8: δ = p⊺i,ngi,n

9: Allreduce(δ , SUM)

10: αn = γ/δ

11: xi,n+1 = xi,n −αngi,n

12: gi,n+1 = gi,n −αn pi,n

13: γ = g⊺i,n+1gi,n+1

14: Allreduce(γ , SUM)

15: compute residual

16: end for

iterations, leading to the cyclic steepest descent (CSD) method

α
CSD
n = α

SD
τ(n), τ(n) = max{ j ≤ n : j mod d = 0} ,

with d ≥ 1. AS is indeed a special case of CSD when choosing d = 2. Further experiments
in Friedlander et al. [74] confirmed that CSD is competitive with BB in the sequential
case. The parallel implementation is described in Algorithm 5.2. In the parallel case, CSD
reduces d − 1 or 2(d − 1) dot product operations in every d iterations depending on the
implementation. If one computes only local residual in each iteration, then the algorithm
could be further improved by moving line 14 into the code block starting from line 5 in
Algorithm 5.2.

It was De Asmundis et al. [56] who suggested to use the second order information based
on some spectral properties of SD to accelerate the gradient iterations. They proposed in [56]
and [57] two new methods called SD with alignment (SDA) and SD with constant steplength
(SDC), respectively. We only discuss the latter since they share similar properties, and it is
the experience of the present authors that SDC generally performs better. The step is of the
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Algorithm 5.2 Parallel CSD method.
1: same as lines 1 to 4 in Algorithm 5.1

2: for n = 0, 1, . . . do
3: Allgather(gn)

4: pi,n = Aign

5: if n mod d = 0 then
6: δ = p⊺i,ngi,n

7: Allreduce(δ , SUM)

8: αn = γ/δ

9: r = 0

10: end if
11: xi,n+1 = xi,n −αn−rgi,n

12: gi,n+1 = gi,n −αn−r pi,n

13: r = r+1

14: γ = g⊺i,n+1gi,n+1

15: Allreduce(γ , SUM)

16: compute residual

17: end for

form

α
SDC
n =

αSD
n , n mod (d1 +d2)< d1,

αY
τ(n), τ(n) = max{ j ≤ n : j mod (d1 +d2) = d1} ,

where d1, d2 ≥ 1 and αY
n has been defined in Section 2.3. Here, the Yuan step was introduced

in Yuan [154]. The main feature of SDC is to foster the reduction of gradient components
along the eigenvectors of A selectively, and thus reduce the search space into smaller and
smaller dimensions. As a result, the problem tends to have a better and better condition
number (see [57]). The parallel algorithm is illustrated in Algorithm 5.3. In parallel case,
this method reduces d2 −1 or 2(d2 −1) dot product operations in every d1 +d2 iterations.

One finds that both CSD and SDC are cyclic gradient methods. A cycle equals d iterations
in CSD and d1 +d2 in SDC. It is also possible to define minimal gradient (MG) approaches
(see, e.g., [50]) in a cyclic form. We will not investigate these variants further since MG and
SD share similar properties in both sequential and parallel views.
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Algorithm 5.3 Parallel SDC method.
1: same as lines 1 to 4 in Algorithm 5.1

2: for n = 0, 1, . . . do
3: Allgather(gn)

4: pi,n = Aign

5: if n mod (d1 +d2)< d1 then
6: δ = p⊺i,ngi,n

7: Allreduce(δ , SUM)

8: αn = γ/δ

9: θ = γ

10: r = 0

11: else if n mod (d1 +d2) = d1 then
12: δ = p⊺i,ngi,n

13: Allreduce(δ , SUM)

14: α̂ = γ/δ

15: αn = 2/(
√
(1/αn−1 −1/α̂)2 +4γ/(α2

n−1θ)+1/αn−1 +1/α̂)

16: r = 0

17: end if
18: same as lines 11 to 16 in Algorithm 5.2

19: end for

5.2 Parallel s-dimensional steepest descent

From Section 2.1, it is known that there exist real values ζ j,n such that

gn =
N

∑
j=1

ζ j,nv j.

Using Equation (2.4), we get

ζ j,n+1 = (1−αnλ j)ζ j,n = ζ j,0

n

∏
k=0

(1−αkλ j),

where j ∈ {1, . . . , N}. It is clear that choosing αn = 1/λ j leads to the fact that the cor-
responding component of the gradient vector will vanish and remain zero throughout the
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iteration. Now we rewrite the solution vector recurrence in the following form

xn+1 = xn −P(A)gn.

By the Cayley-Hamilton theorem, one finds that A−1 could be described as a matrix polyno-
mial of degree s−1. Let P(A) be a polynomial of the form

P(A) = α
(1)
n I +α

(2)
n A+ · · ·+α

(s)
n As−1,

where I is an identity matrix of size N. We consider the s-dimensional plane

L(s)
n =

{
xn −

s

∑
j=1

α
( j)
n A j−1gn : α

( j)
n ∈ R

}
. (5.1)

We remark that choosing s = 1 will recover the search spaces of gradient methods. The
s-dimensional steepest descent (s-SD) method is of the form

xn+1 = xn −α
(1)
n gn −·· ·−α

(s)
n As−1gn,

where α
(1)
n , . . . , α

(s)
n are selected to minimize the quadratic function in Equation (2.2) or the

A-norm error ∥en+1∥A over L(s)
n . The recurrence of gradient vector can be written as

gn+1 = gn −α
(1)
n Agn −·· ·−α

(s)
n Asgn.

It is clear that gn+1 should be orthogonal to the s-dimensional space L(s)
n . As a result, one

finds the following system of equations

α
(1)
n g⊺nAgn + . . . + α

(s)
n g⊺nAsgn = g⊺ngn,

α
(1)
n (Agn)

⊺Agn + . . . + α
(s)
n (Agn)

⊺Asgn = (Agn)
⊺gn,

...
...

...

α
(1)
n (As−1gn)

⊺Agn + . . . + α
(s)
n (As−1gn)

⊺Asgn = (As−1gn)
⊺gn.
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Let ω
( j)
n = g⊺nA jgn. Since (Akgn)

⊺Algn = g⊺nAk+lgn, it follows that

ω
(1)
n ω

(2)
n · · · ω

(s)
n

ω
(2)
n ω

(3)
n · · · ω

(s+1)
n

...
...

...

ω
(s)
n ω

(s+1)
n · · · ω

(2s−1)
n





α
(1)
n

α
(2)
n

...

α
(s)
n


=



ω
(0)
n

ω
(1)
n

...

ω
(s−1)
n


. (5.2)

The matrix of the system (5.2) is denoted by Ωn.
Some early works of the s-dimensional steepest decent (s-SD) method can be found

in Birman [26], Khabaza [95] and Forsythe [68]. In 1950, Birman [26] gave a proof for the
convergence by virtue of the orthogonal polynomial. The original literature was written in
Russian, see Equation (2.14) in [68] for an English discussion, where the asymptotic behavior
is also shown therein. The following theorem gives a lower bound for the parameter which
has the largest magnitude, acting as a complement to the existing theories.

Theorem 5.1. Consider the linear system Ax = b where A is SPD. Let Γn = {α
(1)
n , . . . , α

(s)
n }.

If the sequence of solution vectors {xn} is generated by the s-dimensional SD method, then

max
α∈Γn

|α| ≥ 1
λN + · · ·+λ s

N

Proof. Let
α̂ = max

α∈Γn
|α| .

By assumption,

ω
(0)
n = ω

(1)
n α

(1)
n + · · ·+ω

(s)
n α

(s)
n ≤ ω

(1)
n α̂ + · · ·+ω

(s)
n α̂.

Since
ω

( j)
n

ω
(0)
n

=
ω

( j)
n

ω
( j−1)
n

· · · · · ω
(1)
n

ω
(0)
n

≤ λ
j

N ,

we get
1 ≤ λNα̂ + · · ·+λ

s
Nα̂,

which yields the desired result.
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Let u( j)
n = A(2 j−1)/2gn. One finds that

Ωn =



(u(1)n )⊺u(1)n (u(1)n )⊺u(2)n · · · (u(1)n )⊺u(s)n

(u(2)n )⊺u(1)n (u(2)n )⊺u(2)n · · · (u(2)n )⊺u(s)n

...
...

...

(u(s)n )⊺u(1)n (u(s)n )⊺u(2)n · · · (u(s)n )⊺u(s)n


.

Therefore, Ωn is a Gram matrix, and thus a positive definite Hankel matrix, which can
be solve by Cholesky factorization. This variant involves the computational work of 4sN
multiplications, 4sN additions, s matrix-vector operations and the cost of solving a posi-
tive definite Hankel system, for which the Cholesky factorization requires approximately
(1/3)s3 +(1/2)s2 arithmetic operations. On the other hand, a simple SD algorithm over
s iterations requires 4sN multiplications, 4sN additions, s matrix-vector operations and s
divisions. It is well-known that the Hankel matrix is ill-conditioned for which the condition
number has a lower bound κ ≥ 3 · 2s−6 (see, e.g., [142]). In the finite precision case, the
monomial basis may become linearly dependent asymptotically when s is large. As a result,
the ill-conditioning of Ωn makes the s-SD algorithm unstable. Concerning parallel imple-
mentation, however, breaking the data dependency between matrix-vector multiplications
and dot products makes the s-dimensional method attractive. Now we design the parallel
s-SD method, see Algorithm 5.4. In the parallel case, s-SD requires 2 reduction operations
and s gather operations, while SD requires 2s reduction operations and s gather operations
over s iterations. Under the reasonable assumption that the computational environment is
latency-bound, the redundant operations of s-SD will not be a limiting factor. Additionally,
since N ≫ s for large sparse matrix A, the computational cost of Cholesky factorization is
unlikely to be a bottleneck.

5.3 New lagged methods

According to Friedlander et al. [74], the gradient methods with retards usually perform much
better than the traditional optimal gradient methods. We have the following observations:

• in Forsythe [68], we know that both SD and s-SD have two-step invariance property,
which makes the directions sink into lower subspaces, while lagged gradient steps
could remedy such problem (see, e.g., [51]);
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Algorithm 5.4 Parallel s-SD method.
1: set gi,0 =−bi

2: ω
(0)
0 = g⊺i,0gi,0

3: Allreduce(ω(0)
0 , SUM)

4: compute initial residual

5: for n = 0, 1, . . . do
6: set ui,n = gi,n

7: for j = 1, . . . , s do
8: Allgather(un)

9: p( j)
i,n = Aiun

10: set ui,n = p( j)
i,n

11: end for
12: compute ω

(1)
n , . . . , ω

(2s−1)
n

13: Allreduce([ω(1)
n . . . ω

(2s−1)
n ], SUM)

14: solve system (5.2)

15: xi,n+1 = xi,n −α
(1)
n gi,n −α

(2)
n p(1)i,n −·· ·−α

(s)
n p(s−1)

i,n

16: gi,n+1 = gi,n −α
(1)
n p(1)i,n −α

(2)
n p(2)i,n −·· ·−α

(s)
n p(s)i,n

17: ω
(0)
n+1 = g⊺i,n+1gi,n+1

18: Allreduce(ω(0)
n+1, SUM)

19: compute residual

20: end for

• unlike CG, gradient methods are less sensitive to the rounding error since no sequence
of conjugate directions is constructed;

• both computation and communication for dot products can be cyclically curtailed by
imposing lagged steps.

It may be possible to add a slight delay in successive s-SD iterations, from which the induced
rounding error is generally acceptable. Recall that a scalar matrix is a diagonal matrix
where all elements are equal. The following theorem reveals the signs of parameters in
2-dimensional case.

Theorem 5.2. Consider the linear system Ax = b where A is SPD. Assume that A is not a
scalar matrix. If the sequence of solution vectors {xn} is generated by the 2-dimensional SD
method, then α

(1)
n > 0 and α

(2)
n < 0.
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Proof. The system (5.2) is reduced to ω
(1)
n ω

(2)
n

ω
(2)
n ω

(3)
n

 α
(1)
n

α
(2)
n

=

 ω
(0)
n

ω
(1)
n

 .

Il follows that

α
(1)
n =

ω
(0)
n ω

(3)
n −ω

(1)
n ω

(2)
n

ω
(1)
n ω

(3)
n −

(
ω

(2)
n

)2 .

α
(2)
n =

(
ω

(1)
n

)2
−ω

(0)
n ω

(2)
n

ω
(1)
n ω

(3)
n −

(
ω

(2)
n

)2 .

By Cauchy-Schwarz inequality, we observe that

g⊺nA j+1gn

g⊺nA j+2gn
≤

∥∥∥A j/2gn

∥∥∥∥∥∥A( j+2)/2gn

∥∥∥∥∥A( j+2)/2gn
∥∥2

=

∥∥∥A j/2gn

∥∥∥2∥∥A( j+2)/2gn
∥∥∥∥A j/2gn

∥∥ ≤ g⊺nA jgn

g⊺nA j+1gn
.

(5.3)

Moreover, by assumption we know that A is not a scalar matrix, yielding that A j/2gn and
A( j+2)/2gn are linearly independent. Thus, the strict inequality holds.

Now consider the denominators

ω
(1)
n ω

(3)
n =

ω
(1)
n

ω
(2)
n

· ω
(2)
n

ω
(3)
n

·
(

ω
(3)
n

)2
>

(
ω

(2)
n

ω
(3)
n

)2

·
(

ω
(3)
n

)2
=
(

ω
(2)
n

)2
.

Similarly, consider the numerators

ω
(0)
n ω

(3)
n =

ω
(0)
n

ω
(1)
n

·ω(1)
n ω

(2)
n · ω

(3)
n

ω
(2)
n

>
ω

(2)
n

ω
(3)
n

· ω
(3)
n

ω
(2)
n

·ω(1)
n ω

(2)
n = ω

(1)
n ω

(2)
n ,

and
ω

(0)
n ω

(2)
n >

(
ω

(1)
n

)2
.

This completes our proof.

From Theorem 5.2, one finds that the components obtained by system (5.2) may be less
than zero, and thus could not serve as lagged steps. Another direction of approach is based on
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Algorithm 5.5 Parallel Cs-SD method.
1: same as lines 1 to 4 in Algorithm 5.4

2: for n = 0, 1, . . . do
3: if n mod d = 0 then
4: same as lines 6 to 16 in Algorithm 5.4

5: r = 1

6: else
7: Allgather(gn)

8: pi,n = Aign

9: compute α̂n by ω
(1)
n−r, . . . , ω

(2s−1)
n−r

10: xi,n+1 = xi,n − α̂ngi,n

11: gi,n+1 = gi,n − α̂n pi,n

12: r = r+1

13: end if
14: same as lines 17 to 19 in Algorithm 5.4

15: end for

the steps of the traditional gradient methods, fortunately, the parameters ω
( j)
n being available.

The real scalars

α̂n =
ω

( j)
n−r

ω
( j+1)
n−r

=
g⊺n−rA

jgn−r

g⊺n−rA j+1gn−r

can be constructed, where 1 ≤ r < d and 0 ≤ j < 2s− 1, and embedded in the iterative
process. It is noteworthy that such kind of steps is the inverse of Rayleigh quotient and
satisfies the form of Equation (2.6). Like the previously described methods, we illustrate the
parallel implementation of this variant in Algorithm 5.5, called cyclic s-SD (Cs-SD) method.
We observe that a cycle involves d iterations in which an s-SD process is performed at the
beginning of the cycle and d −1 lagged gradient iterations are performed thereafter.

There exist several versions of the algorithm that can be effectively used for updating the
solution and the gradient vectors due to the redundant elements of ω

( j)
n . We give examples for

the CSD-like version and the damped version. The CSD-like step is defined by choosing j = 0
for all r ∈ {1, . . . , d −1}, which is equivalent to the CSD method except when n mod d = 0.
The damped step means that the steplengths become smaller and smaller during lagged
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iterations. From Equation (5.3) and by the fact that A is not a scalar matrix,

ω
(2s−2)
n

ω
(2s−1)
n

< · · ·< ω
(0)
n

ω
(1)
n

,

and thus choosing j = r−1 yields the damped Cs-SD method.
En average, the computational work in each iteration consists of 2(d +1)sN/d multipli-

cations, 2(d +1)sN/d additions, s matrix-vector products and O(s3/d) operations to solve
the positive definite Hankel system. The construction of scalars in lagged iterations also
brings the computational cost of divisions. Nevertheless, we are more concerned with the
communication cost in the parallel case, which on average consists of (d +1)/d reduction
operations and (s+d −1)/d gather operations. We remark that d = 1 leads to exactly the
case of s-SD in terms of the communication cost. If we move the line 14 into the code block
starting from line 3, merge the reduction operations and compute local residual instead in
Algorithm 5.5, Cs-SD requires 1/d reduction operations and (s+d−1)/d gather operations,
while 1 and s operations for s-SD, respectively.

It is challenging to calculate the potential speedup. For example, under the assumption
that both reduction and gather operations have the same latency, which is assumed as
the major bottleneck that impacts the performance of algorithms, then we expect to see a
(sd +d)/(s+d) times less communication of Algorithm 5.5 with respect to Algorithm 5.4
when computing local residual per iteration. The drawback of this analysis is that an s-SD
iteration is generally not equivalent to a lagged step iteration. A lagged iteration usually gives
some orders of magnitude more contributions to the convergence speed than an s-SD iteration
when n is large. On the other hand, the comparison of classical gradient methods is obvious.
Here, we only discuss the most communication-hiding situation. If we merge the reduction
operations, then both SD and BB require 1 reduction operations and 1 gather operation. For
the CSD method, on average, the communication cost consists of 1/d reduction operations
and 1 gather operation. Under the above assumption, choosing d = 2 yields a 1.3 times less
communication.

Similar to classical CSD, classical SDC generates cyclic iterations which allow a reduction
in communication cost. The following inequality is easy to show

α
Y
n <

{
α

SD
n−1, α

SD
n

}
.

This leads to a rather smooth convergence. The idea of the s-SD with constant steplength
(s-SDC) method can be interpreted as a process in which s-SD takes place at the beginning of
a cycle, and then one proceeds with the cyclic Yuan step over d −1 iterations. We illustrated
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Algorithm 5.6 Parallel s-SDC method.
1: same as lines 1 to 4 in Algorithm 5.4

2: for n = 0, 1, . . . do
3: if n mod d = 0 then
4: same as lines 6 to 16 in Algorithm 5.4

5: α̃ = ω
(0)
n /ω

(1)
n

6: θ = ω
(0)
n

7: else
8: Allgather(gn)

9: pi,n = Aign

10: if n mod d = 1 then
11: δ = p⊺i,ngi,n

12: Allreduce(δ , SUM)

13: α̂ = ω
(0)
n /δ

14: αn = 2/(
√
(1/α̃ −1/α̂)2 +4ω

(0)
n /(α̃2θ)+1/α̃ +1/α̂)

15: r = 0

16: end if
17: xi,n+1 = xi,n −αn−rgi,n

18: gi,n+1 = gi,n −αn−r pi,n

19: r = r+1

20: end if
21: same as lines 17 to 19 in Algorithm 5.4

22: end for

the parallel algorithm of s-SDC in Algorithm 5.6. An obvious drawback of this method is
that one more dot product operation is required over a cycle. This will increase the average
cost in terms of both computation and communication. Since Yuan step plays an important
role in the alignment methods, we expect to see that the superior convergence behavior can
remedy the additional cost per cycle.

Now we make the following simplifying assumptions about algorithms:

• communication is the major bottleneck compared with computation, in which latency
plays a dominant role compared with bandwidth;

• we count reduction and gather operations as yielding the same communication cost;
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Table 5.1 Average number of reduction and gather operations (ro and go). 1 iteration here
equals 1 iteration in CSD process or 1/s iteration in s-SD process.

SD s-SD CSD SDC Cs-SD s-SDC

ro 1 1/s 1/d (d1 +1)/(d1 +d2) 1/(s+d −1) 2/(s+d −1)
go 1 1 1 1 1 1

• we do not use blocking synchronization for the computation of residual;

• 1/s iteration in s-SD process is regarded as equivalent to 1 iteration in SD or CSD
process.

Although the methods discussed above are pairwise distinct in a mathematical point of view,
these assumptions enable a comparison of them, which is shown in Table 5.1. Since we have
not exploited specific properties of A, it is necessary to perform a gather operation in each
step explicitly. Concerning reduction operations, both parameters s and d lead to gains in
communication avoidance. We observe that SDC is special because it was motivated by the
spectral properties of SD, involving d1 iterations to foster alignment (see [57]), and thus has
a parameter in the numerator. It appears that this approach could be more efficient, albeit at
the cost of increasing communication with respect to CSD.

5.4 Comparison of parallel gradient schemes

The straightforward parallel gradient scheme, illustrated in Algorithm 5.7, consists of two
global synchronizations: one before the calculation of αn and the other for gn. Unlike
previous algorithms, we show here explicitly the nonblocking version, resulting in limited
performance gains by overlapping communication with computation. It is known that the
data dependencies in gradient methods preclude further improvement of performance. In
one direction, the lagged iterative scheme is a communication-avoiding strategy allowing an
O(d) reduction in communication cost. On the other hand, it does not verify the optimality
properties in gradient methods, and lead to drastic improvements in convergence. The parallel
lagged gradient scheme is shown in Algorithm 5.8.

If we remove lines 2 and 3 in Algorithm 5.7 or lines 2 to 5 in Algorithm 5.5, i.e., a
constant parameter α̂ = αn is used for updating xi,n+1 and gi,n+1, then we get the parallel
constant gradient scheme. The sequential case was first considered by Richardson [130] in a
more general form, and thus could be called stationary Richardson iteration (see, e.g., [152]).
This scheme can be further improved by removing the waiting statement, yielding a so-called
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Algorithm 5.7 Parallel gradient scheme.
1: compute Aign

2: compute and synchronize coefficients

3: compute αn

4: compute xi,n+1, gi,n+1

5: for j ∈ dependent neighbors do
6: send gi to processor j

7: end for
8: for j ∈ essential neighbors do
9: receive g j from processor j

10: end for
11: compute residual

12: wait for requests to finish

asynchronous gradient scheme, as described in Algorithm 5.9. Asynchronous iterations were
first proposed by Chazan and Miranker [35]. Let Fi be a mapping in processor i. Assume
that Pn ⊂ {1, . . . , ν} is a subset of processors in the nth iteration. Such iterative scheme can
be expressed in the following form

xi,n+1 =

Fi

(
x1,τ̂i,1(n), . . . , xν ,τ̂i,ν (n)

)
, i ∈ Pn,

xi,n, otherwise,

where τ̂i, j(n) is a positive integer satisfying τ̂i, j(n)≤ n for each element j in each processor
i. It avoids communication by breaking up the data dependencies in iterative methods but
still allows updates when messages arrive. In order to hide global synchronization, a well-
designed non-blocking technique is required to evaluate residual, see [135, 8, 106] for a
discussion.

Although the asynchronous gradient scheme can minimize waiting time among ν proces-
sors, the convergence conditions may be more stringent than those for the lagged gradient
scheme. The basic conditions for A at the beginning of Section 2.1 should suffice for the
latter in exact arithmetic, while the condition ρ(|I − α̂A|) < 1 is required for the former
(see Section 6.3.2 in [24] for a discussion). Another drawback is that the asynchronous
formulation is based on the stationary Richardson method, which is generally far less effi-
cient than the lagged gradient methods. Hoemmen [91] argued that asynchronous methods
tend to be based on slow relaxation-type iterations. In other words, synchronous advanced
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Algorithm 5.8 Parallel cyclic gradient scheme.
1: compute Aign

2: if n mod d = 0 then
3: compute and synchronize coefficients

4: compute αn

5: end if
6: compute xi,n+1, gi,n+1

7: for j ∈ dependent neighbors do
8: send gi to processor j

9: end for
10: for j ∈ essential neighbors do
11: receive g j from processor j

12: end for
13: compute residual

14: wait for requests to finish

methods tend to perform better than asynchronous basic methods. However, as mentioned in
Section 5.1, asynchronous iterations are still viewed as promising, especially when commu-
nication costs become prohibitive. We will not pursue this scheme further in this chapter. For
good overviews, see [77, 9, 78].

5.5 Some practical considerations

The algorithms mentioned in Sections 5.1 to 5.4 are described in an MPI-like manner. If the
matrix size is not a power of two, then one should invoke Allgatherv, a routine defined in the
MPI specification for assembling data with displacement of indices, to collect matrix-vector
multiplication results. For the global synchronization before αn, it appears that the use of
nonblocking communication does not lead to performance gains due to the data dependencies.
If the MPI programming libraries are optimally implemented, then the collective routine
Allreduce is somewhat preferred to the point-to-point operations. Thakur et al. [141] has
shown how to improve the performance of collective communication operations. On the
other hand, 2 reduction operations result in 2 times latency costs, and thus could be avoided
by constructing 1 message for 2 values. The termination detection may become complicated.
For example, global convergence could be evaluated by a nonblocking reduction of the local
residual. In this case, however, a delayed snapshot of global state without redundant solution
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Algorithm 5.9 Asynchronous gradient scheme.
1: compute Aign

2: compute xi,n+1, gi,n+1

3: for j ∈ dependent neighbors do
4: send gi to processor j

5: end for
6: for j ∈ essential neighbors do
7: receive g j from processor j

8: end for
9: compute residual

vector being stored may lead to a suspicion about the final residual, as well as a delay in the
termination detection. A more robust solution is based on the blocking reduction of residual
required by α j where j > n. One could certainly make a snapshot of solution vector at the
cost of increasing computer storage. For the gather operation, overlapping is an effective
technique for improving performance.

A concern with lagged gradient methods is the stability. The choice of d between 1 and 2
can be viewed as a compromise between stability and convergence speed. Choosing larger d
may however yield no gain in convergence speed but a heavy price in instability, which may
decrease the maximum attainable accuracy. For the CSD-like methods, from the experience
of the present authors, choosing d > 5 can occasionally lead to serious accuracy problems
when κ = 104. For SDC, however, it depends on the choice of both d1 and d2. Choosing
d1 = 1 and d2 > 8 sometimes yields an oscillation or a divergence, while choosing d1 = 5
and d2 = 15 seems to be stable when κ = 104. Raydan and Svaiter [128] studied the relaxed
SD step and observed its effectiveness. Yuan [155] suggested that a good gradient method
should use at least one SD step in every few iterations. van den Doel and Ascher [143] argued
that faster gradient methods should use occasionally larger steplengths. It appears that SDC
satisfies all the arguments given above.

Another serious concern is the conditioning of Hankel matrices. As mentioned in
Section 5.2, Hankel matrices are ill-conditioned even for small orders. Hoemmen [91]
discussed a technique called equilibration which entails applying a transformation Â =

D−1/2AD−1/2, where the diagonal elements of D equal the diagonal elements of A. This
technique is indeed a special case of preconditioning and has been successfully applied to
the communication-avoiding Krylov subspace methods (see, e.g., [91, 31]). We will discuss
the impact of equilibration for Hankel matrices in the next section. On the other hand, there
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exist faster solvers for Hankel systems with a complexity of O(s2) compared with O(s3)

for the Cholesky factorization (see, e.g., [88]). Nevertheless, the limiting behavior ignores
the importance of large constant terms. Since s must be chosen small enough to maintain
the conditioning, a traditional O(s3) solver seems to be preferred. Additionally, advanced
methods are more complex to implement.

5.6 Numerical experiments

The goal of this section is to show the numerical behaviors of the methods discussed in
this chapter. Among the experiments we have run, we would like to illustrate a few that
are representative. Concerning parallel experiments, we have implemented the algorithms
by using Alinea [104], an advanced linear algebra library developed for massively parallel
computations, on a cluster of nodes comprising Intel Xeon CPU E5-2670 v3 2.30 GHz
connected with FDR Infiniband network 56 Gbit/s. The MPI environment is supported by
SGI MPT 2.12. Other experiments have been performed in MATLAB R2018b.

Some of the linear systems that we attempt to solve are randomly generated by MATLAB,
while others are collected from the University of Florida Sparse Matrix Collection [53]. In
all tests, the elements of initial vector x0 are randomly selected from (−1, 1). The right-hand
side is fixed with b = 0 and thus x∗ = 0. The starting vector is fixed with x0 = 0. The iteration
is stopped whenever ∥gn∥< 10−6 ∥g0∥.

In the first test, we give a general comparison of the aforementioned methods, shown in
Figure 5.1. The first plot (top-left) shows that SD and s-SD converge much shower than other
methods. As expected, monotone methods are not so effective, even for a moderately well-
conditioned system. The second plot (top-right) gives an example for nonmonotone methods.
Along with other results, we conclude that SDC is a robust and fast solver, while s-SDC is
generally less efficient. For CSD and Cs-SD, we perform more tests with different parameters
(e.g., the third and the fourth plots) but could not come to a general conclusion. What seems
to be clear is that lagged gradient methods are highly sensitive to initial conditions, of which
a fair comparison could not be outlined by several curves.

In Tables 5.2 to 5.5, we perform a set of parallel experiments for two structural problems.
The first one is ill-conditioned with N = 10848 and κ = 9.967×109. The matrix name is
msc10848 and the matrix ID is 361. The second one has a larger size N = 141347. The
matrix name is bmw7st_1 and the matrix ID is 1253. We can see in Tables 5.2 and 5.3 that
in all cases actual convergence does not occur within 800 iterations. By fixing the number
of iterations, we observe that the lagged strategy can significantly reduce the communication
and computation costs. In Tables 5.4 and 5.5, most of the procedures are stopped before
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Figure 5.1 Experiments with random matrices: N = 102, κ = 103 (top), N = 102, κ = 102

(bottom).

Table 5.2 Average results among 10 tests with 16 and 32 processors. The matrix is ill-
conditioned with N = 10848. The threshold of iteration is 800 and the stopping criterion is
∥gn∥< 10−6 ∥g0∥.

16 processors 32 processors

method iter time(s) residual iter time(s) residual

SD 800 0.616 5.6×10−5 800 0.462 5.6×10−5

BB 800 0.515 2.8×10−6 800 0.364 4.6×10−5

CSD(4) 800 0.468 3.2×10−4 800 0.311 2.5×10−2

SDC(4,4) 800 0.507 1.1×10−5 800 0.350 2.9×10−6

C5-SD(4) 800 0.495 6.1×10−6 800 0.341 4.4×10−6

reaching the specified iteration limit. Although BB is substantially faster than SD, cyclic
formulations are generally superior to BB in terms of the convergence behavior. It appears
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Table 5.3 Average results among 10 tests with 64 and 128 processors. The matrix is ill-
conditioned with N = 10848. The threshold of iteration is 800 and the stopping criterion is
∥gn∥< 10−6 ∥g0∥.

64 processors 128 processors

method iter time(s) residual iter time(s) residual

SD 800 0.402 5.6×10−5 800 0.408 5.6×10−5

BB 800 0.304 1.1×10−3 800 0.305 1.8×10−4

CSD(4) 800 0.256 4.2×10−3 800 0.252 5.4×10−6

SDC(4,4) 800 0.301 2.2×10−6 800 0.301 2.3×10−6

C5-SD(4) 800 0.298 1.8×10−4 800 0.300 8.1×10−5

Table 5.4 Average results among 10 tests with 16 and 32 processors. The matrix is larger with
N = 141347. The threshold of iteration is 104 and the stopping criterion is ∥gn∥< 10−6 ∥g0∥.

16 processors 32 processors

method iter time(s) residual iter time(s) residual

SD > 104 \ \ > 104 \ \
BB 567 2.354 8.3×10−7 1034 3.168 9.5×10−7

CSD(4) 385 1.355 3.4×10−7 365 0.850 1.1×10−6

SDC(4,4) 468 1.927 8.7×10−7 378 1.144 8.4×10−7

C5-SD(4) 509 2.163 7.8×10−7 405 1.153 9.9×10−7

Table 5.5 Average results among 10 tests with 64 and 128 processors. The matrix is larger
with N = 141347. The threshold of iteration is 104 and the stopping criterion is ∥gn∥ <
10−6 ∥g0∥.

64 processors 128 processors

method iter time(s) residual iter time(s) residual

SD > 104 \ \ > 104 \ \
BB 779 1.903 8.0×10−7 788 1.723 7.1×10−7

CSD(4) 590 1.017 9.4×10−7 378 0.523 5.8×10−6

SDC(4,4) 421 1.016 8.6×10−7 301 0.652 9.9×10−7

C5-SD(4) 605 1.392 9.0×10−7 525 1.119 9.2×10−7

that Cs-SD in Tables 5.4 and 5.5 requires more iterations than other competing methods.
However, Cs-SD is still better than BB, both from the point of view of convergence speed
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Table 5.6 Average results among 10 tests with 64 and 128 processors. The matrix is very
large with N = 1564794. The threshold of iteration is 104 and the stopping criterion is
∥gn∥< 10−6 ∥g0∥.

64 processors 128 processors

method iter time(s) residual iter time(s) residual

BB 720 23.649 7.9×10−7 625 16.246 8.9×10−7

CSD(4) 818 19.672 8.5×10−7 709 13.594 8.4×10−7

SDC(4,4) 453 14.503 9.4×10−7 445 11.796 9.1×10−7

C5-SD(4) 768 22.925 9.2×10−7 545 14.002 9.7×10−7

Table 5.7 Average results among 10 tests with 256 and 512 processors. The matrix is very
large with N = 1564794. The threshold of iteration is 104 and the stopping criterion is
∥gn∥< 10−6 ∥g0∥.

256 processors 512 processors

method iter time(s) residual iter time(s) residual

BB 601 14.179 9.4×10−7 762 18.017 8.0×10−7

CSD(4) 569 9.591 8.9×10−7 598 9.844 8.0×10−7

SDC(4,4) 429 10.505 8.9×10−7 429 10.269 9.8×10−7

C5-SD(4) 671 14.998 8.0×10−7 700 15.522 9.9×10−7

and robustness. In Tables 5.2 and 5.3, we find that Cs-SD and SDC are indistinguishable in
terms of computing time. Additionally, SDC can ensure a good balance between efficiency
and stability, while CSD requires less arithmetic operations but may decrease accuracy. Each
of the two has its own dynamics and we could not provide a general recommendation. It is
important to note that SD is much more robust than the nonmonotone methods in terms of
residual, while CSD seems to be the most unstable one from Tables 5.4 and 5.5, in which the
gap of iteration count among different situations is fairly large.

The next test proceeds along the same lines but considers a large-scale problem. We draw
another matrix from the University of Florida Sparse Matrix Collection with N = 1564794,
which is obtained from a 3D mechanical problem and discretized with the finite element
method. The matrix name is Flan_1565 and the matrix ID is 2544. We perform several
experiments on a cluster using 64, 128, 256 and 512 cores. Tables 5.6 and 5.7 illustrate the
results. Note that we will not show the results of SD since it requires always more than
104 iterations. From these tables, we find that SDC is still efficient in the large-scale case,
while BB generally takes a long time to finish the job. It is noteworthy that there is almost
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Figure 5.2 A comparison of Cs-SD and damped Cs-SD with s = 5 and d = 5 for random
problems: N = 102, κ = 103 (left), N = 102, κ = 104 (right).

no gain in using 512 cores compared with the case of 256 cores. This may be due to the
communication costs and the limit of problem size.

One may wonder if Cs-SD could be further improved. One possible way is the damped
formulation as mentioned in Section 5.3. It is often observed that the iteration count of
damped Cs-SD is smaller than the original method. Two examples are shown in Figure 5.2,
in which we use two 100×100 random matrices with κ = 103 and κ = 104, respectively.
Note that the opposite results can also be obtained, which depends on the initial condition and
the implementation. In contrast, if we only select the smallest possible step ω

(2s−2)
n /ω

(2s−1)
n ,

then a worse convergence result will generally be obtained.
In the next case, we discuss the use of equilibration for managing the conditioning of

Hankel matrices. Numerical experiments in Figure 5.3 indicate a marked improvement.
The matrix size is 7102 with a condition number of 1.6×104. The left plot shows how the
condition number changes over iteration, in which a two-step invariance property can be
clearly confirmed. The right plot shows the changes of conditioning over s. For each s, we
choose the 49th and the 50th Hankel matrices and calculate their condition numbers. The
larger one is illustrated in the right plot. We observe that the equilibration technique improves
the quality of Hankel matrices.

5.7 Conclusion

Lagged gradient method is a useful tool for large-scale linear systems. For well-conditioned
problems, for example, SDC can often be competitive with the conjugate gradient method.
Lagged methods are most appealing when initial perturbations occur in the original matrices.
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Figure 5.3 Experiments for the conditioning of Hankel systems. The matrix is generated from
a structural problem with N = 7102 and κ = 1.6×104. The left plot shows the condition
number when s = 5. The right plot shows the impact of equilibration.

Concerning parallel performance, SDC is still viewed as the most robust method. The
behavior of our new cyclic formulation Cs-SD is indistinguishable from that of CSD. On
the other hand, SD, s-SD, BB and s-SDC are generally less or far less efficient than these
methods. The damped formulation of Cs-SD and the equilibration technique could be used
with success in most cases. We have also shown parallel algorithms of all these methods, as
well as some simplified schemes for the purpose of comparison. A comparison of parallel
lagged gradient methods and the communication-avoiding Krylov methods seems to be an
interesting point and needs to be tackled.





Chapter 6

Conclusion

This thesis focuses on the practical use of gradient methods, especially the spectral properties
of optimal methods and the applications of lagged methods. Chapter 2 has presented an
overview of gradient methods, as well as the relevant theories. Chapter 3 has given the spectral
properties of minimal gradient and proposed some new alignment methods. Chapter 4 has
discussed the application of gradient iterations to the splitting methods. Chapter 5 has listed
the parallel algorithms and proposed new formulations for the purposes of communication
avoidance. Experiments have been conducted at the end of each chapter.

Monotone gradient methods face challenges in solving ill-conditioned problems even
with preconditioners, in which case preconditioned conjugate gradient [112] is often the
method of choice. Efficient gradient solvers like classical gradient methods with retards and
alignment methods (see Section 3.2) are useful in the following cases:

• alignment methods are competitive with conjugate gradient (see Section 3.4);

• GMR and alignment methods are less sensitive to perturbation, i.e., matrix A in linear
system (2.1) has an initial nonsymmetric error, or quadratic function (2.2) has a small
nonquadratic term (see [47, 65, 143]);

• GMR is competitive with conjugate gradient when low precision is required, such
as inexact-Newton methods [74], image restoration [58] and splitting methods (see
Section 4.3.3).

Apart from these cases, asymptotic properties of optimal gradient methods like SD and MG
can be exploited to estimate the minimum and maximum eigenvalues (see Section 4.3.2);
cyclic gradient methods like CSD and Cs-SD are quite promising in a parallel environment
(see Sections 5.1 and 5.3). For the large-scale problems, we can see from the experiments
that the modern gradient methods are quite promising.
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There are also questions left to answer about lagged gradient methods. Raydan [126]
proved the convergence of BB and Dai and Liao [48] obtained the R-linear convergence
result. However, these advances could not fully explain its surprising behavior. Much prior
work has focused on the low-dimensional linear system [17, 47, 46], but there is still much
to be learned about the high-dimensional case. Some papers have revealed that fast gradient
methods exhibit chaotic behavior [123, 122, 143]. The theoretical analysis of lagged methods
seems to be more challenging than ever and we leave this to future work.

Gradient methods are often placed in an awkward position for the solution of linear
systems: they are less intuitive than stationary iterative methods [152, 148] and less efficient
than Krylov subspace methods [131, 146] in ill-conditioned cases. It is acceptable to classify
several gradient variants under one-dimensional projection methods [131]. However, lagged
gradient methods do not belong to this category and face a problem of taxonomy. On the
other hand, these methods can be successfully applied to system (2.1), but are also commonly
applied to some other problems, such as general unconstrained optimization [127] and
constrained optimization [25]. In view of the rapidly developing state of the art of gradient
methods, it is appealing to adapt these techniques to optimization problems. We note this as
another topic for future investigation.

As discussed in Chapter 5, iterative methods with retards can be beneficial in a parallel
environment. There are also unresolved questions in this case. First, we have not exploited
the structure of sparse matrices, which mostly contains zeros entries, so it is important
to develop efficient algorithms according to the specific situations. Then, there are few
available preconditioners that can reduce communication costs, see, e.g., [85]. How to
develop communication-avoiding preconditioners for ill-conditioned problems remains an
open question. It is also appealing to investigate parallel algorithms for solving linear systems
with multiple right-hand sides. We leave these for future work.



Appendix A

Résumé

A.1 Méthodes du gradient

A.1.1 Introduction

On considère la résolution du système linéaire

Ax = b,

où A ∈ RN×N est une matrice symétrique définie positive et b ∈ RN le second membre. Soit
{λ1, . . . , λN} les valeurs propres de A et {v1, . . . , vN} les vecteurs propres correspondants.
On suppose que λ1 ≤ ·· · ≤ λN . On note κ = λN/λ1 le conditionnement spectral de A. La
fonction f : RN → R telle que

f (x) =
1
2

x⊺Ax−b⊺x

sera minimale pour la solution x∗ = A−1b. La méthode du gradient est un schéma itératif
non-stationnaire défini par

xn+1 = xn −αngn,

avec gn = ∇ f (xn) = Axn −b. Il existe donc des nombres réels ζi,n tels que

gn =
N

∑
i=1

ζi,nvi,

pour tout n. Certaines méthodes du gradient sont résumées dans la liste suivante:



100 Résumé

• Méthode de Cauchy ou méthode de la plus rapide descente (SD) [33]

α
SD
n =

g⊺ngn

g⊺nAgn
.

• Méthode asymptotiquement optimale (AO) [49]

α
AO
n =

∥gn∥
∥Agn∥

.

• Méthode de Barzilai-Borwein (BB) [17]

α
BB
n =

g⊺n−1gn−1

g⊺n−1Agn−1
.

• Méthode du gradient à retards (GMR) [74]

α
GMR
n =

g⊺
τ(n)A

ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+1gτ(n)
, (A.1)

avec
τ(n) ∈ {n̄, n̄+1, . . . , n−1, n} , ρ(n) ∈ {q1, . . . , qm} , q j ≥ 0,

où m est un entier positive et n̄ = max{0, n−m}.

SD et AO offrent en général de bonnes propriétés en terme de vitesse de convergence dans
les premières itérations. Malheureusement, elles travaillent de façon stagnante dès qu’on
s’approche du point stationnaire. BB fut la première méthode du gradient à retards qui permet
d’obtenir une convergence plus rapide que les méthodes monotones. GMR établit un cadre
pour la convergence des méthodes du gradient.

Deux pas auxiliaires αA
n et αY

n furent respectivement proposés dans [56] et [154] tels que

α
A
n =

(
1

αSD
n−1

+
1

αSD
n

)−1

,

et

α
Y
n = 2


√√√√( 1

αSD
n−1

− 1
αSD

n

)2

+
4∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

+
1

αSD
n−1

+
1

αSD
n

−1

,

conduisant à certaines méthodes performantes dans la liste suivante:



A.1 Méthodes du gradient 101

• Méthode de Dai-Yuan (DY) [51]

α
DY
n =

αSD
n , n mod 4 = 0 ou 1,

αY
n , autres cas.

• Méthode de Cauchy avec alignement (SDA) [56]

α
SDA
n =


αSD

n , n mod (d1 +d2)< d1,

αA
n , n mod (d1 +d2) = d1,

αSDA
n−1 , autres cas,

d1, d2 ≥ 1.

• Méthode de Cauchy alignée par le pas constant (SDC) [57]

α
SDC
n =


αSD

n , n mod (d1 +d2)< d1,

αY
n , n mod (d1 +d2) = d1,

αSDC
n−1 , autres cas,

d1, d2 ≥ 1.

A.1.2 Conditions de convergence

On suppose que A = diag(λ1, . . . , λN). Cette hypothèse semble assez stricte dans la pratique.
Cependant, pour l’analyse théorique, on pourrait simplement ajouter une transformation
orthogonale qui transforme A en une matrice diagonale.

Théorème A.1. On considère le système Ax = b où A est une matrice symétrique définie
positive. Alors la méthode du gradient avec le pas (A.1) converge vers x∗ pour tout x0.

Définition (Propriété A). Soit gi,n la ième composante de gn et

G(n,µ) =
µ

∑
i=1

g2
i,n.

Si ∃m0 ∈ N, ∃c1,c2 > 0, tel que ∀µ ∈ {1, . . . , N −1}, ∀ε > 0, ∀ j ∈ {0, . . . , min{n,m0}},

1. λ1 ≤ α−1
n ≤ c1;

2. si G(n− j,µ)≤ ε et g2
µ+1,n− j ≥ c2ε , alors α−1

n ≥ 2
3λµ+1,

alors le pas αn a la Propriété A.
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Théorème A.2. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si αn a la Propriété A, alors la suite {∥gn∥} générée par une méthode du gradient
converge vers 0.

A.1.3 Propriétés asymptotiques

On suppose que 0 < λ1 < · · ·< λN et ζ1,0, ζN,0 ̸= 0.

Lemme A.3. Soit p0 une mesure de probabilité attachée à {λ1, . . . , λN} où pi,0 = p0(λi) et
0 < λ1 < · · ·< λN . On considère une application telle que

pi,n+1 =

(
∑

N
j=1 λ j p j,n −λi

)2

∑
N
l=1

(
∑

N
j=1 λ j p j,n −λl

)2
pl,n

pi,n.

Alors

lim
n→∞

pi,2n =


p∗, i = 1,

0, i ∈ {2, . . . , N −1},

1− p∗, i = N,

et

lim
n→∞

pi,2n+1 =


1− p∗, i = 1,

0, i ∈ {2, . . . , N −1},

p∗, i = N,

pour certain p∗ ∈ (0, 1).

Théorème A.4. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par AO, alors

lim
n→∞

α
AO
n =

2
λ1 +λN

.



A.2 Méthodes du gradient avec alignement 103

A.2 Méthodes du gradient avec alignement

A.2.1 Analyse spectrale de gradient minimal

On considère la méthode de gradient minimal (MG) suivante:

α
MG
n =

g⊺nAgn

g⊺nA2gn
.

On suppose que 0 < λ1 < · · · < λN et ζ1,0, ζN,0 ̸= 0. Il est possible de prouver quelques
nouvelles propriétés asymptotiques qui seront utiles dans la suite de cette section.

Théorème A.5. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

λiζ
2
i,2n

∑
N
j=1 λ jζ

2
j,2n

=


1

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

c2

1+c2 , i = N,

et

lim
n→∞

λiζ
2
i,2n+1

∑
N
j=1 λ jζ

2
j,2n+1

=


c2

1+c2 , i = 1,

0, i ∈ {2, . . . , N −1},

1
1+c2 , i = N,

pour certain c. De plus, ζ1,2n, ζN,2n, ζ1,2n+1, ζN,2n+1 ont des signes fixes pour grand n.

Théorème A.6. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

f (x2n+1)− f (x∗)
f (x2n)− f (x∗)

=
c2(1+ c2κ2)(κ −1)2

(c2 +κ2)(1+ c2κ)2 ,

et

lim
n→∞

f (x2n+2)− f (x∗)
f (x2n+1)− f (x∗)

=
c2(c2 +κ2)(κ −1)2

(1+ c2κ2)(c2 +κ)2 ,

pour certain c.
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Théorème A.7. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

α
MG
2n =

1+ c2

λ1(1+ c2κ)
,

et

lim
n→∞

α
MG
2n+1 =

1+ c2

λ1(c2 +κ)
,

pour certain c.

Théorème A.8. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

∥gn+1∥2

∥gn∥2 =
c2(κ −1)2

(c2 +κ)(1+ c2κ)
,

pour certain c.

Corollaire A.9. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

f (x2n+2)− f (x∗)
f (x2n)− f (x∗)

= lim
n→∞

∥gn+1∥4

∥gn∥4 .

Théorème A.10. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

g⊺2n+1Ag2n+1

g⊺2nAg2n
=

c2(κ −1)2

(1+ c2κ)2 ,

et

lim
n→∞

g⊺2n+2Ag2n+2

g⊺2n+1Ag2n+1
=

c2(κ −1)2

(c2 +κ)2 ,

pour certain c.

A.2.2 Nouvelles méthodes avec alignement

Autant que nous le sachions, toutes les méthodes du gradient avec alignement existantes sont
basées sur le pas de Cauchy. Nous montrons que cette condition n’est pas nécessaire. Trois
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méthodes qui possèdent potentiellement la même caractéristique sans pas de Cauchy sont
dérivées.

Théorème A.11. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par un pas constant α̂ tel que

α̂ ≤ 2
λ1 +λN

,

alors la méthode du gradient converge vers x∗ pour tout x0. De plus, si l’égalité est appliquée,

lim
n→∞

ζi,n

ζ1,n
=


0, i = 2, 3, . . . , N −1,

ζN,0
ζ1,0

(−1)n, i = N;

sinon,

lim
n→∞

ζi,n

ζ1,n
= 0, i = 2, 3, . . . , N.

Nous constatons que le théorème précédent a deux effets: piloter la propriété d’alignement
lorsque l’ordre partiel strict est maintenu et forcer la recherche dans un espace bidimensionnel
lorsque l’égalité est vérifiée. Cela signifie que s’il existe un pas permettant d’atteindre
l’égalité de manière asymptotique, alors il a une tendance similaire à celle de SD, c’est-à-dire
l’alternance entre deux directions orthogonales [1]. Soit α̃n = θαAO

n où 0 < θ < 1. Il s’ensuit
que

lim
n→∞

α̃n <
2

λ1 +λN
.

Par conséquent, nous pouvons écrire une nouvelle méthode du gradient appelée AO avec
alignement (AOA) de la forme suivante:

α
AOA
n =


αAO

n , n mod (d1 +d2)< d1,

α̃n, n mod (d1 +d2) = d1,

αAOA
n−1 , autres cas,

avec d1, d2 ≥ 1.
D’un autre côté, on peut noter

α
A2
n =

(
1

αMG
n−1

+
1

αMG
n

)−1

,
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et

α
Y2
n = 2


√√√√( 1

αMG
n−1

− 1
αMG

n

)2

+
4g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

+
1

αMG
n−1

+
1

αMG
n

−1

.

On en montre les propriétés spectrales, c’est-à-dire qu’on obtient les théorèmes suivants:

Théorème A.12. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

α
A2
n =

1
λ1 +λN

.

Théorème A.13. On considère le système Ax = b où A est une matrice symétrique définie
positive. Si la suite de solutions {xn} est générée par MG, alors

lim
n→∞

α
Y2
n =

1
λN

,

et

lim
n→∞

(
1

αMG
n−1αMG

n
− g⊺nAgn(

αMG
n−1
)2 g⊺n−1Agn−1

)
= λ1λN .

Nous pouvons définir MG avec alignement (MGA) et MG alignée par le pas constant
(MGC) comme les équations suivantes:

α
MGA
n =


αMG

n , n mod (d1 +d2)< d1,

αA2
n , n mod (d1 +d2) = d1,

αMGA
n−1 , autres cas,

α
MGC
n =


αMG

n , n mod (d1 +d2)< d1,

αY2
n , n mod (d1 +d2) = d1,

αMGC
n−1 , autres cas.
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A.2.3 Analyse des convergences

Une généralisation de GMR (DGMR) peut s’écrire sous la forme suivante:

α
DGMR
n =

(
g⊺

τ(n)A
ρ(n)gτ(n)

g⊺
τ(n)A

ρ(n)+1gτ(n)

) 1
υ

, (A.2)

avec

τ(n) ∈ {n̄, n̄+1, . . . , n−1, n} , ρ(n) ∈ {q1, . . . , qm} , q j ≥ 0, υ > 0,

où m est un entier positive et n̄ = max{0, n−m}. Le résultat suivant a été mentionné
dans [45] sans preuve.

Théorème A.14. On considère le système Ax = b où A est une matrice symétrique définie
positive. Alors la méthode du gradient avec le pas (A.2) converge vers x∗ pour tout x0.

On établit la convergence de AOA suivante de manière immédiate:

Théorème A.15. On considère le système Ax = b où A est une matrice symétrique définie
positive. Alors la suite {xn} générée par AOA converge vers x∗ pour tout x0.

De manière similaire, les théorèmes suivants peuvent être formulés:

Théorème A.16. On considère le système Ax = b où A est une matrice symétrique définie
positive. Alors la suite {xn} générée par MGA converge vers x∗ pour tout x0.

Théorème A.17. On considère le système Ax = b où A est une matrice symétrique définie
positive. Alors la suite {xn} générée par MGC converge vers x∗ pour tout x0.

A.2.4 Résultats expérimentaux

Les algorithmes ont été codés en MATLAB R2018b. La figure A.1 représente l’influence des
paramètres d1 et d2 sur le nombre d’itérations d’une méthode du gradient avec alignement.
La figure A.2 représente le résultat des méthodes du gradient avec alignement: SDA, SDC,
AOA, MGA et MGC.
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Figure A.1 L’influence des paramètres sur une méthode du gradient avec alignement (ici:
MGC).
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Figure A.2 Résultat des méthodes du gradient avec alignement.

A.3 Estimation de paramètre pour les méthodes de split-
ting

A.3.1 Splitting hermitien et anti-hermitien

Considérons le système
Ax = b,
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où A est une matrice non-hermitienne. Nous désignons par H et S des parties hermitienne et
anti-hermitienne de A respectivement. Il s’ensuit que

H =
A+AH

2
, S =

A−AH

2
.

La méthode de splitting hermitien et anti-hermitien (HSS) [11] repose sur l’équation suivante
qui consiste en l’alternance des deux systèmes linéaires: (γI +H)xn+ 1

2
= (γI −S)xn +b,

(γI +S)xn+1 = (γI −H)xn+ 1
2
+b,

avec γ > 0. Il pourrait être considéré comme un processus itératif stationnaire

xn+1 = T xn + p.

Nous pouvons écrire

M1 = γI +H, N1 = γI −S, M2 = γI +S, N2 = γI −H.

Nous obtenons donc les expressions de T et p

T = M−1
2 N2M

−1
1 N1, p = M−1

2 (I +N2M
−1
1 )b.

Soit σ(·) le spectre d’une matrice et ρ(·) le rayon spectral. Nous obtenons

ρ(T )≤
∥∥N2M

−1
1

∥∥= max
λ∈σ(H)

|λ − γ|
|λ + γ|

.

Le paramètre optimal peut s’écrire de la forme

γ∗ =
√

λ1(H)λN(H),

conduisant à la borne supérieure

ρ(T )≤
√

κ(H)−1√
κ(H)+1

.
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A.3.2 Analyse spectrale

On considère d’abord la méthode de Cauchy pour le système hermitien

α
SD
n =

gHn gn

gHn Hgn
.

Lemme A.18. Les propriétés spectrales de SD pour le système Ax = b où A est une matrice
hermitienne définie positive sont les mêmes que pour le cas réel.

Nous écrivons αRA
n =

(
αA

n
)−1 et

Γn =
1

αSD
n−1αSD

n
− ∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

.

Alors
α

Y
n =

2

αRA
n +

√
(αRA

n )
2 −4Γn

.

Nous proposerons un nouveau pas

α
Z
n =

2

αRA
n −

√
(αRA

n )
2 −4Γn

.

De la même manière, on note αRY
n =

(
αY

n
)−1 et αRZ

n =
(
αZ

n
)−1. Cela implique

α
RY
n +α

RZ
n = α

RA
n , α

RY
n α

RZ
n = Γn.

Lemme A.19. Les limites suivantes s’appliquent à la méthode de SD pour le système
hermitien définie positive

lim
n→∞

Γn = λ1(H)λN(H).

lim
n→∞

α
Y
n =

1
λN(H)

.

lim
n→∞

α
Z
n =

1
λ1(H)

.

Il convient de noter que αY
n et αZ

n pourrait s’exprimer comme les racines d’une fonction
quadratique

Qn(α) = Γnα
2 −α

RA
n α +1,
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avec
Qn(0) = 1, Qn(α

A
n ) = Γn

(
α

A
n

)2
,

Qn(α
SD
n−1) =− ∥gn∥2

∥gn−1∥2 , Qn(α
SD
n ) =−

(
αSD

n
)2 ∥gn∥2(

αSD
n−1
)2 ∥gn−1∥2

,

d’où l’on peut constater que Γn > 0 et

α
A
n < α

Y
n < min{α

SD
n−1, α

SD
n }.

A.3.3 Estimation de paramètre

Le paramètre optimal dans HSS pourrait être approximé par SD. Les théorèmes suivants
précisent cette observation:

Théorème A.20. Si la méthode de SD est utilisée pour résoudre le système hermitien avec
la matrice H, alors

lim
n→∞

√
Γn = γ∗.

Théorème A.21. Si la méthode de SD est utilisée pour résoudre le système hermitien avec
la matrice M1, alors

lim
n→∞

√
Γn − γαRA

n + γ = γ∗.

De la même manière, on considère la méthode de gradient minimal

α
MG
n =

gHn Hgn

gHn H2gn
,

On peut écrire les paramètres sous la forme

α
A2
n =

(
1

αMG
n−1

+
1

αMG
n

)−1

, Γ̃n =
1

αMG
n−1αMG

n
− gHn Hgn(

αMG
n−1
)2 gHn−1Hgn−1

.

Soit αRA2
n =

(
αA2

n
)−1. Les théorèmes suivants donnent les résultats basés sur MG:

Théorème A.22. Si la méthode de MG est utilisée pour résoudre le système hermitien avec
la matrice H, alors

lim
n→∞

√
Γ̃n = γ∗.
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Figure A.3 L’influence de η sur le comportement de convergence et le temps de calcul de
HSS.

Théorème A.23. Si la méthode de MG est utilisée pour résoudre le système hermitien avec
la matrice M1, alors

lim
n→∞

√
Γ̃n − γαRA2

n + γ = γ∗.

A.3.4 Résultats expérimentaux

Les algorithmes ont été codés en MATLAB R2018b. Soit η le nombre d’itérations préadap-
tatives. La figure A.3 représente l’influence de paramètre η sur le comportement de conver-
gence et le temps de calcul pour la méthode de HSS.

A.4 Réduction des coûts de communication

A.4.1 Différents schémas des itérations de gradient

Les algorithmes de différents schémas des itérations de gradient peuvent être résumés comme
ci-dessous:
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Algorithme A.1 Schéma parallèle.
1: calculer Aign

2: calculer et synchroniser les coefficients

3: calculer αn

4: calculer xi,n+1, gi,n+1

5: pour j ∈ voisins dépendants faire
6: envoyer gi au processus j

7: fin pour
8: pour j ∈ voisins essentiels faire
9: recevoir g j du processus j

10: fin pour
11: calculer le résidu

12: atteindre la fin des requêtes

Algorithme A.2 Schéma parallèle cyclique.
1: calculer Aign

2: si n mod d = 0 alors
3: calculer et synchroniser les coefficients

4: calculer αn

5: fin si
6: calculer xi,n+1, gi,n+1

7: pour j ∈ voisins dépendants faire
8: envoyer gi au processus j

9: fin pour
10: pour j ∈ voisins essentiels faire
11: recevoir g j du processus j

12: fin pour
13: calculer le résidu

14: atteindre la fin des requêtes
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Algorithme A.3 Schéma asynchrone.
1: calculer Aign

2: calculer xi,n+1, gi,n+1

3: pour j ∈ voisins dépendants faire
4: envoyer gi au processus j

5: fin pour
6: pour j ∈ voisins essentiels faire
7: recevoir g j du processus j

8: fin pour
9: calculer le résidu

Un exemple typique des méthodes cycliques est la méthode de Cauchy cyclique (CSD) [74]

α
CSD
n = α

SD
τ(n), τ(n) = max{ j ≤ n : j mod d = 0} ,

avec d ≥ 1. Soit Fi une application utilisée par le processeur i. On suppose que Pn ⊂
{1, . . . , ν} pour tout n est un sous-ensemble de processeurs. Le schéma itératif asynchrone
peut s’écrire sous la forme suivante:

xi,n+1 =

Fi

(
x1,τ̂i,1(n), . . . , xν ,τ̂i,ν (n)

)
, i ∈ Pn,

xi,n, autres cas,

où τ̂i, j(n) est un entier positif satisfaisant τ̂i, j(n) ≤ n pour chaque élément j dans chaque
processeur i. Un exemple trivial est la méthode de Richardson asynchrone [24].

A.4.2 Méthodes du gradient s-dimensionnelles

On considère l’ensemble suivant:

L(s)
n =

{
xn −

s

∑
j=1

α
( j)
n A j−1gn : α

( j)
n ∈ R

}
.

La méthode de Cauchy s-dimensionnelle (s-SD) est sous la forme

xn+1 = xn −α
(1)
n gn −·· ·−α

(s)
n As−1gn,
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où α
(1)
n , . . . , α

(s)
n sont sélectionnés pour minimiser la fonction quadratique. La récurrence du

vecteur gradient peut s’écrire sous la forme

gn+1 = gn −α
(1)
n Agn −·· ·−α

(s)
n Asgn.

On sait que gn+1 devrait être orthogonal à l’espace L(s)
n . En conséquence, on trouve le

système d’équations suivant

α
(1)
n g⊺nAgn + . . . + α

(s)
n g⊺nAsgn = g⊺ngn,

α
(1)
n (Agn)

⊺Agn + . . . + α
(s)
n (Agn)

⊺Asgn = (Agn)
⊺gn,

...
...

...

α
(1)
n (As−1gn)

⊺Agn + . . . + α
(s)
n (As−1gn)

⊺Asgn = (As−1gn)
⊺gn.

Soit ω
( j)
n = g⊺nA jgn. En tenant compte de (Akgn)

⊺Algn = g⊺nAk+lgn, il vient

ω
(1)
n ω

(2)
n · · · ω

(s)
n

ω
(2)
n ω

(3)
n · · · ω

(s+1)
n

...
...

...

ω
(s)
n ω

(s+1)
n · · · ω

(2s−1)
n





α
(1)
n

α
(2)
n

...

α
(s)
n


=



ω
(0)
n

ω
(1)
n

...

ω
(s−1)
n


. (A.3)

La version parallèle de cette méthode est présentée dans l’algorithme A.4. On propose deux
nouvelles propriétés dans les théorèmes suivants:

Théorème A.24. On considère le système Ax = b où A est une matrice symétrique définie
positive. Soit Γn = {α

(1)
n , . . . , α

(s)
n }. Si la suite de solutions {xn} est générée par s-SD, alors

max
α∈Γn

|α| ≥ 1
λN + · · ·+λ s

N

Théorème A.25. On considère le système Ax = b où A est une matrice symétrique définie
positive. Suppose que A n’est pas une matrice scalaire. Si la suite de solutions {xn} est
générée par 2-SD, alors on a α

(1)
n > 0 et α

(2)
n < 0.

Nous avons les observations suivantes:

• SD and s-SD ont tous la propriété d’invariance en deux étapes [68].
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Algorithme A.4 Méthode de s-SD parallèle.
1: gi,0 =−bi

2: ω
(0)
0 = g⊺i,0gi,0

3: Allreduce(ω(0)
0 , SUM)

4: calculer le résidu initial

5: pour n = 0, 1, . . . faire
6: set ui,n = gi,n

7: pour j = 1, . . . , s faire
8: Allgather(un)

9: p( j)
i,n = Aiun

10: ui,n = p( j)
i,n

11: fin pour
12: calculer ω

(1)
n , . . . , ω

(2s−1)
n

13: Allreduce([ω(1)
n . . . ω

(2s−1)
n ], SUM)

14: résoudre le système de Hankel

15: xi,n+1 = xi,n −α
(1)
n gi,n −α

(2)
n p(1)i,n −·· ·−α

(s)
n p(s−1)

i,n

16: gi,n+1 = gi,n −α
(1)
n p(1)i,n −α

(2)
n p(2)i,n −·· ·−α

(s)
n p(s)i,n

17: ω
(0)
n+1 = g⊺i,n+1gi,n+1

18: Allreduce(ω(0)
n+1, SUM)

19: calculer le résidu

20: fin pour

• Les méthodes du gradient sont moins sensibles à l’erreur d’arrondi que la méthode du
gradient conjugué.

• Le calcul et la communication peuvent tous être réduits en imposant des itérations à
retards de façon cyclique.

Il est possible d’ajouter des retards dans les itérations de s-SD de la forme suivante:

α̂n =
ω

( j)
n−r

ω
( j+1)
n−r

=
g⊺n−rA

jgn−r

g⊺n−rA j+1gn−r
,

avec 1 ≤ r < d et 0 ≤ j < 2s−1, conduisant à l’algorithme A.5.



A.4 Réduction des coûts de communication 117

Algorithme A.5 Méthode de Cs-SD parallèle.
1: identique aux lignes 1 à 4 dans l’algorithme A.4

2: pour n = 0, 1, . . . faire
3: si n mod d = 0 alors
4: identique aux lignes 6 à 16 dans l’algorithme A.4

5: r = 1

6: sinon
7: Allgather(gn)

8: pi,n = Aign

9: calculer α̂n by ω
(1)
n−r, . . . , ω

(2s−1)
n−r

10: xi,n+1 = xi,n − α̂ngi,n

11: gi,n+1 = gi,n − α̂n pi,n

12: r = r+1

13: fin si
14: identique aux lignes 17 à 19 dans l’algorithme A.4

15: fin pour

On sait que
ω

(2s−2)
n

ω
(2s−1)
n

< · · ·< ω
(0)
n

ω
(1)
n

.

Donc on peut choisir j = r−1 et obtenir la méthode de Cs-SD amortie. De manière similaire,
on peut formaliser la méthode de SDC s-dimensionnelle illustrée dans l’algorithme A.6.
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Algorithme A.6 Méthode de s-CSD parallèle.
1: identique aux lignes 1 à 4 dans l’algorithme A.4

2: pour n = 0, 1, . . . faire
3: si n mod d = 0 alors
4: identique aux lignes 6 à 16 dans l’algorithme A.4

5: α̃ = ω
(0)
n /ω

(1)
n

6: θ = ω
(0)
n

7: sinon
8: Allgather(gn)

9: pi,n = Aign

10: si n mod d = 1 alors
11: δ = p⊺i,ngi,n

12: Allreduce(δ , SUM)

13: α̂ = ω
(0)
n /δ

14: αn = 2/(
√
(1/α̃ −1/α̂)2 +4ω

(0)
n /(α̃2θ)+1/α̃ +1/α̂)

15: r = 0

16: fin si
17: xi,n+1 = xi,n −αn−rgi,n

18: gi,n+1 = gi,n −αn−r pi,n

19: r = r+1

20: fin si
21: identique aux lignes 17 à 19 dans l’algorithme A.4

22: fin pour

Nous faisons maintenant les hypothèses simplificatrices suivantes:

• La communication est le principal goulet d’étranglement par rapport au calcul, dans
lequel la latence joue un rôle dominant par rapport à la bande passante.

• Nous comptons les opérations de réduction et d’assemblage comme générant le même
coût de communication.

• Nous n’utilisons pas la synchronisation bloquante pour le calcul du résidu.

• L’itération 1/s dans s-SD est considérée comme équivalente à l’itération 1 dans SD ou
CSD.
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Figure A.4 Résultat des méthodes du gradient s-dimensionnelles à retards.

La Table A.1 présente la comparaison des différentes méthodes du gradient en utilisant ces
hypothèses.

Table A.1 Nombre moyen d’opérations de réduction et d’assemblage (opération-re et
opération-as).

SD s-SD CSD SDC Cs-SD s-SDC
opération-re 1 1/s 1/d (d1 +1)/(d1 +d2) 1/(s+d −1) 2/(s+d −1)
opération-as 1 1 1 1 1 1

A.4.3 Résultats expérimentaux

Les algorithmes ont été codés en MATLAB R2018b. La figure A.4 représente le résultat des
méthodes du gradient s-dimensionnelles à retards: Cs-SD et s-SDC, comparées avec SD et
s-SD.
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Titre : Méthodes itératives à retard pour la résolution des systèmes linéaires à grande échelle

Mots clés : Méthodes du gradient avec alignement, Méthodes du gradient à retard, Propriétés spectrales,
Splitting hermitien et anti-hermitien, Calcul parallèle

Résumé : Toute perturbation dans les systèmes li-
néaires peut gravement dégrader la performance des
méthodes itératives lorsque les directions conjuguées
sont constituées. Ce problème peut être partiellement
résolu par les méthodes du gradient à retard, qui ne
garantissent pas la descente de la fonction quadra-
tique, mais peuvent améliorer la convergence par rap-
port aux méthodes traditionnelles. Les travaux ulté-
rieurs se sont concentrés sur les méthodes du gra-
dient alternées avec deux ou plusieurs types de pas
afin d’interrompre le zigzag. Des papiers récents ont
suggéré que la révélation d’information de second
ordre avec des pas à retard pourrait réduire de ma-
nière asymptotique les espaces de recherche dans
des dimensions de plus en plus petites. Ceci a conduit
aux méthodes du gradient avec alignement dans les-
quelles l’étape essentielle et l’étape auxiliaire sont ef-
fectuées en alternance. Des expériences numériques
ont démontré leur efficacité. Cette thèse considère
d’abord des méthodes du gradient efficaces pour ré-
soudre les systèmes linéaires symétriques définis po-
sitifs. Nous commençons par étudier une méthode al-
ternée avec la propriété de terminaison finie à deux

dimensions. Ensuite, nous déduisons davantage de
propriétés spectrales pour les méthodes du gradient
traditionnelles. Ces propriétés nous permettent d’élar-
gir la famille de méthodes du gradient avec aligne-
ment et d’établir la convergence de nouvelles mé-
thodes. Nous traitons également les itérations de gra-
dient comme un processus peu coûteux intégré aux
méthodes de splitting. En particulier, nous abordons
le problème de l’estimation de paramètre et suggé-
rons d’utiliser les méthodes du gradient rapide comme
solveurs internes à faible précision. Dans le cas pa-
rallèle, nous nous concentrons sur les formulations
avec retard pour lesquelles il est possible de réduire
les coûts de communication. Nous présentons éga-
lement de nouvelles propriétés et méthodes pour les
itérations de gradient s-dimensionnelles. En résumé,
cette thèse s’intéresse aux trois sujets interreliés dans
lesquelles les itérations de gradient peuvent être utili-
sées en tant que solveurs efficaces, qu’outils intégrés
pour les méthodes de splitting et que solveurs paral-
lèles pour réduire la communication. Des exemples
numériques sont présentés à la fin de chaque sujet
pour appuyer nos résultats théoriques.

Title : Iterative methods with retards for the solution of large-scale linear systems
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Abstract : Any perturbation in linear systems may se-
verely degrade the performance of iterative methods
when conjugate directions are constructed. This is-
sue can be partially remedied by lagged gradient me-
thods, which does not guarantee descent in the qua-
dratic function but can improve the convergence com-
pared with traditional gradient methods. Later work
focused on alternate gradient methods with two or
more steplengths in order to break the zigzag pattern.
Recent papers suggested that revealing of second-
order information along with lagged steps could re-
duce asymptotically the search spaces in smaller and
smaller dimensions. This led to gradient methods with
alignment in which essential and auxiliary steps are
conducted alternately. Numerical experiments have
demonstrated their effectiveness. This dissertation
first considers efficient gradient methods for solving
symmetric positive definite linear systems. We begin
by studying an alternate method with two-dimensional

finite termination property. Then we derive more spec-
tral properties for traditional steplengths. These pro-
perties allow us to expand the family of gradient me-
thods with alignment and establish the convergence
of new methods. We also treat gradient iterations as
an inexpensive process embedded in splitting me-
thods. In particular we address the parameter es-
timation problem and suggest to use fast gradient
methods as low-precision inner solvers. For the pa-
rallel case we focus on the lagged formulations for
which it is possible to reduce communication costs.
We also present some new properties and methods
for s-dimensional gradient iterations. To sum up, this
dissertation is concerned with three inter-related to-
pics in which gradient iterations can be employed as
efficient solvers, as embedded tools for splitting me-
thods and as parallel solvers for reducing communi-
cation. Numerical examples are presented at the end
of each topic to support our theoretical findings.
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