
HAL Id: tel-04625217
https://theses.hal.science/tel-04625217v1

Submitted on 26 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optical flow methods for the pixel-wise measurement of
fields in solid mechanics

Ahmed Chabib

To cite this version:
Ahmed Chabib. Optical flow methods for the pixel-wise measurement of fields in solid mechanics.
Solid mechanics [physics.class-ph]. Université de Lille, 2024. English. �NNT : 2024ULILN003�. �tel-
04625217�

https://theses.hal.science/tel-04625217v1
https://hal.archives-ouvertes.fr


Title:

Optical flow methods for the pixel-wise measurement
of fields in solid mechanics

Author:

Ahmed Chabib

A dissertation submitted for the degree of
Doctor of Philosophy

In Mechanical Engineering

January 8, 2024

Jury:

Mr. Reviewer Jean-Charles Passieux Professor, INSA Toulouse
Mr. Reviewer Julien Réthoré CNRS Professor, Ecole Centrale de Nantes
Mrs. Examiner Sylvia Feld-Payet Research Engineer, ONERA, Université Paris Saclay
Mr. Jury president Bertrand Wattrisse Professor, Université Montpellier
Mr. Examiner Jan Neggers Associate Professor, CentraleSupélec
Mr. Thesis Director Pierre Gosselet CNRS Professor, Université de Lille
Mr. Supervisor Jean-François Witz Research Engineer, Ecole Centrale de Lille
Mr. Supervisor Vincent Magnier Associate Professor, Université de Lille

Keywords:
Non-Linear Mechanics, Strain, Parallel computing, Digital Image correlation, Optical Flow,

Metrics





Titre:

Méthodes de flot optique pour la mesure de champ au
pixel en mécanique des solides

Auteur:

Ahmed Chabib

Thèse présentée en vue d’obtenir le grade de
Docteur

en Mécanique

8 Janvier 2024

Jury:

M. Rapporteur Jean-Charles Passieux Professeur, INSA Toulouse
M. Rapporteur Julien Réthoré DR CNRS, Ecole Centrale de Nantes
Mme. Examinatrice Sylvia Feld-Payet IR ONERA, Université Paris Saclay
M. Président du jury Bertrand Wattrisse Professeur, Université Montpellier
M. Examinateur Jan Neggers Mâıtre de conférences, Centrale-Supélec
M. Directeur de thèse Pierre Gosselet DR CNRS, Université de Lille
M. Encadrant Jean-François Witz IR CNRS, Ecole Centrale de Lille
M. Encadrant Vincent Magnier Mâıtre de conférences, Université de Lille

Mots-clés:
Mécanique non linéaire, Déformation, Calcul parallèle, Corrélation d’images numériques, Flot

optique, Métriques





Abstract

During mechanical tests, the materials undergo strain which is often non-
uniform and complex to measure. This is particularly the case when the ma-
terial under study exhibits local variations in its properties, as is the case with
composite materials, or in the presence of cracking. The optical non intrusive
methods for the full-field measurement such as the Digital Image Correlation
(DIC), widely used in mechanics, help to overcome this issue. The Optical
Flow technique share the same objective as the DIC, but it is rarely used in
our community. This dissertation work aims to prove the efficiency and the rel-
evance of some optical flow configurations for estimating mechanical quantities
of interest, in particular the strain.
We first present the link between these methods for motion estimation, their
common characteristics and distinctions. At the core of these methods lies
the quantification of the similarity between two images in order to find the
transformation that allows transitioning from one to the other. To solve this
ill-posed problem, the global approaches of DIC use interpolation functions to
describe the movement. In the other side, the optical flow approaches describe
the displacement at each pixel and employ a Tikhonov penalty to impose
the regularity of the field and to ensure the existence and uniqueness of the
solution.
If the least-square error (L2 norm) is omnipresent in DIC, several metrics have
been studied in the optical flow for the calculation of the displacement field,
to avoid the smoothing effect on discontinuities when the L2 norm is used in
the regularization term. This dissertation inspects the effect of some of these
metrics (Charbonnier and Lorentz) over the restitution of discontinuities and
strain. We show that these functions can provide satisfactory results while
the Charbonnier function, with the usual parameters for optical flow, may
encourage the appearance of some parasitic cracks in the fields. With the
help of an image mask containing different weights of regularization, we show
that we can force the emergence of local phenomena while maintaining the
homogeneity of the solution.
The rapid acquisition of kinematic fields is of great importance, as it enables
us to gain a better understanding of the material’s behavior by comparing a
maximum number of image sequences. Another purpose of this dissertation
is the generation of a pixel-wise code of correlation, GPU-accelerated and
easy to understand and modify. Our open source code was used for different
applications such as the calibration of cameras.
Finally, efforts have been made to improve the Conjugate Gradient, a Krylov

3



linear solver which is essential for solving large-scale symmetric positive definite
systems, by proposing a preconditioner guided by Tikhonov’s regularization
and by taking advantage of Ritz values for filtering and recycling the digital
information in order to adjust regularization.



Résumé

Pendant les essais mécaniques, les matériaux subissent des déformations sou-
vent non uniformes dont la mesure est complexe. Cela est particulièrement le
cas quand le matériau étudié présente des variations locales dans ses propriétés
comme les matériaux composites, ou en présence de fissuration. Les méthodes
optiques non intrusives pour la mesure de champs, telles que la Corrélation
d’Images Numériques (CIN) très utilisée en mécanique, peuvent surmonter
cette difficulté. La technique du Flot Optique partage le même objectif que
la CIN mais elle est peu fréquemment employée dans notre communauté. Ce
travail de thèse vise à prouver la pertinence et l’efficacité de certaines configura-
tions du Flot Optique pour l’estimation des quantités d’intérêt du mécanicien,
en particulier la déformation.
On présente, tout d’abord, le lien entre ces deux méthodes pour l’estimation du
mouvement, leurs caractéristiques communes et leurs distinctions. Au cœur
de ces méthodes, réside la quantification de la similarité entre deux images
afin de trouver la transformation qui permet de passer de l’une à l’autre. Pour
résoudre ce problème mal posé, les approches globales de la DIC décrivent le
mouvement en se basant sue des fonctions d’interpolation. Les approches du
Flot Optique décrivent le déplacement sur chaque pixel et utilisent un terme
de Tikhonov afin d’imposer la régularité du champ et pour assurer l’existence
et l’unicité de la solution.
Si l’erreur aux moindres carrés (norme L2) est omniprésente dans la CIN, beau-
coup de métriques ont été étudiées pour le Flot Optique appliqué au calcul de
champs de déplacement, afin d’éviter l’effet de sur-lissage des discontinuités
quand la norme L2 est utilisée dans le terme de régularisation. Cette thèse
analyse l’effet de certaines métriques (Charbonnier et Lorentz) sur la restitu-
tion des discontinuités et des déformations. On montre que ces fonctions peu-
vent fournir des résultats satisfaisants, alors que la fonction de Charbonnier,
telle qu’elle est habituellement utilisée pour le flot optique, peut encourager
l’apparition des discontinuités parasites dans les champs. À l’aide d’une im-
age masque avec différents poids de régularisation, on montre que l’on peut
forcer l’apparition des phénomènes locaux tout en gardant l’homogénéité de la
solution.
L’acquisition rapide des champs cinématiques revêt une grande importance,
puisqu’elle favorise la meilleure compréhension du comportement du matériau
en comparant un maximum de séquences d’images. Un autre objectif de la
thèse est la génération d’un code de corrélation à l’échelle du pixel accéléré
par GPU, facile à comprendre et à modifier. Notre code open source a été

5



utilisé pour des applications différentes comme la calibration d’image.
En fin de compte, des efforts ont été déployés pour améliorer le gradient con-
jugué, solveur linéaire de Krylov essentiel pour la résolution des systèmes
symétriques définis positifs de très grande dimension, en utilisant un précondi-
tionneur guidé par la régularisation de Tikhonov et en profitant des valeurs de
Ritz pour filtrer et recycler l’information dans le but d’ajuster la régularisation.



Remerciements

Je souhaite tout d’abord exprimer ma profonde gratitude envers les rappor-
teurs de cette thèse, M. Julien Réthoré et M. Jean-Charles Passieux, pour la
précieuse évaluation de ce travail ainsi que l’autorisation qu’ils m’ont accordée
à soutenir. Mes remerciements s’adressent également à M. Bertrand Wattrisse
qui a accepté avec bienveillance de présider le jury de ma thèse, à Mme. Sylvia
Feld-Payet et M. Jan Neggers qui ont contribué à l’examen de cette recherche.

J’aimerais également exprimer ma reconnaissance envers mes encadrants, grâce
à qui ce travail a pu être mené à terme. Tout d’abord à mon directeur de thèse
Pierre Gosselet, pour sa confiance, sa gentillesse et sa disponibilité tout au
long de ces trois années. Mes remerciements vont également à Jean-François
Witz, qui enrichi ma pensée par ses nombreuses discussions scientifiques et a
constamment partagé de nouvelles idées à explorer, ainsi qu’à Vincent Mag-
nier pour ses remarques pertinentes, sa disponibilité et la configuration de la
machine de calcul que j’ai utilisée. Je remercie chaleureusement toute l’équipe
du Lamcube avec laquelle j’ai partagé des moments agréables, inoubliables.

Mes remerciements s’adressent à tous mes amis proches pour leurs encourage-
ments et les moments partagés qui m’ont donné la force de persévérer. Ce
travail n’aurait pas pu être accompli sans le soutien et l’encouragement de ma
sœur Karima et de sa famille, qui ont cru en moi et m’ont soutenu. Je dédie
cette réalisation à tous les membres de ma famille, en particulier à mes frères
et sœurs et à ma mère qui a toujours veillé sur moi.

Pour finir, j’aimerai dédier ce travail à l’âme de mon père, celui qui m’a appris
à écrire mes premiers mots et qui nous a malheureusement quitté pendant la
rédaction de ce manuscrit.

7





Contents

1 Introduction 17

2 State of the art 19
2.1 Digital Image Correlation(DIC) . . . . . . . . . . . . . . . . . . 19

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Digital Image Correlation (DIC) principles . . . . . . . . 19
2.1.3 Techniques for improving the full-field measurement . . . 25
2.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Global approach . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Local approach . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Solvers for linear systems and Parallel computing . . . . . . . . 33
2.3.1 Solvers for linear systems . . . . . . . . . . . . . . . . . . 33
2.3.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Parallel computing . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 General-purpose computing on graphics processing units 42
2.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 The impact of metrics in mechanical imaging 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Graduated Non-Convexity (GNC) and pyramidal approach 50
3.2.2 Methodological details . . . . . . . . . . . . . . . . . . . 52
3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Crossing crack . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Crack with tip . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Local regularization . . . . . . . . . . . . . . . . . . . . . 59

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 GCPU OpticalFlow: a GPU accelerated Python software for
strain measurement 73
4.1 Motivation and significance . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Principles of DIC and Optical Flow . . . . . . . . . . . . 74

4.2 Software description . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Software functionalities . . . . . . . . . . . . . . . . . . . 75
4.2.2 Software architecture . . . . . . . . . . . . . . . . . . . . 76

4.3 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9



4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.1 Calibration of cameras . . . . . . . . . . . . . . . . . . . 83
4.7.2 Microstructure gradient’s . . . . . . . . . . . . . . . . . . 85

5 Interplay between preconditioning and regularization for lin-
ear ill-posed problems solved by conjugate gradient: Applica-
tion to optical flow estimation 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Basic notions about the optical flow . . . . . . . . . . . . . . . . 91
5.3 Preconditioned Conjugate Gradient and Ritz elements . . . . . . 92

5.3.1 Role of the preconditioner . . . . . . . . . . . . . . . . . 94
5.3.2 Stopping criteria . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 A posteriori filtrering . . . . . . . . . . . . . . . . . . . . 95

5.4 Preconditioning by regularization . . . . . . . . . . . . . . . . . 96
5.5 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Application to optical flow reconstruction . . . . . . . . . 97
5.5.2 Quality of the preconditioner . . . . . . . . . . . . . . . 97
5.5.3 Ritz filtering . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.4 Subspace recycling . . . . . . . . . . . . . . . . . . . . . 102
5.5.5 Tuning of λ . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 General Conclusion 107



List of Figures

2.1 Schematic representation of the correlation problem. I1 the ref-
erence image, I2 the deformed image, p the coordinates of the
framed subset in I1 and w the displacement vector. . . . . . . . 20

2.2 Illustration of motion field calculation using an iterative method 21

2.3 Illustration of displacement field modeling and image partition-
ing for local DIC . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Example of a Q4 finite element mesh for global DIC displace-
ment modeling applied to an image with a speckle pattern. . . . 23

2.5 Generalized Charbonnier loss function for different values of a. . 30

2.6 Lorentzian loss function for different values of σ. . . . . . . . . . 30

2.7 Illustration of the data parallel model . . . . . . . . . . . . . . . 39

2.8 Illustration of the task parallel model . . . . . . . . . . . . . . . 40

2.9 The shared memory model . . . . . . . . . . . . . . . . . . . . . 40

2.10 The distributed memory model . . . . . . . . . . . . . . . . . . 41

2.11 The hybrid memory model . . . . . . . . . . . . . . . . . . . . . 42

2.12 GPU and CPU Architectures . . . . . . . . . . . . . . . . . . . 43

3.1 The curve of the tested penalty functions: the quadratic (L2),
Charbonnier (Cha.) using ε = 0.001 and the Lorentzian with
different values of σ . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Representation of the pyramidal approach, OF=Optical Flow . . 51

3.3 First synthetic test case . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Identification of the crossing crack for different metrics. . . . . . 55

3.5 The deformed image for the second test case, the part framed
in blue contains the generated crack . . . . . . . . . . . . . . . 56

3.6 Horizontal displacement field estimated with different values of
λ, and different loss functions for the crack with tip experiment. 57

3.7 The horizontal strain fields εxx provided with different regular-
ization amplitude of λ for for different metrics. . . . . . . . . . . 59

3.8 The vertical strain fields εyy provided with different regulariza-
tion amplitude of λ for different metrics. . . . . . . . . . . . . . 61

3.9 NSDE for the different metrics using different regularization am-
plitudes. Their corresponding MNSDE is presented in the ta-
ble 3.9h. The image 3.9g represents the analytical norm of the
second-order gradient. . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 εxx strain of Charbonnier function using different ε values and
fixed λ = 4× 102 . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 εyy strain of Charbonnier function using different ε values and
fixed λ = 4× 102 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12 εxx strain of Lorentz function using different σ values and fixed
λ = 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11



3.13 εyy strain of Lorentz function using different σ values and fixed
λ = 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.14 (a) Local regularization mask. The cut along the red line is
shown in the figure (b). . . . . . . . . . . . . . . . . . . . . . . . 68

3.15 The strain fields in terms of λ. The third column shows a zoom
of the second column over the crack. The first and second rows
show fields obtained with values close to the minimum and max-
imum regularization parameter (λ = 7 and λ = 600) used in
the mask, while the third row shows the results obtained with
the local parameter change. Finally, the analytical fields are
presented in the last row. The dotted line corresponds to the
analytical abscissa of the crack tip. . . . . . . . . . . . . . . . . 70

3.16 NSDE obtained with different regularization amplitudes and us-
ing the local regularization mask. The table indicates the num-
ber of pixel required to capture the crack as well as the AEE,
the MNSDE of the global field as well as in the vicinity and
outside the crack. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.17 Example of the Structure-Texture decomposition . . . . . . . . 72

4.1 Representation of the pyramidal approach . . . . . . . . . . . . 77

4.2 Flow-chart of flow field estimation with GCPU OpticalFlow . . . 78

4.3 Experimental setup with (A) the camera, (B) the sample under
testing and (C) the uniaxial tensile testing machine. . . . . . . . 79

4.4 Dimensions of the used ±45 Carbon Epoxy specimen. . . . . . . 79

4.5 Uniaxial strain εxx in function of λ with fixed 3× 3 median filter 80

4.6 Uniaxial strain εxx in function of the median size with fixed
λ = 3× 103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Strain field computed by YaDICs and GCPU OpticalFlow . . . 82

4.8 Energy image in terms of gradient displacement energy for both
software. The dotted vertical lines indicate the limits of the
zone where the two software are compared . . . . . . . . . . . . 82

4.9 The device used for camera calibration, where (A) Left camera,
(B) Right camera and (C) The calibration pattern,(D) Moving
table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 (a) Profilometric topography. (b) Soloff topography. (c) Direct
topography. (d) AI topography. (e)z-distribution of the 450th

column [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Strain fields in the loading direction using YaDICs for different
correlation window sizes and GCPU for several regularization
values [102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Speckle of the test specimen. . . . . . . . . . . . . . . . . . . . . 99

5.2 L-curves (ε = 10−5) compared with Ritz post-treatment, for

different regularization intensity λ. !

a
Different scales on each

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Spectral analysis of the system for ε = 10−5 and different regu-
larization intensity λ. A 5-width median filter was used on the
contribution curves. . . . . . . . . . . . . . . . . . . . . . . . . . 101



5.4 Identified εxx field, for different regularization intensity λ, with
ε = 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Costless postprocessing for different (λi): top, initial computa-
tion with λ ∈ {1, 100, 1000, 10000}; bottom, solution deduced
for λ = 1. εxx strain field. . . . . . . . . . . . . . . . . . . . . . 103

6.1 εzz strain field,λ = 103 . . . . . . . . . . . . . . . . . . . . . . . 110





List of Tables

4.1 Statistical indicators (in pixels) of the root-mean-square error
(RMSE) of the kinematic fields computed by YaDICs and those
estimated by GCPU OpticalFlow. . . . . . . . . . . . . . . . . 78

4.2 Code metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 εxx strain field (range = mean value ± 3 st.dev.). Comparison
of the effect of preconditioning by diagonal (simple approach)
vs by regularization, for different weights λ ∈ {1, 1000} and
linear solver precision ε ∈ {10−2, 10−3}. . . . . . . . . . . . . . 98

5.2 Performance of recycling . . . . . . . . . . . . . . . . . . . . . . 102

15



16



1. Introduction

It is currently challenging for researchers and industrialists to understand the dissipation mech-
anisms in heterogeneous materials. This complexity arises from the diverse and non-uniform
nature of these materials. Consequently, reliably modeling them at a scale suitable for en-
gineering is difficult. Recent advances in experimentation, particularly the use of imaging,
provide access to extremely detailed data regarding material composition. By coupling these
fine observations with image correlation techniques, it becomes possible to precisely observe
deformation mechanisms. This combination of experimental and numerical tools should en-
able the development of models based on observations rather than idealizations of microscopic
behaviors.

The digital image correlation method is one of the numerical and optical techniques used to
describe the behavior of a material by comparing two images captured at different times to
compute displacement and strain fields. The fundamental assumption behind these methods is
the graylevel conservation, initially introduced by Horn and Schunk in 1981 [1], which represents
one of the first optical flow algorithms. Optical flow methods are formulated in a similar manner
to the digital image correlation methods, but they are not widely recognized, and their use is not
common in mechanics. The early methods of DIC resemble the local Lucas-Kanade [2] optical
flow model, and they were introduced by Sutton [18] in 1983. These initial works involved
subdividing a reference image into multiple regions and searching for matches in the moving
image. Sutton methods demonstrated their performance when they were used for measuring
planar rigid body motions [98].

These two families of optical methods generally offer local and global approaches for estimating
the transformation. Local optical flow and DIC approaches assume that for a given pixel in
an image, the neighboring pixels follow a movement similar to that of that pixel. In contrast,
the global approach of DIC employs interpolation functions to describe the displacement field
over a reduced set of degrees of freedom. On the other hand, the global approach of optical
flow introduces a regularization term and imposes a new constraint to add information and
enforce uniqueness to the optimization problem to be solved. The graylevel conservation can
be violated. To quantify this violation in DIC, we often choose the mean square error function,
which leads to simple computations but which is sensitive to discontinuities and outliers. This
norm has been shown to diffuse cracks as regularization increases. This problem can be solved
by a two-pass approach where the first computation permits to detect zones where a discretiza-
tion suited to discontinuities, like the extended finite element method (XFEM) [23], must be
introduced before running the second computation.

The same problem of diffusion has been solved in optical flow by the use of new, so-called robust,
metrics. This name comes from the fact that, unlike the quadratic norm, these functions are less
sensitive to noise and able to preserve the discontinuities. However, studies in this community
are limited to displacements. This approach to changing the error function is less complex than
the XFEM method, and independent of the shape of the field to be calculated. The choice and

17



study of the impact of these functions in mechanics represents a blind spot in the literature,
since they have not been sufficiently dealt with. The first objective of this thesis is therefore to
study the influence of these metrics and their parameters on the computed strain fields.

Recent advances in experimentation, particularly the development of camera sensors, provide
access to extremely detailed data about material composition and enable precise observation of
deformation mechanisms. However, the trade-off for this wealth of observation is the enormous
increase in the computational cost associated with data processing. Models derived from pixel-
wise measurements involve millions of degrees of freedom. Therefore, the second objective of
this thesis is to gain a strong understanding of optical flow computation techniques and to
develop a fast and memory-optimized code for these purposes.

The first chapter of this thesis comprises a bibliographic study to give a clear idea of the
technical aspects of the optical methods studied in this work. The other objective of this chapter
is to establish the link between the digital image correlation community and the optical flow
community while emphasizing their similarities and differences. Finally, the last section deals
not only with the numerical solvers needed to estimate displacements, but also with parallel
computing [100] and GPU computing [67, 68], which are important for a proper understanding
of this work.

The quadratic norm as well as other similar functions are often used in mechanics in contrast
to optical flow where other penalty functions [6] are used. The second chapter is a study of
the impact of some non-classical error functions on mechanical images, with a particular focus
on cracks. In this chapter, we also look at the impact of local variations of regularization over
on kinematic fields. At the end of this chapter, a GPU-accelerated code is provided to allow
mechanics to test their images with the studied functions.

The quadratic norm frequently used in DIC is a convex function and therefore it is simpler to
obtain its optimum, which translates into a low computational cost compared with non-convex
functions that require an iterative process detailed in the previous chapter. Before concluding,
we present in the last chapter a time and memory optimised implementation of one of the
classic approaches to optical flow computation entitled Horn & Schunk with a comparison
of YaDICs [61] which is an open source software for DIC developed within our laboratory
LamCube. Finally, thanks to iterative solvers based on projection and to Ritz modes [83], we
were able to demonstrate that we can calculate solutions for different regularisation values with
a simple calculation.

18



2. State of the art

2.1. Digital Image Correlation(DIC)

2.1.1. Introduction

Understanding the behavior of materials is of crucial importance in many fields of science
and engineering. To ensure their safety, durability and optimal performance, it is necessary
to understand how materials behave under different loading conditions. When materials are
subjected to external loads such as compression, tension, bending, or torsion, they can undergo
strain. However, these strain fields are not uniform throughout the material and they vary
at locally depending on the geometry, micro-structure, and applied stresses. Several methods
are available for measuring these strain in materials. Among the commonly used methods
are strain gauges [26] and extensometers. These traditional techniques offer the advantages of
reliability and cost-effectiveness. However, they have certain limitations. For instance, they
do not provide a complete picture of the material’s behavior since they allow measuring strain
only at specific points in the sample.

To overcome these limitations, full-field measurement methods have been developed to obtain
a more comprehensive image of strain in materials. These methods, such as Digital Image
Correlation (DIC) (or Digital Volume Correlation (DVC) in the context of three-dimensional
field), enable mapping strain across the entire surface or volume of the material. They offer
the advantage of providing information on a large number of points, allowing for a detailed
analysis of stresses and strains throughout the material. Moreover, since these methods are
non-invasive they do not alter the mechanical properties of the samples.

DIC is particularly popular as a full-field measurement method. It relies on using a camera to
capture images of the sample at different time points. By analyzing the differences between
these images, it is possible to calculate local deformations and reconstruct kinematic fields across
the material. This technique has numerous advantages, including its ease of use, accuracy, and
ability to measure motion under real loading conditions.
The objective of this chapter is to present an overview of the various digital image correlation
methods found in the literature and their underlying principles. By exploring these methods,
we aim to provide a comprehensive understanding of DIC and its applications in the field of
material testing and strain analysis.

2.1.2. Digital Image Correlation (DIC) principles

Let’s assume that we have two images of the same object at two different instants. Digital
Image Correlation aims to obtain the displacement field to be applied to each pixel in the first

19



image in order to locate it in the second one. An illustration representing the principle of this
technique is shown in Fig 2.1.
Since their existence [18], digital image correlation methods have supposed that the graylevels
of pixels do not change over an image sequence. This assumption has been introduced few
years before the existence of DIC techniques by Horn ans Schunck [1] and it is often referred
to as the graylevel conservation assumption.
Let (I1, I2) be an image sequence, w the displacement vector that represents the transformation
between the image I1 (the reference image) and the image I2 (the deformed image). Let p be
the coordinates of a given pixel of the image. The graylevel conservation assumption can be
traduced by the equation (2.1):

I1(p) = I2(p+ w(p)). (2.1)

p

p+w

p

w

Figure 2.1: Schematic representation of the correlation problem. I1 the reference image, I2 the
deformed image, p the coordinates of the framed subset in I1 and w the displacement vector.

In order to quantify the difference between the images, the quadratic norm is often used in the
literature, leading to the formulation of the function E, which is dependent on the displace-
ment w.

E(w) =

∫
Ω

(
I1(p)− I2(p+ w(p))

)2
dx, (2.2)

where Ω is the domain of correlation. The main purpose of DIC is the minimization of E. In
general the graylevel conservation assumption is not respected due to different factors like the
noise or sometimes simply due to changes in brightness, which is why it is advisable to pay
attention to the light sources used during the tests.

min
w

E(w) = min
w

∫
Ω

(
I1(p)− I2(p+ w(p))

)2
dx. (2.3)

The optimization problem (2.3) is ill-posed since the sought field has multiple components,
while the data at our disposal are scalar and correspond to the graylevels of the images. To
find the displacement, additional constraints must be added.

20



In practice, the displacement field w is sought within a finite dimension vector subspace of
approximation denoted by Vh and defined by a basis consisting of a family of interpolation
functions [27] (Φi)i∈J1,ndK. Then the displacement can be written as:

w(p) =

nd∑
i

λiΦi(p)

where (λi) are the desired degrees of freedom.
In order to efficiently solve this nonlinear optimization problem, iterative methods [21] are often
used, see Fig.2.2, and the field w is updated at each iteration using a spatial increment denoted
by dw. The increments (dwj) can be interpreted as steps to be taken in order to reach the
optimal direction for transforming wk into wk+1.

p w
k

p+w
k+1

dw
0

dw
1

dw
2

wk+1

Figure 2.2: Illustration of motion field calculation using an iterative method

We assume that the displacement is small. We use a first order Taylor expansion with the

respect to dw =

nd∑
i

dλiΦi(p) on the deformed image.

I2(p+ w(p) + dw(p)) ≈ I2(p+ w(p)) +∇I2(p+ w(p))dw(p). (2.4)

The optimality condition
∂E(w + dw)

∂dλi

= 0 leads to the resolution of a linear system:

Mdλ = b (2.5)

where:

Mij =

∫
Ω

(
Φj(p)∇I2(p+ w(p)

)(
Φi(p)∇I2(p+ w(p)

)
dp,

bi =

∫
Ω

(
I1(p)− I2(p+ w(p)

)(
Φi(p)∇I2(p+ w(p)

)
dp.

After solving the system and determining the values (dλj)j that contribute to the best spatial
increment, and the deformed image will subsequently be corrected by the newly calculated
displacement and this process is repeated until convergence is reached.

The calculation of the gradient of the corrected image ∇I2(p+w) necessitates an interpolation
at each step. Since w is supposed to be small, the gradient of the corrected ∇I2(p + w) can

21



be approximated by the gradient of the reference image ∇I1(p) [12, 21]. This result allows
the calculation of the image derivatives once in an iterative scheme as the approximation of
the gradient does not depend on the time. This result is essential as it allows creating the
matrix system only once, making the calculation much simpler. It should be noted that only
an update of the right hand side is required at each stage. However, the approximation of the
gradient of the corrected image has a limited field of application, covering small deformations
in particular [21].
In that case, the linear system (2.5) simplifies to:

Mij =

∫
Ω

(
Φj(p)∇I1(p)

)(
Φi(p)∇I1(p)

)
dp,

bi =

∫
Ω

(
I1(p)− I2(p+ w(p)

)(
Φi(p)∇I1(p)

)
dp.

In the literature, the most popular digital image correlation approaches are the local and the
global approaches [19] and the choice of the approach depends on the studied phenomena and
the available computational resources.

2.1.2.1 Local Methods

Local methods [18] consist of searching for the displacement at a given central point by con-
sidering its neighbors. The correlation criterion defined by equation (2.3) is minimized inde-
pendently over grids of pixels, called Zones Of Interest (ZOI). Typically, the zones of interest
have a rectangular or square shape since images are composed of pixels, see figure 2.3. The
distance between the ZOIs enables them to either be contiguous, overlapping, or entirely sep-
arated. The objective is to locate each ZOI from the reference image on the deformed image.
Generally, larger ZOIs are easier to locate on the deformed image. However, this increase in size
comes at the cost of longer computation time. Conversely, smaller ZOIs are more challenging
to distinguish, but they require less computational effort.

min
w

EZOI(w) = min
w

∫
ZOI

(
I1(p)− I2(p+ w(p))

)2
dp (2.6)

This approach has the advantage to be easily parallelizable as problems are solved independently
for each ZOI, no assembly operation is required and furthermore, the number of degrees of
freedom to be determined for each zone is small. This allows for very low computational time,
making this approach favored by commercial software.

Initially the local methods [18] were developed with the aim of measuring the movements of
rigid bodies without rotation, which involves using a piecewise constant shape function base
(Φi)i. These works are similar to the Lucas-Kanade [2] optical flow method, which we will
explain in detail later. In order to accommodate other types of motion, additional types of
basis functions [37] were used, such as linear or polynomial functions.

2.1.2.2 Global Methods

Global methods were introduced after the local methods. The displacement field is directly
measured over the entire study area, commonly referred to as Region Of Interest (ROI). The

22



ZOI

p

p+w

w
ZOI in the

deformed image

Figure 2.3: Illustration of displacement field modeling and image partitioning for local DIC

global methods allow the continuity of the fields over the whole region of interest by an assembly
operation that leads to the creation of a large system to be solved, in contrast to the local
approach, where the regularity of the fields is not necessarily guaranteed and the system to be
solved is defined locally at each ZOI.

Figure 2.4: Example of a Q4 finite element mesh for global DIC displacement modeling applied
to an image with a speckle pattern.

23



Different basis functions (Φi)i can be used to interpolate the displacement field over the grids
Fig. 2.4. For instance, Lagrange finite element or BSpline [20] basis functions can be used.

Global method based on finite elements are widely employed and have been developed
to enable the measurement of continuous displacements using a finite element mesh. Initially,
this approach was limited to linear rectangular elements (with 4 nodes) before being generalized
to other types of elements [35].
This approach has the advantage of facilitating the exchange of information between simulation
and experimentation or measurement by using the same mesh.
This family of DIC methods has the advantage to be easily extended to the case of Digital
Volume Correlation. Réthoré [23] has proposed an approach based on eXtended Finite Element
method (XFEM) to handle two-dimensional or three-dimensional images involving propagating
cracks. This method allows for the propagation of a discontinuity within the material and to
avoid its diffusion.

2.1.2.3 Error regimes in finite elements DIC

The measurement uncertainty depends on the size of the finite elements [31, 32], leading to
the identification of two distinct error regimes in digital image correlation [97, 33]. Due to the
decrease in the number of available pixels within each finite element during correlation, a type
of error known as correlation error occurs. Indeed, the decrease in the chosen element size
results in a reduction of the amount of information contained within each element, leading to
a loss of precision in displacement measurement.

On the other hand, increasing the size of the elements leads to difficulties in accurately repre-
senting local displacements within the elements. The interpolation methods used to assign a
value to the displacement field within the pixels forming the element can become less accurate as
the element size increases. Consequently, interpolation error can introduce additional errors in
the measurement of the displacement field. Finally, the user must take into account the choice
of element size and implicitly these error regimes in order to obtain accurate measurements of
kinematic fields.

2.1.2.4 Tikhonov regularization

The Tikhonov regularization [30] is a method used in various fields to solve inverse problems,
particularly in image processing [22]. It aims to obtain a regularized and stable solution by
adding a weighted constraint based on the smoothness of the displacement field or the image
itself to the objective energy E:

E(w) =

∫
Ω

{(
I1(p)− I2(p+ w(p))

)2
+ λR(w)

}
dp (2.7)

where λ represents the amplitude of the regularization term R.

This form of regularization has been added to many digital image correlation codes [59, 25],
as it allows them to calculate correlation at the pixel-scale. This enables software to provide
results even in poorly meshed areas or when the size of the elements becomes small, which can

24



destabilize correlation codes. Generally, the regularization term R is chosen as a differential
operator such as a Laplacian or a gradient applied to the displacement field. In this case, the
larger the parameter λ, the smoother the fields become. However, determining the optimal
regularization parameter value is not straightforward and depends on the processed data and
the phenomena under study.

2.1.3. Techniques for improving the full-field measurement

2.1.3.1 Multi-scale resolution

Image correlation approaches use a Taylor expansion to linearize the equation for the displace-
ment, but this expansion is only valid if the spatial increment is small. This leads to limitations
in these methods. To avoid the impact of local minima, a multi-scale [28] (also called pyrami-
dal) approach Fig. 3.2 is often used. Instead of considering a single scale for the analysis, this
approach divides the image into multiple scales or levels of resolution. The algorithm is initially
applied at a coarser resolution scale to capture global deformations of large amplitude. Then,
the algorithm is iteratively applied at finer resolution scales to capture local deformations of
smaller amplitude.

Assuming, for example, that we have three scales, a reduction factor of 0.5, and starting images
of 512 × 512 pixels. We first create downsampled images, i.e., images of size 256 × 256 and
128× 128. We start by calculating the correlation between the two smallest-sized images. The
computed vector field will be resized to serve as an initialization for the medium-sized images.
This process is repeated until the last level, where the correlation step is applied to the original
sequence of images.

2.1.3.2 Interpolation

The operation of interpolating graylevels is a necessary operation at each step of the iterative
process for updating the right-hand side of Problem (2.5) which depends on a term involving
the corrected image I2(p+w(p)). Various interpolation methods can be used, including bilinear
interpolation, bicubic interpolation, or even spline-based interpolation. These methods allow
for the estimation of missing pixel values by considering the values of neighboring pixels and
taking into account the continuity of graylevel variations. Accurate interpolation enhances the
correspondence between images by enabling sub-pixel displacement measurement, which can
reach up to 10−3 pixels [19, 38].

2.1.3.3 Speckle pattern

The speckle pattern is a random texture often added to the surface of tested specimens. It
plays a crucial role in digital image correlation as it can help enhance the accuracy of pixel
matching. The iterative resolution of the image correlation system (2.5) involves calculating
the gradient of the image, which provides the descent direction for the iterative resolution
algorithms. Maximizing this gradient throughout the image domain can lead to more accurate
results. In general, the speckle pattern consists of a set of circular black and white paint marks

25



placed randomly with a size preferably between 3 and 5 pixels [36]. Before applying a speckle
pattern on a surface, it is important to ensure that the mechanical and thermal properties of
the paint being used are suitable for the specific test or application in order to avoid disrupting
the quality of the obtained results. For instance, in the case of a high-temperature test, it is
important to ensure that the paint used does not melt or peel off.

It is important to mention that there are several techniques for applying a speckle pattern,
such as digital printing that can be used to achieve precise speckle patterns. Another popular
technique is projection, which involves spraying paint particles using a spraying device such as
airbrushes or spray paints.

2.1.4. Conclusion

Throughout this section, we have presented the fundamental principles of digital image cor-
relation (DIC) and the techniques employed for motion estimation. We have detailed the
mathematical formalism associated with DIC, as well as the processes of minimization and res-
olution. Additionally, we have made a clear distinction between global and local approaches and
thoroughly discussed their respective advantages and limitations. We also seen that utilizing
a multiscale approach enables the detection of large movements, and by employing a suitable
speckle pattern along with appropriate interpolation operations, it is possible to enhance the
quality of the estimated fields.

Local approaches, which involve subdividing the image into independent problems, yield results
that are obtained through pixel windows or sub-images. On the other hand, global approaches
ensure continuous fields but demand more computational resources and effort. It is worth not-
ing that global methods based on finite elements have gained popularity and are widely adopted
within the mechanics community due to their ability to facilitate communication between ex-
perimental and numerical domains.

The selection of the element size in DIC plays a critical role in accurately measuring the fields,
as it can introduce different error regimes. In the case of taking into account a regularization
term in the energy to be minimized, an additional parameter comes into play besides the size
of the elements, which is the the amplitude of this regularizing term. This complicates the
adjustment of these parameters, as they both play a similar role.

In the upcoming section, we will explore alternative methods for defining kinematic fields at each
pixel of the image. These methods rely on regularization terms, such as Tikhonov regularization,
which are commonly employed in image correlation and have already been presented.

26



2.2. Optical Flow

2.2.1. Introduction

In processing sequences of images, one of the primary challenges is to approximate the motions
present in the scenes. This problem is of great importance in several scientific fields. To address
this issue, a technique known as optical flow is commonly employed.

Both optical flow and digital image correlation are techniques that aim at extracting motion
information. However, they differ in their approach. Optical flow methods describe the dis-
placement vector at each pixel of the image, providing a dense motion field. In contrast, DIC
techniques use small elements or subsets of the images to calculate the displacements.

This section aims to explore in depth the fundamental principles of optical flow and explore its
underlying assumptions and limitations and discuss various methods for computing it.

2.2.2. Global approach

In 1981 Horn and Schunck presented the first variational method [1] to estimate the optical flow
fields. It has been assumed that pixels intensities remained unchanged in the images sequence.
This assumption has been utilized not only by the optical flow community but has also been
employed in the development of digital image correlation method as shown in the previous
section 2.1 (under the name of graylevel conservation) and the problem is formulated using a
simple quadratic norm, which lead to the creation of the energy E (2.2).

Despite its convexity, the previous problem is ill-posed because of the small number of equations
compared with the number of unknowns. To overcome this issue, a smoothness term has been
added to the objective function (2.2).

min
w

E(w) = min
w

∫
Ω

{(
I1(p)− I2(p+ w)

)2
+ λ∥∇w∥2(p)

}
dp, (2.8)

where p = (x, y) are the coordinates of the pixel, w(p) = (u(p), v(p)) the sought flow field
with horizontal and vertical components, ∇ represents the spatial gradient, and Ω is the image
domain. λ is a scalar allowing to handle the weight of the smoothness term compared to the
first graylevel conservation term. This formulation is similar to the one used in DIC, where
a Tikhonov regularization term is added to the energy as in (2.7). The difference between
this formulation and the one used in DIC is that the latter is optimized over the entire image
domain, pixel by pixel, whereas the energy in DIC is solved over either ZOIs or ROIs with
displacement interpolated by shape functions.

Practical calculation Generally, solving the problem (2.8) often involves seeking the best
spatial increment as in DIC, denoted as dw, using an iterative process. This approach is referred
to as ”warping” [14] in the literature.

The minimum is reached where the gradient vanishes. This is translated as the following

27



optimality condition: 
∂E

∂du
= 0

∂E

∂dv
= 0

(2.9)

Using a first-order Taylor expansion as in (2.4), the optimality condition (2.9) can be written
as: {

2((I2x + λ∆)du+ IxIydv + λ∆u+ IxIt) = 0,

2(IxIydu+ (I2y + λ∆)dv + λ∆v + IyIt) = 0,
(2.10)

where Ix and Iy are the diagonal matrices containing the spatial derivatives of the corrected
image Ĩ2(p) = I2(p+w) and It = I1− Ĩ2, while ∆ represents the Laplace operator. We rewrite
these equations in matrix notation, which yields the following linear system:(

I2x + λ∆ IxIy
IxIy I2y + λ∆

)(
du
dv

)
= −

(
IxIt + λ∆u
IyIt + λ∆v

)
(2.11)

One approach to solve the problem consists of approximating Laplace operator using finite
differences method and then solving the previous linear system with an iterative algorithm.

Remark. In the first work of Horn and Schunk, the full displacement field (u, v) was directly
searched for instead of increments (du, dv). The Laplacian operator was reformulated in the
energy (2.8) using the average of neighboring pixels, i.e. the 5-point stencil:

∆u ≈ 4(ũ− u), where ũi,j =
1

4
(ui+1,j + ui−1,j + ui,j−1 + ui,j+1).

which is a direct consequence of these finite differences approximations:

ui+1,j ≈ ui,j +
∂ui,j

∂x
+

1

2

∂2ui,j

∂2x

ui−1,j ≈ ui,j −
∂ui,j

∂x
+

1

2

∂2ui,j

∂2x

ui,j+1 ≈ ui,j +
∂ui,j

∂y
+

1

2

∂2ui,j

∂2y

ui,j−1 ≈ ui,j −
∂ui,j

∂y
+

1

2

∂2ui,j

∂2y

Then, directly assessing (u, v) without introducing increment, the minimization of the energy
E suggested a stationary iteration (with index k):(

I2x + 4λI IxIy
IxIy I2y + 4λI

)(
uk

vk

)
=

(
−It,kIx + 4λũk−1

−It,kIy + 4λṽk−1

)
(2.12)

The matrix on the left-hand side being made out of diagonal blocks (I is the identity matrix),
the system is decoupled for each pixel and direct inversion was possible:(

((I2x + 4λI)(I2y + 4λI)− I2xI
2
y )uk

((I2x + 4λI)(I2y + 4λI)− I2xI
2
y )vk

)
=

(
I2y + 4λI −IxIy
−IxIy I2x + 4λI

)(
−It,kIx + 4λũk−1

−It,kIy + 4λṽk−1

)
(2.13)

28



which could be simplified as:(
uk

vk

)
=

(
ũk−1 − Ixzk−1

ṽk−1 − Iyzk−1

)
with zk−1 = (I2x + I2y + 4λI)(It,k + Ixũk−1 + Iyṽk−1) (2.14)

New error measurements for enhanced robustness When the euclidean norm of the
gradient is used for the smoothness term, it makes the algorithm sensitive to noise and tends
to diffuse discontinuities which are quantities of importance in mechanics because they may
represent cracks in materials. A first possibility is to weight the smoothing term with the help
of an increasing function g [16]:

min
w

E(w) = min
w

∫
Ω

{(
I1(p)− I2(p+ w)

)2
+ g(∇I1)∥∇w∥2

}
dx (2.15)

It’s important to note that, although this regularization, often referred to as “image-driven”, is
easily implementable, it can be sensitive to noise in the input data, especially in regions where
the information is less clear.

Another strategy, which aims to avoid the issue of discontinuity diffusion associated with the
least squares norm, was proposed by Black and Anandan [6]. It consists of replacing the L2

norm by new robust functions. Different penalty functions have been studied [4, 6, 13, 14].
Thus new robust models are proposed to compute the optical flow, where different penalties
interleave:

E(w) =

∫
Ω

{
ρD
(
I1(p)− I2(p+ w)

)
+ λρS

(
∇w
)}

dp (2.16)

where ρD is the robust function used for the graylevel conservation and ρS the one used for the
smoothness. Often one chooses ρD = ρS in order not to cumulate numerical difficulties.

Beside the classical quadratic norm, the most commonly used penalty is the Charbonnier
function [15] defined as ρ(x) =

√
x2 + ε2, where ε is a small scalar used to regularize the

function, which provides a differentiable approximation of the L1 norm. In the optical flow
literature ε is fixed to be equal 10−3. Charbonnier can be seen as a differentiable variant of the
L1 norm. In Sun’s paper [4], the impact of the generalized Charbonnier loss function family
ρ(x) = (x2 + ε2)a has been investigated over the displacements. The generalized Charbonnier
is non-convex when a < 0.5 and equal to the Charbonnier when a = 0.5. This penalty acts
like L1 norm when a tend to 0.5 and acts as a quadratic function when a tends to 1 as shown
in Fig. 2.5. An other robust penalty showed its efficiency to compute the optical flow in the
presence of outliers. This function is called Lorentzian [6] ρ(x) = log(1+ x2

2σ2 ) where σ is a scalar
controlling the shape of function. The Lorentzian is a non-convex and therefore the energies
where it interleaves require more effort to be optimized. Some technical details for estimating
the optical flow using robust functions are given at the appendix 2.3.5.

2.2.3. Local approach

Lucas-Kanade [2] is a different approach for optical flow estimation, classified as ”local”. In ad-
dition to the graylevel conservation, it assumes that that each pixel follows the same movement
as its surrounding area.

29



(a) Functions (b) Derivatives

Figure 2.5: Generalized Charbonnier loss function for different values of a.

(a) Functions (b) Derivatives

Figure 2.6: Lorentzian loss function for different values of σ.

30



In order to model this assumption, let denote p1, p2 . . . pn the indices of the nearest neighbor-
ing pixels. We have previously seen that by using a Taylor expansion, we can rewrite the
conservation of graylevels as follows:

Ixu+ Iyv + It = 0

After applying this expression to all neighboring pixels, the problem can be expressed locally
in a matrix form as: 

Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)


(
u
v

)
= −


It(p1)
It(p2)

...
It(pn)

 . (2.17)

Unlike the first formulation where we had more unknowns, the matrix of the system is rectan-
gular and contains more equations than unknowns, it is thus to be understood in a least-square
sense.
Let us introduce the notations:

A =


Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)

 , w =

(
u
v

)
, b = −


It(p1)
It(p2)

...
It(pn)


The problem (2.17) is then transformed to:

min
w
∥Aw − b∥2 or equivalently (ATA)w = AT b, (2.18)

in detail: 
n∑

i=1

Ix(pi)Ix(pi)
n∑

i=1

Ix(pi)Iy(pi)

n∑
i=1

Ix(pi)Iy(pi)
n∑

i=1

Iy(pi)Iy(pi)


(
u
v

)
= −


n∑

i=1

Ix(pi)It(pi)

n∑
i=1

Iy(pi)It(pi)

 (2.19)

To solve the problem, the matrix (ATA) must be invertible and well-conditioned. Lukas-
Kanade algorithm has the advantage to be easily parallelized since the the problem is defined
independently on each pixel.

In (2.19) every pixel exerts the same influence onto the final displacements. In the literature,
weights [17] are introduced to link the impact of the pixel onto the solution and its distance from
the pixel where the optical flow is calculated. It is quite common to use a normal distribution
to define the weight coefficient, noted here µi, i ∈ 1, 2, . . . n.

n∑
i=1

µiIx(pi)Ix(pi)
n∑

i=1

µiIx(pi)Iy(pi)

n∑
i=1

µiIx(pi)Iy(pi)
n∑

i=1

µiIy(pi)Iy(pi)


(
u
v

)
= −


n∑

i=1

µiIx(pi)It(pi)

n∑
i=1

µiIy(pi)It(pi)

 (2.20)

31



In addition to its lower computational cost compared to the global Horn and Schunck method,
this approach is known for its robustness to noise. However, in the line of local DIC approaches,
the Lukas-Kanade method, which can be considered as a local approach for the optical flow
estimation, does not result in continuous flow fields. Another disadvantage of this model
is the potential loss of local motion features, especially when the spatial resolution of the
phenomena is smaller than the size of the window used. As a result, certain local phenomena
may escape measurement. Finally, The assumption that pixels follow the same motion is not
always satisfied, for example when the considered neighborhood includes pixels on both sides
of a boundary.

Remark. Methods for estimating optical flow, whether local or global, commonly employ a
multi-scale approach known as “coarse to fine” which has been described in the chapter on
digital image correlation (DIC). This approach aims at avoiding local minima during optical
flow estimation, particularly when estimating significant motions where the Taylor expansion
used to approximate the image I2(p + w) is not accurately fulfilled. For each level of the
pyramid, the optical flow estimation follows an iterative scheme. Finally, it is quite common [7]
to apply a median filter to the estimated fields in order to remove outliers.

2.2.4. Conclusion

The optical flow methods are optical capable of predicting motion in a sequence of images.
These methods are based on the same assumption as image correlation algorithms, but they
are able to provide pixel-scale displacement fields, unlike DIC methods that provide it on image
patches. In this chapter, we have presented the Lukas-Kanade model, which is considered to be
a local approach for optical flow estimation. It takes advantage of the pixel’s neighborhood to
create a signature and search for it in the deformed image. This strategy is different from global
methods that bear resemblance to the classical Horn and Schunck model, where a constraint
is introduced using a Tikhonov regularization term. Global methods ensure the continuity and
smoothness of the estimated field in the image, but they are computationally expensive.

Finally, we have presented the new robust models that use alternative error functions to the L2

norm, which diffuse discontinuities. These error functions are designed to handle challenging
scenarios with outliers, discontinuities and noise in the image sequences. They aim at improving
the accuracy and robustness of the estimated optical flow.

In Chapter 3, we will present an article discussing the impact of optical flow parameters and the
specific effects of some robust functions (e.g., Charbonnier and Lorentz) on mechanical images,
with a particular focus on strain fields.

Regardless of the optical method used, whether it’s digital image correlation or optical flow, and
regardless of the chosen approach, the motion estimation often linked to solving a linear system.
In the next section, we focus on the presentation and understanding of these methods, with a
focus on those targeting very large-scale problems as obtained with the recent development of
sensors used for correlation.

32



2.3. Solvers for linear systems and Parallel computing

2.3.1. Solvers for linear systems

2.3.1.1 Introduction

Linear system solvers are important numerical tools that enable an efficient approximation of
the solution of complex systems of linear equations which arise in different scientific disciplines
of physics, mathematics or even in computer science, and in particular in optical flow and
digital image correlation.

There are various numerical methods to solve such problems. In the literature, they are clas-
sified into direct and iterative methods. Direct methods provide the solution after applying
a finite number of operations, while iterative methods involve a loop during which an initial
vector is updated at each step in order to converge towards the solution. To select an appro-
priate method, several factors come into play, such as the dimensions, sparsity, symmetry and
positivity of the matrix or the accessible computational resources.

The aim of this section is to present an overview of numerical solvers for linear systems, which
includes both direct and iterative methods, with a specific emphasis on Krylov solvers which is
a subfamily of iterative methods adapted to the resolution of very large systems.
Let A be an invertible n× n matrix, and b a given vector. We are interested in solving linear
systems of the form:

Ax = b (2.21)

2.3.1.2 Direct methods

Direct solution methods involve the computation of the solution of a given linear system by
solving simpler triangular or diagonal systems that are obtained through the factorization of
the system matrix. There are several types of matrix factorizations, the most widely recognized
in the literature are LU and Cholesky decompositions [40].
LU method factorizes the matrix A into the product of two matrices: a lower triangular matrix
L and an upper triangular matrix U , such that A = LU . After this factorization, the solution
of the system (2.21) can be given by successively solving two triangular systems: Ly = b and
Ux = y, using forward and backward substitution respectively. This method is commonly used
when the matrix has a moderate size, as the computational cost of the LU factorization is
O(n3) [70] for dense matrix.
Cholesky decomposition is a particular case of LU decomposition used for symmetric posi-
tive definite matrices. Cholesky decomposition consists into factorizing the matrix A into the
product of a lower triangular matrix L and its transpose LT , such that A = LLT . The com-

putational cost of the Cholesky factorization is O(
n3

3
) [71], which is less than that of the LU

decomposition.
There are other types of matrix decomposition, like the QR-factorization. Making a good
choice of the factorization method depends on many factors. Even if sparsity makes it possible
to lower the costs, direct methods are generally not chosen to solve large-scale problems such as

33



those encountered in digital image correlation or optical flow, due to their high time complexity
which is linked to the cost of the factorization step to their memory cost since they require the
storage of the system matrix.

2.3.1.3 Iterative methods

For solving large-scale problems, iterative methods are often preferred. Moreover, problems in
DIC are known to be poorly conditioned and, if stopped sufficiently early, the iterative process
can itself be a regularization which limits the necessity of using other corrections.

2.3.1.3.1 Stationary iterative methods

The iterative methods involve repeatedly refining an initial guess to get closer to the final
solution. Historically, the first iterative methods used were stationary iterative methods. These
methods are defined as approaches that involve modifying a few components of the approximate
solution at each iteration until convergence is reached. The most famous examples of stationary
iterative methods are the Jacobi, Gauss-Seidel and Successive Over-Relaxation (SOR) methods.

The Jacobi method calculates the new approximation of the solution at a given iteration using
only the components calculated in the previous iteration, whereas the Gauss-Seidel method
takes into consideration the newly computed components at the current step of the process.
The Jacobi method is easy to implement but it has the disadvantage of being relatively slow
compared to other stationary methods mentioned. The SORmethod represents an enhancement
of the Gauss-Seidel method, utilizing a relaxation parameter to accelerate the convergence
process.

Algorithm 1 SOR Algorithm

Require: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn initial guess, ε the desired tolerance, the relaxation
parameter ω

Ensure: xk an approximation of the solution x of (2.21)
1: k ← 1
2: Err ← ||Ax0 − b||
3: while Err > ε do
4: for i = 1, . . . , n do

5: xk
i = (1− ω)x

(k−1)
i +

ω

Aii

(bi −
i−1∑
j=1

Aijx
k
j −

n∑
j=i+1

Aijx
(k−1)
j )

6: end for
7: Err ← ||Axk − b||
8: if Err < ε then
9: Break
10: end if
11: k ← k + 1
12: end while

34



Despite their ease of implementation, the stationary iterative methods have some drawbacks.
They are very sensitive to the choice of initial values and the choice of parameters that are
difficult to estimate. Moreover, they may not converge for all matrices, especially those that
are poorly conditioned, and they are slow to converge, especially for large matrices that can be
solved more quickly with Krylov solvers.

2.3.1.3.2 Krylov iterative methods

Krylov methods are a family of iterative methods that are widely used as they allow for the
solution of large sparse linear systems. We consider in this section the same system (2.21),
except that in this case the dimension n of the matrix A is very large. These solvers consist of
seeking an approximation of the solution of the linear system x by projecting the initial problem
onto a vector subspace of dimension m called the Krylov subspace, which we will denote by
Km. In addition to its dimension, a Krylov subspace depends on a matrix B and a vector v, it
is defined as:

Km(B, v) = span
{
v,Bv, . . . , Bm−1v

}
(2.22)

Let x0 be an initial approximation of the solution x and r0 = b−Ax0 be the initial residual. It
has been shown [60] that the exact solution x belongs to the affine subspace x0 +Km(A, r

0).
Krylov methods are part of polynomial methods that seek to approximate the inverse of the
matrix A−1 by a polynomial pm−1(A) and to deduce the solution in the form x = x0+pm−1(A)r

0.

The Krylov methods also assume that the residual rm is orthogonal to a vector subspace Lm of
the same dimension asKm (rm = b−Axm ⊥ Lm). These projection methods differ by the choice
of the subspaces [41] Km and Lm. For instance, the Full Orthogonalization Method (FOM) [46]
and Conjugate Gradient (GC) [44] seeks a solution such that the residual is orthogonal to
Lm = Km(A, r

0), Bi-Conjugate Gradient method (BiGC) [45] uses Lm = Km(A
T , r0), while

Generalized Minimal Residual (GMRES) [43] use Lm = AKm(A, r
0). The GMRES method

can be used with arbitrary matrices, which makes it more general than other methods. Several
methods are derived from GMRES, such as the example of the MINRES [39] method, which
works on symmetric linear equation systems. MINRES takes advantage of the symmetry of
the matrix to reduce the time and space complexity of the GMRES method. In the case of
symmetric and positive-definite linear problems like those encountered in optical flow or digital
image correlation, the well-known and efficient conjugate gradient method is often used.

The time complexity of the conjugate gradient method is of the order of O(n2) per iteration,
making the conjugate gradient faster for large-scale problems. Finally, Krylov methods guar-
antee that the convergence to the exact solution of the linear system is achieved at most n
iterations, even though a satisfying approximation can be achieved much faster.

2.3.2. Preconditioning

The conditioning or the condition number of a matrix A is the value, noted κ(A), that quantifies
the sensitivity of its solutions to change in the input data. The closer to 1 this value, the better

35



Algorithm 2 GMRES Algorithm

Require: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn initial guess, m≪ n, ε the desired tolerance
Ensure: An approximation of the solution x of (2.21)
1: r0 ← b− Ax0

2: v1 ←
r0

||r0||
3: for j = 1 , . . . , m do
4: w ← Avj
5: for i = 1 , . . . , j do
6: hi,j ← ⟨w, vi⟩
7: w ← w − hi,jvi
8: end for
9: hj+1,j ← ||w||
10: if hj+1,j = 0 then return xj

11: end if
12: vj+1 ←

w

hj+1,j

13: yj ← min
y∈Rj
||b− Axj − AVjy||2

14: if ||b− Axj − AVjyj||2 ≤ ε then
15: return xj + Vjyj
16: end if
17: end for
18: return xm + Vmym

Algorithm 3 Conjugate Gradient Algorithm

Require: A ∈ Rn×n symmetric and positive-definite, b ∈ Rn, x0 ∈ Rn initial guess, ε the
desired tolerance

Ensure: An approximation of the solution x ofAx = b
1: r0 ← b− Ax0

2: p0 = r0

3: for k = 0, 1, 2, . . . do

4: αk =
(rk, rk)

(Apk, pk)
5: xk+1 = xk + αkp

k

6: rk+1 = rk − αkAp
k

7: if rk+1 < ε then
8: Break
9: end if

10: βk =
(rk+1, rk+1)

(rk, rk)
11: pk+1 = rk+1 + βkp

k

12: end for

36



conditioned the matrix is, and conversely, if this value is large, the matrix is said to be ill-
conditioned.

κ(A) = ∥A∥∥A−1∥, for a matrix norm. (2.23)

When a matrix is well-conditioned, small perturbations in the input data will not have a large
influence on the output result, while an ill-conditioned matrix is one where small changes in the
input can cause large changes in the output result. The conditioning of a matrix can affect the
performance of iterative methods. These methods can converge quickly and efficiently to an
approximate solution when the matrices are well-conditioned, while they may converge slowly
by requiring more iterations or not converge at all if the matrices have high conditioning. The
preconditioning technique involves using an invertible matrix M such that the product M−1A
is better conditioned than A itself. Hence, the new system to be solved is:

M−1Ax = M−1b (2.24)

The solution of this modified system is identical to that of the original system, yet it may exhibit
faster convergence when solved. The perfect system to be solved is one where the condition
number is equal to 1, which corresponds to the identity matrix, which is equivalent to choosing
a matrix M−1 that coincides with the inverse of matrix A. Since the calculation of the matrix
inverse is expensive, and it becomes even more costly when the matrix is very large, the idea
is to seek an approximation of it. This approximation is as difficult as the initial problem.
Various techniques are used to construct the preconditioner. The following is a brief overview
of some of these techniques.

2.3.2.1 Matrix decomposition

The most well-known and easy-to-implement preconditioners are based on the decomposition
of the matrix A. The easiest example to implement is called the Jacobi diagonal preconditioner
detailled in [42], which is defined by a diagonal matrix containing the inverse of the diagonal
entries of matrix A which means that M−1 = diag(A)−1.
Other commonly used preconditioners are Gauss-Seidel defined by setting M = (D−L) and the

symmetric SOR (SSOR) [42], which is defined by setting M =
1

ω(2− ω)
(D−ωL)D−1(D−ωU),

where D, L, and U are respectively the diagonal, lower triangular, and upper triangular parts
of the matrix A = L−D − U , and ω is a scalar.

2.3.2.2 Approximate Inverse Preconditioner

The goal of this approach is to seek a preconditioner for the system by solving the following
minimization problem:

M−1 = argmin
P
∥I − PA∥

The approximate inverse translates to the search for a matrix whose product with matrix A is
very close to the identity matrix which is a well-conditioned matrix, this lead to a remarkable
improvement of performance, but this kind of preconditioners is computationally expensive to
calculate. Generally, the Frobenius norm is used for formulating the optimization problem, but
other norms can also be used.

37



2.3.2.3 Incomplete factorization

Unlike direct methods such as LU decomposition or Cholesky decomposition that are memory-
intensive due to fill-in during the factorization stage. The incomplete factorization provides an
approximation of the matrix by limiting the fill-ins, and finally, the inverse of this decomposition
is used as a preconditioner. Incomplete LU factorization is often used for sparse matrices with
many zero coefficients.
The most common and simplest approach consists of allowing fill-in only where it already
exists in the initial matrix which leads to the preconditioner ILU(0). While constructing the
preconditioner through this approach is simple and effective, it may deviate significantly from
A−1 in certain cases. This is because incomplete LU decomposition leaves out a significant
amount of information. However, another approach that allows for some fill-ins can lead to
an improvement in the quality of the preconditioner, except that increasing fill-ins causes an
increase in the computational cost associated with matrix-vector products and with the ILU
factorization.
There are many other types of preconditioning methods, like the ones based on multigrid or
domain decomposition methods. In the current section, we attempted to briefly present the
most classical and simple methods. For more details, we refer to the work of Saad [42].

2.3.3. Parallel computing

The presence of parallel processing in scientific computing codes has become increasingly promi-
nent, primarily due to technological advancements and to the growing demands of users. Paral-
lel computing involves harnessing the architecture and computational power of machines, which
have undergone significant advancements in recent times.
The measurement of the kinematic fields using DIC or optical flow techniques often involves
processing large quantities of images and complex data generated by increasingly advanced
sensors. In this context, parallel computing allows not only for simultaneous operations on
multiple pixels, regions, or image windows but also for the application of specific tasks to
multiple data in parallel. This results in a reduction in the processing time of these data and
improves the ability to process real-time data, which is required for certain types of experiments.
In the following, we will describe the distinction between parallel programming models and
parallel execution models.

2.3.3.1 Parallel programming models

The programming models refer to the manner in which the programmer specifies parallel tasks
or operations within a program. Two parallel programming models are generally distinguished:
data parallelism and task parallelism.

2.3.3.1.1 Data parallelism

Data parallelism [72] is a parallel programming model that aims to apply the same operation
simultaneously to different data packets. This model involves subdividing a large dataset
into smaller segments and assigning each segment to a processing unit. Subsequently, these

38



processing units execute the same task in parallel. This programming model is particularly
useful when dealing with a large amount of data, such as in the case of digital volume correlation.
For instance, let’s assume that we have a machine with four computing units and a matrix.
The objective is to increment the elements of this matrix. Data parallelism involves executing
the increment operation simultaneously on multiple processing cores, with each core processing
a different set of data, rather than performing the calculation using a single core and thus
each processor handles a part of the initial array to be incremented as shown in Fig 2.7. The
execution time in sequential mode will be then divided by the number of parallel cores, which
theoretically leads to a speedup of 4 in this example.

Array Array

Sequential

model

Data parallel

model

C
o
r
e
0

Core 1

Core 3

Core 0

Core 2

Figure 2.7: Illustration of the data parallel model

2.3.3.1.2 Task parallelism

Task parallelism [73] is a parallel programming model that enables the simultaneous execution
of different tasks on separate computing units. In contrast to the previously described data
parallel model, this model does not focus on the data and it is used to divide the computational
code into multiple independent tasks that can be executed in parallel on different computing
units. This allows for improved performance by leveraging the hardware architecture Fig 2.8.

2.3.3.2 Parallel execution models

Execution models serve as a bridge between hardware architecture and the software layers
available for applications. Execution models differ from the chosen language or programming
interfaces. Indeed, execution models are an abstraction of the system that allows us to express
the algorithm as well as the data structures. Unlike programming languages and APIs, which
provide information about the implementation of these models and how they will be executed,
execution models are independent of the choice of language or APIs.

39



Task 0 Task 1 Task 2 Task 3Task 0

Task 1

Task 2

Task 3

Sequential

model

Task parallel

model

Core 0 Core 0 Core 3Core 2Core 1

Execution

Time

Figure 2.8: Illustration of the task parallel model

There are several parallel execution models, and the most well-known ones will be presented in
the following.

2.3.3.2.1 Shared memory model

This model is characterized by the fact that all processes share a common address space in
which they read and write asynchronously. The shared memory execution model is one of the
simplest models to understand. One advantage of this model is the absence of the notion of
data ownership since all processes share the same memory, which they can access for reading
or writing. Memory accesses in this model are controlled by mechanisms such as locks or
semaphores [74].

There are several libraries for targeting this type of memory architectures, but OpenMP remains
predominantly used. It is a parallel programming API compatible with C, C++, and Fortran,
which utilizes directives and libraries to add parallelism to sections of code.

This model is limited generally by the size of the machine’s memory. To handle problems whose
size exceeds the capacity of shared memory, a distributed memory model is often chosen.

Memory

CPU CPU CPU CPU...

Figure 2.9: The shared memory model

40



2.3.3.2.2 Distributed memory model

The distributed memory execution model is characterized by the fact that each set of tasks,
whether they are located on the same machine or different machines, use their own resources
during computation. When necessary, tasks communicate with each other to exchange data
using messages. The data transfer requires cooperation from each process, for example, a send
operation requires a corresponding receive operation, which means that most of the communica-
tions (data transfer) are managed by the developer and can have an impact on the performance
of the computation. The most widely used library for managing communication between com-
pute nodes in distributed environments is MPI, which is also compatible with C, C++, Fortran,
Python and other languages.

Memory

CPU CPU

Memory

CPU

Memory

CPU

Memory

Network

Figure 2.10: The distributed memory model

2.3.3.2.3 Hybrid memory model

Hybrid memory supercomputers play a significant role in the high-performance computing
domain, and hybrid execution models are particularly well-suited for such machines because
they combine multiple types of memory. A hybrid memory model is a model that combines
multiple execution models, such as a combination of shared memory and distributed memory.
This can involve a system comprising multiple compute nodes, where each node has its own
local shared memory. However, communication between nodes is performed using a network.
The goal of this type of model is to exploit the advantages of each model when the hardware
architecture allows it and it gives the possibility for multiple levels of parallelism which leads
to an improvement in performance.

To take advantage of intranode and internode parallelism, a combination of libraries is often
used. The first one is used to accelerate calculations on parts with shared memory, such as
OpenMP, and another one handles inter-processor communications, for example, MPI.

41



...

Memory

CPU CPU CPU CPU

CPUCPUCPUCPU

Memory

CPUCPUCPUCPU

Memory

CPUCPUCPUCPU

Memory

Network

......

...

Figure 2.11: The hybrid memory model

2.3.4. General-purpose computing on graphics processing units

Graphics Processing Units (GPUs) are electronic circuits primarily used for graphics process-
ing in gaming applications before exploiting their performance for numerical computations
and massively parallel tasks. This usage is called GPGPU, which stands for General-purpose
computing on graphics processing units. GPUs enable parallelism for repetitive and highly
parallel tasks due to their vast number of computing cores, which can execute multiple opera-
tions simultaneously. Moreover, graphics cards are designed for data parallelism and utilize a
SIMD [66] (Single Instruction, Multiple Data) architecture, allowing a single set of instructions
to be applied concurrently to multiple data elements.

To facilitate code development and execution of computations on this type of accelerators, there
are several software environments available. These platforms provide specific libraries that
enable developers to fully harness the power of GPUs. Among the most widely used platforms
are OpenCL [67] and CUDA [68]. OpenCL is a parallel programming platform developed by
the Khronos Group, which can be used on a variety of GPUs from different manufacturers,
making the code more portable as it can be executed on different accelerator architectures in
contrast to CUDA which is the most well-known GPU programming platform, developed by
Nvidia and which allows developers to utilize libraries to write code with C/C++ that can be
executed on Nvidia GPUs.

PyCUDA [69] has made GPU programming accessible to Python users, which is a widely
used and straightforward programming language within the mechanics community. PyCUDA
serves as a Python wrapper, enabling the creation of GPU-accelerated code using Python by
encapsulating CUDA functions within a Python interface. Even though this interface is easy
to use and is called from Python, the CUDA kernels are written using C/C++, which makes
the writing process more challenging for developers who are not familiar with C programming
or programming on the GPU. To provide a higher level of abstraction than what is offered

42



GPU

DRAM

Multiprocess 00 Multiprocess 01 Multiprocess 0n

Multiprocess 10 Multiprocess 11 Multiprocess 1n

Multiprocess 20 Multiprocess 2nMultiprocess 21

Multiprocess pnMultiprocess p1Multiprocess p0

...

...

...

...

...

...

...

CPU

DRAM

Core 0

Core 2 Core 3

Core 1

Figure 2.12: GPU and CPU Architectures

by PyCUDA, where the user is required to write the source code themselves, NVIDIA has
developed a library called CuPy [47]. It incorporates several basic matrix calculation functions
already developed with NumPy, thus avoiding the need for the user to write complex code, as
is the case with PyCUDA. With CuPy, users can take the advantage of these pre-implemented
functions, making it more accessible and user-friendly for performing GPU-accelerated matrix
computations without the necessity to manually write intricate code like in PyCUDA.

2.3.5. Conclusion

Through this section, various well-known methods for solving linear systems have been in-
troduced. We started with direct methods, which are capable of solving problems in a finite
number of operations. We also introduced iterative methods, which involve using an iterative
scheme to approach the solution based on a given initialization, such as those encountered in
digital image correlation or optical flow. Krylov methods consist of solving the problem in a
lower-dimensional space compared to the original problem. Among a variety of algorithms,
two methods were presented: GMRES, which operates in the general case where no assump-
tion other than invertibility is made about the nature of the system matrix, and the conjugate
gradient method, which is suitable for symmetric positive definite matrices.

The solution of large-scale linear systems is often associated with a significant demand in
terms of computational resources and memory. The resolution of large-scale linear systems is
often faced with such a high demand for computational and memory resources that it becomes
impossible to execute this resolution operation due to the limitations of computing machines or
the significantly high computational time required. By using parallelism strategies, it is possible

43



to distribute the computation across different compute nodes, which accelerates significantly the
resolution process. This highlights the importance of presenting various parallelism strategies to
enhance the overall efficiency of solving large-scale linear systems. Task parallelism is a strategy
that involves executing multiple tasks simultaneously, each representing a distinct operation.
This approach efficiently utilizes computing resources by executing tasks independently and
concurrently. On the other hand, data parallelism aims to execute the same operation on smaller
portions of data, obtained by subdividing the initial data. This allows for parallel computation
on different data partitions, which can accelerate the overall processing and allow for solving
larger systems. We also discussed GPU architectures and how computations are executed
within such an architecture before introducing PyCUDA and Cupy a couple of modules that
enable the utilization of these hardware accelerators with Python.

After selecting a programming model based on available resources and the nature of the prob-
lem to be solved, it is necessary to choose an appropriate execution model to ensure efficient
execution of the parallel program. Finally, understanding programming models and execution
models can help optimize parallel programs, efficiently utilize hardware resources, and achieve
good performance.

Appendix: Optical flow estimation

In this section, we provide some technical details used to iteratively optimize the optical flow
problem (3.5) with an anisotropic regularization term. The energy to be minimized here differs
from the one detailed in [96], where an isotropic regularization term is employed. We use
the Iterative Reweighted Least Squares (IRLS) [89] approach. We can choose two different
regularization metrics, ρD for the term associated with the image, and ρS for the one related to
regularization. Regardless of the chosen metric, it can be expressed as a function of the square
of the variable. We will use this notation, which will simplify the calculations.
The method aims to find the best increments du and dv so that the gradient of the objective
over these increments is null. The problem (2.16) can be written as:

E(du, dv) =

∫
Ω

{
ρD((I2(p+ w + dw)− I1(p))

2) + λ
[
ρS(∇x(u+ du)2) + ρS(∇y(u+ du)2)

+ρS(∇x(v + dv)2) + ρS(∇y(v + dv)2)
]}

dp

(2.25)

Given that: p = (x, y, t) are the coordinates of the pixel, w(p) = (u(p), v(p), 1) where u and v

are the horizontal and vertical flow fields respectively. Finally we denote by ∇x∗2 =
∂∗
∂x

2

and

∇y∗2 =
∂∗
∂y

2

, and:

It(p) = I2(p+ w)− I1(p), Ix(p) = ∇xI2(p+ w), Iy(p) = ∇yI2(p+ w)

Let u and v be the vectorized flow fields u and v respectively. To simplify the notations, we

keep ∇x and ∇y to denote the discrete derivative filters, ∇xu = u ∗ 1
2

(
−1 0 1

)
. We denote

44



by δp the vector column with an only non zeros value equal to one at the pixel p = (x, y).
After employing a first-order Taylor expansion and the descritization of the equation (2.25), we
obtain:

E(du,dv) =
∑
p

ρD(δ
T
p (It + Ixdu+ Iydv))

2) + λ [ ρS((δ
T
p∇x(u+ du))2)+

ρS((δ
T
p∇y(u+ du))2) + ρS((δ

T
p∇x(v + dv))2) + ρS((δ

T
p∇y(v + dv))2) ]

(2.26)

and
∂E

∂du
= 0 and

∂E

∂dv
= 0 (2.27)

We denote by gpx, gpy, and fp the following expressions:

gpx = (δTp∇x(u+ du))2

gpy = (δTp∇y(u+ du))2

fp = δTp (It + Ixdu+ Iydv))
2

(2.28)

Then:

∂E

∂du
=
∑
p

ρ′D(fp)
∂fp
∂du

+ λ

{
ρ′S(gpx)

∂gpx
∂du

+ ρ′S(gpy)
∂gpy
∂du

}
= 2

∑
p

ρ′D(fp)(Ixδpδ
T
p Ixdu+ Ixδpδ

T
p (It + Iydv)) + λ

{
ρ′S(gpx)∇T

x δpδ
T
p∇x

+ρ′S(gpy)∇T
y δpδ

T
p∇y

}
(du+ u)

(2.29)

Let us define a generalized Laplace filter related to the horizontal field Lu as:

Lu = ∇T
x ρ

′
S1∇x +∇T

y ρ
′
S2∇y

where ρ′S1 = diag(ρ′S(gpx)), ρ
′
S2 = diag(ρ′S(gpy)), and ρ′D = diag(ρ′D(fp)).

The expression (2.29) can be written as

∂E

∂du
= 2
(
(ρ′DI

2
x + λLu)du+ ρ′DIxIydv + ρ′DIxIt + λLuu

)
(2.30)

Similarly, we obtain the following expression by deriving the objective E with respect to dv:

∂E

∂dv
= 2
(
ρ′DIxIydu+ (ρ′DI

2
y + λLv)dv + ρ′sIyIt + λLvv

)
(2.31)

Given that:
Lv = ∇T

x ρ
′
S3∇x +∇T

y ρ
′
S4∇y

ρ′S3 = diag(ρ′S(hpx)), ρ
′
S4 = diag(ρ′S(hpy))

hpx = (δTp∇x(v + dv))2

hpy = (δTp∇y(v + dv))2

45



The equations (2.30) and (2.31) can be written as:(
ρ′DI

2
x + λLu ρ′DIxIy

ρ′DIxIy ρ′DI
2
y + λLv

)(
du
dv

)
= −

(
ρ′DIxIt + λLuu
ρ′DIyIt + λLvv

)
(2.32)

Since the system (2.32) contains nonlinear terms (that need to be updated with (du,dv)), the
main problem of minimization (2.27) is solved using a fixed-point algorithm. Since the problem
is high-dimensional, Krylov iterative methods [60] can be used to solve the inner linear system
as shown in the previous chapter.

Algorithm 4 IRLS algorithm

1: Initialization du0,dv0

2: At each iteration k:
a: Compute ρ′S1, ρ

′
S2, ρ

′
S3, ρ

′
S4 and ρ′D using the known fields duk−1, dvk−1

b: Compute Lu and Lv

c: Solve the linear system (2.32) and deduct duk, dvk

d: Test convergence over (duk−1,dvk−1) and (duk,dvk).
e: If convergence Stop else k ← k + 1.

46



3. The impact of metrics in mechanical
imaging

In the previous section, we reported that several error functions which encourage the appearance
of local phenomena are utilized instead of the quadratic function which is known to smooth the
discontinuities. The objective of this chapter is to gain a better understanding of these metrics
in the optical flow methods and to give details about the often underexplored topic of metric
selection in the literature. Additionally, this chapter aims to explore the impact of regularization
on the nature of the estimated results. Our approach is based on one of the key articles in
optical flow titled ”Secrets of optical flow estimation and their principles” [4] written by D.
Sun in 2010, which introduced enhanced optical flow methods with inspiration from modern
techniques, as well as more sophisticated non-classical models. Several robust functions resilient
to outliers were proposed in the previous work of optical flow estimation. We focus on those
studied in the cited paper [4]. This includes the Lorentz function and the Charbonnier function,
which has a formulation that resembles the L1 norm, with a non-continuous derivative. We
will subsequently explore the influence of the regularization amplitude as well as the localized
impact of changing this parameter. Furthermore, concerted efforts have been made to provide a
fast and efficient code so that the mechanics community can test these metrics on their images.
This chapter is presented in the format of a scientific article [85], which is being submitted to
the Strain ISSN:1475-1305 journal.

Authors Ahmed Chabib, Jean-François Witz, Pierre Gosselet, Vincent Magnier.

Affiliation Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de
Mécanique,Multiphysique, Multi-échelle, F-59000 Lille, France.

Abstract Optical Flow (OF) is an alternative technique to the more classical digital image
correlation methods (DIC), able to measure the motion between two images. It is a pixel-wise
method, in the sense that the displacement is defined at each pixel and its computation does
not require overpixel grids. This paper examines the impact on the identified strain field, the
main quantity of interest for solid mechanics, of the metrics used to quantify the conservation
of the optical flow and to impose the regularity of the displacement. The Charbonnier and
Lorentzian loss functions are inspected in this work. A new regularization approach is used to
locally vary the Tikhonov parameter using a mask in order to preserve the discontinuities and
encourage the appearance of local phenomena while smoothing the computed fields elsewhere.
Finally, an open-source GPU-accelerated python code has been implemented.

Keywords DIC, Optical Flow, GPU, Strain, Measurement

47



3.1. Introduction

Digital Image Correlation (DIC) and Optical Flow (OF) refer to techniques that analyze a
sequence of images in order to estimate the displacement. In recent years, DIC has gained pop-
ularity as an efficient technique to analyze digital images of materials under testing, allowing
for the high-resolution full-field measurement of strain. The basic principle of DIC is to track
the displacement of a surface or a volume by comparing digital images taken before and after
deformation. DIC methods involve partitioning images into smaller regions and then analyzing
their intensity patterns in order to identify corresponding subsets between two images. The
intensity patterns are encoded using a speckle or random dot pattern applied to the surface
(or by the variation of the texture in the volume), and the resulting data can be presented
as displacement or strain maps. These maps provide useful information about the mechanical
behavior of the material or the structure being analyzed. Besides its full-field advantage com-
pared to point sensors, DIC is a non-destructive technique that does not require direct contact
with the surface, making it a suitable option to analyze fragile or sensitive materials.
Optical Flow is a popular method used in the field of computer vision and image processing to
measure displacement and motion fields. This technique also provides full-field measurements
and does not require a physical contact with the object being analyzed as DIC. After more
than 40 years of research, optical flow models have steadily improved in accuracy over time.
Unlike DIC, these models are capable of describing the movement at every pixel of the image.
Both Optical flow and DIC techniques are based on graylevels conservation assumption (3.1)
introduced by Horn and Schunk [1], assuming that the graylevels of the pixels do not change
during the motion:

I1(x) = I2(x+ u(x)),∀x ∈ Ω, (3.1)

where I1 is the reference image, I2 is the deformed image, x are the coordinates of a given pixel,
Ω represents the domain of the image and u is the displacement field.
Moreover, most of DIC software [58, 59] uses least square as a metric to quantify the difference
between the sequence of the images and they subsequently try to minimize this gap. This
optimization problem is ill-posed due to the number of degrees of freedom exceeding the number
of equations. To overcome the issue, DIC approaches may only focus on subsets (Ωe) of the
image and use a kinematic vector space Vh based on shape functions associated with a grid
spaced by several pixels [27] (like in finite element methods):

min
uh∈Vh

∑
Ωe⊂Ω

∫
Ωe

(
I1(x)− I2

(
x+ uh(x)

))2
dx. (3.2)

It is very common when decreasing the spacing of the grid to add a Tikhonov regularization [22]
to the previous functional:

EDIC(uh) =
∑
Ωe

∫
Ωe

{(
I1(x)− I2

(
x+ uh(x)

))2
+ λ(∇uh)

2

}
dx, with λ > 0. (3.3)

Most of the current optical flow methods closely resemble the first Horn and Schunck formu-
lation (3.4). As done with DIC, they typically combine a data term that assumes graylevel

48



conservation, along with a weighted smoothness term that models the variation of the flow
across the image. The only difference is that the problem here is formulated at each pixel
of the whole image with a kinematic defined at the pixel scale (without shape functions over
grids):

E(u) =

∫
Ω

{(
I1(x)− I2

(
x+ u(x)

))2
+ λ
(
(∇u)2

)}
dx, with λ > 0. (3.4)

It has been noticed that this classical formulation utilizing the quadratic function is not robust
to outliers. Black and Anandan [6] solved this issue by introducing a new formulation (3.5)
where the quadratic error function is substituted by an adequate error function robust to
outliers, hence the term ”robust functions”. The paper of Sun [4] drew inspiration from these
robust models to define new classical methods capable of enhancing the quality of the computed
fields. It analyzed the impact of the penalty functions and the effect of other parameters on the
displacement field from Middlebury optical flow benchmark [5] which contains real-life images.
For those datasets, the texture that refers to the visual features that allow different regions
of an image to be distinguished is not imposed as is the case of mechanical sequences where
the speckle pattern is imposed by the user. It has been chosen in different works [7, 103] to
utilize an anisotropic diffusion approach as a replacement for the homogeneous regularization
in the Horn-Schunck model. This decision stems from the frequent occurrence of discontinuities
in optical flow, which often coincide with high image gradients. Introducing a metric ρ, the
functional to be minimized can be written as:

E(u) =

∫
Ω

{ρ ((I1(x)− I2(x+ u(x)))) + λ (ρ ((∇xu)) + ρ ((∇yu)))} dx. (3.5)

Our research contributes to a better understanding of the methods proposed in [4] and their
implementation, in the context of the analysis of mechanical strain and the detection of me-
chanical cracks. In particular, we compare the effect of replacing the quadratic norm by the
Charbonnier’s or the Lorentzian for the image and smoothness terms. Note that we provide
a simple matrix-free python code accelerated by GPU so that researchers from all the scien-
tific disciplines who are not familiar with GPU programming can test their images with theses
techniques easily in a reasonable time.
The rest of the paper is organized as follows. In Section 3.2, we provide the details for the
robust and efficient minimization of the functional (3.5). In Section 3.3, we assess the method
and compare it different settings on a numerically generated cracked samples before presenting
a local regularization approach and moving on to Section 3.3.3 to present our conclusions and
perspectives.

3.2. Methodology

The methods used in this work are similar to the classical brightness methods [4] introduced
by Sun with some differences that will be mentioned later. The penalty functions used in [4]
are taken into account: first, the classical quadratic norm ρ(x) = x2 utilized by Horn and
Schunk(HS) and widely used in DIC, then the Charbonnier [14] loss function defined as ρ(x) =√
x2 + ε2, which is a differentiable and convex robust function and a variant of the L1 norm.

49



The parameter ε allows the Charbonnier to converge towards the L1 norm and it is often set in
the literature to 10−3. In the beginning, we will test the Charbonnier function as it is commonly
used in most optical flow papers, which means setting its parameter to the mentioned value.
We finally present the non-convex Lorentzian [6] function defined as ρ(x) = log (1 + x2

2σ2 ), σ > 0.
These functions are illustrated by their curves on Figure 3.1.

Figure 3.1: The curve of the tested penalty functions: the quadratic (L2), Charbonnier (Cha.)
using ε = 0.001 and the Lorentzian with different values of σ

We denote by u and v the horizontal and the vertical displacement fields respectively. The
equation (3.5) can be discretized in the form of:

E(u, v) =
∑
i,j

ρ
(
(I2(i+ ui,j, j + vi,j)− I1(i, j))

)
+ λ
(
ρ
(
(∇xu)i,j

)
+ ρ
(
(∇yu)i,j

)
+ ρ
(
(∇xv)i,j

)
+ ρ
(
(∇yv)i,j

))
(3.6)

where (i, j) are the coordinates of pixels, ∇x and ∇y are respectively the horizontal and vertical
derivation operators.

3.2.1. Graduated Non-Convexity (GNC) and pyramidal approach

The minimization of a non-convex function is not always straightforward due to the existence of
local optima that may appear during the minimization process. The Graduated Non-Convexity

50



(GNC) scheme is used to tackle the complex optimization problems. GNC algorithm works by
minimizing a sequence of energy functions (Eω)ω (3.7) given as a linear combination of a fully
convex quadratic energy function EQ and the fully robust energy function E (3.5). EQ is
obtained by changing the robust penalties in (3.5) by a quadratic loss function. The parameter
ω decreases gradually from 1 to 0 and varies the convexity of the compound objective, allowing
the transition from the quadratic form to the proposed robust form.

Eω(u, v) = ωEQ(u, v) + (1− ω)E(u, v) (3.7)

Throughout the process, the solution obtained from the previous stage is utilized as an initial
guess for the current stage. It has been demonstrated [9] that using three stages of convexifica-
tion typically yields satisfactory results. During each step, a straightforward local minimization
of the energy function is executed.

For the purpose of predicting large motion fields, a coarse-to-fine [14] approach is often adopted
as in DIC. The coarse-to-fine approach consists in creating a pyramid of images by repeatedly
reducing the size of the original image. The pyramidal structure is created by stacking the
smaller resized images on top of each other, ending with the highest resolution image at the
bottom. Afterwards, at every level of the pyramid we perform a processing step, the output
is then resized and used as a starting point for the next level. The process is repeated until
reaching the original image. An illustration of this approach is shown in Fig. 3.2. We smooth
the images before downsampling them using a Gaussian filter, with the standard deviation fixed

at
√

1
2d
, where d represents the downsampling factor. During the minimization of the quadratic

formulation which appears during the first iteration of the GNC process, we dynamically set the
number of pyramid levels to ensure that the highest level has a width or height of approximately
20 to 30 pixels with a downsamling factor of 0.5 since it has been explored [4] that using a
convex penalty, a factor of 0.5 is sufficient. For the remaining stages of the GNC, we will utilize
two levels with a factor of 0.8 to benefit from the solution obtained in the prior convexification
stage. The GNC is also used for the Charbonnier function despite its convexity, since it leads

Initial guess

.
.
.

Upsamling

the flow field

D
o
w
n
s
a
m
p
l
i
n
g

I
m
a
g
e
s

Image I2

.
.
.

Image I1

.
.
.

OF estimation

OF estimation

OF estimation

Figure 3.2: Representation of the pyramidal approach, OF=Optical Flow

to better minimization [4] due to the nonlinearity of its derivative. In this method ten flow

51



increments are computed per direction at each pyramid level and a 5×5 median filter is applied
in the end of each warping step to the current fields to remove the outliers as described in [4].

3.2.2. Methodological details

The estimation of the optical flow fields requires computing a finite difference approximation
of the spatial derivatives of images as well as the temporal derivative defined as the difference
between the reference image and the corrected image I2(i+uk

i,j, j+vki,j) where u
k and vk represent

the displacement fields computed at the iteration k obtained by a bi-cubic interpolation. Instead
of the classical finite difference kernels, we approximate the spatial derivatives using a five-point
kernel [8] h = 1

12

[
−1, 8, 0,−8, 1

]
. We neglect pixels whose movement exceeds the border by

setting their corresponding derivatives to zero. We interpolate both the second image and
its derivatives using the current flow field. In agreement with [9], we use the average of the
gradient of the reference image and the interpolated derivatives of the second image to define
the tangent system to be solved.

Unlike the methods used in Sun’s paper [4], where the regularization parameter λ and the
parameter σ of the Lorentzian function are fixed to provide a displacement close to the real
fields obtained from the image sequences in the Middlebury dataset, our approach consists of
varying the value of these parameters to see their impact on the strain field and to study the
effect of this change on discontinuities.

The choice of the parameter in the Lorentzian function is far from evident, and there is no
universal parameter value that suits all situations. The selection of this parameter requires a
thorough understanding of the data and objectives. For instance, if the expected motion fields
are smooth and continuous, a higher value of this parameter can be a good choice to encourage
regularization and reduce discontinuities. Conversely, if the field contains discontinuities, a
lower value of σ allows increasing their effect. It may be necessary to conduct empirical tests
by adjusting the parameter of the Lorentzian function and evaluating the results on real optical
flow data.

It should be noted that the Rudin-Osher-Fatemi [8](ROF) texture-structure decomposition
appendix 3.4 frequently used to eliminate changes in brightness is not applied here. Indeed,
this decomposition consists in filtering input images by breaking each of them down into two
parts, a texture part which preserves image details, and a part containing shadows called
structure. In contrast with real life scenes, in mechanical engineering, experimental setups are
designed to limit as much as possible the change in brightness during the test. All the more
so as, in the example presented in this paper, the images are synthetic and do not pose any
brightness-related problems.

3.2.3. Implementation

We provide a python source code accelerated by GPU using CuPy [47] which proposes a NumPy-
compatible API for GPU computing with NVIDIA CUDA. As the matrix to be solved at each
iteration is a positive definite symmetric matrix, the conjugate gradient method [44] is used
to solve the problem. The choice of this type of solvers is not only motivated by its ability to

52



solve large-scale systems, but also by its capacity to be implemented in a matrix-free version,
which allow fewer resources consumption and consequently enables the processing of much
larger datasets. The code [95] as well as the examples are uploaded to GitHub.

3.3. Results

We tested our algorithm on real images and demonstrated that it yields satisfactory results.
The choice to use synthetic images is also influenced by the absence of a reference solution
in the context of physical experiments. The use of synthetic images is of great importance in
computer vision, as they allow for the generation of precise data for assessing the effectiveness
of image processing algorithms. By using these images, it is possible not only to avoid the
difficulties associated with collecting real experimental data, which can be costly in terms of
time and resources, but also they allow for the creation of various test scenarios.

A natural measure of quality in this context is the Average Endpoint Error (AEE) which
corresponds to the average (over N pixels) of the Euclidean distance between the calculated
(u, v) and the ground-truth (û, v̂) motion fields:

AEE2 =
∥u− û∥2 + ∥v − v̂∥2

N2

In order to study the influence of the previous cited functions over the discontinuities, a syn-
thetic 512 × 512 speckle patterns image is generated with grain sizes averaging between three
and five pixels using the algorithm developed in [33].

3.3.1. Crossing crack

We create an artificial transverse horizontal crack of one pixel by imposing a one-pixel downward
displacement on the lower part of the created discontinuity. The images are presented in the
Fig. 3.3.

The horizontal displacement in this test case is zero across the entire image whereas the vertical
displacement field is invariant for each part of the image, since it is zero for the entire upper
part of the crack and imposed to be one pixel for the lower part as shown in the analytic
motion field of Fig. 3.4c. The average of vertical displacements along the horizontal direction
of the image must then be constant and the curve of these averages over the entire image
should be represented by a Heaviside step function, discontinuous at the crack row. In this
case, the maximum standard deviation reached on each section is an indicator of the noise of
the calculated solution. The results of Fig. 3.4 demonstrate that the quadratic norm behaves
as predicted by diffusing discontinuities and by requiring more pixels to capture the crack
than the robust functions (Charbonnier and Lorentzian) that are able to converge towards
a better solution in terms of AEE and standard deviation. Indeed, the L2 norm captures
the discontinuities with seven pixels, while other metrics that only require three pixels. This
highlights the importance of studying the impact of these metrics over the estimation of strain
on mechanical images.

53



(a) Generated speckle pattern (b) Transverse crack image

Figure 3.3: First synthetic test case

3.3.2. Crack with tip

The William’s series [65] allows for the description of displacement and strain fields near a
crack or notch in a solid material. This method assumes that the motion near a crack can
be expressed as a series of functions dependent on the distance from the crack tip. From the
pre-defined speckle pattern Fig. 3.3a, a deformed image is generated using Williams’ fields
resulting from a planar loading mode presented in Fig. 3.6j. The deformed image Fig. 3.5 of
the generated sequence contains a 1× 250 pixels discontinuity.

The regularization parameter in optical flow methods is used to balance the smoothness of the
estimated motion field and the accuracy of the motion vectors. This parameter allows control-
ling the trade-off between fitting the data and maintaining the smoothness of the estimated flow
field. The behavior of this parameter is similar to that of the grid size in DIC techniques [65].
A higher value of the regularization parameter leads to a smoother but less accurate motion
estimation, while a lower value results in a more detailed but potentially noisy flow field, see
Fig. 3.6.

The initial results show that the Charbonnier and the Lorentzian functions give more promising
results than the quadratic norm by preserving discontinuities and providing better quality of
motion fields.

To highlight the difference between the used metrics, we present the horizontal and vertical
strain fields obtained with different regularization in Fig 3.7 and Fig 3.8. We observe that
the fields obtained using the L2 norm are noisier compared to those generated by the robust
functions. It is also observed that Charbonnier produces spurious discontinuities (see Fig. 3.7c
Fig 3.8c) that are not observed either in the analytical fields Fig. 3.7g and Fig. 3.8g or in the
fields generated by the Lorentzian penalty function presented in the first rows of Fig 3.7 and
Fig 3.8. Moreover, these unreal discontinuities become structured and difficult to distinguish
from real cracks. This outcome can be explained by the fact that Charbonnier is an approx-

54



(a) Average of vertical displacements along the hor-
izontal direction in the vicinity of the crack.

Metric AEE Std. dev. Crack width
×10−5 max (pixels)

L2 λ = 103 7.86 1.64× 10−2 7
Lorentz λ = 10

6.05 2.97× 10−3 3
σ = 0.05

Charbonnier λ = 10 7.04 3.20× 10−5 3

(b) AEE, maximum standard deviation reached
outside the crack, and number of pixels required
to capture the discontinuity for each penalty
function.

(c) Calculated and analytic motion fields.

Figure 3.4: Identification of the crossing crack for different metrics.

55



Figure 3.5: The deformed image for the second test case, the part framed in blue contains the
generated crack

imation of the non-smooth L1 norm, which results in abrupt gradients in regions where the
displacement values are slightly different.

Discontinuities like cracks can be characterized as places where the strain field varies rapidly.
This can be illustrated by Fig. 3.9g which shows the norm of the gradient of the strain field
for the ground-truth solution, and where the crack clearly stands out. Thus, the norm of the
difference between the value of the analytical second derivatives of the displacement and their
calculated counterpart is an indicator that quantifies the ability of the methods to capture
cracks. We denote this field by NSDE which stand for Frobenius Norm of the Strain Derivative
Error, its relative mean value is denoted by MNSDE, see Eq. (3.8). We observe from the
NSDE of the Fig. 3.9, that the fields obtained with the Lorentzian function shown in Fig. 3.9a
and Fig. 3.9b are more homogeneous outside the crack, closer to reality, and contain less
discontinuities than those estimated by the Charbonnier function presented in Fig. 3.9c and
Fig. 3.9d or the noisy fields giver by the L2. Furthermore, Fig. 3.9h shows that the lowest
values of MNSDE are provided by the Lorentzian compared to the other metrics. Even though
the fields generated by the quadratic function are noisier, as reflected by higher MNSDE, these
fields are not structured as those generated by the Charbonnier function. This behaviour makes
the Charbonnier’s function as used by the optical flow community (ε = 10−3) challenging to
use in mechanics.

NSDE(ε) =
∑
i,j

||
∂(εxixj

− ε̂xixj
)

∂xj

||2F , MNSDE(ε) =
NSDE(ε)∑

i,j

||
∂ε̂xixj

∂xj

||2F

(3.8)

56



(a) Lorentzian, λ = 1 (b) Lorentzian, λ = 101 (c) Lorentzian, λ = 102

(d) Charbonnier, λ = 1 (e) Charbonnier, λ = 101 (f) Charbonnier, λ = 102

(g) L2,λ = 1 (h) L2,λ = 10 (i) L2,λ = 102

(j) Analytic horizontal displace-
ment

Figure 3.6: Horizontal displacement field estimated with different values of λ, and different loss
functions for the crack with tip experiment.

57



(a) Lorentzian, λ = 101 (b) Lorentzian, λ = 102

(c) Charbonnier, λ = 101 (d) Charbonnier, λ = 102

(e) L2, λ = 101 (f) L2, λ = 102

58



(g) Analytic

Figure 3.7: The horizontal strain fields εxx provided with different regularization amplitude of
λ for for different metrics.

Choice of the parameter for the robust metrics. Let’s recall that the shown results
given by the different robust metrics are obtained by fixing the parameter ε for Charbonnier as
done by the optical flow community, and using a parameter σ = 0.05 for the Lorentzian, which
we fixed through empirical testing. In this paragraph, we assess the impact of varying these
parameters over the strain field. The results are shown in Figures 3.10, 3.11, 3.12 and 3.13.
It is visible that the discontinuities observed for Charbonnier with ε = 10−3 disappear when
the value of this parameter is increased. On the other hand, we observe that we begin to have
increasingly noisy fields and we start to diffuse the discontinuities when it is increased. We
remark a similar behavior for the parameter σ of the function of Lorentz, with the appearance
of spurious discontinuities when its value decreases and the presence of noisy fields resembling
those of the L2 norm when its value increases. This means that the parameters of the robust
metrics allow us to give more weight either to the behavior of the L1 norm, avoiding aberrant
values and preserving cracks, or to that of the L2 norm.

3.3.3. Local regularization

Global regularization of the fields may result in excessive smoothing of the solution, leading
to loss of details and structures in the image and decreasing the accuracy of the registration
computation. Moreover, this strategy may not be suitable for situations involving regions with
discontinuities. Hence, the interest in considering local regularization weights is to preserve the
discontinuities as much as possible on the calculated fields. We have adopted the strategy to
adjust the amplitude of the regularization in such a way that it decreases around the crack to
ensure that there is no diffusion of the crack whereas the strain fields becomes homogeneous

59



(a) Lorentzian, λ = 101 (b) Lorentzian, λ = 102

(c) Charbonnier, λ = 101 (d) Charbonnier, λ = 102

(e) L2, λ = 101 (f) L2, λ = 102

60



(g) Analytic

Figure 3.8: The vertical strain fields εyy provided with different regularization amplitude of λ
for different metrics.

and smooth outside the area containing the discontinuity. This leads to the minimization of a
novel energy whose regularization weight (λi,j) is defined locally and changes depending on the
pixel coordinates:

E(u, v) =
∑
i,j

ρ((I2(i+ ui,j, j + vi,j)− I1(i, j))) + λi,j

(
ρ((∇x(ui,j))) + ρ((∇y(ui,j)))

+ ρ((∇x(vi,j))) + ρ((∇y(vi,j)))
) (3.9)

To test our approach, we create a local smoothing mask Fig. 3.14 with values varying between 7
(near the crack) and 600 (away), using the function of Lorentz with σ = 0.05. In order to avoid
sudden changes in λ, a Gaussian filter is applied as shown in Fig. 3.14b. The analytical strain
field εyy shown in Fig. 3.15k and 3.15l allows to visualize the whole length of the discontinuity.
The choice of a global large smoothing weight results in excessive smoothing in the area near
the crack tip Fig. 3.15f which is not observed for the small values of λ Fig. 3.15c. This can be
explained by the fact that when the regularization amplitude is high, there is a strong influence
of the neighboring pixels on the smoothing process, which can lead to a loss of important
details. But the global small λ results in structured noise away from the crack.
The local change of regularization shown in Fig. 3.15g, 3.15h, 3.15i allows us to take advantage
of the high regularization outside the crack by homogenizing the strain fields and to preserve
the totality of discontinuity on the εyy field as in the case of small regularization, as the impact
of the neighboring pixels is forced to become weak at the crack’s neighborhood.
One can observe in Fig. 3.16 that the local regularization permits to correctly capture the
strain gradients. Also, the MNSDE computed with the local regularization matches the best
approaches in their region of validity (near the crack for the low regularization, away from the
crack for the large regularization). Observing the AEE, it is important to note that a low
regularization results in a low value for this index. Therefore, we focus on displacements, the
use of a regularization value of 7 might be more favorable.

61



(a) Lorentzian, λ = 101 (b) Lorentzian, λ = 102

(c) Charbonnier, λ = 101 (d) Charbonnier, λ = 102

(e) L2, λ = 101 (f) L2, λ = 102

62



(g) Analytic

Function λ MNSDE
Lorentz 10 3.037× 10−1

Lorentz 102 8.226× 10−2

Charbonnier 10 2.029× 100

Charbonnier 102 5.681× 10−1

L2 10 3.661× 100

L2 102 3.550× 100

(h) The MNSDE in terms of λ

Figure 3.9: NSDE for the different metrics using different regularization amplitudes. Their
corresponding MNSDE is presented in the table 3.9h. The image 3.9g represents the analytical
norm of the second-order gradient.

Figure 3.10: εxx strain of Charbonnier function using different ε values and fixed λ = 4× 102

63



Figure 3.11: εyy strain of Charbonnier function using different ε values and fixed λ = 4× 102

64



Figure 3.12: εxx strain of Lorentz function using different σ values and fixed λ = 102

65



Figure 3.13: εyy strain of Lorentz function using different σ values and fixed λ = 102

66



3.4. Conclusion

Along this paper, we have tested the impact of different metrics on the strain fields estimated
using optical flow methods. Robust penalty functions like Charbonnier and Lorentzian often
give very good results on displacements and preserve cracks unlike the quadratic L2 norm often
used in DIC that tends to diffuse them. Despite its advantage of preserving discontinuities,
the Charbonnier function as it used in optical flow creates some spurious cracks which could
be hardly distinguished from the physical ones. The use of the Lorentzian and Charbonnier
functions with suitable values of their parameters that allow us to achieve a transition between
the behaviors of the two norms L1 and the L2, leads to satisfactory results.
The Tikhonov parameter that balances the influence of the fidelity term and the smoothness
term plays a major role in these methods. Increasing this term is similar to enlarging the size
of the sub-images in DIC algorithms. The increase of this parameter can cause oversmoothing
on some regions of the image, which could be unpleasant in the presence of local phenomena,
while its decrease can encourage the presence of noise in the estimated strain fields. A strategy
is adopted to change the value of this parameter locally using a mask. This approach enabled
us to combine the advantage of preserving the discontinuities in the areas where this parameter
is low and of smoothing the fields where its weight is greater.
This work has enabled us to test a few examples of robust metrics. In future work, we’d like to
explore other metrics and their added value in mechanics. The creation of the regularization
mask used in the illustrative example of this article is manual and with advance knowledge
of the kinematic field which is not often the case. One of the perspectives is to automate the
creation of masks. One initial idea to reach this objective could be to take the advantage of the
pyramidal approach and to leverage the GNC structure used during the minimization process.
This automation could also be achieved through the introduction of an artificial intelligence
model able to distinguish between image areas requiring stronger smoothing and those requiring
weaker smoothing.
Finally, in order to use these penalties on other image sequences, we implemented an open
source, GPU-accelerated, and matrix-free code [95] written in python that can be easily modified
and allows the use of a regularization mask.

67

https://github.com/chabibchabib/robust_metrics


(a) (b)

Figure 3.14: (a) Local regularization mask. The cut along the red line is shown in the figure
(b).

Appendix: Structure-texture decomposition

The assumption of the graylevel conservation has been taken into account since the creation of
optical flow methods. In other words, it has been supposed that the values of the pixels of the
image sequence do not change during the motion. For many sequences, this constraint is not
respected. For instance, this can be caused by camera noise, shadows, reflections, brightness
changes. . .
To solve this issue, one solution was proposed in [7], called structure-texture decomposition.
This idea of this approach is to split each image into two parts. The first part contains the main
objects of the images and is called the structural part while the second one is the textural part
and corresponds to the fine scale-details of the image, this is illustrated on Figure 3.17. The
decomposition is achieved using Rudin, Osher and Fatemi (ROF) image denoising [8] model.
The structural part IS of the image I can be obtained by solving the following problem:

min
IS

∫
Ω

{
|∇IS|+

1

2θ
(IS − I)2dx

}
(3.10)

Finally, the textural image IT is given as the difference between the main image and its struc-
tural part IT = I − IS.
For the purpose of solving (3.10), the iterative scheme introduced in [8] is adopted. IS =
I + θ div p where p is defined iteratively by p0 = 0 and:

p̃n+1 = pn +
τ

θ
(∇(I + θ div pn))

and

pn+1 =
p̃n+1

max(1, | p̃n+1 |)

68



(a) εxx, λ = 7 (b) εyy, λ = 7 (c) εyy, λ = 7

(d) εxx, λ = 6× 102 (e) εyy, λ = 6× 102 (f) εyy, λ = 6× 102

(g) εxx, λ local (h) εyy, λ local (i) εyy, λ local

69



(j) εxx Analytic (k) εyy Analytic (l) εyy Analytic

Figure 3.15: The strain fields in terms of λ. The third column shows a zoom of the second
column over the crack. The first and second rows show fields obtained with values close to
the minimum and maximum regularization parameter (λ = 7 and λ = 600) used in the mask,
while the third row shows the results obtained with the local parameter change. Finally, the
analytical fields are presented in the last row. The dotted line corresponds to the analytical
abscissa of the crack tip.

The time step τ must be less or equal to
1

4
and θ is a small constant.

This type of decomposition could be a promising avenue to explore in the case of tomographic
images, as the image texture is determined by the nature of the studied material, and this can,
in some cases, pose a challenge for the optical methods. One can find a suggestion for setting
the parameter values in the paper of Wedel [7].

70



(a) λ = 7 (b) λ = 6× 102

(c) λ local

λ Crack Pixels AEE×10−4 MNSDE
Global Near Crack Out Crack

7 3 1.46 0.39 17.44× 10−1 45.62× 100

600 6 1.68 0.19 24.35× 10−1 3.25× 100

Local 3 1.53 0.15 19.18× 10−1 3.12× 100

(d)

Figure 3.16: NSDE obtained with different regularization amplitudes and using the local regu-
larization mask. The table indicates the number of pixel required to capture the crack as well
as the AEE, the MNSDE of the global field as well as in the vicinity and outside the crack.

71



(a) Structure part (b) Texture part

(c) Original image

Figure 3.17: Example of the Structure-Texture decomposition

72



4. GCPU OpticalFlow: a GPU accel-
erated Python software for strain mea-
surement

In the previous chapter, we examined a few examples of metrics not often utilized in DIC. These
include the Lorentzian and the Charbonnier metrics. These metrics depend on an adjustable
parameter that allows for a transition between the behavior of the L1 and L2 norms. Besides,
the linear system to be solved is created in each iteration of the calculation since the derivatives
of these metrics are not linear as shown in 2.3.5. On the other hand, the L2 norm yields results
less satisfying than those generated with the other penalty functions, but its derivative is
linear, making the minimization straightforward. This result eliminates the need for complex
algorithms to find the optimum of the energy using the L2 norm.

It is also pertinent when obtaining results within a reasonable time frame is crucial, as seen
in real-time mechanical testing scenarios where rapid data acquisition is necessary to identify
any abnormal behavior or defect occurring during the test. To address this, we explore in this
chapter the techniques employed in developing a parallel and a memory-optimized software for
full-field measurement. This work has been employed within our laboratory in various exper-
iments with different objectives, such as fatigue tests or the calibration of cameras [88] which
we will discuss in the following sections in the form of an application of GCPU OpticalFlow
which is the name of the pixel-wise DIC software [99] we have developed.

Finally, the remainder of this chapter is a work that has been submitted to the SoftwareX
journal with the ISSN 2352-7110.

Authors Ahmed Chabib, Jean-François Witz, Pierre Gosselet, Vincent Magnier.

Affiliation Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de
Mécanique,Multiphysique, Multi-échelle, F-59000 Lille, France.

Abstract This paper introduces an open-source pixel-wise Digital Image Correlation tool
written in Python and targeting graphics processing units (GPUs) with the help of Cupy and
Rapids-cuCim libraries. It is capable of computing the kinematic fields that transform an
image into another in an efficient and quick way and it allows to treat large images in the GPU.
Even if GCPU OpticalFlow can be easily used by communities concerned by the estimation
of displacement, it is particularly tuned to estimate consistent strain (gradient) field. The
detection of a crack in a material is presented in this work as a demonstration.

Keywords DIC, Optical Flow, Python, GPU, Mechanics, Strain, Measurement, CUDA

73

https://github.com/chabibchabib/GCpu_OpticalFlow


4.1. Motivation and significance

4.1.1. Introduction

Digital Image Correlation (DIC) is one of the most popular optical methods that provide
full-field displacement between consecutive images. After the notable advancement of this
technique, DIC has become more and more used in several scientific disciplines, notably in
materials science for strain measurement in order to deduce the properties of materials.
Most of DIC software are based on a local [50, 53, 54, 55, 56] or a global approach [52, 57, 25, 59].
Although local DIC can provide pixel-wise displacement when the step size is set to 1 pixel,
the results in this case are still derived from a template and not from a single pixel as is the
case with GCPU OpticalFlow which is an open source code based on D. Sun [4] methods.

The calculation of the kinematic fields from a sequence of images captured with modern high-
resolution cameras become increasingly expensive in terms of memory and computation, due
to the copious volumes of data (tomography etc.). Hence the need to develop an optimized fast
code that takes up less memory. We propose to use a matrix-free implementation of Krylov
iterative solvers [60] suited to Graphics Processing Units(GPU) so that no voluminous matrix
needs to be stored.

Some of the existing DIC programs are written with a low level programming language (C++
for the example) like DICe [52], Ncorr [53] which make their understanding, execution and
modification complicated. Our code is implemented in the popular python language and relies
on classical libraries to optimize its performance and offload computations on the available
hardware accelerators. Presently, the DIC programs are adapted to different architectures, like
CPU [52, 53, 54, 55, 56], Raspberry Pi [51] or even in GPU [58]. In contrast to this software
where no assumption on the nature of the displacements is made, the previous work of our
research team GPUcorrel [58] is based on a global approach and uses an integrated correlation
step. In other terms, the program expects a list of displacement fields to extract from the
image sequence and the calculated result is a linear combination of the given basis. Moreover,
GPUcorrel uses PyCUDA kernels which have the form of CUDA-C code to target the GPU.
Our software uses Cupy [47] and Cucim [64] libraries that contain a GPU-accelerated version
of Numpy, Scipy and Skimage functions and called easily using the same syntax. The engine is
able to use the alternatives of the GPU libraries on CPU when the GPU or one of its related
libraries is missing. For instance, if CuPy is not found, Numpy will be used instead, all in the
same single straightforward Python code comprehended by non-experimented developers.
This article and software represents a bridge between the optical flow community that does not
deal with mechanical imaging and the DIC community, and enables the users, particularly from
mechanical engineering, to measure the pixel-wise displacements and efficiently deduce strain.

4.1.2. Principles of DIC and Optical Flow

Let I1 and I2 be a sequence of two images, where I1 is the reference image and I2 is the deformed
one. The objective of DIC is to find a transformation of the image that keeps the graylevel

74



invariant between two images.

I1(x) = I2(x+ u(x)), u is the displacement field. (4.1)

It is impossible to estimate the displacement that transforms I1 to I2 at each pixel directly
from the conservation law (4.1) as the number of unknowns exceeds the number of equations.
To solve this problem, DIC algorithms transform the ill-posed optical flow problem into a well-
posed one by using a grid of pixels, aiming at reducing the number of the degrees of freedom [2].
This grid can be local, FEM (Finite Element Method) [27] or even X-FEM (Extended Finite
Element Method) [3]. Therefore, the displacement, written uh, is interpolated on a basis of
continuous shape functions with local support. In order to quantify the difference between the
images, the integral of squared differences is chosen as a metric. Then the purpose of DIC is
the minimization of the objective function ((4.2)) with respect to uh.

E(uh) =

∫
Ω

(
I1(x)− I2

(
x+ uh(x)

))2
dx (4.2)

The use of a reduced dimension search space acts in itself as a regularization. Nevertheless,
when willing to decrease the size of the grid, a Tikhonov-type regularization is commonly added,
leading to a new objective function:

E(uh) =

∫
Ω

(
I1(x)− I2

(
x+ uh(x)

))2
+ λ(∇uh)

2dx, for λ > 0. (4.3)

Optical flow methods share the purpose of DIC but they make the hypothesis that a well
mastered regularization makes it possible to get rid of the interpolation grid, leading to com-
putations at the pixel scale, see [1, 6]:

E(u) =

∫
Ω

(
I1(x)− I2

(
x+ u(x)

))2
+ λ(∇u)2dx (4.4)

Notice that in [4], other energies were proposed where Li and Osher’s median filter [11] was
interspersed. This resulted in the removal of the outliers at the cost of a slight energy increase.

4.2. Software description

4.2.1. Software functionalities

GCpu OpticalFlow is coded in Python language and requires some external modules. It is
implemented as simply as possible in order to be understandable and editable by all the re-
searchers regardless of their programming skills. Therefore, the software uses Cupy and cuCim
to run on the GPU. Cupy is a high-level GPU-accelerated computing library which contains a
GPU version of NumPy and SciPy libraries able to run on NVIDIA CUDA or on AMD ROCm
platforms, whereas cuCim is a library that provides a CUDA-accelerated implementation of a
wide range of image processing operations existing in scikit-image. This software only works
with NVIDIA GPUs with at least the 3.0 version of Compute Capability.

75



At every warping step, the algorithm requires the resolution of the following linear system:(
I2x + λ∆ IxIy
IxIy I2y + λ∆

)(
dUk+1

dV k+1

)
= −

(
IxIt + λ∆Uk

IyIt + λ∆V k

)
, (4.5)

where k is the current iteration, dUk+1 and dV k+1 are respectively the horizontal and the vertical
flow increment, Uk and V k are respectively the horizontal and the vertical current estimated
flow field, λ represents the regularization parameter, Ix and Iy are the spatial derivatives of the
image, It is the temporal derivative and ∆ is the discrete Laplace operator. When handling
high resolution images, the matrix can not fit in the memory and therefore the resolution is
computationally costly.

The preconditioned minimum residual method MINRES [39] is used in this software. The
choice of this solver is motivated not only by its ability to take advantage of the symmetry of
the system matrix but also by the possibility of a matrix-free implementation. While evaluating
the matrix-vector product in the resolution step, the Laplace operator is computed using the
laplace() function of scipy or cupyx.scipy for GPU, to avoid any additional matrix storage.

In numerical analysis, the preconditioner is a practical tool to increase the rate of convergence,
in our case it has been observed that using the following preconditioner P can decrease the
number of iterations that MINRES takes to converge.

P =

(
(I2x + 8λ)−1 0

0 (I2y + 8λ)−1

)
(4.6)

As usually done in DIC methods, the gradient of the second warped image∇I2(x+u) is replaced
by the gradient of the reference image of the sequence ∇I1(x) so that costly computation can be
avoided. This can be explained by the fact that at the convergence the images of the sequence
converge to the same solution [12].

4.2.2. Software architecture

To estimate flow fields with large motion, the method uses an incremental multi-resolution
technique. A pyramid of images is built by down-sampling the sequence. The flow field es-
timated in a level is thereafter up-sampled and used to initialize the next level as illustrated
in Fig. 4.1. The main function of the software is compute flow base(). It returns ul and vl, the
horizontal and the vertical displacements for a specified level l after solving the system (4.5) 10
times and getting the best flow increments, and it takes as one of its arguments the up-sampled
displacements computed in the previous level as an initial state. It should be noted that in the
top level, the initialization is given by optical flow tvl1() function of skimage or cucim.skimage.
compute flow base() is called at each level by the compute flow() function which allows the
management of the pyramid and returns the final estimated displacements. The flowchart in
Fig. 4.2 shows the main functions of the software modules.

76



Initial guess

.
.
.

Upsamling

the flow field

D
o
w
n
s
a
m
p
l
i
n
g

I
m
a
g
e
s

Image I2

.
.
.

Image I1

.
.
.

OF estimation

OF estimation

OF estimation

Figure 4.1: Representation of the pyramidal approach

4.3. Illustration

We created, in the folder Test, a script named mainscript.py which allows the user to quickly
test the program. This script is able to estimate the motion from the sequence of images in the
Images folder. It generates two .npy files, u cucim and v cucim corresponding to the horizontal
and vertical displacements.
To demonstrate the usefulness of the method, we used two images of a holed ±45 carbon/epoxy
composite material specimen Fig. 4.4 on which a uniaxial tensile force is applied. The setup
is schematized in Fig. 4.3, it generates a sequence of 1120 × 7830 images where each pixel is
equivalent to 0.022 mm. This type of material is chosen because of its particularity of creating
cracks, which provides an excellent case to test and to analyze the method on discontinuities.

The results presented in Fig. 4.5 and Fig. 4.6 show that the method can detect the only crack
in the sample. We observe that the choice of the amplitude of the regularization parameter as
well as the size of the window of the median filter could play an important role. Increasing the
value of λ leads to decreasing the noise on the image but it can lead to strain diffusion as the
result of using a quadratic norm. We also remark that increasing the size of the median filter
can provide less noisy results.

4.4. Impact

In order to compare the performance of our method with a global DIC software, we use
YaDICS [61], a program which demonstrated its competence to effectively generate the kine-
matic fields [62] in various disciplines of experimental mechanics. The window size in the
DIC approach is decreased to the maximum in order to compare the performance, since
GCPU OpticalFlow generates the fields at every pixel. The result is shown in Fig. 4.7 and
Table 4.1. We observe, that the crack is clearly detected. Note that the interpolation er-
ror given by the norm of the difference between the warped image and the reference one, is

77



Figure 4.2: Flow-chart of flow field estimation with GCPU OpticalFlow

5.42 × 10−2 and 5.64 × 10−2 for YaDICs and GCPU OpticalFlow respectively, meaning that
the quality of the solution is unchanged. The main difference is that the DIC method takes
more than 11 minutes for YaDICs using an AMD Ryzen Threadripper 1950X 16-Core Proces-
sor. On the other side, due to the performance improvement efforts, the GCPU takes only 15
seconds using a the same processor with an NVIDIA GeForce RTX 3070 GPU, meaning that
our software in this case is 44 times faster.

Field Mean Std Median NMAD

u 2.119e-1 2.820e+0 2.719e-2 1.374e-2
v 2.144e-1 7.220e-1 2.691e-2 1.305e-2
εxx 3.046e-2 1.343e+0 4.746e-3 3.031e-3
εyy 2.075e-2 2.433e-1 3.942e-3 2.526e-3
εxy 1.486e-1 2.863e+0 2.475e-3 1.726e-3

Table 4.1: Statistical indicators (in pixels) of the root-mean-square error (RMSE) of the kine-
matic fields computed by YaDICs and those estimated by GCPU OpticalFlow.

For the purpose of getting a clear idea about the difference between the residuals of both
software, a graph is presented in Fig. 4.8. We mean by the image energy, the energy calculated
by first term of the function E (4.4) related to the graylevel conservation, while the gradient

78



Figure 4.3: Experimental setup with (A)
the camera, (B) the sample under testing
and (C) the uniaxial tensile testing ma-
chine.

1
5
0
m
m

25 mm 2 mm

3 mm

Figure 4.4: Dimensions of the used ±45
Carbon Epoxy specimen.

displacement energy is the value given by the gradient of the transformation that figures in the
second term of the same function E. Different values of λ varying from 3× 103 to 106 are used
for GCPU, and various element size between 2 and 50 are used in YaDICs case, since these
two parameters are meant to smooth the calculated fields by each program. It can be clearly
observed that for an equivalent smoothness level, GCPU provides better quality results as its
image energy is lower than YaDICs. To quantify the difference, the areas under the curves
are measured and we can notice that the value given by YaDICs is 6.42 greater than the one
calculated by GCPU OpticalFlow.

The methods used by the program were coded in [48] using Matlab. Unlike Python which
became a vastly accepted open-source programming language, Matlab isn’t free nor open-source.
The Matlab implementation was expensive in terms of memory and calculations. To estimate
the motion for an (N ×N) pixels sequence, the storage of O(N4) coefficients of Laplace matrix
and of the main matrix of the linear problem (4.5) was needed. Thanks to GCPU OpticalFlow,
we are able to solve the same problem using only O(N2) coefficients. Using this approach, we
can treat larger volume of data on the GPU.

In the future this work will be integrated to Crappy [49], which is a locally developed Python
module capable of commanding advanced experimental mechanical tests and able to acquire
data in real time.

79



(a) λ = 3× 103 (b) λ = 5× 103

(c) λ = 5× 104 (d) λ = 105

Figure 4.5: Uniaxial strain εxx in function of λ with fixed 3× 3 median filter

4.5. Conclusion

The presented software is an open-source Python module for full field displacement and strain
computing, able to run in both GPU and CPU and based on D. Sun models. In our implemen-
tation, we used a matrix-free Krylov solver to reduce the computational cost and the memory
storage. It has been shown by the example that the code computes efficiently the strain at each
pixel of the image. We also presented the benefits and limitations of the size of the median
filter and the parameter of regularization on the discontinuities.

Finally, in the long term this method will be extended to work on three-dimensional tomographic
images.

80



(a) Median 3× 3 (b) Median 5× 5

(c) Median 9× 9 (d) Median 11× 11

Figure 4.6: Uniaxial strain εxx in function of the median size with fixed λ = 3× 103

4.6. Acknowledgements

The authors wish to express their very special appreciation to Mr. Victor Couty and Mr.
Adrien Berger for providing them with test images.

Required Metadata

81



(a) YaDICs strain with 2×2 window, 3×3 median (b) GCPU strain λ = 3× 103, 5× 5 median

Figure 4.7: Strain field computed by YaDICs and GCPU OpticalFlow

Figure 4.8: Energy image in terms of gradient displacement energy for both software. The
dotted vertical lines indicate the limits of the zone where the two software are compared

4.7. Applications

This short section presents two contexts where the software developed in this thesis was applied
by other PhD students for their own studies. We focus on technical and performance details

82



Nr. Code metadata description

C1 Current code version v1.0

C2 Permanent link to code, reposi-
tory used for this code version

https://github.com/

chabibchabib/GCpu_OpticalFlow

C3 Permanent link to Reproducible
Capsule

C4 Legal Code License GPLv2+

C5 Code versioning system used git

C6 Software code languages, tools,
services used

Python, Cupy, OpenCv, Rapids
Cucim and Numba

C7 Compilation requirements, oper-
ating environments & dependen-
cies

Numpy 1.20.3, Scikit-image 0.16.2,
Scipy 1.6.3, OpenCV 4.2.0 or newer
versions. Numba, NVIDIA CUDA
GPU with the Compute
Capability ⩾ 3.0, CUDA
Toolkit ⩾ 10.2, Cupy and Cucim

C8 Link to developer documenta-
tion, manual

https://gcpu-opticalflow.

readthedocs.io/

C9 Support email for questions ahmed.chabib@univ-lille.fr

Table 4.2: Code metadata

and leave the scientific conclusions to the thesis’ authors.

4.7.1. Calibration of cameras

Calibration of cameras is a widely used technique in the field of computer vision aimed at estab-
lishing the relationship between the position of a point in the image and its spatial coordinates,
thus modeling a camera system by estimating its properties. The parameters of a vision system
are divided into two types: intrinsic parameters, which represent camera parameters such as
focal length and the position of the camera’s principal point, and extrinsic parameters, which
describe the camera’s orientation and position relative to a global coordinate system.

Understanding these parameters allows us to generate a three-dimensional representation from a
two-dimensional image. This property is highly advantageous for reconstructing surface topog-
raphy by measuring height variations. The GCPU OpticalFlow contributed to the development
of a Python model for image calibration using the Soloff methods [93], developed within our
laboratory [88], known as PyCASO. This work has been published in the SoftwareX journal.
PyCASO requires two sets of images of the same object taken by two cameras (Left and Right)
at different heights z. To accomplish this, a special setup is typically used, consisting of a light
source, a calibration target containing distinguishable pixel patterns that will be used in the
image correlation step, and an instrument capable of translating along the z-axis. A schematic
representation of this setup is presented in Fig. 4.9

The objective is to establish the relationship between spatial coordinates X = (x, y, z) and the
coordinates of the two cameras, which we will denote as Pr = (Cr, Rr) and Pl = (Cl, Rl) for

83

https://github.com/chabibchabib/GCpu_OpticalFlow
https://github.com/chabibchabib/GCpu_OpticalFlow
https://gcpu-opticalflow.readthedocs.io/
https://gcpu-opticalflow.readthedocs.io/
mailto:ahmed.chabib@univ-lille.fr


D

C

A B

z

Figure 4.9: The device used for camera calibration, where (A) Left camera, (B) Right camera
and (C) The calibration pattern,(D) Moving table

the right and left camera respectively. First, the module proposes to reconstruct the object’s
surface using direct methods [94] that assume that each component of the spatial coordinates
is the image of the pixel coordinates in the left and right images through a polynomial. For
example, for the component x , we assume that there exists a polynomial Dx such that:

x = Dx(Pl, Pr) = d0 + d1Cl + d2Rl + d3Cr + · · ·+ dn−2CrR
p−1
r + dn−1R

p
r

where p is the polynomial degree and n is the number of calibration constants to determine
for each component. The same assumption is made for each direction, leading to the following
linear system:

x
y
z

 =

Dx

Dy

Dz

 =

d0x d1x . . . d(n−1)x

d0y d1y . . . d(n−1)y

d0z d1z . . . d(n−1)z




1
Cl
...
Rp

r

 = DM (4.7)

This assumption is applied to a set of points with a cardinal N less than the number of points in
the image in order to generate more equations, allowing the system to be solved using a pseudo-
inverse, such as the Moore-Penrose pseudo-inverse [92], for instance. PyCASO also offers, in
addition to the direct methods, another approach called Soloff, which consists of assuming this
time that for each component of the coordinates Pr and Pl of each camera is the image of the
spatial coordinates X by a polynomial. For example, for the component Cr, we assume that
there exists a polynomial SCl

such that Cl = SCl(X). Given that:

SCl(X) = s0 + s1x+ s2y + · · ·+ sn−2yz
p−1 + sn−1z

p

84



By grouping these equations into a matrix, we obtain the following problem:


Cl

Rl

Cr

Rr

 =


SCl

SRl

SCr

SRr

 =


S0Cl

. . . S(n−1)Cl

S0Rl
. . . S(n−1)Rl

S0Cr . . . S(n−1)Cr

S0Rr . . . S(n−1)Rr




1
x
y
...
zp

 = SM (4.8)

The method for determining the coefficients of the matrix S is identical to that of the direct
methods. Regardless of the calibration method used, it is necessary to identify the pixels in
both the left and right images, and this is where image correlation comes into play especially
with the use of our software that can provide the deformation linking the two images. In other
words, GCPU OpticalFlow determines the displacement fields w = (u, v) such that Pl(x) =
Pr(x + w(x)) for all points x of the image. Once the matrix D is determined along with the
displacement field, the surface topography can be generated using the direct approaches by
calculating the image of each point in the image using the polynomial whose coefficients are
stored in D. However, for the Soloff methods, an optimization step is required, relying on the
Levenberg-Marquardt method [90] or regression methods [91].
The different methods were tested for reconstructing the surface of a coin with a speckle pattern
and compared with the results provided by a profilometer. It was observed Fig. 4.10 that the
direct methods deviate more from the reference curve compared to the Soloff methods, which
provide more accurate results. However, the direct methods are faster than the Soloff methods,
which can be explained by the computational complexity of the optimization algorithms used
for point identification in the image.
Finally, smoothing appears in regions with a significant gradient of height, which is explained
by the nature of the least squares function used for calculating the displacement fields. It could
be interesting to investigate the impact of changing this norm to more robust metrics that
ensure the preservation of discontinuities in the field, as described in the chapter 3.

4.7.2. Microstructure gradient’s

This work was applied as part of a doctoral thesis [102] aimed at studying the microstructure
gradient’s effect on the fatigue of a metallic material. More specifically, it was used in a
mechanical test under constant load amplitude for crack detection in a test specimen.
It has been observed that post-processing a thousand image sequences acquired during the test
requires eight days of computation using 2x2 elements for YaDICs. However, using the same
machine equipped with a Nvidia GeForce RTX 3070 graphics card, this only requires four hours.
A figure showing the crack length in a strain field as a function of window size and Tikhonov
parameter is presented in Fig. 4.11. Notably, in addition to the regularization parameter effect,
the element size exhibits a similar behavior. Increasing the element size results in excessive
smoothing of the crack.

85



Figure 4.10: (a) Profilometric topography. (b) Soloff topography. (c) Direct topography. (d)
AI topography. (e)z-distribution of the 450th column [88]

86



Figure 4.11: Strain fields in the loading direction using YaDICs for different correlation window
sizes and GCPU for several regularization values [102]

87



88



5. Interplay between preconditioning and
regularization for linear ill-posed prob-
lems solved by conjugate gradient:
Application to optical flow estima-
tion

In the previous chapter we aimed at creating a simple code, hence the use of already imple-
mented and accelerated solvers which seem to be adapted to our needs. The conjugate gradient
algorithm seems to be better suited to this problem thanks to its positive definite aspect. This
chapter contributes to a better understanding of the system to be solved generated by Horn
& Schunk, and benefit from our knowledge of Krylov solvers in the context of ill-posed prob-
lems, in particular those on the Augmented Preconditioned Conjugate Gradient and filtering
by Ritz values, in order to adjust the Tikhonov parameter and carry out a Picard-type spectral
analysis. This chapter is presented under the form of a draft article, to be soon submitted in
International Journal for Numerical Methods in Engineering ISSN: 1097-0207.

Authors Ahmed Chabib, Jean-François Witz, Pierre Gosselet, Vincent Magnier.

Affiliation Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de
Mécanique,Multiphysique, Multi-échelle, F-59000 Lille, France.

Abstract This paper investigates the possibilities offered by combining regularization and
preconditioning by the same symmetric positive semi-definite operator when solving ill-posed
problems. We study the question of the stopping criterion, and the possibility offered by Ritz
eigen elements of a posteriori filtering of the solution and tuning of Tikhonov’s weight. The
method is applied as the linear solver of an optical flow estimator and it is coupled with a
subspace recycling strategy.

Keywords DIC, Optical Flow,Augmented Conjugate Gradient, Strain

5.1. Introduction

Ill-posed systems of equations are ominous in mechanics. They are particularly present in
identification problems, like the boundary completion in elasticity [79, 75]. They also appear in
methods which involve some compact operation, like the Herglotz’ transform to build solutions

89



to the Helmholtz problems [80]. Beside existence and uniqueness issues, ill-posed problems
are defined by the lack of stability between the cause and the effect, in other words small
perturbations in the input potentially lead to large modifications of the output.
In this paper, we focus on discrete n× n linear symmetric positive semi-definite systems of the
form Ax = b, so that all properties can be analyzed in terms of the spectrum of A. Existence
and uniqueness are linked to the null-space of A (strictly zeros eigenvalues) whereas stability is
associated with the accumulation eigenvalues near zero. Indeed, a small contribution of b in an
eigendirection associated with a small eigenvalue of A has a significant impact on x. Ill-posed
problems thus result in poorly-conditioned operators.
Solving such systems amounts to finding a satisfying treatment to these small eigenvalues:
truncation, shift, filtering. Truncation consists in not considering the problematic directions, for
example using an eigenvalue decomposition (or more generally a singular value decomposition)
and only keeping the part of the matrix associated with eigenvalues larger than a given criterion
ε [76]:

A ≃
m∑
i=1

σiuiu
T
i , σi > ε > 0, m < n. (5.1)

Note that this idea is approximately implemented by iterative solvers since they tend to favor
the upper part of the spectrum in the first iterations, so that one only needs to stop the solver
early enough.
Shift is generally achieved thanks to a Thikonov regularization [30], that can be written as, in
its simplest form:

A ≃ Aλ = A+ λI. (5.2)

In that case λ > 0 becomes the lower bound of the spectrum of Aλ. Often, a matrix with more
physical sense, acting more locally on the small eigenvalues, is available instead of the identity.
Filtering tries to improve a solution after it was computed using another technique by trying
to enforce some physical properties. For instance, smoothing can be used to recover regularity
in a oscillating solution.

All these techniques are often controlled by a parameter (ε for the truncation, λ for the regu-
larization, the stopping criterion of an iterative solver. . . ) which needs to be tuned in order to
find a balance between the information inside the original system and the information brought
(or removed) by the treatment.
When the accuracy of the data is known, Morozov’s principle [81] provides an objective criterion
to choose the parameter: the correction brought by the added information should not exceed
the noise in the measurement.
When no such data is available, a compromise must be found. Picard’s principle [77] compares
the eigenvalues (sorted in decreasing order) and the decomposition of the right-hand side (rhs)
in the eigendirections. While eigenvalues decrease faster than the rhs, their contribution to the
solution remains controlled. The L-curve [78] is a visual aid to find a balance. The solutions
for various level of regularization are positioned in a plane (”norm of the residual”, ”norm of
the solution”), in general large regularization leads to low norm of the solution but high error,
whereas small regularization leads to lower level of error but large solutions (highly perturbed).
Hopefully, some corner exists which realizes a compromise between residual and oscillating
solution.

90



In this paper, we try to combine cleverly these ideas inside a sophisticated solver which offers
many useful features: several stopping criteria, filtering of the solution, easy tuning of the
regularization. It extends previous work in [75], by exploring the interplay between Tikhonov
regularization and preconditioning. This work was initiated in the context of digital image
correlation by the optical flow technique, even though it can be applied to very general studies.
The paper is organized as follows: in Section 5.2, we briefly present the system that needs
to be solved for the computation of the optical flow between two images. In Section 5.3,
we recall the augmented preconditioned conjugate gradient algorithm and the computation
of Ritz eigenelements, we provide a first discussion on the effects of the preconditioner. In
Section 5.4, we consider the case of regularized systems preconditioned by the regularization
matrix. Section 5.5 provides assessments and Section 5.6 concludes the paper.

5.2. Basic notions about the optical flow

The optical flow is a digital image correlation technique which aims at estimating the displace-
ment field between two images at the scale of the pixel. Contrarily to very popular approaches
in solid mechanics inspired by the Finite Element Method [27], it does not rely on a mesh
and on shape functions to approximate the displacement field. Given a sequence of two im-
ages (I1, I2), viewed as N ×M arrays of graylevel pixels (in the discrete segment 0 : Gmax),
it directly aims at finding the transformation ϕ = (ϕx, ϕy) such that I1 − I2 ◦ ϕ = 0. Note
that we use interpolation between pixels so that the images can be defined on the rectangle
[0, N − 1] × [0,M − 1] ⊂ R2 with values in the continuous segment [0, Gmax] ⊂ R and the
displacement u := (ϕ− Id) can take non-integer values (Id is the identity operator). It is even
common to obtain precision below one tenth of a pixel. In order to gain flexibility, and adapt
to unavoidable noisy measurements which make the zero unachievable, the problem is better
rephrased in terms of the minimization of the “image energy” EI :

E2
I =

1

2
∥I1 − I2 ◦ ϕ∥2 , where ∥I∥2 =

∑
0⩽i<N
0⩽j<M

I(i, j)2. (5.3)

Even under that form the problem is not well-posed, would it only be because there are two
times more unknowns than equations.
A solution to recover a well-posed problem is to enforce regularity to the displacement field. A
penalty term related to the gradient is then introduced:

E2 = E2
I +

λ

2
∥∇u∥2, (5.4)

where we kept the Euclidean norm notation for ∥∇u∥2 := ∥∂xux∥2+∥∂yuy∥2+∥∂xuy∥2+∥∂yux∥2.
λ is a weight that needs to be tuned in order to balance the contributions of the image energy
and of the regularization.

In general a modified Newton approach is used to minimize the energy. Starting from a guess
u, the update u+ du is computed by solving the system:

(A+ λM)x = bA + λbM, (5.5)

91



with

A =

(
Jx

Jy

)(
I I
I I

)(
Jx

Jy

)
, M =

(
∆

∆

)
x =

(
vec(dux)
vec(duy)

)
, bA =

(
vec((I1 − I2 ◦ ϕ)Jx)
vec((I1 − I2 ◦ ϕ)Jy)

)
, bM =

(
vec(∆ux)
vec(∆uy)

)
.

(5.6)

The vec operator converts images to vectors (N ×M array to NM vector). For z ∈ {x, y}, Jz
is the z component of the gradient of I1, ∆uz is the (scalar) Laplace operator applied to uz.
Jz is the NM diagonal operator containing the values of the gradient Jz, and ∆ is the NM
matrix version of gradient operator (with Neumann boundary conditions). All the operators
are in fact obtained by discrete difference on the image. As classically done, the gradient of
I1, which can be computed once for all, is used to approximate that of I2 ◦ ϕ. As commonly
done in image treatment, a median filter is applied to all the computed increments in order to
remove outliers caused by the imperfect speckle.
It is extremely simple to work with A and M without assembling them, one only needs to
compute and store the two N ×M images (Jx,Jy) and use Hadamard product and Laplace
function when computing matrix-vector multiplication.
The system is of dimension 2MN . As said earlier, A is strongly deficient since its rank is at
most MN , a first part of its kernel has the following basis:

span

(
Jy

−Jx

)
⊂ ker(A). (5.7)

With a simple computation, it can be shown that the complement part of the matrix can be
diagonalized as (J2

x+J2
y), and pixels where the gradient is zero (bad speckles) are also associated

with zero eigenvalues.
M is also rank deficient, the dimension of its kernel is 2, a basis of its null space is well known:

ker(M) = span

(
1 0
0 1

)
, (5.8)

where 1 is the vector filled with 1: the kernel of the scalar Laplace operator consists of constant
functions.

5.3. Preconditioned Conjugate Gradient and Ritz ele-

ments

We use the classical notation: normal font for scalars, boldface lowercase the vectors, boldface
uppercase for matrices. For a collection of vectors, we note Xm = (x0, . . . ,xm−1) (the index m
thus corresponds to the number of columns of the matrix).
Let A be a n × n symmetric definite positive matrix and b be a n vector. We search the
solution to the system Ax = b. We use a conjugate gradient, preconditioned by the symmetrix
positive semi-definite matrix M, and augmented by the n × nC full-rank matrix C such that
ker(M) ⊂ Range(C).

92



For an approximation xi, we note ri = b−Axi the residual. We introduce the Krylov subspace
Ki(M

−1A,C,M−1r0):

Ki(M
−1A,C,M−1r0) = span

(
M−1r0, . . . , (M

−1A)(i−1)M−1r0
)
⊕ Range (C) (5.9)

If no confusion is possible, we will simply write Ki.
Given an arbitrary initialization x00, the ith iteration can be defined as:{

find xi ∈ x00 +Ki(M
−1A,C,M−1r0)

such that ri ⊥ Ki(M
−1A,C,M−1r0)

(5.10)

This iteration is achieved by Algorithm 5 where the augmentation is a managed by the correction
of the initialization (in order to obtain x0) and the projector P on ker(CTA), which together
ensure that the residual is always orthogonal to Range(C).

Algorithm 5 Augmented Conjugate Gradient

x00 and C given
P = I−C(CTAC)−1CTA
x0 = Px00 +C(CTAC)−1CTb
r0 = b−Ax0 = PT (b−Ax00)
z0 = PM−1r0, w0 = z0
γ0 = (zT0 r0)
for i = 0, 1, . . . ,m (convergence) do

qi = Awi

δi = (wT
i qi), αi = δ−1

i γi
xi+1 = xi +wiαi

ri+1 = ri − qiαi

zi+1 = PM−1ri+1

γi+1 = (zTi+1ri+1)
βi = γ−1

i γi+1

wi+1 = zi+1 +wiβi

end for

The algorithm builds two special basis of Ki: Zi is aM-orthogonal whereasWi isA-orthogonal:

ZT
i MZi = ZT

i Ri = diag(γj)0⩽j<i

WT
i AWi = WT

i Qi = diag(δj)0⩽j<i

(5.11)

It is convenient to introduce the M-normalized version of the Zi basis:

ẑi =
(−1)izi√

γi
so that ẐT

i MẐi = I (5.12)

This basis is in fact the basis that would have been obtained by an Arnoldi procedure [82], and
we have:

ẐT
i AẐi = Ti = Tridiag(ηj−1, µj, ηj)

with µ0 =
1

α0

, µj =
1

αj

+
βj−1

αj−1

, ηj =

√
βj

αj

(5.13)

93



We can diagonalize Ti = ΞiΘiΞ
T
i where Θi is the diagonal matrix of eigenvalues sorted in

decreasing order and Ξi the orthonormal matrix of eigenvectors.
The Ritz vectors are Vi = ẐiΞi, while Θi are the Ritz values of the system. They satisfy:

VT
i MVi = I and VT

i AVi = Θi. (5.14)

More, as the number of iterations i increases, they tend to approximate the generalized eigen-
values of the couple (A,M) [83].

5.3.1. Role of the preconditioner

It is often said that the preconditioner should be a good approximation of the inverse, in the
sense that the spectrum of M−1A should be as concentrated as possible around a non-zero
value (1 after scaling if needed). This can be roughly estimated by the condition number of
M−1A, but more sophisticated studies are available [84].
It is important to note the proximity between the conjugate gradient algorithm to solve linear
systems and the Lanczos procedure to compute eigenvalues [60], as was made explicit by the
Ritz analysis in this section’s introduction. It is also useful to see that the higher part of
the spectrum is explored in priority due to the repeated power in the construction of Krylov
subspace.
In the case of poorly-conditioned systems, the preconditioner can play a regularization role, as
was explored in [75]. Schematically, for a direction d, what matters is the ratio (dTAd/dTMd).
If the preconditioner measures the irregularity of a field, it penalizes the highly oscillating
directions and delays their exploration.
Also, the preconditioner can be viewed as providing a physic-based alternative to the simple
Euclidean orthogonality. It thus defines ”natural” norms which are useful in the analysis of the
iterations as discussed in next subsection.

5.3.2. Stopping criteria

Conjugate gradient give valuable pieces of information at no cost, but in specific norms, in the
course of the iterations. First, we have error estimators [86]:

∥ri∥2M−1 = γi

∥xi+1 − x∥2A = ∥xi − x∥2A − γ2
i δ

−1
i

(5.15)

of course the difficulty is that ∥x0 − x∥2A is unknown. Then we have measurement of the norm
of the correction brought by iterations:

∥xi+1 − x0∥2M = ∥xi − x0∥2M + α2
i ∥wi∥2M + 2αi(w

T
i M(xi − x0))

with

{
∥wi+1∥2M = γi + β2

i ∥wi∥2M, ∥w0∥2M = γ0

(wT
i+1M(xi+1 − x0)) = −βi

(
(wT

i M(xi − x0)) + αi∥wi∥2M
) (5.16)

Finally, we have an estimator on the preconditioned operator:

∥T0∥2F = µ2
0

∥Ti+1∥2F = ∥Ti∥2F + µ2
i + η2i + η2i−1 → ∥M−1A∥2F

(5.17)

94



where index F stands for the Frobenius norm, ∥M−1A∥2F is the sum of the squares of the
generalized eigenvalues of (A,M).

We can then devise costless stopping criteria:

∥ri∥M−1 < ε∥r0∥M−1

∥ri∥M−1 < ε∥Ti∥F∥xi − x0∥M
(5.18)

The first one is very classical, but it is risky in the sense that it may be too strict is the
initialization or the augmentation were well-chosen (∥r0∥M−1 is already small). The second one
is inspired from the Scipy implementation of MinRes (with a more adapted choice of norms),
we are sorry not to know who to attribute it to; it is interesting in the sense that it balances
the reduction of error and the increase of the norm of the solution, which is always a dilemma
when solving ill-posed problems. It is often interesting to combine the criteria, add stagnation
detection, and to also use safeguards in absolute value in case of too good initialization and
augmentation.

5.3.3. A posteriori filtrering

In the case of a poorly conditioned system, the reduction of the error can be obtained at the
price of an explosion of the norm of the solution. This is well explained by Picard analysis: the
phenomenon occurs when the eigenvalues of the operator decrease faster than the contribution
of the right-hand side in the associated direction. It can also be visualized on a L-curve, in
the positive quarter of a frame of the form (∥ri∥, ∥xi+1∥): the curve start in the bottom right
corner (large error, small norm) with a fast decay of the error, and finishes in the top left corner
(reduced error, large norm).
As shown earlier, conjugate gradient provides natural norms to evaluate the error and the norm
or the solution: ∥xi − x∥A and ∥xi − x0∥M. With this choice of norms, the curve is always
oriented toward the upper left corner (at each iteration, the norm of the error decreases and
the norm of the solution increases).
Ritz elements offer a convenient way to filter the solution. Assuming m iterations were con-
ducted, we can process the basis Vm and the values Θm. We can post process a reduced
solution x̃i in projection on Vm.

x̃i = x0 +
i∑

j=1

vj

(vT
j r0)

θj
(5.19)

We have:

∥x̃i − x∥2A = ∥x̃i − x0∥2A −
i∑

j=1

(vT
j r0)

2

θj

∥x̃i − x0∥2M =
i∑

j=1

(vT
j r0)

2

θ2j

, (5.20)

and of course:

∥x̃i − x̃i−1∥2A =
(vT

i r0)
2

θi
and ∥x̃i − x̃i−1∥2M =

(vT
i r0)

2

θ2i
. (5.21)

95



Since the (θj) are sorted in decreasing order, we see that the error of (x̃i) tends to decrease less
than its norm tends to increase. The L-curve for (x̃i)i is then convex and the corner may be
easier to define. The slope of the L-curve between the point i−1 and i is −θ−1

i . A possibility is
to define the corner as the point which maximizes the variation of slope: i = argmax(θ−1

i+1−θ−1
i ).

Ritz’ elements also make it possible to use Picard’s theory and stop the construction of x̃i when
the contribution (vT

i r0) starts to decrease less fast than (θi). This criterion has the advantage
to take into account the properties of the right-hand side.

5.4. Preconditioning by regularization

In general, preconditioning is important because it can speed up the convergence of iterative
solvers. As evoked in Section 5.3, it becomes crucial for ill-posed problem for the physical
information it provides and also because the resolution will be stopped “early”. Since a too
strict convergence criterion can not be attained in a reasonable amount of time, two distinct
preconditioners lead to different history of resolution and to qualitatively very different solu-
tions.
As described in Section 5.2, we are interested in Tikhonov-regularized systems of the form:

(A+ λM)︸ ︷︷ ︸
Aλ

xλ = bA + λbM︸ ︷︷ ︸
bλ

(5.22)

As suggested by the notation, we investigate the effects of using the same operator for the
regularization and the preconditioning, in particular when there exists a cheap technique to
apply the preconditioner (i.e. M−1). Conceptually, this idea makes sense as the same physical
motivation underlies the choice of the regularization and that of the preconditioner. Moreover,
many opportunities are opened by this choice.

If we assume that the system (5.22) was solved for a given λ in m iterations, then we can
process the Ritz basis Vm. The strong point is that the properties of Vm are independent of λ:

VT
mMVm = I

VT
mAλVm = Θλ,m = Θm + λI.

(5.23)

Remark. λ can be viewed as a shift in the generalized eigenvalues of (A,M). Since λ alters the
initial residual and only a limited number of iterations is made, the content of Vm is influenced
by λ, without impairing the orthogonality properties. The arguments of the algorithm P and
x0 of the algorithm 5 are independent of λ.

We can define the Ritz’ approximation:

x̃λ,i = x0 +
i∑

j=1

vj

(vT
j rλ,0)

θj + λ
= x0 +

i∑
j=1

vj

vT
j bA + λvT

j bM

θj + λ
(5.24)

This approximation can be computed at zero cost for any λ, and one could search for the
optimal choice of (λ, i) for a compromise between error and norm of the solution.

96



5.5. Assessments

5.5.1. Application to optical flow reconstruction

The recovery of the optical flow is in fact a nonlinear minimization problem. A pyramidal
approach is developed [85], as often in image correlation, in order to provide a meaningful
initialization. For simplicity, we focus on the last system to be solved, associated with the full
image. Anyhow, the initialization of this system was impacted by the choice of the regulariza-
tion.

We consider the solution to system ((5.5),(5.6)) with augmented preconditioned conjugate
gradient, Algorithm 5. Due to the rectangular shape of the images, there exists an extremely
cheap way to solve the Laplacian using Fast Fourier transform or more precisely discrete cosine
transform see Appendix 5.6.

In order to apply the inverse, it is necessary to ensure that the orthogonality with respect to
constant fields (null-space of M). For the augmentation, we may use:

C =

(
1 0
0 1

)
or C =

(
1√
sxx

−1sxysb
sxx

0 sb1

)
with



sxx = 1TJ2
x1

sxy = 1TJxJy1

syy = 1TJ2
y1

sb = 1/
√
syy − s2xy/sxx

(5.25)

the second expression has the advantage to make the matrix (CTAC) identity.

The proposed test case is a holed composite plate in traction, with a 45◦ crack to be identified
at the bottom of the hole. The speckle in the initial configuration is shown in Figure 5.1. To
quantify the bad conditioning, the pixel-wise gradient norm is between 10−6 and 102.

5.5.2. Quality of the preconditioner

We first wish to verify that preconditioning by regularization actually leads to better enforce-
ment of the regularity. In Table 5.1, we can qualitatively compare the classical approach of
preconditioning by the diagonal of the operator and the proposed preconditioning by regular-
ization. The increased regularity is particularly visible for low weight λ and low precision ε of
the linear solver.

Preconditioning by the regularization operator thus makes it possible to make meaningful com-
putations with low weight in the regularization and to solve with less precision, hence with less
iterations. Nevertheless, one has to mention that our preconditioner is computationally more
expensive per iteration than the diagonal one.

97



λ ε Diagonal Prec. Regularization Prec.

Low Low

Low High

High Low

High High

Table 5.1: εxx strain field (range = mean value ± 3 st.dev.). Comparison of the effect of precon-
ditioning by diagonal (simple approach) vs by regularization, for different weights λ ∈ {1, 1000}
and linear solver precision ε ∈ {10−2, 10−3}.

98



Figure 5.1: Speckle of the test specimen.

5.5.3. Ritz filtering

We analyze the solving process for high (λ = 1000) and low (λ = 10) levels of regularization.
We use the second stopping criterion of Equation (5.18) with ε = 10−5, which corresponds to
a rather high degree of convergence. The identified strain field are given in Figure 5.4.

We analyze the convergence in terms of compromise between the decrease of the error and
the increase of the norm of the gradient of the solution which stems from the oscillations in
the identified fields. Figure 5.2 presents two L-curves associated with high (λ = 1000) and
low (λ = 10) regularization. We use the natural CG-norms, please note that the position
of the 0-abscissa is conventional because ∥x0 − x∥A is unknown. The L-curves of the CG
iterations (dotted lines) have similar shapes, like pieces of hyperbola, but due to the difference
of magnitude, different scales had to be used: the error decreases four times less when the high
regularization is used, and the norm of the solution remains fifty times smaller.

In order to better understand the convergence, we conduct a Ritz analysis and the a posteriori
filtering of the solution. We present the L-curves of (5.24) in terms of modes included in
the reconstruction. We show the curves in terms of full error and only taking into account the
image error (vT

i rA) — they are almost overlaid on each other, a slight discrepancy only appears
for high regularization. The shape of the Ritz L-curves corresponds to most the modes (the
highest) only slightly decreasing the error and almost not changing the norm, only the last 5
modes are associated with significant decrease of the error (but of course at the cost of much
increased solution norm). More or less, if a corner was to be selected it would correspond to
just suppressing the contribution of the last mode.

In order to better understand this behavior, we first analyzed the convergence of the Ritz
values by comparing the spectrum obtained at the last iteration with the one obtained just
one iteration before (Ritz(N-1) full error in Fig. 5.2), like was done in [87] in the case of a well
posed problem. It appears that the largest Ritz values were quite well approximated and only

99



the lowest part of the spectrum evolves (remember the Ritz values correspond to the inverse of
the slope of the segments in the L-curve). In other words, even though the last iterations seem
not to modify the solution much (accumulation of the dots in the upper left part on the CG
L-curves), they play an important role in terms of estimation of the lower part of the spectrum,
without adding lots of small eigenvalues.

To support this analysis, we conducted a Picard’s study on Figure 5.3 which shows the distribu-
tion of the Ritz values (θi) as well as the decomposition of the right-hand side on the eigen-space
vT
i bA and λvT

i bM. It is worth recalling that low and high regularized systems have the same
spectrum, except that it is more sampled for the low regularization which requires two times
more iterations to converge. The Ritz values are slowly decreasing and only the last 10% really
decay, the low regularization is not associated with an overpopulation of the lowest part of the
spectrum. What stands out is the fact that the right-hand side contributes almost equally on
all modes (at least it does not decrease for larger Ritz values). Picard’s theory thus suggests
that we should stop the reconstruction when the Ritz values start to decay. Unfortunately,
it appears that the crack is mostly represented in this part of the spectrum which makes it
impossible to eliminate.

By the way, Figure 5.3 permits to compare the smallest Ritz value θmin with the regularization
parameter λ. The case that we called “low regularization” corresponds to λ being negligible
with respect to θmin, and thus only marginally modifying the active Ritz spectrum. On the
contrary, the high regularization corresponds to a λ > θmin which means that the lower part of
the spectrum is flattened.

(a) λ = 1000, 56 iterations (b) λ = 10, 104 iterations

Figure 5.2: L-curves (ε = 10−5) compared with Ritz post-treatment, for different regularization

intensity λ. !

a
Different scales on each plot.

100



(a) λ = 1000 (b) λ = 10

Figure 5.3: Spectral analysis of the system for ε = 10−5 and different regularization intensity
λ. A 5-width median filter was used on the contribution curves.

(a) λ = 1000 (b) λ = 10

Figure 5.4: Identified εxx field, for different regularization intensity λ, with ε = 10−5.

101



5.5.4. Subspace recycling

Even though it appears that Ritz filtering is difficult to apply to the studied system, we can
still benefit from Ritz vectors to accelerate the solution. As a sequence of linear systems with
identical matrix has to be solved, it is natural to augment the system with the previously gener-
ated Ritz vectors by concatenating C←

(
C V

)
. Indeed, augmentation comes with optimized

block operations that make augmenting by one vector much cheaper than one iteration.
Moreover, Ritz vectors posses two advantages. First the product AVi which is required dur-
ing augmentation can be obtained at low computational cost using the formula: Aẑi+1 =

(−1)i+1(qi+1 − βiqi)/
√
γi+1 and AVi = AẐiΞi. Second using normalization: Vi ← ViΘ

−1/2
i ,

we have VT
i AVi = I.

Aug. 0 10 20 30 40 50 60 70 max (77)
Iter. 77 64 57 49 44 41 40 40 38
Time (s) 11.7 10.1 8.3 7.1 6.6 6.3 6.2 6.3 6.6

Table 5.2: Performance of recycling

Table 5.2 illustrates the performance of recycling for the nonlinear system to be solved on the
full image at the end of identification. The first linear system, only augmented by the kernel
of the preconditioner is first solved in 77 iterations. Then a certain portion of the Ritz vectors
is used to augment the next 8 linear systems (same matrix, different right-hand sides). As the
augmentation results in an excellent initialization, we use a criterion in terms of absolute value
of ∥ri∥M to halt the iterations because other comparison as given in Equation (5.18) might use
an unfair reference. We measure the performance in terms of gain in iterations, and mainly
gain in computational time (measures are conducted on a upper mid-range laptop with Nvidia
RTXA2000 graphic card). The gain in terms of iterations is moderate, with best obtained for
small augmentation space (at most 1.3 iterations per vector, for 10 vectors). In terms of time,
the optimal is obtained for augmentation space of 80%-90% of available vectors, with a global
CPU time divided by almost 2 (this time includes all the extra cost associated with computing
and using Ritz vectors). This size of subspace agrees with what we observed on the stability of
the largest Ritz values in the L-curves plots.

5.5.5. Tuning of λ

It is often hard to automatize the selection of the regularization intensity λ. Picard’s plots like
in Figure 5.3 permit to put λ in relation with the spectrum of the preconditioned operator and
thus to understand the effect of the regularization in terms of flattened spectrum. Still, the
final judge is often the expert’s impression of a strain map, and it is convenient to compute
maps associated with several (λi) at low cost.
Formula (5.24) makes it possible, after the solution to one linear system for a given λ0, to post-
process the solution for any λi at the simple cost of computing the associated right-hand side
bA,i (which depends on the history of the nonlinear solution for λi), and basic linear algebra
operations.

102



Figure 5.5 presents the solution deduced for λ = 1 from initial computations with λ ∈
{1, 10, 100, 1000} and ε = 10−4. Again, a median filter was applied after the Ritz recon-
struction.
It seems that the Ritz vectors make it possible to postprocess a solution with a λ divided by
up to 1000. The reconstructed strain field appears to be much less smooth than the original
computation (with high λ) while less noisy than the direct low-regularization computation with
λ = 1. Amazingly, deconvoluting by a greater factor (10000) leads to results quite similar to
what could be obtained with a quasi-L1 norm, see the results with the Charbonnier’s norm
of [85].

(a) λ = 1. (b) λ = 100 (c) λ = 1000 (d) λ = 10000

(e) λ = 1. (f) λ = 100 −→ 1. (g) λ = 1000 −→ 1. (h) λ = 10000 −→ 1.

Figure 5.5: Costless postprocessing for different (λi): top, initial computation with λ ∈
{1, 100, 1000, 10000}; bottom, solution deduced for λ = 1. εxx strain field.

5.6. Conclusion

In this paper, we have studied how preconditioning and Tikhonov regularization could be
efficiently combined in an augmented preconditioned conjugate gradient. We have shown that
this association makes sense from a physical point of view and it made it possible to combine
filtering, recycling of subspaces, and postprocessing of all regularized solutions at zero cost.
This gives a favorable framework to apply criteria like the L-curve or Picard’s analysis. We
showed how all this can be implemented at very cost while providing meaning information to
monitor the solution.
The solver was applied to a problem of optical flow reconstruction which introduced the extra
difficulty of nonlinearity. Satisfying results were obtained on actual measurements from digital
image correlation of a mechanical test.

103



Appendix: Inverse of Laplacian on a rectangle with Neu-

mann boundary condition

It is well known that plane waves x 7→ eiω·x, with ω ∈ R2, form a set of eigenfunctions for
the Laplace operator in R2 with eigenvalues −∥ω∥2 (using the Euclidean norm). This can be
equivalently formulated by saying that the Fourier transform diagonalize the Laplacian. Hence,
the powerful solution technique (in that case ω is the variable in the Fourier domain):

∆u+ f = 0 in R2

u = F−1

(
F(f)
∥ω∥2

)
(5.26)

What is remarkable is that the eigenvectors are preserved by discretization. For instance, if we
consider the classical 5-point stencil on a unit grid:

(∆hu)(k, l) = u(k + 1, l) + u(k − 1, l) + u(k, l + 1) + u(k, l − 1)− 4u(k, l) (5.27)

and one can check that

(∆he
iω·x)(k, l) = ei(kω1+lω2)(eiω1 + e−iω1 + eiω2 − eiω2 − 4) (5.28)

.
Now, considering a rectangular domain, the boundedness of the domain and the boundary
conditions lead to selecting only certain eigenvalues and eigenvectors are made out of a good
combination of plane waves. Consider the unit square [0, 1]2, the eigenvalues λn,m and eigen-
vectors vn,m of the Laplacian with (homogeneous) Neumann boundary conditions are given
by:

vn,m(k, l) = cos(
mlπ

M
) cos(

nkπ

N
)

λn,m = 2
(
1− cos(

nπ

N
)
)
+ 2

(
1− cos(

mπ

M
)
) (5.29)

As eigenvectors are cosine functions, the specialization of the Fourier transform to this case
takes the name of discrete cosine transform (DCT).
One just needs to take some care of the λ0,0 = 0-eigenvalue, associated with the constant
eigenvector. The classical solution is to work on functions with 0 mean value and nullify the
constant term in the transformed function.
We give the python code for the inverse of the discrete Laplacian on a rectangle with Neumann
boundary conditions, which can be directly invoked by the function
from scipy.ndimage import laplace with default arguments (that is to say border='reflect').

import numpy as np

from scipy.fftpack import dctn,idctn

# Prepare transform of Laplacian for (N,M) images

mwx = 2*(np.cos(np.pi*np.arange(0,N)/N)-1)

mwy = 2*(np.cos(np.pi*np.arange(0,M)/M)-1)

104



[MWX, MWY] = np.meshgrid(mwx,mwy,indexing='ij')

MW = MWX+MWY

MW[0,0]=1.

iMW = 1./MW

iMW[0,0]=0

def SolveLaplaceNeumann(U,iMW): #U must have zero mean value

dctU = dctn(U,norm='ortho')

uhat = dctU*iMW

u = idctn(uhat,norm='ortho')

return(u)

105



106



6. General Conclusion

Through this work, we have presented and discussed several commonly used optical methods
for calculating kinematic fields, specifically displacements and strain, in solid mechanics. These
methods include Digital Image or Volume Correlation (DIC or DVC) and optical flow. The
first method involves describing motion, whether through its local or global approach, by using
independent sub-images referred to as zones of interest (ZOI) in the case of local approaches,
and interdependent sub-images referred to as Regions of Interest (ROI) in the case of the global
approach. The second technique, optical flow, is based on the same assumption of graylevel
conservation, that the graylevel of each pixel in the integration domain remains invariant in an
image sequence.

In contrast to image correlation algorithms, optical flow algorithms are capable of describing
kinematic fields at each pixel, but they require an extra term that contains a regularization
constraint. Note that such a regularization is also often added to the DIC problem formulation
as well.

The global approaches of both methods have the advantage of providing continuous displace-
ment fields other large areas, which is their main benefit. However, they require solving a very
large linear system, the dimensions of which depend on the size of the images and the number
of degrees of freedom sought. Regardless of the chosen method, users always have an interest
in obtaining an accurate motion description within a reasonable time, especially when dealing
with real-time applications. Parallelism of codes can help reduce their execution time.

The problems to be solved often involve very high dimensions, and the most suitable solvers for
such problems are referred to as Krylov solvers, which are a specific type of iterative methods
which search for the solution in a lower-dimensional space compared to the dimensions of the
matrix to be solved and then return to the initial space via a transformation matrix (examples:
GMRES for general matrices and the Conjugate Gradient method for symmetric positive-
definite matrices). In most cases, Krylov-type solvers offer the advantage of being implemented
in a matrix-free version, meaning they don’t require storing the system matrix. They only need
a well-defined matrix-vector product operation, making them memory-optimized. The use of
this tool is essential, whatever the methods or the metrics employed.

In order to quantify the difference between two images, the quadratic norm is often used. This
work and the literature have shown that this norm has the disadvantage of diffusing the dis-
continuities that are often the subject of mechanical studies. On the other hand, in the optical
flow community, other types of error functions have been proposed, known as robust functions.
This designation comes from the fact that they are robust to outliers and discontinuities. Two
examples have been studied in this work: The Charbonnier and Lorentzian functions. Both
give satisfactory results when their parameter, which allows the transition between the behav-
iors of the two norms L1 and L2 is well adjusted, but it has been found that the Charbonnier
function, which is seen as a variant of the L1 norm as used by the optical flow community, can

107



create spurious discontinuities in the strain field.

The drawback of these metrics is that they require additional effort to minimize them, which is
due either to their non-convexity or to the non-linearity of their derivative. It was found that
the Tikhonov regularisation parameter plays a very important role, since it control the weight
given to the regularity part of the solution. Its behaviour was found to be similar to that of
window size in DIC. We proposed a local regularization that contains different values, larger
outside the crack and smaller in its vicinity. We were able to detect cracks without diffusion,
while achieving very homogeneous strain similar to those obtained with very large λ.

It has been mentioned that the GNC minimization algorithm is crucial not only for the
Lorentzian due to its non-convex nature but also for the Charbonnier function because of
its non-linearity. GNC is not useful in the case of the quadratic norm since it is convex and
its derivative is linear. We then set out to provide an algorithm for calculating fields based on
the Horn and Schunk method, while introducing more sophisticated techniques for improving
estimation. For this, we used the basic method described in the Sun’s [4] paper. To simplify
the understanding and modification of the “GCPU Opticalflow” code by the users who are not
familiar with low-level programming, we chose to use Python as programming language. The
provided software is GPU-accelerated, and its simplicity lies in the fact that it uses CuPy to
target the GPU instead of other libraries like PyCUDA, whose kernel understanding requires
a mastery of C/C++. GCPU Opticalflow is also matrix-free, which means it doesn’t consume
a lot of memory resources to operate. This is possible due to the nature of the Krylov solvers
used, which allow an implementation that avoids unnecessary storage and relies on functions to
compute matrix-vector products on demand. In our case, this was achieved through operators
based on convolution. Finally, it’s also multiplatform, since it only works on CPU if hardware
or software resources are not met. Indeed, in the case where one or more requirements are not
met, the alternatives of GPU-accelerated libraries will be used (e.g. NumPy instead of CuPy)
and the solution will be calculated at a slower pace.

We saw in the last chapter that it is possible to use the regularization term to precondition
the system to be solved using conjugate gradient methods. We have seen that the use of Ritz
modes in the post-processing stages to filter and recycle the digital information not only serves
to analyse the spectral properties of the problem in order to perform a Picard’s type analysis,
but can also be used to generate the kinematic fields resulting from different regularization
weights parameters at zero cost.

In terms of perspectives, it is important to note that first of all the local regularization mask
used was generated manually, which is not always possible to do. Our first idea is to take
advantage of the optimization algorithm’s iterative scheme and generate a mask automatically
from the results of the first GNC iteration, where the quadratic formulation is minimized.
Another approach to achieve this automation is to use artificial intelligence algorithms, such
as deep learning, to identify the areas where parameters need to be changed in order to detect
local mechanical phenomena. In the medium term, we will be interested in discovering other
robust metrics, as well as a thorough comprehension of their parameters. We would also aim
to explore other less complex optimisation approaches other than the GNC used in this work
in order to improve the calculation time so that this type of algorithm can be easily extended
to the case of tomographic images, which is our long-term objective. Extending this type of

108



algorithm to three-dimensional images generated using modern sensors with a resolution that
can reach up to 4000 voxels per direction, will require massive parallelism of the calculation
code on several levels, as well as the proposal of new solvers and interpolation operations to
optimize the communications during the calculation.

An initial work aimed at achieving this extension and estimating three-dimensional piwel-wise,
kinematic fields was carried out using a Horn and Schunk algorithm. The code implementation
consistently adhered to the same logic while utilizing CuPy to target the GPU and using a
matrix-free version of Krylov solvers, in order to maintain the code’s simplicity. This time,
however, the system to be solved (6.1) at a given iteration k, for a sequence of images of size
(N ×M × P ) has a dimension of 3NMP .I2x + λ∆ IxIy IxIz

IxIy I2y + λ∆ IyIz
IxIz IyIz I2z + λ∆

duk+1

dvk+1

dwk+1

 = −

IxIt + λ∆uk

IyIt + λ∆vk

IzIt + λ∆wk

 , (6.1)

Iz, dw
k+1, and wk represent, respectively, the gradient, the increment, and the displacement at

iteration k for the third space component.
This model was tested on images of size 150× 150× 100 voxels of a sample of nodular graphite
cast iron [101] with a crack. The obtained results are promising, since we were able to detect the
crack in the specimen, as shown in Fig. 6.1. We can observe a kind of noise at the image edge,
and we believe this issue can be explained by the boundary conditions used for the interpolation
operation or for the Laplacian operator. Hence, the importance of inspecting and addressing
this question before proceeding to parallelism.

109



(a) Front view

(b) Slice view

Figure 6.1: εzz strain field,λ = 103

110



Bibliography

[1] B.K.P. Horn and G. Schunck. Determining optical flow. Artificial Intelligence,1981, V. 17,
pages 185–203.

[2] B.D. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proceedings of Imaging Understanding Workshop,1981, pages 121–130.

[3] J. Réthoré, F. Hild, S. Roux, Shear-band capturing using a multiscale extended digital
image correlation technique, Computer Methods in Applied Mechanics and Engineering,V.
196, Issues 49–52, 2007.

[4] D. Sun, S. Roth and M. J. Black. Secrets of optical flow estimation and their principles.
Computer society conference on computer vision and pattern recognition. IEEE, 2010. p.
2432-2439.

[5] S. Baker, D. Scharstein, J. Lewis, S. Roth, MJ. Black and R. Szeliski. A database and
evaluation methodology for optical flow. In ICCV, 2007

[6] M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields. CVIU, 63:75–104, 1996.

[7] A. Wedel, T. Pock, C. Zach, D. Cremers, H. Bischof. An improved algorithm for TV-L1
optical flow. Dagstuhl Motion Workshop, 2008.

[8] LI. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60(1-4):259–268, 1992

[9] D. Sun, S. Roth, J. Lewis, and M. J. Black. Learning optical flow. ECCV, vol. 3, p. 83–97
(2008)

[10] A. Blake and A. Zisserman. Visual Reconstruction. The MIT Press, Cambridge, Mas-
sachusetts, 1987.

[11] Y. Li and S. Osher. A new median formula with applications to PDE based denoising.
Commun. Math. Sci., 7(3):741–753, 2009

[12] J. Neggers, B. Blaysat, JPM. Hoefnagels, MGD. Geers. On image gradients in digital image
correlation, 105 (4) 243–260.

[13] J. Sanchez, E. Meinhardt-Llopis, G. Facciolo. TV-L1 Optical Flow Estimation. In Image
Processing On Line, 2013.

111



[14] T. Brox, A. Bruhn, N. Papenberg, JoachimWeickert. High accuracy optical flow estimation
based on a theory for warping. In European Conference on Computer Vision (ECCV), V.
3024 of Lecture Notes in Computer Science, p. 25–36, May 2004. http://dx.doi.org/
10.1007/978-3-540-24673-2_3.

[15] P. Charbonnier, L. Blanc-Feraud, G. Aubert and M. Barlaud. Two deterministic half-
quadratic regularization algorithms for computed imaging, Proc. IEEE Int. Conf. Image
Process., p. 168-172, 1994.

[16] L. Alvarez, J. Monreal, J. Sánchez. A PDE model for computing the Optical Flow. XVI
Congreso de Ecuaciones Diferenciales y Aplicaciones 1999.

[17] JY. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker: Descrip-
tion of the Algorithm. Intel Corporation 2000.

[18] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeill. Determination of
displacements using an improved digital correlation method. Image Vision Comput. 1983,
1, 133–139.

[19] F. Hild, S. Roux. Comparison of local and global approaches to digital image correlation,
Experimental Mechanics, V. 52,2012.

[20] P. Cheng, M. Sutton, H. Schreier, S. McNeill. Full-field Speckle Pattern Image Correlation
with B-Spline Deformation Function. Experimental mechanics, V. 42, 2002

[21] JC. Passieux, R. Bouclier. Classic and Inverse Compositional Gauss-Newton in Global DIC.
International Journal for Numerical Methods in Engineering, In press, 119 (6), pp.453-468.
ff10.1002/nme.6057ff. ffhal-02059472f

[22] JC. Passieux, JN. Périé. High resolution digital image correlation using proper generalized
decomposition: PGD-DIC. International Journal for Numerical Methods in Engineering,
2012, 92 (6), pp.531-550. ff10.1002/nme.4349ff. ffhal-00708541

[23] J. Réthoré, F. Hild, S. Roux. Extended digital image correlation with crack shape op-
timization. International Journal for Numerical Methods in Engineering, 2008, 73 (2),
pp.248-272.

[24] F. Hild, A. Bouterf, P. Forquin, S. Roux. On the Use of Digital Image Correlation for
the Analysis of the Dynamic Behavior of Materials. The Micro-World Observed by Ultra
High-Speed Cameras, pp.185-206, 2018, 978-3-319-61490-8. ffhal-01674588f

[25] JC. Passieux. jcpassieux/pyxel, original-date: 2018-10-06T17:55:07Z. https://github.
com/jcpassieux/pyxel.

[26] S. Keil. Technology and Practical Use of Strain Gages With Particular Consideration of
Stress Analysis Using Strain Gages: With Particular Consideration of Stress Analysis
Using Strain Gages. John Wiley & Sons, Ltd. ISBN 978-3-433-60666-7.

112

 http://dx.doi.org/10.1007/978-3-540-24673-2_3
 http://dx.doi.org/10.1007/978-3-540-24673-2_3
https://github.com/jcpassieux/pyxel
https://github.com/jcpassieux/pyxel


[27] G. Besnard, F. Hild, S. Roux. ”Finite-element” displacement fields analysis from digital
images : application to Portevin-Le Châtelier bands. Experimental Mechanics, 2006, 46,
pp.789-804. ff10.1007/s11340-006-9824-8ff. ffhal-00124513f

[28] F. Hild, B. Raka, M. Baudequin, S. Roux, Florence Cantelaube. Multi-Scale Displacement
Field Measurements of Compressed Mineral Wool Samples by Digital Image Correlation.
Applied optics, 2002, IP 41, pp.6815-6828. ff10.1364/AO.41.006815ff. ffhal-00002901f

[29] B. Bay, T. Smith, D. Fyhrie, M. Saad. Digital volume correlation: Three-dimensional
strain mapping using X-ray tomography. Experimental Mechanics. 1999, V 39,pp–217:226.

[30] AN. Tikhonov, VY. Arsenin, Solutions of ill–posed problems, (1977), Wyley.

[31] F. Hild, S. Roux. Digital Image Correlation: from Displacement Measurement to Identifi-
cation of Elastic Properties – a Review. Strain, 2006, V. 42,pp. 69-80.

[32] J. Réthoré, T. Elguedj, P. Simon, M. Coret. On the Use of NURBS Functions for Displace-
ment Derivatives Measurement by Digital Image Correlation. Experimental Mechanics,
2009, V. 5, pp.1099-1116.

[33] M. Baconnais. Méthode intégrée de corrélation d’images et de corrélation d’images
virtuelles. Traitement des images [eess.IV]. École centrale de Nantes, 2019. Français. 〈NNT
: 2019ECDN0069〉. 〈tel-02950836〉. PhD thesis(in french).

[34] G. Golantonio. Stéréo-corrélation d’images numériques éléments finis : de l’étalonnage à
l’identification. University of Toulouse, 2020. PhD thesis(in french).

[35] JE. Pierré, JC. Passieux, JN. Périé, F. Bugarin, L. Robert. Unstructured finite element-
based digital image correlation with enhanced management of quadrature and lens distor-
tions. Optics and Lasers in Engineering 77 2016, pp. 44–53.

[36] International Digital Image Correlation Society, Jones, E.M.C. and Iadicola, M.A. (Eds.)
(2018). A Good Practices Guide for Digital Image Correlation. DOI: 10.32720/idic-
s/gpg.ed1

[37] HW. Schreier, MA. Sutton. Systematic Errors in Digital Image Correlation Due to Under-
matched Subset Shape Functions. Experimental Mechanics 2002. v. 42. pp 303–309.

[38] G. Hallo, C. Lacombe, R. Parreault, N. Roquin, T. Donval, L. Lamaignère, J. Neauport
and F. Hild. Sub-pixel detection of laser-induced damage and its growth on fused silica
optics using registration residuals. Optics Express 2021. v. 29.

[39] Paige, C. C., M. A. Saunders. Solution of Sparse Indefinite Systems of Linear Equations.
SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

[40] G.H. Golub, C.F. van Loan, Matrix computations, North Oxford Acad, 1983.

[41] A. Greenbaum: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA,
USA, 1997. 17.

113



[42] Y. Saad. Practical use of polynomial preconditioning for the conjugate gradient method.
SIAM J. Sci. Stat. Comput., 6(4),,865–881, 1985.

[43] Y. Saad, M. H. Schultz.GMRES: a generalized minimal residual algorithm for solving non
symmetric linear systems. Siam Journal on Scientific and Statistical Computing 1986, v.
7.

[44] M.R. Hestenes, E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of Standards 1952, v. 49, pp. 409–436.

[45] R. Fletcher. Conjugate gradient methods for indefinite systems. Numerical analysis.
Springer 1976, pp. 73–89.

[46] W. Kahan, B. Parlett. The Fully-Orthogonal Arnoldi Method for Generalized Eigenprob-
lems. SIAM Journal on Scientific and Statistical Computing 1980, v. 1, pp. 155–173.

[47] Akiba and Takuya and Fukuda and Kota. CuPy: A NumPy-compatible Library for
NVIDIA CUDA. IPSJ Transactions on Programming 2016, V 9, p 4–7.

[48] Link to Matlab implementation by D. Sun. http://www.cs.brown.edu/people/dqsun/

[49] V. Couty, J-F. Witz, C. Martel, F.Bari, A. Weisrock. CRAPPY: Command and Real-Time
Acquisition in Parallelized Python, a Python module for experimental setups. SoftwareX,
Vol. 16, 2021, pp.100848.

[50] D. Turner , P. Crozier, P. Reu. Digital image correlation engine (DICe). 2015, Sandia
National Laboratory: Albuquerque, NM, USA.

[51] P. P. Das, M. R. P. Elenchezhian, V. Vadlamudi, K. Reifsnider, R. Raihan. RealPi2dDIC:
A Low-cost and open-source approach to in situ 2D Digital Image Correlation (DIC)
applications. SoftwareX, 2021, Vol. 13, pp.100645.

[52] D. Turner , P. Crozier, P. Reu. Digital image correlation engine (DICe). 2015, Sandia
National Laboratory: Albuquerque, NM, USA.

[53] J. Blaber , B. Adair, A. Antoniou. Ncorr: open-source 2D digital image correlation matlab
software. Exp Mech 2015;55(6):1105-22.

[54] V. Belloni, R. Ravanelli, A. Nascetti,M. Di Rita, D. Mattei, M. Crespi. Py2DIC: A new
free and open source software for displacement and strain measurements in the field of
experimental mechanics. Sensors 2019;19(18). http://dx.doi.org/10.3390/rs12182906.

[55] V. Belloni V, R. Ravanelli, A. Nascetti, M. Di Rita, D. Mattei, M. Crespi. Digital image
correlation from commercial to fos software: A mature technique for full-field displacement
measurements. Int Arch Photogr Remote Sens Spatial Inf Sci 2018;42(2).

[56] R. Ravanelli, A. Nascetti, M. Di Rita, V. Belloni, D. Mattei, N. Nistico, M. Crespi, 2017.
A new digital image correlation software for displacements field measurement in structural
applications. ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLII-4/W2,pp. 139-145.

114

http://www.cs.brown.edu/people/dqsun/
http://dx.doi.org/10.3390/rs12182906


[57] SN. Olufsen, ME. Andersen, E. Fagerholt µDIC: An open-source toolkit for digital image
correlation. SoftwareX 2020;11:100391.

[58] V. Couty, J-F. Witz, P. Lecomte-Grosbras ,J. Berthe, E. Deletombe, M. Brieu. GPUCorrel:
A GPU accelerated Digital Image Correlation software written in Python. SoftwareX, 2021,
Vol. 16, pp.100815.

[59] Réthoré J. UFreckles, language: eng. http://dx.doi.org/10.5281/zenodo. 1433776. https:
//zenodo.org/record/1433776.

[60] Y. Saad. Numerical methods for large eigenvalue problems, SIAM, (2011), Classics in
Applied Mathematics.

[61] R. Seghir, J-F. Witz, S. Coudert,2014. Yadics-digital image correlation 2/3d software.
http://yadics.univ-lille1.fr/wordpress/

[62] N. Dahdah, N. Limodin, A. Bartali, JF. Witz, R. Seghir, E. Charkaluk, JY. Buffiere.
Damage Investigation in A319 Aluminium Alloy by X- ray Tomography and Digital Volume
Correlation during In Situ High-Temperature Fatigue Tests. In Strain, Wiley-Blackwell,
2016, 52 (4), pp.324-335.

[63] A. Plyer, G. Le Besnerais, F. Champagnat. Massively parallel lucas kanade optical
flow for real-time video processing applications 11 1–18. http://dx.doi.org/10.1007/
s11554-014-0423-0.

[64] Nvidia cuCim documentation. https://docs.rapids.ai/api/cucim/stable

[65] C. Roux-Langlois, A. Gravouil, M.-C. Baietto, J. Réthoré, F. Mathieu, F. Hild and S.
Roux. DIC identification and X-FEM simulation of fatigue crack growth based on the
Williams’ series. International Journal of Solids and Structures 2018. V. 53, pp 38–47.

[66] M.J. Flynn. Very high-speed computing systems, Proceedings of the IEEE, 1966, V. 54,
pp 1901 - 1909.

[67] Khronos Group. The OpenCL Specification (Version 3.0). Khronos Group 2011. https:
//registry.khronos.org/OpenCL/

[68] NVIDIA Corporation. (2023). CUDA Toolkit Documentation (Version 12.2). NVIDIA Cor-
poration. https://docs.nvidia.com/cuda/

[69] R. Badea. PyCUDA: Even Simpler GPU Programming with Python. Parallel for All.
NVIDIA Corporation 2012.

[70] J. Dongarra, V. Eijkhout, P. Luszczek. Recursive Approach in Sparse Matrix LU Factor-
ization. Scientific Programming,2001.

[71] BS. Andersen and J. Wasniewski. A Recursive Formulation of Cholesky Factorization of a
Matrix in Packed Storage. ACM Transactions on Mathematical Software, 2001, V. 27, pp.
214—244.

115

 https://zenodo.org/record/1433776
 https://zenodo.org/record/1433776
http://yadics.univ-lille1.fr/wordpress/
http: //dx.doi.org/10.1007/s11554-014-0423-0
http: //dx.doi.org/10.1007/s11554-014-0423-0
https://docs.rapids.ai/api/cucim/stable
https://registry.khronos.org/OpenCL/
https://registry.khronos.org/OpenCL/
https://docs.nvidia.com/cuda/


[72] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, G. E. Dahl. Measuring
the Effects of Data Parallelism on Neural Network Training. Journal of Machine Learning
Research,2019, V. 20, pp 1–49.

[73] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov, P. Gschwandt-
ner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer, K. Katrinis, E. Laure, D.
S. Nikolopoulos. A taxonomy of task-based parallel programming technologies for high-
performance computing. The Journal of Supercomputing, 2018, V. 74, pp. 1422–1434.

[74] D. Scholefield. Proving properties of real-time semaphores. Science of Computer Program-
ming, 1995, V. 24, pp. 159-181.

[75] R. Ferrier, M. L. Kadri, P. Gosselet. The Steklov-Poincaré technique for data completion:
Preconditioning and filtering. International Journal for Numerical Methods in Engineering,
2018, V. 116(4), pp. 270–286.

[76] P. C. Hansen. The truncated SVD as a method for regularization. BIT Numerical Mathe-
matics,1987,V. 27, pp. 534–553.

[77] P. C. Hansen. The discrete Picard condition for discrete ill-posed problems. BIT Numerical
Mathematics, 1990, V. 30, pp. 658–672.

[78] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve.SIAM review,
1992, V. 34, pp. 561–580.

[79] M. L. Kadri, J. Ben Abdallah, T. Nouri Baranger. Identification of internal cracks
in a three-dimensional solid body via Steklov–Poincaré approaches. Comptes Rendus
Mécanique, 2011, V. 339, pp. 674–681.

[80] L. Kovalevsky and P. Gosselet. A quasi-optimal coarse problem and an augmented Krylov
solver for the Variational Theory of Complex Rays. International Journal for Numerical
Methods in Engineering, 2016, V. 107, pp. 903-922.

[81] V. A. Morozov. The error principle in the solution of operational equations by the regu-
larization method. USSR Computational Mathematics and Mathematical Physics, 1968,
V. 8, pp. 63-87, 1968.

[82] Y. Saad.Iterative methods for sparse linear systems. SIAM, 2003

[83] Z. Jia, G.W.Stewart. On the convergence of the Ritz values, Ritz vectors and refined
Ritz vectors. Institute of Advanced Computer Studies, Department of Computer Science,
University of Maryland at College Park. 1999.

[84] O. Axelsson, G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numerische Mathematik, 1986, V. 48, pp. 499–523.

[85] Ahmed Chabib, Jean-Francois Witz, Pierre Gosselet, Vincent Magnier. The impact of
metrics in mechanical imaging. 2023. 〈hal-04251608〉[Submitted].

116



[86] O. Axelsson, I. Kaporin,Error norm estimation and stopping criteria in preconditioned
conjugate gradient iterations Numerical Linear Algebra with Applications,2001, V. 8, pp.
265–286.

[87] P. Gosselet, C. Rey, J. Pebrel. Total and selective reuse of Krylov subspaces for the reso-
lution of sequences of nonlinear structural problems. International Journal for Numerical
Methods in Engineering, 2013, V. 94, pp. 60–83.

[88] E. Caron, JF. Witz, C. Cuvier, A. Beaurain, V. Magnier, A. El Bartali. PYCASO: Python
module for calibration of cameras by Soloff’s method, 2023, SoftwareX, V. 23.

[89] P. Meer. Robust techniques for computer vision. Emerging Topics in Computer Vision, p
107-190, 2004

[90] K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics,1944, V. 2, pp. 164–168.

[91] L. Breiman, J. Friedman, CJ Stone, RA. Olshen. Classification and Regression Trees,
Taylor & Francis, 1984.

[92] R. Penrose, A Generalized Inverse of Matrices. Proceedings of the Cambridge Philosophical
Society, 1954, V. 51, pp. 406–413.

[93] SM. Soloff, RJ. Adrian, ZC. Liu. Distortion compensation for generalized stereoscopic
particle image velocimetry, Measurement Science and Technology,1997,V. 8, pp. 1441-
–1454.

[94] I. Léandry, C. Brèque, V. Valle. Calibration of a structured-light projection system: De-
velopment to large dimension objects. Optics and Lasers in Engineering, 2012, V. 50, pp.
373-379.

[95] A. Chabib, JF. Witz, P. Gosselet and V. Magnier, Link to the code repository, 2023,
https://github.com/chabibchabib/robust_metrics

[96] Ce Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Anal-
ysis (Thesis). MIT,2009.

[97] M. Bornert, F. Brémand, P. Doumalin, JC. Dupré, M. Fazzini, M. Grédiac, F. Hild,
S. Mistou, J. Molimard, JJ. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse.
Assessment of Digital Image Correlation Measurement Errors: Methodology and Results.
Experimental Mechanics, 2009, V. 49, pp. 353–370.

[98] WH. Peters, WF. Ranson, MA. Sutton, TC Chu, J. Anderson, Application Of Digital
Correlation Methods To Rigid Body Mechanics. Optical Engineering, 1983, V.22(6).

[99] Ahmed Chabib, Jean-Francois Witz, Pierre Gosselet, Vincent Magnier.
GCPU OpticalFlow: a GPU accelerated Python software for strain measurement.
2022. 〈hal-04025948〉 [Submitted]

117

https://github.com/chabibchabib/robust_metrics


[100] Zbigniew J. Czech. Introduction to Parallel Computing. Cambridge University Press,
2017, ISBN 9781316795835.

[101] N. Limodin, J. Réthoré, JY. Buffière, F. Hild, W. Ludwig, J. Rannou, S. Roux. 3d x-ray
microtomography volume correlation to study fatigue crack growth, Advanced engineering
materials, 2011, V. 13, pp. 186-193.

[102] Mohamed Amine Faham. Influence of a microstructure gradient on the fatigue of a metal-
lic material, 2024. Ecole Centrale de Lille [Thesis].

[103] J. Weickert, T. Brox. Diffusion and regularization of vector- and matrix-valued images.
Contemporary Mathematics, 2002, V. 268, pp. 313–251

118

https://www.theses.fr/s300283

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. State of the art
	Digital Image Correlation(DIC)
	Introduction
	Digital Image Correlation (DIC) principles
	Techniques for improving the full-field measurement
	Conclusion

	Optical Flow
	Introduction
	Global approach
	Local approach
	Conclusion

	Solvers for linear systems and Parallel computing
	Solvers for linear systems
	Preconditioning
	Parallel computing
	General-purpose computing on graphics processing units
	Conclusion


	3. The impact of metrics in mechanical imaging
	Introduction
	Methodology
	Graduated Non-Convexity (GNC) and pyramidal approach
	Methodological details
	Implementation

	Results
	Crossing crack
	Crack with tip
	Local regularization

	Conclusion

	4. GCPU_OpticalFlow: a GPU accelerated Python software for strain measurement
	Motivation and significance
	Introduction
	Principles of DIC and Optical Flow

	Software description
	Software functionalities
	Software architecture

	Illustration
	Impact
	Conclusion
	Acknowledgements
	Applications
	Calibration of cameras
	Microstructure gradient's


	5. Interplay between preconditioning and regularization for linear ill-posed problems solved by conjugate gradient: Application to optical flow estimation
	Introduction
	Basic notions about the optical flow
	Preconditioned Conjugate Gradient and Ritz elements
	Role of the preconditioner
	Stopping criteria
	A posteriori filtrering

	Preconditioning by regularization
	Assessments
	Application to optical flow reconstruction
	Quality of the preconditioner
	Ritz filtering
	Subspace recycling
	Tuning of Lambda

	Conclusion

	6. General Conclusion
	Bibliography

