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R É S U M É E N F R A N Ç A I S

1 Contexte et Motivations

1.1 Introduction

L’apprentissage par renforcement 1 se concentre sur la prise de décision
dans des conditions d’incertitude, avec des agents apprenant à optimiser
les actions pour des récompenses cumulatives. Le RL a connu des succès
notables, maîtrisant des tâches complexes telles que les échecs avec Deep
Blue (Campbell et al. 2002) et le jeu de Go avec AlphaGo (Silver et al.
2017). Bien que son potentiel dans ces jeux soit évident, l’application du
Reinforcement Learning dans des domaines comme la robotique et les
systèmes autonomes reste largement exploratoire.

Le début de ma thèse a coïncidé avec un changement dans l’IA : le ré-
cent "boom de l’IA" a orienté une partie importante de la recherche en
Deep Learning vers la mise à l’échelle des méthodes existantes, telles que
les architectures de transformateurs (Vaswani et al. 2017), les modèles au-
torégressifs pour le traitement du langage naturel (Brown et al. 2020b), et
les modèles de diffusion pour la vision par ordinateur (Ho et al. 2020). Le
Deep Reinforcement Learning a rapidement suivi cette tendance, s’inspirant
de ces innovations en architecture (par exemple, Decision Transformers (L.
Chen et al. 2021)), méthodologie (par exemple, Voyager (G. Wang et al. 2023)
utilisant la chaîne de pensée avec chatGPT), et paradigme : plus de données,
de plus grands modèles, des problèmes plus larges, essentiellement en aug-
mentant l’échelle pour atteindre la généralisation - une capacité vaguement
définie de s’adapter à des données ou des tâches inédites. L’émergence de
l’Offline Reinforcement Learning (Levine et al. 2020), visant à traiter de
grands lots de données, témoigne de cette tendance.

1. Le jargon relatif à l’apprentissage par renforcement est, dans la mesure du possible, traduit
en français. Néanmoins certains mots - écrits en italique - sont laissés en anglais car difficilement
traduisibles.

v
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Malgré des progrès indéniables dans la recherche, les applications pra-
tiques restent limitées en raison de plusieurs facteurs. Si l’on considère
le Deep Learning comme l’apprentissage d’une fonction f mappant les
caractéristiques x à une sortie y, la dimension temporelle dans le Reinforce-
ment Learning élargit exponentiellement le domaine des possibles (impli-
quant une séquence de décisions optimales). De plus, la rareté des données
"d’expert" dans des domaines comme la robotique limite l’applicabilité
des mêmes approches utilisées pour les grands modèles de langage. Enfin,
le concept de généralisation dans ces problèmes est plus large que dans
l’apprentissage supervisé : il ne s’agit pas seulement de résumer un nou-
veau texte, mais de résoudre une nouvelle tâche, parfois d’élargir l’espace
d’action, ou même de changer entièrement de domaines (comme sim-to-real
en robotique).

Ces considérations m’ont naturellement conduit à étudier les méthodes
adaptatives tout au long de ma thèse : au lieu de s’attaquer à la tâche red-
outable de la généralisation, nous supposons que notre agent a du temps
libre pour réussir une nouvelle tâche. Ce changement de paradigme n’est
pas seulement une simplification du problème de généralisation ; il s’aligne
également plus étroitement sur le comportement humain. Face à un nou-
veau casse-tête, un enfant devra nécessairement explorer, tester et s’adapter,
même si ses connaissances antérieures l’aident à comprendre rapidement
le problème.

La méthode des Sous-espaces de Politiques développée dans cette thèse est
une tentative de combiner l’acquisition de connaissances et l’adaptabilité
dans un modèle unique et polyvalent. Nous l’appliquerons dans divers
paramètres d’apprentissage par renforcement et tirerons des conclusions
intéressantes pour l’avenir de l’adaptation dans l’apprentissage par ren-
forcement.

Cette thèse se structure en trois parties distinctes. La première partie,
Contexte et Motivations (Section 1), pose les bases, présentant un aperçu
des paradigmes du RL et introduisant la généralisation morphologique
à zéro coup. La deuxième partie, Sous-espaces de Politiques (Section 2),
forme le cœur de la thèse, détaillant le développement et l’application
des sous-espaces de politiques dans divers contextes de RL, y compris
l’adaptation rapide et l’apprentissage continu. La troisième partie, Conclu-
sion (Section 3), résume les contributions et esquisse les orientations futures
pour la recherche dans ce domaine.



1 contexte et motivations vii

1.2 Fondements

Dans l’apprentissage par renforcement, un agent développe une stratégie
pour maximiser une fonction de récompense. Il utilise une politique pour
l’aider à définir sa stratégie. Pour cela, il intéragit avec un environnement
et utilise un algorithme pour l’optimiser. On peut le modéliser par un Pro-
cessus de Décision Markovienne (MDP). L’apprentissage par renforcement
profond (RL) étend cette approche en utilisant des réseaux de neurones pro-
fonds comme politique pour traiter de grands espaces d’état ou d’action.
Les types d’algorithme sont catégorisées de cette manière:

• Algorithmes on-policy : Ces algorithmes, comme A2C (Mnih et al. 2016)
et PPO (Schulman et al. 2017a), apprennent directement et exclusive-
ment à partir des expériences de la politique actuelle. Ils sont effi-
caces pour l’apprentissage immédiat mais moins efficaces en termes
d’échantillonnage comparés à d’autres méthodes.

• Algorithmes off-policy : Les algorithmes comme SAC (Haarnoja
et al. 2018a) utilisent un replay buffer contenant un éventail
d’expériences passées. Ils se distinguent par une meilleure efficac-
ité d’échantillonnage et sont adaptés pour des environnements où les
interactions sont coûteuses.

• RL hors ligne : Cette approche, représentée par des méthodes
comme le behaioral cloning (Bain and Sammut 1995), se concentre sur
l’apprentissage à partir d’un ensemble fixe d’expériences sans inter-
action supplémentaire avec l’environnement. Elle est utile dans des
scénarios où l’exploration est coûteuse ou risquée, mais elle est limitée
par sa capacité de généralisation dans des situations inédites.

Voici les différents paradigmes que nous allons aborder dans cette thèse:

Le domaine de la généralisation zero-shot (ZSG) en apprentissage par
renforcement, dont l’objectif est de développer des algorithmes capables
de fonctionner efficacement dans de nouveaux environnements inconnus
sans formation supplémentaire. Cette approche nécessite des politiques
robustes adaptées aux variations environnementales, utilisant des processus
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de décision markovienne contextuels (CMDPs) pour gérer les changements
dans les dynamiques et les récompenses. Nous l’aborderons en Section 1.3.

L’adaptation few-shot, qui est un sous-domaine du RL visant à permettre
aux agents de s’adapter rapidement à de nouvelles tâches avec des inter-
actions limitées. Inspiré de l’apprentissage humain, où nous généralisons
souvent à partir de quelques exemples, ce problème a été étudié sous di-
verses terminologies, mais celle que nous aborderons en Section 2.3 est
simple : l’agent a le droit à k épisodes pour s’adapter à un nouvel environ-
nement qu’il n’a jamais vu, sans possibilité d’optimiser sa politique.

Nous explorerons aussi l’apprentissage par renforcement en continu
(CRL) en Section 2.4, un domaine qui pousse le développement d’agents
autonomes à évoluer et à relever une infinité de défis. Le CRL se concen-
tre sur l’apprentissage continu à travers une séquence de tâches, chaque
tâche étant un MDP stationnaire avec ses propres règles. Notre intérêt se
porte sur des scénarios réalistes où les tâches partagent certains éléments,
les changements affectant plutôt la fonction de transition et la fonction de
récompense). Les méthodes existantes en CRL visent à éviter "l’oubli catas-
trophique" et à favoriser le transfert à travers la séquence sans sacrifier la
mise à l’échelle. Nos travaux abordent ces défis en équilibrant la taille du
modèle et la performance, plutôt que des compromis typiques menés par
les transferts vers l’avant et vers l’arrière. Ce chapitre éclaircira comment
nos méthodes abordent le problème.

1.3 Un Cas Pathologique : Généralisation Morphologique en
Contrôle Continu

Cette section s’inspire d’un travail en cours intitulé "Advancing zero-shot
Morphological Generalization", abordant les défis de la généralisation mor-
phologique. Nous proposons une combinaison de techniques de RL hors
ligne et en ligne, utilisant PPO (Schulman et al. 2017a) pour la génération de
trajectoires d’experts et BC (Bain and Sammut 1995) pour l’entraînement.
Nous introduisons le "Massive Ant-based Dataset" (MAD), comprenant
7000 variations morphologiques d’une morphologie générique ant. Les ré-
sultats indiquent que l’élargissement de la diversité des données améliore
la capacité de généralisation des modèles, même pour des données non
représentées dans l’ensemble d’entraînement.
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Une étude systématique sur la généralisation morphologique a été menée,
modulant le nombre de morphologies uniques (70, 700, 7000) et le nombre
de trajectoires par morphologie (1, 10, 100). L’analyse révèle que des régimes
avec un plus grand nombre de morphologies et moins de trajectoires par
morphologie optimisent la capacité de généralisation, en particulier pour
les modèles formés sur 7000 morphologies avec 10 trajectoires chacune. Ces
constatations soulignent l’importance de la diversité morphologique dans
les ensembles de données pour une meilleure performance générale des
modèles.

Concernant l’architecture des modèles, nous proposons une architecture
GTR, inspirée de Gato (Reed et al. 2022). Elle a démontré une performance
supérieure par rapport aux modèles de base dans divers scénarios.

Nos recherches révèlent également que l’intégration excessive de con-
texte peut mener à un surapprentissage, compromettant la capacité de
généralisation - notamment hors distribution - du modèle. Les embed-
dings contextuels issus de fichiers de configuration bruts (fichiers json par
exemple, utilisés par le moteur physique pour générer un environnement),
traités par l’architecture Longformer (Beltagy et al. 2020), ont montré des
signes de surapprentissage lorsqu’ils étaient excessivement entraînés. Cette
observation met en lumière la nécessité d’une approche équilibrée dans
l’intégration du contexte, favorisant l’apprentissage sans nuire à la perfor-
mance du modèle sur des données nouvelles et non représentées.

En somme, cette étude révèle les complexités et les défis liés à la général-
isation morphologique en contrôle continu, soulignant l’importance d’une
diversité élevée des données et une utilisation judicieuse du contexte pour
éviter le surajustement. Elle ouvre également la voie à des recherches fu-
tures sur l’efficacité des architectures GTR dans ce domaine.

Ces découvertes suggèrent un changement d’approche : passer de la
généralisation zero-shot à de l’adaptation few-shot, impliquant un change-
ment d’approche radical. Dans la partie suivante, nous définissons et ex-
plorons les sous-espaces de politiques, une nouvelle manière de régler ce
problème.
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2 Sous-espaces des Politiques

2.1 Définition

Les Sous-espaces de Politiques se basent sur la notion de mode connectivity
dans l’optimisation des réseaux de neurones. Inspiré par le travail de Worts-
man et al. 2021, cette approche que nous avons mis au point considère les
combinaisons de poids de différents réseaux comme un moyen de trouver
des solutions plus diverses our robustes. Par exemple, on peut considerer
le sous-espace de combinaisons convexes de n réseaux de neurones (qu’on
appelle anchors car ils ne sont pas voués a être optimisés lorsqu’on cherche
dans cet espace), {θi}ni=1, dans un espace de dimension d, formant ainsi une
enveloppe convexe.

Cette définition met en lumière un moyen innovant d’explorer et
d’optimiser les politiques de renforcement à travers un espace de solution
plus vaste et connecté, ouvrant de nouvelles voies pour le développement
de politiques adaptatives en RL.

2.2 Application à l’apprentissage par renforcement multi-
objectif

Cette partie basée sur Ramé et al. 2023 et dont je suis co-auteur, aborde
le défi de la spécification des récompenses dans le contexte des préférences
utilisateur. En effet, il est difficile de façonner des fonction de récompense
correspondant précisément aux préférences des utilisateurs. Pour surmon-
ter cela, nous optimisons différents modèles sur différentes fonctions de
récompenses, mais en partant d’un même modèle pré-entraîné. Ensuite,
nous explorons l’enveloppe convexe entre ces modèles pour trouver un
modèle qui donne un compromis optimal entre toutes les fonctions de ré-
compense. Cette approche permet de naviguer efficacement entre divers
objectifs, offrant ainsi une solution flexible pour aligner les modèles sur
un éventail de préférences utilisateur. Nous appliquons cette méthode à
de nombreux domaines et modes : génération de texte, d’image, contrôle
continu. Nous montrons que cette méthode donne des résultats similaires
ou meilleurs que les méthodes de multi-objectif classique.
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2.3 Apprentissage d’une Ligne de Politiques

Dans cette section basée sur Gaya et al. 2021, nous explorons l’adaptation
few-shot dans le contexte de l’apprentissage par renforcement, en utilisant la
méthode des Subspaces of Policies. L’approche, nommée Ligne de Politiques
(LoP), emploie une combinaison linéaire de plusieurs politiques optimales
mais différentes, offrant un spectre de solutions pour l’adaptation dans
des environnements inconnus. LoP se distingue par sa simplicité, évitant
la nécessité de peaufinements ou d’architectures complexes, tout en recon-
naissant certaines limitations en termes de diversité fonctionnelle.

Nos expériences démontrent l’efficacité de LoP dans divers environ-
nements, où il surpasse d’autres méthodes en termes de performance dans
des environnements de test variés. Une caractéristique clé de LoP est sa
faible sensibilité aux hyper-paramètres, en particulier au paramètre β. Cela
simplifie le réglage de la méthode et la rend moins dépendante de la sélec-
tion manuelle des paramètres par rapport aux méthodes concurrentes.

L’adaptation en ligne de LoP se révèle efficace, permettant d’évaluer
et d’ajuster plusieurs politiques rapidement dans de nouveaux environ-
nements. Cette flexibilité en fait une méthode prometteuse pour les scé-
narios d’apprentissage par renforcement où l’adaptabilité et la capacité à
réagir rapidement à de nouveaux défis sont cruciales.

En somme, la méthode LoP offre une stratégie efficace et adaptable
pour l’apprentissage par renforcement, particulièrement dans des scénarios
d’adaptation rapide à des environnements inédits.

2.4 Construction d’un Sous-espace de Politiques

Dans cette section, basée sur Gaya et al. 2023, nous introduisons une
approche innovante dans le contexte de l’apprentissage par renforcement
continu (CRL): Continual Subspace of Policies (CSP). CSP se distingue par
sa capacité à construire de manière itérative et adaptative un sous-espace
de politiques, permettant à l’agent d’atteindre des performances élevées
dans une séquence de tâches tout en limitant la croissance de la taille
du modèle. Cette méthode est évaluée sur 18 scénarios que nous avons
façonnés, comprenant 35 tâches de contrôle continu dans les domaines
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de locomotion et manipulation robotique, en utilisant les environnements
Brax (C. Daniel Freeman et al. 2021b) et Continual World (Wołczyk et al.
2021).

Les résultats montrent que CSP excelle non seulement dans la gestion
du transfert entre les tâches, mais également en termes de mémoire: con-
trairement aux méthodes traditionnelles qui augmentent linéairement en
taille avec le nombre de tâches, CSP maintient une taille de modèle beau-
coup plus réduite. Cette efficacité est démontrée dans différents scénarios
pathologiques. CSP est comparé à plusieurs méthodes de référence en CRL,
telles que PNN (Rusu et al. 2016b), EWC (Kirkpatrick et al. 2017), Pack-
Net (Mallya and Lazebnik 2018) et démontre une performance supérieure
tout en restant plus efficient en termes de coût mémoire.

Une étude approfondie sur les hyperparamètres indique que CSP peut
réduire de manière encore plus significative les coûts de mémoire sans
impacter gravement la performance. De plus, CSP affiche une capacité
d’adaptation impressionnante dans des séquences de tâches longues et
variées basées sur des environnements challengeants comme Humanoid.
Les résultats sur Continual World (Wołczyk et al. 2021), en particulier sur
le benchmark CW10, soulignent l’efficacité de CSP comparé à l’état de l’art
actuel PackNet, avec un coût de mémoire réduit.

En résumé, CSP se révèle être une méthode compétitive dans le domaine
de l’apprentissage par renforcement continu, offrant un équilibre optimal
entre la taille du modèle et la performance, et se positionne comme une
solution viable pour des séquences de tâches longues et diversifiées.

3 Autres Contributions et Conclusion

3.1 Autres Contributions

3.1.1 SaLinA

SaLinA (Denoyer et al. 2021) est une bibliothèque Python conçue pour
simplifier l’implémentation de modèles d’apprentissage séquentiel, y com-
pris les algorithmes d’apprentissage par renforcement. Elle offre une adapt-
abilité notable, permettant une utilisation efficace de multiples CPU et GPU.
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SaLinA couvre divers scénarios, tels que l’apprentissage par renforcement
basé sur des modèles, l’apprentissage par lots, l’apprentissage par renforce-
ment hiérarchique et multi-agents. Elle traite chaque composant comme un
agent, simplifiant l’implémentation et le développement de modèles com-
plexes. Ma contribution a impliqué l’enrichissement de SaLinA avec des
benchmarks et le développement d’un module d’apprentissage continu.

3.1.2 WorldSense

WorldSense (Benchekroun et al. 2023) est un benchmark conçu pour
évaluer la capacité des modèles de langage de grande taille à raisonner
de manière ancrée dans la réalité. Il teste leur aptitude à inférer à partir
de descriptions d’arrangements simples d’entités, en se concentrant sur la
cohérence et la complétude de ces descriptions. Mon rôle a été de configurer
et d’optimiser l’entraînement et l’évaluation des modèles Llama, assurant
des résultats fiables pour l’évaluation des capacités de raisonnement des
modèles.

3.1.3 Travail en Cours avec l’équipe Llama

Je contribue actuellement au développement d’une nouvelle version de
Llama avec l’équipe "Gen AI" de Meta AI. Mon rôle comprend l’affinement
de la création de datasets et l’élaboration de stratégies de rejet plus
avancées, ainsi que l’application des sous-espaces pendant la phase de
RLHF. L’objectif est de créer une population de modèles diversifiée, en
utilisant l’approche des sous-espaces développée dans la partie précédente.

3.2 Conclusion et perspectives

Cette thèse explore les Sous-espaces de Politiques en apprentissage par
renforcement, révélant des modèles adaptatifs capables de s’ajuster à des
environnements variés. Malgré l’échec de la généralisation classique, cette
recherche ouvre une voie prometteuse vers l’adaptation, en créant des sous-
espaces de politiques pour une réponse agile et diversifiée.

En termes de perspectives, cela ouvre la voie à des approches modulaires
combinant les sous-espaces avec des mixtures d’experts. L’apprentissage ac-
tif pourrait enrichir ce cadre, offrant une exploration plus ciblée et efficace.
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De plus, on peut également l’idée d’un framework décentralisé, où chaque
utilisateur contribue à un modèle centralisé via la moyenne de leurs mod-
èles, présente une avenue fascinante pour des applications personnalisées,
respectant la protection des données, mais aussi évolutives (la moyenne
change en fonction des joueurs). Ces perspectives ouvrent des horizons
passionnants pour l’avenir de l’adaptation et de la personnalisation en IA.
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I N T R O D U C T I O N

1.1 Context

Reinforcement learning centers on decision-making under uncertainty,
with agents learning to optimize actions for cumulative rewards. It has
achieved notable successes, mastering complex tasks such as Chess with
Deep Blue (Campbell et al. 2002) and Go with AlphaGo (Silver et al. 2017).
While its potential in game playing is evident, its application in fields like
robotics and autonomous systems is still largely exploratory.

The beginning of my thesis coincided with a shift in AI: the recent "AI
boom" has steered a significant portion of deep learning research towards
scaling existing methods, such as transformer architectures (Vaswani et al.
2017), autoregressive models for natural language processing (Brown et al.
2020b), and diffusion models for computer vision (Ho et al. 2020). Deep re-
inforcement learning quickly followed suit, drawing inspiration from these
innovations in 1) architecture (e.g., Decision Transformers by L. Chen et
al. (2021)); 2) methodology (e.g., Voyager by G. Wang et al. (2023)); 3)
paradigm: more data, larger models, broader problems, essentially scaling
up to achieve generalization (R. Kirk et al. 2023). The emergence of offline re-
inforcement learning (Levine et al. 2020), aimed at processing large batches
of data, is a testament to this trend.

Despite undeniable progress in research, practical applications in rein-
forcement learning remain limited due to several factors. If we consider
supervised learning as learning a function f mapping features x to an
output y, the temporal dimension in reinforcement learning exponentially
expands the realm of possibilities (involving a sequence of optimal decisions).
Additionally, the scarcity of "expert" data in fields like robotics limits the ap-
plicability of the same approaches used for Large Language Models. Lastly,
the concept of generalization in these problems is broader than in super-

3
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vised learning: it’s not just about summarizing a new text, but solving a
whole new task, sometimes expanding the action space, or even entirely
changing domains (like sim-to-real in robotics).
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These considerations naturally led me to study adaptive methods through-
out my thesis: instead of tackling the daunting task of generalization, we
assume our agent - the decision maker we aim to train - has free time to
succeed in a new task. This paradigm shift is not just a simplification of the
generalization problem; it also aligns more closely with human behavior.
Faced with a new puzzle, a child will necessarily need to explore, test, and
adapt, even though their prior knowledge helps in quickly grasping the
problem. This relaxed assumption paradoxically brings other challenges:
how to capitalize on this free time to maximize performance on a new task?
I was quickly captivated by a simple intuition: if we could test several agents
with different behaviors during this free time and select the best among
them, it would be much simpler. This intuition is also supported by an
observation. Let consider a classical deep reinforcement learning task and
k initially randomized neural networks whose parameters are in Rd. When
trained on this task, the solutions they converge to will naturally be very
distant - in the sense of the L2 norm - in Rd (Choromanska et al. 2015).
But does this parametric diversity lead to functional diversity (i.e. would the
outputs of these neural networks vary in a different task)? And how can
we train so many neural networks at minimal computation and memory
cost?

Having laid out these reflections, the research questions I sought to an-
swer during these three years were as follows: 1) Is deep reinforcement
learning mature enough to consider tackling a zero-shot generalization set-
ting? 2) If not, can we envision a simple and intuitive method to facilitate an
agent’s adaptation to a new task? 3) If so, can this method be generalized
in a more real-world context where an autonomous agent faces a sequence of
tasks?

The culmination of this research is the creation of a whole new frame-
work, the subspaces of policies, to which I dedicate an entire part of my
manuscript. By moving beyond the traditional focus on single policy opti-
mization, we explore the potential of maintaining a manifold of policies—a
dynamic landscape of solutions—that an agent can navigate to adapt to new
challenges seamlessly. The intuition behind this approach is grounded in
the realization that a diverse set of policies, characterized within a smaller
parametric space, can provide a rich set of behavioral strategies with mini-
mal computational overhead. This methodology leverages weight interpola-
tion between neural network parameters, offering a pragmatic yet elegant
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solution to the problem of functional diversity in reinforcement learning
tasks. This framework represents the core contribution of my thesis, laying
the groundwork for many other applications and future research avenues,
from decentralized deep learning (Koloskova et al. 2019) and active learn-
ing (P. Ren et al. 2021b) to integration with neural architecture search (P.
Ren et al. 2021a), underscoring its profound implications for the field.

1.2 Outline & Contributions

This thesis unfolds across four main parts. Part I introduces the founda-
tional concepts and settings that are pivotal to my work. Parts II and III
contain the core of my contributions, threading through the theme of adapt-
ability in settings: from showcasing the progress and limitations within
generalization in reinforcement learning (Part II) to advocating for more
adaptive approaches (Part III). This part is so central to my thesis it inspired
its title. Part IV concludes the discussion, pointing towards future research
avenues. Let’s now delve into these chapters and the work underpinning
each.

Part I (Context & Motivations) is divided into two chapters laying the
foundation of the thesis:

• Chapter 1 (Introduction) is the current chapter, where I establish the
context of my work and detail its structure.

• Chapter 2 (Background) offers an overview of the reinforcement learn-
ing paradigms addressed in this thesis, setting the stage for a detailed
exploration. It begins with an introduction to Deep Reinforcement
Learning and extends into discussions on settings tackled within this
thesis. It delves into the "budget" available for mastering new tasks,
starting with zero-shot generalization—where an agent must succeed
in a task without any budget—progressing through few-shot adapta-
tion—where a budget for interaction or episodes is available before
evaluating the agent—and culminating in continual reinforcement
learning—where the budget is an integral part of the problem and
is incorporated into training as a parameter to consider, as the agent
performs across sequences of tasks.
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Part II (Zero-shot Generalization) presents my work within the context
of zero-shot generalization, a setting detailed in Section 2.2. It chronologi-
cally occurred late in the development of my thesis, reflecting a more pro-
nounced shift in problem formulation within the reinforcement learning
community: similar to Gato (Reed et al. 2022), this generalist and multi-
modal agent leverages numerous datasets of various types to tackle tasks
in unseen environments in a zero-shot manner. Nonetheless, this setting
remains highly ambitious, despite new neural networks architectures and
pretraining methods that we will discuss in these two chapters:

• Chapter 3 (A Pathological Example) provides a concrete introduction
to zero-shot morphological generalization in continuous control. It
builds upon ongoing work, highlighting the current shortcomings in
deep reinforcement learning methods regarding generalization. While
proposing concrete conditions (type of dataset, method, model archi-
tecture) for a certain type of generalization to emerge, this work also
shows the limits of current methods: far from the generalization to
text generation tasks tackled by LLMs.

Based on Advancing Zero-shot Morphological Generalization, Jean-Baptiste
Gaya, Jonas Gehring, Alessandro Lazaric, Laure Soulier (ongoing work).

• Chapter 4 (Weight Averaging for Multi-objective RL) proposes a
novel and straightforward approach to deal with the challenging prob-
lem of optimizing multiple objectives in reinforcement learning. It
introduces rewarded soup, a strategy to trade-off between multiple re-
wards when fine-tuning foundation models with reinforcement learn-
ing from human feedback; we first learn one network for each reward,
and then linearly interpolate their weights despite the architecture’s
non-linearities. This is also a great introduction to the following part
which extends the concept of weight averaging towards more sophis-
ticated methods to tackle different settings.

Based on Rewarded soups: towards Pareto-optimal alignment by interpolating
weights fine-tuned on diverse rewards, Alexandre Rame, Guillaume Coua-
iron, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor, Laure Soulier,
Matthieu Cord (NeurIPS 2023)
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Part III (Subspaces of Policies) represents the core of my thesis. During
the study of the few-shot adaptation setting, we developed an entirely
new method derived from mode connectivity. We lay the foundations of
this method in the first chapter, providing intuition for the idea and its
benefits, then experimentally demonstrate how this method can be applied
in the next two chapters within different settings, both of which consider
the notion of task adaptation. Here are these three chapters:

• Chapter 5 (Defining a Subspace of Policies) thus serves as a basis for
exploring the history and intuition behind subspaces. It starts with a
toy example, then explains the genesis and inspirations of the method
before laying down its technical foundations and initial observations.

• Chapter 6 (Learning a Line of Policies) is based on my first pub-
lished paper. The few-shot adaptation setting (which we will develop
in Chapter 2) does not allow for traditional optimization methods.
Instead, it encourages testing several interesting policies to find the
best one. We propose to learn a line of policies based on what we
established in the previous chapter, thus finding interesting policies
without having to train many.

Based on Learning a subspace of policies for online adaptation in Reinforcement
Learning, Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer (ICLR 2022)

• Chapter 7 (Building a Subspace of Policies) extends the setting and
method from the previous chapter to continual reinforcement learning
(also described in Chapter 2). This more ambitious setting required
rethinking the basic concept of subspaces: it was no longer just about
selecting a good policy among others, but also about acquiring and re-
taining knowledge at each task, without necessarily increasing in size.
This is the real problem with state-of-the-art models in this domain in
terms of the number of parameters: they either grow too quickly or
have a static size and are doomed to saturate. The real novelty of this
paper is the adaptability of our method, which only increases in pa-
rameters when necessary (i.e., when the task brings new knowledge).

Based on Building a Subspace of Policies for Scalable Continual Learning,
Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic De-
noyer, Roberta Raileanu (ICLR 2023 Spotlight)
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Part IV (Conclusion & Perspectives) offers a comprehensive summary of
the dissertation, reflecting on the journey through the realms of reinforce-
ment learning, subspaces of policies, and their implications for future AI
research. This part not only ties together the various threads of investigation
pursued throughout the thesis but also casts a forward-looking perspective
on how these contributions can shape the next steps in the field.

• Chapter 8 (Other Contributions) showcases the breadth of my re-
search, extending beyond the thesis’s main theme into areas like ad-
vanced tool development and benchmarking in AI. It highlights my
contributions to the SaLinA library, a Python extension for PyTorch de-
signed to simplify sequential learning model implementations, includ-
ing reinforcement learning. My involvement in WorldSense introduces
a benchmark for assessing Large Language Models’ grounded reason-
ing capabilities, emphasizing bias minimization and the promotion of
genuine reasoning skills. Additionally, my ongoing collaboration with
Meta AI’s "Gen AI" team on the development of the next Llama model
emphasizes my active role in refining the current state-of-the-art mod-
els in this field.

Based on SaLinA: Sequential Learning of Agents, Ludovic Denoyer, Alfredo
de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny,
Daniel H. Thompson,

WorldSense: A Synthetic Benchmark for Grounded Reasoning in Large Language
Models, Youssef Benchekroun, Megi Dervishi, Mark Ibrahim, Jean-Baptiste
Gaya, Xavier Martinet, Grégoire Mialon, Thomas Scialom, Emmanuel
Dupoux, Dieuwke Hupkes, Pascal Vincent

• Chapter 9 (Future Directions) concludes this work and outlines future
research directions. This chapter synthesizes the main findings of the
thesis, emphasizing their implications for the field of reinforcement
learning, particularly in subspaces of policies and their applications to
continual learning. It will discuss the broader impacts of these meth-
ods on AI, highlighting potential societal considerations. The chapter
will then transition to future research directions, proposing specific
areas where the concepts developed in this thesis could be expanded
or applied in novel contexts. Potential directions include enhancing
the scalability of subspace methods, exploring their potential in a de-
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centralized setting, and addressing challenges related to the efficiency
and interpretability of these approaches. The objective is to provide
a comprehensive outlook on how the groundwork laid by this thesis
can contribute to and inspire future advancements in AI research.
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B A C K G R O U N D

This chapter lays the foundation and context for the various themes ex-
plored in this thesis. The aim here is not to provide an exhaustive state-
of-the-art review or a crash course in reinforcement learning. Rather, it
is to offer the key insights needed to understand the challenges and is-
sues addressed in our work: we have delved into very different settings,
each with its context, challenges, metrics, and state-of-the-art methodolo-
gies. Section 2.1 broadly introduces the reinforcement learning framework
and the principal algorithms we will employ in subsequent chapters. We
then explore specific problems currently central to the reinforcement learn-
ing community:, zero-shot generalization (Section 2.2), helpful for framing
the context of Chapters 3 and 4, few-shot adaptation (Section 2.3) as the
basis for Chapter 6, and continual reinforcement learning (Section 2.4) that
set an ambitious setting for Chapter 7.

2.1 Deep reinforcement Learning

In uncharted territory, an agent must be able to
learn from its own experience.

Richard Sutton & Andrew Barto,
Reinforcement Learning: An Introduction

This quote from Richard S. Sutton and Barto (1998) reflects what dif-
ferentiates Reinforcement Learning from classical Machine Learning: the
ability of an agent (i.e. a decision-maker) to operate and learn optimal behav-
iors within an unknown environment through trial-and-error interactions,
rather than from a static dataset. Unlike supervised learning where the
learning process is guided by a labeled dataset, in RL, an agent learns to

11
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Figure 2.1 – Illustration of the RL paradigm in Richard S. Sutton and Barto (1998).
.

make decisions by receiving rewards or penalties from the dynamic en-
vironment it interacts with. This paradigm of learning enables the agent
to develop a policy (i.e. a strategy, often represented by a probabilistic
model, that dictates the agent’s decisions or actions in various states) that
maximizes the cumulative reward over time, essentially learning to predict
which actions will yield the most beneficial outcomes based on its current
state. It is often modeled as a Markov Decision Process (MDP), where the
agent interacts with an environment by selecting actions, then receiving new
observations from the environment.

Formally, an MDP is defined by:

• a set of states S that encompasses all possible situations the agent can
encounter, serving as the decision-making context.

• a set of actions A that includes all possible moves or decisions the agent
can make in response to a state.

• a transition function p : S × A × S → [0, 1] that specifies the probability
of reaching a subsequent state s′ from a current state s by taking an
action a, encapsulating the dynamics of the environment.
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• a reward function r : S × A → R that quantifies the immediate benefit
of taking an action a in a state s, guiding the agent towards beneficial
outcomes.

An agent’s policy π : S × A → [0, 1] defines a strategy by mapping states
to probabilities of selecting each action. Acknowledging system dynamics,
where the next state st+1 follows p(·|st, at) and actions at adhere to policy
π(·|st), the objective of reinforcement learning is to find π that maximizes
the expected discounted sum of rewards, represented formally as:

max
π

Eπ,p

[
H∑

t=1

δt−1 · r(st, at)
]

(2.1)

where t denotes the timestep, st is the state at time t, at is the action taken
at time t, δ is the discount rate 1 reflecting the present value of future re-
wards, and H ∈ N∗ is the planning horizon. The optimal policy π∗ achieves
the maximum expected return from any initial state. This formal frame-
work is illustrated in Figure 2.1, providing a visual representation of the
RL paradigm as outlined by Richard S. Sutton and Barto (1998), highlight-
ing the interaction between an agent and its environment through states,
actions, and rewards.

Deep Reinforcement Learning (RL) extends this framework by using
Deep Neural Networks (NN) (Rumelhart et al. 1986) as function approxima-
tors to handle large state or action spaces, enabling agents to learn policies
from high-dimensional sensory input. This integration allows RL to solve
complex sequential decision-making problems that are challenging for tra-
ditional approaches. There exist several categorizations of RL paradigms
(Model-Based (Richard S Sutton 1990) versus Model-free (Watkins and
Dayan 1992), Single-Agent (Richard S. Sutton and Barto 1998) versus Multi-
agent (Littman 1994), exploration-exploitation trade-off (Ishii et al. 2002)),
but the one that will be widely used in this thesis focuses on the algorithmic
part that reflects a gradient from interactive, trial-and-error learning ap-
proaches to more static, dataset-driven strategies. We can indeed categorize
the learning strategies into on-policy (Richard S. Sutton and Barto 1998),

1. While serving as a mechanism to model the preference for immediate rewards over future
rewards, it also acts as an important hyperparameter to tune during experiments (Reddy et al.
2016). Despite its significance, we will often omit this factor in equations in the rest of the thesis
for simplicity.
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off-policy (Richard S. Sutton and Barto 1998), and offline methods (Levine
et al. 2020). This distinction is crucial as it underpins our strategic choices
regarding algorithm selection for specific tasks within this thesis. For in-
stance, online RL methods are preferred for tasks involving data collection
in dynamic environments (e.g. Section 3.4.1), whereas offline RL is suitable
to evaluate neural network architectures and isolate them from other hy-
perparameters, ensuring a focused analysis on the effectiveness of these
architectures in static contexts (e.g. Section 3.2). These characteristics are
summed up in Table 2.1.We now proceed to delve into each of these cate-
gories with their characteristics and applications within the thesis.

On-policy RL Off-policy RL Offline RL
Sampling Cost high small N/A

Update Cost Moderate High Low
Bias-Variance Trade-off high variance mixed high bias

Data Source current policy any policy experts only

Table 2.1 – Comparison of the different RL paradigms (algorithmic view).

2.1.1 On-policy algorithms

The advent of GPU-based simulations, exemplified by recent physics en-
gines like Nvidia’s Isaac Gym (Makoviychuk et al. 2021) and Google’s
Brax (C. Daniel Freeman et al. 2021b), opened a new era for efficiently
generating data for AI training in fields such as video games and virtual
reality. These platforms enable rapid and cost-effective rollouts of complex
simulations, shifting the bottleneck from data acquisition to the efficiency of
learning updates. This paradigm shift emphasizes the need for algorithms
that can swiftly adapt to the rich data provided, marking a significant evo-
lution in how real-world problems are approached in the gaming and VR
industries. On-policy algorithms, particularly efficient in such settings, cap-
italize on the relative affordability of rollouts to refine agent capabilities
through focused and efficient policy optimization.

These algorithms, such as Advantage Actor-Critic (A2C) (Mnih et al. 2016)
and Proximal Policy Optimization (PPO) (Schulman et al. 2017a), require
agents to learn directly and exclusively from the current policy’s experi-
ences. Given their on-policy nature, these algorithms necessitate frequent
collection of new samples to inform each policy update, albeit typically re-
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quiring fewer updates due to the direct learning from every new experience
(see Table 2.1). A2C improves learning by using parallel environments, thus
reducing variance and improving stability. PPO, on the other hand, modi-
fies the objective function to ensure small, consistent updates to the policy,
preventing disruptive changes and ensuring steady improvement. These
methods prioritize learning from fresh, immediate experiences, aligning
closely with a trial-and-error approach. They are recognized for their lower
sample efficiency compared to other methods, and their computational time
depends more heavily on episode rollouts than on optimization. For in-
stance, the Brax physics engine (C. Daniel Freeman et al. 2021b) capitalized
on PPO’s advantages by accelerating and parallelizing interactions with
environments through the JAX framework (Bradbury et al. 2018), achieving
the feat of teaching a Humanoid to walk in about 20 minutes on a single
GPU. This is significantly quicker compared to the tens of hours required
by an off-policy algorithm in Mujoco (Todorov et al. 2012), albeit necessi-
tating substantially more environment interactions. We will employ PPO
for gathering expert demonstrations in Chapter 3 and for our experimental
work in Chapter 4 and 6 . Technically, PPO is adaptable for both continuous
and discrete action spaces and facilitates parallel execution. It has gained
renewed popularity in the Reinforcement Learning From Human Feedback
(RLHF) community, as evidenced by its application in projects such as In-
structGPT (Ouyang et al. 2022). Given the extensive use of this algorithm
in my thesis (due to its efficiency in terms of wall time), we proceed now
with an in-depth exploration of this algorithm 2.

To understand PPO, one has to dive into the foundational concept of pol-
icy gradients methods (Richard S. Sutton et al. 2000). In policy optimization,
we focus on maximizing an objective function that represents the expected
return of a policy parameterized by θ. The objective typically maximized
an empirical average over a finite batch of sample in an algorithm that al-
ternates between sampling and optimization. The frequency of alternating
between sampling new data and updating the policy parameters, θ, is crit-
ical. Frequent refreshes ensure that the policy remains responsive to the
latest environmental feedback, which is pivotal for the algorithm’s efficacy
and convergence. These two steps are:

2. You can find our implementation here.

https://github.com/facebookresearch/salina/blob/main/salina_examples/rl/ppo_brax/ppo.py
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• Sampling: Trajectories are rolled out using the most recent version of
the parameterized policy πθ. We collect tuples {s, a, r} and employ a
critic estimator to compute the Generalized Advantage Estimations
(GAE) (Schulman et al. 2018) denoted by Â, which provides an esti-
mate of the cumulative future rewards with reduced variance. These
tuples are then stored in a dataset D = {s, a, Â}, where the order of the
elements is immaterial.

• Optimization: The objective is to refine the policy parameters θ to
maximize expected returns. This process is formalized as follows:

L(θ) = Es,a,Â∼D
[
log (πθ(a|s)) · Â

]
(2.2)

The expectation Es,a,Â∼D is taken over the tuples sampled from the
dataset D, reflecting an aggregation of the log-probability of actions
weighted by the advantage estimates, irrespective of the sequence in
which they are encountered.

PPO inherits from a slighlty more sophisticated policy gradient method,
Trust Region Policy Optimization (TRPO) (Schulman et al. 2015), which
constrains policy updates to stay within a trust region, ensuring the new
policy doesn’t diverge significantly from the old policy with the use of a
constraint on the Kullback-Leibler divergence (KL) (Kullback and Leibler
1951). In practice, this algorithm alternates between sampling from the
environment using the latest policy πθold and optimizing the current policy
parameters θ (inherited from θold). This loop of sampling and optimizing
facilitates stable and efficient learning. PPO simplifies the TRPO framework
by adopting a clipped objective function 3, which mitigates the need for a
constraint and thus simplifies computations. The PPO objective function
seeks to optimize the policy by maximizing the following expected return,
while keeping policy updates within a defined range to ensure stability:

LPPO(θ) = Es,a,Â∼D

[
min

(
πθ(a|s)
πθold(a|s)

· Â, clip
(

πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
· Â

)]

(2.3)

3. An alternative formulation of PPO incorporates a KL divergence penalty (Schulman et al.
2017a). However, in practice, this approach often presents challenges in hyperparameter tuning
and can lead to numerical instability during KL divergence calculations, affecting implementation
robustness.



2.1 deep reinforcement learning 17

The clipping mechanism is the centerpiece of PPO, ensuring that the up-
dates to the policy are kept within a predetermined range, encapsulated
by the hyperparameter ϵ. The function clip serves as a safeguard, adjusting
the policy update factor to be no less than 1− ϵ and no more than 1 + ϵ. By
taking the minimum between the unclipped and clipped ratios, it ensures
that the policy update remains conservative. This confines the optimization
process to a trust region around the old policy, thus facilitating stable and
incremental policy improvement. PPO’s clipped objective thus acts as a reg-
ularizer, maintaining the balance between exploration and exploitation, and
preserving the agent’s capacity to learn effectively without drastic policy
deviations.

2.1.2 Off-policy algorithms

In fields where data collection is costly and labor-intensive, maximiz-
ing the utility of every piece of data is crucial. It is particularly evident
in robotics (Kober et al. 2013; Gu et al. 2017), where the efficient reuse of
diverse data is paramount. Off-policy algorithms address this challenge
by enabling the use of data from various policies, not just the current one.
This allows for the accumulation and reuse of experiences over time, en-
hancing learning efficiency and effectiveness. By leveraging all available
data—regardless of its source—off-policy methods provide a robust frame-
work for learning from limited data, making them particularly suited for
robotics applications where re-enacting scenarios for data collection may
not be feasible. Compared to on-policy algorithms, off-policy methods ex-
hibit lower variance in their updates and offer a more cost-effective ap-
proach to sampling, given their ability to leverage a wider range of data
sources (in continuous control environments offered by Brax, they can use
a hundred times less samples). However, the computational complexity
of updates tends to be higher in off-policy learning due to the additional
effort required to reconcile the differences between the behavior policy
(data-generating policy) and the target policy (policy being optimized).
This trade-off is summed-up in Table 2.1.

To store this diverse range of past experiences, off-policy algorithms like
Soft Actor-Critic (SAC) (Haarnoja et al. 2018a) allow the agent to learn from
an experience replay buffer (Mnih et al. 2013), which contains a diverse range



18 background

of past experiences. SAC stands out by integrating the entropy (Shannon
1948) of the policy 4 into the reward structure, promoting a balance between
exploration and exploitation. it further optimizes this balance by automat-
ically adjusting the trade-off using a dynamic temperature paramete. This
adaptive approach ensures that SAC can maintain a high level of perfor-
mance across a wide range of tasks without manual tuning of exploration
parameters, making it exceptionally effective in environments with sparse
or deceptive rewards (Haarnoja et al. 2018b)

We will use this algorithm 5 in Chapter 7. This approach enables agents
to learn from both past and current experiences, providing a more compre-
hensive learning process than on-policy methods.

2.1.3 Offline RL

Offline RL (Levine et al. 2020), also known as batch RL (S. Lange et al.
2012), represents the far end of the spectrum, where agents learn entirely
from a pre-collected set of experiences without any further interaction with
the environment. behavioral cloning (BC) (Pomerleau 1988) is a prevalent
yet simple algorithm where the policy fits the actions given by a dataset
of experts. In environments with continuous actions, it simply leads to re-
ducing the mean squared error between expert actions and policy’s actions
over a dataset. This approach is particularly useful in scenarios where ex-
ploration is costly, risky, or impractical (Santara et al. 2017). The obvious
downside is the necessity of obtaining this expert dataset, which is not
always possible. Another critical drawback is its poor generalization: the
agent often fails in unseen situations or rare states (even within the same
MDP used by experts) demonstrating a significant challenge in adapting
beyond the learned experiences. However, promising results have recently
been demonstrated with Decision Transformers, as outlined in L. Chen et
al. (2021). These models, conditioned on past timesteps and cumulative
rewards, have shown the ability to surpass the performance of experts from
the training dataset in the D4RL benchmark (Fu et al. 2020). The under-
lying question, however, remains whether this surpassing performance is

4. During training, the agent’s policy we learn is all in all a distribution over the action space.
This mechanism allows to increase uncertainty in the decision-making process, thus exploration.
Entropy is a way to increase this.

5. You can find our implementation here.

https://github.com/facebookresearch/salina/blob/main/salina_cl/algorithms/sac.py
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due to true generalization capabilities or if the model is adeptly imitating
segments of the best expert trajectories, tactically shifting among experts
depending on their performance in specific parts of the trajectory. The use
of a transformer architecture may also be not necessary (Siebenborn et al.
2022).

We will use BC in Chapter 3 as a backbone for all our experiments. While
being an old and simple method, it remains a strong baseline compared to
state-of-the-art methods (Monier et al. 2020).

Transitioning from the exploration of RL algorithms, we now shift our
focus to the practical environments and settings where these algorithms
will be applied. This discussion is structured to explore the transition from
zero-shot generalization to few-shot adaptation. It is crucial to recognize
that this progression, while appearing linear from general to specific, is fun-
damentally about relaxing an initial hypothesis—specifically, transitioning
from an environment with 0 "free budget time" to one that allows time for
adaptation. This shift in focus is particularly pronounced in the subsequent
discussion on continual reinforcement learning, where exploration time is
intricately woven into the setting.

2.2 Zero-shot Generalization

This section introduces the core concepts that form the basis of my work
on Zero-shot generalization (ZSG) (Chang et al. 2008) elaborated in Part II.
ZSG is the ability for an agent of effective performance in new, unseen
environments (i.e. without additional training). This is an emerging area
in RL (R. Kirk et al. 2023) that aims to deploy RL agents in ambitious
real-world settings that are diverse, changing, and unpredictable. The un-
derpinning concept involves producing policies that can generalize across
varying conditions, a notion inspired by human cognitive flexibility. While
the potential applications of ZSG are significant, spanning areas such as
autonomous driving (Filos et al. 2020; Han et al. 2021) and sim-to-real in
robotics (Zhao et al. 2020; Peng et al. 2017), practical applications remain
limited. As noted by R. Kirk et al. (2023), the field is still far from resolving
ZSG challenges in these domains. Given the breadth of this topic, we will
specifically focus on settings that are particularly relevant to this thesis:
one concerning the topic of morphological generalization (deeply linked with
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Chapter 3), and the other more as a distinct setting or approach, namely
multi-objective reinforcement learning (further explored in Chapter 4).

2.2.1 Problem Statement

Zero-shot generalization in RL, defined as the capability of an algorithm
to generalize to new, unseen environments without further training, necessi-
tates policies robust against variations in environmental dynamics, reward
structures, and state distributions. Namely, these variations are given under
a specific context (i.e. a context defines a new MDP). One good way to for-
malize it is the use of a Contextual Markov decision processes (CMDPs) (Kirk-
patrick et al. 2017; Ghosh et al. 2021; C. F. Perez et al. 2020):

Definition 2.1: Contextual Markov decision process
A CMDP is a tuple ⟨C,S,A,M(c)⟩, where C is the context space, S the
state space, A the action space, and M maps each context c ∈ C to a
specific MDP with unique dynamics pc, reward functions rc, and ini-
tial state distributions Sc0. pace A, and a mapping of each context to a
specific MDPM(c).

In other words, what is shared across tasks is the state space and action
space. The design of C is critical, as it encapsulates the diverse variations
influencing MDP dynamics and rewards.

However, this definition is quite broad and necessitates another level of
classification. Inspired by Khetarpal et al. (2020) in the context of continual
reinforcement learning (refer to Section 2.4), we categorize these problems
along two axes: the object and the scope of generalization. For scope, a key
distinction lies between in-distribution (test tasks sharing the training set’s
distribution) and out-of-distribution (OOD, "entirely new" tasks) generaliza-
tion. The former is akin to multitask learning, emphasizing transfer learning
within similar tasks, while the latter demands adaptation (in zero-shot!) to
novel scenarios and environments.

Regarding the object of generalization, we can draw a parallel with su-
pervised learning, as characterized by J. Liu et al. (2021). Let Ptr(X, Y ) be
the training distribution of random features variable X and label variable Y

and Pte(X, Y ) the test distribution (i.e. the distribution on which we aim to
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generalize). We can distinguish between covariate shift, where the marginal
distribution of features changes (Ptr(X) ̸= Pte(X)), and concept shift, where
the conditional distribution changes (Ptr(Y |X) ̸= Pte(Y |X)). In RL, this dis-
tinction translates to differentiating scenarios where the transition function
changes (e.g., a new map in a video game) from those where the reward
function changes (e.g., a new skill to aquire in a video game). An example
of the first type is discussed in Section 2.2.2, and the second type in Sec-
tion 2.2.3. these variations may involve changes in both p and r, making the
challenge even bigger.

2.2.2 Covariate shift: example with morphology generalization

A major challenge in generalization is training RL agents that general-
ize effectively across environments they haven’t encountered before, espe-
cially when these new environments introduce subtle variations of those
they’ve been trained on (Kaelbling et al. 1996). This challenge is particu-
larly acute in the context of morphological variations: in a 3D navigation
problem when switching agent entity from a robot to another, both the
action space and transition function change, forcing the agent to navigate
with this new dynamics. Hence, the robotics community from RL have
focused on morphological generalization (Zhao et al. 2020), employing
frameworks like domain randomization (Agrim Gupta et al. 2022), imita-
tion learning (Furuta et al. 2023), meta-learning (Trabucco et al. 2022), and
knowledge distillation (Hejna et al. 2020). These approaches aim to equip
agents with the versatility to adapt to a range of morphological changes.
All these approaches share a common need: they rely on interaction with
diverse training environments or learning from data derived from these
environments.

However, because research in robotics often deals with a limited variety
of training scenarios, there is a significant gap in the availability of diverse
and comprehensive data for training, which has historically impeded the
development of robustly generalizing RL agents. This scarcity of data has
led researchers to rely heavily on meticulously crafted feature engineer-
ing and the creation of specialized, often bespoke architectures (Huang
et al. 2020a; T. Wang et al. 2018; Agrim Gupta et al. 2022; Hong et al.
2022; Furuta et al. 2023; Kurin et al. 2021). While these methods are effec-
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tive in narrowly defined scenarios, they often fall short when encountering
new, unseen morphologies, especially out-of-distribution variations that are
completely novel. The reliance on handcrafted features and architectures,
tailored to specific morphologies, has limited scalability and flexibility, mak-
ing them less effective in dealing with even in-distribution variations. This
approach represents a symptomatic treatment of the broader challenge of
morphological generalization. The resulting solutions, while innovative, are
inherently brittle, struggling to adapt to the unpredictability and diversity
of real-world scenarios.

A possible solution is to use simple yet effective BC (see Section 2.1.3) as
a method common to all variants, providing a baseline for fitting policies
to data. The focus then shifts to examining how different representations of
context are managed within this framework, essentially looking at the role
of contextual features on policy performance. This exploration of context-
aware policy learning, using BC as a backbone, will be detailed in our
contribution in Chapter 3.

2.2.3 Concept shift: Example with Multi-Objective Reinforce-
ment Learning

In some scenarios, agents are tasked with maximizing rewards linked to
user preferences (Chankong and Haimes 2008). How then can we quickly
satisfy a new user’s requirements? One strategy is to learn multiple refer-
ence rewards during training, hoping to capture a new user’s reward pref-
erences. This approach, known as Multi-Objective Reinforcement Learning
(MORL) (Chankong and Haimes 2008), involves managing various proxy
rewards, each evaluating performance based on different criteria, necessi-
tating the development of policies that strike an effective balance. Some
MORL settings present this challenge in zero-shot generalization: not only
an agent must balance and optimize multiple, potentially conflicting objec-
tives at train time, but it also has to infer and provide the best behavior with
respect to the test environment (e.g. a new user that uses a recommender
system plateform).

Typically, MORL methods employ linear scalarization strategies, as seen
in the expensive MORL baseline (Barrett and Narayanan 2008; K. Li et
al. 2020). However, these methods struggle with scalability due to com-
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putational and memory demands. Contemporary MORL methods modify
training procedures, adding complexity and new hyperparameters. From
constructing and combining expert models (Won et al. 2020; C. Yang et al.
2020) to single-model training (Castelletti et al. 2013; R. Yang et al. 2019),
these methods often do not surpass linearized MORL in Pareto-optimality.

In Chapter 4, we will explore this setting by introducing a novelty with
weight interpolation in a reinforcement learning from human feedback (RLHF)
setting, using large language models (LLMs) to address it. Drawing from
recent work in LLMs using weight interpolation (H. R. Kirk et al. 2023;
Hayes et al. 2022), our approach shifts from traditional single-policy frame-
works to multi-policy strategies. This method emphasizes the relative pref-
erences across a set of Pareto-optimal networks (Pareto 1964), providing
a more comprehensive solution to the nuanced complexities in real-world
scenarios. This also serves as an introduction to subsequently introduce the
subspaces of policies in Part II which also utilize weight interpolation.
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2.3 Few-shot Adaptation

Few-shot adaptation in RL is a subfield that addresses the challenge of
enabling agents to quickly adapt to new tasks with limited interactions.
This capability is crucial for practical applications where agents must per-
form in dynamic environments or learn new skills rapidly. The concept
draws inspiration from human learning, where we often generalize from
few examples. The problem has been studied under different terminologies:
Multi-task Reinforcement Learning (Wilson et al. 2007; Teh et al. 2017), Trans-
fer Learning (Taylor and Stone 2009; Lazaric 2012) and Meta-Reinforcement
Learning (Finn et al. 2017; Hausman et al. 2018; Humplik et al. 2019). Many
different methods have been proposed, but the vast majority considers that
the agent is trained over multiple environments such that it can identify
variations (or invariant) at train time. For instance, Duan et al. (2016b)
assume that the agent can sample multiple episodes over the same environ-
ments and methods like (E. Z. Liu et al. 2021) consider that the agent has
access to a task identifier at train time. This is the difference between knowl-
edge induction (i.e. extracting general knowledge from a large quantity of
training samples) and knowledge transfer (i.e. generalizing knowledge with a
small number of samples in new tasks), highlighted by Z. Wang et al. (2023).
Given our interest lies more with adaptation rather than generalization in
this section, we will focus on the former.

2.3.1 Problem Statement

We address the challenging scenario where a policy, trained on a MDPM,
is subsequently deployed on another MDP 6, denoted M̄, which shares the
same state and action space but differs in dynamics, initial state distribution,
or reward function. This setting, emblematic of real-world adaptation chal-
lenges, presupposes that M̄ remains unknown during the training phase,
prohibiting its use in model selection and complicating hyper-parameter
tuning. let a trajectory τ = {(s1, a1), ...} denote a sequence of state-action
pairs and let us consider that a policy π generates a sequence of trajectories

6. Typically, a single training environment is juxtaposed with multiple test environments to
assess adaptability to varying conditions (See Chapter 6).
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τ1, τ2, ...., τK over M̄. Reusing the classical RL objective in Equation 2.1 the
performance of such a model, is defined as:

Perf(π,M̄, K) = Eπ,p̄

[
H∑

t=1

r̄(st, at) | τ1, τ2, . . . , τK

]
(2.4)

where r̄ denotes the reward function of M̄, and Eπ,p̄ signifies the expectation
over trajectories generated by policy π in the new MDP M̄ with transition
function p̄. The expectation is conditioned on the trajectories experienced
during the adaptation phase. This metric effectively quantifies the post-
adaptation performance of policy π in M̄, highlighting the essence of swift
and efficient environmental adaptation. Empirically, this performance is
calculated by averaging the rewards obtained from executing the policy πθ

across a set of post-adaptation trajectories in M̄.

2.3.2 Existing Approaches

Several methods have been proposed to address few-shot adaptation in
RL. One of the most popular, Model-Agnostic Meta Learning (MAML)(Finn
et al. 2017), optimizes a model’s initial parameters so that a few gradient
steps on a new task will result in good performance. Extensions and varia-
tions of MAML have been developed to overcome limitations of gradient-
based optimization. FOMAML(Nichol et al. 2018) simplifies the algorithm.
Bayesian MAML (Kim et al. 2018) and Probabilistic MAML (Finn et al. 2019)
incorporate a probabilistic approach, integrating prior distributions over the
model parameters to better capture uncertainty and enhance the model’s
adaptability to new tasks. TAML (Jamal and Qi 2019) seeks to train a more
task-agnostic initial model, enhancing generalization across different tasks.
Indeed, not all adaptations to new tasks yield positive results; when a policy
performs poorly, it is referred to as negative adaptation. Deleu and Bengio
(2018) argue that this is often due to over-specialization of the policy pa-
rameters within the meta-learning framework, which may excel in specific
tasks but fail in others, highlighting negative adaptation as a significant
challenge yet to be fully addressed in meta-learning. Another drawback is
that these methods typically operate under the assumption that multiple
training environments are available, which are used to discern common-
alities and differences to improve test-time performance (especially if test
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tasks are in-distribution, i.e. coming from the same distribution of tasks as
the training ones). This is a significant assumption as it implies the agent
has the opportunity to experience variations prior to encountering the test
environment. In the setting we described, there is no such variability dur-
ing training, making it impossible to anticipate changes that will occur
in new environments. An interesting strategy would be to learn different
ways to solve the unique task the agent has at its disposal at train time.
Diversity-based approaches have been adapted to follow this strategy, em-
phasizing the learning of multiple policies rather than a singular approach.
For instance, DIAYN (Eysenbach et al. 2018) introduces a method to learn
a discrete set of policies that can be reused and fine-tuned across new en-
vironments. This concept is further explored in SMERL (S. Kumar et al.
2020) for few-shot adaptation, where the intrinsic diversity reward is com-
bined with the training task reward. SMERL’s reward function integrates
the task-specific reward, rtask(st, at), with an entropy maximization term to
encourage diversity:

rSMERL(st, at) = rtask(st, at) + α ·⊮R(π)≥R(π∗)−ϵ · log q(z|s) (2.5)

where ⊮R(π)≥R(π∗)−ϵ is a boolean function that activates the entropy term if
the policy’s average cumulative reward denoted as R(π) is within ϵ of the
best policy π’s average cumulative reward. The entropy term, − log q(z|s),
penalizes predictability, thereby encouraging the policy to explore a broader
set of behaviors. Here, q acts as a discriminator and z represents the latent
variable denoting style space, which is typically a bounded variable over
[0, 1]m with m being relatively small (1 to 4). While promising, SMERL’s
effectiveness is contingent on the careful tuning of hyperparameters ϵ and
α, balancing the task reward and entropy reward to avoid overfitting or
excessive randomness. Moreover, its reliance on a discrete latent space may
restrict the variety of achievable policies. This limitation is underscored by
the constraint in the learning objective max

∑
tR(π)(st)s.t.∀z, R(π) ≥ R(π∗)−ϵ,

aiming for diversity within a specified performance threshold. Moreover,
the training process in SMERL necessitates sampling complete episodes at
each iteration, which may not be compatible with all reinforcement learning
algorithms, particularly those that do not operate on whole episode com-
pletions. Based on this observation,Osa et al. (2021) proposed an alternative
based on learning a continuous set of policies instead of a discrete one
without using any intrinsic reward. In Chapter6, we delve deeper into these
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methods, discussing their theoretical underpinnings and practical imple-
mentations. We aim to provide a comparative analysis against our proposed
approach, highlighting the advantages and limitations of each. Specifically,
our focus will be on addressing the challenges posed by the use of a dis-
criminator in models like SMERL. The discriminator, integral for encourag-
ing diverse behaviors through the entropy term, unfortunately, makes the
model exceedingly difficult to train and highly sensitive to the choice of
hyperparameters. This sensitivity can lead to instability in learning and a
narrow margin for error in hyperparameter tuning, directly impacting the
model’s performance and generalization capabilities.

Diversity-driven approaches are also often rooted in evolutionary com-
putation, and combining them offers a complementary perspective to few-
shot adaptation in RL. Quality Diversity (QD) algorithms, such as those
discussed in Pugh et al. (2016), emphasize the creation of diverse policy
populations during training, an approach further explored in Cideron et al.
(2020) and Pierrot et al. (2022). QD algorithms are designed to generate
a diverse set of high-performing solutions, exploring a wide range of be-
haviors rather than converging on a single optimal solution. This diversity
enables the agent to have multiple fallback options if certain behaviors fail
due to environmental changes or damage. A seminal work in this area is
the Intelligent Trial and Error (IT&E) algorithm introduced by Cully et al.
(2015). IT&E creates a detailed behavior-performance map before deploy-
ment, representing the agent’s "intuitions" about potential behaviors and
their efficacy. This map is used to guide an intelligent trial-and-error pro-
cess when the agent encounters new situations or damage, allowing for
rapid adaptation. For instance, experiments with a hexapod robot demon-
strated adaptation to various types of leg damage within approximately one
minute. The survey by Chatzilygeroudis et al. (2019) further explores policy
search algorithms for learning robot controllers with minimal trials, empha-
sizing the concept of "micro-data reinforcement learning." This approach is
particularly relevant for physical robots where extensive training episodes
are impractical. The survey highlights strategies such as leveraging prior
knowledge, using surrogate models, and combining priors with data-driven
models to achieve rapid learning and adaptation. Intrinsic motivation plays
a crucial role in these adaptation processes. Colas et al. (2022) discuss au-
totelic agents that are intrinsically motivated to set and achieve their own
goals without external rewards. This approach, rooted in developmental
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robotics and integrated with deep RL, enables agents to autonomously
generate and pursue goals in open-ended environments. Intrinsically Moti-
vated Goal Exploration Processes (IMGEPs) allow agents to generate and
pursue their own goals, facilitating the acquisition of diverse skills and
enhancing adaptability.

The concept of weight interpolation for generalization has been explored
in various contexts. Forestier and Oudeyer (2016) introduced Model Bab-
bling (MB) and its active version, Modular Active Curiosity-driven Model
Babbling (MACOB), which efficiently explore high-dimensional structured
sensorimotor spaces. These modular architectures have shown superior
performance in learning to use tools and adapting to new tasks compared
to traditional methods. The modular approach allows for efficient explo-
ration of subspaces and can potentially be extended to interpolate between
learned policies for novel task adaptation. By exploring and maintaining
diverse strategies, QD algorithms and related approaches equip a system
with a repertoire of behaviors that can be beneficial for adaptation to new
tasks. This contrasts with the single-policy optimization in traditional meta-
learning approaches and mitigates the risks of negative adaptation dis-
cussed above. In essence, QD approaches cultivate a population of policies,
each potentially suited to different environments or tasks, thus inherently
supporting adaptation. These methods do not rely on gradient-based opti-
mization, distinguishing them from MAML and its variants, and also from
our work on the Subspace. The concept aligns with continual learning
objectives in RL, especially in unpredictable scenarios, as shown in Parker-
Holder et al. (2020) and S. Wu et al. (2023). We will discuss about this more
ambitious framework in the next section.

2.4 Continual Reinforcement Learning

Extending the exploration of few-shot adaptation, we now turn to Contin-
ual Reinforcement Learning (CRL), a domain that pushes the envelope in
the development of autonomous agents. These agents excel in leveraging
previously acquired knowledge to efficiently master and remember new
tasks, thus enabling them to tackle and adapt to a wide sequence of tasks
seamlessly. This section sets the stage for Chapter 7, helping to grasp the
challenges of the area and where our method CSP stands.
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Continual Learning has become a hot topic in research, with many com-
prehensive reviews covering a lot of ground in the area, like the works of
Mundt et al. 2020; M. D. Lange et al. 2021; Parisi et al. 2019. Most of these
studies focus on task incremental learning, where each task comes with its
own set of data, consisting of input-output pairs (X, Y ) that come from a
particular distribution D. The main aim here is to minimize risk across all
tasks you’ve learned so far, even when you can’t look back at the data from
previous tasks once you’ve moved on. On the other hand, continual RL is
all about making decisions one after another across a sequence of tasks,
where each task is its own little world with consistent rules, known as a
stationary MDP.

We are particularly interested in this setting derived from continual learn-
ing due to its straightforwardness and relevance to real-world scenarios.
We use again the example of a player starting a game, and progressing
level by level. The concept of a task sequence becomes quite meaningful
here, with each level representing a task, i.e. a specific MDP. These tasks
share common elements (same possible actions, same 2D observations for
the player) but also different ones (the map changes, affecting the transi-
tion function in RL, and possibly the goal, affecting the reward function).
Sometimes, the player will encounter levels very similar to those they’ve
seen before, allowing them to leverage their accumulated knowledge to
perform as well or better than before. This is known as backward transfer.
Other times, they’ll face completely new levels and will need to quickly
adapt using their array of knowledge. This is known as forward transfer.
These two notions are keys in the Continual Learning community, and we
will dive into them in Section 2.4.2. But ultimately, the problem of CRL is a
specific aspect of the generalization problem where tasks are presented in
a stream, making this framework very relevant to real-world situations.

2.4.1 Problem Statement

The litterature of CRL is characterized by its numerous definitions and
scenarios (Wołczyk et al. 2021; Nekoei et al. 2021; Powers et al. 2022).
Pursuing the "purest" form of CRL can lead to extreme cases, like the Jelly
Bean World’s non-stationary environments and "never-ending learning" (i.e.
no notion of episode) (Platanios et al. 2020). Indeed, one can give a very
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Figure 2.2 – Illustration of a specific online sequential CRL problem where tasks
have the same budget ∆ and reward function is the same (travel
the longest possible distance), while the transition function changes
across tasks. Tasks are derived from HalfCheetah environment, see
Section 7.3

.

broad definition of a CRL problem. Given a state space S, action space A, an
observation space O, a reward function r : S ×A → R, a transition function
p : S ×A → S, the most general form of a continual reinforcement learning
problem can be described as MCRL := ⟨S(t),A(t), r(t), p(t), x(t),O(t)⟩, where
each component of the formulation is understood to be time-variant, with
t indicating the temporal aspect of the problem.

In other words, the sequence of MDPs changes over time, which is known
as non-stationarity. While these theoretical concepts are intriguing, their
current real-world applicability is often limited. In the past decade, vari-
ous classifications have been proposed, each based on different premises.
Khetarpal et al. 2020 have provided a structured way to understand these
varied problem settings, helping to clarify the field. They describe a setting
using two main aspects: the scope and the driver of non-stationarity. The
scope of non-stationarity is concerned with what changes within the MDP.
This could mean changes to the entire MDP, but as mentioned earlier, such
problems are not practically solvable. The most common scope discussed in
the literature involves changes to the transition function p and the reward
function r. As for the driver, many studies concentrate on online multi-task
learning where tasks come sequentially. For the sake of simplicity, we will
also consider that state spaces and observation spaces are equivalent 7.

The concept of assigning a budget per task, coupled with limited and
potentially separate memory for each task, is common in CRL (Khetarpal
et al. 2020). This setting aligns more closely with real-world scenarios and

7. POMDPs (Astrom et al. 1965) are out of scope of this thesis. The vast majority of the
environments used in our work present fully observable MDPs.
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enhances privacy, especially in cases where tasks represent different users.
Indeed, in this case, one do not want to share the same replay buffer continu-
ously and avoid and sensitive information sharing. In addition, the storing
of such replay buffer is often memory-intensive (Wołczyk et al. 2021). Fig-
ure 2.2 illustrates a typical scenario derived from this setting that is defined
in Section 7.3. Following these guidelines, we define a common CRL prob-
lem, which we will explore in Chapter 7:

Definition 2.2: Online sequential CRL problem
Consider a state space S, an action space A. A Online Sequential CRL
problem is defined by a sequence of n tasks T1, ..., Tn s.t. each task Ti is
defined by a MDPMTi

= ⟨S,A, pi, rTi
⟩ associated with a training budget

of interactions bTi
∈ N. When the system switches to task Ti+1 it no

longer has access to transitions fromMTi
.

2.4.2 Metrics and Trade-offs

In the setting described above, the ultimate goal of an autonomous agent
is to maximize overall performance across all tasks. To facilitate this, estab-
lishing a metric for comparing cumulative rewards across different tasks is
crucial. This entails introducing the notion of a reference agent for a task
T , denoted by πT ; this agent serves as a benchmark, having been trained
exclusively on the single task T using a similar method to that of the au-
tonomous agent being evaluated. Essentially, the reference agent acts as a
stand-in for the evaluated agent if it had been trained solely on task T . Let
us define an autonomous agent π and a online sequential CRL problem
T1, ..., Tn.
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Definition 2.3: Performance
Assuming the cumulative sum of rewards is almost surely strictly posi-
tive, and given an horizon H ∈ N∗ that aims to fairly compare trajecto-
ries between each others, the performance of an on task Ti is defined as
the ratio of the average cumulative reward achieved by the agent to the
average cumulative reward obtained by the reference agent, which has
been trained exclusively on that single task. It is given by:

PerfTi
(π) :=

Eπ,pTi

[∑H
t=0 rTi

(st, at)
]

EπTi ,pTi

[∑H
t=0 rTi

(st, at)
]

In CRL, as in Continual Learning (Lopez-Paz and Ranzato 2022), the tra-
ditional trade-off is between forward transfer, which is the ability of an agent
to apply knowledge from previous tasks to new ones, and backward transfer,
also known as Forgetting, which measures the preservation of performance
on old tasks. Since its parameters change over each training, we denote
the policy π that has been trained on the i first tasks by πi, i.e. πi has been
trained sequentially on T1, ..., Ti. Although there are multiple ways to de-
fine these two metrics (Lopez-Paz and Ranzato 2022; Wołczyk et al. 2021;
Khetarpal et al. 2020), we aim to use the above definition of Performance
to make it simple:

Definition 2.4: Forward and backward transfer
Forward transfer measures how much a CRL system is able to transfer
knowledge from task to task. At task i, it compares the performance
of the of the system trained on all previous tasks T1, ..., Ti to the same
model trained solely on task Ti. This measure is defined as FTi (π) :=

PerfTi

(
πi
)
− 1 , and thus the global forward transfer is FT := 1

n

∑n
i=1 FTi.

A FT ≥ 0 means that the agent is using knowledge from former tasks
to train better on unseen tasks.

Backward transfer evaluates how much a system has forgotten about
task i after training on the full sequence of tasks. It thus compares the
performance of policy πi with the performance of policy πn and is de-
fined as BTi : (π) = PerfTi

(πi)−PerfTi
(πn). Similarly to the average trans-
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fer, we report the average forgetting across all tasks BT := 1
n

∑n
i=1 BTi.

Growing methods (see Section 2.4.3) typically have a backward transfer
near 0.

While forward and backward transfer are pivotal metrics in Continual
Learning literature for interpreting, comparing, and benchmarking various
methods, ultimately, they serve as proxies for the more comprehensive Per-
formance metric previously described. Consider, for example, the outcomes
of two simple baselines against these metrics. First, repeatedly finetuning
a single policy might yield a modest forward transfer but typically results
in catastrophic forgetting. A straightforward remedy might be to "finetune
and store" each task’s policy πi, thus completely preventing any forgetting
(making backward transfer effectively zero). However, with an increasing
task stream, this approach becomes untenable as the memory required to
store the policies escalates dramatically (increasing linearly with the num-
ber of tasks). Díaz-Rodríguez et al. 2018 made the same observation, and
like them, we propose a third metric, vital for assessing the feasibility of
CRL models, termed model size:

Definition 2.5: Model Size
Assuming scales are appropriately calibrated (i.e. the methods are shar-
ing the same architecture backbone or at least with similar size), model
size represents the total parameter count of a method after training on
all tasks, divided by the parameter count of a single policy trained on
all tasks.

For instance, if we train and store a separate policy for each task, the
model size equates to n. Conversely, if we continually finetune a single
policy, the model size remains 1. Yet, nuances exist within this metric. A
method might not increase in size but could accrue costly parameters across
tasks, such as gradients and coefficients (Kirkpatrick et al. 2017). In such
cases, the model size might, for instance, total 3 (accounting for parameters,
gradients, and coefficients).
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Figure 2.3 – The dichotomy of fixed-size versus linearly-growing methods in CRL,
illustrating a stark balance between model complexity and task per-
formance, suggesting an absence of a middle ground. It is a central
theme of Chapter 7.

2.4.3 Existing Methods

In Chapter 7, we will confront these challenges through a streamlined
CRL framework, balancing model size and performance instead of the
typical trade-offs lead by forward and backward transfers. This chapter
will elucidate how our methods address the problem. For now we present
the existing methods, highlighting the dichotomy between fixed-size and
linearly-growing methods. Figure 2.3 illustrates it.

CRL methods strive to circumvent catastrophic forgetting (McCloskey and
Cohen 1989) and to foster transfer across numerous tasks without sacrificing
scalability. A diverse array of solutions illustrates the field’s multifaceted
challenges (Tessler et al. 2017; Parisi et al. 2019; Khetarpal et al. 2020; Powers
et al. 2021; Wołczyk et al. 2021; Berseth et al. 2022; Nagabandi et al. 2018;
A. Xie et al. 2020; M. Xu et al. 2020; H. Ren et al. 2022; Kessler et al. 2022).

One major concern is forgetting, addressed by strategies like storing previ-
ous model parameters (Cheung et al. 2019; Wortsman et al. 2020). Although
these methods are effective, their scalability is hindered by linearly increas-
ing computational and memory demands (i.e. Model Size is growing too
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fast). In particular, PNN (Rusu et al. 2016b) creates a new network at the
beginning of each task, as well as lateral networks that will take as inputs -
for each hidden layer - the output of the networks trained on former tasks.
In this method, the number of parameters, training and inference times are
growing quadratically with respect to the number of tasks. One have to
reduce the number of hidden layers with respect to the final number of task
(which assumes to have access to the final number of tasks) to make it com-
parable with other methods. Methods like PackNet (Mallya and Lazebnik
2018) perform admirably. PackNet is the leading method in Continual
World benchmark (Wołczyk et al. 2021)). It aims to learn on a new task
and prune the networks in the end, and retrain the weights that have the
highest amplitude. This has two drawbacks : one has to allocate in advance
a certain number of weight per task. Without additional knowledge on the
sequence, authors recommend to evenly split the number of weights per
task, meaning that one has to know the final number of tasks. In addition,
the training procedure after having pruned the network does not require
any interaction with the environment but is computationally expensive.
Its variant, EfficientPackNet (Schwarz et al. 2021), though promising, faces
limitations in broader evaluations.

Similarly, methods enhancing transfer capability, such as Elastic Weight
Consolidation (EWC) (Kirkpatrick et al. 2017), aim to minimize forgetting
but may constrain adaptability. EWC is a regularization based method that
aims to protect parameters that are important for the previous tasks. After
each task, it uses the Fisher information matrix to approximate the impor-
tance of each weight. A baseline is proposed in the same paper, FT-L2, and
re-used by Wołczyk et al. (2021). It can be seen as a simplified version of
EWC where the regularization coefficients for each parameters are equal to
1. Knowledge distillation attempts to aid transfer but is challenged by the
necessity of capturing a wide array of behaviors within a single network
(Hinton et al. 2006; Rusu et al. 2016a; Z. Li and Hoiem 2018; Schwarz et al.
2018).

Research exploiting task commonalities, meta-learning, and generative
models seek to bolster CRL. Yet, these approaches frequently fall short in
practicality (Ju Xu and Z. Zhu 2018; Pasunuru and Bansal 2019; K. Lu et al.
2021; Mankowitz et al. 2018; Abel et al. 2017; Sodhani et al. 2021; Javed and
White 2019). S. Lee et al. (2020) propose a network expansion strategy, but
it remains confined to supervised learning without clear task delineations.
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2.5 Conclusion

In this Chapter, we have reviewed the various algorithms and settings
that we will use in this thesis. Zero-shot generalization emerges as the first
significant leap beyond basic RL principles, challenging agents to perform
adeptly in entirely new environments. This challenge sets the stage for
the nuanced exploration of few-shot adaptation, where the hypothesis re-
laxes slightly, allowing the agent a minimal set of interactions to adjust to
new tasks. The narrative then evolves to encompass CRL, a setting that
captures the essence of real-world applications by considering the "free
time" or the sequential task exposure an agent undergoes. This progression
underscores a natural escalation from mastering unseen environments to
adapting quickly with sparse data, culminating in the agent’s ability to
learn continually in a sequence of changing tasks. We will explore these
topics in the rest of the thesis:

• Part II is dedicated to dissecting the intricacies of generalization within
the domain of RL. Here, we delve into the theoretical underpinnings,
practical challenges, and the evolving landscape shaped by advance-
ments such as transformers. This part aims to offer a comprehensive
view of generalization, its potential, and its boundaries in the current
era of AI research.

• Part III pivots to the novel contributions of this thesis, specifically
focusing on the application of subspaces in RL under the varied set-
tings of few-shot adaptation and CRL. This part is poised to introduce
innovative approaches and methodologies that address the nuanced
challenges identified in earlier discussions, setting a new direction for
future research in RL.
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This chapter provides an introductory exploration into a challenging case:
morphological zero-shot generalization in continuous control. It is based
on an ongoing work 1 called Advancing zero-shot Morphological generalization.
As discussed in Section 2.2.2, current attempts in this area are still nascent,
especially when compared to the advancements seen in Computer Vision
or Natural Language Processing. Drawing inspiration from the settings of
transformers training in other supervised learning areas, we elaborate set-
tings and demonstrate results that surpass those currently documented in
the literature, while also highlighting that there are still significant efforts
required to achieve true generalization. Section 3.1 serves as an introduction,
briefly revisiting the problem of morphological generalization and outlin-
ing the research questions we aim to address. Section 3.2 formalizes the
problem using the definition of CMDP we saw when discussing about ZSG
(see Section 2.2). Section 3.3 describes the model we developed and the
state-of-the-art models we benchmark against. Section 3.4 details our ex-
perimental protocol, while Section 3.5 presents an analysis of our findings.
Finally, Section 3.6 concludes this chapter and this first part of the thesis.

3.1 Context & Motivations

As discussed in Section 2.2, a major challenge in RL is training agents that
generalize effectively across environments they haven’t encountered before,
especially when these new environments introduce complex or subtle vari-
ations of those they’ve been trained on (Kaelbling et al. 1996). In addressing
the challenges of morphological generalization, this chapter posits that a

1. Please note that the content presented in this chapter is part of an ongoing project. The
current state of the research is a snapshot of a dynamic and evolving process, with the intention
to provide an initial framework and preliminary findings that will be refined and expanded upon
as the project progresses.

39



40 a pathological case

fundamental issue lies in the scarcity of diverse and comprehensive data.
The lack of a dataset encompassing a wide range of morphologies has led
to an over-reliance on feature engineering and specialized architectures.
These methods, while offering immediate solutions, fall short in addressing
the fundamental challenge of generalizing across diverse morphological
variations. Consequently, we delve into established practices and propose
novel methodologies to tackle these issues. Our analysis leverages offline
and online RL techniques, including PPO (see Section 2.1.1) for the creation
of expert trajectories and BC (see Section 2.1.3) as a training method to
ensure fair comparisons and ablations.

To thoroughly investigate these challenges, we raise several research ques-
tions that guide our study:

RQ1: In what specific data regime can we observe Morphological Gen-
eralization?

The confluence of dataset size and its inherent diversity plays a pivotal role
in the success of morphological generalization. Our investigation encom-
passes three dimensions: two quantitative — the number of robots and the
number of trajectories — and a qualitative one, the diversity of the training
set. This diversity can be visualized on a spectrum, with one end repre-
senting robots sampled from a narrowly defined parameter space, and the
other end representing robots from a broader, more varied parameter space.
To overcome this issue and conduct an in-depth analysis of the problem,
we introduce the "Massive Ant-based Dataset" (MAD), a comprehensive
dataset of expert trajectories from 7000 variations of the Ant morphology
from the Brax physics engine (C. Daniel Freeman et al. 2021b). MAD is
conceived to establish a new standard for the research community, explor-
ing the potential of curated data in markedly enhancing morphological
generalization performance. Our experimental framework utilizing MAD
encompasses various data sizes in two dimensions: the number of mor-
phologies and the number of expert trajectories per morphology. These
experiments are crafted to test the generalization capabilities of agents,
both in distribution (originating from the same distribution as the training
data) and out-of-distribution, posing greater challenges due to the inclusion
of more "extreme" morphologies.
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RQ2: What architectural improvements are needed to better process in-
formation for Morphological Generalization?

We examine the role of model architecture, particularly contrasting node-
based models with Gato-Inspired architectures, in enhancing the generaliza-
tion capabilities in RL. While node-based models have been the preferred
choice, they have been contested (Kurin et al. 2021). Drawing inspiration
from Gato (Reed et al. 2022) which demonstrates a versatile architecture to
combine multiple task capabilities within a single model, we introduced an
alternative model architecture. Our experimental results elucidate that this
Gato-Inspired architecture not only competes with but surpasses the perfor-
mance of traditional node-based models (Agrim Gupta et al. 2022; Furuta
et al. 2023; T. Wang et al. 2018). This revelation underscores the significance
of re-evaluating long-standing beliefs and prompts a reconsideration in the
design of architectures tailored for morphological generalization.

RQ3: How essential is Feature Engineering for advancing Morphological
Generalization?

Contrary to the common belief in the necessity of complex feature engi-
neering for morphological generalization, our findings suggest that simpler,
normalized features can deliver comparable or even superior performance.
This insight potentially simplifies the design process and decrease the com-
putational load. We also designed an end-to-end method based on the
computational definition of a morphology with the use of LLMs. The ex-
periments conducted with this model reveals that the more specific to the
task the contextual function is, the more overfitting we see.

3.2 Problem Statement

A major challenge in current RL research is achieving zero-shot general-
ization—utilizing expert data to generalize to new environments without
further interaction (R. Kirk et al. 2023; Fu et al. 2020). Our approach revises
the conventional RL generalization model within the CMDP framework
(see Section 2.2) to focus on learning from a static dataset D of expert tra-
jectories. Aligning with these modern RL strategies, this dataset-centric
methodology underscores the importance of leveraging pre-existing expert
knowledge to facilitate learning in a controlled, interaction-free context. It
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(a) Top view of the Brax ant environ-
ment.

(b) Side view of the ant reaching the
goal.

Figure 3.1 – Views of the Ant environment that we will use as a backbone in this
chapter. Left: The goal region is depicted as a red disc, demonstrating
the random distribution of the goal’s x,y coordinates at the start
of each episode, with the goal’s position provided in the agent’s
observation space including kinetics. Right: An illustration of the
ant model successfully reaching the goal area, as seen from a lateral
perspective.

provides a robust framework for zero-shot generalization by utilizing offline
RL, which eliminates the need for direct environmental interaction during
the training phase. This approach significantly reduces the variability typi-
cally seen with classical RL algorithms (refer to Table 2.1 from Chapter 2),
allowing for a focused analysis on the distinct impacts of architectural design
(RQ2) and contextual features (RQ3) on model effectiveness. The dataset
D is comprised of expert trajectories (see later in Section 3.4.1) that have
learned on various MDPs characterized by a context c. We have broken
down the problem we are tackling into three stages (Figure 3.3).

Since we aim to study morphological generalization, it is useful to con-
sider that these MDPs only vary by their transition function. In practice, we
choose, like Furuta et al. (2023), a goal-reaching task with a random goal
appearing within a 2 to 10m disc (see Figure 3.1). For morphology, we will
choose one in particular (also see later in Section 3.4.1) and make variations
on it: the context can therefore be essentially assimilated to the coefficients
that change these parameters, or even to the configuration file of the mor-
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Figure 3.2 – The typical framework used by current methods (Furuta et al. 2023;
Kurin et al. 2021) in the morphological generalization. On each phase,
it raises several questions we aim to study in this Chapter. On the
left: the use of labor intensive feature-engineering as a mandatory
pre-training phase when a new morphology appears (RQ3). In the
middle: a training phase using BC as a backbone, which demands to
use the right architecture and context feature (RQ2, RQ3). On the
right, the different levels of generalization we aim to evaluate that are
not always detailed nor discussed in the litterature and are deeply
linked with the training data we feed to the model (RQ1).

phology given to a physics engine. This is what we want to highlight in
Figure 3.3 on the left: feature engineering may not be necessary because the
data is already available. We will therefore test models with and without a
"pre-training phase" (which is a phase of feature engineering in this case).

The training phase is a simple BC algorithm on a given dataset (see
Figure 3.3 in the middle). But the size and diversity of the training dataset
can also vary. If we are only going to consider expert data to build our
dataset, unlike other works (Fu et al. 2020), our goal here is to look at how
variations in the diversity and size of the dataset can influence the results
during evaluation.

Finally, the evaluation phase also includes subtleties that we wanted to
account for in Figure 3.3 on the right. Indeed, we can seek different types
of generalization. One way to characterize it is by the level of difficulty: in
green, generalization on seen robots (i.e., we are almost talking about task
generalization, which in our case proposes random goals); in light yellow,
we add a difficulty with unseen robots but from the same distribution as
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the robots in the dataset. In dark yellow, we move to out-of-distribution
generalization: unseen robots from outer parametric morphological ranges.
We have not tested the rest (whose climax is the generalization to all-new
robots) because the results were very weak: this is one of the first limitations
to the question RQ1. We will discuss the evaluation datasets in more detail
in Section 3.4.1.

3.3 Models

Our research is focused on a two-fold evaluation: examining the influence
of architectural designs (RQ2) and the incorporation of several contextual
features (RQ3) within reinforcement learning models. We aim to explore
a spectrum of models, starting with a baseline (Multi-Layer Perceptron)
to serve as a control, progressing through state-of-the-art methods (Node
Transformer), and including our own Gato-like approach. The contextual
features, representing diverse environmental conditions, are integral to our
tests. They are not merely inputs but critical elements that could dictate
the success or adaptability of a model. This study is designed to scrutinize
both the individual and combined impacts of architecture and contextual
understanding on the performance of reinforcement learning systems.

3.3.1 Architectures

The chosen architectures for our investigation are carefully designed to
be similar in terms of number of parameters (around 100 millions). This
deliberate design choice ensures a level playing field for comparing the
different models, where size does not confound the results. The architec-
tures represent a range of computational approaches, from the simplicity
of an MLP to the complex encoding mechanisms of a transformer. This
setup allows us to focus on how architectural differences affect the mod-
els’ ability to generalize and process contextual information efficiently in
reinforcement learning tasks.
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3.3.1.1 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) employed in our context is a dense,
feed-forward neural network consisting of an input layer that aggregates
observations and contextual information, followed by multiple hidden lay-
ers and an output layer. The observations and context are concatenated,
with padding applied as needed to manage discrepancies in their sizes.

The MLP configuration is as follows: it comprises 6 hidden layers with
a size of 2048 units each. Between these layers, ReLU activation functions
are implemented to introduce non-linearity into the model, enabling it
to capture complex relationships in the data. The final layer employs a
tanh activation function, ensuring that the action outputs are bounded
within a normalized range suitable for downstream tasks that require such
constraints. This MLP structure is designed to effectively map the high-
dimensional input space to the action space required for the task at hand.

3.3.1.2 Node Transformer

Node Transformers, as depicted in Figure 3.3, are designed for environ-
ments where observations are naturally partitioned into entities or "nodes",
and each node is associated with a scalar action output. This architectural
design is inspired by the encode-process-decode framework prevalent in
graph neural networks and has been successfully applied in transformer-
based methodologies like AMORPHEUS (Kurin et al. 2021) for multi-task
reinforcement learning in continuous control.

The intuition behind the Node Transformer is that the state information of
a system, when represented as a fully connected graph by the transformer,
can facilitate the learning of message-passing schemas that are dynamically
adjusted for each state, rather than relying on predefined graph structures.
This flexibility allows Node Transformers to handle a wider range of mor-
phologies, including those not encountered during training, without the
physical connectivity constraints seen in models like Shared Modular Poli-
cies (Huang et al. 2020b).

Node Transformers are modular, consisting of a linear encoder for each
node observation, a central transformer for processing the encoded in-
formation, and a MLP as the decoder for action outputs. The model we
implemented is characterized by a 6-layer transformer encoder with 512-
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Figure 3.3 – Architecture of a Node Transformer, taken from AMOR-
PHEUS (Kurin et al. 2021). This diagram illustrates the policy
network, with individual nodes processed independently through
the encoder and decoder, while message passing is facilitated by
the transformer block. The critic network (that we do not use in
these experiments since they are not necessary with BC) follows an
identical architecture, with the decoder outputs representing value
function estimates.

dimensional embeddings, 8 attention heads, and a 4x expansion factor for
the feedforward network. A dropout of 0.1 is incorporated to prevent over-
fitting. Notably, the encoder and decoder are designed to process each node
independently, enabling the model to adapt to varying morphologies with-
out reconfiguration.

In our implementation, observations for each node are first encoded into
a 32-dimensional vector. This encoding includes information such as limb
type, relative position, velocities, and rotations. Linear layers are applied
to these node observations to facilitate the transformer’s ability to learn
from continuous control signals. Additionally, residual connections are in-
troduced from the input features to the decoder output, ensuring that the
nodes retain their unique features throughout the transformation process.

The architecture’s ability to generalize across different environments and
morphologies without constraints on the physical connectivity makes it
particularly powerful for RL tasks involving robotic control or embodied
agents. The Node Transformer’s utility is further demonstrated in its ca-
pacity to produce scalar actions for each node, allowing for fine-grained
control over the actions of complex agents.
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3.3.1.3 Gato-like Transformer (Gl-Tr) (ours)

Our Gato-like transformer (Gl -Tr) extends the architecture of the orig-
inal Gato model (Reed et al. 2022), incorporating adjustments suited for
deep reinforcement learning (RL). While Gato utilizes a decoder-only trans-
former with 1.2 billion parameters, including 24 layers and an embedding
size of 2048, our Gl -Tr model employs a more compact configuration (100

millions parameters) suitable for RL tasks. Specifically, Gl -Tr features a
6-layer transformer encoder with an embedding dimension of 512, 8 atten-
tion heads, and a post-attention feedforward hidden size set to four times
the embedding dimension. This configuration supports efficient processing
of contextual information and observations.

Key components of Gl -Tr include:

• Utilizing a transformer encoder core to process tokenized inputs,
where inputs are encoded using a µ-law algorithm with 1024 bins
to effectively capture the nuances of context and observations (like in
Gato). The µ-law encoding compresses the input space, facilitating the
model’s ability to generalize across diverse input distributions.

• Implementing a non-auto-regressive approach for action prediction
(unlike Gato). This is achieved by inserting placeholders for actions in
the input sequence, which are subsequently filled by the model’s pre-
dictions. This method contrasts with Gato’s auto-regressive prediction
strategy, offering advantages in terms of computational efficiency and
latency in action generation.

• Embedding context information at the layer level prior to concatena-
tion. This approach allows for a more nuanced integration of context
into the model’s decision-making process, compared to direct pass-
through or simplistic encoding methods.

These technical details underscore the Gl -Tr model’s tailored design for
RL, balancing computational efficiency with the depth of tokenization to
optimize performance in dynamic environments. The architecture leverages
the strengths of transformers while introducing modifications that align
with the unique requirements of reinforcement learning tasks.
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3.3.2 Contextual Features

As seen in Section 2.2, the primary objective in a CMDP is to find a policy
π that maximize average cumulative sum of rewards across a context set,
which necessitates the extraction and utilization of relevant information
from c. In practice, this leads to the development of a mapping function
f : C → X , where X is a feature space. The function f translates the raw
context c into actionable features x = f(c), which are then used by the policy
π for decision-making in each context-specific MDP. This function f , trans-
lating context to features, is pivotal in our study. Traditional approaches
implement f through feature engineering, but we propose investigating a
novel end-to-end approach using a transformer encoder. This exploration
aims to enhance the understanding of how different representations of the
context space can influence policy optimization in CMDPs, moving beyond
conventional methods towards more versatile and effective solutions. In this
section, we explore various methodologies for modeling the mapping func-
tion f , which is crucial for translating raw context into actionable features
for policy decision-making in CMDPs.

3.3.2.1 Morphology-task graph V2 (mtg-v2)

Designed first by Kurin et al. (2021) and reshaped by Furuta et al. (2023)
it leverages transformers over traditional Grah Neural Networks (GNNs),
optimizing message-passing in morphological domain knowledge and by-
passing challenges posed by multi-hop propagation in sparse graphs. Its
modular architecture is designed for compatibility across diverse envi-
ronments, free from initial physical connectivity constraints. Rather than
one-hot encoding, node observations utilize a linear layer, encapsulating
limb type, relative positions, velocities, and normalized angle values. Im-
portantly, residual connections are integrated to ensure that node-specific
features are retained throughout the decoding phase for precise action com-
putation.

3.3.2.2 Automated Feature Extraction (afe)

We directly compare two configuration files: one of the given morphol-
ogy and another of a predefined base morphology in the environment. A



3.4 experimental protocol 49

script extracts the ratio between corresponding parameters. For instance,
when contrasting a torso radius of 0.75 against the base’s 0.5, it straightfor-
wardly derives a feature value of 1.5. This streamlined process ensures a
consistent feature vector length, regardless of the morphology in question,
eliminating the need for intricate feature enginering or adjustments for new
morphologies.

3.3.2.3 Configuration embedding (cfg-emb)

Our method stems from a straightforward yet critical insight: each mor-
phology is computationally described by a configuration file, e.g.a JSON
file (C Daniel Freeman et al. 2021a), an XML file (Todorov et al. 2012)
that helps the physics engine to design the dynamical system of a task.
Thus, these configuration files contain all the necessary information about a
given morphology and its dynamics. We use a pretrained Longformer trans-
former encoder (Beltagy et al. 2020) to directly embed these configuration
files. This approach bypasses the need for traditional feature engineering,
allowing our model to interpret the raw data without preprocessing biases.
The encoder’s efficiency in handling the lengthy and complex configura-
tion files is key to our method. Our primary goal was to determine whether
this direct encoding could faithfully represent the original morphology
data, which is essential for effective generalization to different morphs. To
further explore this, we introduced variations of the model, including an
auxiliary task. This task is designed to enrich the learning process by pro-
viding supplementary context and learning signals, potentially enhancing
the model’s capacity for generalizing to unseen morphological variations.

3.4 Experimental Protocol

The objective is to understand the effect of various contextual features
on performance. Our methodology comprises of two distinct stages. First
stage consists in a Offline RL algorithm : BC (see Section 2.1.3). The goal
is to minimize the Mean Squared Error (MSE) with the expert data, which
serves as a proxy for the success rate. It is treated as a consistent "black box"
to ensure a fair comparison across all experiments. In the second stage, the
trained models are subjected to zero-shot evaluations on multiple test sets.
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Performance across these test sets is primarily evaluated using the success
rate metric, which assigns a binary reward (0 or 1) based on whether the
goal is achieved. While MSE measures the fidelity of our models to expert
behavior, the ultimate metric of success is robust performance across diverse
test sets, evaluating both in-distribution and out-of-distribution scenarios.
This two-fold goal ensures both high-quality mimicry of expert actions and
generalization to varied test environments.

3.4.1 Building an adequate dataset

The lack of large-scale datasets hampers progress in morphological gener-
alization. We tackle this by introducing a large-scale, diverse dataset named
"Massive Ant-based Dataset" (MAD) with 7,000 variations of the Ant morphol-
ogy (drawn from a distribution shown in Table 3.4.1), aiming to create a
new benchmark for the community. Our approach is visually summarized
in Figure 3.4, which presents the morphological parameters of both training
and test ants within MAD. Our work also delves into how a well-curated, di-
verse dataset significantly improves performance over a sheer size, guiding
the curation of future datasets for morphological generalization.

Our dataset creation procedure takes as input a CMDP C, a number of
MDPs k, a batch of trajectories of size m, and a maximum wallclock time.
k policies are trained using PPO (see Section 2.1.1 on these k MDP. While
training, the deterministic form of each policy π is being asynchronously
evaluated over m trajectories with different initial states. The metric for
evaluation is simply the average sum of rewards , such that if m is cho-
sen carefully, it should approximate ESc
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Our offline RL scenario is centered around the use of a unique, custom
dataset we refer to as the ”Massive Ant-based Dataset” (MAD). In our ex-
ploration of the impact of data variability on model performance, we’ve
utilized 2 additional datasets derived from MAD: a more compact version
with 700 experts; and an even more distilled dataset with 70 experts. Each
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Figure 3.4 – Training and test sets of ant morphologies from MAD. The top row
displays four representative morphologies (3D top view) from the
training set, while the bottom row presents four from the test set.
The radar plot depicts each ant’s morphological parameters by the
corresponding color line, using a coefficient scaled with respect to
the dotted black line (equal to 1): it represents the baseline ant, cor-
responding to the classical ant morphology in the Brax physics envi-
ronment. The grey shade depicts the distribution of the training set
morphological parameters, from 0.5 to 2. The outermost circle with
radius 3 delimits the boundary of the parameter space explored.
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Parameter Range
In Distribution Out Distribution

n (legs) [2, 5] [2, 5]
torso_radius [0.5, 2] [0.25, 0.5] ∪ [2, 3]
leg_length [0.5, 2] [0.25, 0.5] ∪ [2, 3]
leg_radius [0.5, 2] [0.25, 0.5] ∪ [2, 3]
foot_length [0.5, 2] [0.25, 0.5] ∪ [2, 3]
foot_radius [0.5, 2] [0.25, 0.5] ∪ [2, 3]
density [0.5, 2] [0.25, 0.5] ∪ [2, 3]
strength [0.5, 2] [0.25, 0.5] ∪ [2, 3]
stiffness [0.5, 2] [0.25, 0.5] ∪ [2, 3]
damping [0.5, 2] [0.25, 0.5] ∪ [2, 3]
flexibility [0.5, 2] [0.25, 0.5] ∪ [2, 3]

Table 3.1 – Distribution of robot parameters. Parameters, with the exception of
n legs, are expressed as coefficients of the base ant provided by
Brax (C. Daniel Freeman et al. 2021b). These ranges have been crafted
to strike a balance between robots that are feasible and those that
present a challenge. The MAD dataset, which encompasses 7,000 robots,
is sourced from the in-distribution, while the out-distribution is set
aside for testing purposes.

of these datasets offers a unique perspective on the interplay between the
number of experts and the number of trajectories per expert. This dual-
scale approach, considering both the number of experts and trajectories
per expert, is pivotal in understanding different facets of generalization
in Reinforcement Learning. By varying the scale of data, we aim to dis-
sect the nuances of morphological generalization, examining how models
generalize across diverse morphologies with varying amounts of training
data. This methodology provides insights into the balance between breadth
(number of experts) and depth (trajectories per expert) in training data, and
its implications for achieving robust morphological generalization in RL.

3.4.2 Model selection & evaluation

To ensure a fair comparison between different methods, we isolate the
training phases from the rest. This approach guarantees consistency in
model architecture and hyperparameters across all methods. We created a
sweep over each architecture and kept the same hyperparameters accross
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all models. We conducted a comprehensive sweep for each architecture,
maintaining identical hyperparameters for all models. Ultimately, the con-
sistency in training loss across models indicates that the training was ef-
fectively conducted, thereby assuring that the outcomes observed during
evaluation are not influenced by disparate training treatments.

Post training, we evaluate these models on several subsets derived from
MAD. This includes subsets composed of robots seen during training, unseen
robots drawn from the same distribution as the training set (Table 3.4.1 left
column), as well as robots from divergent distributions (Table 3.4.1 right
column), encompassing changes in morphology, dynamics, and capabilities.
Moreover, we have designed specific test sets to determine if the models
exhibit increased sensitivity to particular changes. This extensive testing
and ablation study enables us to understand the different forms of general-
ization that the models can achieve.

We will utilize the goal-reaching success rate as a key metric to assess the
results. All of the evaluation dataset are made of 700 robots and averaged
over 512 rollouts.

3.5 Results

3.5.1 RQ1: More morphologies, less trajectories

Our study investigates the model’s ability to generalize by varying
both the number of unique robotic morphologies (70, 700, 7000) and the
trajectories per morphology (1, 10, 100), represented on the heatmap’s y and
xaxes, respectively. For architectural consistency, a Gatolike model devoid
of additional contextual inputs is analyzed across three categories of robots:
seen robots (within the training data’s range), in-distribution unseen robots,
and outofdistribution unseen robots, each evaluated over 512 episodes. The
success rates are then averaged across three independent runs of the model.

The heatmap in Figure 3.5 reveals distinct patterns in the data regimes:

• Regimes with a low number of robots and trajectories (e.g., 70 robots
with 1 trajectory each) show inadequate generalization capabilities.
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Figure 3.5 – Heatmap of success rates for a Gatolike model under varying dataset
configurations. The x-axis details the number of trajectories for each
robotic morphology, while the y-axis shows the count of unique mor-
phologies in the training dataset. Panels from left to right indicate
model performance on seen robots, in-distribution unseen robots,
and out-of-distribution unseen robots. Color intensity reflects the
success rate, with a full spectrum from low (blue) to high (orange).
These patterns elucidate the relationship between dataset composi-
tion and the model’s generalization ability, highlighting the superior
performance achieved through increased morphological diversity.

• The region corresponding to high trajectory counts per robot (partic-
ularly 70 robots with 100 trajectories each) indicates potential overfit-
ting, evidenced by high success rates on seen robots but diminished
performance on unseen ones.

• Comparatively, data regimes with a larger set of robots (7000 with
10 trajectories each) suggest an ideal balance, outperforming regimes
with a higher number of trajectories per fewer robots (700 with 100

trajectories each) in terms of generalization to unseen morphologies.

3.5.2 RQ2: Advocacy for GatoInspired Architectures

In our comprehensive evaluation across various test scenarios, the Gl -
Tr architecture consistently demonstrated superior performance, outstrip-
ping both MLP and NODE models (see Figure 3.6). When benchmarked
against intricate datasets tailored for morphological generalization, Gl -Tr

achieved an average performance metric that is notably higher. Specifically,
in tests involving complex morphological variations, Gl -Tr outperformed
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Figure 3.6 – Distribution of the success rate of diverse architectures after having
trained on MAD dataset. Evaluation involves averaging over 512 roll-
outs per robot, then averaging these results across seeds.

the MLP by a margin of 31% and the NODE model by 22%. This perfor-
mance differential is even more pronounced in scenarios with dynamic
environmental changes, where Gl -Tr’s adaptive capabilities are most evi-
dent. Such results not only emphasize the robustness and efficiency of the
GatoInspired architecture but also suggest a promising direction for future
research in the realm of morphological generalization.

3.5.3 RQ3: hand-crafted methods lead to overfitting

Our objective is to assess the role of context in model generalization. To
achieve this, we conducted tests on both MLP and Gl -Tr architecture over
diverse test variations (morphology, environmental dynamics, capabilities).
The test set comprises 100 distinct morphologies drawn from the same
distribution as the MAD-100 training set. As depicted in Figure 3.7, both
MLP and Gl -Tr architectures with normalized features surpass the per-
formance of mtg-v2 features. Intriguingly, the model without any features
displays comparable performance to mtg-v2, prompting us to reevaluate the
relevance of such features For unseen robots within distribution, afe again
dominates with a success rate of 79.53%. Both None and mtg-v2 feature sets
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Figure 3.7 – Success rates of the deterministic policies produced by Gl -Tr ar-
chitectures trained on the MAD dataset. Evaluation involves averag-
ing over 512 rollouts per robot, then averaging these results across
robots. The displayed error bars represent the standard deviation
over 3 seeds per method.

display similar performance, scoring 72.81% and 72.18%, respectively. When
it comes to unseen robots outside of the distribution, all models exhibit a
significant drop in success rate. However, the afe feature set still leads with
a rate of 24.68%. The None feature set follows at 11.01%, while mtg-v2 lags
at 9.87%.The above results indicate that the afe feature set consistently
outperforms the other models across all test conditions. Interestingly, the
model with no designated features (None) competes closely with mtg-v2,
prompting us to reconsider the efficacy of such features in the context of
our problem. To ensure our conclusions aren’t skewed by selective feature
preference, we further evaluated on ant robots, modifying only specific
features.

In an effort to enhance the performance of our morphological general-
ization model, we explore the use of contextual embeddings derived from
raw configuration files. The Longformer (Beltagy et al. 2020) architec-
ture, known for its ability to handle long sequences, is employed to embed
these configurations without any additional training, thus creating a more
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Figure 3.8 – Success rate on training robots and unseen robots with respect to the
amount of auxiliary training received by the Longformer’s architec-
ture before training the transformer on expert data.

generalized representation of the robot’s features. The preliminary task
designed for the Longformer is to classify certain key attributes—mass, ra-
dius, length—from the raw context. The classification is relative to a typical
robot’s attributes, simplifying the task to a binary classification rather than
a regression problem. The Longformer is trained to discern if a particu-
lar attribute is ‘large’ or ‘small’ in comparison to a normalized standard.
Three models are compared: No auxiliary training, auxiliary training for
1e4 steps, auxiliary training for 2e4 steps. During the training of the policy
transformer on expert data, the Longformer’s embedding is frozen to isolate
the effect of the context encoding. Each training step represented exposure
to 128 examples, culminating in a near-zero loss at 2e4 steps, indicating a
successful auxiliary task learning.

The graph presented in Figure 3.8 illustrates the success rates for both
training on seen robots and testing on unseen robots. The success rates im-
proved with the amount of auxiliary training received by the Longformer’s
architecture, suggesting that the embedding carried meaningful informa-
tion during the training phase.
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As shown in Figure 3.8, the success rate increased for seen robots but
decreased for unseen robots as the amount of auxiliary training grew. This
discrepancy points to a case of overfitting, where the model’s performance
improves on the training data at the expense of its ability to generalize to
new, out-of-distribution data. In comparison, models trained without con-
text achieved a success rate of 0.72 on seen robots and 0.59 on unseen robots.
On the other hand, the highly context-dependent mtg-v2 model reached
0.83 on seen robots but plummeted to 0.08 on unseen robots, reinforcing the
evidence of overfitting when excessive context is provided.

The experiment conducted reveals a cautionary tale in the pursuit of
morphological generalization in continuous control tasks. While contextual
embeddings can enhance training performance, their improper applica-
tion may lead to overfitting, thereby degrading the model’s generalizabil-
ity. This finding underscores the need for a balanced approach to context
integration, one that aids learning without compromising the model’s out-
of-distribution performance.

3.6 Conclusion

Our findings highlight that an emergence of generalization in morpho-
logical adaptation is possible under certain circumstances. We observed
that larger and more diverse datasets significantly enhance the model’s
generalization capabilities, especially with out-of-distribution challenges.
For instance, using the Gato-Inspired architecture, we achieved improved
performance in complex morphological variations, and our experiments in-
dicated that simpler, normalized features often outperform complex, hand-
crafted ones. Yet, these results also testify that true OOD generalization is
not fully realized in our current models (see results for unseen robots from
out-of-distribution).

These advancements point to the need for a shift in approach: moving
from zero-shot generalization to adaptation, specifically few-shot adapta-
tion. This shift involves not only changing the generalization setting but
also rethinking methodologies. In the upcoming part, we delve into the
Subspaces of Policies approach, exploring its application in the context of
adaptation. This method promises a more nuanced and effective way to
handle the unpredictability inherent in real-world scenarios. Before that,
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we now continue our journey through ZSG with another setting utilizing
multiple reward functions as objectives.
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W E I G H T AV E R A G I N G F O R M U LT I - O B J E C T I V E
R E I N F O R C E M E N T L E A R N I N G

This chapter can be seen as another generalization setting we aim to
tackle, but also as an initial exploration into the weight interpolation strate-
gies that we will use in Part III. We draw upon the NeurIPS paper Rewarded
soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on
diverse rewards 1 (Ramé et al. 2023), led by Alexandre Ramé and to which I
contributed by setting up the PPO algorithm and conducting experiments,
notably the locomotion task part. I also designed the website of the project.
This paper is notable for its collaborative nature (5 PhD students), covering
a broad spectrum of AI domains including image captioning, image gen-
eration, visual segmentation, visual grounding questions, text generation,
and continuous control.

Foundation models, typically pre-trained on vast unsupervised datasets,
set the standard for neural network weight learning, leveraging self-
supervision followed by fine-tuning on labeled data (Bommasani et al. 2021;
Oquab et al. 2014; Vapnik 1999). However, the reliance on expensive label
collection and the challenges in aligning the trained network with intended
applications reveal limitations (Ngo et al. 2022). Reinforcement learning,
particularly from human feedback (RLHF), offers a way forward by aligning
the network through diverse rewards, despite the potential imperfections
in proxy rewards that may hinder optimal training outcomes. The diversity
of real-world tasks and human opinions further complicates this alignment.
To address these issues, our work proposes a multi-policy strategy, termed
rewarded soup, that embraces the heterogeneity of rewards. This strat-
egy involves specializing multiple networks independently for each proxy
reward and then interpolating their weights linearly, a method validated
by our empirical findings that weights remain linearly connected when
fine-tuned on diverse rewards from a shared pre-trained initialization. This

1. You can find the appendix in the arxiv paper here. Code is available here.
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https://huggingface.co/spaces/alexrame/rewardedsoups
https://arxiv.org/pdf/2306.04488.pdf
https://github.com/alexrame/rewardedsoups
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novel approach demonstrates effectiveness across a broad spectrum of tasks,
including text-to-text (e.g., summarization, Q&A), text-image (e.g., image
captioning, text-to-image generation), and control tasks, aiming to enhance
the alignment of deep models with the real world’s diversity (Pinto et al.
2023).

We will set the context in Section 4.1, then introduce a simple yet elegant
weight averaging-based solution in Section 4.2. The effectiveness of this
method will be demonstrated through diverse experiments across various
domains in Section 4.3. We will conclude in Section 4.4.

4.1 Context & Motivations

A prominent example is RLHF, which appears as the current go-to strat-
egy to refine LLMs into powerful conversational agents such as Chat-
GPT (OpenAI 2023). After pre-training on next token prediction (Radford
et al. 2018) using Web data, the LLMs are fine-tuned to follow instruc-
tions (Taori et al. 2023) before reward maximization. This RL strategy en-
hances alignment by evaluating the entire generated sentence instead of
each token independently, handling the diversity of correct answers and
allowing for negative feedback (Goldberg 2023). Similar strategies have
been useful in computer vision (CV) (Rennie et al. 2017), for instance to
integrate human aesthetics into image generation (Zhang et al. 2023). The
recognition of diversity in proxy rewards within RLHF poses a significant
challenge, necessitating a shift towards a multi-policy approach to better
align models with the wide range of human preferences. This approach,
aiming for a nuanced alignment, sets the stage for the introduction of re-
warded soup, a novel strategy designed to effectively harness this diversity.
The forthcoming sections will delve into this approach, illustrating how it
can address the complexities of model alignment with varied preferences
and laying the foundation for a detailed exploration of its implementation
and impact.
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4.1.1 Diversity of proxy rewards

RL is usually seen as more challenging than supervised training (Dulac-
Arnold et al. 2021), notably because the real reward - ideally reflecting the
users’ preferences - is often not specified at training time. Proxy rewards are
therefore developed to guide the learning, either as hand-engineered met-
rics (Vedantam et al. 2015) or more recently in RLHF as models trained to
reflect human preferences (Jiazheng Xu et al. 2023). Nonetheless, designing
reliable proxy rewards for evaluation is difficult. This reward misspecifica-
tion (Pan et al. 2022) between the proxy reward and the users’ actual re-
wards can lead to unforeseen consequences (Michaud et al. 2020). Moreover,
the diversity of objectives in real-world applications complicates the chal-
lenge. In particular, human opinions can vary significantly on subjects such
as aesthetics (Nadal and Chatterjee 2019), politics or fairness (Lopez-Paz
et al. 2022). Humans have also different expectations from machines: for
example, while Ganguli et al. 2022 stressed aligning LLMs towards harm-
less feedback, Bai et al. 2022b requested helpful non-evasive responses, and
others’ (Irvine et al. 2023) interests are to make LLMs engaging and enjoy-
able. Even hand-engineered metrics can be in tension: generating shorter
descriptions with higher precision can increase the BLEU (Papineni et al.
2002) score but decrease the ROUGE (C.-Y. Lin and Hovy 2003) score due
to reduced recall.

4.1.2 Towards multi-policy strategies

Considering these challenges, a single model cannot be aligned with ev-
eryone’s preferences (Ouyang et al. 2022). Existing works align towards
a consensus-based user (Ovadya 2023), relying on the “wisdom of the
crowd” (Bai et al. 2022a), inherently prioritizing certain principles Kovač
et al. 2023, resulting in unfair representations of marginalized groups (H. R.
Kirk et al. 2023). The trade-offs Pan et al. 2023 are decided a priori before
training, shifting the responsibility to the engineers, reducing transparency
and explainability (Hayes et al. 2022), and actually aligning towards the
“researchers designing the study” (Santurkar et al. 2023). These limitations,
discussed in Section 2.2.3, highlight the inability of single-policy alignment
strategies to handle human diversity. Yet, “human-aligned artificial intelli-
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(a) Illustration of our proposed rewarded soup (RS).

1.0 1.2 1.4 1.6 1.8

R1

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

R
2

LLaMA init

R2 rewarded

(µ = λ = 1) RS for λ = 0.5

MORL for µ = 0.5

R1 rewarded

(µ = λ = 0)

RS front: {(1− λ) · θ1 + λ · θ2}λ
MORL front:

{
θ(1−µ)×R1+µ×R2

}
µ

(b) LLaMA RLHF for sum-
marization.

Figure 4.1 – Figure 4.1a details the different steps in rewarded soup. After un-
supervised pre-training and supervised fine-tuning, we launch N
independent RL fine-tunings on the proxy rewards {Ri}Ni=1. Then we
combine the trained networks by interpolation in the weight space.
The final weights are adapted at test time by selecting the coeffi-
cient λ. Figure 4.1b shows our results (see Section 4.3) with LLaMA-
7b (Touvron et al. 2023a) instruct fine-tuned on Alpaca (Taori et al.
2023), when RL fine-tuning for news summarization (Stiennon et al.
2020) with N = 2 reward models assessing diverse preferences of
summaries. With only two trainings (R1 and R2 rewarded on Fig-
ure 4.1b), the λ-interpolation (0 ≤ λ ≤ 1) reveals the green front
of Pareto-optimal solutions, i.e. that cannot be improved for one re-
ward without sacrificing the other. RS matches the costly yellow front
of multi-objective (MORL) (Barrett and Narayanan 2008; K. Li et al.
2020) requiring multiple trainings on different linear weightings over
the rewards (1− µ)×R1 + µ×R2 with 0 ≤ µ ≤ 1.

gence is a multi-objective problem” (Vamplew et al. 2018). Thus, we draw
inspiration from the MORL literature (also see Section 2.2.3). Z. Wu et al.
(2023) and Hayes et al. (2022) argue that tackling diverse rewards requires
shifting from single-policy to multi-policy approaches. As optimality de-
pends on the relative preferences across those rewards, the goal is not to
learn a single network but rather a set of Pareto-optimal networks (Pareto
1964).

In this Chapter, we propose rewarded soup (RS), an efficient and flexible
multi-policy strategy to fine-tune any foundation model. As shown in Fig-
ure 4.1a, we first use RL to learn one network for each proxy reward; then,
we combine these expert networks according to user preferences. This a
posteriori selection allows for better-informed trade-offs, improved trans-
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parency and increased fairness (Hayes et al. 2022). The method to combine
those networks is our main contribution: we do this through simple linear
interpolation in the weight space, just like proposed in Chapter 5 despite the
non-linearities in the network. This is in line with recent findings on lin-
ear mode connectivity (see Chapter 5). Actually, the name rewarded soups
follows the terminology of model soups (Wortsman et al. 2022), as we com-
bine various ingredients each rewarded differently. Unlike previous works,
which focused on supervised learning, we explore Linear Mode Connectiv-
ity 2 (LMC) in RL, in a challenging setup where each training run uses a
different reward. Perhaps surprisingly, we show that we can trade off the
capabilities of multiple weights in a single final model, thus without any
computational overhead. This enables the creation of custom weights for
any preference over the diverse rewards. We summarize our contributions
as follows:

• We advocate a multi-policy paradigm to align deep generative models
with human preferences and reduce reward misspecification.

• We then propose a new multi-policy strategy, rewarded soup, possible
when fine-tuning foundation models with diverse rewards. By weight
interpolation, it defines a continuous set of (close to) Pareto-optimal
solutions, approximating more costly multi-policy strategies.

In Section 4.3, we consistently validate the effectiveness of RS across a
variety of tasks and rewards: RLHF fine-tuning of LLaMA, multimodal
tasks such as image captioning or text-to-image generation with diffusion
models, as well as locomotion tasks.

4.2 Rewarded Soup

4.2.1 RL fine-tuning with diverse rewards

We consider a deep neural network f of a fixed non-linear architec-
ture (e.g. with batch normalization (Ioffe and Szegedy 2015), ReLU lay-
ers (Agarap 2018) or self-attention (Vaswani et al. 2017)). It defines a policy

2. In Chapter 5, we will further explore this subfield.
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by mapping inputs x to f(x, θ) when parametrized by θ. For a reward R̂ (eval-
uating the correctness of the prediction according to some preferences) and
a test distribution T of deployment, our goal is to maximize

∫
x∈T R̂ (f (x, θ)).

For example, with f a LLM, x would be textual prompts, R̂ would evaluate
if the generated text is harmless (Askell et al. 2021), and T would be the
distribution of users’ prompts. Learning the weights θ is now commonly a
three-step process: unsupervised pre-training, supervised fine-tuning, and
reward optimization. Yet R̂ is usually not specified before test time, mean-
ing we can only optimize a proxy reward R during training. This reward
misspecification between R and R̂ may hinder the alignment of the network
with R̂. Moreover, the diversity of human preferences complicates the design
of R. Rather than optimizing one single proxy reward, our paper’s first key
idea is to consider a family of N diverse proxy rewards {Ri}Ni=1. Each of
these rewards evaluates the prediction according to different (potentially
conflicting) criteria. The goal then becomes obtaining a coverage set of poli-
cies that trade-off between these rewards. To this end, we first introduce
the costly MORL baseline. Its inefficiency motivates our rewarded soups,
which leverages our second key idea: weight interpolation.

MORL baseline. The standard MORL scalarization strategy (Barrett and
Narayanan 2008; K. Li et al. 2020) (recently used in Z. Wu et al. (2023) to
align LLMs) linearizes the problem by interpolating the proxy rewards
using M different weightings. Specifically, during the training phase, M
trainings are launched, with the j-th optimizing the reward

∑N
i=1 µ

j
iRi,

where ∀j ∈ {1, ...,M}, {µji}Ni=1 ∈ ∆N the N-simplex such that
∑N

i=1 µ
j
i = 1 and

0 ≤ µji ≤ 1. Then, during the selection phase, the user’s reward R̂ becomes
known and the j-th policy that maximizes R̂ on some validation dataset
is selected. We typically expect to select j such that

∑N
i=1 µ

j
iRi ≈ R̂ linearly

approximates the user’s reward. Finally, this j-th weight is used during the
inference phase on test samples. Yet, a critical issue is that “minor [preference]
variations may result in significant changes in the solution” (Vamplew et al.
2008). Thus, a high level of granularity in the mesh of ∆N is necessary. This
requires explicitly maintaining a large set of M ≫ N networks, practically
one for each possible preference. Ultimately, this MORL strategy is unscal-
able in deep learning due to the computational, memory, and engineering
costs involved (see further discussion Appendix A.2).

Rewarded soup (RS). The idea is to learn expert anchors and then inter-
polate them linearly at inference time to combine their abilities. Specifically,

https://arxiv.org/pdf/2306.04488.pdf#page=23
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we propose RS, illustrated in Figure 4.1a and whose recipe is described be-
low. RS alleviates MORL’s scaling issue as it requires only M = N trainings
while being flexible and transparent.

1. During the training phase, we optimize a set of N expert anchors {θi}Ni=1,
each corresponding to one of the N proxy rewards {Ri}Ni=1, and all from
a shared pre-trained initialization.

2. For the selection phase, we linearly interpolate those weights to define a
continuous set of rewarded soups policies: {

∑N
i=1 λi · θi}{λi}Ni=1∈∆N

. Prac-
tically, we uniformly sample M interpolating coefficients {{λji}Ni=1}Mj=1

from the N-simplex ∆N and select the j-th that maximizes the user’s
reward R̂ on validation samples, i.e. argmaxMj=1 R̂

(∑N
i=1 λ

j
iθi

)
.

3. For the inference phase, we predict using the network f parameterized
by

∑N
i=1 λ

j
iθi.

While MORL interpolates the rewards during training, RS interpolates
the weights during inference. This is a considerable advantage as the
appropriate weighting λ, which depends on the desired trade-off, can be
selected a posteriori; the selection is achieved without additional training,
only via inference on some samples. We will conduct experiment in the
next section to prove that.

4.2.2 Exploring the Properties of Rewarded Soups Set of So-
lutions

We center our attention on two pivotal research question that would
fundamentally inform our understanding of this method:

RQ1 (Linear Mode Connectivity). For any combination of weights fine-
tuned on different rewards, does the performance for each individual re-
ward at least match the combined performance of these rewards when av-
eraged? This question suggests that the performance of a blended policy
should not be less than the average performance of its constituent policies.

RQ2(Pareto Optimality). Does our solution set forms a Pareto coverage set?
This would implies that within this set, any improvement in performance
on one objective necessitates a compromise on another. A Pareto coverage
set is an efficient compromise among various objectives, underlining the
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effectiveness of different combinations of weights in achieving a balance
across multiple rewards.

Based on this understanding of Pareto Optimality, we would like to test
a critical implication for scenarios where rewards are linear combinations
of various proxy rewards, as captured in the following research question:

RQ3 (Reduced Reward Misspecification in the Linear Case). If our sys-
tem’s Pareto Optimality holds true, and for any linear combination of re-
wards, does there exist an optimal set of weights in our solution set? In
other words, for a linear reward composed of different proxy rewards, we
can always find a combination of weights from our set that is optimal for
this reward.

These research questions are the backbone of our approach and provide
insight into the capabilities and potential results of our method in varied
reinforcement learning scenarios. In Section 4.3, we plan to empirically test
them, further validating the effectiveness of the Rewarded Soups.

4.3 Experiments

In this section we implement RS across a variety of standard learn-
ing tasks: text-to-text generation, image captioning, image generation, vi-
sual grounding, visual question answering, and locomotion. We use either
model or statistical rewards. We follow a systematic procedure. First, we
independently optimize diverse rewards on training samples. For all tasks,
we employ the default architecture, hyperparameters and RL algorithm; the
only variation being the reward used across runs. Second, we evaluate the
rewards on the test samples: the results are visually represented in series of
plots. Third, we validate RQ1 by examining whether RS’s rewards exceed
the interpolated rewards. Lastly, as the true Pareto front is unknown in real-
world applications, we present empirical support for RQ2 by comparing
the front defined by RS (sliding λ between 0 and 1) to the MORL’s solutions
optimizing the µ-weighted rewards for 0 ≤ µ ≤ 1 (sometimes only µ = 0.5

for computational reasons). Implementations are released on github, and
this website provides additional qualitative results.

https://github.com/alexrame/rewardedsoups
https://huggingface.co/spaces/alexrame/rewardedsoups


4.3 experiments 69

4.3.1 Text-to-text: LLaMA with diverse RLHFs

Given the importance of RLHF to train LLMs, we begin our experiments
with text-to-text generation. Our pre-trained network is LLaMA-7b Touvron
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Figure 4.2 – RLHF results in NLP with LLaMA-7b Touvron et al. 2023a and re-
ward models Ri from HuggingFace Wolf et al. 2020. The blue line
reports checkpoints’ results along the training trajectory of θ1 reward-
ing R1, the red line θ2 rewarding R2, and the purple line the MORL
rewarding R1+R2

2
. Our rewarded soup (RS) linearly interpolates be-

tween the weights θ1 and θ2; sliding the interpolation coefficient λ
from 0 to 1 reveals the green solid front of rewarded soups solutions.
In Figures 4.2a and 4.2b, we additionally show the multiple MORL
runs rewarding (1 − µ) × R1 + µ × R2 with preferences 0 ≤ µ ≤ 1.
It reveals a similar yellow front, yet more costly. In Figure 4.2f, we
uniformly (λi =

1
4
) average the weights fine-tuned for the assistant

task on N = 4 reward models.

https://huggingface.co/models
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et al. 2023a, instruction fine-tuned (Y. Wang et al. 2022) on Alpaca (Taori
et al. 2023). For RL training with PPO, we employ the trl package (Werra
et al. 2020) and the setup from Beeching et al. (2023) with low-rank adapters
(LoRA) (E. J. Hu et al. 2022) for efficiency. We first consider summarization
tasks on two datasets: Reuter news (Ahmed 2017) in Figure 4.1b and 4.2a
and Reddit TL;DR (Völske et al. 2017) in Figure 4.2b; the latter, hosted
on HuggingFace, was created in Völske et al. (2017), and contains prepro-
cessed posts from the social network Reddit. We also consider answering
Stack Exchange questions (Lambert et al. 2023) in Figure 4.2c, movie review
generation in 4.2d, and helpfulness as a conversational assistant (Bai et al.
2022a) in Figures 4.2e and 4.2f. To evaluate the generation in the absence
of supervision, we utilized N = 2 different reward models (RMs) for each
task, except in 4.2f where N = 4. These RMs were trained on human prefer-
ences datasets (Christiano et al. 2017) and all open-sourced on HuggingFace
Wolf et al. 2020. For example in summarization, R1 follows the “Summa-
rize from Human Feedback” paper (Stiennon et al. 2020) and focuses on
completeness, while R2 leverages “contrast candidate generation” (S. Chen
et al. 2021) to evaluate factuality. For other tasks, we rely on diverse RMs
from OpenAssistant Köpf et al. 2023; though they all assess if the answer
is adequate, they differ by their architectures and procedures.

The results are reported in 4.2. The green front, defined by RS between
the two weights specialized on R1 and R2, is above the straight line connect-
ing those two points. Second, the front passes through the point obtained
by MORL fine-tuning on the average of the two rewards, supporting our
claim in RQ2. Moreover, when comparing both full fronts, they have quali-
tatively the same shape; quantitatively in hypervolume (Yen and He 2013)
(lower is better, the area over the curve w.r.t. an optimal point), RS’s hyper-
volume is 0.367 0.340 for MORL in Figure 4.2a, while it is 1.176 1.186 in
Figure 4.2b. Finally, in Figure 4.2f, we use N = 4 RMs for the assistant task
and uniformly average the N = 4 weights, confirming that RS can scale and
trade-off between more rewards.

4.3.2 Image-to-text: captioning with diverse statistical rewards

RL is also effective for multimodal tasks (Pinto et al. 2023) such as in
image captioning (Rennie et al. 2017), to generate textual descriptions of

https://huggingface.co/datasets/openai/summarize_from_feedback
https://huggingface.co/models
https://open-assistant.io/
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Figure 4.3 – Results in image captioning on COCO (T.-Y. Lin et al. 2014). As
rewards R1 (blue stars every epoch) and R2 (red stars), we consider
standard statistical metrics: BLEU1 (1-gram overlap), BLEU4 (4-grams
overlap), ROUGE, METEOR and CIDEr. Figure 4.3a includes the
MORL training trajectories optimizing (1−µ)×BLEU1+µ×ROUGE,
uncovering a yellow front similar to RS’s green front. In Figure 4.3c,
RS uniformly averages the 5 weights (one for each reward), resulting
in the largest area and the best trade-off between the 5 rewards.
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Figure 4.4 – Those spider maps uniformly average 1 ≤ M ≤ 5 weights for cap-
tioning, where θ1 is fine-tuned on BLEU1 (B1), θ2 on BLEU4 (B4), θ3
on ROUGE (R), θ4 on METEOR (M) and θ5 on CIDEr (C). To show
different combinations among the

(
5
M

)
possible, we iterate in a clock-

wise direction starting in Figure 4.4a from i = 1 (always including
θ1 optimized on BLEU1), in Figure 4.4b from i = 2 (always includ-
ing θ2 optimized on BLEU4), and in Figure 4.4c from i = 3 (always
including θ3 optimized on ROUGE).

images. Precisely evaluating the quality of a prediction w.r.t. a set of human-
written captions is challenging, thus the literature relies on various non-
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Figure 4.5 – Results in captioning for R1 = BLEU1 and R2 = ROUGE. When nor-
malized, rewards are set to 1 for the init and 0 for the worst model.
Figure 4.5a validates RQ3 by reporting results of RS (for varying λ)
and of MORL (for varying µ) for varying user’s preference µ̂. Fig-
ure 4.5b evaluates different rewards as a function of the interpolating
coefficient. Figure 4.5c reports ensembling scores when interpolat-
ing predictions.

differentiable metrics: e.g. the precision-focused BLEU (Papineni et al. 2002),
the recall-focused ROUGE (C.-Y. Lin and Hovy 2003), METEOR (Banerjee
and Lavie 2005) handling synonyms and CIDEr (Vedantam et al. 2015)
using TF-IDF. As these metrics are proxies for human preferences, good
trade-offs are desirable. We conduct our experiments on COCO (T.-Y. Lin
et al. 2014), with an ExpansionNetv2 (J. C. Hu et al. 2022) network and a
Swin Transformer (Ze Liu et al. 2022) visual encoder, initialized from the
state-of-the-art weights of J. C. Hu et al. (2022) optimized on CIDEr. We
then utilize the code of J. C. Hu et al. (2022) and their self-critical (Rennie
et al. 2017) procedure (a variant of REINFORCE Williams 1992) to reward
the network on BLEU1, BLEU4, ROUGE or METEOR. More details and
results can be found in Appendix E.

We observe in Figure 4.3 that tuning solely BLEU1 sacrifices some points
on ROUGE or BLEU4. Yet interpolating between θ1 and θ2 uncovers a con-
vex set of solutions approximating the ones obtained through scalarization
of the rewards in MORL. When comparing both full fronts in Figure 4.3a,
they qualitatively have the same shape, and quantitatively the same hyper-
volume (Yen and He 2013) of 0.140. One of the strengths of RS is its ability
to scale to any number of rewards. In Figure 4.3c, we uniformly (λi = 1

5)

https://arxiv.org/pdf/2306.04488.pdf#page=34
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average N = 5 weights fine-tuned independently. It improves upon the
initialization and current state-of-the-art on all metrics, except for CIDEr,
on which was explicitly optimized. We confirm in Figure 4.4 that RS can
handle more than 2 rewards through additional spider maps. Specifically,
we compare the performances across all N = 5 metrics when averaging
1 ≤M ≤ N networks (each fine-tuned on one of the N rewards, thus leaving
out N −M rewards at training) and sequentially adding more networks to
the weight average. We consistently observe that adding one additional net-
work specialized on one additional reward extends the scope of the possible
rewards that RS can tackle Pareto-optimally.Figure 4.5 refines our analysis
of RS. Figure 4.5a validates RQ3: for any linear preference µ̂ over the proxy
rewards, there exists an optimal solution in the set described by RS. Two
empirical strategies to set the value of λ are close to optimal: selecting λ = µ̂

if µ̂ is known, or cross-validating (CV) λ if a different data split Karpathy
and Fei-Fei 2015 is available. Moreover, Figure 4.5b (and Appendix E) in-
vestigate all metrics as evaluation. Excluding results’ variance, we observe
monotonicity in both training rewards, linear in BLEU1 and quadratic in
ROUGE. For other evaluation rewards that cannot be linearly expressed
over the training rewards, the curves’ concavity shows that RS consistently
improves the endpoints, thereby mitigating reward misspecification. The
optimal λ depends on the similarity between the evaluation and training re-
wards: e.g. best BLEU2 are with small λ. Lastly, as per Izmailov et al. (2018),
Figure 4.5c suggests that RS succeeds because WI approximates prediction
ensembling (Lakshminarayanan et al. 2017) when weights remain close, in-
terpolating the predictions rather than the weights. Actually, ensembling
performs better, but it cannot be fairly compared as its inference cost is
doubled.

4.3.3 Text-to-image: diffusion models with diverse RLHFs

Beyond text generation, we now apply RS to align text-to-image gener-
ation with human feedbacks (Jiazheng Xu et al. 2023). Our network is a
diffusion model (Ho et al. 2020) with 2.2B parameters, pre-trained on an
internal dataset of 300M images; it reaches similar quality as Stable Dif-
fusion (Rombach et al. 2022), which was not used for copyright reasons.
To represent the subjectivity of human aesthetics, we employ N = 2 open-

https://arxiv.org/pdf/2306.04488.pdf#page=34
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source reward models: ava, trained on the AVA dataset (Murray et al. 2012),
and cafe, trained on a mix of real-life and manga images. We first generate
10000 images; then, for each reward, we remove half of the images with
the lowest reward’s score and fine-tune 10% of the parameters (E. Xie et al.
2023) on the reward-weighted negative log-likelihood (K. Lee et al. 2023).
Details and generations for visual inspection are in Appendix F. The results
displayed in Figure 4.6a validate RQ1, as the front described by RS when
sliding λ from 0 and 1 is convex. Moreover, RS gives a better front than
MORL, validating RQ2. Interestingly, the ava reward model seems to be
more general-purpose than cafe, as RL training on ava also enhances the
scores of cafe. In contrast, the model θcafe performs poorly in terms of ava
in Figure 4.6a. Nonetheless, RS with (1− λ) · θava + λ · θcafe outperforms θava

alone, not only in terms of cafe, but also of ava when λ ∈ {0.1, 0.2}. These
findings confirm that RS can better align text-to-image models with a va-
riety of aesthetic preferences. This ability to adapt at test time paves the
way for a new form of user interaction with text-to-image models, beyond
prompt engineering.

https://arxiv.org/pdf/2306.04488.pdf#page=36
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Figure 4.6 – Figure 4.6a reports our RLHF experiments on text-to-image genera-
tion with diffusion models. From the pre-trained initialization, we
learn θava and θcafe by optimizing the two reward models ava and cafe.
Interpolation between them reveals the green Pareto-optimal front,
above the yellow MORL front. Figure 4.6b report our results in visual
grounding (VG) on RefCOCO+ (L. Yu et al. 2016), where we optimize
to predict boxes with IoU> 0.5 w.r.t. the ground-truth, for objects of
either small, medium or large size.

4.3.4 Text-to-box: visual grounding of objects with diverse
sizes

We now consider visual grounding (VG) (L. Yu et al. 2016): the task is to
predict the bounding box of the region described by an input text. We use
UnIVAL (Shukor et al. 2023), a seq-to-seq model that predicts the box as a
sequence of location tokens (P. Wang et al. 2022). This model is pre-trained
on a large image-text dataset, then fine-tuned with cross-entropy for VG;
finally, we use a weighted loss between the cross-entropy and REINFORCE
in the RL stage. As the main evaluation metric for VG is the accuracy (i.e. in-
tersection over union (IoU) > 0.5), we consider 3 non-differentiable rewards:
the accuracy on small, medium, and large objects. We design this experi-
ment because improving results on all sizes simultaneously is challenging,
as shown in Appendix Figure 19, where MORL performs similarly to the
initialization. The results in Figure 4.6b confirm that optimizing for small

https://arxiv.org/pdf/2306.04488.pdf#page=39
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objects degrades performance on large ones; fortunately, interpolating can
trade-off. In conclusion, we can adapt to users’ preferences at test time by
adjusting λ, which in turn changes the object sizes that the model effectively
handles. On the one hand, if focusing on distant and small objects, a large
coefficient should be assigned to θSmall. On the other hand, to perform well
across all sizes, we can recover initialization’s performances by averaging
uniformly (in Appendix Figure 19). More details are in Appendix G.

4.3.5 Text&image-to-text: VQA with diverse statistical re-
wards
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(b) Locomotion: risky and cautious.

Figure 4.7 – Figure 4.7b report our results from Section 4.3.6 for the locomotion
task with humanoids.

We explore visual answering questions (VQA), where the task is to an-
swer questions about images. The models are usually trained with cross-
entropy, as a classification or text generation task, and evaluated using the
VQA accuracy: it compares the answer to ten ground truth answers pro-
vided by different annotators and assigns a score depending on the num-
ber of identical labels. Here, we explore the fine-tuning of models using
the BLEU (1-gram) and METEOR metrics: in contrast with accuracy, these
metrics enable assigning partial credit if the ground truth and predicted
answers are not identical but still have some words in common. In prac-

https://arxiv.org/pdf/2306.04488.pdf#page=39
https://arxiv.org/pdf/2306.04488.pdf#page=38
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tice, we use the OFA model (P. Wang et al. 2022) (generating the answers
token-by-token), on the VQA v2 dataset, pre-trained with cross-entropy,
and fine-tuned with REINFORCE during the RL stage. More details can be
found in Appendix H.

Our results in Figure 4.7a validate the observations already made in
previous experiments: RL is efficient to optimize those two rewards, and
RS reveals a Pareto-optimal front to balance between them.

4.3.6 Locomotion with diverse engineered rewards

Teaching humanoids to walk in a human-like manner (Duan et al. 2016a)
serves as a benchmark to evaluate RL strategies (Ng et al. 1999) for contin-
uous control. One of the main challenges is to shape a suitable proxy re-
ward (Dorigo and Colombetti 1994; Dewey 2014), given the intricate coordi-
nation and balance involved in human locomotion. It is standard (Todorov
et al. 2012) to consider dense rewards of the form R = velocity − λ×

∑
t a

2
t ,

controlling the agent’s velocity while regularizing the actions {at}t taken
over time. Yet, the penalty coefficient λ is challenging to set. To address this,
we devised two rewards in the Brax physics engine (C. Daniel Freeman
et al. 2021b): a risky R1 with λ = 0, and a more cautious R2 with λ = 1. Like
in all previous tasks, RS’s front in Figure 4.7b exceeds the interpolated re-
wards, as per RQ1. Moreover, the front defined by RS indicates an effective
balance between risk-taking and cautiousness, providing empirical support
for RQ2, although MORL with µ = 0.5 (i.e. λ = 0.5) slightly surpasses RS’s
front. We provide animations of our RL agent’s locomotion on our website,
and more details are in Appendix I.

This experiment takes on the intricate challenge of controlling a running
humanoid in the Brax C. Daniel Freeman et al. 2021b physics engine. The
complexities involved in achieving natural or fast movement in continuous
control environments serve as a testament to the robustness of our approach.
The fine-tuning procedure is carried out on two distinct reward functions,
with the aim of refining the running behavior of the humanoid, potentially
resulting in smoother motion patterns.

The LMC requires pre-training the base policy before fine-tuning. Thus,
as the pre-training task, we use the default dense reward implemented
in Brax: R = velocity − 0.1×

∑
t a

2
t . This pre-training phase also serves to

https://arxiv.org/pdf/2306.04488.pdf#page=39
https://huggingface.co/spaces/alexrame/rewardedsoups
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collect statistics about observations and normalize them before inputting
to the model (as it facilitates training). We used the Brax implementation of
PPO Schulman et al. 2017b. The pre-trained policy is saved while the value
function is discarded.

We keep the same environment as in pre-training. We also use the normal-
ization procedure inherited from pre-training but freeze the statistics. Two
reward functions are designed: a risky one for R1 = velocity and a cautious
one where R2 = velocity −

∑
t a

2
t . We tried a few hyperparameters (see the

values in brackets in Appendix Table 7 but results (see Appendix Figure 20)
remain close and consistently validate our research questions.

4.3.7 Efficiency gain of RS over MORL

The efficiency gain of RS versus MORL is by design; when consider-
ing 2 rewards, RS only requires 2 fine-tunings, while MORL actually re-
quires an infinite number of fine-tunings to reveal the entire front of prefer-
ences. To end this experimental section, we quantify this efficiency gain
by introducing in Figure 4.8 the expected reward Eµ̂∼Unif(0,1)R̂µ̂ where
R̂µ̂ = (1 − µ̂) × R1 + µ̂ × R2 and the expectation is over all the possible
user’s preferences µ̂. We then measure the difference between the expected
rewards for RS (with 2 runs) and MORL (with M runs). Plotting this ex-
pected reward advantage for different values of M shows that MORL needs
M ≫ 2 to match RS.

https://arxiv.org/pdf/2306.04488.pdf#page=41
https://arxiv.org/pdf/2306.04488.pdf#page=41
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(a) News summary.
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(b) Reddit summary.
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(c) Captioning.

Figure 4.8 – Expected reward advantage of RS (always requiring only
2 trainings) over MORL (with M trainings), defined as
Eµ̂∼Unif(0,1)

[
maxλ∈ΛR̂µ̂(θ

RS
λ )− EΛM

[
maxµ∈ΛM

R̂µ̂(θ
MORL
µ )

]]
, where

R̂µ̂ = (1− µ̂)×R1 + µ̂×R2 is the user reward for user linear
preference µ̂ sampled uniformly between 0 and 1, Λ = {0, 0.1, , 1.0}
is the set of the 11 possible values for λ, and where the expectation
for the MORL term is over the

(
11
M

)
possible combinations ΛM of M

elements from Λ (representing the M linear weightings µ used for
MORL training). We observe that MORL matches RS only for M
sufficiently big.

4.4 Conclusion

As AI systems are increasingly applied to crucial real-world tasks, there
is a pressing issue to align them to our specific and diverse needs, while
making the process more transparent and limiting the cultural hegemony
of a few individuals. In this chapter, we propose rewarded soup, a strategy
that efficiently yields Pareto-optimal solutions through weight interpolation
after training. Our experiments have consistently validated our working
hypotheses for various significant large-scale learning tasks, demonstrat-
ing that rewarded soup can mitigate reward misspecification. We hope to
inspire further research in exploring how the generalization literature in
deep learning can help for alignment, to create AIs handling the diversity
of opinions, and benefit society as a whole.

However, several limitations are observable: 1) Throughout training, none
of the models benefited from each other, limiting this method to a mere
post-hoc selection. 2) While the reward function may vary, the inputs remain
substantially the same across experiments, raising the question: would we
observe the same smoothness post-training by interpolating weights in
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more ambitious settings? The next part introduces a novel concept: subspace
of policies, which aims to address these observed limitations.
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D E F I N I N G A S U B S PA C E O F P O L I C I E S

As discussed in Section 2.3 and 2.4 the pinnacle of adaptation in RL is
achieved when an agent, already trained in fundamental problems, can
seamlessly navigate through a diverse array of behaviors to address any
given new challenge. This concept endorses the development of a population
of agents (Long et al. 2023): rather than focusing on a single policy, main-
taining an entire manifold of policies significantly increases the chances
of identifying optimal behavior for specific scenarios. In this part, we de-
fine a new methodology for evolving and refining this manifold, setting
the stage for a sophisticated approach aimed at constructing this dynamic
policy landscape.

This chapter lays the foundations for understanding the origins and defin-
ing this approach we created during this thesis—called Subspaces of Policies—
which will be further explored in Chapters 6 and 7. The core idea behind the
Subspaces of Policies is to train and maintain a population of diverse yet ef-
fective policies in a memory-efficient manner, drawing upon the principles
of mode connectivity, a cornerstone concept in neural network optimization
that reveals the interconnected nature of solution spaces. This approach,
founded on distinct hypotheses, facilitates the creation of neural networks
by employing weight interpolation. This technique enables the selection of a
specific set of parameters within the trained subspace, with the anticipation
that this novel parameter configuration will yield different responses to
inputs (i.e. all in all, actions output by policies will differ), thereby eliciting
new behaviors. Through this mechanism, we aim to explore and harness
the potential diversity within the parameter space, offering a systematic
way to generate a spectrum of adaptable and nuanced policies for varied
scenarios.

We start with a toy example in Section 5.1 to contextualize and impart
the intuition behind our method. Section 5.2 delves into the relevant litera-
ture, transitioning from theoretical underpinnings to contemporary appli-

83
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0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Train

Test #1

Test #2

Figure 5.1 – Distribution of the success rate of a population of 100 trained policies.
At the end of the training, we rollout trajectories with each policy on
3 different environments: Train (Ant, the one used for training), Test
#1 (Ant with a Torso 20% bigger), Test #2 (Ant with legs 30% smaller).
Success rate is averaged on 100 rollouts. The task remains the same
for all environments (navigating from point A to B)

cations. Subsequently, we formalize the concept of neural network subspaces
in Section 5.3 and elucidate our novelty subspaces of policies in Section 5.4,
supplemented by initial observations and remarks.

5.1 Towards a Population of Policies

Training a single policy on a given MDP is often perceived as an acqui-
sition of skills or knowledge, thereby broadening the potential for perfor-
mance: the expectation is that the agent will be able to solve a task (the
training one), and perhaps more since it acquired knowledge. From an
optimization perspective, however, the narrative is different: we iteratively
update the policy weights θ ∈ Rd, progressively constraining it within a
local minimum from which escape is often challenging. Beyond the risk of
overfitting, the optimization phase is parametrically restrictive: we incre-
mentally solidify the weights towards an immutable parametric solution.
While this phase is necessary for knowledge acquisition, it is detrimental
to functional diversity: unless the policy is retrained, it is destined to behave
in one specific manner at test time (i.e., when faced with a different task).
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To empirically illustrate this point, consider the following toy example.
Let us take a navigation task as described in Section 3.4: we train 100 poli-
cies with PPO on the same MDP, using the Ant environment from Brax
(C. Daniel Freeman et al. 2021b). Each policy is a neural network with two
layers of 512 units, randomly initialized (i.e., all weights are different). At
the end of training, we examine the distribution of success rate in the train-
ing environment among the population (Figure 5.1): all policies achieve a
success rate above 90%, with very low standard deviation (0.03 see blue
bloxplot). While these policies appear to perform similarly, they have almost
certainly converged to radically different solutions within the parameter
space Rd. This is a well-known characteristic of deep learning models, re-
sulting from the highly non-convex nature of their loss landscapes: a NN’s
learning trajectory is profoundly impacted by its initial conditions(Glorot
and Bengio 2010). But what of their functional diversity? To evaluate this,
we test the policies in two slightly modified environments depicted as Test
#1 and Test #2 (see orange and green boxplots in Figure 5.1) by performing
"0-shot" rollouts to measure their success rate. The results are unequivocal:
there is significant variance in success rates (standard deviation of respec-
tively 0.12 and 0.10). Some policies naturally perform well in this new
environment, while others fail completely, confirming the presence of sub-
stantial functional diversity among them. One might argue that, perhaps,
among the learned policies, some may be robust to any type of environ-
ment and the challenge would be to find a way to identify the best one and
discard the rest. This is why Test #2 was introduced: Figure 5.2 shows us
that the policies (one dot refers to one single policy) that perform well in
Test #1 (the color depicts the performance on this particular test set) are not
the same as those that perform well in Test #2 (e.g. blue dots representing
good policies at Test #1 are shuffled in Test #2 plot). This toy example leads
to two critical insights: 1) Similar performance levels across policies trained
on the same task can mask underlying functional diversity, which becomes
apparent when they are subjected to slightly different tasks. 2) It is impos-
sible to predict which policy will demonstrate robustness and efficiency in
response to changes, as the optimal policy varies with the nature of the
change.

In an ideal world, we could "carry" this entire population of policies at
test time and select them based on performance. This, however, is infeasible
for two reasons: computational cost (both memory and inference) and the
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Success Rate
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Test #2

Figure 5.2 – Same results as Figure 5.1 but with a split per policy. The color reflects
the ranking of the policies with respect to success rate on Test #1 to
verify that these are not the same that perform well on Test #2. The
color scale is indeed completely shuffled on Test #2.

.

interaction cost (for k policies, at least k episodes are needed to estimate
their performance). Hence, the concept of subspaces of policies emerges:
train a population of policies without fully instantiating them, that is, char-
acterizing them within a much smaller parametric space.

5.2 The history of mode connectivity

Before delving into the formalization of subspaces, I find it interesting
to outline a brief history of mode connectivity to elucidate the origins
of subspaces. The ideas tested in the Chapters 6 and 7 are not merely
based on intuition but are deeply rooted in theoretical realities that mode
connectivity continues to explore and demonstrate to this day.

The concept of mode connectivity has dramatically shifted the perception
of Neural Network optimization, highlighting a landscape of interconnected
solutions rather than isolated optima. This transformative perspective his-
torically challenged the long-standing notion of isolated minima in non-
convex optimization landscapes, proposing instead a richly interconnected
topography within neural networks. Within this framework, the introduc-
tion of the connector—a pathway through the weight space—serves as a
pivotal element. Given some weights θi ∈ Rd, a single-parametrized connec-
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tor is a continuous function α : [0, 1]→ Rd that ensures that the NN created
along [0, 1] perform similarly or better . Recalling what we have seen in the
last Section 5.1 in terms of population of policy, if such connector exists
between e.g. two NN parametrized by θ1 and θ2, this could be a way to
bring a whole manifold of policies at a small cost (twice a single policy).
So, does it exist and if yes, how to find it ?

In the mid-2010s, theoretical analysis of NNs optimization emerged. As a
pioneer paper in this field, Choromanska et al. (2015), has paved the way for
loss landscape analysis: when the number of parameters in a neural network
increases, the parameter space surprisingly offers an exponential growth of
viable solutions for the test set loss. Do these solutions have more in com-
mon than good performances at test time ? If so, how are they connected
? These analytical forays have given birth to the concept of Mode Connec-
tivity. Lakshminarayanan et al. (2017) make a first interesting observation
on ensembles. Ensembling two trained NN in output space boosts accuracy,
calibration, and robustness. This is attributed to functional diversity mean-
ing the two neural networks make different errors. On the contrary, Fort
et al. (2020) show that ensembling them in the parameter space - i.e. per-
form a weight interpolation - dramatically fails and achieves a performance
near to an untrained NN. Garipov et al. (2018) introduce the notion that
optima are not isolated, but are instead connected by simple, high-accuracy
curves (for instance a quadratic Bezier curve, that we will talk about in
Section 5.4.3). This revelation paves the way for innovative training and
ensembling methods. In the same paper, they introduce Fast Geometric
Ensembling that exploits these paths to enhance model performance and
robustness. Building upon these insights, subsequent studies have delved
deeper into the implications and applications of mode connectivity. Draxler
et al. (2019) further challenge the traditional view of distinct valleys in
loss landscapes by demonstrating surprisingly flat continuous paths be-
tween minima, suggesting a more unified and smooth energy landscape
than previously believed. Similarly, Gotmare et al. (2018) extend the under-
standing of mode connectivity, affirming its resilience across varied training
and initialization conditions and leveraging it as a diagnostic tool for loss
landscape analysis. These works collectively contribute to a growing body
of literature that reconceptualizes the optimization terrain of neural net-
works as an interconnected manifold rather than a disjointed collection of
solutions.
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In parallel, efforts to understand and optimize neural network behavior
have led to methodologies like those proposed by Lakshminarayanan et al.
(2017) and Izmailov et al. (2019), which, while not directly addressing mode
connectivity, resonate with its underlying principles. Lakshminarayanan et
al. (2017) advocate for ensembles as a means of enhancing predictive uncer-
tainty, echoing mode connectivity’s theme of leveraging multiple solutions.
Izmailov et al. (2019) introduces Stochastic Weight Averaging (SWA), a tech-
nique that navigates the connected regions of loss surfaces for better gener-
alization, embodying the spirit of exploring the connexion between minima.
Furthermore, the implications of mode connectivity extend into practical
applications and theoretical explorations alike. Frankle et al. (2020) investi-
gate the intersection of mode connectivity with the lottery ticket hypothesis,
revealing how neural networks stabilize to specific linearly connected re-
gions under SGD noise. This work not only deepens the understanding
of network optimization dynamics but also illustrates mode connectivity’s
role in finding efficient network structures.

Above all, the research highlighted in Wortsman et al. (2021) demon-
strated that, under certain conditions, it is entirely feasible to train a con-
nector rather than searching for one post hoc, enabling the training of
high-performance ensembles through weight interpolation within these sub-
spaces. This paradigm shift not only corroborates the interconnected na-
ture of neural network solutions but also furnishes a computationally ef-
ficient framework—unlike previous methods in the mode connectivity lit-
erature—for capturing diverse, high-accuracy models. This work further
advances our understanding by demonstrating the practicality and benefits
of directly learning neural network subspaces, which include diverse and
high-accuracy models within a single training run. The ability to learn such
subspaces efficiently not only validates the existence of high-accuracy paths
connecting different models but also showcases a method to build these
paths from scratch for improved generalization and robustness against la-
bel noise. Partly inspired by this groundbreaking work, our forthcoming
section lays the groundwork for apprehending the subspace of policies.
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Figure 5.3 – Illustration adapted from Wortsman et al. (2021) showing the training
of a line of neural networks parameterized by its two anchors θ̄1 and
θ̄2, compared to training a single neural network.

5.3 Neural Network Subspaces

Following the work of Wortsman et al. (2021), we define now the Neural
Network Subspaces and add preliminary important remarks.

5.3.1 Neural Network Convex Hull

Let us consider two NN, each defined by a unique set of d parameters
within the d-dimensional space Rd, symbolized as θ1 and θ2. These networks
delineate the boundaries of a segment in parameter space composed of all
their convex combinations. Given Θ the space of all parametrized NN, this
segment Θ̄ ⊆ Θ is denoted mathematically as Θ̄ = {θ : θ = α·θ1+(1−α)·θ2, α ∈
[0, 1]}, the combination α · θ1 + (1 − α) · θ2 being applied element-wise. In
this context, the NNs define the boundaries of the subspace and are thus
referred to as anchors throughout this thesis, denoted by θ̄. This segment
exemplifies the simplest form of a subspace, but the generalization to n NN
is formally trivial. The subspace is then the convex hull of these n NN:

Definition 5.1: Neural Network Convex Hull
Given n neural networks each defined by a set of parameters {θi}ni=1

in a d-dimensional space Rd, the convex hull of these networks Θ̄, is
the set of all their convex combinations. Mathematically, it is defined as
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Θ̄ = {θ : θ =
∑n

i=1 αiθi,
∑n

i=1 αi = 1, αi ∈ [0, 1]}, where each combination
is element-wise.

5.3.2 Learning objective

Consider the task of supervised learning where we aim to minimize a loss
function L(x, y; θ) over a dataset. If we want all the policies of a subspace
to be good at this task, the learning loss for a subspace could then be
represented as

Lsubspace(x, y; Θ̄) :=

∫

Θ

L(x, y; θ)dθ

In practice we can use similar optimization methods as for a single NN
by optimizing this surrogate loss:

Eα∼p(α)[L(x, y;
n∑

i=1

αi · θ̄i)] (5.1)

where p (α) denotes a distribution over the simplex [0, 1]n. When Θ̄ ={
θ̄1, θ̄2

}
one can simply use the uniform distribution. This particular case is

illustrated by Figure 5.3.

5.3.3 Other types of combinations

The use of Bézier curves, as opposed to simple convex combinations, has
been experimented with varying degrees of success, as documented in
(Wortsman et al. 2021) and discussed in Section 6.4.6. This approach re-
quires at least three anchors and involves the use of Bézier parametric
curves based on Bernstein polynomials, constrained to the interval [0, 1],
with the anchor parameters serving as the control points. For N = 3, it is
defined by:

Θ̄ =
{
(1− α)2 θ̄1 + 2 (1− α)α θ̄2 + α2 θ̄3, ∀α ∈ [0, 1]

}
(5.2)
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5.3.4 Computational remarks

Practically, Equation 5.1 can be minimized using any standard first-order
gradient descent method, such as Adam (Kingma and Ba 2017), a variation
of SGD (Robbins and Monro 1951) always used in our experiments, without
significant computational overhead. Specifically, during inference, the only
extra step in each layer involves averaging the weights and biases before the
usual forward operation. During back-propagation, thanks to the linearity
of differentiation, gradients are simply scale and used to update neural
network anchor weights in accordance with the corresponding coefficient αi.
While this approach indeed increases memory usage, it does not necessitate
additional memory for the backward pass, often the primary computational
bottleneck (T. Chen et al. 2015).

1 import torch
2 import torch.nn as nn
3

4 class Linear(nn.Module):
5 def __init__(self , n_anchors , in_features , out_features ,

bias = True):
6 super().__init__ ()
7 self.n_anchors = n_anchors
8 self.in_features = in_features
9 self.out_features = out_features

10 self.is_bias = bias
11

12 #initializing anchors
13 anchors = [nn.Linear(in_features , out_features , bias=

self.is_bias) for _ in range(n_anchors)]
14 self.anchors = nn.ModuleList(anchors)
15

16 def forward(self , x, alpha):
17 # forwarding on all anchors
18 xs = [anchor(x) for anchor in self.anchors]
19 xs = torch.stack(xs,dim=-1)
20

21 # averaging outputs with the convex combination
22 alpha = torch.stack([alpha] * self.out_features , dim

=-2)
23 xs = (xs * alpha).sum(-1)
24 return xs
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Listing 5.1 – Python code to define the class of a subspace NN linear layer
n_anchors using Pytorch.

During this thesis, we figured out that subspace methods involving up
to 8 anchors incur only a 10% to 20% increase in training time compared
to training a single policy. From an implementation perspective, as demon-
strated in the code above, creating such anchors using Pytorch (Paszke et al.
2019) is quite straightforward. A particularly useful trick for CNN architec-
tures: using the groups argument in the Pytorch torch.nn.Conv2d function and
adjusting in_channels and out_channels accordingly. For instance, for groups

=2 changes the convolution operation, as if two convolutional layers were
operating in parallel on separate halves of the input channels and then
concatenating their outputs. One only has to weight average and sum the
output to get a CNN subspace.

5.4 Neural Network Subspaces of Policies

This thesis contributes to the exploration of neural network subspaces
of policies within the realm of RL, offering insights into previously unex-
amined aspects. Our first contribution in the field consists in adapting the
NN subspace to the subspace of policies. In what follows, we present our
formalization and discuss the underlying challenges.

We define policies πθ parametrized by neural networks θ, where Θ̄ repre-
sents the set of such policies Π̄ := {πθ}θ∈Θ̄. By utilizing two anchor points
θ̄1, θ̄2 and a reward function R : τ → R aimed at maximizing returns (with
τ denoting a trajectory), we introduce a surrogate objective. This objec-
tive focuses on maximizing the average performance of policies within the
subspace induced by θ̄1 and θ̄2, as detailed in:

max
θ̄1,θ̄2

Eα∼U([0:1])
[
Eτ∼παθ̄1 + (1−α)θ̄2

[R (τ)]
]

(5.3)

This equation will play a role in the objective discussed in Chapter 6.
Its extension to n anchors, enabling the transformation of Equation 5.1
into a Reinforcement Learning objective, is straightforward. However, a
critical question arises regarding the choice of distribution for sampling
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within larger simplexes, especially when dealing with a greater number of
anchors (i.e. more than two).

5.4.1 Sampling within the subspace

Sampling possibilities in this context are more varied than in traditional
supervised learning, as combinations can be changed during a trajectory.
It’s even conceivable to use distinct combinations for rolling out and updat-
ing the policy, akin to the flexibility offered by off-policy algorithms (see
our algorithm developed in Chapter 7). This opens up numerous possibil-
ities and significantly enhances rollout diversity during training. Rather
than sampling from a singular policy repeatedly, sampling occurs across
various policies, similar to population methods that use multiple policies
to increase diversity and robustness (see end of Section 2.3.2). Sampling
can also be employed post-training during inference, serving as an efficient
means to narrow down the search space compared to the full d-dimensional
parameter space Θ. In this regard, the subspace strikes a balance between
traditional optimization and evolutionary algorithms, which typically per-
turb parameters randomly. The subspace, however, channels the search
within an area that has been tailored for a specific task.

The Dirichlet distribution is particularly advantageous for its ability to
sample n positive random variables that sum to 1. Defined by parameters
a = (a1, ..., an), which act as concentration parameters, it modulates the prob-
ability distribution across the n variables, rendering it a flexible distribution
over a convex hull—ideal for subspace sampling. Different sampling strate-
gies can be employed depending on the tuning of parameter a, as illustrated
in Figure 5.4. We will use the flat Dirichlet distribution where a = (1, ..., 1),
known for its uniform distribution over the simplex [0, 1]n. In Chapter 7, we
will also experiment with a peaked distribution a = ( 1n , ...,

1
n), favorable for

sampling around the anchors. The potential for integrating active learning
strategies (Settles 2009; Fang et al. 2017), which could adapt the distribu-
tion parameters based on task-specific information or obtained rewards,
and this during an episode, is also an intriguing prospect.
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Figure 5.4 – 3D visualization of 1000 random samples using various Dirichlet dis-
tribution sampling strategies, with a representing the distribution’s
parameters. The "triangle" symbolizes the simplex defined by vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1).

5.4.2 Freezing anchors

One potential issue is the deterioration of performance when training all
anchors on a sequence of tasks. An intriguing strategy involves selectively
freezing certain anchors while optimizing others. This approach, detailed
in Chapter 7, allows for the preservation of learned behaviors in some
anchors, particularly when they have adequately adapted to specific tasks,
while continuing to evolve other anchors. This selective freezing can lead
to a nuanced balance in the learning process, where certain stable aspects
of the policy are maintained, while others are dynamically adjusted. One
can even consider partial freezing strategies, akin to those in Mallya and
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Lazebnik 2018, where only specific parts of a neural network are frozen.
Such methods can result in interesting architectural combinations, mixing
the concept of modularity like in Veniat et al. 2020 with the flexibility of
subspace optimization. This approach opens up new avenues for exploring
efficient and adaptive policy development in CRL.

5.4.3 Other types of combinations

Exploring alternative combination methods can significantly enhance the
expressivity of the subspace. By extending the dimension of the combina-
tion variable α, it’s possible to access a broader array of diverse policies.
Layer-wise combination emerges as an obvious extension of the classical com-
binations. Here, distinct combinations are applied to each layer of the NN.
A specific instance of this is the mixing of only the final layers between
neural networks, as explored in Chapter 4. This strategy is particularly in-
triguing as it allows for the use of subspace methods in the final layer, while
potentially employing different methodologies for the earlier layers or the
backbone of the network, a concept we experiment in Section 7.4 on Contin-
ual World scenario. While not extensively tested, the idea of extending this
to an element-wise combination, where the number of coefficients equals the
number of parameters, presents an interesting avenue. Though this would
significantly increase the number of parameters, effectively creating a new
neural network to optimize, the potential for enhanced adaptability and
performance is noteworthy.

5.5 Conclusion

This chapter has laid the groundwork for the novel framework of sub-
spaces of policies, anchored in the principle of mode connectivity. We have
demonstrated not only a potentially powerful framework—supported by
robust theory—for training a subspace of policies but also identified vari-
ous properties that are advantageous, such as the relatively low inference
cost and the diverse methods available for sampling within the subspace.
Moving forward, we will expand on these foundational elements to devise
innovative methods applicable across a range of scenarios. We will progress
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to a few-shot setting using an simple training method in Chapter 6, includ-
ing an effective policy selection technique to identify the optimal point
within a subspace. Chapter 7 sets its sights higher, seeking to iteratively
build a subspace of policies to augment knowledge within a continual
reinforcement learning framework.
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This work is based on our paper Learning a Subspace of Policies for Online
Adaptation in Reinforcement Learning 1 (Gaya et al. 2023) (ICLR). As we saw
in Chapter 2, existing RL techniques work quite well in the classical setting
where one have to maximize a unique reward function. Yet, considering
that the environment at train time and the environment at test time are
similar is unrealistic in many practical applications. As an example, when
a gamer learns to play a video game, they often practice within a specific
virtual environment, mastering certain levels with consistent patterns and
predictable challenges. However, at competition time, we expect the gamer
to be able to generalize their skills to new levels, unfamiliar gameplay me-
chanics, and unexpected in-game events. This requires the player to adapt
their strategies and reflexes to a variety of unforeseen situations, paral-
leling the adaptability we aim to achieve in deep reinforcement learning
agents. All in all, the challenges is to learn a policy that adapts itself to
unseen environments. Different techniques have been proposed in the lit-
erature (Section 2.3) to automatically adapt the learned policy to the test
environment. In the very large majority of works, the model has access to
multiple training environments (meta-RL setting). Therefore, the training
algorithm can identify which variations (or invariants) may occur at test
time and how to adapt quickly to similar variations. But this setting may
still be unrealistic for concrete applications: for instance, it assumes that the
gamer will have had the chance to play against all the other competitors in
practice rounds before the actual tournament begins.

In this chapter, we thus address this few-shot adaptation setting - hard to
tackle - in which the agent is trained over one single environment and has
to perform well on different unseen test environments; preventing us from
using the meta-RL approaches discussed in Section 2.3.2. It introduces our
innovative approach, detailed in our ICLR publication Learning a Subspace

1. You can find the appendix in the arxiv paper here. Code is available here.
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of Policies for Online Adaptation in Reinforcement Learning (Gaya et al. 2021),
marking the first practical exploration of policy subspaces. It is sectioned
into five areas: Section 6.1 outlines the contextual challenges and the spe-
cific setting we are addressing; Section 6.2 describes the methodological
approach; Section 6.3 details the experimental protocol we have employed;
and Section 6.4 provides a thorough analysis of the results. The final Sec-
tion 6.5 offers our concluding remarks on the study and pave the way for
Chapter 7.

6.1 Context & Motivations

We consider the setting depicted in Section 2.3.1 where an agent is trained
on a MDP, and has only K "free" episodes to adapt and be tested on another
mdp. Note that we are interested in methods that adapt quickly to new a
test environment and we will consider small values of K in our experiments.
In this Chapter, for sake of simplicity, K will refer to the number of policies
evaluated during adaptation since each policy may be evaluated over more
than a single episode when facing stochastic environments.

A natural way to address this setting is by initially learning a single policy
using any RL algorithm and fine-tuning it at test time over the test environ-
ment (see (a) in Figure 6.1), but this can be costly in terms of environment
interactions. Because of the number of interactions required to make them
work, this also excludes many methods derived from MAML (Finn et al.
2017) and described in Section 2.3. On the other side of the spectrum, one
can learn a lot of policies and select it at test time, but this requires much
more in terms of interactions, memory and computation time (see (b) in
Figure 6.1). Drawing upon the insights from Chapter 5, we propose to learn
a Line of Policies in the parameter space. Each particular point in this sub-
space corresponds to specific parameter values, and thus to a particular
policy. At test time, one can rollout trajectories from multiple policies just
as if we had trained much more than two (see (c) in Figure 6.1). Indeed,
this subspace is learned by adapting a classical RL algorithm (without ad-
ditional computation cost), such that an infinite continuum of policies is
learned, each policy having different parameters. The policies thus capture
and process information differently, and react differently to variations of
the training environment.
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Figure 6.1 – Illustration of policy adaptation strategies in reinforcement learning.
(a) represents the traditional approach of learning a single policy and
fine-tuning it over the test environment, which may lead to high in-
teraction costs. (b) depicts the strategy of learning multiple policies
and selecting the best at test time, incurring high interaction, mem-
ory, and computational costs. (c) introduces our proposed method of
learning a Line of Policies within the parameter space.

6.2 Line of Policies (LoP)

6.2.1 Intuition

To illustrate our idea, let us consider a toy example where the train en-
vironment contains states with correlated and redundant features, in such
a way that multiple subsets of state features can be used to compute good
actions to execute. Traditional RL algorithms will discover one policy πθ∗

that is optimal w.r.t the environment. This policy will typically use the state
features in a particular way to decide the optimal action at each step. If
some features become noisy (at test time) while, unluckily, πθ∗ particularly
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relies on these noisy features, the performance of the policy will drastically
drop. Now, let us consider that, instead of learning just one optimal policy,
we also learn a second optimal policy πθ∗′ , but enforcing θ∗

′
to be differ-

ent than θ∗. This second policy may tend to make use of various features
to compute actions. We thus obtain two policies instead of one, and we
have more chances that at least one of these policies is efficient at test time.
Identifying which of these two policies is the best for the test environment
(i.e., adaptation) can simply be done by evaluating each policy over few
episodes, keeping the best one. The model we present is built on top of
this intuition, extending this example to an infinite set of policies and to
variable environment dynamics.

We study the approach of learning a subspace of policies in the parameter
space, and the use of such a model for online few-shot adaptation in re-
inforcement learning. Studying the structure of the parameter space has
seen a recent surge of interest through the mode connectivity concept (see
Chapter 5) and obtain good results in generalization, but it has never been
involved in the RL setting. As intuitively illustrated in the previous para-
graph, we expect that, given a variation of the training environment, having
access to a subspace of policies that process information differently instead
of a single policy will facilitate the adaptation. As a result, our method is
very simple, does not need any extra hyper-parameter to tune and achieve
good performance.

In the case of N = 2, the subspace of policies corresponds to a simple
segment in the parameter space defined by θ̄1 and θ̄2 as extremities. θ̄1

and θ̄2 are combined through a single scalar value α ∈ [0; 1] as follows:
θ = αθ̄1 + (1 − α)θ̄2. One could maximize the objective function stated in
Equation 6.1, by rolling out trajectories from random policies along the line
of the subspace and optimize the anchors accordingly. But this lacks of a
regularization term to encourage functional diversity.

6.2.2 Increasing functional diversity

Indeed, one possible effect when optimizing Lsubspace(θ̄1, θ̄2) from Equa-
tion 6.1 is to reach a solution where θ̄1 and θ̄2 are similar. In that case, all the
policies would have the same parameters value, and will thus all achieve
the same performance at test-time, producing no functional diversity. Since
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Algorithm 6.1 PPO on a Line of Policies
Initialize: θ̄1, θ̄2, ϕ (Critic), n batch size

1 for k = 0, 1, 2... do
2 Sample α1, ..., αn ∼ U[0,1]

Define θαi
← αiθ̄1 + (1− αi)θ̄2

Sample trajectories {τi}n1 using {πθαi
}

Update θ̄1 and θ̄2 to maximize: 1
n

∑n
i=1 L̂PPO (θαi

)− β · C
(
θ̄1, θ̄2

)

Update ϕ to minimize: 1
n

∑n
i=1 L̂MSE (ϕ, αi)

3 end

Figure 6.2 – The adaptation of the PPO Algorithm with the LoP model. The dif-
ferent with the standard PPO algorithm is that: a) trajectories are
sampled using multiple policies θαi

b) The policy loss is augmented
with the auxiliary loss, and c) The critic takes the values αi as an
input.

we want to encouragithge the policies to process information, we force the
anchor policies to have different parameters. This is implemented through
the use of cosine similarity, a measure of similarity between two vectors.
(Fort et al. 2020) found that models trained separately tend to have weight
vectors that are not similar in direction, which they measured using cosine
similarity close to 0. This is in contrast to models that are trained together,
following the same path. To replicate this effect, we follow Wortsman et al.
(2021) and add a regularization term C to our training goal that promotes

a cosine similarity of 0 between θ̄1 and θ̄2: C(θ̄1, θ̄2) =
⟨θ̄1,θ̄2⟩2

∥θ̄1∥2∥θ̄2∥2
The final

optimization loss is then:

L(θ̄1, θ̄2) = Eα∼U [0:1]
[
Eτ∼παθ̄1 + (1−α)θ̄2

[R (τ)]
]
− β · C(θ̄1, θ̄2) (6.1)

where β is an hyper-parameter (see Section 6.4 for a discussion) that
weights the auxiliary term.

One good property of this loss (in comparison to a method introducing
an intrinsic reward) is that it does not modify the reward objective of the
learned policies and thus does not encourage the model to learn policies
that are sub-optimal at train time. In Section 6.4, we show that adding
this auxiliary loss does not modify the performance of the model over
the training environment, and does not need to be balanced by using any
additional hyper-parameters.
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We provide in Figure 6.2 the adapted version of the clipped PPO algo-
rithm (see Section 2.1.1 for details about PPO) for learning a subspace of
policies. In comparison to the classical approach, the batch of trajectories is
first acquired by multiple policies sampled following p(α) (line 2-3). Then
the PPO objective is optimized taking into account the policies used when
sampling trajectories (line 4). At last, the critic is updated (line 5), taking as
an input the α value so that it can make robust estimations of the expected
reward for all the policies in the subspace. Adapting off-policy algorithms
would be similar. Additional details are provided in appendix. Note that,
for environments with discrete actions, we have made the same adaptation
based on the A2C algorithm since A2C has less hyper-parameters than PPO
and is easier to tune, with similar results.

6.2.3 K-shot adaptation

Given a subspace of policies Θ̄, different methods can be achieved to
find the best policy over the test environment. For instance, it could be
done by optimizing the distribution p(α) at test time. In this chapter, we
use the same yet effective K-shot adaptation technique than S. Kumar et al.
2020 and Osa et al. 2021: we sample K episodes using different policies
defined by different values of α that are uniformly spread over [0, 1]. In our
example, it means that we evaluate policies uniformly distributed within
the pentagon to identify a good test policy (blue star). Note that, when the
environment is deterministic, only one episode per value of α needs to be
executed to find the best policy, which leads to a very fast adaptation.

Note that the models proposed in (Osa et al. 2021; S. Kumar et al. 2020)
shares some similarities with our approach with two differences: i) the
auxiliary loss is based on an additional neural network used to enforce
diversity in the behaviour of the policies. Moreover, in S. Kumar et al. 2020,
this term is integrated to the reward while in (Osa et al. 2021), the auxiliary
loss can be used only with continuous actions.
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6.3 Experimental Protocol

6.3.1 Environments

We perform experiments in 6 different environments. Implementations
based on the SaLinA (Denoyer et al. 2021) library together with train and
test environments will be released upon acceptance. For each environment,
we consider one train environment on which we trained the different meth-
ods, and multiple variations of the training environment for evaluation
resulting in 50 test environments in total. Note that the complete experi-
ments correspond to hundred of trained policies, and dozens of thousands
of policy evaluations. For simple control environments (i.e., CartPole, Pen-
dulum and AcroBot from the Openai Gym suite (Brockman et al. 2016)), we
introduce few variations of the physics constant at test-time, for instance
by varying the mass of the cart, the length of the pole. For complex control
environments (i.e., HalfCheetah and Ant using the BRAX library (C Daniel
Freeman et al. 2021a), we both use variations of the physics (e.g., gravity),
variations of the agent shape (e.g., changing the size of the leg, or of the
foot) and sensor alterations. At last, in MiniGrid (Chevalier-Boisvert et al.
2018) and ProcGen (Cobbe et al. 2019) we perform experiments where the
agent is trained in one particular levels, but is evaluated in other levels (sin-
gle levels on MiniGrid, and set of 10 levels in ProcGen). Note that ProcGen
is a pixel-based environment where the architecture of the policy is much
more complex than in control environments. Toy experiments on a simple
Maze 2d are given in Figure 6.6 (left) to show the nature of the policies
learned by the different methods.

6.3.2 Comparison with other methods

We compare our approach LoP 2 with different state-of-the-art methods: a)
The Single approach is just a single policy learned on the train environment,
and evaluated on the test ones. b) The DIAYN+R(reward) method is an
extension of DIAYN (Eysenbach et al. 2018) where a set of discrete policies

2. We consider the LoP-A2C and the LoP-PPO models for environments with respectively
discrete and continuous actions. LoP-PPO could be also used in the discrete case but requires
more hyper-parameter tuning.
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is learned using a weighted sum between the DIAYN reward and the task
reward:

RDIAY N+R(s, a) = r(s, a) + β log p(z|s) (6.2)

Critically, this model requires to choose a discriminator architecture to com-
pute log p(z|s) and modifies the train reward by defining an intrinsic reward
that may drastically change the behavior of the policies at train time. c)
At last, we also compare with the model proposed in (Osa et al. 2021) de-
noted Lc (Latent-conditioned) that works only for continuous actions. This
model is also based on a continuous z variable sampled uniformly at train
time, but only uses an auxiliary loss without changing the reward. This
auxiliary loss is defined through the joint learning of a density estimation
model logP (z|s, a) where back-propagation is made over the action a. As in
DIAYN+R, this model needs to carefully define a good neural network ar-
chitecture for density estimation. Since Lc cannot be used with environment
that have discrete actions, we have adapted DIAYN+R (called DIAYN+R
Cont.) using a continuous z variable (instead of a discrete one) and a den-
sity estimation model logP (z|s) as in Osa et al. 2021. Note that we do not
compare to (S. Kumar et al. 2020) for the exact same reason as the one iden-
tified in (Osa et al. 2021): SMERL assumes that the reward is known over
the complete trajectories which results in unnatural adaptation of on-policy
RL algorithms like PPO. Moreover, preliminary experiments with SMERL
does not demonstrate any advantage against DIAYN+R correctly tuned. We
also conducted experiments where K independent policies are learned, the
best one being selected over each test environment. This approach obtains
lower performance than the proposed baseline and needs K more training
samples making it unrealistic in most of the environments.

6.3.3 Architecture and selection procedure

As network architectures, we use multi-layer perceptrons (MLP) with
ReLU units for both the policy and the critic. For DIAYN+R logP (z|s, ...) is
also modeled by a MLP with a soft-max output. For Lc and DIAYN+R Cont.,
logP (z|s, ...) is modeled by a MLP that computes the mean of a Gaussian
distribution with a fixed variance. For these baselines, z is concatenated
with the environment observation as an input for the policy and the critic
models.
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To choose the hyper-parameters of the different methods, let us re-
mind that test environments cannot be used at train time for doing hyper-
parameters search and/or model selection which makes this setting particu-
larly difficult. Therefore, we rely on the following procedure: a grid-search
over hyper-parameters is made, learning a single policy over the train en-
vironment. The best value of the hyper-parameters is then selected as the
one that provides the best policy at train time. These hyper-parameters are
then used for all the different baselines. Concerning the β value, for LoP, we
report test results for β = 1.0 while, for Lc and DIAYN+R, we use the best
value of β on test environments. This corresponds to an optimistic evalu-
ation of the baseline performances; aiming at showing that our method is
much more efficient since it does not need such a beta-tuning (β = 1.0 giving
good performance in the majority of cases). Said otherwise, we compare our
model in the less favorable case where baselines have been unrealistically
tuned.

For the adaptation step, each policy is evaluated over 10 episodes for
stochastic environments or 1 single episode for deterministic environments.
We repeat this procedure over 10 different training seeds, and report the
reward over the different test environments together with standard devia-
tion.

6.4 Results & Analysis

6.4.1 Performance

We report the test performance of the models on different environments
in Table 6.4.1. In all the environments, the adaptive models perform better
than learning a single policy over the train environment which is not sur-
prising. In most of the cases, LoP is able to achieve a better performance
than other methods. For instance, on HalfCheetah where we evaluate the
different methods over 16 variations of the train environments, LoP achieves
an average reward of 10589 while Lc and DIAYN+R obtain respectively
9547 and 9680. Some examples of the discovered that behaviors in Ant and
HalfCheetah 3 for the different methods, and for different values of α are

3. Videos available here

https://sites.google.com/view/subspace-of-policies/home
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(a) environments with discrete action space
CartPole Acrobot Pendulum Minigrid toy maze

Nb. Test Env. 6 6 3 6 4

Single Policy 143.4 -99.7 -52.7 0.169 -83.2
LoP 149.9 -93.2 -28.9 0.447 -33.6
DIAYN+R 168.1 -97.0 -47.1 0.248 -42.2
DIAYN+R L2 156.1 -93.6 -44.0 0.443 -

(b) environments with continuous action space
Brax HalfCheetah Brax Ant

Nb. Test Env. 16 15

Single Policy 7697 3338

LoP 10589 4031
DIAYN+R 9680 3759

Lc 9547 4020

Table 6.1 – Average cumulated reward of the different models over multiple test-
ing environments, averaged over 10 training seeds (higher is better).
For DIAYN and Lc, results are reported for testing 10 policies for LoP,
Lc, and DIAYN+R using 10 episodes per policy for stochastic environ-
ments and 1 episode per policy on deterministic ones. Performance is
evaluated using the deterministic policy.

illustrated in Figures 6.8 and 6.10. This outlines that learning models that
are optimal on the train task reward, but with different parameter values,
allows us to discover policies react differently to variations of the training
environment. It seems to be a better approach than encouraging policies
to have a different behaviors (i.e., generating different state distributions)
at train time. Same conclusions can be drawn in most of the environments,
including MiniGrid where LoP is able to explore large mazes while being
trained only on small ones. On the ProcGen environment, where the ob-
servation is an image processed through a complex ConvNet architecture,
enforcing functional diversity (DIAYN+R) does not allow to learn good
policies while the LoP model is able to better generalize to unseen levels.
Note that the performance at train time is the same for all the different
approaches reported (see the Table 6.3 for instance) but quickly decreases
in DIAYN for larger values of β while it stays stable for LoP where the best
results are obtained for β = 1.0.



6.4 results & analysis 107

Interestingly, in CartPole, DIAYN+R performs quite well. Indeed, when
analyzing the learned policies, it seems to be a specific case where it is
possible to obtain optimal policies that are diverse w.r.t the states they
are sampling (by moving the cart more or less on the right/left while
maintaining the pole vertical).

We have also performed experiments where test environments have the
same dynamics as the training environment, but with defective sensors (i.e.,
some features at test time have a null value). The fact that LoP behaves
also well confirms the effectiveness of our approach to different types of
variations, including noisy features on which baselines methods were not
applied in previous publications.

6.4.2 Sensitivity to hyper-parameters

K = 5 10 20 Train Perf.

Lo
P

β = 0.1 3905 3991 4164 7659

β = 1. 4035 4031 4174 7630

β = 10 3998 4012 4145 7670

D
IA

Y
N β = 0.1 3558 3833 3949 7739

β = 1. 3451 3759 2878 5388

β = 10 3356 3400 3109 4430

Lc

β = 0.1 3909 4020 4150 7767

β = 1. 3820 3947 4126 7650

β = 10 3870 3945 4108 7710

Figure 6.3 – Performance of the models at train time that shows that for LoP β is
not hurting train performance while it is DIAYN+R. Standard error
deviation is reported in Appendix Table 7 for each environment. We
also report the performace at train time that shows that a too high
value of β hurts DIAYN+R performance while is less critical in LoP.

One important characteristic of LoP is that it can be used with β = 1.0

and does not need to define any classifier architecture as opposed to DI-
AYN+R and Lc. Indeed, as shown in Table 6.3, the training performance of
DIAYN drastically depends on a good tuning of β. Lc, which is less sensible,
needs to use a correct classifier architecture as in DIAYN. LoP is simple
to tune since the cosine term is usually easy to satisfy and our approach,
at convergence, always reaches a 0 value on this term when β > 0.0. It

https://arxiv.org/pdf/2110.05169.pdf#page=23
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is also interesting to note than, on the BRAX environments, the number
of environment interactions needed to train LoP is similar than the one
needed to train a single policy and LoP comes with a very small overhead
in comparison to classical methods.

6.4.3 Sensitivity to the budget

A

SmallFeet TinyFriction BigGravity

LoP K=5 8283 10425 10464
K=10 8805 10662 10578
K=20 8794 10734 10807

DIAYN+R K=5 7580 9132 8989

K=10 7580 9132 8989

K=20 8255 10003 9766

Lc K=5 8186 9521 9360

K=10 8186 9661 9488

K=20 8107 9661 9506

BoP K=5 6775 7867 7878

(N=3) K=10 6660 7840 8026

K=20 6996 7963 8015

CoP K=5 8996 9468 9287

(N=3) K=10 9210 9523 9568

K=20 9155 9979 9695

Figure 6.4 – Ablation study on the number of policies K used at test time on 3

HalfCheetah environment variations together with the performance
of the BoP and CoP variants (see Section 6.4.6).

One interesting property is the number of policies (and thus of episodes)
to test over a new environment to get a good performance. For LoP and
Lc, given a trained model, one can evaluate as many policies (i.e., different
values of α) as desired. For DIAYN+R, testing more policies also means
training more policies which is expensive and less flexible. Table 6.4 (right)
provides the reward of the different methods when testing K policies on
different HalfCheetah settings: as expected, the performance of DIAYN+R
tends to decrease when K is large since the model has difficulties to learn
too many diverse policies. For LoP and Lc, spending more episodes to evalu-
ate more policies naturally leads to a better performance: these two models
provide a better way to deal with the exploration-exploitation trade-off at
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test time. Lc also needs to define an additional neural network architecture
to model logP (α|s, a) while LoP does not, making our approach simpler.

6.4.4 Functional diversity

Figure 6.5 – Trajectories generated by K = 10 policies on an unseen maze (objec-
tive is to go from left to right) for DIAYN+R (left column with best β
value) and LoP (right column with β = 1.0), illustrating the diversity
obtained with DIAYN+R and LoP.

To better understand the nature of the policies discovered by the different
approaches, we have made a qualitative study in which we analyze i) the
robustness of the methods to corrupted observations, ii) the functional
diversity induced by the different models, and iii) the specificity of the
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different learned policies to particular test environments. First, LoP is more
robust to input feature corruption (see Appendix Table 7 for the results)
and we conjecture that it is because the diversity in the parameter space
allows this model to learn policies that does not take into account the same
input features equally.

We also measure the functional diversity induced by the different models
by training a posteriori a classifier that aims at recovering which policy (i.e
which value of α) has generated particular trajectories (see Figure 6.6. On
LoP with K = 5, such a classifier obtains a 82% accuracy at validation time
showing that the 5 policies are quite diverse, but less than the DIAYN+R
policies where the classifier reaches a 100% accuracy which is logical know-
ing the auxiliary loss introduced by DIAYN which enforces this type of
diversity. It is interesting to note that with the trajectories generated in
the test environments with LoP policies, the accuracy of the classifier is
reaching 87 %: when LoP is facing new environments, it tends to generate
more diverse policies. We think that it is due to the fact that, since the
policies have different parameter values, they react differently to states that
have not been encountered at train time. At last, examples of policies on a
simple maze2d are given in Figure 6.5 which illustrate the diversity of the
discovered policies.

https://arxiv.org/pdf/2110.05169.pdf#page=23
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Figure 6.6 – We trained small discriminators over a dataset (100,000 environment
interactions) of trajectories obtained with the learned policies of LoP
and DIAYN+R when K=5. For each environment, for each seed, we
trained a single discriminator and averaged the results. While the
discriminators trained on DIAYN+R reach 100% accuracy rapidly on
both train and test environments, they learn slower for LoP, with a
slight advantage for the test environment, validating the fact that the
diversity induced by the cosine similarity on the weights is more vis-
ible in variations of the environment rather than the environment on
which the model has been trained. We evaluated the discriminator on
a validation dataset (also 100,000 environment interactions) resulting
in 100% accuracy for DIAYN in both train and test environments. For
LoP, we obtained 82% accuracy on the training environment, and 87%
on the test environments. The discriminator architecture consists in
a neural network of two hidden layers of size 16, taking the unpro-
cessed states as an input and outputting the predicted policy used
(like in DIAYN).

6.4.5 Policies used at test time

We wanted to examine whether one policy within the subspace outper-
forms the others at test time. Indeed, this is something that has been ana-
lyzed by Wortsman et al. 2021 in supervised learning, with clearer evidence
that the midpoint always outperforms the other points in the line segment.
To do so, we plotted histograms illustrating which policy is used on each
test environment with LoP and DIAYN+R (see Figure 6.7). This analysis
shows that a) anchor policies are little used in the test environments and
b) different test environments make use of different policies (i.e., different
z). We hypothesize that it is a border effect of the training objective we
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Figure 6.7 – Number of times each policy (over K = 5 tested policies) is chosen
over the 16 test environments of the HalfCheetah setting for each of
the 10 seeds. Blue is LoP and orange is DIAYN+R. Different policies
are used for different test environments showing the interest of learn-
ing a subspace of policies. Note that in LoP, the anchor policies are
rarely chosen.

defined : as we aim to optimize the whole line segment at train time (see
Algorithm 6.2), by randomly sampling a z value at each epoch, the middle
of the line segment should benefit from both anchor policies updates while
these anchor policies benefit from the update of themselves.
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6.4.6 Beyond a Line of Policies

While LoP is based on the learning of N = 2 anchor parameters, it is
possible to combine more than two anchor parameters. We study two ap-
proaches combining N = 3 anchor parameters (that can be extended to
N = 3): a) the first approach is a convex combination of policies (CoP)
where α is sampled following a Dirichlet distribution. (b) The second ap-
proach is a Bézier combination (BoP). The only change between LoP and
these models resides in the way we combine the anchor policies. For CoP,
it is just the generalization of LoP for N > 2. BoP, makes use of a Bézier
parametric curve (see Section 5.4.3) Concerning the policies α evaluated
at test time, BoP uses the same strategy as LoP by testing values that are
uniformly distributed in [0; 1]. For CoP, we opted for sampling K policies
using a Dirichlet distribution over [0, 1]3.

The results are presented in Table 6.4 over multiple HalfCheetah envi-
ronments. It can be seen that these two strategies are not so efficient. LoP
is thus a good trade-off between the number of parameters to train and
the performance (Note that BoP and CoP need more samples to converge),
at least given the particular neural network architectures we have used in
this paper. We also performed an in-depth analysis of the evolution of the
reward when K is increasing for LoP and CoP in Halfcheetah test environ-
ment (Figure 6.9). While we expected CoP to outperform LoP when K is
high, the best reward becomes stable when K=20 for both methods, and in
most test environments, CoP is not able to reach the same best reward as
LoP.
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Figure 6.9 – Evolution of the best reward obtained with respect to K for LoP (N=2)
and CoP (N=3) for each Halfcheetah test environment. We ran the
K-shot evaluation for each K from K=1 to K=100 using the method
described above : we simply sample K random coefficients using the
uniform distribution over [0, 1] for LoP and the Dirichlet distribution
over [0, 1]3 for CoP. Results are averaged over 10 run for each K, and
over the 10 models we learned for each method.

Figure 6.8 – Qualitative example of LoP trajectories on HalfCheetah "BigShins"
test environment (5-shot setting). The best reward is obtained for
α = 0.75.
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Figure 6.10 – Extreme case: when torso radius and mass are increased by 50%.
Only one policy is able to adapt without falling down (α = 0.5).

6.5 Conclusion

The approach we have presented in this chapter is deceptively straightfor-
ward, yet it yields policies resilient to the fluctuations of training environ-
ments. Unlike other methods, the Line of Policies (LoP) avoids the need for
fine-tuning or the introduction of complex architectures to manage diversity.
However, this is not without drawbacks:

• Efforts to create a subspace with a higher number of anchors (specif-
ically, CoP and BoP incorporating three policies) did not bear fruit.
These approaches often underperformed compared to LoP, despite
representing a 50% increase in the number of parameters.

• The diversity achieved through LoP is recognized as finite, as illus-
trated in Figure 6.6. Even when augmented with a regularization
term like cosine similarity, the optimization targets a singular reward,
which inherently limits diversity. The method shows limited diversity
of skills in practice.

Addressing these issues points us towards expanding this suite of strate-
gies into the domain of Continual Reinforcement Learning. Such explo-
ration would lead to a deeper understanding of the constructed subspace
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and the investigation of different auxiliary losses to better control the sub-
space’s shape. These prospects will be the focus of the next chapter.
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B U I L D I N G A S U B S PA C E O F P O L I C I E S

We now advance the discussion of policy robustness and diversity from
Chapter 6 into the realm of CRL, guided by insights from our paper Build-
ing a Subspace of Policies for Continual Learning 1 (Gaya et al. 2023) (ICLR
Spotlight). The ability to continuously acquire new knowledge and skills is
crucial for autonomous agents. As we saw in Section 2.4.3, existing meth-
ods are typically based on either fixed-size models that struggle to learn
a large number of diverse behaviors, or growing-size models that scale
poorly with the number of tasks. In this chapter, we aim to strike a better
balance between an agent’s size and performance by designing a method that
grows adaptively depending on the task sequence. We introduce Continual
Subspace of Policies (CSP), a new approach that incrementally builds a sub-
space of policies for training a reinforcement learning agent on a sequence
of tasks. The subspace’s high expressivity allows CSP to perform well for
many different tasks while growing sublinearly with the number of tasks.
Our method does not suffer from forgetting and displays positive transfer
to new tasks. CSP outperforms a number of popular baselines on a wide
range of scenarios from two challenging domains, Brax (locomotion) and
Continual World (manipulation). Interactive visualizations of the subspace
can be found at csp.

Drawing on the foundational concepts introduced in Chapter 5 and the
first experiments in Chapter 6, we will first transition from the setting of
few-shot adaptation to a more ambitious CRL framework (Section 7.1). We
will then delve into our method, which entails an iterative and adaptive
construction of a subspace of policies (Section 7.2). A significant portion
of our discussion will be dedicated to the experimental protocol and the
design of engaging scenarios that are conducive to comparing our methods
(Section 7.3). We will dissect both the quantitative and qualitative outcomes

1. You can find the appendix in the arxiv paper here. Code is available here.
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https://share.streamlit.io/continual-subspace/policies/main
https://arxiv.org/pdf/2211.10445.pdf
https://github.com/facebookresearch/salina/tree/main/salina_cl
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of our experiments (Section 7.4). The final Section 7.5 offers our concluding
remarks on the study.
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Figure 7.1 – Trade-off between model performance and size for a number of meth-
ods, on a sequence of 8 tasks from HalfCheetah (see Appendix Fig-
ure 6 for trade-offs on other scenarios)

7.1 Context & Motivations

Developing autonomous agents that can continuously acquire new knowl-
edge and skills is a major challenge in machine learning, with broad appli-
cation in fields like robotics or dialogue systems. In the past few years, there
has been growing interest in the problem of training agents on sequences
of tasks. As we saw in Section 2.4, current methods either use fixed-size
models that struggle to learn a large number of diverse behaviors (Hinton
et al. 2006; Rusu et al. 2016a; Z. Li and Hoiem 2018; Bengio and LeCun
2007; Kaplanis et al. 2019; Traoré et al. 2019; Kirkpatrick et al. 2017; Schwarz
et al. 2018; Mallya and Lazebnik 2018), or growing-size models that scale
poorly with the number of tasks (Berseth et al. 2018; Cheung et al. 2019;
Wortsman et al. 2020). In this Chapter, we introduce an adaptive-size model
which strikes a better balance between performance and size, two crucial
properties of continual learning systems (Veniat et al. 2020), thus scaling
better to long task sequences.

Taking inspiration from the mode connectivity literature (Chapter 5), we
propose Continual Subspace of Policies (CSP), a new CRL approach that
incrementally builds a subspace of policies. Instead of learning a single
policy, CSP maintains an entire subspace of policies defined as a convex
hull in parameter space. The vertices of this convex hull are called anchors,

https://arxiv.org/pdf/2211.10445.pdf#page=23
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Figure 7.2 – Illustration of CSP.

with each anchor representing the parameters of a policy. This subspace
captures a large number of diverse behaviors, enabling good performance
on a wide range of settings. At every stage of the CRL process, the best
found policy for a previously seen task is represented as a single point in
the current subspace (i.e. unique convex combination of the anchors), which
facilitates cheap storage and easy retrieval of prior solutions. If a new task
shares some similarities with previously seen ones, a good policy can often
be found in the current subspace without increasing the number of param-
eters. On the other hand, if a new task is very different from previously
seen ones, CSP extends the current subspace by adding another anchor,
and learns a new policy in the extended subspace. In this case, the pool of
candidate solutions in the subspace increases, allowing CSP to deal with
more diverse tasks in the future. The size of the subspace is increased only
if this leads to performance gains larger than a given threshold, allowing
users to specify the desired trade-off between performance and size (i.e.
number of parameters or memory cost).

Ultimately, CSP iteratively learns a subspace of policies in the continual
RL setting. Figure 7.2 illustrates our method: (1) At every stage during
training, the subspace is a simplex defined by a set of anchors,i.e. vertices
(top right . Any policy (i.e. point) in this simplex can be represented as a
convex combination α of the anchor parameters.αi defines the best policy
in the subspace for task i. (2) When the agent encounters a new task, CSP
tentatively grows the subspace by adding a new anchor. (3) Bottom-left: If
the new task i is very different from previously seen ones, a better policy
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αnew
i can usually be learned in the new subspace. In this case, CSP extends

the subspace by keeping the new anchor. (4) If the new task bears some sim-
ilarities to previously seen ones, a good policy αold

i can typically be found
in the old subspace. In this case, CSP prunes the subspace by removing
the new anchor. The subspace is extended only if it improves performance
relative to the old subspace by at least some threshold ϵ.

7.2 Continual Subspace of Policies (CSP)

Our work builds on Chapter 6 by leveraging a subspace of policies. How-
ever, instead of using the subspace to train on a single environment and
adapt to new ones at test time, we use it to efficiently learn tasks sequen-
tially in the continual RL setting. This requires designing a new approach
for learning the subspace, as detailed below. We propose to adaptively
construct a subspace of policies for the continual RL setting in which an
agent learns tasks sequentially. We call our method Continual Subspace of
Policies (CSP). A pseudo-code is available in Figure 7.3.

Our model builds a sequence of subspaces Θ1, ...,ΘN , one new subspace
after each training task, with each subspace extending the previous one.
Note that each subspace Θj is a collection of at most j anchors (or neural
networks) i.e. |Θj | ≤ j, ∀ j ∈ 1...N since the subspace grows sublinearly with
the number of tasks (as explained below). Hence, the number of anchors
m of a subspace Θj is not the same as the number of tasks j used to create
Θj . The learned policies are represented as single points in these subspaces.
At each stage, CSP maintains both a set of anchors defining the current
subspace, as well as the weights α corresponding to the best policies found
for all prior tasks. The best found policy for task i after training on the
first j tasks, ∀ i ≤ j, is denoted as πji (a|s) and can be represented as a point
in the subspace Θj with a weight vector denoted αj

i such that πji (a|s) =

π(a|s, [αj
i ,Θj ]), where |αj

i | = |Θj | ≤ j.

Given a set of anchors Θj and a set of previously learned policies
{αj

1, ... , α
j
j}, updating our model on the new task tj+1 produces a new sub-

space Θj+1 and a new set of weights {αj+1
1 , ... , αj+1

j+1}. There are two possible
cases. One possibility is that the current subspace already contains a good
policy for tj+1, so we just need to find the weight vector corresponding to a
policy which performs well on tj+1. The other possibility is that the current
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subspace does not contain a good policy for tj+1. In this case, the algorithm
produces a new subspace by adding one anchor to the previous one (see
next section), and converts the previous policies to be compatible with this
new subspace.

To achieve this, CSP operates in two phases:

1. Grow the current subspace by adding a new anchor and learning the
best possible policy for task j + 1 in this subspace (where the previous
j anchors are frozen).

2. Compare the quality of this policy with the best possible policy ex-
pressed in the previous subspace. Based on this comparison, decide
whether to extend the subspace to match the new one or prune it back
to the previous one.

We now describe in detail the two phases of the learning process, namely
how we grow the subspace and how we decide whether to extend or prune
it (see Figure 7.3 for a pseudo-code).

7.2.1 Grow the Subspace

Given the current subspace Θj composed of m ≤ j anchors (with j being
the number of tasks seen so far), a new subspace Θ̃j+1 is built as follows.
First a new anchor denoted θj+1 is added to the set of anchors such that
Θ̃j+1 = Θj

⋃
{θj+1}. With all previous anchors frozen, we train the new

anchor by sampling α values from a Dirichlet distribution parameterized
by a vector with size j + 1, Dir

(
U(j + 1)

)
. The new anchor θj+1 is updated

by maximizing the expected return obtained by interacting with the new
task j + 1 using policies defined by the sampled α’s:

θj+1 = argmax
θ

Eα∼Dir, τ∼π(a|s,[α,Θj

⋃
{θ}]) [Rj+1(τ)] (7.1)

where Rj+1(τ) is the return obtained on task j + 1 throughout trajectory τ

which was generated using policy π(a|s, [α, Θ̃j+1)]. Note that the anchor is
trained such that not only one but all possible values of α tend to produce
a good policy. To do so, we sample different α per episode. The resulting
subspace thus aims at containing as many good policies as possible for task
j + 1.
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Algorithm 7.1 Continual Subspace of Policies (CSP)
Input: θ1,. . . ,θj (previous anchors), ϵ (threshold)
Initialize: Wϕ (subspace critic), B (replay buffer)
Initialize: θj+1 ← 1

j

∑j
i=1 θi (new anchor) ; // Grow the Subspace

4 for i = 1, ..., B do
5 Sample α ∼ Dir

(
U(j + 1)

)

Set policy parameters θα ←
∑j+1

i=1 αiθi
for l = 1, ..., K do

6 Collect and store (s, a, r, s′, α) in B by sampling a ∼ πθα (·|s)

7 end
8 if time to update then
9 Update πθj+1

and Wϕ using the SAC algorithm and the replay buffer B
10 end
11 end
12 Use B and Wϕ to estimate: ; // Extend or Prune the Subspace13

αold ← argmax
(α,0) with α∈Rm

+ ,∥α∥1=1

Wϕ(α)

αnew ← argmax
α∈Rm+1

+ ,∥α∥1=1

Wϕ(α)

if Wϕ(·, αnew) > (1 + ϵ) ·Wϕ(·, αold) then
14 Return: θ1, . . . , θj, θj+1, α

new; // Extend
15 else
16 Return: θ1, . . . , θj, αold; // Prune
17 end

Figure 7.3 – Detailed algorithm of csp

7.2.2 Extend or Prune the Subspace

To decide if the new anchor is kept, we propose to simply compare the
best possible policy for task j+1 in the new subspace with the best possible
policy for the same task in the previous subspace (i.e. without using the new
anchor). Each policy could be evaluated via Monte-Carlo (MC) estimates
by doing additional rollouts in the environment and recording the average
performance. However, this typically requires a large number (e.g. millions)
of interactions which may be impractical with a limited budget. Thus, we
propose an alternative procedure to make this evaluation sample efficient.
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For each task j and corresponding subspace Θj , our algorithm also learns
a Q-function Q(s, a, α) which is trained to predict the expected return on task
j for all possible states, actions, and all possible α’s in the corresponding
subspace. This Q-function is slightly different from the classical ones in RL
since it takes as an additional input the vector α. This Q-function is reset
for every new task. Our algorithm is based on SAC (Haarnoja et al. 2018a),
so for each task, we collect a replay buffer of interactions B which contains
all states and actions seen by the agent while training on that task. Thus,
the Q-function Q(s, a, α) can help us directly estimate the quality W (α) of
the policy represented by the weight vector α in the new subspace which
can be computed as the average over all states and actions in the replay
buffer:

W (α) = Es,a∼BQ(s, a, α). (7.2)

It is thus possible to compute the value of α corresponding to the best
policy in the extended subspace (denoted αnew ∈ Rm+1

+ , ∥αnew∥1 = 1):

αnew = argmax
α∈Rm+1

+ ,∥α∥1=1

W (α), (7.3)

as well as the value of α corresponding to the best policy in the previous
subspace (denoted αold ∈ Rm

+ , ∥αold∥1 = 1):

αold = argmax
(α,0) with α∈Rm

+ ,∥α∥1=1

W (α). (7.4)

In practice, αnew and αold are estimated by uniformly sampling a number of
α’s in the corresponding subspace as well as a number of states and actions
from the buffer.

The quality of the new subspace and the previous one can thus be eval-
uated by comparing W (αnew) and W (αold). If W (αnew) > (1 + ϵ) · W (αold),
the subspace is extended to the new subspace (i.e. the one after the grow
phase): Θj+1 = Θ̃j+1. Otherwise, the subspace is pruned back to the old
subspace (i.e. the one before the growth phase): Θj+1 = Θj . Note that, if the
subspace is extended, the previously learned policies have to be mapped
in the new subspace such that αj+1

i ∈ Rj+1
+ i.e. ∀ i ≤ j, αj+1

i := (αj
i , 0) and

αj+1
j+1 := αnew. If the subspace is not extended, then old values can be kept

i.e. ∀ i ≤ j, αj+1
i := αj

i and αj+1
j+1 := αold.
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After finding the best α for the current task, the replay buffer and Q-
function are reinitialized. Hence, the memory cost for training the Q-
function is constant and there is no need to store data from previous tasks
unlike other CRL approaches (Rolnick et al. 2019). The policy πθj+1

and
value function Wϕ are updated using SAC (Haarnoja et al. 2018a). See
Appendix C for more details.

7.2.3 Training and using the critic

The subspace critic Wϕ plays a central role in our method. Compared to
the vanilla SAC critic, we only add the convex combination α as an input
(concatenated with the states and actions). In this way, it is optimized not
only to evaluate the future averaged return on (s, a) pairs of a single policy,
but an infinity of policies, characterized by the convex combination α.

At the end of each task, the subspace critic has the difficult task to estimate
by how much the new anchor policy θj+1 improves the performance of the
current subspace Θj . To do so, one has to find the best combination of
policies in the last subspace Θj , calling it αold and the one in the current
subspace Θj+1, calling it αnew. In practice, we found that sampling 1024

random (s, a) pairs from the replay buffer at the end of the task allows to
have an accurate estimation of the best policies. This part does not require
any new interaction with the environment.

However, we found that rolling out the top-k α in the new and former
subspaces helps to find the best combination. In practice, we found that
setting k := 8 with one rollout per combination is sufficient. In tasks that
have 1M interactions and an episode horizon of 1000, it requires to allocate
0.8% of the budget to the purpose of finding a good policy in the subspace,
which does not significantly impact the training procedure.

7.2.4 Sampling Policies from the Subspace

Yet, it is important to allow the critic to estimate αold. During training,
we noticed that sampling with a simple flat Dirichlet distribution (i.e. a
uniform distribution over the simplex induced by the current subspace) is
not enough to make the critic able to accurately estimate the performance

https://arxiv.org/pdf/2211.10445.pdf#page=20
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of the last subspace (indeed, the chances of sampling a policy in the last
subspace are almost surely 0.). This is why we decided to sample in both
the current and the last subspace. The distribution we use is then a mixture
of two Dirichlet (equal chances of sampling in the last subspace and in the
current subspace). We did not perform an ablation to see if balancing the
mixture would increase performances.

We also tried to sample with a peaked distribution (concentration of
the Dirichlet equal to the inverse of the number of the anchors) to see if
it increased performances. In some cases the new subspace is able to find
good policies faster with this distribution. It can be a good trade off between
always choosing the last anchor and sampling uniformly.

7.2.5 Implementation

Our Pytorch implementation of CSP uses the nn.ModuleList object to store
anchor networks. The additional computational cost compared to a single
network is negligible during both training and inference as it is mentioned
in Wortsman et al. (2021).

7.2.6 Scalability

By having access to an infinite number of policies, the subspace is highly
expressive so it can capture a wide range of diverse behaviors. This en-
ables positive transfer to many new tasks without the need for training
additional parameters. As a consequence, the number of parameters scales
sublinearly with the number of tasks. The speed of growth is controlled by
the threshold ϵ which defines how much performance we are willing to
give up for decreasing the number of parameters (by the size of one policy
network). Practitioners can set the threshold to trade-off performance gains
for memory efficiency (i.e. the higher the ϵ the more performance losses
are tolerated to reduce memory costs). In practice, we noticed that setting
ϵ = 0.1 allows good performance and a limited growth of parameters.

As the agent learns to solve more and more tasks, we expect the subspace
to grow more slowly (or stop growing entirely) since it already contains
many useful behaviors which transfer to new tasks. On the other hand, if
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the agent encounters a task that is significantly different than previous ones
and all other behaviors in the subspace, the subspace still has the flexibility
to grow and incorporate entirely new skills. The number of anchors in
the final subspace is adaptive and depends on the sequence of tasks. The
longer and more diverse the task sequence, the more anchors are needed.
This property is important for real-world applications with open-ended
interactions where it’s unlikely to know a priori how much capacity is
required to express all useful skills.

7.3 Experimental Protocol

7.3.1 Designing scenarios

We evaluate CSP on 18 CRL scenarios containing 35 different RL tasks,
from two continuous control domains, locomotion in Brax (C Daniel Freeman
et al. 2021a) and robotic manipulation in Continual World (CW, Wołczyk et al.
(2021)), a challenging CRL benchmark. For CW, we run experiments on both
the proposed sequence of 10 tasks (CW10), and on all 8 triplet sequences
(CW3). Each task in these sequences has a different reward function. The
goal of these experiments is to compare our approach with popular CRL
methods on a well-established benchmark.

For Brax, we create new CRL scenarios based on 3 subdomains:
HalfCheetah, Ant, and Humanoid. Each scenario has 8 tasks and each
task has specific dynamics. We use a budget of 1M interactions for each task.
The goal of these experiments is to perform an in-depth study to separately
evaluate capabilities specific to CRL agents such as forgetting, transfer, robust-
ness, and compositionality (Tables 7.5a, 7.5b for more information). For each
of the 4 capabilities, we create 2 CRL scenarios, one based on HalfCheetah
and one based on Ant. To further probe the effectiveness of our approach,
we also create one CRL scenario with 4 tasks on the challenging Humanoid
domain. Here we use a budget of 2M interactions for each task.

The CRL scenarios are created following the protocol introduced
in Wołczyk et al. (2021) which proposes a systematic way of generating
task sequences that test CRL agents along particular axes. We studied the
relationship between these changes as follows: we learn a new task with a
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Figure 7.4 – Rendering example of our Halfcheetah forgetting scenario. Click here
for interactive visualizations.

policy that has been pre-trained on a former task. We drew forgetting and
transfer tables for each pair of tasks (see Figure 7.5b). With this information,
we designed 5 types of scenarios representing a particular challenge in con-
tinual learning. Note that all tasks have a budget of 1M interactions each
and repeat their loop 2 times (i.e. 8M interactions in total) except for the Hu-
manoid scenario that contains 4 tasks with 2M interactions. While Wołczyk
et al. (2021) focus on transfer and forgetting, we also probe robustness (e.g.
adapting to environment perturbations such as action reversal), and com-
positionality (e.g. combining two previously learned skills to solve a new
task). Each task in a sequence has different dynamics which are grounded
in quasi-realistic situations such as increased or decreased gravity, friction,
or limb lengths. here are the 5 types of scenarios 2 we designed, each repre-
senting a particular challenge in continual learning:

1. Forgetting Scenarios are designed such that a single policy tends to
forget the former task when learning a new one.

■ Halfcheetah: hugefeet → moon → carrystuff → rainfall

■ Ant: normal → hugefeet → rainfall → moon

2. Transfer Scenarios are designed such that a single policy has more dif-
ficulties to learn a new task after having learned the former one, rather
than learning it from scratch.

■ Halfcheetah: carrystuff_hugegravity → moon

→ defectivesensor → hugefeet_rainfall

■ Ant: nofeet_1_3 → nofeet_2_4 → nofeet_1_2 → nofeet_3_4

2. Note that all tasks have a budget of 1M interactions each and repeat their loop 2 times
(i.e. 8M interactions in total) except for the Humanoid scenario that contains 4 tasks with 2M
interactions

https://continual-subspace-policies-streamlit-app-gofujp.streamlitapp.com/Designing_Scenarios
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3. Robustness Scenarios alternate between a normal task and a very differ-
ent distraction task that disturbs the whole learning process of a single
policy (we simply inverted the actions). While this challenge looks par-
ticularly simple from a human perspective (a simple -1 vector applied
on the output is fine to find an optimal policy in a continual setting),
we figured out that the Fine-tuning policies struggle to recover good
performances (the final average reward actually decreases).

■ Halfcheetah: normal → inverted_actions → normal → inverted_actions

■ Ant: normal → inverted_actions → normal → inverted_actions

4. Compositional Scenarios present two first tasks that will be useful to
learn the last one, but a very different distraction task is put at the third
place to disturb this forward transfer. The last task is indeed a combina-
tion of the two first tasks in the sense that it combines their particularities.
For example, if the first task is "moon" and the second one is tinyfeet, the
last one will combine moon’s gravity and feet morphological changes.

■ Halfcheetah: tinyfeet → moon → carrystuff_hugegravity → tinyfeet_moon

■ Ant: nofeet_2_3_4 → nofeet_1_3_4 → nofeet_1_2 → nofeet_3_4

5. Humanoid scenario is an additional scenario built with the challenging
environment Humanoid to test our method in higher dimensions. Here
is the detailed sequence of the scenario.

■ Humanoid: normal → moon → carrystuff → tinyfeet

7.3.2 Comparisons

We compare CSP with a number of popular CRL baselines described
in Section 2.4.3 such as PNN (Rusu et al. 2016b), EWC (Kirkpatrick et
al. 2017), PackNet (Mallya and Lazebnik 2018), FT-1 which finetunes a
single model on the entire sequence of tasks, and FT-L2 which is like FT-1

with an additional L2 regularization applied during finetuning. We also
compare with SAC-N which trains one model for each task from scratch.
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Figure 7.5 – Forgetting (a) and Transfer (b) tables of our Halfcheetah tasks. The
pairs selected to create our scenario are highlighted in blue. Results
are averaged over 3 seeds using a classical RL algorithm.
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HalfCheetah Ant Humanoid
(4 scenarios) (4 scenarios) (1 scenario)

Method Performance Model Size Performance Model Size Performance Model Size

FT-1 0.62± 0.29 1.0 0.52± 0.26 1.0 0.71± 0.07 1.0
FT-L2 0.38± 0.15 2.0 0.78± 0.20 2.0 0.68± 0.28 2.0
PackNet 0.85± 0.14 2.0 1.08± 0.21 2.0 0.96± 0.21 2.0
EWC 0.43± 0.24 3.0 0.55± 0.24 3.0 0.94± 0.01 3.0
PNN 1.03± 0.14 8.0 0.98± 0.31 8.0 0.98± 0.26 4.0
SAC-N 1.00± 0.15 8.0 1.00± 0.38 8.0 1.00± 0.29 4.0
FT-N 1.16± 0.20 8.0 0.97± 0.20 8.0 0.65± 0.46 4.0

CSP (ours) 1.27 ± 0.27
5.4± 1.3

1.11 ± 0.17
3.9± 0.8

1.76 ± 0.19
3.4± 0.3CSP-ORACLE 1.88± 0.19 1.24± 0.07 1.98± 0.22

Table 7.1 – Aggregated results across all Brax scenarios from HalfCheetah, Ant,
and Humanoid. These scenarios were designed to test forgetting, trans-
fer, compositionality, and robustness. CSP performs as well as or bet-
ter than the strongest baselines, while having a much lower model size
and thus memory cost. CSP’s performance is also not too far from
that of CSP-ORACLE indicating that it can use the critic to find good
policies in the subspace without requiring millions of interactions.

While SAC-N avoids forgetting, it cannot transfer knowledge across tasks.
Finally, we compare with a method called FT-N which combines the best
of both SAC-N and FT-1. Just like SAC-N, it stores one model per task
after training on it and just like FT-1, it finetunes the previous model to
promote transfer. However, FT-N and SAC-N scale poorly (i.e. linearly)
with the number of tasks in terms of both memory and compute, which
makes them unfeasible for real-world applications. Note that our method
is not directly comparable with CLEAR (Rolnick et al. 2019) since we
assume no access to data from prior tasks. Storing data from all prior tasks
(as CLEAR does) is unfeasible for long task sequences due to prohibitive
memory costs. All methods use SAC (Haarnoja et al. 2018a) as a base
algorithm. The means and standard deviations are computed over 10 seeds
unless otherwise noted. See Appendix A for more details about our protocol,
baselines, and hyperparameters, respectively.

https://arxiv.org/pdf/2211.10445.pdf#page=14
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7.4 Results & Analysis

7.4.1 Performance on Brax

Table 7.1 shows the aggregated results across all scenarios from HalfChee-
tah, Ant, and Humanoid. The results are normalized using SAC-N’s per-
formance.

CSP performs as well as or better than the strongest baselines which
grow linearly with the number of tasks (i.e. PNN, SAC-N, FT-N), while
maintaining a much smaller size and thus memory cost. In fact, CSP’s
size grows sublinearly with the number of tasks. At the same time, CSP
is significantly better than the most memory-efficient baselines that have a
relatively small size (i.e. FT-1, FT-L2, EWC, PackNet). Naive methods
like FT-1 have low memory costs and good transfer, but suffer from catas-
trophic forgetting. In contrast, methods that aim to reduce forgetting such
as FT-L2 or EWC do so at the expense of transfer. The only competitive
methods in terms of performance are the ones where the number of pa-
rameters increases at least linearly with the number of tasks, such as PNN,
SAC-N, and FT-N. These methods have no forgetting because they store
the models trained on each task. SAC-N has no transfer since it trains
each model from scratch, while FT-N promotes transfer as it finetunes the
previous model. However, due to their poor scalability, these methods are
unfeasible for more challenging CRL scenarios with long and varied task
sequences.

In contrast, CSP doesn’t suffer from forgetting since the best found poli-
cies for all prior tasks can be cheaply stored in the form of convex combina-
tions of the subspace’s anchors (i.e. vectors rather than model weights). In
addition, due to having access to a large number of policies (i.e. all convex
combinations of the anchors), CSP has good transfer to new tasks (that
share some similarities with prior ones). This allows CSP to achieve strong
performance while its memory cost grows sublinearly with the number of
tasks. Nevertheless, CSP’s performance is not too far from that of CSP-
ORACLE, indicating that the critic can be used to find good policies in
the subspace without requiring millions of interactions. See Section 7.2.3
for more details about the use of the critic.
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Method CSP (ours) PackNet EWC FT-L2 FT-1

Performance 0.81± 0.06 0.83 ± 0.02 0.66± 0.03 0.48± 0.05 0.10± 0.01
# Heads 5.3 ± 1.6 10 10 10 10

Table 7.2 – Results on the CW10 benchmark for CSP and other popular baselines
including the state-of-the-art PackNet (results taken from Wołczyk
et al. (2021)). CSP performs almost as well as PackNet while using
about half the number of heads, and thus having a much lower mem-
ory cost.

7.4.2 Performance on Continual World

Table 7.2 shows results on CW10 (Wołczyk et al. 2021), a popular CRL
benchmark. The baselines used in Wołczyk et al. (2021) use a separate linear
layer for each task on top of a common network. The authors recognize
this as a limitation since it scales poorly with the number of tasks. For a
fair comparison, we implement CSP using a similar protocol where the
anchors are represented by linear heads, so the number of heads grows
adaptively depending on the performance threshold ϵ. Instead of model
size, we compare the final number of heads, since this now determines a
method’s scalability with the number of tasks.

CSP performs almost as well as PackNet which is the current state-
of-the-art on CW10 (Wołczyk et al. 2021), and is significantly better than
all other baselines. At the same time, CSP uses about half the number of
heads, thus being more memory efficient especially as the number of tasks
increases. Note that PackNet suffers from a major limitation, namely that
it requires prior knowledge of the total number of tasks in order to allocate
resources. If this information is not correctly specified, PackNet is likely
to fail due to either not being expressive enough to handle many tasks or
being too inefficient while learning only a few tasks (Wołczyk et al. 2021).
This makes PackNet unfeasible for real-world applications where agents
can face task sequences of varying lengths (including effectively infinite
ones). In contrast, CSP grows adaptively depending on the sequence of
tasks, so it can handle both short and long sequences without any modifica-
tion to the algorithm. See Appendix D2 for additional results on Continual
World, including CW3.

https://arxiv.org/pdf/2211.10445.pdf#page=27
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Figure 7.6 – Performance of CSP w.r.t. the Threshold

To summarize, CSP is competitive with the strongest CRL baselines,
while having a lower memory cost since its size grows sublinearly with the
number of tasks. Thus, CSP maintains a good balance between model size
and performance, which allows it to scale well to long task sequences.

7.4.3 Varying the Threshold

Figure 7.6 shows how performance and size vary with the threshold ϵ

used to decide whether to extend the subspace or not. Both the performance
and the size are normalized with respect to CSP-LINEAR which always
extends the subspace. As expected, as ϵ increases, performance decreases,
but so does the size. Note that performance is still above 70% even as the size
is cut by more than 70%, relative to CSP-LINEAR which trains a new set
of parameters (i.e. anchor) for each task. Thus, CSP can drastically reduce
memory costs without significantly hurting performance. Practitioners can set
the threshold to trade-off performance gains for memory efficiency i.e. the
higher the ϵ the more performance losses are tolerated in order to reduce
memory costs. In practice, we found ϵ = 0.1 to offer a good trade-off between
performance and model size.
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Figure 7.7 – Performance of CSP and FT-N w.r.t. the number of Tasks

7.4.4 Scalability

Figure 7.7 shows how performance and size scale with the number of
tasks in the sequence (on HalfCheetah’s compositionality scenario) for both
CSP and FT-N which is our strongest baseline on this scenario. CSP
maintains both strong performance and small size (i.e. low memory cost)
even as the number of tasks increases. In contrast, even if FT-N performs
well on all these scenarios, its size grows linearly with the number of tasks,
rendering it impractical for long task sequences.

7.4.5 Learning Efficiency

Figure 7.8 shows the average performance for three different budgets (i.e.
number of interactions allowed for each task) on HalfCheetah’s robustness
scenario, comparing CSP with FT-1, FT-L2, and EWC. These results
demonstrate that CSP can learn efficiently even with a reduced budget,
while still outperforming these baselines. By keeping track of all convex
combinations of previously learned behaviors, CSP enables good transfer
to new tasks which in turn leads to efficient training on task sequences.
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Figure 7.8 – Performance of multiple methods using different budgets.

7.4.6 Visualizing the Subspace

We also perform a number of ablations to understand how the different
components of CSP influence performance. We first compare CSP with
CSP-ORACLE which selects the best policy by sampling a large number
of policies in the subspace and computing Monte-Carlo estimates of their
returns. These estimates are expected to be more accurate than the critic’s,
so CSP-ORACLE can be considered an upper bound to CSP. However,
CSP-ORACLE is less efficient than CSP since it requires significantly
more interactions with the environment to find a policy for each task (i.e.
millions).

The best way to visualize the reward and critic value landscapes of the
subspaces is when there are 3 anchors (see Figure 7.9 and 7.10). To do
saw, we draw 8192 evenly spaced points in the 3-dimensional simplex of
R3, and average the return over 10 rollouts for the reward landscape, and
1024 pairs of (s, a) for the critic landscape. We used the short version of the
Compositional Scenario of HalfCheetah to display the results.

We also want to understand how much performance we lose, if any, by
not adding one anchor per task. To do this, we run an ablation with no
threshold which always extends the subspace by adding one anchor for
each new task. In addition, we vary the threshold ϵ used to decide whether
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Figure 7.9 – Value of each policy in the subspace estimated using both Monte-
Carlo simulations (left) and our critic’s predictions (right), demon-
strating both that the subspace is smooth and that the critic learns
accurate estimates of the reward, which allows CSP to find good
policies in the subspace

to extend the subspace based on how much performance is gained by doing
so. This analysis can shed more light on the trade-off between performance
gain and memory cost as the threshold varies.

7.4.7 Smoothness and Critic Accuracy.

Figure 7.9 shows a snapshot of a trained subspace, along with the ex-
pected reward of all policies in the subspace, for a given task. The expected
reward is computed using both Monte-Carlo (MC) rollouts, as well as our
critic’s predictions using Equation 7.2. As illustrated, the learned Q-function
has a similar landscape with the MC reward i.e. the subspace is smooth and
the critic’s estimates are accurate.

7.4.8 Diversity and Compositionality.

Figure 7.10 illustrates that the subspace contains behaviors composed of
previously learned skills (e.g. walk on the moon, walk with tiny feet, walk
on the moon with tiny feet). This allows CSP to reuse previously learned
skills to find good policies for new tasks without the need for additional
parameters. The figure also shows that for a given task, the policies in
the subspace cover the whole spectrum of rewards, thus emphasizing the
diversity of the behaviors expressed by the subspace.
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Figure 7.10 – Subspace for three different tasks, the third being a combination of
the first two (e.g. walk on the moon (task 1) with tiny feet (task 2)),
demonstrating that the subspace already contains a policy with high
reward on the compositional task before being trained on it. The
star represents the best policy in the subspace for the corresponding
task. The subspace contains policies covering the whole spectrum
of rewards, suggesting that it captures diverse behaviors. Click here
to see interactive visualizations of the subspace.

7.4.9 Limitations

CSP prevents forgetting of prior tasks, promotes transfer to new tasks,
and scales sublinearly with the number of tasks. Despite all these advan-
tages, our method still has a number of limitations. While the subspace
grows only sublinearly with the number of tasks, this number is highly
dependent on the task sequence. In the worst case scenario, it increases
linearly with the number of tasks. On the other hand, the more similar the
tasks are, the lower the size of the subspace needed to learn good policies
for all tasks. Thus, one important direction for future work is to learn a
subspace of policies with a fixed number of anchors. Instead of training
an additional anchor for each new task, one could optimize a policy in
the current subspace on the new task while ensuring that the best policies
for prior tasks don’t change too much. This could be formulated as a con-
strained optimization problem where all the anchors defining the subspace
are updated for each new task, but some regions of the subspace are regu-
larized to not change very much. This would result in the subspace having
different regions which are good for different tasks.

While the memory costs increase sublinearly with the number of tasks,
the computational costs increase linearly with the number of tasks, in the

https://continual-subspace-policies-streamlit-app-gofujp.streamlitapp.com/Visualizing_the_Subspaces
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current implementation of CSP. This is because we train an additional
anchor for each new task, which can be removed if it doesn’t significantly
improve performance. However, the computational costs can also be re-
duced if you have access to maximum reward on a task. This is typically
the case for sparse reward tasks where if the agent succeeds, it receives
a reward of 1 and 0 otherwise. In this case, there is no need to train one
anchor per task. Instead, one can simply find the best policy in the current
subspace and compare its performance with the maximum reward to de-
cide whether to train an additional anchor or not. Hence, in this version of
CSP (which is a minor modification of the current implementation) both
memory and compute scale sublinearly with the number of tasks. However,
this assumption doesn’t always hold, so here we decided to implement the
more general version of CSP.

In this work, we don’t specifically leverage the structure of the subspace
in order to find good policies. Hence, one promising research direction
is to further improve transfer efficiency by leveraging the structure of the
subspace to find good policies for new tasks. For example, this could be
done by finding the convex combination of the anchors which maximizes
return on a given task. Regularizing the geometry of the subspace to impose
certain inductive biases could also be a fruitful direction for future work.
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7.5 Conclusion

In this Chapter, we propose CSP, a new continual RL method which
adaptively builds a subspace of policies to learn a sequence of tasks. CSP
is competitive with the best existing methods while using significantly
fewer parameters. Thus, it strikes a good balance between performance
and memory cost which allows it to scale well to long task sequences.
Our method is first to use a subspace of policies for continual RL, and thus
opens up many interesting directions for future work. For example, one can
assume a fixed size for the subspace and update all the anchors whenever
the agent encounters a new task. Another promising direction is to leverage
the structure of the subspace to meta-learn or search for good policies on a
given task.
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O T H E R C O N T R I B U T I O N S

Alongside the main work of my thesis, my journey in the domain of deep
learning has been enriched by additional contributions. I will share insights
from working on SaLinA and WorldSense. My ongoing collaboration with
Meta AI’s Llama team represents a frontier of research that, due to its
nascent stage, will be discussed in a limited capacity.

8.1 SaLinA

Everything is an Agent

SaLinA (Denoyer et al. 2021), developed as an extension of PyTorch, is
a Python library designed to simplify the implementation of complex se-
quential learning models, including reinforcement learning algorithms. Its
primary advantage lies in its simplicity and adaptability, allowing PyTorch
users to easily understand and modify algorithms coded with SaLinA. No-
tably, the library can efficiently utilize multiple CPUs and GPUs, making
it suitable for large-scale training scenarios. SaLinA’s broad scope captures
various settings such as model-based RL, batch RL, hierarchical RL, and
multi-agent RL, making it accessible not only to RL practitioners but also
to any deep learning programmer.

The strength of SaLinA compared to existing RL libraries lies in its ability
to parallelize tasks and leverage multiple processing units effectively. This
parallel execution capability is achieved through a unique architecture that
enables agents to operate in different processes, speeding up their execution.
This approach reduces the high adoption cost and complexity associated
with traditional RL platforms. Moreover, the library’s design facilitates the
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Figure 8.1 – SaLinA principles: Multiple agents read (black dotted lines) and write
(red dotted lines) information into a workspace. This workspace cor-
responds to a common knowledge base which is iteratively updated
by a diverse group of agents. Very similar to a blackboard in multi-
agent systems, this architecture handles complex, ill-defined prob-
lems, where the solution is the sum of its parts.

easy development of model-based RL methods and other complex models,
ensuring scalability and flexibility in various learning settings.

Another key principle in SaLinA is treating every component as an Agent,
streamlining the process for both understanding and developing complex
models. This approach has significantly simplified the implementation of
experiments in Chapter 4, 7 and 6, particularly with the integration of the
Brax environment. By treating elements such as environments, policies,
and even data loaders as Agents, SaLinA facilitates a unified and flexible
architecture. This design choice not only eases the learning curve for new
programmers but also enables seamless transitions between different types
of agents, such as replacing a environment agent (e.g. an agent executing
a Gym environment) with a parametric agent (e.g. a neural network in-
stantiating a policy). Consequently, the development of model-based RL
methods and other intricate models becomes more intuitive and efficient.
This uniformity in treating all components as Agents has been instrumental
in the enhanced implementation and efficiency of the algorithms discussed
in these chapters.

This work on SaLinA has been one of the most inspiring aspects of my
thesis. It shifted my perspective on reinforcement learning (RL) from view-
ing it as a mere amalgamation of algorithms from machine learning and
optimal control, to seeing it as a distinct problem of sequential decision mak-
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ing. This change in viewpoint led me to scrutinize aspects often relegated
to appendices in many papers, yet are central to the methods: How many
policies to instantiate in parallel? How frequently should policies be re-
freshed in algorithms like SAC or PPO? How to make a replay buffer more
effective? These questions, sometimes overlooked by the community, are
crucial for the success of an experiment.

My contribution to SaLinA involved enhancing the library with bench-
marks on continuous control tasks, including integration with the Brax
environment (see here), and developing a continual learning module (see
here). These additions were critical in extending the library’s applicability
to more diverse scenarios, particularly in the context of sequential reinforce-
ment learning tasks. The continual learning module, linked to the concepts
explored in chapter 6 of my thesis, provides a framework for benchmarking
easily any continual learning methods on several Brax scenarios, thereby
enriching SaLinA’s capability in the domain of CRL.

8.2 WorldSense

This section outlines my contribution to the paper WorldSense: A
Benchmark for Grounded Language Understanding in Large Language Mod-
els (Benchekroun et al. 2023), which evaluates the ability of LLMs to compre-
hend and interpret the world through textual data. My role was primarily
focused on the fine-tuning and assessment of these models, particularly
Llama2, to gauge their effectiveness in leveraging text to construct and rea-
son about world states. The objective was to illuminate the capabilities and
limitations of contemporary LLMs in tasks necessitating an understanding
of real-world contexts.

LLMs have shown remarkable abilities, such as understanding and gen-
erating text that resembles human communication, executing complex rea-
soning tasks, and seemingly possessing a rudimentary understanding of
the world solely based on textual input (Brown et al. 2020a). This perceived
understanding introduces both potential and challenges in accurately de-
termining the depth of LLMs’ real-world concept comprehension and their
capacity to develop consistent, coherent world representations. The World-
Sense benchmark was created to confront these challenges by assessing

https://github.com/facebookresearch/salina/tree/main/salina_examples/rl/ppo_brax
https://github.com/facebookresearch/salina/tree/main/salina_cl
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LLMs’ abilities to conceive, manipulate, and reason about world states from
textual descriptions.

Inspired by cognitive assessments conducted on animals and young chil-
dren, WorldSense introduces a pioneering benchmark designed to investi-
gate the implicit world models within LLMs (Gurnee and Tegmark 2023;
J. Roberts et al. 2023). By avoiding the biases and memorization issues in-
herent in earlier benchmarks through the use of abstract schemata applied
across various textual "skins," this benchmark provides a genuine test of
an LLM’s world understanding and reasoning capabilities, independent of
domain and resistant to simple memorization tactics (Sainz et al. 2023; K.
Zhou et al. 2023). It is structured around three problem types: grounded in-
ferences, consistency detection, and completeness detection, each targeting
different aspects of world understanding and reasoning.

Our experimental setup involved evaluating three leading chat LLMs:
GPT3.5, GPT4, and Llama2-chat, against the challenges posed by World-
Sense. We analyzed their responses for accuracy and any biases in their
replies. The tests examined the models’ proficiency in making grounded
inferences, identifying inconsistencies, and evaluating the completeness of
descriptions under various conditions, including basic controls designed to
isolate specific reasoning challenges.

WorldSense serves as a significant step towards understanding the extent
and nature of tacit world models in LLMs, circumventing previous bench-
marks’ limitations concerning bias and memorization, while addressing
the challenges of translating between language and the non-verbal, multi-
dimensional concept of the world (Bowman 2023). By focusing on linear
order problems, which are cognitively simple yet widespread in language
and relevant across multiple domains, WorldSense aims to provide a com-
prehensive assessment of LLMs’ ability to learn and infer from text alone
about linear relationships and transitive inferences, fundamental to both
human and animal cognition (Lazareva and Wasserman 2010; Bryant and
Trabasso 1971; Gillan 1981; W. A. Roberts and Phelps 1994; Von Fersen et al.
1991; Grosenick et al. 2007).

The results highlighted in Figure 8.2 demonstrate a nuanced picture of
LLM capabilities and limitations. While larger models like GPT4 showed a
somewhat better ability to perform grounded inferences and detect incon-
sistencies, all models struggled with the more complex tasks of consistency
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Figure 8.2 – Finetuning results. Left: Accuracy across Llama270B models fine-
tuned on 0, 100K and 1M training examples, on the WS test set split
into in-domain (WS-ind) and out-of-domain (WS-ood) subsets, plus
a memorisation test set (Mem.), and the ood-size, ood-query and
ood-problem generalisation test sets. Right: Bias amplitude on the
memorisation, WS and length generalisation test sets. Chance levels
for accuracies are 50%, error bars denote 95% confidence intervals for
both plots.

and completeness detection. Notably, the experiments revealed a significant
challenge in translating between textual descriptions and coherent world
states—a core component of world understanding. My involvement in this
project, particularly in running and evaluating the Llama2 experiments, fo-
cused on finetuning Llama2 models with an ablation study to understand
how specific model adjustments affected performance across the different
types of WorldSense problems.

This study underscores the complexity of evaluating LLMs’ world under-
standing and highlights the innovative approach of WorldSense in provid-
ing a nuanced, challenging benchmark for future research. Despite advance-
ments, the findings emphasize the need for continued efforts to enhance
LLMs’ abilities to form, manipulate, and reason about tacit world models.

8.3 Ongoing work with Llama’s team

I am currently involved in the development of a new version of Llama
with Meta AI’s "Gen AI" team. The initial version, as cited in (Touvron et al.
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2023a), focused on providing open-source foundational language models
(referred to as "pre-trained" models), whereas the second iteration (Touvron
et al. 2023b) introduced models that were also fine-tuned. A key concept in
this paper was rejection sampling, which involves creating a pool of (prompts,
generations) that received high rewards from the reward model, and then
fine-tuning on these samples before proceeding to RLHF.

Part of my role is to refine this work, which includes developing better
datasets and more advanced rejection sampling strategies, incorporating
self-refinement techniques. Another aspect of my contribution is applying
subspaces during the RLHF phase, drawing inspiration from the method
developed in Chapter 4, to create a diverse model population.
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C O N C L U S I O N & F U T U R E D I R E C T I O N S

9.1 Conclusion

Throughout this manuscript, I have addressed three pivotal questions
posed in the introduction. 1) Is deep reinforcement learning mature enough
to tackle zero-shot generalization? Part II offers mixed insights: Chapter 3

(A Pathological Example), while highlighting significant advancements in
ZSG, also uncovers substantial limitations that RL is not yet equipped to
overcome. Chapter 4 (Weight Averaging for Multi-objective RL) introduces
an appealing new strategy but leaves the question of user adaptation un-
resolved. This leads to the second question, 2) can we envision a simple
and intuitive method to facilitate an agent’s adaptation to a new task? In
Part III, and particularly in Chapter 6 (Learning a Line of Policies), I demon-
strate the feasibility of leveraging a new framework, subspace of policies, for
effective adaptation in few-shot settings. Finally, this brings us to question
3) can this method be generalized in a more real-world context where an
autonomous agent faces a sequence of tasks? Chapter 7 (Building a Sub-
space of Policies) in the most ambitious CRL setting of this thesis shows
that subspaces benefit from being built, rather than merely used ad-hoc as a
simple manifold of policies. This last method paves the way for numerous
research directions, some of which I will introduce in the next section of
this Chapter.

The exploration of subspaces in RL represents a promising frontier that
challenges traditional paradigms and encourages a reconsideration of how
we approach generalization and adaptability in AI models. The future of
subspaces, as demonstrated through this research, lies in their potential to
craft more dynamic, responsive, and efficient learning systems. By continu-
ing to investigate and refine these methods, we open the door to AI that can
more adeptly navigate the complexities of real-world tasks, paving the way
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for advancements that could redefine the boundaries of machine learning
capabilities.

Reflecting on my journey through this thesis, the learnings extend beyond
the technical achievements and into the realm of personal growth and un-
derstanding. The process of dissecting and reconstructing the foundations
of RL has not only contributed to the academic community but has also
offered invaluable lessons in persistence, critical thinking, and the impor-
tance of creative approaches to problem-solving. This work underscores the
significance of questioning assumptions and relentlessly pursuing a deeper
comprehension of the mechanisms that drive deep learning.

9.2 Future Directions

The new framework we described in Part III opens the door to numerous
applications. Some relate to the application to a specific problem (for ex-
ample privacy and efficiency in decentralized deep learning); while others are
still in the embryonic stage of research (for example, combining modularity
with subspaces). Here are two areas that I am particularly interested in
exploring in the future.

9.2.1 Subspaces as a framework for decentralized deep learning

Decentralized deep learning (DDL) emerges as a pivotal innovation in
the domain of AI (Sun et al. 2021), primarily addressing the challenges of
privacy (Tran et al. 2021) and efficiency (M. Li et al. 2014) in distributed
computing environments. Leveraging technologies like federated learn-
ing and swarm learning, DDL enables collaborative model training across
multiple edge devices without the necessity to centralize sensitive data
(see Figure 9.1). This approach significantly enhances privacy protections,
particularly vital in sectors such as healthcare (Poirot et al. 2019) and fi-
nance (Ratadiya et al. 2020) where data sensitivity is paramount.

In the field of RL, the integration of DDL principles holds transforma-
tive potential, particularly in robotics. In the field of RL, the integration of
DDL principles holds transformative potential, particularly in robotics. For
example B. Liu et al. (2019) developed a framework aimed at enhancing
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Figure 9.1 – Federated Learning Architecture: A cloud representing the global
model receives updated parameters from local models coordinated
by a server. This iterative process leads to convergence of the global
model. Taken from Sun et al. (2021)

robot navigation in cloud robotic systems. This framework facilitates the fu-
sion and transfer of experiences across robots, allowing them to effectively
leverage prior knowledge and adapt swiftly to new environments. Leverag-
ing federated and swarm learning approaches, DDL enables collaborative
model training directly on devices, a paradigm shift that enhances privacy
and computational efficiency. Extending these principles to video gaming,
especially in client/server frameworks (Gambetta 2024), suggests that lever-
aging client-side resources for inference and optimization can significantly
enhance gameplay experiences and efficiencies, by distributing the compu-
tational load and enabling real-time adaptations to game dynamics.

Weight averaging methods are well-suited to these specific settings and
have been tested for DDL. However, these methods focus on memory and
computational efficiency, privacy, and overlook the possibility of training
and maintaining a whole subspace of policies. Kamp et al. (2019) discuss
a dynamic averaging protocol to synchronize models when they diverge sig-
nificantly, sending the average model to the client as needed, and the client
model to the server when insightful. Enhancing this framework could in-
volve sending not just a simple average model to the client but a more
personalized weight combination, even during inference, possibly through
active learning (P. Ren et al. 2021b). An idea could be to explore a bal-
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ance between specific and global updates within the framework. Specifically,
through active learning techniques (P. Ren et al. 2021b), one could dynami-
cally adjust the model from the server to the client, tailoring the experience
to the user’s current performance, such as by modulating the difficulty of
an opposing agent (e.g. a non-playable character that the player has to de-
feat). Globally, the aggregation of insights from all clients back to the server
could serve to refine and enhance the overarching subspace of policies, il-
lustrating a symbiotic enhancement of personalized and collective learning
outcomes (a bit like the method proposed in Chapter 7).

9.2.2 Boosting neural architecture search with subspaces

Neural architecture search (NAS) (P. Ren et al. 2021a) represents a
paradigm shift in the automated design of neural networks, optimizing
architecture to achieve superior performance with minimal human inter-
vention. NAS automates the process of selecting the best architecture from
a vast space, utilizing techniques such as reinforcement learning (Zoph and
Le 2016) and evolutionary algorithms (Y. Liu et al. 2021) to identify optimal
structures for specific tasks. This approach has demonstrated significant
advancements in areas ranging from image classification to sequence mod-
eling, highlighting its potential to revolutionize how neural networks are
conceived and optimized.

The integration of subspaces of policies into NAS could transform the
search process itself, focusing on combinations of modules rather than dis-
crete module selections. This approach enables a continuous and dynamic
exploration of architectural configurations within a defined subspace, facili-
tating the identification of optimal structures through a blend of exploration
and exploitation. By treating the search space as a continuous domain,
it’s possible to apply techniques like active learning and gradient-based
optimization, allowing for real-time adjustments based on performance
feedback. This method extends the flexibility of NAS, enabling the system
to navigate through a richer landscape of architectural possibilities and
dynamically adapt architectures in response to evolving tasks or environ-
ments. Such an approach could vastly increase the versatility, efficiency, and
robustness of NAS-oriented models.
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