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Titre : De la sémantique des effets : centralité, contrôle quantique et récursivité réversible
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Languages de programmation – Théorie des catégories

Résumé : Le sujet de cette thèse est axé sur la
théorie des langages de programmation. Dans un
langage de programmation suffisamment bien dé-
fini, le comportement des programmes peut être
étudié à l’aide d’outils empruntés à la logique et
aux mathématiques, énonçant des résultats sans
exécuter le code. Ce domaine de l’informatique est
appelé sémantique. La sémantique d’un langage
peut se présenter sous plusieurs formes : dans notre
cas, des sémantiques opérationnelles, des théo-
ries équationnelles et des sémantiques dénotation-
nelles. Les premières donnent un sens opérationnel
aux programmes, au sein de la syntaxe du langage.
Elles simulent les opérations qu’un ordinateur est
censé effectuer s’il exécute le programme. Une
théorie équationnelle fonctionne également de ma-
nière syntaxique : elle indique si deux programmes
effectuent la même opération sans informer sur
la procédure. Enfin, la sémantique dénotationnelle
est l’étude mathématique des programmes, géné-
ralement à l’aide de la théorie des catégories. Elle
permet par exemple de prouver qu’un programme
se termine ou non.

Cette thèse se concentre sur la sémantique des
effets dans les langages de programmation – une
fonctionnalité ajoutée à un langage, gérant des
données secondaires ou des résultats probabilistes.
Eugenio Moggi, en 1991, a publié un travail fon-
dateur sur l’étude de la sémantique des effets, sou-
lignant la relation avec les monades en théorie des
catégories. La première contribution de cette thèse
suit directement le travail de Moggi, en étudiant la
commutativité des effets dans un langage de pro-
grammation à travers le prisme des monades. Les
monades sont la généralisation de structures algé-
briques telles que les monoïdes, qui ont une notion
de centre : le centre d’un monoïde est une collec-
tion d’éléments qui commutent avec tous les autres
dans le monoïde. Nous fournissons les conditions
nécessaires et suffisantes pour qu’une monade ait

un centre. Nous détaillons également la séman-
tique d’un langage de programmation avec des ef-
fets qui portent des informations sur les effets qui
sont centraux. De plus, nous fournissons un lien
fort – un résultat de langage interne – entre ses
théories équationnelles et sa sémantique dénota-
tionnelle.

Le deuxième axe de la thèse est l’informatique
quantique, perçue comme un effet réversible. Le
quantique est un domaine émergent de l’informa-
tique qui utilise la puissance de la mécanique quan-
tique pour calculer. Au niveau des langages de pro-
grammation, de nouveaux paradigmes doivent être
développés pour être fidèles aux opérations quan-
tiques. Les opérations quantiques physiquement
permises sont toutes réversibles, à l’exception de
la mesure ; cependant, la mesure peut être repor-
tée à la fin du calcul, ce qui nous permet de nous
concentrer d’abord sur la partie réversible et d’ap-
pliquer ensuite la mesure pour obtenir des résul-
tats. Dans le chapitre correspondant, nous définis-
sons un langage de programmation réversible, avec
types simples, qui effectue des opérations quan-
tiques unitaires. Une sémantique dénotationnelle
et une théorie équationnelle adaptées au langage
sont présentées, et nous prouvons que cette der-
nière est complète. Ce travail vise à fournir des
bases solides pour l’étude du contrôle quantique
d’ordre supérieur.

En outre, nous étudions la récursion réver-
sible, en fournissant une sémantique opération-
nelle et dénotationnelle adéquate à un langage de
programmation fonctionnel, réversible et Turing-
complet. La sémantique dénotationnelle utilise
l’enrichissement dcpo des catégories inverses. Ce
modèle mathématique sur l’informatique réversible
ne se généralise pas directement à sa version quan-
tique. Dans la conclusion, nous détaillons les li-
mites et l’avenir possible du contrôle quantique
d’ordre supérieur.
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Abstract: The topic of this thesis revolves around
the theory of programming languages. In a suf-
ficiently well-defined programming language, the
behaviour of programs can be studied with tools
borrowed from logic and mathematics, allowing us
to state results without executing the code. This
area of computer science is called “semantics”. The
semantics of a programming language can take
several forms: in this thesis, we work with opera-
tional semantics, equational theories, and denota-
tional semantics. The former gives an operational
meaning to programs but within the language’s
syntax. It simulates the operations a computer
is supposed to perform if it were running the pro-
gram. An equational theory also works syntactic-
ally: it indicates whether two programs perform
the same operation without giving any information
on the procedure. Lastly, denotational semantics is
the mathematical study of programs, usually done
with the help of category theory. For example, it
allows us to prove whether a program terminates.

This thesis focuses on the semantics of effects
in programming languages – namely, a feature ad-
ded to a language, e.g. handling side data or
probabilistic outputs. Eugenio Moggi, in 1991,
published foundational work on the study of the
semantics of effects, highlighting the relationship
with monads in category theory. The first contri-
bution of this thesis directly follows Moggi’s work,
studying the commutativity of effects in a pro-
gramming language through the prism of mon-
ads. Monads are the generalisation of algebraic
structures such as monoids, which have a notion
of centre: the centre of a monoid is a collection
of elements which commute with all others in the
monoid. We provide the necessary and sufficient
conditions for a monad to have a centre. We also

detail the semantics of a programming language
with effects that carry information on which effects
are central. Moreover, we provide a strong link –
an internal language result – between its equational
theories and its denotational semantics.

The second focus of the thesis is quantum
computing, which is seen as a reversible effect.
Quantum computing is an emergent field in com-
puter science that uses the power of quantum
mechanics to compute. At the level of program-
ming languages, new paradigms need to be de-
veloped to be faithful to quantum operations.
Physically permissible quantum operations are all
reversible, except measurement; however, meas-
urement can be deferred at the end of the compu-
tation, allowing us to focus on the reversible part
first and then apply measurement to obtain results.
In the corresponding chapter, we define a simply-
typed reversible programming language performing
quantum operations called “unitaries”. A denota-
tional semantics and an equational theory adapted
to the language are presented, and we prove that
the latter is complete. The aim of this work is to
provide a solid foundation for the study of higher-
order quantum control.

Furthermore, we study recursion in reversible
programming, providing adequate operational and
denotational semantics to a Turing-complete, re-
versible, functional programming language. The
denotational semantics uses the dcpo enrichment
of rig join inverse categories. This mathemat-
ical account of higher-order reasoning on revers-
ible computing does not directly generalise to its
quantum counterpart. In the conclusion, we detail
the limitations and possible future for higher-order
quantum control.
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Résumé en français

“Lae mathématicien·ne est engagé·e dans la poursuite d’un rêve sans
fin, comprendre la structure de toute chose.” — d’après Charles
Ehresmann, mathématicien et membre fondateur du groupe Bourbaki.

Le principal objectif de cette thèse réside dans l’exploration des structures fondamentales
de la programmation, avec un fort aspect théorique. En particulier, sont utilisées des structures
provenant des mathématiques et de la logique pour prouver des propriétés sur les programmes.
Ce domaine de l’informatique théorique est appelé méthodes formelles. Dans cette thèse, nous
nous concentrons sur les langages de programmation formels. Ces derniers sont développés
et étudiés pour affirmer et extraire des propriétés formelles dans des domaines spécifiques de
la conception des langages de programmation. Le langage de programmation formel le plus
standard est le λ-calcul (prononcez « lambda calcul »), introduit par Alonzo Church [Chu32]
dans le cadre de son programme de recherche sur les fondements des mathématiques. La
présentation du λ-calcul est en apparence simple : dans sa syntaxe, on peut former des fonctions
et appliquer ces fonctions. Cependant, ce langage est Turing complet, ce qui signifie que tout
programme calculable peut être représenté dans le λ-calcul. Il est particulièrement pratique de
travailler en λ-calcul et il est simple d’y ajouter presque n’importe quel type de fonctionnalité,
en ajoutant par exemple des combinateurs. Il est également flexible, en présentant plusieurs
stratégies de calcul : en effet, on peut par exemple choisir de calculer d’abord le contenu des
fonctions ou l’argument pris par ces fonctions.

Dans cette thèse, l’objectif est d’étudier deux aspects de la conception des langages de
programmation, à savoir le flot de contrôle et les effets. Le flot de contrôle délimite les prises
de décision sous-jacentes à l’exécution des tâches dans un paradigme de programmation. Il existe
différentes manières de contrôler le flot d’un langage de programmation. Les langages impératifs,
tels que Python, sont contrôlés par des instructions comme « if » et « while », tandis que les
langages fonctionnels comme Caml sont plus subtils, avec un contrôle réalisé par des appels
de fonctions ; ce dernier s’inspire du λ-calcul et de son interprétation mathématique. L’autre
aspect qui nous intéresse est celui des effets : un calcul à effet se distingue fondamentalement
aux calculs purs ; en d’autres termes, traiter des effets en programmation signifie que l’on fait la
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distinction entre les opérations de base d’un langage et ses interactions avec le monde extérieur.
Ces effets se présentent sous différentes formes. Il y a des effets généraux, parfois appelés effets
de bord, qui interagissent directement avec un agent extérieur au programme – par exemple,
l’écriture sur une bande séparée, la gestion des entrées et sorties de données. Il est également
possible de rencontrer des effets algébriques, tels que l’introduction de non-déterminisme ou
de comportements probabilistes. Le calcul quantique peut également être vu comme un effet
algébrique. Ces effets sont algébriques dans le sens où ils présentent des caractéristiques issus de
l’algèbre en mathématique. Cela signifie, en particulier, que les questions qui s’appliquent aux
structures algébriques peuvent également s’appliquer aux effets – par exemple, si deux effets
commutent entre eux ou non.

Dans cette thèse, nous proposons une étude formelle de ces aspects à travers le prisme
de la sémantique, un paradigme en informatique qui attribue des interprétations logiques et
mathématiques aux programmes. Une étude sémantique d’un langage de programmation nous
permet de déduire des propriétés sur les programmes – par exemple, s’ils terminent ou non. Les
composantes mathématiques d’une étude sémantique sont, dans notre cas, réalisées avec l’aide
de la théorie des catégories.

Sémantique

Du grec ancien σηµᾰντῐκός, qui donne du sens.

La notion de sémantique en théorie de l’informatique a débuté avec Robert Floyd [Flo67],
dans une tentative de formaliser ce qui est attendu d’un langage de programmation d’un point
de vue logique. La sémantique d’un langage de programmation peut revêtir différentes formes.
Dans cette thèse, nous nous intéressons en particulier à trois d’entre elles.

• La première est appelée sémantique opérationnelle. Une sémantique opérationnelle décrit
généralement, à travers des règles de réécriture ou des règles d’inférence, les opérations
qu’un langage de programmation est censé effectuer. Par exemple, étant donné un pro-
gramme formel t, la sémantique opérationnelle pourrait détailler par exemple l’état du
programme après une étape de calcul. Cela s’écrit souvent t→ t′.

• Une autre forme de sémantique consiste à fournir une théorie équationnelle. Une théo-
rie équationnelle formalise si deux programmes sont censés produire le même résultat,
et cela s’écrit généralement t = t′. Elle est souvent plus générale qu’une sémantique
opérationnelle, dans le sens où si t→ t′, alors t = t′.

• La dernière forme de sémantique utilisée dans cette thèse est la sémantique dénotation-
nelle, où cette fois, ce sont les mathématiques qui sont utilisées pour donner un sens
à un programme. Cette sémantique représente les actions d’un programme sous forme
d’une fonction qui prend en entrée l’état de départ du programme. Elle est considérée
comme une manière de s’abstraire de la syntaxe du langage. Elle est pratique à plusieurs
égards : on peut prouver des propriétés sur un langage sans dépendre de la syntaxe ;
elle nous permet également d’utiliser des travaux mathématiques antérieurs réalisés de
manière indépendante, et elle fournit parfois de nouvelles intuitions sur le paradigme de
programmation utilisé.

L’isomorphisme de Curry-Howard [Cur34, How80] établit un lien fort entre les programmes
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et les preuves en logique formelle : c’est en réalité une correspondance bijective entre la sé-
mantique opérationnelle des programmes et la réécriture en théorie de la preuve. L’ajout de
la sémantique dénotationnelle dans l’étude des langages de programmation, en particulier avec
l’aide de la théorie des catégories, a conduit à une correspondance cette fois entre les pro-
grammes, les preuves et les catégories, appelée la correspondance Curry-Howard-Lambek.

La théorie des catégories est la science des fonctions, décrivant les structures mathématiques
à travers des morphismes qui peuvent être composés ; contrairement à la théorie des ensembles
où l’accent est mis sans surprise sur les ensembles, et non sur les fonctions. La composition
signifie que, étant donné un morphisme X → Y et un morphisme Y → Z, il existe un
morphisme X → Z qui est le résultat de la composition des deux précédents. Une catégorie est
une collection d’objets et de morphismes, et la théorie des catégories définit un cadre formel
pour parler de ces morphismes. Son vocabulaire permet de formaliser des énoncés généraux sur
diverses structures mathématiques. Ce vocabulaire est la clé de voûte du contenu mathématique
de cette thèse et il est donné et expliqué tout au long du Chapitre 1.

La théorie des catégories a un impact significatif dans l’étude mathématique des langages
de programmation, car les programmes sont eux-mêmes des morphismes : ils transforment
des ensemblese de données en d’autres ensembles de données. De plus, deux programmes
peuvent être composés ; dans de nombreux langages de programmation, la composition de
deux programmes est obtenue par concaténation. Il est donc naturel d’utiliser la théorie des
catégories pour étudier mathématiquement les langages de programmation.

Les effets vus de manière externe

Dans le domaine des langages de programmation, le concept d’effets englobe les interactions
observables entre un programme et son environnement, encapsulant des actions qui dépassent
le domaine qu’on appelle du calcul pur. Contrairement aux calculs purement fonctionnels, qui
présentent un comportement déterministe, les calculs avec effet permettent aux programmes
d’interagir avec des entités externes, de manipuler des états ou d’effectuer des opérations
d’entrée/sortie. Ces effets jouent un rôle crucial dans la définition du comportement et de la
fonctionnalité des langages de programmation.

Les effets peuvent être traités de manière externe. Par exemple, dans un système typé –
c’est-à-dire un langage où des labels spécifiques, appelées types, sont attribuées aux termes –
on peut séparer les types de calculs purs des types de calculs à effet. Ces derniers sont souvent
attribués à une modalité. C’est ce qui est fait dans le métalangage de Moggi [Mog91], basé sur
un λ-calcul simplement typé avec des types supplémentaires pour les effets.

De plus, la sémantique dénotationnelle des effets en théorie des catégories a été largement
étudiée par Moggi [Mog91, Mog89] (voir les détails dans la section §1.5.2). Il montre que
les effets sont correctement interprétés par des monades. Ces dernières sont la généralisation
catégorique des monoïdes de la théorie des ensembles, où un calcul sans effet correspond à
l’élément neutre du monoïde, et une composition d’effets est similaire à la multiplication. Il est
naturel de se demander si les propriétés sur les monoïdes s’appliquent également aux monades.
En particulier, nous nous concentrons sur la question de la commutativité. Deux éléments x et
y dans un monoïde commutent si le produit de x et y est le même que le produit de y et x. Un
élément x est central s’il commute avec tous les autres éléments du monoïde. Par conséquent,
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on peut se demander ce qu’est un effet central dans une monade, qui est la généralisation
directe de la notion de monoïde. Dans le Chapitre 2, nous fournissons les réponses à la question
de la centralité des effets.

Les effets vus de manière interne

Contrairement aux effets travaillant avec un périphérique externe – par exemple, l’en-
trée/sortie –, les effets algébriques sont souvent considérés internes au langage et l’informatique
quantique n’y fait pas exception.

Informatique quantique et réversibilité. Les données quantiques sont caractérisées par la su-
perposition. Alors qu’un bit classique prend ses valeurs dans l’ensemble {0, 1}, un bit quantique
– souvent écrit qubit – est donné par une superposition :

|φ⟩ = α |0⟩+ β |1⟩

où |0⟩ et |1⟩ sont des vecteurs dans un espace de Hilbert et α et β sont des nombres com-
plexes. Avec cette présentation, on peut voir dès lors que l’informatique quantique a sa place
parmi les effets algébriques. Cependant, il existe d’autres conditions sur un qubit pour qu’il
soit physiquement admissible. Les vecteurs |0⟩ et |1⟩ doivent être orthogonaux et les nombres
complexes α et β doivent vérifier la condition suivante : |α|2+ |β|2 = 1. Ce sont les conditions
de normalisation, et un état |φ⟩ qui vérifie ces conditions est dit normalisé.

Pour préserver cette normalisation, les opérations quantiques admissibles – appelées uni-
taires – doivent être réversibles. Il existe d’autres opérations en informatique quantique qui ne
sont pas réversibles : une pour créer des états quantiques, par exemple initialisant à |0⟩, et une
pour détruire des données quantiques, appelée mesure. Cette dernière envoie l’état |φ⟩ sur 0

avec une probabilité |α|2 et sur 1 avec une probabilité |β|2.
Une première approche de la programmation intégrant du quantique est le λ-calcul quan-

tique [SV09]. Néanmoins, ce langage ne traite pas la programmation quantique comme un
effet algébrique, car il nécessite de mesurer les qubits pour en tirer des données classiques pour
contrôler le flux d’exécution.

Pour rester dans un effet algébrique quantique, une solution serait de considérer uniquement
les opérations quantiques réversibles, comme le montre [SVV18]. Dans cet article, la réversibilité
des fonctions du langage est assurée grâce à l’aide du pattern-matching réversible.

Pattern-matching réversible. Considérons la fonction booléenne constante valant toujours
1. Cette fonction n’est pas réversible car elle n’est pas injective. Pour être réversible, une
fonction f : X → Y doit être déterministe en avant et déterministe en arrière. Le premier est
généralement supposé : cela signifie que tout x ∈ X a une seule image par la fonction f . Le
second signifie que pour tout y ∈ Y , il existe au plus un x ∈ X tel que f(x) = y. C’est un
synonyme d’injectivité.

En informatique, le type des bits est donné par 1 ⊕ 1 où la somme directe ⊕ peut par
exemple dénoter l’union disjointe d’ensembles. Nous introduisons également deux combinateurs :
l’injection à gauche injl et l’injection à droite injr , tels que les termes injl ∗ et injr ∗
représentent respectivement le bit 0 et le bit 1. La fonction constante peut alors être donnée
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par : 
1⊕ 1 → 1⊕ 1
injl ∗ 7→ injr ∗
injr ∗ 7→ injr ∗

Cette présentation fournit une intuition sur l’injectivité grâce à la syntaxe, car les deux sorties
possibles sont injectées du même côté. Pour assurer la réversibilité de la mise en correspondance
de motifs, nous forçons les motifs d’un même côté à être orthogonaux, une notion qui fait écho
en algèbre linéaire, où les vecteurs sont orthogonaux s’ils appartiennent à des parties distinctes
d’une somme directe. Étant donné n’importe quel terme t, injl t et injr t sont orthogonaux.
Nous voyons dans le chapitre 3 comment cette notion d’orthogonalité peut être formalisée
syntaxiquement.

Étant donnés deux programmes f : B→ B et g : B→ B qui sont réversibles, le programme
suivant :

ϕ =


B⊗ B → B⊗ B
(0, x) 7→ (0, fg(x))
(1, x) 7→ (1, gf(x))

(1)

est par exemple réversible.

Sémantique de la programmation quantique. Il existe, dans la littérature, de nombreux
modèles sémantiques différents pour les langages de programmation quantiques [Val08, Mal13,
PSV14, CW16, JKL+22, TA24]. Cependant, toutes ces approches sont des modèles appropriés
pour l’informatique quantique avec un contrôle classique uniquement : les tests, tels que les
instructions if ou les appels récursifs, sont contrôlés par des données classiques. Dans le λ-
calcul quantique, un qubit doit être mesuré avant d’influencer le contrôle d’un programme. Ces
modèles ne nous concernent donc pas, car l’utilisation de la mesure détruit la superposition
quantique, et elle ne préserve donc pas l’effet quantique susmentionné. Dans cette thèse, nous
souhaitons préserver cet effet, d’où un accent sur un flux de contrôle quantique.

En informatique quantique, l’exemple de fonction réversible donné ci-dessus (2), où les bits
sont généralisé à des qubits, est appelé le quantum switch [CDPV13]. La fonction λf.λg.ϕ

ne peut pas être exprimée dans le λ-calcul quantique ni dans aucun langage avec un contrôle
classique, car le flux du programme ϕ doit être contrôlé par des données quantiques. L’un des
objectifs de cette thèse est donc d’établir des bases solides pour la sémantique d’un langage de
programmation avec un flux de contrôle quantique.

Contribution de la Thèse

Cette thèse aborde les effets d’un point de vue algébrique. Tout d’abord, dans le chapitre 2,
nous étudions la question de la commutativité des effets à travers leur sémantique dénotation-
nelle – à savoir, les monades fortes. Nous commençons par poser les bases catégoriques pour
définir ce qu’est le centre d’une monade (voir le théorème 2.11) et ce qu’est une sous-monade
centrale (voir le théorème 2.29). Nous proposons ensuite une syntaxe proche du métalangage
de Moggi pour capturer les effets centraux, et nous introduisons à la fois des théories et une
sémantique dénotationnelle pour ce métalangage, que nous avons appelé Central Submonad
Calculus. Nous montrons un résultat de langage interne (voir le théorème 2.60), prouvant que
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les théories équationnelles du Central Submonad Calculus sont essentiellement équivalentes aux
modèles de ce calcul.

En seconde partie, dans le chapitre 3, nous nous concentrons sur un sujet plus spécifique,
qui est l’informatique quantique vue comme un effet algébrique réversible. Nous présentons un
langage de programmation réversible qui capture cet effet de manière interne. En particulier,
le langage est conçu pour manipuler des états quantiques normalisés et pour préserver cette
normalisation. Cela se fait par l’introduction d’une notion syntaxique d’orthogonalité, et de
l’équivalent syntaxique des bases orthonormales appelé une décomposition orthogonale. Nous
proposons une théorie équationnelle et une sémantique dénotationnelle pour le langage, et nous
prouvons la complétude (voir le théorème 3.67) : étant donnés deux termes bien typés, ils
sont égaux dans la théorie équationnelle si et seulement s’ils sont égaux dans la sémantique
dénotationnelle.

Ensuite, nous abordons la question des types de données infinis et de la récursivité dans
la programmation réversible, dans le but de l’adapter à l’effet réversible quantique. Dans le
Chapitre 4, nous introduisons un langage réversible similaire au précédent, cette fois-ci sans
effets quantiques, mais où des types de données inductifs et la récursivité sont ajoutées. Nous
donnons une sémantique opérationnelle au langage, où les opérations d’ordre supérieur, telles
que les appels récursifs, sont considérées séparément des opérations réversibles. Nous fournis-
sons également une sémantique dénotationnelle dans les catégories join inverse rig qui ont les
propriétés exactes nécessaires pour modéliser le langage. Nous montrons que ce modèle est
adéquat par rapport à la sémantique opérationnelle (voir le théorème 4.29), et nous fournissons
ensuite un résultat proche de la complétude totale (voir le théorème 4.61), montrant que toute
fonction calculable dans le modèle concret des injections partielles est représentable par une
fonction dans le langage.

Enfin, le chapitre 5 contient des commentaires sur la récursion dans le contexte de l’effet
réversible quantique. En effet, il s’avère que cet effet ne peut pas être étudié comme une monade.
De plus, les techniques utilisées dans le Chapitre 4 ne se généralisent pas au cas quantique :
les catégories en jeu ne sont pas enrichies dans DCPO et ne semblent pas être tracées de
manière convenable. Sur une note plus positive, nous proposons une solution potentielle à la
récursion quantique avec l’aide de la récursion gardée, un cadre dans lequel les appels récursifs
sont gardés par des modalités de retard. Pour ce faire, nous établissons un modèle catégorique
pour la récursion quantique gardée, et prouvons que ce modèle est adapté pour interpréter la
récursion (voir le théorème 5.19) et les types inductifs (voir le théorème 5.32).
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Introduction

“Mathematical Science shows what is. It is the language of
the unseen relations between things. But to use & apply that
language we must be able fully to appreciate, to feel, to seize,
the unseen, the unconscious.” — according to Ada Lovelace.

The primary focus of this thesis resides in the exploration of foundational structures within
programming, with a strong theoretical aspect. We use structures drawn from mathematics
and logic to prove properties on programs. This area of theoretical computer science is called
formal methods. In particular in this thesis, we set our gaze on formal programming languages.
They are developed and studied to assert and extract formal properties in specific areas of
programming language design. The most standard formal programming language is the λ-
calculus, introduced by Alonzo Church [Chu32] as a part of his research programme in the
foundations of mathematics. The presentation of the λ-calculus is in appearance simple: in
its syntax, one can either form functions, or apply those functions. However, this language is
Turing complete, meaning that any computable program can be represented in the λ-calculus.
It is especially convenient to work with it because it is simple to add almost any kind of feature
to it, by adding combinators for example. It is also flexible, with different possible computation
strategies.

In this thesis, we set ourselves to study two aspects of language design, namely, control
flow and effects. The control flow delineates the decision-making processes underlying task
execution within a programming paradigm. There are various ways to control the flow of a
programming language. Imperative languages, such as Python, are controlled by statements
like “if” and “while”, whereas functional languages such as Caml are more subtile with control
through functions calls; and the latter takes inspiration in the λ-calculus and its mathematical
interpretation. The other aspect we care about is effects: an effectful computation is a funda-
mental distinction from pure computation; in other words, dealing with effects in programming
means distinguishing between the core operations of a language and its interactions with the
outside world. These effects come in different forms. There are some general effects, sometimes
called side effects, that interact directly with an agent outside of the program – for example,
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writing on a separate tape, managing inputs and outputs of data. We also encounter algebraic
effects, such as the introduction of non-determinism or probabilistic behaviour. Quantum com-
putation can also be seen as an algebraic effect. These effects are algebraic in the sense that
they exhibit algebraic characteristics. This means, in particular, that the questions that apply
to algebraic structures can also apply to effects – for example, whether two effects commute
with each other.

In this thesis, we propose a formal study of these aspects through the lens of semantics, a
paradigm in computer science that assigns logical and mathematical interpretations to programs.
A semantic study of a programming language allows us to derive statements about programs
– for example, whether they terminate. The mathematical components of a semantic study is,
in our case, done with the help of category theory.

Semantics

From Ancient Greek σηµᾰντῐκός, which gives meaning.

Semantics started with Robert Floyd [Flo67], as an attempt at formalising what is expect
from a programming language with a logic point of view. The semantics of a programming
language can come in many different shapes. In this thesis, we are concerned with three in
particular.

• The first one is called operational semantics. An operational semantics usually outlines,
through rewriting rules or inference rules, the operations a programming language is
expected to perform. For example, given a formal program t, the operational semantics
could detail for example what is the state of the program after one computational step.
This is often written t→ t′.

• Another form of semantics consists in providing an equational theory. An equational
theory formalises whether two programs are expected to eventually perform the same
operation, and we write that t = t′. It is usually more general than an operational
semantics, in the sense that if t→ t′, then we have t = t′.

• The final form of semantics used in this thesis is denotational semantics. As mentioned
above, the denotational semantics of a programming language involves mathematics. It
represents the actions of a program as a function on the inputs. It is thought as a way
of abstracting away from the syntax of the language. It is practical in several ways: one
can prove properties about a language without depending on the syntax, it also allows
us to use previous mathematical work realised independently, and it sometimes provides
new intuitions on the matters at hand.

The Curry-Howard isomorphism [Cur34, How80] establishes a strong link between programs
and proofs in formal logic: it states a one-to-one correspondence between the operational
semantics of programs and proof-theoretic rewriting. The addition of denotational semantics in
the study of programming language, especially with the help of category theory, led to a one-to-
one correspondence between programs, proofs and categories, called the Curry-Howard-Lambek
correspondence.

Category theory describes mathematical structures through morphisms – for example, func-
tions or relations – that can be composed; as opposed to set theory in which the emphasis is on
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sets, and not functions. Composition means that given a morphism X → Y and a morphism
Y → Z, there exists a morphism X → Z that is the result of the two former morphisms
composed. A category is a collection of objects and morphisms, and category theory defines
a framework for talking about morphisms. This vocabulary helps formalise general statements
on various mathematical structures. This vocabulary is the cornerstone of the mathematical
content of this thesis. It is given and explained along Chapter 1.

Category theory is especially meaningful in the mathematical study of programming lan-
guage, because programs are themselves morphisms: they transform bits of data into bits of
data. Moreover, two programs can be composed; in imperative programming languages for in-
stance, the composition of two programs is obtained by concatenation. Thus it is only natural
to use category theory to study programming languages.

Effects as External Behaviour

In the domain of programming languages, the concept of “effects” encompasses the inter-
actions between a program and its environment, encapsulating actions that extend beyond the
realm of pure computation. Unlike purely functional computations, which adhere strictly to
mathematical principles and exhibit deterministic behaviour, effectful computations enable pro-
grams to interact with external entities, manipulate states, or perform input/output operations.
These effects play a pivotal role in shaping the behaviour and functionality of programming lan-
guages.

Because of this distinction between internal states and the environment, a natural approach
is to consider effects externally to the program. For example, in a typed system – i.e. a language
where secific labels, called types, are assigned to terms – one can separate the types of pure
computations from the types of effectful computations. The latter are often assigned a modality.
This is what is done in Moggi’s metalanguage [Mog91], based on a typed λ-calculus with an
additional type for effects.

Moreover, the denotational semantics of effects in category theory have been extensively
studied by Moggi [Mog91, Mog89] (see details in §1.5.2). He shows that effects are suitably
interpreted by monads. The latter are the category theoretical generalisation of monoids in
set theory, where a computation without effect corresponds to the neutral element of the
monoid, and a composition of effects is akin to the multiplication. It is only natural to wonder
whether properties on monoids also apply to monads. In particular, we focus on the question
of commutativity. Two elements x and y in a monoid are commutative if the product of x
and y is the same as the product of y and x. An element x is central if it commutes with all
other elements in the monoid. Consequently, one can wonder about what is a central effect in
a monad. In Chapter 2, we provide the answers to the question of centrality of effects.

Effects as an Internal Behaviour

Contrary to effects working with an actual external device – for example, input/output –,
algebraic effects – for instance, probabilities or non determinism – are often considered internally
to the language. Quantum computing is not an exception in that regard.
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Quantum computing and reversibility. Quantum data is characterised by superpositions.
While a classical bit takes its values in the set {0, 1}, a quantum bit – often written qubit – is
given by the superposition:

|φ⟩ = α |0⟩+ β |1⟩

where |0⟩ and |1⟩ are vectors in a Hilbert space and α and β are complex numbers. With
this presentation, we can already see that quantum computing has its place among algebraic
effects. However, there are more conditions on a qubit for it to be physically admissible. The
vectors |0⟩ and |1⟩ need to be orthogonal and the complex numbers α and β need to verify
|α|2 + |β|2 = 1. These are called normalisation conditions, and a state |φ⟩ that verifies these
conditions is said normalised.

To preserve this normalisation, the admissible quantum operations – called unitaries – need
to be reversible. There are other operations in quantum computing that are not reversible:
one to create quantum data, for example initialising at |0⟩, and one to destroy quantum data,
called measurement. The latter maps the state |φ⟩ to 0 with probability |α|2 and to 1 with
probability |β|2.

A first approach to programming with quantum effects is the quantum λ-calculus [SV09].
Nevertheless, that language does not handle quantum programming as an algebraic effect, since
it requires measurement into classical data to control the flow of execution.

To stay within a quantum algebraic effect, a solution would be to consider only the quantum
reversible operations, as shown in [SVV18]. In that paper, the reversibility of functions of the
language is ensured through the help of reversible pattern-matching.

Reversible pattern-matching. Consider the constant boolean function 1. This function is
not reversible because it is not injective. To be reversible, a function f : X → Y has to forward
deterministic and backward deterministic. The former is traditionally assumed: it means that
any x ∈ X has a single image by the function f . The latter means that for all y ∈ Y , there
exists a most one x ∈ X such that f(x) = y. It is a synonym of injectivity.

In computer science, the type of bits is given by 1 ⊕ 1 where the direct sum ⊕ can for
example be the disjoint union of sets. We also introduce two combinators, the left injection
injl and the right injection injr , such that the terms injl ∗ and injr ∗ respectively respresent
the bit 0 and the bit 1. The constant boolean function can then be given by:

1⊕ 1 → 1⊕ 1
injl ∗ 7→ injr ∗
injr ∗ 7→ injr ∗

This presentation provides an intuition on injectivity thanks to the syntax, as both possible
outputs are injected to the same side. To ensure reversibility of pattern-matching, we force the
patterns of a same side to be orthogonal, a notion that echoes in linear algebra, where vectors
are orthogonal if they belong to separate parts of a direct sum. Given any term t, injl t and
injr t are orthogonal. We see in Chapter 3 how this notion of orthogonality can be formalised
syntactically.

Given two programs f : B→ B and g : B→ B that are reversible, the following program:

ϕ =


B⊗ B → B⊗ B
(0, x) 7→ (0, fg(x))
(1, x) 7→ (1, gf(x))

(2)
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is for instance reversible.

Semantics of quantum computing. There are, in the literature, many different semantic
models of quantum programming languages [Val08, Mal13, PSV14, CW16, JKL+22, TA24].
However, all those approaches are proper model for quantum computing with classical control :
tests, such as if statements or recursive calls, are controlled by classical data. In the quantum
λ-calculus, a qubit has to be measured before influencing the control of a program. These
models are not of interest to this thesis, because the use of measurement breaks superposition,
therefore it does not preserve the aforementioned quantum effect. In this thesis, we wish to
preserve the effect. Hence a focus on a quantum-controlled flow.

In quantum computing, the example of reversible function given above (2), where bits are
replaced with qubits, is called the quantum switch [CDPV13]. The function λf.λg.ϕ cannot
be expressed in the quantum λ-calculus nor any language with classical control, because the
flow of the program ϕ needs to be controlled by quantum data. One of the goals of this thesis
is to lay foundations for the semantics of a language with a quantum control flow.

Contribution of the Thesis

This thesis tackles effects with an algebraic point of view. First, in Chapter 2, we study
the question of commutativity of effects through their denotational semantics – namely, strong
monads. We start by laying out categorical grounds to define what is the centre of a monad (see
Theorem 2.11) and what is a central submonad (see Theorem 2.29). We then provide a syntax
close to Moggi’s metalanguage to capture central effects, and we introduce both theories and
denotational semantics for this metalanguage, that we called the Central Submonad Calculus.
We show an internal language result (see Theorem 2.60), proving that equational theories of
the Central Submonad Calculus are basically equivalent to models of this calculus.

Secondly, in Chapter 3, we focus on a more specific subject, which is quantum comput-
ing seen as a reversible algebraic effect. We provide a reversible programming language that
captures this effect internally. In particular, the language is designed to manipulate normalised
quantum states and to preserve this normalisation. This is done through the introduction of a
syntactical notion of orthogonality and of orthogonal decomposition, which is the syntactical
equivalent to an orthonormal basis. We provide an equational theory and a denotational se-
mantics for the language, and we prove completeness (see Theorem 3.67): given two well-typed
terms, they are equal in the equational theory if and only if they are equal in the denotational
semantics.

Then, we tackle the question of infinite data types and recursion in reversible programming,
as an attempt to adapt it to the quantum reversible effect. In Chapter 4, we introduce a
reversible language akin to the one before, this time without quantum effects, but where in-
ductive data types and recursion are added. We give an operational semantics to the language,
where higher-order operations, such as recursive calls, are considered separately to reversible
operations. We also provide a denotational semantics in join inverse rig categories which have
the exact properties needed to model the language. We show that this model is adequate with
regard to the operational semantics (see Theorem 4.29), and we later provide a result close to
full completeness (see Theorem 4.61), showing that any computable function in the concrete
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model of partial injections is representable by a function in the language.
Finally, Chapter 5 contains comments on recursion in the context of quantum reversible

effects. Indeed, it turns out that this effect cannot be studied as a monad. Moreover, the
techniques used in Chapter 4 do not generalise to the quantum case: the categories at play
are not enriched in DCPO and do not seem to be properly traced. On a more positive note,
we provide a potential solution to quantum recursion with the help of guarded recursion, a
framework in which recursive calls are guarded by delay modalities. To do so, we lay out
a categorical model for guarded quantum recursion, and prove that this model is suitable to
interpret recursion (see Theorem 5.19) and inductive types (see Theorem 5.32).
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Chapter 1
Mathematical Background

“You cannot outsmart the model.” — Vladimir Zamdzhiev.

Abstract

We introduce the background material in mathematics, and especially
in category theory, necessary to navigate the thesis seamlessly. In some
sections, basic notions of type theory and programming languages are
presented and linked to their categorical semantics.

References. This background chapter is only made up of earlier work,
published by several different authors. It is meant as an introduction
to the material this thesis requires, and not as a literature review.
The few proofs inserted here and there are provided by the author, for
didactic purposes.

1.1 Category theory: some definitions

In this thesis, category theory is used as vocabulary to express a mathematical point of
view on programs and programming languages; and what we often refer to as interpretation,
denotational semantics or denotation is a map from a syntax – or a language – to a category,
usually written J−K. In other words, given a piece of syntax t, which we refer to as a term of
the syntax, its interpretation JtK is given in a fixed category C. If a few coherence properties
are satisfied, we allow ourselves to call C a model of the language. We provide examples along
the chapter, in §1.1.1, §1.2.1 and §1.2.2.

In this section, we recall the definitions required to work with category theory as a denota-
tional model of programming languages. The author recommends the book of Tom Leinster
[Lei16], which introduces category theory with more background, details and examples.

Definition 1.1 (Category). A category C is a collection of objects – usually written with capital
Latin letters X,Y, Z, . . . – and a collection of morphisms – written f : X → Y to indicate that
f is a morphism from X to Y – such that:

• for every object X, there is a morphism idX : X → X,
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• for every pair of morphisms f : X → Y , g : Y → Z, there is a morphism g ◦ f : X → Z

called the composition of f and g,
• composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h),
• and for every morphism f : X → Y , we have idY ◦ f = f = f ◦ idX .

We write C(X,Y ) for the collection of morphisms from X to Y .

Example 1.2. A very well-known category is the one with objects that are sets, and morphisms
that are functions between sets; we write Set for this category. Note that whenever X and Y
are sets, Set(X,Y ) is also a set.

Example 1.3. Vector spaces – additive groups together with the outer action of a field K –
with linear maps as morphisms also form a category, written Vect.

A category C is called locally small if all C(X,Y ) are sets. They are then called homsets,
short for “sets of homomorphisms”. A locally small category C is small if its collection of objects
is a set.

Remark 1.4. Throughout the thesis, given two morphisms f : X → Y and g : Y → Z, we write
gf : X → Z for the composition g ◦ f : X → Z when it is not ambiguous.

Category theory is better pictured with diagrams to represent morphisms. In a category C,
the composition of two morphisms f : X → Y and g : Y → Z is seen as the diagram:

X Y Z
f g

Diagrams are sound thanks to associativity. It allows us to write the following diagram:

X Y Z T
f g h

without any need to be precise about in which order the composition is taken. Moreover, given
h : X → Z, the condition h = g◦f is described as the commutativity of the following diagram:

X Y Z
f g

h

Example 1.5 (Opposite Category). Given a category C, one can form the opposite category,
written Cop, with the same objects as C, such that there is a morphism Y → X for every
morphism X → Y in C. These new morphisms respect the same diagrams as in C, but with
reversed arrows.

Once we master the definition of a category, we can introduce some vocabulary on morph-
isms. We define what an isomorphism is. This definition echoes to the one in set theory.

Definition 1.6 (Isomorphism). Given a category C and a morphism f : X → Y in that
category, we say that f is an isomorphism if there exists a (unique) f−1 : Y → X such that
f ◦ f−1 = idY and f−1 ◦ f = idX .

Given an isomorphism f : X → Y , we say that the objects X and Y are isomorphic. We
also introduce notions akin to injective and to surjective functions.
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Definition 1.7 (Monomorphism). Given a category C and a morphism f : X → Y in that
category, we say that f is a monomorphism – or that f is monic – if for all objects Z and all
morphisms g1, g2 : Z → X, if f ◦ g1 = f ◦ g2, then g1 = g2.

Definition 1.8 (Epimorphism). Given a category C and a morphism f : X → Y in that
category, we say that f is an epimorphism – or that f is epic – if for all objects Z and all
morphisms g1, g2 : Y → Z, if g1 ◦ f = g2 ◦ f , then g1 = g2.

Remark 1.9. In Set, the category of sets and functions, monomorphisms (resp. epimorphisms)
are exactly injective (resp. surjective) functions.

A morphism that is monic and epic is not necessarily an isomorphism.

Lemma 1.10 ([ML98]). Given a morphism f in a category C, f is a monomorphism iff
it is an epimorphism in Cop.

Definition 1.11 (Functor). Given two categories C and D, a functor F : C→ D is a function
on objects and on morphisms, such that: for all objects X in C, there is an object F (X) in
D, and for all morphsisms f : X → Y , there is a morphism F (f) : F (X)→ F (Y ) in D, and

• for all objects X in C, F (X) is an object of D;
• for all morphisms X → Y in C, F (f) : F (X)→ F (Y ) is a morphism in D;
• for all objects X in C, F (idX) = idF (X);
• for all pairs of morphisms f : X → Y, g : Y → Z, F (gf) = F (g)F (f).

Functors are often written with Latin capital letters F and G.

We abuse notations and sometimes drop the parenthesis when applying a functor. For
example, the object F (X) is often written FX when it is not ambiguous.

Example 1.12 (Identity functor). Given any category C, one can define the identity functor
idC : C→ C that maps any object to itself and any morphism to itself.

Example 1.13. We define U : Vect→ Set that maps a vector space to its underlying set and
that maps a linear map to itself, now seen as a function between sets. U is a functor, and is
called the forgetful functor, because it forgets the structure of a vector space.

Example 1.14 (Hom functor). Given any locally small category C and an object X of C, the
assignment C(−, X) forms a functor Cop → Set that maps an object Y to the set C(Y,X)

and a morphism f : Y → Z in C to the function between sets (− ◦ f) : C(Z,X)→ C(Y,X).
A similar functor, namely C(X,−) : C→ Set, can also be defined.

Example 1.15 (Category of small categories). One can define the category Cat, with small
categories as objects and functors between them as morphisms. The identity functor C → C

is described in Example 1.12. Given two functors F : C→ D and G : D→ E, it is routine to
show that G ◦ F is a functor C→ E.

Category theory is the theory of arrows, trying to establish morphisms whenever it is possible.
Given two categories C and D, and two functors F andG between them, we obtain the following
diagram:

C D

F

G
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This diagram does not necessarily commute. However, it can be filled with a new kind of arrow,
as pictured below.

C D

F

G

That new arrow is called a natural transformation and its definition is as follows.

Definition 1.16 (Natural transformation). Given two categories C and D, given two functors
F,G : C → D, a natural transformation α : F ⇒ G is a collection of morphisms indexed by
the objects of C such that, for all morphisms f : X → Y , the following diagram:

F (X) G(X)

F (Y ) G(Y )

αX

αY

F (f) G(f)

commutes.

Example 1.17. Given a set M , we define a functor T def
= M×− : Set→ Set. Moreover, given

a function (− · −) : M ×M → M and an element e ∈ M , there is a natural transformation
η : idSet ⇒ T and a natural transformation µ : T ◦ T ⇒ T , such that for all sets X:

ηX =

{
X → M ×X
x 7→ (e, x)

µX =

{
M × (M ×X) → M ×X
(m1, (m2, x)) 7→ (m1 ·m2, x)

In fact, if (M, ·, e) is a monoid, then T is a monad (see Definition 1.95).

Example 1.18 (Functor Category). Given two categories C and D, we write [C → D] or
DC for the category of functors C → D and natural transformations between them. Given a
functor F : C→ D, the identity natural transformation idF : F ⇒ F is a natural transformation
whose components are all the identity; and given two natural transformations α : F ⇒ G and
β : G⇒ H, for all f : X → Y in C, the diagram:

F (X) G(X) H(X)

F (Y ) G(Y ) H(Y )

αX βX

αY βY

F (f) G(f) H(f)

commutes, and thus β ◦ α defined as the pointwise composition is a natural transformation.
This composition of natural transformations is also called the vertical composition because of
the following diagram:

C D

F

G

H

α

β

Some functor categories are often used in the literature, and therefore have a name of their
own. For example, given a small category C, SetC

op
is called the category of presheaves over

C.
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As a cultural note, a category of presheaves is a topos: a cartesian closed category whose
objects and morphisms carry a logical meaning, we say that a topos has an internal logic. The
details on cartesian closed categories are found later in this chapter.

Example 1.19 (Yoneda embedding). Given a category C, the Yoneda embedding is a functor
よ : C → SetC

op
(よ is the Japanese hiragana “yo” after 米田 信夫（よねだ のぶお）,

Yoneda Nobuo) such that for all object X in C, よ(X) = C(−, X) (see Example 1.14), and
for all morphism f : X → Y in C, よ(f) is a natural transformation C(−, X) ⇒ C(−, Y )

whose components are morphisms よ(f)Z : C(Z,X)→ C(Z, Y ) :: g 7→ f ◦ g in Set.

Definition 1.20 (Adjunction). Given two categories C and D, we say that two functors
F : C → D and G : D → C are respectfully left adjoint and right adjoint if for all objects X
in C and Y in D, there is a bijection D(FX, Y ) ∼= C(X,GY ) that is natural in X and Y . An
adjunction can be written with a diagram, as follows:

C ⊥ D

F

G

and is also written F ⊣ G.

An adjunction also gives rise to two natural transformations:
• ε : FG⇒ idD, called the counit,
• η : idC ⇒ GF , called the unit,

such that for every object X in C and every object Y in D:

idFX = εFX ◦ F (ηX), idGY = G(εY ) ◦ ηGY .

Definition 1.21 (Initial and terminal object). Given a category C, an object X of C is said to
be initial if for every object Y in C, there is a unique morphism X → Y . Conversely, an object
X of C is said to be terminal if for every object Y in C, there is a unique morphism Y → X.

An initial object is often written 0, and a terminal object is often written 1. Moreover,
given a terminal object 1 and any object X, we write !X for the unique morphism X → 1.

Definition 1.22 (Product). Given a category C and two objects X1 and X2 of C, a product
of X1 and X2 is an object of C, usually written X1 × X2, equipped with two morphisms
π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2, such that for every object Y and morphisms
f1 : Y → X1 and f2 : Y → X2, there is a unique morphism f : Y → X1 ×X2 such that the
following diagram:

Y

X1 X1 ×X2 X2

f1 f2

π1 π2

f

commutes. The unique morphism obtained is often written ⟨f1, f2⟩.

Example 1.23. Given two categories C and D, their product C×D is also a category.

Remark 1.24. Given a category C with products for any pair of objects, observe that for
all objects X of C, − × X : C → C is a functor, as well as X × − : C → C. Actually,
−×− : C×C→ C is a functor, and is commonly called a bifunctor.
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1.1.1 Cartesian closed categories and λ-calculus

Cartesian closed categories are the main tool to study the semantics of functional classical
programming languages – classical as opposed to quantum, which is one focus of this thesis.
The adjective cartesian refers to the products, as introduced in Definition 1.22. The notion
of closure is more subtle: one of the main properties is that function spaces are themselves
objects of the category. Formally, a cartesian category C is closed if for all objects Y , the
functor − × Y : C → C admits a right adjoint [Y → −] : C → C, sometimes written −Y .
This adjunction embodies the notion of currying, meaning that a program (A × B) → C is
equivalent to a program A→ (B → C).

The author recommends reading the lecture notes of Awodey and Bauer [AB23] to have
complete details about the topic of this section, and more about the link between logic, cat-
egories and programming languages.

Definition 1.25 (Cartesian closed category). A cartesian closed category C is a category that
has the following properties:

• C has a terminal object, usually written 1;
• for all pairs of objects X and Y , there is a product X × Y in C;

such that for all objects Y , the assignment (−× Y ) : C→ C is a left adjoint functor.

For all objects Y , we write [Y → −] : C → C for the right adjoint of (− × Y ) : C → C.
Given a pair of objects X and Y , the object [X → Y ] is called the exponential.

Example 1.26. The category Set of sets and functions between them is cartesian closed. Any
singleton set is a terminal object. The product of two sets X and Y is the usual cartesian
product X × Y , which is the set:

{(x, y) | x ∈ X, y ∈ Y }

and the exponential of X and Y is the set of functions from X to Y , namely:

{f | f : X → Y }.

There are many more examples of cartesian closed categories, such as the category of dcpos
and Scott continuous functions, introduced later in §1.2.1.

Cartesian closed categories are remarkable because of their link with λ-calculi. The latter is
a paradigm for computation, at the same level as Turing machines and recursive functions, and
its raw presentation – the untyped λ-calculus – is known to represent all computable functions.
In this thesis, we rather focus on typed λ-calculi, and typed programming languages in general,
because of their link to logic and category theory. Next, we introduce briefly a simply-typed
λ-calculus.

Simply-typed λ-calculus. First, we give a definition of the types, that are generated by the
following grammar:

A ::= 1 | A×A | A→ A

Note that, throughout the thesis, we might be less formal, writing for example:

A,B, . . . ::= 1 | A×B | A→ B (1.1)
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for readability; and the two definitions are to be regarded as identical. To define a language,
one must also provide a set of terms, usually also introduced by a grammar. In our case, the
terms of the simply-typed λ-calculus are given by:

M,N, . . . ::= x | ∗ | λxA.M | MN | ⟨M,N⟩ | πiM (1.2)

where x can range among a set of variables {x, y, z, . . . }, A is a type as introduced above and
i ∈ {1, 2}. Note that variables can be free in a term, or bound by a λ-abstraction. A term
without any free variables is called a closed term. In order to avoid conflicts between variables
we will always work up to α-conversion and use Barendregt’s convention [Bar84, p.26] which
consists in keeping all bound and free variables names distinct.

The types allows us to formalise what a well-typed term is, through typing rules. A typing
judgement is written Γ ⊢ M : A, where M is a term of (1.2), A is a type of (1.1) and Γ is a
context that contains variables each associated with a type x1 : A1, x2 : A2, . . . , xn : An. The
rule to form correct typing judgements are presented in a way that is usual in logic, i.e. with
inference rules. Those typing rules in the case of the simply-typed λ-calculus are introduced in
Figure 1.1.

Γ, x : A ⊢ x : A
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

Γ ⊢ ∗ : 1
Γ, x : A ⊢M : B

Γ ⊢ λxA.M : A→ B
Γ ⊢M : A1 × A2

Γ ⊢ πiM : Ai

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢ ⟨M,N⟩ : A×B

Figure 1.1 – Typing rules of the simply-typed λ-calculus.

One important concept in programming language design is substitution, which allows us to
replace each occurrence of a free variable with a term of the syntax; and this term can also
contain variables.

Definition 1.27 (Substitution). Given two well-typed terms M,N of (1.2), we write M [N/x]

for the term where the free occurrences of x in M are replaced by N .

Whenever a term is introduced, it is important to show that it can be well-typed with the
typing rules.

Lemma 1.28 ([Bar84]). Given two well-typed terms Γ, x : A ⊢ M : B and Γ ⊢ N : A,
the judgement Γ ⊢M [N/x] : B is valid.

The computational behaviour of a programming language is formalised through an opera-
tional semantics. In a small step operational semantics, M → N informally means that the term
M evaluates to N after one computational step. The most prominent rule of the λ-calculus is
called β-reduction:

(λxA.M)N →M [N/x]. (1.3)
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Equational Theory. Instead of working operationally, one can consider equations between
terms. This new point of view loses information on the computational aspect of the language,
but gains in convenience. The equational theory of the simply-typed λ-calculus is given in
Figure 1.2.

Γ ⊢M : A
Γ ⊢M =M : A

(refl) Γ ⊢ N =M : A
Γ ⊢M = N : A

(symm)

Γ ⊢M = N : A Γ ⊢ N = P : A
Γ ⊢M = P : A

(trans)

Γ, x : 1 ⊢ ∗ = x : A
(1.η)

Γ ⊢M : A Γ, x : A ⊢ N = P : B

Γ ⊢ N [M/x] = P [M/x] : B
(subst)

Γ ⊢M =M ′ : A Γ ⊢ N = N ′ : B
Γ ⊢ ⟨M,N⟩ = ⟨M ′, N ′⟩ : A×B (⟨, ⟩.eq) Γ ⊢M1 : A1 Γ ⊢M2 : A2

Γ ⊢ πi⟨M1,M2⟩ =Mi : Ai
(×.β)

Γ ⊢M : A×B
Γ ⊢ ⟨π1M,π2M⟩ =M : A×B (×.η)

Γ ⊢M =M ′ : A→ B Γ ⊢ N = N ′ : A
Γ ⊢MN =M ′N ′ : B

(app.eq)

Γ, x : A ⊢M = N : B

Γ ⊢ λxA.M = λxA.N : A→ B
(λ.eq)

Γ, x : A ⊢M : B Γ ⊢ N : A

Γ ⊢ (λxA.M)N =M [N/x] : B
(λ.β)

Γ ⊢M : A→ B
Γ ⊢ λxA.Mx =M : A→ B

(λ.η) Γ ⊢M = N : B
Γ, x : A ⊢M = N : B

(weak)

Figure 1.2 – Equational rules of the simply-typed λ-calculus.

Denotational semantics. The point of denotational semantics is to provide a mathematical
interpretation to well-typed terms in a programming language to extract properties, design or a
better understanding of the language. This requires first an interpretation for the types. Let us
fix a cartesian closed category C, and give a semantics to types as objects in C. The semantics
of types is defined by induction on their grammar:

J1K = 1 JA×BK = JAK× JBK JA→ BK = [JAK→ JBK]

A context Γ = x1 : A1, . . . , xn : An is interpreted as an object in C given by the product of the
interpretations of all the types involved: JA1K× · · · × JAnK.

Given a well-typed term Γ ⊢M : A in the simply-typed λ-calculus, we write its denotational
interpretation JΓ ⊢M : AK. If we fix a cartesian closed category C (see Definition 1.25),
the interpretation JΓ ⊢M : AK is given as a morphism in C from the interpretation of the
context Γ to the interpretation of the type A. The interpretation of term judgements can then
be defined by induction on the typing rules. The details can be found in Figure 1.3, where
curryX,Y,Z is the natural isomorphism C(X×Y, Z) ∼= C(X, [Y → Z]) given by the adjunction
(−× Y ) ⊣ [Y → −], and evalX,Y : [X → Y ]×X → Y is the counit of the adjunction.

Relationship between the semantics. So far, we have introduced some operational se-
mantics, an equational theory and a denotational semantics to a simply-typed λ-calculus. How-
ever, we have yet to show what links them.
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JΓ ⊢M : AK ∈ C(JΓK , JAK)
JΓ ⊢ ∗ : 1K = !JΓK

JΓ, x : A ⊢ x : AK = πJAK

JΓ ⊢MN : BK = evalJAK,JBK ◦ ⟨JΓ ⊢M : A→ BK , JΓ ⊢ N : AK⟩
q
Γ ⊢ λxA.M : A→ B

y
= curryJΓK,JAK,JBK(JΓ, x : A ⊢M : BK)

JΓ ⊢ πiM : AK = πi ◦ JΓ ⊢M : A1 × A2K
JΓ ⊢ ⟨M,N⟩ : A×BK = ⟨JΓ ⊢M : AK , JΓ ⊢ N : BK⟩

Figure 1.3 – Denotational semantics of terms in the simply-typed λ-calculus.

For example, we can state a soundness result between an operational semantics and the
denotational semantics:

Given Γ ⊢M : A, if M → N , then JΓ ⊢M : AK = JΓ ⊢ N : AK.

which is often simple to prove, by induction on the rules of the operational semantics. The
converse is expected to be trickier, and is not necessarily true. The converse of a soundness
statement is called adequacy.

In addition, a relationship between the equational theory and the denotational semantics
can be given, called completeness:

Γ ⊢M = N : A if and only if JΓ ⊢M : AK = JΓ ⊢ N : AK.

Soundness is often the minimal requirement to consider a category as a model of a specific
language equipped with an operational semantics or an equational theory. Usually, adequacy
or completeness is also expected; with this stronger property, the model can be used to study
and to improve a programming language. For example, as shown is §1.2.1, if the language can
be interpreted in a model that allows for fixed points, then fixed points can be safely added to
the syntax.

1.1.2 Symmetric monoidal categories

We introduce symmetric monoidal categories, which are more general than cartesian cat-
egories. They have applications as models of linear logic and of quantum computing.

Definition 1.29. A monoidal category C is a category equipped with the following structure:
• a bifunctor ⊗ : C×C→ C, called the tensor product;
• an object I called the unit;
• a natural isomorphism αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z), called the associator ;
• a natural isomorphism λX : I ⊗X → X, called the left unitor ;
• a natural isomorphism ρX : X ⊗ I → X, called the right unitor ;
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such that, for all objects X, Y , Z and T , the two diagrams:

((X ⊗ Y )⊗ Z)⊗ T (X ⊗ Y )⊗ (Z ⊗ T ) X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ (Y ⊗ Z))⊗ T X ⊗ ((Y ⊗ Z)⊗ T )

αX,Y,Z⊗TαX⊗Y,Z,T

idX⊗αY,Z,TαX,Y,Z⊗idT

αX,Y ⊗Z,T

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

αX,I,Y

idX⊗λYρX⊗idY

commute.

Diagrams such as the ones above are sometimes called coherence conditions, because they
picture out loud conditions that one would expect to have.

Definition 1.30. A symmetric monoidal category C is a monoidal category equipped with a
natural isomorphism σX,Y : X ⊗ Y → Y ⊗X, called the symmetry such that, for all objects
X, Y and Z, the diagrams:

X ⊗ I I ⊗X

X

σX,I

ρX λX

(X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z) Y ⊗ (X ⊗ Z)

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X)

σX,Y ⊗idZ

αX,Y,Z αY,X,Z

σX,Y ⊗Z idY ⊗σX,Z

αY,Z,X

commute, and for all objects X and Y , σX,Y ◦ σY,X = id.

Example 1.31. Any category with finite products (see Definition 1.22) is, in particular, a
symmetric monoidal category. Note that the converse is not true.

The example above covers many instances of categories, such as Set or Vect.
More examples of symmetric monoidal categories are given in the thesis. One noticeable

difference between a cartesian product and a monoidal product, is that the monoidal one does
not allow for copying in general. Indeed, with products, the morphism ⟨id, id⟩ : X → X ×X
necessarily exists, whereas there is in general no canonical morphism X → X⊗X in a monoidal
category. This hints at the fact that symmetric monoidal categories are the right tool to reason
about a linear λ-calculus, where each variable is used exactly once.
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1.1.3 Enriched categories

Categories in computer science are usually locally small, meaning that given two objects A
and B, there is a set of morphisms A→ B. Enrichment is the study of the structure of those
sets of morphisms, which could be vector spaces or topological spaces for example, more details
can be found in [Kel65, Kel82, Mar65].

Definition 1.32 (Enriched Category). Given a monoidal category (V,⊗, I, α, λ, ρ), a category
C enriched in V (sometimes called a V-category) is given by:

• a collection of objects of C;
• an object C(X,Y ) in V for all objects X and Y in C;
• a morphism idX : I → C(X,X) in V, for all objects X in C, and that is called the

identity ;
• a morphism compX,Y,Z : C(Y, Z)⊗C(X,Y )→ C(X,Z) in V for all objects X, Y and
Z in C, called the composition;

such that for all objects X, Y , Z and T , the following diagrams:

(C(Z, T )⊗C(Y, Z))⊗C(X,Y ) C(Y, T )⊗C(X,Y )

C(X,T )

C(Z, T )⊗ (C(Y, Z)⊗C(X,Y )) C(Z, T )⊗C(X,Z)

α

compY,Z,T⊗id

id⊗compX,Y,Z

compX,Y,T

compX,Z,T

I ⊗C(X,Y ) C(Y, Y )⊗C(X,Y )

C(X,Y )

idY ⊗idC(X,Y )

ρC(X,Y ) compX,Y,Y

C(X,Y )⊗ I C(X,Y )⊗C(X,X)

C(X,Y )

idC(X,Y )⊗idX

λC(X,Y )
compX,X,Y

commute.

Example 1.33. A locally small category is Set-enriched. This is obtained directly with the
definition of category and the facts that homsets are sets, thus they are objects of the category
Set. The coherence conditions are satisfied thanks to the associativity of composition in a
category and to the axioms of the identity morphism.

Example 1.34. A cartesian closed category is enriched over itself. Indeed, composition is
obtained by currying the following morphism:

[Y → Z]× [X → Y ]×X [Y → Z]× Y Z
id[Y →Z]×evalX,Y evalY,Z

and it is routine to show that it verifies the coherence conditions.
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Definition 1.35 (Enriched Functor). Given two V-enriched categories C and D, a V-enriched
functor F maps every object X of C to an object of D, written FX, and provides, for all
objects X and Y in C, a morphism FX,Y : C(X,Y )→ D(FX,FY ) in V such that:

FX,X ◦ idX = idFX FX,Z ◦ compX,Y,Z = compFX,FY,FZ ◦ (FY,Z ⊗ FX,Y )

for all objects X, Y and Z in C.

1.2 Fixed Points

This section introduces fixed point theorems that are relevant to this thesis; namely, fixed
points in partially ordered sets, which allow for the interpretation of recursion and while loops,
and initial algebras, which are a canonical tool to provide a semantics for inductive and recursive
data types.

1.2.1 Dcpos

We work with the notion of partially ordered sets, usually called posets.

Definition 1.36 (Directed subset). A non-empty subset D of a poset X is directed if every
pair of elements in the subset D has an upper bound also in D.

Definition 1.37 (Dcpo). A dcpo – short for directed complete partial order – is a poset X
such that every directed subset D ⊆ X has a supremum in X. A pointed dcpo (X,⊥) is a
dcpo X that has a least element, that we usually write ⊥. If D is directed, we write supD for
its upper bound.

Example 1.38. The set of booleans B = {0, 1} with equality as an order is a dcpo. We can
add a bottom element ⊥, and we write B⊥ for the set {⊥, 0, 1} with the following order:

⊥ ≤ 0 ⊥ ≤ 1.

The partially ordered set (B⊥,≤) is a pointed dcpo. We say that the order is flat. A partial
order is sometimes drawn for a better view of its behaviour. The dcpo B⊥ is then pictured as:

0 1

⊥

where x ≤ y iff there is a line between x and y and x is below y.

A common example of pointed dcpo used in the semantics of programming languages, e.g.
PFC [Plo77], is the flat dcpo of natural numbers, also called by Plotkin the standard collection
of domains for arithmetic. This is given in the next example.
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Example 1.39. The flat dcpo of natural numbers N⊥ is given by:

0 1 . . . n . . .

⊥

Its directed subsets are simple: they are either sigletons or {⊥, n} with n ∈ N.

Next, we define functions between dcpos called Scott continuous after Dana Scott. He
is famous for his contribution to domain theory, which encompasses all the content of this
subsection about dpcos. A detailed account of domain theory can be found in [AJ95]. A
continuous function needs first to be monotone – i.e., given x ≤ y, then fx ≤ fy; what French
speakers would prefer to call an increasing function.

Definition 1.40 (Scott continuous). Given two dcpos X and Y , a monotone function f : X →
Y is Scott continuous if for every directed subset D ⊆ X, f(supD) = sup f(D).

Example 1.41. The function f : N⊥ → N⊥ defined as:

f =

{
n 7→ n+ 1
⊥ 7→ ⊥

is Scott continuous.

If X and Y are dcpos, then the set of Scott continuous functions X → Y is also a dcpo.
Note that dcpos and Scott continuous maps form a category DCPO. The category

of pointed dcpos and Scott continuous maps is written DCPO⊥. The category DCPO⊥ is
cartesian closed, which means that it can be used for the denotational semantics of a λ-calculus.

Theorem 1.42 (Kleene’s Fixed Point [SHLG94]). If (X,⊥) is a pointed dcpo and f : X →
X is a Scott continuous function, then the function f has a least fixed point, obtained as
fixf = sup{fn(⊥) | n ∈ N}.

Recursion. We can add a new term to our λ-calculus to capture recursion. With the same
types given in (1.1), we add to the grammar in (1.2) the following:

M,N, . . . ::= · · · | fix M (1.4)

with the typing rule given below.
Γ ⊢M : A→ A
Γ ⊢ fix M : A

The operational behaviour of this new term is as expected:

fix M →M(fix M)

and its denotational semantics in DCPO⊥ is given by Kleene’s fixed point (see Theorem 1.42),
taken pointwise. Details can be found in the original paper by Plotkin [Plo77]. We can easily
see that this semantics is sound, namely

Jfix MK = JM(fix M)K .
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1.2.2 Initial Algebras

Inductive data types are written in the syntax as some least fixed point of a type judgement,
e.g. µX.A. As an example, the type of natural numbers is given by µX.1+X and the type of
trees, whose nodes have type A, is µX.1+(X×A×X). As said earlier, types are represented
as objects in the category; but handling inductive types means that we need to handle type
variables too, and thus a type judgement Θ ⊢ A, where Θ is a set of type variables, is an object
mapping, or rather a functor. We show below how to consider fixed points of functors in our
categorical setting.

Definition 1.43 (Algebra). Given a functor F : C→ C, a pair (X, f) composed of an object
X and a morphism f : FX → X is a called an F -algebra. Given two F -algebras (X, f)

and (Y, g), a morphism h : X → Y is an F -algebra homomorphism if the following diagram
commutes:

FX X

FY Y

f

g

Fh h

When the category of F -algebras and F -algebra homomorphisms has an initial object, the latter
is called the initial F -algebra.

Lemma 1.44 (Lambek’s lemma [AMM18]). Given an endofunctor F : C → C and an
initial F -algebra (X,α : FX → X), then α is an isomorphism.

With Lambek’s lemma, we know that an initial algebra provides an object X such that
X ∼= FX. Therefore we can see that the object X is a fixed point of the endofunctor F ,
as requested. However, we need a stonger notion of algebra for the denotational semantics of
inductive types. Hence the next definition.

Definition 1.45 (Parameterised Initial Algebra). Given two categories C and D and a functor
F : C×D→ D, a parameterised initial algebra for F is a pair (F ,々 ϕF ), such that:

• F々: C→ D is a functor;
• ϕF : F ◦ ⟨id, F ⟩々 ⇒ F々: C→ D is a natural isomorphism;
• for every object X in C, the pair (F ,々 ϕFX) is an initial F (X,−)-algebra.

Remark 1.46. Observe that the previous definition with C = 1, the category with one object
and the identity, we recover Definition 1.43. The notion of parameterised initial algebra is then
more general.

The existence of parameterised initial algebras is given by the theorem found in [Fio04,
Corollary 7.2.4] and recalled in Theorem 1.50.

Definition 1.47. A category C is parameterised DCPO-algebraically complete if all functors
as described in Definition 1.45 admit a parameterised initial algebra.

In the following, we present sufficient conditions, outlined by Fiore in [Fio04], for a category
to be DCPO-algebraically complete.
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Definition 1.48 (Ep-pair [Fio04]). Given a DCPO-category C, a morphism e : X → Y in
C is called an embedding if there exists a morphism p : Y → X such that p ◦ e = idX and
e ◦ p ≤ idY . The morphisms e and p form an embedding-projection pair (e, p), also called
ep-pair.

Remark 1.49. Similarly to embedding, a morphism p is called a projector if it is part of an
ep-pair (e, p).

We recall that an ep-zero [Fio04, Definition 7.1.1] is an object 0 such that:
• 0 is an initial object;
• given any morphism f : 0→ Y , f is an embedding;
• 0 is a terminal object;
• given any morphism g : X → 0, g is a projector.

Theorem 1.50 ([Fio04]). A DCPO-category C with an ep-zero and colimits of ω-chains
of embeddings is parameterised DCPO-algebraically complete.

Actually, a category that verifies the conditions above has stronger properties: it is para-
meterised DCPO-algebraically ω-compact, namely it has parameterised initial algebras and
parameterised final coalgebras for all DCPO-functors. However, we do not need such a strong
result in this thesis.

The latest theorem above means that any F as introduced in Definition 1.45 admits a
parameterised initial algebra given that C is a DCPO-category with an ep-zero and colimits
of ω-chains of embeddings.

Inductive types. We take an example inspired from the metalanguage FPC [Gun92], with
details in [Fio04, Chapter 8]. We are given the following types:

A,B ::= X | A+B | A⊗B | | µX.A (1.5)

with the typing rules:

Θ, X ⊢ X
Θ ⊢ A Θ ⊢ B
Θ ⊢ A ⋆ B ⋆ ∈ {+,⊗} Θ, X ⊢ A

Θ ⊢ µX.A

Their semantics is given in a symmetric monoidal DCPO-enriched category C with cop-
roducts that verifies the hypothesis of Theorem 1.50. The semantics of a type context Θ is
JΘK = C|Θ| and thus the interpretation of a type judgement Θ ⊢ A is given by a functor
JΘ ⊢ AK : C|Θ| → C. This interpretation is defined by induction on the typing rules, and the
only non-trivial case is the fixed point constructor, whose semantics is given by:

JΘ ⊢ µX.AK = JΘ, X ⊢ AK々

where (−)々 is defined in Definition 1.45.

1.3 Restriction and Inverse Categories

A significant part of this thesis is the study of reversiblity in programming languages and in
their semantics. This section is concerned with presenting the categorical tools in the literature
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that formalise invertibility. Note that reversible does not mean bijective: a partial injection
is reversible, in the sense that all of its possible outputs have a unique and deterministic
corresponding input. Let us say more about partial injections. Given two sets X and Y , the
image of a partial function f is given as follows: f(x) if x is in the domain of f , and ⊥ or
undefined if x is not in the domain of f . A simple example would be the partial injection
f : {0, 1} → {0, 1} such that f(0) = 1 and f is undefined on 1. Sets and partial injections
form a category PInj, which is the canonical example among restriction and inverse categories,
the focus of this section.

For further reading, the author recommends the original work of Guo [Guo12], Giles [Gil14]
and Kaarsgaard [Kaa17].

1.3.1 Basic structure

The axiomatisation of inverse categories gives the conditions for the morphisms of a category
to be partial injections. First, the notion of restriction allows us to capture the actual domain
of a morphism through a partial identity function. Historically, inverse categories [Kas79] were
introduced before restriction categories, but the latter are more convenient to introduce the
subject.

Definition 1.51 (Restriction [CL02]). A restriction structure is an operator that maps each
morphism f : X → Y to a morphism f : X → X such that for all g : X → Z and h : Y → T ,
we have:

f ◦ f = f, f ◦ g = g ◦ f,
f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

A morphism f is said to be total if f = idX . A category with a restriction structure is called
a restriction category.

Remark 1.52. Note that the definition implies that for all f : X → Y , there is a unique
f : X → X.

Example 1.53. Given two sets X and Y , any partial injection f : X → Y defined on a subset
X ′ ⊆ X and undefined on X \X ′ is given as follows:{

f(x) when x ∈ X ′

undefined when x /∈ X ′

Then, the restriction of f , the morphism, f : X → X, is given by:{
x when x ∈ X ′

undefined when x /∈ X ′

which is the identity on X ′ ⊆ X and undefined on X \X ′. This example shows that PInj is
a restriction category.

Definition 1.54 (Restriction Functor [CL02]). Given two restriction categories C and D, a
functor F : C → D is a restriction functor if F (f) = Ff for all morphism f of C. The
definition is canonically extended to bifunctors.
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To interpret reversibility, we need to introduce a notion of reversed process, a process that
exactly reverses another process. This is given by a generalised notion of inverse.

Definition 1.55 (Inverse category). An inverse category is a restriction category where all
morphisms are partial isomorphisms; meaning that for f : X → Y , there exists f◦ : Y → X

such that f◦ ◦ f = f and f ◦ f◦ = f◦, and is called the partial inverse.

Lemma 1.56. In an inverse category, the partial inverse f◦ : Y → X of a morphism
f : X → Y is unique.

Proof. Assume there exists two morphisms g, h : : Y → X such that

gf = f fg = g hf = f fh = h.

Therefore, we have gf = f = hf . We have then:

gh = gfh (hyp. above)

= hfh (observation above)

= fh (hyp. above)

= hfh (Def. 1.51, eq. 4)

= hh (hyp. above)

= hh

= h (Def. 1.51, eq. 1)

Thus, gh = h. Symmetrically, we can prove that hg = g. We then obtain:

h = gh (observation above)

= gh (Def. 1.51, eq. 3)

= hg (Def. 1.51, eq. 2)

= hg (Def. 1.51, eq. 3)

= g (Def. 1.51, eq. 1)

Finally, we have h = gh = gg = g.

Remark 1.57. Given an inverse category C, (−)◦ is actually a contravariant functor Cop → C.
We can also observe that if C is an inverse category, then Cop is also.

Example 1.58. In PInj, let us consider the partial function f : {0, 1} → {0, 1} as f(0) = 1

and undefined on 1. Its restriction f is undefined on 1 also but f(0) = 0. Its inverse f◦ is
undefined on 0 and such that f◦(1) = 0.

The example above generalises and PInj is an actual inverse category. Even more, it is
the inverse category: [Kas79] proves that every locally small inverse category is isomorphic to
a subcategory of PInj.
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Definition 1.59 (Restriction compatible [Guo12]). Two morphisms f, g : X → Y in a restric-
tion category C are restriction compatible if fg = gf . The relation is written f ⌣ g.

Example 1.60. We build upon Example 1.58, consider an additional partial injection g : {0, 1} →
{0, 1} such that g(0) = 1 and g(1) = 0. We have f ⌣ g. The morphism g is more defined
than f , and this intuition is made precise by the next definition.

Definition 1.61 (Partial order [CL02]). Let f, g : X → Y be two morphisms in a restriction
category. We then define f ≤ g as gf = f .

The next lemma – which is rather an observation – links the latest introduced notions of
compatibility and order between maps in a restriction category.

Lemma 1.62. Given C a restriction category and two morphisms f, g : X → Y in C, if
f ≤ g then f ⌣ g.

Proof. Remember that f ≤ g means that gf = f . We can precompose by g and get:

fg = gfg

= ggf (Def. 1.51, eq. 2)

= gf (Def. 1.51, eq. 1)

and fg = gf is the definition of compatibility.

Definition 1.63 (Inverse compatible [KAG17]). Given C an inverse category, f, g : X → Y in
C are inverse compatible if f ⌣ g and f◦ ⌣ g◦, noted f ≍ g.

Definition 1.64. A set S of morphisms of the same type A → B is restriction compatible
(resp. inverse compatible) if all elements of S are pairwise restriction compatible (resp. inverse
compatible).

This thesis makes use only of inverse categories, but note that most of the definitions below
have a counterpart for restriction categories.

Definition 1.65 (Joins [Guo12]). An inverse category C is equipped with joins if for all inverse
compatible sets S of morphisms X → Y , there exists a morphism in C written

∨
s∈S s : X → Y

such that, for all t : X → Y and for all s ∈ S, s ≤ t, the following holds:

s ≤
∨
s∈S

s,
∨
s∈S

s ≤ t,
∨
s∈S

s =
∨
s∈S

s,

f ◦

(∨
s∈S

s

)
=
∨
s∈S

fs,

(∨
s∈S

s

)
◦ g =

∨
s∈S

sg.

Such a category is called a join inverse category.

Example 1.66. The category PInj is a join inverse category. Following Example 1.60, f and
g are inverse compatible and f ∨ g = g.
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Building up from Definition 1.51, a join restriction functor is a restriction functor that
preserves all thus constructed joins.

Remark 1.67 (Zero). Given a join inverse category C, and since ∅ ⊆ C(X,Y ) with all of its
elements that are inverse compatible, there exists a morphism 0X,Y

.
=
∨

s∈∅ s : X → Y , called
zero map. It satisfies the following equations, for all f : Y → Z and g : Z → X:

f ◦ 0X,Y = 0X,Z 0X,Y ◦ g = 0Z,Y 0◦X,Y = 0Y,X 0X,Y = 0X,X .

Moreover, 0X,Y is the least element in C(X,Y ) for the order introduced above, in Defini-
tion 1.61.

Example 1.68. Given two sets X,Y , the morphism 0X,Y : X → Y mentioned above in PInj

is the partial injection X → Y that is defined nowhere.

Lemma 1.69. Given an inverse category C and a morphism f : X → Y such that f =
0X,X , then f = 0X,Y .

Proof. By Definition 1.51, we know that f = ff , and thus f = ff = f0X,X = 0X,Y .

Lemma 1.70. Given an inverse category C and two morphisms f, g : X → Y in C such
that f◦g = 0X,X and fg◦ = 0Y,Y , then f and g are inverse compatible.

Proof. Our goal is to prove that fg = gf , but we are going to prove that both are equal to
zero. Definition 1.51 ensures that fg = fg, and then Definition 1.55 gives that fg = f◦fg◦g,
which is then equal to f◦0Y,Y g by hypothesis, and thus fg = fg = 0X,X ; Lemma 1.69 ensures
then that fg = 0X,Y . Note that gf = fg = gf by Definition 1.51, thus gf = 0X,Y too. We
have proven that f ⌣ g. The proof that f◦ ⌣ g◦ is similar.

1.3.2 Additional Structure

Definition 1.71 (Restriction Zero). An inverse category C has a restriction zero object 0 iff
for all objects X and Y , there exists a unique morphism 0X,Y : X → Y that factors through 0

and satisfies 0X,Y = 0X,X .

Remark 1.72. In a join inverse category with a restriction zero, the zero morphisms given by
the join structure (see Remark 1.67) coincide with the ones of the previous definition.

Lemma 1.73. Given an inverse category C with a restriction zero 0 and that is DCPO-
enriched, 0 is an ep-zero.

Proof. The restriction zero 0 is an initial and terminal object by definition. The pairs of
embedding and projector are given by any morphism and its inverse −◦.
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Definition 1.74 (Disjointness tensor [Gil14]). A join inverse category C is said to have a
disjointness tensor if it is equipped with a symmetric monoidal restriction bifunctor (− ⊕
−) : C × C → C, with as unit a restriction zero 0 and for all objects X and Y , morphisms
ιl : X → X ⊕ Y and ιr : Y → X ⊕ Y that are total, jointly epic, and such that their inverses
are jointly monic and ι◦l ι

◦
r = 0X⊕Y . The morphisms ι are called injections.

Remark 1.75. A precise way of writing the injections would be ιX,Y
l : X → X ⊕ Y and

ιX,Y
r : Y → X ⊕ Y . However, we choose to loosen the notations when it is not ambigu-

ous. This choice is motivated by the recurrent use of the contravariant functor (−)◦, and ι◦l
appears to be more readable than (ιX,Y

l )◦.

The last requirement in the previous definition can be described as the injections having
orthogonal outputs; with a set theoretic vocabulary, we could say that their images have an
empty intersection. We show in the next lemma that this intuition is verified, with a simpler
presentation than in Definition 1.74.

Lemma 1.76. In a join inverse category C with disjointness tensor, for all objects X and
Y , we have ι◦l ◦ ιr = 0Y,X .

Proof. We know from Definition 1.74 that ι◦l ι
◦
r = 0X⊕Y , thus by postcomposition ι◦l ι

◦
l ι

◦
r =

0X⊕Y,X . Since C is a restriction category (see Definition 1.51), ι◦l ι
◦
l = ι◦l , and thus ι◦l ι◦r =

0X⊕Y,X . With Definition 1.55, we have ι◦r = ιrι
◦
r , thus ι◦l ιrι

◦
r = 0X⊕Y,X . Finally, we precom-

pose by ιr, to obtain ι◦l ιrι
◦
rιr = 0Y,X . Definition 1.55 again tells us that ι◦r ιr = ιr, and also

ιr ιr = ιr, hence the equality: ι◦l ιr = 0Y,X .

This orthogonality between morphisms introduced by the disjointness tensor shows how
pattern-matching could be handled. The author of this thesis has proven in [CLV21] that
the disjointness tensor is not the only way of performing pattern-matching within an inverse
category, however it remains the canonical way.

Remark 1.77. As we have started to describe the previous lemma as an orthogonality assertion,
we are only a few inches away from defining an inner product, in a vector space fashion –
although we are definitely not working with vector spaces. In the same scenery as Lemma 1.76,
given two morphisms f : X → Z and g : Y → Z, we allow ourselves to call the morphism
f◦ ◦ g : Y → X the inner product of f and g, in a very loose way. Note that g◦ ◦ f : X → Y

can also be said to be their inner product, and is not the same morphism in general.

A programming language usually involves pairs or tuples of terms, often denoted with a
symmetric monoidal category. The next definition proposes a definition of a model for a (simple)
reversible programming language handling pattern-matching.

Definition 1.78 (Rig). Let us consider a join inverse category equipped with a symmetric
monoidal tensor product (⊗, 1) and a disjointness tensor (⊕, 0) that are join preserving, and
such that there are isomorphisms δA,B,C : A⊗(B⊕C)→ (A⊗B)⊕(A⊗C) and νA : A⊗0→ 0.
This is called a join inverse rig category.

It is proven in [KAG17] that a join inverse category can be considered enriched in DCPO

without loss of generality, showing that there is a way of working with fixed points and general
recursion in reversible settings. The next results prove that the operations involved in a reversible
programming language preserve this DCPO-enriched structure.
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Lemma 1.79 ([KAG17]). Let C and D be join inverse rig DCPO-categories, and
F : C→ D be a join preserving restriction functor. Then F is a DCPO-functor.

A conclusion of this lemma is that the functors used to interpret simple data types in a
programming language are DCPO-functors.

Corollary 1.80. Let C be a join inverse rig category. The functors (−⊗−) : C×C→ C
and (−⊕−) : C×C→ C are DCPO-functors.

Separately, it is important that the inverse structure also preserves the enrichment.

Lemma 1.81 ([KAG17]). Let C be a join inverse rig category. The functor (−)◦ : Cop →
C is a DCPO-functor.

Finally, we import a result from the literature ensuring that a join inverse rig category can
safely be generalised to carry the interpretation of inductive types.

Proposition 1.82 ([KAG17]). Any join inverse rig category can be faithfully embedded in
a join inverse rig category with colimits of ω-chains of embeddings.

This shows, with Lemma 1.73, that a join inverse rig DCPO-category can verify the
hypotheses of Theorem 1.50 whithout loss of generality; and thus this kind of category is
a model for inductive types. The details of join inverse rig DCPO-categories used as a
denotational model is found in Chapter 4.

1.4 Hilbert spaces

One of the main focus in the study of mathematical quantum mechanics is Hilbert spaces.
We assume basic knowledge of linear algebra, such as: vectors, linear maps, bases, kernels, etc.
The author recommends the book written by Heunen and Vicary [HV19] for a more detailed
introduction to Hilbert spaces, and to category theory applied to quantum computing.

1.4.1 Introductory Definitions

Formally, a Hilbert space is a complex vector space equipped with an inner product, written
⟨− | −⟩, such that this inner product induces a complete metric space. The inner product is
used to compute probabilities of measurement outcomes in quantum theory. Note that, given
a complex number α, we write α for its conjugate.

Definition 1.83 (Inner product). An inner product on a complex vector space V is a function
⟨− | −⟩ : V × V → C, such that:

• for all x, y ∈ V , ⟨x | y⟩ = ⟨y | x⟩;
• for all x, y, z ∈ V and α ∈ C,

⟨x | αy⟩ = α⟨x | y⟩, ⟨x | y + z⟩ = ⟨x | y⟩+ ⟨x | z⟩;

45



• for all x ∈ V , ⟨x | x⟩ ≥ 0, and if ⟨x | x⟩ = 0, then x = 0.
Given a vector space with an inner product, the canonical norm of a vector x is defined as
∥x∥ def

=
√
⟨x | x⟩.

This is enough to state the definition of a Hilbert space.

Definition 1.84 (Hilbert space). A Hilbert space is a complex vector space H equipped with
an inner product such that H is complete with regard to its canonical norm. By complete, we
mean that: if a sequence of vectors (vi)i∈N is such that

∑∞
i=0 ∥vi∥ < ∞, then there exists a

vector v ∈ H such that ∥v −
∑∞

i=0 vi∥ tends to zero as n goes to the infinity. The vector v is
called a limit.

It is interesting to observe that all finite-dimentional vector spaces with an inner product
are complete. Moreover, any vector space with an inner product can be completed, by adding
the adequate limit vectors.

Remark 1.85. A basis in a Hilbert space is not exactly defined the same way as a basis in a
vector space. A basis in a Hilbert space is such that any vector is limit of linear combinations
of the elements of the basis. An orthonormal basis in a Hilbert space is such that its elements
are pairwise orthogonal, have norm 1, and their linear span is dense in the Hilbert space.

Definition 1.86 (Bounded linear map). Given two Hilbert spaces H1 and H2, a linear map
f : H1 → H2 is bounded if there exists α ∈ R such that ∥fx∥ ≤ α∥x∥ for all x ∈ H1.

1.4.2 Additional Structure

We make use of differents kinds of structure in vector spaces, such as direct sums and
tensor products.

Definition 1.87 (Direct sum). Given two complex vector spaces V and W , one can form their
direct sum V ⊕ W , whose elements are (v, w) with v ∈ V and w ∈ W , such that, for all
v, v′ ∈ V and w,w′ ∈W and α, β ∈ C, α(v, w) + β(v′, w′) = (αv + βv′, αw + βw′).

Remark 1.88. V ⊕ {0} is isomorphic to V , and given v ∈ V , the vector (v, 0) can be written
v when there is no ambiguity. Given v ∈ V and w ∈ W , the vector (v, w) can sometimes be
written v + w.

Hilbert spaces are closed under direct sums, with the following inner product: ⟨(x1, y1) |
(x2, y2)⟩X⊕Y = ⟨x1 | x2⟩X + ⟨y1 | y2⟩Y . However, this is not true for the tensor product:
the linear algebraic tensor product of two Hilbert spaces is not necessarily a Hilbert space. We
explain below how we can get around this issue with completion.

Definition 1.89 (Tensor product). Given two complex vector spaces V,W , there is a vector
space V ⊗W , together with a bilinear map −⊗− : V ×W → V ⊗W :: (v, w) 7→ v⊗w, such
that for every bilinear map h : V ×W → Z, there is a unique linear map h′ : V ⊗W → Z,
such that h = h′ ◦ ⊗.
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The tensor product of two Hilbert spaces X and Y is obtained through the tensor product of
the underlying vector spaces, with the inner product ⟨x1⊗ y1 | x2⊗ y2⟩X⊗Y = ⟨x1 | x2⟩X⟨y1 |
y2⟩Y and then the completion of this space gives the desired Hilbert spaces. We abuse notation
and write X ⊗ Y for the resulting Hilbert space.

The category of Hilbert spaces and bounded linear maps between them, written Hilb,
admits several different monoidal structures: with (⊗,C) and with (⊕, {0}) – the latter is in
fact a biproduct. They even give it a rig structure, in the sense of Definition 1.78. Classical
computers operate on bits, while quantum computers apply operations on qubits, written |0⟩
and |1⟩. They are usually denoted as vectors in the Hilbert space C⊕C with |0⟩ def

= (1, 0) and
|1⟩ def

= (0, 1) the elements of its canonical basis.
The next lemma outlines another important structure to Hilbert spaces, called the adjoint.

It is due to Frigyes Riesz [’friéES ’ri:s].

Lemma 1.90 ([RSN55]). Given a bounded linear map f : H1 → H2 between Hilbert
spaces, there is a unique bounded linear map f † : H2 → H1 such that for all x ∈ H1 and
y ∈ H2, ⟨f(x) | y⟩ = ⟨x | f †(y)⟩. The map f † is called the adjoint of f .

The category Hilb is equipped with a structure of symmetric monoidal dagger category,
meaning that (−)† is an involutive contravariant endofunctor which is the identity on objects.
Moreover, the dagger and the monoidal tensor respect some coherence conditions. For example,
given two bounded linear maps f : H1 → H2 and g : H ′

1 → H ′
2,

(f ⊗ g)† = f † ⊗ g† : H2 ⊗H ′
2 → H1 ⊗H ′

1.

Remark 1.91. Remember that throughout the thesis, given two maps f : H1 → H2 and
g : H2 → H3, we sometimes write gf : H1 → H3 for the composition g ◦ f : H1 → H3.
In addition, given a complex number α and a map f : H1 → H2, we write αf : H1 → H2 for
the multiplication of the vector space α.f : H1 → H2.

Definition 1.92. Given a morphism f : H1 → H2 in Hilb, we say that f is:
• a unitary, if it is an isomophism and f−1 = f †;
• a contraction (or contractive map), if for all x ∈ A, ∥fx∥ ≤ ∥x∥;
• an isometry, if f †f = id;
• a coisometry, if ff † = id.

The category Hilb enjoys many properties, such as being its own opposite category and
having a zero object – the zero space {0}. However, it is not monoidal closed. Besides, neither
Hilb nor its subcategories obtained with the above definition are inverse categories, because
projectors do not commute.

1.4.3 Quantum Computing

Quantum physics is the science of the infinitesimal. Its laws rule the world of small partic-
ules, in a way often described as hardly understandable to the macroscopic human intuition.
In quantum theory, a particle can be in several states at the same time – this is called a su-
perposition of states. This superposition holds as long as the particule is not observed – by
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the operator by the environment. Once we have a look at the particule, it fixes itself in one
particular state, with a certain probability.

This description can be simplified to the level of bits. Imagine that the two possible states
are 0 or 1, usually written respectively |0⟩ and |1⟩. The general state of a quantum bit – or
qubit – is given by the expression α |0⟩ + β |1⟩, where α and β are complex numbers. Once
this qubit is observed, it becomes either 0 with probability |α|2, or 1 with probability |β|2.
Because 0 and 1 are the only two possibilities in this simple case, we need to have a proper
probability distribution, and thus |α|2 + |β|2 = 1. When this condition is verified, we say that
the state α |0⟩ + β |1⟩ is normalised. There are several states that represent a qubit with an
equal probability to be measured to 0 and 1; the most usual ones are |+⟩ = 1√

2
|0⟩ + 1√

2
|1⟩

and |−⟩ = 1√
2
|0⟩ − 1√

2
|1⟩. When manipulating two qubits in states |x⟩ and |y⟩ in parallel, we

write |x⟩ ⊗ |y⟩ or even |xy⟩ for the resulting state.
Quantum computing is the science of performing operations on those qubits – and more

generally, on a quantum superposition of data – to compute. The most traditional way of expli-
citing a quantum algorithm is with a quantum circuit; the latter is the quantum generalisation
of logical circuits. A quantum circuit is thus a sequence of quantum logic gates applied to a
fixed number of qubits. Among quantum logic gates, one can find the not gate, similar to the
classical one, the Hadamard gate which maps |0⟩ to |+⟩ and |1⟩ to |−⟩, rotation gates that
map |0⟩ to |0⟩ and |1⟩ to eiπθ |1⟩, where θ is a real number, and the controlled not on two
qubits, which applies the not to the second qubits when the first one is 1, else is the identity.

These operations are usually represented with complex matrices, and the states are given
by vectors in finite-dimensional Hilbert spaces.

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
α |0⟩+ β |1⟩ =

(
α
β

)
Multiples states in parallel, such as |1⟩⊗ |0⟩, are obtained with the usual tensor product. Thus
the gates described above are the following:

not =

(
0 1
1 0

)
had =

(
1√
2

1√
2

1√
2
− 1√

2

)
Rθ =

(
1 0
0 eiπθ

)
cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Any quantum algorithm can be expressed as a finite sequence of gates [NC02], and we say

that quantum circuits are universal.
Another important notation in quantum computing besides |·⟩ is ⟨·|, which is obtained by

taking the dagger:

⟨0| = |0⟩† =
(
1 0

)
⟨1| = |1⟩† =

(
0 1

)
α ⟨0|+ β ⟨1| = α |0⟩† + β |1⟩† =

(
α β

)
Note that Hilbert spaces and unitaries (resp. contractions) form a dagger category. They

are wide subcategories of Hilb. Unitary maps are of central importance because they are
the proper quantum operations, as solutions of the Schrödinger equation. One of the most
significant unitary maps in quantum computing is the basis change in C⊕C, also known as the
Hadamard gate: |0⟩⟨+| + |1⟩⟨−|. We observe here that |0⟩⟨+| and |1⟩⟨−| are contractions,
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and that unitary maps can be formulated as linear combination of compatible contractive maps.
Note also that the states, like |0⟩, are isometries.

We write Contr, the category of countably-dimensional Hilbert spaces and contractive
maps, Isom, the category of countably-dimensional Hilbert and isometries between them, and
Coiso the category of countably-dimensional Hilbert spaces and coisometries between them.
The category of countably-dimensional Hilbert spaces and bounded linear maps is written
Hilbℵo in this thesis.

Definition 1.93 (Zero map). Given any pair of Hilbert spacesH1 andH2, we write 0H1,H2 : H1 →
H2 for the linear map whose image is {0} (we also write that Ker(0H1,H2) = H1). When it is
not ambiguous, we write 0: H1 → H2. It is a contractive map.

Remark 1.94. Given a Hilbert space H, the morphism 0: H → {0} is unique for every H and
makes {0} a terminal object in Contr and in Coiso.

Contractions are widely used in the literature for the denotational semantics of quantum pro-
gramming languages [HK22a, AMHK23, CHKS23]. Some recent developments expose axioms
for the categories involved in this thesis [HK22b, HKvdS22, MH24]. This better mathematical
understanding of the category theory behind Hilbert spaces can only be beneficial for the theory
of programming languages.

The ℓ2 functor. As said in [Heu13], the ℓ2 construction is the closest thing there is to a free
Hilbert space. Given a set X, the following:

ℓ2(X)
def
= {ϕ : X → C |

∑
x∈X
|ϕ(x)|2 <∞} (1.6)

is actually a Hilbert space. Even more, ℓ2(−) is a functor PInj → Hilb; given a morphism
f : X → Y in PInj, we have:

ℓ2(f)(ϕ) = ϕ ◦ f◦.

This functor comes with many properties (see [Heu13]) except the one programming language
theorists would want: it has no adjoints. Because of this, a quantum effect based on ℓ2 cannot
be studied as a usual computational effect (see §5.2.1 where this point is discussed, and see
the next section §1.5 for the usual semantics of effects).

Given an element x ∈ X, its counterpart in ℓ2(X) – in other words, the ϕ such that
ϕ(x) = 1 and for all y ̸= x, ϕ(y) = 0 – is written |x⟩. The family (|x⟩)x∈X is called the
canonical basis of ℓ2(X).

1.5 Monads

We introduce some background on strong and commutative monads and their premonoidal
structure. Monads appear to be the most usual tool to interpret effects in a programming
language. This is thanks to Moggi’s work [Mog91, Mog89].

Monads are the generalisation of monoids in category theory, where the operation is the
composition. One is likely to hear at least one the sentence “a monad is just a monoid in the
category of endofunctors”. While this sentence is correct, we introduce a bit more background
to understand the later use of monads in Chapter 2.
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1.5.1 Strong and Commutative Monads

We begin by recalling the definition of a monad.

Definition 1.95 (Monad). A monad over a category C is an endofunctor T : C→ C equipped
with two natural transformations η : id⇒ T and µ : T 2 ⇒ T such that the following diagrams

T 3X T 2X

T 2X T X

T µX

µT X

µX

µX

T X T 2X

T 2X T X

ηT X

T ηX

µX

µX

commute. We call η the unit of T and we say that µ is the multiplication of T .

Next, we recall the definition of a strong monad, which is the main object of study in
Chapter 2. As we already explained in the introduction, these monads are more computationally
relevant (compared to non-strong ones) for most use cases. The additional structure, called
the monadic strength, ensures the monad interacts appropriately with the monoidal structure
of the base category.

Definition 1.96 (Strong Monad). A strong monad over a monoidal category (C,⊗, I, α, λ, ρ)
is a monad (T , η, µ) equipped with a natural transformation τX,Y : X ⊗ T Y → T (X ⊗ Y ),

called left strength, such that the following diagrams commute:

I ⊗ T X T (I ⊗X)

T X
λT X

τI,X

T λX

(W ⊗X)⊗ T Y

W ⊗ (X ⊗ T Y ) W ⊗ T (X ⊗ Y ) T (W ⊗ (X ⊗ Y ))

T ((W ⊗X)⊗ Y )
τW⊗X,Y

T αW,X,Y

W ⊗ τX,Y τW,X⊗Y

αW,X,T Y

X ⊗ Y X ⊗ T Y

T (X ⊗ Y )

ηX⊗Y

X ⊗ ηY

τX,Y

X ⊗ T 2Y T (X ⊗ T Y ) T 2(X ⊗ Y )

X ⊗ T Y T (X ⊗ Y )

X ⊗ µY

τX,T Y T τX,Y

µX⊗Y

τX,Y

We now recall the definition of a commutative monad which is of central importance here
and in Chapter 2. Compared to a strong monad, a commutative monad enjoys even stronger
coherence properties with respect to the monoidal structure of the base category (see also
§1.5.3).

Definition 1.97 (Commutative Monad). Let (T , η, µ, τ) be a strong monad on a symmetric
monoidal category (C,⊗, I, γ). The right strength τ ′X,Y : T X⊗Y → T (X⊗Y ) of T is given
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by the assignment τ ′X,Y
def
= T (γY,X) ◦ τY,X ◦ γT X,Y . Then, T is said to be commutative if the

following diagram commutes:

T X ⊗ T Y T (T X ⊗ Y ) T 2(X ⊗ Y )

T (X ⊗ T Y ) T 2(X ⊗ Y ) T (X ⊗ Y )

τT X,Y T τ ′X,Y

µX⊗Yτ ′X,T Y

T τX,Y µX⊗Y

(1.7)

Remark 1.98. In the literature, the left and right strengths are sometimes called “strength" and
“costrength" respectively.

Definition 1.99 (Morphism of Strong Monads [Jac16]). Given two strong monads (T , ηT , µT , τT )
and (P, ηP , µP , τP) over a category C, a morphism of strong monads is a natural transform-
ation ι : T ⇒ P that makes the following diagrams commute:

X

T X PX

T 2X PT X P2X

T X PX

ηTX ηPX

ιX
ιT X PιX

µTX µPX

ιX

A⊗ T B

T (A⊗B)

A⊗ PB

P(A⊗B)

τTA,B τPA,B

A⊗ ιB

ιA⊗B

Strong monads over a (symmetric) monoidal category C and strong monad morphisms
between them form a category which we denote by writing StrMnd(C). In the situation of
Definition 1.99, if ι is a monomorphism in StrMnd(C), then T is said to be a strong submonad
of P and ι is said to be a strong submonad morphism.

Definition 1.100 (Kleisli category). Given a monad (T , η, µ) over a category C, the Kleisli
category CT of T is the category whose objects are the same as those of C, but whose
morphisms are given by CT (X,Y ) = C(X, T Y ). Composition in CT is given by g ⊙ f def

=

µZ ◦ T g ◦ f where f : X → T Y and g : Y → T Z. The identity at X is given by the monadic
unit ηX : X → T X.

Proposition 1.101 ([Jac16]). If ι : T ⇒ P is a submonad morphism, then the functor
I : CT → CP , defined by I(X) = X on objects and I(f : X → T Y ) = ιY ◦f : X → PY
on morphisms, is an embedding of categories.

The functor I above is the canonical embedding of CT into CP induced by the submonad
morphism ι : T ⇒ P.
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1.5.2 Semantics of the λ-calculus with effects

We present here a brief summary of the work by Moggi [Mog91, Mog89] on computational
effects. This work has been very influencial, resulting in the development of the programming
language Haskell, among others.

The grammar and typing rules for Moggi’s metalanguage is found in Figure 1.4. Compared
to the simply-typed λ-calculus, a type construction T (−) is added. Given a type A, the type
T A is called a monadic type, and represents the computational effects of type A allowed in the
language. The ret constructor is to be seen as an introduction rule for monadic types, and em-
bodies the fact that a pure or non-effectful computation can be seen as a monadic computation,
but with no effect. The do operation performs the sequencing of monadic computations.

The equational theory for monadic types, added on top of the equational theory for the
simply-typed λ-calculus presented in Figure 1.2, is found in Figure 1.5.

(Types) A,B ::= 1 | A→ B | A×B | T A

(Terms) M,N ::= x | ∗ | λxA.M | MN | ⟨M,N⟩
| πiM | ret M | do x←M ; N

Γ, x : A ⊢ x : A
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

Γ ⊢ ∗ : 1
Γ, x : A ⊢M : B

Γ ⊢ λxA.M : A→ B
Γ ⊢M : A1 × A2

Γ ⊢ πiM : Ai

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢ ⟨M,N⟩ : A×B

Γ ⊢M : A
Γ ⊢ ret M : T A

Γ ⊢M : T A Γ, x : A ⊢ N : T B
Γ ⊢ do x←M ; N : T B

Figure 1.4 – Grammars and typing rules.

Γ ⊢M = N : A
Γ ⊢ ret M = ret N : T A (ret.eq)

Γ ⊢M =M ′ : T A Γ, x : A ⊢ N = N ′ : T B
Γ ⊢ do x←M ; N = do x←M ′; N ′ : T B (do.eq)

Γ ⊢M : A Γ, x : A ⊢ N : T B
Γ ⊢ do x← ret M ; N = N [M/x] : T B (T .β) Γ ⊢M : T A

Γ ⊢ do x←M ; ret x =M : T A (T .η)

Figure 1.5 – Moggi’s equational rules for terms of monadic types.

Denotational semantics. The denotational semantics of Moggi’s metalanguage is obtained in
a cartesian closed category C equipped with a strong monad T . Pure computations shall still be
interpreted in as morphisms in the category C; while monadic computations, e.g. Γ ⊢M : T A,
are interpreted as morphisms JΓK → T JAK, thus living in the Kleisli category of T . The
interpretation of ret is given by the unit of the monad T , and the interpretation of of do is
obtained with the composition in the Kleisli category.
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1.5.3 Premonoidal Structure of Strong Monads

Let T be a strong monad on a symmetric monoidal category (C, I,⊗). Then, its Kleisli
category CT does not necessarily have a canonical monoidal structure. However, it does have
a canonical premonoidal structure as shown by Power and Robinson [PR97]. In fact, they show
that this premonoidal structure is monoidal iff the monad T is commutative. Next, we briefly
recall the premonoidal structure of CT as outlined by them.

For every two objects X and Y of CT , their tensor product X⊗Y is also an object of CT ,
but the monoidal product ⊗ of C does not necessarily induce a bifunctor on CT . However, by
using the left and right strengths of T , we can define two families of functors as follows:

• for any object X, a functor (−⊗l X) : CT → CT whose action on objects sends Y to
Y ⊗X, and sends f : Y → T Z to τ ′Z,X ◦ (f ⊗X) : Y ⊗X → T (Z ⊗X);

• for any object X, a functor (X ⊗r −) : CT → CT whose action on objects sends Y to
X ⊗ Y , and sends f : Y → T Z to τX,Z ◦ (X ⊗ f) : X ⊗ Y → T (X ⊗ Z).

This categorical data satisfies the axioms and coherence properties of premonoidal categories
as explained in [PR97], but which we omit here because it is not essential for the development
of our results. What is important is to note that in a premonoidal category, f⊗lX

′ and X⊗r g

do not always commute. This leads us to the following definition, which plays a crucial role in
the theory of premonoidal categories and has important links to our development.

Definition 1.102 (Premonoidal Centre [PR97]). Given a strong monad (T , η, µ, τ) on a sym-
metric monoidal category (C, I,⊗), we say that a morphism f : X → Y in CT is central if
for any morphism f ′ : X ′ → Y ′ in CT , the diagram

X ⊗X ′

X ⊗ Y ′

Y ⊗X ′

Y ⊗ Y ′

f ⊗l X
′

X ⊗r f
′ Y ⊗r f

′

f ⊗l Y
′

commutes in CT . The premonoidal centre of CT is the subcategory Z(CT ) which has the
same objects as those of CT and whose morphisms are the central morphisms of CT .

In [PR97], the authors prove that Z(CT ), is a symmetric monoidal subcategory of CT . In
particular, this means that Kleisli composition and the tensor functors (−⊗lX) and (X ⊗r −)
preserve central morphisms. However, it does not necessarily hold that the subcategory Z(CT )

is the Kleisli category for a monad over C. Nevertheless, in this situation, the left adjoint of
the Kleisli adjunction J : C → CT always corestricts to Z(CT ). We write Ĵ : C → Z(CT )

to indicate this corestriction (which need not be a left adjoint).

Remark 1.103. In [PR97], the subcategory Z(CT ) is called the centre of CT . However, we
refer to it as the premonoidal centre of a premonoidal category to avoid confusion with the new
notion of the centre of a monad that we introduce next. In the sequel, we show that the two
notions are very strongly related to each other (Theorem 2.11).
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Chapter 2
Monads and Commutativity

“Everyone likes monads.” — Nima Motamed.

Abstract

Monads in category theory are algebraic structures that can be used
to model computational effects in programming languages. We show
how the notion of “centre”, and more generally “centrality ”, i.e., the
property for an effect to commute with all other effects, may be for-
mulated for strong monads acting on symmetric monoidal categories.
We identify three equivalent conditions which characterise the exist-
ence of the centre of a strong monad (some of which relate it to the
premonoidal centre of Power and Robinson) and we show that every
strong monad on many well-known naturally occurring categories does
admit a centre, thereby showing that this new notion is ubiquitous.
More generally, we study central submonads, which are necessarily
commutative, just like the centre of a strong monad. We provide
a computational interpretation by formulating equational theories of
lambda calculi equipped with central submonads, we describe categor-
ical models for these theories and prove soundness, completeness and
internal language results for our semantics.

References. This chapter, apart from some additions made by the
author, is a paper [CLZ23] presented at LICS’2023, and coauthered
with Titouan Carette and Vladimir Zamdzhiev.

2.1 Introduction

The importance of monads in programming semantics has been demonstrated in seminal
work by Moggi [Mog89, Mog91]. The main idea is that monads allow us to introduce compu-
tational effects (e.g., state, input/output, recursion, probability, continuations) into pure type
systems in a controlled way. The mathematical development surrounding monads has been
very successful and it directly influenced modern programming language design through the
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introduction of monads as a programming abstraction into languages such as Haskell, Scala
and others (see [Ben15]). Inspired by this, we follow in the same spirit: we start with a math-
ematical question about monads, we provide the answer to it and we present a computational
interpretation. The mathematical question that we ask is simple and it is inspired by the theory
of monoids and groups:

Is there a suitable notion of “centre” that may be formulated for monads and what is a
“central” submonad?

We show that, just as every monoid M (on Set) has a centre, which is a commutative
submonoid of M , so does every (canonically strong) monad T on Set and the centre of T is a
commutative submonad of T (§2.2.1). A central 1 submonad of T is simply a submonad of the
centre of T (Definition 2.30) and the analogy to the case of monoids and groups is completely
preserved. Note that our construction has nothing to do with the folklore characterisation of
monads as monoid objects in a functor category, wherein the notion of commutativity is unclear.
The relevant analogy with monoids in Set is fully explained in Example 2.12. Generalising away
from the category Set, the answer is a little bit more complicated: not every monoid object
M on a symmetric monoidal category C has a centre, and neither does every strong monad
on C (§2.2.3). However, we show that under some reasonable assumptions, the centre does
exist (Theorem 2.11) and we have not found any naturally occurring monads in the literature
that are not centralisable (i.e., monads other than the artificially constructed one we used as
a counter-example). Furthermore, we show that for many categories of interest, all strong
monads on them are centralisable (§2.3.1) and we demonstrate that the notion of centre is
ubiquitous. The centre of a strong monad satisfies interesting universal properties (Theorem
2.11) which may be equivalently formulated in terms of our novel notion of central cone or via
the premonoidal centre of Power and Robinson [PR97]. The notion of a central submonad is
more general and it may be defined without using the centre. When the centre exists, a central
submonad may be equivalently defined as a strong submonad of the centre (Theorem 2.29).

The computational significance of these ideas is easy to understand: given an effect, mod-
elled by a strong monad, such that perhaps not every pair of effectful operations commute
(i.e., the order of monadic sequencing matters), identify only those effectful operations which
do commute with any other possible effectful operation. The effectful operations that satisfy
this property are called central. When the monad is centralisable, the collection of all cent-
ral operations determine the centre of the monad (which is a commutative submonad). Any
collection of central operations that may be organised into a strong submonad determines a
central submonad (which also is commutative). We argue that central submonads have greater
computational significance compared to the centre of a strong monad (§2.5.2) for two main
reasons: (1) central submonads are strictly more general; (2) central submonads have a simpler
and considerably more practical axiomatisation via an equational theory, whereas the centre of
a monad requires an axiomatisation using a more complicated logical theory. We cement our
categorical semantics by proving soundness, completeness and internal language results (See
[MMDPR05] for a convincing argument why internal language results are important and why
soundness and completeness alone might not be sufficient).

1. Given a group G, a central subgroup is a subgroup of the centre of G, equivalently, a subgroup
whose elements commute with every element of G.

56



2.1.1 Related Work

A notion of commutants for enriched algebraic theories has been defined in [Luc18] from
which the author derives a notion of centre of an enriched algebraic theory. In the case of
enriched monads, in other words, strong monads arising from enriched algebraic theories, their
notion of commutant extends to monad morphisms. While not explicitly stated in the paper,
applying the commutant construction on the identity monad morphism from a monad to itself
provides a notion of centre of a monad that appears to coincide with ours. However, enriched
algebraic theories correspond to J -ary V-enriched monads (See [Luc18] for a definition of J -ary
monads w.r.t. a system of arities J ) on a symmetric monoidal closed category V (equivalently
J -ary strong monads on V). In this chapter, we show that monoidal closure of V is not
necessary to define the centre and neither is the J -ary assumption on the monad. Other
related work [GF16] considers a very general notion of commutativity in terms of certain kinds
of duoidal categories. As a special case of their treatment, the authors are able to recover
the commutativity of bistrong monads and with some additional effort (not outlined in the
paper), it is possible to construct the centre of a bistrong monad acting on a monoidal biclosed
category. Our construction of the centre appears to coincide with theirs in the special case
of strong monads defined on symmetric monoidal closed categories, but as discussed above,
our method does not require any kind of closure of the category. Therefore, compared to
both works [GF16, Luc18], as far as symmetric monoidal (not necessarily closed) categories are
concerned, our methods can be used to construct the centre for a larger class of strong monads
and we establish our main results, together with our universal characterisation of the centre,
under these assumptions. Furthermore, we also place a heavy emphasis on central submonads
in this chapter and these kinds of monads are not discussed in either of these works and neither
is there a computational interpretation (which is our main result in §2.5).

Another related work is [PR97], which introduces premonoidal categories. We have estab-
lished important links between our development and the premonoidal centre (Theorem 2.11).
While premonoidal categories have been influential in our understanding of effectful computa-
tion, it was less clear (to us) how to formulate an appropriate computational interpretation of
the premonoidal centre for higher-order languages. We show that under some mild assump-
tions (which are easily satisfied see §2.3), the premonoidal centre of the Kleisli category of a
strong monad induces an adjunction into the base category (Theorem 2.11) and this allows us
to formulate a suitable computational interpretation by using monads, which are already well-
understood [Mog91, Mog89] and well-integrated into many programming languages [Ben15].

Staton and Levy introduce the novel notion of premulticategories [SL13] in order to axio-
matise impure/effectful computation in programming languages. The notion of centrality plays
an important role in the development of the theory there as well. However, they do not focus,
as we do, on providing suitable programming abstractions that identify both central and non-
central computations (e.g., by separating them into different types like us) and from what we
can tell from our reading, there are no universal properties stated for the collection of central
morphisms. Also, our results provide a computational interpretation in terms of monads, which
are standard and well-understood, so it is easier to incorporate them into existing languages.

Central morphisms in the context of computational effects have been studied in [Fü99],
among other sorts of varieties of morphisms: thunkable, copyable, and discardable. The author
links their notion of central morphisms with the ones from the premonoidal centre in Power and
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Robinson [PR97], and also proves under some conditions that those varieties form a subcategory
with similar properties to the original category. However, they do not mention that a central
submonad or a centre can be constructed out of those central morphisms. More generally, the
fact that monads could be derived from those varieties is not studied at all in that paper.

The work in [Fü99] has an impact in [MM22], where a Galois connection is established
between call-by-value and call-by-name. In that paper, the order in which operations are done
matters, and central computations are mentioned. Again, the central computations are not
linked to submonads in there.

2.1.2 Work of the Author

The author has contributed to the following points.
• Equivalent characterisations for a monad to be centralisable (see Theorem 2.11).
• Subsection 2.3.3, which details the link with Lawvere theories.
• A language for central submonads, inspired from Moggi’s metalanguage.
• A notion of equational theories for such a language.
• A completeness and internal language result, linking the categorical model to a syntactic

notion of central submonad.
Compared to the paper [CLZ23], the proofs produced by the author are added, as well as

a section (see §2.3.3) in which we show the link with Lawvere theories.

2.2 The Centre of a Strong Monad

We begin by showing that any (necessarily strong) monad on Set has a centre (§2.2.1) and
we later show how to define the centre of a strong monad on an arbitrary symmetric monoidal
category (§2.2.2). Unlike the former, the latter submonad does not always exist, but it does
exist under mild assumptions and we show that the notion is ubiquitous.

2.2.1 The Centre of a Monad on Set

The results we present next are a special case of our more general development from §2.2.2,
but we choose to devote special attention to monads on Set for illustrative purposes.

Definition 2.1 (Centre). Given a strong monad (T , η, µ, τ) on Set with right strength τ ′, we
say that the centre of T at X, written ZX, is the set

ZX def
= {t ∈ T X | ∀Y ∈ Ob(Set).∀s ∈ T Y.µ(T τ ′(τ(t, s))) = µ(T τ(τ ′(t, s)))}.

We write ιX : ZX ⊆ T X for the indicated subset inclusion.

In other words, the centre of T at X is the subset of T X which contains all monadic
elements for which (1.7) holds when the set X is fixed and the set Y ranges over all sets.

Notice that ZX ⊇ ηX(X), i.e., the centre of T at X always contains all monadic ele-
ments which are in the image of the monadic unit. This follows easily from the axioms of
strong monads. In fact, the assignment Z(−) extends to a commutative submonad of T .

58



In particular, the assignment Z(−) extends to a functor Z : Set → Set when we define
Zf def

= T f |ZX : ZX → ZY, for any function f : X → Y, where T f |ZX indicates the re-
striction of T f : T X → T Y to the subset ZX. Moreover, for any two sets X and Y , the
monadic unit ηX : X → T X, the monadic multiplication µX : T 2X → T X, and the monadic
strength τX,Y : X × T Y → T (X × Y ) (co)restrict respectively to functions ηZX : X → ZX,
µZX : Z2X → ZX and τZX,Y : X ×ZY → Z(X ×Y ). That the above four classes of functions
(co)restrict as indicated follows from our more general treatment presented in the next section.
It then follows, as a special case of Theorem 2.11, that the data we just described constitutes
a commutative submonad of T .

Theorem 2.2. The assignment Z(−) can be extended to a commutative submonad
(Z, ηZ , µZ , τZ) of T with the inclusions ιX : ZX ⊆ T X being the submonad morph-
ism. Furthermore, there is a canonical isomorphism of categories SetZ ∼= Z(SetT )

a.

a. Theorem 2.11 states precisely in what sense this isomorphism is canonical.

The final statement of Theorem 2.2 shows that the Kleisli category of Z is canonically
isomorphic to the premonoidal centre of the Kleisli category of T . Because of this, we are
justified in saying that Z is not just a commutative submonad of T , but rather it is the centre
of T , which is necessarily commutative (just like the centre of a monoid is a commutative
submonoid). In §2.3.2 we provide concrete examples of monads on Set and their centres and
we see that the construction of the centre aligns nicely with our intuition.

2.2.2 The General Construction of the Centre

Throughout the remainder of the section, we assume we are given a symmetric monoidal
category (C,⊗, I, α, λ, ρ, γ) and a strong monad (T , η, µ, τ) on it with right strength τ ′.

In Set, the centre is defined pointwise through subsets of T X which only contain elements
that satisfy the coherence condition for a commutative monad. However, C is an arbitrary
symmetric monoidal category, so we cannot easily form subojects in the required way. This
leads us to the definition of a central cone which allows us to overcome this problem.

Definition 2.3 (Central Cone). Let X be an object of C. A central cone of T at X is given
by a pair (Z, ι) of an object Z and a morphism ι : Z → T X, such that for any object Y, the
diagram

Z ⊗ T Y T X ⊗ T Y T (X ⊗ T Y )

T 2(X ⊗ Y )

T (X ⊗ Y )

T X ⊗ T Y

T (T X ⊗ Y ) T 2(X ⊗ Y )

ι⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

ι⊗ T Y

τT X,Y

T τ ′X,Y µX⊗Y
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commutes. If (Z, ι) and (Z ′, ι′) are two central cones of T at X, then a morphism of central
cones φ : (Z ′, ι′)→ (Z, ι) is a morphism φ : Z ′ → Z, such that ι ◦ φ = ι′. Thus central cones
of T at X form a category. A terminal central cone of T at X is a central cone (Z, ι) for T at
X, such that for any central cone (Z ′, ι′) of T at X, there exists a unique morphism of central
cones φ : (Z ′, ι′) → (Z, ι). In other words, it is the terminal object in the category of central
cones of T at X.

In particular, Definition 2.1 gives a terminal central cone for the special case of monads on
Set. The names “central morphism” (in the premonoidal sense, see §1.5.3) and “central cone”
(above) also hint that there should be a relationship between them. In fact, the two notions
are equivalent.

Proposition 2.4. Let f : X → T Y be a morphism in C. The pair (X, f) is a central
cone of T at Y iff f is central in CT in the premonoidal sense (Definition 1.102).

Proof. Let (X, f) be a central cone and let f ′ : X ′ → T Y ′ be a morphism. The following
diagram:

X ⊗X ′

T (X ⊗ Y ′)

T Y ⊗X ′

T (T Y ⊗ Y ′)

f ⊗X ′

X ⊗ f ′

T (Y ⊗ f ′)

T (f ⊗ Y ′)

T (Y ⊗X ′)
τ ′Y,X′

X ⊗ T Y ′ T 2(Y ⊗ Y ′)

T 2(Y ⊗ Y ′)

T τY,Y ′

T τ ′Y,Y ′

τX,Y ′

T (Y ⊗ T Y ′)

µY⊗Y ′

T (Y ⊗ Y ′)
µY⊗Y ′

T Y ⊗ T Y ′
f ⊗ T Y ′

τT Y,Y ′

T Y ⊗ f ′

τ ′Y,T Y ′

(1)
(2)

(3)
(4)

T Y ⊗ T Y ′
f ⊗ T Y ′

commutes because: (1) C is monoidal; (2) τ ′ is natural; (3) τ is natural; and (4) the pair
(X, f) is a central cone. Therefore, the morphism f is central in the premonoidal sense.
For the other direction, if f is central in CT , the following diagram:

Z ⊗ T Y T X ⊗ T Y T (X ⊗ T Y )

T 2(X ⊗ Y )

T (X ⊗ Y )

T X ⊗ T Y

T (T X ⊗ Y ) T 2(X ⊗ Y )

f ⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

f ⊗ T Y

τT X,Y

T τ ′X,Y µX⊗Y

f ⊗ T Y

T X ⊗ T Y T (X ⊗ T Y )
τ ′X,T Y

T (Z ⊗ Y )

τZ,Y(1)

Z ⊗ T Y
f ⊗ T Y

T (f ⊗ Y )

(2)
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commutes because: (1) τ is natural; (2) f is a central morphism; all remaining subdiagrams
commute trivially. This shows the pair (X, f) is a central cone.

From now on, we rely heavily on the fact that central cones and central morphisms are
equivalent notions, and we use Proposition 2.4 implicitly in the sequel. On the other hand,
terminal central cones are crucial for our development, but it is unclear how to introduce a
similar notion of “terminal central morphism” that is useful. For this reason, we prefer to work
with (terminal) central cones.

It is easy to see that if a terminal central cone for T at X exists, then it is unique up to
a unique isomorphism of central cones. Also, one can easily prove that if (Z, ι) is a terminal
central cone, then ι is a monomorphism. The main definition of this subsection follows next
and gives the foundation for constructing the centre of a strong monad.

Definition 2.5 (Centralisable Monad). We say that the monad T is centralisable if, for any
object X, a terminal central cone of T at X exists. In this situation, we write (ZX, ιX) for
the terminal central cone of T at X.

In fact, for a centralisable monad T , its terminal central cones induce a commutative
submonad Z of T , as the next theorem shows, and its proof reveals constructively how the
monad structure arises from them.

Theorem 2.6. If the monad T is centralisable, then the assignment Z(−) extends to
a commutative monad (Z, ηZ , µZ , τZ) on C. Moreover, Z is a commutative submonad
of T and the morphisms ιX : ZX → T X constitute a monomorphism of strong monads
ι : Z ⇒ T .

This theorem relies on several lemmas that are detailed below.

Lemma 2.7. If (X, f : X → T Y ) is a central cone of T at Y, then for any g : Z → X,
it follows that (Z, f ◦ g) is a central cone of T at Y .

Proof. This is obtained by precomposing the definition of central cone by g ⊗ id.

X ⊗ T X ′ T Y ⊗ T X ′ T (Y ⊗ T X ′)

T 2(Y ⊗X ′)

T (Y ⊗X ′)

T Y ⊗ T X ′

T (T Y ⊗X ′) T 2(Y ⊗X ′)

f ⊗ T X ′ τ ′Y,T X′

T τY,X′

µY⊗X′

f ⊗ T X ′

τT Y,X′

T τ ′Y,X′ µY⊗X′

Z ⊗ T X ′ g ⊗ T X
′

commutes directly from the definition of central cone for f .
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Lemma 2.8. If (X, f : X → T Y ) is a central cone of T at Y then for any g : Y → Z, it
follows that (X, T g ◦ f) is a central cone of T at Z.

Proof. The naturality of τ and µ allow us to push the application of g to the last postcompos-
ition, in order to use the central property of f . In more details, the following diagram:

X ⊗ T X ′ T Y ⊗ T X ′ T Z ⊗ T X ′

T 2(Z ⊗X ′)

T (Z ⊗X ′)T Z ⊗ T X ′ T (T Z ⊗X ′) T 2(Z ⊗X ′)

f ⊗ T X ′

τ ′Z,T X′

T τZ,X′

µZ⊗X′

f ⊗ T X ′

τT Z,X′ T τ ′Z,X′ µZ⊗X′

T (Z ⊗ T X ′)

T Y ⊗ T X ′

T g ⊗ T X ′

T g ⊗ T X ′

T (Y ⊗ T X ′)

T 2(Y ⊗X ′)

T (Y ⊗X ′)

τ ′Y,T X′

T τY,X′

µY⊗X′

T (g ⊗ T X ′)

T 2(g ⊗X ′)

T (g ⊗X ′)
T (T Y ⊗X ′) T 2(Y ⊗X ′)

τT Y,X′ T τ ′Y,X′ µY⊗X′

T (T g ⊗X ′) T 2(g ⊗X ′)

(1)

(2)

(3)

(4)

(5) (6) (7)

commutes, because: (1) f is a central cone, (2) τ ′ is natural, (3) τ is natural, (4) µ is natural
(5) τ is natural, (6) τ ′ is natural, (7) µ is natural.

Lemma 2.9. If (Z, ι) is a terminal central cone of T at X, then ι is a monomorphism.

Proof. Let us consider f, g : Y → Z such that ι ◦ f = ι ◦ g; this morphism is a central cone
at X (Lemma 2.7), and since (Z, ι) is a terminal central cone, it factors uniquely through ι.
Thus f = g and therefore ι is monic.

Proof of Theorem 2.6. First let us describe the functorial structure of Z. Recall that Z maps
every object X to its terminal central cone at X. Let f : X → Y be a morphism. We know
that T f ◦ ιX : ZX → T Y is a central cone according to Lemma 2.8. Therefore, we define Zf
as the unique map such that the following diagram commutes:

ZX ZY

T X T Y

ιX ιY

T f

Zf
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It follows directly that Z maps the identity to the identity, and that ι is natural. Z also
preserves composition, which follows by the commutative diagram below.

ZA

ZB

T A

T B

ιA

ιB
T gZg

ZC

Zf

Z(f ◦ g)

T C
ιC

T f

T (f ◦ g)

This proves that Z is a functor. Next, we describe its monad structure and after that we show
that it is commutative.
The monadic unit ηX is central, because it is the identity morphism in Z(CT ), thus it factors
through ιX to define ηZX .

X

T X

ZX
ηX ιX

ηZX

Next, observe that, by definition, µX ◦ T ιX ◦ ιZX = ιX ⊙ ιZX , where (− ⊙ −) indicates
Kleisli composition. Since ι is central and Kleisli composition preserves central morphisms (see
Definition 1.102, central morphisms form a subcategory of the Kleisli category), it follows that
this morphism factors through ιX and we use this to define µZX as in the diagram below.

Z2X

T ZX T 2X T X

ZX
µZX

T ιX µX

ιZX ιX

Again, by definition, τA,B ◦ (A ⊗ ιB) = A ⊗r ιB. Central morphisms are preserved by the
premonoidal products (see 1.5.3) and therefore, this morphism factors through ιA⊗B which we
use to define τZA,B as in the diagram below.

A⊗ZB Z(A⊗B)

A⊗ T B T (A⊗B)

A⊗ ιB ιA⊗B

τZA,B

τA,B

Note that the last three diagrams are exactly those of a morphism of strong monads (see
Definition 1.99). Using the fact that ι is monic (see Lemma 2.9), the following commutative
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diagram shows that ηZ is natural.

X ZX

Y T Y

ZY

ZY

T X

ηZX

f

Zf

T f

ηy

ηZY ιY

ιY

ηX ιX

(1)

(2)
(3)

(4)

(1) definition of ηZ , (2) ι is natural, (3) η is natural and (4) definition of ηZ . Thus, we
have proven that for any f : X → Y , ιY ◦ Zf ◦ ηZX = ιY ◦ ηZY ◦ f . Besides, ι is monic, thus
Zf ◦ ηZX = ηZY ◦ f which proves that ηZ is natural. We will prove all the remaining diagrams
with the same reasoning.

The following commutative diagram shows that µZ is natural.

Z2X ZX

Z2Y T YZY

ZY

T 2X T X

T 2Y

Z2f

Zf

ιY

ιY

µZX

ιι

ιι

T f

µX

T 2f

µY

µZY

(1)

(2) (3)
(4)

(5)

ι

(1) definition of µZ , (2) ι is natural, (3) µ is natural, (4) ι is natural and (5) definition of µZ .
The following commutative diagrams shows that τZ is natural.

A⊗ZC Z(A⊗ C)

B ⊗ZC T (B ⊗ C)Z(B ⊗ C)

Z(B ⊗ C)

B ⊗ T C

A⊗ T C T (A⊗ C)

τZA,C

τA,C

τZB,C
ιB⊗C

ιB⊗C

τB,C

f ⊗ZC

A⊗ ι

B ⊗ ι

Z(f ⊗ C)

T (f ⊗ C)

f ⊗ T C

ι
(1)

(2) (3) (4)

(5)
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(1) definition of τZ , (2) ι is natural, (3) τ is natural, (4) ι is natural and (5) definition of τZ .

A⊗ZB Z(A⊗B)

A⊗ZC T (A⊗ C)Z(A⊗ C)

Z(A⊗ C)

A⊗ T C

A⊗ T B T (A⊗B)

τZA,B

τA,B

τZA,C
ιA⊗C

ιA⊗C

τA,C

A⊗Zf

A⊗ ι

A⊗ ι

Z(A⊗ f)

T (A⊗ f)

A⊗ T f

ι
(1)

(2) (3)
(4)

(5)

(1) definition of τZ , (2) ι is natural, (3) τ is natural, (4) ι is natural and (5) definition of τZ .
The following commutative diagrams prove that Z is a monad.

Z3X Z2X

Z2X T X

ZX

ZX

T 3X

T 2X

T 2X

µZZX

µZX

µZX

ιX

ιX

ZµZX
T µX

µT X

µX

µX

ι3 ι2

ι2

ZX Z2X

Z2X T X

ZX

ZX

T X

T 2X

T 2X

ηZZX

µZX

µZX

ιX

ιX

ZηZX
T ηX

ηT X

µX

µX

ι ι2

ι2

(1)

(2) (3)
(4)

(5)

(6)

(7) (8)
(9)

(10)

(1) and (2) involve the definition of µZ and the naturality of ι and µZ , (3) is by definition
of monad, (4) definition of µZ and (5) also. (6) and (7) involve the definition of ηZ and the
naturality of ι and ηZ , (8) is by definition of monad, (9) definition of µZ and (10) also.
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Z is proven strong with very similar diagrams. The commutative diagram:

ZA⊗ZB Z2(A⊗B)

Z2(A⊗B) T (A⊗B)

Z(ZA⊗B) Z(A⊗B)

Z(A⊗B)

Z(A⊗ZB)
τ ′ZA,ZB ZτZA,B

µZA⊗B

µZA⊗B

Zτ ′ZA,B

τZZA,B

ZT (A⊗B) T 2(A⊗B)

ZT (A⊗B)

T 2(A⊗B)Z(T A⊗B)

Z(A⊗ T B)

T (T A⊗B)

T (A⊗ T B)

T A⊗ T BT A⊗ZB

ZA⊗ T B

ι

ι

ι

ι

ι

ι

ι

τ ′ZA,T B

τZT A,B

ι

Zτ ′A,B

ι

τT A,B

τ ′A,T B

T τ ′A,B

T τA,B

ι

µA⊗B

µA⊗B

ι

ι

ZτA,B

ιA⊗B

ιA⊗B

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

T A⊗ T B

ι

(2.1)

proves that Z is a commutative monad, with (1) τ ′Z is natural, (2) definition of τZ , (3) τZ

is natural, (4) C is monoidal, (5) definition of τ ′Z , (6) ι is natural, (7) definition of µZ , (8)
definition of τZ , (9) ι is central, (10) definition of τ ′Z , (11) ι is natural and (12) definition of
µZ .

Theorem 2.6 shows that centralisable monads always induce a canonical commutative sub-
monad. Next, we justify why this submonad should be seen as the centre of T . Note that since
Z is a submonad of T , we know that CZ canonically embeds into CT (see Proposition 1.101).
The next theorem shows that this embedding factors through the premonoidal centre of CT ,
and moreover, the two categories are isomorphic.

Theorem 2.10. In the situation of Theorem 2.6, the canonical embedding functor I : CZ →
CT corestricts to an isomorphism of categories CZ ∼= Z(CT ).

Proof. I corestricts as indicated follows easily: for any morphism f : X → ZY , we have
that If = ιY ◦ f which is central by Lemma 2.7. Let us write Î for the corestriction of I
to Z(CT ). Next, to prove that Î : CZ → Z(CT ) is an isomorphism, we define the inverse
functor G : Z(CT )→ CZ .

On objects, we have G(X)
def
= X. To define its mapping on morphisms, observe that if

f : X → T Y is a central morphism (in the premonoidal sense), then (X, f) is a central cone
of T at Y (Proposition 2.4) and therefore there exists a unique morphism fZ : X → ZY such
that ιY ◦ fZ = f ; we define Gf def

= fZ . The proof that G is a functor is direct considering
that any fZ is a morphism of central cones and that all components of ι are monomorphisms.

To show that Î and G are mutual inverses, let f : X → T Y be a morphism of Z(CT ),
i.e., a central morphism. Then, ÎGf = ιY ◦ fZ = f by definition of morphism of central
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cones (see Definition 2.3). For the other direction, let g : X → ZY be a morphism in C.
Then, ιY ◦ GÎg = ιY ◦ (ιY ◦ g)Z = ιY ◦ g by Definition 2.3 and thus GÎg = g since ιY is a
monomorphism (Lemma 2.9).

It should now be clear that Theorem 2.6 and Theorem 2.10 show that we are justified in
naming the submonad Z as the centre of T . The existence of terminal central cones is not only
sufficient to construct the centre (as we just showed), but it also is necessary and we show this
next. Furthermore, we provide another equivalent characterisation in terms of the premonoidal
structure of the monad.

Theorem 2.11 (Centre). Let C be a symmetric monoidal category and T a strong monad
on it. The following are equivalent:

1. For any object X of C, T admits a terminal central cone at X;

2. There exists a commutative submonad Z of T (which we call the centre of T ) such
that the canonical embedding functor I : CZ → CT corestricts to an isomorphism
of categories CZ ∼= Z(CT );

3. The corestriction of the Kleisli left adjoint J : C→ CT to the premonoidal centre
Ĵ : C→ Z(CT ) also is a left adjoint.

Proof. We follow a circular strategy in order to prove that each of the points implies the others.

(1⇒ 2) : By Theorem 2.6 and Theorem 2.10.

(2 ⇒ 3) : Let us consider the Kleisli left adjoint J Z associated to the monad Z. All our
hypotheses can be summarised by the diagram

C CT

CZ Z(CT )
∼=
Î

J Z

J

Ĵ

where Î : CZ ∼= Z(CT ) is the corestriction of I. This diagram commutes, because Z is a
submonad of T (recall also that Ĵ is the indicated corestriction of J , see §1.5.3). Since Î is
an isomorphism, then Ĵ = Î ◦ J Z is the composition of two left adjoints and it is therefore
also a left adjoint.

(3 ⇒ 1) : Let R : Z(CT ) → C be the right adjoint of Ĵ and let ε be the counit of the
adjunction. We will show that the pair (RX, εX) is the terminal central cone of T at X.
First, since εX is a morphism in Z(CT ), it follows that it is central. Thus the pair (RX, εX) is
a central cone of T at X. Next, let Φ: Z(CT )[Ĵ Y,X] ∼= C[Y,RX] be the natural bijection
induced by the adjunction. If f : Y → T X is central, meaning a morphism of Z(CT ), the
diagram below left commutes in Z(CT ), or equivalently, the diagram below right commutes in
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C:

Ĵ Y

Ĵ RX X

ĴΦ(f)
f

εX

Y

RX T X

Φ(f)
f

εX

Note that the pair (Y, f) is equivalently a central cone for T at X (by Proposition 2.4). Thus
f uniquely factors through the counit εX : RX → T X and therefore (RX, εX) is the terminal
central cone of T at X.

This theorem shows that Definition 2.5 may be stated by choosing any one of the above
equivalent criteria. We note that the first condition is the easiest to verify in practice. The
second one is the most useful for providing a computational interpretation, as we do in the
sequel. The third condition provides an important link to premonoidal categories.

Example 2.12. Given a monoid (M, e,m), consider the free monad induced by M , also known
as the writer monad, which we write as T = (− ×M) : Set → Set. The centre Z of T is
given by the commutative monad (−×Z(M)) : Set→ Set, where Z(M) is the centre of the
monoid M and where the monad data is given by the (co)restrictions of the monad data of T .
Note that T is a commutative monad iff M is a commutative monoid. See also Example 2.13.

2.2.3 A Non-centralisable Monad

In Set, the terminal central cones used to define the centre are defined by taking appropriate
subsets. One may wonder what happens if not every subset of a given set is an object of
the category. The following example describes such a situation, which gives rise to a non-
centralisable strong monad.

Example 2.13. Consider the Dihedral group D4, which has 8 elements. Its centre Z(D4) is
non-trivial and has 2 elements. Let C be the full subcategory of Set with objects that are
finite products of the set D4 with itself. This category has a cartesian structure, and the
terminal object is the singleton set (which is the empty product). Notice that every object in
this category has a cardinality that is a power of 8. Therefore the cardinality of every homset of
C is a power of 8. Since C has a cartesian structure and since D4 is a monoid, we can consider
the writer monad M def

= (−× D4) : C→ C induced by D4, which can be defined in the same
way as in Example 2.12. It follows that M is a strong monad on C. However, it is easy to
show that this monad is not centralisable. Assume (for contradiction) that there is a monad
Z : C → C such that CZ ∼= Z(CM) (see Theorem 2.11). Next, observe that the homset
Z(CM)[1, 1] has the same cardinality as the centre of the monoid D4, i.e., its cardinality is
2. However, CZ cannot have such a homset since CZ [X,Y ] = C[X,ZY ] which must have
cardinality a power of 8. Therefore there exists no such monad Z andM is not centralisable.

Besides this example and any further attempts at constructing non-centralisable monads
for this sole purpose, we do not know of any other strong monad in the literature that is
not centralisable. In the next section, we present many examples of centralisable monads and
classes of centralisable monads which show that our results are widely applicable.
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2.3 Examples of Centres of Strong Monads

In this section, we show how we can make use of the mathematical results we already
established in order to reason about the centres of monads of interest.

2.3.1 Categories whose Strong Monads are Centralisable

We saw earlier that every (strong) monad on Set is centralisable. In fact, this is also true
for many other naturally occurring categories. For example, in many categories of interest, the
objects of the category have a suitable notion of subobject (e.g., subsets in Set, subspaces in
Vect) and the centre can be constructed in a similar way to the one in Set.

Example 2.14. Let DCPO be the category whose objects are directed-complete partial orders
and whose morphisms are Scott-continuous maps between them. Every strong monad on
DCPO with respect to its cartesian structure is centralisable. The easiest way to see this
is to use Theorem 2.11 (1). Writing T : DCPO → DCPO for an arbitrary strong monad
on DCPO, the terminal central cone of T at X is given by the subdcpo ZX ⊆ T X which
has the underlying set ZX def

= {t ∈ T X | ∀Y ∈ Ob(DCPO).∀s ∈ T Y. µ(T τ ′(τ(t, s))) =

µ(T τ(τ ′(t, s)))}. That ZX (with the inherited order) is a subdcpo of T X follows easily by
using the fact that µ, τ, τ ′ and T are Scott-continuous. Therefore, the construction is fully
analogous to the one in Set.

Example 2.15. Let Top be the category whose objects are topological spaces, and whose
morphisms are continuous maps between them. Every strong monad on Top with respect to
its cartesian structure is centralisable. Using Theorem 2.11 (1) and writing T : Top → Top

for an arbitrary strong monad on Top, the terminal central cone of T at X is given by the
space ZX ⊆ T X which has the underlying set ZX def

= {t ∈ T X | ∀Y ∈ Ob(Top).∀s ∈ T Y.
µ(T τ ′(τ(t, s))) = µ(T τ(τ ′(t, s)))} and whose topology is the subspace topology inherited
from T X.

Example 2.16. Every strong monad on the category Meas (whose objects are measurable
spaces and the morphisms are measurable maps between them) is centralisable. The con-
struction is fully analogous to the previous example, but instead of the subspace topology, we
equip the underlying set with the subspace σ-algebra inherited from T X (which is the smallest
σ-algebra that makes the subset inclusion map measurable).

Example 2.17. Let Vect be the category whose objects are vector spaces, and whose morph-
isms are linear maps between them. Every strong monad on Vect with respect to the usual
symmetric monoidal structure is centralisable. One simply defines the subset ZX as in the
other examples and shows that this is a linear subspace of T X. That this is the terminal
central cone is then obvious.

The above categories, together with the category Set, are not meant to provide an ex-
haustive list of categories for which all strong monads are centralisable. Indeed, there are many
more categories for which this is true. The purpose of these examples is to illustrate how we
may use Theorem 2.11 (1) to construct the centre of a strong monad. Changing perspective,
the proof of the next proposition uses Theorem 2.11 (3).
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Proposition 2.18. Let C be a symmetric monoidal closed category that is total – i.e., a
locally small category whose Yoneda embedding has a left adjoint. Then all strong monads
over C are centralisable.

Proof. This proof was provided by Titouan Carette in [CLZ23].

Example 2.19. Any category which is the Eilenberg-Moore category of a commutative monad
over Set is total [Kel86]. Furthermore it is symmetric monoidal closed [Kei78], thus all strong
monads on it are centralisable. This includes: the category Set∗ of pointed sets and point
preserving functions (algebras of the lift monad); the category CMon of commutative monoids
and monoid homomorphisms (algebras of the commutative monoid monad); the category Conv

of convex sets and linear functions (algebras of the distribution monad); and the category Sup

of complete semilattices and sup-preserving functions (algebras of the powerset monad).

Example 2.20. Any presheaf category SetC
op

over a small category C is total [Kel86] and
cartesian closed, thus all strong monads on it (with respect to the cartesian structure) are
centralisable. This includes: the category SetA

op
, where A is the category with two objects

and two parallel arrows, which can be seen as the category of directed multi-graphs and graph
homomorphisms; the category SetG

op
, where G is a group seen as a category, which can be

seen as the category of G-sets (sets with an action of G) and equivariant maps; and the topos
of trees SetN

op
. If C is symmetric monoidal, then the Day convolution product makes SetC

op

symmetric monoidal closed [Day70], hence all strong monads on it with respect to the Day
convolution monoidal structure also are centralisable.

Example 2.21. Any Grothendieck topos is cartesian closed and total, therefore it satisfies the
conditions of Proposition 2.18.

2.3.2 Specific Examples of Centralisable Monads

In this subsection, we consider specific monads and construct their centres.

Example 2.22. Every commutative monad is naturally isomorphic to its centre.

Example 2.23. Let S be a set and consider the well-known continuation monad T = [[−, S], S] :
Set→ Set. Note that, if S is the empty set or a singleton set, then T is commutative, so we
are in the situation of Example 2.22. Otherwise, when S is not trivial, one can prove (details
omitted here) that ZX = ηX(X) ∼= X. Therefore, the centre of T is trivial and it is naturally
isomorphic to the identity monad.

Example 2.24. Consider the well-known list monad T : Set → Set that is given by TX =⊔
n≥0X

n. Then, the centre of T is naturally isomorphic to the identity monad.

Example 2.23 shows that the centre of a monad may be trivial in the sense that it is precisely
the image of the monadic unit and this is the least it can be. At the other extreme, Example
2.22 shows that the centre of a commutative monad coincides with itself, as one would expect.
Thus, the monads that have interesting centres are those monads which are strong but not
commutative, and which have non-trivial centres, such as the one in Example 2.12. Another
interesting example of a strong monad with a non-trivial centre is provided next.
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Example 2.25. Every semiring (S,+, 0, ·, 1) induces a monad TS : Set→ Set [JMS22]. This
monad maps a set X to the set of finite formal sums of the form

∑
sixi, where si are elements

of S and xi are elements of X. The monad TS is commutative iff S is commutative as a
semiring. The centre Z of TS is induced by the commutative semiring Z(S), i.e., by the centre
of S in the usual sense. Therefore, Z = TZ(S).

Example 2.26. Any Lawvere theory T [HP07] induces a finitary monad on Set. The centre of
this monad is the monad induced by the centre of T in the sense of Lawvere theories [Wra70].
This is detailed in §2.3.3.

Example 2.27. The valuations monad V : DCPO → DCPO [JP89, Jon90] is similar in
spirit to the Giry monad on measurable spaces [Gir82]. It is an important monad in domain
theory [GHK+12] that is used to combine probability and recursion for dcpo’s. Given a dcpo X,
the valuations monad V assigns the dcpo VX of all Scott-continuous valuations on X, which
are Scott-continuous functions ν : σ(X) → [0, 1] from the Scott-open sets of X into the unit
interval that satisfy some additional properties that make them suitable to model probability
(details omitted here, see [Jon90] for more information). The category DCPO is cartesian
closed and the valuations monad V : DCPO → DCPO is strong, but its commutativity
on DCPO has been an open problem since 1989 [Jon90, JP89, JMZ21, JLMZ21b, GJT21].
The difficulty in (dis)proving the commutativity of V boils down to (dis)proving the following
Fubini-style equation ∫

X

∫
Y
χU (x, y)dνdξ =

∫
Y

∫
X
χU (x, y)dξdν

holds for any dcpo’s X and Y , any Scott-open subset U ∈ σ(X × Y ) and any two valuations
ξ ∈ VX and ν ∈ VY. In the above equation, the notion of integration is given by the valuation
integral (see [Jon90] for more information).

The central valuations monad [JMZ21], is the submonad Z : DCPO → DCPO that
maps a dcpo X to the dcpo ZX which has all central valuations as elements. Equivalently:

ZX def
=

{
ξ ∈ V(X) | ∀Y ∈ Ob(DCPO).∀U ∈ σ(X × Y ).

∀ν ∈ V(Y ).

∫
X

∫
Y
χU (x, y)dνdξ =

∫
Y

∫
X
χU (x, y)dξdν

}
.

But this is precisely the centre of V, which can be seen using Theorem 2.11 (1) after unpacking
the definition of the monad data of V. Therefore, we see that the main result of [JMZ21] is
a special case of our more general categorical treatment. We wish to note, that the centre of
V is quite large. It contains all three commutative submonads identified in [JLMZ21b] and all
of them may be used to model lambda calculi with recursion and discrete probabilistic choice
(see [JLMZ21b, JMZ21]).

2.3.3 Link with Lawvere theories

Commutants for Lawvere theories [HP07] were defined in Wraith’s lecture notes [Wra70]
but were only studied in details by Lucyshyn-Wright [LW18] later. The centre of a Lawvere
theory is a special case of commutant.
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In a Lawvere theory T, we say that f : An → An′
and g : Am → Am′

commute if and only
if fm

′ ◦gn (also written f ⋆g) and gn
′ ◦fm (also written g⋆f) are equal, up to isomorphism. If S

is a full subcategory of T, one can define the commutant of S in T, meaning a full subcategory
of T whose morphisms commute with the morphisms of S. This commutant is written S⊥, and
is also a Lawvere subtheory of T. Considering this, T⊥ is seen as the centre of the Lawvere
theory T [Wra70]; and any subtheory of T⊥ is a central subtheory of T.

What about monads? Models of a Lawvere theory T are finite-product-preserving functors
T→ Set and they form a category Mod(T,Set). This category is adjoint to Set through a
forgetful and free functors. Those adjunctions give birth to a monad. This monad is on Set,
thus it is strong, centralisable and finitary since it originates from a Lawvere theory. Thus given
a Lawvere theory T, we obtain a monad T whose centre Z is a commutative submonad of T
and is finitary, which means that there exists a corresponding Lawvere theory. This Lawvere
theory is a commutative subtheory of T, as proven next.

The connection between Lawvere theories and finitary monads is extensively detailed in
[Str72, Gar14, GP18]. To get a Lawvere theory out of a finitary monad Z on Set, one needs to
look at the opposite category of a skeleton of SetZ [HP07], noted here sSetopZ . This Lawvere
theory is commutative because SetZ is monoidal. Moreover, SetZ is embedded in SetT , then
sSetopZ is embedded in sSetopT ; the latter being equivalent to T.

Theorem 2.28. Given a Lawvere theory T, its Set-monad T is centralisable and its centre
Z has a corresponding Lawvere theory sSetopZ that is equivalent to T⊥.

Proof. This is a direct application of the point (2) of Theorem 2.11.

This connection helps motivate a similar theory for commutants in the general context of
strong monads. However, the litterature on Lawvere theories is not enough to grasp all those
monads on symmetric monoidal category: in this subsection, we have only given the example
for the category Set, and in general, in the literature, the category is often required to be
closed.

2.4 Central Submonads

So far, we focused primarily on the centre of a strong monad. Now we focus our attention
on central submonads of a strong monad which we define by taking inspiration from the notion
of central subgroup in group theory. Just like central subgroups, central submonads are more
general compared to the centre. The centre of a strong monad, whenever it exists, can be
intuitively understood as the largest central submonad, so the two notions are strongly related.
We will later see that central submonads are more interesting computationally.

Theorem 2.29 (Centrality). Let C be a symmetric monoidal category and T a strong
monad on it. Let S be a strong submonad of T with ι : S ⇒ T the strong submonad
monomorphism. The following are equivalent:

1) For any object X of C, (SX, ιX) is a central cone for T at X;

2) the canonical embedding functor I : CS → CT corestricts to an embedding of
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categories Î : CS → Z(CT ).

Furthermore, these conditions imply that S is a commutative submonad of T . Under the
additional assumption that T is centralisable, these conditions also are equivalent to:

3) S is a submonad of the centre of T , and thus is commutative.

Proof.
(1⇒ 2) : The proof of Th. 2.10 contains the necessary elements for this proof. In details,

we know that all the components of ι are central, and we also know that precomposing a central
morphism keeps being central (see Lemma 2.7).

(2⇒ 1) : The hypothesis ensures that Î(idX) = ιX is central.
The diagram in (2.1) proves that the centre of a centralisable monad is commutative.

Assuming (1) – or (2) – is true, then the same diagram replacing Z by S proves that S is a
commutative monad.

(1⇒ 3) : Moreover, each ιSX : SX ⇒ T X factorises through the terminal central cone ιZX .
A strong monad morphism S ⇒ Z arises from those factorisations.

(3 ⇒ 1) : Let us write Z the centre of T , ιS : S ⇒ Z and ιZ : Z ⇒ T the submonad
morphisms. The components of ιZ are terminal central cones, and are in particular central, so
ιZ ◦ ιS is also central by Lemma 2.7. Thus the components of the submonad morphism from
S to T are central.

Definition 2.30 (Central Submonad). Given a strong submonad S of T , we say that S is a
central submonad of T if it satisfies any one of the above equivalent criteria from Theorem
2.29.

Just like the centre of a strong monad, any central submonad also is commutative and the
above theorem (Theorem 2.30) shows that central submonads have a similar structure to the
centre of a strong monad. The final statement shows that we may see the centre (whenever it
exists) as the largest central submonad of T . The centre of a strong monad often does exist
(as we already argued), so the last criterion also provides a simple way to determine whether a
submonad is central or not.

Example 2.31. By the above theorem, every centre described in §2.3 is a central submonad.

Example 2.32. Let T be a strong monad on a symmetric monoidal category C, such that all
unit maps ηX : X → T X are monomorphisms (this is often the case in practice). Then, the
identity monad on C is a central submonad of T .

Example 2.33. Given a monoid M, let T = (M×−) be the monad on Set from Example 2.12.
Any submonoid S of Z(M) induces a central submonad (S ×−) of T .

Example 2.34. Given a semiring R, consider the monad TR from Example 2.25. Any sub-
semiring S of Z(R) induces a central submonad TS of TR.

Example 2.35. A notion of central Lawvere subtheory can be introduced in an obvious way.
It induces a central submonad of the monad induced by the original Lawvere theory.

Example 2.36. The three commutative submonads identified in [JLMZ21b] are central sub-
monads of the valuations monad V from Example 2.27, because each one of them is a com-
mutative submonad of the centre of V [JMZ21].
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Remark 2.37. Given an arbitrary monoid M (on Set), there could be a commutative submonoid
S of M that is not central (i.e., its elements do not commute with all elements of M). The
same holds for strong monads. For instance, let M = D4 (see Example 2.13) and let S be
the submonoid of M that contains only the rotations (of which there are four). Then, S is
a commutative submonoid that is not central. By taking the free monads induced by these
monoids (see Example 2.12) on Set, we get an example of a commutative submonad that is
not central. Moreover, if we take D to be the full subcategory of Set whose objects have
cardinality that is different from two, then D has a cartesian structure and the writer monads
induced by S and M on D give an example of a non-centralisable strong monad that admits
a commutative non-central submonad. In this situation, the identity monad on D gives an
example of a central (commutative) submonad even though the ambient monad (induced by
M) is not centralisable.

2.5 Computational Interpretation

In this section, we provide a computational interpretation of our ideas. We consider a
simply-typed lambda calculus together with a strong monad T and a central submonad S of
T . We call this system the Central Submonad Calculus (CSC). We describe its equational
theories, formulate appropriate categorical models for it and we prove soundness, completeness
and internal language results for our semantics.

2.5.1 Syntactic Structure of the Central Submonad Calculus

We begin by describing the types we use. The grammar of types (see Figure 2.1) are just the
usual ones with one addition – we extend the grammar by adding the family of types SA. The
type T A represents the type of monadic computations for our monad T that produce values of
type A (together with a potential side effect described by T ). The type SA represents the type
of central monadic computations for our monad T that produce values of type A (together
with a potential central side effect that is in the submonad S). Some terms and formation
rules can be expressed in the same way for types of the form SA or T A and in this case we
simply write XA to indicate that X may range over {S, T }.

The grammar of terms and their formation rules are described in Figure 2.1. The first six
rules in Figure 2.1 are just the usual formation rules for a simply-typed lambda calculus with pair
types. Contexts are considered up to permutation and without repetition and all judgements
we consider are implicitly closed under weakening (which is important when adding constants).
The retX M term is used as an introduction rule for the monadic types and it allows us to see
the pure (i.e., non-effectful) computation described by the term M as a monadic one. The term
ιM allows us to view a central monadic computation as a monadic (not necessarily central)
one. Semantically, it corresponds to applying the ι submonad inclusion we saw in previous
sections. Finally, we have two terms for monadic sequencing that use the familiar do-notation.
The monadic sequencing of two central computations remains central, which is represented via
the doS terms; the doT terms are used for monadic sequencing of (not necessarily central)
computations.
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(Types) A,B ::= 1 | A→ B | A×B | SA | T A

(Terms) M,N ::= x | ∗ | λxA.M | MN | ⟨M,N⟩
| πiM | retS M | ιM | retT M
| doS x←M ; N | doT x←M ; N

Γ, x : A ⊢ x : A
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

Γ ⊢ ∗ : 1
Γ, x : A ⊢M : B

Γ ⊢ λxA.M : A→ B
Γ ⊢M : A1 × A2

Γ ⊢ πiM : Ai

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢ ⟨M,N⟩ : A×B

Γ ⊢M : A
Γ ⊢ retX M : XA

Γ ⊢M : SA
Γ ⊢ ιM : T A

Γ ⊢M : XA Γ, x : A ⊢ N : XB
Γ ⊢ doX x←M ; N : XB

Figure 2.1 – Grammars and formation rules.

2.5.2 Equational Theories of the Central Submonad Calculus

Next, we describe equational theories for our calculus. We follow the vocabulary and the
terminology in [MMDPR05] in order to formulate an appropriate notion of CSC-theory.

Definition 2.38 (CSC-theory). A CSC-theory is an extension of the Central Submonad Calcu-
lus (see §2.5.1) with new ground types, new term constants (which we assume are well-formed
in any context, including the empty one) and new equalities between types and between terms.

In a CSC-theory, we have four types of judgements: the judgement ⊢ A : type indicates
that A is a (simple) type; the judgement ⊢ A = B : type indicates that types A and B are
equal; the judgement Γ ⊢ M : A indicates that M is a well-formed term of type A in context
Γ, as usual; finally, the judgement Γ ⊢ M = N : A indicates that the two well-formed terms
M and N are equal.

Type judgements and term judgements are described in Figure 2.1 and type equality judge-
ments in Figure 2.2. Following the principle of judgemental equality, we add type conversion
rules in Figure 2.3. The rules in Figure 1.2 are the usual rules that describe the equational
theory of the simply-typed lambda calculus. As often done by many authors, we implicitly
identify terms that are α-equivalent. The rules for β-equivalence and η-equivalence are expli-
citly specified.

In Figure 2.4, we present the equational rules for monadic computation. The rules on the
first three lines – (ret.eq), (do.eq), (X .β), (X .η), (X .assoc) – axiomatise the structure of a
strong monad. Because of this, these rules are stated for both monads T and S. The rules
(ι.mono), (ιS.ret) and (ιS.comp) are used to axiomatise the structure of S as a submonad of T .
Intuitively, these rules can be understood as specifying that central monadic computations can
be seen as (general) monadic computations of the ambient monad T . The remainder of the rules
are used to axiomatise the behaviour of S as a central submonad of T . The rule (S.central)
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⊢ A : type

⊢ A = A : type

⊢ A = B : type

⊢ B = A : type

⊢ A = B : type ⊢ B = C : type

⊢ A = C : type

⊢ A = A′ : type ⊢ B = B′ : type

⊢ A×B = A′ ×B′ : type

⊢ A = A′ : type ⊢ B = B′ : type

⊢ A→ B = A′ → B′ : type

⊢ A = B : type

⊢ XA = XB : type

Figure 2.2 – Equational rules for types.

⊢ A = B : type ⊢ C = D : type Γ, x : A ⊢M : C

Γ, x : B ⊢M : D

⊢ A = B : type ⊢ C = D : type Γ, x : A ⊢M = N : C

Γ, x : B ⊢M = N : D

Figure 2.3 – Type conversion rules.

is undoubtedly the most important one, because it ensures that central computations commute
with any other (not necessarily central) computation when performing monadic sequencing with
the T monad.

Example 2.39. Let us consider an example of a CSC-theory. Given a monoid (M, e,m) we
now axiomatise the writer monad induced by M . A theory for this monad does not add any
new types, but it adds constants for each element c of M : Γ ⊢ actT (c) : T 1. In this specific
theory, we may think of the side-effect computed by monadic sequencing as being simply an
element of M . The term actT (c) can be understood as performing the monoid multiplication
on the right with argument c, i.e., it applies the function m(−, c) to whatever is the current
state of the program.

Let S be a submonoid of the centre Z(M) of M . This makes S a central submonoid of
M (this can be defined in a similar way to central subgroups). We enrich the theory with the
following constant and rule for each s in S:

Γ ⊢ actS(s) : S1 Γ ⊢ ι actS(s) = actT (s) : T 1

The application of retX is equivalent to acting on the monoid data with the neutral element:

Γ ⊢ retX ∗ = actX (e) : S1

Of course, the actions compose:

Γ ⊢M : XA
Γ ⊢ doX ∗ ← actX (c); doX ∗ ← actX (c

′); M
= doX ∗ ← actX (m(c, c′)); M : XA

where we have used some (hopefully obvious) syntactic sugar. We write TM to refer to this
theory.
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Γ ⊢M = N : A
Γ ⊢ retX M = retX N : XA (ret.eq)

Γ ⊢M =M ′ : XA Γ, x : A ⊢ N = N ′ : XB
Γ ⊢ doX x←M ; N = doX x←M ′; N ′ : XB (do.eq)

Γ ⊢M : A Γ, x : A ⊢ N : XB
Γ ⊢ doX x← retX M ; N = N [M/x] : XB (X .β) Γ ⊢M : XA

Γ ⊢ doX x←M ; retX x =M : XA (X .η)

Γ ⊢M : XA Γ ⊢ N : XB Γ, x : A, y : B ⊢ P : XC
Γ ⊢ doX y ← (doX x←M ; N); P = doX x←M ; doX y ← N ; P : XC (X .assoc)

Γ ⊢M : SA Γ ⊢ N : T B Γ, x : A, y : B ⊢ P : T C
Γ ⊢ doT x← ιM ; doT y ← N ; P = doT y ← N ; doT x← ιM ; P : T C (S.central)

Γ ⊢M = N : SA
Γ ⊢ ιM = ιN : T A (ι.mono) Γ ⊢M : A

Γ ⊢ ι retS M = retT M : T A (ιS.ret)

Γ ⊢M : SA Γ, x : A ⊢ N : SB
Γ ⊢ doT x← ιM ; ιN = ι doS x←M ; N : T B (ιS.comp)

Figure 2.4 – Equational rules for terms of monadic types of CSC.

Remark 2.40. As we have now seen, the equational theories of central submonads admit a
presentation that is similar in spirit to that of the simply-typed λ-calculus. However, that is
not the case with the centre of a strong monad. The reason is that the theory T can introduce
a central effect – one that commutes with all others – as a constant c that is not assigned
the type SA, but the type T A, for some A. However, the centre, being the largest central
submonad, must contain all such effects, so the constant c has to be equal to a term of the
form ιc′. One solution to this problem would be to use a more expressive logic and introduce a
rule as follows (writing inline because of space): given c : T A and x : A, y : B ⊢ P : T C, such
that ∀N : T B. ⊢ doT x ← c; doT y ← N ; P = doT y ← N ; doT x ← c; P : T C then
∃c′ : SA. ⊢ c = ιc′ : T A. However, the addition of such a rule seems unnecessary to prove our
main point and it increases the complexity of the logic. Because of this, our choice is to focus
on central submonads. Another reason to prefer central submonads over the centre is that they
are more general and it is not required to identify all central effects (which would be the case
for the centre). Overall, our choice for central submonads is motivated by the advantages they
provide in terms of generality, simplicity and practicality of their equational theories compared
to the centre.

Now that we have introduced theories, we explain how they can be translated into one
another in an appropriate way.

Definition 2.41 (CSC-translation). A translation V between two CSC-theories T and T′ is
a function that maps types of T to types of T′ and terms of T to terms of T′ that preserves
the provability of all type judgements, term judgements, type equality judgements and term
equality judgements. Moreover, such a translation is required to satisfy the following structural
requirements on types:

V (1) = 1 V (T A) = T V (A) V (SA) = SV (B)
V (A→ B) = V (A)→ V (B) V (A×B) = V (A)× V (B)
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and on terms:
V (∗) = ∗

V (λxA.M) = λxA.V (M) V (MN) = V (M)V (N)
V (⟨M,N⟩) = ⟨V (M), V (N)⟩ V (πiM) = πiV (M)
V (ιM) = ιV (M) V (retX M) = retX V (M)
V (doX x←M ; N) = doX x← V (M); V (N)

Remark 2.42. The above equations do not imply preservation of the relevant judgements for
constants. Because of this, the first part of the definition also is necessary.

Of course, it is easy to see that CSC-theories and CSC-translations form a category. How-
ever, in order to precisely state our main result, we have to consider the 2-categorical structure
of CSC-theories. Intuitively, we may view every CSC-theory as a category itself (with types as
objects and terms as morphisms) and every CSC-translation as a functor that strictly preserves
the relevant structure. Then, intuitively, an appropriate notion of a 2-morphism would be a
natural transformation between such functors. This is made precise (in non-categorical terms)
by our next definition.

Definition 2.43 (CSC-translation Transformation). Given two CSC-theories T and T′, and
two CSC-translations V and V ′ between them, a CSC-translation transformation α : V ⇒ V ′

is a type-indexed family of term judgements x : V (A) ⊢ αA : V ′(A) such that, for any valid
judgement x : A ⊢ f : B in T

x : V (A) ⊢ αB[V (f)/x] = V ′(f)[αA/x] : V
′(B)

also is derivable in T′.

Proposition 2.44. CSC-theories, CSC-translations and CSC-translation transformations
form a 2-category Th(CSC).

Proof. Direct with Definition 2.43.

2.5.3 Categorical Models of CSC

Now we describe what are the appropriate categorical models for providing a semantic
interpretation of our calculus.

Definition 2.45 (CSC-model). A CSC-model is a cartesian closed category C equipped with
both a strong monad T and a central submonad ST of T with submonad monomorphism
written as ιT : ST ⇒ T . We often use a quadruple (C, T ,ST , ιT ) to refer to a CSC-model.

We will soon show that CSC-models correspond to CSC-theories in a precise way. This
correspondence covers CSC-translations too and for this we introduce our next definition.

Definition 2.46 (CSC-model Morphism). Given two CSC-models (C, T ,ST , ιT ) and (D,M,SM, ιM),
a CSC-model morphism is a strict cartesian closed functor F : C → D that satisfies the fol-
lowing additional coherence properties:

F (T X) =M(FX) F (STX) = SM(FX)

FιTX = ιMFX FηTX = ηMFX

FµTX = µMFX FτTX,Y = τMFX,FY .
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Notice that a CSC-model morphism strictly preserves all of the relevant categorical struc-
ture. This is done on purpose so that we can establish an exact correspondence with CSC-
translations, which also strictly preserve the relevant structure. To match the notion of a
CSC-translation transformation, we just have to consider natural transformations between
CSC-model morphisms.

Proposition 2.47. CSC-models, CSC-model morphisms and natural transformations between
them form a 2-category Mod(CSC).

Proof. Direct.

2.5.4 Semantic Interpretation

Now we explain how to introduce a denotational semantics for our theories using our models.
An interpretation of a CSC-theory T in a CSC-model C is a function J−K that maps types
of T to objects of C and well-formed terms of T to morphisms of C. We provide the details
below.

For each ground type G, we assume there is an appropriate corresponding object JGK of
C. The remaining types are interpreted as objects in C as follows: J1K def

= 1; JA→ BK def
=

JBKJAK ; JA×BK def
= JAK × JBK ; JSAK def

= S JAK ; JT AK def
= T JAK . Variable contexts Γ =

x1 : A1 . . . xn : An are interpreted as usual as JΓK def
= JA1K× · · · × JAnK. Terms are interpreted

as morphisms JΓ ⊢M : AK : JΓK → JAK of C. When the context and the type of a term M

are understood, then we simply write JMK as a shorthand for JΓ ⊢M : AK. The interpretation
of term constants and the terms of the simply-typed λ-calculus is defined in the usual way
(details omitted). The interpretation of the monadic terms is given by:

JΓ ⊢ retX M : XAK = ηXJAK ◦ JMK

JΓ ⊢ ιM : T AK = ιJAK ◦ JMK

JΓ ⊢ doX x←M ; N : XBK = µXJBK ◦ X JNK ◦ τXJΓK,JAK ◦ ⟨id, JMK⟩

where we use X to range over T or its central submonad S.

Definition 2.48 (Soundness and Completeness). An interpretation J−K of a CSC-theory T in
a CSC-model C is said to be sound if for any type equality judgement ⊢ A = B : type in
T, we have that JAK = JBK in C, and for any equality judgement Γ ⊢ M = N : A in T,
we have that JΓ ⊢M : AK = JΓ ⊢ N : AK in C. An interpretation J−K is said to be complete
when ⊢ A = B : type iff JAK = JBK and Γ ⊢ M = N : A iff JΓ ⊢M : AK = JΓ ⊢ N : AK . If,
moreover, the interpretation is clear from context, then we may simply say that the model C
itself is sound and complete for the CSC-theory T.

Remark 2.49. There are different definitions of what constitutes a “model” in the literature.
For example, a “model” in [Cro94] corresponds to a sound interpretation in our sense.

Example 2.50. A categorical model for the CSC-theory TM of Example 2.39 is given by the
category Set together with the writer monad T def

= (− ×M) : Set → Set and the central
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submonad S def
= (−× S) : Set→ Set. More specifically, the monad data for T is given by:

ηA : A→ A×M :: a 7→ (a, e)

µA : (A×M)×M → A×M :: ((a, c), c′) 7→ (a,m(c, c′))

τA,B : A× (B ×M)→ (A×B)×M ::

(a, (b, c)) 7→ ((a, b), c)

and the monad data for S is defined in the same way by (co)restricting to the submonoid S.
The interpretation of the term constants is given by:

JΓ ⊢ actT (c) : T 1K : JΓK→ 1×M :: γ 7→ (∗, c)
JΓ ⊢ actS(c) : S1K : JΓK→ 1× S :: γ 7→ (∗, c)

This interpretation of the theory TM is sound and complete.

2.5.5 Equivalence between Theories and Models

Our final result in this chapter is to show that CSC-theories and CSC-models are strongly
related. To do this, we define the syntactic CSC-model S(T) of CSC-theory T, and the internal
language L(C) that maps a CSC-model C to its internal language viewed as a CSC-theory.
These two assignments give rise to our desired equivalence (Theorem 2.60).

The Syntactic CSC-model. Assume throughout the subsection that we are given a CSC-
theory T. We show how to construct a sound and complete model S(T) of T by building its
categorical data using the syntax provided by T.

Definition 2.51 (Syntactic Category). Let S(T) be the category whose objects are the types
of T modulo type equality, i.e., the objects are equivalence classes [A] of types with A′ ∈ [A]

iff ⊢ A′ = A : type in T. The morphisms S(T)([A], [B]) are equivalence classes of judgements
[x : A ⊢ f : B], where (x : A′ ⊢ f ′ : B′) ∈ [x : A ⊢ f : B] iff ⊢ A′ = A : type and
⊢ B′ = B : type and x : A ⊢ f = f ′ : B. Identities are given by [x : A ⊢ x : A] and composition
is defined by

[y : B ⊢ g : C] ◦ [x : A ⊢ f : B′] = [x : A ⊢ g[f/y] : C],

with B′ ∈ [B].

Lemma 2.52. The above definition is independent of the choice of representatives and
the syntactic category S(T) is a well-defined cartesian closed category.

Proof. Suppose given two morphisms f : A→ B, g : B → C, and a choice [x : A′ ⊢ f ′ : B′
f ] =

f and [y : B′
g ⊢ g′ : C ′] = g. Note that B = [B′

f ] = [B′
g], and in particular y : B′

f ⊢ g′ : C ′ is
derivable with [y : B′

g ⊢ g′ : C ′] = [y : B′
f ⊢ g′ : C ′]. Thus, x : A′ ⊢ g′[f ′/y] : C ′ is derivable.

We then prove that the choice [x : A′ ⊢ f ′ : B′
f ] = f and [y : B′

f ⊢ g′ : C ′] = g does not matter.
We consider now new term judgments for some terms f ′′ and g′′ such that [x : A′ ⊢ f ′ : B′

f ] =

[x : A′′ ⊢ f ′′ : B′′
f ] and [y : B′

f ⊢ g′ : C ′] = [y : B′′
f ⊢ g′′ : C ′′]. By definition, [A′] = [A′′],
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[B′
f ] = [B′′

f ] and [C ′] = [C ′′], and we wish to prove that [x : A′ ⊢ g′[f ′/y] : C ′] = [x : A′′ ⊢
g′′[f ′′/y] : C ′′].

Π2 =


x : A, y : B′ ⊢ g′ = g′′ : C ′

x : A′ ⊢ λyB
′
f .g′ = λyB

′′
f .g′′ : B′

f → C ′ x : A′ ⊢ f ′ = f ′′ : C ′

x : A′ ⊢ (λyB
′
f .g′)f ′ = (λyB

′′
f .g′′)f ′′ : C ′

(λ.eq)

Π1 =

 Π2

x : A′, y : B′′
f ⊢ g′′ : C ′ x : A′ ⊢ f ′′ : B′′

f

x : A′ ⊢ (λyB
′′
f .g′′)f ′′ = g′′[f ′′/y] : C ′

(λ.β)

x : A′ ⊢ (λyB
′
f .g′)f ′ = g′′[f ′′/y] : C ′

(trans)

x : A′, y : B′
f ⊢ g′ : C ′ x : A′ ⊢ f ′ : C ′

x : A′ ⊢ g′[f ′/y] = (λyB
′
f .g′)f ′ : C ′

(λ.β)
Π1

x : A′ ⊢ g′[f ′/y] = g′′[f ′′/y] : C ′ (trans)

Thus, it is safe to define g ◦ f as [x : A′ ⊢ g′[f ′/y] : C ′].
Given a choice of A′ in [A], [x : A′ ⊢ x : A′] is the identity morphism for the type [A].

Considering [x : A′ ⊢ f : B′] and [y : C ′ ⊢ g : A′], we have:

[x : A′ ⊢ f : B′] ◦ [x : A′ ⊢ x : A′] = [x : A′ ⊢ f [x/x] : B′] = [x : A′ ⊢ f : B′],

and
[x : A′ ⊢ x : A′] ◦ [y : C ′ ⊢ g : A′] = [y : C ′ ⊢ x[g/x] : A′] = [y : C ′ ⊢ g : A′].

One can notice that, for example, x : A′ ⊢ f : B′ has conveniently be chosen with the right
type A′. It is authorised, because we have proven above that the choice of representative does
not matter in composition matters.

The cartesian closure is a usual result for a syntactic category from a simply-typed λ-
calculus, and it is preserved in our context.

Remark 2.53. Note that by using Scott’s trick [Sco55] we can take quotients without having
to go up higher in the class hierarchy, so foundational issues can be avoided.

Lemma 2.54 ([AB23]). The following assignments:

T ([A]) = [T A]
T ([x : A ⊢ f : B]) = [y : T A ⊢ doT x← y; retT f : T B]

η[A] = [x : A ⊢ retT x : T A]
µ[A] = [x : T T A ⊢ doT y ← x; y : T A]

τ[A],[B] = [x : A× T B ⊢ doT y ← π2x; retT ⟨π1x, y⟩ : T (A×B)]

are independent of the choice of representatives and define a strong monad (T , η, µ, τ) on
S(T).

81



Lemma 2.55. In a similar way to Lemma 2.52, we can define a strong monad (S, ηS , µS , τS)
on S(T) by using the corresponding monadic primitives. Then, the assignment:

ι[A] = [x : SA ⊢ ιx : T A]

is independent of the choice of representative and gives a strong submonad monomorphism
ι : S ⇒ T that makes S a central submonad of T .

Proof. In all the following proofs, we consider convenient members of equivalence classes,
because the choice of representative does not change the result, thanks to Lemma 2.52.

We prove that ι is a submonad morphism:

ιA ◦ ηSA
def.
= [y : SA ⊢ ιy : T A] ◦ [x : A ⊢ retS x : SA]

comp.
= [x : A ⊢ ι retS x : T A]

(ιS.ret)
= [x : A ⊢ retT x : T A]
def.
= ηTA

µTA ◦ T ιA ◦ ιSA
def.
= [z : T T A ⊢ doT y ← z; y : T A]

◦ [y′ : T SA ⊢ doT x← y′; retT ιx : T T A] ◦ [x′ : SSA ⊢ ιx′ : T SA]
comp.
= [x′ : SSA ⊢ doT y ← (doT x← ιx′; retT ιx) ; y : T A]

(T .assoc)
= [x′ : SSA ⊢ doT x← ιx′; doT y ← retT ιx; y : T A]

(T .β)
= [x′ : SSA ⊢ doT x← ιx′; ιx : T A]

(ιS.comp)
= [x′ : SSA ⊢ ι doS x← x′; x : T A]

comp.
= [y : SA ⊢ ιy : T A] ◦ [x′ : SSA ⊢ doS x← x′; x : SA]
def.
= ιA ◦ µSA

ιA×B ◦ τSA,B
def.
= [x : S(A×B) ⊢ ιx : T (A×B)]

◦ [z : A× SB ⊢ doS y ← π2z; retS ⟨π1z, y⟩ : S(A×B)]
comp.
= [z : A× SB ⊢ ι (doS y ← π2z; retS ⟨π1z, y⟩) : T (A×B)]

(ιS.comp)
= [z : A× SB ⊢ doT y ← ι π2z; ι retS ⟨π1z, y⟩ : T (A×B)]

(ιS.ret)
= [z : A× SB ⊢ doT y ← ι π2z; retT ⟨π1z, y⟩ : T (A×B)]

(×.β)
= [z : A× SB ⊢ doT y ← π2⟨π1z, ιπ2z⟩; retT ⟨π1⟨π1z, ιπ2z⟩, y⟩ : T (A×B)]

comp.
= [x : A× T B ⊢ doT y ← π2x; retT ⟨π1x, y⟩ : T (A×B)]

◦ [z : A× SB ⊢ ⟨π1z, ιπ2z⟩ : A× T B]
def.
= τTA,B ◦ (A× ιB)

Moreover, ι is a monomorphism because of the (ι.mono) rule.
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Finally, Z is a central submonad of T :

dstA,B ◦ (ι× T B)
def.+comp.

= [z : SA× T B ⊢
doT x← (doT y ← ι π1z; retT (doT y′ ← π2z; retT ⟨y, y′⟩)) ; x : T (A×B)]

(T .assoc)
= [z : SA× T B ⊢

doT y ← ι π1z; doT x← retT (doT y′ ← π2z; retT ⟨y, y′⟩) ; x : T (A×B)]
(T .β)
= [z : SA× T B ⊢ doT y ← ι π1z; doT y′ ← π2z; retT ⟨y, y′⟩ : T (A×B)]

(S.central)
= [z : SA× T B ⊢ doT y′ ← π2z; doT y ← ι π1z; retT ⟨y, y′⟩ : T (A×B)]

(T .β)
= [z : SA× T B ⊢

doT y′ ← π2z; doT x← retT (doT y ← ι π1z; retT ⟨y, y′⟩) ; x : T (A×B)]
(T .assoc)

= [z : SA× T B ⊢
doT x← (doT y′ ← π2z; retT (doT y ← ι π1z; retT ⟨y, y′⟩)) ; x : T (A×B)]

comp.+def.
= dst′A,B ◦ (ι× T B)

Now we can prove our completeness result.

Theorem 2.56 (Completeness). The quadruple (S(T), T ,S, ι) is a sound and complete
CSC-model for the CSC-theory T.

Proof. There exists an (obvious) interpretation J−K of T into S(T) which follows the structure
outlined in §2.5.4. Standard arguments then show that Γ ⊢M = N : A in T iff JΓ ⊢M : AK =
JΓ ⊢ N : AK in S(T).

Remark 2.57. Note that the obvious canonical interpretation of T in S(T) is initial as one
may expect: any sound interpretation of T in a CSC-model C factorises uniquely through the
canonical interpretation via a CSC-model morphism.

Internal Language. With completeness proven, we now wish to establish an internal language
result.

Definition 2.58 (Internal Language). Given a CSC-model C, we define a CSC-theory L(C)

as follows:
• For each object A of C we add a ground type which we name A∗.
• Every ground type A∗ is interpreted in C by setting JA∗K def

= A. This uniquely determines
an interpretation on all types.

• If A and B are two (not necessarily ground) types, we add a type equality ⊢ A = B : type

iff JAK = JBK.
• For every morphism f : A → B in C, we add a term constant ⊢ cf : A∗ → B∗. Its

interpretation in C is defined to be Jcf K
def
= curry(f◦ ∼=): 1→ BA, i.e., it is defined by

currying the morphism f in the obvious way. This uniquely determines an interpretation
on all well-formed terms.

• New term equality axioms Γ ⊢M = N : B iff JΓ ⊢M : BK = JΓ ⊢ N : BK .
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Theorem 2.59. For any CSC-model C the above definition gives a well-defined CSC-
theory L(C). Moreover, the model C is sound and complete for L(C).

Proof. Well-definedness is straightforward and follows by a simple induction argument using
the fact that the semantic interpretation J−K defined in §2.5.4 is always sound. Completeness
is then immediate by the last condition in Definition 2.58.

Equivalence Theorem. Finally, we show that both the construction of the syntactic category
and the assignment of the internal language give rise to appropriate equivalences.

Theorem 2.60. The relationship between the internal language and the syntactic model
enjoys the following properties in the 2-categories Mod(CSC) and Th(CSC), respectively:

1. For any CSC-model C, we have that C ≃ SL(C), i.e., there exist CSC-model
morphisms F : C → SL(C) and G : SL(C) → C such that F ◦ G ∼= id and
id ∼= G ◦ F.

2. For any CSC-theory T, we have that T ≃ LS(T), i.e., there exist CSC-translations
V : T→ LS(T) and W : LS(T)→ T such that V ◦W ∼= id and id ∼=W ◦ V.

Proof. Given C an object of Mod(CSC), we wish to prove that C is equivalent to SL(C). To
do so, we introduce two strict cartesian closed functors F : C→ SL(C) and G : SL(C)→ C,
such that there are isomorphisms id⇒ GF and FG⇒ id.

• F maps an object A of C to [A∗]. It maps a morphism f : A→ B to [x : A∗ ⊢ cfx : B∗].
• G maps an object [A] to JAK, the interpretation of the type A in C, because the

choice of representative of [A] does not change the interpretation. G maps a morphism
[x : A ⊢ g : B] to Jx : A ⊢ g : BK.

Then it is easy to check that GF = id and FG = id. Therefore C is isomorphic to SL(C).
Furthermore, given a CSC-theory T, we wish to prove that T is equivalent to LS(T). To do
so, we introduce two CSC-translations V : T → LS(T) and W : LS(T) → T such that there
are isomorphic CSC-translation transformations VW ⇒ id and id⇒WV .

• V maps a type A in T to [A]∗, and term judgements x : A ⊢ f : B to x : [A]∗ ⊢
c[x : A⊢f : B]x : [B]∗.

• Observe that for each type A in LS(T), there is a type of the form [B]∗ such that
⊢ A = [B]∗ : type in LS(T). We define W (A)

def
= B (the choice of B does not matter).

Then, for term constants we define W (⊢ c[x : A⊢f : B] : B
∗)

def
= (⊢ λx.f : A → B) and

this uniquely determines the action of W on the remaining terms (the choice of f does
not matter).

Given a type A in T, x : W (V (A)) ⊢ x : A is derivable in T because ⊢ W (V (A)) = A : type,
and αA : x : W (V (A)) ⊢ x : A defines an isomorphic CSC-translation transformation: post-
composing (resp. composing) it with x : A ⊢ x : W (V (A)) gives x : W (V (A)) ⊢ x : W (V (A))

(resp. x : A ⊢ x : A). Given a type A′ in LS(T), the same is true for βA′ = x : A′ ⊢
x : V (W (A′)). Thus, for every CSC-theory, T is equivalent to LS(T).

Remark 2.61. We introduced type equalities so that we can prove Theorem 2.60. This is also the
approach taken in [MMDPR05] and without this, technical difficulties arise. Theory translations
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are defined strictly (up to equality, not up to isomorphism) and in order to match this with
the corresponding notion of model morphism, we use type equalities. Without type equalities,
the symmetry within Theorem 2.60 can only be established if we make further changes. One
potential solution would be to weaken the notion of theory translation by requiring that it
preserves types up to type isomorphism (i.e., make it strong instead of strict), but this is
technically cumbersome.

2.6 Conclusion and Future Work

We showed that, under some mild assumptions, strong monads indeed admit a centre,
which is a commutative submonad, and we provided three equivalent characterisations for the
existence of this centre (Theorem 2.11) which also establish important links to the theory of
premonoidal categories. In particular, every (canonically strong) monad on Set is centralisable
(§2.2.1) and we showed that the same is true for many other categories of interest (§2.3.1) and
we identified specific monads with interesting centres (§2.3.2). More generally, we considered
central submonads and we provided a computational interpretation of our ideas (§2.5) which
has the added benefit of allowing us to easily keep track of which monadic operations are
central, i.e., which effectful operations commute under monadic sequencing with any other
(not necessarily central) effectful operation. We cemented our semantics by proving soundness,
completeness and internal language results.

One direction for future work is to consider a theory of commutants or centralisers for
monads (in the spirit of [Luc18, GF16]) and to develop a computational interpretation with
the expected properties (soundness, completeness and internal language). Another opportunity
for future work includes studying the relationship between the centres of strong monads and
distributive laws. In particular, given two strong monads and a strong/commutative distributive
law between them, can we show that the distributive law also holds for their centres (or for some
central submonads)? If so, this would allow us to use the distributive law to combine not just
the original monads, but their centres/central submonads as well. Moreover, the interaction of
the centre with operations on monadic theories can be investigated.

Our definition of central submonads makes essential use of the notion of monomorphism
of strong monads. Another possibility for future work is to investigate an alternative approach
where we consider an appropriate class of factorisation systems instead of monomorphisms to
define central submonads. Yet another possibility for future work is to investigate if central
submonads of a given strong monad have some interesting poset structure.

A natural generalisation of monads is the notion of arrows – or strong promonads. A
promonad is a monoid in the category of profunctors, and profunctors are to functors what
relations are to functions. Arrows give then a more general framework to study computational
effects, and are particularly meaningful for effects in reversible computing [ASvW+05, HKK18a].
A final direction for future work is the study of equational theories and internal language for
arrows.
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Chapter 3
Simply-typed Quantum Control

“Okay, this is a quantum computer, right? We barely know how
it works, it’s basically magic.” — Black Mirror, S06E01.

Abstract

Quantum control is a recent notion in the literature, and many of
its facets are still poorly understood, especially in terms of program-
ming languages. Our goal is to build up solid foundations for the
study of quantum control, syntactically and semantically. We provide
syntax and semantics for a simply-typed calculus based on pattern-
matching, developed to represent quantum reversible operations, and
quantum control is ensured with the help of a quantum algebraic ef-
fect. To enforce reversibility, a syntactic notion of orthonormal basis
is introduced, called here orthogonal decomposition. A denotational
semantics and an equational theory are developed, and we prove that
the former is complete with regard to the latter.

References. This work has been the focus of many conversations
between Kostia Chardonnet, Robin Kaarsgaard, Benoît Valiron and
the author. It has then been enriched for a paper coauthored with
Kinnari Dave, Romain Péchoux and Vladimir Zamdzhiev, where this
language aimed at quantum control is intergrated in a larger language,
that also handles classical control. That paper is under submission.

3.1 Introduction

Quantum superposition is an important computational resource that is utilised by many
quantum algorithms and protocols. Therefore, when designing quantum programming lan-
guages and quantum type systems, it is natural to consider how to introduce quantum super-
position into the languages and systems under consideration. One approach, that we investigate
in this chapter, aims to introduce quantum superposition as a principal feature of the language.
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That is, we provide language features that allow us to form superpositions of terms (i.e. pro-
grams) in the language. In particular, instead of adopting a gate-level view of quantum com-
putation, wherein the computational process is described through a series of low-level atomic
gates, we take an approach that allows us to abstract away from such details and that allows
us to focus on the linear-algebraic structure of the computation.

Quantum computing embodies several types of operations. The principal operations are the
unitary maps, which are reversible transformations of quantum states – e.g., when working with
quantum circuits, quantum gates are reversible. State preparation is another kind of operation,
that initialises one or several qubits. Finally, measurement breaks quantum superposition to
obtain a classical result with a certain probability. For example, when measuring a quantum bit
α |0⟩+ β |1⟩, the output can be 0 with probability |α|2 and 1 with probability |β|2. It is known
that, in the design of a quantum program, measurement can be deferred to the end of the
execution [Cro12, NC10]. Using this principle of deferred measurement, each program is then
divided into two separate parts: the first is entirely reversible, followed by a measurement at the
end. It is then sensible to focus on reversible programming to design a quantum programming
language.

The idea of reversible computation comes from Landauer and Bennett [Lan61, Ben73]
with the analysis of its expressivity, and the relationship between irreversible computing and
dissipation of energy. This leads to an interest in reversible computation [Ben00, ACG+20], both
with a low-level approach [Car12, WSSD16, SM13], and from a high-level perspective [Lut86,
YG07, YAG16, JS12, JS14, SVV18, YAG12, TA15, JKT18].

Reversible programming lies on the latter side of the spectrum, and two main approaches
have been followed. Embodied by Janus [Lut86, YG07, Yok10, YAG16] and later R-CORE
and R-WHILE [GKY19], the first one focuses on imperative languages whose control flow is
inherently reversible – the main issue with this aspect being tests and loops. The other ap-
proach is concerned with the design of functional languages with structured data and related
case-analysis, or pattern-matching [YAG12, TA15, JS14, SVV18, JKT18]. To ensure revers-
ibility, strong constraints have to be established on the pattern-matching in order to maintain
reversibility.

Those developments were utilised to introduce a programming language aimed at reversible
quantum programming [SVV18], which is the work this chapter builds upon. The goal of that
paper is more specific: it aims to formalise a programming language that performs quantum
control. Quantum control, as opposed to classical control, is the ability to realise the control
schemes – such as if statements or while loops – with quantum data, which means, a superpos-
ition of states. Informally, one can say that quantum control is allowing not only superposition
of states, but also superposition of programs. A practical example of quantum control is the
quantum switch [CDPV13], which works as follows: given two quantum states x and y, and
two unitary operations U, V , the quantum switch performs the operation UV on |y⟩ when x is
in the state |0⟩, and V U when x is in the state |1⟩. In general, the obtained operation sends the
state (α |0⟩+β |1⟩)⊗|y⟩ to α |0⟩⊗ (UV |y⟩)+β |1⟩⊗ (V U |y⟩). Besides being mathematically
feasible, the quantum switch is also doable in a lab [PMA+14, RRF+17].

The literature on quantum control is fairly recent, because it was thought to be not feasible
in a realistic quantum computer. Since the introduction of the quantum switch, quantum
control is starting to be studied with a programming language point of view [SVV18, VLRH23,
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AM22, DCHPS23]. In some cases, the presentation lacks a proper denotational study; in some
others, it lacks an operational account. One can summarise by saying that quantum control in
programming languages lacks solid foundations, as much syntactically as mathematically. The
work in this chapter is an early attempt to resolve this issue.

3.1.1 Related work

Reversible computation. Two successive papers [CLV21, CLV23] – that are also the focus
of the next chapter – provide a categorical semantics of a reversible programming language
based on Theseus. That language is closely related to the one presented in our work, however
it only handles reversibility on classical data. More generally, [KAG17] details the structure of
inverse categories used to interpret reversible programming. However, a category interpreting a
quantum programming language also has to take into account quantum states, usually repres-
ented by isometries; this is why it makes sense to work with contractive maps as morphisms.
The category with Hilbert spaces as objects and contraction as morphisms is not an inverse
category. This shows that the work on classical reversible programming languages cannot be
applied to our goal. Furthermore, reversible quantum programming is not a monadic effect over
reversible programming: the sensible way of going from an inverse category to Hilbert spaces
is the functor ℓ2 [Heu13], which is not an adjoint functor, and thus cannot provide a monad.

Quantum control. Our work is based on the paper of Sabry, Valiron and Vizzotto [SVV18]
where a functional reversible programming language is introduced and extended to a quantum
programming language handling quantum control with recursive functions over lists. However,
the denotational semantics given in that paper is not compositional, nor it is proven sound, nor
adequate with regard to the operational semantics. In general, that paper lays out great ideas
on how to work with quantum control, but with few proven statements. This chapter aims to
provide stronger foundations, syntactical and mathematical. This will hopefully help tackle the
question of the denotational semantics of quantum structural recursion, as introduced in the
paper cited.

PUNQ [DCHPS23] is a programming language which is close to ours in some aspects: it
relies on a notion of orthogonality between terms to form linear combinations, and its goal is
to work with unitaries, to ensure quantum control. There are some differences: its design is
based on linear logic and is closer to a linear λ-calculus; the base type is the one of bits – which
is quickly generalised to qubits –, even the authors still work with a specific basis, while one
would expect that working with qubits directly solves this issue (see discussion in §3.6). Finally,
to ensure normalisation of well-typed terms, the authors introduce an orthogonality predicate,
akin to one in [SVV18] and in this chapter. However, the former requires that the terms are
computed to check whether they are orthogonal. This means that the type checking is not
static, and therefore not necessarily efficient.

Similarly, there are many approaches to quantum control, but that do not ensure unit-
arity of operations, usually related to the λ-calculus [DCM22b, DCM22a, DCGMV19, AG05,
CdVVV22]. These developments set themselves in the long list of papers revolving around al-
gebraic λ-calculi [ADCV17, AD17, Vau09, SV09]. Alejandro Díaz-Caro has written a nice paper
on that topic [DC22]. Note that these approaches struggle to scale to infinite dimensions.
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Other programming languages handling quantum control have been introduced, such as
Qunity [VLRH23]. Qunity is based on reversible pattern-matching [SVV18], like this chapter.
However, Qunity assumes built-in unitary operations, and has then λ-abstractions that are not
proven to be unitary operations. This last point is tackled with an error handling scheme,
which does not appear to be suitable, and there is no semantics to show how this scheme would
behave operationally.

3.1.2 Contribution

We provide a reversible programming language with simple types, inspired by the direct
sum and tensor product of vector spaces, and natural numbers, to show that it is possible
to work with infinite data types. This language relies on an orthogonality notion between
values to define linear combinations of values to represent quantum superposition. A notion
of orthonormal basis in the syntax is introduced, which helps prove that the abstractions are
unitary operations.

Regarding the syntax, the presentation has been improved, some lemmas were fixed com-
pared to previous presentations [SVV18, Cha23], and many more lemmas have been proven
concerning the orthogonal decomposition.

This chapter is organised as follows: the first section (see §3.2) outlines the syntax of
the language (see Figure 3.1, the grammar of terms, their typing rules, utilising orthogonality
(see Definition 3.3) and orthogonal decomposition (see Definition 3.14). Then, substitutions
are introduced (§3.2.3), described in a way that fits the language, allowing us to write our
equivalent of β-reduction in a comprehensible manner. We then introduce an equational theory
(§3.3.1), in the vein of the equational theory of the simply-typed λ-calculus, and we prove
that it verifies a normalisation property. A later section (§3.4) is dedicated to introducing the
mathematical notions and definition required to establish the denotational semantics, given in
§3.5. Finally, we prove completeness of the denotational semantics with regard to this equational
theory (§3.5.2).

3.1.3 Work of the author

Within this chapter, the author has contributed to the following points.
• A new kind of linear combinations of terms, which is more fit to ensure normalisation

(see Figure 3.1). This required the further development of the type system with different
conditions than are already present in the literature.

• A new definition of orthogonality (see Definition 3.3), close to the ones in [SVV18,
Cha23, CLV21, CLV23, CSV23], but it fits a larger collection of terms of the language,
including linear combinations and function application.

• Formalised well-formed substitutions (see Definition 3.25), to help the denotational se-
mantics.

• An equational theory for the language (see §3.3.1), establishing stronger foundations
to quantum control than in [SVV18] where there is a mix of equations and operational
semantics.
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• A compositional denotational semantics (see §3.5), which is sound and complete with
regard to the equational theory.

3.2 The Language

In this section, we present the syntax of the programming language studied in this chapter
dedicated to simply-typed quantum control. The quantum aspect of the language is provided
as an algebraic effect with the introduction of linear combinations with the combinator Σ.

3.2.1 Syntax of the Language

(Ground types) A,B ::= I | A⊕B | A⊗B | Nat
(Unitary types) T ::= A↔ B

(Basis Values) b ::= ∗ | x | injl b | injr b | b⊗ b | zero | S b
(Values) v ::= Σi∈I(αi · bi)
(Expressions) e ::= ∗ | x | injl e | injr e | e⊗ e | zero | S e

| Σi∈I(αi · ei)
(Unitaries) ω ::= { | b1 ↔ e1 | . . . | bn ↔ en }

| ω ⊗ ω | ω ⊕ ω | ω ◦ ω | ω−1 | ctrl ω
(Terms) t ::= ∗ | x | injl t | injr t | t⊗ t | zero | S t

| ω t | Σi∈I(αi · ti)

Figure 3.1 – Syntax of simply-typed quantum control.

The syntax of the programming language studied in this chapter is described in a usual
way, with grammars, such as the ones in Chapter 1 (see the grammars for the simply-typed
λ-calculus in (1.1) and (1.2)). It is given in Figure 3.1.

Types. The ground types are given by a unit type I and the usual connectives ⊕ and ⊗, which
are respectively called direct sum and tensor product. We also have the inductive type Nat,
as a witness that it is possible to work with infinite data types, and thus infinite-dimensional
spaces in the model. We equip functions, called unitaries in this chapter, with a separate type,
written A↔ B when A and B are two ground types. This double arrow notation is inherited
from [SVV18], as a way of picturing that the operations are indeed reversible.

Terms. The terms of the language are given as follows:
• variables x, y, z, . . . , given as elements of a set of variables Var, assumed to be totally

ordered;
• a term ∗ called the unit corresponding to the unit type I;
• usual connectives for the direct sum, injl and injr which are respectively called the

left injector and right injector ;
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• a connective corresponding to the tensor product, that is also written ⊗;
• terms for natural numbers, zero and the connective S that gives the successor of a term;
• the application of a unitary to a term, written ω t when ω is a unitary and t a term;
• finally, given a finite set of indices I – which could be a finite set of numbers {0, 1, 2, . . . , n}

–, assumed to be totally ordered, a family of complex numbers (αi)i∈I and a family of
terms (ti)i∈I , one can form the term Σ(I, (αi)i, (ti)i), representing the linear combin-
ation of the terms with complex scalars. This last term construction embodies the
quantum effect of the language. In the rest of the chapter, we write Σi∈I(αi · ti) for
Σ(I, (αi)i, (ti)i) to make it more readable.

In quantum theory, a linear combination of vectors
∑

i∈I αi |i⟩ is normalised if
∑

i∈I |αi|2 = 1.
The family of real numbers (|αi|2)i∈I is then seen as a probability distribution. This work
does not focus on the probabilistic aspect of quantum theory; however, we want to work with
well-formed states, and thus normalised states. This is why we ensure later that a linear
combination of terms is normalised. Throughout the chapter, a term Σi∈{1,2}(αi · ti) might be
written α1 · t1 + α2 · t2, regarded as syntactic sugar. In some examples, a term Σi∈{∗}1 · t can
be written 1 · t or even t for readability; but note that Σi∈{∗}1 · t and t are different terms in
the syntax.

Remark 3.1. Since we are working with a programming language which handles complex num-
bers, we might want to ensure that the complex numbers are computable [Tur37]; this is not a
terrible assumption, since the set of computable complex numbers keeps the structure of a field
[Ric54]. However, we do not wish to focus on this point; we then assume that we work with
complex numbers achievable in a given quantum hardware, and that those still form a field.

The terms that are unitary-free – in the sense that they do not contain any function
application – and that do not involve linear combinations are called basis values. These terms
are naturally classical, as opposed to quantum. Their name comes from the fact that we use
them as a syntactic representation of the canonical basis of a Hilbert space, as introduced in
§1.4.3. Note that basis values are totally ordered.

Values, on the other hand, are linear combinations of basis values. In a value
∑

i∈I(αi · bi),
we assume that the family (bi)i∈I is an increasing sequence, and that none of the scalars are
equal to 0; this allows us to work with unique normal forms later in the chapter. Since this
definition is restrictive, we need to introduce a more general piece of syntax, which still does
not include unitary application, called an expression. They are used as outputs of functions,
that we introduce below.

Example 3.2 (Qubits). In our presentation, the type of qubits is I ⊕ I. The term injl ∗
represents the quantum state |0⟩ and injr ∗, the other element of the canonical basis |1⟩. The
general state of a qubit is given by the term α · (injl ∗)+β · (injr ∗).This type I⊕I can also
be seen as the type of quantum booleans. The basis value injl ∗ represents false and injr ∗,
true.

Unitaries. Unitaries are firstly obtained by what we call unitary abstractions, written as a set
of clauses { | b1 ↔ e1 | . . . | bn ↔ en } or { | bi ↔ ei }i∈I , given a family of basis values and
a family of expressions, both indexed by a set I. We will see that several conditions have to
be verified to ensure that this unitary actually performs a unitary operation (in other words,
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a reversible operation between normalised states). The grammar for unitaries also contains
operations such as the direct sum ⊕, the tensor product ⊗, the inverse (−)−1 and the qubit
control ctrl . These operations can be seen as syntactic sugar, since they can all be performed
within unitary abstractions. Their presence in the grammar is an instance of operations at the
level of unitaries, which are at a higher order than the operations at the ground level. We
will see in the next chapter that, provided some conditions, any calculus can be put on top of
unitaries.

Unitary abstractions can be seen as a mix of λ-abstractions and pattern-matching; the
latter is sometimes written case or match in a functional programming language. We give
some examples to make this intuition clearer.

{| x↔ x} {| x⊗ y ↔ y ⊗ x}
{
| injl x ↔ injr x
| injr y ↔ injl y

}
(3.1)

The example on the left performs the identity; the one in the middle swaps the two elements of
a tensor product; and the last one swaps the two parts of a direct sum. Part of the conditions
for a unitary abstraction to be well-typed, is to have the same variables on each side of a clause.
This is verified by the examples above. We will see that all three examples are well-typed, with
the typing rules described in the next section. Note that, in those examples, the terms on the
right-hand side of the abstraction should be values, in the form of a sum. We have simplified
notations here, because the sum would involve only one element.

A simple example that involves quantum superposition is the following:{
| injl ∗ ↔ 1√

2
· (injl ∗) + 1√

2
· (injr ∗)

| injr ∗ ↔ 1√
2
· (injl ∗)− 1√

2
· (injr ∗)

}
which operates the well-known Hadamard operator on a qubit, given below.(

1√
2

1√
2

1√
2
− 1√

2

)
(3.2)

This operation is significant in quantum computing: it is the one that allows one to introduce
quantum superposition in a system, as well as entanglement, when followed by a controlled not
operator. The Hadamard operator performs a change of basis. It is an important notion in
linear algebra, and is an equally important notion in this chapter, where unitary abstractions
are precisely defined as a change between two bases; the latter are introduced syntactically, and
are more general than linear algebraic bases.

3.2.2 Types and Typing Rules

As usual, a typing context consists of a set of pairs of a variable and a type, written ∆ and
generated by ∆ ::= ∅ | {x : A} ∪ ∆. A comma between two contexts represents the union
of the contexts, i.e. ∆,∆′ = ∆ ∪∆′. The variables in a context ∆ need to be all different to
one another. We have two levels of judgements: the one for terms, where sequents are written
∆ ⊢ t : A and a typing judgement for isos, noted ⊢ω ω : A↔ B. Variables in a context ∆ are
strictly linear: given ∆ ⊢ t : A, every element of ∆ has to occur exactly once in the term t.
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Orthogonality. We have seen in §1.4.3 that a quantum state has to be normalised. The
first focus of this section to ensure normalisation through the type system. Let us recall
that, in quantum computing, there are two necessary conditions for a superposition of states
α |φ⟩ + β |ψ⟩ to be normalised. The first one is concerned with the probability distribution
condition, |α|2 + |β|2 = 1. Secondly, the vectors |φ⟩ and |ψ⟩ need to be orthogonal. Indeed,
the following vector:

1√
2
|0⟩+ 1√

2
|0⟩ =

√
2 |0⟩

is not normalised. Therefore, its corresponding term

1√
2
· (injl ∗) +

1√
2
· (injl ∗)

should not be accepted by our type system. To do so, we introduce a notion of orthogonality
for terms in our syntax (see Definition 3.3), in order to express later a typing rule ensuring
normalisation.

Our orthogonality predicate is primarily based on direct sums and injections. Given two
Hilbert spaces H1 and H2 and vectors x1 ∈ H1 and x2 ∈ H2, their respective injections into
H1⊕H2, namely (x1, 0) and (0, x2), are orthogonal. Therefore, given two terms t1 and t2, we
fix that their respective projections injl t1 and injr t2 are orthogonal.

Our orthogonality predicate is then generalised on all terms through congruence rules. The
final rule presented in Definition 3.3 outlines the orthogonality obtained with a change of basis.
For example, in the Hilbert space C2, the two vectors:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ and |−⟩ = 1√

2
|0⟩ − 1√

2
|1⟩

are orthogonal.
In the next definition, we introduce the predicate of orthogonality, written ⊥. In particular,

it means that given t1 ⊥ t2, a normalised linear combination of the two terms can be formed.

Definition 3.3 (Orthogonality). We introduce a symmetric binary relation ⊥ on terms. Given
two terms t1, t2, we have t1 ⊥ t2 if it can be derived inductively with the rules below; when
t1 ⊥ t2 can be derived, we say that t1 and t2 are orthogonal. The relation ⊥ is defined as the
smallest symmetric relation such that:

injl t1 ⊥ injr t2 zero ⊥ S t
t1 ⊥ t2

S t1 ⊥ S t2

t1 ⊥ t2
t⊗ t1 ⊥ t′ ⊗ t2

t1 ⊥ t2
t1 ⊗ t ⊥ t2 ⊗ t′

t1 ⊥ t2
injl t1 ⊥ injl t2

t1 ⊥ t2
injr t1 ⊥ injr t2

t1 ⊥ t2
ω t1 ⊥ ω t2

∀i ∈ I, t ⊥ ti
t ⊥ Σi∈I(αi · ti)

(⋆)

∀i ∈ I, t ⊥ ti α∗ = 0 t∗ = t

t ⊥ Σi∈I∪{∗}(αi · ti)
∀i ̸= j ∈ I, ti ⊥ tj J,K ⊆ I

∑
i∈J∩K ᾱiβi = 0

Σj∈J(αj · tj) ⊥ Σk∈K(βk · tk)
(⋆)

Remark 3.4. Among the two inference rules marked by a ⋆ above, it could seem like the last
one implies the first one. However, we remind that Σ is a contructor, and therefore t and
Σj∈J(αj · tj) are distinct cases of the grammar.
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Remark 3.5 (Orthogonality of variables). Given two variables x and y, the terms x and y are
not orthogonal. The main reason is that they could be instantiated with the same value. On
the other hand, injl x and injr y are orthogonal, for example.

Remark 3.6. We recall the third unitary presented in (3.1), which swaps injl and injr :{
| injl x ↔ injr x
| injr y ↔ injl y

}
and we call this unitary ω. The term ω (injl ∗) represents the application of the unitary ω
to injl ∗. We later show within our equational theory (see §3.3), that the terms ω (injl ∗)
and injr ∗ are equal, as expected. However, we cannot derive that ω (injl ∗) and injl ∗ are
orthogonal with the rules of orthogonality given above (see Definition 3.3), even if injl ∗ and
injr ∗ are orthogonal. This is because we wish to be able to derive orthogonality statically.

Lemma 3.7. If t ⊥ t′, then t and t′ are different terms.

Note that orthogonality holds without any typing rules or notion of type. Figure 3.2 intro-
duces the typing rules for expressions, and therefore for basis values and values, thanks to the
notion of orthogonality.

∅ ⊢ ∗ : I, x : A ⊢ x : A,
∆1 ⊢ e1 : A ∆2 ⊢ e2 : B
∆1,∆2 ⊢ e1 ⊗ e2 : A⊗B,

∆ ⊢ e : A
∆ ⊢ injl e : A⊕B,

∆ ⊢ e : B
∆ ⊢ injr e : A⊕B,

⊢ zero : Nat,
∆ ⊢ e : Nat

∆ ⊢ S e : Nat,

∆ ⊢ ei : A Σi |αi|2 = 1 ∀i ̸= j, ei ⊥ ej
∆ ⊢ Σi(αi · ei) : A.

Figure 3.2 – Typing rules of (basis) values and expressions.

Once we know how basis values are formed in a certain type, we can discuss some orthogon-
ality properties among specific types. In linear algebra, given a vector space and an orthogonal
basis B of that space, if two elements of the basis are not orthogonal, then they are equal. Our
case is more subtle, because, for example, injr (injl ∗) and injr x are not equal, but also
not orthogonal. We will see, later in this chapter, that they are linked by substitution.

Example 3.8. The values injl ∗ and injr ∗ are orthogonal, but of course, they are both not
orthogonal to 1√

2
· (injl ∗)− 1√

2
· (injr ∗).

Orthogonal decomposition. This motivates a syntactic definition for a basis, containing
expressions of the language. Given a set of orthogonal expressions, we want to ensure that this
set spans the whole type, so that it can be seen as an orthonormal basis. This is given by the
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notion of orthogonal decomposition. We first introduce this notion in Definition 3.9 with basis
values only, and we then extend it to expressions in general in Definition 3.14.

Before outlying the definitions of orthogonal decompositions, we introduce some notations.
Given a set S = {e1 ⊗ e′1, . . . , en ⊗ e′m}, we define π1(S) = {e1, . . . , en} and π2(S) =

{e′1, . . . , e′m}. Finally, we define S1
e and S2

e respectively as {e′ | e⊗e′ ∈ S} and {e′ | e′⊗e ∈
S}.

Definition 3.9 (Orthogonal Decomposition). We introduce a predicate ODA(−) on finite sets
of basis values. Given a finite set of values S, ODAS holds if it can be derived with the following
rules. The predicate is defined inductively as the smallest predicate such that:

ODA({x}) ODI({∗})
ODAS ODBT

ODA⊕B({injl s | s ∈ S} ∪ {injr t | t ∈ T})

ODNatS

ODNat({zero} ∪ {S s | s ∈ S})
ODB(π2(S)) and ∀b ∈ π2(S),ODA(S

2
b )

ODA⊗BS

ODA(π1(S)) and ∀b ∈ π1(S),ODB(S
1
b )

ODA⊗BS

To simplify the notations in coming proofs, we will write S ⊞ T for the set {injl s | s ∈
S} ∪ {injr t | t ∈ T}, and S⊕0 for the set {zero} ∪ {S s | s ∈ S}. We adopt functional
programming convention regarding parentheses: when readable, we write ODAS instead of
ODA(S). Also, we call OD the predicate introduced above in general, without precision of
type, to facilitate the later discussions.

Example 3.10. Following Example 3.2, we have ODI⊕I{injl ∗, injr ∗}. The two qubits |0⟩
and |1⟩ are indeed an orthonormal basis for qubit states.

Remark 3.11. Note that the precondition to derive ODA⊗BS cannot be simplified: there are
sets S such that ODA(π1(S)) and for all b ∈ π1(S), ODB(S

1
b ) but not all b ∈ π2(S) is such

that ODB(S
2
b ), e.g. S = {(injl ∗) ⊗ y, (injr x) ⊗ (injl ∗), (injr x) ⊗ (injr ∗)} with the

type (I⊕ (I⊕ I))⊗ (I⊗ I).

Example 3.12. Given any type A, we have ODA{x}, where x is a variable. Since it is a
variable, it can be substituted with any terms of type A, therefore it parses the whole type.
We make precise the notion of subsitution for our syntax in §3.2.3.

Example 3.13. We have ODNat{zero, S zero, S S x}. Indeed, any closed basis value of type
Nat is either zero, or S zero, or S S b.

The predicate ODA defined above ensures that a finite set S of values represents an or-
thonormal basis of A, that we can view as the canonical basis. Note that even for Nat, the set
representing the basis is finite, e.g. {zero, S zero, S (S x)}. With knowledge of linear algebra,
one can say that the bases represented by OD are not all the possible orthonormal bases. A
change of basis through a unitary matrix also provides an orthonormal basis. This is the purpose
of the next definition.
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Definition 3.14. We extend the previous definition to general values. ODext
A (−) is a predicate

on finite sets of values, and ODext
A S holds if it can be derived from the following rule.

ODext
A ({x}) ODext

I ({∗})
ODext

A S ODext
B T

ODext
A⊕B({injl e | e ∈ S} ∪ {injr e | e ∈ T})

ODext
NatS

ODext
Nat({zero} ∪ {S v | v ∈ S})

ODext
B (π2(S)) and ∀e ∈ π2(S),ODext

A (S2
e )

ODext
A⊗BS

ODext
A (π1(S)) and ∀e ∈ π1(S),ODext

B (S1
e )

ODext
A⊗BS

ODext
A S (αe,e′)(e,e′)∈S×S is a unitary matrix

ODext
A ({Σe′∈S(αe,e′ · e′) | e ∈ S})

Given ODext
A S, we say that S is an orthogonal decomposition of type A.

To simplify notations, we write Sα for the set {Σe′∈S(αe,e′ · e′) | e ∈ S}.

Example 3.15. Following Example 3.2, we have

ODext
I⊕I

{
1√
2
· injl ∗+

1√
2
· injr ∗,

1√
2
· injl ∗ −

1√
2
· injr ∗

}
.

The two qubits |+⟩ and |−⟩ are indeed an orthonormal basis for qubit states.

Example 3.16. Following Example 3.13 and the previous example, we have:

ODext
Nat

{
1√
2
zero+

1√
2
(S zero),

1√
2
zero− 1√

2
(S zero), S S x

}
.

The predicate OD is defined without the help of orthogonality (see Definition 3.3), but there
is a link: the elements of an orthogonal decomposition, are in particular pairwise orthogonal.

Lemma 3.17 (OD implies ⊥). Given ODext
A S, for all t1 ̸= t2 ∈ S, t1 ⊥ t2.

Proof. The proof is done by induction on OD.
• ODext

A {x}. There is no pair of different terms in {x}.
• ODext

I {∗}. There is no pair of different terms in {∗}.
• ODext

A⊕BS ⊞ T . There are several cases: either both terms are of the form injl −,
namely t1 = injl t

′
1 and t2 = injl t

′
2, with t′1 and t′2 in S, in which case the induction

hypothesis on ODext
A S gives that t′1 ⊥ t′2, and thus injl t

′
1 ⊥ injl t

′
2; or both are of the

injr −, the case is similar with the induction hypothesis on ODext
B T ; or t1 = injl t

′
1

and t2 = injr t
′
2, then we have directly injl t

′
1 ⊥ injr t

′
2.

• ODext
A⊗BS. Both cases are similar. Suppose that ODext

A π1(S). We know that t1 = t′1⊗t′′1
and t′2 ⊗ t′′2. The induction hypothesis on ODext

A π1(S) gives that t′1 ⊥ t′2 and thus
t′1 ⊗ t′′1 ⊥ t′2 ⊗ t′′2.

• ODext
NatS

⊕0. If one of t1 or t2 is zero, the conclusion is direct; else, t1 = S t′1 and t2 = S t′2
and the induction hypothesis on ODext

NatS gives that t′1 ⊥ t′2 and thus S t′1 ⊥ S t′2.
• ODext

A Sα. By induction hypothesis, all the terms in S are pairwise orthogonal; and the
matrix α is unitary, which means that the inner product of its columns is zero when the
columns are different, which ensures that two different terms in Sα are orthogonal.
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Note that while orthogonality ensures non-overlapping, it does not ensure exhaustivity, only
ODA does. The next lemma details the exhaustivity of ODA, and is a consequence of a later
result, that uses the notion of substitution (see §3.2.3 and Lemma 3.33).

Proposition 3.18. If ODext
A S and ∆ ⊢ e : A, then there exists e′ ∈ S such that ¬(e ⊥ e′).

This notion of orthogonal decomposition allows us to introduce unitary abstractions in our
syntax. A basic unitary has the form { | b1 ↔ e1 | . . . | bn ↔ en } and is well-typed only if
(bi)i forms a basis and (ei)i also forms a basis; we then retrieve the intuition that a unitary
should be equivalent to a change of orthonormal basis. The typing rules for deriving unitaries
and unitary operations are detailed in Figure 3.3.

∆i ⊢ bi : A
∆i ⊢ ei : B

ODA{b1, . . . , bn}
ODext

B {e1, . . . , en}
⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B,

⊢ω ω : A↔ B

⊢ω ω−1 : B ↔ A,

⊢ω ω1 : A↔ B ⊢ω ω2 : B ↔ C
⊢ω ω2 ◦ ω1 : A↔ C,

⊢ω ω1 : A1 ↔ B1 ⊢ω ω2 : A2 ↔ B2

⊢ω ω1 ⊗ ω2 : A1 ⊗ A2 ↔ B1 ⊗B2,

⊢ω ω1 : A1 ↔ B1 ⊢ω ω2 : A2 ↔ B2

⊢ω ω1 ⊕ ω2 : A1 ⊕ A2 ↔ B1 ⊕B2,

⊢ω ω : A↔ A

⊢ω ctrl ω : (I⊕ I)⊗ A↔ (I⊕ I)⊗ A.

Figure 3.3 – Typing rules of unitaries.

Terms in our syntax are either expressions or an application of a unitary to a term, in a
similar style to the λ-calculus; however, we have seen that abstractions are considered separately
in the grammar. The typing rules are the same as the one for values given in Figure 3.2, with
the addition of a rule that enables the application of a unitary to a term. The details are in
Figure 3.4.

∅ ⊢ ∗ : I, x : A ⊢ x : A,
∆1 ⊢ t1 : A ∆2 ⊢ t2 : B
∆1,∆2 ⊢ t1 ⊗ t2 : A⊗B,

∆ ⊢ t : A
∆ ⊢ injl t : A⊕B,

∆ ⊢ t : B
∆ ⊢ injr t : A⊕B,

⊢ zero : Nat,
∆ ⊢ t : Nat

∆ ⊢ S t : Nat,

∆ ⊢ ti : A
∑

i |αi|2 = 1 ∀i ̸= j, ti ⊥ tj

∆ ⊢ Σi(αi · ti) : A,
⊢ω ω : A↔ B ∆ ⊢ t : A

∆ ⊢ ω t : B.

Figure 3.4 – Typing rules of terms.

The application of a unitary to a term is what carries the computational power of the
language. We have seen that in the λ-calculus, the β-reduction reduces an application to a
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term where a substitution is performed. A similar mechanism is at play in this syntax; however,
we have seen that the left-hand side in a unitary abstraction can contain several variables.
Hence the introduction of valuations, which we use to perform substitution and to define our
equivalent of β-reduction.

3.2.3 Valuations and Substitution

We recall the formalisation proposed in [SVV18], with the notion of valuation: a partial
map from a finite set of variables (the support) to a set of values. Given two basis values b and
b′, we build the smallest valuation σ such that the patterns of b and b′ match and such that the
application of the substitution to b, written σ(b), is equal to b′. We denote the matching of a
basis value b′ against a pattern b and its associated valuation σ as the predicate match(σ, b, b′).
Thus, match(σ, b, b′) means that b′ matches with b and gives a smallest valuation σ, while σ(b)
is the substitution performed. The predicate match(σ, b, b′) is defined as follows, with inji b

being either injl b or injr b.

match(σ, ∗, ∗)
σ = {x 7→ b′}
match(σ, x, b′)

match(σ, b, b′)

match(σ, inji b, inji b
′)

match(σ, b1, b
′
1) match(σ, b2, b

′
2) supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

match(σ, b1 ⊗ b2, b′1 ⊗ b′2)

match(σ, zero, zero)

match(σ, b, b′)

match(σ, S b, S b′)

Besides basis values, we authorise valuations to replace variables with any expression, e.g.
{x 7→ e}. Whenever σ is a valuation whose support contains the variables of t, we write σ(t)
for the value where the variables of t have been replaced with the corresponding terms in σ, as
follows:

• σ(x) = e if {x 7→ e} ⊆ σ,
• σ(∗) = ∗,
• σ(injl t) = injl σ(t),
• σ(injr t) = injr σ(t),
• σ(t1 ⊗ t2) = σ(t1)⊗ σ(t2),
• σ(S t) = S σ(t),
• σ(Σi(αi · ti)) = Σi(αi · σ(ti)),
• σ(ω t) = ω σ(t).

Remark 3.19. If match(σ, b, b′), then σ(b) = b′.

Example 3.20. Given a valuation σ such that {x 7→ injl injr ∗} ⊆ σ, then σ(x) is the
expression injl injr ∗.

Example 3.21. Given a valuation σ such that {x 7→ injl ∗, y 7→ injr ∗} ⊆ σ, then σ(x⊗ y)
is the expression (injl ∗)⊗ (injr ∗).

We can now show the soundness of orthogonality with regard to pattern-matching: in other
words, orthogonality is stable by substitution, and thus the previous remark ensures there cannot
be any match between two basis values if they are orthogonal.
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Lemma 3.22. Given two terms t1 and t2, if t1 ⊥ t2, then for all valuations σ1 and σ2,
σ1(t1) ⊥ σ2(t2).

Proof. Observe that σ1(injl t1) = injl σ1(t1) and σ2(injr t2) = injr σ2(t2) and thus,
whatever the valuations are, those two terms are orthogonal. The rest of the proof falls directly
by induction on the definition of ⊥.

If one of the basis values is closed, we observe that there is an equivalence between matching
the pattern and not being orthogonal; which also implies that different patterns are orthogonal.

Proposition 3.23. Given two well-typed basis values ∆ ⊢ b : A and ⊢ b′ : A, ¬(b ⊥ b′)
iff there exists σ such that match(σ, b, b′).

Proof. This is proven by a direct induction on ∆ ⊢ b : A.

The next two lemmas provide a strong link between orthogonal decompositions and substi-
tutions.

Lemma 3.24 (Exhaustivity and non-overlapping). Assume that ODAS; then for all closed
basis values ⊢ b′ : A, there exists a unique b ∈ S and a unique σ such that match(σ, b, b′).

Proof. This is proven by induction on the derivation of ODAS.
• If ODA{x}. There is only x in S and {x 7→ b′} is the only possible substitution.
• If ODI{∗}, we have b′ = ∗ and there is nothing to do.
• If ODA⊕BS ⊞ T , there are two cases:

• either b′ = injl b
′
A, in which case the induction hypothesis gives a unique bA ∈ S

and a unique σ such that match(σ, bA, b
′
A), and thus match(σ, injl bA, b) in a unique

way,
• or b′ = injr b

′
B, and a similar argument gives a unique match match(σ, injr bB, b

′).
• If ODA⊗BS, b′ = b′A ⊗ b′B, in both cases to derive OD, we get unique bA, bB, σA and
σB such that match(σA ∪ σB, bA ⊗ bB, b′).

• If ODNatS
⊕0, there are two cases: either b′ = zero, in which case there is nothing to

do, or b′ = S b′′, and the induction hypothesis gives a unique b and a unique σ such that
match(σ, b, b′′) and thus match(σ, S b, b′).

Observe that some of the results in this section focus on basis values, and threfore do not
involve linear combinations. This is because unitary abstractions are formed as a set of clauses
such as bi ↔ ei, where the terms on the left can only be basis values, and this allows us to
narrow down the pattern-matching to basis values only.

The definition of valuation σ does not involve any condition on types or type judgements.
However, we need this sort of condition to formulate a substitution lemma, hence the next
definition.

Definition 3.25. A valuation σ is said to be well-formed with regard to a context ∆ if for all
(xi : Ai) ∈ ∆, we have {xi 7→ ei} ⊆ σ and ⊢ ei : Ai. We write ∆ ⊩ σ for a well-formed
valuation with regard to ∆.
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Remark 3.26. The valuation σ obtained in Lemma 3.24 is well-formed iff b is well-typed.

Lemma 3.27. Given a well-typed term ∆ ⊢ t : A and a well-formed valuation ∆ ⊩ σ,
then we have ⊢ σ(t) : A.

Proof. The proof is done by induction on ∆ ⊢ t : A.
• ⊢ ∗ : I. Direct.
• x : A ⊢ x : A. Since x : A ⊩ σ, there is a well-typed term t such that {x 7→ e} ⊆ σ and

thus σ(x) is well-formed.
• ∆1,∆2 ⊢ t1⊗ t2 : A⊗B. By induction hypothesis, σ(t1) and σ(t2) are well-formed, and

thus σ(t1 ⊗ t2) = σ(t1)⊗ σ(t2) is also well-typed.
• ∆ ⊢ inji t : A1⊕A2. By induction hypothesis, σ(t) is well-typed, and thus inji σ(t) =
σ(inji t) is also well-typed.

• ⊢ zero : Nat. Direct.
• ∆ ⊢ S t : Nat. By induction hypothesis, σ(t) is well-typed, and thus S σ(t) = σ(S t) is

also well-typed.
• ∆ ⊢ Σi(αi · ti) : A. By induction hypothesis, σ(ti) is well-typed for all i, and thus

Σi(αi · σ(ti)) = σ(Σi(αi · ti)) is also well-typed, thanks to Lemma 3.22.
• ∆ ⊢ ω t : B. By induction hypothesis, σ(t) is well-typed, and thus ω σ(t) = σ(ω t) is

also well-typed.

Substitutions, now properly defined, help us formalise how the language handles operations.
In the paper this work is based on [SVV18], the computational behaviour of the language is
presented through an operational semantics, while terms are considered up to linear algebraic
equalities. In this chapter, we choose to work entirely with an equational theory, similar to
the ones introduced in the previous chapters (see §1.1.1, §1.5.2 and §2.5.2), whose details are
outlined in the next section. This equational theory contains both linear algebraic considerations
and the computational aspects of the language.

3.3 Equational Theory

In this section, we define an equational theory for our language, akin to the ones presented
in the previous chapters for the λ-calculus (see Figure 1.2), for Moggi’s metalanguage (see
Figure 1.5) and for the Central Submonad Calculus (see Figure 2.4). An equation judgement
is written ∆ ⊢ t1 = t2 : A, where ∆ is a context, A is a type and t1 and t2 are terms. We
do not need to assume that t1 and t2 are well-typed, it is derived (see Proposition 3.30). We
provide the main equational theory of our language in Figure 3.8, with the rules of reflexivity,
symmetry and transitivity in Figure 3.5, linear algebraic identities in Figure 3.6, and congruence
identities in Figure 3.7.

Remark 3.28. Among the equational rules presented in this section, only the equations in
Figure 3.8 provide an operational account of the language. They can be seen as a reduction
system from left to right. On the other hand, the equations in Figure 3.6 show that the algebraic
power of Hilbert spaces and isometries can be captured within the type system.

101



∆ ⊢ t : A
∆ ⊢ t = t : A

(refl)
∆ ⊢ t1 = t2 : A
∆ ⊢ t2 = t1 : A

(symm)

∆ ⊢ t1 = t2 : A ∆ ⊢ t2 = t3 : A
∆ ⊢ t1 = t3 : A

(trans)

Figure 3.5 – Basic equational rules.

ℓ : {1, . . . , n} → {1, . . . , n} is a bijection ∆ ⊢ Σi(αi · ti) : A
∆ ⊢ Σi(αi · ti) = Σi(αℓ(i) · tℓ(i)) : A

(perm)

∆ ⊢ Σn
i=1(αi · ti) : A αn = 0

∆ ⊢ Σn
i=1(αi · ti) = Σn−1

i=1 (αi · ti) : A
(0.scal) ∆ ⊢ t : A

∆ ⊢ Σ1
i=1(1 · t) = t : A

(1.scal)

∆ ⊢ Σi (αi · Σj(βij · tj)) : A
∆ ⊢ Σi (αi · Σj(βij · tj)) = Σj((

∑
i αiβij) · tj) : A

(fubini)

∆ ⊢ Σij(αiβij · tij) : A
∆ ⊢ Σi (αi · Σj(βij · tij)) = Σij(αiβij · tij) : A

(double)

⊢ω ω : A↔ B ∆ ⊢ Σi(αi · ti) : A
∆ ⊢ ω Σi(αi · ti) = Σi(αi · ω ti) : B

(ω.linear)

∆ ⊢ Σi(αi · ti) : A
∆ ⊢ injl Σi(αi · ti) = Σi(αi · injl ti) : A⊕B

(ι.linear1)

∆ ⊢ Σi(αi · ti) : B
∆ ⊢ injr Σi(αi · ti) = Σi(αi · injr ti) : A⊕B

(ι.linear2)

∆1 ⊢ t : A ∆2 ⊢ Σi(αi · ti) : B
∆1,∆2 ⊢ t⊗ (Σi(αi · ti)) = Σi(αi · t⊗ ti) : A⊗B

(⊗.linear1)

∆1 ⊢ t : B ∆ ⊢ Σi(αi · ti) : A
∆1,∆2 ⊢ (Σi(αi · ti))⊗ t = Σi(αi · ti ⊗ t) : A⊗B

(⊗.linear2)

∆ ⊢ Σi(αi · ti) : Nat
∆ ⊢ S Σi(αi · ti) = Σi(αi · S ti) : Nat

(S.linear)

Figure 3.6 – Vector space and linear applications equational rules.

3.3.1 Equations and typing

We start by proving that the equational theory presented is sound with the typing rules of
the language. In other words, we show that if two terms are equal in our theory, they are both
well-typed. To do so, we need to show that equality between terms preserve orthogonality.

Lemma 3.29. Given two terms t1 and t2 such that t1 ⊥ t2 and ∆ ⊢ t1 = t′1 : A, then
t′1 ⊥ t2.

Proof. By induction on the rules of the equational theory.
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∆ ⊢ t1 = t2 : A
∆ ⊢ injl t1 = injl t2 : A⊕B

(ι.eq1)
∆ ⊢ t1 = t2 : B

∆ ⊢ injr t1 = injr t2 : A⊕B
(ι.eq2)

∆ ⊢ t1 = t2 : A ∆′ ⊢ t : B
∆,∆′ ⊢ t1 ⊗ t = t2 ⊗ t : A⊗B

(⊗.eq1)
∆ ⊢ t1 = t2 : B ∆′ ⊢ t : A

∆,∆′ ⊢ t⊗ t1 = t⊗ t2 : A⊗B
(⊗.eq2)

∆ ⊢ t1 = t2 : Nat
∆ ⊢ S t1 = S t2 : Nat

(S.eq)
∆ ⊢ t1 = t2 : A ⊢ω ω : A↔ B

∆ ⊢ ω t1 = ω t2 : B
(ω.eq)

∆ ⊢ Σi(αi · ti) : A ∀i,∆ ⊢ ti = t′i : A

∆ ⊢ Σi(αi · ti) = Σi(αi · t′i) : A
(Σ.eq)

Figure 3.7 – Congruence equational rules of simply-typed quantum control.

⊢ b′ : A ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B match(σ, bi, b
′)

⊢ { | b1 ↔ e1 | . . . | bn ↔ en } b′ = σ(ei) : B
(ω.β)

⊢ ω b = v : B
⊢ ω−1 v = b : A

(ω.inv)
⊢ω ω1 : A↔ B ⊢ω ω2 : B ↔ C ∆ ⊢ b : A

∆ ⊢ (ω2 ◦ ω1) b = ω2 (ω1 b) : C
(ω.comp)

⊢ω ω1 : A1 ↔ B1 ⊢ω ω2 : A2 ↔ B2 ⊢ b1 : A1 ⊢ b2 : A2

⊢ (ω1 ⊗ ω2) (b1 ⊗ b2) = (ω1 b1)⊗ (ω2 b2) : B1 ⊗B2
(ω.⊗)

⊢ω ω1 : A1 ↔ B1 ⊢ω ω2 : A2 ↔ B2 ⊢ b : A1

⊢ (ω1 ⊕ ω2) (injl b) = injl (ω1 b) : B1 ⊕B2
(ω.⊕1)

⊢ω ω1 : A1 ↔ B1 ⊢ω ω2 : A2 ↔ B2 ⊢ b : A2

⊢ (ω1 ⊕ ω2) (injr b) = injr (ω2 b) : B1 ⊕B2
(ω.⊕2)

⊢ω ω : A↔ A ⊢ b : A
⊢ (ctrl ω) ((injl ∗)⊗ b) = (injl ∗)⊗ b : (I⊕ I)⊗ A (ω.ctrl1)

⊢ω ω : A↔ A ⊢ b : A
⊢ (ctrl ω) ((injr ∗)⊗ b) = (injr ∗)⊗ (ω b) : (I⊕ I)⊗ A (ω.ctrl2)

Figure 3.8 – Computational equational rules of simply-typed quantum control.
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The proof of the next proposition heavily relies on the previous lemma. Indeed, to prove
that a linear combination is well-typed, one needs to prove that all the terms involved in the
linear combination are pairwise orthogonal.

Proposition 3.30. If ∆ ⊢ t1 = t2 : A is well-formed, then ∆ ⊢ t1 : A and ∆ ⊢ t2 : A also
are.

Proof. By induction on the rules of the equational theory.

3.3.2 Bases

As expected, and thanks to the equational theory, an orthogonal decomposition gives a
finite representation of an orthonormal basis. This is proven in Lemma 3.33. We start by
proving that any expression is equal to a combination of basis values.

Lemma 3.31. Given a well-typed closed expression ⊢ e : A, there exists a set of indices
I, a family of basis values (bi)i∈I , (αi)i∈I a family of complex numbers, such that ⊢ e =
Σi(αi · bi) : A.

Proof. The proof is done by induction on ⊢ e : A.
• ⊢ ∗ : I. Nothing to do.
• ⊢ e1 ⊗ e2 : A ⊗ B. The induction hypothesis gives I, (b1i ) and (αi), and J , (b2j ) and

(βj), such that ⊢ e1 = Σi(αi · b1i ) : A and ⊢ e2 = Σj(βj · b2j ) : B. Thus, we have that

⊢ e1 ⊗ e2
=
(
Σi(αi · b1i )

)
⊗
(
Σj(βj · b2j )

)
: A⊗B (induction hypothesis)

= Σi

(
αi · b1i ⊗

(
Σj(βj · b2j )

))
: A⊗B (⊗.linear2)

= Σi

(
αi · Σj(βj · b1i ⊗ b2j )

)
: A⊗B (⊗.linear1)

= Σij(αiβj · b1i ⊗ b2j ) : A⊗B (double)

• ⊢ injl e : A ⊕ B. The induction hypothesis gives ⊢ e = Σi(αi · bi) : A, and observe
that ⊢ injl Σi(αi · bi) = Σi(αi · injl bi) : A⊕B.

• ⊢ injr e : A⊕B has the same conclusion.
• ⊢ S e : Nat is similar to the previous point.
• ⊢ Σi(αi · ei) : A. The induction hypothesis gives (βij) and (bj) (the b does not depend

in i without loss of generality, because 0 · b can be added to any sum term t, as long as
b is orthogonal to t). Finally, we have ⊢ Σi(αi ·Σj(βij · bj)) = Σj((

∑
i αiβij) · bj) : A.

Remark 3.32. The resulting term in the previous lemma, written Σi(αi · bi) is a value if the
basis values are correctly ordered and if all the scalars are non zero. Thanks to the (perm) and
(0.scal) rules in Figure 3.6, we can assume so. Thus, the lemma above shows that expressions
have a unique normal form.
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Lemma 3.31 shows that any expressions can be decomposed as a linear combination of
elements of the canonical orthogonal decomposition – namely, made of basis values only. We
can generalise this lemma to any orthogonal decomposition, with the help of substitutions. We
show that, given an orthogonal decomposition S, a closed expression e can be written as a
normalised decomposition of elements of S, where variables are substituted. The elements of S
can appear several times in the decomposition. For example, {x} is an orthogonal decomposition
of I⊕I, and the term 1√

2
· (injl ∗)+ 1√

2
(injr ∗) is of the form 1√

2
·σ1(x)+ 1√

2
·σ2(x), where

σ1 replaces x with injl ∗ and σ2 replaces x with injr ∗.

Lemma 3.33. Given ODext
B S, where all elements of S are well-typed, and a well-typed

closed expression ⊢ e : B, there exists I a set of indices, (si)i∈I a family of elements
of S, (αi)i∈I a family of complex numbers and (σi)i∈I a family of valuations such that
⊢ e = Σi(αi · σi(si)) : B.

Proof. This is proven by induction on OD. The previous lemma gives a term equal to e in the
equational theory written as a finite sum of basis values Σi(αi · bi).

• ODext
A ({x}). The substitution σ = {x 7→ e} is suitable with e = σ(x).

• ODext
I ({∗}). Nothing to do.

• ODext
A⊕BS ⊞ T . Each bi is either injl b

′
i, with gives a suitable substitution σi and si ∈ S,

thus injl si ∈ S ⊞ T , or bi is injr b
′
i, giving suitable substitution σi and si ∈ T , thus

injr si ∈ S ⊞ T ; all this by induction hypothesis.
• ODext

A⊗BS. Each bi is of the form b′i ⊗ b′′i , the induction hypothesis gives suitable σ′i, s
′
i,

σ′′i , s
′′
i , that can be assembled into σi = σ′i ∪ σ′′i and si = s′i ⊗ s′′i .

• ODext
NatS

⊕0. Each bi is either zero, for which there is nothing to do, or S b′i, in which
case the induction hypothesis concludes.

• ODext
B Sβ . First, we show that each si ∈ S can be written as a linear combination of

elements of Sβ . Indeed, in the equational theory:

Σs∈S(βs,si · Σs′∈S(βs,s′ · s′)) = Σs′∈S

(∑
s∈S

βs,siβs,s′

)
· s′

= Σs′∈S(δs′=si · s
′) = si

and the conclusion is then direct.

3.3.3 Normal Forms

The following lemma is loosely equivalent to progress for an operational semantics, and
involves both directions: the application of a unitary to a value reduces to a value, and given
a unitary and a value, there exists a value that is the inverse image of the latter.

Lemma 3.34. Given ⊢ω ω : A↔ B (see Figure 3.3), we have the following:
• for all ⊢ e : A, there exists a value judgement ⊢ v : B such that ⊢ ω e = v : B;
• for all ⊢ e : B, there exists a value judgement ⊢ u : A such that ⊢ ω u = e : B.

Proof. This is proven by induction on the judgement ⊢ω ω : A↔ B.
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• Assume ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B, we have in particular that ODA({bi}i≤n).
In the case ⊢ e : A, Lemma 3.33 then gives a set J and a decomposition of e as follows:
⊢ e = Σj(αj · σj(bij )) : A. Therefore,

⊢ { | b1 ↔ e1 | . . . | bn ↔ en } e
= { | b1 ↔ e1 | . . . | bn ↔ en } Σj(αj · σj(bij )) : B (ω.eq)

= Σj(αj · { | b1 ↔ e1 | . . . | bn ↔ en } σj(bij )) : B (ω.linear)

= Σj(αj · σj({ | b1 ↔ e1 | . . . | bn ↔ en } bij )) : B (definition)

= Σj(αj · σj(vij )) : B (ω.β)

The latter term is a closed expression, thus Lemma 3.31 ensures that there exists a value
⊢ v : A such that ⊢ { | b1 ↔ e1 | . . . | bn ↔ en } e = v : B.
On the other hand, we have ODext

B ({vi}i≤n). Assume ⊢ e : B, then Lemma 3.33 provides
a set K and a decomposition ⊢ e = Σk(αk ·σk(vik)) : B. With the same computation as
above, we have ⊢ { | b1 ↔ e1 | . . . | bn ↔ en } u′ = e : B with u′ being the expression
Σk(αk ·σk(bik)). Since it is an expression, Lemma 3.31 ensures that there is value ⊢ u : A
such that ⊢ u′ = u : A and therefore ⊢ { | b1 ↔ e1 | . . . | bn ↔ en } u = e : B.

• Assume ⊢ω ω−1 : B ↔ A. Given ⊢ e : B, the induction hypothesis gives ⊢ u : A such
that ⊢ ω u = e : B, and thus ⊢ ω−1 e = u : A. Moreover, given ⊢ e : A, the induction
hypothesis gives ⊢ v : B such that ⊢ ω e = v : B, and thus ⊢ ω−1 v = e : A.

• Assume ⊢ω ω2 ◦ω1 : A↔ C. The induction hypothesis gives us v1 such that ⊢ ω1 e =

v1 : B and then v2 such that ⊢ ω2 v1 = v2 : C, which ensures the result. A related
reasoning proves the second point.

• Assume ⊢ω ω1 ⊕ ω2 : A1 ⊕ A2 ↔ B1 ⊕ B2. Lemma 3.31 ensures that e is given as
a combination of basis values ⊢ e = Σi(αi · bi) : A1 ⊕ A2. Moreover, we know that
⊢ (ω1 ⊕ ω2) e = Σi(αi · (ω1 ⊕ ω2) bi) : B1 ⊕ B2. Therefore, it is sufficient to consider
the case of basis values. There are two similar cases, namely injl b and injr b. In
the first case, the induction hypothesis gives v1 such that ⊢ ω1 b = v1 : B1, thus
⊢ (ω1⊕ω2) (injl b) = injl v1 : B1⊕B2. The other case is similar. A related reasoning
proves the second point.

• Assume ⊢ω ω1 ⊗ ω2 : A1 ⊗ A2 ↔ B1 ⊗ B2. Like above, it is sufficient to prove the
result for basis values. We write b1 ⊗ b2 for b, and the induction hypothesis provides
v1 and v2 such that ⊢ ω1 b1 = v1 : B1 and ⊢ ω2 b2 = v2 : B2, ensuring that ⊢
(ω1 ⊗ ω2) (b1 ⊗ b2) = v1 ⊗ v2 : B1 ⊗B2. A related reasoning proves the second point.

• Assume ⊢ω ctrl ω : (I⊕I)⊗A↔ (I⊕I)⊗A. Once again, it is sufficient to prove the
result for basis values. In the case (injl ∗)⊗ b, there is nothing to do. The other case
is (injr ∗)⊗ b, and the induction hypothesis gives v such that ⊢ ω b = v : A, and then
⊢ (ctrl ω) ((injr ∗)⊗ b) = (injr ∗)⊗ v : (I⊕ I)⊗A. A related reasoning proves the
second point.

We have proven that unitary applications progress and reduce to values, if one wishes to
have an operational point of view. This allows us to prove, with the same operational view,
that the system admits unique normal forms; this means that any term t is equal to a single
value.
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Theorem 3.35. Given ⊢ t : A, there exists ⊢ v : A such that ⊢ t = v : A.

Proof. This is proven by induction on the typing rules of ⊢ t : A.
• The cases ∗, x, zero and sum are straightforward.
• In the case t1 ⊗ t2, the induction hypothesis gives corresponding v1 and v2, that ensure
⊢ t1 ⊗ t2 = v1 ⊗ v2 : A⊗B.

• In the case inji t, the induction hypothesis provides v such that ⊢ t = v : Ai, thus
⊢ inji t = inji v : A1 ⊕A2.

• In the case S t, the induction hypothesis provides v such that ⊢ t = v : Nat, thus
⊢ S t = S v : Nat.

• In the case ω t, the induction hypothesis gives v such that ⊢ t = v : A. The previous
lemma, Lemma 3.34, provides v′ such that ⊢ ω v = v′ : B, thus ⊢ t = v′ : B.

3.3.4 Discussion: Operational Semantics

We briefly discuss the operational semantics for terms presented in [SVV18]. This section
builds up the comparison with the λ-calculus by defining our version of β-reduction that suits
the language. This reduction is given by the rule (ω.β) in Figure 3.8, when read left to right.

In [SVV18], values and terms are considered modulo associativity and commutativity of
the addition, and modulo the equational theory of modules; and they consider the value and
term constructs − ⊗ −, injl (−), injr (−), S − and ω − distributive over sum and scalar
multiplication, only in this subsection also.

Therefore, in that setting, an expression e is equal to some combination of basis values
Σi(αi · bi); and the application of a unitary ω to e is equal to Σi(αi · ω bi) thanks to linearity.
Thus, it is sufficient to give a β-reduction rule for unitaries applied to basis values, as follows.

match(σ, bi, b
′)

{ | b1 ↔ e1 | . . . | bn ↔ en } b′ → σ(vi)

This rule is the same as (ω.β), this time oriented left to right. Note that the reduction defined
this way can only be applied with a closed b′. However, this formulation is not satisfying, because
it requires working up to linear algebra equalities, which are then mixed with an operational
semantics. Our solution in this chapter is to completely embrace the equational theory aspect
and only work up to equalities, keeping in mind which rules bear a computational meaning such
as the one above.

Another solution is to work only with rewriting rules, which has been the focus of several
papers around algebraic λ-calculi [ADCV17, AD17, Vau09, SV09], where all the rules, whether
they are computational or linear algebraic, have a direction.

3.4 Mathematical Development: Hilbert spaces for
semantics

This section heavily relies on the notations and definitions in §1.4, where introductory
notions on Hilbert spaces are outlined. The goal of this section is to provide the tools to define
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the denotational semantics of the programming language given above. To do so, we work
with contractions for convenience, since the main mathematical objects that we need – namely
isometries and unitaries – are in particular contractions.

Sums. Given two maps f, g : X → Y in Contr, their linear algebraic sum f + g is not
necessarily a contraction. We introduce the notion of compatibility. This notion is inherited
from the one in restriction and inverse categories (see Definition 1.59). We use, in particular, an
observation that links zero morphisms to compatibility in inverse categories (see Lemma 1.70);
but this is adapted to Hilbert spaces in this chapter. In this context, the join is also different,
as we use the algebraic sum inherited from the vector space structure.

Definition 3.36 (Compatibility). Given f, g : X → Y two maps in Contr, f and g are said
to be compatible if (Kerf)⊥⊥(Kerg)⊥ and Imf⊥Img.

This definition of compatibility ensures that there is no overlap between the inputs, and
also between the outputs. The next lemma is then direct.

Lemma 3.37. Given two compatible contractive maps f, g : X → Y , f + g is also con-
tractive.

Proof. Let x ∈ X. Given the assumptions, there exists x′ ∈ (Kerf)⊥ and x′′ ∈ (Kerg)⊥ such
that (f + g)(x) = f(x′) + g(x′′), g(x′) = 0, f(x′′) = 0 and ⟨f(x′) | g(x′′)⟩. Therefore,

∥(f + g)(x)∥ = ∥f(x′) + g(x′′)∥ = ⟨f(x′) + g(x′′) | f(x′) + g(x′′)⟩
= ⟨f(x′) | f(x′)⟩+ ⟨g(x′′) | g(x′′)⟩ ≤ ⟨x′ | x′⟩+ ⟨x′′ | x′′⟩
≤ ⟨x | x⟩ = ∥x∥.

As mentioned above, the conditions in Def. 3.36 can be simplified in more algebraic expres-
sions, in the spirit of Lemma 1.70. We prove a quick lemma first.

Lemma 3.38. Given f : X → Y in Contr, we have:
• Ker(f †) = (Imf)⊥;
• Im(f †)⊥ = Kerf .

Proof. Let us prove both points separately.
• We proceed by double inclusion.

• Let x ∈ Ker(f †). Let y ∈ X. We have ⟨x | fy⟩ = ⟨f †x | y⟩ = ⟨0 | y⟩ = 0. Therefore,
Ker(f †) ⊆ (Imf)⊥.

• Let x ∈ (Imf)⊥. Thus, for all y ∈ X, we have ⟨x | fy⟩ = 0, which implies that ⟨f †x |
y⟩ = 0. Since it is true for all y, we have f †x = 0. Therefore, (Imf)⊥ ⊆ Ker(f †).

• We proceed by double inclusion.
• Let x ∈ Im(f †)⊥. Thus, for all y ∈ Y , ⟨x | f †y⟩ = 0; then ⟨fx | y⟩ = for all y, thus
fx = 0. Therefore, Im(f †)⊥ ⊆ Kerf .

• Let x ∈ Kerf . Let y ∈ Y . We have ⟨x | f †y⟩ = ⟨fx | y⟩ = 0. Therefore,
Kerf ⊆ Im(f †)⊥.
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We can now express a sufficient condition for compatibility in algebraic terms.

Lemma 3.39. Given two contractive maps f, g : X → Y , f †g = 0 and fg† = 0 iff f and
g are compatible.

Proof. We prove this lemma by double implication.
• If f and g are compatible, then for all x ∈ X, gx is in Img ⊆ Imf⊥ = Ker(f †), thus
f †g = 0. Similarly, for all y ∈ Y , g†y is in Im(g†) ⊆ (Im(f †))⊥ = Kerf .

• If f †g = 0 and fg† = 0. The first equality implies that Img ⊆ Ker(f †) = (Imf)⊥ and
therefore Img⊥Imf . The second equality similarly implies that (Kerf)⊥⊥(Kerg)⊥.

Remark 3.40. It might seem that the conditions introduced above are not symmetric on f and
g. But one can observe that 0† = 0 and (f †g)† = g†f †† = g†f , thus f †g = 0 iff g†f = 0.
Similarly, fg† = 0 iff gf † = 0.

Lemma 3.39 introduces a new point of view on compatibility, through an orthogonality
between morphisms, as it was observed for inverse categories in Remark 1.77. This new point
of view of orthogonality is a generalisation of the orthogonality in Hilbert spaces. Indeed, two
vectors |x⟩ and |y⟩ in a Hilbert space H are orthogonal if ⟨x|y⟩ = 0. In our generalised view, |x⟩
and |y⟩ are orthogonal if |x⟩† |y⟩ = 0. Since |x⟩† = ⟨x|, our orthogonality between morphisms
generalises the usual notion of orthogonality.

Example 3.41. The morphisms |0⟩⟨0| : C2 → C2 and |1⟩⟨1| : C2 → C2 are orthogonal in our
generalised sense, because the vectors |0⟩ and |1⟩ are orthogonal in the linear algebraic sense.
This justifies that their linear sum |0⟩⟨0|+ |1⟩⟨1| is a contraction (and, in this case, it is also a
unitary).

Direct sum. Unsurprisingly, the unit type is to be represented by the one-dimensional Hilbert
space C, the line of complex numbers. In the syntax, orthogonality and thus pattern-matching,
depend on direct sums. The latter are interpreted as direct sums of Hilbert spaces. We show
that this interpretation gives rise to orthogonality in the sense of contractions.

Definition 3.42. We write ιX,Y
l : X → X⊕Y for the isometry such that for all x ∈ X, ιX,Y

l x =

(x, 0). We call this the left injection. Similarly, the right injection is written ιX,Y
r : Y → X⊕Y .

Lemma 3.43 ([HV19]). Given two Hilbert spacesX,Y , (ιX,Y
l )†ιX,Y

r = 0 and (ιX,Y
r )†ιX,Y

l =
0.

Example 3.44. The previous lemma ensures that ιX,Y
l (ιX,Y

l )† and ιX,Y
r (ιX,Y

r )† are compatible.
Note that ιX,Y

l (ιX,Y
l )† + ιX,Y

r (ιX,Y
r )† = id.

Note that given a complex number α and a contraction f : A → B, the outer product
α · f is written αf when it is not ambiguous. Given a set S, we write (αi)i∈S for a family of
complex numbers indexed by S. Given two sets S and S′, we write (αi,j)(i,j)∈S×S′ for a matrix
of complex numbers indexed by S and S′. The sets of indices can be omitted if there is no
ambiguity, as in Lemma 3.45.
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Lemma 3.45. Given a family of pairwise output compatible isometries fi : A → B, and
a family of complex numbers αi such that

∑
i |αi|2 = 1,

∑
i αifi is an isometry.

Proof.

(
∑
i

αifi)
† ◦ (

∑
j

αjfj)

= (
∑
i

αif
†
i ) ◦ (

∑
j

αjfj) (dagger and sum commute)

=
∑
i,j

(αiαj)f
†
i ◦ fj (composition and sum commute)

=
∑
i

(αiαi)f
†
i ◦ fi (pairwise compatibility)

=

(∑
i

αiαi

)
id (isometry)

=

(∑
i

|αi|2
)
id = id.

We recall that given two maps f : A→ C and g : B → C in Contr, if f †g = 0C,A, we say
that f and g are orthogonal. We show that this orthogonality is preserved by postcomposing
with an isometry.

Lemma 3.46. Given two orthogonal maps f : A → C and g : B → C in Contr, and
given an isometry h : C → D, then h ◦ f : A→ D and h ◦ g : B → D are also orthogonal.

Proof.

(h ◦ f)† ◦ h ◦ g
= f † ◦ h† ◦ h ◦ g (dagger is contravariant)

= f † ◦ idC ◦ g = f † ◦ g (isometry)

= 0C,A. (hypothesis)

In a similar vein, the postcomposition of an isometry with an isometry is still an isometry.
This was already observed when we mentionned that Hilbert spaces and isometries form a
category.

The canonical countably-dimensional Hilbert space is ℓ2(N), defined in §1.4. We recall that
we write |n⟩ for the elements of the canonical basis in ℓ2(N). This is an abuse of notation,
since the symbols |0⟩ and |1⟩ are already used for the canonical basis of C2. This is not an
issue, since there is an isometric embedding C2 → ℓ2(N) which maps |0⟩ to |0⟩ and |1⟩ to |1⟩.

Definition 3.47. We write succ : ℓ2(N) → ℓ2(N) for the linear map ℓ2(N) → ℓ2(N) which
maps |n⟩ to |n+ 1⟩.
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Remark 3.48. Note that succ can also be seen as the image of the successor function in the
natural numbers by the functor ℓ2. The linear map succ is an isometry.

Example 3.49.

succ |7⟩ = |8⟩ succ

(√
3

2
|9⟩+ 1

2
|11⟩

)
=

√
3

2
|10⟩+ 1

2
|12⟩

Unitaries. The denotational semantics of our programming language involves unitary maps to
interpret the functions. Those maps live in the category Uni, which is a rig category: it has
bifunctors ⊕ and ⊗ inherited from Hilb. Hence the next lemma.

Lemma 3.50. Given two maps f : A→ B and g : C → D in Uni, f⊗g : A⊗C → B⊗D
is a map in Uni and f ⊕ g : A⊕ C → B ⊕D is a map in Uni.

Proof. Direct since the functors ⊕ and ⊗ are †-functors.

Finally, we present an operation that is common to quantum computing, and thus preserves
the unitary structure.

Lemma 3.51 (Controlled unitary). Given a unitary map f : A → A, there is a unitary
map ctrlA(f) : (C⊕C)⊗A→ (C⊕C)⊗A such that ctrlA(f) = |0⟩⟨0|⊗ id+ |1⟩⟨1|⊗ f .

Proof. Direct.

3.5 Denotational Semantics

As usual, we write J−K for the interpretation of types and term judgements. As mentioned in
the previous section, the presentation makes extensive use of contractions for the denotational
semantics. However, values and terms are directly announced to be isometries, for clarity. It
will also help us highlight the fact that values and terms represent sound quantum states. In the
same vein, the interpretation of unitaries is given as unitary maps between two Hilbert spaces;
but the proof that the semantics of a unitary abstraction is unitary requires the mathematical
development at the level of contractions.

3.5.1 Detailed presentation of the Semantics

Types. The interpretation of a type A is given by a countably-dimensional Hilbert space. It is
given by induction on the grammar of the types. This interpretation is detailed in Figure 3.9.

Expressions. We start with expressions, whose typing rules are introduced in Figure 3.2.
Expressions are terms without unitary application. The semantics of general terms in given
below, once the semantics of unitaries is defined. Judgements for expressions are first inter-
preted as contractions between Hilbert spaces, and we then show that they are isometries. A
judgement is of the form ∆ ⊢ e : A, and its interpretation is written J∆ ⊢ e : AK. Contexts
∆ = x1 : A1 . . . xn : An are given a denotation J∆K = JA1K ⊗ · · · ⊗ JAnK. When it is not
ambiguous, the interpretation of the judgement ∆ ⊢ e : A is written JeK.
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JAK : Hilb

JIK = C
JA⊗BK = JAK⊗ JBK
JA⊕BK = JAK⊕ JBK

JNatK = ℓ2(N)

Figure 3.9 – Interpretation of types.

J∆ ⊢ e : AK : Isom(J∆K , JAK)
J⊢ ∗ : IK = idJIK

Jx : A ⊢ x : AK = idJAK

J∆ ⊢ injl e : A⊕BK = ι
JAK,JBK
l ◦ J∆ ⊢ e : AK

J∆ ⊢ injr e : A⊕BK = ιJAK,JBK
r ◦ J∆ ⊢ e : AK

J∆1,∆2 ⊢ e⊗ e′ : A⊗BK = J∆1 ⊢ e : AK⊗ J∆2 ⊢ e′ : BK
J⊢ zero : NatK = |0⟩
J∆ ⊢ S e : NatK = succ ◦ J∆ ⊢ e : NatK

J∆ ⊢ Σi≤k(αi · ei) : AK =
∑
i≤k

αi J∆ ⊢ ei : AK

Figure 3.10 – Interpretation of expression judgements as morphisms in Isom.

Lemma 3.52 (Isometry). If ∆ ⊢ e : A is a well-formed expression judgement, then
J∆ ⊢ e : AK is an isometry.

Proof. Given later with the semantics of terms in general, see Lemma 3.64.

In quantum physics, the state of a particle is usually described as an isometry. Showing
that our expressions are interpreted as isometries, we can justify that they are correct quantum
states. The proof of the previous lemma is included in one of a larger result, showing that
the denotation of all terms are isometries (see Lemma 3.64). Moreover, expressions are used
to define the unitary abstractions as a collection of patterns: it is sensible to prove that these
patterns are interpreted with compatible morphisms, in the sense of Definition 3.36.

Lemma 3.53. Given two judgements ∆1 ⊢ e1 : A and ∆2 ⊢ e2 : A, such that e1 ⊥ e2, we
have Je1K† ◦ Je2K = 0.

Proof. The proof is done by induction on the derivation of ⊥. It is a subproof of the one for
Lemma 3.63.
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This result can also be stated for the predicate OD, with the help of Lemma 3.17, where
it is shown that two values in an orthogonal decomposition are orthogonal.

Lemma 3.54. Given two judgements ∆1 ⊢ e1 : A and ∆2 ⊢ e2 : A, a set of S that
contains e1 and e2 and such that ODext

A S, we have Je1K† ◦ Je2K = 0.

An important property of an orthonormal basis in a Hilbert space is the resolution of the
identity. We show that, given ODext

A S, a similar property holds. This conforts us in calling S
a syntactic basis.

Lemma 3.55. Given ODext
A {ei}i≤n, and ∆i ⊢ ei : A for all i, we have∑

i≤n

JeiK ◦ JeiK† = idJAK.

Proof. The proof is done by induction on OD.

• ODext
A {x}. JxK ◦ JxK† = idJAK ◦ idJAK = idJAK.

• ODext
I {∗}. J∗K ◦ J∗K† = idJIK ◦ idJIK = idJIK.

• ODext
A⊕BS ⊞ T .

∑
e∈S⊞T

JeK ◦ JeK†

=
∑
s∈S

Jinjl sK ◦ Jinjl sK
† +

∑
t∈T

Jinjr tK ◦ Jinjr tK
† (by definition)

= ιl ◦

(∑
s∈S

JsK ◦ JsK†
)
◦ ι†l + ιr ◦

(∑
t∈T

JtK ◦ JtK†
)
◦ ι†r (by linearity)

= ιl ◦ idJAK ◦ ι
†
l + ιr ◦ idJBK ◦ ι†r (by IH)

= ιlι
†
l + ιrι

†
r = idJA⊕BK. (Ex. 3.44)
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• ODext
A⊗BS. Suppose that ODext

A π1(S) and ODext
B S1

e for all e ∈ π1(S).∑
(e⊗e′)∈S

q
e⊗ e′

y
◦

q
e⊗ e′

y†

=
∑

(e⊗e′)∈S

(JeK⊗
q
e′

y
) ◦ (JeK⊗

q
e′

y†
) (by definition)

=
∑

(e⊗e′)∈S

(JeK ◦ JeK†)⊗ (
q
e′

y
◦

q
e′

y†
) (by monoidal † -category)

=
∑

e∈π1(S)

(JeK ◦ JeK†)⊗

∑
e′∈S1

b

q
e′

y
◦

q
e′

y†


=
∑

e∈π1(S)

(JeK ◦ JeK†)⊗ idJBK (by IH)

=

 ∑
e∈π1(S)

JeK ◦ JeK†
⊗ idJBK (by linearity)

= idJAK ⊗ idJBK = idJA⊗BK. (by IH)

• ODext
NatS

⊕0.∑
e∈S⊕0

JeK ◦ JeK†

= JzeroK ◦ JzeroK +
∑
s∈S

JS sK ◦ JS sK† (by definition)

= JzeroK ◦ JzeroK† + succ ◦

(∑
s∈S

JsK ◦ JsK†
)
◦ succ† (by linearity)

= JzeroK ◦ JzeroK† + succ ◦ idJNatK ◦ succ† = idJNatK. (by IH)

• ODext
A Sα.∑

e∈Sα

JeK ◦ JeK†

=
∑
s∈S

q
Σs′∈S(αs,s′ · s′)

y
◦

q
Σs′∈S(αs,s′ · s′)

y† (by definition)

=
∑
s∈S

(∑
s′∈S

αs,s′
q
s′

y
)
◦

(∑
s′′∈S

αs,s′′
q
s′′

y
)†

(by definition)

=
∑
s∈S

∑
s′,s′′∈S

αs,s′αs,s′′
q
s′

y
◦

q
s′′

y† (by linearity)

=
∑

s′,s′′∈S

(∑
s∈S

αs,s′αs,s′′

)
q
s′

y
◦

q
s′′

y†

=
∑

s′,s′′∈S
δs′=s′′

q
s′

y
◦

q
s′′

y†
=
∑
s′∈S

q
s′

y
◦

q
s′

y† (by unitarity)

= idJAK. (by IH)
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One final development on the interpretation of values is the link with substitutions, detailed
in the next proposition.

Proposition 3.56. Given a well-typed term ∆ ⊢ t : A and for all (xi : Ai) ∈ ∆, a well-
typed expression ⊢ ei : Ai; if σ = {xi 7→ ei}i, then:

J⊢ σ(t) : AK = J∆ ⊢ t : AK ◦

(⊗
i

J⊢ ei : AiK

)
.

We define then JσK =
⊗

i J⊢ ei : AiK.

Proof. The proof is straightforward by induction on the typing rules for t.

Remark 3.57. The definition of the interpretation of a substitution above is somewhat informal.
It would require a lot of care and unnecessary details to make the denotation of σ fit the
denotation of a particular context ∆. Since we are working in symmetric monoidal categories,
those details will be overlooked when working with substitutions. We assume that we work up
to permutations, and that when an interpretation of a substitution is involved, it is with the
right permutation.

Substitutions σ emerge from the matching of two basis values, thus we can prove that the
interpretation of the matching gives the interpretation of the substitution, as stated in the next
lemma.

Lemma 3.58. Given two well-typed basis values ∆ ⊢ b : A and ⊢ b′ : A, and a substitution
σ, if match(σ, b, b′) then JbK† ◦ Jb′K = JσK.

Proof. The proof is straightforward by induction on match(σ, b, b′) (see §3.2.3 for the defini-
tion).

Unitaries. The type of unitaries are given asA↔ B, and they are first interpreted as morphisms
JAK → JBK in Contr, before showing that their interpretation actually lies in Uni. We also
show that the OD conditions ensure that the denotation of (syntactic) untaries is not only a
contractive map, but a unitary between Hilbert spaces. Working with contractions is necessary
to use the notion of compatibility: given a unitary { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B, we
provide an interpretation to each clause bi ↔ ei as a contraction JAK → JBK, and prove that
all the contractions thus obtained are compatible, and can be summed. Unitary judgments are
of the form ⊢ω ω : A↔ B, and their semantics is given by a morphism in Uni:

J⊢ω ω : A↔ BK : Uni(JAK , JBK).

Given ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A ↔ B, the interpretation of a clause bi ↔ ei
is the following contraction: J∆i ⊢ ei : BK ◦ J∆i ⊢ bi : AK†. It should be read as follows: if the
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input of type A matches with bi, it provides a substitution through ∆i, that is applied to ei.
This is better understood through a diagram:

JAK J∆iK JBK
J∆i⊢bi : AK† J∆i⊢ei : BK

The interpretation of a unitary abstraction is then:

J⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ BK =
∑
i≤n

J∆i ⊢ ei : BK ◦ J∆i ⊢ bi : AK† .

It is left to prove that it is well-defined, and then that it is a proper unitary operation.

Corollary 3.59. Given ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A ↔ B, its interpretation
J⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ BK is a well-defined morphism in Contr.

Proof. Given ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B, we know that ODext
B ({ei}i≤n) and

ODA({bi}i≤n) hold, and for all i ≤ n, ∆i ⊢ bi : A and ∆i ⊢ ei : B.
Since ODA({bi}i≤n) holds, Lemma 3.54 ensures that for all i ̸= j ≤ k, JbiK† ◦ JbjK =

0J∆jK,J∆iK. The same lemma with ODext
B ({ei}i≤n) ensures that for all i ̸= j ≤ n, JeiK† ◦ JejK =

0J∆jK,J∆iK. This proves that, for all i ̸= j ≤ n, (JeiK ◦ JbiK†)† ◦ JejK ◦ JbjK† = 0J∆jK,J∆iK and
JeiK ◦ JbiK† ◦ (JejK ◦ JbjK†)† = 0J∆jK,J∆iK. This proves that for all i ̸= j ≤ n, JeiK ◦ JbiK†

and JejK ◦ JbjK† are compatible, thanks to Lemma 3.39. Then, Lemma 3.37 ensures that∑
i≤n JeiK ◦ JbiK† is a contraction.

Theorem 3.60. Given ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A ↔ B, its interpretation
J⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ BK is unitary.

Proof. Given ⊢ω { | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B, we know that ODext
B ({ei}i≤n) and

ODA({bi}i≤n) hold, and for all i ≤ n, ∆i ⊢ bi : A and ∆i ⊢ ei : B.
First, we prove that JωK† ◦ JωK = idJAK, with ω = { | b1 ↔ e1 | . . . | bn ↔ en }.

JωK† ◦ JωK

=

∑
i≤n

JeiK ◦ JbiK†
†

◦
∑
j≤n

JejK ◦ JbjK† (by definition)

=
∑
i≤n

(JeiK ◦ JbiK†)† ◦
∑
j≤n

JejK ◦ JbjK† (dagger distributes over sum)

=
∑
i≤n

JbiK ◦ JeiK† ◦
∑
j≤n

JejK ◦ JbjK† (dagger is contravariant)

=
∑
i,j≤n

JbiK ◦ JeiK† ◦ JejK ◦ JbjK† (linearity)

=
∑
i≤n

JbiK ◦ JeiK† ◦ JeiK ◦ JbiK† (Lemma 3.54)

=
∑
i≤n

JbiK ◦ JbiK† (Lemma 3.52)

= idJAK (Lemma 3.55)
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The other direction JωK ◦ JωK† = idJBK is similar.

Note that we have only proven so far that unitary abstractions have a sound denotational
semantics in Uni. The interpretation of operations on unitaries is given in Figure 3.11. It is
explained in §3.4 why this interpretation is in Uni, although this does not come as a surprise.

J⊢ω ω : A↔ BK : Uni(JAK , JBK)
q
{ | bi ↔ ei }i∈I

y
=
∑
i∈I

JeiK ◦ JbiK
†

Jω2 ◦ ω1K = Jω2K ◦ Jω1K
Jω1 ⊗ ω2K = Jω1K⊗ Jω2K
Jω1 ⊕ ω2K = Jω1K⊕ Jω2K

q
ω−1

y
= JωK†

Jctrl ωK = ctrlJAK(JωK)

Figure 3.11 – Interpretation of unitaries in Uni.

Terms. One remaining term is the application of a unitary.

J∆ ⊢ ω t : BK = J⊢ω ω : A↔ BK ◦ J∆ ⊢ t : AK .

The interpretation of all term judgements is found in Figure 3.12.

J∆ ⊢ t : AK : Isom(J∆K , JAK)
J⊢ ∗ : IK = idJIK

Jx : A ⊢ x : AK = idJAK

J∆ ⊢ injl t : A⊕BK = ι
JAK,JBK
l ◦ J∆ ⊢ t : AK

J∆ ⊢ injr t : A⊕BK = ιJAK,JBK
r ◦ J∆ ⊢ t : AK

J∆1,∆2 ⊢ t⊗ t′ : A⊗BK = J∆1 ⊢ t : AK⊗ J∆2 ⊢ t′ : BK
J⊢ zero : NatK = |0⟩
J∆ ⊢ S t : NatK = succ ◦ J∆ ⊢ t : NatK

J∆ ⊢ Σi≤k(αi · ti) : AK =
∑
i≤k

αi J∆ ⊢ ti : AK

J∆ ⊢ ω t : BK = J⊢ω ω : A↔ BK ◦ J∆ ⊢ t : AK

Figure 3.12 – Interpretation of term judgements as morphisms in Isom.

We can already show that this interpretation of terms is sound with the sketch of operational
semantics given in the previous section.
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Proposition 3.61 (Operational Soundness). Given a well-typed unitary abstraction ⊢ω
{ | b1 ↔ e1 | . . . | bn ↔ en } : A↔ B and a well-typed basis value ⊢ b′ : A, if match(σ, bi, b

′),
then q

⊢ { | b1 ↔ e1 | . . . | bn ↔ en } b′ : B
y
= J⊢ σ(ei) : BK .

Proof. First, we deduce from the assumption match(σ, bi, b
′) that

• JbiK† ◦ Jb′K = JσK, thanks to Lemma 3.58.
• for all j ̸= i, bj ⊥ b′, and thus JbjK† ◦ Jb′K = 0, thanks to Lemma 3.53.

We can then compute the semantics, with ω def
= { | b1 ↔ e1 | . . . | bn ↔ en }:

q
ω b′

y

= JωK ◦
q
b′

y
(by definition)

=

∑
j

JejK ◦ JbjK†
 ◦ q

b′
y

(by definition)

=
∑
j

JejK ◦ JbjK† ◦
q
b′

y
(linearity)

= JeiK ◦ JbiK† ◦
q
b′

y
(Lemma 3.53)

= JeiK ◦ JσK (Lemma 3.58)

= Jσ(ei)K (Prop. 3.56)

We prove that, like expressions, terms are indeed interpreted as isometries, reinforcing the
link with quantum physics. This requires several lemmas. The first lemma shows that the
denotational orthogonality is preserved by linear combinations.

Lemma 3.62. Given ∆1 ⊢ t : A and ∆2 ⊢ Σi(αi ·ti) : A such that for all i, J∆1 ⊢ t : AK† ◦
J∆2 ⊢ ti : AK = 0J∆2K,J∆1K; then J∆1 ⊢ t : AK† ◦ J∆2 ⊢ Σi(αi · ti) : AK = 0J∆2K,J∆1K.

Proof. The proof involves few steps, without surprises.

J∆1 ⊢ t : AK† ◦ J∆2 ⊢ Σi(αi · ti) : AK

= J∆1 ⊢ t : AK† ◦
∑
i

αi J∆2 ⊢ ti : AK (by definition)

=
∑
i

αi J∆1 ⊢ t : AK† ◦ J∆2 ⊢ ti : AK (by linearity)

=
∑
i

αi 0J∆2K,J∆1K (hypothesis)

= 0J∆2K,J∆1K.

The next lemma states that syntactic orthogonality (defined in Definition 3.3) implies de-
notational orthogonality.
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Lemma 3.63. Given two judgements ∆1 ⊢ t1 : A and ∆2 ⊢ t2 : A, such that t1 ⊥ t2, we
have Jt1K† ◦ Jt2K = 0J∆2K,J∆1K.

The proof of this lemma is interdependent with the proof of the next lemma, where it is
proven that the interpretations of term judgements are normalised quantum states – namely,
isometries.

Lemma 3.64 (Isometry). If ∆ ⊢ t : A is a well-formed judgement, then J∆ ⊢ t : AK is an
isometry.

Proof of Lemma 3.63 and Lemma 3.64. We prove both theorems together, because they are
interdependent. We recall the whole statement: given a well-formed judgement ∆1 ⊢ t1 : A,

• J∆1 ⊢ t1 : AK† ◦ J∆1 ⊢ t1 : AK = idJ∆1K;
• for all ∆2 ⊢ t2 : A such that t1⊥t2, J∆1 ⊢ t1 : AK† ◦ J∆2 ⊢ t2 : AK = 0J∆2K,J∆1K.

We prove by induction on the derivation of ∆1 ⊢ t1 : A.
• ⊢ ∗ : I. J∗K† ◦ J∗K = idJIK ◦ idJIK = idJIK. This term is not orthogonal to any other

well-typed term.
• x : A ⊢ x : A. JxK† ◦ JxK = idJAK ◦ idJAK = idJAK. This term is not orthogonal to any

other.
• ∆1,∆2 ⊢ t1 ⊗ t2 : A⊗B. We first prove that its denotation is an isometry.

Jt1 ⊗ t2K† ◦ Jt1 ⊗ t2K
= (Jt1K⊗ Jt2K)† ◦ (Jt1K⊗ Jt2K) (by definition)

= (Jt1K† ⊗ Jt2K†) ◦ (Jt1K⊗ Jt2K) (dagger is a monoidal functor)

= (Jt1K† ◦ Jt1K)⊗ (Jt2K† ◦ Jt2K) (⊗ is monoidal)

= idJ∆1K ⊗ idJ∆2K (IH)

= idJ∆1K⊗J∆2K = idJ∆1,∆2K

Then we show that, if it is orthogonal to any other well-typed term, say ∆3 ⊢ t3 : C,
then their interpretations are also orthogonal. We reason on a case by case basis. The
term t3 can be of the form t′3 ⊗ t′′3, in which case, either t1 ⊥ t′3 or t2 ⊥ t′′3. In both
cases, the result is direct, because the zero morphism tensored with any other morphism
is still zero. The other cases is t3 being a linear combination; this case is covered by
Lemma 3.62.

• ∆ ⊢ inji t : A1⊕A2. The denotation of this term is an isometry because the injections
ι also are and a composition of isometries keeps being an isometry. Now, given another
term ∆1 ⊢ t2 : B such that inji t ⊥ t2, we have several cases:
• either t2 is of the form inji t

′
2 with the same injection as inji t, and the result is

given by Lemma 3.46;
• or inji t = injl t and t2 = injr t

′
2, in which case the conclusion is direct thanks to

Lemma 3.43 and the induction hypothesis;
• or t2 is a linear combination, and Lemma 3.62 concludes.

• ⊢ zero : Nat. JzeroK† ◦ JzeroK = ⟨0|0⟩ = 1 = idJIK. Moreover, given any natural
number n, ⟨0|n+ 1⟩ = 0. Lemma 3.62 concludes for linear combinations.
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• ∆ ⊢ S t : Nat. The interpretation is an isometry by composition of isometries. The
orthogonality part is either ensured with the last point, or by Lemma 3.46 and the
induction hypothesis.

• ∆ ⊢ Σi(αi · ti) : A. The interpretation is an isometry by induction hypothesis and
Lemma 3.45. Moreover, the only case of orthogonality not yet covered is t2 = Σk(βk ·tk)
where for all j ̸= k, tj⊥tk and

∑
αjβk = 0.

given that for all i ̸= j ∈ I, ti ⊥ tj , J,K ⊆ I, and
∑

i∈J∩K ᾱiβi = 0:

JΣj(αj · tj)K† ◦ JΣk(βk · tk)K

=

∑
j

αj JtjK

†

◦
∑
k

βk JtkK (by definition)

=

∑
j

αj JtjK†
 ◦∑

k

βk JtkK (dagger distributes over the sum)

=
∑
j,k

αjβk JtjK† ◦ JtkK (by linearity)

=
∑

i∈J∩K
αiβi JtiK† ◦ JtiK (by induction hypothesis)

=
∑

i∈J∩K
αiβi idJ∆K (by induction hypothesis)

=

( ∑
i∈J∩K

αiβi

)
idJ∆K = 0J∆2K,J∆1K

• ∆ ⊢ ω t : B. The interpretation is an isometry by composition of isometries. The
orthogonality is covered by either Lemma 3.46, because a unitary is in particular an
isometry, or Lemma 3.62, similarly to the previous points.

Providing an interpretation that fits the expectations from quantum physics is meaningful,
but not completely satisfying. We prove a stronger link in the coming section between the
syntax and the semantics through the equational theory, in the vein of the previous chapter.

3.5.2 Completeness

We prove a strong link between the denotational semantics and the equational theory,
namely that an equality statement in one is also an equality statement in the other. We start
by showing soundness, meaning that two terms equal in the equational theory have the same
denotational interpretation.

Proposition 3.65. Given ∆ ⊢ t1 = t2 : A, then J∆ ⊢ t1 : AK = J∆ ⊢ t2 : AK.

Proof. By induction on the rules of the equational theory. The only non-trivial case is done
within Proposition 3.61.

We prove then completeness, starting with terms without unitary functions.
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Lemma 3.66 (Completeness of values). Given ⊢ v1 : A and ⊢ v2 : A, if J⊢ v1 : AK =
J⊢ v2 : AK, then ⊢ v1 = v2 : A.

Proof. This is proven by induction on ⊢ v1 : A.
• The cases of ∗ and zero are straightforward.
• If v1 = b1 ⊗ b′1 with type A⊗B, then also v2 = b2 ⊗ b′2, and Jb1K⊗ Jb′1K = Jb2K⊗ Jb′2K,

thus Jb1K = Jb2K and Jb′1K = Jb′2K, the induction hypothesis ensures that ⊢ b1 = b2 : A

and ⊢ b′1 = b′2 : B, and thus ⊢ b1 ⊗ b′1 = b2 ⊗ b′2 : A ⊗ B, since we are working with
basis values.

• If v1 = inji b1 of type A1 ⊕ A2, with Jv1K = Jv2K, necessarily v2 = inji b2, and
ιA,B
l ◦ Jb1K = ιA,B

l ◦ Jb2K, thus (ιA,B
l )† ◦ ιA,B

l ◦ Jb1K = (ιA,B
l )† ◦ ιA,B

l ◦ Jb2K which ends
with Jb1K = Jb2K, and the induction hypothesis gives that ⊢ b1 = b2 : Ai, and thus
⊢ inji b1 = inji b2 : Ai.

• Else, with type A, v1 = Σi(αi · b1i ) with the (b1i ) that are pairwise orthogonal, and
v2 = Σj(βj · b2j ) with the (b2j ) that are also pairwise orthogonal. We know that

Jv1K =
∑
i

αi

q
b1i

y
=
∑
j

βj
q
b2j

y
= Jv2K .

Thus, for all ⊢ b : A, JbK† ◦
∑

i αi

q
b1i

y
= JbK† ◦

∑
j βj

r
b2j

z
; by orthogonality, we have

JbK† ◦
∑

i αi

q
b1i

y
= αk

q
b1k

y
for some k, and JbK† ◦

∑
j βj

r
b2j

z
= βk′

q
b2k′

y
for some k′.

Thus, αk

q
b1k

y
= βk′

q
b2k′

y
, and because they are basis values, we have αk = βk′ andq

b1k
y
=

q
b2k′

y
, and the induction hypothesis ensures that ⊢ b1k = b2k′ : A. Note that this

is done for all ⊢ b : A, and thus ⊢ v1 = v2 : A.

We then prove the final result of this section – namely, completeness on closed terms –,
meaning that the equality statement of the equational theory and of the denotational semantics
on closed terms are equivalent.

Theorem 3.67 (Completeness). ⊢ t1 = t2 : A iff J⊢ t1 : AK = J⊢ t2 : AK .

Proof. We prove both directions.
• For the implication ⊢ t1 = t2 : A to J⊢ t1 : AK = J⊢ t2 : AK, see Proposition 3.65.
• The other direction uses Theorem 3.35, the equivalent of strong normalisation, that gives
v1 and v2 such that ⊢ t1 = v1 : A and ⊢ t2 = v2 : A. Our hypothesis is that Jt1K = Jt2K,
and thus Jv1K = Jt1K = Jt2K = Jv2K. Lemma 3.66 gives then that ⊢ v1 = v2 : A and
transitivity ensures that ⊢ t1 = t2 : A.

3.6 Discussion and conclusion

This section concludes with personal comments on the choices made. We discuss the parts
of the language presented in [SVV18] that are missing in this chapter, and we give a short
explanation on why they could or could not be included in the chapter.
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3.6.1 Inductive types, Higher-order, Recursion

The points discussed in this section are concerned with features that we add to the language
in the next chapter. In that chapter, we work with the reversible language based on symmetric
pattern-matching, but without the quantum effect. This happens for two reasons. Firstly,
it is new in the literature even in the classical case; and secondly, because the mathematical
structure for classical reversibility is more suitable. We explain later in the thesis the limitations
encountered in adding these features to quantum computing.

Inductive types. General inductive types can be added to the language without any issue. In
[SVV18], the quantum language only works with lists, but all their results regarding the syntax
hold even when generalising with a fixed point combinator for types, usually written µX.A (see
the explanations in §1.2.2). The denotational semantics of inductive types, in the context of
countably-dimensional Hilbert spaces and isometries, is not hard to achieve, as observed by
Michael Barr [Bar92, Theorem 3.2]. This means that, instead of working with a type Nat, the
language presented in this chapter could work with a general fixed point combinator for types.

Higher-order. In this chapter, the functions of the language are called unitaries because
of their interpretation as unitary maps between Hilbert spaces. They are the only operations
allowed by quantum mechanics, alongside state preparation and measurement. Their treatment
in the grammar and in the type system is separated from terms; even more, unitaries are not
terms. This is different from the traditional λ-calculus. There are multiple reasons that justify
this choice. We adopt a denotational point of view and comment on this choice through the
mathematical model. Indeed, models of classical programming languages often involve a closed
category – meaning that function types can be interpreted as objects of the category. However,
the category of countably-dimensional Hilbert spaces and unitary maps is not closed. We will
see in the next chapter how to go around this limitation with the enrichment of categories.
Regarding the syntax, the language can be extended with extended values as they are called in
the original paper; they are expressions that can contain not only variables at the ground level,
but also function variables. These extended values can be used on the right-hand side of an
abstraction, as in the following example:

{| x↔ let y = ϕ x in y}

where ϕ can be any well-typed function, including a function variable. Once we include those
variables, we can introduce higher-order functions such as λϕ.ω, and application of those
functions.

Recursion. Once function variables are introduced, one can add a fixed point combinator for
recursion: for example, given a function ω, we can introduce a function fix ϕ.ω that is the
fixed point of ω with regard to the function variable ϕ. However, the functions fix ϕ.ϕ and
fix ϕ.{| x↔ let y = ϕ x in y} do not terminate, and thus cannot be interpreted as unitaries
between Hilbert spaces. Moreover, we have yet to find a mathematical interpretation for such
fixed points in Hilbert spaces; and Hilbert spaces might not be the solution. This is discussed
in Chapter 5.

122



3.6.2 Conclusion

We have presented a programming language equipped with simple types aimed at quantum
control through an algebraic effect. This is done through a syntax that allows for linear combin-
ations of terms, and a type system which ensures that the latter are normalised. Then, we have
formalised an equational theory, preserving the typing judgements and handling linear algebra
as well as the computational aspect of the language. Finally, we have provided a denotational
semantics, proven complete with regard to the equational theory.
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Chapter 4
Reversibility and Fixed Points

“Should mathematical semantics still be conceived as following in the track of
pre-existing languages, trying to explain their novel features, and to provide
firm foundations for them? Or should it be seen as operating in a more
autonomous fashion, developing new semantic paradigms, which may then
give rise to new languages?” — Samson Abramsky, in [Abr20].

Abstract

This chapter is concerned with the expressivity and denotational se-
mantics of a functional higher-order reversible programming language
based on Theseus. In this language, pattern-matching is used to en-
sure the reversibility of functions. We then build a sound and adequate
categorical semantics based on join inverse categories, with additional
structures to capture pattern-matching. We show how one can encode
any Reversible Turing Machine in said language. Finally, we derive a
full completeness result, stating that any computable, partial injective
function is the image of a term in the language.

References. This work is based upon a paper, under submission,
coauthored with Kostia Chardonnet and Benoît Valiron. The preprint
is available at [CLV23].

4.1 Introduction

As said in the previous chapter, reversible computation has emerged as a energy-preserving
model of computation in which no data is ever erased. This comes from Laundauer’s principle
which states that the erasure of information is linked to the dissipation of energy as heat [Lan61,
BAP+12]. In reversible computation, given some process f , there always exists an inverse
process f−1 such that their composition is equal to the identity: it is always possible to “go
back in time” and recover the input of your computation. Although this can be seen as very
restrictive, as shown for instance in [Ben73] non-reversible computation can be emulated in a
reversible setting, by keeping track of intermediate results.
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In order to avoid erasure of information, reversible computation often makes use of garbage
or auxiliary wires: additional information kept in order to ensure both reversibility and the
non-erasure of information. In programming languages, this is done by ensuring both forward
and backward determinism. Forward determinism is almost always ensured in programming
languages: it is about making sure that, given some state of your system, there is a unique next
state that it can go to. Backward determinism on the other hand makes sure that for given a
state, there is only one original state possible.

Reversible computation has since been shown to be a versatile model. In the realm of
quantum computation, reversible computing is at the root of the construction of oracles, sub-
routines describing problem instances in quantum algorithms [NC02]. Most of the research in
reversible circuit design can then been repurposed to design efficient quantum circuits. On the
theoretical side, reversible computing serves as the main ingredient in several operational mod-
els of linear logics, whether through token-based Geometry of Interaction [Mac95] or through
the Curry-Howard correspondence for µMALL [CSV23, Cha23].

Reversible programming has been approached in two different ways. The first one, based on
Janus and later R-CORE and R-WHILE [Lut86, YG07, GKY19, YAG16], considers imperative
and flow-chart languages. The other one follows a functional approach [YAG12, TA15, JS14,
JKT18, SVV18, CSV23]: a function A→ B in the language represents a function – a bijection –
between values of type A and values of type B. In this approach, types are typically structured,
and functional reversible languages usually feature pattern-matching to discriminate on values.

One of the issue reversible programming has to deal with is non-termination: in general, a
reversible program computes a partial injective map. This intuition can be formalised with the
concept of inverse categories [Kas79, CL02, CL03, CL07]: categories in which every morphism
comes with a partial inverse, for which the category PInj of sets and partial injective maps is
the emblematic concrete instance.

This categorical setting has been successfully used in the study of reversible programming se-
mantics, whether based on flow-charts [GK18, Kaa19a], with recursion [AK16, KAG17, Kaa19b,
KV19], with side-effects [HK15, HKK18b], etc.

Although much work has been dedicated to the categorical analysis of reversible compu-
tation, the adequacy of the developed categorical constructs with reversible functional pro-
gramming languages has only recently been under scrutiny, either in concrete categories of
partial isomorphisms [KV19, KR21], or for simple, non Turing-complete languages [CLV21]. A
formal, categorical analysis of a Turing-complete, reversible language is still missing. Turing-
completeness for a reversible programming language might come as a surprise; however, the
literature is already filled with evidence that any irreversible computation can be simulated in
a reversible setting [Ben73, Ben82, Abr05].

4.1.1 Related work

The work in [KAG17] is foundational in the development of the semantics of reversible
programming languages. In that paper, the authors lay the foundations for the interpretation of
what a programmer needs: data types and loops. However, no example of practical use is shown
for this model. This is covered in another paper [KR21], where a denotational semantics of the
reversible programming language RFun is provided. The latter is not typed and is conceptually
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further from, say, a simply-typed λ-calculus. We argue that the language in [SVV18] is a more
interesting case study.

The language we bring under scrutiny is the one introduced in [SVV18]. The main goal of
that paper was to shed light on the possibility to program with quantum control at a higher
level than the one of circuits. This was partially achieved: the authors have indeed brought
forward a novel syntax that handles reversibility through pattern-matching, and where reversible
quantum effects can be added. Nevertheless, the denotational semantics they provide is not
satisfactory, as it is not compositional. Without compositionality, there is no certainty that, for
instance, substitution preserves the interpretation (see the previous chapter for a compositional
denotation semantics for the so-called language with quantum effects).

Our denotational semantics of the classical, reversible language involves categorical enrich-
ment. However new in the development of reversible programming languages, this technique
has been used in several other instances [Fio96, RS18, LMZ18, PPRZ20, LMZ21, HLMS23].

Other kinds of techniques can be used for the denotation of reversibility, as compact closed
categories [CS21], or traced monoidal categories in the sense of [Kar19].

4.1.2 Contribution

In this chapter, we aim to close the gap: we propose a Turing-complete, reversible language,
together with a categorical semantics. In particular, the contributions of this paper are as
follows.

• A Turing-complete, higher-order reversible language with inductive types – this language
is described as classical, as opposed to a quantum programming language. Building on
the Theseus-based family of languages studied in [SVV18, CLV21, CSV23, Cha23], we
consider an extension with inductive types, general recursion and higher-order functions.
Note that the Turing-completeness has been the work of Kostia Chardonnet, and will not
be presented in details here. See the paper [CLV23].

• A sound and adequate categorical semantics. We show how the language can be inter-
preted in join inverse rig categories. The result relies on the DCPO-enrichments of join
inverse rig categories. This part of the chapter is entirely the author’s work.

• A full completeness result for computable functions. We finally discuss how the inter-
pretation of the language in the category PInj is fully complete in the sense that any
computable, partial injective set-function on the images of types is realisable within the
language. This part was produced in collaboration with Kostia Chardonnet.

4.1.3 Work of the Author

The author of this thesis has contributed to the following points.
• A generalisation of the syntax presented in [SVV18] with a call-by-name λ-calculus on top

of functions – called isos in this chapter. The operational semantics has been updated
with regard to these changes. The author has also provided the corresponding proofs of
the usual substitution lemma, subject reduction and progress for this system.

• A denotational semantics of the language in join inverse rig DCPO-categories.
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• A proof that the denotational semantics is adequate with regard to the operational
semantics.

• A statement – akin to a completeness result – saying that any computable injection is
captured by a function in the language.

4.2 The Language: Classical Symmetric Pattern-
Matching

In this section, we present a reversible language, unifying and extending the Theseus-based
variants presented in the literature [SVV18, CLV21, CSV23]. In particular, the language we pro-
pose features higher-order (unlike [CLV21]), pairing, injection, inductive types (unlike [SVV18])
and general recursion (unlike [CSV23]). Functions in the language are based on pattern-
matching, following a strict syntactic discipline: term variables in patterns should be used
linearly, and clauses should be non-overlapping on the left and on the right (therefore enforcing
non-ambiguity and injectivity). In [SVV18, CLV21, CSV23] one also requires exhaustivity for
totality. In this paper, we drop this condition in order to allow non-terminating behaviour.

(Base types) A,B ::= I | A⊕B | A⊗B | µX.A | X
(Isos) T ::= A↔ B | T1 → T2

(Values) v ::= ∗ | x | injl v | injr v | v1 ⊗ v2 | fold v
(Patterns) p ::= x | p1 ⊗ p2
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= { | v1 ↔ e1 | . . . | vn ↔ en } | fix ϕ.ω
| λψ.ω | ϕ | ω1 ω2

(Terms) t ::= ∗ | x | injl t | injr t | t1 ⊗ t2
| fold t | ω t | let p = t1 in t2

Figure 4.1 – Terms and types.

The language is presented in Figure 4.1. It consists of two layers.
• Base types: The base types consist of the unit type I along with its sole constructor
∗, coproduct A ⊕ B and tensor product A ⊗ B with their respective constructors,
injl (t), injr (t) and t1 ⊗ t2. Finally, the language features inductive types of the form
µX.A where X is a type variable occurring in A and µ is its binder. Its associated con-
structor is fold (t). The inductive type µX.A can then be unfolded into A[µX.A/X],
i.e., substituting each occurrence of X by µX.A in A. Typical examples of inductive
types that can be encoded this way are the natural number, as nat = µX.(I ⊕ X) or
the lists of types A, noted [A] = µX.I⊕ (A⊗X). Note that we only work with closed
types. We shall denote term-variables with x, y, z.
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• Isos types: The language features isos, denoted ω, higher order reversible functions whose
types T consist either of a pair of base type, noted A ↔ B or function types between
isos, T1 → T2. A first-order iso of type A↔ B consists of a finite set of clauses, written
v ↔ e where v is a value of type A and e an expression of type B. An expression consists
of a succession of applications of isos to some argument, described by let constructions:
let (x1, . . . , xn) = ω (y1, . . . , yn) in e. Isos can take other, first-order isos as arguments
through the λϕ.ω construction. Finally, isos can also represent recursive computation
through the fix ϕ.ω construction, where ϕ is an iso-variable.

Remark 4.1. What was called a unitary in the previous chapter is called an iso. Note that the
term iso is the vocabulary in the original paper [SVV18]. The use of the word unitary before
now was an emphasis on the quantum aspect of the language. The language described in this
chapter being classical, we choose to use the orginal terminology.

Formation rules. While [CSV23], [SVV18] and the previous chapter require isos to be ex-
haustive (i.e. to cover all the possible values of their input types) and non-overlapping (i.e. two
clauses cannot match a same value), we relax the exhaustivity requirement in this paper, in the
spirit of what was done in [CLV21]. However, the syntax still depends on a form of orthogonality
between values (resp. expressions) to define isos and to ensure pattern-matching.

Remark 4.2. The definition below mentions terms in the fashion of being as general as possible;
but the notion of orthogonality is only used within values and expressions, because we do not
have linear combinations of terms anymore.

Definition 4.3 (Orthogonality). We introduce a binary relation ⊥ on terms. Given two terms
t1, t2, t1 ⊥ t2 holds if it can be derived inductively with the rules below; we say that t1 and t2
are orthogonal. The relation ⊥ is defined as the smallest relation such that:

injl t1 ⊥ injr t2 injr t1 ⊥ injl t2

t1 ⊥ t2
C⊥[t1] ⊥ C⊥[t2]

with

C⊥[−] ::= − | injl C⊥[−] | injr C⊥[−] | C⊥[−]⊗ t | t⊗ C⊥[−]
| fold C⊥[−] | let p = t in C⊥[−].

The typing rules are then given in Figure 4.2. While the rules to form terms do not come
as a surprise, note the addition of a context Ψ which represents the iso-variables. The latter is
non-linear, in the sense that given a well-typed term Ψ;∆ ⊢ t : A, a variable ϕ in Ψ can appear
once, several times, or can also not appear in t. The context ∆ is linear, in the same way as in
the last chapter: a variable x in ∆ is present exactly once in t. Note that the rule for applying
an iso to a term ω t requires ω to have an iso ground type A ↔ B; this means in particular
that the term (λϕ.ω) t cannot be well-typed.

An iso abstraction { | vi ↔ ei }i∈I is well-typed iff all the vi and ei are well-typed and the
vi (resp. the ei) are pairwise orthogonal. This is necessary to ensure both forward and backward
determinism. As mentioned above, there is no request for exhaustivity, and for example the
empty iso {·} is well-typed at all ground iso types. At the same level of isos, we have a
simply-typed λ-calculus as detailed in §1.1.1, this time without the product type.
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Ψ; ∅ ⊢ ∗ : I Ψ;x : A ⊢ x : A
Ψ;∆ ⊢ t : A

Ψ;∆ ⊢ injl t : A⊕B
Ψ;∆ ⊢ t : B

Ψ;∆ ⊢ injr t : A⊕B
Ψ;∆1 ⊢ t1 : A Ψ;∆2 ⊢ t2 : B
Ψ;∆1,∆2;⊢ t1 ⊗ t2 : A⊗B

Ψ;∆ ⊢ t : A[µX.A/X]

Ψ;∆ ⊢ fold t : µX.A
Ψ ⊢ω ω : A↔ B Ψ;∆ ⊢ t : A

Ψ;∆ ⊢ ω t : B

Ψ;∆1 ⊢ t1 : A1 ⊗ · · · ⊗ An Ψ;∆2, x1 : A1, . . . , xn : An ⊢ t2 : B
Ψ;∆1,∆2 ⊢ letx1 ⊗ · · · ⊗ xn = t1 in t2 : B

Ψ;∆1 ⊢ v1 : A . . . Ψ;∆n ⊢ vn : A ∀i ̸= j, vi ⊥ vj
Ψ;∆1 ⊢ e1 : B . . . Ψ;∆n ⊢e en : B ∀i ̸= j, ei ⊥ ej

Ψ ⊢ω { | v1 ↔ e1 | . . . | vn ↔ en } : A↔ B.

Ψ, ϕ : T ⊢ω ϕ : T
Ψ, ϕ : T ⊢ω ω : T
Ψ ⊢ω fix ϕ.ω : T

Ψ, ϕ : T1 ⊢ω ω : T2
Ψ ⊢ω λϕ.ω : T1 → T2

Ψ ⊢ω ω1 : T1 Ψ ⊢ω ω2 : T1 → T2
Ψ ⊢ω ω2 ω1 : T2

Figure 4.2 – Typing rules of terms and isos.

Remark 4.4. As a further note, we will observe that our language has a sound and adequate
denotational semantics in a DCPO-enriched category; and the interpretation of the λ-calculus
of isos happens at the dcpo level. This means in particular that any language, as long as it is
adequately interpreted in the cartesian closed category DCPO, can replace the simply-typed
λ-calculus of isos. It also means that any usual structure on top of a λ-calculus can be added
to the current language.

Iso abstractions handle the use of several variables, thus our version of β-reduction needs
to behave accordingly. To do so, we introduce the notion of valuation, akin to the one in the
previous chapter; and the application of a valuation to a term performs a substitution.

Substitutions. We recall the definitions of the last chapter, adapted to the language presented
here. The difference is only embodied by inductive types formalism, where the fold constructor
replaces contructors for natural numbers. Given two values v and v′, we build the smallest
valuation σ such that the patterns of v and v′ match and that the application of the substitution
to v, written σ(v), is equal to v′. we denote the matching of a value v′ against a pattern v
and its associated valuation σ as match(σ, v, v′). Thus, match(σ, v, v′) means that v′ matches
with v and gives a smallest valuation σ, while σ(v) is the substitution performed. The predicate
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match(σ, v, v′) it is defined as follows.

match(σ, ∗, ∗)
σ = {x 7→ v′}
match(σ, x, v′)

match(σ, v, v′)

match(σ, inji v, inji v
′)

match(σ, v1, v
′
1) match(σ, v2, v

′
2) supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

match(σ, v1 ⊗ v2, v′1 ⊗ v′2)
match(σ, v, v′)

match(σ, fold v, fold v′)

Whenever σ is a valuation whose support contains the variables of t, we write σ(t) for the value
where the variables of t have been replaced with the corresponding terms in σ, as follows:

• σ(x) = t′ if {x 7→ t′} ⊆ σ,
• σ(∗) = ∗,
• σ(injl t) = injl σ(t),
• σ(injr t) = injr σ(t),
• σ(t1 ⊗ t2) = σ(t1)⊗ σ(t2),
• σ(fold t) = fold σ(t),
• σ(ω t) = ω σ(t),
• σ(let p = t1 in t2) = let p = σ(t1) in σ(t2).

Remark 4.5. Definition 3.25 is reminded here. Even if it involves a slightly different syntax, it
still holds. A valuation σ is said to be well-formed with regard to contexts Ψ and ∆ if for all
(xi : Ai) ∈ ∆, we have {xi 7→ ti} ⊆ σ and Ψ; ∅ ⊢ ti : Ai. We write Ψ;∆ ⊩ σ.

Lemma 4.6. If Ψ;∆ ⊢ t : A and Ψ;∆ ⊩ σ are well-formed, then Ψ; ∅ ⊢ σ(t) : A is
well-formed.

Proof. The proof is done by induction on Ψ;∆ ⊢ t : A.
• Ψ; ∅ ⊢ ∗ : I. Nothing to do.
• Ψ;x : A ⊢ x : A. Since x : A ⊩ σ is well-formed, there is ⊢ t : A such that {x 7→ t} ⊆ σ

and σ(x) = t.
• Ψ;∆1,∆2 ⊢ t1⊗ t2 : A⊗B. The induction hypothesis ensures that σ(t1) and σ(t2) are

well-typed, and thus σ(t1)⊗ σ(t2) = σ(t1 ⊗ t2) also is.
• Ψ;∆ ⊢ inji t : A1 ⊕ A2. The induction hypothesis ensures that σ(t) is well-typed, and

thus inji σ(t) = σ(inji t) is.
• Ψ;∆ ⊢ fold t : µX.A. The induction hypothesis ensures that σ(t) is well-typed, and

thus fold σ(t) = σ(fold t) is.
• Ψ;∆ ⊢ ω t : B. The induction hypothesis ensures that σ(t) is well-typed, and thus
ω σ(t) = σ(ω t) is.

• Ψ;∆1,∆2 ⊢ let p = t1 in t2 : B. The induction hypothesis ensures that σ(t1) and
σ(t2) are well-typed, and thus let p = σ(t1) in σ(t2) = σ(let p = t1 in t2) also is.

Once substitutions are defined, we can make our way through the operational semantics.

Operational semantics. The language is equipped with a small-step operational semantics,
that revolves around a β-reduction at the level of isos and a reversible equivalent to β-reduction
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at the level of terms. First, we introduce an operational semantics for isos, similar to a call-
by-name reduction strategy in a λ-calculus. It is given in Figure 4.3. The β-reduction and
the congruence rule are usually for a simply-typed λ-calculus. The fix operator is handled
operationally à la PFC [Plo77].

fix ϕ.ω → ω[fix ϕ.ω/ϕ] (λϕ.ω1)ω2 → ω1[ω2/ϕ]

ω1 → ω′
1

ω1ω2 → ω′
1ω2

Figure 4.3 – Isos operational semantics.

As in any formal programming language given an operational semantics, progress requires
a notion of value, that is defined below. Note that the iso values are the ones for closed isos.

Definition 4.7 (Iso values). We call iso values the following isos:

ω ::= { | v1 ↔ e1 | . . . | vn ↔ en } | λϕ.ω.

Lemma 4.8. If Ψ, ψ : T1 ⊢ω ω2 : T2 and Ψ ⊢ω ω1 : T1 are well-formed, then Ψ ⊢ω
ω2[ω1/ψ] : T2.

Proof. Formally, the inductive definition of an iso judgement also depends on term judgements,
in other words we also prove the following statement: If Ψ, ψ : T1; ∆ ⊢ t : A and Ψ ⊢ω ω1 : T1
are well-formed, then Ψ;∆ ⊢ t[ω1/ψ] : A. The proof is done by mutual induction on the term
and iso judgements.

• Ψ, ψ : T1; ∅ ⊢ ∗ : I. Direct.
• Ψ, ψ : T1;x : A ⊢ x : A. Direct.
• Ψ, ψ : T1; ∆1,∆2 ⊢ t1 ⊗ t2 : A ⊗ B. We observe that (t1 ⊗ t2)[ω1/ψ] = t1[ω1/ψ] ⊗
t2[ω1/ψ] and the induction hypothesis concludes.

• Ψ, ψ : T1; ∆ ⊢ inji t : A1 ⊕A2. Similar to the previous point.
• Ψ, ψ : T1; ∆ ⊢ fold t : µX.A. Similar to the previous point.
• Ψ, ψ : T1; ∆ ⊢ ω t : B. We observe that (ω t)[ω1/ψ] = ω[ω1/ψ] t[ω1/ψ] and the

induction hypothesis concludes.
• Ψ, ψ : T1; ∆1,∆2 ⊢ let p = t1 in t2 : B. With the induction hypothesis, similar to the

previous point.
• Ψ, ψ : T1 ⊢ω { | vi ↔ ei }i∈I : A ↔ B. By induction hypothesis, given any iso ω

present in ei, ω is well-typed and ω[ω1/ψ] is also.
• Ψ, ψ : T1, ϕ : T ⊢ω ϕ : T . Direct.
• Ψ, ψ : T1 ⊢ω fix ϕ.ω : T . Note that (fix ϕ.ω)[ω1/ψ] = fix ϕ.(ω[ω1/ψ]), and by

induction hypothesis ω[ω1/ψ] is well-typed.
• Ψ, ψ : T1 ⊢ω λϕ.ω : T2 → T ′

2. Similar to the previous point.
• Ψ, ψ : T1 ⊢ω ω′ω : T2. Note that (ω′ω)[ω1/ψ] = ω′[ω1/ψ]ω[ω1/ψ], and by induction

hypothesis, ω′[ω1/ψ] and ω[ω1/ψ] are well-typed.
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Lemma 4.9 (Iso Subject Reduction). If Ψ ⊢ω ω : T is well-formed and ω → ω′, then
Ψ ⊢ω ω′ : T .

Proof. The proof is done by induction on →.
• fix ϕ.ω → ω[fix ϕ.ω/ϕ]. The iso fix ϕ.ω is well-typed, thus ω is also, and the previous

lemma concludes.
• (λϕ.ω1)ω2 → ω1[ω2/ϕ]. For the application to be well-typed, we need both λϕ.ω1 and
ω2 to be well-typed. The former ensures that ω1 is well-typed, and the previous lemma
concludes.

• ω1ω2 → ω′
1ω2. The induction hypothesis ensures that ω′

1 is well-typed, and ω2 is also
because the application ω1ω2 is.

Lemma 4.10 (Iso Progress). If ⊢ω ω : T is well-formed, ω is either an iso value or there
exists ω′ such that ω → ω′.

Proof. The proof is done by induction on ⊢ω ω : T .
• ⊢ω { | vi ↔ ei }i∈I : A↔ B is an iso value.
• ⊢ω fix ϕ.ω : T reduces.
• ⊢ω λϕ.ω : T1 → T2 is an iso value.
• ⊢ω ω2ω1 : T2. By induction hypothesis, either ω2 is a value or it reduces. If it reduces,
ω2ω1 reduces. If it is a value, it cannot be an iso abstraction: being applied to another
iso, it must have a type T1 → T2. Thus, it is of the form λϕ.ω′

2, and (λϕ.ω′
2)ω1 reduces.

Corollary 4.11. If ⊢ω ω : A ↔ B is well-formed, either there is some ∆i ⊢ vi : A and
∆i ⊢ ei : B such that ω = { | v1 ↔ e1 | . . . | vn ↔ en }, or there exists ω′ such that
ω → ω′.

We move to an operational semantics for terms of the language, which requires the intro-
duction of congruence context. The operational semantics is detailed in Figure 4.4.

C→[−] ::= − | injl C→[−] | injr C→[−] | C→[−]⊗ t | v ⊗ C→[−]
| { | vi ↔ ei }i∈I C→[−] | fold C→[−]

| let p = C→[−] in t.

match(σ, vi, v
′)

{ | v1 ↔ e1 | . . . | vn ↔ en } v′ → σ(ei)

match(σ, p, v)

let p = v in t→ σ(t)

t1 → t2
C→[t1]→ C→[t2]

ω → ω′

ω t→ ω′ t

Figure 4.4 – Term Operational Semantics
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Lemma 4.12 (Subject Reduction). If Ψ;∆ ⊢ t : A is well-formed and t → t′, then
Ψ;∆ ⊢ t′ : A is also well-formed.

Proof. The proof is done by induction on →. It revolves around three quick observations:
Lemma 4.9, Lemma 4.6, and that if t2 and C→[t1] are well-typed, then C→[t2] also is.

As usual we write →∗ for the reflexive transitive closure of →. In particular, the rewriting
system follow a call-by-value strategy, requiring that the argument of an iso is fully evaluated to
a value before firing the substitution. Note that unlike [CSV23, SVV18], we do not require any
form of termination and isos are not required to be exhaustive: the rewriting system can diverge
or be stuck. The evaluation of an iso applied to a value is dealt with by pattern-matching:
the input value will try to match one of the value from the clauses and potentially create a
substitution if the two values match, giving the corresponding expression as an output under
that substitution.

Example 4.13. Observe that ⊢ω fix ϕ.ϕ : A ↔ B is well-formed judgement. Given any
closed term judgement ⊢ t : A, the judgement ⊢ (fix ϕ.ϕ) t : B is also well-formed, and:

(fix ϕ.ϕ) t→ (ϕ[fix ϕ.ϕ/ϕ]) t = (fix ϕ.ϕ) t

→ (ϕ[fix ϕ.ϕ/ϕ]) t = (fix ϕ.ϕ) t

→ (ϕ[fix ϕ.ϕ/ϕ]) t = (fix ϕ.ϕ) t

→ · · ·

does not terminate. A slightly more subtle instance of non-termination is the term ⊢ (fix ϕ.{|
x↔ let y = ϕ x in y} v : B, which reduces as follows:

(fix ϕ.{| x↔ let y = ϕ x in y}) v
→ ({| x↔ let y = ϕ x in y}[fix ϕ.{| x↔ let y = ϕ x in y}/ϕ]) v
= {| x↔ let y = (fix ϕ.{| x↔ let y = ϕ x in y}) x in y} v
→ let y = (fix ϕ.{| x↔ let y = ϕ x in y}) v in y

→ · · ·

and it does not terminate.

Example 4.14. Reductions can get stuck, because there is no pattern to match with. For
example, ⊢ω {| injr ∗ ↔ injl ∗} : I ⊕ I ↔ I ⊕ I is a well-typed iso abstraction. The term
⊢ {| injr ∗ ↔ injl ∗} (injl ∗) : I⊕ I does not reduce.

Example 4.15. Remember that [A] = µX.I⊕ (A⊗X). One can define the map operator on
list with an iso of type (A↔ B)→ [A]↔ [B], defined as

λψ.fix ϕ.

{
[ ] ↔ [ ]
h :: t ↔ leth′ = ψ h in let t′ = ϕ t in h′ :: t′

}
,

with the terms [ ] = fold (injl (∗)), representing the empty list, and h :: t = fold (injr (h⊗ t)),
representing the head and tail of the list. Its inverse map−1 is

λψ.fix ϕ.

{
[ ] ↔ [ ]
h′ :: t′ ↔ let t = ϕ t′ in leth = ψh′ in h :: t

}
.
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Note that in the latter, the variable ψ has type B ↔ A. If we consider the inverse of the
term (map ω) we would obtain the term (map−1 ω−1) where ω−1 would be of type B ↔ A.

Example 4.16 (Cantor Pairing). One can encode the Cantor Pairing between N ⊗ N ↔ N.
First recall that the type of natural number nat is given by µX.I ⊕ X, then define n as the
encoding of natural numbers into a closed value of type nat as 0 = fold (injl ∗) and given a
variable x of type nat, its successor is S(x) = fold (injr (x)). Omitting the · operator for
readability, the pairing is then defined as:

ω1 : nat⊗ nat↔ (nat⊗ nat)⊕ I

=


S(i)⊗ j ↔ injl (i⊗ S(j))
0⊗ S(j) ↔ injl (j ⊗ 0)
0⊗ 0 ↔ injr (∗)

 ,

ω2 : (nat⊗ nat)⊕ I↔ nat

=

{
injl (x) ↔ let y = ϕ x in S(y)
injr (∗) ↔ 0

}
,

CantorPairing : nat⊗ nat↔ nat

= fix ϕ.

{
x ↔ let y = ω1 x in

let z = ω2 y in z

}
,

where the variable ϕ in ω2 is the one being binded by the fix of the CantorPairing iso.
Intuitively, ω1 realise one step of the Cantor Pairing evaluation, while ω2 check if we reached
the end of the computation and either apply a recursive call, or stop.

For instance, CantorPairing 1 ⊗ 1 will match with the first clause of ω1, evaluating into
injl 0⊗ 2, and then, inside ω2 the reduction CantorPairing 0 ⊗ 2 will be triggered through
the recursive call, evaluating the second clause of ω1, reducing to injl 1⊗ 0, etc.

4.3 Denotational semantics

We now show how to build a denotational semantics for the language we presented thus
far. The semantics is akin to the one presented in [CLV21] but with extra structure to handle
inductive types and recursive functions. The section is organised as follows.

• We first fix the interpretation of types. This requires us to make type judgements explicit
in the formalisation of the syntax. The semantics of type judgement is then given, thanks
to the work mentioned in §1.2.2. We then discuss the interpretation of closed types, which
are the types actually involved in the syntax.

• We detail the interpretation of term judgements, that are given as Scott continuous maps
between the interpretation of the linear context, and the dcpo of reversible programs at
a certain type.

• An interpretation of iso judgements is given, also as Scott continuous maps. The devel-
opment is similar to the denotational semantics of a simply-typed λ-calculus as given in
§1.1.1, however our iso abstractions need more care.

• We finish with an interpretation of substitutions, allowing to fromulate a soundness and
adequacy statement later on.
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In the whole section, we consider C a join inverse rig category (see Definition 1.78), that is
DCPO-enriched (see Definition 1.32 and §1.2.1) and such that 0 and 1 are distinct objects.

4.3.1 Denotational Semantics of Types

Term types. As explained in the background section (see §1.3), we can assume without
loss of generality that C satisfies the hypothesis of Theorem 1.50. In order to deal with
open types, we make use of an auxiliary judgement for types, of the form X1, . . . , Xn ⊨
A, where {Xi}i is a subset of the free type variables, non necessarily appearing in A. We
interpret this kind of judgement as a DCPO-functor C|Θ| → C written JΘ ⊨ AK. This is
formally defined as an inductive relation, and the semantics is stated similarly to what is done
in [Fio04, LMZ21, JLMZ21a].

Θ, X ⊨ X Θ ⊨ I
Θ ⊨ A Θ ⊨ B
Θ ⊨ A ⋆ B

⋆ ∈ {⊕,⊗} Θ, X ⊨ A
Θ ⊨ µX.A

(4.1)

The type judgements are inductively defined as given above. The interpretation of types is
detailed in Figure 4.5, where Π: C|Θ| → C is the projection functor on the last component,
K1 : C

|Θ| → C is the constant functor that outputs 1 and the id, ⊗ and ⊕ are given by the
rig structure, and (−)々 is part of the parameterised initial algebra (see Definition 1.45), that
exists thanks to Theorem 1.50 (see details in §1.2.2).

JΘ ⊨ AK : C|Θ| → C

JΘ, X ⊨ XK = Π

JΘ ⊨ IK = K1

JΘ ⊨ A⊕BK = ⊕ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩
JΘ ⊨ A⊗BK = ⊗ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩

JΘ ⊨ µX.AK = (JΘ, X ⊨ AK)々

Figure 4.5 – Interpretation of types.

We remind the typing rule of the term contructor fold .

Ψ;∆ ⊢ t : A[µX.A/X]

Ψ;∆ ⊢ fold t : µX.A

This typing rule involves a type substitution. We show in the next lemma that type substitutions
make sense, and we also provide a result about there interpretation.

Lemma 4.17 (Type Substitution). Given well-formed type judgements Θ, X ⊨ A and
Θ ⊨ B, the judgement Θ ⊨ A[B/X] is well-formed and

JΘ ⊨ A[B/X]K = JΘ, X ⊨ AK ◦ ⟨id, JΘ ⊨ BK⟩.

136



Proof. The proof that Θ ⊨ A[B/X] is well-formed is direct by induction on the formation rules.
The semantic equality is also proven by induction on the formation rules of Θ, X ⊨ A.

• Θ ⊨ I. Nothing to do.
• Θ, X ⊨ X. Indeed, JΘ ⊨ BK = Π ◦ ⟨id, JΘ ⊨ BK⟩.
• Θ, X ⊨ A1 ⋆ A2.

JΘ ⊨ (A1 ⋆ A2)[B/X]K

= JΘ ⊨ A1[B/X] ⋆ A2[B/X]K

= ⋆ ◦ ⟨JΘ ⊨ A1[B/X]K , JΘ ⊨ A2[B/X]K⟩ (by definition)

= ⋆ ◦ ⟨JΘ, X ⊨ A1K ◦ ⟨id, JΘ ⊨ BK⟩, JΘ, X ⊨ A2K ◦ ⟨id, JΘ ⊨ BK⟩⟩ (by IH)

= ⋆ ◦ ⟨JΘ, X ⊨ A1K , JΘ, X ⊨ A1K⟩ ◦ ⟨id, JΘ ⊨ BK⟩ (by unicity)

= JΘ, X ⊨ A1 ⋆ A2K ◦ ⟨id, JΘ ⊨ BK⟩ (by definition)

• Θ, X ⊨ µY.A.

JΘ ⊨ (µY.A)[B/X]K

= JΘ ⊨ µY.A[B/X]K

= (JΘ, Y ⊨ A[B/X]K)々 (by definition)

= (JΘ, Y,X ⊨ AK ◦ ⟨id, JΘ, Y ⊨ BK⟩)々 (by IH)

= (JΘ, X, Y ⊨ AK ◦ (⟨id, JΘ ⊨ BK⟩ × id))々 (Y is not in B)

= (JΘ, X, Y ⊨ AK)々◦ ⟨id, JΘ ⊨ BK⟩ (see [LMZ21, Prop. 4.14])

= JΘ, X ⊨ µY.AK ◦ ⟨id, JΘ ⊨ BK⟩ (by definition)

The previous lemma embodies the link between the fixed point contructor µ and the para-
meterised initial algebra, with the following observation:

JΘ ⊨ A[µX.A/X]K = JΘ, X ⊨ AK ◦ ⟨id, JΘ ⊨ BK⟩⇒̃ JΘ ⊨ µX.AK

and thus there is a natural isomorphism:

αJΘ⊨AK : JΘ, X ⊨ A[µX.A/X]K ∼= JΘ ⊨ µX.AK .

In the syntax of this chapter, only closed types are involved in the typing rules of terms.
We sum up the semantics of closed types below.

JIK = 1 JA⊕BK = JAK⊕ JBK JA⊗BK = JAK⊗ JBK

JµX.AK ∼= JA[µX.A/X]K
(4.2)

Iso types. The basic types of isos are represented by pointed dcpos of morphisms in C, written
JA↔ BK = C(JAK , JBK). The rest is given by the usual type interpretation of a simply-typed
λ-calculus in the cartesian closed category DCPO (see §1.1.1 for the details).

The terms used to build isos are dependent in two contexts: variables in ∆ and isos in Ψ.
In general, if ∆ = x1 : A1, . . . , xm : Am and Ψ = ϕ1 : B1 ↔ C1, . . . , ϕn : Bn ↔ Cn, then we
set J∆K = JA1K⊗ · · ·⊗ JAmK and JΨK = C(JB1K , JC1K)× · · ·×C(JBnK , JCnK), with ⊗ being
the monoidal product in C and × the cartesian product in DCPO.
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4.3.2 Denotational Semantics of Terms

A well-formed term judgement Ψ;∆ ⊢ t : A is given a semantics

JΨ;∆ ⊢ t : AK : JΨK→ C(J∆K , JAK)

as a Scott continuous map between two dcpos – in other words, as a morphism in DCPO.
Values do not contain iso variables, thus given a judgement Ψ;∆ ⊢ v : A with v a value,
JΨ;∆ ⊢ v : AK is a constant function, whose output is a morphism J∆K → JAK in C. The
interpretation of values, and therefore of the corresponding terms, is as follows, for all g ∈ JΨK:

JΨ;∆ ⊢ t : AK (g) ∈ C(J∆K , JAK)

JΨ; ∅ ⊢ ∗ : IK (g) = idJIK

JΨ;x : A ⊢ x : AK (g) = idJAK

JΨ;∆ ⊢ injl t : A⊕BK (g) = ιl ◦ JΨ;∆ ⊢ t : AK (g)

JΨ;∆ ⊢ injr t : A⊕BK (g) = ιr ◦ JΨ;∆ ⊢ t : BK (g)

JΨ;∆1,∆2 ⊢ t1 ⊗ t2 : A⊗BK (g) = JΨ;∆1 ⊢ t1 : AK (g)⊗ JΨ;∆2 ⊢ t2 : BK (g)

JΨ;∆ ⊢ fold t : µX.AK (g) = αJX⊨AK ◦ JΨ;∆ ⊢ t : A[µX.A/X]K (g)

Lemma 4.18. Given two judgements Ψ;∆1 ⊢ v1 : A and Ψ;∆2 ⊢ v2 : A, such that
v1 ⊥ v2, we have that for all g ∈ JΨK:

Jv1K (g)◦ ◦ Jv2K (g) = 0J∆2K,J∆1K.

Proof. This is proven by induction on the definition of ⊥. The cases injl v1 ⊥ injr v2 and
injr v1 ⊥ injl v2 are covered by Lemma 1.76. the other cases involve precompositions and
tensor products, the result is direct with the induction hypothesis.

Once we have fixed the denotation of the easiest terms, we can cover the difficult part.
Throughout the rest of the section, the semantics of a well-formed term judgement JΨ;∆ ⊢ t : AK
is obviously a map between sets, and the interesting part is proving that it is indeed a Scott
continuous map between two dcpos. The interpretation of the remaining terms is given below.

JΨ;∆ ⊢ t : AK ∈ DCPO(JΨK ,C(J∆K , JAK))

JΨ;∆1,∆2 ⊢ let p = t1 in t2 : BK = comp ◦
⟨JΨ;∆2, p : A ⊢ t2 : BK , (⊗ ◦ ⟨idJ∆2K, JΨ;∆1 ⊢ t1 : AK⟩)⟩

JΨ;∆ ⊢ ω t : BK = comp ◦ ⟨JΨ ⊢ω ω : A↔ BK , JΨ;∆ ⊢ t : AK⟩

All this is well-defined in DCPO provided that JΨ ⊢ω ω : A↔ BK is. This last point is the
focus of the next subsection. Note that the interpretation on terms and iso is thus defined by
mutual induction on the term and iso judgements. This does not cause any difficulty.

Before moving to the denotational semantics of isos, we prove a lemma of central import-
ance, extending Lemma 4.18, and showing that the interpretations of two orthogonal expressions
are also orthogonal, in the sense of Remark 1.77.
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Lemma 4.19. Given two judgements Ψ;∆1 ⊢ e1 : A and Ψ;∆2 ⊢ e2 : A, such that
e1 ⊥ e2, we have that for all g ∈ JΨK:

Je1K (g)◦ ◦ Je2K (g) = 0J∆2K,J∆1K.

Proof. A large part of this lemma is already proven in Lemma 4.18. It remains to observe
that the interpretation of let involves a precomposition, thus the induction hypothesis on the
definition of ⊥ is enough to conclude.

4.3.3 Denotational Semantics of Isos

Isos do only depend on function variables but they are innately morphisms, so their denota-
tion will be similar to terms – a Scott continuous map:

JΨ ⊢ω ω : A↔ BK : JΨK→ C(JAK , JBK).

We define the denotation of an iso by induction on the typing derivation. The interpretation
of an iso-variable is direct: it is the projection on the last component. The interpretations of
evaluations and λ-abstractions are usual in a cartesian closed category, in our case, DCPO

(see §1.1.1 and §1.2.1).

JΨ ⊢ω ω : T K ∈ DCPO(JΨK , JT K)

JΨ, ϕ : T ⊢ω ϕ : T K = πJT K

JΨ ⊢ω ω2ω1 : T2K = eval ◦ ⟨JΨ ⊢ω ω2 : T1 → T2K , JΨ ⊢ω ω1 : T1K⟩
JΨ ⊢ω λϕ.ω : T1 → T2K = curry(JΨ, ϕ : T1 ⊢ω ω : T2K)

JΨ ⊢ω fix ϕ.ω : T K = fix(JΨ, ϕ : T ⊢ω ω : T K)

The remaining rule, that builds an iso abstraction { | vi ↔ ei }i∈I , needs more details. The
interpretation of an iso abstraction is close to the one in the previous chapter (see §3.5), in a
related but different setting.

Lemma 4.20. Given a well-typed iso abstraction Ψ ⊢ω { | vi ↔ ei }i∈I : A↔ B, for all
g ∈ JΨK, the morphisms in C given by:

JΨ;∆i ⊢ ei : BK (g) ◦ JΨ;∆i ⊢ vi : AK (g)◦

with i ∈ I, are pairwise inverse compatible.

Proof. Lemma 4.19 gives us that for all g ∈ JΨK and i ̸= j ∈ I:

(JeiK (g) ◦ JviK (g)◦)◦ ◦ (JejK (g) ◦ JvjK (g)◦) = 0JAK,JAK

(JeiK (g) ◦ JviK (g)◦) ◦ (JejK (g) ◦ JvjK (g)◦)◦ = 0JBK,JBK

which are the hypotheses of Lemma 1.70. This is enough to ensure that for all g ∈ JΨK and
i ̸= j ∈ I,

JeiK (g) ◦ JviK (g)◦ ≍ JejK (g) ◦ JvjK (g)◦

and this last point concludes.
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In a similar vein to the previous chapter, each clause vi ↔ ei, present in an iso abstraction,
is given an interpretation JeiK ◦ JviK◦. The previous lemma shows that in the case of an iso
abstraction, the interpretations of all clauses can be joined (in the sense of Definition 1.65),
and thus the interpretation of the iso abstraction is the least upper bound of the interpretation
of all the clauses. This least upper bound is also the one in DCPO, as shown by the lemma
below.

Lemma 4.21. Given a dcpo Ξ, two objects X and Y of C, a set of indices I and a
family of Scott continuous maps ξi : Ξ → C(X,Y ) that are pairwise inverse compatible,
the function given by: {

Ξ → C(X,Y )
x 7→

∨
i∈I ξi(x)

is Scott continuous, and is written
∨

i∈I ξi.

Proof. The function can also be obtained as the join in the dcpo [Ξ→ C(X,Y )], it is therefore
Scott continuous.

The interpretation of an iso abstraction is then given by:
q
Ψ ⊢ω { | vi ↔ ei }i∈I : A↔ B

y
=
∨
i∈I

(comp ◦ ⟨JΨ;∆i ⊢ ei : BK , JΨ;∆i ⊢ vi : AK◦⟩)

Proposition 4.22. Given a well-typed iso abstraction Ψ ⊢ω { | vi ↔ ei }i∈I : A ↔ B,
its interpretation

q
Ψ ⊢ω { | vi ↔ ei }i∈I : A↔ B

y
is well-defined as a Scott continuous

map between the dcpos JΨK and C(JAK , JBK).

Proof. This is a conclusion of Lemmas 4.20 and 4.21.

We complete the denotational semantics of isos with an interpretation of substitutions. It
is not different to the one in a usual λ-calculus.

Lemma 4.23. Given two well-typed isos Ψ, ϕ : T2 ⊢ω ω1 : T1 and Ψ ⊢ω ω2 : T2,

JΨ ⊢ω ω1[ω2/ϕ] : T1K = JΨ, ϕ : T2 ⊢ω ω1 : T1K ◦ ⟨id, JΨ ⊢ω ω2 : T2K⟩.

Proof. The proof is done by induction on the typing derivation of ω1.

4.3.4 Denotational Semantics of Valuations and Substitution

We provide an interpretation to valuations and to their application to a term of the syntax.
As expected, the result obtained is close to Proposition 3.56, that details the semantics of
valuations in the last chapter.

Proposition 4.24 (Substitution lemma). Given a well-typed term Ψ;∆ ⊢ t : A and for all
(xi : Ai) ∈ ∆, a well-typed term Ψ; ∅ ⊢ ti : Ai; if σ = {xi 7→ ti}i, then for all g ∈ JΨK:

JΨ; ∅ ⊢ σ(t) : AK (g) = JΨ;∆ ⊢ t : AK (g) ◦

(⊗
i

JΨ; ∅ ⊢ ti : AiK (g)

)
.

140



We define then, for all g ∈ JΨK: JσK (g) =
⊗

i J⊢ ti : AiK (g).

Proof. The proof is straightforward by induction on the typing derivation of t.

Remark 4.25. We remind here that the interpretation of a valuation, given above, is not done in
the most meticulous way. Indeed, there is no order in which the variables occur in a valuation,
thus its categorical denotation is necessarily up to permutation, as the denotation of a context.
Since C is a symmetric monoidal category, we argue that the results of this chapter are not
impacted by this choice, and that providing an extra care to permutations would only introduce
more notations and confusion.

Proposition 4.24 strengthens the observation that categorical composition is exactly sub-
stitution in the Curry-Howard-Lambek correspondence. In addition, in our context of category
equipped with an inverse structure, similar to the dagger in the last chapter, we can show that
the inner product (see Remark 1.77 to understand the intuition behind this notion) of two
interpretations produces the interpretation of a valuation, provided that there is a match.

Lemma 4.26. Given two well-typed values Ψ;∆ ⊢ v : A and Ψ; ∅ ⊢ v′ : A, and a substi-
tution σ, if match(σ, v, v′) then for all g ∈ JΨK:

JvK (g)◦ ◦
q
v′

y
(g) = JσK (g).

Proof. The proof is straightforward by induction on match(σ, b, b′).

The lemmas above can be combined to assert a first step towards soundness: the interpret-
ations of the left-hand side and right-hand side of the reversible β-reduction are equal.

Lemma 4.27. Given a well-typed iso abstraction ⊢ω { | vj ↔ ej }j∈J : A ↔ B and a
well-typed value ⊢ v′ : A, if match(σ, vi, v

′), then
r
⊢ { | vj ↔ ej }j∈J v′ : B

z
= J⊢ σ(vi) : BK .

Proof. First, we deduce from the assumption match(σ, vi, v
′) that

• ¬(vi ⊥ v′), and thus JviK◦ ◦ Jv′K = JσK, thanks to Lemma 4.26.
• for all j ̸= i, vj ⊥ v′, and thus JvjK◦ ◦ Jv′K = 0, thanks to Lemma 4.19.

We can then compute the semantics, with ω def
= { | vj ↔ ej }j∈J :

q
ω v′

y

= JωK ◦
q
v′

y
(by definition)

=

∨
j

JvjK ◦ JbjK◦
 ◦ q

v′
y

(by definition)

=
∨
j

JvjK ◦ JbjK◦ ◦
q
v′

y
(composition distributes over join)

= JviK ◦ JbiK◦ ◦
q
v′

y
(Lemma 4.19)

= JviK ◦ JσK (Lemma 4.26)

= Jσ(vi)K (Prop. 4.24)
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We have brought forward a categorical interpretation to the programming language intro-
duced in §4.2. This interpretation makes use of the join inverse rig structure to define the
iso abstraction and to perform a pattern-matching that ensures reversibility; an enrichment in
DCPO allows to consider recursive isos and inductive data types are represented with the help
or parameterised initial algebras.

Independently of how convincing this model is, it is good practice to prove it has a strong
link with the operational semantics of the language. This link is called adequacy, and is the
focus of the next section.

4.4 Adequacy

We show a strong relation between the operational semantics and the denotational se-
mantics which were introduced in the previous sections. First, we fix a mathematical interpret-
ation J−K in a join inverse rig category C, that is DCPO-enriched and whose objects 0 and 1

are distinct.
Since the language handles non-termination, our adequacy statement links the denotational

semantics to the notion of termination in the operational semantics.

Definition 4.28 (Terminating). Given ⊢ t : A, t is said terminating if there exists a value v
such that t→∗ v. We either write t ↓, or t ↓ v.

Since the system is deterministic, if t ↓ v, then v is unique.
The goal of this section is to prove the next theorem.

Theorem 4.29 (Adequacy). Given ⊢ t : A, t ↓ iff J⊢ t : AK ̸= 01,JAK.

Interestingly enough, there are two ways for a term ⊢ t : A to have 01,JAK as its inter-
pretation: either it reduces over and over in an infinite loop (see Example 4.13), or it is stuck
because of pattern-matching (see Example 4.14).

One strategy could be the use of formal approximation relations, introduced by Plotkin
[Plo85]. However, because of our two seperate levels of abstraction (a fixed point calculus at
the level of isos, and inductive types at the level of terms), the definition of the relations and
proving that they exist would be long and of little interest to the reader. We rather choose a
syntactic approach, inspired by the proof in [PSV14].

4.4.1 Soundness

We start by showing the simple implication in Theorem 4.29, that the denotational semantics
is stable w.r.t. computation; in other words, applying a rule of the operational semantics does
not change the mathematical interpretation. The other direction – which is made formal later
– is called adequacy, and is usually harder to prove. See §4.4.2 for full details on the adequacy
result.
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Lemma 4.30. Given a well-formed iso judgement ⊢ω ω : T , if ω → ω′, then

J⊢ω ω : T K =
q
⊢ω ω′ : T

y
.

Proof. The proof is done by induction on →.
• fix ϕ.ω → ω[fix ϕ.ω/ϕ].

Jfix ϕ.ωK

= fix JωK (by definition)

= JωK ◦ fix(JωK) (fixed point)

= JωK ◦ Jfix ϕ.ωK (by definition)

= Jω[fix ϕ.ω/ϕ]K (Lem. 4.23)

• (λϕ.ω1)ω2 → ω1[ω2/ϕ].

J(λϕ.ω1)ω2K

= eval ◦ ⟨curry(Jω1K), Jω2K⟩ (by definition)

= Jω1K ◦ Jω2K (§1.1.1)

= Jω1[ω2/ϕ]K (Lem. 4.23)

• ω1ω2 → ω′
1ω2. Direct with the induction hypothesis.

Proposition 4.31 (Soundness). Given a well-formed term judgement ⊢ t : A, if t → t′,
then

J⊢ t : AK =
q
⊢ t′ : A

y
.

Proof. The proof is done by induction on →.
• { | vi ↔ ei }i∈I v′ → σ(vj). This is covered by Lemma 4.27.
• let p = v in t→ σ(t). This is a conclusion of Prop. 4.24.
• ω t→ ω′ t. We conclude with the previous lemma (Lemma 4.30).
• inji t→ inji t

′ when t→ t′. The induction hypothesis gives JtK = Jt′K and then

Jinji tK = ιi JtK = ιi
q
t′
y
=

q
inji t

′y .

• t⊗ t2 → t′ ⊗ t2 when t→ t′.

Jt⊗ t2K = JtK⊗ Jt2K
IH
=

q
t′
y
⊗ Jt2K =

q
t′ ⊗ t2

y
.

• { | vi ↔ ei }i∈I t→ { | vi ↔ ei }i∈I t′ when t→ t′. In general,

Jω tK = JωK JtK IH
= JωK

q
t′
y
=

q
ω t′

y
.

• fold t→ fold t′ when t→ t′.

Jfold tK = α JtK IH
= α

q
t′
y
=

q
inji t

′y .
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• let p = t in t2 → let p = t′ in t2 when t→ t′.

Jlet p = t in t2K = Jt2K (id⊗ JtK) IH
= Jt2K (id⊗

q
t′
y
) =

q
let p = t′ in t2

y
.

Corollary 4.32. Given a well-formed term judgement ⊢ t : A such that t ↓, then

J⊢ t : AK ̸= 0JAK.

Proof. Knowing that there is a value v such that t→∗ v, Prop. 4.31 ensures that

JtK = JvK ̸= 0.

However, this was only the simple direction of the main theorem. The proof of the other
implication is the focus of the next section.

4.4.2 Proof of Adequacy

Our proof of adequacy involves a finitary sublanguage, where the number of recursive calls
is controlled syntactically. We show the adequacy result for the finitary terms thanks to strong
normalisation, and then show that it implies adequacy for the whole language; this is achieved
by observing that a normalising finitary term is also normalising in its non-finitary form.

Finitary sublanguage. We introduce the syntax for finitary terms, where the number of
possible reductions is limited by the syntax itself. The grammar of finitary isos is given by:

ω ::= { | vi ↔ ei }i∈I | λϕ.ω | ϕ | ωω | fix
n ϕ.ω

where n is a natural number. The iso fixn ϕ.ω has the same typing rule as fix ϕ.ω above.
We introduce syntactic sugar, that denotes an expression that will never reduce, by induction
on iso types:

ΩA↔B
def
= {| ·} ΩT1→T2

def
= λϕT1 .ΩT2

The syntax of finitary terms does not change compared to the language presented at the
beginning of the chapter, with the addition of a term ⊥, which indicates that there was no
match when applying an iso abstraction to a value. The finitary operational semantics is then
defined as:

fix0 ϕT .ω →
fin

ΩT fixn+1 ϕ.ω →
fin
ω[fixn ϕ.ω/ϕ]

(λϕ.ω1)ω2 →
fin
ω1[ω2/ϕ]

ω1 →
fin
ω′
1

ω1ω2 →
fin
ω′
1ω2
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match(σ, vi, v
′)

{ | vi ↔ ei }i∈I v′ →
fin
σ(ei)

∀i,¬(match(σ, vi, v
′))

{ | vi ↔ ei }i∈I v′ →
fin
⊥

t1 →
fin
t2

C→[t1]→
fin
C→[t2]

t→
fin
⊥

C→[t]→
fin
⊥

match(σ, p, v)

let p = v in t→
fin
σ(t)

ω →
fin
ω′

ω t→
fin
ω′ t

Lemma 4.33 (Iso Subject Reduction). If Ψ ⊢ω ω : T is well-formed, ω is finitary and
ω →

fin
ω′, then Ψ ⊢ω ω′ : T .

Proof. Strongly similar to Lemma 4.9.

Lemma 4.34 (Iso Progress). If Ψ ⊢ω ω : T is well-formed and ω is finitary, ω is either an
iso value or there exists ω′ such that ω →

fin
ω′.

Proof. Strongly similar to Lemma 4.10.

Lemma 4.35 (Subject Reduction). If Ψ;∆ ⊢ t : A is well-formed, t is finitary and t→
fin
t′,

then Ψ;∆ ⊢ t′ : A is also well-formed.

Proof. Strongly similar to Lemma 4.12.

Lemma 4.36 (Progress). If ⊢ t : A and t is finitary, then:
• either t is a value,
• or t→ ⊥,
• or there exists t′ such that t→

fin
t′.

Proof. The proof is done by induction on ⊢ t : A.
• ⊢ ∗ : I is a value.
• ⊢ t1 ⊗ t2 : A ⊗ B. By induction hypothesis, either t1 reduces, in which case t1 ⊗ t2

reduces too, or t1 is a value. If t1 is a value, by induction hypothesis, either t2 reduces,
in which case t1 ⊗ t2 reduces, or t2 is a value, and thus t1 ⊗ t2 is a value.

• Ψ;∆ ⊢ inji t : A1⊕A2. By induction hypothesis, either t reduces, in which case inji t

too, or t is a value, and thus inji t is a value.
• Ψ;∆ ⊢ fold t : µX.A. By induction hypothesis, either t reduces, in which case fold t

too, or t is a value, and thus fold t is a value.
• Ψ;∆ ⊢ ω t : B. Thanks to Lemma 4.34, ω either reduces, in which case ω t also reduces,

or it is an iso value { | vi ↔ ei }i∈I . In the last case, in the induction hypothesis gives
that either t reduces, in which case ω t also reduces, or t is value. In that case, either t
matches with one vi, and ω t reduces, or it does not, and ω t→ ⊥.
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• Ψ;∆1,∆2 ⊢ let p = t1 in t2 : B. In both cases of the induction hypothesis, let p =

t1 in t2 reduces.

Strong Normalisation. We prove that the reduction →
fin

is strongly normalising, by observing

that this system is separated in two very distinct systems: one that reduces the iso λ-terms,
and another that performs the reversible computations. We show that both those systems can
be extended to commute with each other, which ensures strong normalisation as long as both
are strongly normalising. We start by introducing the system that performs the reductions on
isos.

fix0 ϕT .ω →
iso

ΩT fixn+1 ϕ.ω →
iso
ω[fixn ϕ.ω/ϕ]

(λϕ.ω1)ω2 →
iso
ω1[ω2/ϕ]

ω1 →
iso
ω′
1

ω1ω2 →
iso
ω′
1ω2

ej →
iso
e′j

{ | vi ↔ ei }i∈I →iso

{
| vi ↔ ei if i ̸= j
| vj ↔ e′j else

}

t1 →
iso
t2

C→[t1]→
iso
C→[t2]

t1 →
iso
t2

let p = t′ in t1 →
iso

let p = t′ in t2

ω →
iso
ω′

ω t→
iso
ω′ t

Lemma 4.37. The reduction system →
iso

is strongly normalising.

Proof. We translate finitary isos and finitary terms into a simply-typed λ-calculus with pairs.
We write |t| the translation of t.

|∗| def
= ∗ |x| def

= ∗ |inji t|
def
= |t| |t⊗ t′| def

= ⟨|t| , |t′|⟩

|fold t| def
= |t| |ω t| def

= ⟨|ω| , |t|⟩ |let p = t in t′| def
= ⟨|t| , |t′|⟩∣∣{ | vi ↔ ei }i∈I

∣∣ def
= ⟨|ei|⟩i∈I |λϕ.ω| def

= λϕ. |ω| |ϕ| def
= ϕ

|ω2ω1|
def
= |ω2| |ω1| |fixn ϕ.ω| def

= fixn ϕ. |ω|

This λ-calculus is strong normalising; this can be proven with candidates of reducibility, à la
System F [GTL89, Chapters 11 and 14].

We then introduce the reductions that perform the reversible computation, our equivalent
of β-reduction but for our iso language.

match(σ, vi, v
′)

{ | vi ↔ ei }i∈I v′ →term σ(ei)

∀i,¬(match(σ, vi, v
′))

{ | vi ↔ ei }i∈I v′ →term ⊥

t1 →
term

t2

C→[t1] →
term

C→[t2]

t →
term
⊥

C→[t] →
term
⊥

match(σ, p, v)

let p = v in t →
term

σ(t)

146



This system is strongly normalising thanks to a decreasing argument: the number of isos and
let contructors strictly decreases when applying the reduction →

term
.

Lemma 4.38. The reduction system →
term

is strongly normalising.

Lemma 4.39. →
term
→
iso
⊆ →

iso
→
term

.

We say that →
iso

commutes [BD86] over →
term

. This and the strong normalisation of both

systems →
iso

and →
term

ensures the strong normalisation of them combined →
iso
∪ →

term
[BD86,

Theorem 1].

Lemma 4.40. →
fin
⊆ →

iso
∪ →

term
.

Proof. The proof is direct, by showing that any rule in →
fin

is either in →
iso

or →
term

.

Theorem 4.41. The reduction system →
fin

is strongly normalising.

Proof. With [BD86, Theorem 1] and Lemmas 4.37, 4.38, and 4.39, we can ensure that→
iso
∪ →

term

is strongly normalising. We conclude then with Lemma 4.40, that shows that→
fin

is a subsystem

of a strongly normalising system.

Finitary adequacy. We prove adequacy, but for finitary terms. To do so, we also need to
introduce the denotational semantics of finitary isos. The interpratation of fixn , instead of
being Kleene’s fixed point, is the morphism obtained by unfolding n times. The interpretation
of ΩT is the bottom element of JT K.

Lemma 4.42. Given a well-formed finitary iso judgement ⊢ω ω : T , if ω →
fin
ω′, then

J⊢ω ω : T K =
q
⊢ω ω′ : T

y
.

Proof. Strongly similar to Lemma 4.30.

Proposition 4.43 (Finitary Soundness). Given a well-formed finitary term judgement ⊢
t : A, if t→

fin
t′, then

J⊢ t : AK =
q
⊢ t′ : A

y
.

Proof. Strongly similar to Prop. 4.31.
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Theorem 4.44 (Finitary Adequacy). Given a well-formed finitary term judgement ⊢ t : A,
t ↓ iff J⊢ t : AK ̸= 0JAK.

Proof. We prove both directions of the double implication.
(⇒) Knowing that t ↓, there exists a value v such that t →

fin

∗ v, and Prop. 4.43 ensures

that JtK = JvK ̸= 0.
(⇐) We know that→

fin
is strongly normalising (see Th. 4.41), which means that the reduc-

tion from t terminates, and Lemma 4.36 ensures that it terminates either on a value v
or on ⊥. However, JtK ̸= 0, thus it cannot terminate on ⊥ because of Prop. 4.43. We
have then t→

fin

∗ v, which concludes.

Finitary Subterms. We conclude in two steps. First we observe that the interpretation of a
term is nothing more than the join of the interpretations of its finitary subterms, then we show
that a reduction →∗ can be linked to a finitary reduction →

fin

∗.

Definition 4.45 (Finitary Subiso). Let ◁ be the smallest relation between (finitary or not) isos
such that:

fixn ϕ.ω ◁ fix ϕ.ω

ω1 ◁ ω2

ω[ω1/ϕ] ◁ ω[ω2/ϕ]

Lemma 4.46. Given two well-formed (finitary or not) iso judgements Ψ ⊢ω ω1 : T and
Ψ ⊢ω ω2 : T such that ω1 ◁ ω2, then

JΨ ⊢ω ω1 : T K ≤ JΨ ⊢ω ω2 : T K .

Proof. Direct.

Lemma 4.47. Given a well-formed iso judgement Ψ ⊢ω ω : T , we have:

JΨ ⊢ω ω : T K =
∨

ω′◁ ω
ω′ finitary

q
Ψ ⊢ω ω′ : T

y
.

Proof. We observe that, by definition:

JΨ ⊢ω fix ϕ.ω : T K =
∨
n∈N

JΨ ⊢ω fixn ϕ.ω : T K

which proves the desired result in the case of fix ϕ.ω. The general conclusion falls by induction.

We generalise to terms the definition of subisos given above.

Definition 4.48 (Finitary Subterm). Let ◁ be the smallest congruence relation between (finitary
or not) terms such that:

ω1 ◁ ω2

ω1 t ◁ ω2 t
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The following lemma follows from the previous definition and Lemma 4.47; this is because
composition is distributive with joins (see Definition 1.65).

Lemma 4.49. Given a well-formed term judgement Ψ;∆ ⊢ t : A, we have:

JΨ;∆ ⊢ t : AK =
∨
t′◁ t

t′ finitary

q
Ψ;∆ ⊢ t′ : A

y
.

It is also the right time to observe that if a term has a finitary subterm that reduces to a
value eventually, the former also normalises to the same value.

Lemma 4.50. Given a well-formed closed term judgement ⊢ t : A, if there exists a finitary
subterm t′ ◁ t and a value such that t′ →

fin

∗ v, then t→∗ v.

Proof. The finitary term t′ has the same reduction steps as t up to a point. Lemma 4.36
ensures that this end point is either a value or ⊥ in the finitary case. Thus if the reduction
from t′ gets to a value, the reduction from t must also finish on a value. Since the reduction
steps were exactly the same, both reductions have the same normal form.

Conclusion. We finally have all the tools to conclude with adequacy for closed terms of our
original language.

Proof of Adequacy (Theorem 4.29). There are two implications to prove.
(⇒) This first implication is proven as Corollary 4.32.
(⇐) Suppose that JtK ̸= 0. Necessarily, thanks to Lemma 4.49, there exists a finitary term
t′ such that t′ ◁ t and Jt′K ̸= 0. In Theorem 4.44, we have proven adequacy for finitary
terms, meaning that there exists a value v such that t′ →

fin

∗ v. Lemma 4.50 ensures then

that t→∗ v, which concludes.

4.5 Expressivity

This section is devoted to assessing the expressivity of the language. To that end, we rely
on Reversible Turing Machine (RTM) [AG11]. We describe how to encode an RTM as an iso,
and prove that the iso realises the string semantics of the RTM.

Reference. The work in this section has been done by Kostia Chardonnet, firstly as a part of
his thesis [Cha23], and in our paper [CLV23]. Is is presented here out of coherence with the
next section.

4.5.1 Recovering duplication, erasure and manipulation of
constants

Although the language is linear and reversible, since closed values are all finite, and one
can build isos to encode notions of duplication, erasure, and constant manipulation thanks to
partiality.
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Definition 4.51 (Duplication [CLV23]). We define DupSA the iso of type A ↔ A ⊗ A which
can duplicate any closed value of type A by induction on A, where S is a set of pairs of a type-
variable X and an iso-variable ϕ, such that for every free-variable X ⊆ A, there exists a unique
pair (X,ϕ) ∈ S for some ϕ. The iso is defined by induction on A: DupSI = {() ↔ ⟨(), ()⟩},
and

• DupSA⊗B =

{
⟨x, y⟩ ↔ let ⟨x1, x2⟩ = DupSA x in let ⟨y1, y2⟩ = DupSB y in

⟨⟨x1, y1⟩, ⟨x2, y2⟩⟩

}
;

• DupSA⊕B =

{
injl (x) ↔ let ⟨x1, x2⟩ = DupSA x in ⟨injl (x1), injl (x2)⟩

injr (y) ↔ let ⟨y1, y2⟩ = DupSB y in ⟨injr (y1), injr (y2)⟩

}
;

• If (X,_) ̸∈ S: DupSµX.A = fix ϕ.

{
fold (x) ↔ let ⟨x1, x2⟩ = Dup

S∪{(X,ϕ)}
A[µX.A/X] x in

⟨fold (x1), fold (x2)⟩

}
;

• If (X,ϕ) ∈ S: DupSµX.A = {x↔ let ⟨x1, x2⟩ = ϕ x in ⟨x1, x2⟩}.

Lemma 4.52 (Properties of Duplication [CLV23]). Given a closed type A, then Dup∅A is
well-defined, and the iso Dup∅A is well typed of type A↔ A⊗A.

Lemma 4.53 (Semantics of Duplication [CLV23]). Given a closed type A and a closed
value v of type A, then Dup∅A v →∗ ⟨v1, v2⟩ and v = v1 = v2.

Definition 4.54 (Constant manipulation [CLV23]). We define erasev : A ⊗ ΣT ↔ A which
erase its second argument when its value is v as {⟨x, v⟩ ↔ x}. Reversed, it turns any x into
⟨x, v⟩.

4.5.2 Definition of Reversible Turing Machine

Definition 4.55 (Reversible Turing Machine [AG11]). Given a Turing MachineM = (Q,Σ, δ, b, qs, qf ),
where Q is a set of states, Σ = {b, a1, . . . , an} is a finite set of tape symbols (in the following,
ai and b always refer to elements of Σ), δ ⊆ ∆ = (Q× [(Σ×Σ)∪{←, ↓,→}]×Q) is a partial
relation defining the transition relation such that there must be no transitions leading out of
qf nor into qs, b a blank symbol and qs and qf the initial and final states. We say that M is a
Reversible Turing Machine (RTM) if it is:

• forward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2) in

δ, if q1 = q2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s1 ̸= s2.

• Backward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2)

in δ, if q′1 = q′2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s′1 ̸= s′2.

Definition 4.56 (Configurations [AG11]). A configuration of a RTM is a tuple (q, (l, s, r)) ∈
Conf = Q× (Σ∗×Σ×Σ∗) where q is the internal state, l, r are the left and right parts of the
tape (as string) and s ∈ Σ is the current symbol being scanned. A configuration is standard
when the cursor is on the immediate left of a finite, blank-free string s ∈ (Σ \ {b})∗ and the
rest is blank, i.e. it is in configuration (q, (ϵ, b, s)) for some q, where ϵ is the empty string,
representing an infinite sequence of blank symbols b.
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Definition 4.57 (RTM Transition [AG11]). An RTM M in configuration C = (q, (l, s, r)) goes
to a configuration C ′ = (q′, (l′, s′, r′)), written T ⊢ C ⇝ C ′ in a single step if there exists a
transition (q, a, q′) ∈ δ where a is either (s, s′), and then l = l′ and r = r′ or a ∈ {←, ↓,→},
and we have for the case a =←: l′ = l · s and for r = x · r2 we have s′ = x and r′ = r2,
similarly for the case a =→ and for the case a =↓ we have l′ = l and r′ = r and s = s′.

The semantics of an RTM is given on standard configurations of the form (q, (ϵ, b, s)) where
q is a state, ϵ is the finite string standing for a blank-filled tape, and s is the blank-free, finite
input of the RTM.

Definition 4.58 (String Semantics [AG11]). The semantics of a RTM M , written Sem(M) is
defined on standards configurations and is given by the set Sem(M) = {(s, s′) ∈ ((Σ\{b})∗ ×
(Σ\{b})∗) |M ⊢ (qs, (ϵ, b, s))⇝∗ (qf , (ϵ, b, s

′))}.

Theorem 4.59 (Properties of RTM [AG11]). For all RTM M , Sem(M) is the graph of an
injective function. Conversely, all injective computable functions (on a tape) are realisable
by a RTM. Finally, any Turing Machine can be simulated by a Reversible Turing Machine.

4.5.3 Encoding RTMs as Isos

A RTM configuration is a set-based construction that we can model using the type con-
structors available in our language. Because the transition relation δ is backward and forward
deterministic, it can be encoded as an iso. Several issues need to be dealt with; we discuss
them in this section.

Encoding configurations. The set of states Q = {q1, . . . , qn} is modelled with the type
QT = I ⊕ · · · ⊕ I (n times). The encoding of the state qi is then a closed value qTi . They are
pairwise orthogonal. The set Σ of tape symbols is represented similarly by ΣT = I ⊕ · · · ⊕ I,
and the encoding of the tape symbol a is aT . We then define the type of configurations in
the obvious manner: a configuration C = (q, (l, s, r)) corresponds to a closed value isos(C) of
type QT ⊗ ([ΣT ]⊗ ΣT ⊗ [ΣT ]).

Encoding the transition relation δ. A limitation of our language is that every sub-computation
has to be reversible and does not support infinite data structures such as streams. In the con-
text of RTMs, the empty string ϵ is assimilated with an infinite string of blank symbols. If this
can be formalised in set theory, in our limited model, we cannot emit blank symbols out of thin
air without caution.

In order to simulate an infinite amount of blank symbols on both sides of the tape during
the evaluation, we provide an iso that grows the size of the two tapes on both ends by blank
symbols at each transition step. The iso growth is shown in Table 4.1. It is built using
three auxiliary functions, written in a Haskell-like notation len sends a closed value [v1, . . . , vn]

to [v1, . . . , vn] ⊗ −→n . snoc’ sends [v1, . . . , vn] ⊗ v,−→n to [v1, . . . , vn, v] ⊗ v,−→n . snoc sends
⟨[v1, . . . , vn], v⟩) to ⟨[v1, . . . , vn, v], v⟩. Finally, growth sends ⟨[aT1 , . . . , aTn ], [a′T1 , . . . , a′Tm ]⟩ to
⟨[aT1 , . . . , aTn , bT ], [a′T1 , . . . , a′Tm , bT ]⟩.

Now, given a RTM M = (Q,Σ, δ, b, qs, qf ), a relation (q, r, q′) ∈ δ is encoded as a clause
between values iso(q, r, q′) = v1 ↔ v2 of type CT ↔ CT . These clauses are defined by case
analysis on r as follows. When x, x′, z, y and y′ are variables:
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Figure 4.6 – Reversibly removing additional garbage from some process.

• iso(q,→, q′) = (qT , (x′, z, y :: y′))↔ let (l, r) = growth (x′, y′) in (q′T , (z :: l, y, r)),
• iso(q,←, q′) = (qT , (x :: x′, z, y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, x, z :: r)),
• iso(q, ↓, q′) = (qT , (x′, z, x′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, z, r)),
• iso(q, (s, s′), q′) = (qT , (x′, sT , y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, s′T , r)).

The encoding of the RTM M is then the iso isos(M) whose clauses are the encoding of each
rule of the transition relation δ, of type ConfT ↔ ConfT .

Encoding successive applications of δ. The transition δ needs to be iterated until the final
state is reached. This behavior can be emulated in our language using the iso It, defined in
Table 4.1. The iso It ω is typed with (A↔ A⊗ nat). Fed with a value of type A, it iterates
ω until ff is met. It then returns the result together with the number of iterations.

To iterate iso(M), we then only need to modify iso to return a boolean stating whether
qf was met. This can be done straightforwardly, yielding an iso isosB(M)) of type ConfT ↔
ConfT ⊗(I ⊕ I). With such an iso, given M be a RTM such that M ⊢ (qs, (ϵ, b, s)) ⇝n+1

(qf , (ϵ, b, (a1, . . . , an))), then It(isosB(M)) (qTs , ([b
T ], bT , sT )) reduces to the encoding term

((qTf , ([b
T , . . . , bT ], bT , [aT1 , . . . , a

T
n , b

T , . . . , bT ])), n). If it were not for the additional blank tape
elements, we would have the encoding of the final configuration.

Recovering a canonical presentation. Removing blank states at the beginning of a list is
easy: it can for instance, be done with the iso rmBlank, shown in Table 4.1. Cleaning up
the tail of the list can then be done by reverting the list, using, e.g. rev in the same table.
By abuse of notation, we use constants in some patterns: an exact representation would use
Définition 4.54. Finally, we can define the operator cleanUp, solving the issue raised in the
previous paragraph. In particular, given a RTM M and an initial configuration C such that
M ⊢ C ⇝ C ′ = (q, (ϵ, b, (a1, . . . , an))). Then we have that cleanUp It(isosB(M))CT →∗

((qT , ([], bT , [aT1 , . . . , a
T
n ])), v), where v is of type nat⊗nat⊗nat⊗ [ΣT ]. If we want to claim

that we indeed capture the operational behaviour of RTMS, we need to get rid of this value v.

Getting rid of the garbage. To discard this value v, we rely on Bennett’s trick [Ben73],
shown in Figure 4.6. Given two Turing machines f1 and f2 and some input in such that if
f1(in) = out⊗ garbage and f2(out) = in⊗ garbage’, then the process consists of taking
additional tapes in the Turing Machine in order to reversibly duplicate (represented by the ⊕)
or reversibly erase some data (represented by the χ) in order to recover only the output of f1,
without any garbage.

Given an iso ω : A↔ B ⊗ C and ω′ : B ↔ A⊗ C ′ where C,C ′ represent garbage, we can
build an iso from A↔ B as follows, where the variables x, y, z (and their indices) respectively
correspond to the first, second, and third wire of Figure 4.6. This operator makes use of the
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len : [A]↔ [A]⊗ nat

len [ ] ↔ ([ ], 0)
lenh :: t ↔ let (t′, n) = len t in

(h :: t′, S(n))

snoc’ : [A]⊗ A⊗ nat↔ [A]⊗ A⊗ nat

snoc’ ([ ], x, 0) ↔ let (x1, x2) = Dup∅
A x in

([x1], x2, 0)
snoc’ (h :: t, x, S(n)) ↔ let (t′, x′, n′) = snoc’(t, x, n) in

(h :: t′, x′, S(n′))

growth: [ΣT ]⊗ [ΣT ]↔ [ΣT ]⊗ [ΣT ]
growth (l, r) ↔ let ⟨l′, b1⟩ = snoc⟨l, bT ⟩ in

let ⟨r′, b2⟩ = snoc⟨r, bT ⟩ in
let l′′ = eraseb⟨l′, b1⟩ in
let r′′ = eraseb⟨r′, b2⟩ in (l′′, r′′)

It : (A↔ A⊗ (I⊕ I))→ (A↔ A⊗ nat)
Itψ x ↔ let y = ψ x in

let z =

{
(y, tt) ↔ let (z, n) = (It ψ) y in (z, S n)
(y, ff) ↔ (y, 0)

}
y in z

rmBlank: [Σ]↔ [Σ]⊗ N
rmBlank [] ↔ ([], 0)
rmBlank bT :: t ↔ let (t′, n) = rmBlank t in (t′, S(n))
rmBlank aT1 :: t ↔ ((aT1 :: t), 0)
...

...
...

...
rmBlank aTn :: t ↔ ((aTn :: t), 0)

revaux : [A]⊗ [A]↔ [A]⊗ [A]
revaux ([], y) ↔ ([], y)

revaux (h :: t, y) ↔ let (h1, h2) = Dup∅
A h in

let (t1, t2) = ϕ(t, h2 :: y) in
(h1 :: t1, t2)

rev : [A]↔ [A]⊗ [A]
rev = {x↔ let (t1, t2) = revaux (x, []) in (t1, t2)}

cleanUp : CT ⊗ nat↔ CT ⊗ nat⊗ nat⊗ nat⊗ [ΣT ]
cleanUp ((x, (l, y, r)), n) ↔ let (l′, n1) = rmBlank l in

let (rori, rrev) = rev r in
let (r′, n2) = rmBlank rrev in
((x, (l′, y, r′)), n, n1, n2, rori)

Table 4.1 – Some useful isos for the encoding.
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iso Dup discussed in Section 4.5.1.

GarbRem(ω, ω′) x1 ↔ let ⟨x2, y⟩ = ω x1 in let ⟨x3, z⟩ = Dup∅B x2 in

letx4 = ω−1 ⟨x3, y⟩ in let ⟨z2, y2⟩ = ω′ z in

let z3 = (Dup∅B)
−1 ⟨z2, x4⟩ in let z4 = ω′−1 ⟨z3, y2⟩ in z4.

Theorem 4.60 (Capturing the exact semantics of a RTM [CLV23]). For all RTM M with
standard configurations C = (qs, (ϵ, b, s)) and C ′ = (qf , (ϵ, b, s

′)) such that M ⊢ C ⇝∗

C ′, we have

GarbRem(cleanUp(It(isosB(M))), cleanUp(It(isosB(M
−1)))) isos(C)→∗ isos(C ′)

The behavior of RTMs is thus captured by the language.

4.6 Semantics preservation

In this section, we fix the interpretation J−K of the language in PInj, the category of
sets and partial injections. This choice comes without any loss of generality, and allows us to
consider computable set-functions. In this section, we show that given a computable, reversible
set-function f : JAK→ JBK, there exists an iso ω : A↔ B such that JωK = f . In order to do
that, we fix a canonical flat representation of our types.

4.6.1 A Canonical Representation

We define a canonical representation of closed values of some type A into a new type
Enc = B⊕ I⊕ I⊕ I⊕ I⊕ nat (recall that B = I⊕ I and nat = µX.I⊕X). For simplicity
let us name each the following terms of type Enc : tt = injl (injl ()), ff = injl (injr ()),

S = injr (injl ()), D
⊕ = injr (injr (injl ())), D

⊗ = injr (injr (injr (injl ()))), D
µ =

injr (injr (injr (injr (injl ())))), and for every natural number n, we write ñ for the term
injr (injr (injr (injr (injr (injr (n)))))). Now, given some closed type A, we can define
⌊−⌋A : A ↔ [Enc] the iso that transform any closed value of type A into a list of Enc. The
iso is defined inductively over A: ⌊−⌋I = {()↔ [S]}, and

⌊−⌋A⊕B =

{
injl (x) ↔ let y = ⌊x⌋A in D⊕ :: ff :: y
injr (x) ↔ let y = ⌊x⌋B in D⊕ :: tt :: y

}
,

⌊−⌋A⊗B =

{
⟨x, y⟩ ↔ letx′ = ⌊x⌋A in let y′ = ⌊y⌋B in

let ⟨z, n⟩ = ++ ⟨x′, y′⟩ in D⊗ :: ñ :: z

}
,

⌊−⌋µX.A =
{
fold x ↔ let y = ⌊x⌋A[µX.A/X] in D

µ :: y
}
,

where the iso ++: [A]⊗ [A]↔ [A]⊗ nat is defined as:

fix f.

{
⟨[], x⟩ ↔ ⟨x, 0⟩
⟨h :: t, x⟩ ↔ let ⟨y, n⟩ = f ⟨t, x⟩ in ⟨h :: y, S(n)⟩

}
.
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4.6.2 Capturing every computable injection

With this encoding, every iso ω : A↔ B can be turned into another iso ⌊ω⌋ : [Enc]↔ [Enc]

by composing ⌊−⌋A, followed by ω, followed by ⌊−⌋−1
B . This is in particular the case for isos that

are the images of a Turing Machine. We are now ready to see how every computable function
f from JAK → JBK can be turned into an iso whose semantics is f . Given a computable
function f : JAK → JBK, call Mf the RTM computing f . Since f is in PInj, its output
uniquely determines its input. Following [Ben73], there exists another Turing Machine M ′

f

which, given the output of Mf recovers the initial input. In our encoding of a RTM, the iso
will have another additional garbage which consist of a natural number, i.e. the number of
steps of the RTM Mf . Using GarbRem(isos(Mf ), isos(M

′
f )) we can obtain a single iso, from

the encoding of A to the encoding of B, without any garbage left. This also ensures thatr
GarbRem(isos(Mf ), isos(M

′
f ))

z
(x) = (Jisos(Mf )K (x))1, for any input x.

Theorem 4.61 (Computable function as Iso). Given a computable function f : JAK →
JBK, let g : J[Enc]⊗ [Enc]K→ J[Enc]⊗ [Enc]K be defined as g = J⌊−⌋BK ◦ f ◦

q
⌊−⌋−1

A

y
,

and let ω : A↔ B be defined as

{x ↔ let y = ⌊x⌋A in

let y′ = GarbRem(isos(Mg), isos(M
′
g)) y in

let z = ⌊y′⌋−1
B in z}.

Then JωK = f .

Proof. In ω, call the right-hand-side e. Notice that

JeK =
q
⌊−⌋−1

B

y
◦

q
GarbRem(isos(Mg), isos(M

′
g))

y
◦ J⌊−⌋AK .

By Prop. 4.31, we know that
q
GarbRem(isos(Mg), isos(M

′
g))

y
= g. Therefore, since g =

J⌊−⌋BK ◦ f ◦
q
⌊−⌋−1

A

y
by definition, we get

JeK =
q
⌊−⌋−1

B

y
◦

q
GarbRem(isos(Mg), isos(M

′
g))

y
◦ J⌊−⌋AK

=
q
⌊−⌋−1

B

y
◦ g ◦ J⌊−⌋AK

=
q
⌊−⌋−1

B

y
◦ J⌊−⌋BK ◦ f ◦

q
⌊−⌋−1

A

y
◦ J⌊−⌋AK

By Prop. 4.31 we get that
q
⌊−⌋−1

B

y
◦ J⌊−⌋BK = idB and

q
⌊−⌋−1

A

y
◦ J⌊−⌋AK = idA. Therefore

JeK = f . Since the left-hand-side of ω is just a variable we get JωK = JeK◦ id−1 = JeK = f .

4.7 Further notes and conclusion

In this chapter, we have developed a functional, reversible programming language, based
on [SVV18], with inductive types and general recursive calls. This language has been proven
to have the same expressivity as a Turing Machine, meaning that any computable function can
be performed. We have provided a mathematical interpretation of the language, based on the
categorical presentation of inverse categories, equipped with:
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• a join rig structure, to model pattern-matching and iso;
• an enrichment in DCPO, to denote recursive calls through least fixed points;
• parameterised initial algebra, representing inductive data types;

for which the category of sets and partial injections, written PInj, is a concrete model. This
denotational semantics has been proven sound and adequacy with regard to the operational
semantics of the language. The adequacy proof involves a finitary language, based on the
original one, where the number of recursive calls is limited. This adequacy statement, together
with Turing completeness, ensures that any computable partial injection between two types of
the language, has a corresponding iso in the language.

The role of semantics. However abstract the development of a denotation semantics seems,
it has a role to play in the formalisation of programming languages. In the original paper
[SVV18], the language at the level of isos would only allow very specific λ-abstractions. This
ad hoc presentation was a consequence of the authors having an operational understanding
of the language only, without concerns for a denotation one. Once a denotational semantics
was established by the author of this thesis, it was clear that any usual λ-calculus – and really
any usual programming language – could be put on top of isos, for their semantics lives in the
cartesian closed category DCPO.

The aim of [SVV18] is to establish a high-order programming language that handles quantum
control. While the ideas outlined in the paper are promising, the language in itself suffers from
the same issue as observed above: the denotational understanding of the language is weak.
This echoes to Abramsky’s note in [Abr20], questioning whether denotational semantics should
lead or follow. We do not argue in favour of one nor the other; however, we believe that in
the presentation of a programming language, there should be both convincing operational and
denotational arguments. This is what the author hopes he has done successfully all along the
thesis.

Quantum control. While Chapter 3 presents an operational and a denotational account of
simply-typed quantum control, a sound and adequate denotational semantics of the language
in [SVV18] is yet to be found. With the development of the language in the current chapter,
the desired result seems to be just around the corner. However, adding reversible quantum
effects to the semantics presented here does not preserve fixed points (a more general intuition
of this point is outlined in the next chapter), and thus an interpretation of recursive calls in
that setting is yet to be found.
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Chapter 5
Notes on Quantum Recursion

“The category of Hilbert spaces is self-dual, has two
monoidal structures, and its homsets are algebraic
domains, but its enrichment and limit behaviour is
wanting.” — Chris Heunen, in [Heu13].

Abstract

We present some remarks and ideas on recursion in quantum control.
First, we outline the limitations of Hilbert spaces as a denotational
model of programming languages. Then, we present some results in
the semantics of guarded recursion applied to quantum programming.

References. While the different contributions in this chapter are not
yet enough to be published independently, they appear to the author
as potential foundations for infinite-dimentional quantum-controlled
programming. This work is the author’s.

5.1 Introduction

In this chapter, we tackle the question of quantum recursion with quantum control – in
other words, in the context of a quantum reversible effect. Let us recall that, by quantum
control, we mean reversible quantum operations, which are usually unitaries between Hilbert
spaces. It is yet unclear whether general recursion makes sense in that setting. For example,
what is a non-terminating behaviour with unitaries?

While [SVV18] brings a syntactic approach to quantum control with infinite data types, we
choose here a mathematical approach, through a (potential) denotational semantics. Our focus
shall be on Hilbert spaces. They are the most natural candidates for a denotational semantics
of quantum control, because their direct sum allows for quantum superposition.

We have seen in the previous chapters that unitaries can be written as a sum – or a
decomposition – of contractions. Thus, contractions seem to be the right notion of partial
unitaries. They can even be described as subunitaries thanks to [AMHK23, Proposition 14]
which shows that a bounded linear map f : H1 → H2 is contractive if and only if f †f ⊑ id.
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5.2 Limitations

In this section, we present the things that do not work when working with Hilbert spaces and
contractions to interpret quantum control. First, we recall the fact that the reversible quantum
effect is not a monad, setting its study outside of the realm of Moggi. Then, we observe that
the enrichment of Hilbert spaces is not sufficient to use them as a model such as the one in
Chapter 4, where join inverse rig categories are DCPO-enriched. Finally, we motivate the fact
that the category of Hilbert spaces and contractions is probably not canonically traced, and
therefore recursion could not studied with that angle.

5.2.1 Effects and the functor ℓ2

As shown in [Heu13, Corollary 4.8], the functor ℓ2 cannot induce a monad. Reversible
quantum operations interpreted as maps between Hilbert spaces then cannot be seen as an
effect in a traditional way [Mog89, Mog91], as laid out in §1.5.2 and studied in Chapter 2. We
do not leave out the possibility of finding another category for which these operations form a
monad, but the author thinks it is unlikely.

In any case, ℓ2 is a functor from PInj to Hilb, and one can show that a monad over
PInj would not contain any interesting computational meaning. Given a monad (M, η, µ)

over PInj, for all sets X, the multiplication µX is a monomorphism and an epimorphism, and
therefore is an isomorphism betweenM2X andMX.

Instead, ℓ2 can induce a promonad over PInj, given by P def
= Hilb(ℓ2(−), ℓ2(−)) : PInjop×

PInj → Set (see [Hug00, JHH09, ASvW+05, Asa10] for a detail account on arrows – the
programming language paradigm corresponding to promonads). Promonads in the context of
reversible programming have been studied in details in [HKK18a]. The language in Chapter 3
can be seen as working directly with the promonad P; however, it is unclear whether this point
of view would improve or facilitate the presentation in that chapter.

5.2.2 Hilbert spaces are not properly enriched

As shown in [Heu13, Proposition 2.10], an order on bounded linear maps between Hilbert
spaces can be established; however, this order is not preserved by composition, and thus does
not form an enrichment. This is also true for the wide subcategories with isometries, or even
contractions, as morphisms. This hints at the fact that fixed points in a reversible quantum
setting cannot be studied in the same way as in Chapter 4. We are left to wonder how
the structurally recursive fixed points introduced in [SVV18] can be interpreted in a proper,
compositional semantics. While trying to answer this question, the author has come across the
notion of guarded recursion, which led to the observations in §5.3.3.

5.2.3 Conjecture: infinite-dimensional Hilbert spaces are not
canonically traced

It has been observed in [Bar14] that the computationally interesting tensor when working
with isometries between Hilbert spaces is the direct sum ⊕, and not the tensor product ⊗. It
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is shown in that paper that the category of finite-dimensional Hilbert spaces and isometries is
traced over the direct sum ⊕. This would allow for a reversible quantum programming language
managing finite data type to deal with finite loops, usual written for in programming languages.
This trace is the canonical trace in the following sense: given an isometry g : X ⊕U → Y ⊕U ,
which can be decomposed in blocks, giving

g =

(
gX,Y gU,Y
gX,U gU,U

)
the operator

TrX,Y
U (g) = gX,Y +

∞∑
i=1

gU,Y ◦ giU,U ◦ gX,U (5.1)

is the trace given in [Bar14]. The existence of this trace depends on the Moore-Penrose
generalised inverse [ABI03, SR20] of id − gU,U . What about non-finite dimensions? Pablo
Andrés-Martínez [AM22, Section 3.3.4] raises this as an open question. We push the idea
further by stating the following conjecture: the category of Hilbert spaces and contractions is
not traced with the operator given in (5.1). The next lemma is a hint towards this conjecture.

Lemma 5.1. Let f be the bounded linear map ℓ2(N)→ ℓ2(N) such that f |n⟩ = 1
n+1 |n⟩.

The map f is a contraction and does not admit a Moore-Penrose inverse.

Proof. The Moore-Penrose inverse of f would be g : ℓ2(N) → ℓ2(N) such that g |n⟩ = (n +

1) |n⟩, which is not bounded.

We could then potentially provide a gU,U using the map given above, and obtain a suitable
g, with the Szőkefalvi-Nagy [’sø:kEf6lvi ’n6é] dilation theorem [SN54], which would not be
traceable.

This raises more questions than it answers. One may wonder whether the category we
are interested in in Chapter 3 – namely, countably-dimensional Hilbert spaces and isometries
– is traced at all in a computationally interesting way. Making this statement mathematically
precise is a challenge in itself; thus proving or disproving it might require some effort.

In his thesis, Pablo Andrés-Martínez [AM22] unveiled a category both traced with regard to
its direct sum ⊕ and that could handle non-finite data types; however it has not been proven
to be a model for a sufficiently expressive programming language. The work presented in the
next section is similar in the idea, and has also not been shown to be a sound and adequate
interpretation to a programming language yet. Nevertheless, it is based on a tried-and-texted
paradigm for classical programming, called guarded recursion.

5.3 A Foundation for Guarded Quantum Recursion

Guarded recursion is a framework in which recursive calls are guarded by delay modalities.
This framework is particularly useful to reason about streams in programming languages. A type
system aimed for guarded recursion usually contains the later modality, given by the symbol ▶.
Its introduction rule is simple:

Θ ⊢ A
Θ ⊢ ▶A
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If we take the example of a guarded λ-calculus – such as the one introduced by Nakano [Nak00]
– a contructor next is added to the syntax, with the following rule:

Γ ⊢M : A
Γ ⊢ nextM : ▶A

A term under next is locked and needs to wait for its time to be computed. The fixed point
combinator introduced in the beginning of the thesis (see §1.2.1) becomes now fix : (▶A→
A)→ A, and given · ⊢M : ▶A→ A, we have the following operational rule:

fix M →M(next fix M)

while does not allow for a infinite reduction in general, because the next will control this
behaviour.

This framework admits sound and adequate denotational semantics in the topos of trees
SetN

op
, written S in the following, which is a cartesian closed category.

5.3.1 Work of the author

The author has contributed to the following points.
• The definition of categories (N and Q, see below) to model guarded quantum recursion.
• A proof that those categories are S-enriched (see Lemma 5.5), allowing for a similar

semantic study as what is done in Chapter 4.
• A proof that inductive types can be interpreted in this model (see Theorem 5.32).
• Convincing arguments for this model to interpret a programming language with quantum

guarded recursion.

5.3.2 Related work

The work in [BMSS12] can be described as a foundation for semantics of guarded recursion,
and an introduction to what they call synthetic guarded domain theory. Their theory assumes
a topos or a sheaves structure, which will not be the case in an attempt to interpret quantum
control. However, their work is a great source of inspiration for our denotation of guarded
inductive types. They prove that locally contractive functors have a unique fixed point, which
shows that induction and coinduction have the same interpretation in their model; this has a
practical consequence: the fixed point is obtained as a limit, but can still be manipulated as an
initial algebra.

A first account of solution to solve recursive equations in (pre)sheaves is given in [DGM04],
and the same authors also observed that working with contractive functors would unify induction
and coinduction [DGM03]. Their theory is not suited to quantum for the same reason as above.

The work in [BSS10] details a denotational semantics to the guarded λ-calculus introduced
by Nakano in [Nak00]. Their model is a category of ultrametric spaces, which is actually
included in the theory of [BMSS12], as justified by the authors themselves.

Several papers have then used synthetic guarded domain theory to develop refined models
of guarded types or guarded recursion [CBGB16, MMV20, BR23]. Their study, based on
[BMSS12], cannot be used to model quantum computation, for the same reasons as above.
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5.3.3 Contribution

This section aims at providing a categorical tool necessary to interpret guarded recursion
with quantum control. Recursive domain equations are here tackled through locally contractive
functors as defined in [BMSS12].

We will work with categories of the form CNop
, where N is the category of natural numbers

starting from 0, with morphisms defined by the classical order on natural numbers. Given an
object X of CNop

, meaning a functor Nop → C, its image on the morphism n ≤ n+1 is written
rXn : X(n + 1) → X(n), and is a morphism in C. This object X of CNop

can be represented
with a diagram, such as:

X(0) X(1) X(2) X(3) · · ·
rX0 rX1 rX2 (5.2)

and a morphism f : X → Y can be pictured with the following diagram in C:

X(0) X(1) X(2) X(3) · · ·

Y (0) Y (1) Y (2) Y (3) · · ·

rX0 rX1 rX2

rY0 rY1 rY2

f0 f1 f2 f3

This way of picturing them will help the intuition throughout the section. The category SetN
op

is called the topos of trees, and is a cartesian closed category. However, CNop
in general

has a topos flavour without being cartesian closed. Some subcategories of CoisoN
op

and
ContrN

op
will be used for our denotational model; a coisometry is in particular a contraction,

thus CoisoN
op

is a subcategory of ContrN
op

. This model was inspired by the work in [BMSS12]
and [CBGB16]; however, the motivations, the point of view and the results differ. We use the
following notations: S

def
= SetN

op
,N

def
= CoisoN

op
.

Lemma 5.2 ([MM12]). The category S is a cartesian closed category with the following:
given two objects X,Y in S, their product X × Y is obtained pointwise, and [X → Y ] is
given by S(よ(−)×X,Y ) whereよ : N→ S is the Yoneda embedding (よ is the Japanese
hiragana “yo” , see Example 1.19).

We write Q, the full subcategory of ContrN
op

whose objects are objects in N. Note that
N is embedded in Q. The category N will be used to study the semantics of types, whereas
Q is the category where the terms and the functions are interpreted.

Lemma 5.3. The categories Q and N are symmetric monoidal, equipped with a pointwise
monoidal product. More generally, if C is symmetric monoidal, so is CNop

.

Proof. Let (C,⊗, I, α, λ, ρ) be a symmetric monoidal category. We show that CNop
is also

one. The tensor is obtained pointwise: given two objects X and Y in CNop
, their tensor product

is the following object:

X(0)⊗ Y (0) X(1)⊗ Y (1) X(2)⊗ Y (2) X(3)⊗ Y (3) · · ·
rX0 ⊗rY0 rX1 ⊗rY1 rX2 ⊗rY2
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We abuse notations and write X ⊗ Y for this tensor product. The tensor unit of this tensor is
the object:

I I I I · · ·idI idI idI

We abuse notations by also writing I for this unit. The left unitor I⊗X → X is given pointwise
as well:

I ⊗X(0) I ⊗X(1) I ⊗X(2) I ⊗X(3) · · ·

X(0) X(1) X(2) X(3) · · ·

idI⊗rX0 idI⊗rX1 idI⊗rX2

rX0 rX1 rX2

λX(0) λX(1) λX(2) λX(3)

The right unitor and associator are defined pointwise in the same way. The proof of the
coherence diagrams is direct.

Similarly, given two objects X,Y of Q (resp. N), their pointwise direct sum X ⊕ Y is an
object of Q (resp. N).

X(0)⊕ Y (0) X(1)⊕ Y (1) X(2)⊕ Y (2) X(3)⊕ Y (3) · · ·
rX0 ⊕rY0 rX1 ⊕rY1 rX2 ⊕rY2

Moreover, in Q, one can define injections ιX,Y
l : X → X ⊕ Y as follows:

X(0) X(1) X(2) X(3) · · ·

X(0)⊕ Y (0) X(1)⊕ Y (1) X(2)⊕ Y (2) X(3)⊕ Y (3) · · ·

rX0 rX1 rX2

rX0 ⊕rY0 rX1 ⊕rY1 rX2 ⊕rY2

ι
X(0),Y (0)
l ι

X(1),Y (1)
l ι

X(2),Y (2)
l ι

X(3),Y (3)
l

and ιX,Y
r : Y → X ⊕ Y is defined similarly.

Remark 5.4 (Dagger). Morphisms in Q are natural transformations, whose components are
morphisms in Contr. In that regard, Q inherits some of the structure of Contr, but not all.
For example, Q is not a dagger category. However, given α : X ⇒ Y a morphism in Q, we
will write α† for the componentwise dagger of α, even if it might not be a morphism in Q.

Lemma 5.5. The categories Q and N are enriched in S.

Proof. The homsets N(X,Y ) can be seen as objects of S, with N(X,Y )(n) being the set of
n-th component of natural transformations in N(X,Y ), and the image of n ≤ n+ 1, written
r
N(X,Y )
n , is:

N(X,Y )(n) N(X,Y )(n+ 1).
rYn ◦−◦(rXn )†

Note that elements of N(X,Y )(n) are in particular in Coiso(X(n), Y (n)). This definition is
sound because if α is a natural transformation, we have in particular that αn ◦rXn = rYn ◦αn+1,
and by precomposing by (rXn )†, we get

rYn ◦ αn+1 ◦ (rXn )† = αn ◦ rXn ◦ (rXn )†

= αn.
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We also have to prove that composition, defined pointwise by the composition in Coiso,
is a morphism in S; formally that for every X,Y, Z objects of N, compX,Y,Z : N(X,Y ) ×
N(Y, Z)→ N(X,Z) is a morphism in S. We need to prove that it is a natural transformation,
in other words that for all n, the diagram:

N(X,Y )(n)×N(Y, Z)(n) N(X,Y )(n+ 1)×N(Y,Z)(n+ 1)

N(X,Z)(n) N(X,Z)(n+ 1)

r
N(X,Y )
n ×r

N(Y,Z)
n

r
N(X,Z)
n

compn compn+1

commutes. Indeed:

(compn ◦ (rN(X,Y )
n × rN(Y,Z)

n ))(fn+1, gn+1) = compn(r
Y
n ◦ fn+1 ◦ (rXn )†, rZn ◦ gn+1 ◦ (rYn )†)

= compn(fn, gn) = gn ◦ fn,

and

(rN(X,Z)
n ◦ compn+1)(fn+1, gn+1) = rN(X,Z)

n (gn+1 ◦ fn+1)

= rZn ◦ gn+1 ◦ fn+1 ◦ (rXn )†

= gn ◦ rYn ◦ fn+1 ◦ (rXn )†

= gn ◦ fn ◦ rXn ◦ (rXn )†

= gn ◦ fn,

which ensures the commutativity of the diagram above.
The same observations apply to Q.

Remark 5.6. The embedding EQ
N : N ↪→ Q is S-enriched.

A feature of categories of the form CNop
is the later functor. This functor works as some

sort of delay operation. It can be used to keep track of the depth of a term and the number of
recursive calls. The way it works is fairly simple: it shifts the diagram in (5.2) one step to the
right, and adds a terminal object on the left.

Definition 5.7 (Later functor). Given any category C with terminal object 1, The later functor
is a functor L : CNop → CNop

, such that given a functor X : Nop → C, LX(0) = 1 and
LX(n+ 1) = X(n). Given α : X ⇒ Y , Lα0 = ! (the terminal map), and (Lα)n+1 = αn.

Remark 5.8. Note that this endofunctor can be defined on S, Q and N; where the terminal
object in the latter categories is the zero-dimentional Hilbert space {0}. We will use the same
letter L when it is not ambiguous. If any ambiguity arises, the notations LS, LQ and LN will
be used.

Lemma 5.9 ([BMSS12]). The functor LS : S→ S is a strict monoidal functor.

Remark 5.10. The functors LN and LQ preserve the monoidal structure in the sense that
L(X ⊗ Y ) = LX ⊗ LY , however L does not map the tensor unit to the tensor unit in those
categories.
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Lemma 5.11. Given X,Y objects in N, we have LSN(X,Y ) ∼= N(LNX,LNY ).

Proof. Let X and Y be two objects in N. Remember that the homset N(X,Y ) can be seen as
an object of S, with N(X,Y )(n) being the set of n-th component of natural transformations
in N(X,Y ), and the image of n ≤ n+ 1, written rN(X,Y )

n , is:

N(X,Y )(n) N(X,Y )(n+ 1).
rYn ◦−◦(rXn )†

We have LSN(X,Y ) = {∗} and N(LNX,LNY ) = {0{0}→{0}}. They are both singletons.
Moreover, LSN(X,Y )n+1 = N(X,Y )n is the set of n-th components of natural transform-
ations from X to Y , which is exactly like N(LNX,LNY )n+1. Note also that the functor
L does not change the morphisms image of n ≤ n + 1, except shifting them. Therefore,
LSN(X,Y ) ∼= N(LNX,LNY ).

The delay embodied by the functor L can be introduced by a natural transformation, called
next. This natural transformation helps us introduce the delay in a programming language, as
the denotational semantics of a delayed program.

Definition 5.12 (Next). Given any category C with terminal object 1, and L : CNop → CNop

the later functor, there is a natural transformation ν : id ⇒ L, defined as νX,0 = ! and
νX,n+1 = rXn . Or as a diagram, it maps the functor X to the functor LX as follows:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

rX0 rX1 rX2

! rX0 rX1 rX2

! rX0 rX1

Which gives, in the categories Q and N:

X(0) X(1) X(2) X(3) · · ·

{0} X(0) X(1) X(2) · · ·

rX0 rX1 rX2

0 rX0 rX1 rX2

0 rX0 rX1

Remark 5.13. Note that ν is a high-level natural transformation. It is an informal way to say
that it is a natural transformation at the level of CNop

. For all functors X : Nop → C, νX is a
morphism in CNop

. A morphism in CNop
is a natural transformation – this time, low-level – at

the level of C. Thus, if n is a natural number, then νX,n is a morphism in C.
Once again, and similarly to the functor L, the natural transformation ν can be defined in

S as well as in N and Q. If any ambiguity arises, the notations νS, νQ and νN will be used.
Observe that the components of νQ and νN are the same.

A direct consequence of Lemma 5.5 is the possibility to move back and forth from N to its
enrichment S with the natural transformation ν.
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Lemma 5.14. Given X,Y two objects of N, we have νSN(X,Y ) = νNY ◦ − ◦
(
νNX
)†.

Proof. This follows from Lemma 5.5, Lemma 5.11 and Definition 5.12.

Lemmas 5.11 and 5.14 also allow for the following observation.

Corollary 5.15. The functor LN is S-enriched.

Note that, as explained in Remark 5.4,
(
νNX
)† is not a natural transformation, and thus the

notation above is loose. However, it can be used in some cases, as shown by the next lemma.

Lemma 5.16. Given a morphism f : X → Y in Q, we have that νQY ◦f ◦
(
νQX

)†
: LX →

LY is a morphism in Q.

Proof. Remember that ν is defined as νX,n = rXn−1. Let us proceed:

rYn ◦ fn+1 ◦ (rXn )† ◦ rXn = fn ◦ rXn ◦ (rXn )† ◦ rXn
= fn ◦ rXn
= rYn ◦ fn+1

= rYn ◦ fn+1 ◦ rXn+1 ◦ (rXn+1)
†

= rYn ◦ rYn+1 ◦ fn+2 ◦ (rXn+1)
†.

To interpret inductive types, we need the help of fixed points to solve recursive domain equa-
tions. First, we recall some notions on contractive morphisms in S, introduced in [BMSS12].

Definition 5.17 ([BMSS12]). A morphism f : X → Y in S is contractive if there exists a
morphism g : LX → Y such that f = g ◦ νX . A morphism f : X × Y → Z is contractive in
the first variable if there exists g : LX × Y → Z such that f = g ◦ (νX × idY ).

Lemma 5.18 ([BMSS12]). The following assertions hold.
• Given f : X → Y , g : Y → Z, if either f or g is contractive, then gf is contractive.
• Given f : X → Y and g : X ′ → Y ′ contractive, so is f × g : X ×X ′ → Y → Y ′.
• A morphism h : X×Y → Z is contractive in the first variable iff curry(h) : X → ZY

is contractive.

Theorem 5.19 ([BMSS12]). There exists a natural family of morphisms fixX : (LX →
X) → X which computes unique fixed points: given f : X × Y → X contractive in the
first variable and g : LX × Y → X the resulting morphism, then fixX ◦ curry(g) is the
unique h : Y → X such that f ◦ ⟨h, idY ⟩ = h.
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Remark 5.20. Unsurprisingly, the previous theorem can be used for the interpretation of a fixed
point combinator.

The definition of a contractive morphism in S help define functors that have a fixed point
in N. We precise what we mean by fixed point of a functor.

Definition 5.21 (Fixed Point). A fixed point of an endofunctor T : N→ N is a pair (X,α : TX →
X) such that α is an isomorphism.

We define locally contractive functors, which are functor that admit a fixed points. We will
see that, as its name suggests, a locally contractive functor has a unique fixed point, up to
isomorphism.

Definition 5.22 (Locally Contractive functor). An S-functor F : N→ N is said to be locally
contractive if its morphism mapping FX,Y : N(X,Y ) → N(FX,FY ) is contractive; meaning
it factorises through ν: for all X,Y there is a morphism mapping GX,Y : L(N(X,Y )) →
N(FX,FY ) such that:

N(X,Y ) N(FX,FY )

L(N(X,Y ))

FX,Y

νN(X,Y ) GX,Y

and such that G behaves like a functor ; formally, such that the diagrams:

LN(Y, Z)× LN(X,Y ) L(N(Y, Z)×N(X,Y )) LN(X,Z)

N(FY, FZ)×N(FX,FY ) N(FX,FZ)

∼= L(comp)

comp

GX,Y ×GY,Z GX,Z

{⋆} LN(X,X)

N(FX,FX)

L(id)

id
GX,X

commute in S, for all objects X,Y, Z.

Remark 5.23. The definition above was inspired by a similar one in [BMSS12], where they use
the fact that their category is closed to draw the diagrams with objects and morphisms of the
category. We manage to do the same with the enrichment of N in S.

There are some direct examples of locally contractive functors.

Lemma 5.24. The functor LN is locally contractive.

Proof. This is a direct conclusion of Lemma 5.11 and Definition 5.22.
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Lemma 5.25 ([BMSS12]). Given F,G : N → N two S-enriched functors and such that
either F or G is locally contractive, then FG is locally contractive.

Remark 5.26 (Initial Algebra and Final Coalgebra). Given a locally contractive endofunctor
F : N→ N, a fixed point of F is an initial algebra and a final coalgebra. Indeed, given a fixed
point α : FX ∼= X and an algebra β : FY ⇒ Y , an algebra morphism γ : X ⇒ Y is given by
a fixed point of H : γ 7→ β ◦FX,Y (γ) ◦α−1. Note that H is then a contractive morphism in S,
because F is locally contractive. It is proven in [BMSS12] that such a morphism has a unique
fixed point. Thus the algebra morphism γ is unique; and this makes α an initial algebra. The
proof of the coalgebra part is similar.

Remark 5.27. This basically means that induction and coinduction in our system are the same.
This observation was made long before us (see related work §5.3.2). In this setting, it is a
matter a choice whether the syntax should use µ or ν as a notation for fixed points. Our focus
is on inductive data types, we then use µ.

Given a morphism α : X → Y in N, one says that α is an n-isomorphism if the first n
components of α (that is to say, α0, . . . , αn−1) are isomorphisms.

Lemma 5.28. A locally contractive functor F : N → N maps an n-isomorphism to an
n+ 1-isomorphism.

Proof. This is the purpose of Definition 5.22. The proof is direct by observing that L shifts all
components one step to the right.

This observation allows to prove the next theorem, with the same proof strategy as in
[BMSS12].

Theorem 5.29. Any locally contractive endofunctor T : N→ N has a fixed point.

Proof. Note that the category N has a terminal object, written Z:

{0} {0} {0} . . .0 0

and we will write ! the unique map to Z. Given a functor T : N → N, let us have a look at
the sequence:

TZ T 2Z T 3Z T 4Z . . .T ! T 2! T 3! (5.3)

and we obtain the fixed point of T through the limit of the above diagram. The limit can be
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built by observing the following diagram:

TZ(0) T 2Z(0) T 3Z(0) T 4Z(0) . . .

TZ(1) T 2Z(1) T 3Z(1) T 4Z(1) . . .

TZ(2) T 2Z(2) T 3Z(2) T 4Z(2) . . .

TZ(3) T 2Z(3) T 3Z(3) T 4Z(3) . . .

...
...

...
...

T !0 T 2!0 T 3!0

T !1 T 2!1 T 3!1

T !2 T 2!2 T 3!2

T !3 T 2!3 T 3!3

r10 r20 r30 r40

r11 r21 r31 r41

r12 r22 r32 r42

which is simply Diagram (5.3) expended with the diagram view of objects of N, see Dia-
gram (5.2). Let us consider the object of N made of the diagonal elements of the last diagram
above, and we call this new object Ω. Its image on objects is Ω(n) = Tn+1Z(n) and its image
on morphisms can be read on the diagram (it does not matter which one is chosen because the
diagram commutes).

Moreover, Lemma 5.28 ensures that all Tn!k, where k < n, is an isomorphism; so they can
be soundly reversed, (in other words, having those arrows in the other direction does not break
the commutativity of the diagram) which gives that:

TZ T 2Z T 3Z T 4Z . . . ΩT ! T 2! T 3!

commutes. This new object Ω is a limit of Diagram (5.3): it is made of elements of the
diagram, thus any object that is mapped to the diagram has a single way to be mapped to Ω.
For the same reason, TΩ is a limit of the diagram as well, thus Ω ∼= TΩ. Note that this can
all be viewed as a consequence of Lemma 5.28.

Remark 5.30. The category N is contractively complete in the sense of [BMSS12].

We generalise the notion of locally contractive endofunctors to functors Nk → N, to
facilitate the discussion to come.

Definition 5.31. An S-functor T : Nk → N is locally contractive if it is serarately locally
contractive in each variable; formally, given any vector

−→
F (−) of objects of N with one hole (e.g.,−→

F (−) = F1, . . . , Fj−1,−, Fj+1, . . . , Fk), the functor T (
−→
F (−)) : N→ N is locally contractive.
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Theorem 5.32 (Parameterised Fixed Point). A locally contractive functor T : Nk+1 → N
admits a parameterised fixed point; in details, a pair (T ,々 ϕT ) such that:

• T々: Nk → N is a locally contractive functor,
• ϕT : T ◦ ⟨id, T ⟩々 ⇒ T々 is a natural isomorphism,
• for every object

−→
F in Nk, (T

−々→
F , ϕT ) is the fixed point of T (

−→
F ,−).

Proof. The proof is the same as the one of [BMSS12, Theorem 7.5]. Given
−→
F an object

in Nk, T (
−→
F ,−) : N → N is a contractive functor, and thus has a fixed point (Ω(

−→
F ), α

−→
F ).

The next step is to prove that the statement Ω(−) induces a functor Nk → N. Remember
that Ω(

−→
F )(n) = T (

−→
F ,−)n+1Z(n), which has a functor flavour; given β :

−→
F ⇒

−→
G , Ω(β)n =

(T (β,−)n+1Z)n makes Ω(−) a functor (it preserves the identity and composition because T
does). Also, in the formula, T is applied at least once and is locally contractive, thus Ω is locally
contractive. The natural transformation T ◦ ⟨id,Ω⟩ ⇒ Ω is obtained by looking at the square
diagram in the first part of the proof; its isomorphic nature is inherited from Lemma 5.28.

Note that a parameterised fixed point provides a natural isomorphism, whose components
are also isomorphisms. These components are coisometries, and an isomorphic coisometry is a
unitary.

As a denotational semantics. Contractive functors and contractive morphisms would respect-
ively be used to interpret inductive data types and guarded recursion functions in a programming
language. We can imagine a language akin to the one in Chapter 4 with quantum superposi-
tions, with the introduction of the modality ▶ and the combinator next . The interpretation of
a type judgement Θ ⊢ A is given by a functor N|Θ| → N, and the interpretation of Θ ⊢ µX.A
is given by JΘ, X ⊢ AK々 thanks to Theorem 5.32. The fixed point combinator would have the
following typing rule:

Ψ, ϕ : ▶T ⊢ω ω : T
Ψ ⊢ω fix ϕ.ω : T

which ensures that the interpretation JΨ, ϕ : ▶T ⊢ω ω : T K is contractive (see Definition 5.17)
and therefore admits a unique fixed point (see Theorem 5.19).

5.3.4 Conclusion on Guarded Quantum Recursion

We have laid out convincing grounds for guarded quantum recursion based on its denota-
tional semantics in N and Q, two categories enriched in the topos of trees S, therefore allowing
us to extract properties of the latter for the interpretation of the functions in the language.

The details on the corresponding programming language capturing both quantum control
as an algebraic effect and guarded recursion is left as future work.
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Conclusion

“What you say does not matter, it is what people
remember that matters.” — Benoît Valiron.

In this thesis, we are concerned with the question of the semantics of effects in programming
languages. This study is conducted through the prism of formal programming languages, which
are directly a λ-calculus or inspired by it. We have put forward new perspectives on various
effects and their commutativity via the question of centrality, and we have thouroughly studied
a reversible algebraic effect aimed at quantum computing, allowing for a quantum control of
the program flow. We have also questioned the semantics of inductive types and recursion in
the context of reversibility, to potentially adapt it to the quantum case.

In Chapter 2, we have studied the question of centrality for monads. In particular, we have
provided three equivalent conditions for a monad to be centralisable. Monads have been shown
to be the right structure to model effects in category theory. However, some effects cannot
be captured as a monad, such as the reversible effect we focus on in Chapter 3. The question
of centrality of effects should then be generalised to promonads, which are to monads what
relations are to functions. Moreover, commutativity can be studied more broadly than with
centres, and a whole theory of centralisers might be developed.

In Chapter 3, we have laid foundations for the semantics of quantum computing seen as
a reversible effect. This point of view allows us to work with a quantum control flow. This is
especially meaningful since some quantum-controlled operations, such as the quantum switch,
cannot be performed with classical control. Once this simply-typed quantum control and its
semantics are properly presented, we have wondered about possible additions to the language,
such as infinite data types and recursion.

To do so, we have first studied the question of infinite data types and recursion in reversible
computation, in Chapter 4. In particular, we have provided a sound and adequate denotational
semantics of the same language, without the quantum effect, and with inductive types and
recursion. This is done hoping that it is possible to generalise to the language incorporating
the quantum effect.

However, we show in Chapter 5 that this generalisation is not that simple. On a more
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positive note, we outline a potential categorical model for quantum control on infinite data
types and recursion, with the help of guarded recursion. This model strongly echoes with the
category LSI≤ introduce by Pablo Andrés-Martínez in his thesis [AM22]. In the conclusion of
his thesis, he wrote:

“Quantum computer scientists tend to dismiss unbounded iteration in
quantum algorithms as an uninteresting field of work: in the case of
classical control flow due to the assumption that testing a termination
condition on every iteration would destroy any achievable quantum
speed-up and, in the case of quantum control flow, due to the tech-
nical obstacles that interference and the possibility of infinitely many
execution paths would entail [. . . ]”

Even if these concerns were verified, these comments apply to classical computing also, since the
memory of our computer is finite. However, it did not prevent computer scientists from studying
infinite data types, infinite loops and their semantics. Modern programming languages contain
types such as natural numbers and lists, which are by essence infinite, even if their representation
in the architecture is necessarily finite.

Pablo Andrés-Martínez finishes his conclusion with the following sentence.

“It is my hope that further study on this field will yield quantum
programming languages supporting quantum control flow and new
algorithms that make use of unbounded iteration.”

I share his hope.
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