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Titre: Appréciation quantitative des risques multipathogènes dans le fromage à pâte molle aulait cru, intégration monotone et optimisation Bayésienne.
Mots clés: Appréciation quantitative des risques, stochastique simulateur, intégration bornéemonotone, optimisation Bayésienne.
Résumé: Ce manuscrit se concentre surl’optimisation Bayésienne d’un modèled’appréciation quantitative des risques micro-biologiques (AQRM) dans le cadre du projet Ar-tiSaneFood soutenu par l’Union européenne.L’objectif est d’établir des stratégies de bio-intervention efficaces pour les fabricants defromage au lait cru en France, en s’appuyantsur trois types de travaux : 1) le développe-ment d’un modèle AQRMmultipathogène pourun fromage de type pâte molle au lait cru,2) étudier des méthodes d’intégration mono-tone pour l’estimation des sorties du mod-èle AQRM et 3) la conception d’un algorithmed’optimisation Bayésienne adapté à un simula-teur stochastique et coûteux.Dans la première partie, nous proposonsunmodèle AQRMmultipathogène construit surla base d’études existantes (voir, par exemple,Bonifait et al., 2021, Perrin et al., 2014, Sanaaet al., 2004, Strickland et al., 2023). Ce modèleest conçu pour estimer l’impact des maladiesd’origine alimentaire sur la santé publique,causées par des agents pathogènes tels que
Escherichia coli entérohémorragiques (EHEC),
Salmonella et Listeria monocytogenes, poten-tiellement présents dans le fromage de typepâtemolle au lait cru. Cemodèle “farm-to-fork”intègre les mesure de maitrise liées aux testsmicrobiologiques du lait et du fromage, perme-ttant d’estimer les coûts associés aux interven-tions. Une implémentation du modèle AQRMpour EHEC est fournie en R et dans le cadre

FSKX (Basak et al., 2024).La deuxième partie de ce manuscrit ex-plore l’application potentielle de méthodesd’intégration séquentielle, exploitant les pro-priétés de monotonie et de bornage des sor-ties du simulateur. Nous menons une re-vue de littérature approfondie sur les méth-odes d’intégration existantes (voir, par exem-ple, Kiefer, 1957, Novak, 1992), et examinons lesrésultats théoriques concernant leur conver-gence. Notre contribution comprend la propo-sition d’améliorations à ces méthodes et la dis-cussion des défis associés à leur applicationdans le domaine de l’AQRM.Dans la dernière partie de ce manuscrit,nous proposons un algorithme Bayésiend’optimisation multiobjectif pour estimer lesentrées optimales de Pareto d’un simulateurstochastique et coûteux en calcul. L’approcheproposée est motivée par le principe de “Step-wise Uncertainty Reduction” (SUR) (voir, par ex-emple, Vazquez and Bect, 2009, Vazquez andMartinez, 2006, Villemonteix et al., 2007), avecun critère d’échantillonnage basé sur weightedintegrated mean squared error (w-IMSE). Nousprésentons une évaluation numérique com-parant l’algorithme proposé avec PALS (ParetoActive Learning for Stochastic simulators)(Barracosa et al., 2021), sur un ensemble deproblèmes de test bi-objectifs. Nous pro-posons également une extension (Basak et al.,2022a) de l’algorithme PALS, adaptée au casd’application de l’AQRM.



Title: Multipathogen quantitative risk assessment in rawmilk soft cheese, monotone integrationand Bayesian optimization.
Keywords: Quantitative risk assessment, stochastic simulator, Monotone bounded integration,Bayesian optimization.
Abstract: Thismanuscript focuses on Bayesianoptimization of a quantitative microbiologicalrisk assessment (QMRA) model, in the con-text of the European project ArtiSaneFood, sup-ported by the PRIMA program. The primarygoal is to establish efficient bio-interventionstrategies for cheese producers in France.This work is divided into three broad direc-tions: 1) development and implementation ofa multipathogen QMRA model for raw milksoft cheese, 2) studying monotone integrationmethods for estimating outputs of the QMRAmodel, and 3) designing a Bayesian optimiza-tion algorithm tailored for a stochastic andcomputationally expensive simulator.In the first part we propose a multi-pathogen QMRA model, built upon existingstudies in the literature (see, e.g., Bonifait et al.,2021, Perrin et al., 2014, Sanaa et al., 2004, Strick-land et al., 2023). This model estimates the im-pact of foodborne illnesses on public health,caused by pathogenic STEC, Salmonella and Lis-
teria monocytogenes, which can potentially bepresent in raw milk soft cheese. This farm-to-fork model also implements the interventionstrategies related to mlik and cheese testing,which allows to estimate the cost of interven-tion. An implementation of the QMRA modelfor STEC is provided in R and in the FSKX frame-work (Basak et al., 2024).

The second part of this manuscript investi-gates the potential application of sequential in-tegration methods, leveraging the monotonic-ity and boundedness properties of the simu-lator outputs. We conduct a comprehensiveliterature review on existing integration meth-ods (see, e.g., Kiefer, 1957, Novak, 1992), anddelve into the theoretical findings regardingtheir convergence. Our contribution includesproposing enhancements to these methodsand discussion on the challenges associatedwith their application in the QMRA domain.In the final part of this manuscript, we pro-pose a Bayesian multiobjective optimization al-gorithm for estimating the Pareto optimal in-puts of a stochastic and computationally ex-pensive simulator. The proposed approachis motivated by the principle of Stepwise Un-certainty Reduction (SUR) (see, e.g., Vazquezand Bect, 2009, Vazquez and Martinez, 2006,Villemonteix et al., 2007), with a weighted in-tegrated mean squared error (w-IMSE) basedsampling criterion, focused on the estimationof the Pareto front. A numerical benchmark ispresented, comparing the proposed algorithmwith PALS (Pareto Active Learning for Stochasticsimulators) (Barracosa et al., 2021), over a set ofbi-objective test problems. We also propose anextension (Basak et al., 2022a) of the PALS algo-rithm, tailored to the QMRA application case.
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1 - Introduction

According to the World Health Organization (WHO), around the world, an
estimated 600 million—almost 1 in 10 people—fall ill after consuming con-
taminated food each year, resulting in 420, 000 deaths and a loss of 33 million
disability-adjusted life years (DALYs). DALYs, a societal measure of the dis-
ease or disability burden in populations, representing the combined years
lost to premature death and years lived with disability, serve as a vital indica-
tor for quantifying the profound health consequences of food-borne illnesses
(World Health Organization et al., 2015). Understanding the significant impact
of DALYs, it becomes evident that food safety is not only essential for human
health and well-being but also for promoting sustainable development, eco-
nomic advancement, and enhanced productivity. The 2019World Bank report
on the economic burden of food-borne diseases indicated that USD 110 billion
is lost each year in productivity and medical expenses due to unsafe food in
low- and middle-income countries. Typically, food-borne illnesses are either
infectious or toxic in nature and are caused by the intake of bacteria, viruses,
parasites, or chemical substances into the body through contaminated food.
In this context, microbiological food safety emerges as a scientific discipline
to study the set of measures and practices aimed at preventing food-borne
illnesses. Ensuring food safety and implementing efficient prevention mea-
sures have been major challenges for the food sector. Great research efforts
have been devoted to addressing these challenges by the World Health Or-
ganization (WHO), the European Food Safety Agency (EFSA), various govern-
mental agencies.

1.1 . Context

This thesis is part of the European project ArtiSaneFood, which focuses on
innovative bio-interventions and risk modeling approaches to ensure micro-
bial safety and quality of Mediterranean artisanal fermented foods. ArtiSane-
Food has a budget of EUR 1.58 million and started in June 2019. It involves co-
operation betweenMediterranean countries, namely Portugal, Spain, France,
Italy, Greece, Morocco and Tunisia. For France, an objective is to optimize in-
tervention strategies, such as milk sorting or product testing, during the pro-
duction of raw milk cheeses. Recognized by the UNESCO as a unique cultural
heritage, raw milk cheeses, as shown in Figure 1.1, remain an integral part of
the French gastronomy.

However, the consumption of raw milk cheeses can pose a risk of food-
borne illnesses to the consumers, due to the presence of pathogenic bacterias
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Figure 1.1: Un plateau de fromage français. Photo credit: ANSES.

in it. According to an opinion (Dubois-Brissonnet et al., 2022) published by the
French food safety agency ANSES, over the last decade in France, 34%, 37%,
and 60% of outbreaks of salmonellosis, listeriosis, and enterohaemorrhagic
E. coli (EHEC) infections respectively have been linked to the consumption of
raw-milk cheeses. While some bacteria, such as Salmonella spp. and Staphy-
lococcus aureus, can cause gastroenteritis symptoms, others can have much
more serious consequences, such as kidney failure (EHEC) or even death (L.
monocytogenes, EHEC). The main sources of these hazards are soft cheeses
with a surface mould and short-ripened uncooked pressed cheeses.

To control the risk linked to the consumption of raw milk cheese, sev-
eral control measures are implemented in practice at different stages of the
cheese production chain. Following Perrin et al. (2014), these intervention
measures can be categorized into two types: namely, preharvest and posthar-
vest interventions. The former pertains to the presence of pathogens in the
farm milk used for cheese production by monitoring/improving the hygiene
conditions of milk-producing farms. Some of the measures practiced at the
farm level include the detection and isolation of high shedders of pathogens,
vaccination, use of probiotics, antimicrobials, bacteriophages, or altering diet
(see, e.g., Farrokh et al., 2013). At the production level, milk acquired from
farms undergoes microbiological testing to detect potential contamination of
pathogens, resulting in the removal of milk surpassing a specific contamina-
tion threshold; this practice is known as milk sorting. Postharvest interven-
tions are introduced all along the production process, focusing on microbio-
logical testing of the products and the environment of the production. This
includes sampling test units from particular batches of cheese during or after
production and testing them for potential pathogen contamination. Generally
if one sample unit tests positive for pathogen contamination (e.g. MPS-STEC,
Listeria monocytogenes or Salmonella), the batch of cheese is rejected, prevent-
ing its entry into themarket for sale. Clearly, intervention strategies are neces-
sary for controlling the microbiological risk linked to the consumption of raw
milk cheese, but strict intervention strategies can also lead to significant loss
of raw milk and final cheese products, imposing an economic burden on the
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cheese producers. In other words, the reduction of the risk of food-borne ill-
ness is also linked to the cost of the implementation of strict controlmeasures
of hygiene and the rejection of contaminated food items from the production
process. This trade-off presents a problem of implementing an efficient and
economically acceptable intervention strategy for the cheese producers, in
light of microbiological food safety. More precisely, the objective is to find
optimal process intervention parameters which, “in some sense”, are able to
minimize simultaneously the risk of food-borne illnesses and the cost of in-
tervention strategies.

To address thismultidisciplinary problem, the ArtiSaneFoodproject brings
together several French organizations. This consortium includes Agence na-
tionale de sécurité sanitaire de l’alimentation, de l’environnement et du travail
(ANSES), Centre National Interprofessionnel de l’Economie Laitiere (CNIEL),
Centre technique d’expertise agroalimentaire (ACTALIA), Laboratoire des Sig-
naux et Systèmes (L2S), CNRS, CentraleSupélec, Université Paris-Saclay, Con-
seil national des appellations d’origine laitières (CNAOL), and Fromages AOP
de Normandie. Collectively, these organizations provide specific expertises in
distinct domains, including microbiological risk assessment, the design and
analysis of computer experiments, and research and development within the
French dairy industry, to oversee and guide this project.

1.2 . Academic Context and Directions of Research

In this thesis, we formalize the aforementioned objective from a mathe-
matical point of view using statistical and optimization tools. Before any anal-
ysis or optimization, it is necessary tomodel the evolution of the pathogens in
raw milk soft cheese to estimate suitable metrics to assess the risk of illness
and the cost of intervention. In the field of microbiology for the agri-food sec-
tor, Quantitative Microbiological Risk Assessment (QMRA) is a scientific disci-
pline devoted to analyzing microbiological risks, examining the links between
producer and consumer practices and the risks of food contamination (World
Health Organization et al., 2021). Themicrobiological quality of a food product
results from numerous operations throughout the milk processing, cheese
manufacturing and preservation process, controlled by several parameters
including temperatures, duration, flow rates, pH, and intervention measures,
among others. QMRAmodels utilize differential equations with random initial
conditions to model the growth of pathogens under dynamic environmental
conditions, rendering these models stochastic as they are contingent upon
random quantities and several dependent stochastic internal variables. Sta-
tistical analyses derived from these stochastic models and simulations are
then used to measure the impact of intervention measures on the risk of ill-
ness and cost.
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In the realm of QMRA for raw milk soft cheese, the state-of-the-art model
was provided by Perrin et al. (2014), evaluating the effect of pre- and posthar-
vest interventions on public health risks associated solely with Shiga toxin-
producing Escherichia coli. However this single-pathogen QMRA model did
not consider the effects of other pathogens, namely, Listeria monocytogenes
and Salmonella, which can be potentially present in raw milk cheese (see,
e.g., Costanzo et al., 2020, Sanaa et al., 2004, Tenenhaus-Aziza et al., 2014).
Moreover, Perrin et al. (2014) employed a scenario-based statistical analysis to
assess the impacts of various intervention methods, a technique commonly
adopted inQMRA literature. But this “classical” approachbecomes impractical
when simulation costs are high, and it is only suited for comparing different
intervention scenarios in terms of risk reduction.

In some instances, Bayesian decision-theoretic methods have been em-
ployed by certain studies to optimize specific process control measures (see,
e.g., Commeau, 2012), but to our knowledge, the existing body of QMRA lit-
erature lacks instances where optimal process intervention parameters are
identified to simultaneously minimize two or more conflicting outcomes.

We place ourselves within the framework ofMultiobjective SimulationOp-
timization (MOSO) for functions that are expensive to evaluate (see, e.g., Bar-
racosa et al., 2021, Frazier et al., 2009, Hunter et al., 2019). To address this prob-
lem, we use the principle of Bayesian optimization (Jones et al., 1998). Con-
sider a set F of real-valued functions defined on a set X ⊆ Rp mapping onto
the set Rq , and let φ : F → G be a given mapping. The objective is to optimize
the quantities of interest φ(f), using a finite set of (potentially noisy) evalua-
tions of f , where the real-valued function f ∈ F is computationally expensive
to evaluate, and the analytical form of f is either unknown or too complex to
use a classical derivative-based approach for optimization. Within the frame-
work of Bayesian decision theory, the evaluations of f are chosen adaptively;
the experimenter sequentially observes and decides at each stage which new
evaluation should be performed, based on the information collected up to
that stage. To infer about φ(f), at the n-th stage, an estimator φ̂n ∈ G is con-structed, typically using a Gaussian process (Rasmussen and Williams, 2006)
surrogate model, based on the observations up to the n-stage. Additionally,
a sampling criterion Jn : X→ R is computed, based on φ̂n, to decide the nextevaluation pointXn+1 ∈ X.

In our framework, theQMRA simulator can be formalized as a function f ∈
F : X→ Rq with q noisy outputs and the simulator input spaceX, consisting of
the process intervention parameters. Then, the problem ofmultiobjective op-
timization becomes estimating the solution set of argminX f1, f2, . . . , fq , usingfinite evaluations of f . The trade-off between conflicting objectives is recon-
ciled by the concept of Pareto optimality. A set of solutions P ⊂ X is deemed
Pareto optimal if there exists no alternative solution x′ ∈ X that offers im-
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provements for all objectives without compromising the performance of at
least one objective.

f1

Risk of illness

Average cost

Dominated area by f1 in objective space

f1

f2

f3

Risk of illness

Average cost

f1 dominates f3 but not f2

Figure 1.2: Notion of Pareto optimality demonstrated with three evaluationsand corresponding dominated regions.
In Figure 1.2, the shaded regions represent the area dominated by that

particular point, meaning any other point falling in that region will have either
a higher risk or higher cost and will thus be considered dominated. Following
this principle, the decision-maker would choose the points f1 or f2 over f3to minimize the outputs with respect to both objectives. In this case, both f1and f2 constitute the Pareto optimal set P , as they are optimal with respect
to one of the objectives, and it is not possible to minimize one objective with-
out deteriorating the other. The problem becomes more challenging in the
presence of noise, particularly when the fis are observed with noise due to
the stochastic nature of the simulator. For our problem, we aim to find the
set of optimal process intervention parameters for the QMRA simulator, such
that the resulting set of risk and cost will represent the best possible choice
of trade-off.

Concerning the choice of parameters to be optimized, although the lit-
erature does present some works employing sensitivity analysis on different
process parameters to identify those having the greatest impact (see, e.g.,
Duret et al., 2014, Lamboni et al., 2014), the primary focus of this thesis is to
offer methodological recommendations exclusively for the pre-identified in-
tervention parameters. More precisely, we are interested in the process inter-
vention parameters that control the impact of the intervention, for example,
the frequency of testing the farmmilk, the threshold ofmilk contamination by
hygienic indicator, the frequency of testing cheese batches, and the number
of sample units of cheese tested.

In summary, this work involves three major components as depicted in
Figure 1.3. Using the foundational principles of Quantitative Microbial Risk
Assessment (QMRA), we develop a QMRA model for simulating the contami-
nation by various pathogens of raw milk soft cheese. The primary focus is on
incorporating the effects of different pathogens into one QMRA model and
assessing their combined effect on consumer health using suitable metrics,
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Quantitativemicrobialriskassessment

Multiobjectivestochasticoptimization

Stochasticsimulator

Figure 1.3: Proposed workflow in the context of this thesis.

such as Disability Adjusted Life Years (DALY) (Cassini et al., 2018). This model
is implemented as a stochastic simulator used to simulate several batches, al-
lowing us to estimate the ultimate quantities of interest using a simple Monte
Carlo estimator. Given that having a substantial computational simulation
cost is a major bottleneck for such estimators, our emphasis is on optimizing
the implementation of this simulator. This leads us to dedicate a segment
of our research to exploring the possibility of leveraging the intrinsic proper-
ties of the simulator to reduce computational time. More precisely, we aim
to develop adaptive integration methods with better convergence rates (see,
e.g., Basak et al., 2022b, Novak, 1992) than simple Monte Carlo, focusing on a
special class of problemswith properties likemonotonicity and boundedness.

Once theQMRA simulator is implemented, it canbe formalized as a stochas-
tic simulator, whose outputs should be minimized. To achieve this goal, we
use the framework of Bayesian optimization formultiobjective stochastic sim-
ulators. The objective is to build an algorithm that is easy to implement and
not as expensive compared to other Bayesian approaches which are based
on computationally-intensive criteria for point selection.

1.3 . Outline of the Manuscript and Contributions

This manuscript is organized into three main chapters.
Chapter 2 introduces themulti-pathogenquantitative risk assessmentmodel,

detailing its implementation, applicability, anduser perspectives. To our knowl-
edge, this represents the first proposition in microbiological risk assessment
literature of aQMRAmodel incorporating the effects of three distinct pathogens
present in a food item. In this chapter, Section 2.2 elucidates the compo-
nents and methodological underpinnings of the QMRA model. Section 2.3
delves into the practical aspects and implementation of the model, encom-
passing data descriptions, parameter choices, and the employed mathemat-
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ical/statistical techniques. Section 2.4 presents numerical experiments illus-
trating themodel’s functionalities, emphasizing the impact of intervention pa-
rameters on model outputs. The chapter concludes with a discussion on the
model’s limitations, applicability, and potential avenues for future develop-
ment.

Chapter 3 is about numerical integration techniques, exploring their po-
tential to enhance the cost-efficiency of the QMRA model’s implementation.
This chapter investigates both nonsequential and sequential methods, de-
tailed respectively in Section 3.2 and Section 3.3. The contributions here are
twofold: a formal literature review on available methods for this specific inte-
gration problem, and proposed extensions to augment their practical applica-
bility within a fixed cardinality framework. Section 3.4 outlines numerical ex-
periments conducted to test these proposed enhancements, and Section 3.5
demonstrates an application case on the QMRA simulator. Finally, Section 3.6
discusses the challenges, limitations, and prospective improvements related
to the QMRA model’s application.

Chapter 4 outlines the Bayesian framework for the multiobjective opti-
mization of computationally intensive stochastic simulators, introducing an
algorithm for efficient estimation of Pareto optimal solutions. This chapter
revisits two established approaches to devise a sampling criterion for opti-
mization algorithms—“maximal uncertainty sampling” and “stepwise uncer-
tainty reduction”—each detailed in Section 4.3 and Section 4.4 respectively.
The contributions of this chapter are threefold: introduction of a new algo-
rithm for multiobjective stochastic optimization (MOSO) focused on estimat-
ing the Pareto front, a numerical benchmark comparing the proposed algo-
rithm to existing ones, and an extension of the PALS (Barracosa et al., 2021)
algorithm specifically tailored to the QMRA model. The effectiveness of this
algorithm is illustrated through a case study applying it to the multi-pathogen
QMRA model to estimate Pareto optimal solutions. The chapter concludes
with discussions on the proposed algorithms in relation to their performance
in estimating the Pareto front and set, accompanied by insights into the con-
straints and anticipated enhancements of each approach.

1.4 . Communications

Chapter 2 is an article in preparation with Laurent Guillier, Julien Bect,
Janushan Christy, Fanny Tenenhaus-Aziza and Emmanuel Vazquez. An oral
presentation of this work was made by Basak et al. (2023b), which is an ex-
tension of the work Basak et al. (2024). Chapter 3 is the extension of the work
Basak et al. (2022b). Chapter 4 is based on the work presented in the commu-
nications Basak et al. (2022a, 2023a).
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2 - Quantitative risk assessment model

2.1 . Introduction

Microbiological food safety is a major challenge for the food sector (see,
e.g., Plaza-Rodriguez et al., 2018). In this context, the microbiological food
safety community—including food authorities, food industries, and food re-
search institutes—have invested research efforts into the field of Quantitative
Microbial Risk Assessment (QMRA). The aim is to establish risk-based control
measures (see, e.g., Koutsoumanis and Aspridou, 2016). QMRA is a part of
microbial risk analysis, which involves risk assessment, riskmanagement, and
risk communication (World Health Organization, 1997).

Microbial risk assessment enables the evaluation of the likelihood of ill-
ness caused by pathogenic microorganisms and environmental factors that
impactmicrobial growth. According to CodexAlimentarius Commission (1999),
the framework for executing aQMRA for pathogens is built on several founda-
tional components: hazard identification, exposure assessment, hazard char-
acterization, risk characterization, and risk management options.

Hazard identification entails recognizing microbiological agents—such as
bacteria, pathogens, and viruses—that exist in food and may lead to adverse
health effects. This identification process is initiated after the problem for-
mulation (Ungaretti Haberbeck et al., 2018). It involves delineating a list of
microbial pathogens associated with the risk assessment in question.

Exposure assessment identifies and characterizes the pathways of the ex-
posure to the microbial hazards and quantifies the exposure levels to esti-
mate the magnitude of intake via consumption of a given food commodity.

Hazard characterization then converts these levels of exposure into a prob-
ability, representing the likelihood of adverse health effects associated with
the hazard.

Risk characterization consolidates this information, offering a quantitative
estimation of the likelihood, along with its associated uncertainties, of experi-
encing known or potential adverse health effects in a specific population. This
estimation draws on data from hazard identification, hazard characterization,
and exposure assessment (Codex Alimentarius Commission, 1999).

Generally, cheeses are considered safe andnutritious food, but food-borne
illnesses related to cheese consumption occur (see, e.g., Dubois-Brissonnet
et al., 2022). In the microbial risk assessment literature, there exist a num-
ber of QMRA studies on the contamination of raw milk soft cheese (see, e.g.,
Campagnollo et al., 2018, Lindqvist et al., 2002, Ramos et al., 2021, Sanaa et al.,
2004, Tenenhaus-Aziza et al., 2014), where the authors have proposed meth-
ods not only to compute bacterial prevalence and contamination at the time
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of consumption but also to identify major parameters contributing to the risk,
using simulation studies (usually through “what-if” scenarios).

Among food-bornepathogens, Shiga-toxin producing Escherichia coli (STEC)
in soft cheese is a notable concern (Farrokh et al., 2013). The definition of the
virulence potential of STEC is not straightforward (Lindqvist et al., 2023). De-
pending on the strains’ characteristics and the exposed population, the symp-
toms can range frommild to severe illnesses, such as Haemolytic and Uremic
Syndrome (HUS), which is a leading cause of renal failure in young children.
The growth and survival of pathogenic STEC serotypes throughout different
phases of cheese production, were studied byMaher et al. (2001) andMiszczy-
cha et al. (2016). In this context, Perrin et al. (2014) proposed a stochastic QMRA
model to assess the risk of HUS associated with the five Main Pathogenic
Stereotypes of STEC (MPS-STEC) in raw milk soft cheeses, and explored the
role of control measures for minimizing the risk of illness.

Building on the work of Perrin et al. (2014), we introduce a new farm-
to-fork QMRA multipathogen model, integrating the impacts of three bacte-
ria—specifically, STEC, non-typhoidal Salmonella, and Listeria monocytogenes
which can be potentially present in raw milk (see, e.g., Costanzo et al., 2020,
D. et al., 2009, Sanaa et al., 2004). Like STEC, Salmonella and Listeria monocy-
togenes are hazards that, upon infecting humans, can trigger distinct health
conditions. Salmonella can lead to a condition called salmonellosis, which is
characterizedby symptoms such as diarrhea, abdominal pain, fever, and vom-
iting. Listeria monocytogenes, on the other hand, can cause listeriosis, a more
severe illness (see, e.g., Camargo et al., 2017, Leclercq et al., 2014), that can
lead to fever, muscle aches, nausea, diarrhea, and in severe cases, can even
result in meningitis or septicemia.

This newmultipathogenQMRAmodel integrates the pre-harvest andpost-
harvest intervention steps in the cheese productionprocesses, which are used
as control measures. This integration will enable the evaluation of their im-
pact on the risk of illness.

This chapter is structured as follows. Section 2.2 describes the model with
the underlying assumptions and its components, along with their functionali-
ties, developed according to theWorld Health Organization et al. (2021) frame-
work. Section 2.3 elaborates on the implementation of the model, detailing
the selection of model parameters and the mathematical and statistical tech-
niques employed. Section 2.4 presents numerical results regarding bacterial
prevalence and risk reduction, derived from exploring various intervention
scenarios. Finally, Section 2.5 provides a discussion on the model’s usage, ap-
plicability, and perspectives for future work.

2.2 . Description of the proposed hierarchical model
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2.2.1 . Model overview
The multipathogen QMRA model builds upon the QMRA model for STEC

proposed by Perrin et al. (2014) and the R implementation provided by Basak
et al. (2024).

The QMRA model is used to assess the risk of microbial contamination by
examining the evolution of pathogens throughout the entire cheese-making
process, from the farm where milk is produced to the consumer’s fork where
it is consumed. This farm-to-fork model can be regarded as a stochastic sim-
ulator, a computational model used for simulating a complex system that
incorporates inherent randomness. The model consists of two hierarchical
components: a batch-level simulator and an output module. The batch-level
simulator models all the various steps of the cheese manufacturing process,
beginning with the collection of milk from a specific number of farms on a
given day and continuing through the production process. The production
process usually lasts up to 14 days until the cheese ripening step, followed by
a cheese storage step until the 22nd day, after which the produced batch of
cheese is sent to the market (see, e.g., Perrin et al., 2014). A typical batch of
cheese usually contains 22, 000−23, 000 cheeses of 250 g, produced using a to-
tal volume of 50, 000 L of rawmilk, though it can vary depending on the cheese
producer. The outputs of interest corresponding to a particular cheese batch
is produced by the batch-level simulator, which are then used by the output
module, that produces an estimate for the impact of the food-borne illnesses
and the intervention costs.
Notations and abbreviations Throughout this chapter, we adopt a no-
tation convention in which, depending on the variables used for the indices,
it is implicitly assumed that these variables have values in different sets of
pathogens, as summarized in Table 2.1.

Table 2.1: Notations and corresponding pathogen classification.
Index notation Pathogen membership set

x MPS-STEC, Salmonella, Lm
x† MPS O157:H7, MPS nonO157:H7, HV Salmonella, LV Salmonella, Lm
x‡ MPS O157:H7, MPS nonO157:H7, Salmonella, Lm
x†† MPS-STEC, HV Salmonella, LV Salmonella

Here, MPS-STEC denotes the Main Pathogenic Serotypes of Shiga Toxin
Producing Escherichia coli, and it is classified into two subclasses based on
serotype markers, namely O157:H7 and non O157:H7 (Perrin et al., 2014). For
Salmonella, we consider two subclasses corresponding to their high and low
virulent strains, respectively abbreviated by HV Salmonella and LV Salmonella.
In mathematical notations, these are further compressed as HV-Salmo and
LV-Salmo. For Listeria monocytogenes, the abbreviation Lm is used.
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Modules The batch-level simulator has four modules: a farm module fol-
lowed by a preharvest intervention step, a cheese production module, a con-
sumer module, and a postharvest sampling module.

The sets of input parameters, as detailed in Section 2.3.3, for each of the
modules, are aggregated in a vector denoted by θ = {θfarm, θcheese, θcon, θpost},
which forms the input parameter of the simulator.

The farm module, as explained in Section 2.2.3.1, models the collection
of milk from different farms and outputs the initial pathogen concentration
Y milk
x in the aggregated milk tank, for the pathogen x (see Table 2.1). (Note

that we use capital letters in the description of the model to designate ran-
dom variables. This will be made explicit in the next sections.) The farmmod-
ule also implements the preharvest intervention step, as explained in Sec-
tion 2.2.5.1, which prevents contaminated farm milk from entering the pro-
duction process.

The cheese module, as explained in Section 2.2.3.2, models the evolution
of pathogens during the cheese production process and simulates the colony
size Yx‡ and the average number of colonies λcolony

x†
in a single cheese from

that specific batch. Note that Yx‡ and λcolony
x†

are random variables that de-
pend on Y milk

x and θcheese.
The consumer module, as described in Section 2.2.4.1, models the impact

of the ingested dose of pathogen by the consumer and estimates the risk of
illness.

The postharvest intervention step, as described in Section 2.2.5.2, imple-
ments the microbial cheese sampling plan and estimates the probability of
detecting contamination in the produced batch of cheese.

Given the input vector θ, the batch-level simulator yields the following
outputs relevant to a particular batch: the milk loss per batch Mbatch due
to the preharvest intervention step, the probability of rejecting the batch of
cheese P batch due to the postharvest intervention step, and the batch risk
Rbatch
x , that is, the risk of encountering food-borne illnesses due to pathogen

x, if a portion of 25 g of cheese is consumed from that specific batch of cheese.
Again, note that Mbatch, P batch and Rbatch

x are random variables in what fol-
lows. When the batch level simulator is run once, it will simulate a sample
value for these random variables, conditional on θ.

Figure 2.1 offers a schematic diagram of the batch-level simulator, encom-
passing several modules. The output module, as explained in Section 2.2.6.1,
is used to simulate several batches of cheese, that is, several sample values
of Mbatch, P batch and Rbatch

x , and to estimate the final quantities of interest,
e.g., the prevailing risk of illness, average milk loss, and average probability of
rejecting a batch of cheese.

2.2.2 . Hazard identification
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Figure 2.1: Batch level simulator: The four modules of the simulator, namely,farm, cheese, consumer and postharvest, are shown in pink boxes, along withtheir corresponding set of inputs in violet boxes. The outputs correspondingto a simulation of a single, namely batch are shown using orange boxes.

The three pathogens identified as hazards in this study—themain pathogenic
serotypes of Shiga-toxin producing Escherichia coli (also known as MPS-STEC),
Salmonella, and Lm—can survive or growduring cheesemaking, particularly in
rawmilk soft cheeses (see, e.g., Costanzo et al., 2020). These bacterias present
in the intestines of lactating dairy animals, and can be transmitted through
fecal matter to their udders, thereby contaminating milk during the milking
process (Gopal et al., 2015).
Mainpathogenic serotypesof STEC. Thefivemain pathogenic serotypes
of STEC (MPS-STEC) identified thus far in Europe areO157:H7, O26:H11, O103:H2,
O111:H8, and O145:H28. According to EFSA (2017), EFSA BIOHAZ Panel et al.
(2020), 14 outbreaks involving STEC in milk, dairy, and cheese products were
recorded between 2012 and 2017, affecting 775 individuals, with the primary
causative agents being Shiga toxin-producing E. coli (STEC). In 2005, in France,
an outbreak of Hemolytic Uremic Syndrome (HUS) was reported, linked to the
contamination of raw milk soft cheese with E. coli O26 and O80, followed by
another outbreak in 2009 among children up to 15 years (King et al., 2009) and
in 2019 (Jones et al., 2019). However, other pathogenic serotypes have caused
major outbreaks. In 2010, atypical STEC serotypes O104:H4 caused a large out-
break in Germany (see, e.g., EFSA, 2012, Frank et al., 2011). Recently, the O80
serotype has arisen in Europe (see, e.g., Bruyand et al., 2019).
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Listeriamonocytogenes. Thepresence of Lm in rawmilk and cheese has
been extensively reported (see, e.g., Dalzini et al., 2016), with its widespread
occurrence and potential for contamination possible at any stage of the pro-
duction chain. Due to cold tolerance, i.e., the ability to grow at refrigeration
temperatures as low as −1.5 °C, and its capacity to form resilient biofilms re-
sistant to sanitation, Lm exhibits the ability to persist and survive in various
environments (see, e.g., McIntyre et al., 2015). According to European Food
Safety Authority and for Disease Prevention & Control (2022), there were 2183
confirmed invasive human cases of listeriosis in 2021. Cheese was estimated
to be the origin of 1% of the listeriosis cases in Europe according to risk as-
sessment models (Ricci et al., 2018).
Salmonella. Salmonellosis is recognized as one of the most common bac-
terial food-borne illnesses in humans, with several outbreaks reported from
Salmonella contamination in raw milk cheese (see, e.g., Robinson et al., 2020,
Ung et al., 2019). Salmonella is commonly found in the intestinal tract of lac-
tating animals, and milk contamination primarily occurs during the milking
process (Ruzante et al., 2010). Among various serotypes, Salmonella Dublin,
Salmonella Newport, and Salmonella Typhimurium are commonly linked to
salmonellosis in both calves and adult cows, leading to varying degrees of ill-
ness. Additionally, dairy animals havebeen found to carry Salmonella serotypes
such as Salmonella Cerro, Salmonella Kentucky, Salmonella Mbandaka, and
Salmonella Montevideo without showing any symptoms, while shedding the
bacteria in their feces (see, e.g., Bonifait et al., 2021, Van Kessel et al., 2012).

2.2.3 . Exposure Assessment
2.2.3.1 Farm module

At the farm level, milk is collected from a mixed herd of lactating animals,
which canpotentially includes both infected andnon-infected cows, and stored
in a bulk tank. During the milking process, pathogens potentially present
in the fecal matter of infected cows can be transmitted into the bulk tank
through their contaminated udders. The Bulk Tank Milk (BTM) is then col-
lected from different farms and mixed into an Aggregated Milk Tank (ATM),
which is used for cheese production. In the QMRA model, the farm module
replicates this entire scenario of milk collection and simulates the concentra-
tion in CFU/ml (Colony forming units per mili liters) of all the pathogens in the
ATM. The input parameters of the farm module are listed in Table 2.5.

The concentration Y milk
Lm of Lm in the ATM was studied by Sanaa et al.

(2004). Following this work, we model Y milk
Lm as a log-normal random variable:

Y milk
Lm | θfarm ∼ Lognormal(µLm, τLm) . (2.1)

Due to very low contamination level, insufficient knowledge and the un-
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availability of a reliable method to directly determine the pathogen concen-
tration in milk for STEC and Salmonella, we employ the indirect approach of
estimating concentration used by Perrin et al. (2014) for the QMRA model for
STEC. This approach relies on collected data on E. coli concentration in farm
milk, assuming that E. coli and other pathogen strains follow the same fecal
routes.

Suppose that, for each farm indexed by i = 1, 2, . . . , N farms, the milk is
collected into a BTM fromN cow

i cows; then the concentration of pathogen x††
in the BTM corresponding to farm i is denoted by Y milk

x††,i and is obtained as,

Y milk
x††,i = Y EC

i · F
x††
i

FEC
i

, (2.2)

where Y EC
i denotes the concentration (CFU/mL) of E. coli in BTM, F x††i and

FEC
i respectively denote the average concentration (CFU/gram) in the fecal

matter for the x†† pathogen and E. coli, coming from all the cows.
To obtain Y EC

i , F x††i and FEC
i , the module first models the number of in-

fected cows using a binomial distribution kji | θfarm ∼ Binomial(N cow
i , pj), inthe i-th farm, with the corresponding class probabilities pj of the two major

pathogen classes j ∈ {STEC, Salmonella}. For STEC, the proportion pSTEC of
infected cows is estimated using a logit model (following Perrin et al., 2014).
Next, the number of cows affected by the subclass serotypes is modeled, us-
ing the respective class probabilities:

kMPS9STEC
i | θfarm ∼ Binomial(kSTEC

i , pMPS9STEC) , (2.3)
kHV9Salmo
i | θfarm ∼ Binomial(kSalmo

i , pHV9Salmo) . (2.4)
Thenumber of Salmonella-infected cows carrying the low virulent serotype,

is computed as kLV9Salmo
i = kSalmo

i − kHV9Salmo
i . For the j-th infected cow,

1 ≤ j ≤ kx
††
i , in the i-th farm, 1 ≤ i ≤ N farm, the concentration in the fecal

matter is modeled according to a Weibull distribution for MPS-STEC (Perrin
et al., 2014),

FMPS9STEC
i, j | θfarm ∼Weibull(aweibull, bweibull) ,

and the concentrations of the two serotypes HV-Salmonella, LV-Salmonella are
modeled using a log-normal distribution (Bonifait et al., 2021),

log10(F Salmo
i, j ) | θfarm ∼ N (aSalmo, bSalmo) .

For each farm, the average concentration of pathogen x†† is

F x
††

i = 1
N cow
i

kx
††
i∑
j=1

F x
††

i, j .
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The concentration of E. coli (CFU/mL) in a BTM Y EC
i , is modeled by a log-

normal distribution:
Y EC
i | θfarm ∼ Lognormal(αi, σi). (2.5)

The average FEC
i of individual E. coli concentrations in fecal matter for

each cow, denoted by FEC
i, j , j = 1, 2, . . . , N cow

i , is obtained using the model
log 10(FEC

i, j ) | θfarm ∼ N (µecoli, τ ecoli),

FEC
i = 1

N cow
i

Ncow
i∑
j=1

FEC
i, j .

(2.6)

Each of the BTMs is tested (also known as milk sorting, see Section 2.2.5.1)
for E. coli concentration and accordingly accepted or rejected for cheese pro-
duction. Let S denote the set of farms that qualify after milk sorting and let
N farms,sorted = |S|. After milk sorting, milk from all the qualified BTMs is col-
lected into a single ATM. The final concentration (CFU/mL) of pathogen Y milk

x††in this ATM can be written as
Y milk
x†† =

N farms∑
i=1

(
Y milk
x††,i ·

Vi1{i∈S}∑N farms
i=1 Vi1{i∈S}

)
, (2.7)

where Vi is the volume of milk in liters produced by the ith farm.
Module outputs. The farm module models the concentrations (CFU/mL)
of four different pathogenic serotypes in milk in the ATM, namely, MPS-STEC,
HV Salmonella, LV Salmonella and Lm. It also yields the milk loss Mbatch (in
Liters), due to the preharvest milk testing step, associated with the produc-
tion of that particular batch of cheese. In addition it models the number of
farms discarded due to milk testing N farms − N farms,sorted, and the total vol-
ume of milk put in production, or in other words the volume of milk in the
ATM∑N farms

i=1 Vi1{i∈S}.
2.2.3.2 Cheese module

The inputs for the cheesemodule are the initial pathogen concentrations from
the farm module and a set of parameters denoted by θcheese detailed in Ta-
ble 2.10.

After being collected in the ATM, the milk undergoes several processing
steps, including milk storage, molding, draining, salting, ripening, and cheese
storage. These steps can be categorized into two phases, namely the liquid
phase and the solid phase, respectively illustrated by two schematic diagrams
in Figure 2.2 and Figure 2.3.
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Figure 2.2: Liquid phase steps: storage and molding, models the pathogenconcentration, starting from initial concentration Y milk.

1 Y draining Y salting Y ripening Y (tconsum)
storageripeningsalting

growth
draining
growth

Figure 2.3: Solid phase steps: draining, salting, ripening and cheese storage,models the evolution of colony size, starting from 1 bacteria.

During the pre-molding steps in the liquid phase, a growth in the bacteria
concentration is observed, for all the three pathogens. At the end of the liquid
phase, the pathogen cells are presumed to become immobilized within the
cheesematrix, resulting in the formation of colonies. At this stage, the cheese
module estimates the average number of colonies formed in a single cheese.
After entering the solid phase, the cheese module models the evolution of
the colonies starting from one single colony. Finally it estimates the colony
sizes for different pathogens at the time of consumption. The rest of this
section is organized in three different parts, corresponding to the evolution
of pathogens during the different cheese processing steps.

Growth phase. For all three pathogens, the growth phase occurs until the
salting step. Starting from the farmmodule outputs, the cheesemodulemod-
els the growth of the pathogens over the different steps using an ordinary
differential equation dYx

dt = µmax
x (t) · Yx(t) ·

(
1− Yx(t)

ymax

)
,

Yx(0) = Y milk
x

(2.8)

where µmax
x (t) stands for the maximum growth rate (in h−1) and ymax is a pa-

rameter that represents the hypothetical maximum population of pathogen
strains in milk or cheese. The maximum growth rate µmax

x (t), as shown in Fig-
ure 2.5a, is modeled against time t according to Augustin et al. (2005) using
the optimal growth rate parameterµopt

x , several physico-chemical parameters
{d, pH, T, aw}, and their nominal values, collectively denoted as θ(µmax) and
listed in Table 2.6. Figure 2.4 shows the variation in physico-chemical param-
eters over time, as studied by Perrin et al. (2014).
Remark 1. For Salmonella, the overall initial concentration Y milk

Salmo is computed
as the sum of the concentrations of its two subclass serotypes.
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Figure 2.4: Dynamic physico-chemical parameters, namely pH and tempera-ture, during milk storage, molding, draining and salting steps of cheese pro-duction, separated by blue dotted lines.
The concentrations during the liquid phase, specifically at the end of the

storage step Y storage
x and molding step Y molding

x , are computed using (2.8), as
depicted in Figure 2.5b.

Corresponding to the three major pathogens, we consider a total of five
different subclass serotypes denoted by x†.

At the end of the liquid phase, conditional on the concentration of the
molding step Y molding

x , the number of colonies for each pathogen subclass
serotypes aremodeled as a Poisson variableN colony

x†
| Y molding

x ∼ Poisson(λcolony
x†

),
with the mean computed as

λcolony
x†

= Y molding
x · vcheese · wloss · px† , (2.9)

where for MPS-STEC and Salmonella, px† denotes the class probability of thecorresponding subclass serotype, whereas pLm = 1 for Lm. The parameters
vcheese and wloss denote the amount of milk used for a single cheese and the
proportion of water loss during the molding step, respectively.

Starting from the draining step, with an initial size of 1 CFU, (2.8) models
growth of the size of that single colony forming unit, until the salting step. The
evolution of each colony inside a particular cheese (of mass 250 g) is assumed
to be identical during the growth phase due to the same environmental con-
ditions.
Decline phase. At the end of the salting step, when the batch of cheese
enters the ripening step, there is a decline in the population of the colonies.
The ripening step lasts until the 14-th day of the production (Perrin et al., 2014),
followed by a cheese storage step until the 22-nd day (Basak et al., 2024), and
after that the cheese is sent to the market. The cheese is consumed on the
tconsum-th day, which is a triangular-distributed random variable with mini-
mum possible value 22.
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Figure 2.5: The three pathogens STEC, Salmonella and Lm are shown in red,blue and black lines respectively. The evolution of bacteria is calculated start-ing from average values of initial concentrations, for a baseline scenario withno preharvest intervention step.

For MPS-STEC and Salmonella this decline phase is considered as a contin-
uous process which lasts until the cheese is consumed, whereas for Lm, only
a decline in the colony population is considered. Let tsalting be the time taken
(in hours) until the salting step, then for any time point t > tsalting, the cheese
module computes four reference colony sizes Yx‡(t), for the four pathogenicserotypes denoted by x‡. These reference colony sizes represent the size of
the respective pathogen colonies inside a particular cheese in the batch, with-
out taking into account the inter-cheese variability. Here, we assume that all
colonies within a particular cheese have the same decline phase, indicating
no intra-cheese variability.

Following Perrin et al. (2014), the decline phase for MPS-STEC is modeled
differently for its different subclass serotypes, indexed by s ∈ {MPS O157:H7,
MPS nonO157:H7}. For MPS-STEC the reference colony size at time point t (in
days), is computed as Ys(t) = Y salting

MPS9STEC ·10−ρs·(t−tsalting/24), with the subclass
serotypes distinguished by the decline rate parameter ρs.

The decline phase for Salmonella is dependent on theposition of the colonies
in the cheesematrix. The decline ismodeled using different set of parameters
for the core region colonies and the rind region colonies (Gonzales-Barron
et al., 2022), namely, {δs, ps}, for s ∈ {core, rind}. The reference colony sizeat time t, for serotype s is computed as Ys(t) = Y salting

Salmo · 10−((t−tsalting/24)/δs)ps .
The reference colony size YSalmo(t) for Salmonella is obtained by averaging
over the core and rind region with respect to the proportion of colonies in
those region pcore.rind.

Following Sanaa et al. (2004), for Lm, there is a decrease in the population
after the salting step during curd acidification in cheese vats and molds, and
it is modeled using log apparent kills, Y post.salting

Lm = Y salting
Lm · 10−ρLm , with a
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triangular distributed decline parameter ρLm.
Second growth phase. The second growth phase is only observed for Lm
(Sanaa et al., 2004), and it initiates depending on the position of the colonies
in the core and rind region. Challenge test data collected under the Arti-
SaneFood project were used identify the favorable environmental conditions,
namely, the physico-chemical parameters pHLm, TLm that initiate the sec-
ond growth step. These parameters were used to estimate the maximum
growth rate for Lm, and the colony size for the core and rind regions at time
t was modeled separately using (2.8), starting from an initial concentration
Y post.salting

Lm . It was observed that colonies in the core region (comprising 90%
of the total colonies) enter the second growth phase after 20 days of the salt-
ing step, while the colonies at the surface region (making up 10% of the total
colonies) initiate their second growth phase after 7 days of the end of salting
step, or equivalently, the start of the ripening step. The reference colony size
YLm(t) is obtained by averaging over the core and rind regions, similarly as
Salmonella.

The evolution of colonies for the three pathogens, during the solid phase,
is depicted in Figure 2.6a, Figure 2.6b, and Figure 2.7.
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Figure 2.6: Evolution of colony sizes starting from unit size, for MPS-STEC and
Salmonella, during the draining, salting and ripening steps, separated by bluedotted lines.

Module outputs. For all the five subclass serotypes, the expected num-
ber of colonies λcolony

x†
at a particular time point t is adjusted with respect

to the corresponding reference colony size of the subclass serotype (for ex-
ample, YO157(t) and YO157(t) for MPS-STEC) or the reference colony size of
the pathogen itself (for example, YSalmo(t) and YLm(t) for Salmonella and Lm
respectively), at time t. If the reference colony size Yx‡(t) falls below 1, we
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choose the assumption that the colonies have disappeared with a probability
Yx‡(t), and the corresponding adjusted expected number of colonies is ob-
tained as λcolony

x†
(t) = λcolony

x†
· Yx‡(t). If Yx‡(t) > 1, the expected number of

colonies remains unchanged.
The outputs of the cheese module are the adjusted expected number

of colonies λcolony
x†

(t), for pathogen x† and the corresponding reference size
of the colonies Yx‡(t), for pathogen x‡. These quantities are computed at
two specific time points, firstly, the time of testing samples from the cheese
batches ttest, and secondly at the time of consumption tconsum.

2.2.4 . Hazard characterization
2.2.4.1 Consumer module

The consumer module describes the nature and probability of adverse hu-
man effects as a function of viable pathogen numbers ingested, termed the
dose. The consumer module uses the outputs of the cheese module, that is,
the adjusted expected number of colonies λcolony

x†
(tconsum) in a cheese and the

reference size of one colony Yx‡(tconsum), at the time of consumption tconsum.
In addition to the cheese module outputs, the other inputs of the consumer
module, denoted by θcon, are listed in Table 2.8. The consumer module simu-
lates the risk of the corresponding illness based on the cheese consumption
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behavior of people in different age groups.
Inter-cheese variability. In themodeling of risk, considering inter-cheese
variability is crucial as it accounts for the differences observed in the distribu-
tion of pathogenic colonies across different cheese samples. Specifically, even
though the reference colony sizes Yx‡(t), as mentioned in Section 2.2.3.2, are
defined without the inter-cheese variability, this variability is explicitly incor-
porated during risk computation.

For MPS-STEC, the final colony sizes for the two subclass serotypes, with
the inclusion of the inter-cheese variability, follow a log-normal distribution
(Perrin et al., 2014), described by Y colony

s = Ys(tconsum) · 10εs , where εs ∼
N (µεs , τεs) represents the parameter for inter-cheese variability, with s denot-
ing the two subclass serotypes ofMPS-STEC s ∈ {MPSO157:H7,MPSnonO157:H7}.
While this assumption is made for MPS-STEC, we still posit that there is no
intra-cheese variability, meaning all the colonies inside a specific cheese share
an identical size Y colony

s for serotype s (Perrin et al., 2014).
For Salmonella, the inter-cheese variability could be introduced through

the variance of the decline step parameter δs, for s ∈ {core, rind}, denotedby τ δs (Gonzales-Barron et al., 2022), as seen in Table 2.10. However, the currentmodel assumes no inter-cheese variability for Salmonella and for Lm as well,
resulting in their final colony size being equivalent to the reference colony
size.
Model for the dose. The risk of getting the food-borne illness is depen-
dent on the number of cells of pathogen x† ingested by the consumer, which
is referred to as the dose, denoted by Γx† . The dose is defined as the number
of pathogenic cells present in a particular cheese serving of 25 g, which is ob-
tained by multiplying the size of colonies Y colony

x‡
with the number of colonies

N colony9serving
x†

in a cheese serving, distributed as
N colony9serving
x†

| λcolony
x†

, tconsum ∼ Poisson
(
λcolony
x†

(tconsum)w
serving

wcheese

)
. (2.10)

Probabilities of illness. To obtain probabilities of illness, three differ-
ent dose-response models were used corresponding to the three different
pathogens. Following Perrin et al. (2014), an exponential dose-responsemodel
was used forMPS-STEC, that uses the combineddoseΓMPS9STEC = N colony9serving

O157 ·
Y colony

O157 + N colony9serving
O157 · Y colony

O157 , which is the sum of the doses correspond-
ing to the two different serotype classes of MPS-STEC. The probability of get-
ting the HUS disease by consuming a serving of 25 g of cheese, conditional on
Age = age and dose ΓMPS9STEC = γMPS9STEC, can be written as

PHUS(age, γMPS9STEC) = 1− (1− r0 · exp(−k · age))γMPS9STEC . (2.11)
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For Salmonella, a Beta-Poisson dose-response model proposed by McCul-
lough and Elsele (1951), World Health Organization (2002) is used, with model
parameters (Strickland et al., 2023) dependent on the two subclass serotypes
s, for s ∈ {HV Salmonella, LV Salmonella},

PSalmonellosis(Γs) = 1− (1 + Γs
βs

)−αs . (2.12)
Conditional on doseΓs = N colony9serving

s ·Y colony
s , for each serotype s, the prob-

ability of getting salmonellosis from the consumption of a serving of 25 g of
cheese, is a weighted average, using the respective consumption probabili-
ties based on expected number of high and low virulent colonies in a cheese
serving:
PSalmonellosis(ΓHV9Salmo,ΓLV9Salmo) =

PSalmonellosis(ΓHV9Salmo) · pcolony
HV9Salmo + PSalmonellosis(ΓLV9Salmo) · pcolony

LV9Salmo .

For Lm, the dose-response is adapted from Ricci et al. (2018), based on the
Poissonmodel, which takes into account the variability in susceptibility across
mutually exclusive population subgroups, as proposed by Pouillot et al. (2015).
Conditional on dose ΓLm = N colony9serving

Lm · Y colony
Lm , and population subgroup

θg , the probability of getting listeriosis, from the consumption of a serving of
25 g of cheese, is written as

PListeriosis(θg,ΓLm) =
∫ 1

0
(1− exp(−r · ΓLm))p(r; θg) dr, (2.13)

where r is the probability of developing listeriosis from the ingestion of a bac-
terial cell in a given, specific serving, and p(r; θg) represents the remaining
individual (within-group) susceptibility variability and strain virulence variabil-
ity in r.
Batch risk. The consumer module models the risk for each of the food-
borne illnesses, associatedwith the consumptionof a particular batch of cheese.
For each pathogen x, the batch risk depends on a vector of stochastic internal
variables of the QMRA model, denoted by Ξx, which characterizes a batch.The vector Ξx includes the initial concentration Y milk

x of the respective
pathogen in theATM, the stochastic parameters {dstorage, T storage}, correspond-
ing to the storage step, and the stochastic consumption time tconsum. Depend-
ing on the specific pathogen, Ξx comprises of other stochastic variables. For
Salmonella,Ξx includes the rate parameters {δcore, δrind} and for Lm it includes
the rate parameter ρLm.We define the batch riskRbatch

x (ξx) as the probability of getting the partic-
ular illness from pathogen x, by consuming a portion of 25g of cheese from a
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Figure 2.8: Directed acyclic graph showing the dependence between differentmodel variables. The dependent variables are positioned at the arrow tips,signifying their dependence on the specific variables, which are situated atthe arrowends. No arrowsbetween any two variables signifies independence.This graph is used to simplify the conditional expectations defined later in thischapter, using the dependence relationship.

particular batch, characterized by the internal variables Ξx = ξx. Further, wedefine two events Eillness(x) ⊂ Emarket, where Emarket indicates that the par-ticular batch goes to the market (i.e., it is not rejected) and Eillness(x) standsfor the event that the particular batch goes to the market and the consumer
gets the illness from pathogen x. The mutual dependence between different
model variables and these events are shown in Figure 2.8. In this Directed
Acyclic Graph, a specific dependent variable, conditioned by any of the vari-
ables placed at one of its arrow ends, is considered to be conditionally inde-
pendent with respect to all the variables positioned at the subsequent arrow
ends. From the definition of the batch risk, we have

Rbatch
x (ξx) = P

[
Eillness(x) |Ξx = ξx, Emarket

]
= E

[
1Eillness(x) |Ξx = ξx,1Emarket = 1

]
,

(2.14)

and from the definition of the probability of illness in (2.11) - (2.13), we have
Pillness(x)(age, γx) = P

[
Eillness(x) |Age = age,Γx = γx, Emarket

]
= E

[
1Eillness(x) |Age = age,Γx = γx,1Emarket = 1

]
.

(2.15)

Since 1Eillness(x) is conditionally independent of Ξx, given Γx, using (2.15) and
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the law of total expectation, we can write
E
[
1Eillness(x) |Ξx,1Emarket

]
= E

[
E
[
1Eillness(x) |Age,Γx,Ξx,1Emarket

] ∣∣Ξx,1Emarket

]
= E

[
E
[
1Eillness(x) |Age,Γx,1Emarket

] ∣∣Ξx,1Emarket

]
= E

[
Pillness(x)(Age,Γx) · 1Emarket + 0 · 1Emarket

|Ξx,1Emarket

]
.

(2.16)

Using (2.16) and the conditional independence with respect to Emarket given
Ξx, the definition of Rbatch

x (ξx) in (2.14) boils down to
Rbatch
x (ξx) = E

[
Pillness(x)(Age,Γx) |Ξx = ξx

]
=

agemax∑
age=1

∫ ∞
0

Pillness(x)(age, γx) · p(age, γx | Ξx = ξx)dγx

=
agemax∑
age=1

g(age)
∫ ∞

0
Pillness(x)(age, γx)p(γx|ξx)dγx ,

(2.17)

where the joint probability distribution of the Age and the dose Γx | Ξx = ξx is
p(age, γx | Ξx = ξx) = g(age) · p(γx|ξx), with g(age) = P [Age = age | Emarket]being the age distribution of cheese consumers.

For MPS-STEC, the parameter g(age) controls the proportion of cheese
consumed by the age group (see, e.g., Perrin et al., 2014), and for Salmonella,
the age parameter is considered to have no effects (Teunis, 2022, Teunis et al.,
2010). The batch risk for Lm uses the model by Cadavez et al. (unpublished),
where the population subgroups are based on different age groups for males
and females: {[1, 4], [5, 14], [15, 24], [25, 44], [45, 64], [65, 74], [75,+∞]}.

2.2.5 . Risk management options
2.2.5.1 Preharvest: milk sorting

The preharvest intervention strategy, a.k.a milk sorting, is carried out just be-
fore mixing the BTM from several farms into the ATM. In this step, the E. coli
levels in BTM coming from the farms are tested and tanks with concentration
above a certain threshold are rejected from the production chain. Each BTM
is tested for E. coli concentration and the i-th farm is rejected if Y EC

i > lsorting.
The milk loss for a particular batch is given by Mbatch =

∑N farms
i=1 Vi1{i/∈S},where S denotes the set of farms that qualify after milk sorting. Note that the

parameters controlling the preharvest intervention step are mainly the fre-
quency of milk sorting f sorting (measured in days) and the threshold of milk
sorting lsorting (measured in CFU/mL), as listed in Table 2.5. The milk sorting
strategy is based on the hypothesis that E. coli and other pathogen strains fol-
low the same fecal routes in the cows body (see, e.g. Perrin et al., 2014), as a
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results the E. coli concentration in the BTM, can be used as a measure of the
farms hygiene conditions.
Remark 2. In the current implementation of the QMRAmodel this milk sorting
strategy only affects the concentration of STEC, MPS-STEC and Salmonella in
the ATM. For Lm since the concentration in the ATM is simulated directly, it
remains unaffected by the milk sorting. Implementation of a more realistic
and efficient preharvest intervention strategy is discussed in Section 2.5.1.
2.2.5.2 Postharvest: microbial cheese sampling

The postharvest intervention strategy, a.k.a cheese sampling, can be imple-
mented at different stages of cheese production depending on the type of
bacteria. Typically, for raw milk soft cheese, the sampling process is carried
out at the end of the salting step, during the third day of production. However,
some producers may choose to implement cheese sampling during cheese
ripening, until the 14-th day from the beginning of production. In our model,
the cheese sampling time is determined by a parameter ttest, which is by de-
fault set at 14-th day of production. Cheese sampling consists in inspecting
a batch of cheese for pathogen contamination, and this is done with respect
to small portions, called sampling units, taken out of the batch. Once a single
sample unit is tested positive for any of the threemajor pathogens under con-
sideration, thewhole batch of cheese is not sent to themarket. Letnsample and
msample respectively denote the number of sample units taken from a batch
and the mass of each sample unit (usually fixed at 25 g). The probability for a
sample unit being tested positive for the three main pathogens, is

P unit
x (ξx) = P

(
N colony.sample
x > 0 | Ξx = ξx

)
where conditionally on Ξx = ξx,N colony.sample

x is a Poisson distributed random
variable, with expectation (λcolony

x
msample

wcheese ), and λcolony
x corresponds to the av-

erage number of colonies for pathogen x in the cheese sample, givenΞx = ξx.For MPS-STEC and Salmonella, the average number of colonies λcolony
x is

obtained as the sum of the average number of colonies of their respective
subclass serotypes. The probability of detecting a colony in any of the sample
units is P sample

x (ξx) = 1− (1−P unit
x (ξx))nsample . Assuming the detection events

of the three types of pathogens are independent, the probability of rejecting
the batch of cheese, given Ξ = ξ, where Ξ = (Ξx)x, is obtained using the
formula for the union of three independent events:
P batch(ξ) =

∑
x

P sample
x (ξx)−

∑
x<x†

P sample
x (ξx) · P sample

x†
(ξx) +

∏
x

P sample
x (ξx) .

(2.18)
The parameters for the postharvest step are listed in Table 2.9.
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2.2.6 . Risk characterization

2.2.6.1 Output module

The output module, demonstrated in Figure 2.9, is outside the batch level
simulator and its purpose is to obtain estimations of the expectation of the
quantities of interest for a given set of θ = {θfarm, θcheese, θcon, θpost}. As will
be explained in Section 2.3, the estimations will be carried out using Monte
Carlo simulations. The output module uses three batch level simulator out-
puts, namely, the batch risk Rbatch

x (ξx), the probability of rejecting a batch
P batch(ξ) and the milk lossMbatch.

Batchsimulator simulations

θ Nbatch P avg

Mavg

Rx

Figure 2.9: Output module denoted by the green box is the next hierarchicalmodule of the batch level simulator. It simulatesNbatch independent batchesto estimate the average risk of illness Rx from pathogen x, average milk loss
Mavg and average probability P avg of rejecting a cheese batch.

The average batch rejection rate, or equivalently the average probability of
a batch not going to themarket, is defined asP avg = P [Emarket]. Furthermore,
we have E[1Emarket

|Ξ = ξ] = ptestP batch(ξ), where ptest is the proportion of
cheese batches tested. Then using the law of total expectation, we can write

P avg = E
[
E
[
1Emarket

|Ξ
]]

= E[ptestP batch(Ξ)] .
(2.19)

The average risk of illness Rx, from pathogen x, is the conditional proba-
bility P [Eillness(x) | Emarket], of getting the illness from consuming a portion of
25 g of cheese from a batch of cheese, that was not rejected, produced with
input parameters θ. RecallingΞ = (Ξx)x and using the law of total expectation
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twice, we can write
P [Eillness(x)] = E[1Eillness(x) ]

= E
[
E
[
1Eillness(x) |Ξx,1Emarket

]]
= E[Rbatch

x (Ξx) · 1Emarket + 0 · 1Emarket
]

= E
[
Rbatch
x (Ξx) · E [1Emarket | Ξ]

]
= E

[
Rbatch
x (Ξx) · (1− ptestP batch(Ξ))

]
.

(2.20)

Using (2.20) and recalling Eillness(x) ⊂ Emarket, we can write

Rx =
P [Eillness(x)]
P [Emarket]

= E[Rbatch
x (Ξx) · (1− ptestP batch(Ξ))]

1− P avg .

(2.21)

The average milk loss is defined asMavg = E[Mbatch].

Module outputs The three quantities of interest produces by the output
module are, the averagemilk lossMavg, average batch rejection rateP avg and
the average risk of illness Rx from pathogen x. These quantities of interest
characterizes a cheese production process with input parameters θ.

2.2.6.2 DALY: Disability-Adjusted Life Years

A key feature of our multipathogen QMRAmodel is its ability to assess the im-
pact of three pathogens on public health due to the consumption of raw milk
soft cheese. The idea is to identify the most hazardous pathogen, and also
to evaluate the collective impact of all pathogens on public health, specifically
in terms of the years of healthy life lost due to the illnesses resulting from
cheese consumption.

To assess the impact on public health from the potential illnesses induced
by cheese consumption, we adopt an approach based on DALYs (Murray and
Lopez, 1997), an acronym for Disability-Adjusted Life Years. DALYs combine
the years of life lived with a disability (YLD) and the years of life lost (YLL) due
to premature death from the illness.

TheDALY takes into account a spectrumof symptoms, which includedeath,
loss of kidney function, prolonged or short-term hospitalization, bloody diar-
rhea, diarrhea, among others. Furthermore, the age of the afflicted person
impacts DALYs, with a child’s death yielding higher DALYs compared to the
death of an older individual.
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DALY metric for cheese portions. First, we define the expected DALY
due to illness(x) caused by the consumption of a cheese portion by a con-
sumer of Age = age,

DALYportionillness(x)(age) = E[DALYx | 1Eillnessx = 1,Age = age], (2.22)
where DALYx is a random variable, denoting the DALY caused by the con-
sumptionof pathogenx. Next, wedefine the age specific average riskRx(age),
from pathogen x, which is the conditional probability P [Eillness(x) | Age =
age,1Emarket = 1], for consumers with a particular age, of getting the illness
from consuming a portion of 25 g of cheese from a batch of cheese, produced
with input parameters θ and given that the particular batch actually goes into
the market (not rejected). Following similar derivation steps of Rx, we can
write

Rx(age) = E[Rbatch
x (Ξx, age) · (1− ptestP batch(Ξ)) | Age = age]

1− P avg , (2.23)
where the age specific batch risk Rbatch

x (age) is given by
Rbatch
x (ξx, age) =

∫ ∞
0

Pillness(x)(γx, age) · p(γx | Ξx = ξx)dγx. (2.24)
Then, using the law of total expectation, the overall risk in (2.21) can be

expressed as Rx = E[Rx(age)].
For the assessment of impact on public health, we are interested in the

average DALY due to the consumption of cheese portions contaminated with
pathogen x, from a batch of cheese that went to the market. This metric is
denoted by DALYportion,x, is derived using the law of total expectations:
DALYportion,x = E [DALYx | 1Emarket = 1]

= E
[
E
[DALYx | Age,1Eillness(x) ,1Emarket

]
| 1Emarket = 1

]
= E

[
E
[DALYx | Age,1Eillness(x)

]
| 1Emarket = 1

]
= E

[DALYportionillness(x)(Age) · 1Eillness(x) + 0 · 1E illness(x)
| 1Emarket = 1

]
= E

[DALYportionillness(x)(Age) · 1Eillness(x) | 1Emarket = 1
]
.

(2.25)
The expectation in (2.25) can be expressed as a weighted sum of age spe-

cific DALY values DALYportionillness(x)(age), with respect to Rx(age) and g(age),
DALYportion,x =

agemax∑
age=1

DALYportionillness(x)(age)·

P
[
Eillness(x) | Age = age,1Emarket = 1

]
· P [Age = age | 1Emarket = 1]

=
agemax∑
age=1

DALYportionillness(x)(age) ·Rx(age) · g(age).

(2.26)
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The expectation in (2.25) can be expressed equivalently as
DALYportion,x =

agemax∑
age=1

DALYportionillness(x)(age)·

P
[Age = age | Eillness(x)

]
· P

[
Eillness(x) | Emarket

]
=

agemax∑
age=1

DALYportionillness(x)(age) · g̃θ(age) ·Rx

= Rx ·
agemax∑
age=1

DALYportionillness(x)(age) · g̃θ(age),

(2.27)

where g̃θ(age) = P
[Age = age | Eillness(x)

] is the age distribution for the cases
of illness caused by pathogen x, given the simulator inputs θ.
DALY estimation. Note that the estimation of the average DALY metric
DALYportion,x using (2.26) or (2.27) includes the age specific DALY values de-
noted by DALYportionillness(x)(age), which are not directly available in the literature.
However, (2.27) can be simplified further under some assumptions.

The age distribution g̃θ(age) for the illness(x) is dependent on the QMRA
simulator inputs θ, through the corresponding dose-response model and is
directly related to the proportion of cheese consumption g(age) for differ-
ent age group. Acknowledging that our dose-response models heavily rely
on epidemiological data primarily sourced from food-borne illness outbreaks,
we tentatively posit that the age distribution g̃θ(age) specific to each illness re-
mains relatively impervious to the influences of simulator inputs θ, for reason-
able variations around their nominal (baseline) values. Under this assump-
tion, the age distribution generated by our QMRA raw milk cheese simulator
can be assumed to be closely aligned with the global pattern. Although we
make the above assumption in this study, it is important to acknowledge that
this hypothesis is made for simplification and modeling convenience. The va-
lidity of this hypothesis in the real-world context remains an open question
and deserves further investigation.

For the calculation of the DALY metric, we reside to the study by Cassini
et al. (2018), which is based on the Burden of Communicable Diseases in Eu-
rope (BCoDE) project (Kretzschmar et al., 2012, Mangen et al., 2013), focused
on the EU/EEA population between 2009 and 2013. In this study, for each of
the concerned illnesses, a model was created using the BCoDE toolkit (Euro-
pean Centre for Disease Prevention and Control, 2019). Within each model,
age group-specific and sex-specific annual case numbers, multiplication fac-
tors to account for underestimation, and population data were input into the
software. Finally a Monte Carlo simulation was performed with 10, 000 itera-
tions for each illness, to estimate themedian DALYs per case. Table 2.2 shows
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the estimated median DALY corresponding to a singular case, represented as
DALY(1 case)x along with the two components, namely, YLL and YLD for 1000
cases, for each associated illness. Given our assumptions, the average DALY
metric in (2.27) can be simplified by substituting ∑agemax

age=1 DALYportionillness(x)(age) ·
g̃θ(age) by DALY(1 case)x from Table 2.2,

DALYportion,x = DALY(1 case)x ×Rx. (2.28)

Table 2.2: The estimated median values (Cassini et al., 2018) of yearsof life lived with disability (YLD) per 1000 cases, years of life lost (YLL)per 1000 cases, and DALY per 1 case, for STEC infections, listeriosis andsalmonellosis. For MPS-STEC the DALY values are taken from ANSES(2020).
Pathogen YLL (1000 cases) YLD (1000 cases) DALY(1 case)xMPS STEC infections 2700.0 1000.0 3.7STEC infections 41.1 13.0 0.0541Listeriosis 3300.0 400.0 3.7Salmonellosis 15.0 4.0 0.019

It is important to highlight that, in our study, the values presented in Ta-
ble 2.2 are used as approximations derived from the literature. This choice is
motivated by the absence of pertinent analyses from epidemiological studies
in the existing literature. Moreover, it serves the purpose of streamlining the
computations within our study. However, it is crucial to recognize that utiliz-
ing global DALY values for assessing the health impacts of cheese consump-
tion in France is not ideal. This approach relies on substantial assumptions,
as elaborated earlier. Consequently, the computation of the DALY metric in
our study does not fully capture the precise and prevailing impact on public
health attributable to cheese consumption. Therefore, these results should
be interpreted judiciously. Recognizing the necessity for greater accuracy, the
computation of a more refined DALY metric incorporating relevant epidemi-
ological studies is deferred as a prospective avenue for future research.

Moreover, ourmodel considers the dose-response fromPerrin et al. (2014),
which estimates the risk of HUS, but the DALY values that could be found in
the literature (see, e.g., Table 2.2) are either based on all symptoms of STEC
or MPS-STEC. The investigation conducted by Lindqvist et al. (2023) identifies
more predominant strains of MPS-STEC that specifically contribute to HUS,
which is our primary focus. Therefore, a more comprehensive epidemiologi-
cal study would be essential to estimate DALYs attributed solely to HUS. How-
ever, in this study we use the DALYs corresponding to MPS-STEC to compute
the metric in (2.28).
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The combined influence of the three pathogens, corresponding to the ag-
gregated impact on public health from the consumption of raw milk cheese,
is defined as DALYportion =

∑
x DALYportion,x, ignoring the consequences of

concurrent instances of two or more illnesses.

2.3 . Model implementation

2.3.1 . Mathematical and statistical techniques

2.3.1.1 Estimation of farm hygiene parameters

The hygiene level of each of the farms is characterized by two parameters,
namely α and σ, which control the distribution of E. coli in the farm milk. In
Perrin et al. (2014), the authors proposed a hierarchical Poisson mixed model
to express the relationship between these parameters and the daily E. coli
concentration xd in BTM, that can be written as

xd | Λd ∼ Poisson(Λd)
log(Λd) = α+ εd, where εd ∼ N (0, σ2) ,

(2.29)

where Λd denotes the average E. coli concentration in BTM of the farm on day
d.

We propose a Bayesian approach based on Markov Chain Monte Carlo
(MCMC) sampling to estimate the parameters of this model, separately for
each farm. Adetailed description of this approach canbe found in Appendix A.
E. coli test data was collected by CNIEL and ACTALIA from three French cheese
producers, covering a total of 104 farms. The recorded data was lower trun-
cated for observations less than 10 CFU/mL and upper truncated for observa-
tions above either 150 or 300 CFU/mL, depending on the producer.

Figure 2.10 plots two histograms of the values of α and σ2 respectively, as
estimated for all the farms. A positive correlation is observed in Figure 2.11,
between the estimated values of the two hygiene parameters.
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Figure 2.10: Estimated values of hygiene parameters, namely α and σ2, us-ing the data collected during 2019 − 2022 from all the 97 farms (which hadno missing data, out of 104 farms) under three different cheese producers inFrance.
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Figure 2.11: Scatter plot of the estimated values of α and σ2

2.3.1.2 Computing Rbatch(ξx) using simple Monte Carlo

The computation of batch risk for Lm is addressed by the JEMRA (Cadavez
et al., unpublished) toolbox in R, whereas for MPS-STEC and Salmonella one
possible approach is based on the simple Monte Carlo integration method.
It involves the computation of the integral in (2.17), with respect to the dose
Γx conditional on the stochastic parameters ξx. This integral can be approxi-mated using Ndose i.i.d samples {γ1,x, γ2,x, . . . , γNdose,x} from the conditional
distribution p(Γx | Ξx = ξx), of the random variable dose Γx, given the vectorof stochastic internal variables ξx.The approximated batch risk conditional on ξx is obtained as,

R̂batch
x (ξx) =

15∑
age=1

g(age) 1
Ndose

Ndose∑
i=1

Pillness(x)(age, γi,x) , (2.30)
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wherePillness(x)(age, γi,x) is the probability of getting the illness frompathogen
x, for the consumers of a particular age group, by consuming a portion of 25g
of cheese with dose γi,x, coming from a batch associated with internal vari-
ables ξx.
2.3.1.3 ComputingRbatch(ξMPS−STEC)using integral approximation

For MPS-STEC, the batch risk in (2.17) can be expressed as
Rbatch

MPS−STEC(ξMPS−STEC) =
agemax∑
age=1

g(age)E
[
(1− ra)ΓMPS−STEC

]
, (2.31)

where ra = r0 · exp(k · age). The random variable dose ΓMPS−STEC can be
decomposed additively with respect to the two classes of MPS-STEC strains,
ΓMPS9STEC =

∑
s Γs for s ∈ {MPS O157:H7, MPS nonO157:H7}, with

Γs = Y consum
s N colony

s 10τεsε = dsN
colony
s bεs, (2.32)

where ds = Y consum
s , bs = 10τεs , and ε is a standard normal variable. The

probability of getting HUS from each of the strains of MPS-STEC being inde-
pendent, the expectation in (2.31) can be decomposed using the law of total
expectations:

E[(1− ra)ΓMPS9STEC ] =
∏
s

E
[
E[(1− ra)Γs | ε]

]
=
∏
s

E
[
E[(1− ra)dsN

colony
s bεs | ε]

]
.

(2.33)

The inner expectations E[(1− ra)Γs | ε], can be analytically derived:
E[ (1− ra)N

colony
s dsbεs | ε ]

=
∞∑

ncolony
s =0

(1− ra)n
colony
s dsbεs exp(−λcolony

s )(λcolony
s )n

colony
s

ncolony
s !

=
∞∑

ncolony
s =0

{(1− ra)dsb
ε
sλcolony
s }n

colony
s

ncolony
s !

exp
(
−{(1− ra)dsb

ε
sλcolony
s }

)
exp

(
−{(1− ra)dsbεsλcolony

s }
) exp(−λcolony

s )

= exp(−λcolony
s {1− (1− ra)dsb

ε
s}). (2.34)

Substituting (2.34) in (2.33), we get
E[(1− ra)ΓMPS9STEC ] = exp(−(λcolony

O157:H7 + λcolony
O157:H7))

∏
s

E[c
c
cεs,3
s,2
s,1 ] , (2.35)

where cs,1 = exp(λcolony
s ), cs,2 = (1− ra)ds and cs,3 = bs.
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Given that cs,1 > 1, cs,2 < 1, and cs,3 > 1, the function cc
cεs,3
s,2
s,1 is monotoni-

cally non-increasing with respect to ε. Such functions can be integrated using
deterministic quadrature methods (e.g., the trapezoidal rule), which offer a
better convergence rate compared to simple Monte Carlo (see, for example,
Basak et al., 2022b).
2.3.1.4 Computation of simulator outputs

The final outputs of the simulator as mentioned in Section 2.2.6.1 are esti-
mated using simple Monte Carlo method, by simulating Nbatch independent
batches.

M̂avg = 1
Nbatch

Nbatch∑
l=1

Mbatch
l (2.36)

Each of the simulated batches yields {ξ1, ξ2, . . . , ξNbatch}, the set of internal
stochastic parameters which are used construct the unbiased estimated of
the quantities of interest:

P̂ avg = 1
Nbatch

Nbatch∑
l=1

P̂ batch(ξl)ptest. (2.37)

R̂x = 1
Nbatch(1− P̂ avg)

Nbatch∑
l=1

R̂batch
x (ξl)(1− P̂ batch(ξl)ptest) (2.38)

2.3.1.5 Computation of intervention cost

One of the several objectives of the ArtiSaneFood project includes the im-
plementation of intervention strategies for controlling the risk of food-borne
illness. In this case the cost of the intervention strategies plays an important
role. As detailed in Section 2.2.5.1 and Section 2.2.5.2, the cheese production
process involves two types of intervention strategies: one involving the testing
of farm milk, and the other involving the testing of cheese after production.
In addition to the expenses related to conducting the microbiological tests,
these intervention steps involve the rejection of both farm milk and cheese
batches. The QMRA simulator produces two outputs concerning the average
loss ofmilk per batchMavg, and the average probability of rejecting a batch of
cheese P avg. Thus, the total cost of the intervention steps (C) can be decom-
posed into two part corresponding to the preharvest ans postharvest steps,
as C = Cpre + Cpost:

Cpre = N farmCmilk
test (1/f sorting) +MavgCmilk

loss

Cpost = nsampleCcheese
test ptest + P avgptestCcheese

loss N cheese (2.39)
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The parameters {Cmilk
test , C

milk
loss , C

cheese
test , Ccheese

loss } corresponding to differentintervention costs, are provided by French cheese producer representatives
and N cheese denotes the average number of cheeses present in a batch. All
the parameters in (2.39) are described in Table 2.9.

2.3.2 . Programming tools
Themultipathogenmodel is implemented in R and for STEC an implemen-

tation of the single pathogen version of the QMRA model is made available
in Food Safety Knowledge Markup Language (FSK-ML) format to facilitate its
reuse (Basak et al., 2024). This open format is based on predefined terms,
metadata and controlled vocabulary to harmonize annotations of risk assess-
mentmodels (see, e.g., Ungaretti Haberbeck et al., 2018). The FSKX implemen-
tation allows the user to execute the simulator on KNIME, using a set of input
parameters listed in in Appendix B. By suitably adjusting the input parameter
cm_n_batch, the user can run the FSKX implementation to either simulate a
single batch (by setting cm_n_batch = 1) or multiple independent batches (by
setting cm_n_batch > 1) to estimate the ultimate quantities of interest. Simu-
lation of a single batch produces three numerical outputs, namely, the STEC
concentration (CFU/ml) in milk put in production, the amount of milk loss (in
liters) due to testing and the probability of rejecting the cheese batch. This
also produces graphical representation of the evolution of STEC and colonies
during cheese fabrication (both solid and liquid phase), and the evolution of
the bacteria growth rate over the different phases of production. On the other
hand, when multiple batches are simulated, it produces the estimates of the
ultimate quantities of interest, averaged over these batches, namely, the rel-
ative risk of HUS computed with respect to a baseline scenario (with no in-
tervention steps), the average milk loss (in liters) and the average probabil-
ity of rejecting a cheese batch after production.The corresponding graphical
outputs show the distribution of STEC concentration (CFU/ml) in ATM, the rel-
ative batch risk of HUS (computed with respect to the baseline risk), and the
relative batch risk and batch rejection probability as a function of initial STEC
concentration. The baseline scenario, i.e., the cheese production without any
intervention step, can be simulated by appropriately choosing the parameters
ptest = 0 and f sorting =∞.
2.3.2.1 Computational time

The current implementation of the multipathogen model takes around ∼ 4.5
seconds, to simulate one batch. Table 2.3 lists the proportion of computa-
tional time (on a single core) spent while running the simulator. Evidently the
cheesemodule takesmore than 96% of the computational time, which is ded-
icated to the time required for solving the ordinary differential equations that
models the growth of the pathogens, as shown in (2.8).
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Table 2.3: Allocation of computational time (using a single core) overdifferent modules of the QMRA simulator, corresponding to the simu-lation of single batch.
Module Farm Cheese ConsumerTime spent 0.7% 96.4% 2.9%

The current implementation in R, uses the ode45 function provided by the
pracma (Borchers, 2022) package, that implements the Dormand-Prince (4, 5)
method. A detailed profiling on the computational time on the cheese mod-
ule is shown in Table 2.4, which precises the proportion of time taken by each
of the cheese production steps and their duration in the production process.
The number of function evaluations performed by the ODE solver, depends
on the duration of the cheese production step, the behavior of the ODE’s so-
lution within that duration, and the desired level of accuracy specified by the
user. Table 2.4 shows the decomposition of the total time consumed by the
ODE solver, while simulating a single batch. Except the second growth step
of Lm, the other cheese production steps runs the ODE solver separately for
three pathogens. The time taken is proportional to the total duration of the
corresponding production step, however the second growth step spends rel-
atively less time than others, despite of having a long duration. This can be ex-
plainedby the behaviour of the function, or equivalently themaximumgrowth
rate µmax

Lm which is considered to be a constant (see, e.g., Section 2.5.1) for that
particular step.
Table 2.4: Allocation of computational time among different steps ofcheese production and their duration. The steps namely, storage,molding, draining and salting represents the total time required for allthe three pathogens and shows the combined duration for the threepathogens as well. The second growth step only concerns Lm andshows the combined duration for the core and rind region.

Step 2nd growth (L.mono) Storage Molding Draining SaltingTime spent 34.9% 20.9% 4.9% 31.4% 7.9%Duration (in h) 1136 36 9 51 13.5

2.3.3 . Data and parameters
This subsection lists all the parameters of the multipathogen model with

their corresponding values are the references. Table 2.5 lists the parameters
θfarm corresponding to the farm module. Table 2.7 shows the frequency dis-
tribution of number of cows in different farms, which is used to simulate the
number of cows in different farms. Table 2.6 lists the physico-chemical pa-
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rameters required to compute the maximum growth rate µmax for the three
different pathogens, and Table 2.10 lists the other cheesemodule parameters,
which are collectively denoted as θcheese. Table 2.8 and Table 2.9 respectively
lists the consumer module parameters θcon and the postharvest module pa-
rameters θpost.

Table 2.5: The inputs for the Farm module, collectively represented as
(θfarm), are categorized into two groups, visually separated by a dashedline. The first part includes inputs that the user can modify, while thesecond part comprises fixed parameters of the model.

Symbol Description Values
N farms Number of farms 31
N cow
i Number of cows in i-th farm Table 2.7

qmilk Avg. quantity of milk from a cow 25 Liters
f sorting Milk testing frequency 10 days
lsorting Max. limit of E. coli conc. 50 CFU/mL
αi, σi Hygiene parameter for i-th farm Section 2.3.1.1

aweibull, bweibull Param. of dist. of STEC in feces 0.264, 16.288 (Perrin et al., 2014)
µecoli, τ ecoli Mean & sd of E. coli dist. in feces 6, 0.3 (Perrin et al., 2014)
µu, τu Param. for estimating pSTEC −0.927, 1.47411 (Perrin et al., 2014)

µLm, τLm Parameters of Lm dist. in milk −7.178, 0.552 (Sanaa et al., 2004)
pMPS9STEC Prop. of MPS-STEC carriers 0.025 (Perrin et al., 2014)
pSalmo Prop. of Salmonella infected cows 0.03 (Bonifait et al., 2021)

pHV9Salmo Prop. of HV Salmonella carriers 0.33 (Bonifait et al., 2021)

Table 2.6: Cardinal parameters for the computation of µmax for MPS-STEC (Perrin et al., 2014), Salmonella (Gonzales-Barron et al., 2022) and
Lm (Sanaa et al., 2004).

Symbol MPS-STEC Salmonella Lm
Tmin 5.5 3.4 −1.7
Topt 40.6 38.5 37
Tmax 48.1 46 45.5pHmin 3.9 4 4.71pHopt 6.25 7 7.1pHmax 14 9 9.61awmin 0.9533 0.94 0.913awopt 0.999 0.99 0.997
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Table 2.7: Distribution of number of cows: data provided by CNIEL andACTALIA, collected from 31 producers of milk. This empirical distribu-tion is used to simulate the number of cows in farm in theQMRAmodel.
Cows 5− 20 20− 40 40− 60 60− 80 80− 100 100− 120 TotalFarms 1 2 18 8 1 1 31

Table 2.8: Inputs of the consumer module collectively denoted as θcon.
Symbol Description Values
k, r0 Param. in STEC dose-response 0.38, 1e−2.33agemax Maximum age group 15
wcheese mass of a single cheese 250 g
wserving mass of a single serving 25 g
g(age) Prop. of cheese consumed per age (Perrin et al., 2014)
µεO157 Mean of εO157 0 (Basak et al., 2024)
τεO157 SD. of εO157 0.000279659 (Perrin et al., 2014)
µεO157

Mean of εO157 0 (Basak et al., 2024)
τεO157

SD. of εO157 0.000065399 (Perrin et al., 2014)
αHV9Salmo HV Salmonella dose-response parameter 0.132 (Strickland et al., 2023)
αLV9Salmo LV Salmonella dose-response parameter 0.318 (Strickland et al., 2023)
βHV9Salmo HV Salmonella dose-response parameter 51.45 (Strickland et al., 2023)
βLV9Salmo LV Salmonella dose-response parameter 4729.9 (Strickland et al., 2023)
θg, r Lm dose-response parameters (Pouillot et al., 2015, Ricci et al., 2018)
Ndose Monte Carlo sample size 10000

Table 2.9: Inputs for postharvest module collectively denoted as θpost

are shown in the first part of the table. In the second part the costvalues of the intervention steps are shown.
Symbol Description Values
nsample Number of test portions 5
msample Mass of each test portion 25 gm
ptest Prop. of batch tested 0.5
ttest Time when batch is tested 14th Day
Cmilk

test Cost of testing farm milk 10 EUR
Cmilk

loss Cost of rejecting one Liter milk 0.2 EUR
Ccheese

test Cost of testing one cheese sample 70 EUR
Ccheese

loss Cost of rejecting one cheese 1.5 EUR
51



Table 2.10: Cheese module inputs, collectively denoted as θcheese.
Symbol Description Values
θ(µmax) Cardinal params. for µmax Table 2.6
µopt

MPS9STEC Optimal growth rate for MPS-STEC 1.85 (Perrin et al., 2014)
µopt

Salmo Optimal growth rate for Salmonella 1.02 (Gonzales-Barron et al., 2022)
µopt

Lm Optimal growth rate for Lm 0.55 (Gonzales-Barron et al., 2022)
ymax,milk Hypothetical max population in milk 109 CFU/mL (Perrin et al., 2014)
ymax,cheese Hypothetical max population in cheese 105 CFU/g (Perrin et al., 2014)
pO157 Class probability of MPS O157:H7 0.76 (Perrin et al., 2014)

pHV9Salmo Class probability of HV Salmonella Y milk
HV9Salmo/(Y milk

HV9Salmo + Y milk
LV9Salmo)

pLV9Salmo Class probability of LV Salmonella 1− pHV9Salmo
pcolony

HV9Salmo Consumption probability of HV Salmonella λcolony
HV9Salmo/(λ

colony
HV9Salmo + λcolony

LV9Salmo)
pcolony

LV9Salmo Consumption probability of LV Salmonella 1− pcolony
HV9Salmo

ρO157 MPS O157:H7 decline rate 0.14 (log10CFU/day) (Perrin et al., 2014)
ρO157 MPS nonO157:H7 decline rate 0.033 (log10CFU/day) (Perrin et al., 2014)
δcore Core Salmonella decline rate 1.4 (Gonzales-Barron et al., 2022)
τ δcore Inter cheese variability of Salmonella 0.021568496 (Gonzales-Barron et al., 2022)
δrind Rind Salmonella decline rate 3.1 (Gonzales-Barron et al., 2022)
τ δrind Inter cheese variability of Salmonella 0.022373347 (Gonzales-Barron et al., 2022)
pcore Param. for core Salmonella decline 0.274 (Gonzales-Barron et al., 2022)
prind Param. for rind Salmonella decline 2.7 (Gonzales-Barron et al., 2022)
ρLm L. mono decline rate Triangular(0.5, 1, 2) (Sanaa et al., 2004)
pHLm pH for L. mono second growth phase 6 (ArtiSaneFood challenge tests)
TLm Temp. for L. mono second growth phase 12.45 (ArtiSaneFood challenge tests)

pHstorage Industrial params. for storage step Table III in Perrin et al. (2014)
dstorage Storage duration (hours) Triangular(1, 12, 40) (Perrin et al., 2014)
T storage Storage temperature (◦C) Uniform(4,6) (Perrin et al., 2014)
{d, pH, T} Physico-chemical parameters Table III in Perrin et al. (2014)aw Parameter for water activity 0.99, Table III in Perrin et al. (2014)
vcheese Milk used in a single cheese 2200 mL (Basak et al., 2024)
wloss Proportion of water loss in molding 0.9 (Perrin et al., 2014)
tconsum Consumption time Triangular(22, 30, 60) (Basak et al., 2024)

2.4 . Model evaluation

2.4.1 . Batch level outputs

As mentioned in Section 2.2.6.1, the batch level simulator produces three
outputs, namely, the batch risk Rbatch

x (ξx), the probability of detecting con-
tamination P sample

x (ξx) while testing and the milk loss per due to preharvest
testingMbatch. These quantities are computed conditionally on the stochas-
tic parameters ξx of the model. To compute the relative batch risk for each
pathogen, the risk associated with the consumption of a particular batch of
cheese, denoted by Rbatch

x (ξx), is divided by a baseline risk value Rbaseline
x .

Rbaseline
x is the average risk of illness from pathogen x in a baseline scenario

which corresponds to a specific situation with no preharvest or postharvest
intervention steps. The relative batch risk against the initial concentration of
pathogen in milk is plotted in Figure 2.12. 1000 independent batches are sim-
ulated with fixed values of the internal stochastic variables, with dstorage = 12
hours, T storage = 5 degree Celsius, tconsum = 30 days, ρLm = 1, δcore = 1.4
and δrind = 3.1. This shows the monotonically increasing relationship with
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respect to Y milk
x . For Salmonella the computation of risk still includes some

extent of randomness due to the use of Monte Carlo method as explained in
Section 2.3.1.2.
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Figure 2.12: Relative batch risk against initial concentration of pathogen inmilk
Y milk
x , with fixed values of other internal variables in ξx.
In the same framework, the second output of interest the probability of

detecting contamination P sample
x (ξx), i.e. detecting at least one colony at the

time of testing nsample sample units of massmsampleg, is plotted in Figure 2.13,
as a function of initial pathogen concentration in milk. Primarily Y milk

x is the
major influencing factor for determining the probability of detecting contam-
ination as well. While MPS-STEC and Salmonella shows similar behaviour, due
to high initial concentration, the probability of detection of contamination is
higher for Lm.
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Figure 2.13: Probability of detecting contamination at the time of testing,against initial concentration of pathogen in milk Y milk

x , with fixed values ofother internal variables in ξx.

2.4.2 . Concentration and prevalence
The model was used to compute the prevalence of the three pathogens

during different stages of cheese production. More precisely, the concentra-
tion of the pathogens in the ATM and the corresponding summary statistics
over different batches were simulated, as listed in Table 2.11, in presence of
no preharvest intervention. Based on the assumptions of the farm module
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stated in Section 2.2.3.1, a baseline scenario with nomilk testing step was sim-
ulated 10, 000 times to obtain these prevalence values.
Remark 3. It is to be noted that these figures does not represent the actual
scenario of farm milk contamination in France, since these values are based
on a hypothetical baseline scenario with no intervention steps, which is not
the case in reality. The baseline scenario is used in this study as a reference
to compare the impact of the intervention strategies.
Table 2.11: Baseline results of QRMAmodel: Summary statistics (mean,median, standard deviation and quantiles of order 5% and 95%) of thesimulated concentration (in log10 scale) for STEC, MPS-STEC, Salmonellaand Lm, in ATM with no milk testing intervention step.

Symbol Mean Median SD q0.05 q0.95
Y milk

STEC −3.44 −3.5 0.58 −4.28 −2.39
Y milk

MPS9STEC −5.91 −5.94 1.0 −7.51 −4.24
Y milk

HV9Salmo −5.78 −5.86 0.94 −7.21 −4.12
Y milk

LV9Salmo −5.2 −5.28 0.82 −6.41 −3.72
Y milk

Lm −3.12 −3.12 0.24 −3.5 −2.73

The prevalence of the pathogens in the cheese (in a standard serving of 25
g) was also simulated at the time of consumption. The prevalence is defined
as the probability of observing at least one colony of the particular pathogen
in the food-item. The prevalence is computed using the expected number
of colonies given by (2.9), adjusted with respect to the size of the colonies at
the time of consumption. In a baseline scenario 10, 000 batches were simu-
lated with different consumption time, to compute the average prevalence in
a cheese serving, as listed in Table 2.12.
Table 2.12: Baseline prevalence summary statistics (in percentage) com-puted at time of consumption, for cheese servings (25 g) with no inter-vention steps.

Symbol Mean Median SD q0.05 q0.95MPS-STEC 1.97 0.16 8.21 0 7.43HV Salmonella 0.37 0.02 3.22 0 0.91LV Salmonella 0.75 0.06 4.67 0 2.27
Lm 39.47 37.03 21.97 8.37 80.03

Evidently the high prevalence of Lm can be attributed to two major rea-
son, firstly the high concentration in ATM and as shown in Table 2.11. Sec-
ondly, as described in Section 2.2.3.2, Lm has a secondary growth phase dur-
ing the ripening step of cheese production, which continues until the time of
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consumption. The prevalence for all the three pathogens directly affects the
postharvest sampling plan.

Consider a postharvest sampling plan with nsample = 5 sample units of
mass msample = 25 g, for each of the pathogens, such that the sample units
are taken at the end of the ripening phase, i.e. at the 14-th day of production.
Table 2.13 lists the expected probability E[P sample

x (Ξx)] of detecting a colony
of the respective pathogen, in any one of the sample units. This is estimated
using the average probability of rejection over 10, 000 simulated batches with
no preharvest intervention step.
Table 2.13: Expected probability E[P sample

x (Ξx)] of detecting at least onecolony in any of nsample = 5 sample units of massmsample = 25 g.
MPS-STEC Salmonella Lm

0.14 0.1 0.5

Clearly the high prevalence of Lmhas a significant effect on the final output
of the postharvest sampling plan, i.e. the probability of rejecting the batch
P batch(ξ) for detecting at least one of the pathogen colonies, in any one of
the sample units. A particular batch will have a high probability of getting
rejecting due to the high prevalence of Lm. Implementation of amore realistic
postharvest sampling plan addressing this issue is discussed in Section 2.5.1.

2.4.3 . Impact of intervention
As discussed in Section 2.2.5.1 and Section 2.2.5.2, there exist two types of

intervention steps in the cheese production process, and we are interested in
the finding the optimal values of the intervention parameters. The impact of
the two types of intervention was studied qualitatively, using a series of differ-
ent intervention scenarios defined using different combinations of interven-
tion parameter values. More specifically, the effect of different intervention
scenarios on the relative batch risk, for the preharvest step on and on the
probability of batch rejection, for the postharvest step, were monitored.

Figure 2.14 shows the impact of different scenarios of the preharvest in-
tervention steps on the relative batch risk, only for two pathogens, MPS-STEC
and Salmonella. Four simple scenarios were considered, implementing four
different preharvest intervention strategies, with different values of the milk
sorting limit lsorting = {10, 50}, and different probability of testing a particular
batch of milk p = 1/f sorting = {0.5, 1}. Corresponding to each of the inter-
vention scenario, 1000 independent batches were simulated to compute the
empirical cumulative distribution functions (ECDF) of the relative batch risk.
Evidently, the most strict scenario with a sorting limit at 10 CFU/ml and with a
probability of testing each batch has the leftmost ECDF curve for the relative
batch risk, as shown by the orange curve in Figure 2.14.
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Figure 2.14: Effect of preharvest intervention: empirical cumulative distribu-tion functions of relative batch risk, corresponding to different interventionscenarios (varying milk sorting limit l and probability of batch testing p) andthe baseline scenario. The leftmost curve corresponds to the most effectiveintervention strategy.

Remark 4. Here, we study the effect of preharvest intervention only on MPS-
STEC and Salmonella since the proposed QMRA model uses directly the con-
centration of Lm in ATM, which remains unaffected by the preharvest inter-
vention step (see Section 2.5.1).
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Figure 2.15: Effect of postharvest intervention: empirical cumulative distribu-tion functions of probability of detecting a colony in any of the sample units,corresponding to different intervention scenarios with varying nsample. Theleftmost curve corresponds to the intervention strategy with highest proba-bility of rejecting a cheese batch.

Figure 2.15 shows the impact of postharvest intervention step on the prob-
ability of detecting a colony in any of the sample units, if it is tested separately
for each of the pathogen. The ECDFs are used to study qualitatively, the effect
of number of cheese samples a.k.a sample units taken for the postharvest
testing of cheese. The number of sample units considered, were nsample =
{5, 10, 15}, each of massmsample = 25g, drawn at the end of ripening step. For
each of the postharvest scenarios, 1000 independent batches were simulated,
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and the probability of detecting a colony in any of the sample unitsP sample
x (ξx)

was computed separately for three different pathogens. Certainly, a higher
number of sample units tend to produce chance of detecting contamination
and, in turn, a higher probability of rejecting the batch. For MPS-STEC and
Salmonella, the batch rejection probabilities were obtained in presence of no
preharvest intervention, and for Lm it accounts for the particular preharvest
intervention strategy as explained in Sanaa et al. (2004). Among the three
pathogens, the ECDFs of Lm show higher chances of detecting contamination
at testing, compared to the other two pathogens.

2.4.4 . Objectives of interest

The previous subsection studies qualitatively the effect of intervention
parameters on the batch level outputs, namely, the relative batch risk and
the probability of detecting contamination. However, the aim of this study
is to find the optimal values of the intervention parameters that minimizes
the two main objectives of the QMRA model, namely, the DALY per one por-
tion DALYportion and the total cost of intervention C. These two objectives
are chosen in order to take into account the impact of intervention strate-
gies both on the cheese consumers and the cheese producers. As demon-
strated Section 2.4.3, strict intervention strategies can be helpful in reducing
the risk of illness for the consumers, but at the same time it increases the
probability of rejecting the milk and cheese batches. This trade off gives rise
to a multiobjective optimization problem of a stochastic and computationally
expensive simulator, which is formalized mathematically and addressed in
Chapter 4 of this manuscript. To formalize the optimization problem, four
intervention parameters corresponding to the preharvest and postharvest
intervention steps, are considered. They are respectively, the frequency of
testing the farm milk f sorting, the threshold for milk testing lsorting, the prob-
ability of testing a cheese batch ptest and the number of cheese sample units
tested nsample. The two objectives that are considered for the multiobjective
optimization problem, are the the DALY per one portion of cheese DALYportion,caused by any of the pathogen and the total cost of interventionC , due to the
loss of milk, cheese and analytical costs of testing. The computation of cost
follows the computation of individual costs for different intervention steps,
given by (2.39).

To visualize the trade-off between the two objectives DALYportion and C ,a series of different intervention scenarios are considered, using all possible
combinations of values of the intervention parameters given in Table 2.14.
A total of 216 different scenarios are constructed with these values and the
QMRA model was evaluated for each of them with a Monte Carlo batch size
5000. Figure 2.16, demonstrates the relation between the two objectives, us-
ing scatter plots on the objective space. Colors are used to indicate the val-
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Table 2.14: Values of intervention parameters to construct different in-tervention scenarios.
Parameter Values Units
f sorting 1, 2, 10 Days
lsorting 10, 20, 30, 50, 100, 200 CFU
ptest 0.1, 0.3, 0.5 Proportion
nsample 1, 5, 10, 15 Sample units

ues of the cheese testing parameter ptest and different symbols are used to
indicate the values of the milk testing parameter f sorting. The left figure il-
lustrates the scenario within a dual-pathogen framework, focusing solely on
MPS-STEC and Salmonella, with both objectives considering only the impact
of these two pathogens. The figure on the right incorporates the effects of
all the three pathogens. The color transition from blue to red, signifying a
stricter postharvest intervention, clearly shows a increase in the cost, how-
ever it is not so effective in reducing the the other objective DALY. This be-
haviour can attributed to the adapted strategy for rejecting a particular batch
of cheese, in the postharvest sampling scheme, as described in Section 2.2.5.2.
Unlike MPS-STEC, for the other two pathogens the rejection rule is not based
on their corresponding high virulent or highly pathogenic strains. As a result
due high prevalence, as shown in Table 2.12, pathogens like Lm are easily de-
tectable when tested, but rather a smaller proportion of the entire population
is actually pathogenic, which impacts the DALY. This explains why the effect
of postharvest intervention on the DALY, is even less or almost null in the
three-pathogen framework. On the other hand, the preharvest intervention
parameter f sorting as indicated by the symbols, shows an increasing impact
on the cost and decreasing impact on the DALY metric. This explains the ef-
fectiveness of the preharvest intervention scheme on the two objectives of
interest, though in the present model the concentration of L. mono remains
unaffected by this intervention scheme.

2.5 . Discussions and perspectives

2.5.1 . Model calibration

Model calibration or anchoring is a technique of improving the models
efficiency, to bemore compatible with observed data. The proposedmodel is
intended to replicate the real life scenario of fabrication of a batch of cheese,
however in reality not all practical gestures are possibly reproduced in the
model. In this subsection, we list a few perspectives to be adapted in the
current model, which are left as future work.
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Figure 2.16: Figures showing the objective space consisting of the cost (in Eu-ros) of intervention and the DALY per one portion (in µ := 1e − 6 scale), re-spectively for a two pathogen (MPS-STEC and Salmonella) and three pathogen(MPS-STEC, Salmonella and Lm) framework. The scatter plots were obtainedwith 216 different scenarios made up of different combinations of four in-tervention parameters {f sorting, lsorting, ptest, nsample}, among which the pa-rameters, f sorting and ptest are indicated using different symbols and colors,respectively.
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Preharvest intervention strategy The currentmodel implements a sim-
ple preharvest intervention strategy based on the concentration of E. coli in
the farms BTM. In other words the acceptance or rejection of farms is based
on the E. coli concentrations which is assumed to be positively correlated
with the concentrations of other pathogenic serotypes, as explained in Sec-
tion 2.2.5.1. Although the farmsBTM is tested for all the three types of pathogenic
contamination, only the E. coli concentration can be measured quantitatively.
Whereas for the other pathogens, due to low concentrations, only their pres-
ence can be detected and the strains can be identified. However in reality
preharvest intervention strategies based on contamination of farm milk by
Salmonella and Lm are practiced. To enhance the preharvest intervention
strategy further, we can utilize this additional information, which is consid-
ered as a future perspective. Moreover, in the proposed QMRA model the
concentration of Lm in the ATM, that is, the milk to be used for cheese pro-
duction, is computed directly using 2.1. This was motivated by the work of
Sanaa et al. (2004), who performed a Monte Carlo simulation study, based
on the data collected in the years 2000 − 2001, from respectively 347 and 79
farms, respectively, for Camembert and Brie in France. To compute the con-
centration of Lm in the milk used for cheese making, the authors followed the
particular milk sorting strategy, for accepting the milk coming from different
farms. The preharvest intervention step as explained in Section 2.2.5.1, is thus
not applicable on the concentration of Lm and thereafter on the risk values,
as simulated using the current version of our proposed model. The imple-
mentation of a more realistic and impactful preharvest step is left as a future
perspective (see Section 2.5.1).
Computation of the DALYmetric The computation of the DALY metric
DALYportion,x as defined previously, is based on a series of assumptions which
allows us to use the available DALY estimates from the literature (Cassini et al.,
2018). This approach was adopted to simplify computations and it is to be
noted that, the DALY metric thereby estimated is an approximate which re-
quires careful interpretation and usage. A potential future perspective in this
context includes using appropriate epidemiological studies to estimate the
DALYs related to the consumption of raw milk cheese.
Pathogen classification based on virulence Pathogen classification
basedon virulence refers to categorizingmicroorganisms, into different groups
or classes according to their ability to cause disease. Food-borne outbreaks
tend to result frommore virulent serotypes of the pathogens, which are com-
monly implicated in human illness. In the proposed model, high and low-
virulence Salmonella (see, e.g., Strickland et al., 2023) serotype proportions
were incorporated into each processmodule to account for their different im-
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pact and exposure. For STEC the highly pathogenic and non pathogenic clas-
sification, was based on serotypes markers as proposed in Perrin et al. (2014).
However, in Auvray et al. (2023) a more robust classification of pathogenic
E. coli strains was proposed based on their potential virulence. The proposed
model did not incorporate this new classification; however, it presents a promis-
ing avenue for enhancing the model in the future. For Lm there exists classifi-
cation proportion of high, low andmediumvirulent serotypes for cold smoked
salmon (see, e.g., Fritsch et al., 2018), but as far as our knowledge is concerned,
these proportions remain unknownwithin the context of rawmilk soft cheese
in the existing literature. Developing a postharvest sampling plan centered
around high-virulent serotypes could offer enhanced efficiency from an in-
dustrial perspective and provide a rational basis for decision-making.

Second growth step for Lm As shown in Figure 2.7, Lm has no decline
phase after the salting step, and the colonies experience a second growth
phase depending on the environmental conditions. The second growth phase
is modeled using (2.8), which involves the maximum growth rate parameter
µmax

Lm (t), which depends on the physico-chemical parameters namely the pH,
temperature and water activity. The dynamics of these environmental pa-
rameters are taken from Perrin et al. (2014), as shown in Figure 2.5a, and the
available information extends only up to the salting step. According to chal-
lenge test data, it has been observed that the second growth step is activated
when the pH increases to 6, from 4.52 starting from the endof salting step. De-
pending on the location of the colonies in the cheese matrix, the pH becomes
favorable approximately after the 7-th and 20-th day of production, respec-
tively for the rind and core region colonies. For simplicity, during the second
growth phase, the proposed model uses a fixed value of the maximal growth
rate µmax

Lm (t), which is computed using pH 6, temperature 12.45 degree Celsius
and water activity parameter 0.99. However a more realistic implementation
can be achieved, by using a more dynamic approach to model the environ-
mental physico-chemical parameters.

2.5.2 . Model validation and applicability
This work presents a QMRAmodel that offers a scientific approach to sim-

ulate the real-life scenarios encountered during the production of raw milk
soft cheese. The model builds upon the previous work available in the liter-
ature, on the QMRA modeling of raw milk soft cheese (see, e.g. Basak et al.,
2024, Perrin et al., 2014, Sanaa et al., 2004, Tenenhaus-Aziza et al., 2014) as
well as expert opinions from ANSES, CNIEL, ACTALIA, and L2S. The primary
goal of this type of model is to study the impacts of different process inter-
vention parameters, in order to implement intervention strategies and make
recommendations to cheese producers. However before deploying into in-

61



dustrial applications, careful precautions should be taken in terms of model
quality assurance, that includes model verification, validation and calibration.
Model verification includes checking the software code used to implement the
model and providing a proper documentation. Future directions for this re-
search work could involve the publication of the multipathogen model in the
FSKX format, thereby promoting open access and facilitating easy and quick
peer comparisons. The next crucial step is model validation which ensures
the accuracy and reliability of themodel’s predictions. This involves assessing
whether the QMRA model accurately reflects the real-world conditions and
produces results that are consistent with observed data. The outputs of the
proposed model are compared with previous QMRA works and published re-
ports on contamination and outbreaks, and found to be consistent. For STEC
the prevalence rates and baseline risk are compared to Perrin et al. (2014), for
Salmonella the contamination rates were compared to reports published by
the Fédération National des éleveurs de Chèvres (FNEC) in France, and for Lm
the references from Food and Drug Administration et al. (2012), Sanaa et al.
(2004) were compared. Despite of model quality assurance, the reliability and
applicability of the model still remain subject to ongoing evaluation and re-
finement. According to World Health Organization et al. (2021) “Models are al-
ways incomplete representations of the system they are intended to model,
but they can still be useful.” Hence, it is essential to note that the outputs
obtained using the simulator, such as the batch risk, loss of milk and propor-
tion of rejecting cheese batches are just the estimates of a hypothetical sce-
nario simulatedwith a state-of-the-art QMRAmodel. Depending on situations
and model inputs these output can be significantly different from the actual
prevalence of observed in reality. Nevertheless, the proposed multipathogen
model continues to serve as a valuable tool for evaluating the efficacy of in-
tervention strategies and aiding cheese producers in their decision-making
processes.
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3 - Integrationof boundedmonotone functions

Section 3.2 of this chapter is a reproduction of the work by Basak et al.
(2022b), with certain modifications.

3.1 . Introduction

3.1.1 . Problem and motivation
We address in this chapter the problem of constructing a numerical ap-

proximation of an integral E(g(Y )) =
∫
g(y) PY (dy), of a real, bounded and

monotone function g. The integrating variable Y is a real-valued random
variable, and the probability distribution PY is known. Using its cumulative
distribution function FY , assuming its continuity, the domain of the integra-
tion problem can be transformed to [0, 1] by applying the transformation x =
FY (y). Alongwith suitable scaling the problemboils down to the computation
of S(f) = E(f(X)) =

∫ 1
0 f(x) dx, where X is uniformly distributed on [0, 1]

and f belongs to the class F of all non-decreasing functions defined on [0, 1]
and taking values in [0, 1]. All the results derived later in this chapter, assumes
that the distribution of the integrating variable Y is known, and it is possible
to reduce the integration problem in the above mentioned simplified form.

This study is primarily motivated by the application case of modeling the
risk of food borne illness using aQuantitativeMicrobiological Risk Assessment
(QMRA) model as described in Chapter 2. The QMRA model for raw milk soft
cheese, can be considered as a stochastic simulator which produces outputs
that are random variables. In our application case we work with a batch level
simulator that produces the output corresponding to a batch of milk coming
from a given set of farms, which is used for the fabrication of a single batch of
cheese. The batch level simulator yields the batch risk Rbatch

x for pathogen x
and the batch rejection probability P batch, as outputs. Figure 3.1 plots this two
quantities for the pathogen MPS-STEC, but similar behaviour is observed for
other pathogens as well. The two outputs are monotonically increasing with
respect to the initial concentration of the pathogen in the farmmilk. Moreover
being a probability, both of these outputs are bounded as well. The ultimate
quantities of interests of the QMRA model (e.g. the average risk of the illness
and the average proportion of rejected cheese batches), are defined as func-
tions of the expectations ofRbatch

x and P batch. A simple approach to compute
these expectations is using simple Monte Carlo integration, which, however,
turns out to be computationally expensive due to the batch size required to
produce reliable estimates. We explore the possibility to construct possibly
adaptive integration methods based on the monotonicity and boundedness
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Figure 3.1: Figures depicting the variations in the outputs of the batch-levelsimulator as the initial concentration of MPS-STEC in the milk tank changes,while keeping other internal variables constant.

properties of the function, that is more efficient than the Monte Carlo ap-
proach. However, in the case of the QMRA application, the distribution of
the integrating variable remains unknown, which is, in fact, quite common in
many industrial applications. (see, e.g., Section 3.6). But, at the same time, it
might be possible to simulate the integrating variable at a significantly lower
cost than evaluating the function g itself, which motivates this study. In this
chapter, we work in a fixed sample-size setting, where the number n of eval-
uations of f to be performed is chosen beforehand. The objective is to sys-
tematically study and summarize the existing methods within this particular
framework and suggest alterations wherever applicable.

3.1.2 . Literature review

This problemwas first studied by Kiefer (1957), who considered all the non-
randomized methods, of both sequential and nonsequential types, where
the sample points are chosen deterministically from the integration domain.
kiefer showed that, in the set of all possible non-randomized methods based
on n deterministic sample points, the one which achieves the minimum of
the maximal numerical approximation errors, over the class F , turns out be
a nonsequential method. A nonsequential integration method, also called a
non-adaptive method, specifies in advance all values of the sample points at
which the function is to be evaluated. This particular non-randomized (or, de-
terministic) method, mentioned by Kiefer (1957), takes regularly-spaced eval-
uations at xi = i/(n+ 1), 1 ≤ i ≤ n, with x0 = 0 and xn+1 = 1 and then uses
the trapezoidal rule estimator, denoted by ˆST

n (f), which is essentially the av-
erage of the upper and lower Riemann sums of the intervals, constructedwith
respect to the regularly-spaced sample points.

64



x

f(x)

x1 x2 x3 x4

Figure 3.2: Trapezoidal rule estimate with average of Riemann sums.

ˆST
n (f) = 1

n+ 1

n+1∑
k=1

1
2(f(xk) + f(xk−1))

= 1
2n+ 2 + 1

n+ 1

n∑
i=1

f( i

n+ 1),

As notations, here we use the index i = 1, 2, . . . , n, for the evaluation points
and use the index k = 1, 2, . . . , (n+ 1), for the intervals. Inside the k-th inter-
val the maximum approximation error due to the estimator ˆST

n (f) is exactly
half of the area of difference between the two rectangles corresponding to
the upper and lower Riemann sum, as shown in Figure 3.2. Let pk = 1/(n+1),
denote the distance between the (k − 1)-th and k-th sample point, for 1 ≤
k ≤ n + 1 and δk = f(xk) − f(xk−1) be the difference in the correspond-
ing functional values, then themaximum approximation error turns out to be
E = 1/2 ·

∑n+1
k=1 pk · δk = (1/2) · 1/(n+ 1)

∑n+1
k=1 δk = 1/(2n+ 2). Novak (1992)

later studied the problem with Monte Carlo (a.k.a. randomized) methods and
showed that nonsequentialMonte Carlomethods for the classF , have a lower
bound on the maximal L1 error of 1/8n. As a consequence, Novak concluded
that nonsequential randomized methods are not interesting for this special
classF , however they can be useful for constructing sequential methods, that
have much better convergence rate. Novak also studied sequential (a.k.a.
adaptive) methods for which a particular sample point may depend on the
previous sample values and the corresponding evaluations. He established
that sequential methods are better in this setting than nonsequential ones,
with a minimax rate of n−3/2 over F for the L1 error. Novak’s proof relies on
the construction of a particular two-stage algorithm, using stratified sampling
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in the second stage.
3.1.3 . Outline

In this chapter we study both nonsequential and sequential randomized
methods, with an objective to construct an efficient integration method for
the class of function F . Section 3.2 is dedicated to the nonsequential ran-
domized methods, which are key building blocks for the construction of good
(rate-optimal) sequential methods—as can be learned from the proof of The-
orem 3 in Novak’s article. We derive a lower bound for the maximal Lp-error,
for any p ≥ 1, which is a generalization of a result by Novak (1992) concerning
the L1 error. Later in this section, we study the maximal L2 error (variance)
of two simple unbiased methods, based respectively on the control variate
technique and on stratification. Section 3.3 is dedicated to sequential ran-
domized methods, which are proved to be better in this setting than nonse-
quential ones, with a minimax rate of n−3/2 over F for the L1 error. We study
the sequential method by Novak (1992) which is based on the construction of
the nonsequential stratified sampling algorithm. We provide a tighter upper
bound of the variance of Novak’s estimator and propose certainmodifications
to the original algorithm, which in some special cases can be beneficial to re-
duce the unused sampling budget and provide better allocation of the sam-
pling budget. In Section 3.4 we provide a set of numerical experiments over
a set of different test problems, to assess the performance of the proposed
modified version of Novak’s algorithm. Section 3.5 demonstrates an appli-
cation example on the Quantitative Microbiological Risk Assessment (QMRA)
simulator. Finally Section 3.6 terminates the chapter with a discussion and
the future work perspectives.

3.2 . Nonsequential randomized methods

A nonsequential Monte Carlomethod first evaluates the function at n ran-
dom pointsX1, . . . ,Xn in [0, 1], and then approximates the integral S(f) using
an estimator

Ŝn(f) = ϕ (X1, f(X1), . . . , Xn, f(Xn)) , (3.1)
where ϕ : [0, 1]2n → R is a measurable function. A nonsequential method is
thus defined by two ingredients: the distribution of (X1, . . . , Xn) and the func-
tion ϕ. The class of nonsequential Monte Carlo methods as usually defined
in the literature also allows Ŝn to be randomized (i.e., allows ϕ to be a ran-
dom function). Since Ŝn is constructed using all the n sample points, which all
together serves as a sufficient statistic for the integral estimation, from Rao-
Blackwell’s theorem it implies that considering randomized estimators in our
definition is not interesting, for any convex loss function. In this context we
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define the worst-case Lp error of such a method over the class F as,
ep(Ŝn) = sup

f∈F
E
(∣∣∣S(f)− Ŝn(f)

∣∣∣p)1/p
. (3.2)

3.2.1 . A lower bound for the maximal Lp error
Novak (1992) proved that for any nonsequential Monte Carlo method with

sample size n, the maximal L1 error e1(Ŝn) is greater or equal to 1/(8n). We
generalize this result to the case of the Lp error.
Lemma 3.2.1. For any nonsequential Monte Carlo method with sample size n,
and the integration domain divided into 2n equispaced intervals, there exists a
particular interval I , containing no sample point with probability at least 1/2.
Proof of Lemma 3.2.1. Assume, for the sake of contradiction, for all the inter-
vals the probability of being empty is< 0.5, or equivalently, for all the intervals
the probability of being non empty is > 0.5. Then the expected number of
sample pointsNk in the k-th interval, for k = 1, 2, . . . , 2n, is E[Nk] =

∑n
m=0m ·

P (Nk = m) ≥
∑n
m=1 P (Nk = m) > 1/2. Now, the expected number of sam-

ple points in all the intervals is E[
∑2n
k=1Nk] =

∑2n
k=1 E[Nk] > 2n · 1/2 = n,

which is a contradiction.
Theorem 3.2.2. For any nonsequential Monte Carlo methods with sample size n,

ep(Ŝn) ≥
(1

2

)2+1/p 1
n
.

Observe that Novak’s lower bound is recovered for p = 1 and p = 2 gives
the lower bound for the variance of unbiased nonsequential methods.
Corollary 3.2.3. For any unbiased nonsequential Monte Carlo method with sam-
ple size n,

sup
f∈F

var
(
Ŝn(f)

)
≥ 1

32n2 .

Proof of Theorem 3.2.2. Consider a nonsequential Monte Carlo methods with
evaluation points X1, . . . , Xn and estimator Ŝn. Divide the interval [0, 1] into
2n equal subintervals of length 1/(2n): then using Lemma 3.2.1, there exists
one subinterval, call it I , containing no evaluation point with probability at
least 1/2. Now construct two functions f1, f2 ∈ F that are both equal to zero
on the left of I , equal to one on the right, and such that f1 = 1 and f2 = 0
on I . Then S(f1) − S(f2) = 1/(2n), and Ŝn(f1) = Ŝn(f2) on the event A =
{{X1, X2, . . . , Xn} ∩ I = ∅}, since f1 and f2 coincide outside of I . It followsthat(
ep(Ŝn)

)p
≥ sup

f∈{f1,f2}
E
(
|S(f)− Ŝn(f)|p

)
≥ 1

2

2∑
j=1

E
(
|S(fj)− Ŝn(fj)|p

)
≥ 1

2

2∑
j=1

E(|S(fj)− Ŝn(fj)|p · 1A) = 1
2

2∑
j=1

E(|S(fj)− T |p · 1A),

67



where T denotes the common value of Ŝn(f1) and Ŝn(f2) on A. Now, using
Jensen’s inequality it can be proved that, for any a, b, x ∈ R and p ≥ 1,

|a− x|p + |b− x|p ≥ |a− b|p/2p−1.

Then using this property we can write,
|S(f1)− T |p + |S(f2)− T |p ≥ 1

2p−1 · |S(f1)− S(f2)|p ≥ 1
2p−1 ·

( 1
2n
)p

Thus we have,(
ep(Ŝn)

)p
≥ 1

2 ·
1

2p−1 ·
( 1
2n
)p · P (A) ≥ 1

2p ·
( 1
2n
)p · 1

2 ≥
(1
2
)2p+1 · 1

np
.

3.2.2 . Uniform i.i.d. sampling
The simple Monte Carlo method is the most common example of a non-

sequential method: the evaluation points X1, . . . , Xn are drawn indepen-
dently, uniformly in [0, 1], and then the integral is estimated by ŜMC

n (f) =
1
n

∑n
i=1 f(Xi). The estimator is clearly unbiased, and it follows from the vari-

ance inequality by Popoviciu (1935)—i.e., var(Z) ≤ 1/4 for any random vari-
able Z taking values in [0, 1]—that(

e2
(
ŜMC
n

))2
= max

f∈F
var

(
ŜMC
n (f)

)
= 1

4n.

The maximal error is attained with the equality case in Popoviciu’s inequality,
i.e., when half of the probability is concentrated at the two bounds 0 and 1.
This can be observed when f is a unit step function jumping at x0 = 1/2, such
that the evaluation point f(Xi) has a Bernoulli distribution with probability
1/2. It turns out that a smaller error can be achieved, for the same (uniform
i.i.d.) sampling scheme, using the control variate technique. More specifically,
we consider the control variate f̃(Xi) = Xi and set

Ŝcv
n (f) = 1

n

n∑
i=1

(
f(Xi)− f̃(Xi)

)
+ 1

2 .

Theorem 3.2.4. The estimator Ŝcv
n (f) is unbiased, and satisfies(

e2
(
Ŝcv
n

))2
= max

f∈F
var

(
Ŝcv
n (f)

)
= 1

12n.

The maximal error is attained for any unit step function.

Proof. The estimator is unbiased since E(f̃(Xi)) = 1/2, and therefore the
mean-squared error is equal to var(Ŝcv

n (f)) = 1
n var(f(X)−X). For a unit step

function f = 1[x0,1] with a jump at x0 ∈ [0, 1], the random variable f(X)−X is
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uniformly distributed over [−x0, 1− x0], which yields var(Ŝcv
n (f)) = 1/(12n)

as claimed. It remains to show that var(f(X)−X) ≤ 1
12 for all f ∈ F .Let Fm ⊂ F denote the class of all non-decreasing staircase functions of

the form f =
∑m
k=1 αk · 1( k−1

m
, k
m

], with 0 ≤ α1 ≤ α2 ≤ . . . ≤ αm ≤ 1. For
any f ∈ F , consider the piecewise-constant approximation fm ∈ Fm defined
by averaging f over each subinterval of length 1/m, such that, E(fm(X)) =
E(f(X)). Then using Jensen’s inequality it can be derived, for some suitable
constant c, |var (fm(X)−X)− var (f(X)−X)| ≤ c · E(|fm(X)− f(X)|). By
construction this quantity is upper bounded by the maximum approximation
error of the trapezoidal rule E(|fm(X)− f(X)|) ≤ 1/2(m+ 1). Thus,

sup
f∈F

var (f(X)−X) = lim
m→∞

sup
f∈Fm

var (f(X)−X) . (3.3)
Let us now show that var (f(X)−X) is maximized over Fm when f is a

unit step function. Pick any f =
∑m
k=1 αk · 1( k−1

m
, k
m

] ∈ Fm. Set α0 = 0 and
αm+1 = 1. If f is not a unit step function, then there exist k1, k2 ∈ {1, . . . ,m}such that k1 ≤ k2 and αk1−1 < αk1 = . . . = αk2 < αk2+1. Denote by fu ∈ Fmthe function obtained by changing the common value of αk1 , . . . , αk2 in f

to u ∈ [αk1−1, αk2+1]. The variance var(fu(X) −X) is a convex function of u,
since it can be expanded as au2 + bu + c with a = k2−k1+1

m (1 − k2−k1+1
m ) > 0.

Consequently, we have var(fu(X) − X) > var(f(X) − X) at one of the two
endpoints of [αk1−1, αk2+1]. Note that the corresponding staircase function fuhas one step fewer than f . Iterating as many times necessary, we conclude
that for any f ∈ Fm there exists a unit step function g ∈ Fm such that
var (f(X)−X) ≤ var (g(X)−X) = 1

12 . Therefore supf∈Fm var (f(X)−X) =
1
12 , which completes the proof.

3.2.3 . Stratified sampling
The use of stratification is widely popular in the literature of sample survey

(see, e.g., Cochran, 1977). It was then adapted for use in Monte-Carlo estima-
tion methods as a variance reduction technique (see, e.g., Hammersley and
Handscomb, 1964, Kahn, 1956). Stratified sampling consists of partitioning the
input space of X into mutually exclusive and exhaustive blocks called strata
and then sampling independently from each stratum. Consider now a strati-
fied sampling estimator withK strata:

Ŝstr
n (f) =

K∑
k=1

wk ·
1
nk

nk∑
i=1

f (Xk,i) , (3.4)
where the k-th stratum is Ik = [xk−1, xk], 0 = x0 < x1 < · · · < xK−1 < xK =
1, the weight wk = |xk−1 − xk| is the length of the k-th stratum, the allocation
scheme (n1, . . . , nK) is such that nk ≥ 0 for all k and ∑k nk = n, and the
random variables Xk,i are independent, with the Xk,is uniformly distributed
in Ik.
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Figure 3.3: Stratified sampling with equispaced strata
Figure 3.3 demonstrates equispaced strata for amonotonically increasing

function f(x), with a particular stratum Ik, highlighted in red, along with thecorresponding strata weight wk and strata bound difference ∆k = f(xk) −
f(xk−1). Note that the sampling points are no longer identically distributed
here. However the samples inside each strata are i.i.d such that var(f(Xk,i)) =
τ2
k , for all i = 1, 2, . . . , nk. The estimator Ŝstr

n (f) is unbiased, with variance
var

(
Ŝstr
n (f)

)
=

K∑
k=1

w2
k · τ2

k

nk
. (3.5)

Theorem 3.2.5. For anyK ≤ n, any choice of strata and any deterministic allo-
cation scheme, the stratified sampling estimator (3.4) satisfies(

e2
(
Ŝstr
n

))2
= max

f∈F
var

(
Ŝstr
n (f)

)
= 1

4 max
k

w2
k

nk
. (3.6)

The maximal error is attained for a unit step function with a jump at the middle
of Ik∗ , where k∗ ∈ argmaxw2

k/nk. The minimal value of the maximal error (3.6)
is 1

4n2 , and is obtained withK = n strata of equal lengths (wk = n−1 and nk = 1
for all k).

The optimal stratified samplingmethod can be seen as a one-dimensional
special case of the Latin Hypercube Sampling (LHS) method (McKay et al.,
1979). (On a related note, McKay et al. (1979) prove that, in any dimension,
the LHS method is preferable to the simple Monte Carlo method if the func-
tion is monotone in each of its arguments.)
Proof. For all K ∈ N∗, let ∆K =

{
(∆1, . . . , ∆K) ∈ RK+ |

∑K
k=1 ∆k ≤ 1

}. For a
given stratified sampling method withK strata, for all ∆ ∈∆K , define

F∆ =
{
f ∈ F

∣∣ ∀k ∈ {1, . . . ,K}, f(xk)− f(xk−1) = ∆k

}
.
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Then it follows from (3.5) and Popoviciu’s inequality that
max
f∈F∆

var
(
Ŝstr
n (f)

)
= 1

4

K∑
k=1

w2
k∆2

k

nk
, (3.7)

where the maximum is attained for a non-decreasing staircase function with
jumpsof height∆k at themiddle of the strata. Note that∑K

k=1 ∆2
k ≤

∑K
k=1 ∆k ≤

1. Therefore, the right-hand side of (3.7) is upper-bounded by 1
4 maxk w2

k/nk,which is indeed the value of the variance (3.5) when f is a unit step function
with a jump at the middle of the stratum where w2

k/nk is the largest.In order to prove the second part of the claim, observe that any stratum
with nk ≥ 2 can be further divided into nk sub-strata of equal lengths withoutincreasing the upper bound. Considering then the case where K = n and
nk = 1 for all k, the upper bound reduces to 1

4 maxk w2
k, which is minimal

when w1 = · · · = wn = n−1 since∑k wk = 1.
3.2.4 . Discussion

The stratified sampling (LHS) method provides the best-known variance
upper bound over the class F for an unbiased nonsequential method as soon
as n ≥ 3, but is outperformed by the control variate method of when n ≤
2. We do not know at the moment if these results are optimal in the class
of unbiased nonsequential methods. (The ratio between the best variance
upper bound and the lower bound of Corollary 3.2.3 is 8

3 ≈ 2.67 for n = 1,
16
3 ≈ 5.33 for n = 2 and 8 for n ≥ 3.)
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Figure 3.4: Ratio between the worst case MSE of the best known unbiasedMonte Carlo method and the worst case squared error of the trapezoidalrule, for varying sampling budget. For n = 1, 2, the ratio is computed withrespect to the control variate method, and starting from n = 3, the stratifiedsampling method is considered. Two horizontal red dotted lines are showncorresponding to the maximum (at ≈ 1.78) and limit value (at 1) of the ratio.
Relaxing the unbiasedness requirement, it turns out that both methods

are outperformed for allnby the (deterministic) trapezoidalmethoddiscussed
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in the introduction, which has a worst-case squared error of 1/(4(n + 1)2).
The ratio of worst-case mean-squared errors, however, is never very large—
at most 16

9 ≈ 1.78, for n = 3—and decreases to 1 when n goes to infinity, as
shown in figure 3.4.

As identifiedbyNovak (1992), the nonsequential stratified samplingmethod
can be used to construct a two-stage sequential randomizedmethodwith bet-
ter convergence rate. The next section studies Novak’s sequential algorithm
and proposes several improvements.

3.3 . Sequential randomized methods

3.3.1 . Budget allocation for stratified sampling
Before studying sequential randomized methods, we first recall the bud-

get allocation strategy for the stratified sampling method, described in the
previous section. For a given function and given strata, the sampling bud-
get allocation rule can be derived by minimizing the variance of the strati-
fied sampling estimator var(Ŝstr

n (f)), subject to the total budget constraint∑K
k=1 nk = n. This constrained optimization problem is addressed using La-

grange’s multiplier method (see, e.g., Cochran, 1977), that yields the sample
sizes for each strata

nNeyman
k = wkτk∑K

k=1wkτk
· n (3.8)

This result (3.8) is also known as Neyman’s allocation as it was obtained by
Neyman (1934) in the literature of sample survey. It turns out that Tschuprow
(1923) had obtained the result over a decade earlier, showing that the result
follows as a special case of a more general problem. Substituting the values
of nNeyman

k in (3.5), we get the variance of the stratified sampling estimator
with Neyman’s allocation

var(Ŝstr
n,Neyman(f)) = 1

n

( K∑
k=1

wkτk

)2 (3.9)
One of the problems with the allocation rule in (3.8) is that it can produce
non-integer solutions and rounding off to nearest integer can either exceed
the sampling budget, or leave a portion of the budget unutilized. In fact this
problem is addressed in the literature of sample survey byWright (2012, 2017).
Another problem is, the allocation rule requires the strata variances τ2

k whichare unknown. A classical solution is to perform pilot surveys to estimate these
strata variances, and use them for deciding the allocation budget. This can be
thought to be equivalent to constructing a two-stage sequential method (see,
e.g., Novak, 1992), where the first step dedicated to to decide the allocation of
the sampling budget. Later we will see that the allocation rule proposed by
Novak (1992) is similar to the Neyman’s allocation rule as in (3.8). Both of the
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approaches are motivated by the idea of allocating more sampling budget to
strata with higher variances.

3.3.2 . Novak’s sequential algorithm
3.3.2.1 Algorithm description

In his article Novak (1992) proposed a two-stage sequential algorithm based
on stratified sampling that achieves the minimax rate O(n−3/2). Given a total
sampling budget n, in the first stepm+ 1 equispaced strata are constructed,
by appropriately choosing m = (n − 1)/3 equispaced sample points xi =
i/(m + 1), for i = 1, 2, . . . ,m, with x0 = 0 and xm+1 = 1. The next step
consists in allocating a sampling budget of nk to each of the k strata, denotedby Ik = [xk−1, xk], for k = 1, 2, . . . , (m+ 1), using the rule,

nk =
{

1 if∆k = 0
d(m+ 1) ·∆ke if∆k > 0,

(3.10)
where ∆k = f(xk) − f(xk−1) and nk = 1 for ∆k = 0. Now for each

strata instead of drawingnk i.i.d samples from it, Novak uses stratification and
further splits the k-th stratum into nk equispaced substrata and then samples
one sample from each of them. As studied in the previous section, the use of
stratification in the second step gives a much lower worst case L2 error of
1/(4 · n2

k) compared to 1/(4 · nk) in case of uniform i.i.d sampling with no
stratification.

The construction of the unbiased estimator proposed as by Novak is sim-
ilar to a stratified sampling estimator (see, (3.4)),

Ŝnovak
n (f) =

m+1∑
k=1

wk ·
1
nk

nk∑
i=1

f(Xk,i) (3.11)
where,Xk,i denotes the sample drawn from the i-th substratum inside Ik and
wk = |xk − xk−1|.
3.3.2.2 Justification of the budget allocation rule

The variance of Novak’s estimator is obtained as,
var(Ŝnovak

n (f)) =
m+1∑
k=1

w2
k

n2
k

nk∑
i=1

τ2
k,i, (3.12)

where var(f(Xk,i)) = τ2
k,i, for 1 ≤ i ≤ nk. To derive an upper bound of the

variance Novak uses the variance inequality by Popoviciu (1935) for bounded
random variables, to bound the unknown substrata variance τ2

k,i ≤ ∆2
k,i/4,where ∆k,i = f(Xk,i) − f(Xk−1,i). Using the monotonicity property of the
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function the substrata bound can be further upperbounded as ∆2
k,i ≤ ∆2

k,which derives an upper bound of the variance of Novak’s estimator,

var(Ŝnovak
n (f)) ≤ 1

4

m+1∑
k=1

w2
k∆2

k

nk
(3.13)

Minimizing the upper bound in (3.13) with respect to the constraint budget∑m+1
k=1 nk = n − m, where n − m is the leftover budget for allocation in the

second step, gives the following allocation rule,
n∗k = wk∆k∑m+1

k=1 wk∆k

(n−m). (3.14)

This allocation rule in (3.14) is proposed by Zhao and Vakili (2008) and it has
a direct analogy with the Neyman’s allocation rule discussed previously in
(3.8). However it turns out that the allocation rule (3.10) used by (Novak, 1992)
is also equivalent. In the framework of Novak’s sequential algorithm, with
wk = 1/(m + 1) for 1 ≤ k ≤ m + 1 and∑m+1

k ∆k = 1, the allocation rule in
(3.14) boils down to n∗k = ∆k · (n−m), which is equivalent to allocating the re-
maining budget (n−m) using weights based on strata bounds. This is almost
equivalent to Novak’s allocation rule in (3.10), which additionally includes the
ceiling function to solve the integer value problem and a smaller allocation
budget of (n − 2m) = m + 1 instead of (n − m) = 2m + 1. This choice of
smaller allocation budget is imposed to satisfy the total budget constraint in
Novak’s algorithm,∑m+1

k n∗k ≤ n = 3m+ 1, and it is justified by the following
theorem.
Theorem 3.3.1. Following the construction of the two stage sequential algorithm
proposed in Novak (1992), the maximum number of substrata as obtained from
m+ 1 equispaced strata is 2m+ 1.

Proof. Let us recall the sampling budget allocation rule proposed by Novak
(1992),

nk =
{

1 if∆k = 0
d(m+ 1) ·∆ke if∆k > 0.

For each k = 1, 2, . . . , (m+ 1), we have,
nk = (m+ 1) ·∆k + 1− εk,

for some εk ∈ [0, 1], with εk = 0 ⇐⇒ ∆k = 0. Now we have εk > 0 for at
least one k, because ∆k can not be zero for all the strata in our framework.
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Therefore,
m+1∑
k=1

nk =
m+1∑
k=1

((m+ 1) ·∆k + 1− εk)

= (m+ 1)
m+1∑
k=1

∆k + (m+ 1)−
m+1∑
k=1

εk

= 2m+ 2−
m+1∑
k=1

εk

(3.15)

It follows from (3.15) that∑m+1
k=1 εk is an integer, and thus∑m+1

k=1 εk ≥ 1 since
εk > 0 for at least one k. Finally, (3.15) and ∑m+1

k=1 εk ≥ 1 yield : ∑m+1
k=1 nk ≤

2m+ 1.
3.3.2.3 Remarks on Novak’s algorithm

Novak (1992) proposed this two stage algorithm to prove the rate optimality
of the lower bound for sequential randomized methods. It is to be noted
that this algorithm as proposed originally, was not sufficiently formalized for a
practical application case, since Novak’s budget allocation rule (3.10) does not
necessarily allocate the full sampling budget all the time. Depending on the
function f , the algorithm can generate no additional substrata in the second
step, which corresponds to an allocation of onlym+1 sampling budget in the
second step, and that is equivalent to a loss offm sampling budget. This case
specifically occurs with functions where all the strata bound differences are
equal,

∆k = 1
(m+ 1) , ∀ k = 1, 2, . . . , (m+ 1) (3.16)

A common example of this type of functions is the linear function f(x) = x.
Many other examples can be constructed to demonstrate that the budget loss
can, at times, be significant, and instead, it could be better utilized for improv-
ing the estimates. This serves as the inspiration to create a more practically
efficient budget allocation rule.

Theorem 3.3.1 proves that the maximum number of substrata created in
the second step is 2m + 1, that is equivalent to full sampling budget alloca-
tion. An example function for this case with full budget allocation, can be
constructed with the strata bound differences given by,

∆k =
{ 1
m+1 −mε k = k0,

1
m+1 + ε otherwise, (3.17)

for some ε > 0 such that ε < 1/m(m + 1). Then all the strata are allocated
two samples except the k0-th stratum which has one sample. In other words,
the adaptive step generates exactly 2m+1 substrata, by dividing each but the
k0-th stratum.
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3.3.3 . Variance upper bound

3.3.3.1 Novak’s upper bound

Using the two stage sequential algorithm Novak (1992) proved that for the
class ofmonotone functionsF , the lower bound of ordern−3/2 is rate optimal.
He derived the upper bound of the variance of his proposed algorithm as
follows,

var(Ŝnovak
n (f)) ≤

m+1∑
k=1

w2
k

n2
k

nk∑
i=1

1
4∆2

k,i, using inequality by Popoviciu (1935)

≤ 1
4 · (m+ 1)4

m+1∑
k=1

nk∑
i=1

∆2
k,i

∆2
k

, since,wk = 1
m+ 1 andnk ≥ ∆k · (m+ 1)

≤ 2m+ 1
4 · (m+ 1)4 , using Theorem 3.3.1 and∆2

k,i ≤ ∆2
k

≤ 1
2 · (m+ 1)3 .

(3.18)
For a total budget n = 3m + 1, the variance upper bound boils down to

(
√

54/2) · n−3/2 for the L1 error.

3.3.3.2 Improvement of the upper bound

Without modifying the original algorithm, the upper bound of variance given
by (3.18) can be improved with respect to the constant, by using the mono-
tonicity property of the function under consideration. Moreover it can be
shown that the improved upper bound is exactly attained for a function from
the class F .

Theorem 3.3.2. The two stage sequential randomized algorithm proposed by
Novak (1992) satisfies

var(Ŝnovak
n (f)) ≤ 1

4 · (m+ 1)3 . (3.19)

This upper bound is exactly attained by a staircase function that has equal strata
bound differences (∆k) in each of the strata.

Proof. For any monotone non-decreasing function f ∈ F , we have ∆2
k,i ≥ 0,
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which implies∑nk
i=1 ∆2

k,i ≤ (
∑nk
i ∆k,i)2 = ∆2

k. Thus we can write,
var(Ŝnovak

n (f)) ≤
m+1∑
k=1

w2
k

n2
k

· 1
4

nk∑
i=1

∆2
k,i, using inequality by Popoviciu (1935)

≤ 1
4

m+1∑
k=1

w2
k∆2

k

n2
k

≤ 1
4 · (m+ 1)3 , since,wk = 1

m+ 1 andnk ≥ ∆k · (m+ 1)
(3.20)

For a total sampling budget n = 3m+1, the correspondingL1 error upperbound turns out to be (
√

54/2
√

2) · n−3/2, which is less by a factor √2, as
claimed in Novak (1992).

In order to prove the second part of the claim, we define the following
staircase function satisfying (3.16),

f(x) =


0, 0 ≤ x < 0.5

m+1
k

m+1 ,
k−0.5
m+1 ≤ x <

k+0.5
m+1 , for k = 1, 2, . . . ,m

1, m+0.5
m+1 ≤ x ≤ 1.

(3.21)

For this function, Novak’s algorithm does not generate any substrata in
the adaptive step, and the allocated sampling budget is nk = 1, for k =
1, 2, . . . , (m + 1). Moreover this particular staircase function is constructed
such that for each strata Ik, ∀k, there is a jump of size ∆k = 1/(m + 1), in
the function value at the middle of the strata. Therefore inside Ik, the ran-dom sample f(Xk,1) has half of its probability concentrated at each of the two
strata bounds, which gives τ2

k = ∆2
k/4, ∀k to achieve the equality in (3.20).

3.3.4 . Modifications to Novak’s algorithm
3.3.4.1 Budget allocation to strata with zero bound difference

The allocation rule (3.10) proposed by Novak (1992), allocates one sample to
each of the strata with ∆k = 0. We observe that, for such strata, where
is function is constant, the integral can be computed deterministically, and
this calculation corresponds directly to determining the area of the rectangle
formed by that specific stratum. This no longer requires sampling from strata
with ∆k = 0, and the budget saved thereby can be allocated to other strata.
We redefine the estimator labeled as Ŝopt

n (f), with this improved strategy of
budget allocation,

Ŝopt
n (f) =

∑
1≤k≤m+1

∆k 6=0

wk ·
1
nk

nk∑
i=1

f(Xk,i) +
∑

1≤k≤m+1
∆k=0

f(xk)
m+ 1 . (3.22)

For the functions having strata with ∆k = 0, this improved strategy always
allocates more budget than Novak’s allocation rule, to the strata with ∆k > 0.

77



3.3.4.2 Improved budget allocation rule

As discussed earlier Novak’s allocation rule (3.10) not always allocates the full
sampling budget, and thuswe propose an improved allocation rule to address
this issue. Novak (1992) uses a fixed cardinality setup with total budget n =
3m+1, out of whichm evaluations are used to construct the initial equispaced
intervals. From the rest 2m+ 1 budget the algorithm tries to allocate (m+ 1)
with the rule nk = d∆k · (m + 1)e, such that even if the maximum possible
number of the strata are assigned one extra sample due to the ceiling, the
total allocation does not exceed 2m+1. As we have seen before this depends
on the function and eventually on ∆ks and sometimes for special classes of
function this rule is not efficient. We thus propose the following allocation
rule,

nk = d∆k · α · (n−m)e (3.23)
where α is a parameter that maximizes∑m+1

k=1 nk subject to∑m+1
k=1 nk ≤ n−m.

We observe that Novak’s allocation rule is a special case of (3.23) with α =
(n−m)/(m+1) = (2m+1)/(m+1) ≈ 1/2. Given that no samples are allocated
to the stratawith∆k = 0, this new rule clearly allocatesmore (never less) sam-
ples than Novak’s allocation rule, to the strata with ∆k > 0, which eventually
produces an estimatorwith a lower variance. However, evenwhen the param-
eter α is optimally selected, it can lead to scenarios where∑m+1

k=1 nk < n−m,
implying that a portion of the total sampling budget still remains unutilized.
These type of situation arises mainly due to the construction of the allocation
rule using a ceiling function, and the amount of unused budget can increase
with the number of strata having equal or nearly equal values of ∆i. In thesecases, the remaining budget is allocated sequentially to the strata with de-
creasing non-zero ∆i values, using a repetitive framework, continuing until
the entire budget has been used up.

To derive the upper bound of the variance with the improved allocation
rule in (3.23), we replace α · (n−m) by the maximum possible value of a con-
stant η, such that the allocated budget with the rule nk = d∆k ·ηe, satisfies theconstraint∑m+1

k=1 nk ≤ n−m. This assures the total allocation does not exceed
the remaining budget. Following the same arguments as in Theorem 3.3.1, it
can be shown that, the total allocated budget using η is always upper bounded
by the factor η +m, and the corresponding lower bound is max(m+ 1, η).

max(m+ 1, η) ≤
m+1∑
k=1

nk ≤ η +m (3.24)
Ensuring the upper bound satisfies the budget constraint η +m ≤ n−m, we
have η = n− 2m. Using the allocation rule nk = d∆k · ηe in the upper boundof (3.20) we get,

var(Ŝopt
n (f)) ≤ 1

4 · η2(m+ 1) . (3.25)
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It can be shown that, this upper bound is also equivalent to (
√

54/2
√

2)·n−3/2,
for the L1 error, which proves that the new allocation rule does not lose the
upper bound guarantee as established in (3.20).
3.3.4.3 Optimal initial number of strata

Novak (1992) uses approximately one third of the total budget to construct the
initial equispaced strata. Given the adaptive framework of assigning sampling
budget, thismight not be an efficient choice from a practical point. Indeed, ac-
cording to the construction of the algorithm, the initial strata are equispaced,
and each of them are assigned at least one sample. Depending on the func-
tion, a large number of initial strata with very small values ∆i ≈ 0, will be
inefficient since it will assign samples to relatively flat regions. We propose a
generalized initial budget of dn · γe with the parameter γ < 0.5. Note that the
constraint γ < 0.5 ensures the fact that there remains at at least one point as
sampling budget for each of the adaptive substrata.

The optimal values of γ is obtained by minimizing the upper bound (3.25),
withm = nγ. Differentiating with respect to γ, we obtain,

d
dγ 4(n− 2nγ)(nγ + 1) = 0

=⇒ γopt = n− 4
n
· 1

6 ≈
1
6

(3.26)

such that the critical value γopt = 1/6 satisfies the second derivative con-
dition for minimizing the upper bound. Using m ≈ n · (1/6) in (3.25) we get
the L1 error upper bound is (

√
54/4) ·n−3/2. With the improved upper bound

in (3.20) and modification proposed respectively on the optimal budget allo-
cation rule, the L1 upper bound of error is less by a factor 2 compared to the
bound claimed in Novak (1992).

3.4 . Numerical experiments

3.4.1 . Methodology
This study focuses on theworst case error of integral approximationmeth-

ods, and so far have we have studied the upper bounds for approximation
error, for different methods. In this section we present a some numerical ex-
periments to monitor the actual empirical mean squared error and the a pos-
teriori upper bounds as obtained adaptively, after splitting the equispaced
strata using different budget allocation rules. The integration methods along
with the proposed modifications, are tested on different test functions from
F , against the original algorithm as proposed by Novak (1992). The numer-
ical benchmark is constructed with two different sets of test functions, de-
scribed in Table 3.1 and Table 3.2. The first benchmark consists of smooth
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functions, which include convex and concave functions with varying gradient
parameter as shown in Figure 3.5. Additionally it includes the linear func-
tion as a special case. The second benchmark consists of staircase functions,
starting from a single step function up to multi-step functions as shown in
Figure 3.7. A particular staircase function with p steps is defined based on
two sets of parameters, denoted by Ap and Hp in Table 3.2, which describe
the positions and heights of the steps. The integration methods that are
tested, include the following sequential randomized method: Novak’s origi-
nal algorithm called as the reference, and two of its modified versions, named
full_alloc and full_alloc_init respectively. The method full_alloc implements the
new budget allocation scheme proposed in (3.23), which allocates the total
sampling budget. The method full_alloc_init selects the initial number strata
using the optimal rule as proposed in (3.26), in addition to the optimal allo-
cation scheme. The other integration methods that are considered are the
simple Monte Carlo method and the nonsequential deterministic trapezoidal
rule.

Table 3.1: Test functions from class F : [0, 1]→ [0, 1].
Benchmark Definition Parameters
Smoothfunctions

linear: f(x) = x −concave: f(x) = x1/p p = 2, 10, 50convex: f(x) = xp p = 2, 20, 50, 100

Staircasefunctions
f(x, p) = ∑p

i=1 hi · 1{x−1/√ai>0}
Ap = {a1, a2, . . . , ap} p = 1, 2, 3, 4, 5
Hp = {h1, h2, . . . , hp}

Table 3.2: Staircase test functions parameters.
Parameter Set Values
p = 1 A1 {70}

H1 {1}

p = 2 A2 {70, 20}
H2 {0.5, 0.5}

p = 3 A3 {70, 20, 10}
H3 {0.33, 0.34, 0.33}

p = 4 A4 {70, 20, 10, 2}
H4 {0.33, 0.34, 0.18, 0.15}

p = 5 A5 {70, 20, 10, 2, 1.5}
H5 {0.25, 0.25, 0.25, 0.15, 0.1}

Each of the five integration methods are used to approximate the integral∫ 1
0 f(x)dx, for f(x) from Table 3.1. The average performance of these meth-
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ods are monitored at different level of sampling budget: 20, 40, 60, . . . , 1000.
For a given sampling budget, the empirical mean squared error for each of
the randomizedmethod is used as ametric of comparison, which is estimated
using 1000 independent repetitions. For the randomized methods, the a pos-
teriori upper bound of variance given by (3.20) is also plotted on the same
figure. For the deterministic trapezoidal rule, the squared error is taken as
the measure of performance, and the corresponding maximal squared error
is plotted as an upper bound.
Remark 5. It is to be noted that, the quantity in (3.20) is called the a posteriori
variance, since it depends on the underlying function and it is computation is
based on the allocated budget, inside each strata. This is in no way related to
the notion of the a posteriori probability distribution in the Bayesian termi-
nology.

3.4.2 . Results
Figure 3.6 shows the empirical squared L2 error, or the mean squared

error on the smooth benchmark. We observe that, for each of the integra-
tion methods, the posterior upper bound of variance, as denoted by the dot-
ted lines, is well respected by the corresponding mean squared error esti-
mates, which are shown in solid lines. Firstly, in terms of the variance upper
bounds, the sequential randomized methods have significantly better worst
case guarantees compared to the simpleMonte Carlomethod. The determin-
istic trapezoidal rule has a lower worst case maximal squared error than the
simple Monte Carlo, but it is clearly worse compared to the sequential meth-
ods. A closer look into the family of sequential methods reveals that the two
proposedmethods, namely, full_alloc and full_alloc_init, produces consistently
better posterior upper bounds compared to Novak’s original algorithm, called
the reference. It is to be noted that, as shown in Section 3.3, the two methods
reference and full_alloc has the same worst case upper bound for the variance
and only themethod full_alloc_init, with the optimal initial number of strata, as
given in (3.26), has an upper bound, that is better by a factor of two. However,
when the posterior upper bounds are considered, it is not evident that the im-
provement based on optimal initial number of strata, is always beneficial over
the full_allocmethod.

Next, considering the actual mean squared error in estimating the inte-
grals, the naive Monte Carlo method shows consistently worse performance
compared to the others. For the linear function, evidently the trapezoidal rule
performs the best with almost zero estimation error, which is clearly justified
by the construction of the underlying integration rule. Interestingly for non-
linear functions as well, with lower or moderate steepness of the curves, the
trapezoidal rule has lowerMSE rates, compared to the randomized sequential
methods. This is observed with the examples, namely, the concave function
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with p = 2 and the convex functions with p = 2 and 20. However for both
type of non linear functions, as the steepness of the curve, i.e., the parameter
p increases, the sequential methods show better MSE values. Among the se-
quential methods, full_alloc is consistently better than the reference method.
The improvement due to full_alloc_init is not evident for the concave func-
tion, however for the convex case it has the lowest MSE values. These family
of convex functions, with steep gradients, hold particular significance in this
study, because they closely resemble the shapes of functions generated by
the QMRA application in which we are interested in.

Figure 3.8 shows the results corresponding to the staircase benchmark,
and we can draw similar conclusions like the preceding benchmark, consid-
ering the posterior variance upper bound of the methods. In terms of the
estimated MSE, the sequential randomized methods have the lowest errors,
followed by the trapezoidal rule and simpleMonte Carlomethod respectively.
The MSE values of the full_alloc are generally better than its other sequential
counterparts. We observe that for all the randomized methods, the MSE val-
ues are very close to their corresponding variance upper bound. This can be
attributed to the fact that, most of the initial strata with the staircase functions
has zero strata bound difference, which helps in achieving a near equality sit-
uation for the inequality used in (3.20). In this specific benchmark featuring
non-smooth functions, the fluctuation in MSE rates across various sampling
budgets is notable. For such functions the variability is only concentrated in a
few specific points, and their position with respect to the integration intervals,
is an influencing factor on the integration error. As a result the trapezoidal
rule displays pronounced oscillations in the squared error values.

To summarize, the sequential randomized methods show clear benefits
over the simple Monte Carlo method for this class of monotone functions.
The trapezoidal rule can be advantageous in certain cases; however, as the in-
creasing steepness of smooth non-linear functions or with non-smooth stair-
case functions, it is outperformed by sequentialmethods. Within the set of se-
quential methods, the full_alloc method consistently demonstrates improve-
ment over the referencemethod for all the considered test problems.

3.5 . Application to QMRA simulator

3.5.1 . Problem description
This chapter is focusedonfinding a suitable cost effective integrationmethod,

for the special type of functions that are encountered in the domain of QMRA
modeling. To evaluate the performance of the integrationmethods studied in
the previous sections, this section will present a relatively simpler version of
the original problem of integration in the QMRA model under consideration.

As described in the introduction of this chapter, the aim is to compute ex-
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Figure 3.5: Smooth test functions: concave, convex and linear.
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Figure 3.6: Empirical MSE (solid lines) and corresponding upper bounds (dashdot lines) for the smooth benchmark, as obtained with the methods: Trape-zoidal rule (black), simple Monte Carlo (purple), full_alloc (red), full_alloc_init(blue) and reference (green).
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Figure 3.7: Staircase test functions
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Figure 3.8: Empirical MSE (solid lines) and corresponding upper bounds (dashdot lines) for the staircase benchmark, as obtained with the methods: Trape-zoidal rule (black), simple Monte Carlo (purple), full_alloc (red), full_alloc_init(blue) and reference (green).
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pectations of two monotone and bounded outputs of the QMRA simulator, in
order to estimate the ultimate quantities of interest, namely, the average risk
and the average probability of rejecting a batch. Firstly the risk of food-borne
illness Rbatch

x (Ξx), corresponding to the pathogen x ∈ {MPS-STEC, Listeria
monocytogenes, Salmonella} by consuming a cheese portion from a particular
batch of cheese, and secondly the probability of rejecting a batch of cheese
P batch(Ξ), due to contamination by any of the three pathogens. These two
outputs are functions of the vector of stochastic internal variables Ξ = (Ξx)xof the QMRA model (see Section 2.2.6.1 in Section 2.2.6.1), and the goal is to
compute their expectations with respect to Ξ. As demonstrated in Figure 3.1
both the outputs are partiallymonotonically increasing with respect to the ini-
tial concentrations of the respective pathogens Y milk

x ∈ Ξx. Hence this sectionsimplifies the original problemby introducing a first hypothesis of considering
Y milk
x as the integrating variable in both cases.
It is to be noted that, the multi-pathogen QMRA framework involves two

different types of integration problems. The expectation of batch risk com-
prises of three separate uni-variate problems of integrating Rbatch

x (Ξx) with
respect to Y milk

x , corresponding to three different pathogens x under consid-
eration. The expectation of probability of rejection is a multivariate integra-
tion problem of P batch(Ξ) with respect to each of the three initial pathogen
concentrations Y milk

x . Given the scope of this study, this section is restricted
only to the problem of uni-variate integration, and hence the problem is fur-
ther simplified by considering only the outputs corresponding to the single
pathogen model based on MPS-STEC. In other words, we consider two func-
tions g1 := Rbatch

MPS−STEC(ΞMPS−STEC) and g2 := P batch(ΞMPS−STEC), and the
aim is to compute their expectations with respect to Y milk

MPS−STEC.
3.5.2 . Test case construction

In practice, the QMRA simulator integration problem ismore complicated,
mainly due to two bottlenecks. The first bottleneck is the presence of the
other stochastic internal variables apart fromY milk

MPS−STEC inΞMPS−STEC. More
precisely these are, 1) the milk storage duration dstorage, a Triangular(1, 12, 40)
distributed random variable, 2) the milk storage temperature T storage which is
anUniform(4, 6) distributed random variable, and 3) the time of consumption
tconsum, distributed as Triangular(22, 30, 60). In order to obtain partial mono-
tonicity of the outputs with respect to Y milk

MPS−STEC, as shown in Figure 3.1,
these stochastic internal variables can either be fixed or can be averaged over
their respective domains. The batch risk Rbatch

MPS−STEC is integrated with re-
spect to tconsum, by approximatingEtconsum [Rbatch

MPS−STEC(tconsum)] using a piece-
wise constant function on a regular grid {tconsum

1 , tconsum
2 , . . . , tconsum

n } of size
n, that spans the support of the triangular distribution of the variable tconsum.
The other two stochastic parameters, namely, dstorage and T storage, serves as
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inputs of a computationally expensive cheese processing module inside the
QMRA simulator, as a result, numerically integrating the outputs with respect
to these parameters includes several runs of the cheese module, which is
computationally expensive. Hence the parameter dstorage is kept fixed at its
mode value 12 hours, and T storage is fixed at its mean 5 degree Celsius.

The second bottleneck in the practical aspect is the unavailability of knowl-
edge about the distribution of the integrating variable. The sequential and
nonsequential methods and the associated results as studied in the previous
sections, are applicable when the integral is over the domain [0, 1] and the
integrating variable is uniformly distributed in the unit interval. As indicated
in the introduction, to transform the integration problem in [0, 1]→ [0, 1], we
use the transformation of integrating variable x = FY (y), which requires the
knowledge about the distribution of Y . In absence of the functional form of
the original distribution of the integrating variable, the corresponding empiri-
cal estimates of the quantiles can be used. However these quantile estimates
include an estimation error which are additionally incorporated to the esti-
mation error of the integration method. Depending on the computational
cost associated with simulating the integration variable, this error has the po-
tential to cancel the theoretical advantages gained from employing the pro-
posed integration methods. This bottleneck is addressed using distributional
assumption on the initial concentration of MPS-STEC. A LogNormal distribu-
tion is used to fit the simulated values of the initial MPS-STEC concentration,
by equating the first and second order moments. The fitted distribution is
plotted against the original simulated values in Figure 3.9, along with a QQ
plot between the original and the fitted distribution. While it seems from the
QQ plot that the true distribution may have slightly heavier tails compared
to the approximated one, we still consider it a reasonable approximation to
work with.
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Figure 3.9: Approximated distributionwithmean−5.9 and standard deviation
1.0with the corresponding QQ plot, for the integrating variable in log 10 scale.

3.5.3 . Methodology
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Once the probability distribution of the integrating variable is known, the
transformation of variables can be used to get suitable integrating problems,
on the transformed functions of g1 and g2. To evaluate the performance of
the above studied integration methods on this specific problems, we take
one further step to approximate these transformed functions by simple non-
linear functions. The integrationmethods are tested on these non-linear func-
tions, for which the true value of the integral is analytically computable, which
in turns allows to compute the performance metrics similarly as in the pre-
vious numerical benchmarks. We consider respectively a convex function
and a sigmoid function, as surrogates models, to approximate the two inte-
grands. The fitting is done using the nls() function in R, used for nonlinear least
squares regression. It fits the nonlinear surrogate model by optimizing the
model parameters, that minimize the sum of squared differences between
the observed and the predicted values. The non-linear surrogatemodels with
the corresponding estimated model parameters are listed in Table 3.3. Fig-
ure 3.10 plots the transformed QMRA functions fi := gi ◦ F−1

Y milk
MPS−STEC

, where
fi : [0, 1]→ [0, 1], for i = 1, 2 and FY milk

MPS−STEC
is the approximated distribution

function of the integrating variable Y milk
MPS−STEC.

Table 3.3: QMRA test functions non-linear approximations.
Function Non-liner surrogate Parameters

g1 convex: f(x) = xp p = 328475
g2 sigmoid: f(x) = 1

1+exp(−α·(x−β)) α = 16.4, β = 0.889
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Figure 3.10: Transformed QMRA functions f1 and f2 plotted against the trans-formed integrating variable x = FY milk
MPS−STEC

(ymilk
MPS−STEC).

A similar framework as described in Section 3.4 is followed to evaluate
the QMRA benchmark. The same set of integration methods and their corre-
sponding worst case upper bounds are compared, at different levels of sam-
pling budget of interval of 100, with a maximum total budget of 10000 and a
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minimum budget 20, and the mean squared errors are estimated using 1000
independent iterations for the randomized methods.

3.5.4 . Results
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Figure 3.11: Empirical MSE (solid lines) and corresponding upper bounds (dashdot lines) for the QMRA functions, as obtained with the methods: Trapezoidalrule (black), simple Monte Carlo (purple), full_alloc (red), full_alloc_init (blue)and reference (green).

Figure 3.11 monitors the empirical squared L2 error, or the mean squared
error on the QMRA benchmark, along with the worst case upper bounds. The
upper bounds of the variances show similar behavior in compared to the
previous benchmarks, for both of the functions. The proposed variants of
sequential methods provide significantly better worst case guarantees com-
pared to the simple Monte Carlo method and the trapezoidal rule. As ob-
served in the earlier experiments also, the improvement of the full_alloc_init
method is not evident over the full_allocmethod, however both of them pro-
duces better worst case guarantees than Novak’s method. Concerning the
MSE values as well, the proposed sequential methods perform better than
the others. For the sigmoid function, the trapezoidal rule is still better than
the simple Monte Carlo method, but for the highly steep convex function it
almost reaches the worst case bound. From the results it is evident that for
step-like functions, use of sequential randomized methods can bring signifi-
cant improvement in the results.

3.6 . Discussion and perspectives

Themotivation of this study was to leverage the boundedness andmono-
tonicity properties of the QMRA simulator outputs, in order to reduce the
computational cost of estimating the average quantities of interest. Consider-
ing the numerical benchmarks presented so far in this chapter, we can safely
say that the sequential randomized methods are more efficient and cost ef-
fective than the simple Monte Carlo integration method. We have also seen
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that the deterministic trapezoidal rule can be useful in some cases, mostly
when the function is very smooth. But at the same time it can be highly in-
efficient for step-like or staircase functions, where the functional variance is
concentrated locally, for example the functions considered in theQMRA appli-
cation case. The proposed sequential methods improves over the trapezoidal
rule for these type of functions. In a fixed sampling budget framework, our re-
sults show that the proposed sequential methods are more efficient in terms
of budget allocation and they provide better worst case guarantees on the in-
tegration errors, over Novak’s original algorithm. The numerical benchmarks
confirm that the actualL2 error is also lower with the proposedmodifications.

These sequential methods can be further improved taking into account
the particular type of functions we are interested in our application case. For
near step like functions as shown in Figure 3.10, where almost all the variation
is supposed to be concentrated in one particular point, a “greedy” strategy can
be much more efficient. Instead of considering equispaced strata in the first
stage of the sequential algorithm, the “greedy” strategy splits the strata us-
ing a dichotomy based on strata bound differences. Consequently, the algo-
rithm improves convergence by identifying the region with high variation and
allocating more sampling budget there compared to the flat regions. Prelim-
inary numerical experiments support this conjecture and a potential future
direction of this work would be to explore this special type of algorithms and
provide worst case guarantees.

In Section 3.5, we have demonstrated the application of the proposed in-
tegration methods on a simplified version of the original integration problem
associated with the construction of the QMRA simulator. In practice the inte-
gration problem is more complicated and has several constraints as already
discussed. Fixing the stochastic parameters to certain values is a simple and
easy to implement solution to this problem, but ignoring the underlying un-
certainty might have consequences on the robustness of the QMRA model.
On the other hand this problem can also be addressed by averaging out the
effects of these stochastic parameters by integrating the final quantities with
respect to them, but in some cases it could be computationally expensive
enough, to offset the benefits of the integration methods. For the pathogens
STEC and Salmonella, the batch risk can be analytically integrated with respect
to the consumption time, but for Listeria monocytogenes, this step becomes
computationally expensive as it includes solving an additional series of ordi-
nary differential equations for each time point in the grid, due to a secondary
growth step of this particular pathogen before the consumption. Hence, in
practice there exists a trade-off between reducing the cost of actual integra-
tion and reducing the original integration problem into a suitable format of
a bounded, monotone function. In this study, we have only focused on the
construction of a uni-variate integration method but in practice the multi-
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pathogen QMRA model produces multivariate integration problem. Direc-
tions for future work include extending our results to multivariate integration
problems with partial monotonicity (see, e.g., McKay et al., 1979, Section 2.1).

Another major perspective of this work is to study the applicability and
usefulness of the proposed integration methods, when the distribution FY of
the integrating variable is analytically unknown, and it is only possible to sam-
ple from it at a reasonable cost. In such cases the transformation of the inte-
grating variable depends on the empirical estimates of quantiles from simu-
lated values. Estimates with certain level of accuracy demands higher number
of samples, which can become computationally expensive, depending on the
simulation cost of the integration variable. For our application case except
the pathogen Listeria monocytogenes, the distribution for initial concentration
Y milk
x of the other two pathogens are unknown, and the simulation has a non

negligible computational cost. Future research directions involve exploring
the balance between the budget needed to obtain sufficiently accurate quan-
tile estimates and the potential benefits achieved through the utilization of
monotonicity and boundedness properties. In terms of the QMRA simulator,
there exists a trade-off between the cost of sampling from the farm module
and the cheese processing module, which determines the efficiency and ap-
plicability of such sequential integration methods.
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4 - Multiobjective Optimization

4.1 . Introduction

Multiobjective optimization (MOO) finds application in various industrial
domains, aiding in system design and policy-making across a large spectrum
of contexts and applications. MOO entails optimizing multiple objectives, or
quantities of interest (QoI), by identifying input parameters that establish a
balanced compromise among all evaluated objectives. Direct, simultaneous
optimization of all objectives is typically infeasible due to the inevitable trade-
offs among them.

In the context of food safety and quantitative microbiological risk assess-
ment (QMRA), as documented, e.g., by Basak et al. (2024) and Perrin et al.
(2014), policymakers aim to determine optimal process intervention parame-
ters that minimize both the risk of food-borne illness and the cost of imple-
menting intervention measures. A conflict arises between the two objectives,
as implementing monitoring and intervention processes reduces the risk of
illness but simultaneously increases production costs, and vice versa.

In raw milk cheese production, for example, strategies to minimize bac-
terial contamination might include performing both pre-harvest and post-
harvest tests on farmmilk and cheese sample batches, respectively. Reducing
the costs related to these intervention steps impacts the hygiene and quality
of farm milk and the subsequent cheese, thereby increasing the risk of food-
borne illnesses. Policymakers need to identify input parameters for these in-
tervention processes that optimally balance risk and cost factors.

Although a single optimal solution for selecting intervention parameters
does not exist in practice, it is viable to identify a set of optimal solutions,
denoted as P , known as the Pareto set. The Pareto set comprises optimal so-
lutions, within which no solution can improve one objective without adversely
affecting another. This study is confined to a finite input space, with the ob-
jective of accurately estimating both the Pareto set P and its image, termed
the Pareto front.

4.1.1 . Problem Formulation
We address the problem of multi-objective optimization for a computa-

tionally expensive and stochastic simulator, which permits only a limited num-
ber of evaluations and produces noisy outputs. LetX represent a finite subset
of Rd, which will be referred to as the search space, and let f = (fj )1≤j≤q bea vector of q functions fj : X→ R, or objectives, to minimize. The observable
data consist of a sequence of noisy evaluations at points x1, x2, . . . ∈ X. The
observations aremodeled by random variablesZij = fj(xi)+εij , for 1 ≤ j ≤ q,
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i = 1, 2, . . ., where the εijs denote randomnoise. The objective is to determine
an estimate of the solution set to the problem

min
X
f1, f2, . . . , fq . (4.1)

In scenarios where potential trade-offs exist between the q objective func-
tions, the simultaneousminimization is guided by the Pareto domination rule
(≺). Consider two input points x, x′ ∈ Rd with corresponding noise-free func-
tion values z = f(x) and z′ = f(x′). In the context of Pareto domination,
f(x) ≺ f(x′) signifies that x is deemed to dominate x′, that is when zj ≤ z′jfor all j, and at least one of the inequalities is strict:

f(x) ≺ f(x′)⇐⇒

 ∀j ≤ q, zj ≤ z′j ,

∃j ≤ q, zj < z′j .
(4.2)

The set P of all Pareto optimal points is called the Pareto set:
P = {x ∈ X : @x′ ∈ X s.t. f(x′) ≺ f(x)} . (4.3)

Figure 4.1 illustrates the concept of Pareto optimalitywith a bi-objective ex-
ample and two conflicting objectives: the risk of Haemolytic Uremic Syndrome
(RHUS) and the cost of intervention (C), derived from the cheese production
case study. Each point in the objective space is associated with a shaded rect-
angle that indicates the corresponding dominated region. In essence, any
other point that falls inside the dominated region will present a higher risk or
cost compared to the referenced point and, therefore, will be considered a
non-optimal choice in the sense of Pareto domination.

f1

f2

f3
f4

f5

RHUS

C

f3, f4 & f5 dominated by f1 and f2

Figure 4.1: Pareto front constituted with the points z1 and z2, that dominatethe other points z3, z4 and z5. Shaded rectangles to the top right of every pointshows the dominated region by that point. Noisy observations are shownaround the point z2.
In Figure 4.1, the points z1 = f(x1) and z2 = f(x2) are Pareto optimal

since they do not fall in any of the dominated regions and all the other points
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namely z3 = f(x3), z4 = f(x4) and z5 = f(x5) fall within their dominated
region. In our framework we deal with a stochastic simulator that produces
noisy outputs as shown around the point z2 in Figure 4.1. Identical inputs can
produce different outcomes across two evaluations.

The aim is to find a good estimate of the set P and the Pareto front F =
f(P), using a sequence of evaluation points Xn = {X1, X2, . . . , Xn} and the
corresponding noisy evaluations. The estimate of P will be denoted by P̂n,and the estimate of F will be denoted by F̂n.

We also consider that the objectives do not have an analytical form and
we have no information on derivatives. In that sense, the objective functions
are considered as “black-box” functions. In the literature (see, e.g., Hunter
et al., 2019), this type of problem is sometimes calledmultiobjective simulation
optimization (MOSO).

In our example using theQMRA simulator, the objectives of interest—namely,
the risk of illness and the cost of intervention—are defined as functions of the
expectations of the simulator outputs. The noisy outputs are handled by sim-
ulating a large number of batches and computing their expectations, which,
in turn, increases the computational cost. Problems exhibiting the aforemen-
tioned characteristics can be tackled using Bayesian optimization algorithms,
discussed in the following subsection.

4.1.2 . Literature review on Bayesian optimization

The main concept within the Bayesian optimization framework involves
modeling each objective function fj , for j = 1, 2, . . . , q, using a random pro-
cess, or more specifically, a Gaussian process ξj . The use of Gaussian pro-
cesses as a surrogate model, also known as kriging, is widely adopted in the
literature of design and analysis of computer experiments (see, e.g., O’Hagan,
1992, Sacks et al., 1989, Santner et al., 2003) and in the domain of machine
learning (see, e.g., Rasmussen and Williams, 2006). Using Gaussian process
priors makes it possible to construct a surrogate model for the computation-
ally intensive simulator by obtaining the posteriors of the ξjs given the evalua-tionsZ1, Z2, . . ., which are then used to sequentially construct the evaluations
pointsXn, and estimates ofP andF . Bayesian optimization is an iterative pro-
cess, where the Gaussian process surrogate model is used to represent prior
beliefs about the unknown objective functions fj , and this model is updated
as new data points are collected, incorporating the Bayesian principle of up-
dating beliefs with evidence. This iterative process is governed by a sampling
criterion also known as the acquisition function, which is optimized at each
iteration, in order to select a new data point.

In the literature, various Bayesianmulti-objective optimization algorithms
have been proposed, but only a few are applicable within a stochastic frame-
work (see, e.g., Gonzalez and Nieuwenhuyse, 2020). We will distinguish four
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types of approaches.
Entropy-basedapproaches For the problemof stochastic single-objective
optimization, one of the earliest contributions to the noisy evaluation setup
is by Vazquez et al. (2008), who compared the empirical convergence rates
of several Bayesian optimization algorithms from the literature, in presence
of additive noise. In this work, the authors mainly studied the Expected Im-
provement (EI) sampling criterion (Jones et al., 1998, Močkus, 1975) and the
Informational Approach to Global Optimization (IAGO) method, proposed by
Villemonteix et al. (2007); both of whichwere originally proposed in the frame-
work of noise-free evaluations. The IAGO algorithm is grounded in the infor-
mation theoretic approach, which minimizes the posterior Shannon entropy
of the minimizer, to select the next evaluation point in the input space. This
algorithm is based on the principle of Stepwise Uncertainty Reduction (SUR)
(Geman and Jedynak, 1996, Vazquez and Bect, 2009, Vazquez and Martinez,
2006), a well established framework in the domain of Bayesian sequential de-
sign of computer experiments.

Other entropy based algorithms proposed in the machine learning litera-
ture include the Predictive Entropy Search (PES) approach (Hernández-Lobato
et al., 2014), which reformulates the entropy reduction based onmutual infor-
mation given the evaluations.

Based on PES, Hernandez-Lobato et al. (2016) proposed the PESMO algo-
rithm, which can be used to jointly estimate the Pareto set and front in the
case of stochastic multi-objective problems. PESMO is based on a set of ap-
proximations for the computation of the entropy based criterion. This has a
high implementation complexity and a non-negligible execution cost, since it
relies at each iteration on conditional simulations of the GP models and an
expectation-propagation step. To further address the problem of approxi-
mations of the entropy and reduce the computational complexity, Wang and
Jegelka (2017) proposed a criterion in the single objective framework, called
the Max-value entropy search (MES). Later Belakaria et al. (2020) proposed an
multiobjective algorithm called MESMO, based on the same principle of max-
imizing the information gain about the optimal Pareto front given the evalu-
ations. However, these entropy-based algorithms still remains computation-
ally intensive.
KnowledgeGradient Frazier et al. (2009) proposed an approach for Bayesian
stochastic single-objective optimization called the Knowledge-gradient sam-
pling criterion, which was derived by revisiting the assumptions of the EI sam-
pling criterion. Subsequently, using this Knowledge-gradient approach, As-
tudillo and Frazier (2017) proposed an algorithm for the stochasticmulti-objective
setup.
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GP-UCB Another existing algorithm, based on the Gaussian Process Up-
per Confidence Bound rule (GP-UCB) (see, e.g., Srinivas et al., 2010), named
Pareto Active Learning (PAL), was proposed by Zuluaga et al. (2013) and later
extended by Barracosa et al. (2021) to Pareto Active Learning for Stochastic
simulators (PALS) to address noisy evaluations. The Bayesian ranking and se-
lection literature, akin to Bayesian optimization, considers the input space
to be discrete and finite and assumes that the observations are necessarily
noisy.
Ranking and Selection The primary objective is to optimally allocate the
simulation replications to the input design points so that the Pareto set can be
estimated with high confidence. In this context, Lee et al. (2010) proposed an
algorithm for Multi-objective Optimal Computing Budget Allocation (MOCBA),
which assumes independent Gaussian distributed objectives and secures the
optimal allocation by minimizing the asymptotic upper bounds of misclassifi-
cation error of the design points. This results in a constrained optimization
problem solved by the Lagrangian method. Additional algorithms include
SCORE by Pasupathy et al. (2014) and M-MOCBA proposed by Branke and
Zhang (2015). Recently, Rojas Gonzalez et al. (2020) introduced an approach
that incorporates a mixture of Bayesian optimization and ranking and selec-
tion approaches, dubbed SK-MOCBA.

4.1.3 . Outline
Themain contribution of this chapter is a Bayesian stochasticmulti-objective

optimization (BSMOO) algorithmbasedonaweighted integratedmean squared
error (w-IMSE) sampling criterion for estimating the Pareto front.

This chapter is organized as follows. Section 4.2 gives a detailed explana-
tion of the problem of multi-objective optimization for stochastic simulators
using Bayesian optimization algorithms. Section 4.3 revisits the principle of
Maximal Uncertainty Sampling (MUS) and provides an overview of algorithms
that employ this principle, also including experimental results discussing the
performances of algorithms built upon this principle. Section 4.4 introduces
the proposed algorithm, based on a w-IMSE sampling criterion for selecting
new points. Section 4.3.4 and Section 4.4.2 present the numerical experi-
ments and their results, and Section 4.5 illustrates the application case of op-
timizing the QMRA simulator. Finally Section 4.6 discusses the perspectives
of this work.

4.2 . Stochastic Bayesian multi-objective optimization

This section describes the strategy of Bayesian optimization for compu-
tationally expensive simulators with noisy outputs. In a multi-objective opti-
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mization framework, the objective is to identify solutions that provide a com-
promise among multiple objectives, as determined by the Pareto domination
rule. Thus, the task primarily involves obtaining a reliable estimation of the
Pareto set P and its corresponding Pareto Front F . Due to the absence of an
analytical form of the objectives and the unavailability of gradient informa-
tion, this estimation is conducted using a restricted set of evaluation points
Xn. The set of evaluation points is selected adaptively, wherein the exper-
imenter sequentially observes and decides at each stage which new point
should be evaluated, based on the information collected from the previous
evaluations.

4.2.1 . Bayesian optimization framework
Recall the notations from the previous section: f = (fj)1≤j≤q denote the qobjectives subject tominimization, and the randomobservations are denoted

by Zij = fj(xi) + εij , for 1 ≤ j ≤ q, and i = 1, 2, . . ., where the εijs are mutually
independent Gaussian distributed random variables, εij ∼ N (0, τ2

j ).
In the Bayesian optimization framework, each objective fj is assigned a

prior probability distribution, commonly definedby aGaussianprocess, within
the following model:{

Zij | ξj , τ2
j ∼ N (ξj(xi), τ2

j ) , j = 1, . . . , q, and i = 1, 2, . . .
ξj | mj , kj ∼ GP(mj , kj) , j = 1, . . . , q, (4.4)

where the ξjs are independent random Gaussian processes indexed by the
elements of X, with mean functionsmj and covariance functions kj , and theelementsZij are conditionally independent given ξj and the hyperparameters
(τ2
j ,mj , kj for 1 ≤ j ≤ q).
Using Gaussian processes facilitates the computation of the posterior dis-

tributions of the models ξj , conditional on the observations Zij , through the
resolution of systems of linear equations (see, e.g., Chiles and Delfiner, 2012,
Cressie, 1993, Rasmussen and Williams, 2006, Santner et al., 2003, Stein, 1999,
Welch et al., 1992).

The sequence of evaluation points (X1, X2, . . .), also known as the sam-
pling strategy, is determined adaptively using an iterative procedure as de-
scribed in Algorithm 1.

At each step n, a Gaussian process model ξn is constructed using the data
In = {(X1, Z1), . . . , (Xn, Zn)}, starting from an initial design In0 of n0 points,typically obtained from random sampling methods.

In Bayesian optimization, the construction of the GP models based on
the design In0 serves as the initial step, followed by an iterative procedure,
wherein each iteration, the Gaussian process model is updated with the ob-
servations accumulated thus far. Each step computes the posteriors for the
GP models, which are used to compute a sampling criterion, denoted by Jn :
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Algorithm 1 BSMOO framework
Place Gaussian process priors on f . (surrogate model)Evaluate f at n0 points . (initial design)
n← n0 and budget← n0 × k
while budget > 0 doUpdate : GP posteriorCompute : Sampling criterion Jn(x)Optimize : xn+1 = argmaxx∈X Jn(x) . (new observation)Evaluate : f at xn+1

n← n+ 1 and budget← budget + k . (increment budget)
end whileEstimate P̂n and F̂n from the GP posterior means

X→ R. The sampling criterion is optimized (either minimized or maximized)
over the search space X to determine the point to be sampled next. At each
sample point the objective functions are evaluated with a batch size k, (de-
scribed later in Section 4.2.3). At iteration n the Pareto front F̂n and the Paretoset P̂n are estimated using the posterior means of the Gaussian Processes
ξn = (ξj,n)1≤j≤q conditional on In.

The construction of Jn depends on the type of optimization problem and
how the user wants to measure the performance of the optimization algo-
rithm. For instance, consider the case of the expected improvement sampling
criterion (Močkus, 1975) in the context of single-objective, noise-free optimiza-
tion. The expected improvement is a common sampling criterion that seeks
the input location which, in expectation, most improves upon the best-known
objective value. It is easy to comprehend and use in a noise-free, single-
objective scenario, but difficult to generalize in a multi-objective stochastic
optimization framework due to the intricate nature of handling multiple con-
flicting objectives and noise in the observations.

In the subsequent sections, we will explore new sampling criteria derived
from two classical foundational ideas: maximal uncertainty sampling (MUS)
and stepwise uncertainty reduction (SUR). MUS, as detailed in Section 4.3, is
driven by the intent to sample the point in the input space that is most un-
certain, with uncertainty being understood in the context of the knowledge
about the Pareto front and the Pareto set. Conversely, SUR, introduced in
Section 4.4, formulates the sampling criterion to quantify and minimize the
residual uncertainty in a look-ahead setup, with the aim of identifying the next
evaluation point with minimized uncertainty regarding the aforementioned
Pareto entities.

In the following section, we will present several metrics that specifically
address the approximation of the Pareto optimal solutions. These measures,
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framed within the context of Bayesian optimization, seek to assess the im-
precision inherent in approximations of the Pareto front and the Pareto set
during the optimization process. The intention is to equip the optimization
procedure with metrics to effectively guiding the sampling towards regions
that are not only promising in terms of objective function values but also in
the minimization of the uncertainty associated with the approximated Pareto
solutions.

4.2.2 . Performance metrics
Theperformanceof optimization algorithms is assessedusing performance

metrics, which may focus either on the quality of estimation of the Pareto set
P or the Pareto front F . These metrics are computed and averaged over sev-
eral experiments to estimate the average performances of the algorithms.
Volumeof symmetric difference. In this chapter, themain performance
metric will be the volume of symmetric difference, which focuses on the esti-
mation of the Pareto front F .

Computation of these performance metrics requires a reference Pareto
set / front (which might be the true known or hypothesized Pareto set / front)
in order to make a comparison. LetF∗ and F̂ be a reference Pareto front and
an estimated Pareto front.

Let also R denote a reference point in the objective space, which is user-
defined. In practice, the reference point can be defined as an upper-bound of
the objectives.
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Figure 4.2: Figures from left to right respectively show the dominated area(in red) by the reference Pareto front F∗, the area (in blue) dominated by theestimated Pareto front F̂ and the symmetric difference as the shaded region.
The region dominated by a Pareto front F with respect to a reference

point R is the set of all the points that simultaneously dominate R and are
dominated by a member of F :

D(F) =
⋃
y∗∈F
{y ∈ Rq : y∗ ≺ y and y ≺ R} (4.5)
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Let V (F) denote the hyper-volume of the region dominated by F with
respect toR. Then, the volume of the symmetric difference of the dominated
regions corresponding to F∗ and F̂ is defined as

V (F∗, F̂) = V (D(F̂) \D(F∗)) ∪ V (D(F∗) \D(F̂)), (4.6)
and shown in Figure 4.2.
Misclassification rate. Another performance metric is the misclassifica-
tion rate. This metric computes the proportion of points that are misclassi-
fied under the estimation of the Pareto set. Misclassification can occur in two
forms: either a reference Pareto-optimal point is misclassified as dominated,
or vice versa. Let P∗ and P̂ represent the reference Pareto set and the esti-
mated Pareto set obtained with the optimization algorithm, respectively. The
misclassification rate, denoted byM(P∗, P̂), is defined as follows:

M(P∗, P̂) = 1
|X|

∑
x∈X

(1x∈P∗ − 1x∈P̂)2 . (4.7)

Correct selection. Several other performance measures exist, for exam-
ple, the indicator of correct selection as used in the Bayesian ranking and
selection literature (Lee et al., 2010, see, e.g.,). This metric simply monitors
whether all the Pareto and non-Pareto optimal points are correctly classified.

4.2.3 . Batch evaluations
Due to the stochastic nature of the outcomes, each output Zi is obtained

as an empirical average of the outputs over several replications performed
at the same point. The number of replications is commonly referred to as
the batch size, denoted by k in the following. The advantage of dealing with
batches of evaluations is that the GP posteriors can be updated at the same
computational complexity than that of a single point (see, e.g., Binois et al.,
2018).

The use of replications, for building surrogate models for noisy black-box
functions, has been proved to be helpful in various studies in the literature
(see, e.g., Horn et al., 2017, Jalali et al., 2017). This idea is used for instance
by Binois et al. (2017) for developing sequential design schemes for stochastic
simulation experiments and by Barracosa et al. (2021) for extending the Pareto
Active Learning (PAL) algorithm for stochastic simulators.

In the literature of ranking and selection, Gonzalez et al. (2022) proposed a
multiobjective optimization algorithm which adaptively determines the batch
size, but this type of algorithms becomes unsuitable for large grid input space
problems. In the analysis of PALS, Barracosa et al. (2021) provides insight into
the influence of batch size over performance metrics and recommends lower
batch sizes for faster reduction in metric value during initial iterations.

101



Given a fixed budget setup for total evaluations, the choice of batch size
determines the trade-off between exploration and replication in sequential
design of computer experiments (see, e.g., Binois et al., 2017).

4.3 . Maximal uncertainty sampling

4.3.1 . Maximal uncertainty sampling for function approximation
In the literature of Bayesian sequential design and analysis of computer

experiments, we can distinguish two main families of approaches for con-
structing a sampling criterion: maximal uncertainty sampling (MUS) and step-
wise uncertainty reduction (SUR).

In the following, our objective is to use the principle of MUS to design
an sampling criterion for Bayesian stochastic multi-objective optimization. To
make the presentation more didactic, we start with the problem of function
approximation and that of the estimation of the probability of an excursion
set, which are classically addressed in the literature by MUS-type principles.

The problem of function approximation using kriging-based sequential
search strategies is well studied in the literature (see, e.g., Currin et al., 1991,
Santner et al., 2003, Vazquez and Bect, 2011, Welch et al., 1992). In this context,
the principle of MUS is illustrated Figure 4.3, where the objective is to build a
surrogate model for the function represented by blue dotted lines. The red
points represent the noise-free evaluations made on the true function, while
a Gaussian process model yields the posterior mean µn, depicted by the solidblue line. Uncertainty is gauged in terms of the posterior standard deviation
σn, as indicated by the light blue shaded 95% confidence interval around the
posterior mean. The subsequent evaluation point to be sampled, indicated
by the red vertical line, is chosen where the posterior variance σ2

n is maximal,
as demonstrated in the second subfigure.

The MUS-type approach is also classical in the literature of reliability the-
ory for the estimation of a probability of failure of a system in a Bayesian
framework. Given a probability distribution PX on the input space X, which
accounts for the uncertainty in the system input factors, and a thresholdu ∈ R
corresponding to a critical value, the problem is about the estimation of the
probability α that f exceeds u:

α = PX{x ∈ X : f(x) > u} . (4.8)
In addressing this problem, a natural and intuitive method for measuring un-
certainty is the probability of misclassification (see, e.g., Bryan et al., 2005).
Given the data In, let pn(x) denote the posterior probability that the point x is
above the given threshold u. This can be computed using the posterior mean
µn and posterior variance σ2

n, of the Gaussian processmodel ξn given the data
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Figure 4.3: Function approximation using MUS

In,
pn(x) = Φ

(
µn(x)− u
σn(x)

)
, (4.9)

where Φ is the cumulative distribution function of the normal distribution.
A point x ∈ X can be predicted to be above the threshold if pn(x) > 0.5,
thereby deriving the sampling criterion Jn(x) = min (pn(x), 1− pn(x)), which
represents the probability of misclassification. By maximizing this criterion,
we aim to identify the next sampling point X(n+1) that exhibits a probability
pn(X(n+1)) as close as possible to 1/2.

Figure 4.4 shows a MUS strategy based on probability of misclassification
in the context of estimating α, based on the same function example as in
Figure 4.3. The figure on the top shows the threshold u in red dotted lines.
The sampling criterion based on the probability of misclassification, as shown
in the second subfigure, is maximized to select the next evaluation point.
Remark 6. In addition to the criterion based on the probability of misclassifi-
cation, there are several criteria that lead to equivalent choices of sampling
points, (see, e.g., Abdelmalek-Lomenech et al., 2022) including the variance
or the entropy of the indicator function for correct classification (Bryan et al.,
2005), as demonstrated in Figure 4.5, or the “learning functionU ” as proposed
by Echard et al. (2011).
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Figure 4.4: Estimation of probability of failure using MUS

4.3.2 . A first approach
In the context of BSMOO, we study the performance of MUS using sam-

pling criteria from the literature on Gaussian processes for reliability.
As a first approach, we consider a sampling criterion given by the posterior

variance of the indicator 1x∈P , that may be written as
varn (1x∈P) = pn(x)(1− pn(x)), (4.10)

where pn(x) denotes the posterior probability of x ∈ X belonging to the
Pareto set P .

To the best of our knowledge, there is no closed form for pn(x). Thus, pnmust be estimated using conditional simulations (see, e.g., Binois et al., 2015,
Villemonteix et al., 2007) drawn from the Gaussian process ξn conditional onall the observations up to the n-th step In.This sampling criterion is tested against a naive random search method,
which samples the next evaluation point randomly from X. The two meth-
ods are tested on a series of bi-objective test problems taken from Barracosa
et al. (2021), and for each case, we compute the twomeasures of performance
metrics, namely, the volume of symmetric difference and themisclassification
rate, as shown in figure 4.6, for just one test case. The experiments used an
initial design of size 20, an input space of dimension 21× 21, and a budget of
250× 200 evaluations with a batch size of k = 200.
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Figure 4.6: Performance metrics averaged over 200 independent repetitionsof the experiment, on the g1 function from Barracosa et al. (2021), for the pn ·
(1−pn) (in red) based MUSmethod compared to a naive Random Search (RS)(in yellow) method.

Surprisingly, the volume of symmetric difference metric shows almost no
significant improvement of the experimented strategy over random search.
Moreover, despite being constructed based on the probability of misclassifi-
cation, the method performed worse than the random search method on the
estimation of the Pareto set, as depicted by the misclassification metric. This
unexpected performance of the probability of misclassification-based MUS
criterion leads us to investigate the reason for these results.

Figure 4.7 displays one of the test problems named g1 from Barracosa
et al. (2021), elucidating the typical behavior of this type of MUS criterion. The
figure on the left presents the test problem g1 in the objective space, and
the one on the right zooms in on the region indicated by the red rectangle,
illustrating the relative positions of the points near the Pareto front, estimated
using posterior means.

In addition to the estimated positions of the points, the figure shows the
probabilities pn of belonging to the Pareto front.The blue points have a high probability pn, indicating that they are likely
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to be points on the Pareto front. On the other hand, the red point has a prob-
ability pn close to 1/2. The MUS criterion pn(x)(1− pn(x)) is high at this point,
close to 1/4, and this red point may be selected for evaluation. On the other
hand, the sampling criterion at the blue points will be small.

By sampling at the red point, the posterior variance of the red pointwill de-
crease, but that of the blue points will remain high. Because of the proximity
of the blue points and the fact that their variance will remain high, since they
will not be sampled, the red point will remain indeterminate as to whether it
belongs to the Pareto front. Indeed, if the posterior position of the bottom
right blue point were, for example, slightly further to the right, the red point
would become non-dominated.

As a consequence, the algorithm will repetitively sample the red point.
Thus, the selection criterion, although it targets misclassification, will not

be able to reduce it. To reducemisclassification, it is also necessary to sample
the blue points, i.e., points that are already deemed as well classified.

The important conclusion here is that not all MUS criteria lead to consis-
tent algorithms.

4.3.3 . Weighted Mean Squared Error
In this subsection, we focus on a different measure of uncertainty based

on a weighted mean squared error (w-MSE) of prediction, within the same
framework of MUS.

Given observations In = {(X1, Z1), . . . , (Xn, Zn)}, the next pointXn+1 ∈
X to be sampled is determined by maximizing the w-MSE criterion, which is
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computed with the updated Gaussian process ξn posteriors,
Xn+1 = argmaxx∈X

(
wn(x) ·

q∑
j=1

σ2
j,n(x)
s2
j,n

)
, (4.11)

where, for each point x ∈ X and the j-th objective, j = 1, 2, . . . , q, σ2
j,n(x) rep-

resents the posterior variances and s2
j,n are normalizing constants ensuring

equal scaling for all objectives. The weights wn(x) are introduced to prioritize
the "potentially Pareto optimal" points and place more emphasis on them
than on the points distant from the Pareto front.
PAL(S) algorithms. Two instances of w-MSE sampling criteria for BSMOO
is the Pareto Active Learning (PAL) algorithm proposed by Zuluaga et al. (2013)
and its extension PALS for stochastic simulators (Barracosa et al., 2021). These
two algorithms use binary (0–1) weights.

R−
n (x) = µn(x)− κσn(x)

µn(x)

R+
n (x) = µn(x) + κσn(x)

RHUS

C

Figure 4.8: PALS rectangle with optimistic R−n (x) and pessimistic R+
n (x) out-comes for input x.

During the n-th iteration, the PAL(S) algorithm constructs confidence rect-
angles around each point x ∈ X in the objective space, as depicted in Fig-
ure 4.8, using the posterior mean µn(x) = (µj,n(x))1≤j≤q , variances σ2

n(x) =
(σ2
j,n(x))1≤j≤q , and a confidence parameter κ. Each rectangle is associated

with both an optimisticR−n (x) and a pessimisticR+
n (x) outcome based on the

posterior uncertainty of x (see definition on Figure 4.8). The algorithm assigns
the weightswn(x) = 1x∈X\Nn , where the setNn corresponds to the points es-timated as dominated:

Nn = {x ∈ X | ∃x′ ∈ X \ {x}, R+
n (x′) ≺ R−n (x)} . (4.12)

In other words, a point x ∈ X will be included in the set Nn if the corre-sponding optimistic outcome is dominated by the pessimistic outcome of any
other point.
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Figure 4.9: Figure illustrating the PALS classification rule, with the red boxcorresponding to a member of the set Nn and the green box correspondingto a potentially Pareto optimal point.

For instance, in Figure 4.9, the optimistic outcome of the red box is dom-
inated by the pessimistic outcome of the green box, indicating that the point
corresponding to the red box is amember of the setNn. The rationale behindthe choice of weights in PAL(S) is to sample more densely in regions closer to
the Pareto front, rather than in regions with dominated points.
Generalization. We introduce several alternativeweight functions, as pre-
sented in Table 4.1.

Table 4.1: Different weight functions for w-MSE methods
PALS w-MSE-I w-MSE-II w-MSE-III
1x∈X\Nn 1x∈P̂αn pn(x) pn(x) · (1− pn(x))

The proposed weight functions are derived from pn(x), for x ∈ X, the
probability of being Pareto optimal, which is estimated using conditional sim-
ulations from the Gaussian process model at the n-th iteration.

The first method, w-MSE-I, is grounded on the computation of the set P̂αndefined as
P̂αn = {x | pn(x) > α · min

x∈P̂n
pn(x)} , (4.13)

where P̂n is the estimated Pareto set using the posteriormeans of ξn. Thismethod selects a fraction of points in X whose probability of being Pareto
optimal high enough relatively to the minimum value of this probability.
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The other twoweight functions, w-MSE-II andw-MSE-III, correspond to the
probability of being Pareto optimal and the probability of misclassification,
respectively.

4.3.4 . Numerical experiments
In this section, we present a numerical benchmark of the performance of

the proposed w-MSE methods against PALS and random search.
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Figure 4.10: Average volume of symmetric difference (VSD) metric for PALS (inblue), random search (in yellow), and three tested w-MSE methods (in black)on test problems g1 and g8.

The algorithms are tested across a finite input space of 21 × 21 dimen-
sions, involving nine bi-objective and bi-dimensional test problems adapted
from Barracosa et al. (2021). These experiments were conducted under the in-
fluence of additive homoscedastic Gaussian noise and for each test problem
and optimization method, a total of 200 optimization runs were executed. To
assess the performance on the estimation of the Pareto front, we compute
the volume of symmetric difference metric.

TheGPmodels used for the twoobjectiveswere independentwith aMatérn
5/2 kernel and an unknown constantmean function and plug-in estimates are

109



used for the parameters of the covariance function. The confidence interval
to construct the rectangles of the PALS algorithm was kept at 50%, as recom-
mended in Barracosa et al. (2021).

An initial design was obtained by performing 200 evaluations at 20 ran-
domly selected points and in addition to that a budget of 250×200 is allowed,
which translates into a batch size of 200 evaluations for 250 iterations. The
Pareto front at the end of the iterative procedure is estimated using the pos-
terior mean of the GP model.

Figure 4.10 shows the results of the numerical experiments only for the
test functions g1 and g8, and the remaining results are available in Appendix C.

In terms of performance with respect to the VSD metric, the proposed w-
MSE methods did not show significant and consistent improvement over the
PALS algorithm, considering all the test problems.

This motivates the exploration of the other branch of constructing sam-
pling criterions, as discussed in the next section.

4.4 . Weighted integrated mean squared error sampling crite-
rion

In this section, we delve into a family of sampling criteria referred to as
stepwise uncertainty reduction (SUR). The concept of SUR was introduced
for sequential design of numerical experiments by Vazquez and Bect (2009),
Vazquez and Martinez (2006), Villemonteix et al. (2007) and stems from the
idea of stepwise entropy reduction applied to shape recognition (Geman and
Jedynak, 1996), as well as fromactive learning Cohn et al. (1996), MacKay (1992).
Bect et al. (2019) provides a review of SUR methods.

The idea is to construct a statistics Hn measuring the uncertainty about
the true Pareto front F , based on the estimated Pareto front F̂n given all theobservations up to the n-th step.

Given the data In = {(X1, Z1), . . . , (Xn, Zn)} the sampling criterion of a
SUR strategy may be written as

Jn(x) = En(Hn+1 | Xn+1 = x), (4.14)
where En(· | Xn+1 = x) denotes the conditional expectation given In, assum-
ingXn+1 = x.

This sampling criterion should be minimized to select a new evaluation
point:

Xn+1 = argminx∈X Jn(x) . (4.15)
Depending on the uncertaintymeasureHn, the computation of the condi-

tional expectationEn is not always analytically tractable. In this case, methods
based on conditional simulations may be used.
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In this work, we propose a weighted integrated mean squared error (w-
IMSE) based uncertainty measure,

Hn =
∑
xi∈X

wn(xi)
q∑
j=1

σ2
j,n(xi).

This yields the following SUR sampling criterion:
Jn(x) =

∑
xi∈X

wn(xi)
q∑
j=1

σ2
j,n+1(xi | x)

s2
j,n

, (4.16)

where σ2
j,n+1(· | x) is the predictive posterior variance at step n + 1 when a

new observation at Xn+1 = x is added, and s2
j,n are normalizing constants

ensuring equal scaling for all objectives. The weights wns are computed sep-
arately and used in a plug-in approach to construct the sampling criterion.
Note that since X is discrete, this integral criterion boils down to a sum over
the points of X.

Using the properties of Gaussian processes, it can be shown that (Emery,
2009) the new predictive distribution can be expressed simply as a function
of the predictive posterior variance σ2

j,n and covariance covj,n(xi, x) at step
n. Moreover, the variance term σ2

j,n+1(xi | x) does not depend upon the new
observation value:

σ2
j,n+1(xi | x) = σ2

j,n(xi)−
cov2

j,n(xi, x)
σ2
j,n(x)

. (4.17)
4.4.1 . Proposed method

The weights for the w-IMSE SUR criterion could be chosen from Table 4.1,
with an emphasis on potentially Pareto optimal points. Nevertheless, empir-
ical studies not included in this manuscript suggest that transitioning from
w-MSE to w-IMSE, using these particular weights, does not lead to significant
enhancements in performance.

Instead, we propose a newweight function that focuses on the estimation
of the Pareto front in terms of errors measured by the volume of symmetric
difference.

Like in the PALS approach, we use the classification of the dominated class
of points Nn to assign non-zero weights to selected points.Let Pn denote the estimated Pareto set at the n-th iteration, and let the
corresponding estimate of the Pareto front Fn be defined as

F̂n = {µn(x) | x ∈ Pn} , (4.18)
where µn(x) denotes the posterior means for x ∈ X from the GP model ξn.
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Next, we define a pessimistic and an optimistic Pareto front, denoted by
F+
n and F−n respectively, such that

F+
n = {R+

n (x) | x ∈ Pn} , (4.19)
F−n = {R−n (x) | x ∈ Pn} , (4.20)

whereR+
n (x) = µn(x)+κσn(x) correspond to pessimistic values of the objec-

tives and R−n (x) = µn(x) − κσn(x) correspond to optimistic values, as in the
PAL(S) algorithms. The pessimistic and optimistic fronts are depicted in the
left plot of Figure 4.11.
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Figure 4.11: Left plot: OptimisticF−n (in green), pessimisticF+
n (in red), and theestimated Fn Pareto front (in blue). Right plot: Dominated volume Vn by F+

nand Vn,i dominated by F∗n.
Given a reference point R, we introduce an operatorD to denote the vol-

ume of the region dominated by a Pareto front. Then, we denote by Vn thevolume of the region dominated by F+
n . : Vn = D(F+

n ).
For each point xi ∈ X, the weight within the w-IMSE criterion is calculated

based on a potential contribution to the increase of Vn, more specifically,
wn(xi) = (D(F∗n,i)− Vn)/Vn , (4.21)

whereF∗n,i is a Pareto front obtained by replacing the pessimistic valueR+
n (xi)by its optimistic counterpart R−n (xi) in F+

n , which may be formally defined as
follows:

Ui = {F+
n \R+

n (xi)} ∪R−n (xi), (4.22)
F∗n,i = {y ∈ Ui : @y′ ∈ Ui s.t. y′ ≺ y} . (4.23)

The motivation behind this approach is similar to PAL(S), which tries to
reduce the uncertainty around the Pareto front. In two dimensions this un-
certainty can be visualized as the confidence interval generated by the opti-
mistic (F−n ) and pessimistic (F+

n ) Pareto fronts. The proposed algorithm gives
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Algorithm 2 Construction of wn at step n
Estimate Pareto set P̂n based on GP posterior mean
F+
n ← {R+

n (x)|x ∈ P̂n} . (Pessimistic Pareto Front)
Vn ← D(F+

n ) . (Reference dominated volume)
for xi ∈ X do

if xi ∈ Nn then
wn(xi)← 0

else
F∗n ← Pareto front of {F+

n ∪R−n (xi)}
Vn,i ← D(F∗n,i) . (Dominated volume)
wn(xi)← (Vn,i − Vn)/Vn . (normalized weights)

end if
end forReturn wn

maximum weight to the point which contributes the most in this uncertainty
in terms of dominated area.

4.4.2 . Numerical experiments
Following the same framework of numerical experiments as described in

Section 4.3.4, the performance of the proposed w-IMSE algorithm is tested
against PALS and the random search method. Figure 4.12, shows the VSD
metric for the methods, corresponding to all the test problems.

The proposed algorithm, shown in red, shows consistent improvement
over PALS for all the considered test problems, with respect to the VSDmetric.
However the proposed algorithm does not show any improvement over the
PALS algorithm for the estimation of the Pareto set, as monitored by the mis-
classification rate in Appendix C. The proposed weights in Algorithm 2 were
also tested in the w-MSE framework, which showed slightly improved perfor-
mance with respect to the VSD metric, over the w-IMSE variant. But at the
same time the w-MSE algorithm performed very poorly for the estimation of
the Pareto set as monitored by the misclassification rate, demonstrated by
the results in Appendix C.

4.5 . Application to QMRA simulator

4.5.1 . Problem formulation
This study of multiobjective optimization algorithms is motivated by the

problem of optimizing intervention parameters in raw milk cheese produc-
tion. This section demonstrates a simple example of the optimization prob-
lem based on the single pathogen QMRA model for MPS-STEC. The aim is to
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Figure 4.12: Average VSDmetric on test problems from Barracosa et al. (2021).
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minimize two conflicting objectives or quantities of interest, namely, the rela-
tive risk of HUS and the cost of intervention processes. Given a specific com-
putational budget, these quantities of interest can be computed to a certain
degree of accuracy using the computationally expensive (see Section 2.3.2.1)
and stochastic QMRA model. Among all the inputs of the MPS-STEC QMRA
model, only four input parameters corresponding to the intervention steps
are selected to be optimized and these parameters are collectively denoted by
θopt = {lsorting, pmilk, nsample, pcheese}. lsorting denotes the maximum threshold
of pathogen concentration for milk testing, pmilk = 1

f sorting is the proportion
of farmmilk tested, nsample denotes the number of cheese sample tested and
pcheese is the proportion of cheese batches tested. All the other input param-
eters of the MPS-STEC QMRA model are kept fixed for this experiment. The
input space considered for the optimization problem is discrete and finite,
denoted by X = θopt

1 × θopt
2 × θopt

3 × θopt
4 , consisting of all the possible 1500

combinations of values of the parameters, as demonstrated in the Table 4.2.
Table 4.2: Inputs of the QMRA simulator to be optimized θopt.

Symbol Values
lsorting θopt

1 = [10, 20, 30, 50, 100, 200]
pmilk θopt

2 = [0.1, 0.2, . . . , 1]
nsample θopt

3 = [3, 5, 8, 10, 12]
pcheese θopt

4 = [0.1, 0.2, . . . , 0.5]

For a particular input x ∈ X, the QMRA model produces three outputs
corresponding to the production of a particular batch of cheese, namely, 1)
Z1(x) := Rbatch

MPS−STEC(ΞMPS−STEC), the probability of getting HUS from con-
suming a portion of 25g of cheese from a particular batch, characterized by
the stochastic internal variables ΞMPS−STEC, 2) Z2(x) := P batch(ΞMPS−STEC),
the probability of detecting MPS-STEC contamination in at least one of the
nsample cheese samples of 25g, sampled from that batch of cheese character-
ized by ΞMPS−STEC and 3) Z3(x) := Mbatch(x), the quantity of milk (in Liters)
lost due to milk testing at the farm level. The QMRAmodel is a stochastic sim-
ulator, or in other words, for a particular input x it simulates a set of stochastic
internal variables ΞMPS−STEC, that eventually affects the three outputs. As aresult all the three outputs are random variables, that is, for a fixed x the
output values are observed with noise.

Asmentioned before, this section only concerns about a simple version of
the multiobjective optimization problem in the context of the ArtiSaneFood
project and this involves minimization of two objectives related to MPS-STEC
only. However depending on the choices of the decision maker or cheese
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industrials, a more complicated optimization problem can be formulized us-
ing the multipathogen QMRA model by considering the combined effects of
all the pathogens using DALYs (see Section 2.2.6.2). In the particular example
under consideration, the two quantities of interest that are subjected to mini-
mization, are the relative average risk of HUSR(x) and the total cost of all the
intervention steps C(x),

R(x) = E[Z1(x)(1− Z2(x)pcheese)]
(1− E[Z2(x)pcheese])Rbaseline

MPS−STEC

C(x) = E[c+ c1 · Z3(x) + c2 · Z2(x)],
(4.24)

where, c = N farmCmilk
test p

milk + nsampleCcheese
test ptest, c2 = ptestCcheese

loss N cheese and
c1 = Cmilk

loss are constants used to compute the cost values (see Section 2.9)
and Rbaseline

MPS−STEC := E[Z1(xbaseline)] is the average risk of HUS in a baseline
scenario signifying intervention steps, or equivalently with input xbaseline =
{lsorting =∞, pmilk = 0, nsample = 0, pcheese = 0}.

4.5.2 . Modified PALS algorithm
It is to be noted that among the two quantities of interest as defined in

(4.24), unlike C(x), the other quantity R(x) can not be expressed as an ex-
pectation of some function of the simulator outputs. In the multiobjective
stochastic optimization framework presented in this chapter, Gaussian pro-
cess surrogate models are constructed for the quantities of interest that are
subjected to optimization. In such a framework the quantities of interest are
the expected values of the simulator outputs, which allows to use batch eval-
uations (see Section 4.2.3), to address the presence of noise in the observa-
tions. The optimization problem of the QMRA model, as presented in this
section, exhibits a different scenario, due to definitions of the quantities of
interest in (4.24). To solve this applicability issue a modified version of the
PALS algorithm (Barracosa et al., 2021) is proposed by Basak et al. (2022a).
Here, we particularly work with the PALS algorithms because it has a w-MSE
based sampling criterion, which is easily adaptable with the proposedmodifi-
cations and also does not include any computationally expensive steps. Simi-
lar modifications with the proposed w-IMSE based algorithm is left as a future
perspective.

In the algorithm proposed by Basak et al. (2022a), the Gaussian process
surrogates are built on the simulator outputs, using batch evaluations. TheGP
posterior mean and variances corresponding to different simulator outputs
thus obtained, are used to estimate the quantiles of the quantities of interest.
At a particular iteration n, the construction of the dominated set Nn remains
the same as the original PALS algorithm, as described in (4.12), except for the
construction of the confidence rectangles. For the j-th, j = 1, 2, . . . , q quan-
tity of interest, both the optimistic R−n,j(x) and pessimistic R+

n,j(x) vertices of
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the confidence rectangle is computed using quantiles of a certain coverage
probability α,

R−n,j(x) = Q
α/2
n,j (x),

R+
n,j(x) = Q

1−α/2
n,j (x).

(4.25)
For the n-th iteration at input x ∈ X,Qqn,j(x) denotes the quantile of order q of
the j-th quantity of interest. To use the same confidence level as in the origi-
nal PALS rectangles, the confidence parameter α can be chosen with respect
to the confidence parameter κ, in the PALS algorithm, using the equivalence
relation α = 1− 2(1− Φ(κ)). The next sampling point selected based on the
MUS sampling criterion for this modified algorithm is therefore defined as,

Xn+1 = argmaxx∈X\N‖R−n (x)−R+
n (x)‖2. (4.26)

4.5.3 . Numerical experiment
Themodified PALS algorithm (Basak et al., 2022a), as described above, was

used to estimate the Pareto optimal values of the parameters θopt, minimizing
the two quantities of interests produced by the QMRA model of MPS-STEC.
For comparison of results we use a reference Pareto front, estimated with
simple Monte Carlo method, with a batch size 5000 at each of the 1500 input
points of X. The Monte Carlo batch size for the convergence of the simula-
tor outputs, was determined based on the recommendations in FDA/CFSAN
et al. (2021), which ensures the variance of the running mean is less than a
specified threshold (1%, default). Figure 4.13 plots the cost and the relative
risk, estimated with the Monte Carlo method. The reference Pareto front as
shown in red, is considered as the true Pareto front for comparing the esti-
mates obtained with the experimental results in this section.
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Figure 4.13: Pareto front estimated with simple Monte Carlo.
An initial design of size of 50 × 200 was used and the algorithm was run

for 250 iterations, with a fixed batch size of 200 for each evaluation. For each
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of the GP models, the noise variance was assumed to be homoscedastic and
known. They were estimated offline using the 5000 Monte Carlo simulations
for each x ∈ X, and then averaged over all the points in X. The GP models
used the same framework as described in Section 4.3.4, with plug-in covari-
ance hyperparameters estimated using the whole reference data. The VSD
and MCR metric were computed for all the iterations of the algorithm, as
shown in Figure 4.14. The algorithm uses 300 × 200 simulations, compared
to the Monte Carlo approach, that uses 1500× 5000 simulations, for estimat-
ing the Pareto optimal solutions. This demonstrates substantial reductions
in computational time while incurring a marginal 4% misclassification rate for
the Pareto set.
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Figure 4.14: Performance metrics for a single run of the modified PALS algo-rithm on the single pathogen QMRA simulator.

The estimated Pareto front as obtained with themodified PALS algorithm,
is shownby the red points in Figure 4.15. As discussed earlier, inmultiobjective
optimization problems with conflicting objectives, the solution set consists a
set of optimal choices rather than a single optimal solution. Once the corre-
sponding Pareto set, that is the optimal choices of the input parameters are
obtained, the decision makers are allowed to choose among them, balancing
the trade-off between the two quantities of interest.

4.6 . Discussions and perspectives

In the context of the ArtiSaneFood project, one of the main objectives was
tomake recommendations to french cheese producers in order to implement
efficient intervention strategies. This essentially involves the joint optimiza-
tion of several conflicting objectives of the QMRAmodel, which are stochastic
in nature and computationally expensive. This type of problems are studied
in the literature of BSMOO, which was the main motivation of this chapter. In
this chapter we have provided a global overview of the BSMOO literature, pro-
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Figure 4.15: Pareto front estimated with modified PALS algorithm.

posed an extension to the PALS algorithm (Barracosa et al., 2021) adapted for
ourQMRA application case (Basak et al., 2022a) and proposed a new algorithm
improving over the PALS algorithm on the estimation of the Pareto front. In
particular we studied two main branches of constructing a sampling criterion
for BSMOO algorithms, namely 1) Maximal Uncertainty Sampling (MUS) and
2) Stepwise Uncertainty Reduction (SUR). Firstly, our study shows that, uncer-
tainty measures from the literature of reliability theory is not always adapt-
able in the BSMOO framework. Later we studied weighted mean squared
error (w-MSE) based uncertainty measures and tested them on a numerical
benchmark, against the PALS algorithm. The results concluded that, w-MSE
based other sampling criterions were not significantly better than PALS. As
the next contribution of this work, we proposed a new algorithm based on the
weighted integrated mean squared error (w-IMSE) criterion, which performs
consistently better than the PALS algorithm, for the estimation of Pareto front.
This is supported by the fact that the weights in our new algorithm is based
on the dominated region in the objective space, that in turns focuses on the
estimation of the Pareto front.

As future perspectives of this work, there are many potential directions.
1) A first step would be to compare the proposed algorithm with alterna-

tive approaches from the literature of Bayesian Ranking and selection (see,
e.g., Lee et al., 2010, Rojas Gonzalez et al., 2020). This group of algorithms is
specifically tailored for discrete input spaces but are often incompatible with
large input spaces. Another potential algorithm to be included the numerical
benchmark, is the entropy based PESMO method proposed by Hernández-
Lobato et al. (2014).

2) The numerical benchmarks presented in this study, compares algo-
rithms with fixed hyperparameters for the covariance kernels of the GP mod-
els. This configuration was imposed to focus only on the effectiveness of the
sampling criterion, on the algorithm’s performance. Nonetheless, hyperpa-
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rameter estimation of GP models (see, e.g., Basak et al., 2022c), remains a
separate topic, which offers an interesting direction for future exploration, in
the context of BSMOO algorithms.

3) The test problems considered in this study (Barracosa et al., 2021), as-
sumes homoscedastic noise variance and it is assumed to be known for the
algorithms, that are compared. This is not often the case in reality, but the
noise variance can be estimated using the batches of simulation and updated
at each iteration. This motivates another future aspect for extending the nu-
merical benchmarks, by considering test problems with heteroscedastic and
unknown noise variance.

4) The new w-IMSE based algorithm is proposed in a bi-objective frame-
work, using the weights calculated, based on the area of the dominated re-
gion, on the objective space. A next possible extension of this algorithm is
defining the weight function in a multiobjective setup.

5) The proposed algorithm performs better than PALS with respect to the
VSD metric on the Pareto front, but concerning the estimation of the Pareto
set, it does not show significant improvement on PALS. Several other weight
functions, as shown in Table 4.1, were tested in the w-IMSE framework as well,
but the results showed no significant improvements. A potential future direc-
tion to explore would be the analytically tractable SUR algorithms.

6) This chapter demonstrates a simple example of the QMRA optimization
problem, with the single pathogen model for MPS-STEC. However the objec-
tive functions of the optimization problem and the corresponding input pa-
rameter space can vary depending on the concerned cheese producers and
interests of the decision makers. In practice there can be other formulations
of the optimization problem using DALYs (see Section 2.2.6.2), that include the
effects of other pathogens as well. Another perspective in the context of the
QMRA application includes the extension of the proposed w-IMSE based sam-
pling criterion, when dealing with specific quantities of interest, which can not
be expressed as an expectation of functions of the simulator outputs.
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5 - Conclusions and Perspectives

5.1 . Contributions

This thesis focuses on the objectives of the French consortium in the Euro-
pean project ArtiSaneFood, which aims to support French cheese producers
in implementing effective process intervention strategies.

Specifically, the research advances in three directions: 1) developing a new
multipathogen quantitative risk assessment (QMRA) model for raw milk soft
cheese; 2) exploring numerical integration methods for monotone bounded
functions to potentially enhance the QMRA model’s implementation; and 3)
contributing toBayesian optimization literature for stochastic, resource-intensive
simulators.
Quantitative RiskAssessmentModel. The first component of this the-
sis presents a novelmultipathogen risk assessmentmodel for rawmilk cheese.
To our knowledge, this approach is unprecedented in this context. Contrast-
ing with many single-pathogen QMRA studies (see, e.g., Campagnollo et al.,
2018, Collineau et al., 2020, Fritsch et al., 2018, Perrin et al., 2014, Sanaa et al.,
2004, Strickland et al., 2023, Tenenhaus-Aziza et al., 2014), our work extends
the existing QMRA model for STEC (Perrin et al., 2014) and provides an imple-
mentation in R and FSKX Basak et al. (2024). This implementation enhances
the original model Perrin et al. (2014) in several ways: 1) it employs the propor-
tion of MPS STEC directly in the farm module to calculate the number of in-
fected cows; 2) it uses a Bayesian approach, detailed in Appendix A, for individ-
ual farm hygiene parameter estimation; 3) it provides cost estimates for pre-
harvest and postharvest interventions; 4) it employs an efficient method for
batch risk calculation using its analytical form; and 5) it updates several QMRA
model input parameters, validated by dairy industry stakeholders, CNIEL and
ANSES.

Chapter 2 extends the single-pathogen model Basak et al. (2024) to a mul-
tipathogen model as presented in Basak et al. (2023b). The multipathogen
model incorporates existing literature and field data fromCNIEL and ACTALIA,
gathered under the ArtiSaneFood project. Using production parameters (θ),
it estimates the risk of three food-borne illnesses: Haemolytic Uremic Syn-
drome (HUS) from STEC, salmonellosis from Salmonella, and listeriosis from
Listeria monocytogenes. To model also estimates the burden on public health
using a metric based on Disability Adjusted Life Years (DALYs) due to food-
borne illnesses linked to consumption of raw milk cheese. Additionally, the
model calculates the total analytical and liability costs for rejecting batches of
milk/cheese as a result of intervention steps.
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Implemented in the R language on the single-pathogen versionBasak et al.
(2024), this model aids French cheese producers in assessing food-borne ill-
ness risks from specific cheese batches. It can also facilitate scenario-based
analyses or, more intriguingly, optimize relevant parameters as discussed in
Chapter 4 of this thesis.

Integration of Bounded Monotone Functions. The second task, ex-
plored in Chapter 3, focuses on the integrationmethods formonotonebounded
functions, a crucial aspect in the QMRA model implementation from the pre-
vious chapter. We specifically address integrating a function f : [0, 1]→ [0, 1]
with respect to a uniform random variable on the unit interval. The chapter
begins with a review of existing integrationmethods, broadly categorized into
nonsequential and sequential approaches. Firstly, we establish a lower bound
for themaximumLp error, for any p ≥ 1, for nonsequential randomizedmeth-
ods. We examine two unbiased methods from this category based on control
variate and stratification principles (Basak et al., 2022b). As noted by Novak
(1992), nonsequential randomizedmethods show limited improvement, with a
L1 error lower bound of 1/8n compared to the deterministic trapezoidal rule’s
worst-case error of 1/2(n+ 1) (see, e.g., Kiefer, 1957). Nevertheless, studying
these methods is valuable, as unbiased nonsequential Monte Carlo methods
serve as building blocks for the design of sequential Monte Carlo methods,
which are shown (Novak, 1992) to be rate-optimal with aminimax rate of n−3/2

for theL1 error. In Chapter 3’s second part, we explore a two-stage sequential
method based on stratified sampling, as used by Novak (1992) to demonstrate
the rate optimality of sequential randomized methods. Our contribution in-
cludes formalizing Novak’s method into an integration algorithm suitable for
our QMRA model, particularly for step-like functions where most variance is
concentrated in a small domain interval. Specifically, we propose three en-
hancements to Novak’s method: 1) a tighter upper bound for the L1 error,
reducing it by a factor of √2; 2) a novel budget allocation scheme for more
efficient resource distribution over the function’s domain, considering its flat
regions; and 3) an optimal rule for selecting the initial number of equispaced
strata for worst-case scenarios. We test these algorithms and improvements
against the simple Monte Carlo method, the trapezoidal rule, and Novak’s
original method Novak (1992) through various numerical benchmarks. The
results validate our theoretical findings and demonstrate our methods’ ad-
vantages for different monotone function classes. Additionally, we include a
QMRA application case benchmark, using a simplified version of the actual in-
tegration problem, to underscore the benefits ofmonotone integrationmeth-
ods.
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Multiobjective Optimization. The last chapter, Chapter 4, is devoted to
studyingmultiobjective optimization algorithms for computationally intensive
stochastic simulators, referred to as Multi Objective Simulation Optimization
(MOSO) problems (Hunter et al., 2019). This investigation is driven by the Arti-
SaneFood project’s goal to optimize the QMRA model’s process intervention
parameters. The chapter reviews existing algorithms within the Bayesian de-
sign and analysis framework for MOSO problems. We examine two primary
approaches for creating a sampling criterion or acquisition function for evalu-
ation points: 1) "maximal uncertainty sampling" and 2) "Stepwise Uncertainty
Reduction (SUR)." In the maximal uncertainty sampling context, our study re-
veals that some well-known sampling criteria from reliability theory literature
are inefficient for MOSO problems, indicating that not all uncertainty mea-
sures are suitable as sampling criteria. However, algorithms based on the
weighted Mean Squared Error (w-MSE) measure show promise. We bench-
mark w-MSE-based algorithms against the PALS (Pareto Active Learning for
Stochastic simulators) algorithm Barracosa et al. (2021), but our results con-
firm that w-MSE variants do not consistently outperform PALS. This led us to
explore SUR-based strategies (Vazquez and Bect, 2009, Vazquez andMartinez,
2006, Villemonteix et al., 2007) for MOSO problems. We introduce a new algo-
rithm based on the weighted-Integrated Mean Squared Error (w-IMSE) (Basak
et al., 2023a), inspired by the SUR principle.

Numerical benchmarks demonstrate significant improvements over PALS
in terms of simulation budget needed to achieve a specified performance
level. However, our findings also affirm that PALS remains a viable, cost-
effective, and straightforward w-MSE algorithm for MOSO problems. Lastly,
Chapter 4 proposes an adaptation of the PALS algorithm Basak et al. (2022a)
for the QMRA application, showcasing its application in optimizing interven-
tion parameters for the single-pathogen QMRA model of MPS STEC.

5.2 . Limitations and Future Work

The research conducted in this thesis lays the groundwork for several po-
tential future research directions.
Quantitative Risk Assessment Model. Firstly, while QMRA models of-
fer mathematical representations of microbiological systems, they inevitably
remain incomplete due to their inherent complexity and various unaccounted
factors (World Health Organization et al., 2021). Validating these models is
challenging; however, data-driven methods and comparisons with existing
models in literature, as outlined in Section 2.5.2 of Chapter 2, provide a frame-
work for this. The developedmultipathogenmodel builds upon variousQMRA
literature sources (especially, Bonifait et al., 2021, Perrin et al., 2014, Sanaa
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et al., 2004, Strickland et al., 2023) and expert input from ASNES, CNIEL, and
ACTALIA. Nonetheless, the model presents opportunities for enhancement.

An improvement area is refining the preharvest intervention step to align
with actual farm milk testing protocols used by cheese producers. Typically,
a farm with milk contamination is excluded from the production chain until it
meets standard hygiene norms, often involving additional costs for enhanced
farm inspections. A potentialmodification could involve updating the farmhy-
giene parameters (namely, α and σ2) for each simulated batch. However, this
change would create dependencies between batches, increasing simulation
costs and limiting parallel computation capabilities.

The proposed DALY metric hinges on critical assumptions, prompting the
need for further exploration. This involves a comprehensive literature review
to gather relevant epidemiological data and the estimation of age-dependent
DALY metrics specific to cheese-borne illnesses in the context of France.

Furthermore, the model could benefit from the enhancements discussed
in Section 2.5.1, including 1) incorporatingmilk testing results for all pathogens
in the preharvest intervention; 2) focusing postharvest intervention on highly
virulent pathogen strains; and 3) implementing a more dynamic and realistic
secondary growth model for Listeria monocytogenes.
Integration of Bounded Monotone Functions. As mentioned in Sec-
tion 3.6, two primary limitations exist when applying monotone bounded in-
tegrationmethods to theQMRA simulator: 1) the presence of internal stochas-
tic variables disrupting the monotonicity of simulator outputs, and 2) the un-
known distribution of the integrating variable, hindering domain-specific inte-
gration reduction. For the first challenge, several approaches have been dis-
cussed to achieve monotonicity in the QMRA simulator implementation. The
second limitation, common in industrial problems involving stochastic simu-
lators, can be addressed by examining the cost trade-off between sampling
from the integrating variable and the simulator. If sampling the integrating
variable is significantly less expensive than simulating the outputs, monotone
bounded integration methods could be advantageous.

A future research direction is to explore sequential algorithms based on
"greedy" strategies for first-level strata determination, focusing on strata bound
differences. These strategies could be numerically efficient for step-like func-
tions, a key interest area, compared to equispaced strata approaches. How-
ever, establishing worst-case upper bounds for such methods poses a signif-
icant challenge.
Multiobjective Optimization. Our study in Chapter 3 concentrates on
developing a sampling criterion for Bayesian optimization algorithms. We pri-
marily focused on the Volume of Symmetric Difference (VSD) metric, which

124



assesses the algorithm’s performance on the Pareto front, indicating accu-
racy in the objective space. However, other metrics like the Misclassification
Rate (MCR), which evaluates performance on the Pareto set (i.e., accuracy in
the input space), also exist. The weighted-Integrated Mean Squared Error (w-
IMSE) method we proposed bases its weights on the dominated area in the
objective space, making it effective for estimating the Pareto front and con-
sistently outperforming PALS on the VSD metric. Yet, the w-IMSE method did
not consistently excel over PALS in terms of the MCR metric. Other w-IMSE
variants with a partial focus on the misclassification rate were tested against
PALS, but none proved consistently superior in both VSD and MCR metrics.
Thus, developing algorithms that enhance performance on both the Pareto
front and set remains a potential area for future research. Our findings indi-
cate that global uncertainty strategies, such as SUR or w-IMSEmethods, often
outperform maximal uncertainty sampling methods. However, w-MSE based
algorithms like PALS (Barracosa et al., 2021) can also be highly efficient.

In the QMRA application context, some objectives are not direct simulator
outputs. Hence, we proposed an extended version of PALS Basak et al. (2022a)
suitable for this framework. However, for the w-IMSE method, the sampling
criterion is not analytically tractable in this context and requires approxima-
tion. Additionally, this criterion is currently defined only for a two-objective
framework, based on the dominated area in the objective space. A natural
progression would be to expand the w-IMSE algorithm for multiobjective se-
tups and nonlinear outputs.

Our research focusedonw-IMSEmethods due to their analytically tractable
sampling criterion, unlikemost SUR-based strategies that necessitate approx-
imating the criterion via Monte Carlo simulations. An interesting future direc-
tion would be to devise analytically tractable SUR strategies within the MOSO
framework, eliminating the need for criterion approximation. Another sig-
nificant aspect of this work involves expanding the numerical benchmark to
compare thew-IMSEmethod andPALS against othermethods in the literature
(Belakaria et al., 2020, Hernández-Lobato et al., 2014) for MOSO problems.

125



126



Synthèse

Ce travail de thèse s’inscrit dans le domaine de la modélisation proba-
biliste et de la quantification de l’incertitude, dans le cadre du projet européen
ArtiSaneFood soutenu par le programme PRIMA de l’Union européenne. Il
vise à développer des interventions biologiques innovantes et des approches
de modélisation des risques pour garantir la sécurité microbienne et la qual-
ité des aliments fermentés artisanauxméditerranéens. Au niveau national en
France, le projet aborde un problème industriel lié à l’évaluation du risquemi-
crobiologique dans l’industrie laitière, en particulier dans la production de fro-
mage àpâtemolle au lait cru, dans le but d’optimiser les stratégies d’intervention.
Plus précisément, le problème est formulé comme une optimisation bayési-
enned’unmodèle d’appréciationquantitative du risquemicrobiologique (AQRM)
afin d’établir des stratégies d’intervention biologique efficaces liées aux tests
de lait ou de fromage pour les producteurs de fromage en France. Le tra-
vail est structuré en trois directions principales : 1) développement et mise
en œuvre d’un modèle AQRM multipathogène pour le fromage à pâte molle
au lait cru, 2) étude des méthodes d’intégration numérique pour les fonctions
monotones et bornées afin d’estimer les sorties du modèle AQRM, et 3) con-
ception d’un algorithme d’optimisation bayésienne adapté à un simulateur
AQRM stochastique et coûteux en calcul.

Le premier chapitre de la thèse porte sur le développement d’un mod-
èle mathématique permettant d’évaluer le risque de maladies d’origine ali-
mentaire et le coût des interventions associées à la production de fromage à
pâte molle au lait cru. Ce travail propose le premier modèle AQRM (Appréci-
ation Quantitative du Risque Microbiologique) multipathogène (Basak et al.,
2023b) pour le fromage à pâte molle au lait cru, s’appuyant sur des études ex-
istantes dans la littérature (voir, par exemple, Bonifait et al., 2021, Perrin et al.,
2014, Sanaa et al., 2004, Strickland et al., 2023). Le modèle proposé évalue
l’impact des maladies d’origine alimentaire sur la santé publique causé par
trois classes de pathogènes potentiellement présents dans le fromage à pâte
molle au lait cru : Main Pathogenic Serotypes of Shiga Toxin producing Es-
cherichia coli (MPS-STEC), Salmonella et Listeria monocytogenes. Ce modèle,
du ferme à la fourchette, reproduit chaque étape de la production de fro-
mage pour estimer le risque de maladies d’origine alimentaire en termes de
l’espérance de vie corrigée de l’incapacité (EVCI) résultant de la consomma-
tion de fromage au lait cru. En d’autres termes, le modèle simule mathéma-
tiquement chaque étape, de la collecte du lait à la ferme au traitement dans
l’usine de production de fromage et à la consommation par la population,
en tenant compte des habitudes de consommation de fromage. De plus, le
modèle AQRM intègre des stratégies d’intervention liées aux tests de lait et
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de fromage pour estimer les coûts des interventions. Une implémentation
du modèle AQRM pour les STEC est fournie en R et dans le cadre du FSKX
(Basak et al., 2024).

Le deuxième chapitre de ce manuscrit explore les méthodes d’intégration
numérique, à la fois séquentielles et non séquentielles, en explorant leur ap-
plication potentielle en exploitant les propriétés de monotonie et de bornage
des sorties du simulateur AQRM. Il propose une revue exhaustive de la littéra-
ture sur lesméthodes d’intégration existantes (voir, par exemple, Kiefer, 1957,
Novak, 1992), en mettant principalement l’accent sur les méthodes aléatoires
non séquentielles et séquentielles, ainsi que leur convergence théorique. La
contribution principale comprend un examendétaillé de laméthode aléatoire
séquentielle proposée par Novak (1992) et des propositions d’améliorations,
telles que la dérivation d’une borne supérieure plus serrée de la variance de
l’estimateur, l’amélioration du schéma d’allocation budgétaire par strate et la
sélection du nombre initial de strates. Une série d’expériences de benchmark
numérique évalue les performances de ces améliorations, démontrant des
avantages significatifs pour l’intégration de fonctions en escalier ou abruptes,
typiques dans le cas d’application AQRM. Le chapitre se conclut par une dis-
cussion des défis associés à l’application de ces méthodes d’intégration dans
le cadre AQRM et fournit un exemple d’application sur une version simplifiée
du problème.

Le dernier chapitre de ce manuscrit étudie les algorithmes d’optimisation
bayésienne adaptés à l’optimisation de simulateurs stochastiques et compu-
tationnellement coûteux. Cette étude est motivée par l’application AQRM où
le décideur est intéressé à trouver tous les paramètres d’entrée optimaux
de modèle AQRM qui minimisent simultanément les sorties du simulateur
AQRM, à savoir le risque de maladies d’origine alimentaire mesuré en termes
d’EVCI et le coût des interventions. Ce chapitre étudie deux grandes caté-
gories d’algorithmes dans le cadre de la conception séquentielle bayésienne
d’expériences informatiques, à savoir 1) Maximal Uncertainty Sampling (MUS)
and 2) StepwiseUncertainty Reduction (SUR). Dans le contexte deMUS, l’étude
révèle que certains critères d’échantillonnage bien connus de la littérature sur
la théorie de la fiabilité sont inefficaces pour les problèmes de MOSO (Multi-
Objective Simulation Optimization), ce qui indique que toutes les mesures
d’incertitude ne conviennent pas comme critères d’échantillonnage. Cepen-
dant, les algorithmes basés sur la mesure de l’erreur quadratique moyenne
pondérée (w-MSE) montrent des promesses. Un benchmark numérique pour
les algorithmesbasés surw-MSE contre l’algorithmePALS (Pareto Active Learn-
ing for Stochastic simulators) Barracosa et al. (2021) est fourni, mais les ré-
sultats confirment que les variantes w-MSE ne surpassent pas systématique-
ment PALS. Cela a conduit à l’exploration de stratégies basées sur SUR (voir,
par exemple, Vazquez and Bect, 2009, Vazquez and Martinez, 2006, Villemon-
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teix et al., 2007) pour les problèmes MOSO. Ce chapitre introduit un nou-
vel algorithme basé sur l’erreur quadratique moyenne intégrée pondérée (w-
IMSE) (Basak et al., 2023a), inspiré par le principe de SUR. Les benchmarks
numériques démontrent des améliorations significatives par rapport à PALS
en termes de budget de simulation nécessaire pour atteindre un niveau de
performance spécifié. Cependant, les résultats confirment également que
PALS reste un algorithme w-MSE viable, rentable et simple pour les prob-
lèmes MOSO. Le chapitre se termine par une adaptation de l’algorithme PALS
(Basak et al., 2022a) pour l’application AQRM, illustrant son application dans
l’optimisation des paramètres d’intervention pour le modèle AQRM mono-
pathogène de MPS STEC.
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Appendices
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A - Estimation of farm hygiene parameters

In Perrin et al. (2014) the authors proposed a hierarchical Poisson mixed
model to express the relationship between the hygiene parameters α and σ2

for each farm, that determines the E. coli concentration, denoted by xd, inBTM on day d,

xd | Λd ∼ Poisson(Λd)
log(Λd) = α+ εd, where εd ∼ N (0, σ2),

(A.1)
where Λd denotes the expected E. coli concentration on day d in a partic-ular farm. E. coli test data was collected under the ArtiSaneFood project work

packages, from three different French cheese producers, namely site A, B and
C, over the years 2019 − 2022, covering a total of 104 farms. This data corre-
sponds to the tests performed at the farm level to quantify the concentration
of E. coli in the BTM of the farms. The number of farms under each site and
the corresponding number of tests are shown in Table A.1.

Table A.1: Specifications of E. coli test data.
Site name A B C TotalNumber of farms 44 39 21 104Number of tests 1057 1508 6310 8875

These 8875 tests consist of two types, namely ”routine“ and ”renforcée“,
and for the estimation of hygiene parameters only ”routine“ tests as consid-
ered. The recorded E. coli concentration on day d, denoted by x0,d, was lowertruncated for observations less than 10 CFU/mL and upper truncated for ob-
servations above 150 CFU/mL for site B, or 300 CFU/mL for site A and C, as
demonstrated in Table A.2.

Table A.2: Specifications of ”routine“ test data.
< 10 > 150 > 300 Exact count TotalA 940 0 20 87 1047B 1353 17 0 66 1436C 6068 0 54 188 6310Total 8361 17 74 341 8793

We propose a Bayesian MCMC sampling approach, to estimate the values
of α and σ2 for each farm. First we define an alternate parameterization of
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the model by applying exponential on (A.1) : Λd = Λ̄ · ηd, where Λ̄ = exp(α)
and ηd = exp(εd). Further define x = {x1, x2, ..., xD} and η = {η1, η2, ..., ηD},where D is the total number of tests for that particular farm. Corresponding
to each xd, the variable cd denotes the truncation class: −1 for lower trunca-
tion, 1 for upper truncation and 0 for no truncation. We choose conditionally
conjugate, non-informative priors Λ̄ ∼ Γ(aΛ̄, bΛ̄) andσ2 ∼ InvGamma(aσ2 , bσ2),
such that the posterior distributions are derived in closed forms of known dis-
tributions.

p(Λ̄|x, η) ∝ p(x|Λ̄, η)p(Λ̄|η)

=
D∏
d=1

e−(Λ̄ηd) (Λ̄ηd)xd
xd!

×
b
aΛ̄
Λ̄

ΓaΛ̄
Λ̄(aΛ̄−1)e−bΛ̄Λ̄

∝ Λ̄(
∑

xd+aΛ̄−1)e−Λ̄(bΛ̄+
∑

ηd)

(A.2)

p(σ2|η) ∝ p(η|σ2)p(σ2)

=
D∏
d=1

1
σ
√

2πηd
e−

1
2σ2 logη

2
d ×

b
a
σ̄2

σ̄2

Γaσ̄2
σ−2(a

σ̄2+1)e−bσ̄2/σ
2 (A.3)

The posterior distributions for Λ̄ and σ2 are obtained as,
(Λ̄|x, η) ∼ Γ(aΛ̄ +

∑
xd, bΛ̄ +

∑
ηd)

(σ2|η) ∼ InvGamma(aσ2 + D

2 , bσ2 + 1
2

D∑
d=1

(log(ηd))2)
(A.4)

Now to sample form the target posteriors we use a Gibbs sampler with a
Metropolis-Hastings step for the conditional distribution of ηd. The iterativealgorithm starts with initialization of the variables {c0

d, x
0, η0, Λ̄0, σ2,0}. The

steps of the t-th iteration, t = 1, 2, . . . , T , are described below.
Step 1. Assuming ηds are independently distributed, sample ηtd sepa-rately from the conditional distribution (ηd|xt−1

d , Λ̄t−1, σ2,t−1), for each
d = 1, ..., D, using Random Walk Metropolis-Hastings (RW-MH) algo-
rithm. For the k-th step, k = 1, ...,K , of the MH algorithm, we use a
LogNormal proposal density with log mean at ηk−1

d and log standard
deviation log(σt−1). The un-normalized target density used in the MH
algorithm, is of the following form,

p(ηd|xd, Λ̄, σ2) ∝ e−(Λ̄·ηd) (Λ̄ · ηd)xd
xd!

× 1
σηd
√

2π
e−

1
2σ2 log(ηd)2 (A.5)

Step 2. Sample Λ̄t from the conditional distribution (Λ̄|xt−1, ηt), given
by,

(Λ̄|xt−1, ηt) ∼ Γ(aΛ̄ +
∑

xt−1
d , bΛ̄ +

∑
ηtd) (A.6)
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Step 3. Sample σ2,t from the conditional distribution (σ2|ηt), given by,

(σ2|ηt) ∼ InvGamma(aσ2 + D

2 , bσ2 + 1
2

D∑
d=1

(log(ηtd)2) (A.7)

Step 4. Sample xtd (for d = 1, 2, ..., D) from the conditional distribution
(xd|x0,d, η

t
d, c

t−1
d , Λ̄t), given by,

(xd|x0,d, η
t
d, c

t−1
d , Λ̄t) ∼ Poisson(ηtd · Λ̄t) (A.8)

given xd ∈ ctd
These steps of the Gibbs sampler are repeated iteratively to simulate the

posterior distributions of the hygiene parameters, with the corresponding
posterior means as their estimates. We used T = 5000 iterations of the Gibbs
sampler withK = 5 for the MH step. The parameters of the non-informative
prior distributions are taken as aΛ̄ = 1, bΛ̄ = 1, aσ2 = 1 and bσ2 = 1. The initial
parameter values were chosen adaptively by another pilot run of the Gibbs
sampler, with Λ̄0 = exp(0.85), σ0 = 0.8 and a burnin rate of 50%.
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B - User inputs of the FSKX model

The FSKX implementation of the QMRA model for STEC allows the user to
run the model with the default input values listed in the following table.

Table B.1: Default simulation settings.
Symbol Valuesfm_N_farms 31fm_q_milk 25fm_sorting_freq 10fm_sorting_lim 50fm_mu_u −0.927fm_tau_u 1.47411fm_a_weibull 0.264fm_b_weibull 16.288fm_mu_ecoli 6fm_tau_ecoli 0.3cm_mu_max_T_min 5.5cm_mu_max_T_opt 40.6cm_mu_max_T_max 48.1cm_mu_max_pH_min 3.9cm_mu_max_pH_opt 6.25cm_mu_max_pH_max 14cm_mu_max_aw_min 0.9533cm_mu_max_aw_opt 0.999cm_mu_max_mu_opt 2.03cm_w_activity 0.99cm_rho_O157H7 0.14cm_rho_otherMPS 0.033cm_y_max_milk 1e+ 09cm_y_max_cheese 1e+ 05cm_storage_duration 12cm_storage_duration_min 1cm_storage_duration_max 40cm_storage_duration_mode 12cm_storage_temperature 5cm_storage_temperature_min 1cm_storage_temperature_max 6cm_p_O157H7 0.76cm_p_MPS_STEC or fm_p_MPS_STEC 0.025cm_mu_eps_O157H7 0cm_tau_eps_O157H7 0.000279659

Continued on the next page
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Symbol Valuescm_mu_eps_otherMPS 0cm_tau_eps_otherMPS 6.5399e− 05cm_molding_duration 3cm_draining_duration 17cm_salting_duration 4.5cm_consumption_time_min 22cm_consumption_time_max 60cm_consumption_time_mode 30cm_v_cheese 2200cm_w_loss 0.9cm_wt_cheese 250cm_wt_serving 25cm_m_sample 25cm_n_sample 5cm_k 0.38cm_r0 1e− 2.33cm_age_max 14cm_p_test 0.5cm_d_test 14cm_n_dose 0cm_n_batch 1flag_consum TRUEflag_MPS FALSE
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C - Performanceofw-MSEandw-IMSEalgorithms

This section presents the additional results from the numerical bench-
mark experiments with w-MSE and w-IMSE methods, on the test problems
from Barracosa et al. (2021). Figure C.1, Figure C.2 and Figure C.3 shows the
performance of the w-MSE algorithm with the proposed weights (w-MSE-vsd)
compared to the propsoed w-IMSE algorithm, PALS and the Random search
algorithm. Although the w-MSE-vsd method showed a slight improvement
with respect to the VSD metric, it performed very poorly with respect to the
MCR metric.

Figure C.4 monitors the performances of several proposed w-MSE meth-
ods in terms of the VSD metric, which do not exhibit any consistent improve-
ment over the PALS algorithm.

Figure C.5 shows the performance of the proposed w-IMSE algorithm on
the estimation of the Pareto set, monitored by themisclassification rate (MCR)
over all the test problems from Barracosa et al. (2021). Clearly the proposed
w-IMSE algorithm does not show improvement in terms of the MCR metric
compared to the PALS algorithm.
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Figure C.1: Average VSD (on left) and MCR (on right) metric comparing thew-MSE-vsd, w-IMSE, PALS and RS methods on test problems g1 and g2 fromBarracosa et al. (2021).
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Figure C.2: Average VSD (on left) and MCR (on right) metric comparing thew-MSE-vsd, w-IMSE, PALS and RS methods on test problems g3 − g6 fromBarracosa et al. (2021).
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Figure C.3: Average VSD (on left) and MCR (on right) metric comparing thew-MSE-vsd, w-IMSE, PALS and RS methods on test problems g7 − g9 fromBarracosa et al. (2021).
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Figure C.4: Average VSD metric comparing the proposed w-MSE methods ontest problems g2− g7 and g9 from Barracosa et al. (2021).
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Figure C.5: Average MCR metric of the proposed w-IMSE based algorithm.
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