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A B S T R A C T

The field of Document Understanding, which addresses the problem of solving
an array of Natural Language Processing (NLP) tasks for visually-rich documents,
faces challenges due to the complex structures and diverse formats of documents.
Real-world documents rarely follow a strictly sequential structure. The visual
presentation of a document, especially its layout, conveys rich semantic infor-
mation, highlighting the crucial need for document understanding systems to
include multimodal information. Despite notable advancements attributed to the
emergence of Deep Learning, the field still grapples with various challenges in
real-world applications. This thesis addresses two key challenges: 1) developing
efficient and effective methods to encode the multimodal nature of documents, and
2) formulating strategies for efficient and effective processing of long and complex
documents, considering their visual appearance.

Our strategy to address the first research question involves designing ap-
proaches that rely only on layout to build meaningful representations. Multimodal
pre-trained models for Document Understanding often neglect efficiency and fail
to fully capitalize on the strong correlation between text and layout. We address
these issues by introducing an attention mechanism based exclusively on layout
information, enabling performance improvement and attention sparsification.

Furthermore, we introduce a strategy based solely on layout to address reading
order issues. While layout inherently captures the correct reading order of docu-
ments, existing pre-training methods for Document Understanding rely solely on
Optical Character Recognition (OCR) or PDF parsing to establish the reading order
of documents, potentially introducing inaccuracies that can impact the entire text
processing pipeline. Therefore, we discard sequential position information and
propose a model that strategically leverages layout information as an alternative
means to determine the reading order of documents.

In addressing the second research axis, we explore the potential of leveraging
layout to enhance the performance of models for tasks related to long and complex
documents. The importance of document structure in information processing,
particularly in the context of long documents, underscores the need for efficient
modeling of layout information. To fill a notable void in resources and approaches
for multimodal long document modeling, we introduce a dataset collection for
summarization of long documents with consideration for their visual appearance,
and present novel baselines that can handle long documents with awareness of
their layout.
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R É S U M É

Le domaine de l’Analyse Intelligente de Documents (Document Understanding),
dédié au traitement automatique des documents, fait face à des défis liés à leurs
structures complexes et formats variés. Les documents possèdent rarement une
structure strictement séquentielle. Leur présentation visuelle, notamment leur
mise en page, contient une information sémantique riche, soulignant la nécessité
d’inclure des informations multimodales dans les systèmes d’analyse intelligente
de documents. Malgré des progrès notables découlant de l’avènement de l’ap-
prentissage profond, le domaine doit relever des défis importants. Cette thèse
traite deux défis clés : 1) développer des méthodes performantes et efficaces pour
encoder la nature multimodale des documents, et 2) formuler des stratégies pour
le traitement performant et efficace de documents longs, en tenant compte de leur
apparence visuelle.

Pour répondre à la première question de recherche, nous développons des ap-
proches basées uniquement sur les informations de mise en page afin de construire
des représentations pertinentes pour les tâches subséquentes. Les modèles pré-
entraînés multimodaux existants étant développés sans considération d’efficacité
et n’exploitant pas pleinement la forte corrélation entre le texte et la mise en
page, nous présentons un mécanisme d’attention exclusivement basé sur la mise
en page, permettant d’améliorer les performances et de rendre l’attention plus
parcimonieuse.

De plus, nous proposons une stratégie basée exclusivement sur la mise en page
pour résoudre les problèmes d’ordre de lecture. Bien que la mise en page capture
l’ordre de lecture des documents, les méthodes de pré-entraînement existantes
dédiées à l’analyse intelligente de documents s’appuient uniquement sur la Recon-
naissance Optique de Caractères (OCR) ou l’analyse de PDF pour établir l’ordre
de lecture des documents, introduisant potentiellement des erreurs qui peuvent
impacter l’ensemble du processus de traitement du texte. Par conséquent, nous
proposons un modèle qui exploite uniquement les informations de mise en page
pour déterminer l’ordre de lecture des documents.

Dans le cadre du deuxième axe de recherche, nous explorons le potentiel de la
mise en page pour améliorer les performances des modèles pour les tâches liées
aux documents longs et complexes. Pour pallier le manque de ressources et de
méthodes pour la modélisation multimodale de documents longs, nous construi-
sons une collection de jeux de données pour le résumé de documents longs avec
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prise en compte de leur apparence visuelle, et introduisons de nouveaux modèles
pouvant traiter des documents longs en tenant compte de leur mise en page.



R E M E R C I E M E N T S

Il y a plus de trois ans, en plein confinement pendant la pandémie de COVID-
19, j’ai commencé ma thèse. Maintenant que cette belle aventure touche à sa fin,
je souhaite exprimer ma gratitude à toutes celles et ceux qui ont contribué à sa
réalisation et m’ont soutenue tout au long de ce parcours.

Je tiens tout d’abord à remercier mon directeur de thèse, Benjamin Piwowarski.
Je te suis reconnaissante de m’avoir acceptée en thèse et de m’avoir fait confiance
tout au long de ces années. Merci pour ta gentillesse et pour avoir toujours cru en
mon potentiel. Merci d’avoir partagé ton expertise pour me former en tant que
chercheuse, ainsi que de m’avoir guidée en me suggérant de nombreuses pistes
de recherche.

Je souhaite également remercier mes encadrants de thèse chez reciTAL, Jacopo
Staiano et Julio Laborde. Merci, Jacopo, pour m’avoir accueillie et formée dans le
monde académique et professionnel ; j’ai appris beaucoup de choses grâce à toi.
Merci, Julio, pour tes conseils, tes propositions et ton soutien. Merci également
pour ta gentillesse et pour m’avoir fait me sentir rapidement à l’aise et intégrée
dans l’équipe.

Merci à Nathalie Aussenac-Gilles, Julien Velcin, Pascale Sébillot, François Yvon
et Antoine Gourru d’avoir accepté de faire partie de mon jury de thèse et d’avoir
pris le temps d’évaluer mon travail.

Un grand merci à mes collègues chez reciTAL, dont la bonne humeur a été
d’une grande aide. Merci également à Gilles Moyse pour sa confiance et pour
m’avoir acceptée en tant que doctorante au sein de l’entreprise. Merci, Gaud, pour
ta bienveillance, ton attention, et pour avoir si bien pris en charge mon dossier
CIFRE tout au long de ma thèse.

À mes amis – en particulier Léopoldine et Rupsi, pour leur soutien incondition-
nel. Merci pour votre écoute, pour avoir été à mes côtés, pour avoir toujours cru
en moi et pour m’avoir donné de la force tout au long de ces années.

À Paul, qui a été un véritable pilier toutes ces années. Merci de m’avoir accom-
pagnée à chacune des étapes de cette thèse, dans les moments de joie comme
dans les moments difficiles. Merci de toujours trouver le moyen de me faire rire
et de me remonter le moral. Merci d’avoir patiemment écouté mes innombrables
répétitions de présentation, au point de commencer à les connaître par cœur toi
aussi. Merci d’avoir toujours été fier de moi.

v



vi remerciements

À toute ma famille, à qui je dois tant. Merci pour votre amour inconditionnel.
À mes parents, merci pour votre soutien inébranlable. Merci d’avoir toujours été
si fiers de moi et de m’avoir constamment encouragée à me surpasser. À mon
frère et à ma sœur, merci pour tous vos encouragements et votre enthousiasme
vis-à-vis de mon travail. À ma grand-mère, Bà Ngoai, merci pour ton humeur
rayonnante qui me donne toujours le sourire.

À mon grand-père, Ông Ngoai, à qui je dédie cette thèse. Merci d’avoir toujours
cru en moi et de m’avoir encouragée à poursuivre de longues études. Merci de
m’avoir sans cesse inspirée avec ta détermination et ta joie de vivre. Merci pour
les précieuses leçons de vie que tu m’as transmises et pour tout ce que tu as fait
pour nous. J’aurais tellement aimé partager ces moments avec toi, je sais que tu
aurais été immensément fier.



C O N T E N T S

abstract i
résumé iii
remerciements v
contents vii
list of figures ix
list of tables xiii
acronyms xvii
1 introduction 1

2 language modeling 7

2 .1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 .2 Neural Language Models . . . . . . . . . . . . . . . . . . . . . . . . 20

3 transformer architecture & pre -trained language models 27

3 .1 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 .2 Transformer-based Pre-trained Language Models . . . . . . . . . . 39

3 .3 Long-range Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 .4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 document understanding 59

4 .1 Document Understanding Tasks and Datasets . . . . . . . . . . . . 61

4 .2 Task-specific Deep Learning Models For Document Understanding 65

4 .3 Deep Fusion of Modalities via General-purpose Multimodal Pre-
training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 .4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 leveraging layout for sparse attention 85

5 .1 Preliminary Experiments: Human Evaluation . . . . . . . . . . . . . 87

5 .2 Skim-Attention: A Novel Layout-Aware Attention Mechanism . . . 88

5 .3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 .4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 .5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 leveraging layout to avoid reading order issues 103

6 .1 Reconstructing Positional Information from 2D Positions . . . . . . 107

6 .2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 .3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 .4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 leveraging layout to deal with long and layout -rich

documents 125

7 .1 Datasets Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



viii contents

7 .2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 .3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 .4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 conclusion 147

8 .1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 147

8 .2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

bibliography 153



L I S T O F F I G U R E S

Chapter 1: introduction 1

Chapter 2: language modeling 7

Figure 2.1 Architecture of Bengio et al. (2000)’s Neural Language Model. 20

Figure 2.2 Compressed (left) and unfolded (right) views of a Recur-
rent Neural Network. . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3: transformer architecture & pre -trained

language models 27

Figure 3.1 Multi-head attention. . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.2 Transformer encoder. . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.3 Transformer decoder. . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.4 Masked Language Modeling illustrated with the sentence
"how are you doing today". Each token is mapped to a dis-
tribution over the vocabulary V . Depicted for the masked
token "you". For the sake of clarity, segment embeddings
and positional encodings are not shown. . . . . . . . . . . . 40

Figure 3.5 Illustration of beam search, where K = 2. From Von Platen
(2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6 Attention mechanisms used in BigBird. Illustration from
Zaheer et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4: document understanding 59

Figure 4.1 Document Understanding tasks and examples. . . . . . . . 61

Figure 4.2 Layout encoding process in LayoutLM (Yiheng Xu et al.
2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.3 Comparisons of LayoutLMv3 (Y. Huang et al. 2022), Doc-
Former (Appalaraju et al. 2021) and SelfDoc (P. Li et al.
2021) on image embedding construction. Adapted from Y.
Huang et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 5: leveraging layout for sparse attention 86

Figure 5.1 Documents selected for our preliminary cognitive experiment. 88

ix



x List of Figures

Figure 5.2 Skimformer model architecture. The input consists of two
components: a sequence of tokens (right-hand side) and
a sequence of token bounding box coordinates (left-hand
side). Only the layout embeddings (left) are used to com-
pute Skim-Attention. L denotes the number of Transformer
encoder layers. Q and K are the queries and keys obtained
by projecting the layout embeddings. V represents the val-
ues produced by projecting the encoder layers’ textual in-
puts. The attention is solely based on token spatial posi-
tions and computed only once. The attention scores are
then distributed to each layer of a Transformer encoder. . . 91

Figure 5.3 Skimming Mask model architecture. The layout embed-
dings, Key and Query projections are initialized from an
already pre-trained Skimformer model. By filtering the k

most attended tokens for each token, the Skim-Attention
scores are then converted to an attention mask and given
as input to a text-based Transformer model. . . . . . . . . . 93

Figure 5.4 Model perplexity on the MIX validation set with respect to
the number of optimization steps. All models are trained
from scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.5 Comparison of time and memory usage for LayoutLM (green),
Skimformer with layout contextualizer (orange) and with-
out (blue). Results are plotted against sequence length. . . 99

Figure 5.6 Skim-Attention maps obtained on three sample documents.
We consider the skim-attention matrix averaged over all the
attention heads. Given a semantic unit, we plot the average
attention score for each token. . . . . . . . . . . . . . . . . . 101

Chapter 6: leveraging layout to avoid reading

order issues 104

Figure 6.1 Examples of documents for each layout category, arranged
from the simplest to the most complex. . . . . . . . . . . . 107

Figure 6.2 Ground-truth reading order (a) compared to the reading
order generated by Tesseract (b) for a sample table. Arrows
emphasize the differences in reading order in the first row.
Non-highlighted text indicates that it does not appear in
the serialized sequence. . . . . . . . . . . . . . . . . . . . . . 109



List of Figures xi

Figure 6.3 Ground-truth reading order (a) compared to the reading
order generated by Tesseract (b) for a document with a
two-column layout. The document was cropped for better
visibility. Arrows emphasize the differences in reading or-
der. Non-highlighted text indicates that it does not appear
in the serialized sequence. . . . . . . . . . . . . . . . . . . . 110

Figure 6.4 Distances between: the left edge of each box (x′
0 − x0, in

green), the right edge of the second box and the left edge
of the first (x′

1 − x0, in orange), and the right edge of each
box (x′

1 − x1, in blue). . . . . . . . . . . . . . . . . . . . . . . 111

Figure 6.5 Layout2Pos Architecture. . . . . . . . . . . . . . . . . . . . . 113

Figure 6.6 Architecture of Layout2Pos integrated into a BART model,
i.e., BART+Layout2Pos. The input consists of two compo-
nents: a sequence of tokens (middle) and a sequence of
token bounding box coordinates (left). . . . . . . . . . . . . 114

Chapter 7: leveraging layout to deal with long

and layout -rich documents 127

Figure 7.1 Dataset Construction Process. . . . . . . . . . . . . . . . . . 130

Figure 7.2 Distribution of failure types in arXiv-Lay (top) and PubMed-
Lay (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 7.3 Distribution of topics covered by all publishers (red) vs
distribution of topics covered by publishers whose name
contains the word Korean (blue). . . . . . . . . . . . . . . . . 133

Figure 7.4 Distribution of research areas in arXiv-Lay (a) and HAL (b). 135

Figure 7.5 LoRaLay evaluation interface. . . . . . . . . . . . . . . . . . 142

Figure 7.6 Benefit of using layout on arXiv-Lay (blue) and PubMed-
Lay (red), defined as the difference in ROUGE-L scores be-
tween BigBird-Pegasus+Layout and BigBird-Pegasus. For
each dataset, quartiles are calculated from the distributions
of article lengths (a), summary lengths (b) and variance in
the height of the bounding boxes (c). ROUGE-L scores are
then computed per quartile range, and averaged over each
range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144





L I S T O F TA B L E S

Chapter 1: introduction 1

Chapter 2: language modeling 7

Chapter 3: transformer architecture & pre -trained

language models 27

Chapter 4: document understanding 59

Table 4.1 Summary of general-purpose, multimodal pre-training doc-
ument understanding models. . . . . . . . . . . . . . . . . . 70

Chapter 5: leveraging layout for sparse attention 86

Table 5.1 Average (std) time (in seconds) required to answer ques-
tions from documents, depending on whether layout is pro-
vided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 5.2 Test perplexity on the MIX dataset after 10k optimization
steps. Each model was trained from scratch. Bold denotes
the best score. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 5.3 Ablation study on the MIX dataset, where perplexity on the
test set is reported. All models were trained from scratch.
Bold denotes the best score. . . . . . . . . . . . . . . . . . . 98

Table 5.4 Model performance (in %) on the DocBank-LA dataset.
Seq. Len indicates the number of tokens attended with ei-
ther standard attention (for Skimformer, BERT-based and
LayoutLM-based models), or Longformer attention (for Long-
former and LongSkimformer). Nb Attention represents the
number of times attention (original and Skim-Attention) is
computed and stored. Total Compute specifies the ratio of
the final computational cost (# operations needed to com-
pute attention) w.r.t. BERT/LayoutLM or Longformer. Each
model was pre-trained from scratch on the MIX dataset,
then fine-tuned on DocBank-LA. . . . . . . . . . . . . . . . 100

Chapter 6: leveraging layout to avoid reading

order issues 104

Table 6.1 Accuracy (in %) obtained by each OCR engine, for each
document layout type. . . . . . . . . . . . . . . . . . . . . . 108

xiii



xiv List of Tables

Table 6.2 Example document from FUNSD, SROIE, and CORD, ac-
companied by their corresponding target sequences that
include the entities to be extracted paired with their corre-
sponding keys. Best viewed in color. . . . . . . . . . . . . . 117

Table 6.3 Accuracy in predicting the next token for pairs sourced
from ReadingBank, which were not used for pre-training.
Selected pairs are considered "difficult", meaning that the
tokens are positioned on different lines. . . . . . . . . . . . 121

Table 6.4 Model performance (in %) on FUNSD, SROIE, and CORD,
reported for 1) the original reading order and 2) three shuf-
fled orders (averaged). Best F1 scores for each dataset/reading
order are reported in bold. . . . . . . . . . . . . . . . . . . . 123

Chapter 7: leveraging layout to deal with long

and layout -rich documents 127

Table 7.1 Datasets statistics. Article and summary lengths are com-
puted in words. For KoreaScience, words are obtained via
white-space tokenization. Difference between arXiv and
arXiv-Lay is due to the fact that we retain the whole docu-
ment, while Cohan et al. (2018) truncate it after the conclu-
sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 7.2 Datasets splits and statistics. Input and output lengths are
computed in tokens, obtained using Pegasus and mBART-
50’s tokenizers for the English and non-English datasets,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 7.3 ROUGE scores on arXiv-Lay and PubMed-Lay. Reported
results obtained by Pegasus and BigBird-Pegasus on the
original arXiv and PubMed are highlighted with a gray
background. The best results obtained on arXiv-Lay and
PubMed-Lay are denoted in bold. . . . . . . . . . . . . . . . 138

Table 7.4 Absolute ROUGE-L score differences between each pair of
models, on arXiv-Lay/PubMed-Lay (column − row). . . . 139

Table 7.5 Quartiles calculated from the distributions of article lengths,
summary lengths, and variation in the height of bounding
boxes, for arXiv-Lay and PubMed-Lay. . . . . . . . . . . . . 139

Table 7.6 ROUGE scores on the non-English datasets. The best re-
sults for each dataset are reported in bold. . . . . . . . . . . 140

Table 7.7 Percent confidence obtained for the main language, for each
dataset split. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of Tables xv

Table 7.8 Average human judgement scores obtained by compar-
ing gold-truth abstracts and summaries generated by Big-
Bird and BigBird+Layout from 50 documents sampled from
arXiv-Lay and HAL. Inter-rater agreement is computed us-
ing Krippendorff’s alpha coefficient, and enclosed between
parentheses. Best scores are reported in bold. ↑ means that
higher is considered “better”, whereas ↓ signifies the op-
posite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Table 7.9 Quartiles calculated from the distributions of article lengths,
summary lengths, and variation in the height of bounding
boxes, for arXiv-Lay and PubMed-Lay. . . . . . . . . . . . . 144





A C R O N Y M S

AI Artificial Intelligence

CNN Convolutional Neural Network

GCN Graph Convolutional Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

NLP Natural Language Processing

NLI Natural Language Inference

MLM Masked Language Modeling

MVLM Masked Visual-Language Modeling

NSP Next Sentence Prediction

LSTM Long Short Term Memory

NER Named Entity Recognition

POS Part-of-Speech

ELMo Embeddings from Language Models

BERT Bidirectional Encoder Representations from Transformers

RoBERTa A Robustly Optimized BERT Pretraining Approach

ALBERT A Lite BERT

BART Bidirectional and Auto-Regressive Transformers

GPT Generative Pre-trained Transformer

T5 Text-to-Text Transfer Transformer

ETC Extended Transformer Construction

LAMPreT Layout-Aware Multimodal PreTraining

LSPE Learnable Sinusoidal Positional Encoding

LiLT Language-independent Layout Transformer

BPE Byte Pair Encoding

BPC Bits-per-character

ROUGE Recall-Oriented Understudy for Gisting Evaluation

BLEU Bilingual Evaluation Understudy

SQuAD Stanford Question Answering Dataset

xvii



xviii acronyms

GLUE General Language Understanding Evaluation

LRA Long-Range Arena

SCROLLS Standardized CompaRison Over Long Language Sequences

FUNSD Form Understanding in Noisy Scanned Documents

CORD Consolidated Receipt Dataset

SROIE Scanned Receipts OCR And Key Information Extraction

LSH Locality Sensitive Hashing

OCR Optical Character Recognition

OOV Out Of Vocabulary

PLSA Probabilistic Latent Semantic Analysis

LDA Latent Dirichlet Allocation

LCS Longest Common Subsequence



C
h

a
p

t
e

r

1
I N T R O D U C T I O N

Driven by factors such as increased digitization, the adoption of electronic com-
munication, and the expansion of online platforms, the past two decades have
seen an unprecedented and ever-increasing trend in data production (Hilbert and
López 2011; Clissa 2022). Notably, it is estimated that the stock of textual data is
currently expanding at a rate of 7% per year (Villalobos et al. 2022). In a world
saturated with information, where the volume of electronic documents keeps
growing, the ability of machines to read, understand and interpret documents 1 with
human-like proficiency becomes increasingly crucial. This question forms the core
focus of our investigation into improving the automated process of reading, inter-
preting, and extracting meaningful information from documents, i.e., Document
Understanding.

The foundation of digital transformation lies in automated information pro-
cessing, with escalating demands for increased processing power, speed, and ac-
curacy across multiple domains and industries such as law, business, and health-
care. In the business field, electronic documents play a central role. Ranging
from purchase receipts and industry reports to sales contracts and financial state-
ments, business documents encapsulate a plethora of complex information. In
this context, hyperautomation has emerged as a highly-demanded 2 approach to
automate and optimize business document processing by introducing Artificial
Intelligence (AI) technologies. Examples of successful products that have empow-
ered a range of industries with hyperautomation technologies include Microsoft
Azure AI Document Intelligence, 3 Amazon Textract, 4 and Google Document
AI, 5 among others. At the core of hyperautomation lies Document Understand-
ing, also known as Document Intelligence. Encompassing the techniques used to
automatically analyze and understand documents, Document Understanding is
challenging due to the complex structures and varied formats of documents, the
quality of scans and OCR systems used, and the diversity of knowledge domains.

1. https://document-intelligence.github.io/DI-2022/
2. https://www.gartner.com/en/documents/4019586
3. https://azure.microsoft.com/en-us/products/ai-services/

ai-document-intelligence/
4. https://aws.amazon.com/fr/textract/
5. https://cloud.google.com/document-ai?hl=en

1

https://document-intelligence.github.io/DI-2022/
https://www.gartner.com/en/documents/4019586
https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence/
https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence/
https://aws.amazon.com/fr/textract/
https://cloud.google.com/document-ai?hl=en
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In contrast to mainstream NLP, which typically deals with plain text documents,
the content encountered in real-world documents—such as scientific articles, news
reports, or emails—is rarely strictly sequential. When creating documents, writers
rely on the assumption that structured and visual formats, such as tables, graphs,
or infographics, are more understandable to readers than sequential text. This
preference is grounded in human visual perception and our ability to compre-
hend spatial context within a text. In other words, the appearance of a document,
and especially its layout—defined as the spatial arrangement and organization
of both graphical and textual elements—guides our reading process and conveys
rich semantic information. Conventional NLP approaches do not consider this
information, which may hinder their effectiveness in handling real-world docu-
ments. This underscores the critical need for document understanding systems to
incorporate multimodal information, extending beyond mere textual content to
encompass document layout and visual appearance.

Addressing the challenges posed by Document Understanding requires a multi-
disciplinary approach that extends beyond NLP, encompassing fields such as Com-
puter Vision to handle visual elements and Information Retrieval for document
search and clustering. Over the past thirty years, document understanding sys-
tems have incorporated a fundamental aspect of multimodality, evolving from
rule-based heuristics and Machine Learning approaches to methods based on
Deep Learning. Notably, a significant breakthrough in the field has been observed
with the widespread adoption of large-scale multimodal pre-training for general
document-level understanding (Yiheng Xu et al. 2020). This versatile framework
produces powerful language models with general knowledge, making them easily
adaptable for various applications. Large-scale pre-training has become a cor-
nerstone for document understanding systems, leading to a remarkable leap in
performance across various tasks in the field. Yet, despite its importance for digi-
tization, the academic literature on resources and methodologies for addressing
Document Understanding remains relatively scarce. Furthermore, the field faces
critical limiting factors for achieving satisfying results in practical applications.

A key challenge lies in the constraint on the input length of current large-scale
pre-trained language models, restricted to a maximum of 1,024 tokens. This lim-
itation hinders effective multi-page and cross-page understanding of long and
complex documents. Furthermore, the discrepancy between high-quality anno-
tated training data and real-world documents, commonly obtained from scanning
equipment, and exhibiting lower quality, can result in sub-optimal performance.
Besides, document understanding systems face challenges in practical applica-
tions due to insufficient computing resources and labeled training samples. In
addition, existing document understanding tasks are often treated independently,
lacking effective leveraging of correlations between tasks. Finally, accuracy in text
recognition and word ordering (i.e., serialization) from OCR and PDF-parsing en-
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gines plays a pivotal role in downstream tasks, sometimes even more than the
choice of model architecture (Borchmann et al. 2021).

Aligning with the current trend in the field, this thesis explores the use of
Deep Learning methods, with a particular emphasis on general-purpose pre-
training techniques, to advance automatic document understanding. Within the
scope of this thesis, we cover two key challenges in the field: 1) Developing
efficient and effective methods to encode the multimodal nature of documents, and
2) Formulating strategies to efficiently and effectively process long and complex
documents, with consideration for their visual appearance.

The organization of this PhD thesis is as follows: Chapters 2 to 4 review existing
literature and works relevant to our research, while Chapters 5 to 7 present our
contributions to the field.

Literature review Chapter 2 explores the extensive literature that forms the
foundation of Language Models, tracing their evolution from the early era of Sta-
tistical Language Models to the emergence of Neural Language Models. Chapter 3

centers on the Transformer architecture (Vaswani et al. 2017) and its application
in creating powerful Pre-trained Language Models, unraveling how these foun-
dational models have reshaped the landscape of NLP. However, the applicability
of these models to long documents is hindered by the quadratic complexity of
the Transformer. This complexity primarily stems from its core component, the
self-attention mechanism, which necessitates each element in the sequence to ac-
quire information from every other element in the sequence. Therefore, Chapter 3

also delves into modeling advances and architectural innovations that tackle the
complexity issue of self-attention. Closer to the applicative field of this PhD thesis,
Chapter 4 offers an overview of the field of Document Understanding, exploring
recent advancements driven by Transformer-based pre-training techniques for
deep fusion of modalities.

Leveraging layout-only information We address the research question of de-
veloping efficient and effective methods to encode the multimodal nature of
documents. Our strategy involves designing approaches that rely only on lay-
out information to build meaningful representations, aiming to enhance both
the effectiveness and efficiency of document understanding processes. As exist-
ing multimodal pre-trained models for Document Understanding are developed
without sufficient attention to efficiency considerations, they still grapple with the
quadratic complexity of self-attention. Incorporating layout information, while
beneficial, increases resource demands compared to models that exclusively han-
dle text. Chapter 5 (Leveraging layout for sparse attention) focuses on exploiting layout
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in a computationally efficient manner by investigating 1) whether attention can be
determined solely from layout information, and 2) whether layout can contribute
to mitigating the complexity of self-attention. Drawing inspiration from insights
in cognitive science, we address these questions by introducing Skim-Attention, a
novel attention mechanism exclusively based on document layout. This approach
not only offers a novel means to integrate layout information for enhanced per-
formance but also enables the sparsification of attention.

Furthermore, we introduce a strategy based solely on layout to address and
avoid reader order issues. While layout inherently encapsulates the correct read-
ing order of documents through visually organized content, existing pre-training
methods for Document Understanding often overlook this aspect, relying solely
on OCR or PDF parsing to determine the reading order of documents. Yet, accu-
rately retrieving the reading order of visually-rich documents proves challenging,
potentially compromising performance in downstream tasks. In Chapter 6 (Lever-
aging layout to avoid reading order issues), we investigate whether discarding reading
order information obtained via OCR and, instead, strategically depending on layout
information to establish an alternative for the provided reading order of documents can
sustain performance in visual information extraction tasks. Based on the intuition
that layout contains the information to supplement reading order, we present
Layout2Pos—a shallow Transformer designed to learn position embeddings from
layout exclusively. By avoiding reading order issues linked to the use of sequen-
tial position information, this design choice enhances the robustness of models to
changes in reading order.

Processing long documents with awareness of their layout We explore the
potential of leveraging layout to improve the performance of models for tasks
associated with long and complex documents. The significance of document
structure for information processing, as demonstrated by prior works in cog-
nitive sciences and particularly crucial in long documents, emphasizes the need
for efficient modeling of layout information. However, methods for efficient long
document understanding remain under-explored. In Chapter 7 (Leveraging lay-
out to deal with long and layout-rich documents), we investigate the significance of
integrating layout information into long-range modeling for Long Text Summariza-
tion. This task, well-suited to benefit from a global context, relies on document
structures to guide summary generation. To spurr further research on how to
incorporate multimodal information to better capture long-range dependencies,
we build LoRaLay, a multilingual corpus of datasets designed for long document
summarization with consideration for their visual appearance. These datasets,
enriched with layout/visual information, along with novel baselines combining
layout-aware and long-range models, provide valuable resources for exploring
the use of multimodal information in long document modeling.
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By developing strategies relying exclusively on layout information, we con-
tribute to the efficient and effective encoding of the multimodal nature of docu-
ments, offering practical advancements in Document Understanding. Addition-
ally, our investigations into leveraging layout for processing long and complex
documents provide valuable resources and insights to efficiently and effectively
address the challenges associated with these documents. These contributions of-
fer novel solutions to challenges in Document Understanding, augmenting the
practical utility of document understanding models.
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Language, a complex and intricate system guided, stands out as a distinctive hu-
man ability that develops in early childhood and undergoes continuous evolution
throughout a lifetime (Hauser et al. 2002). Comprehending and communicating
in human language poses a significant challenge for Artificial Intelligence (AI)
algorithms. Achieving this goal has been a longstanding research challenge, orig-
inating from the proposal of the Turing test in the 1950s (Turing 1950). The aim
is to empower machines with the capability to read, write, and communicate in a
manner akin to humans. In particular, language modeling has emerged as a major
approach, extensively studied for language understanding and generation over
the past two decades. Since their emergence, language models have consistently
pushed the boundaries of state-of-the-art performance across various Natural Lan-
guage Processing (NLP) benchmarks. In this chapter, we delve into the extensive
literature that underpins the evolution of language models, tracing their trajectory
from the early era of statistical language models to the advent of neural language
models.

2.1 Language Modeling

Language modeling stands out as the major approach to advancing language
understanding and generation. A language model is a probabilistic model de-
signed to capture the probability distribution of words within a given language,
thereby constructing effective representations of text. Originally conceived for

7
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text generation, language models have recently emerged as a powerful means to
establish parametric models that can be fine-tuned on a wide range of tasks. In
this section, we explore the diverse tasks in NLP, discuss the building blocks and
historical approaches for Language Modeling, and describe how language models
are evaluated.

2.1.1 Tasks

The primary goal of language models is to understand and generate human-
like text. Playing a pivotal role in numerous NLP tasks encompassing both text
understanding and generation, language models are crucial in advancing our
understanding of language. We explore several NLP tasks that have received ex-
tensive attention due to their practical significance and their role in advancing the
understanding on language. Addressing these challenges requires models that
can comprehend semantics, context, and syntactic structures in text, making them
central to the development of sophisticated NLP systems.

2.1.1.1 Natural Language Understanding

Comprising a broad array of tasks, Natural Language Understanding focuses on
the ability of machines to process written language.

Text Classification involves categorizing text into one or more pre-defined
classes or categories. This task finds applications in various scenarios, including
sentiment analysis, spam detection, and content moderation. Automating these
processes through language models can streamline data management, decrease
manual workload, and enhance the accuracy and efficiency of analysis.

Information Extraction consists in automatically extracting structured informa-
tion from unstructured and/or semi-structured documents, primarily texts. The
goal of information extraction is to convert large volumes of textual data into a
more organized and usable format, enabling machines to understand the content.
Information extraction involves identifying specific pieces of information, such
as entities (e.g., person names, organizations, and quantities), and relationships
between entities within a given text. Information extraction consists in extracting
semantic entities (entity recognition) and their relationships (relation extraction). En-
tity recognition is often framed as a Named Entity Recognition (NER) task. NER

is a sequence-labeling task which consists in identifying and classifying named
entities using a tagging scheme (e.g., BIO format), which provides a structured
way to label tokens based on their role in an entity.
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Natural Language Inference (NLI) is the task of determining the relationship
between two given texts such as entailment (the target text implies the source),
contradiction (the source is false), and neutral (there is no relation between the
source and the target texts).

Part-of-Speech (POS) tagging is the process of determining the grammatical
category, such as noun, verb, adjective, etc., of a given word or text segment, relying
on its use and context. This information helps in identifying the syntactic roles
of words and understanding the grammatical relationships between them. POS

tagging stand as a component of traditional NLP systems, serving as a subtask for
practical applications.

Coreference Resolution is the task of finding all linguistic expressions (or men-
tions) that refer to the same entity in a text. It constitutes a crucial stage for many
higher level NLP tasks that require a deep understanding of natural language, e.g.,
information extraction. Similar to POS tagging, coreference resolution constitutes
a component of traditional NLP systems.

2.1.1.2 Natural Language Generation

Natural Language Generation focuses on the automatic generation of human-like
language. The primary goal of natural language generation is to enable machines
to produce coherent and contextually appropriate text.

Text Generation refers to the process of automatically creating human-like text
for diverse purposes, such as articles, blogs, research papers, social media posts,
source codes, and more.

Text Summarization is a generation task that aims to generate concise and
coherent summaries from lenghty texts. Summarization can be categorized into
two categories: extractive summarization and abstractive summarization. Extractive
summarization consists in selecting and combining existing sentences from the
text to create the summary. On the other hand, abstractive summarization goes
beyond verbatim copying and may generate new phrases and sentences that
are not present in the source text. Abstractive summarization, with its ability to
generate more concise and coherent summaries, has the potential to capture the
overall meaning of a text. Overall, text summarization is a crucial component
in the development of applications that require efficient information processing,
allowing users to access relevant information more quickly and effectively. It plays
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a significant role in reducing information overload and improving the accessibility
of large volumes of text.

Machine Translation is the automated process of translating text from one
language to another. The aim of machine translation is to produce translations
that are linguistically accurate and convey the intended meaning of the source
text in the target language. Machine translation finds application in a range of
domains and industries, including language service providers, global businesses,
content localization and information access.

Question Answering involves providing accurate and relevant answers to ques-
tions posed in natural language. It encompasses various types of questions, and
the answers can be generated from a variety of sources, including knowledge
bases, databases, documents, or a combination of sources. Question answering
tasks can be open-domain or closed-domain, fact-based or reasoning-based. The
emphasis is on formulating an appropriate response to a question. Extractive and
abstrative question answering are two different approaches to formulating answers
for questions. Extractive question answering involves selecting and extracting a
span of text from a document as the answer to a question. While maintaining
factual accuracy, this approach is limited to information explicitly present in the
document. To produce concise answers and allow for potential novel insights,
abstractive question answering consists in generating a response that may not
be explicitly stated in the document. As such, it potentially involves rephrasing
or synthesizing information to provide a concise and coherent response. This
approach is more challenging as it requires ensuring the generated answers are
accurate and contextually appropriate. It has found wide application in scenarios
such as search engines and customer support.

Machine Reading Comprehension is a specific type of question answering task that
focuses specifically on questions related to a given passage of text, and requires
comprehending and extracting information from that passage. The questions are
typically formulated based on the content of the provided text, and the goal is
to understand the text and extract relevant information to answer the questions.
Usually, the passage is provided and the goal is to extract the answer directly
from it.

Dialog Systems are designed to engage in natural language conversations with
users. They play a crucial role in human-machine interaction, facilitating effective
communication between humans and machines. Dialog systems are required to
comprehend and interpret user input, keep track of the conversation context, cre-
ate responses that are appropriate and linguistically coherent, and maintain an
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understanding of the state of the conversation and user preferences throughout
the interaction. Their applications span various domains such as customer service,
education, and entertainment.

2.1.1.3 Towards Evaluating Universal Models

Properly evaluating models designed to handle various NLP tasks poses a sig-
nificant difficulty (Jones 2005). As the demand for models capable of addressing
diverse linguistic challenges continues to grow, it becomes necessary to estab-
lish robust evaluation methodologies. We explore the evaluation process of these
universal models, exploring NLP benchmarks and their role in providing compre-
hensive insights into model performance across a spectrum of tasks.

Benchmarking emerged as a prominent methodology in the 1980-1990s to ad-
dress the challenge of conducting proper evaluation. The Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al. 2016) dataset, a collection of question-
answer pairs derived from Wikipedia articles, serves as a widely used evaluation
benchmark for question answering models. With the rise of more general-purpose
methods in NLP, often replacing task-specific methods, the emergence of new and
exhaustive benchmarks followed suit. The General Language Understanding Eval-
uation (GLUE) benchmark (A. Wang et al. 2018) was developped to train and assess
the performance of natural language understanding models across a diverse set of
language tasks. GLUE covers nine sentence/sentence-pair language understanding
tasks (e.g., grammaticality judgments, sentence similarity, NLI) selected to cover a
broad array of dataset sizes, text genres, degrees of difficulty, and various linguis-
tic aspects. The goal of GLUE is to encourage the development of models that can
generalize well, exhibit a broad understanding of natural language, and demon-
strate robust performance across different tasks. To advance research aimed at
developing models with task-agnostic knowledge representations, the KILT bench-
mark (Petroni et al. 2021) was introduced. Comprising eleven datasets across five
different tasks—including fact checking, open-domain question answering, slot
filling, entity linking, and dialogue—the KILT benchmark is designed to evaluate
models that must condition on specific information within large textual resources.
These benchmarks offer both a training set and an evaluation set for each task,
enabling researchers to train models on one subset of the data and evaluate their
performance on another, ensuring fair assessments of generalization. Additionally,
unlike earlier benchmarks, they assign each model a vector of scores to gauge
accuracy across a range of scenarios.
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2.1.2 Language Modeling

Language Models have incited substantial interest across both academic and
industrial domains, owing to their unprecedented performance in various tasks
and domains, including medical language processing (Thirunavukarasu et al.
2023), scientific research (H. Wang et al. 2023), and code generation (F. F. Xu et al.
2022).

Language modeling aims to predict the next element in a given sequence of
tokens. In the early days of NLP, researchers developed rule-based systems to
process language (Manning and Schutze 1999). These systems relied on hand-
crafted linguistic rules to analyze and generate text. While these approaches were
valuable for specific tasks, they lacked the ability to capture the richness and
variability of natural language. This limitation paved the way for the emergence
of Statistical Language Models.

We begin by discussing text representation units and the methods employed
to obtain them. We then explain how probabilities over text sequences are calcu-
lated, before delving into the early iterations of language models, i.e., Statistical
Language Models.

2.1.2.1 Text Representation Units

Natural language inputs can be commonly modeled as sequences of tokens,
with various levels of granularities—characters, words, sentences, and more. To
process these sequences, text is usually tokenized. Tokenization is a crucial pre-
processing step that consists in splitting the input text into smaller units, i.e.,
tokens. Tokens serve as the fundamental components of language modeling, and
all models operate on raw text at the token level. These tokens are used to build
the vocabulary, which represents a set of unique tokens within a corpus. A to-
ken can be a character, a word, or a subword. Various algorithms adopt distinct
processes to perform tokenization.

Word-based Tokenization divides a text into words using a delimiter, with
space and punctations being the most commonly employed in English. Rules are
added into the tokenization process to deal with special cases such as negative
forms (for instance, space and punctuation-based tokenization generates three to-
kens for the word "don’t": "don", "’", and "t", whereas a more effective tokenization
using specific rules would break it into "do", and "n’t").

In English, words like "helps", "helped", and "helping" are derived forms of
the base word "help". Similarly, the relationship between "dog" and "dogs" is
analogous to that between "cat" and "cats", and "boy" and "boyfriend" show the
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same relationship as "girl" and "girlfriend". In some other languages like French
and Spanish, verbs can have more than 40 inflected forms. However, word-based
tokenization does not cater for the internal structure of words, as morphological
information, i.e., word formation and relationships, are not taken into account by
the tokenization process. Instead, different inflected forms of the same word (e.g.,
"cat" and "cats") are tokenized into two distinct tokens. Consequently, models
would have more difficulty recognizing the similarity between those words. In
addition, word-based tokenization leads to a very large vocabulary. Furthermore,
at inference, words not included in the vocabulary must be handled. This typi-
cally involves the use of an Out Of Vocabulary (OOV) token, a practice that often
contributes to suboptimal results.

Character-based Tokenization (Wehrmann et al. 2017) can be used to allevi-
ate the vocabulary problem. This tokenization process splits the raw text into
individual characters, resulting in a very small vocabulary with little to no OOV

words.

However, few languages convey a significant amount of information within
each character. Therefore, character-based tokenization suffers from a weak cor-
relation between characters and semantic/syntactic aspects of the language. Fur-
thermore, working at the character level results in much longer sequences, which
are more challenging to deal with.

Subword-based Tokenization Modern NLP models address both word and
character-based tokenization issues by tokenizing a text into subword units, a solu-
tion between word and character-based tokenization. Subword-based tokenization
algorithms aim to break down texts in a way that tackles both the limitations of
word-based tokenization—by maintaining a consistent vocabulary size—and the
drawbacks of character-based tokenization—by minimizing the number of tokens
required to represent a given set of texts. In practice, they use the following prin-
ciples: 1) frequently used words should not be split into smaller subwords, and
2) rare words should be split into smaller, meaningful words.

Gage (1994) proposed the Byte Pair Encoding (BPE) method, a compression
algorithm that breaks down words into subwords to form a compact, fixed-size
vocabulary with subwords of varying lengths. The BPE algorithm performs a
statistical analysis of the training dataset to identify common symbols within
words, e.g., consecutive characters of arbitrary lengths. It starts with an initial
vocabulary consisting of symbols of length 1 (characters), and iteratively merges
the most frequent pairs of adjacent symbols to produce new, longer symbols. The
process stops until a specified number of iterations or a predefined vocabulary
size is reached. The resulting symbols can be used as subwords to segment words.
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BPE is widely used for input representations in NLP models, and has contributed
significantly to improving their performance by enhancing their ability to handle
morphologically-rich languages and OOV words.

WordPiece (Y. Wu et al. 2016) is another subword segmentation algorithm.
Similar to BPE, WordPiece initializes the vocabulary to include every character
found in the training data and iteratively learns a given number of merge rules.
Using this vocabulary, a language model is built on the training data. In contrast
to BPE, WordPiece does not choose the most frequent symbol pair, but the one
that yields the highest increase in the likelihood of the training data once added
to the vocabulary. From the updated vocabulary, a new language model is built
and the process is repeated until a predefined limit of word units is reached or
the likelihood increase falls below a certain threshold.

Subword-based tokenization often maintains linguistic meaning, such as mor-
phemes. For example, BPE decomposes the word "understandable" into meaning-
ful subword units such as "under", "stand", and "able". Consequently, even though
a word may be unknown to the model, individual subword tokens may retain
enough information for the model to deduce its meaning to a certain degree.
Additionally, using subword units helps keeping the vocabulary at a reasonable
size.

2.1.2.2 Language Model Definition

A language model is a probabilistic model of a natural language that pre-
dicts probability distributions over sequences of tokens. Given a sequence of
tokens w1, w2, . . . , wn, a language model aims to calculate the joint probability
P (w1, w2, . . . , wn) of the whole sequence. Using the chain rule, the probability of
the sequence can be decomposed into a product of conditional distribution on
tokens. Most commonly, the probability P of a sequence of words can be obtained
from the probability of each word given the preceding ones:

P (w1, . . . , wn) =
n∏

t=1

P
(
wt | w1, . . . wt−1

)
. (2.1)

Many tasks, if not all, can be formulated as a sequence-to-sequence task, wherein
w1, . . . , wk represents the input (e.g., a text to summarize). The probability of the
output wk+1, . . . , wn (e.g., the corresponding summary) conditioned on w1, . . . , wk

can then be calculated as follows:

P (wk+1, . . . , wn | w1, . . . , wk) =
n∏

t=k+1

P
(
wt | w1, . . . , wt−1

)
. (2.2)
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In other words, the probability of a sequence is estimated as a product of each
token’s probability given its preceding tokens. Causal 1, or autoregressive language
models use this decomposition.

A successful language model estimates the distribution across text sequences,
encoding not only the grammatical structure, but also the potential knowledge
embedded in the training corpora (Jozefowicz et al. 2016).

2.1.2.3 Statistical Language Models

The history of language models can be traced back to the 1990s, a period that
marked the emergence of Statistical Language Models. Such language models
are rooted in probabilistic approaches to predict word sequences. The underlying
idea is to simplify the word prediction model using the Markov assumption, e.g.,
approximating the probability of the next word using the most recent context.
Prominent examples include models based on n-grams (P. F. Brown et al. 1992;
Omar and Al-Tashi 2018). It is worth noting that these models employ word-based
tokenization algorithms, which could have influenced their performance.

N-gram Models simplify the calculation of the joint probability by operating
on the assumption that the likelihood of the next token in a sequence solely
depends on a fixed-size window spanning the n− 1 previous tokens (n-gram). If
only one prior token is considered, it is termed a bigram model; with two tokens,
a trigram model; and with n− 1 words, an n-gram model. Given a window size
n, the calculation of the joint probability is simplified as follows:

P (w1, . . . , wT ) ≈
T∏
t=1

P
(
wt | wt−n, ..., wn−1

)
. (2.3)

N -grams models often approximate P (w1, . . . , wT ) using frequency counts based
on n-grams.

On the Curse of Dimensionality Statistical Language Models represent tokens
through one-hot encoding, where each token is represented as a sparse binary
vector, with a dimension for each unique token in the vocabulary. In this encoding,
all dimensions are zero except for the one corresponding to the token, which is
set to one. Hence, one-hot encoding leads to very high-dimensional and sparse
representations. This often hinders the accurate estimation of language models, as
one-hot encoding requires estimating an exponential number of transition proba-

1. This name is common in the literature but is misleading as it has little connection to the
proper study of causality.
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bilities. Furthermore, one-hot encoding introduces greater difficulty in capturing
semantic relationships between tokens (each individual token is treated indepen-
dently of the others) and handling OOV tokens efficiently. This phenomenon is
referred to as the curse of dimensionality. To tackle this issue, specific smoothing
strategies, including backoff estimation (Katz 1987) and Good-Turing estimation
(Gale and Sampson 1995), have been introduced to alleviate the problem of data
sparsity.

Statistical Language Models have found extensive application in boosting per-
formance across NLP tasks such as speech recognition (Bahl et al. 1989) and POS

tagging (Thede and Harper 1999). Although capable of basic text generation and
word prediction, their limitations become apparent when attempting to capture
complex contextual relationships (Rosenfeld 2000; Arisoy et al. 2012).

2.1.3 Evaluation of Language Models

As language models play an increasingly critical role in both research and
daily applications, the importance of their evaluation grows significantly. The
evaluation of language models stands as a crucial phase in assessing their effi-
cacy and performance, bridging the gap between theoretical advancements and
practical utility. We explore automatic evaluation, where several key metrics can
be employed to provide valuable insights into the capacities and limitations of
a language model. Language models can be evaluated using intrinsic or extrinsic
evaluation.

2.1.3.1 Intrinsic Evaluation

An intrinsic evaluation metric measures the quality of the language model
independently of any application, and can be used to quickly assess potential im-
provements in the model. There are three commonly employed metrics associated
with the likelihood of the data given a model.

Perplexity is a widely used intrinsic metric that measures how uncertain a
language model is about the predictions it makes. Given an input sequence
w = (w1, . . . , wn), and P (w1, . . . , wn) the probability assigned to w by a model
P , the perplexity of P on w can be defined as follows:

PPL(w) = P (w1, . . . , wn)
− 1

n (2.4)
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The lower the perplexity of a language model, the more confident (but not
necessarily accurate) it is. Perplexity often correlates well with the model’s per-
formance on the target tasks, and it can be easily computed from the probability
distribution learned during training. Hence, perplexity is a reliable metric to filter
out models that are unlikely to perform well in real-world scenarios. However,
comparing perplexity across different datasets, context lengths, vocabulary sizes,
and tokenization procedures is challenging.

Cross-entropy (also referred to as negative log-likelihood) serves as an intrinsic
metric for measuring the ability of a model to compactly represent a sequence of
tokens. The cross-entropy of P on a sequence of tokens w is defined as:

CE(w) = − 1

n
logP (w1, . . . , wn) = log (PPL(w)) . (2.5)

The lower the cross-entropy value, the more efficient the model is at encoding the
sequence.

Bits-per-character (BPC) calculates the average number of bits needed to rep-
resent each character in a text using the model’s encoding scheme. It is equivalent
to character-level cross-entropy, computed with a binary logarithm. Given an
input sequence of characters w = (w1, . . . , wn), BPC is defined as:

BPC(w) = − 1

n

n∑
i=1

log2 P (wi). (2.6)

Both cross-entropy and BPC are often used to assess the compression capabilities
of language models. Notably, BPC serves as a metric for evaluating models in the
Hutter Prize contest and its associated enwiki8 benchmark on data compression. 2

While no single metric may capture all dimensions of model behavior, com-
bining them offers a more nuanced understanding of a model’s strengths and
weaknesses, enabling robust evaluation and facilitating comparison across differ-
ent aspects of performance.

2.1.3.2 Extrinsic Evaluation

Good intrinsic evaluation scores do not always translate into better performance
for downstream tasks. Therefore, extrinsic evaluation, also called task-based eval-

2. http://prize.hutter1.net/

http://prize.hutter1.net/
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uation, is used to gauge the practical utility of a language model for specific
applications. In the following, we focus on NLP tasks.

Sequence Labeling Precision, recall, and F1 score are essential metrics for se-
quence labeling tasks, such as text classification and information extraction. Preci-
sion quantifies the accuracy of positive predictions by calculating the ratio of true
positive predictions to the total number of positive predictions. Recall measures
the model’s ability to capture all relevant instances of a positive class by comput-
ing the ratio of true positive predictions to the total number of actual positive
instances. A high precision indicates that the model’s positive predictions are
mostly correct, minimizing false positives, while a high recall indicates that the
model is effective at identifying most of the actual positive instances, minimizing
false negatives. F1 score provides a balanced view by considering both precision
and recall. F1 score is the harmonic mean of precision and recall, with higher
values indicating a better balance between precision and recall. It is particularly
valuable when both false positives and false negatives need to be minimized.
However, it is not be suitable for highly imbalanced data.

Text Generation Furthermore, when dealing with text generation and summa-
rization tasks, metrics such as Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) (C.-Y. Lin 2004) and Bilingual Evaluation Understudy (BLEU) (Pap-
ineni et al. 2002) are used to measure the similarity between the generated text
and one or more reference texts. Both metrics range between 0 and 1, with 1

indicating perfect overlap with the reference.

ROUGE is a family of metrics commonly used for summarization tasks. It eval-
uates the similarity between the text generated by the model and the human-
produced reference summary by calculating precision, recall, and F1 score based
on the overlap in n-grams. Formally:

ROUGE-nprecision =
| predicted n-grams ∩ reference n-grams |

| predicted n-grams |

ROUGE-nrecall =
| predicted n-grams ∩ reference n-grams |

| reference n-grams |

ROUGE-nF1 = 2 ∗ recall ∗ precision
recall + precision

.

(2.7)

ROUGE features multiple variants, each corresponding to specific n-gram overlaps
— ROUGE-1 for unigrams, ROUGE-2 for bigrams, and so forth. Additionally, the
widely-used ROUGE-L variant takes into account sentence-level structure similar-
ity by employing the Longest Common Subsequence (LCS), which represents the
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longest sequence of common, not necessarily consecutive, ordered words between
two sequences. ROUGE-L is defined as follows:

ROUGE-Lprecision =
LCS(prediction, reference)
# words in prediction

ROUGE-Lrecall =
LCS(prediction, reference)

# words in reference

ROUGE-LF1 = 2 ∗ recall ∗ precision
recall + precision

.

(2.8)

ROUGE usually denotes the F1 score from the n-gram precision and recall. Higher
ROUGE scores indicate better content overlap.

BLEU is another widely used metric for evaluating the quality of machine-
generated text, particularly in translation tasks. Similarly to ROUGE, BLEU evalu-
ates the precision of n-grams in the generated translation by comparing them to
the reference translations. BLEU considers precision across different n-gram levels
(unigrams, bigrams, trigrams, etc.). The precision is then adjusted with a brevity
penalty to account for translations that are shorter than the reference translations,
ensuring the generation of sequences of appropriate length. Using the geomet-
ric mean, the cumulative BLEU score combines precision scores for all specified
n-gram levels. BLEU can handle multiple reference texts, offering a more robust
evaluation that accounts for variations in human-produced references.

Both ROUGE and BLEU primarily focus on n-gram overlap and may not fully
capture the fluency, coherence, or semantic quality of generated text. As a re-
sult, human evaluation remains crucial for a comprehensive evaluation of text
generation quality.

Human Evaluation consists in having human annotators evaluate the quality
of generated text on specific tasks. Annotators can rate the generated text based
on its fluency, coherence, and relevance to the given output. Human evaluation
considers factors that might be difficult to quantify, e.g., the overall quality of the
generated text, creativity, or the ability to handle ambiguous or nuanced language.
While it can be time-consuming and subjective, human evaluation offers valuable
insights into how language models perform in real-world scenarios. Integrating
human judgment helps uncovering potential limitations, biases, or domains where
models might struggle.
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Figure 2.1 – Architecture of Bengio et al. (2000)’s Neural Language Model.

2.2 Neural Language Models

Starting in the 2000s, neural networks began to be used for language modeling
(Bengio et al. 2000), and representation of text shifted from being non-continuous
to being continuous (distributed). The mid-2010s marked a significant milestone
in language modeling with the emergence of Deep Learning, laying foundation
for the developement of Neural Language Models. A Neural Language Model is a
language model that exploits the ability of neural networks to learn distributed
representations of text. Neural Language Models delve into vast amounts of
data to learn the intricate patterns and structures of language, allowing them to
significantly improve their ability to understand context. In this section, we first
describe how distributed representations of textual data can be obtained from
neural architectures, before exploring notable word embedding models.

2.2.1 Distributed Representations of Text

A fundamental challenge that renders language modeling challenging is the
curse of dimensionality, primarily stemming from the sparse and high-dimensional
nature of discrete tokens within a large vocabulary. Text representation has there-
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fore evolved from a non-continuous to a continuous (i.e., distributed) form, serving
as the building blocks for contemporary NLP. Distributed representations are
dense, low-dimensional, continuous-valued representations that rely on the distri-
butional hypothesis, which posits that tokens with similar contexts have similar
(or related) meaning (Mikolov et al. 2013). Using distributed representations
requires a much smaller number of features than the size of the vocabulary. Addi-
tionally, the geometry of the space in which the vocabulary is embedded induces
the similarity structure between words, i.e., words with related meanings appear
in the same region in the embedding space (Shazeer et al. 2016).

Initial attempts to estimate distributed word representations, as seen in methods
like Probabilistic Latent Semantic Analysis (PLSA) (Hofmann 2001) and Latent
Dirichlet Allocation (LDA) (Blei et al. 2003), centered around extracting token
representations from co-occurrence matrices to represent words and documents
in a latent topical space. Such continuous representations, while effective for their
intended purposes such as document clustering and term analysis, had a limited
success when applied to a broader range of NLP tasks. These limitations arise
from a couple of key factors. Firstly, these approaches overlook the context and
relationships between words, essential for understanding natural language in
diverse applications. Second, these methods were designed for discovering latent
topics within a corpus without incorporating explicit task-specific supervision.
However, no powerful supervised models leveraging such a representation were
created at this time. The prevailing approach involved using a classifier atop a
continuous representation, which was generated without supervision, typically
through a language modeling task. Consequently, the representation lacked the
requisite task-specificity to be successfully applied across various NLP tasks.

Due to these limitations, researchers and practitioners have shifted towards us-
ing representations generated by Neural Language Models, as pioneered by Bengio
et al. (2000). Using neural networks, Neural Language Models learn the probabil-
ity distribution of a word sequence given the previous context, while embedding
the vocabulary in a continuous space to obtain distributed representations. Given
a context of size k, and a training sequence of words (w1, . . . , wn) ∈ V n, where
V is the vocabulary, the objective is to estimate P (wt | w1, . . . , wt−1) through a
neural network F (wt, . . . , wt−k+1). Therefore, generalization can be obtained more
easily: a sequence of words that has never been encountered before is assigned a
high probability if it consists of words with representations similar to those in a
sentence used during training. The distributed word vectors are first built using
a matrix C ∈ R|V |×h whose parameters are the representations of all the words
of the vocabulary: the i-th row in C is the distributed representation Ci ∈ Rh

for word i. To obtain the next word wt, the probability function over words is
expressed as a function G that maps the input sequence of feature vectors in the
context,

(
Cwt−k+1

, . . . , Cwt−1

)
, to a conditional probability distribution over words
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Figure 2.2 – Compressed (left) and unfolded (right) views of a Recurrent Neural
Network.

in V . The output of G is a vector whose i-th element provides an estimate of the
probability P (wt = i | w1, . . . , wt−1). Depicted in Figure 2.1, the function F is a
composition of C and G, expressed as follows:

Fω(wt−1, . . . , wt−k+1) = Gω

(
C(wt−1), . . . , C(wt−k+1)

)
. (2.9)

The function G can be implemented as a feed-forward network—the sim-
plest type of neural network where information is only processed in one di-
rection—or any another parameterized function, and is trained by minimizing
cross-entropy. More specifically, Neural Language Models leverage the capabili-
ties of the prevailing architectures of the 2010s, Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs).

2.2.1.1 Recurrent Neural Networks

RNNs are neural networks designed for sequential data, renowned for their
capacity to maintain "memory" across time steps. This enables them to process
each token in a sequence with information from prior tokens, allowing them to
capture sequential dependencies and achieve superior performance compared to
feed-forward neural networks.

A RNN is formally expressed as a function parameterized by a set of parameters
θ shared across all time steps. At each time step t, the model takes input xt and
a fixed-size hidden state vector ht−1 from the previous time step. The hidden
state at time t, ht, acts as a "memory", summarizing information from previous
words (w1, . . . , wt−1). Using two activations functions fθ and gθ (usually sigmoid,
hyperbolic tangent, and Rectified Linear Unit (ReLU) functions), the hidden state
ht and the distribution of probabilities over the output ŷt at time t are computed
as follows:

ht = fθ(xt,ht−1) (2.10)
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ŷt = gθ(ht) (2.11)

Figure 2.2 illustrates the architecture of an RNN.

RNNs offer theoretically unlimited context, with the hidden state ideally encap-
sulating information about all preceding tokens in the sequence. Outperforming
n-gram models, RNN-based language models generate more natural-sounding text
across various scenarios (Mikolov et al. 2010; Kovačević and Kečo 2022). The final
state hn post-training represents the entire text (w1, . . . , wn) and proves valuable
in diverse tasks like speech recognition (Schwenk 2007) and morpho-syntactical
labeling (Collobert 2011).

In practice, handling long sequences introduces complications, where the rep-
etition of recurrent connections leads to the vanishing and exploding gradient
problems (Hochreiter et al. 2001). The vanishing gradient problem results in
slow learning or information loss over time, while the exploding gradient prob-
lem causes unstable training. To overcome these challenges, the Long Short Term
Memory (LSTM) model (Hochreiter and Schmidhuber 1997) introduces gated struc-
tures, allowing selective retention of information over time. With more complex
cells featuring gates driven by sigmoid activation functions, LSTMs alleviate the
vanishing gradient problem, enhancing the model’s ability to manage long se-
quences.

2.2.1.2 Convolutional Neural Networks

CNNs constitute a family of neural network models characterized by a specific
layer known as the convolutional layer. In this layer, features are extracted by
convolving a learnable filter (or kernel) across various positions of a vectorial
input. CNNs, initially designed to deal with images (LeCun et al. 1989), are built
upon two fundamental concepts: (1) the processing of an image region should
not depend on its specific location (two-dimensional equivariance of data), (2)
patterns should be captured at various levels of abstraction, progressing from
regions composed of basic shapes to larger ones representing real-world objects.
These concepts can also be applied to texts, where the translation equivariance is
unidimensional rather than bi-dimensional.

In NLP, CNNs are commonly used for static classification tasks, including sen-
timent analysis (Kalchbrenner et al. 2014), relation extraction (T. H. Nguyen and
Grishman 2015), and entity recognition (Adel et al. 2016). CNNs can integrate
information from large context windows, learn high-level abstraction patterns,
and exhibit greater stability compared to RNNs in handling the vanishing gradient
problem. However, CNNs face more limitations when applied to text in contrast
to images. For tasks like language modeling, deeper models tend to harm per-
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formance (N.-Q. Pham et al. 2016). This is attributed to the distinct nature of
visual and linguistic data, with convolution in language processing potentially
distorting the input to the point where it is no longer recognizable as text.

2.2.2 Word Embedding Models

Word embeddings have been shown to significantly improve and simplify many
NLP applications (Collobert et al. 2011). However, the approach introduced by
Bengio et al. (2000) requires calculating a probability distribution for all words in
the vocabulary (Equation 2.9). As a result, their embeddings are slow to compute
and cannot be effectively learned from large datasets.

The work of Bengio et al. (2000) laid the foundation for the development of
more computationally efficient methods. Subsequent research in NLP primarily
focused on unsupervised learning of token representations from large corpora,
with the intent of leveraging them across diverse NLP tasks.

2.2.2.1 Word2Vec

Mikolov et al. (2013) introduced Word2Vec, a shallow neural network designed
to efficiently learn continuous word embeddings by grouping semantically sim-
ilar words in the same region of the vector space. While the model may not
represent data as precisely as a neural network with limited data, its efficiency
improves significantly when trained on larger datasets, enabling more accurate
data representation.

Skip-gram is the simplest and most widely used model proposed by Mikolov et
al. (2013). The idea behind Skip-gram is to learn word representations in a manner
that allows the context to be inferred from these representations. Therefore, words
that co-occur in similar contexts have similar representations. Given a word, the
Skip-gram model tries to predict the words that are likely to appear around it.
The training objective of the model consists in maximizing the following log-
probability:

∑
(t,c)

logP (t appears in the context c) =
∑
(t,c)

logP (t | c), (2.12)

where (t, c) corresponds to the set of terms t associated with the context c. The
context is defined by a fixed-sized window centered on t, such that any word in
the window but t are part of the context. Given c the embedding for the context
c and t the embedding for the target word t, the probability of t to appear in c is
expressed as follows:
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P (t | c) = exp(t · c)∑
t′∈V exp(t′ · c)

(2.13)

To maximize the similarity of words appearing in the same context and mini-
mizing it when they occur in different contexts, it is necessary to sample pairs of
words that should not appear in the same context, i.e., negative samples.

2.2.2.2 FastText

One major limitation of Word2Vec lies in its inability to effectively handle OOV

words. Additionally, Word2Vec lacks shared representations at the subword level,
which can become a challenge when dealing with morphologically rich languages
such as Arabic or German. FastText (Bojanowski et al. 2017) mitigates these is-
sues by introducing subword information into the model, allowing for better
handling of morphologically rich languages and enhanced understanding of sub-
word structures. While Word2Vec treats each word as an atomic unit, fastText
represents words as bags of character n-grams. Rather than learning word embed-
dings, the model generates subword representations, and words are represented
by the sum of their subword vectors. Formally, given Gt the set of all subwords of
the word t, the target word embedding t in the Skip-gram model can be defined
as:

t =
∑
g∈Gt

zg, (2.14)

where zg is the vector of subword g in the dictionary. The rest of the process is
identical to the Skip-gram model.

The significant advantage of fastText over Word2Vec lies in its ability to capture
the structure of words, including uncommon or unseen ones during training, by
sharing parameters among words with similar structures. This capability is par-
ticularly valuable for languages with complex word forms.

2.2.2.3 Conclusion

The success of the Word2Vec algorithm (Mikolov et al. 2013) has sparked im-
mense interest in word embeddings within NLP researchers and practitioners,
leading to the development of a myriad of alternative models (Pennington et al.
2014; Shazeer et al. 2016; Bojanowski et al. 2017). However, a significant draw-
back of such word embedding algorithms is that they produce static, context-
independent embeddings. In other words, a word embedding remains the same
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across linguistic context — for instance, "jaguar" would have the same embedding
whether referring to an animal or a car brand. Moreover, these approaches over-
look multi-word expressions, grammatical nuances, and word-sense information,
which can be crucial for handling polysemy and homonymy.

To overcome these limitations, contextual word embedding models have been
introduced, initiating the use of language models for representation learning be-
yond mere word sequence modeling. These methods use language modeling to
generate contextual word embeddings that adapt to the word’s usage by con-
sidering its complete context. These context-aware representations, learned by
pre-training the language model on large unlabeled corpora, serve as highly effec-
tive general-purpose semantic features, significantly raising the performance bar
of NLP tasks. These studies have inspired numerous follow-up work, establishing
the "pre-training then fine-tuning" paradigm as the prevailing learning approach.
The next chapter will delve into an in-depth exploration of this paradigm.
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Natural Language Processing (NLP) models were historically trained from scratch
in a supervised manner to perform specific tasks, based on (limited) training data.
As a result, training deep neural networks on such small datasets led to overfitting,
making the models sensitive to even slight shifts in the data distribution.

While word embeddings such as Word2Vec’s (Mikolov et al. 2013) are learned
from large corpora, their application in task-specific neural models is restricted
to the input layer. Task-specific neural models must be built nearly from scratch,
given that the majority of model parameters handling token interactions need to
be optimized for the task at hand. This optimization process requires substantial
amounts of data to attain a high-performance model.

The seminal works of Peters et al. (2018), Devlin et al. (2018), and Radford et al.
(2018) marked a paradigm shift by generalizing the use of large unsupervised
training datasets in NLP, initiating a new era of Pre-trained Language Models, also

27
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referred to as Foundation Models. This shift is driven by the idea that modeling
language using large corpora of text is sufficient for training powerful language
models capable of performing well across various NLP tasks. Rather than building
task-specific models from scratch using scarce labeled data, Pre-trained Language
Models leverage extensive unsupervised (or self-supervised) pre-training to learn
general language representations, and apply the knowledge acquired to achieve
broad task applicability in NLP. The pre-training phase allows the model to capture
context and a general understanding of syntax and semantics. After pre-training,
the model can be fine-tuned on specific downstream tasks (e.g., text classification,
Named Entity Recognition (NER), machine translation, and more). Fine-tuning
consists in further training the pre-trained model on a smaller, labeled dataset
specific to the downstream task. The knowledge acquired during pre-training is
leveraged and tailored to the new task, resulting in improved performance.

As one of the early endeavors to adopt the "pre-training then fine-tuning"
paradigm in NLP, Embeddings from Language Models (ELMo) generates contex-
tual representations that can be fine-tuned by adding task-specific layers. How-
ever, ELMo’s effectiveness is somewhat constrained compared to models like
Bidirectional Encoder Representations from Transformers (BERT), in part due to its
reliance on Recurrent Neural Networks (RNNs). The breakthrough in Pre-trained
Language Models came with the introduction of the Transformer architecture in
the work of Vaswani et al. (2017). Transformer-based Pre-trained Language Mod-
els (Devlin et al. 2018; Radford et al. 2018) have demonstrated that fine-tuning im-
proves the state of the art across a wide range of language tasks. This suggests that
task-specific architectures are no longer a necessity. Furthermore, Transformer-
based Pre-trained Language Models perform better with an increased volume of
data, model size, and training compute, demonstrating superior scaling behavior
(J. Kaplan et al. 2020). Hence, the Transformer has become the go-to component
in the modern NLP stack, largely replacing other architectures such as RNNs.

In this chapter, we first describe the Transformer architecture, with a focus
on its core component—the attention mechanism. Subsequently, we discuss how
Transformers can be leveraged to build effective language models, ranging from
bidirectional models capable of producing robust, general-purpose word repre-
sentations to generative models able to create coherent and contextual relevant
text, thereby laying the groundwork for Large Language Models. Finally, we focus
on efficient self-attention model variants designed to efficiently process long texts.
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3.1 Transformers

Transformer (Vaswani et al. 2017) tackles two primary limitations of RNNs. RNNs
suffer from the vanishing/exploding gradient problem, which hinders their ability
to capture long-range dependencies. In addition, the sequential processing of
input in RNNs hampers efficient parallelization (Vaswani et al. 2017). To overcome
these limitations, the Transformer removes recurrence altogether by leveraging
the self-attention mechanism to capture global dependencies.

Text is tokenized into subwords using a subword-based tokenization algorithm
(Gage 1994; Y. Wu et al. 2016). To obtain text representations, the Transformer
uses an embedding table, which contains vectors for each token in the vocabulary.
Token embeddings are derived by associating each token in the sequence with
their respective vector in this table.

We elaborate on the concept of attention and explore a few attention mech-
anisms, including self-attention. We then study the application of self-attention
within the Transformer architecture and discuss the formulation of a conditional
distribution over the vocabulary. Finally, we provide details on the processing of
sequential and segment information in Transformers.

3.1.1 Attention Mechanism

The concept of attention can be best explained through an analogy with human
biological systems. In various problems involving language, speech, or vision,
specific parts of the input are more important than others. For instance, in tasks
like machine translation and summarization, only certain words in the input se-
quence may hold relevance for predicting the next word. An attention mechanism
integrates this idea of relevance by allowing the model to dynamically pay atten-
tion to specific portions of the input that contribute to effectively performing the
task at hand. In the following, we formalize the concept of "paying attention",
specifically in the context of Transformers.

3.1.1.1 Bahdanau’s Attention Mechanism

The earliest use of attention was proposed by Bahdanau et al. (2014) for a
sequence-to-sequence modeling task. A sequence-to-sequence task involves map-
ping a sequence of n input vectors to a sequence of m target vectors, where m is
unknown apriori. A sequence-to-sequence model (Sutskever et al. 2014) consists
of an encoder-decoder architecture, where the encoder encodes an input sequence
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(x1, . . . ,xn) into a sequence of fixed-size state vectors (h1, . . . ,hn). The decoder is
then fed the fixed-size vector hn and generates an output sequence (y1, . . . ,ym).

In a traditional encoder-decoder architecture (usually based on RNNs), the en-
coder must compress all the necessary input information for the task at hand into
a single fixed-size vector hn that is fed to the decoder f . Given a position i, let
yi−1 be the previous output token and si−1 the previous decoder hidden state.
The probability of yi, conditioned on y1, . . . ,yi−1 and x1, . . . ,xn, is expressed as
follows:

P (yi | y1, . . . ,yi−1;x1, . . . ,xn) = f(si−1,yi−1,hn). (3.1)

However, encoding a variable-length input into a fixed-size vector hn squashes
the information of the input sequence, irrespective of its length, causing the per-
formance to deteriorate rapidly as the input sequence length increases (K. Cho
et al. 2014). In addition, in sequence-to-sequence tasks, each output token is ex-
pected to be more influenced by specific parts of the input sequence. However,
the decoder lacks any mechanism to selectively focus on relevant input tokens.

To alleviate these challenges, Bahdanau et al. (2014) introduce the attention
mechanism, a principle that allows the decoder to access the entire encoded input
sequence (h1, . . . ,hn) and dynamically attend to information deemed relevant to
generate the next output token. Formally:

P (yi | y1, . . . ,yi−1;x1, . . . ,xn) = f(si−1,yi−1, ci), (3.2)

where ci is the context vector associated with decoding position i, acting as a
summary of the encoding states. It is defined as the weighted sum of all encoder
hidden states {hj}j=1,...,n and their corresponding attention weights {αij}j=1,...,n.
The context vector ci is expressed as follows:

ci = A(si−1,h) =
n∑

j=1

αijhj. (3.3)

The attention weights {αij}i=1,...,n determine the relevance between each encoder
hidden state hj and each decoder hidden state si−1:

αij = softmaxj

(
(a(si−1,h1), . . . , a(si−1,hn)

)
=

exp(a(si−1,hj))∑
k exp(a(si−1,hk))

, (3.4)
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where a is an alignment function implemented as a feed-forward network. The
alignment score a(si−1,hj) indicates how well the element hj of the input se-
quence aligns with the current output si−1.

3.1.1.2 Generalized Attention

The attention mechanism can be reformulated into a general form where the
alignment does not inherently rely on the hidden RNN states. The generalized
attention model (Chaudhari et al. 2021) extends the attention mechanism of Bah-
danau et al. (2014) by allowing for more flexibility and adaptability in capturing
dependencies between different parts of the input and output sequences. While
the original attention mechanism focuses on aligning parts of the input sequence
with the current position in the output sequence, the generalized attention model
introduces parameters and mechanisms to customize and control the attention
process. In the generalized attention model, attention weights are not solely deter-
mined by the relevance between the current decoder hidden state and the encoder
hidden states. Instead, the model introduces learnable parameters and scoring
functions that can be adjusted to capture different types of relationships. This
allows the attention mechanism to consider various aspects, such as semantic
similarity, positional information, or other task-specific factors.

Let x = (x1, . . . ,xn) be a source sequence and y = (y1, . . . ,yn), a target se-
quence. A generalized attention model is characterized by three components: the
queries Q, the keys K, and the values V , all derived from either x or y using
learnable weight matrices W (q), W (k), and W (v). Queries Q indicate which infor-
mation is requested from the input sequence, keys K are vectors associated with
each element in the input sequence and determine which elements are relevant
for the queries, while values V contain the information to be propagated. Given a
set of key-value pairs (K,V ) and a query qi ∈ Q, generalized attention is defined
as follows:

A(qi,K,V ) =
∑
j

αijvj, (3.5)

where:

αi1, . . . , αin = p
(
(a(qi,k1), . . . , a(qi,kn)

)
. (3.6)

The alignment function, a, dictates the combination of keys and queries, such
as through dot product or cosine similarity. The query vector is compared with
each key to compute alignment (or similarity) scores. The distribution function
p takes these scores as input and ensures that the attention weights lie between
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0 and 1 and are normalized to sum to 1, achieved through mechanisms like
logistic sigmoid or softmax function. The final vector A(qi,K,V ) is formulated
as a weighted sum of all value vectors {vj} and their corresponding attention
weights {αij}.

The attention mechanism of Bahdanau et al. (2014) can be seen as a special
case of generalized attention where the queries and values are analogous to the
encoded outputs, i.e., K = V = {hj}j=1,...,n, and the query is analogous to the
previous decoder output, i.e., q = si−1.

3.1.1.3 Attention in Transformers

One common form of the generalized attention model is self-attention, or scaled
dot-product attention, introduced by Vaswani et al. (2017) in the Transformer
architecture. The alignment function a is defined by a scaled dot product, i.e.:

a(qi,kj) =
q⊤
i kj√
dk

, (3.7)

while the distribution function p, used to obtain the final attention weights, corre-
sponds to the softmax:

αij = softmaxj

(
q⊤
i K√
dk

)
=

exp
(
q⊤
i kj/

√
dk
)∑

j′ exp
(
q⊤
i kj′/

√
dk
) (3.8)

Self-attention is therefore defined as follows:

A(qi,K,V ) =
∑
j

softmaxj

(
q⊤
i K√
dk

)
· vj, (3.9)

where dk is the dimensionality of the key vectors. The alignment score
q⊤
i kj√
dk

indicate how to weigh the value vj based on the query vector qi. The more similar
a key vector kj is to qi, the more important is the corresponding value vector vj

for the output vector.

Rather than computing attention in a single step, Vaswani et al. (2017) propose
to decompose the self-attention operation in multiple heads to capture different
aspects of the relationships between tokens. The dimensionality d is split into h

fixed-size segments, with one segment per attention head. Each of the h heads
uses three weight matrices (for queries, keys, and values) to project the segment
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Figure 3.1 – Multi-head attention.

into different subspaces. Self-attention is then computed across each of the h

segments in parallel, following Equation 3.9. The outputs of each head are then
concatenated to form the complete attention output, and projected back into the
original d-dimensional representation space. In other words, a distinct attention
mechanism is employed for each segment of the input vector.

Given a projection matrix Wo ∈ Rdv×d, multi-head attention, illustrated in Fig-
ure 3.1, is defined as follows:

A(MHA)(qi,K,V
)
=


A(qiW

(q)
1 ,KW

(k)
1 ,V W

(v)
1 )

A(qiW
(q)
1 ,KW

(k)
2 ,V W

(v)
2 )

. . .

A(qiW
(q)
h ,KW

(k)
h ,V W

(v)
h )

Wo (3.10)

In addition, multi-head attention enables parallelized computation of attention
across different representation subspaces.

3.1.2 Attention Layers in Transformers

In a Transformer, both encoder and decoder are composed by stacking a series
of Transformer layers on top of each other. Each Transformer layer is characterized
by a multi-head attention module and two position-wise feed-forward networks.
To help the model train faster and more accurately, a residual connection (K. He
et al. 2016) is added to all sublayers, followed by layer normalization.
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Figure 3.2 – Transformer encoder.

Given two sequences Z = (z1, . . . ,zn) and Z′ = (z′
1, . . . ,z

′
m), we use the follow-

ing notation for multi-head attention between Z and Z′:

MHA
(
Z,Z′; θ

)
=


A(MHA)

(
z1W

(q),Z′W (k),Z ′W (v)
)

A(MHA)
(
z2W

(q),Z′W (k),Z ′W (v)
)

. . .

A(MHA)
(
znW

(q),Z′W (k),Z ′W (v)
)


⊤

(3.11)

where W (q) ∈ Rd×dq , W (k) ∈ Rd×dk , and W (v) ∈ Rd×dv are layer-specific weight
matrices for queries, keys, and values, respectively, and θ = {W (q),W (k),W (v)}.

In general, the dimensions dq, dk, dv are set
d

h
.

Self-attention is a special case of attention where Z = Z ′, i.e., the contextualized
and attended-to sequences are identical. We denote the self-attention operation
as SA(Z; θ) = MHA

(
Z,Z; θ

)
.

3.1.2.1 Self-Attention in the Encoder

In the encoder, illustrated in Figure 3.2, self-attention is used to map the input
sequence (x1, . . . ,xn) to a sequence of context-dependent vectors (x1, . . . ,xn).
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⨉ L

Figure 3.3 – Transformer decoder.

Each attention layer builds the queries, keys and values from the outputs of the
previous encoder layer, and uses bidirectional self-attention to put each input token
in relation with all input tokens in the sequence. Given (x

(l)
1 , . . . ,x

(l)
n ) the input

sequence to the l-th encoder layer, the outputs (x(l+1)
1 , . . . ,x

(l+1)
n ) constructed using

bidirectional self-attention can be expressed as:

x
(l+1)
1 , . . . ,x(l+1)

n =
(
x
(l)
1 , . . . ,x(l)

n

)
+ SA

(
x
(l)
1 , . . . ,x(l)

n ; θ(l+1)
enc

)
. (3.12)

Each encoder layer builds a contextualized representation of its input sequence,
and the following layer further refines this context-dependent representation.
Compared to RNNs, bidirectional self-attention reduces the amount of compu-
tation steps that information needs to flow from one element of the sequence to
another. Therefore, information loss is reduced, making long-range dependencies
more easily learnable.

3.1.2.2 Self-Attention in the Decoder

The decoder, depicted in Figure 3.3, models the distribution of a target sequence
(y1, . . . ,ym) conditioned on the input sequence (x1, . . . ,xn). Each decoder layer
contains three sublayers: decoder self-attention, cross-attention, and a module made



36 pre -trained language models

of two position-wise feed-forward networks. The final decoder layer is followed
by a feed-forward network which produces a probability distribution over the
whole vocabulary.

The decoder self-attention layer conditions each decoder output vector on all
previous decoder input vectors. As opposed to the encoder, self-attention in the
decoder is masked (unidirectional or causal) to ensure that each vector attends
only to the previous positions. The output vectors y

′(l)
1 , . . . ,y

′(l)
i generated by

unidirectional self-attention are defined as follows:

y
′(l)
1 , . . . ,y

′(l)
i =

(
y
(l−1)
1 , . . . ,y

(l−1)
i

)
+ SA

(
y
(l−1)
1 , . . . ,y

(l−1)
i ; θ

(l)
dec

)
. (3.13)

To condition the probability distribution of the next target vector on the en-
coder’s input, cross-attention is applied to put (y′(l)

1 , . . . ,y
′(l)
i ) into relation with all

contextualized input vectors (x1, . . . ,xn). The output vectors (y
(l)
1 , . . . ,y

(l)
i ) built

using cross-attention are expressed as:

y
(l)
1 , . . . ,y

(l)
i =

(
y
′(l)
1 , . . . ,y

′(l)
i

)
+ MHA

(
y
′(l)
1 , . . . ,y

′(l)
i ;x1, . . . ,xn; θ

(l)
enc→dec

)
. (3.14)

Cross-attention ensures that, the more similar a decoder query is to an encoder
key, the more does the corresponding encoder value influence the decoder output
representation.

3.1.3 Defining a distribution over the tokens

A Transformer establishes a conditional distribution of target vectors (y1, . . . ,ym)

given a source sequence (x1, . . . ,xn). The probability distribution of the target
vector sequence can be factorized to a product of conditional probability distribu-
tion of the target vector yi given the encoded hidden states (x1, . . . ,xn) and all
previous target vectors (y0, . . . ,yi−1). Formally:

pθ
(
y1, . . . ,ym | x1, . . . ,xn

)
=

m∏
i=1

pθ
(
yi|y0, . . . ,yi−1;x1, . . . ,xn

)
. (3.15)

Let yi, where i ∈ {1, . . . ,m}, be the representation of the target vector yi obtained
by the last decoder layer. A probability distribution over the whole vocabulary
can be obtained by mapping the representation yi to a logit, on which a softmax
operation is then applied:

pθ
(
yi | y1, . . . ,yi−1;x1, . . . ,xn

)
= Softmax

(
W⊤

dec · yi

)
. (3.16)
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Likewise, a probability distribution over the vocabulary can be obtained from any
contextualized representation xi, where i ∈ {1, . . . , n} and the token at position i

is masked using a special token (additional details are provided in Section 3.2.1.1):

pθ
(
xi | x1, . . . ,xn

)
= Softmax

(
W⊤

enc · xi

)
. (3.17)

3.1.4 Sequential Information in Transformers

The position and order of words deeply impact the semantics of a sentence.
By processing sequences token by token in a sequential manner, RNNs inherently
integrate the order of the sequence. Unlike RNNs, Transformers simultaneously
process each token in the sequence, making them entirely invariant to sequence
ordering. Consequently, there is a need to explicitly incorporate information about
the order of tokens into the Transformer.

A satisfactory positional encoding method must be deterministic, produce a
unique encoding at each time step, generalize to longer sequences, and ensure
that distance between any two elements are consistent across sequences with
different lengths.

3.1.4.1 Absolute Position Encodings

Instead of integrating this encoding into the model itself, the dominant ap-
proach for preserving information about the sequence order is to modify the
initial token representation with information about the token’s position in the
sequence. These inputs pi ∈ Rd are called absolute position encodings (or embed-
dings) and can either be learned or fixed a priori. Absolute position encodings
encode the absolute position of a token within a sequence, meaning that each
token is assigned a fixed vector based on its position in the sequence. The com-
monly sought property for absolute position encodings is that pi · pj ≥ pi · pj′

if | i − j |≤| i − j′ |. For a token ti at position i with token representation xt, its
initial input representation is denoted as xi = xt + pi.

Vaswani et al. (2017) propose a simple scheme for fixed absolute positional
encodings, where each position is mapped to a vector using sinusoidal functions.
These position encodings are not learned during training.

An alternative form of absolute positional encoding involves learning position
embeddings pi jointly with the model during training (Devlin et al. 2018). In-
stead of using fixed functions, learned positional encodings introduce trainable
parameters. Each position in the sequence is associated with a unique vector, and
these vectors are treated as parameters that the model can learn during training.
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Learned positional encodings offer flexibility as the model can adapt to various
tasks and datasets. The embeddings are not predetermined by fixed functions,
enabling the model to learn patterns related to position.

3.1.4.2 Relative Position Encodings

Although absolute positional encodings show satisfactory performance, they
still face limitations. First, absolute positional encodings do not generalize well
to sequences of lengths not seen at training time (Z. Dai et al. 2019). Another
limitation of absolute positional encoding lies in its lack of translation invariance.
Shifting the same sequence alters the absolute positions, leading to different
attention patterns. In the case of learned positional encodings, there is a restriction
on the number of tokens a model can handle. For instance, if a language model
can only encode up to 1,024 positions, any sequence longer than 1,024 tokens
cannot be processed by the model. Relative positional encoding address these
issues by using a different vector for each pair of tokens, based on their relative
distance (Shaw et al. 2018; C.-Z. A. Huang et al. 2018; Ke et al. 2020). Shaw et al.
(2018) are the first to leverage pairwise distances to create positional encodings.
To account for pairwise distances when computing alignment scores, the relative
position embedding bKij ∈ Rdk representing the distance between tokens ti and tj
is added to the keys as follows:

a(qi,kj) =
qi

⊤(kj + bKij )√
dk

. (3.18)

Pairwise distances are clipped beyond a maximum distance to allow for gen-
eralization to sequence lengths not seen during training. The relative position
embedding bKij is expressed as:

bKij = wK
clip(j−i,k)

clip(x, k) = max(−k,min(k, x)),
(3.19)

where wK = (wK
−k, . . . ,w

K
k ) ∈ R2k×da is a learned vector.

Raffel et al. (2020) introduce a simplified form of relative position embeddings
where the distance between every pair of tokens (ti, tj) is mapped to a scalar
bij ∈ R, which is then added to the corresponding alignment score:

a(qi,kj) =
(q⊤

i kj) + bij√
dk

. (3.20)
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3.1.5 Segment Information in Transformers

Some tasks require different inputs, and a commonly employed strategy to
maintain the same architecture involves the use of segment embeddings (De-
vlin et al. 2018), which inform the model about sentence delineations within a
sequence. These embeddings, not part of the original Transformer architecture,
encode to which of two sentences (segments) a word belongs, aiding the model
in distinguishing between two segments within the same input sequence. Unlike
word embeddings and position encodings, segment embeddings remain identi-
cal across all tokens within a segment, and vary only between segments. These
embeddings are then added to the input representations.

3.2 Transformer-based Pre-trained Language Mod-
els

In this section, we explore how Transformers can be employed to construct
effective language models. In contrast to earlier methods that employ convolution
and recurrent modules for feature extraction, Transformer-based Pre-trained Lan-
guage Models learn text representations from Transformers. Transformer-based
Pre-trained Language Models are typically categorized into three main types:
bidirectional models based on the encoder only, encoder-decoder models leveraging
the entire Transformer architecture, and generative models relying on the decoder
alone.

3.2.1 Bidirectional Models

Bidirectional Pre-trained Language Models refer to models that employ the
Transformer encoder. These models are pre-trained on large corpora and learn
deep contextualized representations of words and phrases by jointly conditioning
on left and right context in all self-attention layers. Bidirectional Transformer-
based models are effective for capturing dependencies and contextual information
in both directions, making them suitable for various natural language understand-
ing tasks including sentiment analysis, NER, text classification, and more. The ex-
ploration of bidirectional Transformer-based Pre-trained Language Models began
with BERT, introduced by Devlin et al. (2018), and has led to the development of
a myriad of variants.
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Figure 3.4 – Masked Language Modeling illustrated with the sentence "how are
you doing today". Each token is mapped to a distribution over the
vocabulary V . Depicted for the masked token "you". For the sake of
clarity, segment embeddings and positional encodings are not shown.

3.2.1.1 BERT

BERT employs the encoder architecture of the Transformer while incorporat-
ing learned position embeddings. The model marked a paradigm shift in the
construction of word representations. In contrast to prior models, which typically
processed text in a unidirectional manner, BERT achieves bidirectionality by using
self-attention.

Special tokens are inserted into the tokenized text to cater for different NLP

tasks. A classification token [CLS] is prepended to the input sequence and is used
to represent the whole sequence. In addition, a special separation token [SEP],
indicating the end of the sequence, is added to the end of the sequence. In the
case of text pairs, an extra [SEP] token is added between the pair to separate the
texts.

Pre-training BERT BERT is trained on a large-scale dataset (Zhu et al. 2015),
as a language model that operates at both the word-level and the sentence-level.
The training involves two unsupervised tasks: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP).

Illustrated in Figure 3.4, the MLM task consists in randomly masking out to-
kens and using all remaining tokens to recover the masked-out tokens in a self-
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supervised fashion. Instead of following the same probability distribution as
standard language models that process text in a unidirectional manner, BERT uses
the following approximation:

P (w) ∝
∏
i∈C

Pθ (wi | w̃) =
∏
i∈C

Pθ

(
wi | x̃

)
, (3.21)

where C is a random set of tokens, with 15% of tokens selected to be in C, x̃ is
the sequence of contextualized token representations obtained from w̃, and w̃ is
the input sequence w corrupted as follows:

w̃ =


wt, if wt /∈ C

mask token if wt ∈ C, with probability 80%

random token if wt ∈ C, with probability 10%

wt if wt ∈ C, with probability 10%.

(3.22)

Because the mask token is never used during fine-tuning, a discrepancy between
pre-training and fine-tuning can occur. The process involves masking a selected
token with the mask token 80% of the time, substituting it with a random token
10% of the time, and leaving it unchanged 10% of the time. The cross-entropy
loss between the masked tokens and their predictions is minimized during pre-
training. The primary benefit of the MLM task, in contrast to a causal language
model, is that token representations are influenced by the whole sequence.

While MLM effectively captures bidirectional context to represent words, it does
not explicitly capture the logical correlation between pairs of texts. To address this,
the NSP task is introduced. This task involves determining whether two sentences
follow each other and helps in modeling the relationship between texts. The
training dataset is constructed such that half of the pairs are made of consecutive
sequences, while for the other half the second sequence is randomly sampled from
the corpus. Given a pair of sequences (s1, s2), a binary single-layer feed-forward
network classifier is trained to determine whether s2 follows s1 in the corpus. The
classifier is fed with the BERT representation of the [CLS] token, which encodes
both sequences, and outputs the probability that the sequences are successive
sentences.

Fine-tuning BERT The knowledge gained during pre-training can then trans-
ferred to various downstream tasks through fine-tuning. The contextualized token
representations obtained by the pre-trained BERT are fed to a feed-forward net-
work built over the last encoder layer. While the parameters of the pre-trained
encoder are reused and fine-tuned for the task, the additional layer is initialized
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randomly and trained from scratch. However, it contains significantly fewer pa-
rameters. This layer can output predictions for individual tokens or the entire
sequence, rendering the model suitable for tasks involving token classification
and sequence classification, respectively.

The bidirectional capability of BERT addressed a crucial limitation in previous
models, especially for tasks requiring a deep understanding of context and re-
lationships between words. BERT demonstrated remarkable performance across
various natural language understanding benchmarks (e.g., sentiment analysis,
question answering, text classification), showcasing the potential of bidirectional
Transformer-based Pre-trained Language Models.

3.2.1.2 BERT Variants

The success of BERT has expanded exploration of bidirectional Transformer-
based Pre-trained Language Models, with researchers and practitioners building
upon the foundation laid by the model.

Some extensions of BERT have introduced different optimization objectives to
further improve the quality of the contextual representations. To enhance the
robustness and generalization capability of the model, A Robustly Optimized
BERT Pretraining Approach (RoBERTa) (Yinhan Liu et al. 2019) removes the NSP

objective of BERT, and employs a bigger dataset. Additionally, it uses dynamic
masking, wherein the selection and masking of tokens in a sentence vary across
epochs. A Lite BERT (ALBERT) (Lan et al. 2019) introduces a variant of NSP where
negative examples correspond to two consecutive segments with their order re-
versed. This modification of the NSP objective, emphasizing coherence, makes the
task more challenging, thereby improving the robustness and generalization of
the model. SpanBERT (Joshi et al. 2020) modify the masking strategy in MLM

by masking contiguous random spans, rather than random tokens. Pre-trained
using three type of language modeling tasks (unidirectional, bidirectional, and
sequence-to-sequence prediction), UniLM (L. Dong et al. 2019) can be fine-tuned
on both natural language understanding and generation tasks.

Furthermore, several adaptations of BERT, pre-trained on specific datasets tai-
lored to particular languages or domains, have been proposed. SciBERT (Beltagy
et al. 2019) has been pre-trained on scientific texts and is specialized for tasks
in the scientific research domain. Similarly, BioBERT (J. Lee et al. 2020) has been
designed for biomedical texts. CamemBERT (Martin et al. 2019) and FlauBERT
(H. Le et al. 2019), on the other hand, are French versions of BERT, pre-trained on
French texts, and adapted for French language understanding tasks. For usage
across different languages, multilingual pre-trained models such as mBERT (De-



3.2 transformer-based pre -trained language models 43

vlin et al. 2018), XLM (Lample and Conneau 2019), and XLM-RoBERTa (Conneau
et al. 2019) have been proposed.

To enable the use of models in resource-constrained scenarios, and given the
quadratic complexity of BERT with respect to the sequence length in both memory
and time, researchers have explored approaches to reduce the number of parame-
ters. ALBERT achieves efficiency by sharing parameters across layers and reducing
the rank of the embedding matrix. DistilBERT (Sanh et al. 2019) simplifies BERT

by using parameter reduction techniques such as factorized embedding parame-
terization and cross-layer parameter sharing. TinyBERT (Jiao et al. 2019) further
simplifies the model for increased efficiency. This research is part of a broader
effort to make Transformers more computationally efficient, which will be further
discussed in Section 3.3.

3.2.2 Generative Models

In contrast to bidirectional Pre-trained Language Models that focus on predict-
ing labels for given inputs, the goal of generative Pre-trained Language Models is
to produce new text of arbitrary length that resembles human language. These
models employ the Transformer decoder to generate content in an autoregressive
fashion. Given their ability to capture contextual information and generate di-
verse and contextually fitting text, generative Pre-trained Language Models play
a pivotal role in improving the quality of text generation for natural language
generation tasks (e.g., machine translation, summarization, text completion). Gen-
erative Transformer-based Pre-trained Language Models can either use the entire
Transformer architecture (encoder-decoder models) or solely the decoder compo-
nent (decoder-only models).

3.2.2.1 Training and Inference Framework

Training and inference for generative models differ from those of bidirectional
models in several aspects.

Training While bidirectional models are typically trained for specific pre-defined
tasks, generative language models are trained to predict the next token in a se-
quence, given the preceding ones (autoregressive language modeling). However, com-
pounding errors might occur from incorrect predictions, leading the decoder to
potentially drift too far away from the target. To mitigate this issue and guide
the training process, the teacher forcing (i.e., maximum likelihood) strategy is used:
to predict the next token, the decoder is fed with the ground-truth target to-
kens, rather than its own predictions from the previous step. Furthermore, using
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Figure 3.5 – Illustration of beam search, where K = 2. From Von Platen (2020).

ground-truth target tokens as inputs accelerates convergence, as stronger gradi-
ent signals are provided during backpropagation. More sophisticated learning
strategies have emerged, including the use of reinforcement-learning models to
optimize sequence-level metrics such as ROUGE (Paulus et al. 2017), BLEU (Ran-
zato et al. 2015), or metrics based on question answering (Scialom et al. 2019).

Inference Teacher forcing is obviously not applicable at inference time. Instead,
the sequential generation process requires the model to be fed its own predictions
from the previous step as inputs to generate the next token. Different strate-
gies can be used to determine how the model predicts the next element of the
sequence.

Greedy search consists in selecting the token with the highest probability at each
step. While simple and computationally efficient, it misses high probabilities that
can be found in posterior tokens.

To reduce this risk, beam search extends greedy search by maintaining a fixed
number K of sequences with the highest probabilities. At each step, it picks the K

best sequences so far based on their joint probabilities. Finally, the sequence with
the highest probability is selected as the output sequence. Figure 3.5 demonstrates
an instance of beam search with two beams.

To ensure that the less probable tokens should not have any chance of being
selected, top-k sampling (Fan et al. 2018) filters the k most likely next tokens and
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redistributes the probability mass among those k tokens only. Alternatively, nu-
cleus sampling chooses from the smallest possible set of tokens whose cumulative
probability exceeds a certain threshold p. The probability mass is then redis-
tributed among this set of tokens. Nucleus sampling balances randomness and
predictability better than traditional sampling.

3.2.2.2 Encoder-decoder Models

Encoder-decoder Transformer-based Pre-trained Language Models use the orig-
inal Transformer architecture, consisting of both an encoder and a decoder. The
encoder processes an input sequence, producing contextualized representations
of each token. The decoder attends to these representations and generates the
output tokens one at a time, considering the context provided by the encoder.
This architecture is particularly suited for sequence-to-sequence tasks, where the
goal is to transform a source sequence into a corresponding target sequence.
The encoder-decoder setup is commonly used in sequence-to-sequence tasks like
machine translation and text summarization.

BART Bidirectional and Auto-Regressive Transformers (BART) (M. Lewis et al.
2019) is pre-trained with a denoising objective, where the model is trained to
reconstruct the original sequence from a corrupted version. BART extends the
MLM approach by adding more perturbations: replacing text spans with a single
mask token (text infilling), permuting sentences, deleting or replacing tokens, and
rotating documents. The corrupted sequence is encoded using the bidirectional
encoder, and the decoder is trained to reconstruct the original sequence. When
fine-tuned, BART shows remarkable results for natural language generation tasks
such as text summarization, machine translation, question answering. Addition-
ally, the model also works well for natural language understanding tasks, e.g.,
NER, Natural Language Inference (NLI), and coreference resolution. Inspired by
the success of BART, Yinhan Liu et al. (2020) introduce mBART, a multilingual ver-
sion of BART pre-trained on large-scale monolingual corpora in many languages.
mBART can be fine-tuned for any of the language pairs, whether in supervised
or unsupervised settings, without necessitating task-specific or language-specific
adjustments or initialization methods.

Pegasus (Jingqing Zhang et al. 2020) is specifically tailored for abstractive
text summarization. It is trained using the MLM strategy coupled with the Gap-
Sentences Generation task, a novel pre-training approach intentionally similar to
summarization. For each document, a subset comprising 15% of sentences is se-
lected and masked from the original documents. These masked sentence (gap
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sentences) are combined to form a pseudo-summary, which serves as the training
label during pre-training. To refine the pseudo-summary and approach summary-
like quality, the top-m sentences are selected based on their importance, deter-
mined by the Recall-Oriented Understudy for Gisting Evaluation (ROUGE)-1 score
between each gap sentence and the rest of the document. The model is then tasked
to generate the gap sentences using the remaining sentences.

T5 Text-to-Text Transfer Transformer (T5) (Raffel et al. 2020) converts all NLP

tasks into a sequence-to-sequence problem: for any task, the input of the encoder
is a task-specific prefix (e.g., “Summarize:”) followed by the task’s input (e.g., a
sequence of tokens from an article), and the decoder predicts the task’s output (e.g.,
a sequence of tokens summarizing the input article). The pre-training includes
a mixture of both supervised and unsupervised tasks. Supervised pre-training
is conducted on downstream tasks (translation, question answering, and more).
Unsupervised pre-training uses corrupted tokens, by randomly removing 15%
of the tokens and replacing them with individual (sentinel) tokens. Given the
corrupted sequence encoded by the encoder and the original sequence fed to the
decoder, T5 has to reconstruct the dropped out tokens. Casting all NLP tasks into
the same sequence-to-sequence problem allows for the use of the same model,
loss function, and hyperparameters across a diverse set of tasks.

Limitations of encoder-decoder models Tasks such as machine translation
and summarization commonly favor encoder-decoder models, as a holistic un-
derstanding of the input sequence is crucial for generating accurate and coherent
outputs. However, encoder-decoder models face several challenges compared to
decoder-only models. The introduction of an encoder adds more parameters to
the model, which can be a limitation in scenarios where model size is a critical
consideration. Furthermore, the incorporation of bidirectional self-attention and
cross-attention introduces additional computational overhead. The interaction be-
tween the encoder and decoder can render training more complex, potentially
making the model more susceptible to overfitting. Lastly, the encoder may encode
redundant or irrelevant information from the input sequence, and the decoder
has to learn to filter and use this information effectively.

3.2.2.3 Decoder-only Models

The use of decoder-only Transformer architectures in Pre-trained Language
Models has seen a recent surge, with several groundbreaking models (Radford
et al. 2018; T. Brown et al. 2020; Ouyang et al. 2022; Touvron et al. 2023) emerg-
ing. Decoder-only Pre-trained Language Models, also referred to as autoregressive
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or causal language models, remove the Transformer encoder and cross-attention
layers. Each source sequence is concatenated with the corresponding target se-
quence to form a single input sequence, which is then used to train a language
model. This design significantly simplifies the architecture and provides potential
advantages in computational efficiency and ease of training.

Among the most performant generative models of the decade is the series of
Generative Pre-trained Transformer (GPT) models introduced by (Radford et al.
2018). GPT is the first autoregressive language model that uses a Transformer
decoder as its backbone. It learns to predict the next word in a sequence using
autoregressive language modeling. GPT surpassed state-of-the-art NLPs models
that were trained in a supervised fashion with task-specific architectures. In ad-
dition, it improved zero-shot performance in various NLP tasks such as question
answering, schema resolution, and sentiment analysis. GPT established the core
architecture for the GPT-series models and laid down the fundamental principle
to model natural language text, i.e., predicting the next word.

To learn an even stronger language model, Radford et al. (2019) propose GPT-2,
a much larger version of GPT that increases the number of parameters tenfold,
from 100 million to 1.5 billion. Similar to T5 (Raffel et al. 2020), GPT-2 seeks to
perform tasks via self-supervised language modeling, without explicit fine-tuning
with labeled data. To achieve this, Radford et al. (2019) introduce task condition-
ing, a probabilistic form for multi-task learning, which consists in predicting the
output based on the input and task information, i.e., P (output | input, task). Task
conditioning is performed by providing examples of natural language instruc-
tions to perform a task, e.g., for English to French translation, the model is given
an English sentence followed by “French: ”. Therefore, input to GPT-2 is given in
a format which expects the model to understand the nature of the task. Trained
on a sufficiently extensive and large dataset (Radford et al. 2019), GPT-2 achieved
state-of-the-art performance on language modeling benchmarks (M. Marcus et al.
1993; Chelba et al. 2013; Merity et al. 2016) in zero-shot scenarios. On downstream
tasks such as question answering, summarization, and translation, GPT-2 demon-
strates the ability to learn these tasks directly from raw text, without relying on
task-specific training data. The model’s versatility in handling various tasks in
a zero-shot setting suggests that high-capacity models, trained to optimize the
likelihood of diverse text corpora, inherently learn how to perform a remarkable
range of tasks without the need for explicit supervision.

3.2.2.4 Large Language Models

These decoder-only Pre-trained Language Models have showcased their ability
to generate coherent and contextually relevant text, estabilishing them as versatile
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tools for various NLP tasks. Researchers have observed that scaling Pre-trained
Language Models, whether by increasing model size or training data, frequently
results in enhanced model capacity for a variety of downstream tasks. This phe-
nomenon aligns with the scaling law, as suggested by J. Kaplan et al. (2020). The
success of decoder-only Pre-trained Language Models has spurred further de-
velopment of larger and more sophisticated decoder-only Pre-trained Language
Models, now referred to as Large Language Models.

In particular, the next iteration in the GPT series, GPT-3 (T. Brown et al. 2020),
represents a significant milestone in the progression from Pre-trained Language
Models to Large Language Models. GPT-3 is a slightly modified version of GPT-2
that demonstrates a significant capacity leap by scaling to a staggering size of
175 billion of parameters. GPT-3 introduced the concept of in-context learning,
which allows the model to perform specific tasks by conditioning its responses on
context provided in the prompt. In-context learning, also referred to as prompting,
encompasses zero-shot, one-shot, and few-shot learning. GPT-3 uses the same
architecture as GPT-2 with the exception that attention patterns are sparse at
alternating layers (see Section 3.3). Pre-trained on an even larger dataset, GPT-3
has empirically shown that scaling Pre-trained Language Models to a significant
size and formulating text to guide models to perform specific tasks (in-context
learning) can lead to a huge increase in model capacity, especially in few and
zero-shot learning scenarios.

The series of GPT models has allowed significant progress in the field of NLP

by demonstrating the power of Large Language Models. Building on the success
of the GPT series, a myriad of Large Language Models have been released (Scao
et al. 2022; Chowdhery et al. 2022; Touvron et al. 2023). The progress in Large
Language Models has expanded into more specific domains, with models tailored
for specialized tasks such as medical language processing (Thirunavukarasu et al.
2023), scientific research (H. Wang et al. 2023), website development (Junjie Wang
et al. 2023), and code generation (F. F. Xu et al. 2022). A groundbreaking appli-
cation of Large Language Models is ChatGPT, 1 an adaptation of the GPT-series
designed for dialogue. ChatGPT exhibits exceptional conversational abilities with
humans and has sparked a wealth of reviews and discussions on the advance-
ments of Large Language Models (Zhao et al. 2023; Mohamadi et al. 2023; Hadi
et al. 2023).

In recent years, the size of Pre-trained Language Models has been scaled from
a few million parameters (BERT, 110M) to hundreds of billions of parameters
(PaLM, 540B). This scaling has boosted capabilities, enabling models to generate
even more coherent and natural-sounding text and further pushing the bound-
aries of NLP. Despite substantial progress, there are still limitations associated

1. https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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with Large Language Models. First, pre-training effective Large Language Mod-
els is challenging due to the very high computational needs and the sensitivity to
data quality and training settings. In addition, these have a tendency to generate
inaccurate information, either conflicting with existing sources or unverifiable by
available sources (Bang et al. 2023). Even robust Large Language Models such
as ChatGPT encounter significant difficulties in managing hallucinations within
generated texts. Another significant challenge for Large Language Models is their
limitation in solving tasks that require the latest knowledge beyond what was
available in their training data. Fine-tuning such large models with new data is
a costly process and can potentially lead to catastrophic forgetting when incre-
mentally training these models. Keeping up with and incorporating information
from real-time or rapidly evolving context remains an open research problem
(Yao et al. 2023). Besides, Large Language Models may struggle with tasks that
demand generating structured data (J. Jiang et al. 2023) or require domain-specific
knowledge (Junjie Ye et al. 2023). Incorporating this knowledge into these models
while preserving their original capabilities is non-trivial. Furthermore, Large Lan-
guage models have been shown to internalize, spread, and potentially amplify
harmful information present in the training data they are exposed to. This often
includes toxic language such as offensiveness, hate speech, and insults (Gehman
et al. 2020), as well as social biases such as stereotypes directed towards individ-
uals with specific demographic identities (Sheng et al. 2021). Addressing all of
these limitations remains an ongoing area of research to enhance the robustness
and ethical deployment of Large Language Models in various applications.

3.2.3 Conclusion

Transformer-based Pre-trained Language models have marked a significant
milestone in Artificial Intelligence (AI). With sophisticated pre-training strate-
gies and a vast number of model parameters, these models excel in absorbing
knowledge from large amounts of data through unsupervised pre-training. The
knowledge acquired can be leveraged for a wide range of tasks in NLP. Conse-
quently, Pre-trained Language Models are widely embraced as the foundational
framework for downstream tasks, replacing the traditional approach of training
models from scratch.

The contributions presented in this PhD thesis leverage the capabilities of
Transformer-based Pre-trained Language Models for applications in Document
Understanding, focusing specifically on the earlier iteration (e.g., BERT and BART)
rather than the Large Language Models that emerged toward the end of our
research timeline.
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3.3 Long-range Modeling

In real-world scenarios, long texts are a major information medium document-
ing human activities, e.g., academic articles, official reports, and meeting tran-
scripts. Reading, analyzing, and extracting important information from large vol-
umes of long texts poses a challenge for humans. Therefore, a compelling need
arises for NLP systems to model long texts and extract information of human
interest. Broadly, the objective of long-range modeling is to capture salient seman-
tics from long texts through informative representations, which hold utility for
diverse downstream applications such as long document summarization (Cohan
et al. 2018; Sharma et al. 2019) and long question answering (Dasigi et al. 2021).

Handling long texts poses a challenge in NLP due to the length limitation im-
posed by Transformers on input sequences. Tokens exceeding the predefined
maximum context length, typically shorter than the length of short texts, are
discarded. A straightforward method involves truncating the input text to the
pre-defined maximum length (M. Lewis et al. 2019). Yet, with increasing length,
salient information in a long document tends to be evenly distributed. Therefore,
truncating the text may lead to substantial loss of information (Koh et al. 2022).
Another approach consists in splitting the text into chunks, each fitting within
the maximum length of the model. Each chunk is processed independently, and
the resulting outputs are then aggregated. However, the model’s receptive field
is confined to a chunk, causing the disruption of long-range dependencies that
extend across multiple chunks (Ding et al. 2020). An alternative solution involves
identifying and concatenating relevant sections of the text into a sequence, which
is then processed by the model. However, employing a two-stage pipeline can
lead to discrepancies between the two modules. Therefore, modeling long texts
remains an ongoing research problem that necessitates in-depth exploration.

Furthermore, computational efficiency cannot be overlooked. As the docu-
ment’s length increases, the time and memory requirements needed to model the
text with standard Transformers grow quadratically, adding a substantial burden
for practical applications. This high computational cost originates from various
factors, with the computation of self-attention being a major contributor. Given n

the sequence length, h the number of attention heads, and d the dimension of the
representation space, the computational complexity for a self-attention operation
on a single sequence is O(dn2). The memory complexity to compute the attention
matrix is O(dn+hn2), the first term being the memory required to store keys and
queries, and the second term referring to the scalar attention values produced
by each head. Hence, the QK⊤ matrix multiplication alone results in n2 time
and memory requirements, constraining the use of Transformers models to short
sequences, typically capped at 512 or 1,024 tokens. Furthermore, the two feed-
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Figure 3.6 – Attention mechanisms used in BigBird. Illustration from Zaheer et al.
(2020).

forward network components in each Transformer block significantly contribute
to the cost of Transformers. While having a linear complexity with respect to
sequence length, feed-forward networks are still, in practice, resource-intensive.

Additionally, long document harbor distinct attributes when compared to shorter
texts. As long texts are typically domain-specific documents with complex hier-
archical structures, there is a need to consider long-range dependency (distant
tokens may share semantic relationships with each other), inter-sentence relations
(semantic connections between different sentences in the text), and discourse struc-
ture (long documents typically feature complex discourse structures, comprising
sections and paragraphs) (Z. Dong et al. 2023).

We focus on modeling advances and architectural innovations that tackle the
quadratic complexity issue of the self-attention mechanism. Furthermore, we
explore benchmarks specifically designed for evaluating long-range modeling
capabilities.

3.3.1 Long-range Models

To alleviate the cost of Transformers, a diversity of efficient self-attention model
variants (Tay et al. 2020b) have been proposed over the past few years. Termed as
Long-range Transformers, these variants play a vital role in applications that model
long sequences. Based on their core techniques and primary use case, long-range
Transformers can be grouped into three categories (Qin et al. 2022): sparse patterns,
recurrence, and low-rank and kernel methods.

3.3.1.1 Sparse Patterns

The earliest modifications to self-attention involve applying pattern-based meth-
ods to sparsify the attention matrix. By computing attention solely on a limited
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number of query-key pairs, this approach restricts the field of view to specific
patterns. The key idea is to relax the constraint that a single layer needs to aggre-
gate information from any two tokens. Although the attention of each layer is not
dense, the receptive field can be increased as multiple layers are stacked.

As an initial attempt, the Sparse Transformer (Child et al. 2019) introduces
a two-dimensional factorization of the attention matrix, where the network can
attend to all positions through two steps of sparse attention. Half of the attention
heads attend only to preceding elements in the sequence, while the other half
attend to predesignated indices spread evenly throughout the sequence.

Longformer (Beltagy et al. 2020), a variant of Sparse Transformer, employs
self-attention on both local and global contexts by introducing three attention
patterns: sliding window attention, dilated window attention, and global attention. The
key concept underlying the first two patterns is similar to convolution: the most
important information is supposedly contained in the neighbourhoods of the
tokens (Yixin Liu et al. 2022). Sliding window attention constrains the field of view
for each token to a k-sized window centered on the token. Although a token can
only attend to itself and its neighbours in a single layer, sliding window attention
enables a multi-layer Transformer to achieve a receptive field covering the entire
sequence. Due to the need for multiple layers to incorporate information from
the complete sequence, the sliding window can be dilated to increase the receptive
field without increasing computation. However, dilated sliding window attention
alone does not suffice to produce task-specific representations: some tokens are
so important that it is highly beneficial that each token is connected to them and
conversely (e.g., through a single layer, the [CLS] token needs to have access to
all input tokens for sequence classification tasks). Global attention addresses this
issue by allowing s fixed, user-defined tokens to attend to every other token and
vice-versa, enabling the model to learn task-specific representations.

BigBird (Zaheer et al. 2020) extends Longformer by adding random pattern
attention, which allows every token to attend to r tokens chosen randomly, where
r is a small constant number. The intuition behind this mechanism is that the path
lengths in a randomly connected graph are on average logarithmic. The attention
mechanisms employed in BigBird are depicted in Figure 3.6.

The Extended Transformer Construction (ETC) model (Ainslie et al. 2020) rep-
resents another iteration within the Sparse Transformer family. It introduces a
novel global-local attention mechanism, encompassing four distinctive components:
global-to-global, global-to-local, local-to-global, and local-to-local attentions. In addition
to the original input, ETC integrates ng auxiliary tokens at the beginning of the
sequence, functioning as global tokens for participating in global-to-* and *-to-
global attention processes. The local-to-local component uses a sliding window
of size k. Notably, ETC’s approach closely resembles that of Longformer in its
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incorporation of global auxiliary tokens, which function as trainable parameters
and can be interpreted as a form of model memory that pools across the sequence
to collect global sequence information.

The Sparse Transformer has a loglinear time and memory complexity, while
Longformer, BigBird, and ETC operates with a linear time and memory complexity.
None of these models introduces new parameters beyond the Transformer model.
Given the global attention mechanism, computing causal masks (Section 3.1.2.2)
becomes unfeasible. As a result, the attention mechanisms employed by Long-
former, BigBird, and ETC are unsuitable for use in an autoregressive setting. Nev-
ertheless, they can be effectively applied in sequence-to-sequence modeling, em-
ployed in the encoder while standard self-attention is retained in the decoder.
Both Longformer and BigBird, as well as ETC, have the capacity to handle up to
4,096 tokens.

3.3.1.2 Recurrence

Recurrence and compressed memory approaches incorporate segment-level re-
currence into Transformer models to lengthen their attention span. The underlying
concept of segment-based recurrence methods is to consider blocks of local recep-
tive fields by chunking the input sequence into segments, and then process them
in series via recurrence, as in RNNs.

Rather than attempting to reduce the cost of self-attention, Z. Dai et al. (2019)
take inspiration from RNNs and propose Transformer-XL, a causal language model
that introduces a segment-based recurrence mechanism to connect adjacent seg-
ments. In Transformer-XL, segments are sequentially fed to the model, and tokens
within a segment attend to the rest of the segment and to the hidden states of the
previous segment. Hence, after the first segment, tokens in subsequent segments
will always have an immediate context size of n. By stacking multiple attention
layers, the receptive field can be increased to multiple previous segments. In ad-
dition, this recurrence mechanism provides context for tokens in the beginning
of a new segment.

XLNet (Z. Yang et al. 2019) leverages both autoregressive and bidirectional
language modeling. Unlike traditional autoregressive models that rely on fixed
forward/backward factorization orders, XLNet maximizes the expected log likeli-
hood of a sequence across all possible permutations of factorization orders. This
approach allows each position in the sequence to consider tokens from both left
and right, creating a bidirectional context. Additionally, XLNet incorporates the
segment recurrence mechanism and relative encoding scheme of Transformer-XL
during pre-training. This integration empirically improves the model’s perfor-
mance, specifically for tasks involving long text sequences.
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3.3.1.3 Approximating the Attention Mechanism

Another approach to improve the efficiency of Transformer models is to approx-
imate the self-attention mechanism through techniques such as learnable patterns,
low-rank approximation, or kernelization. The idea revolves around mathematically
redefining the self-attention mechanism, which eliminates the need to explicitly
compute the n× n matrix.

Reformer (Kitaev et al. 2020) uses learnable patterns that enable the model to
learn the access pattern in a data-driven fashion. Learnable patterns facilitates
a more global view of the sequence while maintaining the efficiency benefits
of fixed patterns approaches. Reformer introduces Locality Sensitive Hashing
(LSH) attention, a novel attention mechanism that consists in sharing parameters
between Q and K, and clustering tokens into chunks. This concept is rooted
in the idea that if the sequence is long, softmax(QK⊤) only puts significant
weight on very few key vectors for each query vector. Hence, given a query q,
softmax(qK) can be approximated by using only the keys that have a high cosine
similarity with q. Using the LSH algorithm, query vectors are hashed into buckets
of similar vectors. Attention is then computed among each bucket. If the bucket
size is appropriately selected, the time and memory complexity of Reformer is
O(n log n).

Rather than approximating the softmax operator, alternative approaches have
aimed to approximate the full attention mechanism using low-rank approxima-
tions. In Linformer (S. Wang et al. 2020), the keys and values are projected to a
lower-dimensional representation k × d, where k < n. As k does not depend on
the sequence length n, the time and memory complexity of Linformer is linear.
There is only a minimal parameter costs of the Linformer due to the extra nk

length projections. If k is sufficiently small, there is negligible parameter costs
incurred.

To estimate standard full-rank-attention Transformers without relying on any
prior such as sparsity or low-rankness, Choromanski et al. (2020) generalize Lin-
former by proposing a kernel-based approach that uses a generalized attention
framework to approximate any attention matrix.

Reformer can be used in both bidirectional and autoregressive settings. In Lin-
former, projection along the length dimension n induces the mixing of sequence
information. Similarly, the randomized feature map and the approximations in-
volved in the kernel-based approach might not inherently preserve the sequential
order required for causal masking. Therefore, it is non-trivial to maintain causal
masking and/or prevent mixing of past and future information when comput-
ing attention in both Linformer and Performer. Consequently, both Linformer’s
and Performer’s attention approximations are unsuitable for deployment in an
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autoregressive setting. Similar to Longformer, BigBird, and ETC, these attention
mechanisms are restricted to the encoder of the Transformer.

3.3.2 Benchmarking Long-range Models

The broad array of efficient Transformers that has emerged to address the chal-
lenge of long-range modeling have been mostly evaluated using differents sets of
downstream tasks and datasets. Longformer and BigBird were evaluated on ques-
tion answering (Z. Yang et al. 2018; Welbl et al. 2018) and text classification (Maas
et al. 2011; Kiesel et al. 2019). ETC’s evaluation extends to information extrac-
tion tasks (L. Xiong et al. 2019). XLNet’s performance is assessed using machine
reading comprehension (Lai et al. 2017) and document ranking 2. Linformer is
evaluated on easier tasks such as sentiment classification (Maas et al. 2011; Socher
et al. 2013), NLI (A. Wang et al. 2018) and textual similarity (Zhiguo Wang et al.
2017), where simpler models such as Convolutional Neural Networks (CNNs) per-
form well. On the other hand, the Sparse Transformer, Reformer, and Performer
have their performance assessed on image generation tasks (Parmar et al. 2018).
The large diversity of tasks and datasets used complicates the comparison of
models and the assessment of their relative strengths and weaknessses.

Furthermore, intrinsic metrics such as perplexity or Bits-per-character (BPC) are
widely used to assess the performance of efficient Transformers. However, an
increasing amount of literature shows that predicting the next token is mostly a
local task that does not require modeling long-range dependencies (Khandelwal
et al. 2018; Sun et al. 2021).

In this section, we describe unified benchmarks designed to shed light on the
ability of these architectures to reason in long-context scenarios, and study their
performance in handling NLP tasks.

3.3.2.1 Long-Range Benchmarks

Tay et al. (2020a) introduce a systematic and unified benchmark, Long-Range
Arena (LRA), designed to evaluate the ability of a model to reason in long-context
scenarios. This benchmark is a suite of tasks with sequences ranging from 1,000

to 16K tokens, encompassing various data types and modalities (text, natural and
synthetic images, mathematical expressions). This benchmark was created based
on a set of specific requirements and criteria. First, LRA is general: all long-range
Transformer models are applicable to the tasks. The tasks are intentionally de-
signed to promote simple models rather than cumbersome pipelined approaches.

2. https://lemurproject.org/clueweb09/

https://lemurproject.org/clueweb09/
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Furthermore, the tasks are crafted to be challenging enough to ensure there is
room for improvement. The input sequences are reasonably long, and the set of
tasks allows to assess different capabilities of models. Finally, LRA is deliberately
non-resource intensive and accessible. However, only two out of these five tasks
involve natural language, restricting the relevance of LRA for NLP. Furthermore,
LRA artificially increases the length of natural language sequences through char-
acter tokenization, and truncates each example at 4,000 characters, equivalent
to less than 1,000 words. This exempts models from dealing with the complex
long-range interactions present in long texts.

To extend evaluation beyond sentences and paragraphs, Shaham et al. (2022)
propose Standardized CompaRison Over Long Language Sequences (SCROLLS),
an NLP benchmark featuring datasets with long texts, ranging from an average of
1,700 words to over 51,000. SCROLLS consists of seven datasets covering various
domains and tasks: summarization from government reports (GovReport), TV
shows transcripts (SummScreenFD), and meetings (QMSum), question answering
from scientific articles (Qasper), books (NarrativeQA), and stories (QuALITY), and
NLI from non-disclosure agreements (Contract NLI). Every task is reformulated as
a sequence-to-sequence problem for a simple unified format. SCROLLS presents
a challenge not only due to the length of its inputs but also because it requires
models to process long-range interactions across different sections.

3.3.2.2 On the Effectiveness of Long-range Models for NLP Tasks

To validate the effectiveness and long-range ability of long-range Transformers
on language tasks and uncover the underlying factors behind model behaviors,
Qin et al. (2022) benchmark different long-range Transformer models for NLP

tasks characterized by long sequences. Five complex, long-text NLP tasks are con-
sidered, covering a wide spectrum of typical language scenarios: token/span-level
prediction, sequence-level classification, and sequence-to-sequence generation.

Longformer and BigBird are used to assess the performance of sparse pattern
approaches (Section 3.3.1.1). In coreference resolution, which consists in iden-
tifying mention spans and clustering them into entities, Qin et al. (2022) find
that using larger sliding windows can be advantageous, but this advantage tends
to level off or even decline after a certain point. In tasks where the quantity of
guiding text, i.e., specific textual information provided explicitly to guide the
model’s behavior, is limited—such as questions in question answering—using
them as global tokens can enhance attention and substantially improve overall
performance. Additionally, Qin et al. (2022) find a connection between long-range
attention, global tokens, and the selectivity of sequence-to-sequence problems,
which ultimately enhances the decoding process. Globally, the authors show that
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pattern-based methods, despite being a widely adopted approach, do not effec-
tively capture long distance information.

The effectiveness of recurrence-based methods (Section 3.3.1.2) is evaluated us-
ing XLNet. In various tasks, Qin et al. (2022) show that the memory of recurrence
models tends to enhance performance, demonstrating the advantage of using
past hidden states in Transformers. Nevertheless, XLNet falls short in maximizing
the potential of past tokens, as it gives relatively less attention to distant infor-
mation. This could be attributed to XLNet’s pretraining objective of predicting
masked tokens, which does not consistently require long-range context (Sun et al.
2021). Moreover, the application of the stop-gradient technique might impede the
model’s ability to efficiently focus on memories.

Performer is used as a kernel-based model (Section 3.3.1.3). It is found that the
approximation technique of Performer demonstrates strong performance with
shallow networks. However, when applied to deeply stacked Transformer layers,
it encounters significant error accumulation issues. This leads to a notable drop
in performance, which is considered unacceptable even for the base version of
Transformer encoders.

Drawing from their discoveries, Qin et al. (2022) offer a few recommendations.
For typical tasks like sequence classification or token-level prediction, it remains
effective to divide inputs into chunks and use short-range Transformer models.
In cases where explicit guiding text such as queries is available, models based
on sparse patterns and featuring a global token mechanism are preferable. For
sequence-to-sequence problems, leveraging long-range Transformers with pre-
trained checkpoints yields superior performance.

3.3.3 Conclusion

The exploration of long-range modeling has been marked by continuous efforts
to reduce the cost of Transformers to efficiently model long texts. The quest for
ideal long-range models demands finding an equilibrium. These models should
address the quadratic issue of Transformers, showcase universality by performing
well across most tasks, and remain simple without unnecessary hard-coding or
engineering complexities. There should be no compromise between speed and
memory efficiency, and they should be able to seamlessly integrate with TPUs
and accomodate causal masking.

The research conducted in this PhD thesis is in line with the continuous ef-
forts to model long texts efficiently. Chapter 5 contributes to research on efficient
long-range modeling by proposing a sparse attention pattern based on the lay-
out of documents, introducing a novel approach to alleviate the computational
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burden associated with long-range modeling. Acknowledging the importance of
document structures in guiding summary generation, Chapter 7 integrates layout
information into existing long-range models (Zaheer et al. 2020), thereby improv-
ing summarization of long documents and highlighting the significance of layout
information in capturing long-range dependencies.

3.4 Conclusion

Transformer-based Pretrained Language Models have brought significant break-
throughs to NLP (Devlin et al. 2018; M. Lewis et al. 2019; T. Brown et al. 2020).
Despite remarkable achievements, the quadratic complexity of the Transformer
hinders their effective application to long texts. In tasks involving long texts, many
works tend to apply the same approaches used for processing shorter ones (e.g.
truncating or chunking) without addressing the challenges specific to long texts
(e.g., long-range dependencies and complex hierarchical structures). While vari-
ous Transformer variants have been proposed to efficiently model long texts, there
is currently no variant that can be confidently identified as having effectively ad-
dressed the efficiency challenges in Transformers while preserving performance
comparable to that obtained with full self-attention.

The next chapter will address the applicative scope of this PhD thesis: Doc-
ument Understanding. Notably, the prevailing approach in solving document
understanding tasks involves leveraging Pre-trained Language Models to jointly
learn text and multimodal information.
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The majority of models, benchmarks, and tasks focus exclusively on a single
source of information, namely plain text. However, disregarding the visual ap-
pearance of text is suboptimal in real-world scenarios. Documents, ranging from
webpages to digital-born PDF files and scanned document images, exhibit a di-
verse array of formats. These documents, including business forms, scholarly and
news articles, invoices, financial reports and emails, convey information not only
through language but also through visual content (e.g., figures, text formatting)
and layout structure (i.e., text positioning). Extracting information from documents
becomes a challenging task due to the diversity in layouts and formats, the pres-
ence of low-quality scanned document images, and the complexity of template
structures. Manually extracting information is a time-consuming and error-prone
process with limited reusability. As such, Document Understanding, i.e., the pro-
cess of automatically understanding, classifying and extracting information from
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visually-rich documents, has emerged as a key research area. As the foundation
of digital transformation, Document Understanding holds significant economic
value and has experienced a surge in industrial demand in recent years. To reduce
the time and cost of document workflows, more and more companies are shifting
from labor-intensive, rule-based algorithms to deep learning-based entity recog-
nition, document classification, semantic extraction, etc. The study of Document
Understanding spans multiple disciplines and involves developing models and
techniques to comprehend the content and structure of complex, visually-rich
documents. As such, Document Understanding is also crucial from an academic
standpoint as it opens up avenues for various research and advancements in
Natural Language Processing (NLP) and Computer Vision.

Over the last thirty years, the development of Document Understanding has un-
dergone various stages—starting from rule-based heuristics to the rise of neural
network approaches. In the early 1990s, researchers relied on rule-based heuristic
methods constructed by manually observing document layout information (Wong
et al. 1982; Fisher et al. 1990; Lebourgeois et al. 1992). However, these handcrafted
rules proved to be non-scalable, and the adoption of rule-based approaches of-
ten resulted in high labor costs. As Machine Learning technology rose in the
2000s, models based on annotated data (Baechler and Ingold 2011; H. Wei et al.
2013) became the predominant approach for document processing, marking a
transition towards more scalable and data-driven approaches in Document Un-
derstanding. While offering a certain degree of performance enhancement, their
general usability often falls short due to the lack of customized rules and limited
training samples. Moreover, the adaptation costs for various document types are
relatively high, rendering previous approaches impractical for widespread com-
mercial use. In recent years, the advent of Deep Learning and the accumulation of
vast amounts of unlabeled electronic documents, have propelled Document Un-
derstanding into a new era. This era embraces the "pre-training then fine-tuning"
paradigm, resulting in a significant breakthrough in the field (Yiheng Xu et al.
2020; Peng et al. 2022).

In this chapter, we begin by providing an overview of the representative tasks
and datasets in Document Understanding. We then explore the most recent and
significant advancements in the field driven by Deep Learning, focusing on two
research directions. The first direction involves task-specific approaches that em-
ploy shallow fusion between textual and visual/layout information. On the other
hand, the second axis explores the application of pre-training techniques for deep
fusion of modalities, significantly advancing analysis performance and accuracy.
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4.1 Document Understanding Tasks and Datasets

(a) Document layout analysis. Sample
from DocBank (M. Li et al. 2020).

(b) Document classification. Sample
from RVL-CDIP (Harley et al. 2015).

(c) Visual information extraction.
Sample from FUNSD (Jaume
et al. 2019).

(d) Document Visual Question Answering.
Sample from DocVQA (Mathew et al.
2021).

Figure 4.1 – Document Understanding tasks and examples.

The field of Document Understanding covers problems that involve understand-
ing visually-rich documents (in contrast to plain texts), requiring comprehending
the conveyed multimodal information. Real-world application scenarios encom-
pass a diverse set of tasks spanning various domains and paradigms. These tasks
can be broadly classified into four categories:
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• Document Layout Analysis, which involves identifying and categorizing
document components;

• Document Image Classification, which consists in classifying document im-
ages into various categories;

• Visual Information Extraction, which requires extracting semantic entities
and their relationships from visually-rich documents;

• Document Visual Question Answering, which consists in supplying the
answer to a question related to a visually-rich document.

While document layout analysis and document image classification are more
centered around processing visual data (image-centric), visual information extrac-
tion and document visual question answering put more focus on textual data
(text-centric).

4.1.1 Document Layout Analysis

Document layout analysis consists in automatically locating and categorizing
the components (e.g., text, tables, figures) of a document. This task includes two
primary subtasks: page segmentation and logical structural analysis (Binmakhashen
and Mahmoud 2019). Page segmentation consists in detecting the structure of
the document and establishing a partition into distinct regions such as text, fig-
ures, images, and tables. On the other hand, logical structural analysis focuses on
providing finer-grained semantic classifications within the previously detected
regions, e.g. identifying a region of text that is a paragraph. Document layout anal-
ysis plays a crucial role in parsing semi-structured documents into structured,
machine-readable formats for downstream applications, such as Optical Charac-
ter Recognition (OCR). This task is challenging due to the varying layouts and
formats of the documents. Several benchmark datasets have emerged for docu-
ment layout analysis. The International Conference on Document Analysis and
Recognition (ICDAR) have produced several gold-standard datasets from their
annual competitions (Antonacopoulos et al. 2013; L. Gao et al. 2017). PubLayNet
(Zhong et al. 2019) consists of biomedical and life sciences articles and involves
detecting and classifying page regions into categories including caption, list, and
paragraph. DocBank (M. Li et al. 2020) comprises scientific research papers with
fine-grained token-level annotations for better applicability to NLP methods.

Table understanding is a crucial and challenging subtask of document layout anal-
ysis. Tables serve as a concise and effective means of summarizing and presenting
information in various types of documents. Unlike other document elements
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such as headings and paragraphs, tables display greater variability in format and
a more complex structure. Consequently, significant research has been conducted
on tables, focusing on two key subtasks: 1) Table detection, which aims to deter-
mine the boundaries of tables in the document, and 2) Table structure recognition,
where the objective is to extract the layout structure of tables, including informa-
tion about rows, columns, and cells. ICDAR held several competitions to evaluate
both aspects of table understanding, using both modern and archival documents
(Göbel et al. 2013; L. Gao et al. 2019). To address the need for larger datasets,
M. Li et al. (2019) proposed TableBank, a large-scale dataset built from Office
Word and LATEXdocuments using weak supervision. With PubTabNet, Zhong et al.
(2020) offer additional information on table structure and cell content to assist in
table recognition.

4.1.2 Document Image Classification

Document image classification refers to the process of classifying document im-
ages into various categories such as emails, invoices, scientific papers, and more.
Unlike natural images, document images primarily consist of textual content dis-
played in diverse styles and layouts. Therefore, Document Image Classification is
a special subtask of image classification that requires understanding both visual
and textual aspects of documents. The Tobacco-3482 dataset (Kumar and Doer-
mann 2013) consists of 3,482 document images classified into 10 classes. Widely
used for document image classification, the large-scale RVL-CDIP dataset (Harley
et al. 2015) is a representative dataset for this task and encompasses 400,000

images distributed across 16 categories.

4.1.3 Visual Information Extraction

Visual information extraction consists in extracting semantic entities (entity recog-
nition) and their relationships (relation extraction) from visually-rich documents,
based on a set of pre-defined keys. In contrast to traditional text-only information
extraction, the two-dimensional spatial arrangement of text requires an under-
standing of page layouts for complete comprehension.

Notable public datasets for this task include Form Understanding in Noisy
Scanned Documents (FUNSD) (Jaume et al. 2019), a form understanding dataset
consisting of 199 real, noisy, and fully annotated scanned forms. These forms are
organized as a list of interlinked form entities. Each semantic entity is charac-
terized by a unique identifier, an entity type (i.e., key), a list of links with other
entities, and a list of words and their corresponding bounding boxes. The dataset
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features three keys for which values need to be extracted: question, answer, and
header. For receipt understanding, Scanned Receipts OCR And Key Informa-
tion Extraction (SROIE) (Zheng Huang et al. 2019) (973 English documents) and
Consolidated Receipt Dataset (CORD) (Park et al. 2019) (1000 Indonesian docu-
ments) are widely used datasets. In SROIE, every receipt is formatted as a list of
text lines, with each line being associated with word bounding boxes. The receipts
are classified into four entity types: company, date, address, and total. In CORD,
receipts are arranged as lists of entities, each identified by a unique identifier, an
entity type, and a list of words along with their respective bounding boxes. CORD

encompasses 30 entity types, further categorized into four superclasses: menu,
subtotal, total, and void. In Chapter 6, we employ these datasets to evaluate our
work for visual information extraction tasks.

Several datasets have been proposed to advance entity extraction from more
complex documents. Kleister (Graliński et al. 2020) comprises non-disclosure
agreements and financial reports, typically characterized by their extensive length.
The DeepForm dataset provided by Borchmann et al. (2021) is an improved ver-
sion of the original dataset 1 featuring advertising disclosure forms with manually
corrected invalid data points. Additionally, the PWC dataset, also proposed by
Borchmann et al. (2021), reformulates the original PWC Leaderboards dataset
(Kardas et al. 2020) into a visual information extraction task, using digital-born
scientific papers as input instead of tables. VRDU-Registration Forms and VRDU-
Ad-buy Forms (Zilong Wang et al. 2023) contain public documents downloaded
from the Foreign Agents Registration Act 2 and the Federal Communications
Commission, 3 respectively. Three settings of increasing difficulty have been in-
troduced to evaluate the model’s performance across diverse scenarios. These
scenarios range from handling a single template across training, validation, and
testing, to the conventional setting where all three sets contain documents from
the same template set, and finally, to the challenging scenario where documents
in the sets are drawn from distinct template sets.

To prompt further research into multilingual document understanding systems,
datasets for visual information extraction containing documents in languages
other than English have been proposed. EPHOIE (Jiapeng Wang et al. 2021)
contains Chinese document images collected from scanned examination papers.
XFUND is a multilingual extension of FUNSD (Yiheng Xu et al. 2022) and contains
manually-labeled forms in 7 languages.

1. https://wandb.ai/stacey/deepform_v1
2. https://www.justice.gov/nsd-fara
3. https://publicfiles.fcc.gov/

https://wandb.ai/stacey/deepform_v1
https://www.justice.gov/nsd-fara
https://publicfiles.fcc.gov/
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4.1.4 Document Visual Question Answering

Document visual question answering is a high-level understanding task that re-
quires providing the correct answer to a question related to a visually-rich doc-
ument, posed in natural language. This is achieved by jointly reasoning over
the document layout (page structure, forms, tables), textual content (handwritten
or typewritten), and visual elements (marks, tick boxes, diagrams). Unlike tradi-
tional visual question answering tasks, textual information holds a pivotal role in
document visual question answering. The DocVQA dataset (Mathew et al. 2021)
contains more than 12,000 industry documents and 5,000 corresponding ques-
tions. InfographicsVQA (Mathew et al. 2022) comprises infographic images with
questions that require elementary reasoning and basic arithmetic skills. To spurr
further research on developping generation abilities, VisualMRC (Tanaka et al.
2021) was built from multiple domains of webpages and requires producing long
and abstractive answers. For question answering over tables, Borchmann et al.
(2021) converted the WikiTableQuestions dataset (Pasupat and Liang 2015) into a
document visual question answering dataset by using HTML tables sourced from
Wikipedia as input, in place of the original semi-structured HTML tables.

4.1.5 Towards Advancing Document Understanding

The number of open-sourced benchmark datasets proposed for these tasks has
significantly facilitated the development of new techniques and models. Partic-
ularly noteworthy is the recent surge in deep learning-based models that have
achieve state-of-the-art performance across these tasks. In line with the aforemen-
tioned works, we introduce novel datasets for layout-aware summarization—a
task that has received limited attention in the document understanding field—in
Chapter 7.

4.2 Task-specific Deep Learning Models For Docu-
ment Understanding

Deep Learning marked a paradigm shift by enabling significant performance
leaps across various research areas. In particular, the fields of NLP and Computer
Vision have undergone substantial advancements due to the emergence of Deep
Learning. The development of Document Understanding also reflects a similar
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trend, where methodologies from NLP and Computer Vision are integrated into
modern document understanding systems.

The initial approach to enhancing document understanding system with Deep
Learning involves the use of task-specific methods. These methods leverage pre-
trained Computer Vision and/or NLP models to gather knowledge from the cor-
responding modality. Features are extracted from either a single modality or
through a simple combination of modality features, and used for a specific down-
stream task.

4.2.1 Document Image Classification

Document image classification constitutes a subtask of image classification.
Consequently, classification models originally designed for natural images can be
applied to tackle the challenges associated with document image classification.
Afzal et al. (2015) used a deep Convolutional Neural Network (CNN) trained on
the millions of examples from ImageNet (Deng et al. 2009). Das et al. (2018)
introduced a range of deep CNNs designed to classify specific regions within a
document. These classifiers are combined using an effective ensembling technique
for document image classification. Dauphinee et al. (2019) developed a model
consisting of two distinct components — one dedicated to processing text and the
other to handling images. This modular approach uses both visual information
and textual content within a page to classify document images.

4.2.2 Document Layout Analysis

Document layout analysis can be framed as an instance segmentation task for
document images, where units such as text, figures, headings, paragraphs, and
captions are the objects that need to be detected and recognized. For this task, the
model has to predict per-pixel labels to categorize regions of interest within the
document. Framing document layout analysis as an instance segmentation task
offers flexibility and can adapt to both the coarser-grained task of page segmenta-
tion and the finer-grained task of logical structural analysis. Most deep learning
based document layout analysis borrow various CNN-based object detection and
segmentation frameworks Ren et al. (2015) and Cai and Vasconcelos (2018). X.
Yang et al. (2017) proposed an end-to-end CNN that combines both text and vi-
sual features within an encoder-decoder architecture for pixel classification. The
encoder-decoder architecture ensures that visual feature information at various
levels of resolution is considered throughout the encoding and decoding process
(Burt and Adelson 1987). In addition to the resulting visual representation, text
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embeddings learned from a pre-trained NLP model are supplied at the final de-
coding layer. Similarly, Oliveira et al. (2018) introduced a multi-task pixel-by-pixel
prediction CNN-based model to perform layout analysis on historical documents.
Soto and Yoo (2019) view layout analysis of scientific articles as an object detec-
tion task. While instance segmentation requires delineating the boundaries of
individual instances at the pixel level, object detection primarily focuses on iden-
tifying and locating objects using bounding boxes. Soto and Yoo (2019) find that
integrating contextual information into Faster R-CNN (Ren et al. 2015), a promi-
nent object detection framework, leverages local invariance of article elements
and improves region detection performance.

Faster R-CNN has been particularly successful when directly applied to table
detection, a task often framed as an object detection task. CascadeTabNet (Prasad
et al. 2020) leverages the Cascade R-CNN (Cai and Vasconcelos 2018) model for
simultaneous table detection and table structure recognition. Another notable
contribution is TableSense (H. Dong et al. 2019), which significantly enhances
table detection by introducing cell features and employing advanced sampling
algorithms.

Most deep learning based document layout analysis and table understanding
models mainly focus on processing visual features of layout components using
CNN-based models. Visual features alone may fall short in solving document
layout analysis tasks due to their limited ability to capture underlying semantics,
structural relationships, and textual content. For better layout analysis, it is crucial
to integrate both visual and semantic information while capturing and encoding
relationships between layout components (S. Luo et al. 2022). We explore this
direction in Chapter 5.

4.2.3 Visual Information Extraction

For information extraction from visually-rich documents, many researchers and
practitioners have framed the problem as a segmentation task. In this approach,
semantically meaningful regions are identified through object detection and la-
beled via semantic segmentation. Given the pivotal role of text in visual informa-
tion extraction, directly embedding textual information into the image simplifies
handling of 2D textual relationships. The conventional framework considers doc-
ument images as a pixel grid. Each pixel corresponds to a text embedding vector,
which can be a one-hot encoding vector (Katti et al. 2018), a word embedding (Ker-
roumi et al. 2021), or a contextualized subword embedding (Denk and Reisswig
2019). This approach preserves the layout of documents and captures details such
as positioning, size, and alignment for textual components. As an initial attempt,
Chargrid (Katti et al. 2018) operates at the character level, using a one-hot encod-
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ing for each character. A 2D grid of characters is constructed by mapping each
pixel intersecting with a character bounding box to the corresponding one-hot en-
coding. A convolution-based encoder-decoder model is then applied to perform
instance-level segmentation. Specifically, the model predicts a segmentation mask
where each pixel is assigned a class label, and generates object bounding boxes
to assign characters from the same segmentation class to distinct instances. Ex-
panding on Chargrid, VisualWordgrid (Kerroumi et al. 2021) operates at the word
level, incorporating word embeddings from Word2Vec or fastText. To improve the
end-to-end accuracy, BERTgrid (Denk and Reisswig 2019) constructs a grid at the
word-piece level, embedding each word piece with dense contextualized vectors
obtained from Bidirectional Encoder Representations from Transformers (BERT).
ViBERTgrid (W. Lin et al. 2021) takes a step further by concatenating a BERTgrid
to an intermediate layer of a CNN model, resulting in a more powerful grid-based
document representation.

Documents can also be seen as graphs, wherein nodes correspond to textual
segments, and relationships between text fragments are modeled as edges. Xi-
aojing Liu et al. (2019) introduce a model based on Graph Convolutional Net-
works (GCNs) to integrate both textual and visual information. In this model, each
node comprises information about the position of the segment and the text it
contains, while edges represent the relative distances between the correspond-
ing segments and their aspect ratio. Graph convolution is employed to calculate
graph embeddings for each text segment, which are then combined with text em-
beddings. The resulting embeddings are fed into a bidirectional Long Short Term
Memory (LSTM) for information extraction from in-house invoices and receipts.
This graph-based approach ensures that both local and global information can be
learned. Hwang et al. (2020) model a document as a directed graph, extracting
information through dependency analysis. W. Yu et al. (2021) combines graph
learning with graph convolution to achieve richer semantic representations.

In Chapter 6, we tackle visual information extraction tasks through a distinct
approach, leveraging general-purpose multimodal pre-training methods for a
broader and more versatile perspective.

4.3 Deep Fusion of Modalities via General-purpose
Multimodal Pre-training

While the aforementioned methods demonstrate good performance across doc-
ument understanding tasks, they still face significant limitations. The majority
of these models are all designed for specific tasks and document types. As such,
these approaches rely on labeled data; however, most datasets related to Docu-
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ment Understanding are label-scarce. This scarcity arises from the labor-intensive
and time-consuming nature of the human annotation process. Driven by data
limitations, these task-specific models often rely solely on pre-trained Computer
vision models and/or NLP models, each trained independently. A common prac-
tice involves combining the knowledge gained from each modality through a
shallow fusion of features, such as concatenation. However, this approach makes
it challenging to easily transfer domain knowledge from one document type to
another. This stems from the need to re-train models from scratch when the
document type is changed.

Visually-rich documents encompass three modalities that inherently align: text,
layout, and visual information. Layout, i.e., the spatial relationship of text blocks
within a document, facilitates reading comprehension and information searching
(Meyer et al. 1980; Guthrie et al. 1991; Wright 1999). For instance, the arrangement
of key-value pairs in forms typically follows a left-right or top-down order. In
addition to spatial information, the visual elements presented with the text can
offer global structural information (e.g. there is a clear visual distinction between
different document types) and help with downstream tasks (e.g., the title of doc-
uments is usually enlarged). Hence, it becomes vital to jointly learn text with
layout and visual information.

As visually-rich documents are widely used in real-world applications, there
is a substantial volume of unlabeled documents. This provides an opportunity
for leveraging self-supervised pre-training methods. The widespread success and
popularity of pre-training techniques, notably those employing the Transformer
architecture (Vaswani et al. 2017), emphasize the critical role of deep contextu-
alization for sequence modeling in both NLP and Computer Vision problems.
Following the current research trend, a general-purpose framework that can learn
from unlabeled documents through pre-training and perform model fine-tuning
for different types of downstream applications is preferred over ones that are
task-specififc and require fully-annotated training data. This trend has prompted
a shift in Document Understanding towards the "pre-training then fine-tuning"
paradigm, establishing pre-training techniques as the de facto approach in the field
over years. In particular, researchers and practitioners have been leveraging the
Transformer architecture to attain cross-modal alignment via joint pre-training
of text, layout, and images from large amounts of unlabeled data. This approach
enables pre-trained models to absorb cross-modal knowledge across various doc-
ument types. Consequently, when the model is applied to a different domain with
different document formats, only a small number of labeled samples are required
to fine-tune the generalized model effectively.

Next, we discuss general-purpose, multimodal pre-training methods for Docu-
ment Understanding. We review these methods from several viewpoints, consid-
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ering the various challenges in the field. This includes the integration of layout,
image encoding, the pre-training tasks used, the incorporation of positional infor-
mation, model initialization, and considerations for multilingual and long-range
aspects.

The models discussed are summarized in Table 4.1. Through pre-training, these
models have learned general representations that can be fine-tuned for a wide
range of tasks. Notably, these pre-trained models demonstrate remarkable perfor-
mance, surpassing state-of-the-art task-specific models across document image
classification (Yang Xu et al. 2020), information extraction (Peng et al. 2022),
and document layout analysis (M. Li et al. 2020) tasks. In parallel with the de-
velopment of datasets for document visual question answering, the use of self-
supervised pre-training methods has yielded notable achievements in the corre-
sponding tasks (Appalaraju et al. 2021; Tanaka et al. 2021).

Architecture Layout

Visual Encoding Bounding Box Encoding Relative Bias

Granularity

LayoutLM (Yiheng Xu et al. 2020) Encoder ✗ Word Embedding Tables ✗

LayoutLMv2 (Yang Xu et al. 2020) Encoder ResNeXt-FPN Word Embedding Tables ✓

LayoutXLM (Yiheng Xu et al. 2022) Encoder ResNeXt-FPN Word Embedding Tables ✓

LayoutLMv3 (Y. Huang et al. 2022) Encoder Embedding Tables Block Embedding Tables ✓

Pramanik et al. (2020) Encoder ResNet50-FPN Word Embedding Tables ✗

DocFormer (Appalaraju et al. 2021) Encoder ResNet50 Word Embedding Tables ✗

ERNIE-Layout (Peng et al. 2022) Encoder ResNeXt-FPN Word Embedding Tables ✓

FormNet (C.-Y. Lee et al. 2022) Encoder ✗ Word ✗ ✓

BROS (Hong et al. 2020) Encoder ✗ Word Sinusoidal functions ✗

StructuralLM (C. Li et al. 2021) Encoder ✗ Block Embedding Tables ✗

SelfDoc (P. Li et al. 2021) Dual-stream encoder Faster R-CNN Block ✗ ✗

LiLT (Jiapeng Wang et al. 2022) Dual-stream encoder ✗ Word Embedding Tables ✗

H-VILA (Z. Shen et al. 2022) Hierarchical encoder ✗ Block Embedding Tables ✗

LAMPreT (T.-L. Wu et al. 2021) Hierarchical encoder CNN + Linear Layer Block ✗ ✗

TILT (Powalski et al. 2021) Encoder-decoder U-Net Word ✗ ✓

LayoutT5 (Tanaka et al. 2021) Encoder-decoder Faster R-CNN Word Embedding Tables ✗

LayoutBART (Tanaka et al. 2021) Encoder-decoder Faster R-CNN Word Embedding Tables ✗

Donut (Kim et al. 2022) Encoder-decoder Swin Transformer ✗ ✗ ✗

UDOP (Z. Tang et al. 2023) Encoder-decoder Embedding Tables Word Embedding Tables ✓

Table 4.1 – Summary of general-purpose, multimodal pre-training document un-
derstanding models.

4.3.1 Representing Layout-rich Documents

The layout of a document defines its visual structure. Effectively incorporating
layout information provides valuable cues for accurate interpretation and orga-
nization of information, addressing the challenges posed by complex and varied
document layouts in document understanding tasks. We explore strategies for
incorporating layout information into Transformer models, delving into layout
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Figure 4.2 – Layout encoding process in LayoutLM (Yiheng Xu et al. 2020).

encodings and layout-aware model architectures. Then, we focus on modifications
to the attention mechanism that explicitly include layout information. Finally, we
examine the role of position encodings in the context of document understand-
ing tasks, where complex layouts and potential reading order inaccuracies pose
significant challenges.

4.3.1.1 Incorporating Layout Information

As the first work to jointly learn text and layout information, LayoutLM (Yi-
heng Xu et al. 2020) stands out as the pioneer work in multimodal pre-training for
document understanding tasks. Over time, it has become the building block for
designing more complex document understanding sytems. LayoutLM encodes
layout information with learned 2D position embeddings, as illustrated in Fig-
ure 4.2. A 2D position embedding carries information about the spatial position of
a token within the document page. The spatial position of a token is represented
by its bounding box (x0, y0, x1, y1) obtained by an OCR engine (Kay 2007), where
(x0, y0) and (x1, y1) respectively denote the upper-left and lower-right corners. The
coordinates are discretized and normalized to integers in {0, . . . , 1000}. Four em-
bedding tables are used to encode spatial positions: two for the coordinates axes
(x and y) and the other two for the bounding box size (width and height). The
final layout embedding ℓ ∈ Rdℓ , for a token located at position (x0, y0, x1, y1), is
defined by:
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ℓ = 2DPosEmbx(x0) + 2DPosEmby(y0)

+ 2DPosEmbx(x1) + 2DPosEmby(y1)

+ 2DPosEmbw(x1 − x0)

+ 2DPosEmbh(y1 − y0)

(4.1)

These 2D position embeddings are added to the sequential position and text em-
beddings from BERT. The resulting input sequence is passed through an encoder
similar to BERT. Via the self-attention mechanism, encoding 2D position features
into the language model improves alignment between layout information and
semantic representation.

Building on the groundwork laid by LayoutLM, many works have introduced
alternative approaches to encode layout information. BROS (Hong et al. 2020)
employs sinusoidal functions as an alternative to linear embedding layers to
encode continuous values for the spatial positions of tokens on the page. In
addition to spatial positions, DocFormer (Appalaraju et al. 2021) incorporates
the Euclidean distance from each corner of a bounding box to the corresponding
corner in the bounding box to its right, as well as the distance between centroids
of the bounding boxes. DocFormer, as well as ERNIE-Layout (Peng et al. 2022),
create separate layout features for visual and language modalities. Driven by
the consideration that 2D dependencies might differ across layers, DocFormer
introduces layout features as residual connections to each layer of a Transformer
encoder, as opposed to directly adding them to language features. In addition,
layout features are shared across modalities to enforce feature correlation across
modalities.

Based on the assumption that words in a block typically convey the same se-
mantic meaning, certain studies favor leveraging information from content blocks
(such as header, paragraph, figure, detected with segmentation algorithms from
Section 4.2.2) rather than operating at the word level, as contextualization between
every word may be redundant and overlook localized context. StructuralLM (C.
Li et al. 2021) departs from word-level 2D positions and leverages block-level 2D
positions derived from the bounding boxes obtained through OCR. As such, words
that belong to the same block share the same 2D position embeddings. This ap-
proach allows the model to discern which words belong to the same block, thereby
enhancing contextual representations of cells. Similarly, LayoutLMv3 (Y. Huang
et al. 2022) models the layout information of blocks by adopting block-level 2D
positions.

Rather than treating layout information as an additional feature, some works
have modified model architectures to align with the inherent structure of docu-
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ments. In Layout-Aware Multimodal PreTraining (LAMPreT) (T.-L. Wu et al. 2021),
the layout is obtained by parsing a document into content blocks, which encom-
pass text and possibly images, using PDF parsing tools. The layout is then pro-
cessed by two cascaded Transformers. The lower-level Transformer processes
content blocks as input, while the higher-level model aggregates the block-level
representations obtained by the lower-level Transformer, focusing on how these
blocks are spatially structured. SelfDoc (P. Li et al. 2021) uses the visual features
of content blocks obtained with an object detection model, Faster R-CNN (Ren
et al. 2015), trained on semantically meaningful components such as text blocks,
titles, lists, tables, and figures. H-VILA (Z. Shen et al. 2022) parses the document
to extract group of tokens, which are then encoded using a hierarchical Trans-
former. For visual information extraction tasks, Token Path Prediction (Chong
Zhang et al. 2023) models the document layout as a complete directed graph
of tokens. UDOP (Z. Tang et al. 2023) fuses image pixels and text tokens based
on layout information, i.e., the input representation of a token is the sum of its
text representation and the image feature of the patch to which it belongs. Our
approach in Chapter 5 is in line with the concept of adapting model architectures
to suit the inherent structure of documents. Building on prior works in cognitive
sciences, we introduce a novel attention mechanism that relies solely on the spa-
tial positions of tokens in the page. This approach mirrors the human process of
skimming through a document to extract its inherent structure.

4.3.1.2 Layout-aware Attention Mechanisms

The relative order of two tokens, how many tokens separate them, or how
many pixels apart they are, are often relevant to the decision of how strongly
a token should attend to another one. However, 2D position embeddings can
only implicitly capture the relationship between tokens within a document. To
address this limitation and effectively model local invariance in document layout,
various research works have introduced advanced approaches to integrate layout
information by incorporating the spatial relationships between tokens directly
into the attention calculation process.

Extending the concept of 1D relative position bias (Raffel et al. 2020) to the 2D
scenario, LayoutLMv2 (Yang Xu et al. 2020) builds upon LayoutLM by incorporat-
ing bias terms that encode the 2D relative position of tokens with respect to each
other. These bias terms are added to the attention scores to explicitly capture the
relationship between tokens, defining a spatial-aware attention mechanism. Formally,
the pre-softmax attention scores are defined as follows:

αi,j =
1√
d
qi · kj + b

(1D)
j−i + b

(2Dx)
xj−xi

+ b
(2Dy)
yj−yi , (4.2)
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where b(1D), b(2Dx), and b(2Dy) correspond to the sequential, horizontal, and ver-
tical relative position biases, respectively. Likewise, TILT (Powalski et al. 2021)
incorporates 2D relative positions while entirely discarding the use of absolute
2D positions in its encoding strategy.

To introduce a spatial perspective to the computation of semantic similarity
within attention, both DocFormer (Appalaraju et al. 2021) and ERNIE-Layout
(Peng et al. 2022) decouple attention into distinct components. ERNIE-Layout uses
a disentangled attention mechanism (P. He et al. 2020). In this mechanism, each
token is represented using four sets of query-key-value, with each set encoding
the token’s content (i.e., text and image), relative sequential positions (1D), relative
horizontal positions (2Dx), or relative vertical positions (2Dy). Attention 4 of token
i on token j is computed as the sum of standard (i.e., content-based) attention
and the following components:

α⋆
ij = qi · k⋆

δ⋆(i,j)
⊤ + kj · q⋆

δ⋆(j,i)
⊤, ∀ ⋆ ∈ {1D, 2Dx, 2Dy} (4.3)

where relative positions δ⋆(i, j) are first mapped to relative position embeddings
using embedding tables, then projected into query, key, and value vectors. Rather
than using query-key-value projections, DocFormer directly incorporate relative
position embeddings b(1D) into its attention mechanism. Dismissing relative 2D
positions, DocFormer defines attention as the sum of standard attention with 1D
relative attention and layout-based attention, expressed as follows:

α
(1D)
ij = qi · b(1D)

j−i + qj · b(1D)
j−i

α
(2D)
ij = q

(2D)
i · k(2D)

j ,
(4.4)

where q
(2D)
i and k

(2D)
j are computed from the tokens’ layout embeddings.

In Language-independent Layout Transformer (LiLT) (Jiapeng Wang et al. 2022),
text embeddings and layout embeddings are processed independently through
separate encoders. To consider the cross-modal interactions between text and
layout across the entire pipeline, a bidirectional attention complementation mechanism
is introduced. In each layer of the textual encoder, the attention scores are summed
with those obtained by the layout encoder at the same layer level, and vice-versa.

Rather than using relative embeddings, FormNet (C.-Y. Lee et al. 2022) incor-
porate features about relative positions by using trainable parametric functions.
For each feature type (e.g., the order of and log-distance between pairs of tokens),
the observed feature is compared against the "ideal" feature, which is obtained
using the associated parametric function. The resulting penalty score is then

4. For the sake of clarity, we omit the scaling and softmax operations.
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added to the attention score. This process penalizes pairs whose predicted feature
significantly deviates from the observed one.

4.3.1.3 Incorporating Sequential Position Information

All document pre-training techniques operate on serialized text. An OCR en-
gine or PDF parser extracts text from a document and serializes it according to
a raster-scan order, which arranges tokens in a sequence from the top-left to the
bottom-right corner. However, this arrangement does not always conform to hu-
man reading patterns, particularly for documents with complex layouts such as
multicolumn texts, tables, and forms. This misalignment with human reading
habits (i.e., serialization errors) can result in suboptimal performance in document
understanding tasks.

To address this problem, automatic word reordering techniques can be em-
ployed. ERNIE-Layout (Peng et al. 2022) uses an in-house document layout anal-
ysis toolkit that provides an appropriate reading order based on the spatial distri-
bution of words, pictures, and tables. Enhanced with this knowledge, the token
sequence can be rearranged in a way that yields a lower perplexity compared to
the raster-scan order. This translates into a serialization that aligns better with
human reading patterns. LayoutReader (Zilong Wang et al. 2021) was designed
to detect the reading order of documents and improve the text line ordering of
OCR engines. This sequence-to-sequence model employs LayoutLM (Yiheng Xu
et al. 2020) as its encoder, generating the reading order sequence for documents.
Another strategy to mitigate reading order errors involves using more robust
position encodings, as it has been shown that the performance of document Trans-
former models with learned positional embeddings significantly deteriorates on
noisy data with incorrect reading order information (Hong et al. 2020). G. Wang
et al. (2022) propose a Learnable Sinusoidal Positional Encoding (LSPE) method
based on feed-forward networks. Using sinusoidal functions enables the model
to extrapolate to longer lengths not encountered during training. Simultaneously,
the learnable feed-forward network component enhances the learnability and
flexibility of positional representation, particularly for spatial information. LSPE

can be integrated into any Transformer-based model and demonstrates improved
performance and robustness on noisy data with unreliable reading order infor-
mation. XYLayoutLM (Gu et al. 2022) leverages both strategies by introducing
1) an augmentation algorithm based on XY Cut (Ha et al. 1995) to generate a
series of proper reading orders for training, and 2) a Dilated Conditional Position
Encoding as the position embedding generator to create position embeddings
of varying lengths with local layout information. Another strategy to mitigate
serialization errors involves graph construction. Prior to serialization, FormNet
(C.-Y. Lee et al. 2022) leverages inductive biases about the spatial relationships



76 document understanding

Figure 4.3 – Comparisons of LayoutLMv3 (Y. Huang et al. 2022), DocFormer (Ap-
palaraju et al. 2021) and SelfDoc (P. Li et al. 2021) on image embed-
ding construction. Adapted from Y. Huang et al. (2022).

between tokens to build a graph. For each token in the document, it then creates a
contextualized Super-Token by embedding representations from its neighboring
tokens through graph convolutions.

However, all the models presented still depend on a reading order, which might
introduce noise and may not be relevant in the case of complex layouts. Our work
in Chapter 6 avoids serialization errors by entirely discarding sequential position
information. Instead, position embeddings are created from the document layout
by learning to reconstruct the relative order between tokens.

4.3.2 Encoding Visual Elements

To capture appearance features, many research works have leveraged vision
models to integrate visual elements into document understanding systems.

In the fine-tuning stage of LayoutLM (Yiheng Xu et al. 2020), optional token
visual embeddings can be added to capture appearance features, e.g., fonts, types,
colors. Token visual embeddings are obtained by splitting the document image
according to the bounding boxes obtained through OCR, and feeding the result-
ing pieces to Faster-RCNN (Ren et al. 2015). LayoutLMv2 (Yang Xu et al. 2020)
extends LayoutLM by integrating visual embeddings in the pre-training stage.
Following contextualized word embeddings, contextualized image embeddings
are expected to capture each image region semantics in the context of its entire
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visual neighborhood. In addition to the text (w1, . . . , wn) extracted from a doc-
ument page image via OCR, the model introduces visual tokens (v1, . . . , vWH).
These visual tokens are prepended to the text sequence, creating an input se-
quence (v1, . . . , vWH , w1, . . . , wn) that combines visual and textual tokens. Visual
tokens are obtained by feeding the document image to a visual encoder, namely
ResNeXt-FPN (Xie et al. 2017; T.-Y. Lin et al. 2017). Finally, LayoutLMv2 integrates
the embedding of each textual and visual token with its corresponding layout
embedding.

Unlike LayoutLMv2, where visual and text features are concatenated into a
single sequence, DocFormer (Appalaraju et al. 2021) introduces an alternative
approach. Similarly to layout features, visual features are disentangled and intro-
duced as residual connections to each layer of a Transformer encoder. This design
choice aims to enforce the correlation between language and vision modalities.

LAMPreT (T.-L. Wu et al. 2021) exploits block-level visual features by feeding the
image contents corresponding to each text block to a pre-trained CNN. In addition,
the model encodes the visual presentation of the text, such as font size and text
formatting, within each block. Similarly, SelfDoc (P. Li et al. 2021) uses block-level
visual features obtained with Faster R-CNN, processing them separately from
language features through a visual encoder.

Completing the shift towards using raw image data, LayoutLMv3 (Y. Huang
et al. 2022) and UDOP (Z. Tang et al. 2023) take a different approach to visual
feature extraction. Instead of relying on a pre-trained CNN or Faster R-CNN
backbone, both models use linear patches obtained by resizing the document
image, uniformly spliting it, and encoding each patch using linear embeddings.
This approach not only saves parameters but also eliminates the need for region
annotations in training object detectors. Figure 4.3 depicts the image encoding
process of LayoutLMv3 in comparison to DocFormer and SelfDoc.

4.3.3 Pre-training Multimodal Transformers for Document Un-
derstanding

Efficient pre-training allows models to exploit cross-modal interactions and
generalize across different document types and tasks. We explore intialization
strategies, model architectures, pre-training datasets, and novel pre-training tasks
that specifically address the challenges posed by document understanding.
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4.3.3.1 Model Initialization

Several models take advantage of existing powerful Pre-trained Language Mod-
els and adapt them to document understanding tasks. LayoutLM (Yiheng Xu et al.
2020) is initialized with the weights of BERT (Devlin et al. 2018), LayoutLMv2

(Yang Xu et al. 2020) leverages UniLMv2 (Bao et al. 2020), while ERNIE-Layout
(Peng et al. 2022) and StructuralLM (C. Li et al. 2021) are initialized from RoBERTa
(Yinhan Liu et al. 2019).

4.3.3.2 Model Architecture

The majority of document understanding models typically are typically Trans-
former encoders. This choice is motivated by treating document understanding
tasks as natural language understanding tasks, emphasizing comprehension and
representation over generation. However, certain studies unify document under-
standing tasks under one framework by casting them as sequence-to-sequence
problems, thereby expanding the language generation capabilities of the models
and removing the need for additional task-specific layers. Donut (Kim et al. 2022)
is an OCR-free encoder-decoder model that consists of a visual encoder initialized
with Swin Transformer (Ze Liu et al. 2021), and a decoder that uses the weights
of mBART (Yinhan Liu et al. 2020). TILT (Powalski et al. 2021) adds layout and
visual information into Text-to-Text Transfer Transformer (T5) (Raffel et al. 2020).
UDOP (Z. Tang et al. 2023) unifies text, layout, and image modalities through
an encoder, and generates all three modalities using a decoder. The text encoder-
decoder is initialized with T5, whereas the visual decoder employs the weights
of MAE (K. He et al. 2022). LayoutT5 and LayoutBART (Tanaka et al. 2021) add
2D position embeddings and visual features to T5 and Bidirectional and Auto-
Regressive Transformers (BART) (M. Lewis et al. 2019) in the fine-tuning stage.
Similarly, we enhance the architecture of the long-range BigBird encoder-decoder
(Zaheer et al. 2020) in Chapter 7 by incorporating layout information.

4.3.3.3 Large-scale Pre-training Datasets

LayoutLM (Yiheng Xu et al. 2020) pioneered the use of the IIT-CDIP Test Collec-
tion 1.0 (D. Lewis et al. 2006) as a prominent dataset for pre-training layout-aware
language models for document understanding tasks. This large-scale dataset,
extracted from the Legacy Tobacco Documents Library, features 6 million doc-
uments from lawsuits against American tobacco industries, spanning over 11

million scanned document images. IIT-CDIP contains document page images of
diverse types and layouts, including news articles, scientific reports, handwritten
materials, and more. The collection presents a spectrum of challenges attributed
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to variations in image quality, resolution, and the potential presence of artifacts
(e.g., stains) in the scanned document images. Alternatively, SelfDoc (P. Li et al.
2021) was pre-trained using RVL-CDIP (Harley et al. 2015), a subset of IIT-CDIP
containing 400,000 grayscale images commonly employed for image classification,
while TILT (Powalski et al. 2021) was pre-trained on a custom dataset containing
documents from RVL-CDIP, the UCSF Industry Documents Library, 5, and PDF
files extracted from Common Crawl. 6

4.3.3.4 Pre-training Tasks for Cross-modal Alignment

A plethora of pre-training strategies have emerged to learn cross-modal align-
ment. We categorize them into token masking strategies, image-based objectives,
and approaches that directly leverage layout information.

Token Masking To pre-train LayoutLM, Yiheng Xu et al. (2020) introduced
Masked Visual-Language Modeling (MVLM), a self-supervised pre-training task that
has become widely adopted in the document understanding field. Drawing inspi-
ration from the Masked Language Modeling (MLM) strategy, MVLM aims to learn
language representations by considering both semantics and spatial clues. The
task consists in randomly masking some tokens while retaining their layout infor-
mation, as well as layout information and semantics from the remaining tokens.
The model is then trained to predict the masked tokens based on the contextual
information. Therefore, not only does the model "understand" language contexts,
but it also uses the corresponding 2D information, thereby bridging the gap be-
tween layout and language modalities. Rather than predicting individual tokens,
another approach consists in predicting spans of tokens. Inspired by SpanBERT
(Joshi et al. 2020), BROS (Hong et al. 2020) extends spans of a one-dimensional text
to consecutive text bounding boxes in a two-dimensional space. This approach in-
volves selecting a few regions in the document layout, masking all tokens within
bounding boxes in the selected regions, and predicting the masked tokens.

Image-based Strategies Several strategies have been proposed to enforce align-
ment between language and image modalities. DocFormer (Appalaraju et al. 2021)
and LayoutLMv2 (Yang Xu et al. 2020) predict whether a document image and
a text are from the same document page. However, instances where the image
and text are completely unrelated tend to be too easy for the model. Therefore, in
LAMPreT (T.-L. Wu et al. 2021) and ERNIE-Layout (Peng et al. 2022), a set of ran-
domly selected image patches is replaced with patches from other images, and the

5. https://www.industrydocuments.ucsf.edu/
6. https://commoncrawl.org/

https://www.industrydocuments.ucsf.edu/
https://commoncrawl.org/
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model is tasked to predict which patches have been replaced. LayoutLMv2 uses
another fine-grained task, wherein the image regions corresponding to randomly
selected text tokens are masked, and the model is tasked with predicting whether
the image region of each text token is masked. LayoutLMv3 (Y. Huang et al. 2022)
employs a similar strategy but based on words instead of tokens. Rather than
predicting whether an image region is masked, visual reconstruction strategies
can be used. For instance, SelfDoc (P. Li et al. 2021) is tasked with regressing
visual features for a set of randomly masked image regions, UDOP (Z. Tang et al.
2023) learns to reconstruct masked image patches, while DocFormer (Appalaraju
et al. 2021) is trained to reconstruct the entire document image by passing its
output features through a CNN-based image decoder. However, regressing region
features can be noisy and challenging to optimize (J. Cho et al. 2020), while pre-
dicting raw pixels often leads to learning noisy details rather than high-level
structures (Ramesh et al. 2021). Consequently, LayoutLMv3 learns to predict the
(discrete) labels of masked image patches. These labels come from an image to-
kenizer that transforms dense image pixels into discrete tokens according to a
visual vocabulary. In addition to image reconstruction, UDOP learns image-text
correspondence by generating the text tokens at given locations in the page.

In general, there is a trend towards unifying image-based strategies and other
modality-specific objectives. LayoutLMv3 addresses the disparity between text
and image multimodal representation learning through unified discrete token
reconstructive objectives, while UDOP unifies all document tasks to the sequence-
to-sequence generation framework using a universal generative task format with
task prompt.

Exploiting Layout Information Other pre-training strategies involve direct use
of layout information. In addition to predicting masked tokens, UDOP (Z. Tang
et al. 2023) is trained to locate them by generating their corresponding bounding
boxes. Furthermore, the model is tasked to output positions of groups of text to-
kens, given both the document image and contextual text. To exploit the structural
interactions among blocks, LAMPreT predicts whether two blocks are swapped,
allowing it to learn the spatial order of blocks. In ERNIE-Layout’s architecture,
the lack of explicit boundary between blocks requires learning the relationship
between layout and reading order. Therefore, the model is tasked to learn the
reading order by predicting whether two tokens are consecutive. In Chapter 6,
our approach employs the same approach to ensure that the model effectively
captures the correlation between spatial arrangement of tokens and reading order.

Supervised Training As the IIT-CDIP Test Collection includes multiple tags
for each document image, LayoutLM is also pre-trained using Multi-Label Docu-
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ment Classification, a task that supervises the pre-training process using document
tags such as advertisement, letter, and form. The goal is to enable the model to
aggregate knowledge from various domains, thereby enhancing document-level
representations. TILT is also pre-trained on a set of supervised tasks, including
visual information extraction and visual document question answering. However,
given that the majority of datasets lack annotations, most document understand-
ing models rely on unsupervised pre-training alone. Moreover, larger models
trained for longer derive advantages from processing a larger share of unlabeled
data (Raffel et al. 2020).

4.3.4 Extending Layout/Visually-aware Transformers

Document understanding models have primarily been designed for short doc-
uments, such as receipts, forms, and invoices, typically written in English. We
discuss the extension of multimodal Transformers to non-English languages and
longer documents, addressing challenges and strategies for broader applicability.

4.3.4.1 Multilinguality

Document understanding models have demonstrated successful application on
English Documents. However, visually-rich documents typically exhibit varying
formats and layouts based on the country, and this diversity even extends to
different regions within the same country. To bridge the language barriers for
real-world document understanding, LayoutXLM (Yiheng Xu et al. 2021) carries
out multilingual pre-training by expanding the language support of LayoutLMv2

to a total of 53 languages.

4.3.4.2 Capturing Long-range Dependencies

The majority of multimodal pre-trained models focus on short documents due
to the computational requirements and memory limitations of the Transformer.
Furthermore, incorporating layout and visual information renders them more
resource-intensive compared to pre-trained models that exclusively deal with text.
As such, there has been limited research dedicated to long document understand-
ing. However, real-world documents, such as business documents, can be very
dense and long. The conventional approach for handling long documents involves
splitting them into short segments and processing each segment independently.
This approach presents a significant challenge for multi-page and cross-page un-
derstanding of long documents, where useful information is usually distributed
across their lengths. While the component-level formulation (C. Li et al. 2021; P.
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Li et al. 2021) can reduce the input sequence length for a document, it does not
allow capturing long-range dependencies. Therefore, processing long documents
requires a suitable method to connect information across pages.

In the context of Document Understanding, models can leverage the structure
of documents (e.g., page or block information), to sparsify attention. To handle
multi-page documents, Pramanik et al. (2020)’s model encodes the page number
into token representations and uses the Longformer architecture as its backbone.
H. Pham et al. (2022)’s approach introduces a plug-able approach to integrating
spatial input into self-attention, removing the need for extra embeddings. Draw-
ing inspiration from the sliding window approach in Longformer (Beltagy et al.
2020), the model introduces attention masks based on spatial information to limit
the context of each token to its neighbors in the 2D page. In this approach, each
context window for a bounding box is defined by calculating its spatial neighbors,
rather than relying on neighboring words determined by the sequential order
obtained from an OCR engine. This approach is similar to our contribution in
Chapter 5, where attention is sparsified using a layout-based masking approach.

While progress has been made in addressing the challenges of handling dense
and lengthy real-world documents, the exploration of effective and efficient meth-
ods for long document understanding remains an ongoing and still largely under-
explored area of research.

4.4 Conclusion

Research on understanding documents with complex interplay of text, layout
and visual elements has garnered significant attention for document understand-
ing tasks. Notably, general-purpose multimodal Pre-trained Language Models
have experienced a surge in usage due to their remarkable performance. Yet, the
academic literature on methodologies addressing Document Understanding re-
mains relatively scarce when compared to fields with abundant publicly available
data, such as image classification and translation. While advancements in Deep
Learning has led to significant improvements in document understanding tasks,
the field faces several challenges in practical applications.

Firstly, the limited input length of Pre-trained Language Models poses difficul-
ties in processing long documents. Secondly, despite the increasing availability
of digital-born documents, a significant portion of real-world documents, often
originating from scanning equipment and affected by issues such as crumpled
paper, deviate in quality from annotated training data. This can lead to subop-
timal performance in document understanding models. Addressing this issue
involves data synthesis and augmentation techniques. Thirdly, existing docu-
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ment understanding tasks are often treated independently from each other, and
there is a lack of effective leveraging of correlations between different tasks. This
contrasts with recent advancements in foundation models like ChatGPT, which
have demonstrated the benefits of leveraging inter-task correlations. Fourthly,
pre-trained document understanding models encounter challenges due to insuffi-
cient computing resources and labeled training samples in practical applications.
This emphasizes the importance of research directions such as model compres-
sion, few-shot learning, and zero-shot learning. Finally, the relationship between
OCR and document understanding tasks is crucial. Given that document under-
standing systems typically receive input from OCR engines, the accuracy of text
recognition and the ordering of words play pivotal roles in downstream tasks.
Addressing these challenges and research directions is essential for advancing the
field of Document Understanding in practical scenarios.

Our contributions aim to address key challenges in the field of Document Un-
derstanding. In Chapter 5, we introduce Skim-Attention, a novel attention mecha-
nism that leverages the structure of documents to mimic human reading strategies,
exploiting layout in a computationally efficient manner. In Chapter 6, we present
an attention-based module, Layout2Pos, that learns position embeddings from the
spatial position of tokens in the page, providing a solution to serialization errors
by completely discarding sequential position information in downstream tasks.
Finally, in Chapter 7, we introduce LoRaLay, a multilingual collection of datasets
designed for long-range summarization. These datasets come with accompanying
visual and layout information, as well as baselines merging layout-aware and long-
range models, providing novel resources for researchers to explore the integration
of multimodal information in long document modeling. Together, these contribu-
tions stand as innovative solutions to several challenges in the field of Document
Understanding, enhancing the practical applicability of document understanding
models.
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Chapter abstract

While multimodal pre-training techniques prove effective, their development
is not driven by efficiency considerations. Built upon the Transformer archi-
tecture, these models suffer from the quadratic complexity of self-attention,
hindering their applicability to long documents. In this chapter, our focus lies
in exploiting layout in a computationally efficient manner. In particular, we
explore two research questions:

1. Is it possible to determine attention from layout only?

2. Can layout help reduce the complexity of self-attention?

Motivated by human reading strategies, we present Skim-Attention, a new
attention mechanism that takes advantage of the structure of the document and
its layout. Skim-Attention only depends on the 2-dimensional position of the
words in a document. To exploit this mechanism, we introduce Skimformer
and Skimming Mask, two frameworks for integrating Skim-Attention into
the Transformer architecture. Our experiments show that Skim-Attention
obtains a lower perplexity than prior works, while being more computationally
efficient. We also show how Skim-Attention can be used off-the-shelf as a mask
for any Pre-trained Language Model, allowing to improve their performance
while restricting attention. Finally, we show the emergence of a document
structure representation in Skim-Attention.

The work in this chapter has led to the publication of a conference paper:

• Laura Nguyen, Thomas Scialom, Jacopo Staiano, and Benjamin Piwowarski
(Nov. 2021). “Skim-Attention: Learning to Focus via Document Lay-
out”. In: Findings of the Association for Computational Linguistics: EMNLP
2021. Punta Cana, Dominican Republic: Association for Computational
Linguistics, pp. 2413–2427. url: https://aclanthology.org/2021.
findings-emnlp.207.
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As seen in Chapter 4, Transformer-based joint pre-training of text, layout and
images has allowed models to reach state-of-the-art performance in a number of
document understanding tasks. However, multimodal pre-trained models suffer
from very high computational and memory costs due to the quadratic complexity
inherent to Transformers, rendering them unable to process long documents. In
most approaches, layout is considered an additional feature (e.g., integrating 2D
coordinates as an extension of 1D positions) that enhances performance, and each
token is still contextualized with respect to the entire input sequence. Yet, layout
stands as a distinct modality alongside language. The conventional approach
of treating layout as a special positional feature fails to fully exploit the strong
correlation between modalities in documents, leading to a lack of cross-modal
interaction between layout and text. This limitation has the potential to impede
the model’s understanding of the role that layout plays in semantic expression.

Considering cognitive aspects, it has been shown that a well-designed layout
results in less cognitive effort (Kieras 1978; Britton et al. 1982; Olive and Bar-
bier 2017) and facilitates comprehension of the conveyed information by helping
identify the document type and its constituents, as well as providing cues re-
garding relationships between elements (Meyer et al. 1980; Wright 1999; Lemarié
et al. 2008). Semiotic research hypothesizes that readers scan the document before
taking a closer look at certain units (Kress, Van Leeuwen, et al. 1996), a claim sup-
ported by eye-tracking experiments on newspapers (Leckner 2012). Inspired by
these research findings, we claim that one does not need to have read each word
in a document page to be able to understand a specific paragraph. Therefore, we
argue that, to efficiently process long and structurally-complex documents, it is a
waste of effort and computation to contextualize a token with respect to the entire
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input sequence. To shift towards processing long documents with awareness of
their structure, we propose to leverage layout in a more intuitive and efficient
way, resembling human cognition. We argue that this approach can be key to a
model coping with long and complex documents.

We delve into two research questions:

1. Can attention be effectively learned using layout information exclusively?

2. Can layout be used to reduce the complexity of self-attention?

In addressing these questions, we propose Skim-Attention, a new self-attention
mechanism that relies solely on the 2D position of tokens in the page, indepen-
dently of their semantics. To exploit this mechanism, we introduce Skimformer
and Skimming Mask, two frameworks for integrating Skim-Attention into Trans-
former models. Skimformer is an end-to-end Transformer language model that
computes the Skim-Attention scores just once and uses them across each layer of
a text-based Transformer encoder. This designs mirrors human reading strategies,
where the model skims through the document to extract its structure, and reads
the contents based on the prior structural understanding. Moreover, Skimformer
can be adapted for long-range Transformers to model longer documents. On
the other hand, Skimming Mask uses Skim-Attention as a masking mechanism to
sparsify attention within any Transformer language model. Each token’s attention
is restricted to at most k tokens, as identified by Skim-Attention. This approach
allows for a smaller context length, thereby leading to more efficient computation.

In this chapter, we first present a simple cognitive experiment that highlights
the fundamental role of layout in humans’ comprehension of documents. Then,
we introduce the Skim-Attention mechanism and its integration into Transformer
language models. Finally, we showcase the quantitative and qualitative benefits
of our approach.

5.1 Preliminary Experiments: Human Evaluation

How much does the document layout help in comprehending long textual
contents? How faster is it for humans to find information in documents when
layout is provided? To answer these questions, we conduct a simple cognitive
experiment wherein we measure the amount of time needed for human annotators
to extract information from both formatted and plain-text documents. We hand-
pick four document pages from the DocBank dataset (M. Li et al. 2020), and create
a plain-text version out of each of these documents by serializing them. We create
two basic questions for each document, and ask four annotators to answer them.
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Average Standard Deviation
Formatted 6.05 1.73

Plain-text 15.18 9.06

Table 5.1 – Average (std) time (in seconds) required to answer questions from
documents, depending on whether layout is provided.

Half of the time, annotators are given access to the full layout, while the other
half, they are limited to plain text only (i.e., no layout nor formatting).

Bayesian model assessment: Use of conditional vs marginal
likelihoods

E. C. Merkle
University of Missouri

D. Furr and S. Rabe-Hesketh
University of California, Berkeley

Abstract
Typical Bayesian methods for models with latent variables (or random ef-
fects) involve directly sampling the latent variables along with the model
parameters. In high-level software code for model definitions (using, e.g.,
BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on
the latent variables. This can lead researchers to perform model comparisons
via conditional likelihoods, where the latent variables are considered model
parameters. In other settings, typical model comparisons involve marginal
likelihoods where the latent variables are integrated out. This distinction
is often overlooked despite the fact that it can have a large impact on the
comparisons of interest. In this paper, we clarify and illustrate these issues,
focusing on the comparison of conditional and marginal Deviance Informa-
tion Criteria (DICs) and Watanabe-Akaike Information Criteria (WAICs) in
psychometric modeling. The conditional/marginal distinction corresponds
to whether the model should be predictive for the clusters that are in the
data or for new clusters (where “clusters” typically correspond to higher-level
units like people or schools). Correspondingly, we show that marginal WAIC
corresponds to leave-one-cluster out (LOcO) cross-validation, whereas con-
ditional WAIC corresponds to leave-one-unit (LOuO). These results lead to
recommendations on the general application of these criteria to models with
latent variables.

Keywords: Bayesian information criteria, conditional likelihood, cross-
validation, DIC, IRT, leave-one-cluster out, marginal likelihood, MCMC,
SEM, WAIC.
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from the left- and right-handed couplings extracted from forward-backward asymmetries and
charge asymmetries in two-fermion processes, different high-scale models can be discriminated
(cf. e.g. [25]).

One final remark: if something similar like the 2 TeV anomaly in WW/WZ/ZZ at the end
of the 8 TeV run or the 750 GeV anomaly in diphotons will remain at the end of run II or the
high-lumi run, then the ILC is the only option in the near future to comfirm or refute such a
signal.

3 Summary

In this talk I tried to collect the facts in favor of a future high-energy lepton collider (that
is capable to reach at least 500 GeV) with the focus lying on new physics beyond the SM. Both
the two main SM pillars, the Higgs boson and top quark measurements serve as indirect tools
for new physics searches, but there is also a plethora of direct search opportunities at such a
machine. Most prominent examples are dark matter searches, searches for other light weakly
coupling particles, and a scan over all weakly interacting particles. The interplay of the ILC
with the LHC, but more importantly with future hadron machines is elucidated. Conditions,
or better, scenarios for possible BSM discoveries at the ILC have been given. Several prime
examples for the BSM potential of the ILC have been highlighted.
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maries extracted by RNES are of higher quality than sum-
maries produced by previous works.

Table 2: Performance comparison on CNN/Daily Mail test
set, evaluated with full-length F1 ROUGE scores (%). All
scores of RNES are statistically significant using 95% con-
fidence interval with respect to previous best models.

Model R-1 R-2 R-L
Lead-3 39.2 15.7 35.5
(Nallapati et al. 2016) 35.4 13.3 32.6
(Nallapati et al. 2017) 39.6 16.2 35.3
(See et al. 2017) 39.53 17.28 35.38
NES 37.75 17.04 33.92
RNES w/o coherence 41.25 18.87 37.75
RNES w/ coherence 40.95 18.63 37.41

Though RNES with the coherence reward achieves higher
ROUGE scores than baselines, there is a small gap between
its score and that of RNES trained without coherence model.
This is because that the coherence objective and ROUGE
score do not always agree with each other. Since ROUGE
is simply computed based on n-grams or longest common
subsequence, it is ignorant of the coherence between sen-
tences. Therefore, enhancing coherence may lead to a drop
of ROUGE. However, the 95% confidence intervals of the
two RNES models overlap heavily, indicating that their dif-
ference in ROUGE is insignificant.

Table 3: Comparison of human evaluation in terms of infor-
mativeness(Inf), coherence(Coh) and overall ranking. Lower
is better.

Model Inf Coh Overall
RNES w/o coherence 1.183 1.325 1.492
RNES w/ coherence 1.125 1.092 1.209

We also conduct a qualitative evaluation to find out
whether the introduction of coherence reward improves the
coherence of the output summaries. We randomly sample
50 documents from the test set and ask three volunteers to
evaluate the summaries extracted by RNES trained with or
without coherence as the reward. They are asked to compare
and rank the outputs of two models regarding three aspects:
informativeness, coherence and overall quality. The better
one will be given rank 1, while the other will be given rank
2 if it is worse. In some cases, if the two outputs are iden-
tical or have the same quality, the ranks could be tied, i.e.,
both of them are given rank 1. Table 3 shows the results of
human evaluation. RNES model trained with coherence re-
ward is better than RNES model without coherence reward
in all three aspects, especially in the coherence. The result
indicates that the introduction of coherence effectively im-
proves the coherence of extracted summaries, as well as the
overall quality. It is surprising that summaries produced by
RNES with coherence are also more informative than RNES
without coherence, indicating that ROUGE might not be the
gold standard to evaluate informativeness as well.

Table 4 shows a pair of summary produced by RNES with

or without coherence. The summary produced by RNES
without coherence starts with pronoun ‘That’ which is refer-
ring to a previously mentioned fact, and hence it may lead to
confusion. In contrast, the output of RNES trained with co-
herence reward includes the sentence “The earthquake dis-
aster . . . ” before referring to this fact in the second sentence,
and therefore is more coherent and readable. This is because
the coherence model gives a higher score to the second sen-
tence if it can form a coherent sentence pair with the first
sentence. In REINFORCE training, if the second sentence
receives a high coherence score, the action of extracting the
first sentence before the second one will be strengthened.
This example shows that coherence model is indeed effec-
tive in changing the behavior of RNES towards extracting
summaries that are more coherent.

Table 4: Examples of extracted summary.
Reference: Peter Spinks from the Sydney Morning Herald re-
ported on Amasia. Within 200 million years, he said the new
supercontinent will form. One researcher recently travelled to
Nepal to gather further information. He spotted that India, Eura-
sia and other plates are slowly moving together.
RNES w/o coherence: That’s according to one researcher who
travelled to the country to study how the Indian and Eurasian
plates are moving together. And using new techniques, re-
searchers can now start examining the changes due to take
place over the next tens of millions of years like never before.
Earth’s continents are slowly moving together, and in 50 to 200
million years they are expected to form a new supercontinent
called Amasia. In 2012 a study suggested this may be centered
on the North Pole. The idea that Earth is set to form a new
supercontinent-dubbed Amasia - is not new.
RNES w/ coherence: The earthquake disaster in Nepal has
highlighted how Earth’s land masses are already in the pro-
cess of forming a new supercontinent. That’s according to
one researcher who travelled to the country to study how the In-
dian and Eurasian plates are moving together. And using new
techniques, researchers can now start examining the changes
due to take place over the next tens of millions of years like
never before. Earth’s continents are slowly moving together, and
in 50 to 200 million years they are expected to form a new su-
percontinent called Amasia.

Conclusion
In this paper, we proposed a Reinforced Neural Extractive

Summarization model to extract a coherent and informative
summary from a single document. Empirical results show
that the proposed RNES model can balance between the
cross-sentence coherence and importance of the sentences
effectively, and achieve state-of-the-art performance on the
benchmark dataset. For future work, we will focus on im-
proving the performance of our neural coherence model and
introducing human knowledge into the RNES.
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Abstract

Gesture typing is a method of text entry that is ergonomically well-suited to the form factor of
touchscreen devices and allows for much faster input than tapping each letter individually. The
QWERTY keyboard was, however, not designed with gesture input in mind and its particular
layout results in a high frequency of gesture recognition errors. In this paper, we describe a
new approach to quantifying the frequency of gesture input recognition errors through the use of
modeling and simulating realistically imperfect user input. We introduce new methodologies for
modeling randomized gesture inputs, efficiently reconstructing words from gestures on arbitrary
keyboard layouts, and using these in conjunction with a frequency weighted lexicon to perform
Monte Carlo evaluations of keyboard error rates or any other arbitrary metric. An open source
framework, Dodona, is also provided that allows for these techniques to be easily employed
and customized in the evaluation of a wide spectrum of possible keyboards and input methods.
Finally, we perform an optimization procedure over permutations of the QWERTY keyboard to
demonstrate the effectiveness of this approach and describe ways that future analyses can build
upon these results.

Keywords: touchscreen keyboards, gesture input, model-based design, Monte Carlo simulation

1. Introduction

The advent of smartphones and tablets has made the use of touchscreen keyboards pervasive
in modern society. However, the ubiquitous QWERTY keyboard was not designed with the
needs of a touchscreen keyboard in mind, namely accuracy and speed. The introduction of
gesture or stroke-based input methods significantly increased the speed that text could be entered
on touchscreens [Montgomery (1982); Zhai and Kristensson (2003); Zhai et al. (2009); Kushler
and Marsden (2006)]. However, this method introduces some new problems that can occur when
the gesture input patterns for two words are too similar, or sometimes completely ambiguous,
leading to input errors. An example gesture input error is illustrated in Figure 1. A recent study
showed that gesture input has an error rate that is about 5-10% higher compared to touch typing
[Bi et al. (2013)]. With the fast and inherently imprecise nature of gesture input the prevalence
of errors is unavoidable and the need to correct these errors significantly slows down the rate
of text entry. The QWERTY keyboard in particular is poorly suited as a medium for swipe
input. Characteristics such as the “u”, “i”, and “o” keys being adjacent lead to numerous gesture
ambiguities and potential input errors. It is clearly not the optimal layout for gesture input.
Preprint submitted to International Journal of Human-Computer Studies May 28, 2020

Figure 5.1 – Documents selected for our preliminary cognitive experiment.

Table 5.1 reports the average time needed to retrieve information from the doc-
uments. We find that it is 2.5 times faster to answer questions from the formatted
documents, and that the variability in the results is much lower in this case. These
results support the hypothesis that less cognitive effort is spent when the docu-
ment is formatted, emphasizing the importance of layout information in reading
comprehension.

We make the hypothesis that machines could benefit from the the document
layout, just like humans, as a strategy to retrieve information faster while expend-
ing less effort. In particular, layout information could be of great help in reducing
the cost of self-attention in Transformer models (Section 5.4.1.3) and facilitating
the emergence of a document structure representation (Section 5.4.3).

5.2 Skim-Attention: A Novel Layout-Aware Atten-
tion Mechanism

In light of the aforementioned cognitive experiment, it is clear that layout is
of utmost importance for humans to understand long documents. We propose
to take layout into consideration by introducing Skim-Attention, a self-attention
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module that computes attention solely based on the spatial positions of tokens. To
process long and layout-rich documents, we present different ways of integrating
this mechanism into Transformer architectures.

5.2.1 Skim-Attention Overview

Our novel attention mechanism, Skim-Attention, views documents as collec-
tions of word bounding boxes distributed over a two-dimensional space, i.e., the
page. In the following, we provide details on how to encode spatial positions into
layout embeddings, followed by a detailed description of our attention module.

5.2.1.1 Layout Embeddings

Layout embeddings carry information about the spatial position of the tokens.
Following LayoutLM (Yiheng Xu et al. 2020), the spatial position of a token is rep-
resented by its bounding box in the document page image, (x0, y0, x1, y1), where
(x0, y0) and (x1, y1) respectively denote the coordinates of the top-left and bottom-
right corners. We discretize and normalize them to integers in {0, ..., 1000}. Four
embedding tables are employed to encode spatial positions: LEx and LEy for the
coordinate axes (x and y), and LEw and LEh for the bounding box size (width
and height). The final layout embedding of a token, ℓ ∈ Rdℓ , located at position
(x0, y0, x1, y1) is defined by:

ℓ = LEx(x0) + LEy(y0)

+ LEx(x1) + LEy(y1)

+ LEw(x1 − x0)

+ LEh(y1 − y0)

(5.1)

5.2.1.2 Skim-Attention Mechanism

A standard self-attention mechanism works by comparing every token in the
sequence to every other token in the sequence, and reweighing the embeddings
of each token to include contextual relevance (Section 3.1.1.3). Skim-Attention
diverges from standard self-attention as it operates independently from text se-
mantics (i.e., token representations). Instead, Skim-Attention computes attention
using only the spatial positions of tokens, i.e., their layout embeddings ℓ.

Formally, let Xℓ = {ℓ0, ℓ1, . . . , ℓn} be an input sequence of layout embeddings,
and Qℓ = W ℓ

qX
ℓ,Kℓ = W ℓ

kX
ℓ. The queries Qℓ and keys Kℓ are obtained by

linear transformations of the layout embeddings, following the standard attention
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mechanism. As in Equation 3.7, Skim-Attention is defined as a scaled-dot product
between queries and keys, passed through a softmax operator:

Aℓ = Softmax

(
Qℓ
(
Kℓ
)⊤

√
dℓ

)
(5.2)

Similar to multi-head self-attention in Transformers, Skim-Attention is decom-
posed in multiple heads.

Intuitively, Aℓ captures the correlation between two tokens based on their spa-
tial positions: the more similar two tokens are in terms of layout embeddings, the
more they should attend to each other.

Because attention is calculated only once, using non-contextualized layout em-
beddings may limit Skim-Attention’s ability to capture complex relationships
within the document structure. Therefore, to enhance the quality of layout repre-
sentations, we contextualize them by adding a small Transformer prior to com-
puting Skim-Attention. The contextualization process allows for a more refined
understanding of the relationships and dependencies within the layout.

The integration of Skim-Attention with any long-range Transformer is entirely
feasible, as these approaches operate independently. We tailor our methodology
by performing the long-range attention calculation once, using layout information
instead of text semantics.

5.2.2 Skim-Attention in Transformers

We now present two approaches to exploit Skim-Attention: i) Skimformer, wherein
self-attention is replaced by Skim-Attention; and ii) Skimming Mask, where an at-
tention mask, built from Skim-Attention, is plugged into a Transformer language
model to restrict its attention.

5.2.2.1 Skimformer

Skimformer is designed to answer the first research question: Is it possible to de-
termine attention from layout only ? Skimformer is a two-stage Transformer that re-
places multiple standard self-attention layers with a single layer of Skim-Attention.
Drawing inspiration from insights in cognitive science, the intuition behind this
approach is to mimic how humans process a document by i) skimming through
the document to extract its structure, and ii) reading the contents based on the
prior structural understanding.
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Figure 5.2 – Skimformer model architecture. The input consists of two compo-
nents: a sequence of tokens (right-hand side) and a sequence of to-
ken bounding box coordinates (left-hand side). Only the layout em-
beddings (left) are used to compute Skim-Attention. L denotes the
number of Transformer encoder layers. Q and K are the queries and
keys obtained by projecting the layout embeddings. V represents the
values produced by projecting the encoder layers’ textual inputs. The
attention is solely based on token spatial positions and computed
only once. The attention scores are then distributed to each layer of
a Transformer encoder.

Skimformer is fed with a sequence of token embeddings and the corresponding
sequence of layout embeddings. Because layout information implicitly reflects the
reading order of documents, we do not encode the sequential positions of tokens.
The model adopts a two-step approach: first, it computes the skim-attention scores
(once and only once) using layout information alone. It then uses these attention
scores across all layers of a Transformer encoder. The architecture of Skimformer
is depicted in Figure 5.2.

For a given encoder layer and a single head, the output representations Z of
the standard self-attention operation becomes:

Z = AℓV t (5.3)

where Aℓ is the skim-attention matrix obtained through Eq. 5.2, and V t = WvX
t

is the value matrix obtained by projecting the layer input.
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More intuitively, computing skim-attention scores (Eq. 5.2) can be interpreted as
skimming through the document to grasp its structural aspects. Information about
the semantics (contained in V ) is then routed based on these similarity scores.
This is done via Eq. 5.3 and can be seen as reading the contents of the document,
focusing on the most relevant parts guided by the skim-attention scores.

Similarly to LayoutLM, we pre-train Skimformer using Masked Visual-Language
Modeling (MVLM). This involves randomly masking some of the input tokens,
while retaining their corresponding layout embeddings. The model is then trained
to recover the masked tokens given the contexts.

While we experimented with a standard Transformer encoder-only model, it is
worth noting that any language model can be used as the backbone of Skimformer.

Albeit remaining quadratic, the time and memory cost of Skim-Attention is
much lower than vanilla self-attention. Let n be the maximum sequence length,
L the number of encoder layers, L′ the number of layers needed to contextualize
layout representations, d the dimension of the text embeddings, and d′ the dimen-
sion of the layout embeddings. The computational complexity is reduced from
O(2Ldn2) to O(L′d′n2 + Ldn2), the first term being the time required to calculate
the skim-attention scores, and the second term referring to the time needed to
compute the residual value for each token in the input. The memory complexity
for vanilla self-attention is O(Ldn+ Ln2), where the first term is the memory re-
quired to store keys, queries and values, while the second represents the attention
scores produced. These requirements are reduced to O((d′n+n2)+Ldn), with the
first term corresponding to the keys and queries, the second term representing
the attention scores, and the last one corresponding to the values.

In conclusion, Skimformer is a two-stage Transformer architecture designed
to determine attention from layout information alone, inspired by human read-
ing strategies that efficiently process document structure. While enhancing effi-
ciency, Skimformer has suboptimal aspects. One limitation lies in the fixed nature
of Skim-Attention scores across all layers, which may oversimplify the model’s
comprehension, potentially missing complex relationships within the document.
Furthermore, a token’s attention is determined solely by layout information, po-
tentially overlooking important semantic clues that are essential to understand
complex relationships.

5.2.2.2 Skimming Mask

One drawback of Skimformer is that it does not use attention based on seman-
tics. However, for each token in a sequence, Skim-Attention provides a ranking
of every other token in accordance with their layout-based similarity. Drawing
from this observation, Skimming Mask answers the second question: Can layout
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Figure 5.3 – Skimming Mask model architecture. The layout embeddings, Key
and Query projections are initialized from an already pre-trained
Skimformer model. By filtering the k most attended tokens for each
token, the Skim-Attention scores are then converted to an attention
mask and given as input to a text-based Transformer model.

help reduce the complexity of self-attention? by using Skim-Attention as a mask to
restrict the computation of self-attention to a smaller number of elements for each
token. In this setting, Skim-Attention is viewed as an independent, complemen-
tary module that can be plugged into any Transformer-based language model.
Given a sequence of layout embeddings, the corresponding skim-attention matrix
is converted to an attention mask: based on the similarity scores provided in the
attention matrix, each token only attends to at most k tokens. The mask is given as
input to a text-based Transformer language model with vanilla self-attention, and
is used to restrict self-attention for each element in the input text sequence. This
can be viewed as sparsifying the standard self-attention matrix. In contrast to the
sparse pattern methods discussed in Section 3.3.1.1, this sparsity is determined
by the document’s layout.

It is worth nothing that Skimming Mask introduces a new way to cluster tokens:
tokens within the same group have a high similarity to each other in terms of
their respective layout positions. This characteristic positions Skimming Mask as a
concurrent approach to Reformer (Kitaev et al. 2020), which reduces the cost of
self-attention by clustering tokens into chunks. As opposed to the latter, the con-
cept of similarity is not derived from text semantics but rather from the document
structure. Furthermore, Skimming Mask does not require an understanding of
the semantic content; it solely relies on their layout features. Because each token
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is viewed as a bounding box whose characteristics are only its size and position,
the representation space of layout features is much smaller than that of the text,
which spans a vocabulary of more than 30k sub-words. As a consequence, com-
puting attention based on layout could require a smaller latent space dimension
than for text, corresponding to less computational efforts. This is also the case for
humans: as demonstrated in section 5.1, it is much easier to retrieve information
from documents when the layout is provided.

Ideally, the Skimming Mask pattern should be learned in an end-to-end fashion
alongside the Transformer model. However, achieving this end-to-end training
in practice is challenging due to the non-differentiable nature of generating an
attention mask from an attention matrix. Consequently, to train this model, the
weights for Skim-Attention must have already undergone training. In this context,
we naturally use the pre-trained Skimformer weights. The overall architecture of
the model is illustrated in Figure 5.3.

The computational complexity is reduced to O(L′d′n2 + Ldk2 + Ldn2), where
the first term represents the time required to compute the skim-attention scores,
the second term corresponds to the time needed to calculate the sparse atten-
tion matrix, and the third term pertains to the time required to compute the
residual value for each token in the input. Meanwhile, the memory complexity
for Skimming Mask is reduced to O((d′n + n2) + Ldk + Lk2), encompassing the
memory requirements for Skim-Attention and those for the sparsified attention
mechanism.

5.3 Experiments

We first present the data used to pre-train and evaluate our models, and provide
details on the experimental settings.

5.3.1 Data

5.3.1.1 Pre-training Data

To pre-train our models on a wide variety of document formats, we select
three datasets with various non-trivial document layouts: DocBank (M. Li et al.
2020), RVL-CDIP (Harley et al. 2015) and PubLayNet (Zhong et al. 2019). We
combine them by randomly selecting 25k documents from each dataset, for a
total of 75K documents. We discard the provided labels and consider these data
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as unannotated. The resulting dataset is referred to as MIX. As a first evaluation
metric, we can compare the perplexity for the different language models on MIX.

DocBank (M. Li et al. 2020) is a large-scale dataset that contains 500k English
document pages from papers extracted from the arXiv repository. These articles
span a variety of disciplines (e.g., Physics, Mathematics, and Computer Science),
which is beneficial to train more robust models. Pages are split into a training set,
validation set and test set with a ratio of 8:1:1. As the authors already extracted
the text and bounding boxes using PDFPlumber, 1 there is no need for an Optical
Character Recognition (OCR) system or a PDF parser. To build our subset, we ex-
tract 25k document pages: 20k from the full training set, 2,500 from the validation
set and 2,500 from the test set.

RVL-CDIP (Harley et al. 2015) is a large collection of 400k scanned document
images from various categories (e.g., letter, form, advertisement, invoice). The
wide range of layouts, as well as the low image quality, allows to train more
robust models. We select 25k documents from the RVL-CDIP dataset available on
Kaggle, 2 which amounts to half of the training images from the full dataset (160k
images). The text and word bounding boxes are extracted using Tesseract (Kay
2007). We split the data into 80% for training, 10% for validation and 10% for test.

PubLayNet (Zhong et al. 2019) comprises over 360k document images from
PubMed Central™ Open Access. The medical publications contained in the col-
lection have similar layouts, but the text density coupled with the small image
size allows to train more robust models. We arbitrarily extract the first training
split among the 7 available on IBM Data Asset eXchange 3 and use the first 20k
images as our training set. For the validation and test sets, we keep the first
2,500 images in each split. Because Tesseract’s accuracy is too low without any
pre-processing, we apply a few image processing operations (i.e., rescaling, con-
verting to grayscale, applying dilation and erosion) on each image to improve text
extraction.

5.3.1.2 Dataset for Document Layout Analysis

In addition to perplexity, we evaluate our approach on a downstream task,
document layout analysis, which consists in associating each token with its cor-
responding category. We use a subset of the full DocBank dataset, where the

1. https://github.com/jsvine/pdfplumber
2. https://www.kaggle.com/nbhativp/first-half-training
3. https://developer.ibm.com/exchanges/data/all/publaynet/
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categories are: abstract, author, caption, date, equation, footer, list, paragraph, ref-
erence, section, table, title and figure. 4

The subset is created by selecting 10k document pages (distinct from the ones
used for pre-training): 8,000 from the full training set, 1,000 from the validation set
and 1,000 from the test set. We refer to this dataset as DocBank-LA. Each document
page is organized as a list of words with bounding boxes, colors, fonts and labels.
We use the precision, recall and F1 score defined by M. Li et al. (2020).

5.3.2 Experimental Settings

For reproducibility purposes, the code and data pre-processing scripts are made
publicly available. 5

5.3.2.1 Baselines

We compare our models with three baselines: i) the text-only Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al. 2018), ii) the
multi-modal LayoutLM (Yiheng Xu et al. 2020), and iii) the text-only Longformer
(Beltagy et al. 2020) for long documents. Note that the LayoutLM architecture is
based on BERT, with additional layout components. For fair comparison, all our
models designed for short sequences are based on BERT as well, as detailed below.
All the models are trained from scratch.

5.3.2.2 Pre-training

For BERT, LayoutLM and Longformer, we use their base architecture. Follow-
ing the BERT base model, Skimformer consists of a 12-layer Transformer encoder
with 12 attention heads and a hidden size set to 768 for both text and layout em-
beddings, amounting to 99M parameters. We further add a 2-layer Transformer
encoder to contextualize the layout embeddings, which increases the number
of parameters to 113M. To test Skim-Attention on longer documents, we build
LongSkimformer, a combination of Skim-Attention and Longformer. Every model
is trained from scratch on the MIX dataset for 10k steps. We set the maximum
sequence length to n = 512 for every model except for Longformer and LongSkim-
former, for which n = 2, 048. While BERT and Longformer are pre-trained with
Masked Language Modeling (MLM), Skimformer, LongSkimformer and LayoutLM

4. We actually discard the Figure label, as 1) our models do not take image features into
account, and 2) the text associated with such elements is always the same, making the task trivial.

5. https://github.com/recitalAI/skim-attention
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Model Test Perplexity
BERT (Devlin et al. 2018) 357.11

LayoutLM (Yiheng Xu et al. 2020) 45.86

Skimformer 33.77

Longformer (Beltagy et al. 2020) 333.28

LongSkimformer 32.02

Table 5.2 – Test perplexity on the MIX dataset after 10k optimization steps. Each
model was trained from scratch. Bold denotes the best score.

are pre-trained using MVLM, an extension of MLM that incorporates layout infor-
mation into the pre-training task.

5.3.2.3 Document Layout Analysis

As DocBank contains fine-grained token-level annotations, we consider the
document layout analysis task as a sequence labeling task. Each model pre-trained
on MIX is fine-tuned on this downstream task for 10 epochs. For the Skimming
Mask models, we selected the hyperparameter k—the number of tokens that can
be attended—to on the validation set. We tested k ∈ {512, 384, 256, 128}.

5.4 Results

We first discuss the results obtained on language modeling and document
layout analysis, before exploring the attention maps obtained by Skimformer.

5.4.1 Language Modeling Evaluation

5.4.1.1 Perplexity

In Table 5.2, we report the perplexity on the MIX dataset. We observe that
Skimformer and LongSkimformer outperform both BERT and Longformer by a
huge margin, while improving perplexity by more than 10 points over LayoutLM.
In addition, Figure 5.4 demonstrates that Skimformer converges much faster than
BERT, and slightly more than LayoutLM, indicating its efficiency in learning from
the training data. However, it is worth acknowledging certain limitations. Firstly,
the models are pre-trained for a relatively brief duration on a rather small dataset,
which may impact their generalizability. Additionally, achieving better perplexity
does not always guarantee improved performance in downstream tasks.
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Figure 5.4 – Model perplexity on the MIX validation set with respect to the num-
ber of optimization steps. All models are trained from scratch.

Skim-Attention Input Test Perplexity
Non-contextualized Layout 36.41

1D position 54.39

Uniform layout 421.97

Degraded layout 103.39

Full model 33.77

Table 5.3 – Ablation study on the MIX dataset, where perplexity on the test set is
reported. All models were trained from scratch. Bold denotes the best
score.

5.4.1.2 Ablation Study

We further conduct an ablation study about the influence of the Skim-Attention
inputs on Skimformer’s performance. The results are listed in Table 5.3. To esti-
mate the impact of the input type, we consider a Skimformer model i) wherein
layout representations are not contextualized (Non-contextualized Layout), ii) Skim-
Attention is based on sequential positions (1D position), iii) the bounding boxes
are all set to the same fixed value, preventing the model to gather any information
about the true location (Uniform layout), and iv) they are replaced by their centers
(Degraded layout). We also provide the perplexity obtained by the full Skimformer
model (Full model).

We find that computing Skim-Attention directly on the layout embeddings
(Non-contextualized Layout) results in higher perplexity, indicating that depending
solely on non-contextualized layout information results in increased uncertainty
regarding the predictions made. Additionally, substituting spatial positions with
sequential positions (1D position) leads to an increase in perplexity, indicating
that layout information is crucial for the language model. We also observe that
assigning the same bounding box to every token (Uniform Layout) leads to a severe
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drop in performance. Coupled with the perplexity obtained with a degraded
layout, this shows that the model’s performance is greatly impacted by the layout
input quality.

5.4.1.3 Training Speed and Memory Usage

Using Hugging Face’s Transformers benchmarking tools (Wolf et al. 2019), we
benchmark Skimformer and LayoutLM on both speed and required memory for
pre-training. We consider the base variant of LayoutLM, and use the implemen-
tation from the Transformers library. In addition to Skimformer, we evaluate a
variant in which the small Transformer contextualizing layout embeddings is re-
moved (Skimformer-no-context). The batch size is fixed to 8, and memory and time
performance is evaluated for the following sequence lengths: 8, 32, 128 and 512.
All experiments were conducted on one Tesla T4 with 15GB of RAM.

Figures 5.5a and 5.5b report the time and peak memory consumption, respec-
tively, with respect to the sequence length. Results confirm that Skimformer is
more time and memory efficient than LayoutLM.

(a) Time usage for pre-training. (b) Memory usage for pre-training.

Figure 5.5 – Comparison of time and memory usage for LayoutLM (green), Skim-
former with layout contextualizer (orange) and without (blue). Re-
sults are plotted against sequence length.

5.4.2 Document Layout Analysis Evaluation

We now evaluate the performance of our models on a document layout anal-
ysis task using the DocBank-LA dataset. Table 5.4 reports the performance on
DocBank-LA, the sequence length processed, the number of times attention is com-
puted and the ratio of the total calculation unit (n2 ×Nb Skim-Attn+ Seq. Len2 ×
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Skimming Seq. Nb Attentions Total
Model Mask Len Original* Skim-Attn Compute Rec. Prec. F1

BERT (Devlin et al. 2018) ✗ 512 12 0 100.00% 67.21 59.28 60.98

LayoutLM (Yiheng Xu et al. 2020) ✗ 512 12 0 100.00% 81.60 77.96 79.28

Skimformer ✗ 512 0 3
**

25.00% 78.80 74.35 75.86

BERT+SkimEmbeddings ✗ 512 12 0 100.00% 82.42 77.06 79.16
BERT+SkimmingMask ✓ 128 12 3

**
31.25% 72.32 64.39 67.36

LayoutLM+SkimmingMask ✓ 128 12 3
**

31.25% 81.15 78.30 79.26

Longformer (Beltagy et al. 2020) ✗ 2,048 12 0 100% 74.88 69.29 71.17

LongSkimformer ✗ 2,048 0 3
**

25% 81.22 73.45 76.61

* Standard self-attention for Skimformer, BERT-based and LayoutLM-based models. Longformer self-attention for
Longformer and LongSkimformer. ** Attention is computed twice (by a 2-layer Transformer) during layout contex-
tualization, then once by Skim-Attention.

Table 5.4 – Model performance (in %) on the DocBank-LA dataset. Seq. Len in-
dicates the number of tokens attended with either standard attention
(for Skimformer, BERT-based and LayoutLM-based models), or Long-
former attention (for Longformer and LongSkimformer). Nb Attention
represents the number of times attention (original and Skim-Attention)
is computed and stored. Total Compute specifies the ratio of the final
computational cost (# operations needed to compute attention) w.r.t.
BERT/LayoutLM or Longformer. Each model was pre-trained from
scratch on the MIX dataset, then fine-tuned on DocBank-LA.

Nb Standard Attn, where n is the length of the initial sequence on which Skim-
Attention is applied; and Seq. Len is the length obtained after applying Skimming
Mask) to that of BERT/LayoutLM and Longformer. All models were pre-trained
from scratch on MIX.

Skimformer is substantially superior to BERT, improving the F1 score by 15%
while reducing the number of attentions computed by four. We experimented
with plugging the layout embeddings learnt by Skimformer in a BERT model.
The resulting model, BERT+SkimEmbeddings, resembles LayoutLM in terms of
architecture. 6 Results show that BERT+SkimEmbeddings performs on par with
LayoutLM despite simply combining separately pre-trained modalities, as op-
posed to the latter which requires an extensive joint training.

For the Skimming Mask models, the models attend only to the top-128 tokens.
Compared to LayoutLM, reducing the number of tokens attended to from 512 to
128 allows to obtain the same downstream results with only 31.25% of the com-
putational burden. Compared to BERT, it even obtains an absolute improvement
of more than 6% in term of F1 score.

6. In BERT+SkimEmbeddings, the layout embeddings are first projected into the same dimen-
sional space as the text embeddings. In this way, we can plug the layout embeddings from any
Skimformer model, in particular smaller ones.
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LongSkimformer benefits from both Skim-Attention and Longformer’s gain in
efficiency. It outperforms Longformer by 5% while requiring four times less atten-
tion operations, and the use of Longformer’s linear attention allows LongSkim-
former to process sequences four times larger than Skimformer can.

Overall, the competitive results achieved by Skimformer show that it is possible
to learn attention solely from layout information. Additionally, the efficiency
gains and effectiveness demonstrated by the Skimming Mask approach emphasize
the potential of leveraging layout information to reduce the complexity of self-
attention.

5.4.3 Attention Visualization
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(a) Skim-attention maps corresponding
to the title (left) and the abstract
(right), with average attention score
(in white) per text block (in green).

(b) Skim-attention maps corresponding
to the top table (left) and the bottom
table (right).

(c) Skim-attention maps corresponding to the title (left), the authors (center) and
the abstract (right).

Figure 5.6 – Skim-Attention maps obtained on three sample documents. We con-
sider the skim-attention matrix averaged over all the attention heads.
Given a semantic unit, we plot the average attention score for each
token.

We explore the distribution of attention probabilities obtained by Skim-Attention.
Figure 5.6 shows the attention maps produced by Skimformer on three randomly
sampled documents. Given a semantic unit (either title or abstract in our example),
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we select the corresponding tokens and compute their average attention over the
whole document. We observe, both qualitatively and quantitatively, that tokens at-
tend mainly to other elements in the same semantic unit, thereby creating clusters
of tokens that are relevant to each other. This shows that the model has grasped
the concept of semantic unit with only self-supervision, enabling the emergence of
a document structure representation. We argue that these structure-aware clusters
could pave the way for long text encoding and unsupervised document segmen-
tation.

5.5 Conclusion

We have presented Skim-Attention, a novel structure-aware attention mecha-
nism. Distinct from prior works in layout-aware pre-training, Skim-Attention is
inspired by human reading strategies: rather than considering every single token
in the document to compute attention, our approach exploits 2D positions. We
conduct extensive experiments to show the effectiveness of Skim-Attention, both
as an end-to-end model (Skimformer) and as a mask for any language model
(Skimming Mask).

Potential extensions of this work include full-scale pre-training, integrating
image features into Skim-Attention to leverage information across all modalities,
as well as exploring tasks that require capturing longer-range dependencies.

Most pre-training techniques, including Skim-Attention, depend on serialized
text obtained through OCR or PDF parsing. Yet, accurately detecting the reading
order of visually-rich documents poses a significant challenge. With the aim of
advancing models that capture document structure more intuitively, the next
chapter will focus on addressing reading order issues by leveraging document
layout and entirely discarding sequential position information.
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Chapter abstract

Due to their remarkable performance, general-purpose multimodal Pre-trained
Language Models have gained widespread adoption for Document Understand-
ing tasks. The majority of Pre-trained Language Models rely on serialized text,
extracted using either Optical Character Recognition (OCR) or PDF parsing.
However, accurately determining the reading order of visually-rich documents
(VrDs) is challenging, potentially affecting the accuracy of the extracted text
and leading to suboptimal performance in downstream tasks. For information
extraction tasks, where entity recognition is commonly framed as a sequence-
labeling task, incorrect reading order can hinder entity labeling. In this work,
we avoid reading order issues by discarding sequential position information.
Based on the intuition that layout contains the information to supplement
reading order, we present Layout2Pos—a shallow Transformer designed to
generate position embeddings from layout. Incorporated into a BART archi-
tecture, our approach demonstrates competitiveness with models dependent
on reading order across three benchmark datasets for information extraction.
We also show that evaluating models using a reading order different from the
one seen during training can result in substantial performance drops, thereby
highlighting the importance of not relying on the reading order of documents.

The work in this chapter has led to the submission of a paper currently under
review at NAACL 2024.
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The organization of textual content in a specific layout is crucial for convey-
ing meaning and context, holding significant importance across various written
materials, including business documents, scholarly papers, and news articles. In
particular, layout determines the sequence in which text is intended to be read
or processed within a document, i.e., the reading order. A well-designed reading
order ensures that readers can follow the logical flow and structure of information
and comprehend the intended meaning of the text. However, defining a proper
reading order is non-trivial due to the complexity of document layouts, which
may include elements such as tables and multiple columns.

When models are trained with a reading order that aligns with human under-
standing, they learn to capture the relationships between words, sentences, and
paragraphs. Hence, reading order is crucial for models to perform well. Most
pre-training methods for Document Understanding rely on serialized text, where
either an Optical Character Recognition (OCR) engine or a PDF parser is used to
extract text. However, due to the variety of layout formats, most OCR engines and
PDF parsers struggle to provide accurate reading orders, resulting in misalign-
ments between the order of the extracted text and the order of the original visual
content (i.e., serialization errors).

Most of the time, the text extracted is re-arranged in a raster-scan order, align-
ing tokens from the top-left to the bottom-right corner (Clausner et al. 2013).
However, this linear organization does not always align with human reading
patterns, particularly in documents with complex layouts such as multicolumn
texts, tables, and forms. Serialization errors impact the accuracy of the extracted
text and, therefore, affect the entire text processing pipeline. Without an accurate
reading order, models may misinterpret the relationships between different parts
of the text, resulting in suboptimal performance in downstream tasks. This poses
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a substantial challenge in various applications, notably in the field of Document
Understanding, where document layouts can be complex.

Furthermore, in real-word scenarios, documents may be processed by various
OCR engines for different reasons such as cost, availability, or integration with
existing workflows. Each OCR engine may have unique characteristics related
to layout, font handling, or language support. These differences can introduce
variations in the quality and accuracy of the OCR output for the same document,
impacting, most importantly, the reading order. This variability may result in
significant fluctuations in downstream performance. However, it is crucial for or-
ganizations to be able to choose OCR engines based on their specific requirements
without compromising performance in downstream tasks.

In particular, in visual information extraction tasks, the primary goal 1 is to iden-
tify entities of predefined semantic types (e.g., names, dates, addresses). Following
the classic settings of Natural Language Processing (NLP), the task is commonly
framed as a sequence-labeling problem. This approach involves labeling each
token using a tagging scheme, such as BIO-tagging (Ramshaw and M. P. Marcus
1999), and leveraging these tags to identify entities. A sequence labeling-based
approach operates under the assumption that each identified segment of an entity
forms a continuous sequence of words within the input. While this assumption is
valid for plain texts, it may not hold for real-world documents, where OCR systems
or PDF parsers might not correctly organize text. In this context, performance is
notably impacted by serialization errors. For instance, an entity might be split
into non-continuous fragments. Such disordered input disrupts the BIO-tagging
scheme, preventing the models from accurately identifying entities. Moreover,
for training sequence labeling approaches, word-level annotations are essential.
However, they are not always available; some datasets only provide the text cor-
responding to each information type (Graliński et al. 2020). Obtaining word-level
annotations involves matching these texts with the words in the document, which
can be time-consuming if done manually or susceptible to errors if performed
automatically.

On the other hand, layout inherently encapsulates the correct reading order
of documents by visually organizing content in a structured manner. A well-
designed layout guides the reader’s natural progression from one section to an-
other, ensuring coherent and logical information flow. Therefore, understanding
the layout provides essential cues for determining the correct reading order, as it
aligns with the visual hierarchy and structure intended by document creators.

Yet, existing pre-training methods for Document Understanding often neglect
this aspect, opting to oversimply the integration of layout. For instance, LayoutLM

1. Additionally, the task extends to classifying the relationships between these recognized
entities (relation extraction). In this work, we do not focus on this task.
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(Yiheng Xu et al. 2020) incorporates layout information as an extra embedding
in the input layer, while LayoutLMv2 (Yang Xu et al. 2020) adds it as a bias
term in the attention layer. Although ERNIE-Layout (Peng et al. 2022) learns the
relationship between layout and reading order through a pre-training strategy
involving reading order prediction, it continues to rely on sequential position
embeddings derived from the reading order obtained via OCR. However, by in-
vestigating the position-awareness in causal language models with no explicit
positional encodings, Haviv et al. (2022) show that these models develop an im-
plicit understanding of absolute positions to compensate for missing information.
It is suggested that causal attention, a mechanism in which each token attends
only to its preceding positions in a sequence, allows the model to estimate the
number of predecessors each token can attend to, thereby approximating its ab-
solute position. Our objective is to demonstrate that the capability of a model
to approximate its absolute position is not restricted to causal models, but holds
true across various scenarios when layout information is provided.

Unlike sequence labeling approaches that entirely depend on the content ex-
tracted via OCR, generative models can bypass the need for word-level annotations
and generate text without being restricted by the document’s content or its read-
ing order, enabling them to potentially correct OCR-induced errors. Sage et al.
(2020) represent the information to be extracted as a sequence of tokens in XML.
They employ a recurrent encoder-decoder architecture to generate XML represen-
tations, using pointer-generator networks (See et al. 2017) to allow the model to
dynamically decide whether to generate a word from its vocabulary or copy it
directly from the document. Townsend et al. (2021) use a Transformer (Vaswani
et al. 2017) language model trained on database records to generate JSON-like
representation of the extracted information.

Close to our work, TILT (Powalski et al. 2021) is a Transformer encoder-decoder
model enhanced with layout and visual information, specifically designed for
visual information extraction tasks. Unlike TILT, our work does not depend on
sequential position information. Going further, Donut (Kim et al. 2022) uses a
Transformer visual encoder to extract features from a document image, elimi-
nating the reliance on OCR for text extraction. A textual Transformer decoder is
then used to map these visual features to a desired structured format, such as
JSON, for visual information extraction tasks. In contrast to Donut, our method
does not rely on visual features, providing better computational efficiency when
various information extraction tasks are conducted or/and complex documents
are processed.

In this chapter, we focus on mitigating serialization errors by entirely discarding
sequential position information. We introduce Layout2Pos, a shallow Transformer
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model designed to generate position embeddings from the document layout. Our
endeavor is twofold: from a practical standpoint, we aim to enhance the robust-
ness of models to reading order changes, crucial for real-world applications; from
a theoretical perspective, we demonstrate that it is feasible to discard sequential
position information without compromising overall performance. We integrate
this module into a sequence-to-sequence framework. To train the model, the lan-
guage modeling task is coupled with a pre-training strategy designed to instill the
model with the ability to learn the reading order from layout information. This
integration eliminates the reliance on reading order and enables the generation
of values that are not explicitly present in the input. We demonstrate the benefits
of our approach for visual information extraction tasks, showcasing competitive
performance to models that depend on reading order.

6.1 Reconstructing Positional Information from 2D
Positions

In this section, we present preliminary experiments that underscore the limi-
tations inherent to OCR processing in terms of accurately preserving the reading
order of tokens. In response to the challenges posed by OCR-induced serializa-
tion errors, we then introduce Layout2Pos, a novel approach that goes beyond
conventional approaches by discarding the reliance on reading order information.
Instead, Layout2Pos leverages the inherent 2D positional information of tokens
within the document page to construct positional information, thereby enhancing
the robustness and reliability of downstream tasks.

(a) Plain (b) List (c) Multicolumn (d) Table

Figure 6.1 – Examples of documents for each layout category, arranged from the
simplest to the most complex.
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6.1.1 Preliminary Experiments: OCR Serialization Errors

Layout Type
Plain Lists Multicolumn Tables

Tesseract OCR (Kay 2007) 78.71 72.75 61.43 36.97

DocTR (Mindee 2021) 86.83 77.83 82.54 66.11

Table 6.1 – Accuracy (in %) obtained by each OCR engine, for each document
layout type.

To gauge the extent of OCR-induced serialization errors, we conduct preliminary
experiments comparing the annotated ground-truth reading order against the
reading orders produced by 1) Tesseract OCR (Kay 2007), a widely-used OCR

engine, and 2) DocTR (Mindee 2021), an OCR engine based on deep learning
models. The goal is to assess the alignment of the reading order produced via
OCR with actual human reading patterns.

We use a subset of 100 documents from ReadingBank (Zilong Wang et al. 2021),
a benchmark dataset for reading order detection that includes high-quality read-
ing order annotations extracted from Word documents. These annotations capture
the correct sequence of words as visually presented in the documents. Upon ex-
amination of the samples and discerning patterns that appear most frequently,
we have identified four prevalent document layout types: plain layout, lists, multi-
column layout, and tables. We provide examples in Figure 6.1.

Tesseract OCR and DocTR are employed to extract and serialize text from the
documents. The reading orders produced are compared against the ground-truth
for discrepancies. Specifically, we evaluate accuracy by comparing, for each word
in the ground-truth sequence, the actual next word with the one predicted by
each OCR engine. We compute the accuracy obtained by each system for each
specific layout type. Results are reported in Table 6.1. Additionally, we include
the results obtained by our approach, Layout2Pos. Our findings indicate that both
OCR engines face increased difficulty in reconstructing the correct reading order
as the document layout becomes more complex. 2 Our approach exhibits a similar
trend, although to a significantly lesser degree. Furthermore, it demonstrates
higher accuracy for each document type compared to both OCR engines.

Additionally, we provide the ground-truth reading order and the reading order
generated by Tesseract OCR for a sample table (Figure 6.2) and a document with
a multi-column layout (Figure 6.3). In the case of the table, a comparison with the
ground-truth reading order reveals that Tesseract OCR lacks knowledge about

2. This difficulty in accurately predicting the next word is further attributed to the OCR engines’
misinterpretation of certain words.
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(a) Ground-truth reading order

(b) Reading order obtained through Tesseract

Figure 6.2 – Ground-truth reading order (a) compared to the reading order gen-
erated by Tesseract (b) for a sample table. Arrows emphasize the
differences in reading order in the first row. Non-highlighted text
indicates that it does not appear in the serialized sequence.

cells, as it organizes text in a top-left to bottom-right manner. Regarding the
document with two columns, Tesseract OCR reads the text column by column,
despite the document being horizontally divided into subgroups. This observation
highlights the limited understanding of structure by OCR engines.

These preliminary experiments provide the groundwork for investigating into
novel approaches designed to alleviate serialization errors, ultimately enhancing
the performance of document understanding models.

6.1.2 Layout2Pos Module

Building on the insights gained from the previous experiment, accurately re-
trieving the correct reading order poses a significant challenge for OCR engines.
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(a) Ground-truth (b) Tesseract

Figure 6.3 – Ground-truth reading order (a) compared to the reading order gener-
ated by Tesseract (b) for a document with a two-column layout. The
document was cropped for better visibility. Arrows emphasize the
differences in reading order. Non-highlighted text indicates that it
does not appear in the serialized sequence.

We argue that it is possible to directly leverage document layout. To address this,
we propose a novel approach, Layout2Pos, a transformer-based module that does
not rely on the reading order generated by OCR, and learns position embeddings
solely from the spatial positions of tokens. In the following, we elaborate on the
process of encoding spatial information into layout embeddings, followed by an
in-depth description of our Layout2Pos module.

6.1.2.1 Encoding Layout Information

To encode layout information, we use 1) bounding box information, 2) 2D rela-
tive positions, and 3) a novel method based on line and column relative positions.
This approach distinguishes itself from Skimformer (Section 5), which relies solely
on bounding box information. The inclusion of richer layout information in our
method is crucial for effectively retrieving the reading order of documents.

Encoding Bounding Box Information The spatial position of a token is repre-
sented by its bounding box in the document page image, denoted as (x0, y0, x1, y1),
where (x0, y0) and (x1, y1) correspond to the coordinates of the top-left and bottom-
right corners, respectively. Following LayoutLMv2, we discretize and normalize
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Figure 6.4 – Distances between: the left edge of each box (x′
0 − x0, in green), the

right edge of the second box and the left edge of the first (x′
1 − x0, in

orange), and the right edge of each box (x′
1 − x1, in blue).

these coordinates to integers within the range of {0, ..., 1000}. Four embedding
tables are employed to encode spatial positions: LEx and LEy for the coordinate
axes (x and y), and LEw and LEh for the bounding box size (width and height).
In line with LayoutLMv2, the final layout embedding ℓ ∈ Rd of a token, whose
bounding box is (x0, y0, x1, y1), is defined as follows (∥ denotes concatenation):

ℓ = LEx(x0) ∥ LEy(y0)

∥ LEx(x1) ∥ LEy(y1)

∥ LEw(x1 − x0)

∥ LEh(y1 − y0),

(6.1)

Leveraging 2D Relative Positions LayoutLMv2 encodes spatial relative posi-
tions as bias terms added to the attention scores to explicitly capture the spatial
relationship between tokens (see Section 4.3.1.2). Following LayoutLMv2, for each
pair of bounding boxes ((x0, y0, x1, y1), (x

′
0, y

′
0, x

′
1, y

′
1)), we compute the vertical dis-

tance y′1 − y1 between the bottom edge of each box and the horizontal distance
x′
0 − x0 between the left edge of each box. The latter measurement, depicted in

green in Figure 6.4, provides insights into how much space exists between the
starting points of the two tokens.

Furthermore, we provide additional perspectives into the spatial relationships
of tokens. We compute the horizontal distance x′

1 − x0 between the right edge of
the second box and the left edge of the first (illustrated in orange in Figure 6.4),
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providing information about the gap between the beginning of the first token and
the ending of the second one. In addition, we calculate the horizontal distance
x′
1−x1 between the right edge of each box (shown in blue in Figure 6.4), indicating

how far apart the ending points of the two tokens are.

Incorporating Line and Column Relative Positions Understanding the relative
positions within columns provides information about the sequential structure of
the document, aiding in distinguishing between different parts of the document.
On the other hand, the relative positions within lines is valuable for documents
with multicolumn layouts, offering insights into the spatial arrangement of text
across columns. Hence, for each bounding box, we identify other bounding boxes
that share the same line/column. This is determined by whether the horizon-
tal/vertical line passing through the center of the box intersects with the other
bounding boxes. If there is an intersection, the boxes are considered to be on the
same line/column. For each token ti, we determine its positions p(l)(i) and p(c)(i)

within its corresponding line and column, using a left-to-right order for lines
and a top-to-bottom order for columns. Then, we compute the relative sequential
distance δlij and δcij between elements within each line and column. If they do not
belong to the same line or column, the distance is set to ∞.

Let us summarize formally how attention is computed. Suppose qℓ
i and kℓ

i

denote the query and key projections obtained from the layout embedding ℓi of
token i. Let b(2Dx), b(2Dy), b(l), and b(c) be the horizontal, vertical, line, and column
relative position biases, respectively. In Layout2Pos, attention is re-defined as:

αij =
1√
d

(
qℓ
i · kℓ

j

)
+ b

(2Dx)

x
(j)
0 −x

(i)
0

+ b
(2Dy)

y
(j)
1 −y

(i)
1

+ b
(2Dx)

x
(j)
1 −x

(i)
0

+ b
(2Dx)

x
(j)
1 −x

(i)
1

+ b
(l)

δlij
+ b

(c)
δcij

(6.2)

6.1.2.2 Learning Position Embeddings from Layout Information

Given a sequence of layout embeddings derived from token bounding box co-
ordinates, as defined by Equation 6.1, Layout2Pos employs a stack of Transformer
layers to contextualize the sequence. The outputs of the last layer, ℓi, serve as po-
sition embeddings, i.e., pi = ℓi. The objective is for these embeddings (p1, . . . ,pn)

to carry information regarding the reading order. To accomplish this, we build
a simple classifier on top of these embeddings, designed to compute alignment
scores between each token:

Aij = (piW
q)
(
pjW

k
)
. (6.3)
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Figure 6.5 – Layout2Pos Architecture.

To learn the relationship between layout and reading order, we employ the same
strategy as ERNIE-Layout (Peng et al. 2022), which consists in learning to predict
whether two tokens are consecutive (Section 4.3.3). We assume that the attention
matrix A carries information about the reading order, i.e., Aij represents the
probability that the j-th token follows the i-th token. Let N denote the ground-
truth binary matrix obtained from the ground-truth reading order, where Nij

equals 1 if token at position j is the next token in the sequence after token at
position i, and 0 otherwise. We define the Next Token Position Prediction strategy,
which consists in using the attention matrix A to predict the next token of each
token in the sequence (next token matrix). The corresponding cross-entropy loss is
defined as follows:

LNTPP = − 1

n

n∑
i=1

n∑
j=1

Nij log (softmaxi(A·j)) (6.4)

As such, Layout2Pos can be trained to capture the relationship between layout
and reading order 3 by ensuring that the attention matrix A derived from the
computed position embeddings (p1, . . . ,pn) carries information about the next

3. It is noteworthy that a global reading order is unnecessary; there is no requirement to
establish an order between two words that belong to segments that have no relation to each other.
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Figure 6.6 – Architecture of Layout2Pos integrated into a BART model, i.e.,
BART+Layout2Pos. The input consists of two components: a se-
quence of tokens (middle) and a sequence of token bounding box
coordinates (left).

token for each token in the sequence. The architecture of Layout2Pos is depicted
in Figure 6.5.

6.1.2.3 Integrating Layout2Pos into a Sequence-to-Sequence Framework

Layout2Pos can be integrated into any language model, removing the reliance
on sequential position information. This is achieved by substituting the tradi-
tional position encodings derived from OCR by Layout2Pos’ position embeddings.
Specifically, we integrate Layout2Pos into a Transformer encoder-decoder archi-
tecture, as illustrated in Figure 6.6. The model takes as input a sequence of tokens
and their associated bounding boxes, both embedded using embedding tables
(Section 3.2.1.1). The sequence of position embeddings, obtained by Layout2Pos,
is added to the sequence of token embeddings. The resulting sequence is input
to the bidirectional encoder. The output sequence of contextualized embeddings
is fed to the autoregressive decoder to generate the target sequence.

Corruption Loss Layout2Pos is trained together with the encoder-decoder model.
While the module learns to predict the subsequent token of each token based on
layout information, the encoder-decoder follows a pre-training approach similar
to Bidirectional and Auto-Regressive Transformers (BART) (M. Lewis et al. 2019).
The model is trained to reconstruct the original input sequence from a corrupted
version (denoising). Sequences are corrupted by randomly replacing text spans
with a single mask token (text infilling) and permuting sentences (sequence permu-
tation). The corrupted sequence is encoded using the bidirectional encoder, and
the autoregressive decoder is trained to reconstruct the original sequence. The
final loss is expressed as follows:
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L = LNTPP + LDenoising. (6.5)

We refer to the overall model as BART+Layout2Pos.

Inference for Information Extraction Tasks To determine how the model pre-
dicts the next token of the sequence for information extraction tasks, we employ
a customized variant of beam search to generate tokens while minimizing rep-
etitions, therefore enhancing the coherence of the generated sequences. In this
modified version, the generated tokens, if present in the source sequence, are
constrained not to occur more frequently than in the original source. This con-
straint is enforced by keeping count of the number of occurrences of each token
in the source sequence within the target sequence, masking the corresponding
logit when the maximum occurrence is reached and redistributing the probability
mass over the valid tokens.

6.2 Experiments

In this section, we provide an overview of the datasets used for pre-training
our models and conducting visual information extraction tasks. Furthermore,
we provide details on the experimental setup, covering baselines, pre-training
methodologies, and fine-tuning protocols. For reproducibility purposes, we make
the models’ implementation, along with the fine-tuning and evaluation scripts,
publicly available.

6.2.1 Data

6.2.1.1 Pre-training Data

Following a common practice in the field of Document Understanding, we
collect data from the IIT-CDIP collection (D. Lewis et al. 2006) to build our pre-
training dataset (Section 4.3.3). IIT-CDIP consists of around 11 million document
page images of various types and layouts, including news articles, scientific re-
ports, handwritten materials, and more. The collection contains scanned images
of documents, introducing challenges related to image quality, resolution, and
potential artifacts. As such, we leverage IIT-CDIP to pre-train models under re-
alistic conditions. We select over 7 million document images from the collection
to build our pre-training dataset, allocating over 18k for validation, another 18k
for testing, and the remaining images for training. To extract text and bound-
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ing boxes from the documents, we use DocTR (Mindee 2021). Due to potential
serialization errors induced by DocTR, and given that the Next Token Position
Prediction task requires documents with proper reading orders, IIT-CDIP is only
used for training models in language modeling tasks (i.e., denoising).

To enable Layout2Pos to effectively learn the correct reading order of docu-
ments, we use the 500k documents from ReadingBank (Zilong Wang et al. 2021).
These documents are serialized and annotated with high-quality reading order
annotations, serving as the training data for both Next Token Position Prediction
and language modeling tasks.

Our final pre-training corpus is referred to as IIT-CDIP+ReadingBank. While
permutation is used for both datasets, text infilling is not applied to ReadingBank.
This choice is made to prevent potential alignment issues between Next Token
Position Prediction and language modeling, which could arise from replacing
spans of tokens with a single mask token.

Note that, in cases where a word is split into multiple tokens, earlier approaches
based on word-level bounding boxes typically assign the word’s bounding box to
all the tokens within that word. However, we experimentally found that this ap-
proach is inefficient for Next Token Position Prediction, given that tokens within
the same word would share identical layout embeddings, hence hindering accu-
rate predictions of the next token. Therefore, we approximate token-level bound-
ing boxes by dividing each word-level bounding box by the number of characters
in the word.
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6.2.1.2 Data for Visual Information Extraction

Dataset Document Targets

FUNSD

COURT: : QUESTION 

JUDGE: : QUESTION 

Asbestos : ANSWER 

CASE FORM : HEADER 

CASE NAME: : QUESTION 

LORILLARD ENTITIES: : QUESTION 

DATE FILED: : QUESTION 

DATE SERVED: : QUESTION 

CASE TYPE: : QUESTION 

PLAINTIFF COUNSEL: : QUESTION 

LORILLARD COUNSEL: : QUESTION 

TRIAL DATE: : QUESTION 

Wartnick, Chaber, Harowitz, Smith & Tigerman Madelyn J. 
Chaber 101 California Street, Suite 2200 San Francisco, 
California 94111 415 986- 5566 : ANSWER 

July 23, 1998 : ANSWER 

August 3, 1998 : ANSWER 

Lorillard Tobacco Company : ANSWER 

San Francisco Superior Court - No. 996378 : ANSWER 

Wanda G. Robinson and Carroll Robinson v Raybestos- 
Manhattan, et al. : ANSWER 

SROIE

COMPANY

ADDRESS

DATE

TOTAL

193.00 : TOTAL 

OJC MARKETING SDN 
BHD : COMPANY

NO 2 & 4, JALAN BAYU 
4, BANDAR SERI 
ALAM, 81750 MASAI, 
JOHOR : ADDRESS 

15/01/2019 : DATE 

CORD

TAX 5.455 : SUB_TOTAL.TAX_PRICE 

TOTAL 60.000 : TOTAL.TOTAL_PRICE 

(Qty 2.00 : TOTAL.MENUQTY_CNT 

EDC CIMB NIAGA No: xx7730 60.000 : TOTAL.CREDITCARDPRICE 

901016 : MENU.NUM 

-TICKET CP : MENU.NM 

2 : MENU.CNT 

60.000 : MENU.PRICE 

Subtotal 60.000 : SUB_TOTAL.SUBTOTAL_PRICE 

TOTAL DISC $ -60.000 : SUB_TOTAL.DISCOUNT_PRICE 

Table 6.2 – Example document from FUNSD, SROIE, and CORD, accompanied
by their corresponding target sequences that include the entities to be
extracted paired with their corresponding keys. Best viewed in color.

We evaluate our approach on visual information extraction tasks, where the
goal is to extract semantic entities from visually-rich documents, based on a set
of pre-defined keys. This evaluation is conducted using three benchmark datasets
for visual information extraction (Section 4.1.3), each covering different docu-
ment types: FUNSD (Jaume et al. 2019), SROIE (Zheng Huang et al. 2019), and
CORD (Park et al. 2019). For each dataset, we use the reading order provided. To
maintain consistency with pre-training data, we employ approximated token-level
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bounding boxes. In Figure 6.2, we provide an example of source documents from
FUNSD, SROIE, and CORD, along with their corresponding target sequences.

FUNSD (Jaume et al. 2019) is a form understanding dataset consisting of 199

real, noisy and scanned forms where each sample is a list of form entities. There
are three keys for which values have to be extracted: question, answer, and header.
The dataset is split into 149 samples for training and 50 for test.

SROIE (Zheng Huang et al. 2019) is a receipt understanding dataset comprising
973 scanned receipts written in English. The task involves extracting entities for
four keys: total, date, company, and address. The dataset is partitioned into 626

samples for training and 347 for test.

CORD (v1) (Park et al. 2019) is another receipt understanding dataset contain-
ing 1,000 scanned Indonesian receipts with 30 keys categorized into four super-
classes: menu, subtotal, total, and void. Following the katanaml/cord 4 dataset repos-
itory, we exclude keys with very few occurrences, resulting in 22 keys grouped
into three superclasses. The dataset is divided into 800 examples for training, 100

for validation, and 100 for test.

6.2.2 Experimental Settings

Models were implemented in Python using PyTorch (Paszke et al. 2017) and
Hugging Face (Wolf et al. 2019) librairies.

6.2.2.1 Baselines

We compare our approach with BART+2D, a layout-augmented BART model
which relies on position embeddings derived from OCR-induced positions. These posi-
tion embeddings are calculated using embedding tables (Devlin et al. 2018) and
are subsequently added to textual features. Layout embeddings, computed from
bounding boxes using Equation 6.1, are incorporated to the resulting embeddings
to construct the input embeddings. Following LayoutLMv2, BART+2D encodes
spatial relative positions as bias terms added to the attention scores:

αi,j =
1√
d
qi · kj + b

(1D)
j−i + b

(2Dx)

x
(j)
0 −x

(i)
0

+ b
(2Dy)

y
(j)
1 −y

(i)
1

, (6.6)

4. https://huggingface.co/datasets/katanaml/cord

https://huggingface.co/datasets/katanaml/cord
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where b(1D), b(2Dx), and b(2Dy) denote the sequential, horizontal, and vertical rela-
tive position biases, respectively. BART+2D follows the same training and infer-
ence procedures as BART+Layout2Pos.

Additionally, we report the performance of two layout-aware encoder-only mod-
els: 1) LayoutLM and 2) LayoutLMv2-no-visual, a variant of LayoutLMv2 that
discards visual information to ensure a fair comparison with our approach. In the
datasets used for visual information extraction, the assumption that each identi-
fied segment of an entity constitutes a contiguous sequence of words within the
input holds. This simplifies the learning process for sequence labeling methods,
as the order of tokens in the input aligns with the entities to identify, facilitating
the association of tokens with their specific label. Consequently, sequence-labeling
approaches might be seen as having an unfair advantage.

6.2.2.2 Pre-training

Encoder-decoder Models Layout2Pos is composed of 2 layers with 12 atten-
tion heads and a hidden size of 768 (a choice we validate in Section 6.3.1).
The final attention calculation, responsible for computing the next token ma-
trix, involves a single attention head. Following the BART base model, both the
encoder and decoder in BART+Layout2Pos and BART+2D are comprised of 6

layers, each with 12 attention heads and a representation space dimensionality of
768. BART+Layout2Pos comprises a total of 156M parameters, whereas BART+2D
consists of approximately 140M parameters, making them roughly equivalent in
size.

Both models are trained from scratch on IIT-CDIP+ReadingBank. The docu-
ments are tokenized using the tokenizer of the base variant of BART (bart-base)
shared through the Hugging Face Model Hub. The training spans 10 epochs,
amounting to 500k optimization steps, including 59k steps for warmup. For each
model, we select the checkpoint with the best validation loss. We use a maximum
sequence length of 512, a batch size of 80, and a learning rate of 1e−4. Following
BART, we mask 30% of tokens in each sequence (with span lengths drawn from a
Poisson distribution where λ = 3) and permute all sentences. Experiments were
ran using Nvidia Titan RTX with 25GB.

Encoder-only baselines For LayoutLM, we use the microsoft/layoutlm-base-
uncased checkpoint with 113M parameters, without any additional pre-training.
Following the base architecture of LayoutLMv2, LayoutLMv2-no-visual is com-
posed of a 12-layer Transformer encoder with 12 attention heads and a hidden size
of 768, amounting to 110M parameters. The model is also pre-trained from scratch
for 10 epochs on IIT-CDIP+ReadingBank, using Masked Visual-Language Model-
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ing (MVLM), a pre-training task that extends Masked Language Modeling (MLM)
with layout information. The documents are tokenized using the tokenizer of
microsoft/layoutlm-base-uncased. We use a maximum sequence length of 512, a
batch size of 80, and a learning rate of 1e−4.

6.2.2.3 Visual Information Extraction

Sequence-labeling Approaches To compare our sequence-to-sequence approach
with the traditional sequence labeling method on visual information extraction
tasks, we employ LayoutLM and LayoutLMv2-no-visual. We use the BIO (Begin-
ning, Inside, Outside) tagging format (Ramshaw and M. P. Marcus 1999) as the
labeling scheme to tag tokens based on both their entity and their position within
that entity. For every dataset, the maximum sequence length is set to 512. Both
models are fine-tuned for 100 epochs on FUNSD, and 20 epochs on SROIE and
CORD. The learning rate is set to 5e−5 for all models and datasets.

Sequence-to-sequence Models We frame visual information extraction as a
sequence-to-sequence problem, wherein the document serves as the input, and
the output consists of a series of extracted entities paired with their corresponding
keys. For all three datasets, we set the maximum source sequence length to 512.
Documents that exceed this length are split into contiguous sequences of 512

tokens each. For each input sequence, we formulate a target sequence containing
the pairs of entities-keys to be extracted from the input sequence. The structure
of the target sequences is defined such that each entity is followed by a colon and
its corresponding key, with pairs separated by a line break. The arrangement of
the pairs aligns with the order in which the corresponding entities appear in the
document, i.e., the provided reading order.

Entities and their corresponding keys are extracted from both the generated
sequences and the ground-truth sequences. The pairs of generated and ground-
truth (key, entities) are then compared to compute precision, recall, and F1 score.
To provide further insights into a sequence-to-sequence model’s errors, additional
metrics are defined. To measure how often the model produces content that is
not grounded in the input, the hallucination rate is defined as the percentage of
entities generated by the model that do not match with any text in the input
sequence. The repetition rate is the percentage of generated entities that are part of
the ground-truth entities but are repeated more frequently than their occurrences
in the ground-truth target sequence, quantifying the frequency with which the
model repeats entities. The wrong label rate represents the proportion of generated
entities present in the ground-truth but mislabeled by the model, and measures
how often the model generates the right entities but mislabels them. The omission



6.3 results and discussion 121

rate denotes the proportion of ground-truth entities that were not generated by
the model, providing insights into how often the model omits entities. Lastly, the
non-entity rate is the percentage of generated entities that, in the ground-truth,
correspond to the category "Other". This metric assesses the frequency with which
the model categorizes a text as an entity when it should not be considered as such
(discarding hallucinations).

We compute statistics on the lengths of target sequences and establish the max-
imum target length to be greater than the 3rd quartile. In the case of FUNSD, we
truncate target sequences at 768 tokens. As for SROIE and CORD, the maximum
target sequence length is set to 96 and 512 tokens, respectively. BART+Layout2Pos
(BART+2D) is fine-tuned for 100 (100), 40 (40), and 20 (50) epochs on FUNSD,
SROIE, and CORD, respectively. The learning rate is set to 5e−5 for all models and
datasets. During inference, we set the number of beams to 8. Precision, recall, and
F1 scores are computed using the seqeval package (Nakayama 2018).

Considering that the pre-training phase has allowed BART+Layout2Pos to com-
pute meaningful position embeddings, and acknowledging the potential discrep-
ancies in the reading order within visual information extraction datasets, we opt
not to use the Next Token Position Prediction strategy during fine-tuning.

6.3 Results and Discussion

We first provide an ablation study of Layout2Pos on the Next Token Position
Prediction task, before discussing the results obtained on visual information ex-
traction.

6.3.1 Next Token Position Prediction

Number of Layers Pre-training Dataset Accuracy

1 IIT-CDIP 67.10%
1 ReadingBank 89.37%
2 ReadingBank 95.86%

Table 6.3 – Accuracy in predicting the next token for pairs sourced from Reading-
Bank, which were not used for pre-training. Selected pairs are consid-
ered "difficult", meaning that the tokens are positioned on different
lines.
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We first evaluate the performance of the Layout2Pos module by computing the
accuracy of Next Token Position Prediction. Recalling that the IIT-CDIP dataset is
not considered reliable, this evaluation is conducted on a set of pairs of consecu-
tive tokens derived from 100 examples from ReadingBank, which were not used
in the pre-training phase. Specifically, we curated pairs categorized as "difficult",
where the tokens are positioned on different lines, making a raster-scan approach
ineffective. This choice demands the model to leverage layout information to
accurately predict the next token in these scenarios.

In these experiments, we exclusively train and evaluate Layout2Pos, omitting
the encoder-decoder architecture. For each token, we compute accuracy by com-
paring the position of its subsequent token with the position of the token asso-
ciated with the highest logit according to Layout2Pos. We vary the number of
layers and the pre-training dataset used.

Performance is reported in Table 6.3. Notably, pre-training Layout2Pos on Read-
ingBank compared to IIT-CDIP yields an increase of over 22% in accuracy. Ad-
ditionally, augmenting the number of layers in Layout2Pos results in a notable
increase of over 6% in accuracy, reaching an accuracy score of 95% for challenging
pairs. These results highlight the significance of using documents with accurate
reading orders and contextualizing layout information to produce position em-
beddings able to capture the reading order of documents.

6.3.2 Visual Information Extraction

Table 6.4 reports the performance of all four models on FUNSD, SROIE, and
CORD. For each dataset, the additional rates are calculated for each document and
averaged across all documents. We find that our sequence-to-sequence models
achieve performance that is comparable or even superior to sequence-labeling
approaches. This suggests that the sequence-to-sequence approach can match the
effectiveness of traditional sequence labeling methods, offering an alternative that
is not constrained by the document’s content.

On SROIE, BART+Layout2Pos performs on par with its counterpart fed with
sequential position information—BART+2D. This suggests that Layout2Pos effec-
tively leverages layout information to generate meaningful position embeddings
on SROIE, implying that the reading order provided by OCR is no longer neces-
sary. However, on the other two datasets, BART+Layout2Pos demonstrates lower
performance than BART+2D, with a slight underperformance on CORD and a
more notable disparity on FUNSD.

Additionally, we find that the majority of errors arise from either omitted or
mislabeled entities. On FUNSD, for BART+2D (BART+Layout2Pos), mislabeled
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Rate

Dataset
Reading

Order Model Prec. Rec. F1 R
epetition

H
allucination

W
rong

Label

O
m

ission

N
on-entity

FUNSD
Original

LayoutLM (Yiheng Xu et al. 2020) 75.91 80.54 78.16

LayoutLMv2-no-visual 78.58 81.49 80.01

BART+2D 83.74 86.55 85.12 2.67 1.32 45.76 39.06 1.19

BART+Layout2Pos 80.62 80.10 80.36 2.56 5.50 22.88 57.11 3.96

Shuffled
BART+2D 77.82 82.16 79.93 2.89 2.15 48.37 34.68 3.25

BART+Layout2Pos 80.84 80.98 81.13 2.37 5.31 22.30 58.05 3.97

SROIE
Original

LayoutLM (Yiheng Xu et al. 2020) 90.74 93.95 92.32

LayoutLMv2-no-visual 93.20 93.88 93.54

BART+2D 93.46 93.73 93.60 0.00 0.29 0.00 18.11 2.64

BART+Layout2Pos 93.20 93.80 93.50 0.00 0.58 0.29 17.03 3.43

Shuffled
BART+2D 80.58 66.33 73.13 2.66 1.46 0.41 73.34 5.72

BART+Layout2Pos 93.13 93.80 93.45 0.0 0.58 0.29 17.03 3.43

CORD
Original

LayoutLM (Yiheng Xu et al. 2020) 93.91 95.11 94.51

LayoutLMv2-no-visual 93.14 94.89 94.00

BART+2D 95.97 94.81 95.39 2.33 0.00 5.28 19.06 0.33

BART+Layout2Pos 94.56 92.71 93.62 0.99 4.37 5.40 22.83 0.40

Shuffled
BART+2D 91.46 87.54 89.46 4.53 0.83 26.5 35.72 0.42

BART+Layout2Pos 94.45 92.61 93.51 1.10 4.37 5.38 22.75 0.40

Table 6.4 – Model performance (in %) on FUNSD, SROIE, and CORD, reported for
1) the original reading order and 2) three shuffled orders (averaged).
Best F1 scores for each dataset/reading order are reported in bold.

entities account for an average of 45.76% (22.88%) of errors in a document,
while 39.06% (57.11%) of errors are on average attributed to omissions. Overall,
both models rarely hallucinate (on FUNSD, 1.32% and 5.50% of errors made by
BART+2D and BART+Layout2Pos, respectively, are attributed to hallucinations),
repeat entities (2.67% and 2.56%), or identify a text as an entity when it should not
be considered as such (1.19% and 3.96%). This is also a result of our constrained
decoding approach.

To measure the impact of reading order on models dependent on it, we evaluate
BART+2D and BART+Layout2Pos on test documents with shuffled reading orders.
For every test dataset, the reading order of each document is shuffled such that
words belonging to the same entity remain grouped together. This process is
repeated three times, generating three shuffled test sets for every original test
dataset. BART+2D and BART+Layout2Pos, fine-tuned using the reading order
provided by the dataset, are then evaluated on each of the shuffled test sets.
The resulting scores are then averaged and reported in Table 6.4. Results show
that altering the reading order, even while ensuring that words belonging to the
same entities are kept together, leads to a significant performance decline for
BART+2D. Specifically, there is a F1-score drop of 5.19 and 5.93 for FUNSD and
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CORD, respectively, and a notable decrease of 20.84 for SROIE. In contrast, such
variations have no effect on BART+Layout2Pos, as the model is not reliant on
reading order. 5 This highlights the significance of developing methods robust to
variations in reading order.

6.4 Conclusion

To derive position embeddings solely from layout information and avoid read-
ing order issues, we propose Layout2Pos—a Transformer-based module that
learns the sequential relationships between tokens in a document. We conduct ex-
periments on three benchmarks datasets for visual information extraction, demon-
strating the effectiveness of our approach in leveraging layout information to pro-
duce meaningful position embeddings. Furthermore, we showcase the significant
impact of variations in reading order on models that rely on sequential position
information, encouraging research on reading order-independent methods for
document understanding tasks. In addition, we introduce novel metrics that of-
fer additional insights into the performance of sequence-to-sequence models for
visual information extraction.

Acknowledging the limitations of our study, our sequence-to-sequence evalua-
tion framework considers any arrangement of key-value pairs as valid. However,
language models trained with teacher forcing tend to favor a single correct out-
put, potentially penalizing valid responses with different entity orders. For future
work, we will investigate permutation invariant losses to foster robustness to vari-
ation in entity orders. Furthermore, our current model evaluations are limited by
their focus on relatively simple datasets and documents of shorter length. Addi-
tionally, our analyses have been confined to English language texts. Recognizing
these limitations, generalizability could be enhanced by including more complex
datasets, particularly those featuring longer documents (Graliński et al. 2020).

5. While we do observe marginal variations for BART+Layout2Pos, we attribute these differ-
ences to the fact that documents longer than the maximum sequence length may be split into
sequences different from those obtained with the original reading order.
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L E V E R A G I N G L AY O U T T O D E A L W I T H L O N G
A N D L AY O U T- R I C H D O C U M E N T S

Chapter abstract

Building upon the groundwork laid in Chapter 5, which introduced a layout-
based self-attention mechanism employed for Document Layout Analysis, and
Chapter 6, which presented a layout-based Transformer model applied to Visual
Information Extraction, this chapter further advances the exploration by inves-
tigating how to leverage layout when processing long documents, specifically
in the context of Long Text Summarization. Text Summarization is a popular
task and an active area of research for the Natural Language Processing (NLP)
community. It requires accounting for long input texts, a characteristic which
poses computational challenges for neural models. Moreover, real-world docu-
ments come in a variety of complex, visually-rich, layouts. This information is
of great relevance, whether to highlight salient content or to encode long-range
interactions between textual passages. Yet, all publicly available summariza-
tion datasets only provide plain text content. To facilitate research on how
to exploit visual/layout information to better capture long-range dependen-
cies in summarization models, we present LoRaLay, a collection of datasets
for long-range summarization with accompanying visual/layout information.
We extend existing and popular English datasets (arXiv and PubMed) with
visual/layout information and propose four novel datasets—consistently built
from scholar resources—covering French, Spanish, Portuguese, and Korean
languages. Further, we propose new baselines merging layout-aware and long-
range models—two orthogonal approaches—and obtain state-of-the-art results,
showing the importance of combining both lines of research. In addition, we
develop an annotation interface for human evaluation of summaries and intro-
duce a novel metric to provide insights into the preservation of information
flow in generated summaries.
The work in this chapter has led to the publication of a conference paper:

• Laura Nguyen, Thomas Scialom, Benjamin Piwowarski, and Jacopo Sta-
iano (May 2023). “LoRaLay: A Multilingual and Multimodal Dataset for

125
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Long Range and Layout-Aware Summarization”. In: Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Lin-
guistics. Dubrovnik, Croatia: Association for Computational Linguistics,
pp. 636–651. url: https://aclanthology.org/2023.eacl-main.46.

• Award: EACL Outstanding Paper.

https://aclanthology.org/2023.eacl-main.46
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Long document understanding presents several significant challenges. Firstly,
contemporary document understanding approaches, based on the Transformer
architecture (Vaswani et al. 2017), suffer from the quadratic complexity of self-
attention, as discussed in Chapter 3. Furthermore, integrating layout information
increases resource demands compared to models that exclusively deal with text.
This challenge hinders the ability of pre-trained document understanding models
to capture long-range dependencies, constraining their use to short sequences.
Dividing long documents into shorter segments which are independently pro-
cessed is a straightforward solution, but it falls short for documents where crucial
information is distributed across their entire length.

Chapter 5 showcased the potential of leveraging layout information to reduce
the complexity of Transformers, emphasizing the significance of layout in fa-
cilitating comprehension of information conveyed in long documents. Therefore,
processing long documents requires the ability to effectively and efficiently model
layout information. To connect information across pages, Pramanik et al. (2020)
encode the page number into token representations and use the Longformer archi-
tecture (Beltagy et al. 2020) to process long documents. Inspired by Longformer, H.
Pham et al. (2022) introduce spatial-based attention masks to restrict each token’s
attention to its neighbors in the 2D page. Despite advancements in tackling the
challenges related to long documents, efficiently leveraging layout information to
process long documents remains an unresolved and under-explored problem.

This contribution aims at spurring further research on how to incorporate multi-
modal information to better capture long-range dependencies. To develop models
capable of exploiting multimodal information from long documents, there is a
need for tasks and datasets that cover every modality. Focusing on compressing
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the most relevant information from long texts to short summaries, the Text Sum-
marization task naturally lends itself to benefit from a global context. Notice that,
in practice, the limitations linked to sequence length are also amplified by the
lack of visual/layout information in the existing datasets.

Yet, the vast majority of publicly available summarization datasets only pro-
vide plain text content. Hermann et al. (2015) proposed the CNN/DailyMail
dataset, a collection of English articles extracted from the CNN and The Daily
Mail portals. Each news article is associated with multi-sentence highlights which
serve as reference summaries. Scialom et al. (2020) bridge the gap between En-
glish and non-English resources for text summarization by introducing MLSum,
a large-scale multilingual summarization corpus providing news articles written
in French, German, Spanish, Turkish and Russian. Going towards more challeng-
ing scenarios involving significantly longer documents and aiming to encourage
a shift towards building more abstractive summarization models with global
content understanding, Sharma et al. (2019) introduce BIGPATENT. This large-
scale dataset comprises U.S. patent filings, where invention descriptions serve as
reference summaries.

Guidelines for manually summarizing texts—especially long ones—often rec-
ommend roughly previewing them to break them down into their major sections
(Toprak and Almacioğlu 2009; L. Luo et al. 2019). Recognizing the significance of
document structures, such as sections and paragraphs, in guiding summary gener-
ation, Cohan et al. (2018) introduce the arXiv and PubMed datasets. These datasets
consist of scientific articles collected from academic repositories, with discourse
information (i.e., sections), where the paper abstracts are used as summaries.
Leveraging these section structures, Cohan et al. (2018) introduce a section-level
encoder based on the output of a word-level encoder for long document summa-
rization. Similarly, S. Cao and L. Wang (2022) leverage section levels to build a
document structure tree. To account for the relative positions of tokens within
the document structure, learnable hierarchical biases, derived from the distance
in the structure tree between the corresponding sections, are added to the at-
tention scores. In addition, S. Cao and L. Wang (2022) curate a new dataset for
long and structure-aware document summarization. This dataset comprises 21k
documents written in English, sourced from WikiProject Biography, and includes
section structures. However, not all documents are explicitly organized into clearly
defined sections, and extracting discourse structure may not be straightforward,
especially in cases where only PDF files or document images are available.

Although not every document is explicitly arranged into well-defined sections,
the great majority contains layout and visual clues (e.g., a physical organization
into paragraphs, bigger headings/subheadings) which help structure their textual
contents and facilitate reading for humans. Therefore, we argue that layout might
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be crucial to summarize long documents. To investigate this hypothesis, we con-
struct LoRaLay, a collection of datasets designed for long-range and layout-aware
summarization. LoRaLay is a large-scale corpus of research papers that extends
two popular datasets, arXiv and PubMed, with layout and visual information,
and introduces 4 novel datasets covering French, Spanish, Portuguese and Korean
languages. Finally, we compare the performance of Transformer-based models on
LoRaLay, and show that combining long-range and layout-aware models results
in enhanced performance for long document summarization.

In this chapter, we first detail the dataset construction process. Then, we intro-
duce novel long-range and layout-aware baselines and offer a detailed explanation
of the experimental setup. Lastly, we demonstrate the importance of combining
layout-aware and long-range modeling through qualitative and quantitative eval-
uations.

7.1 Datasets Construction

Inspired by the way the arXiv and PubMed datasets were built (Cohan et al.
2018), we construct our corpus from research papers, with abstracts as ground-
truth summaries. As the PDF format allows simultaneous access to textual, visual
and layout information, we collect PDF files to construct our datasets, and provide
their URLs. 1

For each language, we select a repository that contains a high number of aca-
demic articles (in the order of hundreds of thousands) and provides easy access
to abstracts. More precisely, we chose the following repositories:

• Archives Ouverte HAL (French), 2 an open archive of scholarly documents
from all academic fields. As HAL is primarily directed towards French aca-
demics, a great proportion of articles are written in French;

• SciELO (Spanish and Portuguese), 3 an open access database of academic
articles published in journal collections from Latin America, Iberian Penin-
sula and South Africa, and covering a broad range of topics (e.g., agricultural
sciences, engineering, health sciences, letters and arts). Languages include
English, Spanish, and Portuguese.

1. We make the corpus-construction code publicly available at https://github.com/
recitalAI/loralay-datasets.

2. https://hal.archives-ouvertes.fr/
3. https://www.scielo.org/

https://github.com/recitalAI/loralay-datasets
https://github.com/recitalAI/loralay-datasets
https://hal.archives-ouvertes.fr/
https://www.scielo.org/
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Figure 7.1 – Dataset Construction Process.

• KoreaScience (Korean), 4 an open archive of Korean scholarly publications in
the fields of natural sciences, life sciences, engineering, and humanities and
social sciences. Articles are written in English or Korean.

Further, we provide enhanced versions of the arXiv and PubMed datasets, re-
spectively denoted as arXiv-Lay and PubMed-Lay, for which layout information
is provided. The dataset construction process is illustrated in Figure 7.1, and is
composed of the following stages: (1) PDF Extraction, (2) document filtering, (3)
text extraction, and (4) abstract removal.

7.1.1 Collecting the Data

7.1.1.1 Extended Datasets

The arXiv and PubMed datasets (Cohan et al. 2018) contain long scientific
research papers extracted from the arXiv and PubMed repositories. We augment
them by providing their PDFs, allowing access to layout and visual information.
As the abstracts contained in the original datasets are all lowercased, we do not
reuse them, but rather extract the raw abstracts using the corresponding APIs.

4. http://www.koreascience.or.kr

http://www.koreascience.or.kr
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Figure 7.2 – Distribution of failure types in arXiv-Lay (top) and PubMed-Lay (bot-
tom).

Note that we were unable to retrieve all the documents contained in the original
datasets. For the most part, we failed to retrieve the corresponding abstracts, as
they did not necessarily match the ones contained in the PDF files (due to e.g.
PDF-parsing errors). We also found that some PDF files were unavailable, while
others were corrupted or scanned documents. Figure 7.2 provides details on
the amount of original documents lost in the process of augmenting arXiv and
PubMed with layout/visual information. We observe four types of failures, and
provide numbers for each type:

• The link to the document’s PDF file is not provided (Unavailable PDF);

• The PDF file is corrupted (i.e., cannot be opened) (Corrupted PDF);

• The document is not digital-born, making it impossible to parse it with PDF
parsing tools (Scanned PDF);

• The document’s abstract cannot be found in the PDF (Irretrievable Abstract).

In total, about 39% (35%) of the documents contained in the original arXiv
dataset (PubMed) were lost.

arXiv-Lay The original arXiv dataset (Cohan et al. 2018) was constructed by con-
verting the LATEX files to plain text. To be consistent with the other datasets—for
which LATEX files are not available—we instead use the PDF files to extract both
text and layout elements. For each document contained in the original dataset,
we fetch (when possible) the corresponding PDF file using Google Cloud Storage
buckets. As opposed to the original procedure, we do not remove tables nor dis-
card sections that follow the conclusion. We retrieve the corresponding abstracts
from a metadata file provided by Kaggle. 5

5. https://www.kaggle.com/Cornell-University/arxiv

https://www.kaggle.com/Cornell-University/arxiv
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PubMed-Lay For PubMed, we use the PMC OAI Service 6 to retrieve abstracts
and PDF files.

7.1.1.2 New Datasets

HAL We use the HAL API 7 to download research papers written in French. To
avoid excessively long (e.g., theses) or short (e.g., posters) documents, extraction
is restricted to journal and conference papers.

SciELO Using Scrapy, 8 we crawl the following SciELO collections: Ecuador,
Colombia, Paraguay, Uruguay, Bolivia, Peru, Portugal, Spain and Brazil. We down-
load documents written either in Spanish or Portuguese, according to the meta-
data, obtaining two distinct datasets: SciELO-ES (Spanish) and SciELO-PT (Por-
tuguese).

KoreaScience Similarly, we scrape the KoreaScience website to extract research
papers. We limit search results to documents whose publishers’ names contain the
word Korean. This rule was designed after sampling documents in the repository,
and is the simplest way to get a good proportion of papers written in Korean. We
show that this rule does not bias the sample towards a specific research area. We
compute the distribution of topics covered by all publishers, and compare it to
the distribution of topics covered by publishers whose name contains the word
Korean. Figure 7.3 shows that the distribution obtained using our rule remains
roughly the same as the original. Further, search is restricted to papers published
between 2012 and 2021, as recent publications are more likely to have digital-born,
searchable PDFs. Finally, we download the PDF files of documents that contain
an abstract written in Korean.

7.1.2 Data Pre-processing

For each corpus, we use the 95th percentile of the page distribution as an
upper bound to filter out documents with too many pages, while the 5th (1st
for HAL and SciELO) percentile of the summary length distribution is used as a
minimum threshold to remove documents whose abstracts are too short. As our
baselines do not consider visual information, we only extract text and layout from
the PDF files. Layout is incorporated by providing the spatial position of each
word in a document page image, represented by its bounding box (x0, y0, x1, y1),

6. https://www.ncbi.nlm.nih.gov/pmc/tools/oai/
7. https://api.archives-ouvertes.fr/docs/search
8. https://scrapy.org/

https://www.ncbi.nlm.nih.gov/pmc/tools/oai/
https://api.archives-ouvertes.fr/docs/search
https://scrapy.org/
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Figure 7.3 – Distribution of topics covered by all publishers (red) vs distribution
of topics covered by publishers whose name contains the word Korean
(blue).

where (x0, y0) and (x1, y1) respectively denote the coordinates of the top-left and
bottom-right corners. Using the PDF rendering library Poppler 9, text and word
bounding boxes are extracted from each PDF, and the sequence order is recovered
by Poppler based on heuristics around the document layout (e.g., tables, columns).

Abstracts are then removed by searching for exact matches; when no exact
match is found, we use fuzzysearch 10 and regex 11 to find near matches. We use a
maximum Levenshtein distance of 20 with fuzzysearch, and a maximum number
of errors of 3 with regex. For non-English datasets, documents might contain
several abstracts, written in different languages. To avoid information leakage,
we retrieve the abstract of each document in every language available—according
to the API for HAL or the websites for SciELO and KoreaScience—and remove
them using the same strategy as for the main language. In the case an abstract
cannot be found, we discard the document to prevent any unforeseen leakage.

9. https://poppler.freedesktop.org/
10. https://pypi.org/project/fuzzysearch/
11. https://pypi.org/project/regex/

https://poppler.freedesktop.org/
https://pypi.org/project/fuzzysearch/
https://pypi.org/project/regex/
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Dataset
# Docs Mean Mean

Article Summary
Length Length

arXiv (Cohan et al. 2018) 215,913 3,016 203

PubMed (Cohan et al. 2018) 133,215 4,938 220

BigPatent (Sharma et al. 2019) 1,341,362 3,572 117

arXiv-Lay 130,919 7,084 125

PubMed-Lay 86,668 4,038 144

HAL 46,148 4,543 134

SciELO-ES 23,170 4,977 172

SciELO-PT 21,563 6,853 162

KoreaScience 37,498 3,192 95

Table 7.1 – Datasets statistics. Article and summary lengths are computed in
words. For KoreaScience, words are obtained via white-space tokeniza-
tion. Difference between arXiv and arXiv-Lay is due to the fact that
we retain the whole document, while Cohan et al. (2018) truncate it
after the conclusion.

7.1.3 Datasets Statistics

The statistics of our proposed datasets, along with those computed on existing
summarization datasets of long documents (Cohan et al. 2018; Sharma et al. 2019)
are reported in Table 7.1. We see that document lengths are comparable or greater
than for the arXiv, PubMed and BigPatent datasets.

For arXiv-Lay and PubMed-Lay, we retain the original train/validation/splits
and try to reconstruct them as faithfully to the originals as possible. For the new
datasets, we order documents based on their publication dates and provide splits
following a chronological ordering. For HAL and KoreaScience, we retain 3% of
the articles as validation data, 3% as test, and the remaining as training data. To
match the number of validation/test documents in HAL and KoreaScience, we
split the data into 90% for training, 5% for validation and 5% for test, for both
SciELO datasets. The statistics of our splits are provided in Table 7.2.

The distribution of research areas in arXiv-Lay and HAL are provided in Fig-
ure 7.4. Such distributions are not available for the other datasets, as we did not
have access to topic information during extraction.
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Dataset
Instances Input Length Output Length

Train Dev Test Median 90%-ile Median 90%-ile
arXiv (Cohan et al. 2018) 203,037 6,436 6,440 6,151 14,405 171 352

PubMed (Cohan et al. 2018) 119,924 6,633 6,658 2,715 6,101 212 318

arXiv-Lay 122,189 4,374 4,356 6,225 12,541 150 249

PubMed-Lay 78,234 4,084 4,350 3,761 7,109 182 296

HAL 43,379 1,384 1,385 4,074 8,761 179 351

SciELO-ES 20,853 1,158 1,159 4,859 8,519 226 382

SciELO-PT 19,407 1,078 1,078 6,090 9,655 239 374

KoreaScience 35,248 1,125 1,125 2,916 5,094 219 340

Table 7.2 – Datasets splits and statistics. Input and output lengths are computed
in tokens, obtained using Pegasus and mBART-50’s tokenizers for the
English and non-English datasets, respectively.

(a) Distribution of research areas in arXiv-Lay.

(b) Distribution of research areas in HAL.

Figure 7.4 – Distribution of research areas in arXiv-Lay (a) and HAL (b).
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7.2 Experiments

7.2.1 Models

We compare baseline models for abstractive summarization, built on the Trans-
former architecture. These models are categorized into four groups: text-only
models with standard input size, layout-aware models with standard input size,
long-range text-only models, and novel long-range layout-aware models. For re-
producibility purposes, we make the models’ implementation, along with the
fine-tuning and evaluation scripts, publicly available. 12

We evaluate the hypothesis that incorporating layout information in the form
of embeddings enhances the performance of models for long document summa-
rization. We do not explore the use of visual information. While visual features
may provide a better understanding of structures such as tables and figures, we
do not expect substantial gains with respect to layout-aware models. Indeed, the
information provided in figures—information that cannot be captured by layout
or text—are commonly described in the caption or related paragraphs.

Text-only Models with Standard Input Size We use Pegasus (Jingqing Zhang
et al. 2020) as a text-only baseline for arXiv-Lay and PubMed-Lay. Pegasus is an
encoder-decoder model pre-trained using gap-sentences generation, making it
a state-of-the-art model for abstractive summarization (Section 3.2.2.2). For the
non-English datasets, we rely on a finetuned mBART as our baseline. mBART
(Yinhan Liu et al. 2020) is a multilingual sequence-to-sequence model pretrained
on large-scale monolingual corpora in many languages using the BART objective
(M. Lewis et al. 2019). We use its extension, mBART-50 (Y. Tang et al. 2020), 13

which is created from the original mBART by extending its embeddings layers
and pre-training it on a total of 50 languages. Both Pegasus and mBART are
limited to a maximum sequence length of 1,024 tokens, which is well below the
median length (6,225/3,761/4,074/4,859/6,090/5,094) of each dataset.

Layout-aware Models with Standard Input Size We introduce layout-aware
extensions of Pegasus and mBART, respectively denoted as Pegasus+Layout and
mBART+Layout. Following the popular LayoutLM (Yiheng Xu et al. 2020) (Sec-
tion 4.3.1.1), each token bounding box coordinates (x0, y0, x1, y1) is normalized
into an integer in the range {0, . . . , 1000}. Spatial positions are encoded using four
embedding tables, namely two for the coordinate axes (x and y), and the other

12. https://github.com/recitalAI/loralay-modeling
13. For the sake of clarity, we refer to mBART-50 as mBART.

https://github.com/recitalAI/loralay-modeling
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two for the bounding box size (width and height). The layout representation of a
token is formed by summing the resulting embedding representations. The final
representation of a token is then obtained through point-wise summation of its
textual, positional, and layout embeddings.

Long-range, Text-only Models To process longer sequences and facilitate com-
parison with Zaheer et al. (2020), we leverage BigBird (Zaheer et al. 2020), a
sparse-attention based Transformer which reduces the quadratic dependency to a
linear one (Section 3.3.1.1). For arXiv-Lay and PubMed-Lay, we initialize BigBird
from Pegasus (Zaheer et al. 2020) and for the non-English datasets, we use the
weights of mBART. The resulting models are referred to as BigBird-Pegasus and
BigBird-mBART. For both models, BigBird sparse attention is used only in the
encoder. Both models can handle up to 4,096 inputs tokens, which is greater than
the median length in PubMed-Lay, HAL and KoreaScience.

Long-range, Layout-aware Models We also include layout information in long-
range text-only models. Similarly to layout-aware models with standard input
size, we integrate layout information into our long-range models by encoding
each token’s spatial position in the page. The resulting models are denoted as
BigBird-Pegasus+Layout and BigBird-mBART+Layout.

7.2.2 Implementation Details

We initialize our Pegasus-based and mBART-based models with, respectively,
the google/pegasus-large (568M parameters) and facebook/mbart-large-50 (611M)
checkpoints shared through the Hugging Face Model Hub.

Following Jingqing Zhang et al. (2020) and Zaheer et al. (2020), we fine-tune
our models up to 74k (100k) steps on arXiv-Lay (PubMed-Lay). On HAL, the total
number of steps is set to 100k, while it is decreased to 50k for the other non-English
datasets. We tested different values for the number of steps (10k, 25k, 50k, 100k)
and chose the one that gave the best validation scores for mBART. For each model,
we select the checkpoint with the best validation loss. For Pegasus and mBART
models, inputs are truncated at 1,024 tokens. For BigBird-Pegasus models, we
follow Zaheer et al. (2020) and set the maximum input length to 3,072 tokens. As
the median input length is much greater in almost every non-English dataset, we
increase the maximum input length to 4,096 tokens for BigBird-mBART models.
Output length is restricted to 256 tokens for all models, which is enough to fully
capture at least 50% of the summaries in each dataset.
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Model
# Params

arXiv/
arXiv-Lay

PubMed/
PubMed-Lay

R-1 R-2 R-L R-1 R-2 R-L

Pegasus (Jingqing Zhang et al. 2020) 568M 44.21 16.95 38.83 45.97 20.15 41.34

BigBird-Pegasus (Zaheer et al. 2020) 576M 46.63 19.02 41.77 46.32 20.65 42.33

Pegasus 568M 43.81 17.27 39.07 43.52 17.96 39.75

Pegasus+Layout 572M 44.10 17.01 39.25 43.59 18.24 39.85

BigBird-Pegasus 576M 44.43 17.74 39.59 44.80 19.32 41.09

BigBird-Pegasus+Layout 581M 46.02 18.95 41.15 45.69 20.38 42.05

Table 7.3 – ROUGE scores on arXiv-Lay and PubMed-Lay. Reported results ob-
tained by Pegasus and BigBird-Pegasus on the original arXiv and
PubMed are highlighted with a gray background. The best results
obtained on arXiv-Lay and PubMed-Lay are denoted in bold.

For evaluation, we use beam search and report a single run for each model and
dataset. Following Jingqing Zhang et al. (2020) and Zaheer et al. (2020), we set
the number of beams to 8 for Pegasus-based models, and 5 for BigBird-Pegasus-
based models. For the non-English datasets, we set it to 5 for all models, for fair
comparison. For all experiments, we use a length penalty of 0.8.

Models were implemented in Python using PyTorch (Paszke et al. 2017) and
Hugging Face (Wolf et al. 2019) librairies. In all experiments, we use Adafac-
tor (Shazeer and Stern 2018), a stochastic optimization method based on Adam
(Kingma and Ba 2014) that reduces memory usage while retaining the empir-
ical benefits of adaptivity. We set a learning rate warmup over the first 10%
steps—except on arXiv-Lay where it is set to 10k, consistently with Zaheer et al.
(2020)—and use a square root decay of the learning rate. All our experiments
have been run on four Nvidia V100 with 32GB each.

7.3 Results and Discussion

We discuss the results obtained by our models on the LoRaLay corpus, and offer
a human analysis of the summaries generated by BigBird and its layout-aware
counterpart. Additionally, we present case studies to shed light on scenarios in
which layout proves to be most beneficial.

7.3.1 General Results

In Table 7.3, we report the ROUGE scores obtained on arXiv and PubMed
datasets (reported by Zaheer et al. (2020)), as well as on the corresponding
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Pegasus
Pegasus
+Layout BigBird-Pegasus

BigBird-Pegasus
+Layout

Pegasus – 0.34 / 0.10 0.52 / 1.34 2.08 / 2.30

Pegasus+Layout – – 0.34 / 1.24 1.90 / 2.20

BigBird-Pegasus – – – 1.56 / 0.96

Table 7.4 – Absolute ROUGE-L score differences between each pair of models, on
arXiv-Lay/PubMed-Lay (column − row).

Distribution
Q1 Q2 Q3

arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay

Article Length 6,226 3,513 9,142 5,557 13,190 8,036

Summary Length 119 130 159 182 202 247

σ of bounding box height 3.37 1.34 3.98 1.73 4.70 2.28

Table 7.5 – Quartiles calculated from the distributions of article lengths, summary
lengths, and variation in the height of bounding boxes, for arXiv-Lay
and PubMed-Lay.

layout-augmented counterparts we release (arXiv-Lay and PubMed-Lay). Table
7.6 presents the ROUGE scores reported on the non-English datasets.

Comparison with the original datasets We observe, for both Pegasus and
BigBird-Pegasus, a drop in performance w.r.t. the scores obtained on the orig-
inal datasets, as reported by Zaheer et al. (2020). This can be explained by two
factors. First, our extended datasets contain less training data due to the inabil-
ity to process all original documents. Secondly, the settings are different: while
the original arXiv and PubMed datasets contain clear discourse information (e.g.,
each section is delimited by markers) obtained from LATEX files, documents in our
extended versions are built by parsing raw PDF files. Therefore, the task is more
challenging for text-only baselines, as they have no access to the discourse struc-
ture of documents, which further underlines the importance of taking structural
information, brought by visual cues, into account.

Impact of layout on long document summarization We now investigate the
impact of integrating layout information for summarizing long documents. On
arXiv-Lay and PubMed-Lay, we observe that, while the addition of layout to
Pegasus does not improve the ROUGE-L scores, there are gains in integrating
layout information into BigBird-Pegasus. To assess whether these gains are sig-
nificant, we perform significance analysis at the 0.05 level using bootstrap, and
estimate a ROUGE-L threshold that predicts when improvements are signifi-
cant. ROUGE-L improvements between each pair of models are reported in Ta-
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Model
HAL (FR) SciELO-ES (ES) SciELO-PT (PT) KoreaScience (KR)

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

MBART 47.05 22.23 42.00 41.04 15.65 36.55 41.18 15.53 36.42 17.33 7.70 16.94

MBART+Layout 46.65 21.96 41.67 42.27 15.73 37.47 39.45 14.17 34.37 15.43 6.69 14.98

BigBird-MBART 49.85 25.71 45.04 42.64 16.60 37.76 44.85 18.70 39.63 18.96 8.01 18.55

BigBird-MBART+Layout 49.99 25.20 45.20 45.64 19.33 40.71 45.47 20.40 40.51 20.36 9.49 19.95

Table 7.6 – ROUGE scores on the non-English datasets. The best results for each
dataset are reported in bold.

ble 7.4. On arXiv-Lay, we compute a threshold of 1.48 ROUGE-L, showing that
BigBird-Pegasus+Layout significantly outperforms every other model. In particu-
lar, we find a 1.56 ROUGE-L improvement between BigBird-Pegasus and its layout-
augmented counterpart, demonstrating that the addition of layout to long-range
modeling significantly improves summarization. On PubMed-Lay, we compute a
threshold of 1.77. Hence, the 0.96 ROUGE-L improvement from BigBird-Pegasus
to its layout-augmented counterpart is not significant. However, the variance in
font sizes in PubMed-Lay is much smaller compared to arXiv-Lay (see Table 7.9,
which lists the quartiles computed from the distributions of article lengths, sum-
mary lengths, and variation in the height of bounding boxes, for arXiv-Lay and
PubMed-Lay). This reflects an overall more simplistic layout. Therefore, we argue
that layout integration has a lesser impact in PubMed-Lay, which can explain the
non-significance of results. In addition, we find that BigBird-Pegasus significantly
outperforms Pegasus and Pegasus+Layout only when augmented with layout,
with an improvement of, respectively, 2.3 and 2.2 points. This demonstrates the
importance of combining layout-aware and long-range modeling.

On HAL, we note that BigBird-MBART does not benefit from layout. After in-
vestigation, we hypothesize that this is due to the larger presence of single-column
and simple layouts, which makes layout integration less needed. However, we no-
tice that combining layout with long-range modeling brings substantial improve-
ments over MBART on KoreaScience and both SciELO datasets. Further, we find
that the plain-text BigBird models do not improve over the layout-aware Pegasus
and MBART on arXiv-Lay and SciELO-ES, respectively. This finding demonstrates
that simply capturing more context does not always suffice, emphasizing the need
to combine layout-aware and long-range approaches.

Overall, results show a clear benefit of integrating layout information for long
document summarization.

Adaptation to multiple languages On HAL, SciELO-ES and SciELO-PT, ta-
ble 7.6 demonstrates that BigBird+MBART achieves scores comparable to those
obtained by BigBird+Pegasus on the English datasets. However, on KoreaScience,
we can see a significant drop in performance for every model w.r.t the other non-
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Dataset Train Validation Test

HAL (fr) 90.72 90.54 85.84

SciELO-ES (es) 84.86 84.28 84.90

SciELO-PT (pt) 90.95 90.58 91.96

KoreaScience (ko) 73.53 70.26 68.78

Table 7.7 – Percent confidence obtained for the main language, for each dataset
split.

English datasets. At first glance, we notice a high amount of English segments (e.g.,
tables, figure captions, scientific concepts) in documents in KoreaScience. To in-
vestigate this, we use the cld2 library 14 to detect the language in each non-English
document. We consider the percent confidence of the top-1 matching language
as an indicator of the presence of the main language (i.e., French, Spanish, Por-
tuguese or Korean) in a document, and average the results to obtain a score for
the whole dataset. Table 7.7 reports the average percent confidence obtained on
each split, for each dataset. We find that the percentage of text written in the
main language in KoreaScience (i.e., Korean) is smaller than in other datasets. As
the MBART-based models expect only one language in a document (the infor-
mation is encoded using a special token), we claim that the strong presence of
non-Korean segments in KoreaScience causes them to suffer from interference
problems. Therefore, we highlight that KoreaScience is a more challenging dataset,
and we hope our work will boost research on better long-range, multimodal and
multilingual models.

We employ ROUGE as it is the most commonly employed metric for abstractive
summarization, facilitating direct comparison with prior models. However, rec-
ognizing the constraints of ROUGE regarding diversity, redundancy, readability,
consistency, and relevance (M. Zhang et al. 2024), we acknowledge that exploring
alternative metrics such as BLEU (Papineni et al. 2002) and METEOR (Banerjee
and Lavie 2005) would yield further insights.

7.3.2 Human Evaluation

Acknowledging the limitations of ROUGE and aiming to strenghten our claim
that document layout plays a crucial role in summarizing long textual content, we
conduct a human evaluation of summaries generated by BigBird-Pegasus/BigBird-
MBART and their layout-aware counterparts. We evenly sample 50 documents
from arXiv-Lay and HAL test sets, filtering documents by their topics (computer
science) to match the judgment capabilities of the three human annotators. Using

14. https://github.com/GregBowyer/cld2-cffi

https://github.com/GregBowyer/cld2-cffi
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1

2

Figure 7.5 – LoRaLay evaluation interface.
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Metric BigBird BigBird+Layout

↑ Precision % 35.15 (0.81) 37.51 (0.70)

↑ Recall % 28.07 (0.73) 33.59 (0.86)

↑ Coherence 3.80 (0.38) 3.75 (0.62)

↑ Fluency 4.48 (0.03) 4.34 (0.16)

↓ Overlap % 8.77 (0.24) 7.49 (0.36)

↑ Flow % 30.75 (0.68) 33.02 (0.71)

Table 7.8 – Average human judgement scores obtained by comparing gold-truth
abstracts and summaries generated by BigBird and BigBird+Layout
from 50 documents sampled from arXiv-Lay and HAL. Inter-rater
agreement is computed using Krippendorff’s alpha coefficient, and en-
closed between parentheses. Best scores are reported in bold. ↑ means
that higher is considered “better”, whereas ↓ signifies the opposite.

the Streamlit 15 framework, we design and develop an interface to aid human
evaluation of summarization models. 16 A snapshot of the interface is presented
in Figure 7.5. For each document, annotators are provided with the ground-truth
abstract, along with the summaries generated by BigBird and BigBird+Layout.
To ensure an unbiased evaluation process, annotators are unaware of whether a
generated summary is produced by BigBird or BigBird+Layout. The evaluation
process is as follows: for each sentence si in the generated summary, we ask the
annotators to highlight 1) tokens relevant to the ground-truth abstract in si, along
with 2) the equivalent parts hi in the ground-truth abstract. Further, we ask them
to rate the summary in terms of coherence and fluency, on a scale of 0 to 5, following
the DUC quality guidelines (Dang 2005).

This highlighting process enables the computation of precision and recall, where
precision is the percentage of highlighted information (i.e., relevant tokens) in
the generated summary, and recall is the percentage of highlighted information
in the ground-truth abstract. Additionally, an overlap ratio can be calculated as
the percentage of highlighted information that appears multiple times in the
generated summary. This is determined by identifying instances where the same
highlighted information from the ground-truth abstract corresponds to more than
one highlighted part in the generated summary. Furthermore, a flow percentage
is computed to evaluate how well the order of the ground-truth information
is preserved. For each pair of consecutive sentences in the generated summary,
represented by si−1 and si, we examine the highlighted text hi−1 and hi in the
corresponding ground-truth abstract. The objective is to determine how often any

15. https://streamlit.io/
16. The code is publicly available at https://github.com/ngdlaura/

loralay-eval-interface.

https://streamlit.io/
https://github.com/ngdlaura/loralay-eval-interface
https://github.com/ngdlaura/loralay-eval-interface
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(b) Summary length
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(c) σ of bounding box
height

Figure 7.6 – Benefit of using layout on arXiv-Lay (blue) and PubMed-Lay (red),
defined as the difference in ROUGE-L scores between BigBird-
Pegasus+Layout and BigBird-Pegasus. For each dataset, quartiles
are calculated from the distributions of article lengths (a), summary
lengths (b) and variance in the height of the bounding boxes (c).
ROUGE-L scores are then computed per quartile range, and aver-
aged over each range.

Distribution
Q1 Q2 Q3

arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay arXiv-Lay PubMed-Lay

Article Length 6,226 3,513 9,142 5,557 13,190 8,036

Summary Length 119 130 159 182 202 247

σ of bounding box height 3.37 1.34 3.98 1.73 4.70 2.28

Table 7.9 – Quartiles calculated from the distributions of article lengths, summary
lengths, and variation in the height of bounding boxes, for arXiv-Lay
and PubMed-Lay.

token from hi occurs after a token in hi−1. This calculation quantifies how well
the sequence of highlighted information in the generated summary aligns with
the sequential order of highlighted information in the ground-truth abstract.

Table 7.8 reports the scores for each metric and model, averaged over all 50

documents, along with inter-rater agreements, computed using Krippendorff’s
alpha coefficient. We find that adding layout to the models significantly improves
precision and recall, results in less overlap (repetition), and is more in line with
the ground truth order. In terms of coherence and fluency, both models achieve
comparable scores. To conclude, reported results show that human annotators
strongly agree that adding layout generates better summaries, further validating
our claim that layout provides vital information for summarization tasks.
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7.3.3 Case Studies

To have a better understanding of the previous results, we focus on uncovering
the cases in which layout is most helpful. To this end, we identify features that
relate to the necessity of having layout: 1) article length, as longer texts are intu-
itively easier to understand with layout, 2) summary length, as longer summaries
are likely to cover more salient information, and 3) variance in font sizes (using
the height of the bounding boxes), and, as such, the complexity of the layout.
The benefit of using layout is measured as the difference in ROUGE-L scores be-
tween BigBird-Pegasus+Layout and its purely textual counterpart, on arXiv-Lay
and PubMed-Lay. We compute quartiles from the distributions of article lengths,
ground-truth summary lengths, and variance in the height of bounding boxes.

The quartiles are provided in Table 7.9. Based on the aforementioned factors, the
scores obtained by each model are then grouped by quartile range, and averaged
over each range (see Figure 7.6). On arXiv-Lay, we find that layout brings most
improvement when dealing with the 25% longest documents and summaries,
while, for both datasets, layout is least beneficial for the shortest documents and
summaries. These results corroborate our claim that layout can bring important
information about long-range context. Concerning the third factor, we see, on
PubMed-Lay, that layout is most helpful for documents that have the widest
ranges of font sizes, showcasing the advantage of using layout to capture salient
information.

7.4 Conclusion

In this chapter, we have presented LoRaLay, a set of large-scale datasets for long-
range and layout-aware text summarization. LoRaLay provides the research com-
munity with 4 novel multimodal corpora covering French, Spanish, Portuguese,
and Korean languages, built from scientific articles. Furthermore, it includes ad-
ditional layout and visual information for existing long-range summarization
datasets (arXiv and PubMed). We provide adapted architectures merging layout-
aware and long-range models, and show the importance of layout information in
capturing long-range dependencies. Finally, we design an annotation interface for
human evaluation of summaries, and introduce the flow metric to offer insights
into the preservation of information flow in generated summaries.
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C O N C L U S I O N

This thesis explores the field of Document Understanding in the context of
Deep Learning. Although Deep Learning has made notable strides in enhancing
document understanding systems, the field still encounters various challenges in
real-world applications, including limitations in handling long documents, dis-
parities between high-quality training data and real-world documents, resource
constraints, and dependence on Optical Character Recognition (OCR) systems.

Our exploration is guided by two main research axes. First, we delve into
the challenge of efficiently and effectively encoding the multimodal nature of
documents, extending beyond textual content to consider the complex interplay
of layout and visual elements. Secondly, we address the challenge of efficiently
and effectively processing long and complex documents while leveraging their
layout.

8.1 Summary of Contributions

In the past decade, Deep Learning techniques, in particular Foundation Models
(Devlin et al. 2018; Radford et al. 2019; Touvron et al. 2023) built upon the Trans-
former architecture (Vaswani et al. 2017), have dominated the field of Natural
Language Processing (NLP). This trend has prompted a paradigm shift in the
field of Document Understanding, witnessing a significant rise in the adoption
of large-scale, general-purpose multimodal Pre-trained Language Models. Lay-
outLM (Yiheng Xu et al. 2020) initiated the use of Transformers’ modeling capabil-
ities to jointly pre-train text and layout information for a range of tasks involving
visually-rich documents.

Our first research axis involved contributing to this shift towards integrating
document layout into pre-training by developing novel strategies for encoding lay-
out information efficiently (Chapter 5) and enhancing robustness on documents
with unreliable reading order information (Chapter 6).

Various approaches have investigated the extension of multimodal Pre-trained
Language Models to longer, more complex documents. Our second research axis

147
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centered on leveraging layout information to capture long-range dependencies
(Chapter 7), capitalizing on its potential to reduce the complexity of self-attention
mechanisms (Chapter 5). We will now outline the main contributions derived
from our work.

Literature review In Chapters 2 to 4, we conducted a thorough literature re-
view of works relevant to our research. Chapter 2 focused on foundational as-
pects of language modeling, particularly Neural Language Models. In Chapter 3,
we detailed the Transformer architecture and its core component—the attention
mechanism. We explored the use of Transformers to construct key Pre-trained
Language Models, before focusing on efficient self-attention model variants for
handling long texts. In Chapter 4, we examined tasks, datasets, and Deep Learning
approaches in Document Understanding, emphasizing multimodal pre-training
techniques pivotal to our contributions.

Layout-based attention strategies While prior works typically consider layout
as a mere positional feature, failing to fully capitalize on the strong correlation
between text and layout, we took a different approach in Chapter 5. Moving be-
yond this conventional view of layout, we drew inspiration from human reading
strategies to effectively leverage layout and tackle the efficiency challenges of mul-
timodal pre-training techniques. We introduced Skim-Attention, a novel attention
mechanism based on layout information exclusively. Addressing key research
questions, we illustrated Skim-Attention’s ability to determine attention solely
from layout (Skimformer), which can potentially be used to reduce the complex-
ity of self-attention. Furthermore, we demonstrated that Skim-Attention can also
be used as a mask for any Pre-trained Language Model (Skimming Mask), enhanc-
ing performance while sparsifying attention. Lastly, we showed the emergence
of a document structure representation within Skim-Attention. In summary, by
strategically integrating layout into language modeling, Skim-Attention marks
a pioneering effort in leveraging layout to alleviate the computational burden
associated with self-attention.

While improving efficiency, determining attention solely from layout might
overlook crucial semantic clues essential for the model’s comprehension. While
Skimming Mask addresses this issue, the masking pattern should be learned
in an end-to-end fashion alongside the Transformer model for full adaptability.
Therefore, potential extensions of this work include the implementation of an end-
to-end version of Skimming Mask. Given the discrete nature of attention masks,
reinforcement learning algorithms could be explored. Another research direction
involves the application of Skim-Attention to tasks that require capturing longer-
range dependencies.
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Leveraging layout to avoid reading order issues The majority of pre-training
methods for Document Understanding rely on serialized text. However, OCR en-
gines often struggle to accurately determine reading orders for documents with
complex layouts, thereby impacting the entire text processing pipeline. In con-
trast, layout inherently organizes content visually, providing the correct reading
order for documents. In Chapter 6, we diverged from conventional approaches
by relying solely on layout information to offer an alternative for the provided
reading order of documents. We introduced Layout2Pos—a shallow Transformer
that generates position embeddings from the spatial arrangement of text, avoiding
reading order issues. Integrated into a Bidirectional and Auto-Regressive Trans-
formers (BART) model (M. Lewis et al. 2019) architecture, Layout2Pos competes
with models relying on reading order across three benchmark datasets for visual
information extraction. Importantly, we showcased substantial performance drops
in models dependent on reading order when evaluated with a different reading
order than seen during training. This emphasizes the significance of not relying
on OCR-induced reading orders. Overall, Layout2Pos marks the pioneering use of
layout as a method to provide reading order information, completely eliminating
reliance on OCR-induced reading orders for downstream tasks.

To further enhance the model, several avenues for improvement can be ex-
plored. Layout information could be better captured, for instance, by incorporat-
ing details such as page numbers. Integrating visual information could also help
generate position embeddings that better align with the reading order of docu-
ments. Moreover, to improve generalizability, another potential extension of this
work involves focusing on more complex datasets containing longer documents
and encompassing languages beyond English. Furthermore, in our sequence-to-
sequence evaluation framework, any organization of key-value pairs is deemed
valid. However, the use of teacher forcing during training tends to prioritize a
single correct output, potentially penalizing valid responses with different entity
orders. Therefore, future work involves exploring permutation invariant losses to
enhance robustness.

Leveraging layout to deal with long and layout-rich documents Prior research
in cognitive sciences, particularly in the context of long documents, has showcased
the need for efficient modeling of layout information in information processing.
However, methods that address efficient understanding of long documents with
awareness of their layouts are still largely underexplored. In Chapter 7, we ex-
tended the exploration of layout-based techniques introduced in Chapters 5 and 6

to long documents. We focused on the Text Summarization task, given its reliance
on document structures to guide the generation of summaries and its natural suit-
ability to benefit from a global context. We introduced LoRaLay, the first collection
of datasets for long-range summarization with visual/layout information, ad-
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dressing the lack of multimodal information in existing summarization datasets.
We augmented popular English datasets with layout/visual information and built
new datasets for French, Spanish, Portuguese, and Korean. Baselines combining
layout-aware and long-range models were introduced, achieving state-of-the-art
results and highlighting the importance of considering both research directions
for summarization of long documents. Additionally, we proposed an annotation
interface for human evaluation and a novel metric to assess information flow
preservation in generated summaries. By bridging a significant gap in existing re-
sources, LoRaLay provides a foundation for advancing our understanding of the
role of layout in handling long textual content, propelling progress in developing
efficient and effective layout-aware long-range approaches.

Future extensions of this work could involve developing vision-aware models,
further expanding the scope of multimodal considerations in the context of long
document summarization. Additionally, future work could include the develop-
ment of more advanced models that strategically leverage layout to efficiently and
effectively process long documents.

8.2 Perspectives

Towards universal end-to-end document understanding systems A possible
direction involves the development of unified foundation document understand-
ing models. Propelled by Text-to-Text Transfer Transformer (T5) (Raffel et al. 2020),
research into unifying training processes across diverse tasks and domains using
the sequence-to-sequence framework has made remarkable advancements. In the
field of Document Understanding, unified training has also gained traction with
the development of generative language models. As detailed in Section 4.3.3.3,
TILT (Powalski et al. 2021) is partly pre-trained in a supervised manner using
various tasks related to visually-rich documents and unified under the sequence-
to-sequence framework, whereas UDOP (Z. Tang et al. 2023) unifies representa-
tions for image, text, and layout while employing self-supervised tasks across all
modalities. Leveraging the same sequence-to-sequence framework, our generative
language models introduced in Chapter 6 and 7 align with this research trajec-
tory and present opportunities for further improvement through unified training
approaches.

While our generative Pre-trained Language Model proposed in Chapter 6 does
not rely on sequential position information, it still employs text extracted through
OCR, introducing the possibility of inaccuracies and error propagation to the doc-
ument understanding model. Another noteworthy direction in advancing end-to-
end document understanding systems involves OCR-free models, exemplified by
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Donut (Kim et al. 2022). Donut employs a high-resolution image encoder during
pre-training to detect text, thereby establishing a direct mapping from raw input
images to the desired outputs. As such, a perspective for future research involves
the development of OCR-free end-to-end frameworks that unify all modalities and
task paradigms, laying the groundwork for foundation document understand-
ing models. Nevertheless, it is worth nothing that the increasing prevalence of
digital-born documents may reduce the necessity and importance of OCR in the
long term. Consequently, our work in this PhD, which still depends on text ex-
tracted through another system (e.g., PDF structured information), represents an
important research avenue.

Leveraging Large Language Models The contributions in this PhD focus on
Pre-trained Language Models, which necessitate specific fine-tuning on diverse
downstream datasets to achieve optimal performance and fall short under the
zero-shot setting. In contrast, the next iteration in Language Models, Large Lan-
guage Models, has transformed the landscape of NLP by showcasing remarkable
abilities to address tasks based on minimal instructions (J. Wei et al. 2021) or
a small number of examples integrated into the prompt (T. Brown et al. 2020)
across diverse linguistic applications. Exploration of Large Language Models for
multimodal generation has gained traction recently. LLaVA (H. Liu et al. 2023),
mPLUG-Owl (Q. Ye et al. 2023), and IDEFICS (Laurençon et al. 2023) leverage
Large Language Models to construct unified end-to-end multimodal models tai-
lored for processing images that contain text (e.g., book covers and movie posters).
Despite these achievements, successfully applying Large Language Models to the
domain of Document Understanding, where text is dense and visually-situated,
remains a challenge primarily due to the lack of in-domain training. Specifically,
these models struggle with tasks such as handling diverse image types, recogniz-
ing complex textual content, and comprehending the relationships between visual
semantics and textual information. With the rise of prominent efforts to improve
Large Language Models for document understanding tasks, such as mPLUG-
DocOwl (Q. Ye et al. 2023), LMDX (Perot et al. 2023), and DocLLM (D. Wang
et al. 2023), a natural perspective for future research involves developing stronger
document understanding abilities within Large Language Models.
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