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Title: Field Theories on Quantum Space-Times: Towards the Phenomenology of Quantum
Gravity
Keywords: noncommutative geometry, quantum space-times, quantum field theory, gauge
theory, phenomenology of quantum gravity.
Abstract: Noncommutative geometry is a mathematical framework that expresses the structure
of space-time in terms of operator algebras. By using the tools of quantum mechanics to describe
the geometry, noncommutative space-times are expected to give rise to quantum gravity effects, at
least in some regime. This manuscript focuses on the physical aspects of these so-called quantum
space-times, in particular through the formalism of field and gauge theories. Scalar field theories are
shown to possibly trigger mixed divergences in the infra-red and ultra-violet for the 2-point function
at one loop. This phenomenon is generically called UV/IR mixing and stems from a diverging
behaviour of the propagator. The analysis of such divergences differs from the commutative case
because the momentum space is now also noncommutative. From another perspective, a gauge
theory on κ-Minkowski, a quantum deformation of the Minkowski space-time, is derived. A first
perturbative computation is shown to break the gauge invariance, a pathological behaviour common
to other quantum space-times. A causality toy model is also developed on κ-Minkowski, in which
an analogue of the speed-of-light limit emerges. The phenomenology of quantum gravity arising
from quantum space-times is discussed, together with the actual constraints it imposes. Finally,
a toy model for noncommutative gravity is tackled, using the former κ-Minkowski space-time
to describe the tangent space. It necessitates the notion of noncommutative partition of unity
specifically defined there.

Titre : Théories de Champs en Espace-Temps Quantiques : vers la Phénoménologie de la
Gravité Quantique
Mots-clefs : géométrie noncommutative, espace-temps quantiques, théorie quantique des
champs, théorie de jauge, phénoménologie de la gravité quantique
Résumé : La géométrie noncommutative est un formalisme mathématique qui exprime la structure
de l’espace-temps avec des algèbres d’opérateurs. On s’attend à ce que les espace-temps noncommu-
tatifs fassent émerger des effets de gravité quantiques, au moins dans un certain régime, notamment
parce qu’ils utilisent les outils de la mécanique quantique pour décrire la géométrie. Ce manuscrit
se concentre sur les aspects physiques de ces espace-temps quantiques, tout particulièrement à
travers le formalisme des théories de champs et de jauge. Il est montré que les théories de champs
scalaires engendrent possiblement des divergences dans l’infra-rouge et l’ultra-violet pour la fonction
2-point à une boucle. Ce phénomène s’appelle génériquement le mélange UV/IR et découle de la
divergence du propagateur. L’analyse de ces divergences diffèrent du cas commutatif car l’espace
des moments y est noncommutatif. D’autre part, une théorie de jauge sur κ-Minkowski, une
déformation quantique de l’espace de Minkowski, est construite. Un premier calcul perturbatif
produit une brisure de l’invariance de jauge, un comportement pathologique commun à d’autres
espace-temps quantiques. Un modèle-jouet de causalité est aussi développé sur κ-Minkowski, dans
lequel apparaît un analogue de la vitesse de lumière comme vitesse limite. La phénoménologie de la
gravité quantique émergeant des espace-temps quantiques est abordée, avec les contraintes qu’elle
impose. Finalement, un modèle-jouet de gravité noncommutative, utilisant κ-Minkowski pour
décrire l’espace tangent, est traité. Il nécessite le concept de partition de l’unité noncommutative
spécialement défini dans ce contexte.
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Résumé long

Il existe une incompatibilité forte entre la théorie de la gravité, correspondant à la relativité
générale, et le modèle standard de la physique des particules, qui se base sur une description
quantique des autres forces fondamentales. Cette incompatibilité porte sur des différences de
traitement, comme la description du temps ou la nature de l’espace-temps à l’échelle de Planck,
ou bien des différences de prédictions, comme la non renormalisabilité de la relativité générale,
lorsque quantifiée par une intégrale de chemin, ou le paradoxe de l’information des trous noirs. Ces
problèmes seraient résolus par une théorie de gravité quantique dont l’établissement est toujours
en cours. D’un point de vue expérimental, aucun effet de gravité quantique n’a été observé à ce
jour. Néanmoins, une forte communauté autour de la phénoménologie de la gravité quantique a
émergé et essaye d’atteindre des régimes observationnels proches de l’échelle de Planck.

La phénoménologie de la gravité quantique postule des propriétés qu’une théorie de gravité
quantique complète devrait avoir et qui mènerait à des prédictions observables. Dans cette logique,
l’étude des espaces-temps noncommutatifs, aussi dits espace-temps quantiques, a mis en avant un
certain nombre de phénomènes utilisés pour des modèles phénoménologiques. L’introduction d’une
longueur indépendante de l’observateur, qui s’ajoute à la vitesse indépendante de l’observateur,
dans la théorie de relativité doublement restreinte possède une formulation naturelle en terme
de géométrie noncommutative. La noncommutativité peut également engendrer une courbure
dans l’espace des moments qui est à la base des géométries de Born. De plus, des relations
d’incertitude généralisées apparaissent dans certains espace-temps quantiques. D’autres modèles
phénoménologiques, comme la violation de la symétrie de Lorentz ou bien la violation de CPT,
découlent des déformations de symétries des espace-temps quantiques.

L’apport des théories physiques sur des espace-temps quantiques à la phénoménologie de la
gravité quantique est donc important, mais il pourrait le devenir d’avantage si ces espaces étaient
mieux compris. La physique des espace-temps quantiques reste, en effet, peu explorée. Son étude
a été complexifiée par l’émergence de nouveaux phénomènes lors de l’étude de théorie de champs
sur ces espaces. Cette thèse essaye de caractériser et de s’attaquer à l’étude de ces phénomènes.
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Si l’on s’intéresse à un espace-temps M, l’espace des observables sur M correspond à l’ensemble
de ses fonctions lisses A = C ∞(M), qui forment une algèbre pour le produit point à point.
On construit un espace-temps quantique en changeant ce dernier produit pour un nouveau
produit noncommutatif, aussi appelé star-produit, noté usuellement ⋆. L’hypothèse que la donnée
(A, ⋆) détermine un espace-temps (quantique) provient du théorème de Gel’fand-Năimark
commutatif (voir le Théorème B.2.3) qui dit que la donnée (A, ⋆) pour ⋆ un produit commutatif
correspond à un ensemble de fonctions lisses sur un espace-temps. La mécanique quantique
s’écrit comme une géométrie noncommutative, avec un espace quantique nommé Moyal qui
consiste en une déformation de l’espace R2n. La méthode de construction des star-produits
s’appelle la quantification par déformation et peut être produite de plusieurs manières. Les deux
méthodes les plus utilisées dans un contexte physique passent soit par des techniques d’algèbre de
convolution, où l’on considère le produit de convolution sur l’espace des moments, ou bien par un
twist de Drinfel’d qui permet de d’abord déformer les symétries classiques et de propager cette
déformation sur l’espace lui-même.

De là, la géométrie différentielle (sur M) se généralise en géométrie différentielle noncommutative
(sur A) en considérant une manière de définir la structure différentielle dans le cas noncommutatif.
L’approche par les triplets spectraux considère l’opérateur de Dirac comme un élément central de
la géométrie et se base sur lui pour définir un calcul différentiel dit “quantifié”. Une autre méthode,
basée sur les groupes quantiques, utilise les symétries de l’espace-temps quantique pour définir
uns structure différentielle. Enfin, les champs de vecteur d’un espace-temps classique correspond
aux dérivations de son espace de fonction, de tel sorte que l’on peut se baser sur les dérivations
de l’algèbre des observables pour définir un calcul différentiel. Ces trois approches ne sont pas
nécessairement incompatibles car elles possèdent des similarités.

La structure de fibré, nécessaire à la définition de connexion (ou champs de jauge A) et
de courbure (ou tenseur d’intensité de champs F ), le théorème de Serre-Swan donne une
correspondance entre les sections du fibré et la structure de module. Comme il est possible de
définir un module dans le cadre algébrique de la géométrie noncommutative, cette dernière solution
est privilégiée pour définir un fibré.

En utilisant les précédents éléments, il est possible d’implémenter une théorie de jauge sur
A qui s’appuie sur des définitions algébriques de la connexion et de sa courbure. Le groupe de
jauge s’écrit également dans ce formalisme, le tout étant déformé afin de s’adapter à la structure
noncommutative. Il est alors possible de définir une action de type Yang-Mills, invariante de
jauge. L’étude de ces théories de jauge noncommutative ont été florissantes notamment sur l’espace
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de Moyal, car elles sont en liens avec la théorie des cordes. Néanmoins, cette dernière théorie
possède une structure de vide très complexe qui empêche une analyse plus poussée.

Pour une théorie de champs d’un espace-temps noncommutatif de type algèbre de Lie, c’est à
dire dont les coordonnées vérifient [xµ, xν ]⋆ = Cµν

ρx
ρ, il est toujours possible de définir un espace

des moments. Cette dernière assertion découle de la formule de Baker-Campbell-Haussdorff
et donne une loi d’addition des moments noncommutative, notée ici p⊞ q, pour deux moments p
et q. La caractérisation de l’espace des moments permet d’utiliser des notions d’intégration sur
des groupes pour réaliser le développement perturbatif de la fonction génératrice d’une action de
théorie de champs. Cette construction a été suivi pour quantifiée une théorie de champs scalaire
noncommutative de type ϕ4 [76].

L’étude de la fonction 2-point à une boucle montre que le phénomène du mélange infrarouge-
ultraviolet (UV/IR), déjà apparu dans des espace-temps quantiques comme Moyal ou des
déformations de Minkowski, se généralise à une plus large classe d’espace-temps quantiques.
Ce dernier est définit dans [76] selon trois caractéristiques : les diagrammes planaires divergent
dans l’UV, les diagrammes non-planaires sont singuliers dans l’IR, et les digrammes non-planaires
convergent dans l’UV. Ce phénomène, propre au noncommutatif, empêcherait la renormalisation
perturbative de ces théories de champs due au fait que la singularité infrarouge, aux ordres
supérieurs, rend imprévisible la forme des contre-termes. Il est montré que la divergence, ou non,
de l’intégrale du propagateur est un critère permettant de juger de la présence, ou non, des deux
premières caractéristiques. L’analyse de la troisième caractéristique est rendu plus complexe par
l’apparition d’une loi de conservation des moments non-triviale s’écrivant p⊞ k⊞ q⊟ k = 0 pour p
et q les moments externes et k le moment interne. Cette dernière équation possède, dans le cas
noncommutatif uniquement, une solution en k, dont la forme n’a pas été déterminée pour une loi
⊞ générale.

L’étude des théories de champ noncommutatives reste donc à des ordres en boucles et en nombre
de point petits. L’analyse au-delà de ses petits ordres, et des possibles nouveaux phénomènes
qu’elle engendre, reste à explorer. Le formalisme précédent pourrait également être généralisé, en
définissant l’espace des moments comme le dual, au sens des algèbres de Hopf, de l’espace-temps
quantique. Finalement, les théories de jauge pourrait être analysées selon la même perspective,
car la présence du mélange a déjà été observée sur quelques exemples.

L’espace-temps de κ-Minkowski, correspondant à une déformation quantique de l’espace
de Minkowski, est considéré comme un bon candidat pour faire émerger des effets de gravité
quantique, au moins dans un certain régime. Il a été beaucoup étudié en ce sens, notamment du point
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de vue de ses symétries. Elles correspondent à κ-Poincaré, une déformation au sens des groupes
quantiques, du groupe de Poincaré. En suivant les étapes présentées précédemment, on peut
construire une théorie de jauge sur κ-Minkowski. Cependant, une action de type Yang-Mills ne
sera pas invariante de jauge à cause de la non-cyclicité de l’intégrale, i.e.

∫
dx f ⋆g =

∫
dx Ed(g)⋆f ,

où f et g sont des éléments de κ-Minkowski, E = e−P0/κ correspond à une translation (complexe)
dans le temps et d est la dimension spatiale considérée pour κ-Minkowski. Une théorie de jauge a
été construite en se basant sur des dérivations dites tordues, qui font apparaître l’élément E . L’usage
de ces dérivations, invisible à la limite commutative, permettent de modifier la transformation
de jauge du tenseur d’intensité de champs F et donc de rendre l’action de type Yang-Mills
invariante de jauge. Cette invariance impose tout de même la contrainte que l’on soit en 4 + 1
dimensions, due au fait que la dimension d apparaisse dans la non-cyclicité de l’intégrale.

Ce modèle a ensuite été quantifié et l’étude perturbative de la fonction 1-point à une boucle
conduite. Elle montre que la fonction 1-point ne s’annule pas, induisant une instabilité du vide
pour cette théorie. La symétrie de jauge est même brisée par la procédure de quantification, ce qui
n’est pas le cas de la théorie commutative. L’apparition d’une anomalie de jauge à été observée
dans d’autres espace-temps noncommutatif, comme Moyal ou R3

λ et reste un mystère. Une étude
plus approfondie de la quantification des théorie de jauge noncommutative serait nécessaire pour
comprendre la présence de cette anomalie. Peut-être même que cette quantification devrait être
revue dans un cadre noncommutative, car les études faites en théorie de jauge noncommutative
utilisent la même procédure de Becchi-Rouet-Stora-Tyutin que dans le cas commutatif.

D’autre part, un modèle jouet de théorie de causalité sur κ-Minkowski a été obtenu. Il
consiste en l’application du modèle de causalité sur les triplets spectraux Lorentzien appliqué
au cas de κ-Minkowski. Ce dernier se base sur la notion de fonctions causales, dont le graphe
correspond aux points de simultanéité causale, et la notion de relation causale entre deux points
de l’espace-temps, qui sont toutes deux généralisées au cas noncommutatif. Les fonctions causales
correspondent à des fonctions de A qui satisfont la contrainte (3.3.4b). Elles permettent de relier
causalement deux états (pures).

Pour l’exemple de κ-Minkowski, l’opérateur de Dirac est pris comme un analogue noncom-
mutatif du Dirac de Minkowski. L’espace de Hilbert, permettant dans la représentation, est
pris selon la représentation de Schrödinger de l’espace-temps κ-Minkowski. De là, l’évolution
causale entre deux états pures complète n’a pas pu être calculée car trop complexe. Cependant, en
écrivant la relation de causalité entre deux états pour une fonction causale de la forme f = x0 +vx1,
avec v ∈ [−1, 1], on obtient une inégalité entre l’évolution causale de l’opérateur temps x0 et
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l’évolution causale de l’opérateur spatial x1. Cett inégalité peut être interprétée comme l’analogue
quantique de la vitesse de la lumière comme vitesse limite. Les conséquences de cette vitesse
limite seulement en moyenne n’ont pas été explorées mais pourraient mener à des considérations
phénoménologiques importantes. De plus, le devenir de cette relation pour des fonctions causales
plus complexes pourrait également mener à des études intéressantes.

Finalement, les conséquences physiques des modèles de gravité noncommutative ont été princi-
palement étudiées dans le cadre des trous noirs, dit trous noirs noncommutatifs. Cependant, les
intuitions que le noncommutatif pourrait apporter à l’étude de la gravité quantique vont au-delà
des trous noirs. Dans cette mesure, un modèle jouet de gravité noncommutative a été entrepris afin
d’obtenir une version modifiée de la relativité générale. Celui-ci se base sur l’étude d’espaces-temps
noncommutatifs ayant pour espace tangent local κ-Minkowski. Cette hypothèse se base sur le
cas commutatif, dans lequel tout espace-temps possède pour espace tangent local Minkowski. De
plus, elle vise à quantifier l’apport que peut avoir κ-Minkowski sur la physique de l’espace-temps
quantique global.

La local trivialité d’un espace-temps commutatif s’écrit au niveau des champs de vecteurs comme
Γ(Uα) ≃ C ∞(Uα) ⊗ R1,d, où Uα désigne un ouvert (local) de l’espace-temps, Γ(Uα) l’ensemble des
champs de vecteurs sur Uα et R1,d l’espace-temps de Minkowski. On cherche alors à exprimer
les dérivations sur un espace-temps quantique local Der(Aα) comme un analogue de la relation
précédente. Pour ce faire, on fait l’hypothèse que l’espace-temps quantique local Aα est une
R1,d
κ -algèbre de module, c’est à dire que R1,d

κ correspond aux symétries de Aα. L’analyse tensorielle
de Aα (i.e. les champs de vecteurs et les formes) sont alors définies aisément grâce à κ-Minkowski.
L’exportation de ces données à l’espace-temps quantique global A se fait alors via l’introduction
d’une partition de l’unité noncommutative. Cette partition est définie de manière analogue à la
partition de l’unité pour des espace-temps commutatifs. On peut alors définir globalement des
champs tensoriels définis à partir de champ tensoriels locaux.

Le précédent modèle pose une structure mathématique sur laquelle peut reposer un modèle
physique, encore à définir. Ce dernier peut être énoncé sous la forme d’une action qui nécessite une
notion d’intégrale (ou de trace). La partition de l’unité pourrait permettre d’exporter une intégrale
définie localement à une intégrale globale. On pourrait alors mesurer l’impact de κ-Minkowski
comme espace tangent local.
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Introduction

Suppose you want to drink a can. You would first open the can and then drink its content.
To do the opposite, that is to try to drink the can first and then open it, makes few sense. In
the first case, you have drunk something and in the second you have not. Two processes that
cannot be performed interchangeably are said to be noncommutative1. Let us try to understand
where this noncommutativity comes from. We have just compared the ordering importance of two
actions (“trying to drink” and “opening”) applied to the same system (the can). One could think
of another action that could be performed interchangeably with “trying to drink” the can, such as
“measuring the length” of the can. The can has the same length whether it is full or empty. In this
case, these two processes are said to be commutative.

The noncommutativity of the first scenario lies in the fact that the action of “opening” has
changed the can from closed to open: it has affected our system. We say that the can has changed
of state. Drinking while in the state “open” is not the same thing as drinking while in the state
“closed”. The second scenario is fully commutative because the action of measuring is assumed
not to change the state of the system. However, one of the radical changes quantum mechanics
brought, is precisely that performing a measure on a system changes it. At the scale of the can,
the change produced by the measurement process are negligible, but not for a quantum system.
Therefore, the actions of “trying to drink” and “measuring the length” could be noncommutative
for a would-be quantum can. This noncommutativity has been implemented in the model of
quantum mechanics precisely through the use of observables and operator algebras.

In this thesis, we study noncommutative (also called quantum) space-times, which are defined
as operator algebras. In the same spirit as above, the introduction of noncommutativity on the
space-time structure expresses the fact that some processes can change the space-time itself. In
particular, for the quantum space-times studied in this manuscript, the measure of space and time
distances cannot be performed independently: one necessarily affects the other.

The previous hypothesis on space-time measurements follows from the idea that space-time
should loose its smooth structure at the Planck scale. The puzzle regarding the fate of space-time
at small scales arises from the theoretical inconsistencies between the frameworks of quantum
mechanics and general relativity. In this sense, quantum gravity corresponds to a would-be theory
of gravity that accommodates the geometrical interpretation of gravity with the probabilistic
viewpoint of the quantum world. Despite many efforts and the development of many theoretical
frameworks for quantum gravity, there is no observed effects due to quantum gravity.

The lack of a consistent theoretical framework urged some authors to opt for a bottom-up
approach. In order to grasp more insights, quantum gravity phenomenology postulates properties
which would be carried by a complete theory of quantum gravity and that makes testable predictions.

1This illustration to explain noncommutativity with drinks is actually due to Connes in a communiqué from
CNRS [in French].
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Introduction

The study of the symmetries of quantum space-times, often called quantum or deformed
symmetries, has triggered a promising pool of quantum gravity phenomenological frameworks.
Some focus have been made on deformations of the Poincaré group that imposes both an observer
independent speed and an observer independent length. Those are called doubly special relativity
theories. The space-time carrying such a doubly special relativity cannot be smooth and naturally
writes as a quantum space-time. The possible noncommutativity, induced by such theories,
also spread to the momentum space, which is therefore now curved. The framework of curved
momentum space and Born geometries is heavily studied for quantum gravity phenomenology.
The implementation of a minimal length can also be performed by generalising the Heisenberg
uncertainties that stems from the noncommutativity of the position and momentum operators.
This minimal length turns field theories with a generalised uncertainty principle to be ultra-violet
finite and therefore with strong predictive power. Note that generalised uncertainty principles may
appear on some quantum space-times. From another perspective, the deformation of a classical
symmetry implies that this classical symmetry is broken at some scale. The deformations of
Poincaré symmetry may thus induce Lorentz invariance violation or CPT violation. Both
phenomenological frameworks have already attracted lot of attention, especially in the context of
standard model extensions.

As all these considerations on deformed symmetries suggest, the physics of quantum space-times
could provide even more insights into the nature of quantum gravity effects. Yet, the physics of
quantum space-times remains poorly known.

The field and gauge theories on such space-times have been explored up to the one-loop level.
Already in this loop order, these theories have been shown to exhibit a behaviour called the
UV/IR mixing. This behaviour corresponds to the appearance of mixed infra-red and ultra-violet
divergences and is thought to spoil the usual perturbative renormalisation. The mixing was first
experienced on the Moyal space and later in other quantum space-times, but there is, so far,
no general notion of when and how such a mixing occurs. The latter problem is tackled in [76].
The possible impact of the UV/IR mixing on particle physics or gravity on quantum space-times
has been poorly studied. The appearance of higher loops phenomenons, as well as the fate of
renormalisability, has yet not been deepened. In the case of (Yang-Mills-like) gauge theories,
it was shown that the gauge invariance is broken after quantisation, already at the level of the
one-point function. This “gauge anomaly” has been noticed but not characterised. The unitarity
of these fields theories with higher derivatives is also an open question.

Furthermore, there is no consensual notion of vacuum states and vacuum energy. The formalism
of quantum groups allows one to perform non-linear change of coordinates of momentum so that
expressions of the form p2, for p is a momentum, is not covariant anymore. One even struggles to
define multi-particle states in the noncommutative framework [77].

Finally, the classical notion of causality is thought break at the Planck scale, since superim-
posed states of mass implies superimposed space-time geometries and so competing causalities.
Accordingly, the first studies of causality on quantum space-times points to a conceptual change for
a would-be quantum causality. Yet, the noncommutative causality frameworks already developed
mainly evolve around “flat” causality since they were defined on deformations of Minkowski.
Moreover, they lack of global coherence and common theoretical grounds.

The aim of this manuscript is threefold. First, it introduces and motivates the use of noncom-
mutative geometry in the context of physics study. Second, it summarises the state of the art
in field and gauge theories on quantum space-times, focusing on the more recent developments
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Contribution of the author

proposed by the author. Finally, it underlines the importance of noncommutative geometry for
quantum gravity phenomenology and advocates that the study of quantum space-times could shed
even more light on this topic.

The Chapter 1 focuses on defining what noncommutative geometry is, and the different math-
ematical frameworks it encompasses. The physical motivations for such geometries are also
discussed. The way in which field and gauge theories are implemented on quantum space-times is
reviewed in Chapter 2 together with the recent approach [76] based on momentum space analysis.
The promising deformations of Minkowski are discussed in Chapter 3. The focus is made on
the κ-Minkowski deformation for which the first quantum properties of a gauge theory are
analysed. Considerations of (quantum) gravity appear in Chapter 4, where the phenomenology is
introduced together with the theoretical motivations for studying quantum gravity. A toy model
of noncommutative gravity, based on a κ-Minkowski tangent space, is tackled. Finally, more
mathematical content is gathered in the Appendices. The Appendix A deals with quantum groups
formalism and the Appendix B presents the necessary notions of C∗-algebras.

In all the manuscript, we apply Einstein summation convention of repeated indices. This
convention is only broken for the labelling of open covers and algebra covers in Section 4.3, as
specified in the latter Section. We also work in natural units, i.e. c = ℏ = G = 1, where c is the
speed of light, ℏ the Planck constant and G the Newton constant.

Contribution of the author
The present manuscript tries to have a global viewpoint of the physics of and on noncommutative

space-times. Therefore, it gathers well-established results as well as new contributions due, fully
or partly, to the author. These new contributions were obtained during a 3-year Ph.D. study from
October 2021 to October 2024, under the supervision of Jean-Christophe Wallet, at IJCLab in
Orsay, France.

The new material contained in this manuscript, in which the author has taken an active part,
corresponds to

[104] K. Hersent, P. Mathieu and J.-C. Wallet, “Quantum instability of gauge theories
on κ-Minkowski space”, Phys. Rev. D 105 (2022) 106013, arXiv:2107.14462.

[103] K. Hersent, P. Mathieu and J.-C. Wallet, “Algebraic structures in κ-Poincaré invari-
ant gauge theories”, Int. Jour. Geo. Meth. Mod. Phys. 19 (2022) 2250078, arXiv:2110.10763.

[135] K. Hersent and J.-C. Wallet, “Gauge theory models on κ-Minkowski space: Results
and prospects”, PoS CORFU2021 406 (2022) 286, arXiv:2203.12706.

[23] K. Hersent, P. Mathieu and J.-C. Wallet, “Gauge theories on quantum spaces”,
Phys. Rep. 1014 (2023) 1-83, arXiv:2210.11890.

[106] K. Hersent, “Quantum properties of U(1)-like gauge theory on κ-Minkowski”, PoS
CORFU2022 (2023) 328, arXiv:2302.03998.

[113] N. Franco, K. Hersent, V. Maris and J.-C. Wallet, “Quantum causality in κ-
Minkowski and related constraints”, Class. Quant. Grav. 40 (2023) 164001, arXiv:2302.10734.

[121] K. Hersent and J.-C. Wallet, “Field theories on ρ-deformed Minkowski space-time”,
JHEP 07 (2023) 031, arXiv:2304.05787.
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[76] K. Hersent, “On the UV/IR mixing of Lie algebra-type noncommutatitive ϕ4-theories”,
JHEP 2024 (2024) 23, arXiv:2309.08917.

[137] K. Hersent and J.-C. Wallet, “κ-Minkowski as tangent space I: quantum partition of
unity”, arXiv preprint (2024), arXiv:2311.12584.

The review [23] gathers general gauge theory constructions on quantum space-times as well as
detailed construction for Moyal, R3

λ and κ-Minkowski. The general setting for gauge theories
as been put in Chapter 2 and the gauge theory on κ-Minkowski is presented in Section 3.2.

The paper tackling ϕ4-theory on arbitrary Lie algebra-type noncommutative space-times [76]
has been summarised in Section 2.6. It also proposes an unambiguous definition of the UV/IR
mixing and hints toward a possible criterion for ϕ4-theory to trigger the mixing or not.

In [103], the space-time dimension constraint obtained via gauge invariance of the noncommu-
tative Yang-Mills theory action on κ-Minkowski has been shown to be strong. The gauge
theory, from which this action is derived, is reviewed in [135] and is elucidated in Subsection 3.2.1.

Given the latter gauge theory on κ-Minkowski, the computation of the one-loop one-point
function (tadpole) has been performed in [104] and discussed more closely in [106]. The results
are grouped in Subsection 3.2.2.

The causality toy model on κ-Minkowski space-time is constructed in Section 3.3 and has
been computed in [113].

A ϕ4-theory on the ϱ-Minkowski space-time is studied in [121], as briefly mentioned in Section
3.4.

A toy model for gravity on quantum space-times having κ-Minkowski as tangent space is
constructed in [137]. It necessitates the notion of noncommutative partition of unity which is
defined there. The latter model is detailed in Section 4.3.
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Chapter 1

The principle of noncommutative
geometry

Noncommutative geometry is a broad field of mathematics and physics that tries to have an
algebraic point of view on geometry. Its main goal is to use the language of quantum mechanics
(expressed by C∗-algebras) to encode the geometry. Therefore, there is a strong motivation to
use the framework of noncommutative geometry to develop toy models of quantum gravity. But
the motivations for studying “noncommutative space-times” capture other aspects of new physics,
such as beyond the standard model studies.

As we will see in the following, the noncommutative geometry framework is too wide to be
tackled in a single manuscript chapter. Therefore, this part of the thesis is mainly aimed at
understanding the basic principles and the physical motivations for studying this field.

The most detailed aspects of noncommutative geometry that this manuscript deals with mostly
evolves around noncommutative field theory. Other aspects of noncommutative geometry are still
mentioned in this Chapter 1. A curious reader can find more details in the references.

1.1 Foundations of noncommutative geometry
All of modern theoretical physics is governed by two main models: general relativity and

quantum field theory. Both general relativity and classical field theory are expressed in the
same mathematical language of differential geometry. The goal of noncommutative geometry
is to generalise differential geometry into a global framework that allows for more complex
geometries, such as discrete geometries or fractals. As noncommutativity is a key component of
quantum mechanics, the noncommutative geometries are also thought to encode quantum fields
and “quantum space-times” into only geometrical notions.

Here we develop the main features of non-commutative geometry and the different paths it has
taken, from a very physical point of view.

In order to generalise differential geometry, one has to start with differential geometry. The
three main components of a differential geometry one has to generalise are the topology, the
differential structure and the fiber bundles.

The topology corresponds to the part of space you can continuously deform, i.e. without closing
holes, opening holes, tearing, gluing, or passing through itself. It gives information about the
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1.1. Foundations of noncommutative geometry

space in terms of its number of “pieces” (connected components) or holes and allows to define
distances between objects. Still, it does not give information about how the space is curved.

The differential structure comes with the smoothness of the space and allows to define derivatives
along curves, or vector fields. A (smooth) field can be derived only if a differential structure is
defined on the space. This implies that one can construct the set of forms on the space and also to
define its curvature.

Finally, the fiber bundles correspond to an additional structure one sets on the space and that
allows to define fermionic (spinor) fields or gauge fields.

First, let us generalise the topology. Let M be a space-time and A = C ∞(M) the space of
observables. Then, an observable f ∈ A attaches to each point x ∈ M a number f(x) ∈ R or C.
The observables A form an algebra (see Definition A.1.1) using the product of R or C through the
point-wise product

(f · g)(x) = f(x) g(x). (1.1.1)

This algebra is further commutative, that is f · g = g · f , because the products in R and C are
commutative.

Now, consider the space of states, noted ΨA, as the functions over the space of observables A.
Explicitly, it corresponds to the set of elements ψ which, to a given observable f , associates a
number ψ(f) ∈ R or C. Then, the commutative Gel’fand-Năimark theorem states that the
space of states ΨA is in one-to-one correspondence with the space-time M itself. Explicitly, given
a point x ∈ M, there exists one and only one state ψx such that ψx(f) = f(x). One can underline
the correspondence with the “bracket” notation. If one writes

⟨f |x⟩ = f(x), ⟨f |ψ ⟩ = ψ(f), (1.1.2)

then the correspondence is

|ψx⟩ = |x⟩ . (1.1.3)

This picture shows how the Gel’fand-Năimark theorem relates the notion of space-time point
to the notion of state.

From there, the point of view of noncommutative geometry is to consider the quantum version
of this picture, where f is a quantum observable and ψ is a quantum state. In order to do
so, one turns A into a noncommutative algebra. In this case, the noncommutative space-time
(the would-be set of point x) is pictured as being the (pure) states ψ through an extrapolated
correspondence of the form (1.1.3).

Thus, the way to generalise the topological picture is to consider an algebra, which is not neces-
sarily commutative1 and which stands as the algebra of smooth function over a “noncommutative
space-time”. Understanding the properties and characteristics of this kind of space-time is a
central question in noncommutative geometry.

1In fact, the algebraic generalisation of geometry was undertook before noncommutative geometry came into
play, with algebraic geometry. However, this setting requires commutativity and cannot account for some geometric
spaces which are noncommutative (like the quantum mechanics space, see Section 1.2). We refer to Connes’ book
[1] for more details. It should be mentioned that there are many attempts into constructing noncommutative
algebraic geometry, but this goes far beyond the scope of this thesis and of the author’s personal knowledge.

6 Field Theories on Quantum Space-Times



Chapter 1. The principle of noncommutative geometry

More quantitatively, one can construct a noncommutative algebra of functions by starting with
a commutative algebra of functions over some space-time, say the one of (1.1.1), and deform
the latter with a new product that is noncommutative, generically called the star product. This
procedure is called deformation quantisation.

Deformation quantisation

The deformation quantisation setting aims at finding an unambiguous quantisation proce-
dure and thus at classifying the different quantisation methods. Inspired by the formalism of
quantum mechanics, one can deform the smooth functions of a (Poisson) manifold into an
algebra of functions with a noncommutative product, called the star product, generically
denoted by ⋆ in this manuscript. This product expands over a small parameter, called the
deformation parameter, similar to ℏ for quantum mechanics. In this sense, and as it is
made explicit in Section 1.2 through equation (1.2.2), the star product formalism is linked to
canonical quantisation. The standard definition of deformation quantisation and some ways
of constructing star products will be given in Section 1.6.

The second step is to generalise the differential structure, and thus the geometry, in the sense
that one defines the metric thanks to this differential structure.

One can hint that this task will be much more difficult. Indeed, the topology gathers “global”
properties of a space and so functions defined on the whole space allow to recover the latter
properties. However, the differential structure is local and even defined point by point. But the
algebra of functions cannot render points by itself, as it does not contain the Dirac delta function.
This smearing out of the noncommutative space-time, due to its definition through its algebra of
functions, is the reason noncommutative space-times are sometimes called “fuzzy” space-times in
the physics community. This also echoes some physical interpretation of fuzziness discussed in
Subsection 1.2.3.

There are several ways to generalise the differential structure which are presented below: the
spectral triple with its quantised calculus, the quantum group approach and the derivation-based
differential calculus.

Spectral triple

The most commonly acknowledged approach toward the generalisation of the differential
structure is the Connes’ spectral triple approach to noncommutative geometry. Its starting
point is to consider the Dirac operator as containing information on the geometry. Indeed,
one has, in a local coordinate chart,

/D = −iγµ(∂µ + ωµ), {γµ, γν} = 2gµν1d+1, (1.1.4)

where g is the space-time metric and ωµ is the spin connection. Therefore, the Dirac
operator gathers the differential and the metric (through the gamma matrices).

At first, there was hope that the Laplacian and its spectrum could bring all the needed
information. To this end, Kac asked the question “Can one hear the shape of a drum?”
[2]. But it turns out we cannot [3]. The missing information of the Laplace operator can
be recovered when considering a Hilbert space on which we (faithfully) represent the
noncommutative algebra. We then need a triplet for our noncommutative geometry which is
called the spectral triple: the algebra, the Hilbert space and the Dirac operator. More
details about this structure are gathered in Section 1.3.
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From there, using the so-called quantised calculus, one can define a differential calculus on
the spectral triple. The main idea is to represent the function of the algebra as operators on
the Hilbert space and then introduce the differential given by the commutator of operators.
The master piece of this setting then resides in Connes’ reconstruction theorem which states
that for any compact oriented Riemannian manifold, one can recover the usual differential
calculus thanks to the triple.

Quantum groups

Quantum groups are generalisations of the usual notion of group and their applications are
broader than only noncommutative geometry. Their definition may also vary since different
approaches to quantum groups were considered. In our case, and throughout this manuscript,
the notion of quantum group will be associated with the structure of Hopf algebra and both
terms will be used equivalently.

In the context of noncommutative geometry, quantum groups are mainly associated
with quantum symmetries, in a similar way as groups are associated with symmetries for
commutative geometries. Therefore, one can define from the universal differential calculus
a calculus that satisfies this quantum symmetry. From there, a full picture analogue to
Riemannian geometry with quantum groups can be constructed [4].

However, the link between quantum groups and geometry is deeper thanks to their structure:
the dual of a Hopf algebra is also a Hopf algebra. Thus, the noncommutative space-time,
seen as a dual to its quantum symmetries, also have a Hopf algebra structure. In other words,
the correspondence (1.1.3) associates similar structure to the space-time and its observables
via a Hopf algebra formalism. In the context of noncommutative space-times, this situation is
actually occurring. More details will be given in Section 1.4 and the mathematical definitions
are postponed to Appendix A.

Derivation-based differential calculus
Another approach to noncommutative differential geometry focuses on the tangent space.

Indeed, the differential calculus over a space-time is based on the notion of vector field. If
one were to generalise the vector fields to a noncommutative setting, then all the usual
definitions of tensors, connections or curvature could be algebraically copy-pasted from
their differential geometry expressions. The key point is to observe that vector fields are in
one-to-one correspondence with the derivations of the algebra of smooth functions. Then,
one could define the analogues of noncommutative vector fields to be the derivations of the
noncommutative algebra.

This construction is called the derivation-based differential calculus [5]. It is the main
topic of Section 1.5.

Remark 1.1.1
An important remark to point out is that these different approaches to noncommutative

geometry are not necessarily in competition with one another. One can find bridges linking
all these settings, but there is not, at this date, a coherent language to gather all. We here
make some links explicit.
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First, the deformation quantisation setting allows one to go from any smooth space-time
to a noncommutative algebra of functions with a star product. Thus, quantum space-time
can be constructed through deformation quantisation and then combined with any of the
other three formalisms by adding more structure, explicitly a spectral triple, a Hopf algebra
of symmetries, or the derivations of the algebra.

From any algebra, one can build a differential calculus called the universal differential
calculus. It is called universal in the sense that one can recover any graded differential
calculus over the algebra from the universal one. Therefore, the quantised differential calculus
and the derivation-based differential calculus can both be seen as specific restrictions of the
same universal differential calculus.

In the case of a noncommutative space-time on which acts a Hopf algebra of symmetries,
one can read from the Hopf algebra structure some derivations over the space-time algebra.
Indeed, as it is made clear in the following, a trivial symmetry element with a trivial
coproduct acts as a derivation over the algebra. This makes a link between derivation-based
differential calculus and Hopf algebras as it will be used in Chapter 2 and 3.

The spectral structure of quantum groups was thought not to exists but it was exhibited
a spectral triple for the quantum group SUq(2) [6].

Now that the differential part has been set up, there remains the question on how to build a
connection and its corresponding curvature on a “noncommutatve fiber bundle”. This question
is central in both gravity theory and quantum field theory2, as connection and curvature encode
physical quantities. The key ingredient to generalise the notion of fiber bundle to the noncommu-
tative setting is the Serre-Swan theorem. This theorem relates the geometric notion of vector
bundles to the algebraic concept of projective modules (see Subsection 1.4.3 for more details on
modules and how it arises in noncommutative geometry), so that one can consider the modules as a
generalisation of vector bundles in a noncommutative geometry. The definitions of connections and
their curvature will then follow from their usual expressions exported to the case of the module.

This observation is the starting point of noncommutative field theory and gauge theory as
detailed in Chapter 2.

Considering the coordinate function, that is the function xµ(x) = xµ, on a noncommutative
space-time, one has that xµ ⋆ xν ̸= xν ⋆ xµ by definition of noncommutativity. Here, the ⋆ denotes
the noncommutative product of the space, be it generated by deformation quantisation or not.
The previous statement will be most of the time written under the form

[xµ, xν ]⋆ = xµ ⋆ xν − xν ⋆ xµ ̸= 0 (1.1.5)

as the bracket [·, ·]⋆ precisely measures the amount of “noncommutativity”.
In terms of quantum mechanical interpretation, the relation (1.1.5) states that coordinates

cannot be measured simultaneously and that the measurement of xµ affects the measurement of xν ,
2In quantum field theory, the connection corresponds to the gauge field A and its curvature to the field strength

F .
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1.2. Physical motivations of noncommutative geometry

and vice versa. For this precise reason, the noncommutative space-times are often called quantum
space-times and both terminology will be used in an interchangeable fashion in this manuscript.

1.2 Physical motivations of noncommutative geometry
Beyond the mathematical purpose of a generalised setting for geometric objects, the noncommu-

tative geometry framework has several motivations coming from physics. The primary motivation
and first example of such a noncommutative geometry is the phase space of quantum mechanics.

The geometry of quantum mechanics

One of the cornerstones of quantum mechanics is that the measurement of the system
affects the post-measurement system by projecting it to a certain state. Therefore, the
order of a series of measurements becomes of primordial importance since this order may
change the latter measurements. In other words, measuring a quantity Â and then a
quantity B̂ might not amount to measuring B̂ and then Â. We say that the measurement
process is noncommutative. Furthermore, one can quantify the difference between the two
measurements by computing the quantity [Â, B̂], which is non-zero by definition. In quantum
mechanics, the noncommutativity is applied to the phase space coordinates x and p, that is
why, roughly speaking, quantum mechanics is a noncommutative geometry.

Let us be a bit more explicit. Consider the phase space of classical mechanics in one space
dimension, that is (a subset of) R2, with coordinates x and p. The following discussion
can be extended to any dimension, that is on (a subset of) R2n, straightforwardly. From
there, x and p are numbers that stand for the position and momentum of a certain particle,
respectively. If one wants to impose commutation relation such as [x, p] ̸= 0, it cannot be
done with only numbers, since any numbers commute. Therefore, we need to implement
another structure.

Taking the observable point of view, like in Section 1.1, we can consider the functions
x, p ∈ C ∞(R2) such that x(x, p) = x and p(x, p) = p. The space C ∞(R2) has now the
structure of an algebra, thanks to the product (1.1.1), but it is still commutative. Therefore,
one cannot implement the commutation relation [x, p] ̸= 0 even at the level of functions.

The procedure, to obtain the previous commutation relations, is to perform a quantisation.
To do so, one needs a quantisation map [7] Q : C ∞(R2) → A, where A is called the operator
algebra or C∗-algebra. For example, the position function x is turned into the position
operatora Q(x) = x̂. There are several ways to construct such a quantisation map, see
Section 1.6 for more details. One usually represents A on a Hilbert space H through a
(representation) map π : A → L(H), where L(H) is the set of linear operators on H. To
exemplify the previous objects, let us take a physical example. Given a state |ψ⟩ ∈ H, the
position and momentum operators act on |ψ⟩ throughb

π(x̂) |ψ(x)⟩ = x |ψ(x)⟩ , π(p̂) |ψ(x)⟩ = −i d
dx |ψ(x)⟩ (1.2.1)

where the π is generally omitted in both physics and mathematical literature. The operator
algebra A can be viewed as the “noncommutative geometry” of quantum mechanics.

10 Field Theories on Quantum Space-Times



Chapter 1. The principle of noncommutative geometry

In the deformation quantisation formalism, one can go back from the operator algebra A
to a space of functions, noted A, using Q−1. An operator f̂ is thus transformed back into a
function on R2, f , and the product of A is also brought back as a new (star) product ⋆ℏ via

f ⋆ℏ g = Q−1
(
Q(f)Q(g)

)
. (1.2.2a)

The space A together with ⋆ℏ forms an algebra. Moreover, this star product is, by construction,
noncommutative. One can obtain an explicit expression for the previous star product [8, 9, 10],
called the Moyal product in Weyl ordering,

(f ⋆ℏ g)(x, p) = 1
(πℏ)2

∫
dydqdzds f(x+ y, p+ q) g(x+ z, p+ s) e 2i

ℏ (qz−ys), (1.2.2b)

where f and g are functions of R2 and x and p the coordinates of R2. This star product trans-
forms the functions on R2 into a noncommutative algebra of functions, denoted generically
by A = C ∞(R2)JℏK. This notation means that any such functions can be written formally as
a power series expansion in ℏ. Defining the position function x(x, p) = x and the momentum
function p(x, p) = p as above, one obtains

[x, p]⋆ℏ = x ⋆ℏ p− p ⋆ℏ x = iℏ. (1.2.2c)

In this sense, A can be viewed as the “noncommutative geometry” of quantum mechanics, and
the star product formalism as a straightforward way to implement canonical quantisation.

aWe adopt here the usual physics hatted notation for operators, but we drop the hat outside this discussion.
bNote that we chose H = L2(R) here, that is the space of square integrable functions on R. It corresponds to

the usual Schrödinger representation of quantum mechanics, where the “sum” of probabilities corresponds
to the integral.

One can find more examples of noncommutative geometries in [11].

The star product formalism structurally generates semi-classical and phenomenological frame-
works. Indeed, the star product deformation is usually expressed as power series expansions of the
deformation parameter. The latter parameter is called k̄ in a general context. The product of two
functions write, in generic form,

f ⋆k̄ g = f · g +
∞∑
n=1

k̄nCn(f, g) (1.2.3)

where Cn is a bilinear differential operator. The appearance of the usual commutative product
of functions · (1.1.1) in the star product ⋆k̄ (1.2.3) precisely account for the fact that ⋆k̄ is a
deformation of ·, a deformation which is controlled by the deformation parameter k̄. In other
words, the product · correspond to the zeroth order in k̄ of the product ⋆k̄.

One can consider to expend ⋆k̄ only to first order in k̄ and thus have a linear correction to the
usual commutative theory. This would give a semi-classical theory, in which k̄ is a free parameter
to be constrained by experiments. As we will see in the following, the deformation parameter is
most of the time dimensionful (like ℏ) and would thus give a scale below which the commutative
theory is valid.
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Another general argument on how noncommutative geometry could hint new physics concerns
deformations of symmetries. As the space-time structure is deformed, the corresponding symmetries
will also be deformed. Most of the deformed symmetries encountered in this manuscript takes
the structure of a Hopf algebra, therefore underlying that these symmetries are quantum. In the
context of star product deformation, the deformation of the symmetry is also controlled by the
deformation parameter k̄. This implies that the classical symmetries are broken and replaced by
quantum ones. However, the classical symmetries can be recovered at some scale, corresponding
to the limit k̄ → 0.

The violations of some symmetries are intensely studied in the context of (high energy) new
physics, like Lorentz invariance violation, Poincaré deformation or CPT violation [12]. These
phenomenological frameworks can naturally arise in the context of noncommutative geometry
because of symmetry deformations. This is more discussed in Section 4.2.

Beyond the broad arguments above for considering noncommutative geometry as an inspiration
for new physics, more specific arguments can be made for aspects of physics that relies on quantum
geometries like the standard model of particle physics or some model of quantum gravity.

1.2.1 The geometry of particle physics

The main achievement of noncommutative geometry concerning particle physics is the noncom-
mutative standard model [13]. All the standard model fields, minimally coupled to gravity, are
encoded in a single (noncommutative) geometry expressed as a spectral triple. The axioms of the
spectral triple yield the gauge fields and the Higgs field. Both emerge and are treated on the
same footing. The Higgs potential as well as the Einstein-Hilbert action and the standard
model action in curved space appear when computing the so-called spectral action. One of the
main asset of this model is that it predicts the Higgs mass.

Noncommutative standard model
Let M be a Riemannian spin geometry (a space without time) and let A = C ∞(M) ⊗

(C ⊕ M2(C) ⊕ M3(C)). This algebra encodes the functions on a noncommutative geometry
having four different parts: C ∞(M) only encodes the functions over the space M and thus
the geometry of M, C imposes that functions are complex-valued and so takes into account
the electric charge, M2(C) accounts for the isospin doublets and M3(C) stands for the three
colors of quarks. A can be viewed as the set of functions which associates to a point of space
M a complex number and two complex matrices of size 2 and 3. Those are called “almost
commutative” spaces.

One represents this algebra on H = L2(M,S) ⊗ C96, where L2(M,S) stands for square
integrable functions on the spinor bundle S, which encodes the fermionic (spinor) fields, and
C96 describes the latter fermions counting the isospin doublet (up/down or electron/neutrino,
with 2 choices), the 3 generations or flavours, the 2 chiralities (left or right), if it encodes a
particle or an anti-particle (2 choices) and if the fermion is a quark or a lepton (the quarks have
3 colors and the lepton do not, so 3+1 choices): therefore, there are 2×2×3×2×2×(3+1) = 96
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fields. Finally, the Dirac operator writes

/D = /∂ ⊗ 196 + γ5 ⊗


0 M MR 0
M † 0 0 0
M †

R 0 0 M
0 0 tM 0

 (1.2.4)

where /∂ is the Dirac operator on the space M, M contains the quarks, leptons, neutrinos
Yukawa couplings, as well as the quarks and neutrinos mixing parameters and MR contains
the Majorana neutrinos mass.

The spectral triple (A,H, /D) encodes the geometry of the standard model of particle
physics minimally coupled to gravity.

From there, one can compute the gauge group, the gauge bosons and the full action
associated with that geometry. The gauge group corresponds to the unitary elements of the
algebra A, that are here Diff(M)⋉Map

(
M, U(1) ×SU(2) ×SU(3)

)
, where Diff(M) stands

for the diffeomorphism group of the space M, that is the group of coordinate change, and
Map(M, G) stands for the function from M to G. The previous notation means that each
point of the space M has its own U(1) × SU(2) × SU(3) gauge symmetry, which adapts to
the choice of coordinates thanks to Diff(M).

The gauge bosons can be read in the fluctuation of the Dirac operator, corresponding to
(1.3.6), and their gauge transformation through the first order axiom of the spectral triple
formalism (1.3.1d). More explicitly, if the Dirac operator (1.2.4) is noted /D = /∂⊗1+γ5⊗ /DF,
then one computes

f [ /D, g] = −iγµ ⊗ f∂µg + γ5 ⊗ f [ /DF , g]
= γµ ⊗ Aµ + γ5 ⊗ ϕ

(1.2.5)

where Aµ have all properties of the gauge fields and ϕ corresponds to the Higgs boson.
Finally, the action is computed thanks to the spectral action for the Dirac operator

(1.2.4). The space part of the Dirac operator gives rise to the Einstein-Hilbert action,
which is summed with the standard model action in curved space with a spontaneously
broken Higgs ϕ.

The noncommutative standard model may give new phenomenological insights on par-
ticle physics. First, the Higgs mechanism, that is the Higgs boson and its potential, is
implemented naturally. Then, the model imposes mass relations between the fermions and
predicts the Higgs mass. Finally, the see-saw mechanism can be implemented within the
framework. The phenomenology of this model is still under study.

This manuscript does not expand too much on the noncommutative standard model as it was
not part of the author’s work. Moreover, one should note that this model is still under construction,
as their actual formulation are purely classical (in the sense that there was no second/path integral
quantisation done) and Riemannian, therefore without a causal structure3. Nevertheless, the
Remark 1.1.1 is to be underlined as some part of what is contained in this thesis may, one day, be

3For Lorentzian extensions of the noncommutative standard model, see for example [14, 15].
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linked to this model. Relevant textbook on the noncommutative standard model are, for example,
[1, 16].

The study of field theories on noncommutative space-time, called generically noncommutative
field theory, have shown a peculiar behaviour which might be of physical interest, called the
ultra-violet/infra-red mixing, or UV/IR mixing.

The first idea of studying field theory on quantum space-time, goes back to Snyder [17] who
expected that the noncommutativity would regularize the ultra-violet divergences occurring in
quantum field theory, before renormalisation came into play. The hope of Snyder was that the
deformation parameter could play the role of a ultra-violet cut-off. However, this phenomenon
happens only to very specific cases and noncommutative field theory also experiences divergence,
some similar to the commutative case and some new ones. For example, in the Moyal space a
ϕ4-theory gives rise to the usual UV divergence for so-called planar diagrams (1.2.8a), but exhibits
UV finiteness and IR singularity for non-planar diagrams (1.2.8b). The presence or absence of
divergences has not been characterised yet for general noncommutative field theory.

UV/IR mixing

The first appearance of the UV/IR mixing occurred on the Moyal space [18] (see Section
2.5 for more details on the Moyal space). It starts by considering a deformed ϕ4-theory,
with an action given by

S =
∫

d4x
1
2
(
∂µϕ ⋆θ ∂

µϕ
)
(x) + m2

2
(
ϕ ⋆θ ϕ

)
(x) + g2

4!
(
ϕ ⋆θ ϕ ⋆θ ϕ ⋆θ ϕ

)
(x) (1.2.6)

where ⋆θ is the Moyal star product (2.5.3), m is the mass of the field ϕ and g the coupling
constant. By performing path integral quantisation, one finds that the 2-point function at
one-loop has two contributions, one coming from planar diagrams and one from non-planar
diagrams (see Figure 1).

Figure 1 − The two contributions to the 2-point function at one-loop of the ϕ4-theory
(1.2.6) on Moyal space.

(a) Planar diagram

ϕ ϕ

(b) Non-planar diagram

ϕ ϕ

which reads
〈
ϕ(p)ϕ(q)

〉p

1-loop
= g2

3 δ(p+ q)
∫

d4k
1

k2 +m2 (1.2.7a)
〈
ϕ(p)ϕ(q)

〉np

1-loop
= g2

6 δ(p+ q)
∫

d4k
eikµΘµνpν

k2 +m2 (1.2.7b)

where subscripts p and np stands for “planar” and “non-planar” respectively and p and q are
the external (incoming and outgoing) momenta. The constant matrix Θµν corresponds to
the deformation of the commuting coordinates, i.e. [xµ, xν ]⋆θ = iΘµν .
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One can analyse the behaviour of these integrals by first going into Schwinger parametriza-
tion 1

k2+m2 =
∫+∞

0 dα e−α(k2+m2) which turns (1.2.7) into Gaussian integrals. Then, by
multiplying by a regulator e−1/(αΛ2), where Λ stands as a UV scale, one obtains

〈
ϕ(p)ϕ(q)

〉p

1-loop
= g2

3 δ(p+ q)
(

Λ2 −m2 log
(

Λ2

m2

)
+ O(1)

)
(1.2.8a)

〈
ϕ(p)ϕ(q)

〉np

1-loop
= g2

6 δ(p+ q)
(

Λ2
eff −m2 log

(
Λ2

eff
m2

)
+ O(1)

)
(1.2.8b)

with

Λ2
eff = 1

1/Λ2 + (pΘ)2/4 (1.2.8c)

Here, (pΘ)2 = pµΘµνpρΘρσgνσ. From there, one observes that the planar contribution
behaves as the commutative ϕ4-theory and is UV divergent. However, for non-vanishing
external momentum p, the non-planar contribution now has a “noncommutative” regulator
Λeff = 4/(pΘ)2, which makes it UV finite. Whenever p → 0, this regulator diverges and the
non-planar contribution also diverges in a similar fashion as the planar contribution. The
fact that the IR limit p → 0 makes the non-planar contribution diverge in the UV is precisely
what is called the UV/IR mixing.

More details about how the mixing arises and how it is linked to a noncommutative context
will be given in Section 2.6.

Some authors have studied how the UV/IR mixing, specific to the noncommutative case, could
hint for new physics.

First, a deep insight and physical reasoning on the UV/IR mixing was proposed in [19]. The
previous authors pointed out that the UV/IR mixing phenomenon could not be accounted for
in an effective field theory, as the effective field theory cannot generate IR contributions from
UV regularization. In some toy models, they showed how a low mass scale could arise from the
regularization of a UV divergence. This could hint for a testable solution to the hierarchy problem.

Second, in the context of noncommutative Yang-Mills theory, the UV/IR mixing also arises
for the gauge fields on the Moyal space. The theory of noncommutative Yang-Mills theory is
taken to be a U(n) gauge theory rather then SU(n) since the Lie algebra su(n) is not closed in the
noncommutative theory, but u(n) is. Then, the gauge group can be split into U(n) ≃ SU(n)×U(1)
and one can show that the UV/IR mixing is actually generated by the extra U(1) part. The basis
of emergent gravity [20] in this context is to interpret this extra U(1) part as a coupling between
the SU(n) gauge field and an emerging gravitational field.

1.2.2 Quantum gravity and noncommutativity
Most of the work done on noncommutative space-time arises in the context of quantum gravity,

since noncommutative geometry could be a hint for the formulation of quantum gravity or at
least for some quantum gravity effects. The distinction that noncommutative space-time could be
used to tackle beyond general relativity experiments and not necessarily emerge as a full model
of quantum gravity, is the very motivation for this thesis. Indeed, most of the noncommutative

Hersent Kilian − Thèse de Doctorat 15



1.2. Physical motivations of noncommutative geometry

space-times discussed in this manuscript are not necessarily thought of as the one space-time of
nature, but are rather studied for their new properties and their phenomenology.

The recent interests in quantum space-times come from its appearance in string theory [21].
Noncommutative space-time has been shown to emerge in limiting regime of string theory and
matrix (M) theory with magnetic background. More precisely, the noncommutative setting was
used to compute Veneziano amplitude of bosonic open strings. Furthermore, a noncommutative
version of Yang–Mills theory arises naturally when studying closed strings in some limit natural
for M theory.

However, the link to other quantum gravity models has been made. The main example is
the relationship between the noncommutative field theory on a deformation of R3, called R3

λ,
and the group field theory. It has first been pointed out by considering matter coupled to 3-
dimensional quantum gravity [22], which, upon integrating out the gravity fluctuations, yields a
noncommutative field theory on R3

λ, interpreted as the effective theory of the dynamics of matter.
More details about the link between noncommutative field theory and these frameworks can be

found in [23].

There is a well-known argument as to why the space-time structure should lose its continuous
property close to the Planck scale. In other words, in a theory of quantum gravity, the space-time
should not be a manifold.

Suppose we want to measure a space-time distance ∆x as precisely as possible. The Heisenberg
uncertainty principle, coming from quantum mechanics, specifies the minimal amount of energy
to deliver to a region of volume (∆x)4, explicitly ∆E ⩾ 1/∆x, in order to have such a precision.
Decreasing the distance ∆x will thus make the minimal energy input grow. In a continuous
space-time, ∆x can be arbitrarily small. Therefore, one can reach a ∆x where the minimal energy
corresponds to the Planck mass MP. For this distance 1/MP, a black hole is created, which
hampers one to probe smaller distances. Therefore, by mixing quantum mechanics and general
relativity, one ends up in a space-time with a smallest measurable distance4.

To avoid generating a black hole when doing high resolution microscopy, Doplicher, Fre-
denhagen and Roberts [24] developed a space-time framework which generates space-time
uncertainties of the form

∆xµ∆xν ⩾ 1
2 |Θµν |. (1.2.9)

This implies that ∆xµ and ∆xν cannot be arbitrarily small independently5. There is a minimal
area, modelled by Θ, that one can probe in such a space-time. This relation could be enforced by

4One should note that this argument involves classical and quantum properties of space-time. Therefore, a black
hole is not expected to pop up in reality. This argument is just here to put forward inconsistencies when merging
both models.

Besides, one could also argue that such a black hole evaporates. However, evaporation would make the energy
flow away and precision is lost. A more striking argument would be to consider the evaporating time, which writes
in this case te = 5120π G2

c4ℏM
3
P = 1280π ℓP

c ∼ 10−40 s, where ℓP is the Planck length and c is the speed of light.
This consists thus also in a smallest scale of time.

5A priori this does not prevent one from having an arbitrarily small distance, only to have arbitrarily small
area. Indeed, one can take ∆xµ to be arbitrarily small if ∆xν is very large. The set-up for minimal length does
rather appear in the framework of generalised uncertainty principle [26]. We refer to Section 4.2 for more details on
quantum gravity phenomenology.
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considering a quantum space-time satisfying

[xµ, xν ] = iΘµν (1.2.10)

which corresponds to the Moyal space (see Section 2.5 for details).

The previous framework showed how a deformation parameter (here θ) can be introduced as a
physical limit for a coherent approach of both quantum mechanics and general relativity. The
deformation parameter plays the role of a new dimensionful physical constant the space-time has
to accommodate for. This approach features new possibilities for a space-time “beyond general
relativity”, but is rather arbitrary in the sense that this new physical quantity is magically imposed.

However, one could also introduce the deformation parameter directly through the symmetries
of the space-time by deforming the classical symmetries, via quantum groups. In doing so, the
deformation parameter becomes the scale at which these deformed symmetries should replace the
usual symmetries. For example, the κ-Minkowski space-time, a deformation of the Minkowski
space-time, has κ-Poincaré symmetries, which correspond to a deformation of the Poincaré
group. In this space-time the deformation parameter is κ and has the dimension of an energy.
Therefore, considering a noncommutative field theory on κ-Minkowski only makes sense only at
energies similar to κ, or above. For energies far below κ, one can consider a field theory on the
Minkowski space-time.

The κ-Minkowski spaces and the κ-Poincaré algebra are presented in detail in Section 3.1.
Still, we want to emphasise here that the deformation parameter actually indicates whether the
space-time is to be regarded as noncommutative or not, and the symmetries as deformed or not.
This is exactly the behaviour expected for a theory of quantum gravity that does stand at the
Planck scale, but from which one can recover general relativity at low energies.

Finally, the physics of noncommutative space-time has sparked a tremendous amount of phe-
nomenological framework, most of them handling around quantum gravity [12]. Here, we cite the
main examples as a motivation, but more details about quantum gravity phenomenology will be
given in Section 4.2.

First, if one considers a quantum space-time with deformed symmetries, then the classical
symmetries would no more stand and thus be violated above some scale. Therefore, the quantum
group framework allows one to consider deformations of the Lorentz group and leads to Lorentz
invariance violation. The phenomenological framework of Lorentz invariance violation is used
both in the search of quantum gravity and is some standard model extensions. The main advantage
of using deformations through quantum groups, in this context, is that one can recover the usual
Lorentz symmetry of the standard model and of local general relativity by considering a scale
far below the scale induced by the deformation parameter.

The noncommutativity of the space-time can also affect the dispersion relation of a particle.
The propagation of a single particle is given by the d’Alembertian operator6 on the considered
space-time. From the point of view of infinitesimal quantities (that is the point of view of the
Lie algebra rather then the Lie group), the d’Alembertian is given by the Casimir operator.
Moreover, in a physical context, this d’Alembertian can be written in terms of the space-time
symmetries. Therefore, when considering deformed symmetries via the formalism of quantum

6In a mathematical context, the d’Alembertian corresponds to the Laplacian in a pseudo-Riemannian context
(that is on a manifold having a time coordinate). The d’Alembertian is thus sometimes called Laplacian even when
the space considered is pseudo-Riemannian, i.e. when the considered object is a space-time.
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groups, the Casimir operator is also deformed, which means that the particles propagate differently
in a quantum space-time. The deformation of the particle propagation is studied in the context of
modified dispersion relations.

The Lorentz group symmetry was first implemented in special relativity in order to have
invariance under the change of inertial frame and conservation of the speed of light. If one wants
further that an energy scale is conserved under the change of “inertial frame”, where inertial has
now a new meaning, one should also consider deformed symmetries. The framework, in which
two observer-independent upper scale, one of speed, one of energy, are implemented, is called
doubly special relativity7 [25]. It was first set up to ease a mismatch between the contraction and
dilatations of length in a special relativity context and the hypothetical minimal Planck length of
quantum gravity. In this context, one cannot find an alternative Lie group to the Lorentz group
in order to have such a frame transformation. Still, one can realise a doubly special relativity via
the Hopf algebra deformation of the Lorentz group or of the Poincaré group, as for example
κ-Poincaré.

The minimal length scenario was also not compatible with the Heisenberg uncertainty principle
and therefore led to consider generalised uncertainty principles. A generalised uncertainty principle
takes the form

∆x∆p ⩾ ℏ
2
(
1 + f(p2)

)
, (1.2.11a)

where f is some smooth function vanishing at zero. This relation can follow from a deformation of
the commutator

[x, p] = iℏ
(
1 + f(p2)

)
, (1.2.11b)

which, in turn, can be realised in a noncommutative geometry.
Finally, other phenomenological frameworks can be inherited from a noncommutative geometry.

Most of the time, the noncommutativity of coordinates (1.1.5) also implies the noncommutativity
of the law for momentum addition. This is made explicit in the Section 2.6. This noncommutativity
of momenta implies that the momentum space is curved. It is also believed that CPT violation
arises in a noncommutative momentum framework, but this claim is still debated. Indeed, in
such a phase space, there are ambiguities in defining the discrete symmetries, i.e. the charge
conjugation C, the parity P and the time reversal T.

1.2.3 When objects are fuzzy

The noncommutative geometry framework handles both continuous and discrete geometries so
that a noncommutative space-time can be continuous, discrete or both. This “undetermined shape”
of a noncommutative geometry pushed the literature toward calling the quantum space-times
“fuzzy space-times”. This denomination can actually make sense physically and mathematically.
But before addressing these points let us discuss the example of R3

λ.

7It was also named deformed special relativity.
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Description of R3
λ

One can define the space R3
λ to be a pile of

matrices of different sizes, that is

R3
λ =

∞⊕
n=0

Mn(C) (1.2.12)

where Mn(C) corresponds to the space of n×
n matrices with complex entries. In terms
of noncommutative geometry, the space of
matrices Mn(C) is more often called the fuzzy
sphere. Therefore, R3

λ is a pile of fuzzy sphere
and was sometimes dubbed the “fuzzy onion”.

Figure 2 − A schematic view of R3
λ.

x1

x2

As a deformation of R3, the latter space has another definition in terms of Lie algebra of
coordinates

[xj, xk]⋆λ = iλ εjkl x
l (1.2.13)

where λ is the deformation parameter and ε is the Levi-Civita fully anti-symmetric tensor.
The Lie algebra (1.2.13) corresponds to su(2). Considering one of the position operators
xj, its spectrum is made of the integers n ∈ N, where the different n correspond to the sizes
of the fuzzy spheres that xj crosses. However, each sphere has its own continuous SO3(R)
symmetry stemming from the action of SU(2) on su(2). Therefore, this space contains both
discrete and continuous structures.

In view of the discussion of Subsection 1.2.2, one can note that the deformation parameter
λ has a length dimension.

Beyond continuity and discreteness, the space-time uncertainty relations (1.2.9) implies that
one cannot measure a space-time point as accurately as one wants. Therefore, at small scales, the
quantum space-time becomes blurry because it cannot be resolved with infinite precision. This is
roughly the idea of the fuzziness of a quantum space-time.

1.3 Spectral triple
Given a space with topology, as depicted in Section 1.1, we further want to have a differential

structure to generate essential elements of geometry, like the metric or the curvature. Kac’s drum
(see Section 1.1) asked whether one could build the differential structure using only the (spectrum
of the) Laplacian8. It turns out not to be possible, but, by considering the “square root” of the
Laplacian, i.e. the Dirac operator, Connes was able to reconstruct the geometry. However, in
order to define the Dirac operator, one needs additionally a Hilbert space on which the algebra
is represented. Therefore, the geometry is gathered in three objects forming a spectral triple: the
algebra (of smooth functions), the Dirac operator and the Hilbert space.

The spectral triple formalism is presented briefly here. A curious reader can find much more
details in the following references. The main writing on noncommutative geometry through spectral

8The Laplacian corresponds to the d’Alembertian in a pseudo-Riemannian context, that is considering the
geometry of a space-time.

Hersent Kilian − Thèse de Doctorat 19



1.3. Spectral triple

triple is Connes’ book [1] which gives a full overview of the philosophy of this construction. Other
physics oriented textbooks can be consulted like [27, 28, 29].

Here, we define the spectral triple and gather a more extensive discussion on the motivations
after.

Definition 1.3.1 – Spectral triple

A spectral triple is a set of three data (A,H, /D), where

❖ A is a (unital) C∗-algebra,
❖ H is a Hilbert space, such that the algebra A represents faithfully on B(H), the set

of bounded operators on H,
❖ /D is a self-adjoint operator on H, with compact resolvent and satisfying [ /D, f ] ∈ B(H)

for any f ∈ A.

The latter spectral triple is said odd as such and is further said even given that there exists
a Z2-grading on H, that is a map γ : H → H satisfying γ† = γ and γ2 = 1, such that

[γ, f ] = 0, {γ, /D} = 0, (1.3.1a)

for any f ∈ A.
Furthermore, we say that the spectral triple is real if there exists an anti-linear isometry

J : H → H such that

J2 = ±1, J /D = ± /DJ, Jγ = ±γJ, (1.3.1b)

where the + and − are determined by the so-called KO-dimension of the triple.
Finally, the spectral triple should satisfy the zeroth-order condition

[f, Jg†J−1] = 0, (1.3.1c)

and the first-order condition [
[ /D, f ], Jg†J−1

]
= 0, (1.3.1d)

for any f, g ∈ A.

There are many comments to be made about this definition, which are summarised below.

❖ There is a priori no need of further structure for A than being an operator algebra, i.e. a
C∗-algebra or a von Neumann algebra. This requirement is made in order that A can
be represented on a Hilbert space H, and therefore for H to exist. However, in some
noncommutative space-time A is not a C∗-algebra itself but close to it, like a pre-C∗-algebra
or a dense ∗-subalgebra of a C∗-algebra.

❖ The spectral triple formalism was designed first for compact manifold, which corresponds to
unital algebras. Connes’ reconstruction theorem, discussed below, was only proved in the
compact case. Therefore, one can ask for A to have a unit, since unital algebras corresponds
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to compact spaces. The spectral triple formulation above is the one used in the non-compact
case.

❖ The Hilbert space H is necessary to define the Dirac operator and so the differential
structure. Therefore, it is defined as a representation of our noncommutative geometry A via
π : A → B(H). As already mentioned, π is always implied in notations.

❖ The representation π above is required to be faithful so that information stored in A are not
lost when working with only operators on H.

❖ Self-adjointness (or Hermitianity) is required in a physical context as observables correspond
to self-adjoint operators in quantum mechanics. As the Dirac operator contains the gauge
fields, it is required to be self-adjoint. For example, in particle physics, the Dirac operator
corresponds to the covariant derivative /D = iγµ(∂µ + Aµ), where Aµ is the gauge field.

❖ The compact resolvent requirement states that the operator ( /D − z)−1 is compact, for any
z /∈R, in the case of a unital algebra A (and so a compact geometry). This condition is
changed to f( /D − z)−1 been compact, for any z /∈R and f ∈ A, in the non-unital case.

❖ In the case of a spin manifold, i.e. a space on which one can define fermonic (spinor) fields,
one can write down

[ /D, f ] = −i c(df) (1.3.2)

where c is the Clifford action. As the action is merely a left multiplication, equation (1.3.2)
motivates both the requirement of boundedness for [ /D, f ] and the basic property of the
quantised calculus that the differential d can be expressed through [ /D, ·] in (1.3.3). Moreover,
in the commutative case, the condition (1.3.2) is also linked to the smoothness of f .

❖ The grading map γ is actually quite common for particle physicists since it plays the exact
same role as γ5. The chirality of a particle is actually a Z2-grading that splits the space
into positive and negative chiralities. Here, γ plays a similar role (and so is often called the
chirality) as one can define H± depending if an element of H will have eigenvalue +1 or −1
for γ. The grading map is here to ensure the orientability of underlying manifold.

❖ Similarly that bosons commute (with γ5) and fermions anti-commute (with γ5), the condition
(1.3.1a) states that space elements do not change the chirality but the Dirac operator does.

❖ The element J , often called the Tomita involution, can be viewed as a generalisation of
the complex i to operators on a Hilbert space. Therefore, it is used to disjoint “real” and
“imaginary” quantities. It corresponds to the isometry part (in the polar decomposition) of
the operator induced by the involution † of A. Note that there is a way to construct such a J
operator, satisfying (1.3.1c), through Tomita’s theorem.

❖ In the commutative case, one only requires that g = Jg†J−1 so that the zeroth-order condition
(1.3.1c) is automatically satisfied.

❖ The first-order condition (1.3.1d) states that the Dirac operator is a first order differ-
ential operator9. This expression also allows for the quantised calculus expressions like
f1[ /D, f2] · · · [ /D, fn+1] to be coherent (as a representation of A⊗(n+1)) and so to form a differ-
ential calculus over A.

9This can be compared to an equivalent relation with the Laplacian ∆, which is of second order:
[
[∆, f ], g

]
=

g−1(df, dg), where g is the metric.
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The main motivation to study a spectral triple as a “noncommutative geometry” is given by the
following [30]

Theorem 1.3.2 – Connes’ reconstruction theorem

Let (A,H, /D) be a spectral triple satisfying

(i ) A is commutative.
(ii ) Let λ0 ⩾ λ1 ⩾ · · · denotes the eigenvalues of | /D|−1, then it exists n ∈ N, such that

λk = Ok→+∞
(
k−1/n

)
.

(iii ) For any f ∈ A, f, [ /D, f ] ∈ Dom(δj), for j ∈ N1 and δ(T ) = [| /D|, T ].
(iv ) The triple is either odd or even (and if so γ is defined).

(v ) The space of smooth vectors H∞ = ⋂
j∈N1

Dom( /Dj) is a finitely generated projected

A-module with a hermitian pairing, given by the noncommutative integral.

Then, there exists a compact oriented smooth Riemannian manifold M such that A =
C ∞(M).

Beyond the very mathematical requirements that we try to clarify below, Connes’ reconstruction
theorem states that a commutative spectral triple corresponds to a classical geometry. Therefore,
a noncommutative geometry would be given by a noncommutative spectral triple.

In the above requirements, (ii ) states that the eigenvalues of the inverse modulus of the
Dirac operator | /D|−1 are decreasing to zero as k−1/n for some n. As explained below with the
distance formula (1.3.8), | /D|−1 can be interpreted as a length element “dx”. Therefore, | /D|−n,
corresponding to a volume element in n-dimension (dx)n, has eigenvalues decreasing as 1/k. The
n thus corresponds to the usual space dimension in commutative geometry10 and is called the
metric dimension of the spectral triple.

The condition (iii ) requires that f and [ /D, f ] are smooth, since one can derivate them an
arbitrary number of times (corresponding to j in the theorem) with the derivative δ.

Finally, the requirement (v ) imposes that quantities such as f | /D|−n are measurable and so
that the noncommutative integral is well-defined. Indeed, f | /D|−n = f(dx)n represents the volume
element of the space on which we want to sum. But, considering (ii ), the sum of eigenvalues
are logarithmically divergent ∑

k<N
λk ∼ ∑

k<N

1
k

∼ log(N), and so
∫
f | /D|−n should also diverge

logarithmically. Convergence of this quantity is ensured precisely on H∞, which plays a similar
role that of the test functions for the distributions.

Note that Connes’ reconstruction theorem can adapt to the case of a spin manifold.

Now that we have defined the spectral triple and explained how it relates to the usual notion of
geometry, we can go to the missing part of what makes this a noncommutative geometry, that
is the differential structure. In order to do so, one needs a differential operator d that sends a
n-form to a n+ 1-form, and the latter set of forms.

Inspired by the relation (1.3.2), one can define the differential d, by

df = [ /D, f ] (1.3.3)
10One notices that, in a more general context, this n needs not be an integer. Part of the motivation for studying

noncommutative geometry, was that it could depict non-integer dimensional space, like fractals.
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for any f ∈ A. The formula (1.3.3) can be viewed as the equation of motion in classical Hamiltonian
mechanics, where the Poisson bracket has been replaced by the commutator [·, ·]. From there one
defines a generic one-form ω ∈ Ω1(A) by

ω = f [ /D, g] (1.3.4)

for some f, g ∈ A. By applying the differential d to this one-form several times, one obtains that a
generic n-form ω ∈ Ωn(A) writes

ω = f1[ /D, f2] · · · [ /D, fn+1] (1.3.5)

for any f1, . . . , fn+1 ∈ A.
The fact that a one-form writes ωu = u[ /D, u†], states that the failure of invariance of the Dirac

operator with respect to the gauge transformation u ∈ A, satisfying u ⋆ u† = u† ⋆ u = 1, is a
one-form:

u /Du† = /D + ωu, (1.3.6)

which corresponds to the formalism of gauge theory.

From there, one can define the noncommutative integral (defined thanks to the Dixmier trace)
and check that it matches the usual integration on space in the context of Connes’ reconstruction
theorem. Using the noncommutative integral (or noncommutative trace) tr, one can define the
so-called spectral action for a fermionic field ψ ∈ H as

S( /D) = ⟨ψ, /Dψ⟩ + tr
α

 /D
2

Λ2

 , (1.3.7)

where ⟨·, ·⟩ is the inner product of H, α is a positive functional and Λ is an energy scale. The
tracial part of the action can be expanded by heat kernel methods (which generates an expansion
over 1/Λ), and gives rise to geometric invariants in the commutative setting. In other words,
the spectral action displays all the gauge and diffeomorphic (i.e. change of coordinate) invariant
quantities that one can build within the geometry. Moreover, the expansion over the energy scale
Λ implies that one can treat (1.3.7) as an effective field theory.

One of the key feature of the spectral triple formalism, is that one can lift the notion of geodesic
distance to the noncommutative case. Indeed, by dualising the geodesic distance formula, one
obtains

dist(ψ1, ψ2) = sup
{
|ψ1(f) − ψ2(f)|, f ∈ A,

∥∥∥[ /D, f ]
∥∥∥ ⩽ 1

}
(1.3.8)

which gives the distance between two arbitrary states ψ1, ψ2 ∈ ΨA. In the case of smooth functions,
the expression

∥∥∥[ /D, f ]
∥∥∥ corresponds to the maximal value of the (first) derivative of f . This is

called the Lipschitz norm and can be defined for non-differentiable functions also. A direct
consequence is that one can interpret the inverse modulus of /D, noted | /D|−1, as a length element
dx.
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1.4 Quantum groups
There are several definitions of quantum groups coming from different approaches. Drinfel’d

and Jimbo developed the construction of deformation of universal enveloping algebras of any
semi-simple Lie algebra. At about the same time, Woronowicz made his theory of compact
matrix quantum groups. Moreover, an algebraic approach to quantised coordinate algebra was
introduced by Manin. Even at this date, there is no global definition for what quantum groups
are, but as pointed out in [33]: “Instead of searching for a rigorous definition of a quantum group
it seems to be more fruitful to look for classes of Hopf algebras that give rise to a rich theory
with important applications and contain enough interesting examples.” Therefore, we will rather
explain here the philosophy of Hopf algebras and how they can be related to physics.

The usual textbooks on Hopf algebra and quantum groups are [31, 32, 33]. The basic elements
and examples of Hopf algebra needed for this manuscript are presented here. However, more
mathematical details are postponed to Appendix A.

1.4.1 The emergence of Hopf algebra
In the same spirit as in Section 1.1, we want to characterise a group G through its dual, that is

the space of functions over it. We denote the latter by G′. Physically, G may be thought of as a
group of symmetries. In a very similar fashion to the product (1.1.1), one can define a product,
and so an algebra structure, on G′ through (1.4.1b). The group structure of G is however not
exported to G′ as such. As shown in Example 1.4.1, one needs to equip G′ with a Hopf algebra
structure in order to read the group structure of G in G′.

Example 1.4.1 – The algebra of functions over a group

Let G be a group and let G′ be the algebra of complex-valued functions on G, i.e. f ∈ G′

is a function from G to C. G′ is called the dual of G.

The space G′ is canonically an algebra (see Definition A.1.1) if we consider the point-wise
multiplication in C. Explicitly, for any z1, z2 ∈ C, f1, f2 ∈ G′ and u ∈ G,

z1f1 + z2f2 : G → C
u 7→ z1 f1(u) + z2 f2(u)

]
i.e. z1 f1 + z2 f2 ∈ G′, (1.4.1a)

therefore, G′ is a vector space. Considering the product,

(f1 · f2)(u) = f1(u) f2(u), (1.4.1b)

where the right-hand-side product corresponds to the product in C, G′ satisfies the definition
of the algebra. The associativity property of the product is directly inherited from the
associativity of the product of C. Note that this algebra is unital since 1(u) = 1 belongs to
G′. This algebra structure, however, does not allow one to characterise G from G′ as it does
not involve the product of G. In other words, only knowing the algebra structure of G′ one
does not have all the information needed to reconstruct G.

Let ∆ : G′ → (G×G)′ be the function defined as, for any f ∈ G′ and u1, u2 ∈ G,

∆(f)(u1, u2) = f(u1u2). (1.4.2a)
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This map is called the coproduct and allows one to get the missing information of the
product of G. Indeed, it characterises how the function f should split in (G×G)′ to match
the product of G through (1.4.2a). Considering 1 to be the unit of G, one can also define a
counit ε : G′ → C through

ε(f) = f(1). (1.4.2b)

Again, the unit of G′ only involves 1 ∈ C and does not resolve the unit of G, whereas the
counit ε is precisely defined to see how functions behave on 1 ∈ G. As additional constraints,
these two maps should satisfy, in some way, the associativity of the product in G and the unit
property u1 = 1u = u of 1 ∈ G, respectively. The way to do this is to see that the coproduct
is coassociative (1.4.4) and the counit property (1.4.5) is satisfied. Those properties are
shown in the proof below. This will form what is called the coalgebra sector of G′.

But every group element u ∈ G has, by definition, an inverse u−1. Therefore, we need
another structure on G′ to account for the inverse. The latter map is denoted S : G′ → G′

and is called the antipode (or coinverse). It is defined as(
S(f)

)
(u) = f(u−1), (1.4.3)

and once again it should match the inverse property uu−1 = u−1u = 1 of G. This is
implemented by requiring the S satisfies the coinverse property (1.4.6), as detailed in the
proof.

Finally, one can check that the coalgebra sector is adapted to the algebra structure (1.4.1)
of G′ through (1.4.7). This will be detailed in the proof below.

Proof. We here show that some properties of Example 1.4.1 are satisfied.
First, let us check the coassociativity of the function ∆ defined in (1.4.2a). In algebraic

terms it writes

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆. (1.4.4)

One computes, for any f ∈ G′, any u1, u2, u3 ∈ G,(
((∆ ⊗ id) ◦ ∆)(f)

)
(u1, u2, u3) = f

(
(u1u2)u3

)
(
((id ⊗ ∆) ◦ ∆)(f)

)
(u1, u2, u3) = f

(
u1(u2u3)

)
.

Therefore, the equality is fulfilled thanks to the associativity of the product in G. Now, the
counit property writes

(ε⊗ id) ◦ ∆ = (id ⊗ ε) ◦ ∆ = id, (1.4.5)

and it is satisfied thanks to the unit property 1u = u1 = u of 1 ∈ G. Indeed,(
((ε⊗ id) ◦ ∆)(f)

)
(u) = f(1u)(

((id ⊗ ε) ◦ ∆)(f)
)
(u) = f(u1)(

id(f)
)
(u) = f(u).
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In a similar fashion, the coinverse property writes

m ◦ (S ⊗ id) ◦ ∆ = m ◦ (id ⊗ S) ◦ ∆ = η ◦ ε (1.4.6)

where m : (G×G)′ → G′ is the product of G′ (1.4.1b), and η : C → G′ is the unit of G′,
with η(z) = z1 for any z ∈ C. It is satisfied, thanks to the inverse property uu−1 = u−1u = 1
in G, through (

(m ◦ (S ⊗ id) ◦ ∆)(f)
)
(u) = f(u−1u)(

(m ◦ (id ⊗ S) ◦ ∆)(f)
)
(u) = f(uu−1)(

(η ◦ ε)(f)
)
(u) = f(1).

Second, the consistency relations for ∆ and ε with the algebra G′ state that ∆ and ε are
algebra homomorphisms, that is, for any f1, f2 ∈ G′

∆(f1f2) = ∆(f1)∆(f2), ε(f1f2) = ε(f1)ε(f2). (1.4.7)

Considering any u1, u2 ∈ G, one has, using the product definition (1.4.1b),(
∆(f1f2)

)
(u1, u2) = (f1f2)(u1u2) = f1(u1u2) f2(u1u2) = ∆(f1)(u1, u2) ∆(f2)(u1, u2),

ε(f1f2) = (f1f2)(1) = f1(1) f2(1) = ε(f1)ε(f2).

Remark 1.4.2
If one wants to have a fully algebraic version of a group G as depicted in Example 1.4.1,

one should have an abstract definition of G′ without the mention of G. This is done in the
previous example, through the structure of Hopf algebra, to the exception of the coproduct.
In (1.4.2a), the coproduct ∆ has an image in (G×G)′, but from the point of view of the
Hopf algebra, its image should be in G′ ⊗G′. This distinction is also present for the product
of G′ but it was not made explicit in the example.

In general, one has the inclusion

G′ ⊗G′ ⊂ (G×G)′, (1.4.8)

so that the Hopf algebra structure is more restrictive than the algebraic version we are
looking for. Even if the amount of missing information is not quantified, it is not considered
to be pathological in the literature.

As a side remark, let us observe that the equality in (1.4.8) stands when G is finite.

1.4.2 The structure of Hopf algebra

Considering the construction of G′ above, the quantum group formalism studies Hopf algebra
and considers it mimics G′ as a space of functions over some, at this point undetermined, deformed
version of some group G.
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In this context, a quantum group is therefore a Hopf algebra (H , ·, 1,∆, ε, S), generically noted
only H . The product · makes H an algebra, with a unit 1. The coproduct ∆ : H → H ⊗ H
decomposes an element into its product constituents, as expressed by the Sweedler notations

∆(X) =
∑

X(1) ⊗X(2) (1.4.9)

for any X ∈ H . In (1.4.9), X(1), X(2) ∈ H are the constituents of X. The sum symbol is here to
express that several such decompositions may exist and the coproduct corresponds to the sum of
all11. In the context of symmetries, one can interpret the coproduct of a symmetry as its action on
a multi-particle state. For example, if one considers the angular momentum operator Jz, acting on
a two-particle state |ψ1⟩ ⊗ |ψ2⟩, one has that

Jz
(

|ψ1⟩ ⊗ |ψ2⟩
)

= Jz(|ψ1⟩) ⊗ |ψ2⟩ + |ψ1⟩ ⊗ Jz(|ψ2⟩), (1.4.10a)

which can be recovered from

∆(Jz) = Jz ⊗ 1 + 1 ⊗ Jz. (1.4.10b)

The counit ε : H → C is, in some sense, the “unit” of the coproduct. From the multi-particle
state interpretation above, the counit is “suppressing” a particle in the sense that one goes from a
symmetry in a n-particle state to a symmetry in a (n− 1)-particle state by applying the counit.

The coassociativity property (1.4.4) states that, whenever ∆ is applied to (1.4.9), the choice of
applying it on X(1) (i.e. to the left) or on X(2) (i.e. to the right) does not matter. In terms of
multi-particle state interpretation, one can construct the action of a symmetry on a n-particle
state via its action on a (n− 1)-particle state. For example, from (1.4.10b), one has

∆2(Jz) = ∆(Jz) ⊗ 1 + ∆(1) ⊗ Jz = Jz ⊗ ∆(1) + 1 ⊗ ∆(Jz)
= Jz ⊗ 1 ⊗ 1 + 1 ⊗ Jz ⊗ 1 + 1 ⊗ 1 ⊗ Jz.

The counit property (1.4.5) states also that applying ε to the left or right of (1.4.9) gives the same
result. When considering multi-particle states, this means that one can “suppress” any of the
particle in a n-particle state.

Finally, the antipode S : H → H corresponds to a generalised inverse. The coinverse property
(1.4.6) imposes that S is actually a generalised version of the inverse, be it a right or left inverse.
More precisely, with the Sweedler notation (1.4.9), one has∑

S(X(1))X(2) =
∑

X(1)S(X(2)) = ε(X)1. (1.4.11)

We refer to Definition A.1.13 for a more detailed definition of the Hopf algebra structure.

We now give a useful example of the construction of a Hopf algebra.

Example 1.4.3 – The Hopf algebra of U(g)

Consider g to be a semi-simple Lie algebra. This construction is made for any semi-simple
Lie algebra, but one can consider g to be the Lie algebra of vector fields in the context

11This vague sentence is to be thought in a broad sense. We present below the multi-particle interpretation of
the coproduct, because of this manuscript interest. However, other physical interpretations can be made of the
coproduct, like in statistical physics. We refer to [32] for more insights on this topic.
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of general relativity, or as infinitesimal symmetry transformations associated to some Lie
group. We will study the enveloping algebra U(g) of g. The latter corresponds to the algebra
such that, for any X, Y ∈ U(g),

[X, Y ] = XY − Y X

where [·, ·] is the bracket product of g. In general, U(g) is wider then g. As an example, the
product of two vector fields is not a vector field because it does not obey the Leibniz rule,
only the commutator is. The enveloping algebra of vector fields then corresponds the set of
all objects generated when multiplying vector fields.

From the algebra U(g), one can construct a Hopf algebra by defining the following maps,
for any X ∈ U(g),

∆(X) = X ⊗ 1 + 1 ⊗X, ε(X) = 0, S(X) = −X. (1.4.12)

From there, one can check that the Hopf algebra axioms are satisfied.

1.4.3 The quantum space-time
If the above quantum group stands as the quantum symmetries, then what is the quantum

space-time having such symmetries? The answer lies again in the classical case and from which
all the algebraic structures are exported. For a symmetry u ∈ G, one goes from a space-time
point x ∈ M to its symmetric y ∈ M by acting with the transformation: y = u ▷ x. Then, any
space-time function f ∈ C ∞(M) transform under G via (u ▷ f)(x) = f(u ▷ x). This corresponds
to a module structure. We say that C ∞(M) is a G-module. In addition, C ∞(M) has an algebra
structure thanks to the product (1.1.1). This makes C ∞(M) a G-module algebra.

More explicitly, given a Hopf algebra H , a H -module A is a vector space with a linear action
▷ : H ⊗ A → A satisfying12

(XY ) ▷ f = X ▷(Y ▷ f), 1 ▷ f = f (1.4.13)

for any X, Y ∈ H and f ∈ A. Physically, the action ▷ can be viewed as the action of a symmetry,
like in Example 1.4.4. In this picture, (1.4.13) states that applying the transformation X and then
Y amounts to apply directly XY , and that applying the identity amounts not to transform f .

Example 1.4.4 – The module of rotations on the Euclidean space

Let A = C ∞(M) with M = R3, the 3-dimensional Euclidean space, and X = Rz(θ) ∈
SO3(R) be the rotation of angle θ around the z-axis. A space point, noted x = x⃗ =
(x1, x2, x3) ∈ M3,1(R) ≃ R3, is transformed to y = Rz(θ)x⃗ by matrix multiplication. Here, y
corresponds to x rotated of angle θ with respect to the origin.

Let us consider observables of R3, that is f ∈ C ∞(R3). f could be any measurable
quantity in space, like temperature, electric charge, etc... Considering a rotation of angle
θ around the z-axis X = Rz(θ), we define the action

(
Rz(θ) ▷ f

)
(x) = f

(
Rz(θ)x

)
, which

12Note that we define here a left action, but one can define similarly a right action. See Definition A.2.1.
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corresponds to the evaluation of f at the point Rz(θ)x. The algebraic structure linking the
space C ∞(R3) and the symmetries SO3(R) via the action ▷ is called a module, i.e. C ∞(R3)
is said to be a SO3(R)-module.

In this example, left hand side of (1.4.13) states that rotating of angle θ and then of θ̃
amounts to rotating of angle θ + θ̃, i.e.

Rz(θ̃) ▷(Rz(θ) ▷ f) =
(
Rz(θ̃)Rz(θ)

)
▷ f = Rz(θ̃ + θ) ▷ f.

In the same spirit, the right hand side of (1.4.13) imposes that a rotation of angle 0 does
not change the function f , i.e.

Rz(0) ▷ f = 1 ▷ f = f.

A H -module algebra A is a H -module and an algebra, such that both structures are compatible.
More quantitatively, if (H , ·, 1H ,∆, ε, S) is a Hopf algebra, then (A, ⋆, 1A) is a H -module algebra
if and only if

X ▷(f ⋆ g) =
∑(

X(1) ▷ f
)
⋆
(
X(2) ▷ g

)
, X ▷ 1A = ε(X)1A (1.4.14)

for any f, g ∈ A and X ∈ H , where we use Sweedler notations (1.4.9).

Example 1.4.5 – The module algebra of rotations on the Euclidean space

We consider the same situation as in Example 1.4.4. In order to do so, one needs to
complete SO3(R) to have a Hopf algebra structure. This is done by considering U(so3) as
in Example 1.4.3. Therefore, an infinitesimal rotation Rz has a coproduct and counit given
by (1.4.12), and applying left hand side of (1.4.14), one obtains

Rz ▷(fg) = (Rz ▷ f)g + f(Rz ▷ g).

Rz acts like a derivation, which is in agreement with the usual association of Rz with a
vector field in R3: Rz = x1∂2 − x2∂1. The right hand side, states that

Rz ▷ 1A = 0.

This can be understood as rotating 1A(x) = 1 does not change 1A, i.e. 1A(Rz(θ)x) = 1A(x) =
1, therefore any infinitesimal rotation Rz of 1A vanishes.

Therefore, a quantum space-time A having a Hopf algebra H as its space of symmetries is
defined as a H -module algebra. In order to make contact with Subsection 1.4.2, one can check
that (1.4.10a) is recovered from (1.4.10b) using (1.4.14).

Two main comments are in order.

❖ One can construct a H -module algebra canonically by considering the dual Hopf algebra of
H , see (A.2.5). This is used in the context of the κ-Minkowski space-time in Section 3.1.

❖ In (1.4.14), the algebra sector of A (that is the product ⋆ and the unit 1A) is linked to the coalge-
bra sector of H (that is the coproduct ∆ and the counit ε). Therefore, the noncommutativity
of A can be linked with the noncocommutativity of H . The cocommutativity of a coproduct
is defined as the interchangeability of the constituents: ∑X(1) ⊗X(2) = ∑

X(2) ⊗X(1).
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Particular types of Hopf algebra have been studied in the physics literature, because of their
link to physical systems or their relative simplicity.

Braided geometry

The (quasi-)triangular Hopf algebra has an additional element called the R-matrix,
generically denoted R ∈ H ⊗ H . It is invertible and must satisfy some consistency
equations. When considering a quantum space-time A with symmetries H , i.e. a H -module
algebra A, one can consider braided commutativity [34, 35], that is when noncommutativity
of A is controlled by the R-matrix through

f ⋆ g =
∑(

R−1
1 ▷ g

)
⋆
(
R−1

2 ▷ f
)
, (1.4.15)

where we noted R = ∑
R1 ⊗ R2 ∈ H ⊗ H in the spirit of the Sweedler notation. The

main point of this braided construction is that one can export many more commutative
structures just by adapting them to be braided commutative. More details are given in
Section 2.2.

Bicrossproduct structure

One can export internal structures of groups to the quantum group setting, especially
the semi-direct product. Let G be a group with semi-direct structure, i.e. G = G1 ⋉ G2.
This means that transformations with G2 also involve elements of G1. As an example, the
Poincaré group can be decomposed as P1,3 = T 1,3 ⋊ SO1,3(R), where T 1,3 denotes the
group of translations and SO1,3(R) the group of rotations and boosts. Using the Hopf
algebra formalism, the semi-direct product can be generalised as the bicrossproduct [32]
H = H1 ▷◀H2 via the introduction of an action ▷ of H1 on H2 and a coaction ◀ of H2 on
H1. As an example, the κ-Poincaré Hopf algebra is constructed as a quantum deformation
of the Poincaré group thanks to this bicrossproduct structure (see Section 3.1 for more
details).

The quantum space-time can emerge as the dual of H . But Majid [32] has developed
another idea on how geometry could emerge from this bicrossproduct structure, as the latter
can be seen as the quantisation of homogeneous spaces. The semi-direct product actually
appears when considering a space-time M with a Lie group of symmetries G. As noted
above, the symmetries G acts on the space-time so that M ⋊G and taking the dual point of
view C ∞(M) ⋊ CG, where CG denotes the vector space of formal C-linear combinations
of elements of G. At this point, C ∞(M) can be turned into a noncommutative algebra
A and CG into a (noncocommutative) Hopf algebra H , giving A ⋊ H . One further
forms a bicrossproduct by requiring that the space-time “reacts” on the momentum space
C ∞(M)▶◁CG and one exports that to the quantum setting A▶◁H .

Drinfel'd twist

Starting from a Hopf algebra H , one can construct another Hopf algebra H̃ via a
Drinfel’d twist. The Drinfel’d twist is an invertible element F = ∑

F1 ⊗ F2 ∈ H ⊗ H
satisfying the so-called 2-cocycle condition (1.6.14a) and the normalisation (1.6.14b). If we
define

∆F = F∆F −1, SF = χSχ−1 (1.4.16)
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where χ = F1S(F2) ∈ H , then H̃ = (H , ·, 1,∆F , ε, SF ) forms a new Hopf algebra. This
is convenient in two ways. First, one can start with a very simple Hopf algebra structure, like
the one in Example 1.4.3, and construct a more complex Hopf algebra using the Drinfel’d
twist. Second, if we consider a H -module algebra A, then by adapting its product it can be
turned into a H̃ -module algebra. Explicitly, the new product of A is

f ⋆F g =
∑(

F −1
1 ▷ f

)
⋆
(
F −1

2 ▷ g
)

(1.4.17)

where ⋆ was the previous product of A. Thus, one can consider a commutative algebra
of functions over a classical space-time A = C ∞(M) with some symmetry group H (for
example the Lie algebra of vector fields) and construct a quantum space-time with quantum
symmetries by simply introducing a Drinfel’d twist F ∈ H ⊗ H . See Subsection 1.6.2
for more insights.

1.5 Derivation-based differential calculus

When considering a space-time M, one can define quantities through smooth functions C ∞(M),
like position. But, one needs also their derivatives, like in the computation of speed. When the
space-time is curved, the speed vector does not “belong” to the space-time but to its tangent space.
Moreover, comparing vectors attached to distant points is no longer straightforward. This lack of
consistency generated by the geometry is in fact not a curse since it is precisely how we quantify
and characterise the geometry. In other words, all the geometric information goes into vector
fields from which we construct quantitive geometrical objects like the metric, the connection or
the curvature.

Considering that we want to generalise the previous setting into a purely algebraic one, we
should start by generalising the vector fields, from which all other quantities would follow.

The generalisation of vector fields to the non-commutative setting has been considered in several
ways: via Hopf algebra (see section 14.1 of [33]), or via quantum principal fiber bundles [36],
among others. The point of view taken here [5] is to see that there is a one-to-one correspondence
between the vector fields and the derivations over C ∞(M), noted Der(C ∞(M)).

Given an algebra A, a derivation X ∈ Der(A) over A is defined as a linear mapping satisfying
the Leibniz rule, i.e. for any f, g ∈ A,

X(f ⋆ g) = X(f) ⋆ g + f ⋆ X(g) (1.5.1)

where ⋆ denotes the product of A. The derivations form a Lie algebra, in the sense that given two
derivations X, Y ∈ Der(A), then [X, Y ] = XY − Y X is also a derivation.

Proof. First, [X, Y ] is linear as a composition and sum of linear maps. One then need to
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check that it follows the Leibniz rule (1.5.1). Let f, g ∈ A,

[X, Y ](f ⋆ g) = X
(
Y (f ⋆ g)

)
− Y

(
X(f ⋆ g)

)
= X

(
Y (f) ⋆ g + f ⋆ Y (g)

)
− Y

(
X(f) ⋆ g + f ⋆ X(g)

= XY (f) ⋆ g + (((((((Y (f) ⋆ X(g) + hhhhhhhX(f) ⋆ Y (g) + f ⋆ XY (g)
− Y X(f) ⋆ g − hhhhhhhX(f) ⋆ Y (g) − (((((((Y (f) ⋆ X(g) − f ⋆ Y X(g)

= [X, Y ](f) ⋆ g + f ⋆ [X, Y ](g)

Furthermore, if we define the action of A on Der(A), by f ▷X = f ⋆ X, then Der(A) is not an
A-module, since f ⋆ X does not follow the Leibniz rule. But, as one can notice in performing this
computation (done in the proof below), f ⋆ X would be a derivation if f was commuting with any
element of A. Even if we work in a noncommutative context, it can exist elements of the algebra
that commutes with all others. The set of those elements is called the center of the algebra and is
denoted Z(A). Explicitly, f is an element of the center Z(A) if and only if f ⋆ g = g ⋆ f for any
g ∈ A. Thus, Der(A) is a Z(A)-module.

Proof. One needs to check that f ⋆ X ∈ Der(A) for any f ∈ Z(A) and X ∈ Der(A). As
above, f ⋆ X is a linear map because X is. Now let us check the Leibniz rule. Given any
g, h ∈ A,

(f ⋆ X)(g ⋆ h) = f ⋆
(
X(g) ⋆ h+ g ⋆ X(h)

)
= f ⋆ X(g) ⋆ h+ f ⋆ g ⋆ X(h)
= f ⋆ X(g) ⋆ h+ g ⋆ f ⋆ X(h)
= (f ⋆ X)(g) ⋆ h+ g ⋆ (f ⋆ X)(h)

One should note that, when considering the algebra of smooth functions A = C ∞(M), one has
Z(A) = C ∞(M) = A since this algebra is commutative.

The vector fields are thus generalised, in the noncommutative context, as the derivations over
the algebra. This observation is a cornerstone for the definition of some physical models developed
in this manuscript. In order to build the derivation-based differential calculus, one has to define
the set of forms. Inspired by the commutative case, one defines a n-forms ω ∈ Ωn(A) as a
Z(A)-multilinear antisymmetric map from Der(A)n → A. This means that ω takes n entries from
Der(A), like X1, . . . , Xn ∈ Der(A), and sends it to A:

ω(X1, . . . , Xn) ∈ A. (1.5.2a)

The antisymmetry states that swapping two of the n entries (here Xj and Xk) generates a minus
sign

ω(X1, . . . , Xj−1, Xj, Xj+1, . . . , Xk−1, Xk, Xk+1, . . . , Xn)
= −ω(X1, . . . , Xj−1, Xk, Xj+1, . . . , Xk−1, Xj, Xk+1, . . . , Xn)

(1.5.2b)
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for any k, j = 1, . . . , n. Finally, Z(A)-multilinearity states that any of the n entries (here Xj) is
linear for the scalars and for the action of Z(A):

ω(X1, . . . , Xj−1, f ⋆ Xj + g ⋆ Yj, Xj+1, . . . , Xn)
= f ⋆ ω(X1, . . . , Xj−1, Xj, Xj+1, . . . , Xn) + g ⋆ ω(X1, . . . , Xj−1, Yj, Xj+1, . . . , Xn)

(1.5.2c)

for any f, g ∈ Z(A) and Yj ∈ Der(A).

From there, we can define the (wedge) product between forms of different degrees (here n and
m) via

(ω ∧ η)(X1, . . . , Xn+m)

= 1
n!m!

∑
σ∈Sn+m

(−1)sign(σ)ω(Xσ(1), . . . , Xσ(n)) ⋆ η(Xσ(n+1), . . . , Xσ(n+m)), (1.5.3)

where ω ∈ Ωn(A), η ∈ Ωm(A), Sn+m denotes the set of permutations of 1, . . . , n + m and sign
stands for the signature of such a permutation. This definition is similar to the commutative one.
One can notice however, the presence of the algebra product ⋆ in the expression (1.5.3). If ⋆ is
noncommutative, then ∧ will not be graded commutative, that is

ω ∧ η ̸= (−1)|ω| |η|η ∧ ω (1.5.4)
where | · | here denotes the degree of the form.

This observation is more general than the derivation-based differential calculus formalism since
it also occurs in other formalism of noncommutative geometry. One of the main consequence,
like in any noncommutativity context, is that one has to pay attention to the order of the terms.
Especially, when considering local coordinates in (d + 1)-dimensional space-time (x0, . . . , xd),
d+ 1-forms are expressed in the commutative case as

ω = f dx0 ∧ · · · ∧ dxd (1.5.5)
where f is a smooth function. But since dxj ∧ dxk and dxk ∧ dxj are a priori unrelated if A is
noncommutative, then one has to take into account any permutation of the dxj in the expression
(1.5.5).

This implies that one can generate forms of arbitrary degrees. Indeed, in a commutative setting
dxj ∧ dxj = 0 because of antisymmetry of 2-forms due to graded commutativity. Therefore, if
one wants to build a form of degrees higher then the space-time dimension, that is higher than
d+ 1, one should add at least one dxj in expression (1.5.5). However, this dxj is already present,
and from the previous argument, such a form should necessarily vanish. In the presence of a
noncommutative product, the previous demonstration falls short because dxj ∧dxj can be non-zero
due to (1.5.4). Thus, there is no upper bound on the degrees of non-vanishing forms.

Finally, one can jump to higher degrees by using the differential d : Ωn(A) → Ωn+1(A) which is
defined, as in the commutative setting, via the Koszul formula

dω(X1, . . . , Xn+1) =
n+1∑
j=1

(−1)j+1Xj

(
ω(X1, . . . ,

j
∨, . . . , Xn+1)

)
+

∑
1⩽j<k⩽n+1

(−1)j+kω([Xj, Xk], X1, . . . ,
j
∨, . . . ,

k
∨, . . . , Xn+1),

(1.5.6)

where
j
∨ denotes the omission of the element Xj . One can see that this definition does not involve

the product of A and therefore, does not see the noncommutativity.

Hersent Kilian − Thèse de Doctorat 33



1.6. Deformation quantisation

From the previous definition, two main properties arise

d2 = 0, (1.5.7a)
d(ω ∧ η) = dω ∧ η + (−1)|ω| ω ∧ dη. (1.5.7b)

From (1.5.7b), one reads that d is a graded derivation (satisfying a graded Leibniz rule) and,
from (1.5.7a), that it squares to zero. Therefore, d is a differential operator.

Finally, one defines the set of all forms as the sum of all sets of forms of any degrees

Ω•(A) =
∞⊕
n=0

Ωn(A), (1.5.8)

where Ω0(A) = A. The triplet

(Ω•(A),∧, d) (1.5.9)

is the differential algebra defining the derivation-based differential calculus.

1.6 Deformation quantisation
General relativity and the standard model of particle physics are the two main models of

theoretical physics that give very accurate predictions of the nature we observe. They are
expressed as field theories on a classical space-time. If we were to generalise these two pictures to
field theories on a quantum space-time, then this new theory would need to account for the results
given by the two former models, in some way. This is the precise point of deformation quantisation:
considering a classical geometry, how can one deform it into a noncommutative geometry?

The way the classical geometry is “kept track of” relies on a parameter, called the deformation
parameter, that expresses if the geometry is to be considered classical or quantum. In most of our
physical models, the deformation parameter corresponds to an energy scale (often associated to
the Planck mass). Therefore, for energies comparable or above the deformation parameter, the
noncommutative nature of the geometry gives relevant contributions, but for energies far below the
deformation parameter, the geometry can be considered classical. The previous way of thinking is
akin to quantum mechanics, where the deformation parameter is ℏ. Deformation quantisation was
indeed first developed as a mathematical model of quantum mechanics [8, 9, 10], as detailed in
Section 1.2.

We here give a brief introduction to deformation quantisation and refer to [37, 38] for more
historical and theoretical aspects.

After Weyl [8] and von Neumann [9] works, mathematicians have gone on and tried to deform
more complex structures. The existence of a star-product on symplectic manifolds was proven by
de Wilde and Lecompte [39] and, in parallel, by Bayen and collaborators [40]. The existence
of the star-product on general Poisson manifold was established by Kontsevich [41].

In general terms, let M be a Poisson manifold, that is a space-time with phase-space structure.
A star product ⋆k̄ (1.2.3) is an associative product of function expressed formally as a power series
expansion in the deformation parameter k̄. That is for two functions f and g

f ⋆k̄ g = f · g +
∞∑
n=1

k̄nCn(f, g) (1.6.1)
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where · is the classical product of functions (1.1.1), Cn is a bilinear differential operator and k̄ is
a constant. A priori f and g are taken to be smooth functions, i.e. f, g ∈ C ∞(M). But, since
the operation ⋆k̄ (1.6.1) may not be convergent for any smooth functions, the set of considered
functions might be smaller then C ∞(M), and is generically called the multiplier space. In the
context of formal deformation, we simply state that f and g can be written as formal power series
in k̄, that is

f = f0 +
∞∑
n=1

k̄nfn (1.6.2)

where f0 is the classical smooth function. We usually note that f is a formal power expansion in
k̄ of the form (1.6.2) as f ∈ C ∞(M)Jk̄K. Note that with expression (1.6.2), the operator Cn in
(1.6.1) writes

Cn(f, g) =
n∑

m=0
fm gn−m. (1.6.3)

The main feature of this star-product formalism is that the limit of a vanishing deformation
parameter, corresponding here to k̄ → 0, makes one recover (formally) all the classical structure of
M. More explicitly, f ⋆k̄ g → f · g and

[f, g]⋆k̄ = f ⋆k̄ g − g ⋆k̄ f → ik̄{f, g}, (1.6.4)

where {·, ·} correspond to the Poisson bracket of M.
In a physical context, the limit k̄ → 0 can correspond to a low energy limit, if 1/k̄ is an

energy scale. Furthermore, the formula (1.6.4) corresponds mathematically to the usual sentence
“quantising a physical theory is replacing the brackets with commutators”. It is the precise reason
of the word quantisation in “deformation quantisation”. In this sense, the star product formalism
is a generalisation of canonical quantisation of quantum mechanics.

In order to perform computations, an explicit formula of ⋆k̄ is needed. In the mathematical
literature, this field of research is called strict deformation quantisation. There are several ways
to generate explicit star product. In this manuscript, we follow the procedure of Gutt with
deformation of the universal enveloping algebra [42] and Reiffel through convolution algebra
techniques [43]. We also present the Drinfel’d twist method.

1.6.1 Convolution algebra techniques
The procedure presented here is the one of [42, 43]. Let M be a space-time with a linear

Poisson structure, that is, for any f, g ∈ C ∞(M),

{f, g}(x) = Cνρ
µx

µ ∂f

∂xν
∂g

∂xρ
(1.6.5)

where xµ are (local) coordinates on M and Cνρ
µ is a constant. Then, M naturally identifies

to the dual g′ of a Lie algebra g with Kirillov-Kostant-Souriau structure, where C is the
structure constant of g. Those are called linear Poisson or Lie-Poisson structures. In this
context, {xµ}µ=0,...,d corresponds to coordinate functions of g′ that satisfies

{xµ, xν} = Cµν
ρx

ρ. (1.6.6)
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The Lie algebra g is associated to a Lie group G, which can be interpreted as the momentum
space. The first step of this construction is to build the convolution algebra of G. We refer to
textbooks like [44] for more mathematical details on harmonic analysis and group theory. This
introduction will also be repeated in the more explicit case of the deformed group of momentum
in Subsection 2.6.1.

Convolution algebra

In order to define a convolution, we need a notion of “sum” (or “integral”) over the group G.
In other words, we need a measure dµ over G. In the case of locally compact groups (which
we suppose always to be the case), there exists a unique left-invariant (resp. right-invariant)
measure called the left (resp. right) Haar measure, denoted dµ (resp. dµR). The invariance
states that

dµ(u1u2) = dµ(u2), dµR(u1u2) = dµR(u1), (1.6.7)

for any u1, u2 ∈ G. The uniqueness of both measures imposes that there exists a positive
function ∆ : G → R+

0 linking the two, i.e.

dµR(u) = ∆(u−1) dµ(u) (1.6.8)

for any u ∈ G. The function ∆ is called the modular function. It is a group homomorphism,
meaning it satisfies

∆(u1u2) = ∆(u1)∆(u2), ∆(u−1) = ∆(u)−1, ∆(1) = 1. (1.6.9)

In the case where ∆ = 1, the group G is said to be unimodular and one has dµ = dµR.
We can now integrate functions on the group like F : G → R as∫

G
dµ(u) F (u). (1.6.10)

The set of functions for which (1.6.10) does not diverge is noted L1(G) and corresponds to
integrable functions on the group. The choice of left or right Haar measure in (1.6.10) has
no impact, since one can go from one to the other via a change of variable.

Finally, given two functions F1, F2 ∈ L1(G), one can define the convolution product ◦̂
through

(F1 ◦̂F2)(u) =
∫

G
dµ(u0) F1(u0)F2(uu−1

0 ). (1.6.11)

The space L1(G) together with the product ◦̂ forms an algebra that is called the convolution
algebra of G. One can show that ◦̂ is commutative if and only if the group G is Abelian.

This new product ◦̂ is a key ingredient to define our star product. One then just needs to make
the link between the function over g′, that are functions on the space-time M, and functions of G,
that are functions on the momentum space. This link is made, as in quantum mechanics, through
the Fourier transform:

F(f)(u) =
∫
g′
ei⟨log(u), x⟩f(x) dx, F−1(F )(x) =

∫
G
e−i⟨log(u), x⟩F (u) dµ(u), (1.6.12)
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where dx is the Lebesgue measure on g′, ⟨·, ·⟩ : g × g′ → R is the dual pairing between g and g′,
and log : G → g is simply here to make sense of the expression ⟨log(u), x⟩ via the correspondence
of the Lie algebra g and the Lie group G. Finally, we define the star product on M through

f ⋆ g = F−1
(
F(f) ◦̂ F(g)

)
. (1.6.13)

One can make several comments of the expression (1.6.13).
An explicit expression of the star product can be obtained from (1.6.12), (1.6.13) together with

the expression of the Haar measure. The latter is derived via the group law, which itself comes
from the Lie algebra structure (1.6.6) via the Baker-Campbell-Haussdorff formula [45, 46].
A derivation of the star product (1.6.13) is done for a deformation of Minkowski space-time in
Section 3.1.

This star product is non-local because of the convolution product (1.6.11). Indeed, if one
interprets u0 as a momentum, then the integration over u0 imposes that F1 ◦̂F2 at momentum u is
constituted of the (convoluted) sum of F1 and F2 for all momenta. Therefore, given an energy,
the value of F1 ◦̂F2 at this energy depends of the value of F1 and F2 at all energies. Going back
to position space x, this will impose that the value of f ⋆ g at x depends of the value of f and g
everywhere in space and time.

The deformation parameter is not explicitly shown here, but is present in the structure constant
C of (1.6.6) and so in the group law via the Baker-Campbell-Haussdorff formula. The
commutative limit thus corresponds to C → 0 and so to an Abelian group law. In this case, one
can show that the successive integrations of (1.6.13) involve Dirac delta functions and gives
f ⋆ g = f · g, where · is the commutative product of functions (1.1.1).

Finally, to make contact with the quantisation of mechanics presented in Section 1.2, one can
consider a (faithful ∗-) representation of the group algebra on a Hilbert space π : L1(G) → B(H).
Thus, the star product (1.6.13) can be expressed via a quantisation map, similarly to (1.2.2a),
with Q = π ◦ F .

1.6.2 Deformations through Drinfel'd twist
The other mainly used approach to an explicit star product construction is given by Drinfel’d

twist deformation of product [47, 48]. The main idea of this construction is to use Example 1.4.3
in order to form a commutative Hopf algebra out of a Lie algebra g and then to deform it to a
noncommutative algebra via the Drinfel’d twist through (1.4.17). We explicit this below. Note
that this Subsection 1.6.2 uses quantum groups notions, so we refer the reader to Section 1.4 or
Appendix A for more details on Hopf algebras.

Let g be a Lie algebra, that can be the Lie algebra of vector fields in the context of general
relativity, or as infinitesimal symmetry transformations associated to some Lie group. We consider
the universal enveloping algebra U(g) which corresponds to the algebra such that the commutator
of the product of U(g) corresponds to the bracket [·, ·] of g. This algebra can be endowed with a
trivial Hopf algebra structure, as developed in Example 1.4.3.

Let F = ∑
F1 ⊗ F2 ∈ U(g) ⊗ U(g) be an invertible element. We say that F is a Drinfel’d

twist if it further satisfies
(F ⊗ 1)(∆ ⊗ id)(F ) = (1 ⊗ F )(id ⊗ ∆)(F ), (2-cocycle condition) (1.6.14a)

(id ⊗ ε)(F ) = (ε⊗ id)(F ) = 1, (normalisation) (1.6.14b)
F = 1 ⊗ 1 + O (k̄) , (semi-calssical limit) (1.6.14c)
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where ∆ and ε are the coproduct and counit of U(g) respectively and k̄ is the deformation
parameter. The Drinfel’d twist F can be viewed as a function of the deformation parameter k̄,
and the condition (1.6.14c) ensures that the twist vanish at the commutative limit k̄ → 0.

Let us define

∆F = F∆F −1, SF = χSχ−1, (1.6.15)

where S is the antipode of U(g) and we noted χ = F1S(F2). Then, the set U(g)F =(
U(g), ·, 1,∆F , ε, SF

)
is a Hopf algebra (see Theorem A.1.20). Note that it is often denoted

U(g)⋆ in the physics literature, in reference to the star product ⋆ (1.6.16).

Now, let M be a space-time that we want to quantise and G a Lie group of symmetries that
acts on M. We apply the previous procedure to g the Lie algebra of G. In this context, U(g)
corresponds to the (infinitesimal) symmetries of C ∞(M) because C ∞(M) is a U(g)-module algebra
(see details in Subsection 1.4.3).

We want to deform this picture by starting with the symmetries. As detailed above, one can
consider a Drinfel’d twist F , to deform U(g) in a “non-trivial” quantum group U(g)F . The
quantum space-time A, corresponding to a deformation of C ∞(M), which has U(g)F as its algebra
of quantum symmetries, is determined by the new product

f ⋆ g =
∑(

F −1
1 ▷ f

)(
F −1

2 ▷ g
)

(1.6.16)

for any f, g ∈ A.

At this point several comments are in order.
First, the noncommutativity of (1.6.16), which is linked to the “quantum” trait of A, is linked

to the noncocommutativity of ∆F . The undeformed coproduct (1.4.12) is cocommutative, and it
is linked to the commutativity of C ∞(M). Therefore, one pictures that the noncommutativity of
A comes entirely from the Drinfel’d twist F .

The deformation parameter is not shown explicitly here. However, it is usually contained in
the Drinfel’d twist expression, so that the star product (1.6.16) is indeed parametrized by the
deformation parameter. The commutative limit of F is given by the requirement (1.6.14c), and
combined with (1.6.16) one can verify that the star product of A corresponds to the commutative
product of C ∞(M) in the commutative limit.

Example 1.6.1 – Abelian Drinfel'd twist

Let X, Y be two commuting elements of U(g). For example, one could consider X and Y
to be some generators of translations in the case where g is the Lie algebra of the Poincaré
group. Let

F = exp
(
ik̄ X ⊗ Y

)
∈ U(g) ⊗ U(g),

then one can show that F is a Drinfel’d twist (see proof below). From there, the star
product (1.6.16) writes

f ⋆ g =
∞∑
n=0

(ik̄)n
n! (Xn ▷ f) (Y n ▷ g).

Note that, one could have equivalently considered, instead of X and Y , a family of
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commuting elements {Xµ}µ=0,...,d of U(g). In this case, a Drinfel’d twist could write

F = exp
(
ik̄Θµν Xµ ⊗Xν

)
∈ U(g) ⊗ U(g)

where Θ is matrix of constant coefficients. If we further consider that Xµ acts on functions
as a derivation on the µ-th coordinate, one has Xµ ▷ f = ∂µf . Therefore, the star product
(1.6.16) writes

f ⋆ g =
∞∑
n=0

(ik̄)n
n! Θµ1ν1 · · · Θµnνn ∂µ1 · · · ∂µnf ∂ν1 · · · ∂νng.

Proof. Let F = exp(ik̄ X ⊗ Y ) as in Example 1.6.1. It is invertible straightforwardly as it
is expressed via an exponential. Thus, in order to show that F is a Drinfel’d twist, one
needs to verify (1.6.14).

Considering first the 2-cocycle condition, one uses the fact that ∆ is an algebra homomor-
phism to obtain that ∆(exp(X)) = exp(∆(X)) for any X ∈ U(g). Then, using the coproduct
expression (1.4.12), one computes

(F ⊗ 1)(∆ ⊗ id)(F ) = exp(ik̄ X ⊗ Y ⊗ 1) exp
(
ik̄ (X ⊗ 1 + 1 ⊗X) ⊗ Y

)
= exp

(
ik̄ (X ⊗ Y ⊗ 1 +X ⊗ 1 ⊗ Y + 1 ⊗X ⊗ Y )

)
,

(1 ⊗ F )(id ⊗ ∆)(F ) = exp(ik̄ 1 ⊗X ⊗ Y ) exp
(
ik̄ X ⊗ (Y ⊗ 1 + 1 ⊗ Y )

)
= exp

(
ik̄ (1 ⊗X ⊗ Y +X ⊗ Y ⊗ 1 +X ⊗ 1 ⊗ Y )

)
,

so that (1.6.14a) is satisfied.
Again, using the fact that the counit is an algebra homomorphism, one obtains that

ε(exp(X)) = exp(ε(X)). From the expression (1.4.12), one computes

(id ⊗ ε)(F ) = exp(ik̄ X ⊗ ε(Y )) = exp(0) = 1
(ε⊗ id)(F ) = exp(ik̄ ε(X) ⊗ Y ) = exp(0) = 1,

so that (1.6.14b) is satisfied.
Finally, one obtains (1.6.14c) by simply expanding the exponential into an infinite sum

F = 1 ⊗ 1 + k̄
∞∑
n=1

ink̄n−1

n! Xn ⊗ Y n = 1 ⊗ 1 + O (k̄) .

We have gathered all the ingredients to construct a quantum space-time out of a classical
space-time. The next step is to look at the behaviour of fields on this quantum space-time.
Therefore, the next Chapters look at a toy model of ϕ4-theory and try to capture the deformation
that noncommutativity induces on U(1) gauge theory.
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Noncommutative field and gauge theories

Over classical space-times, gauge theories are expressed through a (principal) fiber bundle,
on which a gauge group acts. This fiber bundle corresponds to the geometric space where the
connection (or the gauge fields) and the curvature (or the field strength) live.

For example, in the context of general relativity, the considered bundle is the tangent bundle. A
vector field is expressed as a section of the tangent bundle, i.e. to any point in space-time x ∈ M,
a vector field X ∈ Γ(M), associate a vector in the tangent space at x, X(x) ∈ TxM. Given two
distant points x, y ∈ M, the vectors X(x) and X(y) cannot be compared as they live in different
vector spaces. Therefore, one needs the notion of a parallel transport, or equivalently a connection
(or even a covariant derivative), to transport X(x) in the tangent space at y, i.e. in TyM. The
covariant derivative is defined, in the way of Koszul [49], as ∇ : Γ(M) × Γ(M) → Γ(M) and
writes in local coordinates

∇µ(∂ν) = Γρµν∂ρ (2.0.1)

where Γρµν is the connection. Finally, the curvature R : Γ(M)2 × Γ(M) → Γ(M) is defined as
the mismatch of the starting and ending point when performing a loop of parallel transports (see
Figure 3). In local coordinates, this writes

Rµν(∂ρ) = ∇µ(∇ν(∂ρ)) − ∇ν(∇µ(∂ρ)) = R σ
µνρ ∂σ. (2.0.2)

One can generalise this picture to the case of a principal fiber bundle P over a space-time
M, with a structure group given by a Lie group G. In such a bundle G acts on P via a right
action. One then considers (V, ρ) a representation of G and considers the associated vector
bundle X = P ×ρ V . The notation ×ρ denotes here the fact that G acts on the V part of X
via ρ. The sections s : M → X , noted s ∈ Γ(X ), on such a bundle form a C ∞(M)-module for
the point-wise product. As above, one can compare distant regions of this bundle thanks to a
covariant derivative ∇ : Γ(M) × Γ(X ) → Γ(X ), and can asses the loop mismatch via the curvature
R : Γ(M)2 × Γ(X ) → Γ(X ) (see Figure 3).

In this context, the other main example is the case where G = U(1) and V = R, which
corresponds to Γ(X ) = C ∞(M) ⊗ R. From the definition of ∇, one has in local coordinates (see
(2.1.9))

∇µf = ∂µf − iAµf (2.0.3)
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for any f ∈ C ∞(M). Note that for simplicity we have abbreviated f = f ⊗ 1 ∈ C ∞(M) ⊗ R, by
using C ∞(M) ⊗ R ≃ C ∞(M). One recognizes in (2.0.3) the particle physics expression of the
covariant derivative together with the gauge field Aµ. The curvature then writes

Rµν(f) = i
(
∂µAν − ∂νAµ − i[Aµ, Aν ]

)
f = iFµνf (2.0.4)

where one recognize the field strength F . Therefore, (classical) SU(n) gauge theories can also be
written in this general framework.

Figure 3 − Illustration of the formula (2.1.3), consisting in a loop of parallel transports, for
s a vector field.

M

X

Y −[X, Y ]

−X

−Ys

s

s

s

s

RX,Y (s)

To generalise gauge theories to the algebraic context of noncommutative geometry, we first need
a generalisation of the notion of (principal) fiber bundle. The algebraic analogue of sections of the
bundle is, in fact, directly given by the Serre-Swan theorem, which states that fiber bundles are
in one-to-one correspondence with the notion of (projective) module (see the Definition A.2.1 and
the Example 1.4.4 for an explicit example). Therefore, the first element to build a gauge theory
is a module, generically denoted by X here, that is supposed to stand as the noncommutative
counterpart of Γ(X ). The covariant derivative and the curvature definitions are then exported
from the commutative case as such. Finally, one can also implement the gauge transformations in
this setting.

To summarise, we consider here a quantum space-time A as introduced in Chapter 1. The gauge
theory over this quantum space-time is defined on a module X over the algebra A in which we
implement the notions of covariant derivative, associated curvature and gauge transformations.
From there, one recovers the usual physical quantities (gauge fields, field strength, etc...) on the
quantum space-time.

Note that these notions depend on how one generalises the vector fields Γ(M) and so how
one generalises the differential calculus. As already expressed in Chapter 1, there are three main
ways of doing so, leading thus to different formulations of gauge theory on quantum space-times.
Here, we detail two of such constructions: gauge theories coming from derivation-based differential
calculus and the one coming from Drinfel’d twist construction. The way gauge theories are
implemented in the spectral triple formalism was roughly introduced by (1.2.5) and (1.3.6) and is
not treated further here.
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The previous scheme of gauge theory has been applied to several quantum space-times, like to
κ-Minkowski (see Section 3.2). For a complete review of gauge theories on quantum space-time,
see [23]. It should also be noted that the following constructions are made for right modules, but
could be equally well made for left modules or bimodules [23].

Note that building a gauge theory on a noncommutative space is a priori not straightforward.
Indeed, consider g to be the Lie algebra of infinitesimal gauge transformations, with associated
gauge (Lie) group G, with a matrix representation. The gauge field A is a g-valued connection.
Then, the noncommutative analogue of Aµ is an element of g⊗A, which, in the matrix representation,
corresponds to a matrix with coefficients in A. However, since A is noncommutative, the Lie
algebra closure rules are likely to be broken. Explicitly, for α⊗ f , β ⊗ g ∈ g ⊗ A, one has

[α⊗ f, β ⊗ g] = [α, β] ⊗ (f ⋆ g) + αβ ⊗ [f, g]⋆, (2.0.5)

which would corresponds to a term of the form [Aµ, Aν ] in the field strength. The first term of
(2.0.5) is stable in g ⊗ A but the second is not, since in general αβ /∈ g, and does not vanish as
the star product is not commutative. The usual solution to this issue is to consider that the
connection takes values in U(g) ⊗ A, where U(g) is the universal enveloping algebra of g. Then,
some conditions may be imposed on A to recover a connection that takes values in g ⊗ A. For
the most used case of G = U(n), which corresponds to g = u(n), one has that U(u(n)) ≃ Mn(C),
so that A takes values in Mn(C) ⊗ A. To recover u(n) from Mn(C), a hermiticity condition is
imposed on A using the involution of A.

Each of the following proposals eliminates the previous problem, mainly by considering different
types of deformation. The gauge theory schemes, based on derivations, developed in Section
2.1 bypass this problem by considering a deformed gauge group. In the case of the Drinfel’d
twist formulation of Section 2.2, another solution was pointed out. One can deform the gauge
transformation thanks to the Drinfel’d twist in such a way that all the deformations go into the
Leibniz rule which arises when one gauge transforms a product. The Leibniz rule of the gauge
transformation is seen, in this formalism, in its coproduct. For its part, the Seiberg-Witten
map of Section 2.3 requires the gauge parameter to depend on the undeformed gauge field, leading
to a modified gauge transformation.

2.1 Derivation based theories
In this Section 2.1, we introduce the gauge theory built on derivation-based differential calculus,

as it was set up in [50, 51]. For a review, see [5]. We consider A to be a quantum space-time and
X to be a A-module. The vector fields of A are considered to be the derivations of the algebra
Der(A), following the construction of Section 1.5.

Given a derivation X ∈ Der(A), we define a connection à la Koszul [49] ∇X : X → X as

∇X(s ◁ f) = ∇X(s) ◁ f + s ◁X(f), (Leibniz rule) (2.1.1a)
∇X+zY (s) = ∇X(s) + ∇Y (s) ◁ z, (Z(A)-linearity) (2.1.1b)

for any Y ∈ Der(A), s ∈ X, f ∈ A and z ∈ Z(A). Considering the differential calculus constructed
in Section 1.5, the definition (2.1.1) is equivalent to

∇ : X → X ⊗A Ω1(A), ∇(s ◁ f) = ∇(s) ◁ f + s⊗ df, (2.1.2)
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where d : A → Ω1(A) is the differential. It straightforwardly extends to the covariant derivative
∇ : X → X ⊗A Ω•(A).

Performing a loop of parallel transports 0 → X → XY → XY −Y → XY −Y X (see Figure 3),
one does not necessarily come back to the same point. This mismatch is measured by RX,Y : X → X,
the curvature associated to ∇, thus defined as

RX,Y (s) = [∇X ,∇Y ](s) − ∇[X,Y ](s)
= ∇X(∇Y (s)) − ∇Y (∇X(s)) − ∇[X,Y ](s).

(2.1.3)

One can show, using (2.1.1a), that the curvature is a module homomorphism, that isRX,Y (s ◁ f) =
RX,Y (s) ◁ f . This condition actually justifies that one can only consider the components Fµν in
(2.0.4) or R σ

µνρ in (2.0.2) instead of the full curvature.

Proof.

RX,Y (s ◁ f) = ∇X∇Y (s ◁ f) − ∇Y ∇X(s ◁ f) − ∇[X,Y ](s ◁ f)
= ∇X

(
∇Y (s) ◁ f + s ◁ Y (f)

)
− ∇Y

(
∇X(s) ◁ f + s ◁X(f)

)
− ∇[X,Y ](s) ◁ f − s ◁[X, Y ](f)

= ∇X∇Y (s) ◁ f + ((((((((∇Y (s) ◁X(f) + hhhhhhhh∇X(s) ◁ Y (f) + ������XXXXXXs ◁XY (f)
− ∇Y ∇X(s) ◁ f − hhhhhhhh∇X(s) ◁ Y (f) − ((((((((∇Y (s) ◁X(f) − ������XXXXXXs ◁ Y X(f)
− ∇[X,Y ](s) ◁ f − (((((((hhhhhhhs ◁[X, Y ](f)

= RX,Y (s) ◁ f

The gauge group is defined as the group of automorphisms of X, that is the invertible linear
maps φ : X → X such that φ(s ◁ f) = φ(s) ◁ f . The gauge transformation of ∇ and consequently
of the curvature are given by

∇φ
X = φ−1 ◦ ∇X ◦ φ, Rφ

X,Y = φ−1 ◦RX,Y ◦ φ. (2.1.4)

One can actually check that the gauge transformed connection ∇φ is indeed a connection as it
satisfies (2.1.1).

In the context of unitary gauge groups, as in Yang-Mills theory, one further needs a Hermitian
structure (·, ·) : X × X → A, i.e. a sesquilinear map (see (B.1.2a) and (B.1.2b)) which satisfies

(s1, s2)† = (s2, s1), (s1 ◁ f1, s2 ◁ f2) = f †
1 ⋆ (s1, s2) ⋆ f2 (2.1.5)

for any s1, s2 ∈ X and f1, f2 ∈ A. In this context, the connection is Hermitian if and only if

X
(
(s1, s2)

)
= (∇X(s1), s2) + (s1,∇X(s2)) (2.1.6)

for any X ∈ Der(A) such that X(f †) = X(f)†. One says that X is a real derivative when the
latter condition holds. When considering deformed Yang-Mills theories, the condition (2.1.6) is
equivalent to A†

µ = Aµ, which corresponds to Aµ being real-valued in the commutative limit.
Finally, a gauge transformation φ is said to be unitary if

(φ(s1), φ(s2)) = (s1, s2). (2.1.7)

We denote the set of unitary gauge transformations as U(X).
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All the previous definitions make more sense when applied to the specific case of X = A, as in
Example A.2.2.

Noncommutative electrodynamics

Considera X = A, with action ◁ = ⋆ and Hermitian structure (f, g)A = f † ⋆ g. One can
start by actually checking that ⋆ is indeed an action and that (·, ·)A satisfies (2.1.5). The
equation (2.1.1) now states how the connection ∇ behaves on products, i.e.

∇X(g ⋆ f) = ∇X(g) ⋆ f + g ⋆ X(f) (2.1.8)

and considering g = 1, this gives

∇X(f) = X(f) − iAX ⋆ f, (2.1.9)

where we noted ∇X(1) = −iAX . If one considers local coordinates, then (2.1.9) is akin to
(2.0.3) for X = ∂µ. Our ∇ thus corresponds to the deformed covariant derivative associated
to some gauge field A. Using the curvature definition (2.1.3), one computes with (2.1.9) that

RX,Y (f) = i
(
X(AY ) − Y (AY ) − i[AX , AY ]⋆ + A[X,Y ]

)
⋆ f

= FX,Y ⋆ f,
(2.1.10)

which again gives the same expression as (2.0.4) if X = ∂µ and Y = ∂ν . Furthermore, if one
requires that ∇ is Hermitian, then, using (2.1.6) and (2.1.9), one computes that

A†
X = AX (2.1.11)

for X a real derivation.
A gauge transformation φ is fully determined by its value at 1 since φ(f) = φ(1) ⋆ f . We

denote u = φ(1) in the following. Through (2.1.4), the gauge transform of the gauge field
and the field strength are calculated to be

Au
X = u† ⋆ AX ⋆ u − iu† ⋆ X(u), (2.1.12a)

F u
X,Y = u† ⋆ FX,Y ⋆ u. (2.1.12b)

The unitary gauge group, given by (2.1.7), writes

U(1) =
{
u ∈ A, u† ⋆ u = u ⋆ u† = 1

}
. (2.1.13)

aIn accordance with the commutative case described in (2.0.3), it would be more appropriate to consider
that X = A ⊗ C. In this decomposition, C is as the 1-dimensional vector space to which A is associated to
form a vector bundle. However, one can use that A ⊗ C ≃ A to simplify the notations.

Several comments are in order.

The deformed “Abelian” gauge theory developed above actually is in fact more like a non-Abelian
one, because the product ⋆ is noncommutative. Indeed, the bracket term [AX , AY ]⋆ is present in
(2.1.10) even if electrodynamics has been considered. However, in Abelian gauge theories, the field
strength contains directly measurable quantities, that are the electric and magnetic fields. In this
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sense, it must be gauge invariant, as the measured fields should not depend on the chosen gauge.
From (2.1.12b) it follows that, due to the noncommutativity of ⋆, the deformed field strength F is
not gauge invariant, but rather gauge covariant.

Accordingly, the field strength may not be a physical quantity in the noncommutative theory
and one should build the relevant fields out of F . This is already done in non-Abelian gauge theory
when one considers the gauge bosons of the electroweak interaction not to be the hypercharge and
isospin fields B, W 1, W 2 and W 3 (which would all correspond to different copies of A here) but
rather W± = W 1∓iW 2

√
2 , γ = cos(θW )B + sin(θW )W 3 and Z0 = cos(θW )W 3 − sin(θW )B. In the case

of Moyal space, it is actually more convenient to work with the so-called covariant coordinate or
invariant connection, Aµ = i(Aµ + Θ−1

µν x
ν), rather than Aµ. However, there are a priori an infinite

number of possible candidate that would have the suitable properties to be a gauge field and the
good commutative limit. The question of which one is the physically relevant quantity has not
been settled yet.

The gauge theory considered here already has some phenomenological consequences on the
physical model under study. Indeed, if the noncommutative space A is constructed as the
deformation of some commutative space, as in Section 1.6, one can consider the expansion of F
up to a given order m in the deformation parameter. This would give an effective Yang-Mills
action with supplementary operators of (mass) dimension 5 to 4 +m, for which the deformation
parameter is the scale of “new physics”. From another perspective, one could also look into the
deformation induced by the symmetries. Indeed, the gauge group U(1) is a deformed version of the
commutative U(1) gauge group but is not U(1). Therefore, the usual gauge group should be broken
at scales close to the deformation parameter. A more extended discussion on phenomenology of
quantum space-times is given in Section 4.2.

One can construct similarly U(n) gauge theories, generically called noncommutative Yang-Mills
theories.

Noncommutative Yang-Mills theory

Considera X = A⊗n, for some n ∈ N1, with action ◁ = ⋆ ⊗ · · · ⊗ ⋆ (see Example A.2.2).
For convenience, one writes

ej = 0 ⊗ · · · ⊗ 0 ⊗
(j)
1 ⊗ 0 ⊗ · · · ⊗ 0, (2.1.14)

where the only non-zero entry is at the j-th place, for any j = 1, . . . , n. Thus, for any
s ∈ X, one can decompose s =

n∑
j=1

ej ⋆ s
j, where sj ∈ A. From there, the action writes

s ◁ f =
n∑
j=1

ej ⋆ s
j ⋆ f , for any f ∈ A. The Hermitian structure considered is

(s1, s2) =
n∑
j=1

(sj1)† ⋆ sj2. (2.1.15)

Thanks to the Leibniz rule (2.1.1a), one has

∇X(s) =
n∑
j=1

∇X(ej ⋆ sj) =
n∑
j=1

ej ⋆ X(sj) + ∇X(ej) ⋆ sj. (2.1.16)
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Therefore, the connection is fully determined by its values on the basis {ej}j, which are
written in components as ∇X(ej) = −i

n∑
k=1

ek ⋆ (AX)kj . If one associates the module with
column vectors of elements in A, that is X = M1,n(A) = M1,n(C) ⊗ A, one can write the
connection AX under a matrix form

AX =
n∑

j,k=1
ej ⋆ ek ⋆ (AX)kj =


(AX)1

1 · · · (AX)1
n

...
. . .

...
(AX)n1 · · · (AX)nn

 ∈ Mn(A) = Mn(C) ⊗ A (2.1.17)

where {ej}j are the basis elements of Mn,1(A). It is also quite convenient to combine the
matrix transpose t and the involution † of A to get a generalisation of the adjoint matrix
‡ = t ⊗ †. In these notations e‡

j = ej, and (2.1.16) writes (s1, s2) = s‡
1 ⋆ s2, where ⋆ here

denotes the matrix product with ⋆.
Equipped with these notations, the requirement that ∇ is Hermitian (2.1.6) now writes

A‡
X = AX . (2.1.18)

Furthermore, the gauge transformations are fully determined by their action on the basis
{ej}j , since φ(s) =

n∑
j=1

φ(ej) ⋆ sj . Indeed, one computes that φ(ej) =
n∑
k=1

ukj ⋆ek with ukj ∈ A.

The latter element can be written in matrix notations as u = (ukj )j,k ∈ Mn(A). Such a gauge
transformation is said unitary if u‡ ⋆ u = 1n, as one computes from (2.1.7). Therefore, the
(unitary) gauge group is

U(n) =
{
u ∈ M1,n(A), u‡ ⋆ u = u ⋆ u‡ = 1n

}
. (2.1.19)

Finally, the connection A and the curvature F are computed to gauge transform as

Au
X = u‡ ⋆ AX ⋆ u − iu‡ ⋆ X(u), (2.1.20a)

F u
X,Y = u‡ ⋆ FX,Y ⋆ u. (2.1.20b)

aIn accordance with the footnote a in the example of noncommutative electrodynamics, one should rather
consider X = A ⊗ Cn. The notations are simplified by using A ⊗ Cn ≃ A⊗n.

Proof. We here derive some equations stated above, in the case of noncommutative electro-
dynamics U(1). The U(n) case can be computed similarly.

First let us prove (2.1.10). To do so, one mainly uses (2.1.8) and (2.1.9).

RX,Y (f) = ∇X(∇Y (f)) − ∇Y (∇X(f)) − ∇[X,Y ](f)
= ∇X

(
Y (f) − iAY ⋆ f

)
− ∇Y

(
X(f) − iAX ⋆ f

)
− [X, Y ](f) + iA[X,Y ] ⋆ f

= ����XXXXXY (f) − ������
iAX ⋆ Y (f) − i∇X(AY ) ⋆ f − XXXXXXXiAY ⋆ X(f)

− ����XXXXY X(f) + XXXXXXXiAY ⋆ X(f) + i∇Y (AX) ⋆ f + ������
iAX ⋆ Y (f)

− �����XXXXX[X, Y ](f) + iA[X,Y ] ⋆ f

= −i
(
X(AY ) − Y (AX) − i[AX , AY ] − A[X,Y ]

)
⋆ f.
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The hermitian structure considered together with (2.1.6), imposes that for any real
derivation X, one has

X
(
(f, g)

)
= X(f † ⋆ g) = X(f)† ⋆ g + f † ⋆ X(g)

= (∇X(f), g) + (f,∇X(g)) =
(
X(f) − iAX ⋆ f

)†
⋆ g + f † ⋆

(
X(g) − iAX ⋆ g

)
= X(f)† ⋆ g + f † ⋆ X(g) + if † ⋆ (A†

X − AX) ⋆ g,

from which one obtains (2.1.11).
The unitary elements of the gauge group given by (2.1.7) reads

(φ(f), φ(g)) = (u ⋆ f, u ⋆ g) = f † ⋆ u† ⋆ u ⋆ g
= (f, g) = f † ⋆ g,

which implies (2.1.13).
Finally, given the expressions for the gauge transformations (2.1.4), one computes

∇φ
X(f) = φ−1

(
∇X(φ(f))

)
= u† ⋆

(
∇X(u ⋆ f)

)
= u† ⋆

(
∇X(u) ⋆ f + u ⋆ X(f)

)
= u† ⋆

(
X(u) − iAX ⋆ u

)
⋆ f +X(f)

= X(f) − iAu
X ⋆ f

where φ−1(f) = u−1 ⋆ f = u† ⋆ f , for u ∈ U(1). One directly reads (2.1.12a) and deduces
(2.1.12b) from standard computations.

Finally, suppose that there exists an integral over A, potentially inherited from the integral
over the space-time M, for which A is the deformed space of smooth functions. In the context of
noncommutative Yang-Mills theory, let us consider the action

S =
∫

dd+1x tr
(
F µν ⋆ F ‡

µν

)
(2.1.21)

where tr stands for the matrix trace. If one considers that the integral is cyclic for ⋆, that is∫
dd+1x f ⋆ g =

∫
dd+1x g ⋆ f (2.1.22)

then, the action (2.1.21) is gauge invariant for the U(n) gauge group. Indeed, for any u ∈ U(n),
one has

Su =
∫

dd+1x tr
(
(F u)µν ⋆ (F u)‡

µν

)
=
∫

dd+1x tr
(
u‡ ⋆ F µν ⋆ u ⋆ (u ⋆ Fµν ⋆ u‡)‡

)
=
∫

dd+1x tr
(
u‡ ⋆ F µν ⋆�u ⋆��u‡ ⋆ F ‡

µν ⋆ u
)

=
∫

dd+1x tr
(
�u ⋆��u‡ ⋆ F µν ⋆ F ‡

µν

)
= S

(2.1.23)

By construction, the action (2.1.21) gives the Yang-Mills action at the commutative limit, and
thus consists of a coherent deformation of the Yang-Mills theory. In the context of the Moyal
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space, this model is discussed in Section 2.5. When one builds a gauge theory similar to (2.1.21)
on the κ-Minkowski space-time, the lack of cyclicity (2.1.22) prevents the action (2.1.21) to
be straightforwardly gauge invariant. The latter obstacle and the possible ways around it are
discussed in Section 3.2.

2.2 Drinfel'd twist based theories
Another way of defining the differential calculus in a consistent manner consists of using the

twist deformation of a classical differential calculus [52, 53]. As detailed in Subsection 1.6.2, one
starts with a space-time M and its Lie algebra of vector fields Γ(M). Then, a Drinfel’d twist,
defined on the enveloping algebra, is used to deform the vector fields and derive the corresponding
quantum space-time A. Finally, one defines the bundle X as a A-module.

Within this scheme, deformed U(n) gauge theories have first been considered in [54, 55, 56] and
adapted to gravity in [57, 58].

Given a space-time M, its set of vector fields forms a Lie algebra. Thus, one can deform its
universal enveloping algebra, that we note1 Ξ = U(Γ(M)) for simplicity, via a Drinfel’d twist
(see Subsection 1.6.2 for more details). Considering a Drinfel’d twist F ∈ Ξ ⊗ Ξ, one defines the
Hopf algebra ΞF of deformed vector fields. The associated quantum space-time A is a ΞF -module
algebra and corresponds to a deformation of the smooth function algebra C ∞(M). The new
(noncommutative) product on A is given by

f ⋆ g =
∑(

F −1
1 ▷ f

)
·
(
F −1

2 ▷ g
)

(2.2.1)

for any f, g ∈ A, where we noted F = ∑
F1 ⊗ F2. This product corresponds to (1.6.16).

One can then take the usual differential structure of M and twist it all the way to the end. Let
us begin by the tensor product ⊗, which can be twisted through

X ⊗F Y =
∑(

F −1
1 ▷X

)
⊗
(
F −1

2 ▷ Y
)

(2.2.2)

for any X, Y ∈ ΞF , where F −1
j ▷X = [F −1

j , X] stands for the Lie derivative. The product ⊗F is
often called the star tensor product and denoted ⊗⋆. The definition (2.2.2) can be exported to
tensors of any rank. Then, the wedge product of forms is twisted in a similar way to

ω ∧F η =
∑(

F −1
1 ▷ ω

)
∧
(
F −1

2 ▷ η
)

(2.2.3)

for any ω, η ∈ Ω1(A), i.e. they are linear functional from ΞF to A. The algebra of forms Ω•(A)
is built from the star wedge product (2.2.3) and actually corresponds to multilinear braided
antisymmetric maps from (ΞF )n to A.

The fact that the star wedge is braided antisymmetric, that is it satisfies (2.2.5), is not innocuous.
The Hopf algebra Ξ is a triangular Hopf algebra (see Definition A.1.18) with a R-matrix being
trivial, i.e. R = 1 ⊗ 1. The Drinfel’d twist deformation actually conserves this triangularity
property (see Theorem A.1.21) with a new R-matrix given by R = F21F −1. The triangularity
property thus transforms commutativity into braided commutativity

f ⋆ g =
∑(

R−1
1 ▷ g

)
⋆
(
R−1

2 ▷ f
)
, (2.2.4)

1In [58], Ξ = Γ(M) which makes our notations differ a bit.
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and antisymmetry into braided antisymmetry

ω ∧F η = −
∑(

R−1
1 ▷ η

)
∧F

(
R−1

2 ▷ ω
)
. (2.2.5)

Beyond the invocation of the triangular structure, one can check that (2.2.4) and (2.2.5) are
satisfied, as done in the proof below.

The main remark to make here is that the R-matrix parametrises the noncommutativity, which
could be expected since it parametrizes the noncocommutativity of the coproduct of ΞF . The
triangularity condition R21R = 1 ⊗ 1 allows the braiding to be a symmetry2. Indeed, if one applies
(2.2.4) two times, one gets f ⋆ g = f ⋆ g. Finally, in the context of deformation quantisation, the
semi-classical condition on the Drinfel’d twist (1.6.14c), explicitly F = 1 ⊗ 1 + O (k̄), imposes
a similar condition on the R-matrix, i.e. R = 1 ⊗ 1 + O (k̄). Therefore, in the commutative
limit k̄ → 0, the R-matrix becomes trivial and the product ⋆ equals the commutative product of
functions.

Proof. We verify here the equality (2.2.4). The computation leading to (2.2.5) is very similar.
The main thing we need is R = F21F −1, i.e. R−1 = FF −1

21 .∑(
R−1

1 ▷ g
)
⋆
(
R−1

2 ▷ f
)

=
∑(

(F −1
1 R−1

1 ) ▷ g
)(

(F −1
2 R−1

2 ) ▷ f
)

=
∑(

(F −1
1 F1F

−1
2 ) ▷ g

)(
(F −1

2 F2F
−1
1 ) ▷ f

)
=
∑(

F −1
2 ▷ g

)(
F −1

1 ▷ f
)

= f ⋆ g

The construction of a gauge theory on the quantum space-time A can follow the same steps
as in Section 2.1 by replacing Der(A) by ΞF . One has to be careful about the actions though.
Explicitly, consider a A-module X, as the generalised fiber bundle. A connection ∇X : X → X, for
any X ∈ ΞF , is defined as

∇X(s ◁X f) = ∇X(s) ◁X f + s ◁X(X ▷f), (Leibniz rule) (2.2.6a)
∇X+zY (s) = ∇X(s) + ∇Y (s) ◁X z, (Z(A)-linearity) (2.2.6b)

for any Y ∈ ΞF , s ∈ X and z ∈ A. In the previous expression, ◁X corresponds to the action of A
on X, which is to be thought as a “scalar” product on the bundle. Still, it is actually very different
from ▷ introduced in (2.2.1), which corresponds here to the action of ΞF on A and should be
thought as an action of derivation. Explicitly, X ∈ ΞF is a generalised vector field and f ∈ A a
generalised function, so that X ▷f corresponds to the derivative of f “along” X.

Beyond this subtlety, one can construct the noncommutative Yang-Mills theory with U(n)
gauge group, for any n, as in Section 2.1. Rather than repeating this construction, we make two
important remarks.

In the gauge theory as originally developed in [54, 55, 56], the gauge group is undeformed, and
the papers mainly evolve around matching the deformed field theory with the undeformed gauge.
Besides, these studies were mainly done on the Moyal space.

2At this point, one should stop calling R a braiding since it is a symmetry through the triangular condition. In
other words, a braiding, contrary to a symmetry, never brings one back to the original position, as when one braids
hairs. However, the triangular condition specifically states that “braiding” two times is akin to doing nothing and
thus does not correspond to a braiding properly speaking. Here, we stick to the denomination of [35] in which
everything is called “braided” even in the triangular case.
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The formulation of the latter authors may look different from ours as they work with infinitesimal
gauge transformations, but one can relate the two. Explicitly, considering a U(n) gauge theory, a
field ϕ transforms under the gauge u ∈ U(n) as ϕu = uϕ and the gauge field A as in (2.1.20a). If
now one considers u = exp(iαaT a), where T a are the generators of the Lie algebra u(n), then u
stands for the full transformation and α = αaT

a for the infinitesimal one. Therefore, taking the
expansion to first order in α, one computes the infinitesimal gauge transformations of ϕ and A to
be

δαϕ = ϕα − ϕ = iαϕ, δαAµ = Aαµ − Aµ = ∂µα + i[α,Aµ]. (2.2.7)

Note that here, we can consider gauge transformation to be either local or global, by considering u
and α to be x-dependant or not. This can be enlarged to any Lie algebra g of any gauge group G.

In their early works, the latter authors considered deformed transformations δ⋆α to act as in the
commutative case, that is through (2.2.7). The deformation appears when one makes δ⋆α act on a
product, like δ⋆α(ϕ1 ⋆ ϕ2). Equivalently, the deformation is contained in the coproduct of the gauge
differential, that is in ∆(δ⋆α), which can be computed with the Drinfel’d twist F . One can check
that the usual gauge transformation of the field strength Fµν is recovered and that the algebra of
gauge transformation indeed closes through δ⋆αδ

⋆
β − δ⋆βδ

⋆
α = δ⋆−i[α,β]. Finally, one obtains that an

action of the form

S =
∫

dd+1x tr
(
F µν ⋆ Fµν

)
, (2.2.8)

is gauge invariant, upon cyclicity of the integral with respect to ⋆ (2.1.22).

The second remark concerns the notion of right or left modules. In the commutative theory, there
is no ordering problem because every function commutes. When constructing a noncommutative
theory, the ordering has a primordial importance, all the more that the ordering choice is not seen
in the commutative limit. In a sense, the ordering is a new symmetry of the noncommutative
theories as discussed in Section 2.6.

Within the context of braided geometry [34, 35] discussed above, the braided commutativity
property (2.2.4) is reducing the importance of the ordering. For example, the braided commutativity
implies that left module X is also a braided right module, that is, given the left action ▷X, one can
define a right action ◁X through3

f ▷X s =
∑

(R−1
1 ▷ s) ◁X(R−1

2 ▷ f). (2.2.9)

Many other structures can be braided in a similar fashion [59], like derivations or connections. The
braided derivations DerR(A), defined as the linear functional satisfying a braided Leibniz rule

X(f ⋆ g) = X(f) ⋆ g +
∑(

R−1
1 ▷ f

)
⋆
(
(R−1

2 ▷X)(g)
)
, (2.2.10)

form a A-bimodule for the braided symmetric actions of (2.2.9), whereas the derivations Der(A)
only form a Z(A)-module.

3One could equivalently start with a bimodule structure and require that the two actions are braided symmetric
in the sense that they satisfy (2.2.9).
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2.3 Seiberg-Witten map
In the context of the Moyal space, for deformed U(n) gauge theories, Seiberg and Witten

[21] (see also [60]) found a correspondence between noncommutative gauge fields, noted Â in this
Section 2.3, and the ordinary (commutative) one, noted A. The relation (2.3.2) found in [21] was
first considered for open strings with a magnetic field, but was also applied in fully noncommutative
contexts thanks to its fairly general form.

The Seiberg-Witten map is defined by

Âµ(Aν) + δ̂α̂Âµ(Aν) = Âµ(Aν + δαAν) (2.3.1)

where δ̂α̂ is the infinitesimal noncommutative gauge transformation with parameter α̂ given by

δ̂α̂Âµ = ∂µα̂ + i[α̂, Âµ]θ. (2.3.2)

A strong hypothesis of this construction is the so-called “gauge equivalence”. The main idea being
that if A and A′ are related by a gauge transformation α, i.e. A′ = A+ δαA, then Â and Â′ should
relate by a deformed gauge transformation α̂, i.e. Â′ = Â+ δ̂α̂Â. This implies that the deformed
gauge transformation depends on the undeformed one and on the gauge field. In other words, the
quantity α̂ depends on α and A, namely α̂ = α̂(A,α). In this sense, (2.3.1) is a mathematical
formulation of the gauge equivalence.

The full expression of (2.3.2) is obtained by expansion in powers of θ. For instance, up to the
second order, one obtains

δ̂α̂Âµ = ∂µα̂− Θρσ ∂ρα ∂σAµ + O
(
θ2
)
, (2.3.3)

which, combined with (2.3.1), yields

Âµ(Aν) = Aµ − 1
2ΘρσAρ(∂σAµ + Fσµ) + O

(
θ2
)
, (2.3.4)

where Fµν is the ordinary field strength. Accordingly, the noncommutative field strength takes the
form

F̂µν = Fµν + Θρσ(FµρFνσ − Aρ∂σFµν) + O
(
θ2
)
. (2.3.5)

One would proceed similarly whenever a (fermionic) matter field is included so as to obtain a
θ-expanded noncommutative field theory.

This construction suffers from two main caveats despite its explicit formulation. First, the
map (2.3.1) can only be computed as an infinite power expansion over θ. This is highly sufficient
when one wants to characterise the semi-classical behaviour of the theory, but is hampering a
full treatment. Moreover, it was shown [61] that the matter field part of the theory was not
renormalisable, at least in the standard way.

The Seiberg-Witten map has attracted lot of attention concerning the study of quantum
properties of these gauge theories, or their phenomenological traits. One can find the relevant
references in [23].

2.4 New approaches
More recent approaches to gauge theories on quantum space-time have been proposed and are

gathered here.
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2.4.1 Gauge theories with L∞-algebras
The algebraic framework of L∞-algebras was shown to be able to render field theory dynamics

and gauge theories, at least at the classical level [62]. An L∞-algebra is a sort of infinite extension
of a Lie algebra, where the bracket [·, ·] for two elements has counterpart brackets for 3, 4, ... up to
infinity elements. The Jacobi identity of the bracket [·, ·] has now also counterparts for the other
brackets. Explicitly, a L∞-algebra is a graded vector space V = ⊕

k∈Z
Vk with graded antisymmetric

multilinear maps ℓn : ⊗
n∈N

V → V called n-brackets. Thus, the 2-bracket ℓ2 is the analogue of [·, ·].
However, classical gauge theories can be recovered by only using 4 degrees, i.e. V = V0 ⊕ · · · ⊕ V3,
where degree 0 fields are gauge parameters, degree 1 fields are gauge fields, degree 2 fields encode
the equations of motion and degree 3 fields encode the Noether identities.

The authors of [63, 64] advocate that the L∞-algebra framework is natural in the context of de-
formation quantisation. Furthermore, the L∞-algebras are known to encode both noncommutative
and non-associative algebras, a case that may occur when deforming the so-called “quasi-Poisson
structures”, according to [63]. Therefore, the latter authors generalised the L∞-algebra gauge the-
ory to noncommutative gauge theory in the context of deformed Chern-Simons and Yang-Mills
actions.

As a brief summary, we detail how the noncommutative Yang-Mills theory fits into the
L∞-algebra setting. If one requires the general gauge transformation of a vector field A ∈ V1,
defined by

δαA =
+∞∑
n=0

1
n! (−1)

n(n−1)
2 ℓn+1(α,A, . . . , A), (2.4.1)

to correspond to the straightforward deformed gauge transformation δαA = ∂α + i[α,A]⋆, then
one has

ℓ1(f) = ∂f, ℓ2(f, A) = i[f, A]⋆. (2.4.2)

The higher n-brackets are determined by the equations of motion for A. Moreover, one can check
that the Jacobi identities are satisfied. For example, the first one states that ϵ νρ

µ ∂ν∂ρf = 0,
which is always true and the second one requires that the bracket [f, ·]⋆ satisfies the Leibniz rule.

Another version of L∞-algebras encoding noncommutative geometry was constructed in [65] and
presented below. Given a classical space-time M, one considers the universal enveloping algebra of
vector fields Ξ = U(Γ(M)). The classical L∞-algebra associated to M corresponds to a Z-graded
Ξ-module for which the n-bracket ℓn commutes with the action of Ξ. Since the elements of Ξ
are polynomials of derivatives, it simply means that the derivatives act straightforwardly on the
n-bracket, as the generalised analogue of the relation ∂[f, g] = [∂f, g] + [f, ∂g].

The noncommutative version of the latter classical picture is obtained via a Drinfel’d twist
deformation, similarly as described in Section 2.2. The noncommutative L∞-algebra is defined to
be a ΞF -module, with F ∈ Ξ ⊗ Ξ the Drinfel’d twist. The deformed n-bracket ℓFn are defined
as the twisted versions of ℓn, that is

ℓFn (f1, . . . , fn) = ℓn(f1 ⊗F · · · ⊗F fn) (2.4.3)
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with ℓF1 = ℓ1, where ⊗F is defined in (2.2.2). One can show that the deformed n-bracket is braided
graded antisymmetric, i.e.

ℓFn (f1, . . . , fj, . . . , fk, . . . , fn) = (−1)|fj | |fk|ℓFn (f1, . . . ,R
−1
1 ▷ fk, . . . ,R

−1
2 ▷ fj, . . . , fn) (2.4.4)

where |fj| is the degree of fj , and R = F21F −1 the R-matrix associated to F . The gauge theory
is then defined by twisting the usual (undeformed) gauge theory on L∞-algebra. For example, the
deformed gauge transformation of A (2.4.1) becomes

δ⋆αA =
+∞∑
n=0

1
n! (−1)

n(n−1)
2 ℓFn+1(α,A, . . . , A). (2.4.5)

The deformed action, defined as the twisted classical action, can be shown to be gauge invariant
under (2.4.5).

For the case of the Moyal space, deformed with the twist (2.5.4), the study of the deformed
U(1) gauge theory is undertaken with L∞-algebra [65]. The quantisation method uses the
Batalin–Vilkovisky formalism, which had previously been formulated in the L∞-algebra
setting. The photon propagator is unchanged compared to the undeformed case and there are
no three-photon or four-photon interactions, contrary to an action of the form (2.1.21). However,
the fermion-photon vertex is non-trivially deformed. Therefore, the first deformed diagram would
be the photon self-energy one. It appears that this diagram is UV-divergent, triggering a UV/IR
mixing in the theory. We refer to Section 2.6 for more details on noncommutative field theory
and how the UV/IR mixing arises. Contrary to (2.6.20), the 2-point function, at one loop, has no
non-planar diagrams and still triggers a mixing. The authors of [65] advocate that this UV/IR
mixing comes from an unadapted quantisation procedure for braided theories.

2.4.2 Poisson gauge theories
The Poisson gauge theories correspond to noncommutative gauge theories in which the gauge

transformations of the gauge field A and the field strength F are tuned so as to gauge transform
classically and therefore as to obtain a gauge invariant action in the usual manner.

One starts with an ansatz for the gauge transformation of the gauge field A and the expression
of the curvature F of the form

δαAµ = γνµ(A) ∂ν(f) + {Aµ, α}, Fµν = P ρσ
µν (A) ∂ρAσ +R ρσ

µν (A) {Aρ, Aσ}, (2.4.6)

where γ, P and R are to be determined. To match with the usual commutative limit, these new
fields have to satisfy the following condition

γνµ = δνµ + O (k̄) , P ρσ
µν = δρµδ

σ
ν − δσµδ

ρ
ν + O (k̄) , R ρσ

µν = 1
2
(
δρµδ

σ
ν − δσµδ

ρ
ν

)
+ O (k̄) . (2.4.7)

One imposes additional conditions corresponding to the closure of the gauge transformation and
the covariance of the field strength, which writes respectively

[δα, δβ]A = δ{α,β}A, δαF = {F, α}. (2.4.8)

This whole set of conditions imposes constraints on γ, P , R, to which a solution, if it exists, can
give rise to a gauge invariant action. Indeed, considering a Yang-Mills-like action with integrand
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F µν ⋆ Fµν , the gauge transformation (2.4.8) implies that the Lagrangian transforms covariantly,
which leads to the gauge invariant of this action upon integral cyclicity (2.1.22).

Note that this ansatz was made in the semi-classical limit, i.e. approximating the ⋆-commutator
of functions by the Poisson bracket {·, ·}. This is the reason why the latter Poisson bracket
appears in (2.4.8).

The fact that the expression for the noncommutative field strength considered here in (2.4.6) is
different from other previous proposals, say (2.1.10), can be related to the discussion of Section
2.1. Indeed, the noncommutative formulations of gauge theories work through analogues and lack
of physical intuition when defining the “physical” fields. Therefore, there is no argument for the
“noncommutative electromagnetic field” (if such a thing makes sense) to be (2.1.10) rather than
(2.4.6).

This framework was first developed in [66] for the Moyal space and extended to Lie algebra-
type noncommutativity in [67]. A Lie algebra-type noncommutativity corresponds to a quantum
space-time in which the bracket coordinates is linear, that is

[xµ, xν ]⋆ = Cµν
ρx

ρ (2.4.9)

with C a constant. As examples, R3
λ (1.2.13), κ-Minkowski (3.1.3a) and ϱ-Minkowski (3.4.2)

are of this type.

Furthermore, it was shown [68] that the Poisson gauge theory can be cast into a L∞-algebra
formalism. In the slowly varying field approximation, the starred bracket [·, ·]⋆, corresponding
to ℓ2 as in (2.4.2), is replaced by the Poisson bracket {·, ·}. The higher degree n-brackets are
determined by the so-called L∞-bootstrap, using the generalised Jacobi identities.

2.5 The example of the Moyal space
In this Section 2.5, the Moyal space is briefly introduced together with its noncommutative

gauge theory. This gauge theory relies on methods introduced in Section 2.1 and Section 2.2. The
UV/IR mixing popping out of the photon propagator correction (2-point function), at one-loop, is
discussed. Some other gauge theories, mainly developed to cure the mixing, are slightly discussed.
We refer to [23] for more details and an extensive list of references.

The Moyal space, generically denoted R4
θ, corresponds to a deformation quantisation of the

(symplectic) space R4. One can deform in a similar fashion the space R2n for any n ∈ N1, but we
stick to 4 dimensions here. Its coordinates satisfy

[xµ, xν ]⋆θ = iΘµν , with Θ = θ


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.5.1)

where θ is the deformation parameter and ⋆θ is the star product of R4
θ.

The expression of the star product ⋆θ can be obtained either through convolution algebra
techniques (see Subsection 1.6.1), or by Drinfel’d twist deformation (see Subsection 1.6.2).
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In the first case, one considers the Lie algebra g to be the Heisenberg algebra (that is the
algebra of (2.5.1)) in 5 dimensions (or 2n+ 1 in the general case). This has to do with the fact
that one needs to add 1 as a generator in order for the Lie bracket (2.5.1) to close. The Haar
measure of the Heisenberg group is the usual Lebesgue measure. One still needs to go down
from 5 dimensions to 4 and this is done via the map

f#(x1, . . . , x4) =
∫
R

dz f(z, x1, . . . , x4) e−2πiθz (2.5.2)

The expression of the Fourier transform is then given by the usual expression of the Fourier
transform on R4, and one computes from expression (1.6.13) that

(f ⋆θ g)(x) = 1
(πθ)4

∫
R4×R4

d4y d4z f(x+ y) g(x+ z) e−2i yµΘ−1
µν z

ν

. (2.5.3)

The second case relies on the Drinfel’d twist

F = exp
(

− i

2Θµν∂µ ⊗ ∂ν

)
(2.5.4)

which corresponds to an Abelian Drinfel’d twist (see Example 1.6.1), for which the considered
vector fields correspond to the derivative {∂µ = ∂

∂xµ
}µ. The corresponding star product expression

is

(f ⋆θ g)(x) =
+∞∑
n=0

1
n!

(
i

2

)n
Θµ1ν1 · · · Θµnνn ∂µ1 · · · ∂µnf(x) ∂ν1 · · · ∂νng(x). (2.5.5)

The expression (2.5.5) can be made equal to (2.5.3) by writing the (infinite) Taylor expansion of
f and g in (2.5.3). One can also check that both previous expression of ⋆θ satisfies (2.5.1). The
corresponding involution † is the complex conjugation.

Note that the integral of R4 defines an integral over R4
θ and satisfies∫

R4
d4x (f ⋆θ g)(x) =

∫
R4

d4x (g ⋆θ f)(x) =
∫
R4

d4x f(x) g(x). (2.5.6)

The first equality states that the integral is cyclic and the second one that it is closed.

The deformation of the space R4 induces deformation in the symmetries of the space [69, 57, 70].
These deformations are more easily obtained in the Drinfel’d twist formalism (2.5.4). One
interprets the derivations ∂µ as the action of the usual translation Pµ on functions, so that (2.5.4)
is actually a Drinfel’d twist for the Poincaré algebra P4 of R4. The twist thus deforms U(P4)
into P4

θ = U(P4)F , the latter being the new symmetries of the Moyal space.
The symmetries of the field theory one builds on the Moyal space are therefore deformed.

It induces phenomenological constraints on the theory as discussed in Section 4.2. Through
Poincaré deformation, the field theory may exhibit a Lorentz invariance violation.

In order to build the differential calculus on the Moyal space, one can consider the Abelian Lie
algebra D1 of derivations generated by the ∂µ’s. It is a Lie subalgebra of the full set of derivations,
D1 ⊂ Der(R4

θ), so that one can trade it for Der(R4
θ) in the construction of Section 2.1. Therefore,

the gauge invariant action of noncommutative Yang-Mills theory (2.1.21) can be built through
the connection and its curvature defined on D1.

56 Field Theories on Quantum Space-Times



Chapter 2. Noncommutative field and gauge theories

Note that if one were to consider the full set of derivations Der(R4
θ), then there would be an

infinite number of components in A, instead of 4, thus leading to an infinite number of degrees
of freedom in the theory. Therefore, one usually chooses to work with a restricted amount of
derivations to avoid this inconvenience. One should remark, however, that both cases lead to the
same commutative limit with a priori 4 degrees of freedom, since in this case any (real) derivation
X ∈ Der(R4) can be written as a linear combination of the ∂µ’s, i.e. X = Xµ∂µ, with Xµ ∈ R.

The simplest action for a noncommutative Yang-Mills theory corresponds to (2.1.21). Even
in the deformed U(1) case, this action has 3-vertex and 4-vertex interactions for A. The vertices
are quite similar to the commutative (non-Abelian) one with extra phase factors of the form
sin

(
pΘq

2

)
with external momenta p and q. Whenever one uses a Becchi-Rouet-Stora-Tyutin

quantisation procedure on this action, one obtains a vanishing 1-point function (contrary to
κ-Minkowski, see Section 3.2) and a vacuum polarisation tensor (2-point function) which, at
one-loop, triggers a UV/IR mixing due to the appearance of a new infra-red singularity.

The latter behaviour, described in Section 2.6, distinguishes some diagrams, called planar, that
diverge at large momenta (UV) and some others, called non-planar, that are singular at vanishing
momenta (IR). In the mainstream meaning of renormalisability, a theory with a UV/IR mixing
is not perturbatively renormalisable due to the presence of quadratic and linear IR divergences.
Indeed, this IR singularity induces an uncontrolled UV divergence for higher loop orders for which
one cannot predicts the counter term expression. Note that in this case, the IR limit expression of
the polarisation tensor is gauge invariant, so that the UV/IR mixing of this gauge theory is not a
gauge artefact.

Some methods have succeeded to get rid of the UV/IR mixing and have shown to be fully
renormalisable to all orders, as discussed in Section 2.6. However, these methods are bound to the
Moyal space and involves a modification of the action (2.1.21).

Another heavily studied gauge theory on the Moyal space is the so-called induced gauge theory
[71]. The term “induced” stems from the fact that the study of counter-term suggested to work
with powers of the covariant coordinate A instead of A.

The gauge invariant connection

In the case of the Moyal space, the derivations ∂µ are inner derivations, meaning that it
exists ξµ ∈ R4

θ such that

∂µf = [ξµ, f ]⋆θ (2.5.7)

for any f ∈ R4
θ. One can even explicitly compute ξµ = −iΘ−1

µν x
ν . In this case, one can build

a so-called gauge invariant connection ∇inv on R4
θ. Indeed, if one considers the expression

(2.1.9) where the gauge field A is replaced by ξ above, then one has

∇inv
µ (f) = ∂µ(f) − iΘ−1

µν x
ν ⋆θ f = i f ⋆θ Θ−1

µν x
ν , (2.5.8)

where we used (2.5.7). Given a connection ∇ on R4
θ, it follows that i(∇ − ∇inv) is a 1-form

tensor given by A = A+ ξ, which gauge transforms as Au = u† ⋆θ A ⋆θ u, for any u ∈ U(1).
Finally, one computes from (2.1.10), that the field strength writes

Fµν = [Aµ,Aν ]⋆θ − iΘ−1
µν . (2.5.9)
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One can note that the curvature associated to ∇inv is −iΘ−1
µν , which corresponds to the last

term of (2.5.9).
Aµ = Aµ−iΘ−1

µν x
ν is sometimes called the covariant coordinate. It can be straightforwardly

generalised to the case of U(n) gauge theory.

In view of the gauge transformation of A, a term of the form
∫

Aµ ⋆θ Aµ is gauge invariant, so
that a general gauge invariant action writes

S(A) =
∫

d4x

(
1
4Fµν ⋆θ F

µν + Ω2

4
{
Aµ,Aν

}2

θ
+ κAµ ⋆θ Aµ

)
. (2.5.10)

In the previous expression, F is defined in terms of A through (2.5.9), while Ω and κ are constants.
The latter action actually corresponds to a type IIB (IKKT) matrix model [72]. It was also shown
to have a spectral triple formulation [73].

This theory exhibits a very complex vacuum configuration [74], which heavily depends on Ω
and κ. For specific values of the latter constants, tedious expressions were found. This consists in
the main obstacle in studying the renormalisability of such models. Note also that the previous
model a priori suffers from a non-vanishing tadpole (1-point function).

Note that the previous computations are done in the matrix basis of Moyal, which consists of
a convenient tool for computation.

Moyal matrix basis
The matrix basis [75] {fmn}m,n∈N is an orthonormal basis of S (R4) ⊂ R4

θ, the set of
Schwarz function of R4, i.e.

fmn ⋆θ fkl = δnkfml, f †
mn = fnm, (2.5.11a)∫

d4x
(
f †
mn ⋆θ fkl

)
(x) = 2π θ δmkδnl. (2.5.11b)

Thus any elements g, h ∈ R4
θ can be decomposed as

g =
+∞∑
m,n=0

gmnfmn, h =
+∞∑
m,n=0

hmnfmn, (2.5.12)

where gmn, hmn ∈ C. It is called the “matrix” basis since the decomposition (2.5.12) implies
that g is fully determined by the infinite size matrix {gmn}mn. Furthermore, the product of
functions looks similar to a matrix product as one can compute

(g ⋆θ h)(x) =
+∞∑
m,n=0

(+∞∑
k=0

gmkhkn

)
fmn(x), i.e. (g ⋆θ h)mn =

+∞∑
k=0

gmkhkn. (2.5.13)

2.6 Lie algebra-type noncommutative ϕ4-theory
In this section, we consider A to be a quantum space-time corresponding to the deformation of

M a d+ 1-dimensional space-time with star product ⋆ and involution †. The (local) coordinate
functions of M, {xµ}µ are assumed to satisfy

[xµ, xν ]⋆ = Cµν
ρx

ρ (2.6.1)
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with Cµν
ρ ∈ C. The relation (2.6.1) is sometimes called a Lie algebra-type noncommutativity. As

examples, R3
λ (1.2.13), κ-Minkowski (3.1.3a) and ϱ-Minkowski (3.4.2) are of this type. One

can also write the Moyal space (2.5.1) under this form, as detailed in Subsection 2.6.3.
We want to study a ϕ4-theory on such a quantum space-time A of the form

S(ϕ) =
∫

dd+1x K[ϕ](x) + g2

4! (ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ)(x) (2.6.2)

where g is the coupling constant and K is a kinetic term (differential operator). Note that the
integral in (2.6.2) is possibly inherited from the integral over M. A usual expression for K, in the
context of noncommutative ϕ4-theory, is

K[ϕ] = gµν∂µϕ ⋆ ∂νϕ+m2ϕ ⋆ ϕ (2.6.3)

where m is a mass term and g is the metric of M.

We want here to capture the simplest quantum properties of the action (2.6.2) by computing
the 2-point function at one-loop thanks to the generating functional of the connected Green
functions. The latter study was performed in [76].

2.6.1 Deformed momentum space
Similarly to most textbook detailing the computation of a quantum ϕ4-theory, one handles

more easily the action (2.6.2) by first going to momentum space. The usual way of describing a
momentum in noncommutative field theories is by considering wave packets, that are functions
of the form eipµx

µ where p is the momentum. When one multiplies two wave packets in the
commutative theory, the momenta add up through

eipµx
µ · eiqµxµ = ei(pµ+qµ)xµ . (2.6.4)

However, in the noncommutative case, this no longer holds in general. The main reason to assume
Lie algebra-type noncommutativity (2.6.1) is that a similar equation to (2.6.4) can be written
thanks to the Baker-Campbell-Haussdorff formula. In other words, one has

eipµx
µ

⋆ eiqµx
µ = ei(pµ⊞qµ)xµ . (2.6.5)

where ⊞ is a deformed version of the addition of momenta4 (see Subsection 2.6.3 for examples).
Its explicit expression, given by the Baker-Campbell-Haussdorff formula, is in general very
cumbersome. Therefore, we consider a general ⊞ law in the following. Note, however, that the
commutative limit of ⊞ is straightforwardly + since ⋆ goes to · and so (2.6.5) boils down to (2.6.4).
From (2.6.5), one can show that ⊞ is associative, because ⋆ is, and that it is commutative if and
only if ⋆ is. In our case, we consider that ⊞ is noncommutative, despite its additive notation.

The involution † allows one to define the deformed inverse of momenta ⊟ through (eipµxµ)† =
ei(⊟pµ)xµ . One then can check that the usual group rules stand

pµ ⊞ (⊟pµ) = 0, ⊟(⊟pµ) = pµ, ⊟(pµ ⊞ qµ) = (⊟qµ) ⊞ (⊟pµ). (2.6.6)
4The latter is sometimes noted +⋆, ⊕ or ⊕⋆ in the literature.
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The wave packet is not the only way to define a particle. One could equivalently go through
particle state definition by using the deformed symmetries, i.e. deformed Poincaré. Yet, in this
formalism, the multi-particle state seems rather complex to define, specifically due the deformed +
law for momenta [77]. Note that a definition of a multi-particle state in (light-like5) κ-Minkowski,
based on wave packet study, was proposed [78]. However, the deformed + law is unbraided in this
precise context.

It is of major importance to note that the wave packet definition suffers from an ordering
ambiguity.

The ordering ambiguity of noncommutative wave packets

In noncommutative field theories, wave packet expressions of the form eipµx
µ may be

written in many distinct ways. A non-exahaustive list of possibilities could be

eipµx
µ = eip0x0 · · · eipdxd , eipµx

µ = ei(p0x0+···+pdxd), eipµx
µ = eipdx

d · · · eip0x0
. (2.6.7)

All the different expressions (mentioned above or not) have the same commutative limit eipµxµ .
The major issue at stake here is that the ⊞ law expression depends on the chosen ordering
so that the ordering prescription affects the rest of the computation. This would mean
either that the theory needs a specific “physical” ordering to match observations, or that
the physical observables need to be invariant under the ordering choice. However, it is not
clear that “physical observables” computed from (2.6.2) are not changed when considering a
different ordering.

The latter assumption of invariance has however a nice interpretation in view of the
κ-Minkowski case. Indeed, when studying the momentum space of κ-Minkowski, it has
been shown [79] that all orderings of (2.6.7) are linked by a coordinate transformation of
the momenta. In this view, requiring that the theory is ordering independent would mean
that one imposes general covariance on the (curved) momentum space. To summarise, the
ordering ambiguity (2.6.7) only arises at the noncommutative level and therefore could stand
as a new physical symmetry of the model.

The latter question is still open in the noncommutative literature and will not affect much the
computation, since it is performed for a generic ⊞ law.

In order to write (2.6.2) in momentum space, one first needs to define the (deformed) Fourier
transform of ϕ, and its inverse. The latter requires to know how to integrate (or sum) over
momenta, which is no more straightforward. Through the wave packet formalism, the momentum
space is defined by exponentiating the Lie algebra of coordinates (2.6.1), and in this sense forms
a Lie group. For the sake of computability, we assume that this Lie group is locally compact.
This allows us to define a Haar measure on the Lie group. See [44] for more details on harmonic
analysis and group theory.

5The light-like κ-Minkowski corresponds to a deformation of the Minkowski space-time satisfying (3.1.5) with
aµ being light-like, i.e. aµaµ = 0.
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Integrations on locally compact groups

We consider here our (noncommutative) group of momenta, which is supposed to be locally
compact. Then, there exists a unique left-invariant (resp. right-invariant) measure called the
left (resp. right) Haar measure, denoted dµ (resp. dµR), i.e. it satisfies

dµ(p⊞ q) = dµ(q),
(
resp. dµR(p⊞ q) = dµR(p)

)
(2.6.8)

for any momenta p and q. If one further defines dµp(q) = dµ(p ⊞ q), then it is itself
left-invariant because

dµp(q1 ⊞ q2) = dµ(q1 ⊞ q2 ⊞ p) = dµ(q2 ⊞ p) = dµp(q2).

By uniqueness, dµ and dµp must be proportional to each other, so that one can write
dµp = ∆(p) dµ, where the map ∆ is called the modular function of the group. One can show
that ∆ is a continuous group homomorphism, that is that

∆(p⊞ q) = ∆(p)∆(q), ∆(⊟p) = ∆(p)−1, ∆(0) = 1 (2.6.9)

with ∆(p) ∈ R+
0 .

The modular function actually quantifies the difference between the left and the right
Haar measure. Indeed, if one considers dµ⊟(p) = dµ(⊟p) = ∆(⊟p)dµ(p) then it is right
invariant through

dµ⊟(p⊞ q) = dµ
(
⊟ (p⊞ q)

)
= dµ

(
(⊟q) ⊞ (⊟p)

)
= dµ(⊟p) = dµ⊟(p).

Therefore, up to an irrelevant positive constant, dµR(p) = ∆(⊟p)dµ(p). The case of a
unimodular group corresponds to ∆ = 1, thus implying that the left and right Haar measure
are equal.

In the computation below, we consider the left Haar measure, but one could equivalently
consider the right Haar measure as they are related by the modular function.

In the context of group integration, we require the analogue of the Dirac delta function δ to be
defined as ∫

dµ(p) f(p) δ(p⊞ q) = f(⊟q), (2.6.10a)∫
dµ(p) f(p) δ(q ⊞ p) = ∆(⊟q) f(⊟q) (2.6.10b)

for any function f . Note that this definition (2.6.10) should be slightly changed in the case of the
right Haar measure. The latter definition is purely algebraic in flavour since it solves a possible
mismatch when computing

∫
dµ(p) f(p)δ(p⊞ q) by integrating the δ directly, or by performing the

change of variable p → p⊟ q first. From the definition (2.6.10), one can show the following rules
hold

δ(p⊞ q) = ∆(⊟q) δ(q ⊞ p), (2.6.11a)
δ(⊟p) = δ(p), (2.6.11b)∫

dµ(p) f(p) δ(p⊟ q) =
∫

dµ(p) f(p) δ(q ⊟ p) = f(q). (2.6.11c)
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While (2.6.11b) and (2.6.11c) are expected noncommutative versions of the usual Dirac delta
function properties, the deformed cyclicity (2.6.11a) is remarkable and can actually be linked with
the cyclicity of the integral through∫

dd+1x (f ⋆ g)(x) =
∫

dµ(p)dµ(q) f(p) g(q) δ(p⊞ q)

=
∫

dµ(p)dµ(q) ∆(⊟q) f(p) g(q) δ(q ⊞ p)

=
∫

dd+1x (∆(g) ⋆ f)(x)

(2.6.12)

where ∆, in the last line, denotes the Fourier transform operator of the (inverse) modular
function. Therefore, the (non-)cyclicity property of the integral over A is governed by the modular
function of the momentum space. In the case of a unimodular space, like the Moyal space, the
integral is necessarily cyclic, while in a non-unimodular case, like κ-Minkowski, the integral is
not cyclic. In the latter case, the loss of cyclicity can be shown to correspond to the κ-Poincaré
generator E , which indeed corresponds to the Fourier transform operator of the (inverse) modular
function.

Note that the previous analysis was made regardless of any star product explicit expression.
The importance of the cyclicity of the integral in the construction of noncommutative gauge theory
was made clear in (2.1.23). This is why the loss of cyclicity in some noncommutative theories has
been seen as the main obstacle to the construction of a gauge theory. From (2.6.12), one can
check if the integral is cyclic by deriving the modular function of the momentum space, for any
(Lie algebra-type) quantum space-time. Two main paths have been followed to construct gauge
invariant actions without the cyclicity of the integral, either by restoring the cyclicity through a
non-trivial measure on the position space, or by trying to deform the gauge transformation of the
field strength F . This will be discussed in more details in Section 3.2.

With the previous tools in hand, we define the Fourier transform and its inverse6 as

ϕ(p) =
∫

dd+1x ei(⊟p)µxµ ⋆ ϕ(x), ϕ(x) = 1
(2π)d+1

∫
dµ(p) ϕ(p) eipµxµ . (2.6.13)

The fact that the field ϕ is left ⋆-multiplied by the exponential in (2.6.13) is linked to the choice
of the left Haar measure. A right-invariant measure choice would require a right ⋆-multiplication.

Using this Fourier transform, one writes the action (2.6.2) as

S(ϕ) =
∫

dµ(k) ϕ(k)K(k)ϕ(⊟k) + g2

4!

∫
dµ(k1) · · · dµ(k4) δ

(
k1 ⊞ · · · ⊞ k4

)
ϕ(k1) · · ·ϕ(k4)

(2.6.14)
where K is the Fourier transform operator of the kinetic operator K in (2.6.2). For example,
the kinetic term (2.6.3) has a Fourier transform operator given by

K(k) = gµνkµ(⊟k)ν +m2 (2.6.15)
In order for K to only depend on k, the kinetic term needs to be translation invariant, a property
which is assumed in the following. The expression (2.6.3) generically is translation invariant.
Moreover, we require that the kinetic operator satisfies

K(⊟k) = K(k) (2.6.16)
which is satisfied by (2.6.15).

6The Fourier transform of any functions f is also denoted f in accordance with the usual quantum field theory
notations.
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2.6.2 UV/IR mixing
In order to quantise (2.6.14), we consider the generating functional of the connected Green

functions

Z(J) =
∫

dϕ exp
(

−S(ϕ) + 1
2

∫
dd+1x (J ⋆ ϕ)(x) + 1

2

∫
dd+1x (ϕ ⋆ J)(x)

)
(2.6.17)

where J is a source term. The symmetrized7 star product 1
2(J ⋆ ϕ+ ϕ ⋆ J) is here to ensure that,

when considering the change of variable ϕ → ϕ+K−1J , the usual simplification

− 1
2

∫
dµ(k) ϕ(k)K(k)ϕ(⊟k) + 1

2

∫
dd+1x (J ⋆ ϕ)(x) + (ϕ ⋆ J)(x)

= − 1
2

∫
dµ(k) ϕ(k)K(k)ϕ(⊟k) − 1

2

∫
dµ(k) J(k)K−1(k)J(⊟k)

occurs, where (2.6.16) has been used.
Then, the perturbative expansion of the generating function writes

Z(J) = Z(0) exp
(

−Sint

(
∂

∂J

))
exp

(
−1

2

∫
dµ(k) J(k)K−1(k)J(⊟k)

)

= Z(0)
∞∑
n=0

(−1)n
n! Snint

(
∂

∂J

)
exp

(
−1

2

∫
dµ(k) J(k)K−1(k)J(⊟k)

)
.

(2.6.18)

The 2-point function at one-loop order corresponds to〈
ϕ(p)ϕ(q)

〉
1-loop

= − ∂

∂J(p)
∂

∂J(q)Sint

(
∂

∂J

)
exp

(
−1

2

∫
dµ(k) J(k)K−1(k)J(⊟k)

)∣∣∣∣∣
J=0

. (2.6.19)

where one-loop means that only the second term (n = 1) in the exponential expansion of (2.6.18)
is considered. Note that we have ∂J(p)

∂J(q) = δ(p⊟ q). After the calculation and the removal of the
disconnected components, one derives the relevant diagrams. Eight of these diagrams are planar,
as pictured in Figure 4, and four are non-planar, see Figure 5.

Figure 4 − Planar contributions to the 2-point function (2.6.19).
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k

(f)

ϕ(p)

ϕ(q)

k

(g)

ϕ(q) ϕ(p)

k

(h)

ϕ(q) ϕ(p)

k

7In the unimodular case, the integral is cyclic, thanks to (2.6.12), and the symmetrize star product corresponds
to the star product.
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Figure 5 − Non-planar contributions to the 2-point function (2.6.19).
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All the diagrams under study are not equal, but they factorise so that the 2-point function has
two contributions, one planar (first term of (2.6.20)) and one non-planar (second term of (2.6.20)).
Thus, it writes

〈
ϕ(p)ϕ(q)

〉
1-loop

= g2

4! δ(p⊞ q) (1 + ∆(q))
∫

dµ(k) K−1(k) (3 + ∆(k))

+ g2

4!

∫
dµ(k) K−1(k)

(
1 + ∆(k)−1

)(
1 + ∆(q)∆(k)−2

)
δ(p⊞ k ⊞ q ⊟ k).

(2.6.20)

The commutative limit of this 2-point function is done by considering ⊞ = +, ⊟ = −, ∆ = 1
and dµ(k) = dd+1k (the Lebesgue measure). Therefore, it yields

〈
ϕ(p)ϕ(q)

〉
1-loop

= g2

2 δ(p+ q)
∫

dd+1k K−1(k), (2.6.21)

which corresponds to the usual formula for a ϕ4-theory.

The planar contribution of (2.6.20), which consists of the first term, is very similar to a deformed
version of the commutative 2-point function (2.6.21). The conservation of momenta, stored in the
Dirac delta function, is now deformed and the measure is the noncommutative one. However, the
non-planar contribution is far less casual, and possesses a deformed conservation of momenta that
involves the loop momentum k.

By studying the UV/IR mixing on the Moyal space, as in (1.2.7), or in other quantum space-
time (see references in [76]), one realises that this phenomenon, even if not well defined, always
has the same structure. One of the goals of [76] was to capture this structure in an unambiguous
description of the UV/IR mixing. The first criterion is given by the ultra-violet divergence of the
planar diagram. The second one appears already in Moyal and corresponds to the divergence of
the non-planar contribution when the external momenta vanishes (infra-red), the latter divergence
being due to the ultra-violet divergent behaviour of the planar contribution. Finally, if one only
includes this two criterion then the commutative contribution (2.6.21) would satisfy the UV/IR
mixing. Therefore, one needs to add a third point that requires the non-planar contribution to be
ultra-violet finite for non-vanishing external momenta. In other words, [76] defines the UV/IR
mixing as

(i ) The planar contribution is diverging in the UV.
(ii ) The non-planar contribution is singular in the IR, due to the UV divergence of (i ).
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(iii ) The non-planar contribution is UV finite.

The analysis carried out in [76] showed that a relevant criterion for the latter definition is the
(UV) divergence of ∫

dµ(k) K−1(k). (2.6.22)

The modular function (or its inverse) can be accommodated to be bounded so that (2.6.20) is
mainly governed by a contribution akin to (2.6.22). In this sense, the divergence of (2.6.22) can
be shown to be equivalent to both (i ) and (ii ).

Its link with the criterion (iii ) is more tricky since it necessitates to integrate out the δ(p⊞k⊞q⊟k)
contribution. The equation p⊞ k ⊞ q ⊟ k = 0 has no trivial solution for k when p, q ̸= 0. Besides,
one has to distinguish between “commutative” components of ⊞, that is the set of index µ such that
pµ ⊞ qµ = pµ + qµ, and the “purely noncommutative” components, which consists of the rest, i.e.
k = (knc, kc). By doing so, the δs with commutative components can be taken out of the integral,
and the noncommutative ones give rise to a solution k∗

nc ≠ 0 such that pnc ⊞ k∗
nc ⊞ qnc ⊟ k∗

nc = 0.
What remains is the integral of K−1(k∗

nc, kc) over the commutative components kc. Since the
explicit formula for k∗

nc(kc, p, q) and the behaviour of the propagator K−1 with respect to kc are
not known, it is quite hard to quantify the would-be UV finiteness of (2.6.22).

The UV/IR mixing is thought to spoil the perturbative renormalisability of the theory. The
renormalisation is not present in this discussion. It appears that in the case where (2.6.22) is finite,
no perturbative renormalisation is needed, and the UV/IR mixing is not present. However, the
link between the renormalisability of the theory and the badness of the divergence of (2.6.22) have
not been carried out yet.

Most studies on the UV/IR mixing has been done on the Moyal space. There were two main
outcome of such studies: either the author wanted to get rid of it, or they wanted to use its
properties for physical purpose.

Two main models are curing the field theory of the mixing: the Grosse-Wulkenhaar model
[80, 81, 82] and the IR damping model [83]. The two are considering the action (2.6.2) with a
kinetic term of the form (2.6.3), and an extra-term. In the Grosse-Wulkenhaar model, the
extra-term correspond to a harmonic oscillator of the form x2ϕ ⋆θ ϕ. The latter term introduces
an exponential decrease of the propagator in the IR, thus getting rid of the singularity. It was
shown to be renormalisable to all orders, but breaks translation invariance due to the presence of
x2 in the action. The IR damping model has an extra term of the form 1/k2 in the kinetic term.
This imposes a better convergence of the integral of the propagator in the IR and thus get rid of
the IR singularity. This model was also shown to be renormalisable to all orders, but exhibits a
propagator with unusual behaviour for small momenta. Note that other solutions were proposed
in the literature [84, 85, 86].

Still, some authors [19, 20] have used the UV/IR mixing as a physical trait of noncommutative
geometry and studied some insight it could bring on new physics. See Subsection 1.2.1 for an
extended introduction to these models.

2.6.3 Examples on known quantum space-times
Finally, we apply the previous results to the Moyal space and the κ-Minkowski space-time.

Hersent Kilian − Thèse de Doctorat 65



2.6. Lie algebra-type noncommutative ϕ4-theory

The Moyal space8, described more specifically in Section 2.5, has a Lie algebra of coordinates
given by (2.5.1), which is not, strictly speaking, of Lie algebra-type. However, if one adds the
coordinate x5 = 1, one obtains that

[xµ, xν ]⋆θ = iΘµνx5, [xµ, x5]⋆θ = 0 (2.6.23)

which is of Lie algebra-type (2.6.1) with Cab
c = iΘabδ5

c (1 − δac )(1 − δbc), where a, b, c = 0, . . . , 5.
The corresponding momentum space can be computing to be

pµ ⊞ qµ = pµ + qµ, p5 ⊞ q5 = p5 + q5 + i pµΘµνqν , (2.6.24a)
⊟pµ = −pµ, ⊟p5 = −p5 (2.6.24b)

As it is associated to x5 = 1, the p5 “momenta” actually corresponds to a pure phase term
eip5x5 = eip5 . This group is further unimodular, so that ∆ = 1 and has the Lebesgue measure as
its Haar measure, i.e. dµ(p) = d4p.

For the 2-point function at one-loop, one computes then that the planar diagrams are equal to
δ(pµ + qµ) δ(p5 + q5) and the non-planar diagrams to δ(pµ + qµ) δ(p5 + q5 + 2pµΘµνkν), where p
and q are external moment and k is the internal one. The 2-point function then writes

〈
ϕ(p)ϕ(q)

〉
1-loop

= g2

6 δ(p+ q)
∫

d4k K−1(k)
(
2 + e2i pµΘµνkν

)
(2.6.25)

which exactly corresponds to the expression (1.2.7) with the kinetic operator (2.6.15). By taking
the latter kinetic operator, the same analysis of the UV/IR mixing as in Subsection 1.2.1 can be
done. Therefore, (i ), (ii ) and (iii ) are fulfilled. On the other hand, the integral of the propagator
(2.6.22) for the kinetic operator (2.6.15) with the laws (2.6.24) simplifies to∫

dµ(k) K−1(k) =
∫

d4k
1

−k2 +m2 (2.6.26)

which is indeed (UV) divergent. Note that as Moyal is a deformation of R4, we took the Euclidean
metric g = (+ · · · +) in (2.6.15).

The κ-Minkowski space-time R1,d
κ corresponds to a deformation of the Minkowski space-time

R1,d, with a Lie algebra of coordinates satisfying

[x0, xj]⋆κ = i

κ
xj, [xj, xk]⋆κ = 0, (2.6.27)

where j, k = 1, . . . , d and κ is the deformation parameter. How this quantum space-time is
constructed and how (2.6.27) arises is explained in more detail in the Chapter 3. One can write
(2.6.27) under the form (2.6.1) with Cµν

ρ = i
κ
(δµ0 δνρ − δν0δ

µ
ρ ). One computes the corresponding

momentum space to be

p0 ⊞ q0 = p0 + q0, pj ⊞ qj = pj + e−p0/κ qj, (2.6.28a)
⊟p0 = −p0, ⊟pj = −ep0/κ pj (2.6.28b)

This group is not unimodular with a left Haar measure dµ(p) = edp0/κdd+1p and a right Haar
measure dµR(p) = dd+1p. Therefore, the modular function is ∆(p) = edp0/κ.

8This paragraph is written for 4-dimensional Moyal space, but can be straightforwardly generalised to any
dimension, see [76].
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The 2-point function at one-loop writes

〈
ϕ(p)ϕ(q)

〉
1-loop

= g2

4! δ(pµ ⊞ qµ)
(
1 + edq0/κ

) ∫
dd+1k K−1(k)edk0/κ

(
3 + edk0/κ

)
+ g2

4! δ(p0 + q0)
∫

dd+1k K−1(k)
(
1 + edk0/κ

) (
1 + e−d(p0+2k0)/κ

)
× δ

(
pj + e−(p0+k0)/κqj −

(
1 − e−p0/κ

)
kj
)
.

(2.6.29)

It was shown in [76], that for d > 1 and a kinetic term of the form (2.6.15), the 2-point function
(2.6.29) is neither diverging in the UV nor IR singular. Therefore, (i ) and (ii ) are not fulfilled.
The requirement (iii ) is satisfied because the 2-point function at one-loop is finite. On the other
hand, if one studies the integral of the propagator, one has

∫
dµ(k) K−1(k) = 4π

(4πκm
d

)d−1
2

K d−1
2

(
md

2κ

)
(2.6.30)

where K is a Bessel function and m is the mass of the scalar field ϕ. Therefore, (2.6.30) is finite,
even in the massless case (see [76]), which is in accordance with the fact that (i ) and (ii ) are not
fulfilled. Note that, in (2.6.30), κ is playing the role of a UV cut-off, as expected by Snyder (see
Subsection 1.2.1).

Note that other scalar field theory on κ-Minkowski suffers from a UV/IR mixing [87]. This
enlightens the fact that the choice of the quantum space-time is not linked to the presence of the
mixing, as this study was made on a generic space. The source of the UV/IR mixing seems rather
to come from the (integral of the) propagator.

Finally, let us see the impact of the ordering ambiguity (2.6.7) on the 2-point function com-
putation. Due to cumbersomeness, the 2-point function could not be explicitly computed for
two different orderings. However, one can already compare the expressions of the integral of the
propagators.

The deformed additive laws (2.6.28) were obtained for time-to-the-right ordering, corresponding
to the right term of (2.6.7). Therefore, we denote by ⊞right the law (2.6.28) in the following
paragraph. One could consider the “sum” ordering, corresponding to the middle term of (2.6.7)
and find that

pµ ⊞sum qµ = p0 + q0

e−q0/κ − ep0/κ

(
1 − ep0/κ

p0
pµ + e−q0/κ − 1

q0
qµ

)
, ⊟sumpµ = −pµ. (2.6.31)

Note that the previous expression is finite in the limit p0, q0 → 0. The modular function is unchanged
∆(p) = edp0/κ, and the left Haar measure writes dµsum(p) =

(
1−ep0/κ

p0

)d
dd+1p. Expressions (2.6.28)

and (2.6.31) can be linked through

p0 ⊞right q0 = p0 ⊞sum q0, pj ⊞right qj = 1
g
(
p0+q0
κ

) (g (p0

κ

)
pj ⊞sum g

(
q0

κ

)
qj

)
(2.6.32)

where g(x) = x
1−e−x .

Considering the kinetic term (2.6.15), with the Minkowski metric g = (+ − · · · −), one obtains
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that

Right ordering:
∫

dµright(k)K−1
right(k) =

∫
dd+1k

edk0/2κ

−k2
0 + k2

j +m2 , (2.6.33a)

Sum ordering:
∫

dµsum(k)K−1
sum(k) =

∫
dd+1k

edk0/2κ

−k2
0 + k2

j +m2

−
sinh

(
k0
2κ

)
k0

d . (2.6.33b)

The integral (2.6.33a) was computed in (2.6.30), however, the integral (2.6.33b) could not be
computed. Their distinct expressions might be a computational artefact, but suggests that these
two ordering have different 2-point functions. If the 2-point function is not ordering independent
and one considers that the 2-point function is an observable [88] then, either there is a single
physical ordering, or the result should be ordering invariant by a specific choice of propagator.
This point needs to be more carefully analysed.
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Chapter 3

The κ-Minkowski space-time

The (quantum) deformations of the Minkowski space-time have been studied extensively for
the insights they might provide on the physics of quantum space-times. Indeed, the κ-Minkowski
space-time consists of the first (non-trivial) deformation of a space with time. Furthermore, its
space of symmetries, the κ-Poincaré algebra, has a flourishing phenomenology, principally linked
to quantum gravity (see Section 4.2). The deformation parameter κ has a mass dimension and is
therefore sometimes associated with the Planck mass. κ-Minkowski is considered as a good
candidate to shed some light on possible quantum gravity effects, at least in some regime.

We here depict some recent topics concerning field and gauge theories on deformed Minkowski
space-times. Some older models are evoked.

3.1 From the deformed symmetries of κ-Poincaré to the
κ-Minkowski space-time

The κ-Minkowski space-time, noted R1,d
κ , was first define thirty years ago by Majid and

Ruegg [89] as the space having the κ-Poincaré Hopf algebra P1,d
κ as its space of symmetries.

In other words, κ-Minkowski needed to be a P1,d
κ -module algebra, as explained in Subsection

1.4.3. The latter deformation of the Poincaré algebra was introduced three years earlier by
Lukierski, Nowicki, Ruegg and Tolstoy [90, 91]. For an historical review of the construction
of κ-Minkowski and κ-Poincaré see [92].

Starting with the Poincaré algebra, one cannot perform a Drinfel’d-Jimbo quantisation
procedure, since the latter Lie algebra is not semi-simple. This quantisation consists of deforming
the universal enveloping algebra of a semi-simple Lie algebra, by using its root system and the
quantum deformation of U(sl2). The authors of [90] opted for a Wigner-Inonu contraction
procedure, which consists in first building the Drinfel’d-Jimbo quantum version of the de
Sitter algebra o2,3(R) and then taking the limit q → 0 and r → +∞ with ir log(q) = κ−1

constant. Here q denotes the usual complex parameter in group quantisation, and r is the de
Sitter radius, that allows to go from o2,3(R) to P1,3 when r → +∞. The computation for
dimensions others than 4 was done shortly after [93].

From this computation, one obtains the κ-Poincaré algebra. The latter is given, in the so-called
Majid-Ruegg basis [89] by
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[Jj, Jk] = iϵ l
jk Jl, [Jj, Kk] = iϵ l

jk Kl, [Kj, Kk] = −iϵ l
jk Jl, (3.1.1a)

[Pj, Jk] = −iϵ l
jk Pl, [Pj, E ] = [Jj, E ] = 0, [Pj, Pk] = 0, (3.1.1b)

[Kj, E ] = − i

κ
PjE , [Pj, Kk] = i

2ηjk
(
κ(1 − E2) + 1

κ
PlP

l
)

+ i

κ
PjPk, (3.1.1c)

∆P0 = P0 ⊗ 1 + 1 ⊗ P0, ∆Pj = Pj ⊗ 1 + E ⊗ Pj, (3.1.1d)
∆E = E ⊗ E , ∆Jj = Jj ⊗ 1 + 1 ⊗ Jj, (3.1.1e)

∆Kj = Kj ⊗ 1 + E ⊗Kj − 1
κ
ϵ klj Pk ⊗ Jl, (3.1.1f)

ε(P0) = ε(Pj) = ε(Jj) = ε(Kj) = 0, ε(E) = 1, (3.1.1g)

S(P0) = −P0, S(E) = E−1, S(Pj) = −E−1Pj, (3.1.1h)

S(Jj) = −Jj, S(Kj) = −E−1(Kj − 1
κ
ϵ klj PkJl). (3.1.1i)

where {Pµ}µ=0,...,d are the generators of the deformed translations, {Jj}j=1,...,d the generators of the
deformed rotations, {Kj}j=1,...,d the generators of the deformed boosts, and η is the Minkowski
metric. Note that we introduced E = e−P0/κ for convenience. κ is here the deformation parameter
and already has a mass dimension.

The question of how to find a P1,d
κ -module algebra to form the κ-Minkowski space-time is

not trivial regarding the complex structure of (3.1.1). However, the authors of [89] observed that
κ-Poincaré has a bicrossproduct structure steaming from the cross-product structure of the
Poincaré algebra P1,d = t1,d ⋊ so1,d, where t1,d denotes the algebra of translations and so1,d
the algebra of rotations and boosts. Explicitly, if one defines the (Hopf) algebra of deformed
translations T 1,d

κ as the set of {Pµ}µ and U(so1,d) the universal enveloping algebra of the (deformed)
rotations {Jj}j and boosts {Kj}j, then one has

P1,d
κ = T 1,d

κ ▶◁U(so1,d). (3.1.2)
Definitions and examples of (co)actions on (co)algebra can be found in Section A.2.

The κ-Minkowski space-time is defined as the (Hopf algebra) dual of the deformed translations,
R1,d
κ = (T 1,d

κ )′, and is fully determined as such. One can show, as done in the proof of Example
A.1.17, that κ-Minkowski is generated by d+ 1 elements {xµ}µ=0,...,d which satisfy

[x0, xj] = i

κ
xj, [xj, xk] = 0, (3.1.3a)

∆(xµ) = xµ ⊗ 1 + 1 ⊗ xµ, ε(xµ) = 0, S(xµ) = −xµ. (3.1.3b)
Thanks to this duality, one can define a (left) action of T 1,d

κ on R1,d
κ , via the action1 (A.2.5), and

dualise the coaction of U(so1,d) on T 1,d
κ to an action of U(so1,d) on R1,d

κ . One computes [89] that

(Pµ ▷ f)(x) = −i∂µf(x), (E ▷ f)(x) = f(x0 + i

κ
, xj), (3.1.4a)

(Jj ▷ f)(x) =
(
ϵ l
jk x

kPl ▷ f
)
(x), (3.1.4b)

(Kj ▷ f)(x) =
((1

2x
j
(
κ(1 − E2) + 1

κ
PlP

l
)

+ x0Pj − i

κ
xkPkPj

)
▷ f
)

(x). (3.1.4c)

for any f ∈ R1,d
κ .

1Note that R1,d
κ is a (right) R1,d

κ -comodule with the coaction given by the coproduct (3.1.3b).
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With the action (3.1.4), κ-Minkowski is a P1,d
κ -module algebra , thus allowing us to interpret

κ-Poincaré as the (quantum) symmetries of the (quantum) deformed Minkowski space-time.
The connection between a quantum space-time and its symmetries has been discussed in Subsection
1.4.3. On the other hand, if one tries to determine the Lie group of momenta by exponentiating
the Lie algebra of coordinates (3.1.3a), as done in Subsection 2.6.1 through the wave packet
formalism, one finds that this group corresponds to the deformed translations T 1,d

κ . The latter
observation can be explained by the bicrossproduct structure (3.1.2), which give rise to a Lie
algebra double dual to a Lie group double. Finally, κ-Poincaré gathers both the symmetries
and the momentum space of our quantum space-time.

Generalised κ-deformations of Minkowski were studied in [94], stemming from deformations of
the Poincaré-Weyl algebra W1,d, that is the Poincaré algebra with an extra generator of
dilatation. The Lie algebra part (3.1.3a) is changed to

[xµ, xν ]⋆κ = i

κ
(aµxν − aνxµ), (3.1.5)

where aµ ∈ R1,d is a constant vector. The κ-Minkowski (3.1.3a) is recovered when aµ = δµ0 =
(1, 0, . . . , 0). The latter case is called “time-like” κ-Minkowski since aµaµ = −1 in this case, but
one could also consider light-like (aµaµ = 0) and space-like (aµaµ = +1) deformations.

We now turn to the determination of a star product on κ-Minkowski, which satisfies (3.1.3a).
We present briefly here the two methods of Section 1.6.

The convolution algebra method was first carried out in [10, 95]. Starting from the Lie algebra
of coordinates (3.1.3), called the affine algebra, one computes the associate Lie group to be the
affine group, corresponding to (2.6.28). By computing the Fourier transform of the convolution
product and the involution on this group, one obtains

(f ⋆κ g)(x) =
∫ dp0

2π dy0 e−iy0p0f(x0 + y0, xj)g(x0, e−p0/κxj), (3.1.6a)

f †(x) =
∫ dp0

2π dy0 e−iy0p0f(x0 + y0, e−p0/κxj) (3.1.6b)

for any f, g ∈ R1,d
κ , where f denotes the complex conjugation of f . The multiplier space of (3.1.6a),

i.e. the set of (smooth) functions stable under the latter star product, was studied in [10]. It turns
out that it contains at least functions whose derivatives to any order grow at most polynomially at
infinity.

Proof. Here, we perform the computation of the star product (3.1.6a). The involution (3.1.6b)
follows from a similar computation with

f † = F−1
(
F(f)(⊟·) ∆(·)

)
where F is the Fourier transform and ∆ the modular function of the affine group (2.6.28).

The star product is computed through the formula (1.6.13). The right-invariant Haar
measure is considered on the group since it enables the construction of κ-Poincaré-invariant
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actions. Thus, one has

(f ⋆κ g)(x) = F−1
(
F(f) ◦̂ F(g)

)
(x)

=
∫

dµR(p)eipµxµ
(
F(f) ◦̂ F(g)

)
(p)

=
∫

dd+1p eipµx
µ
∫

dd+1q F(f)(p⊟ q) F(g)(q)

= 1
(2π)2d+2

∫
dd+1p dd+1q eipµx

µ
∫

dd+1y dd+1z e−i(p⊟q)µyµe−iqµzµf(y)g(z)

= 1
(2π)2d+2

∫
dd+1p dd+1q dd+1y dd+1z eip0(x0−y0)eiq0(y0−z0)

eipj(x
j−yj)eiqj(e

(q0−p0)/κyj−zj)f(y)g(z)

= 1
(2π)2

∫
dp0 dq0 dy0 dz0 eip0(x0−y0)eiq0(y0−z0) f(y0, xj) g(z0, e(q0−p0)/κxj)

(p0→p0+q0)= 1
(2π)2

∫
dp0 dq0 dy0 dz0 eip0(x0−y0)eiq0(x0−z0) f(y0, xj) g

(
z0, e−p0/κxj

)
(y0→x0+y0)= 1

2π

∫
dp0 dy0 e−ip0y0

f(x0 + y0, xj) g
(
x0, e−p0/κxj

)
.

The Drinfel’d twist method for generating the star product is less straightforward here than
for other quantum space-times. The first expressions were obtained in [96, 97], but shortly after a
no-go theorem came out [98] stating that, in dimension 2 and 4, the κ-Poincaré algebra cannot be
recovered by a twist deformation. In other words, there is no twist of P1,3 that makes it possible to
reconstruct the κ-Minkowski space-time. The former authors actually deformed the Poincaré-
Weyl algebra W1,d, that is the Poincaré algebra with an extra generator corresponding to
dilatations. The considered Drinfel’d twist is Abelian and writes

F = exp
(

− i

2κ(P0 ⊗D −D ⊗ P0)
)

= exp
(
i

2κ(∂0 ⊗ xj∂j − xj∂j ⊗ ∂0)
)
, (3.1.7)

where D is the dilatation generator, which can be shown to act on R1,d
κ as −ixj∂j. Some authors

[99] alternatively considered the Drinfel’d twist of Jordan type

F = exp
(

−iD ⊗ ln
(

1 + 1
κ
P0

))
. (3.1.8)

Contrary to the Moyal space, the three star products (3.1.6a), (3.1.7) and (3.1.8) have different
expressions. It is not known if the physics of a quantum space-time described by different star
products is the same or not. Studies on deformation quantisation methods have led to the notion
of equivalent star products, i.e. two star products ⋆ and ⋆̃ are said equivalent if there exists an
invertible (formal power series of) differential operator T such that

f ⋆̃ g = T−1
(
T (f) ⋆ T (g)

)
. (3.1.9)

This notion of equivalence has further been refined to the notion of Morita equivalence, which
basically compares the (∗-)representations of two (∗-)algebras. Therefore, two operator algebras
which are Morita equivalent will give rise to the same quantum states and observables. One
can find a more extensive discussion and the relevant references in [38]. It is not clear that
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this equivalence stands for more advanced notions, such as a n-point function of a field theory.
Moreover, the different Morita equivalence classes of κ-Minkowski are not known up to date.

Note that the star product (3.1.6a) can be put under an exponential form with

F = exp
(

− i

κ
κ(1 − E) ⊗D

)
(3.1.10)

but the latter expression does not satisfy the 2-cocycle condition (1.6.14a) and so is not a Drinfel’d
twist.

Proof. We factorise here the star product (3.1.6a) as the action of (3.1.10). In order to do
so, we use the infinite regularity of functions on κ-Minkowski to write infinite Taylor
expansions of the form

f(x0 + y0, xj) =
+∞∑
n=0

(y0)n
n! ∂n0 f(x), g

(
x0, e−p0/κxj

)
=

+∞∑
k=0

(e−p0/κ − 1)k
k! (xj∂j)kg(x),

where the decomposition e−p0/κxj = xj + (e−p0/κ − 1)xj has been used for the second equality.
Note that in the following computation integrals and infinite sums are swapped thanks to
the convenient space in which f and g lives.

(f ⋆κ g)(x) =
∫ dp0

2π dy0 e−ip0y0
f(x0 + y0, xj) g

(
x0, e−p0/κxj

)
=
∫ dp0

2π dy0 e−ip0y0
(+∞∑
n=0

(y0)n
n! ∂n0 f(x)

)(+∞∑
k=0

(e−p0/κ − 1)k
k! (xj∂j)kg(x)

)

=
+∞∑
n=0

+∞∑
k=0

∂n0 f(x)
n!

(xj∂j)kg(x)
k!

∫ dp0

2π dy0 e−ip0y0(y0)n(e−p0/κ − 1)k

=
+∞∑
n=0

+∞∑
k=0

∂n0 f(x)
n!

(xj∂j)kg(x)
k!

∫ dp0

2π dy0 e−ip0y0(y0)n
k∑
s=0

(
k

s

)
e−sp0/κ(−1)k−s

=
+∞∑
n=0

+∞∑
k=0

∂n0 f(x)
n!

(xj∂j)kg(x)
k!

k∑
s=0

(
k

s

)
(−1)k−s

∫ dp0

2π dy0 (y0)ne−ip0(y0−is/κ)

=
+∞∑
n=0

+∞∑
k=0

∂n0 f(x)
n!

(xj∂j)kg(x)
k!

k∑
s=0

(
k

s

)
(−1)k−s

(
is

κ

)n

=
+∞∑
k=0

(xj∂j)kg(x)
k!

k∑
s=0

(
k

s

)
(−1)k−s

+∞∑
n=0

∂n0 f(x)
n!

(
is

κ

)n

=
+∞∑
k=0

(xj∂j)kg(x)
k!

k∑
s=0

(
k

s

)
(−1)k−sf

(
x0 + is

κ
, xj

)

=
+∞∑
k=0

(xj∂j)kg(x)
k!

k∑
s=0

(
k

s

)
(−1)k−sEs(f)(x)

=
+∞∑
k=0

(xj∂j)kg(x)
k! (E − 1)k(f)(x)

= · ◦ exp
(

− i

κ
κ(1 − E) ⊗D

)
▷(f ⊗ g)
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If one considers the integral on Minkowski space-time as an integral over κ-Minkowski, then
one can show that it is not cyclic. More precisely, one has∫

dd+1x (f ⋆κ g)(x) =
∫

dd+1x
((

Ed ▷ g
)
⋆κ f

)
(x), (3.1.11)

where E = e−P0/κ is a generator of κ-Poincaré, see (3.1.1). We say that the integral is a “twisted”
trace, meaning that one of the factor gets transformed by the automorphism Ed. Note that this
formula could be obtained by (2.6.12), as one can compare Ed = e−dP0/κ and ∆(p)−1 = e−dp0/κ.
On the other hand, this integral enables the building of κ-Poincaré-invariant field theories since
one can compute that

X ▷
∫

dd+1x L (ϕ) = ε(X)
∫

dd+1x L (ϕ), (3.1.12)

for any X ∈ P1,d
κ and any Lagrangian density L of any field ϕ.

The lost of cyclicity (3.1.11) was considered to be the main obstacle to construct a gauge theory
on κ-Minkowski, as already mentioned in Section 2.1. We now go to the construction of a gauge
theory on κ-Minkowski.

3.2 Gauge theory on κ-Minkowski

As already reviewed in [23], several formulation of gauge theory on κ-Minkowski have been
considered. They are mainly based on the Seiberg-Witten map and bypass the lost of cyclicity
(3.1.11) by either taking a non-trivial integration measure (and so changing the notion of “integral”
on κ-Minkowski) or by considering a deformed version of the Hodge duality.

In this section, we mainly focus on the model developed by Mathieu and Wallet [100, 101].
Its starting point is the observation that the cyclicity of the integral is not broken, but only
twisted as shown in (3.1.11). Should the field strength F gauge transform in a “twisted” way
accordingly, the integral of F ⋆κ F

† would be gauge invariant. It appears that if one considers a
set of natural (twisted) derivations and adapts the procedure of the derivation-based differential
calculus (detailed in Section 2.1), one ends up with a gauge invariant action. However, the gauge
invariance imposes a specific space-time dimension. The latter constraint stems from the fact that
the twist in (3.1.11) depends on the spacial dimension d.

Let us first discuss how the straightforward noncommutative Yang-Mills theory action
(2.1.21) behaves with respect to the integral with twisted cyclicity (3.1.11). Performing the gauge
transformation of the action similarly to (2.1.23), one ends up at the last step with a term Ed(u)⋆κu‡

in the action. Recall that E = e−P0/κ is a generator of κ-Poincaré (3.1.1) appearing in (3.1.11).
We have further shortened Ed ▷ u to Ed(u). One could think of imposing that Ed(u) ⋆κ u‡ = 1 to
restore gauge invariance. Therefore, the set of deformed gauge transformations U(n) should now
satisfy

u‡ ⋆κ u = u ⋆κ u‡ = 1, E−d(u)‡ ⋆κ u = Ed(u) ⋆κ u‡ = 1. (3.2.1)

for any u ∈ R1,d
κ .

The authors of [100] advocated that such a requirement (3.2.1) is too restrictive since it imposes
that u is independent of time. From (3.2.1), one has Ed(u) = u, which writes u(x0 + d i

κ
, xj) =
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u(x0, xj) so that u needs to be periodic in the imaginary direction along x0. If one considers that
u needs to be entire, then the Liouville theorem states that an entire bounded complex function
needs to be constant, thus u needs to be constant along x0. The latter requirement would also
impact the commutative limit and be of less physical relevance.

3.2.1 The gauge theory on twisted derivation-based differential calculus
of deformed translation

One starts by considering the generators of translations of the κ-Poincaré algebra Pµ. In
commutative gauge theory, it consists of the usual set of derivations (i.e. the ∂µ). One could think
of using the Pµ’s as derivations to build the gauge theory along the lines of Section 2.1. In view of
their coproduct (3.1.1d), the Pj’s are not derivations, but rather “twisted”2 derivations, i.e.

Pj ▷(f ⋆κ g) =
(
Pj ▷ f

)
⋆κ g +

(
E ▷ f

)
⋆κ
(
Pj ▷ g

)
. (3.2.2)

If one considers the set of functions on R1,d
κ given by X0 = κ(1 − E) ▷ and Xj = Pj ▷, one obtains

d+ 1 twisted derivations

Xµ(f ⋆κ g) = Xµ(f) ⋆κ g + E(f) ⋆κ Xµ(g). (3.2.3)

In (3.2.3) and in the following, we abbreviate E ▷ f as E(f). We denote the set of twisted derivations
on κ-Minkowski as DerE(R1,d

κ ). The latter derivations consist of an Abelian Lie algebra and each
Pµ boils down to ∂µ at the commutative limit κ → +∞, up to an irrelevant −i factor. One can
indeed check that E → 1 in this limit and that a development of the exponential gives X0 → P0.

One should note that twisted structures already appear in twisted spectral triples.

Twisted spectral triples

In the context of the noncommutative standard model, it was shown that some inconsisten-
cies arises because the full Dirac operator is not bounded as required by the spectral triple
axioms (see Definition 1.3.1). That is, for (A,H, /D) as spectral triple, the element [ /D, f ]
is not a bounded operator in H, for any f ∈ A. Connes and Moscovici [102] cured the
latter problem by considering instead a twisted spectral triple. The latter is called twisted
since it introduces an automorphism of A, ρ ∈ Aut(A), such that

[ /D, f ]ρ = /Df − ρ(f) /D (3.2.4)

is bounded. Correspondingly, the zeroth (1.3.1c) and first (1.3.1d) order conditions write now
also with the twisted bracket [·, ·]ρ, so that the set of forms (1.3.5) (and so the differential
calculus) is also twisted.

In the case of κ-Minkowski, the twist ρ is considered to be E ∈ Aut(R1,d
κ ). To make contact

even further with the twisted gauge theory under study, one can show that [ /D, ·]ρ is a twisted
derivation, that is

[ /D, f ⋆ g]ρ = [ /D, f ]ρ ⋆ g + ρ(f) ⋆ [ /D, g]ρ. (3.2.5)
2The twist (E) has here nothing to do with a Drinfel’d twist. Despite the confusion that similar denomination

can bring, the name “twist” for twisted derivations is coherent with respect to the name “twisted” spectral triple,
the two sharing common grounds and properties.
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The relation (3.2.5) has to be confronted with (3.2.3). Furthermore, ρ is required to be regular,
that is ρ† = ρ−1, a property satisfied by E .

Due to the fact that we are considering twisted derivations instead of the usual derivations, the
procedure of Section 2.1 must be adapted to the twisted setting, as described below. Indeed, if one
wants to define a connection on a (right) R1,d

κ -module X similar to (2.1.1) with twisted derivations,
then one is confronted with inconsistencies, which result from the equality of ∇X(s ◁(f ⋆κ g)) and
∇X((s ◁ f) ◁ g). The problem lies in the Leibniz rule (2.1.1a) and it can be shown [101] that the
only possible twisted connection corresponds to

∇µ(s ◁ f) = ∇µ(s) ◁ f + E(s) ◁Xµ(f) (3.2.6)

for f, g ∈ R1,d
κ and s ∈ X, where we noted ∇Xµ = ∇µ. In the previous expression (3.2.6) E has

been lifted to the module structure and one has E(s ◁ f) = E(s) ◁ E(f). In a similar fashion, the
only twisted curvature, giving rise to a module homomorphism, writes

Rµν = E−1
(
∇µE∇ν − ∇νE∇µ

)
(3.2.7)

Recall that the module homomorphism property states that Rµν(s ◁ f) = Rµν(s) ◁ f , and is
necessary in order to extract a field strength F out of the full curvature R through (2.1.10). It
is important to note that there is no freedom in the choice of a (twisted) connection and its
associated curvature, since expressions (3.2.6) and (3.2.7) are imposed by the choice of the twist.

Twisted gauge theory

The latter result can be generalised to any twisted derivations. Consider two algebra
automorphismsa ρj : A → A, such that

X(f ⋆ g) = X(f) ⋆ ρ1(g) + ρ2(f) ⋆ X(g), (3.2.8)

for X a twisted derivation. Then, one can show that the connection and its associated
curvature are given by

∇X(s ◁ f) = ∇X(s) ◁ ρ1(f) + τ2(s) ◁X(f), (3.2.9a)
RX,Y = τ−1

2 ∇Xτ2∇Y − τ−1
2 ∇Y τ2∇X − ∇[X,Y ] (3.2.9b)

where τ2 is a twisted module automorphism τ2(s ◁ f) = τ2(s) ◁ ρ2(f) and ρ1 and ρ2 are
assumed to commute with any (twisted) derivation X. In this case, the curvature R is a
twisted module homomorphism

RX,Y (s ◁ f) = RX,Y (s) ◁ ρ2
1(f). (3.2.10)

One should note that the Lie bracket changes the twist, in the sense that two twisted
derivations X and Y with twists ρ1 and ρ2 as in (3.2.8), one can show that [X, Y ] is a twisted
derivation with twists ρ2

1 and ρ2
2.

aThe fact that the ρj needs to be algebra homomorphisms is imposed by the Leibniz rule (3.2.8) applied
to three or more elements.
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Now consider the specific case of noncommutative electrodynamics X = R1,d
κ . One follows the

steps of Section 2.1 in the twisted case. By defining AX = i∇X(1), one computes

∇µ(f) = Xµ(f) − iAµ ⋆κ f, (3.2.11a)
Fµν = Xµ(Aν) −Xν(Aµ) − i

(
E(Aµ) ⋆κ Aν − E(Aν) ⋆κ Aµ

)
. (3.2.11b)

Note that the Xµ’s are not real but twisted real3, i.e.

(Xµ(f))† = −E−1Xµ(f †). (3.2.12)

The Hermiticity condition (2.1.6) has also to be twisted to [103]

Xµ

(
(s1, s2)

)
=
(
E−1∇µ(s1), s2

)
+
(
E−1(s1),∇µ(s2)

)
(3.2.13)

for any s1, s2 ∈ X, which imposes

A†
µ = E−1(Aµ). (3.2.14)

The latter condition (3.2.14) has the same commutative limit then the usual (untwisted) Hermiticity
condition A†

µ = Aµ, corresponding to a real valued gauge field A.

The gauge transformation of the connection, and so of the curvature, needs also to be twisted.
As above, it can be shown [101] that it is imposed by the nature of the twist to be

Au
µ = E(u†) ⋆κ Aµ ⋆κ u + E(u†) ⋆κ Xµ(u), F u

µν = E2(u†) ⋆κ Fµν ⋆κ u. (3.2.15)

Therefore, if one considers an action of the form (2.1.21)

S =
∫

dd+1x F µν ⋆κ F
†
µν , (3.2.16)

its gauge transform is computed quite similarly as in (2.1.23), except that the last prefactor is
now twisted as

Su =
∫

dd+1x Ed−2(u) ⋆κ E2(u†) ⋆κ F µν ⋆κ F
†
µν . (3.2.17)

In view of the U(1) gauge group, which imposes u ⋆κ u† = 1, one obtains that the action S is
gauge invariant, that is Su = S, when the powers of the E ’s in the prefactor are equal. The latter
equality imposes

d+ 1 = 5. (3.2.18)

Several comments of the latter result are in order.
In the context of κ-Minkowski, the action (3.2.16) has a straightforward commutative limit,

which correspond to the usual U(1) Yang-Mills action on the Minkowski space-time. The
previous statement holds for any dimension, but the gauge invariance analysis requires that the
space-time dimension is fixed to 5 by (3.2.18). Therefore, the commutative limit of (3.2.16)
corresponds to the 4 + 1-dimensional U(1) Yang-Mills action.

3The minus sign in (3.2.12) is matter of convention. Indeed, if one considers iXµ instead of Xµ, that stems for a
representation ∂µ instead of −i∂µ, then the minus sign disappears.

Hersent Kilian − Thèse de Doctorat 77



3.2. Gauge theory on κ-Minkowski

The action (3.2.16) can be shown to be κ-Poincaré invariant, such that it has even been
named “κ-Poincaré invariant gauge theory”. This implies that the Poincaré invariance is
restored automatically at the commutative limit, but also that this U(1) gauge theory triggers
a Lorentz invariance violation via a Poincaré deformation. The previous observation sparks
phenomenological considerations concerning this theory as discussed in Section 4.2.

The dimension constraint (3.2.18) can be traced back to the fact that the twist in the integral
cyclicity (3.1.11) depends on the spacial dimensions d. Furthermore, one should note that the
latter constraint is very strong. Indeed, a twisted module structure of the form f ◁ g = f ⋆κ ρ(g),
with ρ an automorphism of R1,d

κ , does not affect the constraint (3.2.18) [103]. Moreover, there is
actually a freedom in the gauge transformation (3.2.15), since one could also considered

F u
µν = E2ρ̃(u†) ⋆κ Fµν ⋆κ ρ̃(u) (3.2.19)

where ρ̃ ∈ Aut(R1,d
κ ). However, the latter freedom leaves the requirement (3.2.18) unchanged, so

that we have put ρ̃ = id previously.

3.2.2 Quantisation and tadpole computation
We now turn to the study of the quantisation and the perturbation theory of (3.2.16). Note that

the commutative limit of (3.2.16) corresponds to the 5-dimensional (quantum) electrodynamics
action, which is known to be non-renormalisable. Therefore, one should be careful when considering
the commutative limit in the context of the perturbative study of (3.2.16).

We perform a Becchi-Rouet-Stora-Tyutin quantisation of the action (3.2.16), as in [104],
for which the corresponding twisted symmetry has been studied in [105]. To do so, let us introduce
the Fadeev-Popov ghost field c, anti-ghost field c and the Nakanishi–Lautrup field b. The
Slavnov operator s is then defined as

sAµ = Xµ(c) − E(c) ⋆κ Aµ + Aµ ⋆κ c, sc = −c ⋆κ c, sc = b, sb = 0, (3.2.20)

from which one computes

sFµν = Fµν ⋆κ c− E2(c) ⋆κ Fµν , s2 = 0. (3.2.21)

Then, one adds a gauge-fixing term to the action (3.2.16) of the form

s
∫

d5x c ⋆κ E−4Xµ(Aµ), s
∫

d5x c ⋆κ E−4(A0 − λ, ) (3.2.22)

where the first one corresponds to the deformed Lorenz gauge XµA
µ = 0 and the second one is

the (parametrized) temporal gauge A0 = λ, for λ ∈ R. The full action consisting of (3.2.16) and
(3.2.22) can be put under the form

S = SAA + Scc + SAAA + SAAAA + SAcc (3.2.23)

where SAA correspond to the gauge field kinetic term, Scc the ghost kinetic term, SAAA the gauge
field 3-vertex, SAAAA the 4-vertex and SAcc the gauge field-ghost interaction.

We then use usual functional methods to compute the tadpole diagram, that is the one-loop
1-point function.
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Functional methods in quantum field theory

We describe here a textbook functional method to obtain the n-point function in quantum
field theory. If one considers an action function S(A, c, c) depending on three fields A (the
gauge field) and c, c (the ghost fields). The latter splits into a kinetic part Skin(A, c, c) and
an interaction part Sint(A, c, c). The kinetic term is put under the form

Skin(A, c, c) =
∫ 1

2AµKAA
µ + cKcc (3.2.24)

where KA and Kc are kinetic operators. We further introduce the source action Ssou =∫
AµJ

µ + ηc+ cη, where J , η, η are the source fields.
One defines the (resp. free) generating functional of the connected correlation functionsa

(resp. W0(J, η, η)) W (J, η, η) as

eW (J,η,η) =
∫

dA dc dc e−Sint(A,c,c)−Skin(A,c,c)+Ssou , (3.2.25a)

W0(J, η, η) =
∫ 1

2JµK
−1
A Jµ + ηK−1

c η. (3.2.25b)

In the integral of eW , one can perform the change of variables Aµ → Aµ+K−1
A Jµ, c → c+K−1

c η
and c → c+K−1

c η. Then, upon infinite expansion of eSint , one can compute that

W (J, η, η) = ln
(
eW0

(
1 + e−W0

(
e−Sint( ∂

∂J
, ∂
∂η
, ∂
∂η ) − 1

)
eW0

))
. (3.2.26)

The first non-trivial term of the expansion of e−Sint yields

W 1(J, η, η) = W0(J, η, η) − e−W0(J,η,η)Sint

(
∂

∂J
,
∂

∂η
,
∂

∂η

)
eW0(J,η,η) (3.2.27)

Finally, one computes the correlation functions thanks to the generating functional of
proper vertices Γ(A, c, c), that consists of the Legendre transform of W (J, η, η). Explicitly,

Γ(A, c, c) +W (J, η, η) −
∫
AµJ

µ + ηc+ cη = 0, Aµ = ∂W

∂Jµ
, Jµ = ∂Γ

∂Aµ
, (3.2.28)

and similarly for c with η and c with η. At first order, the middle expressions of (3.2.28) boils
down to Aµ = ∂W0

∂Jµ
=
∫
K−1
A Jµ, with similar expressions for c and c. The latter expression

implies that

W0(J, η, η) =
∫
AµJ

µ + ηc+ cη (3.2.29)

Using (3.2.29), a simplification occurs in (3.2.28) so that the one-loop 1-point function writes

⟨A⟩1-loop = Γ1(A, c, c) = e−W0(J,η,η)Sint

(
∂

∂J
,
∂

∂η
,
∂

∂η

)
eW0(J,η,η) (3.2.30)

where Jµ =
∫
KAAµ, and similarly for η and η.

aNote that one has W = eZ , where Z is the generating functional of the connected Green functions
introduced in Subsection 2.6.2.
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One has all the ingredient to perform the computation of the tadpole (3.2.30), which writes

⟨A⟩1-loop =
∫

d5x J (κ)A0(x), (3.2.31)

where J is a gauge dependent divergent integral, to be regularised. The fact that (3.2.31) is
proportional to A0 can be linked to the fact that the time component has a peculiar role in
κ-Minkowski. Moreover, it justifies the study of the tadpole in the temporal gauge A0 = λ. The
major result of this computation, beyond its non-vanishing, is the gauge dependence of the tadpole.
This implies that the U(1) gauge symmetry has been broken in the quantisation process, as we
started with a gauge invariant action. One should note however, that the commutative limit is
correct since in any gauge, J vanishes in the limit κ → +∞.

Several comments are in order. It gathers the main elements of discussions of [106].
First, one should know that non-zero tadpole has been experienced in other quantum space-time,

like the 2-dimensional Moyal space [107] and R3
λ [108]. The two previous computations followed

the same quantisation procedure as above. This may imply that the quantisation method used
here cannot be applied in the context of noncommutative geometry, as suggested in [109].

Then, the notion of vacuum on quantum space-times has not reach consensus, so that the
expression (3.2.31) may not be the physical vacuum expectation value of the quantum electrody-
namical theory on κ-Minkowski. On the one hand, the Poincaré symmetry is broken so that
one cannot define particles as irreducible representation of the little group. This idea is known in
quantum field theory on curved space-time, in which the vacuum state is only defined thanks to
the asymptotic flatness hypothesis. Concerning κ-Minkowski, there has been several attempts in
defining a physical vacuum, either from a deformation of the little group study, or by defining its
energy. The latter notion is based on the Casimir operator of the κ-Poincaré algebra, but is
not well-defined as it is coordinate dependent.

Finally, as discussed in Section 2.1, one could consider other physical variables then A to encode
the “noncommutative photon”, and so have a zero tadpole with this quantity.

3.3 Causality on κ-Minkowski

Consider a single massive object made out of a spatial superposition of two states of different
masses. The gravitational field will also be in a superposition of state thus leading to superposed
space-time geometries. From there, one could argue that it is possible to superpose two geometries
for which two events are causal (i.e. time-like) in one geometry, but non-causal (i.e. space-like) in
the other. Therefore, the notion of classical causality beaks down at the quantum level. One could
argue either that causality is not an intrinsic property of nature, but rather an emergent feature of
some phenomenon, or that causality is deformed in the quantum setting. The latter consideration
has pushed towards the search of the properties of the would be quantum causality. We refer to
[110] for an early review on the topic.

In the context of quantum space-times, the question of what becomes of causality is interesting
in several aspects. A notion of causality on a quantum space-time needs to give back the usual
notion of causality at the commutative limit. In this sense, a causality on a quantum space-time
should be a deformation of the usual causality that could lead to an effective behaviour when
considering the first order correction. The phenomenology of deformed causality could be of
primordial importance to have experimental tests or constraints on such models.
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There is two algebraic formulation of causality which correspond to the causality on Lorentzian
spectral triple, developed by Franco and Eckstein [111] and the isocone-based approach of
Besnard [112]. We focus here on the first one that was applied to the κ-Minkowski space in
[113]. Note that the latter was also constructed on the “quantum Minkowski” space (i.e. the
Moyal space with a Minkowski metric), as well as the κ-Minkowski with another Dirac
operator (see [113] for a short review).

One should note that models of causality have already been considered on the κ-Minkowski
space-time by Mercati and Sergola [79, 114]. The latter study is based on the observation that
commutative causality may be defined thanks to Pauli-Jordan functions. Considering a scalar
field theory with field ϕ, the Pauli-Jordan function corresponds to [ϕ(x), ϕ(y)] and encodes
the light cone frontier. By implementing a noncommutative scalar field on κ-Minkowski, the
latter authors could derive the Pauli-Jordan function of the scalar field and observe that the
light cone was blurred: one does not go from time-like to space-like by an abrupt change, there
is a smooth transition within which one is neither space nor time-like. By observing that the
width of the blurred region increases with (space-time) distance, the authors advocate that this
deformation of the light cone is close to the present measurement accuracy, if the effect is amplified
by cosmological distance. Deformed light-cones could trigger time delays in photon travel from
ultra-high energy cosmic rays toward Earth (see Section 4.2 for more details on quantum gravity
phenomenology).

We introduce the formalism of Lorentzian spectral triple as well as the formulation of causality
on it.

Lorentzian spectral triple

The Lorentzian spectral triple is defined by the same set of data a the spectral triple of
Definition 1.3.1, with A a C∗-algebra which represents on a Hilbert space H with inner
product ⟨·, ·⟩, and /D an operator on H. The “Lorentzian” property is introduced through
the so-called fundamental symmetry I ∈ B(H) which should satisfy

I2 = 1, I† = I, [I, f ] = 0, (3.3.1a)

for any f ∈ A1, where † is the adjoint for ⟨·, ·⟩. For purely technical reasons, one needs
to consider A1, a unitalisation of A. Note also that the representation π : A → H has
been dropped in (3.3.1a). I transforms the positive form ⟨·, ·⟩ of H on an indefinite form
⟨·, ·⟩I = ⟨·, I·⟩, which is not necessarily positive. The latter I may be seen as a generalisation
of the complex i to Hilbert spaces, and the form ⟨·, ·⟩I as a Wick rotation of ⟨·, ·⟩. The
latter indefinite product is called a Krein product, and H equipped with it, a Krein space.

From there, the Lorentzian spectral triple follows the axioms of the spectral triple adapted
to the Krein space. Explicitly, the self-adjointness of /D for ⟨·, ·⟩ is replaced by a self-
adjointness for ⟨·, ·⟩I , which writes

/D
†
I = −I /D. (3.3.1b)

The compact resolvent condition writes

f (1 + /̃D
2
)− 1

2 is compact, (3.3.1c)
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for any f ∈ A, where /̃D
2

= 1
2( /D† /D + /D /D

†). Finally, the Dirac operator should satisfy

[ /D, f ] ∈ B(H), (3.3.1d)

for any f ∈ A, as in the usual spectral triple case.
Finally, there is an additional condition requiring that it exists a self-adjoint operator T

and a positive element N ∈ A1 such that Dom(T ) ∩ Dom(N) is dense in H and satisfies

(1 + T )− 1
2 ∈ A1, I = −N [ /D, T ]. (3.3.1e)

The operator T corresponds to the (noncommutative) generalisation of a global time function,
while the right hand side of (3.3.1e) ensures a Lorentzian type signature. In this sense, note
that −I could satisfy all the axioms (3.3.1) if one changes T to −T . The latter symmetry
can be directly linked to the choice of a signature.

The equation (3.3.1e) is not the only possible way to construct a fundamental symmetry
I. Furthermore, one can define a Lorentzian spectral triple corresponding to a globally
hyperbolic classical space-time. We refer to [111] for more details on these points.

Causality on Lorentzian spectral triples

If one considers a classical space-time M,
with metric g, and one wants to know if two
points x, y ∈ M are causally connected, then
one can consider a causal curve relating the
two. A causal curve is a smooth curve γ :
R → M satisfying

g(γ′(t), γ′(t)) ⩽ 0. (3.3.2)

The previous relation states that, at any t ∈ R,
the tangent vector to the curve γ is future di-
rected, i.e. time-like and pointing to increas-
ing time (see Figure 6). Therefore, y is in the
causal future of x if there exists a causal curve
γ such that γ(t1) = x and γ(t2) = y for some
t1 ⩽ t2 ∈ R.

Figure 6 − Space-time diagram of
a causal curve γ (in red) linking two
points x and y of flat space-time. The
derivative γ′ along the curve is pictured
to be always time-like.

x0

xjx

y

γ

Within this setting the causal structure of M is fully determined by its set of so-called causal
functions. Explicitly, a causal function is a function f : M → R which is non-decreasing
along every future directed causal curve γ. Therefore,

y is in the causal future of x if and only if f(x) ⩽ f(y) (3.3.3)

for any causal function f [111]. The graph of a causal function f corresponds to the region
of causal simultaneity.
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To go to the (noncommutative) algebraic setting, one can replace space-time points by
pure states of A, Ψp

A (see Definition B.2.5). As A contains the noncommutative analogue
of the smooth functions, the causal curves will be generalised as a subset of A, called the
causal cone.

A causal cone C ⊂ A1 is defined as

f † = f, f + g ∈ C, λf ∈ C, x1 ∈ C, (3.3.4a)

for any f, g ∈ C, λ ∈ R+ and x ∈ R. These stability conditions correspond to the mathemat-
ical definition of an (iso)cone. Furthermore, one should have that the linear span of C form
all A1, so that there are no disconnected region. Finally, the “causal” feature of the causal
cone is due to the requirement thata

〈
ψ
∣∣∣ [ /D, f ]ψ

〉
I

=
〈
ψ
∣∣∣ I[ /D, f ]ψ

〉
⩽ 0 (3.3.4b)

for any f ∈ C and |ψ⟩ ∈ H. For commutative Lorentzian spectral triple, it is possible to link
(3.3.4b) directly to (3.3.2). Moreover, the sign of (3.3.4b) is a signature choice, similarly to
(3.3.2). One could require it to be positive, if one changes I to −I.

To summarise, when considering a Lorentzian spectral triple, an element f ∈ A is in the
causal cone C if and only if it satisfies (3.3.4b), for any |ψ⟩ ∈ H. From there, we dispose of
“causal time charts” f . Then, for any two (pure) states ψ1, ψ2 ∈ Ψp

A

ψ2 is in the causal future of ψ1 if and only if ψ1(f) ⩽ ψ2(f), (3.3.5)

for any f ∈ C. The latter relation (3.3.5) is the noncommutative analogue of (3.3.3).
aWe abbreviated the mathematical notation ⟨|ψ⟩ , |ψ⟩⟩ to the physical one ⟨ψ |ψ ⟩, in accordance with

Example B.2.6.

The previous mathematical framework was applied to 1 + 1-dimensional κ-Minkowski A = R1,1
κ

in [113]. The considered Hilbert space is given by

H = H+ ⊕ H0 ⊕ H−, Ha = C2 ⊗ L2(R) (3.3.6)

where a = 0,± and L2(R) consist of the square integrable functions on R (with the Lebesgue
measure). On each summand Ha, the representation πa is inherited from the unitary irreducible
representation of the affine group (the Lie group of momenta) on L2(R) given by(

πa(f)ψ(a)
)
(p0) =

∫
dq0 f(q0 − p0, ae

−p0/κ)ψ(a)(q0) (3.3.7)

for any f ∈ R1,1
κ and ψ(a) ∈ L2(R). The fact that C2 appear in (3.3.6) comes from the fact

that we use a 2-dimensional Dirac operator below. The full representation on H is given by
π = (π+ ⊕π0 ⊕π−) ⊗12. In the following, the representations are clearly stated to avoid confusion.
Considering two elements ψ1 = ⊕

a ψ
(a)
1 , ψ2 = ⊕

a ψ
(a)
2 ∈ H, one defines the inner product as

⟨ψ1, ψ2⟩ =
∑

a=+,0,−

∫
dp0

(
ψ

(a)
1

)†
(p0) ψ(a)

2 (p0). (3.3.8)
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One can note that the representation (3.3.7) implies that π±(x0) = −i d
dp0

and π±(x1) = ±e−p0/κ.
Therefore, one has that x0 = x̂ and x1 = ±e−p̂/κ, where x̂, p̂ are the Schrödinger representation
of the position and momentum operators respectively of the 1-dimensional quantum mechanical
system.

The considered Lorentzian spectral triple writes

/D = −iγµXµ ⊗ 13 =
(

0 X−
X+ 0

)
⊗ 13, I = iγ0 ⊗ 13 (3.3.9)

where γ0 =
(

0 i
i 0

)
and γ1 =

(
0 −i
i 0

)
are the 2-dimensional Dirac gamma matrices, Xµ

corresponds to the twisted derivations (3.2.3), and X± = X0 ±X1. Note that 13 is here to express
that the same Dirac operator and fundamental symmetry are considered on each +, 0 and
− representations. Furthermore, the Dirac operator expression (3.3.9) is the straightforward
generalisation of the commutative Dirac operator on the Minkowski space-time /D = −iγµ∂µ.

It is important to point out that the considered derivations in the Dirac operator are twisted,
so that we have to consider a twisted (Lorentzian) spectral triple, as introduced in Subsection
3.2.1. Therefore, one has to consider the twisted bracket [·, ·]E in the axioms (3.3.1), instead of the
usual bracket. The twisted bracket expresses as

[ /D, f ]E = /Df − E(f) /D (3.3.10)

in accordance with (3.2.4).
By considering

T =
⊕
a

(
πa(x0) ⊗ 12

)
, N = 1, (3.3.11)

one can compute, thanks to (3.3.7), that (3.3.1e) is satisfied. The equation (3.3.11) states that the
global time T corresponds to the representation of x0. It seems quite straightforward to consider
that indeed x0 is a global time, even in the deformed theory.

It remains to consider how the conditions (3.3.3) and (3.3.4b) writes in this case.
One can show that a relevant set of pure states is given by

ψ±(f) = ⟨ψ, π±(f)ψ⟩ (3.3.12)

where |ψ⟩ ∈ H±. Therefore, the condition (3.3.3) imposes that ψ2 ∈ Ψp
R1,1
κ

is in the causal future
of ψ1 ∈ Ψp

R1,1
κ

if and only if∫
dp0 dq0 f(q0 − p0,±e−p0/κ) d

dt
(
ψt(p0)ψt(q0)

)
⩾ 0 (3.3.13)

for all f ∈ C, where t ∈ [1, 2] is a continuous parameter that interpolates between ψ1 and ψ2.
The condition for a function f to be in the causal cone C (3.3.4b) can be computed to be∫

dp0 dq0
(
i(1 − e−(q0−p0)/κ) f(q0 − p0, ae

−p0/κ) ± ∂1f(q0 − p0, ae
−p0/κ)

)
ψ(p0)ψ(q0) ⩾ 0 (3.3.14)

for all ψ ∈ L2(R) and a = ±, 0, where ∂1 denotes the derivative with respect to the second (spacial)
variable. Note that any function f = x0 + vx1, with v ∈ [−1, 1] satisfies (3.3.14) and therefore is
in the causal cone, as one could expect. Merging the two condition (3.3.13) and (3.3.14) gives a
non-trivial transport equation that was considered too tedious to be solved.
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Even if the causality on R1,1
κ has not been fully characterised, two comments are in order. First

of all, the commutative limit of the former model has few physical interest since the considered
representation (3.3.7) is 1-dimensional when κ → +∞. Thus, it raises the question of what
happens when one considers a 2-dimensional representation with a good commutative limit, like
the Gel’fand-Năimark-Segal representation (see Subsection B.2.2). One could also wonder
how much this causality model depends on the considered Hilbert space.

Moreover, if one writes the condition that two states ψ1, ψ2 to be causally related (3.3.4b) with
f(p0,±e−q0/κ) = p0 ± e−q0/κ, one obtains〈

ψ2

∣∣∣x0ψ2
〉

−
〈
ψ1

∣∣∣x0ψ1
〉
⩾
∣∣∣ 〈ψ2

∣∣∣x1ψ2
〉

−
〈
ψ1

∣∣∣x1ψ1
〉 ∣∣∣. (3.3.15)

Therefore, the equations that determine the causal evolution of states can be loosely written
as ⟨δx0⟩ ⩾ |⟨δx1⟩|, which is the expectation value of the speed-of-light limit on Minkowski:
δx0 ⩾ |δx1|. The expression (3.3.15) was thus considered to be the analogue of the speed-of-
light limit. The presence of expectation values suggests that the speed-of-light limit has to be
satisfied on average but that it could be broken locally. This observation could lead to important
phenomenological considerations. However, the expression (3.3.15) is not telling how much or how
often such a violation could occur. This would require a deepened analysis. Furthermore, one
could consider more complex causal functions and see what becomes of (3.3.15).

3.4 Other deformations of Minkowski space-time
Despite that κ-Minkowski has been the first and well-most studied deformation of the

Minkowski space-time, there exists other deformations of the Poincaré group [115, 116].
Mainly three have been studied as reviewed in [117]. First, the θ-deformation of Minkowski
corresponds to a Moyal-like deformation (see Section 2.5) with a Minkowski metric. Second,
the main topic of this Chapter 3 correspond to the κ-deformation. Finally, there was recently a
proposal for a new deformation of “angular” type [118] called ϱ-deformation. In this Section 3.4,
we introduce the ϱ-Minkowski space-time and discuss the first result of field and gauge theory
on it.

Note that other deformations of Minkowski have been considered in the literature with fewer
manpower of research, like the generalisation of (3.1.5) [119] or the very recent T-Minkowski
[117].

The ϱ-Minkowski space-time was first derived by a Drinfel’d twist deformation (see Subsec-
tion 1.6.2) with the twist [118]

F = exp
(
iϱ

2
(
P0 ⊗ J3 − J3 ⊗ P0

))
= exp

(
−iϱ

2
(
∂0 ⊗ (x1∂2 − x2∂1) − (x1∂2 − x2∂1) ⊗ ∂0

))
.

(3.4.1)

The latter is called “angular twist” and corresponds to a Drinfel’d twist of the Poincaré
algebra P1,3: there is no need to extend the algebra as discussed in Section 3.1 for κ-deformation.
One calculates the Lie algebra of coordinates to be

[x0, x1]⋆ϱ = iϱx2, [x0, x2]⋆ϱ = −iϱx1, [x1, x2] = 0 (3.4.2)

Hersent Kilian − Thèse de Doctorat 85



3.4. Other deformations of Minkowski space-time

with x3 a central element, i.e. it commutes with the other coordinates. The deformation parameter
ϱ has the dimension of a length. One can express the latter relations (3.4.2) in cylindrical
coordinates (x0, xr, xφ, x3) to obtain

[x0, xφ]⋆ϱ = ϱxφ (3.4.3)

and the other pairs of coordinates commute. One should note the similarity between (3.4.3) and
a 1 + 1-dimensional κ-Minkowski (3.1.3a) with two central coordinates when considering the
change ϱ → i

κ
.

The ϱ-Poincaré, derived thanks to the Drinfel’d twist (3.4.1), was shown to have a bi-
crossproduct structure [120] quite similar to the one of κ-Poincaré.

A derivation of the star product through convolution algebra technique (see Subsection 1.6.1)
has been done in [121]. The sketchy reasoning of the star product construction is made here with
coordinates (3.4.2), but one could equivalently perform the construction with (3.4.3) and obtain a
similar result.

The non-trivial part of (3.4.2) corresponds to the Euclidean Lie algebra, for which the associated
Lie group is the Euclidean group. The latter can be derived to satisfy

p0 ⊞ q0 = p0 + q0, p⃗⊞ q⃗ = p⃗+R(ϱp0)q⃗, (3.4.4a)
⊟p0 = −p0, ⊟p⃗ = −R(−ϱp0)p⃗, (3.4.4b)

where we noted p⃗ =
(
p1
p2

)
and R(ϱp0) =

(
cos(ϱp0) − sin(ϱp0)
sin(ϱp0) cos(ϱp0)

)
corresponds to the rotation

matrix of angle ϱp0 around the x3 axis. This group is unimodular ∆ = 1 and has a Haar measure
corresponding to the Lebesgue measure, i.e. dµ(p) = d4p. From there, one derives the star
product and involution to be

(f ⋆ϱ g)(x) =
∫ dp0

2π dy0 e−iy0p0 f(x0 + y0, x⃗, x3) g(x0, R(ϱp0)x⃗, x3), (3.4.5a)

f †(x) =
∫ dp0

2π dy0 e−iy0p0 f(x0 + y0, R(ϱp0)x⃗, x3), (3.4.5b)

where we again used the shorthand notation x⃗ = (x1, x2).
From the unimodularity of the group (3.4.4), one can deduce (see (2.6.12)) that the integral is

cyclic ∫
d4x (f ⋆ϱ g)(x) =

∫
d4x (g ⋆ϱ f)(x). (3.4.6)

The latter property can also be derived by direct computation with (3.4.5a), or by the star product
derived from the Drinfel’d twist (3.4.1).

The analysis of a charged ϕ4-theory on ϱ-Minkowski, based on the star product (3.4.5), has
been studied in [121]. The “charged” property means that the considered action has ϕ† term, so
that ϕ and ϕ represents the field and its charge conjugated field respectively. The considered
action is of the form

S(ϕ, ϕ) =
∫

d4x (∂µϕ)† ⋆ϱ ∂
µϕ+m2ϕ† ⋆ϱ ϕ+ g2

4!Vint(ϕ, ϕ) (3.4.7)
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where Vint is the interaction term considered to be

Vint(ϕ, ϕ) = ϕ† ⋆ϱ ϕ ⋆ϱ ϕ
† ⋆ϱ ϕ, Vint(ϕ, ϕ) = ϕ† ⋆ϱ ϕ

† ⋆ϱ ϕ ⋆ϱ ϕ. (3.4.8)

The first interaction term is referred to as “orientable” and the right one as “non-orientable”.
Thanks to the cyclicity of the integral (3.4.6), the two interactions (3.4.8) are the only 4-interaction
one can write with two ϕ and two ϕ† fields.

In order to quantise the action (3.4.7), one can perform an analysis very similar to the one of
Subsection 2.6.2. One should be careful, however, to the fact that ϕ and ϕ have to be considered
as distinct fields. Therefore, one need to introduce a source J coupled to ϕ.

The 2-point function at one-loop is computed very similarly to (2.6.20), except that not all
diagrams of Figure 4 and Figure 5 are accessible. This stems from the fact that a ϕ has to be linked
to a ϕ from the kinetic term of (3.4.7) together with the fact that ϕ and ϕ cannot be interchanged.
The latter observation makes the number of diagrams boils down from twelve to six, in each case.
The former observation makes it go from six to four. Explicitly, the orientable interaction give
rise to diagrams of Figure 4a, 4b, 4c and 4d, while the non-orientable interaction has diagrams of
Figure 4a, 4b, 5a, 5c. From there, one computes that the orientable interaction has no UV/IR
mixing in the 2-point function at one-loop, but the non-orientable has. This can be traced back to
the fact that the orientable theory has no non-planar Feynman diagrams, but the non-orientable
has. This observation has already been made on κ-Minkowski [95]. Moreover, the analysis of
[121] shows that the 4-point function, at one-loop, of the orientable theory has a UV/IR mixing,
stemming from the fact that now some non-planar diagram arises.

Finally, a deformed U(1) gauge theory was considered on ϱ-Minkowski [122]. As the integral
is cyclic (3.4.6), one has a priori less troubles than for κ-Minkowski (see Section 3.2). However,
the coproduct of the deformed translations writes

∆(P0) = P0 ⊗ 1 + 1 ⊗ P0, ∆(P3) = P3 ⊗ 1 + 1 ⊗ P3, ∆(P±) = P± ⊗ 1 + E∓1 ⊗ P±, (3.4.9)

where P± = P1 ±iP2 and E = exp(iϱP0). Because of (3.4.9), twisted derivations are still considered,
even if the integral is cyclic. We refer to Subsection 3.2.1 for a discussion on why the twisted
cyclicity of the integral hinted for the use of twisted derivations. Note that this approach considered
derivations with different twists so that one has to be careful when deriving the gauge theory.

The considered action is of the noncommutative Yang-Mills theory type (2.1.21), with

Fµν = E−1
ν ∇µEν∇ν − E−1

µ ∇νEµ∇µ (3.4.10)

where µ, ν = 0,±, 3, Eµ = (1, E−1, E , 1) and ∇µ is a twisted connection. The latter action has been
shown to be ϱ-Poincaré invariant and U(1) gauge invariant.
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Chapter 4

Quantum gravity and quantum
space-times

As discussed in Section 1.1 and Section 1.2, noncommutative geometry has lots of motivations
arising from quantum gravity. The aim of this Chapter 4 is threefold. First, we introduce the
main issues and challenges of quantum gravity as a whole. Then, we depicts the main topics
of quantum gravity phenomenology and the impact of the physics of quantum space-times in
this field. Moreover, we also present the various constraints on the space-time deformations
obtained by quantum gravity phenomenology and its experimental results. Finally, we depict the
obstacles to build models of gravity on quantum space-times, models which are generically named
“noncommutative gravity”. More specifically, we present a recent attempt in constructing an
analogue of space-time for which the tangent space is κ-Minkowski, rather then the Minkowski
space-time.

There has been many proposal for quantum gravity theories. For a historical note on quantum
gravity research see for example [127]. We wish to argue, in this Chapter 4, that noncommutative
geometry, at least as a mathematical tool, is a serious candidate for expressing a quantum gravity
theory, as it has inspired many promising phenomenological framework.

4.1 The motivations to study quantum gravity

4.1.1 Theoretical mismatches of quantum and gravity
The theory of general relativity has not been challenged by experiments yet, but there are

theoretical reasons to think that general relativity is to be interpreted as an effective field theory
of some more fundamental theory, valid below some energy scale. Indeed, when merged with
quantum mechanics or quantum field theory, some inconsistencies arises.

The first one is the black hole information paradox. When considering a quantum field theory
in Schwarzschild space-time, Hawking [123] found that a black hole emits radiations, called
Hawking radiations, which causes the black hole to evaporate over time. The final state of the
black hole is only determined by the total mass, charge and angular momentum of the initial state,
so that different initial states may lead to the same final state. Therefore, by only knowing the
information of the final state, one can reconstruct at most a class of initial states, but not the full
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initial state: some information is lost. Therefore, there is a mismatch with quantum theories as
information loss is prevented in quantum field theory via unitarity.

The second puzzle concerns the interpretation of time. In quantum mechanics, the time is
considered as universal and absolute. It can be compared to a thermodynamical time or a parameter
that controls the evolution of the quantum system. Whereas in general relativity, there is not a
single notion of time since it is observer dependant. General covariance even requires that it is
relative, in the sense that the evolution in space affects the evolution in time: one can think for
example to time dilatation in special relativity. The interpretation of time in the two theories is
so different that it is not even clear how a theory of quantum gravity should solve this so-called
“problem of time”.

The third inconsistency lies in the computation of the vacuum energy (cosmological constant)
of the Universe, if interpreted as the mean energy of all its elementary constituents described
by quantum field theory. The discrepancy between the theoretical and experimental value is
more then 56 orders of magnitude [124], highlighting the fact that the vacuum energy cannot be
explained by quantum field theory alone.

The fourth discrepancy arises when one tries to apply quantum field theory methods on gravity.
The value of the Planck length, corresponding to a Schwarzschild black hole having a radius
of order of its Compton wavelength, suggests that quantum fluctuations of gravity could become
relevant at small scale. Therefore, one would need a quantum (or at least semi-classical) formulation
of general relativity to capture these effects. As detailed in Subsection 4.1.2, the path integral
quantisation of general relativity is non-renormalisable so that we cannot make sense of the
straightforward version of “quantum general relativity”. Therefore, gravity cannot be considered
similarly as the other fundamental forces and needs to be quantised by other ways, if it needs to
be quantised at all.

Many authors consider other puzzles that quantum gravity should solve.

❖ The nature of space-time at the Planck length is thought to be very different from a usual
smooth manifold. The latter assertion takes its root in different aspects of quantum gravity
be it loop quantum gravity, group field theory or the Doplicher, Fredenhagen and
Roberts argument [24] (detailed in Subsection 1.2.2).

❖ The geodesic completeness, broken in singular space-times, is supposed to be restored in a
quantum gravity theory thanks to the smearing out of the curvature singularity. Note that
this singularity can correspond to a black hole singularity. In this sense, a quantum gravity
theory is expected to grasp more insight on the black hole interior. This singularity can also
be a primordial one, so that quantum gravity should resolve the constitution of the early
Universe.

❖ The actual theoretical physics supposed to explain all what we know is made of two distinct
theories: one for particle physics and the other for gravity. As the first is intrinsically
quantum, a theory of quantum gravity is expected to shed light on some common ground for
a unified theory.

❖ Some authors are hoping for a theory of quantum gravity to account for dark matter
phenomenons.
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❖ As already discussed in Section 3.3, the notion of causality is questioned when both quantum
theory and (curved) space-time happen to coexist. A theory of quantum gravity should be
able to settle if causality is an intrinsic property of nature, and if so, what quantum causality
is.

4.1.2 The perturbative quantisation of gravity
We gather here the sketch of computation for the non-renormalisability of general relativity.

We refer to [125] for more complete computations and an enhanced set of references.

The Einstein-Hilbert action on a d+ 1-dimensional space-time M is given by

SEH = 1
16π

∫
dd+1x

√
g(x)R(x), (4.1.1)

where g is the metric of M and R = gµνRµν is the Ricci scalar. In perturbation theory, one consider
small fluctuations h of a fixed background metric η (usually considered to be the Minkowski
metric) as

gµν(x) = ηµν +
√

16π hµν(x). (4.1.2)

It is important to note that this weak field expansion is not unique and that the perturbative
expansion highly depends on it. Regardless of the gauge fixing, one can have different sets of
Feynman rules stemming from different weak field expansions. The integrand of the action can
be shown to reduce, at lowest order in h, to

−1
4∂µhνρ ∂µhνρ + 1

8(∂µhνν)2 + 1
2
(
∂νhνµ − 1

2∂µhνν
)2
, (4.1.3)

where traces and inverse are taken with respect to the background metric. In order to perform the
Becchi-Rouet-Stora-Tyutin quantisation, one has to introduce a gauge fixing. A convenient
gauge fixing correspond to the de Donder gauge

∂νhνµ − 1
2∂

µhνν = 0. (4.1.4)

The gauge (4.1.4) removes the zero modes hµν ∼ ∂µζν + ∂νζµ which makes the propagator ill
defined, in a similar fashion that the Lorenz gauge ∂µAµ = 0 removes the zero modes and so the
divergence in the Yang-Mills propagator. The gauge fixing (4.1.4) cancels with the last term of
(4.1.3) so that the full Lagrangian, at second order in h, is given by

−1
4∂µhνρ ∂µhνρ + 1

8(∂µhνν)2 − ∂µcν ∂µcν (4.1.5)

where c is the ghost field. One can read from (4.1.5) the propagator for the graviton and the ghost.
The graviton 3-vertex and 4-vertex are given respectively by the expansion of (4.1.5) to third and
fourth order in h respectively. The Feynman rules are quite tedious to obtain and we refer to
[125] for their expressions.

The one-loop analysis in dimensional regularization shows that the needed counterterm for pure
gravity writes

√g
8π2(d+ 1 − 4)

( 1
120R

2 + 7
20RµνR

µν
)
, (4.1.6)
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where R is the Ricci scalar and Rµν the Ricci tensor. Therefore, in d + 1 = 4 dimensions,
general relativity is not perturbatively renormalisable, at least in the usual sense. One should note
that adding minimally coupled matter to the action does not radically change the counterterm
(4.1.6). The one-loop divergence can be removed either on-shell (i.e. when Rµν = 0), or by a field
redefinition. However, the two-loop analysis shows that this magical behaviour does not occur for
higher loops.

The later analysis could have been hinted by a dimensional analysis. Indeed, if one performs a
power counting, the degree of divergence of a Feynman diagram is given by

(d+ 1)L+ 2V − 2I (4.1.7)

where L is the number of loop in the diagram, V the number of vertices and I the number of
internal lines. The equation (4.1.8) stems from the fact that each loop involves an momentum
integration dd+1p, each vertex goes like p2 and each internal line involves the propagator that goes
as p−2. For any diagram, one has the relation that L = 1 + I − V which comes from a topological
constraint on the graphs. Indeed, if one wants to have a single loop which goes through exactly
V vertices, one need V internal lines. Each extra internal lines generates another loop, or needs
another vertex not to form a loop. Therefore, there is a balance between L− 1 and I − V .

Merging this topological constraint with (4.1.7) imposes that the divergence degree of a diagram
is

(d− 1)L+ 2. (4.1.8)

One should note that the latter number only depends on the number of loops L and that for
dimensions d + 1 > 2, the divergence degree is growing with the number of loops. The higher
the loop order, the worse the divergence. Therefore, general relativity is not perturbatively
renormalisable.

One should note that the loop prefactor (d− 1) in (4.1.8) is linked to the Newton’s constant
dimension (1 − d length dimension).

The main pool of quantum gravity theories have tried to tackle the previous renormalisability
problem by different ways. Concerning noncommutative geometry, some authors are hoping that
the deformation parameter would act as a ultra-violet cut-off in the spirit of Snyder. However,
the renormalisability (or sometimes finiteness) of a field theory is far more tricky on quantum
space-times, even at the level of a scalar field theory, as exemplified by the UV/IR mixing. The
study of noncommutative field theories have some way to go before tackling the quantisation of a
full noncommutative gravity theory.

Still, the main aspect we want to put forward in this manuscript is that, even if noncommutative
geometry cannot give rise to a full theory of quantum gravity straightforwardly, it has been and still
is an essential tool for quantum gravity phenomenology. In other words, the physics of quantum
space-times could pave the way for early quantum gravity tests. In the following Section 4.2, we
discuss recent results in quantum gravity phenomenology and the constraint that one already has
on quantum space-times.
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4.2 Phenomenological considerations

4.2.1 Phenomenology of quantum gravity
At the time this manuscript is written, there is no probe of any quantum gravity effects, and even
beyond general relativity ones1. The usual cause pointed out for this experimental loophole is
that energy scales involved are simply too high, the Planck mass being of order MP ∼ 1019 GeV.
However, the phenomenology of quantum gravity has already reached such energies by considering
highly energetic astrophysical sources and possible effects that got amplified within cosmological
distances.

We give here the main trends and results of quantum gravity phenomenology. Note that one
can find many more details and an extensive set of references in the recent review of the COST
Action CA18108 “Quantum Gravity Phenomenology in the multi-messenger approach” [12]. The
collaboration gathered the most recent results of quantum gravity tests in their online catalogue
[128].

The supposed quantum gravity effect that gathering the most hope for detection is the modifica-
tion of particle dynamics in vacuum, called modified dispersion relations.

Modified dispersion relations

The modified kinematics is mostly thought to be energy dependant so that it writes

E = |p⃗|
(

1 + ϵ
n+ 1

2
En

En
QG

)
(4.2.1)

where E is the energy of the particle and p⃗ its momentum, n is the order of deformation,
EQG is the energy scale at which the modification is relevant and ϵ = ±1 parametrises if
the modification is superluminal (+1) or subluminal (−1). Note that a modified dispersion
relation can also trigger a modified interaction dynamics for particles. We refer to [12] for
more details on this part.

As propagation is modified, two photons with two different energies would travel at different
velocities2. One can then think of a thought experiment of an astrophysical source emitting
simultaneously two photons with different energies toward Earth. Since they travel differently,
there will be a time delay in the detection of the two photons. The higher the energy discrepancy
and the higher the distance to the source, the bigger the time delay. Note that one can perform
the same thought experiment and change the cosmic messenger. In other words, one can consider
gravitational waves or neutrinos instead of photons.

This has led to the search of time delays in highly energetic astrophysical events, mainly gamma
ray bursts, active galactic nuclei and pulsars. For some events, the lower bound for EQG for a first
order modified dispersion relation (i.e. n = 1) has even reached the Planck scale. However, one
has to handle a high systematic error coming from different sources: the expansion of the Universe,
the “simultaneity” in time and energy measurements, the mechanism of emission at the source,

1The flourishing phenomenology of modified gravity goes far beyond the scope of this manuscript.
2The term “velocity” here is pictorial but may be misleading. Some theoretical frameworks breaks the speed-

of-light limit for particle so that the velocities of two photons are actually different. However, some other
framework may require that the two photons travel at the same speed but in different (energy dependant here)
backgrounds/space-times such that the arrival time of two simultaneously emitted photon is different.
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scattering with the interstellar medium, etc... The latter errors are thought to be reduced by a
statistical treatment, which would need more events.

There are other, possibly testable, effects that a modified dispersion relation triggers. First,
if the messenger carries a polarisation, then a birefringence effect could occur. Specifically, the
polarisation of light could be rotated of some tiny amount accumulating with distance, and
gravitational wave could have different speed for + and × polarisations. Second, there could be
modifications in the redshift due to the Universe expansion. Third, the gravitational lensing would
become frequency dependent so that a black hole shadow would be affected by some rainbow effect.
Fourth, the Greisen-Zatsepin-Kuz’min cut-off of ultra-high-energy cosmic rays, due to their
interaction with the cosmic microwave background, would be smaller as the cosmic microwave
background could interact with less energetic photons. Fifth, the oscillation of neutrinos would be
affected by a modification of propagation. One can find an extended list of effects and discussions
in [12].

The modified dispersion relation has been experienced in several quantum gravity phenomeno-
logical frameworks, the most studied ones being doubly special relativity and Lorentz invariance
violation.

Doubly special relativity

There is an apparent contradiction between some quantum gravity framework claiming
an observer-independent smallest length (of order of the Planck length) and the length
dilatation and contraction of special relativity. The doubly special relativity framework aims
at solving this issue by considering both an observer-independent upper limit for the speed
(the speed of light) and an observer-independent lower limit for lengths, called ℓDSR. This
implies that “inertial” observers are no more related by a Poincaré transformation but
rather a deformation of it. Doubly special relativity models are thought to describe effectively
some flat space-time limit of quantum gravity.

A doubly special relativity theory imposes a deformed momentum space via a deformation of
the composition law of the momenta. Therefore, it may imply a modified dispersion relation for
the photons, where the energy scale EQG is to be linked with ℓ−1

DSR.

Lorentz invariance violation
Lorentz invariance violation is a generic term for all effective theories that breaks

Lorentz invariance. It may be done by deforming the Lorentz symmetry, as for example
in doubly special relativity, or by imposing a preferred direction for field propagation. Indeed,
one can add in the fermionic action a term of the form

iuµuνψγ
µ∇νψ (4.2.2)

where ψ is the fermionic field, ∇ the covariant derivative and u the preferred direction of
space-time encoded as a vector field. While some authors have considered u to be non-
dynamical, it appears that nice results may be derived by a dynamical u coupled to gravity
and having a non-zero expectation value.

Lorentz invariance violation could generate time delays via non-covariant dispersion relations.
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The mixing of dynamical tensors in the action leads to new gravitational wave polarisations.
Finally, birefringence can appear for CPT-odd operators (in the context of CPT violation).

The Lorentz invariance violation framework is vast and has already been tightly constrained
by (minimal) standard model extensions, up to dimension five operators. Still, the constrains
remains far below the Planck scale.

Other phenomenological settings arises in the context of quantum gravity phenomenology as
detailed below.

Similarly to the Galilean time becoming relative in special relativity, it appears that locality
becomes relative in doubly special relativity theories. More explicitly, if a process is local for a
(close) observer, then for another observer (obtained after a doubly special relativity transformation)
the process may be non-local. The notion of locality of, say, an interaction of particle becomes
observer dependent. This is called the relative locality principle.

The notion of Born geometry tries to settle a “covariant relative locality”. In the same
spirit that space or time is observer dependant in special relativity but space-time is not, Born
geometries tries to identify the global observer independent concept of causality that would lead
to relative locality.

In doubly special relativity, the momentum space is curved due to a modification of the
momentum addition law. It can be shown to be of constant curvature corresponding to ℓ−1

DSR. The
generalisation of doubly special relativity to generally covariant framework has been to consider
curved momentum spaces. One can ask the question of what becomes of the usual dispersion
relation p2 + m2 = 0, since the latter is coordinate dependent and therefore not (momentum)
covariant. In order to solve this issue, one introduces a covariant Hamiltonian for which the level
sets H(x, p) = constant correspond to dispersion relations. The Hamiltonian is defined on a curved
phase space (x, p), which is defined by a metric gµν(x, p).

As already formalised in Subsection 1.2.2, the generalised uncertainty principle studies the effects
of a momentum dependent Heisenberg uncertainty principle. The Heisenberg uncertainty
principle does not impose one to have a minimal length, since one can have ∆x as small as wanted
if ∆p is big enough. Therefore, even in its simplest form

∆x∆p ⩾ ℏ
2
(
1 + ℓ2

GUP p
2
)
, (4.2.3)

the generalised uncertainty principle imposes a smallest length ℓGUP. Constraints coming from
gravitational wave detection, neutrino physics and cosmological studies affects the generalised
uncertainty principle parameters but has not reached Planck scale yet. Besides, the generalised
uncertainty principle imposes the black hole evaporation to stop at ℓGUP and so to leave a remnant
behind. The latter consideration lead to a possible solution in the black hole information paradox
discussed in Subsection 4.1.1, as the “lost” information could be carried by this remnant.

4.2.2 The phenomenology of quantum space-times
Most of the phenomenological frameworks depicted above can emerge naturally in the context

of noncommutative geometry. We detail below how these frameworks appear on some example, as
well as some constraints it imposes on the deformation parameter.
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The κ-Poincaré algebra (3.1.1) realises a doubly special relativity with ℓDSR = κ−1. In
other words, if one interpret the κ-Poincaré generators as frame transformations, then those
transformations conserves both an observer independent speed and an observer independent length
κ−1.

Lorentz invariance violation occurs via deformations of the Poincaré group. Therefore, a
quantum space-time having a deformed Poincaré symmetry may break the usual Lorentz
invariance. Note that all forms of Lorentz invariance violation are not necessarily linked to a
symmetry deformation, since one could simply consider that the breaking of Lorentz invariance
does not give rise to another symmetry.

The ϱ-Minkowski space (discussed in Section 3.4) was first considered for its close relation to
relative locality [129]. The latter also has a deformed version of Poincaré algebra as its space
of symmetries and, therefore, can be also linked with doubly special relativity and Lorentz
invariance violation.

Curved momentum space arises at least in Lie algebra-type noncommutative space-times, as
developed in Section 2.6. Considering the momentum space to be the exponentiation of the
coordinate space, a Lie algebra-type noncommutativity imposes a deformed composition law of
momenta through the Baker-Campbell-Haussdorff formula. From the knowledge of this
deformed law, one can compute a connection, and its associated curvature, of the momentum
space.

Finally, generalised uncertainty principle are present in some quantum space-times, like the
Snyder space-time.

Note that CPT violation is thought to appear in quantum space-times. However, there are no
unambiguous definitions of the discrete symmetries in a noncommutative context.

In view of all the physical considerations associated with quantum space-times, one could ask
what kind of modified dispersion relation are been generated. However, when considering deformed
symmetries, as in the case of κ-Minkowski, the derived dispersion relation is highly dependent of
the coordinate choice in the Hopf algebra of symmetries. For example, if one considers that the
generalised derivative ∂µ of the kinetic operator are Pµ, or Xµ (defined in Subsection 3.2.1), one
ends up with two different dispersion relations which writes

Pµ : E2 = |p⃗|2, Xµ : E2 = |p⃗|2 + 1
κ
E3 + O

( 1
κ2

)
. (4.2.4)

Other expressions have been derived throughout the literature. If an action with a kinetic term
involving the Xµ’s is considered, like in (3.2.16), the phenomenological constraints on time delays
for high-energetic astrophysical photons imposes that κ ≳ 1017 − 1019 GeV.

Choosing the appropriate kinetic term has been discussed extensively. It can be directly linked
to the question of momentum coordinate invariance of Section 2.6.

Other physical constraints can be put on the deformation parameters, see [23] for a review. When
considering a noncommutative Yang-Mills theory (2.1.21), the expansion of the action with
respect to the deformation parameter generates contributions from higher dimensional operator,
which have already been studied in the context of standard model extensions. The strongest
constraints comes from Lorentz invariance violating operator which imposes k̄ ≳ 1017 GeV. The
Moyal space has been intensively studied in this sense, so that k̄ =

√
θ in this context.

Another consideration one can have on the 5-dimensional model of κ-deformed Yang-Mills
theory developed in Section 3.2, is to relate the deformation parameter κ with the extra dimension
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size. If one assumes a simple compactification scheme on the simple orbifold S1/Z2, then constraints
from the Large Hadron Collider gives κ ≳ 1013 GeV.

Other recent proposal for noncommutative geometry tests have been proposed, see for example
[130, 131, 132, 133, 134].

4.3 Toy model of noncommutative gravity
There is a flourishing literature of formulations of gravity on quantum space-times. For a

review see [23] and for an extensive set of references see [135]. Most of the studies focus on the
noncommutative black hole, since this object is so compact that quantum gravity fluctuations are
thought to critically change our understanding of black holes. For an early review of θ-deformed
black holes see [136].

The question of what becomes of the metric is a major issue in noncommutative gravity. There
have been many proposals for metric formulations on quantum space-times (bilinear or sesquilinear,
symmetric or hermitian, invertible or nondegenerate, real or not, on derivations or on forms, etc...)
and none has reached consensus.

A noncommutative metric faces other difficulties when one considers its commutative limit.
Most of the noncommutative settings work with complex entries so that a noncommutative metric
is necessarily complex. If no reality constraints is imposed, the corresponding commutative metric
would also be complex. Furthermore, the noncommutativity of the star product ⋆ generally imposes
that the metric is not symmetric, which has also been shown to be pathological in a commutative
setting.

Finally, it is not known if the “noncommutative metric” is the relevant object to study gravity on
quantum space-times. For a classical space-time, the data of the metric fully determines the latter
space-time and so the gravity behaviour. It is further obtained by solving the Einstein equations.
It is not know if such a property extends to the quantum space-times on which many metrics could
be defined a priori. Besides, if noncommutative metrics would be in one to one correspondence
with quantum space-times, then one would further need an analogue of the Einstein equation,
which up to date has not been derived.

We detail here the construction of the toy model of noncommutative gravity introduced in
[137]. It consists of the first of a series and tries to put some mathematical grounds on the
noncommutative analogue of a partition of unity. The main idea is to consider a space-time on
which the Minkowski tangent space is changed to be the κ-Minkowski “tangent space”. If
one imposes that κ-Minkowski is a local tangent space, then one needs a notion of partition of
unity to glue all the local pieces together and form global objects. In the following, the Einstein
summation convention applies for space-time indices (corresponding to the end of the Greek
alphabet µ, ν, ρ, σ, τ) and does not for the covering indices (corresponding to the beginning of
the Greek alphabet α, β). In the latter case, the sum is always made explicit.

The previous idea takes its root in the commutative setting for which the Minkowski space-time
arise as a local tangent space. Indeed, if one is given a patch of local open sets {Uα}α covering the
space-time M, then

TUα ≃ Uα × R1,d, (4.3.1)
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where TUα is the tangent space of Uα. The relation (4.3.1) gives rise to the vielbein formalism,
where one can compare different frames of the tangent bundle at any point of Uα by a Poincaré
transformation, meaning a transformation of R1,d. The property (4.3.1) is referred to as the local
triviality of M in the mathematical literature, stemming from the fact that locally the tangent
bundle is only layers of copies of Minkowski. Note that in the physical literature, the need of
an open set Uα where local coordinates can be defined is frequently not mentioned. One usually
exports objects defined on each Uα’s to the full space-time M by the use of a partition of unity χ,
also generally omitted in the physics literature.

Several questions now arise when trying to implement this framework. What is the analogue Aα

of the local set Uα in the noncommutative geometry? How can one implement that R1,d
κ is the

“tangent space” of Aα, similarly to (4.3.1)? How does one glue elements of Aα to the full A, that is
how can one define a noncommutative partition of unity? Possible answers to those questions are
the specific topic of this Section 4.3.

The question of generalising open covers {Uα}α of a space-time M to the noncommutative
setting was addressed in [138], through the notion of ideals and covering of algebras. If one
considers A to be the set of smooth functions C ∞(M), then Aα would correspond to C ∞(Uα).
The two are related via the restriction on Uα, noted |α : C ∞(M) → C ∞(Uα).

The kernel of the latter restriction Ker(|α) corresponds to the set of (smooth) functions that
vanish on Uα. It is an ideal of C ∞(M) since a product of two functions, one from Ker(|α) the
other from C ∞(M), vanishes necessarily on Uα. Furthermore, one has

C ∞(Uα) = C ∞(M)/Ker(|α), (4.3.2)

in terms of quotient of ideals (see Definition A.1.5). The latter result is detailed in Example A.1.6.
Furthermore, the property that {Uα}α forms a covering of M translates, for the restrictions, to⋂

α

Ker(|α) = {0}. (4.3.3)

Indeed, if a (smooth) function is zero on every Uα, it is zero on the all M as the Uα’s cover all M.
Finally, concerning two open covers {Uα}α and {Ũβ̃}β̃, the link between C ∞(Uα) and C ∞(Uα∩Ũβ̃)

can also follow from (4.3.2) considering the restriction |β̃ (and similarly for C ∞(Ũβ̃) with |α). On
the other hand, one can go directly from C ∞(M) to C ∞(Uα ∩ Ũβ̃) through

C ∞(Uα ∩ Ũβ̃) = C ∞(M)/
(
Ker(|α) + Ker(|β̃)

)
, (4.3.4)

where + denotes here the smallest closed ∗-ideal containing both elements. The relation (4.3.4)
holds for an intersection of two open sets, but it can be straightforwardly generalised to an
intersection involving an arbitrary number of open sets.

The way one generalises the previous aspects to the noncommutative setting goes as follows.

Covering of algebras

Let A be a ∗-algebra, possibly obtained by deformation quantisation of a classical space-
time. We define a family of ∗-ideals {Jα}α to be a covering of A if it satisfies⋂

α

Jα = {0}. (4.3.5)

One can directly read that this is the noncommutative analogue of (4.3.3). Having defined
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such a covering, one considers the “local” algebra Aα to be the quotient of the “global”
algebra A by the ideal Jα, similarly to (4.3.2), i.e.

Aα = A/Jα. (4.3.6)

Finally, the quotient of A by several (here two) coverings {Jα}α and {J̃β̃}β̃ is given by the
generalisation of (4.3.4)

Aαβ̃ = A/
(
Jα + J̃β̃

)
. (4.3.7)

We say that a set {Aα}α satisfying (4.3.5) and (4.3.6) is a covering of algebras, the ideals Jα
being implied.

It is important to note that any Aα can be made a ∗-algebra via the involution [f ]†αα = [f †]α,
where [f ]α denotes the representative of the equivalent class of f ∈ A. In the previous equation †α

denotes the involution of Aα and † the involution on A. Besides, we note the canonical projection
πα : A → Aα, such that πα(f) = [f ]α. The latter projection is surjective by definition. By
considering the projection of A on Aα and then on Aαβ̃, or directly from A to Aαβ̃, one can show
that the diagram

Aα

Aβ̃

A Aαβ̃

πα

πβ̃

παβ̃

πα
β̃

πβ̃α

commutes, so that πα
β̃

◦ πα = πβ̃α ◦ πβ̃ = παβ̃.

We now turn to the implementation of R1,d
κ as the local tangent space. The idea we develop

here shares some similarities with the quantum fiber bundle model developed by Brzeziński
and Majid [36]. If one realises that the coordinates on κ-Minkowski has trivial coproduct
∆(xµ) = xµ ⊗ 1 + 1 ⊗ xµ (see (3.1.3b)), then the xµ’s behaves as derivations on any R1,d

κ -module
algebra. Explicitly, if one assumes that (Aα, ⋆α) is a R1,d

κ -module algebra, the coproduct yields

xµ ▷(f ⋆α g) = (xµ ▷ f) ⋆α g + f ⋆α (xµ ▷ g), (4.3.8)

for any f, g ∈ Aα. Note that in the case of ∗-algebras, the relation

(x ▷ f)†α = S(x)† ▷ f †α (4.3.9)

holds, for any x ∈ R1,d
κ and f ∈ Aα, where S is the antipode of R1,d

κ , and † its involution. As in
[36], we require that

Aα is a T 1,d
κ -comodule algebra (4.3.10)

(see Definition A.2.5), with coaction ◀α : Aα → Aα ⊗ T 1,d
κ . From (4.3.10), one can derive that Aα

is a R1,d
κ -module algebra with the action

x ▷ f =
∑

⟨f(1), x⟩f(0) (4.3.11)
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for any x ∈ R1,d
κ and f ∈ Aα, where we used the Sweedler notations ◀α = ∑

f(0) ⊗ f(1) and
where ⟨·, ·⟩ : T 1,d

κ × R1,d
κ → C denotes the dual pairing between T 1,d

κ and R1,d
κ .

Considering the set

Dκ = Span
(
{xµ}µ=0,...,d

)
, (4.3.12)

consisting of the linear span of the xµ’s, one has from (4.3.8), stemming from (4.3.10) and (4.3.11),
that Dκ is a sub-Lie algebra of Der(Aα). In the spirit of the restricted derivation-based differential
calculus, we consider the set of restricted derivations (see discussion of Section 2.5)

DerR(Aα) = Z(Aα) ⊗ Dκ (4.3.13)

on Aα. It can be shown that DerR(Aα) is a sub-Lie algebra of Der(Aα) and a Z(Aα)-module.
One can further build a (restricted) differential calculus (Ω•

R(Aα), dα,∧α) by following the steps of
Section 1.5. It can also be shown that Ω1

R(Aα) ≃ Aα ⊗ D′
κ. Here D′

κ stands as the dual of Dκ and
corresponds to the linear span of the deformed translations P µ ∈ T 1,d

κ .
The situation above corresponds quite closely to the commutative setting (4.3.1). Indeed, the

derivations correspond to the sections of the tangent bundle, that is Der(C ∞(Uα)) = Γ(Uα), but
from (4.3.1), one has

Γ(Uα) ≃ C ∞(Uα) ⊗ R1,d (4.3.14)

which exactly match (4.3.13) at the commutative limit. The previous statement is usually written,
in the physics literature, as ζ = ζµ∂µ for any vector field ζ (the tensor product being implied).
Following these notation, we denote below ζ = ζµxµ, for any ζ ∈ DerR(Aα), where ζµ ∈ Z(Aα).
Correspondingly, the set of one-forms writes Ω1(Uα) ≃ C ∞(Uα) ⊗ R1,d

κ , which is the commutative
limit of Ω1

R(Aα) ≃ C ∞(Uα) ⊗ D′
κ.

The latter construction of local derivations, because of its close relation to the commutative
setting, has some similarities with the general relativity setting for gravity. Indeed, if one defines a
connection ∇, as in Section 2.1, on the module X = DerR(Aα), then it is fully determined by its
components on Dκ, that is

∇xµ(xν) = Γρµνxρ (4.3.15)

with Γρµν ∈ Z(Aα). If one requires that ∇ is hermitian, that is ∇ζ†α (ξ†α) = (∇ζ(ξ))†α for any
ζ, ξ ∈ DerR(Aα), then one has

(Γρµν)†α = −Γρµν (4.3.16)

by making use of (3.1.3b) together with (4.3.9). Moreover, the associated curvature, defined in
(2.1.3), writes

R σ
µνρ = (xµ ▷Γσνρ) − (xν ▷Γσµρ) + ΓτνρΓσµτ − ΓτµρΓσντ − C τ

µν Γστρ (4.3.17)

where C τ
µν = i

κ
(δ0
µδ

τ
ν − δ0

νδ
τ
µ) is the structure constant of the Dκ algebra, that one can read from

(3.1.3a). The expression (4.3.17) is very akin to the usual expression for the space-time curvature.

Finally, we tackle the last question on how to define a coherent noncommutative partition of
unity. It is quite instructive to start with the commutative definition of a partition of unity
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Definition 4.3.1 – Partition of unity

Let M be a space-time. A partition of unity on M is a set of functions {χα}α satisfying

(i ) χα ∈ C ∞(M),
(ii ) {Supp(χα)}α is locally finite,
(iii ) χα ⩾ 0,
(iv ) ∑

α χα = 1,

where Supp denotes the support. The partition is further said to be subordinate to an open
cover {Uα}α of M, if for every β there exists α such that Supp(χβ) ⊂ Uα. We say that the
partition is adapted to the cover whenever β = α. In this case, the cover and the partition
of unity share the same set of indices.

A partition of unity is manufactured to glue pieces of objects, defined only locally, to have a
globally defined object. Requirement (i ) ensures that the partition of unity does not deteriorate
the smoothness of the objects we work with. (ii ) allows for χα to be only non-zero inside Uα (in
the case of an adapted partition) and thus makes χα “select” the desired Uα. Finally, (iii ) together
with (iv ) ensure that no information is lost: gluing all the pieces together gives a coherent object.
As an example, if one considers f ∈ C ∞(M), then the identity

f =
∑
α

χαf |α (4.3.18)

holds. The different local pieces f |α are reconstructed to be f via the partition of unity χα. The
previous statement (4.3.18) is at the very basis of what we want to achieve with a noncommutative
partition of unity, that is to define objects on the local algebras Aα and to glue local pieces together
to have a global object on A. Note that the latter gluing should not depend on the choice of the
cover or the partition of unity. The independence relies on the property that the product of a
partition of unity is still a partition of unity. Therefore, we need to export this property to the
noncommutative setting also. More explicitly, if {Uα}α and {Ũβ̃}β̃ are open covers of M with
adapted partition of unity {χα}α and {χ̃β̃}β̃ respectively, then {χαχ̃β̃}α,β̃ is an adapted partition
of unity for {Uα ∩ Ũβ̃}α,β̃.

We define the noncommutative partition of unity as

Definition 4.3.2 – Noncommutative partition of unity

Let A be a ∗-algebra. A partition of unity on A is a set of elements {χα}α satisfying
(i ) χα ∈ A,
(ii ) {Supp(χα)}α is locally finite,
(iii ) χα ⩾ 0, i.e. it exists ςα ∈ A such that χα = ςα ⋆ ς

†
α,

(iv ) For any f ∈ A, ∑α χα ⋆ f = f ,
where Supp(f) = {φ ∈ ΦA, φ(f) ̸= 0} and ΦA is the space of characters of A (see Subsection
B.2.1). The partition of unity is further said to be subordinate to an algebra cover {Aα}α of
A, if for every β there exists α such that

Supp(χα) ⊂ Ker(Jβ) = {φ ∈ ΦA, φ(f) = 0 ∀f ∈ Jβ} (4.3.19)
We say that the partition is adapted to the cover whenever β = α.
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Several comments are in order.
First, the Definition 4.3.2 perfectly match the Definition 4.3.1 at the commutative limit. The

latter statement mainly holds thanks to the Gel’fand-Năimark theorem, which gives a one
to one correspondence between the space of characters and the set of points of the space. Note
that the requirement (iv ) has been changed to match the case of a non-unital algebra. However,
one could work with an approached unit or a unitalisation of the algebra and define (iv ) as in
Definition 4.3.1.

The condition of subordinate partition (4.3.19) is akin to the one of Definition 4.3.1 in the
commutative case. Indeed, in this case, one has that Jβ = Ker(|β) so that Ker(Jβ) = {x ∈
M, f(x) = 0 ∀f ∈ Ker(|β)} = Uβ.

Furthermore, one has to specify a topology in order to define the notion of local finiteness in
(ii ). Indeed, the local finiteness imposes that there are a finite number of indices α for which
Supp(χα) ∩ V ̸= ∅, given any neighbourhood V . Therefore, one needs to specify what are the
neighbourhoods in ΦA. We take the latter to be given by the weak* topology.

One can show that given two partitions of unity {χα}α and {χ̃β̃}β̃, adapted to some covering of
algebras {Aα}α and {Ãβ̃}β̃ of A, then {χα ⋆ χ̃β̃}α,β̃ is a partition of unity adapted to the covering
{Aαβ̃}α,β̃. This can be shown using that

χα ⋆ χ̃β̃ = χ̃β̃ ⋆ χα = χα • χ̃β̃ = χ̃β̃ • χα, (4.3.20)

where χα • f = ςα ⋆ f ⋆ ς
†
α, for any f ∈ A and where ςα is defined by (iii ).

Finally, one can show that the diagonal elements of the matrix basis on the Moyal space
{fmm}m∈N (see Section 2.5), forms a partition of unity.

Having built the noncommutative partition of unity, we know how to export the local derivations
and the local forms to define global objects. Thus, if one considers

DerR(A) =
{∑

α

χα ⋆ (ζα ◦ πα), ζα ∈ DerR(Aα)
}
, (4.3.21)

then it consists of a Z(A)-submodule of Der(A). Using the explicit expression of DerR(Aα) (4.3.13),
one has that any ζ ∈ DerR(A) is of the form

ζ =
∑
α

(χα ⋆ ζµα)xαµ (4.3.22)

where ζµα ∈ Z(Aα) and xαµ = xµ ◦ πα. The latter form (4.3.22) corresponds to the usual formula
for vector fields on a differential manifold.

Similarly as above, one can define

Ωn
R(A) =

{∑
α

χα ⋆ ω
α
(
πα(· ⋆ χα), . . . , πα(· ⋆ χα)

)
, ωα ∈ Ωn

R(Aα)
}

(4.3.23)

and show that it is a A-submodule of Ωn(A). This noncommutative analogue seems also to conserve
the “local” property of forms. This follows from

ωα ∧α η
α = πα(ω ∧ η), (dω)|α = dαω|α, (4.3.24)

where in the first equality ωα ∈ Ωn(Aα) (resp. ηα ∈ Ωm(Aα)) denotes a convenient projection of
ω ∈ Ωn(A) (resp. η ∈ Ωm(A)), and in the second equality ω|α ∈ Ωn(Aα) denotes an appropriate
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notion of restriction of ω ∈ Ωn(A). Using the explicit structure of Ω1
R(Aα) ≃ Aα ⊗ D′

κ, any
ω ∈ Ω1

R(A) is of the form

ω =
∑
α

(χα ⋆ ωαµ)P µ
α , (4.3.25)

where ωαµ ∈ Aα and P µ
α = P µ(πα(· ⋆ χα)). Again, the component form (4.3.25) corresponds to the

usual formula for 1-forms on a differential manifold.

The previous formalism offers a convenient generalisation of locally trivial tangent bundle with
κ-Minkowski arising as the space of derivations. Furthermore, it brings a formalism close to the
tensorial formalism on commutative manifolds. However, a gravity theory would need further an
action functional to be defined. In order to define an action, one needs a notion of integral (or
trace) that has not been defined in this context. The partition of unity could be of use to export
an integral on a local algebra (Aα) to an integral on the global algebra (A), as in the commutative
case. One should then explore the impact of this local triviality on the theory defined on Aα.
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Conclusion

The physics of quantum space-times is very promising for the study of quantum gravity
phenomenology and has not yet delivered all its secrets. Most of the puzzles of quantum space-
times arise when considering field theories and particle states. The possible alternatives or
redefinitions of such objects could pave the way for new physics and maybe experimental tests.
Even if noncommutative geometry is not the fitted formalism for a full theory of quantum gravity,
it remains one of the best framework that may describe quantum gravity effects, at least in some
regime.

As the Chapter 1 illustrates, “noncommutative geometry” is a generic word which designates
intertwined mathematical frameworks that tries to quantise the geometry. The field and gauge
formalisms described in Chapter 2 also convey the actual lack of a global framework or at least
some criterion to distinguish between all the possible choices. Constructing noncommutative
analogues can be performed by several ways and introduces a huge, and for now unconstrained,
freedom to write noncommutative field theories.

Beyond the plural nature of quantum space-times, some common features arise. Indeed, in
Section 2.6 the UV/IR mixing phenomenon is tackled. Vaguely described in the literature as
the appearance of mixed ultra-violet and infra-red divergences in field and gauge theories, an
unambiguous definition [76] of the UV/IR mixing is proposed in this manuscript. It consists of
three propositions: the UV divergence of the planar diagrams, the IR singularity of the non-planar
diagrams and the UV finiteness of the non-planar diagrams. It was shown that the two first
points is equivalent to the divergence of the propagator, thus designated as a criterion for UV/IR
mixing. However, the third point has not been addressed since the non-planar diagrams involve a
non-trivial conservation of momenta that mixes the external momenta with the internal momenta.
The study of the UV finiteness of the non-planar diagrams requires both the behaviour of the
propagator and the solution of this non-trivial momentum conservation. The previous computation
works for any Lie algebra-type noncommutative space-times and so consists of the first attempt
to generalise UV/IR mixing studies.

The path to the understanding of the mixing has still some way to go. First, it consists of a
one-loop analysis of the 2-point function. One could ask what become of the mixing to higher loop
orders and for generic n-point functions. The presence of other new phenomenon for higher loops
and higher correlation functions needs to be better characterised. The UV/IR mixing has been
experienced mostly for Lie algebra-type noncommutative space-times, but may be generalised
to other quantum space-times. The Lie algebra-type allows one to define properly a momentum
space and therefore to work with it. In the case of Hopf algebra formalism, one could also
consider a momentum space through a Hopf duality with the quantum space-time. This idea
needs to be further explored. Moreover, the analysis of Section 2.6 is performed for scalar field
theory, but the mixing has also been experienced in noncommutative Yang-Mills theories on
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Moyal. Therefore, one could think of broadening this study to gauge theories. Eventually, the
ordering ambiguity defining the momentum space may be of primordial importance in the study
of noncommutative field theories. Indeed, it is not clear whether physical predictions depend or
not on the chosen ordering prescription, which is only present in the noncommutative setting. The
question of choosing a “physical” ordering or working with an ordering invariant theory3 has not
been settled and could have a dramatic impact on the physical interpretation of these theories.

The study of gauge theories on quantum space-times has been explored through several examples.
The case of κ-Minkowski is discussed in Section 3.2. In order to solve the loss of cyclicity of the
integral, this gauge theory relies on the notion of twisted derivations. Still, the gauge invariance of
the κ-Poincaré-invariant Yang-Mills-like action imposes that the space-time dimension is 5.
This can be directly traced back to the fact that the deformed cyclicity of the integral involves
the space-time dimension. The 1-point function (tadpole) of the latter action is computed at
one-loop order. It is shown to be both non-vanishing and gauge dependant, as experienced on
other quantum space-times, like Moyal and R3

λ. The gauge dependence of the tadpole is very
puzzling since the considered action is gauge invariant and since the gauge dependence is not
present in the commutative theory. Note that the tadpole still vanishes at the commutative limit
in any gauge.

The origin of this noncommutative gauge anomaly has not been traced back and could stem
from different sources. First, it is not clear that the A variable corresponds to the physical (or at
least mathematically convenient) variable to encode the “noncommutative photon”. One of the
promising alternative variable on Moyal was the so-called covariant coordinate A. Alternatives
to A have not been explored outside Moyal. Second, the gauge anomaly could be due to an
unsuitable quantisation procedure. The path followed in this manuscript consists of the usual
Becchi-Rouet-Stora-Tyutin quantisation method. The latter may need to be adapted to the
noncommutative case for a consistent treatment.

In Section 3.3, a toy model of causality on κ-Minkowski is constructed. It relies on the
formulation of Lorentzian spectral triple and establishes the causality relation of two (pure) states,
as inspired by the commutative setting. Even if this model relies on a too small Hilbert space,
an analogue of the speed-of-light limit has been derived. It corresponds to an inequality constraint
between the expectation value of the time and space operators for causally related states.

This model consists of one of the first established causality on quantum space-times and has
therefore room for improvements. One of the most phenomenologically relevant investigation
consists of deriving this speed-of-light limit for more complex operators. This could lead to a full
set of constraints.

Finally, a toy model for noncommutative gravity is derived in Section 4.3. It aims at characterising
the quantum space-times through κ-Minkowski which arises as the local tangent space. The
notion of locality is here defined in the mathematical sense of open sets. Once objects are defined
on the local algebras via the use of κ-Minkowski, they are glued together via a noncommutative
partition of unity to define global objects. One can thus build the tensorial formalism on the
global algebra by only making use of properties of κ-Minkowski.

3The link between ordering invariance and momentum diffeomorphism invariance has only been made for the
κ-Minkowski space-time. Whether this correspondence can be exported to other quantum space-times is still to
be determined.
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Conclusion

This rather mathematical framework needs a physical follow up in which an action is implemented.
One has first to define an integral (or trace) on the global algebra, which could express through
the integral over κ-Minkowski.
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Appendix A

Hopf algebras and quantum groups

There is no well-posed definition of what quantum groups are. But it is commonly acknowledged
that Hopf algebras give a common structure to most of the quantum groups encountered. In this
sense, Hopf algebras seems to be an interesting mathematical structure that we focus on in this
Appendix. More insights on quantum groups are given in Section 1.4, and we refer to [31, 32, 33]
for more details on these algebraic structures.

A.1 Algebraic structures
We here introduce the algebraic structure needed in the context of quantum groups. They are

defined mainly as vector space over C, but one could also consider R or other generic fields.

A.1.1 Algebras
In noncommutative geometry, the classical notion of space-time is replaced by the algebraic

notion of algebra, as motivated by Example A.1.2 and the commutative Gel’fand-Năimark
theorem.

Definition A.1.1 – Algebra

An associative algebra is a vector space A over C with a multiplicative intern law
⋆ : A ⊗ A → A, which satisfies

f ⋆ (g + h) = f ⋆ g + f ⋆ h, (distributive over the sum) (A.1.1a)
(zf) ⋆ g = f ⋆ (zg) = z(f ⋆ g), (compatible with the scalar product) (A.1.1b)

f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h, (associativity) (A.1.1c)

for any f, g, h ∈ A and z ∈ C.
The algebra A is said unital if it exists 1A ∈ A such that

f ⋆ 1A = 1A ⋆ f = f. (A.1.1d)

The algebra A is further said commutative if ⋆ satisfies

f ⋆ g = g ⋆ f. (A.1.1e)
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As straightforward examples, (R, ·, 1) and (C, ·, 1) are unital commutative algebras. Despite,
this genuine remark, one can build an algebra out of any set X through the space of functions
over X going into C, as detailed Example A.1.2.

The most simple and known example of a noncommutative algebra is the space of n×n matrices
Mn(C) (with n > 1), equipped with the matrix product and a unit given by the identity matrix 1n.
In the context of noncommutative geometry, the space of matrices was quite studied as it allows
one to mimic a SU(n) gauge theory. See the noncommutative Yang-Mills theory of Section 2.1.

Example A.1.2 – Algebra of functions

Consider X to be any set of any kind of objects. Now consider the space of functions
f : X → C, noted X ′, called the dual of X . From the algebra structure of C, one can endow
X ′ with an algebra structure with product and sum given by

(zf + g)(x) = zf(x) + g(x), (f · g)(x) = f(x)g(x)

for any f, g ∈ X ′, x ∈ X and z ∈ C. The product of X ′ is called the “commutative product”
throughout the manuscript and corresponds to the product (1.1.1).

Note that the Example A.1.2 could be done also considering functions on R instead of C.

One could express the Definition A.1.1 by considering the maps ⋆ : A ⊗ A → A and 1A : C → A
and require that the following diagrams commute

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

⋆⊗ id

id ⊗ ⋆ ⋆

⋆

A ⊗ A A ⊗ CC ⊗ A

A

1A ⊗ id id ⊗ 1A

id id
⋆

In this sense, one can have the correspondence

(⋆⊗ id) ◦ ⋆ = (id ⊗ ⋆) ◦ ⋆ ⇐⇒ (A.1.1c)
(1A ⊗ id) ◦ ⋆ = (id ⊗ 1A) ◦ ⋆ = id ⇐⇒ (A.1.1d)

⋆ ◦ τ = ⋆ ⇐⇒ (A.1.1e)

where τ : A⊗A → A⊗A is the flip map, i.e. τ(f ⊗g) = g⊗f . Recall that (A.1.1c) corresponds to
the associativity of ⋆, (A.1.1d) expresses that 1A is a unit for ⋆ and (A.1.1e) that ⋆ is commutative.

The elements of A commuting with any other elements of A corresponds to the center of A,
denoted Z(A), i.e. z ∈ Z(A) if and only if

z ⋆ f = f ⋆ z, (A.1.2)

for any f ∈ A.

The notions of the charge conjugation of a particle or of adjoint operators are defined by
involutions. This is implemented via the notion of ∗-algebra.
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Definition A.1.3 – ∗-algebra

An algebra A is said to be a ∗-algebra if it has an antihomomorphism involution † : A → A,
i.e.

(z1f + z2g)† = z1f
† + z2g

†, (antilinear) (A.1.3a)
(f ⋆ g)† = g† ⋆ f †, (antimorphism) (A.1.3b)

(f †)† = f, (idempotent) (A.1.3c)

for any f, g ∈ A and z1, z2 ∈ C, where z denotes the complex conjugate of z.

If A is unital, then one has 1† = 1.

The algebra of Example A.1.2 can be turned into a ∗-algebra thanks to the complex conjugation
f †(x) = f(x). In this example, it is important to note that the algebra structure of X ′ does not
bring any information on the elements of X , since it is fully exported from C. Similarly, the
∗-structure does not bring additional information on the space X , since it also comes from C. In the
context of deformation quantisation, one can deform the product of X ′ into a noncommutative one
to obtain a (noncommutative) algebra of functions noted X ′Jk̄K. Here, k̄ denotes the deformation
parameter. One can also deform the involution † such that X ′Jk̄K becomes a ∗-algebra.

The structure of algebra carries also a notion of ideals, that is of great use in Section 4.3. An
ideal is a subset of elements that is stable under multiplication. It can be seen as a set of elements
sharing a property and propagating this property to other elements. Its importance relies in
the notion of quotient algebra. The quotient algebra correspond to the packing of the algebra
elements, which are grouped with respect to the latter property. A simple example corresponds to
Z2 = Z/2Z which correspond to packing integers to two “groups”: odd and even.

Definition A.1.4 – Ideal of algebra

Let A be an algebra. A sub-vector space J is a left (resp. right) ideal if it is stable by left
(resp. right) multiplication, i.e. for any f ∈ A and g ∈ J , one has f ⋆ g ∈ J (resp. g ⋆ f ∈ J).
It is often written as AJ ⊂ J (resp. JA ⊂ J).

A two-sided ideal is both a left and right ideal.

Definition A.1.5 – Quotient algebra

Let J be a two-sided ideal of an algebra A. We define the relation f ∼ g if and only if
f − g ∈ J , so that its equivalent class are written [f ] = f + J . The quotient space, that is
the space of equivalent classes, A/J forms an algebra with product [f ⋆ g] = [f ] ⋆ [g].

We further define the so-called canonical projection π : A → A/J by π(f) = [f ]. It is
surjective by definition.

Proof. We need to verify that the product in A/J is well-defined:

[f ] ⋆ [g] = (f + J) ⋆ (g + J) = f ⋆ g + f ⋆ J + J ⋆ g + J2 = f ⋆ g + J = [f ⋆ g]
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An example of algebra quotient is given by the universal enveloping algebra, in Definition A.1.10.
We give another example with some importance for this manuscript.

Example A.1.6 – Local functions as a quotient algebra

Let M be a space-time and C ∞(M) the algebra of smooth functions over M. Consider
a covering of open set {Uα}α of M, that is Uα ⊂ M for any α and ⋃

α
Uα = M. In the

context of differential manifolds, this patch of open sets {Uα}α always exist and Uα can
further be equipped with coordinates in R1,d, where d is the spacial dimension of M. In
other words, Uα corresponds to a region of space that is “local” and that we can describe
with coordinates.

We want to characterise algebraically the space of local functions, that is C ∞(Uα), by
only knowing C ∞(M). This is done by considering some quotient algebra. Indeed, let
|α : C ∞(M) → C ∞(Uα) denote the restriction from M to Uα, i.e. f |α(x) = f(x) for any
x ∈ Uα. Then, Ker(|α) is a (two-sided) ideal of C ∞(M) and we have

C ∞(Uα) = C ∞(M)/Ker(|α). (A.1.4)

Finally, the equivalent classes corresponds to the further restriction, that is [f ]α = f |α, for
any f ∈ C ∞(M).

Proof. We prove here that

Ker(|α) =
{
f ∈ C ∞(M), f |α = 0

}
=
{
f ∈ C ∞(M), f(x) = 0 for any x ∈ Uα

}
is a two-sided ideal. Indeed, let g ∈ C ∞(M) and f ∈ Ker(|α), then for any x ∈ Uα,

(f · g)(x) = f(x)g(x) = 0, (g · f)(x) = g(x)f(x) = 0,

so that f · g ∈ Ker(|α) and g · f ∈ Ker(|α).

A.1.2 Lie algebras
The notion of group of symmetries is rather mathematically expressed as elements of a Lie

group. Any Lie group is in one-to-one correspondence with a Lie algebra. The latter corresponds
physically to the infinitesimal transformations associated with the former symmetries.

Definition A.1.7 – Lie algebra

A Lie algebra is a vector space g over C equipped with a bracket [·, ·]g : g × g → g such
that

[z1X + z2Y, Z]g = z1[X,Z]g + z2[Y, Z]g, (bilinearity) (A.1.5a)
[X, Y ]g = −[Y,X]g, (antisymmetric) (A.1.5b)

[X, [Y, Z]g]g + [Y, [Z,X]g]g + [Z, [X, Y ]g]g = 0, (Jacobi identity) (A.1.5c)

for any X, Y, Z ∈ g and z1, z2 ∈ C.
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Note that the subscript g is often omitted when writing the bracket.
A simple physically motivated example of a Lie algebra is the Heisenberg algebra. It

corresponds to the algebra generated by 3 elements x̂, p̂ and 1 such that

[x̂, p̂] = iℏ 1, [x̂, 1] = 0, [p̂, 1] = 0.

We give another physically motivated example.

Example A.1.8 – Poincaré algebra

The Poincaré algebra P1,d in d spacial dimensions corresponds to a Lie algebra generated
by the translations {Pµ}µ=0,...,d, the rotations {Jj}j=1,...,d and the boosts {Kj}j=1,...,d via

[P0, Jj] = 0, [Pj, Jk] = −iϵ l
jk Pl, [P0, Kj] = iPj, [Pj, Kk] = iηjkP0,

[Pµ, Pν ] = 0, [Jj, Jk] = iϵ l
jk Jl, [Jj, Kk] = iϵ l

jk Kl, [Kj, Kk] = −iϵ l
jk Kl,

where η is the Minkowski metric with signature (− + · · · +), and ϵ is the Levi-Civita
fully antisymmetric tensor.

Remark A.1.9 – Algebras and Lie algebras

An algebra is always a Lie algebra. This is done by considering the bracket [f, g]⋆ =
f ⋆ g− g ⋆ f , where ⋆ is the product of the algebra. One can show that such a bracket (often
without subscripts) satisfies (A.1.5).

The converse is not necessarily true. Therefore, the Lie algebra structure is broader then
the algebra one in a sense. However, from any Lie algebra g, one can construct an algebra
called the universal enveloping algebra U(g) as detailed in Definition A.1.10.

From a Lie algebra1 g, one can consider tensor powers of g, that is g⊗n = g ⊗ · · · ⊗ g (n times),
for any n ∈ N, with the convention g⊗0 = C. Then, the sum T (g) =

+∞⊕
n=0

g⊗n is an algebra, called

the tensor algebra, with the product XY = X ⊗ Y ∈ g⊗(j+k), for any X ∈ g⊗j and Y ∈ g⊗k.

Definition A.1.10 – Universal enveloping algebra

Given a Lie algebra (g, [·, ·]), one defines

U(g) = T (g)/{X ⊗ Y − Y ⊗X − [X, Y ], X, Y ∈ g}

The definition above corresponds to the quotient of T (g) by the two-sided ideal J = {X ⊗ Y −
Y ⊗X − [X, Y ], X, Y ∈ g}. For simplicity, the definition of U(g) can be understood as the tensor
algebra, i.e. formal polynomial of elements of g, for which the bracket of g is realised by the
product, i.e. [X, Y ] = XY − Y X.

A.1.3 Coalgebras
Motivated by the structure of the dual of a group (see Example 1.4.1 for the motivations and

detailed explanations), we define here the notion of coalgebra.

1Actually, this construction can be made for any vector space.
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Definition A.1.11 – Coalgebra

A coalgebra is a vector space A over C with two linear mappings called the coproduct
∆ : A → A ⊗ A and the counit ε : A → C, satisfying

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆, (coassocitivity) (A.1.6a)
(ε⊗ id) ◦ ∆ = (id ⊗ ε) ◦ ∆ = id. (counit property) (A.1.6b)

It is further said cocommutative if ∆ satisfies

τ ◦ ∆ = ∆. (A.1.6c)

The coproduct ∆ is often written in terms of Sweedler notations

∆(f) =
∑

f(1) ⊗ f(2) (A.1.7)

for any f ∈ A. In these notations f(1), f(2) ∈ A are the “components” of f with respect to ∆ and
the sum sign ∑ is here to remind that ∆ corresponds to the sum of all the components.

Using these notations, the axioms (A.1.6a) and (A.1.6b) becomes respectively∑
f(1)(1) ⊗ f(1)(2) ⊗ f(2) =

∑
f(1) ⊗ f(2)(1) ⊗ f(2)(2), (A.1.8a)∑

ε(f(1))f(2) =
∑

ε(f(2))f(1) = f, (A.1.8b)

for any f ∈ A. The equation (A.1.8a) states that the element on which we take subscripts does
not matter, only the order does. Therefore, one usually also writes (A.1.8a) as∑

f(1) ⊗ f(2) ⊗ f(3). (A.1.8a)

The requirements (A.1.6a) and (A.1.6b) can be put under the form of commutative diagrams
(respectively)

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

∆ ⊗ id

id ⊗ ∆ ∆
∆

A ⊗ A A ⊗ CC ⊗ A

A

ε⊗ id id ⊗ ε

id id
∆

Note that these commutative diagrams are very similar to the ones of the algebra definition, to
the exception that the coproduct and counit are replaced by the product and the unit respectively
and that the arrow are reversed. This is due to the fact that algebras and coalgebras are dual
structures, as depicted in Figure 7.

The previous statement can be made more general. Let (A,∆A) be a coalgebra and (B, ⋆B)
be an algebra. Let L(A,B) denote the set of linear functions from A to B. Then, L(A,B) is an
algebra with the product

(f ⋆ g)(a) = ⋆B ◦ (f ⊗ g)(∆A(a)) =
∑

f(a(1)) ⋆B g(a(2)) (A.1.9)

for any f, g ∈ L(A,B) and a ∈ A. The case of the dual of A is obtained when considering B = C.
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Finally, a ∗-coalgebra is a colagebra A equipped with an involution † : A → A satisfying (A.1.3a),
(A.1.3c) and

∆(f †) = ∆(f)† (A.1.10)

where (f ⊗ g)† = f † ⊗ g†. In this case, one has ε(f †) = ε(f).

A.1.4 Hopf algebra
Algebras and coalgebras can be merged into one single structure called the bialgebras. The

latter requires that the algebra sector (product, unit) and the coalgebra sector (coproduct, counit)
are merged coherently.

Definition A.1.12 – Bialgebra

A bialgebra A is both an algebra and a coalgebra such that the product and unit are
coalgebra homomorphisms, or equivalently, such that the coproduct and the counit are
algebra homomorphisms, i.e.

∆(f ⋆ g) = ∆(f) ⋆∆(g), ε(f ⋆ g) = ε(f)ε(g), ∆(1) = 1 ⊗ 1, ε(1) = 1. (A.1.11)

It is further said to be a ∗-bialgebra if it is both a ∗-algebra and a ∗-colagebra.

In the context of a group dual of Example 1.4.1, one reads that the bialgebra structure is not
sufficient to render all the group structure since it does not contain the information about the
inverse of the group. In order to do so, one can make the structure of bialgebra grow to the one of
Hopf algebra by defining a generalised notion of inverse S, called antipode or coinverse.

Definition A.1.13 – Hopf algebra

A bialgebraa (H , ·, 1,∆, ε) is called a Hopf algebra, if there exists a linear map S : H →
H satisfying

· ◦ (S ⊗ id) ◦ ∆ = · ◦ (id ⊗ S) ◦ ∆ = 1 ◦ ε (A.1.12)

If H is further a ∗-bialgebra, then it is said to be a Hopf ∗-algebra.
aNote that we changed notations between Definition A.1.12 and Definition A.1.13. The one from Definition

A.1.12 was chosen so that it matches with the star product formalism of the deformed algebra of functions.
However, the notations of Definition A.1.13 were chosen to be coherent with Section 1.4.

In Sweedler notations (A.1.7), the condition (A.1.12) writes∑
S(X(1))X(2) =

∑
X(1)S(X(2)) = ε(X)1 (A.1.13)

for any X ∈ H .

The structure of Hopf algebra has many physical applications, part of which are discussed
in Section 1.4. We refer to [32] for more details. Note that more contemporary use of quantum
groups are made in machine learning or quantum computing [139].
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One can derive several properties from this definition.
First, the antipode S is an algebra anti-homomorphism and a coalgebra anti-homomorphism,

that is

S(XY ) = S(Y )S(X), S(1) = 1, (A.1.14a)
∆ ◦ S = τ ◦ (S ⊗ S) ◦ ∆, ε ◦ S = ε, (A.1.14b)

for any X, Y ∈ H . If H is further a Hopf ∗-algebra then

S ◦ † ◦ S ◦ † = id, (A.1.14c)

which implies that S is invertible and S−1 = † ◦ S ◦ †. Note that, in Sweedler notations, left
hand side of (A.1.14b) becomes

∑
S(X)(1) ⊗ S(X)(2) =

∑
S(X(2)) ⊗ S(X(1)), (A.1.14b)

which states that applying S to a decomposition reverts the elements of the latter decomposition.
This property is the reason why S is sometimes called a braiding.

Proof. First, given X ∈ H , applying (A.1.13) to X† gives∑
X†

(1)S(X†
(2)) =

∑
S(X†

(1))X
†
(2) = ε(X)1

and applying † again gives∑
S(X†

(2))
†X(1) =

∑
X(2)S(X†

(1))
† = ε(X)1. (A.1.15)

Thus, we have

S(S(X†)†) = S

(
S
((∑

ε(X(1))X(2)
)†
)†
)

(A.1.8b)

= S
(
S
(∑

ε(X(1))X†
(2)

)†
)

= S
((∑

ε(X(1))S(X†
(2))

)†
)

(lineraity of S)

= S
(∑

ε(X(1))S(X†
(2))

†
)

=
∑

ε(X(1))S(S(X†
(2))

†) (lineraity of S)
=
∑

X(1)S(X(2))S(S(X†
(3))

†) ((A.1.13) on X(1))
=
∑

X(1)S(S(X†
(3))

†X(2)) (left equation of (A.1.14a))
=
∑

X(1)S(ε(X(2))1) (A.1.15)
=
∑

X(1)ε(X(2)) (linearity of S and (A.1.14a))
= X (A.1.13)

which proves (A.1.14c).
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Then, given X, Y ∈ H ,

S(Y )S(X)
=
∑

S(Y(1)ε(Y(2)))S(X(1)ε(X(2))) (A.1.8b)
=
∑

S(Y(1))S(X(1))ε(X(2)Y(2)) ((A.1.11) and lineraity of S)
=
∑

S(Y(1))S(X(1))(X(2)Y(2))(1)S((X(2)Y(2))(2)) (A.1.13)
=
∑

S(Y(1))S(X(1))X(2)Y(2)S(X(3)Y(3)) (A.1.8a)
=
∑

S(Y(1))(ε(X(1))1)Y(2)S(X(2)Y(3)) (A.1.13)
=
∑

ε(X(1))ε(Y(1))S(X(2)Y(2)) (A.1.13)
= S(XY ) (following the reverse two first steps)

This shows the left identity of (A.1.14a). The right one is obtained by applying (A.1.12) to
1, combined with ∆(1) = 1 ⊗ 1 and ε(1) = 1 (A.1.11).

Similarly, for X ∈ H ,∑
S(X(2)) ⊗ S(X(1))
=
∑

S(X(2)ε(X(3))) ⊗ S(X(1)) ((A.1.8b) on X(2))
=
∑

(S(X(2)) ⊗ S(X(1)))(ε(X(3))1 ⊗ 1) (tensor product definition)
=
∑

(S(X(2)) ⊗ S(X(1)))(∆(X(3)S(X(4)))) (A.1.13)
=
∑

(S(X(2)) ⊗ S(X(1)))(X(3) ⊗X(4))∆(S(X(5))) (A.1.11)
=
∑

(S(X(2))X(3) ⊗ S(X(1))X(4))(∆(S(X(5)))) (tensor product definition)
=
∑

(ε(X(2))1 ⊗ S(X(1))X(3))(∆(S(X(4)))) (A.1.13)
=
∑

(1 ⊗ S(X(1))X(2))(∆(S(X(3)))) ((A.1.8b) applied to ε(X(2))X(3))
=
∑

(1 ⊗ ε(X(1))1)(∆(S(X(2)))) (A.1.13)
= ∆(S(X)) (using (A.1.8b) applied to ε(X(1))X(2))

which proves the left relation of (A.1.14b). The right relation comes from

ε(S(X)) = ε
(
S
(∑

X(1)ε(X(2))
))

= ε
(∑

S(X(1)X(2))
)

= ε(ε(X)1) = ε(X).

Given a Lie algebra g, one can endow U(g) with a Hopf algebra structure as done in Example
1.4.3. It is the most simple example of Hopf algebra. It is used to generate non-trivial Hopf
algebra via a Drinfel’d twist deformation (see Subsection A.1.5).

Another example, that is relevant for this manuscript, is the Hopf algebra of κ-Poincaré.
More details on this algebra are given in Section 3.1.

Example A.1.14 – The Hopf algebra of κ-Poincaré

In [90, 89], the quantum deformation of the Poincaré algebra is constructed and is given
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by the following structure:

[Jj, Jk] = iϵ l
jk Jl, [Jj, Kk] = iϵ l

jk Kl, [Kj, Kk] = −iϵ l
jk Jl, (A.1.16a)

[Pj, Jk] = −iϵ l
jk Pl, [Pj, E ] = [Jj, E ] = 0, [Pj, Pk] = 0, (A.1.16b)

[Kj, E ] = − i

κ
PjE , [Pj, Kk] = i

2ηjk
(
κ(1 − E2) + 1

κ
PlP

l
)

+ i

κ
PjPk, (A.1.16c)

∆P0 = P0 ⊗ 1 + 1 ⊗ P0, ∆Pj = Pj ⊗ 1 + E ⊗ Pj, (A.1.16d)
∆E = E ⊗ E , ∆Jj = Jj ⊗ 1 + 1 ⊗ Jj, (A.1.16e)

∆Kj = Kj ⊗ 1 + E ⊗Kj − 1
κ
ϵ klj Pk ⊗ Jl, (A.1.16f)

ε(P0) = ε(Pj) = ε(Jj) = ε(Kj) = 0, ε(E) = 1, (A.1.16g)

S(P0) = −P0, S(E) = E−1, S(Pj) = −E−1Pj, (A.1.16h)

S(Jj) = −Jj, S(Kj) = −E−1(Kj − 1
κ
ϵ klj PkJl). (A.1.16i)

where E = e−P0/κ and κ is the deformation parameter.

Example A.1.15 – The Hopf algebra of deformed translation

We here consider the algebra of deformed translations, noted T 1,d
κ , generated by {Pµ}µ=0,...,d.

One can read from (A.1.16) that it is a Hopf subalgebra of κ-Poincaré.

We now go back to the statement of Section 1.1 that Hopf algebras are extensions of algebras
in a “self-dual” form. As coalgebras and algebras are dual to one another, the Hopf algebra is
“self-dual” in the sense that it contains the two in a single structure. But this duality goes a bit
beyond this vague argument, since one can define the dual of a Hopf algebra H , noted H ′.

Definition A.1.16 – Dual Hopf algebra

Let H be a Hopf algebra. One defined the dual Hopf algebra (H ′, ·, 1H ′ ,∆H ′ , εH ′ , SH ′)
of H by

(fg)(X) = (f ⊗ g)
(
∆(X)

)
=
∑

f(X(1))g(X(2)), 1H ′(X) = ε(X), (A.1.17a)
∆H ′(f)(X ⊗ Y ) = f(XY ), εH ′(f) = f(1), (A.1.17b)(

SH ′(f)
)
(X) = f

(
S(X)

)
, (A.1.17c)

for any f, g ∈ H ′ and X, Y ∈ H . One can read the similarities with Example 1.4.1.

In Definition A.1.16, the algebra sector of H ′ corresponds to the dual of the coalgebra sector of
H . Conversely, the coalgebra sector of H ′ corresponds to the dual of the algebra sector of H , as
pictured in Figure 7.
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Figure 7 − Schematic representation of the correspondence between a Hopf algebra H
and its dual H ′.

algebra sector of H

coalgebra sector of H

coinverse of H

algebra sector of H ′

coalgebra sector of H ′

coinverse of H ′

Note that the relations (A.1.17) and the correspondence depicted in Figure 7 are even clearer
when using a dual pairing notation. Let us define ⟨·, ·⟩ : H ′ ⊗ H → C, defined by

⟨f,X⟩ = f(X)

Then, one has

⟨fg,X⟩ = ⟨f ⊗ g,∆(X)⟩, ⟨1H ′ , X⟩ = ε(X), (A.1.17a)
⟨∆(f), X ⊗ Y ⟩ = ⟨f,XY ⟩, εH ′(f) = ⟨f, 1⟩, (A.1.17b)

⟨SH ′(f), X⟩ = ⟨f, S(X)⟩. (A.1.17c)

Example A.1.17 – The κ-Minkowski space

We here define the κ-Minkowski space as the dual Hopf algebra of T 1,d
κ , similarly to

[89]. One can show that κ-Minkowski, noted R1,d
κ has d+ 1 generators noted {xµ}µ=0,...,d

satisfying

[x0, xj] = i

κ
xj, [xj, xk] = 0, (A.1.18a)

∆(xµ) = xµ ⊗ 1 + 1 ⊗ xµ, ε(xµ) = 0, S(xµ) = −xµ. (A.1.18b)

Proof. Let {xµ}µ=0,...,d be the set of generators dual to {Pµ}µ=0,...,d, that is

⟨Pµ, xν⟩ = iδνµ

where ⟨·, ·⟩ : T 1,d
κ × R1,d

κ → C is the dual pairing. Recall from (A.1.16b) that the Pµ’s are
commutative, i.e. [Pµ, Pν ] = 0. This implies that the xµ are cocommutative. Explicitly,

0 = ⟨[Pµ, Pν ], xρ⟩
= ⟨Pµ ⊗ Pν ,∆(xρ)⟩ − [µ ↔ ν] (A.1.17a)
= ⟨Pµ ⊗ Pν ,∆(xρ) − τ ◦ ∆(xρ)⟩,

so that ∆ = τ ◦ ∆. One considers for simplicity that xµ has a trivial coproduct, i.e.
∆xµ = xµ ⊗ 1 + 1 ⊗ xµ. This takes root first because this space is seen as some deformed
universal enveloping algebra of the Minkowski space-time (with commuting coordinates)
and also because the trivial coproduct is cocommutative.

From there, one computes the counit via (A.1.6b) as

(ε⊗ id) ◦ ∆(xµ) = ε(xµ)1 + ε(1)xµ = ε(xµ)1 + xµ

= id(xµ) = xµ
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so ε(xµ)1 = 0 and ε(xµ) = 0.
Then, one computes

⟨Pk, [x0, xj]⟩ = ⟨Pk, x0xj − xjx0⟩
= ⟨∆(Pk), x0 ⊗ xj⟩ − [j ↔ 0] (A.1.17b)
= ⟨Pk ⊗ 1 + E ⊗ Pk, x

0 ⊗ xj⟩ − [j ↔ 0] (A.1.16d)

= −δ0
kε(xj) + 1

κ
δjk − [j ↔ 0]

= 1
κ
δjk (k, j ̸= 0)

where we have used ⟨E , xν⟩ = − i
κ
δν0 . As ∆(P0) does not involve E , one computes similarly

that ⟨P0, [x0, xj]⟩ = 0. With a similar computation, one shows that ⟨Pµ, [xj, xk]⟩ = 0 due to
the fact that ⟨E , xj⟩ = 0. Finally,

[x0, xj] = ⟨Pµ, [x0, xj]⟩xµ = i

κ
xj

which is left hand side of (A.1.18a). The right hand side follows similarly.

A.1.5 Drinfel'd twist and R-matrix
In the Example 1.4.1, the dual of the group is given a Hopf algebra structure which is

cocommutative if and only if the group is commutative. There exists a class of Hopf algebras,
called quasitriangular Hopf algebras, that are almost cocommutative. The term “almost” means
here that their non-cocommutativity is measured by some element R, called the R-matrix. This
induces a parametrized noncommutativity on the would-be group, dual to the Hopf algebra, and
is the precise reason why some authors consider (strict) quantum groups to be quasitriangular
Hopf algebras [32].

Definition A.1.18 – (Quasi)triangular Hopf algebra

Let H be a Hopf algebra. It is said quasitriangular if it exists some invertible element
R ∈ H ⊗ H , called the R-matrix, such that

(∆ ⊗ id)(R) = R13R23, (id ⊗ ∆)(R) = R13R12, (A.1.19a)
τ ◦ ∆(X) = R∆(X)R−1, (A.1.19b)

for any X ∈ H , where τ is the flip map and

R12 =
∑

R1 ⊗ R2 ⊗ 1, R13 =
∑

R1 ⊗ 1 ⊗ R2, R23 =
∑

1 ⊗ R1 ⊗ R2.

Note that we used the notation R = ∑
R1 ⊗ R2.

H is further said triangular if

R21R = 1 ⊗ 1 (A.1.20)

where R21 = ∑
R2 ⊗ R1 = τ(R).
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The equation (A.1.19b) precisely states that R deforms the cocommutativity condition τ ◦∆ = ∆
(A.1.6c).

One can show that the R-matrix satisfy the following identities

(ε⊗ id)(R) = (id ⊗ ε)(R) = 1 (A.1.21a)

(S ⊗ id)(R) = R−1, (id ⊗ S)(R−1) = R, (A.1.21b)

R12R13R23 = R23R13R12. (A.1.21c)

The equation (A.1.21c) is called the quantum Yang-Baxter equation.

Another way to deform cocommutativity is to use a Drinfel’d twist. The main interest of
Drinfel’d twist relies in the fact that one can build a new Hopf algebra by deforming a Hopf
algebra. This new Hopf algebra has a deformed coproduct and antipode with respect to the former
one. This is of great physical relevance since one can start with a commutative and cocommutative
Hopf algebra corresponding to some symmetries over a classical space-time and deform the latter
via a Drinfel’d twist. The new (quantum) symmetries obtained will now act on a deformed
(quantum) version of the latter space-time, for which all the deformation is controlled by the
Drinfel’d twist. This procedure for generating a quantum space-time is detailed in Subsection
1.4.3 and Subsection 1.6.2.

Definition A.1.19 – Drinfel'd twist
Let H be a Hopf algebra. A Drinfel’d twist is an invertible element F ∈ H ⊗ H

that satisfies

(F ⊗ 1)(∆ ⊗ id)(F ) = (1 ⊗ F )(id ⊗ ∆)(F ), (2-cocycle condition) (A.1.22a)
(id ⊗ ε)(F ) = (ε⊗ id)(F ) = 1, (normalisation) (A.1.22b)

In the previous definition of the Drinfel’d twist, we omitted the semi-classical condition
(1.6.14c) since it more physically motivated, and therefore mainly do not appear in mathematical
textbooks.

Theorem A.1.20 – Twisted Hopf algebra

Let H be a Hopf algebra with a Drinfel’d twist F . If one defines

∆F = F∆F −1, SF = χSχ−1, (A.1.23)

where χ = F1S(F2), then the set H F =
(
H , ·, 1,∆F , ε, SF

)
is a Hopf algebra.

We detail the proof here to show the importance of the 2-cocycle condition (A.1.22a) in this
theorem.

Proof. One can check point by point that H F satifies almost all the Hopf algebra axioms
because H is a Hopf algebra. The main requirement to check is that ∆F satisfies the
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coassociativity property (A.1.6a). By using the expression (A.1.23), one can write

(∆F ⊗ id) ◦ ∆F (X) =
(
(F ⊗ 1)(∆ ⊗ id)(F )

)(
(∆ ⊗ id) ◦ ∆(X)

)(
(∆ ⊗ id)(F −1)(F ⊗ 1)−1

)
(id ⊗ ∆F ) ◦ ∆F (X) =

(
(1 ⊗ F )(id ⊗ ∆)(F )

)(
(id ⊗ ∆) ◦ ∆(X)

)(
(id ⊗ ∆)(F −1)(1 ⊗ F )−1

)
for any X ∈ H . Both lines of the previous equation are equal thanks to the coassociativity
property of ∆, the fact that ∆ is a homomorphism and the 2-cocycle condition of F .

Finally, these two deformations of the coalgebra sector are linked to one another by the following
theorem.

Theorem A.1.21 – Twisted (quasi)triangular Hopf algebra

Let H a quasitriangular Hopf algebra with R-matrix R, and a Drinfel’d twist F .
Then, the twisted Hopf algebra H F of Theorem A.1.20 is also quasitriangular with
R-matrix RF = F21RF −1.

H F is further triangular if and only if H is.

Proof. We refer to proof of Theorem 2.3.4 of [32].

A.2 Representation theory
When working with a complicated structure, one would rather want to transform it into a

simpler structure easier work with. This is precisely the goal of a representation. Instead of
working with a group, one represents it on some set of matrices, for which there are known results.
The main tool to have a representation is called a module. The module is a vector space on which
our complicated structure will act. Taking back the example of the group, one can interpret it as a
physical group of symmetries which acts on some space. The latter space is precisely the module.

In the present case, the study of modules for algebras and Hopf algebras is two-fold. First, it is
the way to implement symmetries as discussed above. Therefore, one implements some (quantum)
symmetries, gathered in a Hopf algebra, on some space precisely via the module structure. Second,
the Serre-Swan theorem states that sections over a fiber bundle are in one-to-one correspondence
with a module of the algebra of smooth functions. A gauge theory, relying on the notion of fiber
bundle, is thus implemented in noncommutative geometry via the module structure. This is rather
detailed in Chapter 2.

Definition A.2.1 – Module over an algebra

A left (resp. right) module X over an algebra (A, ⋆, 1) is a vector space together with a
linear action ▷ : A ⊗ X → X (resp. ◁ : X ⊗ A → A) such that

f ▷(g ▷ s) = (f ⋆ g) ▷ s,
(
resp. (s ◁ f) ◁ g = s ◁(f ⋆ g)

)
(A.2.1a)

1 ▷ s = s,
(
resp. s ◁ 1 = s

)
(A.2.1b)

for any f, g ∈ A and s ∈ X. We say that X is a left (resp. right) A-module.
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If X is both a right and left A-module such that

(f ▷ s) ◁ g = f ▷(s ◁ g), (A.2.2)

then X is said to be a A-bimodule.

A physically motivated example of such a module structure can be found in Example 1.4.4.
Another example is the module given by the algebra itself, that is X = A, with the action given

by the product ▷ = ⋆. In this case, (A.2.1a) is fulfilled thanks to the associativity property of ⋆
(A.1.1c), and (A.2.1b) is satisfied by the definition of the unit 1 (A.1.1d).

One can generalise the previous example to

Example A.2.2 – The module of n copies of the algebra

Let n ∈ N and A be an algebra. Consider the tensor product of n copies of the algebra:
A⊗n = A ⊗ · · · ⊗ A. Then, X = A⊗n is a (left) A-module, with the action ▷ = ⋆⊗ · · · ⊗ ⋆.

Indeed, let f = f1 ⊗ · · · ⊗ fn ∈ A⊗n. Then,

g1 ▷(g2 ▷ f) = g1 ▷
(
g2 ⋆ f1 ⊗ · · · ⊗ g2 ⋆ fn

)
= g1 ⋆ g2 ⋆ f1 ⊗ · · · ⊗ g1 ⋆ g2 ⋆ fn = (g1 ⋆ g2) ▷ f

1 ▷ f = 1 ⋆ f1 ⊗ · · · ⊗ 1 ⋆ fn = f

for any g1, g2 ∈ A, where we used the associativity of ⋆ (A.1.1c) and the unit property
(A.1.1d). One proceeds similarly in the case of the right module.

One can also define modules over a coalgebra, that are called comodules.

Definition A.2.3 – Comodule over a coalgebra

A left (resp. right) comodule X over a coalgebra (A,∆, ε) is a vector space together with
a linear coaction ▶ : X → A ⊗ X (resp. ◀ : X → X ⊗ A) such that

(id ⊗ ▶) ◦ ▶ = (∆ ⊗ id) ◦ ▶,
(
resp. (◀⊗id) ◦ ◀ = (id ⊗ ∆) ◦ ◀

)
(A.2.3a)

(id ⊗ ε) ◦ ▶ = id,
(
(ε⊗ id) ◦ ◀ = id

)
(A.2.3b)

We say that X is a left (resp. right) A-comodule.

A simple example of comodule is the coalgebra itself X = A, with the coaction given by the
coproduct ▶ = ∆.

Note that the coaction can be written in Sweedler notations through

▶ s =
∑

s(1) ⊗ s(0), (A.2.4)

where s(0) ∈ X and s(1) ∈ A. Thanks to (A.2.3a), which states
∑

(s(1))(1) ⊗ (s(1))(2) ⊗ s(0) =
∑

s(1) ⊗ (s(0))(1) ⊗ (s(0))(0)
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denoted by ∑ s(2) ⊗ s(1) ⊗ s(0) for simplicity, the Sweedler notation of the coaction is coherent
with the Sweedler notation for the coproduct (A.1.7). It is also quite straightforward since the
zeroth component is the one of the module and the others are the one of the algebra.

One can write commutative diagrams that stands for (A.2.3) and show that they are dual to
the ones representing (A.2.1), in a similar fashion that the axioms of the coalgebra are dual to the
ones of the algebra. One has to “reverse the arrows”.

This duality goes a bit beyond this observation. If one consider X to be a left (resp. right)
H -comodule, for H a Hopf algebra, then X is a right (resp. left) H ′-module with the action

s ◁ f =
∑

⟨f, s(1)⟩ s(0),
(
resp. f ▷ s =

∑
⟨f, s(1)⟩ s(0)

)
(A.2.5)

using Sweedler notations (A.2.4), for any s ∈ X and f ∈ H ′.

Proof. We do the proof for the case of a right comodule, the left case being similar. We have
to verify the module axioms (A.2.1). Let f, g ∈ H ′ and s ∈ X,

(s ◁ g) ◁ f =
∑

⟨g, s(1)⟩ (s(0) ◁ f)
=
∑

⟨g, s(1)⟩ ⟨f, s(2)⟩ s(0)

=
〈
g ⊗ f,

∑
s(1) ⊗ s(2)

〉
s(0)

= ⟨gf, s(1)⟩ s(0)

= s ◁ (gf)

where we used (A.2.3a) implied by the Sweedler notations and the property (A.1.17a) of
the dual pairing.

The counit property goes as

s ◁ 1 =
∑

⟨1, s(1)⟩s(0) =
∑

ε(s(1))s(0) = s

where the last equality corresponds to (A.2.3b) in Sweedler notations.

However, generically, a module structure does not give a comodule structure on the dual. This
is only true in the finite dimensional case (see Lemma 1.6.3 of [31]).

In the context of noncommutative geometry, one studies an algebra A that corresponds to the
deformed functions over some space-time. We further want to implement that a Hopf algebra
H corresponds to the (quantum) symmetries of this space-time. This can be done in two ways,
depending whether H stands as the deformation of the group of symmetries or as the deformations
of the algebra of infinitesimal transformations corresponding to these symmetries.

If we consider a group of symmetries G on a space-time M, then one can build a Hopf algebra
on G′ as detailed in Example 1.4.1. From there, C ∞(M) is a G-module (see Example 1.4.5 for
an explicit case). By duality, this may be implemented by giving to C ∞(M) a G′-comodule
structure. As C ∞(M) is also an algebra we say that it is a G′-comodule algebra. Therefore, when
considering the noncommutative counterpart of this picture, we say that the quantum space-time
A has quantum symmetries H if A is a H -comodule algebra.

Now if we consider a Lie algebra g of infinitesimal symmetries on a space-time M, then one
can endow U(g) with a Hopf algebra structure as in Example 1.4.3. The infinitesimal symmetries
acts on functions, i.e. C ∞(M) is a U(g)-module. As C ∞(M) is also an algebra, we say that it is
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a U(g)-module algebra. Thus, going noncommutative, the quantum space-time A has quantum
(infinitesimal) symmetries H if A is a H -module algebra.

The latter meaning of quantum symmetry is the one we consider mainly in this manuscript,
as in Subsection 1.4.3. However, the two are coherent and actually can be seen as dual to one
another.

We introduce below the two notions of module algebra and comodule algebra.

Definition A.2.4 – Module algebra

Let (A, ⋆, 1) be an algebra and H be a Hopf algebra. A is said to be a left (resp. right)
H -module algebra if A is a left (resp. right) H -module and the action ▷ (resp. ◁) links the
coproduct of H to the product of A, i.e.

X ▷(f ⋆ g) = ∆(X) ▷(f ⊗ g),
(
resp. (f ⋆ g) ◁X = (f ⊗ g) ◁∆(X)

)
(A.2.6a)

X ▷ 1 = ε(X)1,
(
resp. 1 ◁X = ε(X)1

)
(A.2.6b)

for any X ∈ H and f, g ∈ A.

This definition can be extended to the ∗-algebra case by enforcing the condition

(X ▷f)† = S(X)‡ ▷ f † (A.2.7)

where † is the involution on A, ‡ the involution on H and S the antipode of H .

Definition A.2.5 – Comodule algebra

Let (A, ⋆, 1) be an algebra and H be a Hopf algebra. A is said to be a left (resp. right)
H -comodule algebra if A is a left (resp. right) H -comodule and the coaction ▶ (resp. ◀)
links the product of H and the product of A, i.e.

▶(f ⋆ g) = (▶ f)(⋆⊗ ·)(▶ g),
(
resp. ◀(f ⋆ g) = (◀ f)(· ⊗ ⋆)(◀ g)

)
(A.2.8a)

▶ 1 = 1 ⊗ 1,
(
resp. ◀ 1 = 1 ⊗ 1

)
(A.2.8b)

for any f, g ∈ A.

Again, comodule algebras can be extended to the ∗-algebra case, by requiring that the coaction
is compatible with the involution † of A as

▶(f †) =
∑

f †
(1) ⊗ f ‡

(0) = (▶ f)† (A.2.9)

where ‡ is the involution of H .

Note that one can define plenty of other algebraic structures in the same spirit, like module
coalgebras, comodule coalgebras, module bialgebras, comodule bialgebras, etc...
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Operator algebras

Operator algebras have been studied as a mathematical framework for quantum mechanics [7].
They have been inspired from early works of Weyl [8] and von Neumann [9]. These works first
evolved around operator algebras called von Neumann algebras, formerly called W ∗-algebras. A
von Neumann algebra corresponds to an algebra of bounded operator on a Hilbert space, as in
Example B.1.9, i.e. the operators are viewed as functions on some Hilbert space of states.

In this section, we focus on a more general class of operator algebra called the C∗-algebras. The
C∗-algebras are broader in the sense that they do not specify a Hilbert space to be defined but
can still be represented on Hilbert spaces. Therefore, it is further used for applications in physics
as in algebraic quantum field theory [140] or in quantum field theory on curved space-time [141].
We refer to Section 1.2 for an outline of the role of C∗-algebra in quantum physics.

One can go through textbooks like [28, 142, 143, 144, 145, 146] for more details on operator
algebras.

In noncommutative geometry, the philosophy and use of C∗-algebras may be thought differently
since the C∗-algebra is supposed to be the (functions on the) space-time itself, while the above
mentioned approaches consider C∗-algebra on a specific (curved) classical space-time. Given a
space M, which at this point could be finite, discrete, fractal or infinite, the space of smooth
functions C ∞(M) can be endowed with a C∗-algebra structure. Moreover, the topology of
M is preserved in C ∞(M) through its space of states. The latter statement corresponds to
the (commutative) Gel’fand-Năimark theorem and is the principal motivation of studying
C∗-algebra in noncommutative geometry.

Indeed, if one considers now a noncommutative C∗-algebra, from an extrapolation of the
Gel’fand-Năimark theorem, this algebra can be considered as the space of functions over some
geometry, given by its space of states. This geometry is the noncommutative geometry. We refer
to Section 1.1 for a more explicit guideline of what a noncommutative geometry is.

B.1 Topological algebraic structures
Some algebraic structure required in the study of operator algebras are gathered in this section.

B.1.1 Hilbert spaces
Considering some space V , the notion of “distance between objects” of V is introduced through

the norm.
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Definition B.1.1 – Normed vector space

Let V be a vector space. It is called a normed vector space if it is equipped with a function
∥ · ∥ : V → R+, called the norm, which satisfies

∥u+ v∥ ⩽ ∥u∥ + ∥v∥, (triangle inequality) (B.1.1a)
∥zu∥ = |z| ∥u∥, (homogeneity) (B.1.1b)

∥u∥ = 0 ⇔ u = 0, (non-degenerate) (B.1.1c)

for any u, v ∈ V and z ∈ C.

Note that the previous notion of “distance between objects” is to be understood in a broad sense.
For example, consider a spinless particle on the real line R. Then, the particle has a probability
amplitude given by a wave function ψ(t, x), for x ∈ R a point on the line and t ∈ R a time. For a
given region of the line, say 0 ⩽ x ⩽ L, the integral

∥ψ(t)∥2
L =

∫ L

0
|ψ(t, x)|2 dx

is interpreted as the probability that the particle is in [0, L] at time t. Note that the previous
statement requires the normalisation condition

∥ψ(t)∥2 =
∫ +∞

−∞
|ψ(t, x)|2 dx = 1

which can also express that the probability that the particle is on the line R is 1, for any time t.
This follows from the fact that the considered (Hilbert) space is the one of square integrable

functions on R, noted L2(R2), and that ∥ · ∥ and ∥ · ∥L are norms for this space.

This notion of norm can also help us to make sense of other quantities, like sequential measure-
ments.

Consider a particle in a space that moves along an infinite number of displacement xn for n ∈ N.
The total distance travelled by the particle would correspond to

∞∑
n=0

xn. However, one needs a
structure so that this sum has actually a meaning. This can be done in a normed vector spaces
through absolute convergence, i.e. the convergence of ∑ ∥xn∥. A space where the convergence
of ∑ ∥xn∥ is equivalent to the convergence of ∑xn is called a Banach space and is said to be
complete1.

Definition B.1.2 – Banach space

A complete normed vector space is called a Banach space.

A convenient way to construct a norm is through a Hermitian sesquilinear form.

1Completeness is more often defined by the convergence of Cauchy sequences, but in the case of a Banach
space, this condition is equivalent to the absolute convergence implying the convergence.
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Definition B.1.3 – Sesquilinear form

Let V be a vector space. A sesquilinear form on V is a map ⟨·, ·⟩ : V × V → C such that

⟨z1u1 + z2u2, v⟩ = z1⟨u1, v⟩ + z2⟨u2, v⟩, (linearity over the first variable) (B.1.2a)
⟨u, z1v1 + z2v2⟩ = z1⟨u, v1⟩ + z2⟨u, v2⟩, (semilinearity over the second variable) (B.1.2b)

for any u, v, u1, u2, v1, v2 ∈ V and z1, z2 ∈ C.
One can further add some properties to this form:

⟨u, v⟩ = ⟨v, u⟩, (Hermitianity) (B.1.2c)
⟨u, u⟩ ⩾ 0, (positivity or positive definite) (B.1.2d)

⟨u, u⟩ = 0 ⇔ u = 0. (non-degenerate) (B.1.2e)

If one considers a vector space equipped with a positive non-degenerate Hermitian sesquilinear
form (V, ⟨·, ·⟩), then ∥u∥ =

√
⟨u, u⟩, for any u ∈ V defines a norm on V . This means (V, ∥ · ∥) is a

normed vector space as defined in Definition B.1.1.
Note that the sesquilinear form satisfies the Cauchy-Schwarz inequality∣∣∣⟨u, v⟩∣∣∣ ⩽ ∥u∥ ∥v∥. (B.1.3)

We are now ready to define a Hilbert space.

Definition B.1.4 – Hilbert space

A vector space H equipped with a positive non-degenerate Hermitian sesquilinear form
⟨·, ·⟩, such that H is separated (or Hausdorff) and complete for the norm ∥ · ∥ =

√
⟨·, ·⟩,

is called a Hilbert space.

Note that, in this context, the form ⟨·, ·⟩ is more commonly called scalar product or inner
product. We now give the case in point example used in quantum mechanics.

Example B.1.5 – Quantum particle on the line

We consider a spinless quantum particle on a 1-dimensional space, that is on the line R. It
is described by square integrable functions ψ ∈ L2(R2), which are interpreted as probability
amplitude wave functions. One then defines

⟨ψ1(t), ψ2(t)⟩ =
∫ +∞

−∞
ψ1(t, x)ψ2(t, x) dx (B.1.4)

which can be shown to be an inner product on L2(R2). It has an associated norm which
writes

∥ψ(t)∥2 =
∫ +∞

−∞
|ψ(t, x)|2 dx (B.1.5)

interpreted to be the probability of finding the particle on the line R at time t. One can
show that L2(R2) with the norm (B.1.5) is complete. Therefore, L2(R2) equipped with the
inner product (B.1.4) is a Hilbert space.

Hersent Kilian − Thèse de Doctorat 129



B.1. Topological algebraic structures

B.1.2 C∗-algebras
We now go to Banach algebras which are the first step toward operator algebras. Indeed, one

wants the structure of a Banach space for the reasons stated in Subsection B.1.1. Moreover,
one wants the structure of algebra in order to consider functions (operators) over some space.
Therefore, one ends up with a

Definition B.1.6 – Banach algebra

A Banach space A is a Banach algebra, if it is an algebra and its norm satisfies

∥fg∥ ⩽ ∥f∥ ∥g∥ (B.1.6)

for any f, g ∈ A. In this case, one has ∥1∥ = 1.
It is further said to be a Banach ∗-algebra, or B∗-algebra, if A is a ∗-algebra and that

the involution † is an isometry for the norm, i.e.

∥f †∥ = ∥f∥ (B.1.7)

The notion of Banach ∗-algebra is all the more important for physics then physical observables
are considered to be self-adjoint operators, that is operators f such that

f † = f. (B.1.8)

We give here an example of such a Banach algebra.

Example B.1.7 – Bounded operators on a Banach space

Let V be a Banach space. Consider B(V ) to be the bounded linear operators from V to
V , that we equip with the norm

∥f∥B(V ) = sup
u̸=0

∥f(u)∥
∥u∥

= sup
∥u∥=1

∥f(u)∥, (B.1.9)

for any f ∈ B(V ), where ∥ · ∥ is the norm of V . This is often called the operator norm. It
exists because we work with bounded operators. Then, B(V ) equipped with the composition
law ◦ is a Banach algebra.

Indeed, by definition (B.1.9), one has that for any u ̸= 0, ∥f(u)∥ ⩽ ∥f∥B(H) ∥u∥. Therefore,
if f, g ∈ B(V ), for any u ∈ V , such that u ̸= 0, one has

∥(f ◦ g)(u)∥
∥u∥

= ∥f(g(u))∥
∥g(u)∥

∥g(u)∥
∥u∥

⩽ ∥f∥B(V ) ∥g∥B(V ).

Note that the previous equality can be written because g(u) ̸= 0 thanks to u ̸= 0 and the
continuity property of g. Now, as the upper bounds found does not depend on u we can
take the supremum and obtain that ∥f ◦ g∥B(V ) ⩽ ∥f∥B(V ) ∥g∥B(V ), which is (B.1.6).

In most cases, the subscript B(V ) for the norm is omitted.

We now gather all these structure into a single one, the C∗-algebra.
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Definition B.1.8 – C∗-algebra

A Banach ∗-algebra A is called a C∗-algebra if

∥ff †∥ = ∥f∥2,
(
or equivalently ∥f †f∥ = ∥f∥2

)
(B.1.10)

for any f ∈ A.

The previous definition is both motivated and explained by the important example of bounded
operators on a Hilbert space. It is at the very basis of why operator algebras are considered in
the context of quantum mechanics.

Example B.1.9 – Bounded operators on a Hilbert space

Let H be a Hilbert space and B(H) denote the bounded linear operators on H. H has
a norm associated to its inner product and, therefore, one can follow Example B.1.7 to show
that B(H) is a Banach algebra.

We introduce the involution given by the adjoint operator. Given f ∈ B(H), one defines
f † ∈ B(H) as the unique operator satisfying

⟨f(ψ1), ψ2⟩ = ⟨ψ1, f
†(ψ2)⟩, (B.1.11)

for any ψ1, ψ2 ∈ H. It is an involution thanks to the uniqueness property and it preserves
the norm. Indeed, for any ψ ̸= 0, the Cauchy-Schwarz inequality (B.1.3) writes

∥f(ψ)∥2 = ⟨f(ψ), f(ψ)⟩ = ⟨ψ, (f † ◦ f)(ψ)⟩
⩽ ∥ψ∥ ∥(f † ◦ f)(ψ)∥ (B.1.3)
⩽ ∥f † ◦ f∥ ∥ψ∥2 (B.1.9)
⩽ ∥f †∥ ∥f∥ ∥ψ∥2. (B.1.6)

Dividing by ∥ψ∥2 and taking the supremum over ψ imposes that ∥f∥ ⩽ ∥f †∥. One can
then invert the role of f and f † to have the other inequality leading to ∥f∥ = ∥f †∥ which
corresponds to (B.1.7).

Finally, in the previous computation we have shown that ∥f∥2 ⩽ ∥f ◦ f †∥, using mainly
(B.1.3). But using (B.1.6) and (B.1.7), one has that ∥f ◦ f †∥ ⩽ ∥f∥ ∥f †∥ = ∥f∥2 so that
(B.1.10) is satisfied. Therefore, B(H) is a C∗-algebra.

To make contact with usual notations of physics, B(H) denotes the quantum operators, but
physical observables correspond to self-adjoint operators, i.e. satisfying (B.1.8). The elements of
the Hilbert space, the states, are more often denoted with the “bra-ket” notation, i.e. |ψ⟩ ∈ H.
The bra-ket notation is actually here to render the inner product structure of H since it is more
often denoted ⟨ψ1, ψ2⟩ = ⟨ψ1 |ψ2 ⟩. Moreover, operators are often written in terms of hatted capital
letters so that f should be Â.

The inner product and the norm are expressed as integrals like in (B.1.4) and (B.1.5) in the
context of wave functions, and they are interpreted as probability amplitudes. In this sense, the
operator norm ∥Â∥, defined in (B.1.9), can be interpreted as the maximum probability of Â |ψ⟩
for a normalised state |ψ⟩, or equivalently the amount of definitely lost information when applying
Â to the system.
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Another important example, more motivated in the context of noncommutative geometry, is
of order. It corresponds to the algebra of complex-valued continuous functions, which vanish at
infinity.

Example B.1.10 – Functions over a locally compact space

Let M be a locally compact topological Hausdorff space. Let C0(M) be the complex-
valued continuous functions over M that vanish at infinity. One can equip the functions
with the sup-norm ∥f∥ = sup

x∈M
|f(x)|, which is well defined thanks to the continuity of f and

the vanishing of f at infinity together with the local compactness of M. One can also define
an involution using the complex conjugation through f †(x) = f(x).

The relation (B.1.6) can be proved using that |f(x)g(x)| = |f(x)| |g(x)|, for any f, g ∈
C0(M). And the presence of the complex modulus |f(x)| implies that the norm does not
distinguish f † from f , i.e. (B.1.7) and (B.1.10) are satisfied. This means that C0(M) is a
C∗-algebra.

Note that the Gel’fand-Năimark theorem can be thought as the converse statement of
Example B.1.10. Explicitly, if A is a commutative C∗-algebra, then the Gel’fand-Năimark
theorem states that there exists a topological Hausdorff space such that A ≃ C0(M).

B.2 Representation theory
We here introduce tools to understand and manipulate operator algebras. First, the case of

commutative C∗-algebra is quite well established, especially thanks to the Gel’fand-Năimark
theorem. In the noncommutative case, one can either go to Hilbert spaces, by representing the
C∗-algebra, or try to tackle the C∗-algebra by its own. The Hilbert space approach is always
possible thanks to the second Gel’fand-Năimark theorem and somewhat well paved via the
Gel’fand-Năimark-Segal construction. Note that part of the considered objects throughout
the manuscript may have close links with the modular theory or Tomita-Takesaki theory, but
the latter is not presented here as it goes far beyond the scope of this thesis.

B.2.1 Commutative C∗-algebras and characters
The goal of this subsection is mainly to introduce the commutative Gel’fand-Năimark theorem

which is at the very basis of noncommutative geometry.

The first notion we need is the space of characters of a C∗-algebra A, denoted ΦA. It consists of
continuous functions φ : A → C, such that φ ̸= 0, and

φ(fg) = φ(f)φ(g) (B.2.1)

for any f, g ∈ A. φ is called a character and ΦA is sometimes named the structure space of A. If
A is unital, then (B.2.1) and φ ̸= 0 imposes that φ(1) = 1.

One can relate the algebra to the functions on the characters via the Gel’fand transform.
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Definition B.2.1 – Gel'fand transform

For A a C∗-algebra, we define the Gel’fand transform f̃ of an element f ∈ A as
f̃(φ) = φ(f).

The latter transform is an algebra homomorphism quite straightforwardly since f̃ g(φ) = φ(fg) =
φ(f)φ(g) = f̃(φ)g̃(φ).

Theorem B.2.2
Let A be a commutative C∗-algebra, then the following hold true.

❖ ΦA is a locally compact Hausdorff space.
❖ If A is unital, then ΦA is compact.
❖ For any f ∈ A, the Gel’fand transform f̃ is continuous and vanish at infinity, i.e.

f̃ ∈ C0(ΦA).
❖ For any f ∈ A, ∥f̃∥ΦA

⩽ ∥f∥, so the Gel’fand transform is continuous.

This theorem is quite important to understand the link between all the notions used in the
Gel’fand-Năimark theorem. First, the space of characters is locally compact and Hausdorff
so that it makes a suitable choice as a space for which A is the space of functions. This choice
is made clear thanks to the third point. Then, unitality is linked to compactness. Finally, the
continuity of the transform paves the way for it to be an isometry.

Theorem B.2.3 – Gel'fand-Na�imark theorem

Let A be a commutative C∗-algebra. The Gel’fand transform A → C0(ΦA) is an isometric
∗-isomorphism. In particular, ∥f̃∥ΦA

= ∥f∥ and φ(f †) = φ(f), for any f ∈ A and φ ∈ ΦA.
One further has that ΦA is compact if and only if A is unital.

We refer to [142] for a complete proofs of these two theorems.

The Gel’fand-Năimark theorem states two important things.
First and foremost, any commutative C∗-algebra actually corresponds to functions over some

topological space and allows alone to characterise this topology. Therefore, the knowledge of the
set of points is not relevant since all the information is stored in the space of functions. This
precise reason is at the foundation of noncommutative geometry, which characterise a geometry
via the space of functions.

Consider Ak̄ to be a noncommutative C∗-algebra, where k̄ is a real parameter, such that A0
(i.e. k̄ → 0) is commutative. This is the usual framework of deformation quantisation as detailed
in Section 1.6. Then, the noncommutative geometry defined by Ak̄ always have a “commutative
limit” which links it to some classical space (corresponding here to ΦA0).

Note that the points of the space underlying a commutative C∗-algebra are fully determined
in the theorem and correspond to the characters. Therefore, the theorem implies that if M is a
(locally compact Hausdorff) topological space, then for any point x ∈ M, there exist one and
only character, that we note φx, such that φx(f) = f(x) for all f ∈ C0(M). Furthermore, no other
character exists. In other words, there is no φ that is not a φx. This enlightens the correspondence
(1.1.3).
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B.2.2 States and representations
In a general context, a C∗-algebra can be associated with a Hilbert space in several ways.

The first one is that we can represent a C∗-algebra on a Hilbert space, just as it is done for
quantum mechanics with (1.2.1). The Hilbert space is seen as a convenient substrate on which
the operator algebra is modelled and renders its properties. Given a specific state, that can be
interpreted as a vacuum state, there is even an explicit construction of a representation, called
the Gel’fand-Năimark-Segal construction, or GNS construction for short. This highlight the
importance of the notion of states in the study of C∗-algebras.

Furthermore, we may be interested in how “accurate” this representation is. The faithfulness of
a representation imposes that an element of the algebra f ∈ A is associated to only one operator
on the Hilbert space f̂ ∈ B(H). In the context of C∗-algebra the second Gel’fand-Năimark
theorem precisely states that such a faithful representation always exists. One can also read in the
proof the kind of states required for the representation to be faithful. Finally, the representation
from the Gel’fand-Năimark-Segal construction can also have the property to be irreducible if
the considered state is pure. The pure states correspond to points, in the commutative theory.

We here construct objects in the case of a unital C∗-algebra for simplicity, but all this construction
adapts to the non-unital case. For the non-unital case, one can always consider an approximated
unit.

Let us begin by defining a representation.

Definition B.2.4 – Representation of C∗-algebras

Given a C∗-algebra A and a Hilbert space H, a representation π : A → B(H) is a linear
map satisfying

π(fg) = π(f) ◦ π(g), π(f †) = π(f)† (B.2.2)

for any f, g ∈ A. In (B.2.2), ◦ denotes the composition of operators and π(f)† corresponds
to the adjoint operator of π(f) as defined in Example B.1.9.

The representation is said faithful is π is injective. It is said irreducible if a (closed)
subspace of H which is stable under π(A) is either H or {0}.

As expressed above, the notion of state is central in the representation theory of operator
algebras. We define here the notion of state in the context of C∗-algebra.

An element f of a C∗-algebra A is said to be positive if it exists g ∈ A such that f = g†g. We
denote it by f ⩾ 0. Given a linear form ψ : A → C, it is said positive if ψ(f) ⩾ 0, for any f ⩾ 0,
or equivalently, ψ(g†g) ⩾ 0, for any g ∈ A. Again we note ψ ⩾ 0.

Positive linear forms satisfy the following properties

❖ ψ is continuous with ∥ψ∥ = ψ(1), where the norm is defined similarly as in (B.1.9).

❖ Conversely, any continuous linear form ψ : A → C satisfying ∥ψ∥ = ψ(1) = 1 is positive.

❖ Given two positive linear forms ψ1 and ψ2 such that ∥ψ1∥ = ∥ψ2∥ and ψ1 − ψ2 ⩾ 0, then
ψ1 = ψ2.
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Proof. ❖ For any f ⩾ 0, one has 0 ⩽ f ⩽ ∥f∥1, in the sense f−∥f∥1 ⩾ 0. Thus, applying
ψ gives 0 ⩽ ψ(f) ⩽ ∥f∥ψ(1). Therefore, ∥ψ∥ ⩽ ψ(1) and the supremum is reach for
f = 1 so that equality actually stands.

❖ Let f ⩾ 0. Let us first prove that ψ(f) ∈ R. We write ψ(f) = α + iβ with α, β ∈ R.
Let g = f − α1, then ψ(g) = iβ, using that ψ(1) = 1. We compute for any t ∈ R,

|ψ(g + it1)|2 = β2 + 2tβ + t2

⩽ ∥g + it1∥2 = ∥(g + it1)†(g + it1)∥ = ∥g2 + t2∥ ⩽ ∥g∥2 + t2

where we used that f = f † so that g = g† and ψ(h) ⩽ ∥h∥ψ(1) = ∥h∥, for any h ∈ A,
from the previous point. This implies that β2 +βt ⩽ ∥g∥2 for any t ∈ R, which can only
be fulfilled for β ⩽ 0. Repeating the argument for −g, one gets β = 0 and so ψ(f) ∈ R.
Now, choose ϵ > 0 small enough so that ∥1 − ϵf∥ ⩽ 1. Then, one computes

1 ⩾ ∥1 − ϵf∥ = ∥ψ∥
ψ(1)∥1 − ϵf∥ ⩾

|ψ(1) − ϵψ(f)|
ψ(1) .

Thus, |ψ(1) − ϵψ(f)| ⩽ ψ(1) which can only be true if ψ(f) ⩾ 0.
❖ ∥ψ1 − ψ2∥ = (ψ1 − ψ2)(1) = ∥ψ1∥ − ∥ψ2∥ = 0.

Definition B.2.5 – States of C∗-algebras

A positive linear form ψ of norm one, that is ψ(1) = 1, on a C∗-algebra A is called a state
of A. We denote that space of states of A as ΨA.

A state ψ ∈ ΨA is said to be faithful if, for any f ⩾ 0, ψ(f) = 0 implies f = 0.
ΨA is a convex set, i.e. for any ψ1, ψ2 ∈ ΨA and t ∈ [0, 1], (1 − t)ψ1 + tψ2 ∈ ΨA. The

extreme point of this convex sets are called the pure states. The space of pure states is
denoted Ψp

A.

Proof. Considering that ψ1 and ψ2 are positive linear functional, so is (1 − t)ψ1 + tψ2. One
need to check that it has norm 1, that is

∥(1 − t)ψ1 + tψ2∥ = (1 − t)ψ1(1) + tψ2(1) = 1 − t+ t = 1.

The previous definition of state may be far from the physical definition of a state. However, one
can link the two through the following example.

Example B.2.6 – States of operators on a Hilbert space

Let A be a C∗-algebra and H a Hilbert space on which A is represented with inner
product ⟨·, ·⟩. Then, any normalised element |ψ⟩ ∈ H, ∥ |ψ⟩ ∥ = 1 give rise to a state ψ ∈ ΨA

defined bya

ψ(f) = ⟨ψ | fψ ⟩ (B.2.3)

for any f ∈ A. We thereby justify our notation for ψ in both cases.
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If f = g†g ⩾ 0, then ψ(f) = ⟨gψ | gψ ⟩ = ∥g |ψ⟩ ∥2 ⩾ 0, so that the linear form
ψ defined in (B.2.3) is positive. Moreover, it is of norm 1 since |ψ⟩ is of norm 1, i.e.
∥ψ∥ = ψ(1) = ⟨ψ |ψ ⟩ = ∥ |ψ⟩ ∥2 = 1.

aWe take, in (B.2.3), the physical notation for simplicity (as it was made for). Indeed, the associated
mathematical equation would be ψ(f) =

〈
|ψ⟩ , π(f) |ψ⟩

〉
, for |ψ⟩ ∈ H, where π : A → B(H) is the

representation. π was also implied in (B.2.3).

However, the link goes even further.

Remark B.2.7 – States and probability

One can show that in the commutative case, i.e. A = C0(M) for M some topological
space, the space of states ΨA consist of all probability measures on M (see Theorem 2.8.2 of
[142], which mainly comes from Riesz theorem of measure theory). This means that there is
a direct link between the states we defined in Definition B.2.5 and the probability amplitude
of a quantum particle on the space M. This also means that the normalisation condition
∥ψ∥ = 1 can directly be interpreted as the conservation of probability, or equivalently stated,
that the probability to find the particle associated to ψ anywhere on M is 1.

Finally, one can show that, in the commutative theory, points are given by the pure states. In
other words, if A = C0(M) for M some topological space, then Ψp

A is homeomorphic to M. This
is done by showing that the space of pure states Ψp

A is in one-to-one correspondence with the space
of characters ΦA, when the algebra is commutative.

One of the main interest of states is that it allows to construct a representation through the
Gel’fand-Năimark-Segal construction.

Gel'fand-Na�imark-Segal construction
Let A be a C∗-algebra and ψ ∈ ΨA. First, observe that ⟨f, g⟩ψ = ψ(f †g) is a positive

sesquilinear form on A. Indeed, it is sesquilinear thanks to linearity of ψ and positive thanks
to positivity of ψ. It is further non-degenerate if ψ is faithful (by definition). Therefore,
in a general case, one needs to remove all functions for which this would-be inner product
vanishes in order to have a non-degenerate form. Explicitly, one considers

Jψ =
{
f ∈ A, ψ(f †f) = 0

}
=
{
f ∈ A, ψ(g†f) = 0 for any g ∈ A

}
which corresponds to the set of positive elements on which ψ vanishes. The second equality
is provided by the Cauchy-Schwarz inequality |ψ(g†f)|2 ⩽ ψ(g†g)ψ(f †f). If ψ is faithful
Jψ = {0}.
Jψ is a closed (left) ideal in A (see Definition A.1.4), indeed for any g, h ∈ A and f ∈ Jψ,

ψ(h†(gf)) = ψ((g†h)†f) = 0, i.e. gf ∈ Jψ. Thus, one can consider the quotient A/Jψ (as
vector spaces), such that all positive elements for which ψ vanishes are now grouped in a
single equivalence class, which is [0]. Therefore, ⟨·, ·⟩ψ is non-degenerate on A/Jψ. We finally
consider the completiona of A/Jψ, which is by definition a Hilbert space, denoted Hψ. If ψ
is faithful, we can simply take Hψ = A.

In order to have a representation, we need a map πψ : A → B(Hψ). One consider here
simply the left multiplication map, i.e. πψ(f) : [g] 7→ [fg], for any [g] ∈ Hψ. First, for
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any f ∈ A, one has f †f ⩽ ∥f †f∥1. As conjugation preserves positivity, one obtains that
g†f †fg ⩽ ∥f †f∥g†g. Applying ψ, one obtains ψ(g†f †fg) ⩽ ∥f †f∥ψ(g†g). Therefore,

∥πψ(f)∥ = sup
[g]∈Hψ

∥πψ(f)([g])∥ψ
∥[g]∥ψ

= sup
[g]∈Hψ

√√√√ψ(g†f †fg)
ψ(g†g) ⩽ sup

[g]∈Hψ

√√√√∥f †f∥ψ(g†g)
ψ(g†g) = ∥f∥

so that πψ(f) is indeed a bounded operator with ∥πψ(f)∥ ⩽ ∥f∥. Note that, in the previous
computation, we used the associated norm ∥f∥ψ =

√
⟨f, f⟩ψ =

√
ψ(f †f).

Moreover, one has for any f, g, h ∈ A,

πψ(fg)([h]) = [fgh] = πψ(f)([gh]) =
(
πψ(f) ◦ πψ(g)

)
([h]),〈

[g], πψ(f)([h])
〉
ψ

= ψ(g†fh) =
〈
πψ(f †)([g]), [h]

〉
ψ

so that (B.2.2) is satisfied.
Finally, (Hψ, πψ) is a representation of A.
aSee discussion of Subsection B.1.1 about complete spaces. This completion may be physically irrelevant

in this construction.

An important property of this construction is that the representation (Hψ, πψ) is irreducible if
and only if the state ψ is pure. More generally, any irreducible representation of a C∗-algebra is
the Gel’fand-Năimark-Segal representation of a pure state.

Using this construction, one obtain the

Theorem B.2.8 – second Gel'fand-Na�imark theorem
Any C∗-algebra has an isometric representation as a closed sub-algebra of the algebra

B(H) of bounded operators on some Hilbert space H.

Proof. We follow here the sketch of proof given in [28]. First, one uses the Hahn-Banach
theorem to show that for any non-zero positive elements g†g ∈ A, there exist a state ψ ∈ ΨA

such that ψ(g†g) = ∥g†g∥ = ∥g∥2. Then, we construct, through Gel’fand-Năimark-Segal,
the representation Hψ with inner product ⟨·, ·⟩ψ. We denote by ∥ · ∥ψ the associated norm,
which relates to the norm of A via ∥πψ(g)([1])∥ψ = ∥g∥.

The previous construction allows one to consider a family of state Ψ0, such that ψ(g†g) = 0
implies g = 0, for any ψ ∈ Ψ0 and g ∈ A (if necessary we can take all states of A, i.e.
Ψ0 = ΨA).

Finally, one consider the representation formed by the direct sum of the Gel’fand-
Năimark-Segal representations of all states in Ψ0, that is π = ⊕

ψ∈Ψ0
πψ and H = ⊕

ψ∈Ψ0
Hψ.

In doing so, we have for any f ∈ A, ∥π(f)∥ = ∥f∥, and so the representation is isometric.

The Hilbert space constructed in the proof of the second Gel’fand-Năimark theorem is
mainly of mathematical interest, since it might be far too big for physical purpose. Still, this
theorem helps us understanding the nature of C∗-algebras and the interplay it has with von
Neumann algebras.
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The second Gel’fand-Năimark theorem underlines the interest of the C∗-algebras for physical
purposes. It can render all the needed properties of quantum operators without necessarily
specifying a Hilbert space. Still, if one wants to work in the Hilbert space formalism, there
always exists nice representations of a C∗-algebra on some Hilbert space and such representations
can be constructed explicitly.
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