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To be able to see everything in its slightest detail and remember every detail: what an amazing
ability and what a torture. He could see aging occur by the second. His own hands one second
are not the same in the next. [...]
But, indeed, here is the rub. With perfect perception and perfect memory, how does one
actually comprehend? How can one create thought? Does not thought involve generalization
and categorization and so forth? Does it not involve organizing? In short, does not thought
necessitate a certain degree of forgetting?

Jorge Luis Borges, Funes the Memorious

Si tout se passe comme prévu, rien ne va se passer comme prévu.

Claude Marthaler, Voyages sellestes
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Notations

Abbreviations

Part 1
DNN Deep neural network

IT Interpolation threshold

RF Random feature (model)

SNR Signal-to-noise ratio

Part 2
FCN Fully-Connected Network

CNN Convolutional Neural Network

ViT Vision Transformer

(G)(P)SA (Gated) (Positional) Self-Attention

Part 3
(S)GD (Stochastic) Gradient Descent

SK Sherrington-Kirkpatrick (model)

SMT Spiked Matrix-Tensor (model)

(D)FA (Direct) Feedback Alignment

Part 4
SR Symbolic Regression

GP Genetic Programming

OEIS Online Encyclopedia of Integer Sequences

E2E End-to-end
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General algebra

1n Vector of ones of size N
a · b Dot product of vectors a and b
∥a∥ L2

-norm of vector a
In Identity matrix of size N
Jn Matrix of ones of size N
A⊤

Transpose of matrix A
A ⊙ B Hadamard product of matrices A and B
∥A∥ Frobenius norm of matrix A
TrA Trace of matrix A
detA Determinant of matrix A
∇f Gradient of f
Hess(f) Hessian of f

Probability distributions

N Gaussian distribution

U Uniform distribution

P [X = x] Probability of random variable X taking value x
EY [X] Average of random variable X when varying Y
VY [X] Variance of random variable X when varying Y
ρM (µ) Density of eigenvalues of matrixM

Specific to neural networks

N Number of examples

D Input dimension

C Output dimension (or number of classes)

P Number of parameters

L Number of layers

η Learning rate

λ Regularization constant

L Loss function

ϵt Training error

ϵg Test (or generalization) error

σ Activation function

ReLU Rectified linear unit, Relu(x) = max(0, x)
softmax Softmax function, softmax(x)i = e−xi∑

j
e−xj

tanh Hyperbolic tangent function, tanh(x) = sinh(x)
cosh(x)

erf Error function, erf(x) =
∫ x

0 dte−t2/2
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Foreword

Artificial intelligence is arguably the most important technological endeavour of the twenty-first

century. Over the past decade, deep learning has become the cornerstone of this sprawling field,

fueling breakthroughs in a plethora of contexts such as image classification [1], speech recognition [2],

automatic translation [3] and board games [4]. Yet, theory lags far behind practice, and the key reasons

underpinning the success of DNNs remain to be clarified.

The main objective of this thesis is to bridge this gap on both sides. In the first part, we analyze the

ability of heavily overparametrized deep neural networks (DNNs) to learn without memorizing, armed

with the toolbox of statistical physics. In the second part, we investigate the role of various architectural

biases, and introduce techniques to combine their respective strengths. In the third part, we study

dynamics in non-convex loss landscapes, and point to methods to ease learning in such contexts. As an

opening, the last part presents a novel application of deep learning to symbolic regression, the task of

inferring the mathematical expression of a function from its values.

Detailed summary

Introduction I have decided to open the thesis with a very basic introduction to deep learning, whose

objective is to summarize the main findings of my PhD to a lay audience. The technical introductions to

the various topics covered may be found in the subsequent chapters; in this way, each of the four parts

of the thesis can be read independently. Note that for optimal readability, most of the technical details

and computations are deferred to the Appendices.

Part I One of the the main puzzles of modern deep learning is the following: how do the huge DNNs

used these days manage to generalize so well, even when they are able memorize the training data [5] ?

In the first part of this thesis, we will tackle this question by building toy models and analyzing them

via methods from statistical physics.

• Chapter 2 We introduce the so-called double descent phenomenon, whereby performance

always improves when increasing the number of parameters of a learning model, except near

the interpolation threshold (the number of parameters at which the model can perfectly overfit

the training data) where one finds an overfitting peak. This chapter is based on the following

line of papers, the first relating the interpolation threshold to a jamming transition, the second

demonstrating the existence of the peak, and the third studying its properties:

[1] Geiger, M., Spigler, S., d’Ascoli, S., Sagun, L., Baity-Jesi, M., Biroli, G. &Wyart, M. Jamming

transition as a paradigm to understand the loss landscape of deep neural networks. Physical
Review E (2019)
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[2] Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G. & Wyart, M. A jamming transition

from under-to over-parametrization affects generalization in deep learning. Journal of
Physics A (2019)

[3] Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L., d’Ascoli, S., Biroli, G., Hongler, C. &

Wyart, M. Scaling description of generalization with number of parameters in deep learning.

Journal of Statistical Mechanics (2020)

• Chapter 3 We consider the random feature model, a toy model for DNNs which will be used in

the rest of Part I to study the double descent curve from an analytical point of view. We begin

by disentangling the various sources of variance affecting the test error, aiming to reconcile the

double descent phenomenon with the classic bias-variance tradeoff. This chapter is based on the

following publication:

[4] d’Ascoli, S., Refinetti, M., Biroli, G. & Krzakala, F. Double Trouble in Double Descent:

Bias and Variance (s) in the Lazy Regime. International Conference on Machine Learning
(2020)

1

• Chapter 4 We study the impact of the activation function on the double descent curve, demon-

strating the existence of two distinct kinds of overfitting which can cause peaks in the test error.

This chapter is based on the following publications:

[5] d’Ascoli, S., Sagun, L. & Biroli, G. Triple descent and the two kinds of overfitting: where

and why do they appear? Advances in Neural Information Processing Systems (2020)
[5′] d’Ascoli, S., Sagun, L. & Biroli, G. Triple descent and the two kinds of overfitting: where

and why do they appear? Journal of Statistical Mechanics (special issue) (2022)

• Chapter 5 We build a toy model of structured data to assess the impact of low-dimensional

structures on learning, as well as studying the role of the loss function. This chapter is based on

the following publication:

[6] d’Ascoli, S., Gabrié, M., Sagun, L. & Biroli, G. On the interplay between loss function and

data structure in classification problems. Advances in Neural Information Processing
Systems (2021)

Part II To efficiently extract information from data, learning models usually rely on inductive biases:

the typical example being that of convolutional neural networks (CNNs) [13]. However, with the

increasing amount of data and compute available, models with weaker inductive biases such as vision

transfomers [14] and MLP-mixers [15] have started to challenge the supremacy of CNNs. Hence, a

crucial question for practitioners is how to select the right amount of inductive bias.

• Chapter 6 We analyze the success of CNNs by viewing them as constrained fully-connected

networks. We show in particular that convolutional constraints are useful in the early stages of

learning, but can become restrictive later on. This chapter is based on the following publication:

[7] d’Ascoli, S., Sagun, L., Biroli, G. & Bruna, J. Finding the Needle in the Haystack with

Convolutions: on the benefits of architectural bias. Advances in Neural Information
Processing Systems (2019)

1

Underline denotes equal contribution.
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• Chapter 7 Inspired by the previous chapter, we introduce the ConViT, a new kind of vision

transformer which can benefit from convolutional inductive biases in the early stages of learning

but escape then later on if necessary. The latter was able to reach state-of-the-art sample efficiency

among vision transformers. This Chapter is based on the following publication:

[8] d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G. & Sagun, L. ConViT: Improving

Vision Transformers with Soft Convolutional Inductive Biases. International Conference
on Machine Learning (2021)

• Chapter 8 We push the idea of relaxing convolution constraints even further by introduc-

ing a method to recast fully pre-trained convolutional networks as transformers to boost their

performance while increasing their robustness. This Chapter is based on the following preprint:

[9] d’Ascoli, S., Sagun, L., Biroli, G. & Morcos, A. Transformed CNNs: recasting pre-trained

convolutional layers with self-attention. arXiv preprint arXiv:2106.05795 (2021)

Part III Aside from their extraordinary generalization performance, the ability of DNNs to find low-

loss solutions in non-convex loss landscapes remains poorly understood. In this part, we will investigate

the dynamics of learning in two very different scenarios.

• Chapter 9 We study high-dimension inference problems, which have been much investigated

in the statistical physics literature. In these problems, where we can control the complexity of

the loss landscape, our objective will be to show the influence learning rate scheduling has on

optimization; we will underpin several common empirical choices such as the inverse square root

decay. This chapter is based on the following preprint:

[10] d’Ascoli, S., Refinetti, M. & Biroli, G. On the optimal learning rate schedule in non-

convex optimization landscapes. arXiv preprint arXiv:2202.04509 (2022)

• Chapter 10 We analyze the dynamics of Direct Feedback Alignment (DFA), a biologically

plausible alternative to backpropagation. We uncover the align-then-select mechanism which

underlies the success of DFA and underpin the reasons for its well-known inability to train CNNs.

This chapter is based on the following publications:

[11] Refinetti, M., d’Ascoli, S., Ohana, R. & Goldt, S. The dynamics of learning with feedback

alignment. International Conference on Machine Learning (2020)

[11′] Refinetti, M., d’Ascoli, S., Ohana, R. & Goldt, S. The dynamics of learning with feedback

alignment. Journal of Physics A (special issue) (2022)

Part IV Having delved into many explorations on the success of DNNs, we close this thesis with a

more applied section, investigating an innovative use-case: deep learning for symbolic regression, i.e.

the task of inferring mathematical formulas from observations.

• Chapter 11 We train a seq2seq Transformer (usually built for machine translation) to infer the

recurrence relation of sequences of numbers, for example [1, 2, 3, 5, 8, 13] → un = un−1 + un−2.
We demonstrate better performance than Mathematica on the famous Online Encyclopedia of

Integer Sequences, and additionally handle the case of non-integer sequences. This chapter is

based on the following preprint:
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[12] d’Ascoli, S., Kamienny, P.-A., Lample, G. & Charton, F. Deep symbolic regression for

recurrent sequences. International Conference on Machine Learning (2022)

• Chapter 12 We apply a similar architecture to themore challenging task of symbolic regression of

multi-dimensional functions with non-integer coefficients. Our model approaches the performance

of the most advanced evolutionary algorithms with several orders of magnitude smaller inference

time. This chapter is based on the following preprint:

[13] Kamienny, P.-A., d’Ascoli, S., Lample, G. & Charton, F. End-to-end symbolic regression

with transformers. arXiv preprint arXiv:2204.51222 (2022)

Works not included in this manuscript

• I worked on a semi-supervised method to train models for text generation with low data resource

during an internship with the french start-up Snips. This lead to the following publication, not

included in the present manuscript:

[14] d’Ascoli, S., Coucke, A., Caltagirone, F., Caulier, A. & Lelarge, M. Conditioned Text

Generation with Transfer for Closed-Domain Dialogue Systems. Statistical Language and
Speech Processing (2020)

Communicating about science to the general audience has been one of the key objectives of my

PhD, and I had the chance to write four popularization books on artificial intelligence and physics:

[15] d’Ascoli, S. Comprendre la révolution de l’intelligence artificielle (First, 2020)

[16] d’Ascoli, S. L’Intelligence Artificielle en 5 minutes par jour (First, 2020)

[17] d’Ascoli, S. & Touati, A. Voyage au coeur de l’espace-temps (First, 2021)

[18] d’Ascoli, S. & Bouscal, A. Voyage au coeur de l’atome (First, 2022)
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Avant-propos

L’intelligence artificielle est sans doute le plus grand enjeu technologique de notre siècle. Ces dernières

années, les réseaux de neurones artificiels sont passés maîtres de cette discipline tentaculaire, et ont

permis des avancées majeures dans nombre de domaines: reconnaissance d’image [1], de voix [2],

traduction automatique [3], jeux de société [4]... Pourtant, la théorie accuse un retard important sur la

pratique, et les principales raisons de ce triomphe incontestable demeurent floues.

L’objectif principal de cette thèse est de réduire l’écart grandissant entre la théorie et pratique. Dans

la première partie, nous analyserons la capacité des réseaux de neurons sur-paramétrisés à apprendre

sans mémoriser, en se basant sur des méthodes de physique statistiques. Dans la seconde partie,

nous étudierons le rôle que joue les choix architecturaux dans l’apprentissage, et introduirons des

techniques pour combiner leurs avantages respectifs. Dans la troisième partie, nous nous intéresserons

à la dynamique d’apprentissage dans les problèmes d’optimisation non-convexes, et proposerons des

méthodes pour faciliter l’apprentissage. Enfin dans la dernière partie, nous présenterons une nouvelle

application des réseaux de neurons à la régression symbolique, qui consiste à prédire l’expression

mathématique d’une fonction à partir de ses valeurs.

Résumé détaillé

Introduction J’ai décidé d’ouvrir cette thèse avec une introduction très générale à l’apprentissage

profond, qui permettra de résumer les questions abordées à un public non initié. Les concepts techniques

égrénés au cours de ce manuscrit seront introduits au sein des différents chapitres correspondants;

de cette façon, chacune des quatres parties de la thèse pourront être lues indépendamment. Pour une

lecture plus fluide, j’ai aussi fait en sorte de reléguer les détails et calculs techniques dans les annexes.

Partie I L’un des plus grands mystères de l’apprentissage profond est le suivant: comment les réseaux

de neurones gigantesques utilisés de nos jours parviennent-ils à généraliser si bien, même lorsqu’ils

mémorisent parfaitement les données d’entraînement [5]? Dans la première partie de cette thèse, nous

étudierons cette question à partir de modèles simples, solvables grâce à des méthodes de physique

statistique.

• Chapitre 2 Nous introduirons le phénomène de double descente, selon lequel la généralisation

s’améliore sans cesse à mesure qu’on augmente le nombre de paramètres d’apprentissage, sauf

près du seuil d’interpolation où les données sont tout juste mémorisées, où l’on observe un pic de

surentraînement. Ce chapitre est basé sur les trois publications suivantes, la première étudiant la

localisation du seuil d’interpolation, la deuxième démontrant l’existence du pic, et la troisième

étudiant ses propriétés:
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[1] Geiger, M., Spigler, S., d’Ascoli, S., Sagun, L., Baity-Jesi, M., Biroli, G. &Wyart, M. Jamming

transition as a paradigm to understand the loss landscape of deep neural networks. Physical
Review E (2019)

[2] Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G. & Wyart, M. A jamming transition

from under-to over-parametrization affects generalization in deep learning. Journal of
Physics A (2019)

[3] Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L., d’Ascoli, S., Biroli, G., Hongler, C. &

Wyart, M. Scaling description of generalization with number of parameters in deep learning.

Journal of Statistical Mechanics (2020)

• Chapitre 3 Nous introduirons le random feature model, un modèle jouet de réseau de neurones

artificiel qui nous servira de base théorique pour étudier le phénomène de double descente dans le

reste de cette première partie. Nous décomposerons dans un premier temps les différentes sources

de variance contribuant à l’erreur de généralisation dans le but de réconcilier la double descente

avec le dilemme biais-variance. Ce chapitre est basé sur la publication suivante:

[4] d’Ascoli, S., Refinetti, M., Biroli, G. & Krzakala, F. Double Trouble in Double Descent:

Bias and Variance (s) in the Lazy Regime. International Conference on Machine Learning
(2020)

2

• Chapitre 4 Nous étudierons l’impact de la fonction d’activation sur le phénomène de double

descente, et démontrerons l’existence d’un deuxième pic de surentraînement qui peut entâcher la

généralisation. Ce chapitre est basé sur les publications suivantes:

[5] d’Ascoli, S., Sagun, L. & Biroli, G. Triple descent and the two kinds of overfitting: where

and why do they appear? Advances in Neural Information Processing Systems (2020)

[5′] d’Ascoli, S., Sagun, L. & Biroli, G. Triple descent and the two kinds of overfitting: where

and why do they appear? Journal of Statistical Mechanics (special issue) (2022)

• Chapitre 5 Nous étudierons la capacité des modèles d’apprentissage à vaincre la malédiction

de la dimensionnalité en s’appuyant sur un modèle simple de données structurées. Ce chapitre est

basé sur la publication suivante:

[6] d’Ascoli, S., Gabrié, M., Sagun, L. & Biroli, G. On the interplay between loss function and

data structure in classification problems. Advances in Neural Information Processing
Systems (2021)

Partie II Une autre composante essentielle dans la généralisation des réseaux de neurones est leur

architecture: les biais inductifs des réseaux convolutifs leur permettent d’apprendre avec bien moins de

données et de paramètres, mais peuvent devenir restrictifs lorsque les données sont abondantes. Ainsi,

des modèles aux biais infuctifs moins forts (Transformers [14] et MLP-mixers [15]) sont récemment

venus remettre en question la suprématie de la convolution. Dans cette partie, nous étudierons donc

l’impact des biais inductifs sur l’apprentissage et introduirons des méthodes pour bénéficier de leurs

avantages sans leurs inconvénients.

2

Underline denotes equal contribution.
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• Chapitre 6 Nous étudierons l’impact des biais convolutifs d’un point de vue théorique, en

considérant leur effet sur la dynamique dans l’espace plus large des réseaux denses. Ceci permet de

montrer que les biais convolutifs sont surtout utiles dans les premières phases de l’apprentissage,

et peuvent se montrer restrictifs par la suite. Ce chapitre est basé sur la publication suivante:

[7] d’Ascoli, S., Sagun, L., Biroli, G. & Bruna, J. Finding the Needle in the Haystack with

Convolutions: on the benefits of architectural bias. Advances in Neural Information
Processing Systems (2019)

• Chapitre 7 Inspirés par les conclusions du chapitre précédent, nous introduirons le ConViT, une

nouvelle architecture de Transformer qui peut bénéficier de biais convolutifs lors des premières

phrases de l’apprentissage, puis s’en libérer par la suite. Ce chapitre est basé sur la publication

suivante:

[8] d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G. & Sagun, L. ConViT: Improving

Vision Transformers with Soft Convolutional Inductive Biases. International Conference
on Machine Learning (2021)

• Chapitre 8 Nous pousserons cette idée encore plus loin en introduisant une méthode pour

reparamétriser n’importe quel réseau convolutif en un Transformer équivalent, qui peut par la

suite être raffiné. Ce chapitre est basé sur la pré-publication suivante:

[9] d’Ascoli, S., Sagun, L., Biroli, G. & Morcos, A. Transformed CNNs: recasting pre-trained

convolutional layers with self-attention. arXiv preprint arXiv:2106.05795 (2021)

Partie III Au-delà de leur extraordinaire généralisation, la capacité des réseaux de neurones à atteindre

des minima globaux dans des problèmes d’optimisation a priori hautement non-convexes reste un défi

théoriquemajeur. Dans cette partie, nous étudierons leur dynamique d’apprentissage dans deux contextes

différents.

• Chapitre 9 Nous étudierons plusieurs familles de problèmes d’optimisation emblématiques de

la physique statistique des systèmes désordonnés. Dans ce contexte, nous étudierons le protocole

optimal de diminution du pas d’apprentissage pour converger aussi rapidement que possible

vers le minimum global sans rester coincé dans des minima locaux. Ce chapitre est basé sur la

pré-publication suivante:

[10] d’Ascoli, S., Refinetti, M. & Biroli, G. On the optimal learning rate schedule in non-

convex optimization landscapes. arXiv preprint arXiv:2202.04509 (2022)

• Chapitre 10 Nous étudierons la dynamique d’un algorithme alternatif à la rétropropagation

du gradient intitulé Direct Feedback Alignment (DFA). Ce chapitre identifiera les mécanismes

pouvant aboutir au succès ou l’échec de cet algorithme, et se base sur les publications suivantes:

[11] Refinetti, M., d’Ascoli, S., Ohana, R. & Goldt, S. The dynamics of learning with feedback

alignment. International Conference on Machine Learning (2020)

[11′] Refinetti, M., d’Ascoli, S., Ohana, R. & Goldt, S. The dynamics of learning with feedback

alignment. Journal of Physics A (special issue) (2022)
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Partie IV Après avoir étudié le succès des réseaux de neurones d’un point de vue théorique, nous

finirons par une section de nature plus appliquée portant sur la régression symbolique, consistant à

prédire l’expression mathématique d’une fonction à partir de ses valeurs.

• Chapitre 11 Nous entraînement un Transformer (une architecture construite pour la traduction)

à prédire relation de récurrence de séquences de nombres, par exemple [1, 2, 3, 5, 8, 13] → un =
un−1 + un−2. Ce chapitre est basé sur la pré-publication suivante:

[13] d’Ascoli, S., Kamienny, P.-A., Lample, G. & Charton, F. Deep symbolic regression for

recurrent sequences. International Conference on Machine Learning (2022)

• Chapitre 12 Nous présenterons une architecture similaire à la tâche plus difficile de prédiction

de fonction à plusieurs variables avec coefficients non-entiers, et montrerons que celle-ci est

capable de rivaliser avec les meilleurs algorithmes évolutionnaires actuels tout en réduisant le

temps de calcul par plusieurs ordres de grandeur. Ce chapitre est basé sur la pré-publication

suivante:

[12] Kamienny, P.-A., d’Ascoli, S., Lample, G. & Charton, F. End-to-end symbolic regression

with transformers. arXiv preprint arXiv:2204.51222 (2022)

Travaux non inclus dans ce manuscrit

• J’ai eu l’occasion de développer une méthode de génération de texte semi-supervisée lors d’un

stage au sein de la start-up Snips. Ces travaux ont abouti à la publication suivante:

[14] d’Ascoli, S., Coucke, A., Caltagirone, F., Caulier, A. & Lelarge, M. Conditioned Text

Generation with Transfer for Closed-Domain Dialogue Systems. Statistical Language and
Speech Processing (2020)

• Raconter et vulgariser la science fut l’un des enjeux majeurs de ma thèse. J’ai eu la chance de

pouvoir écrire quatre livres de vulgarisation, portant respectivement sur l’intelligence artificielle,

la relativité générale et la physique quantique:

[15] d’Ascoli, S. Comprendre la révolution de l’intelligence artificielle (First, 2020)

[16] d’Ascoli, S. L’Intelligence Artificielle en 5 minutes par jour (First, 2020)

[17] d’Ascoli, S. & Touati, A. Voyage au coeur de l’espace-temps (First, 2021)

[18] d’Ascoli, S. & Bouscal, A. Voyage au coeur de l’atome (First, 2022)
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Chapter 1

Introduction

The objective of this chapter is to introduce deep learning and make the main contributions of this

thesis understandable to the lay person.

1.1 A brief history of AI

Artificial intelligence

Symbolic AI
Following rules

Machine learning
Learning from data

Deep learning
Using neural networks

Artificial Intelligence (AI) is a rather loose concept whose
meaning has evolved with technological progress. Generally

speaking, an AI is an algorithm whose purpose is to make

“clever” decisions – although the relevance of “clever” is

often debatable. A classic example of AI is the algorithm one

faces in a game of chess against a computer. Two types of

approaches exist:

• Rule-based: the computer chooses its next move according to a set of rules (in this situation,

move your pawn; in this situation, capture the bishop; etc.).

• Machine learning: the computer chooses its next move according to its past experience. In other

words, it learns by trial and error to estimate which move is most appropriate in each situation.

Machine Learning is therefore a type of AI algorithm which learns from examples to perform

tasks for which it was not explicitly programmed. Deep learning is a sub-branch of machine learning

where the algorithm learns by adjusting the parameters of an artificial neural network. These simulated

brains are extremely powerful for complex tasks such as understanding images or language, and have

fuelled most of the breakthroughs in AI since 2012. Deep learning will be the core of this manuscript,

but before diving in, let us first take a step back to describe where this sprawling field originates from.

1.1.1 The birth of AI

The first mathematical algorithms appeared during Antiquity; Euclid’s famous algorithm allowing one

to find the greatest common divisor of two numbers is still taught in schools these days. Binary logic,

which underlies modern computers, was developed in incremental steps, first with Gottfried Leibniz in

1702, then Georges Boole in 1854. The first computer program was written in 1842 by Ada Lovelace,
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Figure 1.1: A timeline of AI.

daughter of famous poet Lord Byron. Her program was designed to run on the analytical machine, an

ancestor of the modern computer imagined by her mathematician friend Charles Babbage.

Computers as we know them today only appeared in the 1940s. Those same years, famous English

mathematician Alan Turing proved that computers could simulate any logical process, and neuroscien-

tists Warren McCulloch and Walter Pitts devised the first simplified mathematical model of the neurons

in our brain.

In the summer of 1956, American researchers Marvin Minsky and John McCarthy organized a

scientific workshop in the small American town of Dartmouth, near Boston, to discuss the idea of

programming machines to “think” autonomously. It is on this occasion that McCarthy coined the words

"Artificial Intelligence" as the name of a field of study in its own right.

1.1.2 Connectionnist and symbolic AI

From its birth to the 1970s, AI steadily flourished, pioneered by two confronting approaches:

• Symbolist AI, which aims to reason via a “symbolic” (human-readable) language that computers

can comprehend. This relates to the rule-based algorithms described earlier.

• Connectionist AI, which follows a more pragmatic approach: endowing the machine with a set of

parameters (or, by analogy with the brain, "connections") which can be adjusted by trial-and-error.

This approach belongs to what is nowadays called machine learning (however, not all machine

learning algorithms are parameter-based).

In 1957, American psychologist Frank Rosenblatt laid the foundations for connectionnism with

the perceptron, a large machine that mechanically simulates a biological neuron. Those same years,

symbolic algorithms were devised to solve simple puzzles, such as the backtracking algorithm designed

to escape mazes.

1.1.3 AI winters

Early AI researchers had a tendency to be over-optimistic, often claiming that solving human intelligence

would be a matter of a few decades. During the 1970s, it became clear that AI was not going to be as easy
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a challenge as they imagined, and the field entered a rollercoaster of alternating phases of enthusiasm

and pessimism.

First winter From the mid-1970s onwards, a major obstacle stood in the way of progress: the

sluggishness of the computers of the time. Pessimism took over, funding dried up and so came the first

“winter of AI”. On one hand, perceptron-based algorithms lost credibility as Minsky pointed out their

inherent limitations. On the other hand, symbolic algorithms failed as soon as the problems involved

too large solution spaces to search through.

Expert systems In the early 1980s, AI came back to life with expert systems. These symbolic

algorithms excel in very specific areas thanks to rules established by human experts. The first industrial

applications of AI started sprouting and research funding picked up. Connectionism also benefitted

from this sudden resurgence. In 1982, American neuroscientist John Hopfield designed a neural network

capable of simulating memory. In 1989, Yann LeCun introduced the first neural network capable of

recognizing handwritten numbers. But the explosion of deep learning was still a long way off: LeCun’s

contribution – as well as his colleagues Geoffrey Hinton and Yoshua Bengio – was only rewarded with

the Turing Prize in 2019.

Second winter At the end of the 1980s, the craze slowed down again due to the limitations of expert

systems. Not only were they specialized to a single, very specific task - they were often pretty bad at it.

Expert systems were far from fulfilling the hopes of a true general AI that had motivated fundings, and

along came the second winter of AI.

1.1.4 The emergence of deep learning

In the 1990s, spring returned again. Computing power, which was hindering the progress of AI, began

to double every two years thanks to the advances in miniaturization, a phenomenon known as Moore’s

law. The first AI breakthrough hit the headlines in 1996 when DeepBlue, a bulky computer designed by

IBM, defeated chess legend Garry Kasparov. However, this famous event was no revolution from an

AI point of view: DeepBlue was simply an over-powered expert system, capable of crunching through

hundreds of millions of options per second.

In 1993, Vladimir Vapnik introduced one of the most famous machine learning algorithms: the

support vector machine, essentially an improved version of the perceptron. Connectionist algorithms

began to gather more attention than symbolic algorithms. The real revolution occured in the 2010’s,

when AI entered the deep learning era. Why did it happen so late, when artificial neural networks had

been around for decades? Mainly because deep learning algorithms were lacking two crucial resources:

• Compute power. Moore’s law helped considerably in this matter, but also a brilliant new idea:

running computations on graphical processing units (GPUs), which allow huge numbers of simple

calculations to be carried out in parallel. This is particularly suited to the training of neural

networks, which learn by adjusting millions or billions of parameters.

• Training data. These are the examples that neural networks learn from. To perform complex

tasks such as image recognition, a large amount of data is needed. Luckily, data started flowing

with the internet era, and large public datasets were released for research purposes, such as the

ImageNet image bank in 2009.
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In 2012, Geoffrey Hinton and his students took the whole AI community by surprise by crushing the

prestigious ImageNet image recognition competition using artificial neural networks running on GPUs.

This marked the beginning of the deep-learning era: the following year, the same competition was utterly

dominated by neural networks. In 2016, two decades after the triumph of DeepBlue, british company

DeepMind made the headlines across the world when its algorithm AlphaGo defeated South-Korean

champion Lee Sedol by four games to one. Mastering the game of Go, far more complex than chess, was

until then considered far beyond the reach of AI.

1.2 Basics of machine learning

Let us now explain the basics of machine learning with a very simple example: selling an old motorcycle,

bought three years ago. To estimate its resale price, one needs to figure out how much it decreases with

time. One way to do this is to visit a second-hand sales website, collect a few examples of motorcycles,

and record their age and resale price as dots on a graph (see Fig. 1.2).

It is easy to notice that the points are almost aligned along an imaginary line. Once this line is

drawn, it can be used to predict the resale price of the motorcycle, as shown in the figure below. Machine

learning algorithms do exactly this: they learn from examples we show them, and hope to generalize

what they learn to examples they have never seen before.

1.2.1 Training

Adjusting parameters The example above is called linear regression, and happens to be both the

simplest and one of the most widespread machine learning algorithms. Its goal is to find the "best line",

the one that fits through the points as closely as possible. To do this, the algorithm only needs to adjust

two variables: the slope of the line and its height. The idea behind machine learning is to fiddle with

these two parameters until the best line is found.

In this example, the data is very simple, and two parameters are enough to do the job. But for complex

tasks, many more parameters are needed: modern neural networks use up to a trillion parameters,

and our brain uses even more. The question is: how can one find a good configuration with so many

parameters to deal with?

The loss function A very common principle in machine learning is to quantify the performance

of the algorithm with a score, which is called the loss function (the higher the loss, the poorer the

performance). In the example above, the loss function will be higher if the line is far away from the

points in the graph.

Another example, more akin to deep learning, is that of an algorithm learning to distinguish between

cats and dogs. Given a picture of a cat, the algorithm would output something like: “80% cat, 20% dog”.

To obtain a perfect score, i.e. bring its loss function down to zero, the algorithm would need to predict

“100% cat, 0% dog” when it is shown a cat and “0% cat, 100% dog” when it is shown a dog. When shown

a cat, predicting “80% cat, 20% dog” would entail a small penalty - i.e. increase in the loss- for being

under-confident. Predicting “20% cat, 80% dog” would entail a stronger penalty.

Gradient descent To learn, the algorithm needs to adjust its parameters to decrease the loss function.

Think of the set of parameter configurations as a gigantic mountain range we explore by adjusting the
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Figure 1.2: The simplest machine learning algorithm: linear regression. The dots are more or less

aligned along the red line. From this line one can predict the resale price of the motorcycle bought 3

years ago: 1500 pounds.

Figure 1.3: Gradient descent algorithm: The idea is to start from a random point, then minimize the

loss by following the slope (i.e. the gradient) of the loss landscape. The final configuration reached

strongly depends on the starting point!

parameters – we call this the loss landscape. At each position, the altitude represents the value of the

loss function.

To minimize the loss, the idea is to estimate the gradient of the loss, i.e. the direction of the slope at

a given point. Luckily, the gradient can be computed with a rather simple mathematical formula. Then,

take a small step in the downwards direction of the slope: we call this algorithm gradient descent. Once
we reach a point where the landscape is flat , we declare that the learning process is over. This ideally

occurs when we reach the bottom of the mountain (i.e. reach the lowest possible value of the loss), but

one can also get trapped in a basin somewhere higher.

This procedure is illustrated in Fig. 1.3. Note that the point reached strongly depends on where we

start from: this is why the initialization of the parameters is a crucial step in machine learning, which

will be thoroughly studied in this thesis.
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1.2.2 Generalization

The more parameters an algorithm has at its disposal, the greater its ability to decrease the loss function

and therefore solve complex problems. However, in machine learning, decreasing the loss function too

far is not always a good idea...

Figure 1.4: Overifitting: The algorithm predicting the red line (linear regression) is much better than

the one predicting the black line (polynomial regression). In the first case, the algorithm had just the

right number of parameters (two), while in the second case, it had too many (twelve), which led to

overfitting.

Overfitting The loss function reflects how well the algorithm learnt the training examples. However,

achieving a low loss does not guarantee that the algorithm will perform well on data it has never seen,

i.e. be able to generalize.

Let’s go back to the task of predicting the price of motorcycles, and imagine that the algorithm

has succeeded in reaching the optimal value of zero for the loss function. This means the algorithm

has adjusted its parameters so accurately that it has memorized the exact selling-price of each of the

thousands of motorcycles presented to it during the training (see Fig. 1.4), instead of simply estimating

the decreasing trend of the resale price over the years. This kind of memorization is what we call

overfitting in machine learning, and is the reason why the training phase is always followed by a testing

phase, where we evaluate the predictions of the model on unseen data.

Bias-variance tradeoff Overfitting is what makes machine learning both frustrating and interesting.

Trying to over-optimize the loss function by using too many parameters or training for too long can

result in diverting the algorithm from its real objective, which is generalization.

Indeed, there is some random variability in any dataset: the price of motorcycles is not perfectly

aligned along a straight line: it is "noisy". If an algorithm tries to over-optimize its loss function, it will

eventually learn the noise -i.e. non-essential features- rather than the meaningful features in the data.

In other words, it over-specializes on the training data it has been shown
1
.

1

Argentinian author Jorge Luis Borges illustrates this rather subtle notion of generalization in his short story Funes or

Memory, in which the eponymous hero suffers from infinite memory. Funes pays so much attention to detail that he doesn’t

understand how the generic name "dog" can encompass creatures of such different sizes and shapes. His hyperthymesia

prevents him from identifying general features: he cannot understand the world surrounding him because according to the
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When choosing the number of parameters in a learning model, one needs to find a sweet spot

between:

• Underfitting: an excessively simple algorithm - one with too few parameters - will not extract

enough information: it suffers from what is called high bias.

• Overfitting: an excessively complicated algorithm - one with too many parameters - will store

unnecessary information. It suffers from what is called high variance: it is very sensitive to noise,

as shown in Fig. 1.4.

These are the principles underlying the bias-variance trade-off, illustrated in Fig. 1.5. Luckily,

learning meaningful features is often easier than learning noise, which is often chaotic and unpredictable

(it’s easier to memorize a poem than the random pattern of a phone number). Using just the right amount

of parameters leads the algorithm to detect the general trend of the data, before trying to memorize the

superfluous noise.

Figure 1.5: Bias-variance trade-off: simple algorithms, with few parameters, suffer from a high bias

(blue curve), whereas algorithms that are too complex, with too many parameters, suffer from a high

variance (red curve). In the middle, there is a sweet spot where the test error (black curve), which is the

addition of these two values, is rather low, as shown in green.

Regularization Going back to our example of motorcycles, one could have suspected that two

parameters were sufficient to assess the resale price, since the points are distributed around a straight

line. But figuring out the right number of parameters is very hard in general. One thing is for sure: if

the learning model has too few parameters, it will miss out on some pieces of information. With too

many parameters, all the relevant information can be captured, but there is a risk of overfitting.

One solution is be to give the algorithm more than enough parameters, to make sure it doesn’t miss

out on anything, but encourage it to use as little as possible
2
. This is the idea behind regularization

methods, among which two are very common:

author, "thinking is about forgetting differences".

2

In the 14th century, English philosopher William of Occam introduced a method of reasoning known as Occam’s razor:

Pluralitas non est ponenda sine necessitate (multiples should not be used without necessity). This is exactly the principle of

regularization: amongst all possible solutions to a problem, choose the simplest one.
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• Early stopping: Interrupt the training prematurely so that the algorithm has a limited time to

adjust its parameters. Just like taking the plate away before the end of the meal.

• L1 / L2 regularization: Entice the algorithm to use as little parameters as possible (L1), or use

each parameter parsimoniously (L2). In other words, punish the algorithm for every bite it takes.

1.2.3 Hyperparameters

We have just seen that selecting the size of a learning model is not an easy matter: too few parameters

leads to underfitting, too many leads to overfitting. Regularization allow to combat overfitting, but only

shifts the problem, which becomes: how to select the right amount of regularization?

Experimental settings such as the size of a learning model or the amount of regularization are called

hyperparameters, to avoid confusion with the parameters of the learning model, those which are adjusted

automatically during training. Other famous hyperparameters are the learning rate (the size of the steps
taken during gradient descent) and the batch size (how many examples are considered to compute each

step).

Hyperparameters cannot be learnt automatically, and need to be manually selected by us, machine

learners. They are ultimately selected in order to provide the best possible generalization. The most

common workflow, named grid search, is to test a few values for each hyperparameter, and select the best

combination. However, the number of hyperparameters involved in training modern neural network is

often very large, which makes hyperparameter selection a challenging engineering problem.

Note that if one selects hyperparameters based on the results on the test dataset, we may bias our

selection towards the specific examples which it contains – in some sense, overfit the test dataset. This
is why one generally uses two distinct datasets: a validation set to select the best hyperparameters, and

a fresh test set to assess the true performance of our model in an unbiased way.

1.3 Deep learning

Deep learning is at the crux of modernmachine learning and has fuelled most of the recent breakthroughs

in AI. In this section, we present its inner workings, starting from the very basics of a single neuron.

1.3.1 The perceptron

The perceptron is a mathematical model for a neuron, the basic building block of neural networks. Take a

very concrete case: detection of melanoma (cancerous moles). Dermatologists generally recommend the

ABCDE rule for self-examination, which consists in looking out for five distinctive features: Asymmetry,

uneven Borders, unhomogenous Colour, large Diameter, fast Evolving.

To decide whether a mole is benign or malignant, one can use a perceptron. It works in a very

similar way to linear regression, simply by assessing the impact of each of the ABCDE features thanks

to a parameter adjusted during training (see Fig. 1.6). The difference here is that we want to classify

(predict a category), not regress (predict a value)! In the example of motorcycles, the output variable

was a price, which needed to be as close as possible to the market resale price. In the present case, the

output variable is a score which must be positive (larger than zero) for melanomas and negative (smaller

than zero) for harmless moles. If the score is zero, the perceptron is uncertain.
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Figure 1.6: The perceptron: it outputs a single number (here, the likelihood that the mole is cancerous)

by calculating a weighted sum of the input features.

Limitations of the perceptron Mathematically, the perceptron looks for a decision boundary sep-

arating moles and melanomas in the five-dimension space of ABCDE features. However, the strong

limitation of the perceptron is that it can only represent linear decision boundaries, i.e. straight planes

instead of curved surfaces, as illustrated in Fig. 1.7. This will only work in the case of linearly separable
data, which is rather rare in practice (see Fig. 1.7).

Furthermore, even in the case of linearly separable data, there are several ways to draw a line

separating the categories. If you were asked to draw a decision boundary in the left panel of the figure

below, you would probably naturally choose the one in red rather than the one in grey. It seems more

natural, because it is halfway between the two clusters: it maximizes its margin (the red area) with

respect to the most ambiguous points and is more likely to classify new points correctly. The problem

with the perceptron is that it doesn’t care about maximizing the margin: any line which correctly

separates the categories will do!

Improving the perceptron Fortunately, there are solutions to overcome the perceptron’s limitations.

To satisfy the margin maximization principle, one can use algorithms such as support vector machines.
To deal with non-linearly separable data, nearest neighbour methods can be used, which consists in

probing the surroundings of the cross whose colour we want to infer: if most of its neighbouring crosses

are blue, then it will be declared blue, otherwise it will be declared green. Finally, a more sophisticated

way to go are kernel methods, which probe all the other crosses, not just the nearest neighbours, giving

less weight to far away crosses.

Support vector machines and kernel methods largely contributed to the victory of machine learning

over symbolic AI. But to cope with even more difficult situations such as that in the right panel of

Fig. 1.7, artificial neural networks have become essential nowadays.
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(a) Linearly separable (b) Nonlinear boundary (c) Even trickier boundary

Figure 1.7: Linear separability. Left: Linearly separable data, for which there are several possible

separators. While the perceptron separates the data according to the grey border, vector support

machines prefers the red border, which maximizes the margin (red zone) with respect to the most

ambiguous data. Center: Non-linearly separable data: the boundary is curved. Right: non-separable

data.

1.3.2 Neural networks

Artificial neural networks are built from layers of neurons stacked in a pile. Each neuron (i.e. each

perceptron) in a given layer sums the signals it receives from the neurons in the previous layer and

transmits a new signal to the neurons in the next layer. Just like in our brain, information is sent from

one neuron to the next through synapses, which are the parameters (often called "weights" in the context

of deep learning) to be adjusted during training. In the most powerful neural networks, several hundred

successive layers are sometimes used – hence the name “deep” learning.

Activation function There is a magical ingredient which allows neural networks to escape the linear

world of the perceptron. Between each layer, the signal goes through an activation function, which

modulates it in such a way as to introduce non-linearity, i.e "bend" the decision boundary. The word

“activation” comes from neuroscience, because this is very similar to what happens in our brain. Our

neurons also operate in a non-linear way: the signal they transmit is not proportional to the signal they

receive. Instead they follow an all-or-nothing principle, transmitting a signal only when the sum of the

signals they receive exceeds a certain threshold.

Feature extraction The great advantage of neural networks is that they learn to extract relevant

features from the data they are given autonomously. Until they became mainstream, a large part of

machine learning tasks was to manually select these features, a painstaking process known as feature

engineering.

Consider again melanoma detection. Before the deep learning era, the algorithm would be given the

ABCDE features of the mole. But with deep learning, things are much simpler: we can directly feed a

raw picture of the mole to the neural network, which then takes care of identifying the most relevant

features. In addition to saving time and effort, this procedure often turns out to be much more effective:

when reducing the complexity of a picture to a few features, we potentially miss out on other important

features! Being able to effortlessly compare millions of pictures of moles, neural networks can identify
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Figure 1.8: An artificial neural network. The pixels of the input image are analysed by a first layer

of neurons, which transmits the information to a second layer then to a third. These first three layers

extract important information from the image and pass it on to the last layer, known as the decision

layer.

complex distinctive patterns which even the best pathologists wouldn’t notice.

A hierarchical process Feature extraction is generally performed in a hierarchical way. Intuitively,

the first layer extracts coarse features, such as the borders of the mole. The second layer extracts slightly

more subtle features, such as the shape and texture of the mole. The deeper we go inside the neural

network, the more complex the features become. After a few layers, it is generally impossible from our

viewpoint to understand what the neural network is doing. The layers nearest the output are generally

responsible for combining together all the extracted features and condensing them down to a smaller,

neater bunch of features. Hopefully, once they reach the final layer, the features are linearly separable

and can easily be classified.

Transfer learning Another great asset of neural networks is that just like our brain, they have a

certain degree of plasticity. Transfer learning enables algorithms trained on a given task to adapt to

a new one. For example, a facial recognition algorithm could be reused to detect melanomas. Indeed,

the feature extraction taking place in the first layers happens to be a rather universal procedure: by

tweaking its final layers only, the algorithm can adapt to a new task. This provides a cheap way to

re-use pre-trained networks !
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Figure 1.9: The convolution mechanism. The blue filter detects the sky, the white filter detects the
snow, the half-blue half-white filter detects the sky-snow interfaces.

Figure 1.10: The attention mechanism. The original sentence, in Latin, is encoded into a latent

representation then decoded using the attention mechanism. The attention mechanism tells the decoder

to turn its attention to "cogito" for the beginning of the sentence "I think", to "ergo" for "therefore", and

finally to "sum" for the end of the sentence "I am".

1.3.3 Deep learning architectures

Convolutional networks The neural network depicted in Fig. 1.8 is themost basic kind of architecture,

named fully-connected because the neurons of a given layer are connected to all the neurons of the

neighboring layers. The issue here is that the number of connections becomes prohibitively large when

dealing with high-dimensional inputs such as images (several million pixels with three colours each).

To handle such long sequences of inputs while keeping a reasonable number of parameters to learn,

the field of computer vision generally relies on convolutional networks, which scan images by patches,

and reuse the same parameters across different patches. They extract local features using convolutional

filters, which scan the whole image looking for a specific feature. For example, in a picture of snowy

mountains, blue filters will detect the sky; white filters will detect snow; half-blue half-white filters will

detect boundaries between sky and snow, as illustrated in Fig. 1.9. This procedure is very similar to how

the neural networks in our visual cortex work.

Attention-based networks Convolutional networks use a very strong inductive bias: each layer

only captures local features. Luckily, these features are usually the most important (neighboring pixels

are more correlated than far-away ones), which explains the empirical success of convolutional netorks.

This inductive bias significantly reduces the number of parameters and the number of images required

to learn, but limits their ability to capture long-range information.
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Figure 1.11: Deep learning beats Moore’s law: since a few years, the size of the largest language

model available increases by an order of magnitude every year. Source: Medium.

One way to circumvent this limitation is to use a mechanism called attention, allowing the network

to decide which parts of the input are semantically connected. This kind of architecture was initially

introduced as an add-on to machine translation models, enabling them to better capture which words

of the original sentence words the current word of the translated sentence relates to, as illustrated in

Fig. 1.10. Yet, it has rapidly spread to all areas of deep learning, including computer vision, and will be

central in Parts II and IV of this thesis.

Again, this kind of architecture is human-inspired: attention is what governs our perception of the

world. Amongst all the sensory impulses triggered by our skin, sounds perceived by our ears and light

received by our eyes at each instant, we retain only a tiny fraction: that which is the most useful at each

particular instant.

1.4 My contribution in a nutshell

1.4.1 Overparametrization

Modern deep learning is characterized by neural networks of ever-increasing size. This is illustrated in

Fig. 1.11: every year since 2018, the size of the largest language model available increases by an order

of magnitude. The largest of them at the time this manuscript is written are approaching a trillion

parameters. This is still a few orders of magnitude smaller than the number of synapses in a human

brain (which is around 1000 trillion [29]), but if we could keep the current pace, the gap could be closed

in less than a decade.

There is however something paradoxical in this race for large models: in Sec. 1.2.2, we mentioned

that machine learning models tend to overfit when they have too many parameters. The extreme case

of overfitting occurs when the model has enough parameters to bring the training loss down to zero:
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Figure 1.12: The double descent curve. In deep learning, generalization (performance on unseen data)

is poor near the interpolation threshold due to overfitting, but improves as we move beyond.

we call this the interpolation threshold. Yet, recent work suggests that modern deep learning models

operate in a highly overparametrized regime, well beyond the interpolation threshold, and still manage

to generalize well, even without regularization [5]! Two questions naturally arise from this observation:

(i) how and when are deep learning models able to reach zero loss solutions, and (ii) why do these

solutions generalize so well?

In Chap. 2, we show that the interpolation threshold occurs when the number of parameters is

of same order as the number of training data, independently of the architecture of the model or the

dimension of the data. At this point, one typically observes overfitting and generalization will be

poor, as predicted by the bias-variance tradeoff. However, if one keeps increasing the size of the model,

something remarkable happens: performance starts improving again! In other words, Fig. 1.5 is incorrect:

instead of observing a continuously decreasing blue curve, one observes a "double descent" curve, as

sketched in Fig. 1.12.

In Chap. 3, we study this curve from a theoretical point of view, to try and understand how perfor-

mance can improve beyond the interpolation threshold. We underpin the following mechanism: when

we overparametrize beyond the interpolation threshold, the model has already perfectly overfit the data,

so overfitting is not a problem anymore. In fact, the model memorizes the data in a smoother way (i.e.

with lower variance) as we give it more parameters, which enables it to generalize better!

In Chap. 4 and 5, we study how this phenomenology is impacted by the activation function, the loss

function and the properties of the data the model is trained on. The latter point is of utmost importance:

in principle, the curse of dimensionality should make learning problems exponentially harder as the

dimensionality of the input data increases
3
, yet neural networks are able to scale seamlessly to million-

pixel images by taking advantage of the low-dimensional structure of the data.

1.4.2 Architectural bias

In the first part, we studied overparametrization as key to the power of deep neural networks. Yet,

size is not the only thing that matters. Another key aspect in building a successful neural network

3

since the volume of a sphere of radius ϵ in dimension D scales as ϵD , the number of input data required to fill in a sphere

scales exponentially with D.
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Figure 1.13: Soft inductive biases can help models learn without being restrictive. Hard inductive
biases, such as the architectural constraints of CNNs, can greatly improve the sample-efficiency of

learning, but can become constraining when the size of the dataset is not an issue. The soft inductive

biases introduced by the ConViT avoid this limitation by vanishing away when not required.

is to choose the right architecture given a particular type of data. As explained in Sec. 1.3.3, a very

important technique to efficiently extract information from data is to use inductive biases, i.e. exploit

prior knowledge on the structure of the data at hand. For example, convolutional networks assume two

things:

• Locality: two neighboring pixels are more closely correlated than two far-away neighbors, i.e.

most of the information in an images lies in local correlations

• Translation invariance: a dog will remain a dog whether it is in the center of the image or in

the top left corner: i.e. the category of an object is insensitive to its position.

These inductive biases are hard-wired into the architecture of convolutional networks, and help them

learn from less data. However, they can restrict the ability of the learning model to learn features which

do not fall under one of these two categories. In particular, it hinders the ability of neural networks to

capture long-range information, e.g. understand the relationship between distant parts of the image.

In Chap. 6, we demonstrate this by introducing a method to remove the convolutional constraints

during training – namely, recasting the convolutional network as a fully-connected one. We show that

performance degrades when the constraints are removed in the first stages of learning, but improves

when they removed half-way through learning. Hence, the constraints are helpful early on, but become

restrictive later on. Yet, our method is not suited for practical applications: extracting long-range

information comes at the cost of using a very large fully-connected network.

A smarter way to capture long-range information is to use attention-based networks. In Chap. 7,

we employ a very similar procedure to infuse convolutional constraints within an attention-based

network in a soft way – the network can escape the constraints if necessary, see Fig. 1.13. The resulting

architecture, named ConViT, significantly improves the ability of Transformers to learn from small

datasets, while also boosting their performance on large datasets.

In Chap. 8, we use the opposite approach of relaxing the constraints of convolutional network at late

times. In both cases, we obtain competitive results in image classification tasks, and our methods have

been applied to many different tasks, ranging from volcano detection [30] to skin lesion classification [31].
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Figure 1.14: The optimal learning rate schedule depends on the structure of the landscape. One
must first keep a large constant learning rate to escape the rough parts of the landscape as quickly as

possible, then decay the learning rate as η(t) = η0/t once inside a convex basin.

1.4.3 Optimization

Remember from Sec. 1.2.1 that reducing the loss function is akin to walking down a mountain. The size

of the steps we take is key to descend as quickly as possible. In the early stages of training, it is desirable

to take large steps to speed up the descent, but when we reach a basin, we need to take smaller steps in

order to not overshoot and miss the bottom. A key question is the following: what is the optimal rate to

reduce the size of the steps? This question has been studied extensively for simple landscapes, but much

less so for rough landscapes.

In Chap. 9, we show that the answer turns out to strongly depend on how rough the terrain is. In

smooth regions, which do not have local basins where one can get trapped in, one can decay the step

size rather quickly. However, in rough regions, decaying the learning rate too fast can slow down the

dynamics. In practice, we show that a broad class of optimization problems exhibit a search phase where

the landscape is rough and the learning rate should be kept constant, followed by a convergence phase

where the landscape is smooth and the learning rate can safely be reduced (see Fig. 1.14).

In Chap. 10, we study how the descent works for an algorithm called Direct Feedback Alignment,

which enables to update the parameters of neural networks in a way which is more compatible with the

mechanisms of biuological brains. We show that this algorithm drags the optimization path to a special

region of the landscape where the neural networks can indeed learn.

1.4.4 Symbolic mathematics

The final part of this thesis explores the following idea: teaching a neural network to predict the

mathematical formula underlying a set of observations (see Fig. 1.15). This task, known as symbolic
regression, is particularly interesting in light of our discussion in Sec. 1.1.2 on connectionnist versus

symbolic artificial intelligence: a mathematical formula is the archetype of a symbolic expression, and

such tasks are usually tackled with classic approaches such as genetic programming (exploring the space

of formulas by applying random mutations to the current guess and selecting the fittest offspring at

each new generation).

In Chap. 11, we train attention-based models usually built for translation to predict the recurrence

relation behind number sequences such as [1,1,2,3,5,8,13...] (here, the recurrence relation is that the last
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𝑓(𝑥) = 2 + cos(4𝑥) − 0.3𝑥

𝑓(𝑥) =  ???

Machine learning

Symbolic regression

Parametric statistics
𝑓(𝑥) = 2 − 0.3𝑥

Figure 1.15: Symbolic regression can be seen as a middle ground between parametric statistics, where

one fixes a (generally interpretable) functional form and infers its parameters, e.g. linear regression, and

machine learning, where one searches in a vast space of (generally non-interpretable) overparametrized

functions, e.g. deep learning. In symbolic regression, we search through a vast space of interpretable

mathematical expressions to fit the data as well as possible: this is a difficult task which cannot simply

be expressed as a minimization problem, at odds with the two other methods.

term can be obtained by summing the previous two terms). We show that our model not only succeeds

in retrieving the correct relation better than Mathematica, but also learns to approximate complex

relations which it cannot express.

Finally, in Chap. 12, we tackle the more challenging task of symbolic regression on multi-dimensional

functions with non-integer coefficients. We show that our model is competitive with the most advanced

genetic algorithms, while offering at least a ten-fold speedup: instead or retraining on each set of

observations, our model leverages the experience gained during training.

A demonstration of our symbolic regression models can be found at the following address: https:
//symbolicregression.metademolab.com/.
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Part I

A Theory of Overparametrization
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Chapter 2

From the Jamming Transition to the
Double Descent Curve

In this first chapter we will study the interpolation threshold (IT) of neural networks, i.e. the transition

point from under-parametrized networks which have too few parameters to fit the training data to

over-parametrized networks. By relating this threshold to the jamming transition of granular media,

well-studied in the statistical physics litertature, we provide an upper bound for its location and show

that in the whole over-parametrized regime, poor minima of the loss are not encountered during training

because the number of constraints that hinders the dynamics is insufficient to allow for the emergence

of stable minima.

We then study systematically how the IT affects the generalization properties of the network (i.e.

predictive power). As we increase the number of parameters of a given model, starting from an under-

parametrized network, we observe that the test error displays three phases: (i) initial decay, (ii) increase
until the IT — where it displays a peak — and (iii) slow decay towards an asymptote as the network

size diverges. This phenomenon was later coined the double descent curve and observed in a variety of

machine learning models [32, 33].

Finally, we study the phenomenology of the double descent curve. First, the peak can be suppressed

by using early stopping, showing that is due to overfitting. Second, if one ensembles the predictions

of differently initialized networks, test error becomes roughly constant after the IT, showing that the

improvement of generalization with overparametrization comes from reducing the variance due to the

initialization of the parameters.

2.1 Introduction

A neural network is a high-dimensional function f : RD → RC that depends on a large number of

parameters P . These parameters are learned so as to fit N training data points by minimizing some loss

function L : RP → R, generally via gradient descent (a noisy version of gradient descent). There is

great flexibility in the network architecture, loss function and minimization protocol one can use. These

features are ultimately selected to optimize the generalization performance on previously unseen data.

Although the current progress in designing [34, 35] and training [36] networks that generalize well

is undeniable, it remains mostly empirical. A general theory explaining and fostering this success is

lacking, and central questions remain to be clarified, among which two puzzles stand out.
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Interpolation threshold A first puzzle is the following: since the loss function is generally non-

convex, when and how can the learning dynamics reach zero-loss solutions without getting stuck in

local minima? Generally, one can expect that increasing the number of parameters P will increase the

capacity of the model to memorize the training data, until a point called the interpolation threshold (IT),

denoted as P ⋆, where the data is perfectly memorized. Given a number of data N , what is the value of

the IT P ⋆(N), and how does it depend on the depth of the network?

Generalization The second puzzle is the excellent generalization performance of heavily over-

parametrized deep neural networks able to fit random labels [5]. Such interpolating estimators—that

can reach zero training error— have attracted a growing amount of theoretical attention in the last few

years, see e.g. [32, 37, 38]. Indeed, classical learning theory suggests they should generalize poorly due

to overfitting [39], but they seem to avoid this trap, and their generalization performance improves

relentlessly with their size [40].

2.1.1 Contributions

In the present work we tackle both puzzles in succession. We begin by studying the IT separating the

(N,P ) phase space into two regions: the over-parametrized regime, and the under-parametrized regime

– see Fig. 2.1. By comparing it with the jamming transition which occurs in packings of particles, we

characterize the critical line P ⋆(N) delimiting the two regions, yielding an upper-bound of the form

P ⋆ ∝ N above which stable local minima do not exist. Empirically, we find that the exact location of the

critical line is almost insensitive to the depth of the network, but crucially depends on the structure of

the data. Just like in the jamming transition of particles, we observe that the number of non-memorized

data jumps discontinuously from 0 to a large value at the IT.

Then, we show that the IT affects the most crucial aspect of learning, namely the test error. Indeed,

generalization properties are strongly affected by the proximity to the IT: as we increase P , the test
error first decreases, then displays a peak at P ⋆, then decays monotonically. If early stopping is used,

the peak disappears, implying that the IT is precisely the point where over-fitting is very strong.

Finally, we study that ensembling (averaging the predictions of networks with different random

initialization of the weights) leads to a qualitatively very different curve, which becomes flat after the IT.

This shows that the benefit of overparametrization beyond the IT stems from reducing the variance due

to initialization of the weights.

Reproducibility The codes used to produce the results presented in this chapter are available at https:
//github.com/mariogeiger/nn_jamming.git.

2.1.2 Related work

Jamming transition and supervised learning An analogy has been established between the loss

landscape of the perceptron (the simplest network, without any hidden layers) and the energy landscape

of spherical particles [41]. The critical behavior of these granular systems, although very general, is of

easier understanding when considering particles that interact only within a finite range: upon increasing

their density, such systems undergo a jamming transition [42, 43] when there is no longer space to

accommodate all the particles without them touching one another. Before the transition the energy

is zero, and after it increases with the density. The inclusion of longer-range interactions blurs the

transition[42].

39

https://github.com/mariogeiger/nn_jamming.git
https://github.com/mariogeiger/nn_jamming.git


Intepolation threshold

(𝑁
)

𝑃
⋆

Upper 
bound

𝑃
=

𝑁
𝐶
0

Over-parametrized
No local minima

 = 0

Under-parametrized
Local minima

P

N > 0

Figure 2.1: (P,N) phase space (P : number of parameters, N : number of training examples).

Deep networks behave similarly when we look at the training loss, and, again, a clear criticality

emerges when considering a “finite-range” loss function — the hinge loss: when the number N of

training points is small enough, the network is able to learn the whole training set and reaches zero

training loss, but upon increasing N we find a critical “jamming” point where perfect training does not

occur and learning gets stuck in a local minimum of the the training loss.

An analogy between deep learning and glasses has also been proposed [44, 45], in which the learning

dynamics is expected to slow down and to get stuck in the highest minima of the loss. Yet, in the regime

where the number of parameters is large (often considered in practice), several numerical and rigorous

works [46–50] suggest a different landscape geometry where the loss function is characterized by a

connected level set. Furthermore, studies of the Hessian of the loss function [51–53] and of the learning

dynamics [54, 55] support that the landscape is characterized by an abundance of flat directions, even

near its bottom, at odds with traditional glasses.

Effect of depth On one hand, it is often argued, and proved in some cases, that the advantage of

deep networks stems from their enhanced expressive power, i.e. their ability to build complex functions

with a much smaller number of parameters than needed for shallow networks [56–60]. Indeed if deep

networks are able to fit data with less parameters, then they are likely to generalize better.

On the other hand, one can handcraft neural networks that fit even structure-less, random data with

a rather small number of parameters P ∼ N [61–64]. These results for the static capacity of networks

appear to be independent of depth [63, 64]. Yet, it is unclear whether such parsimonious solutions can

be found dynamically in practice simply by descending the loss function, and whether depth can help

finding them.

Generalization of overparametrized models The benefit of overparametrization has been the topic

of study for several other works. Some of them focus on the effects of various ways of regularizing the

network, thereby effectively reducing the dimension [65–68]. Yet another body of works focus on the

effects of sheer size of a neural network [69–71].

The peak in the test error near the IT has previously been observed in several simple settings: least

squares regression [72–76] and teacher-student regression with two-layer networks [37]. However,

no evidence of such behavior has been observed in realistic tasks involving deep neural networks.

Additionally, the generalization behavior of linear models is at odds with what we observe: for the
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perceptron, test error asymptotically increases with P . As will be shown in detail in Chap. 4, despite

strong resemblences, the overfitting peaks observed for linear models and neural networks are in fact of

rather different nature.

Follow-ups of this work Since the initial preparation of the present work, the field progressed

quickly within a matter of months. The described peak in the test error was observed empirically in [32]

for a variety of other machine learning models such as random forests, and named “double descent”. This

phenomenon was also observed in [33] for state-of-the-art deep neural networks such as ResNets [77]

and Transformers [78]. A line of theoretical studies on regression presented a precise mathematical

description of double descent [79–82], albeit on models which are rather far from the practical setting of

modern neural networks.

2.2 A warm-up with toy models

Before studying the two puzzles above in the context of deep learning, we gain some intuition by

analyzing two very simple setups: 1-dimensional polynomial and high-dimensional linear least-squares

regression.

2.2.1 Polynomial regression

Consider the setup of 1-dimensional polyomial regression, where the objective is to fit the best polynomial

P given a set of observations {xµ, yµ}µ=1...N by minimizing the squared error:

L = 1
2N

N∑
µ=1

(P(xµ) − yµ)2
(2.1)

Here, we can choose the number of degrees of freedom by adjusting the degree of the polynomial, which

we will denote as P .

Interpolation threshold It is well known that when trying to fit a polyomial of degree P through

N points, in the general case there will be no solutions if P < N , a single solution when P = N and

several solutions when P > N . Hence, we see that the interpolation threshold, i.e. the point at which

the loss L vanishes, is located at P = N .

Generalization Although Lagrange polyomials guarantee the existence of an interpolating polynomial

for P = N , the latter will generally have high variance: the slightest change in one of the points will

completely change the form of the polynomial. Hence, such polynomials will generalize poorly to

unseen data points: we are faced with overfitting at the IT. Now, what happens if we continue increasing

the degree of the polynomial ?

Since there are several solutions when P > N , the answer depends on which solution we choose. If

we choose at random, overfitting will typically become worse and worse as we increase the degree of the

polynomial: the solutions will become more and more wiggly, i.e. have high variance. However, among

all the solutions, the one with the smallest variance will typically become less and less wiggly. Imagine

taking P→∞: by Taylor expansion, the solution space contains all possible (smooth) interpolating

functions, including ones with very low variance!
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Choosing the solution with smallest variance is the objective of regularization in machine learning.

In this very simple example, it makes sense that in absence of regularization, generalization worsens

beyond the IT, leading to a U-shaped curve, but with appropriate regularization, generalization can

improve beyond the IT, leading to a double descent curve.

However, what is surprising in deep learning is that the double descent curve is observed even in
absence of explicit regularization. We call this phenomenon implicit regularization, and it is generally

believed to stem from the properties of the optimization algorithm (SGD), see [83] for a review.

2.2.2 Least-squares regression

Let us now move to high-dimensional linear regression, where objective is the infer a vector W ∈ RP
from a set of observations {xµ ∈ RP , yµ ∈ R}µ=1...N , by minimizing the squared error:

L = 1
2N

N∑
µ=1

(W ⊤xµ − yµ)2
(2.2)

Again we have P degrees of freedom to fit N data points. We denote the matrix of inputs X ∈ RP×N
,

its covariance Σ = 1
N

∑
µ x⊤

µxµ, and the vector of targets (Y )µ = yµ.

Interpolation threshold In this setup, the interpolation threshold is clearly located at P = N .

Indeed, if P = N , X is a square matrix, which is invertible with high probability. There is a unique

solution ensuring L = 0, given by solving the linear system Y = W X : the solution is W ⋆ = X−1Y .

If N > P , then we do not have enough degrees of freedom and the loss will generally be nonzero.

Conversely, if P > N , then there are multiple solutions ensuring L = 0, just like in the setup of

polynomial regression.

Generalization The generalization of least squares regression is a rather complex random matrix

problem which has been studied in great detail in a variety of settings, see e.g. [79]. However, it is rather

easy to understand why overfitting occurs at the ITN = P by inspecting the expression for the optimal

estimator:

W ⋆ = X+y, (2.3)

where X+
stands for the Moore-Penrose inverse of X , i.e. X+ = limλ →0(XX⊤ + λI)−1X⊤

.

Importantly, the eigenvalues of this matrix scale inversely with the eigenvalues of the covariance

Σ = 1
NXX⊤

.

Let us imagine that the inputs xµ are sampled from a random gaussian distribution N (0, σ). Define
the distribution of eigenvalues of the covariance matrix Σ as ρ(µ) =

∑P
i=1 δ(µ−µi), where {µi}i=1...P

are the eigenvalues of Σ.

Now consider the high dimensional limit where N→∞, P→∞ with their ratio λ = N/P fixed.

Then the eigenvalue distribution becomes a continuous distribution called spectral density, and is given

the Marcenko-Pastur law [84]:

ρ(µ) = λ

2πσ2

√
(x+ − x) (x− x−)

x
1x∈[x−,x+], (2.4)

x± = σ2(1 ±
√

1
λ

)2
(2.5)
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Figure 2.2: The Marcenko-Pastur distribution.

The shape of this distribution strongly depends on the parameter λ. Importantly, we see in Fig. 2.2

that the support of the spectral density reaches 0 when P = N , as x−→λ→10+
, and in fact diverges

near 0. This causes very small eigenvalues to appear in the spectrum of the covariance, the inverse

of which which will lead the norm of W ⋆
to become very large and sensitive to the sampling of X

according to Eq. 2.3. As before, the variance of the estimator becomes very large: the slightest noise in

the input data will be severely overfit, and lead to catastrophic generalization on unseen data.

Note that the observation that square matrices tend to be poorly conditioned (i.e. display small

singular values) compared to skinny matrices is not specific to the random gaussian setup considered

here: it is a rather general phenomenon, which causes overfitting peaks to appear in a variety of

contexts [85], as we will see in Chap. 4.

2.3 The interpolation threshold of deep neural networks

In this section we present the analogy between jamming and supervised learning for deep neural

networks [41]. For the full analogy we point to the aforementioned paper [86]. This will set the stage

for the analysis of the IT and its impact on generalization.

2.3.1 Set-up

We consider a binary classification problem, with a set ofN distinct training data denoted {(xµ, yµ)}Nµ=1.
The vector xµ is the input, which lives in a D-dimensional space, and yµ = ±1 is its label. We denote

by fW (x) the output of a fully-connected network corresponding to an input x, parametrized by W .

We represent the network as in Fig. 2.3, and the output function is written recursively as

fW (x) ≡ a(L+1), (2.6)

a
(i)
β =

∑
α

W
(i)
α,β σ

(
a(i−1)
α

)
+B

(i)
β , (2.7)

a
(1)
β =

∑
α

W
(1)
α,β xα +B

(1)
β , (2.8)

where a
(i)
α are the preactivations. In our notation the set of parameters W includes, with a slight abuse

of notation, both the weightsW
(i)
α,β and the biases B

(i)
α . σ(z) is a non-linear activation function, e.g. the
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Figure 2.3: Architecture of a fully-connected network with L hidden layers of constant size h. Points
indicate neurons, connections between them are characterized by a weight. Biases are not represented

here.

ReLU σ(z) = max(0, z) or the hyperbolic tangent σ(z) = tanh(z). In this chapter, the parameters are

learned by minimizing the quadratic hinge loss:

L(W ) = 1
N

N∑
µ=1

1
2max (0,∆µ)2 ≡ 1

N

∑
µ∈m

1
2∆2

µ, (2.9)

where ∆µ ≡ 1 − yµfW (xµ) and m is the set of patterns with ∆µ > 0 and contains N∆ elements.

These patterns describe unsatisfied constraints: they are either incorrectly classified or classified with

an insufficient margin (whereas patterns with ∆µ < 0 are learned with margin 1). We adopt this loss

function since it makes the IT simpler to analyze
1
, but this choice does not influence the performance of

the network, as we have reported in [86].

We are interested in the transition between the under-parametrized phase where the network cannot

satisfy all the constraints (L > 0) and an over-parametrized regime where all constraints are unsatisfied

(L = 0) as we increase the number of parameters P . Note that as discussed in App. A.1.1, the effective

number of degrees of freedom Peff of the network may be smaller than P . In the following analysis, we

disregard this: as reported in A.1.1, for a reasonable initialization of the weights and constant-width fully

connected networks, Peff ≈ P (the difference is small and equal to the number of hidden neurons, and

only results from the symmetry associated with each ReLU neuron). Henceforth to simplify notations

we will use the symbol P to represent the effective number of parameters.

2.3.2 Constraints on the stability of minima

Let us suppose (this will be justified later) that, for a fixed number of dataN and with proper initialization

of weights, if P is large enough then gradient descent leads to L = 0, whereas ifN is small after training

1

The often used cross-entropy loss function also displays a point where all data are well-fitted. However, in the over-

parametrized regime the dynamic never stops, as the total loss vanishes only if the output and therefore the weights diverge.
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L > 0. Imagine increasing P starting from a small value: at some P ⋆ the loss obtained after training

approaches zero
2
, i.e. limP→P ⋆ L = 0. We refer to this point as the IT. A vanishing training loss implies

that ∆µ → 0 for each pattern µ = 1, . . . , N .

As argued in [87], for each µ ∈ m the constraint ∆µ ≈ 0 defines a manifold of dimension P − 13.
Satisfying N∆ such equations thus generically leads to a manifold of solutions of dimension P −N∆

4
.

Imposing that a solution exists implies that at the IT:

P ⋆ ≥ N∆. (2.10)

An opposite bound can be obtained by considerations of stability (as was done for the jamming of

repulsive spheres in [89]), by imposing that in a stable minimum the Hessian must be positive definite if

the activation function is smooth (see below for the situation where the activation function displays

cusps, as occurs for ReLU neurons). The Hessian matrix, i.e. the matrix of second derivatives of the loss

with respect to the parameters, is given by

Hess(L) ≡ H = 1
N

∑
µ∈m ∇∆µ ⊗ ∇∆µ + 1

N

∑
µ∈m ∆µ∇ ⊗ ∇∆µ

≡ H0 + Hp, (2.11)

where ∇ is the gradient operator and ⊗ stands for tensor product. The first term H0 is positive semi-

definite: it is the sum ofN∆ rank-one matrices, thus rk(H0) ≤ N∆, implying that the kernel of H0 is at

least of dimension P −N∆.

Let us denote by E− the negative eigenspace
5
of Hp and call P− its dimension. Stability imposes

that ker(H0) ∩ E− = {0}, which is only possible if N∆ ≥ P−. Hence, minima with positive training

loss can only occur for:

N ≥ N∆ ≥ P−, (2.12)

where the first inequality trivially follows from the fact that the N∆ patterns belong to the training set

of sizeN ). As reported in [86], we observe empirically that the spectrum of Hp is statistically symmetric

in the cases that we consider in the present work, i.e. for ReLU activation function, both for MNIST

and random data, both at initialization and at the end of training. In A.1.2 we provide a non-rigorous

argument supporting that in the case of ReLU activation functions and random data the spectrum of

Hp is indeed symmetric with limP→∞ P−/P+ = 1 independently of depth, where P+ is the number of

positive eigenvalue. We conjecture that in general the limiting spectrum of Hp as P,N → ∞ (for any

fixed ratio N/P ) has a finite fraction C0 = P−/P of negative eigenvalues for generic architectures and

datasets. In [86] we observedC0 = 1/2 for the ReLU activation function as expected, for tanh activation

functions at jamming and at the end of training we found C0 ≈ 0.43. Thus, C0 is not universal
6
.

2

For finite P , P ⋆
will present fluctuations induced by differences of initial conditions. The fluctuations of P/P ⋆

are

however expected to vanish in the limit where P and P ⋆
become large. This phenomenon is well-known for the jamming of

particles, and is an instance of finite size effects.

3

Related arguments were recently made for a quadratic loss [50]. In that case, we expect the landscape to be related to that

of floppy spring networks, whose spectra are predicted in [88].

4

Note that this argument implicitly assumes that theN∆ constraints are independent. In disordered systems this assumption

is generally correct, but it may break down if symmetries are present.

5

The negative eigenspace is the subspace spanned by the eigenvectors associated with negative eigenvalues.

6

The conjecture does not hold in some pathological cases, for instance if two data points can be identical with different

labels (a case we exclude here). Indeed even in the over-parametrized case, if xµ = xν but yµ ̸= yν then an exact cancellation

of terms occurs in the sum defining Hp, which can then be zero while L > 0, leading to C0 = 0. Further details are discussed
in A.1.3
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Finally we assume that the spectrum of Hp does not display a finite density of zero eigenvalues

(once restricted to the space of parameters that affect the output, of dimension Peff , supposed here to

be equal to N ). Under this assumption we obtain from Equation (2.12) that local minima with positive

training loss cannot be encountered if P > N/C0, implying in particular that:

P ⋆ ≤ N/C0. (2.13)

Hence sufficiently overparametrized networks reach a flat global minimum with zero training loss. Note

that this does not imply that all such global minima must have also the same test loss.

Non-smooth activation functions: With ReLU activation functions, the output function fW (x) is
not smooth and presents cusps, so that the Hessian needs not be positive definite for stability. A

minimum can lie on a point where the second derivative is not defined along some directions (because

of the cusp), and we say that the cusp stabilizes those directions. Equation (2.12) needs to be modified

accordingly: introducing the number of directions Pc ≡ βP presenting cusps near jamming, stability

implies N∆ > P− − Pc and:
N∆ ≥ P (C0 − β) (2.14)

implying in turn that:

P ⋆(N) ≤ N

C0 − β
(2.15)

Numerically, we find that at jamming the fraction of directions along which there is a cusp is Pc/P
⋆ ≡

β ∈ (0.21, 0.25) both for random data and images as reported in the A.1.4. Using C0 = 1/2 for ReLU,

we obtain the bounds:

N∆ ≥ P/4 (2.16)

P ⋆ ≤ 4N. (2.17)

2.3.3 Numerical validation

Here we present numerical results on random data (uniformly distributed on a hypersphere of dimension

D and with random labels yµ = ±1) and on the MNIST dataset of handwritten digits (partitioned into

two groups according to the parity of the digits, with labels yµ = ±1). With MNIST, in order not to

have most of the weights in the first layer, we reduce the actual input size by retaining only the first

D = 10 principal components that carry the most variance (this hardly diminishes the performance for

such a task). Further description of the protocols is given in A.2.

In Fig. 2.4A,C we show the location of boundary P ⋆ versus the number of samples P . P ⋆ is estimated

numerically for each P by starting from a large value of P and progressively decreasing it until L > 0 at

the end of training. Varying input dimension, depth and loss function (cross entropy or hinge) has little

effect on the IT. This result indicates that in the present setup the ability of fully-connected networks to

fit random data does not depend crucially on depth. Fig. 2.4C shows also a comparison of random data

with MNIST. A difference between random data and images is that the minimum number of parameters

P ⋆ needed to fit the real data is significantly smaller and grows less fast as P increases — for N ≫ 1,
P ⋆(N) could be sub-linear or even tend to a finite asymptote, as the new data becomes increasingly

redundant: how the structure in the data and in the labels affects P ⋆(N) is discussed in Chap. 5.

Interestingly, the IT shares an important phenomenon with the jamming transition of particles.

When one increases the particle density, the number of contacts suddenly jumps from zero to a large
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Figure 2.4: The empirical interpolation threshold is below the theoretical upper boundP ⋆ = 4N ,
and depends on the structure of data but not on the depth or input dimension. (A) and (B):
random data in various dimensions D. (C) and (D): MNIST dataset. (A) and (C) depict the location
P ⋆ (that is, the number of parameters) of the IT as a function of the number N of training points, for

networks of various depths L. (B) and (D) show that in the (L-N∆/P ) and (N/P -N∆/P ) planes the
jamming transition displays a discontinuous jump.

number, proportional to the number of particles. In the experiments above, we observe something very

similar: the number of constraints per parameter N∆/P jumps discontinuously at the IT, as shown in

the insets of Fig. 2.4B,D. The scatter in these plots presumably reflects finite size effects known to occur

near the jamming transition of particles [43]. All this scatter is however gone when plotting N∆/P as a

function of the loss itself, as shown in the main panels of Fig. 2.4B,D.

Summary So far, our analysis supports that for smooth activation functions there exists a constant C0
such that the IT occurs for P ⋆(N) ≤ N/C0. We also see that at the IT, the fractionN∆/P of unsatisfied

constraints per degree of freedom jumps discontinuously to a finite value satisfying C0 ≤ N∆/P ≤ 1.
For non-smooth activation functions such as ReLU, but the analysis is complicated by the presence

of cusps. However, for ReLU we still find C0 = 1/2 and the transition is sharp, i.e. characterized by a

discontinuous jump in constraints as specified by Eq. 2.16.

The complete list of results is included in [86], and shows that that the IT of deep neural networks

is akin the the jamming transition of elliptical (rather than spherical) particles.

2.4 The double descent curve

In this section, we study the impact of the IT on test error, defined as follows:

ϵg(W ) = 1
Ntest

Ntest∑
µ=1

1yµ=fW (xµ) (2.18)

We present the first evidence of a double descent curve in deep learning.
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Figure 2.5: The double descent curve: generalization performance improves with over-
parametrization, except near the interpolation threshold where it displays a peak. We trained a

5 hidden layer fully-connected network on MNIST. (A) Typical evolution of the test error over training

time, for systems located at different points relatively to the IT (for N = 50k): over-fitting is marked by

the gap between the value at the end of training and the minimum at prior times. Notice that training of

over-parametrized systems halts sooner because the networks have achieved zero loss over the training

set. (B) Test error at the final point of training (solid line) and minimum error achieved during training

(dashed line) vs. system size. (C) WhenN is scaled by P ⋆(N) it is clear that over-fitting occurs at the IT.
.

2.4.1 Generalization at and beyond the interpolation threshold

In Fig. 2.5A we show the evolution of the test error for networks at four different locations in the (N,P )
plane. The networks are trained on MNIST at fixed N = 50k, and at different values N , both above,

at and below jamming. Training is run for a fixed number of steps of vanilla gradient descent (the

simulation details are in A.2). The profile of these curves is typical of most learning problems (if one

does not resort to early stopping): notice that the point of minimum test error happens before the end

of training. The increase of test error at late times is referred to as “over-fitting” in the field. Very

interestingly, it is clear from this figure that at small and large N , over-fitting is a weak effect, which

however becomes very significant at intermediate N .

To study this effect, we systematically vary P at fixed N . In Fig. 2.5B the solid curve shows the test

error against the network size P for three different values of N (we sampled subsets of MNIST). The

dashed curve represents the value of the smallest error obtained during training, at prior time-steps

(extracted from the profiles shown in Fig. 2.5A). The former displays a peak at the IT P ⋆, as one can see

clearly after rescaling the N -axis of each curve by the corresponding value of P ⋆(N).
Strong over-fitting, corresponding to the difference between the solid and dashed lines, takes place

only in the vicinity of the IT (Fig. 2.5B-C). We thus posit that at fixedN , the benefit of early stopping [66]

should diminish in the large-size limit. Beyond the IT point, the accuracy keeps steadily improving as

the number of parameters increases [69–71], although it does so quite slowly
7
. To understand the origin

of this improvement, we study the impact of ensembling in what follows.

7

In A.2.2 we have verified that the overall trends described here hold qualitatively for other depths.
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Figure 2.6: In presence of ensembling, the overfitting peak vanishes and optimal generalization
occurs just after the interpolation threshold. Empirical test error (main figure) and train error (inset)

v.s. number of parameters: average curve (blue, averaged over 20 runs); early stopping (green); ensemble

average (orange) over 20 independently initialized networks. The vertical dashed line corresponds to

the IT: at that point the test error peaks. Ensemble averaging leads to an essentially constant behavior

when P becomes larger than P ⋆.

2.4.2 Effect of ensembling

Ensembling amounts to training several different models, then averaging their predictions. The various

models of the ensemble can differ in many different ways: architecture, training hyperparameters,

weight initialization, etc. Here we consider the latter scenario: we investigate the effet of averaging the

predictions of 20 fully-connected networks with different weight initializations on the double descent

curve described above.

Our results are shown in Fig.2.6. As before, we observe a double descent curve (in blue) when only

considering the predictions of a single model, and the peak near the IT vanishes when performing

early stopping. Remarkably, in our experiments ensemble-averaging led to a nearly flat test error for

P > P ⋆; this supports that the improvement of generalization performance withN in this classification

task originates from reduced variance of fP when N gets large, as recently observed for mean-square

regression [38].

An observation of potential practical interest is that near-optimal generalization is obtained by

ensemble averaging slightly above P ⋆. Thus the intuition that the most predictive and parsimonious

models have just enough parameters to fit the data may indeed be correct, once one averages over

differently initialized networks
8
.

8

This observation carries over to convolutional networks, as well. We train CIFAR10 on a vanilla architecture with 3

convolutional layers with f filters at each layer and a single fully-connected layer. For each f , we train 20 models at different

random initial conditions. Just after P ⋆
, the mean accuracy is ∼ %66, accuracy of the ensemble averaging is ∼ %80, and the

average accuracy of widest models we could train (which has 5 orders of parameters more) is a little bit less than ∼ %77.
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2.5 Conclusion

In this chapter, we recast the minimization of the loss function of neural networks as a constraint-

satisfaction problem, enabling us to predict an upper bound for the IT of the form P ⋆ ≤ N/C0, where
the specific value of C0 depends on the activation function, but not on the depth of the network. In

practice, for random data P ⋆(N) scales linearly with P (in this case, the bound is tight), but sublinearly

for structured data with non-random labels. Obtaining a tighter, data-dependent upper bound for the

curve P ⋆(N) remains an important challenge for future work.

Finally, we related the IT to the generalization of the model, presenting the first reported evidence of

a double descent curve in deep learning: generalization improves with overparametrization except near

the IT, where a peak appears. By studying the impact of early stopping and ensembling, we were able to

show that the peak is related to overfitting, whereas the decay of test error with overparametrization is

comes from a reducting of the variance due to the initialization of the weights. Establishing this from a

quantitative point-of-view will be the objective of the following chapter.
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Chapter 3

Double Trouble in Double Descent: Bias
and Variance(s) in the Lazy Regime

Deep neural networks can achieve remarkable generalization performances while interpolating the

training data; rather than the U-curve emblematic of the bias-variance trade-off, their test error often

follows a “double descent" curve — a mark of the beneficial role of overparametrization.

In this chapter, we develop a quantitative theory for this phenomenon in the context of high-

dimensional random features regression. We obtain a precise asymptotic expression for the bias-variance

decomposition of the test error, and show that the bias displays a phase transition at the IT, beyond it

which it remains constant. We disentangle the variances stemming from the sampling of the dataset,

from the additive noise corrupting the labels, and from the initialization of the weights.

Following up on the results of the previous Chapter, we demonstrate that the latter two contributions

are the crux of the double descent curve: they lead to the overfitting peak at the IT and to the decay of the

test error upon overparametrization. We quantify how they are suppressed by averaging the outputs of

independently initialized estimators, and compare this ensembling procedure with overparametrization

and regularization. Finally, we present numerical experiments on a standard deep learning setup to

show that our results are relevant to the lazy regime of deep neural networks.

3.1 Introduction

As we have seen above, the generalization performance of deep neural networks improves relentlessly

as they become larger. The reasons behind the performance of deep neural networks in the over-

parametrized regime are still poorly understood, even though some mechanisms are known to play

an important role, such as the implicit regularization of stochastic gradient descent which allows to

converge to the minimum norm solution, and the convergence to mean-field limits [37, 90–93].

Optimization plays an important role in neural networks by inducing implicit regularization [69]

and fluctuations of the learnt estimator [94]. Disentangling the variance stemming from the randomness

of the optimization process from that the variance due to the randomness of the dataset is a crucial

step towards a unified picture, as suggested in [38]. In this chapter, we address this issue and attempt

to reconcile the behavior of bias and variance with the double descent phenomenon by providing a

quantitative theory for random feature model (RF), introduced by [95]. The latter that can be viewed

either as a randomized approximation to kernel ridge regression, or as a two-layer neural network
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whose first layer contains fixed random weights.

The latter provides a simple model for deep learning in the lazy regime [91] where the weights stay

close to their initial value during training – as opposed to feature learning regime where the weights

change enough to learn relevant features [96, 97]. . Indeed, suppose that a neural network learns a

function fW (x) that relates labels (or responses) yi to inputs xi with, i = 1, . . . , N via a set of weights

W . The lazy regime is defined as the setting where the model can be linearized around the initial

conditions W0. Assuming that the initialization is such that fW0 ≈ 01, one obtains:

fW (x) ≈ ∇W fW (x)|W =W0
· (W − W0) . (3.1)

In other words, the lazy regime corresponds to a linear fitting problem with a random feature vector

∇W fW (x)|W =W0
.

Although replacing learnt features by random featuresmay appear as a crude simplification, empirical

results show that the loss in performance can be rather small in some cases [92, 98]. A burst of recent

papers showed that in this regime, neural networks behave like kernel methods [99–101] or equivalently

random projection methods [91, 92, 95]. This mapping makes the training analytically tractable, allowing,

for example, to prove convergence to zero error solutions in overparametrized settings [102–108].

3.1.1 Contributions

In the setup described above, our contributions are:

• We demonstrate how to disentangle quantitatively the contributions to the test error of the bias

and the various sources of variance of the estimator, stemming from the sampling of the dataset,

from the additive noise corrupting the labels, and from the initialization of the random feature

vectors.

• We give a sharp asymptotic formula for the effect of ensembling on these various terms, and show

that overfitting near the IT comes from the interplay between noise and initialization variance –

hence the double trouble. These two terms decay beyond the IT, whereas the sampling variance

and the bias reach a plateau at the IT, and remain constant in the overparametrized regime. Hence,

the benefit of overparametrization beyond the IT is solely due to a reduction of the noise and

initialization variances.

• We show in particular how the over-fitting peak at the IT can be attenuated by ensembling, as

observed in real neural networks in the previous Chapter. Finally, we compare the variance-

reduction effects of ensembling, overparametrization, regularization and bagging (a form of

ensembling where the different models learn from different splits of the original dataset).

Reproducibility The code used to produce the results presented in this chapter are available at https:
//github.com/mariaref/Random_Features.git.

1

One can alteratively define the estimator as fW − fW0 [91].
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3.1.2 Related work

Replica method The analytical results we present are obtained using a heuristic method from

Statistical Physics called the Replica Method [109], which despite being non-rigorous has shown its

remarkable efficacy in many machine learning problems [76, 110–112] and random matrix topics, see

e.g. [113–115]. See [116] and [117] for recent reviews. While it is an open problem to provide a rigorous

proof of our computations, we check through numerical simulations that our asymptotic predictions are

extremely accurate at moderately small sizes.

Analytic works on overparametrization On the theoretical side, our paper builds on the results of

[82], which provide an analytic expression of the test error of the RF model in the high-dimensional limit

where the number of random features, the dimension of the input data and the number of data points

are sent to infinity with their relative ratios fixed. The double descent was also studied analytically for

various types of linear models, both for regression [37, 79, 80, 118, 119] and classification [120–122].

Bias and variance(s) In the usual formulation of the bias-variance trade-off in machine learning,

the variance stems from the random sampling of the data points. Indeed, for simple machine learning

models (think of linear regression, logistic regression, support vector machines), there is little to no

dependency on the initialization of the model parameters. However, in deep learning, the initialization

of the weights is crucial, as shown in the previous chapter [94]. This was also noticed in [38], where the

authors empirically disentangles various sources of variance and the bias in the process of training deep

neural networks. Just like us, they find that the initialization variance reaches a peak then decreases in

the overparametrized regime, and dominates over the sampling variance.

Follow-ups of this work Since its initial publication, this work has sparked many follow-ups. A

few works use rigorous methods to confirm our results [123, 124]. Using the toolbox of statistical

physics, [125] extended our results to classification tasks. The authors of [126] present a symmetric
decomposition, in contrast with our sequential decomposition where the noise variance is averaged out

first, followed by the initialization variance and the sampling variance. Finally, [127] goes further by

obtaining a fully disentangled decomposition where all interaction terms are analyzed separately; their

results suggest that the interaction between sampling variance and initialization variance can dominate

the error in some cases.

3.2 Analytical results

In this section, we present our main result, which is an analytical expression for all terms appearing in

the decomposition of the test error in terms of its bias and variance components.

3.2.1 Setup

This chapter and the subsequent ones are centered around the RFmodel first introduced in [95]. Although

simpler settings such as linear regression display the double descent phenomenology [79], this model

is more appealing in several ways. First, the presence of two layers allows to freely disentangle the

dimensionality of the input data from the number of parameters of the model. Second, it closely relates to
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the lazy learning, as described above. Third, and most importantly for our specific study, the randomness

of the first layer weights enables to study the impact of ensembling.

𝑋 ∈ ℝ
𝑁×𝐷

Θ ∈ ℝ
𝑃×𝐷

𝑍 = 𝜎( ) ∈

Θ𝑋

𝐷‾‾√
ℝ

𝑁×𝑃

𝑦 = 𝑎𝑍 ∈ ℝ
𝑁

𝑎 ∈ ℝ
𝑃

Figure 3.1: A random feature net-
work.

The RF model can be viewed as a two-layer neural network

whose first layer contains fixed random weights
2
(see Fig. 3.1):

f̂(x) =
P∑
i=1

aiσ

(⟨θi,x⟩√
D

)
. (3.2)

In the above, θi is the i
th random feature, i.e the ith column

of the random feature matrix Θ ∈ RP×D
whose elements are

drawn i.i.d from N (0, 1). σ is a pointwise activation function,

which we will take to be ReLU : x 7→ max(0, x) in this chapter.

Note however that our computation is valid for any activation

function, and the impact of the latter will be the object of the

next chapter.

The training data is collected in a matrix X ∈ RN×D
whose elements are drawn i.i.d from N (0, 1)3.

We assume that the labels are given by a linear ground truth corrupted by some additive Gaussian noise:

yµ = ⟨β,Xµ⟩ + εµ, ||β|| = F, εµ ∼ N (0, τ), (3.3)

SNR = F/τ.

The generalization to non-linear functions can easily be performed as in [82]: the non-linear part simply

amounts to an added noise term.

The second layer weights, i.e the elements of a, are calculated by the means of ridge regression:

L(a) ≡ 1
N

N∑
µ=1

(
yµ −

P∑
i=1

aiσ

(⟨θi,Xµ⟩√
D

))2

+ Pλ

D
∥a∥2

2,

â ≡ arg min
a∈RP

L(a).

Note that as P→∞, the random feature regression considered here is equivalent to kernel ridge

regression with respect to the following kernel:

K
(
x,x′) = EΘ∼P

[
σ(⟨x,Θ⟩/

√
D)σ

(〈
x′,Θ

〉
/
√
D
)]
,

where P is the uniform distribution over the D − 1-dimensional sphere of radius

√
D.

The key quantity of interest is the test error of this model, defined as the mean square error evaluated

on a fresh sample x ∼ N (0, 1) corrupted by some target noise ε̃:

ϵg = Ex
[(

⟨β,x⟩ + ε̃− f̂(x)
)2
]
, ε̃ ∼ N (0, τ̃). (3.4)

2

Note the closeness between the RF model and the "hidden manifold model" introduced in [128]. The task studied here

can be seen as a linear regression task on a structured data set Z ∈ RP , obtained by projecting the original latent features
X ∈ RD . The difference here is that the dimension of the latent space, denoted as D here, is sent to infinity together with the

dimension of the ambient space.

3

The impact of data structure will be studied in Chap. 5
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3.2.2 Decomposition of the test error

In the standard bias-variance decomposition for machine learning, the “variance” term only describes

the variability of the estimator with respect to the input data. This is because classic machine learning

methods can often be solved with convex optimization methods. However, in the non-convex setup of

deep learning, there is another source of randomness: the initialization of the weights. Taking the latter

into account, the test error (3.4) can be decomposed into five terms:

EΘ,X,ε [ϵg] = ENoise + EInit + ESamp + EBias + τ̃2. (3.5)

The first three contribute to the variance, the fourth is the bias, and the final term τ̃2
is simply the error

of an oracle predictor. It does not play any role and will be set to zero in the rest of the paper: the only

reason it was included is to avoid confusion with ENoise defined below.

Noise variance: The first term is the variance associated with the additive noise corrupting the

labels of the training examples, ε:

ENoise = Ex,X,Θ

[
Eε

[
f̂(x)2

]
−
(
Eε

[
f̂(x)

])2
]
. (3.6)

Initialization variance: The second term encodes the fluctuations stemming from the random

initialization of the random feature vectors, Θ:

EInit = Ex,X

[
EΘ

[
Eε

[
f̂(x)

]2]
− EΘ,ε

[
f̂(x)

]2]
.

Sampling variance: The third term measures the fluctuations due to the sampling of the training

data, X :

ESamp = Ex

[
EX

[
EΘ,ε

[
f̂(x)

]2]
− EX,Θ,ε

[
f̂(x)

]2]
. (3.7)

Bias: Finally, the fourth term in (3.5) is the bias, i.e. the error that remains once all the sources of

variance have been averaged out. It can be understood as the approximation error of our model and

takes the form:

EBias = Ex

[(
⟨β,x⟩ − EX,Θ,ε

[
f̂(x)

])2
]
. (3.8)

Note that this decomposition is sequential: we first remove the noise variance, then remove the

initialization variance from the noise averaged predictor, and finally remove the residual sampling

variance from the noise and initialization averaged predictor. This order was chosen for simplicity, and

to enable comparison with existing bias-variance decompositions [38, 82].

Other sources of variance By performing ridge regression, we are missing out on two sources of

variance which could be incurred by SGD dynamics. First, the noise in SGD creates an extra source of

variance. Second, even noiseless GD would add an extra contribution to initialization variance. Indeed,

in the overparametrized regime, the ridge regression problem is underdetermined: there is a frozen part

of the estimator which cannot be learnt [37]. This part, which is set to zero in ridge regression via the

pseudo-inverse (λ→0+
) or via explicit regularization (λ > 0), adds an extra (harmful) dependency on

initialization in GD.
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3.2.3 Main result

Consider the high-dimensional limit where the input dimensionD, the hidden layer dimension P (which

is equal to the number of parameter in our model) and the number of training points N go to infinity

with their ratios fixed:

N,P,D→∞,
P

D
= O(1), N

D
= O(1). (3.9)

We obtain the following result:

Ex,ε,Θ,X

[
⟨β,x⟩f̂(x)

]
=F 2Ψ1, (3.10)

Ex,Θ,X

[
Eε

[
f̂(x)

]2]
=F 2Ψv

2, (3.11)

Ex,Θ,X

[
Eε

[
f̂(x)2

]
− Eε

[
f̂(x)

]2]
=τ2Ψv

3, (3.12)

Ex,X

[
Eε,Θ

[
f̂(x)

]2]
=F 2Ψe

2, (3.13)

Ex,X

[
Eε,Θ

[
f̂(x)2

]
− Eε,Θ

[
f̂(x)

]2]
=τ2Ψe

3, (3.14)

Ex

[
Eε,Θ,X

[
f̂(x)

]2]
=F 2Ψb

2, (3.15)

where the full expression of the terms {Ψ1,Ψv
2,Ψv

3,Ψe
2,Ψe

3,Ψb
2} is deferred to App. B.1. The

derivation, which is presented in App. B.2, follows methods developed in Statistical Physics, and is

summarized in the following steps:

1. Mapping to a random matrix theory problem. The first step is to express the right-hand sides of

Equations 3.10-3.15 as traces over random matrices. This is achieved by replacing our model with its

asymptotically equivalent Gaussian covariate model [82], in which the non-linearity of the activation

function is encoded as an extra noise term. This enables to take the expectation value with respect to

the test sample x.
2. Mapping to a statistical physics model. The random matrix theory problem resulting from the solution

of ridge regression (3.4) involves inverse random matrices. In order to evaluate their expection value,

we use the formula:

M−1
ij = lim

n→0

∫ n∏
α=1

D∏
i=1

dηαi η
1
i η

1
j e− 1

2η
α
i Mijη

α
j ,

which is based on the Replica Trick [109, 129]. The Gaussian integrals over ε,Θ,X can then be

straightforwardly performed and lead to a Statistical Physics model for the auxiliary variables ηαi .
3. Mean-Field Theory. The model for the ηαi variables can then be solved by introducing as order

parameters the n× n overlap matrices Qαβ = 1
P

∑P
i=1 η

α
i η

β
i and using replica theory [109], see the

supplemental material (SM) for the detailed computation
4
.

The Ψ’s may also be estimated numerically at finite size by evaluating the traces of the random

matrices appearing in the Gaussian covariate model at the end of step 1. Figure 3.4 shows that results

thus obtained are in excellent agreement with the asymptotic expressions even at moderate sizes, e.g.

4

In order to obtain the asymptotic formulas for the Ψ’s we need to compute (what are called in the Statistical Physics

jargon) fluctuations around mean-field theory.
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(a) Small regularization λ = 10−5
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(b) Large regularization λ = 10−1

Figure 3.2: The benefit of overparametrization comes from reducing noise and initialization
variance. Decomposition of the test error into the bias and the various sources of variance as function of

the overparametrization ratio P/N forN/D = 1, SNR = F/τ = 1. Notice the contrasting behaviors at
the IT: the noise and initialization variances diverge then decrease monotonically whereas the sampling

variance and the bias display a kink followed by a plateau. These singular behaviors are smoothed out

by regularization.

D = 200, demonstrating the robustness of steps 2 and 3, which differ from the approach presented

in [82].

The indices v, e, d in {Ψ1,Ψv
2,Ψv

3,Ψe
2,Ψe

3,Ψb
2} stand for vanilla, ensemble and bagging. The vanilla

terms, which amount to a bias-variance decomposition with respect to noise in the labels, are sufficient

to obtain the test error of a single RF model and were computed in [82]. The ensemble terms and bagging
terms, which are new, respectively allow to study initialization and sampling variance, and hence obtain

the test error given by averaging the predictions of several different learners trained on the same dataset

(ensembling) and on different splits of the dataset (bagging), see section 3.3.2.

3.3 Bias-variance decomposition

3.3.1 Expression of bias and variances

The results of the previous section allow to rewrite the decomposition of the test error as follows:

ENoise = τ2Ψv
3, (3.16)

EInit = F 2(Ψv
2 − Ψe

2), (3.17)

ESamp = F 2
(
Ψe

2 − Ψb
2

)
, (3.18)

EBias = F 2
(
1 − 2Ψ1 + Ψb

2

)
. (3.19)

These contributions, together with the test error, are shown in Fig. 3.2a for small regularization and

Fig. 3.2b for large regularization.

Interpolation threshold The peak at the IT is completely due to noise and initialization variance,

which both diverge at vanishing regularization. In contrast, the sampling variance and the bias remain
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finite and exhibit a phase transition at P = N , which is revealed by a kink at vanishing regularization.

Adding regularization smooths out these singular behaviours: it removes the divergence and irons out

the kink.

Overparametrized regime In the overparametrized regime, the sampling variance and the bias do

not vary substantially (they remain constant for vanishing regularization). The decrease of the test error

is entirely due to the decrease of the noise and initalization variances for P > N . In the limit P/N→∞,

the initialization variance vanishes, whereas there remains an irreducible noise variance. Hence, we

conclude that the origin of the double descent curve lies in the behavior of noise and initialization variances.
The benefit of overparametrizing stems only from reducing these two contributions.

These results are qualitatively similar to the empirical decomposition of [38] for real neural networks.

Our results differ however from those of [82] where the authors relate the over-fitting peak occurring

at P = N to a divergence in both the variance and the bias terms. This is due to the fact the bias

term, as defined in that paper, also includes the initialization variance
5
. When the two are disentangled,

it becomes clear that it is only the latter which is responsible for the divergence: the bias is, in fact,

well-behaved at P = N .

Discussion The phenomenology described above can be understood by noting that the RF model

essentially performs linear regression, learning a vector a ∈ RP on a dataset Z = σ(ΘX/
√
D) ∈

RN×P
projected from the original X ∈ RN×D

. Since a is constrained to lie in the space spanned by Z ,

which is of dimension min(N,P ), the model gains expressivity when P increases while staying smaller

than N .

At P = N , the problem becomes fully determined: the data is perfectly interpolated for vanishing

λ. Two types of noise are overfit: (i) the stochastic noise corrupting the labels, yielding the divergence in

noise variance, and (ii) the deterministic noise [119, 130] stemming from the non-linearity of the activation

function which cannot be captured, yielding the divergence in initialization variance. However, by

further increasing P , the noise is spread over more and more random features and is effectively averaged

out. Consequently, the test error decreases again as P increases.

When we make the problem deterministic by averaging out all sources of randomness, i.e. by

considering the bias, we see that increasing P beyond N has no effect whatsoever. Indeed, the extra

degrees of freedom, which lie in the null space of Z , do not provide any extra expressivity: at vanishing

regularization, they are killed by the pseudo-inverse to reach the minimum norm solution. For non-

vanishing λ, a similar phenomenology is observed but the IT is reached slightly after P = N since the

expressivity of the learner is lowered by regularization.

Is it always better to be overparametrized ? A common thought is that the double descent curve

always reaches its minimum in the over-parametrized regime, leading to the idea that the corresponding

model "cannot overfit". In this section, we show that this is not always the case. Three factors tend to

shift the optimal generalization to the underparametrized regime: (i) increasing the numbers of learners

from which we average the predictions,K , (ii) decreasing the signal-to-noise ratio (SNR), F/τ , and (iii)

decreasing the size of the dataset, N/D. In other words, when ensembling on a small, noisy dataset,

one is better off using an underparametrized model.

5

For a given set of random features this is legitimate, but from the perspective of lazy learning the randomness in the

features corresponds to the one due to initialization, which is an additional source of variance.
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Figure 3.3: Generalisation error as a function of P/N : depending on the values ofK , F/τ and N/D,

optimal generalization can be reached in the underparametrized regime or the overparametrized regime.

Left: F/τ = 1, N/D = 1 and we varyK . This is the same as figure 5 in the main text, except that the

higher noise causes the ensembling curve atK→∞ to exhibit a dip in the underparametrized regime.

Center: K = 2, N/D = 1 and we vary F/τ . Right: F/τ = 1,K = 2 and we vary N/D.

These three effects are shown in Fig. 3.3. In the left panel, we see that as we increaseK , the minimum

of test error jumps to the underparametrized regime P < N for a high enough value of K . In the

central/right panels, a similar effect occurs when decreasing the SNR or decreasing N/D.

3.3.2 Impact of ensembling

We now study in detail the impact of ensembling to underpin the empirical observations of the previous

chapter. In the lazy regime of deep neural networks, the initial values of the weights only affect the

gradient at initialization, which corresponds to the vector of random features. Hence, we can study the

effect of ensembling in the lazy regime by averaging the predictions of RF models with independently

drawn random feature vectors.

Expression of the test error Consider a set ofK identical RF networks whose first layer weights are

drawn independently; in the analogy outlined above, they correspond toK independent inizializations

of the neural network. . These networks learn from the same training set, and provide K estimators

{f̂Θ(k)} (k = 1, ...,K). When a new sample x is presented to the system, the output is taken to be the

average over the outputs of theK networks. By expanding the square and taking the expectation with

respect to the random initalizations, the test error can then be written as:

E{Θ(k)} [ϵg] = Ex,{Θ(k)}

(⟨β,x⟩ − 1
K

∑
k

f̂Θ(k)(x)
)2


= Ex

[
⟨β,x⟩2

]
− 2
K

K∑
i=1

Ex,Θ(i)

[
⟨β,x⟩f̂Θ(i)(x)

]
+ 1
K2

K∑
i,j=1

Ex,Θ(i),Θ(j)

[
f̂Θ(i)(x)f̂Θ(j)(x)

]
.

The key here is to isolate in the double sum theK(K−1) ensemble terms i ̸= j, which involve two dif-

ferent initalizations and yield Ex

[
EΘ

[
f̂Θ(x)

]2]
, from theK vanilla terms which give Ex,Θ

[
f̂Θ(x)2

]
.

This allows to express the test error in terms of the quantities defined in (3.10) to (3.15) and leads to the

59



10 1 100 101

P
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
K = 1
K = 2
K = 10
K =

Figure 3.4: Ensembling suppresses the overfitting peak at the interpolation threshold. We

plotted the test error when ensemblingK = 1, 2, 10 differently initialized RF models as function of the

overparametrization ratio P/N . We fixed λ = 10−5
, N/D = 1, SNR = 10. For comparison, we show

the results of numerical simulations at finite D = 200: the vertical bars depict the standard deviation

over 10 runs. Note that our analytic expression 3.20 gives us access to the limit N→∞, where the

divergence at P = N is entirely suppressed.

analytic formula for the test error valid for anyK ∈ N:

E{Θ(k)},X,ε [ϵg] = F 2 (1 − 2Ψv
1) + 1

K

(
F 2Ψv

2 + τ2Ψv
3

)
+
(

1 − 1
K

)(
F 2Ψe

2 + τ2Ψe
3

)
. (3.20)

We see that ensembling amounts to a linear interpolation between the vanilla terms Ψv
2,Ψv

3, forK = 1,
and the ensemble terms Ψe

2,Ψe
3 forK→∞.

The effect of ensembling on the double descent curve is shown in Fig. 3.4. As K increases, the

overfitting peak at the IT is diminished. This observation is very similar to the empirical findings

of [94] in the context of real neural networks. Our analytic expression agrees with the numerical results

obtained by training RF models, even at moderate size D = 200.
Note that a related procedure is the bagging approach, where the dataset is partitioned intoK splits

of equal size and each one of the K differently initialized learners is trained on a distinct split. This

approach and was studied for kernel learning in [131], and is analyzed within our framework in the SM.

Ensembling reduces the double trouble The bias-variance decomposition of the test error makes

the suppression of the divergence explicit. The ensembled bias and variance are given by:

ENoise = τ2
(

Ψe
3 + 1

K
(Ψv

3 − Ψe
3)
)
, (3.21)

EInit = F 2

K
(Ψv

2 − Ψe
2) , (3.22)

ESamp = F 2
(
Ψe

2 − Ψb
2

)
, (3.23)

EBias = F 2
(
1 − 2Ψ1 + Ψb

2

)
. (3.24)

These equations show that ensembling only affects the noise and initialization variances. In both

cases, their divergence at the IT (due to Ψv
2,Ψv

3) is suppressed as 1/K , as can be seen in 3.4.At P > N ,
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ensembling and overparametrizing have a very similar effect: they wipe out these two troubling sources

of randomness by averaging them out over more random features. Indeed, we see in Fig. 3.4 that in this

overparametrized regime, sendingK→∞ has the same effect as sending P/N→∞: in both cases the

system approaches the kernel limit. At P < N , this is not true: as shown in [132], theK→∞ predictor

still operates in the kernel limit, but with an effective regularization parameter λ̃ > λ which diverges as

P/N→0. This (detrimental) implicit regularization increases the test error.

3.3.3 Is ensembling optimal?
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Figure 3.5: Overparametrization is generally better than ensembling as equal number of features.
Comparison of the test error of a RF model (blue) with that obtained by doubling the number features

(orange) or ensembling over two initializations of the features (green), as function of N/D. The

parameters are λ = 10−5
, SNR = 10, P/D = 0.5 (solid lines) and P/D = 5 (dashed lines).

Ensembling vs. overparametrization As we have shown, ensembling and overparametrizing have

similar effects in the lazy regime. But which is more powerful: ensembling K models, or using a

single model with K times more features? The answer is given in Fig. 3.5 for K = 2 where we plot

our analytical results while varying the number of data points, N . Two observations are particularly

interesting. First, overparametrization shifts the IT, opening up a region where ensembling outperforms

overparametrizing. Second, overparametrization yields a higher asymptotic improvement in the large

dataset limit N/D→∞, but the gap between overparametrizing and ensembling is reduced as P/D
increases. At P ≫ D, where we are already close to the kernel limit, both methods yield a similar

improvement. Note that since ridge regression involves the inversion of a P × P matrix, ensembling is

significantly more efficient computation-wise.

Ensembling vs. optimal regularization In all the results presented above, we keep the regulariza-

tion constant λ fixed. However, by appropriately choosing the value of λ at each value of P/N , the

performance is improved. As Fig. 3.6 (left) reveals, the optimal value of λ decreases withK since the

minimum of the test error shifts to the left when increasingK . In other words, ensembling is best when

the predictors one ensembles upon are individually under-regularized, as was observed previously for

kernel learning in [133].
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to 102

. Parameters are N/D = 1, SNR = 10.

Through a comparison between the performance, in test error perspective, of the ensembled system

with K→∞ and of a single RF model (K = 1) optimally regularized, Fig. 3.6 (right) shows that the

ensembled system always performs better than the optimally regularized one.
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Ensembling vs. bagging Another way to average the predictions of differently initialized learners is

the bagging approach [131]. In this framework, the data set is divided intoK splits of sizeNeff = N/K .

Each of the K differently initalized learner is trained on a distinct split. This approach is extremely

useful for kernel learning [133], where the computational burden is in the inversion of the Gram matrix

which is of size N × N . In the random projection approach considered here, it does not offer any

computational gain, however it is interesting how it affects the test error.

Within our framework, the test error can easily be calculated as:

E{Θ(k)},X,ε [ϵg] = F 2 (1 − 2Ψv
1)+ 1

K

(
F 2Ψv

2 + τ2Ψv
3

)
+
(

1 − 1
K

)
F 2Ψb

2, (3.25)
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where the effective number of data points which enters this formula is Neff =N/K due to the splitting

of the training set.

Comparing the previous expression with that obtained for ensembling (3.20) is instructive: here,

increasingK replaces the vanilla terms Ψv
2,Ψv

3 by the bagging term Ψb
2. This shows that bagging has a

denoising effect: atK→∞, the effect of the additive noise on the labels is completely suppressed. This

was not the case for ensembling. The price to pay is that Neff decreases, hence one is shifted to the

underparametrized regime.

In Figure 3.7, we see that the kernel limit error of the bagging approach, i.e. the asymptotic value of

the error at P/N→∞, is different from the usual kernel limit error, since the effective dataset is two

times smaller atK = 2. The denoising effect of the bagging approach is illustrated by the fact that its

kernel limit error is higher at high SNR, but lower at low SNR. This is of practical relevance, and is much

related to the beneficial effect of bagging in noisy scenarios [134].

3.4 Conclusion

In this chapter, we performed a bias-variance decomposition of the test error of random feature models,

aiming to reconcile the double descent curve with the U-shaped curve excepted from the classic bias-

variance tradeoff. We show that although the bias decreases monotonically, as expected, the variance

displays a very different behavior: it increases until the IT, as expected, then decreases beyond. This

explains not only the double decent curve, but also the observation made in the previous chapter that

ensembling achieves optimal performance near the IT; indeed, the benefit of overparametrizing beyond

the IT can equivalently be obtained either by ensembling or overparametrizing.
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Chapter 4

Triple Descent and the Two Kinds of
Overfitting: When and Why do they
Occur?

In the “double descent” curve presented in the previous chapters, the test error peaks when the number

of training examples N is of the same order as the number of parameters P . In earlier works [85],

a similar phenomenon was shown to exist in simpler models such as linear regression, but the peak

instead occurs when N is equal to the input dimension D. Since both peaks coincide with the IT, they

are often conflated in the litterature.

In this chapter, we show that despite their apparent similarity, these two scenarios are inherently

different. In fact, both peaks can co-exist when neural networks are applied to noisy regression tasks.

The relative size of the peaks is then governed by the degree of nonlinearity of the activation function.

Building on recent developments in the analysis of random feature models, we provide a theoretical

ground for this sample-wise triple descent. As shown previously, the nonlinear peak at N=P is a true

divergence caused by the extreme sensitivity of the output function to both the noise corrupting the

labels and the initialization of the random features (or the weights in neural networks). This peak

survives in the absence of noise, but can be suppressed by regularization. In contrast, the linear peak at

N=D is solely due to overfitting the noise in the labels, and forms earlier during training. We show

that this peak is implicitly regularized by the nonlinearity, which is why it only becomes salient at high

noise and is weakly affected by explicit regularization. Throughout this chapter, we compare analytical

results obtained in the random feature model with the outcomes of numerical experiments involving

deep neural networks.

4.1 Introduction

So far, we have presented the following paradox: classical learning theory predicts that test error should

follow a U-shaped curve as the number of parameters P increases, and a monotonous decrease as the

number of training examples N increases. Instead, for deep neural networks, increasing P and N
respectively yields parameter-wise and sample-wise double descent curves [32, 33, 82, 118, 135, 136],

whereby the test error first decreases, then peaks at the IT, then decreases monotonically again.

Although double descent has only recently gained interest in the context of deep learning, a seemingly
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similar phenomenon has been well-known for several decades for simpler models such as least squares

regression [72–76], and has recently been studied in more detail in an attempt to shed light on the

double descent curve observed in deep learning [79, 137–139]. However, in the context of linear models,

the number of parameters P is not a free parameter: it is necessarily equal to the input dimension D.

The IT occurs at N =D, and coincides with a peak in the test error which we refer to as the linear
peak. As shown in Chap. 2, for neural networks with nonlinear activations, the IT surprisingly becomes

independent ofD and is instead observed when the number of training examples is of the same order as

the total number of training parameters, i.e. N∼P : we refer to the corresponding peak as the nonlinear
peak.

Somewhere in between these two scenarios lies the case of neural networks with linear activations.
They have P >D parameters, but only D of them are independent: the IT occurs at N=D. However,

their dynamical behaviour shares some similarities with that of deep nonlinear networks, and their

analytical tractability has given them significant attention [37, 140, 141]. A natural question is the

following: what would happen for a “quasi-linear” network, e.g. one that uses a sigmoidal activation

function with a high saturation plateau? Would the overfitting peak be observed both at N =D and

N=P , or would it somehow lie in between?

In this chapter, we unveil the similarities and the differences between the linear and nonlinear peaks.

In particular, we address the following questions:

• Are the linear and nonlinear peaks two different phenomena?

• If so, can both be observed simultaneously, and can we differentiate their sources?

• How are they affected by the activation function? Can they both be suppressed by regularizing or

ensembling? Do they appear at the same time during training?

4.1.1 Contribution

In modern neural networks, the double descent phenomenon is mostly studied by increasing the number

of parameters P (Fig. 4.1, left), and more rarely, by increasing the number of training examples N

1

The name “triple descent” refers to the presence of two peaks instead of just one in the famous “double descent” curve,

but in most cases the test error does not actually descend before the first peak.
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(Fig. 4.1, middle) [118]. The analysis of linear models is instead performed by varying the ratio P/N .

By studying the full (P,N) phase space (Fig. 4.1, right), we disentangle the role of the linear and the

nonlinear peaks in modern neural networks, and elucidate the role of the input dimension D.

In Sec.4.2, we demonstrate that the linear and nonlinear peaks are two different phenomena by

showing that they can co-exist in the (P,N) phase space in noisy regression tasks. This leads to a

sample-wise triple descent, as sketched in Fig. 4.1. We consider both the random feature (RF) model

presented in the previous chapter and a more realistic task involving neural networks.

In Sec. 4.3, we provide a theoretical analysis of this phenomenon for the RF model. We examine

the eigenspectrum of random feature Gram matrices and show that whereas the nonlinear peak is

caused by the presence of small eigenvalues [37], the small eigenvalues causing the linear peak gradually

disappear when the activation function becomes nonlinear: the linear peak is implicitly regularized by

the nonlinearity. Reusing the bias-variance decomposition of the test error presented in the previous

chapter, we reveal that the linear peak is solely caused by overfitting the noise corrupting the labels,

whereas the nonlinear peak is also caused by the variance due to the initialization of the random feature

vectors (which plays the role of the initialization of the weights in neural networks).

Finally, in Sec. 4.4, we present the phenomenological differences which follow from the theoretical

analysis. Increasing the degree of nonlinearity of the activation function weakens the linear peak and

strengthens the nonlinear peak. We also find that the nonlinear peak can be suppressed by regularizing

or ensembling, whereas the linear peak cannot since it is already implicitly regularized. Finally, we note

that the nonlinear peak appears much later under gradient descent dynamics than the linear peak, since

it is caused by small eigenmodes which are slow to learn.

Reproducibility We release the code necessary to reproduce the data and figures in this chapter

publicly at https://github.com/sdascoli/triple-descent-paper.

4.1.2 Related work

Various sources of sample-wise non-monotonicity have been observed since the 1990s, from linear

regression [75] to simple classification tasks [142, 143]. In the context of adversarial training, [144]

shows that increasing N can help or hurt generalization depending on the strength of the adversary.

In the non-parametric setting of [145], an upper bound on the test error is shown to exhibit multiple
descent, with peaks at each N = Di, i ∈ N.

Two concurrent papers also discuss the existence of a triple descent curve, albeit of different nature

to ours. On one hand, [146] observes a sample-wise triple descent in a non-isotropic linear regression

task. In their setup, the two peaks stem from the block structure of the covariance of the input data,

which presents two eigenspaces of different variance; both peaks boil down to what we call “linear

peaks”. [147] pushed this idea to the extreme by designing the covariance matrix in such a way to make

an arbitrary number of linear peaks appear.

On the other hand, [148] presents a parameter-wise triple descent curve in a regression task using

the Neural Tangent Kernel of a two-layer network. Here the two peaks stem from the block structure

of the covariance of the random feature Gram matrix, which contains a block of linear size in input

dimension (features of the second layer, i.e. the ones studied here), and a block of quadratic size (features

of the first layer). In this case, both peaks are “nonlinear peaks”.

The triple descent curve presented here is of different nature: it stems from the general properties

of nonlinear projections, rather than the particular structure chosen for the data [146] or regression
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kernel [148]. To the best of our knowledge, the disentanglement of linear and nonlinear peaks presented

here is novel, and its importance is highlighted by the abundance of papers discussing both kinds of

peaks.

On the analytical side, our work directly uses the results for high-dimensional random features

models derived in Chap. 3 (for the test error and its bias-variance decomposition) and [149] (for the

spectral analysis).

4.2 Triple descent in the test error phase space

We analyze the (P,N ) phase space of the test error in noisy regression tasks to demonstrate the triple

descent phenomenon, in two separate setups: on the analytical side, the RF model studied in the previous

chapter, and on the numerical side, a teacher-student task involving neural networks trained with

gradient descent.

Dataset For both setups, the input data X ∈ RN×D
consists of N vectors in D dimensions whose

elements are drawn i.i.d. from N (0, 1)2. For each model, there is an associated label generator f⋆

corrupted by additive Gaussian noise: y = f⋆(x) + ϵ, where the noise variance is inversely related to

the signal to noise ratio (SNR), ϵ ∼ N (0, 1/SNR).

4.2.1 Random features regression (RF model)

Model We consider the RF model introduced in the previous chapter, and use the same notations as

before (see Fig. 3.1):

f(x) =
P∑
i=1

aiσ

(⟨Θi,x⟩√
D

)
. (4.1)

σ is a pointwise activation function, the choice of which will be of prime importance in the study. The

ground truth is a linear model given by f⋆(x) = ⟨β,x⟩/
√
D. Elements of Θ and β are drawn i.i.d from

N (0, 1).

Training The second layer weights, i.e. the elements of a, are calculated via ridge regression with a

regularization parameter λ:

â = arg min
a∈RP

[ 1
N

(
y − aZ⊤

)2
+ Pλ

D
∥a∥2

2

]
= 1
N

y⊤Z

(
Σ + Pλ

D
IP
)−1

(4.2)

Zµ
i = σ

(⟨Θi,Xµ⟩√
D

)
∈ RN×P , Σ = 1

N
Z⊤Z ∈ RP×P

(4.3)

4.2.2 Teacher-student regression with neural networks (NN model)

Model We consider a teacher-student neural network (NN) framework where a student network learns
to reproduce the labels of a teacher network. The teacher f⋆ is taken to be an untrained ReLU fully-

connected network with 3 layers of weights and 100 nodes per layer. The student f is a fully-connected

network with 3 layers of weights and nonlinearity σ. Both are initialized with the default PyTorch

initialization.

2

The impact of data structure will be studied in the next chapter
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Training We train the student with mean-square loss using full-batch gradient descent for 1000 epochs

with a learning rate of 0.01 and momentum 0.9
3
. We examine the effect of regularization by adding

weight decay with parameter 0.05, and the effect of ensembling by averaging over 10 initialization seeds

for the weights. All results are averaged over these 10 runs.

4.2.3 Test error phase space

In both models, the key quantity of interest is the test error, defined as the mean-square loss evaluated

on unseen examples:

ϵg = Ex∼N (0,1)
[
(f(x) − f⋆(x))2

]
. (4.4)

For the RF model, this quantity was first derived rigorously in [82], in the high-dimensional limit

where N,P,D are sent to infinity with their ratios finite. More recently, a different approach based on

the Replica Method from Statistic Physics was proposed in [122]; we use this method to compute the

analytical phase space. As for the NN model, which operates at finite size D= 196, the test error is
computed over a test set of 104

examples.
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Figure 4.2: Evidence of triple descent at low signal-to-noise ratio. Logarithmic plot of the test error

in the (P,N) phase space. (a): RF model with SNR = 2, λ= 10−1
. (b): RF model with SNR = 0.2,

λ= 10−1
. The solid arrows emphasize the sample-wise profile, and the dashed lines emphasize the

parameter-wise profile. (c): NN model. In all cases, σ = Tanh. Analogous results for different activation
functions and values of the SNR are shown in App. C.1.

In Fig.4.2, we plot the test error as a function of two intensive ratios of interest: the number of

parameters per dimension P/D and the number of training examples per dimension N/D. In the left

panel, at high SNR, we observe an overfitting line at N=P , yielding a parameter-wise and sample-wise

double descent. However when the SNR becomes smaller than unity (middle panel), the sample-wise

profile undergoes triple descent, with a second overfitting line appearing at N =D. A qualitatively

identical situation is shown for the NN model in the right panel
4
.

The case of structured data The case of structured datasets such as CIFAR10 is discussed in App. C.3.

The main differences are (i) the presence of multiple linear peaks atN<D due to the complex covariance

3

We use full batch gradient descent with small learning rate to reduce the noise coming from the optimization as much as

possible. After 1000 epochs, all observables appear to have converged.

4

Note that for NNs, we necessarily have P/D > 1.
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structure of the data, as observed in [146, 147], and (ii) the fact that the nonlinear peak is located sligthly

above the line N=P since the data is easier to fit, as observed in Chap. 2.

As we will see in the next chapter, triple descent can also be observed in classification tasks, at

moderate signal-to-noise ratios.

4.3 Theory for the RF model

The qualitative similarity between the central and right panels of Fig. 3 indicates that a full understanding

can be gained by a theoretical analysis of the RF model, which we present in this section.

4.3.1 High-dimensional setup

As before, we consider the following high-dimensional limit:

N,D,P→∞,
D

P
= ψ = O(1), D

N
= ϕ = O(1) (4.5)

Then the key quantities governing the behavior of the system are related to the properties of the

nonlinearity around the origin:

η =
∫
dz
e−z2/2
√

2π
σ2 (z) , ζ =

[∫
dz
e−z2/2
√

2π
σ′ (z)

]2

and r = ζ

η
(4.6)

As explained in [150], the Gaussian Equivalence Theorem [82, 150, 151] which applies in this high

dimensional setting establishes an equivalence to a Gaussian covariate model where the nonlinear

activation function is replaced by a linear term and a nonlinear term acting as noise:

Z = σ

(
XΘ⊤
√
D

)
→
√
ζ

XΘ⊤
√
D

+
√
η − ζW , W ∼ N (0, 1) (4.7)

Of prime importance is the degree of linearity r=ζ/η∈ [0, 1], which indicates the relative magnitudes

of the linear and the nonlinear terms
5
.

4.3.2 Spectral analysis

As expressed by Eq. 4.3, RF regression is equivalent to linear regression on a structured dataset Z ∈
RN×P

, which is projected from the original i.i.d dataset X ∈ RN×D
. In [37], it was shown that the

peak which occurs in unregularized linear regression on i.i.d. data is linked to vanishingly small (but

non-zero) eigenvalues in the covariance of the input data. Indeed, the norm of the interpolator needs to

become very large to fit small eigenvalues according to Eq.4.3, yielding high variance.

Following this line, we examine the eigenspectrum of Σ= 1
NZ⊤Z , which was derived in a series of

recent papers. The spectral density ρ(µ) can be obtained from the resolvent G(z) [149, 152–154]:

ρ(µ) = 1
π

lim
ϵ→0+

ImG(µ− iϵ), G(z) = ψ

z
A

( 1
zψ

)
+ 1 − ψ

z

A(t) = 1 + (η − ζ)tAϕ(t)Aψ(t) + Aϕ(t)Aψ(t)tζ
1 −Aϕ(t)Aψ(t)tζ (4.8)

5

Note from Eq. 4.6 that for non-homogeneous functions such as Tanh, r also depends on the variance of the inputs and

fixed weights, both set to unity here: intuitively, smaller variance will yield smaller preactivations which will lie in the linear

region of the Tanh, increasing the effective value of r.
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where Aϕ(t) = 1 + (A(t) − 1)ϕ and Aψ(t) = 1 + (A(t) − 1)ψ. We solve the implicit equation for A(t)
numerically, see for example Eq. 11 of [149].
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eigenspectrum of the covariance of the projected features Σ= 1
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the corresponding test error curve shown above. Analytics match the numerics even at D=100. We
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Figure 4.4: The spectral gap closes at N = P , but not at N = D. Analytical eigenspectrum of Σ
for η = 1, P/D= 10, and ζ = 0, 0.92, 1 (a,b,c). We distinguish linear and nonlinear components by

using respectively solid and dashed lines. (a) (purely nonlinear): the spectral gap vanishes at N=P (i.e.

N/D=10). (c) (purely linear): the spectral gap vanishes at N=D. (b) (intermediate): the spectral gap

of the nonlinear component vanishes at N=P , but the gap of the linear component does not vanish at

N=D.

In the bottom row of Fig. 4.3 (see also middle panel of Fig. 4.4), we show the numerical spectrum

obtained for various values of N/D with σ = Tanh, and we superimpose the analytical prediction

obtained from Eq. 4.8. At N > D, the spectrum separates into two components: one with D large

eigenvalues, and the other with P−D smaller eigenvalues. The spectral gap (distance of the left edge of

the spectrum to zero) closes at N=P , causing the nonlinear peak [111], but remains finite at N=D.

Fig. 4.4 shows the effect of varying r on the spectrum. We can interpret the results from Eq. 4.7:

• “Purely nonlinear” (r=0): this is the case of even activation functions such as x 7→|x|, which
verify ζ=0 according to Eq. 4.6. The spectrum of Σnl = 1

NW ⊤W follows a Marcenko-Pastur
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distribution of parameter c = P/N , concentrating around µ=1 at N/D→∞. The spectral gap

closes at N=P .

• “Purely linear” (r=1): this is the maximal value for r, and is achieved only for linear networks.

The spectrum of Σl = 1
ND (XΘ⊤)⊤XΘ⊤

follows a product Wishart distribution [155, 156],

concentrating around µ=P/D=10 at N/D→∞. The spectral gap closes at N=D.

• Intermediate (0< r< 1): this case encompasses all commonly used activation functions such

as ReLU and Tanh. We recognize the linear and nonlinear components, which behave almost

independently (they are simply shifted to the left by a factor of r and 1−r respectively), except at
N=D where they interact nontrivially, leading to implicit regularization (see below).

The linear peak is implicitly regularized As stated previously, one can expect to observe overfitting

peaks when Σ is badly conditioned, i.e. its when its spectral gap vanishes. This is indeed observed

in the purely linear setup at N =D, and in the purely nonlinear setup at N = P . However, in the

everyday case where 0<r<1, the spectral gap only vanishes at N=P , and not at N=D. The reason

for this is that a vanishing gap is symptomatic of a random matrix reaching its maximal rank. Since

rk (Σnl) = min(N,P ) and rk (Σl) = min(N,P,D), we have rk (Σnl) ≥ rk (Σl) at P >D. Therefore,

the rank of Σ is imposed by the nonlinear component, which only reaches its maximal rank at N=P .
At N = D, the nonlinear component acts as an implicit regularization, by compensating the small

eigenvalues of the linear component. This causes the linear peak to be implicitly regularized be the

presence of the nonlinearity.

What is the linear peak caused by? At 0<r<1, the spectral gap vanishes at N=P , causing the
norm of the estimator ∥a∥ to peak, but it does not vanish at N=D due to the implicit regularization;

in fact, the lowest eigenvalue of the full spectrum does not even reach a local minimum at N =D.

Nonetheless, a soft linear peak remains as a vestige of what happens at r = 1. What is this peak caused

by? A closer look at the spectrum of Fig. 4.4.b clarifies this question. Although the left edge of the

full spectrum is not minimal at N =D, the left edge of the linear component, in solid lines, reaches a

minimum at N =D. This causes a peak in ∥Θa∥, the norm of the “linearized network”, as shown in

App. C.2. This, in turn, entails a different kind of overfitting as we explain in the next section.

4.3.3 Bias-variance decomposition

The previous spectral analysis suggests that both peaks are related to some kind of overfitting. To

address this issue, we make use of the bias-variance decomposition presented in the previous chapter.

Only the nonlinear peak is affected by initialization variance In Fig. 4.5.a, we plot the various

terms in the decomposition. As observed in the previous chapter, the nonlinear peak is caused by an

interplay between initialization and noise variance. This peak appears starkly at N =P in the high

noise setup, where noise variance dominates the test error, but also in the noiseless setup (Fig. 4.5.b),

where the residual initialization variance dominates: nonlinear networks can overfit even in absence of

noise.
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caused by the interplay between noise and initialization varince. Bias-variance decompostion

of the test error in the RF model for σ = ReLU and P/D = 100. Regularizing (increasing λ) and
ensembling (increasing the numberK of initialization seeds we average over) mitigates the nonlinear

peak but does not affect the linear peak. (a)K=1, λ=10−5, SNR=0.2. (b) Same but SNR=∞. (c)
Same butK = 10. (d) Same but λ = 10−3

.

The linear peak vanishes in the noiseless setup In stark contrast, the linear peak which appears

clearly at N = D in Fig. 4.5.a is caused solely by a peak in noise variance, in agreement with [37].

Therefore, it vanishes in the noiseless setup of Fig. 4.5.b. This is expected, as for linear networks the

solution to the minimization problem is independent of the initialization of the weights.

4.4 Phenomenology of triple descent

4.4.1 The nonlinearity determines the relative height of the peaks
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Figure 4.6: The more linear the activation
function, the stronger the linear peak. Nu-
merical test error of RF models at finite size

(D = 100), averaged over 10 runs. We set

P/D = 10, SNR = 0.2 and λ = 10−3
.

In Fig. 4.6, we consider RF models with four different

activation functions: absolute value (r = 0), ReLU
(r = 0.5), Tanh (r ∼ 0.92) and linear (r = 1). Increas-
ing r strengthens the nonlinear peak (by increasing

initialization variance) and weakens the linear peak (by

increasing the implicit regularization). In App. C.1, we

present additional results where the degree of linearity

r is varied systematically in the RF model, and show

that replacing Tanh by ReLU in the NN setup produces a

similar effect. Note that the behavior changes abruptly

near r = 1, marking the transition to the linear regime.
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Figure 4.7: Regularization and ensembling attenuates the nonlinear peak but not the linear
peak. Test error phase space for the NN model with σ = Tanh. Weight decay with parameter λ
and ensembling over K seeds weakens the nonlinear peak but leaves the linear peak untouched. (a)
K=1, λ=0, SNR=0.2. (b) Same butK = 10. (c) Same but λ = 0.05.

4.4.2 Ensembling and regularization only affects the nonlinear peak

As we have seen in previous chapters, regularization and ensembling can mitigate the nonlinear peak.

This is shown in panel (c) and (d) of Fig. 4.5 for the RFmodel, where ensembling is performed by averaging

the predictions of 10 RF models with independently sampled random feature vectors. However, we see

that these procedures only weakly affect the linear peak. This can be understood by the fact that the

linear peak is already implicitly regularized by the nonlinearity for r < 1, as explained in Sec. 4.3.

In the NN model, we perform a similar experiment by using weight decay as a proxy for the

regularization procedure, see Fig. 4.7. Similarly as in the RF model, both ensembling and regularizing

attenuates the nonlinear peak much more than the linear peak.
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Figure 4.8: The nonlinear peak appears later than the linear peak. Test error phase space for
the NN model with σ = Tanh, plotted at various times during training. The linear peak grows first,

followed by the nonlinear peak.

4.4.3 The nonlinear peak forms later during training

To study the evolution of the phase space during training dynamics, we focus on the NN model (there

are no dynamics involved in the RF model we considered, where the second layer weights were learnt

via ridge regression). In Fig. 4.8, we see that the linear peak appears early during training and maintains

throughout, whereas the nonlinear peak only forms at late times.

This can be understood qualitatively as follows [37]: for linear regression the time required to learn

a mode of eigenvalue µ in the covariance matrix is proportional to 1/µ. Since the nonlinear peak is
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due to vanishingly small eigenvalues, which is not the case of the linear peak, the nonlinear peak takes

more time to form completely.

4.5 Conclusion

One of the key challenges in solving tasks with network-like architectures lies in choosing an appropriate

number of parameters P given the properties of the training dataset, namely its size N and dimension

D. By elucidating the structure of the (P,N) phase space, its dependency on D, and distinguishing

the two different types of overfitting which it can exhibit, we believe our results can be of interest to

practitioners.

Our results leave room for several interesting follow-up questions, among which the impact of (1)

various architectural choices, (2) the optimization algorithm, and (3) the structure of the dataset. For

future work, we will consider extensions along those lines with particular attention to the structure of

the dataset. We believe it will provide a deeper insight into data-model matching.
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Chapter 5

On the Interplay between Loss Function
and Data Structure

In this work, we extend the results of the previous chapters on the random feature model to classification

problems on structured data. Using a different analytical approach, also inspired by statistical physics,

we obtain a precise asymptotic expression for the test error of random features models trained on strong
and weak features - a model of data with input data covariance built from independent blocks allowing

us to tune the saliency of low-dimensional structures and their alignment with respect to the target

function. Leveraging our analytical results, we explore how properties of data distributions impact

generalization in the over-parametrized regime and compare results for the logistic and square loss. Our

results show in particular how the logistic loss better captures the structure of the data than the squared

loss. Numerical experiments on MNIST and CIFAR10 confirm this insight.

5.1 Introduction

Most existing analytical studies of generalization (including those of the previous chapters) consider

synthetic tasks where the data is built from structureless features. Yet, the structure of data plays the

center role in generalization. The first aspect of data structure is the distribution of inputs: MNIST and

CIFAR10 have the same number of classes and images, yet generalization is harder for CIFAR10 because

the images are more complex than handwritten numbers. The second aspect is the rule between inputs

and outputs: a random labelling of CIFAR10 can be learned by a neural network but offers no possibility

of generalization [5]. Characterizing the structure of real-world data involves studying the interplay

between these two aspects, an endeavour which has only been tackled by a few works [157–160].

5.1.1 Contribution

In this chapter we formulate a simple model of structured data, which simultaneously enables us to: (i)

study the effect of overparametrization; (ii) analyze classification tasks; (iii) control the data structure

in an interpretable manner. Our main analytical contribution, is the expression of the test error of a

random feature model trained on this task. Our analysis is valid in the high-dimensional limit both for

regression and classification tasks, although we focus here on the latter.

As a first application of our result, we study how the data structure and the loss function interplay to

shape the test error, and in particular how they affect the double descent curve. We highlight behavioral
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differences between square loss and logistic loss, in particular the fact that logistic loss generalizes better

for easy tasks. We validate this insight via controlled experiments on the MNIST and CIFAR10 datasets.

Reproducibility The code used to produce the results presented in this chapter are available at

https://github.com/sdascoli/strong-weak.

5.1.2 Related work

Replica method As in Chap. 3, the calculation performed in this chapter uses the replica method from

statistical physics [109]. Although the latter is non-rigorous, several of its conjectures have been proven

exact in the last decade [151, 161–163], including in settings very close to the model considered here [164,

165]. In particular, our result is very related to [165] which establishes rigorously the replica prediction

in related learning problems. A rigorous proof of our replica results is within reach: it requires a small

extension of [164] (to prove the anisotropic GET derived in Section D.2.2 of the Appendix) combined

with the recent results of [165].

Data structure A few recent works investigate the roles of the loss and the structure in data in

realistic setups where theoretically robust results are harder to obtain. Several works have studied the

low intrinsic dimensionality of real-world data distributions and how it impacts sample complexity

for supervised tasks [157–160]. The impact of the loss function is also an active research area: [166,

167] show that square loss can perform equally or better than the ubiquitous cross-entropy loss in

realistic multi-class classification problems, if one rescales the weight of the correct class to emphasize

its importance.

Although most theoretical studies of generalization focus on structureless data, a few exceptions

exist. In the special case of random Fourier Feature regression, [168] derived the train and test error

for a general input distribution. [169] achieved a similar result in the non-parametric setting of kernel

regression, which can be viewed as the limiting case of random feature regression when the number of

random features P goes to infinity.

Strong and weak features The strong and weak features model has recently been studied in the

context of least-squares regression, both empirically [146] and theoretically [170–172]. Several intriguing

observations emerge in strongly anisotropic setup: (i) several overfitting peaks can be seen [146, 147];

(ii) the optimal ridge regularization parameter γ can become negative [171, 173], as it becomes helpful

to encourage the weights to have very different magnitudes; (iii) extra features acting as pure noise can

play a beneficial role by inducing some implicit regularization [172].

The strong and weak features model also includes the setup studied in [174], called the spiked

covariates model. The latter involves a small block of size Dη
(η < 1) and a large “junk” block with no

correlation with the labels. The question is then: can kernel methods learn to discard the junk features,

hence “beat the curse of dimensionality” in the way neural networks do? The answer was shown to

depend on the strength of the junk features: when the variance of these features is small, they are not

problematic, and the kernel method ignores them, effectively learning a task of effective dimensionality

Dη ≪ D.

Clasification tasks The few works studying classification analytically have mostly focused on linear

models, trained on linearly separable data [175–178] or gaussian mixtures [120, 179]. One of the
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Figure 5.1: Strong and weak features model. Strong and weak features model considered here.

Input space is decomposed into two subspaces with different variance in the anisotropic setting, with

σx,1 > σx,2. The saliency is given by the ratio rx = σx,1/σx,2 > 1. The labels are given by a linear

teacher y = sign(β · x/
√
D) and flipped with a certain probability ∆. We can adjust the relevance of

the salient features by varying the ratio rβ = σβ,1/σβ,2. The aligned scenario (rβ > 1) is easier than
the misaligned scenario (rβ < 1).

challenges in classification (in comparison to regression) is the large set of available loss functions [121,

180]. In the context of random feature models, [122] uses tools from statistical mechanics to derive the

generalization loss of random features model for any loss function with i.i.d. Gaussian input.

More recently, [165] shows that this framework could extend to more complex data distributions and

learned feature maps provided that key population covariances are estimated by Monte Carlo methods.

Our work crucially builds on these contributions, by deriving a fully analytical analysis for a simple

interpretable model of data structure, while also analyzing the effect of label flipping.

5.2 A solvable model of data structure

5.2.1 Setup

We focus again on the random features model described in the last two chapters:

ŷµ =
P∑
i=1

aiσ

(Θi · xµ√
D

)
, (5.1)

where σ(·) is a pointwise activation function and ai ∈ R are the second layer weights which trained by

minimizing an ℓ2-regularized loss on N training examples {xµ ∈ RD}µ=1...N :

â = argmin
a

[
L(a) + λ

2 ∥a∥2
2

]
, L(a) =

N∑
µ=1

ℓ (yµ, ŷµ) . (5.2)

Classification task This time, the target labels are given by a probabilistic teacher y ∼ Pt(y|β · x)
corresponding to the sign of a linear function possibly corrupted by label flipping:

yµ = ηµ sign

(
β · xµ√
D

)
, (5.3)
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with ηµ = 1 with probability 1 − ∆ and ηµ = −1 otherwise. We study two cases for the loss function:

(i) square loss, i.e. ℓ(y, ŷ) = 1
2(ŷ− y)2

, and (ii) logistic loss, i.e. ℓ(y, ŷ) = log(1 + e−yŷ)1. The test error
is computed as the 0-1 loss,

ϵg = Ex,y

[
1sign(ŷ(x)),y(x)

]
. (5.4)

Strong and weak features To impose structure on the input space, we assume a Gaussian distribution

of the inputs x ∈ RD with a block-structured covariance matrix:

x ∼ N (0,Σx), β ∼ N (0,Σβ),

Σx =

σx,1Iϕ1D 0 0
0 σx,2Iϕ2D 0

0 0 .
.
.

 , Σβ =

σβ,1Iϕ1D 0 0
0 σβ,2Iϕ2D 0

0 0 .
.
.

 .
Our result presented in the rest of Section 5.2 is valid for an arbitrary number of blocks. In Section

5.3 we will focus for interpretability on the special case where we only have two blocks of sizes ϕ1D
and ϕ2D, with ϕ1 + ϕ2 = 1. We will typically be interested in the strongly anisotropic setup where

the first subspace is much smaller (ϕ1 ≪ 1), but potentially has higher saliency rx = σx,1/σx,2 ≫ 1 or

relevance rβ = σβ,1/σβ,2 ≫ 1 (see Fig. 5.1).

5.2.2 Main result

Using the replica method from statistical physics [109] and the Gaussian Equivalence Theorem (GET) [82,

151, 164, 181], we derive the test error in the high-dimensional limit where D,N and P→∞ with fixed

ratios:

lim
N→∞

ϵg = 1
π

cos−1
(

M√
ρQ

)
, (5.5)

with

ρ =
∑
i

ϕiσβ,iσx,i, Q = µ2
1
∑
i

σx,iqs,i + µ2
⋆qw, M = µ1

∑
i

σx,ims,i.

The parameters µ1, µ⋆ are related to the activation function: denoting ψ =
∑
i ϕiσx,i and z ∼ N (0, ψ),

one has

µ1 = 1
ψ
Ez[zσ(z)]], µ⋆ =

√
Ez [σ(z)2] − ψµ2

1. (5.6)

As in the previous chapter, these parameters quantify the degree of nonlinearity of the activation

function, µ1 encoding the linear part, and µ⋆ quantifying the nonlinear part. Besides these constants
and the ones defining the data structure (ϕi, σβ,i, σx,i), the key ingredients to obtain asymptotic errors

are the so-called order parameters ms, qs, qw. They correspond to the high-dimensional limit of the

following expectations:

qs,i = lim
D→∞

1
D
EP [si · si] , qw = lim

P→∞

1
P
EP [ŵ · ŵ] ,ms,i = lim

D→∞

1
D
EP [si · βi] , (5.7)

where s = 1√
P

Θŵ ∈ RD and si,βi ∈ RϕiD denote the orthogonal projections of s and β onto

subspace i ∈ {1, 2} and P denotes the joint distribution of all random quantities in the problem (the

teacher weights, the random features and the training data).

1

Our framework is valid for any convex loss function.

78



10 3 10 2 10 1 100 101 102 103

P/D
0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 lo
ss

Isotropic
Misaligned 
Aligned 

(a) Square loss, true labels
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(b) Logistic loss, true labels
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(c) Square loss, label flip probability ∆ = 0.3
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(d) Logistic loss, label flip probability ∆ = 0.3

Figure 5.2: Anisotropic data strongly affects the double descent curves. Theoretical results (solid
curves) and numerical results (dots with vertical bars denoting standard deviation over 10 runs) agree

even at moderate size D = 100. We set σ = Tanh, λ = 10−3
and N/D = 1.

Intuition Intuitively, ρ is the variance of the outputs of the teacher, Q is the variance of the outputs

of the student, andM is the covariance between the outputs of the student and those of the teacher. The

test error is given by the “angle” between the teacher and the student, as expressed by Eq. 5.5. The order

parameters of Eq. 5.7 are one of the outputs of the replica computation; they are obtained by solving a

set of non-linear saddle-point equations (see App. D.2.5).

Steps and validity of the replica analysis The necessary steps of the derivation are detailed in

App. D.2. In particular, (i) we obtain an anistropic extension of the GET, (ii) conduct random matrix

analysis for block matrices and finally (iii) derive the analytical saddle-point equations which yield the

values of the order parameters. Our result generalizes the strategy of [122] from isotropic to anisotropic

data and additionally covers the effect of label flipping. In App. D.2.6, we also derive an expression for

the training error.
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(a) Square loss
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(b) Logistic loss

Figure 5.3: Structure of data affects the position of the interpolation threshold for logistic
loss. We depicted the train loss curves in the noiseless setup of Fig. 5.2, where σ = Tanh, λ = 10−3

,

N/D = 1.

5.3 Effect of data structure and loss function on double descent

In this section, we investigate how the interplay between the data structure and the loss function shapes

the train and test error curves. In the main text, we only examine parameter-wise curves, where we

increase the number of parameters P at fixed number of data N . In App. D.1, we also examine the

sample-wise dependency by plotting the train and test error in the entire (N,P ) phase space.

5.3.1 Synthetic data

Modulating the teacher-data alignment We compare three cases illustrated on Fig. 5.1. The first is

the isotropic setup where rx = 1 (blue curves in Fig. 5.2). In the two next setups, the data is anisotropic

with a small subspace (ϕ1 = 0.1) of large variance and a large subspace (ϕ2 = 0.9) of small variance.

The ratio of the variances rx = σx,1/σx,2 is set to 10, and their values are chosen to keep the total

variance of the inputs unchanged:
1
DE[∥x∥2] = ϕ1σx,1 + ϕ2σx,2 = 1.

We study two cases for the outputs: (i) the aligned scenario where the strong features are highly

correlated with the labels (rβ = σβ,1/σβ,2 = 100, green curves in Fig. 5.2); (ii) themisaligned scenario,

where the strong features have low correlation with the labels (rβ = 0.01, orange curves in Fig. 5.2).

In both cases, we choose the σβ,i such that the total variance of the teacher scores is unchanged:

1
DE[(β · x)2] = ϕ1σx,1σβ,1 + ϕ2σx,2σβ,2 = 1.

Validity at finite size We begin by comparing our analytical predictions with the outcomes of

numerical experiments, both for test loss (Fig. 5.2) and train loss (Fig. 5.3). The agreement is excellent

even for moderately large dimensions D = 100. Note that the replica method, which relies on solving a

set of scalar fixed point equations, is also computationally efficient. It allows here to probe ratios of

P/D and N/D far beyond what is tractable by the numerics (P , D and N only appear in the replica

equations through the values of the ratios N/P and P/D).

Effect of data structure on generalization Looking at Fig. 5.2, a first immediate observation is that

strong teacher-data alignment makes the task easier: as number of parameters P increases the test loss
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Figure 5.4: The easier the task, the wider the gap between logistic and square loss. (a) Strong and
weak feature model in the noiseless (∆ = 0) and noisy (∆ = 0.3) setups, where we make the task easier

from left to right by increasing the alignment between the data and the teacher. (b) Real data (MNIST

parity and CIFAR10 airplanes vs cars), where we make the task easier by decreasing the exponent α
controlling the saliency of the top PCA components (see Sec. 5.3.2). In both cases, we considered an

over-parametrized RF model (P/D = 100) learning from a moderate amount of data (N/D = 1), with
σ = Tanh and λ = 10−4

.

drops earlier and eventually reaches a lower asymptotic value, both for square loss and logistic loss. In

App. D.1, we show that the same phenomenon occurs when varying the number of samples N instead

of the number of parameters P . These observations are in line with the results of [174] and show that

relevant salient features make the problem low-dimensional with an effective dimension close to ϕ1D.

This aligned setup is the most akin to real-world tasks in which the most salient features of an

image are often the most relevant to its recognition. In this sense, the impressive performance of

kernel methods such as the Convolutional NTK on real-world datasets [98] can be associated with the

anisotropy of the data: feature learning is not indispensable to beat the curse of dimensionality if the

irrelevant features are weakly salient to begin with [160].

Conversely, misalignment generally makes the task harder and increases the value of the test loss.

Note however that for square loss, an interesting crossover occurs in presence of noise (panel c): the

irrelevant features are detrimental from small P , but become helpful at large P , as can be seen from

the orange curve reaching a lower asymptotic value than the blue curve. We associate this to the

phenomenon discovered for linear regression in [172], whereby adding noisy features acts as a form of

implicit regularization.

Logistic is better than square loss Comparing the two loss functions, we observe two beneficial

effects of using logistic loss rather than square loss.

First, we observe that the overfitting peak characteristic of the double descent curve which appears

at P = D for square loss is absent for logistic loss in the noiseless setting (Fig. 5.2), and vastly reduced

in presence of noise (we use in both cases the same small amount of regularization for square and

logistic loss). This suggests that the logistic loss exerts some form of implicit regularization, reducing

the amount of overfitting.

Second, in the aligned and isotropic setups, the asymptotic test loss reached in the “kernel” regime
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Figure 5.5: Overparametrization causes the weights to diverge for logistic loss. We depicted the

order parameters Q andM , quantifying the variance of the outputs of the student and their covariance

with the outputs of the teacher, in the noiseless setup of Fig. 5.2. Insets: log-log plot, showing the

power-law asymptotic behaviors.

P/D→∞ is lower with logistic loss, especially in the aligned setup. To better highlight this phenomenon,

we continuously vary the teacher-data alignment in Fig. 5.4(a) for an overparametrized model. Logistic

loss performs similarly or worse than square loss at very small alignment, but outperforms square loss

as soon as the alignment is sufficient. The gap between the two then grows as we increase alignment. In

other words, logistic loss is particularly powerful on tasks made easy by the structure in the data.

The better ability of logistic loss to detect structure in the data is also reflected in the train loss

curves of Fig. 5.3. For square loss, the IT, i.e. the point when the the train loss vanishes, occurs at P = N .

For logistic loss, there is no IT strictly speaking since the train loss cannot be zero. However, one can

define an effective threshold as the point where the training loss reaches the near-zero plateau. Notably,

this effective threshold depends on the data structure: it is lower for the aligned setup, where the data is

easier to fit, and higher for the misaligned setup, where the data is harder to fit.

Behavioral differences between losses Further understanding of the differences between logistic

and square loss can be gained thanks to the replica approach which gives access to the order parameter

Q andM defined in Eq. 5.6, see Fig. 5.5. For recall, Q corresponds to the variance of the outputs of the

student ŷ andM to their covariance with the linear scores of the teacher.

For square loss, Q andM increase and reach a finite value (with a peak in Q at the IT), reflecting
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(c) Square loss, CIFAR10
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Figure 5.6: Test error and train loss (inset) on realistic tasks. Top: MNIST dataset with labels given

by the digit parity. Bottom: CIFAR10 dataset with airplanes and cars. We synthetically reproduce the

isotropic, aligned and misaligned scenarios by applying a PCA transformation to the inputs and tuning

how salient the largest PCA features are compared to the smallest PCA features (see Sec. 5.3.2). We set

σ = Tanh, λ = 10−3
and N/D = 1.

the fact that the linearized estimator Θw converges towards a fixed norm vector more or less correlated

with the teacher vector β depending on the depending on the data structure. For logistic loss, M
increases linearly with overparametrization and Q increases as a power law (see logarithmic insets),

reflecting the fact the the estimator endlessly grows in the direction of the teacher vector [175] as the

number of parameters increases. This growth appears to shield the peak observed in Q for the squared

loss explaining the very mild double descent observed in Fig. 5.2. Interestingly, these quantities grow

much faster in the aligned setup, where the estimator is more “confident” in its predictions, which also

hints at the better performance of the logistic loss when the structure of data is favorable.

5.3.2 Realistic data

To examine the applicability of our results, we consider two realistic binary classification tasks: parity

of digits in the MNIST dataset and airplanes vs cars in the CIFAR10 dataset. In both cases, we learn

with an RF model in the same setup as described above. To control the alignment, we apply a PCA

transformation to the inputs (keeping the top D = 100 components and discarding the rest), then
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apply the following component-wise rescaling: xi→xi/ std(xi)α, where std(xi) denotes the standard
deviation of feature xi over the whole training dataset, and the exponent α allows us to tune the saliency

of the features:

• α < 1 yields an aligned scenario, since the top PCA features are naturally the most relevant;

• α = 1 yields the isotropic scenario, where all features have same variance;

• α > 1 yields amisaligned scenario, since the strong features will become weak and the weak

features become strong.

The corresponding train and test error curves are shown in Fig. 5.6 (we set α = 0 for the aligned

scenario and α = 1.5 for the misaligned scenario). Remarkably, we recover many of the phenomenolog-

ical features described previously. The test error drops earlier and reaches a lower asymptotic value in

the aligned setup, and conversely reaches a higher value in the misaligned setup. We observe a double

descent curve for square loss, but the peak is suppressed for logistic loss. The location of the IT depends

on the teacher-data alignment for logistic loss, whereas it does not for square loss. Finally, logistic loss

has a lower asymptotic error than square loss in the aligned setup, signalling that it is favorable for

“easy” data distributions.

To strengthen the latter observation, we vary continuously the difficulty of the task by adjusting

the exponent α and show the results in Fig. 5.4(b) (increasing α makes the task harder). As observed

analytically in Fig. 5.4(a), the gap between square loss and logistic loss increases as we decrease α.

5.4 Conclusion

In this chapter, we studied how the loss function interplays with the data structure to shape the

generalization curve of random feature models. Our results show strong behavioral differences between

quadratic and logistic loss, the latter performing particularly well for easy datasets where most of the

information comes from low-dimension projections of the inputs.

As a possible direction of future work, we conclude with the observation that our results, which

apply to random feature (or lazy learning) tasks, appear in contrast with those of [166], which suggest

that cross-entropy losses can be traded at no cost for quadratic losses in modern deep learning tasks,

which are known to have low intrinsic dimensionality [159]. This opens up an interesting direction

for future work: does feature learning help quadratic losses by better capturing the low-dimensional

structure of the inputs, as suggested by [160]? Does the key difference reside in the multi-class nature

of practical classification problems [167]?
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Part II

From Architectural Constraints to
Inductive Biases
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Chapter 6

Finding the Needle in the Haystack:
When do Convolutional Constraints
help?

In the first part of this thesis, we studied the role of overparametrization in efficient generalization. Yet,

our analysis was restricted to Fully-Connected Networks (FCNs), and ignored a key aspect of the learning

model: its architecture. Convolutional Neural Networks (CNNs) are known to perform much better

than FCNs on spatially structured data, as their architecture provides them with appropriate inductive

biases (translation equivariance or invariance). Yet, it is unclear why FCNs fail to find convolutional

solutions, which they could in principle represent. In this chapter, we attempt to elucidate this question

by introducing a method to map a CNN to its equivalent FCN (denoted as eFCN), using the representation

of convolutions as Toeplitz matrices. Such an embedding enables the comparison of CNN and FCN

training dynamics directly in the FCN function space.

We use this method to test a new training protocol, which consists in training a CNN, embedding

it to FCN space at a certain “relax time”, then resuming the training in FCN space. We observe that

for all relax times, the deviation from the CNN subspace is small, and the final performance reached

by the eFCN is higher than that reachable by a standard FCN of same architecture. More surprisingly,

for intermediate relax times, the eFCN outperforms the CNN it stemmed from, by combining the prior

information of the CNN and the expressivity of the FCN in a complementary way. Although the practical

interest of our protocol is limited by the very large size of the highly sparse eFCN, it demonstrates

that inductive biases are mainly useful in the early stages of optimization, and can become restrictive

beyond; this insight will be core to the practical applications presented in the next chapters.

6.1 Introduction

Architectural bias prevails as a major factor to explain good generalization in many tasks, such as visual

classification – empirically, it is well-known that CNNs generalize well, but fully-connected models do

not. The reasons underlying their success is rather clear: their architectural constraints incorporate

prior information on images – namely, locality and translation equivariance (without pooling layers) or

invariance (with pooling layers) of important features [182–184]. This inductive bias makes CNNs more

sample-efficient and parameter-efficient [185, 186]

86



 

Linear CNN subpace

Solution manifold 

 = 0

��1

��2

��3

CNN end
CNN start

eFCN ends

eFCN starts

FCN end

FCN start

Figure 6.1: Illustration of our experiment.
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and trained in the FCN space without the con-

straints.

Geometrically, these constraints define a low-dimensional subspace within the space of parameters

of generic FCNs (this subspace is linear since the CNN constraints of weight sharing and locality are

linear, see Figure 6.1.1 for a sketch of the core idea). Even though the optimization scheme is able to

minimize the training loss with or without the constraints (for sufficiently over-parametrized models

[5, 187]), the CNN subspace somehow a “better route” that navigates the loss landscape to basins with

better generalization performance.

Why are such basins so difficult to reach in absence of constraints ? The objective of this chapter

is to answer this question, for which many hypotheses are imaginable: (i) they are unreachable (e.g.

surrounded by loss barriers), (ii) they occupy narrow basins which are missed by the optimization

algorithm, (iii) they are too rare to be found.

Our results offer a new perspective on the success of the convolutional architecture: within FCN

loss landscapes there exist rare basins associated to very good generalization, characterised not only by

their width but rather by their distance to the CNN subspace. These can be accessed thanks to the CNN

prior, and are otherwise missed in the usual training of FCNs.

6.1.1 Contribution

In this chapter, we show that the CNN prior plays a favorable role mostly at the beginning of optimization.

Surprisingly, leaving this subspace at an appropriate time can result in a FCN with an equivalent or

even better generalization than a CNN. Our numerical experiments suggest that the CNN subspace

as well as its vicinity are good candidates for high-performance solutions. Furthermore, we observe a

threshold distance from the CNN space beyond which the performance drops back down to the vanilla

FCN accuracy level.

Reproducibility The code to reproduce the figures in this chapter is available at https://github.
com/sdascoli/anarchitectural-search.
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6.1.2 Related Work

Compression and expansion The relationship between CNNs and FCNs is an instance of trading-off

prior information with expressivity within neural networks. There is abundant literature that explored

the relationship between different neural architectures, for different purposes. One can roughly classify

these works on whether they attempt to map a large model into a smaller one, or vice-versa.

In the first category, one of the earliest efforts to introduce structure within FCNs with the goal of

improving generalization was the work of [188], in which the weights are regularized via a Mixture of

Gaussians. Another highly popular line of work attempts to distill the “knowledge” of a large model (or

an ensemble of models) into a smaller one [189–191], with the goal of improving both computational

efficiency and generalization performance. Network pruning [192] and the recent “Lottery Ticket

Hypothesis” [193] are other remarkable instances of the benefits of model compression.

In the second category, which is more directly related to our work, authors have attempted to build

larger models by embedding small architectures into larger ones, such as the Net2Net model [194] or

more evolved follow-ups [195]. In these works, however, the motivation is to accelerate learning by

some form of knowledge transfer between the small model and the large one, whereas our motivation is

to understand the specific role of architectural bias in generalization.

Landscape analysis Several works explored the link between sharpness of local minima and gen-

eralization [52, 196, 197], and [198] argued in terms of the volume of basins of attraction. [199, 200]

introduce entropic SGD, a way of biasing dynamics towards wide minima.

The characterization of the loss landscape along paths connecting different models have been studied

recently, e.g. in [201], [202], and [203]. The existence of rare basins leading to better generalization was

found and highlighted in simple models in [204, 205].

Theoretical works In the infinite-width context, [206] study the role of translation equivariance

of CNNs compared to FCNs. They find that in this limit, weight sharing does not play any role in the

Bayesian treatment of CNNs, despite providing significant improvment in the finite-channel setup.

The links between generalization and the geometry and topology of the optimization landscape

have been also extensively studied in recent times. [207] compare generalisation bounds between CNNs

and FCNs, establishing a sample complexity advantage in the case of linear activations. [208, 209] obtain

specific generalisation bounds for CNN architectures.

Follow-ups of this work Since its publication, this work has sparked several interesting follow-ups

in the literature. Notably, [210] uses strong regularization and augmentation to bias fully-connected

networks towards convolutional solutions (without using the convolutional initialization considered

here). Another approach presented in [211] is to prune the weights of a pre-trained FCN in order to

achieve the locality of a CNN. In a more theoretical perspective, [212] shows under which conditions

convolutional configurations can be learnt in a data-driven manner.

The convolutional mapping described here also served as the core idea behind the ConViT, a

state-of-the-art vision transformer which will be presented in the following chapter.
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6.2 Methods

In this section, we present the method to map CNNs to FCNs and the experimental protocol we will

follow for the rest of the chapter.

6.2.1 CNN to FCN embedding

In both FCNs and CNNs, each feature of a layer is calculated by applying a non-linearity to a weighted

sum over the features of the previous layer (or over all the pixels of the image, for the first layer). CNNs

are a particular type of FCNs, which make use of two key ingredients to reduce drastically the number

of fitting parameters: locality and weight sharing.

• Locality: In FCNs, the sum is taken over all the features of the previous layer. In locally connected

networks (LCNs), locality is imposed by restricting the sum to a small receptive field (a box of

adjacent features of the previous layer). The set of weights of this restricted sum is called a

filter. This procedure exploits the fact that the most relevant correlations in an image are general

short-ranged.

• Weight sharing: CNNs are a particular type of LCNs where all the filters of a given channel

use the same set of weights. This procedure ensures the translation equivariance of the features

extracted (or translation invariance, when pooling layers are used).

When mapping a CNN to its equivalent FCN (eFCN), one obtains very sparse (due to locality) and

redundant (due to weight sharing) weight matrices called Toeplitz matrices (see App. E.1 for some

intuition on the mapping). This typically results in a large memory overhead as the eFCN of a simple

CNN can take several orders of magnitude more space in the memory. Therefore, we present the core

ideas on a simple 3-layer CNN on CIFAR-10 [1], and show similar results for AlexNet on CIFAR-100 in

App. E.2.

In the mapping, all layers apart form the convolutional layers (ReLU, Dropout, MaxPool and fully-

connected) are left unchanged except for proper reshaping. Each convolutional layer is mapped to a

fully-connected layer. As a result, for a given CNN, we obtain its eFCN counterpart with an end-to-end

fully-connected architecture which is functionally identical to the original CNN.

6.2.2 Experimental details

We are given input-label pairs for a supervised classification task, (x, y), with x ∈ RD and y the index
of the correct class for a given image x. The network, parametrized by W , outputs ŷ = fW (x). To
distinguish between different architectures we denote the CNN weights by WCNN ∈ Rp and the eFCNs
weights by W eFCN ∈ RP . Let’s denote the embedding function described in Sec. 6.2 by Φ : RP 7→ Rp
where p ≪ P . Dropping the explicit input dependency for simplicity we have:

fWCNN = fΦ(WCNN ) = fW eFCN .

For the experiments, we prepare the CIFAR-10 dataset for training without data augmentation. The

optimizer is set to stochastic gradient descent with a constant learning rate of 0.1 and a minibatch size of

250. We turn off the momentum and weight decay to simply focus on the stochastic gradient dynamics

and we do not adjust the learning rate throughout the training process. In the following, we focus on
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a convolutional architecture with 3 layers, 64 channels at each layer that are followed by ReLU and

MaxPooling operators, and a single fully connected layer that outputs prediction probabilities. In our

experience, this VanillaCNN strikes a good balance of simplicity and performance in that its equivalent

FCN version does not suffer from memory issues yet it significantly outperforms any FCN model trained

from scratch. We study the following protocol:

1. Initialize the VanillaCNN at WCNN
init and train for 150 epochs. At the end of training WCNN

final

reaches ∼ 72% test accuracy.

2. Along the way, save k snapshots of the weights at logarithmically spaced epochs. This provides k
CNN points denoted by {WCNN

t0 = WCNN
init ,WCNN

t1 , . . . ,WCNN
tk−1 }.

3. Lift each one to its eFCN: {Φ(WCNN
t0 ), . . . ,Φ(WCNN

tk−1 )} = {W eFCN
t0 , . . . ,W eFCN

tk−1 } (so that

only p among a total of P parameters are non-zero).

4. Train these k eFCNs in the FCN space for 100 epochs in the same conditions, except a smaller

learning rate of 0.01. We obtain k solutions {W eFCN
t0,final

, . . . ,W eFCN
tk−1,final

}.

5. For comparison, train a standard FCN (with the same architecture as the eFCNs but with the

default PyTorch initialization) for 100 epochs in the same conditions as the eFCNs, and denote the

resulting weights by W FCN
final . The latter reaches ∼ 55% test accuracy.

This process gives us one CNN solution, one FCN solution, and k eFCN solutions that are labeled as

WCNN
final ,W

FCN
final , and {W eFCN

t0,final, . . . ,W
eFCN
tk−1,final} (6.1)

which we analyze in the following subsections. Note that due to the difference in size between the

CNN and the eFCNs, it unclear what learning rate would give a fair comparison. One solution, shown

in App. E.2, is to use an adaptive learning rate optimizer such as Adam.

6.3 Results

In this section, we present the results of the experiments described in the previous section.

6.3.1 Performance and training dynamics of eFCNs

Our first aim is to characterize the training dynamics of eFCNs and study how their training evolution

depends on their relax time tw ∈ {t0 = 0, t1, . . . , tk−2, tk−1 = 150} (in epochs). When the architectural

constraint is relaxed, the loss decreases monotonically to zero (see the left panel of Fig. 6.2). The initial

losses are smaller for larger tws, as expected since those tws correspond to CNNs trained for longer.

In the right panel of Fig. 6.2, we show a more surprising result: test accuracy increases monotonously

in time for all tws, thus showing that relaxing the constraints does not lead to overfitting or catastrophic
forgetting. Hence, from the point of view of the FCN space, it is not as if CNN dynamics took place on an

unstable region from which the constraints of locality and weight sharing prevented from falling off. It

is quite the contrary instead: the CNN dynamics takes place in a stable valley, and when the constraints

are relaxed, the system keeps going down on the training surface and up in test accuracy, as opposed to

falling back to the standard FCN dynamics.
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Figure 6.2: The CNN subspace is stable within FCN space. Training loss (left) and test accuracy

(right) on CIFAR-100 vs. training time in logarithmic scale including the initial point. Different models

are color coded as follows: the VanillaCNN is shown in black, standard FCN is in red, and the eFCNs

with their relax time tws are indicated by the gradient ranging from purple to light green.

In Fig. 6.3 (left) we compare the final test accuracies reached by eFCN with the ones of the CNN and

the standard FCN. We find two main results. First, the accuracy of the eFCN for tw = 0 is approximately

at 62.5%, well above the standard FCN result of 57.5%. This shows that imposing an untrained CNN

prior is already enough to find a solution with much better performance than a standard FCN. Hence

the CNN prior brings us to a good region of the landscape to start with. The second result, perhaps

even more remarkable, is that at intermediate relax times (tw ∼ 20 epochs), the eFCN reaches—and

exceeds—the final test accuracy reached by the CNN it stemmed from. This supports the idea that the

constraints are mostly helpful for navigating the landscape during the early stages of optimization, and
can be restrictive later on. Finally, at late relax times (tw > 50 epochs), the eFCN is initialized close to

the bottom of the landscape and has little room to move, hence the test accuracy falls back to that of the

fully trained CNN.

Interestingly, very similar observations were made in a concurrent paper [213] which studies the

effect of early relaxing of regularization procedures such as weight decay and data augmentation. They

relate this phenomonelogy to an early "critical period" of learning during which regularization is most

important.

6.3.2 A closer look at the landscape

A widespread idea in the deep learning literature is that the sharpness of the minima of the training

loss is related to generalization performance [196, 214], the intuition being that flat minima reduce the

impact of an offset between training loss and test loss. This motivates us to compare the first and second

order properties of the landscape explored by the eFCNs and the CNNs they stem from. To do so, we

investigate the norm of the gradient of the training loss, |∇L|, and the top eigenvalue of the Hessian of

the training loss, λmax, in the central and right panels of Fig. 6.3 (we calculate the latter using a power
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Figure 6.3: Left: Performance of eFCNs reached at the end of training (red crosses) compared to its

counterpart for the best CNN accuracy (straight line) and the best FCN accuracy (dashed line). Center:
Norm of the gradient for eFCNs at the beginning and at the end of training. Right: Largest eigenvalue
of the Hessian for eFCNs at the beginning and at the end of training. In all figures the x-axis is the relax
time tw.

method).

We point out several interesting observations. First, the steepness (|∇L|) and sharpness (λmax)
indicators increase then decrease during the training of the CNN (as analyzed in [215]), and display a

maximum around tw ≃ 20, which coincides with the relax time of best improvement for the eFCNs.

Second, we see that after training the eFCNs, these indicators plummet by an order of magnitude, which

is particularly surprising at very late relax time where it appeared in the left panel of Fig. 6.3 (see also

6.4) as if the eFCNs was hardly moving away from initialization. This supports the idea that when the

constraints are relaxed, the extra degrees of freedom lead us to wider basins, possibly explaining the gain

in performance.

6.3.3 How far does the eFCN escape from the CNN subspace?

A major question naturally arises: how far do the eFCNs move away from their initial condition? Do

they stay close to the sparse configuration they were initialized in? To answer this question, we quantify

how locality is violated once the constraints are relaxed (violation of weight sharing will be studied in

Sec. 6.3.4). To this end, we consider a natural decomposition of the weights in the FCN space into two

parts, W = (Wlocal,Woff-local), where Woff-local = 0 for an eFCN when it is initialized from a CNN. A

visualization of these blocks may be found in Sec. A of the Appendix. We then study the ratio δ of the

norm of the off-local weights to the total norm, δ(W ) = ||Woff-local||2
||W ||2 , which is a measure of the deviation

of the model from the CNN subspace.

Fig. 6.4 (left) shows that the deviation δ at the end of eFCN training decreases monotonically with

its relax time tw. Indeed, the earlier we relax the constraints (and therefore the higher the initial loss

of the eFCN) the further the eFCN escapes from the CNN subspace, as emphasized in Fig. 6.4 (middle).

However, even at early relax times, the eFCNs stay rather close to the CNN subspace, since the ratio

never exceeds 8%, whereas it is around 97% for a regular FCN (since the number of off-local weights is

much larger than the number of local weights). This underlines the persistence of the architectural bias
under the stochastic gradient dynamics.
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Figure 6.4: Left: relax time tw of the eFCN vs. δ, the measure of deviation from the CNN subspace

through the locality constraint, at the final point of eFCN training. Centre: δ vs. the initial loss value.
Right: δ vs. final test accuracy of eFCN models. For reference, the blue point in the middle and right
panels indicate the deviation measure for a standard FCN, where δ ∼ 97%.

Fig. 6.4 (right) shows that when we move away from the CNN subspace, performance stays high

then plummets down to FCN level. This hints to a critical distance from the CNN subspace within which
eFCNs behave like CNNs, and beyond which they fall back to the standard FCN regime. We further explore

this high performance vicinity of the CNN subspace using interpolations in weight space in App. E.3.

6.3.4 What role do the extra degrees of freedom play in learning?

How can the eFCN use the extra degrees of freedom to improve performance? From Fig. 6.5, we see

that the off-local part of the eFCN is useless on its own (with the local part masked off), as its accuracy

is equal to random guessing. However, when combined with the local part, it may greatly improve

performance when the constraints are relaxed early enough. This hints to the fact that the local and

off-local parts are performing complementary tasks.

To understand what tasks the two parts they are performing, we show in Fig. 6.6 a “filter” from

the first layer of the eFCN (whose receptive field is of the size of the images since locality is relaxed).

Note that each CNN filter gives rise to many eFCN filters: one for each position of the CNN filter on

the image, since weight sharing is relaxed. Here we show the one obtained when the CNN filter (local

block) is on the top left of the image. We see that off-local blocks stay orders of magnitude smaller than

the local blocks, as expected from Sec. 6.3.3 where we saw that locality was almost conserved. We also

see that local blocks hardly change during training, showing that weight sharing of the local blocks is

also almost conserved.

More surprisingly, we see that for tw > 0 distinctive shapes of the images are learned by the

eFCN off-local blocks, which perform some kind of template-matching. Note that the silhouettes are

particularly clear for the intermediate relax time (middle row), at which we know from Sec. 6.3.1 that

the eFCN had the best improvement over the CNN. Hence, the eFCN is combining template-matching
with convolutional feature extraction in a complementary way.

Note that by itself, template-matching is very inefficient for complicated and varied images such as

those of the CIFAR-10 dataset. Hence it cannot be observed in standard FCNs, as shown in Fig. 6.7 where

we reproduce the counterpart of Fig. 6.6 for the FCN in the left and middle images (they correspond

to initial and final training times respectively). To reveal the silhouettes learned, we need to look at
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the pixelwise difference between the two images, i.e. focus on the change due to training (this in

unnecessary for the eFCN whose off-local weights started at zero). In the right panel of Fig. 6.7, we

see that a loose texture emerges, however, it is not as sharp as that of the eFCN weights after training.

Template-matching is only useful as a cherry-on-the-cake alongside more efficient learning procedures.

6.4 Conclusion
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Figure 6.5: Contributions to the test accu-

racy of the local blocks (off-local blocks

masked out), in orange, and off-local

blocks (local blocks masked out), in blue.

Combining them together yields a large

gain in performance for the eFCN, in

green.

In this chapter, we examined the inductive bias of CNNs,

and challenged the accepted view that FCNs are unable to

generalize as well as CNNs on visual tasks. Specifically, we

showed that the CNN prior is mainly useful during the early

stages of training, to prevent the unconstrained FCN from

falling prey of spurious solutions with poor generalization

too early.

Our experimental results show that there exists a vicin-

ity of the CNN subspace with high generalization properties,

and one may even enhance the performance of CNNs by

exploring it, if one relaxes the CNN constraints at an appro-

priate time during training. The extra degrees of freedom

are used to perform complementary tasks which alone are

unhelpful. This offers interesting theoretical perspectives,

in relation to other high-dimensional estimation problems,

such as in spiked tensor models [216], where a smart ini-

tialization, containing prior information on the problem, is

used to provide an initial condition that bypasses the re-

gions where the estimation landscape is “rough” and full of

spurious minima.

On the practical front, despite the performance gains

obtained, our algorithm remains highly impractical due to

the large number of degrees of freedom required on our

eFCNs. However, in the next chapter, we show that the same

method can yield significant performance gains without any increase in number of parameters in a type

of architecture which appeared after the publication of this work: vision transformers.
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Figure 6.6: Heatmap of the weights of an eFCN “filter” from the first layer just at relax time (left column),

after training for 11 epochs (middle column), and after training for 78 epochs (right column). The

eFCNs were initialized at relax times tw = 0 (top row), tw = 13 (middle row), and tw = 115 (bottom
row). The colors indicate the natural logarithm of the absolute value of the weights. Note that the

convolutional filters, in the top right, vary little and remain orders of magnitude larger than the off-local

blocks, whereas the off-local blocks pick up strong signals from images as sharp silhouettes appear.
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Chapter 7

Improving Vision Transformers with
Soft Convolutional Inductive Biases

Convolutional architectures have proven extremely successful for vision tasks. Their hard inductive

biases enable sample-efficient learning, but can be restrictive as shown in the previous chapter. Vision

Transformers (ViTs) rely on more flexible self-attention layers, and have recently outperformed CNNs for

image classification. However, they require costly pre-training on large external datasets or distillation

from pre-trained convolutional networks.

In this chapter, we ask the following question: is it possible to combine the strengths of these two

architectures while avoiding their respective limitations? To this end, we introduce gated positional self-
attention (GPSA), a form of positional self-attention which can be equipped with a “soft" convolutional

inductive bias. Inspired by the results of the previous chapter, we initialize the GPSA layers to mimic

the locality of convolutional layers, then give each attention head the freedom to escape locality by

adjusting a gating parameter regulating the attention paid to position versus content information. The

resulting convolutional-like ViT architecture, ConViT, outperforms the DeiT [217] on ImageNet, while

offering a much improved sample efficiency. We further investigate the role of locality in learning by

first quantifying how it is encouraged in vanilla self-attention layers, then analyzing how it is escaped

in GPSA layers. We conclude by presenting various ablations to better understand the success of the

ConViT.

7.1 Introduction

The success of deep learning over the last decade has largely been fueled by models with strong inductive

biases, allowing efficient training across domains [184, 218]. The use of Convolutional Neural Networks

(CNNs) [219, 220], which have become ubiquitous in computer vision since the success of AlexNet

in 2012 [221], epitomizes this trend. As explained in the previous chapter, their inductive biases are

hard-coded into their architecture in the form of two strong constraints on the weights: locality and

weight sharing. Similarly, for sequence-based tasks, recurrent networks with hard-coded memory cells

have been shown to simplify the learning of long-range dependencies (LSTMs) and outperform vanilla

recurrent neural networks in a variety of settings [222–224].

However, the rise of models based purely on attention in recent years calls into question the necessity

of hard-coded inductive biases. First introduced as an add-on to recurrent neural networks for Sequence-
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Figure 7.1: Soft inductive biases can help models learn without being restrictive. Hard inductive

biases, such as the architectural constraints of CNNs, can greatly improve the sample-efficiency of

learning, but can become constraining when the size of the dataset is not an issue. The soft inductive

biases introduced by the ConViT avoid this limitation by vanishing away when not required.

to-Sequence models [225], attention has led to a breakthrough in Natural Language Processing through

the emergence of Transformer models, which rely solely on a particular kind of attention: Self-Attention

(SA) [78]. The strong performance of these models when pre-trained on large datasets has quickly led

to Transformer-based approaches becoming the default choice over recurrent models like LSTMs [226].

In vision tasks, the locality of CNNs impairs their ability to capture long-range dependencies,

whereas attention does not suffer from this limitation. [227] and [228] leveraged this complementarity

by augmenting convolutional layers with attention. More recently, [229] ran a series of experiments

replacing some or all convolutional layers in ResNets with attention, and found the best performing

models used convolutions in early layers and attention in later layers. The Vision Transformer (ViT),

introduced by [14], entirely dispenses with the convolutional inductive bias by performing SA across

embeddings of patches of pixels. The ViT is able to match or exceed the performance of CNNs but

requires pre-training on vast amounts of data. More recently, the Data-efficient Vision Transformer

(DeiT) [217] was able to reach similar performances without any pre-training on supplementary data,

instead relying on Knowledge Distillation [190] from a convolutional teacher.

The success of the ViT demonstrates that while convolutional constraints can enable strongly

sample-efficient training in the small-data regime, they can also become limiting as the dataset size is

not an issue. In data-plentiful regimes, hard inductive biases can be overly restrictive and learning the

most appropriate inductive bias can prove more effective. The practitioner is therefore confronted with

a dilemma between using a convolutional model, which has a high performance floor but a potentially

lower performance ceiling due to the hard inductive biases, or a self-attention based model, which has a

lower floor but a higher ceiling. This dilemma leads to the following question: can one get the best of

both worlds, and obtain the benefits of the convolutional inductive biases without suffering from its

limitations (see Fig. 7.1)?

7.1.1 Contribution

In this chapter, we take a step towards bridging the gap between CNNs and Transformers, by presenting

a new method to “softly" introduce a convolutional inductive bias into the ViT. The idea is to let each

98



10 100
Images in training set (%)

40

50

60

70

80
To

p-
1 

ac
cu

ra
cy

ConViT-S
DeiT-S

5

10

15

20

25

30

35

R
el

at
iv

e 
ga

in
 (%

)

(a) Sample efficiency

101 102

Number of params [M]

70

72

74

76

78

80

82

84

To
p-

1 
ac

cu
ra

cy

ConViT
DeiT
EffNet
ResNet

ViT
T2T-ViT
VT

(b) Parameter efficiency

Figure 7.2: The ConViT outperforms the DeiT both in sample and parameter efficiency. Left:
we compare the sample efficiency of our ConViT-S (see Tab. 7.1) with that of the DeiT-S by training

them on restricted portions of ImageNet-1k, where we only keep a certain fraction of the images of

each class. Both models are trained with the hyperparameters reported in [217]. We display the the

relative improvement of the ConViT over the DeiT in green. Right: we compare the top-1 accuracies

of our ConViT models with those of other ViTs (diamonds) and CNNs (squares) on ImageNet-1k. The

performance of other models on ImageNet are taken from [77, 217, 230–232].

SA layer decide whether to behave as a convolutional layer or not, depending on the context. We make

the following contributions:

1. We present a new form of SA layer, named gated positional self-attention (GPSA), which one can

initialize as a convolutional layer. Each attention head then has the freedom to recover expressivity

by adjusting a gating parameter.
2. We then perform experiments based on the DeiT [217], with a certain number of SA layers replaced

by GPSA layers. The resulting Convolutional Vision Transformer (ConViT) outperforms the DeiT

while boasting a much improved sample-efficiency (Fig. 7.2).

3. We analyze quantitatively how local attention is naturally encouraged in vanilla ViTs, then

investigate the inner workings of the ConViT and perform ablations to investigate how it benefits

from the convolution initialization.

Overall, our work demonstrates the effectiveness of "soft" inductive biases, especially in the low-data

regime where the learning model is highly underspecified (see Fig. 7.1), and motivates the exploration

of further methods to induce them.

Reproducibility We provide an open-source implementation of our method as well as pretrained

models at the following address: https://github.com/facebookresearch/convit.
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7.1.2 Related work

Hybrid models One successful approach in combining the advantages of CNNs and ViTs are “hybrid"

models. These models, which interleave or combine convolutional and self-attention layers, have fueled

successful results in a variety of tasks [229, 231, 233–238]. Another approach is that of Knowledge

Distillation [190], which has recently been applied to transfer the inductive bias of a convolutional

teacher to a student transformer [217]. While these two methods offer an interesting compromise,

they forcefully induce convolutional inductive biases into the Transformers, potentially affecting the

Transformer with their limitations.

Soft inductive biases The restrictiveness of hard locality constraints has been proven by [239]. A

breadth of approaches have been taken to imbue CNN architectures with nonlocality [231, 240–242]. An

opposite approach is to induce a convolutional inductive bias in non-local architectures. The previous

chapter has shown a method to do so for fully-connected networks, and mentioned several concurrent

approaches [210, 211].

The idea explored in this chapter is inspired by this approach, and the formalized relationship

between SA and convolution. Indeed, [243] showed that a SA layer with Nh heads can express a

convolution of kernel size

√
Nh, if each head focuses on one of the pixels in the kernel patch. By

investigating the qualitative aspect of attention maps of models trained on CIFAR-10, it is shown that SA

layers with relative positional encodings naturally converge towards convolutional-like configurations,

suggesting that some degree of convolutional inductive bias is desirable.

Follow-ups of this work Since the publication of this work, a plethora of alternative methods have

been proposed to combine the advantages of self-attention and convolution [244–251], see [252] for a

recent review.

The ConViT has been integrated in the Timm [253] package for state-of-the-art computer vision

architectures, and has been applied to many different tasks, ranging from volcano detection [30] to skin

lesion classification [31].

7.2 Methods

In this section, we describe the methods used in the ConViT architecture.

7.2.1 A crash course on self-attention

We begin by introducing the basics of SA layers, and show how positional attention can allow SA layers

to express convolutional layers.

Multi-head self-attention The attention mechanism is based on a trainable associative memory

with (key, query) vector pairs. A sequence of L1 “query" embeddings Q ∈ RL1×Dh
is matched against

another sequence of L2 “key" embeddings K ∈ RL2×Dh
using inner products. The result is an attention

matrix whose entry (ij) quantifies how semantically “relevant" Qi is to Kj :

A = softmax
(

QK⊤
√
Dh

)
∈ RL1×L2 , (7.1)
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Figure 7.3: The self-attention mechanism.

where (softmax [X])ij = eXij/
∑
k e

Xik
.

Self-attention is a special case of attention where a sequence is matched to itself, to extract the

semantic dependencies between its parts, and is illustrated in Fig. 7.3. In the ViT, the queries and keys

are linear projections of patches of 16 × 16 pixels, X ∈ RL×Demb
. Hence, we have Q = WqryX and

K = WkeyX , where Wkey,Wqry ∈ RDemb×Dh
.

Multi-head SA layers use several self-attention heads in parallel to allow the learning of different

kinds of interdependencies. They take as input a sequence ofL embeddings of dimensionDemb = NhDh,

and output a sequence of L embeddings of the same dimension through the following mechanism:

MHSA(X) := concat
h∈[Nh]

[SAh(X)] Wout, (7.2)

where Wout ∈ RDemb×Demb
. Each self-attention head h performs the following operation:

SAh(X) := AhXW h
val, (7.3)

where W h
val ∈ RDemb×Dh

is the value matrix.

Positional self-attention In the vanilla form of Eq. 7.1, SA layers are permutation invariance hence

position-agnostic: they do not know how the patches are located according to each other. To incorporate

positional information, there are several options. One is to add some positional information to the input

at embedding time, before propagating it through the SA layers: [14] use this approach in their ViT.

Another possibility is to replace the vanilla SA with positional self-attention (PSA), using encodings rij
of the relative position of patches i and j [229]:

Ah
ij := softmax

(
Qh
i Kh⊤

j + vh⊤
posrij

)
(7.4)

Each attention head uses a trainable embedding vhpos ∈ RDpos
, and the relative positional encodings

rij ∈ RDpos
only depend on the distance between pixels i and j, denoted denoted by a two-dimensional

vector δij .
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(a) Input
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(b) Standard initialization
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(c) Convolutional initialization, strength α = 0.5
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(d) Convolutional initialization, strength α = 2

Figure 7.4: Positional self-attention layers can be initialized as convolutional layers. (a): Input
image from ImageNet, where the query patch is highlighted by a red box. (b),(c),(d): attention maps of

an untrained SA layer (b) and those of a PSA layer using the convolutional-like initialization scheme of

Eq. 7.5 with two different values of the locality strength parameter, α (c, d). Note that the shapes of the

image can easily be distinguished in (b), but not in (c) or (d), when the attention is purely positional.

Positional self-attention as a generalized convolution In [243], it is shown that a multi-head PSA

layer with Nh heads and learnable relative positional encodings (Eq. 7.4) of dimension Dpos ≥ 3 can

express any convolutional layer of filter size

√
Nh ×

√
Nh, by setting the following:

vhpos := −αh
(
1,−2∆h

1 ,−2∆h
2 , 0, . . . 0

)
rδ :=

(
∥δ∥2, δ1, δ2, 0, . . . 0

)
Wqry = Wkey := 0, Wval := I

(7.5)

In the above,

• The center of attention ∆h ∈ R2
is the position to which head h pays most attention to, relative

to the query patch. For example, in Fig. 7.4(c), the four heads correspond, from left to right, to

∆1 = (−1, 1),∆2 = (−1,−1),∆3 = (1, 1),∆4 = (1,−1).

• The locality strength αh > 0 determines how focused the attention is around its center ∆h
(it can

also by understood as the “temperature” of the softmax in Eq. 7.1). When αh is large, the attention
is focused only on the patch(es) located at ∆h

, as in Fig. 7.4(d); when αh is small, the attention is

spread out into a larger area, as in Fig. 7.4(c).

Thus, the PSA layer can achieve a strictly convolutional attention map by setting the centers of

attention ∆h
to each of the possible positional offsets of a

√
Nh ×

√
Nh convolutional kernel, and

sending the locality strengths αh to some large value.

7.2.2 Our approach

Building on the insight of [243], we introduce the ConViT, a variant of the ViT [14] obtained by replacing

some of the SA layers by a new type of layer which we call gated positional self-attention (GPSA) layers.
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Figure 7.5: Architecture of the ConViT. The ConViT (left) is a version of the ViT in which some of the

self-attention (SA) layers are replaced with gated positional self-attention layers (GPSA; right). Because

GPSA layers involve positional information, the class token is concatenated with hidden representation

after the last GPSA layer. In this chapter, we typically take 10 GPSA layers followed by 2 vanilla SA layers.

FFN: feedforward network (2 linear layers separated by a GeLU activation);Wqry : query weights;Wkey :

key weights; vpos: attention center and span embeddings (learned); rqk: relative position encodings

(fixed); λ: gating parameter (learned); σ: sigmoid function.

The core idea is to enforce the “informed" convolutional configuration of Eqs. 7.5 in the GPSA layers

at initialization, then let them decide whether to stay convolutional or not. However, the standard

parameterization of PSA layers (Eq. 7.4) suffers from two limitations, which lead us two introduce two

modifications.

Adaptive attention span The first caveat in PSA is the vast number of trainable parameters involved,

since the number of relative positional encodings rδ is quadratic in the number of patches. This led

some authors to restrict the attention to a subset of patches around the query patch [229], at the cost of

losing long-range information.

To avoid this, we leave the relative positional encodings rδ fixed, and train only the embeddings

vhpos which determine the center and span of the attention heads; this approach relates to the adaptive
attention span introduced in [254] for Language Transformers. The initial values of rδ and vhpos are given
by Eq. 7.5, where we take Dpos = 3 to get rid of the useless zero components. Thanks to Dpos ≪ Dh,

the number of parameters involved in the positional attention is negligible compared to the number of

parameters involved in the content attention. This makes sense, as content interactions are inherently

much simpler to model than positional interactions.

Positional gating The second issue with standard PSA is the fact that the content and positional

terms in Eq. 7.4 are potentially of different magnitudes, in which case the softmax will ignore the

smallest of the two. In particular, the convolutional initialization scheme discussed above involves highly

concentrated attention scores, i.e. high-magnitude values in the softmax. In practice, we observed that
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using a convolutional initialization scheme on vanilla PSA layers gives a boost in early epochs, but

degrades late-time performance as the attention mechanism lazily ignores the content information (see

App. F.1).

To avoid this, GPSA layers sum the content and positional terms after the softmax, with their relative

importances governed by a learnable gating parameter λh (one for each attention head). Finally, we

normalize the resulting sum of matrices (whose terms are positive) to ensure that the resulting attention

scores define a probability distribution. The resulting GPSA layer is therefore parametrized as follows

(see also Fig. 7.5):

GPSAh(X) := normalize
[
Ah
]

XW h
val (7.6)

Ah
ij := (1 − σ(λh)) softmax

(
Qh
i Kh⊤

j

)
+ σ(λh) softmax

(
vh⊤
posrij

)
, (7.7)

where (normalize [A])ij = Aij/
∑
k Aik and σ : x 7→ 1/(1+e−x) is the sigmoid function. By setting the

gating parameter λh to a large positive value at initialization, one has σ(λh) ≃ 1 : the GPSA bases its

attention purely on position, dispensing with the need of setting Wqry and Wkey to zero as in Eq. 7.5.

However, to avoid the ConViT staying stuck at λh ≫ 1, we initialize λh = 1 for all layers and all heads.

7.2.3 Experimental details

Architecture The ViT slices input images of size 224 into 16 × 16 non-overlapping patches of 14 × 14
pixels and embeds them into vectors of dimension Demb = 64Nh using a convolutional stem. It then

propagates the patches through 12 blocks which keep their dimensionality constant. Each block consists

in a SA layer followed by a 2-layer Feed-Forward Network (FFN) with GeLU activation, both equipped

with residual connections. The ConViT is simply a ViT where the first 10 blocks replace the SA layers

by GPSA layers with a convolutional initialization.

Similar to language Transformers like BERT [226], the ViT uses an extra “class token", appended

to the sequence of patches to predict the class of the input. Since this class token does not carry

any positional information, the SA layers of the ViT do not use positional attention: the positional

information is instead injected to each patch before the first layer, by adding a learnable positional

embedding of dimension Demb. As GPSA layers involve positional attention, they are not well suited

for the class token approach. We solve this problem by appending the class token to the patches after

the last GPSA layer, similarly to what is done in [255] (see Fig. 7.5)
1
.

For fairness, and since they are computationally cheap, we keep the absolute positional embeddings

of the ViT active in the ConViT. However, as shown in App. F.6, the ConViT relies much less on

them, since the GPSA layers already use relative positional encodings. Hence, the absolute positional

embeddings could easily be removed, dispensing with the need to interpolate the embeddings when

changing the input resolution (the relative positional encodings simply need to be resampled according

to Eq. 7.5, as performed automatically in our open-source implementation).

Training We based our ConViT on the DeiT [217], a hyperparameter-optimized version of the ViT

which has been open-sourced
2
. Thanks to its ability to achieve competitive results without using any

1

We also experimented incorporating the class token as an extra patch of the image to which all heads pay attention to at

initialization, but results were worse than concatenating the class token after the GPSA layers (not shown).

2https://github.com/facebookresearch/deit
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Name Model Nh Demb Size Flops Speed Top-1 Top-5

Ti

DeiT 3 192 6M 1G 1442 72.2 -

ConViT 4 192 6M 1G 734 73.1 91.7

Ti+

DeiT 4 256 10M 2G 1036 75.9 93.2

ConViT 4 256 10M 2G 625 76.7 93.6

S

DeiT 6 384 22M 4.3G 587 79.8 -

ConViT 9 432 27M 5.4G 305 81.3 95.7

S+

DeiT 9 576 48M 10G 480 79.0 94.4

ConViT 9 576 48M 10G 382 82.2 95.9

B

DeiT 12 768 86M 17G 187 81.8 -

ConViT 16 768 86M 17G 141 82.4 95.9

B+

DeiT 16 1024 152M 30G 114 77.5 93.5

ConViT 16 1024 152M 30G 96 82.5 95.9

Table 7.1: Performance of the models considered, trained from scratch on ImageNet. Speed is

the number of images processed per second on a Nvidia Quadro GP100 GPU at batch size 128. Top-1

accuracy is measured on ImageNet-1k test set without distillation (see App. F.2 for distillation). The

results for DeiT-Ti, DeiT-S and DeiT-B are reported from [217].

external data, the DeiT both an excellent baseline and relatively easy to train: the largest model (DeiT-B)

only requires a few days of training on 8 GPUs.

To mimic 2 × 2, 3 × 3 and 4 × 4 convolutional filters, we consider three different ConViT models

with 4, 9 and 16 attention heads (see Tab. 7.1). Their number of heads are slightly larger than the DeiT-Ti,

ConViT-S and ConViT-B of [217], which respectively use 3, 6 and 12 attention heads. To obtain models

of similar sizes, we use two methods of comparison.

• To establish a direct comparison with [217], we lower the embedding dimension of the ConViTs

to Demb/Nh = 48 instead of 64 used for the DeiTs. Importantly, we leave all hyperparameters
(scheduling, data-augmentation, regularization) presented in [217] unchanged in order to achieve a

fair comparison. The resulting models are named ConViT-Ti, ConViT-S and ConViT-B.

• We also trained DeiTs and ConViTs using the same number of heads and Demb/Nh = 64, to
ensure that the improvement due to ConViT is not simply due to the larger number of heads [255].

This leads to slightly larger models denoted with a “+” in Tab. 7.1. To maintain stable training

while fitting these models on 8 GPUs, we lowered the learning rate from 0.0005 to 0.0004 and

the batch size from 1024 to 512. These minimal hyperparameter changes lead the DeiT-B+ to

perform less well than the DeiT-S+, which is not the case for the ConViT, suggesting a higher

stability to hyperparameter changes.

7.3 Results

In this section, we present the results of the ConViT on image classification tasks.
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Train Top-1 Top-5
size DeiT ConViT Gap DeiT ConViT Gap

5% 34.8 47.8 37% 57.8 70.7 22%

10% 48.0 59.6 24% 71.5 80.3 12%

30% 66.1 73.7 12% 86.0 90.7 5%

50% 74.6 78.2 5% 91.8 93.8 2%

100% 79.9 81.4 2% 95.0 95.8 1%

Table 7.2: The convolutional inductive bias strongly improves sample efficiency. We compare

the top-1 and top-5 accuracy of our ConViT-S with that of the DeiT-S, both trained using the original

hyperparameters of the DeiT [217], as well as the relative improvement of the ConViT over the DeiT.

Both models are trained on a subsampled version of ImageNet-1k, where we only keep a variable fraction

(leftmost column) of the images of each class for training.

7.3.1 Performance of the ConViT

In Tab. 7.1, we display the top-1 accuracy achieved by these models evaluated on the ImageNet test set

after 300 epochs of training, alongside their number of parameters, number of flops and throughput. Each

ConViT outperforms its DeiT of same size and same number of flops by a margin. Importantly, although

the positional self-attention does slow down the throughput of the ConViTs, they also outperform the

DeiTs at equal throughput. For example, The ConViT-S+ reaches a top-1 of 82.2%, outperforming the

original DeiT-B with less parameters and higher throughput. Without any tuning, the ConViT also

reaches high performance on CIFAR100, see App. F.3 where we also report learning curves.

Note that our ConViT is compatible with the distillation methods introduced in [217] at no extra cost.

As shown in App. F.2, hard distillation improves performance, enabling the hard-distilled ConViT-S+

to reach 82.9% top-1 accuracy, on the same footing as the hard-distilled DeiT-B with half the number

of parameters. However, while distillation requires an additional forward pass through a pre-trained

CNN at each step of training, ConViT has no such requirement, providing similar benefits to distillation

without additonal computational requirements.

7.3.2 Sample efficiency of the ConViT

In Tab. 7.2, we investigate the sample-efficiency of the ConViT in a systematic way, by subsampling

each class of the ImageNet-1k dataset by a fraction f = {0.05, 0.1, 0.3, 0.5, 1} while multiplying the

number of epochs by 1/f so that the total number images presented to the model remains constant.

As one might expect, the top-1 accuracy of both the DeiT-S and its ConViT-S counterpart drops as f
decreases. However, the ConViT suffers much less: while training on only 10% of the data, the ConViT

reaches 59.5% top-1 accuracy, compared to 46.5% for its DeiT counterpart.

This result can be directly compared to [256], which after testing several thousand convolutional

models reaches a top-1 accuracy of 56.4%; the ConViT is therefore highly competitive in terms of sample

efficiency. These findings confirm our hypothesis that the convolutional inductive bias is most helpful

on small datasets, as depicted in Fig. 7.1.
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7.3.3 Investigating the role of locality

In this section, we demonstrate that locality is naturally encouraged in standard SA layers, and examine

how the ConViT benefits from locality being imposed at initialization.

SA layers are pulled towards locality We begin by investigating whether the hypothesis that PSA

layers are naturally encouraged to become “local" over the course of training [243] holds for the vanilla

SA layers used in ViTs, which do not benefit from positional attention. To quantify this, we define a

measure of “nonlocality" by summing, for each query patch i, the distances ∥δij∥ to all the key patches j
weighted by their attention score Aij . We average the number obtained over the query patch to obtain

the nonlocality metric of head h, which can then be averaged over the attention heads to obtain the

nonlocality of the whole layer ℓ:

Dℓ,h
loc := 1

L

∑
ij

Ah,ℓ
ij ∥δij∥,

Dℓ
loc := 1

Nh

∑
h

Dℓ,h
loc (7.8)

Intuitively, Dloc is the number of patches between the center of attention and the query patch: the

further the attention heads look from the query patch, the higher the nonlocality.

In Fig. 7.6 (left panel), we show how the nonlocality metric evolves during training across the 12

layers of a DeiT-S trained for 300 epochs on ImageNet. During the first few epochs, the nonlocality falls

from its initial value in all layers, confirming that the DeiT becomes more “convolutional". During the

later stages of training, the nonlocality metric stays low for lower layers, and gradually climbs back up

for upper layers, revealing that the latter capture long range dependencies, as observed for language

Transformers [254].

These observations are particularly clear when examining the attention maps (Fig. F.7 of the Ap-

pendix), and point to the beneficial effect of locality in lower layers. In Fig. F.2 of the Appendix., we also

show that the nonlocality metric is lower when training with distillation from a convolutional network

as in [217], suggesting that the locality of the teacher is partly transferred to the student [257].

GPSA layers escape locality In the ConViT, strong locality is imposed at the beginning of training

in the GPSA layers thanks to the convolutional initialization. In Fig. 7.6 (right panel), we see that this

local configuration is escaped throughout training, as the nonlocality metric grows in all the GPSA

layers. However, the nonlocality at the end of training is lower than that reached by the DeiT, showing

that some information about the initialization is preserved throughout training. Interestingly, the final

nonlocality does not increase monotonically throughout the layers as for the DeiT. The first layer and

the final layers strongly escape locality, whereas the intermediate layers (particularly the second layer)

stay more local.

To gain more understanding, we examine the dynamics of the gating parameters in Fig. 7.7. We

see that in all layers, the average gating parameter Ehσ(λh) (in black), which reflects the average

amount of attention paid to positional information versus content, decreases throughout training. This

quantity reaches 0 in layers 6-10, meaning that positional information is practically ignored. However,

in layers 1-5, some of the attention heads keep a high value of σ(λh), hence take advantage of positional
information. Interestingly, the ConViT-Ti only uses positional information up to layer 4, whereas the
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Figure 7.6: SA layers try to become local, GPSA layers escape locality. We plot the nonlocality

metric defined in Eq. 7.8, averaged over a batch of 1024 images: the higher, the further the attention

heads look from the query pixel. We trained the DeiT-S and ConViT-S for 300 epochs on ImageNet.

Similar results for DeiT-Ti/ConViT-Ti and DeiT-B/ConViT-B are shown in App. F.4.

Ref.
Train

gating

Conv

init

Train

GPSA

Use

GPSA

Full

data

10%

data

a (ConViT) ✓ ✓ ✓ ✓ 82.2 59.7
b ✗ ✓ ✓ ✓ 82.0 57.4

c ✓ ✗ ✓ ✓ 81.4 56.9

d ✗ ✗ ✓ ✓ 81.6 54.6

e (DeiT) ✗ ✗ ✗ ✗ 79.1 47.8

f ✗ ✓ ✗ ✓ 78.6 54.3

g ✗ ✗ ✗ ✓ 73.7 44.8

Table 7.3: Gating and convolutional initialization play nicely together. We ran an ablation study

on the ConViT-S+ trained for 300 epochs on the full ImageNet training set and on 10% of the training

data. From the left column to right column, we experimented freezing the gating parameters to 0,

removing the convolutional initialization, freezing the GPSA layers and removing them altogether.

ConViT-B uses it up to layer 6 (see App. F.4), suggesting that larger models - which are more under-

specified - benefit more from the convolutional prior. These observations highlight the usefulness of the

gating parameter in terms of interpretability.

The inner workings of the ConViT are further revealed by the attention maps of Fig. 7.8, which

are obtained by propagating an embedded input image through the layers and selecting a query patch

at the center of the image
3
. In layer 10, (bottom row), the attention maps of DeiT and ConViT look

qualitatively similar: they both perform content-based attention. In layer 2 however (top row), the

attention maps of the ConViT are more varied: some heads pay attention to content (heads 1 and 2)

whereas other focus mainly on position (heads 3 and 4). Among the heads which focus on position,

some stay highly localized (head 4) whereas others broaden their attention span (head 3). The interested

reader can find more attention maps in App. F.5.

3

We do not show the attention paid to the class token in the SA layers.
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Figure 7.7: The gating parameters reveal the inner workings of the ConViT. For each layer,

the colored lines (one for each of the 9 attention heads) quantify how much attention head h pays to

positional information versus content, i.e. the value of σ(λh), see Eq. 7.7. The black line represents the

value averaged over all heads. We trained the ConViT-S for 300 epochs on ImageNet. Similar results for

ConViT-Ti and ConViT-B are shown in App. F.4.

Strong locality is desirable We next investigate how the performance of the ConViT is affected by

two important hyperparameters of the ConViT: the locality strength, α, which determines how focused

the heads are around their center of attention, and the number of SA layers replaced by GPSA layers. We

examined the effects of these hyperparameters on ConViT-S, trained on the first 100 classes of ImageNet.

As shown in Fig. 7.9(a), final test accuracy increases both with the locality strength and with the number

of GPSA layers; in other words, the more convolutional, the better.

In Fig. 7.9(b), we show how performance at various stages of training is impacted by the presence

of GPSA layers. We see that the boost due to GPSA is particularly strong during the early stages of

training: after 20 epochs, using 9 GPSA layers leads the test-accuracy to almost double, suggesting that

the convolution initialization gives the model a substantial “head start". This speedup is of practical

interest in itself, on top of the boost in final performance.

Ablation study In Tab. 7.3, we present an ablation on the ConViT, denoted as [a]. We experiment re-

moving the positional gating [b]4, the convolutional initialization [c], both gating and the convolutional

initialization [d], and the GPSA altogether ([e], which leaves us with a plain DeiT).

Surprisingly, on full ImageNet, GPSA without gating [d] already brings a substantial benefit over

the DeiT (+2.5), which is mildly increased by the convolutional initialization ([b], +2.9). As for gating, it
helps a little in presence of the convolutional initialization ([a], +3.1), and is unhelpful otherwise. These

mild improvements due to gating and convolutional initialization (likely due to performance saturation

above 80% top-1) become much clearer in the low data regime. Here, GPSA alone brings +6.8, with

an extra +2.3 coming from gating, +2.8 from convolution initialization and +5.1 with the two together,

illustrating their complementarity.

4

To remove gating, we freeze all gating parameters to λ = 0 so that the same amount of attention is paid to content and

position.
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to better reveal details. Center: attention maps obtained by a DeiT-Ti after 300 epochs of training on
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Figure 7.9: The beneficial effect of locality. Left: As we increase the locality strength (i.e. how focused

each attention head is its associated patch) and the number of GPSA layers of a ConViT-S+, the final

top-1 accuracy increases significantly. Right: The beneficial effect of locality is particularly strong in the

early epochs.

We also investigated the performance of the ConViT with all GPSA layers frozen, leaving only

the FFNs to be trained in the first 10 layers. As one could expect, performance is strongly degraded

in the full data regime if we initialize the GPSA layers randomly ([f], -5.4 compared to the DeiT).

However, the convolutional initialization remarkably enables the frozen ConViT to reach a very decent

performance, almost equalling that of the DeiT ([e], -0.5). In other words, replacing SA layers by random

“convolutions" hardly impacts performance. In the low data regime, the frozen ConViT even outperforms

the DeiT by a margin (+6.5). This naturally begs the question: is attention really key to the success of

ViTs [15, 258, 259]?

7.4 Conclusion

The present work investigates the importance of initialization and inductive biases in learning with

vision transformers. By showing that one can take advantage of convolutional constraints in a soft way,
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we merge the benefits of architectural priors and expressive power. The result is a simple recipe that

improves trainability and sample efficiency, without increasing model size or requiring any tuning.

Our approach can be summarized as follows: instead of interleaving convolutional layers with SA

layers as done in hybrid models, let the layers decide whether to be convolutional or not by adjusting a

set of gating parameters. More generally, combining the biases of varied architectures and letting the

model choose which ones are best for a given task could become a promising direction, reducing the

need for greedy architectural search while offering higher interpretability.

Another direction which will be explored in the next chapter is the following: if SA layers benefit

from being initialized as random convolutions, could one reduce even more drastically their sample

complexity by initializing them as pre-trained convolutions, just like we initialized FCNs from trained

CNNs in the previous chapter?
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Chapter 8

Transformed CNNs: Recasting
Pre-trained Convolutional Networks as
Transformers

One aspect we did not mention in the previous chapter is training time. Although the ConViT provides

us with a flexible architecture, able to combine the sample efficiency of CNNs with the expressivity

of ViTs, it remains self-attention based, which imposes a bottleneck in computational speed. In this

chapter, we push the same idea further by introducing a method to initialize self-attention layers as

pre-trained (rather than random) convolutional layers. This enables us to transition smoothly from any

pre-trained CNN to its functionally identical hybrid model, called Transformed CNN (T-CNN). With

only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains over the

CNN as well as substantially improved robustness. We analyze the representations learnt by the T-CNN,

providing deeper insights into the fruitful interplay between convolutions and self-attention.

8.1 Introduction

As we have seen in the previous chapter, Vision Transformers have emerged as powerful alternatives to

CNNs. Yet, capturing long-range dependencies necessarily comes at the cost of quadratic complexity

in input size, a computational burden which many recent directions have tried to alleviate [260–263].

Additionally, ViTs are generally harder to train [264, 265], and require vast amounts of pre-training [14]

or distillation from a convolutional teacher [190, 266, 267] to match the performance of CNNs.

One common answer to both issues are hybrid models, which append SA layers onto convolutional

backbones [227, 228, 267–269], and have already fueled successful results in a variety of tasks [233–

237]. However, modelling long-range dependencies at low computational cost remains a challenge for

practitioners.

8.1.1 Contributions

At a time when pre-training on vast datasets has become common practice, we ask the following question:

does one need to train the SA layers during the whole learning process? Could one instead learn cheap

components such as convolutions first, leaving the SA layers to be learnt at the end? In this chapter, we

leverage the Gated Positional Self-Attention (GPSA) layers introduced in the previous chapter to fully
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Figure 8.1: Transformed ResNets strike a strong accuracy-robustness balance. Our models (red)

significantly outperform the original ResNet-RS models (dark blue) they were initialized from when

evaluated on ImageNet-1k. They also exhibit solid performances on various robustness benchmarks

(ImageNet-C, A and R, and FGSM adversarial attacks from left to right).

reparameterize any pre-trained convolutional network as a hybrid model (and not a Vision Transformer,

as for the ConViT!). The latter is initialized to reproduce the mapping of the convolutional layer, but

is then encouraged to learn more general mappings which are not accessible to the CNN by adjusting

positional gating parameters.

After only 50 epochs of fine-tuning, the resulting Transformed CNNs (T-CNNs) boast significant

performance and robustness improvements as shown in Fig. 8.1, demonstrating the practical relevance

of our method. We analyze the inner workings of the T-CNNs, and show that they learn more robust

representations by combining convolutional heads and attentional heads in a complementary way.

8.1.2 Related work

This chapter mainly builds on two pillars. First, the idea that SA layers can express any convolution,

introduced by [243] and leveraged in the previous chapter to imbue self-attetion layers with a local

inductive bias favorable to sample efficiency. Our approach leverages the opposite idea: giving an

end-to-end CNN the freedom to escape locality by learning self-attention at late times.

Second, we exploit the following learning paradigm: train a simple and fast model, then repa-

rameterize it as a more complex model for the final stages of learning. This approach was used in

Chap. 6, but its practical relevance was limited by the vast increase in number of parameters required

by the FCN to functionally represent the CNN. In contrast, our reparameterization hardly increases

the parameter count of the CNN, making it easily applicable to any state-of-the-art CNN. Note that

this reparameterization methods can be viewed an informed version of dynamic architecture growing

algorithms such as AutoGrow [270].
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In the context of hybrid models, various works have studied the performance gains obtained by

introducing MHSA layers in ResNets with minimal architectural changes [267–269]. However, the

MHSA layers used in these works are initialized randomly and need to be trained from scratch. Our

approach is different, as it makes use of GPSA layers, which can be initialized to represent the same

function as the convolutional layer it replaces. We emphasize that the novelty in this work is not in the

architectures used, but in the unusual way they are blended together.

8.2 Methods

In this section, we introduce our method for mapping a convolutional layer to a functionally equivalent

PSA layer with minimal increase in parameter count. To do this, we leverage the GPSA layers introduced

in [271].

Loading the filters We want each head h of the PSA layer introduced Eq. 7.4 of the previous chapter

to functionally mimic the pixel h of a convolutional filter Wfilter ∈ RNh×Din×Dout
, where we typically

haveDout ≥ Din. Rewriting the action of the MHSA operator (Eq. 7.2) in a more explicit form, we have

MHSA(X) =
Nh∑
h=1

AhX W h
val

W h
out︸ ︷︷ ︸

Wh∈RDemb×Dh

(8.1)

In the convolutional configuration of Eq. 7.5, AhX selects pixel h of X . Hence, we need to set

W h = W h
filter

. We do this by settingDemb = Dout,Dh = Din, and using set the following initialization:

W h
val

= I, W h
out

= W h
filter

. (8.2)

Note that this differs from the usual choice made in SA layers, where Dh = ⌊Demb/Nh⌋. However, to
keep the parameter count the same, we share the same W h

val across different heads h, since it plays a
symmetric role at initialization.

Note that this reparameterization introduces three additional matrices compared to the convolutional

filter: Wqry,Wkey,Wval, each containing Din × Din parameters. However, since the convolutional

filter containsNh ×Din ×Dout parameters, where we typically haveNh = 9 andDout ∈ {Din, 2Din},
these additional matrices are much smaller than the filters and hardly increase the parameter count.

This can be seen from the model sizes in Tab. G.1.

How convolutional should the initialization be? The convolutional initialization of GPSA layers

involves two parameters, determining how strictly convolutional the behavior is: the initial value of the

locality strength α, which determines how focused each attention head is on its dedicated pixel, and the

initial value of the gating parameters λ, which determines the importance of the positional information

versus content. If λh ≫ 0 and α ≫ 1, the T-CNN will perfectly reproduce the input-output function of

the CNN, but may want to greedily stay in the convolutional configuration. Conversely, if λh ≪ 0 and

α ≪ 1, the T-CNN will forget about the input-output function of the CNN. Hence, we choose α = 1
and λ = 1 to lie in between these two extremes, encouraging the T-CNNs to escape locality throughout

training.
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Architectural details To make our setup as canonical as possible, we focus on ResNet architec-

tures [77], which contain 5 stages, with spatial resolution halfed and number of channels doubled at each

stage. Our method involves reparameterizing 3 × 3 convolutions as GPSA layers with 9 attention heads.

However, global SA is too costly in the first layers, where the spatial resolution is large. We therefore

only reparameterize the last stage of the architecture, while replacing the first stride-2 convolution by a

stride-1 convolution, exactly as in [269]. We also add explicit padding layers to account for the padding

of the original convolutions.

8.3 Performance of the Transformed CNNs

In this section, we apply our reparametrization to state-of-the-art CNNs, then fine-tune the resulting

T-CNNs to learn better representations. This method allows to fully disentangle the training of the SA

layers from that of the convolutional backbone, which is of practical interest for two reasons. First, it

minimizes the time spent training the SA layers, which typically have a slower throughput. Second, it

separates the algorithmic choices of the CNN backbone from those of the SA layers, which are typically

different; for example, CNNs are typically trained with SGD whereas SA layers perform much better

with adaptive optimizers such as Adam [264], an incompatibility which may limit the performance of

usual hybrid models.

Note that our reparametrization can also be applied halfway through training: this scenario is

investigated in Sec. 8.4.2. Results suggest that reparametrizing at intermediate times is optimal in terms

of speed-performance trade-offs. However, for easier reproducibility, we focus on reparametrizing the

fully pre-trained CNNs available in the Timm package [253]: this avoids having to retrain the various

models from scratch.

8.3.1 Training details

We applied our method to pre-trained ResNet-RS [272] models, using the weights provided by the

Timm package [253]. These models are derived from the original ResNet [77], but use improved

architectural features and training strategies, enabling them to reach better speed-accuracy trade-offs

than EfficientNets.

To minimize computational cost, we restrict our fine-tuning to 50 epochs
1
. Following [264], we use

the AdamW optimizer, with a batch size of 1024
2
. The learning rate is warmed up to 10−4

then annealed

using a cosine schedule. To encourage the T-CNN to escape the convolutional configuration and learn

content-based attention, we use a larger learning rate of 0.1 for the gating parameters of Eq. 7.7 (one

could equivalently decrease the temperature of the sigmoid function).

We use the same data augmentation scheme as the DeiT [217], as well as rather large stochastic

depth coefficients dr reported in Tab. 8.1. Hoping that our method could be used as an alternative to

the commonly used practice of fine-tuning models at higher resolution, we also increase the resolution

during fine-tuning [273]. In this setting, a ResNet50 requires only 6 hours of fine-tuning on 16 V100 GPUs,

compared to 33 hours for the original training. For our largest model (ResNet350-RS), the fine-tuning

lasts 50 hours.

1

We study how performance depends on the number of fine-tuning epochs in App. G.4.

2

Confirming the results of [264], we obtained worse results with SGD.
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Figure 8.2: T-CNNs reach much higher performance and robustness at equal training time. Total
training time (original training + finetuning) is normalized by the total training time of the ResNet50-RS.

Backbone
Training Fine-tuning

Without SA With SA

Res. dr TTT Top-1 Res. dr TTT Top-1 TTT Top-1

ResNet50-RS 160 0.0 1 (ref.) 78.8 224 0.1 1.16 80.4 1.30 81.0
ResNet101-RS 192 0.0 1.39 80.3 224 0.1 1.65 81.9 1.79 82.4
ResNet152-RS 256 0.0 3.08 81.2 320 0.2 3.75 83.4 4.13 83.7
ResNet200-RS 256 0.1 4.15 82.8 320 0.2 5.04 83.7 5.42 84.0
ResNet270-RS 256 0.1 6.19 83.8 320 0.2 7.49 83.9 7.98 84.3
ResNet350-RS 288 0.1 10.49 84.0 320 0.2 12.17 84.1 12.69 84.5

Table 8.1: Statistics of the models considered, trained from scratch on ImageNet. Top-1 accuracy
is measured on ImageNet-1k validation set. “TTT” stands for total training time (including fine-tuning),

normalized by the total training time of the ResNet50-RS. dr is the stochastic depth coefficient used for

the various models.

8.3.2 Performance improvements

Results are presented in Tab. 8.1, where we also report the baseline improvement of fine-tuning in the

same setting but without SA. In all cases, our fine-tuning improves top-1 accuracy, with a significant gap

over the baseline. To demonstrate the wide applicability of our method, we report similar improvements

for ResNet-D architectures in App. G.5.

Despite the extra fine-tuning epochs and their slower throughput, the resulting T-CNNs also outper-

forming the original CNNs on the ImageNet validation set at equal training budget, as shown in the

leftmost panel of Fig. 8.2
3
. However, the major benefit of the reparametrization is in terms of robustness,

as shown in Fig. 8.2(b) and explained below.

8.3.3 Robustness improvements

Recent work has shown that Transformer-based architectures offer better robustness and out-of-domain

generalization than convolutional architectures [274–277]. To investigate whether our fine-tuning

3

We estimated the training times of the original ResNet-RS models based on their throughput, for the same hardware as

used for the T-ResNet-RS.
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Figure 8.3: Robustness is most improved for strong and blurry corruption categories. We report

the relative improvement between the top-1 accuracy of the T-ResNet50-RS and that of the ResNet50-RS

on ImageNet-C, averaging over the different corruption categories (left) and corruption severities (right).

procedure is enough to imbue CNNs with these advantages, we evaluate our T-CNNs on various

benchmarks:

• Common corruptions: we use ImageNet-C [278], a dataset containing 15 sets of randomly generated

corruptions, grouped into 4 categories: ‘noise’, ‘blur’, ‘weather’, and ‘digital’. Each corruption type has

five levels of severity, resulting in 75 distinct corruptions. Note that to avoid distorting the corruptions,

which are often pixel-based, we keep a resolution of 224 at inference, which disadvantages the large

models trained at higher resolutions.

• Adversarial robustness: following [275], we evaluate the accuracy of our models under two white-

bow attacks
4
: (i) single-step FGSM [279] and (ii) multi-step L∞-PGD [280] with t = 5 steps of size

α = 0.5. Both attackers perturb the input image with max magnitude ϵ = 1. We also evaluate our

models on ImageNet-A [281], a dataset containing naturally “adversarial” examples from ImageNet.

Note however that since this dataset is built from the flaws of a ResNet, it is potential unfair to CNNs.

• Distribution shifts: we use ImageNet-R [282], a dataset with various stylized “renditions” of ImageNet

images ranging from paintings to embroidery, which strongly modify the local image statistics.

The full table of results is presented in Tab. G.1 of App. G.1, and illustrated in Figs. 8.1 and 8.2. The

T-ResNet-RS substantially outperforms the ResNet-RS on all robustness benchmarks. For example, our

T-ResNet101-RS, which is 50% faster than ResNet200-RS, reaches similar or better results all robustness

tasks, despite its lower top-1 accuracy on ImageNet-1k. This demonstrates that SA improves robustness

more than it improves classification accuracy. The most striking improvement is in terms of adversarial

robustness, where the smallest T-ResNet-RS is on par with the largest ResNet-RS despite requiring 5

times less compute.

To better understand where the benefits come from, we decompose the improvement of the T-

ResNet50-RS over the various corruption severeties and categories of ImageNet-C in Fig. 8.3. We observe

4

We use the toolkit provided by https://github.com/bethgelab/foolbox.
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Figure 8.4: The later layers effectively escape the convolutional configuration. A: top-1 accuracy
throughout the 50 epochs of fine-tuning of a T-ResNet270-RS. B: size of the receptive field of the various
heads h (thin lines), calculated as α−1

h (see Eq. 7.4). Thick lines represent the average over the heads. C:
depicts how much attention the various heads h (thin lines) pay to positional information, through the

value of σ(λh) (see Eq. 7.7). Thick lines represent the average over the heads.

that improvement increases almost linearly with corruption severity. Although performance is higher

in all corruption categories, there is a strong variability: the T-CNN shines particularly in tasks where

the objects in the image are less sharp due to lack of contrast, bad weather or blurriness. We attribute

this to the ability of SA to distinguish shapes in the image, as investigated in Sec 8.4.

8.4 Dissecting the Transformed CNNs

In this section, we provide some theoretical analysis of the inner workings of the Transformed CNNs.

8.4.1 Representations learnt

We begin by analyzing various observables to understand how the representations of a T-ResNet270-RS

evolve from those of the ResNet270-RS throughout training.

Unlearn to better relearn In Fig. 8.4A, we display the train and test accuracy throughout training
5
.

The dynamics decompose into two distinct phases: accuracy dips down during the learning rate warmup

phase (first 5 epochs of training), then increases back up as the learning rate is decayed.

As shown in App. G.2, the depth of the dip depends on the learning rate. For too small learning

rates, the dip is small, but the test accuracy increases too slowly after the dip; for too large learning

rates, the test accuracy increases rapidly after the dip, but the dip is too deep to be compensated for.

This suggests that the T-CNN needs to “unlearn” to some extent, a phenomenon reminiscent of the

“catapult” mechanism of [283] which propels models out of sharp minima to land in wider minima.

5

The train accuracy is lower than the test accuracy due to the heavy data augmentation used during fine-tuning.
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(b) Attention maps

Figure 8.5: GPSA layers combine local and global attention in a complementary way. We depicted

the attention maps of the four GPSA layers of the T-ResNet270-RS, obtained by feeding the image on

the left through the convolutional backbone, then selecting a query pixel in the center of the image (red

box). For each head h, we indicate the value of the gating parameter σ(λh) in red (see Eq. 7.7). In each

layer, at least one of the heads learns to perform content-based attention (σ(λh) = 0).

Escaping the convolutional representation In Fig. 8.4B, we show the evolution of the “attention

span” 1/αh (see Eq. 7.5), which reflects the size of the receptive field of attention head h. On average

(thick lines), this quantity increases in the first three layers, showing that the attention span widens,

but variability exists among different attention heads (thin lines): some broaden their receptive field,

whereas others contract it.

In Fig. 8.4C, we show the evolution of the gating parameters λh of Eq. 7.7, which reflect how much

attention head h pays to position versus content. Interestingly, the first layer stays strongly convolutional
on average, as Ehσ(λh) rapidly becomes close to one (thick blue line). The other layers strongly escape

locality, with most attention heads focusing on content information at the end of fine-tuning.

In Fig. 8.5, we display the attention maps after fine-tuning. A clear divide appears between the

“convolutional” attention heads, which remain close to their initialization, and the “content-based”

attention heads, which learn more complex dependencies. Notice that the attention head initially

focusing on the query pixel (head 5) stays convolutional in all layers. Throughout the layers, the edges

of the central object is more and more clearly visible, as observed in [284]. This supports the hypothesis

that robustness gains obtained for blurry corruptions (see Fig. 8.3) are partly due to the ability of the SA

layers to isolate objects from the background.

8.4.2 When should one start learning the self-attention layers?

We have demonstrated the benefits of initializing T-CNNs from pre-trained CNNs, a very compelling

procedure given the wide availability of pretrained models. But one may ask: how does this compare to

training a hybrid model from scratch? More generally, given a computational budget, how long should

the SA layers be trained compared to the convolutional backbone?

Transformed CNN versus hybrid models To answer the first question, we consider a ResNet-50

trained on ImageNet for 400 epochs. We use SGD with momentum 0.9 and a batch size of 1024, warming

up the learning rate for 5 epochs before a cosine decay. To achieve a strong baseline, we use the same

augmentation scheme as in [217] for the DeiT. Results are reported in Tab. 8.2. In this modern training
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Name t1 t2 Train time Top-1

Vanilla CNN 400 0 2.0k mn 79.04

Vanilla CNN↑320 450 0 2.4k mn 79.78

T-CNN 400 50 2.3k mn 79.88

T-CNN↑320 400 50 2.7k mn 80.84

Vanilla hybrid 0 400 2.8k mn 79.95

T-CNN
⋆

100 300 2.6k mn 80.44
T-CNN

⋆
200 200 2.4k mn 80.28

T-CNN
⋆

300 100 2.2k mn 79.28

Table 8.2: The benefit of late reparametrization. We report the top-1 accuracy of a ResNet-50 on

ImageNet reparameterized at various times t1 during training. ↑320 stands for fine-tuning at resolution

320. The models with a ⋆ keep the same optimizer after reparametrization, in contrast with the usual

T-CNNs.

setting, the vanilla ResNet50 reaches a solid performance of 79.04% on ImageNet, well above the 77%

usually reported in litterature.

The T-CNN obtained by fine-tuning the ResNet for 50 epochs at same resolution obtains a top-1

accuracy of 79.88%, with a 15% increase in training time, and 80.84 at resolution 320, with a 35% increase

in training time. In comparison, the hybrid model trained for 400 epochs in the same setting only reaches

79.95%, in spite of a 40% increase in training time.

Hence, fine-tuning yields better results than training the hybrid model from scratch, while require

less time to train.

What is the best time to reparametrize? We now study a scenario between the two extreme cases:

what happens if we reparametrize halfway through training? To investigate this question in a systematic

way, we train the ResNet50 for t1 epochs, then reparametrize and resume training for another t2 epochs,

ensuring that t1 + t2 = 400 in all cases. Hence, t1 = 400, amounts to the vanilla ResNet50, whereas

t1 = 0 corresponds to the hybrid model trained from scratch. To study how final performance depends

on t1 in a fair setting, we keep the same optimizer and learning rate after the reparametrization, in

contrast with the fine-tuning procedure which uses fresh optimizer.

Results are presented in Tab. 8.2. Interestingly, the final performance evolves non-monotonically,

reaching a maximum of 80.44 for t1 = 100, then decreasing back down as the SA layers have less

and less time to learn. This non-monotonicity is remarkably similar to that observed in [285], where

reparameterizing a CNN as a FCN in the early stages of training enables the FCN to outperform the

CNN. Crucially, this result suggests that reparametrizing during training not only saves time, but also

helps the T-CNN find better solutions.

8.5 Conclusion

In this chapter, we showed that complex building blocks such as self-attention layers need not be trained

from start. Instead, one can save in compute time while gaining in performance and robustness by
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initializing them from pre-trained convolutional layers. At a time where energy savings and robustness

are key stakes, we believe this finding is important.

On the practical side, our fine-tuning method offers an interesting new direction for practitioners.

One limitation of our method is the prohibitive cost of reparametrizing the early stages of CNNs. This

cost could however be alleviated by using linear attention methods [261], an important direction for

future work. Note also that while our T-CNNs significantly improve the robustness of CNNs, they

do not always reach the performance of end-to-end Transformers such as the DeiT (for example on

ImageNet-C, see Fig. 8.1). Bridging this gap is an important next step for hybrid models.
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Part III

Understanding Learning Dynamics
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Chapter 9

Optimal Learning Rate Schedules in
Non-Convex Optimization

Learning rate schedules are ubiquitously used to speed up and improve optimisation. Many different

policies have been introduced on an empirical basis, and many theoretical analyses have been developed

for convex settings. However, in many realistic problems the loss-landscape is high-dimensional and

non convex – a case for which results are scarce. In this chapter we present a first analytical study of

the role of learning rate scheduling in this setting, focusing on Langevin optimization with a learning

rate decaying as η(t) = t−β . We begin by considering models where the loss is a Gaussian random

function on the D-dimensional sphere (D → ∞), featuring an extensive number of critical points. We

find that to speed up optimization without getting stuck in saddles, one must choose a decay rate β < 1,
contrary to convex setups where β = 1 is generally optimal. We then add to the problem a signal to

be recovered. In this setting, the dynamics decompose into two phases: an exploration phase where

the dynamics navigates through rough parts of the landscape, followed by a convergence phase where
the signal is detected and the dynamics enter a convex basin. In this case, it is optimal to keep a large

learning rate during the exploration phase to escape the non-convex region as quickly as possible, then

use the convex criterion β = 1 to converge rapidly to the solution. Finally, we demonstrate that our

conclusions hold in a common regression task involving neural networks, and discuss their generality

based on results from out of equilibrium physics.

9.1 Introduction

Learning rate schedules are used across all areas of modern machine learning, yet very little is known

on which schedule is most suited for a given problem. This question has been thoroughly studied for

convex problems, where the optimal learning rate schedule generally goes as η(t) ∼ 1/t [286, 287].
However, deep neural networks and other high-dimensional modern optimization problems are known

to operate in highly non-convex loss landscapes [288, 289]. Developing a theory to understand the

impact of scheduling in this setting remains a crucial challenge.

In this chapter we present, to the best of our knowledge, the first analytical study of this problem for

gradient-based algorithms. We focus on the high-dimensional inference problem of retrieving a ground

truth signal x⋆ ∈ RD from observations via a noisy channel. When the noise dominates the signal, the

loss simply boils down to a Gaussian random function on the D-dimensional sphere (D→∞). This
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Figure 9.1: The optimal learning rate schedule depends on the structure of the landscape. (Left):
in the purely non-convex landscapes of Sec. 9.3, the learning rate must be decayed as η(t) = η0/t

β
with

β < 1 to speed up optimization. (Right): the landscapes of Secs. 9.4 and 9.5 feature basins of attraction

due to the presence of a signal to recover. One must first keep a large constant learning rate to escape

the rough parts of the landscape as quickly as possible, then decay the learning rate as η(t) = η0/t once
inside a convex basin.

optimization problem has been studied in the literature for constant learning rate, both using rigorous

methods and techniques from statistical physics, see [112, 290–293] and references therein.

Setup Learning rate decay is generally used to reduce the noise induced by optimization schemes used

in practice. For example, SGD with batch size B typically induces a noise which scales as the learning

rate divided by batch size η/B [214, 294–296]. To mimick this optimization noise, we focus on Langevin

dynamics [287, 297–299]. Given a loss function L and a temperature T , this consists in minimising L by

updating the estimate x ∈ RD of the signal from a random initial condition according to the equation:

dxi(t)
dt = −η(t)

(
∂L(x, x⋆)

∂xi
+ ξi(t) + z(t)xi(t)

)
, (9.1)

where ξ(t) ∈ RD is a Gaussian noise with 0 mean and variance ⟨ξi(t)ξj(t′)⟩ = 2Tδijδ(t − t′), and
the Lagrange multiplier z(t) is used to enforce the spherical constraint ∥x∥2 = D which we impose

throughout the paper (z(t) can be thought of as a weight decay that evolves during training to keep the

norm of the estimator fixed). The temperature T represents the strength of the noise inherent to the

optimisation algorithm, i.e. 1/B for SGD (we consider T < 1 in the following). To study scheduling, we

decay the learning rate as η(t) = η0/t
β
, as commonly chosen in the literature [300, 301]. Note that here

we are considering gradient-flow – our results are confirmed by experiments performed with gradient

descent.

We consider two models for the loss L: the (planted) Sherrington-Kirkpatrick (SK) model [302],

where the signal is scrambled by a random matrix, and the more involved spiked matrix-tensor (SMT)

model [303], where the signal is additionally observed through its contraction with a random tensor

of order p. The first setup is analytically tractable both at infinite and finite dimensions [304, 305],

and its landscape features a number of critical points which grows linearly with the dimension. The

second setup is more involved and requires a mean-field treatment in the infinite dimensional limit [303,
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306, 307]. The number of critical points grows exponentially with the dimension and has been studied

analytically with the Kac-Rice method [308, 309]. This distinction allows us to grasp how the amount of

non-convexity impacts the optimal decay of the learning rate.

9.1.1 Contributions

We begin by considering the purely non-convex setup where the signal is undetectable (left panel of

Fig. 9.1). The loss is then a Gaussian random function on the D-dimensional sphere with zero mean

and a covariance E[L(x)L(x′)] ∝ (x · x′)p. We determine the optimal learning rate to reach the lowest

value of the loss function on an arbitrarily large (but finite) time in the high-dimensional limit. For the

p = 2 case, corresponding to the spherical SK model, we find β = 1/2 whereas for p > 2 we obtain

β = 2/5. The higher degree of non-convexity of the latter requires the learning rate to be decayed

more slowly; we generalize these findings by leveraging results from out-of-equilibrium physics. Note

that inverse square root decay is commonly used among practitioners in state-of-the-art endeavours

such as training Transformers [78]; our analysis provides theoretical evidence for its soundness in a

particular class of non-convex landscapes.

We then study the influence of a detectable signal (right panel of Fig. 9.1), and we determine the

optimal learning rate schedule to find the signal in the shortest amount of time. In this case, a crossover

time emerges between two phases [310]: a search phase, where the signal is weak and the dynamics travel

through a rugged landscape, followed by a convergence phase the signal is detected and the problem

becomes locally convex. We show that the optimal schedule is to keep a large constant learning rate

during the first phase to speed up the search, then, once in the convex basin, to decay the learning rate

as 1/t. This protocol allows to speed up convergence and find lower loss solutions, and is reminiscent of

schedules used in practice.

Finally, we show through experiments that these insights are reflected in practice when training

neural networks on a teacher-student regression task with SGD.

Reproducibility The code to reproduce the figures in this chapter is available at https://github.
com/mariaref/nonconvex-lr.

9.1.2 Related work

Empirical schedules Typically, learning rate schedules consist in a large learning rate phase followed

by a decay phase. A body of works have shown that this allows to learn easy patterns early on and

complex patterns later [311, 312]. Although stepwise decays of the learning rate were used for a long

time [77, 313], most recent works have turned to smooth decays such as inverse square root [78] and

cosine annealing [314], which involve less hyperparameters to tune. Other possibilities include cyclical

learning rates [315] and automatic schedulers [316]. The use of a warmup [317] before decaying the

learning rate has shown to be effective in avoiding instabilities arising from large learning rates [318, 319].

Another common practice is to use adaptive optimizers, which select a different learning rate for each

learning parameter [320–322], although these have been shown to often degrade generalization [323–

325].

Theortical works On the theoretical side, several works have studied Langevin dynamics for mean-

field spin glasses. Particularly relevant to us are those which focus on the spherical SK setup [304, 305],

as well as those showing the existence of a search and a convergence phase for the SMT model [303].
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However, to the best of our knowledge, no previous works have studied these kind of highly non-convex

optimization problems in the context of a non-constant learning rate. Our analysis is based on common

methods in theoretical physics which have been to a large extent made rigorous in recent years [290,

291, 307, 308], and is confirmed by numerical experiments.

9.2 The speed-noise trade-off in a simple convex problem

Before studying non-convex problems, it is instructive to recall the effect learning rate decay has on

optimisation in a simple 1D convex basin of curvature κ, for which L(x) = 1
2κx

2
. The Langevin

equation (Eq. 9.1) can easily be solved and yields (see App. I.1):

⟨L(t)⟩ = κx(t0)2

2 e
−2κ

∫ t
t0

dτη(τ)

︸ ︷︷ ︸
L̄(t)

+ κT

2

∫ t

t0
dt′η(t′)2e−2κ

∫ t
t′ dτη(τ)

︸ ︷︷ ︸
δL(t)

,

where ⟨.⟩ denotes an average over the noise ξ. The first term is an optimization term, which amounts

to forgetting the initial condition x(t0). It is present in absence of noise (T = 0) and its decrease is

related to the way the dynamics descend in the loss landscape. The second term is a noise term, which is

proportional to the strength of the noise T , and reflects the impact Langevin noise has on optimization.

To converge to the solution x = 0 as quickly as possible, one is faced with a dilemma: reducing the

learning rate suppresses the effect of the noise term δL, but also slows down the dynamics, leading to

a larger optimization term L̄. The ideal tradeoff is found when these two effects are comparable. By

taking η(t) = η0/t we obtain:

L̄(t) ∝ t−2η0κ, δL(t) ∝ 1/t. (9.2)

Hence, the loss decays to zero as 1/t if we take η0 ≥ 1/2κ, as found in many previous works [286, 287].

Note that if we take a slower decay such as η(t) ∼ 1/tβ with β < 1, L̄(t) converges to 0 exponentially

fast, but δL(t)∝η(t) decays slower and bottlenecks the loss. Conversely, if we take a faster schedule,

i.e. β > 1, then the noise term decays faster, but the dynamics stop before reaching the solution, as L̄(t)
does not converge to zero when t→∞.

This simple example illustrates the trade-off between the speed of optimisation and the noise

suppressing effect, which will be the cornerstone of proper scheduling in the high-dimensional non-

convex settings studied below.

9.3 Optimal decay rates in random landscapes

In this section, we consider purely non-convex optimization landscapes, where the loss L is a Gaussian

random function defined on the D-dimensional sphere, with zero mean and covariance:

E[L(x)L(x′)] = D

2 (x · x′)p, p ≥ 2.

This setup, which has been studied in great detail in the context of statistical physics, can be viewed as

a special case of the inference problems of Sec. 9.4 where the noise is too strong for the signal to be

detectable. The aim is not to retrieve a signal, but simply to decrease the loss as quickly as possible on

an arbitrarily large (but finite) time.
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9.3.1 Sherrington-Kirkpatrick model

We start by focusing on the case p = 2. This can be achieved with the spherical version of the spin glass

model introduced by [302]. Here, the variables xi and xj interact with each other via random symmetric

couplings
1 Jij ∼ N (0, 1), and, as throughout the paper, are required to satisfy the spherical constraint

∥x(t)∥2 = D. The loss function is given by:

L(x) = − 1√
D

D∑
i<j

Jijxixj . (9.3)

In this section, we consider the high-dimensional limit D→∞; finite-dimensional effects are dis-

cussed in Sec. 9.4.1.

Solving the dynamics To obtain the value of the loss function at all times, we multiply the original

Langevin equation by xi and sum over all components. Using Ito’s lemma, and the concentration of z(t)
in the D→∞ limit, leads to the simple relation:

0 =
〈
∂∥x∥2

∂t

〉
= η(t) [−2L(t) −Dz(t)] +Dη(t)2T

⇒ L(t) = −D

2 (z(t) − η(t)T ) (9.4)

As in the convex setup, we find a competition between an optimization term and a noise term. Since

the temperature is fixed, the latter decays as η(t). To obtain the value of the Lagrange multiplier z(t),
we impose the spherical constraint at all times, yielding (see App. I.2):

z(t) = 2 − 3(1 − β)
4t1−β . (9.5)

Hence, the scaled loss ℓ = L/D converges to the ground state (global minimum) ℓGS = − 1 as a

sum of power-laws:

ℓ(t) − ℓGS = η0T

2tβ +


3(1−β)
8η0t1−β , β < 1

3
8η0 log t , β = 1

. (9.6)

Optimal decay rate At long times, Eq. 9.6 implies a power-law decay of the loss with an exponent

min(β, 1 − β) due to the speed-noise tradeoff. Hence, the optimal decay rate at long times is βopt = 1/2.
This is confirmed by numerical simulations at finite size, see Fig. 9.2. Note that this decay rate is

empirically chosen to train many state-of-the-art neural networks such as the original Transformer [78],

but, to the best of our knowledge, has never been justified from a theoretical point-of-view in a non-

convex high-dimensional setting.

1

As discussed in App. I.2, due to the universality typical of random matrix theory distributions, our results hold for a broad

class of distributions for the couplings. Note also that the diagonal terms do not matter in the large D limit but for simplicity

we take Jii ∼ N (0, 2).
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Figure 9.2: In the SK model, the optimal decay rate is βopt = 0.5. (Left) Loss curves of the SK model

when decaying the learning rate as η(t) = η0/t
β
for various values of β (colored lines). (Right) Decay

exponent of ℓ− ℓGS at long times as a function of β. We recognize a decay exponent of min(β, 1 − β)
as predicted by Eq. 9.6, which is fastest for βopt = 1/2. Parameters: D = 3000, T = 1, η0 = 0.1.

Curvature analysis To gain better understanding, it is informative to study the local curvature of

the effective landscape the dynamics take place in. To do so, one needs to compute the spectrum of the

effective Hessian taking into account the spherical constraint of Eq. 9.1, defined as:

Hess = 1√
D
J + z(t)I. (9.7)

In the the D→∞ limit, the spectral density of the first term, defined as ρ(µ) =
∑D
i=1 δ(µ − µi),

converges to a semi-circle law [326]:

ρsc(µ) = 1
2π

√
4 − µ2, ∀µ ∈ [−2, 2]. (9.8)

The spectral density of Hess is shifted to the right during the dynamics by the Lagrange multiplier

z(t), reflecting the way in which the local curvature changes with t. As show in Fig 9.3 and known

from previous works [304], there remains negative eigenvalues at any finite time: the right edge of the

spectrum only reaches 0 asymptotically as t→∞, since z(t)→2.
Hence, the dynamics never completely escape the saddles of the landscape at D → ∞. This

ruggedness of the landscape entails slow “glassy" dynamics, characterized by a power-law decay of

the optimization term for any β < 1, contrary to the exponential decay obtained in the convex setup

(Sec. 9.2).

9.3.2 The p-spin model

We now turn to the analysis of the p-spin model which has been extensively studied in physics as a

model of structural glasses, see e.g. [327]. To us, it is an ideal candidate as it corresponds to a random

Gaussian landscape (with p > 2) for which the Kac-Rice approach rigorously shows the existence of a

number of critical points growing exponentially with the dimension [328]. It is thus intrinsically harder,

i.e. more strongly non-convex than the SK model above. The loss of the p-spin model (for p > 2) is
written as:

L = −

√
(p− 1)!
Dp−1

∑
i1<...<ip

Ji1...ipxi1 ...xip . (9.9)
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curvature, i.e. the spectral density of the Hessian (Eq. 9.7) shifts to the right. The left hand side of the

spectrum only reaches 0 at t→∞, signalling that there remains negative eigenvalues at any finite time.

Parameters: D = 3000, T = 1, η0 = 0.1, β = 0.8.

Solving the dynamics In the high-dimensional limit D→∞, the Langevin dynamics of the system

can be reduced to a closed set of PDEs for a set of “macroscopic" quantities, which concentrate with

respect to the randomness in the couplings J and the thermal noise in the dynamics ξ, as shown
rigorously in [290]. These quantities are the two-point correlation C(t, t′) of the system at times t, t′

and the response R(t, t′) of the system at time t to a perturbation in the loss function at an earlier time

t′:

C(t, t′) = lim
D→∞

1
D

E
ξ,J

D∑
i=1

xi(t)xi(t′), (9.10)

R(t, t′) = lim
D→∞

1
D

E
ξ,J

D∑
i=1

δxi(t)
δξi(t′)

. (9.11)

Their dynamics is described by a closed set of integro-differential equations, dubbed the Crisanti-Horner-

Sommers-Cugliandolo-Kurchan (CHSCK) equations [290, 306, 329]. We extend these equations to the

non-constant learning rate case using the methods reviewed in [330]:

∂R (t1, t2)
∂t1

= F pR(z,R,C, η), (9.12)

∂C (t1, t2)
∂t1

= F pC(z,R,C, η), (9.13)

z(t)=Tη(t) + p

∫
dt2η(t2)R(t2, t)Cp−1(t2, t), (9.14)

where we deferred the full expression of the update functions F pR and F pC as well as their derivation to

App. I.4.1.

Imposing the the spherical constraint C(t, t) = 1 allows to find the value of the spherical constraint

z(t). To compute the loss, we follow the same procedure as in the SK model and obtain:

ℓ(t) ≡ L
D

= −1
p

(z(t) − Tη(t)) . (9.15)
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Figure 9.4: In the p-spin model, the optimal decay rate is βopt = 0.4. (Left) Loss curves of the
3-spin model at T = 1 when decaying the learning rate as η(t) = η0/t

β
for various values of β (colored

lines). (Right) Decay exponent of ℓ− ℓth at long times, for various p, as a function of β. We recognize a

decay exponent of min(β, γ(1−β)), as predicted by Eq. 9.17, which is fastest for βopt = 2/5. Parameters:
dt = 10−2

, η0 = 0.5, T = 1.

Optimal decay rate Here again we find that two competing terms contribute to the loss, the first

related to optimisation and the second to noise. By choosing a learning rate η(t) = η0/tβ , the later
decays as t−β . The decay of the former is more complex due to the high complexity of the landscape.

It can be shown [306] that the system never reaches the ground state, instead remaining trapped in

so-called threshold states where the Hessian has many zero eigenvalues (the density of eigenvalues is a

Wigner semicircle whose left edge is zero as in the SK model). The loss is then given by:

ℓth = −
√

4(p− 1)
p

> ℓGS . (9.16)

The relaxation towards the threshold states is characterised by a power-law due to the rough energy

landscape, but with a different exponent this time: zth − z(t) ∝ t−γ , with γ = 2/3 at T = 0 [331].

Using the CHSCK equations (9.12), we analytically show in App. I.3 that with decaying learning rate the

exponent becomes γ(1 − β). Hence, similarly to the SK model, the decay of the loss is controlled by a

competition between two power-laws:

ℓ(t) − ℓth ∼ t− min(β,γ(1−β)) ⇒ βopt = γ

1 + γ
= 2

5 . (9.17)

In Fig. 9.4, we numerically integrate Eqs. 9.12 for p = 3, 4, 6, confirming that the optimal decay rate

to balance the noise and the optimization terms is βopt = 2/5. The numerical integration is non-trivial

and we implement it using the tools developed in [303].

9.3.3 Relation with annealing in physics

The results found in this section can be put in a very general framework that was developed in physics

of out of equilibrium systems. As shown in App. I.3.1, using a learning rate schedule is equivalent to

annealing the temperature of the physical system as a power-law t−β/1−β
. Thus, finding the optimal

learning rate schedule to minimize the loss is equivalent to determining the optimal annealing protocol

to decrease the energy. A key ingredient in the solution is how fast the dynamics descend in the loss

landscape in absence of noise. In physical systems, this optimization term generally follows a power-law

decay with exponent γ [332–334].
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Figure 9.5: Emergence of a crossover time in the planted SK model. The dashed black show the

loss (left) and overlap with the signal (right) at constant learning rate η0 = 0.1. The colored lines,

show the result of keeping the learning rate constant until ts and then decaying as η(t) = η0/(t− ts)β
(as shown in the inset). The dashed vertical line marks the theoretical crossover time tcross = logD

2η0κ
,

it matches with the time at which the loss, at constant learning rate, saturates. Before the crossover,

decaying the learning rate is detrimental. After the crossover, it allows the model to converge to zero

loss as t−β and to perfectly recover the signal. We set D = 3000, T = 1., η0 = 0.1, β = 0.8, κ = 0.5.

At finite temperature, the speed-noise tradeoff requires this decay rate to be equal to that of the

temperature, β/1−β, leading to βopt = γ/1+γ. The exponent γ has been determined in many statistical

physics problems, corresponding to different high-dimensional non-convex landscapes, and typically

ranges from zero (logarithmic relaxation) to one. Our results extend to all these problems and, and

predict optimal annealing exponents varying between 0 and 1/2.

9.4 Recovering a signal: the two phases of learning

We now move to the setup where there is a signal x⋆ in the problem, which the algorithm aims to

retrieve in the shortest time possible. In addition to the random Gaussian function, the loss now contains

a deterministic term forming an attraction basin in the landscape, as sketched in the right panel of

Fig. 9.1.

9.4.1 Spiked Sherrington-Kirkpatrick model

We first consider the so-called planted SK model, where the objective is to retrieve a ground truth

x⋆ such that ∥x⋆∥2 = D, i.e. maximize the overlap with the signal m =
∑

i
xi·x⋆i/D. We enforce as

before the spherical constraint ∥x∥2 = D which inducesm ∈ [−1, 1], and sample randomly the initial

configuration of x, such that the initial overlap is of order 1/
√
D. The loss function takes the form:

L(x) = −D

2 m
2 − ∆√

D

D∑
i<j

Jijxixj = 1
2xHx

⊤, (9.18)

with H=− ∆√
D
J − 1

Dx
⋆x⋆⊤

.

Decreasing ∆ makes the signal easier to detect, leading to an easier problem. For ∆ < 1/2, an
eigenvalue of H pops out of the semicircle law (9.8) as a BBP transition takes place [335], leading to the
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follow spectrum:

ρ(µ) =
(

1 − 1
D

)
ρsc(µ/∆) + 1

D
ρ(µ− 1) (9.19)

This is the regime in which the signal overcomes the noise, i.e. the global minimum of the loss has a

finite overlap with the signal, which can then be retrieved by gradient flow (or gradient descent).

In the following, we assume that ∆ < 1/2, and define the gap between the largest and second largest

eigenvalue as κ ≡ 1 − 2∆. In App. I.2, we analytically show the emergence of a crossover time,

tcross =
( logD

2η0κ

) 1
1−β

. (9.20)

Before tcross, the system behaves as if the signal was absent, i.e. as in Sec. 9.3.1: this is the search phase.

After tcross, the signal is detected: this is the convergence phase. The loss becomes:

ℓ(t) − ℓGS = η0T

2tβ +
{

O(e−2η0κt1−β ), β < 1
O(t−2η0κ), β = 1

(9.21)

with ℓGS = −1. We recognize here the exact same result as obtained in the convex setup of Eq. 9.2: as

long as η0 > 1/2κ, the optimal learning rate schedule is η = η0/t. This indicates that the dynamics

has entered a convex basin of curvature κ.

Optimal learning rate schedule To speed up the initial phase where the signal hasn’t yet aligned

with the signal, one needs to reduce tcross, which is achieved by using a large learning rate η0 without

any decay (β = 0). Passed this crossover, the system enters a convex basin, and the optimal exponent

becomes β = 1. Ergo, the best schedule is to keep the learning rate constant up to tcross, then to decay

it with β = 1, in contrast with the case without signal where β = 1/2 was optimal, see Sec. 9.3.1. This

is confirmed by the numerical experiments of Fig. 9.5, where we start decaying the learning rate as

η0/(t−ts)−β
for different "switch" times ts. Decaying too early, with ts < tcross, slows down the dynamics,

whereas ts > tcross enables the system to reach the ground state at a rate t−β .

Finite-dimensional effects The two phases in the dynamics are a general feature when there is a

finite gap κ between the largest and second largest eigenvalue ofH . In theD→∞ limit, this only occurs

when ∆ < 1/2. However, when ∆ > 1/2, there is a finite gap at finite D due to the discrete nature of

the spectrum, which scales as κ ∼ D−2/3
[336]. This induces a crossover time tcross ∼ D2/3

. Hence,

decaying the learning rate as βopt remains optimal for any finite time budget t < tcross, but for a large
budget t > tcross, using the two-step schedule described in this section becomes optimal.

9.4.2 Spiked Matrix-Tensor model

We finally move to the analysis of the SMT model for which the loss function is [307]:

L(x) = − D

2∆2
m2 −

√
1

∆2D

∑
i<j

Ji,jxixj − D

p∆p
mp −

√
(p− 1)!
∆pDp−1

∑
i1<...<ip

Ji1,...,ipxi1 ..xip ,

where both Jij and Ji1,..,ip sampled i.i.d. from N (0, 1). As understood from the loss function, the

signal is observed through its contraction with a matrix and a tensor of order p. This model is a natural
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Figure 9.6: Emergence of a crossover time in the SMT model. By fixing β from start, or anytime
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which is minimal for constant learning rate β = 0. In contrast, by decaying the learning rate at long

times allows to reach lower loss solutions (left) with higher overlap with the signal (right). The optimal

schedule is to keep η constant until tcross and then set β = 1. By doing so, we get the best of both

worlds: the first phase minimises tcross while the second allows to reach more informative solutions.

Parameter: β = 0.8, ∆2 = 0.2, ∆p = 6, η0 = 1, T = 1, dt = 10−2,m0 = 10−10.

next step for our analysis: its loss landscape is extremely non-convex, but its dynamics are exactly

solvable in the D→∞ limit. They can be described by a closed set of PDEs describing the dynamical

evolution of the quantities m(t), C(t, t′), R(t, t′) and z(t) described in Sec. 9.3.2. The derivation of

these equations is deferred to the appendix I.4.1.

The difficulty of the problem is controlled by the values of ∆2 and ∆p. Here, we focus on the

Langevin easy phase, defined in [307], where a randomly initialized system recovers the signal and the

overlap converges to a value of order one.
2
The dynamics in this setting have been well understood

at constant learning rate in [303], and are shown as a black line in Fig. 9.6 for η0 = 1: the system

remains trapped in the exponentially many threshold states until a time tcross. At tcross, the system finally

detects the signal and the overlap jumps to a valuemgs of order one. This behavior is reminiscent of the

grokking phenomenon observed for neural networks [338].

The colored lines of Fig. 9.6 show that decaying the learning rate from a time ts affects optimisation

in two different ways. (i) If we choose ts < tcross, the loss actually starts by dropping, in contrast with

what was observed in Fig. 9.5. However, this drop in the loss does not yield an increase of the overlap

with the signal, and the system rapidly gets stuck, remaining in a state of low overlap even after tcross.
(ii) If we choose ts > tcross, once the signal is detected, the noise is suppressed, allowing the system

to converge to the ground state and the overlap to increase. Hence, the optimal schedule is again to

keep a constant large learning rate during the search phase (i.e. until tcross) then decay with β = 1. We

provide further theoretical justification for this behavior in App. I.4.2.
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9.5 Turning to SGD: teacher-student regression

Our work has demonstrated the emergence of a crossover time in a class of inference problems, before

which one should keep the learning rate constant and after which it becomes useful to decay the learning

rate.

We now investigate these findings in a setup that is more realistic but simple enough to be amenable

to analytical treatment in the near future: the teacher-student regression problem described in the

previous chapter. Just as before, a student network is trained to mimick the ouputs of a teacher by

minimising the test error (ϵg) over a dataset of P input-outputs observations {xµ, yµ} ∈ {RD,R}. Here
both the student S and the teacher T are two-layer networks:

S(x) =
K∑
k=1

W k
2 σ

(
W k

1 · x√
D

)
T (x) =

M∑
m=1

W̃m
2 σ

(
W̃m

1 · x√
D

)
.

We train on i.i.d. gaussian inputs xi ∼ N (0, 1) via SGD, by minimising the error over mini-batches of

size B:

ϵg = 1
B

B∑
µ=1

(S(xµ) − T (xµ))2 , (9.22)

The optimisation noise is controlled by the batch size B and is absent for full batch SGD. To study the

effect of learning rate scheduling, we focus on a mini-batch of size 1 for which optimisation noise is

high.

Fig. 9.7 shows the test error (calculated over the whole training set) of a student withK = 2 hidden

units learning from a teacher withM = 2 hidden units (results with different sizes are presented in

App. I.5). As before, we keep the learning rate constant η0 until a time ts then decay it as η0/(t−ts)−β
. The

phenomenology is remarkably similar to that of Sec. 9.4: there exists a cross-over time tcross such that if

the learning rate is decayed before tcross, optimisation remains stuck at high ϵg . In contrast, decaying

2

We must start from a very small initial overlap m0 = 10−10
as explained in [303], since m0 = 0 would cause the system

to remain stuck in the D→∞ limit considered here [337].
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the learning rate after after tcross enables to tame the noise associated with optimisation and converge

to lower loss solutions.

9.6 Conclusion

In this chapter, we have analyzed learning rate scheduling in a variety of high-dimensional non-convex

optimization problems. First, we focused on purely non-convex problems (without any basins of

attraction), and showed that the optimal learning rate decay in the high-dimensional limit has an

exponent smaller than one, which varies according to the degree of non-convexity of the problem at

hand (ranging from 0.4 to 0.5 in the problems considered here). Then, we studied models where a signal

must be recovered in presence of noise. In this case, what is important is not how fast we decay the

learning rate, but when we start decaying it. It is better to keep a large learning rate in the search phase

to find the convex basin as quickly as possible, and only then start decaying the learning rate.

These theoretical findings are remarkably reminiscent of learning rate schedules used in practice.

Establishing a tighter connection is an important direction for future work: could the 1/
√
t decay

commonly used to train transformers reflect the properties of the landscape the dynamics take place

in? Conversely, could one predict the optimal decay rate by inspecting the properties of the landscape?

Establishing such connections in simple settings such as that of Sec. 9.5 is certainly within reach thanks

to the recent analytical tools developed in [339–343].
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Chapter 10

Align, then Memorise: the Dynamics of
Learning with Feedback Alignment

Direct Feedback Alignment (DFA) is emerging as an efficient and biologically plausible alternative to

backpropagation for training deep neural networks. Despite relying on random feedback weights for

the backward pass, DFA successfully trains state-of-the-art models such as Transformers. On the other

hand, it notoriously fails to train convolutional networks. An understanding of the inner workings

of DFA to explain these diverging results remains elusive. In this chapter, we propose a theory of

feedback alignment algorithms. We first show that learning in shallow networks proceeds in two steps:

an alignment phase, where the model adapts its weights to align the approximate gradient with the

true gradient of the loss function, is followed by a memorisation phase, where the model focuses on

fitting the data. This two-step process has a degeneracy breaking effect: out of all the low-loss solutions

in the landscape, a network trained with DFA naturally converges to the solution which maximises

gradient alignment. We also identify a key quantity underlying alignment in deep linear networks: the

conditioning of the alignment matrices. The latter enables a detailed understanding of the impact of data

structure on alignment, and suggests a simple explanation for the well-known failure of DFA to train

convolutional neural networks. Numerical experiments on MNIST and CIFAR10 clearly demonstrate

degeneracy breaking in deep non-linear networks and show that the align-then-memorize process

occurs sequentially from the bottom layers of the network to the top.

10.1 Introduction

Training a deep neural network on a supervised learning task requires solving the credit assignment

problem: how should weights deep in the network be changed, given only the output of the network

and the target label of the input? Today, almost all networks from computer vision to natural language

processing solve this problem using variants of the back-propagation algorithm (BP) popularised several

decades ago by [344].

For concreteness, we illustrate BP using a fully-connected deep network of depth L with weights

Wl in the lth layer. Given an input x ≡ h0 ∈ RD, the output ŷ ∈ RC (with C the output dimension)

is computed sequentially as ŷ = fy(aL), with al = Wlhl−1 and hl = σ(al), where σ is a pointwise

non-linearity. For regression, the loss function L is the mean-square error and fy is the identity. Given
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Figure 10.1: Three approaches to the credit assignment problem in deep neural networks. In
back-propagation (BP), the weight updates δWl are computed sequentially by transmitting the error e
from layer to layer using the transpose of the network’s weightsW⊤

l . In feedback alignment (FA) [347],
W⊤
l are replaced by fixed random feedback matrices Fl. In direct feedback alignment (DFA) [348], the

error is directly injected to each layer using random feedback matrices Fl, enabling parallelized training.

the error e ≡ ∂L/∂aL = ŷ − y of the network on an input x, the update of the last layer of weights reads

δWL = −ηeh⊤
L−1 (10.1)

for a learning rate η. The updates of the layers below are given by δWl = −ηδalhTl−1, with factors δal
defined sequentially as

δaBP
l = ∂L/∂al =

(
W T
l+1δal+1

)
⊙ σ′ (al) , (10.2)

with ⊙ denoting the Hadamard product. BP thus solves the credit assignment problem for deeper layers

of the network by using the transpose of the network’s weight matrices to transmit the error signal

across the network from one layer to the next, see Fig. 10.1.

Despite its popularity and practical success, BP suffers from several limitations. First, it relies on

symmetric weights for the forward and backward pass, which makes it a biologically implausible learning

algorithm [345, 346]. Second, BP updates layers sequentially during the backward pass, preventing an

efficient parallelisation of training, which becomes ever more important as state-of-the-art networks

grow larger and deeper.

In light of these shortcomings, algorithms which only approximate the gradient of the loss are

attracting increasing interest. [347] demonstrated that neural networks can be trained successfully even

if the transpose of the network weightsW⊤
l are replaced by random feedback connections Fl in the

backward pass, an algorithm they called “feedback alignment” (FA):

δaFAl = (Flδal+1) ⊙ σ′ (al) . (10.3)

In this way, they dispense with the need of biologically unrealistic symmetric forward and backward

weights [345, 346]. The “direct feedback alignment” (DFA) algorithm of [348] takes this idea one step
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further by propagating the error directly from the output layer to each hidden layer of the network

through random feedback connections Fl:

δaDFAl = (Fle) ⊙ σ′ (al) . (10.4)

DFA thus allows updating different layers in parallel. Fig. 10.1 shows the information flow of all three

algorithms.

While it was initially unclear whether DFA could scale to challenging datasets and complex ar-

chitectures [349, 350], recently [351] narrowed the gap with BP when using DFA to train a number

of state-of-the-art architectures on problems ranging from neural view synthesis to natural language

processing. Yet, feedback alignment notoriously fails to train convolutional networks [350, 352–354].

These varied results underline the need for a theoretical understanding of how and when feedback

alignment works.

10.1.1 Contributions

In this chapter, we make the following contributions:

1. We give an analytical description of DFA dynamics in shallow non-linear networks, building on

seminal work analysing BP in the limit of infinitely many training samples [355–357].

2. We show that in this setup, DFA proceeds in two steps: an alignment phase, where the forward

weights adapt to the feedback weights to improve the approximation of the gradient, is followed by a

memorisation phase, where the network sacrifices some alignment to minimise the loss. Out of the

same-loss-solutions in the landscape, DFA converges to the one that maximises gradient alignment,

an effect we term “degeneracy breaking”.

3. We then focus on the alignment phase in the setup of deep linear networks, and uncover a key

quantity underlying GA: the conditioning of the alignment matrices. Our framework allows us to

analyse the impact of data structure on DFA, and suggests an explanation for the failure of DFA to

train convolutional layers.

4. We complement our theoretical results with experiments that demonstrate the occurence of (i) the

Align-then-Memorise phases of learning, (ii) degeneracy breaking and (iii) layer-wise alignment in

deep neural networks trained on standard vision datasets.

Reproducibility We host all the code to reproduce our experiments online at https://github.
com/sdascoli/dfa-dynamics.

10.1.2 Related work

[347] gave a first theoretical characterisation of feedback alignment by arguing that for two-layer linear

networks, FA works because the transpose of the second layer of weightsW2 tends to align with the

random feedback matrix F1 during training. This weight alignment (WA) leads the weight updates

of FA to align with those of BP, leading to gradient alignment (GA) and thus to successful learning.

[358] extended this analysis to the deep linear case for a variant of DFA called “Direct Random Target

Projection” (DRTP), under the restrictive assumption of training on a single data point. [348] also

introduced a layerwise alignment criterion to describe DFA in the deep nonlinear setup, under the

assumption of constant update directions for each data point.
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Figure 10.2: Learning dynamics of back-propagation and feedback alignment for sigmoidal
and ReLU neural networks learning a target function. Each plot shows three runs from different

initial conditions for every setting, where a shallow neural network withK hidden nodes tries to learn a

teacher network withM hidden nodes. (a) All networks trained using BP in the matched caseK = M
achieve perfect test error. (b) Sigmoidal networks achieve perfect test error with DFA, but the algorithm

fails in some instances to train ReLU networks (K = M ). (c) In the over-parametrised case (K > M ),

both sigmoidal and ReLU networks achieve perfect generalisation when trained with DFA. Parameters:
D = 500, L = 2,M = 2, η = 0.1, σ0 = 10−2

.

10.2 A two-phase learning process

We begin with an exact description of DFA dynamics in shallow non-linear networks. Here we consider

a high-dimensional scalar regression task where the inputs x ∈ RD are sampled i.i.d. from the standard

normal distribution. We focus on the classic teacher-student setup, where the labels y ∈ R are given by

the outputs of a “teacher” network with random weights [76, 359–362]. In this section, we let the input

dimension D→∞, while both teacher and student are two-layer networks withK,M ∼ O(1) hidden
nodes.

We consider sigmoidal, σ(x) = erf (x/√
2), and ReLU activation functions, σ(x) = max(0, x). We

asses the student’s performance on the task through its the generalisation error, or test error:

ϵg(θ, θ̃) ≡ 1
2E [ŷ − y]2 ≡ 1

2E
[
e2
]
, (10.5)

where the expectation E is taken over the inputs for a given teacher and student networks with

parameters θ̃ = (M, W̃1, W̃2, σ) and θ = (K,W1,W2, σ). Learning a target function such as the

teacher is a widely studied setup in the theory of neural networks [103, 363–374].

In this shallow setup, FA and DFA are equivalent, and only involve one feedback matrix, F1 ∈ RK
which back-propagates the error signal e to the first layer weightsW1. The updates of the second layer

of weightsW2 are the same as for BP.

Performance of BP vs. DFA We show the evolution of the test error (10.5) of sigmoidal and ReLU

students trained via vanilla BP in the “matched” caseK = M in Fig. 10.2 a, for three random choices of

the initial weights with standard deviation σ0 = 10−2
. In all cases, learning proceeds in three phases:

an initial exponential decay; a phase where the error stays constant, the “plateau” [76, 355, 372]; and

finally another exponential decay towards zero test error.

Sigmoidal students trained by DFA always achieve perfect generalisation when started from different

initial weights with a different feedback vector each time (blue in Fig. 10.2 b) raising a first question: if
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Figure 10.3: (a) Theory gives exact prediction for the learning dynamics. We plot learning curves

for BP and DFA obtained from (i) a single simulation (solid lines), (ii) integration of the ODEs for BP

dynamics [355, 357] (orange dots), (iii) integration of the ODEs for DFA derived here (blue dots). Insets:
Teacher second-layer weights (red) as well as the degenerate solutions (light red) together with the

feedback vector F1 (green) and the student second-layer weights v (blue) at three different times during

training with DFA. Parameters: D = 500,K = M = 2, η = 0.1, σ0 = 10−2
.

(b) Align-then-Memorise process. Alignment (cosine similarity) between the student’s second layer

weights and the feedback vector. In the align phase, the alignment increases, and reaches its maximal

value when the test error reaches the plateau. Then it decreases in the memorization phase, as the

student recovers the teacher weights.

(c) The degeneracy breaking mechanism. There are multiple degenerate global minima in the

optimisation landscape: they are related through a discrete symmetry transformation of the weights

that leaves the student’s output unchanged. DFA chooses the solution which maximises the alignment

with the feedback vector.

the student has to align its second-layer weights with the random feedback vector in order to retrieve

the BP gradient [347], i.e. W2 ∝ F1, how can it recover the teacher weights perfectly, i.e. W2 = W̃2?
For ReLU networks, over-parametrisation is key to the consistent success of DFA: while some

students withK = M fail to reach zero test error (orange in Fig. 10.2 b), almost every ReLU student

having more parameters than her teacher learns perfectly (K = 4M in Fig. 10.2 c). A second question

follows: how does over-parameterisation help ReLU students achieve zero test error?

An analytical theory for DFA dynamics To answer these two questions, we study the dynamics of

DFA in the limit of infinite training data where a previously unseen sample (x, y) is used to compute

the DFA weight updates (10.4) at every step. This “online learning” or “one-shot/single-pass” limit of

SGD has been widely studied in recent and classical works on vanilla BP [355–357, 363, 375–381].

We work in the regime where the input dimension D→∞, while M and K are finite. The test

error (10.5), i.e. a function of the student and teacher parameters involving a high-dimensional average

over inputs, can be simply expressed in terms of a finite number of “order parameters” Q = (Qkl), R =
(Rkm), T = (Tmn),

lim
D→∞

ϵg(θ, θ̃) = ϵg(Q,R, T,W2, W̃2) (10.6)
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where

Qkl=W k
1 W

l
1

D
, Rkm=W k

1 W̃
m
1

D
, Tmn= W̃m

1 W̃n
1

D
(10.7)

as well as second layer weights W̃m
2 andW k

2 [76, 355–357]. Intuitively, Rkm quantifies the similarity

between the weights of the student’s kth hidden unit and the teacher’smth hidden unit. The self-overlap

of the kth and lth student nodes is given by Qkl, and likewise Tmn gives the (static) self-overlap of

teacher nodes.

In seminal work, [355] and [357] obtained a closed set of ordinary differential equations (ODEs)

for the time evolution of the order parameters Q and R. Our first main contribution is to extend their

approach to the DFA setup (see SM H.1 for the details), obtaining a set of ODEs (H.7) that predicts the

test error of a student trained using DFA (10.4) at all times. The accuracy of the predictions from the

ODEs is demonstrated in Fig. 10.3 a, where the comparison between a single simulation of training a

two-layer net with BP (orange) and DFA (blue) and theoretical predictions yields perfect agreement.

10.2.1 Sigmoidal networks learn through “degeneracy breaking”

The test error of a sigmoidal student trained on a teacher with the same number of neurons as herself

(K = M ) contains several global minima, which all correspond to fixed points of the ODEs (H.7). Among

these is a student with exactly the same weights as her teacher. The symmetry erf(z) = −erf(−z)
induces a student with weights {W̃1, W̃2} to have the same test error as a sigmoidal student with weights

{−W̃1,−W̃2}. Thus, as illustrated in Fig. 10.3 c, the problem of learning a teacher has various degenerate

solutions. A student trained with vanilla BP converges to any one of these solutions, depending on the

initial conditions.

Alignment phase A student trained using DFA has to fulfil the same objective (zero test error), with

an additional constraint: her second-layer weightsW2 needs to align with the feedback vector F1 to
ensure the first-layer weights are updated in the direction that minimises the test error. And indeed, an

analysis of the ODEs (cf. Sec. H.2) reveals that in the early phase of training, Ẇ2 ∼ F and soW2 grows

in the direction of the feedback vector F1 resulting in an increasing overlap betweenW2 and F1. In
this alignment phase of learning, shown in Fig. 10.3 b,W2 becomes perfectly aligned with F1. DFA has

perfectly recovered the weight updates forW1 of BP, but the second layer has lost its expressivity (it is

simply aligned to the random feedback vector).

Memorisation phase The expressivity of the student is restored in the memorisation phase of

learning, where the second layer weights move away from F1 and towards the global miminum of the

test error that maintains the highest overlap with the feedback vector. In other words, students solve this

constrained optimisation problem by consistently converging to the global minimum of the test error

that simultaneously maximises the overlap betweenW2 and F1, and thus between the DFA gradient

and the BP gradient. For DFA, the global minima of the test error are not equivalent, this “degeneracy

breaking” is illustrated in Fig. 10.3 c.

10.2.2 Degeneracy breaking requires over-parametrisation for ReLU networks

The ReLU activation function has a very different kind of symmetry to sigmoidal activation functions.

It posses the continuous symmetry max(0, x) = γmax(0, x/γ) for any γ > 0, however it cannot
compensate a change of sign ofW k

2 with a change of sign ofW k
1 . Consequently, a ReLU student can
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Figure 10.4: Over-parameterisation improves performance of shallow ReLU networks. We

show the learning dynamics of a student withK = 3 hidden nodes trained on a teacher withM = 2
nodes and W̃m

2 = 1 if the feedback vector has 0, 1, or 2 positive entries. Inset: Probability of achieving

zero test error (Eq. 10.8, line) compared to the fraction of simulations that converged to zero test error

(out of 50, crosses). Other parameters: D = 500, η = 0.1, σ0 = 10−2
.

only simultaneously align to the feedback vector F1 and recover the teacher’s second layer W̃2 if at

leastM elements of F1 have the same sign as W̃2. The inset of Fig. 10.4 shows that a student trained on

a teacher withM = 2 second-layer weights W̃m
2 = 1 only converges to zero test error if the feedback

vector has 2 positive elements (green). If instead the feedback vector has only 0 (blue) or 1 (orange)

positive entry, the student will settle at a finite test error. More generally, the probability of perfect

recovery for a student withK ≥ M nodes sampled randomly is given analytically as:

P(learn) = 1
2K

M∑
k=0

(
K

k

)
. (10.8)

As shown in Fig. 10.4, this formula matches with simulations. Note that the importance of the “correct”

sign for the feedback matrices was also observed in deep neural networks by [382].

10.2.3 Degeneracy breaking in deep networks

We explore to what extent degeneracy breaking occurs in deep nonlinear networks by training 4-layer

multi-layer perceptrons (MLPs) with 100 nodes per layer for 1000 epochs with both BP and DFA, on the

MNIST and CIFAR10 datasets, with Tanh and ReLU nonlinearities (cf. App. H.5.2 for further experimental

details). The dynamics of the training loss, shown in the left of Fig. 10.5, are very similar for BP and

DFA.

From degeneracy breaking, one expects DFA to drive the optimization path towards a special region

of the loss landscape determined by the feedback matrices. We test this hypothesis by measuring whether

networks trained with the same feedback matrices from different initial weights converge towards the

same region of the landscape. The cosine similarity between the vectors obtained by stacking the weights

of two networks trained independently using BP reaches at most 10−2
(right of Fig. 10.5), signalling that

they reach very distinct minima. In contrast, when trained with DFA, networks reach a cosine similarity
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Figure 10.5: Degeneracy breaking also occurs in deep neural networks. (Left) We plot the training

accuracy and the cosine similarity between the weights of four-layer fully-connected neural networks

with sigmoidal and ReLU activations during training on MNIST and CIFAR10. Averages taken over

10 runs; for exp. details see Sec. 10.2.3. (Right) Cartoon of the degeneracy breaking process in the

loss landscape of a deep network: while the optimization paths of models trained with SGD diverge in

the loss landscape, with DFA they converge to a region of the landscape determined by the feedback

matrices.

between 0.5 and 1 at convergence, thereby confirming that DFA breaks the degeneracy between the

solutions in the landscape and biases towards a special region of the loss landscape, both for sigmoidal

and ReLU activation functions.

This result suggests that heavily over-parametrised neural networks used in practice can be trained

successfully with DFA because they have a large number of degenerate solutions. We leave a more

detailed exploration of the interplay between DFA and the loss landscape for future work. As we will

discuss in Sec. 10.4, the Align-then-Memorise mechanism sketched in Fig. 10.3 c also occurs in deep

non-linear networks.

10.3 How do gradients align in deep networks?

This section focuses on the alignment phase of learning. In the two-layer setup there is a single feedback

vector F1, of same dimensions as the second layerW2, and to whichW2 must align in order for the first

layer to recover the true gradient.

In deep networks, as each layerWl has a distinct feedback matrix Fl of different size ofWl, it is

not obvious how the weights must align to ensure gradient alignment. We study how the alignment

occurs by considering deep linear networks with L layers without bias, without any assumption on the

training data. While the expressivity of linear networks is naturally limited, their learning dynamics is

non-linear and rich enough to give insights that carry over to the non-linear case both for BP [72, 73,

364, 383, 384] and for DFA [347, 348, 358].
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10.3.1 Weight alignment as a natural structure

In the following, we assume that the weights are initialised to zero. With BP, they would stay zero at

all times, but for DFA the layers become nonzero sequentially, from the bottom to the top layer. In the

linear setup, the updates of the first two layers at time t can be written in terms of the corresponding

input and error vectors using Eq. (10.4)
1
:

δW t
1 = −η(F1et)xTt , δW t

2 = −η(F2et)(W1xt)⊤
(10.9)

Summing these updates shows that the first layer performs Hebbian learning modulated by the feedback

matrix F1:

W t
1 = −η

∑t−1
t′=0

F1et′x
⊤
t′ = F1A

t
1, (10.10)

At1 = −η
∑t−1

t′=0
et′x

⊤
t′ (10.11)

Plugging this result into δW t
2 , we obtain:

W t
2 = −η

t−1∑
t′=0

F2et(At
′

1 xt′)⊤F⊤
1 = F2A

t
2F

⊤
1 , (10.12)

At2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e⊤
t′′ . (10.13)

When iterated, the procedure above reveals that DFA naturally leads to weak weight alignment of the
network weights to the feedback matrices:

Weak WA:W t
1<l<L=FlA

t
lF

⊤
l−1, W t

L=AtLF
⊤
L−1, (10.14)

where we defined the alignment matrices Atl≥2 ∈ RC×C
(C being the output dimension):

Atl≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt′
l xt′) · (Bt′′

l xt′′)et′e⊤
t′′ . (10.15)

Bl ∈ RC×C
is defined recursively as a function of the feedback matrices only and its expression together

with the full derivation is deferred to App. H.3. These results can be adapted both to DRTP [358],

another variant of feedback alignment where et = −yt and to FA by performing the replacement

Fl→FlFl+1 . . . FL−1.

10.3.2 Weight alignment leads to gradient alignment

WeakWA builds throughout training, but does not directly imply GA. However, if the alignment matrices

become proportional to the identity, we obtain strong weight alignment:

Strong WA: W t
1<l<L ∝ FlF

⊤
l−1, W t

L ∝ F⊤
L−1. (10.16)

1

We implicitly assume a minibatch size of 1 for notational simplicity, but conclusions are unchanged in the finite-batch

setup.
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Additionally, since GA requires Fle ∝ W⊤
l+1δal+1 (Eqs. 10.4 and 10.2), strong WA directly implies

GA if the feedback matrices Fl≥2 are assumed left-orthogonal, i.e. F⊤
l Fl = IC . Strong WA of (10.16)

induces the weights, by the orthogonality condition, to cancel out by pairs of two:

W⊤
l+1δal+1 ∝ FlF

⊤
l+1Fl+1 . . . F

⊤
L−1FL−1e = Fle. (10.17)

The above suggests that taking the feedback matrices left-orthogonal is favourable for GA. If the feedback

matrices elements are sampled i.i.d. from a Gaussian distribution, GA still holds in expectation since

E
[
F⊤
l Fl

]
∝ IC .

Quantifying gradient alignment Our analysis shows that key to GA are the alignment matrices:

the closer they are to identity, i.e. the better their conditioning, the stronger the GA. This comes at the

price of restricted expressivity, since layers are encouraged to align to a product of (random) feedback

matrices. In the extreme case of strong WA, the freedom of layers l ≥ 2 is entirely sacrificed to allow

learning in the first layer! This is not harmful for the linear networks as the first layer alone is enough to

maintain full expressivity
2
. Nonlinear networks, as argued in Sec. 10.2, rely on the Degeneracy Breaking

mechanism to recover expressivity.

10.4 The case of deep nonlinear networks

In this section, we show that the theoretical predictions of the previous two sections hold remarkably

well in deep nonlinear networks trained on standard vision datasets.

10.4.1 Weight Alignment occurs like in the linear setup

To determine whether WA described in Sec. 10.3 holds in the deep nonlinear setup of Sec. 10.2.3, we

introduce the global and layerwise alignment observables:

WA=∡ (F,W), GA=∡
(
GDFA,GBP

)
(10.18)

WAl≥2 =∡(Fl,Wl), GAl≥2 =∡
(
GDFA
l ,GBP

l

)
, (10.19)

where ∡(A,B) = Vec(A) · Vec(B)/∥A∥∥B∥ and

F =
(
F2F

⊤
1 , . . . , FL−1F

⊤
L−2, F

⊤
L−1

)
,

W(t) =
(
W t

2, . . . ,W
t
L−1,W

t
L

)
,

G(t) =
(
δat1, . . . , δa

t
L−1

)
.

Note that the layer-wise alignment ofWl with FlF
⊤
l−1 was never measured before: it differs from the

alignment of Fl withWl+1 . . .WL observed in [386], which is more akin to GA.

If W and F were uncorrelated, the WA defined in (10.18) would be vanishing as the width of the

layer grows large. Remarkably, WA becomes of order one after a few epochs as shown in Fig. 10.6 (left),

and strongly correlates with GA (right). This suggests that the layer-wise WA uncovered for linear

networks with weights initialized to zero also drives GA in the general case.

2

such an alignment was indeed already observed in the linear setup for BP [385].
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Figure 10.6: Global alignment dynamics of deep nonlinear networks exhibits Align-then-
Memorise. Global weight and gradient alignments, as defined in (10.18), varying the activation function

and the dataset. Shaded regions represent the (small) variability over 10 runs.
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Figure 10.7: Layerwise alignment dynamics reveal sequential Align-then-Memorise. Layerwise
weight and gradient alignments as defined in (10.19), for a ReLU network trained on CIFAR10 with 10%

label corruption. Shaded regions represent the (small) variability over 10 runs.

10.4.2 Align-then-Memorise occurs from bottom layers to top

As can be seen in Fig. 10.6, WA clearly reaches a maximum then decreases, as expected from the Align-

then-Memorise process. Notice that the decrease is stronger for CIFAR10 than it is for MNIST, since

CIFAR-10 is much harder to fit than MNIST: more WA needs to be sacrificed. Increasing label corruption

similarly makes the datasets harder to fit, and decreases the final WA, as detailed in SM H.5.2. However,

another question arises: why does the GA keep increasing in this case, in spite of the decreasing WA?

To answer this question, we need to disentangle the dynamics of the layers of the network, as in

Eq. (10.19). In Fig. 10.7, we focus on the ReLU network applied to CIFAR10, and shuffle 10% of the

labels in the training set to make the Align-then-Memorise procedure more easily visible. Although

the network contains 4 layers of weights, we only have 3 curves for WA and GA: WA is only defined

for layers 2 to 4 according to Eq. (10.19), whereas GA of the last layer is not represented here since it is

always equal to one.
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Figure 10.8: Badly conditioned output statistics can hamper alignment. WA and GA at the final

point of training decrease when the output classes are correlated (β < 1) or of different variances
(α < 1).
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Figure 10.9: Label corruption hampers alignment in the early stages of training. We see that

the higher the label corruption, the more time WA and GA take to start increasing, since the network

initially predicts equal probabilities over the output classes.

As can be seen, the second layer is the first to start aligning: it reaches its maximal WA around

1000 epochs (orange dashed line), then decreases. The third layer starts aligning later and reaches its

maximal WA around 2000 epochs (green dashed line), then decreases. As for the last layer, the WA is

monotonically increasing. Hence, the Align-then-Memorise mechanism operates in a layerwise fashion,

starting from the bottom layers to the top layers.

Note that the WA of the last layers is the most crucial, since it affects the GA of all the layers below,

whereas the WA of the second layer only affects the GA of the first layer. It therefore makes sense to

keep the WA of the last layers high, and let the bottom layers perform the memorization first. This is

reminiscent of the linear setup, where all the layers align except for the first, which does all the learning.

In fact, this strategy enables the GA of each individual layer to keep increasing until late times: the

diminishing WA of the bottom layers is compensated by the increasing WA of the top layers.
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10.5 What can hamper alignment?

We demonstrated that GA is enabled by the WA mechanism, both theoretically for linear networks

and numerically for nonlinear networks. In this section, we leverage our analysis of WA to identify

situations in which GA fails.

10.5.1 Alignment is data-dependent

In the linear case, GA occurs if the alignment matrices presented in Sec. 10.3 are well conditioned. Note

that if the output size C is equal to one, e.g. for scalar regression or binary classification tasks, then the

alignment matrices are simply scalars, and GA is guaranteed. When this is not the case, one can obtain

the deviation from GA by studying the expression of the alignment matrices (10.15). They are formed

by summing outer products of the error vectors et′e
⊤
t′′ , where et = ŷt−yt. Therefore, good conditioning

requires the different components of the errors to be uncorrelated and of similar variances. This can be

violated by (i) the targets y, or (ii) the predictions ŷ.

(i) Structure of data The first scenario can be demonstrated in a simple regression task on i.i.d.

Gaussian inputs x ∼ R10
. The targets y ∈ R2

are randomly sampled from the following distribution:

y∼N (0,Σ), Σ=
(

1 α(1 − β)
α(1 − β) α2

)
, α, β≤ 1. (10.20)

In Fig. 10.8, we show the final WA and GA of a 3-layer ReLU network trained for 103
epochs on 103

examples sampled from this distribution (further details in SM H.5.3). As predicted, imbalanced (α < 1)
or correlated (β < 1) target statistics hamper WA and GA. Note that the inputs also come into play in

Eq. (10.15): a more detailed theoretical analysis of the impact of input and target statistics on alignment

is deferred to SM H.4.

(ii) Effect of noise For classification tasks, the targets y are one-hot encodings whose statistics are
naturally well conditioned. However, alignment can be degraded if the statistics of the predictions ŷ
become correlated.

One can enforce such a correlation in CIFAR10 by shuffling a fraction p of the labels. The WA and

GA dynamics of a 3-layer ReLU network are shown in Fig. 10.9. At high p, the network can only perform

random guessing during the first few epochs, and assigns equal probabilities to the 10 classes. The

correlated structure of the predictions prevents alignment until the network starts to fit the random

labels: the predictions of the different classes then decouple and WA takes off, leading to GA.

10.5.2 Alignment is impossible for convolutional layers

As we have seen in Chap. 6, a convolutional layer with filters Hl can be represented by a large fully-

connected layer whose weights are represented by a block Toeplitz matrix ϕ(Hl). This matrix has

repeated blocks due to weight sharing, and most of its weights are equal to zero due to locality. In order

to verify WA and therefore GA, the following condition must hold: ϕ(Hl) ∝ FlF
⊤
l−1. Yet, due to the

very constrained structure of ϕ(Hl), this is impossible for a general choice of Fl. Therefore, the WA

mechanism suggests a simple explanation for why GA doesn’t occur in vanilla CNNs, and confirms the

previously stated hypothesis that CNNs don’t have enough flexibility to align [353].
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In the case of convolutional layers, this lack of alignment makes learning near to impossible, and has

lead practitioners to design alternatives [352, 354]. However, the extent to which alignment correlates

with good performance in the general setup (both in terms of fitting and generalisation) is a complex

question which we leave for future work. Indeed, nothing prevents DFA from finding a good optimization

path, different from the one followed by BP. Conversely, obtaining high gradient alignment at the end

of training is not a sufficient condition for DFA to retrieve the results of BP, e.g. if the initial trajectory

leads to a wrong direction.

10.6 Conclusion

In this chapter, we have analyzed the success and failure modes of the DFA algorithm, which stands as

one of the most promising algorithms for biologically-plausible deep learning.

We have shown that their ability to approximate the gradient of the loss function relies on a weight
alignment mechanism whereby the weights of the network adapt to the feedback matrices, generally

in the ealy stages of learning. This mechanism imposes a strong constraint on the learning dynamics

which can prevent learning in architectures with restricted expressivity such as CNNs.

However, it also provides us with some theoretical tools to solve cases where DFA fails: in future

work, it would be interesting to study whether appropriate choices of the intial weights or feedback

matrices could ease the dynamics.
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Part IV

Deep learning for Symbolic Regression
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Chapter 11

Deep Symbolic Regression for Recurrent
Sequences

Symbolic regression, i.e. predicting a function from the observation of its values, is well-known to be

a challenging task. In this chapter, we train Transformers to infer the function or recurrence relation

underlying sequences of integers or floats, a typical task in human IQ tests which has hardly been tackled

in the machine learning literature. We evaluate our integer model on a subset of OEIS sequences, and

show that it outperforms built-in Mathematica functions for recurrence prediction. We also demonstrate

that our float model is able to yield informative approximations of out-of-vocabulary functions and

constants, e.g. bessel0(x) ≈ sin(x)+cos(x)√
πx

and 1.644934 ≈ π2/6.

11.1 Introduction

Given the sequence [1,2,4,7,11,16], what is the next term? Humans usually solve such riddles by noticing

patterns in the sequence. In the easiest cases, one can spot a function: [1,4,9,16,25] are the first five

squares, so the n-th term in the series is un = n2
, and the next one is 36. Most often however, we

look for relations between successive terms: in the sequence [1,2,4,7,11,16], the differences between

successive values are 1, 2, 3, 4, and 5, which makes it likely that the next term will be 16 + 6 = 22.
Mathematically, we are inferring the recurrence relation un = un−1 + n, with u0 = 1.

In all cases, we handle such problems as symbolic regressions: starting from a sequence of numbers,

we try to discover a function or a recurrence relation that they satisfy, and use it to predict the next

terms. This can lead to very challenging problems as the complexity of the unknown recurrence relation

un = f(n, {ui}i<n) increases, e.g. un = tan−1(un−3) exp(cos(n2)).
In this chapter, we train neural networks to infer the recurrence relation f from the observation of

the first terms of the sequence. The majority of studies in machine learning for symbolic regression

have focused on non-recurrent functions, i.e. expressions of the form y = f(x). Recurrence relations
provide a more general setting, which gives a deeper account of the underlying process: if the sequence

corresponds to successive time steps, the recurrence relation is a discrete time differential equation for

the system considered.
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OEIS Description First terms Predicted recurrence

A000792 a(n) = max{(n − i)a(i), i < n} 1, 1, 2, 3, 4, 6, 9, 12, 18, 27 un = un−1 + un−3 − un−1%un−3

A000855 Final two digits of 2n 1, 2, 4, 8, 16, 32, 64, 28, 56, 12 un = (2un−1)%100
A006257 Josephus sequence 0, 1, 1, 3, 1, 3, 5, 7, 1, 3 un = (un−1 + n)%(n − 1) − 1
A008954 Final digit of n(n + 1)/2 0, 1, 3, 6, 0, 5, 1, 8, 6, 5 un = (un−1 + n)%10
A026741 a(n) = n if n odd, n/2 if n even 0, 1, 1, 3, 2, 5, 3, 7, 4, 9 un = un−2 + n//(un−1 + 1)
A035327 n binary, switch 0’s and 1’s, then decimal 1, 0, 1, 0, 3, 2, 1, 0, 7, 6 un = (un−1 − n)%(n − 1)
A062050 n-th chunk contains numbers 1, ..., 2n 1, 1, 2, 1, 2, 3, 4, 1, 2, 3 un = (n%(n − un−1)) + 1
A074062 Reflected Pentanacci numbers 5, -1, -1, -1, -1, 9, -7, -1, -1, -1 un = 2un−5 − un−6

Table 11.1: Our integer model yields exact recurrence relations on a variety of interesting OEIS
sequences. Predictions are based on observing the first 25 terms of each sequence.

11.1.1 Contributions

We show that transformers can learn to infer a recurrence relation from the observation of the first

terms of a sequence. We consider both sequences of integers and floats, and train our models on a large

set of synthetic examples.

We first demonstrate that our symbolic regression model can predict complex recurrence relations

that were not seen during training. We also show that those recurrence relations can be used to

extrapolate the next terms of the sequence with better precision than a “numeric” model of similar

architecture, trained specifically for extrapolation.

We then test the out-of-domain generalization of our models. On a subset of the Online Encyclopedia

of Integer Sequences, our integer models outperform built-in Mathematica functions, both for sequence

extrapolation and recurrence prediction, see Table 11.1 for some examples. We also show that our

symbolic float model is capable of predicting approximate expressions for out-of-vocabulary functions

and constants (e.g. bessel0(x) ≈ sin(x)+cos(x)√
πx

and 1.644934 ≈ π2/6), see Tables 11.2, 11.3 for more

examples.

We conclude by discussing potential limitations of our models and future directions.

Reproducibility Weprovide an interactive demonstration of ourmodels at https://symbolicregression.
metademolab.com/. An open-source implementation of our code will be released publicly at https:
//github.com/facebookresearch/recur.

11.1.2 Related work

AI for maths The use of neural networks for mathematics has recently gained attention: several

works have demonstrated their surprising reasoning abilities [387, 388], and have even sparked some

interesting mathematical discoveries [389]. In particular, four types of tasks have recently been tackled

in the deep learning literature.

First, converting a symbolic expression to another symbolic expression. Direct examples are in-

tegration and differentation [390], expression simplification [391] or equation solving [392]. Second,

converting a symbolic expression to numerical data. This includes predicting quantitative properties of

a mathematical structure, for example the local stability of a differential system [393]. Third, converting
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Constant Approximation Rel. error

0.3333 (3 + exp(−6))−1 10−5

0.33333 1/3 10−5

3.1415 2 arctan(exp(10)) 10−7

3.14159 π 10−7

1.6449 1/ arctan(exp(4)) 10−7

1.64493 π2/6 10−7

0.123456789 10/92 10−9

0.987654321 1 − (1/9)2 10−11

Table 11.2: Our float model learns to approx-
imate out-of-vocabulary prefactors with its
own vocabulary. We obtain the approximation

of each constant C by feeding our model the 25

first terms of un = Cn.

Expression un Approximation ûn Comment

arcsinh(n) log(n+
√
n2 + 1) Exact

arccosh(n) log(n+
√
n2 − 1) Exact

arctanh(1/n) 1
2 log(1 + 2/n) Asymptotic

catalan(n) un−1(4 − 6/n) Asymptotic

dawson(n) n
2n2−un−1−1 Asymptotic

j0(n) (Bessel) sin(n)+cos(n)√
πn

Asymptotic

i0(n) (mod. Bessel)
en

√
2πn

Asymptotic

Table 11.3: Our float model learns to approxi-
mate out-of-vocabulary functions. For simple

functions, our model predicts an exact expression;

for complex functions, our model manages to pre-

dict the first order of the asymptotic expansion.

numerical data to numerical data using mathematical rules. Examples range from learning basic arith-

metics [394, 395] to linear algebra [396]. Fourth, converting numerical data to a symbolic expression:

this is the framework of symbolic regression, which we will be focusing on.

Symbolic regression Two types of approaches exist for symbolic regression, which one could name

selection-based and pretraining-based.

In selection-based approaches, we only have access to one set of observations: the values of the

function we are trying to infer. Typical examples of this approach are evolutionnary programs, which

have long been the de facto standard for symbolic regression [397–400], despite their computational cost

and limited performance. More recently, neural networks were used following this approach [401–403].

In pretraining-based approaches, we train neural networks on a large dataset containing observations

from many different function [404, 405], hoping that the model can generalize to new expressions.

Although the pretraining is computationally expensive, inference is much quicker as one simply needs

to perform a forward pass, rather than search through a set of functions. In this chapter and the next,

we choose this approach.

Recurrent sequences All studies on symbolic regression cited above consider the task of learning

non-recurrent functions from their values at a set of points. Our contribution is, to the best of our

knowledge, the first to tackle the setup of recurrent expressions. Although this includes non-recurrent

expressions as a special case, one slight restriction is that the inputs need to be sampled uniformly.

Hence, instead of feeding the model with input-output pairs {(xi, yi)}, we only need to feed it the

terms of the sequence {ui}. Another important difference is that order of these terms matters, hence

permutation invariant representations [405] cannot be used.

Integer sequences, in particular those from theOnline Encyclopedia of Integer Sequences (OEIS) [406],

have been studied using machine learning methods in a few recent papers. [407] trains various classifiers

to predict the label of OEIS sequences, such as “interesting”, “easy”, or “multiplicative”. [408] use

embeddings trained on OEIS to investigate the mathematical properties of integers. [409] use fully

connected networks to predict the next term of OEIS sequences (a numeric rather than symbolic
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regression task). [410] investigate different architectures (most of them recurrent networks) for digit-

level numeric regression on sequences such as Fibonacci, demonstrating the difficulty of the task.

11.2 Methods

Broadly speaking, we want to solve the following problem: given a sequence of n points {u0, . . . , un−1},
find a function f such that for any i ∈ N, ui = f(i, ui−1, . . . , ui−d), where d is the recursion degree.

Since we cannot evaluate at an infinite number of points, we declare that a function f is a solution of

the problem if, given the first ninput terms in the sequence, it can predict the next npred following ones.

Under this form, the problem is underdetermined: given a finite number of input terms, an infinite

number of recurrence relations exist. However in practice, one would like the model to give us the

simplest solution possible, following Occam’s principle. This is generally ensured by the fact that simple

expressions are more likely to be generated during training.

Integer vs. float We consider two settings for the numbers in the sequences: integers and floats. For

integer sequences, the recurrence formula only uses operators which are closed in Z (e.g. +,×, abs,
modulo and integer division). For float sequences, additional operators and functions are allowed,

such as real division, exp and cos (see Table 11.4 for the list of all used operators). These two setups

are interesting for different reasons. Integer sequences are an area of strong interest in mathematics,

particular for their relation with arithmetics. The float setup is interesting to see how our model can

generalize to a larger set of operators, which provides more challenging problems.

Symbolic vs. numeric We consider two tasks: symbolic regression and numeric regression. In

symbolic regression, the model is tasked to predict the recurrence relation the sequence was generated

from. At test time, this recurrence relation is evaluated by how well it approximates the npred following
terms in the sequence.

In numeric regression, is tasked to directly predict the values of the npred following terms, rather

than the underlying recurrence relation. At test time, the model predictions are compared with the true

values of the sequence.

Integer Float

Unary

abs, sqr,
sign, relu

abs, sqr, sqrt,
inv, log, exp,

sin, cos, tan, atan

Binary

add, sub, mul,
intdiv, mod add, sub, mul, div

Table 11.4: Operators used in our generators.

11.2.1 Data generation

All training examples are created by randomly generating a recurrence relation, randomly sampling its

initial terms, then computing the next terms using the recurrence relation. More specifically, we use the

steps below:
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1. Sample the number of operators o between 1 and omax, and build a unary-binary tree with o
nodes, as described in [390]. The number of operators determines the difficulty of the expression.

2. Sample the nodes of the tree from the list of operators in Table 11.4. Note that the float case uses

more operators than the integer case, which makes the task more challenging by expanding the

problem space.

3. Sample the recurrence degree d between 1 and dmax, which defines the recurrence depth: for

example, a degree of 2 means that un+1 depends on un and un−1.

4. Sample the leaves of the tree: either a constant, with probability pconst, or the current index
n, with probability pn, or one of the previous terms of the sequence un−i, with i ∈ [1, d], with
probability pvar .

5. Recalculate the true recurrence degree d considering the deepest leaf un−i sampled during the

previous step, then sample d initial terms from a random distribution P .

6. Sample l between lmin and lmax and compute the next l terms of the sequence using the initial

conditions. The total sequence length is hence ninput = deff + l.

We provide the values of the parameters of the generator in Table 11.5. Note that in the last step, we

interrupt the computation if we encounter a term larger than 10100
, or outside the range of one of the

operators: for example, a division by zero, or a negative square root.

Parameter Description Value

dmax Max degree 6
omax Max number of operators 10
lmin Min length 5
lmax Max length 30
pconst Prob of constant leaf 1/3
pindex Prob of index leaf 1/3
pvar Prob of variable leaf 1/3
P Distrib of first terms U(−10, 10)

Table 11.5: Hyperparameters of our generator.

11.2.2 Encodings

Model inputs are sequences of integers or floats. The outputs are recurrence relations for the symbolic

task, and sequences of numbers for the numeric task. To be processed by transformers, inputs and

outputs must be represented as sequences of tokens from a fixed vocabulary. To this effect, we use the

encodings presented below.

Integers We encode integers using their base b representation, as a sequence of 1 + ⌈logb |x|⌉ tokens:

a sign (which also serves as a sequence delimiter) followed by ⌈logb |x|⌉ digits from 0 to b − 1, for a
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total vocabulary of b+ 2 tokens. For instance, x = −325 is represented in base b = 10 as the sequence

[-, 3, 2, 5], and in base b = 30 as [-, 10, 25].
Choosing b involves a tradeoff between the length of the sequences fed to the Transformer and the

vocabulary size of the embedding layer. We choose b = 10, 000 and limit integers in our sequences to

absolute values below 10100
, for a maximum of 26 tokens per integer, and a vocabulary of order 104

words.

Floats Following [396], we represent float numbers in base 10 floating-point notation, round them to

four significant digits, and encode them as sequences of 3 tokens: their sign, mantissa (between 0 and

9999), and exponent (from E-100 to E100)1. For instance, 1/3 is encoded as [+, 3333, E-4]. Again,
the vocabulary is of order 104

words.

For all operations in floating-point representation, precision is limited to the length of the mantissa.

In particular, when summing elements with different magnitudes, sub-dominant terms may be rounded

away. Partly due to this effect, when approximating complex functions, our symbolic model typically

only predicts the largest terms in its asymptotic expansion, as shown in Table 11.3. We discuss two

methods for increasing precision when needed in Section J.4 of the Appendix.

Recurrence relations To represent mathematical trees as sequences, we enumerate the trees in prefix

order, i.e. direct Polish notation, and encode each node as a single autonomous token. For instance, the

expression cos(3x) is encoded as [cos,mul,3,x].
Note that the generation procedure implies that the recurrence relation is not simplified (i.e. expres-

sions like 1 + un−1 − 1 can be generated). We tried simplifying them using Sympy before the encoding

step (see Appendix J.2), but this slows down generation without any benefit on the performance of our

models, which turn out to be surprisingly insensitive to the syntax of the formulas.

11.2.3 Experimental details

Similarly to [390], we use a simple Transformer architecture [78] with 8 hidden layers, 8 attention heads

and an embedding dimension of 512 both for the encoder and decoder.

Training and evaluation The tokens generated by the model are supervised via a cross-entropy loss.

We use the Adam optimizer, warming up the learning rate from 10−7
to 2.10−4

over the first 10,000

steps, then decaying it as the inverse square root of the number of steps, following [78]. We train each

model for a minimum of 250 epochs, each epoch containing 5M equations in batches of 512. On 16 GPU

with Volta architecture and 32GB memory, one epoch is processed in about an hour.

After each epoch, we evaluate the in-distribution performance of our models on a held-out dataset of

10,000 equations. Unless specified otherwise, we generate expressions using greedy decoding. Note that

nothing prevents the symbolic model from generating an invalid expression such as [add,1,mul,2].
These mistakes, counted as invalid predictions, tend to be very rare: in models trained for more than a

few epochs, they occur in less than 0.1% of the test cases.

Hypothesis ranking To predict recurrence relations for OEIS sequences (Section 11.4.1), or the

examples displayed in Tables 11.1,11.2,11.3, we used a beam size of 10. Usually, hypotheses in the beam

are ranked according to their log-likelihood, normalized by the sequence length. For our symbolic model,

1

By convention, we represent zero as [+, 0, E0].
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Model

Integer Float

nop≤5 nop≤10 nop≤5 nop≤10

Symbolic 92.7 78.4 74.2 43.3
Numeric 83.6 70.3 45.6 29.0

Table 11.6: Average in-distribution accuracies of our models. We set τ = 10−10
and npred = 10.

we can do much better, by ranking beam hypotheses according to how well they approximate the initial

terms of the original sequence. Specifically, given a recurrence relation of degree d, we recompute for

each hypothesis the ninput first terms in the sequence (using the first d terms of the original sequence as

initial conditions), and rank the candidates according to how well they approximate these terms. This

ranking procedure is impossible for the numerical model, which can only perform extrapolation.

In some sense, this relates our method to evolutionary algorithms, which use the input terms for

candidate selection. Yet, as shown by the failure modes presented in Section J.6 of the Appendix, our

model is less prone to overfitting since the candidates are not directly chosen by minimizing a loss on

the input terms.

11.3 In-domain generalization

We begin by probing the in-domain accuracy of our model, i.e. its ability to generalize to unseen

sequences generated with the same procedure as the training data. As discussed in Section J.3 of the

Appendix, the diversity of mathematical expressions and the random sampling of the initial terms

ensures that almost all the examples presented at test time have not been seen during training: one

cannot attribute the generalization to mere memorization.

Prediction accuracy Due to the large number of equivalent ways one can represent a mathematical

expression, one cannot directly evaluate the accuracy by comparing (token by token) the predicted

recurrence relation to the ground truth. Instead, we use the predicted expression to compute the next

npred terms of the sequence {ûi}, and compare them with those computed from the ground truth, {ui}.
The prediction accuracy is then defined as:

acc(npred, τ) = P
(

max
1≤i≤npred

∣∣∣∣ ûi − ui
ui

∣∣∣∣ ≤ τ

)
(11.1)

By choosing a small enough τ ≥ 0 and a large enough npred, one can ensure that the predicted

formula matches the true formula. In the float setup, τ = 0 must be avoided for two reasons: (i)

equivalent solutions represented by different expressions may evaluate differently because due to finite

machine precision, (ii) setting τ = 0 would penalize the model for ignoring sub-dominant terms which

are indetectable due to the finite precision encodings. Hence, we select τ = 10−10
and npred = 10

unless specified otherwise
2
. Occasionally, we will consider larger values of τ , to assess the ability of our

model to provide approximate expressions.

2

For the float numeric model, which can only predict values up to finite precision ϵ, we round the values of target function

to the same precision. This explains the plateau of the accuracy at τ < ϵ in Figure 11.1.
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Figure 11.1: The symbolic model extrapolates further and with higher precision than the
numeric model. From left to right, we vary the tolerance τ , the number of predictions npred, the
number of operators o, the recurrence degree d and the number of input terms l. In each plot, we use the

following defaults for quantities which are not varied: τ = 10−10
, npred = 10, o ∈ [[1, 10]], d ∈ [[1, 6]],

l ∈ [[5, 30]].

Results The average in-distribution accuracies of our models are reported in Table 11.6 with τ = 10−10

and npred = 10. Although the float setup is significantly harder that the integer setup, our symbolic

model reaches good accuracies in both cases. In comparison, the numeric model obtains worse results,

particularly in the float setup. The interested reader may find additional training curves, attention maps

and visualizations of the model predictions in Appendix J.6.

Ablation over the evaluation metric The two first panels of Figure 11.1 illustrate how the accuracy

changes as we vary the tolerance level τ and the number of predictions npred. The first important

observation is that the symbolic model performs much better than the numeric model at low tolerance.

At high tolerance, it still keeps an advantage in the integer setup, and performs similarly in the float

setup. This demonstrates the advantage of a symbolic approach for high-precision predictions.

Second, we see that the accuracy of both models degrades as we increase the number of predictions

npred, as one could expect. However, the decrease is less important for the symbolic model, especially in

the float setup where the curve is essentially flat. This demonstrates another strong advantage of the

symbolic approach: once it has found the correct formula, it can predict the whole sequence, whereas

the precision of the numeric model deteriorates as it extrapolates further.

Ablation over the example difficulty The three last panels of Figure 11.1 decompose the accuracy

of our two models along three factors of difficulty: the number of operators o3, the recurrence degree d
and the sequence length ninput (see Section 11.2.1).

Unsurprisingly, accuracy degrades rapidly as the number of operators increases, particularly in the

float setting where the operators are more diverse: the accuracy of the symbolic model drops from 100%

for o=1 to 10% for o=10. We attempted a curriculum learning strategy to alleviate the drop, by giving

higher probabilities to expressions with many operators as training advances, but this did not bring any

improvement. Increasing the recurrence degree has a similar but more moderate effect: the accuracy

decreases from 70% for d=0 (non-recurrent expressions) to 20% for d=6 in the float setup. Finally, we

3

Since expressions are not simplified, o may be overestimated.
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Figure 11.2: Accuracy of our models on various in-domain and out-of-domain groups. We set

τ = 10−10
, npred = 10.

observe that shorter sequences are harder to predict as they give less information on the underlying

recurrence; however, even when fed with less than 10 terms, our models achieve surprisingly high

accuracies.

Ablation over operator families To understand what kind of operators are the hardest for our float

model, we bunch them into 5 groups:

• base: {add, sub, mul}.

• division: base + {div, inv}.

• sqrt: base + {sqrt}.

• exponential: base + {exp, log}.

• trigonometric: base + {sin, cos, tan, arcsin, arccos, arctan}.

Results are displayed in Figure 11.2a. We see that themain difficulties lie in division and trigonometric

operators, but the performance of both models stays rather good in all categories.

Visualizing the embeddings To give more intuition on the inner workings of our symbolic models,

we display a t-SNE [411] projection of the embeddings of the integer model in Figure 11.3a and of

exponent embeddings of the float model in Figure 11.3b.

Both reveal a sequential structure, with the embeddings organized in a clear order, as highlighted

by the color scheme. In Appendix J.5, we study in detail the pairwise distances between embeddings,

unveiling interesting features such as the fact that the integer model naturally learns a base-6 represen-

tation.

11.4 Out-of-domain generalization

In this section, we evaluate the ability of our model to generalize out-of-domain. Recurrence prediction

being a previously unexplored branch of symbolic regression, there are no official benchmarks we can
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Figure 11.3: The number embeddings reveal intriguing mathematical structure. We represented

the t-SNE of the embeddings of the integer model and the exponent embeddings of the float model. We

depicted the first 100 integer embeddings (10,000 in the model), and the exponent embeddings -40 to 40

(-100 to 100 in the model).

compare our models to. For integer sequences, we use a subset of OEIS as our out-of-domain benchmark;

for float sequences, we use a generator with out-of-vocabulary constants and operators. In Appendix J.1,

we also show that our models can and can be made robust noise in the inputs.

11.4.1 Integer sequences: OEIS dataset

The Online Encyclopedia of Integer Sequences (OEIS) is an online database containing over 300,000

integer sequences. It is tempting to directly use OEIS as a testbed for prediction; however, many

sequences in OEIS do not have a closed-form recurrence relation, such as the stops on the New York

City Broadway line subway (A000053). These will naturally cause our model to fail.

Preprocessing Luckily, OEIS comes with keywords, and 22% of the sequences are labelled as “easy”,

meaning that there is a logic to find the next terms (although this logic is by no means easy in most

cases). Note that this logic cannot always be formulated as a recurrence relation: for example, the

sequence of primes or decimals of π are included in this category, but intractable for our models. We

keep the first 10,000 of these sequences as our testbed. Evaluation consists in in showing our models the

first ninput ∈ {15, 25} terms of each sequence and asking it to predict the npred ∈ {1, 10} following

terms.

Results Results are reported in Table 11.7. With only ninput = 15 terms, the numeric model reaches

an impressive accuracy of 53% at next term prediction, and 27% for predicting the next ten terms. The

symbolic model achieves lower results, with 33% and 19% respectively; we attribute this to the large

number of non-analytic sequences in the testbed. Nonetheless, this means that our model can retrieve a

valid recurrence relation for almost a fifth of the sequences, which is rather impressive: we give a few

interesting examples in Table 11.1. Increasing ninput to 25 increases our performances rather marginally.

As a comparison, we ran two built-in Mathematica functions for the task at hand: FindSequenceFunc-

tion, which finds non-recurrent expressions, and FindLinearRecurrence, which finds linear recurrence

relations. These functions are much more sensitive to the number of terms given as input: they obtain
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similar accuracies at ninput = 15, but FindLinearRecurrence performs significantly better at ninput = 25,
while FindSequenceFunction performs pathologically worse. Both these functions perform less well

than our symbolic model in all cases.

Model

ninput = 15 ninput = 25
npred = 1 npred = 10 npred = 1 npred = 10

Symbolic (ours) 33.4 19.2 34.5 21.3

Numeric (ours) 53.1 27.4 54.9 29.5

FindSequenceFunction 17.1 12.0 8.1 7.2

FindLinearRecurrence 17.4 14.8 21.2 19.5

Table 11.7: Accuracy of our integer models and Mathematica functions on OEIS sequences. We

use as input the first ninput = {15, 25} first terms of OEIS sequences and ask each model to predict the

next npred = {1, 10} terms. We set the tolerance τ = 10−10
.

11.4.2 Float sequences: robustness to out-of-vocabulary tokens

One major difficulty in symbolic mathematics is dealing with out-of-vocabulary constants and operators:

the model is forced to approximate them using its own vocabulary. We investigate these two scenarios

separately for the float model.

Model

[[−10, 10]] ∪ {e, π, γ} U(−10, 10)
nop ≤5 nop ≤10 nop ≤5 nop ≤10

Symbolic 81.9 60.4 60.1 42.1

Numeric 72.4 60.7 72.2 60.2

Table 11.8: Our symbolic model can approximate out-of-vocabulary prefactors. We report the

accuracies achieved when sampling the constants uniformly from [[−10, 10]] ∪ {e, π, γ}, as during
training, versus sampling uniformly in [−10, 10]. We set τ = 0.01 (note the higher tolerance threshold

as we are considering approximation) and npred = 10.

Out-of-vocabulary constants The first possible source of out-of-vocabulary tokens are prefactors.

For example, a formula as simple as un = 0.33n is hard to predict perfectly, because our decoder only

has access to integers between −10 and 10 and a few mathematical constants, and needs to write 0.33
as (3 ∗ 10 + 3)/(10 ∗ 10), i.e. [div,add,mul,3,10,3,mul,10,10]. To circumvent this issue, [404] use

a separate optimizer to fit the prefactors, once the skeleton of the equation is predicted.

In contrast, our model is end-to-end, and is surprisingly good at approximating out-of-vocabulary

prefactors with its own vocabulary. For un = 0.33n, one could expect the model to predict un =
n/3, which would be a decent approximation. Yet, our model goes much further, and outputs un =
− cos(3)n/3, which is a better approximation. We give a few other spectacular examples in Table 11.2.

Our model is remarkably capable of using the values of operators such as exp and arctan, as if it were
able to perform computations internally.

To investigate the approximation capabilities of our model systematically, we evaluate the its

performance when sampling the prefactors uniformly in [−10, 10], rather than in {−10,−9, ...9, 10} ∪
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{e, π, γ} as done usually. It is impossible for the symbolic model to perfectly represent the correct

formulas, but since we are interested in its approximation capabilities, we set the tolerance to 0.01.
Results are shown in Table 11.8. Unsurprisingly, the performance of the numeric model is unaffected

as it does not suffer from any out-of-vocabulary issues, and becomes better than the symbolic model.

However, the symbolic model maintains very decent performances, with its approximation accuracy

dropping from 60% to 42%.

This approximation ability in itself an impressive feat, as the model was not explicitly trained to

achieve it. It can potentially have strong applications for mathematics: for example, if a sequence

converges to a numerical value such as 1.64493, it can be useful to ask the model to approximate it,

yielding π2/6. In fact, one could further improve this approximation ability by training the model only

on degree-0 sequences with constant leaves ; we leave this for future work.

Out-of-vocabulary functions A similar difficulty arises when dealing with out-of-vocabulary opera-

tors, yet again, our model is able to express or approximate them with its own vocabulary. We show

this by evaluating our model on various families of functions from scipy.special:

• polynomials: base + orthogonal polynomials of degree 1 to 5 (Legendre, Chebyshev, Jacobi,

Laguerre, Hermite, Gegenbauer)

• hyperbolic: base + {sinh, cosh, tanh, arccosh, arcsinh, arctanh}

• bessel: base + {Bessel and modified Bessel of first and second kinds}

• fresnel: base + {erf, Faddeeva, Dawson and Fresnel integrals}.

The results in Figure 11.2b show that both the numeric and symbolic models cope surprisingly well

with these functions. The symbolic model has more contrasted results than the numeric model, and

excels particularly on functions which it can easily build with its own vocabulary such as polynomials.

Surprisingly however, it also outperforms the numeric model on the other groups.

In Table 11.3, we show a few examples of the remarkable ability of our model to yield high-quality

asymptotic approximations, either using a recurrence relation as for the Catalan numbers and the

Dawson function, either with a non-recurrent expression as for the Bessel functions.

11.5 Conclusion

In this chapter, we have shown that Transformer models can successfully infer recurrent mathematical

formulas from observations. We applied our model to challenging out-of-distribution tasks, showing

that it outperforms Mathematica functions for recurrence prediction on integer sequences and yields

very informative approximations of complex functions as well as numerical constants.

Scope of our approach Onemay ask to what extent our model can be used for real-world applications,

such as time-series forecasting. Although robustness to noise is an encouraging step in this direction,

we believe our model is not directly adapted to such applications, for two reasons.

First, real-world time-series often cannot be described by a simple mathematical formula, in which

case numeric approaches will generally outperform symbolic approaches. Second, even when they can

be expressed by a formula, the latter will contain complex prefactors and non-deterministic terms which

will make the task extremely challenging.
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Future directions As mentioned earlier, recurrence relations can be seen as discretized differential

equations. Hence, a natural follow-up to this work would be to move to the continuous setup, and

infer the differential equation underlying a set of of trajectories in the spirit of [412]; this will be

explored in future work. Along this line, one could model partial differential equations by considering

multi-dimensional sequences, and even stochastic differential equations by including non-deterministic

terms.

To bring our model closer to real-world problems, one crucially needs to handle non-integer prefac-

tors, either by extending the vocabulary of the decoder, or by using a separate solver to fit them; this is

the object of the upcoming chapter, which closes the thesis.
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Chapter 12

End-to-end Symbolic Regression with
Transformers

In the previous chapter, we explored an innovative use-case for symbolic regression: inferring recurrence

relations. However, as explained in the final section, our model is not compatible with real-world data,

mainly because it is trained on expressions which feature a very limited set of constants (integers

between -10 and 10, e, π, γ).
Dealing with constants in the general framework of symbolic regression is a tricky issue which is

usually solved in two steps: predicting the "skeleton" of the expression up to the choice of numerical

constants, then fitting the constants by optimizing a non-convex loss function. The dominant approach

is genetic programming, which evolves candidates by iterating this subroutine a large number of times.

Neural networks have recently been tasked to predict the correct skeleton in a single try, but remain

much less powerful.

In this chapter, we challenge this two-step procedure, and task a Transformer to directly predict the

full mathematical expression, constants included. One can subsequently refine the predicted constants

by feeding them to the non-convex optimizer as an informed initialization. We present ablations to show

that this end-to-end approach yields better results, sometimes even without the refinement step. We

evaluate our model on problems from the SRBench benchmark and show that our model approaches the

performance of state-of-the-art genetic programming with several orders of magnitude faster inference.

12.1 Introduction

Inferring mathematical laws from experimental data is a central problem in natural science; having

observed a variable y at n points {xi}i∈Nn , it implies finding a function f such that yi ≈ f(xi) for all
i ∈ Nn. Two types of approaches exist to solve this problem. In parametric statistics (PS), the function f
is defined by a small number of parameters that can directly be estimated from the data. On the other

hand, machine learning (ML) techniques such as decision trees and neural networks select f from large

families of non-linear functions by minimizing a loss over the data. The latter relax the assumptions

about the underlying law, but their solutions are more difficult to interpret, and tend to overfit small

experimental data sets, yielding poor extrapolation performance.

Symbolic regression (SR) stands as a middle ground between PS and ML approaches: f is selected

from a large family of functions, but is required to be defined by an interpretable analytical expression.
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It has already proved extremely useful in a variety of tasks such as inferring physical laws [413, 414].

SR is usually performed in two steps. First, predicting a “skeleton”, a parametric function using

a pre-defined list of operators – typically, the basic operations (+,×,÷) and functions (sqrt, exp, sin,
etc.). It determines the general shape of the law up to a choice of constants, e.g. f(x) = cos(ax+ b).
Then, the constants in the skeleton (a, b) are estimated using optimization techniques, typically the

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).

The leading algorithms for SR rely on genetic programming (GP). At each generation, a population

of candidates is predicted, and the fittest ones are selected based on the data, and mutated to build the

next generation. The algorithm iterates this procedure until a satisfactory level of accuracy is achieved.

While GP algorithms achieve good prediction accuracy, they are notably slow (see the Pareto plot

of Fig. 12.1). Indeed, the manually predefined function space to search is generally vast, and each

generation involves a costly call to the BFGS routine. Also, GP does not leverage past experience: every

new problem is learned from scratch. This makes GP techniques inapplicable to situations where fast

computation is needed, for instance in reinforcement learning and physics environments [415, 416].

Pre-training neural networks built for language modelling on large datasets of synthetic examples

has recently been proposed for SR [404, 405]. These references follow the two-step procedure (predicting

the skeleton then fitting the constants) inherited from GP. Once the model is pre-trained, the skeleton is

predicted via a simple forward pass, and a single call to BFGS is needed, thus resulting in a significant

speed-up compared to GP. However, these methods are not as accurate as state-of-the-art GP, and have

so far been limited to low-dimensional functions (D ≤ 3). We argue that two reasons underlie their

shortcomings.

First, skeleton prediction is an ill-posed problem that does not provide sufficient supervision: different

instances of the same skeleton can have very different shapes, and instances of very different skeletons

can be very close. Second, the loss function minimized by BFGS can be highly non-nonconvex: even

when the skeleton is perfectly predicted, the correct constants are not guaranteed to be found. For these

reasons, we believe, and will show, that doing away with skeleton estimation as a intermediary step can

greatly facilitate the task of SR for language models.

12.1.1 Contributions

In this chapter, we train Transformers over synthetic datasets to perform end-to-end (E2E) symbolic

regression: solutions are predicted directly, without resorting to skeletons. To this effect, we leverage a

hybrid symbolic-numeric vocabulary, that uses both symbolic tokens for the operators and variables

and numeric tokens for the constants. One can then perform a refinement of the predicted constants

by feeding them as informed guess to BFGS, mitigating non-linear optimization issues. Finally, we

introduce generation and inference techniques that allow our models to scale to larger problems: up

to 10 input features against 3 in concurrent works.

Evaluated over the SRBench benchmark [417], our model significantly narrows the accuracy gap

with state-of-the-art GP techniques, while providing several orders of magnitude of inference time

speedup (see Fig. 12.1). We also demonstrate strong robustness to noise and extrapolation capabilities.

Finally, we will provide an online demonstration of our model at https://symbolicregression.
metademolab.com/ and will open-source our implementation as a Scikit-learn compatible regressor at

the following address: https://github.com/facebookresearch/symbolicregression.
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Figure 12.1: Our model outperforms previous DL-based methods and offers at least an order of
magnitude inference speedup compared to SOTA GP-based methods. Pareto plot comparing the

average test performance and inference time of our models with baselines provided by the SRbench

benchmark [417], both on Feynman SR problems [413] and black-box regression problems. We use

colors to distinguish three families of models: deep-learning based SR, genetic programming-based
SR and classic machine learning methods (which do not provide an interpretable solutions). A

similar Pareto plot against formula complexity is provided in Fig. K.6.

12.1.2 Related work

SR is a challenging task that traces back from a few decades ago, with a large number of open-source

and commercial softwares, and has already been used to accelerate scientific discoveries [418–420].

Most popular frameworks for symbolic regression use GP [398, 421–428] (see [417] for a recent review),

but SR has also seen growing interest from the Deep Learning (DL) community, motivated by the fact

that neural networks are good at identifying qualitative patterns.

Neural networks have been combined with GP algorithms, e.g. to simplify the original dataset [413],

or to propose a good starting distribution over mathematical expressions[403]. [401, 429] propose

modifications to feed-forward networks to include interpretable components, i.e. replacing usual

activation functions by operators such as cos, sin, however these are hard to optimize and prone to

numerical issues.

Language models, and especially Transformers [78], have been trained over synthetic datasets to

solve various mathematical problems: integration [390], dynamical systems [393], linear algebra [396],

formal logic [430] and theorem proving [431]. A few papers apply these techniques to symbolic

regression: the aforementioned references [404, 405] train Transformers to predict function skeletons,

while the previous chapters studies one-dimensional recurrence relations in sequences of numbers.

The recently introduced SRBench [417] provides a benchmark for rigorous evaluation of SR methods,

in addition to 14 SR methods and 7 ML baselines which we will compare to in this chapter.

12.2 Data generation

Our approach consists in pre-training language models on vast synthetic datasets. Each training example

is a pair: a set of N points (x, y) ∈ RD × R as the input, and a function f such that y = f(x) as the
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Figure 12.2: Sketch of our model. During training, the inputs are all whitened. At inference, we

whiten them as a pre-processing step; the predicted function must then be unscaled to account for the

whitening.

target
1
Examples are generated by (i) sampling a random function f , (ii) sampling a set of N input

values (xi)i∈NN in RD , and (iii) computing yi = f(xi).

12.2.1 Generating functions

To sample functions f , we follow the seminal approach of Lample and Charton [390], and generate

random trees with mathematical operators as internal nodes and variables or constants as leaves. The

procedure is detailed below (see Table K.1 in the Appendix for the values of parameters):

1. Sample the desired input dimension D of the function f from U{1, Dmax}.
2. Sample the number of binary operators b from U{D − 1, D + bmax} then sample b operators

from U{+,−,×}2.
3. Build a binary tree with those b nodes, using the sampling procedure of [390].

4. For each leaf in the tree, sample one of the variables xd, d ∈ ND .
5. Sample the number of unary operators u from U{0, umax} then sample u operators from the

list Ou in Table K.1, and insert them at random positions in the tree.

6. For each variable xd and unary operator u, apply a random affine transformation, i.e. replace
xd by axd + b, and u by au+ b, with (a, b) sampled from Daff.

Note that since we require independent control on the number of unary operators (which is inde-

pendent of D) and binary operators (which depends on D), we cannot directly sample a unary-binary

tree as in [390]. Note also that the firstD variables are sampled in ascending order to obtain the desired

input dimension, which means functions with missing variables such as x1 + x3 are never encountered;

this is not an issue as our model can always set the prefactor of x2 to zero. As discussed quantitatively

in App. K.3, the number of possible skeletons as well as the random sampling of numerical constants

guarantees that our model almost never sees the same function twice, and cannot simply perform

memorization.

1

We only consider functions fromRD into R; the general case f : RD→RP can be handled as P independent subproblems.

2

Note that although the division operation is technically a binary operator, it appears much less frequently than additions

and multiplications in typical expressions [432], hence we replace it by the unary operator inv: x→1/x.
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12.2.2 Generating inputs

For each function f : RD→R, we sample N ∈ U{10D,Nmax} input values xi ∈ RD from the

distribution Dx described below, and compute the corresponding output values yi = f(xi). If any xi
is outside the domain of definition of f or if any yi is larger 10100

, the process is aborted, and we start

again by generating a new function. Note that rejecting and resampling out-of-domain values of xi,
the obvious and cheaper alternative, would provide the model with additional information about f , by
allowing it to learn its domain of definition.

To maximize the diversity of input distributions seen at training time, we sample our inputs from a

mixture of distributions (uniform or gaussian), centered around k random centroids
3
, see App. K.1 for

some illustrations at D = 2. Input samples are generated as follows:

1. Sample a number of clusters k ∼ U{1, kmax} and k weights wi ∼ U(0, 1), which are then

normalized so that

∑
iwi = 1.

2. For each cluster i ∈ Nk , sample a centroid µi ∼ N (0, 1)D , a vector of variances σi ∼ U(0, 1)D
and a distribution shape (gaussian or uniform) Di ∈ {N ,U}.

3. For each cluster i ∈ Nk, sample ⌊wiN⌋ input points from Di(µi, σi) then apply a random
rotation sampled from the Haar distribution.

4. Finally, concatenate all the points obtained and whiten them by substracting the mean and

dividing by the standard deviation along each dimension.

12.2.3 Tokenization

Following [396], we represent numbers in base 10 floating-point notation, round them to four significant

digits, and encode them as sequences of 3 tokens: their sign, mantissa (between 0 and 9999), and
exponent (from E-100 to E100).

To represent mathematical functions as sequences, we enumerate the trees in prefix order, i.e. direct

Polish notation, as in [390]: operators and variables and integers are represented as single autonomous

tokens, and constants are encoded as explained above.

For example, the expression f(x) = cos(2.4242x) is encoded as [cos,mul,+,2424,E-3,x]. Note
that the vocabulary of the decoder contains a mix of symbolic tokens (operators and variables) and

numeric tokens, whereas that of the encoder contains only numeric tokens
4
.

12.3 Methods

Below we describe our approach for end-to-end symbolic regression; please refer to Fig. 12.2 for an

illustration.

12.3.1 Model

Embedder Our model is provided N input points (x, y) ∈ RD+1
, each of which is represented as

3(D+ 1) tokens of dimension demb. AsD and N become large, this results in long input sequences (e.g.

6600 tokens for D = 10 and N = 200), which challenge the quadratic complexity of Transformers. To

mitigate this, we introduce an embedder to map each input point to a single embedding.

3

For k→∞, such a mixture could in principe approximate any input distribution.

4

The embeddings of numeric tokens are not shared between the encoder and decoder.
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Figure 12.3: Attention heads reveal intricate mathematical analysis. We considered the expression

f(x) = sin(x)/x, with N = 100 input points sampled between −20 and 20 (red dots; the y-axis is

arbitrary). We plotted the attention maps of a few heads of the encoder, which are N × N matrices

where the element (i, j) represents the attention between point i and point j. Notice that heads 2, 3 and
4 of the second layer analyze the periodicity of the function in a Fourier-like manner.

The embedder pads the empty input dimensions toDmax, then feeds the 3(Dmax+1)demb-dimensional

vector into a 2-layer fully-connected feedforward network (FFN) with ReLU activations, which projects

down to dimension demb

5
The resultingN embeddings of dimension demb are then fed to the Transformer.

Transformer We use a sequence to sequence Transformer architecture [78] with 16 attention heads

and an embedding dimension of 512, containing a total of 86M parameters. Like [396], we observe that

the best architecture for this problem is asymmetric, with a deeper decoder: we use 4 layers in the

encoder and 16 in the decoder.

Note an important difference compared with the setup of the previous chapter: here the input is a

sequence of pairs (x0, y0), (x1, y1), ... instead of a sequence of numbers u0, u1, ..., and these pairs are

permutation invariant, which is not the case for number sequences. To account for this invariance, we

remove the positional embeddings from the encoder.

As shown in Fig. 12.3 and detailed in App. K.2, the encoder captures the most distinctive features of

the functions considered, such as critical points and periodicity, and blends a mix of short-ranged heads

focusing on local details with long-ranged heads which capture the global shape of the function.

Training We optimize a cross-entropy loss with the Adam optimizer, warming up the learning rate

from 10−7
to 2.10−4

over the first 10,000 steps, then decaying it as the inverse square root of the number

of steps, following [78]. We hold out a validation set of 104
examples from the same generator, and train

our models until the accuracy on the validation set saturates (around 50 epochs of 3M examples).

Input sequence lengths vary significantly with the number of points N ; to avoid wasteful padding,

we batch together examples of similar lengths, ensuring that a full batch contains a minimum of 10,000

tokens. On 32 GPU with 32GB memory each, one epoch is processed in about half an hour.

12.3.2 Inference tricks

In this section, we describe three tricks to improve the performance of our model at inference.

5

We explored various architectures for the embedder, but did not obtain any improvement; this does not appear to be a

critical part of the model.
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Model Function f(x, y)

Target sin(10x) exp(0.1y)
Skeleton + BFGS − sin(1.7x)(0.059y + 0.19)
E2E no BFGS sin(9.9x) exp(0.1y)

E2E + BFGS random init − sin(0.095x) exp(0.27y)
E2E + BFGS model init sin(10x) exp(0.1y)

Table 12.1: The importance of an end-to-end model with refinement. The skeleton approach

recovers an incorrect skeleton. The E2E approach predicts the right skeleton. Refinement worsens

original prediction when randomly initialized, and yields the correct result when initialized with

predicted constants.

Refinement Previous language models for SR, such as [404], follow a skeleton approach: they first

predict equation skeletons, then fit the constants with a non-linear optimisation solver such as BFGS. In

this chapter, we follow an end-to-end (E2E) approach: predicting simultaneously the function and the

values of the constants. However, we improve our results by adding a refinement step: fine-tuning the
constants a posteriori with BFGS, initialized with our model predictions

6
.

This results in a large improvement over the skeleton approach, as we show by training a Transformer

to predict skeletons in the same experimental setting. The improvement comes from two reasons: first,

prediction of the full formula provides better supervision, and helps the model predict the skeleton;

second, the BFGS routine strongly benefits from the informed initial guess, which helps the model

predict the constants. This is illustrated qualitatively in Table 12.1, and quantitatively in Table 12.2.

Scaling As described in Section 12.2.2, all input points presented to the model during training are

whitened: their distribution is centered around the origin and has unit variance. To allow accurate

prediction for input points with a different mean and variance, we introduce a scaling procedure at

inference time. Let f the function to be inferred, x be the input points, and µ = mean(x), σ = std(x).
As illustrated in Fig. 12.2 we pre-process the input data by replacing x by x̃ = x−µ

σ . The model then

predicts f̂(x̃) = f̂(σx+ µ), and we can recover an approximation of f by unscaling the variables in f̂ .
This gives our model the desirable property to be insensitive to the scale of the input points: DL-

based approaches to SR are known to fail when the inputs are outside the range of values seen during

training [396]. Note that here, the scale of the inputs translates to the scale of the constants in the

function f ; although these coefficients are sampled in Daff during training, coefficients outside Daff can

be expressed by multiplication of constants in Daff.

Bagging and decoding Since our model was trained on N ≤ 200 input points, it does not perform

satisfactorily at inference when presented with more than 200 input points. To take advantage of large

datasets while accommodating memory constraints, we perform bagging: whenever N is larger than

200 at inference, we randomly split the dataset into B bags of 200 input points
7
.

For each bag, we apply a forward pass and generate C function candidates via random sampling or

beam search using the next token distribution. As shown in App. K.5 (Fig. K.11), the more commonly

6

To avoid BFGS having to approximate gradients via finite differences, we provide the analytical expression of the gradient

using sympytorch [433] and functorch [434].

7

Smarter splits, e.g. diversity-preserving, could be envisioned, but were not considered here.

170



used beam search [435] strategy leads to much less good results than sampling due to the lack of

diversity induced by constant prediction (typical beams will look like sin(x), sin(1.1x), sin(0.9x), . . .).
This provides us with a set of BC candidate solutions.

Inference time Our model inference speed has two sources: the forward passes described above on

one hand (which can be parallelized up to memory limits of the GPU), and the refinements of candidate

functions on the other (which are CPU-based and could also be parallelized, although we did not consider

this option here).

Since BC can become large, we rank candidate functions (according to their error on all input
points), get rid of redundant skeleton functions and keep the best K candidates for the refinement

step
8
. To speed up the refinement, we use a subset of at most 1024 input points for the optimization.

The parameters B, C andK can be used as cursors in the speed-accuracy tradeoff: in the experiments

presented in Fig. 12.1, we selected B = 100, C = 10,K = 10.

12.4 Results

In this section, we present the results of our model. We begin by studying in-domain accuracy, then

present results on out-of-domain datasets.

12.4.1 In-domain performance

We report the in-domain performance of our models by evaluating them on a fixed validation set of

100,000 examples, generated as per Section 12.2. Validation functions are uniformly spread out over

three difficulty factors: number of unary operators, binary operators, and input dimension. For each

function, we evaluate the performance of the model when presented N = [50, 100, 150, 200] input
points (x, y), and prediction accuracy is evaluated on Ntest = 200 points sampled from a fresh instance

of the multimodal distribution described in Section 12.2.2.

We assess the performance of our model using two popular metrics: R2
-score [417] and accuracy to

tolerance τ [404, 436]:

R2 = 1 −
∑Ntest

i (yi − ŷi)2∑Ntest

i (yi − ȳ)2 , Accτ = 1

(
max

1≤i≤Ntest

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ≤ τ

)
, (12.1)

where 1 is the indicator function.

R2
is classically used in statistics, but it is unbounded, hence a single bad prediction can cause

the average R2
over a set of examples to be extremely bad. To circumvent this, we set R2 = 0 upon

pathological examples as in [417](such examples occur in less that 1% of cases)
9
. The accuracy metric

provides a better idea of the precision of the predicted expression as it depends on a desired tolerance

threshold. However, due to the presence of the max operator, it is sensitive to outliers, and hence to the

number of points considered at test time (more points entails a higher risk of outlier). To circumvent

this, we discard the 5% worst predictions, following [404].

8

Though these candidates are the best functions without refinement, there are no guarantees that these would be the best

after refinement, especially as optimization is particularly prone to spurious local optimas.

9

Note that predicting the constant function f = ȳ naturally yields an R2
score of 0.
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Model R2
Acc0.1 Acc0.01 Acc0.001

Skeleton + BFGS 0.43 0.40 0.27 0.17

E2E no BFGS 0.62 0.51 0.27 0.09

E2E + BFGS random init 0.44 0.44 0.30 0.19

E2E + BFGS model init 0.68 0.61 0.44 0.29

Table 12.2: Our approach outperforms the skeleton approach. Metrics are computed over the

10, 000 examples of the evaluation set.

End-to-end outperforms skeleton In Table 12.2, we report the average in-domain results of our

models. Without refinement, our E2E model outperforms the skeleton model trained under the same

protocol in terms of low precision prediction (R2
and Acc0.1 metrics), but small errors in the prediction

of the constants lead to lower performance at high precision (Acc0.001 metric). The refinement procedure

alleviates this issue significantly, inducing a three-fold increase in Acc0.001 while also boosting other
metrics.

Initializing BFGS with the constants estimated in the E2E phase plays a crucial role: with random

initialization, the BFGS step actually degrades E2E performance. However, refinement with random

initialization still achieves better results than the skeleton model: this suggests that the E2E model

predicts skeletons better that the skeleton model.

Ablation Fig. 12.4A,B,C presents an ablation over three indicators of formula difficulty (from left

to right): number of unary operators, number of binary operators and input dimension. In all cases,

increasing the factor of difficulty degrades performance, as one could expect. This may give the

impression that our model does not scale well with the input dimension, but we show that our model

scales in fact very well on out-of-domain datasets compared to concurrent methods (see Fig. K.10 of the

Appendix).

Fig. 12.4D shows how performance depends on the number of input points fed to the model, N . In

all cases, performance increases, but much more signicantly for the E2E models than for the skeleton

model, demonstrating the importance of having a lot of data to accurately predict the constants in the

expression.

Extrapolation and robustness In Fig. 12.4E, we examine the ability of our models to interpo-

late/extrapolate by varying the scale of the test points: instead of normalizing the test points to unit

variance, we normalize them to a scale σ. As expected, performance degrades as we increase σ, however
the extrapolation performance remains decent even very far away from the inputs (σ = 32).

Finally, in Fig. 12.4F, we examine the effect of corrupting the targets y with a multiplicative noise of

variance σ: y→y(1 + ξ), ξ ∼ N (0, ε). The results reveal something interesting: without refinement,

the E2E model is not robust to noise, and actually performs worse than the skeleton model at high

noise. This shows how sensitive the Transformer is to the inputs when predicting constants. Refinement

improves robustness significantly, but the initialization of constants to estimated values has less impact,

since the prediction of constants is corrupted by the noise.
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Figure 12.4: Ablation over the function difficulty (top row) and input difficulty (bottom row).
We plot the accuracy at τ = 0.1 (Eq. 12.1), see App. K.4 for the R2

score. We distinguish four models:

skeleton, E2E without refinement, E2E with refinement from random guess and E2E with
refinement. A: number of unary operators. B: number of binary operators. C: input dimension.

D: Low-resource performance, evaluated by varying the number of input points. E: Extrapolation
performance, evaluated by varying the variance of the inputs. F: Robustness to noise, evaluated by

varying the multiplicative noise added to the labels.
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Figure 12.5: Our model presents strong accuracy-speed-complexity tradeoffs, even in presence
of noise. Results are averaged over all 119 Feynman problems, for 10 random seeds and three target

noises each as shown in the legend. The accuracy is computed as the fraction of problems for which the

R2
score on test examples is above 0.99. Models are ranked according to the accuracy averaged over all

target noise.

12.4.2 Out-of-domain generalization

We evaluate our method on the recently released benchmark SRBench[417]. Its repository contains a

set of 252 regression datasets from the Penn Machine Learning Benchmark (PMLB)[437] in addition

to 14 open-source SR and ML baselines. The datasets consist in "ground-truth" problems where the

true underlying function is known, as well as "black-box" problems which are more general regression

datasets without an underlying ground truth.

We filter out problems from SRBench to only keep regression problems withD ≤ 10with continuous

features; this results in 190 regression datasets, splitted into 57 black-box problems (combination of

real-world and noisy, synthetic datasets), 119 SR datasets from the Feynman [413] and 14 SR datasets

from the ODE-Strogatz [438] databases. Each dataset is split into 75% training data and 25% test data,

on which performance is evaluated.

The overall performance of our models is illustrated in the Pareto plot of Fig. 12.1, where we see

that on both types of problems, our model achieves performance close to state-of-the-art GP models

such as Operon with a fraction of the inference time
10
. Impressively, our model outperforms all classic

ML methods (e.g. XGBoost and Random Forests) on real-world problems with a lower inference time,

and while outputting an interpretable formula.

We provide more detailed results on Feynman problems in Fig. 12.5, where we additionally plot the

formula complexity, i.e. the number of nodes in the mathematical tree (see App. K.5 for similar results

on black-box and Strogatz problems). Varying the noise applied to the targets noise, we see that our

model displays similar robustness to state-of-the-art GP models.

While the average accuracy or our model is only ranked fourth, it outputs formulas with lower

10

Inference uses a single GPU for the forward pass of the Transformer.
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complexity than the top 2 models (Operon and SBP-GP), which is an important criteria for SR problems:

see App. K.6 for complexity-accuracy Pareto plots. To the best of our knowledge, our model is the first

non-GP approach to achieve such competitive results for SR.

12.5 Conclusion

In this chapter, we introduced a competitive deep learning model for SR by using a novel numeric-

symbolic approach. Through rigorous ablations, we showed that predicting the constants in an expression

not only improves performance compared to predicting a skeleton, but can also serve as an informed

initial condition for a solver to refine the value of the constants.

Our model outperforms previous deep learning approaches by a margin on SR benchmarks, and

scales to larger dimensions. Yet, the dimensions considered here remain moderate (D < 10): adapting
to the truly high-dimensional setup is an interesting future direction, and will likely require qualitative

changes in the data generation protocol. While our model narrows the gap between GP and DL based

SR, closing the gap also remains a challenge for future work.

This work opens up a whole new range of applications for SR in fields which require real-time

inference. We hope that the methods presented here may also serve as a toolbox for many future

applications of Transformers for symbolic tasks.
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Figure 12.6: The three factors of deep learning.

It is often stated that the success of deep learning stems

from three pillars: the data, themodel and the learning
algorithm (see e.g. [439]). Understanding the interplay

between these factors is key to fostering the empirical

success of modern neural networks.

In the three first parts of this thesis, we tried

to analyze these three components, both in isolation

and in conjunction (see Fig. 12.6). By studying over-

parametrization in Part I, we were able to elucidate

several important questions on the role of themodel.
Part II analyzes the role of architectural bias, which

plays in key role in matching themodel with the data.
Finally, in Part III, we focused on the dynamics induced

by the learning algorithm and its interplay with the

model in the context of Direct Feedback Alignment.

Among the three components, data is arguably the most essential, yet the hardest to study from a

theoretical point of view. Indeed, while it is rather easy to build toy models of architectures (e.g. the

random feature model of Part. I) and dynamics (e.g. the Langevin and DFA algorithms of Part. III), it is less

obvious how to build interpretable models of real-world data. Chapter 5 proposes a very simplistic model

to study the interplay of data structure with the loss function, but remains extremely far from realistic

setups, and only scratches the surface of unanswered questions. Hence, I believe that finding appropriate

models of data structure is one of the most critical directions for future work; promising approaches

include perceptual manifolds [440], simplexes [441] and latent spaces of generative models [151, 442].

As far as the algorithm component is concerned, we have mentioned several future directions in

Part III of this thesis, and would like to give a few more. There remains much work to understand the

impact of the learning algorithm: the properties of the noise induced by SGD [443, 444], its implicit

regularization [445], the effect of learning rate and batch size [295, 446], the benefit of tricks such as

momentum and warmup [318, 319], etc. Several theoretical frameworks inspired by statistical mechanics

exist: online learning [355, 370], mean-field theory [379, 447] and dynamical mean-field theory [340].

Finally, on the model side, two large hurdles need to be overcome. First, the fact that most

existing approaches are limited to two-layer networks; deeper models are usually only studied for linear

networks [448, 449], and remain a major challenge for future work. The second limitation is the fact

that except for a few exceptions [258, 450, 451], most works focus on fully-connected architectures, in

spite of their known limitations. One promising route which I did not have time to explore would be
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to study mixer-like architectures, which amount to a fully-connected network acting on two separate

dimensions of the data and have shown to be able to achieve state-of-the art performance [15, 259, 452].

Bridging together the three pillars of deep learning in a unified theory seems as far from reach as

reconciling quantum mechanics and general relativity in the context of physics, yet for opposite reasons.

In physics, many candidate theories exist, but we mostly lack the experimental data to confirm one or

another. In deep learning, experimental data is ubiquitous, but unified theories are lacking, in great part

due to the difficulty of building models which are both analytically tractable and sufficiently complex to

encapsulate realistic scenarios. As a result, most recent advances in deep learning have been guided by

experience rather than by theory.

However, this gap should not discourage theoretical endeavours, as a few recent works have

successfully reversed the scheme. A particularly compelling example is the recent surge of applications

of infinite-width results. [98] uses Neural Tangent Kernels [453] to obtain strong results on small

regression datasets. [454] leverages infinite-width results to provide a new parametrization of the

weights which renders the effect of hyperparameters scale-independent, allowing for example to tune

the learning rate of a large model on a much smaller model.

During the last year of my PhD, I transitioned to a more applied topic: symbolic regression, the task

of inferring mathematical formulas from numerical data. Our results show that neural networks, which

are usually used as numeric regressors devoid of interpretability, are able to provide symbolic outputs

extremely accurately, outperforming most existing approaches. This line of research appears to me as

particularly promising in the next few years; future directions I would like to explore include (i) inferring

differential equations from the observation of trajectories, in the spirit of Chap. 11, (ii) training a model

to provide a good initialization point for a non-convex minimization algorithm given the expression of

a function, in the spirit of Chap. 12 and finally (iii) applying our symbolic regression methods to various

fields of physics – the integer sequence model of Chap. 11 could be useful for counting problems such

as those which appear in Feynman diagrams, whereas the end-to-end model of Chap. 12 could be used

to infer natural laws in the spirit of [414].

More generally, one of the most exciting prospects of deep learning to me is its potential in speeding

up scientific discovery, illustrated by several recent breakthroughs in mathematics [389], biology [455]

and physics [456]. I hope to be able to take part in this thrilling adventure as soon as I come back from

my long-awaited cycling trip accross the Andes.
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Appendix A

From the Jamming Transition to the
Double Descent Curve

A.1 Network properties

In the following, we analyze numerically the networks properties that were used in the previous analysis.

This provides a numerical confirmation of our arguments, and an in depth characterization of the

networks.

A.1.1 Effective number of degrees of freedom

In our discussion the notion of effective number of degrees of freedom is important. In the space of

functions going from the neighborhoods of the training set to real numbers, consider the manifold of

functions f(x; W ) obtained by varying W . We denote by Peff(W ) the dimension of the tangent space

of this manifold at W . In general we have Peff(W ) ≤ P . Several reasons can make Peff(W ) strictly
smaller than P , including:

• Some neurons are never active e.g. for ReLU case: then their associated weights do not contribute

to Peff .

In the extreme case where the signal does not propagate in the network, i.e. f(x; W ) = C1 for

all x in the neighborhood of the training points xµ, then Peff(W ) = 1. This situation will occur

for a poor initialization of the weights, for example if all biases are too negative on the neurons of

one layer for ReLU activation function (see for instance [457]). It can also occur if the data xµ are

chosen in an adversarial manner for a given choice of initial weights. For example, one can choose

input patterns so as to not activate the first layer of neurons (which is possible if the number of

such neurons is not too large). Poor transmission will be enhanced (and adversarial choices of

data will be made simpler) if the architecture presents some bottlenecks. In the situation where

Peff(W ) = 1, it is very simple to obtain local minima of the loss at finite loss values, even when

the model has many parameters.

• The activation function is linear. Then, the output is an affine function of the input, leading to

Peff ≤ d+ 1. Dimension-dependent bounds will also exist if the activation function is polynomial

(because the output function then is also restricted to be polynomial).
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• Symmetries are present in the network, e.g. the scale symmetry in ReLU networks: since the ReLU

function is homogeneous, multiplying the weights of a layer by some factor and dividing the

weights in the next layer by the same factor leaves the output function invariant. It will reduce

one degrees of freedom per node.

Due to these effects, the function f(x; W) can effectively depend on less variables that the number

of parameters, and thus reduce the dimension of the space spanned by the gradients ∇Wf(x; W) that
enters in the theory: there are P − Peff directions in parameter space that do not affect the function. It

is tempting to define the effective dimension by considering the dimension of the space spanned by

∇Wf(xµ; W) as µ varies. This definition is not practical for small number of samples N however,

because this dimension would be bounded by N . We can overcome such a problem by considering a

neighborhood of each point xµ, where the network’s function and its gradient can be expanded in the

pattern space:

f(x) ≈ f(xµ) + (x − xµ) · ∇xf(xµ), (A.1)

∇Wf(x) ≈ ∇Wf(xµ) + (x − xµ) · ∇x∇Wf(xµ). (A.2)

Varying the pattern µ and the point x in the neighborhood of xµ, we can build a familyM of vectors:

M = {∇Wf(xµ) + (x − xµ) · ∇x∇Wf(xµ)}µ,x . (A.3)

We then define the effective dimension Peff as the dimension ofM . Because of the linear structure of

M , it is sufficient to consider, for each µ, only d+ 1 values for x, e.g. x− xµ = 0, ê1, . . . , êd, where ên
is the unit vector along the direction n. The effective dimension is therefore

Peff = rk(G), (A.4)

where the elements of the matrix G are defined as

Gi,α ≡ ∂Wif(xµ) + ên · ∇ên∂Wif(xµ), (A.5)

with α ≡ (µ, n). The index n ranges from 0 to D, and ê0 ≡ 0.
In Fig. A.1 we show the effective number of parameters Peff versus the total number of parameters

P , in the case of a network with L = 3 layers trained on the first 10 PCA components of the MNIST

dataset. There is no noticeable difference between the two quantities: the only reduction is due to the

symmetries induced by the ReLU functions (there is one such symmetry per neuron. Indeed the ReLU

function σ(z) = zΘ(z) satisfies Λσ(z/Λ) ≡ σ(z).) We observed the same results for random data.

A.1.2 sp(Hp) is symmetric for ReLu activation functions and random data

We consider Hp = −
∑
µ yµσ (∆µ) Ĥµ, where Ĥµ is the Hessian of the network function f(xµ; W)

and σ is the Relu function. We want to argue that the spectrum of Hp is symmetric in the limit of large

P .
We do two main hypothesis: First, the trace of any finite power of Hp is self-averaging (concentrates)

with respect to the average over the random data:

1
P

tr(Ĥp
n) = 1

P
tr(Ĥp

n). (A.6)
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Figure A.1: Results with the MNIST dataset, keeping the first 10 PCA components. d = 10 and L = 3, varyingN
and h. Effective Peff vs total number of parameters P . Peff is always smaller than P because there is a symmetry

per each ReLU-neuron in the network.

Second,

1
P

∑
µ1,··· ,µn

yµ1σ(∆µ1) · · · yµnσ(∆µn)tr(Ĥµ1 · · · Ĥµn) = 1
P

∑
µ1,··· ,µn

yµ1σ(∆µ1) · · · yµnσ(∆µn)·tr(Ĥµ1 · · · Ĥµn)

(A.7)

The first hypothesis is natural since Ĥp is a very large random matrix, for which the density of

eigenvalues is expected to become a non-fluctuating quantity. The second hypothesis is more tricky: it

is natural to assume that the trace concentrates, however one also need to show that the sub-leading

corrections to the self-averaging of the trace can be neglected.

Using these two hypothesis and the result, showed below, that

tr(Ĥµ1 · · · Ĥµn) = 0 (A.8)

for all n odds, one can conclude that all odds traces of Ĥp are zero. This implies that the spectrum of

Ĥp is symmetric, more precisely that the fractions of negative and positive eigenvalues are equal.

In order to show that the statement (A.8) above holds, let us argue first that tr(Ĥn
µ) = 0 for any odd

n.
tr(Ĥn

µ) =
∑

i1,i2,...,in

Ĥµ
i1,i2

Ĥµ
i2,i3

· · · Ĥµ
in,i1

, (A.9)

where the indices i1, . . . , in stand for synapses connecting a pair of neurons (i.e. each index is associated

with a synaptic weightW
(j)
α,β : we are not writing all the explicit indexes for the sake of clarity). The

term of the hessian obtained when differentiating with respect to weightsW
(j)
α,β andW

(k)
γ,δ reads

Ĥµ;(jk)
αβ;γδ =

∑
π0,...,πL

θ(aµL,πL) · · · θ(aµ1,π1)xµπ0 · · ∂
W

(j)
α,β

∂
W

(k)
γ,δ

[
W (L+1)
πL

W (L)
πL,πL−1 · · ·W (1)

π1π0

]
. (A.10)

where we denoted with a the inputs in the nodes of the network. Our argument is based on a symmetry of

the problem with random data: changing the sign of the weight of the last layerW (L+1) −→ −W (L+1)

and changing the labels yµ −→ −yµ leaves the loss unchanged. We will show that this symmetry

implies that tr(Ĥn
µ) averaged over the random labels is zero for odd n.
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In fact, note that the sum in Equation (A.10) contains a weight per each layer in the network, with

the exception of the two layers j, k with respect to which we are deriving. This implies that any element

of the hessian matrix where we have not differentiated with respect to the last layer (j, k < L+ 1) is an
odd function of the last layerW (L+1)

, meaning that ifW (L+1) −→ −W (L+1)
, then the sign of all these

Hessian elements is inverted as well.

If in the argument of the sum in Equation (A.9) there is no index belonging to the last layer, then the

whole term changes sign under the transformationW (L+1) −→ −W (L+1)
. Suppose now that, on the

contrary, there arem terms with one index belonging to the last layer (we need not consider the case of

two indices both belonging to the last layer because the corresponding term in the Hessian would be

0, as one can see in Equation (A.10)). For each index equal to L+ 1 (the last layer), there are exactly

two terms: Ĥµ
j,L+1Ĥµ

L+1,k (for some indexes j, k). Since j, k cannot be L + 1 too, this implies that

the numberm of terms with an index belonging to the last layer is always even. Consequently, when

the sign ofW (L+1)
is reversed, the argument of the sum in Equation (A.9) is multiplied by (−1)n−m

(once for each term without an index belonging to the last layer), which is equal to −1 if n is odd. The

same symmetry can be used to show that a matrix made of an odd product of matrices Ĥµ, such as

ĤµĤµ′Ĥµ′′ , must also have a symmetric spectrum, concluding our argument.
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Figure A.2: Density of the pre-activations for each layers with L = 5 and random data, averaged over all the

runs just above the jamming transition with that architecture. Black: distribution obtained over the training set.

Blue: previously unseen random data (the two curves are on top of each other except for the delta in zero). The

values indicate the mass of the peak in zero, which is only present when the training set is considered.

A.1.3 Degenerate situations

For adversarially chosen datasets, not all the training data can be fitted. For instance it occurs if

two data points are identical but have different labels, xµ = xν and yµ ̸= yν . If the architecture

departs from the one used to derive the universal representation theorem, other examples can be built.

Consider for instance a ReLU network without biases: such a function defines a homogeneous function

f(|λ|x; W) ∝ |λ|f(x; W) and it cannot fit two points that have different labels but are “aligned” as

xµ = |λ|xν .
These situations are not generic: a small noise added to the data points is enough to deal with them.

When they occur, they affect our conclusions. Consider the case where for a pair of points, xµ = xν
and yµ ̸= yν . Then obviously the loss is always positive. In the over-parametrized regime, only these

two points contribute to the loss, which is minimised for f(xµ) = 0. In that symmetric case, Hp is the

sum of two terms that can be shown to cancel out exactly, corresponding to C0 = 0.
A similar situation can take place if propagation does not occur at all (i.e. the output is independent

of the input) in a region of the input space in which several data lie. It is presumably possible to build

such examples by choosing adversarially the xi knowing the weights for a ReLU network. However we
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have never encountered this case with either real or random data and fully-connected architectures

with standard initialization (that let the signal propagate throughout the network).

A.1.4 Density of pre-activations for ReLU activation functions

The densities of pre-activation (i.e. the value of the neurons before applying the activation function)

is shown in Fig. A.2 for random data. It contains a delta distribution in zero. The number Pc of
pre-activations equal to zero when feeding a network L = 5 all its random dataset is Pc ≈ 0.21P ,
corresponding to the number of directions in phase space where cusps are present in the loss function.

For MNIST data we find Pc ≈ 0.19P . By taking L = 2 and random data we find Pc ≈ 0.25P . In these

directions, stability can be achieved even if the hessian would indicate an instability. For this reason,

instead of P− in Equation (2.12) one should use P/2 − Pc ≈ 0.25P .

A.2 Parameters used in simulations

A.2.1 Random data

The dataset is composed of N points taken to lie on the D-dimensional hyper-sphere of radius

√
d,

xµ ∈ Sd, with random label yµ = ±1. The networks are fully connected, and have an input layer of

sizeD and L layers with h neurons each, culminating in a final layer of size 1. To find the transition we

proceed as follows: we build a network with a number of parameters P large enough for it to be able to

fit the whole dataset without errors. Next, we decrease the width h while keeping the depth L fixed,

until the network cannot correctly classify all the data anymore within the chosen learning time. We

denote this transition point P ⋆. As initial conditions for the dynamics we use the default initialization of

pytorch: weights and biases are initialized with a uniform distribution on [−σ, σ], where σ2 = 1/fin
and fin is the number of incoming connections.

When using the cross entropy, the system evolves according to a stochastic gradient descent (SGD)

with a learning rate of 10−2
for 5 · 105

steps and 10−3
for 5 · 105

steps (106
steps in total); the batch size

is set to min(P/2, 1024), and batch normalization is used. We do not use any explicit regularization in

training the networks. In Fig. A.3 we check that t = 106
is enough to converge.

102 103 104 105

N

102

103

104

105

P
∗

t
t/4
t/16

Figure A.3: Convergence of the critical line for networks trained with cross entropy on random data.

When using the hinge loss, we use an orthogonal initialization [458], no batch normalization and

t = 2·106
steps of ADAM [459] with batch sizeN and a learning rate starting at 10−4

. In the experiments
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of section 2.3.3 (not for the experiments of section 2.4), we progressively divided the learning rate by 10
every 250k steps. Also in this case we do not use any explicit regularization in training the networks.

To observe the discontinuous jump in the number P∆ of unsatisfied constraints at the transition

(Fig. 2.4B and inset), we consider three architectures, both with P ≈ 8000 and d = h but with different

depths L = 2, L = 3 and L = 5. The vicinity of the transition is studied by varying N around the

transition value and minimizing for 107
steps (a better minimization is needed to improve the precision

close to the transition).

Details about Fig 2.4A hinge We took D = h and trained for 2M steps. For some values of

N ∈ (500, 60k), start at large h where we reach P∆ = 0 and decrease h until P∆ > 0.1P .

Details about Fig 2.4B We trained networks of depth 2,3,5 with D = h = 62, 51, 40 respectively for

10M steps. For L = 3 (D = 51, h = 51) we ran 128 training varying N from 21991 to 25918. For the

value of P we take 7854 that correspond to the number of parameters minus the number of neurons,

per neuron there is a degree of freedom lost in a symmetry induced by the homogeneity of the ReLU

function. 37 of the runs have P∆ = 0, 74 have P∆ > 0.4P . Among the 19 remaining ones, 14 of them

have P∆ between 1 and 4, we think that these runs encounter numerical precision issues, we observed

that using 32 bit precision accentuate this issue. We think that the 5 left with 4 < P∆ < 0.4P has been

stoped too early. The same observation apply for the other depths.

A.2.2 Real data

The images in the MNIST dataset are gathered into two groups, with even and odd numbers and with

labels yµ = ±1. The architecture of the network is as in the previous sections: the D inputs are fed to a

cascade of L fully-connected layers with h neurons each, that in the end result in a single scalar output.

The loss function used is always the hinge loss.

If we kept the original input size of 28 × 28 = 784 (each picture is 28 × 28 pixels) then the majority

of the network’s weights would be necessarily concentrated in the first layer (the width h cannot be too

large in order to be able to compute the Hessian). To avoid this issue, we opt for a reduction of the input

size. We perform a principal component analysis (PCA) on the whole dataset and we identify the 10

dimensions that carry the most variance on the whole dataset; then we use the components of each

image along these directions as a new input of dimension d = 10. This projection hardly diminishes the

performance of the network (which we find to be larger than 90% when using all the data and large P ).

Details about Fig 2.4C We trained networks of depth 1,3,5 for 2M steps. For some values of N ∈
(100, 50k), start at large h where we reach P∆ = 0 and decrease h until P∆ > 0.1P .

Details about Fig 2.4D We trained a network of L = 5, d = 10, h = 30 for 3M steps. With N
varying from 31k to 68k (using trainset and testset of MNIST).

Details about Fig 2.5 We trained a network of L = 5 and d = 10 for 500k steps. where N ∈
{10k, 20k, 50k} and h varies from 1 to 3k. Fig A.4 shows a comparison between L = 5 and L = 2.
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Details about Fig 2.6 We trained a network of L = 5 and d = 10 for 2 · 106
steps. Weights of the

network are initialized according to the random orthogonal scheme [458] and all biases are initialized

to zero. The network is optimized using ADAM [459] with full batch and the learning rate is set to

λ = min(10−1h−1.5, 10−4) in order to have a smooth dynamics for all values of h1.
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Figure A.4: Generalization on MNIST 10 PCA. Comparison between two depth L = 2 and L = 5.

A.3 Hessian

The Hessian matrix is a key feature of landscapes, as it characterizes its curvature. It is also a central

aspect of the theoretical description above. In this section we systematically analyze the spectra of H,

H0 and Hp.

In Fig. A.5 we show the spectrum of Hp both for MNIST and random data at varying distance from

the jamming transition by varying P . The key observation is that these spectra are symmetric. We also

don’t observe any accumulation of eigenvalues at λ = 0, except for the trivial zero modes stemming

from the scaling symmetry of ReLU neurons (whose number is the total number of hidden neurons,

much smaller than the number of weights).

Fig. A.5B shows the spectrum of H0 at the end of training for runs close to the jamming transition.

As expected it is semi-positive definite, with a delta peak at λ = 0 corresponding to P −N∆ modes. It

is followed by a gap and a continuous spectrum, as predicted near the jamming transition of particles if

N∆ < P [88] (which occurs for elliptic particles [460]). As the loss increases, N∆ increases and the gap

is reduced.

Fig. A.5C shows the spectrum of the full Hessian at the end of training for runs close to the jamming

transition. Interestingly the spectrum of the Hessian is not positive definite, but present some unstable

modes. This phenomenon stems from our choice of ReLU activation function, which leads to cusps

in the landscape as quantified in the Supplementary Material. Such cusps can stabilize directions that

would be unstable according to the Hessian.

Overall, as we move from the under-parametrized phase to the over-parametrized one the situation

is as follows:

1. N below P ⋆: There are many constraints with respect to the number of variable N , H0 is almost

1

The exponent −1.5 has been empirically chosen so that the number of steps to converge is independent of h [101].
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Figure A.5: Spectra of Hessians for runs on random data (colored curves) and MNIST (black curves). The legend

is indicated in (D). (A) (Symmetric) spectrum of Hp at the end of training for 10 runs with different values of P

where L > 0. These spectra collapse when plotted in terms of λ/
√

L (indeed from the definition of Hp we get

that it is proportional to the typical value of the ∆µ, which scales as

√
L). Note that they all appear symmetric.

(B) Spectrum of H0 close to jamming. It contains a delta function in zero of weight P −N∆, followed by a gap,

followed by a continuous spectrum. (C) Spectrum of H close to jamming. Note that H has negative eigenvalues,

as can occur even in a minimum of the Loss for a ReLU activation fuction, due to the existence of cusps in the

landscape. In (B) and (C), we show runs such that 0.7 < N∆/P < 0.8 and L < 10−3
for random data (colored

curves) and 0.54 < N∆/P < 0.7 and L < 1.5 · 10−4
for MNIST (black curve). The thickness of each line

correspond to the standard deviation.

full rank and can easily compensate the negative eigenvalues of Hp. The spectrum of Hp is

symmetric.

2. N approaching P ⋆ from below: The rank of H0 decreases but it does not go below P/2 since it

has to compensate the vanishingly small negative eigenvalues of Hp.

3. As N is large enough, the dynamics finds a global minimum at L = 0 and Hp vanishes.
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Appendix B

Double Trouble in Double Descent: Bias
and Variance(s) in the Lazy Regime

B.1 Statement of the Main Result

B.1.1 Assumptions

First, we state precisely the assumptions under which our main result is valid. Note, that these are the

same as in [82].

Assumption 1: σ : R→R is a weakly differential function with derivative σ′
. Assume there exists

c0, c1 < ∞ ∈ R such that for all u ∈ R |σ(u)|, |σ′(u)| ≤ c0 ec1|u|
. Then define:

µ0 = E [σ(u)] , µ1 = E [uσ(u)] , µ2
⋆ = E

[
σ2(u)

]
− µ2

0 − µ2
1, x (B.1)

where the expectation is over u ∼ N (0, 1). To facilitate readability, we specialize to the case µ0 = 0.
This simply amounts to a shift ctivation function σ̃ of the network, σ̃(x) = σ(x) − µ0.
Assumption 2: We work in the high-dimensional limit, i.e. in the limit where the input dimension D,

the hidden layer dimension P and the number of training points N go to infinity with their ratios fixed.

That is:

N,P,D→∞,
P

D
≡ ψ1 = O(1), N

D
≡ ψ2 = O(1). (B.2)

This condition implies that, in the computation of the risk R, we can neglect all the terms of order O(1)
in favour of the terms of order O(D).
Assumption 3: The labels are given by a linear ground truth, or teacher function:

yµ =fd(Xµ) + ϵµ, fd(x) = ⟨β,x⟩, ||β|| = F, ϵµ ∼ N (0, τ) . (B.3)

Note that as explained in [82], it is easy to add a non linear component to the teacher, but the latter

would not be captured by the model (the student) in the regimeN/D = O(1), and would simply amount

to an extra noise term.

B.1.2 Results

Here we give the explicit form of the quantities appearing in our main result. In these expressions, the

index a ∈ {v, e, d} distinguishes the vanilla, ensembling and bagging terms.
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Ψ1 = 1
D

Tr
[
H [Sv]−1H [PΨ1 ]

]
,

Ψv
2 = 1

D
Tr
[
H [Sv]−1H

[
PΨv2

]]
,

Ψv
3 = 1

D
Tr
[
H [Sv]−1H

[
PΨv3

]]
,

Ψe
2 = 1

D
Tr
[
H [Se]−1H

[
PΨe2

]]
,

Ψe
3 = 1

D
Tr
[
H [Se]−1H

[
PΨe3

]]
,

Ψb
2 = 1

D
Tr
[
H
[
Sb
]−1

H
[
PΨb2

]]
,

where the Hessian matrix H[F ], for a given function F : (q, r, q̃, r̃) 7→ R is defined as:

H [F ] =


∂F
∂q∂q

∂F
∂q∂r

∂F
∂q∂q̃

∂F
∂q∂r̃

∂F
∂q∂r

∂F
∂r∂r

∂F
∂r∂q̃

∂F
∂r∂r̃

∂F
∂q∂q̃

∂F
∂r∂q̃

∂F
∂q̃∂q̃

∂F
∂q̃∂r̃

∂F
∂q∂r̃

∂F
∂r∂r̃

∂F
∂q̃∂r̃

∂F
∂r̃∂r̃


∣∣∣∣∣∣∣∣∣∣q=q∗

r=r∗
r̃=0
q̃=0

,

with q⋆ and r⋆ being the solutions of the fixed point equation for the function S0 : (q, r) 7→ R defined

below:{
∂S0(q,r)

∂q = 0
∂S0(q,r)

∂r = 0.

S0(q, r) = λψ2
1ψ2q + ψ2 log

(
µ2
⋆ψ1q

µ2
1ψ1r + 1

+ 1
)

+ r

q
+ (1 − ψ1) log(q) + ψ2 log

(
µ2

1ψ1r + 1
)

− log(r).

The explicit expression of the above quantities in terms of (q, r, q̃, r̃) is given below.

B.1.3 Explicit expression of the actions

Here we present the explicit formulas for Sv, Se, Sb, which are defined as the functions (q, r, q̃, r̃) 7→ R
such that:

Sv(q, r, q̃, r̃) = 2 (S0(q, r) + q̃fv(q, r) + r̃gv(q, r))
Se(q, r, q̃, r̃) = S0(q, r) + r̃2fe(q, r) + q̃2ge(q, r)
Sb(q, r, q̃, r̃) = S0(q, r) + r̃2f b(q, r) + q̃2gb(q, r),
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where we defined the functions (q, r) 7→ R,

fv(q, r) = λψ2
1ψ2 + µ2

⋆ψ1ψ2
µ2
⋆ψ1q + µ2

1ψ1r + 1
+ 1 − ψ1

q
− r

q2 ,

gv(q, r) = − µ2
⋆µ

2
1ψ

2
1ψ2q(

µ2
1ψ1r + 1

) (
µ2
⋆ψ1q + µ2

1ψ1r + 1
) + µ2

1ψ1ψ2
µ2

1ψ1r + 1
+ 1
q

− 1
r
,

fe(q, r) = 2rµ2
1ψ1

(
1 + qµ2

⋆ψ1
)

+
(
1 + qµ2

⋆ψ1
)2 − r2µ4

1ψ
2
1(−1 + ψ2)

r2 (1 + rµ2
1ψ1 + qµ2

⋆ψ1
)2 ,

ge(q, r) = ψ1
q2 ,

f b(q, r) = 1
r2 ,

gb(q, r) = ψ1
q2 .

B.1.4 Explicit expression of the auxiliary terms

Here we present the explicit formulas for the auxiliary terms PΨ1 , P
v
Ψ2
, P vΨ3

, P eΨ2
, P eΨ3

, P bΨ2
, which are

defined as the functions (q, r, q̃, r̃) 7→ R such that:

PΨ1 = ψ1ψ2µ
2
1

(
M11
X + µ2

1µ
2
⋆ψ

2
1 (MXM

v
WMX)11 + µ2

⋆ψ1 (MXM
v
W )11

)
,

PΨv2 = Dψ2
1ψ2(µ2

1r̃ + µ2
⋆q̃)

[
µ2

1P
v
XX − 2µ2

1µ
2
⋆ψ1P

v
WX + µ2

⋆P
v
WW

]
,

PΨv3 = Dψ2
1ψ2(µ2

1r̃ + µ2
⋆q̃)

[
µ2

1

(
M12
X + µ2

1µ
2
⋆ψ

2
1 [MXM

v
WMX ]12

)
− 2µ2

1µ
2
⋆ψ1 [MXM

v
W ]12 + µ2

⋆ [Mv
W ]12

]
,

PΨe2 = Dψ2
1ψ2µ

2
1r̃
[
µ2

1P
e
XX − 2µ2

1µ
2
⋆ψ1P

e
WX + µ2

⋆P
e
WW

]
,

PΨe3 = Dψ2
1ψ2µ

2
1r̃
[
µ2

1

(
M12
X + µ2

1µ
2
⋆ψ

2
1 [MXM

e
WMX ]12

)
− 2µ2

1µ
2
⋆ψ1 [MXM

e
W ]12 + µ2

⋆[M e
W ]12

]
,

PΨb2
= Dµ2

1ψ1ψ
2
2 r̃
[
ψ1µ

2
1PXX + 2µ2

⋆µ
2
1ψ

2
1PWX + µ2

⋆ψ1PWW

]
,
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where we defined the scalars PXX , PWX , PWW as follows:

P vXX = ψ2N
12
X +M12

X + 2ψ2(µ1µ⋆ψ1)2 [MXNXM
a
W ]12 + (µ1µ⋆ψ1)2 [MXM

a
WMX ]12

+ ψ2(µ1µ⋆ψ1)4 [MXMWNXM
a
WMX ]12 ,

P vWX = ψ2 [NXM
a
W ]12 + [MXM

a
W ]12 + ψ2(µ1µ⋆ψ1)2 [MXM

a
WNXM

a
W ]12 ,

P vWW = [Ma
W ]12 + ψ2(µ1µ⋆ψ1)2 [Ma

WNXM
a
W ]12 ,

P eXX = P vXX ,

P eWX = P vWX ,

P eWW = P vWW ,

P bXX =
(
Nd11
X + 2(µ1µ⋆ψ1)2

[
N b
XM

b
WM

b
X

]11
+ (µ1µ⋆ψ1)4

[
M b
XM

b
WN

b
XM

b
WM

b
X

]11
)
,

P bWX =
[
N b
XM

b
W

]11
+ (µ1µ⋆ψ1)2

[
M b
XM

b
WN

b
XM

b
W

]11
,

P bWW = (µ1µ⋆ψ1)2
[
M b
WN

b
XM

b
W

]11
,

and the 2 × 2 matricesMX ,MW , NX as follows:

Mv
X =

 r
1+µ2

1ψ1r
r̃

(1+µ2
1ψ1r)2

r̃

(1+µ2
1ψ1r)2

r
1+µ2

1ψ1r

 , Mv
W =


q(1+µ2

1ψ1r)
1+2µ2

1ψ1r+µ2
⋆ψ1q

q2µ2
1µ

2
⋆ψ

2
1 r̃

(1+µ2
1ψ1r+µ2

⋆ψ1q)2

q2µ2
1µ

2
⋆ψ

2
1 r̃

(1+µ2
1ψ1r+µ2

⋆ψ1q)2
q(1+µ2

1ψ1r)
1+2µ2

1ψ1r+µ2
⋆ψ1q

 , Nv
X = 1(

1 + µ2
1ψ1r

)2
[
r r̃
r̃ r

]
,

M e
X = Mv

X , M e
W = Mv

W + (1 + rµ2
1ψ1)2q̃(

1 + µ2
1ψ1r + µ2

⋆ψ1q
)2
[
0 1
1 0

]
, N e

X = 1(
1 + µ2

1ψ1r
)2
[
r r̃
r̃ r

]
,

M b
X = r

1 + µ2
1ψ1r2

[
1 0
0 1

]
, M b

W = q(1 + µ2
1ψ1r)

1 + µ2
1ψ1r + µ2

⋆ψ1q

[
1 0
0 1

]
, N b

X = 1
(1 + µ2

1ψ1r)2

[
r̃ 0
0 r̃

]
.

B.2 Replica Computation

B.2.1 Toolkit

Gaussian integrals

In order to obtain the main result for the generalisation error, we perform the averages over all the

sources of randomness in the system in the following order: over the dataset X , then over the noise

W , and finally over the random feature layers Θ. Here are some useful formulaes used throughout the

computations: 

∫
e− 1

2xiGijxj+Jixidx = (detG)− 1
2 e

1
2JiG

−1
ij Jj ,∫

xae
− 1

2xiGijxj+Jixidx = P 1
a (detG)− 1

2 e
1
2JiG

−1
ij Jj ,∫

xaxbe
− 1

2xiGijxj+Jixidx = P 2
ab(detG)− 1

2 e
1
2JiG

−1
ij Jj ,∫

xaxbxce
− 1

2xiGijxj+Jixidx = P 3
abc(detG)− 1

2 e
1
2JiG

−1
ij Jj ,∫

xaxbxcxde
− 1

2xiGijxj+Jixidx = P 4
abcd(detG)− 1

2 e
1
2JiG

−1
ij Jj ,

(B.4)
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with

P 1
a = [G−1J ]a,
P 2
ab = ((G−1)ab + [G−1J ]a[G−1J ]b),

P 3
abc =

∑
a,b,c∈perm(abc)

(
(G−1)ab[G

−1J ]c + [G−1J ]a[G−1J ]b[G
−1J ]c

)
,

P 4
abcd =

∑
a,b,c,d∈perm(abcd)

(
(G−1)ab(G

−1)cd + [G−1J ]a[G−1J ]b[G
−1J ]c[G−1J ]d + (G−1)ab[G

−1J ]c[G−1J ]d)

)
.

Replica representation of an inverse matrix

To obtain gaussian integrals we will use the "replica" representation the element (ij) of a matrixM of

size D:

M−1
ij = lim

n→0

∫ ( n∏
α=1

D∏
i=1

dηαi

)
η1
i η

1
j exp

(
−1

2η
α
i Mijη

α
j

)
. (B.5)

Indeed, using the gaussian integral representation of the inverse ofM ,

M−1
ij = Z−1

∫ ( D∏
i=1

dηi

)
ηiηj exp

(
−1

2ηiMijηj

)
,

Z =

√
(2π)D
detM

=
∫ ( D∏

i=1
dηi

)
exp

(
−1

2ηiMijηj

)
.

Using the replica identity, we rewrite this as

M−1
ij = lim

n→0
Zn−1

∫ ( D∏
i=1

dηi

)
ηiηj exp

(
−1

2ηiMijηj

)
.

Renaming the integration variable of the integral on the left as η1
and the n− 1 others as ηα, α ∈ {2, n},

we obtain expression (B.5).

B.2.2 The Random Feature model

In what follows, we will explicitly leave the indices of all the quantities used. We use the notation, called

Einstein summation convention in physics, in which all repeated indices are summed but the sum is not

explicitly written. Indices i ∈ {1...D} are used to refer to the input dimension, h ∈ {1...P} to refer to

the hidden layer dimension and µ ∈ {1...N} to refer to the number of data points.
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With a single learner

In the random features model, the predictor can be computed explicitly:

â = 1√
D

y⊤
µ Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1

hh′
(B.6)

f(x) = âhσ

(Θh′ixi√
D

)
(B.7)

= y⊤
µ Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1

hh′
σ

(Θh′ixi√
D

)
/
√
D, (B.8)

where

yµ = fd (Xµ) + ϵµ, (B.9)

Zµh = 1√
D
σ

( 1√
D

ΘhiXµi

)
. (B.10)

Hence the test error can be computed as:

ϵg =Ex

[(
fd(x) − y⊤

µ Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1

hh′
σ

(Θh′ixi√
D

)
/
√
D

)2
]

(B.11)

=Ex

[
fd(x)2

]
− 2y⊤

µ Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1

hh′
Vh′/

√
D

+ y⊤
µ Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1

hh1
Uh1h2

(
Z⊤Z + ψ1ψ2λIN

)−1

h2h′
Z⊤
h′µ′yµ′/D, (B.12)

where

Vh = Ex

[
fd(x)σ

(⟨Θhixi⟩√
D

)]
, (B.13)

Uhh′ = Ex

[
σ

(⟨Θhixi⟩√
D

)
σ

(Θh′i,xi√
D

)]
. (B.14)

Ensembling overK learners

When ensembling overK learners with independently sampled random feature vectors, the predictor

becomes:

f(x) = 1
K

√
D

∑
k

y⊤
µ Z

(k)
µh

(
Z⊤(k)Z(k) + ψ1ψ2λIN

)−1

hh′
σ

(
Θ(k)
h′ixi√
D

)
, (B.15)

where

Z
(k)
µh = 1√

D
σ

( 1√
D

Θ(k)
hi Xµi

)
. (B.16)
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The generalisation error is then given by:

ϵg =Ex

(fd(x) − 1
K

∑
k

y⊤Z(k)
(
Z⊤(k)Z(k) + ψ1ψ2λIN

)−1
σ

(
Θ(k)
h′ixi√
D

)
/
√
D

)2 (B.17)

=Ex

[
fd(x)2

]
− 2
K

∑
k

y⊤Z(k)
(
Z⊤(k)Z(k) + ψ1ψ2λIN

)−1
V (k)/

√
D

+ 1
K2

∑
k
l ̸=k

y⊤Z(k)
(
Z⊤(k)Z(k) + ψ1ψ2λIN

)−1
U (kl)

(
Z⊤(l)Z(l) + ψ1ψ2λIN

)−1
Z(l)⊤y/D,

(B.18)

where

V
(k)
h = Ex

[
fd(x)σ

(
⟨Θ(k)

hi xi⟩√
D

)]
, (B.19)

U
(kl)
hh′ = Ex

[
σ

(
⟨Θ(k)

hi xi⟩√
D

)
σ

(
⟨Θ(l)

h′i′xi′⟩√
D

)]
. (B.20)

Equivalent Gaussian Covariate Model

It was shown in [82] that the random features model is equivalent, in the high-dimensional limit of

Assumption 2, to a Gaussian covariate model in which the activation function σ is replaced as:

σ

(
Θ(k)
hi Xµi√
D

)
→µ0 + µ1

Θ(k)
hi Xµi√
D

+ µ⋆W
(k)
µh , (B.21)

with W (k) ∈ RN×P
,W

(k)
µh ∼ N (0, 1) and µ0, µ1 and µ⋆ defined in (B.1). To simplify the calculations,

we take µ0 = 0, which amounts to adding a constant term to the activation function σ.
This powerful mapping allows to express the quantities U ,V . We will not repeat their calculations

here: the only difference here is Ukl
, which carries extra indices k, l due to the different initialization of

the random features Θ(k)
. In our case,

U
(kl)
hh′ = µ2

1
D

Θ(k)
hi Θ(l)

h′i + µ2
⋆δklδhh′ . (B.22)

Hence we can rewrite the test error as

E{Θ(k)},X,ε [ϵg] = F 2 (1 − 2Ψv
1) + 1

K

(
F 2Ψv

2 + τ2Ψv
3

)
+
(

1 − 1
K

)(
F 2Ψe

2 + τ2Ψe
3

)
, (B.23)
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where Ψ1,Ψv
2,Ψe

2,Ψv
3,Ψe

3 are given by:

Ψ1 = 1
D

Tr
[(µ1

D
XΘ(1)⊤

)
⊤Z(1)

(
Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1
]

Ψv
2 = 1

D
Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1
(
µ2

1
D

Θ(1)Θ(1)⊤ + µ2
∗IN

)(
Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1Z(1)⊤

(
1
D

XX⊤
)

Z(1)
]

Ψv
3 = 1

D
Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1
(
µ2

1
D

Θ(1)Θ(1)⊤ + µ2
⋆IN

)(
Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1Z(1)⊤Z(1)

]
Ψe

2 = 1
D

Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1
(
µ2

1
D

Θ(1)Θ(2)⊤
)(

Z(2)⊤Z(2) + ψ1ψ2λIN

)
−1Z(2)⊤

(
1
D

XX⊤
)

Z(1)
]

Ψe
3 = 1

D
Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)
−1
(
µ2

1
D

Θ(1)Θ(2)⊤
)(

Z(2)⊤Z(2) + ψ1ψ2λIN

)
−1Z(2)⊤Z(1)

]
.

B.2.3 Computation of the vanilla terms

To start with, let us compute the vanilla terms (those who carry a superscript v), which involve a single

instance of the random feature vectors. Note that these were calculated in [82] by evaluating the Stieljes

transform of the random matrices of which we need to calculate the trace. The replica method used here

makes the calculation of the vanilla terms carry over easily to the the ensembling terms (superscript

e) and the bagging term (superscript b). To illustrate the calculation steps, we will calculate Ψv
3, then

provide the results for Ψv
2 and Ψ1.

In the vanilla terms, the two inverse matrices that appear are the same. Hence we use twice the replica

identity (B.5), introducing 2n replicas which all play the same role:

M−1
ij M

−1
kl = lim

n→0

∫ ( 2n∏
α=1

dη

)
η1
i η

1
j η

2
kη

2
l exp

(
−1

2η
αMijη

α
)
. (B.24)

The first step is to perform the averages, i.e. the Gaussian integrals, over the datasetX , the deterministic

noiseW induced by the non-linearity of the activation function and the random features Θ.

Averaging over the dataset

Replacing the activation function by its Gaussian covariate equivalent model and using (B.24), the term

Ψ3 can be expanded as:

Ψv
3 = 1

D

[
Zµh

(
Z⊤Z + ψ1ψ2λIN

)−1
hh1

(
µ2

1
D

Θh1iΘh2i + µ2
⋆δh1h2

)(
Z⊤Z + ψ1ψ2λIN

)−1
h2h′ Zh′µ

]
= 1
D

(
µ2

1
D

Θh1iΘh2i + µ2
⋆δh1h2

)
[ZµhZh′µ]

∫ ( 2n∏
α=1

dηα

)
η1

hη
1
h1
η2

h2
η2

h′ exp
(

−1
2η

α
h

(
Z⊤Z + ψ1ψ2λIN

)
hh′ η

α
h′

)
= 1
D2

(
µ2

1
D

Θh1iΘh2i + µ2
⋆δh1h2

)(
µ1√
D

ΘX + µ⋆W

)
hµ

(
µ1√
D

ΘX + µ⋆W

)
h′µ∫ ( 2n∏

α=1
dηα

)
η1

hη
1
h1
η2

h2
η2

h′ exp
(

−1
2η

α
h

(
1
D

(
µ1√
D

ΘX + µ⋆W

)
hµ

(
µ1√
D

ΘX + µ⋆W

)
h′µ

+ ψ1ψ2λδhh′

)
ηα

h′

)
.

Now, we introduce λαi := 1√
P
ηαhΘhi, and enforce this relation using the Fourier representation of the

delta-function:

1 =
∫
dλαi dλ̂

α
i e
iλ̂αi (

√
Pλαi −ηαhΘhi). (B.25)
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The average over the dataset Xµi has the form of (B.4) with:

(GX)µµ′,ii′ = δµµ′

(
δii′ + µ2

1ψ1
D

λαi λ
α
i′

)
, (B.26)

(JX)µ,i = µ1µ⋆
√
ψ1

D

∑
αa

λαi η
α
hWµh. (B.27)

Using formulae (B.4), we obtain:

Ψv
3 = N

D2

∫ ( 2n∏
α=1

dηαdλαdλ̂α

)(
µ2

1P

D
λ1

iλ
2
i + µ2

⋆η
1
i η

2
i

)
[
µ2

⋆η
1
hWhWh′η2

h′ + µ2
1ψ1λ

1
iλ

2
i′

(
(G−1

X )ii′ + (G−1
X JX)i(G−1

X JX)i′
)

+ 2µ1µ⋆

√
ψ1λ

1
i Whη

2
h(G−1

X JX)i

]
exp
(

−n

2 log det(GX)− 1
2η

α
h

(
µ2

⋆

D
WhWh′δαβ −µ2

1µ
2
⋆ψ1

D2 Whλ
α
i (GX)−1

ii′ λ
β
i′Wh′ +ψ1ψ2λδhh′

)
ηβ

h′ +iλ̂α
i (

√
Pλα

i −ηα
h Θhi)

)
Note that due to with a slight abuse of notation we got rid of indices µ, which all sum up trivially to

give a global factor N .

Averaging over the deterministic noise

The expectation over the deterministic noise Wh is a Gausssian integral of the form (B.4) with:

[GW ]hh′ = δhh′ + µ2
⋆

D
ηαhA

αβηβh′ , (B.28)

[JW ]h = 0, (B.29)

Aαβ = δαβ − µ2
1ψ1

1
D

∑
i,j

λαi [G−1
X ]ijλβj . (B.30)

Note that the prefactor involves, constant, linear and quadratic terms in W since:

(G−1
X JX)i = µ1µ⋆

√
ψ1

D
[ηαW ]

[
G−1
X λα

]
i
.

Thus, one obtains:

Ψv
3 = ψ2

D

∫ ( 2n∏
α=1

dηαdλαdλ̂α
)(

µ2
1ψ1λ

1
iλ

2
i + µ2

⋆η
1
i η

2
i

) [
µ2
⋆

[
η1(G−1

W )η2
]

+ µ2
1ψ1

[
λ1HWλ

2
]

+ 2µ2
1µ

2
⋆ψ1[λ1SW η

2]
]

exp
(

−n

2 log det(GX) − n

2 log det(GW ) − 1
2ψ1ψ2λ

∑
(ηαh )2 + iλ̂αi (

√
Pλαi − ηαhΘhi)

)
,

with

(HW )ij = (G−1
X )ij + µ2

1µ
2
⋆ψ1

D2

[
ηα(G−1

W )ηβ
] [
G−1
X λα

]
i

[
G−1
X λβ

]
j
, (B.31)

(SW )ih = 1
D

[
G−1
X λα

]
i

[
G−1
W ηα

]
h
. (B.32)
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Averaging over the random feature vectors

The expectation over the random feature vectors Θhi is a Gausssian integral of the form (B.4) with:

[GΘ]hh′,ii′ = δhh′,ii′ , (B.33)

[JΘ]hi = −iλ̂αi ηαh . (B.34)

Preforming this integration results in:

Ψv
3 = ψ2

D

∫ ( 2n∏
α=1

dηαdλαdλ̂α
)(

µ2
1ψ1λ

1
iλ

2
i + µ2

⋆η
1
i η

2
i

) [
µ2
⋆

[
η1(G−1

W )η2
]

+ µ2
1ψ1

[
λ1HWλ

2
]

+ 2µ2
1µ

2
⋆ψ1[λ1SW η

2]
]

exp
(

−n

2 log det(GX) − n

2 log det(GW ) − 1
2ψ1ψ2λ

∑
(ηαh )2 − 1

2η
α
hη

β
h λ̂

α
i λ̂

β
i + i

√
Pλ̂αi λ

α
i

)
.

Expression of the action and the prefactor

To complete the computation we integrate with respect to λ̂αi , using again formulae (B.4):

[
Gλ̂
]αβ
ii′

= δii
′
ηαhη

β
h , (B.35)[

Jλ̂
]α
i

= i
√
Pλαi . (B.36)

This yields the final expression of the term:

Ψv
3 = ψ2

D

∫ ( 2n∏
α=1

dηα

)( 2n∏
α=1

dλα

)(
µ2

1ψ1λ
1
iλ

2
i + µ2

⋆η
1
i η

2
i

) [
µ2

⋆

[
η1(G−1

W )η2]+ µ2
1ψ1

[
λ1HWλ2]+ 2µ2

1µ
2
⋆ψ1[λ1SW η2]

]
exp

(
−n

2 log det(GX) − n

2 log det(GW ) − D

2 log det(Gλ̂) − 1
2ψ1ψ2λ

∑
(ηα

h )2 − P

2 λ
α
i (G−1

λ̂
)αβ
ii′ λ

β
i′

)
.

The above may be written as

Ψv
3 =

∫ (∏
dη
) (∏

dλ
)
PΨv3 [η, λ] exp

(
−D

2 S
v [η, λ]

)
, (B.37)

with the prefactor PΨv3 and the action Sv defined as:

PΨv3 [η, λ] :=ψ2
D

(
µ2

1ψ1λ
1
iλ

2
i + µ2

⋆η
1
i η

2
i

) [
µ2
⋆

[
η1(G−1

W )η2
]

+ µ2
1ψ1

[
λ1HWλ

2
]

+ 2µ2
1µ

2
⋆ψ1[λ1SW η

2]
]
,

Sv [η, λ] :=ψ2 log det(GX) + ψ2 log det(GW ) + log det(Gλ̂) + 1
D
ψ1ψ2λ

∑
(ηαh )2 + P

D

(
λαi (G−1

λ̂
)αβii′ λ

β
i′

)
.

Expression of the action and the prefactor in terms of order parameters

Here we see that we have a factor D→∞ in the exponential part, which can be estimated using the

saddle point method. Before doing so, we introduce the following order parameters using the Fourier

representation of the delta-function:

1 =
∫
dQαβdQ̂αβe

Q̂αβ(PQαβ−ηαhη
β
h

), (B.38)

1 =
∫
dRαβdR̂αβe

R̂αβ(DRαβ−λαi λ
β
i ). (B.39)
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This allows to rewrite the prefactor only in terms of Q,R: for example,

µ2
1ψ1λ

1
iλ

2
i + µ2

⋆η
1
i η

2
i = ψ1D(µ2

1R
12 + µ2

⋆Q
12).

To do this, there are two key quantities we need to calculate: λG−1
X λ and ηG−1

W η. To calculate both, we

note that GX ang GW are both of the form I + X, therefore there inverse may be calculated using their

series representation. The result is:

[MX ]αβ := 1
D
λαG−1

X λβ =
[
R(I + µ2

1ψ1R)−1
]αβ

, (B.40)

[MW ]αβ := 1
P
ηα(G−1

W )ηβ =
[
Q(I + µ2

⋆ψ1AQ)−1
]αβ

. (B.41)

Using the above, we deduce:

λ1HWλ
2 = DM12

X + Pµ2
1µ

2
⋆ψ1 [MXMWMX ]12 , (B.42)

λ1SW η
2 = P [MXMW ]12 . (B.43)

The integrals over η, λ become simple Gaussian integrals with covariance matrices given by Q̂, R̂,
yielding:

1 =
∫
dQαβdQ̂αβe

−ψ1D
2 (log det Q̂−2TrQQ̂), (B.44)

1 =
∫
dRαβdR̂αβe

−D
2 (log det R̂−2TrRR̂). (B.45)

The next step is to take the saddle point with respect to the auxiliary variables Q̂ and R̂ in order to

eliminate them:

∂Sv

∂Q̂αβ
= ψ1

(
Q̂−1 − 2Q

)
= 0 ⇒ Q̂ = 1

2Q
−1, (B.46)

∂Sv

∂R̂αβ
=
(
R̂−1 − 2R

)
= 0 ⇒ R̂ = 1

2R
−1. (B.47)

One finally obtains that:

Ψv
3 =

∫ (∏
dQ
) (∏

dR
)
PΨv3 [Q,R] exp

(
−D

2 S
v [Q,R]

)
, (B.48)

With:

PΨv
3

[Q,R] =Dψ2
1ψ2(µ2

1R
12 + µ2

⋆Q
12)
[
µ2

⋆ [Mv
W ]12 + µ2

1

(
M12

X + µ2
1µ

2
⋆ψ

2
1 [MXM

v
WMX ]12

)
+ 2µ2

1µ
2
⋆ψ1 [MXM

v
W ]12

]
,

Sv [Q,R] =ψ2 log det(GX) + ψ2 log det(GW ) + ψ2
1ψ2λTrQ+ Tr

(
RQ−1)+ (1 − ψ1) log detQ− log detR.

(B.49)

Saddle point equations

The aim is now to use the saddle point method in order to evaluate the integrals over the order parameters.

Thus, one looks for R and Q solutions to the equations:

∂Sv

∂Qαβ
= 0, ∂Sv

∂Rαβ
= 0 ∀α, β = 1, · · · , 2n.
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To solve the above, it is common to make a replica symmetric ansatz. In this case, we assume that the

solutions to the saddle points equations take the form:

Q =


q q̃ · · · q̃

q̃
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. q̃

q̃ · · · q̃ q

 , R =


r r̃ · · · r̃

r̃
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. r̃

r̃ · · · r̃ r

 (B.50)

The action takes the following form:

Sv(q, r, q̃, r̃) = 2n (S0(q, r) + Sv1 (q, r, q̃, r̃))

S0(q, r) = λψ2
1ψ2q + ψ2 log

(
µ2
⋆ψ1q

µ2
1ψ1r + 1

+ 1
)

+ r

q
+ (1 − ψ1) log(q) + ψ2 log

(
µ2

1ψ1r + 1
)

− log(r)

Sv1 (q, r, q̃, r̃) = fv(q, r)q̃ + gv(q, r)r̃

fv(q, r) = λψ2
1ψ2 + µ2

⋆ψ1ψ2
µ2
⋆ψ1q + µ2

1ψ1r + 1
+ 1 − ψ1

q
− r

q2

gv(q, r) = − µ2
⋆µ

2
1ψ

2
1ψ2q(

µ2
1ψ1r + 1

) (
µ2
⋆ψ1q + µ2

1ψ1r + 1
) + µ2

1ψ1ψ2
µ2

1ψ1r + 1
+ 1
q

− 1
r
. (B.51)

Fluctuations around the saddle point

We introduce the following notations:

[∇TF (T⋆)]αβ = ∂F

∂Tαβ
|T⋆ ,

[HTF (T⋆)]αβ,γδ =

 ∂2F
∂Qαβ∂Qγδ

∂2F
∂Qαβ∂Rγδ

∂2F
∂Rαβ∂Qγδ

∂2F
∂Rαβ∂Rγδ

∣∣∣∣∣∣
T⋆

,

H [F ] =


∂F
∂q∂q

∂F
∂q∂r

∂F
∂q∂q̃

∂F
∂q∂r̃

∂F
∂q∂r

∂F
∂r∂r

∂F
∂r∂q̃

∂F
∂r∂r̃

∂F
∂q∂q̃

∂F
∂r∂q̃

∂F
∂q̃∂q̃

∂F
∂q̃∂r̃

∂F
∂q∂r̃

∂F
∂r∂r̃

∂F
∂q̃∂r̃

∂F
∂r̃∂r̃


∣∣∣∣∣∣∣∣∣∣q=q∗

r=r∗
r̃=0
q̃=0

.

Proposition Let q⋆ and r⋆ be the solutions of the fixed point equation for the function S0 : (q, r) 7→ R
defined in (B.51): {

∂S0(q,r)
∂q = 0

∂S0(q,r)
∂r = 0.

Then we have that

Ψv
3 = 1

D
Tr
[
H [Sv]−1H

[
PΨv3

]]
. (B.52)
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Sketch of proof Solving the saddle point equations:

∂Sv(q,r,q̃,r̃)
∂q = 0

∂Sv(q,r,q̃,r̃)
∂q = 0

∂Sv(q,r,q̃,r̃)
∂q̃ = 0

∂Sv(q,r,q̃,r̃)
∂r̃ = 0

,

one finds q̃ = r̃ = 0, which is problematic because the prefactor vanishes: PΨ3 ∝ µ2
1q̃ + µ2

⋆r̃.
Therefore we must go beyond the saddle point contribution to obtain a non zero result, i.e. we have

to examine the quadratic fluctuations around the saddle point. To do so we preform a second-order

expansion of the action (B.49) as a function of Q and R:

PΨv3 (T ) ≈ PΨv3 (T⋆) + (T − T⋆)⊤∇PΨv3 (T⋆) + 1
2(T − T⋆)⊤HT

[
PΨv3 (T⋆)

]
(T − T⋆),

Sv(T ) ≈ S0(T⋆) + 1
2(T − T⋆)⊤HT [Sv(T⋆)] (T − T⋆).

Computing the second derivative of (B.49), it is easy to show that:

[HT [Sv(T )]]αβ,γδ = [HT [Sv(T )]]αβ (δαγδβδ + δαδδβγ) ,[
HT

[
PΨv3 (T )

]]
αβ,γδ

=
[
HT

[
PΨv3 (T )

]]
αβ

(δαγδβδ + δαδδβγ) ,

where

HT [F ]αβ =

 ∂2F
∂Qαβ∂Qαβ

∂2F
∂Qαβ∂Rαβ

∂2F
∂Rαβ∂Qαβ

∂2F
∂Rαβ∂Rαβ


= 1

2nδαβ

[
∂2F
∂q∂q

∂2F
∂q∂r

∂2F
∂r∂q

∂2F
∂r∂r

]
+ 2

2n(2n− 1)(1 − δαβ)
[
∂2F
∂q̃∂q̃

∂2F
∂q̃∂r̃

∂2F
∂r̃∂q̃

∂2F
∂r̃∂r̃

]
.

Hence,

Ψv
3 = lim

n→0

∫
dTPΨv3 (T ) exp−D

2 S
v(T ),

= lim
n→0

PΨv3 (T⋆)︸ ︷︷ ︸
0

+∇PΨv3 (T⋆)αβ
∫
dT (T − T⋆)αβ exp

(
−D

2 S
v(T )

)
︸ ︷︷ ︸

0

+ 1
2HT

[
PΨv3 (T⋆)

]
αβ

∫
dT (T − T⋆)2

αβ exp
(

−D

2 S
v(T )

)
= lim

n→0

1
2HT

[
PΨv3 (T⋆)

]
αβ
e−D

2 S
v(T⋆)

∫
dT (T − T⋆)2

αβe
−D

2
∑

αβ
(T −T⋆)2

αβHT [Sv(T⋆)]αβ

= lim
n→0

1
2

(2π)n

detHT [Sv(T⋆)]
e−D

2 S
v(T⋆) 2

D
HT

[
PΨv3 (T⋆)

]
αβ
HT [Sv(T⋆)]−1

αβ

= 1
D

Tr
[
H [Sv]−1H

[
PΨv3

]]
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In the last step, we used the fact that:

lim
n→0

e−D
2 S

v(T⋆) = lim
n→0

e−nDS0(q⋆,r⋆) = 1,

lim
n→0

detHT [Sv(T⋆)] = 1.

The last equality follows from the fact that for a matrix of size n×n of the formMαβ = aδαβ+b(1−δαβ),
we have

detM = (a− b)n
(

1 + nb

a− b

)
−−−→
n→0

1.

Expression of the vanilla terms

Using the above procedure, one can compute the terms Ψ1,Ψv
2,Ψv

3 of (B.23): for each of these terms,

the action is the same as in (B.49), and the prefactors can be obtained as:

PΨ1 [Q,R] = µ2
1ψ1ψ2

(
M11

X + µ2
1µ

2
⋆ψ

2
1 (MXMWMX)11 + µ2

⋆µ1ψ1 (MXMW )11
)
,

PΨv
2
[Q,R] = Dψ2

1ψ2
(
µ2

1R
12 + µ2

⋆Q
12) (µ2

1ψ2PXX − 2µ2
1µ

2
⋆ψ1ψ2PXW + µ2

⋆PW W

)
,

PΨv
3

[Q,R] = Dψ2
1ψ2(µ2

1R
12 + µ2

⋆Q
12)
[
µ2

⋆ [Mv
W ]12 + µ2

1

(
M12

X + µ2
1µ

2
⋆ψ

2
1 [MXM

v
WMX ]12

)
+ 2µ2

1µ
2
⋆ψ1 [MXM

v
W ]12

]
,

PXX = N12
X + 1

ψ2
M12

X + 2 (µ1µ⋆ψ1)2 [NXMWMX ]12 + (µ1µ⋆ψ1)2

ψ2
[MXMWMX ]12 + (µ1µ⋆ψ1)4 [MXMWNXMWMX ]12,

PXW = [NXMW ]12 + 1
ψ2

[MXMW ]12 + (µ1µ⋆ψ1)2 [MXMWNXMW ]12
,

PW W = M12
W + ψ2 (µ1µ⋆ψ1)2 [MWNXMW ]12

.

Where a new term appears:

[NX ]αβ =
[
R(I + µ2

1ψ1R)−2
]αβ

. (B.53)

B.2.4 Computation of the ensembling terms

Expression of the action and the prefactor

In the ensembling terms, the two inverse matrices are different, hence one has to introduce two distinct

replica variables. We distinguish them by the use of an extra index a ∈ {1, 2}, denoted in brackets in

order not to be confused with the replica indices α.

[
M (1)

]−1

ij

[
M (2)

]−1

kl
= lim

n→0

∫ ( n∏
α=1

2∏
a=1

dηα(a)
)
η

1(1)
i η

1(1)
j η

1(2)
k η

1(2)
l exp

−1
2
∑
(a)

ηα(a)M
(a)
ij η

α(a)

 .
(B.54)

Calculations of the Gaussian integrals follow through in a very similar way as for the vanilla terms. The

matrices appearing in the process are:

200



(GeX)ii′ = δii′ + µ2
1ψ1
D

∑
(a)α

λ
α(a)
i λ

α(a)
i′ , (B.55)

(JeX)i = µ1µ⋆
√
ψ1

D2

∑
αa

λ
α(a)
i η

α(a)
h W

(a)
h , (B.56)

(GeW )(ab)
hh′ = δabhh′ + µ2

⋆

D

∑
αβ

η
α(a)
h Aαβ,abe η

β(b)
h′ , (B.57)

(JeW )h = 0 (B.58)

(GeΘ)(ab)
hh′,ii′ = δabhh′,ii′ (B.59)

(JeΘ)(a)
hi = −i

∑
α

λ̂
α(a)
i η

α(a)
h , (B.60)

(Ge
λ̂
)αβ,(ab)ii′ = 2δabδii′ηα(a)

h η
β(b)
h , (B.61)

(Je
λ̂
)α(a)
i = i

√
Pλ

α(a)
i . (B.62)

(B.63)

with

Aαβ,(ab)e = δabδαβ − µ2
1ψ1

1
D

∑
i,j

λ
α(a)
i [Ge−1

X ]ijλβ(b)
j , (B.64)

[He
W ]ii′ =

[
Ge−1
X

]
ii′

+
∑
αβ,ab

[
Ge−1
X λα(a)

]
i

[
Ge−1
X λβ(b)

]
i′

[
ηα(a)

[
Ge−1
W

](ab)
ηβ(b)

]
, (B.65)

[SeW ]ih = 1
D

∑
α,a

[
Ge−1
X λα(a)

]
i

[
Ge−1
W ηα(a)

]
h
. (B.66)

Starting with the computation of Ψe
3 in order to illustrate the method used, the prefactor PΨe3 and the

action are Se are given by:

PΨe
3

[η, λ] :=µ2
1ψ1ψ2

D
λ

1(1)
i λ

1(2)
i

[
µ2

⋆

[
η1(1)(Ge−1

W )(12)η1(2)
]

+ µ2
1ψ1

[
λ1(1)He

Wλ1(2)
]

+ 2µ2
1µ

2
⋆ψ1[λ1(1)Se

W η1(2)]
]
,

(B.67)

Se [η, λ] :=ψ2 log det(Ge
X) + ψ2 log det(Ge

W ) + log det(Ge
λ̂
) + 1

D
ψ1ψ2λ

∑
(ηα(a)

h )2 + 1
2D

(
λ

α(a)
i (Ge−1

λ̂
)αβ,ab
ii′ λ

β(b)
i′

)
.

(B.68)

Expression of the action and the prefactor in terms of order parameters

This time, because of the two different systems, the order parameters carry an additional index a, which
turns them into 2 × 2 block matrices:

1 =
∫
dQ

(ab)
αβ dQ̂

(ab)
αβ e

Q̂
(ab)
αβ

(PQ(ab)
αβ

−ηα(a)
h

η
β(b)
h

), (B.69)

1 =
∫
dR

(ab)
αβ dR̂

(ab)
αβ e

R̂
(ab)
αβ

(dR(ab)
αβ

−λα(a)
i λ

β(b)
i ). (B.70)
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The systems being decoupled, we make the following ansatz for the order parameters:

Q =



q · · · 0
.
.
.

.
.
.

.

.

.

0 · · · q

q̃ · · · 0
.
.
.

.
.
.

.

.

.

0 · · · q̃

q̃ · · · 0
.
.
.

.
.
.

.

.

.

0 · · · q̃

q · · · 0
.
.
.

.
.
.

.

.

.

0 · · · q


, R =



r · · · 0
.
.
.

.
.
.

.

.

.

0 · · · r

r̃ · · · 0
.
.
.

.
.
.

.

.

.

0 · · · r̃

r̃ · · · 0
.
.
.

.
.
.

.

.

.

0 · · · r̃

r · · · 0
.
.
.

.
.
.

.

.

.

0 · · · r


. (B.71)

In virtue of the simple structure of the above matrices, the replica indices α trivialize and we may replace

the matrices Q and R by the 2 × 2 matrices:

Q =
[
q q̃
q̃ q

]
, R =

[
r r̃
r̃ r

]
.

Define:

[M e
X ](ab) ≡ 1

D
λ

(a)
i

[
Ge−1
X

]
ij
λ

(b)
j =

[
R(I + µ2

1ψ1R)−1
]

(ab)
, (B.72)

[M e
W ](ab) ≡ 1

P
η(a)

[
Ge−1
W

](ab)
η(b) =

[
Q(I + ψ1A

eQ)−1
]

(ab)
, (B.73)

where products are now over 2 × 2 matrices. Then, one has:

PΨe
3

[Q,R] :=Dµ2
1ψ

2
1ψ2R

(12)
[
µ2

⋆M
e(12)
W + µ2

1

(
M

e(12)
X + µ2

1µ
2
⋆ψ

2
1 [Me

XM
e
WMe

X ](12)
)

+ 2µ2
1µ

2
⋆ψ1 [Me

XM
e
W ](12)

]
,

Se [Q,R] :=ψ2 log det(Ge
X) + ψ2 log det(Ge

W ) +
∑

a

[
(ψ2

1ψ2λ)TrQ(a)(a) + Tr
(
R(a)(a)(Q−1)(a)(a)

)
+ log detQ(a)(a)

]
− ψ1 log detQ− log detR.

Where we have:

M e
X = 1

(1 + µ2
1ψ1r)2 − (µ2

1ψ1r̃)2

[
r + µ2

1ψ1(r2 − r̃2) r̃
r̃ r + µ2

1ψ1(r2 − r̃2)

]
, (B.74)

Ae(ab) = δ(ab) − µ2
1ψ1 [M e

X ](ab) , (B.75)

[M e
W ](ab) = qδ(ab) − µ2

⋆ψ1
[
Ae(I + µ2

⋆ψ1qA
e)−1

]
(ab)

, (B.76)

det(GeX) = det(δ(ab) + ψ1µ
2
1R(ab)), (B.77)

det(GeW ) = det(δab + ψ1qA
e
(ab)). (B.78)

Finally, we are left with:

Se(q, r, q̃, r̃) =n (S0(q, r) + Se1(q, r, q̃, r̃)) ,
Se1(q, r, q̃, r̃) =r̃2fe(q, r) + q̃2ge(q, r),

fe(q, r) =2rµ2
1ψ1

(
1 + qµ2

⋆ψ1
)

+
(
1 + qµ2

⋆ψ1
)2 − r2µ4

1ψ
2
1(−1 + ψ2)

2r2 (1 + rµ2
1ψ1 + qµ2

⋆ψ1
)2 ,

ge(q, r) = ψ1
2q2 .

Where S0 was defined in (B.51).
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Expression of the ensembling terms

Evaluating the fluctuations around the saddle point follows through in the same way as for the vanilla

terms, with the following expressions of the prefactors:

PΨe
2

[Q,R] = Dψ2
1ψ2µ

2
1r̃
[
µ2

1P
e
XX − 2µ2

1µ
2
⋆ψ1P

e
W X + µ2

⋆P
e
W W

]
, (B.79)

PΨe
3

[Q,R] = Dµ2
1ψ

2
1ψ2R

(12)
[
µ2

⋆M
e(12)
W + µ2

1

(
M

e(12)
X + µ2

1µ
2
⋆ψ

2
1 [Me

XM
e
WMe

X ](12)
)

+ 2µ2
1µ

2
⋆ψ1 [Me

XM
e
W ](12)

]
,

(B.80)

P e
XX = ψ2N

e12
X +Me12

X + 2ψ2(µ1µ⋆ψ1)2 [Me
XN

e
XM

e
W ]12 + (µ1µ⋆ψ1)2 [Me

XM
e
WMe

X ]12

+ ψ2(µ1µ⋆ψ1)4 [Me
XM

e
WNe

XM
e
WMe

X ]12
,

(B.81)

P e
W X = ψ2 [Ne

XM
e
W ]12 + [Me

XM
e
W ]12 + ψ2(µ1µ⋆ψ1)2 [Me

XM
e
WNe

XM
e
W ]12

, (B.82)

P e
W W = [Me

W ]12 + ψ2(µ1µ⋆ψ1)2 [Me
WNe

XM
e
W ]12

. (B.83)

B.2.5 Computation of the bagging term

Here, we are interested in computing the term Ψb
2. This term differs from the previous ones in that

there are now two independent data matrices X(1)
and X(2)

. The calculations for the action and the

prefactor are very similar to calculations performed for the ensembling terms Ψe
2,Ψe

3, with the addition

that X now also carries an index (a).
Firstly let us write Ψb

2 as a trace over random matrices:

Ψb
2 = µ2

1
d2 Tr

[
X(1)Z(1)B(1)−1Θ(1)Θ(2)B(2)−1Z(2)X(2)

]
. (B.84)

Calculations follow through in the same way as in the previous sections. Using the replica formula

(B.54), and performing the integrals over the Gaussian variables the following quantities appear:

(GbX)(ab)
ii′ = δii′ + µ2

1ψ1
D

∑
α

λ
α(a)
i λ

α(a)
i′ , (B.85)

(JdX)(a)
i = µ1µ⋆

√
ψ1

D2

∑
α

λ
α(a)
i η

α(a)
h W

(a)
h , (B.86)

(GbW )(ab)
hh′ = δabhh′ + µ2

⋆

D

∑
αβ

η
α(a)
h Aαβ,abη

β(b)
h′ , (B.87)

(JbW )h = 0, (B.88)

(GbΘ)(ab)
hh′,ii′ = δabhh′,ii′ , (B.89)

(JbΘ)(a)
hi = −i

∑
α

λ̂
α(a)
i η

α(a)
h , (B.90)

(Gb
λ̂
)αβ,(ab)ii′ = 2δabδii′ηα(a)

h η
β(b)
h , (B.91)

(Jb
λ̂
)α(a)
i = i

√
Pλ

α(a)
i . (B.92)

(B.93)

The saddle point ansatz for Q and R is the same as the one for the ensembling terms (see (B.71)). The

procedure to evaluate Ψb
2 is also the same as the one for Ψe

2 except the Hessian is taken with respect to
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Sb. The final result is given below.

PΨb2
[Q,R] =Dµ2

1ψ1ψ
2
2 r̃
[
ψ1µ

2
1PXX + 2µ2

⋆µ
2
1ψ

2
1PWX + µ2

⋆ψ1PWW

]
,

PXX =
(
N11
X + 2(µ1µ⋆ψ1)2 [NXMWMX ]11 + (µ1µ⋆ψ1)4 [MXMWNXMWMX ]11

)
,

PWX = [NXMW ]11 + (µ1µ⋆ψ1)2 [MXMWNXMW ]11 ,

PWW =(µ1µ⋆ψ1)2 [MWNXMW ]11 ,

Sb[q, r, q̃, r̃] =n
(
S0(q, r) + Sb1(q, r, q̃, r̃)

)
,

Sb1(q, r, q̃, r̃) = r̃2

r2 + ψ1q̃
2

q2 .

With:

MX = r

1 + µ2
1ψ1r

,

A = 1 − µ2
1ψ1MX ,

MW = q

1 + µ2
⋆ψ1qA

,

NX = r̃

(1 + µ2
1ψ1r)2 .
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Appendix C

Triple Descent and the Two Kinds of
Overfitting: When and Why do they
Occur?

C.1 Effect of signal-to-noise ratio and nonlinearity

C.1.1 RF model

In the RF model, varying r can easily be achieved analytically and yields interesting results, as shown in

Fig. C.1
1
.

In the top panel, we see that the parameter-wise profile exhibits double descent for all degrees of linearity

r and signal-to-noise ratio SNR, except in the linear case r = 1 which is monotonously deceasing.

Increasing the degree of nonlinearity (decreasing r) and the noise (decreasing the SNR) simply makes

the nonlinear peak stronger.

In the bottom panel, we see that the sample-wise profile is more complex. In the linear case r = 1, only
the linear peak appears (except in the noiseless case). In the nonlinear case r < 1, the nonlinear peak
appears is always visible; as for the linear peak, it is regularized away, except in the strong noise regime

SNR > 1 when the degree of nonlinearity is small (r > 0.8), where we observe the triple descent.
Notice that both in the parameter-wise and sample-wise profiles, the test loss profiles change smoothly

with r, except near r = 1 where the behavior abruptly changes, particularly at low SNR.

One can also mimick these results numerically by considering, as in [149], the following family of

piecewise linear functions:

σα(x) =
[x]+ + α[−x]+ − 1+α√

2π√
1
2 (1 + α2) − 1

2π (1 + α)2
, (C.1)

for which

rα = (1 − α)2

2 (1 + α2) − 2
π (1 + α)2 . (C.2)

1

We focus here on the practically relevant setup N/D ≫ 1. Note from the (P, N ) phase-space that things can be more

complex at N/D ≲ 1).
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Figure C.1: Analytical parameter-wise (top, N/D = 10) and sample-wise (bottom, P/D = 10) test
loss profiles of the RF model. Left: noiseless case, SNR = ∞. Center: low noise, SNR = 2. Right:
high noise, SNR = 0.2. We set γ = 10−1

.

Here, α parametrizes the ratio of the slope of the negative part to the positive part and allows to adjust

the value of r continuously. α = −1 (r = 1) will correspond to a (shifted) absolute value, α = 1 (r = 0)
will correspond to a linear function, α = 0 will correspond to a (shifted) ReLU. In Fig. C.2, we show the

effect of sweeping α uniformly from 1 to -1 (which causes r to range from 0 to 1). As expected, we see

the linear peak become stronger and the nonlinear peak become weaker.

C.1.2 NN model

In Fig. C.3, we show the effect of replacing Tanh (r ∼ 0.92) by ReLU (r = 0.5). We still distinguish the

two peaks of triple descent, but the linear peak is much weaker in the case of ReLU, as expected from

the stronger degree of nonlinearity.

C.2 Origin of the linear peak

In this section, we follow the lines of [122], where the test loss is decomposed in the following way

(Eq. D.6):

Lg = ρ+Q− 2M (C.3)

ρ = 1
D

∥β∥2 , M =
√
ζ

D
b · β, Q = ζ

D
∥b∥2 + η − ζ

P
∥a∥2, b = Θa (C.4)
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Figure C.2: Moving from a purely nonlinear function to a purely linear function (dark to light colors)

strengthens the linear peak and weakens the nonlinear peak.

As before, β denotes the linear teacher vector and Θ,a respectively denote the (fixed) first and (learnt)

second layer of the student. This insightful expression shows that the loss only depends on the norm of

the second layer ∥a∥, the norm of the linearized network ∥b∥, and its overlap with the teacher b · β.
We plot these three terms in Fig. C.4, focusing on the triple descent scenario SNR < 1. In the left

panel, we see that the overlap of the student with the teacher is monotically increasing, and reaches

its maximal value at a certain point which increases from D to P as we decrease r from 1 to 0. In the

central panel, we see that ∥a∥ peaks at N = P , causing the nonlinear peak as expected, but nothing

special happens at N = D (except for r = 1). However, in the right panel, we see that the norm of

the linearized network peaks at N = D, where we know from the spectral analysis that the gap of the

linear part of the spectrum is minimal. This is the origin of the linear peak.

C.3 Structured datasets

In this section, we examine how our results are affected by considering the realistic case of correlated

data. To do so, we replace the Gaussian i.i.d. data by MNIST data, downsampled to 10 × 10 images for

the RF model (D = 100) and 14 × 14 images for the NN model (D = 196).

C.3.1 RF model: data structure does not matter in the lazy regime

We refer to the results in Fig C.5. Interestingly, the triple descent profile is weakly affected by the

correlated structure of this realistic dataset: the linear peak and nonlinear peaks still appear, respectively

at N = D and N = P . However, the spectral properties of Σ = 1
NZ⊤Z are changed in an interesting

manner: the two parts of the spectrum are now contiguous, there is no gap between the linear part and

the nonlinear part.

C.3.2 NN model: the effect of feature learning

As shown in Fig. C.6, the NN model behaves very differently on structured data like CIFAR10. At late

times, three main differences with respect to the case of random data can be observed in the low SNR
setup:

207



1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=26 epochs
N=D
N=P

1.36
1.42
1.48
1.54
1.60
1.66
1.72
1.78

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=78 epochs
N=D
N=P

1.375
1.425
1.475
1.525
1.575
1.625
1.675
1.725
1.775
1.825

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=233 epochs
N=D
N=P

1.375
1.425
1.475
1.525
1.575
1.625
1.675
1.725
1.775
1.825

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=695 epochs
N=D
N=P

1.375
1.450
1.525
1.600
1.675
1.750
1.825

(a) Tanh

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=26 epochs

N=D
N=P

1.34
1.40
1.46
1.52
1.58
1.64
1.70
1.76

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=78 epochs

N=D
N=P

1.36
1.42
1.48
1.54
1.60
1.66
1.72
1.78

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=233 epochs

N=D
N=P

1.375
1.425
1.475
1.525
1.575
1.625
1.675
1.725
1.775
1.825

1 0 1 2
log(N/D)

0.5

1.0

1.5

2.0

lo
g(

P/
D

)

t=695 epochs

N=D
N=P

1.375
1.450
1.525
1.600
1.675
1.750
1.825

(b) ReLU

Figure C.3: Dynamics of the test loss phase space, with weight decay γ = 0.05. Top: Tanh. Bottom:

ReLU.
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Figure C.4: Terms entering Eq. C.4, plotted at SNR = 0.2, γ = 10−1

.

• Instead of a clearly defined linear peak at N = D, we observe a large overfitting regions at

N < D.

• The nonlinear peak shifts to higher values of N during time, but always scales sublinearly with

P , i.e. it is located at N ∼ Pα with α < 1

Behavior of the linear peaks As emphasized by [147], a non-trivial structure of the covariance of

the input data can strongly affect the number and location of linear peaks. For example, in the context of

linear regression, [146] considers gaussian data drawn from a diagonal covariance matrix Σ ∈ R30×30

with two blocks of different strengths: Σi, i = 10 for i ≤ 15 and Σi, i = 1 for i ≥ 15. In this situation,

two linear peaks are observed: one at N1 = 15, and one at N2 = 30. In the setup of structured data

such as CIFAR10, where the covariance is evidently much more complicated, one can expect to see a

multiple peaks, all located at N ≤ D.

This is indeed what we observe: in the case of Tanh, where the linear peaks are strong, two linear peaks
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Figure C.5: Spectrum of the covariance of the projected features Σ = 1
NZ⊤Z at various values ofN/D,

with the corresponding loss curve shown above. We set σ = Tanh, γ = 10−5
.

are particularly at late times, atN1 = 10−1.5D, and the other atN2 = 10−2D. In the case of ReLU, they

are obscured at late times by the strength of the nonlinear peak.

Behavior of the nonlinear peak We observe that during training, the nonlinear peak shifts towards

higher values of N . This phenomenon was already observed in [33], where it is explained through

the notion of effective model complexity. The intuition goes as follows: increasing the training time

increases the expressivity of a given model, and therefore increases the number of training examples it

can overfit.

We argue that this sublinear scaling is a consequence of the fact that structured data is easier to memorize

than random data [461]: as the dataset grows large, each new example becomes easier to classify since

the network has learnt the underlying rule (in contrast to the case of random data where each new

example makes the task harder by the same amount).
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Figure C.6: Dynamics of test loss phase space on CIFAR10 with SNR = 0.2, for different activation
functions.
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Appendix D

On the interplay between Loss Function
and Data Structure
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D.1 Phase spaces

Comparing square and logistic In Figs. D.1 and D.2, we show how the various observables of

interest evolve in the (N,P ) phase space, respectively from square loss and logistic loss. To show that

our results generalize to different activation functions and regularization levels, we choose σ = ReLU
and λ = 0.1. We make the following observations:

1. Test error: the phase-space is almost symmetric in the isotropic setup, with the double descent

peak clearly visible atN = P (dashed grey line) for square loss but strongly attenuated for logistic

loss. Interestingly, for logistic loss, the peak appears at N > P in the noiseless setup as observed

in [122], but shifts to N = P in presence of noise. In the anisotropic setup, the phase space

dissymetrizes, with a wide overfitting region emerging in the overparametrized regime around

N = D (solid grey line), as observed in [119] for isotropic regression tasks. This overfitting is

strongly regularized for logistic loss, explaining its superiority on structured datasets

2. Train loss: Here a strong difference appears between square loss and logistic loss. For square

loss, the overparametrized region P > N > D reaches zero training loss, and the interpolation

threshold clearly appears at P = N . For logistic loss, the interpolation threshold depends more

strongly on the data structure: it shifts up when we increase the label noise and shifts down when

we increase the anisotropy.

3. Order parameter Q: recall that this observable represents the variance of the student’s outputs.

Here the phase space looks completely different for the two loss functions. For square loss, the

phase space is almost symmetric in the noiseless isotropic setup and dissymetrizes in presence

of noise or anisotropy, with a peak appearing at N = D, forming the “linear peak” in the test

error [119]. For logistic loss, the phase space is not symmetric: Q becomes very large in the

overparametrized regime, leading to overconfidence, as observed in Fig. 5.5 of the main text.

4. Order parameterM : recall that this observable represents the covariance between the student’s

outputs and the teacher’s outputs, i.e. the dot product of their corresponding vectors. Again,

behavior is very different for square loss and logistic loss. For square loss, the covariance increases

symmetrically when increasing P or N , reaching its maximal value respectively at P = D and

N = D in the isotropic setup, or earlier in the aligned setup. For logistic loss, the phase space

is more complex due to the fact that the norm of the student diverges in the overparametrized

regime.

Varying the anisotropy Fig. D.3 illustrates the modification of the phase space of the random features

model trained on the strong and weak features model as the saliency rx of the ϕ1D = 0.01D relevant

features (rβ = 1000) is gradually increased. At rx = 1 (panel (a)), the data is isotropic and the phase

space is symmetric. When rx→∞, all the variance goes in the salient subspace and we are left with

an isotropic task of dimensionality ϕ1D: the phase space is symmetric again (panel (d)). In between

these two extreme scenarios, we see the asymmetry appear in the phase space under the form of an

overfitting peak at N = D, as the irrelevant features come into play (panels (b) and (c)).
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D.2 Analytical derivations

The following sections present the analytical derivations of Chap. 5. First, we provide an outline of

the computation of the test error. Second, we describe our extension of the Gaussian Equivalence

Theorem to anisotropic data, a key ingredient to handle the strong and weak features model. The three

following sections develop the steps of the replica computation, from the Gibbs formulation of the

learning objective, to the set of self-consistent equations to obtain the order parameters. Lastly, we

explain how to also obtain the asymptotic training loss from the output of the replica computation.

D.2.1 Outline

In the main text, we study the strong and weak features scenario with two blocks, and only for classifi-

cation tasks, but our derivation will be performed here in full generality.

Setup and notations We recall notations: D is the input dimension, P is the number of random

features and N is the number of training examples. We consider the high-dimensional limit where

D,P,N→∞ and γ = D
P , α = N

P are of order one. The inputs x ∈ RD and the elements of the teacher

vectors β ∈ RD are sampled from a block-structured covariance matrix:

x ∼ N (0,Σx), Σx =

σx,1Iϕ1D 0 0
0 σx,2Iϕ2D 0
0 0 dots

 (D.1)

β ∼ N (0,Σβ), Σβ =

σβ,1Iϕ1D 0 0
0 σβ,2Iϕ2D 0
0 0 dots

 (D.2)

(D.3)

The output of the random feature model is given by:

ŷµ = f̂

(
P∑
i=1

aiσ

(Θi · xµ√
D

))
≡ f̂ (a · zµ) , (D.4)

where σ(·) is a pointwise activation function, f̂ is an output function and we introduced the notation

zµ ∈ RP . Elements of Θ are drawn i.i.d from N (0, 1). The labels are given by a linear ground truth,

modulated by an output function f0
and possibly corrupted by noise through a probabilistic channel P :

yµ ∼ P
(

·
∣∣∣∣f0

(
β · xµ√
D

))
. (D.5)

The second layer weights, i.e. the elements of a ∈ RP , are trained by minimizing an ℓ2-regularized loss

on N training examples {xµ ∈ RD}µ=1...N :

â = argmin
a

[L(a)] , L(a) =
N∑
µ=1

ℓ (yµ,a · zµ) + λ

2 ∥a∥2
2. (D.6)
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We consider both regression tasks, where f̂ = f0 = id, and binary classification tasks, f̂ = f0 = sign.

In the first case, ℓ is the square loss and the noise is additive. In the second case, ℓ can be any type of

loss (square, hinge, logistic) and the noise amounts to random label flipping.

The test error is given by

ϵg = 1
2kEx,y

[
(ŷ (x) − y)2

]
(D.7)

with k = 1 for regression tasks (mean-square error) and k = 2 for binary classification tasks (zero-one

error).

In the following, we denote as x|i,β|i the orthogonal projection of x and β onto the subspace i of RD .
For example, x|1 amounts to the first ϕ1D components of x.

Steps of the derivation of the test error The key observation is that the test error can be rewritten,

in the high-dimensional limit, in terms of so-called order parameters:

ϵg = 1
2kExnew,ynew

(
ynew − f̂

(
1√
P
σ

(
Θ⊤xnew

√
D

)
· â

))2

(D.8)

= 1
2k
∫

dν
∫

dλP (ν, λ)(f0(ν) − f̂(λ))2
(D.9)

where we defined

λ = 1√
P
σ

(
Θ⊤xnew

√
D

)
· â ∈ R, ν = 1√

D
xnew · β ∈ R (D.10)

and the joint probability distribution

P (ν, λ) = Exnew

[
δ

(
ν − 1√

D
xnew · β

)
δ

(
λ− 1√

P
σ

(
Θ⊤xnew

√
D

)
· â

)]
. (D.11)

The key objective to calculate the test error is therefore to obtain the joint distribution P (ν, λ). To do

so, our derivation is organized as follows.

1. In Sec. D.2.2, we adapt the Gaussian equivalence theorem [82, 128, 164, 181] to the case of

anisotropic data. The latter shows that P (ν, λ) is a joint gaussian distribution whose covariance

depends only on the following order parameters:

ms,i = 1
D

s|i · β|i, qs,i = 1
D

s|i · s|i, qa = 1
P

â · â,

where we denoted s = 1√
P

Θâ ∈ RD and the index i refers to the subspace of RD the vectors are

projected onto.

2. In Sec. D.2.3, we recast the optimization problem as a Gibbs measure over the weights, from which

one can sample the average value of the order parametersms, qs, qa. Thanks to the convexity of

the problem, this measure concentrates around the solution of the optimization problem in the

limit of high temperature, see [122].

214



3. In Sec. D.2.4, we leverage tools from random matrix theory to derive the saddle-point equations

allowing the obtain the values of the order parameters

4. In Sec. D.2.5, we give the explicit expressions of the saddle-point equations for the two cases

studied in the main text: square loss regression and classification

5. In Sec. D.2.6, we also show how to obtain the train error from the order parameters.

Once the order parameters are known, the joint law of λ, ν is determined as explained in the main text:

P (λ, ν) = N (0,Σ), Σ =
(

ρ M
M Q

)
. (D.12)

It is then easy to perform the Gaussian integral giving the test error.

For the regression problem where f̂ = f0 = id, we have:

ϵg = 1
2 (ρ+Q− 2M)

For the classification problem where f̂ = f0 = sgn, we have:

ϵg = 1
π

cos−1
(

M√
ρQ

)
.

D.2.2 The anisotropic Gaussian Equivalence Theorem

We now present the derivation of the anisotropic Gaussian Equivalence Theorem. This is a key ingredient

for the replica analysis presented in the next section.

Define, for a Gaussian input vector x ∈ RD , the family of vectors indexed by a = 1 . . . r:

λa = 1√
P

aa · σ
(Θx√

D

)
∈ R, ν = 1√

D
x · β ∈ R (D.13)

Using the Gaussian equivalence principle, we can obtain expectancies for this family in the high-

dimensional limit:

(ν, λa) ∼ N (0,Σ), Σab =
(

ρ Ma

Ma Qab

)
∈ R(r+1)×(r+1)

(D.14)

ρ =
∑
i

ϕiβ|iσx,i, Ma = µ1
∑
i

σx,im
a
s,i, Qab = µ2

1
∑
i

σx,iq
ab
s,i + µ2

⋆q
ab
a (D.15)

ma
s,i = 1

D
sa|i · β|i, qabs,i = 1

D
sa|i · sb|i, qaba = 1

P
aa · ab (D.16)

where we have:

sa = 1√
P

Θaa ∈ RD, sai = PEis
a, β|i = PEiβ (D.17)

and denoting ψ =
∑
i ϕiσx,i and z ∼ N (0, ψ), we defined

µ0 = Ez[σ(z)], µ1 = 1
ψ
Ez[zσ(z)]], µ⋆ =

√
Ez [σ(z)2] − µ2

0 − ψµ2
1. (D.18)
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Isotropic setup Let us start in the setup where we only have one block, of unit variance.

By rotational invariance, we can write:

Ex

[
σ

(
x · Θµ√

D

)
σ

(
x · Θν√

D

)]
= f

(Θµ · Θν

D

)
≡ f(qµν) (D.19)

= δµνf(1) + (1 − δµν)
(
f(0) + f ′(0)qµν

)
+ o (qµν) (D.20)

= f(0) + f ′(0)qµν + δµν(f(1) − f(0) − f ′(0)) (D.21)

Therefore, the expectancy is the same as the "Gaussian equivalent model" where we replace

σ

(
x · Θµ√

D

)
→
√
f(0) +

√
f ′(0)

(
x · Θµ√

D

)
+
√

(f(1) − f(0) − f ′(0)ξµ, ξµ ∼ N (0, 1) (D.22)

What remains is to find the expression of f(0), f(1) and f ′(0). If qµν = 1, then Θµ and Θν are the

same vector and clearly f(1) = Ez
[
σ(z)2]

.

Otherwise, we use the fact that xµ = x·Θµ√
D

and xν = x·Θν√
D

are correlated gaussian variables:

E
[
x2
µ

]
= 1, E [xµxν ] = Θµ · Θν

D
≡ qµν ∼ O

( 1√
D

)
(D.23)

Therefore we can parametrize as follows,

xµ = ηµ
√
r − qµν + z

√
qµν ∼ ηµ(1 − 1

2qµν) + z
√
qµν (D.24)

xν = ην
√
r − qµν + z

√
qµν ∼ ηµ(1 − 1

2qµν) + z
√
qµν (D.25)

(D.26)

where ηµ, ην , z ∼ N (0, 1). To calculate f(0), f ′(0), we can expand the nonlinearity,

f(qµν) ≡ f(0) + f ′(0)qµν + o(q2
µν) (D.27)

= E
[(
σ(ηµ) + σ′(ηµ)

(
−q

2ηµ + z
√
qµν

)
+ σ′′(ηµ)

2
(
z2qµν

))
(D.28)(

σ(ην) + σ′(ην)
(

−q

2ην + z
√
qµν

)
+ σ′′(ην)

2
(
z2qµν

))]
(D.29)

= Eη [σ(η)]2 + qµν
(
E[σ′(η)]2 + E[σ′′(η)]E[σ(η)] − E[σ′(η)η]E[σ(η)]

)
+ o(q2

µν) (D.30)

(D.31)

But since E[σ(η)η] = E[σ′(η)], the two last terms cancel out and we are left with

f(0) = E[σ(z)]2, f ′(0) = E[σ(z)η]2 (D.32)

Ex

[
σ

(
x · Θµ√

D

)
σ

(
x · Θν√

D

)]
= µ2

0 + µ2
1
Θµ · Θν

D
+ µ2

⋆δµν (D.33)
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Anisotropic setup Now in the block setup,

E
[
x2
µ

]
=
∑
i

σx,iϕi ≡ r, E [xµxν ] =
∑
i

σx,i
Θi
µ · Θi

ν

D
=
∑
i

σx,iq
i
µν ≡ qµν ∼ O

( 1√
D

)
(D.34)

Therefore we can parametrize as follows,

xµ = ηµ

√
1 − qµν

r
+ z

√
qµν
r

∼ ηµ(1 − 1
2
qµν
r

) + z

√
qµν
r

(D.35)

xν = ην

√
1 − qµν

r
+ z

√
qµν
r

∼ ηµ(1 − 1
2
qµν
r

) + z

√
qµν
r

(D.36)

(D.37)

where ηµ, ην , z ∼ N (0, r). As before,

f(qµν) = Eη [σ(η)]2 + qµν
r

(
E[σ′(η)]2E[z2] + E[σ′′(η)]E[σ(η)]E[z2] − E[σ′(η)η]E[σ(η)]

)
+ o(q2

µν)
(D.38)

(D.39)

Now since E[z2] = r and E[σ(η)η] = rE[σ′(η)], the two last terms do not cancel out like before and we

have:

f(0) = E[σ(z)]2, f ′(0) = 1
r
E[σ(z)η]2E[z2] = 1

r2E[σ(z)z]2 (D.40)

Finally we have

Ex

[
σ

(
x · Θµ√

D

)
σ

(
x · Θν√

D

)]
= µ2

0 + µ2
1
∑
i

σx,i
Θi
µ · Θi

ν

D
+ µ2

⋆δµν (D.41)

µ0 = E
z∼N (0,r)

[σ(z)], µ1 = 1
r

E
z∼N (0,r)

[zσ(z)]], µ⋆ =
√

E
z∼N (0,r)

[σ(z)2] − µ2
0 − rµ2

1 (D.42)

(D.43)

D.2.3 Gibbs formulation of the problem

To obtain the test error, we need to find the typical value of the order parametersms, qs, qa. To do so, we
formulate the optimization problem for the second layer weights as a Gibbs measure over the weights

as in [122]:

µβ (a | {xµ, yµ}) = 1
Zβ

e
−β
[∑N

µ=1 ℓ(y
µ,xµ·a)+λ

2 ∥a∥2
2

]
= 1

Zβ

N∏
µ=1

e−βℓ(yµ,xµ·a)

︸ ︷︷ ︸
≡Py(y|a·xµ)

P∏
i=1

e−βλ
2 w2

i

︸ ︷︷ ︸
≡Pa(a)

(D.44)

Of key interest is the behavior of the free energy density, which is self-averaging in the high-dimensional

limit and whose minimization gives the optimal value of the overlaps:

fβ = − lim
P→∞

1
P
E{xµ,yµ} log Zβ (D.45)

217



To calculate the latter, we use the Replica Trick from statistical physics:

E{xµ,yµ} log Zβ = lim
r→0

D

Dr
E{xµ,yµ}Zr

β (D.46)

The right hand side can be written in terms of the order parameters :

E{xµ,yµ}Zr
β =

∫ dρdρ̂
2π

∫ r∏
a=1

dma
s dm̂a

s

2π

∫ ∏
1≤a≤b≤r

dqabs dq̂abs
2π

dqaba dq̂aba
2π ePΦ(r)

(D.47)

Φ(r) = −γρρ̂− γ
r∑

a=1

∑
i

ma
s,im̂

a
s,i −

∑
1≤a≤b≤r

(
γ
∑
i

qabs,iq̂
ab
s,i + qaq̂a

)
(D.48)

+ αΨ(r)
y

(
ρ,ma

s , q
ab
s , q

ab
a

)
+ Ψ(r)

a

(
ρ̂, m̂a

s , q̂
ab
s , q̂

ab
a

)
(D.49)

Where we introduced and energetic part Ψy which corresponds to the likelihood of the order parameters

taking a certain value based on the data, and an entropic part Ψa which corresponds to the volume

compatible with those order parameters :

Ψ(r)
y = log

∫
dy
∫

dνP 0
y (y | ν)

∫ ∏r
a=1 [dλaPy (y | λa)]P (ν, {λa})

Ψ(r)
a = 1

P log
∫

dβPβ (β) e−ρ̂∥β∥2 ∫ ∏r
a=1 daaPa (aa) e

∑
1≤a≤b≤r[q̂aba aa·ab+

∑
i
q̂abs,is

a|i·sb|i]−
∑r

a=1

∑
i
m̂as,is

a|i·β|i

(D.50)

The calculation of Ψy is exactly the same as in [122] : we defer the reader to the latter for details. As for

Ψa, considering that Pa(a) = e−λ
2 ∥a∥2

we have (denoting the block indices as i):

Ψa = lim
P→∞

Eβ,ξ,η

[
1
2

η2q̂a

βλ+ V̂a
− 1

2 log
(
βλ+ V̂a

)
− 1

2P tr log
(
ID + V̂sΣ

)
− 1

2P µ⊤Σ−1µ (D.51)

+ 1
2P

(
b + Σ−1µ

)⊤
V̂ −1
s

(
b + Σ−1µ

)
− 1

2P
(
b + Σ−1µ

)⊤
V̂ −1
s

(
ID + V̂sΣ

)−1 (
b + Σ−1µ

)]
(D.52)

where V̂s is a block diagonal matrix where the block diagonals read (V̂s,1, V̂s,2), and

b =
(√

q̂s,1ξ11ϕ1D + m̂s,1β1,
√
q̂s,2ξ21ϕ2D + m̂s,2β2

)
µ =

√
q̂aη

βλ+ Ŵa

Θ1P√
P

Σ = 1
βλ+ V̂a

ΘΘ⊤

P

and λ here is the coefficient in the ℓ2 regularization. Then, we have

Eη
[
µ⊤Σ−1µ

]
= 1

P
q̂a

(βλ+V̂a)2 (Θ1P )⊤ Σ−1 (Θ1P ) = D q̂a
βλ+V̂a

Eη,ξ,β
∥∥b + Σ−1µ

∥∥2 =
∑
i ϕiD

(
m̂2
s,i + q̂s,i

)
+ 1

P q̂a tr(ΘΘ⊤)−1

Eη,ξ,β
(
b + Σ−1µ

)⊤ (ID + V̂sΣ
)−1 (

b + Σ−1µ
)

= 1
P q̂a tr

[
ΘΘ⊤

(
ID + V̂sΣ

)−1
]

+
∑
i

(
m̂2
s,i + q̂s,i

)
tr
(
ID + V̂siΣi

)−1

(D.53)
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Ψa = − 1
2 log

(
βλ+ V̂a

)
− 1

2 lim
P→∞

1
P

tr log
(

ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)
(D.54)

+
∑
i

m̂2
s,i + q̂s,i

2V̂s,i
[ϕiγ] − lim

P→∞

1
P

tr

(m̂2
s + q̂s)

(
ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 (D.55)

+ 1
2

q̂a

βλ+ V̂a
[1 − γ] + q̂a

2 lim
P→∞

1
P

tr
(
V̂ −1
s (ΘΘ⊤)−1

)
− tr

(V̂sΘΘ⊤)−1
(

ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1


(D.56)

where (m̂2
s + q̂s) and V̂s in the trace operator are to be understood as diagonal matrices here. Using the

following simplification

tr
(
V −1
s (ΘΘ⊤)−1

)
− tr

(VsΘΘ⊤)−1
(

ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 (D.57)

= 1
P (βλ+ V̂a)

tr
(

Id + V̂s

βλ+ V̂a

ΘΘ⊤

P

)
, (D.58)

we finally obtain

Ψa = − 1
2 log

(
βλ+ V̂a

)
− 1

2 lim
P→∞

1
P

tr log
(

ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)
(D.59)

+
∑
i

m̂2
s,i + q̂s,i

2V̂s,i
[ϕiγ] − lim

P→∞

1
P

tr

(m̂2
s + q̂s)

(
ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 (D.60)

+ 1
2

q̂a

βλ+ V̂a

1 − γ + lim
P→∞

1
P

tr

(ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 (D.61)

.

DefineM = 1
P V̂sΘΘ⊤

. Ψa involves the following term :

1
P

tr
(

ID + V̂s

βλ+ V̂a
M

)−1

= γ(βλ+ V̂a)g(−βλ+ V̂a) (D.62)

Where g is the Stieljes transform ofM : g(z) = 1
D Tr(z −M)−1

.

D.2.4 Some random matix theory for block matrices

To calculate the desired Stieljes transform, we specialize to the case of Gaussian random feature matrices

and use again tools from Statistical Physics.
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Isotropic setup We first consider the isotropic setup where V̂s is a scalar. Then we have

g(z) = 1
D

Tr(z −M)−1
(D.63)

= − 1
D

d

dz
Tr log(z −M) (D.64)

= − 1
D

d

dz
log det(z −M) (D.65)

= − 2
D

d

dz

〈
log

∫
dye− 1

2y(z−M)y⊤
〉

(D.66)

where ⟨.⟩ stands for the average over disorder, here the matrix Θ. Then we use the replica trick,

⟨logZ⟩→n→0
1
n

log⟨Zn⟩ (D.67)

Therefore we need to calculate Zn:

⟨Zn⟩ =
∫ n∏

a=1
dy⃗ae

− 1
2 z
∑

a
y⃗2
a

∫
dΘe− 1

2 ΘLΘ⊤
(D.68)

=
∫ n∏

a=1
dy⃗ae

− 1
2 z
∑

a
y⃗2
a(detL)−P/2

(D.69)

where L = Id − γV̂s
D

∑
a yay⃗

⊤
a . Here we decompose the vectors y⃗ into two parts. Then we use that

detL = det L̃, where L̃ab = δab − γV̂s
D y⃗a · y⃗b. Then,

⟨Zn⟩ =
∫ ∏

a

dy⃗ae
1
2
∑

a
y⃗a·y⃗a det

[
Id − γV̂s

D
Y ⊤Y

]−P
2

(D.70)

where Y ∈ Rd×n
with Yia = yai . We introduce 1 =

∫
dQabδ(dQab − y⃗a · y⃗b), and use the Fourier

representation of the delta function, yielding

⟨Zn⟩ =
∫
dQe−D

2 zTrQ
(
det

[
I − V̂sQ

])−P
2
∫
dQ̂abe

∑
ab
dQabQ̂ab−Q̂aby⃗ay⃗b

(D.71)

=
∫
dQdQ̂e−dS[Q,Q̂]

(D.72)

where

S[Q, Q̂] = 1
2zTrQ+ 1

2γ log det
(
1 − V̂sQ

)
+ 1

2 log det
(
2Q̂
)

− Tr
(
QQ̂

)
(D.73)

A saddle-point on Q̂ gives Q = (2Q̂)−1
. Therefore we can replace in S,

S[Q] = 1
2zTrQ+ 1

2γ log det
(
1 − V̂sQ

)
− 1

2 log det (Q) (D.74)

In the RS ansatz Qab = qδab, this yields

S[q]/n = 1
2zq + 1

2γ log
(
1 − V̂sq

)
− 1

2 log q (D.75)
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Now we may apply a saddle point method to write

⟨Zn⟩ = e−dS[q⋆]
(D.76)

where q⋆ minimizes the action, i.e.
dS
dq |q⋆ = 0:

z − V̂s

1 − V̂sq⋆
− 1
q⋆

= 0 (D.77)

Therefore,

g(z) = − 2
D

d

dz
(−DS[q⋆]) = q⋆(z) (D.78)

Anisotropic setup Now we consider that V is a black diagonal matrix, with blocks of size ϕid with
values V̂s,i. We need to adapt the calculation by decomposing the auxiliary fields y along the different
blocks, then define separately the overlaps of the blocks qi. Then we obtain the following action:

S[{qi}]/n = 1
2z
∑
i

ϕiqi + 1
2γ log

(
1 −

∑
i

ϕiV̂s,iqi

)
−
∑
i

ϕi
2 log(qi) (D.79)

To obtain the Stieljes transform, we need to solve a system of coupled equations :

g(z) =
∑
i

ϕiq
⋆
i (D.80)

ϕizΩq⋆i − ϕiV̂iq
⋆
i − ϕiΩ = 0 (D.81)

Ω = 1 −
∑
i

ϕiV̂s,iq
⋆
i (D.82)

We therefore conclude that

lim
P→∞

1
P

tr

(ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 = γ(βλ+ V̂a)

∑
i

ϕiq
⋆
i (D.83)

lim
P→∞

1
P

tr

(m̂2
s + q̂s)

(
ID + V̂s

βλ+ V̂a

ΘΘ⊤

P

)−1
 = γ(βλ+ V̂a)

∑
i

(m̂2
s,i + q̂s,i)ϕiq⋆i (D.84)

D.2.5 Obtaining the saddle-point equations

The saddle-point equations of [122] become the following in the anisotropic setup :

r̂s,i = −2σx,i αγ ∂rs,iΨy(R,Q,M) rs,i = − 2
γ∂r̂s,iΨa (r̂s,i, q̂s,i, m̂s,i, r̂a, q̂a)

q̂s,i = −2σx,i αγ ∂qs,iΨy(R,Q,M) qs,i = − 2
γ∂q̂s,iΨa (r̂s,i, q̂s,i, m̂s,i, r̂a, q̂a)

m̂s,i = σx,i
α
γ ∂ms,iΨy(R,Q,M) ms,i = 1

γ∂m̂s,iΨa (r̂s,i, q̂s,i, m̂s,i, r̂a, q̂a)
r̂a = −2α∂raΨy(R,Q,M) ra = −2∂r̂aΨa (r̂s,i, q̂s,i, m̂s,i, r̂a, q̂a)
q̂a = −2α∂qaΨy(R,Q,M) qa = −2∂q̂aΨa (r̂s,i, q̂s,i, m̂s,i, r̂a, q̂a)

(D.85)
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The saddle point equations corresponding toΨa do not depend on the learning task, and can be simplified

in full generality to the following set of equations :

Vs,i = 1
V̂s,i

(ϕi − zigµ(−zi))

qs,i = σβ,im̂
2
s,i+q̂s,i
V̂ 2
s,i

[
ϕi − 2zigµ(−zi) + z2

i g
′
µ(−zi)

]
− q̂a

(βλ+V̂a)V̂s,i
[
−zigµ(−zi) + z2

i g
′
µ(−zi)

]
ms,i = σβ,im̂s,i

V̂s,i
(ϕi − zigµ(−zi))

Va =
∑
i

γ

βλ+V̂a

[
1
γ − 1 + zigµ(−zi)

]
qa =

∑
i
σβ,im̂

2
s+q̂s,i

(βλ+V̂a)V̂s,i
[
−zigµ(−zi) + z2

i g
′
µ(−zi)

]
+ γ q̂a

(βλ+V̂a)2

[
1
γ − 1 + z2

i g
′
µ(−zi)

]
(D.86)

As for the saddle point equations corresponding to Ψy , they depend on the learning task. We can solve

analytically for the two setups below.

The solution of the saddle-point equations allow to obtain the order parameter values that determine

the covariance of ν and λ (for one given replica, say a = 1) and hence to compute the test error as

explained at the beginning of the appendix.

Square loss regression Now we specialize to our mean-square regression case study where the

teacher is a Gaussian additive channel :

P(x|y) = 1√
2π∆

e− (x−y)2
2∆ (D.87)

ℓ(y, x) = 1
2(x− y)2

(D.88)

In this case, the saddle-point equations simplify to :

V̂ ∞
s,i = σx,i

α
γ

µ2
1,i

1+V ∞

q̂0
s,i = σx,iαµ

2
1,i

ϕiσβ,i+∆+Q∞−2M∞

γ(1+V ∞)2

m̂s,i = σx,i
α
γ

µ1,i
1+V ∞

V̂ ∞
a = α

∑
i
ϕiµ

2
⋆,i

1+V ∞

q̂∞
a = α

∑
i ϕiµ

2
⋆,i

1+∆+Q∞−2M∞

(1+V ∞)2

(D.89)

Square loss classification Next we examine the classification setup where the teacher gives binary

labels with a sign flip probability of ∆, and the student learns them through the mean-square loss:

P(x|y) = (1 − ∆)δ(x− sign(y)) + ∆δ(x+ sign(y)), ∆ ∈ [0, 1] (D.90)

ℓ(y, x) = 1
2(x− y)2

(D.91)
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In this case, the equations simplify to :

V̂ ∞
s,i = σx,i

α
γ

µ2
1,i

1+V ∞

q̂0
s,i = σx,iαµ

2
1,i

ϕiσβ,i+Q∞−2 (1−2∆)
√

2√
π

M∞

γ(1+V ∞)2

m̂s,i = σx,i
α
γ

µ1,i
1+V ∞

V̂ ∞
a = α

∑
i
ϕiµ

2
⋆,i

1+V ∞

q̂∞
a = α

∑
i ϕiµ

2
⋆,i

1+Q∞−2 (1−2∆)
√

2√
π

M∞

(1+V ∞)2

(D.92)

Cross-entropy loss classification For general loss functions such as the cross-entropy loss, ℓ(x, y) =
log(1 + e−xy), the saddle-point equations for Ψy do not simplify and one needs to evaluate the integral

over ξ numerically. This case is outside the scope of this paper.

D.2.6 Training loss

To calculate the training loss, we remove the regularization term:

ϵt = 1
N

E{xµ,yµ}

 N∑
µ=1

ℓ (yµ,xµ · ŵ)

 (D.93)

As explained in [122], the latter can be written as

ϵt = Eξ
[∫

R
dyZ0

y (y, ω0, V0) ℓ (y, η (y, ω1))
]
, ξ ∼ N (0, 1) (D.94)

where P is the teacher channel defined in (D.5), and we have:

ω0 = M/
√
Qξ (D.95)

V0 = ρ−M2/Q (D.96)

ω1 =
√
Qξ (D.97)

η(y, ω) = arg min
x

(x− ω)2

2V + ℓ(y, x) (D.98)

Z0
y (y, ω) =

∫ dx√
2πV0

e
− 1

2V0
(x−ω)2

P(y|x) (D.99)

Square loss regression Nowwe specialize to our regression case studywhere the teacher is a Gaussian

additive channel P(x|y) = 1√
2π∆e

− (x−y)2
2∆ and the loss is ℓ(y, x) = 1

2(x−y)2
. These assumptions imply

Z0
y (y, ω) = 1√

2π(V0 + ∆)
e

− (y−ω)2
2(V0+∆) , (D.100)

η(y, ω) = ω + V y

1 + V
, (D.101)
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which yields the simple formula for the training error

L = 1
2(1 + V )2Eξ

[∫
dyZ0

y (y, ω) (y − ω1)2
]

(D.102)

= 1
2(1 + V )2Eξ

[
V0 + ∆ + (ω0 − ω1)2

]
(D.103)

= 1
2(1 + V )2 (ρ+Q− 2M + ∆) (D.104)

= ϵg + ∆
(1 + V )2 . (D.105)

Square loss classification Next we specialize to our classification case study where the teacher

is a Gaussian additive channel P(x|y) = (1 − ∆)δ(x − sign(y)) + ∆δ(x + sign(y)) and the loss is

ℓ(y, x) = 1
2(x− y)2

. These assumptions imply

Z0
y (y, ω) = 1√

2πV0

(
(1 − ∆)e− (y−ω)2

2V0 + ∆e− (−y−ω)2
2V0

)
, (D.106)

η(y, ω) = ω + V y

1 + V
, (D.107)

which yields the simple formula for the training error

L = 1
2(1 + V )2Eξ

[
V0 + (1 − ∆)(ω0 − ω1)2 + ∆(ω0 + ω1)2

]
(D.108)

= 1
2(1 + V )2 (ρ+Q− 2(1 − 2∆)M) (D.109)

(D.110)

This expression is similar to the one obtained in the regression setup, except for the role of the noise,

which reflects label flipping instead of additive noise. As a sanity check, note that flipping all the labels,

i.e. ∆ = 1, is equivalent to the transformationM→ −M , as one could expect.
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(a) Isotropic, noiseless
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(b) Isotropic, ∆ = 0.4
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(c) Aligned, ∆ = 0
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(d) Aligned, ∆ = 0.4
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Figure D.1: Square loss phase spaces. We studied the classification task for σ = ReLU, λ = 0.1. In
the anisotropic phase spaces we set ϕ1 = 0.01, rx = 100, rβ = 100. First row: test error. Second row:
train error. Third row: Q. Fourth row: M. The solid and dashed grey lines represent the N = D and

N = P lines, where one can find overfitting peaks [119]. For Q andM , the colormaps are logarithmic.
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(b) Isotropic, ∆ = 0.4
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Figure D.2: Logistic loss phase spaces. We studied the classification task for σ = ReLU, λ = 0.1. In
the Aligned phase spaces we set ϕ1 = 0.01, rx = 100, rβ = 100. First row: test error. Second row: train
error. Third row: Q. Fourth row: M. The solid and dashed grey lines represent the N = D and N = P
lines, where one can find overfitting peaks [119]. For Q andM , the colormaps are logarithmic.
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(d) rx = 1000

Figure D.3: Increasing the saliency of the first subspace from 1 to ∞, the asymmetry forms then vanishes

as the data becomes effectively isotropic in smaller dimension. We study the classification task for

σ = ReLU, λ = 0.1, ϕ1 = 0.01, rβ = 1000 and ∆ = 0.
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Appendix E

Finding the Needle in the Haystack:
When do Convolutional Constraints
help?

E.1 Visualizing the embedding

In Fig. E.1, we provide an illustration of the mapping from CNN to eFCN. Denoting as k, s, p the filter
size, stride and padding of the convolution, we have the following:

din = 4
(k, s, p) = (3, 1, 0)

dout = din + 2p− k

s
+ 1 = 2

The eFCN layer is of size (cin × din × din, cout × dout × dout) = (4, 16) since cin = cout = 1 here. In

Fig. E.2, we show the typical structure of the eFCN weight matrices observed in practice.

E.2 Results with AlexNet on CIFAR-100

In this section, we show that the ideas we presented in the main text hold for various classes of data,

architecture and optimizer. Namely, we show that our results hold when switching from SGD to Adam

on CIFAR10, and for AlexNet [1] on the CIFAR-100 dataset. Each subsection contains figures which are

counterparts of the ones of the main text: performance and training dynamics of the eFCNs in Fig. E.3,

deviation from CNN subspace in Fig. E.4, role of off-local blocks in learning in Fig. E.5.

E.3 Interpolating between CNNs and eFCNs

Another way to understand the dynamics of the eFCNs is to examine the paths that connect them to the

CNN they stemmed from in the FCN weight space. Interpolating in the weight space has received some

attention in recent literature, in papers such as [202, 203], where it has been shown that contrary to

previous beliefs the bottom of the landscapes of deep neural networks resembles a flat, connected level

set since one can always find a path of low energy connecting minima.
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Figure E.1: eFCN wight matrix (bottom) obtained when acting on an input of size of size (4,4) (top left)
with a filter of size (3,3) (top right). The colors of the eFCN weight matrix show where they stem from

in the filter (the off-local blocks, in yellow, are set to zero at initialization).

Here we use two interpolation methods in weight space. The first method, labeled "linear", consists

in sampling n equally spaced points along the linear path connecting the weights. Of course, the

interpolated points generally have higher training loss than the endpoints.

The second method, labeled "string", consists in starting from the linear interpolation path, and letting

the interpolated points fall down the landscape following gradient descent, while ensuring that they

stay close enough together by adding an elastic term in the loss:

Lelastic = 1
2k

n−1∑
i=1

(xi+1 − xi)2
(E.1)

By adjusting the stiffness constant k we can control how straight the string is: at high k we recover the

linear interpolation, whereas at low k the points decouple and reach the bottom of the landscape, but

are far apart and don’t give us an actual path. Note that this method is a simpler form of the one used in

[203], where we don’t use the "nudging" trick.

For comparison, we also show the performance obtained when interpolating directly in output space (as

done in ensembling methods).

Results are shown in figure E.6, with the x-axis representing the interpolation parameter α ∈ [0, 1]. We

see that for both the linear and string interpolations, the training loss profile displays a barrier, except

at late tw where the the eFCN has not escaped far from the CNN subspace. Although the string method

fails to find a path without a barrier, this is not sufficient to conclude that no paths exist.
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Figure E.2: Top: Heatmap of a block of weights corresponding to the first input channel and the first

output channel of the first layer of the eFCN just after its initialization from the converged VanillaCNN.

The colorscale indicates the natural logarithm of the absolute value of the weights. The highly sparse

and self-repeating structure of the weight matrix is due to the locality and weight sharing constraints.

Bottom: Same after training the eFCN for 100 epochs. The off-local blocks appear in blue: their weights

are several orders of magnitude smaller in absolute value than those of the local blocks, in yellow. Note

that due to the padding many weights stay at zero even after relaxing the constraints. When unflattened,

the first row of this heatmap gives rise to the images shown in Fig. E.5.

However, the behavior of test accuracy is much more surprising. In all cases, despite the increase

in training loss, the interpolated paths reach higher test accuracies than the endpoints, even at early

tw when the eFCN and the CNN are quite far from each other. This confirms that there is a basin of

high generalization around the CNN subspace, and that optimum performance can actually be found

somewhere in between the solution found by the CNN and the solution found by the eFCN. This offers

yet another procedure to improve the performance in practice. However, in all cases we note that the

gain in accuracy is lower than the gain obtained by interpolating in output space.
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Figure E.3: This figure sums up in a compact way the generalization dynamics of the eFCNs. The red

curve represents the test accuracy of the model versus its training time in epochs. Above each point

tw of the training, we depict as crosses the test accuracy history of the eFCN stemmed at relax time

tw, with colors indicating the training time of the eFCN after embedding. For comparison, the best test

accuracy reached by a standard FCN of same size is depicted as a brown horizontal dashed line. Top:
VanillaCNN on CIFAR-10, with Adam optimizer. Bottom: Alexnet on CIFAR-100, with SGD optimizer.

We note that results are qualitatively similar: the eFCNs always improve after initialization, outperform

the standard FCN, and we again observe that for some relax times the eFCNs even exceeds the best test

accuracy reached by the CNN.
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Figure E.4: Left panel: relax time tw of the eFCN vs. δ, the measure of deviation from the CNN subspace

through the locality constraint, at the final point of eFCN training. Middle panel: δ vs. the initial
loss value. Right panel: δ vs. final test accuracy of eFCN models. For reference, the blue point in the

middle and right panels indicate the deviation measure for a standard FCN, where δ ∼ 97%.
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Figure E.5: Left: Visualization of an eFCN “filter” from the the first layer just after embedding (left

column), after training after 11 epochs (middle column), and training after 78 epochs (right column);

where the eFCN is initialized at relax times tw = 0 (top row), tw = 13 (middle row), and tw = 115
(bottom row). The colors indicate the natural logarithm of the absolute value of the weights. Right:
Contributions to the test accuracy of the local blocks (off-local blocks masked out) and off-local blocks

(local blocks masked out).
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(a) tw = 0 (b) tw = 5

(c) tw = 18 (d) tw = 61

Figure E.6: Interpolation between the solution reached by the CNN after 100 epochs (interpolation

parameter α = 0) and the solution found by the eFCN after 100 epochs (interpolation parameter α = 1),
for four different relax times tw indicated below the subfigures. In each subfigure, the left panel shows
train loss, and the right panel shows test accuracy. The orange line corresponds to linear interpolation,

the blue line corresponds to string method interpolation, and the green line corresponds to interpolation

in output space.
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Appendix F

Improving Vision Transformers with
Soft Convolutional Inductive Biases

F.1 The importance of positional gating

In the main text, we discussed the importance of using GPSA layers instead of the standard PSA layers,

where content and positional information are summed before the softmax and lead the attention heads

to focus only on the positional information. We give evidence for this claim in Fig. F.1, where we train

a ConViT-B for 300 epochs on ImageNet, but replace the GPSA by standard PSA. The convolutional

initialization of the PSA still gives the ConViT a large advantage over the DeiT baseline early in training.

However, the ConViT stays in the convolutional configuration and ignores the content information, as

can be seen by looking at the attention maps (not shown). Later in training, the DeiT catches up and

surpasses the performance of the ConViT by utilizing content information.
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Figure F.1: Convolutional initialization without GPSA is helfpul during early training but
deteriorates final performance. We trained the ConViT-B along with its DeiT-B counterpart for 300

epochs on ImageNet, replacing the GPSA layers of the ConViT-B by vanilla PSA layers.
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F.2 The effect of distillation

Nonlocality In Fig. F.2, we compare the nonlocality curves of Fig. 7.6 of the main text with those

obtained when the DeiT is trained via hard distillation from a RegNetY-16GF (84M parameters) [462], as

in [217]. In the distillation setup, the nonlocality still drops in the early epochs of training, but increases

less at late times compared to without distillation. Hence, the final internal states of the DeiT are more

“local" due to the distillation. This suggests that knowledge distillation transfers the locality of the

convolutional teacher to the student, in line with the results of [257].
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Figure F.2: Distillation pulls the DeiT towards a more local configuration. We plotted the

nonlocality metric defined in Eq. 7.8 throughout training, for the DeiT-S trained on ImageNet. Left:
regular training. Right: training with hard distillation from a RegNet teacher, by means of the distillation

introduced in [217].

Performance The hard distillation introduced in [217] greatly improves the performance of the DeiT.

We have verified the complementarity of their distillation methods with our ConViT. In the same way

as in the DeiT paper, we used a RegNet-16GF teacher and experimented hard distillation during 300

epochs on ImageNet. The results we obtain are summarized in Tab. F.1.

Method DeiT-S (22M) DeiT-B (86M) ConViT-S+ (48M)

No distillation 79.8 81.8 82.2
Hard distillation 80.9 83.0 82.9

Table F.1: Top-1 accuracies of the ConViT-S+ compared to the DeiT-S and DeiT-B, both trained for 300

epochs on ImageNet.

Just like the DeiT, the ConViT benefits from distillation, albeit somewhat less than the DeiT, as can

be seen from the DeiT-B performing less well than the ConViT-S+ without distillation but better with

distillation. This hints to the fact that the convolutional inductive bias transferred from the teacher is

redundant with its own convolutional prior.
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Nevertheless, the performance improvement obtained by the ConViT with hard distillation demonstrates

that instantiating soft inductive biases directly in a model can yield benefits on top of those obtained by

instantiating such biases indirectly, in this case via distillation.

F.3 Further performance results

In Fig. F.3, we display the time evolution of the top-1 accuracy of our ConViT+ models on CIFAR100,

ImageNet and subsampled ImageNet, along with a comparison with the corresponding DeiT+ models.

For CIFAR100, we kept all hyperparameters unchanged, but rescaled the images to 224 × 224 and

increased the number of epochs (adapting the learning rate schedule correspondingly) to mimic the

ImageNet scenario. After 1000 epochs, the ConViTs shows clear signs of overfitting, but reach impressive

performances (82.1% top-1 accuracy with 10M parameters, which is better than the EfficientNets reported

in [463]).
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(a) CIFAR100
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(b) ImageNet-1k
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(c) Subsampled ImageNet

Figure F.3: The convolutional inductive bias is particularly useful for large models applied
to small datasets. Each of the three panels displays the top-1 accuracy of the ConViT+ model and

their corresponding DeiT+ throughout training, as well as the relative improvement between the best

top-1 accuracy reached by the DeiT+ and that reached by the ConViT+. Left: tiny, small and base

models trained for 3000 epochs on CIFAR100. Middle: tiny, small and base models trained for 300 epochs

on ImageNet-1k. The relative improvement of the ConViT over the DeiT increases with model size.

Right: small model trained on a subsampled version of ImageNet-1k, where we only keep a fraction

f ∈ {0.05, 0.1, 0.3, 0.5, 1} of the images of each class. The relative improvement of the ConViT over

the DeiT increases as the dataset becomes smaller.

In Fig. F.4, we study the impact of the various ingredients of the ConViT (presence and number of GPSA

layers, gating parameters, convolutional initialization) on the dynamics of learning.

F.4 Effect of model size

In Fig. F.5, we show the analog of Fig. 7.6 of the main text for the tiny and base models. Results are

qualitatively similar to those observed for the small model. Interestingly, the first layers of DeiT-B and

ConViT-B reach significantly higher nonlocality than those of the DeiT-Ti and ConViT-Ti.

In Fig. F.6, we show the analog of Fig. 7.7 of the main text for the tiny and base models. Again, results

are qualitatively similar: the average weight of the positional attention, Ehσ(λh), decreases over time,

so that more attention goes to the content of the image. Note that in the ConViT-Ti, only the first 4

236



0 100 200 300
Epochs

40

50

60

70

80

To
p-

1 
ac

cu
ra

cy

0 GPSA layers
3 GPSA layers
6 GPSA layers
9 GPSA layers

100 200 300
Epochs

60

65

70

75

80

To
p-

1 
ac

cu
ra

cy

From best to worst
GPSA+conv 82.2
PSA+conv 82.0
PSA 81.6
GPSA 81.4
Baseline 79.1
Frozen conv 78.6
Frozen  73.7

Figure F.4: Impact of various ingredients of the ConViT on the dynamics of learning. In both

cases, we train the ConViT-S+ for 300 epochs on first 100 classes of ImageNet. Left: ablation on number

of GPSA layers, as in Fig. 7.9. Right: ablation on various ingredients of the ConViT, as in Tab. 7.3.

The baseline is the DeiT-S+ (pink). We experimented (i) replacing the 10 first SA layers by GPSA

layers (“GPSA”) (ii) freezing the gating parameter of the GPSA layers (“frozen gate”); (iii) removing the

convolutional initialization (“conv”); (iv) freezing all attention modules in the GPSA layers (“frozen”).

The final top-1 accuracy of the various models trained is reported in the legend.

layers still pay attention to position at the end of training (average gating parameter smaller than one),

whereas for ConViT-S, the 5 first layers still do, and for the ConViT-B, the 6 first layers still do. This

suggests that the larger (i.e. the more underspecified) the model is, the more layers make use of the

convolutional prior.
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Figure F.5: The bigger the model, the more non-local the attention. We plotted the nonlocality

metric defined in Eq. 7.8 of the main text (the higher, the further the attention heads look from the query

pixel) throughout 300 epochs of training on ImageNet-1k.
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(b) ConViT-B

Figure F.6: The bigger the model, the more layers pay attention to position. We plotted the

gating parameters of various heads and various layers, as in Fig. 7.7 of the main text (the lower, the less

attention is paid to positional information) throughout 300 epochs of training on ImageNet-1k. Note

that the ConViT-Ti only has 4 attention heads whereas the ConViT-B has 16, hence the different number

of curves.
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F.5 Attention maps

Attention maps of the DeiT reveal locality In Fig. F.7, we give some visual evidence for the fact

that vanilla SA layers extract local information by averaging the attention map of the first and tenth layer

of the DeiT over 100 images. Before training, the maps look essentially random. After training, however,

most of the attention heads of the first layer focus on the query pixel and its immediate surroundings,

whereas the attention heads of the tenth layer capture long-range dependencies.
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Figure F.7: The averaged attention maps of the DeiT reveal locality at the end of training. To
better visualise the center of attention, we averaged the attention maps over 100 images. Top: before
training, the attention patterns exhibit a random structure. Bottom: after training, most of the attention

is devoted to the query pixel, and the rest is focused on its immediate surroundings.

Attention maps of the ConViT reveal the diversity of the attention heads In Fig. F.8, we show

a comparison of the attention maps of Deit-Ti and ConViT-Ti for different images of the ImageNet

validation set. In Fig. F.9, we compare the attention maps of DeiT-S and ConViT-S.

In all cases, results are qualitatively similar: the DeiT attention maps look similar across different heads

and different layers, whereas those of the ConViT perform very different operations. Notice that in the

second layer, the third and forth head focus stay local whereas the first two heads focus on content. In

the last layer, all the heads ignore positional information, focusing only on content.
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(c) ConViT

Figure F.8: Left: input image which is embedded then fed into the models. The query patch is highlighted

by a red box and the colormap is logarithmic to better reveal details. Center: attention maps obtained

by a DeiT-Ti after 300 epochs of training on ImageNet. Right: Same for ConViT-Ti. In each map, we

indicated the value of the gating parameter in a color varying from white (for heads paying attention to

content) to red (for heads paying attention to position).
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Figure F.9: Attention maps obtained by a DeiT-S and ConViT-S after 300 epochs of training on ImageNet.

In each map, we indicated the value of the gating parameter in a color varying from white (for heads

paying attention to content) to red (for heads paying attention to position).
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F.6 Further ablations

In this section, we explore masking off various parts of the network to understand which are most

crucial.

In Tab. F.2, we explore the importance of the absolute positional embeddings injected to the input

in both the DeiT and ConViT. We see that masking them off at test time a mild impact on accuracy

for the ConViT, but a significant impact for the DeiT, which is expected as the ConViT already has

relative positional information in each of the GPSA layers. This also shows that the absolute positional

information contained in the embeddings is not very useful.

In Tab. F.3, we explore the relative importance of the positional and content information by masking

them off at test time. To do so, we manually set the gating parameter σ(λ) to 1 (no content attention)

or 0 (no positional attention). In the first GPSA layers, both procedures affect performance similarly,

signalling that positional and content information are both useful. However in the last GPSA layers,

masking the content information kills performance, whereas masking the positional information does

not, confirming that content information is more crucial.

Model Mask pos embed No mask

DeiT-Ti 38.3 72.2

ConViT-Ti 67.1 73.1

Table F.2: Performance on ImageNet with the positional embeddings masked off at test time.

# layers masked Mask content Mask position No mask

3 62.3 63.5 73.1

5 35.0 53.1 73.1

10 1.3 46.8 73.1

Table F.3: Performance of ConViT-Ti on ImageNet with positional or content attention masked off at

test time.
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Appendix G

Transformed CNNs: Recasting
Pre-trained Convolutional Networks as
Transformers

G.1 Performance table

In Tab. G.1, we display the characteristics and the performance of our T-ResNet-RS models and compare

them to the original ResNet-RS models as well as several other strong baselines reported in [274, 275].

G.2 Changing the learning rate

We have shown that the learning dynamics decompose into two phases: the learning rate warmup

phase, where the test loss drops, then the learning rate decay phase, where the test loss increases again.

This could lead one to think that the maximal learning rate is too high, and the dip could be avoided

by choosing a lower learning rate. Yet this is not the case, as shown in Fig. G.1. Reducing the maximal

learning rate indeed reduces the dip, but it also slows down the increase in the second phase of learning.

This confirms that the model needs to “unlearn” the right amount to find better solutions.

G.3 Changing the test resolution

One advantage of the GPSA layers introduced by [271] is how easily they adapt to different image

resolutions. Indeed, the positional embeddings they use are fixed rather than learnt. They simply consist

in 3 values for each pair of pixels: their euclidean distance ∥δ∥, as well as their coordinate distance
δ1, δ2 (see Eq. 7.5). Our implementation automatically adjusts these embeddings to the input image,

allowing us to change the test resolution seamlessly.

In Fig. G.2, we show how the top-1 accuracies of our T-ResNet-RSmodels compares to those of the ResNet-

RS models finetuned at same resolution but without SA. At test resolution 416, our T-ResNetRS-350

reaches an impressive top-1 accuracy of 84.9%, beyond those of the best EfficientNets and BotNets [269].

244



Model Res. Params Speed Flops IN-1k IN-C IN-A IN-R FGSM PGD

Transformers

ViT-B/16
‡

224 86 M 182 16.9 77.9 52.2 7.0 21.9 30.6 14.3

ViT-L/16
‡

224 307 M 55 59.7 76.5 49.3 6.1 17.9 27.8 13.0

ViT-B/16 21k
‡

224 86 M 182 16.9 84.0 65.8 26.7 38.0 31.3 10.3

ViT-L/16 21k
‡

224 307 M 55 59.7 85.1 70.0 28.1 40.6 40.5 16.2

DeiT-S
†

224 22 M 544 4.6 79.9 55.4 18.9 31.0 40.7 16.7

DeiT-B
†

224 87 M 182 17.6 82.0 60.7 27.4 34.6 46.4 21.3

ConViT-S
†

224 28 M 296 5.4 81.5 59.5 24.5 34.0 41.0 17.2

ConViT-B
†

224 87 M 139 17.7 82.4 61.9 29.0 36.9 51.8 20.8

RVT-S
†

224 23.3 M - 4.7 81.9 - 25.7 47.7 51.8 28.2

RVT-B
†

224 91.8 M - 17.7 82.6 - 28.5 48.7 53.0 29.9

CNNs

ResNet50
‡

224 25 M 736 4.1 76.8 46.1 4.2 21.5 - -

ResNet101
‡

224 45 M 435 7.85 78.0 50.2 6.3 23.0 14.7 2.0

ResNet101x3
‡

224 207 M 62 69.6 80.3 53.4 9.1 24.5 23.6 7.3

ResNet152x4
‡

224 965 M 18 183.1 80.4 54.5 11.6 25.8 33.3 10.5

ResNet50-RS 160 36 M 938 4.6 78.8 36.8 5.7 39.1 28.7 18.4

ResNet101-RS 192 64 M 674 12.1 80.3 44.1 11.8 44.8 32.9 18.8

ResNet152-RS 256 87 M 304 31.2 81.2 49.9 23.4 45.9 41.6 28.5

ResNet200-RS 256 93 M 225 40.4 82.8 49.3 25.4 48.1 40.4 24.6

ResNet270-RS 256 130 M 152 54.2 83.8 53.6 26.6 48.7 44.7 30.3

ResNet350-RS 288 164 M 89 87.5 84.0 53.9 34.9 49.7 48.3 34.6

Our Transformed CNNs

T-ResNet50-RS 224 38 M 447 17.6 81.0 48.0 18.7 42.9 47.2 33.9

T-ResNet101-RS 224 66 M 334 25.1 82.4 52.9 27.7 47.8 50.3 34.2

T-ResNet152-RS 320 89 M 128 65.8 83.7 54.5 39.8 50.6 57.3 36.8

T-ResNet200-RS 320 96 M 105 80.2 84.0 57.0 41.2 51.1 58.3 36.4

T-ResNet270-RS 320 133 M 75 107.2 84.3 58.6 43.7 51.4 59.0 36.6
T-ResNet350-RS 320 167 M 61 130.5 84.5 59.2 44.8 53.8 53.4 36.4

Table G.1: Accuracy of our models on various benchmarks. Throughput is the number of images

processed per second on a V100 GPU at batch size 32. For ImageNet-C, we keep a resolution of 224 at

test time to avoid distorting the corruptions; this disadvantages our large models, which are trained at

higher resolutions. †: reported from [275] (we recalculated ImageNet-C accuracies, as the original paper

reports MCE). ‡: reported from [274] (in their setup, PGD uses 8 steps with a stepsize of 1/8).
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Figure G.1: The larger the learning rate, the lower the test accuracy dips, but the faster it climbs
back up. We show the dynamics of the ResNet50, fine-tuned for 50 epochs at resolution 224, for three

different values of the maximal learning rate.
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Figure G.2: Performance at different test-time resolutions, for the finetuned models with and
without SA. The ResNet50-RS and ResNet101-RS models are finetuned at resolution 224, and all other

models are finetuned at resolution 320.

G.4 Changing the number of epochs

In Tab. G.2, we show how the top-1 accuracy of the T-ResNet-RS model changes with the number of

fine-tuning epochs. As expected, performance increases significantly as we fine-tune for longer, yet we

chose to set a maximum of 50 fine-tuning epochs to keep the computational cost of fine-tuning well

below that of the original training.

G.5 Changing the architecture

Our framework, which builds on the timm package, makes changing the original CNN architecture

very easy. We applied our fine-tuning procedure to the ResNet-D models [464] with the exact same

hyperparameters, and observed substantial performance gains, similar to the ones obtained for ResNet-

RS, see Tab. G.3. This suggests the wide applicability of our method.
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Model Epochs Top-1 acc

ResNet50-RS 0 79.91

T-ResNet50-RS 10 80.11

T-ResNet50-RS 20 80.51

T-ResNet50-RS 50 81.02

ResNet101-RS 0 81.70

T-ResNet101-RS 10 81.54

T-ResNet101-RS 20 81.90

T-ResNet101-RS 50 82.39

Table G.2: Longer fine-tuning increases final performance. We report the top-1 accuracies of our

models on ImageNet-1k at resolution 224.

Model Original res. Original acc. Fine-tune res. Fine-tune acc. Gain

T-ResNet50-D 224 80.6 320 81.6 +1.0

T-ResNet101-D 320 82.3 384 83.1 +0.8

T-ResNet152-D 320 83.1 384 83.8 +0.7

T-ResNet200-D 320 83.2 384 83.9 +0.7

T-ResNet50-RS 160 78.8 224 81.0 +2.8

T-ResNet101-RS 192 81.2 224 82.4 +1.2

T-ResNet152-RS 256 83.0 320 83.7 +0.7

T-ResNet200-RS 256 83.4 320 84.0 +0.6

Table G.3: Comparing the performance gains of the ResNet-RS and ResNet-D architectures.
Top-1 accuracy is measured on ImageNet-1k validation set. The pre-trained models are all taken from

the timm library [253].
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Appendix H

Align, then Memorise: the Dynamics of
Learning with Feedback Alignment

H.1 Derivation of the ODE

The derivation of the ODE’s that describe the dynamics of the test error for shallow networks closely

follows the one of [355] and [357] for back-propagation. Here, we give the main steps to obtain the

analytical curves of the main text and refer the reader to their paper for further details.

As we discuss in Sec. 10.2, student and teacher are both two-layer networks with K andM hidden

nodes, respectively. For an input x ∈ RD , their outputs ŷ and y can be written as

ŷ = ϕθ(x) =
K∑
k=1

W k
2 σ

(
λk
)
,

y = ϕθ̃(x) =
M∑
m=1

W̃m
2 σ (νm) , (H.1)

where we have introduced the pre-activations λk ≡ W k
1 x/

√
D and νm ≡ W̃m

1 x/
√
D. Evaluating the

test error of a student with respect to the teacher under the squared loss leads us to compute the average

ϵg
(
θ, θ̃
)

= 1
2E x

[
K∑
k=1

W k
2 σ

(
λk
)

−
M∑
m=1

W̃m
2 σ (νm)

]2

, (H.2)

where the expectation is taken over inputs x for a fixed student and teacher. Since x only enters Eq. (H.2)

via the pre-activations λ = (λk) and ν = (νm), we can replace the high-dimensional average over x by

a low-dimensional average over theK +M variables (λ, ν). The pre-activations are jointly Gaussian

since the inputs are drawn element-wise i.i.d. from the Gaussian distribution. The mean of (λ, ν) is zero
since Exi = 0, so the distribution of (λ, ν) is fully described by the second moments

Qkl = Eλkλl = W k
1 ·W l

1/D, (H.3)

Rkm = Eλkνm = W k
1 · W̃m

1 /D, (H.4)

Tmn = E νmνn = W̃m
1 · W̃n

1 /D. (H.5)
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which are the “order parameters” that we introduced in the main text. We can thus rewrite the generali-

sation error (10.5) as a function of only the order parameters and the second-layer weights,

lim
D→∞

ϵg(θ, θ̃) = ϵg(Q,R, T,W2, W̃2) (H.6)

As we update the weights using SGD, the time-dependent order parameters Q,R, andW2 evolve in

time. By choosing different scalings for the learning rates in the SGD updates (10.4), namely

ηW1 = η, ηW2 = η/D

for some constant η, we guarantee that the dynamics of the order parameters can be described by a set

of ordinary differential equations, called their “equations of motion”. We can obtain these equations in a

heuristic manner by squaring the weight update (10.4) and taking inner products with W̃m
1 , to yield the

equations of motion for Q and R respectively:

dRkm

dα = −ηF k1 E
[
g′(λk)νme

]
(H.7a)

dQkℓ

dα = −ηF k1 E
[
g′(λk)λℓe

]
− ηF ℓ1E

[
g′(λℓ)λke

]
+ η2F k1 F

ℓ
1E

[
g′(λk)g′(λℓ)e2

]
, (H.7b)

dW k
2

dα = −ηE
[
σ(λk)e

]
(H.7c)

where, as in the main text, we introduced the error e = ϕθ(x) − ϕθ̃(x). In the limitD→∞, the variable

α = µ/D becomes a continuous time-like variable. The remaining averages over the pre-activations,

such as

E g′(λk)λℓσ(νm),

are simple three-dimensional integral over the Gaussian random variables λk, λℓ and νm and can be

evaluated analytically for the choice of σ(x) = erf(x/
√

2) [357] and for linear networks with σ(x) = x.
Furthermore, these averages can be expressed only in term of the order parameters, and so the equations

close. We note that the asymptotic exactness of Eqs. H.7 can be proven using the techniques used

recently to prove the equations of motion for BP [370].

We provide an integrator for the full system of ODEs for anyK andM in the Github repository.

H.2 Detailed analysis of DFA dynamics

In this section, we present a detailed analysis of the ODE dynamics in the matched case K = M for

sigmoidal networks (σ(x) = erf (x/√
2)).

The Early Stages and Gradient Alignment We now use Eqs. (H.7) to demonstrate that alignment

occurs in the early stages of learning, determining from the start the solution DFA will converge to (see

Fig. 10.3 which summarises the dynamical evolution of the student’s second layer weights).
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Assuming zero initial weights for the student and orthogonal first layer weights for the teacher (i.e. Tnm

is the identity matrix), for small times (t ≪ 1), one can expand the order parameters in t:

Rkm(t) = tṘkm(0) + O(t2),
Qkl(t) = tQ̇kl(0) + O(t2),
W k

2 (t) = tẆ k
2 (0) + O(t2). (H.8)

where, due to the initial conditions, R(0) = Q(0) = W2(0) = 0. Using Eq. H.7, we can obtain the

lowest order term of the above updates:

Ṙkm(0) =
√

2
π
ηW̃m

2 F k1 ,

Q̇kl(0) = 2
π
η2
(
(W̃ k

2 )2 + (W̃ l
2)2
)
F l1F

k
1 ,

Ẇ k
2 (0) = 0 (H.9)

Since both Ṙ(0) and Q̇(0) are non-zero, this initial condition is not a fixed point of DFA. To analyse initial
alignment, we consider the first order term of Ẇ2. Using Eq. (H.8) with the derivatives at t = 0 (H.9),

we obtain to linear order in t:

Ẇ k
2 (t) = 2

π2 η
2||W̃2||2F k1 t. (H.10)

Crucially, this update is in the direction of the feedback vector F1. DFA training thus constrains the

student to initially grow in the direction of the feedback vector and align with it. This implies gradient

alignment between BP and DFA and dictates into which of the many degenerate solutions in the energy

landscape the student converges.

Plateau phase After the initial phase of learningwithDFAwhere the test error decreases exponentially,

similarly to BP, the student falls into a symmetric fixed point of the Eqs. (H.7) where the weights of a

single student node are correlated to the weights of all the teacher nodes ([76, 355, 357]). The test error

stays constant while the student is trapped in this fixed point. We can obtain an analytic expression

for the order parameters under the assumption that the teacher first-layer weights are orthogonal

(Tnm = δnm). We set the teacher’s second-layer weights to unity for notational simplicity (W̃m
2 = 1)

and restrict to linear order in the learning rate η, since this is the dominant contribution to the learning

dynamics at early times and on the plateau [356]. In the case where all components of the feedback

vector are positive, the order parameters are of the form Qkl = q,Rkm = r,W k
2 = w2 with:

q = 1
2K − 1 , r =

√
q

2 , w2 =
√

1 + 2q
q(4 + 3q) . (H.11)

If the components of the feedback vector are not all positive, we instead obtain Rkm = sgn(F k)r,
W k

2 = sgn(F k)w2 and Qkl = sgn(F k) sgn(F l)q. This shows that on the plateau the student is already

in the configuration that maximises its alignment with F1. Note that in all cases, the value of the test

error reached at the plateau is the same for DFA and BP.
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Memorisation phase and Asymptotic Fixed Point At the end of the plateau phase, the student

converges to its final solution, which is often referred to as the specialised phase [76, 355, 357]. The

configuration of the order parameters is such that the student reproduces her teacher up to sign changes

that guarantee the alignment betweenW2 and F1 is maximal, i.e. sgn(W k
2 ) = sgn(F k1 ). The final value

of the test error of a student trained with DFA is the same as that of a student trained with BP on the

same teacher.
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Figure H.1: Test error of a sigmoidal student started with zero initial weights. The feedback vector F1 is

chosen random (blue) and orthogonal to the teacher’s second layer weights W̃2 (orange). Parameters:
η = 0.1,K = M = 2.

Choice of the feedback vector In the main text, we saw how a wrong choice of feedback vector F1
can prevent a ReLU student from learning a task. Here, we show that also for sigmoidal student, a wrong
choice of feedback vector F1 is possible. As Fig. H.1 shows, in the case where the F1 is taken orthogonal

to the teacher second layer weights, a student whose weights are initialised to zero remains stuck on

the plateau and is unable to learn. In contrast, when the F1 is chosen with random i.i.d. components

drawn from the standard normal distribution, perfect recovery is achieved.

H.3 Derivation of weight alignment

Since the network is linear, the update equations are (consider the first three layers only):

δW1 = −η(F1e)xT , (H.12)

δW2 = −η(F2e)(W1x)⊤, (H.13)

δW3 = −η(F3e)(W2W1x)⊤
(H.14)
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First, it is straightforward to see that

W t
1 = −η

t−1∑
t′=0

F1et′x
⊤
t′ = F1A

t
1 (H.15)

At1 = −η
t−1∑
t′=0

et′x
⊤
t′ (H.16)

This allows to calculate the dynamics ofW t
2 :

δW t
2 = −ηF2et(At1xt)⊤F⊤

1 (H.17)

W t
2 = −η

t−1∑
t′=0

F2et(At
′

1 xt′)⊤F⊤
1 = F2A

t
2F

⊤
1 (H.18)

At2 = −η
t−1∑
t′=0

et′(At
′

1 xt′)⊤ = η2
t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e⊤
t′′ . (H.19)

Which in turns allows to calculate the dynamics ofW t
3 :

δW t
3 = −ηF3et(F2A

t′
2F

⊤
1 F1A

t′
1 xt)⊤

(H.20)

W t
3 = −η

t−1∑
t′=0

F3et′(F2A
t′
2F

⊤
1 F1A

t′
1 xt)⊤ = F3A

t
3F

⊤
2 (H.21)

At3 = −η
t−1∑
t′=0

F3et′(At
′

2F
⊤
1 F1A

t′
1 xt′)⊤

(H.22)

= η2
t−1∑
t′=0

t′−1∑
t′′=0

(At′1 xt′) · (At′′1 xt′′)et′e⊤
t′′ . (H.23)

By induction it is easy to show the general expression:

At1 = −η
t−1∑
t′=0

et′x
⊤
t′ (H.24)

At2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e⊤
t′′ (H.25)

Atl≥3 = η2 ∑
t,t′=0

(At′l−2 . . . A
t′
1 xt′) · (At′′l−2 . . . A

t′′
1 xt′′)et′e⊤

t′′ (H.26)

Defining A0 ≡ ID , one can rewrite this as in Eq. 10.15

Atl≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt′
l xt′) · (Bt′′

l xt′′)et′e⊤
t′′ , (H.27)

Bl = Al−2 · · ·A0. (H.28)
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H.4 Impact of data structure

To study the impact of data structure on the alignment, the simplest setup to consider is that of Direct

Random Target Projection [358]. Indeed, in this case the error vector et = −yt does not depend on the

prediction of the network: the dynamics become explicitly solvable in the linear case.

For concreteness, we consider the setup of [347] where the targets are given by a linear teacher, y = Tx,
and the inputs are i.i.d Gaussian. We denote the input and target correlation matrices as follows:

E
[
xx⊤

]
≡ Σx ∈ RD×D, (H.29)

E
[
TT⊤

]
≡ Σy ∈ RC×C

(H.30)

If the batch size is large enough, one can write xtx
⊤
t = E

[
xx⊤

]
= Σx. Hence the dynamics of Eq. 10.9

become:

δW t
1 = −η(F1et)xTt = ηF1Txtx

⊤
t = ηF1TΣx (H.31)

δW t
2 = −η(F2et)(W1xt)⊤ = ηF2TΣxW

⊤
1 (H.32)

= η2F2
(
TΣ2

xT
⊤
)
F⊤

1 (H.33)

δW t
3 = −η(F3et)(W2W1xt)⊤ = ηF3TΣxW

⊤
1 W

⊤
2 (H.34)

= η3F3
(
TΣ2

xT
⊤
) (
TΣ2

xT
⊤
)
F⊤

2 (H.35)

From which we easily deduce At1 = ηTΣxt, and the expression of the alignment matrices at all times:

Atl≥2 = ηl
(
TΣ2

xT
⊤
)l−1

t (H.36)

As we saw, GA depends on how well-conditioned the alignement matrices are, i.e. how different it is

from the identity. To examine deviation from identity, we write Σx = ID + Σ̃x and Σy = IC + Σ̃y ,

where the tilde matrices are small perturbations. Then to first order,

Atl≥2 − IC ∝ (l − 1)
(
Σ̃y + 2T Σ̃xT

⊤
)

(H.37)

Here we see that GA depends on how well-conditioned the input and target correlation matrices Σx

and Σy are. In other words, if the different components of the inputs or the targets are correlated or

of different variances, we expect GA to be hampered, observed in Sec. 10.5. Note that due to the l − 1
exponent, we expect poor conditioning to have an even more drastic effect in deeper layers.

Notice that in this DRTP setup, the norm of the weights grows linearly with time, which makes DRTP

inapplicable to regression tasks, and over-confident in classification tasks. It is clear in this case the the

first layer learns the teacher, and the subsequent layers try to passively transmit the signal.

H.5 Details about the experiments

H.5.1 Direct Feedback Alignment implementation

We build on the Pytorch implementation of DFA implemented in [351], accessible at https://github.
com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA. Note that we
do not use the shared feedback matrix trick introduced in this chapter. We sample the elements of the

feedback matrix Fl from a centered uniform distribution of scale 1/width.
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H.5.2 Experiments on realistic datasets

We trained 4-layer MLPs with 100 nodes per layer for 1000 epochs using vanilla SGD, with a batch size

of 32 and a learning rate of 10−4
. The datasets considered are MNIST and CIFAR10, and the activation

functions are Tanh and ReLU.

We initialise the networks using the standard Pytorch initialization scheme. We do not use any momen-

tum, weight decay, dropout, batchnorm or any other bells and whistles. We downscale all images to

14 × 14 pixels to speed up the experiments. Results are averaged over 10 runs.

For completeness, we show in Fig. H.2 the results in the main text for 4 different levels of label corruption.

The transition from Alignment phase to Memorisation phase can clearly be seen in all cases from the

drop in weight alignment. Three important remarks can be made:

• Alignment phase: Increasing label corruption slows down the early increase of weight alignment,

as noted in Sec. 10.5.1.

• Memorization phase: Increasing label corruption makes the datasets harder to fit. As a conse-

quence, the network needs to give up more weight alignment in the memorization phase, as can

be seen from the sharper drop in the weight alignment curves.

• Transition point: the transition time between the Alignement andMemorization phases coincides

with the time at which the training error starts to decrease sharply (particularly at high label

corruption), and is hardly affected by the level of label corruption.

H.5.3 Experiment on the structure of targets

We trained a 3-layer linear MLP of width 100 for 1000 epochs on the synthetic dataset described in

the main text, containing 104
examples. We used the same hyperparameters as for the experiment on

nonlinear networks. We choose 5 values for α and β: 0.2, 0.4, 0.6, 0.8 and 1.

In Fig. H.3, we show the dynamics of weight alignment for both ReLU and Tanh activations. We again

see the Align-then-Memorise process distinctly. Notice that decreasing α and β hampers both the

mamixmal weight alignment (at the end of the alignment phase) and the final weight alignment (at the

end of the memorisation phase).

254



101 103

Epochs

0

20

40

60

80

Tr
ai

n 
er

ro
r

A

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

B

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

C

101 103

Epochs

10 3

10 2

10 1

100

C
os

in
e 

si
m

ila
ri

ty

D

MNIST relu
MNIST tanh
CIFAR10 tanh
CIFAR10 relu
DFA
BP

(a) No label corruption

101 103

Epochs

0

20

40

60

80

Tr
ai

n 
er

ro
r

A

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

B

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

C

101 103

Epochs

10 4

10 3

10 2

10 1

100
C

os
in

e 
si

m
ila

ri
ty

D

MNIST relu
MNIST tanh
CIFAR10 relu
CIFAR10 tanh
DFA
BP

(b) 50% label corruption
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(c) 90% label corruption

Figure H.2: Effect of label corruption on training observables. A: Training error. B and C: Weight and

gradient alignment, as defined in the main text. D: Cosine similarity of the weight during training.
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Figure H.3: WA is hampered when the output dimensions are correlated (β < 1) or of different variances
(α < 1).
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Appendix I

Optimal Learning Rate Schedules in
Non-Convex Optimization

I.1 Dynamics of the convex model

Here we give additional details and steps in the computations on the convex model of Sec. 9.2. The loss

function is given by L(x) = κ
2x

2
. Integrating the Langevin equation (Eq. 9.1) from t0 to t for x yields:

x(t) = x(t0)e−κ
∫ t
t0

dτη(τ)︸ ︷︷ ︸
x̄(t)

+
∫ t

t0
dt′e−κ

∫ t′
t0

dtτη(τ)
η(t′)ξ(t′)︸ ︷︷ ︸

δx(t)

. (I.1)

In order to obtain a typical realisation of the loss which does not depend on the optimisation noise ξ,
we take the expectation over ξ. This gives for the loss L:

⟨L(t)⟩ = κ

2

⟨x̄(t)2⟩ + ⟨δx(t)2⟩ + 2 ⟨x̄(t)δx(t)⟩︸ ︷︷ ︸
0

 (I.2)

= κ

2

x(t0)2e
−2κ

∫ t
t0

dτη(τ)︸ ︷︷ ︸
L̄(t)

+ 2T
∫ t

t0
dt′η(t′)2e−2κ

∫ t
t′ dτη(τ)

︸ ︷︷ ︸
δL(t)

 (I.3)

The first term is an optimisation term while the second is the contribution of the noise inherent to

the optimisation algorithm. Thus, to converge to the solution as quickly as possible, one has to find

the trade-off between decreasing the impact of the noise term while not slowing down optimisation

excessively. The ideal schedule is determined by requiring these two effects are comparable. Defining

η(t) = η0/t, we obtain

L̄(t) ∝ e−2η0κ log(t) ∝ t−2η0κ
(I.4)

δL(t)
∫ t

t0
dt′ 1
t′2

(
t′

t

)2η0κ

∝ 1/t. (I.5)

If η0 > 1/2κ, the loss is dominated by the noise term δL and decays as 1/t. If η0 < 1/2κ, the loss is
dominated by the optimization term δL and decays as t−2η0κ

.
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I.2 Dynamics of the Sherrington-Kirkpatrick model

In this section, we provide derivations for the results obtained in the SK model.

I.2.1 Unplanted model

The loss function is given by:

L(x) = − 1√
N

N∑
i<j

Jijxixj . (I.6)

Solving the dynamics Following [304], we express the spin configurations in the eigenbasis of J
and define xµ = x·Jµ/

√
N as the projection of x onto the eigenvector Jµ. xµ evolves as:

∂xµ(t)
∂t

= η(t) [(µ− z(t))xµ(t) + ξµ(t)] . (I.7)

Integrating this equation yields again two terms, one related to the optimisation and the second related

to the noise:

xµ(t) = xµ (0) e−
∫ t

0 dτη(τ)(µ−z(τ))
(I.8)

+
∫ t

0
dt′′e−

∫ t
t′′ dτ

′η(τ ′)(z(τ ′)−µ)η(t′′)ξµ
(
t′′
)
.

In the t→∞ limit, a non-exploding x̄µ requires µ−z(t) to be negative for all µ in the support of ρ,
implying z(t) < 2. We must also impose z(t)→t→∞2, otherwise xµ(t)→0 ∀µ, in contradiction with

the spherical constraint. To comply with these two requirements we define z(t) = 2 − f(t), with
f(t)→t→∞0.
In the constant learning rate setup η(t) = 1 we know from [304] that f(t) = 3/(4t). With η(t) = η0/t

β
,

a natural ansatz is f(t) = c/t1−β
. To determine c, we impose the spherical constraint:

1 = ⟨
∫ dµ

N
ρ(µ)xµ(t)2⟩

= t2cη0

∫ 2

−2
dµ
√

4 − µ2e2η0(µ−2)t1−β

= t2cη0−3(1−β)/2
∫ ∞

0
dϵ

√
2ϵe−2η0ϵ ∝ t2cη0−3(1−β)/2 ⇒ c = 3(1 − β)

4η0
.

For β = 1, we instead use the ansatz z(t) = 2 − c/ log(t):

1 =
∫ 2

−2
dµ
√

4 − µ2e2η0(µ−2) log te2cη0 log log t

= (log t)2cη0−3/2
∫ ∞

0
dϵ

√
2ϵe−2η0ϵ ∝ (log t)2cη0−3/2 ⇒ c = 3

4η0
.

Hence, the scaled loss ℓ = L/N converges to the ground state (global minimum) ℓGS = − 1 as a sum of

power-laws:

ℓ(t) − ℓGS = η0T

2tβ +


3(1−β)
8η0t1−β , β < 1

3
8η0 log t , β = 1

. (I.9)
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Dependency on the spectrum of J One may naturally ask whether our conclusions are affected

by changing the spectrum of the coupling matrix J . Notice that the key to solving the self-consistent

equation is the behavior of the spectrum near its right edge. For the semi-circle law considered here, the

right edge of the spectrum behaves as a square root. This law applies to a rather wide range of random

matrix ensembles. Besides, many other common spectral densities, such as the Marcenko-Pastur law,

also exhibit a same square root behavior on their right edge. Hence we expect our results to hold for a

wide range of random matrix ensembles.

I.2.2 Planted model

The loss function is given by:

L(x) = −N

2 m
2 − ∆√

N

N∑
i<j

Jijxixj . (I.10)

Solving the dynamics Again we choose η(t) = η0/t
β
and consider the high signal-to-noise setting,

∆ < 1
2 . Writing z(t) = 1 − f(t), we obtain:

1 =⟨
∫ dµ

N
ρ(µ)xµ(t)2⟩ (I.11)

=N − 1
N

∫ 2

−2
dµρsc(µ)e2

∫ t
t0

dτη(τ)(µ−1)
e

2
∫ t
t0

dτη(τ)f(t) + 1
N
e

2
∫ t
t0

dτη(τ)f(t)
(I.12)

=e2
∫ t
t0

dτη(τ)f(τ)

e−2η(t)(1−2∆)
∫ 2

−2
dµρsc(µ/∆)e2η(t)(µ−2∆)t︸ ︷︷ ︸
A(t)

+ 1
N

 (I.13)

The expression above involves two terms. The first is of order one but decays exponentially over time;

using results above, we obtain that

A(t) ∼ t−3(1−β)/2e−2η0κt1−β
. (I.14)

Hence, there is a crossover time at which the first term becomes smaller than the second term, given by:

A(t) ∼ 1 ⇒ tcross =
( logN

2η0κ

) 1
1−β

(I.15)

Before tcross, the signal is not detected and we have as before z(t) = 2∆ − c/t1−β
.

After tcross, we have A(t) ≪ 1/N . Multiply Eq. I.13 by N and taking the log, we obtain:

logN = 2
∫ t

t0
dτf(τ)t−β + log (1 +NA(t)) (I.16)

∼ 2
∫ t

t0
dτf(τ)t−β +NA(t) (I.17)
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Figure I.1: The landscape becomes convex at the crossover time. Parameters: N = 3000, η0 = 0.1.

Taking the derivative with respect to t, we find the following asymptotics for late times:

f(t) ∼ −NA′(t)tβ

2 ∼ t−5(1−β)/2e−2η0κt1−β
(I.18)

Hence,

ℓ(t) − ℓGS = η0T

2tβ + 1
2f(t) (I.19)

with ℓGS = 1. As previously, it is straightfoward to extend this to the setup β = 1, for which we obtain

f(t) ∼ t−2η0κ
.

Curvature analysis As before, the spectrum of interest to study the landscape is that of H shifted

to the right by the spherical constraint z(t), depicted in Fig. I.1. The crossover time tcross corresponds
to the time at which the left edge of the semi-circle reaches 0. Thanks to the presence of the signal,

the dynamics do not stop at this point; they continue until the eigenvalue corresponding to the signal

reaches zero (which as achieved at t→∞). After the tcross, the landscape becomes locally convex: the

only negative eigenvalue is in the direction of the signal. Due to the spherical constraint, the effective

Hessian (of dimension N − 1) does not feel this negative eigenvalue when x is close to x⋆.

I.3 Dynamics of the p-spin model

I.3.1 Rescaling the temperature

Introducing a learning rate schedule is equivalnt to changing the "clock" directly in the Langevin (Eq. 9.1)

as dt̃ = η(t) dt. Then, for β < 1 we have:

δ(t̃) dt̃ = δ(t) dt ⇒ δ(t) = δ(t̃)
(

η0
1 − β

) β
1−β

t̃
−β

1−β (I.20)

The Langevin equation becomes:

dxi(t)
dt = −

(
∂L(x, x⋆)

∂xi
+ ξi(t) + z(t)xi(t)

)
, ⟨ξ(t)ξ(t′)⟩ = 2T η̃0t̃

−β/1−βδ(t− t′), (I.21)
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where we defined η̃0 =
(
η0

1−β

) β
1−β

. This equation reveals that the process optimised with a varying

learning rate is equivalent to a process at an effective temperature:

T̃ = η̃0t̃
−β

1−β T (I.22)

This equation corresponds to the physical protocol in which the temperature T̃ is annealed as a power

law. As we show for the p-spin model in the next section, the solution is governed by a speed-noise

trade-off.

I.3.2 Application to the p-spin model

For the p-spin model the loss can therefore be written:

L(t; T̃ ) = −N
p

(
z̃(t) − T̃

)
= L(t;T = 0) + Lth(T̃ ) (I.23)

where we assumed that, at all times, the temperature dependent contribution to the loss has time to

equilibrate in the threshold states.

To find Lth(T̃ ), we assume that, since we are looking at long times, we have T̃ ≪ 1. We can consider

the loss by performing an expansion around the T̃ = 0 minimum i.e. considering that the motion is

oscillatory around the minimum. At T = 0, the threshold overlap is given by qth = 1. At T ≪ 1, we
thus write q = 1 − χT . Performing a similar matching argument as the one of [303], described in more

details in Sec. I.4.4, we find that the close to the threshold, the loss is given by Eq. I.68:

Lth(T ) = −1
p

[√
(p− 1)qp−2 + 1

T

√
2
p

(
1 − qp−1

)]
(I.24)

In addition, we can expand the threshold overlap solution around T = 0 [307]:

qp−2
th (1 − qth)2 = T 2

p− 1

⇒ χ =
√

1
(p− 1)

(I.25)

Replacing this solution in Eq. I.24, we find:

Lth(T ) = −
√

4(p− 1)
p︸ ︷︷ ︸

Lth(T=0)

+ p− 2
p

T︸ ︷︷ ︸
∝T

(I.26)

We see that Lth(T ) is composed of a constant term, which is the same as the threshold loss defined in

Eq. 9.16 and a term scaling linearly with T . Thus:

Lth(T̃ ) − Lth ∝ T̃ ∝ t−
β/1−β. (I.27)

We find again the two competing term in the speed of optimisation. On the one hand, the noiseless term,

which is the same as the zero temperature loss, decays as L(t;T = 0) ∝ t−γ . On the other hand, the

temperature dependent term, which blocks the dynamics at loss Lth(T̃ ), which decays as t−β/1−β
. The

loss decays as t
−min

(
γ, β

1−β

)
. Equaling the two exponents gives the optimal value of βopt = 2

5 .
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I.4 Dynamics of the Spiked Matrix-Tensor model

I.4.1 Derivation of the PDE equations

For simplicity, we detail the derivation of the p-spin model without the spike as studied in Sec. 9.3.2 in

the case p = 3. The derivation for the full spiked tensor model is similar and can be found in [307]. The

Langevin equation for each spin x is given by:

ẋi(t) = −z(t)η(t) − η(t)∂xiL + η(t)ξi(t) (I.28)

where ξ ∈ RN is the Langevin noise with distribution ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = 2Tδijδ(t−t′). The
solution x to the Langevin equation depends on the realisation of the noise. We can obtain a probability

distribution over x given the distribution of ξ by considering the expectation of an observable A(t):

⟨A(x)⟩ =
∫
DξP (ξ)A (xξ) =

∫
dx

[∫
DξP (ξ)δ (ẋ+ η(t)∂xL − η(t)ξ)

]
A(x) =

∫
dxP (x)A(x)

(I.29)

We are now interested in considering P (x) when averaged over the quenched disorder J . We therefore

resort to:

1 ≡ Z =
∫
DxP (x)

=
∫
DxDx̂Dξ exp

[
−1

2

∫
dtdt′ξ(t)D−1

0
(
t, t′
)
ξ
(
t′
)

+ i

∫
dtx̂(t) (∂tx+ η(t)∂xL) − i

∫
dtη(t)x̂(t)ξ(t)

]
=
∫
DxDx̂ exp

[
−1

2

∫
dtdt′x̂(t)η(t)D0

(
t, t′
)
x̂
(
t′
)
η(t′) + i

∫
dtx̂(t) (∂tx+ η(t)∂xL)

]
=
∫
DxDx̂ exp [S(x, x̂)]

(I.30)

where we defined D0(t, t′) = 2Tδ(t− t′). Crucially, S(x, x̂) acts as a generating functional and allows

to obtain correlation functions by a term

∫
dtx̂(t)h(t) + x(t)ĥ(t). We can thus define

⟨x(t)x̂(t′)⟩ = ∂h(t′)⟨x(t)⟩ ≡ R(t, t′) ⟨x(t)x(t′)⟩ = ∂ĥ(t′)⟨x(t)⟩ ≡ C(t, t′) (I.31)

We now want to average the partition function over the quenched disorder Z . We note that the only

time depend term in the exponent is ix̂(t)η(t)∂xL. We thus have to compute:

eix̂(t)η(t)∂xL ≡ e∆(x,x̂)
(I.32)

The average over the disorder will induce corrections both to the propagator D0 and to the interaction

term x̂(t)x(t′) i.e. ∆(x, x̂) = −1
2 x̂D1(x, x̂)x̂+ ix̂L1(x, x̂). By performing the average we obtain:

ix̂i(t)η∂xiL =
∫ ∏

i>k>l

dJikl exp

−1
2J

2
ikl −

√
(p− 1)!
Np−1 Jikl

∫
dtη(t) [ix̂ixkxl + xiix̂kxl + xixkix̂l]


= exp

{∫
dtdt′

2Np−1 η(t)η(t′)
[
(ix̂ · ix̂)(x · x)p−1 + (p− 1)(ix̂ · x)(x · ix̂)(x · x)p−2

]}
(I.33)
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where we introduced the notation x · x ≡
∑N
i=1 xi(t)xi (t′). We now introduce dynamical overlaps Q1,

Q2, Q3 and Q4 as:

eix̂i(t)η∂xiL =
∫
DQδ

(
NQ1 −

∑
k

ix̂k(t)ix̂k
(
t′
))

δ

(
NQ2 −

∑
k

xk(t)xk
(
t′
))

·δ
(
NQ3 −

∑
k

ix̂k(t)xk
(
t′
))

δ

(
NQ4 −

∑
k

xk(t)ix̂k
(
t′
))

· exp
{
N

2

∫
dtdt′η(t)η(t′)

[
Q1
(
t, t′
)
Q2
(
t, t′
)p−1 + (p− 1)Q3

(
t, t′
)
Q4
(
t, t′
)
Q2
(
t, t′
)p−2

]}
(I.34)

We can easily see that we have the correspondenceQ1(t, t′) = 0,Q2(t, t′) = C(t, t′),Q3(t, t′) = R(t′, t)
and Q4(t, t′) = R(t, t′). By using the exponential form of the delta function and solving the fix point

equations for the conjugate fields Q̂1, Q̂2, Q̂3 and Q̂4 we find:
iQ̂1 = 1

2η(t)η(t′)Qp−1
2

iQ̂2 = p−1
2 η(t)η(t′)Q1Q

p−2
2 + (p−1)(p−2)

2 η(t)η(t′)Q3Q4Q
p−3
2 ≡ 0

iQ̂3 = p−1
2 η(t)η(t′)Q4Q

p−2
2

iQ̂4 = p−1
2 η(t)η(t′)Q3Q

p−2
2

(I.35)

From the definition of the Q̂’s we find the new term in the generating functional as:

∆ =
∑
k

∫
dtdt′η(t)η(t′)

{
−1

2C
(
t, t′
)p−1

x̂k(t)x̂k
(
t′
)

− (p− 1)R
(
t, t′
)
C
(
t, t′
)p−2

ix̂k(t)xk
(
t′
)}
(I.36)

This allows us to write an effective Langevin equation for a scalar degree of freedom x:

ẋ(t) = −z(t)η(t)x(t) + η(t)(p− 1)
∫
dt′′η(t′)R

(
t, t′′

)
C
(
t, t′′

)p−2
σ
(
t′′
)

+ η(t)ξ̃(t), (I.37)

with:

⟨ξ̃(t)ξ̃(t′)⟩ = 2Tδ(t− t′) + Cp−1(t, t′). (I.38)

In order to write down a set of PDE’s for R and C , note the useful relations:

⟨ ∂x(t)
∂ξ(t′)⟩ = −i⟨x(t)x̂(t′)⟩

⟨x(t)ξ(t′)⟩ = 2Tη(t′)R(t, t′)

⟨ξ̃(t1)x(t2)⟩ = 2Tη(t1)R(t1, t2) +
∫
dt′′η(t′′)R(t′′, t2)Cp−1(t′′, t1)

(I.39)

We therefore find:

∂R (t1, t2)
∂t1

=
〈
δẋ (t1)
δξ̃ (t2)

〉
= − z (t1) η(t1)R (t1, t2) + η(t1)δ (t1, t2)

+ (p− 1)η(t1)
∫ t1

t2
dt′′η(t′′)R

(
t1, t

′′)Cp−2 (t1, t′′)R (t′′, t2)
(I.40)
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∂C (t1, t2)
∂t1

= ⟨ẋ (t1)x (t2)⟩

= − η(t1)z (t1)C (t1, t2) + 2Tη(t1)2R(t1, t2)

+ (p− 1)η(t1)
∫ t1

−∞
dt′′η(t′′)R

(
t1, t

′′)Cp−2 (t1, t′′)C (t′′, t2)
+ η(t1)

∫
dt′′η(t′′)R(t′′, t2)Cp−1(t′′, t1)

(I.41)

The equation for z(t) is given by differentiation C(1, 1) = 1, i.e. [∂tC (t, t′) + ∂t′C (t, t′)]t,t′=s = 0:

z(t1) = Tη(t1) + p

∫
dt2η(t2)R(t2, t1)Cp−1(t2, t1). (I.42)

The loss at all times is found by using the Ito identity:

1
N

d

dt

∑
i

x2
i (t) = 2

N

∑
i

xi(t)ẋi(t) + 2 (I.43)

which yields:

L(t) = N

p
(Tη(t) − z(t)) (I.44)

Spiked matrix-tensor model The derivation of the PDEs describing the dynamics of C , R and z in
the spiked matrix-tensor model are similar as the ones for the p-spin. In addition, one also needs to keep

track of the evolution of the overlap of the estimate with the signal i.e. the magnetisationm = x·x⋆/N .
Using the same method as before we find:

∂

∂t
C
(
t, t′
)

= −z(t)η(t)C
(
t, t′
)

+ η(t)Q′(m(t))m
(
t′
)

+ η(t)
∫ t

0
η(t′)R

(
t, t′′

)
Q′′ (C (t, t′′))C (t′, t′′) dt′′

+ η(t)
∫ t′

0
η(t′)R

(
t′, t′′

)
Q′ (C (t, t′′)) dt′′ + 2Tη(t)2R(t, t′)

∂

∂t
R
(
t, t′
)

= −z(t)η(t)R
(
t, t′
)

+ η(t)
∫ t

t′
η(t′)R

(
t, t′′

)
Q′′ (C (t, t′′))R (t′′, t′) dt′′ + δ(t− t′)η(t)

d

dt
m(t) = −η(t)z(t)m(t) + η(t)Q′(m(t)) + η(t)

∫ t

0
η(t′)R

(
t, t′′

)
m
(
t′′
)
Q′′ (C (t, t′′)) dt′′

z(t) = η(t)T +Q′(m(t))m(t) +
∫ t

0
η(t′)R

(
t, t′′

) [
Q′ (C (t, t′′))+Q′′ (C (t, t′′))C (t, t′′)] dt′′

(I.45)

where we defined Q(x) = Qp(x) +Q2(x) = xp

p∆p
+ x2

2∆2
. The loss is related to z(t) via:

z(t) = Tη(t) − p
Lp
N

− 2L2
N
, (I.46)

with L2, respectively L2 are the loss associated with the matrix, respectively tensor, channel.
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The Langevin easy phase As explained in [303], one finds different phases in the two dimensional

space spamed by the noise intensities ∆2 and ∆p. In the Langevin easy phase, a system initialised with a

magnetisationm ∼ O(1/
√
N) recovers the signal and converges to an overlap of order 1. It is delimited

by ∆2 < ∆∗
2, where ∆∗

2 is the solution to the implicit equation:

∆2 < ∆⋆
2 =

√
∆p

(p− 1)(1 − ∆∗
2)p−3 . (I.47)

In contrast, in the Langevin hard and Langevin impossible phase, i.e. ∆2 > ∆∗
2, the dynamics fail to

recover the signal and remain at low magnetisation. More details in [307].

I.4.2 Derivation of the Ground-state Loss

In order to derive the ground state properties of the system, we resort to the replica method, developed

in physics as a tool to deal with random systems. Using these tools, involves performing a mapping

between the optimisation problem, an inference problem and a physical system. We can consider the

estimator x as a guess on the planted signal x⋆ and y be the observations.The, using Bayes formula we

can express the posterior probability of the estimator x given the observation y:

P [x|y] = 1
P [y]P [x]P [y|x] ≈β=1

1
P [y]P [x]P [y|x]−β = 1

Z(y)e−βL. (I.48)

We can identify the last terms with a Gibbs distribution at temperature β = 1/T and Z is a normalisation

constant named the partition function. At β = 1, the posterior I.48 is the exact posterior of the problem.

At β→∞, the distribution is dominated by the spin configuration minimising the loss, i.e. the maximum

likely hood approximator of the problem. The partition function, and its logarithm the free energy:

Φ = −1
N

logZ, (I.49)

act as a generating functional. I.e. they encapsulate all the relevant information needed to describe of

the system. Notably, all observables can be obtained by taking derivatives of it. In particular, the loss

and the overlap with the signal are given by:

L = 1
N

1
Z

∫
§N−1

Le−βL = −1
N

∂ logZ
∂β

= ∂Φ
∂β

m = 1
N

N∑
i=1

1
Z

∫
§N−1

xix
⋆
i e

−βL+h·x|h=0 = −x⋆ · ∂hΦ.
(I.50)

The spiked tensor model is rendered more complex due to the randomness associated with the couplings.

We need to evaluate the averaged logarithm of the partition function logZ which is in general prohibitive.

To deal with this problem, physics have developed the heuristic replica method based on the equality:

logZ = lim
n→0

Zn − 1
n

. (I.51)

In practice, one computes Zn for n ∈ N and then extends the result to real n. The problem can be

viewed as introducing n identical, replicated, copies of the system. As we will see, averaging over the
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random couplings introduces correlation between the copies. Zn can easily be evaluated as:

Zn = E
Ji1...ip
Jij

∫ n∏
a=1

e
β
√

1
p∆pN

∑
i1,...,ip

Ji1,...,ipx
(a)
i1
...x

(a)
ip

+β
√

1
2∆2N

∑
i,j
Ji,jx

(a)
i x

(a)
j +Nβ

∑
i
Q

(
x

(a)
i

x∗
i

N

)
n∏
a=1

dx(a)

=
∫
Sn(N−1)(

√
N)

e
Nβ
∑

i
Q

(
x

(a)
i

x∗
i

N

)
+Nβ2

2 Q

(∑n

a,b=1

∑
i

x
(a)
i

x
(b)
i

N

)
n∏
a=1

dx(a).

(I.52)

where we introduced Q(x) = x2/2∆2 + xp/p∆p. The second term in the exponent carries the interaction

between the different copies obtained after averaging out the random couplings. It depends on the

overlap Q having entries Qab =
∑
i
x

(a)
i x

(b)
i

N . We associate the index a = 0 with the ground truth signal

x⋆. Using the exponential representation of the Dirac delta function, we introduce the overlap matrix

into the partition function. After some manipulation we obtain:

Zn =
∫

eNβS(Q)
(I.53)

βS(Q) = 1
2 log det Q + β2

n∑
a,b=1

Q(Qab) + β
n∑
a=1

Q(Qa0). (I.54)

The factor N in the exponential in the integrand, implies that in the N→∞ limit, the integral is

dominated by the matrix Q maximising the action S. In order to progress, we make a replica symmetric

ansatz
1
: i.e. we assume the different systems have overlaps q between each other andm with the ground

truth. This imposes a matrix Q has the form:

Q =


1 m m m
m 1 q q
m q 1 q
m q q 1

 . (I.55)

Replacing this overlap matrix in I.54 and taking n→0, we obtain:

βSRS(q,m) = n

{
1
2
q −m2

1 − q
+ 1

2 log(1 − q) + β2

2 Q(1) − β2

2 Q(q) + βQ(m)
}

(I.56)

We now maximise S with respect tom and q and obtain the saddle point equations:

SRS(q,m)
∂m

= −m
1 − q

+ βQ′(m) (I.57)

SRS(q,m)
∂q

= q −m2

(q − 1)2 + β2Q′(q) (I.58)

The expression of the loss as a function of the overlapsm and q is given by using Eq. I.50:

L(m, q) = −β(Q(1) −Q(q)) +Q(m) (I.59)

By evaluating the above at the solutions Eqs. I.58, we obtain the ground state loss at a given temperature.

1

Since we only consider the Langevin easy phase, where there is no ergodicity breaking, we do not need to consider a

1RSB ansatz.
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T = 1 solution At T = 1 (i.e. β = 1) the posterior Eq. I.48 is exact and we can use the Nishimori

identity stating that the distribution of the estimator is the same as the one of the signal implyingm = q.
Replacing the identity in Eq. I.58 and in Eq. I.59 we have:

m = (1 −m)Q′(m),LT=1
gs = −Q(1). (I.60)

T = 0 solution We can think of the 0 temperature system (i.e. β→∞) as physical system coupled to

a thermal bath. As the temperature goes to 0, all particles collapse to a point at the minimum of the loss.

Thus, the overlap tends to 1. However, we check that Eqs. I.58 are singular at q = 1. To properly take

the limit, we perform a linear expansion in the temperature by replacing q = 1 − χT in the equations

and linearising in T . We then obtain the equation form:

χ =
√

1 −m2

Q′(1)
m = χQ′(m)

(I.61)

and the ground state loss:

LT→0
gs = (−Q(m) − χQ′(1)). (I.62)

I.4.3 Additional results on the optimal learning rate schedule in the SMT model
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Figure I.2: Emergence of a crossover time in the SMT model. By fixing β from start, a randomly

initialised system will remain stuck at threshold states of 0 overlap until tcross which is minimal for

β = 0. Higher β, allow to reach lower loss solutions but require much longer to converge. (Right) The
optimal schedule is to keep η constant until tcross and then setting β = 1. By doing so, we get the

best of both worlds: the first phase minimises tcross while the second allows to reach more informative

solutions. (Inset) m−mgs shows that choosing higher β after tcross allows to reach more informative

minima. Parameter: β = 0.8, ∆2 = 0.2, ∆p = 6, η0 = 1, T = 1, dt = 10−2,m0 = 10−10.

In this section, we give additional results confirming the optimal decay of the learning rate in the

spiked-matrix tensor model. We have seen in the main text, that there is a crossover time tcross before
which the learning rate should be kept fixed as the system is in the search phase. After tcross, the
dynamics enter a convex basin and one should decay the learning rate as η(t) ∼ t−β . To verify that

β = 1 leads to the lowest loss, in the right panel of Fig. I.2, we keep a constant learning rate until ts after
which we vary the exponent with which the learning rate is decayed. We check that β = −1 allows to
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reach the best solutions. However, the left panel shows that if the learning rate is decayed from start, the

dynamics take much longer to converge towards the signal and remain stuck at high loss for very long.

I.4.4 Separation of time scales and matching solution

The long time dynamics, i.e. t→∞ of the p-spin model can be separated into two regimes:

• For all times t, t→∞with
t−t′
t →0 the system is stationary. Here, the dynamics are time-translation

invariant (TTI) and the fluctuation-dissipation theorem (FDT) holds. The two time functions

C(t, t′) andR(t, t′) are thus only a function of the time difference τ = t−t′
. In this regime, we de-

fine CTTI(τ) ≡ C(t− t
′
, 0) andRTTI(τ) ≡ R(t− t

′
, 0). The FDT givesRTTI(τ) = − 1

T
dCTTI(τ)

dτ .

As a consequence, the equations for R and C collapse into a single equation.

• For all times t, t→∞ with
t−t′
t = O(1) the system ages i.e. the dynamics remain trapped in

metastable states and does not lose memory of its history. The relevant variable to consider in

this regime is λ = t′/t. The correlation and response functions can be rescaled as R(λ) = tR(t, t′)
and qC(λ) = C(t, t′) with q = limτ→∞CTTI(τ). In this aging regime, a generalised form

of the FDT holds and R(λ) = x
T q

dC(λ)
dλ . The violation parameter x is found by matching i.e.

considering the equations for the response and the correlation separetly. q is found by imposing

q = limτ→∞CTTI(τ) in the equation of the TTI regime.

In order to derive analytical results, we use the hypothesis of these two times regimes to split the

time integrals in Eqs. 9.12. For compactness we also define Q(x) = xp/2. As noted in the main

text, we can re-scale time according to dt̃ = η(t) dt and obtain a system at an effective temperature

T̃ = (1 − β)
1

1−β T

tβ/1−β . We are ultimately interested in determining the threshold loss, a static quantity,

and can hence perform its derivation using a constant learning rate. This analysis is a special case of

the more general on performed in [307]. Here, we show it for the special case of the p-spin model with

no signal. In particular, we skip all the computations and refer the reader to [307] (Appendix B) for

additional details.

Lagrange multiplier in the long time-limit Let us start to illustrate how to proceed by computing

the long time limit of the loss z∞ = limt→∞ z(t) using Eqs. 9.12:

z∞(T ) − T = p

∫ t

0
dt′′R(t′′, t)Q′(C(t′′, t))︸ ︷︷ ︸∫

TTI +
∫

aging

= −
∫ ∞

0

1
T

d

dt̃
Q
(
CTTI(t̃)

)
dt̃+

∫ 1

0
R(λ)Q′(qC(λ))dλ

⇔ z∞ = 1 − qp

2T +
∫ 1

0
R(λ)Q′(qC(λ))dλ,

(I.63)

where we used the fact that by definition CTTI(∞) = q and CTTI(0) = 1. Also note that we neglected

all the finite time contribution to the integrals. We are going to determine z∞ using this equation.
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Stationary regime In order to find the dynamical equations in the stationary regime, we proceed as

before and separate the contributions of the TTI regime from those of the aging regime in the integrals.

Since both equations for the response and the correlation collapse into a single equation, we consider

only the evolution of the correlation CTTI. Using Eqs. 9.12 we have:

(z∞ + ∂τ )CTTI(τ) =
∫ t1

0
dt′′R

(
t1, t

′′)Q′′ (C (t1, t′′))C (t′′, t2)+
∫ t2

0
dt′′R(t′′, t2)Q′ (C(t′′, t1)

)
(I.64)

Using Eqs. 62 of [307], we have:

∂τCTTI(τ) +
( 1
T
Q′(1) − µ∞

)
[1 − CTTI(τ)] + T = − 1

T

∫ τ

0
Q′ (CTTI

(
τ − τ ′′)) d

dτ ′′CTTI
(
τ ′′) dτ ′′

(I.65)

When τ→∞, the time variations of CTTI(τ) are negligible. Taking this limit in the above equation

gives:

z∞ =
√
Q′′(q) + Q′(1) −Q′(q)

T
(I.66)

This equation allows to determine the threshold loss, i.e. the loss at the plateau reached by the system

before the recovery of the signal. We notice that the equality above holds for all ∆2, ∆p and hence also

if one of the two is sent to infinity. Therefore, we have:

ℓth = ℓp + ℓ2, (I.67)

with ℓ2 = 1
2(η(t) − z∞;∆p→∞) and similarly for ℓp. Thus, by defining Qk(x) = xk/k∆k, we obtain:

ℓk = 1
k

(
η(t) −

√
Q′′
k(q) − Q′

k(1) −Q′
k(q)

T

)
(I.68)

Using this equation, and performing an expansion around 0 for T and 1 for q, we can determine that at

low temperatures, the threshold energy scales linearly with T .
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I.5 Additional results for the Teacher-Student Regression Task

In this section we give additional results on the teacher-student regression task discussed in Sec. 9.5.

The setting is the same as in the main text: aK hidden nodes 2 layer neural network student is trained

to reproduce the output of her 2 layer neural network teacher ofM nodes on gaussian inputs. We train

the model with on a finite dataset of P examples using a mini-batch size B = 1. Fig. I.3 verifies that the
conclusions drawn in the main text hold for different values ofK andM . The optimal schedule is to

keep the learning rate constant until tcross and to then decay it as 1/t. If the learning rate is decayed too

soon, i.e. at ts < tcross, learning remains stuck at high loss values. Decaying after tcross instead allows to
reduce the noise in optimisation and reach lower loss solutions. We verify that in both these cases, tcross
matches the end of the "specialisation" transition, where the loss achieved student trained at constant

learning rate plateaus.
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Figure I.3: The crossover time is also reflected in a regression task with SGD. A student withK
hidden nodes is trained to reproduce the output of herM hidden nodes. (Left) K = M = 5. (Right)
K = M = 20. As in the main text.before, we find that decaying the learning rate before the loss

plateaus performance, but decaying as η(t) ∼ t−1
once the plateau is reached allows to reach zero loss.

Parameters: N = 500, P = 104, η0 = 10−1, β = 0.8.
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Appendix J

Deep Symbolic Regression for Recurrent
Sequences
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J.1 Robustness to noise

One particularity of our model is that it is entirely trained and evaluated on synthetic data which is

completely noise-free. Can our model also predict recurrence relations when the inputs are corrupted ?

In this section, we show that the answer is yes, provided the model is trained with noisy inputs. For

simplicity, we restrict ourselves here to the setup of float sequences, but the setup of integer sequences

can be dealt with in a similar manner, trading continuous random variables for discrete ones.

Setup Considering the wide range of values that are observed in recurrent sequences, corruption via

additive noise with constant variance, i.e. un = f(n, {ui}i<n) + ξn, ξn ∼ N (0, σ) is a poor model of

stochasticity. Indeed, the noise will become totally negligible when un ≫ 1, and conversely, totally

dominate when un ≪ 1. To circumvent this, we scale the variance of the noise with the magnitude of

the sequence, i.e. ξn ∼ N (0, σun), allowing to define a signal-to-noise ratio SNR = 1/σ. This can also

be viewed as a multiplicative noise un = f(n, {ui}i<n)ξ, ξ ∼ N (1, σ).

Results To make our models robust to corruption in the sequences, we use stochastic training. This

involves picking a maximal noise level σtrain, then for each input sequence encountered during training,

sample σ ∼ U(0, σtrain), and corrupt the terms with a multiplicative noise of variance σ. At test time,

we corrupt the input sequences with a noise of fixed variance σtest, but remove the stochasticity for next

term prediction, to check whether our model correctly inferred the deterministic part of the formula.

Results are presented in Table J.1. We see that without the stochastic training, the accuracy of our model

plummets from 43% to 1% as soon as noise is injected at test time. However, with stochastic training,

we are able to keep decent performance even at very strong noise levels: at σtest = 0.5, we are able
to achieve an accuracy of 17%, which is remarkable given that the signal-to-noise ratio is only of two.

However, this robustness comes at a cost: performance on the clean dataset is degraded, falling down to

30%.

σtrain/test σtest = 0 σtest = 0.1 σtest = 0.5

σtrain = 0 43.3 0.9 0.0

σtrain = 0.1 38.4 31.9 0.2

σtrain = 0.5 35.6 31.8 11.1

Table J.1: Our symbolic model can be made robust to noise in the inputs, with a moderate drop
in performance on clean inputs. We report the accuracy on expressions with up to 10 operators, for

npred = 10, τ = 10−10
, varying the noise level during training σtrain and evaluation σtest.

J.2 The effect of expression simplification

One issue with symbolic regression is the fact that a mathematical expression such as mul, 2, cos, n
can be written in many different ways. Hence, cross-entropy supervision to the tokens of the expression

can potentially penalize the model for generating the same formula written in a different way (e.g.

mul, cos, n, 2 or mul, cos, n, add, 1, 1). To circumvent this issue, [403] first predict the

formula, then evaluate it and supervise the evaluations to those of the target function. Yet, since the
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evaluation step is non-differentiable, they are forced to use a Reinforcement Learning loop to provide

reward signals. In our framework, we noticed that such an approach is actually unnecessary.

Instead, one could simply preprocess the mathematical formula to simplify it with SymPy [465] before

feeding it to the model. This not only simplifies redundant parts such as add, 1, 1→2, but also gets

rid of the permutation invariance mul, x, 2 = mul, 2, x by following deterministic rules for the

order of the expressions. However, and rather surprisingly, we noticed that this simplification does

not bring any benefit to the predictive power of our model: although it lowers the training loss (by

getting rid of permutation invariance, it lowers cross-entropy), it does not improve the test accuracy, as

shown in Fig. J.1. This suggests that expression syntax is not an issue for our model: the hard part of

the problem indeed lies in the mathematics.

Aside from predictive power, SymPy comes with several advantages and drawbacks. On the plus side,

it enables the generated expressions to be written in a cleaner way, and improves the diversity of the

beam. On the negative side, it slows down training, both because it is slow to parse complex expressions,

and because it often lengthens expression since it does not handle division (SymPy rewrites div,a,b as

mul,a,pow,b,-1). Additionally, simplification actually turns out to be detrimental to the out-of-domain

generalization of the float model. Indeed, to generate approximations of out-of-vocabulary prefactors,

the latter benefits from non-simplified numerical expressions. Hence, we chose to not use SymPy in our

experiments.
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Figure J.1: Simplification reduces the training loss, but does not bring any improvement in test
accuracy. We displayed the first 40 epochs of training of our symbolic models.

J.3 Does memorization occur?

It is natural to ask the following question: due to the large amount of data seen during training, is our

model simply memorizing the training set ? Answering this question involves computing the number

of possible inputs sequences Nseq which can be generated. To estimate this number, calculating the

number of possible mathematical expressions Nexpr is insufficient, since a given expression can give

very different sequences depending on the random sampling of the initial terms. Hence, one can expect

that Nexpr is only a very loose lower bound for Nseq .

Nonetheless, we provide the lower bound Nexpr as a function of the number of nodes in Fig. J.2, using

the equations provided in [390]. For small expressions (up to four operators), the number of possible

expressions is lower or similar to than the number of expressions encountered during training, hence

one cannot exclude the possibility that some expressions were seen several times during training, but
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with different realizations due to the initial conditions. However, for larger expressions, the number of

possibilities is much larger, and one can safely assume that the expressions encountered at test time

have not been seen during training.
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Figure J.2: Our models only see a small fraction of the possible expressions during training. We

report the number of possible expressions for each number of operators (skeleton refers to an expression

with the choice of leaves factored out). Even after a hundred epochs, our models have only seen a

fraction of the possible expressions with more than 4 operators.

J.4 The issue of finite precision

As explained in the main text, our model tends to ignore subdominant terms in expressions with terms

of vastly different magnitudes, partly due to finite precision. For example, when using a float precision

of p = 4 digits, we obtain a discretization error of 105
for numbers of magnitude 109

. However, there

exists two methods to circumvent this issue.

Increasing the precision Naively increase the precision p would cause the vocabulary size of the

encoder to rapidly explode, as it scales as 10p. However, one can instead encode the mantissa on multiple

tokens, as performed for integers. For example, using two tokens instead of one, e.g. encoding π as

+ 3141, 5926, E-11, doubles the precision while increasing the sequence length only by 33%.

This approach works well for recurrence prediction, but slightly hampers the ability of the model to

approximate prefactors as shown in Tab. 11.2, hence we did not use it in the runs presented in this

chapter.

Iterative refinement Another method to improve the precision of the model is to use an iterative

refinement of the predicted expression, akin to perturbation theory in physics.

Consider, for example, the polynomial f(x) =
∑d
k=0 akx

k
, for which our model generally predicts

f̂(x) =
∑d
k=0 âkx

k
, with the first coefficient correct (âd = ad) but potentially the next coefficients

incorrect (âk ̸= ak for k < d). One can correct these subdominant coefficients iteratively, order by order.

To obtain the term ad−1, fit the values of g(x) = f(x) − f̂(x) =
∑d−1
k=1(ak − âk). Then fit the values of
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h(x) = g(x) − ĝ(x), etc. By iterating this procedure k times, one can obtain the k highest coefficients

ak.
We checked that this method allows us to approximate any polynomial function. One could in fact use

iterative refinement to predict the Taylor approximation of any function, or use a similar approach to

catch multiplicative corrections, by fitting g(x) = f(x)/f̂(x); we leave these investigations for future
work.
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Figure J.3: The similarity matrices reveal more details on the structure of the embeddings. The
element (i, j) is the cosine similarity between embeddings i and j.

J.5 Structure of the embeddings

To gain better understanding on the number embeddings of our models, we depict similarity matrices

whose element (i, j) is the cosine similarity between embeddings i and j in Fig. J.3.

Integer sequences The numeric and symbolic similarity matrices look rather similar, with a bright

region appearing around the line y = x, reflecting the sequential nature of the embeddings. In both

cases, we see diagonal lines appear: these correspond to lines of common divisors between integers.

Strikingly, these lines appear most clearly along multiples of 6 and 12, especially in the symbolic model,

suggesting that 6 is a natural base for reasoning. These results are reminiscent of the much earlier

explorations of [466].

Float sequences Both for the numeric and symbolic setups, the brightest regions appear along the

diagonal lines y = x and y = −x, reflecting respectively the sequential nature of the embeddings and

their symmetry around 0. The darkest regions appears around the vertical line x = 0 and the horizontal

line y = 0, corresponding to exponents close to zero: these exponents strongly overlap with each other,

but weakly overlap with the rest of the exponents. Interestingly, dimmer lines appear in both setups,

but follow a very different structure. In the symbolic setup, the lines appear along lines y = ±x/k,
reminiscent of the effect of polynomials of degree k. In the numeric setup, the lines are more numerous,

all diagonal but offset vertically.
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J.6 Visualizations

Success and failure modes In Fig. J.4, we show a few examples of success and failure modes of our

symbolic models. The failure modes are particularly interesting, as they reflect the strong behavioral

difference between our symbolic models and models usually used for regression tasks.

The latter generally try to interpolate the values of the function they are given, whereas our symbolic

model tries to predict the expression of the function. Hence, our model cannot simply "overfit" the

inputs. A striking consequence of this is that in case of failure, the predicted expression is wrong both

on the input points (green area) and the extrapolation points (blue area).

In some cases, the incorrectly predicted formula provides a decent approximation of the true function

(e.g. when the model gets a prefactor wrong). In others, the predicted formula is catastrophically wrong

(e.g. when the model makes a mistake on an operator or a leaf).

Training curves In Fig. J.5, we show the training curves of our models, presenting an ablation over

the tolerance τ , the number of predictions npred, the number of operators o, the recurrence degree d
and the number of input points l, as explained in the main text.

Attention maps In Fig. J.6, we provide attention maps for the 8 attention heads and 4 layers of

our Transformer encoders. Clearly, different heads play very different roles, some focusing on local

interactions and others on long-range interactions. However, the role of different layers is hard to

interpret.
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Figure J.4: Success and failure modes of our models. The models are fed the first 15 terms of the

sequence (green area) and predict the next 15 terms (blue area). We randomly selected expressions with

4 operators from our generator, and picked the first successes and failures.
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Figure J.5: Training curves of our models. We plot the accuracy of our models at every epoch,

evaluated of 10,000 sequences generated from the same distribution as during trianing. From left to right,

we vary the tolerance τ , the number of predictions npred, the number of operators o, the recurrence
degree d and the number of input terms l. In each plot, we use the following defaults for quantities

which are not varied: τ = 10−10
, npred = 10, o ∈ [[1, 10]], d ∈ [[1, 6]], l ∈ [[5, 30]].

278



La
ye

r 
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r 
2

La
ye

r 
3

La
ye

r 
4

(a) Integer

La
ye

r 
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r 
2

La
ye

r 
3

La
ye

r 
4

(b) Float

Figure J.6: Attention maps of our integer model and float models. We evaluated the integer model

on the first 25 terms of the sequence un = −(6 + un−2) modn and the float model on the first 25 terms

of the sequence un = exp(cos(un−2)).
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Appendix K

End-to-end Symbolic Regression with
Transformers

K.1 Details on the training data

In Tab. K.1 we provide the detailed set of parameters used in our data generator. The probabilities of the

unary operators were selected to match the natural frequencies appearing in the Feynman dataset.

In Fig. K.1, we show the statistics of the data generation.The number of expressions diminishes with

the input dimension and number of unary operators because of the higher likelihood of generating

out-of-domain inputs. One could easily make the distribution uniform by enforcing to retry as long as a

valid example is not found, however we find empirically that having more easy examples than hard

ones eases learning and provides better out-of-domain generalization, which is our ultimate goal.

In Fig. K.2, we show some examples of the input distributions generated by our multimodal approach.

Notice the diversity of shapes obtained by this procedure.

Parameter Description Value

Dmax Max input dim 10

Daff Distrib of (a,b)
sign ∼ U{−1, 1},
mantissa ∼ U(0, 1),
exponent ∼ U(−2, 2)

bmax Max binary ops 5 +D
Ob Binary operators add:1, sub:1, mul:1

umax Max unary ops 5

Ou Unary operators

inv:5, abs:1, sqr:3, sqrt:3,

sin:1, cos:1, tan:0.2, atan:0.2,

log:0.2, exp:1

Nmin Min number of points 10D
Nmax Max number of points 200
kmax Max num clusters 10

Table K.1: Parameters of our generator.
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Figure K.1: Statistics of the synthetic data. We calculated the latter on 10, 000 generated examples.

Figure K.2: Diversity of the input distributions generated by the multimodal approach. Here we
show distributions obtained for D = 2.

K.2 Attention maps

A natural question is whether self-attention based architectures are optimally suited for symbolic

regression tasks. In Fig. K.3, we show the attention maps produced by the encoder of our Transformer

model, which contains 4 layers avec 16 attention heads (we only keep the first 8 for the sake of space). In

order to make the maps readable, we consider one-dimensional inputs and sort them in ascending order.

The attention plots demonstrate the complementarity of the attention heads. Some focus on specific

regions of the input, whereas others are more spread out. Some are concentrated along the diagonal

(focusing on neighboring points), whereas others are concentrated along the anti-diagonal (focusing on

far-away points.

Most strikingly, the particular features of the functions studied clearly stand out in the attention plots.

Focus, for example, on the 7th head of layer 2. For the exponential function, it focuses on the extreme

points (near -1 and 1); for the inverse function, it focuses on the singularity around the origin; for the

sine function, it reflects the periodicity, with evenly spaces vertical lines. The same phenomenology can

be acrossed is several other heads.

K.3 Does memorization occur?

It is natural to ask the following question: due to the large amount of data seen during training, is our

model simply memorizing the training set ? Answering this question involves computing the number of

possible functions which can be generated. To estimate this number, calculating the number of possible
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skeleton Ns is insufficient, since a given skeleton can give rise to very different functions according to

the sampling of the constants, and even for a given choice of the constants, the input points {x} can be

sampled in many different ways.

Nonetheless, we provide the lower bound Ns as a function of the number of nodes in Fig. K.4, using

the equations provided in [390]. For small expressions (up to four operators), the number of possible

expressions is lower or similar to than the number of expressions encountered during training, hence

one cannot exclude the possibility that some expressions were seen several times during training, but

with different realizations due to the initial conditions. However, for larger expressions, the number of

possibilities is much larger, and one can safely assume that the expressions encountered at test time

have not been seen during training.

K.4 Additional in-domain results

Fig. K.5, we present a similar ablation as Fig. 12.4 of the main text but using the R2
score as metric

rather than accuracy.

K.5 Additional out-of-domain results

Complexity-accuracy In Fig. K.6, we display a Pareto plot comparing accuracy and formula com-

plexity on SRBench datasets.

Jin benchmark In Fig. K.7, we show the predictions of our model on the functions provided in [467].

Our model gets all of them correct except for one.

Black-box datasets In Fig. K.8, we display the results of our model on the black-box problems of

SRBench.

Strogatz datasets Each of the 14 datasets from the ODE-Strogatz benchmark is the trajectory of a

2-state system following a first-order ordinary differential equation (ODE). Therefore, the input data

has a very particular, time-ordered distribution, which differs significantly from that seen at train time.

Unsurprisingly, Fig. K.9 shows that our model performs somewhat less well to this kind of data in

comparison with GP-based methods.

Ablation on input dimension In Fig. K.10, we show how the performance of our model depends on

the dimensionality of the inputs on Feynamn and black-box datasets.

Ablation on decoding strategy In Fig. K.11, we display the difference in performance using two

decoding strategies.
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Figure K.3: Attention maps reveal distinctive features of the functions considered. We presented

the model 1-dimensional functions with 100 input points sorted in ascending order, in order to better

visualize the attention. We plotted the self-attention maps of the first 8 (out of 16) heads of the

Transformer encoder, across all four layers. We see very distinctive patterns appears: exploding areas for

the exponential, the singularity at zero for the inverse function, and the periodicity of the sine function.
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Figure K.4: Our models only see a small fraction of the possible expressions during training.
We report the number of possible skeletons for each number of operators. Even after a hundred epochs,

our models have only seen a fraction of the possible expressions with more than 4 operators.
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Figure K.5: Ablation over the function difficulty (top row) and input difficulty (bottom row).
We plot the R2

score (Eq. 12.1). A: number of unary operators. B: number of binary operators. C:
input dimension. D: Low-resource performance, evaluated by varying the number of input points. E:
Extrapolation performance, evaluated by varying the variance of the inputs. F: Robustness to noise,

evaluated by varying the multiplicative noise added to the labels.
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families of models: deep-learning based SR, genetic programming-based SR and classic machine learning
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Figure K.7: Illustration of our model on a few benchmark datasets from the litterature. We show

the prediction of our model on six 2-dimensional datasets presented in [467] and used as a comparison

point in a few recent works [468]. The input points are marked as black crosses. Our model retrieves the

correct expression in all but one of the cases: in Jin5, the prediction matches the input points correctly,

but extrapolates badly.
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189. Buciluǎ, C., Caruana, R. & Niculescu-Mizil, A. Model compression in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining (2006), 535–541.

190. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

191. Ba, J. & Caruana, R.Do deep nets really need to be deep? inAdvances in neural information processing
systems (2014), 2654–2662.

192. Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

193. Frankle, J. & Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks.

arXiv preprint arXiv:1803.03635 (2018).

194. Chen, T., Goodfellow, I. & Shlens, J. Net2net: Accelerating learning via knowledge transfer. arXiv
preprint arXiv:1511.05641 (2015).

195. Saxena, S. & Verbeek, J. Convolutional neural fabrics in Advances in Neural Information Processing
Systems (2016), 4053–4061.

196. Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. On large-batch training

for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

197. Baldassi, C., Lauditi, C., Malatesta, E. M., Perugini, G. & Zecchina, R. Unveiling the structure of

wide flat minima in neural networks. Physical Review Letters 127, 278301 (2021).

198. Wu, L., Zhu, Z., et al. Towards understanding generalization of deep learning: Perspective of loss

landscapes. arXiv preprint arXiv:1706.10239 (2017).

199. Chaudhari, P. et al. Entropy-sgd: Biasing gradient descent into wide valleys. arXiv preprint
arXiv:1611.01838 (2016).

200. Pittorino, F. et al. Entropic gradient descent algorithms and wide flat minima. Journal of Statistical
Mechanics: Theory and Experiment 2021, 124015 (2021).

201. Freeman, C. D. & Bruna, J. Topology and Geometry of Deep Rectified Network Optimization

Landscapes. arXiv preprint arXiv:1611.01540 (2016).

202. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P. & Wilson, A. G. Loss surfaces, mode
connectivity, and fast ensembling of dnns in Advances in Neural Information Processing Systems
(2018), 8789–8798.

203. Draxler, F., Veschgini, K., Salmhofer, M. & Hamprecht, F. A. Essentially no barriers in neural

network energy landscape. arXiv preprint arXiv:1803.00885 (2018).

204. Baldassi, C. et al. Unreasonable effectiveness of learning neural networks: From accessible states

and robust ensembles to basic algorithmic schemes. Proceedings of the National Academy of Sciences
113, E7655–E7662 (2016).

205. Baldassi, C., Pittorino, F. & Zecchina, R. Shaping the learning landscape in neural networks around

wide flat minima. arXiv preprint arXiv:1905.07833 (2019).

299



206. Novak, R. et al. Bayesian deep convolutional networks with many channels are gaussian processes.

arXiv preprint arXiv:1810.05148 (2018).

207. Du, S. S. et al. How Many Samples are Needed to Estimate a Convolutional Neural Network? in

Advances in Neural Information Processing Systems (2018), 373–383.

208. Long, P. M. & Sedghi, H. Size-free generalization bounds for convolutional neural networks. arXiv
preprint arXiv:1905.12600 (2019).

209. Lee, J. & Raginsky, M. Learning finite-dimensional coding schemes with nonlinear reconstruction

maps. arXiv preprint arXiv:1812.09658 (2018).

210. Neyshabur, B. Towards learning convolutions from scratch. Advances in Neural Information
Processing Systems 33, 8078–8088 (2020).

211. Pellegrini, F. & Biroli, G. Sifting out the features by pruning: Are convolutional networks the

winning lottery ticket of fully connected ones? arXiv preprint arXiv:2104.13343 (2021).

212. Ingrosso, A. & Goldt, S. Data-driven emergence of convolutional structure in neural networks.

arXiv preprint arXiv:2202.00565 (2022).

213. Golatkar, A., Achille, A. & Soatto, S. Time Matters in Regularizing Deep Networks: Weight Decay

and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence. arXiv
preprint arXiv:1905.13277 (2019).

214. Jastrzebski, S. et al. Three Factors Influencing Minima in SGD. arXiv preprint arXiv:1711.04623
(2017).

215. Achille, A., Rovere, M. & Soatto, S. Critical learning periods in deep neural networks. arXiv preprint
arXiv:1711.08856 (2017).

216. Anandkumar, A., Deng, Y., Ge, R. & Mobahi, H. Homotopy analysis for tensor pca. arXiv preprint
arXiv:1610.09322 (2016).

217. Touvron, H. et al. Training data-efficient image transformers & distillation through attention.

arXiv preprint arXiv:2012.12877 (2020).

218. Mitchell, T. M. The need for biases in learning generalizations (Department of Computer Science,

Laboratory for Computer Science Research . . ., 1980).

219. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document

recognition. Proceedings of the IEEE 86, 2278–2324 (1998).

220. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural computation
1, 541–551 (1989).

221. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional

neural networks. Communications of the ACM 60, 84–90 (2017).

222. Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM

(1999).

223. Sundermeyer, M., Schlüter, R. & Ney, H. LSTM neural networks for language modeling in Thirteenth
annual conference of the international speech communication association (2012).

224. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. LSTM: A Search Space

Odyssey. IEEE Transactions on Neural Networks and Learning Systems 28. Conference Name: IEEE

Transactions on Neural Networks and Learning Systems, 2222–2232. issn: 2162-2388 (Oct. 2017).

300



225. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473 (2014).

226. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

227. Chen, Y., Kalantidis, Y., Li, J., Yan, S. & Feng, J. A2-Nets: Double Attention Networks. arXiv preprint
arXiv:1810.11579 (2018).

228. Bello, I., Zoph, B., Vaswani, A., Shlens, J. & Le, Q. V. Attention augmented convolutional networks
in Proceedings of the IEEE International Conference on Computer Vision (2019), 3286–3295.

229. Ramachandran, P. et al. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909
(2019).

230. Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks in Interna-
tional Conference on Machine Learning (2019), 6105–6114.

231. Wu, B. et al.Visual Transformers: Token-based Image Representation and Processing for Computer

Vision. arXiv:2006.03677 [cs, eess]. arXiv: 2006.03677. http://arxiv.org/abs/2006.03677
(2020) (July 2020).

232. Yuan, L. et al. Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet.

arXiv preprint arXiv:2101.11986 (2021).

233. Carion, N. et al. End-to-End Object Detection with Transformers. arXiv preprint arXiv:2005.12872
(2020).

234. Hu, H., Gu, J., Zhang, Z., Dai, J. & Wei, Y. Relation networks for object detection in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018), 3588–3597.

235. Chen, Y.-C. et al. Uniter: Universal image-text representation learning in European Conference on
Computer Vision (2020), 104–120.

236. Locatello, F. et al. Object-centric learning with slot attention. arXiv preprint arXiv:2006.15055
(2020).

237. Sun, C., Myers, A., Vondrick, C., Murphy, K. & Schmid, C. Videobert: A joint model for video and
language representation learning in Proceedings of the IEEE International Conference on Computer
Vision (2019), 7464–7473.

238. Srinivas, A. et al. Bottleneck Transformers for Visual Recognition. arXiv e-prints, arXiv:2101.11605.
arXiv: 2101.11605 [cs.CV] (Jan. 2021).

239. Elsayed, G., Ramachandran, P., Shlens, J. & Kornblith, S. Revisiting spatial invariance with low-rank
local connectivity in International Conference on Machine Learning (2020), 2868–2879.

240. Hu, J., Shen, L., Albanie, S., Sun, G. & Vedaldi, A. in Advances in Neural Information Processing
Systems 31 (eds Bengio, S. et al.) 9401–9411 (Curran Associates, Inc., 2018). (2020).

241. Hu, J., Shen, L. & Sun, G. Squeeze-and-Excitation Networks in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition ISSN: 2575-7075 (June 2018), 7132–7141.

242. Wang, X., Girshick, R., Gupta, A. & He, K. Non-local Neural Networks en. in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (IEEE, Salt Lake City, UT, USA, June 2018),

7794–7803. isbn: 978-1-5386-6420-9. https://ieeexplore.ieee.org/document/8578911/
(2020).

301

http://arxiv.org/abs/2006.03677
https://arxiv.org/abs/2101.11605
https://ieeexplore.ieee.org/document/8578911/


243. Cordonnier, J.-B., Loukas, A. & Jaggi, M. On the relationship between self-attention and convolu-

tional layers. arXiv preprint arXiv:1911.03584 (2019).

244. Xu, Y., Zhang, Q., Zhang, J. & Tao, D. Vitae: Vision transformer advanced by exploring intrinsic

inductive bias. Advances in Neural Information Processing Systems 34 (2021).

245. Zhang, Q., Xu, Y., Zhang, J. & Tao, D. ViTAEv2: Vision Transformer Advanced by Exploring

Inductive Bias for Image Recognition and Beyond. arXiv preprint arXiv:2202.10108 (2022).

246. Ye, D. et al. CSformer: Bridging Convolution and Transformer for Compressive Sensing. arXiv
preprint arXiv:2112.15299 (2021).

247. Yang, M. et al. Integrating convolution and self-attention improves language model of human

genome for interpreting non-coding regions at base-resolution. bioRxiv (2021).

248. Wu, H. et al. Cvt: Introducing convolutions to vision transformers in Proceedings of the IEEE/CVF
International Conference on Computer Vision (2021), 22–31.

249. Dai, Z., Liu, H., Le, Q. & Tan, M. Coatnet: Marrying convolution and attention for all data sizes.

Advances in Neural Information Processing Systems 34 (2021).

250. Li, Y., Zhang, K., Cao, J., Timofte, R. & VanGool, L. Localvit: Bringing locality to vision transformers.

arXiv preprint arXiv:2104.05707 (2021).

251. Yuan, K. et al. Incorporating convolution designs into visual transformers in Proceedings of the
IEEE/CVF International Conference on Computer Vision (2021), 579–588.

252. Pan, X. et al. On the Integration of Self-Attention and Convolution. arXiv preprint arXiv:2111.14556
(2021).

253. Wightman, R. PyTorch Image Models https://github.com/rwightman/pytorch-image-
models. 2019.

254. Sukhbaatar, S., Grave, E., Bojanowski, P. & Joulin, A. Adaptive attention span in transformers.

arXiv preprint arXiv:1905.07799 (2019).

255. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G. & Jégou, H. Going deeper with Image Trans-
formers 2021. arXiv: 2103.17239 [cs.CV].

256. Zhai, X., Oliver, A., Kolesnikov, A. & Beyer, L. S4l: Self-supervised semi-supervised learning in

Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), 1476–1485.

257. Abnar, S., Dehghani, M. & Zuidema, W. Transferring inductive biases through knowledge distilla-

tion. arXiv preprint arXiv:2006.00555 (2020).

258. Dong, Y., Cordonnier, J.-B. & Loukas, A. Attention is not all you need: Pure attention loses rank
doubly exponentially with depth in International Conference on Machine Learning (2021), 2793–2803.

259. Touvron, H. et al. ResMLP: Feedforward networks for image classification with data-efficient

training. arXiv preprint arXiv:2105.03404 (2021).

260. Bello, I. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint
arXiv:2102.08602 (2021).

261. Wang, S., Li, B., Khabsa, M., Fang, H. & Ma, H. L. Self-Attention with Linear Complexity. arXiv
preprint arXiv:2006.04768 (2020).

262. Choromanski, K. et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794
(2020).

302

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2103.17239


263. Katharopoulos, A., Vyas, A., Pappas, N. & Fleuret, F. Transformers are rnns: Fast autoregressive
transformers with linear attention in International Conference on Machine Learning (2020), 5156–

5165.

264. Zhang, J. et al.Why areAdaptiveMethods Good for AttentionModels? arXiv preprint arXiv:1912.03194
(2019).

265. Liu, L., Liu, X., Gao, J., Chen, W. & Han, J. Understanding the difficulty of training transformers.

arXiv preprint arXiv:2004.08249 (2020).

266. Jiang, Z. et al. Token Labeling: Training a 85.4% Top-1 Accuracy Vision Transformer with 56M
Parameters on ImageNet 2021. arXiv: 2104.10858 [cs.CV].

267. Graham, B. et al. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference. arXiv
preprint arXiv:2104.01136 (2021).

268. Chen, Z. et al. Visformer: The Vision-friendly Transformer 2021. arXiv: 2104.12533 [cs.CV].

269. Srinivas, A. et al. Bottleneck Transformers for Visual Recognition. arXiv e-prints, arXiv:2101.11605.
arXiv: 2101.11605 [cs.CV] (Jan. 2021).

270. Wen, W., Yan, F., Chen, Y. & Li, H. Autogrow: Automatic layer growing in deep convolutional
networks in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (2020), 833–841.

271. d’Ascoli, S. ConViT: improving Vision Transformers with Soft Convolutional Inductive Biases 2021.
arXiv: 2102.10882 [cs.CV].

272. Bello, I. et al. Revisiting ResNets: Improved Training and Scaling Strategies. arXiv preprint
arXiv:2103.07579 (2021).

273. Touvron, H., Vedaldi, A., Douze, M. & Jégou, H. Fixing the train-test resolution discrepancy. arXiv
preprint arXiv:1906.06423 (2019).

274. Bhojanapalli, S. et al. Understanding robustness of transformers for image classification. arXiv
preprint arXiv:2103.14586 (2021).

275. Mao, X. et al. Rethinking the Design Principles of Robust Vision Transformer. arXiv preprint
arXiv:2105.07926 (2021).

276. Mahmood, K., Mahmood, R. & Van Dijk, M. On the robustness of vision transformers to adversarial

examples. arXiv preprint arXiv:2104.02610 (2021).

277. Shao, R., Shi, Z., Yi, J., Chen, P.-Y. &Hsieh, C.-J. On the adversarial robustness of visual transformers.

arXiv preprint arXiv:2103.15670 (2021).

278. Hendrycks, D. &Dietterich, T. BenchmarkingNeural Network Robustness to CommonCorruptions

and Perturbations. Proceedings of the International Conference on Learning Representations (2019).

279. Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572 (2014).

280. Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards deep learning models resistant

to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

281. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J. & Song, D. Natural Adversarial Examples. CVPR
(2021).

303

https://arxiv.org/abs/2104.10858
https://arxiv.org/abs/2104.12533
https://arxiv.org/abs/2101.11605
https://arxiv.org/abs/2102.10882


282. Hendrycks, D. et al. The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution

Generalization. arXiv preprint arXiv:2006.16241 (2020).

283. Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J. & Gur-Ari, G. The large learning rate phase

of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218 (2020).

284. Caron, M. et al. Emerging properties in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294 (2021).

285. d’Ascoli, S., Sagun, L., Biroli, G. & Bruna, J. Finding the Needle in the Haystack with Convolutions:
on the benefits of architectural bias in Advances in Neural Information Processing Systems (2019),
9334–9345.

286. Liu, G.-H. & Theodorou, E. A. Deep learning theory review: An optimal control and dynamical

systems perspective. arXiv preprint arXiv:1908.10920 (2019).

287. Li, Q., Tai, C. &Weinan, E. Stochastic modified equations and adaptive stochastic gradient algorithms
in International Conference on Machine Learning (2017), 2101–2110.

288. Brea, J., Simsek, B., Illing, B. & Gerstner, W. Weight-space symmetry in deep networks gives rise

to permutation saddles, connected by equal-loss valleys across the loss landscape. arXiv preprint
arXiv:1907.02911 (2019).

289. Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G. & LeCun, Y. The loss surfaces of multilayer
networks in Artificial Intelligence and Statistics (2015), 192–204.

290. Ben Arous, G., Dembo, A. & Guionnet, A. Cugliandolo-Kurchan equations for dynamics of spin-

glasses. Probability theory and related fields 136, 619–660 (2006).

291. Dembo, A. & Subag, E. Dynamics for spherical spin glasses: disorder dependent initial conditions.

Journal of Statistical Physics 181, 465–514 (2020).

292. Arous, G. B., Gheissari, R. & Jagannath, A. Algorithmic thresholds for tensor PCA. The Annals of
Probability 48, 2052–2087 (2020).

293. Mannelli, S. S. & Zdeborová, L. Thresholds of descending algorithms in inference problems. Journal
of Statistical Mechanics: Theory and Experiment 2020, 034004 (2020).

294. Park, D., Sohl-Dickstein, J., Le, Q. & Smith, S. The effect of network width on stochastic gradient
descent and generalization: an empirical study in International Conference on Machine Learning
(2019), 5042–5051.

295. Smith, S. L., Kindermans, P.-J., Ying, C. & Le, Q. V. Don’t decay the learning rate, increase the

batch size. arXiv preprint arXiv:1711.00489 (2017).

296. Mignacco, F. & Urbani, P. The effective noise of Stochastic Gradient Descent. arXiv preprint
arXiv:2112.10852 (2021).

297. Cheng, X., Yin, D., Bartlett, P. & Jordan,M. Stochastic gradient and langevin processes in International
Conference on Machine Learning (2020), 1810–1819.

298. Mingard, C., Valle-Pérez, G., Skalse, J. & Louis, A. A. Is SGD a Bayesian sampler? Well, almost.

Journal of Machine Learning Research 22, 1–64 (2021).

299. Hu, W., Li, C. J., Li, L. & Liu, J.-G. On the diffusion approximation of nonconvex stochastic gradient

descent. arXiv preprint arXiv:1705.07562 (2017).

304



300. Moulines, E. & Bach, F. Non-asymptotic analysis of stochastic approximation algorithms for

machine learning. Advances in neural information processing systems 24, 451–459 (2011).

301. Xu, W. Towards optimal one pass large scale learning with averaged stochastic gradient descent.

arXiv preprint arXiv:1107.2490 (2011).

302. Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Physical review letters 35, 1792
(1975).

303. Mannelli, S. S. et al. Marvels and pitfalls of the langevin algorithm in noisy high-dimensional

inference. Physical Review X 10, 011057 (2020).

304. Cugliandolo, L. F. & Dean, D. S. Full dynamical solution for a spherical spin-glass model. Journal
of Physics A: Mathematical and General 28, 4213 (1995).

305. Barbier, D., Pimenta, P. H., Cugliandolo, L. F. & Stariolo, D. A. Finite size effects and loss of

self-averageness in the relaxational dynamics of the spherical Sherrington-Kirkpatrick model.

arXiv preprint arXiv:2103.12654 (2021).

306. Cugliandolo, L. F. & Kurchan, J. Analytical solution of the off-equilibrium dynamics of a long-range

spin-glass model. Physical Review Letters 71, 173 (1993).

307. Sarao Mannelli, S., Biroli, G., Cammarota, C., Krzakala, F. & Zdeborová, L. Who is afraid of big bad

minima? analysis of gradient-flow in spiked matrix-tensor models. Advances in Neural Information
Processing Systems 32, 8679–8689 (2019).

308. Ben Arous, G., Mei, S., Montanari, A. & Nica, M. The landscape of the spiked tensor model.

Communications on Pure and Applied Mathematics 72, 2282–2330 (2019).

309. Ros, V., Ben Arous, G., Biroli, G. & Cammarota, C. Complex energy landscapes in spiked-tensor

and simple glassy models: Ruggedness, arrangements of local minima, and phase transitions.

Physical Review X 9, 011003 (2019).

310. Bottou, L. Stochastic learning in Summer School on Machine Learning (2003), 146–168.

311. You, K., Long, M., Wang, J. & Jordan, M. I. How does learning rate decay help modern neural

networks? arXiv preprint arXiv:1908.01878 (2019).

312. Li, Y., Wei, C. & Ma, T. Towards explaining the regularization effect of initial large learning rate in
training neural networks in Advances in Neural Information Processing Systems (2019), 11674–11685.

313. Ge, R., Kakade, S. M., Kidambi, R. & Netrapalli, P. The step decay schedule: A near optimal,

geometrically decaying learning rate procedure for least squares. arXiv preprint arXiv:1904.12838
(2019).

314. Loshchilov, I. & Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016).

315. Smith, L. N. Cyclical learning rates for training neural networks in 2017 IEEE winter conference on
applications of computer vision (WACV) (2017), 464–472.

316. Lewkowycz, A. How to decay your learning rate. arXiv preprint arXiv:2103.12682 (2021).

317. Goyal, P. et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

318. Gilmer, J. et al. A Loss Curvature Perspective on Training Instability in Deep Learning. arXiv
preprint arXiv:2110.04369 (2021).

305



319. Gotmare, A., Keskar, N. S., Xiong, C. & Socher, R. A closer look at deep learning heuristics:

Learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243 (2018).

320. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

321. Zeiler, M. D. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012).

322. Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic

optimization. Journal of machine learning research 12 (2011).

323. Keskar, N. S. & Socher, R. Improving generalization performance by switching from adam to sgd.

arXiv preprint arXiv:1712.07628 (2017).

324. Chen, J. et al. Closing the generalization gap of adaptive gradient methods in training deep neural

networks. arXiv preprint arXiv:1806.06763 (2018).

325. Wilson, A. C., Roelofs, R., Stern, M., Srebro, N. & Recht, B. The marginal value of adaptive gradient

methods in machine learning. arXiv preprint arXiv:1705.08292 (2017).

326. Wigner, E. P. On the distribution of the roots of certain symmetric matrices. Annals of Mathematics,
325–327 (1958).

327. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials.

Reviews of modern physics 83, 587 (2011).

328. Auffinger, A., Ben Arous, G. & Černy, J. Random matrices and complexity of spin glasses. Com-
munications on Pure and Applied Mathematics 66, 165–201 (2013).

329. Crisanti, A. & Sommers, H.-J. The spherical p-spin interaction spin glass model: the statics.

Zeitschrift für Physik B Condensed Matter 87, 341–354 (1992).

330. Castellani, T. & Cavagna, A. Spin-glass theory for pedestrians. Journal of Statistical Mechanics:
Theory and Experiment 2005, P05012 (2005).

331. Thalmann, F. Geometrical approach for the mean-field dynamics of a particle in a short range

correlated random potential. The European Physical Journal B-Condensed Matter and Complex
Systems 19, 49–63 (2001).

332. Bray, A. J. Theory of phase-ordering kinetics. Advances in Physics 51, 481–587 (2002).

333. Bouchaud, J.-P., Cugliandolo, L. F., Kurchan, J. & Mezard, M. Out of equilibrium dynamics in

spin-glasses and other glassy systems. Spin glasses and random fields 12, 161 (1998).

334. Biroli, G. A crash course on ageing. Journal of Statistical Mechanics: Theory and Experiment 2005,
P05014 (2005).

335. Baik, J., Ben Arous, G., Péché, S., et al. Phase transition of the largest eigenvalue for nonnull

complex sample covariance matrices. The Annals of Probability 33, 1643–1697 (2005).

336. Tracy, C. A. & Widom, H. On orthogonal and symplectic matrix ensembles. Communications in
Mathematical Physics 177, 727–754 (1996).

337. Ben Arous, G., Gheissari, R. & Jagannath, A. A classification for the performance of online SGD

for high-dimensional inference. arXiv:2003.10409 (2020).

338. Power, A., Burda, Y., Edwards, H., Babuschkin, I. & Misra, V. Grokking: Generalization beyond
overfitting on small algorithmic datasets in ICLR MATH-AI Workshop (2021).

306



339. Agoritsas, E., Biroli, G., Urbani, P. & Zamponi, F. Out-of-equilibrium dynamical mean-field equa-

tions for the perceptron model. Journal of Physics A: Mathematical and Theoretical 51, 085002
(2018).

340. Mignacco, F., Krzakala, F., Urbani, P. & Zdeborová, L. Dynamical mean-field theory for stochastic

gradient descent in Gaussian mixture classification. arXiv preprint arXiv:2006.06098 (2020).

341. Celentano, M., Cheng, C. &Montanari, A. The high-dimensional asymptotics of first order methods

with random data. arXiv preprint arXiv:2112.07572 (2021).

342. Goldt, S., Advani, M. S., Saxe, A. M., Krzakala, F. & Zdeborová, L. Dynamics of stochastic gra-

dient descent for two-layer neural networks in the teacher–student setup. Journal of Statistical
Mechanics: Theory and Experiment 2020, 124010 (2020).

343. Refinetti, M., D’Ascoli, S., Ohana, R. & Goldt, S. Align, then memorise: the dynamics of learning
with feedback alignment in Proceedings of the 38th International Conference on Machine Learning
(eds Meila, M. & Zhang, T.) 139 (PMLR, 2021), 8925–8935. http://proceedings.mlr.press/
v139/refinetti21a.html.

344. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating

errors. Nature 323, 533–536 (1986).

345. Grossberg, S. Competitive learning: From interactive activation to adaptive resonance. Cognitive
science 11, 23–63 (1987).

346. Crick, F. The recent excitement about neural networks. Nature 337, 129–132 (1989).

347. Lillicrap, T., Cownden, D., Tweed, D. & Akerman, C. Random synaptic feedback weights support

error backpropagation for deep learning. Nature Communications 7, 1–10 (2016).

348. Nøkland, A. Direct Feedback Alignment Provides Learning in Deep Neural Networks in Advances in
Neural Information Processing Systems 29 (2016).

349. Gilmer, J., Raffel, C., Schoenholz, S. S., Raghu, M. & Sohl-Dickstein, J. Explaining the learning
dynamics of direct feedback alignment in ICLR workshop track (2017).

350. Bartunov, S. et al. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures in Advances in Neural Information Processing Systems (2018), 9368–9378.

351. Launay, J., Poli, I., Boniface, F. & Krzakala, F. Direct Feedback Alignment Scales to Modern Deep
Learning Tasks and Architectures in Advances in neural information processing systems (2020).

352. Moskovitz, T. H., Litwin-Kumar, A. & Abbott, L. Feedback alignment in deep convolutional

networks. arXiv preprint arXiv:1812.06488 (2018).

353. Launay, J., Poli, I. & Krzakala, F. Principled Training of Neural Networks with Direct Feedback

Alignment. arXiv:1906.04554 (2019).

354. Han, D. & Yoo, H.-j. Direct Feedback Alignment Based Convolutional Neural Network Training
for Low-Power Online Learning Processor in Proceedings of the IEEE International Conference on
Computer Vision Workshops (2019).

355. Saad, D. & Solla, S. Exact Solution for On-Line Learning in Multilayer Neural Networks. Phys. Rev.
Lett. 74, 4337–4340 (1995).

356. Saad, D. & Solla, S. On-line learning in soft committee machines. Phys. Rev. E 52, 4225–4243 (1995).

307

http://proceedings.mlr.press/v139/refinetti21a.html
http://proceedings.mlr.press/v139/refinetti21a.html


357. Biehl, M. & Schwarze, H. Learning by on-line gradient descent. J. Phys. A. Math. Gen. 28, 643–656
(1995).

358. Frenkel, C., Lefebvre, M. & Bol, D. Learning without feedback: Direct random target projection as a
feedback-alignment algorithm with layerwise feedforward training 2019. arXiv: 1909.01311.

359. Gardner, E. & Derrida, B. Three unfinished works on the optimal storage capacity of networks.

Journal of Physics A: Mathematical and General 22, 1983–1994 (1989).

360. Seung, H. S., Sompolinsky, H. & Tishby, N. Statistical mechanics of learning from examples.

Physical Review A 45, 6056–6091 (1992).

361. Watkin, T., Rau, A. & Biehl, M. The statistical mechanics of learning a rule. Reviews of Modern
Physics 65, 499–556 (1993).

362. Zdeborová, L. & Krzakala, F. Statistical physics of inference: thresholds and algorithms. Adv. Phys.
65, 453–552 (2016).

363. Zhong, K., Song, Z., Jain, P., Bartlett, P. & Dhillon, I. Recovery guarantees for one-hidden-layer
neural networks in Proceedings of the 34th International Conference on Machine Learning-Volume 70
(2017), 4140–4149.

364. Advani, M. S., Saxe, A. M. & Sompolinsky, H. High-dimensional dynamics of generalization error

in neural networks. Neural Networks 132, 428–446 (2020).

365. Tian, Y. An Analytical Formula of Population Gradient for Two-Layered ReLU Network and Its
Applications in Convergence and Critical Point Analysis in Proceedings of the 34th International
Conference on Machine Learning (ICML) (2017), 3404–3413.

366. Du, S., Lee, J., Tian, Y., Singh, A. & Poczos, B. Gradient Descent Learns One-hidden-layer CNN:
Don’t be Afraid of Spurious Local Minima in Proceedings of the 35th International Conference on
Machine Learning 80 (2018), 1339–1348.

367. Aubin, B. et al. The committee machine: Computational to statistical gaps in learning a two-layers
neural network in Advances in Neural Information Processing Systems 31 (2018), 3227–3238.

368. Saxe, A. et al. On the information bottleneck theory of deep learning in ICLR (2018).

369. Baity-Jesi, M. et al. Comparing Dynamics: Deep Neural Networks versus Glassy Systems in Proceed-
ings of the 35th International Conference on Machine Learning (2018).

370. Goldt, S., Advani, M., Saxe, A., Krzakala, F. & Zdeborová, L. Dynamics of stochastic gradient
descent for two-layer neural networks in the teacher-student setup in Advances in Neural Information
Processing Systems 32 (2019).

371. Ghorbani, B., Mei, S., Misiakiewicz, T. & Montanari, A. Limitations of Lazy Training of Two-layers
Neural Network in Advances in Neural Information Processing Systems 32 (2019), 9111–9121.

372. Yoshida, Y. & Okada, M. Data-Dependence of Plateau Phenomenon in Learning with Neural Network
— Statistical Mechanical Analysis in Advances in Neural Information Processing Systems 32 (2019),
1720–1728.

373. Bahri, Y. et al. Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics
11, 501–528 (2020).

374. Gabrié, M. Mean-field inference methods for neural networks. Journal of Physics A: Mathematical
and Theoretical 53, 223002 (2020).

308

https://arxiv.org/abs/1909.01311


375. Kinzel, W. & Ruján, P. Improving a Network Generalization Ability by Selecting Examples. EPL
(Europhysics Letters) 13, 473–477 (1990).

376. Saad, D. On-line learning in neural networks (Cambridge University Press, 2009).

377. Brutzkus, A. & Globerson, A. Globally Optimal Gradient Descent for a ConvNet with Gaussian
Inputs in Proceedings of the 34th International Conference on Machine Learning - Volume 70 (2017),
605–614.

378. Mei, S., Montanari, A. & Nguyen, P. A mean field view of the landscape of two-layer neural

networks. Proceedings of the National Academy of Sciences 115, E7665–E7671 (2018).

379. Rotskoff, G. & Vanden-Eijnden, E. Parameters as interacting particles: long time convergence and
asymptotic error scaling of neural networks in Advances in Neural Information Processing Systems
31 (2018), 7146–7155.

380. Chizat, L. & Bach, F. On the Global Convergence of Gradient Descent for Over-parameterized Models
using Optimal Transport in Advances in Neural Information Processing Systems 31 (2018), 3040–3050.

381. Sirignano, J. & Spiliopoulos, K. Mean field analysis of neural networks: A central limit theorem.

Stochastic Processes and their Applications (2019).

382. Liao, Q., Leibo, J. Z. & Poggio, T. How important is weight symmetry in backpropagation? in

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016), 1837–1844.

383. Baldi, P. & Hornik, K. Neural networks and principal component analysis: Learning from examples

without local minima. Neural networks 2, 53–58 (1989).

384. Saxe, A., McClelland, J. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks in International Conference on Learning Representations (ICLR) (2014).

385. Ji, Z. & Telgarsky, M. Gradient descent aligns the layers of deep linear networks in International
Conference on Learning Representations (ICLR) (2019).

386. Crafton, B., Parihar, A., Gebhardt, E. & Raychowdhury, A. Direct feedback alignment with sparse

connections for local learning. Frontiers in neuroscience 13, 525 (2019).

387. Saxton, D., Grefenstette, E., Hill, F. & Kohli, P. Analysing mathematical reasoning abilities of

neural models. arXiv preprint arXiv:1904.01557 (2019).

388. Cobbe, K. et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168
(2021).

389. Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature (2021).

390. Lample, G. & Charton, F. Deep learning for symbolic mathematics. arXiv preprint arXiv:1912.01412
(2019).

391. Allamanis, M., Chanthirasegaran, P., Kohli, P. & Sutton, C. Learning continuous semantic repre-
sentations of symbolic expressions in International Conference on Machine Learning (2017), 80–

88.

392. Arabshahi, F., Singh, S. & Anandkumar, A. Towards solving differential equations through neural
programming in ICML Workshop on Neural Abstract Machines and Program Induction (NAMPI)
(2018).

393. Charton, F., Hayat, A. & Lample, G. Learning advanced mathematical computations from examples.

arXiv preprint arXiv:2006.06462 (2020).

309



394. Kaiser, Ł. & Sutskever, I. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228 (2015).

395. Trask, A. et al. Neural arithmetic logic units. arXiv preprint arXiv:1808.00508 (2018).

396. Charton, F. Linear algebra with transformers. arXiv preprint arXiv:2112.01898 (2021).

397. Augusto, D. A. & Barbosa, H. J. Symbolic regression via genetic programming in Proceedings. Vol. 1.
Sixth Brazilian Symposium on Neural Networks (2000), 173–178.

398. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. science 324,
81–85 (2009).

399. Murari, A. et al. Symbolic regression via genetic programming for data driven derivation of

confinement scaling laws without any assumption on their mathematical form. Plasma Physics
and Controlled Fusion 57, 014008 (2014).

400. McKay, B., Willis, M. J. & Barton, G. W. Using a tree structured genetic algorithm to perform symbolic
regression in First international conference on genetic algorithms in engineering systems: innovations
and applications (1995), 487–492.

401. Sahoo, S., Lampert, C. &Martius, G. Learning equations for extrapolation and control in International
Conference on Machine Learning (2018), 4442–4450.

402. Kim, S. et al. Integration of neural network-based symbolic regression in deep learning for scientific

discovery. IEEE Transactions on Neural Networks and Learning Systems (2020).

403. Petersen, B. K. et al. Deep symbolic regression: Recovering mathematical expressions from data

via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871 (2019).

404. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A. & Parascandolo, G. Neural Symbolic Regression that

Scales. arXiv preprint arXiv:2106.06427 (2021).

405. Valipour, M., You, B., Panju, M. & Ghodsi, A. SymbolicGPT: A Generative Transformer Model for

Symbolic Regression. arXiv preprint arXiv:2106.14131 (2021).

406. Sloane, N. J. in Towards mechanized mathematical assistants 130–130 (Springer, 2007).

407. Wu, C. W. Can machine learning identify interesting mathematics? An exploration using empiri-

cally observed laws. arXiv preprint arXiv:1805.07431 (2018).

408. Ryskina,M. &Knight, K. LearningMathematical Properties of Integers. arXiv preprint arXiv:2109.07230
(2021).

409. Ragni, M. & Klein, A. Predicting Numbers: An AI Approach to Solving Number Series in KI 2011:
Advances in Artificial Intelligence (eds Bach, J. & Edelkamp, S.) (Springer Berlin Heidelberg, 2011),

255–259.

410. Nam, H., Kim, S. & Jung, K. Number Sequence Prediction Problems for Evaluating Computational
Powers of Neural Networks 2018. arXiv: 1805.07494 [cs.NE].

411. Van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine Learning
Research 9, 2579–2605 (2008).

412. Brückner, D. B., Ronceray, P. & Broedersz, C. P. Inferring the dynamics of underdamped stochastic

systems. Physical review letters 125, 058103 (2020).

413. Udrescu, S.-M. & Tegmark, M. AI Feynman: a Physics-Inspired Method for Symbolic Regression 2020.

arXiv: 1905.11481 [physics.comp-ph].

310

https://arxiv.org/abs/1805.07494
https://arxiv.org/abs/1905.11481


414. Cranmer, M. et al. Discovering Symbolic Models from Deep Learning with Inductive Biases. ArXiv
abs/2006.11287 (2020).

415. Garnelo, M., Arulkumaran, K. & Shanahan, M. Towards deep symbolic reinforcement learning.

arXiv preprint arXiv:1609.05518 (2016).

416. Landajuela, M. et al. Discovering symbolic policies with deep reinforcement learning in International
Conference on Machine Learning (2021), 5979–5989.

417. La Cava, W. et al. Contemporary symbolic regression methods and their relative performance.

arXiv preprint arXiv:2107.14351 (2021).

418. Aréchiga, N. et al.Accelerating Understanding of Scientific Experiments with End to End Symbolic

Regression. ArXiv abs/2112.04023 (2021).

419. Udrescu, S.-M. & Tegmark, M. Symbolic Pregression: Discovering Physical Laws from Raw

Distorted Video. Physical review. E 103 4-1, 043307 (2021).

420. Butter, A., Plehn, T., Soybelman, N. & Brehmer, J. Back to the Formula – LHC Edition in (2021).

421. Schmidt, M. & Lipson, H. in Genetic programming theory and practice VIII 129–146 (Springer,

2011).

422. La Cava, W., Singh, T. R., Taggart, J., Suri, S. & Moore, J. H. Learning concise representations for

regression by evolving networks of trees. arXiv preprint arXiv:1807.00981 (2018).

423. McConaghy, T. in Genetic Programming Theory and Practice IX 235–260 (Springer, 2011).

424. Virgolin, M., Alderliesten, T., Witteveen, C. & Bosman, P. A. Improving model-based genetic

programming for symbolic regression of small expressions. Evolutionary computation 29, 211–237
(2021).

425. De França, F. O. & Aldeia, G. S. I. Interaction–Transformation Evolutionary Algorithm for Symbolic

Regression. Evolutionary computation 29, 367–390 (2021).

426. Arnaldo, I., Krawiec, K. & O’Reilly, U.-M. Multiple regression genetic programming in Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation (2014), 879–886.

427. Virgolin,M., Alderliesten, T. & Bosman, P. A. N. Linear Scalingwith andwithin Semantic Backpropagation-
Based Genetic Programming for Symbolic Regression in Proceedings of the Genetic and Evolutionary
Computation Conference (Association for Computing Machinery, Prague, Czech Republic, 2019),

1084–1092. isbn: 9781450361118. https://doi.org/10.1145/3321707.3321758.

428. Kommenda, M., Burlacu, B., Kronberger, G. & Affenzeller, M. Parameter identification for symbolic

regression using nonlinear least squares. Genetic Programming and Evolvable Machines 21, 471–
501. https://doi.org/10.1007/s10710-019-09371-3 (2020).

429. Martius, G. & Lampert, C. H. Extrapolation and learning equations. arXiv preprint arXiv:1610.02995
(2016).

430. Hahn, C., Schmitt, F., Kreber, J. U., Rabe, M. N. & Finkbeiner, B. Teaching temporal logics to neural

networks. arXiv preprint arXiv:2003.04218 (2020).

431. Polu, S. & Sutskever, I. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393 (2020).

432. Guimerà, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific

problems. Science advances 6, eaav6971 (2020).

311

https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1007/s10710-019-09371-3


433. Kidger, P. SympyTorch https://github.com/patrick-kidger/sympytorch. 2021.

434. Horace He, R. Z. functorch: JAX-like composable function transforms for PyTorch https://github.
com/pytorch/functorch. 2021.

435. Wiseman, S. & Rush, A. M. Sequence-to-Sequence Learning as Beam-Search Optimization 2016.

https://arxiv.org/abs/1606.02960.

436. d’Ascoli, S., Kamienny, P.-A., Lample, G. & Charton, F. Deep Symbolic Regression for Recurrent

Sequences. arXiv preprint arXiv:2201.04600 (2022).

437. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of statistics,
1189–1232 (2001).

438. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering (Westview Press, 2000).

439. Zdeborová, L. Understanding deep learning is also a job for physicists. Nature Physics 16, 602–604
(2020).

440. Chung, S., Lee, D. D. & Sompolinsky, H. Classification and geometry of general perceptual

manifolds. Physical Review X 8, 031003 (2018).

441. Pastore, M., Rotondo, P., Erba, V. & Gherardi, M. Statistical learning theory of structured data.

Physical Review E 102, 032119 (2020).

442. Seddik, M. E. A., Louart, C., Tamaazousti, M. & Couillet, R. Random matrix theory proves that deep
learning representations of gan-data behave as gaussian mixtures in International Conference on
Machine Learning (2020), 8573–8582.

443. Gur-Ari, G., Roberts, D. A. & Dyer, E. Gradient descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754 (2018).

444. Gurbuzbalaban, M., Simsekli, U. & Zhu, L. The heavy-tail phenomenon in SGD in International
Conference on Machine Learning (2021), 3964–3975.

445. Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur, B. & Srebro, N. Implicit Regularization
in Matrix Factorization in Advances in Neural Information Processing Systems 30 (2017), 6151–6159.

446. He, F., Liu, T. & Tao, D. Control batch size and learning rate to generalize well: Theoretical and

empirical evidence. Advances in Neural Information Processing Systems 32 (2019).

447. Mei, S., Montanari, A. & Nguyen, P.-M. A mean field view of the landscape of two-layer neural

networks. Proceedings of the National Academy of Sciences 115, E7665–E7671 (2018).

448. Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning

in deep linear neural networks. International Conference on Learning Representations (2014).

449. Li, Q. & Sompolinsky, H. Statistical mechanics of deep linear neural networks: The backpropagating

kernel renormalization. Physical Review X 11, 031059 (2021).

450. Wiatowski, T. & Bölcskei, H. A mathematical theory of deep convolutional neural networks for

feature extraction. IEEE Transactions on Information Theory 64, 1845–1866 (2017).

451. Nguyen, H.-T., Li, S. & Cheah, C. C. A Layer-Wise Theoretical Framework for Deep Learning of

Convolutional Neural Networks. IEEE Access 10, 14270–14287 (2022).

452. Liu, H., Dai, Z., So, D. & Le, Q. V. Pay attention to mlps. Advances in Neural Information Processing
Systems 34, 9204–9215 (2021).

312

https://github.com/patrick-kidger/sympytorch
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch
https://arxiv.org/abs/1606.02960


453. Jacot, A., Gabriel, F. & Hongler, C. Neural Tangent Kernel: Convergence and Generalization in
Neural Networks in Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.)
(Curran Associates, Inc., 2018), 8571–8580.

454. Yang, G. et al. Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer. Advances
in Neural Information Processing Systems 34 (2021).

455. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589
(2021).

456. Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning.

Nature 602, 414–419 (2022).

457. Schoenholz, S. S., Gilmer, J., Ganguli, S. & Sohl-Dickstein, J. Deep information propagation. arXiv
preprint arXiv:1611.01232 (2016).

458. Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning

in deep linear neural networks. International Conference on Learning Representations (2014).

459. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. International Conference on
Learning Representations (2015).

460. Brito, C., Ikeda, H., Urbani, P., Wyart, M. & Zamponi, F. Universality of jamming of non-spherical

particles. arXiv preprint arXiv:1807.01975 (2018).

461. Geiger, M. et al. Jamming transition as a paradigm to understand the loss landscape of deep neural

networks. Physical Review E 100, 012115 (2019).

462. Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K. & Dollár, P. Designing network design spaces
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020),

10428–10436.

463. Zhao, S. et al. SplitNet: Divide and Co-training. arXiv preprint arXiv:2011.14660 (2020).

464. He, T. et al. Bag of tricks for image classification with convolutional neural networks in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), 558–567.

465. Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ Computer Science 3, e103 (2017).

466. Paccanaro, A. & Hinton, G. E. Learning distributed representations of concepts using linear

relational embedding. IEEE Transactions on Knowledge and Data Engineering 13, 232–244 (2001).

467. Jin, Y., Fu, W., Kang, J., Guo, J. & Guo, J. Bayesian Symbolic Regression 2020. arXiv: 1910.08892
[stat.ME].

468. Mundhenk, T. N. et al. Symbolic Regression via Neural-Guided Genetic Programming Population
Seeding 2021. arXiv: 2111.00053 [cs.NE].

313

https://arxiv.org/abs/1910.08892
https://arxiv.org/abs/1910.08892
https://arxiv.org/abs/2111.00053


MOTS CLÉS

Réseaux de neurones, physique statistique, méthode des répliques, sur-paramétrisation, biais inductifs, con-
volution, attention, dynamique, paysages énergétiques, régression symbolique.

RÉSUMÉ

L’intelligence artificielle, devenue l’un des enjeux technologiques majeurs de notre siècle, est actuellement dominée par
les réseaux de neurones artificiels. Si ces derniers ont déjà permis des avancées majeures, leur fonctionnement reste
mal compris sur le plan théorique.
L’objectif principal de cette thèse est de réduire l’écart entre théorie en pratique, en s’aidant d’outils développés dans la
littérature de physique statistique. Nous nous intéresserons à trois questions centrales: (i) l’effet de la sur-paramétrisation
sur la généralisation, (ii) les biais inductifs découlant des choix architecturaux et (iii) la dynamique de l’apprentissage.
En guise d’ouverture, nous présentons une nouvelle application du deep learning dans le domaine de la régression
symbolique, qui consiste à prédire l’expression mathematique d’une fonction à partir de ses valeurs.

ABSTRACT

Deep learning has become the cornerstone of artificial intelligence, and has fueled breakthroughs in a number of fields.
Yet, the key reasons underpinning the success of deep neural networks remain to be clarified.
The main objective of this thesis is to bridge the gap between theory and practice, armed with the toolbox of statistical
physics. We focus on three central questions: (i) the benefit of over-parametrization on generalization, (ii) the inductive
bias which stems from their architectural choices and (iii) the dynamics of learning.
As an opening, we introduce a novel application of deep learning to the task of symbolic regression, i.e. predicting the
expression of a mathematical function from its values.

KEYWORDS

Neural networks, statistical physics, replica method, overparametrization, inductive biases, convolutional net-
works, attention networks, dynamics, loss landscapes, symbolic regression.


	Foreword
	Avant-propos
	Introduction
	A brief history of AI
	The birth of AI
	Connectionnist and symbolic AI
	AI winters
	The emergence of deep learning

	Basics of machine learning
	Training
	Generalization
	Hyperparameters

	Deep learning
	The perceptron
	Neural networks
	Deep learning architectures

	My contribution in a nutshell
	Overparametrization
	Architectural bias
	Optimization
	Symbolic mathematics


	I A Theory of Overparametrization
	From the Jamming Transition to the Double Descent Curve
	Introduction
	Contributions
	Related work

	A warm-up with toy models
	Polynomial regression
	Least-squares regression

	The interpolation threshold of deep neural networks
	Set-up
	Constraints on the stability of minima
	Numerical validation

	The double descent curve
	Generalization at and beyond the interpolation threshold
	Effect of ensembling

	Conclusion

	Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime
	Introduction
	Contributions
	Related work

	Analytical results
	Setup
	Decomposition of the test error
	Main result

	Bias-variance decomposition
	Expression of bias and variances
	Impact of ensembling
	Is ensembling optimal?

	Conclusion

	Triple Descent and the Two Kinds of Overfitting: When and Why do they Occur?
	Introduction
	Contribution
	Related work

	Triple descent in the test error phase space
	Random features regression (RF model)
	Teacher-student regression with neural networks (NN model)
	Test error phase space

	Theory for the RF model
	High-dimensional setup
	Spectral analysis
	Bias-variance decomposition

	Phenomenology of triple descent
	The nonlinearity determines the relative height of the peaks
	Ensembling and regularization only affects the nonlinear peak
	The nonlinear peak forms later during training

	Conclusion

	On the Interplay between Loss Function and Data Structure
	Introduction
	Contribution
	Related work

	A solvable model of data structure
	Setup
	Main result

	Effect of data structure and loss function on double descent
	Synthetic data
	Realistic data

	Conclusion


	II From Architectural Constraints to Inductive Biases
	Finding the Needle in the Haystack: When do Convolutional Constraints help?
	Introduction
	Contribution
	Related Work

	Methods
	CNN to FCN embedding
	Experimental details

	Results
	Performance and training dynamics of eFCNs
	A closer look at the landscape
	How far does the eFCN escape from the CNN subspace?
	What role do the extra degrees of freedom play in learning?

	Conclusion

	Improving Vision Transformers with Soft Convolutional Inductive Biases
	Introduction
	Contribution
	Related work

	Methods
	A crash course on self-attention
	Our approach
	Experimental details

	Results
	Performance of the ConViT
	Sample efficiency of the ConViT
	Investigating the role of locality

	Conclusion

	Transformed CNNs: Recasting Pre-trained Convolutional Networks as Transformers
	Introduction
	Contributions
	Related work

	Methods
	Performance of the Transformed CNNs
	Training details
	Performance improvements
	Robustness improvements

	Dissecting the Transformed CNNs
	Representations learnt
	When should one start learning the self-attention layers?

	Conclusion


	III Understanding Learning Dynamics
	Optimal Learning Rate Schedules in Non-Convex Optimization
	Introduction
	Contributions
	Related work

	The speed-noise trade-off in a simple convex problem
	Optimal decay rates in random landscapes
	Sherrington-Kirkpatrick model
	The p-spin model
	Relation with annealing in physics

	Recovering a signal: the two phases of learning
	Spiked Sherrington-Kirkpatrick model
	Spiked Matrix-Tensor model

	Turning to SGD: teacher-student regression
	Conclusion

	Align, then Memorise: the Dynamics of Learning with Feedback Alignment
	Introduction
	Contributions
	Related work

	A two-phase learning process
	Sigmoidal networks learn through ``degeneracy breaking''
	Degeneracy breaking requires over-parametrisation for ReLU networks
	Degeneracy breaking in deep networks

	How do gradients align in deep networks?
	Weight alignment as a natural structure
	Weight alignment leads to gradient alignment

	The case of deep nonlinear networks
	Weight Alignment occurs like in the linear setup
	Align-then-Memorise occurs from bottom layers to top

	What can hamper alignment?
	Alignment is data-dependent
	Alignment is impossible for convolutional layers

	Conclusion


	IV Deep learning for Symbolic Regression
	Deep Symbolic Regression for Recurrent Sequences
	Introduction
	Contributions
	Related work

	Methods
	Data generation
	Encodings
	Experimental details

	In-domain generalization
	Out-of-domain generalization
	Integer sequences: OEIS dataset
	Float sequences: robustness to out-of-vocabulary tokens

	Conclusion

	End-to-end Symbolic Regression with Transformers
	Introduction
	Contributions
	Related work

	Data generation
	Generating functions
	Generating inputs
	Tokenization

	Methods
	Model
	Inference tricks

	Results
	In-domain performance
	Out-of-domain generalization

	Conclusion

	Afterword

	V Appendices
	From the Jamming Transition to the Double Descent Curve
	Network properties
	Effective number of degrees of freedom
	sp(Hp) is symmetric for ReLu activation functions and random data
	Degenerate situations
	Density of pre-activations for ReLU activation functions

	Parameters used in simulations
	Random data
	Real data

	Hessian

	Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime
	Statement of the Main Result
	Assumptions
	Results
	Explicit expression of the actions
	Explicit expression of the auxiliary terms

	Replica Computation
	Toolkit
	The Random Feature model
	Computation of the vanilla terms
	Computation of the ensembling terms
	Computation of the bagging term


	Triple Descent and the Two Kinds of Overfitting: When and Why do they Occur?
	Effect of signal-to-noise ratio and nonlinearity
	RF model
	NN model

	Origin of the linear peak
	Structured datasets
	RF model: data structure does not matter in the lazy regime
	NN model: the effect of feature learning


	On the interplay between Loss Function and Data Structure
	Phase spaces
	Analytical derivations
	Outline
	The anisotropic Gaussian Equivalence Theorem
	Gibbs formulation of the problem
	Some random matix theory for block matrices
	Obtaining the saddle-point equations
	Training loss


	Finding the Needle in the Haystack: When do Convolutional Constraints help?
	Visualizing the embedding
	Results with AlexNet on CIFAR-100
	Interpolating between CNNs and eFCNs

	Improving Vision Transformers with Soft Convolutional Inductive Biases
	The importance of positional gating
	The effect of distillation
	Further performance results
	Effect of model size
	Attention maps
	Further ablations

	Transformed CNNs: Recasting Pre-trained Convolutional Networks as Transformers
	Performance table
	Changing the learning rate
	Changing the test resolution
	Changing the number of epochs
	Changing the architecture

	Align, then Memorise: the Dynamics of Learning with Feedback Alignment
	Derivation of the ODE
	Detailed analysis of DFA dynamics
	Derivation of weight alignment
	Impact of data structure
	Details about the experiments
	Direct Feedback Alignment implementation
	Experiments on realistic datasets
	Experiment on the structure of targets


	Optimal Learning Rate Schedules in Non-Convex Optimization
	Dynamics of the convex model
	Dynamics of the Sherrington-Kirkpatrick model
	Unplanted model
	Planted model

	Dynamics of the p-spin model
	Rescaling the temperature
	Application to the p-spin model

	Dynamics of the Spiked Matrix-Tensor model
	Derivation of the PDE equations
	Derivation of the Ground-state Loss
	Additional results on the optimal learning rate schedule in the SMT model
	Separation of time scales and matching solution

	Additional results for the Teacher-Student Regression Task

	Deep Symbolic Regression for Recurrent Sequences
	Robustness to noise
	The effect of expression simplification
	Does memorization occur?
	The issue of finite precision
	Structure of the embeddings
	Visualizations

	End-to-end Symbolic Regression with Transformers
	Details on the training data
	Attention maps
	Does memorization occur?
	Additional in-domain results
	Additional out-of-domain results



