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INTRODUCTION

Fundamental groups of algebraic varieties have been extensively studied. In this memoir, our main focus
lies on the following problem: how do representations of the fundamental group of a complex quasi-projective
variety into general linear groups over fields of arbitrary characteristic influence the algebro-geometric properties
of the variety? This topic leads to a fascinating interplay between non-abelian Hodge theories, harmonic maps,
hyperbolicity, Nevanlinna theory, and the Shafarevich conjecture. We will organize the main results in this memoir
from various perspectives, exploring their implications and connections.

In Chapter 1, we develop some tools in non-abelian Hodge theories in the non-archimedean setting using the
techniques of harmonic mappings of infinite energy into non-positively-curved spaces and Bruhat-Tits buildings.
Non-abelian Hodge theories are robust tools in studying the fundamental groups of algebraic varieties. Consider a
complex quasi-projective manifold 𝑋 and a reductive representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾). When 𝑋 is compact
and𝐾 = C, in the 90s Simpson [Sim88,Sim92] systematically established the theory of Higgs bundles and discovered
its relation with variations of Hodge structure. This theory was later extended to the cases where 𝑋 is non-compact
by Mochizuki in a series of difficult works [Moc06,Moc07a,Moc07b]. On the other hand, when 𝑋 is compact and
𝐾 is a non-archimedean local field, Gromov-Schoen [GS92] constructed harmonic mappings from the universal
covering of 𝑋 to the Euclidean buildings, with significant applications ranging from 𝑝-adic super-rigidity [GS92],
Simpson’s motivic conjecture [CS08], Shafarevich conjecture [Eys04,EKPR12] and beyond.

The first result presented in Chapter 1 extends Gromov-Schoen’s theory to non-compact cases, involving the
treatment of infinite energy harmonic mappings into Euclidean buildings. As an application, we construct logarith-
mic symmetric differentials in the presence of unbounded linear representations of 𝜋1 (𝑋) in non-archimedean local
fields. Moreover, we prove that a complex quasi-projective manifold 𝑋 admits logarithmic symmetric differentials
provided there is a linear representation 𝜋1 (𝑋) → GL𝑁 (K) with infinite image, where K can be any field. This
extends a previous work by Klingler, Brunebarbe, and Totaro to the quasi-projective setting. Another significant
application is a reduction theorem for unbounded linear representations of 𝜋1 (𝑋) in non-archimedean local fields.
The main results in this chapter lay the groundwork for subsequent works.

Chapter 2 is on the hyperbolicity of complex quasi-projective normal varieties in the presence of a local system
with big monodromy. The motivation stems from the question: how does fundamental groups of algebraic varieties
determine its hyperbolicity property. We are mainly interested in three notions of hyperbolicity from different
aspects. In the algebraic setting, a quasi-projective variety 𝑋 is strongly of log general type if there exists a proper
Zariski closed subset Ξ such that all subvarieties not being of log general type is contained in Ξ. In the analytic
setting, 𝑋 is pseudo-Picard hyperbolic (resp. pseudo-Brody hyperbolic) if there exists a a proper Zariski closed
subset Ξ of 𝑋 such that any holomorphic map 𝑓 : D∗ → 𝑋 from the punctured disk with essential singularity at
the origin (resp. any non-constant holomorphic map 𝑓 : C → 𝑋) has image contained in Ξ.

The first result in Chapter 2 addresses the initial question. Given a quasi-projective normal variety, if there exists
a big representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) such that the Zariski closure of 𝜚(𝜋1 (𝑋)) is a semisimple algebraic
group, where 𝐾 can be any field, then 𝑋 is both strongly of log general type and pseudo Picard hyperbolic (hence
also pseudo Brody hyperbolic).

The second result in Chapter 2 is a confirmation of the generalized Green-Griffiths-Lang conjecture in the
presence of a big local system: assuming the existence of a big representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), which is
further required to be reductive in cases where char𝐾 = 0, we prove that 𝑋 is of log general type if and only if it is
strongly of log general type, or pseudo Picard or Brody hyperbolic. This result can be refined further by identifying
the non-hyperbolicity loci (special loci) from different perspectives.

In Chapters 3 and 4, we address the Shafarevich conjecture, which stipulates that the universal covering of a
complex projective variety is holomorphically convex. This conjecture was studied extensively in 90s building
on the tools from non-abelian Hodge theories described in Chapter 1. The most significant breakthrough on
this conjecture came from Eyssidieux [Eys04], where he proved the Shafarevich conjecture for smooth projective
varieties whose fundamental groups admit a faithful reductive representation into a complex general linear group.
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Subsequently, in [EKPR12] it was further asked whether Eyssidieux’s theorem can be extended to singular projective
varieties.

The first result of Chapter 3 addresses this question: the universal covering of a projective normal variety is
holomorphically convex if there exists a faithful reductive representation of its fundamental group into a complex
general linear group. Building on our work on non-abelian Hodge theories in non-archimedean setting shown in
Chapter 1, we also construct the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋) associated with 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾),
where 𝑋 is any quasi-projective normal variety and 𝐾 is any field (if char𝐾 = 0 we assume additionally that
𝜚 is reductive). It has the property that for any closed subvariety 𝑍 of 𝑋 , sh𝜚 (𝑍) is a point if and only if
𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite. Additionally, we prove that a projective normal variety whose Γ-dimension
(defined by Campana) is at most two is holomorphically convex if there exists a faithful reductive representation of
its fundamental group into a general linear group in positive characteristic.

In Chapter 5, we present several applications in algebraic geometry of the results established in previous chapters.
The first application concerns Claudon-Höring-Kollár’s conjecture, which asserts that a complex projective manifold
with quasi-projective universal covering has a locally trivial Albanese map up to a finite étale cover. Their
conjecture was proven under the assumption of the abundance conjecture by Claudon-Höring-Kollár, or varieties
with virtually abelian fundamental groups by Claudon-Höring. Our result confirms their conjecture in cases where
the fundamental groups admit a faithful linear representation into the general linear group of any characteristic.

The second application addresses Campana’s tantalizing abelianity conjecture, which predicts that a special or
Brody special complex projective manifold has a virtually abelian fundamental group. Here, a complex projective
manifold 𝑋 is special if it does not admit a fibration onto an orbifold of general type, with the orbifold structure on the
base being given by the divisor of multiple fibers. 𝑋 is Brody special if it has a Zariski dense entire curve. Special
or Brody special varieties are known for their non-hyperbolic nature. Campana [Cam04] and Yamanoi [Yam10]
proved that any complex linear quotient of the fundamental group of a special or Brody special projective manifold
is virtually abelian. Our first result extends their theorems to linear quotients in positive characteristic of the
fundamental groups of quasi-projective varieties. Additionally, we establish that any complex linear quotient of
the fundamental group of a special or Brody special quasi-projective manifold is virtually nilpotent. We further
provide illustrative examples to demonstrate the sharpness of this result. The last result is a structure theorem for
algebraic varieties in the presence of a big local system, addressing a conjecture by Kollár.
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CHAPTER 1

EXISTENCE OF HARMONIC MAPPINGS INTO BRUHAT-TITS BUILDINGS

1.1. Introduction

Let 𝑋 be a complex smooth quasi-projective variety, and let 𝐺 be a semisimple algebraic group defined over a
field 𝐾 . In this chapter, we mainly focus on representations 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾), where 𝐾 can be either the field of
complex numbers or an algebraic number field, or a non-archimedean local field. We refer to 𝜚 as Zariski dense if
the Zariski closure of its image is the whole group 𝐺.

Non-abelian Hodge theories play a significant role in the study of the geometric properties of the above
representations 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾). These theories are based on harmonic mappings to symmetric spaces in
the archimedean cases (when 𝐾 is complex or an algebraic number field) or to Bruhat-Tits buildings in the non-
archimedean cases (when 𝐾 is a non-archimedean local field). In the archimedean setting, these theories have been
well-established, with notable works including [Don87,Cor88,Sim92,Moc07b].

However, in the non-archimedean case, while the theory has been established for algebraic varieties that are
projective, thanks to the work of Gromov-Schoen [GS92], its full generalization to quasi-projective varieties
remained a challenge over the past three decades. The main difficulty is that, we will encounter with harmonic
maps with infinite energy.

Infinite energy harmonic maps between manifolds previously appeared in the work of Lohkamp and Wolf.
Lohcamp [Loh90] proved the existence of a harmonic map in a given homotopy class of maps between two non-
compact manifolds, provided that a certain simplicity condition is satisfied. The most important case is when the
domain is metrically a product near infinity. Wolf [Wol91] studied harmonic maps of infinite energy when the
domain is a nodal Riemann surface and applied this study to describe degenerations of surfaces in the Riemann
moduli space.

In this chapter I will present the main result in [BDDM22]. Precisely, we establish the existence of equivariant
(infinite energy) harmonic maps to Bruhat-Tits buildings, which are associated with representations of fundamental
groups of quasi-projective varieties into semisimple algebraic groups over non-archimedean local fields. Addi-
tionally, we prove the pluriharmonicity of these harmonic maps and provide estimates for their energy growth at
infinity. This result extends the Gromov-Schoen theory to quasi-projective varieties.

I then present applications of the aforementioned result concerning existence theorem of harmonic maps. The
first application involves constructing logarithmic symmetric differentials on quasi-projective varieties 𝑋 in the
presence of a representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is a non-archimedean local field, with the condition
that 𝜚(𝜋1 (𝑋)) is unbounded. By leveraging this result, we establish the existence of logarithmic symmetric
differentials for quasi-projective varieties, provided their fundamental groups possess an infinite linear quotient.
Notably, this theorem extends the work of Brunebarbe, Klinger, and Totaro in [BKT13].

The second application concerns a reduction map theorem for the linear representation of fundamental groups
of quasi-projective varieties into algebraic groups over non-archimedean local fields, as developed in [CDY22].
This result generalize previous work by Katzarkov [Kat97] and Eyssidieux [Eys04].

These main results in this chapter are foundational cornerstones for the subsequent chapters.

1.2. Definition of harmonic maps

1.2.1. NPC spaces and Euclidean buildings. — For the definitions in this subsection, we refer the readers
to [BH99,Rou09,KP23,BDDM22].
Definition 1.2.1 (Geodesic space). — Let (𝑋, 𝑑𝑋) be a metric space. A curve 𝛾 : [0, ℓ] → 𝑋 into 𝑋 is called
a geodesic if the length 𝑑𝑋 (𝛾(𝑎), 𝛾(𝑏)) = 𝑏 − 𝑎 for any subinterval [𝑎, 𝑏] ⊂ [0, ℓ]. A metric space (𝑋, 𝑑𝑋) is a
geodesic space if there exists a geodesic connecting every pair of points in 𝑋 .
Definition 1.2.2 (NPC space). — An NPC (non-positively curved) space (𝑋, 𝑑𝑋) is a complete geodesic space
that satisfies the following condition: for any three points 𝑃,𝑄, 𝑅 ∈ 𝑋 and a geodesic 𝛾 : [0, ℓ] → 𝑋 with 𝛾(0) = 𝑄
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and 𝛾(ℓ) = 𝑅
𝑑2
𝑋 (𝑃,𝑄𝑡 ) ≤ (1 − 𝑡)𝑑2 (𝑃,𝑄) + 𝑡𝑑2 (𝑃, 𝑅) − 𝑡 (1 − 𝑡)𝑑2 (𝑄, 𝑅)

where 𝑄𝑡 = 𝛾(𝑡ℓ).
A smooth Riemannian manifold with nonpositive sectional curvature is an NPC space. Among these, Bruhat-Tits

buildings Δ(𝐺) associated with semisimple algebraic groups 𝐺 defined over non-archimedean local fields 𝐾 are
noteworthy examples of NPC spaces. We will not provide the lengthy definition of Bruhat-Tits buildings here, but
interested readers can find precise definitions in references such as [Rou09] and [KP23]. It’s noteworthy that 𝐺 (𝐾)
acts isometrically on the building Δ(𝐺) and transitively on its set of apartments. Here, 𝐺 (𝐾) denotes the group of
𝐾-points of 𝐺. The dimension of Δ(𝐺) equals the 𝐾-rank of the algebraic group 𝐺, which is the dimension of a
maximal split torus in 𝐺.

1.2.2. Harmonic maps to NPC spaces. — Consider a map 𝑓 : Ω → 𝑍 from an 𝑛-dimensional Riemannian
manifold (Ω, 𝑔) to an NPC space (𝑍, 𝑑𝑍 ). When the target space 𝑍 is a smooth Riemannian manifold of nonpositive
sectional curvature, the energy of a smooth map 𝑓 : Ω → 𝑍 is

𝐸 𝑓 =

∫
Ω

|𝑑𝑓 |2𝑑 vol𝑔

where (Ω, 𝑔) is a Riemannian domain and 𝑑 vol𝑔 is the volume form of Ω. We say 𝑓 : Ω → 𝑍 is harmonic if it is
locally energy minimizing; i.e. for any 𝑝 ∈ Ω, there exists 𝑟 > 0 such that the restriction 𝑢 |𝐵𝑟 (𝑝) minimizes energy
amongst all maps 𝑣 : 𝐵𝑟 (𝑝) → 𝑍 with the same boundary values as 𝑢 |𝐵𝑟 (𝑝) .

In this paper, we mainly consider the target 𝑍 to be NPC spaces, not necessarily smooth. Let us recall the
definition of harmonic maps in this context (cf. [KS93] for more details).

Let (Ω, 𝑔) be a bounded Lipschitz Riemannian domain. Let Ω𝜖 be the set of points in Ω at a distance least 𝜖
from 𝜕Ω. Let 𝐵𝜖 (𝑥) be a geodesic ball centered at 𝑥 and 𝑆𝜖 (𝑥) = 𝜕𝐵𝜖 (𝑥). We say 𝑓 : Ω → 𝑍 is an 𝐿2-map (or
that 𝑓 ∈ 𝐿2 (Ω, 𝑍) ) if ∫

Ω

𝑑2 ( 𝑓 , 𝑃)𝑑vol𝑔 < ∞

For 𝑓 ∈ 𝐿2 (Ω, 𝑍), define

𝑒𝜖 : Ω → R, 𝑒𝜖 (𝑥) =
{∫
𝑦∈𝑆𝜖 (𝑥 )

𝑑2 ( 𝑓 (𝑥 ) , 𝑓 (𝑦) )
𝜖 2

𝑑𝜎𝑥,𝜖

𝜖 𝑛−1 𝑥 ∈ Ω𝜖

0 otherwise

where 𝜎𝑥,𝜖 is the induced measure on 𝑆𝜖 (𝑥). We define a family of functionals

𝐸
𝑓
𝜖 : 𝐶𝑐 (Ω) → R, 𝐸

𝑓
𝜖 (𝜑) =

∫
Ω

𝜑𝑒𝜖 𝑑Vol𝑔 .

We say 𝑓 has finite energy (or that 𝑓 ∈ 𝑊1,2 (Ω, 𝑍) ) if

𝐸 𝑓 := sup
𝜑∈𝐶𝑐 (Ω) ,0≤𝜑≤1

lim sup
𝜖→0

𝐸
𝑓
𝜖 (𝜑) < ∞.

weakly to a measure which is absolutely continuous with respect to the Lebesgue measure. Therefore, there exists
a function 𝑒(𝑥), which we call the energy density, such that 𝑒𝜖 (𝑥)𝑑vol𝑔 → 𝑒(𝑥)𝑑 vol𝑔. In analogy to the case of
smooth targets, we write |∇ 𝑓 |2 (𝑥) in place of 𝑒(𝑥). Hence |∇ 𝑓 |2 (𝑥) ∈ 𝐿1

loc (Ω). In particular, the (Korevaar-Schoen)
energy of 𝑓 in Ω is

𝐸 𝑓 [Ω] =
∫
Ω

|∇ 𝑓 |2𝑑 vol𝑔 .

Definition 1.2.3 (Harmonic maps). — We say a continuous map 𝑓 : Ω → 𝑍 from a Lipschitz domain Ω is
harmonic if it is locally energy minimizing; more precisely, at each 𝑝 ∈ Ω, there exists a neighborhood Ω𝑝 of 𝑝
such that all comparison maps which agree with 𝑢 outside of this neighborhood have no less energy.

For 𝑉 ∈ ΓΩ where ΓΩ is the set of Lipschitz vector fields on Ω, | 𝑓∗ (𝑉) |2 is similarly defined. The real valued
𝐿1 function | 𝑓∗ (𝑉) |2 generalizes the norm squared on the directional derivative of 𝑓 . The generalization of the
pull-back metric is the continuous, symmetric, bilinear, non-negative and tensorial operator

𝜋 𝑓 (𝑉,𝑊) = ΓΩ × ΓΩ → 𝐿1 (Ω,R)
where

𝜋 𝑓 (𝑉,𝑊) = 1
2
| 𝑓∗ (𝑉 +𝑊) |2 − 1

2
| 𝑓∗ (𝑉 −𝑊) |2.

We refer to [KS93] for more details.
Let (𝑥1, . . . , 𝑥𝑛) be local coordinates of (Ω, 𝑔) and 𝑔 = (𝑔𝑖 𝑗 ), 𝑔−1 = (𝑔𝑖 𝑗 ) be the local metric expressions. Then

energy density function of 𝑓 can be written (cf. [KS93, (2.3vi)])

|∇ 𝑓 |2 = 𝑔𝑖 𝑗𝜋 𝑓 (
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥 𝑗
)
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Next assume (Ω, 𝑔) is a Hermitian domain and let (𝑧1 = 𝑥1 + 𝑖𝑥2, . . . , 𝑧𝑛 = 𝑥2𝑛−1 + 𝑖𝑥2𝑛) be local complex
coordinates.
Definition 1.2.4 (Locally Lipschitz). — A continuous map 𝑓 : Ω → 𝑍 is called locally Lipschitz if for any
𝑝 ∈ Ω, there exists 𝐵𝜀 (𝑝) ⊂ Ω and a constant 𝐶 > 0 such that 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐶𝑑 (𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝐵𝜀 (𝑝).

The following typical example shows the connection between classical Hodge theory and non-abelian Hodge
theory.
Remark 1.2.5. — The name of “non-abelian Hodge theory” generalizes aspects of Hodge theory from abelian
cohomology to nonabelian cohomology. Let (𝑋, 𝜔) be a compact Kähler manifold and we consider the first
cohomology of 𝑋 with real coefficients 𝐻1 (𝑋,R). Note that 𝐻1 (𝑋,R) = Hom(𝜋1 (𝑋),R). The classical Hodge
theory shows that each cohomology class 𝛼 ∈ 𝐻1 (𝑋,R) contains a unique harmonic form 𝜂. Taking the integral
of 𝜂, we obtain a harmonic map 𝑢𝜂 : 𝑋 → R. If we consider 𝛼 as a representation 𝜋1 (𝑋) → R, such 𝑢𝜂 is
𝛼-equivariant, where the action of R on R is given by translation. Note that 𝑢𝜂 is pluriharmonic: the (1, 0)-part
𝑑

1,0
C 𝑢𝜂 of the complexified differential 𝑑C𝑢𝜂 of 𝑢𝜂 is a holomorphic 1-form. Since 𝑢𝜂 is 𝛼-equivariant, such 𝑑1,0

C 𝑢𝜂

descends to a holomorphic form on 𝑋 . Such a holomorphic form is nothing but 𝜂1,0 where 𝜂1,0 is the (1, 0)-part
of the harmonic form 𝜂.

1.3. Main theorem: existence of harmonic maps

Theorem 1.A ( [BDDM22, Theorem A]). — Let 𝑋 be a complex smooth quasi-projective variety, and let 𝐺 be
a semisimple algebraic group defined over a non-archimedean local field 𝐾 . If 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a Zariski
dense representation, then we have:
(i) There exists a 𝜚-equivariant, locally Lipschitz harmonic map (with respect to any Kähler metric on 𝑋)

𝑢 : 𝑋 → Δ(𝐺) from the universal cover 𝑋 of 𝑋 to the Bruhat-Tits building Δ(𝐺) of 𝐺.
(ii) This map 𝑢 is pluriharmonic and has logarithmic energy growth.
(iii) The local energy around points at infinity are finite provided that the corresponding local monodromies are

quasi-unipotent.
(iv) If 𝑓 : 𝑌 → 𝑋 is a morphism from a smooth projective variety 𝑌 , then 𝑢 ◦ 𝑓 : 𝑌 → Δ(𝐺) is 𝑓 ∗𝜚-equivariant

harmonic map with respect to any Kähler metric on 𝑌 . Furthermore, 𝑢 ◦ 𝑓 has logarithmic energy growth.
Here 𝑓 : 𝑌 → 𝑋 denotes the lift of 𝑓 between the universal coverings of 𝑌 and 𝑋 .

Let us explain some notion in the theorem.
First, since𝐺 is semisimple, Δ(𝐺) is a Euclidean building without a Euclidean factor. By [Par00, Theorem 4.1],

for any 𝑔 ∈ 𝐺 (𝐾), 𝑔 is either elliptic or hyperbolic. Thus, there exists 𝑃0 ∈ Δ(𝐺) such that min𝑃∈Δ(𝐺) 𝑑 (𝑃, 𝑔𝑃) =
𝑑 (𝑃0, 𝑔𝑃0).
Definition 1.3.1 (logarithmic energy growth). — Let 𝑋 be a smooth quasi-projective variety and let 𝑋 be a smooth
projective compactification of 𝑋 such that Σ := 𝑋\𝑋 is a simple normal crossing divisor. Let 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾)
be a Zariski dense representation where 𝐺 is a semisimple algebraic group. A 𝜚-equivariant pluriharmonic map
�̃� : 𝑋 → Δ(𝐺) has logarithmic energy growth if for any holomorphic map 𝑓 : D∗ → 𝑋 with no essential singularity
at the origin (i.e. 𝑓 extends to a holomorphic map 𝑓 : D → 𝑋), there is a positive constant 𝐶 such that for any
𝑟 ∈]0, 1

2 [ one has

(1.3.1) −
𝐿2
𝛾

2𝜋
log 𝑟 ≤ 𝐸𝑢◦ 𝑓 [D𝑟 , 1

2
] ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 + 𝐶,

where 𝐿𝛾 is called the translation length of 𝜚( [𝛾]) where 𝛾 ∈ 𝜋1 (𝑋) is the element corresponding to the loop
around the smooth component Σ𝑖 of the divisor Σ; i.e.

𝐿𝛾 := inf
𝑃∈Δ(𝐺)

𝑑 (𝜚( [𝛾])𝑃, 𝑃).(1.3.2)

The constant 𝐶 does not depend on 𝑟 .

We give a summary of the proof of Theorems 1.A.(i) and 1.A.(ii). We consider a non-empty closed minimal
convex 𝜌(𝜋1 (𝑋))-invariant subset C of 𝑋 , meaning that there does not exist a non-empty convex strict subset of
C invariant under 𝜌(𝜋1 (𝑋)). The existence of such C is guaranteed by [CM09, Theorem 4.3, (Aii)]. As a convex
subset of an NPC space, C is itself an NPC space. Thus, when dim 𝑋 = 1 or dim 𝑋 = 2, we can apply the
existence theorems of an equivariant harmonic map into an NPC space proved in [DM23b, Theorems 1.1 and 1.2]
and [DM23a, Theorem 1] respectively.

Next we prove a uniqueness result:
Claim 1.3.2. — Any 𝜚-equivariant harmonic mapping 𝑢 from 𝑋 to C is unique provided that
(a) 𝑢 has logarithmic energy growth at infinity;
(b) 𝜚(𝜋1 (𝑋)) does not fix a point at infinity.
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Note that the guarantee of Item (b) can be established when 𝜚 is Zariski dense. The harmonic map 𝑢 from a
punctured Riemann surface R = R̄\{𝑝1, . . . , 𝑝𝑛} satisfies a logarithmic growth estimate towards a puncture in the
form of

(1.3.3)
𝐿2

2𝜋
log

1/2
𝑟

≤ 𝐸𝑢 [Δ𝑟 , 1
2
] ≤ 𝐿2

2𝜋
log

1/2
𝑟

+ 𝑐, 0 < 𝑟 ≤ 1
2

where Δ is a holomorphic disk of R̄ at a puncture, Δ𝑟 ,1 is an annulus with inner and outer radius 𝑟 and 1 respectively,
𝐸𝑢 [Δ𝑟 ,1] is the energy contained in Δ𝑟 ,1 and 𝐿 is the translation length of the isometry 𝜌(𝛾) where 𝛾 ∈ 𝜋1 (𝑋) is
the element corresponding the loop 𝜕Δ around the puncture. One can interpret 𝐿 as the length of the minimum
geodesic homotopic to the image loop 𝑢(𝜕Δ) in the quotient metric space 𝑋/𝜌(𝜋1 (𝑋)), and the lower bound of
(1.3.3) is a consequence of the fact that the energy of the (parameterized) geodesic loop is at least 𝐿2

2𝜋 . Indeed,

𝐿2

2𝜋
log

1
𝑟
≤
∫ 1

𝑟

𝐿2

2𝜋𝑟
𝑑𝑟 =

∫ 2𝜋

0

∫ 1

𝑟

1
𝑟2

����𝜕𝑢𝜕𝜃 ����2 𝑟𝑑𝑟𝑑𝜃 ≤ 𝐸𝑢 [Δ𝑟 ,1] .

(Note that 𝐿 = 0 is the case when the loop 𝑢(𝜕Δ) is homotopically trivial.)
The upper bound in (1.3.3) comes from the construction of the harmonic map which we review now. The idea is

to first construct a Lipschitz map 𝑣 with controlled energy growth towards any puncture. This can be accomplished
by defining 𝜃 ↦→ 𝑣(𝑟, 𝜃) to be a parameterized geodesic loop corresponding to 𝜌(𝛾) for each 𝑟 where (𝑟, 𝜃) is the
polar coordinates of the disk Δ. We call such a map a prototype map. Next, let R𝑟 be a Riemann surface with Δ𝑟
(disk of radius 𝑟) removed around each puncture. Let 𝑢𝑟 be the Dirichlet solution with boundary values 𝑣 |𝜕R𝑟

. We
thus construct a family of harmonic maps 𝑢𝑟 and prove that the sequence of harmonic maps 𝑢𝑟𝑖 converges uniformly
to a harmonic map 𝑢 on every compact subset of R as 𝑟𝑖 → 0. The upper bound on the energy growth towards a
puncture of 𝑢 can be deduced from the energy growth of the prototype map 𝑣. The details of the above argument
can be found in [DM23b].

In the case of quasi-projective surfaces, the existence also relies on the construction of a prototype map but
is technically more complicated because the points at infinity are the normal crossing divisors and hence much
more complicated than isolated points. The details of this construction can be found in [DM23a]. By the (more
elaborated) Bochner technique, the harmonic map is actually pluriharmonic; in other words, its restriction to any
complex curve is harmonic.

The proof of the existence in higher dimension relies on the existence results in dimensions 1 and 2. We use
Lefschetz hyperplane theorem to prove Theorem 1.A by induction on dim 𝑋 . First, assume that dimC 𝑋 = 3. The
existence result in dimension 2 guarantees that there is a pluriharmonic map defined on a general hyperplane on 𝑋 .
The uniqueness result implies that the pluriharmonic maps defined on the two different hyperplanes agrees along
the intersection. Thus, we can define a pluriharmonic map on 𝑋 . To define a pluriharmonic map in any dimensions,
we proceed by induction on the dimension.

1.4. Application (I): logarithmic symmetric differentials and fundamental groups

We will now present significant applications of Theorem 1.A, which are cornerstones for the subsequent works
discussed in Chapters 2 to 5.

1.4.1. Constructing logarithmic symmetric differentials. — In previous works [Kat97,Eys04,Kli13], for pro-
jective varieties whose fundamental groups admitting unbounded reductive representations into non-archimedean
local fields, global symmetric differentials are constructed. In [BDDM22] we apply Theorem 1.A to extend this
result to quasi-projective varieties.
Theorem 1.B ( [BDDM22, Theorem B]). — Let 𝑋 be a complex quasi-projective manifold and 𝐾 be a non-
archimedean local field. If there exists an unbounded representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), then 𝑋 has non-zero
global logarithmic symmetric forms.
Proof of Theorem 1.B (sketch). — Note that we do not assume that 𝜚 is reductive and thus we cannot apply
Theorem 1.A. We apply the following lemma in [DYK23, Lemma 3.5].
Claim 1.4.1. — Let Γ be a finitely generated group and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a representation where 𝐾 be
a non-archimedean local field. Then 𝜚 is unbounded if and only if its semi-simplification 𝜚𝑠𝑠 : 𝜋1 (𝑋) → GL𝑁 (�̄�)
is unbounded.

This result enables us to replace 𝜚 by its semi-simplification and 𝐾 by a finite extension such that we may assume
that 𝜚 is semisimple, and thus reductive.

For simplicity, we assume that the Zariski closure 𝜚(𝜋1 (𝑋)) is a semisimple algebraic group defined over𝐾 (after
replacing 𝐾 by a finite extension). By Theorem 1.A, there exists a 𝜚-equivariant harmonic map 𝑢 : 𝑋 → Δ(𝐺),
where Δ(𝐺) is the Bruhat-Tits building of 𝐺. Here 𝑝 : 𝑋 → 𝑋 is the universal covering map.

Recall that a point 𝑥 ∈ 𝑋 is said to be a regular point of 𝑢 if there exists a neighborhood N of 𝑥 and an apartment
𝐴 ⊂ Δ(𝐺) such that 𝑢(N) ⊂ 𝐴. A singular point of 𝑢 is a point in 𝑋 that is not a regular point. Note that if 𝑥 ∈ 𝑋
is a regular point (resp. singular point) of 𝑢, then every point of 𝑝−1 (𝑝(𝑥)) is a regular point (resp. singular point)
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of 𝑢. We denote by 𝑋◦ ⊂ 𝑋 the set of all regular points of 𝑢. Then there exists a dense open set 𝑋◦ ⊂ 𝑋 such that
𝑝−1 (𝑋◦) = 𝑋◦. A deep and difficult theorem by Gromov-Schoen [GS92] shows that the complement of 𝑋◦ is a
closed subset that has Hausdorff codimensional at least two.

We mention that over the regular locus 𝑋◦ of 𝑢, 𝑢 is locally a holomorphic map from an open set Ω of 𝑋 to
some apartment 𝐴 of Δ(𝐺) (such 𝐴 is not unique in general). Note that 𝐴 is locally isometric to R𝑁 . Therefore,
if 𝛼 : 𝐴→ R is a linear map, then the (1, 0)-part of the complexified differential 𝑑1,0

C (𝛼 ◦ 𝑢) is a holomorphic one
form on Ω since 𝑢 is pluriharmonic. We can choose a generalized linear coordinates (𝛼1, . . . , 𝛼ℓ) for 𝐴 such that

— (𝑑1,0
C (𝛼1 ◦ 𝑢), . . . , 𝑑1,0

C (𝛼ℓ ◦ 𝑢)) does not depend on the choice of the apartment;
— these holomorphic 1-forms glue together into a mutivalued holomorphic 1-form defined over 𝑋◦;
— this multivalued holomorphic 1-form is invariant under the 𝜋1 (𝑋)-action, hence descends to a mutivalued

1-form {𝜔1, . . . , 𝜔ℓ } on a dense open set 𝑋◦ ⊂ 𝑋 whose complement is a closed subset that has Hausdorff
codimensional at least two;

— Span{𝛼1, . . . , 𝛼ℓ } = Hom(𝐴,R) since 𝐺 is semisimple.
We need to show that {𝜔1, . . . , 𝜔ℓ } is non-trivial. Otherwise, 𝑢 is constant, and thus 𝜚(𝜋1 (𝑋)) fixes a point in
Δ(𝐺), which is thus bounded, contradicting to our assumption that 𝜚 is unbounded.

We show that these multivalued 1-forms {𝜔1, . . . , 𝜔ℓ } induce a symmetric form on 𝑋◦. Let 𝑇 be a formal
variable. Then

𝑚∏
𝑘=1

(𝑇 − 𝜔𝑖) =: 𝑇𝑚 + 𝜎1𝑇
𝑚−1 + · · · + 𝜎𝑚(1.4.1)

is well defined. Its coefficients 𝜎𝑘 ∈ Γ(𝑋◦, Sym𝑘Ω𝑋).
Let us show that 𝜎𝑘 extends over 𝑋 . By Theorem 1.A, 𝑢 is locally Lipschitz. By our construction, there is a

uniform constant 𝐶𝑘 > 0 such that

|𝜎𝑘 |𝜔 ≤ 𝐶𝑘 |∇𝑢 |𝑘𝜔 over 𝑋◦,(1.4.2)

where 𝜔 is a complete metric on 𝑋 of Poincaré type at infinity. Since 𝑋 ⊂ 𝑋◦ has Hausdorff codimension at least
two, by (1.4.2) we apply some generalized Riemann extension theorem by Shiffman [Shi68] to conclude that 𝜎𝑘
extends to a symmetric form in Γ(𝑋, Sym𝑘Ω𝑋).

To show that 𝜎𝑘 has only logarithmic poles, we need to apply the energy estimate of 𝑢 at infinity in Theorem 1.A.
The proof is based on some complex analysis. For more details we refer to [BDDM22]. □

1.4.2. Simpson’s integrality conjecture. — Let Γ be a finitely generated group. We say 𝜚 : Γ → GL𝑁 (C) is
rigid if its image in the character variety 𝑀B (Γ,GL𝑁 ) is isolated. Say 𝜚 is integral if there exists a number field 𝑘
such that 𝜚 factors through 𝜚 : Γ → GL𝑁 (O𝐾 ).

In [Sim92], Simpson conjectured that any rigid representation of the fundamental group of a smooth projective
varieties is integral. This conjecture is solved for rank 2 rigid representations of fundamental groups of smooth
projective varieties by Corlette-Simpson [CS08]. Based on Theorem 1.B, in [BDDM22] we prove the following
theorem.
Theorem 1.C ( [BDDM22, Theorem C]). — Let 𝑋 be a complex quasi-projective manifold which does not admit
any global logarithmic symmetric differentials. Then any reductive representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is rigid
and integral. Moreover, 𝜚 is a complex direct factor of a Z-variation of Hodge structures.

Note that Klingler [Kli13] had previously established Theorem 1.C when considering the case where 𝑋 is
a projective manifold. He utilized non-abelian Hodge theories in the archimedean setting, involving harmonic
mappings to symmetric spaces, to establish the rigidity property in Theorem 1.C for compact Kähler manifolds.
Precisely, his proof is based on the following result by Arapura.
Theorem 1.4.2 ( [Ara02]). — Let 𝑋 be a smooth projective variety without global symmetric differentials. Then
for any 𝑁 ∈ Z>0, the character variety 𝑀B (𝜋1 (𝑋),GL𝑁 ) is zero dimensional.

Let us explain the idea of Theorem 1.4.2 as it is elegant and simple. By the work of Simpson [Sim94a,Sim94b],
the semistable Higgs bundles of rank 𝑁 with vanishing Chern classes over 𝑋 exists, denoted by 𝑀Dol (𝑋, 𝑁),
is a complex quasi-projective variety. He proved that there exists a homeomorphism between 𝑀Dol (𝑋, 𝑁) and
𝑀B (𝜋1 (𝑋),GL𝑁 ).

On the other hand, there exists a proper holomorphic fibration 𝑀Dol (𝑋, 𝑁) → ⊕𝑘>0𝐻
0 (𝑋, Sym𝑘Ω𝑋) (so-called

Hitchin fibration). Since we assume that ⊕𝑘>0𝐻
0 (𝑋, Sym𝑘Ω𝑋) is trivial, it follows that 𝑀Dol (𝑋, 𝑁) is compact.

Hence 𝑀B (𝜋1 (𝑋),GL𝑁 ) is compact. However, it is an affine variety. This implies that 𝑀B (𝜋1 (𝑋),GL𝑁 ) is zero
dimensional. Theorem 1.4.2 is proved.

Such a nice proof by Arapura cannot be used when 𝑋 is quasi-projective since the moduli space of Higgs bundles
is missing. Nevertheless, we can use Gauge theoretical arguments (i.e. Uhlenbeck’s compactness) together with
Mochizuki’s work [Moc06,Moc07b] to extend Theorem 1.4.2 to the quasi-projective setting. This is shown in the
first arXiv version of [BDDM22].
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Later we discovered that we can use Theorem 1.A to simultaneously address both aspects of rigidity and
integrality. Furthermore, it’s noteworthy that our approach exclusively works within non-archimedean local fields
of characteristic zero. This represents a novel aspect compared to the work by Corlette and Simpson in [CS08].
In their work, they interpret rigidity in rank 2 cases as the representation of SL2 (C(𝑡)) into a compact subgroup.
This introduces an additional layer of complexity since the Bruhat-Tits tree for SL2 (C(𝑡)) is not locally compact.
Consequently, they had to employ the method of reduction modulo 𝑝 to bring it down to the case of representations
in SL2 (F𝑞 (𝑡)).

Let us explain the idea of the proof of Theorem 1.C.
Proof of Theorem 1.C (sketch). — We recall a nice theorem by Yamanoi. Let Γ be a finitely generated group.
Let 𝑅(Γ,GL𝑁 ) be the representation variety of Hom(𝜋1 (𝑋),GL𝑁 ). It is an affine scheme over Z such that
𝑅(Γ,GL𝑁 ) (𝑘) is the set of representation Γ → GL𝑁 (𝑘) for any field 𝑘 . The reductive algebraic group GL𝑁 acts
on 𝑅(Γ,GL𝑁 ) by conjugation. Let 𝜋 : 𝑅(Γ,GL𝑁 ) → 𝑀B (Γ,GL𝑁 ) be the GIT quotient by GL𝑁 .
Lemma 1.4.3 ( [Yam10]). — Let𝐾 be a finite extension ofQ𝑝 with 𝑝 any prime. Denote by 𝑅0 ⊂ 𝑅(Γ,GL𝑁 ) (𝐾) be
the set of bounded representations. Then 𝜋(𝑅0) is a compact subset (in the analytic topology) of 𝑀B (Γ,GL𝑁 ) (𝐾).

Write 𝑀B (𝑋, 𝑁) := 𝑀B (𝜋1 (𝑋),GL𝑁 ) for short. Assume that 𝑀 ⊂ 𝑀B (𝑋, 𝑁) is a geometric irreducible
component that is not zero dimensional. Since 𝑀 (Q̄𝑝) is not compact, it follows from Lemma 1.4.3 that there
exists a finite extension 𝐾 of Q𝑝 such that there exists an unbounded representation 𝜎 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with
[𝜎] ∈ 𝑀 (𝐾). Here we write [𝜎] := 𝜋(𝜎). We apply Theorem 1.B to conclude that 𝑋 has some non-trivial
logarithmic symmetric differentials and obtain a contradiction. Hence 𝑀B (𝑋, 𝑁) is zero dimensional. This implies
that 𝜚 is rigid.

Note that 𝑅(𝜋1 (𝑋),GL𝑁 ) (Q̄) is dense in 𝑅(𝜋1 (𝑋),GL𝑁 ) (C). 𝜚 can thus be deformed into a representation
𝜋1 (𝑋) → GL𝑁 (Q̄). Since 𝜚 is rigid, for any small continuous deformation 𝜚′, its semi-simplification is conjugate
to 𝜚. Hence after replacing 𝜚 by some conjugate, there exists some number field 𝑘 such that 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝑘).

Let 𝑣 be any non-archimedean place of 𝑘 . We denote by 𝑘𝑣 the non-archimedean completion of 𝑘 with respect
to 𝑣. Consider the representation 𝜚𝑣 : 𝜋1 (𝑋) → GL𝑁 (𝑘𝑣) by composing 𝜚 with 𝑘 ↩→ 𝑘𝑣 . If 𝜚𝑣 is unbounded, we
apply Theorem 1.B to conclude that 𝑋 has some logarithmic symmetric differential, contradicting to our assumption.
Hence 𝜚𝑣 is bounded for each 𝑣. It follows that 𝜚 factors through 𝜚 : 𝜋1 (𝑋) → GL𝑁 (O𝐾 ). This proves that 𝜚 is
integral.

Let 𝑤 : 𝑘 → C be any archimedean place of 𝑘 . Consider the representation 𝜚𝑤 : 𝜋1 (𝑋) → GL𝑁 (C)
by composing 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝑘) with 𝑤 : 𝑘 ↩→ C. Since 𝑀B (𝑋, 𝑁) is zero dimensional, 𝜚𝑤 is rigid.
By [Sim92], 𝜚 underlies a complex variation of Hodge structures (C-VHS for short). We apply [CS08] to conclude
that 𝜚 is a direct factor of a Z-VHS. □

1.4.3. Infinite fundamental group and logarithmic symmetric forms. — As an application of Theorem 1.C,
we extend a theorem by [BKT13] to the quasi-projective setting.
Theorem 1.D ( [BDDM22, Theorem D]). — Let 𝑋 be a smooth quasi-projective variety, and let 𝑋 be a smooth
projective compactification of 𝑋 such that Σ := 𝑋\𝑋 is a simple normal crossing divisor. Let K be any field of any
characteristic. If there is a linear representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (K) such that the image is infinite, then there
exists a positive integer 𝑘 such that

𝐻0 (𝑋, Sym𝑘Ω
𝑋
(logΣ)) ≠ 0

Theorem 1.D was proved by Klingler, Brunebarbe and Totaro [BKT13] in the case where 𝑋 is a compact Kähler
manifold.
Proof of Theorem 1.D (sketch). — Assume by contradiction that 𝑋 does not have logarithmic symmetric differen-
tials. By Theorem 1.C, 𝜚 is a complex direct factor of a Z-variation of Hodge structures 𝜎. Given that 𝜚 has an
infinite image, it follows that 𝜎 does as well. Consider the period map of 𝜎. After replacing 𝜎 by a finite étale
cover, we may assume that it is torsion free by Selberg’s lemma. By a theorem of Griffiths, the period mapping
𝑝 : 𝑋 → 𝒟/Γ extends to a proper mapping 𝑋 ′ → 𝒟/Γ, where 𝑋 ′ ⊂ 𝑋 is a Zariski open set containing 𝑋 , and
𝒟 is the period domain and Γ := 𝜎(𝜋1 (𝑋)) is the monodromy group. Let 𝑍 be the image 𝑝(𝑋 ′) that is positive
dimensional since 𝜎 has infinite image. For simplicity we may assume that 𝑍 is smooth. One can prove that
𝑍 is quasi-projective and 𝑝 : 𝑋 ′ → 𝑍 is algebraic. The curvature computation of period domain yields that 𝑍
has non-zero logarithmic symmetric differentials. We pullback these differentials to 𝑋 ′ via 𝑝. The theorem is
proved. □

1.5. Application (II): a reduction theorem

For another crucial application of Theorem 1.A is the following reduction theorem. It will have further
applications in Chapters 2 and 3.
Theorem 1.E ( [CDY22, Theorem 0.10]). — Let 𝑋 be a complex smooth quasi-projective variety, and let
𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a reductive representation where 𝐾 is non-archimedean local field. Then there exists a
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quasi-projective normal variety 𝑆𝜚 and a dominant morphism 𝑠𝜚 : 𝑋 → 𝑆𝜚 with connected general fibers, such
that for any connected Zariski closed subset 𝑇 of 𝑋 , the following properties are equivalent:
(a) the image 𝜌(Im[𝜋1 (𝑇) → 𝜋1 (𝑋)]) is a bounded subgroup of 𝐺 (𝐾).
(b) For every irreducible component 𝑇𝑜 of 𝑇 , the image 𝜌(Im[𝜋1 (𝑇norm

𝑜 ) → 𝜋1 (𝑋)]) is a bounded subgroup of
𝐺 (𝐾).

(c) The image 𝑠𝜚 (𝑇) is a point.
It is worth noting that if 𝑋 is projective, the equivalence between Item (a) and Item (c) has been established by

Katzarkov [Kat97], Eyssidieux [Eys04, Proposition 1.4.7]. Hence when 𝑋 is compact, the above 𝑠𝜚 : 𝑋 → 𝑆𝜚 is
called the Katzarkov-Eyssidieux reduction.

The proof of Theorem 1.E relies on Theorem 1.A together with the following result on partial Albanese
morphism.

Let 𝑋 be a smooth quasi-projective variety. Let {𝜂1, . . . , 𝜂𝑚} be a set of logarithmic holomorphic 1-forms of 𝑋 .
Consider the quasi-Albanese map 𝑓 : 𝑋 → 𝐴𝑋. Then there exists logarithmic holomorphic 1-forms {𝜔1, . . . , 𝜔𝑚}
of 𝐴𝑋 such that 𝑓 ∗𝜔𝑖 = 𝜂𝑖 . Let 𝐵 be the largest semi-abelian subvariety of 𝐴𝑋 such that 𝜔𝑖 |𝐵 ≡ 0 for each 𝑖. Write
𝐴 := 𝐴𝑋/𝐵 which is also a semi-abelian variety. Denote by 𝑎 : 𝑋 → 𝐴 the composite of 𝑓 and the quotient map
𝐴𝑋 → 𝐴. This map 𝑎 is called the partial quasi-Albanese map associated with {𝜂1, . . . , 𝜂𝑚}. It has the following
property:
Claim 1.5.1. — Let 𝑍 be any closed subvariety of 𝑋 . Then 𝑎(𝑍) is a point if and only if 𝜂𝑖 |𝑍 ≡ 0.

Now let us outline the idea of the proof of Theorem 1.E.

Proof of Theorem 1.E (sketch). — For simplicity, we assume that the Zariski closure 𝜚(𝜋1 (𝑋)) is a semisimple
algebraic group defined over 𝐾 (after replacing 𝐾 by a finite extension). By Theorem 1.A, there exists a 𝜚-
equivariant harmonic map 𝑢 : 𝑋 → Δ(𝐺), where Δ(𝐺) is the Bruhat-Tits building of𝐺. We use the same notations
in the proof of Theorem 1.B.

Recall that we constructed some multivalued 1-forms {𝜔1, . . . , 𝜔ℓ } over 𝑋◦. These multivalued 1-forms
correspond to the (1, 0)-part of the complexified differential of the harmonic map 𝑢. Based on Theorem 1.B, we
can prove that there exists a (in general ramified) finite Galois covering 𝜋 : 𝑋sp → 𝑋 with Galois group 𝐻 such
that 𝜋∗{𝜔1, . . . , 𝜔ℓ } becomes single valued; i.e. there exists forms {𝜂1, . . . , 𝜂ℓ } ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
(log𝐷)) such

that {𝜂1, . . . , 𝜂ℓ } coincides with 𝜋∗{𝜔1, . . . , 𝜔ℓ } over 𝑋◦. Here 𝑋 is a smooth projective compactification of 𝑋
with 𝐷 := 𝑋\𝑋 a simple normal crossing divisor and 𝜋 extends to a finite Galois cover 𝑋sp → 𝑋 . Such 𝑋sp → 𝑋

is called spectral covering associated with the representation 𝜚. Its ramification locus is well-behaved.
Claim 1.5.2. — Let us denote by Ram(𝜋) be the ramification locus of 𝜋. Then we have

Ram(𝜋) ⊂
⋃
𝜂𝑖≠𝜂 𝑗

(𝜂𝑖 − 𝜂 𝑗 = 0).

Moreover, we have
Claim 1.5.3. — {𝜂1, . . . , 𝜂ℓ } is invariant under the Galois group 𝐻.

Consider the partial quasi-Albanese map 𝑎 : 𝑋sp → A induced by {𝜂1, . . . , 𝜂ℓ }. Claim 1.5.2 implies that there
exists a Galois action 𝐻 on 𝐴 such that 𝑎 is 𝐻-equivariant. Taking the quotient by 𝐻 and we obtain a morphism
𝑏 : 𝑋 → 𝐴/𝐻. Let 𝑠𝜚 : 𝑋 → 𝑆𝜚 be the quasi-Stein factorization of 𝑏. In [CDY22], we prove that 𝑠𝜚 the desired
factorization in Theorem 1.E. Indeed, by the property of the harmonic map 𝑢, 𝑠𝜚 (𝑍) is a point if and only if 𝑢(𝑍 ′)
is a point in Δ(𝐺), where 𝑍 ′ is a connected component 𝜋−1

0 (𝑍) with 𝜋0 : 𝑋 → 𝑋 being universal covering map.
Note that 𝑢(𝑍 ′) is a point in Δ(𝐺) if and only if 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) fixes a point 𝑃 ∈ Δ(𝐺), hence is a
bounded subgroup. □

1.6. Further applications

Further applications of Theorems 1.A, 1.B and 1.E include the hyperbolicity of quasi-projective varieties whose
fundamental groups admit a large representation (see Chapter 2), as well as constructing the Shafarevich morphism
for linear representations of the fundamental groups of quasi-projective varieties (see Chapters 3 and 4). There are
some further work in progress and let me mention a few without giving details. In [EKPR12] Eyssidieux et. al.
proved the Shafarevich conjecture for smooth complex projective varieties with complex linear fundamental group
and they proposed to extend their work to the singular setting. In a forthcoming work, we proved that complex
projective normal varieties have universal coverings holomorphically convex provided that their fundamental
groups are complex linear. In another joint work with Botong Wang, we applied techniques from non-abelian
Hodge theories to establish the following Singer-Hopf conjecture in the linear case:
Theorem 1.F ( [WB20]). — Let 𝑋 be a complex projective manifold. If there exists a large linear representation
𝜌 : 𝜋1 (𝑋) → GL𝑁 (𝐾) where 𝐾 is any field, then for any perverse sheaf 𝒫 on 𝑋 , its Euler characteristic
𝜒(𝑋,𝒫) ≥ 0.
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A direct consequence is the following result.
Corollary 1.G ( [WB20]). — Let 𝑋 be a complex projective manifold. Assume that 𝑋 is aspherical, i.e., its
universal covering is contractible. If there exists an almost faithful representation 𝜌 : 𝜋1 (𝑋) → GL𝑁 (𝐾) where 𝐾
is any field, then (−1)dim X𝜒(𝑋) ≥ 0.



CHAPTER 2

HYPERBOLICITY AND FUNDAMENTAL GROUPS OF QUASI-PROJECTIVE
VARIETIES

2.1. Notions of hyperbolicity

The notion of hyperbolicity originates from Picard’s great theorem and Picard’s little theorem on the range of
an analytic function.
Theorem 2.1.1 (Little Picard theorem). — Any holomorphic map 𝑓 : C → P1\{0, 1,∞} must be constant.

This theorem is a significant strengthening of Liouville’s theorem which states that the image of an entire
non-constant function must be unbounded.
Theorem 2.1.2 (Great Picard theorem). — Any holomorphic map 𝑓 : D∗ → P1\{0, 1,∞} from the punctured
unit disk does not have essential singularity at the origin.

This is a substantial strengthening of the Casorati–Weierstrass theorem, which only guarantees that the range of
a holomorphic function defined over D∗ with essential singularity at the origin has image dense in C. One can see
that Theorem 2.1.2 implies Theorem 2.1.1.

The complex algebraic varieties that have the similar properties as described in Theorems 2.1.1 and 2.1.2 is
called hyperbolic. Precisely, we have the following definition.
Definition 2.1.3 (Hyperbolicity). — Let 𝑋 be a complex quasi-projective variety.
(i) 𝑋 is pseudo Picard hyperbolic if there is a proper Zariski closed subset Ξ ⫋ 𝑋 such that any holomorphic

map 𝑓 : D∗ → 𝑋 from the punctured disk D∗ to 𝑋 with 𝑓 (D∗) ⊈ Ξ extends to a holomorphic map from the
disk D to a projective compactification 𝑋 of 𝑋 .

(ii) 𝑋 is pseudo Brody hyperbolic if there is a proper Zariski closed subset Ξ ⫋ 𝑋 such that any non-constant
holomorphic map 𝑓 : C → 𝑋 has image in Ξ.

Note that every pseudo Picard hyperbolic variety is pseudo Brody hyperbolic. While we conjecture the converse
to hold true, as of now, we lack both a proof and any counter-example of our conjecture.

In the algebraic setting, we introduce the following definition.
Definition 2.1.4 (Strongly of log general type). — Let 𝑋 be a complex quasi-projective variety. 𝑋 is strongly
of log general type if there is a proper Zariski closed subset Ξ ⫋ 𝑋 such that any positive-dimensional closed
subvariety of 𝑋 not contained in Ξ is of log general type.

Lang conjectured that a complex quasi-projective variety is strongly of log general type if it is of log general
type. To my knowledge, this conjecture remains open even for complex surfaces.

2.2. Generalized Green-Griffiths-Lang conjecture

To characterize algebraic varieties falling into the hyperbolic category, we will start by examining cases where𝐶
is a smooth quasi-projective curve, with 𝐶 as its compactification, and 𝐷 representing the complement of 𝐶 within
𝐶. Here is a classification: As we can see from the table provided, we can make the following observations: from
an algebraic geometric perspective, we can identify hyperbolic curves as those possessing a positive logarithmic

Figure 1. Hyperbolicity from different viewpoints
deg(𝐾

𝐶
+ 𝐷) 𝜋1 (𝐶) Hyperbolicity

P1,C < 0 {1} no

C∗, torus = 0 Infinite,
abelian no

P1\{at least three points}
torus\{at least one point} · · · > 0 Infinite, non-

abelian yes
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canonical bundle. On the other hand, from a topological standpoint, hyperbolic curves are characterized by having
infinite and non-abelian fundamental groups.

It’s worth noting that the generalized Green-Griffiths-Lang conjecture aligns with the algebraic geometric
viewpoint, focusing on the positivity of the logarithmic canonical bundle.
Conjecture 2.2.1 (Generalized Green-Griffiths-Lang conjecture). — Let 𝑋 be a smooth quasi-projective variety.
Then the following properties are equivalent:
(i) 𝑋 is of log general type;
(ii) 𝑋 is pseudo-Picard hyperbolic;
(iii) 𝑋 is pseudo-Brody hyperbolic;
(iv) 𝑋 is strongly of log general type.

So far Conjecture 2.2.1 remains an open and challenging problem, even in situations where 𝑋 is a surface. We
are fascinated by this conjecture due to its analogy with the Bombieri-Lang conjecture concerning rational points.
Conjecture 2.2.2 (Bombieri-Lang). — Let 𝑋 be a smooth projective variety defined over a number field 𝑘 . Then
there exists a dense Zariski closed subset Ξ ⫋ 𝑋 such that for all number field extensions 𝑘 ′ of 𝑘 , the set of
𝑘 ′-rational points in 𝑋\Ξ is finite.

2.3. Property of Picard hyperbolicity and some examples

It is natural to ask why we are interested in the more general notion Picard hyperbolicity. It indeed enjoys the
following algebraicity property.
Proposition 2.3.1 ( [Den23]). — Let 𝑋 be a smooth quasi-projective variety that is pseudo Picard hyperbolic.
Then any meromorphic map 𝑓 : 𝑌 d 𝑋 from another smooth quasi-projective variety 𝑌 to 𝑋 with 𝑓 (𝑌 ) ⊄ Spp (𝑋)
is rational.

A direct consequence of Proposition 2.3.1 is the following uniquness of algebraic structure of pseudo Picard
hyperbolic varieties.
Corollary 2.3.2 ( [Den23]). — Let 𝑋 and 𝑌 be smooth quasi-projective varieties such that there exists an analytic
isomorphism 𝜑 : 𝑌 an → 𝑋an of associated complex spaces. Assume that 𝑋 is pseudo Picard hyperbolic. Then 𝜑 is
an algebraic isomorphism. □

As we will see in Chapter 5, Picard hyperbolicity has more applications in algebraic geometry.
Let us discuss some examples of pseudo Picard hyperbolic varieties. A classical result due to Borel [Bor72]

and Kobayashi-Ochiai [KO71] is that quotients of bounded symmetric domains by torsion-free lattices are Picard
hyperbolic. In [Den23] we proved a similar result for algebraic varieties that admit a complex variation of Hodge
structures.
Theorem 2.3.3 ( [Den23, Theorem A]). — Let 𝑋 be a quasi-projective manifold. Assume that there is a complex
variation of Hodge structures on 𝑋 whose period mapping is injective at one point. Then 𝑋 is pseudo Picard
hyperbolic. □

Theorem 2.3.3 will be used in the proof of Theorem 2.A.
In [Nad89], Nadel proved the nonexistence of certain level structures on abelian varieties over complex function

fields, which was refined by Rousseau in [Rou16]. Precisely, they proved the following theorem:
Theorem 2.3.4 ( [Nad89,Rou16]). — Let 𝑋 be a smooth quasi-projective variety such that 𝑋 = Ω/Γ where Ω is a
bounded symmetric domain and Γ is an arithmetic torsion free lattice acting on Ω. Then there exists a finite index
subgroup Γ′ ⊂ Γ, such that for the quasi-projective variety 𝑋 ′ := Ω/Γ′, its projective compactification 𝑋 ′ is Brody
(moreover Kobayashi) hyperbolic modulo the boundary 𝑋 ′\𝑋 ′.

In [Den23], we obtained the following result which incorporates previous results by Nadel and Rousseau.
Theorem 2.3.5 ( [Den23, Theorem B]). — Let 𝑋 be a quasi-projective manifold. Assume that there is a complex
variation of Hodge structures on 𝑋 whose period mapping is injective at one point. Then there exists a finite étale
cover 𝑋 ′ of 𝑋 such that its projective compactification 𝑋 ′ is pseudo Picard hyperbolic.

The proofs of Theorems 2.3.3 and 2.3.5 in [Den23] are involved and rely heavily on the analytic aspects of
Hodge theories. Later, in [CD21], we present a simplified proof. Nonetheless, Nevanlinna theory plays an essential
role in both works.

2.4. How fundamental groups determine hyperbolicity

It is natural to inquire into the relationship between the (topological) fundamental groups, denoted as 𝜋1 (𝑋),
of complex algebraic varieties 𝑋 and their hyperbolicity property. From a topological perspective, as illustrated in
section 2.2, a characterization of hyperbolicity necessitates that the fundamental group 𝜋1 (𝑋) be both infinite and
non-abelian. Moreover, the following example shows that we need more assumptions.
Example 2.4.1. — Let 𝐶 be a projective curve of genus at least two. Then 𝜋1 (𝐶 × P1) ≃ 𝜋1 (𝐶) is infinite and
non-abelian. It is not pseudo Brody hyperbolic.
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To exclude the cases of the above example, we need to introduce the definition of big representation of fundamental
groups.
Definition 2.4.2 (Big representation). — Let 𝑋 be a quasi-projective normal variety, and let 𝐺 be any group. A
representation 𝜚 : 𝜋1 (𝑋) → 𝐺 is said to be big, or generically large in [Kol95], if for any positive dimensional
closed subvariety 𝑍 ⊂ 𝑋 containing a very general point of 𝑋 , 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is infinite, where
𝑍norm denotes the normalization of 𝑍 . Moreover, 𝜚 is called large if 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is infinite for any
positive dimensional closed subvariety 𝑍 of 𝑋 .

Therefore, if 𝜋1 (𝑋) is big, then it is not A1-uniruled, i.e., for a very general point 𝑥 ∈ 𝑋 there exists a morphism
A1 → 𝑋 whose image passes to 𝑥. Hence a variety with big representation will exclude the non-hyperbolic examples
in Example 2.4.1. However, it is easy to construct non-hyperbolic varieties with large fundamental groups.
Example 2.4.3. — Let 𝐶 be a projective curve of genus at least two and let 𝐸 be an elliptic curve. Then
𝜋1 (𝐶 × 𝐸) ≃ 𝜋1 (𝐶) × 𝜋1 (𝐸) is large and non-abelian. It is not pseudo Brody hyperbolic.

Example 2.4.3 shows that the the product of varieties with elliptic curves, or more generally elliptic surfaces,
though their fundamental groups are large and non-abelian, they are not pseudo Brody hyperbolic. To exclude these
examples, we introduce the definition of semisimple fundamental groups.
Definition 2.4.4 (Semisimple group). — Let 𝐺 be a finitely generated group. 𝐺 is also semisimple if it has no
non-trivial normal infinite abelian subgroups.

We propose the conjecture that varieties endowed with substantial and semisimple fundamental groups are
necessarily hyperbolic.
Conjecture 2.4.5. — Let 𝑋 be a quasi-projective normal variety. If there exists a representation 𝜚 : 𝜋1 (𝑋) → 𝐺

which is big and 𝜚(𝜋1 (𝑋)) is semisimple, then 𝑋 is strongly of log general type and pseudo Picard hyperbolic.

2.5. Hyperbolicity of varieties with big fundamental groups

Concerning Conjecture 2.4.5, when 𝐺 is a linear complex algebraic group and 𝑋 is projective, this conjecture
has been proven in [Yam10,CCE15]. Recall that a linear algebraic group 𝐺 over a field 𝐾 is called semisimple if
it has no non-trivial connected normal solvable algebraic subgroups defined over the algebraic closure of 𝐾 , and
has positive dimension. Specifically, Campana-Claudon-Eyssidieux [CCE15, Theorem 1] proved that a smooth
complex projective variety 𝑋 with a Zariski dense representation 𝜚 : 𝜋1 (𝑋) → 𝐺 (C), where𝐺 is a semisimple linear
algebraic group over C, is of general type when 𝜚 is big (𝑎) . At almost the same time, Yamanoi [Yam10, Proposition
2.1] proved that 𝑋 does not admit Zariski dense entire curves 𝑓 : C → 𝑋 .

A representation 𝜚 : 𝜋1 (𝑋) → 𝐺 (C) is said to be big, or generically large in [Kol95], if for any closed
irreducible subvariety 𝑍 ⊂ 𝑋 containing a very general point of 𝑋 , 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is infinite, where
𝑍norm denotes the normalization of 𝑍 . It is worth noting that a stronger notion of largeness exists, where 𝜚 is called
large if 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is infinite for any closed subvariety 𝑍 of 𝑋 . In [CDY22], with Cadorel and
Yamanoi, we generalize and strengthen the above theorems to complex quasi-projective varieties. In [DY24], we
establish analogous result for representation in positive characteristic. Our main result is the following:
Theorem 2.A. — Let 𝑋 be a complex quasi-projective normal variety and let 𝐺 be a semisimple algebraic group
over an infinite field 𝐾 . Assume that 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a big and Zariski dense representation.
(i) [CDY22, Theorem A] If char𝐾 = 0, then for any automorphism 𝜎 ∈ Aut(C/Q), denoting by 𝑋𝜎 the Galois

conjugate variety of 𝑋 under 𝜎, 𝑋𝜎 is strongly of log general type and pseudo Picard hyperbolic.
(ii) [DY24, Theorem E] If char𝐾 > 0, then 𝑋 is strongly of log general type and pseudo Picard hyperbolic.

We also mention that the two conditions for the representation 𝜚 in Theorem 2.A are essential to conclude the
two statements in Theorem 2.A, as we have seen in Examples 2.4.1 and 2.4.3.

It is noteworthy that the condition of bigness for the representations 𝜚 in Theorem 2.A is not particularly
restrictive, unlike the requirement for a large representation. In fact, in [CDY22, DY24] we demonstrate that any
linear representation of 𝜋1 (𝑋) can be factored through a big representation after taking a finite étale cover. This
result, combined with Theorem 2.A, yields a factorization theorem for linear representations of 𝜋1 (𝑋).
Corollary 2.B. — Let 𝑋 be a complex quasi-projective normal variety and let 𝐺 be a semisimple linear algebraic
group over any field 𝐾 . If 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a Zariski dense representation, then there exist a finite étale cover
𝜈 : 𝑋 → 𝑋 , a birational and proper morphism 𝜇 : 𝑋 ′ → 𝑋 , a dominant morphism 𝑓 : 𝑋 ′ → 𝑌 with connected
general fibers, and a big and Zariski dense representation 𝜏 : 𝜋1 (𝑌 ) → 𝐺 (𝐾) such that
— 𝑓 ∗𝜏 = (𝜈 ◦ 𝜇)∗𝜚.
— 𝑌 is strongly of log general type.
— 𝑌 is pseudo Picard hyperbolic.
In particular, 𝑋 is not weakly special and does not contain Zariski-dense entire curves.

a. This result was previously claimed by Zuo [Zuo96]. However, it seems to me that some arguments in [Zuo96] need amplification.
See [CDY22, Remarks 8.5 & 8.9] on the remarks on Zuo’s proof.
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Note that by Campana [Cam11], a quasi-projective variety 𝑋 is weakly special if for any finite étale cover
𝑋 → 𝑋 and any proper birational modification 𝑋 ′ → 𝑋 , there exists no dominant morphism 𝑋 ′ → 𝑌 with 𝑌 a
positive-dimensional quasi-projective normal variety of log general type.

Corollary 2.B generalizes the previous work by Mok [Mok92], Corlette-Simpson [CS08], and Campana-
Claudon-Eyssidieux [CCE15], in which they proved similar factorisation results.

We sketch the main idea behind the proof of Theorem 2.A.(i). The proof of Theorem 2.A.(ii) will be presented
in Chapter 4.
Proof of Theorem 2.A.(i) (sketch). — We can assume that 𝐾 = C. For simplicity, we assume that the Zariski
closure 𝐺 of 𝜚(𝜋1 (𝑋)) is almost simple. There are several cases that occurs.
Case 1. 𝜚 is rigid. It means that for any continuous deformation 𝜚𝑡 of 𝜚, we have [𝜚𝑡 ] = [𝜚], where [𝜚] denotes the
image of 𝜚 in the character variety 𝑀B (𝑋, 𝑁) (C) := 𝑀B (𝜋1 (𝑋),GL𝑁 ) (C). By the work of Mochizuki [Moc06],
𝜚 underlies a C-variation of Hodge structures (VHS for short). Moreover, after replacing 𝜚 by a conjugation, we
may assume that there exists a number field 𝑘 ⊂ Q such that
— 𝐺 is defined over 𝑘;
— we have the factorization 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝑘);
— 𝜚(𝜋1 (𝑋)) is Zariski dense in 𝐺.
Case 1.1. Assume that for each non-archimedean place 𝑣 of 𝑘 , the composite 𝜚𝑣 : 𝜋1 (𝑋) → GL𝑁 (𝑘𝑣) of 𝜚 and
𝑘 ↩→ 𝑘𝑣 , is bounded. Here 𝑘𝑣 denotes the non-archimedean completion of 𝑘 with respect to 𝑣.

If this case occurs, we have a factorization 𝜚 : 𝜋1 (𝑋) → GL𝑁 (O𝑘). Let us denote by Ar(𝑘) the set of archimedean
places of 𝑘 . Note that GL𝑁 (O𝑘) →

∏
𝑤∈Ar(𝑘 ) GL𝑁 (C) is a discrete subgroup by [Zim84, Proposition 6.1.3]. We

denote by 𝜚𝑤 : 𝜋1 (𝑋) → GL𝑁 (C) the composite of 𝜚 and 𝑤 : 𝑘 ↩→ C. Then 𝜚𝑤 is also rigid and thus underlies a
C-VHS. It follows that for the product representation∏

𝑤∈Ar(𝑘 )
𝜚𝑤 : 𝜋1 (𝑋) →

∏
𝑤∈Ar(𝑘 )

GL𝑁 (C),

its image Γ is discrete.
Let 𝒟 be the period domain corresponding to the C-VHS of 𝜎 :=

∏
𝑤∈Ar(𝑘 ) 𝜚𝑤 . Then 𝒟/Γ is a complex space

since Γ acts on 𝒟 discretely. Let 𝑝 : 𝑋 → 𝒟/Γ be the period map. Since we assume that 𝜚 is big, 𝜎 is also
big. One can thus show that dim 𝑋 = dim 𝑝(𝑋). We apply Theorem 2.3.3 to conclude that 𝑋 is pseudo Picard
hyperbolic, and is strongly of log general type by [BC20].
Case 1.2 Assume that there exists some non-archimedean place 𝑣 of 𝑘 , the composite 𝜚𝑣 : 𝜋1 (𝑋) → 𝐺 (𝑘𝑣) of
𝜚 and 𝑘 ↩→ 𝑘𝑣 , is unbounded. Note that 𝜚𝑣 (𝜋1 (𝑋)) is Zariski dense in 𝐺. Since 𝜚 is big, 𝜚𝑣 is also big. Then
conditions in Theorem 2.C are fulfilled. We conclude our theorem.
Case 2: 𝜚 is non-rigid. In the previous work like [CS08, Eys04, Zuo96], the authors constructed unbounded
representations using curves in character varieties in positive characteristic (after taking reduction mod 𝑝). However,
these unbounded representations might not be Zariski dense in 𝐺 nor big (hence we cannot apply Theorem 2.C).
In [CDY22] we introduce a completely new method to construct unbounded representations and avoid reduction
mod 𝑝.
Claim 2.5.1. — If 𝜚 : 𝜋1 (𝑋) → 𝐺 (C) is non-rigid, then there exists a big, Zariski dense, and unbounded
representation 𝜚′ : 𝜋1 (𝑋) → 𝐺 (𝐾), where 𝐾 is a finite extension of some Q𝑝 with 𝑝 prime.

The idea of the proof of Claim 2.5.1 is roughly that, for the set of bounded representations 𝑅 in the representation
variety 𝑅B (𝜋1 (𝑋), 𝐺) (𝐾), its image in the character variety 𝑀B (𝜋1 (𝑋), 𝐺) (𝐾) is compact. Since 𝜚 is non-rigid
and 𝑀B (𝜋1 (𝑋), 𝐺) is affine, the geometric connected component of 𝑀B (𝜋1 (𝑋), 𝐺) containing 𝜚 is non-compact.
Hence there exists some unbounded representation. Moreover, since the Zariski dense representation is a Zariski
open condition, we can make such unbounded representation Zariski dense. To ensure that it is big, we need some
extra work and refer the readers to [CDY22, Proposition 8.1] for more details.

Since 𝜚 is non-rigid, by Claim 2.5.1 we can construct a big, Zariski dense, and unbounded representation
𝜚′ : 𝜋1 (𝑋) → 𝐺 (𝐾), where 𝐾 is some non-archimedean local field. We then apply Theorem 2.C below to
conclude the theorem. □

Theorem 2.C ( [CDY22, Theorem I]). — Let 𝑋 be a quasi-projective normal variety and let 𝐺 be an absolutely
almost simple algebraic group defined over a non-archimedean local field 𝐾 . If 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a big,
Zariski dense, and unbounded representation, then 𝑋 is strongly of log general type, and pseudo Picard hyperbolic.

We would like to sketch the idea of the proof of Theorem 2.C since the methods are new even if 𝑋 is projective
(compared with [CCE15]).
Proof of Theorem 2.C (sketch). — We will use the same notation as in the proof of Theorem 1.E. Let 𝜋 : 𝑋sp → 𝑋

be the spectral covering induced by 𝜚. It is a finite Galois covering with the Galois group 𝐻. Let 𝑋 be a smooth
projective compactification of 𝑋 with 𝐷 := 𝑋\𝑋 a simple normal crossing divisor and 𝜋 extends to a finite Galois
cover 𝑋sp → 𝑋 . The spectral covering satisfies the following properties:
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— there exists forms {𝜂1, . . . , 𝜂ℓ } ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1
𝑋
(log𝐷)) such that {𝜂1, . . . , 𝜂ℓ } coincides with the mutivalued

one-forms 𝜋∗{𝜔1, . . . , 𝜔ℓ } induced by the 𝜚-equivariant pluriharmonic map 𝑢 with logarithmic energy at
infinity constructed in Theorem 1.A.

— Let us denote by Ram(𝜋) the ramification locus of 𝜋 : 𝑋sp → 𝑋 . Then we have

Ram(𝜋) ⊂
⋃
𝜂𝑖≠𝜂 𝑗

(𝜂𝑖 − 𝜂 𝑗 = 0).(2.5.1)

— {𝜂1, . . . , 𝜂ℓ } is invariant under the Galois group 𝐻.
Claim 2.5.2. — The partial quasi-Albanese map 𝑎 : 𝑋sp → 𝐴 induced by {𝜂1, . . . , 𝜂ℓ } satisfies dim 𝑋sp =

dim 𝑎(𝑋sp).
This is indeed a crucial fact in the proof of the theorem. It relies on the following lemma whose proof uses the
techniques in the Bruhat-Tits buildings.
Lemma 2.5.3 ( [CDY22, Lemma 5.3]). — Let 𝐺 be an almost simple algebraic group defined on a non-
archimedean local field 𝐾 . Assume that Γ ⊂ 𝐺 (𝐾) is a Zariski dense subgroup which is unbounded. If 𝑁 ⊳ Γ is a
normal subgroup which is bounded, then 𝑁 is finite.

Let us explain the proof of Claim 2.5.2. Assume by contradiction that dim 𝑎(𝑋sp) < dim 𝑋sp. Let 𝐹 be a
connected component of a general fiber of 𝑎. By Claim 1.5.1, we know that 𝜂𝑖 |𝐹 ≡ 0 for each 𝜂𝑖 .

Let 𝜋′ : 𝑋sp → 𝑋sp be the universal covering and denote by �̃� : 𝑋sp → 𝑋 be the map between universal covering
lifting 𝜋 : 𝑋sp → 𝑋 . Then 𝑢◦ �̃� : 𝑋sp → Δ(𝐺) is 𝜋∗𝜚-equivariant harmonic map with logarithmic energy at infinity.
Let 𝐹′ be a connected component of 𝜋′−1 (𝐹). Since {𝜂1, . . . , 𝜂ℓ } is generically the (1, 0)-part of complexified
differentials of 𝑢 ◦ �̃�, it follows that 𝑢 ◦ �̃�(𝐹′) is a point. This implies that 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) fixes a point
in Δ(𝐺), hence is bounded.

On the other hand, note that 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is a normal subgroup of 𝜋∗𝜚(𝜋1 (𝑋sp)), which is
unbounded as 𝜚 is unbounded. By Lemma 2.5.3, we conclude that 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is finite.

Since we assume that 𝜚 is big, 𝜋∗𝜚 is also big. We obtain a contradiction. Hence dim 𝑎(𝑋sp) = dim 𝑋sp.
Therefore, the logarithmic Kodaira dimension 𝜅(𝑋sp) ≥ 0. Assume that it is not maximal, then for the

logarithmic Iitaka fibration 𝑗 : 𝑋sp → 𝐽 has general fibers positive dimensional. Let 𝐹 be a general fiber of 𝐹.
Then 𝑎 |𝐹 : 𝐹 → 𝐴 is generically finite into the image and 𝜅(𝐹) = 0. By Lemma 2.5.4, we conclude that 𝜋1 (𝐹) is
abelian.

Since 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is a normal subgroup of 𝜋∗𝜚(𝜋1 (𝑋sp)) and 𝜚 is Zariski dense, we conclude
that the Zariski closure of 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]), denoted by 𝑁 , is a normal subgroup of 𝐺𝑜 (the identify
connected component of𝐺). Since𝐺 is almost simple, it follows that𝑁 is finite. Hence 𝜋∗𝜚(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)])
is finite, contradicting with the assumption that 𝜚 is big. Therefore, 𝑗 is birational, and we conclude that 𝑋sp is of
log general type.

We will spread the positivity from 𝑋sp to 𝑋 to show that 𝑋 is of log general type. This step is innovative and as
far as I know, the method has never appeared before.

Define a section
𝜎 :=

∏
ℎ∈𝐻

∏
𝜂𝑖≠𝜂 𝑗

ℎ∗ (𝜂𝑖 − 𝜂 𝑗 ) ∈ 𝐻0 (𝑋sp, Sym𝑀𝜋∗Ω
𝑋
(log𝐷)),

which is non-zero. By eq. (2.5.1), 𝜎 vanishes at Ram(𝜋). Since it is invariant under the 𝐻-action, it descends to a
section

𝜎𝐻 ∈ 𝐻0 (𝑋, Sym𝑀Ω
𝑋
(log𝐷))

so that 𝜋∗𝜎𝐻 = 𝜎. Let 𝑅 ⊂ 𝑋 be the ramification locus of 𝜋 : 𝑋sp → 𝑋 and let �̄� be its closure in 𝑋 . By the purity
we know that 𝑅 is a divisor on 𝑋 . Note that 𝜎𝐻 vanishes at 𝑅. Therefore, it induces a non-trivial morphism

O
𝑋
(𝑅) → Sym𝑀Ω

𝑋
(log𝐷).(2.5.2)

Since 𝑋sp is of log general type, and 𝜋 is unramified over 𝑋 − 𝑅, it follows that 𝐾
𝑋
+ 𝐷 + 𝑅 is big. eq. (2.5.2)

together with the criterion in [CP19, Corollary 8.7], implies that 𝐾
𝑋
+𝐷 is big. Therefore, 𝑋 is of log general type.

We will prove that 𝑋 is pseudo Picard hyperbolic after we introduce some notions of Nevanlinna theory in
Section 2.6. □

Lemma 2.5.4 ( [CDY22, Lemma 3.3]). — Let 𝛼 : 𝑋 → A be a (possibly non-proper) morphism from a quasi-
projective manifold 𝑋 to a semi-abelian variety A with 𝜅(𝑋) = 0. Assume that dim 𝑋 = dim𝛼(𝑋). Then 𝜋1 (𝑋) is
abelian and 𝛼 is proper in codimension one.

2.6. A theorem of Nevanlinna theory on semiabelian variety

In this section, 𝐴 is a semi-abelian variety and 𝑌 is a Riemann surface with a proper surjective holomorphic
map 𝜋 : 𝑌 → C>𝛿 , where C>𝛿 := {𝑧 ∈ C | 𝛿 < |𝑧 |} with some fixed positive constant 𝛿 > 0.
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For 𝑟 > 2𝛿, define 𝑌 (𝑟) = 𝜋−1 (C>2𝛿 (𝑟)
)

where C>2𝛿 (𝑟) = {𝑧 ∈ C | 2𝛿 < |𝑧 | < 𝑟}. In the following, we assume
that 𝑟 > 2𝛿. The ramification counting function of the covering 𝜋 : 𝑌 → C>𝛿 is defined by

𝑁ram 𝜋 (𝑟) :=
1

deg𝜋

∫ 𝑟

2𝛿


∑︁
𝑦∈𝑌 (𝑡 )

ord 𝑦ram 𝜋


𝑑𝑡

𝑡
,

where ram 𝜋 ⊂ 𝑌 is the ramification divisor of 𝜋 : 𝑌 → C>𝛿 .
Let 𝐿 be a line bundle on 𝑋 . Let 𝑓 : 𝑌 → 𝑋 be a holomorphic map. We define the order function 𝑇 𝑓 (𝑟, 𝐿) as

follows. First suppose that 𝑋 is smooth. We equip with a smooth hermitian metric ℎ𝐿 , and let 𝑐1 (𝐿, ℎ𝐿) be the
curvature form of (𝐿, ℎ𝐿).

𝑇 𝑓 (𝑟, 𝐿) :=
1

deg 𝜋

∫ 𝑟

2𝛿

[∫
𝑌 (𝑡 )

𝑓 ∗𝑐1 (𝐿, ℎ𝐿)
]
𝑑𝑡

𝑡
.

This definition is independent of the choice of the hermitian metric up to a function 𝑂 (log 𝑟).
Theorem 2.D ( [CDY22, Theorem 4.2]). — Let 𝑋 be a smooth quasi-projective variety which is of log general
type. Assume that there is a morphism 𝑎 : 𝑋 → 𝐴 such that dim 𝑋 = dim 𝑎(𝑋). Then there exists a proper
Zariski closed set Ξ ⫋ 𝑋 with the following property: Let 𝑓 : 𝑌 → 𝑋 be a holomorphic map such that
𝑁ram 𝜋 (𝑟) = 𝑂 (log 𝑟) + 𝑜(𝑇 𝑓 (𝑟)) | | and that 𝑓 (𝑌 ) ⊄ Ξ. Then 𝑓 does not have essential singularity over ∞,
i.e., there exists an extension 𝑓 : 𝑌 → 𝑋 of 𝑓 , where 𝑌 is a Riemann surface such that 𝜋 : 𝑌 → C>𝛿 extends to a
proper map 𝜋 : 𝑌 → C>𝛿 ∪ {∞} and 𝑋 is a compactification of 𝑋 .

Note that Theorem 2.D is proven by Yamanoi in [Yam15] when 𝑋 is compact. The proof of Theorem 2.D is
based on techniques in Nevanlinna theories in [Yam15]. Compared with the compact case treated in [Yam15], the
lack of Poincaré reducibility theorem is a major difficulity to treat the non-compact case. We use a more general
“cover” than étale cover to overcome this problem. We refer the readers to [CDY22, Remark 4.35] for the main
difficulty and novelty in the non-compact cases. Since the proof of Theorem 2.D is highly involved and unrelated to
other aspects of the paper, we choose to omit it. Instead, we present a fundamental result from Nevanlinna theory.
Claim 2.6.1. — Let 𝑓 : 𝑌 → 𝑋 be as above. If the order function 𝑇 𝑓 (𝑟, 𝐿) = 𝑂 (log 𝑟) as 𝑟 → ∞, then 𝑓 does not
have essential singularity at infinity.

In a nutshell, the ultimate goal in proving Theorem 2.D is to estimate the order function 𝑇 𝑓 (𝑟, 𝐿) utilizing
Nevanlinna theory tools, such as the logarithmic derivative lemma, the Second Main Theorem, jet differentials, and
other related techniques.

In the context of Nevanlinna theory if [CDY22, §4], another crucial result is obtained.
Theorem 2.6.2 ( [CDY22, Corollary 4.32]). — Let 𝑋 be a smooth quasi-projective variety and let 𝑎 : 𝑋 → 𝐴× 𝑆
be a morphism such that dim 𝑋 = dim 𝑎(𝑋), where 𝑆 is a smooth quasi-projective variety (𝑆 can be a point). Write
𝑏 : 𝑋 → 𝑆 as the composition of 𝑎 with the projection map 𝐴 × 𝑆 → 𝑆. Assume that 𝑏 is dominant.
(i) Suppose 𝑆 is pseudo Picard hyperbolic. If 𝑋 is of log general type, then 𝑋 is pseudo Picard hyperbolic.
(ii) Suppose Spalg (𝑆) ⫋ 𝑆. If Spsab (𝑋) ⫋ 𝑋 , then Spalg (𝑋) ⫋ 𝑋 .

We will continue the proof of Theorem 2.C using Theorem 2.D.

Proof of Theorem 2.C (continued). — Let 𝑔 : D∗ → 𝑋 be non-constant holomorphic map that is not contained
in Ram(𝜋). Then there exists a Riemann surface 𝑌 , a proper surjective holomorphic map 𝑝 : 𝑌 → D∗ and a
holomorphic map 𝑓 : 𝑌 → 𝑋sp such that we have the following commutative diagram

𝑌 𝑋sp

D∗ 𝑋

𝑓

𝑝 𝜋

𝑔

We first estimate the ramification counting function of 𝑝 : 𝑌 → D∗.
Claim 2.6.3 ( [CDY22, Proposition 6.9]). — There exists a proper Zariski closed subset Ξ1 ⊊ 𝑋 such that if
𝑔(D∗) ⊄ Ξ1, then we have

𝑁ram 𝜋 (𝑟) = 𝑂 (log 𝑟) + 𝑜(𝑇 𝑓 (𝑟)).
Recall that 𝑋sp is of log general type and we have a morphism 𝑎 : 𝑋sp → 𝐴 such that dim 𝑋sp = dim 𝑎(𝑋sp).

Therefore, we apply Theorem 2.D to conclude that there exists a proper Zariski closed subset Ξ2 ⊊ 𝑋 𝑔 does
not have essential singularity at the origin provided that 𝑔(D∗) ⊄ Ξ1 ∪ Ξ2. This proves that 𝑋 is pseudo Picard
hyperbolic. □

2.7. On the generalized Green-Griffiths-Lang conjecture

Building upon Theorem 2.A, we further investigate Conjecture 2.2.1 and its relation to the non-hyperbolicity
locus of a smooth quasi-projective variety 𝑋 , under the weaker assumption that 𝜋1 (𝑋) admits a big and reductive
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representation. Specifically, we introduce four special subsets of 𝑋 that measure the non-hyperbolicity locus from
different perspectives, as defined in Definition 2.7.1. Our main result, given in Theorem 2.E, establishes the
equivalence of several properties of the conjugate variety 𝑋𝜎 under the assumption that 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is
a big and reductive representation, and for any automorphism 𝜎 ∈ Aut(C/Q). Additionally, we provide a further
result regarding the special subsets, as stated in Theorem 2.F.
Definition 2.7.1 (Special subsets). — Let 𝑋 be a smooth quasi-projective variety.

(i) Spsab (𝑋) :=
⋃
𝑓 𝑓 (𝐴0)

Zar
, where 𝑓 ranges over all non-constant rational maps 𝑓 : 𝐴 d 𝑋 from all semi-

abelian varieties 𝐴 to 𝑋 such that 𝑓 is regular on a Zariski open subset 𝐴0 ⊂ 𝐴 whose complement 𝐴\𝐴0 has
codimension at least two;

(ii) Sph (𝑋) :=
⋃
𝑓 𝑓 (C)

Zar
, where 𝑓 ranges over all non-constant holomorphic maps from C to 𝑋;

(iii) Spalg (𝑋) :=
⋃
𝑉 𝑉

Zar
, where 𝑉 ranges over all positive-dimensional closed subvarieties of 𝑋 which are not of

log general type;
(iv) Spp (𝑋) :=

⋃
𝑓 𝑓 (D∗)Zar

, where 𝑓 ranges over all holomorphic maps from the punctured disk D∗ to 𝑋

with essential singularity at the origin, i.e., 𝑓 has no holomorphic extension 𝑓 : D → 𝑋 to a projective
compactification 𝑋 .

The first two sets Spsab (𝑋) and Sph (𝑋) are introduced by Lang for the compact case. He made the following
two conjectures:
— Spsab (𝑋) ⫋ 𝑋 if and only if 𝑋 is of general type.
— Spsab (𝑋) = Sph (𝑋).
The first assertion implicitly includes the following third conjecture:
— Spsab (𝑋) = Spalg (𝑋).

The original two conjectures imply the famous strong Green-Griffiths conjecture that varieties of (log) general
type are pseudo Brody hyperbolic. Here we note that, by definition, 𝑋 is pseudo Brody hyperbolic if and only if
Sph (𝑋) ⫋ 𝑋 . Similarly, 𝑋 is pseudo Picard hyperbolic if and only if Spp (𝑋) ⫋ 𝑋 .
Theorem 2.E. — Let 𝑋 be a complex smooth quasi-projective variety and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a big
representation where 𝐾 is any infinite field.
(i) [CDY22, Theorem C] If char𝐾 = 0 and 𝜚 is reductive, then for any automorphism 𝜎 ∈ Aut(C/Q),

Conjecture 2.2.1 holds for the conjugate variety 𝑋𝜎 := 𝑋 ×𝜎 SpecC, where 𝜎 ∈ Aut(C/Q).
(ii) [DY24, Theorem C] If char𝐾 > 0, then Conjecture 2.2.1 holds for 𝑋 .

Let us explain how to obtain Theorem 2.E.(i) via Theorem 2.6.2 and Theorem 2.A.
Proof of Theorem 2.E.(i) (sketch). — We may assume that 𝐾 = C. Let 𝐺 be the Zariski closure of 𝜚, which is a
complex reductive group as we assume that 𝜚 is reductive. We may assume that 𝐺 is connected after we replace 𝑋
by a finite étale cover. Let D𝐺 be the derived group of 𝐺 and let 𝑅(𝐺) be the radical of 𝐺. Define 𝐺1 := 𝐺/𝑅(𝐺)
which is semisimple and 𝐺2 := 𝐺/D𝐺 which is a torus. Then 𝐺 → D𝐺 × 𝑇 is an isogeny.

Consider the representation 𝜎 : 𝜋1 (𝑋) → 𝐺1 (C) by composing 𝜚 with the quotient𝐺 → 𝐺1. Then 𝜎 is Zariski
dense. By Proposition 2.7.2, after replacing 𝑋 by a finite étale cover and a birational proper modification, there
exists a dominant morphism 𝑓 : 𝑋 → 𝑌 with connected general fibers, and a big representation 𝜏 : 𝜋1 (𝑌 ) → 𝐺 (𝐾)
such that 𝑓 ∗𝜏 = 𝜎. Since 𝜎 is Zariski dense and 𝐺 is connected, it follows that 𝜏 is also Zariski dense. Therefore,
by Theorem 2.A, we conclude that 𝑌 is pseudo Picard hyperbolic and strongly of log general type, if it is not a
point.

Consider the morphism ( 𝑓 , albX) : 𝑋 → 𝑌 × 𝐴, where alb𝑋 : 𝑋 → 𝐴 is the quasi-Albanese map of 𝑋 . Since 𝜚
is big, we can show that 𝑔 := ( 𝑓 , albX) is generically finite into its image. Hence we apply Theorem 2.E to conclude
that Conjecture 2.2.1 holds for 𝑋 . □

The following factorization was proved in [CDY22] in the case where char𝐾 = 0 and in general in [DY24,
Proposition 5.8]. It will be used throughout this memoir.
Proposition 2.7.2 ( [CDY22,DY24]). — Let 𝑋 be a quasi-projective normal variety. Let 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) be
a representation, where 𝐺 is a linear algebraic group defined over any field 𝐾 . Then there is a diagram

𝑋 𝑋 𝑋

𝑌

𝜇

𝑓

𝜈

where 𝑌 and 𝑋 are quasi-projective manifolds, and

(a) 𝜈 : 𝑋 → 𝑋 is a finite étale cover;
(b) 𝜇 : 𝑋 → 𝑋 is a birational proper morphism;
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(c) 𝑓 : 𝑋 → 𝑌 is a dominant morphism with connected general fibers;
such that there exists a big representation 𝜏 : 𝜋1 (𝑌 ) → 𝐺 (𝐾) with 𝑓 ∗𝜏 = (𝜈 ◦ 𝜇)∗𝜚.

In Theorems 2.A and 2.E, the hyperbolicity of conjugate varieties 𝑋𝜎 for any 𝜎 ∈ Aut(C/Q) is claimed. It is
based on the following result.
Proposition 2.7.3 ( [CDY22, Proposition 8.6]). — Let 𝑋 be a smooth quasi-projective variety and let 𝜌 : 𝜋1 (𝑋) →
GL𝑛 (C) be a representation. Let 𝜎 ∈ Aut(C/Q). Then there exists a representation 𝜏 : 𝜋1 (𝑋𝜎) → GL𝑛 (C) such
that the Zariski closures satisfy

(2.7.1) 𝜌(𝜋1 (𝑋))
Zar

= 𝜏(𝜋1 (𝑋𝜎))
Zar
.

More precisely, 𝜏 satisfies the following property: If 𝑌 → 𝑋 is a morphism from a smooth quasi-projective variety
𝑌 , we have

(2.7.2) 𝜌(Im[𝜋1 (𝑌 ) → 𝜋1 (𝑋)])
Zar

= 𝜏(Im[𝜋1 (𝑌 𝜎) → 𝜋1 (𝑋𝜎)])
Zar
.

In particular, if 𝜌 is big (resp. large), then 𝜏 is big (resp. large).
Proposition 2.7.3 is not obvious since in general, the fundamental groups of the complex variety 𝑋 and 𝑋𝜎

may be quite different, as demonstrated by the famous examples of Serre [Ser64]. Despite this, their algebraic
fundamental groups, which are the profinite completions of the topological fundamental groups, are canonically
isomorphic. Our proof of Proposition 2.7.3 is based on this fact.
Proof of Proposition 2.7.3 (sketch). — Since 𝜋1 (𝑋) is finitely generated, we can find a finite subset 𝑆 ⊂ C such
that for each element 𝛾 ∈ 𝜋1 (𝑋), each entry of the matrix 𝜚(𝛾) lies on the smallest subring of C generated by 𝑆. Let
Q(𝑆) be the smallest subfield of C containing 𝑆. We now apply Cassels’ p-adic embedding theorem (cf. [Cas76])
to show that there exist a prime number 𝑝 ∈ N and embeddings 𝜄 : Q(𝑆) ↩→ Q𝑝 and 𝜇 : Q𝑝 ↩→ C of fields such
that

(2.7.3) |𝜄(𝑥) |𝑝 = 1

for all 𝑥 ∈ 𝑆 and 𝜇 ◦ 𝜄 is the identity map. Via such embedding, (2.7.3) yields that e GL𝑛 (Z𝑝). Since GL𝑛 (Z𝑝) is
a profinite group, 𝜌 extends to �̂� : �𝜋1 (𝑋) → GL𝑛 (Z𝑝), where �𝜋1 (𝑋) is the profinite completion of 𝜋1 (𝑋). Since�𝜋1 (𝑋) is isomorphic to �𝜋1 (𝑋𝜎), we can find the desired 𝜏 from the above construction. □

As for the second and third conjectures of Lang, we obtain the following theorem under the stronger assumption
when 𝜋1 (𝑋) admits a large and reductive representation.
Theorem 2.F ( [CDY22, Theorem D]). — Let 𝑋 be a smooth quasi-projective variety and let 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (C) be a large and reductive representation. Then for any automorphism 𝜎 ∈ Aut(C/Q),
(i) the four special subsets defined in Definition 2.7.1 are the same, i.e.,

Spalg (𝑋𝜎) = Spsab (𝑋𝜎) = Sph (𝑋𝜎) = Spp (𝑋𝜎).

(ii) These special subsets are conjugate under automorphism 𝜎, i.e.,

Sp• (𝑋𝜎) = Sp• (𝑋)𝜎 ,

where Sp• denotes any of Spalg, Spsab, Sph or Spp.
For representation into algebraic groups in positive characteristic, we have a stronger result. We first introduce

a notion of special loci Sp(𝜚) for any big representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) which measure the “non-large
locus” of 𝜚.
Definition 2.7.4. — Let 𝑋 be a smooth quasi-projective variety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a representation
where 𝐾 is a field. We define

Sp(𝜚) :=
⋃

𝜄:𝑍↩→𝑋
𝑍,

where 𝜄 : 𝑍 ↩→ 𝑋 ranges over all positive dimensional closed subvarieties of 𝑋 such that 𝜄∗𝜚(𝜋1 (𝑍)) is finite.
Subsequently, we establish a theorem concerning these special subsets, thereby refining Theorem 2.E.

Theorem 2.G ( [DY24, Theorem D]). — Let 𝑋 be a quasi-projective normal variety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾)
be a big representation where 𝐾 is a field of positive characteristic. Then Sp(𝜚) is a proper Zariski closed subset
of 𝑋 , and we have

Spalg (𝑋) \ Sp(𝜚) = Spalg (𝑋) \ Sp(𝜚) = Spp (𝑋) \ Sp(𝜚) = Sph (𝑋) \ Sp(𝜚).

We have Sp• (𝑋) ⊊ 𝑋 if and only if 𝑋 is of log general type, where Sp• denotes any of Spsab, Spalg, Sph or Spp.
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2.8. On positive characteristic case

In previous subsections, we provided an outline of the proofs for Theorems 2.A.(i) and 2.E.(i). We defer the
discussion of the proof for Theorems 2.A and 2.E in the case where char𝐾 > 0 until Chapter 4. Indeed, apart
from the key result Theorem 2.C, another crucial aspect of the proof involves understanding the structure of the
Shafarevich morphism for representations in positive characteristic, as we will discuss in Chapter 4.





CHAPTER 3

ON THE SHAFAREVICH CONJECTURE (I)

3.1. Shafarevich conjecture: some histories

In his famous textbook “Basic Algebraic Geometry” [Sha77, p 407], Shafarevich raised the following tantalizing
conjecture.
Conjecture 3.1.1 (Shafarevich). — Let 𝑋 be a complex projective variety. Then its universal covering is holo-
morphically convex.

Recall that a complex normal space 𝑋 is holomorphically convex if it satisfies the following condition: for each
compact 𝐾 ⊂ 𝑋 , its holomorphic hull{

𝑥 ∈ 𝑋 | | 𝑓 (𝑥) | ≤ sup
𝐾

| 𝑓 |,∀ 𝑓 ∈ O(𝑋)
}
,

is compact. 𝑋 is Stein if it is holomorphically convex and holomorphically separable, i.e. for distinct 𝑥 and 𝑦
in 𝑋 , there exists 𝑓 ∈ O(𝑋) such that 𝑓 (𝑥) ≠ 𝑓 (𝑦). By the Cartan-Remmert theorem, a complex space 𝑋 is
holomorphically convex if and only if it admits a proper surjective holomorphic mapping onto some Stein space.

The study of Conjecture 3.1.1 for smooth projective surfaces has been a subject of extensive studies since the mid-
1980s. Gurjar-Shastri [GS85] and Napier [Nap90] initiated this investigation, while Kollár [Kol93] and Campana
[Cam94] independently explored the conjecture in the 1990s, utilizing the tools of Hilbert schemes and Barlet cycle
spaces. In 1994, Katzarkov discovered that non-abelian Hodge theories developed by Simpson [Sim92] and Gromov-
Schoen [GS92] can be utilized to prove Conjecture 3.1.1. His initial work [Kat97] demonstrated Conjecture 3.1.1
for projective varieties with nilpotent fundamental groups. Shortly thereafter, he and Ramachandran [KR98]
successfully established Conjecture 3.1.1 for smooth projective surfaces whose fundamental groups admit a faithful
Zariski-dense representation in a reductive complex algebraic group.

In [Eys04], Eyssidieux made a significant breakthrough on the Shafarevich conjecture. He explored the previous
work [KR98, Kat97] and fully developed the non-abelian Hodge theories [Sim92, Sim93a, Sim93b, GS92] to
study the Shafarevich conjecture. He also discovered that the celebrated work of Demailly-Păun [DP04] on the
characterization of the Kähler cone can be applied crucially in the proof of Shafarevich conjecture. In [Eys04]
Eyssidieux proved that Conjecture 3.1.1 holds for any smooth projective variety whose fundamental group possesses
a faithful representation that is Zariski dense in a reductive complex algebraic group. This result is commonly
referred to as the “Reductive Shafarevich conjecture”.

It is worth emphasizing that the work of Eyssidieux [Eys04] is not only ingenious but also highly significant
in subsequent research. It serves as a foundational basis for advancements in the linear Shafarevich conjecture
[EKPR12] and the exploration of compact Kähler cases [CCE15]. In [EKPR12], the authors raised the question
of whether their theorem could be extended to projective normal varieties. In our work [DYK23], we address this
question, following the general strategy outlined in [Eys04] to study the Shafarevich conjecture.

Currently, all known works have only considered complex linear representations of fundamental groups. It is
natural to study representations of fundamental groups of algebraic varieties into general linear groups in positive
characteristic. In [DY24], we consider this problem along with exploring hyperbolicity and various algebro-
geometric properties of these algebraic varieties. In this chapter and Chapter 4, I will recall the main results proven
by myself, Yamanoi and Katzarkov in [DYK23,DY24].

3.2. Shafarevich morphism and Shafarevich map

Let 𝑋 be a projective normal variety. If its universal covering is holomorphically convex, it is not difficult
to show that there exists a fibration (i.e. surjective proper morphism with connected fibers) sh𝑋 : 𝑋 → sh(𝑋)
satisfying the following property: for any closed subvariety 𝑍 ⊂ 𝑋 , Im[𝜋1 (𝑍) → 𝜋1 (𝑋)] is finite if and only if
sh𝑋 (𝑍) is a point. Such morphism sh𝑋 is called the Shafarevich morphism by Kollár in [Kol93, Kol95]. More
generally, we introduce the following definition.
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Definition 3.2.1 (Shafarevich morphism). — Let 𝑋 be a quasi-projective normal variety, and let 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (𝐾) be a linear representation where 𝐾 is any field. A dominant holomorphic map sh𝜚 : 𝑋 → Sh𝜚 (𝑋) to a
complex normal space Sh𝜚 (𝑋) whose general fibers are connected is called the Shafarevich morphism of 𝜚 if for
any closed subvariety 𝑍 ⊂ 𝑋 , sh𝜚 (𝑍) is a point if and only if 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is finite. Here 𝑍norm

denotes the normalization of 𝑍 .
Note that the Shafarevich morphism is not unique unless 𝑋 is projective.
While it is still an open question about the existence of Shafarevich morphism, Campana [Cam94] and Kollár

[Kol93] independently proved the existence of Shafarevich maps, which are birational to Shafarevich morphisms.
Their theorem can be summarized as follows.
Theorem 3.2.2 ( [Kol93]). — Let 𝑋 be any quasi-projective normal variety 𝑋 , and let 𝐻 be any normal subgroup
𝐻 ⊳ 𝜋1 (𝑋). Then there exists a dominant rational map sh𝐻𝑋 : 𝑋 d Sh𝐻 (𝑋) such that

(i) the indeterminacy locus of sh𝐻𝑋 does not dominate Sh𝐻 (𝑋);
(ii) the general fibers of sh𝐻𝑋 are connected;
(iii) for any closed subvariety 𝑍 of 𝑋 containing a very general point of 𝑋 , sh𝐻𝑋 (𝑍) is a point if and only if

Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)/𝐻] is finite.
The above rational map sh𝐻 : 𝑋 d Sh𝐻 (𝑋) is called the Shafarevich map of (𝑋, 𝐻). If 𝐻 = {1}, we simply

write sh𝑋 : 𝑋 d Sh(𝑋) for the Shafarevich map. In [Cam94], Campana also constructed the Shafarevich map
for compact Kähler manifolds (which is also called Γ-reduction). The proofs of their theorems are based on cycle
theoretic methods. Therefore, the work [Cam94, Kol93] did not provide the precise structure of the Shafarevich
morphism.

In [Cam94], Campana introduced the following definition.
Definition 3.2.3 (Γ-dimension). — Let 𝑋 be a projective normal variety. The Γ-dimension of 𝑋 is defined to be
dim Sh(𝑋), where sh𝑋 : 𝑋 d Sh(𝑋) is the Shafarevich map constructed in Theorem 3.2.2.

3.3. Existence of the Shafarevich morphism and its property

3.3.1. Main results. —
Theorem 3.A ( [DYK23, Theorem A], [DY24, Theorem A]). — Let 𝑋 be a quasi-projective normal variety and
𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a linear representation, where 𝐾 is any field. When char𝐾 = 0, we assume additionally
that 𝜚 is reductive (i.e. the Zariski closure of 𝜚(𝜋1 (𝑋)) is a reductive group).

Then there exists a dominant holomorphic map sh𝜚 : 𝑋 → Sh𝜚 (𝑋) over a normal complex space Sh𝜚 (𝑋) with
connected general fibers such that for any connected Zariski closed subset 𝑍 ⊂ 𝑋 , the following properties are
equivalent:
(a) sh𝜚 (𝑍) is a point;
(b) 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite;
(c) for each irreducible component 𝑍𝑜 of 𝑍 , 𝜚𝑠𝑠 (Im[𝜋1 (𝑍norm

𝑜 ) → 𝜋1 (𝑋)]) is finite, where 𝜚𝑠𝑠 : 𝜋1 (𝑋) →
GL𝑁 (�̄�) is the semisimplification of 𝜚 and 𝑍norm

𝑜 denotes the normalization of 𝑍𝑜.
Moreover, when char𝐾 > 0, Sh𝜚 (𝑋) is quasi-projective and sh𝜚 is an algebraic morphism.

Note that when char𝐾 = 0, a representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) is reductive if and only if it is semisimple.
This fails in positive characteristic.

We ask whether the Shafarevich morphism in Theorem 3.A is algebraic in the case where char𝐾 = 0. This
seems quite difficult problem. Nevertheless, we can prove a weaker version that sh𝜚 : 𝑋 → Sh𝜚 (𝑋) is algebraic in
the function field level.
Theorem 3.B. — Let 𝑋 be a quasi-projective normal variety and 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) be a reductive represen-
tation. For the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋) constructed in Theorem 3.A, there exists
(a) a proper bimeromorphic morphism 𝜎 : 𝑆 → Sh𝜚 (𝑋) from a smooth quasi-projective variety 𝑆;
(b) a proper birational morphism 𝜇 : 𝑌 → 𝑋 from a smooth quasi-projective variety 𝑌 ;
(c) an algebraic morphism 𝑓 : 𝑌 → 𝑆 with general fibers connected;
such that we have the following commutative diagram:

𝑌 𝑋

𝑆 Sh𝜚 (𝑋)

𝜇

𝑓 sh𝜚

𝜎
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Furthermore, if 𝑋 is smooth, then there exists a smooth partial compactification 𝑋 ′ of 𝑋 such that sh𝜚 extends to a
proper surjective holomorphic fibration sh𝜚 : 𝑋 ′ → Sh𝜚0 (𝑋):

𝑋 𝑋 ′

Sh𝜚 (𝑋) Sh𝜚0 (𝑋)

sh𝜚 sh𝜚

Let us sketch the idea of proof of Theorem 3.B. By Theorem 3.2.2, we know that the Shafarevich map
shker 𝜚 : 𝑋 d Shker 𝜚 (𝑋) exists, which is a rational dominant map over a quasi-projective normal variety. We can
show that it is birational to the Shafarevich morphism sh𝜚 of 𝜚.

We further conjecture that Sh𝜚 (𝑋) is quasi-projective and sh𝜚 is an algebraic morphism. Our conjecture is
motivated by Griffiths’ conjecture, which predicted the same result when 𝜚 underlies a Z-VHS. We show this in
what follows.

Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (Z) be a representation underlying a Z variations of Hodge structure (VHS for short)
which has infinite monodromy at infinity (see Definition 3.4.5). By a theorem of Griffiths [Gri70], its period map
𝑝 : 𝑋 → 𝒟/Γ is proper, where 𝒟 is the period domain of this VHS and Γ := 𝜚(𝜋1 (𝑋)) is the monodromy group.
Hence by the Remmert theorem, 𝑝(𝑋) is a closed subvariety of 𝒟. The Griffiths conjecture predicted that the
image 𝑝(𝑋) is algebraic and the period map is algebraic.

We can show that the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋) is the Stein factorization of the period map 𝑝.
Therefore, the algebraicity of Sh𝜚 (𝑋) and sh𝜚 is a consequence of the Griffiths conjecture. Let us mention that
Griffiths’ conjecture was recently proved by Baker-Brunebarbe-Tsimerman [BBT23] using o-minimality theory.

Based on Theorem 3.A, in [DYK23] we construct the Shafarevich morphism for families of representations.
Corollary 3.C. — Let 𝑋 be a quasi-projective normal variety. Let Σ be a (non-empty) set of reductive representa-
tions 𝜚 : 𝜋1 (𝑋) → GL𝑁𝜚

(C). Then there is a dominant holomorphic map shΣ : 𝑋 → ShΣ (𝑋) with general fibers
connected onto a complex normal space such that for closed subvariety 𝑍 ⊂ 𝑋 , shΣ (𝑍) is a point if and only if
𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is finite for every 𝜚 ∈ Σ.

3.3.2. R∗-action on character varieties and Mochizuki’s ubiquity. — We recall some techniques in the non-
abelian Hodge theory by Simpson and Mochizuki. Consider a smooth projective variety 𝑋 equipped with a simple
normal crossing divisor 𝐷. We define 𝑋 as the complement of 𝐷 in 𝑋 . Additionally, we fix an ample line bundle
𝐿 on 𝑋 . Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) be a reductive representation.

By [Moc07b], 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is a reductive representation if and only if there exists a tame pure
imaginary harmonic bundle (𝐸, 𝜃, ℎ) on 𝑋 such that (𝐸,∇ℎ + 𝜃 + 𝜃†ℎ) is flat, with the monodromy representation
being precisely 𝜚. Here ∇ℎ is the Chern connection of (𝐸, ℎ) and 𝜃

†
ℎ

is the adjoint of 𝜃 with respect to ℎ.
Let (E∗, 𝜃) be the prolongation of (𝐸, 𝜃) on 𝑋 defined in [Moc07a]. By [Moc06, Theorem 1.4], (E∗, 𝜃) is a
𝜇𝐿-polystable regular filtered Higgs bundle on (𝑋, 𝐷) with trivial characteristic numbers. Therefore, for any
𝑡 ∈ C∗, (E∗, 𝑡𝜃) be also a 𝜇𝐿-polystable regular filtered Higgs bundle on (𝑋, 𝐷) with trivial characteristic numbers.
By [Moc06, Theorem 9.4], there is a pluriharmonic metric ℎ𝑡 for (𝐸, 𝑡𝜃) adapted to the parabolic structures of
(E∗, 𝑡𝜃). Then (𝐸, 𝑡𝜃, ℎ𝑡 ) is a harmonic bundle and thus the connection ∇ℎ𝑡 + 𝑡𝜃 + 𝑡𝜃

†
ℎ𝑡

is flat. Here ∇ℎ𝑡 is the Chern
connection for (𝐸, ℎ𝑡 ) and 𝜃†

ℎ𝑡
is the adjoint ot 𝜃 with respect to ℎ𝑡 . Let us denote by 𝜚𝑡 : 𝜋1 (𝑋) → GL𝑁 (C) the

monodromy representation of ∇ℎ𝑡 + 𝑡𝜃 + 𝑡𝜃
†
ℎ𝑡

. It should be noted that the representation 𝜚𝑡 is well-defined up to
conjugation. As a result, the C∗-action is only well-defined over 𝑀B (𝑋, 𝑁) and we shall denote it by

𝑡.[𝜚] := [𝜚𝑡 ] for any 𝑡 ∈ C∗.

It is important to observe that unlike the compact case, 𝜚𝑡 is not necessarily reductive in general, even if the
original representation 𝜚 is reductive. However, if 𝑡 ∈ R∗, (𝐸, 𝑡𝜃) is also pure imaginary and by Mochizuki’s
theorem [Moc07b], 𝜚𝑡 is reductive. Nonetheless, we can obtain a family of (might not be semisimple) representations
{𝜚𝑡 : 𝜋1 (𝑋) → GL𝑁 (C)}𝑡∈C∗ . By [Moc06, Proofs of Theorem 10.1 and Lemma 10.2] we have
Lemma 3.3.1. — The map

Φ : R∗ → 𝑀B (𝜋1 (𝑋), 𝑁)
𝑡 ↦→ [𝜚𝑡 ]

is continuous. Φ({𝑡 ∈ R∗ | |𝑡 | < 1}) is relatively compact in 𝑀B (𝜋1 (𝑋), 𝑁). □
Note that Lemma 3.3.1 can not be seen directly from [Moc06, Lemma 10.2] as he did not treat the character variety

in his paper. Indeed, based on Uhlenbeck’s compactness in Gauge theory, Mochizuki’s proof can be read as follows:
for any 𝑡𝑛 ∈ R∗ converging to 0, after subtracting to a subsequence, there exists some 𝜚0 : 𝜋1 (𝑋) → GL𝑁 (C)
and 𝑔𝑛 ∈ GL𝑁 (C) such that lim

𝑛→∞
𝑔∗𝑛𝜚𝑡𝑛 = 𝜚0 in the representation variety 𝑅(𝜋1 (𝑋),GL𝑁 ) (C). Moreover, one can

check that 𝜚0 corresponds to some tame pure imaginary harmonic bundle, and thus it is reductive (cf. [BDDM22]
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for a more detailed study). For this reason, we can see that it will be more practical to work with R∗-action instead
of C∗-action as the representations we encounter are all reductive.

When 𝑋 is compact, Simpson proved that lim𝑡→0 Φ(𝑡) exists and underlies a C-VHS. However, this result is
current unknown in the quasi-projective setting. Instead, Mochizuki proved that, we achieve a C-VHS after finite
steps of deformations. Let us recall it briefly and the readers can refer to [Moc06, §10.1] for more details.

Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) be a reductive representation. Then there exists a tame and pure imaginary
harmonic bundle (𝐸, 𝜃, ℎ) corresponding to 𝜚. Then the induced regular filtered Higgs bundle (E∗, 𝜃) on (𝑋, 𝐷)
is 𝜇𝐿-polystable with trivial characteristic numbers. Hence we have a decomposition

(E∗, 𝜃) = ⊕ 𝑗∈Λ (E 𝑗∗, 𝜃 𝑗 ) ⊗ C𝑚 𝑗

where (E 𝑗∗, 𝜃 𝑗 ) is 𝜇𝐿-stable regular filtered Higgs bundle with trivial characteristic numbers. Put 𝑟 (𝜚) :=
∑
𝑗∈Λ 𝑚 𝑗 .

Then 𝑟 (𝜚) ≤ rank 𝐸 . For any 𝑡 ∈ R∗, we know that (𝐸, 𝑡𝜃) is still tame and pure imaginary and thus 𝜚𝑡 is also
reductive. Since 𝜚({𝑡 ∈ R∗ | |𝑡 | < 1}) is relatively compact, then there exists some 𝑡𝑛 ∈ R∗ which converges to
zero such that lim𝑡𝑛→0 [𝜚𝑡𝑛 ] exists, denoting by [𝜚0]. Moreover, 𝜚0 corresponds to some tame harmonic bundle.
There are two possibilities:
— For each 𝑗 ∈ Λ, (E 𝑗∗, 𝑡𝑛𝜃 𝑗 ) converges to some 𝜇𝐿-stable regular filtered Higgs sheaf (cf. [Moc06, p. 96] for

the definition of convergence). Then by [Moc06, Proposition 10.3], 𝜚0 underlies a C-VHS.
— For some 𝑖 ∈ Λ, (E𝑖∗, 𝑡𝑛𝜃𝑖) converges to some 𝜇𝐿-semistable regular filtered Higgs sheaf, but not 𝜇𝐿-stable.

Then by [Moc06, Lemma 10.4], we have 𝑟 (𝜚) < 𝑟 (𝜚0). In other words, letting 𝜚𝑖 be the representation
corresponding to (E 𝑗∗, 𝜃 𝑗 ) and 𝜚𝑖,𝑡 be the deformation under C∗-action. Then lim𝑛→∞ 𝜚𝑖,𝑡𝑛 exists, denoted
by 𝜚𝑖,0. Then 𝜚𝑖,0 corresponds to some tame harmonic bundle, and thus also a 𝜇𝐿-polystable regular filtered
Higgs bundle which is not stable. In this case, we further deform 𝜚0 until we achieve Case 1.

In summary, Mochizuki’s result implies the following, which we shall refer to as Mochizuki’s ubiquity, analogous
to the term Simpson’s ubiquity for the compact case (cf. [Sim91]).
Theorem 3.3.2. — Let 𝑋 be a smooth quasi-projective variety. Consider ℭ, a Zariski closed subset of
𝑀B (𝑋, 𝐺) (C), where 𝐺 denotes a complex reductive group. If ℭ is invariant under the action of R∗ defined above,
then each geometrically connected component of ℭ(C) contains a C-point [𝜚] such that 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is
a reductive representation that underlies a C-variation of Hodge structure. □

3.4. Constructing the Shafarevich morphism

In this section we shall outline the idea of the proof of Theorem 3.A. For simplicity, we shall assume that the
absolutely constructible subset ℭ is 𝑀B (𝑋, 𝑁) := 𝑀B (𝜋1 (𝑋),GL𝑁 ).

3.4.1. Simultaneous Stein factorization. —
Lemma 3.4.1. — Let 𝑉 be a quasi-projective normal variety and let ( 𝑓𝜆 : 𝑉 → 𝑆𝜆)𝜆∈Λ be a family of morphisms
into quasi-projective varieties 𝑆𝜆. Then there exist a normal projective variety 𝑆∞ and a morphism 𝑓∞ : 𝑉 → 𝑆∞
such that
— for every subvariety 𝑍 ⊂ 𝑉 , 𝑓∞ (𝑍) is a point if and only if 𝑓𝜆 (𝑍) is a point for every 𝜆 ∈ Λ, and
— there exist 𝜆1, . . . , 𝜆𝑛 ∈ Λ such that 𝑓∞ : 𝑉 → 𝑆∞ is the quasi-Stein factorization of ( 𝑓1, . . . , 𝑓𝑛) : 𝑉 →

𝑆𝜆1 × · · · 𝑆𝜆𝑛 .

3.4.2. Factorizing through non-rigidity. — In this subsection, 𝑋 is assumed to be a smooth quasi-projective
variety. Note that the character variety 𝑀B (𝑋, 𝑁) := 𝑀B (𝜋1 (𝑋),GL𝑁 ) is a finite type affine scheme defined over
Z.

Let us utilize Lemma 3.4.1 and Theorem 1.E to construct a reduction map 𝑠fac : 𝑋 → 𝑆fac, which allows us to
factorize non-rigid representations into those underlying C-VHS with discrete monodromy.
Definition 3.4.2. — The reduction map 𝑠fac : 𝑋 → 𝑆fac is obtained through the simultaneous Stein factorization
of the reductions {𝑠𝜏 : 𝑋 → 𝑆𝜏}[𝜏 ]∈𝑀B (𝑋,𝑁 ) , employing Lemma 3.4.1. Here 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) ranges over
all reductive representations with 𝐾 a non-archimedean local field of characteristic zero and 𝑠𝜏 : 𝑋 → 𝑆𝜏 is the
reduction map constructed in Theorem 1.E.

Note that 𝑠fac : 𝑋 → 𝑆fac is a dominant morphism with connected general fibers. For every subvariety 𝑍 ⊂ 𝑋 ,
𝑠fac (𝑍) is a point if and only if 𝑠𝜏 (𝑍) is a point for any reductive representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a
non-archimedean local field.
Proposition 3.4.3 ( [DYK23, Proposition 3.9]). — Let 𝑋 be a smooth quasi-projective variety. Let 𝑓 : 𝐹 → 𝑋

be a morphism from a quasi-projective normal variety 𝐹 such that 𝑠fac ◦ 𝑓 (𝐹) is a point. Let {𝜏𝑖 : 𝜋1 (𝑋) →
GL𝑁 (C)}𝑖=1,2 be reductive representations such that [𝜏1] and [𝜏2] are in the same geometric connected component
of 𝑀B (𝑋, 𝑁) (C). Then 𝜏1 ◦ 𝜄 is conjugate to 𝜏2 ◦ 𝜄, where 𝜄 : 𝜋1 (𝐹) → 𝜋1 (𝑋) is the homomorphism of fundamental
groups induced by 𝑓 . In other words, 𝑗 (𝑀B (𝑋, 𝑁)) is zero-dimensional, where 𝑗 : 𝑀B (𝑋, 𝑁) → 𝑀B (𝐹, 𝑁) is the
natural morphism of character varieties induced by 𝜄 : 𝜋1 (𝐹) → 𝜋1 (𝑋).
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The proof of Proposition 3.4.3 is based on Lemma 1.4.3 and Claim 1.4.1.
By Proposition 3.4.3, we note that for any reductive representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C), [𝜏 ◦ 𝜄] ∈ 𝑀B (𝐹, 𝑁) is

invariant under R∗-action for any reductive 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C). Hence it underlies a C-VHS by Theorem 3.3.2.
This means that, the restriction of 𝜏 on the normalization of each fiber of 𝑠fac underlies aC-VHS. In next proposition,
we will see that our construction also incorporates the integrality (i.e. 𝜏 ◦ 𝜄 is moreover a complex direct factor of
a Z-VHS).
Proposition 3.4.4 ( [DYK23, Proposition 3.12]). — Let 𝑋 be a smooth quasi-projective variety. Then there exist
reductive representations {𝜎𝑉𝐻𝑆

𝑖
: 𝜋1 (𝑋) → GL𝑁 (C)}𝑖=1,...,𝑚 such that each 𝜎𝑉𝐻𝑆

𝑖
underlies a C-VHS, and for a

morphism 𝜄 : 𝑍 → 𝑋 from any quasi-projective normal variety 𝑍 with 𝑠fac ◦ 𝜄(𝑍) being a point, the following
properties hold:
(i) For 𝜎 := ⊕𝑚

𝑖=1𝜎
𝑉𝐻𝑆

𝑖
, 𝜄∗𝜎(𝜋1 (𝑍)) is discrete in

∏𝑚
𝑖=1 GL𝑁 (C).

(ii) For each reductive representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C), 𝜄∗𝜏 is conjugate to some 𝜄∗𝜎𝑉𝐻𝑆

𝑖
.

(iii) For each 𝜎𝑉𝐻𝑆

𝑖
, there exists a reductive representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C) such that 𝜄∗𝜏 is conjugate to

𝜄∗𝜎𝑉𝐻𝑆

𝑖
.

This proposition is crucial in the proof of Theorems 3.A and 3.D. The construction of factorization map
𝑠fac : 𝑋 → 𝑆fac is new compared with that in [Eys04].

3.4.3. Infinite monodromy at infinity. — When considering a non-compact quasi-projective variety 𝑋 , it is
important to note that the Shafarevich conjecture fails in simple examples. For instance, take 𝑋 := 𝐴\{0}, where 𝐴
is an abelian surface. Its universal covering 𝑋 is C2 − Γ, where Γ is a lattice in C2. Then 𝑋 is not holomorphically
convex. Therefore, additional conditions on the fundamental groups at infinity are necessary to address this issue.
Definition 3.4.5 (Infinity monodromy at infinity). — Let 𝑋 be a quasi-projective normal variety and let 𝑋 be a
projective compactification of 𝑋 . We say a subset 𝑀 ⊂ 𝑀B (𝑋, 𝑁) (C) has infinite monodromy at infinity if for any
holomorphic map 𝛾 : D → 𝑋 with 𝛾−1 (𝑋 \ 𝑋) = {0}, there exists a reductive 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) such that
[𝜚] ∈ 𝑀 and 𝛾∗𝜚 : 𝜋1 (D∗) → GL𝑁 (C) has infinite image.
Proposition 3.4.6 ( [DYK23, Proposition 3.18]). — Let 𝑋 be a smooth quasi-projective variety. Assume that
𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is a torsion free representation. Then there exists a smooth partial compactification 𝑋 ′ of
𝑋 such that 𝜚 extends to a representation 𝜚′ : 𝜋1 (𝑋 ′) → GL𝑁 (C) with infinite monodromy at infinity.

A more general result is proved in [DYK23, Proposition 3.18] without assuming the torsion freeness of 𝜚.

3.4.4. Outline of the proof of Theorem 3.A. — The proof of Theorem 3.A in the case where char𝐾 = 0 can be
reduced to the following theorem based on Proposition 3.4.6.
Theorem 3.4.7 ( [DYK23, Theorem 3.28]). — Let 𝑋 be a smooth quasi-projective variety. Assume that 𝑀 :=
𝑀B (𝑋, 𝑁) (C) has infinite monodromy at infinity (cf. Definition 3.4.5). Then there exists a proper surjective
holomorphic fibration sh𝑀 : 𝑋 → Sh𝑀 (𝑋) over a normal complex space Sh𝑀 (𝑋) such that for any connected
Zariski closed subset 𝑍 of 𝑋 , the following properties are equivalent:
(i) sh𝑀 (𝑍) is a point;
(ii) 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite for any reductive representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C);
(iii) for any irreducible component 𝑍1 of 𝑍 , 𝜚(Im[𝜋1 (𝑍norm

1 ) → 𝜋1 (𝑋)]) is finite for any reductive representation
𝜚 : 𝜋1 (𝑋) → GL𝑁 (C).

When 𝑋 is compact, Sh𝑀 (𝑋) is projective.
Proof (sketch). — We use the same notations in Theorem 3.4.7. Define 𝐻 := ∩𝜚 ker 𝜚, where 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (C) ranges over all reductive representation. Denote by 𝑋𝐻 := 𝑋/𝐻. Let 𝒟 be the period domain associated
with the C-VHS 𝜎 and let 𝑝 : 𝑋𝐻 → 𝒟 be the period mapping. We define a holomorphic map

Ψ : 𝑋𝐻 → 𝑆fac ×𝒟,(3.4.1)
𝑧 ↦→ (𝑠fac ◦ 𝜋𝐻 (𝑧), 𝑝(𝑧))

where 𝜋𝐻 : 𝑋𝐻 → 𝑋 denotes the covering map and 𝑠fac : 𝑋 → 𝑆fac is the reduction map defined in Definition 3.4.2.

Claim 3.4.8. — Each connected component of any fiber of Ψ is compact.
Proof of Claim 3.4.8 (outline). — Let 𝐹 be a fiber of 𝑠fac : 𝑋 → 𝑆fac. For simplicity we assume that 𝐹 is smooth
and connected. Denote by 𝜄 : 𝐹 → 𝑋 the inclusive map. Note that 𝜄∗𝜎 has discrete monodromy Γ. We consider
its period map 𝑝 : 𝐹 → 𝒟/Γ. Let us show that it is proper.

For any reductive 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C), we note that 𝜄∗𝜚 : 𝜋1 (𝐹) → GL𝑁 (C) is a complex direct factor of
𝜄∗𝜎. Since we assume that 𝑀 has infinite monodromy at infinity, it follows that 𝜄∗𝜎 has infinite monodromy at
infinity. By a theorem of Griffiths [Gri70], 𝑝 is proper.

Let 𝑍 be any fiber of 𝑝 which is compact since 𝑝 is proper. It follows that 𝜄∗𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝐹)]) is finite.
From this fact together with Proposition 3.4.4.(ii) it is not hard to show that [𝜋1 (𝑍) → 𝜋1 (𝑋)] ∩ 𝐻 is a finite
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index subgroup of [𝜋1 (𝑍) → 𝜋1 (𝑋)]. Therefore, the inverse image 𝜋−1
𝐻
(𝑍) is a (possibly infinite) disjoint union

of compact subvarieties which are finite étale covers of 𝑍 . The fibers of Ψ are precisely these subvarieties. □

By a theorem of Henri Cartan [Car60], the set 𝑆𝐻 of connected components of fibers of Ψ can be endowed with
the structure of a complex normal space such that Ψ = 𝑔 ◦ sh𝐻 where sh𝐻 : 𝑋𝐻 → 𝑆𝐻 is a proper holomorphic
fibration and 𝑔 : 𝑆𝐻 → 𝑆fac ×𝒟 is a holomorphic map. We can show that each fiber of 𝑔 is discrete.
Claim 3.4.9. — 𝑆𝐻 does not contain any compact subvariety.
Proof. — If Σ ⊂ 𝑆𝐻 is a compact subvariety, then 𝑍 := sh−1

𝐻 (Σ) is also compact since sh𝐻 is proper. Then,𝑊 :=
𝜋𝐻 (𝑍) is also a compact irreducible subvariety in 𝑋 with dim 𝑍 = dim𝑊 . Hence Im [𝜋1 (𝑍norm) → 𝜋1 (𝑊norm)] is
a finite index subgroup of 𝜋1 (𝑊norm). Note that 𝑊 can be endowed with an algebraic structure induced by 𝑋 . As
the natural map 𝑍 → 𝑊 is finite, 𝑍 can be equipped with an algebraic structure such that the natural map 𝑍 → 𝑋

is algebraic.
For any reductive representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) where𝐾 is a non archimedean local field of characteristic

zero, we have 𝜚(Im [𝜋1 (𝑍) → 𝜋1 (𝑋)]) ⊂ 𝜚(Im [𝜋1 (𝑋𝐻 ) → 𝜋1 (𝑋)]) = {1}. Hence, 𝜚(Im [𝜋1 (𝑊norm) →
𝜋1 (𝑋)]) is finite which is thus bounded. By the construction of 𝑠fac, 𝑊 is contained in a fiber 𝐹 of 𝑠fac. Note
that 𝜎(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is trivial. It follows from Proposition 3.4.4.(iii) that the variation of Hodge structure
induced by 𝜎 |𝜋1 (𝑍 ) is trivial. Therefore, 𝑝 ◦ 𝜋𝐻 (𝑍) is a point where 𝑝 : 𝐹 → 𝒟/Γ is the period map defined
above. Hence 𝑍 is contracted by Ψ. The claim follows. □

One can show that the Galois action 𝜋1 (𝑋)/𝐻 on 𝑋𝐻 induces an action on 𝑆𝐻 such that sh𝐻 is equivariant with
respect to such an action. We take the quotient by 𝜋1 (𝑋)/𝐻 and it gives rise to a proper holomorphic fibration
sh𝑀 : 𝑋 → Sh𝑀 (𝑋). The readers can easily check from Claim 3.4.9 that sh𝑀 is the desired Shafarevich morphism
in the theorem. □

3.5. On the holomorphic convexity

Let 𝑋 be a smooth projective variety. Let 𝐻 be a normal subgroup of 𝜋1 (𝑋). Denote by 𝑋𝐻 → 𝑋 be the Galois
covering of 𝑋 with the Galois group 𝜋1 (𝑋)/𝐻. It is natural to ask whether 𝑋𝐻 is holomorphically convex for any
𝐻 ⊳ 𝜋1 (𝑋). Indeed this depends on the group 𝐻 in view of the Cousin example:
Example 3.5.1. — Let 𝑋 be a simple abelian variety and 𝜌 : 𝜋1 (𝑋) = 𝐻1 (𝑋) → Z be a surjective homomorphism.
Then ker(𝜌)\𝑋𝑢𝑛 has no positive dimensional compact complex subvariety but does not carry any non constant
holomorphic function either.

Hence the Shafarevich problem is an instance of the problem of determining the pairs (𝑋, 𝐻 ⊳ 𝜋1 (𝑋)) with
𝑋𝐻 holomorphically convex. An ingenious discovery by Eyssidieux [Eys04] is that, 𝑋𝐻 will be holomorphically
convex if it is intersection of the kernel of reductive representations lying in absolutely constructible subsets of
character varieties 𝑀B (𝑋, 𝑁) defined by Simpson [Sim93b].

In this subsection, we present the second main result in [DYK23] which generalizes Eyssidieux’ theorem to
projective normal varieties. We will sketch the proof in the case of projective surfaces.

3.5.1. Holomorphic convexity (I). — The second main result in [CDY22] is on the holomorphic convexity of
certain topological Galois coverings corresponding to the intersections of the kernels of all reductive representations
of projective normal varieties.
Theorem 3.D (⊂ [DYK23, Theorem C]). — Let 𝑋 be a projective normal variety and let 𝑁 be a fixed positive
integer. Set 𝐻 := ∩𝜚 ker 𝜚, where 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) ranges over all reductive representations. Let 𝑋 be
the universal covering of 𝑋 , and denote 𝑋𝐻 := 𝑋/𝐻. Then the complex space 𝑋𝐻 is holomorphically convex. In
particular, if 𝜋1 (𝑋) is a subgroup of GL𝑁 (C) whose Zariski closure is reductive, then the universal covering 𝑋 of
𝑋 is holomorphically convex.

In [DYK23], a more general theorem is proved concerning the absolutely constructible subsets in the character
variety introduced by Simpson [Sim93b]. We list a special version here for simplicity. We will outline the proof of
Theorem 3.D when dim 𝑋 = 2.

Let us remark that Theorem 3.D is proven by Eyssidieux [Eys04] when 𝑋 is smooth. In [DYK23] we make an
effort to simplify Eyssidieux’ original difficult proof. Nevertheless, the general strategy follows closely Eyssidieux’
one.

3.5.2. Some analytic tools. — Let 𝑋 be a smooth projective variety. Let 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a reductive
representation where𝐾 is a non-archimedean local field. According to Theorem 1.E, the reduction map 𝑠𝜏 : 𝑋 → 𝑆𝜏
of 𝜏 exists, fulfilling the properties outlined therein. We will outline the construction of certain canonical positive
closed (1, 1)-currents over 𝑆𝜏 .

By Theorem 1.A, there exists a 𝜏-equivariant harmonic map 𝑢 : 𝑋 → Δ(𝐺), where Δ(𝐺) is the Bruhat-Tits
building of 𝐺. We use the same notation as in the proof of Theorem 1.B.
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Recall that we constructed some multivalued 1-forms {𝜔1, . . . , 𝜔ℓ } over 𝑋◦ that are (1, 0)-part of the com-
plexified differential of 𝑢. These multivalued 1-forms correspond to the (1, 0)-part of the complexified differ-
ential of the harmonic map 𝑢. Based on Theorem 1.B, we can prove that there exists a finite Galois covering
𝜋 : 𝑋sp → 𝑋 with Galois group 𝐻 such that 𝜋∗{𝜔1, . . . , 𝜔ℓ } becomes single valued; i.e. there exists forms
{𝜂1, . . . , 𝜂ℓ } ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
)} such that {𝜂1, . . . , 𝜂ℓ } coincides with 𝜋∗{𝜔1, . . . , 𝜔ℓ } over 𝑋◦. Such 𝑋sp → 𝑋

is called spectral covering associated with the representation 𝜏 and these 1-forms {𝜂1, . . . , 𝜂ℓ } are called spectral
forms. By Claim 1.5.3, they are invariant under the action of the Galois group 𝐻.

Note that the Stein factorization of the partial Albanese morphism 𝑎 : 𝑋sp → 𝐴 of {𝜂1, . . . , 𝜂𝑘} leads to the
reduction map 𝑠𝜋∗𝜏 : 𝑋sp → 𝑆𝜋∗𝜏 of 𝜋∗𝜏. This map 𝑠𝜋∗𝜏 is 𝐻-equivariant and its quotient by 𝐻 gives rise to the
reduction map 𝑠𝜏 : 𝑋 → 𝑆𝜏 by 𝜏. More precisely, we have the following commutative diagram:

𝑋sp 𝑋

𝑆𝜋∗𝜏 𝑆𝜏

𝐴

𝜋

𝑠𝜋∗𝜏

𝑎

𝑠𝜏

𝑏

𝜎𝜋

Here 𝜎𝜋 is also a finite ramified Galois cover with Galois group 𝐻. Note that there are 1-forms {𝜂′1, . . . , 𝜂
′
𝑚} ⊂

𝐻0 (𝐴,Ω1
𝐴
) such that 𝑎∗𝜂′

𝑖
= 𝜂𝑖 . We define a positive smooth (1, 1)-form 𝑇𝜋∗𝜏 := 𝑏∗

∑𝑚
𝑖=1 𝑖𝜂

′
𝑖
∧ 𝜂𝑖 ′ on 𝑆𝜋∗𝜏 . Note

that 𝑇𝜋∗𝜏 is invariant under the Galois action 𝐻. Therefore, there is a positive closed (1, 1)-current 𝑇𝜏 defined on
𝑆𝜏 with continuous potential such that 𝜎∗

𝜋𝑇𝜏 = 𝑇𝜋∗𝜏 .
Definition 3.5.2 (Canonical current). — The closed positive (1, 1)-current 𝑇𝜏 on 𝑆𝜏 is called the canonical
current of 𝜏.
Lemma 3.5.3. — {𝑇τ } is strictly nef. Namely, for any irreducible curve 𝐶 ⊂ 𝑆𝜏 , we have {𝑇τ } · 𝐶 > 0.
Proof. — Let 𝐶′ ⊂ 𝜎−1

𝜋 (𝐶) be an irreducible component which is dominant over 𝐶. Consider its image 𝑏(𝐶′).
By the property of the partial Albanese morphism, there exists some 𝜂′

𝑖
∈ 𝐻0 (𝐴,Ω1

𝐴
) such that 𝜂′

𝑖
|𝑏 (𝐶′ ) ≠ 0. Hence

𝑖𝜂′
𝑖
∧ 𝜂′

𝑖
|𝑏 (𝐶′ ) is strictly positive at general points. Consequently, {𝑇τ } · 𝐶 > 0. □

More generally, let {𝜚𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,𝑘 be reductive representations where𝐾𝑖 is a non-archimedean
local field. We shall denote by the bolded letterϱ := {𝜚𝑖}𝑖=1,...,𝑘 be such family of representations. Let 𝑠ϱ : 𝑋 → 𝑆ϱ
be the Stein factorization of (𝑠𝜚1 , . . . , 𝑠𝜚𝑘 ) : 𝑋 → 𝑆𝜚1 × · · · × 𝑆𝜚𝑘 where 𝑠𝜚𝑖 : 𝑋 → 𝑆𝜚𝑖 denotes the reduction map
associated with 𝜚𝑖 and 𝑝𝑖 : 𝑆ϱ → 𝑆𝜚𝑖 is the induced finite morphism. 𝑠ϱ : 𝑋 → 𝑆ϱ is called the reduction map for
the family ϱ of representations.
Definition 3.5.4 (Canonical current II). — The closed positive (1, 1)-current 𝑇ϱ :=

∑𝑘
𝑖=1 𝑝

∗
𝑖
𝑇𝜚𝑖 on 𝑆ϱ is called

the canonical current of ϱ.
The canonical current 𝑇𝜚 will serve as a lower bound for the complex hessian of plurisubharmonic functions

constructed by the method of harmonic mappings.
Proposition 3.5.5 ( [Eys04, Proposition 3.3.6, Lemme 3.3.12]). — Let 𝑋 be a projective normal variety and
let 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) be a Zariski dense representation where 𝐾 is a non archimedean local field and 𝐺 is a
reductive group. Let 𝑥0 ∈ Δ(𝐺) be an arbitrary point. Let 𝑢 : 𝑋 → Δ(𝐺) be the associated harmonic mapping,
where 𝑋 is the universal covering of 𝑋 . The function 𝜙 : 𝑋 → R≥0 defined by

𝜙(𝑥) = 2𝑑2 (𝑢(𝑥), 𝑢(𝑥0)
)

satisfies the following properties:

(a) 𝜙 descends to a function 𝜙𝜚 on 𝑋𝜚 = 𝑋/ker (𝜚).
(b) Let Σ be a normal complex space and 𝑟 : 𝑋𝜚 → Σ a proper holomorphic fibration such that 𝑠𝜚 ◦𝜋 : 𝑋𝜚 → 𝑆𝜚

factorizes via a morphism 𝜈 : Σ→𝑆𝜚 . The function 𝜙𝜚 is of the form 𝜙𝜚 = 𝜙Σ𝜚 ◦ 𝑟 with 𝜙Σ𝜚 being a continuous
plurisubharmonic function on Σ;

(c) ddc𝜙Σ𝜚 ≥ 𝜈∗𝑇𝜚 . □

3.5.3. Outline of the proof of Theorem 3.D. — We first start with the following criterion for the Steiness of a
topological Galois covering of a compact complex normal space.
Proposition 3.5.6 ( [Eys04, Proposition 4.1.1]). — Let 𝑋 be a compact complex normal space and let 𝜋 : 𝑋 ′ → 𝑋

be an infinite topological Galois covering. Let 𝑇 be a positive current on 𝑋 with continuous potential such that
{𝑇} is a Kähler class. Assume that there exists a continuous plurisubharmonic function 𝜙 : 𝑋 ′ → R≥0 such that
ddc𝜙 ≥ 𝜋∗𝑇 . Then 𝑋 ′ is a Stein space.

For simplicity, we will prove the following baby version of Theorem 3.D. It nevertheless gives the rough strategy
of the proof of Theorem 3.D.
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Theorem 3.5.7. — Let 𝑋 be a smooth projective surface. Assume that𝑀 := 𝑀B (𝑋, 𝑁) is large in the sense that, i.e.
for any closed positive-dimensional subvariety 𝑍 ⊂ 𝑋 , there exists reductive representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C)
such that 𝜚(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is infinite. Then the universal covering of 𝑋 is Stein.
Proof (sketch). — We will use the same notations as in Proposition 3.4.4. Let 𝑠fac : 𝑋 → 𝑆fac be the reduction
map defined in Definition 3.4.2. There are three cases.

Case 1: dim 𝑆fac = 0. This means that there exists no unbounded representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾
a non-archimedean local field of characteristic zero. Applying Lemma 1.4.3 in conjunction with the subsequent
discussion yields the conclusion that 𝑀B (𝑋, 𝑁) (C) contains only finitely many points [𝜚1], . . . , [𝜚𝑚], and each
representation 𝜚𝑖 : 𝜋1 (𝑋) → GL𝑁 (C) is integral and is a direct factor of a Z-VHS 𝜎𝑖 . Set 𝜎 := ⊕𝑚

𝑖=1𝜎𝑖 . Since
𝑀B (𝑋, 𝑁) is large, it follows that 𝜎 is a large representation. Consider the period mapping 𝑝 : 𝑋 → 𝒟/Γ of
𝜎. It is a finite map. Let (𝐸, 𝜃, ℎ) be the Hodge bundle associated with this Z-VHS. Then 𝜔 := 𝑖tr(𝜃 ∧ 𝜃∗

ℎ
) is a

semi-Kähler form on 𝑋 , which is strictly positive at the points where 𝑑𝑝 : 𝑇𝐷 → 𝑇𝒟/Γ is immersive. Since 𝑝 is
finite, it follows that for any positive-dimensional subvariety 𝑍 of 𝑋 , we have

∫
𝑍
𝜔dim 𝑍 > 0. By Demailly-Păun’s

theorem in [DP04], {𝜔} is a Kähler class.
Let 𝒮 be the symmetric space associated with 𝒟 endowed with the natural metric 𝑑𝒮. Then there exists

natural quotient map 𝒟 → 𝒮. It induces a 𝜎-equivariant pluri-harmonic mapping 𝑢 : 𝑋𝐻 → 𝒮. Define
𝜙 := 2𝑑2

𝒮
(𝑢(𝑥), 𝑢(𝑥0)). By [Eys04, Proposition 3.3.2], we have

ddc𝜙 ≥ 𝜋∗𝐻𝜔.(3.5.1)

We apply Proposition 3.5.6 to conclude that 𝑋𝐻 is Stein.

Case 2: dim 𝑆fac = 1. By the construction of 𝑠fac : 𝑋 → 𝑆fac, there exists an unbounded reductive representation
𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a non-archimedean local field of characteristic zero such that 𝑠𝜚 : 𝑋 → 𝑆𝜚 factors
through 𝑠fac. Since dim 𝑆fac = 1, it follows that dim 𝑆𝜚 = 1 and thus 𝑠fac coincides with 𝑠𝜚 . Let 𝑇𝜚 be the canonical
current on 𝑆𝜚 associated with 𝜚 defined in Definition 3.5.2. Then {𝑇𝜚} is a Kähler class on 𝑆𝜚 by Lemma 3.5.3.
We apply Proposition 3.5.5 to conclude that there exists continuous psh function 𝜙𝜚 : 𝑋𝐻 → R≥0 such that
ddc𝜙𝜚 ≥ 𝜋∗

𝐻
𝑠∗𝜚𝑇𝜚 .

Consider the C-VHS 𝜎 in Proposition 3.4.4. Since 𝑀B (𝑋, 𝑁) is large, by Proposition 3.4.4.(iii), 𝜎 is also
large. Then for each fiber 𝐹 of 𝑠fac, the period map 𝐹 → 𝒟/Γ of 𝜎 |𝜋1 (𝐹 ) is finite. Here 𝒟 is the period domain
and Γ is the monodromy group of 𝜎 |𝜋1 (𝐹 ) . Let (𝐸, 𝜃, ℎ) be the Hodge bundle associated with this Z-VHS. Then
𝜔 := 𝑖tr(𝜃 ∧ 𝜃∗

ℎ
) is a semi-Kähler form on 𝑋 . Therefore, {𝜔}|𝐹 is Kähler. Let 𝜙 : 𝑋 → R≥0 be the continuous

function defined in case 1 such that ddc𝜙 ≥ 𝜋∗
𝐻
𝜔 by (3.5.1).

One can see that {𝜔 + 𝑠∗fac𝑇𝜚} is Kähler. Therefore, we have
ddc (𝜙𝜚 + 𝜙) ≥ 𝜋∗𝐻 (𝑠∗𝜚𝑇𝜚 + 𝜔).

We apply Proposition 3.5.6 once again to conclude that 𝑋𝐻 is Stein.

Case 3: dim 𝑆fac = 2. This is the most difficult case.
Let τ := {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ be a family of unbounded reductive representations with 𝐾𝑖 non-

archimedean local fields of characteristic zero. Let 𝑇τ =
∑ℓ
𝑖=1 𝑝

∗
𝑖
𝑇𝜏𝑖 be the canonical current on 𝑆τ defined in

Definition 3.5.4. Let 𝑋sp → 𝑋 be the spectral covering with respect to τ . The collective spectral forms on 𝑋sp

induced by 𝜏1, . . . , 𝜏ℓ will be called the spectral forms for τ .
Note that we have

𝑋

𝑆fac 𝑆τ 𝑆𝜏𝑖

𝑠fac
𝑠τ

𝑠𝜏𝑖

𝑝𝑖

Case 3.1: The spectral 1-forms have rank 2. Assume that there exist τ such that, their spectral forms have rank 2. By
the construction of 𝑠fac, we can add more unbounded reductive representations {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=ℓ+1,...,𝑚
with 𝐾𝑖 non-archimedean local fields of characteristic zero, to assume additionally that 𝑠fac : 𝑋 → 𝑆fac coincides
with 𝑠τ ′ : 𝑋 → 𝑆τ ′ , where τ ′ := {𝜏𝑖}𝑖=1,...,𝑚.

By the construction of the canonical current 𝑇τ ′ on 𝑆fac is strictly positive at general points since the spectral
forms associated with 𝑇1, . . . , 𝑇𝑚 has rank 2. Since 𝑇τ ′ has continuous potentials, it follows that {𝑇τ ′ } is a big and
nef class.

On the other hand, by Lemma 3.5.3, we conclude that {𝑇τ ′ } is strictly nef. We now apply a theorem by
Demailly-Păun [DP04] to conclude that {𝑇τ ′ } is a Kähler class.

According to Proposition 3.5.5, there exist continuous plurisubharmonic functions {𝜙𝑖 : 𝑋𝐻 → R≥0}𝑖=1,...,𝑚
such that

ddc𝜙𝑖 ≥ 𝜋∗𝐻 𝑠
∗
𝜏𝑖
𝑇𝜏𝑖
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for 𝑖 = 1, . . . , 𝑚. Let 𝜙 : 𝑋 → R≥0 be the continuous function and 𝜔 be the semi-Kähler form defined in Case 2
such that ddc𝜙 ≥ 𝜋∗

𝐻
𝜔. Moreover, {𝜔}|𝐹 is Kähler for each fiber 𝐹 of 𝑠fac. Hence {𝑠∗fac𝑇τ ′ + 𝜔} is a Kähler class

on 𝑋 . Therefore, we have

ddc (
𝑚∑︁
𝑖=1

𝜙𝑖 + 𝜙) ≥ 𝜋∗𝐻 (𝑠∗fac𝑇τ ′ + 𝜔).

We apply Proposition 3.5.6 once again to conclude that 𝑋𝐻 is Stein.

Case 3.2: The spectral 1-forms always have rank 1. Assume that for any family of unbounded reductive represen-
tations any family of {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ with 𝐾𝑖 non-archimedean local fields of characteristic zero,
their spectral forms {𝜂1, . . . , 𝜂𝑛} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
) always have rank 1, i.e., 𝜂𝑖 ∧ 𝜂 𝑗 ≡ 0 for every 𝜂𝑖 and 𝜂 𝑗 .

Case 3.2.1: The dimension of spectral 1-forms is at least two. Assume that there exists a family of unbounded
reductive representations {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ with 𝐾𝑖 non-archimedean local fields of characteristic
zero, such that their spectral forms {𝜂1, . . . , 𝜂𝑛} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
) have rank 1, and

dimCSpan{𝜂1, . . . , 𝜂𝑛} ≥ 2.

Here 𝜋 : 𝑋sp → 𝑋 is the spectral covering with respect to 𝑇1, . . . , 𝑇𝑘 . Therefore, without loss of generality,
we may assume that 𝜂1 ∧ 𝜂2 ≡ 0 and 𝜂1 ∉ {C𝜂2}. According to the Castelnuovo-De Franchis theorem (cf.
[ABC+96, Theorem 2.7]), there exists a proper fibration ℎ : 𝑋sp → 𝐶 over a smooth projective curve 𝐶 such that
{𝜂1, 𝜂2} ⊂ ℎ∗𝐻0 (𝐶,Ω1

𝐶
). Since 𝑠fac is birational, we can choose a general fiber 𝐹 of ℎ, which is irreducible and

such that 𝑠fac ◦ 𝜋(𝐹) is not a point. By the construction of 𝑠fac, there exists an unbounded reductive representation
𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a non-archimedean local fields of characteristic zero such that 𝑠𝜚 ◦ 𝜋(𝐹) is not a
point. We replace 𝑋sp by some Galois covering such that it is also the spectral covering for {𝜚} ∪ {𝜏𝑖}𝑖=1,...,ℓ . For
the spectral forms {𝜔1, . . . , 𝜔𝑚} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
) induced by 𝜚, there exists some 𝑖 such that 𝜔𝑖 |𝐹 ≠ 0. Given

that 𝜂1 |𝐹 ≡ 0, this implies that 𝜔𝑖 ∧ 𝜂1 ≠ 0. It contradicts with our assumption that the spectral 1-forms always
have rank 1. Therefore, this case cannot occur.

Case 3.2.2: The dimension of spectral 1-forms is always 1. Assume that for any family of unbounded reductive rep-
resentations any family of {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ with 𝐾𝑖 non-archimedean local fields of characteristic
zero, the set of their spectral forms {𝜂1, . . . , 𝜂𝑛} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
) have rank 1, and they are all C-linear.

By the construction of 𝑠fac, we can find τ := {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ such that 𝑠fac coincides with
𝑠τ : 𝑋 → 𝑆τ .

Let 𝐺𝑖 be the Zariski closure of 𝜏𝑖 (𝜋1 (𝑋)), which is reductive. Consider the isogeny

𝑔 : 𝐺𝑖 → 𝐺𝑖/𝑍𝑖 × 𝐺𝑖/D𝐺𝑖

where 𝑍𝑖 is the central torus of 𝐺𝑖 and D𝐺𝑖 is the derived group of 𝐺𝑖 . As a result, 𝐺′
𝑖

:= 𝐺𝑖/𝑍𝑖 is semisimple
and 𝐺′′

𝑖
:= 𝐺𝑖/D𝐺𝑖 is a torus. Let 𝜏′

𝑖
: 𝜋1 (𝑋) → 𝐺′

𝑖
(𝐾𝑖) be the composite of 𝜏𝑖 with the projection 𝐺𝑖 → 𝐺′

𝑖
,

and 𝜏′′
𝑖

: 𝜋1 (𝑋) → 𝐺′′
𝑖
(𝐾𝑖) be the composite of 𝜏𝑖 with the projection 𝐺𝑖 → 𝐺′′

𝑖
. Then 𝜏′

𝑖
and 𝜏′′

𝑖
are both Zariski

dense representations.
Notably, both families of representations, τ and {𝜏′

𝑖
, 𝜏′′
𝑖
}𝑖=1,ℓ define the same reduction map.

Next, we consider the partial Albanese morphism 𝑎 : 𝑋sp → 𝐴 induced by 𝜂1. If dim 𝑎(𝑌 ) = 1, then the Stein
factorization ℎ : 𝑋sp → 𝐶 of 𝑎 is a proper holomorphic fibration over a smooth projective curve 𝐶 such that
𝜂1 ∈ ℎ∗𝐻0 (𝐶,Ω1

𝐶
). We are now in a situation akin to Case 3.2.1, and we can apply the same arguments to reach a

contradiction.
Let 𝜈 : 𝑌 → 𝑋sp be a desingularization and denote 𝜂 := 𝜈∗𝜂1. Consider the partial Albanese morphism

𝑎 : 𝑌 → 𝐴 induced by 𝜂. Then there exists a one form 𝜂′ ∈ 𝐻0 (𝐴,Ω1
𝐴
) such that 𝑎∗𝜂′ = 𝜂. By the above argument,

we know that dim 𝑎(𝑌 ) ≥ 2. Let 𝜋𝐴 : 𝐴 → 𝐴 denote the universal covering map. We denote by 𝑌 ′ := 𝑌 ×
𝐴
𝐴 a

connected component of the fiber product and let 𝜋′ : 𝑌 ′ → 𝑌 be the induced étale cover. It’s worth noting that
𝜋′∗𝜂 is exact. Consequently, we can define the following holomorphic map:

ℎ : 𝑌 ′ → C

𝑦 ↦→
∫ 𝑦

𝑦0

𝜋′∗𝜂.
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We then have the following commutative diagram:

𝑌 𝑌 ′ 𝑌

𝐴 𝐴

C

𝑝

𝜋𝑌

ℎ

𝜋′

𝑎

𝜋𝐴

The holomorphic map 𝐴→ C in the above diagram is defined by the linear 1-form 𝜋∗
𝐴
𝜂′. By Simpson’s Lefschetz

theorem [Sim93a], for any 𝑡 ∈ C, ℎ−1 (𝑡) is connected and we have the surjectivity 𝜋1 (ℎ−1 (𝑡)) ↠ 𝜋1 (𝑌 ′). By the
definition of ℎ, 𝜋∗

𝑌
𝜂 |𝑍 ≡ 0 where 𝑍 is any connected component of 𝑝−1 (ℎ−1 (𝑡)). Here 𝑝 : 𝑌 → 𝑌 ′ is the natural

covering map.
Consider any Zariski dense representation 𝜏′

𝑖
: 𝜋1 (𝑋) → 𝐺′

𝑖

(
F𝑞𝑖 ((𝑡))

)
as defined previously. Let 𝐾𝑖 be a finite

extension of F𝑞𝑖 ((𝑡)) such that 𝜏′
𝑖

: 𝜋1 (𝑋) → 𝐺′
𝑖
(𝐾𝑖). We denote by 𝜎𝑖 : 𝜋1 (𝑌 ) → 𝐺′

𝑖

(
𝐾𝑖

)
the pullback of 𝜏′

𝑖

via the morphism 𝑌 → 𝑋 . The existence of a 𝜎𝑖-equivariant harmonic mapping 𝑢 : 𝑌 → Δ(𝐺′
𝑖
) is guaranteed

by [GS92].
We note that 𝜋∗

𝑌
𝜂 is the (1,0)-part of the complexified differential of the harmonic mapping 𝑢 at general points of

𝑌 , with 𝜋𝑌 : 𝑌 → 𝑌 denoting the universal covering. For any connected component 𝑍 of 𝑝−1 (ℎ−1 (𝑡)) for a general
𝑡 ∈ C, since 𝜋∗

𝑌
𝜂 |𝑍 ≡ 0, and all the spectral forms are assumed to be C-linearly equivalent, it follows that 𝑢(𝑍) is

constant. Since 𝑢 is 𝜎𝑖-equivariant, it follows that 𝜋′∗𝜎𝑖 (Im[𝜋1 (ℎ−1 (𝑡)) → 𝜋1 (𝑌 ′)]) is contained in the subgroup
of 𝐺′

𝑖
(𝐾𝑖) fixing the point 𝑢(𝑍). Recall that 𝜋1 (ℎ−1 (𝑡)) → 𝜋1 (𝑌 ′) is surjective. Hence 𝜋′∗𝜎𝑖 (𝜋1 (𝑌 ′)) is a bounded

subgroup of 𝐺′
𝑖
(𝐾𝑖). Additionally, note that D𝜋1 (𝑌 ) ⊂ Im[𝜋1 (𝑌 ′) → 𝜋1 (𝑌 )], and it follows that 𝜎𝑖 (D𝜋1 (𝑌 ))

is bounded. Since 𝜏′
𝑖

is Zariski dense, and Im[𝜋1 (𝑌 ) → 𝜋1 (𝑋)] is a finite index subgroup of 𝜋1 (𝑋), the Zariski
closure of 𝜎𝑖 (𝜋1 (𝑌 )) contains the identity component of 𝐺′

𝑖
, and it is also semisimple. We apply Lemma 2.5.3 to

conclude that 𝜎𝑖 (𝜋1 (𝑌 )) is bounded.
Since 𝜎𝑖 (𝜋1 (𝑌 )) is a finite index subgroup of 𝜏′

𝑖
(𝜋1 (𝑋)), it follows that 𝜏′

𝑖
(𝜋1 (𝑋)) is also bounded. Then

the reduction map 𝑠𝜏′
𝑖

is the constant map. This means that the reduction map of representations {𝜏′′
𝑖
}𝑖=1,...,ℓ is

identified with that of {𝜏′
𝑖
, 𝜏′′
𝑖
}𝑖=1,...,ℓ . It follows that 𝑠τ is the Stein factorization of

(𝑠𝜏′′1
, . . . , 𝑠𝜏′′

ℓ
) : 𝑋 → 𝑆𝜏′′1

× · · · × 𝑆𝜏′′
ℓ
.

Recall that each 𝐺′′
𝑖

is a tori. By [CDY22, Proof of Theorem 0.10], we know that there exists a morphism
𝑎𝑖 : 𝑋 → 𝐴𝑖 with 𝐴𝑖 an abelian variety such that 𝑠𝜏′′

𝑖
is the Stein factorization of 𝑎𝑖 . Therefore, 𝑠fac is the Stein

factorization of (𝑎1, . . . , 𝑎ℓ) : 𝑋 → 𝐴1 × · · · × 𝐴ℓ . Write 𝜓 : 𝑋 → A for (𝑎1, . . . , 𝑎ℓ) : 𝑋 → 𝐴1 × · · · × 𝐴ℓ .
Let 𝜂1, . . . , 𝜂𝑘 ⊂ 𝐻0 (A,Ω1

A) be a basis. Then 𝜔0 := 𝑖
∑𝑘
𝑖=1 𝜂𝑖 ∧ 𝜂𝑖 is a Kähler form on A. Note that the

universal covering 𝜋A : Ã → A of A is isomorphic to Cdim A . There exists a smooth function 𝜓0 : A → R≥0
such that

ddc𝜓0 ≥ 𝜋∗A𝜔0.

Let 𝜙 : 𝑋 → R≥0 be the continuous function and 𝜔 be the semi-Kähler form defined in Case 2 such that
ddc𝜙 ≥ 𝜋∗

𝐻
𝜔. Moreover, {𝜔}|𝐹 is Kähler for each fiber 𝐹 of 𝑠fac. Since 𝑠fac is the Stein factorization of 𝜓,

{𝜓∗𝜔0 + 𝜔} is a Kähler class on 𝑋 . Let 𝑓 : 𝑋 → Ã be the lift of 𝜓 to the universal coverings and let 𝜋𝑋 : 𝑋 → 𝑋

be the universal covering. We have
ddc ( 𝑓 ∗𝜓0 + 𝜙) ≥ 𝜋∗𝑋 (𝜓∗𝜔0 + 𝜔).

We apply Proposition 3.5.6 once again to conclude that 𝑋 is Stein.
Note that any unramified cover of a Stein space is Stein. In conclusion, the universal covering of 𝑋 is Stein. □

Remark 3.5.8. — The proof of Theorem 3.D in the general case is much more involved. In addition to the
techniques used above, we have to apply Simpson’s work on absolutely constructible subsets in character varieties
(cf. [Sim93b,WB20,DYK23]).
Remark 3.5.9. — While we follow the general strategy in [Eys04], our approach in proving Theorems 3.A and 3.D
introduces several novel elements, including:
(a) An avoidance of the reduction mod 𝑝 method used in [CS08, Eys04]. Roughly speaking, in the treatment

of non-rigid representation in [CS08, Eys04], Corlette-Simpson and Eyssidieux constructed unbounded 𝜚 :
𝜋1 (𝑋) → GL𝑁 (𝑘 ((𝑡))), where 𝑘 is some number field. Unfortunately, the field 𝑘 ((𝑡)) is not locally compact,
which prevents the application of Gromov-Schoen’s theory (cf. Theorem 1.A). To address this issue, in
[Eys04, CS08] the authors perform reduction modulo 𝑝 for 𝜚 and obtain a family of representation 𝜚𝑞 :
𝜋1 (𝑋) → GL𝑁 (F𝑞 ((𝑡))). In this chapter, we only work on finite extensions of Q𝑝 . As we have seen in
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Proposition 3.4.4, our construction of 𝑠fac : 𝑋 → 𝑆fac in section 3.4.2 incorporates both rigid and non-rigid
cases, previously treated separately in [Eys04].

(b) We relax the definition of absolutely constructible subsets in [Sim93b,Eys04], enabling us to extend our results
to projective normal varieties and establish the reductive Shafarevich conjecture for such varieties. Note that
adopting the original definition of absolutely constructible subsets by Simpson and Eyssidieux would pose
significant challenges in extending the Shafarevich conjecture to the singular setting.

3.5.4. Holomorphic convexity (II). — It is natural to ask whether Theorem 3.D holds in the case of linear
representation in positive characteristic. For surfaces we can prove the following result.
Theorem 3.E ( [DY24, Theorem B]). — Let 𝑋 be a projective normal variety and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be
a faithful representation where 𝐾 is a field of positive characteristic. If the Γ-dimension (see Definition 3.2.3) of 𝑋
is at most two (e.g. when dim 𝑋 ≤ 2), then the universal covering 𝑋 of 𝑋 is holomorphically convex.

Let us explain briefly the idea of the proof. One can first show that after replacing 𝑋 by a suitable finite
étale cover, 𝜚 factors through the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋): there exists a large representation
𝜎 : 𝜋1 (Sh𝜚 (𝑋)) → GL𝑁 (𝐾) such that (sh𝜚)∗𝜏 = 𝜚. Since we assume that the Γ-dimension of 𝑋 is at most two,
and 𝜚 is faithful, it follows that dim Sh𝜚 (𝑋) ≤ 2 and (sh𝜚)∗ : 𝜋1 (𝑋) → 𝜋1 (Sh𝜚 (𝑋)) is an isomorphism. Let 𝑆 be
the universal covering of Sh𝜚 (𝑋). Therefore, there exists a proper holomorphic fibration 𝑓 : 𝑋 → 𝑆 between the
universal coverings that lifts sh𝜚 . By Remmert-Cartan’s theorem, it suffices to prove that 𝑆 is Stein. It is obvious
if dim Sh𝜚 (𝑋) = 1. For the case dim Sh𝜚 (𝑋) = 2, the proof of Steiness of 𝑆 is very close to that of Theorem 3.5.7
once we know the structure of the Shafarevich morphism in Theorem 4.1.6. We thus omit it.





CHAPTER 4

SHAFAREVICH CONJECTURE AND HYPERBOLICITY: POSITIVE
CHARACTERISTIC CASE

In Chapters 2 and 3 we state the theorems for linear representation in arbitrary field, but only sketched the proof
in characteristic zero. In this chapter we will discuss the proof of Theorems 2.A.(ii), 2.E.(ii) and 3.A for the case
of representation in positive characteristic.

4.1. Constructing Shafarevich morphism (II)

In this section we will sketch the proof of Theorem 3.A for the case char𝐾 > 0. As we will see soon, the proof
is simpler than the case of characteristic zero. We begin with the following lemma.
Lemma 4.1.1 ( [DY24, Lemma 2.1]). — Let 𝐾 be an algebraically closed field of positive characteristic and let
Γ be a finitely generated group. Let 𝜚 : Γ → 𝐺 (𝐾) be a representation such that its semisimplification has finite
image. Then 𝜚(Γ) is finite.
Proof. — Since the semisimplification 𝜚𝑠𝑠 of 𝜚 has finite image, we can replace Γ by a finite index subgroup such
that 𝜚𝑠𝑠 (Γ) is trivial. Therefore, some conjugation 𝜎 of 𝜚 has image in the subgroup U𝑁 (𝐾) consisting of all
upper-triangular matrices in GL𝑁 (𝐾) with 1’s on the main diagonal.

Note U𝑁 (𝐾) admits a central normal series whose successive quotients are isomorphic to G𝑎,𝐾 . We remark
that a finitely generated subgroup of G𝑎,𝐾 is a finite group. By [ST00, Proposition 4.17], any finite index subgroup
of a finitely generated group is also finitely generated. Consequently, 𝜎(Γ) admits a central normal series whose
successive quotients are finitely generated subgroups of G𝑎,𝐾 , which are all finite groups. It follows that 𝜎(Γ) is
finite. The lemma is proved. □

As an immediate consequence, if 𝑋 is a quasi-projective normal variety and if 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) is a big
representation with char𝐾 > 0, then 𝜚𝑠𝑠 is also big. This explains why in positive characteristic zero, we do not
need to assume that the representation is reductive in Theorem 2.E.

In what follows, 𝑋 is assumed to be a smooth quasi-projective variety. The variety of 𝑁-dimensional linear
representations of 𝜋1 (𝑋) in characteristic zero is represented by an affine Z-scheme 𝑅 of finite type. Namely, given
a commutative ring 𝐴, the set of 𝐴-points of 𝑅 is:

𝑅(𝐴) = Hom(𝜋1 (𝑋),GL𝑁 (𝐴)).

Let 𝑝 be a prime number. Consider 𝑅F𝑝
:= 𝑅 ×SpecZ SpecF𝑝 and note that the general linear group over F𝑝 ,

denoted by GL(𝑁, F𝑝), acts on 𝑅F𝑝
by conjugation. Using Seshadri’s extension of geometric invariant theory

quotients for schemes of arbitrary field [Ses77, Theorem 3], we can take the GIT quotient of 𝑅F𝑝
by GL(𝑁, F𝑝),

denoted by 𝑀B (𝑋, 𝑁)F𝑝
. Then 𝑀B (𝑋, 𝑁)F𝑝

is also an affine F𝑝-scheme of finite type. For any algebraically closed
field 𝐾 of characteristic 𝑝, the 𝐾-points 𝑀B (𝑋, 𝑁)F𝑝

(𝐾) is identified with the conjugacy classes of semi-simple
representations 𝜋1 (𝑋) → GL𝑁 (𝐾).

Consider 𝑀 ⊂ 𝑀B (𝑋, 𝑁)F𝑝
, a Zariski closed subset defined over F𝑝 . Let 𝜋 : 𝑅F𝑝

→ 𝑀B (𝑋, 𝑁)F𝑝
be the GIT

quotient, which is a surjective F𝑝-morphism. Let 𝑇 ⊂ 𝜋−1 (𝑀) be any irreducible affine curve defined over F𝑝 .
Take �̄� as the compactification of the normalization 𝐶 of 𝑇 , and let {𝑃1, . . . , 𝑃ℓ } = �̄� \𝐶. There exists 𝑞 = 𝑝𝑛 for
some 𝑛 ∈ Z>0 such that �̄� is defined over F𝑞 and 𝑃𝑖 ∈ �̄� (F𝑞) for each 𝑖.

By the universal property of the representation scheme 𝑅, 𝐶 gives rise to a representation 𝜚𝐶 : 𝜋1 (𝑋) →
GL𝑁 (F𝑞 [𝐶]), where F𝑞 [𝐶] is the coordinate ring of 𝐶. Consider the discrete valuation 𝑣𝑖 : F𝑞 (𝐶) → Z defined
by 𝑃𝑖 , where F𝑞 (𝐶) is the function field of 𝐶. Let �F𝑞 (𝐶)𝑣𝑖 be the completion of 𝐹𝑞 (𝐶) with respect to 𝑣𝑖 . Then
we have the isomorphism

(�F𝑞 (𝐶)𝑣𝑖 , 𝑣𝑖 ) ≃ (
F𝑞 ((𝑡)), 𝑣

)
, where

(
F𝑞 ((𝑡)), 𝑣

)
is the formal Laurent field of F𝑝 with

the valuation 𝑣 defined by 𝑣(∑+∞
𝑖=𝑚 𝑎𝑖𝑡

𝑖) = min{𝑖 | 𝑎𝑖 ≠ 0}. Let 𝜚𝑖 : 𝜋1 (𝑋) → GL𝑁 (F𝑞 ((𝑡))) be the extension of
𝜚𝐶 with respect to �F𝑞 (𝐶)𝑣𝑖 .
Lemma 4.1.2. — If 𝜚𝑖 is bounded for each 𝑖, then 𝜋(𝑇) is a point. Moreover 𝜚𝐶 (𝜋1 (𝑋)) is a finite group.
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Proof. — Since 𝜚𝑖 is bounded for each 𝑖, after we replace 𝜚𝑖 by some conjugation, we have 𝜚𝑖 (𝜋1 (𝑋)) ⊂
GL𝑁 (F𝑞 [[𝑡]]), where the F𝑞 [[𝑡]] is the ring of integers of F𝑞 ((𝑡)), i.e.

F𝑞 [[𝑡]] := {
+∞∑︁
𝑖=𝑚

𝑎𝑖𝑡
𝑖 | 𝑎𝑖 ∈ F𝑞 , 𝑚 ≥ 0}.

For any matrix 𝐴 ∈ GL𝑁 (𝐾), we denote by 𝜒(𝐴) = 𝑇𝑁 +𝜎1 (𝐴)𝑇𝑁−1 + · · · +𝜎𝑁 (𝐴) its characteristic polynomial.
Then 𝜎𝑗 (𝜚𝐶 (𝛾)) ∈ F𝑞 [𝐶] for each 𝛾 ∈ 𝜋1 (𝑋). Since we have assumed that 𝜚𝑖 (𝜋1 (𝑋)) ⊂ GL𝑁 (F𝑞 [[𝑡]]) for each
𝑖, it follows that 𝜎𝑗 (𝜚𝑖 (𝛾)) ∈ F𝑞 [[𝑡]] for each 𝑖. Therefore, by the definition of 𝜚𝑖 , 𝑣𝑖

(
𝜎𝑗 (𝜚𝐶 (𝛾))

)
≥ 0 for each

𝑖. It follows that 𝜎𝑗 (𝜚𝐶 (𝛾)) extends to a regular function on 𝐶, which is thus constant. This implies that for
any two representations 𝜂1 : 𝜋1 (𝑋) → GL𝑁 (𝐾1) and 𝜂2 : 𝜋1 (𝑋) → GL𝑁 (𝐾2) such that char𝐾1 = char𝐾2 = 𝑝

and 𝜂𝑖 ∈ 𝐶 (𝐾𝑖), we have 𝜒(𝜂1 (𝛾)) = 𝜒(𝜂2 (𝛾)) for each 𝛾 ∈ 𝜋1 (𝑋). In other words, 𝜂1 and 𝜂2 has the same
characteristic polynomial. It follows that [𝜂1] = [𝜂2] by the Brauer–Nesbitt theorem. Hence 𝜋(𝑇) is a point.

Note that 𝜚𝐶 : 𝜋1 (𝑋) → GL𝑁 (F𝑞 [𝐶]) corresponds to the generic point of 𝐶. It follows that 𝜚𝐶 ∈ 𝐶 (F𝑞 (𝐶)).
Since 𝐶 is defined over F𝑝 , we can find a point 𝜂 : 𝜋1 (𝑋) → GL𝑁 (F𝑝) such that 𝜂 ∈ 𝐶 (F𝑝). Then since 𝜋(𝑇) is a
point, we have [𝜚𝐶 ] = [𝜂]. Since 𝜂(𝜋1 (𝑋)) is finite, the semisimplification 𝜂𝑠𝑠 of 𝜂 has also finite image. As the
semisimplification of 𝜚𝐶 is isomorphic to 𝜂𝑠𝑠 , by virtue of Lemma 4.1.1, we conclude that 𝜚𝐶 (𝜋1 (𝑋)) is finite. □

Note that for any 𝑞 = 𝑝𝑛 with 𝑛 ∈ Z>0, we have F𝑞 ((𝑡)) = F𝑝 ((𝑡)). Let 𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (F𝑞 ((𝑡))) be the
semisimplification of 𝜚𝑖 . Then we have

(4.1.1) [𝜏𝑖] ∈ 𝑀 (F𝑞 ((𝑡))).
Lemma 4.1.3. — Let 𝑍 be any closed subvariety of 𝑋 such that 𝑠τ (𝑍) is a point. Then 𝑗 ◦ 𝜋(𝑇) is a point, where
𝑗 : 𝑀B (𝑋, 𝑁)F𝑝

→ 𝑀B (𝑍, 𝑁)F𝑝
is the natural morphism induced by the inclusion 𝜄 : 𝑍 → 𝑋 .

Proof. — By the definition of 𝑠τ , we have 𝜄∗𝜏𝑖 is bounded for each 𝑖. By Claim 1.4.1, 𝜄∗𝜚𝑖 is also bounded for
each 𝑖. By the definition of 𝜚𝑖 and Lemma 4.1.2, we conclude that 𝑗 ◦ 𝜋(𝑇) is a point. □

Definition 4.1.4. — The reduction map 𝑠𝑀 : 𝑋 → 𝑆𝑀 is obtained through the simultaneous Stein factorization
of the reductions {𝑠𝜏 : 𝑋 → 𝑆𝜏}[𝜏 ]∈𝑀 (𝐾 ) . Here 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) ranges over all reductive representations
with 𝐾 a local field of characteristic 𝑝 such that [𝜏] ∈ 𝑀 (𝐾) and 𝑠𝜏 : 𝑋 → 𝑆𝜏 is the reduction map defined in
Theorem 1.E.

The reduction map 𝑠𝑀 : 𝑋 → 𝑆𝑀 enjoys the following crucial property.
Lemma 4.1.5. — Let 𝑍 ⊂ 𝑋 be a connected Zariski closed subset such that 𝑠𝑀 (𝑍) is a point in 𝑆𝑀 . Then 𝑗 (𝑀)
is zero dimensional, where 𝑗 : 𝑀B (𝑋, 𝑁)F𝑝

→ 𝑀B (𝑍, 𝑁)F𝑝
is the natural morphism induced by the inclusion

𝜄 : 𝑍 → 𝑋 .
Proof. — We may assume that 𝑍 and 𝑀 are all geometrically irreducible. Since 𝜋 : 𝑅F𝑝

→ 𝑀B (𝑋, 𝑁)F𝑝
is a

surjective morphism between affine F𝑝-schemes of finite type and 𝑀 is defined over F𝑝 , for affine curve 𝑇𝑜 ⊂ 𝑀

defined over F𝑝 , there exists an affine curve 𝑇 ⊂ 𝜋−1 (𝑀) defined over F𝑝 such that 𝜋(𝑇) dominates 𝑇𝑜. By
Definition 4.1.4 and (4.1.1), 𝑠𝜏𝑖 (𝑍) is a point for each 𝑖. It thus follows from Lemma 4.1.3 that 𝑗 (𝑇𝑜) is a point.
Since 𝑀 is an affine F𝑝-scheme of finite type, any two general closed points in 𝑀 can be covered by an affine curve
in 𝑀 defined over F𝑝 . It follows that 𝑗 (𝑀) is a point. □

Theorem 4.1.6. — Let 𝑀 be a Zariski closed subset of 𝑀B (𝑋, 𝑁)F𝑝
defined over F𝑝 with 𝑝 > 0. The reduction

map 𝑠𝑀 : 𝑋 → 𝑆𝑀 is the Shafarevich morphism for 𝑀 . That is, for any connected Zariski closed subvariety 𝑍 of
𝑋 , the following properties are equivalent:
(a) 𝑠𝑀 (𝑍) is a point;
(b) for any linear representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a field of characteristic 𝑝 and [𝜚] ∈ 𝑀 (𝐾), we

have 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite;
(c) for any semisimple representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a field of characteristic 𝑝 such that

[𝜚] ∈ 𝑀 (𝐾), we have 𝜚(Im[𝜋1 (𝑍norm
𝑜 ) → 𝜋1 (𝑋)]) is finite, where 𝑍𝑜 is any irreducible component of 𝑍 .

Proof. — (a) =⇒ (b): Let 𝑀1, . . . , 𝑀𝑘 be all geometric connected component of 𝑀 . Since 𝑀 is defined over F𝑝 ,
we can find semisimple representations 𝜚𝑖 : 𝜋1 (𝑋) → GL𝑁 (F𝑝) such that [𝜚𝑖] ∈ 𝑀𝑖 (F𝑝). Let 𝐾 be any field of
characteristic 𝑝 and 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a linear representation such that [𝜚] ∈ 𝑀 (𝐾). Then [𝜚] ∈ 𝑀𝑖 (�̄�)
for some 𝑖. Note that 𝑗 (𝑀𝑖) is a point by Lemma 4.1.5, where 𝑗 : 𝑀B (𝑋, 𝑁)F𝑝

→ 𝑀B (𝑍, 𝑁)F𝑝
is the natural

morphism induced by the inclusion 𝜄 : 𝑍 → 𝑋 . It follows that [𝜄∗𝜚] = [𝜄∗𝜚𝑖] ∈ 𝑀B (𝑍, 𝑁)F𝑝
(�̄�), where 𝜄 : 𝑍 → 𝑋

is the inclusion. Therefore, the semisimplification of 𝜄∗𝜚 is conjugate that of 𝜄∗𝜚𝑖 . Note that 𝜄∗𝜚𝑖 (𝜋1 (𝑍)) is finite,
for 𝜚𝑖 (𝜋1 (𝑋)) ⊂ GL𝑁 (F𝑝) is finite. Hence the image of its semisimplification is also finite. By Lemma 4.1.1, we
conclude that 𝜄∗𝜚(𝜋1 (𝑍)) is finite.

(b) =⇒ (c): this is obvious.
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(c) =⇒ (a): Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) with 𝐾 a field of characteristic 𝑝 such that [𝜚] ∈ 𝑀 (𝐾). Then, the image
𝜚(Im[𝜋1 (𝑍norm

𝑜 ) → 𝜋1 (𝑋)]) is finite by our assumption, and is thus bounded. By the property in Theorem 1.E,
𝑠𝜚 (𝑍) is a point. By Definition 4.1.4, 𝑠𝑀 (𝑍) is also a point. □

Theorem Theorem 4.1.6 yields the positive characteristic part of Theorem 3.A.
Theorem 4.1.7 (⊂Theorem 3.A). — Let 𝑋 be a quasi-projective normal variety and 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a
linear representation, where𝐾 is a field of characteristic 𝑝 > 0. Then the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋)
exists. That is, for any connected Zariski closed subset 𝑍 ⊂ 𝑋 , the following properties are equivalent:
(a) sh𝜚 (𝑍) is a point;
(b) 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite;
(c) for each irreducible component 𝑍𝑜 of 𝑍 , 𝜚𝑠𝑠 (Im[𝜋1 (𝑍norm

𝑜 ) → 𝜋1 (𝑋)]) is finite.
Proof (sketch). — We will assume that 𝑋 is smooth. Define

(4.1.2) 𝑀 :=
⋂
𝑓 :𝑌→𝑋

𝑗−1
𝑓 {1},

where 1 stands for the trivial representation, and 𝑓 : 𝑌 → 𝑋 ranges over all proper morphisms from positive
dimensional quasi-projective normal varieties such that [ 𝑓 ∗𝜚] = 1. Here 𝑗 𝑓 : 𝑀B (𝑋, 𝑁)F𝑝

→ 𝑀B (𝑌, 𝑁)F𝑝
is

a morphism of affine F𝑝-scheme induced by 𝑓 . Then 𝑀 is a Zariski closed subset defined over F𝑝 . We apply
Theorem 4.1.6 to construct the Shafarevich morphism 𝑠𝑀 : 𝑋 → 𝑆𝑀 associated with 𝑀 . It is a dominant morphism
with general fibers connected. Let sh𝜚 : 𝑋 → Sh𝜚 (𝑋) be 𝑠𝑀 : 𝑋 → 𝑆𝑀 and we will prove that it satisfies the
properties in the theorem.

(a) ⇒ (b): this follows from the fact that [𝜚] ∈ 𝑀 (𝐾) and Theorem 4.1.6.

(b) ⇒ (c): obvious.

(c) ⇒ (a): We take a finite étale cover𝑌 → 𝑍norm
𝑜 such that 𝑓 ∗𝜚𝑠𝑠 (𝜋1 (𝑌 )) is trivial, where we denote by 𝑓 : 𝑌 → 𝑋

the natural proper morphism. Let 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐿) be any linear representation such that [𝜏] ∈ 𝑀 (𝐿)
where 𝐿 is any field of characteristic 𝑝. Then [ 𝑓 ∗𝜏] = 1 by (4.1.2). Thanks to Lemma 4.1.1, 𝑓 ∗𝜏(𝜋1 (𝑌 )) is finite,
and it follows that 𝜏(Im[𝜋1 (𝑍norm

𝑜 ) → 𝜋1 (𝑋)]) is finite as Im[𝜋1 (𝑌 ) → 𝜋1 (𝑍norm
𝑜 )] is a finite index subgroup of

𝜋1 (𝑍norm
𝑜 ). According to Theorem 4.1.6, 𝑠𝑀 (𝑍), and thus sh𝜚 (𝑍) is a point. □

Remark 4.1.8. — If we compare the reduction maps defined in characteristic zero as per Definition 3.4.2 and in
characteristic 𝑝 > 0 as per Definition 4.1.4, we observe that they are defined in the same way, and have the same
properties as shown in Proposition 3.4.3 and Lemma 4.1.5.

However, the construction of the Shafarevich morphism in Theorems 4.1.6 and 4.1.7 does not involve transcen-
dental aspects such as C-VHS and period maps as we have seen in the proof of Theorem 3.4.7. Instead, we solely
rely on the reduction map for unbounded representations in algebraic groups over positive characteristic fields.
In characteristic zero, the construction becomes significantly more involved, and the consideration of C-VHS is
unavoidable.

4.2. Hyperbolicity and fundamental groups (II)

In this section, we will use the structure of the Shafarevich morphism constructed in Theorem 4.1.6 to sketch
the proof of Theorems 2.A.(ii) and 2.E.(ii).

4.2.1. On the generalized Green-Griffiths-Lang conjecture (II). —
Theorem 4.2.1 (=Theorem 2.E.(i)). — Let 𝑋 be a quasi-projective normal variety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾)
be a big representation where 𝐾 is a field of positive characteristic. Then the following properties are equivalent:
(i) 𝑋 is of log general type;
(ii) 𝑋 is pseudo Picard hyperbolic;
(iii) 𝑋 is pseudo Brody hyperbolic;
(iv) there exists a proper Zariski closed subset Ξ ⊊ 𝑋 such that any positive dimensional closed subvariety 𝑉 ⊂ 𝑋

is of log general type provided that 𝑉 ⊄ Ξ.
Proof of Theorem 4.2.1. — By replacing 𝑋 with a desingularization and 𝜚 with the pullback on this birational
model, we can assume that 𝑋 is smooth. Let 𝑋 be a smooth projective compactification of 𝑋 such that 𝐷 := 𝑋\𝑋
is a simple normal crossing divisor. By Theorem 4.1.7, the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋) exists and
is the quasi-Stein factorization of (𝑠𝜏1 , . . . , 𝑠𝜏𝑘 ) : 𝑋 → 𝑆𝜏1 × · · · × 𝑆𝜏𝑘 , where 𝑠𝜏𝑖 : 𝑋 → 𝑆𝜏𝑖 is the reduction map
associated with some unbounded and semisimple representation 𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁

(
F𝑞𝑖 ((𝑡))

)
.
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By the construction of 𝑠𝜏𝑖 outlined in Theorem 1.E, we can take a spectral covering 𝑋sp → 𝑋sp (a Galois cover
with Galois group 𝐺) there exists a finite (ramified) Galois cover 𝜋𝑖 : 𝑋 𝑖 → 𝑋 with Galois group 𝐻𝑖 such that

(a) there exists (spectral) forms {𝜂1, . . . , 𝜂𝑚} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω
𝑋
(log𝐷)) associated with 𝜏1, . . . , 𝜏𝑘 , which are

invariant under 𝐻;
(b) 𝜋 is étale outside

𝑅 := {𝑥 ∈ 𝑋sp | ∃𝜂𝑖 ≠ 𝜂 𝑗 with (𝜂𝑖 − 𝜂 𝑗 ) (𝑥) = 0}(4.2.1)

(c) There exists a morphism 𝑎 : 𝑋sp → 𝐴 to a semi-abelian variety 𝐴 with 𝐻 acting on 𝐴 such that 𝑎 is
𝐻-equivariant.

(d) sh𝜚 : 𝑋 → Sh𝜚 (𝑋) is the quasi-Stein factorization of the quotient 𝑋 → 𝐴/𝐻 of 𝑎 by 𝐻.
Since 𝜚 is big, it follows that sh𝜚 is birational and thus
Claim 4.2.2. — We have dim 𝑋sp = dim 𝑎(𝑋sp).

Based on Claim 4.2.2, we can apply techniques in Theorem 2.C to prove the theorem.
(i) ⇒ (ii): We will use notions of Nevanlinna theory in section 2.6. For any holomorphic map 𝑓 : C>𝛿 → 𝑋 whose
image is not contained in 𝜋(𝑅), there exists a surjective finite holomorphic map 𝑝 : 𝑌 → C>𝛿 from a connected
Riemann surface 𝑌 to C>𝛿 and a holomorphic map 𝑔 : 𝑌 → 𝑋sp satisfying the following diagram:

(4.2.2)
𝑌 𝑋sp

C>𝛿 𝑋

𝑔

𝑝 𝜋

𝑓

By Claim 2.6.3, there exists a proper Zariski closed subset 𝐸 ⊊ 𝑋 such that for any holomorphic map 𝑓 : C>𝛿 → 𝑋

whose image not contained in 𝐸 , one has

𝑁ram 𝑝 (𝑟) = 𝑜(𝑇𝑔 (𝑟, 𝐿)) +𝑂 (log 𝑟) | |,

where 𝑔 : 𝑌 → 𝑋sp is the induced holomorphic map in (4.2.2), 𝐿 is an ample line bundle on 𝑋sp equipped with a
smooth hermitian metric and 𝑇𝑔 (𝑟, 𝐿) is the Nevanlinna order function. Note that 𝑋sp of log general type as we
assume that 𝑋 is of log general type and 𝜋 : 𝑋sp → 𝑋 is a Galois cover. We apply [CDY22, Theorem 4.1] to
conclude that there exists an extension 𝑔 : 𝑌 → 𝑋sp of 𝑔, where 𝑌 is a Riemann surface such that 𝑝 : 𝑌 → C>𝛿
extends to a proper map 𝑝 : 𝑌 → C>𝛿 ∪ {∞}. This induces an extension 𝑓 : C>𝛿 ∪ {∞} → 𝑋 . Hence, 𝑋 is pseudo
Picard hyperbolic.

(ii) ⇒ (iii), (iv) ⇒ (i): obvious.

(iii) ⇒ (iv): the step is exactly the same as that in the proof of Theorem 2.C. □

4.2.2. Hyperbolicity via fundamental groups. —
Theorem 4.2.3 (=Theorem 2.A.(ii)). — Let 𝑋 be a smooth quasi-projective variety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾)
be a big representation where 𝐾 is a field of positive characteristic. If the Zariski closure 𝐺 of 𝜚(𝜋1 (𝑋)) is
a semisimple algebraic group, then Sp• (𝑋) ⊊ 𝑋 where Sp• denotes any of Spsab, Spalg, Sph or Spp defined in
Definition 2.7.1.
Proof. — We may assume that 𝐾 is algebraically closed. Replacing 𝑋 by a desingularization, we may assume that
𝑋 is smooth. We will still maintain the same notations as introduced in Theorem 4.2.1. Let 𝜋 : 𝑋sp → 𝑋 be the
Galois covering defined therein. Consider the representation 𝜋∗𝜚 : 𝜋1 (𝑋sp) → 𝐺 (𝐾), which is Zariski dense as
Im[𝜋1 (𝑋sp) → 𝜋1 (𝑋)] is a finite index subgroup of 𝜋1 (𝑋). By the proof of Theorem 4.2.1, there exists a morphism
𝑎 : 𝑋sp → 𝐴 where 𝐴 is a semiabelian variety such that dim 𝑋sp = dim 𝑎(𝑋sp). Hence we have 𝜅(𝑋sp) ≥ 0.
Claim 4.2.4. — 𝑋sp is of log general type.
Proof. — Let 𝜇 : 𝑌 → 𝑋sp be a desingularization such that the logarithmic Iitaka fibration 𝑗 : 𝑌 → 𝐽 (𝑌 ) is
regular. For a very general fiber 𝐹 of 𝑗 , we have 𝜅(𝐹) = 0 and dim 𝐹 = dim 𝑎(𝐹). By [CDY22, Lemma 3.3], we
have 𝜋1 (𝐹) is abelian.

We write 𝜏 = (𝜋 ◦ 𝜇)∗𝜚 : 𝜋1 (𝑌 ) → 𝐺 (𝐾). Notably, 𝜏(𝜋1 (𝑌 )) is Zariski dense in 𝐺. By [CDY22, Lemma
2.2], Im[𝜋1 (𝐹) → 𝜋1 (𝑌 )] is a normal subgroup of 𝜋1 (𝑌 ). Consequently, the Zariski closure 𝑁 of 𝜏(Im[𝜋1 (𝐹) →
𝜋1 (𝑌 )]) is a normal subgroup of 𝐺. It’s worth noting that the connected component 𝑁◦ of 𝑁 is a tori since
𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑌 )]) is commutative. Therefore, 𝑁◦ must be trivial since 𝐺 is assumed to be semisimple.
Consequently, 𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑌 )]) is finite.

Given our assumption that 𝜚 is big, we conclude that 𝜏 is also big. Therefore, we arrive at the conclusion that
dim 𝐹 = 0, leading us to deduce that both 𝑌 and, consequently, 𝑋sp are of log general type. □

We can carry out the same proof as the step (i)⇒(ii) in the proof of Theorem 4.2.1 to conclude that 𝑋 is pseudo
Picard hyperbolic. It’s essential to emphasize that in that proof, the condition of 𝑋 being of log general type is only



4.2. HYPERBOLICITY AND FUNDAMENTAL GROUPS (II) 41

used to show that 𝑋sp is of log general type. We now apply Theorem 2.6.2 to conclude that Sp• ⊊ 𝑋 where Sp•
denotes any of Spsab, Spalg, Sph or Spp. □

Remark 4.2.5. — It is noteworthy that in characteristic zero, we first establish Theorem 2.A and subsequently
deduce Theorem 2.E from it. Conversely, in the positive characteristic case, we reverse this order. Nonetheless, the
fundamental result underlying these theorems remains Theorem 2.C.





CHAPTER 5

SOME APPLICATIONS IN ALGEBRAIC GEOMETRY

5.1. Algebraic varieties with compactifiable universal coverings

In the work [CHK13,CH13], Claudon, Höring and Kollár proposed the following intriguing conjecture:
Conjecture 5.1.1. — Let 𝑋 be a complex projective manifold with infinite fundamental group 𝜋1 (𝑋). Suppose that
the universal cover 𝑋 is quasi-projective. Then after replacing 𝑋 by a finite étale cover, there exists a locally trivial
fibration 𝑋 → 𝐴 with simply connected fiber 𝐹 onto a complex torus 𝐴. In particular we have 𝑋 ≃ 𝐹 × Cdim 𝐴.

It’s worth noting that assuming abundance conjecture, Claudon, Höring and Kollár proved this conjecture
in [CHK13]. In [CH13], Claudon-Höring proved Conjecture 5.1.1 in the case where 𝜋1 (𝑋) is virtually abelian.

As the first application of Theorem 2.A, in this section we establish a linear version of Conjecture 5.1.1 without
relying on the abundance conjecture.
Theorem 5.A ( [DY24, Theorem F]). — Let 𝑋 be a smooth projective variety with an infinite fundamental group
𝜋1 (𝑋), such that its universal covering 𝑋 is a Zariski open subset of some compact Kähler manifold 𝑋 . If there
exists a faithful representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is any field, then the Albanese map of 𝑋 is (up to
finite étale cover) locally isotrivial with simply connected fiber 𝐹. In particular we have 𝑋 ≃ 𝐹 ×C𝑞 (𝑋) with 𝑞(𝑋)
the irregularity of 𝑋 .
Proof of Theorem 5.A. — We may assume that𝐾 is algebraically closed. Let𝐺 be the Zariski closure of 𝜚(𝜋1 (𝑋)).
After replacing 𝑋 by a finite étale cover, we may assume that 𝐺 is connected. Let 𝑅(𝐺) be the radical of 𝐺.
Step 1: we prove that 𝐺 is solvable. Let 𝐻 := 𝐺/𝑅(𝐺), which is semisimple. Then 𝜚 induces a Zariski dense
representation 𝜎 : 𝜋1 (𝑋) → 𝐻 (𝐾). It is noteworthy that the Shafarevich morphism sh𝜎 : 𝑋 → Sh𝜎 (𝑋) of
𝜎 exists by Theorem 3.A. By the property of the Shafarevich morphism, each fiber 𝐹 of sh𝜎 is connected and
𝜎(Im[𝜋1 (𝐹) → 𝜋1 (𝑋)]) is finite.

We can prove that after we replace 𝑋 by a finite étale cover, 𝜎 factors through its Shafarevich morphism. Namely,
there exists a large representation 𝜏 : 𝜋1 (Sh𝜎 (𝑋)) → 𝐻 (𝐾) such that 𝜎 = sh∗𝜎𝜏.
Claim 5.1.2. — The group 𝐻 is trivial.
Proof. — Given that 𝐺 is connected, it follows that 𝐺/𝑅(𝐺) is also connected. Consequently, to prove that 𝐻 is
trivial, it suffices to show that dim𝐻 = 0. Assume for the sake of contradiction that dim𝐻 > 0.

Since 𝜎(𝜋1 (𝑋)) is Zariski dense in 𝐻, 𝜎(𝜋1 (𝑋)) is infinite, and thus dim Sh𝜎 (𝑋) > 0. Note that 𝜏 :
𝜋1 (Sh𝜎 (𝑋)) → 𝐻 (𝐾) is a large and Zariski dense representation. We apply Theorem 2.A to conclude that
Sh𝜎 (𝑋) is pseudo Picard hyperbolic.

Consider the surjective holomorphic map ℎ : 𝑋 → Sh𝜎 (𝑋), which is the composition of sh𝜎 : 𝑋 → Sh𝜎 (𝑋)
with the universal covering 𝜋 : 𝑋 → 𝑋 . Given that 𝑋 is a Zariski open subset of a compact Kähler manifold 𝑋 , by
Proposition 2.3.1, ℎ can be extended to a meromorphic map ℎ̄ : 𝑋 d Sh𝜎 (𝑋). By blowing up the boundary 𝑋\𝑋 ,
we can assume that ℎ̄ is holomorphic.

Now, consider a general fiber 𝐹 given by sh−1
𝜎 (𝑦) with 𝑦 ∈ Sh𝜎 (𝑋), which is smooth and connected. As

𝜎(Im[𝜋1 (𝐹) → 𝜋1 (𝑋)]) is trivial, and 𝜎(𝜋1 (𝑋)) is infinite, it implies that Im[𝜋1 (𝐹) → 𝜋1 (𝑋)] has infinite index
in 𝜋1 (𝑋). Therefore, 𝜋0 (𝜋−1 (𝐹)) is infinite.

We note that 𝜋−1 (𝐹) = 𝑋 ∩ ℎ̄−1 (𝑦). Since 𝑋 is compact, we can deduce that 𝜋0 (𝜋−1 (𝐹)) is finite, leading to the
contradiction. Hence 𝐻 is trivial. □

Hence 𝐺 = 𝑅(𝐺) is solvable.

Step 2: we prove that 𝜋1 (𝑋) is virtually abelian in the case where char𝐾 = 0.
Claim 5.1.3. — The Albanese map is surjective for every finite étale cover of 𝑋 .
Proof. — We replace 𝑋 by any finite étale cover and would like to prove that its Albanese map 𝑎 : 𝑋 → 𝐴 is
surjective. Assume for the sake of contradiction that 𝑎 is not surjective. By the universal property of the Albanese
map, 𝑎(𝑋) is not a translation of abelian subvariety and thus the Kodaira dimension 𝜅(𝑎(𝑋)) > 0. Let 𝐵 ⊂ 𝐴
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be the stabilizer of 𝑎(𝑋). We consider the morphism 𝑐 : 𝑋 → 𝐶 = 𝐴/𝐵 which is the composition of 𝑎 and the
quotient 𝐴→ 𝐴/𝐵. Then𝑌 = 𝑐(𝑋) ⫋ 𝐶 is general type. Hence𝑌 is pseudo Picard hyperbolic by the Bloch-Ochiai
theorem (see also Theorem 2.D). We then use the same fashion as Step 1 to conclude a contradiction. □

By Claim 5.1.3, we apply [Cam04, Theorem 7.4] by Campana to conclude that every linear solvable quotient of
𝜋1 (𝑋) in characteristic zero is virtually abelian. Since 𝜚 is faithful and 𝐺 is solvable, it follows that, up to some
étale cover, the image 𝜚(𝜋1 (𝑋)), hence 𝜋1 (𝑋) is abelian.

Step 3: we prove that 𝜋1 (𝑋) is virtually abelian when char𝐾 > 0. Since 𝐺 is solvable and 𝜚 is faithful, it follows
that 𝜋1 (𝑋) is solvable. By a theorem of Delzant [Del10, Théorème 1.4], 𝜋1 (𝑋) is virtually nilpotent. Thanks to
Lemma 5.1.4, we conclude that 𝜚(𝜋1 (𝑋)), hence 𝜋1 (𝑋) is virtually abelian.
Step 4. Completion of the proof. By Step 2 for char𝐾 = 0 and Step 3 for char𝐾 > 0, 𝜋1 (𝑋) is virtually abelian.
By [CH13, Theorem 1.5], replacing 𝑋 by a suitable finite étale cover, its Albanese map is a locally trivial fibration
with simply connected fiber. We accomplish the proof of the theorem. □

Lemma 5.1.4. — Let Γ ⊂ GL𝑁 (𝐾) be a finitely generated subgroup where 𝐾 is an algebraically closed field of
positive characteristic. If Γ is virtually nilpotent, then it is virtually abelian.

5.2. Campana’s abelianity conjecture

5.2.1. Special and ℎ-special varieties: properties and conjectures. — We first recall the definition of special
varieties by Campana [Cam04,Cam11].
Definition 5.2.1 (Campana’s specialness). — Let 𝑋 be a quasi-projective normal variety.

(i) 𝑋 is weakly special if for any finite étale cover 𝑋 → 𝑋 and any proper birational modification 𝑋 ′ → 𝑋 , there
exists no dominant morphism 𝑋 ′ → 𝑌 with connected general fibers such that 𝑌 is a positive-dimensional
quasi-projective variety of log general type.

(ii) 𝑋 is special if for any proper birational modification 𝑋 ′ → 𝑋 there is no dominant morphism 𝑋 ′ → 𝑌 to
with connected general fibers over a positive-dimensional quasi-projective variety 𝑌 such that the Campana
orbifold base (or simply orbifold base) is of log general type.

(iii) 𝑋 is Brody special if it contains a Zariski dense entire curve.
Campana defined 𝑋 to be 𝐻-special if 𝑋 has vanishing Kobayashi pseudo-distance. Motivated by [Cam11, 11.3

(5)], in [CDY22, Definition 1.11] we introduce the following definition.
Definition 5.2.2 (ℎ-special). — Let 𝑋 be a smooth quasi-projective variety. We define the equivalence relation
𝑥 ∼ 𝑦 of two points 𝑥, 𝑦 ∈ 𝑋 iff there exists a sequence of holomorphic maps 𝑓1, . . . , 𝑓𝑙 : C → 𝑋 such that letting
𝑍𝑖 ⊂ 𝑋 to be the Zariski closure of 𝑓𝑖 (C), we have

𝑥 ∈ 𝑍1, 𝑍1 ∩ 𝑍2 ≠ ∅, . . . , 𝑍𝑙−1 ∩ 𝑍𝑙 ≠ ∅, 𝑦 ∈ 𝑍𝑙 .

We set 𝑅 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋; 𝑥 ∼ 𝑦}. We define 𝑋 to be hyperbolically special (ℎ-special for short) iff 𝑅 ⊂ 𝑋 × 𝑋
is Zariski dense.

By definition, rationally connected projective varieties are ℎ-special without referring to a theorem of Campana
and Winkelmann [CW16], who proved that all rationally connected projective varieties contain Zariski dense entire
curves. It also has the following properties.
Lemma 5.2.3 ( [CDY22, Lemmas 10.2 & 10.4]). — (i) If a smooth quasi-projective variety 𝑋 is Brody special,

then it is ℎ-special.
(ii) Let 𝑋 be an ℎ-special smooth quasi-projective variety, and let 𝑝 : 𝑋 ′ → 𝑋 be a finite étale morphism or

proper birational morphism from a quasi-projective variety 𝑋 ′. Then 𝑋 ′ is ℎ-special. □
Proposition 5.2.4 ( [CDY22, Proposition 11.11]). — If a quasi-projective smooth variety 𝑋 is special or ℎ-special,
the quasi-albanese map 𝑎 : 𝑋 → 𝐴 of 𝑋 is dominant with general fibers connected. Moreover, it is 𝜋1-exact, i.e.,
we have the following exact sequence:

𝜋1 (𝐹) → 𝜋1 (𝑋) → 𝜋1 (𝐴) → 1,

where 𝐹 is a general fiber of 𝑎. □
In [Cam04,Cam11], Campana proposed the following tantalizing abelianity conjecture.

Conjecture 5.2.5 (Campana). — A special smooth quasi-projective variety has virtually abelian fundamental
group.

In [CDY22] we observed that Conjecture 5.2.5 fails for non-proper quasi-projective variety.

5.2.2. Counter-example to Campana’s conjecture. — In [CDY22, Example 11.23], we constructed a smooth
quasi-projective variety such that it is both special and Brody special, yet it has nilpotent fundamental group that
is not virtually abelian.
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Example 5.2.6. — Fix 𝜏 ∈ H from the upper half plane. Then C/< Z + Z𝜏 > is an elliptic curve. We define a
nilpotent group 𝐺 as follows.

𝐺 =

𝑔(𝑙, 𝑚, 𝑛) =
©«

1 0 𝑚 𝑛

−𝑚 1 −𝑚2

2 𝑙

0 0 1 0
0 0 0 1

ª®®®¬ ∈ GL4 (Z) | 𝑙, 𝑚, 𝑛 ∈ Z


Thus as sets 𝐺 ≃ Z3. However, 𝐺 is non-commutative as direct computation shows:
(5.2.1) 𝑔(𝑙, 𝑚, 𝑛) · 𝑔(𝑙′, 𝑚′, 𝑛′) = 𝑔(−𝑚𝑛′ + 𝑙 + 𝑙′, 𝑚 + 𝑚′, 𝑛 + 𝑛′).
We define 𝐶 ⊂ 𝐺 by letting 𝑚 = 0 and 𝑛 = 0.

𝐶 =

𝑔(𝑙, 0, 0) =
©«
1 0 0 0
0 1 0 𝑙

0 0 1 0
0 0 0 1

ª®®®¬ ∈ GL4 (Z) | 𝑙 ∈ Z


Then 𝐶 is a free abelian group of rank one, thus 𝐶 ≃ Z as groups. By (5.2.1), 𝐶 is a center of 𝐺. We have an exact
sequence

1 → 𝐶 → 𝐺 → 𝐿 → 1,
where 𝐿 ≃ Z2 is a free abelian group of rank two. This is a central extension. The quotient map 𝐺 → 𝐿 is defined
by 𝑔(𝑙, 𝑚, 𝑛) ↦→ (𝑚, 𝑛).
Claim 5.2.7. — 𝐺 is not almost abelian.

Now we define an action 𝐺 ↷ C2 as follows: For (𝑧, 𝑤) ∈ C2, we set

©«
𝑧

𝑤

𝜏

1

ª®®®¬ ↦→
©«

1 0 𝑚 𝑛

−𝑚 1 −𝑚2

2 𝑙

0 0 1 0
0 0 0 1

ª®®®¬
©«
𝑧

𝑤

𝜏

1

ª®®®¬
Hence

𝑔(𝑙, 𝑚, 𝑛) · (𝑧, 𝑤) =
(
𝑧 + 𝑚𝜏 + 𝑛,−𝑚𝑧 + 𝑤 − 𝑚2

2
𝜏 + 𝑙

)
.

This action is properly discontinuous. We set 𝑋 = C2/𝐺. Hence 𝜋1 (𝑋) = 𝐺. Then 𝑋 is a smooth complex
manifold. We have C2/𝐶 ≃ C × C∗. The action 𝐿 ↷ C × C∗ is written as

(5.2.2) (𝑧, 𝜉) ↦→ (𝑧 + 𝑚𝜏 + 𝑛, 𝑒−2𝜋𝑖𝑚𝑧−𝜋𝑖𝑚2𝜏𝜉),
where 𝜉 = 𝑒2𝜋𝑖𝑤 . The first projection C × C∗ → C is equivariant 𝐿 ↷ C × C∗ → C ↶ 𝐿. By this, we have
𝑋 → 𝐸 , where 𝐸 = C/< Z + Z𝜏 > is an elliptic curve. The action (5.2.2) gives the action on C × C by the natural
inclusion C × C∗ ⊂ C × C. We consider this as a trivial line bundle by the first projection C × C → C. We set
𝑌 = (C×C)/𝐿. This gives a holomorphic line bundle𝑌 → 𝐸 . By Serre’s GAGA,𝑌 is algebraic. Hence 𝑋 = 𝑌 − 𝑍
is quasi-projective, where 𝑍 is the zero section of 𝑌 .
Claim 5.2.8. — The quasi-projective surface 𝑋 is special and contains a Zariski dense entire curve. In particular,
it is ℎ-special.

Consequently, within the quasi-projective context, we revised Conjecture 5.2.5 as follows.
Conjecture 5.2.9 ( [CDY22, Conjecture 1.14]). — A special or ℎ-special smooth quasi-projective variety has
virtually nilpotent fundamental group.

5.2.3. Nilpotency conjecture in the linear case. — In [CDY22, DY24], we confirm Conjecture 5.2.9 for quasi-
projective varieties with linear fundamental groups.
Theorem 5.B. — Let 𝑋 be a special or ℎ-special smooth quasiprojective variety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a
linear representation where 𝐾 is any field.
(i) [CDY22, Theorem 11.2] If char𝐾 = 0, then 𝜚(𝜋1 (𝑋)) is nilpotent.
(ii) [DY24, Theorem G] If char𝐾 > 0, then 𝜚(𝜋1 (𝑋)) is virtually abelian.

□
By Example 5.2.6, Theorem 5.B is shown to be sharp. Surprisingly, in the context of representations in positive

characteristic, we obtain a stronger result.
Proof of Theorem 5.B. — Step 1. We prove that 𝜚(𝜋1 (𝑋)) is solvable. The idea is quite close to Step 1 in the
proof of Theorem 5.A and we sketch it. We may assume that 𝐾 is algebraically closed. Let 𝐺 be the Zariski
closure of 𝜚(𝜋1 (𝑋)). Note that any finite étale cover of a special (resp. ℎ-special) variety is still special (resp.
ℎ-special). After replacing 𝑋 by a finite étale cover, we may assume that 𝐺 is connected. Let 𝑅(𝐺) be the radical
of 𝐺. Let 𝐻 := 𝐺/𝑅(𝐺), which is semisimple. If dim𝐻 > 0, then 𝜚 induces a Zariski dense representation
𝜎 : 𝜋1 (𝑋) → 𝐻 (𝐾). Let sh𝜎 : 𝑋 → Sh𝜎 (𝑋) be the Shafarevich morphism of 𝜎. By the property of the
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Shafarevich morphism in Theorem 3.A, a general fiber 𝐹 of sh𝜎 is connected and 𝜎(Im[𝜋1 (𝐹) → 𝜋1 (𝑋)]) is
finite. We can prove that after replacing 𝑋 by a composition of birational modifications and finite étale Galois
covers, there exists a a dominant morphism 𝑓 : 𝑋 → 𝑌 over a smooth quasi-projective variety 𝑌 with connected
general fibers, and a big representation 𝜏 : 𝜋1 (𝑌 ) → 𝐻 (𝐾) such that 𝜎 = 𝑓 ∗𝜏. Hence 𝜏 is Zariski dense in 𝐻.
By Theorem 2.A, 𝑌 is of log general type and pseudo Picard hyperbolic. This leads to a contradiction since 𝑋 is
special (thus weakly special by [Cam11]) or ℎ-special. Hence 𝐺 = 𝑅(𝐺).

Step 2. We prove that 𝜚(𝜋1 (𝑋)) is virtually abelian if char𝐾 > 0 . Note that any finite étale cover of a special
(resp. ℎ-special) variety is still special (resp. ℎ-special) by [Cam04] and Lemma 5.2.3. Replacing 𝑋 by a finite
étale cover, we may assume that 𝜋1 (𝑋)𝑎𝑏 → 𝜋1 (𝐴) is an isomorphism, where 𝜋1 (𝑋)𝑎𝑏 := 𝜋1 (𝑋)/[𝜋1 (𝑋), 𝜋1 (𝑋)].
Since 𝑋 is special or ℎ-special, by Proposition 5.2.4, the quasi-albanese map 𝑎 : 𝑋 → 𝐴 of 𝑋 is 𝜋1-exact, i.e., we
have the following exact sequence:

𝜋1 (𝐹) → 𝜋1 (𝑋) → 𝜋1 (𝐴) → 1,
where 𝐹 is a general fiber of 𝑎. Hence [𝜋1 (𝑋), 𝜋1 (𝑋)] is the image of 𝜋1 (𝐹) → 𝜋1 (𝑋), which is thus finitely
generated. It implies that [𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] = 𝜚( [𝜋1 (𝑋), 𝜋1 (𝑋)]) is also finitely generated. By Step 1, 𝐺 is
solvable. Hence we have D𝐺 ⊂ 𝑅𝑢 (𝐺), where 𝑅𝑢 (𝐺) is the unipotent radical of 𝐺 and D𝐺 is the the derived
group of 𝐺. Consequently, we have

[𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] ⊂ [𝐺 (𝐾), 𝐺 (𝐾)] ⊂ 𝑅𝑢 (𝐺) (𝐾).
Note that every subgroup of finite index in [𝜋1 (𝑋), 𝜋1 (𝑋)] is also finitely generated (cf. [ST00, Proposition 4.17].
By the same arguments in Lemma 5.1.4, we conclude that [𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] is finite. Hence 𝜚(𝜋1 (𝑋)) is
virtually abelian.

Step 3. We prove that 𝜚(𝜋1 (𝑋)) is virtually nilpotent if char𝐾 = 0 . The proof is non-trivial and based on 5.2.10
below. □

Theorem 5.2.10 ( [CDY22, Theorem 11.3]). — Let 𝑋 be a special or ℎ-special quasi-projective manifold. Let 𝐺
be a connected, solvable algebraic group defined over C. Assume that there exists a Zariski dense representation
𝜑 : 𝜋1 (𝑋) → 𝐺. Then 𝐺 is nilpotent. In particular, 𝜑(𝜋1 (𝑋)) is nilpotent.

The proof of Theorem 5.2.10 is involved. It is inspired by [Cam01] and is based on Proposition 5.2.4 together
with Deligne’s theorem: the radical of the algebraic monodromy group of an admissible variation of mixed Hodge
structures is unipotent. Let us explain the rough idea.
Proof of Theorem 5.2.10 (sketch). — We might assume that 𝐺 is connected. We have an exact sequence

(5.2.3) 1 → 𝑈 → 𝐺 → 𝑇 → 1,

where 𝑈 = 𝑅𝑢 (𝐺) is the unipotent radical and 𝑇 ⊂ 𝐺 is a maximal torus. Then 𝑇 acts on 𝑈/𝑈′ by the conjugate,
where𝑈′ is the commutator subgroup of𝑈.

Since 𝑇 is commutative, we have 𝐺′ ⊂ 𝑈, where 𝐺′ = [𝐺,𝐺] is the commutator subgroup. Hence we have

1 → 𝑈/𝐺′ → 𝐺/𝐺′ → 𝑇 → 1.

Since 𝐺/𝐺′ is commutative and𝑈/𝐺′ is unipotent, we have 𝐺/𝐺′ = (𝑈/𝐺′) × 𝑇 . By

1 → 𝐺′/𝐺′′ → 𝐺/𝐺′′ → 𝐺/𝐺′ → 1,

𝐺/𝐺′ acts on 𝐺′/𝐺′′ by the conjugate. By 𝑇 ⊂ (𝑈/𝐺′) × 𝑇 = 𝐺/𝐺′, we get 𝑇-action on 𝐺′/𝐺′′. Then we have
the following criterion for nilpotency of a solvable group.
Lemma 5.2.11. — Assume 𝑇 acts trivially on 𝐺′/𝐺′′. Then 𝐺 is nilpotent.

Consider the quasi-Albanese map 𝑎 : 𝑋 → 𝐴 and let 𝐹 be a general fiber. Let Φ ⊂ 𝜋1 (𝑋) be the image of
𝜋1 (𝐹) → 𝜋1 (𝑋). Let Π ⊂ 𝐺′/𝐺′′ be the image of 𝜋1 (𝐹) → 𝐺′/𝐺′′. Since 𝜋1 (𝐹) is finitely generated, Π is a
finitely generated, abelian group. By Proposition 5.2.4, we have the following exact sequence:

1 → Φ → 𝜋1 (𝑋) → 𝜋1 (𝐴) → 1.

Note that Φ′ ⊂ 𝜋1 (𝑋) is a normal subgroup. Hence we get

1 −−−−−−→ Φ𝑎𝑏 −−−−−−→ 𝜋1 (𝑋)/Φ′ −−−−−−→ 𝜋1 (𝐴) −−−−−−→ 1y y y
1 −−−−−−→ 𝐺′/𝐺′′ −−−−−−→ 𝐺/𝐺′′ −−−−−−→ 𝐺/𝐺′ −−−−−−→ 1

By the conjugation, we get 𝜋1 (𝐴) → Aut(Φ𝑎𝑏). This induces 𝜌 : 𝜋1 (𝐴) → Aut(Π). Note that 𝐺′/𝐺′′ is a
commutative unipotent group. Hence 𝐺′/𝐺′′ ≃ (G𝑎)𝑛, where G𝑎 is the additive group. The exponential map
Lie(𝐺′/𝐺′′) → 𝐺′/𝐺′′ is an isomorphism. Note that (G𝑎)𝑛 = C𝑛 as additive group. We have

Aut((G𝑎)𝑛) = GL(Lie(𝐺′/𝐺′′)) = GL(C𝑛).
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Hence by the conjugate, we have
𝜇 : 𝐺/𝐺′ → Aut(𝐺′/𝐺′′) = GL(C𝑛).

Let 1 → 𝑈 → 𝐺 → 𝑇 → 1 be the sequence as in (5.2.3). We have 𝐺/𝐺′ = (𝑈/𝐺′) × 𝑇 , from which we obtain
𝜇 |𝑇 : 𝑇 → GL(C𝑛). In the following, we are going to prove that 𝜇 |𝑇 is trivial and thus by Lemma 5.2.11 we can
prove that 𝐺 is unipotent.

Now we define a subgroup

Σ = {𝜎 ∈ Aut(𝐺′/𝐺′′); 𝜎Π = Π} ⊂ GL(C𝑛).

Note that 𝜌 : 𝜋1 (𝐴) → Aut(Π) factors through 𝜇 : 𝐺/𝐺′ → Aut(𝐺′/𝐺′′). This induces the following commutative
diagram:

(5.2.4)

𝜋1 (𝐴)
𝜌

−−−−−−→ Σy y
𝐺/𝐺′ −−−−−−→

𝜇
GL(C𝑛)

Since Π ⊂ C𝑛 is finitely generated, Π is a free abelian group of finite rank. Since Π ⊂ C𝑛 is Zariski dense, the
linear subspace spanned by Π is C𝑛. Hence we may embed Σ ⊂ GL(Π ⊗Z Q̄). Let 𝐸 ⊂ GL(Π ⊗Z Q̄) be the Zariski
closure of 𝜌(𝜋1 (𝐴)) ⊂ GL(Π ⊗Z Q̄). Then 𝐸 is commutative. Let 𝐸𝑜 ⊂ 𝐸 be the identity component.
Claim 5.2.12. — 𝐸𝑜 is unipotent.

This is the place where we apply Deligne’s theorem. Roughly speaking, for the algebraic monodromy group 𝑍
of an admissible variation of mixed Hodge structures induced by the smooth family 𝑋◦ → 𝐴◦ (after we shrinking
𝑎 : 𝑋 → 𝐴 to a Zariski dense open subset 𝐴𝑜), we can prove that there is a surjection 𝑍 → 𝐸 . Since 𝑍𝑜 is
unipotent, it follows that 𝐸𝑜 is unipotent.

Let 𝑌 ⊂ GL(C𝑛) be the Zariski closure of 𝜌(𝜋1 (𝐴)) ⊂ GL(C𝑛). Let 𝑌𝑜 ⊂ 𝑌 be the identity component. Since
𝑌 ⊂ 𝐸 and 𝐸𝑜 is unipotent,𝑌𝑜 is unipotent. Since the image of 𝜋1 (𝐴) → 𝐺/𝐺′ is Zariski dense, the commutativity
of (5.2.4) implies 𝜇(𝐺/𝐺′) ⊂ 𝑌 . This is Zariski dense, in particular 𝑌𝑜 = 𝑌 . By 𝐺/𝐺′ = (𝑈/𝐺′) × 𝑇 , 𝜇 induces
𝜇 |𝑇 : 𝑇 → 𝑌 . Since 𝑌 is unipotent, this is trivial as there exists no non-trivial morphism from algebraic torus to
unipotent groups. Hence the action of 𝑇 onto 𝐺′/𝐺′′ is trivial. By Lemma 5.2.11, 𝐺 is nilpotent. □

5.3. A structure theorem: on a conjecture by Kollár

In [Kol95, Conjecture 4.18], Kollár raised the following conjecture on the structure of varieties with big
fundamental group.
Conjecture 5.3.1. — Let 𝑋 be a smooth projective variety with big fundamental group such that 0 < 𝜅(𝑋) < dim 𝑋 .
Then 𝑋 has a finite étale cover 𝑝 : 𝑋 ′ → 𝑋 such that 𝑋 ′ is birational to a smooth family of abelian varieties over a
projective variety of general type 𝑍 which has big fundamental group.

In this section we address Conjecture 5.3.1. Our theorem is the following:
Theorem 5.C ( [CDY22, Theorem G], [DY24, Theorem 6.2]). — Let 𝑋 be a smooth quasi-projective variety and
let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a big representation where 𝐾 is a field of positive characteristic. When char𝐾 = 0,
we assume additionally that 𝜚 is reductive.
(a) The logarithmic Kodaira dimension 𝜅(𝑋) ≥ 0.
(b) If the logarithmic Kodaira dimension 𝜅(𝑋) = 0, then up to a finite étale cover, the Albanese map 𝛼 : 𝑋 → 𝐴 of

𝑋 is birational and proper in codimension one, i.e. there exists a Zariski closed subset 𝑍 ⊂ 𝐴 of codimension
at least two such that 𝛼 is proper over 𝐴\𝑍 . In particular, 𝜋1 (𝑋) is virtually abelian.

(c) More generally, after replacing 𝑋 by a suitable finite étale cover and a birational modification, there are a
semiabelian variety 𝐴, a quasi-projective manifold 𝑉 , and a birational morphism 𝑎 : 𝑋 → 𝑉 such that we
have the following commutative diagram

𝑋 𝑉

𝐽 (𝑋)

𝑎

𝑗

ℎ

where 𝑗 is the logarithmic Iitaka fibration and ℎ : 𝑉 → 𝐽 (𝑋) is a locally trivial fibration with fibers isomorphic
to 𝐴. Moreover, for a general fiber 𝐹 of 𝑗 , 𝑎 |𝐹 : 𝐹 → 𝐴 is proper in codimension one.

(d) If 𝑌 is special or ℎ-special, then there exists a finite étale cover 𝑋 of 𝑌 , such that its Albanese map 𝛼 : 𝑋 → 𝐴

is birational and 𝛼∗ : 𝜋1 (𝑋) → 𝜋1 (𝐴) is an isomorphism.
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Proof. — We may assume that 𝐾 is algebraically closed. To prove the theorem we are free to replace 𝑋 by a
birational modification and by a finite étale cover since the logarithmic Kodaira dimension will remain unchanged. If
char𝐾 > 0, we will replace 𝜚 by its semisimplification, which is still big by Lemma 4.1.1. Hence we might assume
that 𝜚 is big and semisimple. Consequently, after replacing 𝑋 by a finite étale cover, the Zariski closure 𝐺 of 𝜚 is
reductive and connected. Let D𝐺 be the derived group of𝐺, which is semisimple. Then𝑇 := 𝐺/D𝐺 is a torus and
the natural morphism𝐺 → D𝐺×𝑇 is a central isogeny. The induced representation 𝜚′ : 𝜋1 (𝑋) → D𝐺 (𝐾) ×𝑇 (𝐾)
by 𝜚 is also big. Consider the representation 𝜎 : 𝜋1 (𝑋) → D𝐺 (𝐾), obtained by composing 𝜚′ with the projection
D𝐺 × 𝑇 → D𝐺. Then 𝜎(𝜋1 (𝑋)) is Zariski dense. Let sh𝜎 : 𝑋 → Sh𝜎 (𝑋) be the Shafarevich morphism of 𝜎.

We can show that there exist
(i) a generically finite proper surjective morphism 𝜇 : 𝑋1 → 𝑋 from a smooth quasi-projective variety obtained

by the composition of birational modifications and finite étale Galois covers;
(ii) a generically finite dominant morphism 𝜈 : 𝑌1 → Sh𝜎 (𝑋);
(iii) a dominant morphism 𝑓1 : 𝑋1 → 𝑌1 with 𝑌1 a smooth quasi-projective variety with connected general fibers;
(iv) a big representation 𝜏 : 𝜋1 (𝑌1) → D𝐺 (𝐾);
such that we have following commutative diagram

𝑋1 𝑋

𝑌1 Sh𝜎 (𝑋)

𝜇

𝑓1 sh𝜎

𝜈

and 𝜇∗𝜎 = 𝑓 ∗1 𝜏. It is straightforward to show that 𝜏 is a big representation. Thanks to Theorem 4.2.3, the special
loci Spalg (𝑌1) and Spp (𝑌1) are both proper Zariski closed subset of 𝑌1. In particular, 𝑌1 is of log general type. Note
that 𝑌1 can be a point.

Consider the morphism
𝑔 : 𝑋1 → 𝐴 × 𝑌1

𝑥 ↦→ (𝛼(𝑥), 𝑓1 (𝑥)).
where 𝛼 : 𝑋1 → 𝐴 is the quasi Albanese map of 𝑋1.
Claim 5.3.2. — We have dim 𝑋1 = dim 𝑔(𝑋1).
Proof. — For a general smooth fiber 𝐹 of 𝑓1, 𝜇∗𝜎(Im[𝜋1 (𝐹) → 𝜋1 (𝑋)]) is trivial. Since 𝜇∗𝜚′ : 𝜋1 (𝑋1) →
D𝐺 (𝐾) × 𝑇 (𝐾) is big, by the construction of 𝜎, we conclude that the representation 𝜂 : 𝜋1 (𝐹) → 𝑇 (𝐾) obtained
by

𝜋1 (𝐹) → 𝜋1 (𝑋1)
𝜇∗ 𝜚′

→ D𝐺 (𝐾) × 𝑇 (𝐾) → 𝑇 (𝐾)
is big. Since 𝑇 (𝐾) is commutative, 𝜂 factors through 𝜋1 (𝐹) → 𝜋1 (𝐴) → 𝑇 (𝐾). This implies that dim 𝐹 =

dim𝛼(𝐹). Hence dim 𝑋1 = dim 𝑔(𝑋1). □

Let us prove Item (a). Thanks to Claim 5.3.2, for a general smooth fiber 𝐹 of 𝑓1, we have dim 𝐹 = dim𝛼(𝐹).
Hence 𝜅(𝐹) ≥ 0. Since 𝑌1 is of log general type, by the subadditivity of the logarithmic Kodaira dimension proven
in [Fuj17, Theorem 1.9], we obtain

𝜅(𝑋1) ≥ 𝜅(𝑌1) + 𝜅(𝐹) ≥ 𝜅(𝑌1) = dim𝑌1 ≥ 0.
Hence 𝜅(𝑋) = 𝜅(𝑋1) ≥ 0. The first claim is proved.

Let us prove item (b). Note that 𝜅(𝑋1) = 𝜅(𝑋) = 0. Assume that dim𝑌1 > 0. Let 𝐹 be a very general fiber of 𝑓1.
Then 𝜚 |𝜋1 (𝐹 ) is big, and by item (a), 𝜅(𝐹) ≥ 0. Since 𝑌1 is of log general type, by the above-mentioned Fujino’s
theorem, it follows that 𝜅(𝑋1) ≥ dim𝑌1 + 𝜅(𝐹) > 0. We obtain a contradiction. Hence 𝑌1 is a point. Therefore, the
quasi-Albanese map 𝛼 : 𝑋 → 𝐴 satisfies that dim 𝑋 = dim𝛼(𝑋). By Lemma 2.5.4, we conclude item (b).

The proof of item (c) is a bit involved, but the idea is straightforward. Let 𝐹 be a very general fiber of the
logarithmic Iitaka fibration 𝑗 : 𝑋 → 𝐽 (𝑋). By Claim 5.3.2, the closure 𝛼(𝐹) of 𝛼(𝐹) is a translate of semi-abelian
subvariety in 𝐴. One can show that after replacing 𝑋 by a finite étale cover, we may assume that 𝛼 : 𝐹 → 𝛼(𝐹) is
birational and proper in codimension one. Note that there are at most countable many semi-abelian subvarieties in
𝐴. Hence 𝛼(𝐹) is rigid. It follows that two general fibers of 𝑗 is birationally isomorphic.

Finally let us show item (d). Note that 𝑋1 is ℎ-special or special. It follows that 𝑌1 is a point, or else, 𝑌1 is of log
general type and pseudo Brody hyperbolic, leading to a contradiction. Hence the quasi-Albanese map 𝛼 : 𝑋 → 𝐴

satisfies that dim 𝑋 = dim𝛼(𝑋). The claim follows from Proposition 5.2.4. □
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