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RÉSUMÉ EN FRANÇAIS

Contexte

L’imagerie par résonance magnétique (IRM) est une technique efficace et non inva-
sive qui permet une exploration complète de la structure complexe du cerveau. Combinée
avec des methodes d’analyse innovante, elle permet d’estimer une veritable cartographie
anatomique et fonctionnelle. Le développement continu d’approches IRM innovantes a
considérablement amélioré notre capacité à quantifier l’organisation de ces réseaux cere-
braux et ainsi à detecter les altérations du cerveau liées à diverses maladies, faisant pro-
gresser notre compréhension de ces altérations à un rythme rapide.

Parmi ces techniques, l’IRM de diffusion (IRMd) permet de mesurer l’agitation ther-
mique des molécules d’eau dans le cerveau [E. Stejskal and Tanner, 1965]. Cette agitation
étant contrainte par les micro-structures des tissus, typiquement les axones du système
nerveux, l’IRMd permet d’estimer au niveau du voxel les orientations des fibres de la
matière blanche [Dell’Acqua and Tournier, 2017 D. Jones, 2010]. En outre, l’IRM de
diffusion, combinée à des techniques de tractographie, nous permet d’estimer les trajets
des fibres nerveuses dans le cerveau en suivant les orientations locales des fibres voxel
par voxel. L’ensemble des fibres qui en résulte est appelé tractogramme [Mori and Van
Zijl, 2002]. Grace à ces techniques, nous pouvons cartographier la connectivité cérébrale
et comprendre les connexions physiques qui facilitent l’échange d’informations entre les
régions corticales [D. Jones, 2010]. Elles offrent un immense potentiel pour l’étude de
l’anatomie, du développement, et de la fonction cérébrale [Jeurissen et al., 2019a]. Par
ailleurs, il convient de souligner l’importance de la tractographie en neurochirurgie, où
elle joue un rôle essentiel dans la planification chirurgicale, notamment en ce qui concerne
la préservation des voies critiques de la substance blanche lors des résections cérébrales
[Mancini et al., 2019]. De plus, des recherches axées sur la diffusion ont contribué à des
avancées notables dans l’étude des maladies neurologiques et psychiatriques tels que la
depression [Coloigner et al., 2019].

Malgré les avancées dans les techniques d’acquisition des données en IRM ainsi que
dans les méthodes de tractographie, l’estimation des fibres de la matière blanche reste
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Résumé en français

confrontée à des limitations. Des recherches récentes ont mis en lumière que de nombreuses
connexions ne sont pas détectées par les algorithmes de tractographie traditionnels en
raison du fait que la plupart des modèles de diffusion ne permettent pas une analyse
détaillée de la microstructure [D. B. Aydogan et al., 2018]. Ce problème constitue un défi
essentiel, notamment dans des domaines tels que la planification chirurgicale. De plus,
d’autres recherches ont indiqué que les algorithmes de tractographie les plus avancés ont
tendance à generer un grand nombre de faisceaux de fibres, ce qui entraîne par conséquent
un taux élevé de faux positifs. [K. Maier-Hein et al., 2017b]. Cette limitation entrave
la compréhension précise des caractéristiques des réseaux présents dans le connectome
cérébral [Zalesky et al., 2016].

Organisation du manuscrit

État de l’art

La première section de ce manuscrit est consacrée à un aperçu complet de l’état actuel
des connaissances. Nous reviendrons sur les concepts fondamentaux qui servent de base
aux sections suivantes de cette thèse.

Tout d’abord, nous débuterons en fournissant un résumé succinct de la structure or-
ganisationnelle du cerveau humain. Ensuite, nous exposerons les principes fondamentaux
de l’imagerie par résonance magnétique de diffusion, y compris la diffusion des molécules
d’eau dans le cerveau et les séquences d’IRM employées pour quantifier cette diffusion.
En outre, nous détaillerons les modèles de diffusion employés pour décrire la diffusion à
l’échelle locale, tels que les tenseurs de diffusion et la déconvolution sphérique contrainte,
tout en explorant les techniques employées pour leur estimation.

La dernière partie de cette section sera consacrée à l’exposition des diverses méthodes
de tractographie de la matière blanche, en particulier : Les méthodes déterministes locales,
les méthodes probabilistes locales et les méthodes globales.

Nous décrirons les avantages, les inconvénients et les principales caractéristiques de
chaque catégorie de méthode avant d’aborder les techniques de filtrage post-traitement
nouvellement introduites. Enfin, nous présenterons les principaux défis rencontrés par les
algorithmes de tractographie.

8
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Distance de Wasserstein convolutive pour l’évaluation de la tractographie

La diversité des techniques disponibles pour reconstruire les faisceaux de fibres entraîne
une variabilité importante entre les estimations, ce qui complique l’interprétation des
résultats par les cliniciens et la comparaison des algorithmes de tractographie par les
chercheurs. Des challenges tels que tractometer [Côté et al., 2013a] et ironTract [Maffei et
al., 2020] s’attaquent à ce problème en étudiant les sources de variabilité et en établissant
un cadre commun pour la comparaison. Bien que les évaluations visuelles donnent un
aperçu rapide de la qualité des tractogrammes, elles ne permettent pas d’effectuer des
comparaisons approfondies. Pour faciliter des comparaisons équitables, diverses mesures
ont été mises au point, notamment le score de Dice, la corrélation de la densité et les
mesures de plausibilité anatomique telles que la régularité topographique et les évaluations
métriques de TractoMeter. Néanmoins, ces mesures sont basées sur des quantités distinctes
extraites des tractogrammes et, par conséquent, elles peuvent évaluer différentes facettes
de la qualité des tractogrammes.

Au chapitre 3, nous proposons tout d’abord une analyse comparative qui englobe
à la fois des données synthétiques (simulant la translation, la rotation, la déformation
et la dégradation de faisceaux de fibres) et des données issues d’un vrai scanner. Notre
objectif est d’étudier les performances de plusieurs mesures d’évaluation de tractogrammes
couramment employées, notamment le score de Dice, la corrélation de la densité, ainsi
que le pourcentage de vraies connections et de vraies fibres. En plus de ces mesures, nous
introduisons et évaluons une nouvelle mesure d’évaluation pour les tractogrammes, qui
s’appuie sur les principes du transport optimal. Nous montrons l’intérêt de cette nouvelle
mesure lorsqu’elle est intégrée à d’autres mesures d’évaluation. Nos résultats démontrent
qu’en combinant ces diverses mesures, une comparaison plus approfondie et plus complète
des tractogrammes devient possible, ce qui conduit à une évaluation plus complète.

Ce travail a été accepté et présenté à la 19ème édition de l’International Symposium
on Biomedical Imaging (ISBI) en 2022

Un framework Riemannien pour l’incorporation d’a priori anatomiques issus
de faisceaux de fibres de la substance blanche dans les algorithmes de trac-
tographie basés sur l’ODF.

Malgré les avancées en matière d’acquisition de données en IRM de diffusion, de mod-
élisation de la diffusion et d’estimation des faisceaux, la tractographie de la substance
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blanche demeure confrontée à des limitations qui restreignent son utilité en contexte clin-
ique. Les algorithmes recents parviennent à estimer une grande partie des faisceaux de
matière blanche, mais ils rencontrent des obstacles en ce qui concerne l’ampleur spa-
tiale et génèrent fréquemment des faisceaux non valides. Par exemple, les méthodes de
tractographie locale visent à déduire une connectivité globale à partir d’informations di-
rectionnelles locales. En conséquence, ces algorithmes ont souvent tendance à privilégier
le trajet le plus simple, même dans des zones complexes, comme des régions de croisement
de fibres, engendrant ainsi des résultats parfois peu réalistes. Plusieurs études suggèrent
que l’intégration de modèles de microstructure de diffusion avancés, l’application de tech-
niques de filtration des fibres a posteriori, ou le recours à des méthodes de tractographie
basées sur l’apprentissage automatique pourraient contribuer à éliminer ces fausses fibres.

Une stratégie alternative consiste à pallier le manque d’informations globales en inté-
grant des connaissances anatomiques préexistantes sur la structure du cerveau humain.
Des approches récentes qui combinent des atlas anatomiques avec des techniques de trac-
tographie déterministe ont montré des résultats prometteurs. D’autres méthodes intro-
duisent des a priori relatifs à la diffusion lors du processus d’estimation des fibres, ce qui
renforce la précision de la reconstruction des faisceaux de matière blanche. Par exemple,
une méthode associe des informations anatomiques et des orientations préalables issues
d’un atlas dans le but d’améliorer la reconstruction des fibres longues [Rheault et al.,
2019].

Sur la base de ces résultats prometteurs, nous proposons dans le chapitre 4 une méth-
ode de création et de combinaison d’a priori anatomiques qui peut être utilisée avec
n’importe quel algorithme de tractographie basé sur les "orientation distribution function"
(ODF). Notre approche utilise des faisceaux de fibres pré-segmentés pour agréger des infor-
mations globales provenant de plusieurs cerveaux, capturant la variabilité d’orientation
dans des régions cérébrales complexes. Ces prédictions sont représentées sous la forme
de "track orientation distribution" (TOD) et sont combinées avec les données ODF à
l’aide d’une approche riemannienne. Ensuite, nous évaluons cette méthode avec deux al-
gorithmes modernes, MRtrix iFOD2 et Trekker PTT, sur deux ensembles de données :
1/ Les données simulées DiSCo et 2/ les données réelles du Human Connectome Project
(HCP). Nos résultats démontrent des améliorations dans la qualité du tractogramme, en
particulier en ce qui concerne l’étendue spatiale ainse que la quantité de vraies fibres.

Un preprint de ce travail est disponible à https://hal.science/hal-04246380. De plus,
il sera soumis courant octobre au journal Human Brain mapping (HBM).
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Modifications de la microstructure de la matière blanche le long des fibres
dans la dépression résistante

La dépression affecte environ 350 millions de personnes dans le monde et se classe
parmi les maladies chroniques les plus invalidantes. Il est important de noter que seule-
ment environ la moitié des patients réagissent favorablement à leur traitement initial,
et les thérapies antidépressives standard ne conduisent à une rémission que dans 30 à
40% des cas Malheureusement, il n’existe actuellement pas de biomarqueurs fiables pour
identifier les personnes à risque de TRD et guider les stratégies thérapeutiques. Certaines
études de neuro-imagerie suggèrent que la TRD pourrait être associée à des anomalies
microstructurelles spécifiques de la matière blanche, en particulier dans des régions telles
que le cortex cingulaire sous-callosal (SCC) et le cortex préfrontal (PFC).

Dans le cinquième chapitre, nous proposons une analyse comparative entre deux
groupes de patients atteints de dépression résistantes et non-résistantes, en fonction de
l’amélioration de leur état 6 mois après le début de l’étude, en utilisant une approche trac-
tométrique. Pour caractériser la microstructure de diffusion le long des faisceaux de fibres
qui relient les régions impactées par la TRD, nous avons utilisé des métriques basées sur
l’ODF. Pour améliorer notre analyse, nous avons effectué des évaluations statistiques con-
jointement avec une analyse en composantes principales. Cette méthode de réduction de
données nous a permis de réduire la redondance entre les variables et d’affiner le pouvoir
discriminant de notre analyse.

De plus, la méthode de création et de combinaison d’a priori anatomiques, développée
dans le chapitre 4, est testée sur cet ensemble de données. Nous avons étudié l’influence
et l’intérêt de l’ajout d’a priori anatomiques lors de la tractographie pour une cohorte
de patients. Notre hypothèse sous-jacente était que l’amélioration de la qualité des trac-
togrammes, en particulier en termes d’extension spatiale et de nombre de vraies fibres,
pourrait avoir un impact significatif sur cette étude, en termes d’interprétabilité des
mesures de diffusion et de détection de différences potentielles entre les groupes.

Nos résultats révèlent deux points essentiels. Premièrement, l’incorporation d’a priori
améliore l’estimation des fibres en éliminant les fibres erronées et en améliorant leur ori-
entation. Cette amélioration a contribué à une décorrélation plus prononcée des mesures
microstructurelles, les rendant plus sensibles et interprétables. Deuxièmement, chez les
patients atteints de TRD, nous avons observé des diminution des mesures liées à la re-
striction et à la dispersion des fibres dans le Splenium du corps calleux, ce qui est cohérent
avec des résultats antérieurs issus d’études portant sur la TRD.
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Chapter 1

INTRODUCTION

1.1 Context

Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that allows
for a comprehensive exploration of the intricate structure, functional processes, and molec-
ular makeup of brain tissues. The continual development of innovative MRI approaches
has significantly enhanced our capacity to detect alterations within the brain closely linked
to various diseases, advancing our understanding at a rapid pace.

Among these techniques, diffusion MRI allows to measure the thermal agitation of
the water molecule in the brain [E. Stejskal and Tanner, 1965]. This agitation being con-
strained by the tissues micro-structures, typically the nervous system axons, dMRI enables
the voxelwise estimation of the orientations of the white matter fibers [Dell’Acqua and
Tournier, 2017; D. Jones, 2010]. Additionally, diffusion MRI, combined with tractography
techniques, allows us to estimate the pathways of nerve fibers in the brain. By selecting
seed points within the brain’s white matter and following local fiber orientations voxel by
voxel, we can map out brain connectivity and understand the physical connections that
facilitate information exchange between cortical regions [D. Jones, 2010]. This process is
known as fiber tracking or fiber tractography, and the resulting collection of white mat-
ter pathways is referred to as tractograms [Mori and Van Zijl, 2002]. These approaches
have the remarkable capability to delineate white matter fiber pathways, offering un-
precedented insights into the structural connections within the human brain. They hold
enormous potential for studying brain anatomy, development, and function [Jeurissen et
al., 2019a]. Furthermore, tractography has demonstrated its substantial worth in the field
of neurosurgery, playing a pivotal role in surgical planning, particularly in the preserva-
tion of critical white matter pathways during brain resections [Mancini et al., 2019]. In
addition to this, diffusion studies have spurred significant progress in the exploration of
psychiatric conditions like depression [Coloigner et al., 2019].

Despite advancements in dMRI acquisition and tracking methods, white matter fiber
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tractography continues to grapple with certain limitations. Recent studies reported the
existence of a significant number of connections that remain undetected by tractography,
resulting in false negatives [D. B. Aydogan et al., 2018]. This issue poses a critical chal-
lenge, particularly in applications like surgical planning. Furthermore, the outcomes of
other studies indicate that state-of-the-art tractography algorithms produce substantial
numbers of false positives as well [K. Maier-Hein et al., 2017b]. This drawback hampers
the accurate exploration of network properties within the brain’s connectome [Zalesky
et al., 2016].

1.2 Organization of the manuscript

State of the art

The initial section of this manuscript is dedicated to provide a comprehensive overview
of the current state of the art, where we will return to the fundamental concepts that serve
as the foundation for the subsequent sections of this work.

First, we will provide a concise summary of the structural organization of the hu-
man brain. We will, then, introduce the fundamental principles underlying diffusion MRI,
including the diffusion of water molecules within the brain and the MRI sequences em-
ployed for measuring this diffusion. Afterward, we will describe the diffusion models used
to locally describe the diffusion, such as diffusion tensors and multi-tissue constrained
spherical deconvolution, while also delving into the methods utilized for their estimation.

The last part of this section is devoted to explain the different methods of white matter
tractography, specifically:

— The local deterministic methods
— The local probabilistic methods
— The global methods

We will outline the benefits, drawbacks, and principal features of each method category
before delving into the newly introduced post-processing filtering techniques. Finally, we
will present the primary challenges encountered by tractography algorithms.

A convolutional Wasserstein distance for tractography evaluation

The multitude of available techniques for reconstructing fiber bundles leads to signifi-
cant variability, making it challenging for clinicians to interpret results and for researchers
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to compare tractography algorithms. Challenges like tractometer [Côté et al., 2013a] and
ironTract [Maffei et al., 2020] address this by investigating variability sources and estab-
lishing a common framework for comparison. While visual evaluations offer quick insights
into tractogram quality, they do not allow for an in-depth comparisons. To facilitate fair
comparisons, various measures have been developed, including the Dice score, density cor-
relation, and anatomical plausibility metrics like topographic regularity and TractoMeter’s
metric evaluations. Nevertheless, these metrics are based on distinct quantities extracted
from the tractograms, and as a result, they may assess different facets of tractogram
quality.

In Chapter 3, we first propose a comprehensive analysis that encompasses both syn-
thetic data (involving translation, rotation, deformation, and degradation) and real-world
scenarios. Our aim is to investigate the performance of several commonly employed trac-
togram evaluation metrics, including the Dice score, density correlation, as well as the
percentage of valid connections and valid streamlines. In addition to these established
metrics, we introduce and evaluate a novel evaluation measure for tractograms, which
leverages optimal transport principles. This novel metric proves its worth when integrated
with other evaluation measures. Our findings demonstrate that by combining these di-
verse metrics, a more profound and comprehensive comparison of tractograms becomes
possible, leading to a more comprehensive evaluation.

This work was accepted and presented in the 2022 19th International Symposium on
Biomedical Imaging (ISBI)

A Riemannian framework for incorporating white matter bundle priors in
ODF-based tractography algorithms.

Despite advancements in diffusion MRI acquisition, modeling, and tracking, white
matter fiber tractography still faces limitations that hinder its clinical applicability. Mod-
ern algorithms can recover a significant portion of white matter bundles but struggle with
spatial extent and often also produce invalid bundles. For example, local tractography
methods aim to recover a global connectivity by inferring from local directional infor-
mation. This often results in the algorithm favoring the simplest path available, even in
complex regions, occasionally leading to unrealistic decisions. Various studies suggest that
advanced diffusion microstructure modeling, streamline filtering techniques, or machine-
learning-driven tractography could help to remove these false fibers.

An alternative approach involves compensating for the lack of global information by
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incorporating anatomical priors. Recent methods combine anatomical atlases with de-
terministic tractography and have shown encouraging outcomes. Additional techniques
introduce diffusion priors during tracking, improving white matter bundle delineation.
For instance, one method combines anatomical and orientational priors based on a tem-
plate to enhance the reconstruction of long fibers [Rheault et al., 2019].

Based on these promising results we propose in Chapter 4 a method for creating and
combining anatomical priors that can be used with any tractography algorithm based
on orientation distribution function (ODF). Our approach utilizes pre-segmented fiber
bundles to aggregate global information from multiple brains, capturing orientational
variability in complex brain regions. These priors are represented as track orientation
distribution objects and are combined with ODF data using a Riemannian framework.
We then evaluate this method whith two state-of-the-art algorithms MRtrix iFOD2 and
Trekker PTT on two dataset: 1/the DiSCo dataset and 2/ the Human Connectome Project
(HCP) data. Our result demonstrate improvements in tractogram quality, particularly in
terms of spatial extent.

A preprint of this work is available at https://hal.science/hal-04246380. In addition,
it will be submitted in the coming weeks to the journal Human Brain mapping (HBM).

White matter microstructure changes along the fiber in treatment resistant
depression

Mood Depressive Disorder (MDD) affects 350 million individuals across the globe and
stands as one of the most incapacitating chronic illnesses. Its recurrent nature and re-
sistance to conventional treatments make it a significant contributor to global disability.
It’s noteworthy that merely 50% of patients experience a positive response to their ini-
tial treatment, and standard antidepressant therapies achieve remission in only 30-40%
of cases. Additionally, around 25% of individuals diagnosed with MDD, and who have
undergone treatments for it, develop what is known as treatment-resistant depression
(TRD). This means they do not respond to the typical and first-line therapeutic options.
Reliable biomarkers to identify individuals at risk of TRD and guide therapeutic strate-
gies are lacking. Some neuroimaging studies suggest that TRD may be linked to specific
microstructural white matter abnormalities, particularly in regions like the sub-callosal
cingulate cortex (SCC) and the prefrontal cortex (PFC).

In chapter 5, we therefore propose to analyse group differences between 2 groups of
depressed patients – responders / non-responders – based on illness improvement at 6-
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month follow-up, using a tractometry approach. We employed metrics based on ODF to
characterize the diffusion microstructure along fiber bundles connecting regions affected
by pathology in TRD. To enhance our analysis, we conducted statistical assessments
coupled with a principal component analysis. This reduction analysis allows us to mitigate
redundancy among sensitivities and refine the discriminative power of our analysis.

In addition, the method for creating and combining anatomical priors, developed in
chapter 4 is tested on this dataset. We studied the influence and the interest of adding
anatomical priors during the tractography for a patient cohort. We hypothesized that the
improvement in tractogram quality, particularly in terms of spatial extent could greatly
enhance this study, in terms of interpretability and potential group differences.

Our findings reveal two key points. Firstly, the incorporation of priors improved fiber
estimation by eliminating erroneous fibers and enhancing their orientation. This enhance-
ment contributed to a more pronounced decorrelation of microstructural metrics, making
them more sensitive and interpretable. Secondly, among TRD patients, we observed re-
duced measures of restriction and dispersion in the Splenium of the corpus callosum,
aligning with prior findings in TRD.

An article on this work is in preparation
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Chapter 2

STATE OF THE ART

2.1 Introduction

The human brain is an intricately structured and highly interconnected network of
specialized nerve cells known as neurons. These neurons possess distinct components, in-
cluding cell bodies housing the nucleus, dendrites responsible for receiving electrochemical
signals, and axons that transmit these signals to other neurons. The brain can be con-
ceptually divided into three major components: grey matter (GM), white matter (WM),
and cerebrospinal fluid, each serving vital roles in neural functioning [Finger, 1994].

Grey matter, comprising neuronal cell bodies, plays a crucial role in processing in-
formation and is notably prominent in the cortex, which is responsible for higher-order
cognitive functions. In contrast, WM primarily consists of long-range neuronal branches
called axons, which serve as the neural highways connecting different regions of the brain.
These axonal connections enable the transmission of signals over extended distances, fa-
cilitating communication and coordination among various brain regions.

The Figure 2.1 provides a schematic illustration of the brain organisation and a neuron
anatomy. Neurons employ two distinct methods for transmitting electrical signals to com-
municate with each other. Dendrites enable communication with neighboring neurons and
axons that terminate nearby, while axons are responsible for connecting various groups of
neurons across long distances.

In this thesis, we will focus on WM, which is mainly composed of axons, whose length
can vary from a few micrometers to several centimeters, and even over a meter in the
human central nervous system. The diameters varie from 0, 1µm to 20µm for the larger
ones. Axons are generally grouped into large bundles fascicles that enable communication
between different distant brain regions. For a long time, analysis of the brain was only
possible through intrusive and post-mortem examinations. Yet understanding, and there-
fore initially being able to correctly represent and vsualize the way in which different brain
regions communicate with each other is a key step, both for progress in diagnosing many
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Figure 2.1 – On the left: Illustration of a coronal slice, showing the GM and the WM
(from http://elearningbiology.weebly.com). On the right: Simple illustration of a neuron (from
https://fr.wikipedia.org/wiki/Neuromorphologie).

neurodegenerative diseases, and contribute to advancing our knowledge of the organiza-
tion and functioning of the human brain. Thus, the remainder of this chapter describes
two key methods for studying brain connectivity: diffusion MRI and tractography.

2.2 Diffusion magnetic resonance imaging

2.2.1 Water diffusion in the brain

Diffusion characterizes the migration of molecules from the highest to the lowest con-
centration within a liquid, solid or gas solution.

At the macroscopic scale, in a liquid, the diffusion flux J can be modeled by the Fick’s
firt law [Fick, 1855]:

J = −D∇C (2.1)

where J (mol/m2s) is the diffusion flux, D (mol/m3) is the chemical species concen-
tration and ∇C (m2/s) is the concentration gradient.

At the microscopic scale, this migration of molecules is due to the thermal agitation.
When a homogeneous concentration is reached, the diffusion flux in a liquid become null.
However, the motion of molecules still persists. Thermal agitation, or Brownian motion,
first observed by the botanist Robert Brown in 1828 [Brown, 1828], is a phenomenon that
describes the random movement of microscopic particles suspended in a fluid. This erratic
motion arises from the constant collisions between the particles and the fluid molecules,
causing them to move in seemingly unpredictable directions, giving rise to a characteristic
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"random walk" pattern. While, due to the random nature of this motion, the trajectory
of an unique molecule is difficult to estimate, the prediction of the behavior of a large
number of molecule is possible using a probabilistic framework. In 1905, Einstein proposed
the concept of the "displacement distribution" or "diffusion probability density function,"
denoted as p(r). This function quantifies the proportion of particles that are expected
to experience a displacement of r within a specific "diffusion time" t. Alternatively, it
represents the probability that an individual particle will undergo such a displacement
during that time. Einstein demonstrated that when the number of particles is abundant,
and they are allowed to freely diffuse in all directions, p(r) follows a Gaussian distribution
[Einstein, 1905]:

p(r) = 1√
(4π∆tD)3

exp(− ||r2||
4∆tD

) (2.2)

where D is is the diffusion coefficient from equation 2.1, ∆t the diffusion time and r

the displacement vector. An interesting feature of this equation is that the isoprobabilily
surface of p take the form of a sphere, meaning that if the molecules are unconstrained,
the diffusion is isotropic, i.e. there is a equal probability of displacing, regardless of the
direction observed. From this probabilistic model, Einstein also proposed a relationship
between the mean-squared displacement, ⟨||r||2⟩, and the diffusion coefficient D:

⟨||r||2⟩ = 6D∆t (2.3)

where ∆t is the diffusion time.

Knowing that approximately 75% of the brain’s composition consists of water [Kreis
et al., 1993; Lentner, 1981], measuring the mean squared displacement of water molecules
provides powerful information about brain’s tissues and structures. The diffusion of water
molecules is constrained by brain’s structure, such as tumors or axons within the white
matter . For example, the average squared displacement per unit time will be higher in the
direction of the axon than perpendicular to the axon. This measure is referred to as the
apparent diffusion coefficient (ADC) [Bihan et al., 1986]. This characteristic of diffusion,
crucial in diffusion MRI, enables us to obtain valuable insights into the microstructural
properties of biological tissue.
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2.2.2 Diffusion-weighted magnetic resonance imaging acquisi-
tion techniques

Basic principle of MRI

The MRI scanner produces a robust static magnetic field, usually ranging from 1 to 7
Teslas. Hydrogen nuclei possess magnetic dipoles known as spins, which align themselves
proportionally with the strength of the magnetic field B0. An initial Spin-echo sequence
[Hahn, 1950] begins by exciting hydrogen nuclei with a 90◦ radiofrequency (RF) pulse,
causing their magnetization vector to lean towards a plane perpendicular to the main
magnetic field B0. The hydrogen nuclei then undergo precession around the magnetic
field, a phenomenon known as Larmor precession (see Figure 2.3 for an illustration of this
phenomenon) [Bloch et al., 1946; Purcell et al., 1946]. The Larmor equation establishes
a direct relationship between the precession frequency ω (rad/s) of spins in a magnetic
field and the strength B0 of the main magnetic field (T).

ω = γB0 (2.4)

Where γ is the gyromagnetic ratio, a constant nuclei specific.

Figure 2.2 – Illustration of spin dephasing. The spin are initially in sync (a), they quickly begin to
dephase due to magnetic field variations (b,c,d), followed by a relaxation causing the signal to decay (e)
and finally return to sync (f). From [Johansen-Berg and Rushworth, 2009]
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The precessing magnetic fields of the spins induce a voltage in the receiver coil. Initially,
the spins are synchronized, but they quickly begin to dephase due to magnetic field
variations and dipolar interactions, causing the induced signal to decay. The illustration
of this process can be seen in Figure 2.3. This dephasing can be reversed by applying a
subsequent 180◦ reversed RF pulse, refocusing the signal into an echo. In this spin-echo
sequence, the time between the first RF pulse and the echo is referred to as TE, and it
is twice the duration between the two RF pulses. The resulting echo is captured by a
receiver coil, and from this raw data MR images are reconstructed.

As previously stated, the Larmor frequency is influenced by the strength of the mag-
netic field. Since the MRI scanner maintains a constant magnetic field B0, all hydrogen
nuclei are excited simultaneously. Therefore, it is impossible to accurately reconstruct a
spatial map of the signal’s origin from the received signal by the coils. To address this, a
linear magnetic field, known as a gradient, is applied to select a specific area that will be
exclusively excited by a particular RF pulse. The overall magnetic field of the scanner is
then expressed as follows:

B(t) = G0 + xGx(t) + yGy(t) + zGz(t) (2.5)

where Gx(t), Gy(t) and Gz(t) are the gradients applied in the three direction (x, y
and z). The gradient Gz is used to select a 2D plan in which Gx and Gy are employed to
image a specific point within this plane.

Figure 2.3 – The spin echo sequence: The first RF pulse at t = 0 cause the spins to be dephased between
t = 0 and t = TE/2. The application of the second, 180°, RF pulse rephase the spins up to TE. The
signal echo is then captured by a receiver coil, and from this raw data MR images are reconstructed.
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Pulsed Gradient Spin-echo (PGSE)

By incorporating two linear dephasing gradients, symmetrically placed around the
180° refocusing RF pulse, the spin echo sequence can be made sensitive to diffusion along
a specific orientation [E. O. Stejskal and Tanner, 1965], as displayed in the Figure 2.4.
These linear diffusion-encoding gradients, Gx(t), are two rectangular diffusion gradient
pulses functions along the x-direction, with duration δ and with time delay ∆ between
the two pulses. The initial dephasing gradient pulse causes a phase shift ϕ1 in the spin’s
transverse magnetization, which varies depending on its position:

ϕ1 = γ
∫ δ

0
Gx(t)x(t)dt = γδgxx1 (2.6)

where ϕ1 is the spin phase shift after the application of the dephasing gradient, γ the
gyromagnetic ratio for hydrogen nuclei, x(t) is the position of the spin a time t and Gx(t)
is the pulsed gradient along the direction x. The spin position x1 is constant during δ and

Figure 2.4 – The Pulsed Gradient Spin-echo sequence: The initial gradient pulse, of length δ and known
as the dephasing pulse, introduces a spin phase shift. When dealing with stationary spins, this phase shift
is nullified through the application of a subsequent gradient pulse called the rephasing pulse. Spins that
undergo motion within the time interval ∆ will encounter a phase shift that is directly proportional to
the distance they have traveled, leading to a reduction in signal intensity. This signal loss is captured by
the receiver coil and is a measure of the diffusion along the gradients direction.

The amount of dephasing is directly related to both the duration δ and the strength
gx of the gradient. Likewise, the second rephasing gradient pulse causes a phase shift ϕ2

and is given by:
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ϕ2 = γ
∫ ∆+δ

∆
Gx(t)x(t)dt = −γδgxx2 (2.7)

where ϕ2 is the spin phase shift after the application of the rephasing gradient and x2

is the position of the spin when the gradient is applied.
By applying the 180◦ RF pulse between both gradients, the phase change that occurred

before it is reversed. In the case of static spins, where there is no diffusion along the
gradient direction (x1 = x2), the resulting phase shift ϕ will be zero. Conversely, in
the case of diffusion along the the gradient direction during the period between the two
gradient applications, ∆, the spins will experience a net phase shift, depending on the
distance (x2 − x1). After the two RF pulses, the spins are not completely refocused, the
amplitude of the PGSE signal S is then given by:

S = S0⟨eiϕ⟩ ≤ S0 (2.8)

where ϕ = ϕ2 − ϕ1 is the resulting phase shift, ⟨...⟩ is the average over the spin
population and S0 represents the signal intensity when no diffusion-encoding gradient is
applied. Note that the acquisition of S0 over the all volume produces an image called b0.
On the opposite, when S ̸= S0, the diffusion weighting factor, known as the b-value, is
defined as [Bihan et al., 1986]:

b = γ2G2δ2(∆ − δ

3) (2.9)

where G is the gradient amplitude, δ is the gradient application time and ∆ is the
sum of gradient.

Because the displacement distribution of diffusing spins follows a random pattern
caused by Brownian motion, the phase distribution of the spins also becomes random.
Consequently, this leads to a reduction in the amplitude of the signal when averaged
across the the spin population. The signal attenuation is given by:

A(q) = S(q)
S0

(2.10)

A(q) = e−bD (2.11)

where S(q) is a signal acquired with an unit gradient g andD the ADC in this direction.
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The equation 2.11 gives a direct relation between the diffusion coefficient, D, and
the signal attenuation for an unique gradient direction, A(q). Although this is enough
to characterize the diffusion in isotropic diffusion areas (i.e. diffusion homogeneous in
all direction), this is not sufficient to describe anisotropic situations where the diffusion
coefficient differs according to the direction observed. As described in [E. O. Stejskal
and Tanner, 1965], the signal attenuation A(q) can also be expressed as the 3D Fourier
transform F of the diffusion probability density function p(r):

A(q) =
∫
R3
p(r)exp(−iqT r)dr = F [p(r)] (2.12)

where q = γδg is the q-vector and g is the applied diffusion gradient vector.
The q-space in then defined as the ensemble of all possible q-vectors. The simplest

method for estimating the diffusion probability density function (PDF) is then to sam-
ple the q-space on an evenly distributed sphere and performing an inverse 3D Fourier
transform. This method is called the q-space imaging [Callaghan et al., 1988].

Another technique for characterizing the local diffusion characteristics involves esti-
mating a tensor from a collection of multiple 3D ADC images acquired with gradients in
various directions. In this approach, the principal eigenvector of the tensor provides the
primary local diffusion direction. This method is known as diffusion tensor imaging, and
will be described in the following section.

2.3 Diffusion tensor imaging (DTI)

2.3.1 Tensor estimation and description

As explained in the previous section, estimating the ADC from the weighted attenuated
signal gives us insight on isotropic diffusion situation or for a an unique diffusion direction.
However, in brain regions where diffusion is constrained by the microstructure, typically
the water molecule in the axons, several measures in different directions are needed to
describe the situation. Thus, the generalization of the ADC model, the diffusion tensor,
estimated from a set of multiple diffusion weighted images (DWI), allows to represent the
diffusion in any directions images [P. J. Basser et al., 1994a; P. J. Basser et al., 1994b].
This model represent, in each voxel, the PDF p(r) in the form of a 3D gaussian tensor,
defined by a 3 × 3 symmetric positive-definite matrix:
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D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.13)

This model requires at least 7 images (6 DWI and 1 b0) to be estimated. Each DWI
is represented by its b-value and its gradients directions components g = (gx, gy, gz) The
equation 2.11 then becomes:

A(q) = e−BTDB (2.14)

with B =
√
b0g. A simple and fast method to analytically calculate D is is to perform a

linear least square estimation on the logarithm of A(q) [Koay et al., 2006]. Other solutions
exist, as in [Chang et al., 2005], where the tensor is estimated through an iterative least
square regression in order to remove the outlier.

Interpreting the tensor involves an analysis of its eigenvectors and eigenvalues. As
the tensor is a symmetrical matrix with real coefficients, it enables its diagonalization
in an orthonormal basis. Subsequently, the main diffusion direction corresponds to the
eigenvector linked to the largest eigenvalue

D = RTPR (2.15)

with R =
(
v1 v2 v3

)
and P =


λ1 0 0
0 λ2 0
0 0 λ3

 respectively the matrix of eigenvectors

and eigenvalues [Hasan et al., 2001]. The three eigenvalues λi corresponds to the diffusion
coefficients along the three axes of the tensor. The Figure 2.5 show a visual comparison
between two anisotropic and isotropic diffusion tensor. Using the 3 eigenvalues of the
tensor, various scalar measures are computed to characterize the diffusion process.

— The largest eigenvalue, λ1, denotes the diffusivity in the principal direction of D
and is called the axial diffusivity (AD).

— The mean of the two other eigenvalues, λ2, λ3, is the radial diffusivity (RD) and
gives information about the diffusion perpendicular to the main direction.

RD = λ1 + λ2

2 (2.16)
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— The mean diffusivity (MD) is the average of the diffusion in all directions:

MD = λ1 + λ2 + λ3

3 (2.17)

— The fractional anisotropy (FA) quantifies the fraction of diffusion that is anisotropic,
such as: [P. J. Basser and Pierpaoli, 1996]:

FA =

√√√√3((λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

2(λ2
1 + λ2

2 + λ2
3)

(2.18)

This metric spans from 0 to 1, with 0 denoting an isotropic tensor (a sphere) and 1
indicating a fully anisotropic tensor, when diffusion occurs in one unique direction.

The MD metric is the first biomarker observed in clinical context, as it allows to de-
tect various pathology, such as edema, ischemic strokes [Lythgoe et al., 1997] and cystic
metastatic tumors [Toh et al., 2011]. AD and RD are both used to characterize the gen-
eral condition of axons. AD has been shown to be significantly correlated with axonal
integrity [Tu et al., 2016], whereas in other studies, RD is strongly associated with elec-
trophysiological markers of demyelination. [Kronlage et al., 2017]. FA is highly sensitive
to microstructural changes, but not very specific to the type of changes. This DTI-derived
metric is a marker of so-called white matter integrity and finds extensive utilization in
numerous clinical studies [Beaulieu, 2002; Assaf and Pasternak, 2007; H. Zhang et al.,
2012b].

Despite being the simplest diffusion model, the tensor is widely used both in clinical
and research contexts for a variety of reasons. First, it offers a direct visual interpretation
of the diffusion configuration of the studied regions, both locally, by shape, and globally,
by direction or color (see Figure 2.6). Next, it provides simple tissue microstructure pa-
rameters. Finally, its estimation is fast, simple and robust. However, this model suffers
from several major limitations.

2.3.2 Limitations of the DTI

The size of the dMRI voxel is typically 1.5 to 3mm3 in clinical DTI, which contains
multiple bundles of axons, myelin sheaths, astrocytes, and extracellular spaces. However,
since only one tensor is fitted for each voxel, all directional information will be averaged
in the tensor parameters. And in complex areas, the DTI model can not estimate fibers
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Figure 2.5 – Diffusion tensor for isotropic and anisotropic diffusion. See how, for the isotropic diffusion
tensor, no main diffusion direction can be extracted.

Figure 2.6 – Diffusion tensor map. Note how the shape of the DT offers a direct interpretation of the
local diffusion. Its color and orientation can quickly reveal the presence and direction of a fiber bundle.
However, this model is unable to tell us whether a spherical tensor refers to a free-water area or a complex
fibers structure.
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with different orientation. Tensors correctly represent the structure when all fibers have
the same orientation but in the crossing areas the tensor is represented as isotropic in
the plane of the crossing fibers, as displayed in the Figure 2.7 [A. L. Alexander et al.,
2001; D. S. Tuch et al., 2002]. Hence, DTI cannot distinguish free water area and multi-
orientation structure.

Nonetheless, the interpretation of changes in the measured diffusion tensor is complex
and should be performed with care. For example, in clinical research, FA is frequently
interpreted as a measure of "white matter integrity." However, it’s important to note
that several factors, including cell death, alterations in myelination, shifts in extracellular
or intracellular water content, among others, can lead to changes in FA [O’Donnell and
Westin, 2011].

Figure 2.7 – Different fibers structure and their corresponding tensor. In (a) and (b) the principal
orientation of the tensor correctly fit the direction of the fibers. In (c), the tensor is isotropic in the
crossing plan and is thus unable to represent the two fibers directions. From [D. K. Jones, 2010

To overcome these limitations, more complex models capable of representing multiple
orientations within a voxel were subsequently developed. The following section presents
these models, their estimates and their applications.

2.4 Multi-fiber models

Most of the multi-fiber models examined in this section are based on orthogonal bases,
which enable them to efficiently capture a large amount of signal information with just
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a few coefficients. Some examples of such bases are the Fourier space [Bracewell et al.,
1986], wavelets [Mallat, 1989] or the curvelet [Starck et al., 2003].

2.4.1 Spherical harmonics

In this manuscript, we will focus on the spherical harmonics (SH) basis, defined as:

Y m
l (θ, ϕ) =

√√√√(2l + 1)
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimθ (2.19)

where l = 0, 1, 2, ... and m = −l, ..., 0, ..., l are the order and the degree of the SH,
respectively; (θ, ϕ) are the spherical coordinates with θ ∈ [0, π] and ϕ ∈ [0, 2π]; and Pm

l is
the associated Legendre polynomial. The real parts of the SH basis function up to order
l = 3 are displayed in the Figure 2.8. It can be shown [Courant and Hilbert, 1953] that
any function of the unit sphere f(θ, ϕ) can be expressed with a series of SH:

f(θ, ϕ) =
inf∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ) (2.20)

with cml , the SH basis coefficients.
Descoteaux et al. proposed a modified SH basis [Descoteaux et al., 2007c], which is

designed to be antipodally symmetric, real and orthonormal. This modified basis is defined
as:

Y
′

j (θ, ϕ) =


√

2Re[Y m
l (θ, ϕ)] if m < 0

Y m
l (θ, ϕ) if m = 0

√
2Im[Y −m

l (θ, ϕ)] if m > 0
(2.21)

where j is an index: j(l,m) = l2 + l + 1 +m.
In [Descoteaux et al., 2007c], authors showed that any real and antipodaly symmetric

spherical function can be approximated with a truncated SH series:

f(θ, ϕ) =
lmax∑
l=0

l∑
m=−l

cjY
′

j (θ, ϕ) (2.22)

where j is an index: j(l,m) = l2 + l + 1 +m.
Only the even degree coefficients are used, thus the number of coefficients needed to

describe the functions is N = (lmax+1)(lmax+2)
2 .
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Figure 2.8 – Real part of the spherical harmonic basis up the order l = 3. The function value is
visualized as the distance from the origin to the surface. Blue indicates positive function values. Yellow
indicates negative function values. From https://en.wikipedia.org/wiki/Spherical_harmonics.

The previous equation can be rewrited as:

f = Y c (2.23)

with f is a vector containing samples of f(θ, ϕ) on the sphere, Y is a (N ×N) matrix
containing the modified SH basis and c the vector of SH coefficient. One can thus retrieves
the coefficient c by performing an least squares minimization method, such as:

ĉ = (Y TY )−1Y Tf (2.24)

2.4.2 Q-Ball imaging

The Q-Ball imaging method [D. S. Tuch, 2004] aims to recover the orientation dis-
tribution function (ODF) from a collection of DWI acquisitions. The ODF is a function
defined on the sphere, that gives the probability of diffusion in a given direction. Given this
property, in [D. S. Tuch, 2004], authors have shown that, for a sufficiently high b-value,
the ODF ψ can be reconstruct from the FRT of the diffusion signal. Given a function on
a sphere f(ω), where ω is a unit direction vector and u is a vector perpendicular to w,
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the FRT E , evaluated at radius r is given by:

E [f(w)](u, r) =
∫
f(w)dw

=
∫
f(w)δ(xTu)δ(|w| − r)dw

(2.25)

where δ is the Dirac delta function.

The ODF is then given by the equation [D. S. Tuch et al., 2003]:

ψ(w) = E [S(q)](q′) = 2πq′
∫
P (r, θ, z)J0(2πq

′
r)rdrdθdz (2.26)

where S(q) is the diffusion signal, P (r, θ, z) is the PDF in cylindrical coordinate, q′

is the radius of the sampling shell, J0 the Bessel function at the order zero, and q the
diffusion wavevector defined as:

q = (2π)−1γδg (2.27)

where γ is the gyromagnetic ratio for the nucleus of interest, δ is the diffusion gradient
duration, and g is the diffusion gradient vector.

The ODF being a continuous function on the sphere, this method allows to represent
several fibers orientations within a voxel, contrary to the DTI, but this method requires
more DWI acquisitions. The Figure 2.9 gives an overview of the Q-ball algorithm. In
addition, one the main limitations of the QBI is its computation time, which increase
with the number of DWI.

To overcome this, in [Descoteaux et al., 2007c], Descoteaux et al. proposed to use a
discrete equivalent of the FRT, the Funk-Hecke transform. In this version, the diffusion
PDF is modeled with a SH basis as previously described. Fiven the equations 2.22 and
2.25, the ODF can be represented by:

ψ(w) =
lmax∑
l=0

l∑
m=−l

cml

∫
Y

′

j (q)dq (2.28)

In addition, the Funk-Hecke theorem gives:
∫
Y

′

j (q)dq = 2πPl(0)Y ′

j (w) (2.29)

Therefore, the ODF can be directly calculated using the spherical harmonics repre-

33



Partie , Chapter 2 – State of the art

sentation of the diffusion signal:

ψ(w) =
lmax∑
l=0

l∑
m=−l

cml 2πPl(0)Y ′

j (w) (2.30)

From this equation, the ODF SH coefficients can be calculated through a simple matrix
multiplication:

C = P.S (2.31)

where C is the SH coefficients vector of size (R × 1) , S is the (N × 1) diffusion
weighted signal vector and P is the diagonal (R × R) FRT matrix with Pii = 2πPl(0),
R = (lmax+1)(lmax+2)

2 the SH basis order and N the numbers of DWI. Therefore, compared
with the original FRT counterpart, this analytical QBI method offers both faster and
simpler estimation and a more efficient data storage However, QBI is commonly conducted
using intermediate b-value shell, this has the effect of blurring the ODF image, reducing
the angular resolution [J.-D. Tournier et al., 2008].

Figure 2.9 – Overview of the Q-ball imaging algorithm. First, the set of discrete measurements on a
sphere in q-space (a) are interpolated to a continuous representation (b). On the interpolated measure-
ments the FRT (c) is performed for a set of discrete ODF sample points (d) by taking equal steps along
the great circle and summing all the q-space samples. Finally, the discrete ODF (d) is interpolated again
to yield a continuous representation of the ODF (e). From [Jeurissen, 2012]

2.4.3 Spherical deconvolution

Another approach to reconstruct the ODF is to perform a deconvolution on the sphere
between the DWI signal and a response function [J.-D. Tournier et al., 2004]. This method
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is based on the assumption that the diffusion properties of every fiber population present
in the brain are uniform, meaning that apart for their orientation and from the point of
view of diffusion, nothing can distinguish several fibers taken from different parts of the
brain. Moreover, we suppose that the diffusion signal measured by the scanner can be
approximated by the sum of the individual contribution of every fiber bundle orientation
present within the voxel, weighted by their respective volume fractions. With this condi-
tions, in [J.-D. Tournier et al., 2004], authors demonstrated that the DWI signal S(θ, ϕ)
can be expressed as the convolution on the unit sphere between the ODF Ψ(θ, ϕ) and a
response function R(θ) (see Figure 2.10).

S(θ, ϕ) = Ψ(θ, ϕ) ⊛R(θ) (2.32)

Figure 2.10 – Spherical convolution illustration. The DWI signal (S) is the convolution between the
ODF (Ψ) and a single fiber response function (R). In this example the convolution is obtained by rotating
the response function to match each ODF peaks and summing the resulting DW signal profiles. From
[Johansen-Berg and Rushworth, 2009]

The response function is estimated from the data by analyzing the DW signal profile
in regions characterized by the highest diffusion anisotropy. It represents the typical DW
signal profile for a fiber bundle. If S(θ, ϕ) is sampled along a large numbers of directions
and R(θ) is known, then Ψ(θ, ϕ) can be recover through a spherical deconvolution. The
process of spherical convolution can be expressed as the effect of a combination of rotations
applied to a function defined across a sphere [Healy et al., 1998]. Thus, using a set of
rotational harmonics (i.e. a basis similar to the SH basis which represent function on the
rotational space [Healy et al., 1998]) and a set of modified SH basis as described before,
S(θ, ϕ) can be given by:

S = R.Ψ (2.33)

with the (N × N) matrix R representing the rotational harmonic decomposition of
R(θ) and where S and Ψ are the (N × 1) vectors the DW signal and the SH coefficient,
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respectively. The spherical deconvolution can then be performed by simply inverting the
R matrix [J.-D. Tournier et al., 2004]:

Ψ = R−1.S (2.34)

The maximum harmonic order, Nmax, determines the angular resolution of the ODF
estimation but is limited by the numbers DW acquisitions. In addition, at high harmonic
order, noise can produces false high frequency lobes in the fODF, as well as implausible
negative lobes. One solution is to low-pass filter those high frequency lobes to reduces
the impact of the noise (see Figure 2.11.a,b,c,d and Figure 2.12.a,b,c,d). However, for
orders higher than 8, the lobes must be so attenuated that they no longer introduce any
improvements in the angular resolution of the ODF. Moreover truncating the SH basis
induces, similar to the Gibbs phenomenon with the Fourier transform, also creates small
impossible negative lobes.

2.4.4 Constrained spherical deconvolution

In the absence of low-pass filtering, the noise will cause the reconstructed FOD to
contain physically implausible large false negative lobes. An other approach to reduces
the effect of noise on the reconstruction is to add a constraint on the presence of negative
values in the ODF. Indeed, since the ODF lobes amplitude are supposed to be zero when
they are not along a fiber direction, constraining these lobes to zero does not cause any
loss of information, but decreases the high frequency noise and thus increase the angular
resolution (see Figure 2.11.e and Figure 2.12.e). This method is referred as constrained
spherical deconvolution (CSD) [J.-D. Tournier et al., 2007] and will be described now.

The non-negativity constraint is applied through an iterative process. First, an initial
estimate of the ODF is obtained using unconstrained spherical deconvolution. Next, the
amplitude u of the ODF is computed along a large numbers of evenly distributed directions
sampled on the sphere (typically 300 directions, calculated using an electrostatic repulsion
model [Jones et al., 1999]):

u = P.fi (2.35)

where fi is SH coefficients vector and P is a matrix that maps fi onto the amplitude u.

Then, a Tikhonov regularisation [Hansen, 1994] is used to estimated an improved ODF
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called fi+1 by solving:

fi+1 = argmin
fi

{||Afi − S||2 + λ||Lfi||2} (2.36)

where A is the matrix performing the spherical deconvolution and S the DW signal
intensities. The first term represent the spherical deconvolution and ensure that the ODF
remains consistent with the DW signal. The second term is the regularisation term, which
applies the non-negativity constraint. λ is the regularisation parameter, which controls
the relative weighting between these two terms. L is the constraint matrix and is given
by:

L =
 P if u < τ

0 if u ≥ τ
(2.37)

where τ is is a user-specified threshold, controlling the amplitude below which the
corresponding ODF is assumed to be zero and is typically set to 10% of the mean ODF
amplitude.

A new matrix L is then computed using the improved ODF fi+1 and the process is
repeated until there is no change change in L. i.e. until the collection of directions that can
be considered to have zero fibre density is established. The numbers of iteration needed
is typically between 5 and 10.

This method allows to estimate ODF with smaller b-value than with the original
spherical deconvolution method, while increasing the angular resolution, the maximum
SH order, and the robustness against noise.

Multi-shell multi-tissue constrained spherical deconvolution

Although CSD overcomes many limitations inherent to QBI and DTI estimation, it
can only be estimated from single shell data (i.e. an unique b-value). However, modern
DWI sequences enable to acquire multi-shell images [D. C. Alexander, 2008; H. Zhang
et al., 2012b] so only using one shell can potentially discard valuable information from
the other shells. Moreover, when several tissues (WM, grey matter, cerebrospinal fluid)
are present within the voxel, CSD is known to produce unreliable and noisy ODF [Roine
et al., 2014]. To address these issues, a generalization of the CSD, the multi-shell multi-
tissue constrained spherical deconvolution (msmt-CSD) has been developed [Jeurissen,
Tournier, et al., 2014].

The formulation of the msmt-CSD is a generalization of equation 2.36 under the form
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Figure 2.11 – Spherical deconvolution of a noisy DW signal (a) with a single fiber response function
(b) using unfiltered (c), filtered (d) and constrained (e). Green indicates positive amplitude, while red
indicates negative amplitude. From [Jeurissen, 2012]
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Figure 2.12 – Spherical deconvolution of a noiseless DW signal (a) with a single fiber response function
(b) using unfiltered (c), filtered (d) and constrained (e). Green indicates positive amplitude, while red
indicates negative amplitude. From [Jeurissen, 2012]
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of a convex quadratic programming problem and is given by:

x̂ = arg min
x

1
2x

THx+ fTx subject to Ax ≥ 0 (2.38)

With
H = ATA and f = −ATS

Where x is the (1 × j) vector of the SH coefficients for the tissue j, A is the spherical
deconvolution matrix and S is the (1 × i) vector of the DW signal measured on the Si
shell. This equation can be solved using convex quadratic programming solvers such as the
primal-dual interior-point method [Mehrotra, 1992]. It is shown in [Jeurissen, Tournier,
et al., 2014] that msmt-CSD allows to exploit multi-shell data to estimate a multi-tissue
ODF and to improve the precision of the ODF and suppress almost all negative peaks.

2.5 White matter fiber tractography

2.5.1 Introduction

White matter fiber tractography, simply called tractography in the rest of this manuscript,
aims to infer the global long-range brain connectivity from the diffusion models described
in the previous sections. The generated connectivity map is called a tractogram. These
methods greatly facilitated the diagnosis of neurological pathologies in the clinical con-
text, and provided new insights in the academic context for the study and understanding
of the brain.

Most tractography algorithm can be separated into three categories: the local de-
terministic methods, the local probabilistic methods and the global methods. The local
methods track fibers independently of each other based on local diffusion information.
The global methods are based on an optimization scheme that simultaneously compares
the construction of all fibers, so that the creation of one fiber is constrained by the others
ones.

2.5.2 Local deterministic methods

Local deterministic method was the first one to be proposed. [Mori et al., 1999; P. J.
Basser et al., 2000 ; Poupon, 1999 ; J.-D. Tournier et al., 2012 ; Johansen-Berg and
Behrens, 2014 ; Descoteaux, 2008; Catani et al., 2002 ; Jones et al., 1999 ; Hagmann
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Figure 2.13 – DTI and ODF based tractography.

et al., 2007 ; Savadjiev et al., 2006 ; Merlet et al., 2012 ; Lazar, Weinstein, et al., 2003].
It consists in iteratively following the maximum of the local diffusion model that is most
aligned with the previous direction, from one step to the next, until one of the stopping
criteria is met. Among the many deterministic methods developed, we can mention in
particular the Fiber Assignment by Continuous Tracking (FACT) method [Mori et al.,
1999], the Tensor Deflection method (TEND) [Lazar, Weinstein, et al., 2003] and the
SD-Stream method [J.-D. Tournier et al., 2004] Which, unlike the previous two method,
use ODF imaging to represent the local orientation.

In order to reduce the propagation errors, two propagation distance (or step size)
options are commonly used:

— A fixed step size chosen by the user (typically of the order of the size of a voxel
edge in the image) combined to a quadratic interpolation method to determine the
local orientations [Descoteaux, 2008; J.-D. Tournier et al., 2012].

— A step size dependent on voxel size [Jones, 2008b].

Different propagation methods are available [Jeurissen, 2012; Jeurissen et al., 2019b]
(see Figure 2.14 for a visual example). Given a seed point r0, the 3D vector field repre-
senting the local diffusion orientations v[.] and a step size ∆, a fiber (or streamline) can
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Figure 2.14 – Comparison of integration methods for different step sizes. The seed point is indicated
as a white dot. Note that, as we move away from the seed point, the integration errors accumulate. For
first-order integration the accumulated error can become quite large, especially for large step sizes. Using
higher-order integration schemes drastically reduces the interpolation error made at each step, resulting
in a much smaller accumulated error (even for relatively large step sizes) From [Jeurissen, Tournier, et al.,
2014
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be represented as a 3D space curve, parameterized by its arc length s and described by :

r(s) = r0 +
∫ ∆

0
v[r(s)]ds (2.39)

Where r(s) is the position along the streamline.
Typically, numerical integration of the preceding equation is carried out using Euler or

Runge-Kutta schemes, often of order 2 or 4. In the case of Euler integration, the discrete
evolution equation is as follows:

ri+1 = ri + v(ri)∆ (2.40)

The orientation v(ri) being constant the propagation, the major disadvantage of this
method is that it is prone to accumulating propagation errors in highly curved regions. In
order to be able to correctly reconstruct the fibers in those regions, higher-order numerical
integration methods have been suggested, including the second-order Runge-Kutta scheme
:

ri+1 = ri + v(ri + v(ri)
∆
2 )∆ (2.41)

Or the fourth-order Runge-Kutta scheme:

ri+1 = ri + k1

6 + k2

3 + k3

3 + k4

6 (2.42)

Where
k1 = v(ri)∆
k2 = v(ri + k1

2 )∆
k3 = v(ri + k2

2 )∆
k4 = v(ri + k3)∆

While deterministic tractography remains prevalent in clinical applications, research
has indicated its limitations in accurately representing brain connectivity [T. E. J. Behrens
et al., 2003]. These limitations primarily stem from two factors: the accumulation of propa-
gation errors during the tracking process inherent to integration methods and the inherent
noise in the DWI, which introduces uncertainty in local diffusion estimates. Deterministic
methods are ill-equipped to effectively address this noise-induced uncertainty.

Although deterministic tractography is still widely used in the clinical context, it has
been shown that these method failed to correctly describe the brain connectivity because
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of, first, the accumulation of the propagation errors during the tracking inherent to the
integration process, and second, DWIs being a noisy method causing uncertainty of the
local diffusion estimation that deterministic method cannot take into account.

2.5.3 Local probabilistic methods

The aim of local probabilistic tractography algorithms is to characterize the uncer-
tainty inherent to the DWI noise and to the diffusion orientation estimation inaccuracies
and which introduces errors in the streamlines pathways [Jones, 2003; Lazar, Weinstein,
et al., 2003], in order to produce a more realistic representation of the brain connectivity.
Fundamentally, probabilistic algorithms do not differ much from the deterministic algo-
rithms. They initialize seeds in the brain, propagate a fiber from a collection of rules and
stop propagation when certain stopping conditions are met. But, whereas the determin-
istic method considers only one main orientation per voxel, the probabilistic method will
generate several possible streamlines directions, a distribution of possible trajectories, at
each propagation step. The probabilistic tractography algorithms use these local prob-
ability distributions functions (PDF) to estimate the probability that a fibre pathway
(or streamline) leaving the ‘seed voxel’ will pass through any other voxel. The result of
a probabilistic method is therefore a map representing the probability of the presence
of a connection between different regions of the brain [T. E. J. Behrens et al., 2003,
Parker et al., 2003]. The probabilistic tractograms contains more spurious fibers than the
deterministic ones, but the streamlines pathways also provides richer and more accurate
quantitative information [Côté et al., 2013b]] as these methods allow to traverse regions of
high uncertainty where deterministic approaches would have stopped the tracking process.

Several different diffusion PDF estimation methods have been developed and can be
found in the literature:

The random walk methods involve reconstructing orientation distributions through
a Monte Carlo random walk. These methods have found applications in both DTI and
ODF. In ODF-based algorithms, the local PDF is estimated either by directly sampling
from the ODF [J.-D. Tournier et al., 2005] or by first fitting the parameters of another
distribution and then sampling from it [Seunarine et al., 2007]. Conversely, in DTI-based
algorithms, the random walk properties are associated with the DTI model specific to the
voxel under examination. The fibers are then tracked using a front evolution process or by
generating a family of possible trajectories [Parker et al., 2003]. The primary limitation of
these approaches is that they rely solely on the diffusion model and make the assumption
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that it accurately captures local diffusion phenomena. Consequently, to a lesser degree,
they encounter similar challenges as deterministic methods.

The Bayesian methods, are based on a posterior probability density functions using
Bayes theorem, which states that the posterior probability of the model knowing the data,
P (M |D) is given by:

P (M |D) = P (D|M).P (M)
P (D) (2.43)

where P (D|M) is the likelihood, P (M) is the prior probability density functions and P (D)
a normalization term. The likelihood needs to encompass the parametric assumptions
related to both the relationship between the model parameters and the data, as well as
the noise parameters. [T. E. J. Behrens et al., 2007; Kaden et al., 2007; Hosey et al., 2005].
Based on the chosen parametric models, a Markov chain Monte Carlo (MCMC) method
can be used to reconstruct the actual distributions of the parameters [T. E. J. Behrens
et al., 2003, Hosey et al., 2005, T. E. J. Behrens et al., 2007, Kaden et al., 2007]. The
streamlines are then propagated by sampling the possible directions from the posterior
distribution.

The bootstrap methods, are based on the bootstrapping method, which is a sta-
tistical method for deriving measures of accuracy on statistical samples. One solution to
implement bootstrap in a tractography context is to utilize multiple sets of DWI obtained
from the same patient to construct the PDF [Jones and Pierpaoli, 2005]. However, this ap-
proach necessitates a significant number of acquisitions, which is impractical in practice
due to the time-consuming, expensive, and potentially stressful nature of MRI exami-
nations for patients. Another strategy involves utilizing the ’WILD bootstrap’ method,
which enables the retrieval of probability distributions through iterative resampling of
residuals obtained from the diffusion model fitting process [Jones, 2008b]. This technique
therefore does not require multiple sets of DWI scans. This method has been used with
DTI [Jones, 2008b], QBI [Cohen-Adad et al., 2011] and CSD tractography [Jeurissen,
Leemans, Jones, et al., 2011].

Once the diffusion PDF is obtained, the streamlines are tracked using either a de-
terministic approach by following the most probable direction or by using a rejection
sampling method to choose the direction from the diffusion PDF [J.-D. Tournier et al.,
2010a; J.-D. Tournier et al., 2012], or using a front propagation algorithm that determine
the path globally minimizing the path between two regions [Jeurissen, Leemans, Jones,
et al., 2011], or using a particle filtering framework [Stamm, Commowick, Barillot, and
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Pérez, 2013b], or finally using a parallel transport frames framework [D. B. Aydogan and
Shi, 2020].

2.5.4 Global methods

Contrary to local methods, which track a single fiber at a time based on local ori-
entation, global methods generate multiple streamlines or even the entire tractogram by
employing techniques such as minimizing a global distance function, maximizing the prob-
ability of connections, or utilizing graph-based or geodesic-based approaches. [Fillard et
al., 2011 ; Kreher et al., 2008 ; Reisert et al., 2011]. Global tractography methods are
generally more accurate and produce fewer false positives than local methods [Fillard et
al., 2011], but those algorithms requires much more calculation time than deterministic
or probabilistic tractography. Several different strategies exist for implementing global
tractography methods [Girard, 2016]:

Global energy minimisation algorithms aims to generate tractograms that best
match to the underlying diffusion data while respecting basic assumptions about the WM
fibers organisation. Tractography is then expressed as a problem minimizing the energy of
a system of interacting segments [Fillard et al., 2009 ; Kreher et al., 2008 ; Reisert et al.,
2011].

Geodesic tractography algorithms are designed to reconstruct fibers by determining
the shortest path between the two endpoints of the streamline within the curved space
defined by the white matter and the local diffusion orientation metrics. In this context
the streamlines are seen as geodesic, representing the shortest path between two points
on a curved surface according to a specific metric. This concept is a generalization of
the notion of a straight line in Euclidean space. Several methods have been proposed for
recover the geodesic path [Jbabdi, Bellec, et al., 2007 ; Sepasian, 2011 ; D. S. Tuch et al.,
2000; Lenglet et al., 2004 ; Parker et al., 2002 ; Pichon et al., 2005; Campbell et al., 2005].

Graph theory. Unlike geodesic approaches, where a graph is constructed and ex-
plored dynamically in the diffusion space, this category of methods explicitly constructs a
graph from the image, where nodes are generally linked to voxels and edges represent the
distance or probability of connection between nodes. Various graph traversal algorithms
are then applied to search for graph connectivity features [Collins et al., 2010; Oguz et al.,
2012 ; Iturria-medina et al., 2008 ; Sotiropoulos et al., 2010b].

Probabilistic approaches. These methods look for one or more tracts with the
highest probability of connecting two regions. The tractography problem is posed within
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a Bayesian inference framework. The advantage of these approaches is that they naturally
provide information on the uncertainty of a connection [Jbabdi, Bellec, et al., 2007 ;
Friman et al., 2006 ; F. Zhang et al., 2009 ; Pontabry and Rousseau, 2011 ; Wu et al.,
2009 ; Zalesky, 2008 ; Schreiber et al., 2014].

A more detailed review of existing global tractography methods can be found in [R. E.
Smith et al., 2020].

2.5.5 Tractograms post-filtering

Instead of focusing on optimizing the initial fiber estimation, an alternative category
of methods seeks to refine tractograms after they have been generated using one of the
previously described techniques. This section presents the main categories of tractogram
filtering methods.

Filtering from the diffusion signal

These techniques involve assigning weights to individual fibers with the aim of provid-
ing an effective interpretation of the diffusion measurements. The objective is to estimate
synthetic diffusion data based on a tractogram and subsequently compare it to the actual
acquired diffusion data. If a significant disparity exists between these two sets of mea-
surements, the fiber responsible for the synthetic data is pruned or eliminated from the
tractogram. Here we can mention : Linear Fascicle Evaluation (LiFE) [Caiafa and Pestilli,
2017; Pestilli et al., 2014], Convex Optimization Modeling for Microstructure Informed
Tractography (COMMIT) [Daducci, Palù, et al., 2015; Schiavi et al., 2020], Spherical-
deconvolution Informed Filtering of Tractograms (SIFT) [R. E. Smith et al., 2013] and
SIFT2 [R. E. Smith et al., 2015].

Filtering from regions of interest

Other approaches involve applying anatomical constraints through the use of segmen-
tation masks to filter out streamlines that do not adhere to plausible anatomical struc-
tures. First, Smith et al. proposed to remove streamlines that fall outside an exclusion
mask based on an atlas-based tractogram [S. M. Smith et al., 2006]. More recently, the
segmentation masks were directly estimated from dMRI data. The TractSeg algorithm,
[Wasserthal et al., 2018c; Wasserthal et al., 2019], adopts this approach by training a
neural network to segment inclusion masks for 72 different fiber bundles.
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Filtering from the streamlines geometry

In this methods, the determination of streamline plausibility is based on their shapes
themselves. For example, ExTractor, [Petit et al., 2021], employs simple geometric priors
to evaluate the credibility of streamlines. Additionally, there has been a proliferation of
deep learning-based methods for tractogram filtering, with many of them primarily relying
on streamline geometry as a criterion. Notable examples include FiberNet [Gupta et al.,
2017], FiberMap [F. Zhang et al., 2019] and TRAFIC [Lam et al., 2018]. Some studies have
also demonstrated that incorporating additional geometric priors derived from population
data can be used to assess the plausibility of streamlines at a local level [Tax et al., 2016;
Dong et al., 2017; Brusini et al., 2019].

Tractograms clustering

Streamlines are grouped into bundles prior to more extensive analysis. These clusters
can serve as representations of the underlying white matter structure. Fibers within small
clusters or those that do not exhibit properties consistent with the bundles of interest
can be eliminated. Notable methods for performing this clustering include Quickbun-
dles [Garyfallidis et al., 2012], Recobundles [Garyfallidis et al., 2017], which employs an
atlas-based approach, and BundleMAP [Khatami et al., 2017], utilizing support vector
machines.

A comprehensive review of a posteriori filtering methods can be found in [Jörgens
et al., 2021].

2.5.6 Tractography parameters

Although the literature reports on a plethora of different tractography methods, each
with its own unique characteristics, they all share five key parameters that require metic-
ulous adjustment, depending on the nature of the study or experiment in question:

— A tracking mask that defines the region in which tractography is to be conducted.
— A step size
— An interpolation method
— A seeding method, which initialise the first points of the fibers.
— A collection of stopping criteria that terminate the fiber tracking
We have previously discussed the step size and interpolation method in section 2.5.2,

and therefore, we will not delve into them again.
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The seeding method is generally common to all algorithms. A first option is to carry a
region of interest (ROI) based tractography, in this case the seeds are either generated by
the user by manually selecting the seed voxel, or by using a ROI atlas produced by experts
or they can also be obtained from cortical activation maps measured with functional MRI
(fMRI). The second option is to generate a ’whole-brain’ tractogram by initializing the
algorithm using either all the voxels in the brain or the voxels at the interface between
the WM and the GM.

Several common stop criteria exist and are used either alone or in combination.
The first one is the propagation limit domain, or tracking mask. Most algorithms need

a binary mask matching the propagation domain to support the tracking. Leaving this
mask cause the tracking to stop. The mask can be obtained from the b0 image (i.e. the
DWI without applied gradient) or by binarizing the fractional anisotropy map with a
threshold typically set below 0.2.

An other criterion is the angle defined between two successive fiber segments. This
criteria is based on the hypothesis that WM fibers follows a relatively ’smooth’ geometry,
characterized by a low curvature. Thus, a fiber pathways is stopped if, during the tracking
process, the angle between the previous and the actual directions is superior to a user
defined threshold (typically around 30°).

Finally, one last common criterion used is most tractography algorithm relies on the
final length of the tracked fibers by setting a minimal and a maximal fibers length (typ-
ically 5mm and 300mm). This allows to discard all the short fibers that correspond to
false-positives generated by the tracking method, and also prevent the algorithm to enter
in an infinite loop.

2.5.7 Limitations of tractography

In spite of the advancements achieved in data acquisition and the refinement of fiber
pathway estimation techniques, tractography algorithms still face various limitations.
These limitations not only hinder their clinical utility but also pose challenges in the
study of the brain. Tractograms, in particular, face issues related to accuracy, quantifi-
ability, and interpretability [Jbabdi and Johansen-Berg, 2011b]. In [Pujol et al., 2015],
authors asked 8 different international teams to reconstruct the pyramidal bundle in four
patients with gliomas near the motor cortex with DTI-based tractography. The results
showed that, while most of the methods have been able to correctly reconstruct the pyra-
midal bundle, all share great inter-algorithm variability. In an other study, [K. Maier-Hein
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et al., 2017b] evaluated 96 distinct tractography pipelines submitted by 20 different re-
search groups, in order to assess how well the algorithms were able to reproduce the known
connectivity. They demonstrated that most methods produce tractograms containing 90%
of the ground truth bundles, but that these tractograms also contain many more invalid
than valid bundles.

Figure 2.15 – Illustration of the bottleneck issue. (A) The presence of fiber crossings within a voxel
in the hypothetical ground truth creates ambiguous information in the imaging data at the voxel level.
(B) Similarly, the same fiber configuration can be explained by several different local diffusion structures.
(C) At a global level, white matter regions that are shared by multiple bundles (so-called “bottlenecks”,
dotted rectangles) can lead to many false fibers reconstruction. Ultimately, with only two bundles in the
hypothetical ground truth, four potential false positive bundles can be reconstructed. From [K. Maier-
Hein et al., 2017b

These studies [Pujol et al., 2015; K. Maier-Hein et al., 2017b; Rheault et al., 2020]
highlight the same limitations shared by all tractography algorithms:

— Due to the inherent scale disparity between MRI voxel dimensions and axon radius,
the precise identification of fiber origins and departure points becomes an intricate
task

— The limited reproducibility and consistency of results across various algorithms
pose significant challenges when conducting large-scale analyses or longitudinal
comparisons.

— The generation of a multitude of false positives often arises from local models being
unable to adequately address complex configurations or lacking sufficient additional
anatomical information, particularly in scenarios involving fiber crossings and other
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special configurations.
— The "bottleneck" issue (see Figure 2.15), in regions where multiple white matter

bundles converge within a single voxel and share the same parallel orientation,
before diverging and continuing towards their final terminations, the algorithms
are unable to determine the correct pathways without external information.

Furthermore, the absence of a definitive ground truth or a means to quantify outcomes
without resorting to invasive post-mortem procedures presents a significant challenge.
Consequently, there is no infallible method available to establish the absolute reliability
and validity of tractography algorithm results, which creates uncertainty and complexity
in the validation process.

For all these reasons, the validation of tractography algorithms and their ability to
make the right decisions in regions with complex configurations and subject to bottlenecks
is still an academic challenge and will be studied in the remainder of this manuscript.
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3.1 Introduction

Diffusion MRI and fiber tractography are promising methods for the evaluation of
the brain nervous fiber pathways. Since the emergence of these techniques at the end of
the previous century [P. J. Basser et al., 1994a], many new methods have appeared. The
first ones were based on tensors, one of the simplest diffusion models [Mori et al., 1999].
Since then, numerous studies have shown the limitations of tensor-based tractography in
complex fiber structures [Gao et al., 2013a]. To overpass these limitations, new algorithms,
using either other diffusion models (orientation distribution functions [ Descoteaux et al.,
2007a] or multi-tensors [ D. Tuch et al., 2002]) or new probabilistic tractography methods
[Stamm et al., 2013; Jones, 2008a], have been developed. These methods have allowed a
better reconstruction of complex fiber bundles like the corticospinal tract (CST) or the
corpus callosum (CC) [Girard et al., 2020a], but still do not reach an acceptable false
positive rate to be used in a clinical context [K. Maier-Hein et al., 2017a].

The large number of existing techniques results in a lot of variability in the reconstruc-
tion of fiber bundles, which prevents clinicians from correctly interpreting the results, and
makes it difficult to evaluate and compare tractography algorithms [Schilling et al., 2021a].
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Hence, many challenges [Côté et al., 2013a; Maffei et al., 2020] have been organized to
1- study the sources of this variability, 2- provide a general framework allowing to more
easily compare tractography algorithms. In those challenges, a few probabilistic methods
J.-D. Tournier et al., 2010b; R. E. Smith et al., 2012; D. B. Aydogan and Shi, 2021] have
shared the first place.

When organizing such challenges or evaluating an algorithm, the question of evalu-
ation of tractograms becomes essential. While visual evaluations are crucial to quickly
judge the quality of tractograms, they do not allow for an in-depth comparison and a
quantitative performance analysis. Therefore, comparison being at the core of these chal-
lenges, measures have been developed to quantify and study differences between methods.
First, measures such as the Dice score, its generalized version [Crum et al., 2006a] or den-
sity correlation [Schilling et al., 2021a] analyze tractograms as an image derived from the
fiber bundles being compared. Second, the anatomical plausibility can be studied with
topographic regularity [D. B. Aydogan and Shi, 2018] or, as in TractoMeter, the number
of valid connections (VC, the percentage of streamlines that correctly connect both ends
of a fiber bundle) and the number of valid streamlines (VS, the percentage of streamlines
that are part of VC, and that respect the general shape of the bundle).

As mentioned above, tractograms evaluation measures are a crucial and actual problem
that lacks of a general answer. Multiple measures are available in the literature. However,
as they work on different objects or quantities derived from tractograms, it is probable that
one measure does not explain fully tractograms variations and errors, nor that they expose
the same kind of errors. This has however never been explored in the literature. We thus
propose first to study and compare the behavior of the most common of these measures
when the reference and tested tractograms diverge from each other. This is done using
simulated data by applying linear and non linear transformations, and also comparing
results of different tractography algorithms in real cases. We also define and evaluate a
new tractogram evaluation measure based on optimal transport. This measure provides a
distance between two distributions and thus encompass information on both topographical
similarities and the degree of overlap between two tractograms. We ultimately illustrate
its value when used in conjunction with other metrics.
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3.2 Background

3.2.1 Tractograms evaluation metrics

To assess the performance of our metric, we opted to compare it against four estab-
lished measures commonly used in recent studies, [Côté et al., 2013a; Schilling et al.,
2021a], to evaluate the quality of tractograms.

The generalized Dice score. The Dice and generalized Dice scores measure the
overlap between a reference and a test image. There are several generalizations of the
binary Dice score. We have chosen the one proposed in [Crum et al., 2006a] wich is
defined as :

Dice = 2 ∑
i min(Ai, Bi)∑
i(Ai +Bi)

(3.1)

with Dice ∈ [0, 1] (0 corresponding to no overlap and 1 to perfect overlap), and Ai, Bi

being respectively the reference and the test image values at voxel i.
Unlike the original Dice score, that assumes binary image inputs, the generalized Dice

score handles weighted images. In the case of tractograms, these images are fiber density
images (i.e. the weight of a voxel is the number of streamlines that pass through it). That
property allows this measure to give more importance to the most dense regions.

The density correlation. This measure corresponds to the cross-correlation coeffi-
cient between the reference density image and the test density image, such as:

Corr =
∑
i(Ai − A)(Bi −B)√∑

i(Ai − A)2 ∑
i(Bi −B)2

(3.2)

with ρ ∈ [−1, 1], Ai and Bi the value of the corresponding image at voxel i, and A and B
the average voxel value of reference and test density images.

Contrary to the generalized Dice score, this metric provides insights into the simi-
larity of streamline density rather than solely measuring the degree of overlap between
streamlines and a reference. While the generalized Dice score primarily evaluates how well
streamlines match a reference, the density correlation metric delves deeper by assessing
the concordance in the density distribution of streamlines, offering a more comprehensive
perspective on tractogram quality and consistency.

The number of valid connections. In many cases, obtaining the ground truth of
tractography is difficult. Some measures thus assume that we do not know the complete
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ground truth tractogram but rather only the start and end regions to which the fibers
should pass through. In this case, the evaluation measure can be defined by counting fibers
of the evaluated tractogram that actually start and stop in these regions. This percentage
is named valid connections (VC) and was used in the TractoMeter challenge [Côté et al.,
2013a].

The number of valid streamlines. Going one step further than VC, we can consider
that, in addition to the start and end ROIs, we also know the envelope of the ground
truth tractogram. If the full ground truth tractogram is available, this envelope can be
extracted as a binary image highlighting voxels where at least one fiber passes through.
The percentage of valid streamlines (VS) is then the percentage of all streamlines that
are part of Valid Connections, and that do not leave the ground truth envelope. Hence
the percentage of valid streamlines will always be lower than the percentage of valid
connections.

3.2.2 Optimal transport

In this paper, we present a novel evaluation metric that relies on calculating the
Wasserstein distance, a concept derived from optimal transport theory. We will begin by
introducing these theoretical concepts and subsequently demonstrate their application in
evaluating tractograms.

Let µ0 and µ1 be, respectively, a source and a target distributions and π(x, y) a trans-
port plan that describes the amount of mass transported from µ0 at location x to µ1 at
location y. The 2-Wasserstein distance, simply called Wasserstein distance in the following,
defines a distance that can be used to measure the discrepancy between two distributions,
given by Eq. 3.3:

W 2
2,γ(µ0, µ1) = inf

π∈Π
[
∫∫

M×M

d(x, y)2π(x, y) dx dy − γH(π)] (3.3)

whereM is a compact, connected Riemannian manifold and d(x, y) is the distance function
between two elements x ∈ M and y ∈ M .

The last term of Eq. 3.3, γH(π), is an entropic regularization term which is used to
smooth the function and thus to provide a unique solution to the problem.

Many methods have been devised in the literature to obtain this solution [Bonneel
and Coeurjolly, 2019; Figalli, 2010]. Among these, the Sinkhorn algorithm [Cuturi, 2013]
is the most commonly employed approach. However, this algorithm exhibits two signifi-
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cant limitations. Firstly, it is an iterative algorithm that may require an extended period
to reach convergence. Secondly, in the context of comparing two distributions of fibers,
which in our case represent the individual fiber contributions at each point in the trac-
togram, the sheer quantity of pairwise distances that need to be calculated between these
distributions can rapidly become overwhelming. This results in increased computational
time and memory usage, especially considering that a typical fiber bundle may consist of
up to 50, 000 points, necessitating the computation and storage of 50, 0002 distances for
computational efficiency.

Consequently, we have opted to utilize a recently efficient algorithm proposed by
Solomon et al. [Solomon et al., 2015]. This method leverages Varadhan’s formula to re-
place the kernel of the Sinkhorn algorithm with a Gaussian kernel derived from the heat
equation, specifically when working with distributions represented as 3D images. The
algorithm is based on two equations, denoted as Equation 3.4 and Equation 3.5:

vi+1 = µ0 ⊘Ht(a⊗ wi)
wi+1 = µ1 ⊘Ht(a⊗ vi)

(3.4)

W 2
2,γ(µ0, µ1) = γaT [(µ0 ⊗ ln(vi)) + (µ1 ⊗ ln(wi))] (3.5)

where µ0 and µ1 are a source and a target distributions, respectively. (v, w) are a pair
of vector initialised to only contain 1, a is the vector of area weights, such as aT1 = 1, Ht

is a Gaussian kernel from the heat equation and γ is the entropic regularization constant.
Considering the tractograms as 3D density images, we can conduct Sinkhorn iterations

using 3D Gaussian kernel convolutions. This involves iteratively computing Equation 3.4
and, at each step, evaluating Equation 3.5. This approach proves to be highly efficient
in terms of both computational power and memory usage, as these operations can be
directly executed on the images without the need to explicitly store the distance matrix.

3.3 Wasserstein distance for tractography evaluation

3.3.1 Methods

To compare the behaviour of the evaluated measures and to test the Wasserstein
distance (WD), we performed two sets of experiments, one on simulated data and another
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one on real data.
In the first set of experiments, the 5 evaluation measures (Dice, correlation, VC, VS and

WD) were computed on 4 controlled transformations cases, often found at least partially
in real cases. The data used here is the Cortico-Spinal Tract (CST) of 5 subjects of the
Human connectome Project (HCP). This ground truth tract was obtained by Wasserthal
et al. [Wasserthal et al., 2018a] by performing fiber tracking using Mrtrix followed by
several filtering, first filtering from regions of interest, then filtering manualy by an expert.
The 4 experiments were designed as follows:
Translation The reference track is translated along the x-axis from 0 to 12.5 mm, in step
of 0.0125 mm.
Rotation The track is rotated around the z-axis (roughly the CST main axis) and the
centre of gravity of the bundle by an angle from 0 to 360 degrees, with increments of 1
degree.
Deformation A stationary velocity field (SVF) [Arsigny et al., 2006a] is generated by
randomly generating Gaussian weight functions inside the reference fiber bundle mask. To
each weight function is associated an individual translation in a random direction, with
a random magnitude. The SVF is the weighted combination of these translations using
the Gaussian weight functions. In our case, we generated for each deformation from 1 to
75 Gaussian weight functions, with a random translation between 0 and 5 mm. This SVF
is then integrated and applied to the tractograms. To characterize the global amplitude
of each generated deformation, we compute the average vector norm at each voxel, inside
the bundle envelope.
Degradation The track is degraded by randomly removing fibers from 0 to 100 percent
of the reference fiber bundle

For each of these simulated dataset, we calculated cross-correlation coefficients between
every pair of measurement curves (Dice, Corr, VC, VS and WD). This enabled us to
assess the level of complementary between these measures, with lower correlation values
indicating a greater degree of complementary information.

The second set of experiments is based on HCP data and more particularly on 3
bundles, the CST, the Optic radiation (OR) and the first Superior longitudinal fascicle
(SLF) tracked with the parallel transport frame algorithm Trekker [D. B. Aydogan and
Shi, 2021], the Mrtrix3 iFOD2 [J.-D. Tournier et al., 2010b] and the DIPY Probabilistic
PFT algorithm [R. E. Smith et al., 2012]. For the 3 algorithms, the default parameters
were used and 10000 streamlines were generated by running a whole brain tractography,
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then by filtering the results with the start and end ROIs, segmented with TractSeg.
The evaluation was then performed between the ground truth tracks given by [Wasserthal

et al., 2018a] and the resulting tractograms. For that experiment, we may note that the
evaluation framework forces VC to be at 100%, thus only the other measures (Dice, Corr,
VS and WD) were computed. The purpose of these experiments is not to compare the
tractography methods but to study the behavior of our WD metrics in comparison with
the other classical methods.

3.4 Results

Fig. 3.1 displays the results for the simulated data. For translation, Fig. 3.1.a shows
that all measures follow the same behavior, except for VC that seems to provide different
information. All combinations have indeed a correlation coefficient above 0.95, except for
ρ(Corr,VC) = 0.60, ρ(Dice,VC) = 0.63, ρ(WD,VC) = 0.70 and ρ(VC,VS) = 0.43. We
have a maximum of 0.99 for ρ(Corr,Dice).

For rotation, Fig. 3.1.b shows the same result as the translation, even more pro-
nounced. We found ρ(WD,Corr) = 0.41, ρ(WD,Dice) = 0.41, ρ(WD,VC) = 0.37 and,
ρ(WD,VS) = 0.23. All other are above 0.90 and the maximum is ρ(Corr,Dice) = 0.99.

For the deformation (Fig. 3.1.c), linear regression (plus a 95% confidence interval, in
transparent on the plot) were computed and plotted to study the correlation between
each measure against deformation. VC were not plotted because the major part of the
deformation did not occur on the ending parts of the streamlines. The R2 of each regression
are as follows: 0.64 for Dice score, 0.40 for the density correlation, 0.38 for VS and 0.03
for WD. The regression plots show that, the density correlation, the Dice score and VS
percentage (red, blue and black) appear to follow the expected trend: the metrics decrease
when the average norm increases. However, the relationship between these measures and
the average norm may not be linear and the x-axis is probably to simplistic to really
conclude here without further experiments.

For degradation (Fig. 3.1.d), VC and VS, which by nature cannot measure a degra-
dation (as the overall shape and the endings of the bundle are not affected), are not com-
puted. Corr and WD are almost identical (except for the curves inversion). Dice follows
a different trend, possibly leading to more information. In addition, ρ(WD,Corr) = 0.51
and ρ(WD,Dice) = 0.48. All other results are under 0.10. The minimum is ρ(Corr,Dice) =
0.002.
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Figure 3.1 – Results for the simulated data. In each scenario, dark blue represents the Dice score, red
corresponds to the correlation measure, light blue signifies the VS percentage, black indicates the VS
percentage, and green represents the Wasserstein distance. In the deformation scenario, each data point
represents a unique deformation, and the lines represent linear regressions applied to the data points for
each measurement.
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For the second experiment on real data, the evaluation metrics are presented in Ta-
ble 3.1, and Figure 3.2 displays the resulting tractograms on which measurements were
conducted.

Figure 3.2 – Resulting tractograms for each algorithm. From left to right and top to
bottom : the ground truth, Mrtrix IFOD2, Trekker and Dipy PFT. And from left to right
in each case : the CST, the OR and the SLF

Dice Dens. corr. WD VS (%)
CST 0.23/0.18/0.53 0.47/0.36/0.54 37/74/72 42/43/78
OR 0.26/0.22/0.08 0.43/0.34/0.37 48/24/99 45/33/33
SLF 0.29/0.15/0.04 0.55/0.20/0.38 27/16/74 50/38/24

Table 3.1 – Results for real data experiment. Red text denotes results for IFOD2, blue
for Trekker, black for Dipy PFT.

3.5 Conclusions and discussions

The cross correlation results for rotation and translation show that, for these transfor-
mations, the Dice score and the density correlation do not give complementary informa-
tion. For translation, VC appears in each combination with the lowest coefficient, meaning
that for this type of transformation, streamlines based measures can bring complementary
information to image based measures. In the rotation case, the Wasserstein distance is the
least correlated with the others, thus, that gives more information on tractogram quality
in complement to other measures. The R2 of the linear regressions for deformation ex-
periment show that these measures have difficulties to evaluate properly deformations in

61



Partie , Chapter 3 – A convolutional Wasserstein distance for tractography evaluation

tractograms. However, this result should be taken with caution since, in this experiment,
we tried to reflect local deformations with an average global information which may not
be enough to capture the deformations variations. Designing more local evaluation of the
deformation magnitude would be beneficial. Finally, for the degradation, all coefficients
are relatively low, in particular the density correlation and the Dice score that are almost
uncorrelated showing their complementarity.

For real data, results show that, globally, VC, Dice and the correlation follow the
same trend. The Wasserstein distance seems to give slightly different information. A more
in-depth real data study will bring more information on that aspect.

As shown above, the Wasserstein distance can, in certain cases, be used to deliver
information that the other measures cannot. However, we would like to point out some of
the actual limits of this distance and therefore some future works that could improve this
measure. First, the measure computes a distance between all points of the two tractograms
instead of matching fibers, which is not topologically right. A way to transport fibers from
a tractogram to another should be examined. Second, special attention must be given to
the quantity of mass transported. Indeed, balanced (the same amount of mass on both
sides) and unbalanced (different amounts of mass) optimal transport are two different
problems, which require different solutions. In this work, balanced optimal transport is
forced by normalising the tractograms densities. This can lead to unexpected situations,
e.g. with the degradation experiment, where, for a high percentage of degradation, we
force an entire tractogram to be transported onto a few fibers.

In conclusion, we have proposed, in this work, a comparative analysis, both on syn-
thetic data (translation, rotation, deformation, degradation) and in real circumstance, of
the behavior of a few typically used tractograms evaluation measures: the Dice score, the
density correlation, the percentage of valid connections and valid streamlines. We then
proposed a new measure, based on optimal transport and compared its behavior against
the other measures. We show that, in most cases, it can be useful to use multiple measures
in conjunction since they do not correlate and thus bring different kinds of information.
We also show that, although still being in development, our new Wasserstein measure can
be used to compare tractograms, bringing additional information.
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4.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is an MRI modality that allows to mea-
sure the thermal agitation of the water molecule in the brain [E. Stejskal and Tanner,
1965]. This agitation being constrained by the tissues micro-structures, typically the ner-
vous system axons, dMRI enables the voxelwise estimation of the orientations of the white
matter fibers [Dell’Acqua and Tournier, 2017; D. Jones, 2010]. By randomly choosing seeds
from within the brain white matter, then following, from one voxel to the next, the local
fiber orientations, one can achieve to estimate the brain connectivity and characterize the
physical connections that mediate information transfer between cortical regions [D. Jones,
2010]. This process is called fibers tracking, or fiber tractography, and the resulting set
of white matter trajectories is called tractograms [Mori and Van Zijl, 2002]. The ability
of those approaches to delineate the white matter fiber pathways offers unprecedented
insight into the structural connections of the human brain and enormous potential for
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the study of human brain anatomy, development and function [Jeurissen et al., 2019a].
Moreover, tractography has been proven particularly useful to neurosurgeons for the plan-
ning of surgery, especially to preserve important white matter pathways during resections
[Mancini et al., 2019].

A multitude of new tracking algorithms has been proposed to improve the quality of
the tractograms [Girard et al., 2020b; Schilling et al., 2021b]. The first methods were de-
terministic methods, where only the principal diffusion orientation of the diffusion tensor
was used in each voxel [P. Basser et al., 2000b]. However, studies have shown the difficul-
ties that these methods have to represent complex brain regions, like crossing or fanning
fibers [Gao et al., 2013b]. In response, new diffusion model, like the orientation distribution
function (ODF) which encodes continuously all the diffusion orientations within a voxel
and thus can characterize the complex fiber structure, have been developed [Descoteaux
et al., 2008; J. Tournier et al., 2007]. Modern methods have then sought to estimate the
fiber dispersion estimation using probabilistic methods [T. Behrens et al., 2007; Jeurissen
et al., 2019a; J. Tournier et al., 2019].

Among them, existing local tractography approaches estimate the local fiber orien-
tation at each voxel independently by simultaneously fitting the local model and prop-
agating in the most consistent direction, such as Kalman filtering method [Gössl et al.,
2002], particle filtering method [Pontabry et al., 2013; Stamm, Commowick, Barillot, and
Perez, 2013], random walks methods [Descoteaux et al., 2008 and graph theory method
[Sotiropoulos et al., 2010a]. Other approaches have proposed more global approach which
computes multiple fibers pathways and select the best ones based on the diffusion charac-
teristics, like using Bayesian model [Jbabdi, Woolrich, et al., 2007] or the Hough transform
[Aganj et al., 2011] and machine learning more recently [Poulin et al., 2019]. However,
despite the improvement of the dMRI acquisition, the modeling and the tracking, white
matter fibers tractography still can’t overcome some limitations [Jbabdi and Johansen-
Berg, 2011a; K. H. Maier-Hein et al., 2017] which prevents those methods to be usable in
the clinical context. Maier-Hein et al (2017). have shown that most modern algorithms
can recover up to 90% of the ground truth white matter bundles, but these are poorly
recovered in terms of spatial extent [K. H. Maier-Hein et al., 2017]. Moreover, those trac-
tograms also contained large amounts of invalid bundles [K. H. Maier-Hein et al., 2017].
Overall, the iFOD2 [J. Tournier et al., 2010] and PTT [D. Aydogan and Shi, 2021] algo-
rithms had good performances in recent international challenges [K. H. Maier-Hein et al.,
2017; Rafael-Patino et al., 2021b].
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To overpass the poor spatial extent of white matter bundles, one proposed solution is to
increase the numbers of the total generated streamlines leading to an over representation
of easy tracks and an under-representation of difficult tracks, inducing a density bias
[Rheault et al., 2017]. For example, the local tractography methods aim to recover a global
connectivity by inferring from locals directional information that causes the algorithm to
follow, in complex regions, the easiest path available and sometimes the non-realistic
decisions [K. H. Maier-Hein et al., 2017]. Various studies have suggested that advanced
diffusion microstructure modeling [Daducci et al., 2016; R. Smith et al., 2015], streamline
filtering techniques [Daducci, Canales-Rodriguez, et al., 2015] or advances in machine-
learning-driven tractography [Neher et al., 2015] could make improvement on the false
positive rate.

Other approaches have proposed to compensate the lack of global information by
adding them in the form of anatomical priors whose purpose would be to guide the
algorithm in complex regions. As for segmentation and label fusion approach, recent
methods are based on the use of an anatomical atlas such as the TRACULA method
[Yendiki et al., 2011], with promising results combining deterministic tractography and
anatomical prior. Then, diffusion priors during the tracking process were proposed in
[Cook et al., 2008; Rheault et al., 2019; Yap et al., 2011], improving the delineation of
white matter bundles. In [Rheault et al., 2019], a bundle-specific tractography (BST)
method incorporates anatomical and orientational priors based on a template, to improve
the reconstruction of long fibers and increase of reproducibility, sensitivity and specificity.
On the other hand, in [Wasserthal et al., 2018b], another well-known approach based on
a machine learning method was proposed to automatically segment, with high precision,
the overall shape of a bundle, being a potentially great source of prior.

Based on these promising results, we developed a method of anatomical prior creation
and combination, which is usable with any tractography algorithm based on orientation
distribution function (ODF) [Descoteaux et al., 2007b]. Our method use pre-segmented
fiber bundles by [Wasserthal et al., 2018b], to agglomerate global information from several
different brains and capture the orientational variability in complex brain region. In this
work, prior are computed on this anatomical atlas and expressed in the form of voxel-
wise TOD [Dhollander et al., 2014] and then combined with the orientation distribution
function (ODF) [Descoteaux et al., 2007b] data using a Riemannian framework [Goh
et al., 2011]. We decided to incorporate those priors in two state-of-the-art algorithms
using traditional ODF data, MRtrix iFOD2 [J. Tournier et al., 2010] and Trekker PTT
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[D. Aydogan and Shi, 2021]. We then evaluated those methods on the diffusion-simulated
connectivity (DiSCo) dataset [Rafael-Patino et al., 2021a] and on the Human Connectome
project (HCP) 1 data to show the increase quality of the tractogram and more specifically
on the spatial extent of the reconstructed bundles.

4.2 Method

Our method can be separated into 3 distinct parts: i) the construction of an anatomical
atlas from segmented fibers, considered as gold standard, ii) the extraction and estimation
of the TOD anatomical priors, from the atlas and iii) the combination between the priors
and the subject data. The entire framework is illustrated in Figure 4.1.

4.2.1 Atlasing

The first step of our framework is the creation of a reference fiber atlas from a set of
high-resolution diffusion images (see Figure 4.1.a). In this paper, we chose high-resolution
diffusion images from the Human Connectome Project (HCP) young adult study [A. L.
Alexander et al., 2007], which were acquired at high spatial resolution and b-values with
90 directions and thus contains high quality information on the fibers orientations.

The proposed atlasing method follows a modified version of Guimond et al (2000).
[Guimond et al., 2000] which was adapted for diffusion data, to compute an atlas of
Tensor images from a set of control subjects. This approach is based on a procedure
which compute iteratively the atlas by registering the tensor images of HCP images onto
a current reference. After each iteration, it performs an average of all the previous unbiased
atlases to compute the next one at the following iteration. The main modifications from
the original Guimond et al. (2000) method [Guimond et al., 2000] is to use diffeomorphisms
encoded as Stable Vector Fields (SVF) and the log-Euclidean framework [Arsigny et al.,
2006b] to compute the average transformations and the approach was adapted to diffusion
data. The entire procedure is detailed in Suarez et al., 2012.

For each HCP data, 72 bundles were obtained by Wasserthal et al. (2018), using
the TractSeg algorithm [Wasserthal et al., 2018b] which perform fiber tracking and fiber
filtering, first by regions of interest (ROIs), then by an expert. The overall process used
to segment these bundles is detailed in [Wasserthal et al., 2018b] and the data is available

1. https://www.humanconnectome.org/
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Figure 4.1 – Overall method pipeline. (a) Atlas creation. (b) TOD estimation. (c) Data and prior
combination.
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online [Wasserthal Jakob, 2018].
The transformation field obtained by the atlasing method from each individual space

to the atlas space is then applied to 72 segmented fiber bundles of interest of each subject
in order to all align them to the fiber atlas.

4.2.2 Track orientation distribution imaging

Once aligned to a common space, the bundles of interest are combined in order to rep-
resent the general shape of bundles. In order to capture complex orientation, a local fiber
orientation prior was estimated using the track orientation distribution (TOD) [Dhollan-
der et al., 2014], in each voxel. The tractogram is represented as a voxel-wise probability
distribution function (PDF) in the image domain, rather than a set of individual tracks
(samples from this distribution). The TOD, thus, captures the expected fiber directions
[Dhollander et al., 2014].

Our TOD imaging method operates as follows : first, all the fibers directions of the
voxel are extracted, then clustered using a k-means algorithm to define the main directions
within the voxel and to correct for the density bias. This way, up to 4 principal directions
can be extracted, allowing us to correct for the density bias as well as to characterize
complex crossing regions. Then, the TOD in each voxel is represented using a set of
modified spherical harmonics (SH) basis functions (see [Descoteaux et al., 2007b]) and
constructed by projecting one spherical point spread function (PSF) per extracted main
direction along the z direction.

The PSF, along the z direction at position ϵ, can be easily obtained in SH basis:

δz(ϵ)(θ, ϕ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ), (4.1)

where 0 ≤ θ ≤ π and −π ≤ ϕ ≤ π are the spherical coordinates, Y m
l the spherical

harmonic of degree l and order m and cml , the coefficients, given as:

cml =
∫ π

−π

∫ π

0
δz(ϵ)(θ, ϕ)Y m

l (θ, ϕ)dθdϕ (4.2)

We found that resolving the equation 4.2 with the PSF pointing towards the direction
θ = π

2 and then rotating them to match the direction extracted from the atlas greatly
simplifies the calculations. In Geng et al., 2009, authors showed a simple method to rotate
functions expressed in SH basis. Since 4 different directions can be represented in a voxel,
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the final step of the prior extraction is to average the projected PSF. The averaging of
distributions defined on the sphere is performed through a Riemannian framework [Goh et
al., 2011]. To do that, we define ψ(θ, ϕ) =

√
δz(ϵ)(θ, ϕ), the square-root density function of

the PDF δ(θ, ϕ). The square-root is used to ensure that the logarithm maps are available
in closed form. Thus, δ(θ, ϕ) has to be strictly positive. For this reason, in order to find the
right PSF, several different distributions were tested (i.e. a Dirac distribution, a Watson
distribution and a Gaussian distribution) and then were expressed on the SH basis. We
found out that a 2D Gaussian distribution on the unit sphere, is the only one whose
number of negative values do not diverge with the degree l.

Then, in order to calculate the average distribution, we used the weighted Karcher
mean, ψ, of a set of n points {ψi}ni=0 in a Riemannian manifold defined by:

ψ = argmin1
2

n∑
i=0

ωidist(ψ, ψi)2 (4.3)

with ωi ≤ 0 and ∑n
i=0 ωi = 1

As described in [Goh et al., 2011], the unique solution is ψ, such as:

n∑
i=0

ωi logψ(ψi) = 0 (4.4)

where logψ is the logarithm map from ψ to ψi, given by:

logψ(ψi) = ψi − ⟨ψi, ψ⟩ψ√
1 − ⟨ψi, ψ⟩

cos−1⟨ψi, ψ⟩ (4.5)

with ⟨., .⟩, the normal dot product.
At the end of this step, using the equation 4.5 and ωi = 1/n,∀i ∈ {1, ..., n}, we

obtained ψ, which is the square-root of the prior for each voxel. An example of the prior
with the SH coefficients, truncated at a degree of l = 8, of the PSF described previously
are shown in Figure 4.4. The prior creation process in order to average all extracted
directions has to be calculated only once.

4.2.3 Riemannian framework

As displayed in Figure 4.1, the ODF image of the individual diffusion dataset is cal-
culated to estimate the next direction. During tractography, in order to inform the ODF
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with the anatomical prior, as previously explained in the previous section, a weighted
Karcher mean is computed between the ODF and the prior using equation 4.4, to obtain
the enhanced-odf (EODF). However, this method involves calculating, at each step of the
tracking, the dot product between distribution on the sphere, that implies an integral over
the sphere which would complicate the process. To simplify the computations, Goh et al.
(2009) proposed to discretize the PDF and to work with the square root of histograms
[Goh et al., 2011]. In this case, the dot product become summations.

Since the overall purpose of our method is only to guide the tractography algorithms
and not to reflect the structure of the priors, the weighting factor ωi must be well studied.
We want to be able to distinguish between the simple linear region, where not much
guidance is needed, especially in easier-to-track bundles with only one fiber direction, and
the complex regions with crossing fibers, where the use of the prior is more needed. In
order to address this specification, we choose to use 2 measures to weight the prior: the
generalised fractional anisotropy (GFA), for the prior and the Akaike information criterion
(AIC) [Akaike, 1998] for the data.

Figure 4.2 – Left: DiSCo dataset pathways. Right: Prior weighting map example for the
DiSCo dataset. Higher value denotes higher usage of the prior and thus more complex
regions.

The GFA, is given by:

GFA =

√√√√ 1 − c2
0∑N

i=0 c
2
i

(4.6)

where the ci are the SH coefficients. The GFA is a measure of the anisotropy within the
considered voxel, that is, in the case of the prior, this value can reflect the complexity of
a region.
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The AIC, is described by;
AIC = 2k − 2 ln(L) (4.7)

where k is the numbers of parameters in the model and L the maximized likelihood. The
AIC is a measurement of the estimation quality of a model.

Empirically, to well differentiate linear and complex regions, we defined the prior
weight given by:

ωprior = α(1 −GFA) + βexp(AICmin − AIC

2 ) (4.8)

where α represents the amount of information extracted from the priors, via the GFA,
and β the amount of information extracted from the data, via the AIC. Those parameters
needs to be adapted to the data. For the scenario presented in this work, we choose
α = 0.35 and β = 0.65 (see Figure 4.3).

Figure 4.3 – Evolution of the Dice score versus α (from the Equation 4.8) for the tracking of the CST
and for the iFOD and PTT algorithms. The method performs most effectively with an alpha value of
0.35.

An example of a weighting map for the DiSCo dataset can be seen on Figure 4.2 with
higher ωprior in crossing fiber areas.

The result of this averaging process is then an EODF, expressed in SH basis, usable
in any ODF-based tractography algorithm. Figure 4.4 shows examples of data and priors
combination, as well as the effect of weighting on the results. The first row represents a
voxel where the ODF and the prior have the same direction, corresponding to an easy-
to-track regions with one-way crossing. On the other hand, in the second and third rows,
the orientation of the ODF and the prior are different. In this case, according to the value
of ωprior, the EODF is almost equal to the ODF or a mixture of the prior and ODF.
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Figure 4.4 – Examples of data and prior combination. On the first row: prior and data
are aligned. The EODF main orientations are unchanged. On the second and third rows:
Prior and data are crossing. The corresponding EODF peak is more or less attenuated
using the weight of the prior.

4.3 Experiments

In order to validate our method using priors, we conducted our first experiments on
the DiSCo challenge dataset [Rafael-Patino et al., 2021b]. Then, we tested our algorithms
on HCP data. For each experiment, we implemented our prior approach on two state-of-
the-art algorithms, MRtrix iFOD2 [J. Tournier et al., 2010] and Trekker PTT [D. Aydogan
and Shi, 2021]. Thus, on the two dataset, 4 tractography reconstruction were performed,
both with and without using priors. For iFOD2, we used a step size of 0.2 voxel and a
maximum angle between successive steps of 20 degrees. For PTT, we used the default
parameters.
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Figure 4.5 – Visual comparison of the resulting tractograms, with and without prior.
From left to right, in column : iFOD2, PTT, iFOD2 with priors and PTT with priors.
Last column on the right: Prior weighting map, where brighter pixel denotes a higher
usage of the prior. From top to bottom : The Arcuate fascicle (AF), the Cingulum (CG),
the Corticospinal tract (CST), the Optic radiation (OR) and the Superior longitudinal
fascicle I (SLF I).

4.3.1 Simulated data

The aim of this experiment is to test the ability of our novel method to improve the
connectivity estimation and the effect of noise. In this context, we do not have access to
several datasets to build an anatomical atlas, instead, we computed the TOD: (i) using
the ground-truth fiber pathways as anatomical priors and (ii) using fiber tracked on high
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quality data as anatomical priors.

Data

We performed two different variants of this experiment: in the first one, priors are
estimated on ground-truth fibers, not available on in vivo data; and the second experiment
is used to demonstrate the benefit of our method, without having a ground-truth but priors
build on high resolution data.

(i) Fiber pathways ground-truth: The DiSCo dMRI images have a grid of 40 × 40 × 40
with voxel size of 1 mm2 and are acquired with 4 different b-shell of 1000, 2000, 3000 and
1300 s/mm2, 90 directions per b-shell and 4 b0. In order to obtain synthetic data with the
same quality as those in clinical context, we used degraded data with a grid of 20×20×20
voxels and only using the 3000 s/mm2 b-shell with 60 directions. The prior is computed
with the original data. In addition, to study the effect of noise, we added Rician noise on
the dMRI. The resulting images have an average SNR of 0dB, 10dB, 20dB, 30dB, 40dB
and 50dB. The individual ODF were computed using the method described in [Aganj
et al., 2010] and represented in a spherical harmonic basis truncated at the 8th order.
Then, EODF were calculated using the method described in this paper.

(ii) multi-shell ODF: In this second set of experiment, we computed the priors on
fibers tracked with the multi-shell multi-tissue constrained spherical deconvolution (CSD)
fiber ODFs. The idea is to simulate a clinical context by computing the ODF on clinical
dMRI data and combined with anatomical priors calculated on high resolution data.
The anatomical prior are calculated on 40 × 40 × 40 voxels DiSCo dMRI at SNR 20.
From those images, fiber ODF were computed using the MRtrix implementation of the
multi-shell multi-tissue constrained spherical (msmt-CSD) method described in [Jeurissen,
Tournier, et al., 2014] using default parameters and using 8th order SH basis. Then, fibers
were tracked using the MRtrix iFOD2 algorithm with a step size of 0.2 voxel and default
parameters. Only the streamlines that reach the endings ROIs were kept. Finally, the
TODs were extracted from those fibers using the method detailed in the previous section.
After prior estimation on high resolution data, we estimated the ODF of a subject data
with 20×20×20 grid and SNR= 20. Then, EODFs were obtained by combining the TOD
with the clinical data fiber ODF.
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Metrics

To quantify the results, we computed the Pearson correlation coefficient (r) between
the ground truth connectivity matrices of the three DiSCo dataset and the resulting
tractograms connectivity matrix. These matrices are computed by counting the numbers
of streamlines that reach both start and end ROIs for each DiSCo fibers bundles.

4.3.2 HCP data

Data

To test our method on in vivo high quality data, we used the HCP young adult data,
acquired with 90 gradients distributed on 3 shells of b=1000, 2000, and 3000 s/mm2 with 6
b= 0 acquisitions and a final resolution of 1.25mm3. Among them, the 105 pre-segmented
HCP images were used, as described in 4.2.1, to build fiber atlases of the Arcuate fascicle
(AF), the Cingulum left (CG), the Corticospinal tract (CST), the Optic radiation (OR)
and the Superior longitudinal fascicle I (SLF I) to study the influence of the addition of
prior on bundles of different degrees of complexity and in different region of the brain.
A cross validation was performed on the 105 subjects in which 100 subjects are used to
build the atlas and the 5 remaining to perform the tractography algorithm. This process
is repeated 8 times, giving us a total of 40 subjects to test the method on. For each image
belonging to training set, ODFs were computed on the shell b= 3000 s/mm2 using the
method described in Aganj et al., 2010 and represented in a spherical harmonic basis
truncated at the 8th order. Then, the TOD images for each bundle were registered on
the subject space. Those priors were incorporating during the tracking process for each
subject. The tractography algorithms were tested on the 5 remaining subjects.

In order to compare our method with state of the art anatomical priors methods, we
used the BST algorithm ([Rheault et al., 2019], using the default parameters, to compute
enhanced ODF for the CST and the AF bundles. We then tracked those bundles with the
iFOD2 and PTT algorithms using the same parameters as before.

Metrics

To quantify the overall shape quality of the tractograms, we computed the generalized
Dice score Crum et al., 2006b between the segmentation of fibers obtained with trac-
tography algorithm and the reference fibers. In order to measure the improvement on
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the numbers of streamlines reaching both ROI endpoints, we computed the percentage
of streamlines that correctly connects the beginning and the end regions of bundles over
the total number of streamlines in the reference bundle (noted valid streamlines VS). It
is worth noting that this measure does not mean anything in absolute, being biased by
the numbers of streamlines in the reference tracks. However, since the same numbers of
streamlines is generated for each bundle, it allows us to compare the overall bundles shape
and quality with and without the addition of priors.

4.4 Results

4.4.1 DiSCo challenge dataset

Figure 4.6 displays the correlation with the ground-truth connectivity of the two ex-
periments, for the three DiSCo dataset. First, on Figure 4.6.a, we observed that lower the
noise is, better are the correlation improvement for the experiment using the fiber path-
ways as ground-truth. Next, both algorithms performed better with the addition of priors
for all level of noise and the three datasets. We can also notice that the improvement
decreases when the quality of the data increases. In average, the correlation increases of
0.23 for an SNR of 10 dB but only 0.11 for an SNR of 50 dB. Moreover, the mean corre-
lation improvement is of 0.19 and 0.17 for the iFOD2 and PTT algorithms, respectively.
At last, the average maximum reached is r = 0.83 for PTT and r = 0.82 for iFOD2.
There are no major differences between the three dataset. For the second experiment
using high resolution DW-MRI data, we showed an average correlation improvement of
0.15 for the PTT algorithm and 0.17 for the iFOD2 algorithm, in figure 4.6.b. Incorpo-
rating anatomical priors calculating on high resolution data during the tracking process
of low resolution data increases the Pearson correlation coefficient with the ground-truth
connectivity matrix.

4.4.2 HCP data

Figure 4.5 displays the segmentation of AF, CG, CST, OR and SLF I obtained with
iFOD2 and PTT, with and without prior. The results for the Valid streamlines and the
Dice score are presented in Figure 4.7. For the VS score, the addition of priors appears to
always increase, on average, the numbers of streamlines that connect both end regions.
However, enhanced tractography seems to also increase the variability of the results, as
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we found a mean variance across all bundles of 7.19% without the prior and 19.84% with.
We also noticed that incorporating the priors in the PTT algorithm improve more the
VS than with the iFOD2 algorithm. Indeed, the average gain for iFOD2 is of 25.08%
and 31.37% for PTT. The same observation can be made for the dice measurement, but
as opposed to the Valid streamlines measurement, the variability seems to be decreased
with the addition of prior. We notice that incorporating the anatomical priors improve
the spatial coverage and that a higher fraction of streamline reach the endpoints of the
bundle.

The Figure 4.8 present the Dice score and the number of valid streamlines for the
AF and CST bundles, tracked with iFOD2 and PTT without the addition of priors, with
prior computed with our method and with prior computed with the BST method [Rheault
et al., 2019]. It shows that, on average, our method demonstrates superior performance
compared to the BST algorithm, both in terms of spatial overlap and the number of valid
streamlines.

4.5 Discussions

In this work, we proposed a novel method for creating and incorporating anatomical
priors to any ODF-based tractography algorithms. We showed that incorporating anatom-
ical priors on two state-of-the-art tractography algorithms improve the overall quality of
tractograms when priors are extracted from a ground truth, but also from high quality
tractograms. Indeed, first, on the DiSCo dataset, the proposed prior-based tractography
methods obtained better correlation scores between the reconstructed bundles and the
ground truth for every level of noise than the standards probabilistic algorithms, but this
improvement decreases with the increasing SNR. Thus, the addition of priors to ODF im-
ages improve the quality of tractograms in presence of noise. However, due to the actual
form of the extracted TOD it may not be useful on high SNR data. More particularly, in
the DISCO experiment, we tried to mimic real clinical context with low spacial resolu-
tion data and an SNR of 20. In this case, our results showed a better correlation for two
methods incorporating priors between the estimated fiber and the ground-truth, reducing
false positive fibers. This could allow us to consider using this method on clinical data of
average quality, informed by prior extracted on high quality data. On the HCP data, the
same results were obtained with an increase of the fraction of valid streamlines numbers
when anatomical priors were incorporating during tracking process. In the same time,
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Figure 4.6 – Pearson correlation for the DiSCo experiments: (a) Fiber pathways ground-
truth experiment with respect to SNR (b) Multi-Shell ODF experiment for the 3 DiSCo
dataset. First column for PTT and second for iFOD2. In all cases, blue points denotes
measure without prior and the oranges ones, with prior.
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Figure 4.7 – On the left, Dice score result for the HCP experiment. On the right, VS number result for
the HCP experiment. From top to bottom : AF, CG, CST, OR, SLF I
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Figure 4.8 – Comparison with the BST algorithm
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due to the increase of the dice score when adding prior, the overall shape of the bundle
seems to be also modified. We also reported an increase in variability across subjects of
the tractography with priors compared with the ones without priors.

The effect of the priors seems to be more effective in complex fibers configurations, like
fanning and crossing fibers or in large curvature radius. Indeed, our method is able to a
better delineation and estimation of precise details. For the CST, it is well known that the
upper part, that fans into the cortex, is hard to estimate. Without prior, the iFOD2 and
PTT algorithms only manage to estimate a portion of the CST. While, with the addition
of anatomical prior, they achieve a more complete reconstruction of the fanning portion.
Another example is the OR bundle, where the Meyer’s loop, with its highly curving fibers,
is still a tractography open challenge [Bertani et al., 2018]. When guided by EODF, both
tested algorithms show results that, while containing spurious streamlines, allow a better
recovery of the anterior extent of the Meyer’s loop. This result can be easily explained by
the fact that in regions with crossing fibers, more information is taken from the prior. See
the right column in Fig. 4.5 where the brightest regions correspond to the most complex
fibers micro structure regions and denotes a higher usage of the prior.

It is important to note that the results presented in this paper use iFOD2 and PTT
algorithms as proof of concept, but the main idea behind this work is to develop a method
to improve the spatial coverage and the numbers of streamline reaching the endpoints of
the bundle of any ODF-based tractography algorithm. In fact, future works should study
the contribution of prior addition with other algorithm but also generalize this method
to other diffusion model.

In [Rheault et al., 2019], authors generated sharp TOD by projecting Dirac in the SH
basis. However, our experiences have shown that this also generate a number of negative
values which increase with the truncated SH basis order, due to the Gibbs phenomenon.
Thus, to overpass this problem and remove the negative values, they use apodized delta
function [Raffelt, Tournier, et al., 2012] proposed in [Dhollander et al., 2014], but at the
cost of a loss of angular resolution. Using this PSF, we would have to truncated at a higher
order the TOD SH basis to obtain the same angular resolution that we have with the 8th

order of the Gaussian PSF [Dhollander et al., 2014]. So we decided to keep the Gaussian
PDF and the ODF estimated without CSD, at the expense of less sharp ODF peaks,
our interest here being to compare the tracking connectivity with and without prior. In
the same way, in [Rheault et al., 2019], priors and data are combined by an element-
wise multiplication between the two sets of SH coefficients, followed by a normalization.

81



Partie , Chapter 4 – A Riemannian framework for incorporating white matter bundle priors in
ODF-based tractography algorithms.

However, our approach (i.e. using a Riemannian framework), allows us a better control
over the weighting between the TOD and ODF and minimizes the potential angular
smoothing. It also enables, for future works, more complex operation on TOD, such as
interpolation between different set of priors or even TOD filtering to remove unnecessary
information, in order to improve the prior quality, at the cost of more approximation
during the TOD estimation and an increased complexity.

Other works that studies the idea of guiding tractography algorithms, like [Yendiki
et al., 2011, Cook et al., 2008, Yap et al., 2011 or Rheault et al., 2019], use non-linear
registration and atlasing techniques during the atlas, or template, creation process, pre-
ferring to do an average of the references images. This could smooth the variability across
the atlas and could also be the source of errors that would be accumulated in the final
atlas and would, in the end, inject a bias inherent to the atlas in the tractography process.
In our approach, using a modified Guimond method [Guimond et al., 2000], the references
image are, at each step, iteratively registered with a non-rigid transformation onto the
current space that become the reference space in the next step ant it is only the average
of the transformation that is computed at the end of each step. With this approach, all
the variability information is accumulated in the atlas and the errors are not included in
the final atlas. Thus, no bias is introduced in the tractography.

Also, using pre-segmented fibers to build the atlas may not be appropriate in order
to study the global connectivity of the brain, as this approach only allows the enhanced
tracking to be performed within a unique bundle. But, although not showed here, our
method also allows, by concatenating the individual bundles priors, the construction of
full brain atlases, and thus enable guidance of whole brain tracking. Therefore, it could
be used for clinical studies where priors would be constructed from high resolution dMRI
data in order to guide tractography algorithm on poor, clinical, resolution data.

Finally, our method has proved to be able to increase the quality of the estimated
fibers, in term of spatial extant and number of valid connection when utilized on healthy
subjects. These promising results could already enable advances in an academic context
for the study of the healthy brain. In a more clinical context, if used on patients suffering
from pathologies that only slightly or moderately modify the white matter, such as psychi-
atric pathologies, this method could also bring improvements in fiber estimation, perhaps
through a more in-depth study of α and β parameters. Research along these lines should
be pursued in future work. However, when working on patient suffering from severe brain
alteration, such as strokes, this method could produce a tractogram solely guided by the
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prior in the affected region, thus removing the specific microstructural modification and
therefore may not be the most appropriate approach. In such scenarios, a solution might
be to import other types of information into the priors. Either in the way the data and
priors are weighted, using for example Apparent fiber density [Raffelt, Tournier, et al.,
2012] of the data to potentially detect these brain modifications and thus prevent the
fibers from being tracked solely on the priors, or directly in the estimation of the priors
using other imaging modalities, such as myelin-sensitive relaxometry in order to obtain
priors images describing these brain regions in greater detail.

4.6 Conclusion and prospects

In this chapter, we developed a method of anatomical prior creation and combination,
which is usable with any ODF-based tractography algorithm. The priors are computed on
fiber atlases and expresses in the form of TOD, in order to characterize the brain variability
and multiple fiber directions. Then, our prior is incorporated to guide the ODF-based
tractography algorithm. Based on our results on DISCO and HCP data, incorporating
our anatomical priors improve the fibers reconstruction, in terms of spatial extent and
valid streamlines, especially in crossing fiber regions. Furthermore, we have shown that
our method outperforms previous methods using anatomical priors in the tracking of the
CST and the AF. Moreover, our approach could also greatly enhance the tractography in
the context of clinical data, by incorporating priors estimated on high quality data, which
could help for the study of neurological diseases.
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Chapter 5

WHITE MATTER MICROSTRUCTURE

CHANGES ALONG THE FIBER IN

TREATMENT RESISTANT DEPRESSION

5.1 Introduction

Depression, also known as Major Depressive Disorder (MDD), is a prevalent condition
that significantly impairs one’s ability to engage in social and psychological aspects of life,
resulting in a notable reduction in overall well-being. In 2008, the World Health Organi-
zation (WHO) identified it as the third leading contributor to the global disease burden
and has predicted that it will ascend to the top position by 2030 [Bains and Abdijadid,
2020]. Despite its high prevalence, depression is often underdiagnosed, especially in low-
and middle-income countries. Studies report varying rates of underdiagnosis, ranging from
8.5% to over 50% [Faisal-Cury et al., 2022]. In terms of neurobiology, depression is marked
by a profound and enduring disruption of emotions and mood [Freedman et al., 2013].
This disruption is often accompanied by other disturbances such as cognitive impairment,
sleep problems, fatigue, and changes in appetite [Drevets, 2001]. Consequently, delving
into the neural underpinnings of depression and exploring its various manifestations will
enhance the ability to diagnose and treat individual patients suffering from depression
more effectively

Furthermore, MDD stands as a global primary contributor to disability, primarily
because of its propensity for recurrence and resistance to treatment [« Global, regional,
and national burden of 12 mental disorders in 204 countries and territories, 1990–2019:
a systematic analysis for the Global Burden of Disease Study 2019 », 2022; Herrman
et al., 2022]. The Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
trial illustrates this challenge, revealing that 30% of patients continued to experience
depression even after undergoing four rounds of antidepressant (ATD) trials [Rush et al.,
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2006]. Notably, the likelihood of achieving remission saw a significant decline following
the second ATD trial. Over the past two decades, there has been a growing focus on
conducting research into biomarkers that could potentially aid in identifying individuals
at risk of Treatment Resistant Depression (TRD) and provide guidance for therapeutic
approaches [Kennis et al., 2019; Wager and Woo, 2017].

Among the risk factors favoring TRD, it has been suggested that it may be associated
with a decrease in gray matter volume in various cortical brain regions and a compromised
structural integrity in white matter [Grehl et al., 2023]. Additionally, in comparison with
patients in remission, those with TRD exhibit notable changes in functional connectivity
within the affective network, the salience network, and the cognitive control network [Sun
et al., 2022]. These alterations in connectivity patterns may potentially contribute to the
neurobiological distinctions that set TRD apart from non-TRD cases. Finally, research
has indicated that it may be associated with particular microstructural white matter
abnormalities, such as those found in the sub-callosal cingulate cortex (SCC) [Serafini
et al., 2015], as well as in the prefrontal cortex (PFC).

While diffusion MRI and white matter tractography have enabled major advances in
the study of cerebral fibers, the diffusion models have provided new metrics for charac-
terizing white matter microstructure. The classical approaches, which rely on DTI [P. J.
Basser et al., 1994a], involve metrics like fractional anisotropy (FA), radial diffusivity
(RD), and mean diffusivity (MD) [P. J. Basser and Pierpaoli, 1996]. These metrics have
been widely employed to study white matter in various conditions, both normal and
pathological. However, their interpretation proved difficult due to their susceptibility to
being influenced by several confounding factors. These include parameters such as axon
diameter, axon spacing, membrane permeability, myelination and particularly complex
fiber structures [Beaulieu, 2002; Wheeler-Kingshott and Cercignani, 2009]. As explained
in Chapter 2, the advent of advanced multi-shell MRI sequence [D. S. Tuch et al., 2002]
has resulted in more sophisticated techniques for enhanced characterization of intricate
white matter regions that were previously challenging to describe. Such multi-fiber mod-
els, like the ODF [J.-D. Tournier et al., 2004], the CHARMED model [Assaf and Basser,
2005] or the NODDI model [H. Zhang et al., 2012b], have enabled the extraction of novel
parameters from both intra- and extracellular compartments. They have also allowed
the estimation of microstructure metrics, such as axon diameter distributions, offering
a more comprehensive understanding of complex white matter structures. Futhermore,
new frameworks like the fixel-based analysis [Raffelt, Tournier, et al., 2012], allow the
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mapping of fiber-specific measures using apparent fiber density (AFD), which reflects the
underlying fiber density.

In parallel, a novel framework called tractometry or tract profiling has emerged, en-
abling a more comprehensive evaluation of white matter microstructure. The tractometry
offers the advantage of increased sensitivity to the microstructural characteristics of fiber
pathways by mapping a range of diffusion metrics across white matter bundles [Colby
et al., 2012; Yeatman et al., 2012]. Rather than summarizing the entire pathway using
a single scalar value, tract profiling enables statistical analysis to highlight group differ-
ences at specific locations along the pathway [Cousineau et al., 2017; Jones et al., 2005].
It also provides the capacity for conducting principal component analysis to delve into
the complementary aspects of each metric, increasing their interpratibility [Chamberland
et al., 2019]. This approach has proved effective in a range of research applications, in-
cluding studies of normal brain development [Geeraert et al., 2017]. Additionally, it has
demonstrated its utility in the study of various pathologies, including Parkinson’s disease
[Cousineau et al., 2017], Multiple Sclerosis [Beaudoin et al., 2021] or depression [Metin
and Gökçay, 2021].

In this chapter, we propose to analyse group differences between a cohort of patients
affected by treatment-resistant depression and an other non resistant to treatment using a
tractometry approach. We employed metrics based on (ODF) to characterize the diffusion
microstructure along fiber bundles connecting regions affected by pathology in TRD.
To enhance our analysis, we conducted statistical assessments coupled with a Principal
Component Analysis. This allowed us to mitigate redundancy among sensitivities and
refine the discriminative power of our analysis. In addition, we also propose to study the
influence of the addition of anatomical priors on the potential group differences, using the
method described in the previous chapter.

5.2 Methods

5.2.1 The LONGIDEP cohort

Participants

A total of 179 individuals with depression were selected from standard care facilities at
the psychiatric university hospital of Rennes between November 2014 and February 2023
and included in an observational prospective cohort investigation. The study was approved
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Resistant group (n = 40) Non-Resistant group (n = 41)
Mean SD Range Mean SD Range

Sociodemographic variables
Age (years) 58,9 11,6 18 - 87 49,1 11,2 20 - 82
Gender (M/F) 10 / 30 14 / 27
Duration of illness (years) 20,7 16,9 0 - 60 14,9 9,4 0 - 37
Number of episodes 4,25 2,23 1 - 10 5,75 4,3 0 - 30
Duration of episode (weeks) 35,5 35,4 0 - 288 48,5 39,9 1 - 200
Number of suicidal attempts 3,8 2,5 1 - 10 2,7 1,64 1 - 10
Clinical variables
MADRS 26 4,4 15 - 38 27,48 4,35 17 - 43
STAI-YA 56,1 10,2 28 - 74 59,25 9,075 37 - 78
SHAPS 4,76 3 0 - 14 6,1 3,5 0 - 14
AES 41,9 7,1 29 - 60 45,2 8,6 24 - 69
YMRS 2,1 1,7 0 - 15 1,5 1,2 0 - 6

Table 5.1 – Demographic and clinical data for R and NR groups.

by an ethic committee and is registered in www.clinicaltrial.gov (NCT02286024), written
informed consents were obtained from all subjects. The study was proposed to patients
suffering from a Mood Depressive Episode (MDE) under DSM-5 criteria with or without
personal history of MDD.

Patients with depression participated in a comprehensive assessment, which encom-
passed clinical interviews, examinations, standard neuropsychological evaluations, and
MRI scans. Demographic information, comorbidities, medication details, and clinical pa-
rameters were documented for each participant. We evaluated the medication burden for
each patient by employing a well-established method, which considered both the number
of medication classes prescribed to patients and the respective dosages.

At 6 months follow-up 81 patients underwent a second structured clinical interview.
This resulting cohort was separated into 2 groups (resistant or non-resistant to treatment)
based on their Montgomery and Åsberg Depression Rating Scale (MADRS)[Montgomery
and Asberg, 1979] score evolution over the 6 months. A decrease of at least −50% of the
MADRS score was required for a patient to be considered as nonresistant. Ultimately,
the resistant group (R) was composed of 40 patients and 41 for the Non-Resistant group
(NR) (see Table 5.1 for the details).
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Clinical assessment

Patients were assessed by two structured clinical interviews by a trained psychiatrist,
one at M0 and another 6 months later. Anxious comorbidities were retrieved using the
Mini-International Neuropsychiatric Interview Lecrubier et al., 1997]. Depression sever-
ity was assessed using MADRS. Manic symptoms were retrieved using the Young Mania
Rating Scale (YMRS) [Young et al., 1978]. Additionally, the Widlöcher Depressive Retar-
dation Scale (WDRS) [Widlöcher, 1983] was used to estimate psycho- motor retardation.
State anxiety was measured using State Trait Anxiety Inventory A (STAI-YA) [Spielberger
et al., 1970]. Then, the anhedonia and apathy scores were assessed by Snaith Hamilton
Pleasure Scale (SHAPS) [Snaith et al., 1995] and Apathy Evaluation Scale (AES) [Marin
et al., 1991], respectively.

MRI acquisition

All patients were scanned on a 3 T whole body Siemens MR scanner (Magnetom
Verio, Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil. The 3D T1-
weighted image was acquired covering the whole brain (176 sagittal slices) with TR = 1.9
s, TE = 2.26 ms, flip angle = 9°, in-plane resolution = 2 mm × 2 mm, FOV = 256 mm
× 256 mm and thickness/gap = 1.0/0 mm.

DWI data were gathered on 60 slices using an interleaved slice acquisition, slice thick-
ness of 2mm, no gap, in-plane resolution = 1 mm × 1 mm and in a 256 mm × 256 mm
field of view. The acquisition matrix was 128 × 128, the reconstruction matrix was 128
× 128, using 30 directions and a b-value of 1000 s/mm2. TR/TE = 11, 000/99 ms, flip
angle was 90°, pixel bandwidth was 1698 Hz, and the imaging frequency was 128 MHz.

5.2.2 Image processing

Diffusion images preprocessing

Preprocessing of diffusion images was mainly performed using the open source medical
image processing toolbox Anima (https://github.com/Inria-Visages/Anima-Public/wiki).
Correction for eddy current-induced image distortion in diffusion images was carried out
using a block-matching distortion correction method, which ensured a symmetrical trans-
formation in the opposite direction [Hedouin et al., 2017]. Next, a rigid realignment pro-
cess was perfomed to correct for subject motion and establish voxel-to-voxel correspon-
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dence across gradients. Following that, denoising was carried out using blockwise non-local
means filtering [Coupé et al., (2008)]. Skull extraction was then achieved through an at-
las registration approach. Specifically, the structural image for each patient underwent a
transformation to align with the atlas image, employing both linear and non-linear block-
matching algorithms [Commowick et al., 2012a; Ourselin et al., 2000]. Afterward, the
intracranial brain mask of the atlas was transformed in the opposite direction, achieved
by applying the inverse of two calculated transformation matrices, and was subsequently
combined with the patient’s original structural brain image. The ODF were ultimately
estimated using the constrained spherical deconvolution method [Tournier, 2014].

Tractography

Two sets of tractograms were then generated, both using the iFOD2 algorithm with a
step size of 0.2 voxels and a maximum angle between two consecutive segments of 20°. For
each patients, 1000000 streamlines were tracked using a whole-brain seeding approach.
The first set of tractogram was processed directly from the ODF extracted from the
patients DW images. For the second one, anatomical priors, extracted from an high-quality
fibers atlas, were combined to the ODF data before performing the tractography (see the
previous chapter for more details about the method). These whole-brain tractograms were
then filtered using the terminating points ROI masks, segmented thanks to the TractSeg
algorithm [Wasserthal, 2018], to retrieve the fiber bundles of interest. Based on previous
studies focusing on apathy and LLD [Kim, 2021; Wen, 2014; Le Heron, 2018], only 29
bundles of interest were selected: The Corpus callosum (Rostrum (CC 1), Genu (CC
2), Posterior midbody (CC 5), Isthmus (CC 6) and Splenium (CC 7)), the Cingulum
(CG), the Superior longitudinal fascicle (in 3 parts: SLF I, SLF II, SLF III), the Inferior
longitudinal fascicle (ILF), the Corticospinal tract (CST), the Uncinate fascicle (UF),
the Fronto-pontine tract (FPT), the Anterior Thalamic Radiation (ATR), the Superior
Thalamic Radiation (STR), the Thalamo-premotor (T PREM) and the Striato-premotor
(ST PREM).

Diffusion microstructure metrics

Next, several diffusion microstructure metrics were extracted from the ODF:
The Generalized Fractional Anisotropy (GFA) witch is a extension of the FA
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and is defined by:

GFA =

√√√√n
∑n
i=1(Ψ(ui) − ⟨Ψ⟩)2

(n− 1) ∑n
i=1 Ψ(ui)2 (5.1)

where Ψ is the ODF and ⟨Ψ⟩ = 1
n

∑n
i=1 Ψ(ui) is the mean of the ODF. GFA provides the

same information as the FA but offering the advantage of being able to take into account
more intricate diffusion profiles and can provides information about the "sharpness" of the
ODF lobes.

The Apparent Fibre Density (AFD) is an estimation of the fiber density for a
given orientation. It is based on the assumption the total radial diffusion weighted (DW)
signal is approximately proportional to the density of the fibres (i.e. the space occupied
by the fibers). And since the ODF amplitude is also proportional to the radial DW signal
for the given direction, it offers a proportional assessment of the volume within the axon
that is filled by fibers oriented in the specified direction [Raffelt, Tournier, et al., 2012].
In this work, we computed the average of the AFD within each voxel as the sum of each
AFD for each ODF lobes directions, followed by a normalization.

The fibers dispersion (DISP) within the voxel is the ratio between the ODF lobe
integral and maximal peak amplitude.

The Number of fiber orientation (NuFo) refers to the number of distinct fiber
orientations within each voxel. It provides information about the complexity of white
matter organization. This mesaure is estimated by counting the number of local maxima
of the ODF profile in each voxel and then filtering them to remove the local maxima due
to noise and isotropic tissue [Dell’Acqua et al., 2013].

The Peak length (PL) is similar to the AFD but only the peak length which is the
most similar to the direction of the bundle at that voxel is analysed. This metric is thus
bundle-specific.

Note that for the AFD, DISP and PL metrics, ODFs need to be normalized across all
subjects in order to be able to compare them with each other.

5.2.3 Tractometry analysis

In order to be able to find significant group differences, the projection of the 5 mi-
crostructure metrics on the tract profiling was performed for each bundle and each subjects
using tractometry methods [Cousineau et al., 2017; Chandio et al., 2020]. We then carried
out a comparative statistical analysis on these tract profiles.
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Extraction of center line

Tractometry method assume that all streamlines and metric map are registered in a
common space. It proceed, for each fibers bundles of each subject independently, as follow
[Chandio et al., 2020]: First, the outlier are discarded based on their low density and
and their shape distance from other streamlines within the fascicle. All streamlines are
then resampled into an equal number of segments and inverted so they all share the same
begin and end points. Next the bundles are clustered using the QuickBundles algorithm
[Garyfallidis et al., 2012], resulting a centroid line, representing the overall shape of the
bundle, with 30 points per cluster. Following this, the bundles are divided into the same
numbers of segment as in the centroid line by computing the Euclidean distances between
each point along every streamline within the bundle and all points of the clustered bundles.
Then, each segment is assigned to the closest segment centroid. Finally, the five diffusion
metrics are mapped onto the central line, creating a tract profile that illustrates how these
metrics change along the fiber pathways. This profile enables the comparison of multiple
groups, aiming to uncover any potential noteworthy variations.

Statistics along the fibers

All the analysis described in this section were performed once for two tractograms
estimated by the iFOD2 algorithm with and without the addition of prior.

First, we ran an analysis correlation analysis among the five microstructure metrics
with the objective of removing the correlation coefficients exceeding 0.9 to ensure the
reliability of the subsequent analysis. Then we conducted a point-wise two-samples Stu-
dent’s t-test between the tract profiles of the resistant and non-resistant groups for each
29 bundles and each 5 metrics (GFA, AFD, NuFo, Disp, PL). The results were cor-
rected for multiple comparison with a nonparametric permutation method [Nichols and
Holmes, 2002]. In this approach, the dataset underwent 10,000 permutations by random-
izing subject labels to compute metric differences between shuffled groups. This process
constructed a distribution of differences under the null hypothesis, yielding insights into
the family-wise error rate (FWE)-corrected cluster size. Clusters equal to or larger than
this threshold exceeded the multiple comparison threshold, eliminating the need for addi-
tional p-value adjustments. Next, In order to mitigate potential redundancy while simul-
taneously delving into the distinct complementary aspects of each measure, a principal
component analysis (PCA) was carried out individually for each bundle profile. PCA di-
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minishes data dimensionality by extracting principal components that capture significant
characteristics inherent in the data [Jolliffe and Cadima, 2016]. Without the addition of
prior, only were kept the first principal component (PC), which explain 90% of the vari-
ance present in the data set, highlighting their importance in capturing the underlying
information in the data. With the prior, we have kept the first two PC, which explain 96%
of the total variance. We then conducted a second two-samples Student’s t-test between
the PCs of the two groups for each bundles. For the both Student tests, the influence of
the age, the gender and the medication load of the patients were removed by performing
a linear regression before the analysis.

5.3 Results

5.3.1 Tracts profiling

Figure 5.1 – Average correlation between the 5 metrics

As described in the previous section, for both tractograms obtained with and without
’Prior’ (i.e. with the addition of anatomical priors), the 5 metrics were projected on the
central line of each bundle. The Figure 5.1 displays the correlation analysis result averaged
over all the bundles and the Figure 5.2 presents an example of a tract profile, averaged
over all the subjects, on the Splenium (CC 7). First of all, we can note a decrease in
the correlation between the metrics with the addition of priors. The correlation matrix
highlights strong correlation between the AFD and the GFA (r = 0, 67) or between Nufo
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and DISP (r = 0, 89) in the ’No Priors’ measures versus, respectively, r = 0, 4 and r = 0, 78
for the ’Priors’ group. However, the correlation between the GFA and the NuFo increase
(r = 0, 34 versus r = 0, 5). These results are also confirmed by the similarity between
the various microstructural ’No Priors’ profiles (in red on the Figure 5.2). In the same
way as with correlation matrices, these similarities decrease with the addition of priors.
As they are less correlated, the ’Priors’ profiles (in blue) can therefore provide us with
information on how these microstructural metrics evolve along the fibers. For example, as
they approach the two ends of the Splenium, both NuFo and DISP values increase and
the GFA value decrease, indicating a rise in the number of fiber crossings in these areas.
This is meaningful because it reflects the role of the splenium in establishing connections
between various segments of the two occipital lobes.

5.3.2 R and NR groups differences

In order to study the potential differences between the R and NR groups, we first
compared the microstructural metrics of the 2 groups along the 29 bundles. The Figure
5.3 shows one of these comparison for the Splenium. The results indicated, in average,
a very slight increase of the AFD No Priors in the R for the Splenium, an increase of
the GFA Priors, the AFD Priors and the NuFo Priors for the Thalamo-premotor and a
decrease of the Peak Length no Priors and Priors in the the Superior longitudinal fascicle
III. However, the Student tests showed that none of these results were significant.

5.3.3 Principal component analysis

The Figure 5.4 displays the contribution of each metrics to the PC of the two PC
analysis (i.e. ’Priors’ and ’No Priors’). For the ’No Priors’, the first PC explain 91% of
the variance in the diffusion measures. It is composed of metrics mainly sensitive to fiber
crossings with DISP, NuFo, GFA contributing 76%, 22% and 2% respectively. For the
’Prior’, the first PC represents 76% of the variance in the data and is composed of AFD
(67%), DISP (19%) and NuFO (14%). The second PC explain 20% of the variance with
contribution from DISP (51%), AFD (27%) and NuFO (21%). The two PCs can therefore
be roughly considered as a measure of fiber density for PC1 and complexity for PC2.

The PCA analysis highlighted significant differences in 6 different fiber bundles, the
CC_7, the SLF III right, the T_PREM left, T_PREM right, the ST_PREM left and
the ST_PREM right (see Figure 5.5 and 5.6).
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Figure 5.2 – On the top, average of the 5 metrics profiles, projected on the Splenium (CC 7). At the
bottom, overview of the segmented tractograms of the Splenium, estimated with and whithout anatomical
priors.
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Figure 5.3 – Comparison between the NR (in orange) and R (in blue) groups on the Splenium (CC 7)
After removing the influence of age, gender and medication load. For each group, the line represents the
average and standard deviation of the microstructural metric.

5.4 Discussion

This is the first study analyzing microstructural metrics along the fibers in TRD
estimated by a ODF-based tractography algorithms exploring white matter bundle priors.
One of the objectives of this study was to assess how ODF-based microstructural metrics
evolve along fibers that are directly estimated from diffusion data in comparison to fibers
estimated using anatomical priors, in the context of low-quality DWI data. First, the visual
overview of the two splenium bundles presented in the bottom of the Figure 5.2 shows that
the addition of priors tends to remove the spurious fibers present in the occipital forceps.
Furthermore, it removes the fibers discontinuity occurring at the junction between the
forceps and the occipital lobes. The metric profiles displayed at the top of Figure 5.2 also
illustrate the enhanced fiber estimation achieved with the incorporation of anatomical
priors. When ODFs are derived from low-quality data, they tend to exhibit a roughly
spherical shape with nearly identical amplitudes in all directions. This presents a challenge
for the tracking algorithm as it struggles to determine preferred directions relative to
others in these regions. As displayed in Figure 5.2, this issue is evident in the Disp and
NuFo profiles for the estimation with no priors, which exhibit a high number of directions
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Figure 5.4 – Overview of the composition of the principal components.
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Figure 5.5 – The first row shows the comparison of the PC1 between the NR (in orange) and R
(in blue) groups for the No Priors tractograms. For each group, the line represents the average and
standard deviation of the PC1, and the gray bar shows the −log10(p-values). A difference is considered
as significant (in red dots) when the p-value is greater than the alpha value (5%) along a minimum cluster
size which is estimated individually with the permutation test for each fiber. The second row displays, in
red, the regions where significant difference have been detected

Figure 5.6 – The first row shows the comparison of the PC1 between the NR (in orange) and R (in blue)
groups for the Priors tractograms. For each group, the line represents the average and standard deviation
of the PC1, and the gray bar shows the −log10(p-values). A difference is considered as significant (in
red dots) when the p-value is greater than the alpha value (5%) along a minimum cluster size which
is estimated individually with the permutation test for each fiber. The second row displays, in red, the
regions where significant difference have been detected
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throughout the fiber, as well as in the GFA profile for no prior, which indicates low GFA,
signifying isotropic diffusion across all segments of the bundle. Conversely, following the
combination of both data and priors, the distinct lobes of the priors’ ODF amplify the
amplitudes of the enhanced ODF (i.e. the result of the combination of both data and
priors), particularly in directions corresponding to the fibers present in the priors. From
the perspective of the tracking algorithm, this leads to a reduction in the number of
potential directions, as specific directions become more prominent than others. This effect
is apparent in the Prior Disp and NuFo profiles (Figure 5.2), where there is a reduced
number of directions in the central part of the Splenium, with an increase in the number
of directions as the analysis approaches the occipital lobes, as expected. The Priors GFA
profile mirrors these trends, indicating lower diffusion anisotropy in the extremity of the
bundle.

The Peak length profiles exhibit a similar pattern. Just as with the number of orien-
tations, the microstructural profile with no priors reveals consistently low peak lengths
along the entire length of the bundles. In the Priors scenario, owing to the normalization
of the Enhanced ODF, peak lengths are greater in the anisotropic regions due to the re-
duced diversity of orientations. As we move towards the extremities, where fibers diverge
to connect different regions of the occipital lobes, the number of orientations increases,
leading to a decrease in peak length.

Finally, in this study AFD refers to the average density of fibers for each fiber ori-
entation within the voxel, as described in more detail in [Raffelt, Tournier, et al., 2012].
The continuously high AFD values in the No Priors profile can be attributed to the pres-
ence of numerous spurious fibers within this bundle. Every false fiber contributes to the
total AFD, even in regions with isotropic diffusion. Conversely, the enhancement in fiber
estimation with the incorporation of priors leads to a reduction in the number of false
fibers. As a result, the AFD averaging is no longer skewed by false contributions, allowing
for a more direct interpretation of its evolution along the bundle. In [Raffelt, Tournier,
et al., 2012], the authors suggest that AFD can be seen as a measure of the intra-axonal
volume fraction of axons aligned along the corresponding orientation. In our study, AFD
therefore represents the average fraction of intra-axonal axon volume in the voxel. Within
the forceps, diffusion is restricted in only a few directions, resulting in a low AFD. As we
move towards the occipital lobes, the number of distinct directional restrictions increases,
leading to a higher AFD. Ultimately, as the fibers diverge to connect different regions of
the occipital lobes, fiber density decreases once again.
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Figure 5.1 and the overall profile shape illustrated in Figure 5.2 provide valuable in-
sights into the significant improvements brought about by the integration of anatomical
priors. This enhancement in fiber direction estimation, achieved through the addition of
anatomical priors, leads to a notable reduction in the correlation among different mi-
crostructural metrics. This decorrelation process enhances the informativeness of these
metrics and augments their sensitivity, thereby enabling us to discern and interpret more
nuanced aspects of their evolution along the fiber bundles. Consequently, the incorpo-
ration of anatomical priors not only refines our understanding of these metrics but also
amplifies their utility in capturing and elucidating intricate patterns of change along the
neural pathways.

The presence of observed heterogeneity inspired us to undertake a Principal Compo-
nent Analysis (PCA) with the goal of consolidating the interconnected metrics into pri-
mary modes of variation. PCA is often challenged by the complexity of interpreting the
resulting components, but in our study, the principal components demonstrated loadings
on variables that shared similarities in their responsiveness to various tissue properties.
This common sensitivity among variables facilitated a more coherent and insightful inter-
pretation of the resulting components. As displayed in 5.4 the first principal component
alone can explain 91% of the data in the absence of prior, and is primarily composed of
measures that are highly sensitive to dispersion. However, the inclusion of priors allows
for the differentiation of two groups of metrics. The metrics that contribute the most to
PC1 are AFD, whereas for PC2, Disp is the dominant contributor, followed by AFD. Con-
sequently, PC1 can be interpreted as a component primarily sensitive to the restriction of
diffusion signal, while PC2 is a component primarily sensitive to the dispersion of fibers.
The incorporation of prior seems to estimate less correlated microstructural metrics.

Another objective of this study was to conduct a tractometry analysis to uncover
potential differences between patients with TRD and those without treatment resistance.
Previous studies investigate tract profiling in various brain diseases [Yeatman et al., 2012;
Cousineau et al., 2017; Sarica et al., 2017]. While previous research has explored DTI-
derived biomarkers related to major depressive disorder or TRD [Serafini et al., 2015;
Coloigner et al., 2019; Sun et al., 2022; Grehl et al., 2023; Meshkat et al., 2022] this is
the first tractometry study in TRD.

In this study, we opted for tractometry and tract profiling because, within this context,
they offer several advantages over the standard voxel-based analysis [Yeatman et al.,
2012]. Firstly, diffusion measure values exhibit significant variation within a tract, but
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the tract profiles remain consistent across subjects. Consequently, tract profiles contain
a wealth of information beyond what mean diffusion measures can provide. Secondly,
variations in diffusion measures may occur at particular locations within the bundle, rather
than uniformly along the entire tract. Consequently, the use of tract profiles enables the
detection of these specific locations. Lastly, tract profiles enable the comparison of white
matter properties between groups, facilitating the identification of distinctive differences
related to the clinical conditions of these groups.

Both the PCA analyses of the No Priors and Priors bundles revealed a significant
reduction in measures of restriction and dispersion within the splenium of the CC among
patients with TRD in comparison to those without TRD. This result is in accordance
with other studies which reported a FA decrease in late-life depression [Yang et al., 2007],
as well as in the Splenium of adult patients with Major Depressive Disorder (MDD) and
melancholic features [Korgaonkar et al., 2011]. The corpus callosum plays a crucial role
in facilitating communication between the two cerebral hemispheres, including the in-
tegration of high-level cognitive functions, language, and sensory perception. Morover,
the white matter located near the corpus callosum encompasses the callosal fibers, which
establish connections between the striatum, thalamus, and inter-hemispheric regions. Re-
duced anisotropy in these tracts has been linked to a diminished response to antidepressant
treatment [Alexopoulos et al., 2008.These findings suggest a potential association between
TRD and the disruption of white matter integrity in this specific brain region.

Additionally, our study revealed significant differences within the white matter of the
Striato-premotor region. Previous studies have already observed differences between TRD
and non-TRD individuals in striatal circuits through the use of functional MRI techniques
[Sun et al., 2022]. Pleasure deficits, one of the key symptoms in TRD [de Kwaasteniet et al.,
2014], reflect disruptions in reward circuits, and the striatum is an important structure in
the reward network that regulates reward, motivation, and affective functions in the body
[Cox and Witten, 2019]. This convergence of findings in both structural and functional
domains emphasizes the potential significance of the Striatum in the context of TRD,
suggesting that it may play a key role in the neurobiological mechanisms underlying this
condition.

Finally, our study suffers from a few limitations that should be addressed in future
work. First, we only utilized ODF-derived measures to characterize underlying tissue
microstructure. Although our findings suggest the suitability of these measures for high-
lighting certain biomarkers in diffusion data, the omission of measures derived from DTI
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may potentially limit sensitivity [Chamberland et al., 2019]. Additionally, incorporating
other macrostructural measures such as bundle volume or mean length [Lebel et al., 2019;
Girard et al., 2014; Geeraert et al., 2017] could offer complementary features that enhance
the description of potential biomarkers. The inclusion of rotationally invariant spherical
harmonic features [Mirzaalian et al., 2015; Caruyer and Verma, 2015; Zucchelli et al.,
2018] is another avenue worth exploring, as it directly represents diffusion signals without
relying on various microstructural models.

Secondly, while our results indicate that the addition of priors enhances metric sen-
sitivity and improves interpretability, it’s essential to acknowledge that these priors were
estimated from a population of healthy subjects (as discussed in Chapter 2). This ap-
proach may inadvertently diminish the emphasis on disease-related differences.

Lastly, using a single centerline for certain fibers with diverse orientations may not
be entirely accurate. Recent studies have proposed alternative approaches, such as con-
sidering the entire segmentation of fiber bundles as the shape, rather than relying solely
on their centerlines, which may offer improved accuracy and efficiency [Cury et al., 2022;
Glozman et al., 2018].

5.5 Conclusions

In conclusion, this study compared microstructural metrics of white matter fibers
estimated directly from diffusion data with those estimated using anatomical priors. The
addition of priors improved fiber estimation by removing spurious fibers and enhancing
the fibers orientation, resulting in more focused profiles and peak lengths. Apparent Fiber
Density (AFD) provided a clearer insight into white matter density when priors were used.

Furthermore, incorporating anatomical priors improved the de-correlation of microstruc-
tural metrics, enhancing their sensitivity and interpretability. Principal Component Anal-
ysis (PCA) revealed two dominant components: PC1, primarily related to diffusion signal
restriction, and PC2, mainly influenced by fiber dispersion.

Our study also investigated differences between patients with and without Treatment-
Resistant Depression (TRD) using tractometry. We observed decreased measures of re-
striction and dispersion in the Splenium of the corpus callosum among TRD patients,
consistent with previous findings in depression. Additionally, differences in white matter
within the Striato-premotor region were noted, aligning with prior functional MRI studies
indicating variations in striatal circuits among TRD individuals.
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CONCLUSION

5.6 Contributions

White matter tractography presents substantial potential as a method for investigat-
ing the pathways of nerve fibers within the brain. Its non-invasive ability to depict the
microstructural organization of axons makes it a valuable resource for both academic re-
search and clinical diagnosis. Nevertheless, despite its high promise, tractography meth-
ods face several limitations. In fact, the majority of tractograms tend to include more
erroneous fiber pathways than accurate ones. As a result, this manuscript has introduced
contributions aimed at improving the accuracy of tractogram estimation. All the proposed
methods have been incorporated into our team code Anima. This open-source software is
accessible online, along with its associated documentation 1.

The multitude of existing tractography methods introduces significant variability in
the reconstruction of fiber bundles. This variability poses challenges for clinicians in ac-
curately interpreting results and complicates the assessment and comparison of tractog-
raphy algorithms. To tackle this issue, we have introduced a comprehensive analysis of
frequently employed metrics. Our study, conducted on synthetic data and real-world sce-
narios, demonstrated the usefulness of employing multiple measures simultaneously, as
they exhibit non-correlated attributes and therefore offer distinct types of information.
Additionally, we have proposed a novel evaluation measure for tractograms, based on op-
timal transport, which enables the characterization of both topographical similarities and
the degree of overlap between two tractograms.

Another well-known limitation of tractography algorithms concerns their poor anatom-
ical accuracy. Sources of error can arise at any stage of the tracking process, including
image acquisition, voxel-wise local reconstruction, and tracking streamlines from voxel to
voxel. Another source of error arises from the inference of local fiber orientation solely from
the diffusion displacement profile, often resulting in anatomically unrealistic outcomes in
complex fiber configurations. To expand the foundation of tractography algorithms be-
yond relying solely on water diffusion displacement, we have introduced a method for

1. https://github.com/Inria-Visages/Anima-Public
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generating and integrating anatomical priors. This approach serves to provide guidance
for tracking and can be seamlessly employed alongside any ODF-based tractography algo-
rithm. These priors are computed based on fiber atlases and are expressed in the form of
TOD, enabling the characterization of brain variability and the representation of multi-
ple fiber directions. Subsequently, the prior information is integrated into the ODF-based
tractography algorithm through a Riemannian framework, aiding in the guidance of the
tracking process. Our study, conducted using both synthetic and high-quality real-world
data, demonstrates that this approach can enhance fiber reconstruction, particularly in
terms of spatial coverage and the generation of valid streamlines, especially in regions
with crossing fibers.

While promising results were achieved with high-quality data, the primary purpose of
integrating anatomical priors into tractography algorithms was to improve fiber estima-
tion, particularly in low-quality data scenarios. Consequently, we applied the previously
described method to clinical data obtained from patients with treatment-resistant depres-
sion (TRD). Depression, being the third leading global cause of illness, often recurs in
40% of cases, primarily due to treatment resistance. Identifying biomarkers associated
with this condition is crucial to assist clinicians in treatment selection. In this context, we
conducted a comparative analysis to distinguish patients with TRD from those without
resistance using tractometry methods. By incorporating anatomical priors to enhance the
quality of fiber estimation and employing ODF-based metrics to characterize diffusion
microstructure along fiber bundles, this analysis revealed that the inclusion of anatomical
priors during the tracking process heightened the sensitivity and interpretability of diffu-
sion metrics. Furthermore, the combined use of priors and Principal Component Analysis
disclosed alterations in white matter consistent with prior findings in depression.

5.7 Perspectives

While all the contributions presented in this manuscript were conducted using ODF
models, it’s worth noting that these models, despite their benefits for tractography, par-
ticularly in the context of local probabilistic methods, have limitations. They don’t pro-
vide precise quantitative measurements related to diffusion magnitude and anisotropy,
which indirectly reflect microstructural organization. Consequently, they lack anatomi-
cal interpretability, unlike tensor models, for example. However, alternatives like multi-
compartment models (MCM) exist, with the primary aim of modeling the brain’s mi-

104



crostructure through several compartments [Pasternak et al., 2009; H. Zhang et al.,
2012a]. Each compartment represents specific diffusion properties within different brain
structures, such as cerebrospinal fluid (CSF) and axons, enabling the representation of
complex fiber structures and detailed descriptions of brain microstructure. Therefore, a
natural extension of the proposed method could involve developing MCM-based priors,
which not only offer directional information but also incorporate microstructural details

Another area for improvement could be to study the PSF used to construct the TOD
images. Our approach uses 2D Gaussians expressed in a spherical harmonic basis. Al-
though this approach allows us to estimate TODs that are naturally positive at any SH
order, it could degrade the results obtained by producing lobes that are too wide to be
effectively used by tractography algorithms. An alternative would be to use, as in the
BST method [Rheault et al., 2019], apodized delta functions which produce much sharper
lobes and are therefore able to provide much more precise directional information.

Moreover, our approach has primarily focused on diffusion MRI. However, it’s worth
considering the exploration of other imaging modalities for creating priors. For example,
the utilization of myelin-sensitive T1 mapping, as documented in prior research [Schurr
et al., 2018], has shown promise in optimizing tractography. Thus, the integration of
multimodal MRI microstructural information presents an intriguing avenue to mitigate
the generation of spurious fibers and enhance the accuracy of tractography. In this context,
the exploration of estimating priors from the rich information provided by this multimodal
MRI microstructural data becomes a noteworthy consideration.

The previous point highlights new challenges that would necessitate a novel approach
for resolution. Integrating multi-modal imaging information would entail the creation of
multiple atlases to extract the required data for constructing a multi-modal prior. Con-
sequently, there would be a need to calculate distances between these atlases to facilitate
their alignment, even when they represent different modalities of information. This could
serve as a catalyst for future research aimed at implementing multi-atlas techniques [Igle-
sias and Sabuncu, 2014] within the prior creation process. In addition to the ability to
amalgamate atlases from various imaging modalities, this approach, by selecting and merg-
ing the most suitable atlases from a database for each individual patient, would enhance
the precision of prior estimations, thus allowing for a more accurate capture of anatomical
variations.

Finally, from a clinical perspective, our method has proven to be a valuable tool in
characterizing pathological biomarkers in patients suffering from treatment-resistant de-
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pression. These encouraging findings not only underscore the potential of our approach
but also serve as a catalyst for further exploration in this domain. Future investigations
should delve into whether the inclusion of anatomical priors can bolster fiber estimation,
particularly in situations where the white matter has sustained severe damage. If such
enhancements prove inadequate, an exploration of alternative information sources or dif-
ferent diffusion measures to compute these weights should be on the research agenda.
This would provide a more comprehensive understanding of how anatomical priors can
be optimized for diverse clinical scenarios.
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Titre : Tractographie informée par l’anatomie et la microstructure pour l’évaluation de la connec-
tivité dans les pathologies neurologiques

Mot clés : IRM de diffusion, A priori anatomiques, Tractographie, Tractometrie

Résumé : La tractographie de la matière
blanche cérébrale est une méthode très pro-
metteuse pour l’évaluation des trajectoires
des fibres nerveuses, à partir d’IRM de diffu-
sion (IRMd). En utilisant des méthodes d’ana-
lyse novatrices, elle permet d’estimer une ve-
ritable cartographie anatomique et fonction-
nelle. L’avancement des techniques IRM a
grandement amélioré notre capacité à quan-
tifier la structure des réseaux cérébraux, ac-
célérant ainsi la compréhension des altéra-
tions liées aux maladies. Malgré cela, de telles
approches de tractographie restent encore li-
mitées pour diverses raisons. En effet, des
eudes ont indiqué que les algorithmes de trac-
tographie les plus avancés ont tendance à ge-
nerer un grand nombre de faisceaux de fibres,
ce qui entraîne par conséquent un taux élevé
de faux positifs. Dans cette thèse, notre objec-
tif a été de proposer des méthodes innovantes
pour améliorer l’estimation des fibres.

Nous nous sommes, dans un premier
temps, intéressés au développement d’une
méthode visant à guider les algorithmes de
tractographie en utilisant des a priori anato-
miques, basés sur des « Orientation Distri-
bution functions » (ODF), avec pour objectif
d’améliorer l’estimation des fibres dans des
régions complexes. Cette méthode utilise des
a priori anatomiques, exprimés sous la forme
de "Track Orientation Distribution (TOD)" cal-
culés à partir d’atlas de fibres segmentées.
Cette approche permet ainsi de mieux ca-
ractériser la variabilité de la microstructure

entre les individus. Durant l’étape de trac-
tographie, les données IRMd et les a priori
TOD sont combinés à l’aide de géométrie Rie-
mannienne améliorant l’estimation de la fibre
dans des régions complexes. Des études, à la
fois sur données IRMd simulées et sur don-
nées réelles hautes qualités, ont montré que
l’ajout d’ a priori anatomique augmente de fa-
çon significative la qualité de l’estimation des
faisceaux dans les régions de croisement de
fibres.

Nous avons ensuite testé nos approches
sur une cohorte clinique de patients atteints
de dépression résistante afin d’identifier des
biomarqueurs de cette pathologie. Pour cela,
nous avons réalisé des analyses multivariées
des métriques de microstructure extraites des
modèles ODF le long des fibres. Nous avons
identifié des modifications sur plusieurs fais-
ceaux de fibres associées à la résistance au
traitement. Cette étude nous a permis de mon-
ter que l’ajout d’a priori anatomiques peut ser-
vir à guider les algorithmes de tractographie
de données cliniques de basses résolutions.

En parallèle à ce travail, nous avons dé-
veloppé une nouvelle métrique de comparai-
son de tractogrammes, basée sur la théorie
de transport optimale et sur la distance de
Wasserstein. Notre étude montre que l’utili-
sation de cette métrique donne des informa-
tions complémentaires à celles couramment
utilisées (score de Dice, corrélation). En effet,
cette mesure permet de mesurer une distance
entre chaque fibre du tractogramme.
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Abstract: White matter tractography is a
highly promising method for assessing the tra-
jectories of nerve fibers in the brain, based
on diffusion MRI (dMRI). Using innovative
analysis methods, it enables us to estimate
a true anatomical and functional map. Ad-
vances in MRI techniques have greatly im-
proved our ability to quantify the structure of
brain networks, accelerating our understand-
ing of disease-related alterations. Despite this,
such tractography approaches remain limited
for a variety of reasons. Indeed, studies have
shown that the most advanced tractography
algorithms tend to generate a large number of
fiber bundles, resulting in a high false-positive
rate. In this thesis, our aim was to propose in-
novative methods for improving fiber estima-
tion.

We first developed a method to guide trac-
tography algorithms using priors, based on
Orientation Distribution functions (ODF), with
the aim of improving fiber estimation in com-
plex brain regions. This method uses anatom-
ical priors, expressed as Track Orientation Dis-
tribution (TOD) from segmented fiber atlases.
This approach enables us to better character-
ize microstructure variability between individu-
als. During the tracking stage, dMRI data and

TOD priors are combined using Riemannian
geometry to improve fiber estimation in com-
plex regions. Studies, both on simulated dMRI
data and on high-quality real data, have shown
that the addition of anatomical a priori signifi-
cantly increases the quality of bundles estima-
tion in fiber crossing regions.

We then tested our approaches on a clin-
ical cohort of patients with resistant depres-
sion to identify biomarkers of this pathology. To
this end, we performed multivariate analyses
of microstructure metrics extracted from ODF
models along fibers. We identified changes
in several fiber bundles associated with resis-
tance to treatment. This study enabled us to
show that the addition of anatomical priors can
be used to guide algorithms for tractography of
low-resolution clinical data.

In parallel with this work, we have de-
veloped a new metric for comparing trac-
tograms, based on optimal transport theory
and Wasserstein distance. Our study shows
that the use of this metric provides comple-
mentary information to those commonly used
(Dice score, correlation). In fact, this metric
measures the distance between each fiber in
the tractogram.
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