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Titre: Réseaux de neurones sensibles à la structure pour l’analyse de données multimodales depopulation : une application à la santé mentale.
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Résumé: Il est actuellement reconnu que lefait de s’appuyer uniquement sur des stratégiesde classification conventionnelles à partir d’uneseule source de données n’est pas efficacepour comprendre, diagnostiquer ou pronosti-quer les syndromes psychiatriques. Les ob-jectifs de classification reposent simplementsur les étiquettes des cliniciens qui, à ellesseules, n’expriment pas une très grande vari-abilité. En 2009, le Research Domain Crite-ria (RDoC) a recommandé une approche pluscomplète pour étudier les troubles psychia-triques en incorporant divers types de donnéesqui couvrent différents niveaux d’organisationde la vie (par exemple, l’imagerie, la géné-tique, les symptômes). La proposition suggèrequ’une description complète d’une pathologienécessite la prise en compte de dimensionsmultiples, qui peuvent être partagées entredifférents syndromes psychiatriques et mêmecontribuer à la variabilité non pathologique.Des cadres efficaces pour l’apprentissage nonsupervisé, spécifiquement conçus pour desapproches multivariées et multimodales, de-vraient offrir des méthodologies pour traiteret intégrer le type d’ensembles de donnéespréconisé par le RDoC. L’apprentissage pro-fond nous permet d’apprendre dans des en-vironnements multimodaux avec une struc-ture spécifique à la modalité et une struc-ture de corrélation intermodale. Pour mod-éliser la structure intra-modalité, nous utilisonsdes réseaux de neurones convolutionels spé-cifiques, qui permettent d’apprendre à partirde mesures cérébrales corticales réparties surun maillage sphérique et ainsi de révéler desbiomarqueurs originaux. Dans ce contexte,nous proposons 5 augmentations de données

et les appliquons dans l’un des nombreux nou-veaux schémas d’apprentissage auto-superviséreposant principalement sur l’augmentation dedonnées. Ce travail permet à l’apprentissagepar représentation profonde d’initialiser cor-rectement le réseau sur d’énormes cohortesde patients sains, puis de le transférer pourétudier la pathologie clinique d’intérêt dansdes cohortes plus petites. D’autre part, nousavons identifié les auto-encodeurs variation-nels multi-vues comme de bons candidatspour intégrer des modalités multiples. Enoutre, nous remettons en question l’hypothèsecourante selon laquelle les réseaux neuronauxne sont pas interprétables. Nous utilisonsune procédure d’avatar numérique commemodule d’interprétabilité capable de rendrecompte des relations inter-vues apprises ausein d’un auto-encodeur multi-vues. En par-ticulier, nous intégrons cette procédure dansune nouvelle méthode qui combine plusieursde ces modèles et interprétations, encapsuléedans une procédure de sélection par stabilitépour identifier des associations significatives etreproductibles entre les modalités d’imageriecérébrale et le comportement. Nous ap-pliquons cette méthode pour mettre en évi-dence des associations cerveau-comportementspécifiques présentes dans la cohorte trans-diagnostique Healthy Brain Network (HBN).Les associations cerveau-comportement iden-tifiées établissent des connexions entre lescaractéristiques corticales régionales issues del’imagerie par résonance magnétique struc-turelle et les dossiers cliniques électroniquesévaluant les symptômes psychiatriques. Nousmontrons que cette méthode est capable detrouver des associations pertinentes et stables.



Title: Structure-aware neural networks in the study of multi-modal population cohorts : an ap-plication to mental health.
Keywords: Neural networks, Multi-modal, Population study, Graphs, Neuro-imaging, Inter-pretability
Abstract: It is currently acknowledged thatrelying solely on conventional classificationstrategies froma single data source is not effec-tive to understand, diagnose or prognose psy-chiatric syndromes. The classification targetssimply rely on clinician labels that alone do notexpress a very large variability. In 2009, the Re-search Domain Criteria (RDoC) recommendeda more comprehensive approach to study psy-chiatric disorders by incorporating diverse datatypes that cover various levels of life organi-zation (e.g., imaging, genetic, symptoms). Theproposal suggests that a thorough descriptionof a pathology requires consideration of mul-tiple dimensions, which may be shared acrossdifferent psychiatric syndromes and even con-tribute to non-pathological variability. Efficientframeworks for unsupervised learning, specifi-cally designed for multivariate and multimodalapproaches, are anticipated to offer method-ologies for handling and integrating the kind ofdatasets advocated by the RDoC. Deep learningallows us to learn in multimodal settings withmodality-specific structure and intermodalitycorrelation structure. To model intra-modalitystructure, we use specific convolutional neu-ral networks that enable to learn from corticalbrain measures distributed across a sphericalmesh and thus reveal original biomarkers. Inthis context, we propose 5 data augmentations

and apply them in one of the many novel self-supervised learning schemes relying moslty ondata augmentation. This work allows deep rep-resentation learning to properly initialize net-work on huge healthy patient cohorts and thentransfer them to study clinical pathology of in-terest in smaller cohorts. On the other hand,we have identified multi-view variational autoencoders as good candidates to integrate mul-tiple modalities. Moreover, we challenge thecommon assumption that neural networks arenot interpretable. We use a digital avatar pro-cedure as an interpretability module capable ofreporting the inter-view relationships learnedwithin a multi-view autoencoder. In particular,we integrate this procedure into a novel frame-work that combines multiple interpretationsand utilizes stability selection to identify mean-ingful and reproducible associations betweenbrain-imaging modalities and behaviour. Weapply this framework to exhibit specific brain-behaviour associations present in the transdi-agnostic cohort Healthy Brain Network (HBN).The identified brain-behaviour associations es-tablish connections between regional corticalfeatures from structural magnetic resonanceimaging and electronic clinical record forms as-sessing psychiatric symptoms. We show thisframework is able to find relevant and stableassociations.
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Introduction

Mental health is a major issue as 970 millions people were living with a mental disorder in 2019,
according to the World Health Organisation (WHO)1. However, these diseases are often overlooked
and no sufficient resources are invested for their treatment. This is partly due to the fact that they are
rather poorly understood conditions. The recent development of non-invasive and high throughput
systems to get insights about biological systems and their functioning has the potential to change
this. But other paradigms should change to allow for a global knowledge progression regarding brain
pathology. For psychiatric disorders, the conventional approach was to consider a single diagnosis
and condition and use a statistical model to predict it using a single biological assessment such as
an imaging modality. However, it has been acknowledged that results obtained with this strategy
are unsatisfying and do not allow knowledge to progress in psychiatry. The major hypothesis for
this issue is the recognised heterogeneity of such categorical conditions as defined by classification
tools such as the Diagnostic and Statistical Manual of Mental Disorders (DSM). The phenomenon
of comorbidity between conditions and interactions between biological processes, which can be
captured at different levels, are overlooked by these diagnosis based studies. Other initiatives such
as the Research Domain Criteria (RDoC) advocate for a more comprehensive approach to studying
psychiatric disorders by incorporating diverse data that reflects different level of the organisational
complexity of life (e.g. imaging, genetic and symptoms). The RDoC principles suggest that a thorough
description of a pathology requires consideration of multiple dimensions that may be shared across
different psychiatric syndromes and may even contribute to non-pathological variability. In line with
these recommendations, this thesis work aims at providing tools compatible with such criteria, and
in particular tools relying on Artificial Neural Network (ANN). These tools should be able to maximally
model structure consistent with a priori knowledge about biological components. Population imaging
studies designed to investigate psychiatric disorders often include different assessments, which
inform about different biological components.

In this context, we first propose to model biological cortical structure using the spherical
representation obtained with the surface based morphometry pipeline from FreeSurfer. Specific
NN operators have been developed to account for this particular mesh structure when learning
from such cortical surface data. In particular, we propose a Self-Supervised Learning (SSL) pipeline
that enables such Spherical Convolutional Neural Network (SCNN) to learn from cortical surface
data. This pipeline relies on carefully designed data augmentations which implements modifications
of the cortical measures over the spherical mesh. Among these 5 proposed augmentations, 3 of
them adapt classically applied to natural images augmentations to the spherical structure. The
2 other augmentations relies on biologically plausible assumptions, which propose to introduce
some amount of noise in the cortical measurements coming from either other similar participants
or the other subject’s hemisphere. These augmentations allow the SCNN to learn representations
containing a significant amount of semantic information and directly applicable to other cohorts with

1Mental Health WHO’s topic.
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good generalisation properties. This is the first work which proposes tools to maximally leverage
cortical surface structure in order to teach SCNNs in an unsupervised manner. This work has
interesting applications in large general population imaging without diagnostic, which allows to use
such SSL scheme to properly initialise these SCNNs before applying them in clinical cohorts with
scarcer data.

In line with directions set by the RDoC, we attempt to maximally integrate available biological
knowledge in the learning algorithms. We describe issues that come with integrating multiple assess-
ments and discuss the available tools to overcome them. Linear integration using Canonical Corre-
lation Analysis (CCA) or assimilated display interesting characteristics, such as the ability to integrate
an arbitrary number of modalities and their interpretations capabilities. However, they lack of ca-
pacity due to their linear formulation, preventing them from directly exploiting biological structure,
and can not properly handle examples withmissing assessments. Probabilistic graphical models, and
particularly multi-view Variational Auto-Encoders (mVAEs) stand out for multiple reasons. First, their
formulation allow them to leverage NNs flexibility and instantiate different adapted encoder and de-
coder for each modality (e.g. SCNN for cortical surface data). Second, they are naturally able to use
data with missing assessments. Last, they display disentanglement properties, in that when mod-
elling modality-specific latent spaces additionally the joint latent space, shared sources of variability
are captured by the joint latent space, and specific sources remain in their modality’s specific latent
space. This allows to properly handle imaging acquisition site effects, which can be very harmful in
population imaging, without additional harmonisation technique.
On the other hand, relying on NNs prevent them from being naturally explainable. Nevertheless, key
properties of mVAEs allowed us to design an interpretation module, relying on realistic perturbations
of features from one modality, and monitoring their impact on the generated features from other
modalities. These altered data examples are called Digital Avatars (DAs) and are further analysed
using hierarchical linear models, producing association coefficients between each perturbed feature
and every features from other views. This whole interpretation framework is called Digital Avatar
Analysis (DAA). Of course, such interpretations are not exempt of the various sources of variability
impacting the solutions learned by NNs. Aleatoric uncertainty is due to unreducible population vari-
ability, while epistemic uncertainty arise frommodeling choices. Epistemic uncertainty can be signifi-
cantly larger in NNs, considering the same architecture and hyperparameters, than in linear models.
Provided a train / left-out split of a dataset, we propose a regularised version of the DAA (r-DAA), which
consist in repeating nE times: training the mVAE on the training set then interpret the trained mVAE
using the left-out subjects. Only the random initialisation and batches during training vary. Equipped
with a proper ensembling function, these associations are aggregated and discretised, providing re-
sults robust to epistemic variability. The aleatoric variability is controlled by using a stability selection
procedure, which consists in retaining associations consistently selected across numerous train / left-
out splits of the population.
In particular, we display the ability of this whole pipeline to output reasonable brain-behaviour as-
sociations in a transdiagnostic cohort of children presenting behavioural peculiarities. We integrate
clinical scores assessing expressed symptoms with regard to cortical measures over Regions of Inter-
est (ROIs) of the cortex, instantiating all the previously introduced tools.
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Thesis organisation

This thesis presents mostly methodological work. However, we provide intuitions about possible
applications in the study of psychiatric disorders.
In the first part, which regroups Chapter 1 and 2, we want to introduce different notions. Chapter 1
presents brain magnetic resonance imaging, describing the brain cortical anatomy, and population
imaging, which often regroups multiple assessments for each participant and introduces novel chal-
lenges. In Chapter 2we give a brief introduction to basic statistical learning ideas, with a few examples,
and describe more thoroughly Deep Learning (DL) and associated concepts.
In the second part, we present our contributions. Each chapter of this part provides a short state-
of-the-art related to the addressed research questions. Then it describes the contributions and as-
sociated experiments. In Chapter 3, we try to address the question of modeling biological cortical
structure using an adapted NN. Our contribution is to proposemultiple cortical surface data augmen-
tations and assess there relevance in a SSL scheme. Chapter 4 describes the heterogeneity problem
in psychiatry and discuss different integration methods. Then it introduces the DAA interpretation
module to alleviate the lack of explaibility in mVAEs. It also proposes the r-DAA and stability selection
procedures design to produce stable associations. Note that Chapter 4 does not contain experiments,
as validation of the introduced methodological tools is propagated in the next chapter. And Chapter
5 introduces the concept of transdiagnostic psychiatry, then presents different studies of the cohort
Healthy Brain Network (HBN). The first focuses on stratifying autistic subgroups in the cohort, where
the second applies the introduced framework in Chapter 4 to discover reproducible brain-behaviour
associations, displayed in a transdiagnostic perspective.
Finally, we conclude the thesis by providing a summary of the explored problematics, proposed so-
lutions and their potential impact and perspectives.
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16 CHAPTER 1. BRAIN MAGNETIC RESONANCE IMAGING

In this chapter, we introduce an imaging technique to inspect in-vivo organs widely used today.
Magnetic Resonance Imaging (MRI) allows to visualise precisely in-vivo soft tissues up to 0.2mm
isotropic with the most precise human MRI machine, such as the prototype recently installed at
NeuroSpin, which features a record magnetic field of 11.7T. The resolution of MRI is a question of
time and magnetic field strength. With a sufficiently long acquisition, lower field MRI machine could
attain this resolution. In practice, this is impossible due to human movements that would inevitably
produce blurred images. The quest for new biomarkers does not necessarily depend on extreme
acquisition parameters. First, biomarkers produced at 11.7T would not necessarily be detectable at
lower resolution with usual MRI machines deployed in hospitals for instance, which are most often
equipped with 1.5T or 3T MRI machines. Second, such a powerful machine will never be deployed
to multiple centres, due to its physical characteristics: it weights 132.000Kg, requires a cumbersome
cooling system and costs 70M€ [38]. Therefore, expected biomarkers at 11.7T are not being searched
for condition diagnostic or prognostic, but rather as tools to understand intrinsic mechanisms of the
brain, related pathologies and human cognition.

An alternative to investigate brain characteristics and disorders is to collect large compendiums
of data in order to unveil biomarkers of interest. This approach also allows to better take into
account the specific characteristics of each population. Nowadays, huge research projects have built
shared and open resources from health data in large population, and other initiatives exist, such
as in population imaging, which promote high-quality phenotyping with imaging and psychological
scoring, while specifically recruiting very large numbers of people into a research protocol. These
initiative are in line with the growing need of data for recent statistical models such as Deep Learning.
It has also been recently shown that discovering reproducible associations between brain and
complex behavioural phenotypes requires thousands of individuals [240]. However, collecting a
large set of data requires regrouping data from multiple sources and imaging acquisition sites. This
poses new challenges, such as site effect harmonisation, which is mandatory to ensure downstream
modelling is not impacted by this non-biological variability [136, 357].

In the first part of this chapter, we will introduce MRI for brain study. We will then describe the
brain anatomy, focusing its outermost layer, the cortex. In the second part, we will try to introduce
population imaging and describe its multimodal aspects. Then we will shortly introduce a few popu-
lation studies and finally present the main challenges we identify when analysing and building tools
from such studies for clinical application.

1.1 . Brain anatomy inspection using MRI

Magnetic resonance imaging relies on magnetic properties of water molecule contained in our
body, and more precisely on the magnetic properties of hydrogen atom nuclei, the proton. A proton
is rotating on itself and is characterised by its intrinsic angular momentum or spin. When subject
to a strong magnetic field, hydrogen spins align according to the field’s direction. The MRI machine
perturbs the spins using radio wave in another direction which makes them move out of this

1Link to the web page.

https://mrimaster.com/t1-vs-t2-mri/
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Figure 1.1: Axial view of T1-weighted brain MRI with annotations. Image found from an externalsource1.

original position. When these waves are turned off, the spins progressively return to their original
position and send back a radio signals. The spins go back to their initial position at different speeds,
depending on the tissue they compose. Major advantages of this technique compared to other
imaging methods is that it can produce 3D images, with the same resolution in all direction without
exposing the patient to harmful radiation. The magnetic resonance imaging technique efficiently
captures various tissue natures in different contrasts.

From the same principle, multiple imaging types can be obtained, by adapting MRI sequences in
order to highlight various tissues with different contrasts (e.g. T1-weighted vs T2-weighted) or local
micro-structure properties which underlie tissue organisation such as white fibber bundle with diffu-
sionMRI (dMRI). Specific sequences are sensitive to local oxygenation level of haemoglobin and reveal
dynamic neuronal activity using Blood Oxygenation Level Dependent (BOLD) functional MRI (fMRI). In
this section, we will focus on presenting brain structural MRI (sMRI), the most basic MRI technique
which consists in inspecting brain tissues and therefore the related anatomy.

1.1.1 . Structural MRI

Structural MRI is used to inspect soft tissues. When dealing with brainMRI, we are able to visualise
and identify the different parts of the brain, grey matter with the different well-known cortices and
sub-cortical components (e.g. thalamus and deep nuclei), as well as white matter and ventricles. We
can see the head boundaries and the skull shape, and the CerebroSpinal Fluid (CSF) whose role is to
maintain the brain isolated from the skull and transport chemicals in the ventricles. These compo-
nents can be visualised in the T1-weighted MRI provided in Fig. 1.1. The grey matter appears darker
than the white matter in this contrast.
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Applications in clinical routine. So far, MRI has been used in clinical routine by radiologist to
help the neurologist to diagnose diseases where biomarkers are visible by the human expert eye,
such as brain tumours or Alzheimer’s disease (AD) atrophy in the hippocampal region. MRI mostly
inspects tissues and is thus not pertinent to spot bone defaults or fractures, because of their low
concentration in water. It is used for treatment monitoring as well. Some decision aiding radiological
tools start to emerge from MRI research but they are still confined to diseases that manifest them-
selves through spatially extended phenomena[95], and many brain diseases, specifically psychiatric
disorders, remain poorly known with very few verified biomarkers that can not be found using expert
eyes. For the investigations on brain diseases, popular MRI studies based on healthcare data include
oncology [322, 64], neuro degenerative [380, 81] (e.g. AD and Parkinson’s disease) and psychiatric dis-
orders [122, 112, 1, 377]. These studies recommend to use multimodal biomarkers, including genetic
and molecular assessments, additionally to imaging biomarkers. However, studies in clinical routine
requires for them to be robust to variation in acquisition settings and population biases, which is very
hard to come by in practice because most research cohorts are built with only a few acquisition sites.
Even when data are collected through multiple sites, multiple MRI constructors and across multiple
population, harmonisation or site effect handling is not properly done, as it is still an open research
question (see Section 1.2.3 for further information). Validation of biomarker detecting tools in clinical
settings is crucial for translating research to clinical routine.
Research applications. Other studies focus on research data with subjects specifically recruited
and submitted to advanced imaging protocols. These studies are designed to find biological
correlates of diseases using imaging biomarkers, not aiming to be used in clinical routine, but
rather uncovering hidden biological machinery that can help us better comprehend brain disorders.
Understanding these mechanisms can in turn lead to design specific treatments to modify such
abnormal functioning. Structural markers extracted using MRI depend on the studied pathology.
For instance, oncology will focus on studying the tumour tissue, as compared with healthy tissue,
often computing quantitative measures characterising local properties such as radiomics [322].
Studying neurodevelopmental or neuropsychological disorders will often rely on heavy expert
preprocessing tools to extract relevant measures from the 3D volumes such as cortical thickness.
This cortical thickness is analysed locally or integrated over some regions of interest, defined by
an anatomical or functional atlas, which allows results interpretation [34, 223]. These tools either
use Voxel based Morphometry (VBM) [131] preprocessing to extract and register the 3D volume in
a template space and conserving solely relevant tissues, or Surface based Morphometry (SBM)[86,
120], which concentrates on the cortex and can extract various proxies of its geometrical shape.

1.1.2 . Brain cortical anatomy
In particular, sMRI allowsus to visualise anddescribe themain cortical areas of the brain. Thebrain

is composedof two almost symmetrical hemispheres, withmostly similar functions. Neuroanatomists
have been able to assign specific functions to the different parts of the cortical surface, referred to as
cortices (or lobes for larger parts), illustrated in Fig. 1.2 and further described below:

• Frontal cortex The frontal cortex (or frontal lobe) regroups the largest part of the cortical sur-
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Figure 1.2: Illustration of the human brain anatomy and functions. This image was drawn from a webarticle2.
face, and is certainly themost complex. It handles a wide variety of processing related to execu-
tive function, reasoning, decision-making, speechwith the Broca’s area (left hemispheremostly)
and movement execution.

• Motor cortex The motor cortex is part of the frontal lobe and delivers signals for motor ini-
tiation (premotor), execution (primary motor) and coordination (supplementary motor area).
Different parts of the cortex command different parts of the body and have been mapped to-
gether, and the left part of the brain controls for right part of the body, and inversely, for most
people.

• Parietal cortex The parietal cortex (or lobe) is situated at the upper back part of the brain. It
is called the somatosensory cortex as it is known to be responsible for sensation and touch
information processing, as well as spatial positioning. The Wernicke’s area is part of this cortex
and is implicated in text and speech understanding. The partietal cortex is known as well for
integrating sensory and motor information as input for the premotor cortex.

• Temporal cortex The temporal cortex (or temporal lobe) plays a central role in auditory in-
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formation processing. It is thus implicated in speech recognition as well and its posterior part
is connected to the parietal lobe through the Wernicke’s area. It is also linked to movement
perception and some memory related functions such as face recognition.

• Occipital cortex The occipital cortex (or occipital lobe) is located at the most lower back part of
the brain. It is mostly responsible for processing visual information and interpreting it, rooted
in the primary visual cortex.

• Limbic cortex The limbic cortex is not generally associated with a specific cortex lobe, but is
groupedwithin the limbic system, which includes cingulate cortex areas surrounding the corpus
callosum, the hippocampus and the amigdala. This complex system plays a key role in emotion
processing, behaviour and long-term memory. In particular, the limbic cortex is responsible
for modulating emotion, visceral motor processes and plays an associative role between the
hippocampus and other cortical areas.

• Insular cortex The insular cortex is the dark side of the brain: you can not visualise it in Fig. 1.2.
It is hidden inside the lateral fissure separating the temporal lobe from the frontal and parietal
lobes, buried between the folds. Its role is less known than other cortices, but it plays a role in
integrating multiple types of information related to emotional processing, including taste, pain,
hunger, sensation, social functions such as empathy and vestibular (related to self-awareness
perception and inner ear) functions.

The brain cortex compose the outermost part of the brain. It represents most of the grey matter
of the brain, which are the tissues regrouping most of the neuronal cells. Neuron activity presents
itself as an electrical and a chemical signal travelling across the brain and between two cortex areas or
between cortex, cerebellum and subcortical components regrouping notably the thalamus, hypotha-
lamus, hippocampus, putamen, basal ganglia and deep nuclei. As the cortex commandsmost human
abilities, studying it can give valuable insights into the inner cogs of the brain, to better understand
brain function and dysfunction. Its highly folded structure allows it to drastically increase its area and
grey matter volume, but makes its study challenging, due to its particular shape.

1.1.3 . Cortical surface study
The brain cortical surface organisation is constantly the subject of new discoveries and scientists

have been trying to study it for a long time now. Recent biological imaging tools such as microscopic
imaging used in histology and MRI allow to improve its observation at different scales and thus
deepen our understanding of it. For instance, we know that neurons in the cortex have a laminar
organisation, i.e. are built in separate layers with different properties, aggregated to form the cortex,
and that neurons are organised in perpendicular columns with respect to the pial. Histology has
provided insights into the composition of these different layers, which in turn can help us better
understand the formation of the cortex by driving hypotheses, its folding mechanisms and what
can be considered as normal or abnormal development. In a complementary way, MRI allows us to
inspect the brain and its cortex at a macro scale, from which we can measure characteristics and
qualify them. MRI is a non-invasive in-vivo imaging technique while histology requires to extract

2You can find this article here.

https://dana.org/resources/neuroanatomy-the-basics/
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tissue, so it usually screens dead or abnormal tissue obtained from ex-vivo brain or biopsies.

Folding patterns. Themechanisms responsible for the cortex folding are still unknown, although
its study lead to various hypotheses. The folding patterns, defined by the gyri (bumps of the cortex
corresponding to outer folds) and sulci (parts of the inner fold filled with CSF), can be compared to
fingerprints: they are unique to each individuals, although some of them are found in all healthy
human brains. These patterns have allowed to build sulci atlases [281] and have been linked to
some brain disorders (e.g. the "Power Button Sign" pattern of the central sulcus for drug resistant
epilespy [251]). Their study is challenging due to their high variability across individuals [239]. Their
origins is partly attributed to genetic causes [217], and in particular folding patterns from twins are
more similar to each other than with other brains folding. Other hypotheses try to explain folding
pattern using mechanistic models, thus modelling various opposing strengths underlying biological
processes of the cortex development [118]. Cortex folding happening during the last three months of
pregnancy makes it difficult to monitor in longitudinal studies. It can only be studied in this condition
where the mother limits imacting environmental factors [20].

Geometrical properties of the cortical surface. In parallel to studying the cortex using fold-
ing patterns, we can also consider various measures of the cortical surface. Expert tools such as
FreeSurfer [86, 120] have been developed specifically to extract geometrical measures of the cortex
shape, such as cortical thickness, surface area, curvature or sulcal depth, and represent them on
suited discretised geometric structures. They rely on segmenting the grey matter borders, tessellat-
ing the grey / white interface and computing these measures. The resulting data can be projected
on a common representation space which preserves the cortical surface biological properties. These
techniques will be further described in Section 3.1. In subsequent analyses, thesemeasures can be ei-
ther analysed directly in such representation, or aggregated on ROIs defined by an atlas of the cortical
surface.

1.2 . Population imaging

For research purposes, consortiums have been built around common purposes, e.g. finding
anatomical biomarkers for Autism Spectrum Disorder (ASD). These efforts have allowed the bloom-
ing of large scale cohorts with specific objectives. Population imaging describes the acquisition of
medical images in such controlled population. Their acquisition setting and recruitment protocols
are completely driven by these objectives. As a result, the number of cohorts available for a specific
application or research question is limited by the occurrence of a pathology in a population for
instance, and correlates to the interest aroused by the research question.

For cognitive neuroscience, specific task-based imaging such as fMRI techniques are used within
precisely designed and conducted protocols, limiting the experiments to a single acquisition setting
and a limited number of participants (∼ 5-200). On the other side of the spectra are oncology, psychi-
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atric diseases and general purpose research cohorts. They often regroup larger spanned populations,
regrouping imaging from multiple acquisition sites and include healthy subjects. They can be com-
posed of a population ranging from a few hundreds to tens of thousand subjects.

1.2.1 . Multiple assessments
These population imaging cohorts are often richly phenotyped and include several types of

assessment (i.e. ensemble of measures using different techniques and targeting several biological
aspects). They always include at least two types of information: a few modalities of imaging and
participant related information such as age and sex, mandatory for most research analyses. Now,
most cohorts include other types of assessment, such as different modalities of imaging, genetic,
clinically relevant factors such as diagnosis or symptoms related information, and other metadata.

Imaging modalities. There is a wide panel of imaging modalities that can be available in brain
disorder population study. Each one of them is made to shed light on different properties of the
brain, which can be evolving at different time scales and are visible at different spatial scales.

For instance, brain activity changes rapidly (100 to 200ms on average), very related to human
activity, and tools to measure it need to be able to measure this activity with a sufficiently high
frequency to capture such changes. Functional MRI measures neuronal activity using as proxy
the concentration of deoxyhemoglobin, which results from neuron oxygen consumption during
activation, and thus increases locally when neurons activate. This is called the BOLD effect and
can be measured spatially at MRI precision level, between 1 and 2mm isotropic, depending on the
magnetic field. On the other hand, other techniques exist to capture temporal signal with higher
frequency, namely electro–or magneto–encephalography (respectively EEG or MEG). They rely on
electrodes capturing respectively electric or magnetic signals stemming from brain activity from
outside of the brain. They can be considered as imaging since they enable to reconstruct map of
the electromagnetic field. Yet, they have a very poor spatial precision, limited by the size of the
electrodes and their distance, because we don’t want them to capture the same signal. This imaging
technique is also very noisy due tomany surrounding factors to which this technique is sensible, such
as the current frequency, which is different between different countries or continents, or patient
irreducible variations such as heartbeat or blinking. Another technique called ElectroCorticoGraphy
(ECoG) captures the same signal as EEG, but directly on the brain cortical pial. It is thus a very invasive
technique allowed in Europe in human patients suffering of very specific diseases such as intractable
epilepsy. It provides a signal with a greater Signal-to-Noise Ratio (SNR) than EEG because it is not
hampered by the skull and other head layers.

Changes in metabolic or physiological processes, usually happening at a slower speed than neu-
ronal activity, can be captured using Positron Emission Tomography (PET). It uses different radioactive
tracers suited to capture the targeted process. As a commonly used tracer, Fluorodeoxyglucose
(FDG) PET is often used to visualise brain tumours which alter glucose metabolism and 11C-PiB for
AD to image amyloid plaques.



1.2. POPULATION IMAGING 23

For assessing tissue evolving at a slower pace, such as macro scale organisation of a tumour,
or brain anatomy, the use of sMRI is preferred, with different weightings, depending on what we
want to inspect. T1 weighting give a higher contrast to fatty tissues, such as the myelinated axons
in the white matter, and suppresses the signal of water, where T2 weighting enhances the signal of
water. Fluid-Attenuated Inversion Recovery (FLAIR) contrast allows to suppress fluid signal, made to
suppress the CSF signal and convenient for spotting brain haemorrhages. Diffusion MRI consists in
assessing the diffusivity coefficients of water molecules in the white matter, which gives a proxy of
the white fiber bundles that compose it. These bundles can then be reconstructed using tractography
techniques, but they make lots of errors due to the insufficient precision of MRI to assess micro-scale
structures. Computed tomography is another imaging technique which is cheaper than MRI, but
it comes with drawbacks such as participant exposure to X-rays and less spatial precision in one
direction (slices).

Non-living tissue can be captured fromex-vivo brain (rarematerial) or frombiopsies, often used to
diagnose tumours. Histology techniques are used to inspect such tissue at a cellular level. Tissues are
sliced into thin layers, coloured using a contrast agent, visualised with a microscope and digitised by
a camera. It is often used as a validation technique to verify an hypothesis derived from macro-scale
observations, such as tumour grade or axons direction in a white fibre bundle for instance.

Genetic markers. There are multiple genetic markers that can be assessed. We can differentiate
between structural and functional genetic, where structural will focus on capturing information
about the healthy DesoxyriboNucleic Acid (DNA) of participants, and functional genetic describes
how genes express in different tissues, which can vary over time and depends on the investigated
tissue or cell.

Techniques to capture DNA code, which does not change during life, include Whole Genome
Sequencing (WGS), which consists in reporting every nucleotide base of both DNA strands of a par-
ticipant. It is however quite expensive and requires a huge storage space, as human DNA contains
around 3 billion nucleotides. Moreover, it reports very redundant information across participants, be-
cause most frequent DNA variants found across individuals are known and have been documented,
even if it is continuously evolving. These variants are essentially (for 90% of them) Single Nucleotide
Polymorphism (SNP), where only one nucleotide base is altered at a specific DNA locus with respect
to a reference sequence. There are more than 30M SNPs reported in the human genome. SNPs are
well documented and there exist DNA arrays specifically designed to capture and report frequent
SNPs (happening in at least 1% of the population) from a biological sample such as blood, hair or
epithelial cell. Other frequently assessed genetic variations are Copy Number Variations (CNVs).
A lot of the genetic material is composed of repetitions of nucleotide chains. The number of re-
peats can vary across individuals with duplication or deletion, which are described by these CNV data.

Functional genomic includes a wider range of measures, because there are multiple molecular
processes involved in gene expression, modulation and interactions. It regroups transcriptomic
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(gene expression), proteomic (protein production) and metabolomic (metabolites, i.e. larger
molecules responsible for larger scale processes such as sugar or acides). Transcriptomic regroups
genomic assessments for gene expression. Gene code for other biological processes such as protein
production which express differently in different tissues. Transcription refers to the step where
DNA is read to produce a messenger RiboNucleic Acide (mRNA), which in turn will be translated into
proteins. mRNA, which is different across tissues, is a proxy of gene usage by the cells of a tissue.
The quantity of mRNA can be measured using microarrays, which target specific genes. These mRNA
can be sequenced as well, to better understand the gene expression. It is often used to assess gene
expression in tumoural tissue obtained through biopsy, in order to identify genes involved in the
cancer development. Proteomic and metabolomic require the use mass spectroscopy techniques to
detect protein expression / interactions and metabolite concentration respectively.

Demographic or clinical data. This type of data includes all assessments related to the patient
that is not a direct measure of its biology. Age and sex are always included in population cohorts
as phenotypes, because they often have interactions with the studied pathologies. Moreover, having
access to thesemeasures allows analysts to take into account any bias or sub-represented population
in the cohort and properly adapt the analysis pipeline to lessen the effect of such bias on the results.
Participantsmedical antecedents, parent’s antecedents, origins, social condition, whether they smoke
and other environmental factors are often accessed through questionnaires. They allow analysts to
be aware of any social or origin bias in cohorts, and study comorbidity with environmental factors.
They can be very important, for instance smoking leads to more lung cancers, and an unstable socio-
educational frame during childhood or taking drugs during the adolescence increase the chance of
developing a psychiatric disorder such as Bipolar Disorder (BD) or schizophrenia.
Finally, phenotype data include all participant assessment related to the research question. When the
study focuses on a particular disease, it should include a diagnostic (when available) as well as all the
measures that led to this diagnostic, such as radiologist notes, or symptom questionnaires outcomes.

Metadata. All the data regarding acquisition protocols, such as location, chip or MRI machine
manufacturer, type of machine, acquisition parameters, date of acquisition, software and any
other factors that can have a potential influence on the acquired data. In particular, onset timings
in task-based acquisitions, which reports when the signal was provided to the participant, when
and what he/she responded, is absolutely mandatory, otherwise the data is not usable. All these
metadata are very important, especially in large population imaging cohorts where data are shared
and the effect of varying acquisition settings needs to be properly handled.

With all these existing assessments in mind, population studies never assess all these data, be-
cause it is expensive and not always relevant. In the following section, we describe some well known
existing cohorts, precising what scientific question they address and the type of data they include.

1.2.2 . Available cohorts
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We focus on openly available population imaging cohorts designed to study brain diseases or that

can be used is this context. In the following, we highlight a few of these cohorts, that we identify as
case / control studies opposed to general purpose cohorts.
Case / control studies. Such cohorts usually provide diagnostic for a given pathology for every
participant. They are often targeting a specific pathology or disorder spectrum. We can identify
cohorts designed to study oncology and others to study psychiatry.

Oncologie cohorts or dataset include BRATS [252], that was design to benchmark multimodal
tumour segmentation using brain MRI from patients with low to high grade glioma. Tumours were
segmented by four experts using T2-weighted images. T1-weighted, T1-weighted with enhanced
contrast using Gadolinium and FLAIR were available as well with different resolutions, for 65 patients.
It was then extended to a larger (2000 participants) dataset, including other assessments such as
methylation status of a tumour’s promoter. In fact, completion of this dataset was obtained by
combining various other open oncology datasets, such as collections from The Cancer Genome Atlas
(TCGA) GlioBastoma Multiforme (GBM) [308] and Low Grade Glioma (LGG) [279]. The TCGA [248, 365]
is an initiative to better understand molecular processes responsible for cancer. Different types of
brain tumour are included in this project, such as GBM and LGG. Biological assessment include DNA
copy number, genotyping and gene expression. They were further extended to assess preoperative
MRI imaging in different contrasts and postoperative histopathology.

With regards to psychiatry, cohorts do not usually include functional genomic because it is too
invasive and risky. They usually include multiple contrast MRI, relevant phenotype data and some-
times genotyping. Alzheimer’s Disease Neuroimgaging Initiative (ADNI) [282] was launched to find
neuroimaging and chemical biomarker of abnormal ageing trajectories in old population (between 55

and 90), with more than 800 subjects, some of which with normal ageing, other with mild cognitive
impairment and the rest with diagnosed AD. This longitudinal study includes different imaging tech-
niques (MRI and PET) scanned at different visits, as well as other measurements, including cognitive
abilities through various clinical tests, blood and CSF measurements. It is one of the rare large lon-
gitudinal cohort with 5 planned followup screenings over 3 years. ENIGMA [73, 72] is a consortium
for grouping research efforts around the common purpose of understanding psychiatric disorders.
It includes data and analyses sharing agreements. They aim at including all sorts of available imaging
and genetic data. Many other and smaller initiatives exist to study specific psychiatric diseases, such
as EU-AIMS [263] and ABIDE [98, 99] for autism, BSNIP [193], SchizConnect [360] for schizophrenia
and BD and ADHD-200 [256] for Attention Deficit Hyperactivity Disorder (ADHD). These cohort all in-
clude variousMRI contrasts, including structuralMRI and functionalMRI, aswell as genotyping (SNP or
CNV) data for some of them. In all these settings, imaging data are acquired at different sites, which
tends to make difficult their analyses, as each MRI machine have different settings and acquisition
conditions.
General purpose cohorts. Other cohorts exist with more general purposes, which do not
necessarily include diagnoses, although they can contain unhealthy participants. Among them is the
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UK Biobank [48], which regroups more than 500.000 participants from the United Kingdom. Among
them, around 40.000 have already been scanned (and 100.000 should be scanned in total) in MRI
machines for different imaging contrasts, including structural and functional MRI. All the participant
will be assessed for a wide panel of phenotypes, including cognitive functions, environmental factors,
physiological measurements and medical history, as well as genotyping including SNP data. This
cohort was built to minimise the differences in acquisition protocols, using the same MRI machines
with the same settings and the same genotyping chip for all participants. The Human Connectome
Project3 aims at better understanding human brain functional and anatomical connections and their
relationships with different diseases such as psychiatric disorders. It includes mostly imaging data,
with various functional imaging technique such as fMRI, EEG and MEG and anatomical MRI with a
focus on diffusion MRI. It regroups various projects with different aims, spanning populations with
varying age ranges, from infancy to old age.

All these large scale initiatives have in common to regroup images scanned at different acquisition
sites or genetic data acquired using different chips. This is very convenient to gather a large quantity
of data but comes with drawbacks as well.

1.2.3 . Major challenges
Population imaging present many advantages, which include regrouping a large panel of partici-

pants with multiple assessments. They provide opportunities to shed light on biological phenomena
with small macro-scale effect size and increase statistical power of analyses conducted using them
[240]. However, they come with different challenges. These cohorts can not be gathered at the same
imaging centers, which introduces unwanted non-biological variability in images, called site effects.
Additionally, although increasing the number of participant should lead to more reproducible find-
ings, a concomitant reproducibility crisis started in 2010’s [22], and the neuroimaging community was
not exempt of it. We believe population imaging has the potential to change this. And lastly, transla-
tion towards clinical practice is almost never done, and comes with challenges of its own.
Harmonisation of acquisition site effects. Non-biological artefacts are inevitably introduced
when gathering imaging acquired at different sites. These site effects are due to differences in
scanner (manufacturer and settings), acquisition protocols and conditions, but also participant
recruitment, which can have interactions with age or diagnostic for instance. As illustrated in Fig.
1.3, T1-weighted MRIs regrouped from multiple studies and preprocessed the same way display as
most important sources of variations biological age and site effect. These confounding factors can
be found in genomic data relying on different microarrays as well, which can be due to differences
in chip, manipulations or laboratory conditions. They are refered to as batch effects. Many methods
have been proposed in the literature to handle these effects, site effect harmonisation initially
taking inspiration from batch effect harmonisation in genomic using bayesian modelling proposed
by ComBat [121]. It has since been extended with different techniques offering other possibilities,
relying on DL or conventional statistical learning [175]. It is still an open research question as there
is no consensus as to which method should be used and how to validate them, depending on the

3Project launch note

https://www.nih.gov/news-events/news-releases/nih-launches-human-connectome-project-unravel-brains-connections
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Figure 1.3: t-SNE visualisation of T1-weighted MRI from different studies pulled together and prepro-cessed the same way using VBM and normalised by their total intracranial volume. Image extractedfrom [105].

cohort settings.
In fact, there is little work able to explicitly model this site effect in images and properly remove it

(or make a downstream analysis pipeline invariant to it) from a site from which no image was used to
describe this specific site’s impact on the produced images. This is likely due to the fact that this effect
is complex, multifaceted and very specific to each acquisition site. However, we hope that regrouping
a large quantity of images stemming frommultiple imaging acquisition site can allow tomodel it. This
is whywe proposed theOpen Brain Healthy Bank (OpenBHB) cohort, regrouping images ofmore than
5000 healthy participants from 10 open worldwide studies across more than 60 acquisition sites (see
Fig. 1.4), alongwith theOpenBHB challenge [105]. This challenge, illustrated in Fig.1.5, aims at providing
a shared and common benchmark for properly handling site effect with a proxy prediction task, that
is learning data representations for predicting brain age from T1-weighted MRI, including different
preprocessings. These representations should not be biased by site effect (i.e. bad at predicting
it), while being good at predicting age on images from both seen and unseen sites. The challenge
is hosted on a platform4 on which anyone can submit a model to extract representations from the
preprocessed T1-weighted MRI images, that will then be evaluated on a private test set with images
from site provided in the open released dataset and others from unseen sites for age prediction.
Reproducibility. Reproducibility can refer to reproducing the results of an experiment in the
exact same conditions, e.g. same data and same modelling for instance, or in different conditions,
conducted by a different team, on different data or with different modelling. The most effective

4Here are the OpenBHB dataset website and RAMP Paris-Saclay platform to submit models.

https://baobablab.github.io/bhb/
https://ramp.studio/problems/brain_age_with_site_removal
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Figure 1.4: OpenBHBdataset regroupingmore than 5000 healthy participants regrouped from 10 opencohorts, with different population age distributions and varying number of acquisition sites. Imageextracted from [105].

way to validate biomarkers is to replicate them in independent cohorts and / or different settings.
You can note that reproducibility is closely related to the formerly introduced harmonisation of site
effects issue, as biomarkers found without properly handling this effect are likely to not replicate
in different configurations, due to the large variance explained portion attributed to site effect (see
Fig. 1.3) as compared to small effect sizes of associations between brain images and phenotypes [240].

Reproducibility is a very common and generalised issue to all scientific findings. It refers to the
fact that presented results in a research report can not be reproduced. There are many different
types of reproducibility, and there causes are plural. Often identified causal factors could include re-
search valorisation, which would lead researchers to voluntarily (or involuntarily) artificially augment
(e.g. cherry picking or p-value hacking) their result due to pressure to publish. Other factor are data
sharing difficulties and poorly designed experimental settings such as test set contamination with
training examples in statistical learning pipelines.

In order to improve reproducibility of their study, authors are encouraged by journals and a few
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Figure 1.5: OpenBHB challenge overview. Its goal is to provide a model able to extract from variouspreprocessing representations good at predicting age, without being biased by site effect. Picturetaken from [105].

conferences to make available their code, their data and other material that can help reproduce their
results. Data statistics and preprocessing should always be provided and detailed. These initiatives
happen in a wider open science point-of-view which is advocated by many to improve reproducible
science.
From research to clinical routine. Another worth noting constat is that research data is very
much cleaner than routine clinical data, and it has been shown that these differences can really hurt
performances of current diagnostic tools, which were moslty developed using population cohorts
designed for research purposes, with precise and framed data acquisition protocols. For instance, the
Assistance Publique des Hopitaux de Paris (AP-HP) have been saving all their patients data in a data
warehouse. A study has tried to use this T1-weighted image from this data to predict the Dementia
[37]. Additionally to having numerous more difficult considerations such as building the diagnostic
phenotype from the tenth revision of International Classification of Diseases (ICD-10), they showed
that multiple classifying pipelines loose 15% accuracy compared to model trained and evaluated on
research dataset. They highlight throughout different experiments the harmful effects of image poor
quality and differences in image acquisition biasing the classifiers. This proof-of-concept paper aims
at challenging the overestimated prediction rates of brain disorders obtained on research datasets
and highlights the difficulties occurring when translating decision aiding tools to clinical routine data.
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A wide variety of tools (e.g. MRI and microarrays) are available to gain insight into the brain struc-
ture and functioning. Researchers have started to find biomarkers of the brain responsible for cog-
nitive function or brain pathology. Some pathological markers can be found by a human expert from
images: a brain tumour is often identifiable by a radiologist. Others are much more subtle, and we
can not identify them by simply looking at the MRI (e.g. subtle radiomic features variation to qualify
the tumour). To help medical experts to understand the underlying mechanisms of pathologies or
functions, medical imaging analysts have seized data-based learning algorithm, that can be directly
applied to find biomarkers.

2.1 . Machine Learning

These approaches tend tomodel underlyingmechanisms that govern the data, in order to be able
to properly link observed phenotypes with biology (e.g. Alzheimer’s conversion with acceleration of
grey matter shrinkage). To do so, we investigate the data X as a random variable, that follows an
unknown probability distribution P(X). In practice, we do not know P(X), but we usually have access
to realisations {X1, . . . , XN} ofX . In Machine Learning (ML), we try to approximate P(X) using these
realisations. How we approximate this unknown distribution differs according to the question we ask
and the setting we consider. In the following, we will present two very general concepts explored by
ML techniques: supervised learning when annotations are available to supervise the learning algo-
rithm, and unsupervised learning when the learning algorithm consist in describing the data density.
These concepts are also illustrated by a few well-known ML algorithms.

2.1.1 . Supervised learning

In supervised learning, we usually consider i.i.d. observations {X1, . . . , XN} =

{(x1, y1), . . . , (xN , yN )} ⊂ X × Y . We want to model their joint probability P(X,Y ) = P(Y |X)P(X),
following the Bayes rule. The question we address in supervised learning is whether or not we
can predict y when observing x, more formally if there exist a function f such that f(x) = y. Let
L : Y × Y → R+ be a loss function, evaluating how far predictions f(x) are from y. We try to find a
function f such that it minimises the expected theoretical risk under the joint distribution P(X,Y ).

f = argmin EP(X,Y )[L(f(X), Y )] (2.1)
We usually relax this untractable risk by searching for an estimator f that solves the Empirical Risk
Minisation (ERM) problem R(f) = 1

N

∑N
i=1 L(f(xi), yi). For some restricted classes of estimators

f with specific loss function, the solution to this optimisation problem is analytically tractable,
e.g. for linear functions with the squared error as loss function. However, this is in general not
the case. Another way of finding aminima of the ERM is by using a gradient descent whenL is convex.

We refer to classification when Y is finite, i.e. the variable to predict y ∈ {0, . . . , c}, c being the
number of classes, and regression when y ∈ R. A parametric class of estimators is defined as {fθ, θ ∈
Θ}, with Θ ⊆ Rk, k ∈ N∗. Below we introduce two widely used supervised machine learning models.
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K-Nearest neighbours. The K-Nearest neighbours (K-NN) is a non-parametric estimator that
predicts labels y corresponding to observation x according to the labels from the K nearest neigh-
bours of x. More formally, f(x) = g({yi, xi ∈ NK(x)}), where g : YK → Y is a function to aggregate
the labels from theK neighbours NK(x) of x. It requires X to be equipped with a distance function,
e.g. the Euclidean distance in Rp, to define neighbourhoods. For instance in a regression settings,
the function g can be defined as g((y1, . . . , yK)) = 1

K

∑K
i=1 yi, where the predicted value f(x) is the

average value of the K nearest neighbours of x. In classification settings, g could be the majority
voting class.
Generalised linear model. The Generalised Linear Model (GLM) is the simplest model that can
be used as a predictionmodel. It relies on the assumption that y ∼ P(Y |X) is an exponential distribu-
tion. The estimator function f , which is the mean of this distribution, is expressed as f(x) = g−1(xβ),
where g−1 : X → Y is an invertible link function. In regression settings, P(Y |X) is assumed to be the
Gaussian N (f(x), σ2), and g is simply the identity function. For classification, the most widely used
GLM is the logistic regression, which assumes P(Y |X) is a categorical distribution function, and uses
the logit as link function, i.e. g−1(x) = 1

1+e−x .

Figure 2.1: Illustration of the bias-variance tradeoff. Picture taken from an external source1.

Regularisation. In machine learning, we hypothesise the estimator’s form by approximating it
within a class of functions. The final objective of this learning algorithm is to perform well on unseen
examples, which is characterised by the generalisation error, i.e. the value of the empirical risk on
unseen examples. This generalisation (or test) error can be decomposed into two components,
namely the bias-variance decomposition (illustrated in Fig 2.1). The bias refers to the part of the error
due to the difference between the predicted values and their true values due to the hypothesised

1Link to the article.

https://towardsdatascience.com/the-bias-variance-tradeoff-8818f41e39e9
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class of function, and the variance is the error due to the sensibility of the estimator to small variation
in the input. There is often a trade-off between bias and variance, which can be set by monitoring
train and test (or validation) error during training. While train and test errors diminish, we usually are
in an underfitting senario, whereas when test error increases while train error continues to decrease,
we call this overfitting. A good way to reduce overfitting on the training set, i.e. reducing the variance
part in the generalisation error, is to penalise the estimator during training, in order to restrict the
class of functions it can approximate to smoother functions, such that it can be less influenced
by small variations in the data. We introduce below some of them, usually applied to parametric
estimators fθ by simply adding the terms to the loss function optimised to fit the model. Penalty
terms are usually weighted using a hyperparameter λ, which sets the strength of the regularisation
during training.
Ridge. A commonly used regularisation is the l2 or Ridge penalisation term, that is formulated for
parametric models as ∥θ∥22, where θ are the real-valued parameters of the estimator. This penalty
term ensures that the weights of the model are constrained to stay close to zero, penalising more
high than small amplitudes.
Lasso. Another standard penalty is called Lasso [346] or l1 penalisation. For parametric models, it
can be written as ∥θ∥1, θ being the real-valued parameters of the estimator. This term forces all the
parameters to stay equally close to zero, producing a selection mechanism: terms that are unnec-
essary for the model to produce good predictions will go to zero. The associated λ configuring the
strength of the penalty can be seen as a sparsity parameter.

2.1.2 . Unsupervised learning
In unsupervised learning, there is no label Y , we only have access to observations {x1, . . . , xN} ⊂

X ⊂ Rp. These learning algorithms can be applied to a wider range of problems than supervised
learning, because it does not require annotations. In fact, the learning paradigm here will try to ap-
proximate the distribution P(X). Let’s assume f∗ is the density function of P(X). Considering the
Kullback-Leibler divergence between two distributions q et g DKL(q∥g) =

∫
q(x) log q(x)

g(x)dx as the ex-
pected risk, the Bayes rule says that:

f∗ ∈ argmin
g

DKL(f∗∥g)

We haveDKL(f∗∥g) =
∫
f∗(x) log f∗(x)dx−

∫
f∗(x) log g(x)dx, and since the first does not depend on

g, we have:
f∗ ∈ argmax

g

∫
f∗(x) log g(x)dx

∈ argmax
g

EP(X)[log g(X)]
(2.2)

This comes back to the empirical risk minimisation problem highlighted in Section 2.1.1, considering
the loss function defined as L(f, x) = − log f(x). We call a maximum likelihood estimator f ∈ F a
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probability density function such that:

f ∈ argmax
g∈F

1

N

N∑
i=1

log g(xi)

There aremany different approaches to solve this issue, each of them relying on different hypotheses.
We introduce a few of them in the following.
Dimensionality reduction

This type of unsupervised methods hypothesise that there exist a lower dimensional manifold within
the X -space which concentrate a high density of X . Such techniques can be linear such as Principal
Component Analysis (PCA) or non-linear such as t-SNE [237]. We introduce a few widely used ones.
Principal components analysis. The PCA relies on the singular value decomposition of the cen-
tred observationsX = [x1, . . . , xN ]T ∈ RN×p. In particular, their exist orthogonal p×pmatricesU and
V such thatX = UDV T, whereD is a diagonal matrix with diagonal elements d1 ≥ d2 ≥ · · · ≥ dp ≥ 0

being the singular values of X . The first few columns of UD generate a lower dimensional vector
space. Each of these columns represent principal components, that express a decreasing variance of
X , starting from the first column which describes the linear projection dimensionmaximally express-
ing data variance.
Multidimensional scaling. Rather than using the observations themselves, MultiDimensional
Scaling (MDS) solely uses their dissimilarity. It tries to find a lower-dimensional manifold in which
dissimilarity between observations are maximally preserved.

There are many dimensionality reduction techniques. They are nowaday often used as visualisa-
tion tools, in order to display in a low-dimension space (usually 2D or 3D) captured semantic in higher
dimensional data representations. Among them, PCA, t-SNE and UMAP [247] are themost often used.
Clustering

Such algorithms try to find some convex regions of X that contain modes of P(X) [156]. They aim
at creating somewhat homogeneous groups (or clusters) of observations, hypothesising P(X) is a
mixture of simpler densities representing these different groups. In the following, we introduce two
of the most iconic clustering methods, namely theK-Means and the Gaussian Mixture clusterings.
K-Means. This algorithm does not explicitly formulates a distribution P(X). Rather, it tries to find
clusters using central points in an iterative process, with a fairly simple heuristic: the average dis-
similarity between observations and their centre point within clusters should be minimal. It uses the
Euclidean distance to evaluate dissimilarity between observations. Initial random cluster assignment
influences the outcome.
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Gaussian Mixtures. Such clustering algorithms explicitly hypothesise that P(X) is a mixture
distribution, i.e. P(X) =

∑K
k=1 πk N (X|µk,Σk), implicitly introducing a K-dimensional binary latent

variable Z = (Z1, . . . , ZK) ∈ {0, 1}K such that ∑k zk = 1 with z = (z1, . . . , zk) realisations of
Z , and that P(Zk = 1) = πk with ∑k πk = 1. This formulation gives a convenient form to the
likelihood function that has explicit partial derivatives with respect to the parameters of the models.
The maximum likelihood estimator is usually computed using the Expectation-Maximisation (EM)
algorithm to fit its parameters [35].

We only scratched the surface by introducing a few key concepts of machine learning and some
of its most known algorithms. We could have discussed decision trees or kernel based methods as
well.
A lot of classical machine learning algorithms have the convenient property of being relatively
interpretable: linear models (such as canonical correlation analysis or logistic regression) can be
inspected using their weights, principal component analysis looking at directions with high variance,
random forests inspecting decisions, and so on. There even exist mechanisms to select most relevant
features to solve the learning task such as the l1 regularisation.

However, a paradigm shift has been observed in the 2010’s. Artificial NNs had been there for
quite a while now [302], but only then have researchers begun to propose architectures capable of
surpassing all other machine learning models on specific tasks, in particular in computer vision using
Convolution Neural Networks (CNNs) [68, 207, 321]. This opened up a whole new chapter in machine
learning: NN based learning, also called Deep Learning. Nowadays, it is widely deployed in almost
every domain where machine learning is used. In particular, it offers very flexible learning algorithms
and shows good abilities to exploit data structure to automatically learn relevant features without the
need of explicit expert feature engineering.

2.2 . Deep learning

This sub-field of machine learning regroups all the learning algorithms using ANNs. They were
introduced in the early 60’s with Rosenblatt’s MultiLayer Perceptron (MLP) [302]. A MLP f is a
succession of linear projections, called dense layers, interspersed by non-linear activation functions.
You can find a schema of a dense layer in Figure 2.2. For instance, f(x) = f1 ◦ f2 ◦ . . . fK(x) is a
K-layer MLP, with fk(x) = ϕk(βx + b) where ϕk are activation functions. Today, ANNs are trained
using Stochastic Gradient Descent (SGD) [293, 10] or their extensions [195] through backpropagation
[227, 366]. Their use and application was slowed down by its high requirements in hardware and
data. Computing on Graphical Processing Units (GPU) demonstrates great performances for matrix
operations, and NN implementations were adapted to be trainable on such hardware [272, 58]. The
advent of large open databases such as ImageNet [92] allowed prediction performance increase in a
large panel of tasks, by providing a shared resource to collaboratively develop NN architectures and
assess their performances.

However, due to their intractable complexity, NN theory is poorly understood. A very surpris-
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ing phenomenon is their astonishing generalisation properties, which scales with their complexity,
unlike other ML model, which challenges the until then validated and illustrated bias-variance de-
composition in Fig. 2.1 to explain ML generalisation as a function of model complexity. Therefore,
NN expressivity properties have been described further to understanding their generalisation prop-
erties. It seems that their data adapted operation such as convolution operators implement inductive
biases which could be one source to explain these generalisation properties. Other than their sur-
prising generalisation characteristics, interpreting NNs is not straightforward in practice. We try to
describe a few explanation methods that tries to overcome this issue. And finally, we introduce an
unsupervised concept that has gained a growing interest with NNs called self-supervised learning. It
is grounded in learning representations enforcing inductive biases to the NNs by exploiting carefully
designed data manipulations.

(a) Dense layer

(b) Convolution layer
Figure 2.2: Schematic illustrations of NN layers. Black lines represent the parameters of the layers. (a)Dense (or fully-connected) layers connect all inputs to all output features (matrix multiplication). Thisis the type of layer that compose a MLP. (b) Convolution layers only connect neighbouring features.The represented layer is a 1D convolution kernel of width 3. We highlight the receptive field of theoutput feature s3 in grey, meaning the inputs from which it is issued. Credits to [138].

2.2.1 . Expressivity of NNs
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In the late 80’s, universal approximation theorems [82, 173] show that a 2-layer MLP can approx-
imate any continuous function on a bounded space. It has been extended since to other types of
neural networks and generalised to any function. Neural networks are parametric universal estima-
tors, but we do not yet know why they generalise so well [385]. This shows that machine learning
theoreticians do not have the proper tools to understand the great generalisation properties of NNs,
which is still on open research question. In particular, people argue that such generalisation proper-
ties would come from an implicit regularisation inherent to SGD [155], called Simplicity Bias [18, 349],
encouraging NNs to approximate the simplest function to solve a task. It was shown that this concept
is not enough to explain generalisation of neural networks, and can in fact hurt their performances
when NN overfits on simple features and can no longer detect features of interest [315]. A way to
improve generalisation of a NN architecture has consistently been to improve the inductive biases it
implements [144]. We refer to inductive biases every aspect of the learning algorithm that has an ef-
fect on the shape of the approximated estimator f , which are the properties of the explored functions
space (i.e. architecture of the NN), the loss function and the learning algorithm (e.g. SGD).

2.2.2 . Structure modelling and data-adapted operators
In this section, we focus on discussing how NNs model data structure by exploiting inductive bi-

ases for different data types. Considering geometrical deformationD of an input x, inductive bias can
take the form of invariance to such deformation. The predictor function f is invariant to D when for
all x ∈ X , we have f(D(x)) = f(x). This means that the output of the function f is not impacted by
the deformationD of the input. This is a good property for a classifying network on natural imaging,
mapping image to one class among others. Usually the label’s image should not be altered via trans-
lation for instance. However, considering the problem of image segmentation, translation invariance
is not a desirable property, because you would want the predicted class of the pixels to shift with the
translated image as well. This property is called equivariance. A function f is called equivariant to a
geometrical deformation D when for all x ∈ X , we have f(D(x)) = D(f(x)). We introduce below
some of these inductive biases and associated operators, along with the type of data they are usually
used to model.

Convolution. Convolutions were first introduced in 1980 [123] as an operator able to mimic the
hierarchy of cells in the visual nervous system [178], able to recognise patterns based geometrical re-
semblance and not affected by shifts. Convolution layers are composed of kernels. For simplicity, let’s
assume we are dealing with 2D image data. A convolution kernel is a rectangular patch with learn-
able weights. It can have a third dimension if the image data has multiple channels (e.g. RGB images).
When applied, this patch slides over the image and outputs the dot product between the patches
weights and corresponding image pixels. This mechanism allow to the kernels to learn features maps
equivariant to translation. Moreover, this strategy reduces drastically the number of weights of the
model, as illustrated in Figure 2.2, and parameters are shared across features. Convolution layers are
often followed by a pooling layer. Its role is to reduce the spatial dimension of output feature maps
from the convolution layer. It usually considers small areas of the output feature maps and aggre-
gates them into unique values, using a mean or a max function.
CNNs are translation equivariant because the convolution operator is translation equivariant by def-
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inition. CNNs can display translation invariance properties as well, inherited from the pooling oper-
ations. This invariance is not as interesting as equivariance, because it reflects the fact that these
networks erase some information, notably the position of identified patterns. CNNs were first ap-
plied to images for classification tasks, where such properties are very interesting, and this is were
convolutions have been applied the most up to today. You can find an illustration of a CNN in Fig-
ure 2.3. Many highly performing architectures rely on this operator [219, 321, 207, 159, 176]. They
have been applied to speech processing as well, using 1D convolution [199]. Lately, they have often
been use for image generation in generative models such as Variational AutoEncoders (VAEs) [197],
Generative Adversarial Networks (GANs) [139] or diffusion models [168, 295, 289]. Moreover, multiple
extensions of this operator have been proposed to be applicable in geometrical deep learning [40],
to learn from general graph structures. The equivariance / invariance properties of these extended
operators change according to their formulation and application. We discuss such operators in the
Section 3.2.1. Finally, they have been used extensively for segmentation task, especially in themedical
domain area, with the well-known and still widely used U-net [300] architecture. They are however
not equivariant to rotation, which can be very usefull in Segmentation tasks. For instance, capsule
networks [167, 306] implement equivariance to rotation or other local deformations and can show
improved segmentation performances compared to convolution [212, 283].

Figure 2.3: Inside a CNN. Bottom-up: input is a 2D RGB image of a white Samoyed. Convolutionfilters are applied channel-wise, then summed into the first layer output feature maps. The non-linear activation function Rectified Linear Unit (ReLU) is applied to these feature maps, which arethen spatially reduced using a max pooling operation, and input to the second convolution layer,and so on. From the last layer output feature maps, or representations, are predicted the weightscorresponding to each class. The network mostly predicts the image is that of a Samoyed. This imagewas drawn from [220].
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Recurrent units. The inductive bias implemented by recurrent units is that an object’s character-
istics depends on the preceding objects within a sequence. For instance, a word’s meaning depends
on the previous words in a sentence. Recurrent Neural Networks (RNNs) derive from the Ising model
introduced in the 20’s [43]. They were then extended to be adaptable [9] and trainable using gradient
descent [172, 305]. Extensions popularised these networks modelling long term dependencies using
gating mechanisms [169, 67]. Such networks work particularly well for speech processing and have
demonstrated better performance [145, 117] compared to conventionalmachine learning and became
State-of-the-Art (SotA). They have been used for text related task as well, such as language translation
[334], language modelling [189] and caption generation [354, 200] (image to text).

Attention. In attention mechanism, the inductive bias is less restrictive. It models the fact that
an object within a group relates strongly to a few other objects of the group. Its contemporary im-
plementation was proposed in 2017 [350] as part of a Transformer architecture for written language
translation. These Transformer based architectures quickly dominated all applications related to text
modelling by implementing themost famousmodels used nowadays (e.g. BERT [97], GPT [41], Gemini
[341], Mixtral [182]). Lately they have been used in computer vision as well [102], and have shown SotA
performances. Indeed, their attention mechanism allows a better use of the long range dependen-
cies within an image, but requires a larger amount of data than their convolutional counterparts. For
that reason they are not so practically applicable to domain with scarce data such as clinical medical
imaging.

2.2.3 . Lack of interpretability : black-box algorithms
Neural networks are highly expressive models, able to model data structure using various

inductive bias from prior knowledge. This expressivity, however, sacrifices interpretability, leading to
their designation as black-box models. In linear models, we can easily track features responsible for
predicting such class, i.e. question the model by directly inspecting it. This is not the case for NNs,
which learn non-linear functions thanks to their activation functions. This fundamental difference
led to most criticisms that neural network based models are facing.
Deep learning literature is mostly empirical: design choices are made, then tested implementing a
model and testing it on a task of interest. There are only a few works on neural network theory,
some of them were mentioned in Section 2.2.1, but DL research is mostly application-centred. For
instance, we do not yet understand why they generalise so well, without explicit regularisation [385],
as compared to other machine learning models. In addition, there is no guarantee in general that
the function learned using gradient descent for the empirical risk minimisation is a global minimum.
In fact, it is most often not the case, and sometimes a model is stuck in local minima "bassins" and
can not escape, notably in transfer learning [265]. Most theoretical questions around deep learning
have not yet been solved. Even their biologically inspired initial formulation [302] is empirical.
Additionally, some elements have brought worries to the safety of using such models. Indeed, it
has been shown that is is fairly easy to trick a model into doing a wrong prediction [42], by only
slightly modifying an input. This is called an adversarial attack and it has not been solved yet. Other
issues related to fairness of the trained NNs has brought attention as to the bias learned by a model.
Models are biased, because they can never see all the possible existing examples and outcomes.
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These issues in fairness [56] have exploded when Amazon was using an automatic system based on
a DL algorithm to select candidates for their recruitment processes. In particular, this algorithm was
more prone to select men than women2, because it was trained with more men profiles accepted
than women, which was due to the inherent societal bias that there is more men working is such
domain. The same append for COMPAS, a tool to aid decision in judiciary cases, which was shown
to wrongly attribute higher risk scores to black people than white people [245]. As human are most
often not aware of their biases, how can we make sure that the models we train are not ? This is still
an open research question.
Of particular interest, one can reasonably wonder why a model makes a decision / prediction. For a
system to aid decision designed for clinicians, the doctor usually must be aware of the markers that
lead a system to make a decision. This particular issue can be referred to as interpretability of NNs.

There is no consensus or mathematical definition of interpretability [228]. One popular defini-
tion is "the ability to explain or to present in understandable terms to a human" [101]. It is often
used interchangeably with explainability, even if some studies have attempted to clarify the concepts
[228, 101]. Interpretation can come in very various forms, with very different objectives and outputs.
Each of them come with specific properties and scope. Some ML models comes with built-in inter-
pretability, that can be presented as feature contributions (e.g. linearmodels) or rule-based decisions
(e.g. decision trees). In the following, we mostly consider interpretability methods for NNs, which are
intrinsically not interpretable, due to the complexity of the functions they learn. There aremany exist-
ing taxonomies [226, 51, 389] of interpretation methods. We will present below a few model-agnostic
methods, i.e. that are able to provide interpretation regardless of the class of function that is being
approximated by the ML algorithm [226, 51], as opposed to model-specific interpretation methods.
These methods are applies post-hoc, meaning after training the model. There exist methods acting
during training for improved interpretability [389], but we will not discuss them here.
Model-agnostic methods. Model-agnostic interpretability are techniques to produce explana-
tions of any ML model. They are therefore post-hoc, since there is no assumptions on the model
used. In particular, we present in this paragraph two of them, to give an intuition on the type of tech-
niques used by model-agnostic explanation tools. Local Interpretable Model-agnostic Explanations
(LIME) [292] focuses on giving interpretations of prediction score produced by any classifier. It uses
a sampling scheme which generates random data in the neighbourhood of a reference instance, for
which the model’s prediction is available. These newly generated data are classified using the same
model, and these prediction weighted by their initial distance to the reference. Then a simpler inter-
pretable by nature model, such as a decision tree, is trained on this new dataset. By interpreting this
model, we can understand locally the inital black-box classifier. Anotherworthmentionningmethod is
SHAP, which stands for SHapley Additive exPlanation [234]. This game-theory inspired work proposes
a unified framework for attributing feature importance with respect to predictions. It encompasses
other methods such as LIME within the framework and subsequently proposes SHAP values as a uni-
fied measure of feature importance. Even though these model-agnostic methods are theoretically
applicable to any ML model, they are limited to the relationship between input and output and do

2You can read more in this article.

https://www.cnbc.com/2018/10/10/amazon-scraps-a-secret-ai-recruiting-tool-that-showed-bias-against-women.html
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not leverage the intrinsic properties of the explained models. Some NN-specific interpretation tech-
niques try to overcome this drawback.
NN-specific methods. A very basic yet intuitive way to understand what a network learn is to
inspect its weights. In MLPs, this would not lead to very interpretable results, but CNNs have filters
which capture different geometrical pattern in an image for instance. We can easily visualise such pat-
terns. Moreover, attention-based networks such as transformers [350] or vision transformers [102]
can be interpreted by investigating attention maps of instances, which can provide reasonable in-
terpretations [49]. In a more general setting, interpreting NNs has mostly been developed for CNNs
in computer vision, and earliest works include gradient based feature attribution maps, also called
saliency maps [320]. Later, grad-CAM [313] was proposed, using the class-specific gradient flow in
CNNs, providing a coarse localisation map of important regions in the image for the classification
process. Many extensions of such methods exist and they have been extensively studied. However,
some works have shown that these gradient-based interpretability methods were unable to account
for internal mechanisms of CNNs, as they moslty focus on the first few layers to provide interpretabil-
ity [4], so they do not allow us to understand why deeper is better. This work [4] also shows that most
existing methods do not reflect feature importance in the decision process, but rather a kind of edge
detector. There is no consensus as to which method is the best for interpreting NNs, and it is still an
active research field.

2.2.4 . Self-supervised learning
Self-Supervised Learning is a statistical learning scheme which can be classified as an unsuper-

vised learning paradigm, since there is no requirement for human annotations in its formulations.
SSL has concentrated a huge research effort in the recent years. This is particularly the case, since
large databases have become openly available, and the fact that acquiring labels for every specific
task we try to solve using machine learning models is very expensive. The latest and most efficient
SSL techniques all use a supervisory signal called pretext task provided by the data itself, without
relying on the explicit use of human labels. These pretext tasks can be defined in various ways, but
we can identify commonalities and discrepancies. We distinguish in particular two types of method:
generative models and joint embedding architectures [319].
Generative models. Generative models work at the input-level, and attempt to generate or re-
construct data examplewith a distribution close toP(X). Their loss usually applies in theX-space and
assess how close the distribution of generated samples is to P(X). Such models can have different
forms. The simplest ones are Auto-Encoders (AEs) and their extensions. AEs were first introduced a
few years ago [166, 205], following the assumption that the data can be generated froma lower dimen-
sional manifold. They have been extensively studied and there exist many deriving methods such as
denoising AEs [352, 353]. These methods rely on the minimisation of the empirical risk, with as loss
function the squared error for continuous data and cross entropy for finite X-space. A variational
extension exists [197] and uses the Evidence Lower Bound as loss function, considering the empir-
ical risk minimisation problem as a likelihood maximisation problem (see Section 2.1.2). There are
many other works exploiting reconstruction as pretext task after artificially degrading inputs. Some
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use noise [352], others colourisation [387] or inpainting [278, 157]. They have been characterised as
Masked Image Modelling (MIM) methods [26], extending the concept of masked language modelling
[97] from natural language processing to images. Other SSL methods are specifically dedicated to
data generation, i.e. models learning to sample from P(X), such as GANs [139] or diffusion models
[168, 295].

Joint embedding architectures. These SSL methods process multiple views (possibly altered
versions) of an input signal through encoding networks, producing representations for each of the
views. Their loss is usually applied in a low dimensional embedding space. Numerous methods have
been developed, among which we can distinguish three families. Deep metric or contrastive learning
[24] techniques usually rely on encoders sharing the same weights, also called Siamese networks
[39], which were first applied to face recognition by learning a similarity metric between faces [65].
More recent contrastive learning techniques have shown great perfomances in SSL [60, 158], by
bringing close together in embedding space views coming from the same image, while repelling
them from others (referred to as negative samples). This contrastive technique is described in more
details in Section 3.3.1. Other works do not consider negative sampling, because of its dependence
on large batch size and hence heavy memory requirements. Rather, these methods solely focus on
bringing close together in embedding space different views from the same signal. These methods
have been shown to be prone to dimensional collapse [184], which happens when the embeddings
span a low dimensional space (or in the extreme case, maps all the views to the same constant).
Two main approaches exist to prevent it from happening. Self-distillation methods [24] use two
encoders, where only one of them is updated through gradient descent, and the second encoder
uses a running average of the other encoder’s weights [147, 49]. Another family of methods stems
from the canonical correlation analysis theory [24]. These methods [383, 28] intend to regularise the
co-variance matrix of the embeddings spanned from two views of the same signal, using different
criteria.

SSL methods are usually presented as unsupervised representation learning algorithms, yet
they are always evaluated using human annotations on unseen data, either directly using a linear
or K-NN predictor, or by fine tuning the weights of the encoder for the specific task at hand. Only
a few works [134, 130] have proposed unsupervised metrics for SSL hyperparameter tuning and
evaluation. In this context, the main goal of SSL algorithms is to provide good NN initialisation for
further downstream tasks of interest. This is called Transfer Learning (TL) and has great perspec-
tives, particularly in the medical field where it is impossible to have a large annotated dataset for
every existing disease. Note that it was shown suboptimal to use a supervised predictive task on
natural images to initialise a NN for a downstream medical task [286], due to the large domain gap
between natural and medical images. An appealing alternative is to pretrain using SSL on a large
cohort of healthy individuals, then transfer to a smaller clinical dataset to solve a task of interest [103].

Most of these SSL techniques rely on data augmentation. Recent joint embedding architectures
all identify data augmentation as a key component to achieve good performances [60, 147, 49], and
pretext tasks design in MIM [26, 24] are data augmentations as well. It acts as a mechanism to force
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the networks to only learn relevant features from the data, ignoring (or being invariant to) thoughtfully
designed data manipulations. They appear as yet another way to implement inductive bias in NNs.
This is why data augmentation is really at the core of SSL [24], while being always domain-specific,
which is one of the reasons why it is so difficult to apply it to other domains than natural image or
text (other being the existence of large openly available benchmarks such as ImageNet [92]).
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We present in the following the main contributions of this thesis.

In Chapter 3, we describe how to properly integrate cortical surfacemeasurements in NNs to properly
account for their underlying biological structure, using their spherical representations. Methodologi-
cal contributions and experiments are detailed.
In Chapter 4, we introduce the paradigm shift in psychiatry, which advocates for a more comprehen-
sive approach including multiple assessments. In this context, we propose to use Deep multi-view
Probabilistic Graphical Model (PGM)s to integrate these data in population cohorts. We propose an
interpretability model and stabiling procedure to alleviate the different variabilities encountered with
a statistical model when analysing population cohorts. This chapter focuses on introducing these dif-
ferent methological concepts.
In Chapter 5, we apply the proposed integration methods to the transdiagnostic cohort HBN in order
to discover shared biological neural bases across psychiatric disorders. In particular, we apply the
methods presented in Chapter 4 to discover transdiagnostic brain-behaviour associations.
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As introduced in Section 1.1.3, cerebral cortex is of major interest to study brain pathologies. The
cerebral cortex has a very complex structure, that varies a lot across individuals, and the links be-
tween particular shapes of the cortex and some diseases are still incompletely described and even
less understood. In fact, the brain is composed of two hemispheres, linked by the corpus callosum,
where each hemisphere appears to be wrapped of uninterrupted grey matter, composing the cortex.
This cortex has a highly folded structure, which allows a larger cortex surface area, developed during
the last trimester of pregnancy in parallel with the final migration of neurons in the cortical plate [288,
287, 332]. Beyond a large-scale organisation of primary sulci that is consistent between individuals,
albeit variable in details, it is recognised that cortical structural features are often associated with
various brain pathologies [129]. With the advent of non-invasive neuroimaging, this cortical structure
can be very precisely inspected using T1-weighted sMRI, and there exist tools to extract such structure
from the 3D volumes, to model the cortical surface as a graph.

3.1 . The cortical structure can be described by a graph

In the following, we introduce how the brain cortex can be represented as a graph. We start by
describing the cortex and some of its known properties, then we decline the mathematical notion of
graph, and finally we describe how the cortex can be modelled as a graph and the existing software
to extract a graph representation of the cortical surface from brain sMRI.

3.1.1 . Brain cortical surface

The cerebral cortex plays of key role in sensorimotor, cognitive socio-emotional, and mentalising
functions. These unique capabilities of humans that are embedded in their cortex, derives from
their evolution process [339]. Through late in-utero development, childhood and adolescence,
and young adulthood, a sequence of brain developments ensures continuous progression from
the initial cortical plate to the cortex organised in forms and functions. Genes and molecular
mechanisms which underlie the developmental process govern the final cortical organisation, and
their inter-individual variants explain a part of the mature cortex variability [304]. The interactions
between the environment and the maturation of the brain are expected to favour and influence the
cortex organisation [75]. It is only natural to assume it may produce abnormal forms and functions
too.

In vivo MRI enables to quantify macro scale properties of cortical structure, such as cortical thick-
ness, surface area, cortical volume. It also provides the opportunity to measure the sulcation of the
cortex either by measuring various indices of sulcation or explicitely modelling the sulci shapes from
the cortical surface. All these measures are proxies of the underlying biological mechanisms happen-
ing in the brain. Since technological tools have allowed us to access such biological markers of the
cortical surface, people have tried to find correlates between this biological information and various
psychopathological traits observed in autism spectrum disorders, depression or schizophrenia.

3.1.2 . Graphs: a mathematical notion to describe data structure
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Let G = (V,E) be a graph. V ⊂ Rp is the set of vertices of the graph. Each vertex has p

features. E ⊂ {1, . . . , |V |} × {1, . . . , |V |} describe the edges between the graph vertices. Edges can
be directed or undirected, hence composing directed or undirected graphs respectively. Edges can
have description features as well, such as weight, but we restrain the definition to binary edges.

Another way to define a graph is to use its adjacency matrix. Let A ∈ R|V |×|V | be the adjacency
matrix of G. Then we have Aij = 1(i,j)∈E . In an undirected graph, A is symmetrical. Let restrict
ourselves to undirected graph, as the following applications and operators mainly use undirected
structures.
We define the degree di of a node i as its number of neighbours, i.e. di = | {(j, k) ∈ E, j = i} | =∑

j Aij . LetD be the degree matrix of G. D is defined such that

Dij :=

{
di if i = j

0 otherwise
We can now define the LaplacianmatrixL of the graph G asL = D−A. The Laplacian relates tomany
useful properties of a graph. Nodes can have embedded features as well, convenient to represent
data or node characteristics.

3.1.3 . Modelling cortical surface as a regular mesh
A mesh is a particular type of undirected graph which aims at parcelling an object’s surface. It is

used to represent continuous surfaces in a discrete manner, the same way an image is represented
using pixels on a screen. It is more flexible as it can represent more complicated topologies than
regular 2D grids. The cortical surface can be seen as a folded sheet, with most of its surface buried
between folds. A spherical template mesh is a natural choice to align subjects brain because it
allows to conserve the topological structure of the surface, notably its local connectivity. Two
voxels representing neighbouring gyri can be closer in image space than each of them to a voxel
representing a part of the in-between sulcus. Yet this property is not desirable considering the
biological properties of the cortical surface, because a good cortical surface representation should
present tissue continuity properties. In fact, each hemisphere is homotope to a sphere, which can
be illustrated using an inflating procedure (as shown in Fig. 3.1).

To properly measure properties of the cortical mantel such as thickness or curvature, expert
tools have been specifically developed [86, 120, 32, 119]. They rely on various processing steps to
process T1-weighted sMRI and transform it in order to properly measures such proxies of biology. For
instance, FreeSurfer [86, 120] includes a dedicated procedure to isolate cortical grey matter from the
rest of the brain. It uses meshes to approximate the cortex structure. Preprocessing steps include
removal of non-brain tissues, registration in the Talairach space, segmentation of grey / white matter,
voxel intensities normalisation following MRI gradients using white matter as reference, tessellation
using meshes to represent the borders between white / grey matter and grey matter / CSF. These
subject-level tessellations are then inflated to a sphere (one for each hemisphere) and registered to
a spherical template defined using shared cortical folding patterns. Throughout these procedures
are computed various measures, such as gyrification index, curvature, area or thickness, that are
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represented on this spherical mesh.
In parallel, neuroanatomists have been studying the structure of the brain in various ways and

proposed many atlases, that are consistent across individual variations, allowing to study the brain
within a population and finding biomarkers that are not due to subject-specific variations of anatomy.
There are many ways of building an atlas, using ex-vivo or in-vivo brains, with histology techniques
or MRI. Some of them are built using cytoarchitecture, others use brain functions, some are defined
using white fiber bundles extracted using tractography technique from diffusion MRI, and others
defined using sulci morphology. Once an atlas is defined, it can be projected onto this spherical
template used by FreeSurfer, to represent the cortical measures averaged over the ROIs defined by
the atlas. Freesurfer includes Desikan [94] and Destrieux [96] parcellations, two atlases defined using
cortical folding patterns. There is no consensus as to which atlas is the best (for instance Destrieux
defines a finer parcellation than Desikan), because it always depends on the application. It is a way
to enforce some kind of structure in the data using a prior knowledge.

On the other hand, using atlases might not be the best approach to finding biomarkers of brain
pathology. Main arguments regard the lack of precision of these atlases. Indeed, depending on the
parcellation, we usually consider coarse average of measures over large areas. While it can smooth
some reconstruction related noise in the data, it can also hide small effects that can be relevant to
explain pathologies [124]. Others say that it harms reproducibility, since there are somany atlas avail-
able that research using one atlas will rarely find the same results as another using a different one
[124]. And finally, when using cortical atlases to structure data, the spatial information is not used,
since it is usually treated as tabular data. A solution to the aforementioned issues is to handle cortical
surfaces at the mesh level. The template spherical mesh used by FreeSurfer is a regular icosahedron
of order 7, with approximately 160K vertices per hemisphere. The order of the icosahedron can be
reduced easily, modifying resolution without changing its structure: all vertices have 6 neighbours,
except for 12 of them which only have 5. This very regular graph structure allows us to define specifi-
cally adapted operation such as convolutions, that are able to leverage themesh structure to increase
representational power and reduce computational burden in neural networks for instance.

3.2 . Opportunities for modelling cortical structure using Neural Networks

In this section, wewant to support the fact that NNs basedmodels are suited formodelling cortical
surface structure. The well-known convolution operator implemented for images has been extended
to be able to learn from less restrictive data types, generalising its definition to other geometries such
as graphs [40]. In the following, we describe existing graph convolution operators, which are able
to leverage cortical surface structure, and their numerous applications in neuroimaging for solving
different problems.

3.2.1 . Structure-modelling operators
Graph convolutions and geometric deep learning. Due to the complex nature of a graph,
it is not as straightforward as for images to define a convolution operator. A NN implemented using



3.2. OPPORTUNITIES FOR MODELLING CORTICAL STRUCTURE USING NEURAL NETWORKS 53
convolution operator should be equivariant via translation thanks to convolution properties. For 2D
or 3D images, translations happen in 2 or 3 directions. In a graph, translations can not be defined the
same way, because each node can have a different number of neighbours.
There exist many graph convolutions [40, 90, 198, 351] operators, developed to work with any kind
of graph. Some of them [90, 198] rely on graph spectral theory and leverage the graphs Laplacian to
perform convolution in Fourier space.
Others [19, 261, 351] use a spatial approach. In particular, [351] uses an attention mechanism (see
Section 2.2.2), introduced firstly [350] to represent words within a sentence, to represent nodes with
respect to their neighbours.
In the case of regular spherical meshes, when studying registered spherical cortical surface for in-
stance, these approaches are undully computationally expensive because they do not leverage the
specificities of the regular icosahedron. Various convolution strategies exist to work with such spher-
ical or icosahedral topologies.
Spherical mesh operators. We will not draw up an exhaustive list of spherical convolution
operators but rather to give a brief overview of their properties. More systematic reviews [390] exist
in the literature.
To work with spherical mesh specificities, Defferard et al.[91] proposes convolution operators
in the spectral domain with interesting properties like rotation equivariance and independence
from spherical sampling (i.e. discretising mesh). Similarly, other methods implement convolution
with desirable properties for spherical data [70, 110], using spherical harmonics to define rotation
equivariant convolutions. But the computational cost is heavy and we argue these properties are
not mandatory for our problem, because our data is always registered with the same sampling of
the sphere.

The simplest strategy consists in projecting textures on a 2D rectangular planar surface using
azimuth and elevation, called EquiRectangular Projection (ERP), and apply a classical 2D convolution
with a particular padding for border continuity in the azimuth axis. This introduces deformations
that have been shown to harm performances [27, 314]. Others strategies were developed specifically
for this type of data by accounting for the regularity of such spherical mesh, avoiding most of these
deformations:

• One uses patches [314] of different shape in the tangent plane, including Rectangular Patches
(RePa). Using interpolations and projections, a classical convolution can then be used over this
patch. Once again, the number of operations makes it not the most efficient and it inevitably
introduces deformations.

• Another convolution approach [183] uses differential operators computed over the 1-ring neigh-
bourhood of each vertex to define a convolution on the icosahedral mesh. This definition is
interesting for our setting and was applied in previous studies using the cortical surface data
[277].

• Finally [394] proposes to order the neighbours according to their angle in the sphere tangent
plan on each vertex, and assign them the corresponding index, starting in the middle. On the
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regular icosahedron, there are exactly 12 vertices with 5 neighbours, the other all have 6 neigh-
bours, at any order. When a vertex has 5 neighbours, we simply assign the center node indices
0 and 1. This provides an almost always consistent neighbourhood definition and therefore a
quite efficient convolution operator, called Direct Neighbour (DiNe).

In our experiments, we will consider the DiNe convolution operator, because it is very efficient while
maximally taking advantage of the regular icosahedral mesh. Its definition is close to the classical 2D
or 3D image convolution, which makes it easy to improve with further developments [392]. It was
found to perform well on a variety of tasks as compared to other graph convolutions and spherical
convolutions [113]. You can find an illustrated example of the DiNe convolution in Figure 3.1.

Figure 3.1: Illustration of the Direct Neighbour (DiNe) convolution. a) Measurements of cortical thick-ness (thick), curvature (curv), and sulcal morphology (sulc) in one subject’s left and right hemispheres.Each of these metrics represent a channel (d = 3 channels) for each vertex the two surfaces (left andright hemispheres). b) The same hemispheric cortical topologies are then inflated onto a regularicosahedral sphere of order 5. c) Finally, the cortical measures are fed into a DiNe convolution thattransforms a d-channel input cortical feature map (d = 3 in the first layer) into a C-channel outputfeature map. Note that the convolution kernelQ contains weightswi.

3.2.2 . Applications modelling cortical surface structure using NNs
Up to today, NNs modelling structure using cortical surface adapted operators as introduced

above have been applied to solve a variety of challenges [390]. Interestingly, we can note that most
of these applications focus on early processing steps such as surface reconstruction, registration
or parcellation, in order to improve classical MRI processing pipeline such as FreeSurfer, by solving
these problems faster. Other applications concentrate on phenotype prediction and our work will be
more situated in this line of work.
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Improving over current surface construction pipelines. FreeSurfer [86, 120] is a widely
used tool for sMRI processing, and is composed of various processing steps for cortical surface
extraction and registration to a spherical template (fsaverage). It is however relatively slow, with
processing times of about 3 hours to extract cortical measures and register them on the fsaverage
template. DL based methods have been proposed to accelerate this preprocessing pipeline [162] and
these methods fall in this line of literature.

FreeSurfer makes errors when reconstructing the cortical surface, some of which are reflected
by the Euler number, which gives a quality control metric for the reconstruction step [301]. This step
consist in tessellating the white / grey matter and pial / CSF boundaries. Some methods [79, 367] use
3D volumes directly to reconstruct these surfaces, were others [236, 171, 218, 235] rely on CNNs and
mesh deformation methods. However, the latter methods all use FreeSurfer reconstructed surfaces
as groundtruth, so they are limited by FreeSurfer performances.

Cortical registration consists in smoothly mapping reconstructed surfaces to a template. The
fsaverage spherical template using a regular icosahedral sampling is commonly used. Early work [62]
using DL for cortical surface registration used 2D ERP projection, introducing unevitable deforma-
tions. More advanced methods use spherical adapted operators such as DiNe to solve this problem
[391] and latest work [393] propose to solve this jointly with cortical surface parcellation.

Cortical parcellation consists in attributing atlas labels to reconstructed cortical surfaces. It is very
related to cortical registration as labels are usually attributed to vertices on the spherical template
before being propagated back to the reconstructed surfaces. An early NN basedmethod proposes to
compute 2D convolution over tangent patches to the spherical surface to assign Desikan labels [373]
to each of these non-registered vertices. Leveraging the regular icosahedral sampling of the fsaver-
age template, the Spherical U-Net [394] introduces the DiNe convolution operator to build cortical
parcellation of the child brains. Another approach using convolution over a 1-ring neighbourhood for
cortical surface parcellation was proposed [277]. It exploits the spherical structure of the surface by
employing a differential spherical convolution operator [183]. Other approaches [33, 80, 109, 143, 374,
225] use general graph CNN to avoid relying on a previous registration step.

Phenotype prediction. On the other hand, cortical surface data has been exploited for
phenotype prediction or longitudinal modelling. The latter consist in modelling the evolution of
structural or functional parameters (e.g. curavture, thickness and functional connectivity) of the
cortical surface. DL based methods modelling structure through convolutional operator were
shown to better predict changes in cortical morphology / function than their conventional machine
learning counterparts [231, 394, 267, 291]. Other prediction tasks include age, sex and other cognitive
capacity such as Full Scale Intelligence Quotient (FSIQ). Finding aging biomarkers is of interest in
order to understand the development process of the brain and related brain conditions such as
Schizophrenia and Alzheimer’s diseases [71]. Seong et al. [314] predicts sex from cortical surface
introducing the RePa convolution operator, where other works [230, 61, 85] additionally try to
find cortical biomarkers by predicting age or cognitive phenotypes using graph CNNs. There is
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no consensus as which strategy is the best between using general graph convolution or specific
spherical operators such as DiNe [113] for predicting different phenotypes, even if spatial convolution
filters appear to perform better than their spectral counterparts. Regarding prediction of condition
status, most approaches using spherical or graph convolutions for cortical surface modelling [262,
116, 27] have focused on Alzheimer’s disease prediction. Another approach [142] proposes a general
graph adaptive pooling operator and predicts diseases status from cortical surface and regresses age.

All these applications illustrate the pertinence and available tools to leverage cortical structure
from cortical surface data. It can be presented either directly on brain reconstructed surfaces or reg-
istered onto a spherical template. Having a spherical template allows MLmodels to find patterns and
biomarkers of the cortical surface consistent across individuals. Newly developed graph or spheri-
cal specific convolution operators allow to properly model the cortical structure represented on this
template and have demonstrated good prediction performances. However, thesemethods have only
been applied in supervised prediction settings, relying on manually labels data examples, which is a
very limiting setting in neuroimaging andmore generally in medical imaging. Self-supervised learning
methods are being developed (see Section 2.2.4) to properly learn from unannotated data. Their ex-
tension to cortical surface data requires a few adjustment, including the definition of cortical surface
data augmentations.

3.3 . Self-supervised learning on cortical surface

Most applications using cortical surface are prediction or segmentation supervised tasks. The
development of efficient icosahedral operator for NNs and advances in unsupervised – and more
particularly self-supervised – learning uncovers new opportunities for exploiting cortical surface data.

Data-driven studies of brain pathologies are often hampered by the scarcity of available data,
leading to potential failures in the discovery of statistically significant biomarkers. Key factors include
recruitment of rare disease patients and acquisition costs. Many research efforts have attempted to
address this challenge [107], but it has been shown that finding reproducible biomarkers requires a
large amount of data [240], an accentuated effect when using DL techniques [103]. Transfer learning
has become a promising solution with the advent of large cohorts such as OpenBHB [105]. Transfer
learning consists of training a neural network with pretext tasks on a large dataset. The trained NN
is then fine-tuned on a smaller, application-specific dataset. However, transfer learning for medical
imaging is still in its early stages. Interestingly, there is a consensus that using a natural image
dataset may not lead to the best transfer strategy [286, 8].

In recent years, several training schemes have been proposed for learning "universal" data rep-
resentations [36]. The goal is to summarise as much of the semantic information as possible. Among
the most promising approaches are self-supervised schemes that can provide good NN initialisation
for transfer learning [49, 147, 384]. Specifically, contrastive learning uses data augmentation to
structure the learned latent space [60, 158, 194]. Almost all SSL techniques rely heavily on the data
augmentation [49, 60, 147, 383]. Currently, data augmentation for medical imaging is only available



3.3. SELF-SUPERVISED LEARNING ON CORTICAL SURFACE 57
for image data defined on a regular rectangular grid.

In this section, we refer to domain-specific architectures by defining Spherical Convolutional Neu-
ral Network, that use such specific convolution operators introduced in Section 3.2.1, and in particular
the DiNe operator. To train SCNNs using SSL, we introduce three baseline and two original augmenta-
tions specifically designed for the brain cortical surfaces (Fig. 3.3). The three baseline augmentations
are directly inspired by natural image transformations: the SurfCutOut involves cutting out surface
patches, the SurfNoise adds Gaussian noise at each vertex, and the SurfBlur applies Gaussian blur.
The proposed MixUp augmentations build on the original idea of randomly selecting some cortical
measures and replacing them with realistic corrupted samples: the HemiMixUp exploits the sym-
metry of the brain and permutes measures between hemispheres of the same individual, and the
GroupMixUpbootstraps vertex-basedmeasures froma group of similar individuals. We illustrate how
these augmentations can fit into the well-known and illustrating SimCLR [60] self-supervised scheme.
We provide a comprehensive analysis to investigate the learned cortical surface representation us-
ing self-supervised learning with SCNNs and the proposed augmentations. The representations are
evaluated using different downstream tasks, which consist of predicting age, sex and a cognitive phe-
notype. The experimental setting is illustrated in Fig. 3.2.

Figure 3.2: Overview of the proposed evaluation framework for spherical augmentations: a) inputcortical measures (here curvature) inflated to a sphere, b) a set of adapted and domain-specific aug-mentations T that allow the generation of augmented cortical measures, c) a self-supervised modelwith parameters θ consisting of a Spherical Convolutional Neural Network (SCNN) and a MultiLayerPerceptron (MLP) projector, and d) evaluation of the model’s frozen representations using a linearpredictor (here the mean absolute deviation between linearly predicted brain age and true age).

3.3.1 . Contrastive Learning
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Constrastive learning is a recent SSL scheme, able to learn representations with high semantic
content, very generalisable and transferable. It is classified as a deep metric learning SSL algorithm
[24]. It relies on the principle stating that two objects with similar (or dissimilar) semantic should be
close (or far appart) in representational space, and uses the deep metric learning loss infoNCE to
enforce it [325, 323, 273].
There are different way of defining semantic. In a supervised setting, the sole semantic we try to
capture is label related. In this sense, two data points with same label are semantically identical. We
can see how this definition is quite limiting. In an unsupervised setting, the definition of semantic
is more complex. It depends on the considered object. A trivial assumption is that an object
has the same semantic as itself. With this in mind, we can try to apply semantically preserving
transformations (i.e. augmentations) that can modify a data example without changing its semantic
content. In natural images, we know some invariance properties, that can lead us to easily define
augmentations to produce modified version of an image without changing its semantic too much.

In particular, contrastive learning as gained in popularitywith SimCLR [60], offering a SSL paradigm
that relies on the InfoNCE loss and a range of classical data augmentations (e.g. crop, cutout, color
distortion or noise). Using a set of stochastic transformations T , the network tries to bring closer in
representation space two augmented views t(x) and t′(x), t, t′ ∼ T of the same example x, while
repelling their representation from that of other augmented examples.
Let f be the encoder network, and g a non-linear MLP, hereafter referred to as projector. We note z =

g(f(x)) the output embeddings. We randomly sample a minibatch with n examples. Each example
is augmented twice using transformations t, t′ ∼ T , providing n positive pairs among 2n examples.
Negative pairs correspond to every other pairs within the minibatch. This is the InfoNCE objective
optimised by the network:

l(i, j) = −log exp(sim(zi, zj)/τ)∑2N
k=1 1{k ̸=i}exp(sim(zi, zk)/τ)

(3.1)
where 1{k ̸=i} ∈ {0, 1} is the indicator function evaluating to 1 iff k ̸= i, τ a temperature pa-
rameter, and sim a similarity function, usually defined as the normalised scalar product, i.e.
sim(zi, zj) = zTi zj/(∥zi∥∥zj∥). In particular, we compute this loss for every positive pair (i, j) and (j, i)

of theminibatch. Intuitively, we can see that the numerator of this loss will try to bring closer together
embeddings coming from augmented view from the same examples, while the denominator will
repel them from others, in representation space. In practice, such contrastive approaches are very
reliant on the size of the dataset and hardware, because its performances scale with batch size.

In order to use such SSL algorithms, we need to define sets of transformations T that preserve
cortical surface semantic, while offering a challenging contrastive prediction task.

3.3.2 . Augmentations on the Cortical Surface
We propose two types of augmentations. Baseline augmentations refer to augmentations that

were derived from similar augmentation defined and commonly used on rectangular grid data such
as natural images. We propose to use an equivalent formulation on cortical surface data. Addition-
ally, we propose MixUp augmentations, specifically developped for cortical surface data, where some
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randomly selected vertices and replaced by noisy values. We introduce two strategies to implement
MixUp augmentations.
Baseline augmentations. All augmentations defined for natural and medical images are not
directly applicable to the cortical surface. In a self-supervised scheme, an effective augmentation
should reflect invariances that we want to enforce in our representation. It is not a requirement that
these augmentations produce realistic samples. Their goal is to provide synthetic constrastive hard
prediction tasks [60, 345]. Theymust also be computationally efficient. For example, geometric trans-
formations such as cropping, flipping, or jittering cannot be applied to cortical measures. We could
use small rotations as proposed in [392], but such an augmentation is not computationally efficient
due to multiple interpolations and less effective in nonlinear registration cases. We adapt three base-
line domain-specific transformations consisting of cutting out surface patches (SurfCutOut), adding
Gaussian noise at each vertex (SurfNoise), and Gaussian blurring (SurfBlur). Specifically, the Sur-
fCutOut sets an adaptive neighbourhood around a random vertex to zero. The neighbourhood is
defined by R concentric rings of vertices (for the definition of a ring, see the previously introduced
DiNe operator in Section 3.2.1). On structural MRI images, a cutout strategy has proven its efficiency
in a similar contrastive learning setting [104]. Then, the SurfNoise adds a Gaussian white noise with
standard deviation σ1 (to weight the signal-to-noise ratio), and the SurfBlur smooths the data by ap-
plying a Gaussian kernel with standard deviation σ2 (which controls the spatial extent expressed in
rings).
Proposed MixUp brain cortical augmentations. Here, we assume that the structural mea-
sures across the cortical surface have a vertex-to-vertex correspondence for both hemispheres. We
propose to randomly select vertices and their associated cortical measures and to replace them with
noisy realistic ones. A similar approach has been proposed by Yoon et al. [379] for tabular data, and
a comparable augmentation has been used for natural images in supervised contexts by mixing up
labels [386]. All augmentations are applied on a cortical measure and hemisphere basis. A corrupted
version x̃ of a cortical measure x ∈ RP , where P is the number of vertices, is generated as follows:

x̃ = m⊙ x̄+ (1−m)⊙ x (3.2)
where ⊙ is the point-wise multiplication operator, x̄ is a noisy sample to be defined, andm ∈ {0, 1}P
is a binary random mask. In our case x ∈ {x1, . . . , xN}, where N is the number of subjects. The
proposed HemiMixUp and GroupMixUp augmentations offer different ways to construct x̄ (Fig. 3.3).
The mask m is generated by drawing binary random numbers from a Bernoulli distribution B(p),
where p is a hyperparameter controlling the proportion of x to be modified. In both cases, the
augmentation is done at the subject level.

HemiMixUp. This augmentation randomly permutes a subject’s measurements at specific ver-
tices across hemispheres, assuming a vertex-to-vertex correspondence between hemispheres. Con-
sidering the left hemisphere, we get:

x̃lefti = m⊙ xrighti + (1−m)⊙ xlefti (3.3)
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Figure 3.3: Illustration of the considered cortical augmentations: a) the three baselines, b) the pro-posed HemiMixUp, and c) the proposed GroupMixUp brain cortical augmentations. In the Group-MixUp, groups are defined from the reduced input data using PCA embeddings colored by age. Thearrows in b) and c) represent how the cortical measures aremodified and are explained inmore detailin 3.4.

where xlefti and xrighti are the left and right hemisphere measures of the subject i, respectively.
GroupMixUp. The GroupMixUp augmentation randomly bootstrapsmeasures at specific vertices

across a group of K subjects Gi = {g1, . . . , gK} sharing similar cortical patterns with respect to the
i-th subject. We aim to generate realistic noisy measures without missing hemispheric asymmetries
by exploiting the group variability. We define Xi = (xg1 , . . . ,xgK )

T ∈ RK×P . Considering the left
hemisphere, we get:

x̃lefti = m⊙ diag [MX left
i

]
+ (1−m)⊙ xlefti (3.4)

where diag is the diagonal operator, and M ∈ {0, 1}P×K is the random selection matrix. Each row
of M selects a particular subject and is generated by drawing a random location from a uniform
distribution U(1,K). The Gi grouping relies on a PCA trained on the residualised input data. The
residualisation is performed using ComBat to remove unwanted site-related noise [121]. We use a
K-Nearest neighbours (with Euclidean distance) in the PCA space to define the group Gi. This step isperformed only once before training, with little computational overhead. It is important to note that
this strategy builds groups from a semantically meaningful space which maximises the explained
variance of the data. The first PCA axis is strongly related to age, as shown in Figure 3.3-c). Groups
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Figure 3.4: Schematic illustration of the a) HemiMixUp and b) GroupMixUp augmentations (singlemeasure d = 1 example). From Eq. 1, we generate a corrupted version x̃ of a cortical measure
x ∈ RP , with P the number of vertices, by using a binary random mask m ∈ {0, 1}P , and a realisticnoisy sample x̄. The generation of x̄ is illustrated in the green frames. a) The HemiMixUp augmen-tation defines x̄ as the controlateral cortical measures assuming a vertex-to-vertex correspondencebetween hemispheres. b) The GroupMixUp augmentation defines x̄ from a set of K similar corticalmeasures grouped in X ∈ RK×P . The random selection matrixM ∈ {0, 1}P×K allows the generationof a realistic noisy sample x̄. With the GroupMixUp augmentation, we can generate L realistic noisysamples from the same subject by drawing different selection matricesM .

are formed independently for each individual’s hemisphere.
By inverting the left and right notations in equations 3.3 and 3.4, the formulations hold for the

right hemisphere. These two MixUp augmentations are further illustrated in Figure 3.4.

3.4 . Experiments and validation

This section introduces the implemented experimental setting to validate our SSL approach on
cortical surface data, leveraging our proposed data augmentations and specific SCNNs architectures.
More precisely, we start by describing the datasets used, the selected SSL scheme, how we select and
evaluate themodels and howwe compare the proposed approach to classical supervised approaches
using the same SCNN architectures. We then discuss the obtained results and their implications.

3.4.1 . Data and settings
Datasets. The T1-weighted structural MRI data are processed with FreeSurfer, which calculates
thickness, curvature, and sulcal morphology for each cortical vertex [120]. Interhemispheric registra-
tion (XHemi) is performed to obtain vertex-to-vertex mapping between hemispheres [146]. Inflated
hemispheric cortical topologies are finally expressed on a regular order-5 icosahedral sphere (around
10K vertices). We use two datasets to demonstrate the proposed augmentations. First, we use the
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OpenBHB, includingmore than 5000 individuals (age distribution 25.3±15.0) with images coming from
multiple acquisition sites [105]. The cortical surface extracted measures and registered on the fsaver-
age are available for all the participants, using the Euler number asQuality Control (QC), keeping those
with Euler < −217 [301]. We use the so-called OpenBHB internal train and test sets (with the same
imaging acquisition sites). We further split the OpenBHB internal test set into validation and test sets
(hereafter referred to as internal test), preserving the population statistics (age, sex, and acquisition
site). Finally, we keep unchanged the OpenBHB external set (hereafter referred to as external test),
which consists of subjects with a similar age distribution but disjoint acquisition sites. This set is used
to evaluate generalisation and robustness to unseen sites. Second, the Healthy Brain Network (HBN)
cohort, which includes more than 1700 children (age distribution 10.95± 3.43) with behavioral speci-
ficities or learning problems [6]. After applying the same quality control as for OpenBHB images, we
keep 1407 subjects. We split the data into training (80 %) and test (20 %) sets, preserving population
statistics (age, sex and acquisition site). Some subjects (1073) have the cognitive score WISC-V FSIQ
available.
The self-supervisedmodel. SimCLR [60] contrastive learning strategy attempts to bring two rep-
resentations of the same transformed sample as close as possible in the model latent space, while
repelling other representations (more details in Section 3.3.1). We implement this model following the
recent literature on self-supervised learning, which consists of an encoder and a projector. For the
encoder, we choose a single SCNN architecture to facilitate the comparison between the methods
(see Appendix Tab. A.1). It has four convolution blocks. Each convolution block consists of a DiNe
convolution layer followed by a rectified linear unit and an average pooling operator [394]. There
are two branches in the first convolution block, one for each hemisphere. The resulting features
are concatenated on the channel axis and piped to the network flow. For the projector, we imple-
ment the architecture recommended in [60], a MultiLayer Perceptron (MLP). The model is trained on
the OpenBHB training set. Three augmentation combinations are considered during training: all the
baseline brain cortical augmentations (Base), Base + HemiMixUp, and Base + GroupMixUp. The entire
procedure is repeated three times for each combination (nine trainings in total) to obtain a standard
deviation for each prediction task described below.
Model selection and evaluation. In self-supervised learning, the training loss, even when eval-
uated on a validation set, indicates convergence but does not reflect the quality of the learned rep-
resentations [359, 307]. As suggested in the literature to overcome this problem, we add a machine
learning linear predictor on top of the encoder latent representations during training (ridge for regres-
sion and logistic for classification) (Fig. 3.2). We then estimate and monitor the associated prediction
score from the validation set at each epoch (Mean Absolute Error (MAE) and coefficient of determi-
nation R2 for regression and Balanced Accuracy (BAcc) for classification). This score is only used to
monitor the training, leaving the SimCLR training process completely unsupervised. Most network,
training and augmentation hyperparameters (see Appendix Tab. A.1 and Tab A.2) are the same and
were fixed by testing several values for age prediction. Exceptions are the number of epochs and
the l2 regularisation strength of the ridge and logistic predictors, which were set by using the evalu-ation criteria corresponding to the final task. Finally, we evaluate the trained models with the same
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strategy for age and sex predictions on all cohorts and for FSIQ prediction on HBN. Age, sex and FSIQ
are known to be proxy measures to investigate mental health [84]. They represent features that a
pre-trained self-supervised model should be able to learn and generalise to unseen data. Due to the
discrepancy in age distribution and the lack of clinical variables of interest, the linear predictors are
fitted to the OpenBHB and HBN training representations. Finally, the OpenBHB internal and external
test sets and the HBN test set are used to evaluate the prediction scores.

Model comparison. Wecompare the proposed SimCLR-SCNNmodelwith supervised SCNNs. The
supervised models consist of the same encoder followed by a linear predictor. The training loss for
these supervisedmodels depends on the task at hand (l1 for regression and cross-entropy for classifi-cation). These supervised models will be referred to as age-supervised if they were trained to predict
age, and sex-supervised if they were trained to predict sex. Each supervised model is trained 3 times
as well, to derive standard deviations, on the same train set as self-supervised models. They are eval-
uated the same way as self-supervised models: task-dependent machine learning linear predictors
(ridge for regression and logistic for classification) are fitted to the learned representations from the
SCNN encoder and evaluated on the test representations.

3.4.2 . Results
Self-supervised SCNNs generalise better than supervised SCNNs. On OpenBHB, com-
pared to a much more specialised supervised SCNN setup, a SCNN trained with the SimCLR self-
supervised learning framework and the proposed augmentations shows a rather comparable perfor-
mance for each of the investigated tasks (Table 3.1-a). For example, on the internal test, the SimCLR-
SCNN age-MAE scores are 4.87, 4.72, and 4.55 for the Base, Base + HemiMixUp and Base + Group-
MixUp augmentations, respectively. These scores are slightly worse than the predictions of the age-
supervised SCNN (4.0 age-MAE), which is expected since the latter was trained in a supervisedmanner
to learn good representations for predicting age. However they remain comparable and largely out-
perform the sex-supervised SCNN (6.2 age-MAE). The same trend can be observed for the R2 for the
age prediction task and the BAcc for the sex prediction task for all test sets. Remarkably, for some
tasks, the SimCLR-SCNNwith the proposed augmentations even outperforms supervised SCNNmod-
els in terms of generalisation performance. This can be seen by comparing the results on OpenBHB
internal and external test sets. For example SimCLR-SCNN loses 10% (0.81→ 0.71), 10% (0.81→ 0.71),
and 8% (0.82→ 0.74) BAcc for the Base, Base + HemiMixUp and Base + GroupMixUp augmentations,
between internal and external test sets, while age- and sex-supervised SCNNs lose 12% (0.67→ 0.55)
and 18% (0.86 → 0.68) BAcc respectively. SimCLR-SCNNs even outperform sex-supervised SCNNs for
the sex prediction task on the external test set. As expected, the prediction on the external test de-
creases for both strategies. When the learned knowledge is transferred to HBN, we show better (or at
least equivalent for sex) prediction performance for the SimCLR-SCNN with the proposed augmenta-
tions compared to the supervised SCNNs. Note that the age distribution inHBN ismuch narrowerwith
a younger population than in OpenBHB. Therefore, theMAE between Tables 3.1-a and 3.1-b cannot be
directly compared. Interestingly, theR2 values are still comparable and show a stable goodness of fit
for the SimCLR-SCNN model. Note that using a supervised MLP with more than 120M parameters to
predict age from the same input data gives only slightly better results than using the SimCLR-SCNN
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a)
SimCLR-SCNN OpenBHB internal test OpenBHB external test

Augmentations Age Sex Age SexMAE (↓) R2 (↑) BAcc (↑) MAE(↓) R2 (↑) BAcc (↑)
Base 4.87±0.14 0.81±0.01 0.81±0.01 5.89±0.17 0.50±0.03 0.71±0.01Base + HemiMixUp 4.72±0.16 0.83±0.01 0.81±0.01 5.62±0.13 0.55±0.03 0.71±0.02Base + GroupMixUp 4.55±0.07 0.84±0.01 0.82±0.01 5.47±0.15 0.58±0.02 0.74±0.01

Supervised-SCNN
Age-supervised 4.00±0.12 0.84±0.01 0.67±0.01 5.06±0.19 0.61±0.02 0.55±0.01Sex-supervised 6.20±0.20 0.69±0.02 0.86±0.01 6.40±0.32 0.42±0.06 0.68±0.01

b)
SimCLR-SCNN HBN test

Augmentations Age Sex FSIQMAE (↓) R2 (↑) BAcc (↑) MAE(↓) R2 (↑)
Base 1.69±0.07 0.65±0.02 0.80±0.01 12.97±0.25 0.10±0.02Base + HemiMixUp 1.68±0.02 0.66±0.01 0.80±0.01 12.71±0.16 0.13±0.02Base + GroupMixUp 1.66±0.02 0.66±0.01 0.81±0.01 12.60±0.29 0.14±0.03

Supervised-SCNN
Age-supervised 1.74±0.05 0.63±0.02 0.66±0.01 13.05±0.06 0.09±0.002Sex-supervised 1.72±0.01 0.63±0.01 0.82±0.0048 12.79±0.01 0.09±0.01

Table 3.1: Evaluation of the learned representations using amachine learning linear predictoron different OpenBHB (a)/HBN (b) sets of data, tasks, andmetrics. The proposedMixUp aug-mentations (HemiMixUp and GroupMixUp) are evaluated against combined baseline (Base)augmentations (SurfCutOut, SurfBlur and SurfNoise) using an unsupervised SimCLR-SCNNframework. The results are compared to supervised SCNNs trained to predict either age orsex (see sectionModel Comparison for details).
(∼ 2M parameters) trained with the Base + GroupMixUp augmentations (4.85 vs 5.47 age-MAE on the
OpenBHB external test) [105]. This suggests that the SimCLR-SCNN model with the proposed aug-
mentations is able to learn good representations without supervision and without being too much
biased by the acquisition site.
The MixUp augmentations improve performance. It is clear that the MixUp augmentations
improve the learned representations for each prediction task of the OpenBHB internal and exter-
nal tests (Table 3.1-a). In practice, we found that the GroupMixUp works better than the HemiMixUp
augmentation strategy. This can be explained by the attenuation of some properties of the interhemi-
spheric asymmetry forced by the HemiMixUp augmentation. Although the improvement in predicting
age and sex on HBN test set is inconclusive, it is clear that HemiMixUp and GroupMixUp help in pre-
dicting FSIQ, especially when looking at the R2 metric (Table 3.1-b).
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3.4.3 . Ablation Study: which Base augmentation is the most relevant ?

a)
SimCLR-SCNN OpenBHB internal test OpenBHB external test

Augmentations Age Sex Age SexMAE (↓) R2 (↑) BAcc (↑) MAE(↓) R2 (↑) BAcc (↑)
SurfBlur 5.79±0.07 0.71±0.00 0.70±0.01 7.09±0.54 0.34±0.09 0.61±0.01SurfCutOut 5.25±0.06 0.78±0.004 0.80±0.002 6.49±0.28 0.43±0.03 0.71±0.02SurfNoise 5.30±0.03 0.77±0.01 0.81±0.01 6.32±0.13 0.46±0.02 0.70±0.01

b)
SimCLR-SCNN HBN test

Augmentations Age SexMAE (↓) R2 (↑) BAcc (↑)
SurfBlur 1.85±0.01 0.58±0.01 0.70±0.01SurfCutOut 1.72±0.03 0.63±0.02 0.78±0.02SurfNoise 1.76±0.02 0.60±0.001 0.77±0.0046

Table 3.2: Additional ablation study results: evaluation of the learned representations usinga machine learning linear predictor on different OpenBHB (a)/HBN (b) sets of data, tasks,and metrics. The proposed baseline augmentations (SurfCutOut, SurfBlur and SurfNoise)are evaluated against each other using the unsupervised SimCLR-SCNN framework.
We provide additional results reporting downstream performances of predicting either age or

sex, of our SimCLR-SCNN model when it was trained using each Base augmentation individually.
These experiments are led to assess which of these augmentations are the most suited for learning
cortical surface representation using a SSL schemes, which is also highly related to which of the
inductive bias they implement is best to learn representations from cortical surface data. We
aggregate the results in Table 3.2. From Table 3.2-a), we can see that alone, SurfBlur seems to be less
relevant than SurfCutOut and SurfNoise for good downstream performances overall. For instance,
on internal OpenBHB, SimCLR-SCNN age-R2 are 0.71, 0.78 and 0.80 for SurfBlur, SurfCutOut and
SurfNoise respectively, or for sex prediction 0.70, 0.80, 0.81 BAcc respectively. This can be seen for
OpenBHB external test and HBN test sets as well.
However, comparing SurfCutOut with SurfNoise is less evident. On OpenBHB internal, training with
solely SurfCutOut as augmentation seems to give better or similarly performing representations for
predicting age than training with SurfNoise. Indeed, for age-MAE on internal OpenBHB, SimCLR-
SCNN achieves 5.25 and 5.30 when training with SurfCutOut or SurfNoise respectively. This is holds
when comparing their prediction performances on HBN test set as well (e.g. age-R2 0.63 and 0.60

respectively). However, when comparing them on OpenBHB external test, SimCLR-SCNN achieves
6.49 and 6.32 age-MAE when trained with SurfCutout or SurNoise respectively. For the sex prediction
task, they perform comparably on every test set.
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Overall, each one of these three augmentations can be used alone to train our SimCLR-SCNN
model and give reasonably good downstream performance, but SurfCutOut and SurfNoise seem
more suited than SurfBlur to learn good and generalisable cortical surface representations. This
can be due to the fact that blurring is less local than cuting out patches of surface or adding noise
sporadically, hence erasing some relevant information. However, using them together will always
lead to better and more generalisable representations. For instance, comparing age-MAE on internal
OpenBHB 4.87 and 5.25 for SimCLR-SCNN trained with all three Base augmentations (in Table 3.1) or
solely with SurfNoise (in Table 3.2) respectively. Comparing age-R2 on HBN test set shows 0.65 and
0.63 for SimCLR-SCNN trained with all three Base augmentations (in Table 3.1) or solely with Surf-
CutOut (in Table 3.2). For the sex prediction task, the same observation can be made, yet with less
gap: SimCLR-SCNN trained with all three Base augmentations (in Table 3.1) is only significantly better
than when it is trained solely with SurfCutOut (in Table 3.2) for sex prediction on HBN test set, where
they perform 0.80 and 0.78 BAcc respectively. Overall, the best strategy remains to combine all these
Base augmentations together, which is the same as for natural images [60]. Taken individually, Sur-
fCutOut or SurfNoise alone can be used to learn relatively good and generalisable cortical surface
representations.

3.5 . Open source developments

3.5.1 . An open source library: surfify
Surfify1 is an open source module allowing to easily build models and training pipelines able to

learn from icosahedral cortical surfaces data output from FreeSurfer [120] for instance. It implements
many usefull tools for general icosahedral meshmanipulations, such as augmentations, and building
specialised network architectures with a few convolution kernels selected from the literature. Some
classical NN architectures are implemented as well. Augmentations introduced in Section 3.3.2 are
implemented in the repository. This module was presented during OHBM 2022 at Glasgow during
poster sessions. It is build upon various open source widely used python packages, described in
Figure 3.5.
Convolutions

The module implements three convolutions strategies. The first one consists of projecting the sur-
face onto a 2D planar rectangular surface such as a World’s map, previously introduced as ERP. Then
any classical 2D image convolution can be used. A circular padding operator can be used jointly in
order to keep proximity between borders, which are in fact neighbours on the spherical mesh. This
strategy, called Spherical Mapping (SpMa) in surfify, is simple but it introduces some deformations,
which have been shown to deterior performance in various downstream tasks [314, 27].
The two other implemented convolutions were specifically developed for data with this type of struc-
ture. Rectangular Patching (RePa) [314] can be used in the tangential plan of each vertex to project
the surroundingmesh vertices on it. Then a 2D convolution is applied on this patch. Direct Neighbour
(DiNe) [394] consists of taking full advantage of the regular nature of the input icosahedron, and is

1Link to the github repository

https://github.com/neurospin-deepinsight/surfify
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Figure 3.5: Illustration of the open source framework surfify.

described precisely in 3.2.1.
These convolution operators comewith pooling operators, allowing the network to reduce the dimen-
sionality of the data progressively. On the icosahedralmesh, it consistsmostly in reducing the order of
the icosahedron each time, by aggregating the values of neighbouring vertices to their corresponding
centre vertex, using pooling function such as mean or max [314, 394].
Augmentations

In addition to the five augmentations introduced in the Section 3.3.2, we implemented an additional
SurfRotation augmentation to perform rotations. It uses interpolations, which makes it less efficient
than other augmentations, so we did not use it in the study introduced in Section 3.4, as SSL is usually
performed on big datasets and requires fast and efficient transformations as augmentations. Exe-
cution time on a single metric displayed on icosahedron at different orders are provided in Table
3.3.
Networks

We implemented a few classical NN architectures to demonstrate how to use ourmodule for different
tasks:
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Runtimes on CPUIcosahesdron Order 3 Order 4 Order 5 Order 6 Order 7

Augmentation sec (↓) sec (↓) sec (↓) sec (↓) sec (↓)
SurfCutOut 10−4 10−4 10−3 10−3 10−2

SurfNoise 10−5 10−4 10−4 10−3 10−3

SurfBlur 10−4 10−3 10−2 10−2 10−2

SurfRotation 10−1 100 100 101 102HemiMixUpHemi 10−5 10−4 10−4 10−3 10−3

GroupMixUp 10−4 10−3 10−3 10−3 10−2

Table 3.3: Execution time in seconds for each augmentation implemented on surfify. Theaugmentation were executed on a Intel(R) Core(TM) i7-3770 CPU, 3.40GHz.
• for prediction (classification or regression), we implemented various flavours of VGG [321] ar-
chitectures.

• for segmentation (classification of every vertex in input space), we implemented the spherical
U-Net [300, 394] architecture.

• for unsupervised representation learning and generative learning, we implemented a config-
urable VAE [197] architecture.
3.5.2 . Experiments related source code

All the code used to produce the experiments presented in Section 3.4 was released in
an open source repository on github https://github.com/neurospin-projects/2022_cambroise_
surfaugment and uses surfify, in which the proposed augmentations have been integrated.

3.6 . Conclusion

Modelling cortical surface as an icosahedral mesh is a very comprehensive way to incorporate
the specific topology of the cortical surface of the cortex in the data. It accounts for the fact that the
cortex is uninterrupted in healthy humans and the fact that to neighbour gyri are in fact biologically
distant. Imposing such structure in data leads to many benefits. It can be used to reduce the
dimensionality of the data, compared to raw 3D images, focusing on a signal of interest for studying
psychiatric diseases, while beingmore precise and spatially coherent compared to averagemeasures
on ROIs. Additionally, having a data representation structured with biological considerations can
allow subsequent modelling to take it into account and provide more informed and coherent
biomarkers, thus improving interpretability.

In this context, we studied specific adaptations needed to build structure-aware cortical data
representations using NNs. We leverage existing adapted operators such as DiNe, that allows
us to design SCNNs able to learn from icosahedral cortical surface data. We introduce cortical

https://github.com/neurospin-projects/2022_cambroise_surfaugment
https://github.com/neurospin-projects/2022_cambroise_surfaugment
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surface augmentations designed for training a SCNN in a self-supervised learning setup. The
investigated SimCLR-SCNN shows the ability to generate representations with strong generalisation
properties. In fact, the learned representations from data collected from multiple sites offer
promising performance, sometimes even outperforming supervised approaches. In particular, the
GroupMixUp augmentation shows potential for learning stable representations across different
cohorts. Additional experiments could be lead to further investigate the characteristics required for
cortical-based data augmentation. Moreover, an improvement to the GroupMixUp augmentation
could incorporate prior information when computing the groupsGi, such as clinical scores. A similar
strategy is proposed for structuring the learned representations by adding a regularisation term in
the training loss [104].

Overall, we develop a methodology to learn generalisable representations of cortical surface
data. It could be exploited to better initialise NNs on large healthy cohorts of population, before
transferring to downstream clinical tasks of interest on smaller cohorts. We contribute to this
higher purpose by offering a few cortical surface data augmentations, keystone to fit with novel
self-supervised frameworks, and the surrounding tools required to use them.

The surfify module was presented during OHBM 2022 at Glasgow during poster sessions. Addi-
tionally, the experiments related to SSL on the cortical surface led to a publication in the Machine
Learning in Clinical Neuroimaging (MLCN) workshop of MICCAI 2023. It answers the problem of using
deep learning approaches from brain T1-weighted MRI while leveraging the cortical structure in this
data. In the next part, instead of working on intra-modality structure, we will try to provide answers
on how to use deep learning for modelling relationships between various sources of data in a pop-
ulation cohort, such as T1-weighted MRI with other imaging modalities, genotyping data or clinical
questionnaires.
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In the previous chapter, we addressed the following question: how can we design DL models to
leverage structure from data ? We used the eloquent example of representing the cortical structure
derived from sMRI as a regular sphericalmesh. In this context, we developed a SSL scheme, proposing
cortical surface data augmentations and using specific convolution operators to maximally leverage
the cortical structure to learn condensed representations. An interesting perspective of this work is
to use this framework to initialise NNs on a large healthy cohort of population, in order to transfer
them to smaller cohorts to extract clinically relevant information such as prognostic, segmentation
or discovering biomarkers.
Others questions arisewhen onewants to exploit further available biological information: how canwe
take into account multiple data of varying nature, which are often assessed in population studies in a
statistical model ? Then, how to extract knowledge from such a highly multivariate model ? Through
this chapter we will try to answer them to some extent, with an application in psychiatry, where we
believe integration using Probabilistic Graphical Models (PGMs) are of particular interest.

4.1 . Problem statement

The hope of integrating multiple views representing various types of data is to produce richer
models that better account for the complex context of a measurement on a subject. Such models are
expected to fit better the data, taking into account multi-scale biological processes, and thus produce
more consistent findings. Another hope is to produce explainable models that would leverage the
different modalities of the measurements. Explanations can be presented as models for prediction
to build decision support systems, or to discover biomarkers, which in turn can help in understanding
biological mechanisms underlying the phenotype. The ultimate goal of such methodology is to find
treatments to related diseases.

This integration problem is particularly expressed and experimented when studying brain
pathologies such as cancers or psychiatric diseases. These pathologies are mostly not understood
today, probably because the brain is the most complicated human organ. However we can have
access to a multitude of biological assessments thanks to the developments of high throughput bio-
logical tools such as genotyping, MRI for brain structure and histology for tissue inspection, that we
hope can help us understand brain disorders. Integration opposes to classical massively univariate
approaches such as GenomeWide Association Study (GWAS) for genotyping data, Statistical Paramet-
ric Map (SPM) for functional MRI, or approaches considering only one modality, which is commonly
done in diagnostic predicting models.
Heterogeneity in psychiatric diseases. For many years, researchers have tried to find
biological correlates of diseases using mostly one biological assessment (e.g. sMRI or genotyping)
with respect to a binary or categorical diagnostic. For brain disorders, these diagnoses are rigorously
defined in the successive versions of the Diagnostic and Statistical Manual of Mental Disorders
(DSM) [369, 246, 78]. However, results highlighted throughout these studies have shown to be rarely
reproducible [22, 269, 381], and even then not necessarily understood.
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The major hypothesis arising from this observation is that mental disorders are highly hetero-

geneous [114, 7]. This implies that trying to find biological markers of pathology relying solely on
DSM diagnostics using one biological assessment is probably not efficient to discover the complex
mechanism hiding behind behavioral symptoms, which can be common to multiple diseases. The
Research Domain Criteria (RDoC) [181] advocates for a more comprehensive approach to studying
psychiatric disorders by incorporating diverse data types that cover different levels of life organisa-
tion (e.g., imaging, genetics, symptoms). The RDoC principles suggest that a thorough description of a
pathology requires consideration of multiple "latents" (also called "dimensions") that may be shared
across different psychiatric syndromes and may even contribute to non-pathological variability.
Notice that the term "latent" (or "dimension") must be considered here in the context of the National
Institute of Mental Health (NIMH) RDoC approach which is one framework among others that study
psychiatry.
The approaches that take into account such recommendations include two major identified ques-
tions, which created opposing but not necessarily mutually exclusive [382, 253] lines of research.

The first one investigates if we can find homogeneous subgroups within pathological patients
that present similarities, either at the phenotype level or at the biological level, in order to design
targeted treatments for individuals within specific subgroups or subtypes, also called population
stratification [310, 114, 17]. These approaches usually rely on a clustering algorithm. However, this
subgroup discovery approach has been criticised, and only a few studies have produced consistent
and reproducible groups across studies [111, 243]. Moreover, they usually focus on a particular
population related to a single diagnosis, ignoring the recommendations of the RDoC, even if some
studies propose transdiagnostic stratifications [148, 280, 331].

The second line preaches for a dimensional approach, which means discovering low dimensional
manifolds expressing variability somehow related to expressed pathological symptoms. Studies in-
vestigating brain disorders this way prefer considering patients on a spectrum with respect to their
symptoms, spectrum on which healthy individuals are represented as well [242, 241].

Availability of multimodal data in psychiatric population studies. In line with the RDoC
principles, psychiatric research has made a huge effort for building large cohorts to study psychiatric
syndromes. We can distinguish various types of cohorts that aim at answering different research
questions.

Depending on the studied disorder, psychiatric cohorts recruit subjects of varying age [185, 324].
For developmental disorders, cohorts often recruit from early childhood (∼ 4 years old) to early
adulthood (∼ 25 years old). Among them, most studies are based on a case-control recruitment,
because they are built to investigate particular pathologies, such as Autism Spectrum Disorder (ASD)
[98, 99, 263] or Attention Deficit Hyperactivity Disorder (ADHD) [256]. Other studies recruit either
using very few criteria, or simply targeting an at-risk population for multiple disorders, meaning
the children present some psychiatric symptoms without necessarily being diagnosed. These
cohorts can be designated as transdiagnostic cohorts and are used to discover markers of abnormal
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development [52, 6] across multiple disorders. There exist adult cohorts aswell, which can be either
case-control [340, 360] or transdiagnostic [284], designed to study adulthood markers of psychiatric
disorders.

The statistical power of large cohorts offer promising perspectives to find relevant biomarkers
for psychiatric disorders [240]. However, they are often impaired by the fact that they are multi-
centric, which brings differences in scanning system, settings, acquisition conditions and prevalence
specificities. This site effect has been extensively described and how to handle it is still an open
research question [105, 175]. These studies can have single or multiple assessments per individual,
which we refer in the latter case to multimodal studies. These assessments can be evaluated one
time for each individual or at multiple time points in longitudinal studies. The longitudinal setting
allow researchers to investigate personalised atypical trajectories, but they are very expensive and
long to build, and often present at lot of missing data. Usual biological proxies assessed in these
studies include (but are not restricted to) imaging through structural MRI, resting-state functional
MRI, task-oriented functional MRI, diffusion MRI, EEG andMEG, and genotyping as SNP and CNV data.
Such cohorts often include phenotype data, which regroup morphological assessments, behavioural
data represented as a diagnosis or clinical questionnaires evaluating symptoms, and environmental
factors. Finally, these studies crucially also provide access to demographics consisting in the age, sex
and imaging acquisition centre, which often have interactions with diagnoses.

In order to handle the growing quantity and variety of data and model their relationships, with
respect to disease related variability, we need machine learning tools with the following properties:

• Unsupervised or semi-supervised: the learning algorithm should not be only directed by a
diagnostic prediction, which does not express sufficient pathology related variability, and limits
the quantity of available data. Considering a semi-supervised setting instead, by integrating
symptoms instead of diagnosis, offers to consider both subjects with symptom related assess-
ments and subjects exempt of them.

• Integrative: able to handle an arbitrary amount of data in various forms, and model their
shared variability, while not over-sighting intra-modality correlation structure.

• Able to handle missing data: all multimodal cohorts have missing data, that can appear at
different levels, either sporadically in one type of assessments, such as a non fulfilled clini-
cal questionnaire, or a completely missing modality such as sMRI, if the patient could not be
scanned for some reason. Such missing occurences are very frequent in multimodal settings,
and the ML model we choose should be able to use observations with missing data, otherwise
risking of being statistically greatly impaired.

• Interpretable: we should be able to understand and explain what the model has learned. The
ultimate goal would be to outline biological mechanisms responsible for psychiatric diseases,
discovered by the model. This is impossible if the model is not somehow interpretable.

4.2 . Existing multimodal approaches and their properties



4.2. EXISTING MULTIMODAL APPROACHES AND THEIR PROPERTIES 75
In this section, we want to sketch up a state-of-the-art of the existing approaches matching some

of the characteristics describes above. Multimodal integration were first developped to answer to
specific applications. Depending on the problem to solve, researchers have developed an enormous
quantity of methods that can be qualified as multimodal. Multiple taxonomies and reviews [25, 128,
29] have been proposed. We are not aiming to describe all existing methods and learning schemes,
but rather describe the fewmethods that answer our requirements explicited in the previous section,
some of their history, properties and applications. In particular, we start by describing some linear
integration models, a few extensions and some applications in the medical field. Then we introduce
some relevant NN based methods, namely multimodal PGMs. We describe most of their extensions
and a few applications in healthcare.

4.2.1 . Linear integration models
Pioneering works on integrative models are Canonical Correlation Analysis (CCA) [174] or Partial

Least Squares (PLS) [371]. We retain these two methods as emblematic of integration analysis and
describe them further below. They can be identified as latent variable models, because they are
based on the description of unidimensional latent variables, which are a linear projections of the
variable in input space. We start by describing their formulations, some of their extensions and a
few applications.

Let x = {x1, . . . , xk, . . . , xK} be an observation of K views, where each xk can have different
dimensions Jk. Let’s assume we have access to n such observations x = {x1, . . . , xn}, for which all
K views are available. Let’s regroup these observations view wise, noting xk = [x1k, . . . , x

n
k ]
T ∈ Rn×Jk ,

for k ∈ {1, . . . ,K}. The objective of these model is to find weights wk ∈ RJk such that the projections
xkwk have maximal correlation (CCA) or covariance (PLS) with each other. More formally, CCA finds
the solution to

argmax
{w1,...,wK}

K∑
k=1

K∑
j=k+1

ckjcorr(xkwk, xjwj)

where PLS searches for the solution to
argmax
{w1,...,wK}

K∑
k=1

K∑
j=k+1

ckjcov(xkwk, xjwj) =

K∑
k=1

K∑
j=k+1

ckjcorr(xkwk, xjwj)
√var(xkwk)

√var(xjwj)

where C = {ckj} ∈ {0, 1}K×K is the triangular superior design matrix, which defines which views
are connected in the model and is set by the user. These optimisation problems can be solved
in different ways, using their eigen value decomposition [174] or Nonlinear Iterative Partial Least
Squares (NIPALS) [344, 303] for instance.

Multiple extensions have been proposed, notably Generalised CCA (GCCA) [50] , Kernel CCA
(KCCA) [77], probabilistic CCA [21], and bayesian CCA [202, 358], allowing more flexibility to the
framework.
On the other hand, CCA and PLS have been shown to work poorly in particular settings, especially
when the number of features Jk within a view is higher than the number of observations n or when
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features within a view are highly correlated [356]. The most frequent solutions to this problem are
using a PCA to reduce dimensionality of concerned views, or penalise the optimisation problem
using classical regularisations such as l1 or l2 regularisations [303, 154, 343], therefore constrainingthe learned weights. It is interesting to note that the l2 regularisation in particular unifies both
approaches, as PLS can be viewed as a maximally l2 regularised CCA [303, 154, 343]. Additionally,
l1 regularisation [370, 342] can be viewed as a sparsity constraint, in other words as a variable
selection regularisation. Both regularisations are often used jointly, implementing the elastic net
regularisation [395], which combines their properties. Finally, another GraphNet penalty [224, 149]
has been proposed for adding expert knowledge in the learning algorithm.

These integrations methods have been successfully applied to multiple fields [25]. In health
applications, it has been recurrently shown that integrating complementary modalities leads to
increased performance for the task of interest [204, 240, 329, 177]. Most common applications
include oncology and neurology [204], where multiple assessments can contribute jointly.
In oncology, linear integrative models have been used for survival prediction using highly multimodal
cohorts such as TCGA [365, 229]. Such cohorts allow integrative model to exploit multi-scale informa-
tion from both imaging and multi-omic modalities acquired from biopsies to predict survival with the
Cox model [76]. Linear integration tools such as CCA or PLS have been largely benchmarked for this
survival prediction task [163, 290]. Interestingly, adding biological a priori to the learning algorithm
using protein-protein interaction networks with GraphNet has been shown to improve the model
survival predicting performance and variable selection [150, 57].
In neurology, linear integration has often been applied to find links between an observed phenotype
and an imaging modality [260, 135], or between different biological assessments, such as SNP data
with fMRI [216].

However, these methods still have some limitations:
• CCA maximises correlation between latent variables from each view, so it is more sensitive to
the direction of the relationships between modalities, and is not impacted by within modality
variance. PLS is driven by covariance, so it is less directed by inter-modality correlation struc-
ture, but is sensitive to intra-view variance [254].

• Additionally, most of these linear methods have a simplistic way of taking into account obser-
vations with missing data. They often rely on imputation techniques such as the mean feature
value or 0. However, this strategy can introduce issues and many applications discard observa-
tions withmissing values. Inmultimodal cohorts, complete views are oftenmissing, as they rep-
resent a given biological assessment. The number of observations with all modality inevitably
decreases as the number of assessments grows. This is why it is important for methods to be
able to take into account observations with missing views.

• Moreover, most CCA and PLS derived algorithms are linearly constrained, and even their non-
linear extensions such as KCCA, remain computationally expensive in high dimension, still ap-
proximate a restricted class of function by the kernel choice and remain constrained by the
properties of CCA, such as the fact that their are poorly effective at modelling within-modality
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structure. An extension using NNs to learn the latent variable was proposed [13] to overcome
some of these limitations, paving the way for NN based integration models.
4.2.2 . Deep learning based approaches: probabilistic graphical model.

Multimodal integration tools are always developed at first to answer specific applications. Of
particular interest are the PGM based integration methods. They naturally embed interesting
properties, such as missing data robustness [25], scaling to an arbitrary number of modalities (for
some of them at least) and display very relevant disentanglement capabilities.

Early NN based multimodal integration tools using PGMs [327, 266] were proposed as extensions
of Restricted Boltzmann Machine (RBM) [165]. A multimodal Deep Boltzmann Machine (DBM) [328]
architecture was further introduced to integrate an arbitrary number of modalities. However, these
techniques are computationally heavy, as they use Monte Carlo Markov Chain (MCMC) sampling,
which makes them hard to scale to high dimensional inputs. Worth noting as well, a non-linear
extension of CCA called Deep CCA [13] was proposed as an alternative to kernel CCA, which is more
efficient and offer a wider class of function that can be learned using NNs. It was then further
extended to the reconstruction based framework Deep Canonically Correlated Auto-Encoders[361],
bridging the gap between CCA and auto-encoders.

Kingma et al. [197] proposed a learning scheme to do variational inference using NNs. This
groundbreaking work led the PGM multimodal community to shift from MCMC based inference to
using VAEs as it is more efficient to approximate distribution parameters. In particular, it introduced
Variational Auto-Encoder (VAE) as a regularised auto-encoder, using the divergence of Kullback-
Liebler between the latent space posterior distribution and a Gaussian prior for regularisation. There
have been multiple multimodal extensions proposed from this initial work [337]. The same authors
proposed a semi-supervised extension [196] of VAEs, allowing to condition the latent space on a
label when available. It can be seen as an asymmetrical multimodal integration technique. Other
asymmetric multimodal PGMs where proposed [275, 187], but it was then shown that symmetric
conditioning have better generative properties [338]. In another line of work, Deep Variational CCA
[362] was proposed as an extension of probabilistic CCA. It interestingly introduces the concept of
private latent spaces, showing that it improves reconstructions and disentangles the information
contained in the different latent representations.

In the next section, we introduce a particular type of PGMs which relies on VAEs, that we define
as multi-view Variational Auto-Encoder (mVAE), with usual assumptions about there generative and
inference models. We then describe two particular mVAEs with interesting properties, and introduce
a few of their applications.

Multi-view VAEs. Let us introduce more formally the multi-view Variational Auto-Encoder (mVAE)
learning framework to further clarify. Let x = {x1, . . . , xk, . . . , xK} be an observation of K views,
where each xk can have different dimensions Jk. We assume that their existK +1multidimensional
latent variables underlying the data generation process, one latent variable specific to each view, and
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(a) Only joint.
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(b) Joint and specific.
Figure 4.1: Two different PGMs illustrating the generating process modelled in various mVAEs in caseof two modalities. (a) Joint model such as in [372, 318, 336]. (b) Explicitly modelling modality-specificand shared latent variables as proposed by [362, 348, 222].

one joint, expressing the shared variability across views (see Fig. 4.1). The general form of these
latent variables is z = {z, z1, . . . , zk, . . . , zK} with z denoting the d-dimensional latent variable shared
by all xk, and zk the view-specific dk-dimensional latent variables. We assume the following generative
process for the observation set:

z ∼ p(z)

zk ∼ p(zk)

xk ∼ pθ(xk|z, zk)

where p(z), p(zk) are prior distributions for the latent variables and pθ(xk|z, zk) is a likelihood dis-
tribution of the observations conditioned on the latent variable. The bottleneck of maximising this
likelihood comes to computing the true posterior pθ(z|x). A first usual assumption about the true
joint posterior pθ(z|x) considers that it contains all the shared information between the views, and
we can write pθ(z|x) = pθ(z|x)×

∏
k pθ(zk|xk). Other assumptions are needed since these posteriors

are not analytically tractable. We defined the approximated variational posterior qϕ(z|x). The varia-tional parameters are described by ϕwhere θ describes the generative parameters. In the same way,
we have qϕ(z|x) = qϕ(z|x) ×

∏
k qϕ(zk|xk) These posterior distributions are classically defined as pa-rameterised distributions qϕ(z|x) (the so-called joint variational posterior) and qϕ(zk|xk) respectively.The generative process pθ(x) is then approximated by its Evidence Lower Bound (ELBO):

log pθ(x) = log

∫
p(x, z)

qϕ(z|x)
qϕ(z|x)

dz = logEq(z|x)

[
p(x, z)
qϕ(z|x)

]
≥︸︷︷︸

Jensen
Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
= Eqϕ(z|x)

[
log

pθ(z)pθ(x|z)
qϕ(z|x)

]
≥ LELBO(x; θ)

(4.1)

The ELBO loss LELBO(x; θ) can be written as
LELBO(x; θ) = Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)

[
log

pθ(z)
qϕ(z|x)

]
= Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥pθ(z))

(4.2)
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State-of-the-art models solve this problem with different ways of modelling the joint varia-

tional posterior distribution qϕ(z|x). These approaches compose qϕ(z|x) using the Gaussian experts
qϕ(z|xk) unimodal posteriors, which may be combined in various ways. In Product of Experts (PoE)
approach [372], qϕ(z|x) is defined as a product of individual Gaussian experts, assuming the con-
ditional independence of the experts, hence remains Gaussian. The product operator used in PoE
may dampen the specific variability of a given modality described by Gaussian unimodal posterior,
and other work proposes to model [318] qϕ(z|x) using a Mixture of Experts (MoE), assuming each
unimodal expert contributes equally to the joint posterior. MoPoE approaches defines qϕ(z|x) as aMixture of Product of Experts. Each product of experts is computed over the different subsets of views
[336]. These different forms of joint posterior distribution are illustrated by the black line in Figure
4.2 with a 1-dimensional example. TheMoPoE-VAE is a generalisation of the two previous approaches
and combines their advantages, i.e. properly models the shared variability between modalities while
considering their individual contribution. Each strategy has different ways of handling missing views,
that may differ at train and test time. The MoPoE-VAE simply uses all the subsets of available views
for each observation. As regards to the unimodal posteriors qϕ(zk|xk), we classically use a Gaussiandistribution.

Figure 4.2: Illustration of the existing joint posterior models from [337].

TheMoPoE-VAE with view-specific and shared latent spaces. The MoPoE-VAE optimises a
generalised multimodal ELBO objective for learning view-specific and a joint distribution of multiple
views x with potential missing data. This model assumes conditional independence between the
marginal posterior distributions, i.e. pθ(x|z) =

∏
k pθ(xk|z), and simplifies the marginal posteriors

pθ(xk|z) = pθ(xk|z, zk) using the conditional independence between xk and zj given z, zk with j ̸= k.
The mulitmodal ELBO objective is the following:

LMoPoE(θ, ϕ;x) =
K∑
k=1

Eqϕ(z,zk|x) [log(pθ(xk|z, zk)]

−
K∑
k=1

DKL (qϕ(zk|xk)||pθ(zk))−DKL


1

2K

∑
xp∈P(x)

q̃ϕ(z|xp)︸ ︷︷ ︸
=qϕ(z|x)

||pθ(z)
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There are 2K different subsets contained in the powerset P(x), and q̃ϕ(z|xp) =
∏

xk∈xp
qϕ(z|xk) isthe product of Gaussian expert posteriors qϕ(z|xk), defined for the subset of views in xp. This givesthe ability to the MoPoE-VAE to handle any subset of view at training and inference time, in exchange

with an elevated computational cost, scaling with the number of modalities.
These formulas illustrate a specific implementation of the MoPoE-VAE which handles multi-views

by modelling view-specific latent space posterior distributions, and a joint posterior distribution
shared between views as a mixture of the products of their marginal posteriors (experts). This im-
plementation differs from the one benchmarked in [88, 337, 312] which consider only one joint latent
(MoPoE-VAE with its initial formulation [336]).

The Multi-Channel VAE and its sparsity constraint. The MCVAE [14] uses slightly different
assumptions as the ones presented above. It does use the conditional independence assumption
pθ(x|z1, . . . , zK) =

∏
k pθ(xk|z1, . . . , zK). Contrary to the MoPoE-VAE, it can not hypothesise for con-

ditional independence between xk and zj given zk when k ̸= j because it does not explicitly model
a joint latent space, otherwise it would result in K independent parallel VAEs. These assumptions
result in the following loss:

LMCVAE(θ, ϕ;x) = 1

K

K∑
k=1

(
Eqϕ(zk|xk)

[
K∑
c=1

log pθ(xc|zk)

]
−DKL(qϕ(zk|xk)|p(zk)

)

Another significant contribution of this work is to extend an existing sparsity constraint to
a multi-view setting. This sparsity constraint amounts to hypothesising a particular form of the
marginal approximated variational posteriors qϕ(zk|xk) = N (µk, αµ

2
k) with α ∈ Rdk . However this

assumption requires using slightly different priors, namely the scale-invariant log-uniform priors,
i.e. such that log p(|zk|) ∝ const.. In this case, an approximation of the DKL(qϕ(zk|xk|p(zk))) hasbeen proposed in [259], which depends only on α. This allows α to be approximated using gradient
descent. Having the same latent dimension for all the latent variables is a requirement in the MCVAE
in order to easily provide each latent representation to the decoders during training. They propose
to optimise the MCVAE objective, but with these log-scale uniform priors and these particular
approximated posterior form, and interestingly to use the same parameter α across every modality’s
latent space. As this parameter is commonly optimised during training for all latent space, we can
compute a threshold over the dropout rate α

α+1 for each latent space dimension, above which the
dimension corresponding weights in the different encoders can be dropped (set to 0). It thus forces
the latent spaces to have the same dimensions, and regularises all the latent spaces with a shared
constraint. However, this initial formulation does not allow to use data examples with missing views.
It was later extended to adapt the learning algorithm to data with missing views [15].

Most recent works focus on modelling, additionally to the joint latent space, a private (or spe-
cific) latent space for each modality [348, 335, 222, 274, 285, 188], demonstrating improved generative
abilities and disentangling of modality-specific and shared factors. However, it was shown that with-
out explicitly enforcing disentanglement by constraining the learning for instance, fully disentangling
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these factors is not possible [232]. Some works have proposed techniques to improve the disentan-
glement of view-specific and shared factors for these SotA multimodal PGMs [317, 375, 191, 89].

Applications of mVAEs. Multimodal machine learning tools have a large panel of applications
including audio visual speech recognition applications, multimedia retrieval and media description
or generation [25], such as Visual Question Answering (VQA) [16]. We will focus on applications in
the medical field, as they illustrate the variety of tasks that can be apprehended using integration
models, being one of the application domain most explored by these multimodal techniques [29].
In the medical field, similarly to other multimodal integration models [204], frequent applications of
multimodal PGMs include oncology and neurology.

When referring tomultimodal integration with deep PGMs in oncology, we can identify multi-omic
integration applications. An information bottleneck approach [221] uses the variational approxima-
tion of the joint posterior as a PoE and view-specific latent representations from multi-omic data.
The joint representation is further supervised by the task of interest, such as survival prediction on
the TCGA dataset. Another VAE-based approach [388] concatenates each modality latent represen-
tations rather than explicitly modelling their joint posterior distribution to predict tumour type from
multi-omic data aggregated from TCGA pan-cancer datasets.

In neurology, a very frequent application of multimodal machine learning is Alzheimer’s disease
(AD) prediction [204, 258]. In fact, AD prediction was a task addressed very early using deep PGM
integration model [333] exploiting PET and MRI, and later to showcase the sMCVAE capacities [14].
Also worthmentioning, the samewaymultimodal PGMs shifted from usingMCMC sampling for doing
variational inference to using VAEs, Normative Modelling (NM) [242] using VAEs have been proposed
[214, 363]. They offer the opportunity for NM to scale to larger cohorts and to bemultivariate. Pushing
even further the multivariate paradigm, some multimodal normative VAEs have been proposed [209,
208, 213], leveraging recent advances of mVAE and applied to AD study. Yet, they have not fully seized
the opportunities offered by mVAEs, as none of them model modality-specific latent spaces.

Multimodal integration has not yet reached its full power, but it is already widely exploited and
developed. We identified mVAEs as good candidates to answer the problem introduced in the pre-
vious section, presenting most of the characteristics we described earlier. They are able to integrate
an arbitrary number of modality and take modality structure into account by using modality-specific
encoders and decoders. Handling missing modalities naturally arises from their variational aspect,
although it is handle differently, depending on the variational approximation of the joint latent pos-
terior. When diagnostic or clinically relevant symptom severity scores are only available for a part of
the participants, it thus creates a weakly-supervised scheme because mVAEs are able to learn from
participant data withmissingmodalities. Beyond their suitability for multimodal integration, VAEs are
known for their interpretability capacities. In the following paragraph, we introduce the interpretation
capabilities of the VAE in the context of multimodal integration models. We specifically present the
instability sources to which these models (and thus their interpretations) are subject to, which should
be properly addressed to produce reproducible findings.
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4.2.3 . Interpretation
Interpretation of multimodal NNs is usually focused on decision aiding tools and supervisedmod-

els [186, 294]. Most of these methods have been developed for image or text explanations, specific to
the NN architectures and learning tasks. In particular, the wide majority of these methods have been
developed for VQA applications. In a comparable way, we aim to assess what ourmVAE has learned in
human readable terms. For instance, linear associations are very eloquent and are trivially available
for linear integration methods such as CCA or PLS. Their l1 regularisation additionally offers a featureselection mechanism that provides even more readable interpretations thanks to the sparsity of the
solutions. This strategy is not directly applicable in DL, where the NNs often learn complex non-linear
functions.
Additionally, ensuring that findings (e.g. interpretations) are stable to variation in experimental set-
ting is crucial to allow for reproducibility and turn results into knowledge. There are various sources
of variability that can impact the outcomes of the integration models we introduced, but they can be
qualified and properly handled. In the following, we first discuss interpretation opportunities in VAEs,
and then describe more broadly sources of instability in machine learning, which are both relevant to
discuss mVAE interpretation.
Usual methods for interpreting VAEs and their issues

VAEs are unsupervised models, that can be used either for their capacities to learn representations,
or for their generative properties. Interpretation in VAEs stems from their generative characteristics
and surprising disentanglement capabilities.

Interpretation from browsing the latent space. A usual way to assess what a VAE learned
is to sample in its latent space, then reconstruct the corresponding data point using the decoder.
Usually, instance-level or group-level explanation levels are generated by either considering two
instances latent representations, sampling in between using interpolation, or average latent rep-
resentation from the latent representations of a group of instances. Their reconstruction should
evolve in a smooth way and describe properties of the latent space. This is due to the fact the VAEs
learn continuous functions, which comes from the variational regularisation of the latent posterior
distribution to the same prior for all observations [197]. The same procedure can be done the other
way round: modifying smoothly the input data and observe the changes in latent representation
space can help investigate how the latent space is structured. For small dimensional (2D or 3D) latent
space, one can sample regularly in the latent space and reconstruct them to characterise the whole
space by mapping it with characteristics from the input space. Most often, latent spaces have a
greater dimension and this is not applicable, and an additional dimension reduction technique (e.g.
PCA or t-SNE) must be used to offer readable visualisations.

Variability separation by constraining the latent space with β. In 2017, a paper [164]
shows that increasing the regularising parameter β of the VAE, which penalises the latent posterior
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distribution, provides disentanglement, in that human understandable concepts are separated in
different dimensions. For instance, the dataset dSprites1 consists of black images with white shapes
embedded in each image. These shapes are encoded by configurable parameters of shape (square,
ellispe, heart), position, rotation and scale. They showed that increasing β leads to isolate these
parameters in different latent dimensions. Many works have tried to investigate this effect [45, 59,
244]. However, discussing such disentanglement properties is debatable, as it was shown that such
effect might not be necessarily due to proper disentanglement. Indeed, it was proven impossible
to disentangle sources of variability in a fully unsupervised setting without inductive bias or other
imposed constraints [232].

Although these approaches allow to interpret VAEs latent space, the provided interpretations are
instance or group wise. Moreover, relying on the latent space to explain learned associations by the
model seems to be difficult, because we are unable to fully understand and hence control this space.
In the next section, we will introduce the Digital Avatar Analysis (DAA), which offers feature wise inter-
view interpretations of the joint relationships learned by a multi-view Variational Auto-Encoder. It
relies on linking together reliable modifications in inputX-space to output (alsoX-)space.
Stability issues in mVAE interpretability

Statistical learning models can be affected by numerous sources of variations, which can lead to
varyingmodelling results. Someworks identifiedmost of these sources [201], and classified them into
two families: aleatoric uncertainty, which is due to characteristics of the data and is thus irreducible
from a modelling perspective, and epistemic referring to the reducible part of uncertainty coming
from modelling choices. These concepts have been studied essentially in prediction settings and
they are usually solved using Bayesian inference [179].

In parallel and in a more general context than mVAE interpretation, some works have defined
the notion of stability [250], which refers to the stability of learned weights, under different hyper-
parameter settings and across different training subsets of a population. The stability is often used
to assess reproducibility of machine learning models, and in particular in the linear integration
community with sparsity regularisation [342].
In this section, we discuss how these sources of variations are taken into account in these different
domains, by first discussing linear integration approaches to assess this stability and their conclu-
sions, then we introduce a few concepts aiming at reducing epistemic variability in NNs.

Stability of linear integration - handling aleatoric variability. In linear integrationmodels,
the main source of variability remain aleatoric. Indeed, the learning algorithm being constrained to
linearity usually converges to the one solution, provided a given training population. Its epistemic
variability amounts to the hyper-parameter choice, such as regularising constraints strength. Some
of these integrative methods rely on sparsity constraint to identify the most relevant features,

1https://github.com/google-deepmind/dsprites-dataset

https://github.com/google-deepmind/dsprites-dataset


84 CHAPTER 4. INTER MODALITY RELATIONSHIPS MODELLING

while other focus on features with the weights of largest amplitudes. Classically, these integration
studies employ cross-validation strategies that often include the definition of a downstream auxiliary
predictor for model selection [260]. However, it has been shown that these procedures may not
consistently identify stable associations [215, 342], especially when correlations between views
are low or sample sizes are small [215, 161, 376, 264]. To overcome this stability issue, some have
proposed to use stability as a criterion in their hyper-parameter or variable selection process [152,
210, 23, 180, 255, 57], drawing inspiration from stability selection [250].

Sources of variation in Neural networks - handling epistemic variability. Over-
parameterised neural networks have been shown to be far too confident about their predictions
[151], which is a bad property especially when they are designed to be part of a critical application
such as decision aiding tools. NNs uncertainty needs to be properly addressed, and it is related to
the surprising generalisation properties of such over-parameterised networks (see Section 2.2.1).
Most of the approaches that address this question consider Bayesian NNs. These particular NNs
feature SotA uncertainty modelling properties, although they usually account exclusively for aleatoric
or epistemic uncertainty [126, 192, 132, 179]. Bayesian NNs differ from deterministic NNs in that
they put a prior on the weights of the model. Instead of optimising directly the weight values, they
optimise the parameters of their associated prior distributions. For instance, a VAE can be seen as
a special case of Bayesian NN where only the weights before the latent space are stochastic. It is
worth mentioning the Monte-Carlo Dropout [127] that models epistemic uncertainty by introducing
a Bernouilli distribution prior on the weights of a NN. This work explains quite elegantly the boosted
generalisation properties observed when regularising a network with Dropout [326], which consist
in randomly dropping weights (i.e. setting them to zero) during training. Additional work propose
to model epistemic variability using ensembling [211], which consist in training multiple NNs over
the same training set, simply varying the random weight initialisation and training batches. This
frameworks conveniently extends epistemic uncertainty modelling to all types of NN trained in a
supervised manner.

With this inmind, we can properly identify sources of variability that we should take into account in
ourmVAE interpretation framework: epistemic uncertaintywillmostly arise fromNNs training, given a
fixed architecture, while aleatoric uncertainty will come from the training / left-out split for NN training
and interpreting. In the next sections, we use these observations to derive an interpretation pipeline,
with different building blocks, whichwhen combined together should be able to extract inter-modality
associations that are stable across these various sources of variability.

4.3 . Digital Avatars Analysis: leveraging generative abilities for interpretability

Interpretations in input data (X-)space can be achieved using Digital Avatars (DAs) by leveraging
generative capacities of VAEs. Let us consider a trained mVAE. We consider L observations (or
subjects) {x1, . . . , xL} forming the left-out set, that our trained mVAE did not use for training. The L

observations have all views available, i.e. xi = {xi1, . . . , xiK} for all i ∈ {1, . . . , L} with K being the
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number of views (e.g. imaging, questionnaires, genetic). Once trained, amVAE cannot directly provide
inter-view associations. However, the information learned by the model can be used to discover rele-
vant pairwise associations of one viewwith the others. Let l ∈ {1, . . . ,K} be this view’s index. Starting
from the left-out subjects, we modify each subject’s features of this view l and generate a set of
T = 200DAs. Thus, as being predicted by themodel, we capture the influence of this feature on other
views within themodel. From this set of virtual data, a conventional association study is performed to
find inter-view relationships. Hereafter, we describe in detail how the DAs are obtained and analysed.

Figure 4.3: Illustration of the DAA interpretation framework in a clinical cohort setting with twomodal-ities: imaging data and clinical questionnaires. First, the inference flow estimates output distributionsvia sampling in the latent space. Then, the simulation flow generates realistic perturbed samples ofthe view we want to study against others (here, the questionnaires) and infer digital avatars throughthe model. Finally, meaningful inter-view associations are inspected using hierarchical linear regres-sions.
Without loss of generality and for simplicity, we consider the case where there are two views, the

index of the reference view l = 1 and we note xi = (si,mi). To further simplify notations, we assume
view l only has one feature. Our aim is to create a set of DAs from each of the L left-out subjects. Let
s = (s1, . . . , sL) ∈ RL represent the view l, andm = [m1, . . . ,mL]T ∈ RL×pm the other view, pm being
the number of feature of this view. Note that this specific case can be generalised to cases where view
l has multiple features and additional views. The general idea is to modify s into ŝ and observe how
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these modifications affect the reconstructed features m̂. In this way, virtual pairs (ŝ, m̂) are obtained.
A first, although simplistic, approach to perturb s is to sample linearly or randomly between feature
percentiles or even to bootstrap values across subjects. Conversely, the proposed approach relies
on a simulation scheme to realistically perturb s. The realism of these perturbations stems from the
generative aspect of the model. We hypothesise that such an approach, which models the composite
variability of subjects measurements, will facilitate the discovery of relevant inter-view relationships.
Indeed, the variability in the simulated avatars integrates both subject-specific and population-level
(aleatoric) variability. The latter source of variability is captured through the learned variance that is
shared across the population. Our goal is to comprehensively assess what the model has learned
by introducing subject-level perturbations and investigating their effects on the reconstructed
digital avatars. The proposed strategy can be divided into three stages (inference, simulation, and
association), which are outlined below and illustrated in Fig. 4.3.

Inference - estimating likelihood distributions
For a given subject i ∈ {1, . . . , L}, we propose to use pθ(s

i|zi), the likelihood distribution of obser-
vations conditioned on the latent variable learned from the data, to sample DA artificial values ŝ. In
pθ(s

i|zi), θ represents the view l decoder weights, and zi = (ziJoint, zil ) is the latent representation of si,consisting of the view l specific and joint latent representations, respectively (see Section 4.2.2). This
likelihood model will tend to sample likely values in the sense of the model. Therefore, provided our
model is properly trained, such perturbed values will at best reflect the training data. The estimation
of pθ(si|zi) is obtained by drawingD = 1000 realisations of zi ∼ qϕ(z

i|si,mi), where ϕ are the weights
of the mVAE encoders (see Section 4.2.2). Passing these latent representations to the view l decoder
provides a good estimate of pθ(si|zi) [197] (by averaging the D decoded reconstructions). Note that
the same strategy can be applied to categorical data by approximating the parameters of a Bernouilli
distribution instead of a Gaussian.

Simulation - sampling realistic values
Given a subject i ∈ {1, . . . , L}, T samples are drawn from pθ(s

i|zi), resulting in T perturbations
ŝi ∈ RT . Repeating this sampling for all subjects i, the generated perturbed set forms our DA
perturbed view l observations ŝ = [ŝ1, . . . , ŝL]T ∈ RL×T . Importantly, when we generalise to multiple
feature in view l, only one feature is perturbed at a time. Finally, the perturbed measures m̂ are
reconstructed using a forward pass by considering ŝ and the corresponding other view’s features
m as input to the model. This results in a set of T perturbed measures representing our DAs
m̂ ∈ RL×T×pm . As a compromise between computational cost and accuracy, we set T = 200.

Association - computing inter-view associations
We search for associations between a feature from the view l and each feature from the other view.
We refer to the generated DA values for view l as ŝ ∈ RL×T , and generated DA features for the
other view as m̂ ∈ RL×T×pm . Associations are obtained using hierarchical regression models [44].
Specifically, for each feature j ∈ {1, . . . , pm}, a linear regression of the form ŝi = cij + bijm̂

i
j + ϵijis fitted for each subject i. The resulting slopes are averaged over all subjects as βj = 1

L

∑L
i=1 b

i
j .Performing the same analysis for all available features of the view l results in the association vector
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β ∈ Rp, where p = pm ∗ ps. This vector encompasses all potential associations between the ps featureof the view l and the pm features of the other view.

4.4 . Stability of DAA

We observed that the associations derived from the DAA were not stable when interpreting
different models, even when the model was trained on the same training set, and DAs derived on
the same left-out set. This instability is likely due to epistemic variability of the mVAE, and has mainly
been studied in supervised prediction settings [127, 211]. In feature selection using deep learning,
studies have shown that ensembling can enhance stability and mitigate epistemic variability [153].
Starting from these ideas we derive an ensembling procedure adapted to our context and we
propose a regularised version of the DAA which is able to overcome this epistemic variability the
mVAE.
On the other hand, this setting does not account for aleatoric variability due to the characteristics
of the training and left-out samples, and we noticed that it has an effect as well on the derived
associations from the DAA. To account for this variability and ensure that derived associations are
not specific to a subset of the population, we propose to adapt a stability selection [250] procedure
in the following, which only retains associations that are repeatedly selected across different train /
left-out splits.

In the followingwewill detail these twonestedmechanismsweuse to reach a stable interpretation
of what themVAE network learnt. First the DAA is regularised through an ensembling procedure, then
the finally retained associations are selected using the Meinshausen’s procedure.

4.4.1 . Regularised DAA
Considering a given set of left-out subjects, the variability in DAA comes from two sources

(see Section 4.3). The DAA procedure itself is non-deterministic, due to its inference step which
approximates likelihoods and to the sampling in these distributions during the simultation step.
However we observed, by repeating the DAA procedure with different random seeds, that these
sources of variability are negligible as compared to the variability induced by the considered trained
mVAE.

To overcome this sensibility to the training of the mVAE, we propose the regularised Digital
Avatar Analysis (r-DAA), obtained by repeating nE times: train a mVAE on the training subjects,
then perform the DAA on the obtained model using the left-out set. Note that the training set and
left-out set remain the same throughout these nE procedures, only the random weights initialisa-
tions and batches during training vary. This procedure is illustrated in Fig. 4.4. By subsequently
using ensembling, our objective is to identify stable associations from nE DAAs association matrix
β = [β1, . . . , βnE ]T ∈ RnE×p. Comparable to classical deep ensembling, our approach involves
ensembling candidate associations (which correspond to model predictions in supervised settings
[211]) proposed by the nE DAAs, and regrouped in the βmatrix. The proposed ensembling procedure
requires the definition of an aggregation function f and a decision function g. The aggregation
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Figure 4.4: Illustration of the regularised Digital Avatar Analysis (r-DAA) in (a) a cohort with twomodal-ities: imaging data (m) and questionnaire scores (s). The (nc) complete data is split into training (plainblue removing the dotted part) and left-out (dotted blue part) subjects. The r-DAA (blue boundingbox) procedure uses a given split of the dataset. In the inner dotted blue bounding box, we repeatthe following nE times: (b) a mVAE is trained using all the (ni) subjects with one modality and thetraining subjects with both. (c) The L left-out subjects are used for DAA using this trained model,outputting coefficients β. (d) These nE DAA outputs are then ensembled with an aggregation and abinary support decision function into nselect associations. The r-DAA outputs sparse associations be-tween the questionnaire scores and imaging measures.

function summarises the nE associations coefficients. The decision function generates a binary deci-
sion support from the aggregated coefficients, which is designed to retain meaningful associations.
Formally, let f : RnE×p → Rp be an aggregation function and g : Rp → {0, 1}p be a decision function.
The composition g ◦ f forms the proposed ensembling, which is outlined below and illustrated in Fig.
4.4(d).

Aggregation - f
The role of the aggregation function f is to assign an importance to each association from the
association matrix β. Initially, we opt for a classical mean, although alternative functions such as
median or maximum could also be relevant. However, the quality of the estimated nE models is
not accounted for by any of these functions. In fact, some models may converge to local minima of
the optimised loss function, resulting in less relevant models and representations. Such behaviour
can produce outlier associations that affect the stability of selected associations [153]. Therefore,
we employ a weighted average where the weights reflect the quality of the estimated models. The
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weights are determined by the model’s joint latent space ability to capture a significant proportion
of the investigated modality related variability. Practically, we use the Representational Similarity
Analysis (RSA) [206], which computes correlations between the joint latent space and the investigated
modality features (see Supplementary B for details).

Decision - g
The purpose of the decision function g is to obtain binary decision support from the aggregated
coefficients on a feature basis. This support allows us to choose a subset of the most informative
associations for each pair of feature (s,m), s being features of the modality investigated against
other features m from other modalities, enhancing reproducibility and interpretability. While a
simple strategy involves specifying a numeric threshold or defining built-in heuristics to find this
threshold, we prefer setting the number of features explicitly rather than using a threshold. This
approach provides consistency across score-metric pairs and DAAs. In practice, we choose to select
the top nselect associations with the greatest amplitudes.

Finally, nE can be interpreted as a level of DAA regularisation. Increasing nE should tend to over-
come epistemic variability, hence the higher should be the better. But we choose a different frame-
work and heuristic in order to set this nE regularising strength, the aforementioned stability selection
[250]. It features a more flexible selection paradigm which automatically selects the regularising pa-
rameter, and it is able to model aleatoric variability as well.

4.4.2 . Stability selection

Stability selection, derived from penalised machine learning [250], is designed to reinforce
feature selection through the definition of stability paths. Stability paths represent the probability
of selecting each feature when training the same algorithm with some regularisation parameter on
different random splits of a dataset. We extend this methodology to our DAA based association
study. In our context, the regularisation parameter is the number of models nE considered in the
ensembling step. We propose to repeat the r-DAA introduced in the previous section N times,
using different splits of the original dataset, and setting the regularisation parameter nE in a range
of values such as {1, . . . , 20}. This approach allows us to model aleatoric uncertainty inherent to
population variability. The implementation comprises three aspects outlined below and illustrated in
Fig. 4.5. First, we define a valid splitting strategy. Then, we repeat the r-DAA N times by varying the
regularisation parameters nE , enabling us to estimate stability paths. Finally, we define a criterion to
assess the stability of the results obtained across the N splits.

Splitting strategy
Our dataset consists of two parts: nc subjects with complete data and ni subjects with incomplete
data. It’s important to note that subjects with missing views can only be used to train the mVAE
model. For each split, out of the n subjects available, ni +

4
5nc are used in the training set. The latterincludes the ni subjects with incomplete data and 4

5nc randomly selected subjects with complete
data. The remaining L = 1

5nc subjects with complete data form the left-out set (see Fig. 4.5(a)-(b)).
To maintain population statistics, including age, sex, and acquisition site distributions, we employ
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Figure 4.5: Illustration of the stability selection procedure based on DAA in (a) a cohort with twomodalities: imaging data (m) and questionnaire scores (s). (b) The complete dataset is split N timesinto 4
5nctraining (plain orange removing the dotted part) and L = 1

5nc left-out (dotted orange part)subjects. (c) The r-DAA procedure is applied to each split using all the dataset, outputting sparse asso-ciations between the questionnaire scores and imaging measures. (d) Stability pathsΠ are computedfor each value of nE and associations with stability path Π ≥ πthr are selected. The stability selectionoutputs stable associations between questionnaire scores and imaging measures.

shuffled iterative stratification [311]. Although using the entire incomplete dataset in each training
iterationmay appear as a limitation, it is effectively mitigated by employing different shuffled batches
at each training epoch. We define N as the number of splits.

Stability paths
Each r-DAA with regularisation parameter nE produces a decision support Sj(nE) ∈ {0, 1}p for agiven split j ∈ {1, . . . , N}. The stability paths ΠnE ∈ [0, 1]p are the probability for each association to
be selected across theN splits. It is obtained by averaging all the calculated binary decision supports
as:

ΠnE =
1

N

N∑
j=1

Sj(nE) (4.3)
Stability criterion
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The stability criterion analyses the stability paths and defines which associations are considered sta-
ble. If the probability of an association happens to be greater than a user-defined threshold πthr
∈ [0, 1] for a specific regularisation parameter nE , then the corresponding association is selected.
Finally, we define the set of stable features as:

Sstable = {k : max
nE∈{1,...,20}

ΠnE
k ≥ πthr} (4.4)

More simply, thismeans that associationswith a high probability of selection for any regularisation
parameter are retained as stable associations. Conversely, those with a low probability of selection
are dropped.

4.5 . Conclusion

In this chapter, we introduced the need for integration methods that can model multi-view data
acquired on a single subject, as they are available in population studies. These population studies are
widely used to study psychiatric illnesses about which little is known. These cohorts are known to be
heterogeneous, not only because it is difficult to control diagnoses precisely during the inclusion, but
also because these diseases display comorbidity. Following criteria such as RDoC, these population
studies consist of multi-modal acquisitions (e.g. imaging, genotyping and clinical scores) to find
"dimensions" underlying the symptoms or psychiatric disorders. Integrationmethods are required to
handlemultiple biological markers andmodel their contribution tomultiple dimensions of pathology,
that can be shared across psychiatric disorders and possibly contribute to non-pathological variability.
We considered a number of properties required bymachine learningmodels to address this problem.

We introduced candidate integration models considering linear approaches, which include CCA,
PLS and their extensions. However, their lack of capacity and inability to use observations with
missing assessments are very limiting.
Deep PGMs present very appealing properties, as they are able to leverage observations with missing
modalities and can model the correlation structure intra (with modality specific networks and private
latent spaces) and inter-modality (with joint latent space) efficiently. Additionally, they have been
shown to embed disentanglement properties, which can be used to separate between view-specific
and shared variability. This can have important implications, as most biases are not contained in all
modalities: image acquisition site effect is a very good example of such bias, which will be restrained
to imaging modalities. Sex-related effects might be restrained to imaging and genetic modalities.
Clinical questionnaires are designed to be unbiased by such factors.

Then we discussed the interpretability opportunities which come with the models introduced
previously, and propose an interpretationmethod using Digital Avatars which interpret what a model
learned by slightly modifying features of one modality in input space and interrogating the mVAE to
generate the corresponding changes in the other modalities. This interpretation module outputs
an association matrix linking each feature from each modality to the features from the initially
perturbed modality. It provides a convenient interpretation module to understand the inter-modal
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relationships learned by a mVAE model.
Additionally, we identify stability as key to enhance the reproducibility of findings. After discussing

some origins of instability in ML, we propose ways to mitigate these sources of variability when
interpreting mVAE models with the DAA. Epistemic variability is handled by repeating the training
/ interpretation procedure of the mVAE on the same train / left-out split of the population, then
ensembling their results. This consists in the regularised DAA. In order to ensure that the exhibited
associations are not specific to the train / left-out split considered by the r-DAA, we also propose to
use a stability selection procedure to retain consistently selected associations by the r-DAA across
multiple splits, hence controlling the aleatoric uncertainty.

These methods were introduced in this chapter in a more general context, but were in fact de-
veloped for discovering reproducible brain-behaviour associations. We believe that applying such
techniques to large multimodal cohorts could enable finding relevant biomarkers for clinically rele-
vant phenotypes. The DAA led to a publication in the conference ISBI, presented in 2023 at Cartagena,
Colombia and during a poster session at the french seminar IABM 2023 in Paris. In the next chapter,
we apply the DAA module to a transdiagnostic cohort of at-risk children for various psychiatric dis-
eases (including autism, hyperactivity and anxiety), presenting shared or specific symptoms for these
pathologies. We enforce reproducible associations discovery by applying the r-DAA and stability se-
lection procedures. We discuss the related experimental settings and obtained results, as well as
some hints on how to interpret them, especially from a transdiagnostic perspective.



5 - Transdiagnostic brain-behaviour study

Contents
5.1 Shared factors across disorders: transdiagnostic psychiatry . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 The transdiagnostic hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 Transdiagnostic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Cortical signature of autistic subgroups in HBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 The dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Expert stratification assisted by unsupervised clustering . . . . . . . . . . . . . . . . 98

5.2.3 A replication with DL integration method: sMCVAE . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.3 Towards reproducible transdiagnostic brain-behaviour associations . . . . . . . . . . 105

5.3.1 The dataset and parameters of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

5.3.2 Models inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

5.3.3 Stability selection of r-DAA associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

5.3.4 Transdiagnostic factor spatial support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Deep mVAE model are expressive multi-modal integration tools . . . . . . .116

5.4.2 Deep mVAE models for transdiagnostic studies . . . . . . . . . . . . . . . . . . . . . . . . . . .117

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 Limitations of our transdiagnostic brain-behaviour association dis-covery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

5.5.2 Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

93



94 CHAPTER 5. TRANSDIAGNOSTIC BRAIN-BEHAVIOUR STUDY

Today, psychiatry, in both its diagnostic and therapeutic dimensions, is moving from a paradigm
based on the study of syndromes to a new one built on an understanding of their underlying neu-
robiological mechanisms. Achieving this goal is an ongoing process that requires the combination
of scientific advances, technological innovations, and a patient-centred approach [368]. Identifying
relationships between behaviours and brain measures is a key aspect of this paradigm. However,
behaviours are complex and often result from a combination of genetic, environmental, and psy-
chological factors. Furthermore, the phenomenon of comorbidity frequently discussed in psychiatry
means that multiple behaviours associated with various mental disorders can co-occur simultane-
ously, and the same disorder may manifest with different behaviours in different individuals. This
complexity challenges the idea that a single behaviour signature can correspond to a sole disorder.
As previously introduced, the NIMH RDoC provides recommendations for properly addressing this
complexity. In contrast to traditional approaches that aim to find a diagnosis from a specific score or
modality (as outlined in the DSMs), the RDoC promotes dimensional and transdiagnostic approaches.
These dimensions include genetic, biological, environmental, and lifestyle factors in the research
on personalised psychiatry. In recent years, the transdiagnostic literature in psychopathology has
developed along these lines [125]. Some recently developed transdiagnostic approaches investigate
a general psychopathological factor, the so-called p-factor [53, 55]. This p-factor would underlie
mechanisms common to several psychiatric syndromes and is usually represented as a single
dimension that would act on a set of symptoms and, ultimately, disorders. The goal of such studies
is to search for neural correlates of the p-factor using various biological markers, such as imaging or
genetics.

In a first section, we briefly introduce this transdiagnostic view of psychiatry and shed light on
their foundations and possible advantages to find biological markers for psychopathology and treat-
ment. In a second section, we introduce a study of the transdiagnostic cohort HBN, composed of
at-risk children for developing psychiatric disorders, presenting symptomatic behaviour. This study
offers a stratification of autistic patients within HBN, using multiple questionnaire-based symptom
scores. We propose a replication study using a mVAE integration model, with which we are able to
replicate similar groups in its latent space. However, due to its central consideration of autism to
define subgroups, this study can only reveal transdiagnostic markers related to this pathology. Ad-
ditionally, imaging data is integrated post-hoc. We use a mVAE to integrate both imaging data and
clinical scores during training. However, this mVAE constraints both latent spaces to have same di-
mension. It prevents it to be applied in settings where views have large dimensional discrepancy. In
a third section, we propose to use the methods introduced in the previous Chapter to discover stable
brain-behaviour associations. We show the role of eachmodule of ourmethodological developments
in stabilising the output associations, and display these associations in a transdiagnostic perspective.
Indeed, these associations are derived from a multivariate low dimensional latent space expressing
shared variability between cortical measures and clinical scores correlated with multiple psychiatric
disorders. Then, we discuss the presented results, from a methodological point of view, their po-
tential implications in revealing transdiagnostic biomarkers and limitations. Finally, we put them in
perspective and propose various possible future works.
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5.1 . Shared factors across disorders: transdiagnostic psychiatry

Some research works hypothesise that multiple evidences for shared psychopathologic factors
have been ignored too long while investigating and treating psychiatric diseases. The RDoC advocates
to take into account transdiagnostic factors to search for biological correlates of psychiatric disorders
and design treatments. This line of research is being developed and transdiagnostic factors are being
studied, both in terms of hidden biologicalmechanisms and in terms of possible clinical interventions.

5.1.1 . The transdiagnostic hypothesis
Transdiagnostic research originated from the study and therapy development for treating eating

disorders [125]. It was later extended to study anxiety and depressive disorders, then to all psychiatric
diseases [53]. The transdiagnostic research relies on two main assumptions: 1) many disorders share
common symptom expression, which could be due to an underlying shared aetiology. 2) developing
disorder-specific treatments without considering their heterogeneity or high comorbidity is limiting
and prevents cognitive behavioural adapted treatments.

Figure 5.1: Illustration of the hierarchical latent factor model proposed by Caspi et al. [53]. Imagetaken from [249].
In psychiatry, an emerging concept is the general psychopathological p-factor [53]. It proposes a

hierarchical latent factor modelling (illustrated in Fig. 5.1) of psychiatric disorders. The second level
of this model would be composed of already identified dimensions underlying most psychiatric dis-
orders:

• the Internalising dimension reflects susceptibility to present symptoms related tomood disor-
der or anxiety, such asmajor depression, generalised anxiety, panic disorder and social phobia.
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• the Externalising dimension would underlie liability to substance abusing and addiction be-
haviours and antisocial attitudes.

• the Thought Disorder spectrum assesses sensitivity to psychotic thinking and behaviour such
as schyzotopal personality disorders.

The first level of this hierarchical model would be composed of the General Psychopathological p-
factor, proposed as another latent dimension underlying both psychiatric disorders and these 3 psy-
chopathological processes. It would unify their different yet overlapping theories and explain their
correlation. This work aims at overcome DSM diagnoses by proposing a novel theory more suited to
take into account comorbidity and shared etiology across disorders. From this pioneering proposi-
tion, psychiatric research has started to take into account such factors when designing therapeutic
treatments.

5.1.2 . Transdiagnostic applications
We can distinguish two main types among trandiagnostic studies. On the one hand trandiagnos-

tic processes are investigated, proposing different modelling as the one introduced by Caspi et al.
[53], and neural correlates are investigated using different imaging techniques. On the other hand,
transdiagnostic clinical interventions are being explored.
Transdiagnostic processes study. A question that concentrated some research effort was the
statistical latent factor model which should be considered in transdiagnostic settings. It was in fact
shown that this modelling was not the most important research question, and that multiple models
give reasonably similar results [54]. As such, research should be focused at finding biological corre-
lates of such p-factor rather than statisticalmodelling, and proposingwell-specified validation criteria.
So far, most transdiagnostic studies investigating biological processes do not fulfil these criteria [125,
87, 257]: most studies have large discrepancies in experimental settings, considered population, di-
agnostics and validation. Specifically, only a few studies replicate in independent external cohorts.
Transdiagnostic treatment. Treatments in coherence with this transdiagnostic hypothesis
allow to focus on developing a unified manner to treat patients with psychopathologies. Many
treatments have been explored thus far and seem to show encouraging results improving over
conventional approaches (derived from case / control studies), particularly in treating anxiety and
depression [309] and comorbidity [87]. Transdiagnostic interventions include moslty two broad
treatment categories: universal interventions promote a one-size-fits-all protocol where all patients
receive the same therapeutic treatment. Other approaches propose a more modular treatment,
composed of evidence-based functional units (modules) that can be delivered flexibly in a more
personalised way.

The HBN cohort [6] is a large multi-center, transdisciplinary clinical study. It includes a variety of
assessments, including imaging, and a comprehensive set of psychological and clinical assessments
to better understand psychiatric disorders. Inclusion criteria are not diagnosis dependent, but
rather encompass an at-risk population with notable behavioural symptoms. Specifically, subjects
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were selected based on the presence of behavioural constructs related to ASD, ADHD or other
anxiety disorders. Consensus diagnoses are not available for the majority of subjects enrolled
in the HBN cohort. As such, the dataset allows for the study of the different manifestations of
psychiatric syndromes within the data. In particular, it provides an opportunity to explore methods
for new biomarker discovery and dimensional analysis. In this regards, HBN offers a very promising
candidate dataset for transdiagnostic studies to identify biomarkers underlying biological processes
across disorders.

Now, wewill present two studies usingHBNwhich integrate such adimensional strategy to identify
transdiagnostic correlates between brain and behaviour. These works differ in their central focus,
with the first study concentrating on the cortical signatures of autistic subgroups, while the second
directly investigates transdiagnostic associations as part of a more integrated procedure. A particular
attention is paid to assess or improve reproducibility of these studies.

5.2 . Cortical signature of autistic subgroups in HBN

5.2.1 . The dataset
This HBN release we used contains approximately 1800 subjects. Considering participants with

overlapping available behavioural assessments and with FSIQ > 70, 1093 participants remain. More
precisely, 7 behavioural scores were used: a quantitative measure of clinical autistic traits was de-
fined as the parent Social Responsiveness Scale (SRS), hyperactivity levels were determined using the
hyperactivity subscale within the Strengths and Difficulties Questionnaire (SDQ-ha), the anxiety was
measured using the total score from the Screen for Child Anxiety Related Disorders Parent-Report
(SCARED), irritability was defined using the total score of the Affective Reactivity Index Parent-Report
(ARI), and finally, levels of depression, aggression, and attention problems were determined using
subscales of the same names within the Child Behavior Checklist (CBCL-wd, CBCL-ab, and CBCL-ap,
respectively).

T1-weighted MRI available for these 1093 subjects were used, resulting in 527 images after
preprocessing and QC, acquired at 3 different sites mostly at 3T and some of them at 1.5T. They were
preprocessed using FreeSurfer to extract cortical thickness, surface area and local gyrification index
and represent them onto the fsaverge template of order 7 (∼ 160K vertices per hemisphere). QC
include manual inspection and controlling for the reconstructed surface (Euler number < −217).

From this dataset, we introduce a previous analysis where an expert derived 3 autistic subgroups
in a dimensional approach, leaning on an unsupervised clustering algorithm applied to these 7 clinical
scores. These clusters are then qualified and further described as 3 types of autism. The groups are
compared to each other, and with other participants considered as controls, in terms of measures of
their cortical surface, in an attempt to find biological signatures specific to each of these subgroups.
In a second time, we present a study that uses very similar data from HBN and replicates some of the
previous findings, using a completely different technique. We used a particular mVAE, the sMCVAE,
to integrate both questionnaires and imaging data at training time. By inspecting this sMCVAE latent
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space, we remark that the participants are grouped with the same stratification proposed by the
previous study [253]. We further try to interpret the network using its generative abilities.

5.2.2 . Expert stratification assisted by unsupervised clustering
This study [253] focuses on finding a stratification among the autistic population within HBN.

An unsupervised algorithm is used to determine clusters of subjects in the HBN cohort. Then a
stratification of subjects with autistic profiles is derived by selecting 3 subgroups that are further
characterised by their symptoms and cortical differences.

The stratification of the 1093 participants was done using aK-Means clustering on the 7 z-scored
behavioural scores. The optimal number of clusters was adjusted using the Bayesian Information
Criterion (BIC).
The cortical features were harmonised for site effect using the ComBat correction [121], then
smoothed using gaussian kernels. Statistical analyses of the cortical measures were done using a
linear mixed model to model group effect for each of the autistic subgroups, adjusting for sex, age
and FSIQ.

The BIC criterion identified 9 as being the optimal number of clusters in this population. Out of
them, 3 presented relatively high mean SRS. As part of their expert analysis of these 9 groups, the
authors chose to retain 3 clusters whose subjects show an average SRS score above 80, and to study
the clusters that partitioned these subjects. For each of these 3 autistic subgroups, the average values
of the 6 other behavioural scores (other than the SRS) are represented in the radar plot (illustrated in
Fig. 5.2):

• The Emot (emotional dysregulation) subgroup showed high level of reactivity, aggression and
ADHD-like symptoms in n = 107 patient.

• A cluster with n = 82 subjects maintained normal level in a behavioural symptoms except for
attention problems and hyperactivity, thus forming the Attn (attention problems) subgroup.

• The last AnxDep subgroup with n = 61 patients showed high level of anxiety and depression, as
well as attention deficits.

The remaining 6 subgroups, with relatively low levels of social impairment assessed by their average
SRS, were considered as controls.

Regarding statistical analyses, no significant differences were found when comparing ASD
subjects (regrouping the 3 previously found subgroups) to controls. However, some differences
where found, when comparing each of these subgroups against controls, which are summarised in
the Figure 5.3. These findings tend to highlight that the heterogeneity of the autistic population does
not allow to discover biomarkers at the population level but requires finer defined subgroups.

This work, although displaying interesting autistic subgroups, has some limitations. First, it re-
quires a human expert to annotate and choose the 3 subgroups. Then, other criteria could be used
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Figure 5.2: Autism subgroups characteristics in HBN found by [253].

to select the total number of cluster, and investigating the stability of these 3 autistic subgroups with
different number of clusters in theK-Means could be interesting. And finally, cortical imaging feature
were only investigated after having identified the subgroups, when they could have been integrated
in the unsupervised algorithm to derive the stratification. This study could benefit from a more in-
tegrated perspective. We propose some improvement over this methodological aspect in the study
introduced in the next section.

5.2.3 . A replication with DL integration method: sMCVAE
In our study, we use the same dataset and a similar release, but integrate both imaging data

and behavioural symptoms at the learning phase using a mVAE called sMCVAE. We use a subset of
619 participants from HBN that have both the 7 symptom scores and imaging data. As in 5.2.2 we
selected subjects with FSIQ > 70 and filtered out imaging data preprocessed using FreeSurfer (Euler
< −217). We consider the labels defined in the previous study Emot, Attn, AnxDep and controls for all
subjects. However, it is worth noting that these labels are solely used for visualisation purpose and
are never provided to the learning algorithm.

It must be noted that, instead of considering cortical measures over vertices of the fsaverage
template (160K vertices per hemisphere), we use their average value across the 148 ROIs defined by
Destrieux’s atlas.
Method. The sparse Multi-Channel VAE [14] (see Section 4.2.2) is a particular multi-view Variational
Auto-Encoder withmodality-specific latent spaces. It does notmodel explicitly the shared information
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Figure 5.3: Cortical measure differences between ASD subgroups and controls found in [253].

as a PoE-VAE would, but it is trained to reconstruct every view from each latent space. Thus, the latent
spaces are constrained to have the same dimension. Moreover, a sparsity penalty can be jointly
applied to the different latent spaces to restrain them in using the smallest portion of the space
as possible. This sparsity penalisation stems from variational dropout [259], which hypothesises a
different form of the latent posterior distribution and introduces and extra parameter α ∈ Rk, k
being the latent space dimension here, which was shown to control the sparsity level of the latent
space. This parameter is learned during the training, intervening in the part of the loss involving the
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Figure 5.4: Illustration of the sMCVAE used in our reproduction study. Eachmodality has its own latentspace, but both representations are fed the decoders at training time. The approximated posteriors,which have the form q = N (µ, αµ2), create a dropout mechanism d, function of α, that selects thelatent dimension across modalities. The used threshold thr for selecting dimensions with respect totheir dropout rate and latent space dimension k are displayed at the top centre of the schema.

Kullback-Leibler divergence. Setting a threshold on the associated dropout rate allows to discard
useless dimensions at the end of the training. This model is illustrated in Figure 5.4. We use linear
encoders and decoders, and 4

5 of the available subjects to train the network, while the others are
used to assess the generalisability of the trained model. The initial latent space dimension is k = 10.
This dimension was selected to be smaller than all input dimensions, while knowing that the sparsity
parameter would automatically reduce it.

To visualise the differences in cortical measures across subgroups, we consider the centroids of
each previously defined subgroupswithin test participants (not used to train the network) in the latent
space of the clinical scores. These centroids are then reconstructed using the imaging decoder and
compared to the average Ground Truth (GT) features of subjects from each group. We also compared
these reconstructed image features from clinical representations centroids across groups to findings
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from the previous study introduced in 5.2.2.

Figure 5.5: Highlighted trained sMCVAE latent space properties. (a) Sorted dropout probabilities ofthe latent space dimensions, and the threshold used as a red dotted line at d = 0.2. The clinical latentspace is displayed with the three retained latent dimensions. Participants labelled as autistic in [253]are displayed, with their subgroup labels. Each subgroup centroid is represented by a cross. In plot(b) are represented training subjects and test subjects are represented in plot (c).

Results. During training, the dropout rate optimised by the sMCVAE converged for the different
dimensions: among the 10 initially deployed latent dimensions, 3 of them were identified as relevant
by this sparsity constraint, considering the advocated dropout rate threshold of 0.2 by the authors.
This allowed us to visualise directly the subjects representations in the latent space, without relying
on an additional dimensionality reduction such as PCA or t-SNE. Figure 5.5 displays information
about the learned latent space. In Fig. 5.5(a), we can see the sorted dropout rates stemming from
the learned α configuring the posterior latent distributions. Their relationship is illustrated in Fig.5.4.
The displayed threshold was used to discard latent dimensions with dropout rate above it.

Figure 5.5(b) and (c) display the thus learned 3 dimensional clinical latent space, corresponding
to the output from the clinical encoder. Training subjects representations are plotted in this latent
space in Figure 5.5(b). Note that only non-control subjects in the previous work, coloured along with
their subgroup labels, are displayed here for clarity. Subgroups appear to be smoothly regrouped
by labels, although there is some overlap. In Figure 5.5(c) are similarly displayed the clinical repre-
sentation from the test subjects. The groups appear even more broadly separated, showing that the
network properly generalises to unseen data.

Additionally, the reconstructions from centroid clinical representations show relatively low errors,
as shown in Fig. 5.6(a), when compared to their average GT. When comparing to average GT of other
subgroups, errors increase in some areas. These areas can in fact highlight potential ROIs for differ-
encing the subgroups. Note that statistics regarding differences in cortical measures between ASD
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Figure 5.6: Reconstruction properties from test subgroup centroid clinical representations. (a) Re-construction error when compared to the average GT gyrification indices for different subgroup. (b)Reconstructed values for ROIs identified in [253].

subgroups were not conducted in the previous study. However, we can investigate the reconstruction
of cortical features from clinical latent representations of each subgroup centroid and compare them
to reconstructed cortical feature of the control group. These results are displayed in Figure 5.6(b) and
reproduced findings were highlighted in red: the Attn subgroup displays increased average surface
area in superior frontal and precentral regions of the left hemisphere, and AnxDep subgroup presents
decreased average thickness in the middle temporal gyrus and superior temporal sulcus of the left
hemisphere. These findings were however not statistically validated.

5.2.4 . Discussion
In this section, we discuss the two presented analyses in the two previous sections, their advan-

tages and limitations, and their pertinence for our research question, which is finding transdiagnostic
brain-behaviour associations.
Reproducibility of the results. The results obtained in the study presented in Section 5.2.3
reproduce the outcomes of the paper from [253]. Indeed, we find a similar stratification of the clinical
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latent space in our trained mVAE, without ever using these labels to train the network, although we
can note various differences in the data and modelling process we used:

• We used a slightly different subset of HBN with a few more images (619 vs 527 subjects).
• We used measures averaged over Destrieux’s ROIs instead of considering the spherical tem-
plate fsaverage.

• We did not use a smoothing kernel over the cortical surface data, because averaging over ROIs
did the work for us.

• We did not control for site effects.
• We trained an integration model using both clinical and imaging data.

This is encouraging as reproducing results in such a different setting is often hard. However, data
were preprocessed by the same people and the same software, which surely helps a lot.

Regarding the imaging results, we can not really pronounce about replicability. First, imaging
features were integrated in the learning algorithm, as opposed to post-hoc analyses in the previous
study. Moreover, the proposed analyses in our replication study were very shallow and preliminary.
Validating them would require further experiments and statistical validations. It is also difficult to
compare them, as the considered imaging features are different, and the smoothing effect coming
from averaging over ROIs could hide small but significant effects.
Focus on autism. The labels considered in these studies rely mostly on the SRS clinical scale and
participants with lower SRS are directly labelled as controls. This assumption is certainly better to
study ASD in a more dimensional approach than binary DSM diagnostic, but is quite limiting in the
transdiagnostic case.

Moreover, the stratification proposed in the study presented in Section 5.2.2 is completely driven
by behavioural scores. A more integrated approach to stratification could be used, to take into ac-
count both symptom scores and biological variations reflected in the images. For instance, the latent
clinical latent space of the trained sMCVAE is entirely determined by clinical scores, since it is uniquely
generated using the clinical modality. That being said, since these representations are passed to the
imaging modality decoder during training, the clinical latent space is organised in such a way that
imaging features can be reconstructed from the clinical latent space as well (such as in Figure 5.6). It
is therefore a good candidate space for an integrated stratification.
About the sMCVAE. From a methodological perspective, we can now discuss pros and cons of
using the sMCVAE.
The sparsity constraint is very interesting and works nicely. It constraints the latent space to remain
sparse and regularises the network, which has the potential of limiting the number of solutions
when considering more complex and non-linear NN architectures such as MLPs. However, this
sparsity acts as a proportion regularising constraint, not so much as a number of ideal dimen-
sions seeker. Indeed if you increase the network latent dimension (say 100 instead of 10), it will
select the same proportion of this novel latent space (here 30 instead of 3) rather than a fixed



5.3. TOWARDS REPRODUCIBLE TRANSDIAGNOSTIC BRAIN-BEHAVIOUR ASSOCIATIONS 105
number of dimensions. Additionally, this sparsity mechanism dictates that the network must
have the same latent space dimension for all modalities. In the case of MCVAE, this constraint
already arises from the fact that decoders are given all latent representations. But this can be
problematic in settings where there is a large dimensional discrepancy between modalities. The
final latent space dimension should be less than input dimension, otherwise the network can
encode any information, including hard-coding the data, which is not desirable. Having flexibility
in setting different latent space dimension inmultimodal integration using DL is of major importance.

Interestingly, not residualising for site effect did not impact (or only slightly) the clinical latent
space. This highlights this convenient property arising from modelling modality-specific latent
spaces, i.e. that are not computed using other modalities. However, this setting will never allow for a
proper disentanglement of shared and modality-specific factor, because of the way it is trained. This
separation will only happen if an explicit joint latent space is modelled separately.

In this study, we only used a linear encoder and decoder, which limits the number of solutions
and guaranties a reproducible network throughout different trainings (less prone to epistemic
variability). However, it does not explore NNs capacity to their full extent, and is not very realistic to
integrate larger dimensional modalities with complex structure such as cortical surface data on the
fsaverage.

Overall, this study is a great example of reproducible stratification, but its replication in other
cohorts is still unclear and the discrepancies in clinical questionnaires and recruitment criteria across
cohorts are very hard to come by when considering such a stratification strategy. In the following, we
focus on finding brain-behaviour associations, that we deem to have a better potential for replication
in other cohorts. These associations are mostly driven by symptoms (using symptom score), and
should thus not be limited by recruitment criteria.

5.3 . Towards reproducible transdiagnostic brain-behaviour associations

The previous study focuses mostly on ASD. In the following, we want to discover reproducible
transdiagnostic associations between measures of the cortical surface and symptomatic behaviours
implicated in multiple psychiatric disorders. Here, we showcase the capacity of the tools previously
introduced in Chapter 4 to uncover such stable associations. We integrate questionnaire scores and
cortical measurements over ROIs using a mVAE, then use the DAA framework to interpret its joint
representations and output associations. The r-DAA procedure is used to extract associations that
are not due to epistemic variability, wrapped in a stability selection framework which ensures that
retained associations are generalisable within our population, and therefore more prone to being
reproducible.

5.3.1 . The dataset and parameters of the methods
Multimodal dataset. This study uses the HBN cohort as well, but a more recent release contain-
ing more participants. In the previous study introduced in Section 5.2.2, our group identified seven
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Figure 5.7: Illustration of the interpretation framework based on DAA. In (a) the HBN cohort withtwo modalities: imaging data (metric× ROI) and clinical questionnaires (eCRF). For each split (orangebounding box) of the dataset, complete data are split into training (plain orange removing the dottedpart) and left-out (dotted orange part) subjects. Each r-DAA (blue bounding box) procedure uses onesplit of the dataset. In the inner dotted blue bounding box, we repeat the following nE times: (b) aMoPoE-VAE is trained using all the subjects with one modality and the training subjects with both. (c)Left-out subjects are used for DAA using this trained model, outputting coefficients β. (d) These nEDAA outputs are then ensembled with an aggregation f and a binary support decision function g into
nselect associations. The r-DAA procedure is repeated for each of the N = 100 different splits of thecomplete dataset. (e) A stability selection procedure is used to retain associations with stability path
Π ≥ πthr high enough. The whole framework outputs stable associations between clinical question-naires and imaging measurements on ROIs.

behavioural assessments that capture the most salient dimensions in ASD patients [253]. Specifically,
a quantitativemeasure of clinical autistic traits was defined as the parent Social Responsiveness Scale
(SRS), hyperactivity levels were determined using the hyperactivity subscale within the Strengths
and Difficulties Questionnaire (SDQ-ha), the anxiety was measured using the total score from the
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Screen for Child Anxiety Related Disorders Parent-Report (SCARED), irritability was defined using
the total score of the Affective Reactivity Index Parent-Report (ARI), and finally, levels of depression,
aggression, and attention problems were determined using subscales of the same names within
the Child Behavior Checklist (CBCL-wd, CBCL-ab, and CBCL-ap, respectively). These scores reflect
various symptoms implicated in multiple psychiatric disorders, and are thus good candidate to build
transdiagnostic factors. In total, 2454 subjects with all these scores are retained.

For this release of HBN, the MRIs were acquired at four sites. A mobile 1.5T Siemens Avanto on
Staten Island, a 3T Siemens Tim Trio at the Rutgers University Brain Imaging Center, and 3T Siemens
Prisma at the CitiGroup Cornell Brain Imaging Center and at the CUNY Advanced Science Research
Center. Collected T1-weighted images were preprocessed using FreeSurfer. The Euler number is used
as a quality metric summarising the topological complexity of the reconstructed cortical surfaces
[301]. Specifically, a single Euler number exclusion threshold of −217 is applied to yield 2042 selected
subjects. Finally, cortical measures based on three metrics - cortical thickness, curvature, and area -
are averaged in the 148 ROIs defined by Destrieux’s parcellation [96].

The proposed brain-behaviour integrative analysis considers these two blocks of data. First, the
electronic Clinical Record Form (eCRF) view consists of the peCRF = 7 behavioural scores. Second,
the ROI view is composed of the pROI = 444 cortical features from the 3 considered metrics across
the 148 ROIs. In total, our dataset comprises 2991 subjects. Among them, 1505 have both complete
views (referred to as complete dataset in Fig. 5.7(a) and 1486 have only one of the two views avail-
able (referred to as incomplete dataset in Fig. 5.7(a). Missing views remain a common problem in
data integration. The factors contributing to missing data are usually not known in advance. Most
traditional data mining and machine learning approaches operate on complete data and fail when
data is missing. As fallback strategies, some models rely only on samples with all views available or
on an auxiliary inference step that generates missing views. Our goal here is to use a model able to
accommodate missing views, in order to use a maximum number of available samples.

Parameters of the methods. We describe precisely in the following the implementation of the
notions described in the previous chapter and illustrated in Fig.5.7.
The selected model. We identify the MoPoE-VAE (see Section 4.2.2) as a good model to properly
build modality-specific and shared latent spaces, as well as for its straightforward way of handling
missing modalities. As a reminder, the MoPoE-VAE models the joint posterior as the mixture of
products of (subsets of available) experts. The encoders with parameters ϕ are each defined as
MLPs, each with one hidden layer of 256 units and a ReLU activation. The decoders with parame-
ters θ are linear (a single fully connected layer). Note that every decoder has a learnable variance
parameter for each reconstructed feature that does not depend on the input observation. This al-
lows the decoders to learn a population-level (aleatoric) variability. To handle inputs of different
sizes, the dimensions of the view-specific latent spaces were set individually. Based on a previous
study [11], we chose deCRF = 1 and dROI = 20. Defining the dimension of the shared latent space
jointly with the dimensions (J1, . . . , JK) of the input views seems to be a reasonable criterion. A
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latent space should be smaller in dimension than the input. We use the following rule:
d < min

k∈{1,...,K}
{Jk − dk}

To spread the variability of the observations across the view-specific and shared latent representa-
tions, we choose d = 3. All data are z-scored before being fed to the network. The model is trained
with an Adam [195] optimisation, an initial learning rate of 2× 10−3 and a batch size of 256.
Regularised DAA procedure. Considering a training / left-out split of HBN, we apply our r-DAA
procedure (see Section 4.4.1), with nE ∈ {1, . . . , 20}: we train nE models on the training subjects,
using subjects with complete data (eCRF and ROI) and subjects with incomplete data (eCRF or ROI),
different random initialisations and training batches. From of these nE trained models are derived
associations using DAA on the left-out subjects with complete data, that are concatenated in the
association matrix β. We consider two ensembling functions f in order to compare their results.
The first one is the uniformly weighted average function, and the second is an average weighted
by a quality measure of our trained MoPoE-VAEs. A model is rated using the Kendall τ correlation
between its joint representation of left-out subjects and each eCRF score individually, then averaged
across scores (see Appendices B and C.2 for more details). Final associations retained are selected
using the latter ensembling function. The decision function g selects the nselect = 12 associations
of greatest aggregated amplitude f(β). This procedure outputs a sparse vector g ◦ f(β) ∈ {0, 1}p
with p = peCRF ∗ pROI .
Stability selection. We implement the introduced stability selection procedure in Section 4.4.2.
Our HBN dataset consists of 1505 subjects with complete data and 1486 subjects with incomplete
data (see Section 5.3.1). Recall that subjects with missing views can only be used to train the model.
For each split, out of the 2991 subjects available, 2690 are used in the training set. The latter includes
the 1486 subjects with incomplete data and 1204 randomly selected subjects with complete data.
The remaining L = 301 subjects with complete data form the left-out set (see Fig. 5.7). To main-
tain population statistics, including age, sex, and acquisition site distributions, we employ shuffled
iterative stratification [311]. We opt for using N = 100 splits.

5.3.2 . Models inspection
To evaluate the information encoded in the various latent spaces of the trained models, we em-

ploy the RSA [206] tool introduced in Appendix B. The RSA results in Table 5.1 depict the relationships
between different latent spaces (eCRF, Joint, and ROI) and each eCRF score, alongside other relevant
covariates like age, sex, and image acquisition site. In short, we computed each of these Kendall τ
correlations for every N = 100 splits and corresponding nE = 20 models (using left-out subjects).
The reported correlations τ̄ are averaged across these N ∗ nE values and statistically significant
correlations are displayed in bold. These reported correlations illustrate how the different latent
spaces co-vary with the compared features. See Appendix B for further details.

Notably, each eCRF score strongly correlates with the eCRF-specific latent space, as highlighted in
pink in Table 5.1. This is noteworthy since the models successfully learned a one-dimensional space
capturing a significant amount of variability associated with all the eCRF view scores. This outcome is
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eCRF Joint ROI

Score τ̄ (↑) τ̄ (↑) τ̄ (↑)
SRS 0.302 0.018 −0.003SCARED 0.101 0.032 −0.004ARI 0.256 0.05 0.017SDQ ha 0.326 0.058 0.005CBCL ab 0.406 0.03 0.008CBCL ap 0.443 0.026 −0.002CBCL wd 0.152 0.06 0.008

Site 0.004 0.011 0.156Age −0.005 0.05 0.10Sex 0.014 0.003 0.067

Table 5.1: Representational similarity analysis results between the different latent spaces(eCRF, Joint, and ROI) and the clinical eCRF scores, and some covariates of interest: the imag-ing acquisition site (Site), the patient age (Age) and sex (Sex). τ̄ is the corresponding averageKendall τ across models and splits. We computed the p-value associated with this statistic.Values in bold indicate their significativity, i.e. median corrected p-value < 0.01, see Supple-mentary B for details.

expected, considering the correlations between the eCRF scores (see Appendix Fig. B.1). Additionally,
it underscores that this latent space is not informing about age, sex, or image acquisition site. In
contrast, the latent space specific to the ROI view does not significantly correlate with the eCRF scores
with the only exception of ARI, yet with a small correlation. Note that it significantly correlates with
age, sex, and image acquisition site, as shown in the cells highlighted in orange. Finally, we highlight
in salmon in Table 5.1 what the joint latent space has learned. These representations moderately and
significantly correlate with each score but not with acquisition site or sex. Moreover, it appears to
correlate with age. It seems that the brain-behaviour relationships, modelled in the MoPoE-VAE joint
latent space, relies on information related to age.

5.3.3 . Stability selection of r-DAA associations

By increasing the number of models and applying a stability selection procedure, we aim to
increase the stability of the sets of brain-behaviour associations supported by our multimodal
dataset. In the following, we consider the SRS score associations with the thickness metric. Figure 5.8
illustrates the associations trajectories taken by the considered 148 ROIs. This illustration is inspired
by the figure of merit proposed in the seminal paper [250]. In Figure 5.8(a), we display trajectories
of aggregated β values (i.e., effect sizes), using a mean function for f , against the number of model
nE . Some trajectories become more prominent (display larger amplitude of average effect size) than
others as the number of models increases. However, they are hardly distinguishable from other
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trajectories, which remain densely packed with low values. This general aspect is displayed here
for one of the N = 100 stability selection splits. This suggests that we can isolate some, but not all,
stable associations by only increasing the number of models aggregated in the r-DAA.

(a) Coefficients

(b) Stability paths using uniform ensembling (c) Stability paths using weighted ensembling
Figure 5.8: Investigation of the ROIs associated with SRS in thickness. Each line corresponds to aROI, dotted black ones are not selected as below the threshold πthr = 0.4 when using as aggregationfunction a mean weighted by RSA correlations. The ROIs thus selected are coloured and the coloursare consistent across the plots. The red horizontal dotted line highlights the threshold πthr = 0.4. (a)Mean coefficients aggregated across models for a given split over the N = 100 splits, plotted againstthe number ofmodels. (b) ROIs stability pathsΠwhenusing anuniformlyweightedmean to aggregatethe coefficients output from DAA on eachmodel in the r-DAA, against the number of models used. (c)Same as the last one, except that the mean was weighted using RSA correlations. The latter strategyis used to select the ROIs associated in thickness with the SRS score, with Π > πthr = 0.4.
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Figure 5.8(b) presents the stability pathsΠ for each ROI with respect to the number of models nE .This probability is computed as described in Eq. 4.3 and summarises the N = 100 stability selection

splits. Here, the aggregation function f is the mean function. The results highlight that the most
stable ROIs, characterised by higher probabilities Π, are easily identifiable. The stable paths reach
a plateau with the number of models (i.e., the considered regularisation hyperparameter) between
5 and 10 models, depending on the considered ROI. Figure 5.8(c) is similar to Figure 5.8(b), but the
procedure uses the RSA-weighted average as the aggregation function f instead of a simple average
(see Supplementary Alg. C.2). The results suggest that stability is only slightly affected by the choice
of the aggregation function f . We keep the RSA-weighted average because it may be more robust
to outlier models. We apply a threshold of πthr = 0.4 (as illustrated by the dashed red line) to retain
stable associations, displayed in colours. These colours correspond to the same ROIs throughout the
different plots.

Comparing Figure 5.8(b) or Figure 5.8(c) with Figure 5.8(a) reveals that a high coefficient amplitude
is not always a good indicator of stability. In fact, the ROIs represented by pink or light purple paths
in Figure 5.8(a) are indistinguishable from other black dotted lines (i.e., unselected ROIs). However,
these ROIs convey some of the most stable associations (Π ≃ 0.7 when nE = 20). Note that the
variability of the SRS score is not the best captured by our models on our dataset, in that it displays
the smallest significant correlation with the joint latent space representations (see Table 5.1).

(a) Coefficients (b) Stability paths using weighted ensembling
Figure 5.9: Investigation of the ROIs associated with SDQ-ha in area. Each line corresponds to a ROI,dotted black ones are not selected as below the threshold πthr = 0.4 (highlighted by the red dottedline) when using as ensembling function a mean weighted by model ratings. The ROIs selected arecoloured and the colour is consistent across the plots. (a) Aggregated coefficients with a simple meanfor a given split over the N = 100 splits, plotted against the number of models. (b) Feature wisestability Π when using a mean weighted by the model ratings to aggregate the coefficients outputfrom r-DAA for each model, against the number of models used.
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To test the influence of the selected score and metric on the stability paths, we generate similar
figures by examining the association coefficients between the SDQ-ha score and the area metric, as
well as the stability paths. Very similar observations can be made, as shown in Fig. 5.9. However,
this is not always the case. In Fig. 5.10, we display ROIs stability paths between SRS and area, and
between SDQ-ha and thickness. The considered threshold πthr = 0.4 seems less relevant for these
associations. Indeed, considering Fig. 5.10(a), some ROIs (blue and red for instance) are selected
because for a low number of models nE ∈ {1, 2, 3} their stability paths ΠnE are above πthr, but when
nE increases, their stability paths tend to decrease. Maybe these ROIs should not have been selected.
On the other hand, considering Fig.5.10(b), we can see that many of the selected ROIs stability paths
stay close to the threshold πthr, alternating above and below it. The threshold should be studied in a
more controlled environment to establish more adapted values.

(a) Stability paths between SRS and area. (b) Stability paths between SDQ-ha and thickness.
Figure 5.10: Investigation of the ROIs associated inmore ambiguous settings. Each line corresponds toa ROI, dotted black ones are not selected as below the threshold πthr = 0.4when using as ensemblingfunction a mean weighted by model ratings. The ROIs selected are coloured. The red horizontaldotted line highlights the threshold πthr = 0.4.(a) Feature wise stability Π with SRS in area against thenumber of models used. (b) Feature wise stability Π with SDQ-ha in thickness against the number ofmodels used.

5.3.4 . Transdiagnostic factor spatial support
At the core of our approach is a MoPoE-VAE network designed to construct a latent space consol-

idating joint information between the entire ROI view and the entire eCRF view, along with ROI- and
eCRF-specific latent spaces. The interpretation brought by the Digital Avatars amounts to extracting
brain-behaviour associations that effectively rely on this joint information. This strategy supports the
research on the general psychopathology dimension introduced by Caspi et al. [53, 55]. In line with
these ideas, our goal is to identify the brain regions andmetrics that underpin these similarities. These
brain-behaviour associations retained by our approach for each score-metric pair (s,m) are listed in
Supplementary D. In the next paragraphs, we describe some discovered transdiagnostic associations
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(a) ROIs (b) Thickness

(c) Curvature (d) Area
Figure 5.11: Display of ROIs associatedwith selected eCRF scores for a transdiagnostic assessment, e.g.SRS, SDQ-ha, SCARED and CBCL-wd, for each cortical measure. (a) ROIs colour-coded, correspondingto colour in the following polar plots. Lateral and medial view are displayed for each hemisphere (lefthemisphere on the left hand side and right hemisphere on the right). The polar plots indicate thesign of each association (negative when the bar is close to the center, positive when it is close to theedge of the circle). Only retained associations are displayed. Each polar plot corresponds to a metric:(b) displays associations in thickness, (c) associations in curvature and (d) in area. L: left, R: right, Ci:cingulate, Oc: occipital, Te: temporal, S: sulcus, G: gyrus, Mid: middle, Post: posterior, Dors: dorsal,med: medial, Inf: inferior, Marg: marginal, Ant: anterior, PeriCal: pericallosal, PostCe: postcentral,Sup: superior, Li: lingual, Pl: plan, Pola: polar.
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using our framework. We first describe the transdiagnostic associations that are shared across multi-
ple disorder related dimensions, in particular ASD, ADHD and anxiety. Second, we focus on transdiag-
nostic associations underlying two specific disorder dimensions separately, namely ASD and ADHD.
Shared transdiagnostic factor associations. In this paragraph, we focus on transdiagnostic
associations whose ROIs exhibit co-association with exactly four specific scores. We choose a limited
number of scores (4 out of 7) which nevertheless represent a diversity of syndromes spanning from
autism to attention disorders. These regions could be considered as components of a transdiagnostic
spatial support for mental disorders. We consider the four following specific scores of interest: SRS,
which assesses social interaction and is correlated with autism disorder; SCARED, which assesses
fear and anxiety issues and is correlated with anxiety disorders; SDQ-ha, which is related to hyper-
activity disorders; and CBCL-wd, an indicator of depression, a symptom common to most of these
pathologies. For each cortical measure, Figure 5.11 highlights the ROIs found to be associated with
these four scores. Among these selected transdiagnostic regions, many belong to the pericalosal and
cingulate regions. These regions, whether considered with the area or curvature metrics, are consis-
tently associated with each examined score. This means that the associations between selected ROIs
and scores show similar covariations. In the identified pericalosal and cingulate regions, a decrease
in both area and curvature metrics is associated with an increase in the SRS, SCARED, or CBCL-wd
scores. However, the opposite is observed for the SDQ-ha score (Figure 5.11(b)-(c)). Looking at the
thickness metric and grouping the curvature and area metrics, we find two disjoint sets of regions
among the selected transdiagnostic regions. First, the left and right occipital poles for the thickness
metric. Second, the cingulate regions for the curvature/area metrics. Only the right cingulate mid /
posterior region (R.Ci.Mid.Post.) and left cingulate posterior dorsal gyrus (L.G.Ci.Post.Dors) seem to
be related to the four scores for both metrics. Finally, looking at the SDQ-ha score and comparing to
the grouped SRS, SCARED and CBCL-wd scores, we find that the associations identified have system-
atically opposite signs. Overall, the transdiagnostic regions aremostly bilateral and present a spatially
smooth pattern of association with the eCRF scores.
Transdiagnostic-factor spatial support in ASD and ADHD. Recall that our method, with
the presented setting, is designed to find transdiagnostic associations, in line with the general
psychopathology dimension. Among the structural biomarkers involved in ASD (or ADHD), we
can study the ones that can be attributed to transdiagnostic factors. In this section, we focus on
transdiagnostic associations whose ROIs are specifically associated with one symptom/score. We
perform this analysis for two scores. First, the SRS score, which is considered as a proxy for ASD
[74]. Although the SRS score alone may not be sufficient, clinicians often use it to determine a
patient’s status and severity. This score has also a high correlation with diagnosis (unpublished
results based on our databases) in datasets adhering to diagnosis-balanced inclusion criteria such
as ABIDE I (SRS-1, 0.82), ABIDE II (SRS-1, 0.86 and SRS-2, 0.72), or EU-AIMS (SRS-2, 0.85). With the
same general caveats, we use the SDQ-ha score as a proxy for ADHD-related symptoms and di-
agnosis [141]. The retained associations can be found in Supplementary D and are summarised below.

Markers related to SRS (ASD). In Figure 5.12, we display ROIs associated in thickness and area
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(a) Thickness (b) Area
Figure 5.12: Display of ROIs associated with the SRS score in (a) thickness and (b) area. Regionscoloured in red or blue display a positive or negative association respectively.

with the score SRS. Interestingly, the selected ROIs display a rather symmetrical pattern. With the
thickness metric, the SRS appears to positively co-vary with the bilateral occipital poles, bilateral
pericallosal region, and a right prefrontal region, while negatively co-varying with the bilateral
temporal sulci and right postcentral region. With area metrics, the SRS appears to positively co-vary
with the left prefrontal cortex, left subcallosal gyrus and bilateral circular inferior insular sulci, while
negatively covarying with the bilateral cingulate and left parieto-temporal cortex.

Markers related to SDQ (ADHD). In Figure 5.13, we display ROIs found associated in thickness
and area with the score SDQ-ha. Once again the figure displays symmetrical patterns. With the thick-
ness metric, the SDQ-ha appears to positively co-vary notably with postcentral and superior parietal
regions, including the left precuneus, while negatively co-varying with central sulci, cingulate and oc-
cipital cortices. With the area metric, the SDQ-ha appears to positively co-vary notably with bilateral
parieto-temporal cortex and bilateral cingulate cortex, while negatively co-varying with bilateral cen-
tral sulci and right precentral gyrus. Of note, the central sulci appear affected by the SDQ-ha score in
the same direction for both area and thickness metrics.

5.4 . Discussion

In this chapter, we introduced the notion of transdiagnostic psychiatry. It relies on the hypothesis
that there might exist common factors underlying psychiatric disorders, that would explain the
large inter individual variability of symptom expression for a given disease, and common symptoms
expressed in multiple disorders. In this context, we synthesise a few studies which consider this
questions in various angles, using the HBN cohort, a population of at-risk children for developing
psychiatric disorder with notable behaviour symptoms.
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(a) Thickness (b) Area
Figure 5.13: Display of ROIs associated with the SDQ-ha score in (a) thickness and (b) area. Regionscoloured in red or blue display a positive or negative association respectively.

The first study mostly focus on ASD. A previous work proposed an expert stratification of
annotated autistic subjects based on different symptom scores, and relying mainly on the social
impairment cognitive score SRS to dissociate control groups from autistic subgroups. We managed
to reproduce these labels using an unsupervised integrative DL approach with a particular mVAE
called sMCVAE. The sMCVAE has advantages but not modelling a joint latent space and imposing
the same latent dimension for all modality-specific latent spaces are not good properties to further
interpret the network.

On the other hand, we use an interpretability method dedicated to DL-based integration models
using mVAEs. We demonstrate its application in the study of transdiagnostic dimensions within the
HBN cohort, integrating both neuroimaging data and psychological assessments in this at-risk popula-
tion with notable behavioural symptoms. Ourmethod is endowedwith a stability selection procedure
to retain associations and we investigate its effects. A sufficient number of models is the only need
to achieve stability. Finally, with only a prior on the expected number of associations, our method
enables the identification of stable associations between measures of the brain cortical surface and
symptom scores.

5.4.1 . Deep mVAE model are expressive multi-modal integration tools
In the replication study using the sMCVAE, we demonstrate the model’s capacity to capture

clinical related variability smoothly across a restricted number of dimensions, as well as its ability
to reconstruct coherently imaging features from clinical representations, and some possibilities for
interpretability. The sparsity constraint shows nice properties to control the number of dimension in
the latent spaces and thus regularises the network. However, its formulation is somewhat limiting.
Its training forces the modality-specific latent spaces to have the same dimension, and inherently
introduces imaging variability in the clinical latent space, trough back-propagation contamination.
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Therefore we would not be able to properly separate shared from modality-specific variability.

In our second study, we take advantage of the versatile definition of the latent space in the
MoPoE-VAE to choose a representation setting that naturally disentangles specific and shared
sources of variation between view-specific and joint latent spaces. Other work already identified
the disentanglement achieved with this type of architecture [362, 222, 285], but we apply it here to
neuroimaging and clinical questionnaire scores integration. We also leverage this source separation
using our interpretation module based on digital avatars. By mitigating or eliminating confounding
effects such as the MRI acquisition site in shared representations, we expect interpretations to be
unaffected, without performing any standardisation or harmonisation of the data prior to learning.
Moreover, the joint latent spaces that significantly correlate with age highlights how our models
handle age information, although it is never explicitly provided. This contrasts with conventional
approaches using age residualisation.

Our framework based on the MoPoE-VAE can conveniently handle incomplete data, a common
issue in multi-view integration. The requirement of complete data often significantly reduces the
number of subjects that can be used and impairs the statistical power of most studies. This resilience
made it possible for us to use an openly available cohort with minimal missing data control and in-
clude nearly all available subjects. This has provided us with a substantial sample size collected from
multiple acquisition sites. This characteristic should improve reproducibility and replicability when
employing such an approach in multi-modal neuroimaging studies, aligning with state-of-the-art
guidelines [203].

We also show that MoPoE-VAE networks, when equipped with a stable interpretationmodule, can
provide associations between variables of different views. This stable interpretation module can be
configuredwith only one a priori parameter which is the expected number of associations (nselect = 12

here).
5.4.2 . Deep mVAE models for transdiagnostic studies

Transdiagnostic theories hypothesise a common risk factor of pathologies in psychiatry, rather
than focusing solely on specific diagnostic categories (such as the DSM-5 categorical diagnostic
system) [125], but they are compatible with the RDoC framework which advocates multiple sets of
measurements. These transdiagnostic studies consider shared risk factors such as childhood trauma
(which increases the risk of all psychiatric disorders) or genetic vulnerability factors (the alleles in-
volved often increase the risk of several psychiatric disorders at once). These approaches also stems
from the observation that many psychiatric illnesses share factors, symptoms and comorbidities
that cannot be easily controlled in studies which generally include population with heterogeneity.
Some of these transdiagnostic works propose the existence of a general psychopathology p-factor
that would act on a set of symptoms and, ultimately, disorders [53]. They typically express the global
pathological variability using the p-factor, and then examine its association with brain imaging to find
potential biomarkers of these common mechanisms.



118 CHAPTER 5. TRANSDIAGNOSTIC BRAIN-BEHAVIOUR STUDY

The proposed MoPoE-VAE model is trained on data from an at-risk population cohort in which
subjects are assessed with questionnaires, expressing symptoms of several psychiatric syndromes
(such as SRS for ASD or SDQ-ha for ADHD). The learned latent representations integrate all available
information into a shared and a specific latent space. The shared representations containmultivariate
variability linking multiple symptom scores to imaging. The stability analysis we proposed allows
the examination of this joint latent space to produce stable transdiagnostic associations between
behavioural and cortical measures. Thus, when examining regions associated withmultiple symptom
scores in the results section, we expect to capture regions reported in the transdiagnostic literature.
Our findings are discussed in this regard below:
Associations in structural MRI. We highlight fairly symmetrical regions, mostly associated in area
and curvature in the cingulate regions and in thickness in the occipital poles. This is in line with many
studies that report structural alterations associations with transdiagnostic factors, such as changes in
cortical thickness or grey matter volume of the cingulate and occipital cortices, as part of more global
patterns [140, 69, 378, 276]. Such findings have also been specifically highlighted in ASD [270, 63, 253,
106] or ADHD [12, 160, 31] studies, as well as in studies jointly examining these two conditions [299,
233]. In addition, grey matter in the occipital lobe has been specifically identified as being associated
with increases in p-factor [296, 268, 297, 298].
Associations in functional MRI. functional MRI studies have also already identified the cingulo-
opercular network [316] and the default mode network, supported in particular by the anterior cin-
gulate areas [137, 238], as related to transdiagnostic factors. Other fMRI studies have identified an-
terior/middle cingulate and occipital areas, among others, associated with the general p-factor [108].
The same observation has beenmade in studies of transdiagnostic populations [115, 347], particularly
with ASD and ADHD patients [46, 83, 233]. Note that we are not surprised to find the cingulate as a
transdiagnostic risk marker, given its highly associative role in the brain.
Associations in diffusion MRI. Finally, dMRI studies, using fractional anisotropy of cingulum white
matter tracts was also found to be associated with transdiagnostic factors [330]. Cingulum is known
to be involved in cognition and emotion processing [47, 355, 93]. As these functions are often altered
in the expression of psychiatric symptoms, the implication of cingulum in a common mechanism for
several syndromes is very likely. Our findings support the hypothesis that cingulate and occipital
regions and their related functional or structural networks are important in general psychopathology
but they warrant further investigation.

5.5 . Conclusions

5.5.1 . Limitations of our transdiagnostic brain-behaviour association discovery
Results are promising, yet wewould like to acknowledge a few limitations of our study and suggest

possible improvements.
A smoothing effect. The DAA relies on a simplistic modelling, which surely provides highly readable
results, but a more sophisticated modelling could be done. As described in Section 4.3, the associa-
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Figure 5.14: Digital avatars between cortical measures over three ROIS and two scores: SRS and SDQ-ha. The DAs displayed for occipital regions are related to their thickness, while DAs displayed forthe cingulate region (right panel) represents surface area. In abscissa are represented the z-scoredsampled score values (the score’s name being displayed on the left of each row) while in ordinatesare the z-scored values corresponding to the metric on the ROI displayed above each column.

tion between a given score and cortical measures are computed with a hierarchical modelling, con-
sidering each subject’s DAs avatar as a group. Then each of these subject’s association coefficients
are averaged across all the L subjects from the left-out set. In cohorts such as HBN, participants
present relatively low or medium symptoms scores. However, modelling these association using a
linear model might be too simplistic (we could model an accelerating effect for instance), and more
importantly uniformly averaging over all the participants can display a smoothing effect. This effect
could be studied, in order to provide a better understanding of this modelling and finding a more
optimal solution, such as a weighted average for instance, which would give more weight to partici-
pants with higher symptom scores. Some DAAs corresponding to retained associations are displayed
in Fig. 5.14, in particular SRS and SDQ-ha DAs with their corresponding thickness values over bilateral
occipital poles and surface area values over the middle / posterior cingulate of the right hemisphere.
Each subject’s DAs are represented by a line of the same colour. Each of these region were found
as part of the most prominent transdiagnostic associations, yet we can barely see their effect here:
SDQ-ha seems to be associated with a decreased thickness in occipital pole and decrease of area in
the cingulate area. It is unclear for the SRS score. However, SDQ-ha is associated with an increase
of area in this cingulate area in the association results presented in Section 5.3.4. Of course, this is
displayed for a given model, trained on a given training set and DAs computed on the correspond-
ing left-out set, which would not necessarily reflect the reality of these stable associations. But this
illustrates why the effect sizes are small and could benefit from a better modelling.
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Univariate associations. From our highly multivariate integration model, we derive univariate asso-
ciations. We could imagine to use a different method that would be able to take into account features
interactions within a block (such as correlations between clinical scores) when generating the DAs
values for instance.
Computational cost. The experimental setting is quite computationally expensive. It required train-
ing 2000 models, then computing for each of these models T = 200 DAAs for each of the corre-
sponding L = 301 subjects. This was done for every one of these models and subjects by doing 200

inferences through the corresponding model 7 times, one for each corresponding DA score value. So
it resulted in roughly 840M inference passes through the model. Then, associations were computed
using massively univariate regressions: 2000 ∗ 301 ∗ 7 ∗ 444 ≃ 1.9B regressions between every score
and imaging feature for each left-out subject’s DAs of each model. Of course all these operations are
highly parallelisable but they require a significant amount of computation. Moreover, storing all the
corresponding results (DAs having the largest weight) demands a large storage space, a few tens of
terabytes to save everything.
Overly simplistic setting. The experimental setting remains simple, for an integration problem:
only two modalities are considered, other issues could arise from integrating more modalities. For
instance, the training behaviour of the MoPoE-VAE, which we have not tested yet in settings with
more modalities, could change, particularly if there are large discrepancies in dimensions between
modalities for instance. Additionally, we did not integrate any modality with a particular geometrical
structure, for which specific NNs exist to model it, such as SCNNs to learn from cortical surface over
the fsaverage template (see Chapter 3). Other problems could arise from integrating a modality with
such a high dimension as compared to symptoms scores, such as encoders training at different pace
and introducing instability in the loss gradients.
Implementation choices. Several choices were made in the study that were not fully justified. More
rigorous methodological experiments could have been led to further characterise the effect from
different parameters considered in our method, such as the sampling scheme of the scores for the
DAAs (for example a simple uniform or Gaussian distribution over the population’s density could be
used), the ensembling function f used in the r-DAA procedure (for example a max or a median func-
tion could be considered), and the number of selected associations through the decision function g,
which was arbitrarily set to 12 as a good compromise. In fact, the experimental settings was different
at the beginning of the experiments, and we developed a stability metric to estimate howmany times
an associations was replicated for different aggregation and decision functions. We made the choice
of efficiency and simplicity when implementing the final experimental setting, taking advantage of
our constats from the previous experiments. A proper validation would require a synthetic dataset,
as a cross-validation settings is not easily conceivable here. The design of such a synthetic dataset
might be very time consuming.
The stability selection could be improved aswell, by testing differentπthr for instance, and sampling as-
sociations from different nE models repeatedly (combinations with replacement nE among 20) when
doing the ensembling in r-DAA and selection in stability selection, in order to have better estimates
of stability paths and avoid phenomenons such as presented in Fig. 5.10(a). This would also allow us
to model a mean and standard deviation for each stability path.
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Lack of comparison. It would be relevant to compare our method to other settings with more con-
ventional models, such as SPLS or SGCCA, which also include a sparse selection mechanism to retain
associations. However, we would need to put them in our stability selection framework in order to
make them comparable. We would not be able to assess generalisability, which we do in our frame-
work, because associations are derived from left-out subjects, i.e. not used during training our mod-
els. In the linear case, the selection mechanism directly selects features from training, without as-
sessing how they generalise to unseen samples. It would be also great to compare our interpretation
methods to more conventional approaches such as LIME of SHAP values.

5.5.2 . Perspectives
Our first contribution reported in Section 5.2.3 proposed an unsupervised replication of an

expert stratification of autistic patient within the HBN cohort. The considered labels are not suited to
study trandiagnostic factors, but they highlight the sMCVAE properties in capturing clinically relevant
information and selecting properly relevant dimensions using the sparsity constraint. The entangled
nature of the sMCVAE complicates its practical application, as it intrinsically can not display the
disentanglement properties typically associated with mVAEs featuring joint and modality-specific
components. But this sparsity constraint could be used to regularise a joint latent space and select
the most relevant dimensions for instance. This replication study was presented during an online
virtual poster session at OHBM 2021.

Our second contribution reported in Section 5.3 focuses on an integrative multi-view approach
based on deep learning and featuring interpretation capacity. We discussed the main benefits of its
use, its limitations, andwewill now list someperspectives to improve upon of the proposed approach.

Designing a proper methodological validation setting. Implementing a synthetic benchmark or
applying of stable interpretation and integrative framework in a more controlled environment might
be time consuming but worth. This would reinforce the methodological aspects of this work and
provide insights into how to set good hyperparameter values for every mechanism. In particular we
identify the ensembling (aggregation–decision) step and selection (threshold) as key processes to be
investigated further and improved upon.
Improving the disentanglement to handle site effects. We described the already reported [362,
222] disentanglement properties of explicitly modelling modality-specific and joint latent spaces.
There is still some contamination of the joint latent space with unwanted confounding factors such
as site effects. Improved isolation of such confounding factors in the modality-specific latent spaces
where this effect originates from could be ensured by novel approaches proposing disentanglement
techniques for mVAEs [89, 317].
Integrating additional views. In population imaging study, other assessments are often available.
Other imaging modalities such as diffusion MRI or functional MRI could be integrated to have a more
informed joint latent space, and consistency across discovered structural and functional networks
could be further used to interpret the biological processes implicated in psychopathological factors.



122 CHAPTER 5. TRANSDIAGNOSTIC BRAIN-BEHAVIOUR STUDY

Genotyping assessments such as relevant SNP or CNV data can be integrated as well to investigate
this processes at a different scale as well.
Replication In order to validate the discovered associations using our framework, more effort should
be invested in replicating our findings in different but comparable cohorts, such as the ABCD study
[52].

The methodological contributions presented in Chapter 4 and exploited in this second transdiag-
nostic study were submitted to the journal Imaging Neuroscience and presented in a poster during
the seminar IABM 2024 at Grenoble.



General conclusion

Contributions

This thesis tries to answer, to some extent, to the problematic of taking into account data structure
in the learning algorithms, when analysing multimodal population cohorts for mental health. In such
a highly multivariate setting, structure is mostly two-fold : each modality comes with its own struc-
ture, which is often informed by the biological processes it reflects. Then, there exist a correlation
structure between the different modalities of a participant, which can be modelled as well. In order
to optimally integrate multimodal data in a population study, an algorithm should be informed about
these structures. Neural network offer great opportunities in this matter. Such algorithm would have
the potential of uncovering biomarkers to advance mental health, in particular in psychiatry, where
current treatments fall far behind the growing need for adapted and personalised clinical tools.

Modelling structure within a view. In the first part of our contributions, we focus on using
structure arising frombiological knowledge of the human cortex. Its continuous 3D shape interrupted
by the corpus callosum makes its hemispheres homotope to a sphere. Pre-processing tools such as
FreeSurfer exist to extract from brain sMRI measurements of the cortical surface and register them
on a spherical template with a regular icosahedral sampling. Existing convolution operators are able
to learn patterns from this spherical cortical surface representation and can be integrated in NNs.
Such SCNNs can be used to solve different tasks. We identified a key application for these SCNN.
Self-supervised learning has been blooming in the recent years and NNs trained using this learning
paradigmoffer very promising generalisation properties while not requiring human annotations. This
paradigm is particularly convenient in the medical field where labelled data are often scarce and ex-
pensive. In this regard, we proposed to adapt a SSL scheme to learn from cortical surface in their
spherical representations. We proposed 5 data augmentations that can be applied to such cortical
surface data to allow SCNNs to learn powerful and generalisable representations using such SSL al-
gorithm. From these 5 data augmentations, 3 are inspired from classical data augmentations applied
to natural images and adapted to the cortical surface representations. The 2 other implement bio-
logically inspired augmentations which propose to build noisy samples by replacing some values by
others coming from the same participant’s other hemisphere or other participant with similar cortical
data. We showcase the augmentations capabilities in providing good inductive bias to the SSL, which
is thus able to learn good representations. These learned representations abilities to predict 3 differ-
ent phenotypes from 3 different datasets are highlighted in the experiments. These representations
display improved generalisation properties as compared to their single task supervised counterparts,
both to novel tasks and dataset.

Modelling structure between views. In a second part, we build up an integration framework,
i.e. a model that leverages the correlation structure between views of different natures, with the
capacity of providing stable associations reflecting the relationships between the different views.
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We prefer to use NN based integration model, as linear models have limited capacities and can not
use adapted function architectures for each view. Additionally, such models would not necessarily
use participants with missing assessments and require to handle confounding factors such as
imaging acquisition site effects. In particular, we identify mVAEs as suited integration models, as
they naturally embed the capacity of using samples with missing views and they can use a different
adapted NN architecture for each view. Moreover, mVAEs are able to separate sources of variability
in view-specific and joint latent spaces, such that view-specific variability such as imaging acquisition
site effects ismostly captured by the view-specific latent space. This way, no additional harmonisation
technique is required.

However, mVAEs being NNs, they lack of interpretability. We design an interpretability module
using individually controlled variations of a view in input space, and describe their relationship
with the corresponding generated features in other views using the mVAE with hierarchical linear
models. This DAA is computed using left-out subjects (i.e. not used to train the mVAE) and outputs
associations between a specific view’s features with every features of other views. In order to output
stable associations using such NN model and interpretability module, one needs to effectively
manage the variability they encounter. NNs are more subject to epistemic variability than linear
models with fixed hyperparameters. We proposed a regularised version of the DAA to account
for this epistemic variability. This r-DAA consists in repeating the training of the mVAE on the
same training set and the interpretation on the same left-out set using the DAA, varying random
initialisation and training batches. Output associations from these DAA are then ensembled using an
aggregation and decision function, which outputs more robust and sparse associations. Finally, we
need to control the aleatoric uncertainty due to inherent population variability to ensure that such
associations are not specific to the considered sub-population. We use a stability selection procedure
to retain only associations found sufficiently enough using r-DAA on multiple train / left-out splits of
the population. Participants with missing assessments are included in the training sets.

This whole integration framework is then instantiated and applied to the transdiagnostic cohort
HBN, composed of at-risk children presenting psychiatric symptomatic behaviours. We aim at
discovering stable brain-behaviour associations in the cohort, by considering 7 questionnaires scores
assessing cross-diagnostic symptoms, browsing ADHD, ASD and anxiety disorder dimensions. We
compare them with cortical measures extracted from T1-weighted MRI describing ROIs of the cortex.
This integration setting is in line with RDoC recommendations for studying psychiatric diseases,
namely integrating multiple clinical dimensions with other assessments. Output associations can
be interpreted as transdiagnostic markers, i.e. markers underlying general psychiatric disorder
biological processes. Found associations display anatomical variations of cortical surface area or
curvature in the cingulate cortex and thickness alterations in the primary visual cortex.

Overall, we believe that our contributions illustrate to some extent possible solutions for better
using structure informed integration models in population study. In their current form, these contri-
butions may have a limited impact in the research community. Yet, we believe that this thesis work
truly opens doors with promising avenues, that we will try to sketch in what follows.



5.5. CONCLUSIONS 125
Perspectives

SCNNs trained with SSL : towards structure-informed NNs for transfer learning.
Self-supervised learning presents great generalisation properties. We saw that generalisation of

NNs could be explained to some extent by inductive biases they implement. The whole paradigm
of SSL is to force NNs to learn inductive bias, which could improve their generalisation capabilities.
Informing the network in structure, being by using an adapted architecture the data, or by using a
SSL scheme with specific augmentations designed for this type of data, can in fact improve the gen-
eralisation properties of the learned representations.
There is room for improvement over the proposed data augmentations, as we did not cross-validated
every possible parameters and settings, and the proposed augmentations could be further improved
and other could be proposed. For instance HemiMixUp, which relies on symmetries assumption
between hemisphere, displays limited performance improvements, as compared to GroupMixUp.
HemiMixUp could be improved to replace only vertices where hemispheres are the most symmet-
rical, thus avoiding harmfully erasing relevant asymmetry information from the learned representa-
tions. Regarding GroupMixUp, the metric used to build the groups could be improved to inject other
information, such as phenotypical traits like age and sex, or clinical information. Of course these in-
formation should not be used to evaluate the representations performances afterwards. One could
think of a more effective way to implement small rotations as well.
These generalisation properties embedded by the learnt representations can be leveraged to perform
transfer learning. Transfer learning would allow us to train for instance a SCNN on a large cohort in
general population such as UK Biobank or ABCD for a younger population and use this network for
various downstream tasks in others cohorts. It could be interesting to develop deeper SCNN architec-
tures such as ResNet or EfficientNet, featuring residual connections between layers, because transfer
learning works best for more (over)parameterised architectures [286].

Integrating additional views.
As mentioned earlier, a wide variety of assessments are available in large population cohorts.

Most often, each type of data is exploited separately for regression, classification and segmentation.
Deep learning has been extensively used on imaging data and has demonstrated considerable ben-
efits over traditional methods for some tasks, such as the segmentation of medical anomalies and
anatomical structures [252, 162]. But in the medical field, many assessments, such as imaging or ge-
nomic data, can bemore naturally represented as graphs due to their underlying biological properties
(e.g. functional / structural connectomes or protein interactions). DL specific operators [40, 133] have
been developed to take into account for this correlation structure when learning from such data. In
our last contribution, we integrate cortical measures on ROIs as tabular data. It would be highly rele-
vant to return to cortical spherical representation and model their actual correlation structure using
dedicated convolution operators such a DiNe [394], integrated in a SCNN as presented in our first
contribution. The same applies to other available modalities such as genomic data. However, this
would come with several challenges as well.
The demonstrated integrative capacity of mVAEs comes frommodellingmodality-specific and joint la-
tent spaces. Handling views with very different number of variables is an ongoing research question.
For example, genotyping datamay havemillions of variables. Training amVAE in such settingwith one
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view having a few dozens of variables and a genotype view with thousands, is challenging. Intuitively,
learned modality specific latent spaces will have different sizes, somehow proportional to their input
size, but this is not so clear for the joint representations. The sparsity constraint introduced in the
sMCVAE [14] that uses variational dropout, can come in handy, if applied to the joint latent space only.
However, it would require to compute a good approximation of theDKL between the joint latent pos-terior and prior distribution, because it thus becomes not analytically tractable. This approximation
is available when the joint posterior is Gaussian [259], which is not the case in the MoPoE-VAE, but it
is for other mVAE such as the PoE-VAE. Additionally, there is no guarantee that these very different
encoder architectures will learn at the same pace. It could be interesting to initialise these specific
architectures by using SSL and specific data augmentations, such as the ones proposed in our former
perspective, on an other cohort before integrating it into the mVAE.
In our transdiagnostic study, the stable associations found are characterised by rather small effect
sizes. Reproducible brain-behaviour with small effect sizes have already been reported [240]. This
underscores the difficulty of exploring the common processes that hypothetically contribute to the
etiology of multiple psychopathologies. While individual effect sizes may be modest, the cumulative
evidence supports the existence of transdiagnostic factors. One could expect an increase of the ob-
served effect sizes by considering functional MRI data complementary to structural MRI. Association
studies using fMRI offer numerous advantages, including direct measurement of brain activity and lo-
calisation of function. Current research with fMRI shows strong associations compared to structural
MRI [271, 240] and would be worth investigating using our tool.

Disentanglement for harmonisation.

In the development of digital avatars, the trained NNmodels must be investigated to ensure they
do not contain too much confounding variability, or that it is controlled, at the risk of producing bi-
ased interpretations. Importantly, the chosen mVAE model must learn disentangled representations
that separate modality specific and joint variability. Indeed, confounding factors like site effect are
usually specific to one modality, and such disentanglement would ensure the joint latent is devoid of
such unwanted effects. Recent works propose contrastive VAE which uses deep encoders to capture
higher-level semantics [5], as compared to its former linear counterpart contrastive PCA [2]. From two
encoders, they typically structure the learned latent space into two parts containing the background
(e.g., common to the studied population) and salient (e.g., specific to a pathology) variabilities. Fol-
lowup works show that classical VAE losses alone can not effectively separate shared from salient
variability, and that further constraints and regularisations are needed to satisfy the assumptions
of the generative process and to promote disentanglement in the latent space [3, 66, 364, 396]. In
the case of mVAEs, the same observations hold. Modelling modality-specific and joint latent spaces
somehow separates joint from specific variability [362, 222], as observed in our associations discov-
ery study. However, to ensure disentanglement, additional regularisations during training are needed
[89].
Several recent works have shown that machine learningmodels are strongly biased by the MRI acqui-
sition site and do not generalise well to new MRI images from sites that have never been seen before
[136, 357]. While traditional residualisation techniques applied to remove the site effect marginally
improves the performance of machine learning models, it does not bring any improvement for deep
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learning models [103]. In this work, we show that the influence of non-interest factors, in particu-
lar the site effect, can be effectively eliminated by disentangling modality-specific and joint latent
representations. Nevertheless data harmonisation remains an ongoing research area [100, 30]. For
example, the OpenBHB challenge [105] on brain age prediction with site effect removal could bring
new harmonisation techniques developed by the community. This resource could be used to study
and validate the disentanglement properties of our mVAE. For instance, we could train a mVAE with
an imaging-specific and a joint latent space between a view composed of a single preprocessing of
T1-weighted MRI such as VBM and participant age as the other view. Adding disentangling constraints
during the learning phase should improve the separation of imaging-specific variability and shared
variability between age and imaging, thus dismissing the MRI acquisition site effects in the imaging-
specific latent space. The joint representation (computed without the age for testing) could then be
used to predict the age without being biased by such effects.

Replicability in other populations.
The design of a replication study will contribute to the generalisability of our findings and is a

mandatory step to turn results into knowledge. In particular, it would be interesting to apply our ap-
proach to cohorts such as the the ABCD Study [52, 190], a larger population thanHBNwith comparable
age range and comparable clinical assessments. The Duke Neurogenic Study [296, 108] is an interest-
ing candidate as well, regrouping an undergraduate student population of about a thousand partici-
pants with diffusion and structural MRI. Multiple clinical self-reported questionnaires were completed
to assess symptoms associatedwith psychiatric dimensions. TheDunedin Longitudinal Study [53, 297]
regroups a similar sized population, but displays a longitudinal setting with numerous visits between
the age of 3 and 45 years old, where the participants were scanned. Participants psychiatric symp-
toms were assessed during six visits between 18 and 45, where clinical questionnaire were used to
assess symptoms associated with psychiatric dimensions and DSMdiagnoses were set. These studies
were not explicitly focused on transdiagnostic research, but their design, including comprehensive as-
sessments with a multidisciplinary context, has provided valuable insights into the understanding of
psychiatric disorders from a transdiagnostic perspective. Discovering similar transdiagnostic imaging
markers in population with different age range could provide a strong evidence for the implication of
these markers with general psychopathology factors.
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A - Parameters for SSL on cortical surface

A.1 . Architecture and hyperparameters

Main parts Parameters
name values

SCNN encoder
DiNe channelsActivationPoolingLatent dim (linear layer)

128(64× 2)− 128− 256− 256ReLUAverage [394]128

SimCLR [60]
MLP projectorTemperature τLearning rateEpochs

256− 1282
2e−3

300 to 400

Supervised
Predictor output dimOutput activationLearning rateEpochs

regression: 1 / classification: 2Softmax (classification)
5e−4

100
Optimization OptimizerWeight decayBatch size

Adam(betas=(0.9, 0.999))
1e−6

1024
Logistic and Ridge L2 penalty strength {0.01, 0.1, 1, 10, 100}

Table A.1: Description of all hyperparameters used for the different experiments. Rows withmultiple values indicate that this parameterwas optimized for each setting. Values separatedby − indicate the different output dimensions of a neural network.
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A.2 . Augmentation hyperparameters

Augmentations Parameters Probabilities (paug)name values
SurfCutOut R

r
1, g

(
PO

4

)z 0.5
SurfNoise σ1 [0.1, 2] 0.5SurfBlur σ2 [0.1, 1] 0.5
HemiMixUp p 0.3 0.5
GroupMixUp p

KPCAdim
0.43020 0.5

Table A.2: Description of the hyperparameters retained for each data augmentation. P is thenumber of vertices (P ≃ 10k for a 5th order icosahedron). The function g : x→ y computesthe number of rings y that cuts out at most x vertices. Here x = 1
4
of the total number ofvertices of an O-order icosahedron.



B - Representational Similarity Analysis

Assessing model quality in an unsupervised setting remains an open issue. To investigate the
learned latent representations, we derive a Representational Similarity Analysis (RSA) [206] between
these representations and some measures on subjects (e.g. clinical scores or other covariates). We
compute the subject-pairwise dissimilarity matrices in the latent space (modality-specific and joint)
using the euclidean distance. We derive the same subject-pairwise dissimilarity matrices for the tar-
get measures. Finally, the Kendall rank correlation coefficient (Kendall τ ) enables the comparison of
these dissimilarity matrices emphasising the captured information. RSA is used twice in the present
work. First we use it as a component of our framework to weight the contribution of amodel when ag-
gregating its extracted associations in the regularised digital avatar analysis (r-DAA) (see Section 4.4.1).
Second we consider it to evaluate the information contained in the different latent representations
(see Section 5.3.2).

B.1 . Model quality scoring used in r-DAA

We hypothesise that the latent representations of a good model to understand features from
one modality with respect to all other should contain some amount of this modality feature-related
variability. We evaluate each trained mVAE using RSA output Kendall τ between the model’s joint
latent space and each feature from this modality (τs), defined as τ = (τ1, . . . , τ|S|) ∈ [−1, 1]|S|. For
each of the nE models, we use it’s average Kendall τ̂ = 1

|S|
∑|S|

s=1 τs across the modality’s features as
its quality score, used to weight the aggregation function in the ensembling of the nE corresponding
DAAs (see section 4.4.1).

B.2 . Assessing the latent representation spaces with RSA

We report in Table 5.1 aggregated results from RSAs applied to each split and correspondingmod-
els. We report the average N × nE Kendall τ between each different measure and latent space. In
the table we report the significance of these correlations. We compute it by considering the p-values
of the Kendall τ statistics (corresponding to the rejection of the null hypothesis). We correct them for
multiple testing using the Hommel [170] correction for multiple dependent tests and multiple inde-
pendent test using Bonferroni. Then we consider the median of the corrected p-values. We chose the
value of 1% for the significance threshold.

135



136 APPENDIX B. REPRESENTATIONAL SIMILARITY ANALYSIS

Figure B.1: Correlations between the 7 eCRF scores.



C - Algorithms for stable brain-behaviour discovery in HBN
using r-DAA

We display below the pseudocode of the two procedures developed for our association discovery
pipeline, relying on r-DAA and stability selection. At line 11, the quality metric is set either to 1 (quality
is assumed to be uniformly correct or to the Kendall τ coefficient (see Alg. C.2).

C.1 . Finding associations with a non-weighted or weighted r-DAA (DAA + ensem-
bling)

Algorithm 1 Finding associations with a non-weighted or weighted r-DAA
Input R: a set of ROIs

M : a set of metrics
S: a set of eCRF scores
X : a list containing train/left-out subjects splits.

1: p← |R| ∗ |M | ∗ |S| ▷ num of features
2: nE ← 20 ▷ num of models
3: N ← 100 ▷ num of splits
4: nselect ← 12 ▷ num of sel assocs
5: πthr ← 0.4 ▷ stability path thr
6: for j ∈ {1, . . . , N} do
7: xjtrain, xjleft-out ← X[j] ▷ a random split
8: for k ∈ {1, . . . , nE} do
9: Fit aMoPoEj

k model on xjtrain using init random weights θk
10: Compute the DAA association weights βj

k ∈ Rp on xjleft-out
11: Compute weights αj

k ∈ R+ assessing the model quality ▷ 1 or coefs as C.2
12: end for
13: βj ← [βj

1, . . . , β
j
nE

]

14: αj ← [αj
1, . . . , α

j
nE

]
15: αj ← 1∑

k αj
k

αj ▷ norm the weights
16: Select an aggregation function f
17: f ← weighted mean operator ▷ we chose one for simplicity
18: Compute aggregated scores f(βj , αj) ∈ Rp

19: Aj ← f(βj , αj)
20: Compute decision support g(Aj) ∈ {0, 1}p by selecting the top nselect associations
21: Sj ← g(Aj)
22: end for
23: Compute the selection probability of each feature ΠnE ∈ Rp

24: ΠnE ← 1
N

∑N
j=1 S

j(nE) ▷ function of nE

25: Compute stable association wrt. the number of models nE

26: Sstable ← {k : max
nE∈{1,...,20}

ΠnE > πthr} ▷ stable associations
Output Sstable

(a) DAA

(b) ensem-bling

(c) stabilityselection
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C.2 . Computing the model ratings to weight their associations

Algorithm 2 Computing the coefficients to weight the model assocations
Input xjleft-out: the left-out subjects of split j

MoPoEj
k: a trained model k on the xjtrain setS: a set of eCRF scores

1: L← |xjleft-out| ▷ num of left-out subj
2: zk ←MoPoEj

k(x
jleft-out) ∈ RL×d ▷ joint latent d-dim reps

3: Compute the pairwise joint latent dissimilarity matrix Cj
k ∈ RL×L

4: Cj
k ←

[
∥zmk − znk ∥22 for (m,n) ∈ {1, . . . , L}2

]
∈ RL×L ▷ pairwise l2 dist

5: for s ∈ S do
6: Compute the pairwise eCRF score dissimilarity matrix Ss ∈ RL×L

7: Ss ←
[
∥sm − sn∥22 for (m,n) ∈ {1, . . . , L}2

]
∈ RL×L

8: Compute the associated Kendall τ j,sk ∈ R between Cj
k and Ss

9: end for
10: Average the obtained Kendall τ j,sk ∈ R across the eCRF scores
11: τ jk ←

1
|S|
∑

s∈S τ j,sk

Output τ jk



D - All associations

Score SRS SCARED ARI SDQ ha

Metric
Thickness L.G.Te.Mid L.Ci.Mid.Post L.FrMarg L.Ci.Mid.PostL.Pole.Oc L.G.Ci.Post.Dors L.Ci.Mid.Post L.G.Pa.SupL.S.PeriCal L.G.Pa.Sup L.G.Oc.Te.Med.PH L.G.PrecuL.S.Te.Inf L.G.Te.Mid L.G.PostCe L.Pole.OcR.G.Te.Mid L.Pole.Oc L.G.Te.Inf L.S.CeR.Pole.Oc L.S.PeriCal R.G.Oc.Te.Med.PH L.S.PeriCalR.S.PeriCal L.S.Te.Inf R.G.PostCe R.Ci.Mid.PostR.S.PostCe R.G.Oc.Te.Med.PH R.G.Te.Inf R.G.Ci.Post.DorsR.S.PreCe.Inf. R.G.Pa.Sup R.Lat.Fis.Ant.Vert R.G.Ins.StR.S.Te.Inf R.G.Te.Mid R.Pole.Te R.G.Oc.Te.Med.PHR.Pole.Oc R.S.Fr.Inf R.G.Pa.SupR.S.Inter.Prim.Jens R.S.Fr.Mid R.Pole.OcR.S.PeriCal R.S.CeR.S.PreCe.Inf. R.S.PostCeR.S.Te.Inf
Meancurv L.Ci.Mid.Post L.Ci.Mid.Post L.G.Ins.St L.G.Ci.Post.DorsL.G.Ci.Post.Dors L.G.Ci.Post.Dors L.G.SubCal L.G.Ins.Lg.S.Cent.InsL.G.Ci.Post.Ventr L.G.Ci.Post.Ventr L.G.Te.Sup.Pl.Pola L.G.Te.Sup.Pl.PolaL.G.Te.Sup.Pl.Pola L.G.Te.Sup.Pl.Pola L.S.Oc.Te.Med.Ling L.S.Ci.MargL.S.Ci.Marg L.S.Ci.Marg L.S.Pa.Oc L.S.Pa.OcL.S.PeriCal L.S.Pa.Oc L.S.PreCe.Sup. L.S.SubPaR.Oc.Inf L.S.PeriCal R.Transv.FrPole R.Oc.InfR.Ci.Mid.Post R.Oc.Inf R.G.PostCe R.Ci.Mid.PostR.G.Ci.Post.Ventr R.Ci.Mid.Post R.G.Te.Sup.Pl.Pola R.G.Oc.Te.Med.LiR.G.Oc.Te.Med.Li R.G.Ci.Post.Ventr R.S.Ce R.G.Pa.Inf.AngR.G.Te.Sup.Pl.Pola R.G.Oc.Te.Med.Li R.S.PeriCal R.G.Pa.Inf.SuprR.Pole.Oc R.Pole.OcR.S.Circ.Ins.Sup R.S.Circ.Ins.SupR.S.PeriCal R.S.PeriCal
Area L.Ci.Mid.Ant L.ParaCe L.Ci.Mid.Ant L.Ci.Mid.AntL.Ci.Mid.Post L.Ci.Mid.Ant L.Ci.Mid.Post L.Ci.Mid.PostL.G.Fr.Inf.Tri L.Ci.Mid.Post L.G.PostCe L.G.Te.Sup.Pl.TeL.G.Pa.Inf.Supr L.G.Te.Sup.Pl.Te L.G.SubCal L.S.CeL.G.SubCal L.Lat.Fis.Post L.S.Ce L.S.Ci.MargL.G.Te.Sup.Pl.Te L.S.Ci.Marg L.S.Ci.Marg R.Ci.Mid.PostL.Lat.Fis.Post L.S.Orb.Med.Olfact L.S.Te.Sup R.G.Pa.Inf.Supr
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L.S.Ci.Marg R.Ci.Mid.Post R.Ci.Mid.Post R.G.PreCeL.S.Circ.Ins.Inf R.G.Rect R.G.PreCe R.G.Te.Sup.Pl.TeL.S.Fr.Inf R.G.Te.Sup.Pl.Te R.S.Ce R.Lat.Fis.PostR.Ci.Mid.Post R.S.Ci.Marg R.S.Ci.Marg R.S.CeR.S.Ci.Marg R.S.Orb.Med.Olfact R.S.Ci.MargR.S.Circ.Ins.Inf R.S.PeriCal R.S.PeriCalR.S.PeriCal

Score CBCL ab CBCL ap CBCL wd

Metric
Thickness L.G.Oc.Te.Med.PH L.FrMarg L.Ci.Mid.PostL.G.PostCe L.Ci.Mid.Post L.G.Pa.SupL.G.Te.Inf L.G.Oc.Te.Med.PH L.Pole.OcL.Pole.Oc L.G.Te.Inf L.S.PeriCalL.S.Fr.Inf L.S.Fr.Mid L.S.PreCe.Sup.L.S.PeriCal R.Ci.Mid.Post L.S.Te.InfL.S.Te.Inf R.G.Ci.Post.Dors R.Ci.Mid.PostR.G.Oc.Te.Med.PH R.G.Ins.St R.Pole.OcR.G.PostCe R.G.Oc.Te.Med.PH R.S.CeR.G.Te.Inf R.G.Te.Inf R.S.PostCeR.G.Te.Mid R.Pole.Te R.S.PreCe.Inf.R.Lat.Fis.Ant.Vert R.S.CeR.Pole.Oc R.S.Fr.Mid

Meancurv L.Ci.Mid.Post L.G.Ci.Post.Dors L.ParaCeL.G.SubCal L.G.Ins.Lg.S.Cent.Ins L.G.Ci.Post.DorsL.G.Te.Sup.Pl.Pola L.G.SubCal L.G.Ins.Lg.S.Cent.InsL.S.Pa.Oc L.S.Ci.Marg L.G.Te.Sup.Pl.PolaL.S.PeriCal L.S.Pa.Oc L.S.Ci.MargL.S.PreCe.Sup. L.S.SubPa L.S.Pa.OcR.ParaCe R.G.Oc.Te.Med.PH R.Ci.Mid.PostR.Ci.Mid.Post R.G.Pa.Inf.Ang R.G.Oc.Te.Med.LiR.G.Te.Sup.Pl.Pola R.G.Pa.Inf.Supr R.G.Pa.Inf.AngR.S.Circ.Ins.Sup R.G.PostCe R.Pole.OcR.S.PeriCal R.S.Ce R.S.Ci.MargR.S.Fr.Sup R.S.PeriCal

Area L.Ci.Mid.Ant L.Ci.Mid.Ant L.ParaCeL.Ci.Mid.Post L.Ci.Mid.Post L.Ci.Mid.AntL.G.Fr.Inf.Tri L.S.Ce L.Ci.Mid.Post
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L.G.PostCe L.S.Ci.Marg L.G.Fr.Inf.TriL.G.SubCal L.S.Te.Sup L.G.Te.Sup.Pl.TeL.S.Ci.Marg R.Ci.Mid.Post L.Lat.Fis.PostL.S.Fr.Inf R.G.Fr.Mid L.S.Ci.MargL.S.Te.Sup R.G.Oc.Te.Med.PH L.S.Circ.Ins.InfR.Ci.Mid.Post R.G.PreCe L.S.Fr.InfR.S.Ci.Marg R.G.Te.Sup.Pl.Te R.Ci.Mid.PostR.S.Circ.Ins.Inf R.S.Ce R.G.Pa.Inf.SuprR.S.Ci.Marg R.G.PreCeR.G.Te.Sup.Pl.TeR.Lat.Fis.PostR.S.Ci.MargR.S.PeriCal

Table D.1: Retained associations for each score and metric. Blue indicates a negative asso-ciation and red denote a positive one. L: left, R: right, S: sulcus, G: gyrus, Lat: lateral, Ci:cingul, Pa: parietal, Ce: central, Oc: occipital, Te: temporal, Fr: front, Orb: orbital, Ins: insula,Post: posterior, Mid: middle, Ant: anterior, Med: medial, Sup: superior, Inf: inferior, Ventr:ventral, Dors: dorsal, PostCe: postcentral, PreCe: precentral, ParaCe: paracentral, PeriCal:pericallosal, Marg: marginal, Pl: plan, Tri: triangular, Circ: circular, Supr: supramarginal, Ang:angular, PH: parahippocampal, SubPa: subparietal, Transv: transverse, FrPole: frontopolar,Pola: polar, SubCal: subcallosal, St: short, Fis: fissure, Olfact: olfactory, Rect: rectus, Precu:precuneus, FrMag: fronto-marginal, FrMarg: frontomargin, Inter: intermedius, Li: lingual,Jens: Jensen, Vert: vertical, Prim: primus.
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Résumé en Français

Introduction

La santé mentale est un enjeumajeur puisque 970millions de personnes vivaient avec un trouble
mental en 2019, selon l’Organisation Mondiale de la Santé (OMS)1. Cependant, ces maladies sont
souvent négligées et les ressources investies dans leur traitement sont insuffisantes. Cela s’explique
en partie par le fait qu’elles sont assez mal comprises. Le développement récent de systèmes non
invasifs (notamment l’IRM) et à haut débit (notamment les séquenceurs ADN) permettant d’obtenir
des informations sur les systèmes biologiques et leur fonctionnement pourrait changer cette
situation. Mais d’autres paradigmes devraient changer pour permettre une progression globale
des connaissances en matière de pathologie cérébrale. Pour les troubles psychiatriques, l’approche
conventionnelle consiste actuellement essentiellement à considérer un diagnostic ou une condition
unique, et à utiliser un modèle statistique pour les prédire à l’aide d’une mesure biologique prise
isolément telle qu’une modalité d’imagerie. Cependant, il a été reconnu que les résultats obtenus
avec cette stratégie ne sont pas satisfaisants et qu’elle limite la progression des connaissances en
psychiatrie. Les raisons de cet insuccès pourraient tenir à l’hétérogénéité reconnue des conditions
et diagnostics définis par des outils de classification tels que le Diagnostic and Statistical Manual of
Mental Disorders (DSM). Le phénomène de comorbidité entre les pathologies et les interactions entre
les processus biologiques, qui existent à différents niveaux, sont négligés par les études basées sur le
diagnostic DSM. D’autres initiatives, telles que le Research Domain Criteria (RDoC), préconisent une
approche plus globale de l’étude des troubles psychiatriques en incorporant diverses données qui
reflètent différents niveaux de la complexité organisationnelle de la vie (par exemple, l’imagerie, la
génétique et les symptômes). Les principes du RDoC suggèrent qu’une description approfondie d’une
pathologie nécessite la prise en compte de multiples dimensions qui peuvent être partagées entre
différents syndromes psychiatriques et peuvent même contribuer à la variabilité non pathologique.

En utilisant des données qui suivent ces recommandations, ce travail de thèse vise à fournir
des outils compatibles avec les critères RDoC, et en particulier des outils reposant sur les réseaux
de neurones artificiels. Ces outils doivent permettre de modéliser au mieux les informations de
structure issues de connaissances a priori des composants biologiques disponibles, dans l’imagerie
de population destinée à l’étude des troubles psychiatriques.

Contexte

L’Imagerie par Résonance Magnétque (IRM) permet d’étudier les tissus du cerveau et son activité.
En particulier, l’IRM permet d’inspecter précisément la structure du cerveau et en particulier du
cortex, qui constitue sa couche la plus externe. Il représente la majeure partie de la matière grise du

1Santé mentale de l’OMS topic.
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cerveau, c’est-à-dire les tissus regroupant la plupart des cellules neuronales. L’activité des neurones
se présente sous la forme d’un signal électrique et chimique voyageant à travers le cerveau et
entre deux zones du cortex ou entre le cortex, le cervelet et les composants sous-corticaux. L’étude
globale du cerveau offert par l’IRM peut fournir des indications précieuses pour la compréhension
des fonctions et les dysfonctionnements cérébraux. La structure très plissée du cortex lui permet
d’augmenter considérablement sa surface et son volume de matière grise, mais rend son étude
difficile en raison de sa forme particulière. Des logiciels experts tels que FreeSurfer [86, 120]
permettent d’extraire des mesures géométriques de ce tissu et de les représenter sur un modèle
commun. Celui-ci permet de mieux préserver les propriétés topologiques du cortex que ce que ne
pourraient faire des images 3D.

Pour étudier les caractéristiques et les troubles du cerveau, des consortiums recueillent de
grandes quantités de données afin de mettre en évidence des biomarqueurs d’intérêt en recrutant
des sujets en population générale. Cette approche permet également de mieux prendre en compte
les caractéristiques spécifiques de chaque population. Aujourd’hui, de vastes projets de recherche
ont permis de créer des ressources partagées et ouvertes à partir des données de santé d’une large
population. Parmi celles-ci, les cohortes d’imagerie de population, promeuvent un phénotypage de
haute qualité grâce à l’imagerie et à l’évaluation psychologique, tout en recrutant spécifiquement
un très grand nombre de personnes dans le cadre d’un protocole de recherche. Ces initiatives
sont conformes au besoin croissant de données pour les modèles statistiques récents tels que
l’apprentissage profond. Il a également été récemment démontré que la découverte d’associations
reproductibles entre le cerveau et des phénotypes comportementaux complexes nécessite des
milliers d’individus [240]. Des problèmes spécifiques apparaissent dans ces cohortes, la collecte d’un
vaste ensemble de données nécessite le regroupement de données provenant de sources multiples
et de différents sites d’acquisition d’imagerie. Cela pose de nouveaux défis, tels que l’harmonisation
des effets de site, dont on sait qu’elle nuit à la qualité de la modélisation en aval [136, 357].

Une grande variété d’outils (par exemple IRM et microarrays) sont disponibles pour mieux
comprendre la structure et le fonctionnement du cerveau. Les chercheurs ont commencé à trouver
des biomarqueurs du cerveau responsables des fonctions cognitives ou des pathologies cérébrales.
Certains marqueurs pathologiques peuvent être spécifiés par un expert humain à partir d’images
: une tumeur cérébrale est souvent identifiable par un radiologue. D’autres sont beaucoup plus
subtils, et nous ne pouvons pas les identifier en regardant simplement un scan IRM (par exemple,
les caractéristiques radiomiques subtiles qui varient pour qualifier les cancers). Pour aider les
chercheurs en imagerie médicale à comprendre les mécanismes sous-jacents des pathologies
ou des fonctions, les ingénieurs se sont appropriés les algorithmes d’apprentissage basés sur les
données, qui peuvent être directement appliqués pour trouver des biomarqueurs. Ces approches
tendent à modéliser les mécanismes sous-jacents qui régissent les données, afin de pouvoir relier
correctement les phénotypes observés à la biologie (par exemple, la conversion de la maladie
d’Alzheimer avec l’accélération du rétrécissement de la matière grise). L’apprentissage automatique
peut-être supervisé, c’est-à-dire guidé par des annotations humaines qui peuvent être très coûteuses,
ou non-supervisé, auquel cas l’objectif de l’algorithme d’apprentissage est plutôt de modéliser la
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distribution des données.

Une sous-catégorie majeure des algorithmes d’apprentissage automatique, appelée apprentis-
sage profond, regroupe tous les algorithmes d’apprentissage utilisant des réseaux de neurones artifi-
ciels. Ils ont été introduits au début des années 60 avec le Perceptron multi-couches (MLP) de Rosen-
blatt.[302]. Un MLP est une succession de projections linéaires, appelées couches denses, entre-
coupées de fonctions d’activation non linéaires. Aujourd’hui, les réseaux de neurones sont entraînés
à l’aide d’algorithme de descente de gradient [293, 10] ou leurs extensions [195] par rétropropaga-
tion [227, 366]. Cependant, en raison de la complexité des architectures mises en oeuvre, les raisons
des performances des réseaux de neurones sont mal comprises. Un phénomène très surprenant est
leur étonnante propriété de généralisation, qui évolue avec leur complexité, contrairement aux autres
modèles d’apprentissage automatique. Par conséquent, les propriétés d’expressivité des réseaux de
neurones ont été décrites pour mieux comprendre leurs propriétés de généralisation. Il semblerait
que des architectures adaptées aux données, telles que les opérateurs de convolution, mettent en
œuvre des biais inductifs qui pourraient être une source d’explication de ces propriétés de général-
isation. Outre leurs caractéristiques de généralisation surprenantes, l’interprétation des réseaux de
neurones n’est pas simple en pratique. Nous essayons de décrire quelques méthodes d’explication
qui tentent de surmonter ce problème. Finalement, nous présentons un concept non supervisé qui
a gagné un intérêt croissant avec les réseaux de neurones, appelé apprentissage auto-supervisé. Il
est fondé sur des représentations d’apprentissage qui appliquent des biais inductifs aux réseaux en
exploitant des manipulations de données soigneusement conçues.

Contributions

Modéliser la structure de la surface corticale
La modélisation de la surface corticale sous la forme d’un maillage icosaédrique est un moyen

très complet d’intégrer la topologie spécifique de la surface corticale du cortex dans les données. Elle
tient compte du fait que le cortex est ininterrompu chez les humains sains et que les gyri voisins sont
en fait topologiquement éloignés. Le fait d’imposer une telle structure dans les données présente
de nombreux avantages. Cela peut être utilisée pour réduire la dimensionnalité des données, par
rapport aux images 3D produites par l’imageur, en se concentrant sur un signal intéressant pour
l’étude des maladies psychiatriques. De plus, cette représentation est plus précise tout en restant
spatialement cohérente par rapport aux mesures moyennes sur les régions d’intérêt. En outre, le
fait de disposer d’une représentation des données structurée par des considérations biologiques
peut permettre à la modélisation ultérieure de fournir des biomarqueurs plus pertinents et plus
cohérents, améliorant ainsi l’interprétabilité.

Dans ce contexte, nous avons étudié les adaptations spécifiques nécessaires dédiées aux réseaux
de neurones artificiels pour construire des représentations de données corticales prenant en compte
la structure topologique du cortex. Nous nous appuyons sur des opérateurs de convolution adaptés
existants, tels que DiNe, qui nous permettent de concevoir des réseaux de neurones convolutionels
de graphe (SCNN) capables d’apprendre à partir de données de surface corticale icosaédrique.
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Nous introduisons des augmentations de la surface corticale conçues pour entraîner un réseaux de
neurones convolutionels de graphe dans une configuration d’apprentissage auto-supervisé (SimCLR-
SCNN). Parmis les 5 augmentations de données proposées, 3 reposent sur une adaptation de ce
qui est réalisé pour des images naturelles et 2 sont inspirées par des hypothèses biologiques. Elles
consistent à remplacer des valeurs par d’autres réalistes, dans un cas considérant la symétrie inter
hémisphérique (HemiMixUp), et dans l’autre des données de surfaces corticales d’autre individus
similaires (GroupMixUp). Le réseau SimCLR-SCNN entraîné à l’aide de ces augmentations démontre
sa capacité à générer des représentations dotées de fortes propriétés de généralisation. En fait,
les représentations apprises à partir de données collectées dans différentes études offrent des
performances prometteuses, parfois même supérieures aux approches supervisées. En particulier,
l’augmentation GroupMixUp montre un potentiel pour l’apprentissage de représentations stables à
travers différentes cohortes.

Au final, nous avonsmis au point uneméthodologie permettant d’apprendre des représentations
généralisables des données de surface corticale. Elle pourrait être exploitée pour mieux initialiser les
réseaux de neurones sur de grandes cohortes de population de sujets sains, avant de les transférer
pour réaliser des tâches d’intérêt sur des cohortes cliniques plus petites. Nous contribuons à cet
objectif important en proposant quelques augmentations de données de surface corticale, clés de
voûte pour s’adapter aux nouveaux cadres d’apprentissage auto-supervisés, et les outils environ-
nants nécessaires pour les utiliser. Notamment, le module surfify a été présenté lors de OHBM
2022 à Glasgow au cours de sessions de posters. En outre, les expériences liées à l’apprentissage
auto-supervisé sur la surface corticale ont conduit à une publication pour la conférence satellite
Machine Learning in Clinical Neuroimaging (MLCN) de MICCAI 2023.

Cette méthodologie répond à la question de la défintion d’approches d’apprentissage profond à
partir d’IRM cérébrales pondérées T1, qui soient capables de tirer parti de la structure corticale dans
ces données. Dans la partie suivante, au lieu de travailler sur des structures intra-modalité, nous
proposons des approches compatibles avec l’apprentissage profond pour modéliser les relations en-
tre diverses sources de données. Ces approches doivent fonctionner avec des types de données
disponibles dans les cohortes de population, telles que l’IRM pondérée en T1 avec d’autres modalités
d’imagerie, des données de génotypage ou des questionnaires cliniques.

Modéliser les structures de corrélation entre les modalités pour la psychiatrie

Aujourd’hui, la psychiatrie, tant dans sa dimension diagnostique que thérapeutique, passe d’un
paradigme fondé sur l’étude des syndromes à un nouveau paradigme fondé sur la compréhension
des mécanismes neurobiologiques qui les sous-tendent. La réalisation de cet objectif est un proces-
sus continu qui nécessite la combinaison d’avancées scientifiques, d’innovations technologiques et
d’une approche centrée sur le patient [368]. L’identification des relations entre les comportements
et les mesures cérébrales est un aspect essentiel de ce paradigme. Cependant, les comportements
sont complexes et résultent souvent d’une combinaison de facteurs génétiques, environnementaux
et psychologiques. En outre, le phénomène de comorbidité fréquemment évoqué en psychiatrie
signifie que de multiples comportements associés à divers troubles mentaux peuvent se manifester



147
simultanément, et qu’un même trouble peut se manifester par des comportements différents chez
des individus différents. Cette complexité remet en cause l’idée qu’une signature comportemen-
tale unique peut correspondre à un seul trouble. Comme nous l’avons introduit précédemment,
l’initiative RDoC fournit des recommandations pour aborder correctement cette complexité. Con-
trairement aux approches traditionnelles qui visent à établir un diagnostic à partir d’un score ou
d’une modalité spécifique (comme indiqué dans le DSMs), le RDoC promeut des approches dimen-
sionnelles et transdiagnostiques. Ces dimensions sont recherchées à travers les facteurs génétiques,
biologiques, environnementaux et demode de vie dans la recherche sur la psychiatrie personnalisée.

Dans ce contexte, nous avons besoin demodèles statistiques capables de décrire ces interactions
entre les différentes données disponibles. Par la suite, nous décrivons les propriétés que ces algo-
rithmes doivent présenter pour être applicable dans notre contexte. Nous présentons les méthodes
que nous avons identifiées ainsi que les méthodes proposées pour répondre à cette problématique.
Ensuite, nous appliquons certaines de ces méthodes à la cohort Healthy Brain Network (HBN) pour
une analyse transdiagnostique. La cohorte HBN, qui regroupe une population d’enfants à risque pour
différents troubles psychiatriques, est adaptée pour mener cette étude.

Méthodes. Afin de traiter la quantité et la diversité croissante des données, et demodéliser la part
de leur variabilité imputable à la maladie, nous avons besoin d’outils d’apprentissage automatique
dotés des propriétés suivantes :

• Non-supervisé ou semi-supervisé : l’algorithme d’apprentissage ne doit pas être uniquement
orienté par une prédiction diagnostique, qui ne rend pas suffisamment compte de la variabil-
ité liée à la pathologie et limite la quantité de données disponibles. Envisager un cadre semi-
supervisé, en intégrant les symptômes au lieu du diagnostic, permet de prendre en compte
à la fois les sujets présentant des évaluations liées aux symptômes et les sujets qui en sont
exempts.

• Intégratif : capable de traiter une quantité arbitraire de données sous diverses formes et de
modéliser leur variabilité partagée, tout en intégrant la structure de corrélation intra-modalité.
Par exemple, on cherche à analyser conjointement desmesures sur le cortex obtenues par IRM
et des données tabulaires du dossier patient en vue de trouver des relations avec la maladie.

• Capable de traiter les donnéesmanquantes : toutes les cohortesmultimodales ont des don-
nées manquantes, qui peuvent apparaître à différents niveaux, soit de manière sporadique
dans un type d’évaluation, comme un questionnaire clinique non rempli, soit une modalité
complètement manquante comme une IRM, si le patient n’a pas pu être scanné pour une rai-
son ou une autre. De telles absences sont très fréquentes dans les études multimodales, et le
modèle d’apprentissage que nous choisissons doit être capable d’utiliser des observations avec
des données manquantes, au risque de voir sa puissance statistique fortement diminuée.

• Interprétable : nous devrions être en mesure de comprendre et d’expliquer ce que le mod-
èle a appris. L’objectif ultime serait de décrire les mécanismes biologiques responsables des
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maladies psychiatriques, découverts par le modèle. Cela est impossible si le modèle n’est pas
interprétable d’une manière ou d’une autre.

Nous partons des modèles d’intégration candidats qui implémentent des approches linéaires,
notamment Canonical Correlation Analysis (CCA), Partial Least Squares (PLS) et leurs extensions.
Toutefois, leur incapacité à utiliser des observations avec desmesuresmanquantes est très limitante.
Les Probabilistic Graphical Model (PGM) profonds, et en particulier les Auto-Encodeurs Variationels
multi-vues (mVAE) présentent des propriétés très attrayantes. Ils sont capables d’exploiter les
observations avec des données manquantes et de modéliser efficacement la structure de corrélation
intra (avec des réseaux spécifiques aux modalités et des espaces latents privés) et inter-modalités
(avec un espace latent commun). En outre, il a été démontré qu’ils intègrent des propriétés de
désenchevêtrement, qui peuvent être utilisées pour distinguer la variabilité spécifique de la vari-
abilité partagée. Cela peut avoir des implications importantes, car la plupart des biais ne sont pas
contenus dans toutes les modalités : l’effet du site d’acquisition de l’image est un très bon exemple
de ce type de biais, qui sera limité aux modalités d’imagerie. Les effets liés au sexe pourraient être
limités aux modalités d’imagerie et de génétique. Les questionnaires cliniques sont conçus pour ne
pas être biaisés par de tels facteurs.

Ces mVAEs ne sont en revanche pas directement interprétables, contrairement aux modèles
d’intégration linéaires. Nous examinons donc les possibilités d’interprétation qui s’offrent pour
les modèles présentés précédemment et proposons une méthode d’interprétation utilisant des
avatars numériques (DAA) qui interprètent ce qu’un modèle a appris. Cette interprétation est
obtenue en modifiant légèrement les caractéristiques d’une modalité dans l’espace d’entrée et en
interrogeant le mVAE pour générer les changements correspondants dans les autres modalités.
Ce module d’interprétation produit une matrice d’association reliant chaque caractéristique de
chaque modalité aux caractéristiques de la modalité initialement perturbée. Il s’agit d’un module
d’interprétation construit pour comprendre les relations intermodales apprises par unmodèlemVAE.

La stabilité est essentielle pour espérer garantir la reproductibilité des résultats. Après avoir ex-
aminé certaines origines de l’instabilité en apprentissage automatique, nous proposons des moyens
d’atténuer ces sources de variabilité lors de l’interprétation des modèles mVAE à l’aide de la DAA. La
variabilité épistémique (due à l’entraînement stochastique des réseaux de neurones) est gérée en
répétant la procédure d’entraînement / interprétation du mVAE sur la même partition entraînement
/ test de la population, puis en assemblant leurs résultats. Il s’agit de la DAA régularisée (r-DAA).
Afin de s’assurer que les associations observées ne sont pas spécifiques à la partition entraînement
/ test considérée par la r-DAA, nous proposons également d’utiliser une procédure de sélection
par stabilité. Cela permet de conserver les associations sélectionnées de manière cohérente par
la r-DAA sur plusieurs partitions de la population, ce qui permet de contrôler l’incertitude aléatorique.

Ces méthodes ont été présentées dans un contexte plus général, mais ont en fait été dévelop-
pées pour découvrir des associations cerveau-comportement reproductibles. Nous pensons que
l’application de ces techniques à de grandes cohortes multimodales pourrait permettre de trouver
des biomarqueurs pertinents. La DAA a donné lieu à une publication dans la conférence ISBI, présen-
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tée en 2023 à Cartagena, en Colombie, et lors d’une session de posters au séminaire français IABM
2023 à Paris.
Dans la partie suivante, nous appliquons le module DAA à une cohorte transdiagnostique d’enfants
à risque pour divers syndromes psychiatriques (dont l’autisme, l’hyperactivité et l’anxiété), présen-
tant des symptômes partagés ou spécifiques de ces pathologies. Nous nous assurons d’obtenir des
résultats d’associations reproductibles en appliquant les procédures de r-DAA et de sélection par sta-
bilité. Nous discutons des paramètres expérimentaux associés et des résultats obtenus, ainsi que
de quelques recommandations sur la façon de les interpréter, en particulier dans une perspective
transdiagnostique.

Applications. Comme indiqué précédemment, le projet RDoC fournit des recommandations
pour aborder correctement la complexité des maladies psychiatriques. Ces dernières années, la
littérature transdiagnostique en psychopathologie s’est développée dans ce sens [125]. Certaines des
ces approches transdiagnostiques récentes étudient un facteur psychopathologique général, appelé
facteur p [53, 55]. Ce facteur p sous-tendrait des mécanismes communs à plusieurs syndromes
psychiatriques ; il est généralement représenté comme une dimension unique qui agirait sur un
ensemble de symptômes et, in fine, des troubles. L’objectif de ces études est de rechercher des
corrélats neuronaux du facteur p parmi différents marqueurs biologiques, tels que l’imagerie ou la
génétique.

La cohorte HBN [6] est une grande étude clinique multicentrique et transdisciplinaire. Elle
comprend une grande diversité de type de mesures, y compris l’imagerie, et un ensemble complet
d’évaluations psychologiques et cliniques pour mieux comprendre les troubles psychiatriques. Les
critères d’inclusion ne dépendent pas du diagnostic, mais englobent plutôt une population à risque
présentant des symptômes comportementaux notables. Plus précisément, les sujets ont été sélec-
tionnés en fonction de la présence de structures comportementales liées au spectre autistique, à
hyperactivité ou à d’autres troubles anxieux. Les diagnostics consensus ne sont pas disponibles pour
la majorité des sujets inscrits dans la cohorte HBN. En tant que tel, l’ensemble de données permet
d’étudier les différentes manifestations des syndromes psychiatriques au sein des données. Il
permet notamment d’explorer les méthodes de découverte de nouveaux biomarqueurs et d’analyse
dimensionnelle. À cet égard, HBN constitue un ensemble de données candidat très prometteur pour
les études transdiagnostiques visant à identifier les biomarqueurs qui sous-tendent les processus
biologiques dans l’ensemble des troubles. Nous proposons deux études de cette cohorte.

La première étude se concentrent principalement sur le spectre autistique. Des travaux précé-
dents dans l’équipe ont proposé une stratification par un expert des sujets autistes annotés sur
la base de différents scores de symptômes, et en s’appuyant principalement sur le score cognitif
de déficience sociale SRS pour dissocier des groupes de contrôle de sous-groupes autistes. Nous
avons réussi à reproduire ces étiquettes en utilisant une approche intégrative non supervisée en
apprentissage profond avec un mVAE particulier appelé sMCVAE [14]. A aucun moment le réseau de
neurones ne s’est vu proposé d’utiliser ces étiquettes pendant l’entraînement, mais pourtant il a été
capable de reproduire une stratification similaire des sujets autistes dans l’espace latent spécifique
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aux score cliniques. Le sMCVAE présente des avantages, notamment proposant une façon plus
intégrée de faire de la stratification dans un espace principalement dirigé par de la variabilité des
scores clinique mais comprenant un peu de variabilité d’imagerie. En revanche, le fait de ne pas
modéliser un espace latent commun et d’imposer la même dimension latente pour tous les espaces
latents spécifiques à chaque modalité ne constitue pas une bonne propriété pour interpréter le
réseau demanière plus approfondie. Cette étude de réplication a été présentée pendant une session
de posters virtuelle à OHBM 2021.

L’étude précédente se concentre principalement sur l’étude du spectre autistique. Dans cette
deuxième étude, nous souhaitons découvrir des associations transdiagnostiques reproductibles
entre les mesures de la surface corticale et les comportements symptomatiques impliqués dans
différents troubles psychiatriques. Nous démontrons ici la capacité des outils méthodologiques
précédemment présentés à découvrir de telles associations stables. Nous intégrons les résultats des
questionnaires et les mesures corticales sur des régions d’intérêt en utilisant unmVAE, puis nous util-
isons le cadre DAA pour interpréter ses représentations conjointes et ses associations en sortie. En
particulier, nous montrons que cette procédure de r-DAA permet effectivement de gérer une part de
l’instabilité des modèles dues à la variabilité épistémique et d’extraire des associations pertinentes.
Encapsulé dans un cadre de sélection par stabilité, cet outil d’interprétation r-DAA garantit que les as-
sociations retenues sont généralisables au sein de notre population, et donc plus susceptibles d’être
reproductibles. Nous montrons aussi que les modèles entrainés dans ce cadre sont munis de pro-
priétés pertinentes en vue de leur interprétation : l’espace latent partagé contient de la variabilité
d’intérêt, que lui permet de correctement modéliser ces structures de corrélation inter-vue. En re-
vanche, la variabilité spécifique, incluant les effets confondants liée au site d’acquisition de l’image,
sont contenus dans l’espace latent spécifique à l’imagerie. Celà démontre les capacités des mVAE
à séparer les sources de variabilité lorsqu’ils modélisent à la fois un espace latent partagé entre les
différentes modalités et un espace spécifique dédié à chaque modalité. En analysant les associations
trouvées à travers différents scores de comportements corrélés à différents spectres psychiatriques,
on identifie des régions de la surface corticale liées au facteur de psychopatholgie transdiagnostique
: en l’occurence, les régions cingulaires (avec les paramètres d’aire et de courbure), ainsi que les cor-
tex visuels primaires (avec le parametre d’épaisseur corticale). Ces contributions méthodologiques
(r-DAA + stabilité par sélection) appliquées dans ce contexte ont été soumises à la revue Imaging
Neuroscience et présentée durant le colloque IABM 2024 à Grenoble.
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