
HAL Id: tel-04630096
https://theses.hal.science/tel-04630096

Submitted on 1 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration of Numerical Simulations with Deep
Learning : Application to Thermodynamic Equilibrium

Calculations
Jingang Qu

To cite this version:
Jingang Qu. Acceleration of Numerical Simulations with Deep Learning : Application to Thermody-
namic Equilibrium Calculations. Systems and Control [cs.SY]. Sorbonne Université, 2023. English.
�NNT : 2023SORUS530�. �tel-04630096�

https://theses.hal.science/tel-04630096
https://hal.archives-ouvertes.fr

Thèse de doctorat de Sorbonne Université

Spécialité — Informatique
École Doctorale Informatique, Télécommunications et Électronique (Paris)

ACCELERAT ION OF NUMER ICAL S IMULAT IONS
WITH DEEP LEARN ING

Application to Thermodynamic Equilibrium Calculations

jingang qu

Pour obtenir le grade de
docteur de Sorbonne Université

devant le jury composé de :

M. Massih-Reza AMINI Université Grenoble-Alpes Rapporteur
M. Wei YAN Université technique du Danemark Rapporteur
Mme. Mathilde MOUGEOT ENS Paris-Saclay Examinatrice
M. Pascal MORIN Sorbonne Université Examinateur
M. Fabian JIRASEK Technische Universität Kaiserslautern Examinateur
M. Thibault FANEY IFP Energies nouvelles Examinateur
M. Jean-Charles DE HEMPTINNE IFP Energies nouvelles Examinateur
M. Patrick GALLINARI Sorbonne Université Directeur de thèse

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

ABSTRACT

Numerical simulations are a powerful tool for analyzing dynamic systems, but they can be
computationally expensive and time-consuming for complex systems with high resolution.
Over the past decades, researchers have been striving to accelerate numerical simulations
through algorithmic improvements and high-performance computing (HPC). More re-
cently, artificial intelligence (AI) for science is on the rise and involves using AI techniques,
specifically machine learning and deep learning, to solve scientific problems and accelerate
numerical simulations, having the potential to revolutionize a wide range of fields.

The primary goal of this thesis is to speed up thermodynamic equilibrium calculations by
means of techniques used to accelerate numerical simulations.Thermodynamic equilibrium
calculations are able to identify the phases ofmixtures and their compositions at equilibrium
and play a pivotal role in many fields, such as chemical engineering and petroleum industry.
We achieve this goal in two aspects. On the one hand, we use deep learning frameworks
to rewrite and vectorize algorithms involved in thermodynamic equilibrium calculations,
facilitating the use of diverse hardware for HPC. On the other hand, we use neural networks
to replace time-consuming and repetitive subroutines of thermodynamic equilibrium
calculations, which is a widely adopted technique of AI for science.

Another focus of this thesis is to address the challenge of domain generalization (DG) in
image classification. DG involves training models on known domains that can effectively
generalize to unseen domains, which is crucial for deploying models in safety-critical real-
world applications. DG is an active area of research in deep learning. Although various DG
methods have been proposed, they typically require domain labels and lack interpretability.
Therefore, we aim to develop a novel DG algorithm that does not require domain labels
and is more interpretable.

iii

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

RÉSUMÉ

Les simulations numériques sont un outil puissant pour analyser les systèmes dynamiques,
mais peuvent être coûteuses en termes de calcul et consommatrices de temps pour les
systèmes complexes à haute résolution. Au cours des dernières décennies, les chercheurs ont
cherché à accélérer les simulations numériques grâce à des améliorations algorithmiques et
à l’informatique haute performance (HPC). Plus récemment, l’intelligence artificielle (IA)
pour la science est en plein essor et implique l’utilisation de techniques d’IA, en particulier
l’apprentissage automatique et l’apprentissage profond, pour résoudre des problèmes sci-
entifiques et accélérer les simulations numériques, ayant le potentiel de révolutionner un
large éventail de domaines.

L’objectif principal de cette thèse est d’accélérer les calculs d’équilibre thermodynamique
au moyen de techniques utilisées pour accélérer les simulations numériques. Les calculs
d’équilibre thermodynamique permettent d’identifier les phases des mélanges et leurs
compositions à l’équilibre et jouent un rôle pivot dans de nombreux domaines, tels que
le génie chimique et l’industrie pétrolière. Nous atteignons cet objectif sous deux aspects.
D’une part, nous utilisons des cadres d’apprentissage profond pour réécrire et vectoriser les
algorithmes impliqués dans les calculs d’équilibre thermodynamique, facilitant l’utilisation
de divers matériels pour le HPC. D’autre part, nous utilisons des réseaux de neurones
pour remplacer les sous-programmes répétitifs et chronophages des calculs d’équilibre
thermodynamique, ce qui est une technique largement adoptée par l’IA pour la science.

Un autre axe de cette thèse est de relever le défi de la généralisation de domaine (DG) en
classification d’images. DG implique de former des modèles sur des domaines connus qui
peuvent généraliser efficacement à des domaines inconnus, ce qui est crucial pour déployer
des modèles dans des applications réelles critiques en matière de sécurité. DG est un
domaine de recherche actif dans l’apprentissage profond. Bien que diversesméthodes deDG
aient été proposées, elles nécessitent généralement des étiquettes de domaine et manquent
d’interprétabilité. Par conséquent, nous visons à développer un nouvel algorithme de DG
qui ne nécessite pas d’étiquettes de domaine et est plus interprétable.

v

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

ACKNOWLEDGMENTS

As I look back on my PhD journey, I realize that there are so many people to thank, without
whom this journey would not have been possible. In particular, I started my PhD in the
midst of the unprecedented global turmoil brought on by the COVID-19 pandemic.

To begin with, I owe my deepest gratitude to my advisor, Patrick, who opened the door
to the realm of deep learning for me. Despite the fact that my background in undergraduate
and master’s studies was not directly related to deep learning, Patrick did not hesitate to
engage with me enthusiastically when I expressed my desire to pursue my PhD research
under his guidance. Although my PhD subject did not align precisely with Patrick’s main
work, Patrick’s guidance kept me focused and steered me clear of unnecessary detours. For
this, I am profoundly thankful.

I extend my heartfelt appreciation to my mentors at IFPEN: Thibault, Jean-Charles,
and Soleiman. Having interned at IFP for half a year before my PhD, I had the privilege
of getting acquainted with them. Thibault has been both a mentor and a friend to me,
always lending a helping hand just when I needed it, not only in academics but also in life.
His weekly check-ins and discussions about the challenges I faced have been invaluable.
I am deeply appreciative of his patience, especially when I struggled to express myself in
French. Despite my limited exposure to thermodynamics before my PhD, Jean-Charles
graciously guided me through this domain, explained complex thermodynamic concepts,
and entrusted me with the use of the IFPEN-developed Carnot. Without his assistance, I
would have struggled to progress in my work. Although I didn’t have many interactions
with Soleiman, he never hesitated to share necessary advice and assistance, like helping me
polish my papers for publication.

I would like to express my gratitude to each member of the jury. I am grateful to Massih-
Reza and Wei for their time and expertise in reviewing my thesis. Massih-Reza is an expert
inmachine learning and deep learning. I once attended a summer school organized byDTU,
where Wei happened to deliver lectures on phase equilibrium calculations. His lectures
enriched my understanding of thermodynamics. Pascal is the PhD advisor of my best
friend, Ze WANG. I am honored to be involved in Ze’s work and to collaborate with Pascal.
Fabian’s work is dedicated to the integration of machine learning into thermodynamics.
I had the opportunity to hear Fabian’s presentation at a conference on how to integrate
machine learning models into thermodynamic models, which nicely inspired my work.
Mathilde is also an expert in deep learning with a broad range of research interests, such as
transfer learning and physics-informed deep learning.

I would be remiss if I did not mention the invaluable support of my girlfriend, Yang
YANG. Meeting in 2014 and moving together from China to France in 2016, Yang has
always been by my side, encouraging, understanding, and caring for me. I am grateful for
her unfailing support of my ideas and decisions.

Finally, to my parents, Zhu LI and Shifeng QU, whom I have not seen for more than
three years due to the pandemic. The longing for them was perhaps the hardest part of
my PhD journey. Thank you for their unwavering support and encouragement, even from
thousands of miles away.

Thank you, each and every one of you.

vii

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

CONTENT S

1 Introduction 1
1.1 Current techniques for accelerating numerical simulations 1
1.2 Thesis objectives 2

1.2.1 Acceleration of thermodynamic equilibrium calculations 2
1.2.2 Efficient learning of heterogeneous patterns in data 4

1.3 Thesis organization 4

i Preliminaries
2 Fundamentals of applied thermodynamics andphase equilibriumcalculations 9

2.1 Basic concepts 9
2.1.1 System, state and phase 9
2.1.2 Thermodynamic properties 9
2.1.3 Residual properties 10

2.2 Phase equilibrium 11
2.3 Equations of state 12

2.3.1 Cubic equations of state 13
2.3.2 Statistical Associating Fluid Theory 15
2.3.3 Cubic Plus Association equation of state 16

2.4 Isothermal two-phase flash calculation 17
2.4.1 Problem setting 17
2.4.2 Stability analysis 18
2.4.3 Phase split calculations 19
2.4.4 Strategy for the isothermal two-phase flash calculation 21

3 Neural networks and deep learning 23
3.1 Feedforward neural networks 23
3.2 Universal approximation theorem 25
3.3 Training of neural networks 26

3.3.1 Cost function 27
3.3.2 Optimization algorithms 28

3.4 Hyper-parameter tuning 29

ii Speeding up phase equilibrium calculations with deep learning
4 PTFlash : A deep learning framework for two-phase flash calculation 33

4.1 Introduction 33
4.2 Related work 34
4.3 Data generation 34

4.3.1 Design of experiments (DoE) 34
4.3.2 Anewmethod for samplingmultiple variables adding up to 1 35

4.4 Case studies 37
4.5 Vectorization of two-phase flash calculation 39
4.6 Acceleration of flash calculation using neural networks 41

4.6.1 Classifier 42
4.6.2 Initializer 45
4.6.3 Strategy for accelerating flash calculation using neural networks 46

ix

[July 6, 2023 at 13:52 – Version 0]

x contents

4.7 Results 47
4.7.1 Vectorized flash calculation 47
4.7.2 Deep-learning-powered vectorized flash calculation 49
4.7.3 Discussion 51

4.8 Conclusion 52
5 NNEoS : Neural network-based EoS to calculate fugacity coefficients 53

5.1 Introduction 53
5.2 Related work 54

5.2.1 Replace numerical EoS with machine learning models 54
5.2.2 Regression Clustering and Mixture of Experts 55

5.3 Case study 56
5.4 Analysis of the discontinuity of fugacity coefficients 56
5.5 Clustered regression network 57
5.6 Neural network-based equation of state 59
5.7 Results 62

5.7.1 Comparison between Carnot and NNEoS 63
5.7.2 Comparison between Carnot and PTFlash using NNEoS 64
5.7.3 HybridEoS to combine Carnot and NNEoS 65
5.7.4 Discussion 67

5.8 Conclusion 68

iii Domain generalization
6 HMOE:Hypernetwork-basedMixture of Experts forDomainGeneralization 71

6.1 Introduction 71
6.2 Related work 73

6.2.1 Domain generalization (DG) 73
6.2.2 Hypernetworks 73
6.2.3 Mixture of Experts (MoE) 73
6.2.4 Application of hypernetworks and MoE in DG 74

6.3 Method 74
6.3.1 Problem setting 74
6.3.2 Overall architecture 75
6.3.3 Hypernetworks 76
6.3.4 Routing mechanism 76
6.3.5 Embedding space 77
6.3.6 Class-adversarial training on D2V 77
6.3.7 Semi-/supervised learning on domains 78
6.3.8 Training and inference 78

6.4 Toy regression problem 78
6.5 DomainBed 80

6.5.1 Datasets and model evaluation 80
6.5.2 Implementation details 80
6.5.3 Results 81
6.5.4 Latent domain discovery 83
6.5.5 Ablation study 84
6.5.6 More empirical analysis 86

6.6 Conclusion 87
7 Conclusion and perspectives 89

[July 6, 2023 at 13:52 – Version 0]

contents xi

7.1 Conclusion 89
7.2 Perspectives 89

7.2.1 Improve the generalization of neural networks to components 89
7.2.2 A more interpretable method for domain generalization 90

iv Appendix
a Derivation of the closed-formexpression of the probability density function 95
b Detailed domain generalization results 97

Bibliography 103

[July 6, 2023 at 13:52 – Version 0]

L I ST OF F IGURES

Figure 1.1 Relationship between artificial intelligence, machine learning and
deep learning 2

Figure 1.2 Two problems of learning heterogeneous patterns 5
Figure 2.1 Formation of a molecule in the original SAFT EoS 16
Figure 2.2 Successive substitution of phase split calculations 20
Figure 2.3 Flowchart of the isothermal two-phase flash calculation 21
Figure 3.1 Representation of an artificial neuron 24
Figure 3.2 Commonly used activation functions 24
Figure 3.3 Architecture of feedforward neural networks 25
Figure 3.4 Loss landscape of ResNet-56 without shortcut connections for

the CIFAR-10 dataset 27
Figure 3.5 Illustration of underfitting, overfitting and good fit 28
Figure 4.1 Comparison between random sampling and Latin Hypercube

Sampling 35
Figure 4.2 Sampling the composition using the simple approach 36
Figure 4.3 The Dirichlet distribution with respect to its concentration pa-

rameters 37
Figure 4.4 Phase envelopes of four typical reservoir fluids 39
Figure 4.5 Marginal distribution of the molar fraction of component i for

black oil 40
Figure 4.6 Architecture of the classifier for the case study containing 9 com-

ponents 43
Figure 4.7 Hyper-parameter tuning of the classifier 43
Figure 4.8 Cyclic learning rate used to train the classifier 44
Figure 4.9 Contours of the probabilities predicted by the classifier 44
Figure 4.10 Architecture of the initializer 45
Figure 4.11 Acceleration of flash calculation using neural networks 47
Figure 4.12 Comparison between Carnot and PTFlash 48
Figure 4.13 Convergence percentage and running time of each subroutine of

PTFlash on GPU 50
Figure 4.14 Closeness to critical points in the execution of PTFlash 50
Figure 5.1 Phase diagram of the mixture of water and methane 56
Figure 5.2 Fugacity coefficients for the mixture of water and methane at

different pressures 57
Figure 5.3 Architecture of clustered regression networks 58
Figure 5.4 Sigmoid activation function and its gradient 58
Figure 5.5 Application of CRNet to a toy regression problem 59
Figure 5.6 Four clustering algorithms for the toy regression problem 60
Figure 5.7 Architecture of NNEoS 61
Figure 5.8 Cyclic learning rate schedule to train NetZ 61
Figure 5.9 Training losses of NetZ 62
Figure 5.10 Theprediction ofNetZ and the outputs of its key parts atP =1MPa 62
Figure 5.11 Training loss of Netϕ 63

xii

[July 6, 2023 at 13:52 – Version 0]

Figure 5.12 Comparison between the true andpredicted lnϕ atP =1MPa 63
Figure 5.13 Comparison between the execution time of Carnot and NNEoS

for calculating fugacity coefficients 64
Figure 5.14 Comparison between the execution time of Carnot and PTFlash

using HybridEoS 67
Figure 6.1 Diagram of classical Mixture of Experts 74
Figure 6.2 Overview of the architecture of HMOE 75
Figure 6.3 A toy regression problem to evaluate HMOE 79
Figure 6.4 Comparison between three inference modes of HMOE 79
Figure 6.5 Average of supervised domain loss over all test domains for each

dataset of DomainBed 83
Figure 6.6 The t-SNE visualization of the output of the D2V encoder of

HMOE 84
Figure 6.7 Comparison between domain labels and HMOE clusters 85
Figure 6.8 Soft partitioning of HMOE for OfficeHome 85
Figure 6.9 Learning collapse for PACS with K = 8 86
Figure 6.10 Train HMOE using OOD for PACS 86
Figure 7.1 Construction of graph data to consider the properties of compo-

nents 90
Figure 7.2 Prototype of a VAE-based DG method 91

L I ST OF TABLE S

Table 2.1 State variables expressed as the partial derivatives of energy func-
tions 11

Table 2.2 Relationships between different residual properties 11
Table 2.3 Estimation of the energy and co-volume parameters of pure com-

pounds for cubic EoS 14
Table 3.1 Weight initialization methods for neural networks with different

activation functions 29
Table 4.1 Properties of the components involved in three case studies used

to evaluate PTFlash 37
Table 4.2 Four fluid types characterized by different compositional ranges 38
Table 4.3 Some typical reservoir fluid compositions 38
Table 4.4 Concentration parameters of the Dirichlet distribution used to

sample different fluid types 39
Table 4.5 Performance profiler of PTFlash on GPU 49
Table 4.6 Performance profiler of NN-PTFlash on GPU 51
Table 5.1 Comparison between the results of Carnot and PTFlash using

NNEoS 65
Table 5.2 Performance profiler of PTFlash using NNEoS on GPU 66
Table 5.3 Performance profiler of PTFlash usingHybridEoS onGPU 66
Table 6.1 Description and visualization of datasets of DomainBed 80
Table 6.2 Domain generalization results on DomainBed 82

xiii

[July 6, 2023 at 13:52 – Version 0]

xiv list of tables

Table 6.3 Ablation study for HMOE-DN 85
Table 6.4 Use Swin Transformer as featurizer of HMOE-DN 87
Table B.1 Domain generalization results on ColoredMNIST 97
Table B.2 Domain generalization results on RotatedMNIST 98
Table B.3 Domain generalization results on VLCS 99
Table B.4 Domain generalization results on PACS 100
Table B.5 Domain generalization results on OfficeHome 101
Table B.6 Domain generalization results on TerraIncognita 102

[July 6, 2023 at 13:52 – Version 0]

1
INTRODUCT ION

1.1 current techniques for accelerating numerical simulations

Numerical simulations of dynamical systems predict their behavior over time by compu-
tationally solving mathematical models that represent the underlying dynamics of these
systems, e.g., computational fluid dynamics (CFD) [50] to solve Navier-Stokes equations.
Numerical simulations are commonly used to test hypotheses, optimize designs, and make
decisions across a broad range of fields, including physics, biology, chemistry, engineering,
and more. The size and computation time of a numerical simulation can vary significantly
depending on the system being studied, the complexity of mathematical models, and the
goals of the simulation. For large-scale and complex systems, e.g., weather forecasting,
numerical simulations can be particularly time-consuming and computationally expensive.
As a result, there is a growing demand to accelerate numerical simulations. Over the past
decades, in addition to developing more efficient algorithms, researchers have focused on
exploiting the computational power of hardware through high-performance computing
(HPC) [43], which involves performing simulations via parallel computing on clusters of
central processing units (CPUs) or specialized hardware, such as graphics processing units
(GPUs) and tensor processing units (TPUs). In recent years, machine learning [137] and
deep learning [104] have become increasingly powerful and achieved impressive results due
to the explosive growth of data and dramatically improved computational performance of
hardware. This leads to the rise of artificial intelligence (AI) for science [192], which greatly
facilitates and accelerates numerical simulations. As a result, the effective utilization of
hardware and the application of AI play a crucial role in speeding up numerical simulations
nowadays.

The main types of computing hardware used in numerical simulations include CPUs,
GPUs, and TPUs. GPUs are commonly used as general-purpose hardware accelerators and
are capable of performing awide range of arithmetic operations in parallel. TPUs, developed
by Google, are specifically designed to accelerate deep learning tasks, such as training
neural networks, and are particularly proficient in dense matrix multiplication and linear
algebra-intensive calculations. To use hardware from different manufacturers, researchers
can implement numerical simulation programs using corresponding development tools,
such as CUDA [170] for NVIDIA GPUs and ROCm [146] for AMD GPUs. However,
this necessitates frequent modifications to programs in order to meet the requirements of
different hardware. An emerging alternative approach is to use deep learning frameworks,
such as Tensorflow [1], PyTorch [150] and JAX [19], to implement numerical simulations,
enabling more flexibility in using and switching between different hardware. For instance,
JAX has been used in a number of works for CFD [15, 97, 224], finite element method [224],
ocean modeling [71], molecular dynamics [174], and quantum many-body dynamics [138].
In addition, [216] uses Tensorflow to model fluid flows, with a focus on using TPUs. [79]
presents a differentiable Eulerian PDE framework for a large class of PDE families with
support for Tensorflow, PyTorch, and JAX.

Deep learning frameworks offer several advantages for numerical simulations. First,
they provide not only high-level functionalities for building and training neural networks

1

[July 6, 2023 at 13:52 – Version 0]

2 introduction

but also low-level primitives for scientific computing, such as linear algebra toolkits. This
facilitates the development of programs for a range of numerical simulation problems.
Second, they support various hardware internally and offer a unified interface externally,
enabling the use of different hardware without the need for code modification. Third, they
support automatic differentiation (AD), which is beneficial for many numerical simula-
tions involving ordinary differential equations (ODEs) or partial differential equations
(PDEs). AD also allows for end-to-end optimization since entire numerical simulations
are differentiable. Last but not least, they enable the seamless integration of deep learning
models into numerical simulations.

In recent years, AI for science has been on the rise and has achieved some breakthroughs,
such as the accurate and fast prediction of protein structures [90] and the discovery of more
efficient matrix multiplication algorithms [47]. The powerful expressive ability of machine
learning and deep learning models has been a major driving factor in these breakthroughs.
The relationship between AI, machine learning, and deep learning is shown in Fig. 1.1.

Algorithms that mimic
humain intelligence

and behaviour and can
reason like humans

Artificial Intelligence
(AI) Machine Learning

(ML)

Algorithms that learn from
data using human extracted

features and then make
informed decisions

Deep Learning (DL)

Neural networks that
directly learn features
from vast amounts of
data by themselves

Figure 1.1: Relationship between artificial intelligence, machine learning and deep learning

To speed up numerical simulations of governing dynamics represented as ODEs or
PDEs, several deep learning methods are commonly utilized, including data-driven neu-
ral networks (DDNNs), physical-informed neural networks (PINNs) [161, 162], neural
operators [117, 125], and NeuralODE [26]. DDNNs are trained on data generated by nu-
merical simulators and can make quick predictions. PINNs incorporate ODEs or PDEs
into their training as regularization terms. Neural operators use neural networks to solve
a family of ODEs or PDEs by learning the mapping between functions (i.e., operators).
Lastly, NeuralODE is capable of learning unknown governing ODEs from data.

1.2 thesis objectives

1.2.1 Acceleration of thermodynamic equilibrium calculations

The primary aim of this thesis is to apply the techniques mentioned earlier for accelerating
numerical simulations to thermodynamic equilibrium calculations. More specifically, we
focus on phase equilibrium calculations, also known as flash calculation. The natural
world abounds with mixtures composed of various chemical substances, such as the air we
breathe and the water we drink. The phenomenon of multiphase equilibrium is constantly
occurring. When different phases of a mixture, such as liquid and vapor, come into contact,

[July 6, 2023 at 13:52 – Version 0]

1.2 thesis objectives 3

they exchange substances with each other (mass transfer) driven by chemical potential
differences. This exchange persists until the different phases reach equilibrium and their
compositions no longer change.

At equilibrium, the compositions of different phases tend to vary significantly, allowing
us to separate mixtures and purify substances through various operations such as distilla-
tion, extraction, absorption, adsorption, leaching, and crystallization. These operations
are essential to the fields of chemistry and chemical engineering, highlighting the impor-
tance of flash calculation. Moreover, flash calculation has a wide range of applications in
other areas. In the petroleum industry, it is used to anticipate the behavior of petroleum
reservoirs [33]. In environmental science, it is employed to predict the partitioning of
volatile organic compounds between different phases in order to design and optimize the
removal of pollutants from the environment [29]. In materials science, it plays a critical
role in comprehending the properties and processes of materials by predicting their phase
diagrams and phase transitions [3].

For mixtures containing dozens of components, a single flash calculation can be per-
formed in milliseconds. However, in compositional reservoir simulation and multiphase
flow simulation, the whole system of interest is discretized into a large number of small
blocks. It is necessary to determine the number and type of equilibrium phases for each
block at each time step through flash calculations. When dealing with millions of blocks,
the time required for flash calculations can become computationally prohibitive and there-
fore constitutes a significant bottleneck in the simulation process. Consequently, there is a
growing need to accelerate flash calculations.

To perform a flash calculation for a mixture of a given composition, two process variables
should be specified, such as temperature T , pressure P , volume V , enthalpyH , and entropy
S. The selection of these process variables has a significant impact on the complexity of
flash calculation [133]. In this thesis, we will focus on flash calculation at specified T and P ,
also referred to as the isothermal flash calculation [129, 130]. The isothermal flash ensures
a unique solution that corresponds to the global minimum of the Gibbs energy. Compared
to other specifications, the isothermal flash is relatively straightforward to implement
and has been the subject of extensive research. Robust and efficient algorithms have been
developed for the isothermal flash based on the pioneering work [129, 130]. Additionally,
the isothermal flash can be used to perform flash calculations of alternative specifications,
such as the isenthalpic flash at specified (P,H) and the isentropic flash at specified (P, S).
This is achieved by using a nested-loop approach that uses the isothermal flash in the inner
loop and adjusts P or T in the outer loop [132]. Although this nested-loop approach is
less efficient than the concurrent convergence of all independent variables using Newton’s
method, it is safer and serves as a fallback when Newton’s method fails [136]. Moreover, P
and T are frequently given as conditions in many flash calculation applications, making
the isothermal flash more practical.

In contrast to numerical simulations for solving ODEs and PDEs, the isothermal flash
calculation serves as a building block for other simulations, such as compositional reservoir
simulation and multiphase flow simulation. It involves finding the global minimum of the
Gibbs energy through an optimization process, which entails substantial knowledge of
thermodynamics. With the help of the acceleration techniques discussed in the previous
section and by taking into account the characteristics of the isothermal flash, we will
use deep learning frameworks to implement the isothermal flash for parallel computing
on GPUs. Additionally, we will employ neural networks to replace repetitive and time-
consuming subroutines in order to speed up the isothermal flash.

[July 6, 2023 at 13:52 – Version 0]

4 introduction

1.2.2 Efficient learning of heterogeneous patterns in data

In addition to accelerating flash calculation, we also aim to address an academic problem
in computer vision, namely domain generalization.

When using neural networks to replace the time-consuming subroutines of flash calcu-
lation, we face the challenge of learning piecewise continuous functions, i.e., discontinuous
functions, as depicted in Fig. 1.2a. This discontinuity leads to the presence of multiple
underlying functions that need to be learned from the data. We refer to this problem as the
learning of heterogeneous patterns. In machine learning and deep learning tasks, hetero-
geneity commonly arises from the distribution shift [11, 159]. In supervised learning, it is
typically assumed that both the training and test sets consist of independent and identically
distributed samples from the same distribution. However, this assumption does not hold
in many real-world scenarios, such as when data is collected from multiple sources (e.g.,
sensors, databases) and multiple modalities (e.g., text, image, audio, video).

From the perspective of causality, the joint distribution of the input X and target Y can
be factored as PX,Y (x, y) = PX(x) PY |X(y|x). The distribution shift is often manifested
as either the domain shift (also known as the covariate shift) or the concept shift [128, 159,
193]. The concept shift is caused by the discrepancies in PY |X(y|x), suggesting that the
functional mapping between the input and output is inconsistent across the data. Therefore,
the problem of learning discontinuous functions is more likely associated with the concept
shift.The domain shift is due to the differences inPX(x), indicating that input data is drawn
from multiple different distributions. To address the domain shift, a variety of techniques
have been proposed and developed, such as multi-task learning [22], transfer learning
[148, 218, 240], meta-learning [82, 203, 206], domain adaptation [151, 214], and domain
generalization [68, 213, 236].

In this thesis, we focus on domain generalization, which involves trainingmodels capable
of effectively generalizing to unseen domains. In real-world scenarios, it is often impracti-
cal to collect a large and diverse dataset that covers all possible domains. Consequently,
models may overfit to the specific patterns of the training domains, making it challenging
to generalize well to test domains different from the training domains. For example, a
model may predict an image to be a cow or camel mostly due to the presence of green
pasture or yellow desert rather than based on animal attributes. Domain generalization is
particularly important for safety-critical real-world applications, such as medical diagnosis
and autonomous driving. In medical diagnosis, models need to generalize across different
hospitals, which may have distinct data collection processes, patient populations, and med-
ical facilities. Similarly, in autonomous driving, models should be able to generalize across
different cities, where road conditions, traffic patterns, and weather may vary significantly.
A concrete example of domain generalization is provided in Fig. 1.2b.

1.3 thesis organization

This thesis consists of three parts:

• Part I - Preliminaries (Chapters 2 and 3). This part covers the basic concepts of phase
equilibrium calculations and deep learning, which pave the way for the work in later
chapters.

[July 6, 2023 at 13:52 – Version 0]

1.3 thesis organization 5

(a) Learning discontinuous functions

Ar
t

Ca
rto

on
Ph

ot
o

Sk
et

ch

(b) Domain generalization problem

Figure 1.2: These figures show two problems of learning heterogeneous patterns, which are consid-
ered in this thesis. Figure (a) depicts the problem of learning discontinuous functions,
as exemplified by the logarithmic fugacity coefficient of water lnϕ1 in the mixture of
water and methane with respect to the molar fraction of water z1 and temperature T
at fixed pressure P = 1MPa. Figure (b) represents one example of the domain shift —
domain generalization and shows some images of the PACS dataset [109] consisting of
four distinct styles: sketch, photo, cartoon, and art. One style is used as the test domain,
and the others are used for training.

Chapter 2: We first introduce the fundamentals of thermodynamics, thermodynamic
notation, phase equilibrium conditions, and equations of state (EoS), and then detail
how to perform the isothermal two-phase flash calculation.

Chapter 3: We use feedforward neural networks as an example to introduce how to build
and train neural networks, and show some commonly used techniques to improve the
performance of neural networks.

• Part II - Speeding up phase equilibrium calculations (Chapters 4 and 5). This part is the
core of the thesis, that is, the application of deep learning techniques to accelerate phase
equilibrium calculations.

Chapter 4: We present PTFlash, a complete rewrite of the algorithms involved in the
isothermal two-phase flash calculation with the Soave-Redlich-Kwong (SRK) EoS [187]
using the deep learning framework PyTorch. Implementing algorithms using PyTorch
is essentially the process of vectorization, which is a technique used to optimize and
accelerate the execution of numerical algorithms by performing operations (e.g., matrix
multiplication) on multiple data elements in parallel rather than sequentially. This helps
reduce the number of instructions and leverage the parallelism of modern hardware,
especially GPUs. However, vectorizing algorithms is challenging because it requires
replacing each operation with the corresponding vectorized one, which is further com-
plicated by the intricate control flow of flash calculation. Our experiments demonstrate
that PTFlash achieves substantial speedups due to parallel computing on GPUs.

Chapter 5: We focus on equations of state, which are the key element of flash calculation.
To be more specific, we use neural networks as substitutes for numerical EoS to calculate
fugacity coefficients that play a critical role in flash calculation. These neural networks
are referred to as NNEoS, which is short for neural-network based equations of state. The
goal of NNEoS is to handle complex mixtures (e.g., those involving hydrogen bonding)

[July 6, 2023 at 13:52 – Version 0]

6 introduction

using more advanced EoS without vectorizing them. However, fugacity coefficients are
discontinuous, and therefore we propose a clustered regression network (CRNet) to
address this problem. We also integrate NNEoS into PTFlash. Our experiments show
that PTFlash using NNEoS enables fast and accurate flash calculations in most cases.

• Part III - Domain generalization

Chapter 6: We draw inspiration from CRNet presented in Chapter 5 and propose HMOE:
Hypernetwork-based Mixture of Experts (MoE) to solve the domain generalization
(DG) problem. Both hypernetworks [70] and MoE [227] are well-established methods
in machine learning and deep learning, and we innovatively combine them. Compared
to other DG methods, our proposed HMOE does not require domain labels and can
divide the data consisting of mixed unknown domains into separate clusters, which are
surprisingly more consistent with human intuition than original domain labels.

Finally, we summarize this thesis and suggest potential avenues for future work in
Chapter 7.

[July 6, 2023 at 13:52 – Version 0]

Part I

PREL IM INAR I E S

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

2
FUNDAMENTAL S OF APPL I ED THERMODYNAMIC S AND PHASE
EQU I L I BR IUM CALCULAT IONS

This thesis aims to use machine learning and deep learning to accelerate phase equilibrium
calculations (flash calculation). In this chapter, we will review the basic concepts of applied
thermodynamics and introduce the thermodynamic notation used in the following chapters.
Applied thermodynamics is a wide-ranging subject, and we will focus only on the concepts
that are essential for flash calculation, such as equilibrium conditions, equations of state
(EoS), and the calculation of fugacity coefficients using EoS. After introducing these basic
concepts, we will detail how to perform isothermal two-phase flash calculation.This chapter
is mainly based on [35, 98, 136].

2.1 basic concepts

2.1.1 System, state and phase

Applied thermodynamics is a branch of physics that studies the relationships between heat,
work, and energy in systems that undergo physical and chemical changes. A thermodynamic
system is defined as a collection of substances or entities that we aim to investigate, while
anything outside of the system is referred to as the surroundings, separated by a boundary.
The state of the system, which typically refers to the thermodynamic state at equilibrium
rather than at a specific time, is specified by a set of state variables that are independent of
both the time and path to reach them. A phase within the system is a homogeneous subset
in which all intensive properties are constant, and it can be in the form of a solid, liquid, or
gas. At equilibrium, the system may consist of a single phase or multiple phases.

In this thesis, our focus is on a system without homogeneous (i.e., intra-phase) chemical
reactions, whereby the quantities of substances remain constant. However, each individual
phase within the system is treated as an open subsystem that can exchange energy, work,
and matter with other phases.

2.1.2 Thermodynamic properties

A thermodynamic property of a system refers to any measurable property that helps
describe the state of the system. Thermodynamic properties can be divided into intensive
and extensive properties. The intensive properties are zero-order homogeneous functions
that do not depend on the system size (i.e., the quantity of substances of the system). In
contrast, extensive properties are first-order homogeneous functions that are proportional
to the system size. Next, we present in more detail two sets of thermodynamic properties:
state variables and energy functions.

State variables are defined as properties that can be used to derive other thermodynamic
properties and fully characterize the state of the system, such as entropy S, volume V ,
temperature T , pressure P , chemical potentials µ = (µ1, · · · , µNc), and mole numbers
n = (n1, · · · , nNc), where µi and ni are the chemical potential and mole number of com-
ponent i, respectively, andNc is the number of components. Among these state variables, S,

9

[July 6, 2023 at 13:52 – Version 0]

10 fundamentals of applied thermodynamics and phase equilibrium calculations

V andn are extensive properties, and T , P andµ are their conjugated intensive properties,
respectively.

Energy functions include the internal energy U , Gibbs energy G, Helmholtz free en-
ergy A, and enthalpy H , which are single-valued and differentiable thermodynamic state
functions of state variables and are defined as:

U(S, V,n) = TS − PV +
Nc∑
i=1

µini (2.1a)

H(S, P,n) = U + PV = TS +
Nc∑
i=1

µini (2.1b)

A(T, V,n) = U − TS = −PV +
Nc∑
i=1

µini (2.1c)

G(T, P,n) = U + PV − TS =
Nc∑
i=1

µini (2.1d)

Except for n, the state variables in parentheses are defined as natural variables that govern
the corresponding energy function.

The differentials of these energy functions are calculated as follows:

dU = TdS − PdV +
Nc∑
i=1

µidni (2.2a)

dH = TdS + V dP +
Nc∑
i=1

µidni (2.2b)

dA = −SdT − PdV +
Nc∑
i=1

µidni (2.2c)

dG = −SdT + V dP +
Nc∑
i=1

µidni (2.2d)

Based on the above differentials, we can express state variables as the partial derivatives of
energy functions with respect to the corresponding natural variables, as shown in Tab. 2.1.
Therefore, each energy function is able to determine the state of the system by itself and its
derivatives.

2.1.3 Residual properties

In reality, we can experimentally measure changes in extensive properties. However, to
determine their absolute values, we need to specify a reference state, which can be set
arbitrarily but is typically chosen as the ideal gas state, which is a hypothetical state governed
by the ideal gas law:

PV = nRT (2.3)

whereR is the ideal gas constant and n =
∑

ni is the total number of moles. Subsequently,
we can quantify an extensive property by measuring the deviation of its value in a real state

[July 6, 2023 at 13:52 – Version 0]

2.2 phase equilibrium 11

P V T S µi

U(S, V,n) −
(
∂U
∂V

)
S,ni

(
∂U
∂S

)
V,ni

(
∂U
∂ni

)
S,V,nj 6=i

H(S, P,n)
(
∂H
∂P

)
S,ni

(
∂H
∂S

)
P,ni

(
∂H
∂ni

)
S,P,nj 6=i

A(T, V,n) −
(
∂A
∂V

)
T,ni

−
(
∂A
∂T

)
V,ni

(
∂A
∂ni

)
T,V,nj 6=i

G(T, P,n)
(
∂G
∂P

)
T,ni

−
(
∂G
∂T

)
P,ni

(
∂G
∂ni

)
T,P,nj 6=i

Table 2.1: State variables expressed as the partial derivatives of energy functions

(T, P or V,n) from that in the ideal gas state of the same state variables (T, P or V,n).
This deviation is known as residual properties:

M r(T, P,n) = M(T, P,n)−M∗(T, P,n) (2.4a)
M r(T, V,n) = M(T, V,n)−M∗(T, V,n) (2.4b)

where M denotes an extensive property, the superscript ∗ stands for the ideal gas state,
and the superscript r represents a residual property. Because the identity M(T, V,n) =
M(T, P,n) always holds, the difference between two sets of residual properties is:

M r(T, P,n)−M r(T, V,n) = M∗(T, V,n)−M∗(T, P,n) (2.5)

The relationships between different residual properties are shown in Tab. 2.2.

Ar(T, V,n) = −
∫ V

∞

(
P − nRT

V

)
dV

Z = PV /(nRT)

Ar(T, P,n) = Ar(T, V,n)− nRT lnZ

Sr(T, V,n) = −
(
∂Ar

∂T

)
V,n

Sr(T, P,n) = Sr(T, V,n) + nR lnZ

U r(T, V,n) = Ar(T, V,n) + T Sr(T, V,n) U r(T, P,n) = U r(T, V,n)

Hr(T, V,n) = U r(T, V,n) + PV − nRT Hr(T, P,n) = Hr(T, V,n)

Gr(T, V,n) = Ar(T, V,n) + PV − nRT
Gr(T, P,n) = Gr(T, V,n)− nRT lnZ

= RT
∑

ni lnϕi

Table 2.2: Relationships between different residual properties

2.2 phase equilibrium

According to the second law of thermodynamics, an isolated multiphase system is at
equilibrium if and only if it reaches a stationary point of maximum entropy. Through
some mathematical derivations, the equilibrium condition of maximum entropy can be
transformed into a more practical form:

Tα = T β and Pα = P β and µα
i = µβ

i (2.6)

[July 6, 2023 at 13:52 – Version 0]

12 fundamentals of applied thermodynamics and phase equilibrium calculations

where α and β represent any two different phases. Therefore, intensive properties are
uniform throughout the system at equilibrium. However, Eq. (2.6) involves the chemical
potential µi, which may be challenging to use in practice because it tends to negative
infinity at infinite dilution and is not intuitive to understand [35]. In this case, we introduce
fugacity fi as an alternative, which measures the tendency of a substance to escape and is
defined as:

RT ln
fi
P0

= µi(T, P,n)− µ∗
i (T, P0) (2.7)

where µ∗
i (T, P0) is the chemical potential of component i in the ideal gas state at T and a

reference pressure P0. If we apply Eq. (2.7) to any two different phases α and β and then
subtract one of the yielding equations from the other, we get:

RT ln
fα
i

fβ
i

= µα
i − µβ

i (2.8)

In accordance with Eq. (2.6), we get another equilibrium condition, i.e., the fugacity of
each component must be the same in all phases at equilibrium:

fα
i = fβ

i (2.9)

We further define the fugacity coefficient ϕi as:

ϕi =
fi
ciP

(2.10)

where ci = ni/n is themole fraction of component i in themixture.We substitute Eq. (2.10)
into Eq. (2.9) and get another equilibrium condition in terms of ϕi:

ϕα
i c

α
i P = ϕβ

i c
β
i P → ϕα

i

ϕβ
i

=
cβi
cαi

(2.11)

The above condition is frequently used in phase equilibrium calculations. To calculate ϕi,
we use the residual approach as follows:

RT lnϕi(T, P,n) =

(
∂Gr(T, P,n)

∂ni

)
T,P

(2.12)

=

(
∂Ar(T, V,n)

∂ni

)
T,V

−RT lnZ (2.13)

where Gr denotes the residual Gibbs energy, Ar represents the residual Helmholtz energy,
and Z = PV /(nRT) refers to the compressibility factor. As we can see, the calculation of
ϕi(T, P,n) lies in computing the partial derivative of Ar with respect to ni and obtaining
Z , which requires an equation of state that we will introduce next.

2.3 equations of state

An equation of state (EoS) is a thermodynamic equation that describes the relationship
between pressure P , volume V , temperature T , and mole numbers n. The conventional
form of an EoS expresses P as a function of T , V and n, that is, P (T, V,n). However, as
recommended by Michelsen and Mollerup in [136], it is more practical to describe an EoS

[July 6, 2023 at 13:52 – Version 0]

2.3 equations of state 13

in terms of the residual Helmholtz energy Ar(T, V,n) in order to facilitate the calculation
of fugacity coefficients using Eq. (2.13). The conversion between these two forms of EoS
can be carried out as follows:

P (T, V,n) = −
(
∂Ar(T, V,n)

∂V

)
T,n

+
nRT

V
(2.14a)

Ar(T, V,n) = −
∫ V

∞

(
P (T, V,n)− nRT

V

)
dV (2.14b)

An EoS should satisfy the following thermodynamic consistency involving the partial
derivatives of lnϕi with respect to P , T and n:

• Pressure P ∑
i

ni

(
∂ lnϕi

∂P

)
T,n

=
(Z − 1)n

P
(2.15)

• Temperature T ∑
i

ni

(
∂ lnϕi

∂T

)
P,n

= −Hr(T, P,n)

RT 2
(2.16)

where Hr is the residual enthalpy.

• Mole numbers n (
∂ lnϕi

∂nj

)
T,P

=

(
∂ lnϕj

∂ni

)
T,P

(2.17a)

∑
i

ni

(
∂ lnϕi

∂nj

)
T,P

= 0 (2.17b)

Next, we introduce some examples of EoS.

2.3.1 Cubic equations of state

Cubic EoS are widely used in the petroleum and chemical industries and are particularly
useful for calculating vapor-liquid equilibrium of mixtures containing hydrocarbons (e.g.,
CH4, C2H6) and non-polar gases (e.g., N2, CO2). The commonly used cubic EoS include
the Soave-Redlich-Kwong (SRK) EoS [187] and the Peng-Robinson (PR) EoS [153], which
can be unified in the following forms:

Pcubic(T, V,n) =
nRT

V −B
− D(T)

(V + δ1B)(V + δ2B)
(2.18a)

Ar
cubic(T, V,n)

RT
= −n ln

(
1− B

V

)
− D(T)

RTB(δ1 − δ2)
ln
(
V + δ1B

V + δ2B

)
(2.18b)

where D(T) and B represent the temperature-dependent energy parameter and the co-
volume parameter of the mixture, respectively, and δ1 and δ2 are two EoS-dependent
parameters. For the SRK EoS, δ1 = 1 and δ2 = 0. For the PR EoS, δ1 = 1 +

√
2 and

[July 6, 2023 at 13:52 – Version 0]

14 fundamentals of applied thermodynamics and phase equilibrium calculations

δ2 = 1−
√
2. The estimation of D and B is based on the van der Waals one-fluid (vdW1f)

mixing rules and the classical combining rules:

D = n2a =
Nc∑
i=1

Nc∑
j=1

ninjaij (2.19a)

aij = (1− kij)
√
aiaj (2.19b)

B = nb =
Nc∑
i=1

nibi (2.19c)

where kij is the binary interaction parameter and ai and bi are the energy and co-volume
parameters of component i, respectively, and are calculated based on the critical pressure
Pc, the critical temperature Tc and the acentric factor ω, as shown in Tab. 2.3.

SRK EoS PR EoS
ac = 0.42748R2 T 2

c /Pc ac = 0.45724R2 T 2
c /Pc

m = 0.48 + 1.574 ω − 0.176 ω2 m = 0.37464 + 1.54226 ω − 0.26992 ω2

a(T) = ac

[
1 +m

(
1−

√
T/Tc

)]2
a(T) = ac

[
1 +m

(
1−

√
T/Tc

)]2
b = 0.08664R Tc/Pc b = 0.0778R Tc/Pc

Table 2.3: Estimation of the energy and co-volume parameters of pure compounds for cubic EoS

We rewrite Eq. (2.18b) as:

Ar
cubic(T, V,n)

RT
= F = −nh(V,B)− D(T)

T
f(V,B)

h(V,B) = ln (1−B/V)

f(V,B) =
1

RB(δ1 − δ2)
ln
(
V + δ1B

V + δ2B

) (2.20)

And then we have:
∂F

∂ni

=
∂F

∂n

∂n

∂ni

+
∂F

∂B

∂B

∂ni

+
∂F

∂D

∂D

∂ni

= Fn + FBBi + FDDi (2.21)

where ∂n/∂ni = 1 and other partial derivatives of F , B and D are:

Fn = −h = ln(1−B/V) (2.22a)
FB = −ngB −DfB/T (2.22b)
hB = −1/(V −B) (2.22c)
fB = −(f + V fV)/B (2.22d)

fV = − 1

R(V + δ1B)(V + δ2B)
(2.22e)

FD = −f/T (2.22f)
Bi = bi (2.22g)

Di = 2
∑
j

njaij (2.22h)

[July 6, 2023 at 13:52 – Version 0]

2.3 equations of state 15

After integrating the above derivatives into Eq. (2.21) and reorganizing Eq. (2.13), we can
get the final equation to calculate lnϕi as follows:

lnϕi(P, T, c) = ln
RT

P (υ − b)
+

bi
b
(Z − 1)

+
a

(δ1 − δ2)bRT

(
2
∑Nc

j=1 aijcj

a
− bi

b

)
ln

υ + δ2b

υ + δ1b
(2.23)

where c is the mixture composition and υ = V /n is the molar volume. In addition, the
partial derivatives of lnϕi with respect to ni are needed in phase equilibrium calculations
and can be calculated analytically (see [136, Section 3.4] for more details).

To obtain the system volume V , we reformulate P − Pcubic(T, V,n) = 0 as a cubic
equation of the compressibility factor Z as follows:

Z3 + ρ2Z
2 + ρ1Z + ρ0 = 0 (2.24)

For the SRK EoS, ρ2 = −1, ρ1 = s− t(1 + t) and ρ0 = −st. For the PR EoS, ρ2 = t− 1,
ρ1 = s − 2t − 3t2 and ρ0 = t3 + t2 − st, where s = aP/(R2T 2) and t = bP/(RT).
One simple way to find the roots of Eq. (2.24) is to use the analytical solution of the cubic
equation, e.g., the Cardano’s formula, which, however, may be prone to numerical errors in
certain edge cases [234]. Instead, we solve Eq. (2.24) using Halley’s method [37], which
is a modification of Newton’s method and takes into account the second derivative of the
function to improve the convergence. Halley’s method starts with a liquid-like guess and
converges to a real root Z0, and then we deflate Eq. (2.24) as follows:

(Z − Z0)(Z
2 + pZ + q) = 0 (2.25)

where p = Z0−1 and q = pZ0+ρ1. If p2 < 4q, only one real rootZ0 exists. Otherwise, there
are three real roots and the other two are−p/2±

√
p2 − 4q/2. In the latter case, we assign

the smallest root to the liquid phase and the largest root to the vapor phase. Subsequently,
we choose the root associated with the lowest Gibbs energy, which corresponds to the most
stable system according to the principle of minimum energy.

2.3.2 Statistical Associating Fluid Theory

The Statistical Associating Fluid Theory (SAFT) EoS is a theoretically derived model based
on the Wertheim perturbation theory [219] [222] [220] [221] [24] [83]. The SAFT EoS is
particularly suited for hydrogen-bonding systems, in which hydrogen bonds can occur
through the self-association between molecules of the same type, such as water, alcohols,
and amines, or through the cross-association between molecules of different types, e.g.,
between water and methanol.

Fig. 2.1 illustrates the principle of the SAFT EoS by showing how to form a molecule.
First, the fluid is assumed to consist of hard spheres of equal size to consider the repulsion
effect. Next, a dispersion potential (e.g., the square-well or Lennard-Jones potential) is
added to account for attractive interactions between the spheres. Then, chains are formed
between the spheres. Finally, association sites are introduced, which allow the chains to be
associated with each other through hydrogen bonds.

Considering the effects of repulsion, dispersion, chain formation, and association, the
SAFT EoS is expressed in the following form:

Ar
SAFT = Ahs + Adisp + Achain + Aassoc (2.26)

[July 6, 2023 at 13:52 – Version 0]

16 fundamentals of applied thermodynamics and phase equilibrium calculations

Spheres with attraction

Chains

Hard spheres

Dispersive
potential

Association

association site

chain site

Molecule

Figure 2.1: Formation of a molecule in the original SAFT EoS (Adapted from [51])

whereAhs describes the repulsive interactions between hard spheres,Adisp is the dispersion
contribution, Achain is the contribution from chain formation, and Aassoc refers to the
contribution from association between molecules. A range of variants of the original SAFT
EoS are proposed, such as the simplified SAFT EoS [51], the soft-SAFT EoS [17], the SAFT-
VR EoS [62], and the PC-SAFT [67, 242]. These variants generally have small differences
in the chain and association terms but differ largely in the dispersion and repulsion terms.
For more details about the SAFT EoS, refer to [98, Chapter 8].

2.3.3 Cubic Plus Association equation of state

The Cubic Plus Association (CPA) EoS [99] [100] combines the SRK EoS and the SAFT EoS
by leveraging the SRK EoS to describe the dispersion and repulsion terms and borrowing
the association term from the SAFT EoS to take into account the effect of hydrogen bonding,
as follows:

Ar
CPA = Ar

SRK + Ar
assoc (2.27)

where Ar
SRK is given by Eq. (2.18b) with δ1 = 1 and δ2 = 0:

Ar
SRK(T, V,n)

RT
= −n ln

(
1− B

V

)
− D(T)

RTB
ln
(
1 +

B

V

)
(2.28)

And Ar
assoc denotes the association contribution and is defined as:

Ar
assoc(T, V,n)

RT
=
∑
i

ni

∑
Ai

(
lnXAi

− 1

2
XAi

+
1

2

)
(2.29)

[July 6, 2023 at 13:52 – Version 0]

2.4 isothermal two-phase flash calculation 17

where XAi
refers to the proportion of A sites on molecule i that do not form bonds with

other active sites and is calculated as:

XAi
=

V

V +
∑

j nj

∑
Bj

XBj
∆AiBj

∆AiBj = g(V, n)

[
exp

(
εAiBj

RT

)
− 1

]
bijβ

AiBj with bij =
bi + bj

2

g(V, n) =
1

1− 1.9η
with η =

B

4V

(2.30)

where ∆AiBj is the association strength, εAiBj is the association energy, βAiBj is the asso-
ciation volume, and g(V, n) is the radial distribution function. By substituting Ar

CPA into
Eq. (2.14a), we can obtain another form of the CPA EoS in terms of P as follows:

PCPA(T, V,n) =
nRT

V −B
− D(T)

V (V +B)
+

RT

2V

(
1− V

∂ ln g
∂V

)∑
i

ni

∑
Ai

(1−XAi
)

(2.31)
The partial derivative of Ar

CPA with respect to ni is calculated as:

∂Ar
CPA

∂ni

=
∂Ar

SRK

∂ni

+
∂Ar

assoc

∂ni

(2.32)

The first term on the right-hand side was already discussed, and the second term is calcu-
lated as:

∂Ar
assoc

∂ni

=
∑
Ai

lnXAi
−
∑
i

ni

∑
Ai

(1−XAi
)
∂ ln g
∂ni

∂g

∂ni

=
∂g

∂B
Bi with

∂g

∂B
=

0.475V

(V − 0.457B)2

(2.33)

Substituting Eq. (2.32) into Eq. (2.13) yields the final equation for calculating fugacity
coefficients. To obtain V for the CPA EoS, we need to solve the following equation:

P − PCPA(T, V,n) = 0 (2.34)

The difficulty in solving the above equation arises from the fact that the site fractions XAi

are the implicit function of V , as defined by Eq. (2.30). One approach to solving Eq. (2.34)
is to implement a nested-loop optimization process. In the outer loop, we fix XAi

and
adjust V to satisfy Eq. (2.34). In the inner loop, Eq. (2.30) is solved given the obtained V to
update XAi

. More details can be found in [134].

2.4 isothermal two-phase flash calculation

In this section, we introduce isothermal two-phase flash calculation. In the following,
without loss of generality, we consider the equilibrium between the liquid and vapor
phases.

2.4.1 Problem setting

We consider a mixture of Nc components. Given pressure P , temperature T and feed
composition z = (z1, . . . , zNc), where zi represents the molar fraction of component i

[July 6, 2023 at 13:52 – Version 0]

18 fundamentals of applied thermodynamics and phase equilibrium calculations

in the whole mixture. The objective of flash calculation is to determine the system state
at equilibrium: single phase or coexistence of two phases. In the latter case, we need to
additionally compute the molar fraction of the vapor phase θV , the composition of the
liquid phase x and that of the vapor phase y. These properties are constrained by the
following mass balance equations:

xi(1− θV) + yiθV = zi, for i = 1, . . . , Nc (2.35a)
Nc∑
i=1

xi =
Nc∑
i=1

yi = 1 (2.35b)

In addition, the equilibrium condition that we introduced in Sec. 2.2 should also be
satisfied:

ϕL
i (P, T,x)

ϕV
i (P, T,y)

=
yi
xi

(2.36)

where the superscripts L and V refer to the liquid and vapor phases, respectively, and
ϕi denotes the fugacity coefficient of component i and is calculated by Eq. (2.13) using a
specific EoS.

Eq. (2.35) and Eq. (2.36) form a non-linear system, which is generally solved in a two-
stage procedure. First, we establish the stability of amixture via stability analysis (Sec. 2.4.2).
If the mixture is stable, only one phase exists at equilibrium, and its composition is equal
to the feed composition z. Otherwise, two phases coexist. Second, we determine θV , x and
y at equilibrium through phase split calculations (Sec. 2.4.3).

2.4.2 Stability analysis

A mixture of composition z is stable at specified P and T if and only if its total Gibbs
energy is at the global minimum, which can be verified through the reduced tangent plane
distance [130]:

tpd(e) =
Nc∑
i=1

ei(ln ei + lnϕi(e)− ln zi − lnϕi(z)) (2.37)

where e = (e1, . . . , eNc) is the composition of a trial phase. If tpd(e) is non-negative for
any e with

∑
ei = 1, the mixture is stable. This involves a constrained minimization

problem, which is generally reframed as an unconstrained one:

tm(E) = 1 +
Nc∑
i=1

Ei(lnEi + lnϕi(E)− ln zi − lnϕi(z)− 1) (2.38)

where tm is the modified tangent plane distance andE is the mole numbers of a trial phase.
To locate the minima of tm, we first use the successive substitution method accelerated by
the Dominant Eigenvalue Method (DEM) [145], which iterates:

lnE(k+1)
i = ln zi + lnϕi(z)− lnϕi(E

(k)) (2.39)

It is customary to initiate the above iteration with two sets of estimates, namely a vapor-like
estimate Ei = Kizi and a liquid-like estimate Ei = zi/Ki, where Ki is the distribution
coefficients, defined as yi/xi and initialized via the Wilson approximation [187] as follows:

lnKi = ln
(
Pc,i

P

)
+ 5.373(1 + ωi)

(
1− Tc,i

T

)
(2.40)

[July 6, 2023 at 13:52 – Version 0]

2.4 isothermal two-phase flash calculation 19

whereTc,i andPc,i refer to the critical temperature and pressure of component i, respectively,
and ωi is the acentric factor. Once converging to a stationary point (i.e., max(|∂tm/∂E|) <
1.0e-6) or a negative tm is found, the successive substitution stops.

If the successive substitution fails to converge quickly, particularly around critical points
for which liquid and vapor phases are almost indistinguishable, we switch to a second-order
optimization technique — the trust-region method with restricted steps [75] to achieve
faster convergence. The trust-region method is accomplished by iterating the following
equations:

β(k) = 2
√

E(k)

(H(k) + ζ(k)I) ·∆β + g(k) = 0 s.t. ‖∆β‖ ≤ ∆(k)
max

β(k+1) = β(k) +∆β

E(k+1) =

(
β(k+1)

2

)2

(2.41)

where I is the identity matrix, g and H are the gradient and Hessian matrices of tm with
respect to β, respectively, and are calculated as follows:

gi =
√

Ei(lnEi + lnϕi(E)− ln zi − lnϕi(z)) (2.42a)

Hij =
√

EiEj
∂ lnϕi

∂Ej

+ σij

(
1 +

gi
βi

)
where σij = 1 ⇔ i = j (2.42b)

In addition, ζ is the trust-region size used to guarantee the positive definiteness ofH + ζI
and to tailor the step size to meet ‖∆β‖ ≤ ∆max, where∆max is adjusted during iterations
depending on the match between the actual reduction δtm = tm(k+1) − tm(k) and the
predicted reduction based on the quadratic approximation δ̂tm = ∆βTg + 1

2
∆βTH∆β,

using the following heuristic rules:

∆(k+1)
max =

∆
(k)
max

2
, if

∣∣∣δtm/δ̂tm∣∣∣ ≤ 0.25

2∆
(k)
max, if

∣∣∣δtm/δ̂tm∣∣∣ ≥ 0.75

∆
(k)
max, otherwise

(2.43)

The convergence criterion of Eq. (2.41) is max(|g|) < 1.0e-6.
Furthermore, based on the results of stability analysis, we can re-estimate Ki more

accurately as zi/EL
i if tmL < tmV or EV

i /zi otherwise, where the superscripts V and L
denote the results obtained using the vapor-like and liquid-like estimates, respectively.

2.4.3 Phase split calculations

Substituting Ki = yi/xi into Eq. (2.35) yields the following well-known Rachford-Rice
equation [160]:

fRR(θV ,K) =
Nc∑
i=1

(Ki − 1)zi
1 + (Ki − 1)θV

= 0 (2.44)

Given K , the solution of the above equation amounts to finding an appropriate zero
yielding all non-negative phase compositions. Concretely, we adopt the method proposed

[July 6, 2023 at 13:52 – Version 0]

20 fundamentals of applied thermodynamics and phase equilibrium calculations

by [106], which involves transforming fRR into a helper function hRR that is more linear
in the vicinity of the zero:

hRR(θV ,K) = (θV − αl) · (αr − θV) · fRR(θV) = 0 (2.45)

where αl = 1/(1−max(Ki)) and αr = 1/(1−min(Ki)). The above equation is solved
by alternating between the Newton method and the bisection method, of which the latter
is used when the Newton step causes θV to fall outside the bounds containing the zero and
becoming narrower during iterations. When the Newton step size is smaller than 1.0e-8,
the iteration stops.

To obtain θV , x and y at equilibrium, phase split calculations start with the accelerated
successive substitutionmethod, as illustrated in Fig. 2.2, and the corresponding convergence
criterion is max(|K(k+1)

i /K
(k)
i − 1|) < 1.0e-8.

𝐾𝐾𝑖𝑖
𝑘𝑘+1𝜃𝜃𝑉𝑉

𝒙𝒙

𝒚𝒚

𝑘𝑘 = 𝑘𝑘 + 1

Yes

𝐾𝐾𝑖𝑖
𝑘𝑘 𝒙𝒙(𝑘𝑘)

𝒚𝒚(𝑘𝑘)
Initial 𝐾𝐾𝑖𝑖

0 Solve the Rachford-
Rice equation

𝐾𝐾𝑖𝑖 =
𝜑𝜑𝑖𝑖
𝐿𝐿(𝑃𝑃, 𝑇𝑇, 𝒙𝒙)

𝜑𝜑𝑖𝑖
𝑉𝑉(𝑃𝑃, 𝑇𝑇, 𝒚𝒚)

𝜃𝜃𝑉𝑉
𝑘𝑘

Solve the mass
balance equations

𝐾𝐾𝑖𝑖 converge ?

No

Figure 2.2: Successive substitution of phase split calculations

If the successive substitution fails to converge after a few iterations (9 in our work), we
use the trust-region method to minimize the following reduced Gibbs energy:

Gre =
Nc∑
i=1

nL
i (lnxi + lnϕL

i) +
Nc∑
i=1

nV
i (ln yi + lnϕV

i) (2.46)

where nL
i = xi(1− θV) and nV

i = yiθV are the mole numbers of liquid and vapor phases,
respectively. We choose nV

i as the independent variable and perform the following iteration:(
H̃

(k)
+ ζ̃(k) · diag

(
z

xy

))
·∆nV + g̃(k) = 0 s.t. ‖∆nV ‖ ≤ ∆(k)

max

nV,k+1 = nV,k +∆nV

(2.47)

where diag(·) is a diagonal matrix with diagonal entries in parentheses, and g̃(k) and H̃
(k)

are the gradient and hessian matrices of Gre with respect to nV
i , respectively, and are

calculated as follows:

g̃i = ln yi + lnϕV
i − lnxi − lnϕL

i (2.48a)

H̃ij =
1

θV (1− θV)

(
zi
xiyi

σij − 1 + θV
∂ lnϕL

i

∂nL
j

+ (1− θV)
∂ lnϕV

i

∂nV
j

)
(2.48b)

Here, the trust-region method for phase split calculations is implemented in the same way
as in stability analysis, and Eq. (2.47) stops if max(|g̃|) < 1.0e-8.

[July 6, 2023 at 13:52 – Version 0]

2.4 isothermal two-phase flash calculation 21

2.4.4 Strategy for the isothermal two-phase flash calculation

We basically adopt the rules of thumb proposed by Michelsen and Mollerup in [136]
to implement the isothermal two-phase flash calculation, as shown in Fig. 2.3. In the
flowchart, we first initialize the distribution coefficientsKi using theWilson approximation.
Subsequently, in order to avoid computationally expensive stability analysis, we carry out
the successive substitution of phase split calculations 3 times, which will end up with 3
possible cases: (1) θV is out of bounds (0, 1) during iterations. (2) None of∆G, tpd(x) and
tpd(y) are negative, where tpd(x) and tpd(y) are reduced tangent plane distances using
current vapor and liquid phases as trial phases, and∆G = θV ×tpd(x)+(1−θV)×tpd(y).
(3) Any of ∆G, tpd(x) and tpd(y) is negative.

For the first two cases, we cannot be sure of the stability of the given mixture, thus
continuing with stability analysis. For the third case, we can conclude that the givenmixture
is unstable, thereby sidestepping stability analysis. Finally, if two phases coexist, we perform
phase split calculations to get θV , x and y at equilibrium.

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
the Wilson

approximation

Successive substitution
of phase split
calculations

0 < 𝜃𝜃𝑉𝑉 < 1?

∆𝐺𝐺 < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒙𝒙) < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒚𝒚) <0?

3 timesNo

Yes

Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Stability analysis
Yes

No

Yes

No

Figure 2.3: Flowchart of the isothermal two-phase flash calculation

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

3
NEURAL NETWORKS AND DEEP LEARN ING

In this chapter, we present the basic concepts of neural networks and deep learning to
pave the way for the application of neural networks in later chapters. Artificial neural
networks (ANN) refer to a series of mathematical models inspired by the structure and
function of the brain’s nervous system. We have learned that the brain’s nervous system
consists of a large number of interconnected neurons, with one neuron transmitting the
signals it receives from its dendrites to its axon terminals and finally to the next neuron.
While our understanding of brain mechanisms is still limited, ANN draw on the idea of
neuronal connectionism. Over the past decades, a variety of neural networks have been
developed depending on the type of data to be processed [173], including feedforward
neural networks (FNN) for structured data, convolutional neural networks (CNN) for
image processing [105], recurrent neural networks (RNN) for sequences [168], and graph
neural networks (GNN) for unstructured graph data [172]. ANN have been ubiquitous and
gained great success in a wide range of fields, such as speech recognition, image recognition
and generation, machine translation, and natural language processing.

One term tightly related to ANN is deep learning, which is a methodology for effective
representation learning from data by leveraging the hierarchy of concepts. These concepts
are built on top of each other and form a deep cascade that transforms raw data into higher-
level and more abstract representations, which largely evades laborious hand-designed
feature engineering. From this point of view, ANN are quintessential deep learning models.

In the following, we present feedforward neural networks from the perspective of super-
vised learning, in which both input and output data are available.

3.1 feedforward neural networks

The basic unit of feedforward neural networks is an artificial neuron, as depicted in Fig. 3.1.
A neuron processes an input vector x = (x1, · · · , xn) in the following way:

a = fa

(
n∑

i=1

(wi · xi) + b

)
= fa(w

Tx+ b) (3.1)

where w = (w1, · · · , wn) and b refer to the weights and bias of the neuron, respectively,
and fa denotes an activation function. Fig. 3.2 shows some commonly used activation
functions, including the logistic function (sigmoid), the hyperbolic tangent function (tanh),
the rectified linear unit (ReLU) [64, 142], and the sigmoid linear unit (SiLU or Swish) [45,
163, 164].

The expressiveness of a single neuron is far from satisfactory, and feedforward neural
networks combine many neurons to realize and perform complex functions, as shown in
Fig. 3.3. Neurons are divided into different layers based on the order in which they receive
information. The first layer is the input layer, the last layer is the output layer, and the other
intermediate layers are called hidden layers.

The neurons of the lth layer take as input the output of the previous layer al−1 and
process it as follows:

al = fa(W
lal−1 + bl) (3.2)

23

[July 6, 2023 at 13:52 – Version 0]

24 neural networks and deep learning

+

weights bias

Figure 3.1: Representation of an artificial neuron

−5 0 5

z

0.00

0.25

0.50

0.75

1.00

1
1+e−z

(a) sigmoid

−5 0 5

z

−1.0

−0.5

0.0

0.5

1.0

ez−e−z
ez+e−z

(b) tanh

−5 0 5

z

0

2

4

6
ReLU

Leaky ReLU

ELU

(c) ReLU and its variants

−5 0 5

z

0

2

4

6

z
1+e−z

(d) SiLU (swish)

Figure 3.2: Commonly used activation functions

[July 6, 2023 at 13:52 – Version 0]

3.2 universal approximation theorem 25

Input Layer Hidden Layer Hidden Layer Hidden Layer Output Layer

Figure 3.3: Architecture of feedforward neural networks

where W l is the weights of all neurons of the lth layer and is a matrix ∈ RNl×Nl−1 (Nl is
the number of neurons), bl is the bias vector ∈ RNl , and al ∈ RNl is the output. In fact,
Eq. (3.2) can be seen as a vectorized version of Eq. (3.1). Feedforward neural networks
propagate information in one direction without feedback, which can be represented by a
directed acyclic graph:

x = a0 → a1 → · · · → aL−1 → aL = y = fNN(x;W , b) (3.3)

where W and b stand for the weights and biases of all layers of a neural network, L is
the total number of layers, and y is the final output. We refer to Nl and L as the hyper-
parameters of neural networks, which should be specified before the training of neural
networks, and we refer to W and b as the learnable or trainable parameters, which are
learned during the training of neural networks.

3.2 universal approximation theorem

The theoretical foundation of feedforward neural networks is underpinned by the universal
approximation theorem [31], which states that any feedforward neural network with a
single hidden layer containing a sufficient number of neurons with sigmoidal activation
functions (e.g., sigmoid, tanh) is able to approximate any continuous function to any desired
degree of accuracy. [81] expanded the range of activation functions and proved that the
universal approximation theorem holds for any continuous, bounded, and non-constant
activation function. More recently, [188] further relaxed the restrictions on activation
functions and demonstrated that feedforward neural networks with unbounded activation
functions (e.g., relu, SiLU) are still universal approximators.

While the universal approximation theorem demonstrates the existence of a neural
network to approximate any continuous function, it does not provide guidance on how
to construct such a neural network, including the number of neurons and layers, weights,

[July 6, 2023 at 13:52 – Version 0]

26 neural networks and deep learning

and biases. [18] showed that finding a neural network that is precisely fitted to a specific
set of training examples is an NP-complete problem.

3.3 training of neural networks

Although training neural networks involves minimizing a high-dimensional, non-convex
cost function, in practice it is easier than anticipated, and gradient-based optimization
methods such as stochastic gradient descent (SGD) can be used to find good local minima
that achieve the desired accuracy in a limited time. Algorithm 1 outlines the general
procedure for training neural networks, which involves a nested-loop process. In the outer
loop (i.e., epoch), the entire training set is randomly divided into mini-batches. In the inner
loop (i.e., iteration), neural networks are trained on each mini-batch.

Algorithm 1: General procedure for training neural networks
Input: Training setDtr = {(xi;yi)}Ni=1

Neural network fNN(x; Θ)
Cost function L
Optimizer
Learning rate η
Batch size m
Maximum number of epochs K
Optional validation setDva

1 Parameter initialization
2 Initialize Θ
3 Training
4 for k = 1 to K do
5 Randomly splitDtr into bN

m
cmini-batches of m examples

6 for i = 1 to bN
m
c do

7 Perform the forward pass for the mini-batch Bi and use Eq. (3.4) to
evaluate the cost function L(i) = L(Bi,Θ(i))

8 Perform the backpropagation to compute the gradient g(i) = ∇Θ(i)L(i)

9 Update Θ(i+1) ← optimizer.update(Θ(i), g(i), η)
/* Assuming the optimizer has an "update" method */

10 i← i+ 1

11 Evaluate and monitor the performance of the neural network onDva

12 k ← k + 1
Output: Neural network with its parameters Θ trained onDtr

There are two main challenges in training neural networks. On the one hand, training
neural networks involves a high-dimensional, non-convex optimization problem (Fig. 3.4),
which is troubled by how to get rid of local minima and saddle points [34]. On the other
hand, training neural networks may experience issues of vanishing and exploding gradients.
The vanishing gradient problem occurs when the gradient is so small that training is unable
to further reduce the cost function. The exploding gradient problem arises when the
gradient is so large that training becomes unstable and oscillates. However, after decades
of ongoing efforts by the deep learning community, these problems have been largely
alleviated.

[July 6, 2023 at 13:52 – Version 0]

3.3 training of neural networks 27

3.3.1 Cost function

Given a training setDtr = {(xi;yi)}Ni=1, where x ∈ X , y ∈ Y , and (x;y) is drawn from
a joint distribution pr(x,y) defined on X × Y , a neural network is trained to minimize
the following cost function:

L(D,Θ) =

empirical risk︷ ︸︸ ︷
1

N

N∑
i=1

`(yi, ŷi)+Ω(Θ) (3.4)

where Θ denotes all learnable parameters of the neural network, ŷ = fNN(x; Θ) is the
prediction calculated by Eq. (3.3), and `(·) is a loss function used to measure the deviation
of the prediction from the ground truth, such as mean squared error (MSE) for regression
problems and cross entropy loss (CE) for classification problems. Fig. 3.4 intuitively shows
how L varies with Θ and reflects to some extent the difficulty of training neural networks.

Figure 3.4: This figure shows the loss landscape of ResNet-56 [74] without shortcut connections for
the CIFAR-10 dataset. The loss landscape represents how the cost function changes with
the parameters of neural networks. The visualization of the loss landscape is attributed
to [112]. We can observe that the loss landscape is extremely uneven, reflecting the high
non-convexity and difficulty of training neural networks.

The cost function consists of two parts: the empirical risk and Ω(Θ) which is the reg-
ularization on Θ. The empirical risk is an approximation of the expected risk defined
as E(x,y)∼pr [`(y, ŷ)], and it converges to the expected risk when the number of training
examples |Dtr| is large enough based on the law of large numbers. Minimizing the expected
risk is expected to lead to low generalization errors on unseen data. However, when |Dtr|
is small and neural networks are overly complex (e.g., with too many neurons and layers),
generalization errors may be great. This problem is called overfitting, as shown in Fig. 3.5b.
To avoid overfitting, we can limit the complexity of a neural network by imposing Ω(Θ)
on its parameters. We can define Ω(Θ) explicitly, such as the `1 regularization λ‖Θ‖1 and
the `2 regularization λ‖Θ‖2 where λ is the penalty strength, and we can also employ some
regularization techniques for which Ω(Θ) works implicitly, such as EarlyStopping [157],
Dropout [190] [55] [56] and Batch Normalization [87]. However, if we excessively penalize
the ability of neural networks, generalization errors are also likely to be high due to insuffi-

[July 6, 2023 at 13:52 – Version 0]

28 neural networks and deep learning

cient ability. This is known as underfitting, as shown in Fig. 3.5a. Therefore, the setting of
Ω(Θ) has a significant impact on the generalization performance of neural networks.

(a) Underfitting (b) Overfitting (c) Good fit

Figure 3.5: The green line is the target function and the black dots are the training set with some
random noise. Figure (a): A simple linear model is not able to fit the data well. Figure (b):
An overly complex model pays too much attention to the noise, resulting in overfitting.
Figure (c): An appropriate model is robust to the noise and also well approximates the
target function.

3.3.2 Optimization algorithms

We need an optimization algorithm (also known as an optimizer) to update the learn-
able parameters Θ during training, and the mainstream optimization algorithms in deep
learning are based on stochastic gradient descent (SGD) as follows:

Θ(i+1) = Θ(i) − ηg(i) (3.5)

where the superscript i is the number of iterations, η denotes the learning rate, and g(i) =
∇Θ(i)L(i) represents the gradient of the cost function L with respect to Θ and is computed
through the backward propagation of errors [168], also known as the backpropagation. The
learning rate η is a crucial hyper-parameter, and the training of neural networks converges
slowly with a small η and may diverge with a great η. Current deep learning frameworks,
such as Tensorflow [1] and PyTorch [150], support Automatic Differentiation (AD) to
calculate g(i), which decomposes a composite function into basic operations (+,−,×,÷)
and elementary functions (sin, cos, exp, log) and then creates a computational graph to
automatically compute the gradient of the composite function based on the chain rule.

Modern optimization algorithms primarily improve SGD in two ways: the adjustment
of learning rate and the correction of gradient estimation. Here, we elaborate on Adaptive
Moment Estimation Algorithm (Adam) [95], which has become the de-facto optimization
algorithm and will be frequently used in later chapters. Adam updates Θ as follows:

v(i+1) = β1v
(i) + (1− β1)

(i) g(i)

s(i+1) = β2s
(i) + (1− β2)g

(i) � g(i)

v̂(i+1) =
v(i)

1− (β1)
i

ŝ(i+1) =
s(i)

1− (β2)
i

Θ(i+1) = Θ(i) − η√
ŝ(i+1) + ε

v̂(i+1)

(3.6)

[July 6, 2023 at 13:52 – Version 0]

3.4 hyper-parameter tuning 29

where v(i) and s(i) denote the biased first and second moment estimates of gradients
(v(0) = s(0) = 0), respectively, β1 and β2 refer to the decay rates for the moving averages of
moment estimates and are generally set to 0.9 and 0.999, v̂(i) and ŝ(i) are used to correct
the bias of v(i) and s(i), and ε is a small constant to prevent division by zero.

Despite the popularity of Adam, the no free lunch theorem states that there is no op-
timization algorithm that can be effective for all problems within a limited search space
[223]. Each optimization algorithm has its own strengths and limitations. Therefore, we
cannot compare optimization algorithms in isolation from concrete problems.

Optimization algorithms necessitate an initial guess ofΘ to initiate the training of neural
networks. It is common practice to initialize the biases of neural networks with zeros
and randomly draw the weights of neural networks from either a uniform distribution
U(−r, r) or a normal distributionN (0, σ2). Instead of fixed r and σ, it is better to adjust
them based on the numbers of neurons of the previous and current layers (Nl−1 and Nl),
which is a technique known as variance scaling. Tab. 3.1 presents two commonly used
weight initialization methods for different activation functions, namely the Glorot (Xavier)
initialization method [63] and the He (Kaiming) initialization method [73].

Method Activation function
Uniform distribution Normal distribution

U(−r, r) N (0, σ2)

Glorot (Xavier) [63]
logistic r = 4

√
6

Nl−1+Nl
σ = 4

√
2

Nl−1+Nl

tanh r =
√

6
Nl−1+Nl

σ =
√

2
Nl−1+Nl

He (Kaiming) [73] relu r =
√

6
Nl−1

σ =
√

2
Nl−1

Table 3.1: Weight initialization methods for neural networks with different activation functions

3.4 hyper-parameter tuning

The process of training neural networks involves numerous hyper-parameters, which can
be broadly divided into three classes:

• Architecture-related hyper-parameters

Number of neurons and layers, activation function, etc.

• Regularization-related hyper-parameters

Penalty strength of `1 and `2 regularization, patience of EarlyStopping, probability
of a neuron being discarded in Dropout, etc.

• Optimization-related hyper-parameters

Loss function, optimizer, learning rate, batch size, maximum number of epochs,
optimizer-related hyper-parameters, etc.

Hyper-parameter tuning is a combinatorial optimization problem that cannot be opti-
mized using gradient-based methods. Additionally, evaluating a set of hyper-parameters
typically requires the complete training of neural networks, which may be time-consuming.

[July 6, 2023 at 13:52 – Version 0]

30 neural networks and deep learning

As a result, an exhaustive search of hyper-parameters is computationally prohibitive and im-
practical. Commonly used hyper-parameter tuning methods include grid search, random
search, and Bayesian optimization:

• Grid search

Grid search is the simplest way to tune hyper-parameters.We select a set of promising
values for each hyper-parameter and create a grid containing all possible combina-
tions of hyper-parameters, and then we evaluate each combination and choose the
best one. Grid search is only suitable for a limited number of hyper-parameters and
is typically used as a rough tuning.

• Random search

Random search involves sampling each hyper-parameter from a predefined distribu-
tion [13], such as the uniform or log-uniform distribution. Random search is more
efficient than grid search.

• Bayesian optimization

Grid search and random search do not take into account the information from
previous trials when choosing the next set of hyper-parameters to evaluate. On
the contrary, Bayesian optimization is an adaptive derivative-free method that sug-
gests the next promising set of hyper-parameters based on the results of previous
trials. The basic idea of Bayesian optimization is to prioritize experimentation in
regions that have produced high-performing trials. Commonly used Bayesian op-
timization methods include Sequential Model-Based Optimization [85] [186] for
numerical hyper-parameters and Tree-Structured Parzen Estimator for categorical
hyper-parameters [12] [14].

[July 6, 2023 at 13:52 – Version 0]

Part II

S PE ED ING UP PHASE EQU I L I BR IUM CALCULAT IONS
WITH DEEP LEARN ING

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

4
PTFLASH : A DEEP LEARN ING FRAMEWORK FOR TWO-PHASE
FLASH CALCULAT ION

In this chapter, we present our first contribution to accelerating flash calculation and in-
troduce a fast and parallel framework, PTFlash, that uses PyTorch to vectorize algorithms
required for two-phase flash calculation and can facilitate a wide range of downstream appli-
cations. Vectorization promotes parallelism and consequently leads to attractive hardware-
agnostic acceleration. In addition, to further accelerate PTFlash, we design two task-specific
neural networks, one for predicting the stability of mixtures and the other for providing es-
timates of distribution coefficients, which are trained offline and help shorten computation
time by sidestepping stability analysis and reducing the number of iterations required for
convergence.

This chapter is based on our published work in the journal Fuel:

Qu, Jingang, Thibault Faney, Jean-Charles de Hemptinne, Soleiman Yousef,
and Patrick Gallinari. ”PTFlash: A vectorized and parallel deep learning frame-
work for two-phase flash calculation.” Fuel 331 (2023): 125603.

4.1 introduction

Numerical simulation of multi-component multi-phase flow in porous media is an essential
tool for many subsurface applications, from reservoir simulation to long term CO2 storage.
A core element of simulators for such applications is to determine the phase distribution
of a given fluid mixture at equilibrium, also known as flash calculation. Starting from the
seminal work of [129, 130], researchers have developed robust and efficient algorithms
for isothermal two-phase flash calculation, which have been well implemented in IFPEN’s
thermodynamic C++ library — Carnot.

Nonetheless, flash calculations still account for the majority of simulation time in a
large variety of subsurface applications [10, 215]. In most simulators, flash calculations are
performed for each grid cell at each time step. Moreover, since modern simulators tend
to require higher and higher grid resolutions up to billions of grid cells [40], the share of
computing time devoted to flash calculations is expected to increase as well. In this context,
speeding up flash calculations has drawn increasing research interest.

In this chapter, we introduce PTFlash, a framework for two-phase flash calculation
based on the SRK equation of state [187]. PTFlash is built on the deep learning framework
PyTorch [150] and consists of two main elements, namely the vectorization of algorithms
and the use of neural networks. First, we perform a complete rewrite of two-phase flash
calculation algorithms of Carnot using PyTorch. This enables the systematic vectorization
of the complex iterative algorithms implemented in Carnot, allowing in turn to efficiently
harness modern hardware with the help of, e.g., Advanced Vector Extensions AVX for
Intel CPUs [123] and CUDA for NVIDIA GPUs [170]. Note that vectorization of complex
iterative algorithms with branching is not straightforward and needs specific care. Second,
we replace repetitive and time-consuming subroutines of flash calculation with deep neural
networks trained on the exact solution. More specifically, one neural network is used

33

[July 6, 2023 at 13:52 – Version 0]

34 ptflash : a deep learning framework for two-phase flash calculation

to predict the stability of mixtures, and the other is used to provide initial estimates for
iterative algorithms. Once well trained, neural networks can be seamlessly incorporated
into PTFlash.These two elements allow PTFlash to provide substantial speed-ups compared
to Carnot, especially in the context of flow simulations where parallel execution of flash
calculations for up to billions of grid cells is needed.

The rest of this chapter is structured as follows. In Sec. 4.2, we review related work
on speeding up flash calculation through algorithmic improvements and the application
of machine learning. In Sec. 4.3, we introduce a novel constrained sampling method for
efficiently sampling feed composition. In Sec. 4.4, we describe three case studies used to
evaluate our proposed PTFlash. In Sec. 4.5, we describe how to efficiently vectorize flash
calculation using PyTorch. In Sec. 4.6, we present two neural networks to further speed up
flash calculation. In Sec. 4.7, we compare PTFlash with Carnot to demonstrate the attractive
speedups that PTFlash can achieve due to the vectorization of algorithms and the use of
neural networks. Finally, we summarize the work presented in this chapter and suggest
future directions for improving PTFlash in Sec. 4.8.

4.2 related work

Some efforts have been made to accelerate flash calculation. [76, 77, 131] proposed a re-
duction method aiming to reduce the number of independent variables by leveraging the
sparsity of the binary interaction parameter matrix, resulting in a limited speed-up [10].
[166] introduced the shadow region method using the results of previous time steps to
initiate the current one, which assumes that the changes in pressure, temperature, and
composition of a given block are small between two adjacent time steps in typical composi-
tional reservoir simulation. [211] presented tie-line based methods, which approximate
the results of flash calculations through linear interpolation between existing tie-lines and
can be seen as a kind of look-up table. In [52–54, 91, 217, 232], the authors focused on
the use of machine learning, which provides a collection of techniques that can effectively
discover patterns and regularities in data.They used support vector machine [30], relevance
vector machine [197] and neural networks [66] to directly predict equilibrium phases and
provide more accurate initial estimates for flash calculations. In [27, 40], researchers fo-
cused on developing faster parallel linear solvers, with [40] mentioning specifically that the
vectorization of partial equations of state-related operations would lead to faster execution.

4.3 data generation

4.3.1 Design of experiments (DoE)

In computer simulations, data generation is a well-established field and forms a part of
the design of experiments (DoE) that is a systematic approach to planning, conducting,
and analyzing experiments in order to identify and understand the relationships between
variables and their effects on a particular system or process. A key goal of DoE is to make
experiments as informative as possible by efficiently sampling the input space, especially
when simulations are time-consuming and computationally expensive, and we are there-
fore unable to conduct extensive experiments due to limited computational resources.
A commonly used technique for this purpose is to generate space-filling DoE, in which
samples are evenly distributed over the input space. If input variables can be considered

[July 6, 2023 at 13:52 – Version 0]

4.3 data generation 35

independent of each other, we can use Latin Hypercube Sampling (LHS) [171], which is
a statistical method used to sample input data quasi-randomly from a multidimensional
distribution. LHS divides each variable dimension intoN intervals, whereN is the number
of sampling points, and places only one point in each interval so that these data points are
evenly spread over the input space. Fig. 4.1 compares random sampling and LHS, showing
that LHS is a more effective sampling method in terms of ”space-filling”.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Random sampling

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) LHS

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(c) LHS with maximin

Figure 4.1: We compare random sampling and LHS by generating 10 points in a square using each
method. Figure (a): The random sampling leads to some points being so close together
that they provide little additional information, resulting in a waste of computational
resources. Figure (b): LHS is more effective, with each point located separately in a
small square. Figure (c): We use LHS with the maximin criterion aiming to maximize
the minimum distance between pairs of points. The maximin criterion leads to more
space-filling data at the cost of additional computational overhead, which, however, is
not negligible for large numbers of points.

4.3.2 A new method for sampling multiple variables adding up to 1

For our problem, the input space consists of pressure P , temperature T and composition
z = (z1, . . . , zNc), whereNc is the number of components. In order to sample z under the
constraint

∑
zi = 1, a simple approach is to first draw some variables from the uniform

distribution U(0, 1) using LHS and then divide each of them by their sum, as follows:

xi ∼ U(0, 1) using LHS (4.1a)

zi =
xi∑Nc

i=1 xi

(4.1b)

Unfortunately, this simple approach has the problem that it becomes increasingly difficult
to obtain large values of zi as Nc increases, as shown in Fig. 4.2a. We can further derive the
closed-form expression of the probability density function (pdf) of zi:

pdf(z) =
σ√

2π(1− z)2

(
exp

(
− µ2

2σ2

)
− exp

(
−
(1−z

z
− µ)2

2σ2

))
+

µ

(1− z)2

(
Φ

(1−z
z
− µ

σ

)
− Φ

(
−µ

σ

))
(4.2)

[July 6, 2023 at 13:52 – Version 0]

36 ptflash : a deep learning framework for two-phase flash calculation

where µ = (Nc − 1)/2, σ2 = (Nc − 1)/12, and Φ(·) denotes the cumulative distribution
function of the standard normal distribution. We detail the derivation of pdf(z) in Ap-
pendix A. Fig. 4.2b compares the histogram of zi and pdf(z) for Nc = 10. They coincide
with each other, which validates pdf(z).

0.0 0.2 0.4 0.6 0.8 1.0
zi

0

1

2

3

4

5

6

D
en

si
ty

N=2
N=4
N=6
N=8
N=10

(a) Histogram of zi with respect to Nc when using Eq. (4.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zi

0

2

4

6

D
en

si
ty

Histogram
Closed-form expression

(b) Comparison between the histogram of zi and
pdf(z) for Nc = 10

Figure 4.2: Figure (a): The greater Nc is, the lower the probability of large values of zi. Figure (b):
The histogram of zi and pdf(z) coincide with each other.

To address the aforementioned problem of sampling z with Eq. (4.1), we propose a novel
sampling method. Specifically, we transform a set of variables drawn from U(0, 1) into the
Dirichlet distribution Dir(α) whose support is a simplex, as follows:

xi ∼ U(0, 1) using LHS (4.3a)
yi = Γ(αi, 1).ppf(xi) (4.3b)

zi =
yi∑Nc

i=1 yi
(4.3c)

where α = (α1, . . . , αNc) is the concentration parameter of the Dirichlet distribution
and controls its mode, Γ(αi, 1) is the Gamma distribution, and ppf represents the percent-
point function, also known as the quantile function. Compared to Eq. (4.1), we introduce
an intermediate step — Eq. (4.3b) that transforms xi ∼ U(0, 1) into yi ∼ Γ(αi, 1), which
allows us to get z ∼ Dir(α) that satisfies

∑
zi = 1. The advantage of this novel sampling

method is that we can adjust α to control the mode of Dir(α) to draw more data in the
area of interest, as shown in Fig. 4.3.

[July 6, 2023 at 13:52 – Version 0]

4.4 case studies 37

 = (6, 6, 2) = (2, 10, 10) = (40, 40, 40)

Figure 4.3: This figure visualizes the probability density of the Dirichlet distribution Dir(α) with
respect to the concentration parametersα when z is located in a 2-dimensional simplex
with Nc = 3. In practice, we can sample more data in a region by increasing the
probability density of this region through α.

4.4 case studies

We introduce three case studies involving hydrocarbons,CO2 andN2, whose properties are
shown in Tab. 4.1. Here, we only consider the binary interaction parameter (BIP) between
CH4 and CO2, which is 0.0882. The BIPs between the others are 0.

Pc (MPa) Tc (K) ω

CH4 4.6 190.55 0.0111
C2H6 4.875 305.43 0.097
C3H8 4.268 369.82 0.1536

n-C4H10 3.796 425.16 0.2008
n-C5H12 3.3332 467.15 0.2635
C6H14 2.9688 507.4 0.296
C7H

+
16 2.622 604.5 0.3565

CO2 7.382 304.19 0.225
N2 3.3944 126.25 0.039

Table 4.1: Properties of the components involved in three case studies

The first case study focuses on a system of two components including CH4 and C6H14,
and the second one involves four components including CH4, C2H6, C3H8, and C4H10.
For these two case studies, the ranges of pressure and temperature are 0.1MPa - 10MPa and
200K - 500K, respectively, and we consider the entire compositional space, i.e., 0 < zi < 1
for i = 1, . . . , Nc. The third case study includes all 9 components in Tab. 4.1. The bounds
of pressure and temperature are 5MPa - 25MPa and 200K - 600K, respectively. In addition,
from a practical perspective, given that some mixtures do not exist in nature, rather than
considering the entire compositional space, we specify four different compositional ranges,
as shown in Tab. 4.2. Each compositional range represents one of the common reservoir
fluid types, namely wet gas, gas condensate, volatile oil, and black oil. Fig. 4.4 shows the
phase diagrams of these four reservoir fluids at the fixed compositions defined in Tab. 4.3.
We can see that the more heavy hydrocarbons there are, the lower the pressure range of the
phase envelope and the less volatile the fluid is.

[July 6, 2023 at 13:52 – Version 0]

38 ptflash : a deep learning framework for two-phase flash calculation

Wet gas Gas condensate Volatile oil Black oil

CH4 80% - 100% 60% - 80% 50% - 70% 20% - 40%
C2H6 2% - 7% 5% - 10 % 6% - 10% 3% - 6 %
C3H8 ≤ 3% ≤ 4% ≤ 4.5% ≤ 1.5%

n-C4H10 ≤ 2% ≤ 3% ≤ 3% ≤ 1.5%
n-C5H12 ≤ 2% ≤ 2% ≤ 2% ≤ 1%
C6H14 ≤ 2% ≤ 2% ≤ 2% ≤ 2%
C7H

+
16 ≤ 1% 5% - 10 % 10% - 30% 45% - 65%

CO2 ≤ 2% ≤ 3.5% ≤ 2% ≤ 0.1%
N2 ≤ 0.5% ≤ 0.5% ≤ 0.5% ≤ 0.5%

Table 4.2: Four fluid types characterized by different compositional ranges

Wet gas Gas condensate Volatile oil Black oil

CH4 92.46% 73.19% 57.6% 33.6%
C2H6 3.18% 7.8% 7.35% 4.01%
C3H8 1.01% 3.55% 4.21% 1.01%

n-C4H10 0.52% 2.16% 2.81% 1.15%
n-C5H12 0.21% 1.32% 1.48% 0.65%
C6H14 0.14% 1.09% 1.92% 1.8%
C7H

+
16 0.82% 8.21% 22.57% 57.4%

CO2 1.41% 2.37% 1.82% 0.07%
N2 0.25% 0.31% 0.24% 0.31%

Table 4.3: Some typical reservoir fluid compositions

[July 6, 2023 at 13:52 – Version 0]

4.5 vectorization of two-phase flash calculation 39

200 300 400 500 600
T (K)

5

10

15

20

25

P
(M

P
a)

wet gas
gas condensate

volatile oil
black oil

Figure 4.4: This figure shows the phase envelopes of four typical reservoir fluids at fixed compositions.
The squares on the phase envelopes represent critical points.

We use the novel sampling method presented in Sec. 4.3.2 to sample z. For the first two
case studies, the concentration parameters areα = 1, i.e., all-ones vector. For the third case
study, we adjust α for different fluid types to make the probability of each compositional
range as large as possible, as shown in Tab. 4.4. Fig. 4.5 presents the marginal distribution
of zi for black oil. In summary, we sample z using Eq. (4.3) with different α specified in
Tab. 4.4, and then we single out the acceptable samples located in the compositional ranges
defined in Tab. 4.2. In the following, unless otherwise specified, four fluid types are always
equally represented.

α1 for CH4 α2 for C2H6 α7 for C7H
+
16 αi for others

Wet gas 100 5 1 1
Gas condensate 40 5 5 1

Volatile oil 55 8 20 1
Black oil 25 4 40 1

Table 4.4: Concentration parameters α for different fluid types in Tab. 4.2

For P and T , we simply use LHS to draw space-filling samples from U(0, 1) and then
linearly transform the samples to the expected ranges. Eventually, the samples of P , T , and
z are concatenated together to form the complete input data.

4.5 vectorization of two-phase flash calculation

We vectorize two-phase flash calculation so that it takes a batch of samples as input. In
this case, pressure P and temperature T are vectors, i.e., P = (P1, · · · , Pn) and T =
(T1, · · · , Tn), and composition z is a matrix, i.e., z = (z1, · · · , zn), where n denotes the
number of samples processed concurrently and is often referred to as the batch dimension.

In recent years, Automatic Vectorization (AV) has emerged and developed. A remarkable
example is the high-performance computing library JAX [19] developed by Google. JAX
defines a set of primitive operations with preset batching rules. At compile time, JAX traces a
function and decomposes it into primitive operations.Then, JAX can vectorize the compiled
function by directly applying batching transformations to the primitive operations. In this

[July 6, 2023 at 13:52 – Version 0]

40 ptflash : a deep learning framework for two-phase flash calculation

0.00 0.25 0.50 0.75 1.00
zi

0

5

10

15

20

de
ns

ity

z1

z2

z7

others

Figure 4.5: This figure shows the marginal distribution of zi for black oil, and z1, z2, and z7 are the
molar fractions of CH4, C2H6 and C7H

+
16, respectively.

way, the vectorized function can process a batch of inputs simultaneously rather than
processing them one at a time in a loop.

However, AV is limited to predefined primitive operations and is slower than well-
designed manual vectorization, which vectorizes a function by carefully revamping its
internal operations to accommodate to a batch of inputs. For example, matrix-vector
products for a batch of vectors can be directly replaced with a matrix-matrix product.
Additionally, flash calculation has an iterative nature and complicated control flow, which
may cause the failure of AV. Therefore, for finer-grained control, more flexibility, and better
performance, we manually vectorize all algorithms involved in flash calculation, including
the solution of the SRK equation of state and the Rachford-Rice equation, stability analysis,
and phase split calculations.

One challenge in achieving efficient vectorization is asynchronous convergence, that
is, for each algorithm, the number of iterations required to reach convergence generally
varies for different samples, which hinders vectorization and parallelism. To alleviate this
problem, we designed a general-purpose paradigm, synchronizer, that saves converged
results at the end of each iteration and removes the corresponding samples to avoid wasting
computational resources on them in subsequent iterations. This is achieved by leveraging a
one-dimensional Boolean mask that encapsulates convergence information to efficiently
access data in vectors and matrices, as shown in Algorithm 2. The number of unconverged
samples decreases over time as a result of incremental convergence. We can use the syn-
chronizer to wrap and vectorize any iterative algorithm. For instance, we illustrate how to
perform vectorized stability analysis in Algorithm 3.

The efficiency of the synchronizer may be questioned because previously converged
samples must wait for unconverged ones before moving on to the next step. However, this
is not a significant issue, as we strive to minimize the waiting time as much as possible. For
instance, if the successive substitution fails to converge quickly, we immediately switch to
the trust-region method. In any case, the delay caused by waiting is insignificant compared
to the acceleration due to vectorization. In addition, we leverage neural networks to provide
more accurate initial estimates for iterative algorithms so that all samples converge as
simultaneously as possible, thereby reducing asynchrony. We will discuss this further in
Sec. 4.6.

Once all algorithms are well vectorized, another challenge is how to globally coordinate
the different subroutines of flash calculation. To this end, we add barrier synchronization to

[July 6, 2023 at 13:52 – Version 0]

4.6 acceleration of flash calculation using neural networks 41

Algorithm 2: PyTorch pseudo-code of synchronizer to save converged results after
iteration and remove the corresponding samples
Input: Vectorized iterated function f(X,O), initial estimate X(0), other f-related

inputs O, convergence criterion C , maximum number of iterations K
1 Initialization
2 Set the number of iterations k ← 1
3 Generate a vector i containing indices from 0 to n− 1

/* n is the number of samples and indexing starts from 0. */

4 Create a placeholder matrix X̃ of the same shape as X(0)

5 while k ≤ K do
6 X(k+1) ← f(X(k), O)
7 mask← C(· · ·)

/* C returns a Boolean vector and True means convergence. */

8 Saving
9 indices← i[mask]

10 X̃[indices]←X(k+1)[mask]
11 Removing
12 i← i[∼ mask]
13 O← O[∼ mask]

/* Apply this operation to every element in O and ∼ denotes the

logical NOT operator. */

14 X(k+1) ←X(k+1)[∼ mask]
15 k ← k + 1

16 if len(i) 6= 0 then
17 X̃[i]←X

/* Also save unconverged results for further utilization. */

Output: Converged results X̃ and unconverged indices i

the entry points of stability analysis and phase split calculations in Fig. 2.3, which prevents
any subroutine connected to it fromproceeding further until all other subroutines terminate
and arrive at this barrier.

We also optimized the code using TorchScript [150], allowing for more efficient execu-
tion through algebraic peephole optimizations and fusion of some operations, as well as
more practical asynchronous parallelism without the Python global interpreter lock [201],
whereby vapor-like and liquid-like estimates are dealt with in parallel in stability analysis.

4.6 acceleration of flash calculation using neural networks

To further accelerate flash calculation, we create and train two task-specific neural networks,
classifier and initializer. The classifier is used to predict the probability p that a mixture is
stable, i.e., p = classifier(P, T, z), which involves a binary classification problem. It helps
bypass stability analysis and thus save time. The initializer is able to initialize Ki more
accurately than the Wilson approximation, i.e., lnKi = initializer(P, T, z), which relates to
a regression problem. It can reduce the number of iterations required to reach convergence
and alleviate the asynchronous convergence we introduced before. Note that the neural

[July 6, 2023 at 13:52 – Version 0]

42 ptflash : a deep learning framework for two-phase flash calculation

Algorithm 3: PyTorch pseudo-code of vectorized stability analysis
Input: Pressure P , temperature T , feed composition z, component properties (Pc, Tc,

ω, BIPs), initial estimate W (0), convergence criteria Css and Ctr, maximum
numbers of iterations Kss = 9 and Ktr = 20

1 Initialization
2 Instantiate pteos = PTEOS(Pc,Tc,ω,BIPs)

/* PTEOS is a PyTorch-based class to efficiently calculate the fugacity

coefficients and their partial derivatives. */

3 Successive substitution
4 Iterated function fss specified by Eq. (2.39)
5 Other inputs Oss ← {P , T , z}
6 W , iss ← synchronizer(fss,W (0),Oss,Css, Kss)

7 Trust-region method
8 Iterated function ftr specified by Eq. (2.41)
9 W

(0)
tr ←W [iss]

10 Other inputs Otr ← {P [iss], T [iss], z[iss]}
11 W tr, itr ← synchronizer(ftr,W

(0)
tr ,Otr,Ctr, Ktr)

12 W [iss]←W tr and i← iss[itr]
Output: Converged results W and unconverged indices i

networks presented in this section are dedicated to the case study containing 9 components.
However, the basic architecture and training method of neural networks can be generalized
to any case.

4.6.1 Classifier

4.6.1.1 Architecture

As shown in Fig. 4.6, the classifier has 3 hidden layers with 32 neurons and uses the SiLU
activation function [45, 78, 164].The output layer has only one neuron and uses the sigmoid
activation function compressing a real number to the range (0, 1). The input x consists of
P , T , and z, and the output is the probability p that a mixture is stable. The scaling layer
standardizes the input as (x− u)/s, where u and s are the mean and standard deviation
of x over the training set. To train the classifier, we use the binary cross-entropy loss (bce),
which is the de-facto loss function for binary classification problems and is defined as:

bce(y, p) = y ln p+ (1− y) ln(1− p) (4.4)

where y is either 0 for unstable mixtures or 1 for stable ones.
The architecture of the classifier is obtained by tuning hyper-parameters using Tree-

Structured Parzen Estimator optimization algorithm [12] with Asynchronous Successive
Halving algorithm [114] as an auxiliary tool to early stop less promising trials. We create a
dataset containing 100,000 samples (80% for training and 20% for validation), and then
tune the hyper-parameters of the classifier with 150 trials to minimize the loss on the
validation set (we use Adam [95] as optimizer and the batch size is 512), as shown in
Fig. 4.7. We can see that SiLU largely outperforms other activation functions.

[July 6, 2023 at 13:52 – Version 0]

4.6 acceleration of flash calculation using neural networks 43

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Hidden layer 1

Output layer with sigmoid

SiLU activation

Scaling layer

𝑝𝑝

Hidden layer 2

SiLU activation

Hidden layer 3

SiLU activation

All hidden
layers have
32 neurons.

Figure 4.6: Architecture of the classifier for the case study containing 9 components

1 6
2 4
3 2
4 0
4 8
5 6

8

6 4

0 . 0 0 6

0 . 1

S i L U

R e L U

T a n h

S i g m o i d

1 E - 4

0 . 0 0 1

1 E - 5

0 . 0 1

3

4

5

2

6
a c t i v a t i o nl o s s l r # o f l a y e r s# o f u n i t s

Figure 4.7: This figure is a parallel coordinates plot used to visualize the results of tuning hyper-
parameters of the classifier, where lr stands for the learning rate. The colors of lines are
mapped to the value of the loss on the validation set.

[July 6, 2023 at 13:52 – Version 0]

44 ptflash : a deep learning framework for two-phase flash calculation

4.6.1.2 Training

We first generate one million samples and then feed them to PTFlash to determine stability
(no need for phase split calculations), which takes about 2 seconds. Subsequently, these
samples are divided into the training (70%), validation (15%) and test (15%) sets. To train
the classifier, we set the batch size to 512 and use Adam with Triangular Cyclic Learning
Rate (CLR) [183, 184], which periodically increases and decreases the learning rate during
training, as shown in Fig. 4.8. [185] claimed that CLR helps escape local minima and has
the opportunity to achieve superb performance using fewer epochs and less time. We found
that Adam with and without CLR achieve similar performance, but the former converges
five times faster than the latter. Early stopping is also used to avoid overfitting [157]. The
total training time is about 5 minutes using Nvidia RTX 3080.

1 5 9 13 17 21 25

0.002

0.004

0.006

0.008

0.010

0.012

Le
ar

ni
ng

 ra
te

of epochs

Figure 4.8: This figure shows how the learning rate varies cyclically during the training of classifier.

The final performance of the classifier on the test set is bce = 0.002 and accuracy =
99.93%. For a more intuitive understanding of performance, Fig. 4.9 shows the contours
of probabilities predicted by the classifier, where the blue contour of p = 0.5 basically
coincides with the phase envelope. In the zoomed inset, the additional green and yellow
contours correspond to p=0.02 and 0.98, respectively.

200 300 400 500 600
T (K)

5

10

15

20

25

P
(M

P
a)

0.5

Figure 4.9: This figure illustrates the contours of probabilities predicted by the classifier for volatile
oil at the fixed composition defined in Tab. 4.3. The gray and red correspond to the
monophasic and two-phase regions, respectively.

[July 6, 2023 at 13:52 – Version 0]

4.6 acceleration of flash calculation using neural networks 45

4.6.2 Initializer

4.6.2.1 Architecture

As shown in Fig. 4.10, the input of the initializer includes P , T , and z, and its output is
logarithmic fugacity coefficients lnKi. The initializer has 1 hidden layer and 3 residual
blocks. Each residual block has 2 hidden layers and a shortcut connection adding the input
of the first hidden layer to the output of the second [74]. All hidden layers have 64 neurons
and use the SiLU activation function.The output layer hasNc neurons without an activation
function. The wide shortcut, proposed in [28], enables neural networks to directly learn
simple rules via it besides deep patterns through hidden layers, which is motivated by the
fact that the inputs, such as P and T , are directly involved in the calculation of Ki. The
concat layer concatenates the input layer and the outputs of the last residual block (the
concatenation means putting two matrices A ∈ Rd1×d2 and B ∈ Rd1×d3 together to form
a new one C ∈ Rd1×(d2+d3)). In addition, the targets of the initializer are lnKi instead of
Ki, since Ki varies in different orders of magnitude, which hampers the training of the
initializer, whereas lnKi does not.

Wide
shortcut

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Residual block

Hidden layer

Hidden layer

SiLU activation

SiLU activation
Element-wise addition

Sh
or

tc
ut

 c
on

ne
ct

io
n

Hidden layer 1

Concat layer

Output layer

Residual block 2

Residual block 1

SiLU activation

Scaling layer

All hidden layers have 64 neurons.

Residual block 3

ln𝑲𝑲

Figure 4.10: Architecture of the initializer for the case study containing 9 components

We found that the convergence of phase split calculations is robuster if the distribution
coefficients predicted by the initializer can lead to a more accurate vapor fraction, especially
around critical points where calculations are sensitive to initial distribution coefficients
and prone to degenerate into trivial solutions. Therefore, the loss function used to train the
initializer consists of two parts, one is the mean absolute error (mae) in terms of lnK and
the other is mae in terms of θV , as follows:

mae(lnK, ln K̂) =
Nc∑
i=1

|lnKi − ln K̂i| (4.5a)

mae(θV , θ̂V) = |θV − θ̂V | (4.5b)

where K is the ground truth, K̂ is the prediction of the initializer, θV is the true vapor
fraction at equilibrium, and θ̂V is obtained by solving the Rachford-Rice equation fRR

given z and K̂ .

[July 6, 2023 at 13:52 – Version 0]

46 ptflash : a deep learning framework for two-phase flash calculation

4.6.2.2 Training

We generate one million samples in the two-phase region (K is not available in the
monophasic region), which are divided into the training (70%), validation (15%) and
test (15%) sets. The training of the initializer is carried out in two stages. First, we train it to
minimizemae(lnK, ln K̂), usingAdamwithCLR and setting the batch size to 512. Second,
after the above training, we further train it to minimize mae(lnK, ln K̂) + mae(θV , θ̂V),
using Adam with a small learning rate of 1e-5.

Here, ∂θ̂V /∂K̂ is required during backpropagation and can be simply computed via
PyTorch’s automatic differentiation, which, however, is slow and inefficient. We solve
the Rachford-Rice equation in an iterative manner described in Sec. 2.4.3. In this case,
automatic differentiation has to differentiate through all the unrolled iterations. Moreover,
all intermediate results also need to be retained to evaluate intermediate derivatives, which
consumes more memory.

Instead, we can make use of the implicit function theorem [101] to directly obtain
∂θ̂V /∂K̂ by using the derivative information at the solution point of the Rachford-Rice
equation. We differentiate the Rachford-Rice equation with respect to K (note that θV is
an implicit function of K) and get:

∂θV fRR(θV ,K)× ∂θV /∂K + ∂KfRR(θV ,K) = 0 (4.6)

We rearrange the above equation and get:

∂θV /∂K = −[∂θV fRR(θV ,K)]−1∂KfRR(θV ,K) (4.7)

Moreover, since ∂θV fRR(θV ,K) is a scalar, we can further reduce the above equation to:

∂θV /∂K = − ∂KfRR(θV ,K)

∂θV fRR(θV ,K)
(4.8)

Eq. (4.8) is obviously more efficient than automatic differentiation. For more details and
a defense of the above derivation, refer to [101]. After training, the performance of the
initializer on the test set is mae = 9.66e-4 in terms of lnK and mae = 1.86e-3 in terms of
K .

4.6.3 Strategy for accelerating flash calculation using neural networks

As shown in Fig. 4.11, givenP ,T and z, we first use the classifier to predict p. Next, based on
two predefined thresholds, pl and pr (pl ≤ pr), a mixture is thought of as unstable if p ≤ pl
or stable if p ≥ pr. If pl < p < pr, we will use stability analysis to avoid unexpected errors.
Here, we can adjust pl and pr to trade reliability for speed. In general, fewer errors occur
with smaller pl and greater pr, but it probably takes more time on stability analysis, and
vice versa. A special case is pl = pr = pc, where pc could be a well-calibrated probability or
simply set to 0.5, which means that we completely trust the classifier (i.e., stable if p ≥ pc or
unstable otherwise), and no extra stability analysis is required. For the initializer, it serves
both stability analysis if pl < p < pr and phase split calculations.

Neural networks can also be used individually. If only the classifier is available, we can
initialize K via the Wilson approximation rather than the initializer in Fig. 4.11. If only
the initializer is available, we can use it to initialize Ki in Fig. 2.3.

[July 6, 2023 at 13:52 – Version 0]

4.7 results 47

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
initializer Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Yes

No

Yes

No

classifier

𝑝𝑝 ≥ 𝒑𝒑𝒓𝒓 ?

𝑝𝑝 ≤ 𝒑𝒑𝒍𝒍 ?

No

Yes

Stability analysis

Figure 4.11: Acceleration of flash calculation using neural networks

4.7 results

In this section, we compare our proposed framework for vectorized flash calculation,
PTFlash, with Carnot, an in-house thermodynamic library developed by IFP Energies
nouvelles. Carnot is based on C++ and performs flash calculations one at a time on CPU.
Regarding the hardware, CPU is Intel 11700F and GPU is NVIDIA RTX 3080 featuring
8704 CUDA cores and 10G memory. We found that using multiple cores of CPU renders
the frequency quite unstable due to heat accumulation. Therefore, we use only one core
of CPU so that the frequency can be stabilized at 4.5GHz, which allows for a consistent
criterion for measuring the execution time.

PTFlash and Carnot give identical results (coincidence to 9 decimal places under double-
precision floating-point format) because they use exactly the same convergence criteria for
all iterative algorithms. In the following, we will focus on comparing their speeds.

4.7.1 Vectorized flash calculation

We compare the execution time of different methods for flash calculation with respect to
the workload quantified by the number of samples n, as shown in Fig. 4.12. Due to GPU
memory limitations, the maximum number of samples allowed for the three case studies is
10, 5, and 1 million, respectively. We can see that all three case studies exhibit the same
behavior in Fig. 4.12. When the workload is relatively low, e.g., n < 1000, Carnot wins by
large margins, and CPU is also preferable based on the fact that PTFlash runs much faster
on CPU than on GPU. On the one hand, PyTorch has some fixed overhead in the setup
of the working environment, e.g., the creation of tensors. On the other hand, when GPU
is used, there are some additional costs associated with CPU-GPU communication and
synchronization. When n is small, these overheads dominate. As proof, we can see that the

[July 6, 2023 at 13:52 – Version 0]

48 ptflash : a deep learning framework for two-phase flash calculation

time of PTFlash on GPU hardly changes as n varies from 100 to 104. In contrast, the time
of Carnot is almost proportional to n.

As the workload increases, the strength of PTFlash on GPU emerges and becomes
increasingly prominent. In three case studies, PTFlash on GPU is 163.4 (2 components),
106.3 (4 components) and 50.5 (9 components) times faster than Carnot at the maximum
number of samples. This suggests that PTFlash on GPU is more suitable for large scale
computation. Interestingly, we can observe that PTFlash on CPU also outperforms Carnot
when the workload is relatively heavy, e.g., n > 103. In fact, thanks to Advanced Vector
Extensions, vectorization enables fuller utilization of the CPU’s computational power.

9 4 6 . 2 9

1 9 3

5 . 7 9

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(a) Mixture of CH4 and C6H14

4 3 9

1 1 2

4 . 1 3

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 5 × 1 0 6

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(b) Mixture of 4 components

1 5 5

7 5

3 . 0 7
2 7 . 2

1 . 4

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6
1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U
 N N - P T F l a s h o n C P U
 N N - P T F l a s h o n G P U

(c) Mixture of 9 components

Figure 4.12: Comparison between PTFlash and Carnot in terms of speed. NN-PTFlash is PTFlash
accelerated by neural networks, as presented in Sec. 4.6.

We notice that there is a lack of a comprehensive and unified benchmark for the runtime
of flash calculation in the literature. Here, we give an article with a case study similar to
ours for readers’ reference [135], which claimed that the total computation time of flash
calculations is 10 seconds for one million samples of a 9-component mixture. However,
it is worth pointing out that the sampling method, convergence criteria, and algorithm
implementation in this reference article are different from ours. In our work, these aspects
are consistent for both Carnot and PTFlash to ensure a fair comparison.

Next, we focus on the mixture of 9 components and analyze the performance of PTFlash
for this case study. Tab. 4.5 is a performance profiler of PTFlash on GPU at n = 106, which
records the running time of each subroutine of flash calculations. As a complement to
Tab. 4.5, Fig. 4.13 dissects phase split calculations by tracking the total elapsed time and the

[July 6, 2023 at 13:52 – Version 0]

4.7 results 49

convergence percentage up to each iteration, and Fig. 4.14 calculates the mean of critical
distances dc of converged samples at each iteration, where dc is defined as:

dc =

√√√√ Nc∑
i=1

lnK2
i (4.9)

The closer to critical points, the smaller dc. Therefore, dc indicates the closeness to critical
points.

The observations of Fig. 4.13 and Fig. 4.14 are summarized as follows: (1) In Fig. 4.13a,
the slope of time with respect to the number of iterations decreases because the workload
is gradually reduced due to incremental convergence. (2) In Fig. 4.13b, for the samples that
do not converge after the successive substitution, the majority of them (92.67%) converge
after 3 iterations of the trust-region method. (3) In Fig. 4.14, dc decreases during iterations,
which means that samples close to critical points converge last and also confirms that
convergence is slow in the vicinity of critical points.

Table 4.5: Performance profiler of PTFlash on GPU for the mixture of 9 components at
n = 106 in Fig. 4.12c

ss of Stability analysis Phase split

phase split vapor-like estimate liquid-like estimate calculations

calculations ss tr ss tr ss tr

of samples 106 625645 130715 625645 90179 413442 223741

Convergence 37.44% 1 79.11% 100% 85.59% 100% 45.88% 100%

Max number 3 9 18 9 16 9 13
of iterations

Total time 0.4565s 0.4136s 0.3417s 0.4044s 0.2706s 0.7412s 0.5132s
1.3237s 2 1.2544s

ss: successive substitution tr: trust-region method
1 37.44% is the percentage of samples for which any of ∆G, tpdx and tpdy is negative after 3
attempts of successive substitution of phase split calculations, as described in 2.4.4.

2 The total time of stability analysis is less than the sum of the times of its subroutines because
vapor-like and liquid-like estimates are handled concurrently.

The above analysis provides a general understanding of PTFlash, but it is not straightfor-
ward to comprehensively analyze PTFlash because each subroutine also contains iterative
algorithms, such as the solution of the SRK equation of state and the Rachford-Rice equa-
tion. However, given the information already obtained, we know that we need to shorten
the time of stability analysis and reduce the number of iterations in order to accelerate
PTFlash, which is exactly the role of the classifier and initializer.

4.7.2 Deep-learning-powered vectorized flash calculation

We trained neural networks, classifier and initializer, following Sec. 4.6 for the case study
containing 9 components. In this section, wewill explore the effects of these neural networks.

[July 6, 2023 at 13:52 – Version 0]

50 ptflash : a deep learning framework for two-phase flash calculation

1 2 3 4 5 6 7 8 9
0

1 0

2 0

3 0

4 0

5 0
 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

)
4 5 . 8 8 %

7 4 2

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
1 0 0 0

 Ti
me

 (m
s)

(a) Successive substitution

1 3 5 7 9 1 1 1 33 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

) 9 2 . 6 7 % 9 9 . 9 7 % 5 1 3

2 0 0

3 0 0

4 0 0

5 0 0

 Ti
me

 (m
s)

(b) Trust-region method

Figure 4.13: Figures (a) and (b) show the convergence percentage and the elapsed time up to each
iteration of phase split calculations of PTFlash on GPU.

1 3 5 7 9 1 1 1 3s s
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Me
an

 of
 cr

itic
al

dis
tan

ce
s

o f i t e r a t i o n s

Figure 4.14: This figure shows the average of the critical distances of converged samples at each
iteration. On the x-axis, ss corresponds to the end of successive substitution, and other
integers are the number of iterations of the trust-region method.

First of all, we set pl = 0.02 and pr = 0.98 as the thresholds of instability and stability,
which are carefully chosen so that no misclassification occurs. In Fig. 4.12c, we can see that
NN-PTFlash outpaces PTFlash on both CPU (2.7x speed-up) and GPU (2.2x speed-up).
In addition, NN-PTFlash on GPU runs almost 110.7 times faster than Carnot at n = 106.

Tab. 4.6 is the performance profiler of NN-PTFlash on GPU. We can see that the classifier
can determine the stability of the vast majority of samples (99.42%), which significantly
relieves the burden of stability analysis and saves time. In addition, compared to phase split
calculations of PTFlash, the convergence percentage of successive substitution increases
from 45.88% to 67.40%, and the overall time is also greatly reduced, which is attributed to
better distribution coefficients provided by the initializer.

We also conduct ablation studies to compare the contributions of the classifier and
initializer by using them individually. When handling 1 million samples for the case study
containing 9 components, NN-PTFlash with only the classifier on GPU takes 1.88s. How-
ever, the attempt to use the initializer alone fails because its outputs may reach unreasonably
large values, e.g., 1e15, for stable mixtures far from the boundary between the monophasic
and two-phase regions, leading to numerical overflow. In machine learning terminology,
this is the out-of-distribution generalization problem, since the initializer is trained on
the two-phase region and may suffer from large predictive errors when used within the
monophasic region. Nonetheless, there is no problem when the initializer is used in con-

[July 6, 2023 at 13:52 – Version 0]

4.7 results 51

Table 4.6: Performance profiler of NN-PTFlash on GPU (Fig. 4.11) for the mixture
of 9 components at n = 106 in Fig. 4.12c

classifier
Stability analysis Phase split

vapor-like estimate liquid-like estimate calculations

ss tr ss tr ss tr

of samples 106 5818 1073 5818 1704 413442 134786

Convergence 99.42% 1 81.56% 100% 70.71% 100% 67.40% 100%

Max number 9 13 9 12 9 13
of iterations

Total time 0.0005s 0.1365s 0.128s 0.0514s 0.12s 0.7043s 0.3388s
0.34s 1.0431s

ss: successive substitution tr: trust-region method
1 99.42% includes 58.38% predicted as stable (i.e., p > pr) and 41.04% predicted as unstable
(i.e., p < pl).

junction with the classifier, as the remaining samples located in the monophasic region
are fairly close to the boundary after being filtered through the classifier, as shown in
Fig. 4.9. Based on the fact that NN-PTFlash using only the classifier consistently performs
worse than that using both, we can conclude that both the classifier and initializer play an
important role in speeding up flash calculations.

4.7.3 Discussion

The results demonstrate that the systematic and comprehensive vectorization of two-phase
flash calculation leads to significant speed-ups when large-scale computation is involved,
e.g., the number of samples to process is on the order of millions. Importantly, this speed-up
does not compromise accuracy and stability, unlike related work [53, 54, 91, 217] that is
subject to the unreliability of machine learning models. In addition, we can see that the
classifier and initializer really make a big difference.

Due to GPU memory limitations, the number of samples n is limited in Fig. 4.12. How-
ever, we can see that the slopes of time versus n differ significantly between different
methods. The time for Carnot is proportional to n, while the time for PTFlash on GPU
increases slowly. Therefore, it is reasonable to assume that PTFlash on GPU will have an
increasingly pronounced speed advantage as n increases.

Using PyTorch has several benefits in addition to its simplicity and flexibility. First,
we can seamlessly incorporate neural networks into PTFlash. Second, any subroutine of
PTFlash is fully differentiable through PyTorch’s automatic differentiation, and we can also
leverage the implicit function theorem for efficient differentiation, as we did in Sec. 4.6.2.2.
Third, PyTorch’s optimized and ready-to-use multi-GPU parallelization largely circumvents
the painstaking hand-crafted efforts.

PTFlash also has several limitations. First, PTFlash is based on the SRK equation of
state, which is adequate for mixtures containing hydrocarbons and non-polar components,
but does not take into account the effect of hydrogen bonding and falls short of adequacy

[July 6, 2023 at 13:52 – Version 0]

52 ptflash : a deep learning framework for two-phase flash calculation

for cross-associating mixtures containing polar components, such as water and alcohol
[98]. In this case, more advanced but also more complicated equations of state should be
employed, such as the SAFT equation of state [24, 83, 219–222] or the CPA equation of
state [99, 100]. However, the vectorization of these complicated equations of state is much
more challenging than that of cubic equations of state. To alleviate this problem, we plan to
use neural networks to directly predict fugacity coefficients, allowing us to vectorize the
calculation of fugacity coefficients regardless of the equation of state used. Second, PTFlash
consumes a significant amount of GPU memory, severely limiting its use on much larger
batches of data. We need to optimize PTFlash to reduce GPU memory consumption, e.g.,
by leveraging the sparsity and symmetry of matrices. Third, PTFlash currently does not
support multi-phase equilibrium. Last but not least, neural networks are subject to the
out-of-distribution generalization problem. If pressure and temperature are outside the
predefined ranges used to train neural networks, predictive performance will deteriorate
dramatically. Furthermore, when the mixture components change, we need to create new
neural networks and train them from scratch.

4.8 conclusion

In this chapter, we present a fast and parallel framework, PTFlash, for two-phase flash
calculation based on PyTorch, which efficiently vectorizes algorithms and gains attractive
speed-ups at large-scale calculations. Two neural networks are used to predict the stability
of mixtures and to initialize the distribution coefficients more accurately than the Wilson
approximation, which greatly accelerates PTFlash. In addition, PTFlash has much broader
utility than related workmainly tailored to compositional reservoir simulation.We compare
PTFlash with Carnot, an in-house thermodynamic library, and we investigate three case
studies containing 2, 4, and 9 components with a maximum number of samples of 10, 5,
and 1 million, respectively. The results show that PTFlash on GPU is 163.4, 106.3, and
50.5 times faster than Carnot at the maximum number of samples for the respective case
studies.

In future work, we will (1) optimize PTFlash to reduce the consumption of GPU memory
and extend our work to vectorize more advanced equations of state and support multi-
phase equilibrium, (2) explore the potential of using neural networks to directly predict
fugacity coefficients as a substitute for the numerical solution through equations of state,
(3) validate PTFlash on more hardware suitable for parallel computing, e.g., TPU, and (4)
apply our work to downstream applications, e.g., compositional reservoir simulation.

[July 6, 2023 at 13:52 – Version 0]

5
NNEOS : NEURAL NETWORK -BASED EOS TO CALCULATE
FUGAC IT Y COEFF IC I ENT S

In the previous chapter, we introduced PTFlash, which leverages PyTorch to vectorize
the algorithms involved in isothermal two-phase flash calculation using the SRK EoS.
This allows for parallel flash calculations on GPUs and thus leads to significant speed
improvements during large-scale computation. However, as we noted in the discussion
of the previous chapter, we require more complex EoS (such as the SAFT or CPA EoS) to
handle mixtures that involve hydrogen bonding. Solving these EoS necessitates numerical
algorithms that are both computationally demanding and difficult to effectively vectorize.
Consequently, in this chapter, we will explore the possibility of utilizing neural networks to
directly predict fugacity coefficients.

5.1 introduction

EoS establish the connection between pressure P , temperature T , and volume V , enabling
the calculation of various thermodynamic properties for pure compounds or mixtures
given known state variables, such as P , T and mole numbers n. EoS are vital for a broad
range of applications in chemical, petroleum, environmental, and biological engineering.
Throughout this thesis, our focus is on the role of EoS in phase equilibrium calculations,
specifically the use of EoS to compute fugacity coefficients. Due to the diversity of com-
pounds present in mixtures (e.g., hydrocarbons, water, alcohols, polymers, electrolytes),
researchers have made great efforts in the past decades to develop novel EoS or refine
existing ones by introducing new parameters to improve the predictive accuracy of ther-
modynamic properties. Consequently, a series of increasingly complex EoS have been
developed, ranging from the ideal gas law without adjustable parameters (PV = nRT) to
parametrized EoS, such as the Van der Waals EoS, the cubic EoS, and advanced molecular
EoS (such as the SAFT and CPA EoS).

In this chapter, we present a neural network-based EoS (NNEoS) that replaces the CPA
EoS to predict logarithmic fugacity coefficients lnϕ. This enables us to carry out phase
equilibrium calculations for mixtures that contain polar and associating compounds using
PTFlash, the deep learning framework for two-phase flash calculation we introduced in the
previous chapter. Specifically, we train neural networks on data generated by our in-house
thermodynamic library, Carnot, which calculates lnϕ based on the CPA EoS for a set of
input data consisting of pressure P , temperature T , and composition z.

However, a significant challenge is that fugacity coefficients ϕ are discontinuous func-
tions of P , T , and z. More specifically, there is a single discontinuity that splits ϕ into two
continuous pieces. This discontinuity is unknown a priori and depends on the type of com-
ponents being considered. According to the universal approximation theorem (Sec. 3.2),
vanilla feedforward neural networks can only approximate continuous functions, indicating
that the discontinuity will lead to irreducible errors if we utilize vanilla feedforward neural
networks. To address this issue, we propose a Clustered Regression Network (CRNet),
which combines unsupervised clustering and supervised regression. Specifically, CRNet
consists of two expert networks and a gate network. During training, the gate network

53

[July 6, 2023 at 13:52 – Version 0]

54 nneos : neural network-based eos to calculate fugacity coefficients

can discover the discontinuity boundary in an unsupervised manner and divide the entire
space into two continuous subspaces along the boundary, with each subspace assigned to an
expert network. In this manner, CRNet can approximate piecewise continuous functions.

NNEoS adopts a two-stage approach to predict lnϕ by using the compressibility factorZ
as an intermediate target. This approach involves two neural networks: the first is a CRNet
that predicts Z based on (P, T, z), and the second is a simple feedforward neural network
that predicts lnϕ based on (Z, P, T, z), where Z is provided by Carnot during training
and by the first network during inference. Compared to directly predicting lnϕ given
(P, T, z), this two-stage approach can reduce the learning difficulty of NNEoS and improve
its performance. In fact, Z is also a discontinuous function, leading to the discontinuity of
lnϕ. The calculation of lnϕ depends on Z , implying that Z is a lower-level representation
and is expected to be easier to learn. Therefore, using CRNet to learn Z can facilitate the
discovery of discontinuity.

We also propose HybridEoS, which combines NNEoS and Carnot to achieve a balance
between speed and precision. While NNEoS has a speed advantage due to parallel comput-
ing onGPUs, its prediction errorsmay impede the convergence of flash calculations. Carnot
provides accurate fugacity coefficients but can only run on CPUs. HybridEoS combines the
strengths of both NNEoS and Carnot to enhance overall efficiency and precision. NNEoS
is utilized in most cases, while Carnot is specifically employed to provide lnϕ and their
derivatives for the trust-region methods of stability analysis and phase split calculations.

The rest of this chapter is organized as follows. In Sec. 5.2, we review prior work on
substituting machine learning models for numerical EoS and then present Regression
Clustering and Mixtures of Experts. In Sec. 5.3, we describe the case study used in this
chapter. In Sec. 5.4, we analyze the discontinuity of lnϕ and explain its cause. In Sec. 5.5, we
introduce CRNet and demonstrate its application to a regression toy problem. In Sec. 5.6,
we present the two-stage approach for NNEoS. In Sec. 5.7, we compare the performance of
PTFlash using NNEoS and HybridEoS with Carnot. Finally, we conclude our work in this
chapter and suggest future research directions in Sec. 5.8.

5.2 related work

5.2.1 Replace numerical EoS with machine learning models

In [121], the authors utilized support vector regression (SVR) [6] to predict the pressure
P of three pure fluids (H2O, H2, and CO2) based on temperature (T) and volume (V),
as well as predict P of the mixture of these fluids based on T , V , and mole numbers n.
More broadly, their goal is to replace PEoS(T, V,n)with PML(T, V,n), where ML denotes
a machine learning model and SVR was chosen. The authors trained SVR on high-quality
data generated by molecular dynamics simulations using the LAMMPS package [156].
Their results demonstrate that SVR can effectively predict the pressure of these pure fluids
and their mixtures with very low errors.

[239] proposed the use of neural networks and Gaussian Process Regression (GPR) [175]
to predict the properties of pure fluids, such as critical pressure and temperature, vapor
pressure, and density. The authors trained neural networks and GPR on a well-curated
database of properties for 540 Mie fluids, using as input five molecular descriptors of the
SAFT-VR Mie EoS [103]. The results show that both neural networks and GPR achieve
low prediction errors on the test set, suggesting their potential to serve as surrogates for
analytical EoS in predicting the properties of pure fluids.

[July 6, 2023 at 13:52 – Version 0]

5.2 related work 55

[121] used neural networks to predict the Helmholtz free energy A of pure fluids based
onT ,V and the total number ofmolesn.The authors claim that theirmethod is able to yield
more thermodynamically consistent machine-learned EoS because other thermodynamic
properties are derived by computing the partial derivatives of A with respect to T , V
and n, as shown in Tab. 2.1, which can be easily accomplished through the automatic
differentiation of deep learning frameworks. An innovative aspect of this work is the use of
the partial derivatives of A to define the cost function for the training of neural networks,
as follows:

L =

−(∂Â

∂V

)
n,T

− P

2

+

(∂Â

∂n

)
V,T

− µ

2

+

Â− T

(
∂Â

∂T

)
n,V

− U

2

(5.1)

where Â is the prediction of neural networks. The authors validate their method on the
Van der Waals EoS and the Lennard-Jones EoS [196] for Lennard-Jones fluids.

The works mentioned above demonstrate the potential of machine learning models in
predicting properties of pure liquids and mixtures, however, they are not applicable to
our work focusing on flash calculation for multi-component mixtures. If we apply the first
work to flash calculation, we need to compute lnϕ based on PML(T, V,n), which faces
two intractable difficulties. The first is to solve P = PML(T, V,n) and the second is to
obtain the residual Helmholtz energy Ar, which involves integrating

∫∞
V

PML(T, V,n). In
our work, we use neural networks to directly predict lnϕ, which effectively circumvents
these difficulties.

If we use the approach of the third work, we need to first learn the residual Gibbs
energy Gr using neural networks and then calculate lnϕi = ∂Gr/∂ni (see Eq. (2.12))
via backpropagation. This is computationally expensive and time-consuming, especially
when the second-order derivatives of Gr are required via backpropagation twice, leading
to significant memory consumption. Despite these limitations, the third work’s concept of
designing thermodynamically consistent machine-learned EoS merits consideration and
could be a promising direction for future research.

5.2.2 Regression Clustering and Mixture of Experts

Regression Clustering (RC) [228] is a technique that combines clustering and regression,
which appliesK base regression learners to data simultaneously and guides the clustering of
the data intoK subsets byminimizing the global regression error, with each cluster assigned
to a regression learner. A common application of RC is to combine a set of linear regression
models to address non-linear regression problems, known as clustered or cluster-wise
linear regression [4, 36, 149, 189]. Our proposed CRNet can be viewed as an enhanced RC
model, for which the base regression learner is a neural network that enables the modeling
of more complex patterns.

Mixture of Experts (MoE) [227] aggregates a number of experts by computing the
weighted sum of their predictions as the final output. The aggregation weights are deter-
mined by a gate network, which divides the input space into subspaces and assigns each
subspace to an expert. This allows MoE to effectively handle data with heterogeneous
patterns. Our proposed CRNet can be seen as a simplified MoE with only two experts,
which is tailored to our problem of identifying two subspaces.

[July 6, 2023 at 13:52 – Version 0]

56 nneos : neural network-based eos to calculate fugacity coefficients

5.3 case study

Throughout this chapter, we use a mixture of water and methane as the case study to
facilitate our analysis and visualization. The CPA EoS is used to account for the effect of
hydrogen bonding in the presence of water. The ranges of P and T are 1 - 40MPa and 200 -
600K, respectively, and the entire compositional space is considered, i.e., 0 < zi < 1. To
sample input data, we utilize the LHS technique to draw P , T , and the molar fraction of
water z1 within the expected ranges, and then we calculate the molar fraction of methane
as z2 = 1− z1. We depict the phase diagram of this mixture to gain more insight into its
characteristics, as shown in Fig. 5.1. It can be observed that when z1 is close to 1, i.e., a very
small amount of methane is present, the mixture is aqueous. When T exceeds 300K and z2
is relatively high, the mixture is more likely to be vapor. In most other cases, two phases
coexist.

V AQ

(a) 3D phase diagram

200 400 600
T (K)

0.00

0.25

0.50

0.75

1.00

z 1

(b) Phase diagram at P =10MPa

20 40
P (MPa)

0.00

0.25

0.50

0.75

1.00

z 1

(c) Phase diagram at T =500K

Figure 5.1: The red, blue and yellow represent the aqueous phase, the vapor phase and the coexistence
of two phases, respectively. In Figure (a), we hide the predominant coexistence of two
phases for a better view of the aqueous and vapor phases. Figures (b) and (c) show the
phase diagrams at P = 10MPa and T = 500K, respectively.

5.4 analysis of the discontinuity of fugacity coefficients

Fig. 5.2 provides the visualization of lnϕ at different pressures of 1, 10.5 and 20.5MPa
by showing the slice planes of lnϕ with respect to T and the molar fraction of water z1.
At P = 1MPa, a distinct boundary separating two groups of colors can be observed,
indicating the presence of discontinuity. At P = 10.5MPa, the discontinuity is incomplete
and terminates midway, as illustrated in both Fig. 5.2b and Fig. 5.2d. At P = 20.5MPa, the
colors change continuously, indicating the disappearance of discontinuity.

Next, we explain the cause of the discontinuity of lnϕ. We know that the calculation of
lnϕ requires Z by solving the following equation:

f(Z) = P − PEoS(T, Z,n) = 0 (5.2)

The above equation may have one root or multiple roots. In the latter case, the smallest
root is assigned to the liquid phase and the largest one is assigned to the vapor phase. The
root associated with the smallest Gibbs energy G is then used to calculate lnϕ, since the
smallest G corresponds to the most stable system according to the principle of minimum
energy. The transition from one root to multiple roots will cause discontinuities in the
solution of f(Z), which in turn results in the discontinuity of lnϕ.

[July 6, 2023 at 13:52 – Version 0]

5.5 clustered regression network 57

-10

-8

-6

-4

-2
P = 1 MPa

P = 10.5 MPa
P = 20.5 MPa

(a) lnϕ1 (b) lnϕ1 at P = 10MPa

0

2

4

6

8

P = 10.5 MPa
P = 20.5 MPa

P = 1 MPa

(c) lnϕ2 (d) lnϕ2 at P = 10MPa

Figure 5.2: Fugacity coefficients for the mixture of water and methane at different pressures, where
z1 is the molar fraction of water.

5.5 clustered regression network

To learn discontinuous functions, we propose a Clustered Regression Network (CRNet),
as illustrated in Fig. 5.3. CRNet consists of two expert networks (E1 and E2) and a gate
networkGNN , which share the same trunk networkTNN to learn high-level representations
t from the input x. The gate network GNN provides the probability of selecting the first
expert, denoted by p. The final output of CRNet is a weighted sum of the two experts:

y = p e1 + (1− p) e2 = GNN(t) E1(t) + (1−GNN(t))E2(t) with t = TNN(x) (5.3)

In CRNet, the output layer of the gate network employs the sigmoid activation function
σ(·), that is, p = σ(g) = 1/(1 + exp(−g)), where g is the pre-activation value. CRNet is
designed to partition the entire space into two distinct parts, with each expert specializing
in one part exclusively, that is, p = 0 or 1. To achieve this, we introduce a sparse loss
function as follows:

Lsp = E(x,y)∼Dtr

[
dσ(g)

dg

]
= E(x,y)∼Dtr [σ(g) (1− σ(g))]

= E(x,y)∼Dtr [p (1− p)] (5.4)

The above sparse loss is actually the gradient of σ(g), as shown in Fig. 5.4. Minimizing Lsp

drives g towards negative or positive infinity, causing p to converge to 0 or 1. In practice,

[July 6, 2023 at 13:52 – Version 0]

58 nneos : neural network-based eos to calculate fugacity coefficients

Gate NetworkExpert 1 Expert 2

Trunk Network

Figure 5.3: Architecture of clustered regression networks

Lsp is multiplied by a relaxation coefficient γ, which linearly increases from 0 to 1 in the
first half of training and remains at 1 in the second half. This enables experts to be fully
trained and gradually become specialized in the early stages of training.

−5 0 5

g

0.00

0.25

0.50

0.75

1.00
σ(g)

dσ(g)/dg

Figure 5.4: Sigmoid activation function and its gradient

CRNet may suffer from an unbalanced expert load, for which only one expert is used
and the other is disregarded, resulting in p being constant at 0 or 1. To address this issue, we
first introduce a measure of expert load for a training mini-batchX of sizeNX . Specifically,
the load of the first expert L1 is defined as the sum of the weights allocated to it, i.e.,
L1 =

∑NX

i=1 pi, and that of the second expert L2 is defined as L2 = NX − L1. To balance
the expert load, we minimize the Kullback-Leibler (KL) divergence between the uniform
distributionU = (0.5, 0.5) andL = (L1, L2)/NX = (l, 1− l)with l = L1/NX , as follows:

Lkl = DKL(U‖L) =
1

2
log

1

2l
+

1

2
log

1

2(1− l)
(5.5)

= −1

2
log [4l(1− l)] (5.6)

This KL loss Lkl ensures that the expert load will be approximately evenly distributed
between the two experts for each mini-batch. This is a strong inductive bias, as it assumes
that the data is approximately evenly split on each side of the discontinuity. This assumption

[July 6, 2023 at 13:52 – Version 0]

5.6 neural network-based equation of state 59

holds for our test case, but further parameterization of Lkl may be necessary for different
test cases.

In addition to Lsp and Lkl, the supervised regression loss on targets is:

Ly = E(x,y)∼Dtr [MAE(y, ŷ)] (5.7)

where MAE denotes the mean absolute error and ŷ is the prediction of CRNet, as calculated
by Eq. (5.3). The final cost function to train CRNet is:

L = λspLsp + λklLkl + λyLy (5.8)

where λ are the trade-off parameters to balance different losses.
To showcase the effectiveness of CRNet, we apply it to a toy regression problem as

depicted in Fig. 5.5. In this toy problem, TNN , GNN , E1, and E2 of CRNet all have two
hidden layers with 32 units and use the SiLU activation function. The output layers ofGNN ,
E1, and E2 have one unit. We set λsp = λkl = 0.1 and λy = 1. It can be seen that CRNet
successfully identifies the middle break point and divides the data into two parts, with each
expert specializing in one part.

For comparison, we also apply four clustering algorithms, including K-means clustering
[118], spectral clustering [209], Gaussianmixture [167], and agglomerative clustering [141],
to the same data. However, as shown in Fig. 5.6, these clustering algorithms fail to divide
the data in the same way as CRNet. In fact, CRNet implicitly leverages an inductive bias
that x and y are not independent of each other and lie on a low-dimensional manifold,
which is not taken into account by vanilla clustering algorithms.

Gate

Expert 1 Expert 2

Figure 5.5: Application of CRNet to a toy regression problem. The data points in the upper-left
subplot are marked in red if the output of the gate network p < 0.5 and green if p > 0.5.

5.6 neural network-based equation of state

We propose NNEoS, which replaces numerical EoS with neural networks to compute lnϕ
for flash calculations. NNEoS uses the compressibility factor Z as an intermediate target

[July 6, 2023 at 13:52 – Version 0]

60 nneos : neural network-based eos to calculate fugacity coefficients

Figure 5.6: Four clustering algorithms for the toy regression problem

and comprises two neural networks: NetZ that is a CRNet to predict Z based on (P, T, z)
and Netϕ that is a simple feedforward neural network to predict lnϕ based on (Z, P, T, z),
where Z is provided by NetZ during inference.

The architecture of NNEoS is illustrated in Fig. 5.7. We have already discussed the scaling
layer, wide shortcut, and concat layer in Sec. 4.6.2. Additionally, we introduce two other
improvements to NNEoS:

• We add lnP and 1/T to the inputs of NetZ and Netϕ, which is shown to improve
their performance. Although neural networks are capable of extracting and learning
useful features from raw data, hand-crafted feature engineering is still beneficial in
some cases.

• In Fig. 5.7b, we introduce two intermediate variables, namely z̃1 = z1/(z1 + z2)
and z̃2 = z2/(z1 + z2). While z̃1 and z̃2 may appear redundant, they ensure that
the predicted ln ϕ̂ are intensive properties that are independent of the amount of
substances in the system. It is worth noting that the composition z = (z1, z2) should
be interpreted as the mole numbers that happen to sum up to 1. The variables z̃1
and z̃2 make ln ϕ̂ scale-invariant to z. In other words, multiplying z by a factor will
not change the value of ln ϕ̂. This allows ∂ϕ̂/∂z to represent the partial derivatives
of ln ϕ̂ with respect to the mole numbers, which are necessary for the trust-region
method of stability analysis (Sec. 2.4.2) and phase split calculations (Sec. 2.4.3).

A dataset of one million samples is processed by Carnot to calculate Z and lnϕ using
the CPA EoS. The resulting data is then split into the training (70%), validation (15%),
and test (15%) sets. We use PyTorch to implement and train neural networks under the
double-precision floating-point format.

NetZ is a CRNet and its training cost function is given byEq. (5.8), wherewe setλsp = 0.1,
λkl = 0.15 and λy = 1. We train NetZ using Adam with a batch size of 512 for 200 epochs.
A cyclic learning schedule is employed, as depicted in Fig. 5.8b, with themaximum learning
rate determined through a learning rate range test, as shown in Fig. 5.8a. The training

[July 6, 2023 at 13:52 – Version 0]

5.6 neural network-based equation of state 61

Scaling layer

Gate Network

Trunk Network

Expert 1 Expert 2

Concat layer

W
id

e
sh

or
tc

ut

(a) NetZ

Scaling layer

Hidden layer 8

Hidden layer 1

Concat layer

W
id

e
sh

or
tc

ut Hidden layer 7

Output layer

(b) Netϕ

Figure 5.7: This is the architecture of NNEoS consisting of NetZ and Netϕ. In Figure (a), the trunk
network has 5 hidden layers, the gate network has 2 hidden layers, and two experts have
2 hidden layers. All hidden layers of NetZ have 32 units and use the SiLU activation
function, and the output layers of the gate network and experts have one unit. In Fig-
ure (b), Netϕ has 8 hidden layers with 64 units and the SiLU activation function, and
its output layer has 2 units. We introduce ẑ1 and ẑ2 to ensure that ln ϕ̂ are intensive
properties and ∂ ln ϕ̂/∂z represent the partial derivatives of ln ϕ̂ with respect to the
mole numbers instead of the composition. In addition, the inclusion of lnP and 1/T
can improve the performance of both NetZ and Netϕ.

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

Learning rate

100

Lo
ss

(a) Learning rate range test

0 50 100 150 200
of epochs

10 5

10 4

10 3

Le
ar

ni
ng

 ra
te

(b) Cyclic learning rate schedule

Figure 5.8: Figure (a) is a learning rate range test used to determine an appropriate learning rate by
observing the change in the training loss as the learning rate increases from small to
large values. Figure (b) shows how the learning rate varies for the cyclic schedule.

[July 6, 2023 at 13:52 – Version 0]

62 nneos : neural network-based eos to calculate fugacity coefficients

losses are illustrated in Fig. 5.9, and Fig. 5.10 shows the outputs of key elements of NetZ at
P = 1MPa. We observe that NetZ accurately identifies the discontinuity boundary.

0 100 200
of epochs

10 3

kl

0 100 200
of epochs

10 5

10 3

10 1

sp

0 100 200
of epochs

10 4

10 3

10 2

y

train
valid

Figure 5.9: Training losses of NetZ

(a) Comparison between the true and predicted Z

(b) The outputs of key elements of NetZ
x

Figure 5.10: The prediction of NetZ and the outputs of its key parts at P =1MPa

For the training of Netϕ, we minimize the following loss:

Lϕ = E(x,ϕ)∼Dtr [MAE(lnϕ, ln ϕ̂)] (5.9)

We train Netϕ using Adam with a batch size of 512 for 200 epochs, and we employ the
cyclic learning schedule. Fig. 5.11 shows the training loss Lϕ. Fig. 5.12 compares the true
and predicted lnϕ at P =1MPa.

The performance of NNEoS on the test sets are MAE = 6.65e-5 in terms of Z for NetZ ,
MAE = 7.53e-5 in terms of lnϕ for Netϕ using the true Z as input, and MAE = 9.96e-5
in terms of lnϕ for Netϕ using the predicted Ẑ of NetZ as input.

5.7 results

In this section, we will integrate NNEoS into PTFlash, the fast and parallel deep learning
framework for two-phase flash calculation introduced in the previous chapter. Additionally,

[July 6, 2023 at 13:52 – Version 0]

5.7 results 63

0 100 200
of epochs

10 4

10 3

10 2

train
valid

Figure 5.11: Training loss of Netϕ

(a) lnϕ1

(b) lnϕ2

Figure 5.12: Comparison between the true and predicted lnϕ at P =1MPa

we propose HybridEoS to combine Carnot and NNEoS. We then compare Carnot with
PTFlash using NNEoS and HybridEoS. The hardware is Intel 11700F CPU and NVIDIA
RTX 3080 GPU featuring 8704 CUDA cores and 10G memory. Only one core of CPU is
used, and its frequency can be stabilized at 4.5GHz.

5.7.1 Comparison between Carnot and NNEoS

We compare the execution time of Carnot and NNEoS for the calculation of lnϕ and
their derivatives ∂ lnϕ, as illustrated in Fig. 5.13. Additionally computing ∂ lnϕ takes
approximately twice as much time as computing lnϕ alone. For Carnot, computing ∂ lnϕ
is nearly as computationally intensive as computing lnϕ. For NNEoS, calculating ∂ lnϕ
requires an additional backpropagation (Sec. 3.3.2). At the maximum number of samples
n = 5 × 106, NNEoS on CPU and GPU are roughly 6 and 80 times faster than Carnot,
respectively, demonstrating the significant acceleration of NNEoS in the calculation of lnϕ.
The time of Carnot and NNEoS on CPU is roughly proportional to n, while the time of

[July 6, 2023 at 13:52 – Version 0]

64 nneos : neural network-based eos to calculate fugacity coefficients

NNEoS on GPU hardly changes for n < 1000 and then also becomes proportional to n for
n > 1000, suggesting that the throughput of GPU has been reached.

It is worth noting that the speedup of NNEoS over Carnot shown in Fig. 5.13 only
demonstrates the theoretical acceleration, which may not necessarily translate to practical
acceleration whenNNEoS is integrated into PTFlash for complete flash calculation, because
the prediction errors of NNEoS may lead to an increase in the number of iterations or even
cause flash calculation to diverge, resulting in a less favorable acceleration.

2 5 . 5

4 . 2 1

0 . 3 2 2

1 0 2 1 0 3 1 0 4 1 0 5 5 × 1 0 5
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f e x a m p l e s

 C a r n o t C P U
 N N E o S C P U
 N N E o S G P U

(a) Calculate fugacity coefficients alone

6 2

9 . 7 2

0 . 7 2 4

1 0 2 1 0 3 1 0 4 1 0 5 5 × 1 0 5
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f e x a m p l e s

 C a r n o t C P U
 N N E o S C P U
 N N E o S G P U

(b) Calculate fugacity coefficients and their deriva-
tives

Figure 5.13: Comparison between the execution time of Carnot and NNEoS for calculating fugacity
coefficients

5.7.2 Comparison between Carnot and PTFlash using NNEoS

To integrate NNEoS into PTFlash, we have to disable TorchScript that was previously
used to optimize the code of PTFlash in Sec. 4.5. This is because TorchScript is currently
incompatible with functorch [80], a JAX-like PyTorch-based library, which is needed for
efficient per-sample-gradient computation to obtain the derivatives of NNEoS for a batch
of input data simultaneously.

It is of great importance to investigate the potential buildup of prediction errors of
NNEoS during the iterative process of flash calculation, as these errors could lead to poor
results or even cause flash calculation to diverge. To verify this, we compare Carnot with
PTFlash using NNEoS on five representative samples, as shown in Tab. 5.1. We recorded
the number of iterations required by each subroutine as well. For the first two relatively
simple examples, PTFlash and Carnot yield roughly identical results. The third and fourth
examples are more challenging, as they are on the verge of transitioning into pure aqueous
and vapor phases, respectively. PTFlash performs well on the third example, but wrongly
classifies the fourth as the aqueous phase. The fifth example is near the critical point and
therefore demands greater precision. Unfortunately, the vapor fraction obtained by PTFlash
largely differs from that of Carnot. Furthermore, we observe that the number of iterations
required by PTFlash is greater than that of Carnot, indicating that while NNEoS can provide
satisfactory results in most cases, its prediction errors lead to an increase in the number of
iterations and thereby diminish the speed advantage of NNEoS in computing lnϕ.

In order to fully evaluate PTFlash using NNEoS, we apply it to one million samples. We
set the maximum number of iterations of the successive substitution to 18. The perfor-

[July 6, 2023 at 13:52 – Version 0]

5.7 results 65

Table 5.1: Comparison between the results of Carnot and PTFlash using NNEoS

P (Pa) T (K) z1

21410710 455.65 0.3127993
13825639 339.62 0.8656848
29614171 403.09 0.0130436
33138567 223.31 0.9777717
8643204 572.21 0.9932372

Carnot PTFlash using NNEoS
x1

1 y1
1 θV

1 x̂1 ŷ1 θ̂V

0.9964627 0.0650217 0.7339847 0.9964629 0.0650324 0.7339932
0.9982982 0.0025541 0.1331803 0.9982980 0.0025537 0.1331800
0.9968380 0.0130401 0.9999965 0.9968382 0.0130421 0.9999985
0.9777756 0.0000039 0.0000040 0.9777717 0
0.9999311 0.9923353 0.8812626 0.9999389 0.9932190 0.9973019

Number of iterations of each subroutine 2

stability analysis phase split stability analysis phase split
vapor liquid calculations vapor liquid calculations

7 10
2 6 5 2 18 6
4 4 4 3 6 4

3 2 4
2 4 2 3

1 x1 and y1 represent the molar fraction of water in the aqueous phase and that
in the vapor phase, respectively, and θV denotes the vapor fraction.

2 Only the successive substitution method is used for each subroutine.

mance profiler is shown in Tab. 5.2. It can be seen that the trust-region method of stability
analysis only achieves convergence percentages of 25.87% and 34.76% for the vapor-like
and liquid-like estimates after 40 iterations, respectively. This may be due to the proximity
of unconverged samples to critical points, which necessitates a higher level of predictive
performance from NNEoS.

5.7.3 HybridEoS to combine Carnot and NNEoS

We present HybridEoS to balance speed and precision, which combines Carnot and NNEoS
in such a way that we useNNEoS to compute lnϕ for the successive substitution andCarnot
to compute lnϕ and ∂ lnϕ for the trust-region method. To efficiently call C++-based
Carnot within Python-based PTFlash, we utilize the Simplified Wrapper and Interface
Generator (SWIG) [8] to develop a Python interface for Carnot. Although Carnot can only
process samples one at a time onCPU, it may not be amajor issue since we set themaximum
number of iterations of the successive substitution to 18, allowing the majority of samples
(over 90%) to converge and hence reducing the strain on the trust-region method. The
performance profiler of PTFlash using HybridEoS on GPU is shown in Tab. 5.3. We can see

[July 6, 2023 at 13:52 – Version 0]

66 nneos : neural network-based eos to calculate fugacity coefficients

ss of Stability analysis Phase split

phase split vapor-like estimate liquid-like estimate calculations

calculations ss tr ss tr ss tr

of samples 106 470954 1380 470954 30383 837077 1518

Convergence 52.9% 99.71% 25.87% 93.55% 34.76% 99.82% 99.87%

Max number 3 18 40 18 40 18 40
of iterations

Total time 3.2515s 1.7548s 0.3903s 2.8651s 2.0352s 10.8040s 1.4127s
7.0454s 12.2167s

ss: successive substitution tr: trust-region method

Table 5.2: Performance profiler of PTFlash using NNEoS on GPU for the mixture of water and
methane

that all subroutines converge successfully. However, the execution time of the trust-region
method remains relatively large due to the intensive communication between CPU and
GPU, because Carnot can only process data on CPU memory while PTFlash manipulates
data on GPU memory.

ss of Stability analysis Phase split

phase split vapor-like estimate liquid-like estimate calculations

calculations ss tr ss tr ss tr

of samples 106 470954 1380 470954 30383 837075 1518

Convergence 52.9% 99.71% 100% 93.55% 100% 99.82% 100%

Max number 3 18 7 18 5 18 17
of iterations

Total time 3.2516s 1.752s 0.4009s 2.8552s 7.484s 10.6887s 1.4319s
12.4921s 12.1217s

ss: successive substitution tr: trust-region method

Table 5.3: Performance profiler of PTFlash using HybridEoS on GPU for the mixture of water
and methane

We compare the execution time of Carnot and PTFlash using HybridEoS for flash
calculation with respect to the number of samples n, as shown in Fig. 5.14. At n = 106,
PTFlash on CPU and GPU are 1.7 and 16.9 times faster than Carnot on CPU, respectively.

[July 6, 2023 at 13:52 – Version 0]

5.7 results 67

4 7 3

2 7 9

2 7 . 9

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f e x a m p l e s

 C a r n o t C P U
 P T F l a s h C P U
 P T F l a s h G P U

Figure 5.14: Comparison between the execution time of Carnot and PTFlash using HybridEoS

5.7.4 Discussion

Our findings demonstrate the potential of NNEoS as a substitute for the CPA EoS to quickly
and accurately provide fugacity coefficients for flash calculation. NNEoS enables us to
perform parallel flash calculations on GPUs using PTFlash without vectorizing the CPA
EoS, resulting in substantial speedups. Currently, the application of machine learning in the
field of EoS is in its infancy, with related work focusing on relatively simple applications such
as predicting the properties of pure fluids. Our work involves multi-component mixtures
and is more challenging.

Clearly, NNEoS has its limitations. Despite our efforts to address the discontinuity prob-
lem with CRNet and the two-stage approach, and to improve the performance of NNEoS
through feature engineering and practical training techniques, PTFlash using NNEoS
still needs more iterations for convergence and even yields erroneous results compared to
Carnot, especially near critical points. While our proposed HybridEoS partially alleviates
this problem, it is still an expedient and suboptimal solution as it disrupts hardware consis-
tency during calculations and thus increases the overhead of CPU-GPU communication
and data copy. In addition, NNEoS also faces some common challenges associated with neu-
ral networks, such as the out-of-distribution generalization problem, i.e., the performance
of NNEoS deteriorates outside the predefined ranges of pressure and temperature, and
the transfer learning problem, i.e., how to apply NNEoS to different components without
retraining it from scratch.

The slow convergence of PTFlash using NNEoS compared to Carnot is not essentially
due to the prediction errors of NNEoS but rather to the fact that NNEoS does not sat-
isfy the thermodynamic consistency presented in Sec. 2.3. NNEoS merely imitates the
CPA EoS through supervised learning, but is not an eligible EoS due to the violation of
thermodynamic consistency. Therefore, we should prioritize satisfying thermodynamic
consistency over simply reducing prediction errors. One approach to achieving this is to
employ physics-informed neural networks [161, 162], which encode Eqs. (2.15), (2.16)
and (2.17b) involved in the thermodynamic consistency into regularization terms that
are added to the cost function. However, this approach is still a form of ”supervised learn-
ing” in that the thermodynamic consistency is learned rather than inherent. It remains

[July 6, 2023 at 13:52 – Version 0]

68 nneos : neural network-based eos to calculate fugacity coefficients

an open question in deep learning how to efficiently incorporate prior knowledge (e.g.,
thermodynamic consistency) into neural networks to improve generalization performance.

5.8 conclusion

In this chapter, we present CRNet to address the discontinuity problem of fugacity coeffi-
cients ϕ, and then we develop NNEoS to calculate lnϕ using the two-stage approach with
the compressibility factor Z as an intermediate target. NNEoS enables us to perform flash
calculation for the mixture of water and methane without vectorizing the CPA EoS, and
NNEoS achieves a roughly 80x speedup compared to Carnot on large-scale computation
of lnϕ due to parallel computing on GPUs while maintaining a high level of precision. PT-
Flash using NNEoS proves to be efficient and accurate in regions far from critical points and
phase transition boundaries. To balance speed and precision, we also propose HybridEoS
to combine the strengths of NNEoS and Carnot. PTFlash using HybridEoS on GPU is
roughly 17 times faster than Carnot when processing one million samples. Our results
demonstrate the potential of neural networks to replace numerical EoS in computing lnϕ.

In the future, we will focus on developing thermodynamically consistent NNEoS and
improving the generalization of NNEoS to different components so that we do not need to
retrain NNEoS from scratch when the components of mixtures change.

[July 6, 2023 at 13:52 – Version 0]

Part III

DOMAIN GENERAL IZAT ION

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

6
HMOE : HYPERNETWORK -BASED MIXTURE OF EXPERT S FOR
DOMAIN GENERAL IZAT ION

In the previous chapter, we proposed CRNet to solve the regression problem of learning
discontinuous functions by partitioning the overall space into two continuous subspaces
and assigning them to two experts. CRNet can be seen as a simplified version of Mixture of
Experts (MoE). In this chapter, we will extend the concept of CRNet to the ”discontinuity”
problem in the field of image classification, i.e., domain generalization. Due to domain shift,
machine learning systems typically fail to generalize well to domains different from those of
training data, which is what domain generalization (DG) aims to address. Although various
DG methods have been developed, most of them lack interpretability and require domain
labels that are not available in many real-world scenarios. This chapter presents a novel
DG method, called HMOE: Hypernetwork-based Mixture of Experts (MoE), which does
not rely on domain labels and is more interpretable. MoE proves effective in identifying
heterogeneous patterns in data. For the DG problem, heterogeneity arises exactly from
domain shift. HMOE uses hypernetworks taking vectors as input to generate experts’
weights, which allows experts to share useful meta-knowledge and enables exploring
experts’ similarities in a low-dimensional vector space. We compare HMOE with other DG
algorithms under a fair and unified benchmark – DomainBed. Our extensive experiments
show that HMOE can divide mixed-domain data into distinct clusters that are surprisingly
more consistent with human intuition than original domain labels. Compared to other
DG methods, HMOE shows competitive performance and achieves SOTA results in some
cases.

6.1 introduction

Domain generalization (DG) aims to train models on known domains that can generalize
well to unseen domains, which is of crucial importance for deploying models in safety-
critical real-world applications. Over the past decade, a variety of DG algorithms have been
proposed [68, 213, 236], focusing primarily on developing DG-specific data augmentation
techniques and learning domain-invariant representations to build generalizable predictors.
However, many high-performing DG algorithms rely on domain labels to explicitly reduce
domain discrepancy, severely limiting their applicability in real-world scenarios where
domain annotation may be prohibitively expensive. Additionally, current DG algorithms
lack interpretability and fail to provide insight into the causes of success or failure in
generalizing to new domains. Therefore, the goal of this work is to develop a novel DG
algorithm which does not require domain labels and is more interpretable.

We follow the nomenclature of [25], which refers to DGwith domain labels as vanilla DG
and the more challenging DG without domain labels as compound DG. Our work focuses
on addressing compound DG through inferring latent domains from mixed-domain data
and using them efficiently. [16, 39, 140] demonstrated that using domain-wise datasets can
theoretically achieve lower generalization error bounds and better DG performance than
using mixed data directly, indicating the importance of domain information. Furthermore,
latent domain discovery helps us understand the workings of models and enhances inter-

71

[July 6, 2023 at 13:52 – Version 0]

72 hmoe: hypernetwork-based mixture of experts for domain generalization

pretability. To make the problem tractable, we assume that latent domains are distinct and
separable.

In this chapter, we propose HMOE: Hypernetwork-based Mixture of Experts (MoE).
MoE is a well-established learning paradigm that aggregates a number of experts by calcu-
lating the weighted sum of their predictions [88, 89], where the aggregation weights, also
known as gate values, are determined by a routing mechanism and add up to 1. To discover
latent domains, HMOE leverages MoE’s divide and conquer property, that is, the routing
mechanism can learn to softly partition the input space into subspaces in an unsupervised
manner during training [227], with each assigned to an expert. We further expect that
each subspace is associated with a latent domain, enabling latent domain discovery. During
inference, we can compare the similarities between an unseen test domain and the inferred
domains based on gate values, hence improving interpretability. [69, 235] have validated
MoE in domain adaptation [214] and mentioned that MoE can leverage the specialty of
individual domain and alleviate negative knowledge transfer [191] compared to using a
single model to learn multiple different domains.

HMOE innovatively uses a neural network, called a hypernetwork [70], which takes
vectors as input to generate the weights of experts of MoE. By mapping vectors into experts,
hypernetworks enable the exploration of experts’ similarities in a low-dimensional vector
space, facilitating latent domain discovery. Hypernetworks also serve as a link between
experts, providing a platform for them to exchange information and promoting knowledge
sharing.

MoE’s intrinsic soft partitioning is not always effective and sometimes fails to maintain
a consistent division of the input space, especially when the distinction between latent
domains is not significant. To address this issue, we propose a differentiable dense-to-sparse
Top-1 routing algorithm, which forces gate values to become one-hot and converges to
hard partitioning. This leads to sparse-gated MoE, which improves and stabilizes latent
domain discovery. In addition, to better incorporate hypernetworks intoMoE, we introduce
an embedding space that contains a set of learnable embedding vectors corresponding
one-to-one with experts. This embedding space is fed to hypernetworks to generate the
weights of experts and is also part of the routing mechanism to compute gate values, thus
enhancing the interaction between hypernetworks and the routing mechanism.

We summarize our contributions as follows: (1) We present a novel DG method, HMOE,
within the framework of MoE. HMOE does not require domain labels, enables latent
domain discovery, and offers excellent interpretability. (2) HMOE innovates the use of
hypernetworks to generate expert weights and achieves sparse-gated MoE. (3) As far as
we know, HMOE is the first work that can jointly learn and utilize latent domains in an
end-to-end way. (4) We conduct comprehensive experiments to compare HMOE with
other DG methods under a fair and unified evaluation framework – DomainBed [68].
HMOE achieves competitive performance and even state-of-the-art results in some cases.

The rest of this chapter is organized as follows. In Sec. 6.2, we present previous work on
DG and compare our proposed HMOE with some existing methods for compound DG. In
Sec. 6.3, we introduce the architecture of HMOE and define various losses to train HMOE.
In Secs. 6.4 and 6.5, we evaluate HMOE using a toy regression problem and DomainBed.
Last, we summarize our work and propose some research directions to improve HMOE in
Sec. 6.6.

[July 6, 2023 at 13:52 – Version 0]

6.2 related work 73

6.2 related work

6.2.1 Domain generalization (DG)

The goal of DG is to train a predictor on known domains that can generalize well to unseen
domains.

6.2.1.1 Vanilla DG

The first line of work is to design DG-specific data augmentation techniques to increase the
diversity and quantity of training data to improve DG performance [120, 158, 178, 208, 226,
230, 237, 238]. Previous work learned domain-invariant representations through invariant
risk minimization [2, 5, 102], kernel methods [16, 57, 60, 140], feature alignment [61, 113,
127, 139, 147, 154, 194, 199, 212], and domain-adversarial training [58, 59, 65, 113, 116].
Another approach is to disentangle latent features into class-specific and domain-specific
representations [86, 93, 143, 155, 229]. General machine learning paradigms were also
applied to vanilla DG, such as meta-learning [7, 42, 110, 111], self-supervised learning [21,
94], gradient manipulation [84, 165, 180], and distributionally robust optimization [102,
169].

6.2.1.2 Compound DG

There are some DG algorithms that do not require domain labels by design [25, 84, 115,
127, 143, 229]. Besides improving DG performance, latent domain discovery is also an
important task for compound DG and contributes to better interpretability. [25, 127] can
do this but have two main limitations: (1) Their methods proceed in two phases: first
infer latent domains from mixed data and then deal with DG using the inferred domains,
which is similar to vanilla DG. The problem is that the second phase depends on the first
and cannot provide some feedback to correct possible errors in domain discovery. (2)
Their methods assume that domain shift arises from stylistic differences to identify latent
domains, which does not always hold.

On the contrary, all components of HMOE are jointly optimized in an end-to-end
fashion, and HMOE leverages MoE to discover latent domains without an explicit induced
bias on the cause of domain shift.

6.2.2 Hypernetworks

A hypernetwork is a neural network that generates the weights of another target network.
Hypernetworks were initially proposed by [70] and have since been applied to optimiza-
tion problems [124, 144], meta-learning [233], continuous learning [20, 210], multi-task
learning [119, 126, 195], few-shot learning [176], and federated learning [177].

6.2.3 Mixture of Experts (MoE)

MoE was originally proposed by [88, 89] and consists of two main components: experts
and a gate network, as shown in Fig. 6.1. The output of MoE is the weighted sum of experts,
with gate values calculated by the gate network on a per-example basis. In recent years,
MoE has regained attention as a way to scale up deep learning models and more efficiently

[July 6, 2023 at 13:52 – Version 0]

74 hmoe: hypernetwork-based mixture of experts for domain generalization

Gate Network Expert 1 Expert 2 Expert

(a) Classical Mixture of Experts

Ex
pe

rt
s

0.57 0.18 0.05 0.21

0.11 0.27 0.59 0.02

0.09 0.35 0.13 0.74

1 1 1 1

Input examples

(b) Gate value matrix

Figure 6.1: In Figure (a), Mixture of Experts calculates the weighted sum of experts’ outputs. In
Figure (b), the aggregation weights, also known as gate values, are calculated by the gate
network on a per-example basis.

harness modern hardware [44, 48, 49, 107, 179, 241]. In this case, sparse MoE is preferred,
which routes each example only to the experts with Top-1 or Top-K gate values, instead of
all of them.

6.2.4 Application of hypernetworks and MoE in DG

To the best of our knowledge, no work has applied hypernetworks to solve DG in computer
vision. Recently, [207] applied hypernetworks to DG in natural language processing (NLP)
and achieved SOTA results on two NLP-related DG tasks.

As for MoE, [108] proposed replacing feed-forward network layer (FFN) of Vision
Transformer (ViT) [41] with a sparse mixture of FFN experts to improve DG performance.
[69, 235] applied MoE to a task similar to DG, namely domain adaptation [214], but they
require domain labels to train an expert for each domain separately. [235] aggregates the
outputs of experts via a transformer-based aggregator, but its aggregator is trained with
fixed experts and cannot provide probabilities of experts, while HMOE can do this

6.3 method

6.3.1 Problem setting

Let X denote an input space and Y a target space. A domain S is characterized by a joint
distribution P s

XY on X × Y . In vanilla DG setting, we have a training set containing M
known domains, i.e.,DV

tr = {Ds}Ms=1 withDs = {(xs
i , y

s
i , d

s
i)}Ns

i=1 where (xs
i , y

s
i) ∼ P s

XY

and dsi is the domain index or label. Also consider a test datasetDte composed of unknown
domains different from those ofDV

tr. Vanilla DG aims to train a robust predictor f : X → Y
on DV

tr to achieve a minimum predictive error on Dte, i.e., minf E(x,y)∼Dte [`(f(x), y)],
where ` is the loss function.

Our work focuses on the more difficult compound DG, for which the training set
Dtr = {(xi, yi)}Ni=1 contains mixed domains and has no domain annotation. However,
as demonstrated in [68, 213, 236], intrinsic inter-domain relationships play a key role in

[July 6, 2023 at 13:52 – Version 0]

6.3 method 75

obtaining better generalization performance. Therefore, our proposed HMOE is designed
to discover latent domains by dividingDtr into clusters that match human intuition about
visual relationships between different domains, and to fully leverage the learned domain
information to perform well on unknown domains.

6.3.2 Overall architecture

Featurizer

D2V
Encoder

Gate
Function

Embedding
Space

Classifier

Output

Gate values

Mixed data

HyperNetwork

(a) Architecture of HMOE

Gate Function

Euclidean distance

Softmax

(b) Gate function

Figure 6.2: (a) In the upper branch (i.e., the domain path), the input is mapped to the embedding
space through the D2V encoder, and gate values are calculated by a predefined gate
function. In the lower branch (i.e., the classifier path), the hypernetwork takes embedding
vectors as input to create a set of classifiers. The final output is the weighted sum of
classifiers’ outputs. (b) The gate function determines gate values based on the distances
between the output of the D2V encoder and the embedding vectors. The smaller the
distance, the greater the gate value.

An overview of the HMOE architecture is depicted in Fig. 6.2a. HMOE processes each
input x through two paths: the domain path, which is intended to discover latent domains,
and the classifier path, which aims to train a classifier expert for each latent domain.

The classifier path begins with a featurizer hz to extract high-level features from x, which
can be a pretrained network, such as VGG [181], ResNet [74], or ViT [41]. We define a
discrete learnable embedding space E consisting of K embedding vectors {ek ∈ RD}Kk=1

(D represents the embedding dimension), each corresponding to a classifier expert. These
vectors are fed into a hypernetwork fh to generate a set of weights {θk}Kk=1, which further
form a set of experts {fc(:; θk)}Kk=1. The output of the featurizer z is passed to these experts
to compute their corresponding outputs, that is, yk = fc(z; θk).

The domain path begins with a Domain2Vec (D2V) encoder hv, which transforms x
into the embedding space E and outputs v ∈ RD. The output v is then compared with the
embedding vectors through a predefined gate function g(v, E), as shown in Fig. 6.2b, to
produce a set of probabilities p = {pk}Kk=1. The final output of HMOE is the weighted sum
of the outputs of experts as follows:

y =
K∑
k=1

pkyk = 〈g(hv(x), E), [fc(hz(x); fh(ek))]
K
k=1〉 (6.1)

[July 6, 2023 at 13:52 – Version 0]

76 hmoe: hypernetwork-based mixture of experts for domain generalization

In the classical MoE, the gate network and experts share the same input. In contrast,
the D2V encoder of HMOE takes images as input rather than the featurizer’s extracted
features, whichmainly contain class-specific information for classification. If we connect the
D2V encoder to the featurizer, HMOE risks separating the input space based on semantic
categories rather than domain-wise distinction.

6.3.3 Hypernetworks

We use the hypernetwork fh taking a vector e as input to generate the weights of the
classifier fc. In our work, both fh and fc are MLPs. In a sense, fc acts as a placeholder
computational graph, e can be seen as a conditioning signal, and fh maps e to a function.
The role of fh is multifaceted: (1) fh eases latent domain discovery. (2) fh allows for the use
of many experts without significantly increasing the number of parameters. (3) Compared
to the classical MoE, fh offers another way of interaction between experts and the routing
mechanism besides the aggregation of experts. (4) As we will see later, by directly taking
the D2V encoder as input, fh enables the generalization of experts beyond aggregation.

6.3.4 Routing mechanism

6.3.4.1 Gate function

To quantify the responsibilities of experts for each input example and to aggregate experts’
outputs, we need to calculate gate values p. As shown in Fig. 6.2b, based on the output
of the D2V encoder v and the embedding space E , we define a gate function g(v, E) to
calculate p as follows:

dk = ‖v − ek‖2 (6.2a)
sk = − log(d2k + ε) (6.2b)

pk =
exp(sk)∑K
j=1 exp(sj)

(6.2c)

where ε is a small value. The negative logarithm in Eq. (6.2b) is used to establish a negative
correlation between dk and pk (i.e., the smaller dk, the larger pk) and to nonlinearly rescale
the distance d (i.e., stretch small d and squeeze great d), which makes p less sensitive to
large d.

6.3.4.2 Differentiable dense-to-sparse Top-1 routing

Based on gate values p, the routing mechanism determines where and how to route input
examples. A consistent and cohesive routing is crucial to the training stability and conver-
gence of MoE [32]. In order to stabilize the routing and enhance latent domain discovery
to capture less obvious domain differences, sparse-gated MoE is preferable. However, the
commonly used Top-1 or Top-K functions are not differentiable and cause oscillatory
behavior of gate values during training [72]. To overcome this limitation, we propose a
differentiable dense-to-sparse Top-1 routing algorithm by introducing an entropy loss on
p as follows:

Len = E(x,y)∼Dtr

[
H
(
g(hv(x), E)

)]
(6.3)

[July 6, 2023 at 13:52 – Version 0]

6.3 method 77

where H(·) denotes the entropy of a distribution. In practice, we multiply Len by γen that
linearly increases from 0 to 1 in the first half of training and remains at 1 in the second.
Early on, γen is small, and the distances between v and the embedding vectors are almost
the same, leading to a uniform p. Therefore, all experts can be fully trained and gradually
become specialized. In the later stages,Len forces p to become one-hot based on specialized
experts.

Due to the negative logarithm in Eq. (6.2b), the D2V encoder has to move towards one
of the embedding vectors rather than away from the others in order to minimize Len. As a
result, the output of the D2V encoder will converge to E and become quantized during
training.

6.3.4.3 Expert load balancing

SparseMoEmay suffer from an unbalanced expert load, which is problematic if only a small
subset of experts are used while the others are left idle. To alleviate this problem, a widely
used approach is to introduce an auxiliary importance loss CV (I(X))2 [179], where X
represents a single batch, I(X) = [I1(X), · · · , IK(X)] denotes the importance of experts,
for which Ik(X) is defined as the sum of gate values assigned to the kth expert (i.e., sum
the gate value matrix in Fig. 6.1b along the example dimension), and CV is the coefficient
of variation. However, [152] showed that this importance loss over-penalizes unbalanced
expert utilization and may be counter-productive, since in most cases the expert load is
naturally unbalanced. In this case, [152] defined a distribution P = I(X)/

∑
I(X) and

used the KL-divergence between P and the uniform distribution U to balance the expert
load, which is also used in our work:

Lkl = DKL(P‖U) = DKL

(
I(X)∑
I(X)

‖U
)

(6.4)

Compared to the importance loss, Lkl achieves a better trade-off between expert special-
ization and load balancing.

6.3.5 Embedding space

The embedding space E plays a key role in HMOE. As we can see, the embedding vectors
have an effect on both the generation of expert weights and the routing mechanism, thus
serving as a bridge to balance these two parts. In addition, these embedding vectors are
learnable like the weights of neural networks and attract the D2V encoder during training
under the influence of Len.

6.3.6 Class-adversarial training on D2V

We expect the D2V encoder hv to contain as little class-specific information as possible,
which ensures that HMOE partitions the input space based on domain-wise distinction
rather than semantic categories. Inspired by Domain-Adversarial Neural Networks [59], we
define an adversarial classifier fad

c taking v as input and add the following loss to perform
class-adversarial training on hv:

Lad = E(x,y)∼Dtr

[
`ce(f

ad
c (GRL(v, λgrl)), y)

]
(6.5)

[July 6, 2023 at 13:52 – Version 0]

78 hmoe: hypernetwork-based mixture of experts for domain generalization

where `ce denotes the cross-entropy loss and GRL represents the gradient reversal layer,
which acts as an identity function in the forward pass and multiplies the gradient by−λgrl

in the backward pass. As suggested in [59], we define λgrl as follows:

λgrl = 2/(1 + exp(−10× pcttr))− 1 (6.6)

where pcttr varies linearly from 0 to 1 during training.

6.3.7 Semi-/supervised learning on domains

Due to the probabilistic nature of MoE, given an input x and the corresponding gate
values p = {pk}Kk=1, we can interpret pk as the probability of selecting the kth expert Ek

given x, i.e., p(Ek|x). In addition, Ek is thought to be associated with a specific domain
Sm. Therefore, we get pk = p(Ek|x) = p(Sm|x). Consider a dataset with domain labels
Dd = {(xi, di)}Nd

i=1 (class labels are not necessary) with di ∈ {1, · · · ,Md}, we can make
use ofDd as follows:

Ld = E(x,d)∼Dd
[`ce(p, d)] (6.7)

Note that Md may be smaller than K , but this has no bearing on the calculation of Ld.
In this case, we assume that the first Md experts are assigned to Md domains, and the
other experts do not have domain information and learn from the data by themselves. If
all domain labels are available in the training data, Ld becomes supervised learning on
domains.

6.3.8 Training and inference

In addition to the losses mentioned above, the supervised loss on targets is as follows:

Ly = E(x,y)∼Dtr [`ce(ŷ, y)] (6.8)

where ŷ is the prediction of HMOE, as calculated by Eq. (6.1). The final training loss is:

L = λyLy + λenLen + λklLkl + λadLad + λdLd (6.9)

where λ are trade-off hyper-parameters to balance different losses. Generally, λy is set to 1
and Ld is not used for compound DG without domain labels.

For inference, we provide three modes: MIX, MAX, and OOD. MIX refers to the mixture
of experts that is calculated by Eq. (6.1), MAX employs the output of the expert with the
highest gate value, and OOD1 (Out of Domain) uses the output of a classifier whose weights
are generated by the hypernetwork directly taking the D2V encoder as input. OOD enables
the generalization of experts beyond aggregation.

6.4 toy regression problem

Although this work focuses on image classification, we start with a toy regression problem
to gain some insight into the learning dynamics of HMOE, such as how gate values evolve
and how experts become specialized gradually. We use the function y = sin(4πx) to

1 The OOD inference can be efficiently implemented using PyTorch-based JAX-like library, functorch.

[July 6, 2023 at 13:52 – Version 0]

6.4 toy regression problem 79

2.5

0.0

2.5

Ex
pe

rts

epochs=0
E1 E2 E3

epochs=1000 epochs=2000 epochs=20000

0 2
0

1

Ga
te

 v
al

ue
s

E1 E2 E3

0 2 0 2 0 2

Figure 6.3: We generate some data points using the function y = sin(4πx) in three intervals and
fit HMOE with three embedding vectors to these points. This figure shows the experts’
outputs and gate values during training. HMOEwell identifies three intervals and experts
also become specialized.

generate 10, 20, and 30 data points uniformly in three intervals: [0, 0.5], [1, 1.5] and [2, 2.5],
respectively. Unequal data points are used to simulate a naturally unbalanced expert load.

HMOE uses three embedding vectors of dimension D = 8, which are initialized using
the standard normal distribution. All networks of HMOE are MLPs with 32 hidden units.
The featurizer is a three-layer MLP whose input size is 1 and output size is 32. The encoder
is a three-layer whose input size is 1 and output size is D. The classifier is a two-layer MLP
whose input size is 32 and output size is 1. The hypernetwork is a four-layer MLP whose
input size is D and output size is the total number of learnable parameters (i.e., weights
and biases) of the classifier. In addition, all MLPs use the SiLU activation function [78]
except the output layers.

We employ Ly (use MSE as the loss function), Len, and Lkl with λy = λen = λkl = 1,
and train HMOE using Adam [95] with learning rate 0.001 over 20, 000 epochs. The
evolution of the experts’ outputs and gates values w.r.t. training epochs is shown in Fig. 6.3.
We can see that three experts compete with each other and gradually locate their positions,
and HMOE manages to identify three intervals even with imbalanced data.

After training, Fig. 6.4 compares three modes of inference, which all coincide well with
the training points. This toy regression problem gives us an intuitive understanding of
HMOE’s ability to detect heterogeneous patterns in data.

0 2
2.5

0.0

2.5
MIX

0 2

MAX

0 2

OOD

Figure 6.4: This figure shows three modes of inference of HMOE for the toy regression problem.

[July 6, 2023 at 13:52 – Version 0]

80 hmoe: hypernetwork-based mixture of experts for domain generalization

6.5 domainbed

6.5.1 Datasets and model evaluation

DomainBed [68] provides a unified codebase to implement and train DG algorithms and
integrates commonly used DG-related datasets. In this work, we conduct experiments on
Colored MNIST with 3 domains [5], Rotated MNIST with 6 domains [61], PACS with
4 domains [109], VLCS with 4 domains [46], OfficeHome with 4 domains [205], and
TerraIncognita with 4 domains [9]. In Tab. 6.1, we give detailed statistics and visualize
some samples for each domain of each dataset.

Dataset Domains # of classes # of samples

+90% +80% -90%

ColoredMNIST [5] 2 70,000

(degree of correlation between color and label)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦

RotatedMNIST [61] 10 70,000

Caltech101 LabelMe SUN09 VOC2007

VLCS [46] 5 10,729

Art Cartoon Photo Sketch

PACS [109] 7 9,991

Art Clipart Product Real

OfficeHome [205] 65 15,588

L100 L38 L43 L46

TerraIncognita [9] 10 24,788

(camera trap location)

Table 6.1: Description and visualization of datasets used in our experiments (Adapted from [68])

To select models and tune hyper-parameters, DomainBed provides three options, of
which we select the training-domain validation that randomly draws 80% from the data of
each training domain to form the training set and uses the remaining as the validation set.
This option best matches the setting of compound DG without domain labels and access to
test domains.

6.5.2 Implementation details

For Colored and Rotated MNIST, following [68], we use as the featurizer a four-layer
ConvNet (refer to Appendix D.1 of [68]). The D2V encoder hv consists of two conv layers
(32 units, 3× 3 kernels, ReLU), followed by global average pooling and a fully-connected
(fc) layer to map to the embedding dimension D.

[July 6, 2023 at 13:52 – Version 0]

6.5 domainbed 81

For other datasets, we use ResNet-502 pretrained on ImageNet [38] as the featurizer and
freeze all batch normalization layers. The D2V encoder hv cascades 3 conv layers (64-128-
256 units, stride 2, 4× 4 kernels, ReLU), two residual blocks (each has 2 conv layers with
256 units, 3× 3 kernels, ReLU), and a 3× 3 conv layer with D units followed by global
average pooling. We use Instance Normalization [200] with learnable affine parameters
before all ReLU of hv.

For all datasets, the classifier fc is a fc layer whose input size is the featurizer’s output
size (128 for ConvNet and 2048 for ResNet-50) and output size is the number of classes.
The hypernetwork fh is a five-layer MLP with 256-128-64-32 hidden units and SiLU [78]
except the output layer, and its input size is D and output size is the total number of
learnable parameters (i.e., weights and biases) of fc. In addition, we use the hyperfan
method proposed by [23] to initialize fh. If Lad is used, the adversarial classifier is a three-
layer MLP with 256 hidden units and ReLU except the output layer, and its input size is D
and output size is the number of classes. We set D = 32 and initialize embedding vectors
using the standard normal distribution.

We define three HMOE variants based on the number of embedding vectors K and
whether domain labels are used:

(1) HMOE-DL: Domain labels of Dtr are provided. In this case, we only use Ly and
Ld with λy = λd = 1 and discard other losses, and K is the number of training
domains per dataset.

(2) HMOE-DN: Domain numbers are known but domain labels. In this case, K is
the number of training domains per dataset. We use Ly, Len, Lkl, and Lad with
λy = λen = λkl = 1 and λad = 0.01.

(3) HMOE-ND: No domain information is available and we use a fixed K = 5. The
setting of losses is the same as in HMOE-DN.

DomainBed trains all DG algorithms with Adam for 5,000 iterations. For Colored and
Rotated MNIST / other datasets, the learning rate is 0.001 / 5e-5, the batch size is 64 / 32
× number of training domains, and models are evaluated on the validation set every 100
/ 300 iterations. Each experiment uses one domain of a dataset as the test domain and
trains algorithms on the others, which is repeated 3 times with different random seeds.
The average accuracy over 3 replicates is reported. In addition, we do not tune HMOE’s
hyper-parameters and use the settings mentioned above consistently. Other DG algorithms
also use the default settings predefined in DomainBed. All experiments are performed on
PyTorch using a A5000 GPU.

6.5.3 Results

We use the up-to-date domain generalization benchmark on DomainBed, and the compar-
ison of HMOE (3 variants and 3 inference modes) with other DG algorithms is shown in
Tab. 6.2, where the best results are underlined. ERM means the vanilla supervised learning
that just fine-tunes ResNet-50 on mixed data, also called DeepAll in some papers and
serving as a performance baseline. We report the average accuracy of all test domains for
each dataset. Refer to Appendix B for detailed domain generalization results of each test
domain for each dataset.

2 For a fair comparison with other DG algorithms, we use the pretrained ResNet-50 of IMAGENET1K-V1 in
PyTorch, although V2 is better.

[July 6, 2023 at 13:52 – Version 0]

82 hmoe: hypernetwork-based mixture of experts for domain generalization

Algorithm Colored Rotated VLCS PACS OfficeHome Terra
MNIST MNIST Incognita

w/ Domain Labels
IRM [5] 52.0 97.7 78.5 83.5 64.3 47.6

GroupDRO [169] 52.1 98.0 76.7 84.4 66.0 43.2
Mixup [225] 52.1 98.0 77.4 84.6 68.1 47.9
MLDG [110] 51.5 97.9 77.2 84.9 66.8 47.7
CORAL [194] 51.5 98.0 78.8 86.2 68.7 47.6
MMD [113] 51.5 97.9 77.5 84.6 66.3 42.2
DANN [59] 51.5 97.8 78.6 83.6 65.9 46.7

CDANN [116] 51.7 97.9 77.5 82.6 65.8 45.8
MTL [16] 51.4 97.9 77.2 84.6 66.4 45.6
ARM [231] 56.2 98.2 77.6 85.1 64.8 45.5
VREx [102] 51.8 97.9 78.3 84.9 66.4 46.4

HMOE-DL
MIX 51.6 97.3 76.7 83.5 64.7 45.0
MAX 51.7 97.0 77.6 83.9 63.2 43.2
OOD 51.7 97.4 76.8 84.5 63.7 44.0

w/o Domain Labels
ERM [204] 51.5 98.0 77.5 85.5 66.5 46.1
RSC [84] 51.7 97.6 77.1 85.2 65.5 46.6

SagNet [143] 51.7 98.0 77.8 86.3 68.1 48.6

HMOE-DN
MIX 51.9 97.5 76.8 84.8 65.4 48.7
MAX 51.9 97.4 76.6 85.1 65.4 49.5
OOD 51.9 97.5 75.8 84.9 65.3 48.4

HMOE-ND
MIX 51.6 97.5 76.6 84.5 65.5 48.4
MAX 51.7 97.4 76.8 86.6 65.5 45.0
OOD 51.7 97.5 76.7 87.0 65.6 47.1

Table 6.2: Domain generalization results on DomainBed

[July 6, 2023 at 13:52 – Version 0]

6.5 domainbed 83

For Colored and Rotated MNIST, all algorithms exhibit similar performance, except the
impressive results of ARM. HMOE achieves SOTA results on PACS and TerraIncognita,
which well demonstrates its effectiveness. However, ERM outperforms HMOE and most
DG algorithms for VLCS and OfficeHome. VLCS contains real camera photos, and its
domain shift is mainly caused by changes in scene and perspective. We find that the visual
differences between different domains of VLCS are subtle. In this case, forcing to reduce
or model domain discrepancy may cause or aggravate overfitting. For OfficeHome, this is
also the case.

Interestingly, HMOE-DL is inferior to HMOE-DN/ND in most cases, which implies that
HMOE works better using its own learned domain information than using given domain
labels. We find that latent domains discovered by HMOE are more human-intuitive than
original domain labels (see Sec. 6.5.4).

0 2000 4000
iterations

0.00

0.25

0.50

0.75

1.00

d

OfficeHome
VLCS
Terra Incognita
PACS

Figure 6.5: Average of Ld over all test domains per dataset

HMOE-DN / ND are basically tied in terms of performance. For three inference modes,
MAX and OOD are competitive with MIX in most cases and can be used to sacrifice a
little accuracy for efficiency in practice because MAX and OOD are more computationally
efficient without computing all experts like MIX.

6.5.4 Latent domain discovery

We use t-SNE [202] to visualize the output of the D2V encoder, as shown in Fig. 6.6. We can
see that HMOE effectively partitions themixed data into a number of clusters, each centered
around an embedding vector. As expected, the output of the D2V encoder converges to
embedding vectors. For PACS (Fig. 6.6a), the training domains are well separated. Some
cartoon images look quite artistic and are classified as art. In addition, test photo samples
are projected into the art cluster, suggesting that the D2V encoder should capture some
semantics about latent domains since photo is closest to art. If we increases the number of
embedding vectors K to 5, cartoon and sketch clusters are split into two sub-clusters, as
shown in Fig. 6.6b. For TerraIncognita (Fig. 6.6c), the dots of the same color are largely
clustered together.The training domains are to some extent separated, although L38 and L43
are partially mixed. The test domain L46 seems to be more similar to L100. For OfficeHome
(Fig. 6.6d), the training domains aremixed within each cluster, indicating a conflict between
domain labels and inferred domains. This also explains why Ld cannot be significantly
reduced for OfficeHome in Fig. 6.5.

To intuitively understand howHMOE distinguishes between domains, we visualize some
samples to compare domain labels andHMOE’s clusters, as shown in Fig. 6.7. HMOE seems

[July 6, 2023 at 13:52 – Version 0]

84 hmoe: hypernetwork-based mixture of experts for domain generalization

to partition TerraIncognita based on illumination and OfficeHome based on background
complexity, which more matches human intuition than domain labels.

After the above analysis, we conclude that the success of HMOE, e.g., SOTA on PACS and
TerraIncognita, can be attributed to its ability to self-learn more reasonable and informative
domain knowledge and use it efficiently.

Art
Cartoon

Sketch
Photo

(a) PACS-DN

Art
Cartoon

Sketch
Photo

(b) PACS-ND (K = 5)

L100
L38

L43
L46

(c) TerraIncognita-DN

Art
Clipart

Product
Real

(d) OfficeHome-DN

Figure 6.6: The t-SNE visualization of the output of the D2V encoder. The suffixes in captions
(DN and ND) represent HMOE-DN / ND, red squares are embedding vectors, black
triangles are 20 samples randomly drawn from the test domain, and other dots are
training domains. The silhouette coefficients are 0.73, 0.72, 0.54 and 0.63 for Figs. 6.6a
to 6.6d, respectively.

6.5.5 Ablation study

In this section, we conduct an ablation study to analyze the contribution of each component
of HMOE. The results are shown in Tab. 6.3, which reports the average accuracy of three
inference modes. We employ the silhouette coefficient (SC) to quantitatively evaluate the
HMOE’s clustering based on both the compactness and separation of clusters. SC ranges
from -1 (poor) to 1 (good). We use gate values to identify clusters and the output of the
D2V encoder to measure the distance between them.

top-1 routing Len and expert load balancing Lkl

[July 6, 2023 at 13:52 – Version 0]

6.5 domainbed 85

Cl
us

te
r 0

L100

Cl
us

te
r 1

Cl
us

te
r 2

L38 L43 L46

(a) TerraIncognita-DN

Cl
us

te
r 0

Art

Cl
us

te
r 1

Cl
us

te
r 2

Clipart Product Real

(b) OfficeHome-DN

Figure 6.7: Comparison between domain labels and HMOE clusters

Name Len Lkl Lad VLCS PACS Office TerraInc Avg. SC
H1 - - - 76.1 83.2 64.2 46.8 0.37
H2 - - X 76.8 84.2 64.7 47.5 0.27
H3 X - - 76.3 81.8 63.7 43.4 Collapse
H4 X - X 75.9 82.1 62.2 44.1 Collapse
H5 X X - 76.0 84.0 64.2 47.0 0.65
H6 X X X 76.4 84.9 65.4 48.9 0.60

Table 6.3: Ablation study for HMOE-DN (avg. accuracy of MIX, MAX and OOD is reported,
Xmeans the corresponding loss is used, and SC denotes the silhouette coefficient.)

Tab. 6.3 shows that the joint use of Len and Lkl leads to better clustering with greater SC
and promotes latent domain discovery. Without them, HMOE divides the data through
MoE’s intrinsic soft partitioning, as shown in Fig. 6.8. H6 outperforms H2 in most cases,
which could indicate that better clustering helps improve the DG performance. However,
H1 and H5 have comparable performance, probably due to the absence of Lad. We find
that Len without Lkl suffers from the learning collapse problem, i.e., some embedding
vectors collapse together and the D2V encoder outputs similar values. An example is shown
Fig. 6.9. This shows the importance of Lkl.

Art
Clipart

Product
Real

Figure 6.8: Soft partitioning of HMOE for OfficeHome using K = 3 and only the target loss Ly

class-adversarial training Lad helps improve accuracy inmost cases, verifying
the necessity of removing class-specific information from the D2V encoder. H2 and H6

[July 6, 2023 at 13:52 – Version 0]

86 hmoe: hypernetwork-based mixture of experts for domain generalization

have smaller SC than H1 and H5, respectively, which is logical as class information can
still be used by H1 and H5 for clustering, but is somewhat removed for H2 and H6 via Lad.

6.5.6 More empirical analysis

more embedding vectors We further increase K to 8 and find that HMOE also
suffers from the learning collapse problem, as shown in Fig. 6.9. When embedding vectors
are much more than needed, HMOE has difficulties in how to correctly assign the data to
different experts.

Art
Cartoon

Sketch
Photo

Figure 6.9: Learning collapse for PACS with K = 8

train hmoe using ood As mentioned earlier, hypernetworks fh associate experts
with vectors, enabling the exploration of experts’ similarities in a low-dimensional vector
space and facilitating latent domain discovery. To verify this, we use OOD (i.e., fh takes
the D2V encoder hv as input) to train HMOE, which means that each input can have its
own expert, instead of selecting from a few given experts. This involves minimizing the
following loss:

Lood = E(x,y)∼Dtr

[
`ce
(
fc
(
hz(x); fh(hv(x))

)
, y
)]

(6.10)

After training, the D2V encoder is also able to distinguish between different domains, as
shown in Fig. 6.10. This nicely demonstrates the role of hypernetworks in learning and
capturing semantic similarities across domains.

Art
Cartoon

Sketch
Photo

Figure 6.10: Train HMOE using OOD for PACS

[July 6, 2023 at 13:52 – Version 0]

6.6 conclusion 87

use swin transformer as featurizer [108, 182] investigate the impact of
the backbone architecture (i.e., the featurizer for HMOE) on DG, and [108] found that
the transformer-based backbone outperforms the CNN-based counterpart. Motivated by
this, we replace ResNet-50 with Swin Transformer [122] (the pretrained small version in
PyTorch and its output size is 768) as the featurizer of HMOE-DN. The results are shown
in Tab. 6.4, where ERM just fine-tunes Swin Transformer and we report the MIX mode
of HMOE-DN. Tab. 6.4 is clearly superior to Tab. 6.2. HMOE-DN outperforms ERM on
PACS and TerraIncognita and they are comparable on the other two datasets.

VLCS PACS OfficeHome TerraIncognita
ERM [204] 79.8 86.9 76.0 54.1
HMOE-DN 79.6 87.6 76.1 55.3

Table 6.4: Use Swin Transformer as featurizer of HMOE-DN

6.6 conclusion

This chapter presents a novel DG method, HMOE, which does not require domain labels,
enables latent domain discovery, and provides excellent interpretability. HMOE uses the
framework of Mixture of Experts (MoE) to solve the DG problem and employs hyper-
networks to generate the weights of experts. Compared to other DG methods requiring
domain labels, HMOE shows competitive performance and achieves SOTA results on the
PACS and TerraIncognita datasets. It is worth mentioning that the discovery and utilization
of domain information are jointly undertaken for HMOE, rather than in stages like other
related work.

However, it also remains unclear how to effectively determine an appropriate number
of experts or embedding vectors to fully explore domain information while avoiding the
learning collapse. A promising solution that we will explore in future work is to use tree-
structured hierarchical MoE to discover hierarchical domain knowledge, where each level
contains only a number of experts but the number of multi-level inferred domains grows
exponentially.

Finally, HMOE is versatile and scalable, and it should also be applicable to a wide range
of problems beyond the scope of DG that are troubled by heterogeneous patterns.

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

7
CONCLUS ION AND PERSPECT IVE S

7.1 conclusion

In this thesis, we have concentrated on accelerating large-scale flash calculations through
parallel computing on specialized hardware accelerators, e.g., GPUs. By processing a batch
of inputs simultaneously, we have achieved significant speed-up compared to Carnot, our
in-house C++-based thermodynamic library, which conducts flash calculations one at a
time on CPUs. Our success can be attributed to two key contributions: the vectorization of
algorithms using the deep learning framework — PyTorch, which allows us to leverage
a wide range of hardware without requiring code modifications, and the use of neural
networks to replace time-consuming subroutines and provide more accurate initial values
for iterative processes. Specifically, we replaced stability analysis, the Wilson approximation,
and equations of state with neural networks to predict the stability of mixtures, provide bet-
ter initialization of distribution coefficients, and calculate fugacity coefficients, respectively.
We prioritized both speed and reliability rather than blindly pursuing acceleration. This is
crucial in mitigating the malfunctioning of neural networks caused by incorrect predic-
tions. For instance, when neural networks exhibit low confidence in predicting the stability
of mixtures, we continue to employ stability analysis. Additionally, we combined neural
networks with Carnot to deliver more accurate fugacity coefficients for flash calculations,
which turned out to be much faster than using Carnot alone.

We also delved into the challenge of effectively learning heterogeneous patterns in data,
which stems from our need to learn discontinuous fugacity coefficients. To tackle this
problem, we introduced a clustered regression network that can automatically divide the
entire space into two continuous parts and assign each part to an expert network.We further
extended the concept of discontinuity in regression to the field of image classification,
namely domain generalization (DG), and proposed a novel DG approach called HMOE,
which is capable of unsupervised learning of latent domains from mixed data and efficiently
using them via Mixture of Experts (MoE), with each expert being automatically assigned
to a domain. HMOE pioneers the use of hypernetworks to generate expert weights and
achieves sparse-gated MoE. Notably, HMOE can jointly learn and utilize latent domains in
an end-to-end manner.

7.2 perspectives

7.2.1 Improve the generalization of neural networks to components

We utilize neural networks to carry out a variety of machine learning tasks for a mixture
of fixed components, including both classification tasks such as predicting stability and
regression tasks such as learning distribution coefficients and fugacity coefficients. When
some components of the mixture are no longer needed, we can reuse original neural
networks by simply setting the corresponding molar fractions to 0 in the input of neural
networks. However, in the case of replacing or adding components, we have to retrain new
neural networks from scratch. Although we employ practical techniques, e.g., the cyclic

89

[July 6, 2023 at 13:52 – Version 0]

90 conclusion and perspectives

learning rate schedule, to enable neural networks to achieve superb performance with a
limited number of training epochs, training a neural network for every possible mixture is
clearly impractical and inefficient due to the infinite number of mixtures. Therefore, it is
essential to equip neural networks with the ability to generalize to different components.

To accomplish this, one potential solution is to incorporate molecular descriptors into
the input, enabling neural networks to factor in the properties of individual components
and the interactions between different components. Graph neural networks [172] are
particularly suitable for this purpose. Fig. 7.1 depicts an example of how to construct graph
data and utilize graph neural networks for different machine learning tasks.

Graph neural networks

Node level regression to learn distribution coefficients and fugacity coefficeints

Graph level regression to learn the compressibility factor

Graph level classification to predict stability

Node attributes

Edge attributes Global attributes

Figure 7.1: This figure demonstrates the construction of graph data to consider the properties of
components and the use of graph neural networks for various machine learning tasks.
The graph data consists of node, edge and global attributes, where Pc and Tc are the
critical pressure and temperature, respectively, ω is the acentric factor, εAB and βAB

denote the association energy and volume used in the CPA EoS, respectively, and kij
refers to the binary interaction parameter. Note that we set zi as a node attribute and
P and T as global attributes. Mixtures of different components are used to train graph
neural networks simultaneously.

7.2.2 A more interpretable method for domain generalization

While our proposed HMOE can partition mixed data into multiple clusters, each of which
contains images that seem to share certain semantic similarities, such as background
complexity, illumination strength, and painting style, it is still uncertain what criteria
HMOE employs to conduct clustering. As a result, we aim to design a more interpretable
approach for domain generalization in the absence of domain labels.

[July 6, 2023 at 13:52 – Version 0]

7.2 perspectives 91

To achieve this goal, one potential approach is to use the framework of Variational
Autoencoder (VAE) [96] for disentangled representation learning [198] in order to identify
the explanatory factors of the underlying data-generating process. This approach requires
us to make two assumptions: (1) Images are generated from two sets of factors of variation,
class-related zy and domain-dependent zd, with one set being independent of the other. (2)
Each set of factors has a clustering structure controlled by a categorical variable, i.e., class y
or domain d. Specifically, the space of factors can be divided into a number of distinct or
less overlapping manifolds, each of which is associated with a class or domain category.
The first assumption permits the disentanglement of factors of variation into zy and zd,
and the second one indicates two priors of zy and zd conditioned on y and d, respectively.
[92] demonstrated that conditionally factorized priors enhance the identifiability of VAE,
providing greater opportunities to discover the true latent factors.

To enforce these two assumptions, Fig. 7.2 depicts the prototype of a VAE-based DG
method, which consists of class and domain encoders to yield zy and zd, respectively, and
a decoder to reconstruct images based on the concatenation of zy and zd. Moreover, zy
is learned with the guidance of available class labels, which exhibits strong invariance to
cross-domain variation and allows us to develop a robust class classifier, while zd is learned
in an unsupervised manner during data reconstruction. Once all components of Fig. 7.2
are well trained, the decoder can act as an image generator, enabling the investigation of the
meaning of each factor of zd by varying its value to observe the changes in reconstructed
images.

Our next step is to devise an efficient disentanglement strategy that enhances the identi-
fiability of zd by minimizing its informativeness regarding classes y and reduces the mutual
information between zy and zd to promote disentanglement.

Domain Encoder

Decoder

Domain
specific

Class EncoderOriginal images Reconstructed
images

Disentanglement

Class
Classifier

Class
specific

Figure 7.2: This figure shows the prototype of a VAE-based DG method aiming to disentangle latent
representation into class/domain-specific factors, i.e., zy and zd.

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

Part IV

APPENDIX

[July 6, 2023 at 13:52 – Version 0]

[July 6, 2023 at 13:52 – Version 0]

A
DER IVAT ION OF THE CLOSED - FORM EXPRE S S ION OF THE
PROBAB I L I T Y DENS IT Y FUNCT ION

This appendix is the supplementary material to Sec. 4.3. We will use capital letters to
represent random variables instead of lowercase letters used in the text to align with the
thermodynamic notation. In this appendix, we aim to derive the closed-form expression
for the probability density function of Zi, which is sampled in the following way:

Xi ∼ U(0, 1) using LHS

Zi =
Xi

Y
where Y =

N∑
i=1

Xi

The distribution of Xi is a uniform distribution U(0, 1) with mean µ0 = 0.5 and variance
σ2
0 = 1/12.Without loss of generality, we useX andZ to refer to anyXi andZi, respectively.

Based on the central limit theorem, the distribution of Y can be approximated by a normal
distributionN (µY , σ

2
Y), where µY = Nµ0 and σ2

Y = Nσ2
0 . By definition, we can calculate

the cumulative distribution function of Z as follows:

FZ(z) = P (Z ≤ z) = P (
X

Y
≤ z) (A.2)

Then we express FZ(z) as an integration of the joint density function of X and Y , denoted
by fX,Y (x, y), as follows:

FZ(z) =

∫ 1

0

∫ ∞

x/z

fX,Y (x, y)dydx (A.3)

Based on Bayes’ rule, we have fX,Y (x, y) = fY |X(y|x) fX(x). Note that X and Y are
not independent of each other, and the conditional distribution of Y given X , denoted
by fY |X(y|x), can be approximated by a normal distribution N (µ + x, σ2), where µ =
(Nc − 1)µ0 and σ2 = (Nc − 1)σ2

0 . Consequently, we can calculate fX,Y (x, y) as follows:

fX,Y (x, y) = fY |X(y|x) fX(x) (A.4)
= fY |X(y|x) (A.5)

=
1√
2πσ

exp
(
−y − (µ+ x)

2σ2

)
(A.6)

for 0 ≤ x ≤ 1 and x ≤ y ≤ N − 1 + x

We then get the the probability density function of Z by differentiating Eq. (A.3):

fZ(z) =
d

dz

∫ 1

0

(
FX,Y (x,N − 1 + x)− FX,Y

(
x,

x

z

))
dx (A.7a)

=

∫ 1

0

d

dz

(
FX,Y (x,N − 1 + x)− FX,Y

(
x,

x

z

))
dx (A.7b)

=

∫ 1

0

x

z2
fX,Y

(
x,

x

z

)
dx (A.7c)

=

∫ 1

0

x√
2πσz2

exp
(
−
(1−z

z
x− µ)2

2σ2

)
dx (A.7d)

95

[July 6, 2023 at 13:52 – Version 0]

96 derivation of the closed-form expression of the probability density function

where FX,Y (x, y) denotes the joint cumulative distribution of X and Y . We transform
Eq. (A.7d) using u = (1− z)x/z and ν = u− µ, and we have:

fZ(z) =

∫ 1−z
z

−µ

−µ

ν + µ√
2πσ(1− z)2

exp
(
− ν2

2σ2

)
dν (A.8)

Fortunately, the above equation can be further simplified to yield the final closed-form
expression of fZ(z) that we used in Sec. 4.3:

fZ(z) =
σ√

2π(1− z)2

(
exp

(
− µ2

2σ2

)
− exp

(
−
(1−z

z
− µ)2

2σ2

))
+

µ

(1− z)2

(
Φ

(1−z
z
− µ

σ

)
− Φ

(
−µ
σ

))
(A.9)

where Φ(·) is the cumulative distribution function of the standard normal distribution,
µ = (N − 1)µ0 and σ2 = (N − 1)σ2

0 .

[July 6, 2023 at 13:52 – Version 0]

B
DETA I LED DOMAIN GENERAL IZAT ION RESULT S

This appendix is the supplementary material to Sec. 6.5.3, and we provide the domain
generalization results of each test domain for each dataset. The best results are underlined.

Algorithm +90% +80% -90% Avg
w/ Domain Labels

IRM [5] 72.5 73.3 10.2 52.0
GroupDRO [169] 73.1 73.2 10.0 52.1

Mixup [225] 72.7 73.4 10.1 52.1
MLDG [110] 71.5 73.1 9.8 51.5
CORAL [194] 71.6 73.1 9.9 51.5
MMD [113] 71.4 73.1 9.9 51.5
DANN [59] 71.4 73.1 10.0 51.5

CDANN [116] 72.0 73.0 10.2 51.7
MTL [16] 70.9 72.8 10.5 51.4
ARM [231] 82.0 76.5 10.2 56.2
VREx [102] 72.4 72.9 10.2 51.8

HMOE-DL
MIX 71.8 72.9 10.1 51.6
MAX 71.9 73.1 10.1 51.7
OOD 71.9 73.2 10.1 51.7

w/o Domain Labels
ERM [204] 71.7 72.9 10.0 51.5
RSC [84] 71.9 73.1 10.0 51.7

SagNet [143] 71.8 73.0 10.3 51.7

HMOE-DN
MIX 72.0 73.0 10.7 51.9
MAX 72.0 73.0 10.7 51.9
OOD 72.0 73.0 10.7 51.9

HMOE-ND
MIX 71.6 73.2 10.1 51.6
MAX 71.9 73.2 10.2 51.7
OOD 71.6 73.5 10.1 51.7

Table B.1: Domain generalization results on ColoredMNIST

97

[July 6, 2023 at 13:52 – Version 0]

98 detailed domain generalization results

Algorithm 0 15 30 45 60 75 Avg
w/ Domain Labels

IRM [5] 95.5 98.8 98.7 98.6 98.7 95.9 97.7
GroupDRO [169] 95.6 98.9 98.9 99.0 98.9 96.5 98.0

Mixup [225] 95.8 98.9 98.9 98.9 98.8 96.5 98.0
MLDG [110] 95.8 98.9 99.0 98.9 99.0 95.8 97.9
CORAL [194] 95.8 98.8 98.9 99.0 98.9 96.4 98.0
MMD [113] 95.6 98.9 99.0 99.0 98.9 96.0 97.9
DANN [59] 95.0 98.9 99.0 99.0 98.9 96.3 97.8

CDANN [116] 95.7 98.8 98.9 98.9 98.9 96.1 97.9
MTL [16] 95.6 99.0 99.0 98.9 99.0 95.8 97.9
ARM [231] 96.7 99.1 99.0 99.0 99.1 96.5 98.2
VREx [102] 95.9 99.0 98.9 98.9 98.7 96.2 97.9

HMOE-DL
MIX 94.5 97.7 98.8 98.7 99.0 94.9 97.3
MAX 94.1 97.9 98.5 98.5 98.6 94.7 97.0
OOD 95.0 97.9 98.6 98.9 99.1 94.7 97.4

w/o Domain Labels
ERM [204] 95.9 98.9 98.8 98.9 98.9 96.4 98.0
RSC [84] 94.8 98.7 98.8 98.8 98.9 95.9 97.6

SagNet [143] 95.9 98.9 99.0 99.1 99.0 96.3 98.0

HMOE-DN
MIX 94.1 98.6 98.7 98.6 99.0 95.9 97.5
MAX 94.0 98.6 98.7 98.6 98.8 95.9 97.4
OOD 94.0 98.6 98.7 98.6 99.0 95.9 97.5

HMOE-ND
MIX 94.1 98.6 98.7 98.6 99.0 95.9 97.5
MAX 94.0 98.6 98.7 98.6 98.8 95.9 97.4
OOD 94.0 98.6 98.7 98.6 99.0 95.9 97.5

Table B.2: Domain generalization results on RotatedMNIST

[July 6, 2023 at 13:52 – Version 0]

detailed domain generalization results 99

Algorithm Caltech101 LabelMe SUN09 VOC2007 Avg
w/ Domain Labels

IRM [5] 98.6 64.9 73.4 77.3 78.5
GroupDRO [169] 97.3 63.4 69.5 76.7 76.7

Mixup [225] 98.3 64.8 72.1 74.3 77.4
MLDG [110] 97.4 65.2 71.0 75.3 77.2
CORAL [194] 98.3 66.1 73.4 77.5 78.8
MMD [113] 97.7 64.0 72.8 75.3 77.5
DANN [59] 99.0 65.1 73.1 77.2 78.6

CDANN [116] 97.1 65.1 70.7 77.1 77.5
MTL [16] 97.8 64.3 71.5 75.3 77.2
ARM [231] 98.7 63.6 71.3 76.7 77.6
VREx [102] 98.4 64.4 74.1 76.2 78.3

HMOE-DL
MIX 97.7 62.3 72.0 74.8 76.7
MAX 97.0 63.6 73.2 76.7 77.6
OOD 97.0 63.4 72.0 74.9 76.8

w/o Domain Labels
ERM [204] 97.7 64.3 73.4 74.6 77.5
RSC [84] 97.9 62.5 72.3 75.6 77.1

SagNet [143] 97.9 64.5 71.4 77.5 77.8

HMOE-DN
MIX 97.1 63.8 71.2 75.1 76.8
MAX 97.4 63.4 70.9 74.8 76.6
OOD 96.4 62.9 69.3 74.7 75.8

HMOE-ND
MIX 95.8 65.7 72.4 72.5 76.6
MAX 97.3 61.7 72.1 76.1 76.8
OOD 96.9 61.8 72.0 76.0 76.7

Table B.3: Domain generalization results on VLCS

[July 6, 2023 at 13:52 – Version 0]

100 detailed domain generalization results

Algorithm Art Cartoon Photo Sketch Avg
w/ Domain Labels

IRM [5] 84.8 76.4 96.7 76.1 83.5
GroupDRO [169] 83.5 79.1 96.7 78.3 84.4

Mixup [225] 86.1 78.9 97.6 75.8 84.6
MLDG [110] 85.5 80.1 97.4 76.6 84.9
CORAL [194] 88.3 80.0 97.5 78.8 86.2
MMD [113] 86.1 79.4 96.6 76.5 84.6
DANN [59] 86.4 77.4 97.3 73.5 83.6

CDANN [116] 84.6 75.5 96.8 73.5 82.6
MTL [16] 87.5 77.1 96.4 77.3 84.6
ARM [231] 86.8 76.8 97.4 79.3 85.1
VREx [102] 86.0 79.1 96.9 77.7 84.9

HMOE-DL
MIX 84.1 77.3 96.3 76.4 83.5
MAX 82.9 78.6 95.9 78.1 83.9
OOD 85.0 78.3 95.3 79.4 84.5

w/o Domain Labels
ERM [204] 84.7 80.8 97.2 79.3 85.5
RSC [84] 85.4 79.7 97.6 78.2 85.2

SagNet [143] 87.4 80.7 97.1 80.0 86.3

HMOE-DN
MIX 83.9 82.3 95.0 77.9 84.8
MAX 84.7 82.4 96.4 76.9 85.1
OOD 83.9 80.2 95.6 80.1 84.9

HMOE-ND
MIX 88.8 78.9 96.6 73.9 84.5
MAX 88.8 82.7 95.7 79.1 86.6
OOD 88.9 84.3 95.7 79.0 87.0

Table B.4: Domain generalization results on PACS

[July 6, 2023 at 13:52 – Version 0]

detailed domain generalization results 101

Algorithm Art Clipart Product Real Avg
w/ Domain Labels

IRM [5] 58.9 52.2 72.1 74.0 64.3
GroupDRO [169] 60.4 52.7 75.0 76.0 66.0

Mixup [225] 62.4 54.8 76.9 78.3 68.1
MLDG [110] 61.5 53.2 75.0 77.5 66.8
CORAL [194] 65.3 54.4 76.5 78.4 68.7
MMD [113] 60.4 53.3 74.3 77.4 66.3
DANN [59] 59.9 53.0 73.6 76.9 65.9

CDANN [116] 61.5 50.4 74.4 76.6 65.8
MTL [16] 61.5 52.4 74.9 76.8 66.4
ARM [231] 58.9 51.0 74.1 75.2 64.8
VREx [102] 60.7 53.0 75.3 76.6 66.4

HMOE-DL
MIX 59.5 50.5 73.6 75.2 64.7
MAX 58.5 47.7 72.5 74.1 63.2
OOD 58.6 49.9 72.8 73.7 63.7

w/o Domain Labels
ERM [204] 61.3 52.4 75.8 76.6 66.5
RSC [84] 60.7 51.4 74.8 75.1 65.5

SagNet [143] 63.4 54.8 75.8 78.3 68.1

HMOE-DN
MIX 59.4 52.9 74.6 74.7 65.4
MAX 60.0 52.1 74.6 74.9 65.4
OOD 60.2 52.5 73.6 74.7 65.3

HMOE-ND
MIX 60.0 52.4 74.3 75.1 65.5
MAX 60.0 52.4 73.3 76.3 65.5
OOD 60.0 54.1 72.8 75.6 65.6

Table B.5: Domain generalization results on OfficeHome

[July 6, 2023 at 13:52 – Version 0]

102 detailed domain generalization results

Algorithm L100 L38 L43 L46 Avg
w/ Domain Labels

IRM [5] 54.6 39.8 56.2 39.6 47.6
GroupDRO [169] 41.2 38.6 56.7 36.4 43.2

Mixup [225] 59.6 42.2 55.9 33.9 47.9
MLDG [110] 54.2 44.3 55.6 36.9 47.7
CORAL [194] 51.6 42.2 57.0 39.8 47.6
MMD [113] 41.9 34.8 57.0 35.2 42.2
DANN [59] 51.1 40.6 57.4 37.7 46.7

CDANN [116] 47.0 41.3 54.9 39.8 45.8
MTL [16] 49.3 39.6 55.6 37.8 45.6
ARM [231] 49.3 38.3 55.8 38.7 45.5
VREx [102] 48.2 41.7 56.8 38.7 46.4

HMOE-DL
MIX 43.1 44.9 55.8 36.1 45.0
MAX 42.2 38.1 55.0 37.4 43.2
OOD 43.0 42.2 54.6 36.3 44.0
w/o Domain Labels

ERM [204] 49.8 42.1 56.9 35.7 46.1
RSC [84] 50.2 39.2 56.3 40.8 46.6

SagNet [143] 53.0 43.0 57.9 40.4 48.6

HMOE-DN
MIX 54.0 43.6 58.3 38.8 48.7
MAX 54.0 47.0 58.3 38.8 49.5
OOD 54.1 42.1 58.3 39.0 48.4

HMOE-ND
MIX 58.8 41.8 56.1 36.8 48.4
MAX 44.7 41.8 56.5 36.8 45.0
OOD 53.4 41.8 55.6 37.5 47.1

Table B.6: Domain generalization results on TerraIncognita

[July 6, 2023 at 13:52 – Version 0]

B I BL IOGRAPHY

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
“Tensorflow: A System for Large-Scale Machine Learning.” In: 12th ${$USENIX$}$
Symposium on Operating Systems Design and Implementation (${$OSDI$}$ 16).
2016, pp. 265–283.

[2] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet,
Yoshua Bengio, Ioannis Mitliagkas, and Irina Rish. “Invariance Principle Meets
Information Bottleneck for Out-of-Distribution Generalization.” In: Advances in
Neural Information Processing Systems 34 (2021), pp. 3438–3450.

[3] Jan-Olof Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sund-
man. “Thermo-Calc & DICTRA, Computational Tools for Materials Science.” In:
Calphad 26.2 (2002), pp. 273–312.

[4] Bertan Ari and H. Altay Güvenir. “Clustered Linear Regression.” In: Knowledge-
Based Systems 15.3 (2002), pp. 169–175.

[5] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. “Invariant
Risk Minimization.” In: arXiv preprint arXiv:1907.02893 (2019). arXiv: 1907 .
02893.

[6] Mariette Awad, Rahul Khanna,Mariette Awad, and Rahul Khanna. “Support Vector
Regression.” In: Efficient learning machines: Theories, concepts, and applications
for engineers and system designers (2015), pp. 67–80.

[7] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. “Metareg: Towards
Domain Generalization Using Meta-Regularization.” In: Advances in neural infor-
mation processing systems 31 (2018).

[8] David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Scripting Languages
with C and C++.” In: Tcl/Tk Workshop. Vol. 43. 1996, p. 74.

[9] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in Terra Incognita.”
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 456–473.

[10] Abdelkrim Belkadi, Wei Yan, Michael L Michelsen, and Erling H Stenby. “Com-
parison of Two Methods for Speeding up Flash Calculations in Compositional
Simulations.” In: SPE Reservoir Simulation Symposium. OnePetro, 2011.

[11] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. “A Theory of Learning from Different Domains.” In:
Machine learning 79.1 (2010), pp. 151–175.

[12] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for
Hyper-Parameter Optimization.” In: Advances in neural information processing
systems 24 (2011).

[13] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Opti-
mization.” In: Journal of machine learning research 13.2 (2012).

103

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1907.02893

104 bibliography

[14] James Bergstra, Daniel Yamins, and David Cox. “Making a Science ofModel Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architec-
tures.” In: International Conference on Machine Learning. PMLR, 2013, pp. 115–
123.

[15] Deniz A. Bezgin, Aaron B. Buhendwa, and Nikolaus A. Adams. “JAX-Fluids: A
Fully-Differentiable High-Order Computational Fluid Dynamics Solver for Com-
pressible Two-Phase Flows.” In: Computer Physics Communications 282 (2023),
p. 108527.

[16] Gilles Blanchard, AniketAnandDeshmukh,ÜrunDogan,Gyemin Lee, andClayton
Scott. “Domain Generalization by Marginal Transfer Learning.” In: The Journal of
Machine Learning Research 22.1 (2021), pp. 46–100.

[17] Felipe J. Blas and Lourdes F. Vega. “Prediction of Binary and Ternary Diagrams Us-
ing the Statistical Associating FluidTheory (SAFT) Equation of State.” In: Industrial
& engineering chemistry research 37.2 (1998), pp. 660–674.

[18] Avrim L. Blum and Ronald L. Rivest. “Training a 3-Node Neural Network Is NP-
complete.” In: Neural Networks 5.1 (1992), pp. 117–127.

[19] James Bradbury et al. JAX: Composable Transformations of Python+NumPy Pro-
grams. 2018.

[20] Dhanajit Brahma, Vinay Kumar Verma, and Piyush Rai. “Hypernetworks for Con-
tinual Semi-Supervised Learning.” In: arXiv preprint arXiv:2110.01856 (2021).
arXiv: 2110.01856.

[21] Fabio M. Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. “Domain Generalization by Solving Jigsaw Puzzles.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 2229–2238.

[22] Rich Caruana. “Multitask Learning.” In: Machine learning 28.1 (1997), pp. 41–75.

[23] Oscar Chang, Lampros Flokas, and Hod Lipson. “Principled Weight Initialization
for Hypernetworks.” In: International Conference on Learning Representations.
2019.

[24] Walter G Chapman, Keith E Gubbins, George Jackson, and Maciej Radosz. “New
Reference Equation of State for Associating Liquids.” In: Industrial & engineering
chemistry research 29.8 (1990), pp. 1709–1721.

[25] Chaoqi Chen, Jiongcheng Li, Xiaoguang Han, Xiaoqing Liu, and Yizhou Yu. “Com-
pound Domain Generalization via Meta-Knowledge Encoding.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 7119–7129.

[26] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. “Neu-
ral Ordinary Differential Equations.” In: Advances in neural information processing
systems 31 (2018).

[27] Zhangxin Chen, Hui Liu, Song Yu, Ben Hsieh, and Lei Shao. “GPU-based Par-
allel Reservoir Simulators.” In: Domain Decomposition Methods in Science and
Engineering XXI. Springer, 2014, pp. 199–206.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2110.01856

bibliography 105

[28] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
“Wide & Deep Learning for Recommender Systems.” In: Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. 2016, pp. 7–10.

[29] Wen-Hsi Cheng, Ming-Shean Chou, Chih-Hao Perng, and Fu-Sui Chu. “Deter-
mining the Equilibrium Partitioning Coefficients of Volatile Organic Compounds
at an Air–Water Interface.” In: Chemosphere 54.7 (2004), pp. 935–942.

[30] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks.” In: Machine
learning 20.3 (1995), pp. 273–297.

[31] George Cybenko. “Approximation by Superpositions of a Sigmoidal Function.” In:
Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[32] Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and
Furu Wei. “StableMoE: Stable Routing Strategy for Mixture of Experts.” In: arXiv
preprint arXiv:2204.08396 (2022). arXiv: 2204.08396.

[33] Laurence Patrick Dake. Fundamentals of Reservoir Engineering. Elsevier, 1983.
isbn: 0-08-056898-X.

[34] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Gan-
guli, and Yoshua Bengio. “Identifying and Attacking the Saddle Point Problem in
High-Dimensional Non-Convex Optimization.” In: Advances in neural informa-
tion processing systems 27 (2014).

[35] Jean-Charles De Hemptinne and Jean-Marie Ledanois. Select Thermodynamic
Models for Process Simulation: A Practical GuideUsing aThree StepsMethodology.
Editions Technip, 2012. isbn: 2-7108-0949-4.

[36] Wayne S. DeSarbo andWilliam L. Cron. “AMaximumLikelihoodMethodology for
Clusterwise Linear Regression.” In: Journal of classification 5.2 (1988), pp. 249–282.

[37] Ulrich K Deiters and Ricardo Macías-Salinas. “Calculation of Densities from Cubic
Equations of State: Revisited.” In: Industrial & Engineering Chemistry Research
53.6 (2014), pp. 2529–2536.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
Large-Scale Hierarchical Image Database.” In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition. Ieee, 2009, pp. 248–255. isbn: 1-4244-3992-2.

[39] Aniket Anand Deshmukh, Yunwen Lei, Srinagesh Sharma, Urun Dogan, James W.
Cutler, and Clayton Scott. “A Generalization Error Bound for Multi-Class Domain
Generalization.” In: arXiv preprint arXiv:1905.10392 (2019). arXiv: 1905.10392.

[40] Ali H Dogru, Larry Siu Kuen Fung, Usuf Middya, Tareq Al-Shaalan, and Jorge Al-
berto Pita. “A Next-Generation Parallel Reservoir Simulator for Giant Reservoirs.”
In: SPE Reservoir Simulation Symposium. OnePetro, 2009.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, and Sylvain Gelly. “An Image Is Worth 16x16 Words: Transformers for
Image Recognition at Scale.” In: arXiv preprint arXiv:2010.11929 (2020). arXiv:
2010.11929.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2204.08396
https://arxiv.org/abs/1905.10392
https://arxiv.org/abs/2010.11929

106 bibliography

[42] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker.
“Domain Generalization via Model-Agnostic Learning of Semantic Features.” In:
Advances in Neural Information Processing Systems 32 (2019).

[43] Kevin Dowd and Charles Severance. “High Performance Computing.” In: (2010).

[44] NanDu,YanpingHuang,AndrewM.Dai, SimonTong,Dmitry Lepikhin, Yuanzhong
Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, and Orhan Firat. “Glam: Efficient
Scaling of LanguageModels withMixture-of-Experts.” In: International Conference
on Machine Learning. PMLR, 2022, pp. 5547–5569. isbn: 2640-3498.

[45] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. “Sigmoid-Weighted Linear Units for
Neural Network Function Approximation in Reinforcement Learning.” In: Neural
Networks 107 (2018), pp. 3–11.

[46] Chen Fang, Ye Xu, and Daniel N. Rockmore. “Unbiased Metric Learning: On the
Utilization ofMultipleDatasets andWeb Images for Softening Bias.” In: Proceedings
of the IEEE International Conference on Computer Vision. 2013, pp. 1657–1664.

[47] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-
Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz,
Julian Schrittwieser, Grzegorz Swirszcz, et al. “Discovering Faster Matrix Multi-
plication Algorithms with Reinforcement Learning.” In: Nature 610.7930 (2022),
pp. 47–53.

[48] William Fedus, Jeff Dean, and Barret Zoph. “A Review of Sparse Expert Models in
Deep Learning.” In: arXiv preprint arXiv:2209.01667 (2022). arXiv: 2209.01667.

[49] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity. 2021.

[50] Joel H. Ferziger, Milovan Perić, and Robert L. Street. Computational Methods for
Fluid Dynamics. Vol. 3. Springer, 2002. isbn: 3-540-42074-6.

[51] Yuan-Hao Fu and Stanley I. Sandler. “A Simplified SAFT Equation of State for
Associating Compounds and Mixtures.” In: Industrial & engineering chemistry
research 34.5 (1995), pp. 1897–1909.

[52] Vassilis Gaganis. “Rapid Phase Stability Calculations in Fluid Flow Simulation
Using Simple Discriminating Functions.” In: Computers & Chemical Engineering
108 (2018), pp. 112–127.

[53] Vassilis Gaganis and Nikos Varotsis. “Machine Learning Methods to Speed up
Compositional Reservoir Simulation.” In: SPE Europec/EAGE Annual Conference.
OnePetro, 2012.

[54] Vassilis Gaganis and Nikos Varotsis. “An Integrated Approach for Rapid Phase Be-
havior Calculations in Compositional Modeling.” In: Journal of Petroleum Science
and Engineering 118 (2014), pp. 74–87.

[55] Yarin Gal and Zoubin Ghahramani. “A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks.” In: Advances in neural information pro-
cessing systems 29 (2016), pp. 1019–1027.

[56] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Rep-
resenting Model Uncertainty in Deep Learning.” In: International Conference on
Machine Learning. PMLR, 2016, pp. 1050–1059.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2209.01667

bibliography 107

[57] Chuang Gan, Tianbao Yang, and Boqing Gong. “Learning Attributes Equals Multi-
Source Domain Generalization.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2016, pp. 87–97.

[58] Yaroslav Ganin and Victor Lempitsky. “Unsupervised Domain Adaptation by Back-
propagation.” In: International Conference on Machine Learning. PMLR, 2015,
pp. 1180–1189.

[59] YaroslavGanin, EvgeniyaUstinova,HanaAjakan, Pascal Germain,Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. “Domain-Adversarial
Training of Neural Networks.” In: The journal of machine learning research 17.1
(2016), pp. 2096–2030. issn: 1532-4435.

[60] Muhammad Ghifary, David Balduzzi, W. Bastiaan Kleijn, and Mengjie Zhang.
“Scatter Component Analysis: A Unified Framework for Domain Adaptation and
Domain Generalization.” In: IEEE transactions on pattern analysis and machine
intelligence 39.7 (2016), pp. 1414–1430.

[61] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi.
“Domain Generalization for Object Recognition with Multi-Task Autoencoders.”
In: Proceedings of the IEEE International Conference on Computer Vision. 2015,
pp. 2551–2559.

[62] Alejandro Gil-Villegas, Amparo Galindo, Paul J. Whitehead, Stuart J. Mills, George
Jackson, and Andrew N. Burgess. “Statistical Associating Fluid Theory for Chain
Molecules with Attractive Potentials of Variable Range.” In: The Journal of chemical
physics 106.10 (1997), pp. 4168–4186.

[63] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training Deep
Feedforward Neural Networks.” In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. JMLR Workshop and Confer-
ence Proceedings, 2010, pp. 249–256.

[64] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks.” In: Proceedings of the Fourteenth International Conference onArtificial
Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011,
pp. 315–323.

[65] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. “Dlow: Domain Flow for
Adaptation and Generalization.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 2477–2486.

[66] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016.

[67] Joachim Gross and Gabriele Sadowski. “Perturbed-Chain SAFT: An Equation
of State Based on a Perturbation Theory for Chain Molecules.” In: Industrial &
engineering chemistry research 40.4 (2001), pp. 1244–1260.

[68] Ishaan Gulrajani and David Lopez-Paz. “In Search of Lost Domain Generalization.”
In: arXiv preprint arXiv:2007.01434 (2020). arXiv: 2007.01434.

[69] Jiang Guo, Darsh J. Shah, and Regina Barzilay. “Multi-Source Domain Adaptation
with Mixture of Experts.” In: arXiv preprint arXiv:1809.02256 (2018). arXiv: 1809.
02256.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2007.01434
https://arxiv.org/abs/1809.02256
https://arxiv.org/abs/1809.02256

108 bibliography

[70] David Ha, Andrew Dai, and Quoc V. Le. “Hypernetworks.” In: arXiv preprint
arXiv:1609.09106 (2016). arXiv: 1609.09106.

[71] Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads RB Kristensen, Markus
Jochum, Roman Nuterman, and Brian Vinter. “Veros v0. 1–A Fast and Versatile
Ocean Simulator in Pure Python.” In: GeoscientificModelDevelopment 11.8 (2018),
pp. 3299–3312.

[72] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy,
Yihua Chen, RahulMazumder, LichanHong, and EdChi. “Dselect-k: Differentiable
Selection in the Mixture of Experts with Applications to Multi-Task Learning.” In:
Advances in Neural Information Processing Systems 34 (2021), pp. 29335–29347.

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.” In:
Proceedings of the IEEE International Conference on Computer Vision. 2015,
pp. 1026–1034.

[74] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 770–778.

[75] MD Hebden. “An Algorithm for Minimization Using Exact Second Derivatives.”
In: (1973).

[76] Eric M Hendriks. “Reduction Theorem for Phase Equilibrium Problems.” In: In-
dustrial & engineering chemistry research 27.9 (1988), pp. 1728–1732.

[77] Eric M Hendriks and ARD Van Bergen. “Application of a Reduction Method to
Phase Equilibria Calculations.” In: Fluid Phase Equilibria 74 (1992), pp. 17–34.

[78] DanHendrycks and Kevin Gimpel. “Gaussian Error Linear Units (Gelus).” In: arXiv
preprint arXiv:1606.08415 (2016). arXiv: 1606.08415.

[79] Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. “Phiflow: A Differ-
entiable Pde Solving Framework for Deep Learning via Physical Simulations.” In:
NeurIPS Workshop. Vol. 2. 2020.

[80] Richard Zou Horace He. Functorch: JAX-like Composable Function Transforms
for PyTorch. 2021.

[81] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks.”
In: Neural networks 4.2 (1991), pp. 251–257.

[82] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. “Meta-
Learning in Neural Networks: A Survey.” In: IEEE transactions on pattern analysis
and machine intelligence 44.9 (2021), pp. 5149–5169.

[83] Stanley H Huang and Maciej Radosz. “Equation of State for Small, Large, Poly-
disperse, and Associating Molecules.” In: Industrial & Engineering Chemistry
Research 29.11 (1990), pp. 2284–2294.

[84] Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. “Self-Challenging
Improves Cross-Domain Generalization.” In: European Conference on Computer
Vision. Springer, 2020, pp. 124–140.

[85] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-Based
Optimization for General Algorithm Configuration.” In: International Conference
on Learning and Intelligent Optimization. Springer, 2011, pp. 507–523.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1606.08415

bibliography 109

[86] Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. “Diva:
Domain Invariant Variational Autoencoders.” In: Medical Imaging with Deep
Learning. PMLR, 2020, pp. 322–348. isbn: 2640-3498.

[87] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift.” In: International Conference
on Machine Learning. PMLR, 2015, pp. 448–456.

[88] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
“Adaptive Mixtures of Local Experts.” In: Neural computation 3.1 (1991), pp. 79–87.

[89] Michael I. Jordan and Robert A. Jacobs. “Hierarchical Mixtures of Experts and the
EM Algorithm.” In: Neural computation 6.2 (1994), pp. 181–214.

[90] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. “Highly Accurate Protein Structure Prediction with AlphaFold.”
In: Nature 596.7873 (2021), pp. 583–589.

[91] A. Kashinath,M.L. Szulczewski, andA.H.Dogru. “A Fast Algorithm for Calculating
Isothermal Phase Behavior UsingMachine Learning.” In: Fluid Phase Equilibria 465
(June 2018), pp. 73–82. issn: 03783812. doi: 10.1016/j.fluid.2018.02.004.
(Visited on 11/25/2021).

[92] Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. “Varia-
tional Autoencoders and Nonlinear Ica: A Unifying Framework.” In: International
Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp. 2207–2217.
isbn: 2640-3498.

[93] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio
Torralba. “Undoing the Damage of Dataset Bias.” In: European Conference on
Computer Vision. Springer, 2012, pp. 158–171.

[94] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. “Self-
reg: Self-supervised Contrastive Regularization for Domain Generalization.” In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 9619–9628.

[95] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: arXiv preprint arXiv:1412.6980 (2014). arXiv: 1412.6980.

[96] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In: arXiv
preprint arXiv:1312.6114 (2013). arXiv: 1312.6114.

[97] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, QingWang,Michael P. Brenner, and
Stephan Hoyer. “Machine Learning–Accelerated Computational Fluid Dynamics.”
In: Proceedings of the National Academy of Sciences 118.21 (2021), e2101784118.

[98] Georgios M Kontogeorgis and Georgios K Folas. Thermodynamic Models for
Industrial Applications: From Classical and Advanced Mixing Rules to Association
Theories. John Wiley & Sons, 2009.

[99] Georgios M Kontogeorgis, Epaminondas C Voutsas, Iakovos V Yakoumis, and
Dimitrios P Tassios. “An Equation of State for Associating Fluids.” In: Industrial &
engineering chemistry research 35.11 (1996), pp. 4310–4318.

[July 6, 2023 at 13:52 – Version 0]

https://doi.org/10.1016/j.fluid.2018.02.004
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114

110 bibliography

[100] Georgios M Kontogeorgis, Iakovos V Yakoumis, Henk Meijer, Eric Hendriks,
and Tony Moorwood. “Multicomponent Phase Equilibrium Calculations for Wa-
ter–Methanol–Alkane Mixtures.” In: Fluid Phase Equilibria 158 (1999), pp. 201–
209.

[101] Steven George Krantz and Harold R Parks. The Implicit Function Theorem: History,
Theory, and Applications. Springer Science & Business Media, 2002.

[102] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. “Out-of-Distribution
Generalization via Risk Extrapolation (Rex).” In: International Conference on
Machine Learning. PMLR, 2021, pp. 5815–5826. isbn: 2640-3498.

[103] Thomas Lafitte, Anastasia Apostolakou, Carlos Avendaño, Amparo Galindo, Claire
S. Adjiman, Erich A. Müller, and George Jackson. “Accurate Statistical Associating
Fluid Theory for Chain Molecules Formed from Mie Segments.” In: The Journal of
chemical physics 139.15 (2013), p. 154504.

[104] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning.” In: nature
521.7553 (2015), pp. 436–444.

[105] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne Hubbard, and Lawrence D. Jackel. “Backpropagation Applied to
Handwritten Zip Code Recognition.” In: Neural computation 1.4 (1989), pp. 541–
551.

[106] ClaudeF Leibovici and JeanNeoschil. “ANew Look at the Rachford-Rice Equation.”
In: Fluid Phase Equilibria 74 (July 1992), pp. 303–308. issn: 03783812. doi: 10.
1016/0378-3812(92)85069-K. (Visited on 12/09/2021).

[107] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yan-
ping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. “Gshard: Scaling
Giant Models with Conditional Computation and Automatic Sharding.” In: arXiv
preprint arXiv:2006.16668 (2020). arXiv: 2006.16668.

[108] Bo Li, Jingkang Yang, Jiawei Ren, Yezhen Wang, and Ziwei Liu. “Sparse Fusion
Mixture-of-ExpertsAreDomainGeneralizable Learners.” In: arXiv preprint arXiv:2206.04046
(2022). arXiv: 2206.04046.

[109] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. “Deeper, Broader
and Artier Domain Generalization.” In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 5542–5550.

[110] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. “Learning to Gen-
eralize: Meta-learning for Domain Generalization.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 2018. isbn: 2374-3468.

[111] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M.
Hospedales. “Episodic Training for Domain Generalization.” In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 1446–1455.

[112] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and TomGoldstein. “Visualizing
the Loss Landscape of Neural Nets.” In: arXiv preprint arXiv:1712.09913 (2017).
arXiv: 1712.09913.

[July 6, 2023 at 13:52 – Version 0]

https://doi.org/10.1016/0378-3812(92)85069-K
https://doi.org/10.1016/0378-3812(92)85069-K
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2206.04046
https://arxiv.org/abs/1712.09913

bibliography 111

[113] Haoliang Li, Sinno Jialin Pan, ShiqiWang, andAlex CKot. “DomainGeneralization
with Adversarial Feature Learning.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 5400–5409.

[114] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-
Tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. “A System forMassively
Parallel Hyperparameter Tuning.” In: Proceedings of Machine Learning and Sys-
tems 2 (2020), pp. 230–246.

[115] Pan Li, Da Li, Wei Li, Shaogang Gong, Yanwei Fu, and Timothy M. Hospedales. “A
Simple Feature Augmentation for Domain Generalization.” In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 8886–8895.

[116] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and
Dacheng Tao. “Deep Domain Generalization via Conditional Invariant Adversarial
Networks.” In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 624–639.

[117] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. “Fourier Neural Operator for
Parametric Partial Differential Equations.” In: arXiv preprint arXiv:2010.08895
(2020). arXiv: 2010.08895.

[118] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. “The Global K-Means Cluster-
ing Algorithm.” In: Pattern recognition 36.2 (2003), pp. 451–461.

[119] Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. “Controllable Pareto Multi-
Task Learning.” In: arXiv preprint arXiv:2010.06313 (2020). arXiv: 2010.06313.

[120] Alexander H. Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. “A
Unified Feature Disentangler for Multi-Domain Image Translation and Manipula-
tion.” In: Advances in neural information processing systems 31 (2018).

[121] Yuanbin Liu,WeixiangHong, and Bingyang Cao. “Machine Learning for Predicting
Thermodynamic Properties of Pure Fluids and Their Mixtures.” In: Energy 188
(2019), p. 116091.

[122] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. “Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows.” In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 10012–10022.

[123] Chris Lomont. “Introduction to Intel Advanced Vector Extensions.” In: Intel white
paper 23 (2011).

[124] Jonathan Lorraine and David Duvenaud. “Stochastic Hyperparameter Optimiza-
tion through Hypernetworks.” In: arXiv preprint arXiv:1802.09419 (2018). arXiv:
1802.09419.

[125] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George EmKarniadakis.
“Learning Nonlinear Operators via DeepONet Based on the Universal Approxima-
tion Theorem of Operators.” In: Nature Machine Intelligence 3.3 (2021), pp. 218–
229.

[126] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Hen-
derson. “Parameter-Efficient Multi-Task Fine-Tuning for Transformers via Shared
Hypernetworks.” In: arXiv preprint arXiv:2106.04489 (2021). arXiv: 2106.04489.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.06313
https://arxiv.org/abs/1802.09419
https://arxiv.org/abs/2106.04489

112 bibliography

[127] Toshihiko Matsuura and Tatsuya Harada. “Domain Generalization Using a Mixture
of Multiple Latent Domains.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 2020, pp. 11749–11756. isbn: 2374-3468.

[128] Nicolai Meinshausen. “Causality from a Distributional Robustness Point of View.”
In: 2018 IEEE Data Science Workshop (DSW). IEEE, 2018, pp. 6–10. isbn: 1-5386-
4410-X.

[129] Michael L Michelsen. “The Isothermal Flash Problem. Part I. Stability.” In: Fluid
phase equilibria 9.1 (1982), pp. 1–19.

[130] Michael L Michelsen. “The Isothermal Flash Problem. Part II. Phase-split Calcula-
tion.” In: Fluid phase equilibria 9.1 (1982), pp. 21–40.

[131] Michael L Michelsen. “Simplified Flash Calculations for Cubic Equations of State.”
In: Industrial & Engineering Chemistry Process Design and Development 25.1
(1986), pp. 184–188.

[132] Michael L. Michelsen. “Multiphase Isenthalpic and Isentropic Flash Algorithms.”
In: Fluid phase equilibria 33.1-2 (1987), pp. 13–27.

[133] Michael L Michelsen. “Phase Equilibrium Calculations. What Is Easy and What Is
Difficult?” In: Computers & chemical engineering 17.5-6 (1993), pp. 431–439.

[134] Michael L. Michelsen. “Robust and Efficient Solution Procedures for Association
Models.” In: Industrial & engineering chemistry research 45.25 (2006), pp. 8449–
8453.

[135] Michael L Michelsen, Wei Yan, and Erling H Stenby. “A Comparative Study of
Reduced-Variables-Based Flash and Conventional Flash.” In: SPE Journal 18.05
(2013), pp. 952–959.

[136] Michael Locht Michelsen and Jørgen Mollerup. Thermodynamic Modelling: Fun-
damentals and Computational Aspects. Tie-Line Publications, 2004.

[137] Tom M. Mitchell and Tom M. Mitchell. Machine Learning. Vol. 1. McGraw-hill
New York, 1997.

[138] Alan Morningstar, Markus Hauru, Jackson Beall, Martin Ganahl, Adam GM Lewis,
VedikaKhemani, andGuifre Vidal. “Simulation ofQuantumMany-BodyDynamics
with Tensor Processing Units: Floquet Prethermalization.” In: PRX Quantum 3.2
(2022), p. 020331.

[139] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. “Uni-
fied Deep Supervised Domain Adaptation and Generalization.” In: Proceedings of
the IEEE International Conference on Computer Vision. 2017, pp. 5715–5725.

[140] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. “Domain Gener-
alization via Invariant Feature Representation.” In: International Conference on
Machine Learning. PMLR, 2013, pp. 10–18.

[141] Fionn Murtagh and Pierre Legendre. “Ward’s Hierarchical Agglomerative Clus-
tering Method: Which Algorithms Implement Ward’s Criterion?” In: Journal of
classification 31.3 (2014), pp. 274–295.

[142] Vinod Nair and Geoffrey E Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines.” In: Icml. 2010.

[July 6, 2023 at 13:52 – Version 0]

bibliography 113

[143] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo.
“Reducing Domain Gap by Reducing Style Bias.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 8690–8699.

[144] Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. “Learning the Pareto
Front with Hypernetworks.” In: arXiv preprint arXiv:2010.04104 (2020). arXiv:
2010.04104.

[145] O Orbach and CM Crowe. “Convergence Promotion in the Simulation of Chemi-
cal Processes with Recycle-the Dominant Eigenvalue Method.” In: The Canadian
Journal of Chemical Engineering 49.4 (1971), pp. 509–513.

[146] Nathan Otterness and James H. Anderson. “AMD GPUs as an Alternative to
NVIDIA for Supporting Real-Time Workloads.” In: 32nd Euromicro Conference
on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[147] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. “Domain Adapta-
tion via Transfer Component Analysis.” In: IEEE transactions on neural networks
22.2 (2010), pp. 199–210.

[148] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning.” In: IEEE Trans-
actions on knowledge and data engineering 22.10 (2010), pp. 1345–1359.

[149] Young Woong Park, Yan Jiang, Diego Klabjan, and Loren Williams. “Algorithms for
Generalized Clusterwise Linear Regression.” In: INFORMS Journal on Computing
29.2 (2017), pp. 301–317.

[150] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et
al. “Pytorch: An Imperative Style, High-Performance Deep Learning Library.” In:
Advances in neural information processing systems 32 (2019), pp. 8026–8037.

[151] Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. “Visual
Domain Adaptation: A Survey of Recent Advances.” In: IEEE signal processing
magazine 32.3 (2015), pp. 53–69.

[152] Svetlana Pavlitskaya, Christian Hubschneider, Lukas Struppek, and J. Marius Zöll-
ner. “Balancing Expert Utilization in Mixture-of-Experts Layers Embedded in
CNNs.” In: arXiv preprint arXiv:2204.10598 (2022). arXiv: 2204.10598.

[153] Ding-Yu Peng and Donald B Robinson. “A New Two-Constant Equation of State.”
In: Industrial & Engineering Chemistry Fundamentals 15.1 (1976), pp. 59–64.

[154] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
“Moment Matching for Multi-Source Domain Adaptation.” In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 1406–1415.

[155] Xingchao Peng, Zijun Huang, Ximeng Sun, and Kate Saenko. “Domain Agnostic
Learning with Disentangled Representations.” In: International Conference on
Machine Learning. PMLR, 2019, pp. 5102–5112. isbn: 2640-3498.

[156] Steve Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.”
In: Journal of computational physics 117.1 (1995), pp. 1–19.

[157] Lutz Prechelt. “Early Stopping-but When?” In: Neural Networks: Tricks of the
Trade. Springer, 1998, pp. 55–69.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2010.04104
https://arxiv.org/abs/2204.10598

114 bibliography

[158] Fengchun Qiao, Long Zhao, and Xi Peng. “Learning to Learn Single Domain
Generalization.” In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 12556–12565.

[159] Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. Mit Press, 2008. isbn: 0-262-17005-1.

[160] Henry H Rachford and JD Rice. “Procedure for Use of Electronic Digital Comput-
ers in Calculating Flash Vaporization Hydrocarbon Equilibrium.” In: Journal of
Petroleum Technology 4.10 (1952), pp. 19–3.

[161] Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. “Physics-Informed
Neural Networks: A Deep Learning Framework for Solving Forward and Inverse
Problems Involving Nonlinear Partial Differential Equations.” In: Journal of Com-
putational physics 378 (2019), pp. 686–707.

[162] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics Informed
Deep Learning (Part i): Data-driven Solutions of Nonlinear Partial Differential
Equations.” In: arXiv preprint arXiv:1711.10561 (2017). arXiv: 1711.10561.

[163] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for Activation
Functions.” In: arXiv preprint arXiv:1710.05941 (2017). arXiv: 1710.05941.

[164] Prajit Ramachandran, Barret Zoph, andQuocVLe. “Swish: A Self-GatedActivation
Function.” In: arXiv preprint arXiv:1710.05941 7 (2017), p. 1. arXiv: 1710.05941.

[165] AlexandreRame, CorentinDancette, andMatthieuCord. “Fishr: InvariantGradient
Variances for out-of-Distribution Generalization.” In: International Conference on
Machine Learning. PMLR, 2022, pp. 18347–18377. isbn: 2640-3498.

[166] Claus PRasmussen,KristianKrejbjerg,Michael LMichelsen, andKersti E Bjurstrøm.
“Increasing the Computational Speed of Flash Calculations with Applications for
Compositional, Transient Simulations.” In: SPE Reservoir Evaluation & Engineer-
ing 9.01 (2006), pp. 32–38.

[167] Douglas A. Reynolds. “Gaussian Mixture Models.” In: Encyclopedia of biometrics
741.659-663 (2009).

[168] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning Rep-
resentations by Back-Propagating Errors.” In: nature 323.6088 (1986), pp. 533–
536.

[169] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Dis-
tributionally Robust Neural Networks for Group Shifts: On the Importance of
Regularization for Worst-Case Generalization. Apr. 2020. doi: 10.48550/arXiv.
1911.08731. arXiv: arXiv:1911.08731. (Visited on 10/25/2022).

[170] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional, 2010.

[171] Thomas J. Santner, Brian J. Williams, William I. Notz, and Brain J. Williams. The
Design and Analysis of Computer Experiments. Vol. 1. Springer, 2003.

[172] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. “The Graph Neural Network Model.” In: IEEE transactions on neural
networks 20.1 (2008), pp. 61–80.

[173] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview.” In: Neu-
ral networks 61 (2015), pp. 85–117.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/arXiv.1911.08731
https://doi.org/10.48550/arXiv.1911.08731
https://arxiv.org/abs/arXiv:1911.08731

bibliography 115

[174] Samuel Schoenholz and Ekin Dogus Cubuk. “Jax Md: A Framework for Differen-
tiable Physics.” In: Advances in Neural Information Processing Systems 33 (2020),
pp. 11428–11441.

[175] Matthias Seeger. “Gaussian Processes for Machine Learning.” In: International
journal of neural systems 14.02 (2004), pp. 69–106.

[176] Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba,
Jacek Tabor, and Przemysław Spurek. “Hypershot: Few-shot Learning by Kernel
Hypernetworks.” In: arXiv preprint arXiv:2203.11378 (2022). arXiv: 2203.11378.

[177] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. “Personalized Feder-
ated Learning Using Hypernetworks.” In: International Conference on Machine
Learning. PMLR, 2021, pp. 9489–9502. isbn: 2640-3498.

[178] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi
Jyothi, and Sunita Sarawagi. “Generalizing across Domains via Cross-Gradient
Training.” In: arXiv preprint arXiv:1804.10745 (2018). arXiv: 1804.10745.

[179] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof-
frey Hinton, and Jeff Dean. “Outrageously Large Neural Networks: The Sparsely-
GatedMixture-of-Experts Layer.” In: arXiv preprint arXiv:1701.06538 (2017). arXiv:
1701.06538.

[180] Yuge Shi, Jeffrey Seely, PhilipHSTorr, N. Siddharth, AwniHannun, Nicolas Usunier,
and Gabriel Synnaeve. “Gradient Matching for Domain Generalization.” In: arXiv
preprint arXiv:2104.09937 (2021). arXiv: 2104.09937.

[181] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” In: arXiv preprint arXiv:1409.1556 (2014). arXiv:
1409.1556.

[182] Sarath Sivaprasad, AkshayGoindani, VaibhavGarg, andVineet Gandhi. “Reapprais-
ingDomainGeneralization inNeuralNetworks.” In: arXiv preprint arXiv:2110.07981
(2021). arXiv: 2110.07981.

[183] Leslie N Smith. “No More Pesky Learning Rate Guessing Games.” In: CoRR,
abs/1506.01186 5 (2015). arXiv: 1506.01186.

[184] Leslie N Smith. “Cyclical Learning Rates for Training Neural Networks.” In: 2017
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
2017, pp. 464–472.

[185] LeslieN Smith andNicholay Topin. “Super-Convergence: Very Fast Training ofNeu-
ral Networks Using Large Learning Rates.” In: Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications. Vol. 11006. International
Society for Optics and Photonics, 2019, p. 1100612.

[186] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian Opti-
mization of Machine Learning Algorithms.” In: Advances in neural information
processing systems 25 (2012).

[187] Giorgio Soave. “Equilibrium Constants from a Modified Redlich-Kwong Equation
of State.” In: Chemical engineering science 27.6 (1972), pp. 1197–1203.

[188] Sho Sonoda and Noboru Murata. “Neural Network with Unbounded Activation
Functions Is Universal Approximator.” In: Applied and Computational Harmonic
Analysis 43.2 (2017), pp. 233–268.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/1804.10745
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2104.09937
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2110.07981
https://arxiv.org/abs/1506.01186

116 bibliography

[189] Helmuth Späth. “Algorithm 39 Clusterwise Linear Regression.” In: Computing 22.4
(1979), pp. 367–373.

[190] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting.” In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[191] Trevor Standley, Amir Zamir, DawnChen, Leonidas Guibas, JitendraMalik, and Sil-
vio Savarese. “Which Tasks Should Be Learned Together in Multi-Task Learning?”
In: International Conference on Machine Learning. PMLR, 2020, pp. 9120–9132.
isbn: 2640-3498.

[192] Rick Stevens, Valerie Taylor, Jeff Nichols, Arthur Barney Maccabe, Katherine Yelick,
and David Brown. AI for Science: Report on the Department of Energy (DOE)
Town Halls on Artificial Intelligence (AI) for Science. Tech. rep. Argonne National
Lab.(ANL), Argonne, IL (United States), 2020.

[193] Adarsh Subbaswamy, Bryant Chen, and Suchi Saria. “AUnifying Causal Framework
for Analyzing Dataset Shift-Stable Learning Algorithms.” In: Journal of Causal
Inference 10.1 (2022), pp. 64–89.

[194] Baochen Sun and Kate Saenko. “Deep Coral: Correlation Alignment for Deep
Domain Adaptation.” In: European Conference on Computer Vision. Springer,
2016, pp. 443–450.

[195] Yi Tay, Zhe Zhao, Dara Bahri, Don Metzler, and Da-Cheng Juan. “Hypergrid
Transformers: Towards a Single Model for Multiple Tasks.” In: (2021).

[196] Monika Thol, Gabor Rutkai, Andreas Köster, Rolf Lustig, Roland Span, and Jadran
Vrabec. “Equation of State for the Lennard-Jones Fluid.” In: Journal of Physical and
Chemical Reference Data 45.2 (2016), p. 023101.

[197] Michael E Tipping. “Sparse Bayesian Learning and the Relevance Vector Machine.”
In: Journal of machine learning research 1.Jun (2001), pp. 211–244.

[198] Michael Tschannen,Olivier Bachem, andMario Lucic. “RecentAdvances inAutoencoder-
Based Representation Learning.” In: arXiv preprint arXiv:1812.05069 (2018). arXiv:
1812.05069.

[199] Eric Tzeng, JudyHoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. “DeepDo-
mainConfusion:Maximizing forDomain Invariance.” In: arXiv preprint arXiv:1412.3474
(2014). arXiv: 1412.3474.

[200] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Instance Normalization:
The Missing Ingredient for Fast Stylization.” In: arXiv preprint arXiv:1607.08022
(2016). arXiv: 1607.08022.

[201] Guido Van Rossum and Fred L Drake. The Python Language Reference Manual.
Network Theory Ltd., 2011.

[202] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing Data Using T-SNE.”
In: Journal of machine learning research 9.11 (2008).

[203] JoaquinVanschoren. “Meta-Learning:A Survey.” In: arXiv preprint arXiv:1810.03548
(2018). arXiv: 1810.03548.

[204] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science &
business media, 1999. isbn: 0-387-98780-0.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/1812.05069
https://arxiv.org/abs/1412.3474
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1810.03548

bibliography 117

[205] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. “Deep Hashing Network for Unsupervised Domain Adaptation.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 5018–5027.

[206] Ricardo Vilalta and Youssef Drissi. “A Perspective View and Survey of Meta-
Learning.” In: Artificial intelligence review 18.2 (2002), pp. 77–95.

[207] TomerVolk, Eyal Ben-David,OhadAmosy,GalChechik, andRoi Reichart. “Example-
Based Hypernetworks for out-of-Distribution Generalization.” In: arXiv preprint
arXiv:2203.14276 (2022). arXiv: 2203.14276.

[208] Riccardo Volpi, HongseokNamkoong, Ozan Sener, John C. Duchi, VittorioMurino,
and Silvio Savarese. “Generalizing to Unseen Domains via Adversarial Data Aug-
mentation.” In: Advances in neural information processing systems 31 (2018).

[209] Ulrike Von Luxburg. “A Tutorial on Spectral Clustering.” In: Statistics and comput-
ing 17.4 (2007), pp. 395–416.

[210] Johannes Von Oswald, Christian Henning, João Sacramento, and Benjamin F.
Grewe. “Continual LearningwithHypernetworks.” In: arXiv preprint arXiv:1906.00695
(2019). arXiv: 1906.00695.

[211] Denis Voskov and Hamdi A Tchelepi. “Compositional Space Parameterization for
Flow Simulation.” In: SPE Reservoir Simulation Symposium. OnePetro, 2007.

[212] Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, and Philip S. Yu.
“Visual Domain Adaptation with Manifold Embedded Distribution Alignment.”
In: Proceedings of the 26th ACM International Conference on Multimedia. 2018,
pp. 402–410.

[213] JindongWang, Cuiling Lan, Chang Liu, YidongOuyang, TaoQin,Wang Lu, Yiqiang
Chen, Wenjun Zeng, and Philip Yu. “Generalizing to Unseen Domains: A Survey
on Domain Generalization.” In: IEEE Transactions on Knowledge and Data Engi-
neering (2022). issn: 1041-4347.

[214] Mei Wang and Weihong Deng. “Deep Visual Domain Adaptation: A Survey.” In:
Neurocomputing 312 (2018), pp. 135–153.

[215] Peng Wang and Erling H Stenby. “Non-Iterative Flash Calculation Algorithm in
Compositional Reservoir Simulation.” In: Fluid Phase Equilibria 95 (1994), pp. 93–
108.

[216] Qing Wang, Matthias Ihme, Yi-Fan Chen, and John Anderson. “A Tensorflow Sim-
ulation Framework for Scientific Computing of Fluid Flows on Tensor Processing
Units.” In: Computer Physics Communications 274 (2022), p. 108292.

[217] Shihao Wang, Nicolas Sobecki, Didier Ding, Lingchen Zhu, and Yu-Shu Wu. “Ac-
celerating and Stabilizing the Vapor-Liquid Equilibrium (VLE) Calculation in
Compositional Simulation of Unconventional Reservoirs Using Deep Learning
Based Flash Calculation.” In: Fuel 253 (Oct. 2019), pp. 209–219. issn: 00162361.
doi: 10.1016/j.fuel.2019.05.023. (Visited on 11/25/2021).

[218] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. “A Survey of Transfer
Learning.” In: Journal of Big data 3.1 (2016), pp. 1–40.

[219] MS Wertheim. “Fluids with Highly Directional Attractive Forces. I. Statistical
Thermodynamics.” In: Journal of statistical physics 35.1 (1984), pp. 19–34.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2203.14276
https://arxiv.org/abs/1906.00695
https://doi.org/10.1016/j.fuel.2019.05.023

118 bibliography

[220] MS Wertheim. “Fluids with Highly Directional Attractive Forces. III. Multiple
Attraction Sites.” In: Journal of statistical physics 42.3 (1986), pp. 459–476.

[221] MS Wertheim. “Fluids with Highly Directional Attractive Forces. IV. Equilibrium
Polymerization.” In: Journal of statistical physics 42.3 (1986), pp. 477–492.

[222] Michael S Wertheim. “Fluids with Highly Directional Attractive Forces. II. Ther-
modynamic Perturbation Theory and Integral Equations.” In: Journal of statistical
physics 35.1 (1984), pp. 35–47.

[223] David H. Wolpert and William G. Macready. “No Free Lunch Theorems for Opti-
mization.” In: IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–
82.

[224] Tianju Xue, Shuheng Liao, Zhengtao Gan, Chanwook Park, Xiaoyu Xie, Wing Kam
Liu, and Jian Cao. “JAX-FEM: A Differentiable GPU-accelerated 3D Finite Element
Solver for Automatic Inverse Design and Mechanistic Data Science.” In: arXiv
preprint arXiv:2212.00964 (2022). arXiv: 2212.00964.

[225] Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. “Improve Unsuper-
visedDomainAdaptationwithMixupTraining.” In: arXiv preprint arXiv:2001.00677
(2020). arXiv: 2001.00677.

[226] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt
Keutzer, and Boqing Gong. “Domain Randomization and Pyramid Consistency:
Simulation-to-real Generalization without Accessing Target Domain Data.” In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 2100–2110.

[227] Seniha Esen Yuksel, JosephN.Wilson, and Paul D. Gader. “Twenty Years ofMixture
of Experts.” In: IEEE transactions on neural networks and learning systems 23.8
(2012), pp. 1177–1193.

[228] Bin Zhang. “Regression Clustering.” In: Third IEEE International Conference on
Data Mining. IEEE, 2003, pp. 451–458. isbn: 0-7695-1978-4.

[229] Hanlin Zhang, Yi-Fan Zhang,Weiyang Liu, AdrianWeller, Bernhard Schölkopf, and
Eric P Xing. “Towards Principled Disentanglement for Domain Generalization.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 8024–8034.

[230] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. “Mixup:
Beyond Empirical Risk Minimization.” In: arXiv preprint arXiv:1710.09412 (2017).
arXiv: 1710.09412.

[231] Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine,
and Chelsea Finn. “Adaptive Risk Minimization: Learning to Adapt to Domain
Shift.” In: Advances inNeural Information Processing Systems 34 (2021), pp. 23664–
23678.

[232] Tao Zhang, Yu Li, Yiteng Li, Shuyu Sun, and Xin Gao. “A Self-Adaptive Deep
Learning Algorithm for Accelerating Multi-Component Flash Calculation.” In:
Computer Methods in Applied Mechanics and Engineering 369 (2020), p. 113207.

[233] Dominic Zhao, Johannes von Oswald, Seijin Kobayashi, João Sacramento, and
Benjamin F. Grewe. “Meta-Learning via Hypernetworks.” In: (2020).

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2212.00964
https://arxiv.org/abs/2001.00677
https://arxiv.org/abs/1710.09412

bibliography 119

[234] Yun Zhi and Huen Lee. “Fallibility of Analytic Roots of Cubic Equations of State in
Low Temperature Region.” In: Fluid phase equilibria 201.2 (2002), pp. 287–294.

[235] Tao Zhong, Zhixiang Chi, Li Gu, Yang Wang, Yuanhao Yu, and Jin Tang. “Meta-
DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts.”
In: arXiv preprint arXiv:2210.03885 (2022). arXiv: 2210.03885.

[236] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. “Domain
Generalization: A Survey.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022). issn: 0162-8828.

[237] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. “Learning to
Generate Novel Domains for Domain Generalization.” In: European Conference
on Computer Vision. Springer, 2020, pp. 561–578.

[238] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. “Domain Generalization
with Mixstyle.” In: arXiv preprint arXiv:2104.02008 (2021). arXiv: 2104.02008.

[239] Kezheng Zhu and Erich A. Müller. “Generating a Machine-Learned Equation of
State for Fluid Properties.” In: The Journal of Physical Chemistry B 124.39 (2020),
pp. 8628–8639.

[240] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. “A Comprehensive Survey on Transfer Learning.”
In: Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[241] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean,
Noam Shazeer, and William Fedus. “Designing Effective Sparse Expert Models.” In:
arXiv preprint arXiv:2202.08906 (2022). arXiv: 2202.08906.

[242] Nicolas von Solms, Michael L. Michelsen, and Georgios M. Kontogeorgis. “Com-
putational and Physical Performance of a Modified PC-SAFT Equation of State
for Highly Asymmetric and Associating Mixtures.” In: Industrial & engineering
chemistry research 42.5 (2003), pp. 1098–1105.

[July 6, 2023 at 13:52 – Version 0]

https://arxiv.org/abs/2210.03885
https://arxiv.org/abs/2104.02008
https://arxiv.org/abs/2202.08906

	Abstract
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Current techniques for accelerating numerical simulations
	1.2 Thesis objectives
	1.2.1 Acceleration of thermodynamic equilibrium calculations
	1.2.2 Efficient learning of heterogeneous patterns in data

	1.3 Thesis organization

	 Preliminaries
	2 Fundamentals of applied thermodynamics and phase equilibrium calculations
	2.1 Basic concepts
	2.1.1 System, state and phase
	2.1.2 Thermodynamic properties
	2.1.3 Residual properties

	2.2 Phase equilibrium
	2.3 Equations of state
	2.3.1 Cubic equations of state
	2.3.2 Statistical Associating Fluid Theory
	2.3.3 Cubic Plus Association equation of state

	2.4 Isothermal two-phase flash calculation
	2.4.1 Problem setting
	2.4.2 Stability analysis
	2.4.3 Phase split calculations
	2.4.4 Strategy for the isothermal two-phase flash calculation

	3 Neural networks and deep learning
	3.1 Feedforward neural networks
	3.2 Universal approximation theorem
	3.3 Training of neural networks
	3.3.1 Cost function
	3.3.2 Optimization algorithms

	3.4 Hyper-parameter tuning

	 Speeding up phase equilibrium calculations with deep learning
	4 PTFlash : A deep learning framework for two-phase flash calculation
	4.1 Introduction
	4.2 Related work
	4.3 Data generation
	4.3.1 Design of experiments (DoE)
	4.3.2 A new method for sampling multiple variables adding up to 1

	4.4 Case studies
	4.5 Vectorization of two-phase flash calculation
	4.6 Acceleration of flash calculation using neural networks
	4.6.1 Classifier
	4.6.2 Initializer
	4.6.3 Strategy for accelerating flash calculation using neural networks

	4.7 Results
	4.7.1 Vectorized flash calculation
	4.7.2 Deep-learning-powered vectorized flash calculation
	4.7.3 Discussion

	4.8 Conclusion

	5 NNEoS : Neural network-based EoS to calculate fugacity coefficients
	5.1 Introduction
	5.2 Related work
	5.2.1 Replace numerical EoS with machine learning models
	5.2.2 Regression Clustering and Mixture of Experts

	5.3 Case study
	5.4 Analysis of the discontinuity of fugacity coefficients
	5.5 Clustered regression network
	5.6 Neural network-based equation of state
	5.7 Results
	5.7.1 Comparison between Carnot and NNEoS
	5.7.2 Comparison between Carnot and PTFlash using NNEoS
	5.7.3 HybridEoS to combine Carnot and NNEoS
	5.7.4 Discussion

	5.8 Conclusion

	 Domain generalization
	6 HMOE: Hypernetwork-based Mixture of Experts for Domain Generalization
	6.1 Introduction
	6.2 Related work
	6.2.1 Domain generalization (DG)
	6.2.2 Hypernetworks
	6.2.3 Mixture of Experts (MoE)
	6.2.4 Application of hypernetworks and MoE in DG

	6.3 Method
	6.3.1 Problem setting
	6.3.2 Overall architecture
	6.3.3 Hypernetworks
	6.3.4 Routing mechanism
	6.3.5 Embedding space
	6.3.6 Class-adversarial training on D2V
	6.3.7 Semi-/supervised learning on domains
	6.3.8 Training and inference

	6.4 Toy regression problem
	6.5 DomainBed
	6.5.1 Datasets and model evaluation
	6.5.2 Implementation details
	6.5.3 Results
	6.5.4 Latent domain discovery
	6.5.5 Ablation study
	6.5.6 More empirical analysis

	6.6 Conclusion

	7 Conclusion and perspectives
	7.1 Conclusion
	7.2 Perspectives
	7.2.1 Improve the generalization of neural networks to components
	7.2.2 A more interpretable method for domain generalization

	 Appendix
	A Derivation of the closed-form expression of the probability density function
	B Detailed domain generalization results
	 Bibliography

