
HAL Id: tel-04631602
https://theses.hal.science/tel-04631602v1

Submitted on 2 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A posteriori error estimates and adaptivity in numerical
approximation of PDEs : regularization, linearization,

discretization, and floating point precision
Ari Rappaport

To cite this version:
Ari Rappaport. A posteriori error estimates and adaptivity in numerical approximation of PDEs :
regularization, linearization, discretization, and floating point precision. Numerical Analysis [cs.NA].
Sorbonne Université, 2024. English. �NNT : 2024SORUS057�. �tel-04631602�

https://theses.hal.science/tel-04631602v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

SORBONNE UNIVERSITÉ
ÉCOLE DOCTORALE: Sciences Mathématiques de Paris Centre (ED 386)

Par Ari RAPPAPORT
POUR OBTENIR LE GRADE DE DOCTEUR

SPÉCIALITÉ: Mathématiques Appliquées

Estimations d’erreurs a posteriori et adaptivité en
approximation numérique des EDPs : régularisation,

linéarisation, discrétisation et précision en virgule flottante

Directeur de thèse : Martin Vohralík (Inria Paris)
Co-directeur de thèse : François Févotte (Triscale Innov)

Soutenue le: 22 mars 2024
Devant la commission d’examen formée de:

Sören BARTELS Albert Ludwigs University of Freiburg Rapporteur
Roland BECKER Université de Pau et des Pays de l’Adour Rapporteur
Clément CANCÈS Inria Université de Lille Examinateur
François FÉVOTTE Triscale Innov Co-encadrant
Yvon MADAY Sorbonne Université Président
Roberta TITARELLI SUPMICROTECH, CNRS Examinatrice
Martin VOHRALÍK Inria Paris Directeur de thèse
Thomas WIHLER University of Bern Examinateur

THESIS
PRESENTED AT THE

SORBONNE UNIVERSITY

DOCTORAL SCHOOL: Mathematical Sciences of Central Paris (ED 386)

By Ari RAPPAPORT

TO OBTAIN THE DEGREE OF DOCTOR OF PHILOSOPHY
SPECIALITY: Applied Mathematics

Adaptivity in modeling, nonlinear, and linear solvers and
local conservation by post-processing. Applications to

problems in underground transfer and storage.

Thesis advisor: Martin Vohralík (Inria Paris)
Thesis co-advisor: Françcois Févotte (Triscale Innov)

Defended on: March 22nd, 2024

In front of the examination committee consisting of:

Sören BARTELS Albert Ludwigs University of Freiburg Reviewer
Roland BECKER Université de Pau et des Pays de l’Adour Reviewer
Clément CANCÈS Inria Université de Lille Examiner
François FÉVOTTE Triscale Innov Thesis co-advisor
Yvon MADAY Sorbonne Université President
Roberta TITARELLI SUPMICROTECH, CNRS Examiner
Martin VOHRALÍK Inria Paris Thesis advisor
Thomas WIHLER University of Bern Examiner

To Carolyn, for always being there when I needed you most.
To my family for believing in and supporting me.

To my friends for all the laughs we’ve shared.
To my mentors for helping me shape my destiny.

iii

SERENA

This thesis has been carried out within the research team
SERENA, a joint project-team between Inria Paris and Ecole
des Ponts ParisTech.

Inria
2 rue Simone Iff
75589 Paris, France

CERMICS
Ecole des Ponts

77455 Marne-la-Vallée, France

https://team.inria.fr/serena/

Résumé
Cette thèse se concentre principalement sur l’analyse d’erreur a posteriori et les algorithmes adaptatifs
qui en découlent pour résoudre itérativement des équations aux dérivées partielles (EDP) non linéaires.
Nous considérons des EDP de type elliptique et parabolique dégénéré. Nous étudions également
l’adaptivité dans la précision en virgule flottante d’un solveur multigrille.

Dans les deux premiers chapitres, nous considérons des EDP elliptiques découlant d’un problème
de minimisation d’énergie. L’analyse a posteriori est directement basée sur la différence d’énergie entre
la solution vraie et approchée. Les applications non linéaires des EDP elliptiques que nous considérons
sont en particulier fortement montones et Lipschitziennes. Dans ce contexte, une quantité importante
est la « force de la non-linéarité » donnée par le rapport L/α où L est la constante de Lipschitz et
α est la constante de (forte) montonicité.

Dans le Chapitre 1, nous étudions un algorithme adaptatif comprenant la régularisation, la dis-
crétisation et la linéarisation adaptative. L’algorithme est appliqué à une EDP elliptique avec une
non-linéarité non régulière. Nous établission une borne supérieure garantie, fondée sur un estima-
teur basé sur l’écart primal-dual. De plus, nous isolons les composantes de l’erreur correspondant
à la régularisation, la discrétisation et la linéarisation qui conduisent à des critères d’arrêt adap-
tatifs. Nous prouvons que les estimateurs des composantes convergent vers zéro dans les limites
respectives de régularisation, discrétisation et linéarisation de l’algorithme. Nous présentons des ré-
sultats numériques démontrant l’efficacité de l’algorithme. Nous présentons également des preuves
numériques de robustesse par rapport au ratio mentionné L/α qui motive le travail dans le deuxième
chapitre.

Dans le Chapitre 2, nous examinons la question de l’efficacité et de la robustesse de l’estimateur
d’erreur de l’écart primal-dual. Nous considérons en particulier une différence d’énergie augmen-
tée, pour laquelle nous établissons une indépendance vis-à-vis de ce ratio pour la linéarisation de
Zarantonello et seulement une dépendance locale et calculable par patch pour d’autres méthodes de
linéarisation, y compris la linéarisation de Newton. Des résultats numériques sont présentés pour
étayer les développements théoriques.

Dans le Chapitre 3, nous nous tournons vers le problème de régularisation adaptative pour l’équa-
tion de Richards. L’équation de Richards apparaît dans le contexte de la modélisation des milieux
poreux. Elle contient des non-linéarités non-régulières, et se prêtant à la même approche que celle
adoptée dans le Chapitre 1. Nous développons des estimateurs, ici inspirés des estimateurs en norme
duale du résidu, ainsi qu’un algorithme adaptatif basé sur ces estimateurs.

Dans le Chapitre 4, nous fournissons des détails sur la mise en �œuvre efficace du flux équilibré : un
ingrédient crucial dans le calcul des estimateurs d’erreur. La mise en �œuvre s’appuie sur le paradigme
du multi-threading dans le langage de programmation Julia. Une boucle supplémentaire est introduite
pour éviter les allocations de mémoire, essentielle pour obtenir un passage à l’échelle parallèle.

Dans le Chapitre 5, nous considérons un algorithme de précision mixte avec une méthode de
multigrille géométrique comme solveur interne. Le solveur multigrille fournit intrinsèquement un esti-
mateur d’erreur que nous utilisons dans le critère d’arrêt pour le raffinement itératif. Nous présentons
un benchmark pour démontrer l’accélération obtenue en utilisant des représentations en simple pré-
cision des matrices creuses impliquées. Nous concevons également un algorithme adaptatif qui utilise
l’estimateur mentionné pour identifier quand le raffinement itératif échoue pour des problèmes trop
mal conditionnés, l’algorithme est alors capable de récupérer et de résoudre le problème entièrement
en double précision.

vi Résumé

Mots-clés : Équations aux dérivées partielles, non linearité fortement monotone et
Lipschitzienne, méthode des éléments finis, linéarisation itérative non linéaire, méthode de
Newton, estimation d’erreur a posteriori, adaptivité, régularisation, multigrille, équation de
Richards, milieux poreux, précision mixte, raffinement itératif

Abstract
This thesis concerns a posteriori error analysis and adaptive algorithms to approximately solve nonlin-
ear partial differential equations (PDEs). We consider PDEs of both elliptic and degenerate parabolic
type. We also study adaptivity in floating point precision of a multigrid solver of systems of linear
algebraic equations.

In the first two chapters, we consider elliptic PDEs arising from an energy minimization problem.
The a posteriori analysis therein is based directly on the difference of the energy in the true and
approximate solution. The nonlinear operators of the elliptic PDEs we consider are strongly monotone
and Lipschitz continuous. In this context, an important quantity is the “strength of the nonlinearity”
given by the ratio L/α where L is the Lipschitz continuity constant and α is the (strong) monotonicity
constant.

In Chapter 1 we study an adaptive algorithm comprising adaptive regularization, discretization,
and linearization. The algorithm is applied to an elliptic PDE with a nonsmooth nonlinearity. We
derive a guaranteed upper bound based on primal-dual gap based estimator. Moreover, we isolate
components of the error corresponding to regularization, discretization, and linearization that lead to
adaptive stopping criteria. We prove that the component estimators converge to zero in the respective
limits of regularization, discretization, and linearization steps of the algorithm. We present numerical
results demonstrating the effectiveness of the algorithm. We also present numerical evidence of
robustness with respect to the aforementioned ratio L/α which motivates the work in the second
chapter.

In Chapter 2, we consider the question of efficiency and robustness of the primal-dual gap error
estimator. We in particular consider an augmented energy difference, for which we establish inde-
pendence of the ratio L/α (robustness) for the Zarantonello linearization and only patch-local and
computable dependence for other linearization methods including the Newton linearization. Numer-
ical results are presented to substantiate the theoretical developments.

In Chapter 3 we turn our attention to the problem of adaptive regularization for the Richards
equation. The Richards equation appears in the context of porous media modeling. It contains
nonsmooth nonlinearities, which are amenable to the same approach we adopt in Chapter 1. We
develop estimators and an adaptive algorithm where the estimators are inspired by estimators based
on the dual norm of the residual. We test our algorithm on a series of numerical examples coming
from the literature.

In Chapter 4 we provide details for an efficient implementation of the equilibrated flux, a crucial
ingredient in computing the error estimators so far discussed. The implementation relies on the
multi-threading paradigm in the Julia programming language. An additional loop is introduced to
avoid memory allocations, which is crucial to obtain parallel scaling.

In Chapter 5 we consider a mixed precision iterative refinement algorithm with a geometric
multigrid method as the inner solver. The multigrid solver inherently provides an error estimator of
the algebraic error which we use in the stopping criterion for the iterative refinement. We present a
benchmark to demonstrate the speedup obtained by using single precision representations of the sparse
matrices involved. We also design an adaptive algorithm that uses the aforementioned estimator to
identify when iterative refinement in single precision fails and is able to recover and solve the problem
fully in double precision.

Keywords: Partial differential equations, Strongly monotone and Lipschitz continuous nonlinear
operators, finite element method, iterative linearization, Newton method, a posteriori error estimate,

viii Abstract

adaptivity, regularization, multigrid, Richards equation, porous media, mixed precision, iterative
refinement

Acknowledgements

“Quality is not an act, it is a habit.”
- Aristotle

The contents of this thesis correspond to three years of work as a PhD student in the
SERENA team at Inria Paris. I can hardly believe that period has come to an end and that
it’s time for the next step in my journey.

First and foremost, I would like to express my deepest gratitude to Martin Vohralík, my
thesis director. From our very first meeting, I could see your passion, and you have never
ceased to be a source of inspiration for me. Your knowledge and expertise of numerical
analysis is really exceptional and I feel honored to have been your student. Your dedication
to excellence have inspired me to be a better version of myself. You are also incredibly kind
and patient, which was very much appreciated.

I am also immensely grateful to my co-supervisor François Févotte. Your logical approach
and optimistic mindset helped me overcome some of the most difficult obstacles during my
thesis. Thanks to you, I have learned to look for solutions and always do my best. I feel
honored to have authored my first Julia package with you, and I hope it won’t be the last.

I was honored to have Sören Bartels and Roland Becker as my thesis reviewers. They
are both amazing scientists and to have them read my work was very special to me. Their
reports were both insightful and very kind. I would also like to thank the other members of
my committee, Clément Cancès, Roberta Titarelli, Yvon Maday, and Thomas Wihler. They
all shared their unique point of view and asked very deep questions that lead to fruitful
discussions.

Next, I would also like to give an enormous thanks to Zhaonan Dong, a permanent
member of the SERENA team. You are so talented and your expertise spans from the most
theoretical analysis to the tiniest implementation detail. I felt that whatever problem I had,
your door was open and you would enthusiastically help me out. I also enjoyed our (non-
Bercy) lunches together as well as our various outings to restaurants in Paris. This thesis
would not have been possible without you.

On a personal level, I would like to thank all the other present and former students,
postdocs and permanent members at Inria. With Zuodong, Clément and Gregor: I will
never forget our climbing/kebab sessions. André and Koondi, I enjoyed our mathematical
discussions and I learned a lot from both of you. To the other members of the SERENA team
Alexandre, Jean-Luc, Géraldine, Michel, François, Alessandra, Romain, Morgane, Akrahm,
Simon, Raphaël, thank you for the moments shared together. You all really made me feel
welcome and I hope we can stay in touch. I would also like to thank my friends from the
DYOGENE team including Alessia and Roman. It was getting to know you and I think we
were able to create a cross-team community which was awesome (along with Coco and Élise
from MATHRISK).

I would also like to thank my family (Josh, Kathy and Ella) for all their support and
kindness. I looked forward to our video calls, as well as my visits back. When I always miss
the beautiful New Mexico sky and the taste of fresh green chile.

x Acknowledgements

Last but certainly not least, I would like to thank my dear girlfriend, Caro. It has been
a wild couple of years with a lot of challenges and we have both persevered. You are always
so sweet and thoughtful and strong. I am really proud of both of us and I think we both
grew a lot as people during this period. I look forward to our next chapter together!

Contents

Résumé v

Abstract vii

Acknowledgements ix

Introduction 1
i Context and motivation . 1
ii Goals of this thesis . 2
iii Mathematical models . 3

iii.1 The Richards equation . 4
iii.2 Energy minimization . 4

iv Solution strategy . 5
iv.1 Regularization of nonsmooth nonlinearities 5
iv.2 Finite element discretization . 6
iv.3 Iterative linearization . 7

v Linear solvers, iterative refinement, and mixed precision 8
v.1 Linear solvers . 8
v.2 Iterative refinement and mixed precision 9

vi A posteriori error estimation and adaptive mesh refinement 10
vi.1 Primal–dual gap error estimators . 10
vi.2 Other ways of measuring and estimating the error 11
vi.3 Equilibrated flux . 11
vi.4 Adaptive mesh refinement . 12

vii Contents and contributions of the thesis . 13
vii.1 Chapter 1: Adaptive regularization, discretization, and linearization

for nonsmooth problems based on primal-dual gap estimators 13
vii.2 Chapter 2: Robust energy a posteriori estimates for nonlinear elliptic

problems . 14
vii.3 Chapter 3: Adaptive regularization for the Richards equation 17
vii.4 Chapter 4: Notes on implementation of equilibrated fluxes 18
vii.5 Chapter 5: Adaptive safeguarded iterative refinement 20

1 Adaptive regularization, discretization, and linearization for nonsmooth
problems based on primal-dual gap estimators 23
1.1 Introduction . 23
1.2 Continuous problem statement and regularization 25

1.2.1 Notation . 26

xii Contents

1.2.2 Energy minimization and equivalent formulations 26
1.2.3 Regularization . 27
1.2.4 An example nonsmooth nonlinearity with a kink 28

1.3 Discrete problem and linearization . 30
1.3.1 Finite element discretization . 30
1.3.2 Linearization . 31

1.4 Three ways of measuring the error and their mutual relations 32
1.4.1 Energy difference . 32
1.4.2 Energy norm . 32
1.4.3 Dual norm of the residual . 33
1.4.4 Equivalence in the linear case . 33
1.4.5 Relations in the nonlinear case . 34

1.5 Duality theory . 34
1.5.1 Fenchel conjugate and its properties 35
1.5.2 The two energies principle . 36

1.6 Equilibrated flux and its components . 37
1.6.1 Equilibrated flux . 38
1.6.2 Component fluxes . 40

1.7 A posteriori error estimates distinguishing the error components 44
1.7.1 Energy difference . 44
1.7.2 Dual norm of the residual . 46
1.7.3 Energy norm . 47

1.8 Efficiency of the estimators . 47
1.8.1 Dual norm of the residual . 47
1.8.2 Energy norm . 47
1.8.3 Energy difference . 48

1.9 Adaptive algorithm . 48
1.10 Numerical experiments . 49

1.10.1 Polynomial solution on a square . 50
1.10.2 Unknown solution on an L-shaped domain 58

1.11 Conclusions and future work . 62
1.A Proofs from §1.5 . 63

2 Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems 65
2.1 Introduction . 65
2.2 Weak formulation, energy minimization, finite element discretization, and it-

erative linearization . 67
2.2.1 Weak formulation and equivalent energy minimization 68
2.2.2 Finite element discretization . 68
2.2.3 Iterative linearization . 69

2.3 Convex conjugate, dual energy, and flux equilibration 71
2.3.1 Convex conjugate function and dual energy 71
2.3.2 Flux equilibration . 72

2.4 A posteriori estimate of the energy difference 72
2.4.1 Energy difference and the associated estimator 73
2.4.2 Locally-weighted bounds for the energy difference and the associated

estimator . 73

Contents xiii

2.4.3 Data oscillation, quadrature-type, and iterative linearization estimators 74
2.4.4 A posteriori estimate of the energy difference 74

2.5 A posteriori estimate of the augmented energy difference 75
2.5.1 Energy difference and estimator of the linearized problem 75
2.5.2 Augmented energy difference and the associated estimator 76
2.5.3 Data oscillation and quadrature-type estimators 77
2.5.4 A posteriori estimate of the augmented energy difference 77

2.6 Numerical results . 78
2.6.1 Smooth solution . 78
2.6.2 Singular solution . 81
2.6.3 Convergence on a sequence of adaptively refined meshes 82

2.7 Proof of Lemma 2.4.1 . 83
2.8 Proof of Theorem 2.4.4 . 85
2.9 Proof of Lemmas 2.5.1 and 2.5.3 . 87
2.10 Proof of Theorem 2.5.5 . 88
2.A Equivalent assumptions on the nonlinear functions 90
2.B Spectral properties of the tensor product . 91

3 Adaptive regularization for the Richards equation 92
3.1 Introduction . 92
3.2 Setting and specification of the data . 94
3.3 Difficulties related to the nonlinearities and proposed regularization 96
3.4 Discrete problem and solution method . 99

3.4.1 Regularization . 99
3.4.2 Linearization . 99
3.4.3 A posteriori component error estimators by flux reconstruction 100

3.5 Adaptive algorithm . 101
3.6 Numerical experiments . 102

3.6.1 Strictly unsaturated medium . 103
3.6.2 Injection test . 105
3.6.3 Realistic test . 106

3.7 Conclusions and future work . 111

4 Implementation of the equilibrated flux 112
4.1 Notation and problem statement . 112
4.2 Linear algebra representation . 113
4.3 Naive implementation with dynamic allocations 114
4.4 High level view of the efficient algorithm . 115
4.5 Topological patch information . 117
4.6 Cellwise assembly . 117
4.7 Patch-level linear algebra . 118
4.8 The DOF manager . 119
4.9 The loop on patches . 120
4.10 Performance study for the estimator . 121

xiv Contents

5 An adaptive iterative refinement multigrid method 124
5.1 Introduction . 124
5.2 Model problem and discretization . 126
5.3 Performance and mixed precision . 127

5.3.1 Storage of sparse matrices . 127
5.3.2 Iterative refinement and optimal multigrid V-cycle 128
5.3.3 Performance test . 129

5.4 Stability considerations and adaptive precision 131
5.4.1 Motivation for adaptivity . 132
5.4.2 Adaptive safeguarded iterative refinement 132
5.4.3 Test of the adaptive safeguarded algorithm 133

5.5 Conclusion . 134

Bibliography 136

Introduction

“C’est avec la logique que nous prouvons
et avec l’intuition que nous trouvons.”

- Henri Poincaré

In the modern age, many fields of science and engineering rely increasingly on numerical
simulation to gain insight into complex phenomena. Numerical experiments have several
advantages over conventional laboratory experiments.

• Cost: Numerical experiments are almost always more cost effective than their physical
counterparts.

• Reproducibility: Numerical experiments provide a higher degree of reproducibility due
to the deterministic nature of computers.

• Generality and extensibility: The same numerical methods can be applied to a large
class of physical models as well as taxonomies of models with increasing complexity.

Furthermore, in certain cases, physical experiments may be dangerous or even impossible.
This is indeed the case for the French agency for nuclear waste management (ANDRA) that
funded this thesis.

i Context and motivation

Originally founded in 1979 as a branch of the atomic energy center (CEA), ANDRA was
established as an independent organization in 1991. Immediately following its independence,
the 1991 Waste Act tasked ANDRA with determining the feasibility of a deep geological
repository for high-level and long-lived intermediate-level radioactive waste. One of the major
culminations of ANDRA’s work in this direction is the Cigéo (Centre industriel de stockage
géologique) project. The goal of this ambitious project is to provide a solution for nuclear
waste disposal that is viable for at least 100 years. The plan is to bury steel casks containing
the waste around 500 meters below the ground. The main facility (see Figure 1) located in
the Meuse/Haute-Marne region was chosen carefully based on its geological characteristics.
In particular, this region is home to vast clay deposits that can potentially insulate the
surface in the case of radioactive seepage.

Indeed, understanding the consequences of potential leaks of radioactive material is of
paramount importance to ANDRA. In a worst-case scenario, the groundwater could corrode
the steel casks and transport the radioactive material away from the containment zone. To
understand and mitigate such risks, ANDRA conducts large-scale simulations over very long
timescales (thousands of years) in addition to physical testing at the facility. The underlying
mathematical models involve modeling flow in porous media such as clay or rock. These
porous media models are often highly complex, with parameters varying over large space
and timescales, as well as containing highly nonlinear and/or nonsmooth closure laws.

2 Introduction

Figure 1: Cutaway view of the main Cigéo site (courtesy of andra.fr).

This thesis is primarily concerned introducing new methods for treating difficulties arising
from the form of nonlinear nonsmooth closure laws, and the subsequent study of the resulting
adaptive algorithms. The central tools will be a posteriori error analysis and adaptivity,
which we detail in the forthcoming sections. In particular, in Chapters 1 and 2 we study an
academic model problem related to energy minimization while in Chapter 3 we study the
Richards equation which is a reduced model of two-phase flow in porous media with highly
nonlinear and nonsmooth closure laws. Implementation aspects are considered in Chapter 4
and we explore mixed precision floating point adaptivity in Chapter 5.

ii Goals of this thesis

Accurate simulation of nonlinear nonsmooth partial differential equations (PDEs) such as
those appearing in porous media flows can be prohibitively expensive in terms of computa-
tional resources, whether it be in terms of mesh resolution, temporal resolution, or number
of solver iterations for the resulting linear or nonlinear systems of algebraic equations. These
steps will be described in greater details in the following but for now let us simply observe
how each approximation comes with a set of parameters allowing to increase the accuracy,
typically at the detriment of the computational cost:

• A spatial discretization method–here the finite element method (FEM)–allows approx-
imating the continuous PDE by a discrete problem, see §iv.2. The approximation
involved is governed by the chosen mesh, which can be refined in order to make the
solution more accurate.

• A linearization procedure allows handling the nonlinear nature of the problem at hand
as in §iv.3, transforming it into a sequence of linear problems. In this case the approx-
imate solution can be made more accurate by hardening the stopping criterion so that

andra.fr

iii. Mathematical models 3

the number of iterations increases. A regularization procedure will be introduced to
handle non-smooth closure laws (see §iv.1). Its accuracy is governed by a parameter,
which can be made smaller to let the regularized closure law converge to the exact
non-smooth law.

• Even when, after all these steps, only linear systems of algebraic equations remain to be
solved (see §v.1), some choices can still be made to control the accuracy and speed of
the linear solver. One such choice is the stopping criterion used for an iterative solver.
Another choice is the precision of the arithmetic used for the underlying floating point
operations (see §v.2).

For hard problems such as the Richards equation, it becomes of paramount importance
to try and spend the computational effort to increase the accuracy of the weakest link in the
chain, and to try and avoid wasting computational resources on approximations that do not
actually influence the overall solution accuracy.

In such a context, the natural question then becomes: how can we steer the overall
algorithm that chains all these approximations? In particular, how to decide, at a certain
step of the algorithm, whether to, e.g., refine the mesh or reduce the regularization? At a
given linearization iteration, is it enough to use a single-precision linear solver, or is double
precision needed? Or can a mixed-precision approach provide the required accuracy?

The main unifying feature of our work here is to propose methods that free the user from
the burden of choosing appropriate parameters to control the accuracy of each step in the
algorithm. Instead we propose methods that automatically steer the overall algorithm
to spend computational resources where it matters most. Our main strategy will be to

1. estimate the error with a computable a posteriori error estimator (see §vi);

2. decompose the estimator into components corresponding to the different parts of
the solution procedure, and

3. balance these components.

This therefore leads us to

• Adaptivity in discretization by local mesh refinement,

• Adaptivity in regularization by updating a regularization parameter,

• Adaptivity in linearization by adaptive stopping criteria,

• Adaptivty in floating point precision in the linear solver using iterative refinement.

iii Mathematical models

The overarching mathematical theme of this thesis are strongly nonlinear and nonsmooth
partial differential equations (PDEs).

4 Introduction

−6 −4 −2 0

0.2

0.4

0.6

0.8

1

p

S
(p
)

Figure 2: The nonlinear saturation function for the Brooks–Corey model [25]. The function
is nonsmooth as it is not differentiable at the point p = −0.2.

iii.1 The Richards equation

An important model in the context of porous media modeling is the Richards equation
[33, 39]. The Richards equation provides a reduced model of two-phase flow. The equation
reads, for unknown pressure p and saturation s,

∂ts−∇·[Kκ(s)(∇p+ g)] = f in Ω× [0, T], (1)

where Ω is a spatial domain, T is the final time, K is the absolute permeability tensor, κ
is the relative permeability function, −g represents the constant force of gravity, and f is a
body source term. The equation is closed by the so-called capilary pressure relation

s = S(p). (2)

We note that the functions κ : [0, 1] → R+ and S : R → [0, 1] are nonlinear in practical
models. We study the Richards equation in more detail in Chapter 3. In the case where S(p)
is constant so that ∂ts = 0, and if g = 0 and K = I, the Richards equation is a stationary
equation for the pressure p, namely,

−∇·(κ(S(p))∇p) = f in Ω. (3)

In Figure 2, we show a nonlinear and nonsmooth example of the saturation function S(p).
Degenerate functions κ are also considered in Chapter 3.

iii.2 Energy minimization

In Chapters 1–2 we study equations similar to (3), namely PDEs of the form

−∇·(a(|∇u|)∇u) = f in Ω, (4)

where the function a : R+ → R+ is nonlinear and possibly nonsmooth. We assume additional
structure in that there exists a convex function φ ∈ C1(R) such that

a(s) =
φ′(s)

s
. (5)

iv. Solution strategy 5

1 1.5 2 2.5 3

2

4

6

s

φ
′
(s
)

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

s

a
(s
)

Figure 3: The nonlinear and nonsmooth function a and the corresponding function φ′. They
are both non-differentiable at s = 2.

For some appropriate Sobolev space V , our problem can then be stated as

u = arg min
v∈V

∫
Ω
φ(|∇v|)− fv dx. (6)

This is further equivalent to the so-called Euler–Lagrange equations: find u ∈ V such that

(a(|∇u|)∇u,∇v) = (f, v) ∀v ∈ V, (7)

whereby (4) is the strong form of (7).

iv Solution strategy

iv.1 Regularization of nonsmooth nonlinearities

As mentioned above, we are interested in solving problems where nonsmooth nonlinear func-
tions appear cf. Figure 2 and Figure 3. We in particular seek to avoid poor iterative
linearization solver performance due to low regularity. Our recipe is to regularize the non-
smooth nonlinearities. Regularization is a well known approach in many circumstances for
handling low regularity. For example, for inverse problems [73, 98, 48], regularization is a
common tool to deal with issues pertaining to ill-posedness. Closer to the current setting,
regularization has been used as a theoretical tool for establishing existence and uniqueness
in the context of degenerate parabolic PDEs [100, 43, 96], a class that the Richards equation
(1) belongs to. Degenerate parabolic equations are characterized by “degeneracies”, i.e.,
points in either space or time where the PDE changes type (from parabolic to either elliptic
or hyperbolic in the present setting). In [100] and [96], sequences of regularized problems
are introduced that avoid these degenerate regions. These regularized problems are always
parabolic, and thus amenable to standard methods to prove well-posedness. Next, it is
shown that the limit of the regularized solutions converges in some sense to the solution of
the original problem.

Here, we are rather interested in how to improve nonlinear solvers performance, and in
particular Newton’s method. For Newton-type methods, regularization (smoothing) Newton
methods replace non-differentiable nonlinearities with smooth counterparts, see [122, 103,

6 Introduction

1 1.5 2 2.5 3

2

4

6

s

φ
′ ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

1

2

3

4

s

φ
′
′

ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

s

a
ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

0

0.5

1

1.5

s

a
′ ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

Figure 4: Regularized approximatations of the nonlinear and nonsmooth functions a and φ

in the energy minimization problem of (12).

102] and the references therein. In this case, the amount of added regularization is typically
proportional to a parameter that is driven to zero as the Newton iterations progress, thereby
approaching the original problem.

In our context, for the given nonsmooth nonlinear function a and the associated function
φ, we introduce a sequence of positive regularization parameters {εj}j≥1 that gives rise to
a sequence of regularized functions aεj and φεj , see Figure 4 for an example in the energy
minimization setting where a ∈ C0(R) \ C1(R) and correspondingly the convex function
φ ∈ C1(R) \C2(R). In this case, we obtain a sequence of modified weak problems for j ≥ 1:
find uj ∈ V such that

(aεj (|∇uj |)∇uj ,∇v) = (f, v) ∀v ∈ V. (8)

Our salient point is that we will be choosing εj adaptively using a posteriori error
estimators. This approach is also relevant when we study the Richards equation in more
detail in Chapter 3, in particular for the Brooks–Corey model for which the saturation
function (2) contains a kink point cf. Figure 3. Figure 5 gives an example of our proposed
regularization in this context. We will again be choosing εj adaptively.

iv.2 Finite element discretization

Problem (8) is still infinite-dimensional. To discretize it, we consider the continuous Galerkin
(Lagrange) finite element method of arbitrary order, see e.g., [50]. More precisely, given a
conforming, shape-regular mesh T` of the domain Ω, our discrete approximate space, for
polynomial order p ≥ 1, will be V p

` := Pp(T`) ∩H1
0 (Ω). In particular, the choice of notation

iv. Solution strategy 7

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

p

S
ǫ
(p

)

ǫ = 0.0
ǫ = 0.0125
ǫ = 0.025
ǫ = 0.05
ǫ = 0.1

Figure 5: Regularized approximations for the saturation function (2) in the Brooks–Corey
model [25] cf. (3.7).

` ∈ N rather than h ∈ R reflects the fact that we will work with sequences of meshes that
are typically graded and are generated from an adaptive mesh refinement (AMR) procedure.
We thus consider a regularized and discretized problem associated to (7): for a mesh index
` and a regularization index j, find uj` ∈ V p

` such that

(aεj (|∇u
j
` |)∇u

j
` ,∇v`) = (f, v`) ∀v` ∈ V p

` . (9)

iv.3 Iterative linearization

Once the problem has been regularized and discretized, we consider a sequence of linear prob-
lems to solve, whose solutions approximate the solution uj` to the nonlinear problem (9). We
refer to this procedure as iterative linearization. For general nonlinear PDE, there exist many
well known linearization procedures, e.g. the Picard/fixed point iteration, the Zarantonello
iteration, and the Newton iteration, see [20, 42, 50, 67, 80, 129] and the references therein.
However, Newton’s method stands apart in providing potentially quadratic convergence un-
der certain conditions. Thus, as stated in §iv.1, we seek to satisfy the necessary conditions
for Newton’s method (in particular the regularity requirements) by introducing an adaptive
regularization. For a mesh index ` ≥ 1 and a regularization index j ≥ 0, given an initial
guess uj,0` , we can consider a regularized, discretized, and linearized problem associated to
(7): for a linearization index k ≥ 1, find uj,k` ∈ V p

` such that

(Aj,k−1
` ∇uj,k` ,∇v`) = (f, v`) + (bj,k−1

` ,∇v`) ∀v` ∈ V p
` , (10)

where Aj,k−1
` : Ω → Rd×d and bj,k−1

` : Ω → Rd depend on the previous iterate uj,k−1
` and on

the chosen linearization.
We now present three typical choices of the linearization (10):

• The Picard (fixed point) iteration, see, e.g. [42], is defined as

Aj,k−1
` = a(|∇uj,k−1

` |)Id and bj,k−1
` = 0 in Ω. (a)

• The Zarantonello iteration, introduced in [127], is defined as

Aj,k−1
` = γId and bj,k−1

` =
(
γ − a(|∇uj,k−1

` |)
)
∇uj,k−1

` in Ω, (b)

8 Introduction

where γ ∈ (0,∞) is a constant parameter. The Zarantonello iteration converges lin-
early, but the convergence is slow as γ takes large values.

• The Newton iteration, see, e.g. [42], is defined as

Ak−1
` = a(|∇uj,k−1

` |)Id +
a′(|∇uj,k−1

` |)
|∇uj,k−1

` |
∇uj,k−1

` ⊗∇uj,k−1
`

with bk−1
` = a′(|∇uj,k−1

` |)|∇uj,k−1
` |∇uj,k−1

` in Ω.

(c)

Specifically for the Richards equation, the design of effective linearization procedures is an
ongoing effort. A sufficient condition for the convergence of Newton’s method in the context
of the Richards equation was derived in [75]. Other linearization schemes specific to the
Richards equation include the modified Picard method [31], L-schemes [111, 87, 99, 92], and
the Jäger–Kačur method [77, 78]. These methods are generally more robust than Newton’s
method at the cost of slower convergence. In particular, the L-scheme was shown to be
unconditionally convergent in [105], though it only converges linearly. In our philosophy we
want to keep the Newton method but rather apply it to a suitably (adaptively) regularized
nonlinearity.

v Linear solvers, iterative refinement, and mixed precision

v.1 Linear solvers

Once we have reduced the original problem to a sequence of finite dimensional linear problems
of the form (10), we can choose a basis of the finite-dimensional space V p

` and then the discrete
linear problem (10) is equivalent to a linear system of the form Ax = b. One possible choice
to solve these types of equations are direct methods, i.e., procedures to produce the exact
solution x of the linear system (up to machine precision) in a predetermined number of
steps, see, e.g., [62, 126, 3] and references therein. We will however, be primarily interested
in iterative solvers, where a sequence of approximate algebraic vectors are computed that
converge to the true solution x. In the model context (10), this would give us an approximate
solution uj,k,i` ∈ V p

` on each iteration i of the linear solver.
Classical iterative methods include fixed point-type methods such as Jacobi, Gauss–

Seidel, and successive over-relaxation. An important class of solution methods are Krylov
subspace methods such as the conjugate gradient method (CG) and generalized minimum
residual methods (GMRES), see, e.g., [110, 80]. Another branch of linear solvers are so-called
multi-level methods. These methods rely on information from the underlying discretized
system (namely, the mesh the problem is discretized on) to consider auxiliary versions of
the original problem with fewer unknowns. More precisely, we are interested in geometric
multigrid methods, see, e.g., [65, 24]. A typical geometric multigrid algorithm consists of
a so-called V-cycle, see Figure 6. A sequence of grids is established, and discrete functions
are transferred between them. The operations performed on the individual levels (grids)
are referred to as smoothing, usually consisting of an iterative fixed point method, and a
coarse solve: a direct method on the lowest level (coarsest grid). The smoothing steps are
called pre-smoothing (resp. post) because they occur before (resp. after) the coarse solve,
see Figure 6.

In particular, we will use the geometric multigrid solver introduced in [91, 89] and in the
PhD thesis [90]. This version of geometric multigrid has several advantages: 1) there are no

v. Linear solvers, iterative refinement, and mixed precision 9

Figure 6: A typical multigrid V-cycle with J = 4 levels (Figure 3 of [90]).

pre-smoothing steps and only one post-smoothing step; 2) the smoother is a simple Jacobi
smoother in the lowest order case and block Jacobi in general; 3) the solver is p-robust,
that is, the contraction property of the solver is independent of the polynomial order; 4) the
solver has a built-in a posteriori estimator of the algebraic error. This last property will be
the most crucial for us, as we will design an adaptive algorithm based on this estimator.

v.2 Iterative refinement and mixed precision

The vast majority of numerical algorithms are carried out in finite precision, more specifically
using the floating point arithmetic. Mixed precision methods involve using different precision
levels (such as single, double, or extended precision) at various stages of a computation, see,
e.g., [71, 124] and references therein. This approach allows for the balancing of computational
speed and memory usage, as lower precision arithmetic is typically faster and less memory-
intensive. One Mixed precision can in particular be applied in iterative refinement, originally
introduced in [124].

Iterative refinement is a correction method consisting of an inner solver and a residual
correction. In particular, an equation for the error is solved in lower precision and the
residual calculation is computed in higher precision, see Algorithm 1. The basic tenant of
iterative refinement is that solving for the correction generally requires less precision since
the entries of the residual are on a smaller order compared to the right hand side b. Since
the residual is small, and if A is not too ill-conditioned, the correction y should also be small.
Furthermore, if y is small, then the rounding errors in computing y should be negligible when
compared to the rounding errors in x. Iterative refinement has been studied in the context
of direct solvers [124, 38], Krylov subspace methods [27, 26], and more recently in [88, 115]
for multigrid methods.

10 Introduction

Algorithm 1: Iterative refinement in mixed precision
1 Input: initial guess x(0), A, b
2 i := 0

3 while ‖r(i)‖ > tol do
4 r(i) := b−Ax(i) ∗ Compute residual in high precision
5 y(i) := InnerSolve(A, r(i)) ∗ Compute correction in low precision
6 x(i+1) := x(i) + y(i) ∗ Update in high precision
7 i := i+ 1

vi A posteriori error estimation and adaptive mesh refine-
ment

The final but crucial ingredient for designing adaptive algorithms are a posteriori error
estimates. A posteriori error estimation for PDEs is a well established subject, see for
example the books of Verfürth [120], Ainsworth and Oden [1], Repin [107], and the references
therein. A posteriori errors estimators can be utilized to 1) certify the error; 2) drive adaptive
mesh refinement strategies; and 3) drive adaptivity in a larger sense, such as providing
stopping criteria for iterative solvers. In general, important properties of such estimators are
their reliability (upper bound for the error) and efficiency (lower bound for the error), where
the constants in the upper bounds are ideally explicit, independent of the PDE data and
finite-dimensional approximation parameters. More specifically in the context of adaptive
stopping criteria, it is especially attractive to have a constant-free upper bound. As for the
error lower bound, the goal is to obtain a generic constant ideally independent of the model
and/or discretization parameters, which we refer to as robustness.

vi.1 Primal–dual gap error estimators

Thanks to the minimization structure in (12), we can consider a special type of a posteriori
error estimators known as primal–dual gap estimators [109, 108, 107, 13, 129]. In particular,
these estimators do indeed provide a constant-free upper bound on the difference of energies.
The following uses standard duality arguments for convex functions, following [17, 107, 129].
Note that in this section we specifically consider Sobolev space V = H1

0 (Ω). We begin by
defining the energy functional J : H1

0 (Ω) → R as the right hand side of (12), i.e.

J (v) :=

∫
Ω
φ(|∇v|)dx−

∫
Ω
fv dx. (11)

We consider the associated minimization problem:

u = arg min
v∈H1

0 (Ω)

J (v). (12)

Then, we define the associated dual functional J ∗ : H(div,Ω) :→ R by

J ∗(ς) := −
∫
Ω
φ∗(|ς|)dx, (13)

where the star represents the Fenchel conjugate

φ∗(r) := max
s

{sr − φ(s)}. (14)

vi. A posteriori error estimation and adaptive mesh refinement 11

Then, for any function v ∈ H1
0 (Ω) and any vector-valued field ς satisfying ς ∈ H(div,Ω)

with ∇·ς = f , we have the following result (cf. Corollary 1.5.6)

0 ≤ J (v)− J (u) ≤ J (v)− J ∗(ς). (15)

In particular, we use the bound (15) to define a computable error estimator with constant-free
upper bound, (cf. Lemma 1.7.1)

0 ≤ J (uj,k`)− J (u)︸ ︷︷ ︸
total error (e`,j,ktot)2

≤ J (uj,k`)− J ∗(tj,k`)︸ ︷︷ ︸
total est. (η`,j,ktot)2

, (16)

where the flux tj,k` ∈ H(div,Ω) with ∇·tj,k` = f is computed at each step `, j, k and is
an approximate solution of the dual problem achieved by means of some local (patchwise)
problems. The construction of this object will be the discussion of §vi.3.

vi.2 Other ways of measuring and estimating the error

In addition to measuring the errror via the difference of the energies as in (15), a second
type of error measure we will consider will be that of the energy norm. For v ∈ H1

0 (Ω), we
namely consider

|||v||| := α1/2‖∇v‖, (17)

for some real number α > 0. One can also consider the dual norm of the residual. Let the
residual R(v) ∈ H−1(Ω) be given by

〈R(v), w〉 := (f, w)− (a(|∇v|)∇v,∇w), w ∈ H1
0 (Ω). (18)

Then the dual norm of the residual is given by

|||R(v)|||−1 := sup
ϕ∈H1

0 (Ω), |||ϕ|||=1

〈R(v), ϕ〉. (19)

These three error measure turn out to be equivalent in the linear case a(s) = constant (cf.
§1.4.4)

J (v)− J (u) = 1
2 |||v − u|||2 = 1

2 |||R(v)|||2−1.

This equivalence extends to the nonlinear case but the equivalence constant depends on the
nonlinear function a. The corresponding error estimator for these two error measures is (cf.
§ 1.7.2–1.7.3)

0 < 1
2 |||u

j,k
` − u|||2 ≤ 1

2 |||R(uj,k`)|||2−1 ≤ 1
2 α

−1‖A(∇uj,k`) + tj,k` ‖2︸ ︷︷ ︸
total est. (η̃`,j,ktot)2

.

vi.3 Equilibrated flux

In the previous section, we observed that the computability of the estimators hinged on being
able to produce an object tj,k` in H(div,Ω) with a specified divergence. This is achieved
by solving linear, local, and mutually independent problems on patches of mesh elements.
This resulting object is referred to as the equilibrated flux and is based on principles first
established in the works of Ladevèze and Leguillon [84], Destuynder and Métivet [41], Braess

12 Introduction

Figure 7: A nodal patch and its associated hat function.

and Schöberl [21], and Ern and Vohralík [53]. One major advantage of this strategy is the so-
called p-robustness, i.e., the resulting estimator is uniformly efficient for arbitrary polynomial
order p. For the linearized problem (10) this construction boils down to solving, on each
nodal patch ωa (see Figure 7) corresponding to the node a of the mesh T` a mixed problem
of the form: find (tj,ka , qa) ∈ Va ×Qa such that

(tj,ka ,v`)ωa − (qa,∇·v`)ωa = −(ψa
(
Aj,k−1
` ∇uj,k` − bj,k`

)
,v`)ωa , (20a)

(∇·tj,ka , r`)ωa = (fψa −
(
Aj,k−1
` ∇uj,k` − bj,k`

)
· ∇ψa, r`)ωa (20b)

for all pairs (v`, r`) ∈ Va×Qa. See §1.6.1 for full details. We give details of our implementa-
tion in the Julia programming language in Chapter 4 in the simpler but very much relevant
context of the Poisson equation.

vi.4 Adaptive mesh refinement

One common use of a posteriori error estimation is driving adaptive mesh refinement algo-
rithms. Adaptive mesh refinement algorithms are well studied, see e.g., [119, 6, 97, 28] and
references therein. To preserve mesh continuity and mesh shape regularity during refinement,
we use the newest-vertex bisection (NVB) algorithm, see Figure 8 for an illustration. The
NVB algorithm is applied in tandem with Dörfler marking [46] (cf. Algorithm 3 below) for
the selection of elements to refine. I have implemented the newest vertex bisection algorithm
in the Gridap.jl [118, 7] open source finite element package via the pull request #901,
https://github.com/gridap/Gridap.jl/pull/901. It can be applied via a single line call
to a given mesh, as demonstrated in the following example.

1 using Gridap

2 # Make a uniform simplicial mesh on the unit square with 10 x 10 x 2 elements

3 Ω = CartesianDiscreteModel((0,1,0,1), (10,10)) |> simplexify

4 using Gridap.Adaptivity

5 # Refine (at least) the cells 5, 13, and 23 using newest vertex bisection

6 Ω_ref = refine(Ω, refinement_method = "nvb", cells_to_refine = [5, 14, 23])

https://github.com/gridap/Gridap.jl/pull/901

vii. Contents and contributions of the thesis 13

NVB

Figure 8: The red elements are marked for refinement. The newest vertex bisection algorithm
(NVB) ensures the mesh continuity by bisecting additional elements to those marked, and
always choosing to bisect by adding a new node opposite to the longest edge.

vii Contents and contributions of the thesis

This manuscript consists of five chapters excluding this introductory one. We now give their
summary.

vii.1 Chapter 1: Adaptive regularization, discretization, and linearization
for nonsmooth problems based on primal-dual gap estimators

This chapter corresponds to the article [58] in Computer Methods in Applied Mechanics in
Engineering. It is a joint work with François Févotte and Martin Vohralík.

In this chapter, we are interested in two main questions: 1) how can can we we obtain a
good approximation to the solution of a nonsmooth PDE by applying Newton’s method to a
sequence of auxiliary regularized and discretized problems and 2) can we do so while bounding
the error in difference of energies as discussed in §iii.2. To this end, we introduce a three-
level adaptive algorithm controlling regularization (with index j), discretization (with index
`), and linearization (with index k) in the numerical resolution of nonsmooth PDEs. The
regularization is applied at the PDE level by modifying the nonlinear nonsmooth function
defining the PDE. Our adaptive algorithm is driven by component estimators that isolate
the errors coming from regularization, discretization, and linearization. These component
estimators provide a constant-free upper bound decomposition of the so-called primal–dual
gap estimator of the form (16).

The main results of this chapter are as follows: 1) we introduce a global regularization of
a nonsmooth function in the spirit of Figure 3, thus obtaining a sequence of smooth PDEs; 2)
we derive a decomposition of the standard primal–dual gap estimator (16) into components,
(cf. Theorem 1.7.3)

(η`,j,ktot)2 ≤
∣∣∣∣∫

Ω
φ(|∇uj,k` |) + φ∗(|dj,k` |) +∇uj,k` · tj,k` dx

∣∣∣∣︸ ︷︷ ︸
discretization est. (η`,j,kdis)2

14 Introduction

+

∣∣∣∣∫
Ω
φ∗(|dj,k` + rj,k` |)− φ∗(|dj,k` |)dx

∣∣∣∣︸ ︷︷ ︸
regularization est. (η`,j,kreg)2

+

∣∣∣∣∫
Ω
φ∗(|tj,k` |)− φ∗(|dj,k` + rj,k` |)dx

∣∣∣∣︸ ︷︷ ︸
linearization est. (η`,j,klin)2

;

3) we prove that these component error estimators converge to zero in their respective limits.
More precisely, we have the following

Lemma 1.7.4: lim
j,k→∞

η`,j,kreg = 0,

Lemma 1.7.5: lim
k→∞

η`,j,klin = 0,

Lemma 1.7.6: lim
j,k,`→∞

η`,j,kdis = 0;

4) we design an adaptive algorithm (Algorithm 2) balancing the error components: see
Figure 9 for an example of its execution. More precisely, we plot the values of the component
estimators for each combination of indices the `, j, k. Some important remarks about the
behavior of the estimators are:

1. The linearization estimator converges rapidly for a given mesh ` and regularization
parameter j

2. The regularization estimator decreases in j and is kept strictly below the discretizaiton
estimator for almost all the iterations

3. The discretization estimator decreases in `

5) we consider the convergence of the total estimator with respect to total degrees of freedom
(DOFs). Specifically, we apply the algorithm for both a known smooth solution as well as
an unknown solution on an L-shaped domain. In particular, in the smooth case we recover
the optimal rate of convergence with respect to DOFs for polynomial degree p = 1 using
uniform refinement, see Figure 10. For the unknown solution on the L-shaped domain,
we observe the optimal rate of convergence for the total estimator using adaptive mesh
refinement for polynomial order up to 3. Indeed, in Figure 11 we compare the results of using
uniform and adaptive refinement for Algorithm 2 (in both cases the adaptive regularization
and linearization are performed as usual), and in particular the sub-optimality for uniform
refinement due to the re-entrant corner.

vii.2 Chapter 2: Robust energy a posteriori estimates for nonlinear elliptic
problems

This chapter corresponds to article [68]. It is a joint work with André Harnist, Koondanibha
Mitra, and Martin Vohralík. This article has been submitted for publication and is currently
under review.

In this chapter, we conduct a rigorous mathematical study of the robustness of the primal–
dual gap estimator (16) with respect to the strength of the nonlinearity of the function a.
We do not consider regularization in this chapter, hence the index j does not appear. In

vii. Contents and contributions of the thesis 15

0 5 10 15 20 25 30 35 40 45

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Cumulative Newton step k

R
el

a
ti

v
e

es
ti

m
a
to

r

Regularization estimator

Discretization estimator

Linearization estimator

Figure 9: Evolution of the component estimators during the execution of the adaptive
Algorithm 2. The estimators are defined in §1.7.1. Chapter 1, Figure 1.8 and https:
//doi.org/10.1016/j.cma.2023.116558.

104 105

10−2.5

10−2

10−1.5

DOFs

R
e
la
t
iv
e
e
r
r
o
r
a
n
d
e
s
t
im

a
t
o
r

η
ℓ,j̄,k̄
tot,rel

e
ℓ,j̄,k̄
tot,rel

DOFs−
1

2

Figure 10: Optimal rate of convergence with respect to DOFs for the total estimator and
error (16). See Figure 1.9 and https://doi.org/10.1016/j.cma.2023.116558.

https://doi.org/10.1016/j.cma.2023.116558
https://doi.org/10.1016/j.cma.2023.116558
https://doi.org/10.1016/j.cma.2023.116558

16 Introduction

102 103 104 105

10−4

10−3

10−2

10−1

100

101

DOFs

E
st
im

at
or

p = 3

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
3

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

Figure 11: Comparing uniform and adaptive mesh refinement for an unknown solution on an
L-shaped domain for the total error and estimator (16). The uniform refinement results in
sub-optimal convergence with respect to DOFs, while the adaptive refinement recovers the
optimal rate, including iterative linearization and iterative regularization. See Figure 1.13
and https://doi.org/10.1016/j.cma.2023.116558

particular, we seek to show that the primal-dual gap estimator is not only an upper bound
but also, up to a generic constant, a lower bound of the difference of energies. As a second
step, we consider an augmented version of the difference of energies which takes into account
the iterative linearization, e.g., the Picard/fixed point iteration (a), the Zarantonello iteration
(b), or the Newton iteration (c). The linearized energy functional J k−1

` : H1
0 (Ω) → R defined

for all v ∈ H1
0 (Ω) and associated to a linearization of the form (10) is given by

J k−1
` (v) :=

1

2

∥∥∥(Ak−1
`)

1
2∇v

∥∥∥2 − (f, v)− (bk−1
` ,∇v). (21)

The augmented energy difference then reads as

Ek` :=
1

2

(2(J (uk`)− J (u)))
1
2︸ ︷︷ ︸

nonlinear

+λk`

(
2
(
J k−1
` (uk`)− J k−1

` (uk〈`〉)
)) 1

2︸ ︷︷ ︸
linearized

 (22)

where λk` (cf. (2.41)) is defined to “balance” the nonlinear and linear components of the
energy difference, and uk〈`〉 is the minimum of the energy functional (21) over the infinite-
dimensional space H1

0 (Ω). We have an equivalent augmented estimator:

ηk` :=
1

2

(2J (uk`)− J ∗(σk`))
1
2︸ ︷︷ ︸

nonlinear

+λk`

(
2J k−1(uk`)− J ∗,k−1(σk`)

) 1
2︸ ︷︷ ︸

linearized

 , (23)

where J ∗ is the dual energy of (13) and σk` is an equilibrated flux, cf. (2.25). For this
augmented energy, we are able to prove robustness for the Zarantonello iteration, and a
reduced local dependence for the other linearization schemes that we study. More precisely,
we have (cf. Theorem 2.5.5)

Ek` ≤ ηk` + quadrature type and oscillation terms

https://doi.org/10.1016/j.cma.2023.116558

vii. Contents and contributions of the thesis 17

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1.042

1.043

1.044

1.045

1.046

1.047

Strength of the nonlinearity

E
ff

ec
ti

v
it

y
in

d
ic

es

Zarantonello

Linearized effectivity

Augmented effectivity

Nonlinear effectivity
0

200

400

600

800

1,000

Ĉ
k ℓ

Ĉk

ℓ

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1.044

1.046

1.048

1.050

1.052

Strength of the nonlinearity

E
ff

ec
ti

v
it

y
in

d
ic

es

Newton

Linearized effectivity

Augmented effectivity

Nonlinear effectivity

Figure 12: The effectivity indices are the ratios of the respective estimators in (23) divided
by the errors in (22). We observe robustness of the estimators with respect to the strength
of the nonlinearity for the Zarantonello linearization (left) and lack thereof for the Newton
linearization (right) where the computable constant Ĉk` blows up for large values as discussed
in Chapter 2, Figure 2.3 and https://hal.science/hal-04033438.

ηk` . Ĉk` Ek` + quadrature type and oscillation terms,

where the constant Ĉk` = 1 for the Zarantonello linearization. This in particular means that
this estimator is robust with respect to the strength of the nonlineaity for the Zarantonello
linearization. As a consequence, the effectivty index for the augmented estimator/error is
independent of the strength of the nonlinearity expressed as the ratio Lipshitz continuity
/ monotonicity. This is demonstrated numerically in Figure 12 (left), where the effectivity
index is stable over seven orders of magnitude for the strength of the nonlinearity. In fact, we
observe that the components of the augmented estimator and error (nonlinear and linearized)
also exhibit robustness in this case.

We derive a similar result (cf. Theorem 2.4.4) involving only the nonlinear component
of the estimator with a constant Ĉk` in the lower bound. However, in this case, even for
the Zarantonello the constant is not fully independent of the strength of the nonlinearity.
However, the constant Ĉk` is computable in the augmented case. In particular in Figure 12
(right), we compute the effectivity indices for the three different estimator/error pairs on
the left axis, as well as the constant Ĉk` on the right axis. In particular, we observe that
the constant Ĉk` explodes in this case with respect to the strength of the nonlinearity. The
linearized effectivtiy (and hence the augmented effectivity) also increase with the constant
Ĉk` , but the increase is much less dramatic.

These results are to the best of our knowledge the first rigorous study for the robustness
of primal–dual gap estimators with respect to strength of the nonlinearity.

vii.3 Chapter 3: Adaptive regularization for the Richards equation

This chapter corresponds to the article [58], a joint work with François Févotte and Martin
Vohralík. This article has been submitted for publication.

This chapters applies some of the framework of Chapter 1 to the setting of the Richards
equation, (1). We propose regularized versions of the nonsmooth and degenerate functions

https://hal.science/hal-04033438

18 Introduction

appearing in the Richards equation for the two most common models (Brook–Corey and van
Genuchten–Mualem see Figures 3.1 and 3.8). We then consider an implicit time discretiza-
tion of the Richards equations resulting in a sequence of nonlinear PDEs on each timestep.
Unfortunately, these PDEs do not correspond to an energy minimization problem, so we
cannot use primal–dual gap estimators. However, we design simpler component estimators
based on the dual norm of the residual as studied in [94], namely, (cf. (3.27)) for a timestep
n, regularization step j, and linearization step k, we define

ηn,j,kdis := ‖F k
εj + σj,k` ‖ (discretization),

ηn,j,klin := ‖Fεj (p
j,k
`)− F k

εj‖ (linearization),
ηn,j,kreg := ‖F (pj,k`)− Fεj (p

j,k
`)‖ (regularization).

We thus obtain a decomposition into error components that steers an adaptive algorithm, cf.
Algorithm 4. See Figure 3.12 for the evolution of these estimators during the first timestep
in the numerical test of §3.6.3.

We study the performance of our adaptive algorithm applied to several test cases in
the literature that are known to cause difficulties for Newton’s method. In all the cases
considered, our adaptive algorithm is able to finish the simulation. We compare the numer-
ical solution produced by the adaptive algorithm with a solution obtained using an ad-hoc
linearization for Richards equation, the so-called modified Picard [31] method. Our pro-
posed regularized Newton method outperforms the modified Picard method in terms of total
number of iterations, and produces a comparable approximate solution. As an example, in
Figure 13, we plot the cumulative and stepwise number of iterations corresponding to the
numerical test in §3.6.3. In particular, Newton’s method without regularization takes over
300 iterations on the first timestep so we stop it there (no convergence). The modified Picard
method is able to reach the end of the simulation, but takes substantially more iterations
per timestep than our proposed adaptive regularization Newton method. To show that the
approximate solution is of similar quality to the unregularized one resulting from modified
Picard, we plot a side by side comparison in Figure 14. In particular, here we are plotting the
saturation S(ph) for our numerically computed solution ph. Finally, we show the evolution of
the component estimators over the course of three timesteps in Figure 15. We see a similar
behavior to that observed in Chapter 1, where the regularization error decreases in j and
ends up below the discretization error (here at the end of a timestep as opposed to before
switch meshes in the Chapter 1).

Our proposed approach is novel compared to other proposed linearization methods for
Richards equation. Firstly, we do not change the underlying Newton solver, which is advan-
tageous when the solver is being treated as a black box. Another advantage is that Newton’s
method is applied on a sequence of smooth and nondegenerate problems, therefore good con-
vergence properties are recovered. We can also easily keep the original physical unknowns,
which is often useful in engineering practice. Finally, a failsafe mechanism allows the solver
to recover in the case of failure of convergence.

vii.4 Chapter 4: Notes on implementation of equilibrated fluxes

This chapter describes the implementation of the equilibrated flux, which is realized in
the following GitHub repository https: // github. com/ aerappa/ EquilibratedFlux. jl .
This repository received contributions from François Févotte.

https://github.com/aerappa/EquilibratedFlux.jl

vii. Contents and contributions of the thesis 19

0 0.2 0.4 0.6 0.8 1

0

500

1,000

1,500

2,000

2,500

t (seconds)

N
u
m

b
er

of
it

er
at

io
n
s

Cumulative

Newton (ǭ1 = 0.0)

Modified Picard (ǭ1 = 0.0)

ad. reg. Newton (ǭ1 = 0.1)

0 0.2 0.4 0.6 0.8 1

0

100

200

300

t (seconds)
N

u
m

b
er

of
it

er
at

io
n
s

Stepwise

Figure 13: Performance comparison between the three methods considered in Chapter 3,
Figure 3.11 and https://hal.science/hal-04266827.

Figure 14: Comparison of the resulting saturation profiles for the regularized and un-
regularized algorthims solving Richards equations in Chapter 3, Figure 3.13 and https:
//hal.science/hal-04266827.

https://hal.science/hal-04266827
https://hal.science/hal-04266827
https://hal.science/hal-04266827

20 Introduction

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

t = 0.0 t = 0.02 t = 0.04 t = 0.061

ǫ = 0.01

ǫ = 0.001

ǫ = 0.01

ǫ = 0.001

ǫ = 0.0001

ǫ = 0.01

ǫ = 0.001

ǫ = 0.0001

Cumulative Newton steps

η
n,j,k
dis

η
n,j,k
reg

η
n,j,k
lin

Figure 15: The evolution of the component estimators during the first timestep for the
adaptive algorithm solving the Richards equation in Chapter 3, Figure 3.12 and https:
//hal.science/hal-04266827.

Underlying much of the aforementioned developments is the equilibrated flux of §vi.3.
Thus, having a performant implementation is crucial to the realization of the subsequent
adaptive algorithms. In Chapter 4, we present an implementation of the equilibrated flux in
the Julia programming language with the help of the Gridap.jl library [118, 7]. As described
in §vi.3, see the formula (20), the flux is realized by solving mutually independent problems
on nodal patches of a given mesh. This independence naturally lends itself to parallelism.
However, there are several considerations that go into realizing a parallel implementation.
The first question one must ask is whether to attempt shared memory or distributed memory
parallelism. Here, we opt for shared memory parallelism using the threading model in Julia.
This leads to the next big question of how to handle memory and reduce allocations as much
as possible. This is especially crucial for shared memory programs where multiple threads
are accessing the same data structures in main memory. The novelty in this chapter is the
design of an implementation of the equilibrated flux which completely avoids allocations when
solving the patch problems by performing an initial loop on cells. Furthermore, the loop on
cells is a common paradigm in finite element codes, and many of the details can be handed
off to optimized routines in the library. The work on each cells is also parallel, resulting
in the possibility for more parallelism. The (parallel) performance of our implementation is
evaluated for a model problem and results of scaling are presented.

vii.5 Chapter 5: Adaptive safeguarded iterative refinement

Up until this point we have only considered the direct resolution of the sparse linear systems
of equations arising from the solution strategy of §iv.1–§iv.3. We now would like to explore
in more detail an iterative method for solving sparse linear systems. We will in particular
be interested in improving performance (speedup) by working with mixed precision floating
point arithmetic as described in §v.2. There are two main ways that using mixed precision
arithmetic can accelerate the performance of a numerical method.

1. Processor intrinsics: Modern processors have Single Instruction Multiple Data
(SIMD) instructions (like SSE, AVX). These are optimized for performing multiple

https://hal.science/hal-04266827
https://hal.science/hal-04266827

vii. Contents and contributions of the thesis 21

operations in parallel, making them ideal for vectorized computations. Lower precision
formats allow more data elements to fit into a single SIMD vector register. This means
that each SIMD instruction can process more elements at once, compared to higher
precision formats.

2. Reducing the overall memory footprint: Smaller data size means more data can
fit into the same memory space. This leads to better utilization of caches and reduced
memory bandwidth requirements.

We will focus here on the latter, since it is especially pertinent for iterative methods for sparse
linear systems. This is due to the memory-bound nature of sparse linear algebra. Memory-
bound operations are defined by their low arithmetic intensity: the bottleneck is the time
required to move data through the memory hierarchy rather than to perform actual floating
point operations (FLOPs) on the data. In this chapter, we specifically develop a performance
model for sparse matrix-vector multiplication (SpMV), a basic building block of nearly all
iterative methods for sparse linear systems and which is memory-bound. We consider the
possible speedup in relation to a reduced footprint achieved by storing single precision floating
point numbers rather than double precision. Our scheme, which we describe below in more
detail, consists primarily in SpMVs, and the speedup due to storing and performing certain
operations in single precision is demonstrated in Figure 17.

While mixed precision can have great benefits in terms of savings for memory bound
kernels, the inherent challenge of using lower precision is its reduced robustness with respect
to ill-conditioning. More precisely, lower precision formats, with fewer bits for number repre-
sentation, result in greater rounding errors (especially in operations like subtraction), and a
heightened sensitivity to perturbations (reduced numerical stability). Thus, we must be very
careful in designing mixed precision algorithms. As discussed in §v.2, iterative refinement is
one strategy in the context of linear solvers to perform some operations in reduced precision
while maintaining numerical stability.

In this chapter, we will consider a special case of iterative refinement with geometric
multigrid (an iterative method consisting primarily in SpMVs) as the inner solver. More
precisely, we consider the lowest order version of the geometric multigrid solver developed in
[89, 91] as the inner solver for the iterative refinement. This version of geometric multigrid
has the attractive property of providing an error estimator at each iteration. We thus use
this estimator to design a more robust version of iterative refinement. In particular, we
present an example where a classical iterative refinement diverges and where our adaptive
algorithm is able to detect divergence and switch to fully double precision, see Figure 16.

The main results are 1) the introduction of an iterative refinement variant where the stop-
ping criterion is based on a rigorous error estimator 2) the validation of a performance model
of a matrix-vector product based inner solver and 3) the design of an adaptive algorithm
that is more robust for highly ill-conditioned problems.

22 Introduction

0 5 10 15 20 25

10
−7

10
−4

10
−1

10
2

10
5

step i

E
rr

o
r

a
n
d

es
ti

m
a
to

r

Adaptive safeguard
ei
J

ηi

0

0.5

1

E
ff

ec
ti

v
it

y

Ii
eff

Figure 16: Demonstrating the divergence and subsequent switch to double precision for
a badly-conditioned problem. Adaptive safeguarded iterative refinement, Chapter 5, Fig-
ure 5.6.

10
−3

10
−2

10
−1

1.0

1.1

1.2

1.3

1.4

Time in Double Precision

S
p

ee
d
u
p

Speedup Comparison

C64→32

No speedup

Speedup Single Precision

Speedup Iterative Refinement

Figure 17: The computed speedup Chapter 5, Figure 5.4.

Chapter 1

Adaptive regularization,
discretization, and linearization for
nonsmooth problems based on
primal-dual gap estimators

This chapter corresponds to the contents of the paper https: // doi. org/ 10. 1016/ j. cma.
2023. 116558 in Computational Methods in Applied Mechanics and Engineering.

1.1 Introduction

Given a Hilbert space V , consider the abstract minimization problem

u := arg min
v∈V

J (v)

where J is a convex functional. When J satisfies certain regularity conditions, one can
form the associated Euler–Langrange conditions which are expressed as a nonlinear elliptic
partial differential equation (PDE). We are particularly interested in cases where it is difficult
to iteratively solve the resulting nonlinear PDE by the standard Newton method, cf. [80,
42], due to non-smoothness. More specifically, applying the standard Newton method can
lead to slow convergence or even failure. The difficulty in many cases is the appearance
of kink functions, i.e., continuous functions that are non-differentiable on a finite set. In
Figure 1.1, we give three examples in the context of degenerate PDEs. In this work, we, in
particular, seek to recover good convergence of Newton’s method by adaptively regularizing
the nonlinear PDE.

By replacing the original problem by a regularized one, a regularization error appears.
For inverse problems [73, 98, 48], regularization is a common strategy and the error due to
regularization has been extensively studied. In [98], the authors study the so-called Tikhonov
regularization and its associated error. The regularization parameter is chosen adaptively
and various criteria are discussed. Regularization is also considered for degenerate PDEs
where the operators change type as a function of either space or time [100, 43, 96]. In these
cases, a regularized problem is introduced that does not suffer from degeneracy. It is proven
in [100] that the regularized solutions converge to the true solution in an approximate sense.

https://doi.org/10.1016/j.cma.2023.116558
https://doi.org/10.1016/j.cma.2023.116558

24
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

In a similar spirit, for Newton-type methods, regularization (smoothing) Newton methods
replace non-differentiable nonlinearities with smooth counterparts, see [122, 103, 102] and
the references therein. In this case, the amount of added regularization is proportional to a
parameter that is driven to zero as the Newton iterations progress, thereby approaching the
original problem.

From a practical point of view, the choice of the regularization parameter should ideally
be updated in a dynamic way as the chosen numerical method converges. This leads to
the question of how to choose the regularization parameter based on information from a
solution iterate. In this work, we adaptively update the regularization parameter based on
information from a posteriori error estimators.

A posteriori error estimation for PDEs is a well established subject, see for example the
books of Verfürth [120], Ainsworth and Oden [1], Repin [107], and the references therein. A
posteriori errors estimators can be utilized to 1) certify the error; 2) drive adaptive refinement
strategies; and 3) provide stopping criteria for iterative solvers. In general, important prop-
erties of such estimators are their reliability (upper bound for the error) and efficiency (lower
bound for the error), where the constants in the upper bounds are ideally explicit, indepen-
dent of the PDE data and finite-dimensional approximation parameters. More specifically
in the context of adaptive stopping criteria, it is especially attractive to have a constant-free
upper bound. As for the error lower bound, the goal is to obtain a generic constant ide-
ally independent of the model parameters. In the case of strongly monotone and Lipschitz
continuous operators, robustness with respect to the ratio of the Lipschitz constant to the
monotonicity constant is of particular interest. We will present numerical evidence of robust-
ness in such a setting, where theoretical developments are presented in [68]. However, unlike
in [68], we consider regularization, explicitly estimate the regularization error, and introduce
a solver strategy with adaptive regularization when the nonlinearity does not satisfy the hy-
potheses for Newton’s method to converge. Furthermore, in this work we identify component
error estimators and show that these estimators converge to zero in their respective limits.
This in turn shows that the total error (measured in the same way as in [68]) converges to
zero in a triple limit as detailed later.

In the context of energy minimization, it is advantageous to study a certain class of a
posteriori estimators, namely the so-called primal-dual gap estimators [109, 108, 107, 13, 129].
These estimators rely on results from convex analysis to bound the “difference of energies”
which we make precise in §1.4.1. In particular, these estimators do indeed provide a constant-
free upper bound on the difference of energies.

In the recent works of [13, 12] Bartels et. al. employ the primal-dual gap estimator to
drive a posteriori mesh refinement for singular solutions. It is also applied directly at the level
of the energy minimization so that rough problems, e.g., posed in the space of functions of
bounded variation (BV), can be treated without appealing to the Euler–Lagrange conditions.
The energy minimization is solved directly via the so-called variable-alternating direction
method of multipliers [12]. In this method the primal and dual problems are solved in a
globally coupled, iterative manner. We note here that duality refers to the dual optimization
problem and should not be confused with the notion of duality in adjoint-based a posteriori
error analysis.

In the present context, we use a continuous Galerkin finite element discretization for the
primal problem and perform a local equilibrated flux reconstruction to obtain a vector field
in H(div,Ω) with the divergence prescribed by the load. This is achieved by solving linear,
local, and mutually independent problems on patches of mesh elements. This resulting object

1.2. Continuous problem statement and regularization 25

−6 −4 −2 0

0.2

0.4

0.6

0.8

1

p

S
(p
)

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

u

β
(u
)

0 0.5 1 1.5 2

0

0.5

1

1.5

τ

γ̇

Figure 1.1: Examples of kink-type nonlinear algebraic closures arising in the study of degen-
erate PDEs. From left to right, we have the saturation function for the Richards equation,
namely for the Brooks–Corey model [25], the enthalphy function for the Stefan problem [57],
and the shear stress/shear rate relation for Bingham plastics [76].

is referred to as the equilibrated flux and is based on principles first established in Prager
and Synge [101] and more recently in the works of Ladevèze and Leguillon [84], Destuynder
and Métivet [41], Braess and Schöberl [21], and Ern and Vohralík [53]. One major advantage
of this strategy is the so-called p-robustness, i.e., the resulting estimator is uniformly efficient
for arbitrary polynomial order.

The main contribution of this work is an adaptive algorithm for solving nonsmooth
problems by incorporating regularization into the algorithm. This in particular allows us
to apply the standard Newton method to nonsmooth nonlinearities. This adaptive solution
strategy resembles the one in [53], where the authors distinguish discretization, linearization,
algebraic, and quadrature errors through computable component estimators. However, in [53]
no regularization is considered when the nonlinearity is not differentiable, and the question
of what to do in this case is not addressed. Here, we construct estimators for the errors due
to regularization, discretization, and linearization. These estimators then lead to adaptive
stopping criteria to steer an adaptive algorithm. We test our algorithm numerically and
recover the optimal convergence rate under uniform refinement for a known smooth solution.
We also consider a numerical test for an unknown solution on an L-shaped domain and
observe the optimal rate of convergence with respect to total degrees of freedom (DOFs) as
well as with respect to the cost for our estimator.

The rest of the paper is organized as follows. In §1.2 we introduce the relevant mathe-
matical details of the problem, as well as our regularization strategy. In §1.3 we define the
discrete spaces as well as the particular form of the Newton algorithm. In §1.4 we discuss
some common notions of error and their relations to the difference of energies. Next, in
§1.5 we introduce the necessary ideas from duality theory to describe the primal-dual gap
estimators. In §1.6 we give the details of the flux reconstruction in the current setting. We
introduce our decomposition of the upper bound provided by the primal-dual estimator in
§1.7. We discuss the efficiency of the estimators in §1.8. We subsequently introduce the
adaptive algorithm in §1.9 and we present numerical results in §1.10. Finally, we conclude
in §1.11 and discuss future work.

1.2 Continuous problem statement and regularization

In this section we will fix continuous-level notation and then introduce in detail the model
problem which we study throughout the rest of the paper.

26
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

1.2.1 Notation

For d = 2, 3, let Ω ⊂ Rd be a polygon or polyhedron with Lipschitz boundary, ∂Ω. We define
the Euclidean norm on Rd by | · |. We introduce the space of Lebesgue square-integrable
functions L2(ω) with scalar product (·, ·)ω and norm ‖ · ‖ω on ω ⊆ Ω. We drop the subscript
when ω = Ω. We use the same notation for vector-valued functions. Next, we define, for
scalar-valued functions, the standard Sobolev space H1(Ω) = {v ∈ L2 : ∂xiv ∈ L2(Ω),∀ 1 ≤
i ≤ d} with H1

0 (Ω) being the subspace of H1(Ω) of functions with vanishing trace on ∂Ω. For
vector-valued functions we consider the space H(div,Ω) := {v ∈ [L2(Ω)]d;∇·v ∈ L2(Ω)}.

1.2.2 Energy minimization and equivalent formulations

Let φ : R → R be a given function and f ∈ L2(Ω). Consider the functional J : H1
0 (Ω) → R

given by
J (v) :=

∫
Ω
φ(|∇v|)dx−

∫
Ω
fv dx. (1.1)

We will make the following assumptions on the function φ.

Assumption 1.2.1 (Assumptions on the energy function). We assume that the function φ

is convex and of class C1(R) with

φ(0) = φ′(0) = 0. (1.2)

We further assume φ satisfies, for real constants 0 < α ≤ L,

|φ′(r)− φ′(s)| ≤ L|r − s| ∀r, s ∈ R, (1.3a)
(φ′(r)− φ′(s))(r − s) ≥ α(r − s)2 ∀r, s ∈ R. (1.3b)

Note that (1.3b) in particular implies φ′(r) ≥ αr, ∀r ≥ 0, so that φ′ : R+ → R+.

We will be interested in the solution to the minimization problem

u := arg min
v∈H1

0 (Ω)

J (v). (1.4)

Due to the convexity of the functional J following from Assumption 1.2.1 and the fact
that H1

0 (Ω) is complete, the solution exists and is unique, see e.g. [8]. Another way to
characterize the solution to problem (1.4) is through its Euler–Langrange equations. To this
end, we introduce the nonlinear functions a : R → R,A : Rd → Rd,

a(s) :=
φ′(s)

s
, A(q) := a(|q|)q. (1.5)

A consequence of this definition is the following.

Lemma 1.2.2 (Strongly monotone and Lipschitz continuous operator). For L and α from
Assumption 1.2.1, the operator A given by (1.5) is strongly monotone

α‖∇(v − w)‖2 ≤ (A(∇v)−A(∇w),∇(v − w)) ∀v, w ∈ H1
0 (Ω). (1.6)

It is also Lipschitz continuous

‖A(∇v)−A(∇w)‖ ≤ L‖∇(v − w)‖ ∀v, w ∈ H1
0 (Ω). (1.7)

1.2. Continuous problem statement and regularization 27

The proof is standard and is detailed in, e.g., [68, Proposition A.1]. Then the solution to
(1.4) also solves the following weak formulation (the Euler–Langrange equations of (1.4)):
find u ∈ H1

0 (Ω) such that

(A(∇u),∇v) = (f, v) ∀v ∈ H1
0 (Ω). (1.8)

Consequently, the strong formulation of (1.8) and (1.4) is given by the boundary-value prob-
lem

−∇·A(∇u) = f in Ω, (1.9a)
u = 0 on ∂Ω. (1.9b)

1.2.3 Regularization

According to Assumption 1.2.1 it is possible that the function φ belongs to the class C1(R)

but not C2(R). In particular, this means that the nonlinear functions a and subsequently A

defined by (1.5) are not necessarily (Fréchet) differentiable. We give an example in §1.2.4 be-
low. Thus the classical Newton method to iteratively linearize (1.8) can struggle to converge
as we demonstrate later with numerical examples. To overcome this issue, our approach will
be to introduce an auxiliary regularized problem that we use to create a sequence of solutions
that approach the solution to the non-regularized problem. We will more precisely introduce
a regularized function defined from φ′, parameterized by ε > 0, which we call φ′ε. We will
make the following assumption.

Assumption 1.2.3 (Regularization of φ). For every ε > 0, the regularized function satisfies

φ′ε(0) = 0, (1.10)
φ′ε ∈ C2(R). (1.11)

Next, the regularized function satisfies inequalities similar to (1.3):

|φ′ε(r)− φ′ε(s)| ≤ L|r − s| ∀r, s ∈ R, (1.12a)
(φ′ε(r)− φ′ε(s))(r − s) ≥ α(r − s)2 ∀r, s ∈ R, (1.12b)

where 0 < α ≤ L are real constants independent of ε. Moreover, in all points s ∈ R, there
holds

(φ′ε − φ′)(s)
ε→0→ 0. (1.13)

The regularized function implicitly defines regularized versions aε and Aε as in (1.5)
through

aε(s) :=
φ′ε(s)

s
,Aε(q) := aε(|q|)q, (1.14)

which, by the same reasoning as in Lemma 1.2.2, satisfy

α‖∇(v − w)‖2 ≤ (Aε(∇v)−Aε(∇w),∇(v − w)) ∀v, w ∈ H1
0 (Ω), (1.15a)

‖Aε(∇v)−Aε(∇w)‖ ≤ L‖∇(v − w)‖ ∀v, w ∈ H1
0 (Ω). (1.15b)

We now prove a consequence of Assumption 1.2.3 which will be useful later.

28
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

Lemma 1.2.4 (L2 convergence of the regularization). For any vector field v ∈ L2(Ω) we
have that

lim
ε→0

‖φ′ε(|v|)− φ′(|v|)‖ → 0. (1.16)

Proof. We will make use of the Lebesgue dominated convergence theorem in L2(Ω), see e.g.
[113]. Indeed, consider an arbitrary real sequence {εn}n∈N tending to zero and consider the
sequence of functions

gn(x) := φ′εn(|v(x)|)− φ′(|v(x)|).

Then by (1.13) from Assumption 1.2.3, we have that gn → 0 pointwise for almost all x ∈ Ω.
Next, to establish a dominating function, observe that since φ′(0) = φ′ε(0) = 0 by (1.2) and
(1.10), we have

|gn(x)| ≤ |φ′εn(|v(x)|)|+ |φ′(|v(x)|)|
(1.3a),(1.12a)

≤ (L+ L)|v(x)| =: g(x) ∈ L2(Ω),

so we can choose g as the dominating function. Finally, since εn was arbitrary, the sequential
criterion for a limit ensures (1.16).

For algorithmic reasons, we will consider a monotonically decreasing sequence, {εj}j≥0 of
positive real values which is in particular determined by two values ε0 > 0 and 0 < Cε < 1,
where, for j ≥ 1,

εj := Cεε
j−1. (1.17)

All these considerations lead us to a regularized version of the problem (1.8): for a fixed
j ≥ 0, find uj ∈ H1

0 (Ω) such that

(Aεj (∇uj),∇v) = (f, v) ∀v ∈ H1
0 (Ω). (1.18)

1.2.4 An example nonsmooth nonlinearity with a kink

To make our notions more concrete, we introduce a simple but instructive example for our
study. Consider φ ∈ C1(R) \ C2(R) given by

φ(s) :=

{
1
2(s− s0)

2 + s0s− 1
2s

2
0 s ≤ s0,

m
2 (s− s0)

2 + s0s− 1
2s

2
0, s > s0

(1.19)

with continuous derivative

φ′(s) =

{
s, s ≤ s0,

m(s− s0) + s0, s > s0,
(1.20)

where s0 > 0 determines the location of the discontinuity in the second derivative and m ≥ 1

determines the slope to the right of s0. An illustration is given in Figure 1.2. We call the
function (1.20) a kink function due to the fact that φ′(s) is not strongly differentiable at the
point s0. This function satisfies Assumption 1.2.1 with L = m and α = 1 since the weak
derivative of φ′ is given by

φ′′(s) =

{
1, s < s0,

m, s > s0.
(1.21)

For this particular choice of function φ, applying the standard Newton method leads to
failure of convergence as illustrated in the example of §1.10.1.2.

1.2. Continuous problem statement and regularization 29

Figure 1.2: [Kink function (1.19) with m = 4, s0 = 2] The kink function φ (1.19) and its
derivative φ′ (1.20) Notice that φ′ is not strongly differentiable at s0.

1 1.5 2 2.5 3

2

4

6

s

φ
′ ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

1

2

3

4

s

φ
′
′

ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

s

a
ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

1 1.5 2 2.5 3

0

0.5

1

1.5

s

a
′ ǫ
(s
)

ǫ=0.0

ǫ=0.1

ǫ=0.3

ǫ=0.5

ǫ=0.7

Figure 1.3: [Kink function (1.19) with m = 4, s0 = 2] Regularization of the kink function
(1.19) by replacing the absolute value function with its differentiable counterpart, see (1.25).

30
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

We now introduce a regularized version of the function φ′ of (1.20) that in turn defines
regularized versions of the nonlinear functions a and A in (1.14). We first notice that (1.19)
can be equivalently rewritten as

φ′(s) =
m− 1

2
|s− s0|+

m+ 1

2
(s− s0) + s0. (1.22)

We then consider, for a fixed value of ε > 0, the smooth approximation of the absolute value
function

|s|ε :=
√
s2 + ε2. (1.23)

We then replace the absolute value in (1.22) by the smooth version

φ̂′ε(s) :=
m− 1

2
|s− s0|ε +

m+ 1

2
(s− s0) + s0. (1.24)

We then set
φ′ε(s) := φ̂′ε(s)− φ̂′ε(0) (1.25)

to achieve φ′ε(0) = 0. An illustration is given in Figure 1.3. We now show the following

Lemma 1.2.5 (Example regularization (1.25)). The definition (1.25) satisfies Assumption
1.2.3.

Proof. The requirement (1.10) is obvious from the definition. Next, the function is actually
C∞(R)—in particular C2(R)—so (1.11) is satisfied. Next, for (1.12), observe that

φ′′ε (s) =
m− 1

2

s√
s2 + ε2

+
m+ 1

2

is strictly increasing and lims→−∞ φ′′ε (s) = 1, as well as lims→∞ φ′′ε (s) = m. Thus, 1 ≤ φ′′ε ≤ m

and appealing to, e.g., [68, Proposition A.2], we conclude that (1.12) is satisfied with L = m

and 1 = α,
Finally, we show that for all s ∈ R,

|s|ε − |s| =
√
s2 + ε2 −

√
s2 =

ε2
√
s2 + ε2 +

√
s2

→ 0

when ε→ 0, which confirms (1.13).

1.3 Discrete problem and linearization

We now give details for the discretization of the regularized problem (1.18) via the continuous
Galerkin finite element method [49] and subsequent linearization.

1.3.1 Finite element discretization

Let T0 be a simplicial mesh of the physical domain Ω with no “hanging nodes” i.e., T0 =

∪K{K}, where the intersection of (the closure of) two arbitrary simplices K,K ′ ∈ T0 are
either empty or an l-dimensional simplex for 0 ≤ l ≤ d − 1. From the initial mesh T0, we
generate a hierarchy {T`}L`=1 of nested meshes, i.e., T` ⊂ T`+1 for all ` ≥ 0. We assume that
each mesh in the hierarchy is also free of hanging nodes in the same sense as for T0. We also

1.3. Discrete problem and linearization 31

assume that the hierarchy of meshes is shape regular, i.e., that there exists a constant κT
such that, for all `,

max
K∈T`

κK ≤ κT , (1.26)

where κK := hK
ρK

, hK is the diameter of K, and ρK is the radius of the largest inscribed
ball of K. For an arbitrary collection of simplices T of some mesh T` and its corresponding
subdomain ω ⊂ Ω, we define the broken polynomial space of order p ≥ 0 by

Pp(T) := {v ∈ L2(ω) : v|K ∈ Pp(K), ∀K ∈ T }. (1.27)

Finally, we introduce, for a fixed polynomial degree p ≥ 1 and for each ` anH1
0 (Ω)-conforming

finite-dimensional space,
V p
` := H1

0 (Ω) ∩ Pp(T`). (1.28)

We now consider a discrete equivalent of the regularized continuous problem (1.18) where
we seek, for j, ` ≥ 0 the solution uj` ∈ V p

` such that

(Aεj (∇u
j
`),∇v`) = (f, v`) ∀v` ∈ V p

` . (1.29)

Note that while this problem is finite-dimensional, it is still nonlinear.

1.3.2 Linearization

We now define a linearization scheme for the regularized finite-dimensional problem (1.29).
For fixed `, j ≥ 0, let uj,0` ∈ V p

` be the initial guess. Denoting by k ≥ 1 the linearization
iterate, a step of the linearization procedure to approximately solve (1.29) takes the form:
find uj,k` ∈ V p

` such that

(Ak−1
εj

(∇uj,k`),∇v) = (f, v) ∀v ∈ V p
` , (1.30)

where the operator Ak−1
εj

is affine and takes the form

Ak−1
εj

(q) := Ak−1
εj

q − bk−1
εj

(1.31)

for a matrix-valued function Ak−1
εj

: Ω → Rd×d and a vector-valued function bk−1
εj

: Ω → Rd.
Once a basis of V p

` is chosen, the problem (1.30) is equivalent to solving a linear system of
algebraic equations.

We make the following assumptions on the linearization.

Assumption 1.3.1 (Assumptions on the linearization). Let the regularization step j ≥ 0

and mesh level ` ≥ 0 be fixed. We assume that the linearized operator converges in the sense
that

lim
k→∞

‖Ak−1
εj

(∇uj`)−Aεj (∇u
j
`)‖ = 0. (1.32)

Finally, we assume that Ak−1
εj

is uniformly bounded and symmetric positive definite, that is,
the following conditions hold for all x ∈ Ω and all v ∈ Rd,

|Ak−1
εj

(x)v| ≤ λ|v| (boundedness), (1.33a)
λ|v|2 ≤ (Ak−1

εj
(x)v) · v (positive definiteness), (1.33b)

where 0 < λ ≤ λ are real constants.

32
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

A prototypical example is the Picard, or fixed point, linearization where

Ak−1
εj

(q) := aεj (|∇u
j,k−1
` |)q, (1.34)

whereas for a Newton step the linearized function is given by

Ak−1
εj

(q) := aεj (|∇u
j,k−1
` |)q +

(
∂qaεj (|∇u

j,k−1
` |)⊗∇uj,k−1

`

)
(q −∇uj,k−1

`), (1.35)

and, in turn,

∂qaεj (|q|) =
a′
εj
(|q|)
|q|

q =
(
φ′′ε (|q|)− φ′ε(|q|)|q|−1

)
|q|−2q. (1.36)

In [68, Section 2.3.2] it is demonstrated that these two linearization schemes satisfy (1.33)
for λ = α and λ = L.

Remark 1.3.2 (Newton linearization). Note that the derivative φ′′ε (s) appears in (1.36).
For nonsmooth nonlinearities, where merely the function φ ∈ C1(R) \ C2(R), the second
derivative φ′′ does not exist in a strong sense. This is the motivation for introducing the
regularization.

1.4 Three ways of measuring the error and their mutual re-
lations

We have now established and characterized different solutions, namely the true solution u of
(1.8) and the approximate solution to the regularized, discretized, and linearized problem of
(1.30) uj,k` . The next step is to define a concrete notion of error between these two objects,
and then, ideally, to have a computable means of estimating it. We postpone the discussion
of error estimation to §1.7. In this section we will recall, following [107, 129, 10], three
notions of error between u and uj,k` , namely the difference of energies (1.1), a notion related
to a (weighted by α1/2) H1

0 (Ω) norm, and the dual (weighted by α−1/2) norm of the residual.
One salient feature when comparing these error measures is that they all coincide in the
linear case where φ(s) = s2/s and A(q) = q, as will be made precise in §1.4.4. Recall that
we assume that the constants L and α are given by Assumption 1.2.1.

1.4.1 Energy difference

A physically-motivated notion of error is the difference of energies. For v ∈ H1
0 (Ω), this is

given as
0 ≤ J (v)− J (u), (1.37)

where the energy functional J is defined in (1.1). Since the true solution u is the unique
minimum of J in H1

0 (Ω) as per (1.4), this quantity is guaranteed to be nonnegative and only
0 when v = u.

1.4.2 Energy norm

A second type of error measure we will consider will be that of the energy norm. For
v ∈ H1

0 (Ω) we namely consider
|||v||| := α1/2‖∇v‖, (1.38)

1.4. Three ways of measuring the error and their mutual relations 33

where α > 0 is the monotonicity constant from (1.3b). Thus, the error between v ∈ H1
0 (Ω)

and the solution u of (1.8) is here expressed as

0 ≤ 1
2 |||u− v|||2. (1.39)

The reason for the choice of squaring and dividing by two will become clear in §1.4.4.

1.4.3 Dual norm of the residual

Finally we consider the abstract error quantity obtained through the dual norm of the resid-
ual. First, we define, for a fixed v ∈ H1

0 (Ω), the residual functional R(v) ∈ H−1(Ω) by

〈R(v), w〉 := (f, w)− (A(∇v),∇w), w ∈ H1
0 (Ω), (1.40)

where the duality pairing 〈·, ·〉 is between H−1(Ω) and H1
0 (Ω). Next we introduce the dual

norm for R ∈ H−1(Ω)

|||R(v)|||−1 := sup
ϕ∈H1

0 (Ω), |||ϕ|||=1

〈R(v), ϕ〉. (1.41)

Here the error in the energy dual norm of the residual is given, for v ∈ H1
0 (Ω),

0 ≤ 1
2 |||R(v)|||2−1. (1.42)

(1.8). The choice of squaring and dividing by two will again be made clear in §1.4.4. Finally,
if we consider the standard definition of the dual norm,

‖R(v)‖H−1(Ω) := sup
ϕ∈H1

0 (Ω), ‖∇ϕ‖=1

〈R(v), ϕ〉, (1.43)

our definition satisfies the scaling

|||R(v)|||−1 = α−1/2‖R(v)‖H−1(Ω). (1.44)

1.4.4 Equivalence in the linear case

In this section, we recall the special relationship between the three different error measures
of the previous sections in the case where φ(s) = s2/2, i.e., α = L = 1, which writes as

J (v)− J (u) = 1
2 |||v − u|||2 = 1

2 |||R(v)|||2−1. (1.45)

For the sake of completeness, we recall the proof of (1.45). As for the first equality,

J (v)− J (u) =

∫
Ω

1
2 |∇v|

2 − fv dx−
(∫

Ω

1
2 |∇u|

2 − fu dx
)

(1.8)
=

∫
Ω

1
2 |∇v|

2 −∇u · ∇v dx−
(∫

Ω

1
2 |∇u|

2 −∇u · ∇udx
)

=

∫
Ω

1
2 |∇v|

2 −∇u · ∇v + 1
2 |∇u|

2 dx = 1
2 |||u− v|||2.

The latter one is then simply

|||u− v||| = sup
ϕ∈H1

0 (Ω), ‖∇ϕ‖=1

(∇(u− v),∇ϕ)

= sup
ϕ∈H1

0 (Ω), ‖∇ϕ‖=1

{(f, ϕ)− (∇v,∇ϕ)}

= |||R(v)|||−1.

34
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

1.4.5 Relations in the nonlinear case

In the nonlinear case, the measures are only equivalent up to factors of L/α. Indeed, between
the dual norm of the residual and the energy norm, a factor of exactly L/α relates the two:

Proposition 1.4.1 (Relation energy norm-dual residual norm). Let u solve (1.8) and let
v ∈ H1

0 (Ω) be arbitrary. Then there holds

1
2 |||v − u|||2 ≤ 1

2 |||R(v)|||2−1 ≤
L2

2α2
|||v − u|||2. (1.46)

Proof. By the definition of the energy norm (1.38) and the dual residual norm (1.41), together
with the monotonicity assumption (1.3b) implying (1.6) and definition (1.8),

|||v − u||| = α1/2‖∇(v − u)‖
(1.6)
≤ (A(∇v)−A(∇u),∇(v − u))

α1/2‖∇(v − u)‖
≤ sup

ϕ∈H1
0 (Ω), |||ϕ|||=1

(A(∇v)−A(∇u),∇ϕ)

(1.8)
= sup

ϕ∈H1
0 (Ω), |||ϕ|||=1

{(A(∇v),∇ϕ)− (f, ϕ)}

= |||R(v)|||−1.

(1.47)

For the second inequality, observe that, using the Lipschitz continuity assumption (1.3a)
implying (1.7),

|||R(v)|||−1
(1.44)
= α−1/2‖R(v)‖H−1(Ω)

(1.8)
= α−1/2 sup

ϕ∈H1
0 (Ω),‖∇ϕ‖=1

(A(∇v)−A(∇u),∇ϕ)

≤ α−1/2 sup
ϕ∈H1

0 (Ω),‖∇ϕ‖=1

‖A(∇v)−A(∇u)‖ ‖∇ϕ‖

= α−1/2‖A(∇v)−A(∇u)‖
(1.7)
≤ Lα−1/2‖∇(v − u)‖

(1.38)
=

L

α
|||v − u|||.

(1.48)

When comparing the energy difference with the energy norm, a factor of
√
L/α is instead

introduced.

Proposition 1.4.2. Let u solve (1.8) and let v ∈ H1
0 (Ω) be arbitrary. Then there holds

1
2 |||v − u|||2 ≤ J (v)− J (u) ≤ L

2α
|||v − u|||2. (1.49)

Proof. See [59, Lemma 5.1].

1.5 Duality theory

In order to bound the energy difference as introduced in §1.4.1, we will proceed using duality
for convex functions, following [17, 107, 129].

1.5. Duality theory 35

1.5.1 Fenchel conjugate and its properties

Let us introduce the Fenchel conjugate (also known as the Legendre transform). For a convex
function φ, it is given by

φ∗(r) :=

∫ r

0
(φ′)−1(s)ds. (1.50)

We also define the conjugate operator

A∗(q) :=
(φ∗)′(|q|)

|q|
q. (1.51)

To illustrate, let us compute explicitly the Fenchel conjugate for the kink example (1.19)
of §1.2.4. We first compute the inverse of the derivative

(φ′)−1(s) =

{
s, s ≤ s0
s+(m−1)s0

m , s > s0
. (1.52)

Then the Fenchel conjugate (1.50) takes the form

φ∗(r) =

∫ r

0
(φ′)−1(s)ds =

{
1
2r

2, r ≤ s0
1
2m [(r + (m− 1)s0)

2 − s20m(m− 1)], r > s0
. (1.53)

Indeed, for the case where r ≥ s0,∫ r

0
(φ′)−1(s)ds =

∫ s0

0
sds+

∫ r

s0

s+ (m− 1)s0
m

ds

=
1

2m

(
r2 + 2(m− 1)s0r − s20(m− 1)

)
=

1

2m
[(r + (m− 1)s0)

2 − s20m(m− 1)].

(1.54)

Definition (1.50) yields the following properties, see [107, 17] or Appendix 1.A:

Proposition 1.5.1 (Properties of the Fenchel conjugate). Let φ be a convex function with
φ(0) = φ′(0) = 0 and let φ∗ : R → R be its Fenchel conjugate given by (1.50). Then the
following properties hold.

φ∗(r) = r(φ′)−1(r)− φ((φ′)−1(r)) = max
s

{sr − φ(s)}, (1.55a)

φ∗ is convex, (1.55b)
φ∗ ∈ C1(R) and (φ∗)′ = (φ′)−1, (1.55c)

φ∗(0) = (φ∗)′(0) = 0. (1.55d)

This proposition can be used to derive the following well-known result [107, 129, 17, 106]
or Appendix 1.A:

Corollary 1.5.2 (Young’s inequality for convex functions). Let φ ∈ C1(R) be convex and
let φ∗ be given by (1.50). Then

sr ≤ φ(s) + φ∗(r) for all s, r ≥ 0, (1.56)

where the equality holds for r = φ′(s) or equivalently s = (φ∗)′(r).

36
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

Next, we consider the relationship between the vector-valued counterparts.

Corollary 1.5.3 (A and A∗). Let A be given by (1.5) and A∗ be given by (1.51). Then the
following holds for all q ∈ Rd

A(A∗(q)) = q (1.57a)
A(q) · q = φ(|q|) + φ∗(|A(q)|). (1.57b)

Finally, there holds:

Lemma 1.5.4 (Lipschitz continuity of (φ∗)′). Let φ satisfy the Assumption 1.2.1. Then
(φ∗)′ is Lipschitz continuous with Lipschitz constant equal to α−1, i.e.,

|(φ∗)′(r)− (φ∗)′(s)| ≤ α−1|r − s|. (1.58)

The proof of these results is again given in Appendix 1.A.

1.5.2 The two energies principle

We are led to investigate the dual optimization problem to (1.4). The dual problem to (1.4)
can be stated as

σ := arg max
ς∈H(div,Ω)

∇·ς=f

J ∗(ς), (1.59)

where the dual functional J ∗ : H(div,Ω) → R is given by

J ∗(ς) := −
∫
Ω
φ∗(|ς|)dx. (1.60)

It turns out that the flux σ = −A(∇u), where u is given by (1.4), or, equivalently, by (1.8).
We see this in the following way. First of all, the Euler–Langrange conditions for (1.59) are:
find σ ∈ H(div,Ω) with ∇·σ = f such that

(A∗(σ),v) = 0 ∀v ∈ H(div,Ω) with ∇·v = 0. (1.61)

We consider the equivalent mixed formulation of (1.61): find (σ, ũ) ∈ H(div,Ω) × L2(Ω)

such that

(A∗(σ),v)− (ũ,∇·v) = 0 ∀v ∈ H(div,Ω), (1.62a)
(∇·σ, q) = (f, q) ∀q ∈ L2(Ω). (1.62b)

By the definition of the weak gradient, (1.62a) implies

∇ũ = −A∗(σ)
(1.57a)=⇒ −A(∇ũ) = σ. (1.63)

Finally taking q ∈ H1
0 (Ω) ⊂ L2(Ω) as the test function in (1.62b) shows that ũ = u is the

solution to problem (1.8).
To make the connection between the primal and dual problems more precise, we proceed

to introduce the saddle point functional by

L(v, ς) := J ∗(ς)− (∇v, ς)− (f, v), ς ∈ H(div,Ω), v ∈ H1
0 (Ω). (1.64)

Then we have the following

1.6. Equilibrated flux and its components 37

Lemma 1.5.5 (Two energies principle). Let u be the solution to the minimization problem
(1.4) and σ be the solution to (1.59). Let L be as in (1.64). Then

max
ς∈H(div,Ω)

∇·ς=f

J ∗(ς) = J ∗(σ) = L(u,σ) = J (u) = min
v∈H1

0 (Ω)
J (v). (1.65)

There also holds
L(u,σ) = max

ς∈H(div,Ω)
∇·ς=f

min
v∈H1

0 (Ω)
L(v, ς). (1.66)

Proof. The first and last equalities of (1.65) follow by definition. For the second equality of
(1.65), note that from σ ∈ H(div,Ω) and ∇·σ = f , for any v ∈ H1

0 (Ω), we have −(∇v,σ)−
(f, v) = 0. For the third equality of (1.65),

L(u,σ) =
∫
Ω
−φ∗(|σ|)−∇u · σ − fu dx

(1.63)
=

∫
Ω
−φ∗(|A(∇u)|) +∇u ·A(∇u)− fu dx (1.57b)

=

∫
Ω
φ(|∇u|)− fu dx

(1.1)
= J (u).

Finally, (1.66) follows since, as above,

max
ς∈H(div,Ω)

∇·ς=f

min
v∈H1

0 (Ω)
L(v, ς) (1.64)

= max
ς∈H(div,Ω)

∇·ς=f

J ∗(ς) = J ∗(σ) = L(u,σ).

The above developments directly lead to an upper bound on the energy difference [109,
129, 9, 17]:

Corollary 1.5.6 (Two energies principle). Under the assumptions of Lemma 1.5.5, the
following holds for any ς ∈ H(div,Ω) with ∇·ς = f and any v ∈ H1

0 (Ω),

0 ≤ J (v)− J (u) ≤ J (v)− J ∗(ς). (1.67)

Proof. We apply the properties of the objects involved,

0
(1.4)
≤ J (v)− J (u)

(1.65)
= J (v)− J ∗(σ)

(1.59)
≤ J (v)− J ∗(ς). (1.68)

1.6 Equilibrated flux and its components

In this section, we detail an algorithm to construct a dual object tj,k` ∈ H(div,Ω) with
∇·tj,k` = f as required by the duality theory of §1.5. We consider patch-wise minimizations
corresponding to local Neumann mixed finite element problems. This strategy has already
been employed in many contexts cf. [21, 53, 41]. First we make the following assumption to
simplify the analysis. The treatment of general f has been studied carefully in e.g. [53, 68].

Assumption 1.6.1 (No data oscillation). We suppose for simplicity that the source term is
a piecewise polynomial, f ∈ Pp(T`).

38
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

1.6.1 Equilibrated flux

We begin with some additional geometric information. For a given mesh level ` ≥ 0, let V`
be the set of mesh vertices partitioned to V` = V int

` ∪Vext
` by interior and boundary vertices.

Next let ωa be the subdomain corresponding to the set of elements of T` for which a is a
vertex, denoted by Ta. We also make use of the hat functions ψa ∈ P1(T`)∩C0(Ω) associated
with the vertex a ∈ V`.

For a collection of simplices T and their corresponding domain ω, we introduce the broken
Raviart–Thomas–Nédélec finite element space [23] of order p ≥ 0,

RTp(T) := {v` ∈ [L2(ω)]d : v`|K ∈ [Pp(K)]d + xPp(K), ∀K ∈ T }. (1.69)

Next, to account for normal face continuity, we define the vertex patch space

V p
` (ωa) := RTp(Ta) ∩H0(div, ωa), (1.70)

where H0(div, ωa) is the subspace of H(div, ωa) of functions with vanishing normal trace
on ∂ωa when a ∈ V int

` and on ∂ωa \ {ψa > 0} when a ∈ Vext
` . For v ∈ L2(Ω), define the

L2-projection Π`,pv ∈ Pp(T`) by (v − Π`,pv, v`) = 0 for all v` ∈ Pp(T`). Note that it acts
elementwise. Finally, for T ⊂ T` and the corresponding domain ω ⊆ Ω, define the mean-free
space by P∗

p (T) := {v ∈ Pp(T) :
∫
ω v dx = 0}.

Definition 1.6.2 (Total flux tj,k`). Let uj,k` be the solution to (1.30). For all vertices a ∈ V`,
define tj,ka ∈ V p

` (ωa) and qa ∈ P∗
p (Ta) as the solution to the patch-local mixed finite element

problem

(tj,ka ,v`)ωa − (qa,∇·v`)ωa = −(ψaA
k−1
εj

(∇uj,k`),v`)ωa , (1.71a)
(∇·tj,ka , r`)ωa = (fψa −Ak−1

εj
(∇uj,k`) · ∇ψa, r`)ωa (1.71b)

for all pairs (v`, r`) ∈ V p
` (ωa)× P∗

p (Ta). After solving this local problem on each patch and
extending tj,ka by 0 outside of ωa, assemble the global flux by

tj,k` =
∑
a∈V`

tj,ka . (1.71c)

The patch problem (1.71) is equivalent to solving the local minimization problem,

tj,ka := arg min
v`∈V p

` (ωa)

∇·v`=Π`,p(ψaf−∇ψa·Ak−1

εj
(∇uj,k`))

‖ψaA
k−1
εj

(∇uj,k`) + v`‖ωa . (1.72)

We study the wall time cost of constructing the total flux (1.71) in Appendix 4.10. The
flux satisfies the divergence constraint.

Lemma 1.6.3 (Divergence of the equilibrated flux). Given Assumption 1.6.1, the flux tj,k`
given by Definition 1.6.2 satisfies

∇·tj,k` = f. (1.73)

Proof. By construction,

∇·tj,k` =
∑
a∈V`

∇·tj,ka = Π`,p

∑
a∈V`

(ψaf −∇ψa ·Ak−1
εj

(∇uj,k`))

 = Π`,pf = f,

see e.g. [21, 53].

1.6. Equilibrated flux and its components 39

We have the following stability result obtained by proceeding as in [112].

Lemma 1.6.4 (Stability of the equilibrated flux). For a fixed vertex a ∈ V`, the solution to
the patch problem (1.71) satisfies

‖tj,ka ‖ωa . ‖Ak−1
εj

(∇uj,k`)‖ωa + hωa‖ψaf‖ωa . (1.74)

The hidden constant only depends on the space dimension d and the mesh shape regularity
constant κT of (1.26).

Proof. We first recall the result used in [112, Lemma 4.1], i.e., for any τa ∈ RTp(Ta) and
ga ∈ Pp(Ta),

min
v`∈V p

` (ωa)
∇·v`=ga

‖τa + v`‖ωa ≤ sup
v∈H1

∗(ωa)
‖∇v‖ωa=1

{(ga, v)ωa − (τa,∇v)ωa}, (1.75)

where H1
∗ (ωa) is the subspace of functions in H1(ωa) that have mean value zero on the patch

subdomain ωa if a ∈ V int
` is an interior vertex, or that vanish on ∂ωa ∩ {ψa > 0} when

a ∈ Vext
` is a boundary vertex.

Next, set

gj,ka := Π`,p(ψaf −∇ψa ·Ak−1
εj

(∇uj,k`)), τ j,ka := ψaA
k−1
εj

(∇uj,k`). (1.76)

For technical reasons, we will need to introduce another auxiliary problem. First, we intro-
duce ΠRT

`,p−1, the [L2]d-orthogonal projection from [L2(Ω)]d to RTp−1(T`). Note that it acts
elementwise. We consider the vector-valued data

τ̃ j,ka := ψaΠ
RT
`,p−1(A

k−1
εj

(∇uj,k`)) (1.77)

and the associated minimization problem

t̃j,ka := min
v`∈V p

` (ωa)

∇·v`=gj,ka

‖τ̃ j,ka + v`‖ωa . (1.78)

We are now prepared to derive the bound (1.74). We start with

‖tj,ka ‖ωa ≤ ‖tj,ka + τ j,ka ‖ωa + ‖τ j,ka ‖ωa

(1.72)
≤ ‖t̃j,ka + τ j,ka ‖ωa + ‖τ j,ka ‖ωa

≤ ‖t̃j,ka + τ̃ j,ka ‖ωa + ‖τ j,ka − τ̃ j,ka ‖ωa + ‖τ j,ka ‖ωa

(1.78)
= min

v`∈V p
` (ωa)

∇·v`=gj,ka

‖τ̃ j,ka + v`‖ωa + ‖τ j,ka − τ̃ j,ka ‖ωa + ‖τ j,ka ‖ωa

(1.75)
≤ sup

v∈H1
∗(ωa)

‖∇v‖ωa=1

{(gj,ka , v)ωa︸ ︷︷ ︸
a

− (τ̃ j,ka ,∇v)ωa︸ ︷︷ ︸
b

}

︸ ︷︷ ︸
T1

+ ‖τ j,ka − τ̃ j,ka ‖ωa︸ ︷︷ ︸
T2

+ ‖τ j,ka ‖ωa︸ ︷︷ ︸
T3

.

We now bound these three terms individually. For the third term,

T3 = ‖τ j,ka ‖ωa

(1.76)
= ‖ψaA

k−1
εj

(∇uj,k`)‖ωa

≤ ‖ψa‖L∞(ωa)‖A
k−1
εj

(∇uj,k`)‖ωa

= ‖Ak−1
εj

(∇uj,k`)‖ωa .

(1.79)

40
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

For the second term,

T2 ≤ ‖τ j,ka ‖+ ‖τ̃ j,ka ‖ωa

(1.77)
= ‖τ j,ka ‖+ ‖ψaΠ

RT
`,p−1(A

k−1
εj

(∇uj,k`)))‖ωa

≤ ‖τ j,ka ‖+ ‖ΠRT
`,p−1(A

k−1
εj

(∇uj,k`))‖ωa

(1.79)
≤ ‖Ak−1

εj
(∇uj,k`)‖ωa .

Finally, for the first term, fix v ∈ H1
∗ (ωa) with ‖∇v‖H1

∗(ωa) = 1. For term b,

(τ̃ j,ka ,∇v)ωa

C.S.
≤ ‖τ̃ j,ka ‖ωa ,

whence the preceding arguments can be applied again. For term a,

(gj,ka , v)ωa

C.S.
≤ ‖gj,ka ‖ωa‖v‖ωa

Poincaré
. hωa‖gj,ka ‖ωa

(1.76)
= hωa‖Π`,p(ψaf −∇ψa ·Ak−1

εj
(∇uj,k`))‖ωa

≤ hωa‖ψaf −∇ψa ·Ak−1
εj

(∇uj,k`)‖ωa

≤ hωa

(
‖ψaf‖ωa + ‖∇ψa ·Ak−1

εj
(∇uj,k`)‖ωa

)
≤ hωa

(
‖ψaf‖ωa + ‖∇ψa‖L∞(ωa)‖A

k−1
εj

(∇uj,k`)‖ωa

)
. hωa

(
‖ψaf‖ωa + h−1

ωa ‖A
k−1
εj

(∇uj,k`)‖ωa

)
= hωa‖ψaf‖ωa + ‖Ak−1

εj
(∇uj,k`)‖ωa .

Combining these terms concludes the proof.

1.6.2 Component fluxes

In addition to the flux in Definition 1.6.2, we introduce three more fluxes. The idea, as in
[53], is that tj,k` will contain information about the total error, and the additional fluxes will
isolate components of the error. This definition is more precisely intended to distinguish the
errors coming from regularization, linearization, and discretization.

Definition 1.6.5 (Decomposition of tj,k` into components). Let uj,k` be the solution to (1.30),
for ` ≥ 0, j ≥ 0, and k ≥ 1. Let A,Aεj , and Ak−1

εj
be given by (1.5), (1.14), and (1.31),

respectively. Then define

rj,k` := Aεj (∇u
j,k
`)−A(∇uj,k`) [regularization error flux], (1.80a)

lj,k` := Ak−1
εj

(∇uj,k`)−Aεj (∇u
j,k
`) [linearization error flux], (1.80b)

dj,k` := tj,k` +A(∇uj,k`)−Ak−1
εj

(∇uj,k`) [discretization flux]. (1.80c)

Based on our Assumption 1.2.3 on φ′ε, we have the following result.

1.6. Equilibrated flux and its components 41

Lemma 1.6.6 (H1
0 -convergence of the regularized approximation). Consider a discrete ver-

sion of (1.8), i.e., find u` ∈ V p
` such that

(A(∇u`),∇v`) = (f, v`) ∀v ∈ V p
` . (1.81)

Then the solution to the regularized discrete problem (1.29) satisfies

lim
j→∞

‖∇(u` − uj`)‖ = 0. (1.82)

Proof. Using the strong monotonicity of Aεj ,

α‖∇(u` − uj`)‖
2

(1.15a)
≤

(
Aεj (∇u`)−Aεj (∇u

j
`),∇(u` − uj`)

)
=
(
Aεj (∇u`)−A(∇u`) +A(∇u`)−Aεj (∇u

j
`),∇(u` − uj`)

)
(1.29),(1.81)

=
(
Aεj (∇u`)−A(∇u`),∇(u` − uj`)

)
C.S.
≤ ‖Aεj (∇u`)−A(∇u`)‖‖∇(u` − uj`)‖

(1.5),(1.14)
= ‖φ′εj (|∇u`|)− φ′(|∇u`|)‖‖∇(u` − uj`)‖.

Thus, ‖∇(u` − uj`)‖ ≤ α−1‖φ′
εj
(|∇u`|)− φ′(|∇u`|)‖

j→∞−→ 0 by (1.16).

We have a similar result for the linearized problem.

Lemma 1.6.7 (H1
0 -convergence of the linearized approximation). Let the regularization step

j ≥ 0 and mesh level ` ≥ 0 be fixed. Then

lim
k→∞

‖∇(uj` − uj,k`)‖ = 0. (1.83)

Proof. We use the coercivity of the linearization matrix of Assumption 1.3.1,

λ‖∇(uj,k` − uj`)‖
2

(1.33b)
≤ (Ak−1

εj
∇(uj,k` − uj`),∇(uj,k` − uj`))

(1.31)
= (Ak−1

εj
(∇uj,k`)−Ak−1

εj
(∇uj`),∇(uj,k` − uj`))

= (Ak−1
εj

(∇uj,k`)−Aεj (∇u
j
`) +Aεj (∇u

j
`)−Ak−1

εj
(∇uj`),∇(uj,k` − uj`))

(1.29),(1.30)
= (Aεj (∇u

j
`)−Ak−1

εj
(∇uj`),∇(uj,k` − uj`))

C.S.
≤ ‖Aεj (∇u

j
`)−Ak−1

εj
(∇uj`)‖‖∇(uj,k` − uj`)‖.

Thus, ‖∇(uj,k` − uj`)‖ ≤ λ−1‖Aεj (∇u
j
`)−Ak−1

εj
(∇uj`)‖

k→∞−→ 0 by (1.32).

We are now prepared to prove the following.

Lemma 1.6.8 (Convergence of the regularization error flux). For a fixed mesh index ` ≥ 0,
the regularization error flux rj,k` given in (1.80a) satisfies

lim
j,k→∞

‖rj,k` ‖ = 0. (1.84)

42
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

Proof. From the definition of the regularization component flux,

lim
j,k→∞

‖rj,k` ‖ (1.80a)
= lim

j,k→∞
‖Aεj (∇u

j,k
`)−A(∇uj,k`)‖

≤ lim
j,k→∞

(
‖Aεj (∇u

j,k
`)−Aεj (∇u`)‖+ ‖Aεj (∇u`)−A(∇u`)‖+ ‖A(∇u`)−A(∇uj,k`)‖

)
(1.15b),(1.7)

≤ lim
j,k→∞

(
‖Aεj (∇u`)−A(∇u`)‖+ (L+ L)‖∇(u` − uj,k`)‖

)
≤ lim

j,k→∞

(
‖Aεj (∇u`)−A(∇u`)‖+ (L+ L)(‖∇(u` − uj`)‖+ ‖∇(uj` − uj,k`)‖)

)
(1.83),(1.82)

= lim
j→∞

‖Aεj (∇u`)−A(∇u`)‖

(1.5),(1.14)
= lim

j→∞
‖φ′εj (|∇u`|)− φ′(|∇u`|)‖

(1.16)
= 0.

We now turn our attention to the convergence of the linearization error flux component.

Lemma 1.6.9 (Convergence of the linearization error flux). Let the regularization step j ≥ 0

and mesh level ` ≥ 0 be fixed. The linearization error flux lj,k` given by (1.80b) satisfies

lim
k→∞

‖lj,k` ‖ = 0. (1.85)

Proof. From the definition of the linearization error flux,

lim
k→∞

‖lj,k` ‖ (1.80b)
= lim

k→∞
‖Ak−1

εj
(∇uj,k`)−Aεj (∇u

j,k
`)‖

≤ lim
k→∞

(
‖Ak−1

εj
(∇uj,k`)−Ak−1

εj
(∇uj`)‖+ ‖Ak−1

εj
(∇uj`)−Aεj (∇u

j
`)‖

+ ‖Aεj (∇u
j
`)−Aεj (∇u

j,k
`)‖

)
(1.32)
= lim

k→∞

(
‖Ak−1

εj
(∇uj,k`)−Ak−1

εj
(∇uj`)‖+ ‖Aεj (∇u

j
`)−Aεj (∇u

j,k
`)‖

)
(1.15b)
≤ lim

k→∞

(
‖Ak−1

εj
(∇uj,k`)−Ak−1

εj
(∇uj`)‖+ L‖∇(uj` − uj,k`)‖

)
(1.31)
= lim

k→∞

(
‖Ak−1

εj
∇(uj,k` − uj`)‖+ L‖∇(uj` − uj,k`)‖

)
(1.33a)
≤ lim

k→∞
(λ+ L)‖∇(uj` − uj,k`)‖ (1.83)

= 0.

Combining these results with the stability of the equilibrated flux in Lemma 1.6.4 results
in the following.

Lemma 1.6.10 (Boundedness of the total equilibrated flux). The equilibrated flux tj,k` of
(1.71c) is bounded in the indices j and k, i.e.,

lim
j,k→∞

‖tj,k` ‖ = Cf,` <∞. (1.86)

1.6. Equilibrated flux and its components 43

Proof. We first observe that

‖tj,k` ‖2 ≤ (d+ 1)
∑
a∈V`

‖tj,ka ‖2ωa . (1.87)

Now, for a fixed a, j, k, letting Cf,a := hωa‖ψaf‖ωa ,

‖tj,ka ‖ωa

(1.74)
. ‖Ak−1

εj
(∇uj,k`)‖ωa + Cf,a

≤ ‖A(∇u`)‖ωa + ‖Aεj (∇u
j
`)−A(∇u`)‖ωa + ‖Ak−1

εj
(∇uj,k`)−Aεj (∇u

j
`)‖ωa + Cf,a

≤ ‖A(∇u`)‖ωa + ‖Aεj (∇u
j
`)−A(∇u`)‖ωa︸ ︷︷ ︸

T1

+ ‖Ak−1
εj

(∇uj`)−Aεj (∇u
j
`)‖ωa︸ ︷︷ ︸

T2

+ ‖Ak−1
εj

(∇uj,k`)−Ak−1
εj

(∇uj`)‖ωa︸ ︷︷ ︸
T3

+Cf,a

First, we have

lim
j→∞

T1 ≤ lim
j→∞

(
‖Aεj (∇u

j
`)−Aεj (∇u`)‖ωa + ‖Aεj (∇u`)−A(∇u`)‖ωa

)
(1.15b)
≤ lim

j→∞

(
L‖∇(uj` − u`)‖ωa + ‖Aεj (∇u`)−A(∇u`)‖ωa

)
(1.5)
= lim

j→∞

(
L‖∇(uj` − u`)‖ωa + ‖φ′εj (|∇u`|)− φ′(|∇u`|)‖ωa

) (1.16),(1.82)
= 0.

Next,

lim
j,k→∞

T2
(1.32)
= 0.

Finally, we have

lim
j,k→∞

T3
(1.31)
= lim

j,k→∞
‖Ak−1

εj
(∇uj,k` − uj`)‖ωa

(1.33a)
≤ lim

j,k→∞
λ‖∇(uj,k` − uj`)‖ωa

(1.83)
= 0.

Combining these results with (1.87), we conclude

lim
j,k→∞

‖tj,k` ‖2 ≤ (d+ 1)
∑
a∈V`

(‖A(∇u`)‖ωa + Cf,a)
2 =: (Cf,`)

2.

Lemma 1.6.11 (Convergence of the discretization flux). For a fixed mesh index ` ≥ 0, the
discretization flux dj,k` given in (1.80c) satisfies

lim
j,k→∞

‖dj,k` − tj,k` ‖ = 0. (1.88)

Consequently, we have that the discretization flux satisfies

lim
j,k→∞

‖dj,k` ‖ = Cf,` <∞, (1.89)

where Cf,` is given in (1.86).

44
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

Proof. Equation (1.88) is a direct consequence of Lemmas 1.6.8 and 1.6.9 taken with the
definition (1.80c). For (1.89),

lim
j,k→∞

‖dj,k` ‖ ≤ lim
j,k→∞

(
‖dj,k` − tj,k` ‖+ ‖tj,k` ‖

) (1.88),(1.86)
≤ Cf,`. (1.90)

We use this fact to justify calling dj,k` the discretization flux. Indeed, the total flux tj,k` is
captured by the discretization component dj,k` upon convergence of both the regularization
and linearization indices j and k respectively. We now present the results separately for the
three ways of measuring the error introduced in §1.4.

1.7 A posteriori error estimates distinguishing the error com-
ponents

In this section we present error estimates that provide an upper bound and decompose
the total error in a given numerical solution. The components estimate the error due to
regularization, discretization, and linearization.

1.7.1 Energy difference

The results of §1.5 lead us directly to the following upper bound on the error in the difference
of energies.

Proposition 1.7.1 (Upper bound on the energy difference). Let u ∈ H1
0 (Ω) be the solution

to (1.4), and let J and J ∗ be given by (1.1) and (1.60), respectively. For a mesh index
` ≥ 0, a regularization step j ≥ 0, and linearization step k ≥ 1, let uj,k` ∈ V p

` be the solution
to (1.30) and tj,k` be given by Definition 1.6.2. Then there holds

0 ≤ J (uj,k`)− J (u)︸ ︷︷ ︸
total error (e`,j,ktot)2

≤ J (uj,k`)− J ∗(tj,k`)︸ ︷︷ ︸
total est. (η`,j,ktot)2

.
(1.91)

Proof. We apply Corollary 1.5.6 with v = uj,k` and ς = tj,k` .

Remark 1.7.2 (Equivalent definition of the total estimator). The definition of the total
estimator (1.91) has an equivalent form that is more amenable to local adaptive mesh re-
finement. This has been already discussed in, e.g., [13, Proposition 4.9]. Indeed, we have
that

(η`,j,ktot)2
(1.91)
= J (uj,k`)− J ∗(tj,k`)

(1.1),(1.60)
=

∫
Ω
φ(|∇uj,k` |) + φ∗(|tj,k` |)− fuj,k` dx

(1.73)
=

∫
Ω
φ(|∇uj,k` |) + φ∗(|tj,k` |)− (∇·tj,k`)uj,k` dx

I.B.P.
=

∫
Ω
φ(|∇uj,k` |) + φ∗(|tj,k` |) +∇uj,k` · tj,k` dx

=
∑
K∈T`

∫
K
φ(|∇uj,k` |) + φ∗(|tj,k` |) +∇uj,k` · tj,k`︸ ︷︷ ︸

η`,j,ktot,K≥0 by (1.56)

dx.

(1.92)

1.7. A posteriori error estimates distinguishing the error components 45

The advantage of this definition is that the last integrand is non-negative by the generalized
Young’s inequality for convex functions (1.56). Indeed, the reasoning goes as follows:

φ(|∇uj,k` |) + φ∗(|tj,k` |)
(1.56)
≥ |∇uj,k` ||tj,k` |

C.S.
≥ −∇uj,k` · tj,k` . (1.93)

.

We now present a decomposition of total estimator, employing Definition 1.6.2 and (1.92).

Theorem 1.7.3 (Decomposition of the energy difference upper bound). Let the assumptions
of Proposition 1.7.1 hold. Let in addition dj,k` , rj,k` , and lj,k` be given by Definition 1.6.5. Then
the total estimator in (1.91) can be further bounded from above as

(η`,j,ktot)2 ≤
∣∣∣∣∫

Ω
φ(|∇uj,k` |) + φ∗(|dj,k` |) +∇uj,k` · tj,k` dx

∣∣∣∣︸ ︷︷ ︸
discretization est. (η`,j,kdis)2

+

∣∣∣∣∫
Ω
φ∗(|dj,k` + rj,k` |)− φ∗(|dj,k` |)dx

∣∣∣∣︸ ︷︷ ︸
regularization est. (η`,j,kreg)2

+

∣∣∣∣∫
Ω
φ∗(|tj,k` |)− φ∗(|dj,k` + rj,k` |)dx

∣∣∣∣︸ ︷︷ ︸
linearization est. (η`,j,klin)2

.

(1.94)

Proof. The proof follows by adding and subtracting φ∗(|dj,k` + rj,k` |) and φ∗(|dj,k` |) to the
integrand of (1.92) and using the triangle inequality.

We now show our definition of the regularization component behaves in the way that we
would expect.

Lemma 1.7.4 (Convergence of the regularization error estimator). The regularization com-
ponent estimator η`,j,kreg of (1.94) tends to 0 as j, k → ∞.

Proof. From the definition of the regularization component estimator,

lim
j,k→∞

(η`,j,kreg)2
(1.94)
= lim

j,k→∞

∣∣∣∣∫
Ω
φ∗(|dj,k` |)− φ∗(|dj,k` + rj,k` |)dx

∣∣∣∣
= lim

j,k→∞

∣∣∣∣∣
∫
Ω

∫ |dj,k` |

|dj,k` +rj,k` |
(φ∗)′(s)dsdx

∣∣∣∣∣
(1.55d),(1.58)

≤ α−1 lim
j,k→∞

∣∣∣∣∣
∫
Ω

∫ |dj,k` |

|dj,k` +rj,k` |
sdsdx

∣∣∣∣∣
= (2α)−1 lim

j,k→∞

∣∣∣∣∫
Ω
|dj,k` |2 − |dj,k` + rj,k` |2 dx

∣∣∣∣
= (2α)−1 lim

j,k→∞

∣∣∣‖dj,k` ‖2 − ‖dj,k` + rj,k` ‖2
∣∣∣ (1.84)

= 0

where we have also used that dj,k` is uniformly bounded in j, k by Lemma 1.6.11 to interchange
the limit and the integral in the last equality.

46
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

The same argument holds for the linearization error component estimator.
Lemma 1.7.5 (Convergence of the linearization error estimator). The linearization compo-
nent estimator η`,j,klin of (1.94) tends to 0 as k → ∞.

Finally, we have the following result pertaining to the discretization error component
estimator.
Lemma 1.7.6 (Convergence of the discretization error estimator). The discretization com-
ponent estimator satisfies

lim
j,k→∞

(η`,j,kdis)2 = lim
j,k→∞

(η`,j,ktot)2. (1.95)

Proof. In addition to (1.94), there holds

(η`,j,kdis)2 ≤ (η`,j,ktot)2 + (η`,j,kreg)2 + (η`,j,klin)2.

Thus, Lemma 1.7.4 and Lemma 1.7.5 finish the proof.

1.7.2 Dual norm of the residual

Considering the dual norm of the residual as an error estimator leads to a different set of
estimators. These have been studied previously in a variety of contexts [53, 43, 47]. First,
we consider the total estimator, which provides an upper bound on the quantity (1.42).
Lemma 1.7.7 (Upper bound on the dual norm of the residual). Let the Assumption 1.6.1
hold. Let R be defined by (1.40) and let uj,k` ∈ V p

` be the solution of (1.30). Then there holds

0 ≤ 1
2 |||R(uj,k`)|||2−1︸ ︷︷ ︸

total error (ẽ`,j,ktot)2

≤ 1
2 α

−1‖A(∇uj,k`) + tj,k` ‖2︸ ︷︷ ︸
total est. (η̃`,j,ktot)2

. (1.96)

Proof. Let us first fix a function ϕ ∈ H1
0 (Ω) with |||ϕ||| = ‖α1/2∇ϕ‖ = 1. Then,

〈R(uj,k`),∇ϕ〉 (1.40)
= (f, ϕ)− (A(∇uj,k`),∇ϕ) (1.73)

= −(A(∇uj,k`) + tj,k` ,∇ϕ)

= −α−1/2(A(∇uj,k`) + tj,k` , α1/2∇ϕ) ≤ α−1/2‖A(∇uj,k`) + tj,k` ‖‖α1/2∇ϕ‖

= η̃`,j,ktot .
(1.97)

Since ϕ was arbitrary, (1.96) follows the definition (1.41).

Corollary 1.7.8 (Decomposition of the upper bound). Let assumptions of Lemma 1.7.7
hold. Then

η̃`,j,ktot ≤α−1/2‖Ak−1
εj

(∇uj,k`) + tj,k` ‖︸ ︷︷ ︸
discretization est. η̃`,j,kdis

+α−1/2‖A(∇uj,k`)−Aεj (∇u
j,k
`)‖︸ ︷︷ ︸

regularization est. η̃`,j,kreg

+ α−1/2‖Aεj (∇u
j,k
`)−Ak−1

εj
(∇uj,k`)‖︸ ︷︷ ︸

linearization est. η̃`,j,klin

.
(1.98)

Proof. From the definition (1.96) of η̃`,j,ktot ,

η̃`,j,ktot = α−1/2‖tj,k` +A(∇uj,k`)‖

= α−1/2‖tj,k` +
(
Ak−1
εj

(∇uj,k`)−Ak−1
εj

(∇uj,k`) +Aεj (∇u
j,k
`)−Aεj (∇u

j,k
`)
)
+A(∇uj,k`)‖

≤ η̃`,j,kdis + η̃`,j,kreg + η̃`,j,klin .

1.8. Efficiency of the estimators 47

Remark 1.7.9 (Decomposition of the residual). We can also split the residual R(v) intro-
duced in (1.40) as

R(v) = R`,j,k
dis (v) +R`,j,k

reg (v) +R`,j,k
lin (v), (1.99)

where

〈R`,j,k
dis (v), w〉 := (f, w)− (Ak−1

εj
∇v,∇w), (1.100a)

〈R`,j,k
reg (v), w〉 := (Aεj (∇v)−A(∇v),∇w), (1.100b)

〈R`,j,k
lin (v), w〉 := (Ak−1

εj
(∇v)−Aεj (∇v),∇w). (1.100c)

Then there holds

|||R(uj,k`)|||−1 ≤ |||R`,j,k
dis (uj,k`)|||−1 + |||R`,j,k

reg (uj,k`)|||−1 + |||R`,j,k
lin (uj,k`)|||−1. (1.101)

1.7.3 Energy norm

In light of the relation between the dual norm of the residual and the energy norm presented
in Proposition 1.4.1, we observe that the results of the previous section imply,
Lemma 1.7.10 (Upper bound on the energy error). Let the assumptions of Lemma 1.7.7
hold. Then,

|||uj,k` − u||| ≤ |||R(uj,k`)|||−1 ≤ η̃`,j,ktot ≤ η̃`,j,kdis + η̃`,j,kreg + η̃`,j,klin . (1.102)

1.8 Efficiency of the estimators

Up to this point, we have only considered the property that the estimators we construct are
global upper bounds of the errors that we have defined and identified the error components.
However, it has already been demonstrated that these estimators provide lower bounds to
the error as well, even local lower bounds.

1.8.1 Dual norm of the residual

The setting of [53, 19] covers the present one. In particular, the flux of Definition 1.6.2, which
in turn defines η̃`,j,ktot as in (1.96), provides a local lower bound under certain conditions on
stopping criteria of the form (1.105a) and (1.105b) below. Roughly speaking, the efficiency
is achieved when discretization component estimator is larger than the other components.
This efficiency is robust with respect to the Lipschitz/montonicity parameters L/α, i.e.,

η̃`,j̄,k̄tot . |||R(uj̄,k̄`)|||−1 + oscillation and quadrature terms,

where the hidden constant has no dependence on L and α and the oscillation and quadrature
terms are discussed in §1.8.3 below.

1.8.2 Energy norm

In the case of the energy norm, we can also obtain a (local) lower bound for the estimator
η̃`,j,ktot of (1.102) by using the lower bound of (1.46):

|||R(uj̄,k̄`)|||−1 ≤
L

α
|||uj̄,k̄` − u|||. (1.103)

Unfortunately, this makes appear the “strength of the nonlinearity” factor L/α. We will
show numerically in §1.10.1.1, that this bound actually appears to be sharp. Thus, if L/α
is large, the a posteriori estimate is pessimistic for the error measured in the energy norm.

48
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

1.8.3 Energy difference

In [68, Theorems 3.4 and 4.1], we study the efficiency of η`,j,ktot as well as of a related estimator
that incorporates the error in the difference of energies for the linear minimization problem
corresponding to the linearization step (1.30). In particular, results of the form

J (uj,k`)− J (u) ≤ (η`,j,ktot)2 . (Ck`)
2(J (uj,k`)− J (u)) + (oscillation and quadrature terms)2

(1.104)
are obtained where a typical data oscillation term is of the form(∑

K∈T`

(
hK
π ‖(I −Π`,p)f‖2K

))1/2
and a typical quadrature term is of the form

‖(I − ΠRT
`)Ak−1

εj
(∇uj,k`)‖, where the projection operators Π`,p and ΠRT

` are defined
in §1.6. Importantly, the constant Ck` only depends locally on the ratio of the biggest and
smallest eigenvalues of Ak−1

εj
and the hidden constant has no dependence on α and L at all.

1.9 Adaptive algorithm

In this section we will use the estimators based on the energy difference as in §1.7.1 to devise
an adaptive algorithm. In particular, the algorithm will construct a sequence of solutions
uj,k` over mesh levels `, regularization iterations j, and Newton iterations k. The main
ideas will be to 1) spend the maximum amount of computing time on coarser meshes where
computations are cheap and 2) decrease the regularization parameter adaptively so as to
make Newton converge but avoid polluting the solution to the approximate problem. The
algorithm accepts user-defined parameters γlin > 0 and γreg > 0 that express the requested
relative sizes of the corresponding error components. Additionally, the algorithm takes as
parameters Cε ∈ (0, 1) and ε0 > 0 that determine the sequence of regularization parameters
according to (1.17) and a user-specified tolerance tol, the requested maximal overall error.
We consider three stopping criteria with bars denoting the stopping indices as

η`,j,k̄lin < γlinη
`,j,k̄
reg , (1.105a)

η`,j̄,k̄reg < γregη
`,j̄,k̄
dis , (1.105b)

η
¯̀,j̄,k̄
tot < tol. (1.105c)

The first criterion (1.105a) indicates that the Newton solver should not continue on a given
regularized problem if it has sufficiently converged. The problem should be changed (increas-
ing the difficulty) by lowering the regularization parameter. The second criterion (1.105b)
says that once the regularization parameter is sufficiently small on a given mesh, we can
then pass to a finer mesh through the refinement procedure REFINE (newest vertex bisection
or uniform refinement). Finally, the last criterion (1.105c) checks whether the estimator for
the total error is below the user-specified threshold. Details are given in Algorithm 2.

1.10. Numerical experiments 49

Algorithm 2: Adaptive regularized Newton algorithm
Initialization
:

Choose an initial guess u0,00 ∈ V p
0 and initialize ` = j := 0

Parameters : γreg, γlin, tol, ε0, Cε
1 Loop for discretization
2 Loop for regularization
3 Initialize k := 0

4 Loop for linearization
5 Increment k := k + 1

6 From uj,k−1
` compute the linearized operator Ak−1

εj
by (1.35)

7 Solve for uj,k` in (1.30)
8 Compute tj,k` following Definition 1.6.2 and η`,j,ktot following (1.91)
9 Compute estimators η`,j,kdis , η`,j,kreg , η`,j,klin following (1.94)

10 until η`,j,klin < γlinη
`,j,k
reg

11 Update k̄ := k

12 if η`,j,k̄reg ≥ γregη
`,j,k̄
dis then

13 Increment j := j + 1

14 Update εj := Cεε
j−1

15 end
16 until η`,j,k̄reg < γregη

`,j,k̄
dis

17 Update j̄ := j

18 Increment ` := `+ 1

19 V p
` := REFINE(V p

`−1, η
`,j̄,k̄
tot,K)

20 u`j,0 := uj̄,k̄`−1

21 until η`,j̄,k̄tot < tol
22 Update ¯̀ := `

23 return uj̄,k̄¯̀

1.10 Numerical experiments

We now present numerical experiments to substantiate the theory developed in the preceding
sections. In particular, we compare and contrast the three error measures discussed in §1.4
for a polynomial manufactured solution defined on the unit square. Next, we explore several
solver strategies for this same polynomial solution, including the adaptive Algorithm 2. In
this case we will use uniform mesh refinement. Finally, we consider an unknown solution
on an L-shaped domain and test the adaptive Algorithm 2 comparing both adaptive and
uniform mesh refinement, in addition to adaptivity in regularization and linearization.

We will consider the effectivity index defined as the ratio of the estimator to the er-
ror, and in particular we have, using the notation of Proposition 1.7.1, Lemma 1.7.7, and
Lemma 1.7.10,

I`,j,ktot :=
η`,j,ktot

e`,j,ktot
, Ĩ`,j,ktot :=

η̃`,j,ktot

ẽ`,j,ktot
, Î`,j,ktot :=

η̃`,j,ktot

|||uj,k` − u|||
. (1.106)

We also consider a relative version of the various quantities (both errors and estimators) by

50
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

101 102 103 104 105

100

101

DOFs

E
ff
ec
ti
v
it
y
in
d
ex

Î
ℓ,j,k
tot

(Energy norm)

I
ℓ,j,k
tot

(Energy difference)

Ĩ
ℓ,j,k
tot

(Dual norm of residual)

Figure 1.4: [Polynomial solution (1.108), kink nonlinearity (1.19) with s0 = 1 and m =64,
polynomial degree p = 1, #DOFs varying, no regularization ε = 0] Robustness with respect
to the number of DOFs for the three error measures.

dividing by the energy of the approximate solution, e.g.,

(η`,j,klin,rel)
2 :=

(η`,j,klin)2

J (uj,k`)
. (1.107)

We will start with piecewise linear continuous finite elements i.e., we first set the polynomial
order p = 1 in (1.28), but later we test adaptivity for 2 ≤ p ≤ 5. All numerical experiments
are conducted with the help of the Gridap.jl library [7, 118] in the Julia programming
language.

1.10.1 Polynomial solution on a square

In this case, we consider a square domain Ω = (0, 1)2 ⊂ R2 and we take a manufactured
solution,

u(x) = 10x(x− 1)y(y − 1) (1.108)

to generate the source term f . We neglect that f /∈ P0(T`). We will take φ in the energy
(1.1) as in the definition of the kink function as (1.19). Thus, according to (1.21), we have
that the monotonicity constant α = 1 and the Lipschitz continuity constant L = m.

1.10.1.1 Comparison of the three error measures of §1.4

In this section, we will numerically investigate the relationships between the error measures
discussed in section §1.4. The results are given in Figures 1.4 and 1.5. For this example we
set the regularization parameter to zero, i.e., ε0 := 0. We first consider the scaling of the
effectivity indices (1.106) with respect to the number of DOFs. We remark that all three
error measures appear to be stable under uniform mesh refinement. This is consistent with
the theory since the constants in the reliability and efficiency bounds are independent of
the mesh size/number of DOFs. We do, however, note that the effectivity for the energy
difference is much larger for each value of the mesh than for the other two error measures.

1.10. Numerical experiments 51

100 101 102

100

101

102

m

E
ff
ec
ti
v
it
y
in
d
ex

Î
ℓ,j,k
tot

(Energy norm)

I
ℓ,j,k
tot

(Energy difference)

Ĩ
ℓ,j,k
tot

(Dual norm of residual)

Figure 1.5: [Polynomial solution (1.108), kink nonlinearity with s0 = 1 and m varying,
polynomial degree p = 1, #DOFs=3969, no regularization ε = 0] The effectivity associated
with the energy norm scales linearly in m whereas the other effectivities remain constant.

Now we consider the scaling with respect to the “size of the nonlinearity” i.e., m = L/α

in Figure 1.5. We begin with the dual norm of the residual. We observe that the estimator
(1.96) is not only a constant-free upper bound on the dual norm of the residual, but it is
also a (local) lower bound [53, 19] robust with respect to m.

Next we observe that the energy norm effectivity scales like m. This is consistent with
the theoretical bounds, (1.46) and (1.103) and confirms non-robustness.

Finally, we consider the effectivity based on the difference of energies. This estimator too
appears to be robust with respect to the scaling for this range of parameters. This behavior
has been studied in [68]. In particular, a robustness result was demonstrated for a modified
estimator, see (1.104).

1.10.1.2 Need for regularization for large ratios L/α

For the rest of this section, we will only consider the error and estimator based on the
difference of energies of Proposition 1.7.1. We now study a much larger value of the “size
of the nonlinearity” m = L/α and test the standard Newton algorithm, i.e., performing
Algorithm 2 without regularization (with ε0 = 0). In particular, we set m = 10000 and we
consider the same manufactured solution (1.108) on a fixed uniform mesh with 261121 DOFs.
In Figure 1.6, we plot both the relative total error and estimator along with the corresponding
effectivity index in function of the Newton iterations. In the lower figure, the components as
in (1.94) are shown. Based on the behavior of the linearization estimator η`,j,klin , we conclude
that the Newton solver fails to meet the specified convergence criteria after 50 iterations
and we artificially terminate the algorithm. This manifests possible non-convergence of the
Newton linearization for nonsmooth nonlinearities.

In Figure 1.7 we consider the same problem but now we fix a relatively large value for the
initial regularization of ε0 := 0.125. We set the parameters γreg := 1.0e16, γlin := 1.0e-5 to
ensure the algorithm will converge fully in linearization but will not perform any adaptivity
in either regularization or discretization.

We first remark that the effectivity index of our a posteriori error estimator oscillates

52
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

0 5 10 15 20 25 30 35 40 45 50

10−0.5

100

ℓ = 1

j = 0

Newton step k

R
el
a
ti
v
e
er
ro
r
a
n
d
a
n
d
es
ti
m
a
to
r

η
ℓ,j,k
tot,rel

e
ℓ,j,k
tot,rel

1

1.1

1.2

1.3

1.4

1.5

E
ff
ec
ti
v
it
y
in
d
ex

I
ℓ,j,k
tot

0 5 10 15 20 25 30 35 40 45 50

10−0.5

100

ℓ = 1

j = 0

Newton step k

R
e
la
ti
v
e
e
st
im

a
to
r

η
ℓ,j,k
dis,rel

η
ℓ,j,k
lin,rel

Figure 1.6: [Polynomial solution (1.108), kink nonlinearity (1.19) with s0 = 1 and m = 10000,
polynomial degree p = 1, #DOFs = 261121, no regularization ε0 = 0, refinement index `,
regularization index j, linearization index k,] The classical Newton method fails to converge
for the unregularized problem corresponding to ε = 0.

1.10. Numerical experiments 53

0 2 4 6 8 10 12

10−2

10−1

100
ℓ = 1

j = 0

Newton step k

R
el
a
ti
v
e
er
ro
r
a
n
d
a
n
d
es
ti
m
a
to
r

η
ℓ,j,k
tot,rel

e
ℓ,j,k
tot,rel

1

1.2

1.4

1.6

1.8

E
ff
ec
ti
v
it
y
in
d
ex

I
ℓ,j,k
tot

0 2 4 6 8 10 12

10−6

10−5

10−4

10−3

10−2

10−1

100
ℓ = 1

j = 0

Newton step k

R
e
la
ti
v
e
e
st
im

a
to
r

η
ℓ,j,k
reg,rel

η
ℓ,j,k
dis,rel

η
ℓ,j,k
lin,rel

Figure 1.7: [Polynomial solution (1.108), kink nonlinearity (1.19) with s0 = 1 and m = 10000,
#DOFs = 261121, ε0 = 0.125, γreg = 1.0e16, γlin = 1.0e-5, Cε = 1, polynomial degree p = 1,
mesh refinement index `, regularization index j, linearization index k] The classical Newton
method converges for the regularized problem with ε = 0.125 but the errors and estimates
other than the linearization stagnate due to the fixed regularization and discretization.

54
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

0 5 10 15 20 25 30 35 40 45

10−2

10−1

100
ℓ = 1

ℓ = 2
ℓ = 3

ℓ = 4

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Cumulative Newton step k

R
el
a
ti
v
e
er
ro
r
a
n
d
a
n
d
es
ti
m
a
to
r

η
ℓ,j,k
tot,rel

e
ℓ,j,k
tot,rel

1

1.5

2

2.5

E
ff
ec
ti
v
it
y
in
d
ex

I
ℓ,j,k
tot

0 5 10 15 20 25 30 35 40 45

10−4

10−3

10−2

10−1

100

101

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Cumulative Newton step k

R
el
a
ti
v
e
es
ti
m
a
to
r

η
ℓ,j,k
reg,rel

η
ℓ,j,k
dis,rel

η
ℓ,j,k
lin,rel

Figure 1.8: [Polynomial solution (1.108), kink nonlinearity (1.19) with s0 = 1 and m = 10000,
final #DOFs = 261121, ε0 = 0.125, γreg = 0.6, γlin = 0.4, Cε = 0.5, polynomial degree p
= 1, mesh refinement index `, regularization index j, linearization index k] The adaptive
Algorithm 2 applied to a polynomial solution. The final value of the regularization parameter
is ε6 = 1.95e-3.

much less, compared to Figure 1.6, signifying a more stable approximation of the error. It
appears further to converge after several iterations to a value near 1.6. We next remark that
the Newton linearization exhibits the optimal quadratic convergence according to the values
of the linearization estimator η`,j,klin . However, the other two estimator components η`,j,kreg

and η`,j,kdis stagnate at similar values: 1.06e-1 and 1.07e-1 respectively. We remark that the
reason that these are larger than the total estimator η`,j,ktot = 2.05e-2 is due to the insertion of
absolute values in the definition (1.94). In any case, the Newton linearization now converges,
but the regularization component is much too large to be satisfactory. This motivates the
adaptive Algorithm 2 where the regularization estimator is decreased adaptively along the
iterations.

1.10. Numerical experiments 55

104 105

10−2.5

10−2

10−1.5

DOFs

R
e
la
t
iv
e
e
r
r
o
r
a
n
d
e
s
t
im

a
t
o
r

η
ℓ,j̄,k̄
tot,rel

e
ℓ,j̄,k̄
tot,rel

DOFs−
1

2

Figure 1.9: [Polynomial solution (1.108), kink nonlinearity (1.19) with s0 = 1 andm = 10000,
polynomial degree p = 1, ε0 = 0.125, γreg = 0.6, γlin = 0.4, Cε = 0.5, #DOFs varies]
Achieving the optimal rate of convergence for a polynomial solution with uniform mesh
refinement.

1.10.1.3 Adaptive regularization and linearization

We now engage the adaptive regularization and linearization of Algorithm 2 by setting the
parameters γreg = 0.6, γlin = 0.4 and Cε = 0.5. We again set m = 10000, ε0 = 0.125, and
we now start from a uniform coarse mesh with 3969 DOFs for ` = 0 (64× 64× 2 triangles).
The results of the adaptive algorithm are presented in Figure 1.8. We first remark that the
effectivity index (1.106) stays bounded below 2, and as the Newton solver converges for a
fixed (j, `), the effectivity approaches a value near 1.4. Next, we observe that in accordance
with the criteria (1.105b), the regularization component estimator is always γreg-times below
the discretization component estimator. Thus, we can guarantee that in this sense the
regularization does not pollute the overall error, in constrast to the previous section. Indeed,
this is substantiated in Figure 1.9, where the optimal rate of convergence of both the error
and the estimator with respect to DOFs is observed, for the stopping indices k̄ and j̄ satisfying
respectively (1.105a) and (1.105b). Finally, we see that the majority of the iterations are
spent on the meshes ` = 0, 1, 2. This is another advantage of the adaptive algorithm, where
the coarser meshes serve as a way to create a good initial guess for the next mesh. For a
smooth problem it is not strictly necessary to begin on a coarse mesh, since the refinement
procedure is known a priori, but as we will see in the following section, sometimes starting on
a coarse mesh is not just useful to create a sequence of initial guesses, but also to efficiently
obtain an optimal mesh family using adaptive mesh refinement. Finally, we remark that the
final total error is 2.51e-3 as opposed to 1.03e-2 in the previous case, where no adaptivity was
used. This confirms that fixing once and for all the regularization parameter can deteriorate
the quality of the final solution, which does not happen for Algorithm 2.

56
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

0 5 10 15 20 25

10−1

100
ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

ℓ = 8

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

Cumulative Newton step k

R
el
a
ti
v
e
es
ti
m
a
to
r

η
ℓ,j,k
tot,rel

0 5 10 15 20 25

10−3

10−2

10−1

100

101

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

ℓ = 8

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

Cumulative Newton step k

R
el
a
ti
v
e
es
ti
m
a
to
r

η
ℓ,j,k
reg,rel

η
ℓ,j,k
dis,rel

η
ℓ,j,k
lin,rel

Figure 1.10: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 10000, final #DOFs = 97793, ε0 = 0.125, γreg = 0.4, γlin = 0.4, Cε = 0.5,
polynomial degree p = 1, mesh refinement index `, regularization index j, linearization index
k] Applying Algorithm 2 using uniform refinement.

1.10. Numerical experiments 57

0 20 40 60 80 100 120

10−2

10−1

100
ℓ = 1

ℓ = 5

ℓ = 9

ℓ = 13

ℓ = 17

ℓ = 21

ℓ = 25

ℓ = 29

ℓ = 33

ℓ = 37

ℓ = 41

ℓ = 45

j = 0

j = 3

j = 6

j = 9

Cumulative Newton step k

R
el
a
ti
v
e
es
ti
m
a
to
r

η
ℓ,j,k
tot,rel

0 20 40 60 80 100 120

10−7

10−5

10−3

10−1

101
ℓ = 1

ℓ = 5

ℓ = 9

ℓ = 13

ℓ = 17

ℓ = 21

ℓ = 25

ℓ = 29

ℓ = 33

ℓ = 37

ℓ = 41

ℓ = 45

j = 0

j = 3

j = 6

j = 9

Cumulative Newton step k

R
el
a
ti
v
e
es
ti
m
a
to
r

η
ℓ,j,k
reg,rel

η
ℓ,j,k
dis,rel

η
ℓ,j,k
lin,rel

Figure 1.11: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 10000, final #DOFs = 86973, ε0 = 0.125, γreg = 0.4, γlin = 0.4, Cε = 0.5,
polynomial degree p = 1, mesh refinement index `, regularization index j, linearization index
k] Applying Algorithm 2 using adaptive refinement.

58
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

1.10.2 Unknown solution on an L-shaped domain

We now consider an L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) where we impose the
boundary condition and right-hand side as

u = uD(r, θ) := rα sin(αθ) on ∂Ω and f = 0 in Ω, (1.109)

where α = 2
3 . We note that the trace of this function is not a piecewise polynomial at the

boundary, but we ignore the error due to interpolation of the boundary condition in this
case. This has been rigorously studied in, e.g., [45]. We will consider the parameters γreg =

0.4, γlin = 0.4 and Cε = 0.5. The main difference compared to the polynomial solution
of §1.10.1 is that we anticipate that uniform mesh refinement will not achieve the a priori
optimal convergence rate due to the re-entrant corner and the nonlinearity that will activate
around the curve |∇u| = s0. We will first consider uniform refinement of the mesh as in the
previous problem, and then adaptive refinement using the estimator η`,j,ktot,K in (1.92) will be
employed on line 19 of Algorithm 2. Note that here, since we do not know the true solution,
we do not plot the error and the effectivity index.

In Figure 1.10, we consider the uniform mesh refinement strategy. We see the estimator
along with the component estimators. The adaptive algorithm works as before for the smooth
case, with the regularization estimator always below the discretization estimator, and for
fixed (j, `) the Newton solver converges very quickly. However, if we now consider convergence
with respect to DOFs in Figure 1.12, we see that we obtain the suboptimal convergence rate
of DOFs−1/3. This is evidence that the true solution is not H2 regular, and therefore the
optimal rate of DOFs−1/2 will not be achieved for uniform mesh refinement. Next, we
consider in Figure 1.11 applying Algorithm2 but now with adaptive mesh refinement using
Dörfler marking [46]. The elementwise indicators are given by η`,j,ktot,K from (1.92) and we use
the newest vertex bisection algorithm to enforce mesh conformity, i.e., to ensure no hanging
nodes are generated. We see first of all that many more iterations are needed to obtain a
similar number of final DOFs. However, the total estimator at the end of the iterations is
much lower compared to that of the uniform case. This is even more explicit when we plot
the number of DOFs versus the total estimator in Figure 1.12. In particular, we see that
upon running the same algorithm with adaptive mesh refinement, we recover the optimal
rate of DOFs−1/2 for the estimator with respect to DOFs.

One advantage of adaptive mesh refinement is that it allows in general to recover the
optimal rate of convergence for arbitrary polynomial degree with respect to DOFs, i.e.,
DOFs−p/d, even when the solution does not have sufficient regularity for the a priori theory,
see e.g. [30]. We now test the convergence rate and the behavior of the adaptive algorithm for
higher polynomial degrees. We first show the convergence plots for 2 ≤ p ≤ 5 in Figure 1.13.
We observe that for p = 2, 3 the optimal rate of convergence DOFs−p/d is again achieved
for the adaptive mesh refinement. However, for p ≥ 4, the convergence rate is suboptimal,
it appears to be similar to that of p = 3, i.e., DOFs−3/2. We can potentially explain
this deterioration by the appearance of one-dimensional curve singularities, see e.g., [29].
Indeed, in Figure 1.14, we notice there is non-trivial refinement along the curves where the
norm of the gradient equals s0. Since the right hand side f = 0 and we have chosen a
nonsmooth nonlinearity, heuristically the solution must also be nonsmooth along |∇u| = s0
to compensate. Finally, we consider comparing the estimator against a notion of cost across

1.10. Numerical experiments 59

101 102 103 104 105

10−2

10−1

100

DOFs

E
st
im

at
o
r

p = 1

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
1

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

Figure 1.12: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 10000, polynomial degree p = 1, ε0 = 0.125, γreg = 0.4, γlin = 0.4,
Cε = 0.5, #DOFs varies] Comparison of the suboptimal convergence for uniform refinement
and optimal convergence for adaptive mesh refinement based on the estimator η`,j,ktot for the
lowest order.

all iterations following [59, 64] We define this cost at each step of the algorithm as

Cost =
¯̀∑

`=0

j̄(`)∑
j=0

k̄(`,j)∑
k=1

(DOFs)`. (1.110)

We observe in Figure 1.15 that the rates in this metric are very similar to those observed
for the convergence with respect to DOFs of Figure 1.12; in particular, we shall obtain the
optimal -1/2 rate in cost for adaptive mesh refinement.

60
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

101 102 103 104 105

10−4

10−3

10−2

10−1

100

DOFs

E
st
im

a
to
r

p = 2

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
2

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

102 103 104 105

10−4

10−3

10−2

10−1

100

101

DOFs
E
st
im

a
to
r

p = 3

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
3

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

DOFs

E
st
im

at
o
r

p = 4

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
3

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

DOFs

E
st
im

at
o
r

p = 5

η
ℓ,k,j
tot,rel (adaptive)

O(DOFs−
3

2)

η
ℓ,k,j
tot,rel (uniform)

O(DOFs−
1

3)

Figure 1.13: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 1000, different polynomial degrees p, #DOFs varying, ε0 = 0.125, γreg =

0.4, γlin = 0.4, Cε = 0.5] Different polynomial degrees p using adaptive mesh refinement
based on η`,j,ktot . The optimal rate of DOFs−p/d is obtained for adaptive refinement up to
p = 3, then only suboptimal convergence of DOFs−3/d is achieved. We explain this by the
appearance of one-dimensional (curve) singularities. In the case of uniform mesh refinement,
increasing the polynomial degree does not change the suboptimal rate of DOFs−1/3.

1.10. Numerical experiments 61

Figure 1.14: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 1000, polynomial degree p = 4, #DOFs=93681, ε0 = 0.125, γreg = 0.4,
γlin = 0.4, Cε = 0.5,] Coloring corresponding to the norm of the gradient of the approximate
solution at the final iteration, i.e., |∇uj̄,k̄¯̀ |. We note the aggressive refinement at the re-entrant
corner, and the weaker, but still substantial, refinement along the curves corresponding to
s0 = |∇uj̄,k̄¯̀ |, i.e., at the kink.

62
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

100 101 102 103 104 105 106

10−2

10−1

100

Cost

E
st
im

at
o
r

p = 1

η
ℓ,k,j
tot,rel (adaptive)

O(Cost−
1

2)

η
ℓ,k,j
tot,rel (uniform)

O(Cost−
1

3)

Figure 1.15: [Unknown singular solution with data (1.109), kink nonlinearity (1.19) with
s0 = 0.75 and m = 10000, polynomial degree p = 1, ε0 = 0.125, γreg = 0.4, γlin = 0.4,
Cε = 0.5, #DOFs varies] Convergence in costs given by the triple sum (1.110). We observe
the same rates in function of the cost as we do for the DOFs which is expected theoretically.

1.11 Conclusions and future work

In this paper, we have considered an adaptive algorithm to iteratively solve energy mini-
mization problems with nonsmooth nonlinearities. Our adaptive algorithm is guided by the
so-called primal-dual gap error estimator which provides an upper bound for the difference
of energies. We construct the necessary dual object required by the estimator by solving
mutually independent, patch-local, minimization problems. We introduce a regularization
to allow the use of a standard Newton’s method as a nonlinear solver for the nonsmooth
system of equations associated to the minimization problem. The algorithm adaptively con-
trols the regularization parameter to reduce the model error incurred by regularizing the
problem. We perform a decomposition of the total estimator into component estimators
related to regularization, discretization, and linearization. In particular, we prove that these
component estimators converge to zero in the limit as the number of associated iterations
tends to infinity. These component estimators are used to construct stopping criteria for the
various components of the algorithm.

We test our algorithm numerically on two examples. In the first example, we show that
the regularization restores the (quadratic) convergence of Newton’s method, which without
regularization failed to converge. Moreover, the adaptivity in the regularization does not
influence the optimal rate of convergence of the error in the energy difference with respect
to DOFs. In the second example, we consider an unknown solution on an L-shaped domain.
We use adaptive mesh refinement to overcome the geometric singularity generated by the
re-entrant corner; there also appears a singularity along a curve arising from the nonsmooth
nonlinearity. With the help of adaptive mesh refinement, we again obtain the optimal rate of
convergence with respect to DOFs for low order cases. However, for higher orders, suboptimal
convergence rates are obtained. We attribute this to the appearance of the above-discussed
singularity, which is a well known difficulty for isotropic mesh refinement.

1.A. Proofs from §1.5 63

In terms of future work, one possible approach to address the singularity problem in the
L-shaped domain case would be to employ an anisotropic refinement strategy. In our work
we, however, would be missing a number of theoretical tools. It would also be instructive
to prove convergence of the adaptive algorithm, i.e., to show rigorously that by decreasing
the regularization, we can obtain the optimal rate of convergence with respect to DOFs and
cost, which is what we observe numerically. It may also be possible to extend certain aspects
of this algorithm to other energy minimization settings posed in different spaces like the
p-Laplace problem or the obstacle problem.

1.A Proofs from §1.5

Proof of Proposition 1.5.1. We begin by proving (1.55a). To simplify notation, define ξ :=

φ′. We consider the integral in (1.50), with the change of variables s = φ′(t) = ξ(t)∫ r

0
ξ−1(s)ds =

∫ ξ−1(r)

ξ−1(0)
ξ−1(ξ(t))ξ′(t)dt =

∫ ξ−1(r)

0
tξ′(t)dt

= tξ(t)

∣∣∣∣ξ−1(r)

0

−
∫ ξ−1(r)

0
ξ(t)dt = rξ−1(r)− φ(ξ−1(r)) + φ(0),

where we have used our assumptions that φ′(0) = 0 and hence also (φ′)−1(0) = 0 = ξ−1(0).
The second equality in (1.55a) follows from the basic fact that for a convex differentiable
function, the max is obtained by setting the derivative w.r.t. s in the curly braces equal to
zero, and hence r = φ′(s).

To prove (1.55b), we consider the criterion for convexity. For r1, r2 ∈ Dom(φ∗) and
α ∈ [0, 1],

φ∗(αr1 + (1− α)r2) = max
s

{s[αr1 + (1− α)r2]− φ(s)}

= max
s

{α[sr1 − φ(s)] + (1− α)[sr2 − φ(s)]}

≤ αmax
s

{sr1 − φ(s)}+ (1− α)max
s

{sr2 − φ(s)}

= αφ∗(r1) + (1− α)φ∗(r2).

Finally, to prove (1.55c), let now ζ(r) := (φ′)−1(r), so that

d

dr
φ∗(r) =

d

dr

(
rζ(r)− φ(ζ(r))

)
= ζ(r) + rζ ′(r)− φ′(ζ(r))ζ ′(r) = ζ(r) = (φ′)−1(r),

because φ′(ζ(r)) = r by definition, whereas (1.55d) is obvious.

Proof of Corollary 1.5.2. The inequality (1.56), follows immediately from the max definition
of the transform, i.e., the second equality of (1.55a). The maximum in (1.55a) for r = φ′(s),
as discussed above, which leads to the equality.

Proof of Corollary 1.5.3. Since we know φ′ : R+ → R+, we have

A(q) · q =
φ′(|q|)
|q|

q · q = |A(q)|︸ ︷︷ ︸
r

|q|︸︷︷︸
s

. (1.111)

64
Chapter 1. Adaptive regularization, discretization, and linearization for nonsmooth

problems based on primal-dual gap estimators

Now take r in s as in the Young inequality (1.56), and note that r = φ′(s) so equality (1.57b)
holds. Unpacking the definitions, we find (1.57a) as

A(A∗(q))
(1.51)
=

φ′
(
|A∗(q)|

)
|A∗(q)|

A∗(q) = φ′
(
(φ∗)′(|q|)

) A∗(q)

(φ∗)′(|q|)
(1.55c)
=

|q|A∗(q)

(φ∗)′(|q|)
(1.51)
= q.

Proof of Lemma 1.5.4. Note that for any x, y ≥ 0,

0 ≤ α(x− y)2
(1.3b)
≤ (x− y)(φ′(x)− φ′(y))

=⇒ α|x− y|2 ≤ |x− y||φ′(x)− φ′(y)|
=⇒ α|x− y| ≤ |φ′(x)− φ′(y)|.

Thus, since we assume φ′ is bijective on R+, we may take x = (φ′)−1(r), y = (φ′)−1(s),
yielding

α|(φ′)−1(r)− (φ′)−1(s)| ≤ |r − s|.

The relationship given by (1.55c) finishes the proof.

Chapter 2

Robust Energy a Posteriori
Estimates For Nonlinear Elliptic
Problems

This chapter corresponds to the paper https: // inria. hal. science/ hal-04033438v2
currently submitted for publication.

2.1 Introduction

Nonlinear elliptic problems are of paramount importance in a broad range of domains such
as physics, mechanics, economics, biology, and medicine, see, e.g., [10, 55, 72, 107, 117].
Numerical discretization methods then serve to deliver approximate solutions, upon em-
ploying iterative linearizations to resolve the arising discrete nonlinear systems, see, e.g.,
[20, 42, 49, 67, 80, 129] and the references therein.

Given a numerical approximation, there arises the important question of the error
with respect to the exact solution. This is practically handled by the so-called a pos-
teriori estimates. For nonlinear problems, these have been proposed, amongst others,
in [11, 13, 32, 35, 47, 53, 63, 66, 67, 74, 81, 83, 95, 107, 129]. In particular, already in,
e.g., [129], the concept of a fully computable upper bound on the energy difference while
relying on a duality gap has been discussed, see also [11, 13, 35, 63, 95, 107] and the ref-
erences therein. The crucial question in this context is how to locally construct a suitable
equilibrated flux. This has been a subject of research for several decades [84, 41, 85] and has
only reached maturity recently [81, 21, 36, 53]. One step further, the estimates can be used
to adaptively steer the numerical approximation, and recently, convergence and optimality
results have been obtained in [18, 28, 59, 60, 64, 69, 70], see also the references therein.

Two crucial properties of an a posteriori estimate are the efficiency, assessing whether the
estimate is not only an upper bound on the error, but also, up to a generic constant, a lower
bound, and its robustness, assessing whether the quality of the estimate is independent of
the parameters. In the present setting, we specifically use the term robustness if the chosen
error measure and the associated estimate are uniformly equivalent, for any strength of the
nonlinearity. Namely, the efficiency constant has to be indeed generic, independent of the
strength of the nonlinearity, leading to the same overestimation factor (effectivity index)
for linear, mildly nonlinear, and highly nonlinear problems. Unfortunately, robustness is
typically (theoretically) not achieved; we illustrate this in Figure 2.1. There, we present

https://inria.hal.science/hal-04033438v2

66 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

100 101 102 103 104 105 106 107

100

102

104

106

ac/am

Eff
ec

tiv
ity

in
de

x

Energy norm
Energy difference

Dual norm of residual

Figure 2.1: [Exponential nonlinearity (2.53), smooth solution (2.51), Newton solver, 25
DOFs] Comparison of the effectivity index (given as the ratio of the estimate over the error)
of different error measures and associated a posteriori estimates.

the effectivity indices for three common error measures: the energy norm (L2 norm of the
difference of the weak gradients), the (square root of the) difference of the energies, and the
dual norm of the residual (cf., e.g., [58] for their mutual comparisons). We employ guaranteed
equilibrated flux estimates following [21, 53], for the problem of Example 2.6.2 below. We
can observe that the estimate in the energy norm setting is not robust with respect to the
strength of the nonlinearity (the effectivity index explodes as the ratio ac/am from (2.4) below
grows). The dual norm of the residual leads to robustness, as proven in [47, 53]. Though
the dual norm of the residual is indeed localizable, cf. [19] and the references therein, it may
be criticized as it actually does not take into account the nonlinearity (an incorporation has
recently been addressed in [93]). The energy difference then numerically shows a robustness,
though, to the best of our knowledge, all known theoretical estimates, cf. the references
above, depend unfavorably on the ratio ac/am. Our main motivation in this context is to
bring a theoretical insight to the robustness in the energy difference setting.

We focus on nonlinear elliptic problems of the form: find u : Ω → R such that

−∇·(a(·, |∇u|)∇u) = f in Ω, (2.1a)
u = 0 on ∂Ω, (2.1b)

where a : Ω × [0,∞) → (0,∞) is a nonlinear function satisfying assumptions of Lipschitz
continuity and strong monotonicity (cf. (2.4) below). We employ a finite element approxi-
mation of (2.1) and an iterative linearization, yielding the approximation uk` on each mesh
T` and linearization step k. The iterative linearization method needs to satisfy a few clearly
identified assumptions. We will show that this is satisfied for usual linearizations such as
Picard, Newton, or Zarantonello.

We consider the energy difference EkN,` of the nonlinear problem (cf. (2.29a)) and its
a posteriori estimator ηkN,` (cf. (2.29b)). We establish that EkN,` and ηkN,` are respectively
equivalent to L2 norms of differences of the exact and approximate solutions with pointwise
contributions of the nonlinearity (cf. Lemma 2.4.1). We then obtain our first main result,
Theorem 2.4.4, which can be summarized as follows. For every iterative linearization index
k, neglecting data oscillation, quadrature-type errors, and iterative linearization error terms,
we have

EkN,` ≤ ηkN,` . Ck` EkN,`, (2.2)

where the hidden constant depends only on the space dimension, the mesh shape-regularity,

2.2. Weak formulation, energy minimization, finite element discretization, and
iterative linearization 67

and possibly on the polynomial degree p of the finite element approximation when the spatial
dimension is greater than or equal to 4. Here, Ck` only has a local, through unfortunately not
computable, dependence on the nonlinearity; we prove that in any case, Ck` ≤ (ac/am)1/2.

In order to improve the above result and in particular the constant Ck` , we additionally
consider a linearized energy difference EkL,` (cf. (2.39a)) and the associated estimator ηkL,`
(cf. (2.39b)). We then augment EkN,` by EkL,` to form Ek` and similarly for the estimators.
We then obtain our second main result, Theorem 2.5.5, which can be presented as follows.
For every iterative linearization index k, neglecting again data oscillation, quadrature-type
errors, and iterative linearization error terms, we have

Ek` ≤ ηk` . Ĉk` Ek` , (2.3)

with the same dependence as in (2.2) for the hidden constant. Here Ĉk` only depends on
local variations of the linearization matrices and, crucially, is fully computable. Moreover,
we show that Ĉk` = 1 in the case of the Zarantonello linearization, making the estimate (2.3)
robust with respect to the strength of the nonlinearity. For the other linearizations, the
estimate (2.3) is robust if the computed constant Ĉk` is small, which is an a posteriori
verification of robustness for each given setting (nonlinear function a, domain Ω, datum f ,
mesh T`, linearization step k, polynomial degree p). We also discuss in Remark 2.5.7 why
we can expect Ĉk` tend to 1 in the discretization limit (` large enough).

The rest of the paper is organized as follows. In Section 2.2, we detail the assumptions on
the nonlinear function a. We next give the continuous weak formulation with its equivalent
energy minimization. Then, we introduce the discrete weak formulation with its associated
discrete energy minimization, and finally the iterative linearization. In Section 2.3, we define
the convex conjugate, the duality setting, and the equilibrated flux necessary for our a
posteriori estimates. In Section 2.4, we study the original energy difference, which leads us
to our first main result, Theorem 2.4.4, giving details of (2.2). In Section 2.5, we define the
augmented energy difference and estimator and state our second main result, Theorem 2.5.5,
giving details of (2.3). In Section 2.6, we present a series of numerical experiments in order
to illustrate our theoretical findings, for both settings (2.2) and (2.3) as well as smooth and
singular solutions. In Section 2.7, we give a proof of crucial technical result of Lemma 2.4.1,
and then in Section 2.8, a proof of Theorem 2.4.4. In Section 2.9, we give a proof of the
boundedness of the weight λk` from Lemma 2.5.1 and of the augmented energy difference
consistency summarized in Lemma 2.5.3, and then, in Section 2.10, a proof of Theorem 2.5.5.
Finally, we summarize, in Appendix 2.A, some useful properties of the nonlinear functions
and the assumptions required, and, in Appendix 2.B, we show some technical results to
determine the local eigenvalues of the Newton linearization.

2.2 Weak formulation, energy minimization, finite element
discretization, and iterative linearization

Let Ω ⊂ Rd, d ≥ 1, be an open polytope with Lipschitz boundary ∂Ω. We consider prob-
lem (2.1), where f ∈ L2(Ω) represents a volumetric force term, while a is the diffusion
coefficient which depends on the potential u : Ω → R only through the Euclidean norm of
its gradient |∇u|.

We consider the following assumption for the nonlinear function a (see, e.g., [129] for
more details).

68 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Assumption 2.2.1 (Nonlinear function a). We assume that the function a : Ω × [0,∞) →
(0,∞) is measurable and that there exist constants am ≤ ac ∈ (0,∞) such that, a.e. in Ω

and for all x,y ∈ Rd,

|a(·, |x|)x− a(·, |y|)y| ≤ ac|x− y| (Lipschitz continuity), (2.4a)
(a(·, |x|)x− a(·, |y|)y) · (x− y) ≥ am|x− y|2 (strong monotonicity). (2.4b)

2.2.1 Weak formulation and equivalent energy minimization

The weak formulation of problem (2.1) reads: find u ∈ H1
0 (Ω) such that

(a(·, |∇u|)∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (2.5a)

where (·, ·) is the inner product of L2(Ω).
Referring to [129], the weak formulation (2.5a) is equivalent to the following minimization

problem:
u = arg min

v∈H1
0 (Ω)

J (v), (2.5b)

with the energy functional J : H1
0 (Ω) → R defined as,

J (v) :=

∫
Ω
φ(·, |∇v|)− (f, v), v ∈ H1

0 (Ω), (2.6)

where the function φ : Ω × [0,∞) → [0,∞) is defined such that, a.e. in Ω and for all
r ∈ [0,∞),

φ(·, r) :=
∫ r

0
a(·, s)sds. (2.7)

It is shown in [129] that, under Assumption 2.2.1, there exists a unique solution to prob-
lem (2.5). We refer to Appendix 2.A for more details about equivalent assumptions on the
nonlinear functions a and φ.

2.2.2 Finite element discretization

Let ` ≥ 0 be a mesh level index. We consider simplicial triangulations T` of the domain Ω

satisfying the following shape-regularity property: there exists a constant κT > 0 such that
for all ` ≥ 0 and all K ∈ T`, hK/ρK ≤ κT , where hK is the diameter of K and ρK is the
diameter of the largest ball inscribed in K.

For a polynomial degree p ≥ 1, denoting Pp(T`) the space of piecewise polynomials on
the mesh T` of total degree at most p, we define the discrete finite element space V p

` :=

Pp(T`) ∩H1
0 (Ω). The finite element approximation of (2.5a) would be u` ∈ V p

` such that

(a(·, |∇u`|)∇u`,∇v`) = (f, v`) ∀v` ∈ V p
` . (2.8a)

As in (2.5b), u` ∈ V p
` solves the minimization problem

u` = arg min
v`∈V p`

J (v`). (2.8b)

Below, we never work with u` but rather with its approximations coming from iterative
linearization.

2.2. Weak formulation, energy minimization, finite element discretization, and
iterative linearization 69

2.2.3 Iterative linearization

We henceforth consider an iterative linearization of (2.8a), which is anyhow necessary for a
practical solution of (2.8a). Let u0` ∈ V p

` be a given initial guess. For an iterative linearization
index k ≥ 1, consider Ak−1

` : Ω → Rd×d and bk−1
` : Ω → Rd, arising from a suitable

linearization; details and examples are given below. We define the linearized finite element
approximation: uk` ∈ V p

` to be such that

(Ak−1
` ∇uk` ,∇v`) = (f, v`) + (bk−1

` ,∇v`) ∀v` ∈ V p
` . (2.9a)

As in (2.8b), this is equivalent to the discrete minimization problem

uk` = arg min
v`∈V p`

J k−1
` (v`) (2.9b)

with the linearized energy functional J k−1
` : H1

0 (Ω) → R defined for all v ∈ H1
0 (Ω) by

J k−1
` (v) :=

1

2

∥∥∥(Ak−1
`)

1
2∇v

∥∥∥2 − (f, v)− (bk−1
` ,∇v), (2.10)

where ‖·‖ is the L2(Ω) norm corresponding to the inner product (·, ·) of L2(Ω).

2.2.3.1 Assumptions on iterative linearization schemes

Let k ≥ 1. We will suppose that Ak−1
` : Ω → Rd×d and bk−1

` : Ω → Rd from (2.9) satisfy
Assumption 2.2.2 below (for the sake of conciseness, we assume that they are well defined
everywhere in Ω). We will use the following notation of the derivatives in the second argument
of the functions a, φ, and others (cf. (2.21)–(2.22)): for all r ∈ [0,∞), a′(·, r) := ∂

∂ra(x, r)

and φ′(·, r) := ∂
∂rφ(x, r).

Assumption 2.2.2 (Iterative linearization). For all points x ∈ Ω, we assume that
Ak−1
` (x) ∈ Rd×d is a bounded symmetric positive definite matrix. Specifically, denoting

by Ak−1
m,` (x) and Ak−1

c,` (x) respectively its smallest and largest pointwise eigenvalues, we have,
for all ξ ∈ Rd,

|Ak−1
` (x)ξ| ≤ Ak−1

c,` (x)|ξ| (boundedness), (2.11a)
(Ak−1

` (x)ξ) · ξ ≥ Ak−1
m,` (x)|ξ|

2 (positive definiteness). (2.11b)

Moreover, we suppose uniformity, i.e., that there exist Am ≤ Ac ∈ (0,∞) independent of k,
`, and x such that

Am ≤ Ak−1
m,` (x) ≤ Ak−1

c,` (x) ≤ Ac. (2.11c)

Finally, we explicitly define bk−1
` (x) ∈ Rd for all x ∈ Ω by

bk−1
` (x) := Ak−1

` (x)∇uk−1
` (x)− a(x, |∇uk−1

` (x)|)∇uk−1
` (x). (2.12)

In the following, we use the boldface font to denote the spaces of multi-dimensional
functions, e.g., L2(Ω).

70 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Remark 2.2.3 (Assumption 2.2.2). Equality (2.12) implies that (2.9a) can be equivalently
written as a problem for the increment uk` − uk−1

` on the left-hand side and the residual of
uk−1
` on the right-hand side:

(Ak−1
` ∇(uk` − uk−1

`),∇v`) = (f, v`)− (a(·, |∇uk−1
` |)∇uk−1

` ,∇v`) ∀v` ∈ V p
` , (2.13)

which is the form used in, e.g., [93]. Therefore, equality (2.12) ensures that the discrete
problem (2.9a) is consistent with the discrete problem (2.8a) in that

Ak−1
` ∇uk` − bk−1

` → a(·, |∇u`|)∇u` in L2(Ω) when uk` → u` in H1
0 (Ω). (2.14)

Indeed, (2.11a) and (2.11c) imply that Ak−1
` ∇(uk` − uk−1

`) → 0 in L2(Ω), whereas
a(·, |∇uk−1

` |)∇uk−1
` → a(·, |∇u`|)∇u` in L2(Ω) thanks to (2.4a). Finally, we recall that

the positive definiteness of Ak−1
` implies that (Ak−1

`)−1 and (Ak−1
`)

1
2 exist, which is used

below.

2.2.3.2 Examples of iterative linearization schemes

We now present some examples of linearization methods satisfying Assumption 2.2.2.

Example 2.2.4 (Picard). The Picard (fixed point) iteration, see, e.g., [42], is defined as

Ak−1
` = a(·, |∇uk−1

` |)Id with bk−1
` = 0 in Ω. (2.15)

It satisfies Assumption 2.2.2 with Ak−1
m,` = Ak−1

c,` = a(·, |∇uk−1
` |), which leads to Am = am

and Ac = ac thanks to (2.85).

Example 2.2.5 (Zarantonello). The Zarantonello iteration, introduced in [127], is defined
as

Ak−1
` = γId with bk−1

` =
(
γ − a(·, |∇uk−1

` |)
)
∇uk−1

` in Ω, (2.16)

where γ ∈ (0,∞) is a constant parameter. To ensure contraction, one needs to assume that
γ ≥ a2c

am
. The Zarantonello iteration maintains the same linearization matrix γId during

the iterations and converges linearly, but the convergence is slow as γ takes large values. It
satisfies Assumption 2.2.2 with Ak−1

m,` = Ak−1
c,` = γ, which leads to Am = Ac = γ.

Example 2.2.6 ((Damped) Newton). The (damped) Newton iteration, see, e.g., [42], is
defined as

Ak−1
` = a(·, |∇uk−1

` |)Id + θ
a′(·, |∇uk−1

` |)
|∇uk−1

` |
∇uk−1

` ⊗∇uk−1
`

with bk−1
` = θa′(·, |∇uk−1

` |)|∇uk−1
` |∇uk−1

` in Ω,

(2.17)

where θ ∈ [0, 1] is the damping parameter. Observe that θ = 1 gives the Newton iteration,
whereas θ = 0 corresponds to the Picard iteration. If θ = 1, the Newton method converges
quadratically. However, it might not always converge. The (damped) Newton iteration sat-
isfies Assumption 2.2.2 with, if the space dimension d = 1,

Ak−1
m,` = Ak−1

c,` = a(·, |∇uk−1
` |) + θa′(·, |∇uk−1

` |)|∇uk−1
` |

(2.90)
= (1− θ)a(·, |∇uk−1

` |) + θφ′′(·, |∇uk−1
` |),

(2.18)

2.3. Convex conjugate, dual energy, and flux equilibration 71

and, if d > 1,

Ak−1
m,` = (1− θ)a(·, |∇uk−1

` |) + θmin(a(·, |∇uk−1
` |), φ′′(·, |∇uk−1

` |)), (2.19a)
Ak−1

c,` = (1− θ)a(·, |∇uk−1
` |) + θmax(a(·, |∇uk−1

` |), φ′′(·, |∇uk−1
` |)). (2.19b)

Indeed, denoting the spectrum of a matrix A ∈ Rd×d by Spec(A), we infer (2.19) by writing,

Spec(Ak−1
`)

(2.91)
= {a(·, |∇uk−1

` |), a(·, |∇uk−1
` |) + θa′(·, |∇uk−1

` |)|∇uk−1
` |}

(2.90)
= {(1− θ)a(·, |∇uk−1

` |) + θa(·, |∇uk−1
` |),

(1− θ)a(·, |∇uk−1
` |) + θφ′′(·, |∇uk−1

` |)}.

Finally, we can set Am = am and Ac = ac thanks to (2.85) and (2.87).

2.3 Convex conjugate, dual energy, and flux equilibration

In this section, we define some common tools for the forthcoming developments.

2.3.1 Convex conjugate function and dual energy

Recalling the primal energy J of (2.6), the corresponding dual energy J ∗ : H(div,Ω) → R,
cf. [10, 72, 107, 129], is defined by

J ∗(w) := −
∫
Ω
φ∗(·, |w|), w ∈ H(div,Ω), (2.20)

where φ∗ : Ω × [0,∞) → [0,∞) is the convex conjugate of φ (also known as the Legendre
dual or the Fenchel conjugate), which is defined such that, a.e. in Ω and for all s ∈ [0,∞),

φ∗(·, s) := sup
r∈[0,∞)

(sr − φ(·, r)), (2.21a)

or equivalently, for all s ∈ [0,∞),

φ∗(·, s) =
∫ s

0
φ′

−1
(·, r)dr = sφ′

−1
(·, s)− φ(·, φ′−1

(·, s)). (2.21b)

We refer to [72] for more details and recall that the construction of φ∗ yields

φ∗′ = φ′
−1 and φ∗′′ =

1

φ′′ ◦ φ′−1 . (2.22)

Consequently, under Assumption 2.2.1, φ∗ is convex thanks to Remark 2.A.3 below.
Finally, we define the linearized dual energy functional J ∗,k−1

` : H(div,Ω) → R such
that

J ∗,k−1
` (w) := −1

2

∥∥∥(Ak−1
`)−

1
2 (w − bk−1

`)
∥∥∥2 , w ∈ H(div,Ω). (2.23)

72 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

2.3.2 Flux equilibration

Let V` be the set of all mesh vertices and, for each vertex a ∈ V`, define the patch T a
` as

the collection of the simplicies of T` sharing the vertex a, as well as the patch subdomain ωa
`

corresponding to T a
` . For all a ∈ V`, we define the space V a

` := RTNp(T a
`) ∩H0(div, ωa

`).
Here RTNp(T a

`) denotes the broken space consisting of p-th order Raviart–Thomas–Nédélec
space on each simplex, RTNp(K) := [Pp(K)]d + xPp(K). Moreover, H0(div, ωa

`) is the
subspace of H(div, ωa

`) of functions with vanishing normal trace on ∂ωa
` if a ∈ V` is an

interior vertex and of functions with vanishing normal trace on ∂ωa
` \{ψa

` > 0} if a ∈ V` is a
boundary vertex. Here, for all a ∈ V`, the hat function ψa

` is the continuous, piecewise affine
function equal to 1 in a and 0 in V`\{a}. We recall the partition of unity∑

a∈V`

ψa
` (x) = 1 ∀x ∈ Ω. (2.24)

We denote by Π`,p the L2-orthogonal projection from L2(Ω) to Pp(T`) and by ΠRTN
`,p−1 the L2-

orthogonal projection from L2(Ω) to RTNp−1(T`); note that both are elementwise. Finally,
we consider the equilibrated flux locally reconstructed from uk` as

σk` :=
∑
a∈V`

σa,k
` , (2.25a)

where, for all vertices a ∈ V`, following [21, 35, 41, 53, 54],

σa,k
` := arg min

w`∈V a
`

∇·w`=Π`,pγ
a,k
`

‖(Υk
`)

− 1
2 (ψa

` Π
RTN
`,p−1ξ

k
` +w`)‖ωa

`
,

with ξk` := Ak−1
` ∇uk` − bk−1

` , γa,k` := ψa
` f −∇ψa

` · ξk`

(2.25b)

and where the weight Υk
` will be chosen according to needs. Specifically, we will set

Υk
` := Id in Section 2.4, (2.26a)

Υk
` := Ak−1

` in Section 2.5. (2.26b)

We note that
(γa,k` , 1)ωa

`
= 0

for all interior vertices a ∈ V`, which is an immediate consequence of (2.9a) with the test
function v` = ψa

` ∈ V p
` . Consequently, problems (2.25b) are well posed.

Combining (2.25) and (2.24), we infer, as in, e.g., [52],

∇·σk` =
∑
a∈V`

∇·σa,k
` =

∑
a∈V`

Π`,p(ψ
a
` f)−

∑
a∈V`

Π`,p(∇ψa
` · ξk`)

= Π`,p
∑
a∈V`

(ψa
` f) = Π`,pf.

(2.27)

In particular, σk` ∈ RTNp(T`) ∩ H(div,Ω) and we have with the Green theorem, since
uk` ∈ V p

` = Pp(T`) ∩H1
0 (Ω),

−(σk` ,∇uk`) = (f, uk`). (2.28)

2.4 A posteriori estimate of the energy difference

This section gives an a posteriori estimate of the energy difference.

2.4. A posteriori estimate of the energy difference 73

2.4.1 Energy difference and the associated estimator

We define the (square root of twice the) energy difference corresponding to the nonlinear
problem (2.5) by

EkN,` :=
(
2(J (uk`)− J (u))

) 1
2
. (2.29a)

Note that EkN,` is well defined from (2.5b) and the fact that uk` ∈ H1
0 (Ω). Actually, EkN,` ≥ 0

and 0 if and only if uk` = u from the uniqueness of u in (2.5b). We then define the estimator
ηkN,` corresponding to the nonlinear problem (2.5) as in, e.g., [11, 107, 129], employing the
dual energy J ∗ of (2.20) and the equilibrated flux σk` of (2.25) with the choice (2.26a),

ηkN,` :=
(
2(J (uk`)− J ∗(σk`))

) 1
2
. (2.29b)

Note that ηkN,` is well defined (the argument of the square root is nonnegative), which can
be seen from (2.55)–(2.56) below.

2.4.2 Locally-weighted bounds for the energy difference and the associated
estimator

Denoting, a.e. in Ω,

ak` := a(·, |∇uk` |) and au := a(·, |∇u|), (2.30)

we define, for all (v,w) ∈ L1(Ω)× [L1(Ω)]d, a.e. in Ω,

akm,`(v,w) := min
(
a(·, |∇v|), ess inf

r∈(|w|,|ak`∇uk` |)
φ′′(·, φ′−1(·, r))

)
(2.85),(2.87)

∈ [am, ac] , (2.31a)

akc,`(v,w) := max
(
a(·, |∇v|), ess sup

r∈(|w|,|ak`∇uk` |)
φ′′(·, φ′−1(·, r))

)
(2.85),(2.87)

∈ [am, ac] , (2.31b)

and, for the sake of brevity, we denote for both α ∈ {m, c}, a.e. in Ω,

aσ,kα,` := akα,`(u
k
` ,σ

k
`), a∇u,kα,` := akα,`(u

k
` , au∇u), and au,kα,` := akα,`(u, au∇u). (2.31c)

Observe that aσ,km,` and aσ,kc,` are computable, in contrast to the other terms in (2.31c).

Lemma 2.4.1 (Locally-weighted bounds for the energy difference and estimator). Recall-
ing (2.29)–(2.31), we have

‖(au,km,`)
1
2 (∇uk` −∇u)‖2 ≤ (EkN,`)2 ≤ ‖(au,kc,`)

1
2 (∇uk` −∇u)‖2, (2.32a)

‖(aσ,kc,`)
− 1

2 (ak`∇uk` + σk`)‖2 ≤ (ηkN,`)
2 ≤ ‖(aσ,km,`)

− 1
2 (ak`∇uk` + σk`)‖2, (2.32b)

‖(a∇u,kc,`)−
1
2 (ak`∇uk` − au∇u)‖2 ≤ (EkN,`)2 ≤ 2‖(a∇u,km,`)−

1
2 (ak`∇uk` − au∇u)‖2. (2.32c)

The proof of this important technical result is postponed to Section 2.7.

74 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

2.4.3 Data oscillation, quadrature-type, and iterative linearization esti-
mators

Following, e.g, [52], let

(ηkosc,`)
2 :=

∑
K∈T`

[
hK

πa
1
2m

‖(I −Π`,p)f‖K

]2
, (2.33a)

(ηkosc,q,`)
2 :=

∑
a∈V`

(ηa,kosc,q,`)
2 and (ηkiter,`)

2 :=
∑
a∈V`

(ηa,kiter,`)
2, (2.33b)

where, for all vertices a ∈ V`, recalling the notation from (2.25b),

(ηa,kosc,q,`)
2 :=

1

ess infωa
`
aσ,km,`

(∑
K∈T a

`

[
hK
π

‖(I −Π`,p)γ
a,k
` ‖K

]2
+ ‖ψa

` (I −ΠRTN
`,p−1)ξ

k
` ‖2ωa

`

)
,

(2.33c)

(ηa,kiter,`)
2 :=

1

ess infωa
`
aσ,km,`

‖ak`∇uk` − ξk` ‖2ωa
`
. (2.33d)

Remark 2.4.2 (Data oscillation and quadrature-type estimators). The estimator ηkosc,` mon-
itors the so-called oscillation in the source datum f : it vanishes if f is piecewise polynomial
and is of higher order for piecewise smooth f . The quadrature-type estimators ηkosc,q,` arise
from piecewise polynomial approximation of the (possibly) apolynomial data γa,k` and ξk` de-
fined in (2.25b), which involve themselves the nonlinear function a through Ak−1

` and bk−1
` ,

cf. Section 2.2.3.2. These terms can completely disappear (for the lowest polynomial degree
p = 1 where a(·, |∇uk−1

` |) and a′(·, |∇uk−1
` |) are piecewise constant if the spatial dependence

in a is piecewise constant) or be of higher order if the nonlinear function a has the necessary
smoothness. One could actually force them to be negligible if a separate, sufficiently increased
polynomial degree was chosen for the equilibration in (2.25b).

Remark 2.4.3 (Iterative linearization estimator). Congruently with (2.14), if uk` → u` in
H1

0 (Ω), then we can have ηkiter,` as small as we need since, also using the standard coloring
bound (2.68),

ηkiter,`
(2.31a),(2.25b),(2.12)

≤ a
− 1

2m (d+ 1)‖ak`∇uk` − ak−1
` ∇uk−1

` −Ak−1
` ∇(uk` − uk−1

`)‖
(2.4a),(2.11)

≤ a
− 1

2m (d+ 1)(ac +Ac)‖∇(uk` − uk−1
`)‖.

(2.34)

2.4.4 A posteriori estimate of the energy difference

We now present our first main result, giving an a posteriori estimate for the energy difference
EkN,` and the estimator ηkN,` defined in (2.29).

Theorem 2.4.4 (A posteriori estimate of the energy difference). Suppose Assumption 2.2.1
and let u ∈ H1

0 (Ω) be the weak solution of (2.5). Let uk` be its finite element approximation
given by (2.9) on mesh T`, ` ≥ 0, and linearization step k ≥ 1, for any iterative lineariza-
tion satisfying Assumption 2.2.2. Let σk` be the equilibrated flux defined by (2.25) with the
choice (2.26a). Then

EkN,` ≤ ηkN,` + 2ηkosc,`, (2.35a)

2.5. A posteriori estimate of the augmented energy difference 75

ηkN,` . Ck` EkN,` + ηkosc,q,` + ηkiter,`, (2.35b)

where the hidden constant only depends on the space dimension d, the mesh shape-regularity
κT , and possibly, when d ≥ 4, the polynomial degree p, with

Ck` := max
a∈V`

(
ess supωa

`
a∇u,kc,`

ess infωa
`
aσ,km,`

) 1
2 (2.31)

≤
(
ac
am

) 1
2

. (2.36)

Proof. See Section 2.8.

Remark 2.4.5 (Structure of Ck` and robustness). The constant Ck` from (2.36) is composed
of purely local contributions. Since the ratios of a∇u,kc,` to aσ,km,` on each patch ωa

` are smaller
than the global ratio ac/am and since the patches ωa

` shrink with mesh refinement, Ck` may
converge to 1. For example, in the case where the problem is smooth in that a ∈ C1(Ω ×
[0,∞)), u ∈ C1(Ω), and ∇uk` → ∇u in [L∞(Ω)]d, then, for ` and k large enough,

Ck`

(2.31)
. C̃k` := ess sup

x∈Ω

(
max

(
φ′′

a
,
a

φ′′

)
(x, |∇uk` (x)|)

) 1
2

, (2.37)

which is small if the function φ′′/a is close to 1 over Ω×[0,∞). Unfortunately, Ck` from (2.36)
cannot be computed and its value may possibly explode with the ratio (ac/am)1/2.

In the next section, by augmenting the energy difference, we will achieve a result similar
to (2.35) but with a computable constant Ck` which moreover takes value 1 for the Zaran-
tonello linearization of Example 2.2.5.

2.5 A posteriori estimate of the augmented energy difference

This section gives an a posteriori estimate of the augmented energy difference defined below.

2.5.1 Energy difference and estimator of the linearized problem

In order to derive robust estimates, we now also crucially consider the linearized prob-
lem (2.9). We introduce the abstract linearization on the continuous level: find uk〈`〉 ∈ H1

0 (Ω)

such that

(Ak−1
` ∇uk〈`〉,∇v) = (f, v) + (bk−1

` ,∇v) ∀v ∈ H1
0 (Ω), (2.38a)

which is a linear problem. Note that (2.38a) is equivalent to

uk〈`〉 := arg min
v∈H1

0 (Ω)
J k−1
` (v), (2.38b)

employing the linearized energy (2.10). Analogously to the (nonlinear) energy difference
EkN,` (2.29a), we define the energy difference EkL,` of the linearized problem (2.38) as

EkL,` :=
(
2
(
J k−1
` (uk`)− J k−1

` (uk〈`〉)
)) 1

2 (2.77a)
= ‖(Ak−1

`)
1
2∇(uk` − uk〈`〉)‖. (2.39a)

Here, there holds trivially EkL,` ≥ 0 and EkL,` = 0 if and only if uk` = uk〈`〉. Finally, we define the
estimator ηkL,` of the linearized problem (2.38), employing the linearized dual energy (2.23)
and the equilibrated flux σk` of (2.25) with the choice (2.26b), by

ηkL,` :=
(
2
(
J k−1
` (uk`)− J ∗,k−1

` (σk`)
)) 1

2

(2.78a)
= ‖(Ak−1

`)−
1
2 (Ak−1

` ∇uk` − bk−1
` + σk`)‖.

(2.39b)

76 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

2.5.2 Augmented energy difference and the associated estimator

Recalling the notation in (2.25b), as in (2.33d) but with the weight (2.26b), we define the
iterative linearization estimator η̂kiter,` by

η̂kiter,` := ‖(Ak−1
`)−

1
2 (ak`∇uk` − ξk`)‖. (2.40)

Observe that with the same reasoning as in Remark 2.4.3, if (uk`)k≥1 converges in H1
0 (Ω),

then we can have η̂kiter,` as small as needed. Then, we define a computable weight λk` ≥ 0

from the estimators (2.29b) (using σk` of (2.25) with the choice (2.26b)), (2.39b), and (2.40)
by

λk` :=
ηkN,`

ηkL,` + η̂kiter,`
. (2.41)

Finally, we define the augmented energy difference Ek` and estimator ηk` by

Ek` :=
1

2

(
EkN,` + λk`EkL,`

)
and ηk` :=

1

2

(
ηkN,` + λk` η

k
L,`

)
. (2.42)

Lemma 2.5.1 (Weight λk`). There holds

λk` ≤ a
− 1

2m A
1
2c . (2.43)

Proof. See Section 2.9.

Remark 2.5.2 (Weight λk` and uniform equivalence of ηk` and ηkN,`). The weight λk`
from (2.41) ensures a balance between the two components ηkN,` and λk` η

k
L,` in (2.42). In

particular, λk` ηkL,` = ηkN,` in the limit η̂kiter,` = 0, whereby simply ηk` = ηkN,`. Moreover,
from (2.41)–(2.42), at any linearization iteration k ≥ 1,

1

2
ηkN,` ≤ ηk` ≤ ηkN,`, (2.44)

so that the augmented estimator ηk` of (2.42) is uniformly equivalent to the standard primal–
dual gap estimator ηkN,` of (2.29b). This construction is well defined; in particular, the
inclusion of the estimator η̂kiter,` ensures that λk` is uniformly bounded for every k ≥ 1 as
per (2.43). This is in turn used in the error consistency of Lemma 2.5.3 and in Theorem 2.5.5
below.

Lemma 2.5.3 (Error consistency). Let the error Ek` be given by (2.42). Then there holds
1

2
EkN,` ≤ Ek` ≤ 1

2

(
EkN,` + a

− 1
2m A

1
2c EkL,`

)
. EkN,` + ‖∇(uk` − uk−1

`)‖, (2.45)

where the last inequality holds up to constants depending on am, ac, Am, Ac. In particular,
Ek` → 0 if and only if uk` → u in H1

0 (Ω).

Proof. See Section 2.9.

Remark 2.5.4 (Augmented energy difference). From (2.44), the estimators ηkN,` and ηk`
are uniformly equivalent. In that respect, Theorem 2.5.5 shows that the standard primal–
dual gap estimator ηkN,` gives a guaranteed and potentially robust bound for the augmented
energy difference Ek` in place of the energy difference EkN,` of Theorem 2.4.4. As per (2.45),
the modification of EkN,` to Ek` is a bit more subtle in terms of the equivalence constant. In
practice, though, we expect the situation to be better in that the added linearization component
EkL,` multiplied by the weight λk` makes again Ek` comparable in size to EkN,`.

2.5. A posteriori estimate of the augmented energy difference 77

2.5.3 Data oscillation and quadrature-type estimators

As in Section 2.4.3, let

(η̂kosc,`)
2 :=

∑
K∈T`

[
hK

π infK(Ak−1
m,`)

1
2

‖(I −Π`,p)f‖K

]2
, (2.46a)

(η̂kosc,q,`)
2 :=

∑
a∈V`

(η̂a,kosc,q,`)
2 and (η̂kq,`)

2 :=
∑
a∈V`

(η̂a,kq,`)
2, (2.46b)

where, for all vertices a ∈ V`, recalling the notation from (2.25b),

(η̂a,kosc,q,`)
2 :=

1

infωa
`
Ak−1

m,`

∑
K∈T a

`

[
hK
π

‖(I −Π`,p)γ
a,k
` ‖K

]2
, (2.46c)

η̂a,kq,` := ‖(Ak−1
`)−

1
2 (ψa

` (I −ΠRTN
`,p−1)ξ

k
`)‖ωa

`
. (2.46d)

2.5.4 A posteriori estimate of the augmented energy difference

We now present our main result giving an a posteriori estimate based on the augmented
energy difference and estimator defined in (2.42).

Theorem 2.5.5 (A posteriori estimate of the augmented energy difference). Suppose As-
sumption 2.2.1 and let u be the weak solution of (2.5). Let uk` be its finite element approx-
imation given by (2.9) on mesh T`, ` ≥ 0, and linearization step k ≥ 1, for any iterative
linearization satisfying Assumption 2.2.2. Let σk` be the equilibrated flux defined by (2.25)
with the choice (2.26b). Let uk〈`〉 be given by (2.38), and the augmented error Ek` and estimator
ηk` by (2.42). Then

Ek` ≤ ηk` + ηkosc,` +
λk`
2
η̂kosc,`, (2.47a)

ηk` . Ĉk` Ek` + λk` (Ĉ
k
` η̂

k
q,` + η̂kosc,q,` + η̂kiter,`), (2.47b)

where the hidden constant only depends on the space dimension d, the mesh shape-regularity
κT , and possibly, when d ≥ 4, the polynomial degree p, with

Ĉk` := max
a∈V`

(
supωa

`
Ak−1

c,`

infωa
`
Ak−1

m,`

) 1
2

= 1 for the Zarantonello linearization,

≤
(
Ac
Am

) 1
2

in general.
(2.48)

Proof. See Section 2.10.

Remark 2.5.6 (Robustness for the Zarantonello linearization). In the Zarantonello lin-
earization of Example 2.2.5, since Ĉk` = 1, we obtain via (2.47) an estimation of the aug-
mented energy difference Ek` by the estimator ηk` (under small oscillation, quadrature-type,
and iterative linearization errors) whose quality is independent of the nonlinear function a.
As we will see in the proof of Theorem 2.5.5, this relies on the fact that here Ak−1

` = γId,
the linearized problem (2.38) features a constant diffusion tensor, and consequently the asso-
ciated error (2.39a) and estimator (2.39b) simplify respectively to EkL,` = γ

1
2 ‖∇(uk` − uk〈`〉)‖

and ηkL,` = ‖γ−
1
2 (γ∇uk` − bk−1

` + σk`)‖.

78 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Remark 2.5.7 (Robustness in the general case). The constant Ĉk` can be easily calculated in
practice, without knowing the continuous solution u of (2.5). It is in particular defined from
merely patchwise variations of the linearization matrix Ak−1

` (recall (2.11)). For the Picard
and damped Newton iteration cases of Examples 2.2.4 and 2.2.6, in particular, the local ratio
of the functions Ak−1

c,` and Ak−1
m,` is a lower bound for that of the global constants Ac and Am

given in (2.11c), typically bringing Ĉk` close to 1 as in the Zarantonello case. This is indeed
observed in the numerical experiments of Section 2.6. Importantly, Ĉk` allows us to quantify
the quality of the estimates in any situation: whenever it is small, we can affirm robustness
a posteriori.

Remark 2.5.8 (Theorem 2.5.5 at the convergence of iterative linearization / impact of
the chosen iterative linearization). Suppose that uk` → u` in H1

0 (Ω), i.e., the solution uk` of
the iterative linearization (2.9) converges to the solution u` of the discrete nonlinear prob-
lem (2.8a). In the limit, η̂kiter,` from (2.40) vanishes and all the different iterative lineariza-
tions, cf. the examples of Section 2.2.3.2, yield the unique finite element approximation u`.
Nevertheless, in Theorem 2.5.5, the augmented energy difference Ek` from (2.42) is still (pos-
sibly) influenced by the chosen iterative linearization, in particular by the (limit) values of
Ak−1
` and bk−1

` as per (2.39), cf. also Remarks 2.5.2 and 2.5.3.

2.6 Numerical results

In this section, we present numerical experiments that serve to illustrate Theorems 2.4.4
and 2.5.5. Thus, we will primarily be interested in the effectivity indices

IkN,` :=
ηkN,`

EkN,`
, Ik` :=

ηk`
Ek`
, IkL,` :=

ηkL,`

EkL,`
, (2.49)

where the last one brings insight into the augmentation of Section 2.5.1. In particular, our
numerical experiments study the robustness of our estimates with respect to the ratio ac/am
from (2.4) where we consider ac/am = 10i, i ∈ {0, . . . , 7}. We present results for the three
linearization methods of Examples 2.2.4, 2.2.5, and 2.2.6 after the convergence criterion

‖∇(uk−1
` − uk`)‖ < 10−6 (2.50)

has been reached.
In addition to V p

` as defined in Section 2.2.2, we also consider a richer discrete space
V p̃
˜̀ obtained by refining the mesh T` and using higher-order polynomials, ` < ˜̀ and p < p̃.

This space serves as an approximation to H1
0 (Ω), so that we can approximately compute uk〈`〉

defined in (2.38b) at each iteration k of the linearization method. This only serves here for
the evaluation of the error EkL,`; it is not needed to evaluate our estimators ηkN,`, ηkL,`, and ηk` .

For all examples, we use the method of manufactured solutions, i.e. we choose a solu-
tion u and construct f through (2.1). The boundary conditions are then enforced by the
true solution. All experiments were conducted using the Gridap.jl finite element software
package [7, 118].

2.6.1 Smooth solution

We consider a unit square domain Ω = (0, 1)2. We set for all (x, y) ∈ Ω,

u(x, y) := 10x(x− 1)y(y − 1). (2.51)

2.6. Numerical results 79

For the space V p
` , we use a polynomial degree p = 1 and a uniform triangular mesh consisting

of 8192 elements for a total of 3969 DOFs. We consider three different nonlinear functions a :

[0,∞) → (0,∞) (independent of the spatial coordinate x ∈ Ω) satisfying Assumption 2.2.1.
We first consider the following example, in which the function a is monotone (decreasing).

Example 2.6.1 (Mean curvature nonlinearity). The mean curvature nonlinearity (cf. [40])
is defined such that for all r ∈ [0,∞),

a(r) := am +
ac − am√
1 + r2

, (2.52)

where am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.2.1 holds for the mean
curvature nonlinearity. Indeed, we use Proposition 2.A.2 observing that, for all r ∈ [0,∞),

φ′′(r) = am +
ac − am

(1 + r2)
3
2

∈ [am, ac].

The results for the effectivity indices (2.49) are presented in Figure 2.2, taking am = 1.
We see that they vary only very mildly with respect to the ratio am/ac and that all values
are below 1.2. This illustrates the robustness for the Zarantonello linearization that has been
proven in Theorem 2.5.5. For the Newton and Picard linearizations, we also compute and
display the constant Ĉk` of (2.48). Since we see that Ĉk` is uniformly close to 1 (bounded by
3), we are sure that the effectivity index Ik` will be small and uniformly bounded even prior
to computing it. This is the meaning of “affirm robustness a posteriori” of Remark 2.5.7.

We now consider the following nonmonotone nonlinear function a similar to the example
given in [70, Section 5.3.2].

Example 2.6.2 (Exponential nonlinearity). The exponential nonlinearity is defined such
that for all r ∈ [0,∞),

a(r) := am + (ac − am)
1− e−

3
2
r2

1 + 2e−
3
2

, (2.53)

where again am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.2.1 holds for the
exponential nonlinearity. Indeed, we again use Proposition 2.A.2 observing that, for all
r ∈ [0,∞),

φ′′(r) = am + (ac − am)
1 + (3r2 − 1)e−

3
2
r2

1 + 2e−
3
2

∈ [am, ac].

The results, again with am = 1, are presented in Figure 2.3. The Picard linearization is
not included because the solver does not converge for large values of the ratio ac/am. We
observe that the results for the Zarantonello iteration are similar to those of Figure 2.2.
However, the effectivity indices of the Newton iteration seem to start to deteriorate for large
values of the ratio ac/am. We can see that the reason is that the constant Ĉk` is becoming
very large. This constant is thus here a good indicator that the robustness may not be
obtained; in this case, we cannot “affirm robustness a posteriori” and it indeed seems not to
hold. For this example, we also present, in Figure 2.4, the component errors EkN,` and λk`EkL,`,
as well as the factor λk` , see (2.41)–(2.42). We observe that EkN,` and λk`EkL,` stay very close,
independently of the ratio ac/am, which was our design. Remark, though, that λk` ' 1 for
Newton, whereas λk` ' (ac/am)

1
2 for Zarantonello.

80 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

1

1.02

1.04

1.06

Ĉ
k `

Ĉk`

100 101 102 103 104 105 106 107
1.040

1.060

1.080

1.100

1.120

ac/am
Eff

ec
tiv

ity
in

di
ce

s

Picard

IkL,`

Ik`

IkN,`

100 101 102 103 104 105 106 107
1.040

1.060

1.080

1.100

1.120

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Zarantonello

IkL,`

Ik`

IkN,`

1

1.5

2

2.5

Ĉ
k `

Ĉk`

100 101 102 103 104 105 106 107

1.045

1.045

1.046

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Newton

IkL,`

Ik`

IkN,`

Figure 2.2: [Mean curvature nonlinearity (2.52), smooth solution (2.51), unit square domain,
3969 DOFs] Effectivity indices from (2.49) and the computable constant Ĉk` from (2.48).

100 101 102 103 104 105 106 107
1.042

1.043

1.044

1.045

1.046

1.047

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Zarantonello

IkL,`

Ik`

IkN,`

0

200

400

600

800

1,000

Ĉ
k `

Ĉk`

100 101 102 103 104 105 106 107
1.044

1.046

1.048

1.050

1.052

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Newton

IkL,`

Ik`

IkN,`

Figure 2.3: [Exponential nonlinearity (2.53), smooth solution (2.51), unit square domain,
3969 DOFs] Effectivity indices from (2.49) and the computable constant Ĉk` from (2.48).

100 101 102 103 104 105 106 107

10−1

100

101

102

ac/am

C
om

po
ne

nt
er

ro
rs

λk`EkL,` (Zarantonello)

EkN,` (Zarantonello)

λk`EkL,` (Newton)

EkN,` (Newton)

100

101

102

103

λ
k `

λk` (Newton)
λk` (Zarantonello)

Figure 2.4: [Exponential nonlinearity (2.53), smooth solution (2.51), unit square domain,
3969 DOFs] Components EkN,` and λk`EkL,` from (2.42) together with the weight λk` from (2.41).

2.6. Numerical results 81

(a) 2945 DOFs (b) 2417 DOFs

Figure 2.5: Uniformly (left) and adaptively (right) refined meshes for the L-shaped domain
with the singular solution (2.54). The adaptive mesh corresponds to the 28th iteration of
Algorithm 3.

1

1.2

1.4

1.6

Ĉ
k `

Ĉk`

100 101 102 103 104 105 106 107

1.050

1.100

1.150

1.200

1.250

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Newton

IkL,`

Ik`

IkN,`

1

1.2

1.4

1.6

Ĉ
k `

Ĉk`

100 101 102 103 104 105 106 107
1.058

1.060

1.062

1.064

1.066

ac/am

Eff
ec

tiv
ity

in
di

ce
s

Newton

IkL,`

Ik`

IkN,`

Figure 2.6: [Exponential nonlinearity (2.53), singular solution (2.54), L-shaped domain]
Effectivity indices from (2.49) and the computable constant Ĉk` from (2.48), for the uniform
mesh (left) and the adaptive mesh (right) shown in Figure 2.5.

2.6.2 Singular solution

We consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1) ×(−1, 0]) and the singular solution
u in polar coordinates (ρ, θ) ∈ [0,∞)× [0, 2π)

u(ρ, θ) = ρα sin(αθ) (2.54)

with α := 2
3 , so that u ∈ H1+ 2

3
−ε(Ω) for all ε > 0. We consider the exponential nonlinearity

of Example 2.6.2 again with am = 1; this choice of solution ensures that the right-hand
side f belongs to L2(Ω) despite the singularity in the norm of the gradient for the L-shaped
solution (2.54).

We consider two different meshes to analyze the results, see Figure 2.5. One mesh is
obtained by taking an initial uniform triangulation of Ω, while the other one is adaptive
following Algorithm 3.

The results are presented in Figure 2.6. The Newton iteration showcases, for both meshes,
effectivity indices close to 1, which stabilize for large enough values of the ratio am/ac.
Moreover, the effectivity indices corresponding to the adaptive meshes are closer to 1 than
those corresponding to the uniform meshes. Since Ĉk` takes small values below 2, we can
again claim robustness a posteriori, see Remark 2.5.7.

82 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

2.6.3 Convergence on a sequence of adaptively refined meshes

Due to the singularity in the solution of the previous section, it is of interest to consider
a local adaptive mesh refinement strategy. We thus need to compute the contribution of
the estimator ηkN,` to each mesh element which is nonnegative. In order to do that, cf.
the discussion in, e.g., [13, Proposition 4.9], we use (2.6), (2.20), and (2.28) to rewrite the
estimator ηkN,` of (2.29b) as

ηkN,` =

(
2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)) 1
2

=

∑
K∈T`

(ηkN,K)2

 1
2

, (2.55a)

(ηkN,K)2 := 2

∫
K

(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)
, K ∈ T`. (2.55b)

Here, recalling the generalized Young inequality, cf. [72],

φ(·, |x|) + φ∗(·, |y|) + x · y ≥ 0 ∀x,y ∈ Rd, (2.56)

it follows that for all K ∈ T`, indeed ηkN,K ≥ 0. We then use the standard newest vertex
bisection algorithm, see [28] and the references therein, as follows.

Algorithm 3: Adaptive refinement
1 Let εSTOP and θ ∈ (0, 1) be parameters, and let T0 be a conforming initial

triangulation of Ω. Let u00 ∈ V 1
0 be an initial linearization guess. For ` ≥ 0:

1. Solve: Starting from u0` , solve the linearized problems (2.9) until the convergence
criterion (2.50) is satisfied.

2. Estimate: Compute the elementwise estimators (ηkN,K)K∈T` of (2.55b).
If ηkN,` < εSTOP, then stop.

3. Mark: Choose a set M` ⊂ T` with minimal cardinality such that∑
K∈M`

(ηkN,K)2 ≥ θ2
∑
K∈T`

(ηkN,K)2. (2.57)

4. Refine: Perform the newest vertex bisection on the set M`. Set ` := `+ 1,
u0` := uk`−1, and go to step 1.

The results of the refinement study are displayed in Figure 2.7, for the exponential
nonlinearity (2.53) and the singular solution (2.54). We consider two values of the parameter
ac/am, namely 103 and 106. We note that for both values of the ratio, the asymptotic rates
for the estimator and error agree with the theoretical optimal rate of (DOFs)−1/2 for the
adaptive algorithm; we observe no distinguishable difference in this graphic representation
between ac/am = 103 and 106.

We also made an analogous study on the augmented error Ek` and the estimator ηk` , with
the same strategy of refinement, using the local version ηkK := ηkN,K +λk` η

k
L,K , for all K ∈ T`,

of the estimator ηk` . The results are displayed in Figure 2.8. We observe a similar behavior
of the asymptotic rates as in Figure 2.7.

2.7. Proof of Lemma 2.4.1 83

101 102 103 104

100

101

DOFs

Er
ro

r
an

d
es

tim
at

or

101 102 103 104

101

102

DOFs

Er
ro

r
an

d
es

tim
at

orηkN,` (adaptive)
EkN,` (adaptive)
O(DOFs− 1

2)
ηkN,` (uniform)
EkN,` (uniform)
O(DOFs− 1

3)

Figure 2.7: [Exponential nonlinearity (2.53), singular solution (2.54), L-shaped domain,
uniform vs adaptive mesh refinement] Convergence rates of EkN,` and ηkN,` for uniform and
adaptive mesh refinement for ac/am equal to 103 (left) and 106 (right).

101 102 103 104

100

101

DOFs

Er
ro

r
an

d
es

tim
at

or

101 102 103 104

101

102

DOFs

Er
ro

r
an

d
es

tim
at

orηk` (adaptive)
Ek` (adaptive)
O(DOFs− 1

2)
ηk` (uniform)
Ek` (uniform)
O(DOFs− 1

3)

Figure 2.8: [Exponential nonlinearity (2.53), singular solution (2.54), L-shaped domain, uni-
form vs adaptive mesh refinement] Convergence rates of Ek` and ηk` for uniform and adaptive
mesh refinement for ac/am equal to 103 (left) and 106 (right).

In conclusion, the adaptive mesh refinement is more efficient than the uniform mesh
refinement since it requires a smaller number of DOFs for the same precision. The behavior
seems to be independent of the strength of the nonlinearity ac/am.

2.7 Proof of Lemma 2.4.1

Proof of Lemma 2.4.1. Observing that by integration by parts (IBP), ∂
∂r ((|σ

k
` |−r)φ∗

′(·, r)) =
(|σk` | − r)φ∗′′(·, r)− φ∗′(·, r), we obtain, a.e. in Ω,

φ∗(·, |σk` |)− φ∗(·, ak` |∇uk` |) =
∫ |σk` |

ak` |∇uk` |
φ∗′(·, r)dr

(IBP)
=

∫ |σk` |

ak` |∇uk` |
(|σk` | − r)φ∗′′(·, r)dr −

[
(|σk` | − r)φ∗′(·, r)

]|σk` |
ak` |∇uk` |

(2.22)
=

∫ |σk` |

ak` |∇uk` |

|σk` | − r

φ′′(·, φ′−1(·, r))
dr + (|σk` | − ak` |∇uk` |)|∇uk` |,

(2.58)

where we used the fact that φ′−1(·, ak` |∇uk` |) = φ′−1(·, φ′(·, |∇uk` |)) = |∇uk` | thanks to (2.84).
Reusing this relation together with the definitions (2.6) of J and (2.20) of J ∗, we obtain

84 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

the right-hand side of (2.32b) by writing

(ηkN,`)
2 (2.29b)

= 2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |)

)
− (f, uk`)

(2.28)
= 2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)
(2.21b)
= 2

∫
Ω

(
φ∗(·, |σk` |)− φ∗(·, ak` |∇uk` |) + ak` |∇uk` |2 + σk` ·∇uk`

)
(2.58)
= 2

∫
Ω

[∫ |σk` |

ak` |∇uk` |

|σk` | − r

φ′′(·, φ′−1(·, r))
dr + 1

ak`
(|σk` ||ak`∇uk` |+ σk` · (ak`∇uk`))

]
(2.31c)
≤

∫
Ω

2

aσ,km,`

([
−1

2
(|σk` | − r)2

]|σk` |
ak` |∇uk` |

+ |σk` ||ak`∇uk` |+ σk` · (ak`∇uk`)

)

=

∫
Ω

1

aσ,km,`

[
(|σk` | − ak` |∇uk` |)2 + 2(|σk` ||ak`∇uk` |+ σk` · (ak`∇uk`))

]
(2.86a)
=

∫
Ω

1

aσ,km,`
|ak`∇uk` + σk` |2,

(2.59)

where, in using (2.21b), we have set s = ak` |∇uk` |, and where we used (2.31c) noticing that
|σk` ||ak`∇uk` | + σk` · (ak`∇uk`) ≥ 0 thanks to the Cauchy–Schwarz inequality, together with
the fact that |σk` | − r is of the same sign as |σk` | − ak` |∇uk` | for all r ∈ (ak` |∇uk` |, |σk` |). The
left-hand side of (2.32b) is obtained with the same reasoning.

Now, observing that ∂
∂r ((|∇uk` | − r)φ′(·, r)) = (|∇uk` | − r)φ′′(·, r)− φ′(·, r) by integration

by parts (IBP), we get

(EkN,`)2
(2.29a),(2.6)

= 2

∫
Ω
(φ(·, |∇uk` |)− φ(·, |∇u|))− 2(f, uk` − u)

´(2.5a)
= 2

∫
Ω

∫ |∇uk` |

|∇u|
φ′(·, r)dr − 2(au∇u,∇(uk` − u))

(IBP)
= 2

∫
Ω

(∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r)dr −

[
(|∇uk` | − r)φ′(·, r)

]|∇uk` |

|∇u|

)
− 2(au∇u,∇(uk` − u))

(2.84)
= 2

∫
Ω

(∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r)dr + au(|∇uk` ||∇u| −∇uk` ·∇u)

)
.

(2.60)

From there, with the same reasoning as for (2.32b), we obtain the right-hand side of (2.32a),
by writing

(EkN,`)2
(2.60),(2.31c)

≤
∫
Ω
au,kc,`

(
(|∇uk` | − |∇u|)2 + 2(|∇uk` ||∇u| −∇uk` ·∇u)

)
(2.86a)
=

∫
Ω
au,kc,` |∇uk` −∇u|2.

(2.61)

The left-hand side of (2.32a) is obtained with the same reasoning. Moreover, since φ′ is
nondecreasing and |∇uk` | − r is of the same sign as |∇uk` | − |∇u| for all r ∈ (|∇u|, |∇uk` |),

2.8. Proof of Theorem 2.4.4 85

using the mean value inequality, we have a.e. in Ω,∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r)dr ≥

∫ |∇uk` |

|∇u|

φ′(·, |∇uk` |)− φ′(·, r)
ess sup

s∈(r,|∇uk` |)
φ′′(·, s)

φ′′(·, r)dr

(2.31c)
≥ 1

a∇u,kc,`

∫ |∇uk` |

|∇u|
(φ′(·, |∇uk` |)− φ′(·, r))φ′′(·, r)dr

=
1

a∇u,kc,`

[
φ′(·, |∇uk` |)φ′(·, r)−

1

2
φ′(·, r)2

]|∇uk` |

|∇u|

(2.84)
=

1

a∇u,kc,`

(
1

2

(
|ak`∇uk` |2 + |au∇u|2

)
− ak`au|∇uk` ||∇u|

)
,

(2.62)
where we used (2.31c) knowing that |au∇u| = φ′(·, |∇u|) and |ak`∇uk` | = φ′(·, |∇uk` |). Thus,
observing that |∇uk` ||∇u| − ∇uk` · ∇u ≥ 0 thanks to the Cauchy–Schwarz inequality, we
obtain the left-hand side of (2.32c) by writing

(EkN,`)2
(2.60),(2.62),(2.31c)

≥
∫
Ω

2

a∇u,kc,`

(
1

2

(
|ak`∇uk` |2 + |au∇u|2

)
− (ak`∇uk`) · (au∇u)

)
=

∫
Ω

1

a∇u,kc,`
|ak`∇uk` − au∇u|2.

(2.63)

Finally, since |∇uk` | − r is of the same sign as |∇uk` | − |∇u| for all r ∈ (|∇u|, |∇uk` |), we
have ∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r)dr ≤ (|∇uk` | − |∇u|)

∫ |∇uk` |

|∇u|
φ′′(·, r)dr

(2.31c)
≤ 1

a∇u,km,`

(∫ |∇uk` |

|∇u|
φ′′(·, r)dr

)2
(2.84)
=

1

a∇u,km,`

(
|ak`∇uk` | − |au∇u|

)2
.

(2.64)

Hence, observing again that |∇uk` ||∇u| − ∇uk` · ∇u ≥ 0 thanks to the Cauchy–Schwarz
inequality, we obtain the right-hand side of (2.32c) by writing

(EkN,`)2
(2.60),(2.64),(2.31c)

≤
∫
Ω

2

a∇u,km,`

((
|ak`∇uk` | − |au∇u|

)2
+ 2(|ak`∇uk` ||au∇u|

− (ak`∇uk`) · (au∇u))

)
(2.86a)
=

∫
Ω

2

a∇u,km,`
|ak`∇uk` − au∇u|2.

(2.65)

2.8 Proof of Theorem 2.4.4

For all vertices a ∈ V`, we introduce the space H1
∗ (ω

a
`) such that

H1
∗ (ω

a
`) :=

 {ϕ ∈ H1(ωa
`) : (ϕ, 1)ωa

`
= 0} if a ∈ V int

` ,

{ϕ ∈ H1(ωa
`) : ϕ|∂ωa

`
∩{ψa

`
>0}

= 0} if a /∈ V int
` ,

(2.66)

where V int
` is the set of the vertices of T` lying inside Ω. We will need:

86 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Lemma 2.8.1 (Patchwise flux equilibration stability). Let a ∈ V` and let τa
` ∈ RTNp(T a

`)

and ga` ∈ Pp(T a
`) be such that (ga` , 1)ωa

`
= 0 if a ∈ V int

` . Then,

min
va
` ∈V

a
`

∇·va
` =g

a
`

‖va
` + τa

` ‖ωa
`
. sup

ϕ∈H1
∗(ω

a
`)

‖∇ϕ‖ωa
`
=1

[
(ga` , ϕ)ωa

`
− (τa

` ,∇ϕ)ωa
`

]
,

(2.67)

where the hidden constant only depends on the space dimension d, the mesh shape-regularity
κT , and possibly, when d ≥ 4, the polynomial degree p.

Proof. See [54, Corollary 3.3] or [52, Lemma 3.2].

We will use next the fact that, for all v ∈ L2(Ω) and W ∈ [L2(Ω)]d×d,∑
a∈V`

‖v‖2ωa
`
=
∑
K∈T`

∑
a∈VK

‖v‖2K = (d+ 1)
∑
K∈T`

‖v‖2K = (d+ 1)‖v‖2, (2.68)

since every simplex K ∈ T` has (d+ 1) vertices, collected in the set VK . Also,

‖v +Wσk` ‖2 =
∑
K∈T`

‖v +Wσk` ‖2K
(2.24),(2.25a)

=
∑
K∈T`

∥∥∥ ∑
a∈VK

(ψa
` v +Wσa,k

`)
∥∥∥2
K

≤ (d+ 1)
∑
K∈T`

∑
a∈VK

‖ψa
` v +Wσa,k

` ‖2K = (d+ 1)
∑
a∈V`

‖ψa
` v +Wσa,k

` ‖2ωa
`
.

(2.69)
In the following, for any x, y ∈ [0,∞), we use the notation x . y when x ≤ Cy with

C ≥ 0 only depending on the space dimension d, the mesh shape-regularity κT , and possibly,
when d ≥ 4, the polynomial degree p.

Proof of Theorem 2.4.4. As in [10, 107, 129] but including data oscillations, we have

(EkN,`)2
(2.29)
= (ηkN,`)

2 − 2

∫
Ω
(φ∗(|σk` |) + φ(|∇u|)− fu)

(2.21a)
≤ (ηkN,`)

2 − 2

∫
Ω
(|σk` ||∇u| − fu) ≤ (ηkN,`)

2 + 2((f, u) + (σk` ,∇u))

(2.28)
= (ηkN,`)

2 + 2(f −∇·σk` , u− uk`)

(2.27)
≤ (ηkN,`)

2 + 2

∑
K∈T`

[
hK
π

‖f −Π`,pf‖K
]2 1

2

‖∇(u− uk`)‖

(2.76),(2.33a)
≤ (ηkN,`)

2 + 2ηkosc,`EkN,`.

(2.70)

By the quadratic formula, this gives

EkN,` ≤
1

2

(
2ηkosc,` + (4(ηkosc,`)

2 + 4(ηkN,`)
2)

1
2

)
≤ ηkN,` + 2ηkosc,`, (2.71)

hence (2.35a).
It remains to prove (2.35b). Let us temporarily denote ς := 1/(ess infωa

`
aσ,km,`)

1
2

the weight appearing in (2.33c)–(2.33d). We apply the triangle inequality, the defini-
tions (2.33c)–(2.33d), the fact that 0 ≤ ψa

` ≤ 1, the definition (2.25b) with the choice (2.26a),
and Lemma 2.8.1 with τa

` = ψa
` Π

RTN
`,p−1ξ

k
` ∈ RTNp(T a

`) and ga` = Π`,pγ
a,k
` ∈ Pp(T a

`)

2.9. Proof of Lemmas 2.5.1 and 2.5.3 87

with (ga` , 1)ωa
`
= 0 if a ∈ V int

` . Also using the fact that ψa
` ϕ ∈ H1

0 (ω
a
`) and ∇(ψa

` ϕ) =

ψa
` ∇ϕ+ ϕ∇ψa

` for all ϕ ∈ H1
∗ (ω

a
`), we get

ς‖ψa
` a

k
`∇uk` + σa,k

` ‖ωa
`

(2.33)
≤ ς‖ψa

` Π
RTN
`,p−1ξ

k
` + σa,k

` ‖ωa
`
+ ηa,kosc,q,` + ηa,kiter,`

(2.25b),(2.67)
. ς sup

ϕ∈H1
∗(ω

a
`)

‖∇ϕ‖ωa
`
=1

[
(Π`,pγ

a,k
` , ϕ)ωa

`
− (ψa

` Π
RTN
`,p−1ξ

k
` ,∇ϕ)ωa

`

]
+ ηa,kosc,q,` + ηa,kiter,`

(2.25b),(2.33c)
. ς sup

ϕ∈H1
∗(ω

a
`)

‖∇ϕ‖ωa
`
=1

[
(f, ψa

` ϕ)ωa
`
− (ξk` ,∇(ψa

` ϕ))ωa
`

]
+ ηa,kosc,q,` + ηa,kiter,`

(2.33d)
. ς sup

ϕ∈H1
∗(ω

a
`)

‖∇ϕ‖ωa
`
=1

[
(f, ψa

` ϕ)ωa
`
− (ak`∇uk` ,∇(ψa

` ϕ))ωa
`

]
+ ηa,kosc,q,` + ηa,kiter,`

(2.5a)
= ς sup

ϕ∈H1
∗(ω

a
`)

‖∇ϕ‖ωa
`
=1

(au∇u− ak`∇uk` ,∇(ψa
` ϕ))ωa

`
+ ηa,kosc,q,` + ηa,kiter,`

. ς‖ak`∇uk` − au∇u‖ωa
`
+ ηa,kosc,q,` + ηa,kiter,`,

(2.72)

where we have used ‖∇(ψa
` ϕ)‖ωa

`
. ‖∇ϕ‖ωa

`
as in [21, 52]. In conclusion, we obtain

ηkN,`

(2.32b),(2.69)
.

∑
a∈V`

1

ess infωa
`
aσ,km,`

‖ψa
` a

k
`∇uk` + σa,k

` ‖2ωa
`

 1
2

(2.72),(2.33)
.

∑
a∈V`

1

ess infωa
`
aσ,km,`

‖ak`∇uk` − au∇u‖2ωa
`

 1
2

+ ηkosc,q,` + ηkiter,`

(2.36)
≤ Ck`

∑
a∈V`

1

ess supωa
`
a∇u,kc,`

‖ak`∇uk` − au∇u‖2ωa
`

 1
2

+ ηkosc,q,` + ηkiter,`

(2.68),(2.32c)
. Ck` EkN,` + ηkosc,q,` + ηkiter,`,

(2.73)

where we have used the triangle inequality on `2(R
|V`|).

2.9 Proof of Lemmas 2.5.1 and 2.5.3

Proof of Lemma 2.5.1. We write with the triangle inequality

ηkN,`
(2.59)
≤ ‖(aσ,km,`)

− 1
2 (ak`∇uk` + σk`)‖

(2.31),(2.11)
≤ a

− 1
2m A

1
2c ‖(Ak−1

`)−
1
2 (ak`∇uk` + σk`)‖

≤ a
− 1

2m A
1
2c

(
‖(Ak−1

`)−
1
2 (Ak−1

` ∇(uk` − uk−1
`) + ak−1

` ∇uk−1
` + σk`)‖

+‖(Ak−1
`)−

1
2 (ak`∇uk` − ak−1

` ∇uk−1
` −Ak−1

` ∇(uk` − uk−1
`))‖

)
(2.39b),(2.40)

= a
− 1

2m A
1
2c (η

k
L,` + η̂kiter,`),

(2.74)

where we have also employed the definitions (2.12) and (2.25b). Thus, by virtue of the
definition (2.41), λk` is uniformly bounded as per (2.43).

88 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Proof of Lemma 2.5.3. The first two inequalities in (2.45) are immediate from (2.42)
and (2.43). As for the last one, for all k ≥ 1,

Am‖∇(uk〈`〉 − uk−1
`)‖2

(2.11)
≤ (Ak−1

` ∇(uk〈`〉 − uk−1
`),∇(uk〈`〉 − uk−1

`))

(2.12)
= (Ak−1

` ∇uk〈`〉 − bk−1
` ,∇(uk〈`〉 − uk−1

`))− (ak−1
` ∇uk−1

` ,∇(uk〈`〉 − uk−1
`))

(2.38a)
= (f, uk〈`〉 − uk−1

`)− (ak−1
` ∇uk−1

` ,∇(uk〈`〉 − uk−1
`))

(2.5a)
= (au∇u− ak−1

` ∇uk−1
` ,∇(uk〈`〉 − uk−1

`))

(2.4a)
≤ ac‖∇(u− uk−1

`)‖‖∇(uk〈`〉 − uk−1
`)‖.

(2.75)

Hence, dividing (2.75) by ‖∇(uk〈`〉 − uk−1
`)‖, we infer

Ama
−1
c ‖∇(uk〈`〉 − uk−1

`)‖ ≤ ‖∇(u− uk−1
`)‖,

and consequently, by the triangle inequality,

Ama
−1
c ‖∇(uk〈`〉 − uk`)‖ ≤ ‖∇(u− uk`)‖+ ‖∇(uk` − uk−1

`)‖+Ama
−1
c ‖∇(uk` − uk−1

`)‖.

Thus, EkL,` . EkN,` + ‖∇(uk` − uk−1
`)‖ thanks to definition (2.39a) (employing the rela-

tion (2.77a) below) and

am‖∇(uk` − u)‖2 ≤ (EkN,`)2 ≤ ac‖∇(uk` − u)‖2, (2.76)

which is a consequence of inequality (2.32a) together with the bounds in (2.31).
The convergence statement is then easy. Assuming Ek` → 0 implies EkN,` → 0 and then

the H1
0 (Ω) convergence follows from (2.76). Reciprocally, when uk` → u in H1

0 (Ω), the last
term in (2.45) goes to 0, as well as EkN,` thanks to (2.76), so that Ek` → 0.

2.10 Proof of Theorem 2.5.5

Recalling the definition (2.10) of J k−1
` , we can rewrite EkL,` given by (2.39a) as

(EkL,`)2
(2.10)
=

∥∥∥(Ak−1
`)

1
2∇uk`

∥∥∥2 − ∥∥∥(Ak−1
`)

1
2∇uk〈`〉

∥∥∥2
− 2(bk−1

` ,∇(uk` − uk〈`〉))− 2(f, uk` − uk〈`〉)

(2.38a)
=

∥∥∥(Ak−1
`)

1
2∇uk`

∥∥∥2 − ∥∥∥(Ak−1
`)

1
2∇uk〈`〉

∥∥∥2 − 2(Ak−1
` ∇uk〈`〉,∇(uk` − uk〈`〉))

= ‖(Ak−1
`)

1
2∇(uk` − uk〈`〉)‖

2 (2.68)
=

1

d+ 1

∑
a∈V`

(Ea,k
L,`)

2,

(2.77a)

where, for all a ∈ V`,

Ea,k
L,` := ‖(Ak−1

`)
1
2∇(uk` − uk〈`〉)‖ωa

`
. (2.77b)

2.10. Proof of Theorem 2.5.5 89

Similarly, using the definition (2.23) of J ∗,k−1
` , we can rewrite and upper-bound ηkL,`

of (2.39b),

(ηkL,`)
2(2.23)

=
∥∥∥(Ak−1

`)
1
2∇uk`

∥∥∥2 + ∥∥∥(Ak−1
`)−

1
2 (σk` − bk−1

`)
∥∥∥2 − 2(bk−1

` ,∇uk`)− 2(f, uk`)

= ‖(Ak−1
`)−

1
2 (Ak−1

` ∇uk` − bk−1
` + σk`)‖2 − 2(σk` ,∇uk`)− 2(f, uk`)

(2.28)
= ‖(Ak−1

`)−
1
2 (Ak−1

` ∇uk` − bk−1
` + σk`)‖2

(2.69)
≤ (d+ 1)

∑
a∈V`

(ηa,kL,`)
2,

(2.78a)
where, for all a ∈ V`,

ηa,kL,` := ‖(Ak−1
`)−

1
2 (ψa

` (A
k−1
` ∇uk` − bk−1

`) + σa,k
`)‖ωa

`
. (2.78b)

Proof of Theorem 2.5.5. Let k ≥ 1. Since (2.38) is a linear problem, proceeding as in [52, 53],
we obtain the a posteriori error estimate

(EkL,`)2
(2.77a)
= (Ak−1

` ∇(uk〈`〉 − uk`),∇(uk〈`〉 − uk`))

(2.38a)
= (f, uk〈`〉 − uk`)− (Ak−1

` ∇uk` − bk−1
` ,∇(uk〈`〉 − uk`))

(2.27)
= ((I −Π`,p)f, u

k
〈`〉 − uk`)− (Ak−1

` ∇uk` − bk−1
` + σk` ,∇(uk〈`〉 − uk`))

(2.46a)
≤ (η̂kosc,` + ‖(Ak−1

`)−
1
2 (Ak−1

` ∇uk` − bk−1
` + σk`)‖)‖(Ak−1

`)
1
2∇(uk` − uk〈`〉)‖

(2.77a),(2.78a)
= (η̂kosc,` + ηkL,`)EkL,`.

(2.79)

Now, observing that (2.71) still holds with the version (2.26b) of the equilibrated flux, we
obtain (2.47a) by writing

Ek`
(2.42)
=

1

2
(EkN,` + λk`EkL,`)

(2.71),(2.79)
≤ 1

2
(ηkN,` + 2ηkosc,` + λk` (η

k
L,` + η̂kosc,`))

(2.42)
= ηk` + ηkosc,` +

λk`
2
η̂kosc,`.

(2.80)

It remains to prove (2.47b). For all vertices a ∈ V`, denote by σa,k
I,` the minimizer

of (2.25b) with the choice (2.26a). Recall also the notations (2.78b) and (2.25b) together
with (2.46c) and (2.46d). Then, using the same reasoning as in (2.72), we infer

ηa,kL,`

(2.46d)
≤ ‖(Ak−1

`)−
1
2 (ψa

` Π
RTN
`,p−1ξ

k
` + σa,k

`)‖ωa
`
+ η̂a,kq,`

(2.11)
≤ 1

(infωa
`
Ak−1

m,`)
1
2

‖ψa
` Π

RTN
`,p−1ξ

k
` + σa,k

I,` ‖ωa
`
+ η̂a,kq,`

(2.72),(2.48)
.

1

(infωa
`
Ak−1

m,`)
1
2

sup
ϕ∈H1

∗(ω
a
`)

‖∇ϕ‖ωa
`
=1

[
(f, ψa

` ϕ)ωa
`
− (ξk` ,∇(ψa

` ϕ))ωa
`

]

+ (1 + Ĉk`)η̂
a,k
q,` + η̂a,kosc,q,`

(2.38a),(2.77b)
. Ĉk` E

a,k
L,` + Ĉk` η̂

a,k
q,` + η̂a,kosc,q,`.

(2.81)

90 Chapter 2. Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems

Therefore, we obtain (2.47b) by writing

2ηk`
(2.42)
= ηkN,` + λk` η

k
L,`

(2.41)
= λk` (2η

k
L,` + η̂kiter,`)

(2.78)
. λk`

(∑
a∈V`

(ηa,kL,`)
2

) 1
2

+ λk` η̂
k
iter,`

(2.81)
. λk`

Ĉk` (∑
a∈V`

(Ea,k
L,`)

2

) 1
2

+ Ĉk`

(∑
a∈V`

(η̂a,kq,`)
2

) 1
2

+

(∑
a∈V`

(η̂a,kosc,q,`)
2

) 1
2

+ λk` η̂

k
iter,`

(2.77),(2.46)
. λk`

[
1

2
Ĉk` EkL,` + Ĉk` η̂

k
q,` + η̂kosc,q,` + η̂kiter,`

]
(2.42)
≤ Ĉk` Ek` + λk` (Ĉ

k
` η̂

k
q,` + η̂kosc,q,` + η̂kiter,`),

(2.82)

where we used the triangle inequality on `2(R|V`|). Finally, we get Ĉk` = 1 for the Zarantonello
iteration since Ak−1

m,` = Ak−1
c,` = γ in Ω in this case.

2.A Equivalent assumptions on the nonlinear functions

In this section, we show some useful properties of the nonlinear functions a and φ. In
particular, we show that inequalities (2.4) admit equivalent versions with the function φ

defined in (2.7), preserving the same constants ac and am.
Proposition 2.A.1 (Equivalent assumption on φ′). Inequalities (2.4) are equivalent to the
following ones: a.e. in Ω, for all r, s ∈ [0,∞),

|φ′(·, r)− φ′(·, s)| ≤ ac|r − s|, (2.83a)
(φ′(·, r)− φ′(·, s))(r − s) ≥ am(r − s)2. (2.83b)

Proof. Differentiating (2.7) gives, a.e. in Ω and for all r ∈ [0,∞),

φ′(·, r) = a(·, r)r. (2.84)

Thus, assuming and using (2.4) (with x = (r, 0, . . . , 0)t and y = (s, 0, . . . , 0)t) together
with (2.84) yields (2.83).

Reciprocally, assuming (2.83), we have in particular (with s = 0), using (2.84), a.e. in Ω

and for all r ∈ [0,∞),

am ≤ a(·, r) ≤ ac. (2.85)

We conclude by using the fact that for all x,y ∈ Rd, and all α, β ∈ [0,∞), we have

|x− y|2 = (|x| − |y|)2 + 2(|x||y| − x · y), (2.86a)
(αx− βy) · (x− y) = (α|x| − β|y|)(|x| − |y|) + (α+ β)(|x||y| − x · y), (2.86b)

to obtain, a.e. in Ω and for all x,y ∈ Rd,
|a(·, |x|)x− a(·, |y|)y|2

(2.86a)
= (a(·, |x|)|x| − a(·, |y|)|y|)2 + 2a(·, |x|)a(·, |y|)(|x||y| − x · y)

(2.84)
= (φ′(·, |x|)− φ′(·, |y|))2 + 2a(·, |x|)a(·, |y|)(|x||y| − x · y)

(2.83),(2.85)
≤ a2c [(|x| − |y|)2 + 2(|x||y| − x · y)] = a2c |x− y|2

2.B. Spectral properties of the tensor product 91

and
(a(·,|x|)x− a(·, |y|)y) · (x− y)

(2.86b)
= (a(·, |x|)|x| − a(·, |y|)|y|)(|x| − |y|) + (a(·, |x|) + a(·, |y|))(|x||y| − x · y)

(2.84)
= (φ′(·, |x|)− φ′(·, |y|))(|x| − |y|) + (a(·, |x|) + a(·, |y|))(|x||y| − x · y)

(2.83),(2.85)
≥ am[(|x| − |y|)2 + 2(|x||y| − x · y)] = am|x− y|2,

hence (2.4).

Proposition 2.A.2 (Equivalent assumption on φ′′). Inequalities (2.83) are equivalent to the
facts that φ′ is weakly differentiable and, a.e. in Ω and for a.e. r ∈ [0,∞),

am ≤ φ′′(·, r) ≤ ac. (2.87)

Proof. Assuming (2.83), since φ′ is Lipschitz continuous thanks to (2.83a), φ′ is weakly
differentiable. Furthermore, defining the difference quotient, a.e. in Ω and for all r, s ∈ [0,∞),
r 6= s, by

τ(·, r, s) := φ′(·, r)− φ′(·, s)
r − s

,

inequalities (2.83) are equivalent to the fact that, a.e. in Ω and for all r, s ∈ [0,∞), r 6= s,

am ≤ τ(·, r, s) ≤ ac. (2.88)

Hence, letting s tend to r in (2.88) gives (2.87).
On the other hand, assuming and integrating (2.87) gives, a.e. in Ω and for a.e. r, s ∈

[0,∞) with r > s,

am(r − s) ≤ φ′(·, r)− φ′(·, s) ≤ ac(r − s), (2.89)

and dividing (2.89) by r−s gives (2.88), which becomes also true for r < s by symmetry.

Remark 2.A.3 (Convexity). Under Assumption 2.2.1, inequality (2.83b) implies that φ′ is
nondecreasing, i.e., φ is convex. Moreover, from (2.84), we have, a.e. in Ω and for a.e.
r ∈ [0,∞),

φ′′(·, r) = a(·, r) + a′(·, r)r. (2.90)

2.B Spectral properties of the tensor product

Lemma 2.B.1 (Spectral properties of the tensor product). The following holds:

Spec(αId + βA) = {α}+ β Spec(A) ∀α, β ∈ R, ∀A ∈ Rd×d, (2.91a)
Spec(ξ ⊗ ξ) = {0, |ξ|2} ∀ξ ∈ Rd, d > 1. (2.91b)

Proof. We refer to [37] for details about the tools used in the following. Denoting PA the
characteristic polynomial of A, we obtain (2.91a) by writing, for all λ ∈ R,

PαId+βA(α+ βλ) = det((α+ βλ)Id − (αId + βA)) = βd det(λId −A) = βdPA(λ).

Moving to (2.91b), since (ξ ⊗ ξ)τ = (ξ · τ)ξ for all τ ∈ Rd, dim(Ker(ξ ⊗ ξ)) =

dim(Ker(〈ξ, ·〉)) ≥ d− 1, i.e. 0 ∈ Spec(ξ⊗ ξ) with a multiplicity of at least d− 1. Thus, the
sum of the eigenvalues of ξ ⊗ ξ, being tr(ξ ⊗ ξ) = |ξ|2, is in Spec(ξ ⊗ ξ). Hence, 0 and |ξ|2
are the only elements of Spec(ξ ⊗ ξ), and we infer (2.91b).

Chapter 3

Adaptive regularization for the
Richards equation

This chapter corresponds to the paper https: // hal. science/ hal-04266827v1 currently
submitted for publication.

3.1 Introduction

One of the most fundamental equations for modeling flows in porous media is the Richards
equation. It can be viewed as a simplified two-phase model, e.g., for water and air, where
one of the phases is assumed to be of constant pressure. For a detailed review of the role of
the Richards equation in porous media modeling see, e.g., [34, 39]. The equation describes
the evolution in space and in time of the pressure p and saturation s for a fluid in a porous
medium. Given a domain Ω ⊂ Rd, for d = 1, 2, 3, and a final time T > 0, the Richards
equation is given by

∂ts−∇ · [K̄κ(s)(∇p+ g)] = f, in Ω× [0, T], (3.1)

where −g represents the constant force of gravity, K̄ : Ω → Rd×d is the absolute permeability
tensor, κ : [0, 1] → [0, 1] is the relative permeability function, and f : Ω× [0, T] → R a forcing
term, all considered as data along with suitable initial and boundary conditions. The system
is closed by an algebraic relationship expressing the saturation as a function of the pressure,
i.e., there exists a function S : R → [0, 1] such that

s = S(p). (3.2)

For the well-posedness of this initial boundary value problem see, e.g., [2].
Realistic choices for the saturation function S of (3.2) and relative permeability κ are

nonlinear cf. Figures 3.1 and 3.2. This means that once the equation (3.1) is discretized
with an implicit time-stepping scheme, a linearization procedure must be applied at each
timestep.

The design of robust and efficient linearization schemes for Richards equation is an active
area of research. Newton’s method [86, 87, 42] is an attractive choice due to its potentially
quadratic convergence. A sufficient condition for the convergence of Newton’s method in
the context of the Richards equation was derived in [75]. In particular, the authors of [75]

https://hal.science/hal-04266827v1

3.1. Introduction 93

considered the lowest order continuous Galerkin finite element method (FEM) as a spatial
discretization and an implicit Euler time discretization and derived a condition of the form

τ < CS
2+r
rm hd, (3.3)

where τ is the time step size, h is the mesh size, Sm := infS′ ≥ 0, and C, r > 0 depends on the
S and κ. In practice, satisfying this condition may render the timestep τ prohibitively small,
or the condition may even be impossible to satisfy if the derivative S′ = 0. Other linearization
schemes include the modified Picard method [31], L-schemes [111, 87, 99, 92], and the Jäger–
Kǎcur method [77, 78]. These methods are generally more robust than Newton’s method at
the cost of slower convergence. In particular, the L-scheme was shown to be unconditionally
convergent in [105], though it only converges linearly.

The tradeoff between the robustness of the linearly-converging methods and the speed
of Newton’s method have motivated hybrid methods such as those studied [87] where the
authors apply several iterations of the slower scheme to provide an initial guess to Newton.
More recently, this strategy was taken further in [114], where an a posteriori error estimator
was designed to provide a criteria to switch between the L-scheme and Newton’s method.

The degenerate nature of the Richards equation (see §3.3) partially explains the difficulty
encountered by Newton’s method. One way to address the degeneracy involves the choice of
the unknown in (3.1). In particular, whenever the function S in (3.2) is invertible one has
the choice of whether to solve for the pressure p or the saturation s in (3.1). This idea led to
the so-called primary variable switching methods [56, 44]. Initially, these methods required
a local choice (by looping over degrees of freedom in the context of a Galerkin method)
for which variable to solve for. This idea was elegantly adapted in [22], where the authors
achieved a continuous variable switch by introducing a global C1 parameterization of the
saturation curve (3.2). The parameter is chosen so that it is proportional to the saturation
in the dry regions (where s � 1) and otherwise it is proportional to the pressure. The
continuous variable switching was recently generalized in [16] as well as the PhD thesis [15]
where the authors consider an additional switch that aids in the case of heterogeneous media.

On top of difficulties related to degeneracy, the specific forms of the nonlinearities for the
most common models (Brooks–Corey and van Genuchten–Mualem defined in §3.2) also suffer
from low regularity. Approaches to address this while keeping good convergence of Newton’s
method include the line search or trust region methods, where the step size of Newton is
limited in certain critical zones of the nonlinearity, see, e.g., [79, 123, 14] and references
therein. Another alternative to handle low regularity is the so-called semismooth Newton
method [82, 104], where the main tenant is to work with elements of the subdifferential to a
nonsmooth function.

A useful tool in the context of Richards equation, both theoretically and practically,
is regularization, i.e, considering an auxiliary perturbed problem to obtain some desired
properties. The authors of [100] rely on regularization to prove well-posedness of a certain
case of the Richards equation. Regularization has already been explored for improving the
performance of iterative schemes in, for example, [78, 14]. In [78], regularized versions of
the nonlinear functions are introduced to control the degeneracy whereas in [14] a kind of
slope limiting method was proposed to handle the case where the derivative of the relative
permeability κ tends to infinity. However, in practice, a natural question to ask is how much
regularization should be added to obtain a tradeoff between model error and performance.

In this work, we seek to provide a possible answer to the question by adaptively updating
a regularization parameter. In particular, the adaptive choice is informed by a posteriori error

94 Chapter 3. Adaptive regularization for the Richards equation

estimators. Our a posteriori estimators follow the spirit of those derived in [94] in the context
of the fully degenerate Richards equation, where a rigorous a posteriori analysis leads to a
reliable and efficient estimator.

We also take inspiration from our recent work [58], where we introduced an adaptive
algorithm for regularizing a nonsmooth nonlinearity based on an additive decomposition of
an estimator. The central observation is that regularization (model) error is often dominated
by the discretization error and hence does not impact the overall accuracy of the scheme. In
the setting of [58], we were able to recover the optimal rate of convergence with respect to
total degrees of freedom by solving a sequence of regularized problems without ever sending
the regularization parameter to 0. We seek to apply this same strategy to this setting, where
component estimators will guide an adaptive algorithm and in particular ensure that the
regularization component estimator remains sufficiently below that of discretization.

Our scheme has several advantages to those already mentioned. Firstly, it does not
require the modification of the underlying Newton solver. Secondly, for the test cases we
consider, the regularization allows Newton to converge where it takes hundreds of iterations
without. Finally, by adaptively lowering the level of regularization, we are able to produce
a solution that matches well visually with a solution obtained without regularization.

The rest of the paper is organized as follows. In §3.2, we introduce the necessary no-
tation as well as the assumptions on the data. In §3.3, we discuss the various difficulties
for a nonlinear solver and introduce our proposed regularization. In §3.4, we present the
backward Euler–finite element discretization of the Richards equation with its correspond-
ing regularized and linearized problems. In §3.5 we detail our adaptive algorithm. In §3.6,
we present numerical experiments and we conclude in §3.7 where we also give an outlook on
future research.

3.2 Setting and specification of the data

In this section we detail the necessary information to describe precisely the problem under
consideration. We use the standard notation from functional analysis. Let Ω ⊂ Rd, d = 1, 2, 3

be a domain with polygonal boundary. For ω ⊆ Ω, let (·, ·)ω and ‖ · ‖ω correspond to the
L2(ω) inner product and norm respectively. We drop the subscripts when ω = Ω. Let H1(Ω)

be the Sobolev space of functions defined on Ω with first-order weak derivatives in L2(Ω).
We also introduce the space H(div,Ω) := {v ∈ [L2(Ω)]d : ∇·v ∈ L2(Ω)}.

We now specify the initial and boundary conditions for the problem (3.1). We consider
a partition of the boundary ∂Ω = ΓD ∪ ΓN into Dirichlet and Neumann boundaries, where
ΓD has strictly positive measure. The boundary conditions are specified as

p = pD on ΓD × (0, T], K̄κ(s)(∇p+ g) · n = 0 on ΓN × (0, T], (3.4)

and the corresponding space incorporating the Dirichlet boundary condition is given by

H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD = pD}. (3.5)

The initial condition is imposed on the saturation,

s(x, 0) = s0(x), x ∈ Ω. (3.6)

We introduce a conforming triangulation Th of Ω, i.e., Th = ∪KK where the intersection
of (the closure of) two simplices K,K ′ ∈ Th are either disjoint or an l-dimensional simplex
for 0 ≤ l ≤ d− 1.

3.2. Setting and specification of the data 95

−6 −4 −2 0

0.2

0.4

0.6

0.8

1

p

S
(p
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

s

κ
(s
)

Figure 3.1: [pM = −0.2, λ1 = 0.66] Saturation and relative permeability functions for the
Brooks–Corey equation of state (3.7).

We consider the following assumptions on the data of problem (3.1)-(3.2).

Assumption 3.2.1. The absolute permeability tensor K̄ : Ω → Rd×d is piecewise constant
with respect to Th and satisfies the ellipticity and boundedness conditions, i.e., there exists
constants Km,KM > 0 such that, for almost every x ∈ Ω, there holds

Km|x|2 ≤ xT K̄(x)x ≤ KM|x|2

The two most common equations of state for the nonlinear functions S and κ are the
Brooks–Corey model [25]

κ(s) = s
2+3λ1
λ1 , S(p) =

{
(−p/pM)−λ1 p ≤ pM,

1 otherwise,
(3.7)

for parameters pM < 0, λ1 ∈ (0, 1) and the van Genuchten–Mualem model [116], for pM ∈ R,

κ(S(s)) = κc
√

S(s)(1− (1− S(s)1/λ2)λ2)2, (3.8a)

S(p) =

SR + (SV − SR)
[
(1 + (−αp)

1
1−λ2

]−λ2
p ≤ pM,

SV otherwise,
(3.8b)

where
S(s) =

s− SR
SV − SR

, (3.9)

with SV the water content, SR the residual water content, and κc the hydraulic conductivity.

96 Chapter 3. Adaptive regularization for the Richards equation

−6 −4 −2 0

0.2

0.4

0.6

0.8

1

p

S
(p
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

s

κ
(s
)

Figure 3.2: [pM = 0, λ2 = 0.66, SR = 0, SV = 1, α = 0.551] Saturation and relative perme-
ability functions for the van Genuchten–Mualem equation of state (3.8).

3.3 Difficulties related to the nonlinearities and proposed reg-
ularization

We first outline the possible difficulties a nonlinear solver can encounter in the context of
the Richard’s equation. We summarize them in the following list:

1. Hyperbolic degeneracy: if κ = 0 the terms containing spatial derivatives vanish and
the PDE changes type from parabolic to an ODE.

2. Elliptic degeneracy: If S′ = 0 the PDE changes type from parabolic to elliptic. This
is typically not a serious problem for solvers in the pressure formulation that we have
chosen.

3. For the van Genuchten–Mualem model (3.8), the derivative of the relative permeability
function blows up, i.e., κ′(S(s)) → ∞ as s→ SV.

4. For the Brooks–Corey model (3.7), the saturation function S(p) is non-differentiable
at p = pM.

We thus replace the saturation function S and relative permeability function κ by regularized
counterparts denoted by Sε and κε respectively. The parameter ε > 0 determines the amount
of added regularization, and is adaptively updated to minimize the incurred model error (see
§3.5). The regularization is designed with the intention of alleviating the problems mentioned
in the previous list. We now state the conditions on the regularization more precisely.

Assumption 3.3.1 (Assumptions on the regularization). The approximations Sε to the
saturation S and κε to the relative permeability κ satisfy the following.

(A1) the regularized relative permeability satisfies limε→0 κε(s) = κ(s) for all s ∈ [0, 1]

(A2) The regularized saturation satisfies limε→0 Sε(p) = S(p) for all p ∈ R

(A3) There exists a constant κε > 0 such that κε(s) > κε for all s ∈ [0, 1].

(A4) The regularized saturation satisfies Sε ∈ C1(R)

3.3. Difficulties related to the nonlinearities and proposed regularization 97

(A5) The regularized composite function satisfies κε ◦ Sε ∈ C1(0, 1)

Assumptions (A1) and (A2) ensure that the regularized functions are good pointwise
approximations of the true functions S and κ. The Assumption (A3), ensures that the reg-
ularized function κε does not induce a hyperbolic degeneracy. The last two assumptions are
smoothness requirements on the functions that are important, as derivatives of the functions
appear in the bilinear form associated to the nonlinear solver as we will see below in §3.4.2.

We now introduce our chosen choices of regularization which satisfies Assumption 3.3.1.
The choices depend on the chosen models, namely the Brooks–Corey model (3.7) and van
Genuchten–Mualem (3.8). First, in the case of the Brooks–Corey model, the regularization
of the relative permeability is simply

κε(s) = κ(s) + ε. (3.10)

This ensures that κε > 0 for all s and the smoothness requirements are already satisfied.
The regularized saturation for the Brooks–Corey model is given by

Sε(p) =

{
Skε (p) if |p− pM| < ε,

S(p) otherwise.
(3.11)

where Skε (p) is determined by polynomial interpolation so that Sε ∈ Ck(R) is k-times con-
tinuously differentiable. In particular we choose k = 2 so that Assumption (A4) is satisfied.
A plot is given in Figure 3.3 for several values of ε. To satisfy Assumption (A5) we follow
the approach in [14] where the relative permeability (3.8a) is replaced by a second degree
polynomial near the critical point S(s) = 1:

κε(S) =

{
κ(s) + ε, if s ≤ 1− ε

κ̃(s) + ε, otherwise
(3.12)

where
κ̃(s) =

κ′′(1− ε)

2
(s− (1− ε))2 + κ′(1− ε)(s− (1− ε)) + κ(1− ε) (3.13)

see Figure 3.4 for a plot with a range of values of ε.

98 Chapter 3. Adaptive regularization for the Richards equation

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

p

S
ε
(p

)

ε = 0.0
ε = 0.0125
ε = 0.025
ε = 0.05
ε = 0.1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

s

κ
ε
(s

)

ε = 0.0
ε = 0.0125
ε = 0.025
ε = 0.05
ε = 0.1

Figure 3.3: [λ1 = 2, pM = −0.2, k = 2] Regularization of the relative permeability (left)
(3.10) and of the saturation (3.11) (right) for the Brooks–Corey model (3.7).

0 0.1 0.2 0.3 0.4

0

5 · 10−2

0.1

s

κ
ε
(s

)

ε = 0.0
ε = 0.0125
ε = 0.025
ε = 0.05
ε = 0.1

Figure 3.4: [pM = 0, λ2 = 0.66] Regularization of the relative permeability (3.8) of the the
van Genuchten–Mualem model (3.8). We do not regularize the saturation in this case, since
it it already smooth.

3.4. Discrete problem and solution method 99

3.4 Discrete problem and solution method

In this section we give details about the discretization strategy we employ to solve the
Richards equation (3.1). We define the lowest order continuous finite element space for our
trial space

V D
h =

{
uh ∈ H1

D(Ω), uh|K ∈ P1(K) ∀K ∈ Th
}
, (3.14)

as well as the test space

V 0
h =

{
uh ∈ H1

0 (Ω), uh|K ∈ P1(K) ∀K ∈ Th
}
. (3.15)

For the time discretization we use the lowest order implicit method, i.e., the backward Euler
method. We consider uniform time stepping with N time steps so that the interval (0, T) is
partitioned with fixed step size τ = T/N and the time points {tn}Nn=0 are given by tn = nτ

for all n = 0, . . . , N . The backward Euler problem for each n ∈ {1, . . . , N} and a given
pn−1,h ∈ V D

h is to find the approximate pressure pn,h ∈ V D
h satisfying

1
τ (S(pn,h)− S(pn−1,h), ϕh) + (F (pn,h),∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0

h , (3.16)

where the flux function is defined as

F (q) := K̄κ(S(q))[∇q + g]. (3.17)

3.4.1 Regularization

We also consider the regularized version of the problem. First, for a fixed timestep, we
introduce a non-negative sequence {εj}j≥1 such that ε1 is fixed at the beginning of the
timestep (see §3.5). The regularized problem is then: given pj̄n−1,h ∈ V D

h find pjn,h ∈ V D
h

satisfying
1
τ (Sεj (p

j
n,h)− Sεj (p

j̄
n−1,h), ϕh) + (Fεj (p

j
n,h),∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0

h , (3.18)

where the corresponding regularized flux is given by

Fεj (q) := K̄κεj (Sεj (q))[∇q + g], (3.19)

and j̄ is a stopping index that will be defined in §3.5.

3.4.2 Linearization

Due to the nonlinear nature of the problem (3.18), linear iterations are usually used to
approximate pjn,h. To this end, we consider the following linearized problem: given an initial
guess pj,k−1

n,h , find pj,kn,h ∈ V D
h such that

1
τ (Sεj (p

j,k−1
n,h)−Sεj (p

j̄,k̄
n−1,h), ϕh)+

1
τ (L(p

j,k
n,h−p

j,k−1
n,h), ϕh)+(F k

εj ,∇ϕh) = (f(·, tn), ϕh) ∀ϕh ∈ V 0
h ,

where j̄ and k̄ are stopping indices that will be defined in §3.5 and the linearized flux is given
by

F k
εj := K̄κεj (Sεj (p

j,k−1
n,h))[∇pj,kn,h + g] + ξ(pj,kn,h − pj,k−1

n,h). (3.20)

Here, (L, ξ) ∈ L∞(Ω;Rd+1) depends on the specific scheme used. For the case of the modified
Picard iteration [31], we have that

L := S′
εj (p

j,k−1
n,h), ξ := 0. (3.21)

100 Chapter 3. Adaptive regularization for the Richards equation

For Newton’s method, we have that

L := S′
εj (p

j,k−1
n,h), ξ := K̄(κεj ◦ Sεj)′(p

j,k−1
n,h)[∇pj,k−1

n,h + g]. (3.22)

Remark 3.4.1 (Appearance of derivatives in the linearization). We note that the for both the
modified Picard scheme Newton’s method, the derivative S′(pj,k−1

n,h) appears. Additionally, in
the case of Newton’s method the derivative of the composite functions (κεj ◦ Sεj)′(p

j,k−1
n,h) ap-

pears. This is the motivation for the regularity requirements we impose on the regularization,
i.e., Assumptions (A4) and (A5).

3.4.3 A posteriori component error estimators by flux reconstruction

The key to our a posteriori error estimators will be a postprocessed approximation σj,kn,h of
the flux (3.20) that satisfies σj,kn,h ⊂ H(div,Ω). The main tool to achieve this is the Raviart–
Thomas–Nédélec (RTN) finite element space [23]. We first introduce the lowest order broken
RTN space,

RT0(Th) := {vh ∈ [L2(ω)]d : vh|K ∈ [P0]
d + xP0, ∀K ∈ Th}, (3.23)

and the H(div,Ω)-conforming space

RT0(Ω) := RT0(Th) ∩H(div,Ω). (3.24)

Our general approach is in the spirit of equilibrated flux reconstruction. The method of
flux reconstruction in the context of a posteriori error analysis has origins in the works of
Prager and Synge [101] as well as in Ladevèze and Leguillon [84], Destuynder and Métivet
[41], Braess and Schöberl [21], and Ern and Vohralík [53]. However, in this work we do
not consider a full equilibration by solving local minimization problems, but rather a flux
based on averaging and prescription of the degrees of freedom in H(div,Ω) as in [121, 51].
In general this type of estimator satisfies the equilibration with the external load in a weak
sense.

First, we introduce some additional notation for the mesh. Let F denote the set of faces
in the mesh and for a face F ∈ F let TF denote the edge patch of F , i.e.,

TF := {K ∈ Th : F ⊂ K}. (3.25)

Then we define the reconstructed flux σj,kn,h ∈ RT0(Ω) by

1

|F |

∫
F
σj,kn,h · nF dS =

1

|TF ||F |
∑
K∈TF

∫
F
−F k

εj · nF dS ∀F ∈ F , (3.26)

where |TF | denotes the cardinality of TF .
The conditions in (3.26) totally determine the function σj,kn,h, see, e.g., [49]. We thus

define the following estimators with the help of the reconstructed flux (3.26):

η`,j,kdis := ‖F k
εj + σj,kn,h‖ (discretization), (3.27a)

η`,j,klin := ‖Fεj (p
j,k
n,h)− F k

εj‖ (linearization), (3.27b)

η`,j,kreg := ‖F (pj,kn,h)− Fεj (p
j,k
n,h)‖ (regularization). (3.27c)

3.5. Adaptive algorithm 101

Remark 3.4.2 (Choice of estimators). We take inspiration for the discretization estimator
from [94], where our estimator can be thought of a simplified version of ηF. We make this
choice because the current definition is very cheap to compute as it does not require the solu-
tion of local problems. This decomposition into component estimators is very much inspired
by those established in [53, 58]. In [53], a decomposition was established that identified errors
associated with the discretization, linearization, algebra, and quadrature. These estimators
were then used to define stopping criteria for the nested nonlinear and linear solvers. More
recently in [58], we consider a regularized problem and introduce a corresponding regulariza-
tion estimator, leading to the same (at least in spirit) choice of estimators as in the current
work. In [58] we rigorously prove that the estimators tend to zero in their respective limits,
i.e., η`,j,kreg tends to zero as j → ∞ and η`,j,klin tends to zero as k → ∞.

3.5 Adaptive algorithm

In this section we present an adaptive algorithm for iteratively solving the system of nonlinear
algebraic equations (3.16), Algorithm 4. For a given timestep tn, the algorithm constructs
a sequence of regularized problems, with regularization parameter εj , and linearization iter-
ations indexed by k, producing intermediate solutions pj,kn,h as per §3.4.2 and § 3.4.1. The
algorithm takes some user-specified parameters, starting with an initial regularization pa-
rameter ε1 > 0 and an initial contraction factor C1

ε ∈ (0, 1). We take inspiration from
Algorithm 1 in [58] to define the following stopping criteria, where bars denote the stopping
indices,

ηn,j,k̄lin < γlinη
n,j,k̄
reg , (3.28a)

ηn,j̄,k̄reg < γregη
n,j̄,k̄
dis , (3.28b)

where γreg, γlin > 0 are further user-specified parameters. The first criterion (3.28a) states
that the linearization procedure should not continue on a given regularized problem if it has
sufficiently converged. The second criterion (3.28b) states that, on a given timestep tn, the
error introduced by regularization should only be γreg times smaller than the inherent error
due to discretization.

In more details, the algorithm proceeds as follows: we start on a given timestep with the
initial regularization parameter εj and contraction factor Cjε . We proceed to iterate in the
linearization until the first stopping criterion (3.28b) is satisfied. However, we also have a
safety measure (line 12 of the algorithm) to check whether the linearization error does not
increase between the previous and current linearization iterates k−1 and k. If this is the case,
we revert the regularization parameter and reset the approximate pressure. We also increase
the current contraction factor Cjε which limits the amount we decrease the regularization
parameter between the steps j and j + 1. This strategy is comparable to common practice
of cutting the timestep to provide a better initial guess, but the advantage here is that we
only “go back” one value of the regularization parameter and not to the beginning of the
timestep.

We also remark that the initial guess can be taken as p0,00,h := S−1(s0) in the regime where
S is invertible, namely s0 < 1. For the points x ∈ Ω where s0(x) = 1, we simply take the
initial guess p0,00,h(x) := pM(x).

102 Chapter 3. Adaptive regularization for the Richards equation

Algorithm 4: Adaptive regularization for the Richard equation
Initialization
:

Choose an initial guess p0,00,h ∈ V D
h and initialize the time step

counter n := 0

Parameters : γreg, γrin, ε
1, C1

ε ∈ (0, 1)

1 while tn < T do
2 Update n := n+ 1

3 Initialize j := 0, k̄ := 0

4 Loop for regularization
5 Increment j := j + 1

6 Initialize k := 0

7 ηn,j,klin := ∞
8 Loop for linearization
9 Increment k := k + 1

10 Solve for pj,kn,h in (3.20)
11 Compute the estimators (3.27)
12 if ηn,j,klin > ηn,j,k−1

lin then
13 Reset pj,kn,h := pj−1,k̄

n,h

14 Increase Cj+1
ε :=

√
Cjε

15 Decrease εj+1 := (Cjε /C
j+1
ε)εj

16 go to line 4
17 end
18 until ηn,j,klin < γlinη

n,j,k
reg

19 Update k̄ := k

20 Decrease εj+1 := Cjε εj

21 until ηn,j,k̄reg < γregη
n,j,k̄
dis

22 Update j̄ := j

23 p0,0n,h := pj̄,k̄n,h
24 end
25 return {pj̄,k̄n,h}

N
n=1

3.6 Numerical experiments

In this section we detail numerical experiments using our adaptive regularization of Algo-
rithm 4. In particular, we consider three rather involved examples where a plain Newton
solver struggles to converge. In all cases our adaptive algorithm succeeds. All numeri-
cal experiments are conducted with the help of the Gridap.jl library [7, 118] in the Ju-
lia programming language. For all the experiments, we take the linearization parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1, and ε1 = 0.1. For comparison, we also test the unregularized
Newton’s method (corresponding to taking ε1 = 0 in Algorithm 4), and the modified Picard
scheme (3.21) In the unregularized case, instead of criterion (3.28a), we ensure that

η`,j,klin < 1e−6. (3.29)

Remark 3.6.1 (Choice of the stopping criterion in the unregularized case). We use a fixed

3.6. Numerical experiments 103

stopping criterion for the linearization in (3.29) because we would like to compare our adap-
tive strategy with an unadaptive one, which is the much more common approach. For ex-
ample, even in [114] where the solver is chosen adaptively, the authors use a fixed stopping
criterion for terminating the linearization procedure. Namely, their criterion ensures that the
difference of two consecutive iterates of the approximate measured in a iteration dependent
norm is less than 1e-7. Moreover, our choice of the value 1e-6 is partially related to the ob-
servation that in Figure 3.6 (described in detail below in §3.6.1), the linearization estimator
η`,j,klin is on the order of 1e-5 at the end of the iterations. Thus, we choose a value that at
least ensures this level of accuracy for all the numerical experiments.

3.6.1 Strictly unsaturated medium

In this test case, we seek to reproduce the results obtained in [114, §4.1]. This means we
have the following data:

• Ω = Ω1 ∪ Ω2, Ω1 = (0, 1)× (0, 1/4],Ω2 = (0, 1)× (1/4, 1)

• Uniform mesh with 40× 40× 2 elements

• T = 1

• τ = 1

• ΓD = ∂Ω ∩ {y = 1}

• ΓN = ∂Ω \ ΓD

• g = (0, 1)T

• f(x, y) =

{
0 (x, y) ∈ Ω1

0.06 cos(43πy) sin(x) (x, y) ∈ Ω2.

• p0(x, y) =

{
−y − 1/4 (x, y) ∈ Ω1

−4 (x, y) ∈ Ω2,
, s0 = S(p0)

• pD = p0|ΓD

We use the van Genuchten-Mualem model (3.8) with the parameters specified in Fig-
ure 3.5. Please note that there is only 1 timestep. We first plot the approximate pressure at
the final step of both Algorithm 4 as well as the modified Picard iteration with no regulariza-
tion, Figure 3.5. We observe that the two not only match well but are also comparable with
the results in [114, §4.1]. In this case, Newton’s method without regularization diverged,
which is consistent with what is reported in [114, §4.1].

We now look more carefully at the evolution of the estimators in the adaptive algorithm
for this example. In Figure 3.6, we plot the component estimators as a function of cumulative
linearization steps. The components all begin on the order of 0.1 on the first iteration. We see
that the linearization estimator converges very rapidly for a given value of the regularization
parameter εj := ε1 = 0.1, then εj := 0.01, 0.001 and 0.0001. Furthermore, once we lower
the regularization parameter, the regularization component estimator clearly decreases. On
the final iteration, we see the discretization and regularization estimators stabilize with a
constant gap between the two.

104 Chapter 3. Adaptive regularization for the Richards equation

Figure 3.5: [§3.6.1, van Genuchten–Mualem model (3.8) with pm = 0, SR = 0.026, SV =

0.42, κc = 0.12, α = 0.551, λ2 = 0.655, solver parameters: γreg = 0.2, γlin = 0.3, C1
ε = 0.1]

Approximate pressure pj̄,k̄n,h for the problem in §3.6.1 using Algorithm 4 with Newton’s method
and adaptive regularization ε1 = 0.1 (left) and modified Picard with no regularization ε1 = 0

(right).

0 2 4 6 8 10 12 14
10−6

10−5

10−4

10−3

10−2

10−1

100
t = 0.0 t = 1.0

ε = 0.01
ε = 0.001

ε = 0.0001

Cumulative Newton steps

ηn,j,k
dis

ηn,j,k
reg

ηn,j,k
lin

Figure 3.6: [§3.6.1, van Genuchten–Mualem model (3.8) with pm = 0, SR = 0.026, SV =

0.42, κc = 0.12, α = 0.551, λ2 = 0.655, solver parameters: γreg = 0.2, γlin = 0.3, C1
ε = 0.1,

ε1 = 0.1] Evolution of the component estimators (3.27) for the Algorithm 4 with Newton’s
method and adaptive regularization with ε1 = 0.1 applied to the test problem in §3.6.1.

3.6. Numerical experiments 105

3.6.2 Injection test

This test is inspired by the one presented in [22, §4.1]. In particular, we use the following
model parameters:

• Ω = (0, 1)2

• T = 1.0

• τ = 2.82e−2

• Quasi uniform mesh with h = 2.82e−2

• ΓD = {(x1, x2)|x1 ∈ (0, 0.3), x2 = 1}

• ΓN = ∂Ω \ ΓD

• g = (0,−1)T

• f = 0

• p0 = −1, s0 = S(p0)

• pD = 1

We use the Brooks–Corey model (3.7) with parameters specified in Figure 3.8. We note firstly
that there is a inconsistency between the trace of p0 and the imposed boundary condition
pD at t = 0. This is mathematically valid, but can cause problems for the solver as we shall
see shortly. The domain is initially “mildly dry” with S(p0) = s0 = 0.027. We remark that
we were not able to consider a smaller value of s0 as was done in, e.g., [22, 14]. It would
likely be necessary to implement their variable switching strategy for this, which we discuss
in §3.7. However, the current test still remains challenging for Newton’s method.

In Figure 3.7, the total stepwise and cumulative iterations are plotted for Algorithm 4
using Newton’s method with and without regularization as well as modified Picard without
regularization. First of all, it is clear that Newton’s method without regularization is not
feasible and we cut the solver after 300 iterations on the first step. Next, we note that
Modified Picard takes consistently more iterations than Newton solver with regularization,
resulting in an approximate 3.3x speedup at the end of the simulation (1004 iterations for
modfied Picard vs 297 for the regularized Newton solver). We also note that the number of
iterations is somewhat less stable for modified Picard with peaks of 56 iterations at t = 0.42,
and 48 iterations at t = 0.22. In contrast the regularized Newton solver takes no more than
13 iterations per timestep. In fact, this only occurs at the beginning of the simulation as we
will not explore in more detail.

In Figure 3.8 we see that Newton’s method has trouble converging for the reguarization
parameter εj = 0.1 and the linearization estimator increases during the second and third
timesteps, thus triggering the if statement on line 12 of Algorithm 4. Indeed, we see conse-
quently the algorithm recovers by simultaneously increasing the regularization parameter to
ε1 := ε1/C1

ε and then increasing the contraction factor C1
ε =

√
C0
ε . This combination allows

the estimator to converge on the following series of regularized problem until the stopping
criterion (3.28b) is achieved and the solver advances to the next timestep.

106 Chapter 3. Adaptive regularization for the Richards equation

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1,000

t (seconds)

N
um

be
r

of
ite

ra
tio

ns
Cumulative

Newton (ε1 = 0.0)
Modified Picard (ε1 = 0.0)

Newton (ε1 = 0.1)

0 0.2 0.4 0.6 0.8 1

0

100

200

300

t (seconds)

N
um

be
r

of
ite

ra
tio

ns

Stepwise

Figure 3.7: §3.6.2, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2, solver parameters
γreg = 0.2, γlin = 0.3] Comparison of the total cumulative and stepwise iterations for the
three strategies.

5 10 15 20 25 30

10−3

10−2

10−1

100
t = 0.028 t = 0.057 t = 0.085

ε = 0.316

ε = 0.1

ε = 0.032

ε = 0.01

ε = 0.003

ε = 0.316

ε = 0.1

ε = 0.032

ε = 0.01

ε = 0.003

Cumulative Newton steps

ηn,j,k
dis

ηn,j,k
reg

ηn,j,k
lin

40 45 50 55 60 65

10−4

10−3

10−2

10−1

100
t = 0.113 t = 0.141 t = 0.17 t = 0.198

ε = 0.01
ε = 0.001

ε = 0.01
ε = 0.001

ε = 0.01
ε = 0.001

Cumulative Newton steps

Figure 3.8: [§3.6.2, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2.239, solver parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1, ε1 = 0.1] Plots of the evolution of the estimators on the second
and third timesteps (left) and of the fifth, sixth and seventh timesteps (right).

We now consider the effect of the regularization on the solution. In particular, in Fig-
ure 3.9, we compare side by side plots of the saturation profile for the regularized and un-
regularized solutions. The profiles match well, and we also note that the regularized profile
appears smoother at the interface.

3.6.3 Realistic test

In this test, we take inspiration from [94, §6.3] by using the following model parameters:

• Ω = (0, 1)2

• T = 1

• τ = 2.02e−2

• Quasi uniform mesh with h = 2.02e−2

3.6. Numerical experiments 107

Figure 3.9: [§3.6.2, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2.239, solver parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1] Two snapshots comparing the evolution of the saturation
field s = S(pj̄,k̄n,h) using the Algorithm 4 with Newton’s method and adaptive regularization
ε1 = 0.1 (left) and modified Picard with no regularization ε1 = 0 (right).

108 Chapter 3. Adaptive regularization for the Richards equation

• g = (−1, 0)T

• pL(x) =
(pout−pin

0.5

)
x

• Q =

(
cos θ − sin θ
sin θ cos θ

)
• Kφ = 0.1

• pout = −2.0

• pin = −0.2

• pD = p0|ΓD

where the initial condition and boundary conditions are fully specified with the help of the
schema in Figure 3.10. We use the Brooks–Corey model (3.7) with parameters specified in
Figure 3.12.

We begin by comparing the stepwise and cumulative number of iterations in Figure 3.11.
We first remark that Newton’s method without regularization takes an unreasonable number
of iterations on the first step (we stop the solver at 300 iterations). Modified Picard is able
to finish the simulation but has some big peaks namely 208 iterations for t = 0.82, 101
iterations at t = 0.54, and 77 iterations at t = 0.78. In contrast, the number of iterations
per step for the regularized Newton solver does not exceed 20. This gain is reflected clearly
when comparing the cumulative number of iterations where by the end, modified Picard has
taken almost 5-times as many iterations as the regularized Newton solver (2359 vs. 576).

To better understand how the adaptive algorithm works, we refer to Figure 3.12. In the
left figure we see that no problems are encountered at the timesteps t = 0 through t = 0.061.
In the right figure we plot the estimators around the time of the contact with the interface
at t = 0.445–0.486 and we see that the linearization estimator begin to increase on the first
timestep for ε = 0.001. The condition of the if statement on line 12 is then true, resetting to
the result at the previous value of ε = 0.01, and increasing the contraction factor Cjε thereby
decreasing the “distance” between the two consecutive regularized problems. This allows the
algorithm to proceed, albeit with more intermediate values of ε, to the end of the timestep.

Finally, we compare snapshots of the saturation for two timesteps t = 0.40 and t = 0.95

in Figure 3.13. As in the previous examples, the two profiles are comparable with the
regularized version appearing smoother at the boundary of the evolving interface.

3.6. Numerical experiments 109

Figure 3.10: Schematic of the boundary and initial conditions for the test problem considered
in §3.6.3.

0 0.2 0.4 0.6 0.8 1

0

500

1,000

1,500

2,000

2,500

t (seconds)

N
um

be
r

of
ite

ra
tio

ns

Cumulative

Newton (ε1 = 0.0)
Modified Picard (ε1 = 0.0)

Newton (ε1 = 0.1)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

t (seconds)

N
um

be
r

of
ite

ra
tio

ns

Stepwise

Figure 3.11: [§3.6.3, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2, solver parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1, ε1 = 0.1] Comparison of the total cumulative and stepwise
iterations for the three strategies.

110 Chapter 3. Adaptive regularization for the Richards equation

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100
t = 0.0 t = 0.02 t = 0.04 t = 0.061

ε = 0.01

ε = 0.001

ε = 0.01

ε = 0.001

ε = 0.0001

ε = 0.01

ε = 0.001

ε = 0.0001

Cumulative Newton steps

ηn,j,k
dis

ηn,j,k
reg

ηn,j,k
lin

275 280 285 290 295

10−3

10−2

10−1

100
t = 0.445 t = 0.466

ε = 0.01

ε = 0.001

ε = 0.003

ε = 0.001

ε = 0.0003

ε = 0.0001

Cumulative Newton steps

Figure 3.12: [§3.6.3, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2, solver parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1, ε1 = 0.1] Evolution of the estimators on the first and second
timesteps (upper) and of the 22nd, 23rd and 24th timesteps (lower).

Figure 3.13: [§3.6.2, Brooks–Corey model (3.7) with pM = −0.2, λ1 = 2, solver parameters
γreg = 0.2, γlin = 0.3, C1

ε = 0.1] Two snapshots comparing the evolution of the saturation
field s = S(pj̄,k̄n,h) using the adaptive regularization Algorithm 4 with Newton’s method and
ε1 = 0.1 (left) and modified Picard with ε1 = 0 (right).

3.7. Conclusions and future work 111

3.7 Conclusions and future work

In this work, we introduced an adaptive regularization algorithm to iteratively solve the
Richards equation. The algorithm works with regularized versions of the nonlinearities
present in Richards equation to improve the performance of Newton’s method in solving
the resulting nonlinear system. The proposed algorithm adaptively controls the level of reg-
ularization based on a posteriori error estimators. The proposed adaptive algorithm is able to
converge where the unregularized version takes excessively many iterations. Furthermore, we
compare the performance with the modified Picard scheme which is specific to the Richards
equation. In all test cases the adaptive algorithm with regularization outperforms modified
Picard and produces a perceptibly comparable solution.

In terms of future work, we note that our proposed algorithm is not able to converge in
the dry regime s� 1. This is a well known difficulty and has been shown to be ameliorated
by variable switching techniques, see [22] and references therein. We would like to emphasize
that our strategy is not incompatible with these methods, and that we would like to test
a combination of regularization and variable switching to tackle even more difficult bench-
mark problems. Another future direction would be to study two independent regularization
parameters for the functions κε and Sε in the case of the Brooks–Corey model.

Chapter 4

Implementation of the equilibrated
flux

In this section, we introduce a memory efficient, parallel implementation of the equilibrated
flux, already used extensively throughout this thesis. To simplify notation, we consider
construction the equilibrated flux for the Poisson equation with homogeneous boundary
conditions, i.e., for a polygonal domain Ω ⊂ R2,

−∆u = f in Ω

u = 0 on ∂Ω.
(4.1)

4.1 Notation and problem statement

In this context we introduce all the necessary notation to describe the equilibrated flux and
is subsequent resolution. We consider a fixed triangular conforming mesh Th = ∪K{K} such
that ∪K∈ThK = Ω. Let Eh denote the set of edges in the mesh and Vh denote the set of
vertices. We decompose these into the of interior edges E int

h (respectively interior vertices
V int
h) contained in the interior of Ω and boundary edges Eext

h (respectively boundary vertices
Vext
h) lying on ∂Ω. We introduce the nodal patch Ta of a node a ∈ Vh by Ta := {K ∈ Th :

a ∈ K}. We denote the corresponding domain of Ta by ωa := {x ∈ intK : K ∈ Ta} ⊂ Ω.
See Figure 4.1 for an illustration. We assume that we work with a fixed polynomial degree
k ≥ 0. Next, for an element K ∈ Th, we introduce the Raviart–Thomas–Nédélec [23] mixed
finite element space,

Vh(K) := [Pk(K)]d + xPk(K), (4.2)

as well as the H(div,Ω)-conforming counterpart for a collection of elements T ⊆ Th, and its
corresponding subdomain ω ⊆ Ω

Vh(ω) := {vh ∈ H(div, ω) : vh
∣∣
K

∈ Vh(K) ∀K ∈ T }, (4.3)

as well as the broken space

Qh(ω) := {v ∈ L2(ω) : v
∣∣
K

∈ Pk(K) ∀K ∈ T }. (4.4)

Let H1(Th) be the broken (elementwise) H1 space. The following definition will be the
central object of study for this chapter.

4.2. Linear algebra representation 113

Figure 4.1: A nodal patch of elements and its associated hat function.

Definition 4.1.1 (Equilibrated flux). Let uh ∈ H1(Th) satisfy the hat function orthogonality

(∇uh,∇ψa)ω = (f, ψa)ωa ∀a ∈ V int
h . (4.5)

For each node a ∈ Vh, determine ςa ∈ V a
h and ra ∈ Qa

h by solving

(ςa,vh)ωa − (rh,∇·vh)ωa = −(ψa∇uh,vh)ωa , (4.6a)
(∇·ςa, qh)ωa = (fψa −∇uh · ∇ψa, qh)ωa , (4.6b)

for all (vh, qh) ∈ V a
h ×Qa

h. The spaces are defined as

V a
h := {vh ∈ Vh(ωa) : vh · nωa = 0 on ∂ωa},
Qa
h := {qh ∈ Qh(ωa) : (qh, 1)ωa = 0},

a ∈ V int
h , (4.7a)

V a
h := {vh ∈ Vh : vh · nωa = 0 on ∂ωa \ ∂Ω},
Qa
h := Qh(ωa),

a ∈ Vext
h . (4.7b)

The global flux is then defined by
ςh :=

∑
a∈Vh

ςa. (4.8)

4.2 Linear algebra representation

Once a basis {va
i }
na
i=1 of V a

h and {qa
i }
ma
i=1 of Qa

h are chosen, We can also write the patch system
(4.6) in matrix form,

AaXa = Fa (4.9)

with the block decomposition

Aa =

(
Ma −BT

a
Ba 0

)
, Xa =

(
xa
xa

)
, Fa =

(
Fa
Fa

)
. (4.10)

The block matrices Ma ∈ Rna×na and Ba ∈ Rma×na are given by

[Ma]ij := (va
j ,v

a
i)ωa (4.11a)

[Ba]ij := (∇·va
j , q

a
i)ωa , (4.11b)

114 Chapter 4. Implementation of the equilibrated flux

while the right hand side vectors Fa ∈ Rna and Fa ∈ Rma are given by

[Fa]j := −(ψa∇uh,vj)ωa , (4.12a)
[Fa]j := (fψa −∇uh · ∇ψa, qj)ωa . (4.12b)

The degrees of freedom for the local equilibrated flux ςa are contained in the vector xa.

4.3 Naive implementation with dynamic allocations

We first consider in Algorithm 5 a possible implementation of the equilibrated flux assembly
Definition 4.1.1 at a very high level. In this implementation, we assume that we have access to
a finite element library that can create the required spaces V a

h and Qa
h as well as evaluate the

bilinear forms in (4.11) and (4.12). While this algorithm is very simple to write down, there
are some subtleties to consider. Firstly, the geometrical and topological patch information
needs to be extracted from the mesh. Many libraries do not support this, as it is not part
of the standard assembly procedure. Next, on Line 7, the local to global degree of freedom
(DOF) mapping between the patch and the global DOF index space needs to be accessible.
Finally, the question of boundary conditions and imposing the mean free condition are quite
technical, and we postpone them for the moment.

Even if all the aforementioned subtleties can be addressed, there is still a major drawback
of the implementation in Algorithm 5. Namely, this algorithm inherently requires many
dynamic memory allocations inside the loop on patches. Firstly, at each iteration of the
loop on line 3, the finite element spaces are rebuilt completely from scratch, including in
particular all the information pertaining to the reference element (which is often the most
heavyweight in terms of allocation). In addition, on line 4 the matrix and vectors associated
to the patch system are not reused between iterations, invoking more dynamic allocations.

Dynamic memory allocation can be a significant performance bottleneck due to overhead
and data locality. Firstly, the process of allocating and deallocating memory dynamically
involves system calls, which are substantially slower compared to accessing stack or pre-
allocated heap memory. This added computational overhead is particularly problematic in
scenarios involving frequent allocations/deallocations, such as in tight loops or high-frequency
function calls. Secondly, modern processors use a hierarchy of caches to speed up access to
frequently used data. Good data locality means that the data a program needs is either
already in the cache or close together in memory, allowing for efficient cache usage. Dynamic
memory allocation can lead to poor data locality because it often allocates memory in a
non-contiguous manner. Objects that are logically related in a program might end up being
physically scattered in memory. This scattering can result in more cache misses (where the
required data is not in the cache), leading to slower performance as the processor has to
fetch data from the slower main memory. These considerations are all the more critical in a
shared memory parallelism paradigm (which is the one we consider here).

In shared memory parallelism, the extensive use of dynamic memory allocation can lead
to bus saturation, a critical performance bottleneck. This issue arises from the heightened
memory traffic caused by multiple cores simultaneously accessing and managing memory,
on top of the overhead of allocation and deallocation operations. As each core competes
for memory resources, the shared bus, which facilitates communication between the CPU
cores and the memory subsystem, becomes increasingly congested. This congestion not only

4.4. High level view of the efficient algorithm 115

slows down memory operations due to exceeded bandwidth limits but also strains the cache
coherency mechanisms. Maintaining cache coherency, essential in multicore systems for
consistent memory views across cores, demands additional memory access and bandwidth,
further contributing to the saturation of the buses and impacting overall system performance.

These considerations are independant of the programming language, and apply just as
much to a statically compiled language with manual memory management like C as to
Julia which uses just-in-time compilation and is garbage collected. Thus, our approach to
reduce dynamic memory allocations are applicable and relevant to any choice of language
for someone interested in serial performance and even moreso for parallel performance.

We therefore reduce dynamic memory allocations in the following ways

1. Assemble cellwise versions of (4.11) and (4.12)

2. Introduce lightweight mappings from the cell DOF index space to the patch DOF index
space

3. Reuse patch-local vectors and matrices

In the following section we show how these three steps lead to a much more efficient algorithm,
with very few, or even zero memory allocations inside the main loop on patches.

Algorithm 5: Naive equilibrated flux assembly
Input: Mesh Th, approximate flux −∇uh, source term f

Output: Global equilibrated flux ςh
1 Initialize ςh ∈ Vh(Ω)

2 for each node a in Vh do
3 Instantiate the finite element spaces V a

h and Qa
h of (4.7)

4 Allocate patch matrix and vector Aa and Fa
5 Populate Aa and Fa using V a

h , Q
a
h

6 Solve Xa = A−1
a Fa

7 Scatter xa = DOFs(ςa) to DOFs(ςh)

8 return ςh

4.4 High level view of the efficient algorithm

In this section we consider a more involved algorithm that relies less on the builtin function-
ality provided by a standard finite element library. However, the result is a more efficient
algorithm that is also more amenable to shared memory paralellization. As explained in the
previous section, one key to the efficient implementation will be to perform an initial cellwise
assembly. For an element K and bases {vKi }nKi=1 of Vh(K) as well as {qKi }mKi=1 of Qh(K), we
define the cell block matrices MK ∈ RnK×nK and BK ∈ RmK×nK by

[MK]ij := (vKj ,v
K
i)K (4.13a)

[BK]ij := (∇·vKj , qKi)K . (4.13b)

The right-hand sides of (4.6) are slightly more involved because they depend on the hat
functions ψa, of which there are d+ 1 for a d-dimensional simplex K. Thus, the right-hand

116 Chapter 4. Implementation of the equilibrated flux

sides are also indexed by the node a,

[F a
K]j := −(ψa

∣∣
K
∇uh,vKj)K , (4.14a)

[F a
K]j := (fψa

∣∣
K
−∇uh · ∇

(
ψa
∣∣
K

)
, qKj)K . (4.14b)

We now present Algorithm 6, which starts with a loop on cells creating the objects
in (4.13) and (4.14). This loop is a common paradigm in finite element codes, and in
certain cases this functionality is exposed. This is indeed the case in Gridap.jl, and in our
implementation this part of the algorithm relies mostly on existing technology in the library.
We discuss this in more detail in §4.6.

The next step of the algorithm is the pre-allocation of Aa and Fa, on line 5. This is
nontrivial since the dimensions of the patch problems are variable, and we will address this
in §4.7. Next, we see that we only perform read operations on the matrices MK , BK inside
the loop on patches. This effectively reduces the number of allocations inside the loop on
patches to zero. We also remark that many details are missing, and in particular we have
not discussed the scatters on lines 10, 11, and 14. This requires careful handling of indices.
There is also some index juggling required in the imposition of the boundary conditions on
line 12. We will give more details about managing indices in §4.8. We also need to remove
allocations due to the resolution of the linear system on line 13, which we discuss in §4.7.
A prerequisite for all the aforementioned steps is some topological information about the
patches, which we discuss in §4.5.

Algorithm 6: Efficient equilibrated flux assembly
Input: Mesh Th, approximate flux −∇uh, source term f

Output: Global equilibrated flux ςh
// Loop on cells

1 for each cell K in Th do
2 Build the cellwise matrices MK , BK of (4.13)
3 for each node a in the cell K do
4 Build the cellwise vectors F a

K , F a
K of (4.14)

5 Allocate Aa,Fa
6 Initialize ςh ∈ Vh(Ω)

// Loop on patches
7 for each node a in the mesh do
8 Zero out Aa and Fa
9 for each cell K ∈ Ta do

10 Scatter MK , BK to Aa
11 Scatter F a

K ,F
a
K to Fa

12 Impose boundary conditions on Aa,Fa
13 Solve Xa = A−1

a Fa
14 Scatter xa = DOFs(ςa) to DOFs(ςh)

15 return ςh

4.5. Topological patch information 117

4.5 Topological patch information

We construct a small type hierarchy that contains the necessary topological information
pertaining to patches.

1 abstract type Patch{T} end

2

3 struct PatchData{T}

4 node_to_offsets::Vector{T}

5 patch_cell_ids::Vector{T}

6 bdry_edge_ids::Vector{T}

7 all_edge_ids::Vector{T}

8 end

9

10 struct DirichletPatch{T} <: Patch{T}

11 data::PatchData{T}

12 end

13

14 struct InteriorPatch{T} <: Patch{T}

15 data::PatchData{T}

16 end

The two types of patches DirichletPatch and InteriorPatch corresond to the differences
in the definitions of the spaces (4.7). The PatchData struct contains topological information
related to the patch which is extracted through the Gridap.Geometry.get_faces function.
For example, node_to_cell = Geometry.get_faces(topo, 0, 2) gives a vector of vectors
for each node in the mesh to the ids of the cells it belongs to.

4.6 Cellwise assembly

As established in §4.4, we want to compute cellwise matrices and vectors of (4.13) and (4.14).
To achieve this, we first build the spaces Vh(K) and Qh(K) on the reference element and
then (lazily) extend it to the whole mesh Th via the following code

1 # Assume we already have a desired polynomial order k

2 # and Triangulation 𝓣ₕ

3 reffeRT = ReferenceFE(raviart_thomas, Float64, k)

4 reffeP = ReferenceFE(lagrangian, Float64, k)

5 # Raviart−Thomas space for the flux

6 RT_space = FESpace(𝓣ₕ, reffeRT, conformity = :HDiv)

7 # Broken L^2 space for the Lagrange multiplier

8 L2_space = FESpace(𝓣ₕ, reffeP, conformity = :L2)

With these spaces in hand, we can evaluate bilinear forms (lazily) cell-wise on the mesh. The
ingredients for this will be the basis of these respective spaces, as well as a CellQuadrature
to perform cellwise integration at quadrature points. We create these objects in the next
snippet.

1 Qₕ = CellQuadrature(𝓣ₕ, quad_order)

2 dvp = get_trial_fe_basis(L2_space)

3 duRT = get_fe_basis(RT_space)

4 dvRT = get_trial_fe_basis(RT_space)

The interface for evaluating the bilinear forms cellwise is then very straightforward,

1 cell_mass_mats = ∫(duRT ⋅ dvRT) ∗ Qₕ

2 cell_mixed_mats = ∫((∇ ⋅ duRT) ∗ dvp) ∗ Qₕ

118 Chapter 4. Implementation of the equilibrated flux

These two objects are then the mass matrices {MK}K∈Th , and the second contains the mixed
form matrices {BK}K∈Th as in of (4.13).

The right-hand sides are more involved due to the fact that in two dimensions the hat
functions are supported on three triangles. First, we consider the two following helper
functions to get the hat basis.

1 function _get_hat_function_cellfield(i, basis_data, 𝓣ₕ)

2 cell_to_ith_node(c) = c[i]

3 A = lazy_map(cell_to_ith_node, basis_data)

4 return GenericCellField(A, 𝓣ₕ, ReferenceDomain())

5 end

6

7 function _get_hat_functions_on_cells(𝓣ₕ)

8 # Always order 1

9 reffe = ReferenceFE(lagrangian, Float64, 1)

10 V0 = TestFESpace(𝓣ₕ, reffe; conformity = :H1, dirichlet_tags = "boundary")

11 fe_basis = get_fe_basis(V0)

12 bd = Gridap.CellData.get_data(fe_basis)

13 return bd

14 end

Once these two functions are in place to extract the hat functions, we can assemble the
right-hand sides: one for each hat function.

1 hat_fns_on_cells = _get_hat_functions_on_cells(𝓣ₕ)

2 RHS_RT_form(ψ) = ∫(-ψ ∗ (∇uₕ ⋅ dvRT))∗Qₕ

3 RHS_L²_form(ψ) = ∫((f ∗ ψ - ∇uₕ ⋅ ∇(ψ))∗dvp)∗Qₕ

4 cur_num_cells = num_cells(𝓣ₕ)

5 # Hardcoded for 2D

6 nodes_per_cell = 3

7 for i = 1:nodes_per_cell

8 ψᵢ = _get_hat_function_cellfield(i, hat_fns_on_cells, 𝓣ₕ)

9 cell_RHS_RTs[i] = RHS_RT_form(ψᵢ)

10 cell_RHS_L²s[i] = RHS_L²_form(ψᵢ)

11 end

These arrays correspond to {F a
K}K∈Th and {F a

K}K∈Th of (4.14). We add a Lagrange
multiplier row to handle the mean free condition in the case of interior patches and collect
all these objects in a NamedTuple

1 cell_Λ_vecs = ∫(1 ∗ dvp) ∗ Qₕ

2 co = (; cell_mass_mats, cell_Λ_vecs, cell_mixed_mats, cell_RHS_RTs, cell_RHS_L²s)

4.7 Patch-level linear algebra

In this section, we detail our strategy for reusing the matrices and vectors of the patch system
between iterations. The dimensions of the spaces on the reference element are known and
calculated via the following:

1 function get_dofs_per_cell(k, d)

2 RT_dofs_per_cell = (k + d + 1) ∗ binomial(k + d - 1, k)

3 L²_dofs_per_cell = binomial(k + d, k)

4 (RT_dofs_per_cell, L²_dofs_per_cell)

5 end

Next, we need to know the maximum number of cells in a patch. We obtain this information
during the initial creation of the Patch objects of §4.5, which we call max_patch_cells.

4.8. The DOF manager 119

1 (RT_dofs_per_cell, L²_dofs_per_cell) = get_dofs_per_cell(k, d)

2 M = zeros(RT_dofs_per_cell ∗ max_patch_cells, RT_dofs_per_cell ∗ max_patch_cells)

3 B = zeros(RT_dofs_per_cell ∗ max_patch_cells, L²_dofs_per_cell ∗ max_patch_cells)

4 A = [M B; transpose(B) zeros(size(B)[2], size(B)[2])]

5 # Pre−allocate the pivot vector for the matrix A

6 ws = LUWs(A)

7 RHS_RT = zeros(max_patch_cells ∗ RT_dofs_per_cell)

8 RHS_L² = zeros(max_patch_cells ∗ L²_dofs_per_cell)

9 RHS = [RHS_RT; RHS_L²]

10 Λ = similar(RHS_L²)

11 σ_loc = similar(RHS)

As for the cellwise objects, we collect everything into

1 linalg = (; M, B, A, ws, Λ, RHS_RT, RHS_L², RHS, σ_loc)

Finally, we note that we also instantiate a pivot vector ws. This is required for the library
FastLapackInterface.jl which allows efficient (in terms of allocation) calls to the under-
lying LAPACK solver. This is ultimately used in the following (during the loop on patches
once these objects are correctly populated)

1 A_free_dofs = @view linalg.A[1:n_free_dofs, 1:n_free_dofs]

2 RHS_free_dofs = @view linalg.RHS[1:n_free_dofs]

3 σ_free_dofs = @view linalg.σ_loc[1:n_free_dofs]

4 ldiv!(σ_free_dofs, LU(LAPACK.getrf!(linalg.ws, A_free_dofs)...), RHS_free_dofs)

where n_free_dofs depends on the patch.

4.8 The DOF manager

We now arrive at the most challenging part of the assembly: the treatment of the DOFs.
In particular, the cell objects of §4.6 are all cell-locally indexed. The Gridap.jl library
exposes the so-called local-to-global map that is standard in finite element codes. This map
allows the scatter procedure from the cell-locally indexed objects to objects with mesh global
indexing. We will be able to reuse this information to create a local-to-global map where
the global index space is a patch ωa and not the full mesh Th. To this end, we introduce the
following struct

1 struct DOFManager{T, M <: Matrix{T}, V <: Vector{T}}

2 # All the cell dofs stored as a matrix

3 all_cell_dofs_gl::M

4 # The current patch dofs in the global ennumeration

5 patch_dofs_gl::V

6 # The current free dofs in patch local ennumeration for slicing

7 # into the patch local objects

8 free_patch_dofs_loc::V

9 # The current cell's dofs in the patch local ennumeration

10 cell_dofs_loc::V

11 end

This struct is built on the cell-local to mesh-global map to construct cell-local to patch-
global maps for each patch. The field all_cell_dofs_gl is created via the function
Gridap.FESpaces.get_cell_dof_ids which takes a FESpace, e.g., RT_space or L2_space,
and returns an ncells × ndofs lazy vector of vector representing the cell to mesh-global
map. Here, ndofs represents the number of dofs on a cell, e.g., nK = dim(Vh(K)) or
mK = dim(Qh(K)). The other fields of the DOFManager are updated dynamically, but with

120 Chapter 4. Implementation of the equilibrated flux

no memory allocations using the empty! and push! methods (the convention in Julia is
to append non-allocating function names with an exclamation point and modify the first
argument). For example, the following function updates the cell_dofs_loc in place:

1 function update_cell_local_dofs!(dm::DOFManager, cellid)

2 empty!(dm.cell_dofs_loc)

3 for id in cur_cell_dofs_gl

4 new_id = findfirst(n -> n == id, dm.patch_dofs_gl)

5 new_id isa Nothing && error("Cannot update cell local dofs!")

6 push!(dm.cell_dofs_loc, new_id)

7 end

8 end

4.9 The loop on patches

We now consider the heart of the code, i.e., the loop on patches. The efforts up to this point
have been so that this part of the algorithm can be completely free of memory allocations
so that the shared memory parallelism is efficient. We only show a serial version of this loop
for simplicity.

1 for patch in patches

2 # Change the local numbering for the current patch

3 update_patch_dofs!(dm_RT, patch.data)

4 update_patch_dofs!(dm_L², patch.data)

5 # Scatter the cell based matrices in cell_objects to linalg

6 matrix_scatter!(linalg.M, co.cell_mass_mats, dm_RT, dm_RT, patch.data)

7 matrix_scatter!(linalg.B, co.cell_mixed_mats, dm_L², dm_RT, patch.data)

8 # Idem for vectors

9 vector_scatter!(linalg.RHS_RT, co.cell_RHS_RTs, dm_RT, patch.data)

10 vector_scatter!(linalg.RHS_L², co.cell_RHS_L²s, dm_L², patch.data)

11 single_vector_scatter!(linalg.Λ, co.cell_Λ_vecs, dm_L², patch.data)

12 # Now that scatter to local system is complete, remove fixed dofs

13 remove_homogeneous_neumann_dofs!(dm_RT, patch.data, RT_order)

14 # Count the free dofs for this patch once the BCs are imposed

15 n_free_dofs_RT = count_free_dofs(dm_RT)

16 n_free_dofs_L² = count_free_dofs(dm_L²)

17 n_free_dofs = n_free_dofs_RT + n_free_dofs_L²

18 # Use the sub−matrices and vectors generated from the scatters to build

19 # the monolithic objects

20 setup_patch_system!(linalg.A, linalg.RHS, linalg, dm_RT, dm_L²)

21 # Handle the pure Neumann case

22 if patch isa InteriorPatch

23 add_lagrange!(linalg.A, dm_RT, dm_L², linalg.Λ)

24 n_free_dofs += 1

25 end

26 solve_patch!(linalg, n_free_dofs)

27 # Scatter to the global FE object's free_values

28 scatter_to_global_σ!(σ_gl_chunk, dm_RT, linalg.σ_loc, n_free_dofs_RT)

29 end

30 end

First, we assume we have created DOFManagers dm_RT and dm_L2 out of their respective
spaces. The various scatter functions are non-allocating. For example, vector_scatter is
given by

1 function vector_scatter!(patch_vec, cell_vecs, dm, patch_data)

2 fill!(patch_vec, 0)

3 node_to_offsets = patch_data.node_to_offsets

4 for (i, cellid) in enumerate(patch_data.patch_cell_ids)

5 cell_vec_all_nodes = @view cell_vecs[cellid, :]

6 offset = node_to_offsets[i]

7 update_cell_local_dofs!(dm, cellid)

4.10. Performance study for the estimator 121

8 cell_vec = cell_vec_all_nodes[offset]

9 for i in axes(cell_vec, 1)

10 patch_vec[dm.cell_dofs_loc[i]] += cell_vec[i]

11 end

12 end

13 end

4.10 Performance study for the estimator

In this section we discuss the cost associated to the evaluation of the estimators in (1.91).
We constrast this with the cost of solving the linearization step (1.30). In particular, we
consider the cost of assembling the flux reconstruction given in (1.71) since this is by far
the most expensive part of calculating the estimators. The patchwise problems are mutually
independent and therefore can be solved in parallel. We use the threading model in Julia
to possibly take advantage of this parallelism in the results presented below. We also use
routines from the Gridap.jl library [7, 118] in the assembly with all the details described
in the previous sections. The tests in this section were carried out on a cluster with 20
dual socket Cascade Lake Intel Xeon 5218 nodes and 192GB of 2667 MHz RAM. We do not
discuss any gains due to significantly reducing the number of linearization iterations due to
our adaptive stopping criteria.

For the setting of §1.10.1, we plot the time to assemble the flux via (1.71) versus the
time required to solve the linearization step (1.30) by a direct LU solver in Figure 4.2 for
polynomial degrees p = 1, 2, 3, 4. We use differently-sized meshes for the various polynomial
degrees to have a roughly constant number of DOFs. We first remark that the assembly time
for (1.71) is linear in the number of DOFs for sufficiently many DOFs. This is in contrast
to the time to solve the linearization step (1.30), which is superlinear as we use a direct
LU solver. Next, we observe that the total time to assemble the flux decreases with more
processors for sufficiently many DOFs, and that this is more pronounced for p ≥ 2.

We now consider Table 4.1, where we tabulate the percentage of the total runtime, i.e.,

Pf :=
Tf

Tf + TN
, (4.15)

where Tf is the time for assembling the flux and TN is the time for solving the linearization
step. We calculate this quantity for the largest number of DOFs that we consider, approxi-
mately 1.25e6 DOFs for the various polynomial degrees. We see that this value is less than
0.5 (meaning the flux assembly is cheaper than solving the linearization step) for p ≥ 2 and
8 or more processors. The table also reflects a monotone decrease of Pf as we increase the
number of processors, which is more pronounced for p ≥ 2. We conclude that the cost of the
estimator can be effectively reduced by parallelization (adding computational resources), at
least for problems of a sufficient size.

122 Chapter 4. Implementation of the equilibrated flux

103 104 105 106

10−2

10−1

100

101

102

DOFs

T
im

e
(
s
)

p = 1

1 processor

2 processors

4 processors

8 processors

16 processors

O(DOFs)
Linearization step

103 104 105 106

10−2

10−1

100

101

102

DOFs

T
im

e
(
s
)

p = 2

1 processor

2 processors

4 processors

8 processors

16 processors

O(DOFs)
Linearization step

103 104 105 106

10−2

10−1

100

101

102

DOFs

T
im

e
(
s
)

p = 3

1 processor

2 processors

4 processors

8 processors

16 processors

O(DOFs)
Linearization step

103 104 105 106

10−2

10−1

100

101

102

DOFs

T
im

e
(
s
)

p = 4

1 processor

2 processors

4 processors

8 processors

16 processors

O(DOFs)
Linearization step

Figure 4.2: Comparison between solving linearization step (1.30) and assembling the equili-
brated flux via (1.71) for different polynomial degrees p and different numbers of processors.

4.10. Performance study for the estimator 123

Table 4.1: Percentage of total runtime (4.15) for 1.25e6 DOFs.

p
Processors

1 2 4 8 16
1 87% 81% 74% 66% 62%
2 81% 70% 58% 45% 39%
3 81% 68% 54% 41% 28%
4 85% 74% 61% 45% 33%

Chapter 5

An adaptive iterative refinement
multigrid method

5.1 Introduction

Double precision (FP64) floating point numbers have long been the gold standard for sci-
entific computations. However, recently there has been a great deal of interest in mixed
precision algorithms, i.e. incorporating single precision (FP32) and lower (FP16 and even
FP8). Mixed precision algorithms judiciously blend different numerical precision levels within
a computation, allowing to retain the original accuracy while still performing many opera-
tions in the lower precision. By using lower precision, the memory footprint of the algorithm
can be reduced substantially.

A big driver for the interest in mixed precision algorithms is the reduced memory footprint
(half the bytes in the case of single vs. double precision for example) that comes with
lower precision formats. This is especially important for memory-bound kernels for which
the bottleneck is the time required to move data through the memory hierarchy rather to
perform actual floating point operations (FLOPs) on the data. Many kernels in scientific
computing including sparse matrix-vector multiplication are memory-bound [128, 125]. This
is not suprising considering on modern computer architectures, the disparity between the
fast processing speeds of modern CPUs and the slower data retrieval times from memory.
CPUs, often operating at speeds measured in GHz, can perform billions of cycles per second,
with each cycle taking just a fraction of a nanosecond. In contrast, accessing data from main
memory (DRAM) typically takes tens to hundreds of nanoseconds.

While mixed precision can have great benefits in terms of savings for memory bound
kernels, the inherent challenge of using lower precision is its reduced robustness with respect
to ill-conditioning. More precisely, lower precision formats, with fewer bits for number rep-
resentation, result in greater rounding errors (especially in operations like subtraction), and
a heightened sensitivity to perturbations, see e.g. [71] and references therein. These limi-
tations make lower precision unsuitable for accurately resolving ill-conditioned problems, as
the accumulated errors from reduced precision can lead to significant deviations from correct
results, undermining the reliability of the computations.

Specifically in the context of solving linear systems, a mixed precision algorithm that seeks
to retain robustness is iterative refinement, first introduced in [124]. Iterative refinement is
an iterative method consisting of an inner solver and a residual correction. In particular, an
equation for the error is solved in lower precision and the residual calculation is computed

5.1. Introduction 125

in higher precision, see Algorithm 7. The basic tenant of iterative refinement is that solving
for the correction generally requires less precision since the entries of the residual are on a
smaller order compared to the right hand side b. Since the residual is small, and if A is not
too ill-conditioned, the correction y should also be small. Furthermore, if y is small, then the
rounding errors in computing y should be negligible when compared to the rounding errors
in x. Iterative refinement has been studied in the context of direct solvers [124, 38], Krylov
subspace methods e.g. in [27, 26], and more recently in [61, 88, 115] for multigrid methods.

Algorithm 7: Iterative refinement
1 Input: initial guess x0, A, b, high_precision, low_precision, tol
2 i := 0, r0 := b−Ax0

3 while ‖ri‖ > tol do
4 ri := b−Axi ∗ Compute residual in high precision
5 yi := InnerSolve(A, ri) ∗ Compute correction in low precision
6 xi+1 := xi + yi ∗ Update in high precision
7 i := i+ 1

In the context of iterative refinement algorithms, the issue of stopping criterion is cen-
tral [5]. However, most standard stopping criterion are based on the algebraic residual vector
b−Axi and therefore scale with the true error as some function of the matrix condition num-
ber. In this work we will use a stopping criteria based on a computable a posteriori estimator
of the error evaluated directly in the energy (A) norm.

To compute our error estimator, we choose a particular inner solve as a special case of
the geometric multigrid method propsed in [91, 89] and in the PhD thesis [90]. This version
of geometric multigrid has several advantages: 1) there are no pre-smoothing steps and only
one post-smoothing step; 2) the smoother is a simple Jacobi smoother in the lowest order
case and block-Jacobi in general; 3) the solver is p-robust, that is, the contraction property
of the solver is independent of the polynomial order p; 4) the solver has a built-in a posteriori
estimator. This last property will be crucial for us, as we will design an adaptive algorithm
based on this estimator. an a-posteriori estimator that is equivalent to the true error (efficient
and reliable) and in particular is constant free in the lower bound [91]. Furthermore, the
contraction factor for this method satisfies explicit bounds that make it attractive from the
point of view of analysis.

The main results of this chapter are 1) the introduction of an iterative refinement variant
where the stopping criterion is based on a rigorous estimator of the algebraic energy error;
2) the validation of a performance model of a matrix-vector product based inner solver;
and 3) the design of an adaptive algorithm that is more robust for highly ill-conditioned
problems while automatically switching the precision if needed and safe guarding the overall
procedure. The rest of the chapter is organized as follows. In §5.2 we present our continous
model problem and its discretization as well as recalling some basic elements from geometric
multigrid. In §5.3 we develop estimates for the compression of low precision for sparse CSC
matrices and present numerical speedup results to estimate best possible gains. In §5.4 we
show an example of divergence of iterative refinement and propose an adaptive safeguarded
version backed with numerical evidence. Finally, we present our conclusions in §5.5.

126 Chapter 5. An adaptive iterative refinement multigrid method

5.2 Model problem and discretization

The linear systems we consider arise in the discretization of second-order elliptic diffusion
problems posed on an open bounded polytope with Lipshitz-continuous boundary, Ω ⊂
Rd, d ∈ {1, 2, 3}. For a given source function f ∈ L2(Ω) and a (possibly) tensor-valued
diffusion coefficient K ∈ [L∞(Ω)]d×d, the problem reads as: find u : Ω → R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω.
(5.1)

The corresponding weak form of this problem is to find u ∈ H1
0 (Ω) such that

(K∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (5.2)

where (·, ·) denotes the L2(Ω) or [L2(Ω)]d inner product. We then consider a matching
simplicial mesh TJ and consider the finite-dimensional space

VJ := P1(Tj) ∩H1
0 (Ω), (5.3)

and in turn P1(TJ) := {vJ ∈ L2(Ω) : vJ |K ∈ P1(K) ∀K ∈ TJ}. The finite-dimensional
problem is then stated as: find uJ ∈ VJ such that

(K∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ VJ . (5.4)

Once we have chosen a basis {φJi }1≤i≤dim(VJ) of VJ , this is equivalent to the following matrix
equation:

AJxJ = bJ , (5.5)

where [AJ]ij = (K∇φJj ,∇φJi) and [bJ]i = (f, φJi). We further assume that there exists a
hierarchy of nested simplicial meshes {Tj}1≤j≤J−1 such that Tj is obtained by bisecting the
longest edges of elements of Tj−1 for all 1 ≤ j ≤ J − 1 and such that previously introduced
fine mesh TJ is obtained by bisecting TJ−1. This mesh hierarchy allows us to introduce a
sequence of prolongation matrices Pj for 2 ≤ j ≤ J representing the usual piecewise linear
interpolation operators standard in geometric multigrid, see e.g., [65, 24]. We also introduce
num_coarse_dofs as the number of dofs on the coarsest level.

We define the algebraic energy error by

eiJ = ‖K1/2∇(uJ − uiJ)‖, (5.6)

where uiJ is the approximate solution on step i of some iterative linear solver to be defined
below. We also introduce the following data that we will use later in numerical experiments.

Example 5.2.1 (Skyscraper). This example is inspired by [91, Section 9] and [4, Section
5.3]. We take Ω := (0, 1)2, f = 1 and u|∂Ω :=

√
x, and the diffusion coefficient K := c(x, y)I

where

c(x, y) :=

{
107b9x+ 1c, if mod(b9xc, 2) = 0 and mod(b9yc, 2) = 0;

1 otherwise,
(5.7)

the function c is plotted in Figure 5.1.

We also consider two more examples

Example 5.2.2 (Sine). This is a smooth example with a known solution. We take Ω :=

(−1, 1)2, u(x) := sin(2πx) sin(2πy), and the diffusion coefficient K := I.

5.3. Performance and mixed precision 127

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

2

4

6

8

·107

Figure 5.1: The scalar coefficient function c(x, y) defined in (5.7) for the skyscraper example
in the unit square.

5.3 Performance and mixed precision

5.3.1 Storage of sparse matrices

In this section we will develop a performance model that will reveal best-possible savings
in the context of reduced precision for sparse matrices. In particular, we will concentrate
on the storage of compressed column storage (CSC) matrices. For a general sparse matrix
A ∈ Rn×n, the CSC storage format uses three vectors, which we call colptr(A), rowval(A),
and nzval(A). The vector colptr(A) is of length n + 1 and gives information about the
distribution of the nonzero elements across the columns of A. More precisely, colptr is
defined such that the absolute indices (counting all the nonzeros) in column j ofA are between
colptr[j] and colptr[j+1]. The array rowval(A) is defined such that i = rowval[j∗] if and
only if [A]ij = nzvals[j∗] for j∗ ∈ {colptr[j], · · · , colptr[j+1]}. Therefore, |rowval(A)| =
|nzrow(A)| = nnz(A).

To illustrate the storage pattern, we consider an example of the well-known tridiagonal
matrix,

2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2

 ∈ R5×5. (5.8)

The CSC representation of this matrix is given in Figure 5.2.
We will assume the index arrays colptr and rowval are stored using Int32 (4 bytes).

We use the notation Ap to mean that the nzval array is stored using either double precision
p = 64 (8 bytes) or single precision p = 32 (4 bytes). We now calculate the compression ratio
of storing the matrix in single versus double precision,

C64→32 :=
bytes(A64)

btyes(A32)

=
bytes(colptr(A64) + rowval(A64) + nzval(A64))

bytes(colptr(A32) + rowval(A32) + nzval(A32))

128 Chapter 5. An adaptive iterative refinement multigrid method

colptr: 1 3 6 9 12 14

n+ 1

rowval: 1 2 1 2 3 2 3 4 3 4 5 4 5

nnz(A)

nzval: 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0

nnz(A)

Figure 5.2: Sparse CSC storage of the 5× 5 tridiagonal matrix (5.8).

=
12 nnz(A) + 4(n+ 1)

8 nnz(A) + 4(n+ 1)
.

We assume that nnz(A) ≈ 3d n, due to the stencil structure of the lowest order continuous
Galerkin FEM described in §5.2, and hence

C64→32 =
12 nnz(A) + 4(n+ 1)

8 nnz(A) + 4(n+ 1)
≈ 12(3dn) + (4n+ 4)

8(3dn) + (4n+ 4)

n→∞−→ 12

8
= 1.5. (5.9)

For d = 2, n = 10000 this gives C64→32 = 1.47 which is close to the 1.5 bound. We remark
that this is much lower than the factor of 2 if one considers only the vector nzval.

The bulk of our mixed precision algorithm below will be sparse matrix-vector products
(spMV). Since we know that matrix vector multiplication is a memory-bound operation
[128, 125], we can only hope for better performance in by reducing the overall memory
throughput. In the best case then, we could hope for a speedup of C64→32.

Remark 5.3.1 (Choice of Int32). We would like to point that the preceding analysis would
result in an even worse compression ratio using Int64. Since none of our example require
indexing exceeding the maximum value of 231 − 1 (2.14 × 109), we can use Int32 indices.
Another optimization would be to use unsigned integers since we are dealing with indices.

5.3.2 Iterative refinement and optimal multigrid V-cycle

We now give a more detailed description of our proposed algorithm combining standard
iterative refinement with a the lowest order case of the optimal multigrid solver in [91,
89]. First we introduce a modified version of the iterative refinement algorithm 7, given in
Algorithm 8. In particular, the main difference here is that the inner solve is now specified
as the optimal V-cycle in Algorithm 9 described shortly. This choice of inner solver has the
added advantage that it also produces an estimator on each iteration i: namely ηi, which
we then use instead of checking the norm of the residual as was the case in Algorithm 7. As
proven in [91], the estimator ηi provides a constant-free lower bound to the algebraic energy
error (5.6), as well as an upper bound where the constant in the upper bound depends on
the contraction factor of the solver. This is advantageous when compared to the standard

5.3. Performance and mixed precision 129

residual based estimator based on the algebraic residual vector ri used in 7, which depends
inherently on the condition number of the matrix A.

We now explain in detail the optimal V-cycle of Algorithm 9. In particular, the optimal V-
cycle corresponds to a standard geometric multigrid V-cycle [24, 65] with zero pre-smoothing
steps and a single Jacobi post-smoothing step on each level (merely one step is sufficient for
convergence; in practice we ν number of post-smoothing steps, typically ν = 3). The main
difference with respect to a usual V-cycle is that the update of the error correction on line 11
is weighted by the parameter λj , which is the optimal step size, ensures an algebraic energy
error Pythagorean decreases formula. In particular, this choice of step size also permits the
calculation of an error estimator η, initialized on line 3 and updated on line 10. We use
this estimator in the stopping criterion of the iterative refinement algorithm in place of the
standard condition on the residual.

5.3.3 Performance test

We first note that the main operations in Algorithm 9 are sparse matrix vector multipli-
cations. Thus, we can assume based on the discussion in §5.3.1 that the speedup when
using single precision storage of the sparse matrices will not exceed C64→32, again due to the
memory-bound nature of sparse matrix vector multiplication.

For our performance test, we use Example 5.2.2. We use a uniform coarse mesh, with
varying num_coarse_dofs as well as varying the number of levels J to give different amounts
of work for the overall V-cycle. We then present the time to complete one iteration of the
while loop starting on line 4 of Algorithm 8. First, in Figure 5.3, we plot the time taken if we
perform all operations of Algorithm 8 in double precision including the Optimal V-Cycle on
the x-axis, and the time for iterative refinement (the algorithm as is it written) and the time
for computing all operations in the loop in single precision for the same problem size on the
y axis. We see that as the problem gets bigger and hence the time gets longer, the advantage
in terms of timing for both single precision and double precision (in blue in Algorithm 8) is
clear, and there is actually not too much added overhead for iterative refinement with double
precision. Next, we plot the speedup, i.e. the time using all double precision divided by the
time using either high_precision = single or high_precision = double in Figure 5.4. We
also plot our theoretical maximum speedup coming from the compression factor discussed in
§5.3.1. We see that the results are quite reasonable and in certain cases we obtain a speedup
close to theoretical best speedup (5.9) for pure sparse matrix vector multiplication.

Algorithm 8: Estimator based iterative refinement
1 Input: initial guess x0, A, b, high_precision, low_precision
2 Initialize: i := 0, η0 := ∞
3 Carry out all the following steps in specified precision
4 while ηi > tol do
5 riJ := bJ −AJx

i ∗ Compute the fine level residual
6 (yi+1

sum, ηi) := Optimal V-Cycle(riJ) ∗ Compute correction and estimator
7 xi+1 := xi + yi+1

sum ∗ Update the current solution
8 i := i+ 1

130 Chapter 5. An adaptive iterative refinement multigrid method

0.000 0.025 0.050 0.075 0.100 0.125

0.000

0.025

0.050

0.075

0.100

0.125

Time in Double Precision (s)

T
im

e
(s

)

Comparison of Times for a Single V-Cycle
high = single, low = single
high = double, low = single

y = x

Figure 5.3: [J , num_coarse_dofs varying, ν = 3] Comparison wall times of performing one
iteration of the iterative refinement loop in double precision on the x-axis with the time using
only single precision operations and storage, or using the combination of single and double
precison indicated in the Algorithm 8.

10−3 10−2 10−1

1.0

1.1

1.2

1.3

1.4

Time in Double Precision

Sp
ee

du
p

Speedup Comparison
C64→32

No speedup
Speedup Single Precision

Speedup Iterative Refinement

Figure 5.4: [J , num_coarse_dofs varying, ν = 3] Showing the speedup corresponding to
one iteration i of Algorithm 8 where all the operations are performed in double, single, by
the color code in Algorith 8 with high_precision = double and low_precision = single
(standard iterative refinement).

5.4. Stability considerations and adaptive precision 131

Algorithm 9: Optimal V-Cycle
Input : {Aj}Jj=1, {Pj}Jj=2, rJ , tol, precision, ν

1 rk :=
∏k
j=J P

T
j rJ , 1 ≤ k ≤ J − 1 ∗ Restrict the fine mesh residual

2 y1 := A−1
1 r1 ∗ Solve exactly on coarsest mesh

3 η2 := (y1)
TA1y1 ∗ Initialize estimator

4 for j = 2, . . . , J do
5 ysum := Pjyj−1 ∗ Interpolate the correction
6 for k = 1, . . . , ν do
7 rj := rj −Ajysum ∗ Update the residual
8 yj := diag(Aj)−1rj ∗ p = 1 patches equivalent to Jacobi

9 λj :=
yTj rj

(yj)TAjyj
∗ Calculate optimal step size

10 η2 := η2 + (λj)
2(yj)

TAjyj ∗ Update square of estimator
11 ysum := ysum + λjyj ∗ Update the correction

12 return (ysum,
√
η2)

Algorithm 11: Adaptive safeguarded iterative refinement
Input : {Aj}Jj=1, {Pj}Jj=2, x0 initial guess, b, tol, Nb, γ

1 r0 := b−AJx
0 ∗ Compute the initial residual in double

2 (y1sum, η
1) := V-Cycle(r0J , double) ∗ Solve initial step in double

3 x1 := x0 + y1sum ∗ Update the solution in double
4 Initialize: i := 2

5 while ηi > tol do
6 for n = 1, . . . , Nb do
7 ri+n

J := b−AJx
i+n ∗ Compute the residual in double

8 (yi+n+1
sum , ηi+n):= V-Cycle(ri+n

J , single) ∗ Solve step in single
9 xi+n+1 := xi+n + yi+n+1

sum ∗ Update the solution in double

10 ri+Nb := b−AJx
i+Nb ∗ Compute the residual in double

11 (yi+Nb+2
sum , ηi+Nb+1) := V-Cycle(riJ , double) ∗ Solve step in double

12 xi+Nb+2 := xi+Nb+1 + yi+Nb+2
sum ∗ Update the solution in double

13 i := i+Nb + 1 ∗ Update the index by total steps taken
14 Update ρiη as in (5.11) ∗ Geometric mean of double estimators
15 if ρiη > γ then
16 Set Nb := 0 ∗ All subsequent iterations in fully double

5.4 Stability considerations and adaptive precision

In this section, we first consider a motivating example where standard iterative refinement
fails and we propose an adaptive algorithm that is able to overcome this difficulty. We now
define the effectivity index for i ≥ 1 as

Iieff =
eiJ
ηi
. (5.10)

132 Chapter 5. An adaptive iterative refinement multigrid method

Note however that ηi is actually only computed on step i+ 1 so that we do not have Iieff of
the last iteration. To calculate the exact finite dimensional solution uJ , we solve the linear
system with a direct solve, which is feasible in the test cases we consider.

5.4.1 Motivation for adaptivity

We first consider applying our new iterative refinement algorithm 8 with the optimal V-Cycle
inner solver to Example 5.2.1. Note that Algorithm 8 is not adaptive and the choice of high
precision and low precision is made once and for all. The result is given in Figure 5.5, where
we see that Algorithm 8 diverges after several iterations, but it able to converge with the
choice of low_precision = double. We are thus motivated to design an adaptive algorithm
using the estimator to determine if iterative refinement is failing and if we need to switch to
double precision.

5.4.2 Adaptive safeguarded iterative refinement

Our adaptive algorithm will be based on the two following simple facts:

1. We can trust the estimator when all operations are performed in double precision.

2. Barring precision issues, the optimal V-cycle of Algorithm 9 has been proved to be
contractive [91], and thus should be decreasing with a constant contraction factor.

To address the first point, we introduce a parameter, Nb. This will correspond to the number
of consecutive iterations we will perform using iterative refinement before performing an
iteration with only double precision. This allows us to trust the estimator calculated every
Nb + 1-th step.

To address the second point, we will then look at the ratio between the estimator at step
i and step i − (Nb + 1) to determine whether the solver is still contracting normally. To
measure the contraction, we define the following quantity

ρiη :=

(
ηi

ηi−(Nb+1)

) 1
Nb+1

. (5.11)

The idea of this definition is that if all is going well, between the time we last computed
the estimator in double precision (Nb +1 iterations ago) we should have contracted by some
constant factor, i.e., we should have that

ηi

ηi−(Nb+1)
≈ CNb+1

for some constant C < 1. Thus, we compare ρiη with a user specified parameter γ < 1 to
check if we are indeed converging at a constant contraction factor. If this is not the case,
we break out of the iterative refinement algorithm and perform all calculations with double
precision floating point numbers. The adaptive algorithm putting these elements together is
given in Algorithm 11. The main elements are the initial step entirely in double precision to
compute an initial reliable estimator (lines 1–3), then the loop on Nb+1 of standard iterative
refinement (lines 6–9), followed by another fully double precision estimator calculation (lines
10–14). Finally, on line 15, we compare ρiη against the user specified γ to see if the solver is
still contracting. If it is not, we set Nb to 0, since we then bypass the loop starting on on
line 6 and continue hereafter entirely in double precision.

5.4. Stability considerations and adaptive precision 133

0 2 4 6 8 10 12 14
102

106

1010

1014

1018

step i

Er
ro

r
an

d
es

tim
at

or
Iterative refinement

eiJ
ηi

0

0.2

0.4

0.6

0.8

1

Eff
ec

tiv
ity

in
de

x

Iieff

0 5 10 15 20

10−7

10−4

10−1

102

105

step i

Er
ro

r
an

d
es

tim
at

or

Double precision only

1

1.1

1.2

1.3

Eff
ec

tiv
ity

in
de

x

Figure 5.5: [J = 4, ν = 3, num_coarse_dofs = 208, tol= 10−6] The estimator
and error of Algorithm 8 applied to Example 5.2.1 with high_precision = double and
low_precision = single, i.e. standard iterative refinement (left) and high_precision =
double and low_precision = double (right), i.e. all operations in double precision. The
circled iterations are performed entirely in double precision.

5.4.3 Test of the adaptive safeguarded algorithm

We first consider applying our adaptive safeguarded Algorithm 11 to the troublesome ex-
ample 5.2.1. The result is given in Figure 5.6, where we consider Nb := 4 and γ := 0.6.
The algorithm catches the divergence at the first comparision occuring on the 6th iteration.
Furthermore, the progress of the iterative refinement (before starting to diverge) is not en-
tirely lost. Since we catch the divergence early, we can use the current iterate as an initial
guess for the double precision only iterative refinement, i.e., the optimal V-cycle multigrid of
Algorithm 9. Overall, we end up using 4 extra iterations than if we performed all iterations
in double from the beginning.

Next, we consider the result of applying this algorithm to a well-conditioned problem,
namely Example 5.2.2. The result is given in Figure 5.7. We see that in this case, since there
is no divergence, the adaptive algorithm does not make the switch to double precision, and
the majority of the iterations are still computed using iterative refinement, more precisely
Nb
Nb+1 = 0.8, discounting the first iteration all in double. Furthermore, the same exact number
of iterations are required to achieve the user-specified tolerance as for Algorithm 8 without
adaptivity/safeguarding.

134 Chapter 5. An adaptive iterative refinement multigrid method

0 5 10 15 20 25

10−7

10−4

10−1

102

105

step i

Er
ro

r
an

d
es

tim
at

or

Adaptive safeguarded iterative refinement
eiJ
ηi

0

0.5

1

Eff
ec

tiv
ity

in
de

x

Iieff

Figure 5.6: [J = 4, ν = 3, num_coarse_dofs = 208, Nb = 4, γ = 0.6, tol = 10−6] Applying
the adaptive safeguarded iterative refinement of Algorithm 11 to Example 5.2.1. The circled
iterations are performed entirely in double precision.

0 5 10 15 20 25
10−14

10−10

10−6

10−2

102

step i

Er
ro

r
an

d
es

tim
at

or

Adaptive safeguarded iterative refinement
eiJ
ηi

1

1.02

1.04

1.06

1.08

Eff
ec

tiv
ity

in
de

x

Iieff

0 5 10 15 20 25
10−14

10−10

10−6

10−2

102

step i

Er
ro

r
an

d
es

tim
at

or

Iterative refinement
eiJ
ηi

1

1.02

1.04

1.06

1.08

Eff
ec

tiv
ity

in
de

x

Iieff

Figure 5.7: [J = 4, ν = 3, num_coarse_dofs = 226, Nb = 4, γ = 0.6, tol = 10−12] Com-
parision of the estimator-based iterative refinement 8 with the adaptive safegaurd variant
of Algorithm 11 applied to the well-conditioned example 5.2.2. The circled iterations are
performed entirely in double precision.

5.5 Conclusion

In this chapter, we have presented an adapted version of the classical iterative refinement
algorithm where the stopping criteria comes from information in the inner solve and are
based on an estimator of the algebraic error in the energy norm in place of the L2 norm
of the algebraic vector. We then study the compression effect of storing sparse matrices in
single precision and estimate the maximal possible speedup for matrix vector multiplicaiton.
Finally, we present an example of an ill-conditioned problem where classical iterative refine-

5.5. Conclusion 135

ment diverges and propose an adaptive algorithm that provides a safeguard switch to double
precision in this case. The adaptive algorithm is also shown to improve the performance in
the case of a well-conditioned problem for which the switch is not achieved.

Bibliography

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis.
Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons],
New York, 2000.

[2] H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math.
Z., 183(3):311–341, 1983.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.,
23(1):15–41, 2001.

[4] A. Anciaux-Sedrakian, L. Grigori, Z. Jorti, J. Papež, and S. Yousef. Adaptive solution of
linear systems of equations based on a posteriori error estimators. Numer. Algorithms,
84(1):331–364, 2020.

[5] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. Appl., 10(2):165–190, 1989.

[6] I. Babuška and T. Strouboulis. The finite element method and its reliability. Numerical
Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press,
New York, 2001.

[7] S. Badia and F. Verdugo. Gridap: an extensible finite element toolbox in Julia. Journal
of Open Source Software, 5(52):2520, 2020.

[8] V. Barbu and T. Precupanu. Convexity and Optimization in Banach Spaces. Springer
Netherlands, 2014.

[9] S. Bartels. Error control and adaptivity for a variational model problem defined on
functions of bounded variation. Math. Comp., 84(293):1217–1240, 2015.

[10] S. Bartels. Numerical methods for nonlinear partial differential equations, volume 47 of
Springer Series in Computational Mathematics. Springer, Cham, 2015.

[11] S. Bartels and A. Kaltenbach. Explicit and efficient error estimation for convex mini-
mization problems, 2022. ArXiv preprint 2204.10745.

[12] S. Bartels and M. Milicevic. Efficient iterative solution of finite element discretized
nonsmooth minimization problems. Comput. Math. Appl., 80(5):588–603, 2020.

[13] S. Bartels and M. Milicevic. Primal-dual gap estimators for a posteriori error
analysis of nonsmooth minimization problems. ESAIM Math. Model. Numer. Anal.,
54(5):1635–1660, 2020.

Bibliography 137

[14] S. Bassetto, C. Cancès, G. Enchéry, and Q. H. Tran. Robust Newton solver based
on variable switch for a finite volume discretization of Richards equation. In Finite
Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples—FVCA
9, Bergen, Norway, June 2020, volume 323 of Springer Proc. Math. Stat., pages 385–393.
Springer, Cham, 2020.

[15] S. Bassetto, C. Cancès, G. Enchéry, and Q.-H. Tran. Upstream mobility finite volumes
for the Richards equation in heterogenous domains. ESAIM: M2AN, 55(5):2101–2139,
2021.

[16] S. Bassetto, C. Cancès, G. Enchéry, and Q.-H. Tran. On several numerical strategies to
solve Richards’ equation in heterogeneous media with finite volumes. Comput. Geosci.,
26(5):1297–1322, 2022.

[17] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer, Cham, second edition, 2017.

[18] L. Belenki, L. Diening, and C. Kreuzer. Optimality of an adaptive finite element method
for the p-Laplacian equation. IMA J. Numer. Anal., 32(2):484–510, 2012.

[19] J. Blechta, J. Málek, and M. Vohralík. Localization of the W−1,q norm for local a
posteriori efficiency. IMA J. Numer. Anal., 40(2):914–950, 2020.

[20] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications,
volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.

[21] D. Braess and J. Schöberl. Equilibrated residual error estimator for edge elements.
Math. Comp., 77(262):651–672, 2008.

[22] K. Brenner and C. Cancès. Improving Newton’s method performance by parametriza-
tion: the case of the Richards equation. SIAM J. Numer. Anal., 55(4):1760–1785, 2017.

[23] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer
Series in Computational Mathematics. Springer-Verlag, New York, 1991.

[24] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000.

[25] R. H. Brooks and A. T. Corey. Properties of Porous Media Affecting Fluid Flow. J.
Irrig. Drain. Div., 92(2):61–88, 1966.

[26] E. Carson and N. J. Higham. A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput.,
39(6):A2834–A2856, 2017.

[27] E. Carson and N. J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

[28] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput.
Math. Appl., 67(6):1195–1253, 2014.

138 Bibliography

[29] C. Carstensen, M. Maischak, D. Praetorius, and E. P. Stephan. Residual-based a poste-
riori error estimate for hypersingular equation on surfaces. Numer. Math., 97(3):397–425,
2004.

[30] J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal convergence
rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550,
2008.

[31] M. A. Celia, E. T. Bouloutas, and R. L. Zarba. A general mass-conservative numerical
solution for the unsaturated flow equation. Water Resour. Res., 26(7):1483–1496, 1990.

[32] A. L. Chaillou and M. Suri. Computable error estimators for the approximation of
nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng., 196(1-
3):210–224, 2006.

[33] B. Chen, X. Chen, and C. Kanzow. A penalized Fischer-Burmeister NCP-function.
Mathematical Programming. A Publication of the Mathematical Programming Society,
88(1, Ser. A):211–216, 2000.

[34] Z. Chen, G. Huan, and Y. Ma. Computational Methods for Multiphase Flows in Porous
Media. Society for Industrial and Applied Mathematics, 2006.

[35] R. Cottereau, L. Chamoin, and P. Díez. Strict error bounds for linear and nonlinear
solid mechanics problems using a patch-based flux-free method. Mechanics & Industry,
11(3-4):249–254, 2010.

[36] R. Cottereau, P. Díez, and A. Huerta. Strict error bounds for linear solid mechanics
problems using a subdomain-based flux-free method. Comput. Mech., 44(4):533–547,
2009.

[37] C. W. Curtis. Linear algebra. Undergraduate Texts in Mathematics. Springer-Verlag,
New York, fourth edition, 1993. An introductory approach.

[38] P. I. Davies, N. J. Higham, and F. Tisseur. Analysis of the Cholesky method with
iterative refinement for solving the symmetric definite generalized eigenproblem. SIAM
J. Matrix Anal. Appl., 23(2):472–493, 2001.

[39] R. De Boer. Theory of Porous Media. Springer, Berlin, Heidelberg, 2000.

[40] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential
equations and mean curvature flow. Acta Numer., 14:139–232, 2005.

[41] P. Destuynder and B. Métivet. Explicit error bounds in a conforming finite element
method. Math. Comp., 68(228):1379–1396, 1999.

[42] P. Deuflhard. Newton methods for nonlinear problems, volume 35 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2004.

[43] D. Di Pietro, M. Vohralík, and S. Yousef. Adaptive regularization, linearization, and
discretization and a posteriori error control for the two-phase Stefan problem. Math.
Comp., 84(291):153–186, 2015.

Bibliography 139

[44] H. J. G. Diersch and P. Perrochet. On the primary variable switching technique for
simulating unsaturated–saturated flows. Adv. Water Res., 23(3):271–301, 1999.

[45] V. Dolejší, A. Ern, and M. Vohralík. hp-adaptation driven by polynomial-degree-
robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput.,
38(5):A3220–A3246, 2016.

[46] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal., 33(3):1106–1124, 1996.

[47] L. El Alaoui, A. Ern, and M. Vohralík. Guaranteed and robust a posteriori error
estimates and balancing discretization and linearization errors for monotone nonlinear
problems. Comput. Methods Appl. Mech. Eng., 200(37-40):2782–2795, 2011.

[48] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume
375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht,
1996.

[49] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of
Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[50] A. Ern and J.-L. Guermond. Finite elements I—Approximation and interpolation, vol-
ume 72 of Texts in Applied Mathematics. Springer, Cham, 2021.

[51] A. Ern, S. Nicaise, and M. Vohralík. An accurate H(div) flux reconstruction for dis-
continuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris,
345(12):709–712, 2007.

[52] A. Ern, I. Smears, and M. Vohralík. Discrete p-robust H(div)-liftings and a posteriori
estimates for elliptic problems with H−1 source terms. Calcolo, 54(3):1009–1025, 2017.

[53] A. Ern and M. Vohralík. Adaptive inexact Newton methods with a posteriori stopping
criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput., 35(4):A1761–A1791, 2013.

[54] A. Ern and M. Vohralík. Stable broken H1 and H(div) polynomial extensions for
polynomial-degree-robust potential and flux reconstruction in three space dimensions.
Math. Comp., 89(322):551–594, 2020.

[55] R. E. Ewing. Finite element methods for nonlinear flows in porous media. volume 51,
pages 421–439. 1985. FENOMECH ’84, Part I, II (Stuttgart, 1984).

[56] P. A. Forsyth, Y. S. Wu, and K. Pruess. Robust numerical methods for saturated-
unsaturated flow with dry initial conditions in heterogeneous media. Adv. Water Resour.,
18(1):25–38, 1995.

[57] A. Friedman. The Stefan problem in several space variables. Trans. Amer. Math. Soc.,
133(1):51–87, 1968.

[58] F. Févotte, A. Rappaport, and M. Vohralík. Adaptive regularization, discretization,
and linearization for nonsmooth problems based on primal–dual gap estimators. Comput.
Methods Appl. Mech. Eng., 418:116558, 2024.

140 Bibliography

[59] G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. Rate optimal adaptive FEM with
inexact solver for nonlinear operators. IMA J. Numer. Anal., 38(4):1797–1831, 2018.

[60] E. M. Garau, P. Morin, and C. Zuppa. Convergence of an adaptive Kačanov FEM for
quasi-linear problems. Appl. Numer. Math., 61(4):512–529, 2011.

[61] D. Göddeke. Fast and accurate finite-element multigrid solvers for PDE simulations on
GPU clusters. 2011.

[62] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[63] M. Guo, W. Han, and H. Zhong. Legendre-Fenchel duality and a generalized constitutive
relation error. arXiv preprint 1611.05589, 2016.

[64] A. Haberl, D. Praetorius, S. Schimanko, and M. Vohralík. Convergence and quasi-
optimal cost of adaptive algorithms for nonlinear operators including iterative lineariza-
tion and algebraic solver. Numer. Math., 147(3):679–725, 2021.

[65] W. Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 1985.

[66] W. Han. A posteriori error analysis for linearization of nonlinear elliptic problems and
their discretizations. Math. Methods Appl. Sci., 17(7):487–508, 1994.

[67] W. Han. A posteriori error analysis via duality theory, volume 8 of Advances in Mechan-
ics and Mathematics. Springer-Verlag, New York, 2005. With applications in modeling
and numerical approximations.

[68] A. Harnist, K. Mitra, A. Rappaport, and M. Vohralík. Robust energy a posteriori
estimates for nonlinear elliptic problems. HAL preprint: hal-04033438, 2023.

[69] P. Heid, D. Praetorius, and T. P. Wihler. Energy contraction and optimal convergence
of adaptive iterative linearized finite element methods. Comput. Methods Appl. Math.,
21(2):407–422, 2021.

[70] P. Heid and T. P. Wihler. On the convergence of adaptive iterative linearized Galerkin
methods. Calcolo, 57(3), 2020.

[71] N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[72] J. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms I:
Fundamentals. Grundlehren der mathematischen Wissenschaften. Springer Berlin Hei-
delberg, 1996.

[73] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence rates result for
Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems,
23(3):987–1010, 2007.

[74] P. Houston, E. Süli, and T. P. Wihler. A posteriori error analysis of hp-version dis-
continuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs.
IMA J. Numer. Anal., 28(2):245–273, 2008.

Bibliography 141

[75] D. Illiano, I. S. Pop, and F. A. Radu. Iterative schemes for surfactant transport in
porous media. Comput. Geosci., 25(2):805–822, 2021.

[76] F. Irgens. Rheology and Non-Newtonian Fluids. Springer International Publishing,
Cham, 2014.

[77] W. Jäger and J. Kačur. Solution of porous medium type systems by linear approximation
schemes. Numer. Math., 60(1):407–427, 1991.

[78] W. Jäger and J. Kačur. Solution of doubly nonlinear and degenerate parabolic problems
by relaxation schemes. ESAIM: M2AN, 29(5):605–627, 1995.

[79] P. Jenny, H. A. Tchelepi, and S. H. Lee. Unconditionally convergent nonlinear solver
for hyperbolic conservation laws with S-shaped flux functions. J. Comput. Phys.,
228(20):7497–7512, 2009.

[80] C. T. Kelley. Iterative methods for linear and nonlinear equations, volume 16 of Fron-
tiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1995. With separately available software.

[81] K.-Y. Kim. A posteriori error estimators for locally conservative methods of nonlinear
elliptic problems. Appl. Numer. Math., 57(9):1065–1080, 2007.

[82] S. Kräutle. The semismooth Newton method for multicomponent reactive transport
with minerals. Water Res., 34(1):137–151, 2011.

[83] P. Ladevèze and N. Moës. A posteriori constitutive relation error estimators for nonlinear
finite element analysis and adaptive control. In Advances in adaptive computational
methods in mechanics (Cachan, 1997), volume 47 of Stud. Appl. Mech., pages 231–256.
Elsevier Sci. B. V., Amsterdam, 1998.

[84] P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method
and applications. SIAM J. Numer. Anal., 20(3):485–509, 1983.

[85] M. G. Larson and A. J. Niklasson. A conservative flux for the continuous Galerkin
method based on discontinuous enrichment. Calcolo, 41(2):65–76, 2004.

[86] F. Lehmann and Ph. Ackerer. Comparison of iterative methods for improved solutions
of the fluid flow equation in partially saturated porous media. Transport Porous Med.,
31(3):275–292, 1998.

[87] F. List and F. A. Radu. A study on iterative methods for solving Richards’ equation.
Comput. Geosci., 20(2):341–353, 2016.

[88] S. F. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-
precision multigrid solvers. SIAM J. Sci. Comput., 0(0):S392–S419, 2021.

[89] A. Miraçi, J. Papež, and M. Vohralík. A multilevel algebraic error estimator and
the corresponding iterative solver with p-robust behavior. SIAM J. Numer. Anal.,
58(5):2856–2884, 2020.

[90] A. Miraçi. A-posteriori-steered and adaptive p-robust multigrid solvers. Theses, Sor-
bonne Université, Dec. 2020.

142 Bibliography

[91] A. Miraci, J. Papež, and M. Vohralík. A-posteriori-steered p-robust multigrid with
optimal step-sizes and adaptive number of smoothing steps. SIAM J. Sci. Comput.,
0(0):S117–S145, 0.

[92] K. Mitra and I. S. Pop. A modified L-scheme to solve nonlinear diffusion problems.
Comp. & Math. Appl., 77(6):1722–1738, 2019.

[93] K. Mitra and M. Vohralík. Guaranteed, locally efficient, and robust a posteriori esti-
mates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal de-
composition result based on iterative linearization. HAL preprint hal-04156711, 2022.

[94] K. Mitra and M. Vohralík. A posteriori error estimates for the Richards equation. Math.
Comp. (2024), accepted for publication, 2022.

[95] P. Neittaanmäki and S. Repin. A posteriori error identities for nonlinear variational
problems. Ann. Acad. Rom. Sci. Ser. Math. Appl., 7(1):157–172, 2015.

[96] R. H. Nochetto. Error estimates for multidimensional singular parabolic problems.
Japan Journal of Applied Mathematics, 4(1):111–138, 1987.

[97] R. H. Nochetto and A. Veeser. Primer of adaptive finite element methods. In Multiscale
and adaptivity: modeling, numerics and applications, volume 2040 of Lecture Notes in
Math., pages 125–225. Springer, Heidelberg, 2012.

[98] S. Pereverzev and E. Schock. On the adaptive selection of the parameter in regularization
of ill-posed problems. SIAM J. Numer. Anal., 43(5):2060–2076, 2005.

[99] I. S. Pop, F. Radu, and P. Knabner. Mixed finite elements for the Richards’ equation:
Linearization procedure. J. Comput. Appl. Math., 168(1-2):365–373, 2004.

[100] I. S. Pop and B. Schweizer. Regularization schemes for degenerate Richards equations
and outflow conditions. Math. Models Method Appl. Sci., 21(8):1685–1712, 2011.

[101] W. Prager and J. L. Synge. Approximations in elasticity based on the concept of
function space. Q. Appl. Math., 5:241–269, 1947.

[102] H.-D. Qi and L.-Z. Liao. A smoothing Newton method for general nonlinear comple-
mentarity problems. Comput. Optim. Appl., 17(2):231–253, Dec. 2000.

[103] L. Qi and D. Sun. Smoothing functions and smoothing Newton method for comple-
mentarity and variational inequality problems. J. Optim. Theory Appl., 113(1):121–147,
2002.

[104] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Math. Prog.,
58(1):353–367, 1993.

[105] F. A. Radu, I. S. Pop, and P. Knabner. Newton-type methods for the mixed fi-
nite element discretization of some degenerate parabolic equations. In A. B. de Cas-
tro, D. Gómez, P. Quintela, and P. Salgado, editors, Numer. Math. Adv. Appl., pages
1192–1200, Berlin, Heidelberg, 2006. Springer.

[106] M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and
Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991.

Bibliography 143

[107] S. Repin. A posteriori estimates for partial differential equations, volume 4 of Radon
Series on Computational and Applied Mathematics. Walter de Gruyter GmbH & Co.
KG, Berlin, 2008.

[108] S. I. Repin. A posteriori error estimates for approximate solutions of varia-
tional problems with functionals of power growth. Journal of Mathematical Sciences,
101(5):3531–3538, 2000.

[109] S. I. Repin. A posteriori error estimation for variational problems with uniformly
convex functionals. Math. Comp., 69(230):481–500, 2000.

[110] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second edition, 2003.

[111] M. Slodička. A robust and efficient linearization scheme for doubly nonlinear and
degenerate parabolic problems arising in flow in porous media. SIAM J. Sci. Comput.,
23(5):1593–1614, 2002.

[112] I. Smears and M. Vohralík. Simple and robust equilibrated flux a posteriori estimates
for singularly perturbed reaction-diffusion problems. ESAIM: Mathematical Modelling
and Numerical Analysis, 54(6):1951–1973, 2020.

[113] E. M. Stein and R. Shakarchi. Real analysis, volume 3 of Princeton Lectures in Analysis.
Princeton University Press, Princeton, NJ, 2005.

[114] J. S. Stokke, K. Mitra, E. Storvik, J. W. Both, and F. A. Radu. An adaptive so-
lution strategy for richards’ equation. Computers & Mathematics with Applications,
152:155–167, 2023.

[115] R. Tamstorf, J. Benzaken, and S. F. McCormick. Discretization-error-accurate mixed-
precision multigrid solvers. SIAM J. Sci. Comput., 0(0):S420–S447, 2021.

[116] M. T. van Genuchten. A closed-form equation for predicting the hydraulic conductivity
of unsaturated soils. Soil Sci. Soc. Am. J., 44(5):892–898, 1980.

[117] J. L. Vázquez. An introduction to the mathematical theory of the porous medium
equation. In Shape optimization and free boundaries (Montreal, PQ, 1990), volume 380
of NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., pages 347–389. Kluwer Acad. Publ.,
Dordrecht, 1992.

[118] F. Verdugo and S. Badia. The software design of Gridap: a finite element package
based on the Julia JIT compiler. Comput. Phys. Commun., 276:108341, 2022.

[119] R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques.
In Proceedings of the Fifth International Congress on Computational and Applied Math-
ematics (Leuven, 1992), volume 50, pages 67–83, 1994.

[120] R. Verfürth. A posteriori error estimation techniques for finite element methods. Nu-
merical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013.

[121] M. Vlasák. On polynomial robustness of flux reconstructions. Appl. Math.,
65(2):153–172, 2020.

144 Bibliography

[122] Z. Wan, H. Li, and S. Huang. A smoothing inexact Newton method for nonlinear
complementarity problems. Abstr. Appl. Anal., 2015:e731026, 2015.

[123] X. Wang and H. A. Tchelepi. Trust-region based solver for nonlinear transport in
heterogeneous porous media. J. Comput. Phys., 253:114–137, 2013.

[124] J. H. Wilkinson. Rounding errors in algebraic processes. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1963.

[125] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of
sparse matrixvector multiplication on emerging multicore platforms. Parallel Computing,
35(3):178–194, 2009. Revolutionary Technologies for Acceleration of Emerging Petascale
Applications.

[126] J. Xia. Efficient structured multifrontal factorization for general large sparse matrices.
SIAM J. Sci. Comput., 35(2):A832–A860, 2013.

[127] E. H. Zarantonello. Solving Functional Equations by Contractive Averaging. Tech.
Report 160, Mathematics Research Center. United States Army, University of Wisconsin,
1960.

[128] P. Zardoshti, F. Khunjush, and H. Sarbazi-Azad. Adaptive sparse matrix repre-
sentation for efficient matrixvector multiplication. The Journal of Supercomputing,
72(9):33663386, 2015.

[129] E. Zeidler. Nonlinear functional analysis and its applications. II/B. Springer-Verlag,
New York, 1990.

	Résumé
	Abstract
	Acknowledgements
	Introduction
	Context and motivation
	Goals of this thesis
	Mathematical models
	The Richards equation
	Energy minimization

	Solution strategy
	Regularization of nonsmooth nonlinearities
	Finite element discretization
	Iterative linearization

	Linear solvers, iterative refinement, and mixed precision
	Linear solvers
	Iterative refinement and mixed precision

	A posteriori error estimation and adaptive mesh refinement
	Primal–dual gap error estimators
	Other ways of measuring and estimating the error
	Equilibrated flux
	Adaptive mesh refinement

	Contents and contributions of the thesis
	Chapter 1: Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators
	Chapter 2: Robust energy a posteriori estimates for nonlinear elliptic problems
	Chapter 3: Adaptive regularization for the Richards equation
	Chapter 4: Notes on implementation of equilibrated fluxes
	Chapter 5: Adaptive safeguarded iterative refinement

	Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators
	Introduction
	Continuous problem statement and regularization
	Notation
	Energy minimization and equivalent formulations
	Regularization
	An example nonsmooth nonlinearity with a kink

	Discrete problem and linearization
	Finite element discretization
	Linearization

	Three ways of measuring the error and their mutual relations
	Energy difference
	Energy norm
	Dual norm of the residual
	Equivalence in the linear case
	Relations in the nonlinear case

	Duality theory
	Fenchel conjugate and its properties
	The two energies principle

	Equilibrated flux and its components
	Equilibrated flux
	Component fluxes

	A posteriori error estimates distinguishing the error components
	Energy difference
	Dual norm of the residual
	Energy norm

	Efficiency of the estimators
	Dual norm of the residual
	Energy norm
	Energy difference

	Adaptive algorithm
	Numerical experiments
	Polynomial solution on a square
	Unknown solution on an L-shaped domain

	Conclusions and future work
	Proofs from §1.5

	Robust Energy a Posteriori Estimates For Nonlinear Elliptic Problems
	Introduction
	Weak formulation, energy minimization, finite element discretization, and iterative linearization
	Weak formulation and equivalent energy minimization
	Finite element discretization
	Iterative linearization

	Convex conjugate, dual energy, and flux equilibration
	Convex conjugate function and dual energy
	Flux equilibration

	A posteriori estimate of the energy difference
	Energy difference and the associated estimator
	Locally-weighted bounds for the energy difference and the associated estimator
	Data oscillation, quadrature-type, and iterative linearization estimators
	A posteriori estimate of the energy difference

	A posteriori estimate of the augmented energy difference
	Energy difference and estimator of the linearized problem
	Augmented energy difference and the associated estimator
	Data oscillation and quadrature-type estimators
	A posteriori estimate of the augmented energy difference

	Numerical results
	Smooth solution
	Singular solution
	Convergence on a sequence of adaptively refined meshes

	Proof of Lemma 2.4.1
	Proof of Theorem 2.4.4
	Proof of Lemmas 2.5.1 and 2.5.3
	Proof of Theorem 2.5.5
	Equivalent assumptions on the nonlinear functions
	Spectral properties of the tensor product

	Adaptive regularization for the Richards equation
	Introduction
	Setting and specification of the data
	Difficulties related to the nonlinearities and proposed regularization
	Discrete problem and solution method
	Regularization
	Linearization
	A posteriori component error estimators by flux reconstruction

	Adaptive algorithm
	Numerical experiments
	Strictly unsaturated medium
	Injection test
	Realistic test

	Conclusions and future work

	Implementation of the equilibrated flux
	Notation and problem statement
	Linear algebra representation
	Naive implementation with dynamic allocations
	High level view of the efficient algorithm
	Topological patch information
	Cellwise assembly
	Patch-level linear algebra
	The DOF manager
	The loop on patches
	Performance study for the estimator

	An adaptive iterative refinement multigrid method
	Introduction
	Model problem and discretization
	Performance and mixed precision
	Storage of sparse matrices
	Iterative refinement and optimal multigrid V-cycle
	Performance test

	Stability considerations and adaptive precision
	Motivation for adaptivity
	Adaptive safeguarded iterative refinement
	Test of the adaptive safeguarded algorithm

	Conclusion

	Bibliography

