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RESUME SUBSTANTIEL EN FRANCAIS

Cette these s’inscrit dans la continuité du projet de recherche initié par les articles
[DR20, DR22|, et, plus généralement, dans 1’étude la stabilité orbitale asymptotique

d’ondes solutions d’équations aux dérivées partielles non linéaires.

0.0.1 Rappels généraux

Ondes progressives

Un ouvrage introductif a ce sujet est [KP13]. Rappelons juste que la notion de stabilité
généralement utilisée dans le domaine des ondes, bien que proche de la notion de stabilité
d’un point d’équilibre d’une équation différentielle, est plus complexe. Il s’agit de la sta-
bilité orbitale. Elle differe de la stabilité classique en ce qu’elle autorise une perturbation
de 'onde a ne pas rester proche de 'onde elle-méme, mais seulement de ’ensemble de ses

translatés.

Equations de lois d’équilibre

En particulier, la problématique générale qu’il s’agit ici d’étudier est la stabilité
asymptotique de chocs dans des lois d’équilibre.
Rappelons qu’unsysteme de lois d’équilibre est systeme d’équations aux dérivées par-

tielles de la forme
du + divy(f(u)) = g(u),

ou f et g sont des fonctions indéfiniment différentiables, de R™ dans R"*™ et R” res-
pectivement, et u, I'inconnue, est une fonction de la variable temporelle (¢ € R) et de la
variable spatiale (z € R™).

De plus, des conditions dites d’hyperbolicité sont requises sur f pour obtenir le ca-
ractere bien posé de ’équation dans des espaces usuels. La théorie classique d’existence
et d’unicité des solutions a ces équations dans le cadre d’un probleme dans I’espace tout
entier et dans un domaine a bord est décrite dans [BGS].

La formation de singularités en temps fini est un phénomene habituel parmi les solu-
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tions lisses de telles équations. Pour s’en coinvaincre, le cas de ’équation de Burgers sans

u2
0tu + (3x (2) = 0,

pour laquelle une donnée initiale lisse a support compact a une unique solution maximale

viscosité

lisse qui reste bornée dans L* mais la norme L* de sa dérivée spatiale qui n’est pas
bornée sur cet intervalle. Pour des équations de lois de conservation (c’est-a-dire g = 0)
scalaires, ce phénomene est systématique si tant est que f”(0) # 0. Dans le cas d’'un
systeme, de tels résultats ont également été prouvés en dimension 1 suite aux travaux
pionniers de [Joh74]. Des résultats généralisant ce travail, en particulier en travaillant en
dimension supérieure, ont depuis été obtenu. De plus, des limites de ces phénomenes dans
des espaces de dimensions assez grandes ont également été établies, en particulier dans le
cas de I'équation des ondes. Le lecteur intéressé peut se référé aux livres [Ali95, Spel6).
Un aspect crucial de la formation de ces singularité est que la norme L® de la solution
elle-méme reste bornée. Il est méme possible, dans le cas scalaire, d’obtenir une limite de
la solution dans un sens faible au temps de la singularité. De ce fait, il est possible de
tenter de prolonger cette solution en considérant une notion plus faible de solutions.
Différents travaux ont apporté des réponses partielles a ces questions, et sont discutés

plus loin dans cette these.

Chocs

L’étude des chocs commencent par I’étude du cas scalaire, et des conditions de Rankine-
Hugoniot et d’Oleinik qui caractérisent les chocs admissibles.

Pour tenter de développer une théorie permettant d’inclure les chocs parmi les solu-
tions admissibles de ces équations, des travaux de Majda [Maj83b, Maj83a] et de Métivier

[Mét01], ont permis d’obtenir le caractere bien posé de perturbations des chocs.

Approximations visqueuses

Une notion importante concernant les équations hyperboliques est leur approximation
visqueuse. En effet, pour différents systemes déquations hyperboliques, dont les équations
d’Euler compressible, le systeme d’équations peut étre plongé dans une famille de systémes
visqueux dont il est le cas particulier associé & la viscosité nulle. Evidemment, la limite
formellement associée est singuliere. En particulier, les probléemes de couches-limitesen
mécanique des fluides compressibles sont liés a ces questions.

Un objectif naturel est donc de montrer que les solutions des équations paraboliques



approchent, dans la limite de faible viscosité, la solution de I’équation hyperbolique. Dans
le cas scalaire et en temps court, c’est I'un des accomplissements du travail de Kruzkov
[Kru70]. Ici, 'un des objectifs est d’obtenir une version de ce résultat valable globalement
en temps autour d’objets stables. En particulier, le cas d’un choc est d’intérét car il s’agit
d’un des blocs principaux. La présente these se focalise principalement sur le cas scalaire

en dimension 1.

0.0.2 Travaux de la thése

Problémes de détonation

Dans le premier chapitre, un travail [BW22] réalisé avec Aric Wheeler , doctorant sous
la direction de Kevin Zumbrun, est présenté. Il s’agit d’étudier la formation de singula-
rités dans le cadre de modeles de combustion.

Les modeles étudiées sont le modele de Majda et le modele Zel’dovich-Neumann-
Doring (ZND). Certaines solutions de ces modeles-ci sont des ondes représentant une
détonation. Le premier objectif était de montrer que 'on peut étendre le résultat de
[Joh74] & ce cadre en considérant une topologie sans poids. Le second objectif était d’en
étudier les limites en présence de poids augmentant la localisation a l'infini.

En particulier, dans le modele de Majda, il est possible, pour les ondes de faible am-
plitude, de montrer leur stabilité non linéaire en introduisant des poids adaptés. Pour des
ondes arbitraires, ’absence de phénomene de formation de singularité de type Burgers
est prouvé pour de petites perturbations. A Popposé, dans le cas du modele ZND, il est
montré qu’il y a instabilité, y compris pour des espaces a poids stabilisant les détonations
du modele de Majda.

Stabilité uniforme d’approximations visqueuses d’un choc

Dans le second chapitre, un travail [BR23] réalisé avec mon directeur de these, Miguel
Rodrigues, est présenté. Il s’agit d’un analogue visqueux de [DR20]. L’équation considérée

est
O + 0. (f(u)) = g(u) + edu
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ol € > 0 est un parametre de viscosité.

L’objectif est de prouver une version uniforme en le parametre de viscosité de stabilité
orbitale asymptotique de [DR20]. La difficulté principale ici est qu’en utilisant la méthode
classique de [Sat76], le traitement dans la formulation de Duhamel de la partie nonlinéaire
du terme 0, (f(u)) repose sur les effets régularisants de I’équation de la chaleur de diffusion

¢ et donc induise une perte en e ~1/2

incopatible avec I'uniformité visée. Ce probleme reflete
un véritable obstacle, lié a la présence de couches-limites visqueuses, raides par définition.
Pour contourner ce probleme, nous avons mis en place une stratégie originale, dont les
deux principaux points-clés sont les suivants. D’une part, nous travaillons avec des normes

multi-échelles
€0,V

—05—1~'
ete o

ol = Tl +
ou # > 0 est un parametre de localisation indépendant de ¢, et nous bouclons en régula-
rité par une estimation vraiment non linéaire (plutdt qu’avec la formulation de Duhamel
seule). D’autre part, pour pouvoir injecter ces estimations multi-échelles dans la for-
mulation de Duhamel, nous revisitons, en variable rapide, la méthode de fonctions de
Green, développée principalement par Kevin Zumbrun et ses collaborateurs, notamment
dans [ZH98], la quéte d’uniformité nous conduisant & une choix radicalement nouveau

d’opérateur de phase.

Influence des poids sur la stabilité uniforme d’approximations visqueuses

Le dernier chapitre discute d’un travail effectué seul, pas encore exploité sous forme de
(pré)publication. Il s’agit d’une variation visqueuse du travail [GR] qui cherche lui-méme
a étendre I'analyse de [DR20, DR22] par I'introduction de poids pour stabiliser les fronts
qui sont par ailleurs instables dans des normes invariantes par translation.

L’on commence par étudier des chocs de Riemann dont une des valeurs est associé
a un probleme spectralement instable en s’intéressant d’abord a des poids stabilisant le
probléme spectral en créant un trous spectral, et ensuite au cas limite d’une stabilisation
marginale. Cette fois, des ondes lisses solutions du probleme hyperboliques sont aussi
étudiées dans la limite de faible viscosité . Pour les deux types d’ondes, on s’intéresse a
la fois au cas ou la stabilisation est suffisamment forte pour créer un trou spectral et au
cas critique ou, au niveau hyperbolique, le spectre a poids contient I’axe imaginaire pur.

Le probleme principal pour le choc de Riemann est celui de la stabilisation margi-

nale, qui nécessite l'introduction de poids polynomiaux en plus des poids exponentiels
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initialement introduits. Plus précisément, les poids sont de la forme

665x+

T — &
2

(1+ 22?)
ou l'instabilité est en x proche de +00, . est le coefficient associé au poids assurant une
stabilisation marginale, & > 1 un coefficient permettant d’améliorer la localisation de la
donnée initiale sans changer le caracteére critique du spectre.

Dans le cas du front hyperbolique lisse, la construction du profil repose sur une pro-
cédure de type perturbation singuliere, et est elle-méme non triviale. La stabilité non
linéaire est en revanche montrée par la conception, relativement élémentaire, d’un prin-

cipe du maximum adapté au probleme non linéaire.
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CHAPTER 1

INTRODUCTION

1.1 Hyperbolic systems

1.1.1 Local existence theory

This section is there to remind classical results of the resolution of the Cauchy problem
for hyperbolic problems.

In particular, classical solutions are discussed, and, then, the formation of singularities,
and, afterwards, a few results on the Cauchy problem for weak solutions are presented :

the Kruzkhov theory for scalar equations and the BV theory for one-dimensional systems.

Smooth solutions

The functional framework will be based on the spaces BUC* for the scalar. The

notations here will be that W*®(R?) := ("), .x W*® and for any k € N, BUCK(RY) =
Woo,oo(Rd)Wk’w.
First, the classical results for scalar equations are presented. Fix d, a positive integer,

f and g, smooth functions from R with value in R? and R respectively.

Theorem 1. The Cauchy problem associated to the equation dyu + div,(f(u)) = g(u) s
locally well-posed in the functional space BUC*(R?), with blow-up criteria in BUC'(R?)

and continuous dependence on the initial data.

Now, for multi-dimensional system, this presentation will follow the results from [BGS]
(to state the theorem 10.2 from this reference).

Let d and n be positive integers, as well as smooth functions f° : R®* — R",
=040 f):R" - (R and g : R® — R™ Consider the equation d;(f°(u)) +
S, o (w) = glu).

Define Ag(u) := (df°(u))~t o df*(u) (as usual, identified with the matrices in the
canonical basis) for k € {1,...,d} and u € R™.

Furthermore, consider the symbols A(u, &) := ZZZI &k Ak (u). To ensure well-posedness

in some Sobolev spaces, it is enough to require the existence of a symbolic symmetrizer of
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the quasilinear system, that is the existence of a smooth mapping S : R" x (R%\{0}) —
M.,,(C) homogeneous of degree 0 in ¢, with value in the subset of hermitian definite
positive matrices and such that, for every uw and £, S(u,§)A(u, &) = A(u, £)*S(u,§).

Theorem 2. Assume that g(0) = 0. Then, the Cauchy problem in H® for s > 1+ ¢
is locally well-posed, and the blow-up criteria is the explosion of the WY norm of the

solution.

The continuous dependence is not stated in their theorem, but can be obtained for
H* norm for s < s by showing it for the L? norm and applying interpolation by the
local boundedness of the solution in H*® (the result in L? using the boundedness in H*

and interpolation inequalities).

Formation of singularities

An important subject in the study of hyperbolic equations is the formation of singu-
larity, and especially of wavebreaking type. In particular, a well-known striking feature
of such equations is that, even for one of the simplest nonlinear models, the Burgers’
equation (given by dyu + 0, (%) = 0), the solution induced by an initially smooth and
compactly supported nonzero initial data will blow up in W5 (R)), but remain bounded
in L*(R). Such a phenomena gave raise to the theory of Kruzkhov in the scalar case
(that will be discussed afterwards), and, in the system case, to several extensions of this
blow-up result, as well as study to give a well-suited notion of weak solutions to extend
these solutions after the blow-up of the L™ norm of the gradient of the solution.

Regarding the formation of discontinuity, the study of systems needed the introduction
of a particular class of hyperbolic pdes, to guarantee that the nonlinearity is of Burg-
ers type, and not a simple linear equation. A landmark paper on that subject, [Joh74],
proved the blow-up of solutions associated to arbitrarily small smooth initial data for
one-dimensional problems containing only genuinely nonlinear characteristic fields.

As they will be discussed in the first chapter, the definition of linearly degenerate and
genuinely nonlinear characteristic fields in such a context are given here. These notions
are also presented in [Bre00].

First fix A : R" — M,,(R), smooth, such that for every u € R", A(u) is diagonizable
with n distinct real eigenvalues. The system is then called strictly hyperbolic. Under these
assumptions, the said eigenvalues A\ (u) < ... < A,(u) are smooth. Furthermore, there ex-
ist (right) eigenvectors (ry(u))x such that, for every k and w, A(u)rg(u) = Ap(w)rg(u).

Automatically, the r, are also smooth.

14



Definition 1. The k-characteristic field of A is called genuinely nonlinear if for every
ue R", d\(u)(rr(u)) # 0.
It is called linearly degenerate if for every u e R™, d\g(u)(rg(u)) = 0.

In fact, this notion can be adapted in the multi-dimensional setting, as in [Maj84].
Furthermore, the strictly hyperbolic assumption can be relaxed. In particular, assuming
only that one has access to d families of smooth left and right eigenvectors to A(u),
(lg(u))1<k<a and (rg(u))1<k<a is enough to give sense to for the previous definition, despite
A not being strictly hyperbolic.

The result from John implies the following :

Theorem 3. Assume that every characteristic field of A is genuinely nonlinear. Then,
there exists & > 0 such that any vy € C*(R, R™) with support in [0, 1] satisfying |vollyz.» <
d generates a solution to dyu + A(u)dzu = 0 that remain bounded in L* but blows up in

WL in finite time.

Since then, tremendous progresses have been achieved to generalize this result in
various directions, and the interested reader can start by looking to the following books
for the conservation laws [Lax73, Joh74, Liu79, Ali95, Spel6].

In the opposite direction, there are various types of hyperbolic equations for which there
is not any formation of such singularities. In particular, the use of dispersive effects can
allow one to prove that such a blow-up cannot happen in high-dimension, as discussed
in [H97]. Furthermore, the study of the totally linearly degenerate case, that is, when
every characteristic field is linearly degenerate, is also of importance. It is conjectured in

[Maj84] that in that case, classical solutions are global.

Scalar case

Consider n, an integer, and smooth functions f: R - R" and ¢ : R — R.

The challenge was until the 70’s, to understand what was the right notion of solutions
for such equations. In fact, even though some Cauchy theory of classical solutions was
available for smooth enough initial data, a major issue remained to be understood. In fact,
the blow-up criteria (which was known to be optimal) was that either the L* norm of the
solution blows up at time 7,4, or the L* norm of the derivative blows up at time 7T},,.
In particular, in some cases, both happen, and, in other cases, only one of them occurs
(and cases were known for each one of them). Furthermore, in the context of bounded
initial data, the lack of uniqueness of distributional solutions was known. Kruzkhov thus
needed to define a notion of solutions that allowed both the restoration of the existence

and uniqueness of solutions at least in a class containing data coming from the blow-up
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of the gradient of an initially smooth classical solutions to the problem.
Since the seminal work from [Kru70] , the notion of entropy solutions to equations of

the form

O + dive(f(u)) = g(u)

has been considered to be the right notion of solutions in this context (that is, for the

scalar problem). They are defined through

Definition 2. A function u € C°([0, T[, L*(R%)) n C°([0, T, Li,.(R%)) is an entropy
solution to the equation Oyu+ 0.(f(u)) = g(u) if it satisfies the inequalities, for all convex
and C? functions n, and with F,, such that Fy=nf

Oe(n(w)) + diva(Fy(u)) <1 (u)g(u)

in the distributional sense.

In particular, such solution have been constructed in this article as limits the solutions

to
Oru + divy(f(u)) = g(u) + eAu

where ¢ is a positive parameter which goes to 0.

In particular, this shows that in the short time theory, solutions to the hyperbolic
problem are actually the limits of the solutions to the parabolic equations in the vanishing
viscosity limit. There have been work done to understand the speed of the convergence,
as in [Kuz76], in which study of the speed of the convergence at time ¢ in the case of a
conservation law is of size /ct.

In our setting, the main theorem proved in that paper reads as follows :

Theorem 4. For f and g smooth from R to R (respectively R) and any ug € L*(R?),
there exists u € C°([0, T[, L*(R%) — w*) for some T €]0,+c0| such that u is a mazimal
entropy solution to the equation oy + div.(f(u)) = g(u) and for which u(0,-) = wuy.
Furthermore, any entropy solution v such that T" €]0, +o0] v e C°([0, T'[, L* (R4 — w*))
and u(0,-) = ug is such that T' < T and v = w0 rxRrd-

Finally, the following L},.(R?) continuity results holds true : for any entropy solutions
u and v, defined on [0,T], and M = 0, if the bounds |u(t,x)| < M and |v(t,z)| < M, we
have, for anyt € [0,T], R > 0 and xo € RY, as well as N := max{|f'(u)|2|u e [-M, M]},
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v = | g|oo,[~rsar) and Sy = {y € R?| |y — xol2» < R —tN}, that

fut, ) — v(t, y)ldy < " f o) — voly)ldy.

St SO

System case

Even for systems, such entropy-entropy flux pairs (that is, such a couple (n, F;))) have
analogous, which are also important, but have the huge inconvenient that, quite often,
there are not that many of them. For further discussions on that subject, see [Daf00, BGS],
in particular the section 4, chapter VII of the first reference, and, for the second one, the
section 2 of the chapter 10.

More generally, obtaining for general hyperbolic systems a good local theory for a
suitable subclass of weak solutions is still an open problem, discussed in the aforemen-
tioned books.

Still, results were obtained for particular cases.

Let us mention the case of one-dimensional systems for which there is a theory of
solutions initially small in BV. To do so, consider a smooth function F': R" — R", and
the equation dyu+ 0, (F(u)) = 0. In that context, the following result is proved in [Daf00]
(in the chapter XIII).

Theorem 5. Under the assumptions that dF(u) is a diagnalizable operator on R™ with
distinct real eigenvalues for every u € R™.

There exist & > 0 and C' > 0 such that for every uy € L'(R,R") n BV(R,R")
satisfying |uo|r < d and TV (ug) < 6, there exists u, locally of bounded variation on
R, x R, such that, for every t € R u(t,-) € BV(R,R"™), with TV (u(t,-)) < CTV (uy),
Jut, )= < Cluolre, and, for every (t,t') € (Ry)* Ju(t,:) — u(t',)|n < C|t =¥,
u(0, ) = up.

Furthermore, it is a solution in the weak sense.

Discussion on the uniqueness is more delicate, and the interested reader can refer to
[Bre00, Daf00] for such results : see the chapter for the first one, and the section 10 of the
chapter XIV for the second one. It can be noted that a particular uniqueness result will
be reminded later on. In fact, the solution constructed in the aforementioned books is
constructed by a particular method, and it is actually also given as the solution obtained

in the sense of the vanishing viscosity limit, as in [BB05].
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1.1.2 Shocks

Scalar case

The short time existence theory in the scalar case has been given in the paper by
Kruzkov.

To study the asymptotics stability of shocks, one first needs to have some local in time
persistence result. This is not given by Kruzkov’s result. To know whether an initial data
containing a shock will give raise to a solution that still contains a shock for small time
needs to take into account the conditions of Oleinik, that is, in the one-dimensional case,
a function u :]0, T[xR — R C'(]0, T[xR\{(t,¥(t)) |t €]0, T[},R), u(t,-) discontinuous
at ¥ (t) for every t and bounded as well its spatial derivative on |0, T[xR where v is a C"!

function on [0, T is an entropy solution if it is a solution on |0, T[xR\{(¢,%(t)) |t € R}

Flultp®)) = f(ultvt) 7))
u(tﬂﬂ(tﬁ)—u(tﬂﬂ(t)*) )
A multi-dimensional analogous exists. Both are presented in [DR20].

and that it satisfies the Rankine-Hugoniot condition v¢'(t) =

One-dimensional systems

In the case of one-dimensional systems, shocks, and more genrally, solutions to the
Riemann problem (that is, finding the solution, in an adequate sense to the initial value
problem dyu + 0,(F(u)) = 0 with u(0,2) = u, for x > 0 and u(0,2) = u_ for z < 0)
has been understood in the context of small BV initial data, as described in [Bre00].
In particular, (approximately) solving this kind of problem is the building block of the

Glimm scheme.

Persistence theory for multidimensional systems

In this part, we will focus on the conservative case. The case of balance laws is similar
but the theorems are more cumbersome to write, as for the theory of Kruzkov. Thus, for
the sake of simplicity, we restrict the description to that case, as the references described
do.

Now, it is important to consider the problem of proving the existence of perturbations
of Riemann shocks under certain stability conditions.

Here, the presentation will be restricted to equations of the form (for u with value
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in R™)

d
O+ Y (fH(w) = g(u)
k=1
where f: R" — (R")? (with f = (f!,..., f9), each f/: R® — R") is a smooth function.

In various references, the equations are generally given in the more general form

O(f*(w)) + dive(f(u)) = 0

with df°(u) being invertible for every u. This choice is made due to the form of various
equations, such as the compressible Euler equations which will be discussed later on.
However, the changes needed to adapt to that case are not consequential (mainly, one
needs to replace the operators df*(u) by df°(u)~* o df*(u), and, in the Rankine-Hugoniot
conditions, Uy — U_ by fO(U,) — fO(U-).

An other important building block is the local in time existence of perturbation of
shocks in the system case. prove well-posedness results in that context. Such work was
done in the most comprehensive way yet realized for Lax shocks by A. Majda (in [Maj83a,
Maj83b]), and then generalized by G. Métivier (in [Met]). Furthermore, these progresses
are presented in [BGS] (especially in the chapter 12 for the general theory, and the chapter
15 for the Euler equations).

First fix U, € (R™)?, distinct, such that there exists o € R such that f(U,)—f(U_) =
U(Q+ - Q—)-

Here, the choice of a shock propagating in the direction x,, with jump initially on the
hypersurface {z; = 0} and propagating with speed o. In particular, the function constant
by part taking the values U, if x4 > to and U_ if 24 < to is the shock studied. It must
satisfies an other condition. The number of eigenvalues of A4(U, ) greater than the shock
speed o must be the number of eigenvalues greater than the shock speed at A4(U)— -1.
The context under study is associated to functions solutions to the system of equations
outside of some hypersurface, and, such that, the jumps of the solution at each point
of the said hypersurface satisfy the Rankine-Hugoniot condition which are (in a suitable
sense) perturbations of the reference shock.

For other types of shocks, such as undercompressive shocks, works have been done by
Jean-Francgois Coulombel in [Cou03]. For overcompressive shocks, work have been done
to study the viscous analogous. However, some work by Majda seems to prohibit the
existence of such shocks at the inviscid level due to issues at the linear level. In fact, as in
[BGS], it is proven that such shocks have the property that their associated linearization

is not surjective (see the chapter 12, section 2).
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Coming back to the question of Lax shocks, the idea is to first rewrite the problem
as a problem which is called a Free Boundary Problem (FBP). It takes the form of two
initial boundary values hyperbolic pdes (corresponding to the hyperbolic problems on
each side of the positions of the jumps) with the boundary conditions being non trivial
as they arise through the Rankine-Hugoniot conditions, and actually form some lower
dimensional evolution system relating the localization of the shock with the boundary

values. In particular, it reads, for a hyperbolic conservation law given by
U +div, (F(U)) =0

as
-1
QU (ty,xa) + Y, 057 (U(t,y, 24)) = 0
j=1
for all (¢,y,zq) €]0, T[xR? such that x4 # x(¢,y)

Ut y, x(t,y)") = Uty x(t, ) 7)) (t, )
£ POy x(0)) — POy x5 Dot y)
- (fd(U(ta Y, X(ta y)+) - fd(U(ta Y, X(tv y)_)) =0

on ]0, T[xR%1.

Here, u and x are regular enough functions on

{(t7y7xd) € [O,T[XRd | Tq #F X<t7y7xd>}

for u, and on

[0, T[xR4!

for . More precisely, solutions shall be functions in C°([0, T[, H*) nC*(]0, T[, H*~') and
Co([0,T[, H*) n C*(]0, T[H*~"), both small enough in L*, and where s, and s/, are big
enough. In particular, it is natural, and seems necessary, to at least require to have the
regularity threshold of the embedding in W%, that is of s > 1+ % as it is needed for the
proof of existence of smooth solutions.

As said before, an issue that needs to be solved is the determination of compatibility
conditions : given a small perturbation vy, even in one-dimensional systems, in general,
the solution may fail to remain a shock, as intermediate shocks or rarefaction waves may

form, as, in particular, the Rankine-Hugoniot condition will not remain satisfied (even
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by changing the speed o). Compatibility conditions are there to ensure that this holds
true initially, and, also, that it will continue to hold true at least formally, which imposes
conditions on the time derivatives initially (which are given by the equation) to enforce
the persistence of the solutions.

Compatibility conditions are designed to ensure that the time derivatives of the
Rankine-Hugoniot condition hold initially to be able to rewrite the time derivatives at
the boundary and to replace them by the (boundary) expression given by the equation,
and to apply it iteratively for some k& < n (for some fixed integer n to be chosen later

on). Details are given in [BGS, Met| (chapter 12 again for the first one).

A;(U 0
Introduce a few notations to enounce the results below : A; := [ (L)
0 AU-)

for j e {1,...,d — 1} and A, := An(Us) = ol ’ , as well as (for 7 € C
0 ol, — A, (U_)
and n € R*™) b(r,) == 7(Uy — U) + Ny me(f*(Uy) — fH(U-) and Ey(r,1) =

Da (62)>0 E. (& 71,1m), with E, (&, T, 77) = {h(0)| with A := h(-)e’"", h a polynomial, such
that A solves A,dph + i(1 Ly, + ZJ L njAj)h = 0}.

Let us now consider the condition that will be enforced to obtain bounds that will
give to have a quantification on the hyperbolic boundary problems associated. They are
called "uniform stability conditions" and take the following form : (in what follows, the

symmetric hyperbolicity in the sense that of the problem is assumed at every point on
the neighborhood of U)

Definition 3. The Uniform-Kreiss Lopatinski condition of the shock U(t,x) = U_ for
xq <to and U(t,z) = Uy for xzqy > to is defined as : there exists ¢ > 0 such that for every
7€ C such that S(1) <0 and n e R, if |72 + |n|? = 1 for every (k,h) € C x E(7,n)
lib(r, m)k + Mh[ = e(|[k] + [A])-

To define the regularity of the solutions, consider the sets wr :=]0,T[xR! and

Qp :=wr x R*

Definition 4.

CH*(Qr) := {ue C°([0,T], H*(R“™ x R*))|Vj € {0, ..., 5},
Jue CO([0,T], H* 7 (R x R¥))}.

Finally, we note u(t, z) = U sgn)(z,)-
Remark : The uniform stability conditions imply that the shock is actually a Lax shock,
and more precisely that it satisfies

The following theorem can be found as an adaptation of the theorem obtained in
[Met] :
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Theorem 6. Let s > %, an integer and with [ satisfying the hyperbolic conditions, and

assume also the uniform stability conditions at the jump associated with the Riemann
shock.

Then, there exists p > 0 and T > 0 such that, for any ug € H5+%(Rd\{xd = 0}),
such that |ug|r» < p and uy satisfy the compatibility conditions up to order s — 1, there
exists a unique solution (u,v) with u : [0,T[— R™ and v : [0,T[xR* ! — R with
u—ue CH*(Qr) and ¢ € H*(wr) to the problem with initial data in the sense that
u(0,-) = up+u, ¥(0,-) = 0 and u solves the equation in the classical sense on {(t, T, x4) €
10, T[xR*t x R|xg # ¥(t,7)}, and (u,) satisfies the Rankine-Hugoniot conditions
at xqg = 0 for every t € [0,T[. Furthermore, every solution with the same initial data

coincides with that solution on the intersection of their domain of existence.

Furthermore, a criteria of the maximal time of existence can be derived. It involves
that either |V ul|p=(q,) is infinite, or either v —u or V1 exits some small enough neigh-
borhood of 0. The last condition is there to ensure that the uniform Kreiss-Lopatinskii
conditions will remain true at time T,,,,..

Actually, optimal regularity (avoiding the loss of half a derivative) has been recently
proved for initial boundary value problems in [Aud22]| and we expect that it could also
be obtained here.

Note that the compatibility conditions are automatically satisfied for an initial per-
turbation localized outside of some neighborhood of the shock.

In particular, for the easier case of a one-dimensional system, as, in that case, the
estimates easier to derive with the fact that R%! is of dimension 0, and one just needs
to check the invertibility of a matrix, the uniform Lopatinsky condition can be reduced
to algebraic conditions.

From now on, (Ag(u))1<k<n Will denote the increasing sequence of eigenvalues of A;(u)
for v € R", which are assumed to be such that A\j(u) < ... < A\,(u) (the system is
strictly hyperbolic) and all distinct from o. Note k4, the integers in {0,...,n} (with the
conventions \g = —oo and A,4; = +00) such that A\, (U_) < ¢ < M+ 1(U_) and
Aoy (Uy) <0 < A1 (Uy).

Proposition 1. Here, d = 1. The (uniform) Kreiss Lopatinskii conditions described above
are equivalent to the following conditions : the shock satisfies the Lax condition and CN =
Cho®E DL whereby = U, ~U_, as before, By = Do, 1 Ker(Ai(Uy)—o— i (Uy)),
and E_ = @, Ker(A(U,) —o—M(U-)).

In the above mentioned references, there is no reaction term G. However, it is possible

to adapt the proofs to that case as this term does not change the argument : in fact, it
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induces a perturbation of order 0. Furthermore, it can be noted that for other types of
solutions containing a shock, such as solutions not constant on one side but constant
on the hyperplane {zs = 0} on both sides, there can be adaptations made although one
needs to be careful about the compatibility conditions.

In fact, to adapt the result to that case, one can use the finite speed of propagation

of the hyperbolic equation.

1.1.3 Inviscid limit

Vanishing-viscosity limit : system case

An important subject related to the inviscid limit is the prolongation of Kruzkov’s
work towards system problem. As said before, the well-posedness theory does not directly
transpose to the system case : in fact, convex entropies are lacking when it comes to sys-
tems (in general), and, in some cases, on cannot distinguish weak solutions from entropy
solutions as all the entropies are trivial. However, several type of questions have been
studied since then to answer these questions.

A first one is the study of the convergence of classical solutions of a viscous regulariza-
tion towards some hyperbolic limit. See, for instance, the chapter [Mas07], in which the
case of the convergence of the solution to some of the Navier-Stokes system are discussed.

An other important class of problem is the one-dimensional problem. In fact, in that
setting, the celebrated Glimm scheme allowed to define a notion of solution for such prob-
lems in the framework of initial data BV, small enough. In that context, the importance
of Riemann shocks, and, more generally, the solutions to Riemann problems need to be
understood in the vanishing viscosity limit. However, compared to the work of this thesis,
piecewise smoothness is not the context considered. It is rather a work done in the BV
topology or the even rougher L™ one.

In particular, the question is whether or not solutions obtained through that mean
can also be shown to be the limits of the solutions to parabolic equations with a vanishing
viscosity.

The first breakthroughs in that program were obtained in 2 x 2 systems. The tech-
niques used were, for example, based on compensated compactness (a classical reference
being [Tar79)).

To obtain results for more general systems, new ideas emerged, and, in particular a
program was developped by Bianchini and Bressan, which allowed them to obtain con-
vergence for a constant coefficients viscosity €02. The work was done in the following
series of papers [BB00, BB02b, BB01, BB02a, BB05] and the programm is described in
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the following article : [BB02a]. In fact, in the said articles, the hyperbolic systems studied
are more general than conservation laws. However, to obtain that the limits constructed
in the vanishing viscosity limit are the known solutions to the the limiting equation, one
needs some well-posedness theory at the limit. Such a theory is only available in the case
of conservation laws.

However, since that work, the generalization to real quasilinear viscosity is still open.
For many important examples, such as the compressible Navier-Stokes equations and
their limits (the Euler equations) being an inviscid limit of this form. It is still an con-
sidered as one of the main problems of the field. In fact, partial results were obtained,
such as one close to our project here : the uniqueness and stability (locally in time) of
Riemann shocks in the class of inviscid limits of solutions to the Navier-Stokes equations
[KV21b]. Other articles related to that problem are [KV22] which discusses the case of

two shocks, and [VW15] for an inviscid limit in the case of a contact discontinuity.

Boundary layers

A closely related topic to the work here, and related to the convergence of Navier-Stokes
equations towards Euler equations for a bounded domain is the problem of boundary
layers. Related techniques to those used in this thesis have been used in such a problem.
A general introduction to the subject can be found in [M()4]. In particular, one can
mention [GRO1] and [MR12] in which pointwise bounds on Green functions were used.
This kind of techniques will be presented later on. However, in the second article, the
problem at hands

In contrast to the present work, the goal is to study a problem of conservation laws.
Furthermore, the point is to obtain bounds for a time-dependent problem but for finite
time and to apply it to the nonlinear problem, while, here, the aim is to obtain some
bounds on a time autonomous problem in the large time regime to apply it to a nonlinear
problem.

Notably, in [MR12], to bound the nonlinear part, they used conormal spaces, a way to
avoid as much as possible to consider derivatives in the normal direction to the boundary,
that is, the one in which are appearing the layers. Finally, in [MZ05b], limitations of the
Green functions are addressed, but, still, in [MR12], despite the higher dimension context,

Green functions formalism is used for a part of the linear problem.
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1.2 Traveling waves and their stability

1.2.1 Generalities about waves

First, remind that a traveling wave is a solution u to some evolution PDE with
of the form u(t,x) = u(x — to) for some speed o0 € R They are stationary solutions
in the right frame. Thus, it is expected that they are important pieces to understand
the asymptotic behavior of pdes. Here, the main discussions will remain at the level of
abstract mathematical models, however, let us indicate [CH93| as a classical reference of
the physical viewpoint.

On the theoretical viewpoint, they also appear in reaction diffusion due to theorems
in the study of the asymptotic behavior of solutions to such a system. In fact, there has
been recently progresses in the literature concerning the problem of the front selection.
This problem is to ask, with a particular compactly supported initial data, which type of
wave will be selected asymptotically.

There is a similar program in the field of dispersive pde ; the so called resolution
conjecture. In [Tao06], a presentation of the basic conjecture and discussions about its
solution in particular cases.

A plane wave is a particular type of wave which can be written as (¢, z) — v({o, x)—ct)
for o a unit vector and ¢ € R). Waves are objects studied in various parts of the mathe-
matical study of PDEs , and for different types of motivation.

Finally, similar type of statements is actually true in the framework of conservation
laws and balance laws, under some assumptions. The Glimm scheme, which will be dis-
cussed a bit later, is actually some nonlinear procedure built through an (approximate)
decomposition in waves, and the understanding of the interactions of the said waves. Fur-
thermore, in the balance case, similar results actually hold in the scalar case, although
the picture is, in general, broader [MS97].

To study their stability, the closely related notions of orbital stability and the as-
sociated asymptotic orbital stability are in fact better suited. They are defined by the
following (for some Banach space X in which the Cauchy problem with initial data u+ vy

for every vy € X, and u the shape of the traveling wave).

— The wave is orbitally stable in X if, for every ¢ > 0, there exists § > 0 such that,
for every vy € X with |ug|x < 0 the solution w(t,-) to the PDE with initial data

vo + u satisfies that it is defined on R, and for every ¢ > 0
inf |w(t, -+ ¢) —u|x <e,
inf ot + 6) -~ ulx

— The wave is asymptotically orbitally stable if it is orbitally stable and if for some
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d > 0 and every vy € X such that |vg|x <0,

t—+00

li inf : — =0.
i, (it e+ )~ ulx ) =0

Furthermore, in the context of plane waves in the direction ¢ things can be modified
slightly to take into accounts other kinds of effects. In particular, a choice is to consider
actually that ¢ is actually a function from the subspace of vectors orthogonal to the direc-
tion of propagation of the wave with value in R (and in some space Z of such functions)
and to look for infyey |w(t, ) —v(x + ¢(x —(x,0)0) —to))|x). Finally, it is often also of
interest to look for the regularity in time that can be obtained on a phase ¢ valued in
Z such that |w(t, ) —v({z,0) —ct + ¢(t,x — (x,0)0))|x stays smaller than ¢ for every
t > 0 or goes to 0 as t — +o00.

Some classical techniques to study the stability of waves is the use of the so called
semigroup of the linearization around the wave of the pde. It consists on studying the
solutions of () = A(u(t)) on R, for some elements u of a certain functional space (and

A is a linear operator acting on a Banach space defined on D(A) < X with values in X).

1.2.2 Reaction diffusion and smooth waves

Here are considered parabolic nonlinear partial differential equations (on R? of the
form

o+ divy(f(u)) = g(u) + Agu,

and the aim will be described the results obtained before for the stability of travelling
waves solutions to such problems. Mainly, here, the points of interest will be the techniques
used before the introduction of the pointwise estimates of Green functions (most cases
presented here, will be restricted to d = 1, and f or g to be the function vanishing
everywhere).

Here, the waves considered will be plane waves U, solutions of the equation with a
travelling speed o € RY, and restricted to the case in which the front u of the wave
is a heteroclinic orbit (more precisely, the assumptions made will be that u converges
exponentially fast towards some constant state u_ at —oo and towards u, at +oo0, and
that its derivatives converge exponentially fast towards 0 at +oo, and that »’ does not
vanish).

The focus on two kind of strategies used to study such problems :

— The first kind are both ways to obtain direct nonlinear results, namely the use of

energy estimates and maximum principles,
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— The second kind are techniques based on spectral estimates, followed by the use
of specif ic properties of parabolic equations to derive linear estimates and then

nonlinear stability.

Energy estimates and maximum principles

For scalar equations, one can use some maximum principles (also known as comparison
principles). For a discussion of the maximum principles, one standard reference is [PW84].
Such an approach is discussed in [VVV94]. In particular, one can illustrate it through

some particular model
o = 02u + g(u)

with ¢ : R — R smooth such that ¢(0) = ¢(1) = 0, ¢’(0) < 0, ¢’(1) < and such that
there exists a unique « € (0, 1) such that g(a) = 0.
Now, some results from [FM77, Fif79] will be described.

First, the following comparison principle

Proposition 2. Let ¢ € R be some constant. If u,v : [0,T] x R be such that u(0,-) <
v(0,-) on R, dpu—copu—*u—g(u) <0 < ow—copv—02v—g) on [0, T]xR,0<u<1
and 0 <v <1 on[0,T] xR.

Then uw <wv on [0,T] x R.

Remark 1. u and v are then called (respectively) a subsolution and a sursolution of the

equation dyu — cOyu = f(u) + 02u.

Theorem 7. There exists a unique (up to translation) travelling wave of profile u solution
(where ¢ € R denotes its speed) to du = ?u + g(u) such that u is valued in (0,1),
lim, 4o u(x) =1 and lim,—,_o u(x) = 0.

Furthermore, for every ¢ € C*(R, (0,1)), such that there exists M > 0 and € > 0 such
that, for every x = M, ¢(x) = a + € and ¢(—x) < a — ¢, the unique classical mazimal
solution v with initial data ¢ is defined on R, there exist C,w > 0 and z € R such that,
for everyt = 0

lo(t, ) —u(- —ct — 2)]o < Ce™™.

This theorem is proved by designing a subsolution and a sursolution v_ and v, to
the equation, converging towards possible different translated versions of the wave and
which satisfy v_(0,:) < ¢ < v4(0,). Then by using the previous maximum principle, one

can conclude that v is globally defined and that v_ < v < v, on R, x R. This allows
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to control from above and below the solution with translations of the wave. Then, by a
compactness argument, a convergence without rate can be obtained. The rate is deduced
by introducing a Lyapunov functional. It relies on the observation that the only thing to
do is to prove it on some domain {(¢,x) €|T, +oo[xR ||| < dt} for some §,T positive
(which can be respectively as small and big as needed). This last part is actually obtained
through a weighted energy estimate.

For example, here, introducing the L? based space with norm

ol = ( L e—w|v<x>|2dx)§

the basic goal is then to prove that there is some constants ¢, v positive such that, by
assuming that initially |vo|g < ¢ then the solution induced by the initially data vy
satisfies that the map t — |[v(t)|% is differentiable and, as long as |v(t)|% remains small
enough on [0, 7], the bound (on [0,77)

d (JJv()7)

(1) < o) -

Obviously, various variations of this strategy may be used.

As presented in the example before, it is important to understand that such a strategy
may need to be combine with other ideas to obtain the decay rate in the desired norm,
or even just to be able to obtain the differentiable bound above.

Finally, one point about the example above that needs to be discussed is the lack of
dissipation in the direction of the derivative of the profile of the front. As a consequence,
to obtain the result, one needs to get rid of that zero mode. In the strategy discussed
before, it was already taken care of through the first part of the argument.

To describe other strategies, one can refer to those used in various contexts, such as
the particular case of constant states, for which this kind of direct argument is extremely
powerful.

The method developed by several authors to be able to use direct energy estimates
to obtain the result was to change the unknown and to consider instead a primitive
U(t,-) := §__ u(t,z) — u(z)dz , which forces to consider perturbations in L' such that
the L? norm of the primitive is small enough. For scalar one-dimensional viscous conserva-
tion laws, in [MN94], it was proved that such a technique is enough to obtain asymptotic
stability (it can be noted that, in this case, assuming that the perturbation is in L' im-
plies that, up to choosing a translation of the wave, its integral starting at —oo vanishes
at +00).

At last, we stress that the method does not seem adaptable to the non conservative
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case considered in the present manuscript.

Finally, let us mention some use of energy estimates in hyperbolic, as well as hyperbolic-
parabolic, equations to conclude nonlinear arguments : the so-called high-frequency damp-
ing estimates. They will be an important part of Chapter 1. They amount to control high
order derivatives by low order ones.

Just to give a bit of context, the idea is, under certain assumptions such that U(x +
Y(t,x))+V(t,x+1(t, x)) solves We illustrate this with a non trivial example from [RZ16].

Consider a periodic wave profile U = (7,u), that is a stationary solution to

OyT — €O, — Ogu = 0
Oru — cOpu + 0 ((2F?)™1772) = 1 — 7u? + v0,(7720,u),

where F' and v are some physical positive constants, and c is the wave speed. Let us look
for a solution in the form (7,u)(t,z) = U(x + ¢(t,x)) + V(t,z + ¢ (t,z)). Then

Proposition 3. For any positive s, there exist positive Cs, 0, and €, such that any
solution (V,v) defined on [0,T] for some T and such that sup,cpo 7 [(Vs¥e, ¥2) | s < €5
satisfies

t
VO < Ce ™|V (0)]7 + CL eIV ()12 () + (e (s), Ot () [ )dls.
This is a high-frequency damping estimate on V. The result does not say whether

the wave is stable or not. But it does imply that any possible instability is low-frequency

and that the decay of high regularity norms is slaved to the decay of low regularity ones.

The same kind of energy estimates that prove the proposition also yields a control on

resolvents, useful to apply the Gearhart-Priiss-Greiner theorem discussed below.

The high-frequency damping estimates prevent blow-up of wavebreaking type. In
proofs of asymptotic stability, they are typically combined with estimates on the lin-

earized dynamics used in Duhamel formulations to control low-frequency norms (with a

regularity loss compensated by the high-frequency damping).

Linear propagator and inverse Laplace transform

To prepare the next survey of techniques, and, more generally, the rest of this thesis,
some classical results on linear dynamics need to be stated. The presentation here follows
mainly results from [Paz83].

Recall that in the setting of semigroups, one can first rely on the inverse of the

Laplace transform to derive informations on the semigroup (e'!),cg, generated by a
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linear operator A from informations on the resolvent R(\, A) := (A — A)~!, that is by a

representation of the form

1 +00
etA

zg »

MR (1 + is\, A)(ug)ds

for any ug € D(A?), and where u € R is a constant big enough. Of course, such a
representation relies on the fact that A generates a strongly continuous semigroup.

In the context of semigroups of linear operators, a subclass that allows to study various
parabolic problems are those of analytic type. To give a bit of context, they are given by a
generator A such that there exist « € R and M > 0 such that o(A) c {A e C|R(\) < «}
and |R(\, A)| < \/\%\/Ial Moreover, in this case, the spectrum is actually contained in a
strict cone and the resolvent estimate extends to the exterior of such a cone. For analytic

semigroups, we have a better representation formula

1
S(t) = %JA e R(N, A)d\
where A is a continuous and piecewise smooth function from R to p(A), such that A passes
at the right of o(A) and such that lime_, 1, R(A(§)) = —c0 and lime_, 1o, S(A(E)) = 0.

The analytic representation formula readily implies that if the spectrum of A lies
strictly on the left of the imaginary axis then the semigroup exhibits exponential time
decay. Yet this situation can not happen naturally for our problems since 0 belongs to
the spectrum because of translational invariance. One way to fix this is to work in expo-
nentially weighted spaces requiring such a strong localization that the derivative of the
profile does not belong to the functional space under consideration.

To match more closely the case of fronts or solitary waves in parabolic systems, let
us assume that A is the generator of an analytic semigroup whose spectrum is contained
in {A € C|R(\) > —26}\{0} for some § > 0. Also, and that 0 is a simple eigenvalue
of A. By the latter we mean that R(\, A) is meromorphic near 0 with a pole of order

1 at 0. Then deforming the above contour through 0 provides the following decomposition

1

S RO\, A)d),
21 S(0,8) ( )

o

and decay exponentially fast in time.

Historically this has been the most traditional approach [Sat]. This includes the case
of parabolic conservation laws when exponential weights are used to create a spectral
gap.

When adapting the above strategy to systems that are not parabolic, the only part
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that needs to be significantly modified is the one converting a spectral gap into a linear
decay. Indeed, in general, the presence of a spectral gap is not sufficient and some extra
control on resolvents is needed. For instance, on Hilbert spaces, one may deal with general

operators through the Gearhart-Priiss-Greiner Theorem as presented in [EN00, HS21] :

Theorem 8. If A is a densely defined generator of a strongly continuous semigroup
(T'(t))i=0 on a Hilbert space H, such that supypso [N, A)| < 400 then there exist

C, w positive constants such that |T(t)|g—g < Ce ™.

The conditions given are also necessary (but not sufficient) in a Banach spaces.

Examples of application of this theorem in the context of the study of the orbital
stability of travelling waves are given in [KP13, EN0O].

Let us recall that one of our main goals is to the stability of viscous shock waves
uniformly with respect to the viscosity parameter ¢ > 0. A first strategy would then
be to consider the decomposition of the semigroup as described before, and to try to
track done the dependence of the bounds in € to ensure uniformity of the result in e.
However, computations do not go smoothly, and a huge issue in trying to do so is that
the perturbation is singular. Indeed, the kernel of the limiting linear problem (obtained for
the hyperbolic problem) involves Dirac functions. By changing variables, taking (7,¢) =
(et,ex), we obtain a new problem, not of singular perturbation this time, but for which
the singularity is linked to the fact that the distance from 0 to the essential spectrum,
shrinks to 0 as £ goes to 0. Because of that, one cannot obtain adequate bounds in this
way. To gain uniformity, we will need to design a phase separation dramatically different

from the one presented here and involving contributions from the essential spectrum.

Structure of the spectrum and weights

In scaled variables, the linear operators are of the form
L:ve v+ dy(aw) + Bu

for some smooth functions a and § which will converge (as well as their derivative)
exponentially fast at +oo.

Here we consider as an operator on L*(R) with domain H?*(R). We recall now how
spectral stability may be decided. To explain how to obtain such results, one needs to
first remind the decomposition of the spectrum in a point spectrum part and an essential
spectrum part for such operators.

Remind that the spectrum of a linear operator A : D(A) — X densely defined on
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a Banach space X is 0(A) := {A € C| Al — A is not an invertible operator from D(A)
to X or it is invertible and its inverse is not continuous as an operator from X to X}.
Furthermore, p(A) := C\o(A), and, for every A € p(A), R(\, A) := (A — A)~%.

For an operator such as £, one can actually obtain a decomposition that allows to
compute rather easily one part of the spectrum , and to reduce the rest of the spectrum
of the operator as the zeros of a holomorphic function.

To define them, first remind, as in [KP13], that, for an unbounded linear operator
A with domain D(A), its Fredholm index is defined if Ker(A) is finite dimensional and
Ran(A) is of finite codimension, and, then, ind(A) := dim(Ker(A)) — codim(Ran(A)).

Then the splitting is

(L) = 0ess(L) U o (L)

where 0.5s = {A € C| A — L — K does not have a Fredholm index equal to 0}, and o,:(L),
its complementary in o(L£). Equivalently, when o(A) # C picking u € p(A), C\oess(A)
may be characterized as the set of A such that there exists an operator K such that
D(A) € D(K), ANl — (A+ K) is invertible and K o R(u, A) is compact from X to X. We
refer to [EE87] for a proof of the latter. A concrete characterization of o.ss(L) is given
below.

The full description of o.s5(L) in the case presented here, as well as the definition of
the holomorphic function described earlier will soon be obtained.

The characterization given above enables us to check that the essential spectrum of

L agrees with the one of £, defined by

?v(x) + a4 0pv(z) + bypv(z), ifz>0
Lop(v)(x) =
Pv(z) + a_p0pv(x) + b_sv(z), ifx <0

where a+ and b4 denote the respective limits of aw and 3 at +00. The point is that the

essential spectrum of L, is easily computed. Indeed, let us set

AL = (A ° _1>

so that (A — Ly)v = 0 implies that V' = (v,?') satisfies V' = A, (A\)V on Rj.
Then A — L is Fredholm of index 0 if and only if neither A, (\) nor A_(\) has purely
imaginary eigenvalues and they have the same number of eigenvalues with positive real
part. We refer to [KP13, Hen81] for details.

Since in the present case, the needed spatial eigenvalues may be explicitly computed

this gives a concrete description of o.4(L). In contrast, o, (L) can not be computed

32



explicitly but it can be characterized as the zeros of a holomorphic function. This is
a more tedious task, detailed jointly with our closely related discussion of the spectral
Green functions.

Let us now describe how one can use the description of the essential spectra as well
as the Sturm-Liouville theory to derive orbital asymptotic stability of waves. First, the
classical following result, the Sturm-Liouville theorem on the real line, needs to be stated
(the form is simplified to take only into account the consequences needed here ; a more
detailed statement can be found in [KP13])

Theorem 9. With a linear operator of the form L := 02+ 0,(c) +d- with ¢ and d smooth
and real valued, converging exponentially fast at +oo. Then, o,:(L) is finite. If it is non
empty, then every eigenvalue of o, (L) is simple and real. Finally, the biggest element of

opt(L) is the only one to be associated with a non vanishing eigenvector.

In particular, with the problem under study, if max(b,,b_) is negative, then, as u’ is
an eigenfunction which has no zero associated to 0 and that o.s(L) < {A € C|R(\) <
max(b;,b_)}, we have that 0 € 0,,(L).

Furthermore, as «’ has no zero, 0,(£)\{0} is included in {\ € C|R(\) < —n} for
some 1 > 0, and 0 is a simple eigenvalue. As a consequence, one can apply standard

linear estimates. In particular,

o (I —m) = f e R(N\, L) o (I —mg)dA,
A

and so,
(T — 7o) s < f RO L) g2 |dA
A

With A valued in p(L£) U {0}, enclosing the complementary of this set by the right,
and only taking values in the set of complex numbers which have a negative real part.

And, given a semigroup of analytic operators, with a generator which has a spectrum
A contained in {X € C|R()\) < 5}, one has that for all § > 0 there exist v5 € |3, 7[ and
Cs > 0 such that for all A € Q2,59

| R, A)| <

and so,
Cs| Al

A—n—2d]
Thus, in the case considered here, one has that 020 R(\, L) = —I + AR(\, L) — (o +
B)R(\, L)—ad,oR(A, L). Hence, as the interpolation inequality ||0,v|zz < /[|v] z2]|02v] 12

JARO, A)| <1+
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holds, for A € €2, 1954, .
I O
AN—v—46]

Thus, for convection reaction diffusion equations, one can directly obtain linear bounds

[0z 0 R(A\, L) 12 <

from some spectral gap.

To conclude on the structure of the spectrum, we explain how introducing weights
may create a spectral gap. To do so we define L2 (R) as the set of functions u such that
e“u belongs to L?(R) and H"(R) as the set of functions such that their derivatives up to
order k belong to L2 (R). Let us now consider £ as an operator on L2 (R) with domain
H2(R) for some C? function w.

Equivalently one may consider £, := e“(L(e ™)) acting on L*(R) with domain
H?(R). Explicitly

L) = (w? —w")v+ a'v—awv+ av — 2w + 0" + B

In particular, by choosing w asymptotically linear at 00 one may improve the stability
of the essential spectrum provided that o has nonzero limits at infinities.

Motivated by nonlinear analysis we shall restrict to the case when lim sup, . (w) < o0.
Under minor extra assumptions this implies that H} embeds in L*(R)) and is an algebra.
With this restriction, we may improve the stability of the part of essential spectrum due
to one endstate with an asymptotically linear w only if the limit of « has the right sign.
Roughly speaking one needs the instability to travel from infinity towards the core. For

this reason, the stability obtained with such weights is often called convective stability.

1.2.3 Pointwise bounds of Green functions

When there is no spectral gap, the time decay cannot be exponential and both the
Hille-Yosida theory and the Gearhart-Priiss-Greiner Theorem become useless in large-
time. Still, algebraic decay rates may sometimes be obtained by other means provided
that the initial data and the solution are measured in different functional spaces. We
explain here how to do so through pointwise bounds on Green functions.

As a preliminary motivation, let us recall that in our analysis of the vanishing viscosity
limit we are actually dealing with a spectral gap of size €. It is therefore no surprise that
in order to prove a uniform result we need to use techniques adapted to cases with no
spectral gap.

This being said, let us point out that a good toy example is given by the heat equation,

when one trades the localization of the initial data against the time decay of the solution.
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Recall that
(z—y)?
e 4t

¢'% (uo) () = JR me(y)dy.

From this stems

(Je @
4t+/Tt
L

102 (e (u0))|l1, < lluol e

r

< Huo“fp.
H2r

when 1 <p,q,r <o, ¢<p, 1+1/g=1/p+1/r.

Our present goal is to explain how to derive such bounds in a robust spectral way.

Spectral Green function

To begin with, we explain how to build a Green function representation for the resol-

vent operators

RO\ L)(v) = f Gl y)o(y)dy

R

Since this is the region involved in the inverse Laplace formula for the semigroup,
we focus first on the connected component of p(£) containing the region where R(\) is
sufficiently large.

At least formally, for any y € R, we expect v = G(-,y) to be a H*(R) solution to

(A =L)(v) =4y,

which implies that v is smooth on R\{y} and solves A — fv — (aw)" —v" = 0.

The region we are considering is contained in the connected component of C\oss(L)
containing As with large real part, a region sometimes called the region of consistent
splitting. As a consequence the structure of solutions to the eigenvalue equation that
are L? near +o0, (resp. —o0) is fixed. In the present case, on each side the dimension
of the set of solutions is 1 and one may perform, at least locally in A, a smooth choice
of such solution w,(A,-) (resp. we(A,-)). The construction of these elements is standard
; see for instance [BG14, Zum01]. Some high-frequency analysis is however necessary to

uniformize the construction near infinity. For X\ in the region of consistent splitting,
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the above discussion motivates to look for G\(x,y) as

wr(\, x)er (N, y)ifr >y,
G)\<£IZ', y) =
we(A, z)a(A, y)ifr < y.

With this ansatz, the problem is reduced to ensuring that for any y

s (200) - ()

_ [ wOy) wAy)
B(\y) = (aywr@,y) @w(%@x)) |

One readily checks that if for some y, B(\,y) is not invertible then A possesses a

where

nonzero eigenvector. Thus if A € p(£), then B(\,y) is invertible for any y. This may also

be deduced from a Wronskian computation
det(B(\, ) = el @=9) det(B(A,0)) .

When A ¢ 0(L), we may therefore conclude the construction with
a(Ny) | el W) [ () y)
_Cé()‘my) D(/\) ’UJ,,«()\,y)

D()) := det(B(),0)),

where

is usually called an Evans’ function.

Incidentally we point out that the construction shows that in the region of consistent
splitting the location and order of the poles of the resolvent agree with the location and
order of the roots of the Evans’ function. This provides the announced characterization
of the point spectrum.

Though we shall not use it now, we mention that, since (z,y) — Gx(y, z) provides a
Green function for \—£*, the coefficients ¢, (), -) and ¢,(), -) solve the ODE corresponding
to the dual eigenvalue problem. On a related note we mention that the dual problem has
the same region of consistent splitting and one may introduce similarly w, (A, ) (resp.
wWe(A,+)).

For later use, we need to understand how far beyond the essential spectrum can this

construction be extended by analytic continuation. We warn the reader that a priori the
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extension will not provide a resolvent operator even in regions where such a resolvent
does exist. The decisive step is the extension of the construction of w, (A, ) and wy(A,-).
A simple inspection of the construction of w, (resp. wy) shows that it can be continued
as long as the the eigenvalues of A, () (resp. A_()\)) have distinct real parts. The set
of X\ where this fails is called absolute spectrum and the connected component of its
complement containing As with large real part is called the set of extended consistent
splitting. The conclusion of the present discussion is that an analytic continuation is
possible on any simply connected subset of the region of extended consistent splitting.
Furthermore, in the simple second-order model discussed here, the absolute spectrum is
a half-line included in the real line, making the set of extended consistent splitting itself

a simply connected set, thus making the discussion in that case simpler.

Temporal Green function

We now come to temporal Green functions. Here we mostly follow [ZH98]. We mention
however that those were preceded by the closely related [SX93, L.Z95, Zen94, 1.Z97, HZ95,
Liu97]. More remotely, they also share some similarities with the much older use of
temporal Green functions in short-time studies ; see for instance [Fri64]. The method
pioneered in [ZH98] has been subsequently extended in [HZ00, HZ02, MZ03, MZ04a,
MZ04b] so as to cover the nonlinear stability analysis of most of smooth fronts of systems
with a high-frequency damping mechanism.

We want to bound (¢, x,y) — G(t, z,y) the temporal Green function of £, that is, the
function which satisfies, for every ¢ € L*(R), (t,z) € R* x R,

() (x) = fR G(t, 7, 1)é(y)dy.

The starting point is that

Glt,a,y) = == | *Gala,y)n

2T J)

where the contour is as in the inverse Laplace transform formula for e!~.

A crucial observation that motivates the introduction of Green functions is that one
may now move contours in a way that depends on (¢, x,y) (and not only t) and in par-
ticular we can make use of analytic continuations that go beyond the essential spectrum.
One of the main contributions of [ZH98] is to provide a strategy to decide how to move
the contour that is less sharp but much easier to apply than the saddle-point method.

We now illustrate this strategy on the heat equation. The absolute spectrum of 02 is
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R_ and for A ¢ R_ the analytic continuation of the spectral Green function is given by

Gi(z,y) = ﬁe‘ﬁ”_y‘. Our goal is thus, by a suitable choice of the path A to prove

that for some 8 > 0
< 1 ] W*ty\Q

Vi

1 ~VAlz—y]
L G Yl

The path A is defined through

R(VA(O) [z =yl = (R(VAo) +i€) [« —y|

with Ag € R, still to be determined, so that the contribution of £ to the complicated
eVMe=yl can be discarded but its contribution to et provides a e~¢”t that ensures the
integrability of the integrand and is responsible for the 1/4/t factor. The choice of A,
is done by minimization over Ag € R, of Aot + +/Ag |z — y|. This leads to the choice
Ay = |z — y|*/4t, and concludes the proof of the claim.

Following this strategy in more general contexts is obviously much more technical but

leads to similar results.

1.2.4 Discontinuous waves in the hyperbolic setting

We now discuss stability results concerning discontinuous waves.

As for the local well-posedness theory, there is a clear separation between analyses
carried out in topologies that can accommodate discontinuities in a soft way (such as L,
L®, BV ,...) and those that are very sensitive to those (W%, piecewise smooth topolo-
gies,...). There is actually a gap between the two kinds of the result: in dimension one,
the upper limit of the former being BV regularity whereas the lower limit of the latter is
(piecewise) WH*.

Our analysis is clearly of the second kind and we mostly refer to [Mas99, Liu21] for
some examples of the first kind. Moreover we focus on cases when some of the main
features of the large-time analysis are already present at the linearized level. However
we mention that this overlooks a well-known hyperbolic dissipation effect, the entropy
dissipation at discontinuities of genuinely nonlinear fields. This mechanism is for instance
used to prove the stability of constant solutions to one-dimensional systems with all char-
acteristics being genuinely nonlinear. In such kind of stability result, the initial data is
bounded and compactly supported but the solution is measured in L', with decay rate
1//t for the scalar case, £~'/* in the general case.

The results of main interest for the present contribution are [DR20, DR22, GRJ]. In
[DR20] the stability of Riemann shocks of balance laws is studied. In [DR22] a full clas-
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sification of traveling waves of balance laws, including those with discontinuities and
characteristic points (thus loss of ellipticity), is obtained. At last, in [GR] the stability
analysis is extended to the study of the stabilization with exponential weights. In the
present thesis, we discard wave profiles with characteristic points (whose analysis is ex-
pected to be dramatically different) so that only constant solutions and Riemann shocks
are the only stable possibilities in unweighted topologies and the consideration of convec-
tive stability only adds more waves of the same type and some smooth fronts.

We also mention two more results in the same spirit. In [FR22], a general result has
been obtained for Riemann shocks of general strictly hyperbolic systems with a spectral
gap. In [JYZ21, YZ20], some discontinuous fronts of the St. Venant equations, a 2 x 2
system, have been proved to be stable, with algebraic decay rates. A common difficulty
of all system cases, not present in the scalar case, is that the linearized problem does
not fit in the semigroup framework and one needs to develop large-time tools for initial

boundary value problems of hyperbolic type.

1.3 Main results

We conclude this introduction with a brief description of the main results of the

following chapters.

1.3.1 Combustion models and weights

The first chapter contains the results of a collaboration with Aric Wheeler (Indiana),
PhD candidate under the supervision of Kevin Zumbrun. The main part of the analysis
was carried out during my two-months stay there.

In our common work the formation of singularities in two hyperbolic systems of bal-
ance laws providing combustion models was studied.

Such systems admit discontinuous traveling waves representing detonation waves. For
both models, the pioneering [Joh74] was extended to show that in weightless topolo-
gies arbitrarily small perturbations of detonation waves may form further singularities
in finite-time despite the fact that the perturbation is done around some traveling wave
solution and not some constant.

For the smallest model, the Majda model, however, this may be cured with expo-
nential weights. Indeed, for the latter, it is proved on one hand weighted high-frequency
estimates near any detonation wave, thus discarding the formation of singularities of
wavebreaking type, and on the other hand, it is proved that small-amplitude detonation

waves are convectively asymptotically orbitally stable. In contrast, for the largest model,

39



the ZND model, it is proved that no weighted high-frequency damping estimate may
hold.

Our stability analysis is carried out through energy estimates.

One aspect that affects the whole analysis, notably the convective stability part, is
that the systems exhibit some characteristics that are outgoing and others that are in-

coming, both kinds being coupled by source terms that are not fully dissipative.

1.3.2 Riemann shocks in the inviscid limit

The second chapter is based on [BR23] and contains a proof of uniform stability
of viscous approximations of Riemann shocks, that may be thought as an extension of
[DR20].

In that context is proved the existence of a family of traveling-wave solutions (u,, o)
approaching a given stable Riemann shock (u,0) and their uniform asymptotic orbital
stability. The stability result involves multiscale norms, accounting for the presence of
shock layers of length e.

These norms are of the form

0,V
1+ e le—be

oo = ol + |
0

(where § > 0 is a parameter small enough and independant of € > 0.) Thus, in particular,
they are equivalent for any fixed ¢ > 0 to the usual WH*(R) norm, and, for functions
supported away from some fixed neighborhood of 0, the equivalence is uniform in e.

This is consistent at the limit with the space W1*(R*), encoding piecewise smooth-
ness and used in the hyperbolic case.

There are three main obstacles to overcome.

Firstly, at the linear level we need to identify a phase shift ¢(¢) (to encode the orbital
character of stability) suitable in both limits ¢ — o0 and € — 0. This requires to revisit
the whole machinery in [ZH98] and derive a completely new kind of e-dependent phase
splitting. In comparison, for the problem at hand, non uniform stability may be obtained
by simply projecting out the elements of the kernel of the propagator as reminded earlier.

Secondly, terms of size 1/e, such as d,v(t, x) ¢'(t) u.(x), appear in the Duhamel for-
mula used to bound v. Here we use that the nonlinear reminders that are not of size € are
actually spatially exponentially localized at scale €, which we may transfer into a time
decay at scale € through a spectral gap argument. The above multiscale norm encodes
that J,v is not worse than this.

At last, to guarantee uniformity in e, we cannot close the nonlinear iteration through

parabolic regularization. Instead, we rely on a maximal principle argument with a very
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carefully designed weight.

It is linked to the norm described above.

1.3.3 Convective stability of Riemann shocks and smooth trav-

elling waves in the inviscid limit

In the first part of the third chapter is also proved uniform stability results. This time,
the cases of unstable Riemann shocks in weightless topologies that may be stabilized by
exponential weights are studied. This provides a vanishing viscosity counterpart to the
Riemann shock part of [GR].

The analysis first treats cases associated to a weight allowing the obtention of a
spectral gap (up to the 0 mode associated to the derivative of the front). Then we deal
with the case when the weight is barely sufficient (that is, when the weighted essential

spectrum touches the imaginary axis, thus when there is not any spectral gap)

679€|"
(L+]-1)2

with 6. critical, and « sufficiently large to close the nonlinear argument. In the critical
case, we obtain algebraic time decay rates by losing spatial moments, thus spatial local-
ization. Consistently we need to lose a sufficiently high power of moments so as to enforce
that the algebraic decay is sufficiently fast to close a nonlinear stability argument. By
many respects the analysis differs dramatically from the unweighted one.

In a second part, we study the same question for smooth fronts instead of Riemann
shocks. Thus, this time, the problem is about the singular perturbation of a smooth trav-
eling wave associated with the hyperbolic problem. It turns out that the corresponding
stability problem may be completely analyzed with arguments of maximum principle
type. Moreover, in the critical case one may also obtain a stability result without losing
polynomial weights. Obviously, however, the latter stability result comes with no time

decay rates, or, in other words, is not asymptotic.
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CHAPTER 2

MAJDA AND ZND MODELS FOR
DETONATION: NONLINEAR STABILITY VS.
FORMATION OF SINGULARITIES

2.1 Introduction

This work is about expanding a new area [DR20, DR22, YZ20, BR23, FR22]: the invis-
cid global time-asymptotic stability of piecewise smooth solutions of hyperbolic balance
laws: specifically, asking if given a smooth and small enough initial perturbation, that
the solution to (2.1.1) will remain piecewise smooth, without any other discontinuities
appearing.

u + f(u)z = g(u). (2.1.1)

This is quite different from the behavior of conservation laws, for which we have that,
generically, other shocks are expected to form. Important physical examples include the
Saint-Venant equations [Liu87, JNR*19] and detonation [DF79].

The most comprehensive contributions concerning the local existence theory for such
discontinuous solutions of balance laws were first obtained by Majda in [Maj83a, Maj83b|
and then by Métivier in [Met]. See also the book by Benzoni-Gavage-Serre for a more in-
depth exposition. Since then, a number of 1-D results have also been obtained; see [Bre00]
and references therein. Conditions for finite-time blowup have also been explored, with

discussions of other cases, such as other types of shocks [BGS, Bre00].

In such a framework, it is possible to ask, given a solution with a discontinuity at a
single point (or, in higher spatial dimensions, on a hypersurface) to the equation (2.1.1),
do smooth perturbations of the wave remain smooth outside of the given jump? Here,
the goal is to understand the behavior as ¢ — 400 of perturbations of such waves for
two systems, the Majda and ZND models, which are both detonation models that will be

presented below.
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A crucial part of the analysis of the Majda model is a high-frequency damping es-
timate. Damping estimates were initiated in [Zum04, ZumO7] and later expanded in
[Zum10, JNRZ14, JZN11, RZ16]. The existence of a damping estimate is a property of
some systems that allows the control of higher order derivatives of the solution by knowl-

edge of bounds on the lower order ones.

In certain contexts such as hyperbolic-parabolic systems like in [Zum07] and in the
fifth chapter of [FS04], this type of result is obtained through arguments similar to those
of Kawashima in [Kaw84, KS88].

Damping estimates typically take the form
E)e < —0E(v) + Clv]3a, (2.1.2)

where &(u) is an energy equivalent to |[ul3, and L2 and Hj are weighted L? and H*
norms with a weight parameter o. Thus, such an estimate effectively controls the HJ

norm of the perturbation by the L2 norm of the perturbation.

Links with the high-frequency estimates of the resolvent are discussed in [ZumO7,
RZ16].

An important point is that they prevent singularity formation. In the case of conser-
vation laws, it is often expected that singularities will form (see [Joh74, Liu79]), which
can’t happen in presence of such damping estimates. In this case, the first order derivative
of the perturbation blows up (more precisely, its L* norm blows up), but the LP norms

(1 < p < o) of the perturbation itself does not blow up.

High frequency damping estimates (2.1.2) are tools to close nonlinear iteration. When
proving stability results, they essentially reduce the problem to prove low-regularity es-
timates that may typically be obtained through a Duhamel formulation. See for instance
[YZ20].

Again, this can be contrasted with the classical results on singularity formation
[Lax73, Joh74, Liu79, Ali95, Spel6] for the case g = 0 of hyperbolic conservation laws.
Hence damping estimates depend importantly on properties of g. For further discussion,
see [DR20, DR22].
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A systematic treatment of damping estimates has been shown in the context of relax-
ation systems [MZ05a, YZ20]. Here our purpose is to explore limitations of this approach
in the physically interesting context of detonation models, which are very similar in
structure to and can be viewed as a degenerate type of relaxation models. We begin by
showing that, for this general type of problem, the singularity formation shown by John
in [Joh74] extends to this case, that is for perturbations around a wave instead of around
some constant. An extensive literature on extensions of this result to more general and
geometrically involved situations can be found in the books [Ali95, Chr07, Spel6]. For
the Majda model, we will show an asymptotic orbital stability result directly thanks to
energy estimates in some weighted space for waves of small amplitude, and damping es-
timates for the general case. For the ZND model, we show that blow-up will occur for
some arbitrarily small initial perturbation and how this prevents the kind of damping
estimates that we described above. In particular, unlike the Majda model, one cannot

stabilize the shock in the ZND model by using exponentially growing weights.

2.1.1 ZND and inviscid Majda models

We focus on two closely related classical models of combustion, an inviscid variation
of the model from [Maj81] (see also [Fic79]), which we will call the Majda model, and the
Zeldovich-von Neumann-Doering (ZND) model. The ZND combustion model is sometimes
tagged as reactive Euler systems or reactive Navier-Stokes systems depending on whether
or not one includes viscous effect. Here, we focus on the inviscid case. For simplicity, we
will focus on one-step reactions. The origins of this model are discussed in [Lail9]. Both

of these models can be written abstractly as

Up+ f(U)s = kgop(U)z,

2.1.3
Zt = _k¢(U)Z’ ( )

where U € R" is comprised of various gas-dynamical properties such as velocity, specific
volume, and internal energy, z € R is the mass fraction of unburned gas, ¢(U) is an
“ignition function”, which we will take here to be a rough cutoff depending on the tem-
perature of the gas, ¢ corresponds to quantities produced by the reaction, in particular
the amount of heat released by the reaction, and k£ > 0 corresponds to the reaction rate.
Note that in the scalar case ¢ is permitted to have either sign, with ¢ > 0 corresponding
to an exothermic reaction and ¢ < 0 corresponding to an endothermic reaction. In the
Majda model, we take U, g € R to be scalar quantities, with U being a “lumped variable”

representing features of the density, velocity and temperature of the gas. For the sake of
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concreteness, we write the Majda model as

Ut + f(U)s = kqo(U)z,

2.1.4
2z = —ko(U)z. ( )

We will write the ZND model in Lagrangian coordinates, where U is now taken to be
in R? with U = (v,u, E) for v the specific volume of the gas, u the velocity of the gas,
and FE the specific gas-dynamical energy (that is, £ = e + %uQ where e is the specific
internal energy). The general system (2.1.3) for the ZND model now takes the form given
in [Zuml2, Zuml1]

Vp — Uy = 0,
et pe =0 (2.1.5)
E; + (pu). = gko(T)z,
2z = —ko(T)z.

To complete the system (2.1.5), one needs to relate the temperature 7" and pressure p to
the variables (v, u, E), or equivalently (v,u,e) for specific internal energy. One common
choice to complete the system is to use the ideal gas law to define the pressure and

temperature as

Te
p(v,u,e) =

U (2.1.6)
T(v,u,e) = -,

C

where I' > 0 is the Gruneisen constant and c is the specific heat constant. For our pur-
poses though, the specific forms of p and T are not so important. For other possible

choices we refer to [Erp].

A right going detonation wave is a traveling (shock) solution (U, z) of (2.1.4) or (2.1.5)
with speed o > 0 satisfying

111}_100((]7 Z)(I,t) = (Uiuzi)v (217)
with z, = 1 and z_ = 0. For the existence of such waves in the Majda model see [Lail9]

and [Maj81]. For the ZND model, a proof of the existence of such waves is given in [GS93,
Will0] for some particular choices of p and T'. Physically, the shock is moving from the
totally burned region to the totally unburned region. A long standing question, initiated
by Erpenbeck in [Erp| for the ZND model, concerns the stability of these detonation
waves. For the ZND model, there are partial stability results such as [Zum12, Zum11] and

works cited therein. In [Zum12], it is shown that ZND detonations are spectrally stable in
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the weak heat release and high overdrive limits by using techniques from asymptotic ODE
theory. The weak heat release limit is ¢ — 0 in (2.1.5). The high overdrive limit concerns
a different a choice of ¢(7) in (2.1.5) than the one we’ve made here. It is important to
note that our blowup theorem for ZND is specific to the inviscid case.
Let us emphasize that, unless stated explicitly, o will be a positive constant here.
Finally, a closely related model that has been studied in the past is the viscous variation
of the ZND model, known as the reactive Navier-Stokes, which may be written abstractly
as

U+ f(U)s = kqd(T)z + e(B(U)Us)a,

(2.1.8)
2= —ko(T) +e(C(U, 2)24).

For the reactive Navier-Stokes equations, it is known that spectral stability implies non-
linear (orbital) stability [TZ11, Zum11].

It is also known that spectral stability of the detonation waves of the reactive Navier-
Stokes for all € > 0 sufficiently small implies spectral stability of the corresponding ZND
detonation wave [Zuml1], however, it is still open that nonlinear stability of the detona-
tion wave for all small viscosities implies nonlinear stability of the corresponding ZND
detonation wave. Finally, study of the spectral stability in the inviscid limit has been
partially done in [LZ04].

Furthermore, there have also been studies of the stability of the wave in the viscous
Majda model. In [LRTZ07, Sze99], it shown that nonlinear stability follows from spectral
stability with the help of Green functions methods (the second one being focused on
waves of small amplitudes), and the study of the spectral stability has been studied in
[JYZ21, JY12, LY99] as well as [JLWO05] for the low-frequency multi-dimensional varia-

tion.

Turning to the inviscid Majda model, an early result on the stability of the detonation
wave is [Lev92]. In that paper, Levy shows that the weak entropy solution to some
Riemann problem converges to the detonation wave as t — oo. In fact, it is proven by
first showing the existence of what the author calls a normal solution to the Riemann
problem with initial data (u_q,0) (where u_o, = lim,, o u(x)) on R~ and (0,1) on
R*. In that case, the solution may be discontinuous at (¢,0) for some ¢ > 0 and hence
does not follow from our analysis, as we note that the Riemann data is not in general a
small perturbation of our wave, and that our work is centered on the preservation of the
smoothness on both sides of the shock. We mention that Levy’s result does not require ¢

to be small at the expense of only working with very special initial data. As a final note,

47



it can be noted that a large part of the analysis relies on comparing certain solutions
and obtaining monotonicity of ©" where O(¢) is the position of the shock, while we will
rely on energy estimates in our case. We will not, in general, have monotonicity of the
derivative of the phase and we will not require the initial perturbation of u to have a
special sign. There are also results available on the spectral stability of the Majda model.
For example, [JYZ21] proves spectral stability of the detonation wave for the inviscid
Majda model for piecewise constant ignition functions using Evans function techniques.
One can also study the spectral stability of the Majda via the vanishing viscosity limit
as in [RV98].

2.1.2 Local existence theory

In order to study the asymptotic behavior of solutions to hyperbolic equations in the
presence of a shock, we first need to recall the following result on the Cauchy problem.
It is an adaptation of the results of chapter 4 from [Met](specifically Theorems 4.1.5 and
4.1.6). We state a theorem that can be applied to both models studied here. Furthermore,
from now on, we will consider solutions in the Lax sense, that is, the one developed by
A. Majda and G. Métivier in the references cited before [Maj83a, Maj83b, Met].

We fix an integer n > 1, an integer s > 2, two elements u, and u_ of R". With

b,h: R" — R"™ two smooth functions, we study the equation:
ur + (b(u)), = h(u).

Remind some terminology associated to hyperbolic equations. We restrict ourselves to
the framework needed here : hyperbolic systems of balance laws in one space variable.
Consider the equation

u(t, x) + A(u)u, =0,

defined on U < R open where, for every u € R", where u — A(u) is smooth, and valued
in the set of n x n matrix. The equation is said to be constantly hyperbolic on U if, for
every u € U, A(u) is diagonalizable with real eigenvalues of constant multiplicities.
Now, we assume that there exists b, smooth, : Assume that we have a function b : U — R"
such that db(u) = A(u) for every u € U. Define

u_ if x < to,
u(tvx) =
uy if ¢ > to

where u_ € R", uy € R" and 0 € R. Assume that b(u; ) — b(u_) = o(uys — u_) and that
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vy + A(u)v, = 0 is constantly hyperbolic on a neighborhood of u_ and on a neighborhood
of uy, and note (Ag(u))1<k<n € R™, the nondecreasing sequence of eigenvalues of A(u). We
say that u is a one-dimensional shock solution to the equation u; + (b(u)), = 0 satisfying
the stability condition if there exists k € {0,...,n} such that A\;_,(u_) < o < A;(u),

Mi(ug) <o < Agyq(u) and, with b = uy —u_,

C'=Cbd P Ker(Au_)—M(u-))® P Ker(A(uy) — Apl(uy)).

/\Sx\,;(u_) )\2)\]~C+1(u+)

We are looking for solutions close to a wave (with a discontinuity) satisfying the equation.

More precisely, given ¢ € R and a smooth function U : R_ — R" solving the equation
(db(U(x)) — oldgn)(U'(z)) = h(U(x)) ,

with U(0) =: u_ € R™ and for a given u, € R™ such that h(u,) = 0, and also such
that b(uy) — b(u_) = o(uy — u_), we consider the wave is defined by the extension of
U to R*, defined by U(z) = u, for all x > 0. We also assume that U decays exponen-
tially fast to its limit state at —oo, as well as all of its derivatives decay exponentially
fast to 0, and that the shock associated to u_ and wu, is stable. We further assume
there exists a neighborhood U, of u, and a neighborhood U_ of u_ such that, on U,
0; + db(w)0, is constantly hyperbolic and on U_ 0; + db(w)d, is constantly hyperbolic.
We will be looking for solutions that can be written in the form ¢ — (U +v(t,-))(- — &(t))
with v in C°([0,T), H*(R*)) with T € R™ U {+o} and s big enough. At this stage,
we remind that for any s, nonnegative integer, the Sobolev space H*(R*) is defined as
HR*) := {ve L2(R*)| for any j € {1,...,k} v e L?>(R*)}, where v\ is the j-th order
distributional derivative of v on R*. In particular, on may have v € H'(R*) but v not

continuous at 0 ; its distributional derivative on R may contain a Dirac mass dy.

Notation: As in [Met], we use the following notation: CH*((0,7) x R*) where
R* = R\{0}, s is a nonnegative integer, 7" a positive number or +oo is the subset of

C°([0,T), H*(R*)) such that for every j a nonnegative integer with j < s, we have

u; € C*79([0,T), H (R*)) where [0,T) is [0,T] if T < 400 and R, otherwise.

Theorem 10. In the above framework, there exists p > 0 such that for every vy €
H*H12(R)™ supported away from the shock such that ||vol| . < p, there exists T € (0, +o0]
a unique maximum solution to the equation uy+ (b(u)), = h(u) in CH*((0,T) x R*) with
phase ¢ in C*T1([0,T)) with initial data U + vy for x < 0 and uy + vy for x > 0. Further-
more, either T = 400 or limsup,_,; [v(t)| = (R*) = p or limsup,_ 7 |vg(t)| Lo @m*) = +o0.

Finally, if we have T € R*, then a sequence of smooth initial data (vy,), that converges
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(strongly) in H® to ve H*(R) localized outside of a neighborhood of the point 0, with v,
giving rise to a solution u, and u for v with all of them defined on [0,T], we have that

(un(t))n converges in L* to u(t) for every t € [0,T].

We will not prove Theorem 10 here. We note the two adaptations needed to go from
the proof presented in [Met] and the one needed here are: first, we need to add a source
term, which barely changes the estimates, and, also to transform the constant state on
R~ to a wave, which can be done by using the finite-speed of propagation of the equation.

Furthermore, in ([Met]) the author proves more precise results that are not needed here.

2.1.3 Main results

In the positive direction, we have a result of asymptotic orbital stability for the Majda
model with weighted norms. In fact, we have the following result, with H*(R*) (where

k € N and £ > 0) being the Sobolev space defined as:
HFR*) :={ve H*R*) VO <1 < k,(dv)*exp(e| - |) e L'}

with norms

e

o) = (2.1.9)

2
v exp <5| |>

L2(R¥)

Theorem 11. Fizk >0, f : R - R, smooth and ug € R, such that f'(ug) > o > f'(0).
For qi > 0 small enough, for every q € [—q1,q1], there exists some wave (u,z) : R — R?
smooth on R_, constant on R*, such that w(0) = ug, 2(0) = 1, u(x) = 0 = z(z) for any
x>0,

as well as infer_ f'(u(z)) > 0.

Then there ezists a 6y > 0, go > 0,9 > 0, C' > 0 and € > 0 such that for every q € [—qo, qo]
and every (vo, (o) € (H*?*(R)n H2(R))? supported away from 0 with |vo| gz +]|Co
the solution (u,z) to (2.1.4) with initial data (u + vo,z + (o) is defined for all t € R.
The position of the shock at time t, ¥(t), is C' and for all t = 0

Jult, - +16(8) = ulme@e) + [2(t, - + (1) = 2 m2m%) + W' (8) — 0| < O]

)6_1%.

Remark that, in Proposition 4, the existence of the ¢; mentioned in the theorem above

is given for any such f, ug > 0, k£ > 0, and gives a condition on ¢ € R for such problems
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ensuring the existence of the wave.

In the negative direction, we have a generalization of the blow up theorem in [Joh74] for
perturbations of rapidly decaying shocks. See also [LXY22] and references cited therein
for related results. Before we state Theorem 12, we recall some terminology. We recall
that a smooth matrix-valued function A(w) is strictly hyperbolic if A(u) has all distinct
real eigenvalues for all values of u in some range. By [Kat76], strict hyperbolicity implies
that A(u) has a smooth set of left and right eigenvectors n;(u) and £'(u) respectively. We
then say that A(u) has a genuinely nonlinear field if

g & (1A + 1€ @)E W) +0, 2110

for all values of u and some index 1.

Theorem 12. Let A(u) := DF(U), where F' : R™ — R™ is smooth, be strictly hyperbolic

with at least one genuinely nonlinear field. Consider a stationary shock solution U of
U+ AU)U, = 0. (2.1.11)
Assume that U is smooth for x + 0 and the bounds
108U (2)] < cpe™M, (2.1.12)

hold for some ¢ > 0, all nonzero x, and for all k = 0,1,2,.... Then, for all 6 > 0 small

enough, there exists an initial perturbation U (x,0) satisfying

1. U(x,O) is compactly supported on an interval I of width one and such that the

distance from I to 0 is comparable to 0.
2. The C? norm of U(z,0) is O(6).

3. There exists a Ty ~ 0~' and T, < Ty such that U given by U = U+U is a solution of
(2.1.11) on the time interval [0,Ty), and the perturbation U(x,t) remains bounded

i L* fort < T, but
Jlim. 10U (-, 1) = 0. (2.1.13)

We note here that the perturbation constructed in the proof of Theorem 12 has the
property that its support remains bounded away from the underlying discontinuity on

the interval [0, T%]. In particular, the singularity that forms is not caused by a phase shift
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of the underlying shock profile. With that in mind, our analysis is not precise enough to

determine the nature of the singularity that forms.

As a corollary, we obtain a blowup result for the ZND model.

Corollary 1. Let U = (v,u, E,z) be a right going Neumann shock of the ZND model
(2.1.5). Then, for all @ > 0 small enough, there exists a perturbation (7(95, 0) = (0,4, E, 2)(z,0)
satisfying

1. U(x,0) is supported on an interval I of width one with the distance of I from 0
comparable to 6= and I < (—00,0).

2. 2(z,0) = 0.
3. The C? norm of U(z,0) is O(F).

4. There exists a Ty ~ 071 and T, < Ty such that there is a solution U of (2.1.5)
of the form U = U + U, on the time interval [0,Ty). Moreover, the perturbation

A

Ul(x,t) remains bounded in L* fort < T, but

lim [|0,U (-, 1)]]o = 0. (2.1.14)
t—>T,

Moreover, one can arrange 0,U(x,0) to be “mazimal” in an outgoing genuinely nonlinear

direction.

This result also applies to Majda with unweighted norms.

During the proof of Theorem 12, we will show that U satisfies an equation of the form

A A

U, + (A(U) + B(z,0))U, = G(z,0)U, (2.1.15)

for known matrix functions B and GG which are small on the support of U. What we mean
by “maximal in an outgoing genuinely nonlinear direction” is that the U in the statement
of Corollary 1 is such that the quantity max; sup, |n;(U(z,0))0,U(x,0)| is achieved for
some ¢ with 7); associated to an eigenvalue of A which is strictly negative and genuinely

nonlinear.

We note that Corollary 1 is not an immediate application of Theorem 12 due the
presence of the reaction terms. The key idea of the proof of Corollary 1 from Theorem 12
is to note that 2 = 0 effectively allows one to take z = 0 in the ZND model, reducing the

ZND model to gas dynamics. We also note that Corollary 1 also prevents any stability

52



result of a similar form to Theorem 11 due to the presence of the outgoing undamped

mode.

2.1.4 Discussion and open problems

One of the main questions that remains unanswered is the stability of waves for which
u is not necessarily of small amplitudes. As we have obtained high-frequency estimates
and that spectral stability results have been obtained, it is of interest to study the non-

linear stability by using the high-frequency damping estimates and the linear stability.

In the recent work [LLXY22], the authors perform an in depth study of the blow up
of initially small in L* but large in W® initial data to systems of conservation laws, as

well as the details of such a blow up.

Another main question that is not answered here is whether or not the W1®-norm
blows up for the ZND model for initial perturbations which are small in the weighted

space H? as the data v constructed in the proof of Theorem 12 has H?2 norm of size
V] |z ~ fe? > 1.

Here, we only show the instability of the wave or the lack of high-frequency damping as
long as the solution remains small. It does not give us finite time blow-up for initial data
which is small in the weighted norm. The main issue is that our adaption of the John
arguments requires the characteristics to not interact with the shock on a sufficiently large
timescale determined by [[v,(0)] s for v the perturbation of the shock. Letting V = e 'y

so that [|V|[g2 ~ 0, then gives us an expected blowup time for the perturbation V' of size

)

e
T* ~ ?7
which is more than long enough for the characteristics emanating from an interval of

distance #~! to interact with the shock.

We note that Corollary 1 implies there can be no H® damping for s > 2 by Sobolev
embedding. For the case of conservation laws, through a separate argument one can show
that there is no H'-damping either. To see this, we recall from the book [Bre00] and
the articles [BCP00, BLY99], and references cited therein, that initial data with small
BV-norm have unique solutions in BV. Since H' functions with compact support are

BV functions, the H' solution agrees with the BV solution on the time of existence.
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On the other hand, it is shown in [Liu77, Liu20] that (suitably rescaled) solutions of
conservation laws converge to linear combinations of N-waves in L! as time increases.
These two results can be combined to show that there is W1P-blowup for all p > 1, in
particular the H! norm blows up as well. Briefly, the observation is the variation in the

solution V' (u, I), for an interval I, is bounded from above by
V(1) < 111l < 1 sl e, 2.1.16)

for |I| the width of the interval. However, because the N-wave has a discontinuity, even-
tually there is a point (x4, t.) where the solution has variation bounded away from zero
for any interval I containing x,. This then forces the L” norm of u, to be infinite at ¢,
for p > 1. Interestingly, this argument does not imply that the W'-norm blows up, and
indeed the equality

ol 25 = Iz (2.1.17)

for smooth solutions u seems to imply that the W!!l-norm remains finite up to the for-

mation of the shock.

It would be interesting to adapt these results to the case with exponentially small
perturbations in the coefficients. Another interesting question is how much longer does
the WP norm take to blowup? It is easy to check, and part of the construction, that for
compactly supported initial data, as long as the C! norm of the solution remains finite,
the WP norm also remains finite. On the other hand, the C'* norm blowing up does not a
priori imply that any other W' norm blows up. For scalar conservation laws, motivated
by [GX92, Yu99] [CG23| provide an asymptotic expansion of the solution in the vanishing

viscosity limit in the time period just before shock formation.

The key difference in our results between the Majda and ZND models is that the
ZND model has an undamped outgoing genuinely nonlinear mode, whereas the outgoing
mode in the Majda model is damped. This suggests that genuinely nonlinear outgoing
undamped characteristics play a key role in the formation of singularities in spaces with
weighted norms, as incoming characteristics can be handled by having exponential weights
which “trap” the perturbations near the shock which would then prevent blowup since
incoming signals would interact with the shock before they have a chance to blowup. It
would be interesting to see if this mechanism is present in systems of hyperbolic balance
laws where one assumes that damping is absent at the equilibrium endstate only for some

characteristic direction which is outgoing.
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As in [BR23], one can ask if there is a uniform stability result in the inviscid limit of

the viscous Majda model. More precisely, for the viscous Majda model

Ui+ f(U)y = qgko(U)z + vU,,,

(2.1.18)
2z = —kd(U)z + vz,

can one show that there is a one parameter family of shocks (U”, z”) such that (U”, z")
converges to the detonation wave of the inviscid Majda model as v — 0, there is a 1/
such that the decay estimate in Theorem 11 holds for the viscous shock, and such that

¥ can be chosen independently of v provided v is sufficiently small?

The final question we ask here is what does stability, in say the class BV of solutions,
look like in the cases where the damping estimates fail? Could one have algebraic decay
of small perturbations in time? We note that, at the linear level, the Hille-Yosida theo-
rem prevents exponential decay in any exponentially weighted norm, and, as in [Rod15]
the theorem of Datko-Pazy prevents any decay at the linear level without a change of

topology between the solution and the initial data.

Outline: We establish Theorem 11 in Section 2.2 via energy estimates in weighted
Sobolev spaces. We construct the background wave in Proposition 4. We then derive the
evolution equations for perturbations of the constructed background wave and prove the
desired bounds on the weighted energy of the perturbation and on the traces of the per-
turbation at the location of the shock. Finally, we conclude this section with a discussion

of left going shocks in the Majda model in Proposition 7.

We establish Theorem 12 and Corollary 1 in Section 2.3. We prove Theorem 12 by
adapting the argument in [Joh74] to certain variable coefficient systems. We then establish

Corollary 1 and show that the shock is unstable in the weighted norm.

Acknowledgement We thank our thesis advisors L. Miguel Rodrigues and Kevin

Zumbrun for suggesting this problem, and for their guidance and discussions.

2.2 Stability for Majda’s model

In this section we establish the positive result Theorem 11.
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2.2.1 Existence of the wave

Let u; > 0, and ¢ be defined as

o(u) =1 if u > uy,
d(u) =0 if u < uy,

and f: R — R, a smooth function.
Let £ >0, q> 0.

We consider the following system

u = kqp(u)z — (f (u))a,
2z = —kzo(u).

First, we are interested in traveling waves solutions (¢, z) — (uy(z — ot), zo(x — ot)), with
a jump (chosen initially at 0), smooth on R_, 2;(0~) = 1 furthermore, with u, smooth
on R, with infr- uy > u; > supg, ug, uy(0") = 0, and, here, a travelling speed in R*.
o is chosen nonzero as, otherwise, the problem does not enter the framework of Lax
shocks, and is thus avoided here.

As said before, the existence of such waves has already been proven in the literature, but

we will recall the proof as it gives sharp bounds on the decay rate of the wave on R™.

07)) — f(0
Proposition 4. — If a solution ug to this problem exists, then o = Fuo(07)) = £ )}
Uo

k
and zy(x) = exp <I> ifv <0, zo(x) = 1 (this choice can be changed up to chang-
o

ing the constant q by some multiplicative constant) if x > 0. We also have that uy
solves (f(ug) — oug)' (x) = zo(x) on R_ and uy(xz) =0 if x > 0.

S (uo) — £(0)
Ug .
We denote by u_ the mazimal (smooth) solution on R_ to

kq exp <I€Ux)
flu) -
u_(0) = uo.

— Furthermore, let ug € (u;, +0) and o :=

u (z) =

Then, if ¢ > 0 (respectively if ¢ < 0), (u,z) defines a traveling wave solution to
the previous problem such that infr_ f'(u_(x)) > o if and only if the equation
f(u) —ou = f(ug) — oug — qo has a solution in u € (u;,ug) (respectively u €

(ug, +20) ) and the biggest (respectively the smallest) such u, denoted u_o,, satisfies
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inf f'([u_co,up]) > 0 and o > f(0). If ¢ = 0, then,

Q(x):uo fo<07

u(z) =0 ifz>0.
— For any ug > u; and o := %;f(o) such that

f'(ug) > o > f(0),

there exists qo > 0 such that for all q € [—qo, qo| there exists a wave (u, z) solution

to system, with speed o and inf, - f'(u(x)) > o.

Proof. 1f such a solution exists, then it satisfies the Rankine-Hugoniot conditions. Thus

o= f(U(Oi) — f(O)’ z is continuous at 0, and —0z'(z) = —kz(z) on R_, z(z) = 2(0) = 1

on Ry (as 2/(z) = 0 for all > 0), up(x) = lim,_,o+ up(y) = 0 for all z > 0 (as, also,
kqzo(x)

o— f'(u(z))u(z)) =0 for x > 0) and ———"— ‘

(o~ f{ule))u' () )and )

proof of the first point.

ugy(z) on R™. This concludes the

The conditions after are necessary as f(u)’ = ou’ + kqz, and so by integrating we get
flus) —lim,, o f(u(z)) = o(u_ —lim,, o u(x)) + qo.
For the second point, we procede by double implication. If it defines a solution to the

traveling wave problem such that infg_ f'(u) > o, then,

F(u(0) = ou(0) ~ £( lim, (o)) + 0 lim ulz) = | (f(w)~ 0wl = g0

And so, with u_, = lim,,_,, u(z), we have that

fluw) —ou_o = —qo + f(ug) — ouy.

Furthermore, all the desired inequalities are satisfied : inf f'([u_q, ug]) > o, and f(u) —
ou = f(ug) — oug — qo has a solution on u;, ug) (respectively (ug, +0)).

Reciprocally, for ¢ > 0 (respectively g < 0) if the equation f(u) —ou = f(ug) — oup — qo
has a solution (u;, ug) (respectively (ug, +00)) with the biggest such u (respectively the
smallest such u) noted u_,,, satisfies infy,, ., f" > 0. Note u, the maximal solution

valued in [ug, u_y] to

o — kqz
T fw) -0
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We have that where it is defined

(f(u) — Uu)/ = kqz,

by integrating it on [z, 0] (for any z( in the domain of definition of u), we have

kxo

f(u(zg)) — ou(xg) = —qo (1 — eo) + f(ug) — oup.

Hence, by monotonicity of u, u(zg) € (ug, u—_o).

Hence, the solution to the ODE is globally defined and gives rise to a solution to the
initial problem. This solution satisfies lim,_, o u(r) = u_g, and infp,, 1 f'(u(z)) > 0.
Finally, for the last bullet point, one just needs to remark that with such a ug, then, for
all ¢ € R close enough to 0, the solution u to f(u) —ou = f(ug) — oug — qo remains close
to ug (on a neighborhood of size O(q) of ug), and so, f > ¢ remains true on [u,up] if ¢

is close enough to 0. O

Note that, when the inverse function of z — f(x) — oz is known, one can obtain an
explicit expression for w.
We will study the stability of such waves according to the sign of the propagation speed
0. The case 0 > 0 will be studied first to obtain a stability result in a weighted space. The
case 0 < 0 will give rise to instability results in various spaces. The case of ¢ = 0 is not
treated here. In fact, even the local in time existence is not contained in the framework
of Theorem 10.
Importantly, there is always, with u(07) = ug fixed, such a ¢ as there is a sufficiently
small g > 0 such that the wave is defined for every ¢ € [—qo, qo]. In fact, t here exists
6 > 0 small snough such that infj, _s.,+5 f > o. Hence, there exists ¢y > 0 small
enough such that for every ¢ € [—qo, qo| there exists u_o € [ug — d,up + 0] such that
fu_w) — ou_o = f(ug) — oug — qo, and inf f'([ug, u_»]) > 0. As a consequence by
Proposition 4 there exists a wave (u, z) solution to the wave problem.
We now can start to give some bounds on the wave that will prove useful later on.

Consider for the moment the case of speed o positive. We fix k, f and ug > 0 such
that f'(ug) > f(uo)
U

0
Proposition 4 and consider the associated wave (u, z). By the characterization given by

> 0, and consider @), the set of ¢ € R is such that we can apply

the second point of the said proposition, () is an open interval containing 0.

We obviously have the following bounds on R~

!
2V(z) = k—lexp (kx) .
o o
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Notice that, given gy € ), there exis ts some neighborhood V' of ¢y € ), and v > 0 such
that for every g € V', the associated u is valued in [ug — 7y, ug + 7]
Furthermore, there exists some x : @ — R* continuous and such that x(¢) = 0 such that

for every g € @ and x < 0

Furthermore, as

o P@@W @ @)l + ) @ @)
(@) ( > (@) ate)) o)

up to changing by some multiplying x by some function depending on ¢ through the L*
norms of (f' —o)~', of f” and of f® on [u_.,ug] (as u_ is a function of ¢ for ug, f and

k fixed). One then obtains the following bounds on the derivatives of u

/()] + " ()] + |[u® ()] < £(q) exp (lirx)

forallge @ and xr € R™.

Now, we are interested in damping estimates on solutions which are small perturbations
to the original traveling waves. Until section 2.6, we assume o > 0.

Thanks to the local wellposedness result in Theorem 10, we obtain that there exists
p > 0 such that, given (vg,(y) € H*?(R\{0}), supported away from the shock, with
L* norm smaller than p. There exists T € (0,400] such that there exists a unique
maximal solution to the system with initial data (u + vg,z + {p). Remember that the

shock localization v is given by the Rankine-Hugoniot condition, ¢(0) = 0, and for all
, flul,o(t)™) — flult, ¥(E)7)
0,7 =
$e 0D = g (e ()

are at least in one of the following cases:

a) the L* norm of u(t,- + 1(t)) — w or of z(t,- + ¥(t)) — z becomes bigger than p,

b) the space derivative of one of u(t,- + ¥(t)) — u or of z(t,- + ¢(t)) — z blows up.

We let ((t,z) := z(t,(t) + x) — z(z) and v(t,x) := u(t,x + P (t)) — u(z) for all (t,z) €
[0,T) x R*. We aim to show that finite time blow-up is prevented by choosing the initial

. Furthermore, T' < +oo implies that we

perturbation with a sufficiently small weighted H? norm, and that the perturbation (v, ¢)
goes to 0 as t goes to +o0 in the weighted norm.

To do so, we will build an energy equivalent to the H? norm that will be non-increasing
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in ¢. To achieve this, we start by introducing norms on L?(R") and L?(R™) equivalent to
the norms defined by Equation 2.1.9. They are defined as the square roots of quantities

of the form
Ei(w) = f w?o
R+

with the choices of the ¢ considered depending on the half-line considered (R, or R_) and

whether we consider terms in ¢ or v. More precisely, we will consider them of the following

— ET .
%) where C' is to be chosen

C’ei—C)

forms o_;(z) := exp (—ex — §; Ce Flds) = exp (—ex +
later (taking C' big enough), o_»(z) = exp (—ex + § Ce~*l*lds) = exp (—ex +
and o (x) = exp(ex).

Thus, on R_ exp(—ex — Ce™') < p_o(z) < exp(—ex), and exp(ex) < p_i(z) <

exp (ex + Ce™1). Hence, we define

By (w) = J w’oy
R4

E_1(w):= f w?o_ 1,

E_s(w) := f w?o_ 5.

After that, the energy will be built as a sum of the terms of the form:

Cy(k, £)E+ 1(0%v(t,)) and Co(k, £)E+2(0%¢(t,-)) where k € {0,1,2}, and the C.(k, +)
are constants independent of (v, (o).

Here are the main ingredients in our proof of the existence of such an energy function,
and also how fast it goes to O:

The choices of the constants C;(k,+) will be made to control the terms that, when
taking the time derivatives of the E of v,  or one of their spatial derivatives up to order
2, is non-negative. Terms of the form ¢.((t,07) that will appear due to the outgoing
characteristic, will be bounded through boundary terms appearing in integration by parts
done on integrals appearing in the derivatives of the F,(03((t,-)) for s < [, and terms
that have the form |¢’(t) —o| will be controlled through the boundary terms of E (v(t, -)).
Finally, the choice of a perturbations of the norms of L?(R*) and L?(R™) by terms of
the form exp (i Sg e_5|5|ds)) is made to bound some terms that are not small, but are of
integral form with a quadratic term in v, ( and some of their spatial derivatives times
some derivative of the underlying shock profile.

Now, we can try to obtain bounds on the size of the perturbations (v, (), first by writing
done the equations they satisfy, as well as the equations their derivatives satisfy.

From now on, we assume the initial data to be a smooth and compactly supported

function in R*. With T, its (possibly infinite) time of existence, for every time ¢ € [0, T),
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the solution is in H*(R*) for every s € R,, and, as long as the L* norm of v is small

enough and the solution remains bounded in WH*(R*), we have on R~

vi(t,) = (W) = flw+v(t,)va(t, ) + (') —o + f(w) = fluto® )+ ke(t, ),
and

G= ' (t) —0)z = kC(t, ) + ' ()¢ (t, ).
Whereas

Vi (t,.) =" — fu+v(t,)vea(t, ) — f(w+v(t, ) (W +va(t,-))ve(t, )
+ (W =0+ flw) = flu+ot, )" + (f(w) — f(wto(t,-)))u”
— fuw+ ot )u'va(t, ) + kqla(t, ),

Viaa(t, ) =¥ = 1w+ v(t, ) Vaaa(t, ) — 2" (w+ v(t, )W + va(t, ) vaa(t, )
— [P+ vt )W + va(t,))va(t, ) — f/(w+ v(t, ) (W + vaa(t, ) va(t, )
+ (@ = o+ f(w) = fu+ ot )u® + 20" (w) — f"(u+ o(t,)u's"
= 2f"(u+v(t, ) u"va(t, ) + (f"(w) = ["(u+v(t,-)))u's"
+ (fOw) = fOu+ ot ))u® = fO(w+o(t, ) 20 + va(t, ) u'va(t, )
— ["(w+v(t, )W v (t, ) + kqCaa(t, -),

Calt, ) =(W'(t) = 0)2" = kGal(t, ) + ¢/ (£)Cau (2, ),
Ctacac(tv ) :(¢/(t) - 0->§(3) - kam(t’ ) + W(t)me(ta )

Similarly, on R*
and

Furthermore

Utxx(t7 ) :(W(t) - f/(?J(t, )))'szx( ) 2f”( ( ))( z(t7 '))va:a:(tv )
— [ (0(t, ) e (8, ))va () = FO (0t ) (valt, )t ),

61



Ctx(ta ) :w/gm:(ta ')7

2.2.2 Boundary terms

In the energy estimates, we will need to control boundary terms that can not be
neglected due to the characteristics outgoing from the shock, specifically those involving
¢ or one of its derivatives at 07, by using other boundary terms going into the shock, in
particular only those involving ¢ or one of its derivatives at 0. We also need to control the
derivatives of the phase by using the boundary terms involving v or one of its derivatives
both at 0% and 0~, where we note both of them are linked to characteristics going into
the shock.

To obtain such bounds, we will use the Rankine-Hugoniot condition, and the fact that
for smooth enough solutions we can differentiate it with respect to time, and, using
the equation, replace the time derivatives of v and ( with terms involving only spatial

derivatives.

Lemma 1. For qo > 0 small enough such that the third point Proposition 4 applies
there exists n > 0 small enough, such that, there exists a constant éf such that, for
every q € [—qo, qol, for every T > 0 and every solution (v,() of Equation ??7 which is
initially a smooth function compactly supported away from 0, such that (v(t,-),((t,-)) is
defined on [0,T] with its WY* norm smaller than n, then we have, on [0,T] |¢"(t)] <

Crll (v, Olleqomrwro@ey, [W'(8) = ol < Cr(Jo(t,07)]* + Ju(t, 0F) ).
And such that we also have, on [0,T]

C(t7 07) = C(t7 0+>7
Colt,07)% < Cp(Cult, 07))2 + CrhC(t,07) + Cr(v(t, 07) 4+ v(t, 07)?),

and

(Coa(t,07)) <C(Caa(t, 0M))% + Cp(C(t,0%))? + Cr(w(t, 07)° + v(t,0%)?)
+ CpC(t,0M)% + Cp(va(t,07)% + v, (¢,07)?)
Furthermore, for any g € R such that 4 applies then there exists a constant CNf such that,
for every q € [—qo, qo], for every T > 0 and every solution (v,() of Equation 7?7 which is

initially a smooth function compactly supported away from 0, such that (v(t,-),((t,-)) is
defined on [0,T] with its WY* norm smaller than n, then we have, on [0,T] [¢"(t)] <
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Cll @, Ol qo,rwr oy, [W/(1) = o < Cy(ju(t, 07)]7 + [u(t, 07)]).
And such that we also have, on [0,T]

C(t7 0_) = C(t7 0+)a

Ga(t,07)% < Cp(Gal(t,07))% + CrkC(t,07)2 + Crlo(t,07)% + 0(t,07)?),

and
(Caa(t,07))% <Cy(Can(,07))% + Cp(Cal(t, 01))% + Cp(w(t,07)° + v(t,07)?)
+ CpC(t,0%)% + Cplua(t,07)? + v, 0%)%)
Proof. We begin by imposing 0 < 1 < —2. Assume that, as in the statement of the lemma,

the W norm of (v(t,),((t,")) remains smaller than 7 on [0, T]. We will progressively
change the value of C’f and 7n along this proof and during the derivation of inequalities,
to ensure more conditions, and we choose not to change the notation used to avoid using
to many constants.

If ¢ is fixed, then take n small enough such that f'—o > 0 on [min(ug, u_x)—n, max(u_qx, ug)+
n] and f' — o < 0 on [—n,n]. If the case of |¢| small is considered, then take 7 > 0 such
that f/ — o > 0 on [ug — 2n,ug + 2n] and f' — o < 0 on [—n,n|. Then, fix ¢y > small
enough such that for every ¢ € R such that |g| < qo, the associated u is defined, and
|up — u_o| < m. Denote I := [min(ug, u_y) — 1, max(u_q, ug) + 1] in the first case, and
I = [up — 2n,up + 2n] in the second case.

We then note Cy = max(|(f' — &) owscs | lootcs L = 0llontes 1" Lot £ i)

_ | fluo +0(2,07)) = fu(£,07)  fluo) — f(0)
uo + v(t,07) — v(t,0%) Ug
_ ' (f(uo +v(t,07)) = f(v(t,07)))uo — (f (uo) — f(0))(uo +v(t,07) —v(t,07))
(uo + v(t,07) — v(t,0%))ug ’
N (uo +0(t,07)) = fluo)| + [£(0) = f(u(t, 07))|uo + [ f (uo) = f(O)][o(£,07) = v(t,07)]
h lup(uo + v(t,07) —v(t,07))| ’
Cr(Ju(t, 00)[ + [u(t, 07)])uo  affu(t, 07)] + Ju(t, 07)])

o' (t

< ’
uo(ug — 2n) ug — 2n

<2(C'f +0)(v(t,07)% + v(t,07)?)

~ uo .

As a consequence, we have, by shrinking 7 if necessary, that there exists p© > 0 small

enough such that ¢'(t) > u for every x > 0, ¢'(t) — f'(v(z)) > u, and for every z < 0,
(1) = f(u(z) + v(@) < —p, and k = p

Furthermore, there exists v > 0 such that ¢'(t) < v.
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We have that by differentiating in time the relation

fuo +v(t,07)) — f(v(£,07))

VO = 0 o0

the following equality

G(E) = — (f(uo +v(t,07)) — f(v(t,07))(ve(t,07) — w(¢,07))
(uo +U(t,0 ) —v(t,0%))?

N fug 4+ v(t,07)v(¢,07) — f/(v(t,07))ve(t,07)

uo + v(t,07) — v(t,0%)

?

_ YO, 07) —w(t,07)) | fuo +v(t, 07))ui(t,07) — f'(u(t, 07))ui(t, 07)
up + v(t,07) —v(t,0%) ug —|— v(t ~) —v(t,0%) ’
_ (Fluo +0(t,07)) = 9'(1))ve(t,07)  (W'(#) — f'(v(t, 07))ve(t, 07)
uy + v(t,07) — v(t,0%) uo +v(t,07) —v(t,07)

—(f"(uo + v(£,07)) — ¥'(t))*0a(t,07)
Ug + U(t, 0_) (t,0+
L (Fluo +0(t,07) = 9'(8) ((W'(E) — 0 + f'(uo) — f'(uo + v(2,07))u'(07) + kqC(t, 07))
uo + v(t,07) — v(t,0%)
((t) = f'(0(t, 07))*va(t, 07)

ug + v(t,07) — v(t,07)

+

And so

1
Uy — 21

9" (t)] <

<u2(\vx(t,0_)]+\vx(t,0+)])+ué'f(]v(t,0 e (07)] + A/o(t, 0702 + o(t, 07)2)

+klq|[¢(t,07)])
<u200f (lo(,07)] + o, 0%)] + [va(t,07)] + [v(t,0%)] + [¢(£,07)])

<)l (v, Q)= (ro.r1. w10 (m*))-

For the bounds on the values of ( and its spatial derivatives at 07, we will use that

C(t, O+) = C(t, 07)

for every ¢, and so, by smoothness of ¢ (it is in H*(R") and H*(R™) for every s > 0)
that
iC(t,0%) = 3¢(,07)

for every t and (.

Hence, we obtain the following expressions on the spatial derivatives of ( evaluated at
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GE.07) = U (OG(4.07),

G107) = W (0)G(1,07) — K(,07) + (1 — o)

Gul1,0) = W ()Gl 0%) + ¥/ (1)1, 07),

Gul1,07) = 0 (1)Ger(1,07) + w1, 07) = KGu(1,07) + (1)

As a consequence

K(LO0T) ()= o)k

Ca:(ta O_) = Ca:(ta O+) + W(t) O'ZD’(t)

Using that, for all (a,b,¢) € R, (a + b+ ¢)? < 3(a® + b* + ¢*), we have

L CH(1,07) + o(t,07))?

2 Y

Co(t,07)2 <3(G(1,0%))? + 3 (W) .

<O (G(t,07) + 0(t,07)* + v(t,07)> + ((£,07)?) .

o2u

We have, for second order derivative that

W (B)Ga(t,07) = + KC(t,07) = (¥(8) - ff)fi 0 ()G (1,07) + kG (t,07) + kiy(t?)

FW() - o)k (0C07) (D)
TR0 e e TR

Thus

(Coa(t,07))? <(Coa(t,0%))% + Cp(G(t,0%))* + Crk((1,07)
+ Cr(v(t,07) + 0(t,07)? + v, (t,07)% + v,(¢,07)%).

2.2.3 Energy estimates

We will now obtain estimates of the time derivatives of the E; of v and ¢ and their
spatial derivatives. Below, d; and 0, will denote some positive constants to be determined
later. At the end, we will choose two values, one to control terms in v or v, or v,, and
the other to control terms in  or (, or (.

Furthermore, we will derive estimates for u(07), f, k fixed while ¢ is a parameter. Depend-

ing on ¢, we will obtain either a high-frequency damping estimate, or, a direct nonlinear
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stability result in the weak heat release limit.

The idea, which we will soon check directly at the linear L? level, is that by choosing the
constant C' big enough and ¢ be smaller (in absolute value) than some gy > 0, there exists
three positive constants Cy, C3 and Cy as well as some v > 0 (independent of v and ()
such that if |v(t,)|w1e and |[((t,-)|wr= are smaller than 7 on [0,T], then, on [0, 7]

LB () + CoB_a(C) + CEL (v) + CoEL(O)(E ) < (2.2.1)

dt
—v(E_1(v(t, ) + CoE_5(C(t,-) + Cs By (v(t, ) + CaBy (C(L, )

From here, the idea is to obtain similar bounds for the higher order terms, while taking
into account that there may be some loss of lower order derivatives when controlling
higher order terms.

To begin with, we discuss how it can be done in the linear problem, as the computations

are simpler, but the idea is the same. The problem is then given by

v =W —o)u' + kq¢ — ((f'(u) —o)v), onR" xR,
G =0 —k(+ (W —0)Z onR"xR7,

¢ =0, on R" xR™,

vy =(0c— f(0))v, on R" x R*,

g =) = op(,07) | (o= SO0 gy ((07) on R,

Uo Uo

~ k
In fact, we can obtain, by fixing several positive parameters C, §, ¢’, § and € := — that
v

7 (B1(v) + By (v) + Bo(Q) + E_2(0)) <

U(t, 07)2 (J B J; (u(]) + 055 J |g/|efe-f€§£J + szf gleferSb Ce“ds)
R_ R_

’U(t, O+)2 (f (0) 9 + Cf5 f |u/|€*5'70&1 + Cfi f gleferSb Ceasds)
2 2 Jr_ 2 Jr_

Klg| goo-r g0 —2k (' =C) .\ o0 e
2 [ M4l 2Ce € e+C{eds
+JR§ <25 e st 5 e e 0

+J o2 (_Cre  Kldo (Klq|Cr0~" + Cyklg| — C)e= fe—Cyesds
- 2 2 2

(2] (402,
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We thus have that satisfying the following constraints is enough to derive an L? linear

estimate of the form of 2.2.1

~ (f(0)—0) N Crode N Cyé'o

< 0 (constraint associated to v(t,0")?),

2 k k
L 20e—1 — 9k 5/—1 e
o |Q|§5 4 & St ( 5 ) < 0 (constraint associated to (?),
klqlo C
. |g| — ng < 0 (term in v? on R, first part),

— fug) — o = 20]%608715 + Cpd (term in v(t,07)?),
— klg|o~" + Csklg| — C < 0 (term in v? on R, second part).

— f(0)k
We now choose the constants as follows: ¢' < (045()) (as it needs to satisfy other
fo
oL . . . /—1 % U_f/(0> ..
conditions listed before, all independent on ¢ crucially), C' = §', § = Wk’ giving
roeve

us the result we were aiming for as long as |g| is small enough.

We can now go back to the nonlinear model. The computations are straightforward but
written here for the sake of completeness.

Now, we start by comparing it to the linear case.

The bounds on the linear level differ in that the nonlinear reminders are not there,
although the main part remains the same. In fact, the idea is that up to bounds on
second order derivatives, the extra terms only involve W1*(R*) of the perturbation,
times quadratic terms.

Moreover, the boundary terms associated to spatial derivatives of ( at 0~ need to use
lower order derivatives, thus to introduce constants in front of each of the 12 energies
considered.

We begin by considering each one of the energies by smooth enough initial data. To state
our goal at this point, it is to isolate boundary terms coming from integration by parts in
order to reduce the order of the derivatives appearing in the integrals; thus to only have
derivatives of order at most k in the bound of the time derivative of E.(0%w) where w
is v or (, as well as isolating terms that cannot be controlled directly by some form of
dissipation (in particular, terms related to the phase or the reaction term when computing
the time derivative of E_(v(t,-))), and, if possible, have the uncontrolled terms multiplied
either by some small constant (that will depend on the energy studied being the one of
v or one of its derivatives, or of ¢ or of one of its derivatives) or by some exponentially
localized terms in space (inside of the integral).

We have for any ¢ > 0, C > 0, 6, > 0 and as long as supg<,<r [ (v(t, ), C(¢, ) [lwro@ms) <7,

the following inequalities hold for all ¢

ldEf’l (’U)
2 dt

0 <5 E (et e (25) 4 HO2

<55 E- (ot ) —
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v(t,-)?
0-dz +J Cy(le'] +m) (2 Eo ade
.

_ f e+ ce@)“%')2

4 Sl 0) — 0B (V) + LB (Vo)

1dE_ 1 (vy) o pe+Cpes Cp  Cf klglor |
- 7 < (T, - U L
5 g ) f (va(t,-)) 5 Tt +

2
C’ u/2+ u” ,
+f(2|D + |u |Cf) 0-1 +f klgléro(t, ) QT
R_

n k‘CI‘ffZCg_lE—Q(Cx) [y — U|2E—71(\/ |)
2, * 2

2 dt 2
5+ 2n)Cy + Cylu/| + 3Ju’| + w™\  5C
e R e S
2 2
Cr+1 7Cn + 81k|q| + Cn?
f2 ’2(3)| 1 b 12| | f inl

Cr(3lu’| + 3nlu'| + n* + u”
+J (Um(t7'>>2( f< |7| 77|2| : - >> o=t

(3) 1) 13
w?| + 3lu'u"| + |u
+J v(t,-)? (Cf| | ’2 hd ’)Q—,l

_ o BoaV/Iu®]) | Hlglee
2 201

1dE_ (Uz’x( )) (t) ng (Um(t, ))2 (_W

_l’_

E—,Q((Cxa:(tv )))

+ |

LI gy <L) - oL (E) 1 B /7) +
+ J . Z/ECQQ,zdx - L Cueggﬁz — kE_»(¢),
/() — oPE-, <f W [

2

_|_

dE_ Tx zz(U™ 2 r ’ .
; - ,;;C )(t) < éo : +J - <<2) (ve = CpeT)o—p = RE-2(Ger)
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['(8) = oPE o (VIO | Eoa(/12%)]Ger)
2 Y

* 2
1dE, (C) ¢(t,07)? ¢
5#@) < THTS T —MJR+ £y 0

LB ) SO0 [ (GF
R+

SR TR VA 2

}dEJr (Cox)
2 dt

Caot,07)? (Can)?
() < ==l e jm Lo,

1dE, (v(t, ) po(t,07)* JR uv(t, )’ (e + Ce) Cin u(t, )0y,

2 2 2 R

1dE, (vas) ) <5Cfn4— 2416 Jm (0. ) + f —Cpes (vga(t, )

2 dt R+ 2

0D [ R )P + (et )P

Here, 1 and v are the same parameters from the end of the proof of Proposition 4.

We discuss now how first choices made on some constants encoding smallness can be

made.

We now assume that 7 (which we remind is the upper bound on the W1*(R*) norm of

JLE

(v,¢) on [0,T]) satisfies n < min (%, 1, —) We will impose more conditions related to

32
the well-posedness result Theorem 10 on 7 later on.

£
When it comes to d;, we choose it such that k|g|d; < % (more precisely, we take 0; = 1

if g=0and §; = 8,:|€| otherwise). The following choice is made for C'
q
11 2 1 ok
C = 2! max (m(q) Cy+2mCy + /f(zq)(Cf +3+r(g) L+ +;7) + 01klq|
4C + Cyr(q) + 1 Cr+1 k+k+k°
k(q) f é (9) #(q) f2 7 - )
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and define w = %.

When it comes to choosing gy, we first fix the other constants by first taking some ¢; > 0
for which the u and z are defined for every g € [—¢1, ¢1] and for every such ¢ with |¢| < ¢
k(q) < 1, and then replacing in the definition of constants the ones obtained with x(q)
replaced by 1 and ¢ by ¢;. Other conditions on gy will be imposed in the next subsection,
so it will be chosen later on.

There exists a constant C' such that, as long as the W5*(R*) norm of the perturbation

remains smaller than 7, we have

((t,07))* < C(¢(t,01))?
(Ga(t,07))* < ClGalt, 0%) + Jo(t, 0F)* + Ju(t, 07) 2 + ¢(£,0%)?)

(Coa(t, 072 < C(v(t,0)? + v(t,07)? + va(t,0M)2 + v, (£,07)2 + C(£,07)% + (. (t,07)?)

Thus, we can now adjust the value of C' in a way which only depends on ¢ (while C
depends on k, f and u(07), we fixed these quantities independently of ¢ and so we are
not worried by that dependence) such that, for every such ¢ € [—qo, go] and solution (v, ()
defined on [0, T") which remains strictly smaller than 7 on [0,7"] we have that, on [0,7"],

if ¢ € [—qo, q0]

dE_, (v)(t)
dt
dE_(v,)(t)
dt

<~ wE_(v(t,)) + Clal E_o(C(t, 7)) — wo(t,07) + Clu(t,07))*/x(g).

< — W, (6,07) + CE_i(u(t, ) + C((0(t,07))” + (v(t,07)2)1/x(g)
—WE_(0,(t,) + Clal E_a(Ga(t, ),

< — W (1,077 + C(E_ 1 (0(t, ) + By (0,8, ) + C((w(2,07))’

+ (U(tv 0+))2> ’%(Q) - WE—,2<sz(t7 )) + C’|Q|E—72(§m&(tv ))a
ABL()1) _ olt,0")°

dE_ 1(v42) (%)
dt

o7 < — 5 - WE-I—(U(t? ))7 2
dEJrSf)@) < — WE+(Ur(t7 )) - w<v<t’20))’
dEJr(;JZI)@) < — WE+<sz(t7 ))7
dE_’zziO(t) < —wE_5(C(t,) + Clu(t,0%) + v(t,07)* + ((t,07)?),

dE—,Q(Cx (tv ))

p < —wE_5(C(t, ) + Clo(t,07)2 + v(t,07)%) + C(t,07)% + ¢(¢,01)?),

70



M < — (,UE_Q(C:(:J:(tv ))+

dt
+ C(u(t,07) + v(t,07)2 + Canlt, 07)2 + Co(£,07)% + C(¢,07)?
+ vy (£,0%)? + 0, (t,07)2),
el ) < et ) + .07,
dEjiiCx)( £) < — w(Es (Gt ) + G (1, 07)7),

dt (t) S - W(E-&-(Cmc(t? )) + sz(t 0+)2)'

2.2.4 Nonlinear stability and high-frequency damping estimates

We will now be able to conclude the argument in the case of small ¢, and then obtain
a high-frequency damping estimates in the other cases. For stability, we will choose the
constants in order to be able to obtain the decay in time of the energy and for the high-
frequency damping estimates we choose the constants to control the rest of the equations
by lower order terms.

We will first focus on the small ¢ behavior.

Proposition 5. There exists a 12-tuple of positive constants (Co,—,Cy,—,Co—,Cp _,...),
a positive constant qo small enough, C > 0 big enough, ¥ > 0 such that, for every
q € [—qo,q0] and every perturbation of the wave that initially satisfies the conditions of
10, namely (vo, (o) supported away from zero and smooth, there exists a unique maxi-
mal solution (v,() to the problem associated with q, with initial data (u + vo,z + (o)
defined on some time interval [0,T) with T € (0, +00]. Then, for every T' < T such that
(v, ¢)|wie <n for every t € [0,T"), we have, on [0,T")

= dE_ (0% dE._ (oF dE. (% -
5 Z (C'k,_ilixv)(t) + C;Cclhgxg)(t) + Ck’++d(t$v)(t) n O]/C:JF-"_C(itIC))(t))

M\:’o

2

Z so(t, ) + G _E_1(05¢(t,-))
+Ci 4 By (05o(t,) + Cp L B (95C(8, )

Thus, for some constant M > 0 independent on q, vy, (o and T, for every t € [0,T), if

[(v(s),C(s)|wre < n for every s € [0,t], then

2 2

D (10ku(t, )2y +105C(E ) 2y =Y 10k u(s, )z + 105 (s, )

k=0 k=0

2(R¥))
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Proof. To obtain the desired inequality, we just need to ensure that we can force certain
coefficients to non-positive if qq is chosen small enough and C' > 0 big enough. We will
do this by using the following bounds

We may choose Cy —, C; —, Cy _, ... such that they satisfy the following inequalities

— (to have a nonpositive factor in front of v(¢,0")?)

WCO,Jr

C((Co + Cro + Co)WE(g) + (Ch_+ CL_+ Cy 1)) — 5 <0,
— (to have a nonpositive factor in front of v(¢,07)?)
~ ’ ’ ’ CUC(] —
CWr(@)(Cr-+ Co) + G+ Cf_ +Cy ) = == <0,

— (to have a negative factor in front of E_ 5((,(¢,-)))

Cl _w

C~Y|Q|C1,— T o

<0,

— (to have a negative factor in front of E_ (v,(t,-)))

C’L,w
2

CCy_ — <0,

— (to have a negative factor in front of E_ o((y.(t,)))

- Ch _w
C‘Q‘CZ, - 72 < 07

— (to have a nonpositive factor in front of {(¢,0%)?)

!
~ B WOO,+

C(Co_+CL_+C5 ) 5

<0,

— (to have a nonpositive factor in front of (,(¢,07)?)

= wCi 4

C(C - +Cy) ==

5 ,

— (to have a nonpositive factor in front of (,,(¢,07)?)

wCs
2

CCh_ — <0,
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— (to have a nonpositive factor in front of v,(¢,07)?)
CCy_ —wC_ <0

and

— (to have a nonpositive factor in front of v, (t,07)?)
CCy_ —wC, <0,

Thus, choosing

Cl— = i"a
’ 4C'
Cs5_ = min (01 -, Cl’iw> ,
20
, W
0,— 8~’

, . ( w wCL)
1.— = Imin =, = 5
’ 8¢ C

we can obtain the intermediate inequalities as wanted if we choose ¢y small enough to
make the terms in |¢| and £(¢) small enough. Thus, for initially smooth and compactly

supported functions solutions to our (perturbative) equation, we have that

: dE_ (0% dE_ (0% dE, (o dE, (¥
Z(Ck,—éixv)(t) + O;’c,_’;ixo(o - Ck,++d(tx“>(t) - c,;ﬁé;f))(t)

k=0

<_

o | &

2

D (E-a(@5u(t, ) + E_1(95C(t,)) + Ex(9fo(t, ) + B (05¢(1, ).

k=0

The desired results are then direct consequences of this inequality. O

To conclude the argument, one needs to ensure that the energy estimates of Proposi-

tion 5 remain valid in order to prove the main theorem of this part.

Proof of Theorem 11. Take the constants obtained in Proposition 5. Given 7, ¢, M and
¥, we will need to apply a continuity argument. First, we work with smooth initial data,
compactly supported away from the shock. As the energy is decaying exponentially fast
as long as the W® norm is small enough, and as the energy is a norm on H? equivalent

to the one defined before, we have the result as long as [|(v, ()| w1.» remains small enough.
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To guarantee that (v, ¢) has a W® norm that remains small enough, we use the Sobolev
embedding theorem and a continuity argument, shrinking J, if needed. After that, we can
just obtain the result for initial data that may not be smooth nor compactly supported
(but supported away from the shock) through a density argument, using the continuity
of the flow from Theorem 10. We note (v,() the associated maximum solution to a
given initial data satisfying the theorem 10, as well as (v,, (,), the maximum solutions
associated with a sequence of initial data smooth and with compact supports in R* that
approximate (v(0,-),¢(0,-)) in H2. Given that (v(0,-),((0,-)) is small enough in HZ
we have that (v, (,) is defined on R, for every n big enough, and so we obtain the
convergence in L? of the (v,,(,) for every t in the interval of existence of (v, (), and,
as we have obtained that (v,,(,), is bounded in H? for n big enough, the limit is also
bounded in A2, and we obtain that the sequence goes to 0 with the rate of convergence

we were aiming for. O

Now, we state a proposition valid for any ¢ satisfying the conditions of 4. In that
case, we are not able to obtain a nonlinear stability result, but only a a high-frequency
damping estimate. It emphasizes the importance of the assumption made before on g,
as well as the fact that, in the general case, not all the computations made by energy

estimates are useless.

Proposition 6. For any q, not necessarily in [—qo, qo], such that the wave considered in
Proposition 4, with fized f, k and u(07), exists then, there exists ¥ > 0, C>0andn>0
such that for every perturbative solutions (v, () defined on some time interval [0, T] where
T > 0 such that |(v(t,-), (L, )|[lwrems <n on [0,T], we have that, for everyte [0,T]

[(w(t, ), ¢t ) [z < Ce™[(0(0), C(0) |2 +J O™ (u(s), (()) | L2y ds

0

The proof follows the same idea as the result before, just this time setting aside the
lower order terms, that is the terms of the form HU”%g or [¢||z2. The main new ingredient in
this proof compared to the proof of the stability result is the use of the Sobolev embedding
theorem as follows (where 5 is a given positive constant that will be adjusted later, and
h is an element of H'(R*))

127 -
46,

127
46,

[R(07)* < ol a2 +
[R(O0)* < Ol o 72 mery +

As for the complete proof, it will not be given here. We just focus on how to obtain bounds

at the H! level in the linear case, omitting the proof of the H? nonlinear problem.
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We have the following equations for the spatial derivatives of (v, ¢) (for the linear problem)
on R~

(02)e = (0 = f'(W)vee — 2f" (W' v, — (P (W + [ (wu")o + kgl + (& = o)u”
(Cm)t = Ume + W - U) kCI?

and on R*

(Ux)t = (U - f/(o))vxx )
(Ca:)t = JC:L‘Q: 5.

This gives us the following energy estimates for the functions and their derivatives for
smooth solutions (on [0,7] x R*) for all t € (0,7

1dE, (v)
2 dt
;dE;t(O (t) < _%(g(t,0+))27

LIE-a(0) ) HPa00,) | HolPoa(6(t) | Pravte)

(1) <0,

2 dt 2 2
+ (0alu (2, )HL2 r+) T O2f v (t, - \ 2(R- )
o, )llzew v, ) 2wy E-al
T, b 452 2
4 Cf\/ “(Q)E—J(U(
LdE_5(C) Cy
;ﬁgf@<2<wm<wmmwmwa>mm)

v(t, - - £
%J<>mm>+w<wwwvgﬂw)

452 452
i CfE,22(C(t7 ))7
ldE'*‘(vI)( ) _wv (t,0%)2 — (0 = f'(0)eEy (va(t,-))
2 dt = 2 T 2 ’
ldE-i-(Ca:) (t) < _0<Cz(t>0+)>2 . U€E+(Caf)
2 dt = 2 2
LAE2(G) ) o 0(Glt00)? 2k—eo 0y
S = 2 2 T
+ SN o, (0 By + Dt ) o

5



[t M Zem-y i, ')||L2(R+)> CrE_o(\/|2"]¢e)
- + + 5

46, 4
+ f ) _00628(@)29,2,
;dE—C,llt(U:L‘> (t) < (0 — él(uﬂ)) (Ux<t, 0—))2
e(o — f'(uo)) 2 Ce” (va(t,))*(f'(uo) — 0)
e g o

C
20 [l o+ G [ @ et e
R- R-

Cy 2 Elg|E-1(¢(t,-))
+ 2 R- U(t7 ) Q—,l + 251

klg[oiE—1(va(t, )
B e AU US AR A TN U A
+||v<t, Mooy , ol E_ (/)

452 452 2
4 E—vl(\/@%(@ ))
5 .

Thus, choosing C', §; and d, as

. ka'2 /<a(q) + 2Cf(3/<;(q) + H(q)Q)
C—max( g3 f’(UQ)—U )7
and
0 < 6 < i e(f'(ug) — o) e(f'(uy) —0)(2k — e0)eo
2 < min 7 a
8E_1(\/[u"]) 16CE_ 5(+/]2"])k2q2e2Ce
as well as

5 _ e w) — o)
= L 7

4klq]
(it does not work for ¢ = 0, but this case is contained in the stability result proved earlier,
so we assume that g # 0) we will be able to conclude the desired damping estimate. For

any t € (0,7") we obtain

klgle*s™ d(E_»(¢)) Ld(E_1(vs)) —e(f'(ug) — o) E_1(va(t,))
k-0 ar Wty g s 1
kgl CE_L(ult, )

451 E—,2(Cx<t7 )) + 9

Lot Nz E-a (V1))
802
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Flale** ot ) Fm) B-a (v/12"])
4(52(2]{3 — 60’)61

Jo(t, 2w
<|vx< Wizt + — 5= | %

<0f<E_,1<W> + B |z"|>>

2
klae® (G(t,0%))%0
2(51(2/{3 - 50’)

Hence, by now taking the full energy estimates (we write

EW,C) ==E_1(v) + E_5(¢) + E_;(v) + E"Q(Okg‘?,‘eQCEl + E,(v) + ME,(¢)

+ By (v2) + ME(G),

where M is a positive constant to be determined), the following bounds are obtained

S ) < M 0m))7 4 (Gatn 0y - = T Bl )
k|q|6205*1

~ e B (Gt )+ (st ) e 2)
) <0f<E_,1<WT"|> + B <W>) L Ml (G (1, 0%))%

2 26, (2k — €0)

o(¢ (75720*»2 _ £ —2f O B, (0at, ) + C Ut oy + 1€ ) o)
_ M05E+(Cx(t7 ))
! .

For some constant C' which depends on d,. Thus, for M big enough and d, small enough,

we obtain

LAE0O) 4y < 22 4y 1 o) gy + 1 )

for some v < 0. The Proposition 5 provides a result of prevention of blow up as long as

the W5 norm remains small, and a beginning of an argument giving stability as in

2.2.5 Negative propagation speed

We now examine the case ¢ < 0. If one has ¢ < 0 and wug positive such that, with

“O) 1O " #(0) < o and f' > o on [ug, +o0[, then there exists a unique travelling
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wave (u, z) solution to
(f'(u) — o)u' = kqz' 02’ = kz,

on R~ (and smooth on this interval), with limiting values (ug, 1) at 07, and constant equal
to (0,1) on R*. It is thus unbounded on R ™. Due to the finite speed of propagation of this
system, one can ensure that an initial data given by (u,z) plus a compactly supported
perturbation on R* will remain compactly supported on R for all later time ¢ > 0 (as

long as it remains defined). As such, perturbation of this kind can be allowed.

Proposition 7. Let ¢ € R. Assume that ¢ # 0and o < 0. There exists o9 > 0 small
enough such that there exists (von, Con)nen € CL(R)N that goes to 0 in H?

£

supported
away from 0, and such that, for every n € N, the induced solution remains supported
away from the shock on some time interval [0, T, ) and supyjo 1, ) [(vn(t, ), Gul(t, )| H2(m)
is larger than .

If e = 0 and for every neighborhood V of 0 in R, f’ is not constant on V.

Proof. Case € < 0:

When v, + (f(v)), = 0 has a compactly supported initial perturbation, we can proceed
as follows. We consider (¢,), € H*(R) fixed and all nonzero, all initial data such that
the induced solutions blow up in finite time in W1*, and with the sequence of their H?
norms that goes to 0 when n goes to +00. We also assume that they all have their support
contained in [0, 1].

We consider the sequence of initial perturbation (v,,0) where v, :  — ¢, (- — a,,), where
(ay)n is such that the solution induced by ¢, has its support included in [0, 7},) x (0, 4+c0)
(where T, is its blow up time). We are now reduced to the case of a scalar conservation
law. For n big enough, we have that the solution blows up in finite time in W%, and,
thus, in H? (as the support of the perturbation at time remains in a compact set K,
independent of ¢, we can apply the the Sobolev embedding to obtain a bound on the
unweighted W1* norm).

Now, we assume that f’ is constant near 0, and ¢ < 0. By assumption, we have that
f'(0) < 0. Thus, by taking any initial data nonzero localized on the right of the shock,
we have that the solutions grows in L? exponentially fast in time as long as the solution
is localized on the right of the shock. In particular, by translating some bump function
far enough to the right, we have the desired result.

The initial data given by (u + v,,2) (when taking n big enough, after multiplying it by
some small § > 0) either induces a solution that blows up in finite time in W, or a
solution that remains small in L®, is defined globally.

Case € > 0:
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This time, we will not obtain explosion in finite time. However, with the sequence initial

data (0, (n + 1)7'¢),, for t such that the solution continues to exist on [0,¢] we have

¢(x — to)

that: C,(t,z) = 22 —19)
at: Gult,a) = A0

vn(t, ) = 0 for all x € R*, we obtain the desired instability result: the solution is defined

for all x > 0. Furthermore, as (,(t,x) = 0 for all z < 0 and

globally, but its | - |22 norm goes to +c0 as ¢ goes to +c0. H

2.3 Singularity formation for ZND

In this section, our main goal is to prove the negative result Theorem 12 and Corollary
1, as well as a similar blowup result for unweighted norms for the Majda model. This will
be done by suitably modifying the argument in [Joh74] to variable coefficient systems.
We begin with the needed assumptions and some useful background results from spectral
perturbation theory in Subsection 2.3.1. We then apply the method of characteristics in
Subsection 2.3.2 in order to complete the needed setup. Next, we use the equations for
the perturbation and its derivative with respect to x in order to establish the needed
estimates in Subsection 2.3.3. We then complete the proof of Theorem 12 in Subsection
2.3.4. Next, we discuss how to apply Theorem 12 to the ZND model in Subsection 2.3.5
and prove Corollary 1 in Subsection 2.3.6. We will also discuss the situation with weighted
norms for ZND in Subsection 2.3.7.

2.3.1 Setup

Let A(u) : R® - M, (R) be a smooth matrix function with the property that there
exists a 0 > 0 so that A(u) is strictly hyperbolic for |u| < ¢. Further assume that the

(real) eigenvalues A;(u) of A(u) may be ordered as
An(u) < Api(u) < oo < Ag(u), (2.3.1)

and that each A; is simple. By shrinking 0 if necessary, we may further assume that
Ai(v) < Aj(u) if j < i and |uf,|v] < 0. Assume further that there exists a smooth
function F': R® — R"™ with

A(U) = DyF(U),

so that
U+ FU),=U+AU)U, =0, (2.3.2)

is a system of conservation laws.
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Let U(x — ot) be a shock solution to
U+ AWU)U, =0, (2.3.3)

for some constant o and such that ||U||,, < 0 and U and all of its derivatives are expo-
nentially decaying in space. For our purposes, we need A to be strictly hyperbolic with
at least one genuinely nonlinear field. As both the required conditions on A are invariant
under Galilean changes of coordinates, we may without essential loss of generality assume

that the underlying shock speed o = 0. Suppose we have a solution to (2.3.3) of the form

U=U+U, (2.3.4)

with U small. Then the evolution for the perturbed solution U is given by
U+ AU)U, = 0. (2.3.5)
Subtracting the equation for the shock

AU, =0, (2.3.6)

from (2.3.5) produces

A

U+ (AU +U)— AU)NU, + AU + U)U, = 0. (2.3.7)

By applying the fundamental theorem of calculus twice, we see that

A

AU +U) - AU) = f D AU + sU)Uds = G(z,U)U,
’ 1 (2.3.8)
AU +0) = A(D) + f DuA(T + sU)Uds — A(D) + B(x, ),

where D,, denotes the Fréchet derivative with respect to u, G|z, U ) is a bilinear form and
B is a matrix. We have that G and B are piecewise smooth, smooth for = large, and that

B and all of its derivatives are exponentially decaying in x.

A

U, + (A(U) + B(z,0))U, + G(z,U0)U = 0, (2.3.9)

for G(x,U)U = G(z,U)(U,U,). Note that G and all of its derivatives with respect to
z and U are exponentially decaying in x due to the presence of U,. Now that we have

the equation for the perturbation (2.3.9), we are now going to call the perturbation u in
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order to match the notation of [Joh74] more closely.

We note that there exists an € > 0 and R > 0 depending on B(z,u) and G(x,u) so
that B and G are smooth for |z| = R and such that for all |x| > R one has that

|B(z,u)]|, |G(z,u)| <&, (2.3.10)

and the matrix

Az, u) == A(u) + B(x,u), (2.3.11)

is strictly hyperbolic with all simple eigenvalues A;(x,u) which smoothly depend on z, u
[Kat76] and satisfy \;(z,v) < \j(z,u) for |u|, |v| < §, shrinking § slightly if necessary
while preserving ||u||, < 0, and j < ¢. This is due to the exponential decay of B,G
with respect to x and recalling the observation (2.3.1) that we have separation of the
eigenvalues of A(z,u) at © = +00. From [Kat76], we know that we can also find left and
right eigenvectors n;(z,u) and & (x,u) of A(x,u) associated to the eigenvalues \;(z,u)

with the biorthogonality condition
ni(z,w)é (z,u) = 0y (2.3.12)
Further assume the normalization condition on the 7;
n-n = 1. (2.3.13)

If a solution u(x,t) to (2.3.9) remains supported in {z : |z| = 2R} for all time ¢ on some
sufficiently long time interval 0 < ¢ < 7', then we may smooth out B and G in a such a
way as to ensure that (2.3.10) holds everywhere in x by choosing smooth approximations
B and G such that supp(B — B),supp(G — G) < {z : |z| < SR} x {u: u] < 6}. As we're
only trying to show blow up of a specific solution which will be supported far from x = 0
on the desired time of existence, there is no real harm in assuming that B and G are
smooth everywhere and that the inequality (2.3.10) holds for all z. This is done purely
to avoid some technicalities arising when trying to solve for the characteristics of (2.3.9)

near z = 0.

We introduce coefficients b;;(x,u) and c¢;;x(z,w) in order to describe the gradient of

A(x,u). In particular, we define

bij(x,u) := ni(x, u)?;(:v, u)é (z, u), (2.3.14)
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and

Remark 2. Moral

when one writes u

d .
Cijp(x,u) == n;(x, u) <£.A(x, u+ sﬁk)|szo)£3 (x,u).

ly, ciji(z,u) can be thought of as

A ()8 (2, u),

Cijk(aja u) = 771('1'7 u) auk

as

n
u = Z wp".
k=1

From this, we get the following identities

di(z,u) = by(z,u)dx + Z Ciik(z, w) (du),

k:l
zk z, U

= o) G ) () (-

where we've written du as

n

=Z(d anxudu x,u).

k=1

We record the decay in B and G as

|a§55B(£L‘,U>|7 |5565G(ZE,U,)| < Caﬁe_c‘ﬂ’

for |z| bounded away from 0.

2.3.2 Characteristics

For each i =1, ...,

Let A be defined as

n we let X;(x,t) be the solution to the ODE

A= max sup iz, u)| < o0.
|ul<é
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(2.3.15)

(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)



The observation that A\ < oo follows from |[|A||, < . Note that A < oo holds even when

B arises from linearizing about a shock as || B||,, < 0. Define parameters v;, pi; by

v = inf  A(z,u),
z€eR, |u|<d
(2.3.23)
pi = sup  Ai(z,u).
z€eR, |u|<d
Further define o by
o :=miny; — p; > 0. (2.3.24)
k<i
Let u(z,t) be a solution to
u + Az, w)u, + Gz, u)u =0 (2.3.25)
such that for some o0 > T" > 0 one has the bound
sup |u(z,t)| < 4. (2.3.26)

o<t<T
TeR

Thus if u(z, 0) is compactly supported in [ayg, 5o], we then have by the method of charac-
teristics that the solution u(z,t) is compactly supported in [ag — AT, By + AT']. As such,
if [, Bo] is sufficiently far from x = 0 then u(x,t) remains supported in |z| = 2R for all

t and hence we may smooth out B and G.

Let w := u, and write w as

n
w =Y wig" (2.3.27)
i=1
From this, we can write the evolution of u along the i-th characteristic as

(fi?: =t At = (A = Az, u))us — Gz, u)u = Z()\z — M )wpé® — Gz, u)u. (2.3.28)
k=1

Correspondingly, we have the evolution of \; along the i-th characteristic given by

), oxX, & du
© =i ik Mk~
dt a " kz_llc KTk g

- (2.3.29)
= )\lbm + Z (()\z — )\k)wk — UkG<.’L',U)U)C”k
k=1
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Similarly, the evolution of 7; along the i-th characteristic is given by

dn; bik 5X du
TS (e - mi)mi 2 )\k Y Ctn (1) (- 10)105 = ),
:*:Z k#z
(N — )\
= Z (e = ma)ms — i) + Z Czkmwm((nk 1)1 = k)~
k )\ A —
:*:Z k+L
— Gl W) - o) = )
)\k — )\an T, U)U\ Tk~ 705 )T Mk .
(2.3.30)
This leads us to the evolution of w; along the i-th characteristic as
t t (2.3.31)

dn;
dt

= ni(Ni — Awy — Ayw) + —w — 0;(G(x, u)u),.

As n; was assumed to be a left eigenvector of A with eigenvalue \;, we are left with

n

dwZ Z

wk—Z N AE w0 — i (G (2, w)u+ Gy (2, u) (u, w) + Gz, u)w). (2.3.32)

Plugging in (2.3.30), we find that

Z )\k — Z mcmm((m M) Wi Wi — Wy, ) =
k:*: ,m
‘ k#i
- Z nz xfk + nngk + mGU(U, fk))wk— (2333)

CZ m
B Z A . N\ T G )“((Th : Uk)wi - wk) - nti($,U)u.
k#:z

Now plugging in the expressions from (2.3.14) and (2.3.15), we get

zk)\
; A — Z e — N Clkm (M * M) Wi W — W Wy, ) —
- Z Dt = Z Citm Wit — > (GE" + Gy (u, €°))wy— (2.3.34)
= k
Cikm
- Z =\ NG (2, w)u((n; - m)w; — wy,) — 7;Go(z, u)u.
k#z
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Introducing coefficients ik, as in [Joh74], and new coefficients (;;, and k; we get

n

= Z CikWk + Z VikmWkWm + KiU. (2.3.35)
k=1 k,m

dwi
dt

We note that each (;; and k; satisfies
0200 G (, w)], 030 ki, u)| < Cope " (2.3.36)

for ¢ > 0 the same constant as in (2.3.20), coming from the exponential decay of B and

G.

Remark 1. Comparing with [Bdr22], our characteristic equation (2.3.35) takes a very
similar form with the key difference being that here we have a forcing term independent of
w. The forcing term arises due to the spatial inhomogeneity induced by linearizing (2.3.3)

about a fized non-constant solution.

For initial data which is compactly supported in an interval [ay, 5o], we let R; denote

the region foliated by the characteristics, i.e.
Ri = {(Xi(z,1),t) s v € [ao, 5], 0 < t < T (2.3.37)

We also define extremal characteristics

Oél(t> = Xi(Oéo, t),

(2.3.38)
Bi(t) = Xi(Bo,1).

As in the unperturbed case, when o defined in (2.3.24) is positive, there exists a ty > 0
so that R, nR; < {(z,t) : 0 <t < tp}. We choose the smallest such ¢, with this property,

which we note is comparable to the initial width of the support sg := Gy — ap.

2.3.3 Estimates

We let u(x,t) be a C? solution to (2.3.9), which a priori remains bounded by 4 for all

0 <t < T and all . Assume that the initial data is small in the sense that
0 = sup 53|tz (z,0)]| < 1. (2.3.39)

In particular, assume that 6 < %5 . We may further assume that there exists an index i

and a y € [ap, fo] so that w;(y,0) = max; sup, |w;(z,0)| = Wy. A simple consequence of
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the fundamental theorem of calculus is that

In this section, X = O(Y) will mean that X < CY for some constant C' that only
depends on the matrices A(u), B(z,u), G(z,u), 6 and € for 6 sufficiently small.

Remark 3. The argument in John does not make the assumption that Wy is achieved
by some i and y with w;(y,0) > 0 in order to show that the blowup is generic. As the
initial data we will show blowup for will not be generic due to being spatially supported
far from x = 0, we are free to assume that Wy is achieved when w; is positive. As another
remark, the coefficient v;; that leads to Riccati-type blowup can be arranged to be positive
by changing the sign of n;, €. If one assumes that v;; is negative, then one assumes that

there is an i and a y such that —w;(y,0) = max; sup, |w;(z,0)|.

The overall plan will be to follow the argument in [Joh74] as closely as possible while
keeping track of the dependence on the constants on the distance of the support of u(z, 0)
to 0 and the time of existence T'. To briefly outline the argument, we begin by proving
suitable bounds on v and the w; and the maximal width of the regions R;. We then use
these bounds to show that a specific w; along a suitable characteristic blows up by com-
parison with a Riccati equation. We are going to allow ourselves the freedom to choose
the distance of the support from 0 on parameters associated to the initial data, such as
Wo, so, and ultimately T" as well. What we are not allowed to do is allow the distance

to depend on information about the solution for ¢ > 0. We will then construct a specific
1
2
far enough so that all of the necessary distance conditions are satisfied.

initial data, originally supported on [—%, ], and then scale it by 6 and translate it out

Before we begin, we will choose a constant £(d, T') which only depends on the distance
d of the support of u(z,0) from 0 and the desired time of existence T" such that £(d,T)
controls all quantities derived from B(z,u) and a sufficient number of their derivatives
uniformly on supp(u(x,0)) +[=AT, \T] and in L'. In a similar fashion, we choose G(d, T')
to be a constant which controls all quantities derived from G(z, ) and a sufficient number
of derivatives uniformly on supp(u(z,0)) + [-AT,AT] and in L!. In particular, we may
choose a sufficiently large positive integer k£ and a large constant C' > 0 depending only

on A(z,u), G(x,u), § and € so that

E(d,T) = C[|Bllwron (wepos 3y« flui<sy) T |S“1<P§ B (s u)llyin (—oo,g0437)):

(2.3.41)
G(d,T) = C(HG"Wkaoo({x<ﬂo+XT}x{\u\<6}) + |S“1<P§ HG('>u)HWkﬁl(—oo,Bo+XT))7
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provides the needed control on B and G when [ay, fy] = (—0,0) and a similar convention

if [, Bo] < (0, 00). We remark that due to the exponential decay in u, we have the bounds

£(d,T),G(d,T) < Ce T (2.3.42)

for C, ¢ both finite positive constants. In particular, we emphasize that £ and G are only
small when d » T. Indeed, if d is too small relative to T" then it is possible to prevent

blow-up as we saw in Theorem 11 for the Majda model.

Define constants

W =sup sup |w;(z,t)], (2.3.43a)
© oo
V =sup sup |w;(z,t)|, (2.3.43Db)
i (z,)ER,
0<t<T
U= sup |u(x,t), (2.3.43c)
0;2’;)7‘
S =sup sup (5;(t) — a;(t)), (2.3.43d)
i 0<I<T
Bi(t)
J =sup sup J |w;(z,t)|dx. (2.3.43¢)
i 0<t<T Joy (1)

Lemma 2. Let d := dist([ao, o], 0) be the distance of the support of u(x,0) from 0. Then
if d 2 max{1,T,|log(so)l,|log(Wy)|} is such that

E(d,T) < min{l, so, cWy} (2.3.44)
for some 0 < ¢ < 1, then one can bound U and S by

U=0(soV+TV+J),

(2.3.45)
S =0(so+TEWT)+ VTS +JT).

Proof. We recall the proof of the estimate on U from [Joh74]. To bound u, one starts
with the observation that u(z,t) is supported on [« (t), £1(t)] for each t. Then applying

the fundamental theorem of calculus gives

u(a ) = j
an (t) k

n

wi(y, )€ (y, t)dy, (2.3.46)
1
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and then bounding u(z,t) by

lu(z,t)| < max sup €% (2, u |Zf |w;(z,t)|dx. (2.3.47)

|u\<5
For each ¢ we may write this as
Bi(t)

n a;(t)
u(z,t)| <C’Z<J |w,~(x,t)|dx+f
i=1  Jan(t) i (t)

The middle integral may be bounded by J by definition, and the other two integrals may
be bounded by (;(t) — a,(t))V + (B1(t) — Bi(t))V in a similar manner. But

B (t)

lw; (2, )|dx +J

e t)|dx>. (2.3.48)
Bi(t)

[ (i) =an () +(B(t) =Bi(8))] = |51 (t) —an(t) = (Bi(t) —u(?))| < 2[Br(t) = ()], (2.3.49)

leading to
lu(z, t)] < 2|61(t) — an(O)|V + J. (2.3.50)

To finish the estimate on U, we note that

d(B(t )

) — (B E), ulBi(t), 1) — Anlan(t), u(on(t), 1) < 2%, (2.3.51)

which gives the estimate |3, (t) — a,(t)| < so + 2AT.

The estimate for S works slightly differently from the original argument in [Joh74].
We start in the same way by looking at

d(Bi(t) — ai(t))

o = Xi(Bi(1), u(Bi(t), 1)) — Aie(t), u(ai(t), £)). (2.3.52)
Applying the fundamental theorem of calculus gives
d(B(t) — ai(t)) J’Bi(t) J
= —\; . 2.3.
o o 6:C)\l(:ic,u(yc,zf))dac (2.3.53)

Recalling the expansion for d\; from (2.3.18), we find that

P i) n
d(ﬁz(t)dt i) _ L o B 0) 4 o ule, D), e (2359)
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First, we bound
Bi(t) Bi(t)
bii(, U(:v,t))dx‘ < CJ e ldy < O'(e7 PO — e=eli®l) < £(d, T), (2.3.55)

(77 (t)

o (t)
Choosing ay, 5y sufficiently far from 0, depending on 7', one may ensure that

[

Bi(s)
f bis(z, u(, s))dx‘ds < TEW,T) (2.3.56)

a;(s)

foral 0 <t <T.

Turning to the sum in (2.3.54), we split into two cases depending on whether ¢ < ¢,

or t =ty holds. We start with the latter case, where we see that

Bi(t)
J Z Ciim (T, W)Wy, (2, t)dx| < max sup |Cim(x, u)] Z J | Wi (2, t)|dx.  (2.3.57)

. i,m (z,u)
ai(t) m=1 lul<é

To use the assumption t > to, we recall that ¢t > t, implies that (x,¢) can be in at most
one Ry. As the integral in (2.3.57) is over the set of (x,t) € Ry with a fixed value of ¢,
we can further bound (2.3.57) by

Bi(t) Bi(t)
(n— I)J Vdx + J |w;(z,t)|de < C(SV + J). (2.3.58)
ai(t) Ozi(t)

To handle t < tg, we first show w; remains under control for ¢ < ty. To do this, we first

introduce auxiliary parameters Z and I" as follows

K(d,T)=  sup i LACADIE

z€[ag 7XT,BO +2T] i=1
lul<s

Z = sup DG, w)], (2.3.59)

I' = sup Z [Yitm (@, w)]-

Applying a Gronwall type estimate to the characteristic equation for w;, we get

|wiz, £)] < y(t), (2.3.60)
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where y(t) satisfies
y'(t) = Zy(t) + Ty(t)* + K(d, T)U,

J0) W (2.3.61)

Then we claim that there exists a W > 0 and 0 < C' < o depending only on Z, I, §, the
support of u(x,0) and ty such that

y(t) < CWy (2.3.62)

holds for all ¢ < ty and all 0 < W, < W. We emphasize that this is a short-time
bound on the solution y(t). Noting that we have U < ¢ a priori, we are free to bound
UK(d,T) by ¢oWy for some ¢ sufficiently small. In particular, we can choose ¢ so small
that coWy < ZW,. Hence, at time 0 K(d,T)U < Zy(0); but since the right hand side of
(2.3.61) is positive, the bound K (d, T)U < Zy(t) persists for longer time. This allows us
to bound the solution y(t) by the solution ¢ of

7 (1) = 2Z§(t) + Tg(t)*, (2.3.63)

The claim can be proven by writing Y (t) = §(t)e 2%t for t < ty and noting that Y'(¢)

solves the weighted Riccati equation
Y'(t) = (Te*?M)Y (1) (2.3.64)
Now comparing Y (¢) with the Riccati equation

Y(t) = (De* )Y (1),

(0) - 11, (2.3.65)

we see that Y (¢) is bounded by

Wo

Y() € — 0
() 1 _I“€2Zt0W0t

(2.3.66)
for Wy so small that 0 < t < ¢ty < (['e??%W;)~! holds. In particular, since to,W, =

O(soWy) = O(0) and T'e??" is a fixed constant depending only on sy and the model

parameters, we see that for Wy small enough that Y (t) < 2W, for all 0 < ¢ < to.
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For 0 <t < to, we recall (2.3.52)

d(ﬁz‘@) - az’<t>)
dt

= Xi(Bi(t), w(Bi(t), 1)) = Ailai(t), u(ei(t), 1)). (2.3.67)
We now add and subtract A\;(5;(t),0) and \;(c;(t),0) to get

d(ﬁz‘(t) - Oéi(t))
dt

| < NGB, u(Bil®), 1) = Ai(Bi(#), 0)) |+

+Ai(Bi(#), 0) = Ailai(t), 0)] + [Ailai(t), u(ei(t), 1)) = Ailai(t), 0)].
(2.3.68)
By hypothesis u(ag,0) = u(fp,0) = 0, and so we can bound (2.3.68) by

d(Bi(t) — ai(t)) < Clu(B; —u ulo —u(a
F | < OO0 = uBo O] + fules(t). ) ~uleo 0D+ o

+ [ Ai(Bi(#),0) — Ai(ai(t), 0)].

Finally, we are left with controlling |\;(5;(t),0) — Ai(a;(t),0)|. We do this by the funda-

mental theorem of calculus as follows

[Ai(Bi(t),0) — Ai(ai(t), 0)] =

Bi(t)
f bis(s, 0)ds| < C(e=dBOI _ g=elasdl)(2.3.70)

a;(t)
We then see that |A\;(5;(t),0) — A\i(a;(t),0)| = O(1) so that for t < ¢y one has by the

characteristic equation for u and the Gronwall type bound on w; in (2.3.62)

d(ﬁz‘(t) - Oéi(t))
dt

= O(1 + teWy), (2.3.71)

after choosing d large enough that the reaction term in (2.3.28) satisfies 0G(d,T) < W.
Hence integrating and using (2.3.58) and (2.3.71) we get

1Bi(t) — ci(t)] <so + TE(d, T) + Oty + tgWy) + TO(SV + J)

(2.3.72)
=0(so+TEW,T)+ TSV +TJ),

as t2Wy = O(s2Wy) = O(sp) can be absorbed into O(sy). O

Remark 4. In John’s argument, in the final step one assumes that T ~ =1 » 1, which

will ensure that all the distance conditions stated at the end of Lemma 2 hold.

Proposition 8. If we choose the distance d so large that

E(d, T) < min{l, so, eWp}, (2.3.73)
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holds for ¢ the same small constant as before and that
G(d.T) < Wy, (2.3.74)
holds as well, then we may estimate J by

J = O(sqWo + (V + E, T)TJT + TV(V + £(d,T))S + TG(d, T)US).  (2.3.75)

Proof. Following John, we introduce two new quantities

0X;
pi(27t> = Oz (th)7

vi(z,t) = wi(Xi(z,t),t)pi(2,t).

(2.3.76)

One should think of p; as some measure of the density of the ith characteristics. By a
change of variables computation, one discovers that J can be computed in terms of the

v; by
Bi(t) Bo
J = sup sup J |w;(x,t)|dz = sup sup J |vi(z,t)|dz. (2.3.77)

i 0<t<T Jo, (1) i 0<t<T Jag

From the characteristic equation for X; given in (2.3.21) and the expression for d); in

(2.3.18), we are lead to the evolution equation for p;

0 0 0X; -

=P = =5 = biip; + CiimWm Pi

ot 0z Ot mZ::l (2.3.78)
pi(zv 0) =1

It is clear that p;(z,t) = 0 for all ¢ is a solution to the first equation of (2.3.78). This
ensure that our desired solution p;(z,t) > 0 for all ¢ by uniqueness of solutions, as the
initial data is nowhere vanishing. An important consequence of p; > 0 is that it we may
look at the time evolution for log(p;) given by

0 n

By imposing the additional constraint dist([cg, Fo],0) = max{1, T, |log(Wy)|}, we may
ensure that |b(z,t)| < Wy on [ag— AT, By + AT for all 4, k. From the short time estimate

on the w; and th distance assumption, we find that for 0 < ¢ < ¢, that

< log(p:) = O(W), (2.3.80)
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which upon integrating in time leads to
log(p;) = O(teWy) = O(0). (2.3.81)
Exponentiating (2.3.81) leads to the bound for p;
pi = O(1), (2.3.82)

for 0 <t <t

Turning to v;, we first write down the evolution equation as

an
ot

= (Z Girwy, + Z VikemWiWn + ki) p; + Wi (bisps + Z CiimWimnPi) - (2.3.83)
k= k,m

1 s m=1

By using the Kronecker ¢, (2.3.83) can be more succintly written as

n

= Z(Qk + Oikbir ) piwy, + Z(%km + 0ik Cikem ) Wi Wi Pi + KipiU. (2.3.84)
k=1 k,m

(7’01'
ot

For 0 < t < ty, appealing to the Gronwall type estimate (2.3.62), the distance condition
on the support, and the estimate on p; in (2.3.82), we find that

&vi

=~ = O(pW2 + piG(d, T)U) = OWZ + G(d, T)U). (2.3.85)

By assumption, U < 4 so by choosing the support far enough, G(d, T)U < 6W¢, refining

the short time estimate to
dvi

dt

For t > t;, we make the crucial observation that

= O(W3). (2.3.86)

v,
ot

k,m as v;; + ¢z = 0. Moreover, since (z,t) = (X;(2,t),t) can only lie in one R; for ¢t = 1,

does not include w? in the sum over

we get the estimate on v; for t > tg

ov;
“(z,t) = OE(d, T)pi(|wi| + V) + pilwilV + piV? + p;G(d, T)U)+
5 (2:1) = O(E(d, T)pilwil + V) + pilwilV + p piG(d, T)U) (2.3.87)

— O((V + E(d, T))vs(z,8)| + (V + EA,T)V p; + p:iG(d, T)U).
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Integrating with respect to time, we can bound v; by

02, 0)] < [z, 0)) + O((V + £(d. 7)) f iz, 5)|ds+
0 (2.3.88)

T

+ (V(V + E(d,T)) + G(d, T)U) J

0

pi(z,8)ds + tOW(?),

with the constant C' uniform in z € [ag, fy] and 0 < ¢t < T Integrating in the spatial

variable z, we get after applying Fubini’s theorem

Bo Bo T rBo
f lvi(z,t)|dz < J |w;(z,0)|dz + C’((V +&(d,T)) f f vi(z, s)|dzds+
0 g

«@Q @Q

+ (V(V +&(d,T)) + G(d, T)U) fo (Bi(s) — a;(s))ds + s%Wé).
(2.3.89)

The trivial bound || f1|1(jo,r7) < T|[f||z=(o.r7) Produces our final estimate for J, namely
T = O(soWo + (V + E(d, T)TJ + TV(V + E(d.T))S + TG(d, T)US),  (2.3.90)

as soWy small allows us to absorb s3WZ into soWj. O

The estimate on J that we have looks slightly different from the estimate on J in
John’s argument, however, we've assumed that £(d,T) < Wj. In the final step, we will
start by assuming that soV = O(#), and so £(d,T') will at least be a priori comparable
to V provided sy = O(1). Note also the presence of the lower order term T'G(d, T)US.

The final estimate needed is for the estimate for V.

Proposition 9. Suppose that dist([cv, £o],0) = max{1,T,|log(Wy)|} holds. Then one

can estimate V' by

V=0@sWe+V+EATHVT+V+EM,THTI+TV(V+E(,T))S)+G(d, T)TU).
(2.3.91)

As in Lemma 2 and Proposition 8, we assume that d 2 max{1, T, |log(Wy)|} so that
E(d, T) < min{1, so, éWo, Wi}, (2.3.92)

and
G(d.T) < Wy, (2.3.93)

hold.
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Proof. Let (z,t) ¢ R;. Then there exists a z ¢ [, By] such that (z,t) = (X;(2,t),t). As
z is outside the support of u(x,0), we necessarily have w(z,0) = 0. Moreover, we can
assume that z is not too far from [ag, 3] in the sense that z € [ag — AT, By + AT, as
outside this larger interval w is identically zero. Integrating w; along the characteristic

starting at z, we find

w;(z,t) = J Zcik(Xi(Z,T>,u(Xi(2,T), T))wy, + Z Yikern (Xi (2, 7), u(Xi (2, T7), T) ) wpwm+
0 km
+ ki(Xi(z, 7), u(X; (2, 7)) u(Xi(2, 7), 7)dT

(2.3.94)

As before, we split into two cases depending on how ¢ compares to ty. If ¢ < ¢, then we

have that the integrand of (2.3.94) is at most W giving us the short time estimate
lwi(z,1)] = O(teWy). (2.3.95)
In the other case, we introduce sets wy defined by
wr={0<7<T:(X(2,7),7) € R} (2.3.96)

By assumption w; is empty. If 7 > ¢y, then 7 is contained in at most one Ry. For that
specific k, |wg||wy,| < V|wy| otherwise |wy||w,,| < V2 For reaction term k;u, one can do
little better than
¢
‘ JO m(Xi(z,T>,u(xi(z,7),T))u(xi(z,f),f)df‘ < G(d, T)TU. (2.3.97)

For the linear terms, we use the distance on the support to bound them by

L kZl kade £(d,T) Zk: <J

w

lwy|dr + f |w,€|d7>. (2.3.98)
k [0,T\wy
Outside of wy one has |wi| <V, and so (2.3.98) is controlled by

U Ekade < &, T)VT + E(d,T) ZJ (X (z, 1), 7)|dr. (2.3.99)

We may bound the quadratic terms of (2.3.94) in a similar manner by

‘ Z ik (Xi (2, 7), u(X;(z, 7), T))wkwde‘ <OWVT+V Z f |we (X ,T)|dT).
. (2.3.100)
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Thus, we have reduced the problem of estimating V' to estimating
[ xiceom, e (2:3.101)
Wi

We would like to exchange the integral with respect to the time variable 7 for an integral
with respect to space, as our setup gives us pointwise control on wj outside R; and
spatial integrals of wy in Ry. To exchange the time variable for a suitable space variable

in (2.3.101) fix k, and let 7 € wy. Then there exists some y = y(7) so that
Xi(z,7) = Xi(y(7), 7). (2.3.102)

Differentiating (2.3.102) with respect to 7, we find that

d
Ai = Ay +Pk£

. 2.3.103
dr ( )

As pr > 0 and )y — \; has a definite sign, y(7) is a strictly monotone function of 7 and
is thus invertible. Changing variables in (2.3.101), we find that

J [ (Xi(z,7), 7)|dr =L ’w’“(X’“(fi’:_)’;Z"p’“(y’T)dy, (2.3.104)

for some subinterval I}, < [ag, Bp]. By assumption, |\; — x| is bounded from below, so
(2.3.104) can be bounded by

f |we (X (z, 1), 7)|dT < C | |y, 7(y))|dy. (2.3.105)

Iy,

In the proof of the estimate (2.3.75), we obtained the pointwise bound (2.3.88) on vy,
valid for all (y,7(y)). Plugging this estimate into (2.3.105) produces

Bo

L lwp(X;(2,7), 7)|dT < C’J <|wi(y, 0)| + ((V + &(d,T)) LT lvi(y, s)|ds+

ap
T

+V(V +E(d,T)) J piy, 5)ds + tOW(]Q))dy .

= O(sgWo + (V + Ed, T)TJ + TV(V + E(d, T))S).
(2.3.106)
We've also expanded I into [av, 5o] as well in (2.3.106). At this point, following the same
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procedure for the J estimate furnishes our final estimate on V'

V = WoO(VT + soWo + (V + E, T)TJ + TV(V + £(d, T))S) +
Linear C(;Irltribution

+VOWVT + sogWo+ (V+EW,T)TIJ+TV(V +E(d,T))S) +

-

Quadratic contribution
+G(d, T)TU + O(sqW2) =
—_— ——

Reaction term Short time

(2.3.107)
= O(soWg + (V+Ed,T)(VT + (V +E(d,T))TJ+
+TV(V +E(d,T))S) + G(d,T)TU).

Where we've used (2.3.40) to absorb soW,V into the left hand side of (2.3.107). O

Putting these results together, we have

Theorem 13. Suppose u(z,t) is a C* solution, remaining bounded by &, to (2.3.9) with
initial data u(x,0) compactly supported in [og, Bo] with

dist([ao, Bo],0) = max{1, T, |log(so)|, | log(Wo)|}, (2.3.108)

and satisfying
max s|ug. (2, 0)] = 0 < 1, (2.3.109)

for sg = Bg — . Then the following estimates hold

V= 0(soWe + (V+Ed,T)H)VT + (V +E,T))TJ+ (2.3.110a)
+TV(V +E£(d,T))S) + G(d, T)TU),

U=0(soV+TV +J), (2.3.110D)

S =0(sg+TE,T)+ VTS +JT), (2.3.110c¢)

J = O(soWo + (V + Ed, T)TJ + TV(V + £(d,T))S + TG(d, T)US).  (2.3.110d)

2.3.4 Final Steps

We are now in a position to finish John’s argument in showing blowup of some solution.

We begin by constructing a suitable initial condition.

Lemma 3. For a given index i and all 0 small enough, there exists a nonzero function

f which is C* with sup, | f"(x)| < 0, compactly supported on an interval of width 1, and
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such that there exists a y in the support of f so that
ni(y, f(y))f'(y) = sup sup [75;(z, f@) f'(z)]. (2.3.111)

Proof. Let ¢(z) be a scalar function which is smooth, not identically zero, and compactly
supported in [—1/2,1/2]. For simplicity assume that ||¢"||c = 1. Let f(z) = fio(z) =
0p(x — x)EL(0), where & (u) is given by

Eo(u) = lim &'(z,u), (2.3.112)

|z —c0

and xg € R to be determined. By a continuity argument

lim n;(zo + t,u)EL (u) = 6, (2.3.113)

lzo|—c0

1
2

analogous to &’ (u), then we note that

with uniform convergence on [t| < 3 and |u| < d. If we let n°(u) be defined a manner

0y (f(zo + 1)), (0) = d;5 + O(0), (2.3.114)
for all |¢| < % In particular, what we find is that
ni(wo + ¢, f(zo + 1))8,(0) — 0" (0(1)8:,(0))&7°(0) = i + O(0), (2.3.115)

as |xg| — oo. In particular, this implies that

ni(@, f(@))f'(z) = 0¢'(x)d;; + O(6%), (2.3.116)

and so for § « 1, we have that there exists y in supp(f) such that

iy, f) f'(y)] = SUp sUp i, f(x))f ()], (2.3.117)

and by sending ¢ — —¢ if needed, we can remove the absolute value bars on the left
hand side. u

Adapting a result of Lax in [Lax73] as in [Bar22], one can show that for all small
smooth initial data, there is a unique classical solution to (2.3.9) on some time interval
with the prescribed initial data. Our solution u(x,t) will then be the unique smooth so-

lution to (2.3.9) with the initial data constructed in Lemma 3.
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We let T increase from 0 so that the inequalities

4

W, < =4, 2.3.118
"= ICEO) (23.1180)
TV <8, (2.3.118D)
J <V, (2.3.118¢)
V<o, (2.3.1184)
U<, (2.3.118e)

hold.
For 7£(0) the value of v;; with B = 0, or equivalently,

Viii(0) = Lim 7;3(x, 0). (2.3.119)

|z|—c0

Note that these inequalities are all valid at 7' = 0 for § small enough since there U = O(6),
T=V=0,J=0(W,) = O(0). For the fourth estimate in Theorem 13, we may improve

the estimate on J to
J = OWy +V0J + (TE(,T))J +VO(V + E(d,T))S + TG(d, T)US).  (2.3.120)

As we've chosen d ~ 671 » |log(Wy)| ~ |log(f)], we may assume that E(d,T) <
min{1, cdWy, so} for some constant ¢ « 1 so small that the term O(E(d,T)T)J can
be absorbed onto the left hand side, that is O(TE(d,T)) < 1. As 0 is small, the v/6.J on

the right hand side can be absorbed as well. This improves the J estimate to
J=0Wy+VOVS +TG(d,T)US). (2.3.121)

To handle the reaction term, we note that G(d,T) < ¢W¢ for some universal constant
¢ > 0 sufficiently small, hence TG(d, T)U < WyU. This furthers improves the J estimate
to

J = O(Wy + VoV S + W,US) (2.3.122)

From this, we find that JT is of the order
JT = O(1+6S +US). (2.3.123)
Using the bounds U < +/# and (2.3.123) allows us to improve the S estimate to
S =001 +TEWT)+ VTS + JT) = O(1 + VbS + 6S) = O(1). (2.3.124)
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Plugging (2.3.124) into (2.3.122) produces our final refinement of the J estimate
J = O(Wy + VOV + WoU) = O + 67) = O(6). (2.3.125)

Next, we use our refined estimates on S and J7 in (2.3.124) and (2.3.123) respectively,

to refine the estimate on V.
V= OWE+(V+Ed, THVT+(V+E,TH+TV(V+E(d, T)))+G(d, T)TU). (2.3.126)

Applying the bound TV < +/0 and using O(TE(d, T))) <

a further refinement of the V estimate

% as in the J estimate, we get

V=OWZ+VOV + (V+EW,T)? +VO(V +E(,T))? +G(d,T)TU) + ;v. (2.3.127)

This then gives
V=0WZ+(V+EWT))?+G(dT)TU). (2.3.128)

A priori, we have V,Wy = O(0) and &(d,T) < Wy, allowing us to absorb the £(d, T)V
and V? terms of (2.3.128) into the left hand side; hence we conclude

V =O0OWZ+G(d,T)TU) = O(WZ + WoU). (2.3.129)
From (2.3.128), we may improve the estimate on TV to
TV = O(TW§ + G(d, T)T?*U) = O(TWg + T*W3U). (2.3.130)
Using TWy < 9 = O(1), we get the refinement
TV = O(TW; + T*WZU) = O(W, + U). (2.3.131)

The final estimate to improve is the U estimate. The improvement is obtained by using

(2.3.129), (2.3.131), and (2.3.122)
U=0(sV+TV +J)=0W§+WoU +Wy+cU+ J) = 0(0), (2.3.132)

by using the small constant in G(d,T) < ¢cW¢ to move the U on the right hand side to
the left hand side of (2.3.132). To summarize, we've bounced the estimates in (2.3.118)

off of each other in order to get the better estimates

TV < C4, (2.3.133a)
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J < Co, (2.3.133D)
V < CH, (2.3.133c)
U < Co. (2.3.133d)

for some constant C' depending only on the matrices A, B, the parameters § and ¢ for ¢

small enough under the assumptions that d is sufficiently large and sy = 1.

Suppose u(z,t) remains C2 for all 0 < ¢t < T for T' = YW, ! and that for some i there

exists a 2 € [xg — 5,20 + 5] such that

We consider the evolution of w;(z,0) along the characteristic X;(z,t), that is we look at
the function w(t) defined by

w(t) = wi(X;(z,1),1). (2.3.135)

Appealing to the characteristic equation for w(t), the estimate (2.3.62), and the assump-
tion |xo| 2 |log(Wp)| we find that

< C(E(d, T)Wy + W) < CWE, (2.3.136)

for all 0 < ¢ < to. Note that the reaction term r;u has been absorbed into the Wg by

using UG(d, T) < WZ. Integrating with respect to time leads to the estimate
w(t) — Wol = [w(t) — w(0)] = O(tsW2) = O(W2) = O(0TWY), (2:3.137)

where we've used typ = O(sg) = O(1) and Wy = O(0). In particular, provided that 6 is

small enough, w(t) will satisfy

3
w(t) > ZWD for 0 <t<t. (2.3.138)

For each 0 < ¢ < T and all z, we have by a mean value theorem type estimate that
In addition, since the perturbation B(z,u) decays exponentially in z, we see that by the
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fundamental theorem of calculus

iil0) = (0 + [ T8 gy — s 0) 4 £0, ), (23140
-0

Here, we've implicitly assumed that [ag, fy] = (—0,0) for the sake of definiteness, but
an entirely analogous calculation works in the other case and will thus be omitted. In

either case, we have that
This implies that, for € small enough and all = in the support of u that

1
Yiii (X, u(x, b)) > 57;2(0) (2.3.142)

For k % i and ¢t > to we have that |wy(X;(2,t),t)| < V. Using this information and
(2.3.141) in the characteristic equation for w, we have

d 1

dif >S9 (0)0? — E(d, T)w| —nE(d, T)V = D(VIw| + V?) = K(d, 1)U, (2.3.143)
for I' and K(d,T') as in (2.3.59). At t = ¢, we can use £(d,T) <« Wy < w(ty), K(d,T) <
Wg, and V = O(8W,) to conclude that for 6 small enough, %2(ty) > 0. Hence w(t) is
increasing which implies that V' = O(0|w]) persists for larger times. For 6 small enough,

we then have for t > tg
dw 3 9
at > g%ii(o)w .

However, the solution to this Riccati equations blows up at some time ¢ satisfying

(2.3.144)

2
t<to+ <to+ =T <T. (2.3.145)

3755 (0)w(to) 3
This final conclusion comes from the observation that

7

to - O(WO

)=0(0T) < ;T, (2.3.146)
for 0 sufficiently small. As |w;(z,t)] = |ni(z,u(z,t))w(z,t)] < |w(z,t)| by Cauchy-
Schwarz, we see that the L® norm of w blows up in finite time. This concludes the
adaptation of John’s argument incorporating the effects of exponentially small pertur-
bations. We make some final concluding remarks. The first is that exponential decay in
the perturbation is not essential here, so long as the perturbation B(x,u) is smooth suf-

ficiently far away from x = 0 and is L' with L' derivative, then the argument can be
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adapted at the price of losing the ability to estimate how far the support of u(z, 0) needs
to be from zero. Another remark is that there only needs to be one genuinely nonlinear
field in this argument provided that the initial data is largest in the genuinely nonlinear
direction, in the sense that the value W, is achieved by some w; for which the corre-
sponding coefficient v;;; #+ 0. This is because we only showed that one specific w; blows
up in finite time, we have little control over what the other wy are doing. Hérmander in

[Hor87] does a more refined analysis of ODE of the form

d
dit” = ap(t)w? + a (H)w + as (1), (2.3.147)
to show that the blowup time is asymptotically determined by the corresponding blowup

time for the Riccati equation

dw e 0y (2.3.148)
dt

As our characteristic equation is of the same form as the ODE [Hér87] studies, one can
adapt the methods to show the same result here by showing the same bounds as in
[Hor87] hold for the characteristic equation obtained here. An alternative argument is
to note that V = O(OW,), £(d, T) = O(Wy), G(d,T) = O(W¢), and U = O(0) can be

combined to show that

(Yiis (2, u(z, 1)) — O(0))w? < Cj;: < (Vi (z, u(z, ) + O(0))w?, (2.3.149)

for t = t. The final step is to note that v;;;(z, u(z,t)) — 75 (0) locally uniformly as  — 0
by U = O(0) and the distance condition on the support of wu.

The final remark we make here is that John’s argument shows that a large class of
initial data leads to blow up in the solution, our adaption does not lead to as general a
result. It would be interesting to see if generic small data supported far from x = 0 leads

to blow up in this perturbed setup.

2.3.5 Application to the ZIND model

Recall the ZND model
vy — Uy =0,

Uy —l—p(U, E)m = 07
By + (pu). = gko(T)z,
Zt = _kgb(T)Z?

(2.3.150)
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where ¢(T') is 1 for T' = T; and 0 for T' < T;. Consider a shock solution U = (v, u, E, 2)
with shock speed o £ 0 and such that the temperature T'(U(x)) satisfies

inf T(U(x)) > T;. (2.3.151)

<0

Although the ZND model is not of the form (2.3.3), we will still be able to show blowup
using the prior method for suitable perturbations of the shock U. Making a Galilean
change of coordinates into the frame where the shock U is stationary, we find that U =
(v,u, E, z) satisfies
U — 0Vy — Uy = 0,
Uy — OUg + Pg = U,
E;, — oE, + (pu), = qko(T)z,
2 — 0z, = —ko(T)z.

(2.3.152)

Now consider a solution of the ZND model of the form U = U + U , where the support
of U(z,0) = [ao, fo] is a compact subset of (—o0,0) with |G| satisfying the distance
conditions in Theorem 13. Write U = (0,4, E, z) and further assume that 2(x,0) is
identically 0. We will show that this assumption allows us to eliminate z from the ZND
model, reducing the system to gas dynamics. The importance of this reduction is that
gas dynamics is a system of the form (2.3.3). If the solution U remains sufficiently small

in L® so that the temperature remains above T; for all time, then Z will satisfy

2 — 0%, = —k2, (2.3.153)

as the distance condition on [ay, fo] ensures that supp(U(z,t)) < (—c0,0) for all t up to
T,. Solving (2.3.153) with the initial data 2(x,0) = 0 shows that 2(z,t) = 0 for all time.
Looking at the S equation in the ZND model, and writing £ = E + E and subtracting

off the equation for £ we find
B, —aE, + (pu—pu), = 0. (2.3.154)

We have eliminated z from the ZND model for perturbations U of the form U = (0,1, E, 0),
leaving us with a system of conservation laws known to have at least one genuinely non-

linear field.

Remark 5. Generic shocks in the ZND model do not exponentially converge to zero as
x — —0 in every component, but that is easily remedied by writing U = U(—w0) + U,
adjusting the pressure function p appropriately, with U and all of its derivatives decaying

exponentially as x — —o0.
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There are shock solutions in the sonic case, called Chapman-Jouget waves, of the
ZND model which do not decay exponentially in x; but instead exhibit power law decay
with U — U(—0) decaying like x 1.

We also note that this argument works equally for the Majda model, showing the
necessity of the weight in the stability result Theorem 11.

2.3.6 Proof of the corollary

3
Corollary 2. For every C' > 0,0 >0, >0, s > = and € > 0 there exists ¢ smooth and
compactly supported away from the shock such that ||¢||rz < § and the solution obtained

is given with a perturbation ® from the initial wave it gives raise to is defined on some

C
time interval [0,T] and it satisfies [|U(t)]|z2 < ?6 on [0, T], and |U(T)|

Hs > €.

In particular, there can not be any damping estimates of the form: there exists C, 0,6, €

3
all positive and s > — such that, for every solution ® that can be written as ®(t,-) =
U(-—(t)) + v(t, ) with |v(t)||gs < € on [0,Ty] then, on [0, Tq]

t
lo@)lm: < Ce™™0(0)] = + J Ce v (s) | ds.
0

Furthermore, there is no orbital stability in H*(R*).

Proof. We constructed before positive constants C’ > 0, § and p > 0 and a sequence of

smooth compactly supported away from the shock initial perturbation (v,), such that

3 1
for every s > 3 vn|| sy = O —i—l) and the same is true for the L* norm of v,, and
n

(vn)z, with a support which Lebesgue measure is at most 1 and the associated solutions
(the sequence (U,,),) to the original equation, with initial data the profile of the wave per-
turbed by v,, can be written as U, (t, -—ot) = U(:)+wy,(t, -), w, being in H*(R*) satisfying,
on the interval of existence |wy,|r» < C'|v,|L=, supp(w,(t)) < supp(v,) + [—C"t, C't]

d n)e(E) Lo = .
an )02 >

us > € as a lower bound, and,

Thus, given € > 0, for some ¢, < nu, we have ||w,(t,)]
also, the L? norm of w,,(t) (for 0 < ¢ < ¢,,) is bounded by above by |w;, (t)| A1 (supp(wy,(t))),
CVO(V/tn + A/ M (supp(va)))

n+1 )
stant that does not depend on n, it is of size at most v/n +1 .

and thus [|w,(t)] 2 < , thus; up to some multiplicative con-
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€
Hence, given C' > 0 and 6 > 0, for n big enough, we have, ||v,|gs < 2 and, for t,, as

el
before, that on [0,t,], U, remains a Lax solution, and |w, |2 < 50 and |Jwy,(t,)|gs > €
thus making the damping estimate described before impossible with these constants C|,

e and 6. Any damping estimate of this form is, thus, impossible.

Furthermore, (v,,), goes to 0 in H* (for every fixed s) as n goes to +, but (U,), is

not even globally defined. Thus, it precludes orbital stability results in H*. O

2.3.7 The case of weighted norms

In the following, we prove an instability result for weighted norms as used in the
Majda model.

Lemma 4. We consider the framework considered before of
ur + (A(u) + B(z,u))u, + G(x,u)u =0

satisfying the same assumptions, and the added constraint that, furthermore, A, (0) < 0.
Let o > 0. There exists ey > 0 such that, for every e € (0,¢), for all 6 > 0 there exists
some initial data ug € CP(R) such that |ug|ms < & and the solution u has its H2 norm

that gets bigger than € on the interval of existence of the solution.

Proof. Under the assumptions of the lemma, with & > 0 and s > 2, let &, be a right eigen-
vector of A(0) associated with the eigenvalue A,(0). We also recall that | B(x, u)u, |2 <
Jul e ol and G, wulz; S (5Upyag, lual)lulzy if supp(u) = (=0,2o]. We define
for a given solution u, N(u) : (t,x) — —G(x,u)u — B(z, u)u,. With ¢ a smooth function
with support in [—1, 0] that is not the zero function, we have that v, : © — c,e”*P¢(-+p)&,
goes to 0 in H2 with ¢, a sequence of positive numbers going to 0 that will be specified
later, and, furthermore, it induces a solution u, defined on [0,7") such that w, :=n, - u,
satisfies (wp): + A\n(wp)z = 1 - (A(0) — A(u) — B(z,u))(up)s — 0 - G(2, up)uyp.

Assume, by contradiction, that for all €, there exists p. € N such that, for every p > p.
u, stays in the ball of radius € and center 0 in H* for every ¢ > 0 (and, thus, that the

solution is defined on R*). In particular, given 7" > 0, we thus have

t

wy(t,x) = wy(t,x — At —T)) + L Mo - N(up) (s, — A\ (t — 8))ds

for every t > T.
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Let
7:(—,0] - Ry,

such that for x < 0 we have 7(z) = inf, <, |u,| (with the norm being the usual sup norm
on R™).

el 6] 1z

We want to ensure that the Duhamel term stays smaller than with 7" such

e 17

that > . We will use that supp(w,(t,-)) < (=0, 1 —p + pit].

Thus, as T, = QIH(E) —In(ey) +In(2) —In (WHL%)

«
only need to choose a sequence (¢,), that converges slowly enough to 0 to ensure that

is big enough for our needs, we

7(—p + 1+ 1 T,) goes to 0 fast enough in comparison. Assuming that ¢, = o(p™'), we
have that 7}, = o(p), and thus 7(—p+ 1+ 17},) < 7(—0.5p) for large p. As a consequence,

we obtain the bounds

[ - ((Alup) = A(0)) (up)a )| S [up][ (up)e]
[ - (B, up) (up)2) | < 7(=0.5p) | (up)o

1+ (G (2, up)up)| < 7(=0.5p)|u,|

Thus, as long as 7(—0.5p) = o(c,), for example ¢, = max(p~*, 7(—0.5p))?, we obtain that
ap

there is a contradiction for p big enough, as [uy(T),)||z» < e 2 .

Ty
(T, 2)| = (x — AT + pleye ™ — J IN( 2 — A (T), — )|t
0

Hence
TP
ol = e e _J [Ntz = (T, = )Aa) |z dt
0
And so .
lwp(Tp, ) 2 = ¢2L%€_MTPQ
for p big enough. ]

We now need to check that the lemma applies to ZND. We will first study the eigen-
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values of A(V') for a given V, for the reduced problem obtained in subsection 3.5.

0 -1 0
Do Pu PE
UPy  UDy, + b upg

which, as its kernel is nontrivial and under the assumption that v > 0, v > 0, £ > 0,
(po(v,u, E), pe(v,u, ) # (0,0) and p(v,u, F) > 0 we have that the matrix is diagonal-
izable with real eigenvalues if (p, + upg)? + 4(ppg — p,) = 0. As o is positive, we have
o > 0 = Ag(V), which allows us to apply the previous lemma to this problem, and we
will do it under the assumption that the solution studied is close to a shock as described

before and that we assume to be admissible, in the sense that it satisfies the assumptions
of Theorem 10.
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CHAPTER 3

UNIFORM STABILITY OF SHOCKS

3.1 Introduction

In the present contribution, we prove for the very first time an asymptotic stability
result, uniform with respect to the viscosity parameter, for a viscous regularization of a

discontinuous traveling-wave of an hyperbolic equation.

3.1.1 The original hyperbolic result

The purely inviscid result [DR20], that we extend to the slightly viscous regimes, is
itself quite recent. More generally, despite the fact that hyperbolic models are largely
used for practical purposes and that for such models singularities such as shocks and
characteristic points are ubiquitous, the analysis of nonlinear asymptotic stability of sin-
gular traveling-waves of hyperbolic systems is still in its infancy. The state of the art is
essentially reduced to a full classification of waves of scalar equations in any dimension
[DR20, DR22] (obtained using some significant insights about characteristic points from
[JNR*19]) and the case study of a discontinuous wave without characteristic point for a
system of two equations in dimension 1 [JYZ21, YZ20].

Let us stress that, in the foregoing, stability is understood in the sense of Lyapunov,
that is, globally in time, and for a topology encoding piecewise smoothness. This is
consistent with the fact that concerning stability in the sense of Hadamard, that is,
short-time well-posedness, for piecewise-smooth topologies, a quite comprehensive (but
not complete) theory is already available even for multidimensional systems; see [Maj83a,
Maj83b, Met, BGS]. At this level of regularity, being a weak solution is characterized by a
free-interface initial boundary value problem, composed of equations taken in the classical
sense in zones of smoothness, and the Rankine-Hugoniot transmission conditions along
the free interfaces of discontinuity:.

As is well-known, for hyperbolic equations, weak solutions are not unique and one
needs to make an extra choice. The one we are interested in is the most classical one when
the extra condition is to be obtained as a vanishing viscosity limit. For scalar equations, in

any dimension, since the pioneering work of Kruzkov [Kru70] (see also [Bre00, Chapters 4
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and 6]), this is known to be sufficient to ensure uniqueness and to be characterized by the
so-called entropy conditions, which at our level of smoothness are reduced to inequalities
at the free interfaces of discontinuity. For systems, even in dimension 1, despite decisive
breakthroughs achieved in [BB05], such questions are still the object of intensive research;
see for instance [KV21b]. The present contribution lies at the crossroad of these questions
related to the basic definitions of the notion of solution for hyperbolic equations and the
ongoing development of a robust general theory for the stability of traveling waves, for
which we refer the reader to [Sat73, Hen81, ZumO01, San02, KP13, JNRZ14]. From the
former point of view, the present contribution may be thought as a global-in-time scalar
version of [GX92, GR0O1, Rou02]. From the latter point of view, though of a very different
technical nature, by many respects, it shares similar goals with other vanishing viscosity
stability programs — see for instance [BGM17, HR18] — and the present contribution is
thought as being to [DR20] what [BMV16] is to [BM15].

We focus on the most basic shock stability result of [DR20]. Consider a scalar balance

law in dimension 1,
o+ 0 (f(u)) = g(u) (3.1.1)
with traveling wave solutions R x R — R, (¢,2) — u(x — (1o + ogt)) with initial shock

position 1y € R, speed 0y € R and wave profile u of Riemann shock type, that is,

u_, ifz<0

U,y fx>0

where (U_q, U o) € R?, U,y # U_n. The fact that this does define a weak solution is

equivalent to

9(tye) =0, gu_o) =0, fio) = fluon) = 00(Upoo — U_), (3.1.2)

whereas a strict version of entropy conditions may be enforced in Oleinik’s form

oy > f,(ﬂ—&-oo)a

f(TﬂfocJ’_(l_T)ﬂ{»go)_f(yfoo) > f(TyfooJ’_(l_T) H+oe)_f(g+oo)
7—27004—(1_7—) ﬂ+oc_ﬂfw Tyfoo-"_(l_’r) 2+QO_H+QQ

for any 7€ (0,1), (3.1.3)

f/(ﬂ—oo) > 0p.

Requiring a strict version of entropy conditions ensures that they still hold for nearby
functions and in particular they disappear at the linearized level. In the foregoing, and
throughout the text, for the sake of simplicity, we assume that f, g € C*(R) though each

result only requires a small amount of regularity.
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The following statement is one of the alternative versions of [DR20, Theorem 2.2]

described in [DR20, Remark 2.3].

Theorem 14 ([DR20]). Let (00, u_o,, Uy o) € R? define a strictly-entropic Riemann shock

of (3.1.1) in the above sense. Assume that it is spectrally stable in the sense that
g (i) <0 and g'(u_o) <0.
There exist § > 0 and C' > 0 such that for any vy € R and vy € BUCY(R*) satisfying
|vollwre gy <9,

there exists 1 € C*(R™) with initial data (0) = g such that the entropy solution
to (3.1.1), u, generated by the initial data u(0,-) = (u+vo)(-+y), belongs to BUC* (R, x
R\{ (¢,¢(t)); t = 0}) and satisfies for any t = 0

Ju(t,- = 9(8)) — wlwroome + [(8) — 00l < [oolwriorey C ) e,
and moreover there exists 1y such that
e — ol < [vollze®n)C,
and for any t = 0
() — oy — tag| < HU0||L°0(R*)C emax({g'(uyo).9' ()Nt

In the foregoing, we have used notation BUC¥(2) to denote the set of C* functions
over ) whose derivatives up to order k are bounded, and uniformly continuous on every
connected component of 2. In other words, BUC*() is the closure of W () for the
Wk (Q) topology. Working with BUC* instead of W*® allows to use approximation
by smooth functions, an argument ubiquitous in local well-posedness theories, without
imposing vanishing at oco.

Note that expressed in classical stability terminology the previous theorem provides
asymptotic orbital stability with asymptotic phase. We stress however that the role of
phase shifts is here deeper than in the classical stability analysis of smooth waves since
it is not only required to provide decay of suitable norms in large-time but also to ensure
that these norms are finite locally in time. In particular here there is no freedom, even
in finite time, in the definition of phase shifts that need to synchronize discontinuities to
allow for comparisons in piecewise smooth topologies.

It is also instructive to consider the corresponding spectral problem. In a moving
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frame, linearizing from u(t, x) = u(x — (Yo + oot) — (1)) + v(t, z — (Yo + oot) — (1)) gives
a linear IBVP in (v, )

(@ + (f'(tro0) = 00) 0z — g (uy0)) v(t,-) = 0 on R,
(@ + (f'(u—sp) = 00)0z — g'(u_s))v(t,-) = 0 onRZ,

() - (JN(UMO) — %00 (t,0") — f/(“‘w)u_;ov(t,0)> — 0.

Q+oo - Qfoo quoo -

The corresponding spectrum on BUC'(R*) x R is

{ A5 RN < max({g'(u—o); g'(tr0)}) } {0}

and when max({¢'(u_4); ¢'(tyx)}) < 0, 0 has multiplicity 1 (in the sense provided by
resolvent singularities) with eigenvector (0,1). This shows that Theorem 14 sharply re-

produces linear behavior.

3.1.2 The vanishing viscosity problem

Since even the local-in-time notion of solution involves vanishing viscosity approxima-
tions, it is natural to wonder whether Theorem 14 may have a small-viscosity extension
or whether the local-in-time vanishing viscosity limits may be globalized in time about
the stable Riemann shocks of Theorem 14. We answer such a question for the following

parabolic approximation
O+ 0,(f(u)) = € 0%u + g(u). (3.1.4)

Note that solutions to (3.1.4) are smooth (not uniformly in €) so that techniques based
on free-interfaces IBVP formulations for (3.1.1) cannot easily be extended to the study
of (3.1.4). In the reverse direction, to gain a better control on smoothness of solutions to

(3.1.4), it is expedient to introduce fast variables

that turn (3.1.4) into
ol + 0x(f () = 03U + e g(T) . (3.1.5)

We stress however that this is indeed in original variables (¢, x) that we aim at proving

a uniform result. In particular, a large part of the analysis is focused on distinctions
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between norms that get large and norms that get small when going from slow to fast

variables. For a closely related discussion we refer the reader to [KV2la, KV21b].

In order to carry out the extension, the first step is to elucidate the existence of
traveling waves to (3.1.4) near u. A preliminary observation in this direction is that the
formal ¢ — 0 limit of (3.1.5) does possess a smooth traveling-wave solution (t,7)
Uy(T — 09 1?) of speed o and profile U, such that

limU, = u limU, = u
g ~0 L—00 s ~0 2400

simply obtained by solving

U_op + Ui

Uy(0) = 9 76 = fUy) = f(Uyoo) — 00 (Up — i) -

We recall that og is tuned to ensure f(u_,) — f(Uio) — 00 (U_on — Uyo) = 0 and observe
that the Oleinik’s entropy conditions imply that U, is strictly monotonous. This ¢ = 0
viscous profile is often called viscous shock layer and plays the role of a short-time free-
interface boundary layer. This simple limiting fast profile may be perturbed to yield
profiles for (3.1.5) hence for (3.1.4). To state such a perturbation result with optimal

spatial decay rates, we introduce, for € > 0,

1 1
0 1= S1f (o) = 0| + 53/ (P o) — 02)? + 419/ (wr0)]

(F(te) = 02) + 53/ TFl) — 02 + A [ ()]

1
9525

Proposition 10. Under the assumptions of Theorem 14, for any 0 < af < 65, 0 < a” <

0y and ko € N*, there exist eg > 0 and Cy > 0 such that there ezist a unique (o.,U.,),
with U, € C*(R),

U_op + Usg

Qa(o) = 9 ) (f(Qa) - U8Qa)/ = Qg + 59(%) s

and

T

Oéé . (0%
02 — a0l + 11U = Ug)lwreequy + [ (U = U lwionqre) < Coe
and, moreover, there also holds

‘. €.
[ — ) = B (U — ) [ror ) < Coe,
| €% (Us = tsoe) — €% (Ug - Uioo)[ L2y < Coe,

H€0£||Q§k) —69€|.|Q(()k)HLoo(R7) < C{]E, 1 < k < ]{]0,
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| e ng) — e Q(()k)HLOO(R+) < Coe, I1<k<ko.

Note that a traveling-wave (t,z) — u.(x — (o + o.t)) with ¢y € R arbitrary, is
obtained from U, through

and that, uniformly in €,

lu. () —u(x)| e "=, x <0,
u(r) —ulx Se‘eg%, x>0,
e
1 _pe |z
W) < e PO, k=1,
1 _pr x
|u§k)($)|$;ke be o, x>0,k=>1.

We prove Proposition 10 in Appendix 3.6. The existence and uniqueness part with
suboptimal spatial rates follows from a rather standard Lyapunov-Schmidt argument.
We stress however that it is crucial for our linear and nonlinear stability analyses to
gain control on U. with sharp spatial decay rates. We obtain the claimed upgrade from
suboptimal to optimal rates essentially as a corollary to the refined spectral analysis
needed to carry out the nonlinear study. We point out that, despite the fact that the
literature on the subject is quite extensive — see for instance [Har00, Har03, CMO7,
Crol0, Gill0] and references therein —, we have not found there an existence result
with the level of generality needed here, that is, including non-convex fluxes and yielding
optimal spatial decay rates.

With the existence of e-versions of traveling waves in hands, the next natural question
is whether these are spectrally stable. It is settled by standard arguments, as expounded
in [KP13], combining direct computations of the essential spectrum with Sturm-Liouville
theory. The latter uses crucially that UL is monotonous, a consequence of the Oleinik’s
entropy conditions. The upshot is that, in slow original variables, the spectrum of the
linearization about u, in a co-moving frame, acting on BUC'(R), is stable and exhibits
a spectral gap between the simple eigenvalue 0 and the rest of the spectrum of size
min({|¢' (v, o), |9 (u_s)|}) + O(e). Note that in fast variables the spectral gap is of size
e x min({|¢'(uy )|, |9 (u_op)|}) + O(e?) Details of the latter are given in Section 3.2.

The real challenge is uniform nonlinear asymptotic stability. Indeed, if one removes
the uniformity requirement, nonlinear stability follows from spectral stability by now well-
known classical arguments as expounded in [Sat73, Hen81, San02, KP13], and initially
developed in, among others, [Sat, Sat77, Hen81, Kap94, WX05, Xin05]. Since the limit
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is singular, it is worth spelling out what we mean by uniform stability. There are two

closely related parts in the requirement. Explicitly, on initial data,

1. the most obvious one is that the restriction on the sizes of allowed initial pertur-
bations (encoded by the smallness of ¢ in Theorem 14) should be uniform with
respect to €, so that the lower bound on the size of the basin of attraction provided

by the analysis is nontrivial in the limit ¢ — 0;

2. the second one is more intricate!, it states that the e-dependent norms, say |- | 2),
used to measure this smallness (in slow original variables) should be controlled by
an e-independent norm for functions supported away from the shock, so that in

particular for any v € C°(R) supported in R*, limsup,_, [[v] ) < +o0.

On the control of solutions arising from perturbations, we impose similar constraints but
with upper bounds replacing lower bounds in the requirements. Constraints on the control
of solutions ensure that the bounds provide a nontrivial control whereas constraints on
the control of initial data ensure that nontrivial perturbations are allowed.

It may be intuitive that the stringer the norm is the larger the size of the basin of
attraction is since a qualitatively better control is offered by the topology. In the present
case, the discussion is on the amount of localization encoded by the norm since, though
this is somewhat hidden, time decay is controlled by initial spatial localization (as opposed
to cases where regularity drives decay as for instance in [BM15, BMV16, BGM17]). To
offer a quantitative insight, let us use as in [HR18] a simple ODE as a toy model to
predict the size constraints. Consider the stability of y = 0 for ¢y = —7y + py? where
7 > 0 encodes the size of the spectral gap and p > 0 measures the size of nonlinear
forcing. For such an equation, a ball of radius ry and center 0 is uniformly attracted to
0 provided that 7y < 7/p. Now, if one considers (3.1.4) directly in BUC'(R) (or any
reasonable unweighted topology) and forgets about issues related to phase definitions
and possible regularity losses, the spectral gap offered by a linearization about wu, is of
order 1 whereas the forcing by nonlinear terms is of order e™! (since this is the size of
u’) hence the rough prediction of a basin of size O(¢g). Yet, working with weights such
as e "Izl for some sufficiently small § > 0 and some 0 < o < 1, moves the spectrum
to increase the size of the gap to the order e~ yielding the expectation of an O(g!~?)
basin. Note that the choice o = 1 would provide a uniform size and is consistent with
the size of viscous shock layers but it would force initial perturbations to be located in
an O(e) spatial neighborhood of the shock location.

The foregoing simple discussion predicts quite accurately ? what could be obtained

by applying the most classical parabolic strategy to the problem at hand. The failure of

1. But our result satisfies a much simpler and stronger version of the requirement.
2. Actually it is even a bit optimistic for the unweighted and o < 1 cases.
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the classical strategy may also be read on the deeply related, but not equivalent, fact
that it uses the phase only to pull out the contribution of nonlinear terms through the
spectrally non-decaying O-mode. This is inconsistent with the stronger role of the phase
for the hyperbolic problem, all the spectrum contributing to the phase in the latter case.
A completely different approach is needed.

Additional strong signs of the very challenging nature of the uniform stability problem
may also be gathered from the examination of the viscous layer stability problem, that is,
the stability of (£,%) — Uy(Z — 0o t) as a solution to (3.1.5) with € = 0. The problem has
been extensively studied, see for instance [Liu85, Goo86, Goo89, JGK93, KK98, How99a,
How99b] for a few key contributions and [Zum01] for a thorough account. The spectrum
of the linearization includes essential spectrum touching the imaginary axis at 0, which
is still an eigenvalue, so that the decay is not exponential but algebraic and requires a
trade-off, localization against decay, as for the heat equation. This is a consequence of a
conservative nature of the equation, but the conservative structure may also be used to
tame some of the apparent difficulties. To give one concrete example: one may remove the
embedded eigenvalue 0 from the essential spectrum by using the classical antiderivative
trick, dating back at least to [MNS85], either directly at the nonlinear level under the
restriction of zero-mean perturbations (as in [Goo89] or in [MN85] for a system case) or
only to facilitate the linear analysis as in [How99a, How99b]. In fast variables, turning
on € > 0 moves the essential to the left, creating an O(e) spectral gap but breaks the
conservative structure thus rendering almost impossible, and at least quite inconvenient,
the use of classical conservative tools. Our stability analysis requires a description as
detailed as the one of [How99a, How99b] and, without the antiderivative trick at hand,
this involves the full machinery of [ZH98, ZH02]. Roughly speaking, one of the main
outcomes of our detailed spectral analysis, expressed in fast variables, is that the e-
proximity of essential spectrum and 0-eigenvalue induces that the essential spectrum has
an impact of size 1/e on the linear time-evolution, but that at leading-order the algebraic
structure of the essential-spectrum contribution is such that it may be absorbed in a
suitably designed phase modulation. Note that this is consistent with the fact that, in
fast variables, variations in shock positions are expected to be of size 1/¢ and with the
fact that, in slow variables, the phase is involved in the resolution of all the hyperbolic
spectral problems, not only the O-mode.

To summarize and extend the discussion so far, we may hope

1. to overcome the discrepancy between the Rankine-Hugoniot prescription of the
phase and the pure 0-mode modulation, and to phase out the hidden singularity
caused by the proximity of essential spectrum and 0 eigenvalue, by carefully iden-

tifying the most singular contribution of the essential spectrum as phase variations
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and including this in a carefully designed phase;

2. to guarantee uniform nonlinear decay estimates provided that we can ensure that,
in sow variables, nonlinear terms of size 1/¢ also come with a spectral-gap enhanc-

ing factor e~?1#l/= (for some 0 > 0).

The latter expectation is motivated by the fact that it is indeed the case for terms forced
by u. but we need to prove that it is so also for stiff terms caused by the derivatives
of the perturbation itself. Concerning the latter, we stress that even if one starts with
a very gentle perturbation supported away from the shock the nonlinear coupling in-
stantaneously creates stiff parts of shock-layer type in the perturbation thus making it
effectively multi-scale.

There remains a somewhat hidden issue, that we have not discussed so far. Along
the foregoing discussion, we have done as if we could use Duhamel principle based on
a straight-forward linearization, as in classical semilinear parabolic problems. Yet, here,
closing nonlinear estimates in regularity by using parabolic regularization either explicitly
through gains of derivatives or indirectly through LY — L”, ¢ < p, mapping properties,
effectively induces losses in power of € in an already e-critical problem thus is completely
forbidden. Instead, we estimate

— the variation in shock position 1, the shape variation v and the restriction of its

derivative d,v to an O(e) neighborhood of the shock location through Duhamel
formula and linear decay estimates;

— the remaining part of d,v by a suitably modified Goodman-type hyperbolic energy

estimate.

The latter energy estimate is similar in spirit to those in [Goo89, RZ16, YZ20] but the
hard part of its design is precisely in going from a classical hyperbolic estimate that would
work in the complement of an O(1) neighborhood of the shock location to a finely tuned
estimate covering the complement of an O(e) neighborhood, since this is required for
the combination with a lossless parabolic regularization argument. Moreover, there are
two more twists in the argument: on one hand we need the estimate to include weights
encoding the multi-scale nature of d,v ; on the other hand, for the sake of sharpness, to
remain at the C! level of regularity, we actually apply the energy estimates on a suitable
nonlinear version of d,v so that they yield L* bounds for d,v.

The arguments sketched above, appropriately worked out, provide the main result
of the present paper. To state such results, we introduce multi-scale weights and corre-

sponding norms: for k€ N, ¢ > 0, and 6 > 0,

k
Wheo(T) 7= : [olromy = 2, [Wieo B2vlr=m)
| o

|z
1+ = 6_6?
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Note that
1. Each norm | - Hwﬁ,goo (r) I8 equivalent to any standard norm on | - yxe=(r) but non
uniformly in € and that the uniformity is restored if one restricts it to functions
supported in the complement of a fixed neighborhood of the origin.
2. The norm || - stogao (ry is uniformly equivalent to | - |1 (r).

3. If 6 < min({05, 05}) then |u, — ul| 0 gy 18 bounded uniformly with respect to .
£,0

Theorem 15. Enforce the assumptions and notation of Theorem 14 and Proposition 10.

There exists 8y > 0 such that for any 0 < 6 < 0y, there exist g > 0, 6 > 0 and C > 0

such that for any 0 < & < gy, any 1o € R and any vo € BUCY(R) satisfying
ool <

there exists v € CYRY) with initial data ¥(0) = 1y such that the strong® solution

to (3.1.4), u, generated by the initial data u(0,-) = (u. +vo)(- + 1), is global in time and

satisfies for any t = 0

|u(t, - — (t)) — QEHWE{’(;‘O(R) () —0u] < ”UOHW;’g’O(R) C emaX({g’(ﬂer),g/(yfoc)})t’
and moreover there exists 1y such that
e — 10| < HU0||W;§O(R)O;
and for any t = 0
[90) = Yz = 12| < ol O €19 e e

Among the many variations and extensions of Theorem 14 provided in [DR20], the
simplest one to extend to a uniform small viscosity result is [DR20, Proposition 2.5] that
proves that the exponential time decay also holds for higher order derivatives without
further restriction on sizes of perturbations. It does not require any new insight besides the
ones used to prove Theorem 15 and we leave it aside only to cut unnecessary technicalities.

Likewise, one may obtain in an even more direct way, that is, up to immaterial changes,
exponential damping of norms encoding further slow spatial localization. To give an

explicit example, let us extend notation Wsk o, L* . into Wak bf%,, Ly, accordingly to weights

/!
_ el

1
Whe oo () = — T we () :
e Z“ +€7 e e

3. We ensure u € BUC®(R;; BUC*(R)) n C*(R*; BUC®(R)).
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with 6’ > 0 arbitrary. One may prove for instance that for any ¢’ > 0 there exist Cyp and
ggr > 0 such that, under the sole further restrictions 0 < ¢ < g¢ and e?I'l vy € L*(R),
there holds

Hu(t, - — ¢(t)) — Qg”L;?(R) < HUOHLS‘?(R) C@ emax({g’(ﬂmo),g'(y,oo)})t .

One point in considering these weighted topologies is that, when 6’ > 0, Ly is continuously
embedded in L' n L, so that an estimate on |[u(t,- — v(t)) — u|r» is provided by the

combination of the foregoing bound with the already known bound

1
|we —w|rm) S €7 .

3.1.3 Outline and perspectives

The most natural nontrivial extensions of Theorems 14/15 that we have chosen to
leave for future work concern on one hand the parabolic regularization by quasilinear
terms and on the other hand planar Riemann shocks in higher spatial dimensions (see
[DR20, Theorem 3.4] for the hyperbolic case). We expect many parts of the present
analysis to be directly relevant in quasilinear or multiD cases but we also believe that
their treatments would also require sufficiently many new arguments to deserve a separate
treatment.

In the multidimensional case, even the outcome is expected to be significantly dif-
ferent. In this direction, let us point out that the hyperbolic spectral problem is critical
in the stronger sense that the spectrum includes the whole imaginary axis, instead of
having an intersection with the imaginary axis reduced to {0}. This may be tracked back
to the fact that the linearized Rankine-Hugoniot equation takes the form of a transport
equation in transverse variables for the phase. Consistently, as proved in [DR20, Theo-
rem 3.4], for the hyperbolic problem, perturbing a planar shock may lead asymptotically
in large time to another non-planar Riemann shock sharing the same constant-states.
This may still be interpreted as a space-modulated asymptotic stability result, in the
sense coined in [JNRZ14] and thoroughly discussed in [Rod13, Rod15, Rod18, DR22]. A
similar phenomenon is analyzed for scalar conservation laws in [Ser21].

Concerning the quasilinear case, the main new difficulty is expected to arise from the
fact that, to close the argument, one needs to prove that the L* decay of ¢ 0?v, where v
still denotes the shape variation, is at least as good as the one of d,v. A priori, outside
the shock layer this leaves the freedom to pick some initial typical size e, ny € [0, 1], for
d%v and to try to propagate it. Indeed, roughly speaking, in the complement of an O(g)

neighborhood of the shock location, this L* propagation stems from arguments similar
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to the ones sketched above for d,v. The key difference is that now one cannot complete it
with a bound obtained through Duhamel formula since this would involve an L* bound
on d2v. Thus the quasilinear study seems to require to be able to close an estimate for

0%v entirely with energy-type arguments, a highly non-trivial task.

In another direction, we expect that the study of waves with characteristic points, as
arising in the full classification obtained in [DR22] for scalar balance laws, should not
only involve some new patches here and there but follow very different routes and thus
will require significantly new insights even at a general abstract level. As a strong token of
this expectation, we point out that regularity is expected to play a paramount role there
since, at the hyperbolic level, the regularity class chosen deeply modifies the spectrum

when a characteristic point is present in the wave profile ; see [JNR*19, DR22].

The rest of the paper is organized as follows. We have decided to shift the derivation
of wave profile asymptotics, proving Proposition 10, to Appendix 3.6, because we be-
lieve that the backbone of the paper is stability and provide it mostly for completeness’
sake. Next section contains a detailed examination of the required spectral preliminaries.
The following one explains how to use these to obtain a practical representation of the
linearized time-evolution. Though we mostly follow there the arguments in [ZH98|, with
some twists here and there, we provide a detailed exposition for two distinct reasons. The
first one is that we need to track in constructions which parts are e-uniform and which
parts are not, a crucial point in our analysis. The second one is that most of the papers of
the field requiring a detailed analysis, as we do, are either extremely long [ZH98| or cut
in a few long pieces [MZ03, MZ04b] and we want to save the reader from back-and-forth
consultations of the literature. This makes our analysis essentially self-contained (up to
basic knowledge of spectral analysis) and we believe that it could serve as a gentle intro-
duction to the latter massive literature. Note however, that, to keep the paper within a
reasonable size, we only expound the bare minimum required by our analysis. After these
two preliminary sections, we enter into the technical core of the paper, with first a section
devoted to detailed linear estimates, including the identification of most-singular parts of
the time-evolution as phase variations, and then a section devoted to nonlinear analysis,
including adapted nonlinear maximum principles proved through energy estimates and

the proof of Theorem 15.

3.2 Spectral analysis

We investigate stability for traveling waves introduced in Proposition 10. We have

chosen to carry out all our proofs within co-moving fast variables. Explicitly, we introduce
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new unknowns and variables through *

However, since we never go back to the original slow variables, we drop tildes on fast
quantities from now on. One reason to opt for the fast variables is that it provides a
simpler reading of size dependencies on €.

Therefore our starting point is
O+ 0p(f(u) —ou) = Pu+eglu), (3.2.1)
about the stationary solution U_. Accordingly we consider the operator
L.i=—=0((f'(U.) —0.)-) + 5 +eg' (U (3.2.2)

on BUC?(R) with domain BUC?*(R).

Though the elements we provide are sufficient to reconstruct the classical theory, the
reader may benefit from consulting [KP13] for background on spectral analysis specialized
to nonlinear wave stability. In particular, we shall make extensive implicit use of the
characterizations of essential spectrum in terms of endstates of wave profiles and of the
spectrum at the right-hand side® of the essential spectrum © in terms of zeroes of Evans’
functions. The reader is referred to [Kat76, Dav07] for less specialized, basic background
on spectral theory.

The backbone of the theory is the interpretation of spectral properties of one-dimensional
differential operators in terms of spatial dynamics and a key-part of the corresponding
studies is the investigation of exponential dichotomies. It starts with the identification

between the eigenvalue equation
AN=L)v =0

and the system of ODEs
d
@V(SE) = A.(\z)V(z)

4. Note the slight co-moving inconsistency with the introduction.

5. We picture the complex plane with the real axis pointing to the right and the imaginary axis
pointing to the top.

6. There are (at least) two reasonable definitions of essential spectrum, either through failure of
satisfying Fredholm property or through failure of satisfying Fredholm property with zero index. In
the context of semigroup generators both definitions provide the same right-hand boundary thus the
conventional choice is immaterial to stability issues.
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for the vector” V = (v, 0,v — (f(U.) — 0.) v) where

(3.2.3)

A\ ) = (f/(UE)_"‘f 1) .

A— ggl(gs) 0

For later use, we shall denote ®2(x,y) the corresponding solution operators, mapping

datum at point y to value at point x.

The essential spectrum is characterized in terms of matrices AL(A) := A®(X\;u, ) and
Af(N) := A*(\u_,) with

(Y. o f/(U) —o. 1
Af(\u) = ()\ g 0) : (3.2.4)
Eigenvalues of A°(\;u) are given by
s = T2 JUPO 0Py (325)

and are distinct when A # e¢'(u) — § (f'(u) — 0.)?. In this case, the matrix may be

diagonalized as

A = (RE(vu) R () (Mi(g;m ua&.u)) <L€*“TZ)>

with

All our spectral studies will take place far from the half-lines D.(u, ) U D.(u_), that

correspond to the set termed absolute spectrum in [KP13].

From now on, throughout the text, we shall use /- to denote the determination of

the square root on C\R ™ with positive real part.

7. The use of flux variables is not necessary but it simplifies a few computations here and there.
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3.2.1 Conjugation to constant coefficients

Our starting point is a conjugation of spectral problems to a piecewise constant co-
efficient spectral problem. This is mostly relevant in compact zones of the spectral plane
and in the literature by Kevin Zumbrun and his collaborators this is known as a gap
lemma — since a gap or in other words an exponential dichotomy is the key assumption
—; see for instance [MZ05b, Lemma 2.6] for a version relevant for the present analysis.
Since we need to ensure uniformity in € for the case at hand we provide both a statement

and a proof.

Proposition 11. Let K be a compact subset of C\Do(u.,). There exist positive constants

(g0, C,0) such that there exists® a smooth map
P . [0,60] x K x R — GLy(C), (e, A\, x) — PI(\ x)

locally uniformly analytic in A on a neighborhood of K and such that, for any (e, \,x) €
[0,e0] x K x [0, +00),

|Pr(A, @) — B < C e, [(PZ(A2) " = B < Ce "M,
and, for any (e, \,z,y) € [0,50] x K x (R4)?,
O (,y) = PL(\,x) "RV (PI(A, )"

The same argument applies to the conjugation on (—oo, 0] with the flow of A%()\) and

defines a conjugation map denoted P’ from now on.

Proof. The proof is essentially a quantitative "cheap" gap lemma — conjugating only one
trajectory instead of solution operators — but applied in My(C) instead of C2.
Let us first observe that it is sufficient to define P" on [0, eq] x K x [z, +00) for some

suitably large xy. Indeed then one may extend P" by
Pg(Aa ZL') = (I)?(I, ZL‘()) Pg(A, ;L‘O) e(mo—x) AL (N

and bounds are extended by a continuity-compactness argument. Likewise the uniformity
in ¢ is simply derived from a continuity-compactness argument since the construction
below is continuous at the limit ¢ = 0. Note moreover that in the large-x regime the
bound on (Pr(\,x))~' may be derived from the bound on P’(\, x) by using properties

of the inverse map.

8. As follows from the proof, PI(},-) is defined as soon as A ¢ D.(u, ) U D:(u

—)-
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The requirements on P! (), -) are equivalent to the fact that it converges exponentially

fast to Iy at 400 (uniformly in €) and that it satisfies for any «

ddeZ(A,x) = AIN(FL (A 2)) + (Ac(A z) — AL(N)) PL(A 2)

where AZ(N) := A°(\;u, ) is a linear operator on My (C) defined through
A*(X;u)(P) :=[A*(\;u), P] = A*(\;u)P — PA®(\;u).
When A ¢ D.(u), A°(\;u) admits
REu)LE (Vw), RE(Go)Ls(a), REuwLE (), RE(Au)Le (Asu)
as a basis of eigenvectors corresponding to eigenvalues

(13 (Nw) —pZ (Xw), (e (Au) —pZ(Nu)), 0, 0).

Note that I always lies in the kernel of A®(A; u). We denote by IIS (\; w), TIE(A; ), TI§(A; w)
the corresponding spectral projections respectively on the unstable space, the stable space

and the kernel of A®(\;u) and for further later study we point out that they are given as

Then the result follows when 6 is sufficiently small and xq is sufficiently large from a

use of the implicit function theorem on

+00

Pr(ha) = 1 - f (0 w40) (A-(A ) — AZ(V) PZ(A ) dy

xT

+00
- et ) T () (A 9) — AZO)) PEOV ) dy

xT

| e ) T () (A0 9) — AZO)) PEOV ) dy

o

with norm control on matrix-valued maps through

sup e ! | P(z) — L.

T=T0
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]

Remark 6. The properties of the foregoing proposition do not determine P" uniquely.
The normalizing choice made in the proof is IIE(A\;u, ) (PI(A, x0)) = 02 but we could

have replaced 0y with any analytic choice of an element of the stable space of A%(A\;u ).

Remark 7. The proposition is sufficient to prove classical results about the determination

of the essential spectrum from endstates spectra.

We now investigate possible failure of uniformity in the regime of large spectral pa-
rameters. In the literature by Kevin Zumbrun and his collaborators, similar purposes are
achieved through comparison of unstable manifolds with their frozen-coefficients approx-
imations by a type of lemma termed there tracking lemma; see for instance [HLZ09,
BJRZ11]. The rationale is that to large-frequencies smooth coefficients seem almost
constant and thus may be treated in some adiabatic way, a fact ubiquitous in high-
frequency /semiclassical analysis.

We follow here a different path and rather effectively build a conjugation as in the
foregoing gap lemma. The first step is a suitable scaling to ensure some form of uniformity
in the large-r contraction argument of the proof of Proposition 11. The second-step is
a high-frequency approximate diagonalization combined with an explicit solving of the
leading-order part of the system ensuring that in the large-frequency regime the latter

construction could actually be carried out with xy = 0.
Proposition 12. There exist positive constants (go,C,0,0) such that setting
Qs := {)\; %(ﬁ) > (15}
there exists a smooth map
P 10,60] x Q5 x R — GLy(C), (e, \,z) — PPN )

locally uniformly analytic in X\ on a neighborhood of Qs and such that, for any (e, \,z) €
[0,e0] x Qs x [0, +00),

PT7HF()\7I) 1 0 — e_%S;roo(f,(gg(y))_f/(MJroo)) dy ]2 < C’ e_9|$| ,
: 0 VA ® (V)

1 0 (g , Ol
H (o 1><P;vHF<A,x>>‘1 (0 ﬁ) — eI el g < O
5
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and, for any (e, \,x,y) € [0,0] x Qs x R?,
@ (a,y) = PPII(Ax) VA (PRIE() y)) 7t

We point out that for our main purposes we do not need to identify explicitly the
leading order part of the conjugation.
As for Proposition 11 the same argument applies to the conjugation on (—o0, 0] with

the flow of A%()\) and defines a conjugation map denoted P“¥ from now on.

Proof. As a preliminary remark, we observe that the condition
R (\f)\) » 1,

and
%(Ni()ﬁﬂﬂm) — HE (N i) » 1

are equivalent, with uniform control of one by the other and vice versa.
Scaling P! to Q)7 defined as

1 0

o S| 0
Qelh,): (o ui()\;u+oo)—u€(>\;u+oo)) o (0 :ui()‘;quoo)_/f()‘;uH)o))

removes high-frequency singularities by replacing RS (A\; 2, ) and L& (A\;u, ) with

1 £p5 Nuy o)
—r+ V=40
(— 1 Mty o) ) ’ (ui(k;ergo)—ui()\;er@) il) )
s (

Ay o) =1 (N )

whereas the only other effect is the replacement of A (\,y) — AZ(\) with

f'U) = f(use) 0O
9'U)—9' (o) 0
1 (Mg o) —pE (N o)

At this stage, let us choose coordinates to identify My(C) with C* in such a way that
C? x {0}2, {0} x C x {0}, {0}3 x C, (1,0,0,0) and (0, 1,0,0) correspond respectively —

after scaling and choice of coordinates — to the kernel of A7()\), its unstable space, its
1

15 (A Upoo) — 12 (A Uior)

stable space, I, and AL - Then the problem to be solved takes

the form
dd a(r) = By(r) a(r) + O(e™?1) (6) (z)
xr y



B0 = (15 (s ttre) — 2 (stty) + 04 (2)) Bla) + O ) <a> (2)

L) = N th) — 1O ) + 0 (1)) (2) + O (“) (@)

with (1,0,0,0) as limiting value at +o0, for some? § > 0, where By(z), w, (z), w_(z) are
also of the form O(e?1l).

It follows that when p5 (A;u, o) — 1% (A; u ) is sufficiently large, by a further change

of variables differing from I by a block off-diagonal term

s e—@\x| “
Bois | (@) = (14 o (ui(A;u+oo) - ui(A;U+oc)>) 7
Vois !

one may transform the problem to

icabis(x) = Bo() s (22) + O ( e’ ) (5 ") (z)

1 (N o) — 12 (N )

) = (1 (A 1) = (N5224) + 2 0) 0

+ O ( > c:
ﬂi()\;g+oo) - ,Ua_(>\7ﬂ+oo) (’Wn’s) ( )
d

@%w(x) = — (15 (N tyon) = S (N Uyoo) + O () Yois ()

v (ui(k;um(;_jig(k;umJ (Z ) )

with (1,0,0,0) as limiting value at 40, where By — By, W_ —w_ and W, — w, are all of

the form

670 |:E|
M+(>‘§@+oo) o ()\QQJroo)
Now, we point out that there is a single solution to the leading-order part

d ~
aamain(x> = BO (-CE) amain(x>

with (1,0) as limiting value at +c0. This follows from a fixed point argument on = >

for zy large followed by a continuation argument. We may be even more explicit. Indeed

9. Along the proof we allow ourselves to change the precise value of 8 from line to line.
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an explicit computation yields

R e—9|:c|
Bo(z) = Buain(z) + O (ui()\éuwo) _ ME(A;u+oo))
with
AN : L
B () (0) — S W)~ fw) (0>
so that

LU )~ F (uy) dy [ o011l
amain(l') = e 2 2y U, o)) dy L0 |
0 25 (N5 2y on) — pE (A5 2y o)

The proof is thus achieved by a fixed point argument on a problem of type

+00

Qis(2) = Cmain() — f Bo(x, )

=0yl By
O © ) bis d
" (Mio‘;uﬂn) - NSO‘;QHAO) <7bis> (y) /

+00
Byia(z) = — f o (=) (55 vt )= O o))+

679|y\ ) Qs
x O y) dy
(ui(A;um) — 12 (A tyoo) (m g

fybis(ﬂj) — Jx e_(z—y) (#i()\;y+w)_#i()‘;ﬂ+w))— ;.(:)7

0
=0yl o
O © ) bis d

where @4 denotes the solution operator associated with go. O

In the following we shall complete Proposition 12 that provides P™# on Qs with an

application of Proposition 11 on
1
Ks = {)\; d(A,Do(uyy)) = 0 and [N < 5} :

When § is sufficiently small Q5 and K overlaps. Yet a priori P" and P™H¥ differ from
each other even in regions where both exist. Fortunately the implied possible mismatch

disappears at the level of Green functions.
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3.2.2 Evans’ function and its asymptotics

Now wherever it makes sense we set

VIS, 7) F (A 2) RE(N i)
VI (A, ) i= e Wite) PIX ) RE (A ty05)
VE(\, x) i= o= i) PEON ) RE (Nju_,)
VAN, ) 1= ¥ Oit) PUN 2) RS (A1)

and similarly for V&2 VrwlE yosHE apnd VE@HE Note that notation is used here
to recall stable and unstable spaces, we also use them in areas of the spectral plane where
they do not match with stable and unstable spaces. Instead, this fits analytic continuation

of generators of stable/unstable spaces.

Correspondingly we define the Evans’ function
Do(A) i= det (VZ*(2,0) VE*(1,0)) (3.2.7)

and its high-frequency counterpart D", Note that we define the Evans function at point
0 but on one hand, we do not make use of any particular property due to normalization so
that the point 0 could be replaced with any other point and on the other hand relations
between Evans functions at different points are simply derived from Liouville’s formula

for Wronskians. For instance,
det (vgs(x,x) V?“(A,x)) — D.(\) el A — p_(\) el (UI=e) (32.8)
A simple corollary to Proposition 12 is

Corollary 3. Uniformly in e (sufficiently small)

HF
im Dol ) o R )~ ) At (P )~ ) dy

RN oo VA

To complete Corollary 3, we derive information on compacts sets of A in the limit

e — 0.

Proposition 13. There exists g > 0 such that for any § > 0 there exist positive (g, co)
such that for any € € [0,e0], D.(-) is well-defined on

K5 = {)\; d(A, (=00, —=10]) = min ({5’ %}) and |A] < (15}
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and for any X € K, 5,
|D-(N)| = co min({1, |A[}).

Proof. We derive the result from Sturm-Liouville theory and regularity in €. To apply

Sturm-Liouville theory, we introduce the weight

We observe that considered as an operator on L*(R) with domain H*(R) the operator

Lom 1l ()

wE
is self-adjoint and in the region of interest it possesses no essential spectrum and its
eigenvalues agree in location and algebraic multiplicity with the roots of D.. As a con-
sequence the zeroes of D, are real and since U./w. is a nowhere-vanishing eigenvector
for the eigenvalue 0, 0 is a simple root of D, and D, does not vanish on (0, +00). From
here the corresponding bound is deduced through a continuity-compactness argument in
E. [

3.3 Green functions

Now we use the introduced spectral objects to obtain representation formulas for

linearized solution operators.

3.3.1 Duality

To begin with, to provide explicit formulas for spectral Green functions to be intro-
duced below, we extend to dual problems the conclusions of Section 3.2. Note that the
duality we are referring to is not related to any particular choice of a specific Banach
space but rather distributional/algebraic.

To begin with, we introduce the formal adjoint
L2V = (f'(Ue) = 0.)0s + 07 + g/ (U-) (3.3.1)

and note that for any sufficiently smooth v, w, and any points (zg, z1)

0 -1 w 0 —1 w T i
v (1 0) <0ww> ey (1 0) (w) w0 = | wew—vetn) 332
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with V = (v,0,v — (f'(U.) — 0.) v). As a first simple consequence of (3.3.2) note that if

r o0 ro__ l _ :
(A, y,vy,v,) are such that (A — L.)vy = 0 and (A — £L.)v, = 0, then the function

ur (@ if x >
oy R>C, 1o () Y
vy () if v <y

solves (A — L.)p, = 9, if and only if

v (y) = vy(y)

0x05(y) — (f' (U (y) — 02) v (y) = Ouvy(y) — (f'(U) (y) — oc) vy (y) — 1.

Specializing to the tensorized case where v} (x) = v"(z) a(y), vi(z) = v‘(z) B(y), note

that the foregoing conditions are equivalent to

(V) Vi) (_“B((y;)) - (_01)

where V¥ = (v, 0,0f — (f'(U,)—0.) v*), # € {r, £}. Hence, we need to find vectors satisfying

some orthogonality property to identify the inverse of the matrix :

(Vi) v'w)

To go further, we identify

and the system of ODEs

Cfle(ac) = A.(\z) W(z)
for the vector W = (w, d,w) where
~ 0 .
A.(\z) = ) 3.3.3
- <A - () - %)) 333

Note that

~

Aa</\7x) = Aé(/\ax> - (f/<Qe) _05) 12

so that all the proofs of Section 3.2 purely based on limiting-matrices spectral gaps
arguments apply equally well to the corresponding dual problems under the exact same

assumptions. Alternatively one may derive results on dual problems by using directly the
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relation between solution operators
X (x,y) = ®(x,y) o S U)=02)

Here and elsewhere throughout the text from now on we denote with a = all quantities

arising from dual problems. Let us point out that our choices lead to
ALu) = g () = (ff(w) —02), RE(Nu) = RE(Nu), Li(hu) = LE(\u),
and

]5;()\7@ — P'(\z) eS;”(f’(QE)—f’(HM))’ ]385()\’3;) _ Pf()\,x) — 7 (U~ F(u_r))

Y

(and likewise for high-frequency versions).

Proposition 14. Let K be a compact subset of C\(Dy(t;o) U Doty o). There ezists

g9 > 0 such that there exist smooth maps

T [0,60] x K= C, (e,A) = 72(A),  p" 1 [0,60] x K= C, (5,A) = pi(N),
0 [0,60] x K= C, (6,A) = 7i(N),  p':[0,e0] x K = C, (g,)) = pl(N),
7" |0,e0] x K — C, (e,\) = TL(A), p" :[0,e0] x K—C, (g,\) — pL(N),
7 [0,60] x K> C, (5,N) = F(\), 9" [0,60] x K C, (6,\) = pt(N),

locally uniformly analytic in X on a neighborhood of K and such that, for any (e,\) €
[0,e0] X K, for any x € R

Vs (A x) = pL(N) VES (N @) + 77 (A) VEU (N, )
V(A ) = pe(N) V(A 2) + 72 (A) V(A )
VIt a) = DLV VE o) + 77 () VE (A ),
VE (N x) = pE) VI (A a) + T (V) VI (A 2)

and

o V(W) —f(u_sp))

N+(/\'Q—oo) —pE(Nu_g)
olo “ (U~ f'(ﬂ+oc))

N+(/\;Q+oo) — 1= (A o) ’
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ST W)~ )

lu’i()‘;ﬂfoo) - Ni()‘;ﬂfoo) ’
o Vo (F(U)—f"(u_sp))

15 (A Uop) — 15 (A Upo)

p(A) = De(X)

PO = DOV

As a consequence for such a (¢,\) and any r € R

0 -1\ &~ 0 -1\ &
v?%x@-(l 0>v§“<x,x>=o7 vgw,xy(l 0>vzs<A,x>=o,

0 -1\~
V(A x) - (1 0 ) VEu(\, z) = —D.(\) e Pl U= o))
lu 0 _1 N'rs S+OO(fI(U )—f’(u ))
VE’ (Aaz) . 1 0 V€7 ()\, .:E) - DE(A) eJo ~e ) .

Notation 7, p is used here to echo transmission/reflection coefficients of the classical
scattering framework.

A corresponding proposition holds for the high-frequency regime.

Proof. All the properties are readily obtained by combining the fact that both
(VI (X, ), VEr(A,-) and (VE5(A,-), VE4()A,+)) form a basis of solutions of the spectral
system of ODEs, the Liouville formula for Wronskians and duality relation (3.3.2). O

We thus have that :

€2 - \Nfﬁ,u()\’ y) €1 - {[ﬁ,u()\y y)
<V“S( ) v )) | .y e So,oi(f’(Qs)—f/(L@)) ~D.(\) e Sém(f/(gs)—f/(y,w))
S e e2 V' (A, ) e Vi (\y)

Do) &b T U=  p_(2) el (L)~ (ws0))
Proposition 15. There exist positive constants (gq,C,0) such that setting with Qs as in

95::{A; é}%(ﬁ) /(15}

there exist on [0,e0] x Qs maps 7HHF, prhHF | pUHF pGHF  ZrHF  GrHF  ZOGHF GLHF

Proposition 12

V

satisfying high-frequency versions of the conclusions of Proposition 14 and moreover all

these functions are uniformly bounded on [0, o] x Q5.

Proof. Most of the proof is contained in the proof of Proposition 14. The remaining part

is directly derived from the observation that Proposition 12 provides asymptotics for

133



(PY(X,0))7L Pr(),0) thus also for the coefficients under consideration. O

This leads to the following definition (wherever it makes sense)

oV (U~ F(u_sp))

XEY e1 V(A z) e -VE¥(\, ) if v >y,
Ge(\szyy) = T ) (3.3.4)

ey er VEU(\z) e VI*(\y)  ife <y,

where e; := (1,0). Note that (A — £.)G.(X\;-,y) = 0, and, for R(\) sufficiently large,
Ge(A\;z,y) is exponentially decaying as |z — y|| — oo0. To bound G.(X;x,y), we shall
refine the alternative x < y ws. x > y. For instance, when x > y, more convenient

equivalent representations of G.(\; z,y) are

ol (F (U= (u_y))
D:(\)

when z > 0 >y,

€1 'VQS()U .’L‘) €1 ‘Nfﬁ,u()\’ y)

~f - 7t ~
S_ FU)—f(u_y)) e Vrs()\ {L‘) e (pa<)‘) VT’U(A,y) + 7'5()‘) Vg,s()\’y)>

when x >y > 0,

S (U ~T ) g PE(N) e 72 (A) <t St
e (DE(A) Vi ()\,x)JrDa()\) Vor(ax) ) el - Vo' (A y)

when 0 >z > y.

Remark 8. The representation of spectral Green functions, thus of resolvent operators,
with Evans’ functions is sufficient to prove classical results about the identification of
spectrum — including algebraic multiplicity — at the right-hand side of the essential

spectrum with zeros of Fvans’ functions.

We use similar formulas in the high-frequency regime. Yet the Green functions of the
high-frequency regime and the compact-frequency regime agree where they co-exist (by
uniqueness of the spectral problem (in a suitably weighted space) in some overlapping
regions and uniqueness of analytic continuation elsewhere) so that we do not need to
introduce a specific piece of notation for the high-frequency regime.

We also point out that it follows from Proposition 12 that in the zone of interest
2,G. (s, )| < C max({1, /NP G- (N 7, 9)]

for some uniform constant C.
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3.3.2 Time-evolution

It follows from standard semigroup theory that the representation

1
S.(t) = — | LOEAN(E) (A - L)t de (3.3.5)
2im Jr
holds in L(BUC?(R)) when A : R — C is a continuous, piecewise C! simple curve such
that

1. A is valued in the right-hand connected component of 1°

{ A5 forue {up, i}, R(pE (N w) >0>R(p2(N\w))};
2. there hold

o~ _ raen: A (©)]
5Erinoo F(A(€)) = too, fRe NGl dé < +w

and there exist positive (R, ¢) such that for [{| > R

3. there is no root of D. on the right ! of A(R).

Failure of the third condition could be restored by adding positively-oriented small circles
to the contour A. This is the first condition that we want to relax by going to Green
functions.

For curves as above, applying the above formula to functions in W**(R) and testing

it against functions in C°(R) leads to a similar representation for Green functions

sz | OO CLr©ia) de. (3:3.6)
R

i

Gi(x,y) =

The point is that at fixed (¢, z, y), the constraints on A ensuring the representation formula
are significantly less stringent and one may use this freedom to optimize bounds. In
particular depending on the specific regime for the triplet (¢, x,y) or the kind of data one
has in mind, one may trade spatial localization for time-decay and vice versa by adjusting
contours to the right so as to gain spatial decay or to the left in order to improve time
decay.

When doing so, we essentially follow the strategy of [ZH98]. The critical decay is

10. This set contains {\; R(\) > w} when w is sufficiently large.
11. The second condition implies that this makes sense.
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essentially encoded in limiting-endstates spectral spatial decay and Evans’ function root
location. Therefore, roughly speaking, leaving aside questions related to the presence of a
root of the Evans’ function at zero, contours are chosen here to approximately 12 optimize

bounds on

f SR TR (AE) gy )) =R (A atogu )y VO] ¢
R

| De(A(E))]

with (,5) € {+, —}*. More precisely, at fixed (¢,z,y), one picks Ay real in [—2n, +0]

(with 79 as in Proposition 13), approximately minimizing

%()\) t+ %(Mﬁ ()\ usgn x)oo)) T+ éR(IU/b ()\ usgn(y)oo)) Y

among such real A in [—27, +00] and then depending on cases one defines A through one

of the equations

R (15 (AE)s Usgn(ayon)) T + R (A(E), Usgny))) ¥
Fo(p5 (Aos Usgn(z)o)) T + R (Aos Usgn(yon)) Y +1 € Csgne) (B +Dy)
%(ﬁE(A(f),%gn( ) Y = R(15 (Ao, Usgn(yyn)) ¥ 1§ Ggnie) x by)
x = Rz (Ao, Uogn( x)oo)) T+ 18 Ggn(e) < (H2)

with (4 conveniently chosen to ensure a condition analogous to the second condition of

the semigroup representation and including

lim R(+/A(€)) = +0, lim S(A(E)) = +o0.

|€]—00 E—+o

This should be thought as an approximate/simplified version of the saddlepoint method
in the sense that Ag = A(0) is an approximate maximizer of the exponential decay rate
among real numbers, but a minimizer along the curve A(-).

Computational details — carried out in next section — are cumbersome but the

process is rather systematic.

3.4 Linear stability

We now make the most of our spectral preparation to derive linear stability estimates.

12. In some cases a genuine optimization — as in direct applications of the Riemann saddle point
method — would be impractical.
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To motivate the analysis, let us anticipate that our achievement is the splitting of

(Se(t»tzo as R
Se(t)(w)(z) = Ul(z) sL(t)(w) + S:(t)(w)(z). (3.4.1)

for some (sP(t))i=0, (S-(t))i=0 with S.(0) = Id, so that the following proposition holds.

Proposition 16. There exists g > 0 such that

1. there exists C' > 0 such that for any t =0, any 0 < € < g9 and any w € BUC°(R)

IS (t)(w) ey + min ({1, VE}) 050(8) (w) | pogry + |02 (1) (w)]

< C e—min({\g’(y,m)lalg’(zﬂo)\})é‘t |w]zoemy
and when moreover w € BUC'(R)

ng(t)(w)HWl,oc(R) < C e—min({‘g’(ﬂfoc)|a|g'(ﬂ+oo)‘})Et HwHWLOO(R),

2. for any 0 > 0 there exist positive (Cyp,wq) such that for anyt =0, any 0 < e < g
and any w e BUC’(R)

S (8) (w) ooy + min ({1, VE}) 10252 () (w) | =) + [0 (8) (w))

< Og e_“"t H 60“| wHLOO(R)-

Estimates on operators are derived through pointwise bounds on Green kernels from
the trivial fact that if T is defined through

T(w)(z) = fRKu,y)w(y) dy

then

IT(w)|ze®) < [Kllzzw) [w]rem) -

3.4.1 Auxiliary lemmas

To begin with, to gain a practical grasp on the way the placement of spectral curves
impacts decay rates, we provide two lemmas, that will be of ubiquitous use when estab-
lishing pointwise bounds on Green functions.

Both lemmas are motivated by the fact that when g > 0 and ¢ > 0 the minimization

of
o o?
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over Ag € (—%2 + b, 400) is equivalent to

o? I6]
24— — Ay = —. 4.2
1 b+ Ay ; (3.4.2)

The first lemma directly elucidates the consequences of this choice of Ag in the approxi-

mate saddlepoint method sketched above.

Lemma 5. Lett >0, aeR, 3=0, By =0be R, and ((_,(;) € C? such that

R(Cx) > [S(CH)], F3(C¢+) >0

Then the curve A : R — C defined through'?

Bo | .
\/—b+A 7°+1§<Sgn(§),
satisfies for any & € R, when either = 3y or (B = Py and a <0)

9 2
%( t+<—\/—b+A )5)<—<O;—b)t+ Bo — f?f i%(gfgn(@)t

_ (Bo —at)* &
L VY

§R(Cszgn(f)) t

and for any £ € R*

|A,(§>| < ‘ngn(§)| (1 | gsgn ) (\/ — b+ A )
sgn (¢

We omit the proof of Lemma 5 as straightforward and elementary.

The second lemma is designed to deal with cases when the natural choice (3.4.2) is not
available because of extra constraints arising from Evans’ function possible annulation in
(—%2 + b,0). Explicitly, it focuses on the case when §/t < wy when wy is typically picked

as either w® or w® with

W = 2\/(f/(“+01) —0f 3w 2\/(f/(“‘00) o) _ T (343)

where 1) is as in Proposition 13. Since 3/t < wy should be thought as a bounded-domain
restriction, it is useful to let the second lemma also encode the possible trade-off between

spatial localization and time decay.

13. Sign conditions on (¢4 ) ensure that this is a licit definition.
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Lemma 6. Lett >0, ae R, 3=0,b<0, ((_,(;) € C? such that

R(Ce) > [S(¢)I F3(¢+) >0,

and wg = 0 such that

B < wpt.

Then the curve A : R — C defined through

a? .
2 Z— b+A<€> = W0+1€ngn(§)7

satisfies for any € € R*

|A/(€)| < |ngn(§)| (1 | gsgn ) (\/ — b+ A >
sgn (&

and for any £ € R and n > 0,
&e( (O‘ \/—b+A )5)
2
— (1+n)w? wo — £ 1
< - ( 1 —b|t— 02 B— q §R(Cszgn(g)) T IS (Gsgme))? )
and, when moreover wy < |a/,

o (5o ero))

_ 2 2 1
<or= L2 (1 ) - & (RiGhe) — 190G

a2

Note that to guarantee for some 1 > 0 both

1 wi
%(CSan(fﬂ > 6 |%(€sgn(§))|2> 1> (1 + 77) 072 )

one needs to enforce

R(Cente) > ——— S(Gane)] - (3.4.4)
—w

Likewise when wy > |a|, one may extract large-time decay for |£| = & > 0 provided that

R (Csen(e)) is sufficiently large.
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Proof. The starting point is that for any n > 0,

%(A(g)w (3‘— \/Oj— b +A(§)> 5)

2,2 _B8 — 2 1
<— (Oé Wo — M (“’0 t) + |b|) t— il aﬁ— é (%(ngn(f)) - 5 S‘S(ngn(ﬁ)”g) t

4 2 4

t-pp & I t— B)?
== tole= R 6 (R - RG] 1+ P .

The first bound on the real part is then obtained by using the first formulation of the

2
<W0 - f) <w§

whereas the second bound, specialized to the case |a| > wy, stems from the second

foregoing bound jointly with

formulation and

2
(laft =8 < (at=B)?, (wot =B < 5 (lalt - B)".

3.4.2 First separations

We would like to split G§(x,y) into pieces corresponding to different behaviors. Yet
we must take into account that our description of G.(\; z,y) is different in high-frequency
and compact regimes. To do so, we pick some curves and break them into pieces.

Explicitly, motivated by (3.4.4) with wy either w/® or w/® — defined in (3.4.3) with 7

as in Proposition 13 —, we first choose CiHF such that
max "(u —o.l, f'lu_o,) — 0. _
3%( J_rHF) > 9 ({|f (—-&-oo) | f( oo) }> |%( J_I:[F>|’ _1_%( J_1‘:[F> > 0.

V210

Then we define curves A7, A¢ through

’ _ 2
2\/(f (”+004) TS e lunn) +A0) = WP G,

N e 20 ) + A%E) = wlf” +ig (il

where Wt and wf*" are fixed such that

Wi > | (o) = 00, wi't > 1 () — 00 -
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Note that this is sufficient to guarantee that both curves satisfy requirements ensuring

(3.3.5) thus also (3.3.6).

We shall do a particular treatment of the parts of the curves corresponding to || <

EHE wwhere we choose £HF as

¢HE 2 max ({w/"" —wi, W™ —wi’})

min ({|%( 1), ’%(CEF)H)

Once again the motivation for the definition of £ stems from Lemma 6. Indeed the

definition ensures that for w € R, a curve A, defined through

/ _ 2
2\/(f (u+°04) o) _ €9/ (Uyon) +A() = wH1E e -

respectively through

/ _ 2
2\/<f (@—oo) 05) _ Eg/(ﬂ—oo) —|—A(€) = Ww +i£Cngn(§)’

with
wy'" —w

(= R(CTT) +1i (%( ary ¢£HF) , tef{r (),
satisfies
A(£EHF) = AT (21T respectively — A(+£HF) = Al (x£HE)

whereas, for £ € {r, (}, w € [w], w{T"],

R(¢L) = R(CET), F3(¢) > 0, IS, < SIS

NN NGV

In the following, for § € {r,¢}, we use notation AF" := (A%)_¢nr enry and APE =

(Ag) |R\[—§HF,EHF] .

To ensure that Lemma 6 provides exponential time decay for the part of the evolution

arising from A7 we reinforce the constraint on R(¢#*") by adding

R(CHP) \/%(CHF)Q Lo ({0l = (F1n) = 0% (@) = (f/(u ) = 0)%))
t = * (é“HF)Z ’

Anticipating our needs when analyzing small-\ expansions, we point out that by

HF

lowering 7y and wf ¥, w!

, we may enforce that for § € {r,¢}, when w = w/, and A is
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defined as above, there exists w’ > 0 and some § > 0, such that for any & e [-¢HF ¢HF)

RAE) < ', R (\/ M) 20" _ ) + A<£)> o)

respectively

After these preliminaries, to account for different behaviors, when ¢t > 0 we break G¥

as

GE = GEP 4 Go (3.4.5)

with G5 and G5 defined as follows. First

GsP (z,y) =0, if ey > 0and (y=>wtory<-—w'"t)
€,pt 1 At .
Gy (r,y) = 5 et Ge(Na,y) dA if vy <0,
2im J)
and when zy > 0 and —wf't <y < Wit
G (@, y)
( ?f()\)

At esgw(f/(ge)_f,(ﬂfoc)) e .ngs()\7 x) € e .’\”/£75<A’ y) d )\

1
2im SA?LF €

ifx>y>0

: : (A N
s fyear @ oV o (F (U= F"(u_sy)) ;J(A)) e1 -VEU(\, z) e VEU(N, y) dA

if0>x>y

1 Syoar M eI ) o Ve ) O o )

if0>y>x

O pr / A ad
L R TR A IR VTG WA PR TP WA RN

| fy>2>0,

where, here and in the definition of G7**°, A is either A = A” or A = A’, and we use

compact notation for integrals over curves instead of explicitly parametrized versions.
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Second,

Gy (x,y) =0, if 7y <0

1
Gy (z,y) = 9in JAe)‘t G-(Nz,y) dX, ifzy>0and (y=>w tory<-—w'"t),

and when zy > 0 and —wf't <y < Wit

G ()

( ! ’ NK A g
ﬁ SAQLF et efgoo(f Uo)—1'(u_y)) e 'VT’S(A,.TJ) ps( ) e V;"’“()\,y) d\

£

+ﬁSArHFe G:(A\;z,y) dA ifx>y>0

/ () ~
s Synr o) POty ) o) FEn(ay)

< +aty Spemr et Ge(Az,y) dA if0>x>y
B S RACA (IS PR VAT WS l;i((i)) er Va5 y) d A
tatr Saemr e Ge(Nsa,y) dA ifo>y>ua
ain SAQLF M e S0 T (U= (i) lp)gf(i\)) e -Viu(\ z) e V(N y) dA
L +2mSA’“HFe Ge(Nz,y) dA ify>x>0.

Note that the above splitting implies
0.G; = 0,GP™ + 0,GP*

where here and elsewhere throughout the text, d, acting on either G5 or G5°* is un-

derstood as a pointwise derivative wherever these functions are continuous.

The rationale behind the splitting is that the large-time decay of G;** is essentially
limited by spatial decay hence may be thought as purely explained by essential spectrum
considerations whereas the large-time asymptotics of G5"" is driven by the presence near
the spectral curves of a root of D, at A = 0, hence is due to the interaction of essential

and point spectra.

Some extra complications in the splitting are due to the fact that we need to prepare
the identification of the most singular part as a phase modulation, which comes into a
tensorized form. This explains why we define zones in terms of the size of |y|, instead of

the otherwise more natural |z — y|.
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3.4.3 First pointwise bounds

We begin our use of Lemmas 5 and 6 with short-time bounds.

Lemma 7. There exist positive (g9, C,w,0) such that for anyt > 0, any 0 < & < ey and

any (z,y) € R?

(G2 (2, y)| + min ({1,VE}) [GE (2, y)| < C et e WARRE
The foregoing lemma does not contain estimates on Gy because those would be
redundant with the corresponding large-time estimates. The point of Lemma 7 is to
show that for short-time estimates the singularity at A = 0 may be avoided whereas this

singularity is not present in G7 .

Proof. To bound Gf’pt(x, y) when xy < 0, we separate between x > 0 >y and z < 0 < y.
The analyses being completely similar, we only discuss here the former case. To treat it,
we move curves as in Lemmas 5 and 6 with 5y = 5 = |y|, a = f'(u_,,) — 0., b= ¢'(u_,,)

and note that .

RN u10)) < 5 (F(wge) —0e) <0

More explicitly, we use Lemma 5 to bound the regime |y| > wf Tt which leads to the

claimed heat-like bound since

2
_ (yl—at)? —(1— HF) e
e~ 1t <e “ ' ly| = wittt.

~

In the remaining zone where |y| < w/* t we use instead Lemma 6 to derive a bound that

may be converted into a heat-like bound through

wl{{Ffa 7<17 ‘I(;|F> gi
_ t
o W < e wg ly| < wat.

Y

,pt(

The estimates on Gy (z,y) when xy > 0 are obtained in exactly the same way. [

We proceed with bounds on G},

Lemma 8. There exist positive (g9, C,w,0) such that for any t > 0, any 0 < & < g and

any (z,y) € R?

|G7 (,y)| + min ({1, Vt}) [0.G7“ (z, )]
0 lz—y— (' (uy o) —0e) t?

. , ) 1
< Oy i<pyl efmm(‘“g (oo )lg' (wyo)l}) et 1 o s
\ Vi
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t

i le—y—(f' (u_ ) —oe) t|2
+e

1 y2
+ Ce vt —e % f0e eyl

Vi

This also implies that there exist positive (gq,C,0) such that for any 8’ > 0 there ezists

W' > 0 such that for any t >0, any 0 < e < &g and any (z,y) € R?

e (167 ()| + min ({1, V) 10,65 (@, )]

1 lo—y— (" (uy o) —0e) ]2 le—y—(f' (u_ ) —oe) t|2

7/ p— —
<Ce”t<e9 i +e? 7

Vi

2
+ e”t) + Ce e 0=l

In the foregoing statement and throughout the text we use 14 to denote a character-

istic function for the condition A.

Proof. To deduce the second bound from the first we observe that for any «

0 Lolalt iflx—y—at] < ilalt
E|x—y—at|2—|—9’\x—y|> 2 0'fal | Y | <zlal

slolt

Llaft  iflz—y—at] =

To prove the first bound we should distinguish between regimes defined by 0 < y < =,
y<z<0,0>y>zxandy >z >0. Regimes 0 <y < x and 0 > y > = on one hand and
y<x<0andy>ax>0on the other hand may be treated similarly and we give details

only for the cases y <z <0and 0 <y < z.

Note that when y < z < 0, we have |z —y| < |y|. When y < 2 < 0 and |y| = w}f't,
we choose the curve according to Lemma 5 with Sy = f = [z — y|, a = f'(u_,) — 0o,
b=cg(u_y) if |z —y| = tw°, and, otherwise, according to Lemma 6 with wy = w;°
and f = |z — y|, as well as o = f'(u_,) — 0.. To analyze the regime when y < z < 0
and |y| < wf ' t, we never move the curve A% (but bound its contribution according to

—y|/t
A?LF |z—yl/ 0 4

Lemma 6) whereas we move as in Lemma 5 with (; = ¢, 7" when |z —y| > w;

. . wno
or as in Lemma 6 with (; = (;} when |z —y| <w/"t.

To bound the contribution of the regime 0 < y < x, we may proceed as wheny < x < 0
provided that |z — y| < |y| or —wHTt < y < wWHT't. The remaining case is dealt with by

applying Lemma 5 with §y = |y| and 5 = |x —y| using the fact that f'(u,,)—0. <0. O
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3.4.4 Linear phase separation

The large-time estimates for G;* ’ require a phase separation. To carry it out we first
recall that there exist (a”,at) € R?, each uniformly bounded from below and above, such
that

e -V>¥(0,) =al Ul e Vi (0, ) = aU..

g =€

Then we split G5** as

Gi™(x,y) = Ulx) Gi*(y) + Gi™(z,y)

with
GyP(y) =0, if (y?watory wat),
whereas when —wf 't <y < Wit
! M =S WD~ W) o o X dr
Py 0o WHEIT o V(A fy>0
o 2in Lwe ¢ eV oy 1Y
I P (P W)~ ) dA
L A PO~ ) 7 e Rl .
2i Lupe ¢ a; eV, (A,y)Da(/\) if y <0.

As a result, when zy < 0 and —w/F't <y < Wit

GoPM(x,y)

( , / ~ d\
gt furar @t el U T ) o) (VES(A 7) — VE4(0,2)) €1 -VE(A, )

D-(\)
+# SA’;HF et G(Nz,y) dA ifr>0>y
= 3
3z Jager e sl er (VEU (1) = VEU(0,0)) e VE (A y) s
4—21 SAZHFe Ge(Nz,y) dA ify>0>uz,

\

whereas when (y > wif't or y < —w['f't),

0, if xy >0

GiP (w,y) =
M Go(\z,y) dN ifay <0,

ESA
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and when zy > 0 and —wff't <y < wHl't, Go P'(x,y) equals

(L Qe olle I ea)  (#(\) ey VE5(h, ) — F(0) &1 -VE2(0, 1)
(&1 'Va’ ()\7y) dA

D.(\)
ifxe>y>0,

o Z,LFe S— ' U)~f o)) TI(N) €1 Viu ANx)—712(0) e Vbu 0,2
2im SAE € € € €
'Né,u
e VoA y) d )\
De(A)
it0>z>y,

o Spear et e WU W) (3()) e VEY(N, z) = 77(0) e VE(0, 7))
e, V() y)
DV
ift0>y>ux,

= SA?LFe e S0 (W)~ (yor)) (TE()\) e; V(A z) — 7£(0) e -VZ*(0,z))

€ V; S(/\a y)

p.oy

L ify>x>0,

Proceeding as above for the rest of bounds, we obtain the following lemmas.

Lemma 9. There exist positive (g9, C,w, 0) such that for anyt > 0, any 0 < e < eg and

any (z,y) € R?

GF™" (@, y)| + min ({1, V#}) [0.G7 (2, )|

. 1 ly—(f' () —0e) t] ly+(f (u_gp)—oe) t]
< C o~ min({lo' o)l (i )l}) et o ~01al 7 e 0

+C e vt et g=Olz—yl

This also implies that there exist positive (60, C,0) such that for any 6 > 0 there exists
W' > 0 such that for any t >0, any 0 < € < &g and any (z,y) € R?

— <|G€ P!(z,y)| + min ({1 \[}) |0 Gept( )|>

—u! 1 (gt ) o)t _ COla—y —0'
<C’e°“5<\/¥(e9 i +e7? 7 + e Ozl g=Ole—yl o=0'lyl |

Lemma 10. There exist positive (g9,C,w,0) such that for any t > 0, any 0 < € < g
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and any y € R

1 Y2
,QUT

G (y)] < C e 77

Moreover, there exist positive (g9, C,w,0) such that for any t > 0, any 0 < € < gy and

any y € R

—(f'(u —0g 2 /u, —0Og 2
0G| < € emn({ld ol er L ((olntilempirot ot iro D
Vi

This also implies that there exist positive (eq,C,0) such that for any ' > 0 there exists

w' > 0 such that for anyt >0, any 0 < e < g9 and any y € R

L 1 =y )=o) ¢ ol ( wog)—oe) ¢
eI 0,GEP(y)| < C et — [ e7? C +e? C .
! t

To conclude and prove Proposition 16, we pick a smooth cut-off function y on [0, +00)
such that x = 1 on [2,+%) and x = 0 on [0, 1] and define s?, S. by

(1) (w) = L () G5 () wiy) dy,

S.0)a) = | (x(0)(E(w.9) + G w.p) + (1= x(0) Gilen) w(o) d.

The definitions are extended to t = 0 by s2(0)(w) = 0 and S.(0)(w) = w.
As explained near its statement, Proposition 16 follows then from L;OL; bounds on

Green kernels, which themselves are derived from pointwise bounds proved above.

3.5 Nonlinear stability

In the present section we conclude the proof of Theorem 15.

To do so, we seek for u solving (3.2.1) under the form

u(t,x) = U(o+6(8) + otz + b(t)) (3.5.1)
with (v,1") exponentially decaying in time. In these terms the equation becomes

o+ (f(U. +v) — 0. + 90w — v (3.5.2)
= e(9(U. +v) = g(U.)) — (f'(U. +v) = f'(U) +¢)UL.
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Equation (3.5.2) may be solved through

t

~

o(t,) = S.(t) (vo) + J S.(t = s) Nefu(s, ), ¢ (s)] ds, (3.5.3)

0

W(t) = sP(t) (vo) + L st (t — s) Ne[o(s, ), ¢/ (s)] ds, (3.5.4)

Nelw, @] := =(f'(U. +w) — f(U.) + ¢)0sw + £ (9(U. +w) — g(U.) — ¢'(U.) w)
- (f/(ga + U]) - f/(ge) - f”(ga) w)Q; .

In the present section, for notational concision’s sake, we denote
weo = min(|g (u )|, 19" (wy00)]) -

To begin with, we observe that estimates of the foregoing section are almost suffi-
cient to run a continuity argument on (3.5.3)-(3.5.4). Indeed they provide the following

proposition.

Proposition 17. There exist 6y > 0 and ey > 0 such that for any 0 < 08 < 6y and § > 0,
there exist C' > 0 such that for any 0 < e <eg and T > 0, if (v,v") solves (3.5.3)-(3.5.4)
on [0,T], with

v, )|lLem) <0, te[0,7],
then, for any t € [0,T],

O]+ o, )lwroe )

< C H’U(O, ')le,oc(R) efz-:woot

X exp (C sup e ([o'(s)] + |v(s, )| zom) + ||(€+e_9")_lﬁxv(sa')hw(m)) '

0<s<T

The estimate fails to close by the fact that ||0,w| =) provides a weaker e-uniform

control on w than ||(g + e ) ~10,w]| 1»(®). Note however that for any z, > 0,
(e + ™) T Ouw] or ((apa)) < €7 [0t onqy

so that we only need to improve the estimates on d,v(¢,-) on the complement of some

compact neighborhood of 0.
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3.5.1 Maximum principle and propagation of regularity

To close our nonlinear estimates without using neither localization nor parabolic
smoothing — which would cause loss in powers of e—, we shall use a maximum principle
argument.

To begin with, we state and prove a convenient classical abstract maximum principle.
We provide a proof mostly to highlight that it may be thought as an energy estimate on

a suitable nonlinear function.

Lemma 11. Let T > 0, z, € R, § > 0, a € L'([0,T]; Wh*([xs, +0))) bounded from
above away from zero and h € C°([0,T] x [x4, +0) x R). If w e C*((0,T) x [z4, +0)) N
Co([0,T] x [xs, +0)) is a bounded function such that

orw + a(-, ) Opw < 2w + k(- w), on [0,T] x [x4, +00)

and M is a positive constant such that

M= w(,x,), on [0,T],
M = w(0,-,), on [xy, +0),
=0 =1,y h(ta €, ) ’
then
w< M, on [0,T] x [x4, +0) .
Proof. When moreover
M > limsupw(-, z), on [0,T]
r—00

the claim is proved by a Gronwall argument on
+o0
tHJ (w(t,z) — M), dz.
T
The general case is recovered by applying this special case to (t,z) — e~ @) w(t, 1)

with 6 > 0 sufficiently small and taking the limit § — 0. O

We now use the foregoing lemma to derive a weighted bound on J,v outside a suf-
ficiently large compact neighborhood of 0. We shall insert such a bound in a continuity
argument so that we only need to prove that as long as d,v does not become too large it

remains small. This is the content of the following proposition.
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Proposition 18. There exists 6y > 0 such that for any 0 < 6 < 6y, there exist z, > 0,
g0 >0, 0> 0 and C > 0 such that for any 0 < e <eg and T > 0, if (v,v¢’) solves (3.5.2)
on [0,T] x R, with

W' ()] + |v(t, )| e m) < de754F, tel0,7],

0, v(t,
L%?i%i”$55€*““ﬂ (t,2) € [0,T] x R,

then for any (t,z) € [0,T] x (R\[—Z+«, T4])

|a$v<ta l‘)|

ot SO X( sup e (|9 ()] + [v(s, ) |Lo@) + 10a0(8, ) ([-anaal))

0<s<T

+ (g + e a,0(0, ')HL@(R)) '

Proof. We may argue separately to deal with bounds on x > z, on one hand and on
r < —x, on the other hand, and provide details only for the former. From now on we

focus on z > x..

We would like to apply Lemma 11 to both A, d,v and —A, 0,v for a suitable weight

A, equivalent to (¢, z) — e <! (¢ + e~%*1)~1. Our choice is

+o0
ewwstegt ge fwWosSds

A(t,x) =

£+ e 0l
Note that one has

i
g + e~ Yzl
= (f'(U) = f'(Us +v) = ) AUL + (f"(U.) = f'(Us + ) AUZ

—Ewul / / 96—6’|z|
(56 —(f(Q€+v)—a€+¢)m

02e % (2e + e %)
(€ + e~ 0=)2

Oi(A0v) + <(f/(U€ +v)—o.+ ) +2 ) 0 (Ac0v) — 0%(A0,0)

— A.0,v

— & (wo +¢'(Uc +v))

+ (UL +v)(2U + &Cv)) .

Fixing first > 0 sufficiently small, then x, sufficiently large and ¢ and ¢ sufficiently small,
one enforce that the term in front of 0,(A.0,v) is bounded from above away from zero
and the term in front of A.0,v is bounded from below by a multiple of £ e=¥=t 40 ¢ =02,

This is sufficient to apply Lemma 11 and derive the claimed upper bound on z > z,. O
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3.5.2 Proof of Theorem 15

Our very first task when proving Theorem 15 is to convert classical local well-posedness

yielding maximal solutions u to (3.2.1) into convenient local existence results for (v,1)’).

This follows from the following simple observation. By design, sP(t) = 0 when 0 <
t < 1. Thus if u solves (3.2.1) on [0,T] x R then (v,1)’) satisfying (3.5.1)-(3.5.3)-(3.5.4)

may be obtained recursively through
w(t) = ,lvb()v U(ta ) = U(t, T ’ll)(t)) o Qea when 0 <t < mln({la T}) )

and, for any n € N,
t—1

W(t) = GesE(t) (vo) + J Ors2(t = s) Ne[u(s, ), ¢/ (s)] ds,

(1) :¢0+L ¥(s) ds,

o(t,-) =u(t,- — () —U,, when min({n,T}) <t <min({n+ 1,T}).

Now, combining together Propositions 17 and 18, one obtains that for any 6 > 0

sufficiently small, there exist ¢g > 0, 6 > 0 and C' > 1 such that for any 0 < € < gy, and

(vo, 1o) with
lvollz=ry + 1l(e + €1 00| oy < 6,

the corresponding solution u to (3.2.1), in the form (3.5.1), satisfies that if for some 7' > 0
and any 0 <t <T

[0/ + o, =) + (e + e ) vt )=y

< 20 efswoct (HUO”LOO(R) + H(€ + efe|'|)*16xvoHLw(R))
then for any 0 <t < T

[0/ (O] + vt Ne=my + (e + M) T ot ) pomy

< C e (o] pomy + [ + e ) 000 e my) -

From this and a continuity argument stem that w is global and that the latter estimate
holds globally in time. One achieves the proof of Theorem 15 by deriving bounds on

by integration of those on v’ and going back to original variables.
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3.6 Wave profiles

In the present Appendix, we prove Proposition 10. Let us first reformulate the wave
profile equation in terms of

QQ_QO ~ O-E_O-O

== o, :
= € ’ €

The equation to consider is

U= (W) = o0 22) = — gl +e0) ~ (3. U + £ 0))
N (f(Uo +ell,) - f(Uy) - af'(Uoﬂl)' |

with U_(0) = 0, (5.,e’!"1T_,e’"] Q;) uniformly bounded, for some sufficiently small
0 > 0. As announced in the introduction the framework we first consider is suboptimal
from the point of view of spatial localization but we shall refine it in a second step. To carry
out the first step we introduce spaces Wek ' and their subspaces BUCE, corresponding to

norms
k .
[CI RS Z [ 1T ]| oy -

In this first step, we just pick some 0 < 6 < min({6}, 65}) and let all the constants depend

on this particular choice.

We begin with two preliminary remarks. Firstly note that a simple integration yields

that a necessary constraint is

and that

defines a continuous map from BUC) to the closed subspace of BUC) whose range is
contained in the set of functions with zero integral and that, on any ball of BUC}, has

an O(e)-Lipschitz constant.
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Secondly, denoting Ly the operator defined by

Lo(v) := v" — (f'(Uy) — o0)v)’

on BUCY, with domain BUCE, we observe that Ly is Fredholm of index 0 (as a continuous
operator from BUC? to BUCY), its kernel is spanned by U’ and the kernel of its adjoint is
reduced to constant functions. The foregoing claims are easily proved by direct inspection
but may also be obtained with the arguments of Sections 3.2 and 3.3, combining spatial
dynamics point of view with a Sturm-Liouville argument. Since evaluation at 0 acts
continuously on BUC? and Uj(0) # 0, this implies that the restriction of Ly from the
closed subspace of BUC} consisting of functions with value 0 at 0 to the closed subspace
of BUCY consisting of functions with zero integral is boundedly invertible. Indeed, the

inverse of this restriction is readily seen to be given by

+00le €T z U/(.T)
Lih ydydz = =0 ) dy dz.
=] g =[] g5

Note that from the profile equation itself stems that if U . is a BUC}-solution it is

also a BUC}-solution so that the problem reduces to
5. = £[0.], U. = LYAL[TLD).

If Cy is chosen such that Cy > | LIN. [OR]HW1 =Ry, it follows that, when ¢ is sufficiently
small, the map L(T) o /\N/'E sends the complete space

{v € BUCKR); v(0) = 0 and 0] 105 < Co }

into itself and is strictly contracting with an O(e)-Lipschitz constant. Thus resorting to
the Banach fixed-point theorem achieves the first step of the proof of Proposition 10.
Note that, in order to conclude the proof, it is sufficient to provide asymptotic descrip-
tions of %l (U, —u_.,), e (U, — u+oo), P 1 U and ¢ U, Indeed, on one hand, the
asymptotic comparisons for e el | U ) and %" U gk), k = 2, are then deduced recursively
by using the profile equation (differentiated (k — 2) times). On the other hand, since, for
# € {t,r}, 0% = 0F + O(e), the asymptotic descriptions are sufficient to upgrade the

existence part of the first step arbitrarily close to optimal spatial decay rates, o — 9# .

As a further reduction, we observe that the asymptotics for e/ |(U_ —u_,.), % (U.—

U, ), may be deduced from the ones for e el U’ and ¢’ U’ by integration since

0 (Ue(w) = tecg) = €07 (Ug() — 1)
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= [ () - e ) dy
-0

T f ) (R0 1) o () dy
0

and likewise near +oo.

To conclude, we derive the study of el ' and e’

U’ from the analysis of Propo-
sition 11 (with K = {0}). Indeed,

eﬁ = ,ui_(oyg—oo) ) 65 = _ME—(()?Q-&-OO) )
and
U (l‘) _ (u+oo * Q—OO) e@ﬁx €1 Paé(o)x) i—( )
- 2 X(i %y e -PL0,y) R (0;u_yp) dy
_ (Upoo — U_o5) —e%* e -PL(0,z) —(O;Q—koo)
2 §o ey e -Pr(0,y) R (0;u4) dy

Thus the claimed expansion stems from the smoothness in ¢ afforded by Proposition 11
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CHAPTER 4

CONVECTIVE UNIFORM STABILITY

4.1 Introduction

In this chapter, we continue the study initiated in the third chapter. We are again

studying the stability of particular waves solving partial differential equations of the form

O+ 0. (f(w) = g(u) + 2. (4.1.1)

We are interested in particular classes of waves, that are singular perturbations of waves
solutions to the hyperbolic problem obtained as ¢ — 0.
However, in contrast with Chapter 3, the goal is to study stability of waves in weighted

spaces, which are spaces of the form
BUC?(R) := {ve ¥ |ve BUC’(R)},

and higher-order versions thereof, where w : R — R is typically a locally bounded
function.

We begin by discussing the choice of the functional space and the introducing of such
weights. This choice is an important factor in the determination of the spectrum of the
linearized operator, and thus can crucially affect the stability properties of such waves.
In fact, in various problems, some parts of the spectrum may be moved to the left half
of the complex plane or even entirely deleted by an other functional space.

A seminal work developping this approach of choosing a particular functional space
to obtain nonlinear stability in a similar framework is [Sat76], by Sattinger. It discusses

the stability of waves solutions to equations of the form
o = 0%u + f(u, dpu),

and the use of weight allows him to move the essential spectrum to the left of the imag-
inary axis in various problems. In fact, as this part of the spectrum is a consequence of
properties of the asymptotic matrices at +o0 associated to the linearized operator, and

the introduction of weights mostly changes the prescription of the behavior of functions
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near +00. Let us point out that, actually, one may even get rid of the eigenvalue at A = 0
by doing so, thus obtaining potentially a classical asymptotic stability result, and not
just a classical orbital one.

In particular, in [Sat76] stability in some reaction-diffusion equations and the viscous
Burgers equation are studied in such spaces. The analysis of [Sat76] relies mostly on ab-
stract semigroup arguments and parabolic regularization estimates, those being sufficient
to carry out the nonlinear analysis. In this chapter, we will need to use sharper methods
to study the uniform stability of parabolic regularizations Riemann shocks, and in par-
ticular, as in the third chapter, Green function bounds.

We will, here, mostly restrict the discussion to weights of the form e* wherew : R - R
is equal to ¢, x for all x = 0, and to c_x for < 0, where ¢, < 0 and c¢_ > 0 are constants.
This should be contrasted with works introducing weights of Gaussian types, or, in the
part of [DR22] related to smooth waves with a characteristic point, in which choosing
spaces associated with norms controlling higher order derivatives allows to obtain a big-
ger spectral gap, and, hence, better time decay.

Note that we restrict a priori to weights strengthening the localization because we
want the corresponding L* based spaces to form algebras. This is almost mandatory in
order to close a nonlinear argument.

Finally, the importance of such studies, and more generally of unstables fronts in
the study of the long-time behavior of solutions to PDEs, already clearly apparent in
the pioneering [AWT78]. In particular, let us mention that, when one studies a reaction-
diffusion scalar equation, an initial data which is initially compactly supported will have
its dynamics strongly influenced by particular fronts that are unstable in the unweighted
topology. Finally, in the hyperbolic case of balance laws, works have also been done to
study such behavior, as in [MS97, Sin96], where it is proved that at least in the strictly
convex case and for particular topologies, one should expect that an initial data constant
at +00 and —oo will be asymptotically described by piecing waves together.

The present chapter is a vanishing viscosity counterpart to [GR] and we describe now
its main results. It extends some parts of [DR20, DR22] to other functional spaces. More
precisely, in [DR20, DR22], stability and instability properties of fronts are studied in the
framework of L* based unweighted spaces. In such unweighted topologies, the authors
obtain a complete description of non-degenerate stable and unstable traveling waves. The
authors of [GR] analyze the effects of weights described above on the classification.

An important part of [GR] consists in obtaining stability in the critical case. This
refers to the case of an exponential weight with the biggest possible ¢, < 0 for which the
spectrum is confined in the left half of the complex plane. In the case of smooth traveling

waves, the zero mode is not in the weighted space, and the authors obtain a classical
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stability result. Furthermore, when adding an extra polynomial weight, one can get back

some form of decay on the perturbation. More specifically, with a weight of the form
|-

of speed at least

ep = [(1+ (1)) Pe+O+u|| o with e the critical weight, and for some 3 > 0, a decay

_1
1+t6

totic orbital result is obtained and it requires that the set of initial data considered have

is obtained. In the case of a Riemann shock, however, an asymp-

slightly more localization, since an extra polynomial localization is needed with 5 > 1.
The latter extra constraint originates in the necessity to control the orbital shift.

Let us now describe briefly the content of the present chapter, beginning with proofs
of existence of wave solutions to the viscous equations, approximating hyperbolic waves.
The case of Riemann shocks is similar to those studied before. In the case of smooth
waves, however, it relies on singular perturbations techniques. In fact, the spatial eigen-
values of the profile ODE at +oo are asymptotically equivalent to ¢’ (uyo)/(f'(Uie) — 0)
and (0 — f'(ui))/c. The latter is stiff and requires a specific treatment.

It is worth noting that, in the smooth case, there exists a wave profile for each speed
greater than a given critical value, both in the hyperbolic and parabolic problems. In
contrast, when it comes to the Riemann shock, the speed is uniquely determined by the
endstates.

Moreover, we do not study here the problems of other types of instabilities. First
of all, nullstable front in the case of Riemann shocks (that is, with ¢'(u_.,) > 0 and
g (U, o) > 0) is expected to be similarly solvable. Likewise we expect that the case when
the wave is marginally stable in unweighted topologies, because for instance ¢'(u. ) = 0,
could be treated similarly but we do not treat it here. In contrast, the analysis of the
degenerate case of waves with critical speed o, := SUD[ i, ] f’, also not carried out
here, is likely to require new insights.

We are studying here fronts that are monostable. Here, instabilities at the spectral
level are restricted to those coming from constant states. Monostability means that one
endstate is unstable while the other is stable. In such a context, as we are considering
heteroclinic with noncharacteristic convective parts, we can ensure that, adding weights
on that side of the real line, the linearized operator is actually spectrally stable, but some
sign information on the convection is needed to ensure that the weight is increasing local-
ization. For viscous shocks and other traveling waves considered here, this sign condition
is met and one may hope to close a nonlinear argument, as we do.

We conclude this short introduction by gathering the weighted topologies used through-
out the chapter. For 6, 3 > 0, we define the following spaces

L¥(R) := {ue %+ |u e L*(R)},
Wy ™ = {ue LY(R)|u' € LY(R)},
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BUCY(R) := {ue %+ |u e BUC’(R)},
BUC, := {ue BUC§(R)|v € BUCJ(R)},
7s(R) = {(1+ () Pue ™ |ue L*(R)},
Wy = {ue Lys(R) |u' € LY (R)},
BUCY(R) := {(1 + (1)) Pue I+ |ue BUC(R)},
BUCy = {ue BUCJ(R)|u' € BUCy 4(R)}.

The associated norms, defined, for any v in, respectively, L¥(R), W, (R), as(R),
Wy'5 (R) are given by

0(~)+UHLOO7

vz = e
[0l := [*O v Lo + €O
[0z, == 1O (1 + (-)4) 0],

[ollge = IO+ vl + €700/ g,
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4.2 Riemann shock
f(@Jroo) — f(ﬂfoc)
u o u
fluo) and g(u o) = 0=g(u ), as well as ¢'(u_o,) <0 < ¢'(u;)-

Define 6. such that, for every ¢ > 0, it is the smallest positive root of the polynom
eX? + (f'(Ugo) = )X + 9" (Upor)-

Under these conditions, viscous waves satsifying

Consider u,, distinct real such that oy = with f'(u, ) < 09 <

5Q/g/ + (Ua - f/(Qa))Qle + g(Qa) = 07

on R, with U,(z) — uy, as * — o0 and UL(x) — 0 as * — +00, and U_(z) converges
as ¢ — 0% towards u, ., if > 0 and towards u_,, if x < 0. Their existence can be proven
as in the previous Chapter.

Furthermore, define 7(g,0) = €6 + (f'(u, ) — 0.)0 + ¢'(1, ). This will be the decay
rate in the space weighted like exp(€(-);) (when bigger in absolute value than —¢'(u_,)).

The following theorem describes the orbital asymptotic stability of the waves (u.).~q
which will be constructed later on. More precisely, the uniformity of the stability with
respect to the viscous parameter will be an important point of focus here. We are inter-
ested in the case of weighted spaces, and especially of those allowing to create a spectral
gap, and, also, of those for which the weight is critical. In that case, with the help of

some extra polynomial weight, we obtain asymptotic orbital stability.

Theorem 16. Given n > 0, there exist positive o, o,  and C such that, for every
e € (0,0, vo € BUCy ,,(R) satisfying

5611)0
ofz|

eE+e e

lvo|ze . <0, <9,

0o+n

0
L00+n

the solution u to Equation 4.1.1 with initial data U, + vy is defined on R, and there
exists € C* (R, R) such that for every t € R¥, (u(t,- — ot +1(t)) —u.) € BUCy,, (R),

and

661 (U(t, c— ol + w(t» B us)
| (ult,- —oct + (1) —w) g, ] + ()]
ete e g,
Oz
< Ce-tr(e00+n) Joollze ., 27‘”0
e ¢ +¢ LE.,

Furthermore, for every 8 > 0, there exist positive €y, 0 and C' such that for every ¢ €
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(0,€0], for every vo € BUCy_ 4(R) such that

€0,
g + e—olzl

<3

ool , <6,

0
LOE,B

the solution u to Fquation 4.1.1 with initial data U, + vy is defined on Ry, and there
exists 1p € C'(Ry, R) such that for everyt € R*, (u(t, - —ot+v(t)) —u.) € BUC;_4(R),

and

0, (u(t,- — ot +(t)) —u
[ (ult, — out + 9(0) — ) g + | e O RO ) |y
ct+e e Ly
C 85901)0
< a+07 lvollzg , + "all
E+e e Ly ,

In the critical case, that is, for § = 6., as in the hyperbolic counterpart to this result,
a result is only obtained by choosing initial data having an extra polynomial localization.
This is actually needed to control, in the Duhamel formulation, terms involving the phase.
In fact, for terms of the form v’d,v, no extra spatial localization is obtained, which can
be opposed to terms such as v? or vd,v, which are localized like e=2%<I',
Following [BR23], we will prove the result by working in fast variables. Explicitly we

perform the following substitutions

a(t, @) == u(et, e ), U (Z) :=u.(e).

For the sake of notational simplicity, we drop tildes in the following and simply consider

t the fast dynamical equation
O + 0, (f(u)) = %u + eg(u), (4.2.1)
and the fast profile equation
UZ = (f'(Ue) — 0o)UL — eg(U.). (4.2.2)

The proof of the existence of wave profiles is essentially identical the the one in [BR23]
and is thus omitted here.

To a large extent, the next two subsections follow the analysis of the corresponding
ones in [BR23]. Let us thus stress what are the departures. Two of the main changes

are simply due to different expository choices: in the present chapter, our normalization
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of dual functions is slightly different (in order to simplify some expressions) and our
high-frequency analysis follows the same ideas, but the bounds obtained are voluntarily
sub-optimal to emphasize how little information is needed on that part of the complex
plane. However some other differences have a much deeper origin and motivation. In
particular, two things that could be roughly bounded in [BR23] must be very carefully
tracked in the present analysis. Explicitly

1. For obvious reasons, here one cannot mix contributions arising to +c0 and to —oo.

2. In heat-like type bounds, one must obtain sharp expressions for standard devia-

tions.

The latter point is necessary to allow for the sharp range of spatial localization rates

including the critical & = 6. and to derive the corresponding sharp time decay rates

7(e, ).

4.2.1 Conjugation of the flows

We start the work on the spectral problem by obtaining some result relating the
solutions to some ODE with asymptotically constant coefficients (with convergence rate
fast enough) and the ODE associated with the limiting coefficients.

It is written in a general form.

Proposition 19. Consider ), an open subset of the complex plane, and ¢y > 0. Let
(A, e,z) — A(\ g,2), be a smooth function defined on the set Q x [0,g9] x R, with value
in My(C). Assume that A(\, e,x) has a limit for fivzed (A, €) at x — +00 noted Ax (), €),
which is also smooth in (A, €) and holomorphic in X. Furthermore, we assume that for
every (g,x) € [0,g0] x R, the function A\ — A(\, &, x) is holomorphic.

Assume also that there exist e > 0 such that for every K < €2 compact there exist some
positive constants C(K) and 0(K) and a smooth map (holomorphic in A) A™ : Qx [0, &9] —
My (C) such that for every e € [0,e0], every x € R, every X € Q, we have that ||[A(\, &, x)—
A (N 8)| < C(K)e ?Blel - Also, for every A € Q and € € [0,e0], we assume that the
eigenvalues of Ay (N, €) have distinct real parts. Then, noting (X, e, z,y) — S(\ €, z,y),
the solution operator associated to (A, e,x) — A(\ e, x) (that is, S(\, €, -, y) is the solution
to 2/ = A(\ e, )z with initial data z(y) = Iy) we have that there exists a smooth map
(holomorphic in \) (\,e,x) — P"(\, &, ) such that, for every (z,y) € R* we have that S
(N e, 2,y)P (N, e,y) = PT(\ g, 2)e@ A2 aqnd, furthermore, for every compact set K
included in S, there exist C' > 0 and 6 > 0 such that for every (A, e,x) € K x [0,&0] x R,
IPT(\ e, 2) — L] < Ce™fl,

Proof. Fix such a Q, ¢y and A, smooth, defined on © x [0,£9] x R and holomorphic in
A € Q. We start by noticing that such a P,(\, ¢, z), for a fixed (), €) € Q x [0, &¢], satisfies

163



the desired conditions if and only if it is a solution of
0:Y () = =Y (2)Ax(A ) + A(A, €, 2)Y (2)

that is of
Y =[Y,Ax (N &)] + (AN, g,2) — Ap(N, €)Y ()

and that it satisfies a condition of the form ||P"(\, e, z) — I1| < Ce~%*! with some positive
constants C, 6.

Noting (e, A) and p_(e, A) the eigenvalues of Ay (), &) with the convention

R(p-(A €)) < R(pi (A, €))

They are well defined and as smooth as (\,e) — A(\, e) due to the implicit function
theorem applied to (A, &, p) — det (uly — A(A,€)) around (Ao, €9, f1+ (Ao, €0)) in one case,
and around (Ao, €9, ft— (Ao, £0)) in the other case.

We note Ry (A, e) and R_(\,¢), right eigenvectors associated to the eigenvalues of
Ap(N e) (and Ly as well as L_ are left eigenvectors) such that the relations of normal-
ization Ly Ry =1 and L_R_ =1 are satisfied.

Remind that we can construct locally the projections on the stable subspace, the un-
stable subspace and the kernel of the linear operator B — [Ay (), ¢), B] by considering

the operators given by
Hu()‘a 8)(3) = L+()‘7 5)BR*()‘> 5) R+()‘7 S)L,<)\, 8)7

(where L, (X, e)BR_(\,¢) is identified to the scalar contained in the 1 x 1 matrix)
and
(N, e)(B) = L_(A\,e)BR, (A, e)R_(\,e) Ly () e).

The said eigenvectors can be constructed locally such that they are as smooth as
Ax (A e) by considering the application X — (Ayx(A,e) — px (A, €)X defined on the
affine space { R (Ao, £0) + VR_ (Ao, €0) | v € R} for R, , and similarly for R_, and then L,
and we then normalize L, by dividing it by L1 R4. As a consequence, as we have that
I, (N, &) and II4(\, ) are uniquely defined, they are locally smooth due to the previous
equality, the smoothness of Ry and L4, and, hence, they are smooth on Q x [0, 0] (with
holomorphy with respect to A € Q).

Now, consider K, a compact subset of (2, and fix some constant ¥ > 0 such that
209 < mingx cyex xo0,c0] R4 (A, €) — p—(A, €)) and 209 < 0.

We can now define the operator T, . : E,, — E,, where E,, is defined as E,, =
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{I+u)| for u € C°([zg, +0), M) such that ||e” (u(-)—I)| > < 400 (on which we consider
the natural distance defined for (u,v) € E2 by d(u,v) = |e” (u — v)(:)|1=) such that

Tygre(u)(z) = I + J e(x’T)[AOO(’\’g)"]HS((A()\,8,T) — A (N, €))u(r))dr

xo
b Ly e~ (A T) — As(h ()i
+o0
We can now show that for xy big enough (depending on K) such that T}, ». is a con-
traction map on some closed neighborhood of the map =z — I,. We have that for every
u € F,, (we use here that there exists some constant C' > 0 uniform on K x [0, ]

d(Tygre(u), I5) <C(K)C’ (f e 20(@=7) =207 10 —I—J —e_wTdT> (1+ |u— L)1)

x0 —+ 00

N —29x
<COE) (oo + 70 ) (14 fu Blue)
N 6—19:00 e—ﬂa: 6—26':1:

and that for every (u,v) € E,,

Ad(Tygre(w), Tygre(u)) < C’C(K) (J o2 @=T) =207 11 +J —ewTdT) |u—=vl| L0 ([0, 4 0))-

xo +00

Hence, by taking z, big enough, we have that T, . is contracting for every (\,¢) €
K x [0, &0]. Furthermore, the regularity in (), €) is obtained by using the implicit function
theorem to (A, e,u) — u — Ty xc(u). Finally, P"(),¢,-) is extended for a fixed (\,¢) €

2 x [0, 9] through the relation for every z € (—o0, x¢)
P\ e, x) = S(\ &, , ) PT(\, €, zg ) eFo—Ax(Xe)

The regularity in z is obtained by using the fact that x — S (A, &, x, z9) is smooth, and

so x — P"(\, e, x) is also smooth. O

Here, consider (z,y) — ®X(x,y) the solution operator to the ordinary differential

Y/:<f/(Us_O-E 1>Y
>‘ - Eg,(ga) 0

that is ®X(z,y)Z, is the only solution that satisfies this equation and which that the

equation

165



value Z, at y. Furthermore, note

r L f/<Q+OO) — O¢ 1
Af“““'<A-—ag%u+w> o)‘

Proposition 20. There ezist positive constants (go,C,0,0) such that setting
1
Qs := {)\; ?R(\ﬂ) > 5}
there exists a smooth map
PrHE - 10,60] x Qs x R — GLy(C), (e, \,x) — PPHE(N 2)

locally uniformly analytic in X\ on a neighborhood of Qs and such that, for any (e, \,z) €
[0,50] X Q(g X [O, +OO),

1 0 1 0 1 ¢+ s / 679|x|
PHHE () o —ezh (U dy [l < ¢ 7
[t f> SCEIR) Ty

Lo (PPAE(N )™ Lo —er LW ) dy < o ©
0 L) e 0 VA i

and, for any (e, \,z,y) € [0,50] x Q5 x R?,

®2(z,y) = PPTI(N z) A (PLIT () y)) =t

The proof is identical to the one in the previous part, that is Chapter 3 and is thus

omitted.

4.2.2 Spectral stability and Evans function

To obtain an expression for the Green function associated to the operator A — L.
where

Lo (24 0ul(0n = FU)0) +2g (U)

we first try to obtain some particular basis of the ODE. Parametrized by (A e,z) €
Q x [0,e09] x R where Q is defined by

Qg

Q:=C\ <—oo, ?],
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with

oo = (0Ll (o0= S0

and g9 > 0 small enough such that U, is defined for every e € [0, 2] and also such that

Qo .
. < ?,here, Q. is

Qfg = max (59/(10_00) o (UE - f;L(u_OO)) 7ggl(ﬂ+oo) o (UE - fil(u-‘roo)) ) ’

and consider the matrices

A()\ g, ) (f/( ( )) 08) 1
A—egd(U(x)) 0)

We know due to Proposition 19 that, as the family of matrices satisfy its assumptions,

we can conjugate the solutions to
Y' = A\ g, )Y,

to the asymptotic matrices lim,_, 1, A(\, €, z) and lim, .o, A(\, &, x).

We, thus, obtain smooth conjugation matrices P" : Qx [0, &] x R and P : Q2 x [0, g¢] x
R — M;,(C) such that we have the conjugation associated to the constant coefficient
equations Y’ = A(\,e,+0)Y and Y’ = A(\, e, —0)Y.

Considering

and

VSN ) s x> P\ g, 2)e® MR (A €),
VN )t x> PT(\ g)e™ et RIR () ¢),
Vi (N e) s > PN g, 2)e™ =PI RE (N g),
VO (N, ) s x> PY(\, e)e™ a2 RE () ¢)

we can define

D.()) := det(V™¥(\,€,0), VE%(\, €,0)).

167



We are now able to state a result which corresponds to the bounds on the eigenvalues
of the linearized operator L. in weighted spaces. First remind the theorem of Sturm-

Liouville from the introduction 9.

Proposition 21. Given § > 0, there exist ng > 0 and €9 > 0, as well as C' > 0 such that
1
for every X € C such that d(\, (—o0, —ng]) = 0 and |\ < 5 we have that |D.(\)| = CA|.

Proof. Fix 6 > 0.
We consider, for € € R, such that U, is defined, the weight defined on R by

)i (5 [ (@) - aar)

0
w! + w? + (0. — f'(U.))w.

Lolweyort =32+ . +Heg (L) - UL
" ! o o 2
:&i S+ (59/((]5) o f (U2€)U5 4 (06 ;(Qe)) ) .

And so, L. := w:'L.(w."), defined as an unbounded operator on L?(R) with domain
H?*(R) is a self-adjoint operator, and, thanks to Sturm-Liouville theory, the point spec-
trum of L. is a finite set of real values . Furthermore, these eigenvalues are all simple
and, if this set is nonempty, then its maximum corresponds to the eigenvalue which has
an eigenfunction which has no zero. Thus, in our case, to A = 0. Furthermore, other
eigenvalues correspond with vanishing of the Evans function and, still in this part, the
vanishing of the Evans function always gives raise to a simple zero of D..

Finally, as D, converges to Dy uniformly on every compact of €2, it is also the case of

D! and of D! (towards D{, and Dj respectively). Thus, we have that there exists some

D{(0
no > 0 (we allow ourselves to reduce it such that the inequality | 02( )|770 —3|Dy(0)|n2 =0

is also satisfied) and €y > 0 such that for every € € [0, g|

D} (0 3|D5(0
)= 126001 Doy < 2201

on (0, 1) and, for every A € C\(—00, —1] such that [A| < 5 and d(X, (—o0, —1]) = 6, as
1
well as, with Qg := {p € C\(—o0, —no] | [A] < 5 d(A, (s — o0, —no]| = 6, that it satisfies

inf(eas, luzno} [Dol1)]
5 .

|De(X) — Do(N)] <

Thus, for every ¢ € [0, &¢], we have that

[Do(M)]

D] = 2,
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if A € Qs,, and || = 19, as well as

_ 1DKO)IN

D] = 2

for [A] < ng. Thus, for every A € Qs,, and € € [0, ], we have that

5inf{u695,no e ‘DO(M)’ ’D6(0)|> |)\|
) 4 ’

ID.(\)| = min( .

We are now really almost ready to be able to give an expression of the spectral Green
function on a given compact set of the form given in 21 (that is for any fixed § > 0).

To do so, we define the dual spectral problem, which is associated to the following
operator (defined on L?*(R) with domain H?*(R) and associated to an ODE in the 2D

space that differs from the one associated with the original one by a smooth function in

x and ¢ times I5)

v "+ (f1(UL) — o' + eg' (U ).

A\ e z) = ’ !
ST s o- 1)

Thus, the solutions on R of the system Y’(z) = A(\, &, )Y (z) are the elements of

{x — exp (f:(ag — f’(UE(T)))dT> Z(x) | Z solves the equation

Z'(x) = A\ e,2)Z(x) on R}.

We can define

V(N e, ) = ehlrlWeldryms(y g,
V(N e, ) = eholomfLetdryma(y o),
V(A e, ) = el Watmdrytu(y gy,
VA (N e, ) = ehloFUdryta(y o Ly

Remind that, for every V' solving V' = A(\,e,-)V on R and every W solving W' =
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A(M e, )W on R we have that
0 -1
V. w
1 0
is constant on R, we can thus compute the scalar products of the form below by taking
the limits at +o0.
Thus, we have that for every x € R

y——00

0 —1\ ~ 0 -1\ ~
Vﬁ,u(Avga'I) : (1 0 ) Vﬁ,s(}\7€’x) = lim V&u(/\v‘%y) : 1 0 ) V£7S(>‘a€7y)

0 —1\ -~
V(A e, x) - < V™A g, x) =0,
1 0
Vi (e, ) =\ e)VE (N g, ) + pr(\, e)VE (e, ),
VO (N e, ) =N )V (N g, ) + pe( X, e) V(N e, ),
f/“s(/\,e, ) z%T(/\,e)‘N/B’“(/\,e, )+ ﬁr(/\,é)Ve’s(/\,e, ),
‘7&”(/\7 €, ) :~f()‘> 5)‘7r75(>" g, ) + ﬁﬁ()‘a 5)VT7U(A: g, )

Hence, for every x € R

pr(N &) det(VE“ (N, g, ), VES (N, g, ) =det(VE(\, e, 2), V(N g, 1)),
= — D.(\)eh f'Uelr)—oe)dr

and

pe(N €)det (VT3 (\, e, 2), VI (N e, 2) =det(V™* (N, e,2), VE¥\, €, 2))
:DE()\)eSﬁ(f’(QE(T))fﬂs)dT.
From the last two equalities, we get the following expressions for p, and py

W) o) ()
pr(A’ 6) - Lu I )
det(VEu(A e, @), VA (A, €, 7))
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S W) =F'w s ()

det (PZ(A,g,x) <_,u£ 1()\ 8)) ,Pt(\ e, 1) <—/~b£ 1()\ 8)))

\ D.(\)elo (f'(Ue(r)—oe)dr
pé( 7‘€> _det(vr’5<>\,€,$),V”vu()\,&x))’
DE()\)esg(f'(gg(S))*f’(yﬂo))ds

and, for p, and py,

ﬁl(/\7 6) - p€</\7 5)’
Thus, by taking x going to +oo (or —oo, depending on the case)

e (U =F )T p ()
phve) =t (he)

D.(\)elo W)= (w, o))

R R

pr(A,€) =pr(A€),

pe(A €) =pe(A, €),

pr()‘v 5) =

I

as well as, for every z € R

—1

0
VTSN g, x) -
(A7) (1 .

- 0 -1\ -~
o _5 : 7,8 . U
) 4 ()\,E,[L’) pf(AaE) yLHJPoov ()‘7€ay) <1 0 ) 4 ()‘>€ay)7

TR (u —f ~ r r
=elo ) STED 5y ) (T (N ) = (A 2)),
= — D.(N\)elo U o) = W) 5 Ue(r) = f (1))

—1

0 ¥ _( "(u —f! T T ~
Vf,u()\’g’x> ’ (1 0 ) VT:3<)\,€,I.)’ =e oo (oo} = e (m))d pT(A78>(M€_()‘78) o /Lﬁ_()\,é‘))

171



Thus, for all y € R,

(Vf’“()\,s,y) V’“’%A,e,y))(

And so, for every y € R

. s aMey) ) (0
(Ve (em) V(e ) (—B(A,e,y)) = (_1),

where v and § are given by the formula a(\, €, y) = e;-V"*(\, e,9) D-(\)~"and B(\, e, y) =
e Ve4(\ 2,y) D.(A)

Thus, we obtain the following representation of the spectral Green function. If x > y,
then

G(Aa€7$7y) = € V7'73()\,€’x)el : V&u()\vgvy)

D.(})

1
Dc(X)

and, if x <y

G\ e, x,y) = e - VZ’“()\, g,x)e; - ‘77"’5()\, £,Y).

Obviously, using decompositions of V™% V7 V4% and V%, we can obtain the fol-
lowing important decompositions of G
Forx >y >0
pe(N,e)er - V(N e,y)er - V(N e, x
6t ) - (PR VO e Ve
+7~'g()\, e)er - V(A e, x)er - V¥ ( )\, e, y))
DE(A)

Y

fory>axz>0

G\ e, z,y) = (,02(/\,8>61 VAL (26(,;/))61 V(N e, )

+ TZ()\’ 5)81 ) VT’S()V g, x)el : VT’S()H €, y)
D.()\)

)

fory <x <0

(A, e)e Ll e yle - VES(\ e,z
G0 ) = (91 VMO8 ey Vi
+Tr()\, g)er - VEU(\ g, z)e; - ‘N/Z’“()\, £,Y)

D.(\)

Y
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for z <y < 0 it is possible to write

0r(A, €)e L Ybs e y)er - VOt (\ e, x
60y = (o T gl Vit
+ﬂ()\, e)er - VEr(\ e, z)er - VEU(\, e, )

D.(\) '

Remind that, here, py = py due to the choices made, and, importantly, we have that
Py (‘7 8)
D:())

is defined and holomorphic on the open set

Qo
C\ <_OO’ 2 ] ’
(for § = ¢ or § = r), and both are bounded uniformly with respect to €, locally in A.

Finally, we can derive bounds in the high-frequency regime. They are rough bounds, to

emphasize how little information is needed in that regime.

Lemma 12. For every v > 0, there exists R > 0, as well as C,0 > 0 such that, for every
e € [0,e0], for every A € C, if |A\| > R and |arg(\)| < m — v, we have that D.(\) # 0.
Hence, the Green function G(\, €, -, -) is well defined, and it satisfies, for every (x,y) € R?,

0:G(\ e, 2,y)| _ Ce "VNy

VI VI

Proof. As before, using Proposition 20, one obtain that for » > 0 fixed, there exists
4,hHF

G\ e, 2,y)] +

some R > 0 big enough such that P is defined and satisfies the bounds as in the

aforementioned lemma for § € {{,r} as long as |A\| > R and |arg(\)| < m — v. More-

over, R(v/I\)) < /A < 2 Furthermore, we can define Vs HF (), ), VruHF () ¢ ),

sin(v)

VEWHE(N ¢ ) and VESHE() ). by

VT’S’HF(A, €, :E) = exu_(A,a)PhHF()\, g, CE) )
—15 (A €)
) 1
th,HF()\,g,x) = Gxu+(A’£)Pr7HF(>‘a57$) r ’
—u=(A€)
1
VERHE () o ) = o O pUHE () o ) ; ,
—ut (N e)
n=(A,
1
VZ,S,HF()\’ , IE) = exllé_()va)Pf,HF()\, g, 1') ¢
—p5 (A €)
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As before, we define the dual basis of eigenfuctions : for every (), ¢) as above

Vl,u,HF()\ 5,3;) = eSﬁ(off/(Qg)Vl,u,HF()\,5,3:'),
Vz,s,HF(/\ e, 1) = o (o=—F'(U VlsHF()\’g’x>’
‘N/r,u,HF()\ e,1)i=e Sg(ag—f/(ﬂg)vr,u,HF()\7671,)7
PreHE () o p) = Sﬁ(og—f/(Qs)Vr,s,HF()\’ e, x).

As well as DHF()) by

DHF (VTSHF(A €, 0) Vl,u,HF()\’670)) ’
and then, we also p, gr, prur, Trur and 7 gp such that, for such A and ¢

Vl’%HF(/\v g, ) = pf,HF(Aa 6)VT7U,HF()‘7 €, ) + TZ,HF(A’ e)VnS?HF()\’ & ) ’

VT787HF(/\7 g, ) = pT,HF()‘v €>VZ’S7HF()‘7 g, ) + TT,HF()\7 E)VL%HF()\’ & ) :

We have that
VIAL<IDIF ()] < 4/,

for every |A\| = R and |arg(\)| < m — v. Furthermore, as p*" and 777

are bounded, we
have that for some constant M > 0, for any A\ and € >

> (0 as above
P (N e)
DEE(X)

THE() €)
DEE(X)

<M

Furthermore, one can obtain, as for the low-frequency regime, the expression

LYmsHE (N C{/lu,HF A
G e, y) = LR te VR e),

DEF(N] ifr >y,
e, - VISHE (N e x)ey - VEWHE () ¢ y) |
G\ e, z,y) = — ( DH)F(I)\> ( )1fq:<y.

Hence, for z >y > 0

A€ ~
G()\,E,.I',y) = (%el a2 7HF<)‘7€7y)

TK,HF()\a 5) 1,8 TS
Wel -V ()‘7579)) e -V ()‘agax)y
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and similarly forx <y <0,y <xr<0and 0 <z <y.
Notice that if z > y > 0, then we have that

Pr,HF()\, £,1) <—,UT 1()\ €)>
1

e - PT,HF<)\,€,Z/) <_lur ()\ €)>‘

S PT’HF()H&Z/) (_,Ur 1(>\ 8)) D )

<QC'M6§R(“C (Ae)(a—y)

CERG (1))

10.G(\, e, 2,y)| <

VI

e YR (A\e)) (

+

for some C' > 1 independent of A and &.

Forz >0>y

10,G(\ &, 2, )| <e®RH(e) yR(1h (\e)

Pr,HF()\,g,x) (-/ﬂ" 1()\ 5))‘ e

1
€1 - PZ’HF(/\7€)y)
_:uﬁ(/\7€>

< ORI Q)+ () =00)y R (1))

9

Y

for some big enough constant C' independent of A and e.

Hence, we have that for constants C', 8 > 0, respectively big enough and small enough,
for any A, e such that |\| = R, |arg(\)| < 7 —v and 0 < e < &,

10,G(\, &, 7, y)| < CeRWRADle—ul,

(One just needs to use here that |z — y| < 2max(|z|, |y|) for some cases.)

The bounds on G are then obtained by integrating in x the one on 0,G
Cle— RN z—y|
VA

Hence, for (A, ) such that |A\| = R, |arg(\)| < m# — v and € € [0,&], we have that
G(\g,-, ) is defined and satisfy the desired bounds. ]

IG(\ e, 2,y)] <
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4.2.3 Pointwise bounds

We consider, with 79 > 0 such as in Proposition 21. Define

“%*¢WWM*WW—?, w&f¢ww%wWW—@.

Thus, for € > 0 small enough, for any wy such that wy = wy , the solution Ag to

2\/(‘75 - f,(QJroc)Q - gg/<@+oo) + A =uwo

will satisfy A = —n;.

Similarly, one obtains this type of statement for ¢ in place of r.

First, for any 6 € (g, 7r>, fix a path, divided in two parts, of the form p — § — pe~*
on R_and p — o+ pe’? on R, for a given constant 6 > 0 big enough, such that this path
is valued in ﬂse[O,ao] p(L.), which exists and can be chosen independently on e. Note that
one can choose  as close to 7 as needed, up to making § bigger (which will be needed
later on).

Furthermore, for any p, (which will be chosen just after) noting Ao = 6 — pg cos(f)

and A\; = posin(f), as well as ¢* : [wh , +00) for € {¢,r} such that

@) = =i (Vo +idi = () = 07 +deg/ () —w)

for every w > wy and, ¢t [wfm, +o0)such that

¢'(w) = =i (Vo + i = (Flu ) =07 + e () —w).

for every w > wf;o. The dependence of ¢* on ¢ is implicit, to simplify a bit the no-
tations. We are now ready to impose the first conditions on py and 6. For § € {¢,r},
if 6 is close enough to m, and py big enough, Cﬁ(wfm) satisfies inf.cpoc) R (Cﬁ(wgo)) >
SUDce[0,¢] max(f (U o) = 0e,0: — [t)) |3(¢*(w)]. Then, with
\/min((f/(u_oo) —0:)? = (wp,)?, (0e = f'(u—))® — (w),)?)
po big enough, we have pg cos(6) +6 < —1. The first condition will allow us to use Lemma
6.
Apr is related to the part of the curve associated to [—pg,0] U [0, po]. Agr is the

related to the rest of the integral, for which decay uniform in ¢ is available, as we will
see later on. In particular, sharp pointwise bounds techniques will only be needed for the
low frequency (Apr) part, as well as the decomposition in a decaying part and a phase

part will only be needed for that part. The last condition needed on pg are that, for every
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p = po, |0+ pe®| = R, with R > 0 as in 12 (associated to v = 6), which ensures that one
can obtain pointwise bounds on that part of the integral.

Now, we define the low frequency paths. They will be characterized (except for the
original path and the small time one) by a point w € R, € € [0,£] and a side (¢ or r),
and, given § € {{,r} (say r), as well as an associated admissible w > w; . The path A is

then defined by, for every £ € R,

(w +i€¢"(w))* = (f'(Uro0) — 02)* + 42 (110
4 Y

A(§) =
A(=¢) = A(©).

Where the dependence of A on w and ¢ is omitted to simplify the notations.

Finally, such choices imply that for any w,.., the curves associated to any admissible
w smaller than wy,,, for any € € [0, 0] have their derivatives A’ uniformly bounded on
[—1,1] (uniformly in &, € and w).

Notice that there exist ¢,(e) and & (g) such that

e - Vl’“(O,e, )
e - V"™¥(0,¢, ")

Eg(g)U/

~ e

51”(5)Qf:7

as both are solutions to 02v + 0,((o. — f'(U.)v) + e¢'(U.)v = 0 decaying exponentially
fast at —oo and +o00 and there is only one nonzero solution up to a multiplication by a
scalar in L*(R).

In particular,

er,s<07 £, ) _ Cr(g) Ve,u(()?g’ ')7

ae)
and

Ce(e) = 7e(0,€)¢,(e),

as well as
67"(5) = Tr(ov 5)6€(5)'

We now consider the decomposition

Gi(w,y) = Gi(x,y) + G (y)UL(x)

=€

HF

r )

where we define G;*(y) as, for 0 <y < tw

. (e et e
G (y) = 20 j e 77 (A2, y)dA,
LF



and, for —tw'" <y <0

£,p - 67“ (€> et)\
Gtl) =55 D.(\)

e - VO, e,9)d\.

ALr

In particular, we have that, for z < 0 <y < twh g

1 e (VAN e, o) — VE(0,¢,2)) ~
G tA 1 » < » = X V’ns )\ dA

1
+ — G\ e, x,y)dA.

270 Jp e

for 0 < y < min(tw}; p, )

- 1 A ,Vr,u A V(A
Gi(z,y) =.JA Pt elen (A e y)er (A e, )
LF

d\
271 DE()\)
1 t,\Te()\ e)ey - V(AN e, z) — 174(0,e)e; - V¥(0, e x) -
Py VAR P d\
* 271 ALp l)5 A €1 ( 7€ay)

et’\G(/\, g, ,y)dA,

21 Agp

for 0 <z <y < twiyp

1 (VAN &, ) — V(0
G (ZE y) JA etAel ( ( 757x) ( ,6,.1'))
LF

VASION d\
27TZ DE(/\) (S5} Vv ( 757y)
1
+ — et)‘G()\75,:L‘,y)d)\
21 Apr
:L‘ J et/\el ) (TZ<)\7 g)vr,s()\7 g, SL’) — TZ(Ov E)VT,8(07 g, x>>el . ‘77",s<>\’ £, y)d)\
211 ALp DE(A)
1 npedele - Vit(\ex) -
B . Vr,s )\ d)\
97 J;\LF € D€<)\) €1 ( y €y y)
1 A
+ o7 e G()\,e,x,y)d)\,

Agr

for —twhp <y <0<ux

1 €1 (VT’S()U&J:) B Vns(O?g?x))) 7l
Ge(z,y) = - JALFe XY e V(A g, y)

1
+ — et’\G()\, g, z,y)dA,

211 Agr
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for max(z, —twh ) <y < 0.

~ 1 e - (V"(\e,x) —V"¥(0,e,2)) -~
Gg - tA 1 » < ] X V€7u )\ d)\
t($7 y) 27TZ J;\LF € Dg()\) €1 ( €, y)

_L et €1 V&s()‘? & JI)
27 Ja,, D.(\)

1J etATr(/\75)91 VE (N e x) — T,
2 ALp Ds()\)

pr()‘a 5)61 ’ Vﬁ,u()\’ & y)d)‘

L1 bu 5
(0,e)e; -V (0,6,1’)e1 (A e y)dA

1
+ — G\ g, x,y)dA,

271 Agr

for —twhp <y <z <0

~e _ 1 ix€1 - (Vﬁs()\757x> — Vr7s(07 )‘71‘)) 7,
Gt (.T, y) - 27_[_2 JALF € D€<)\) €1 V (>\7 g, y>d)\

1 (N V(N e x) — 7, ylu )
= et)\el (T ( ,€>V ( ,€,l’) 7 (0,8,%) <O’87I>)el -VK’“(A,E,y)d)\
27TZ ALp DE<)\)
1 t)\p7“<>\7 8)81 ) VK,S(AJ g, I)
D-(A)

e - ‘N/f’s()\, £,y)dA

271 ALp

1
+ — G\, e, 2, y)dA.

271 Agrp

Finally, for every x € R, for y > tw?,. and for y < —tw? ., we have that

G (z,y) = i G\ e, z,y)dA.
2m Jo

When it comes to obtaining bounds on the spatial derivatives, we remind that despite
the lack of smoothness (and even of continuity) of 0,G(\, ¢, -,y) at * = y, the temporal
Green function of a parabolic operator with smooth coefficients is actually smooth. As a
consequence, it is enough to obtain bounds on @,G%(z,y) (or equivalently on G¢(z,y) as
G;?(y)UL is anyway smooth in z) for x in a dense subset of R for t > 0 and y € R (y
avoiding a finite number of values depending on ¢) being both fixed. In fact, the bounds
on the linear operators here will be obtained by using a classical convolution estimate (for
any (¢,v) € L® x L, for any z € R, |¢ = ¥|(x) < ||¢] =[] 1) and direct bounds (such
as the fact that for any ¢ € LP(R,L;(R)) and any ¢ € L*(R), |{g ¢(z, y)v(y)dy| <
|9]l e .21 ®)) 1P ] ). Thus, for ¢ > 0 fixed, we will try to bound for all but a finite set

of y the values of |G5”(y)|, and, for such (¢,y), to bound G%(z,y) for almost all values
of x. We stress that, for hyperbolic problems, due to the presence of Dirac masses, the

analysis is quite different.

Proposition 22. We have the following bounds on G<(z,y), 0,G%(x,y) and G5P(y).
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There exist C,0,w',W", positive constants, such that, for every (x,y,t) € R*x]0, 2]

2
Y-
_gt

Ce

G5 (2, )| + Vt|0.G5 (2, )| < N

and for every (z,y,t) € R? x [1, +oo[

= e Oeagl(ﬂfoo)t B (y_(a's_f/(ﬂfoo))Q
G5 (@, y)| +10:G5 (2, y)| < | Ly<oe

—0|z|
4t e
Vit

(y—z—t(oe—f'(u_y)))*
+1yz<0€ at

Cef9 (U0t (e f(uyy))? el
\/i y>0
(y—z—t(oe—f (u,0))> >

+]]-y,x>06_ 4t
—wt —0lz—y
+ Cewtetleul,
C
e

Vi
o (y—t(oe—F (u, u)))?
QG W) <T@t g

Vit

G ()| <

02
, _(Z,/ft(aeff’(g_ao)))2 Ce“'te™t
+ e e A Ly + Vit

Vit

Before starting the proof, we explain here the main idea. One can notice that, from
the proof and the statement of the proposition stem that, actually, the main contribution
comes from the cases given for x and y being of the same sign, and = — y is, at the
right, when y — x is close to t(0. — f'(u, ), and, at the left, when y — x is close to
t(oe — f'(u_o)). It makes sense considering the way the hyperbolic problem actually
behaves. This observation will lead us, in the proof, to analyze carefully the points (¢, z, y)
such that y — x is close to t(o. — f'(u)), and also the point such that y is close to
t(0- — f'(uy)). These ones will actually be associated with an extreme localization (of the
solution in the original variable) of the form x — e_e%.

Finally, let us emphasize the main differences with [BR23]. First, we obviously need

here to separate the rate at 400 and at —oo. In particular, it requires to keep track, in

(yft(ori(hw)))Q or (yf:rft(oe;tf’(hw)))

2
the Gaussian, of the terms , and not transform the

1 into some « > 0 small, as the critical exponents would, otherwise, be unattainable.
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(z—y—t(oe—f"(u;5)))*
4t

Also notice that the Gaussians of the form need to be avoided, as,

otherwise, one cannot conclude either.

Proof. We first bound G! for 0 < t < 2. In fact, classical parabolic theory (see [Fri64]
for the general case) implies this result. We will still prove it by hand here. In order
to do so, with v > 0 defined by = — 2arctan(3) = v, we consider constants R, C

and 0" associated to the high-frequency regime Lemma 12, that is such that for every
Ce— RN |z—y|

VI

for every (z,y) € R? for every (z,y) € R?. Here, by choosing the path according to

A € C such that |[A| = R and |arg(\)| < m — v, we have |G(\, &, z,y)| <

0'|x — , R e . .
A(§) = ‘th + 1€(3 — sgn(ﬁ)z)) if 2 ‘Zt Y > 2R and A(€) = (R +i€(3 — sgn(£)i))?
/ p—
if M < 2R, the existence of positive constants C' and 6 such that, for every € > 0

small enough, for every x,y reals, for every 0 <t < 2,

Oy>

Ce t
7

through direct computations (by doing similarly with 0,,).

GE (2, y)| + |0:GE (2, y) |Vt <

Now, we go back to the general case, in which we will bound G;”(y) and G¢(z, ) for
t>1.

The bounds on the high-frequency regime for ¢ > 1 are obtained directly. One can
obtain, in that regime, a bound of the form

G5 (z,y)| < —e e kvl

Qs

|axG§("E7y)| < 736_“”6_9@_1/"
t

by just keeping the curve of the form & — e8¢ 1 § for €] = po.

As we are in the regime ¢ > 1, we thus obtain the desired inequalities.

Now, we will focus on the low-frequency part.

In that context, bounds on 0,G¢(z,y) are obtained similarly to those on G%(z,v) as
we restrict ourselves to a low-frequency analysis here, and, furthermore, here, the curves
can be chosen identically on each part, as the bounds needed on the integrand are true
both in the derivated case and in the case without the derivative.

The derivation of the bounds will be decomposed in parts involving convolution (that
is, when the term in the exponential is of the form R(u” (), €))|z — y|) for example), and

those in a product form (for example when we have as an argument of the exponential
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R(a™ (A e))|yl + R(u" (A €))|z|). The curves will then be chosen, with § =1 or § = r and

with wy(t, 2) (2 = |‘?| orz = kﬁ;m) and noting any a € R and § € R and A as described

before, associated with f, o and 8 such that in the exponential the term can be written

as R(LA(E)) + R (a —Va? — 4ef + M) tz> < e ZTO SR

2 4t 4
Note & = Supee[o,go] maX(Us - f,<ﬂ+oo)7 f,(ﬂ—oo) - Us)a B =0 maX(.g/(@-i-oo):g/(u—oo))'
Taking @ > 0 such that @ > 4& and &* > 3283, one obtains that with A(§) :=

: 2

0+ 16(sgn ?

(@ + i&Csgn(e)) _OL—H), one has, for any « of the form +(f'(u, ) —0o.) or £(f'(u_,)—0:)
taw,

as well as b of the form e¢'(u.,), we have, for any z >

e
2 2 (@t = 2) A

ER(AE)) + R <O‘ —Ve? b A(€>> , LIS (Gnan)) E2R(Ggnie))!

w

16(tw + tz) + bt,

which can be bounded by above by

Define

w(t, z) := max (wf;o,min (d), |§|>) : w"(t, z) := max (wj;o,min (d), ’tz|>) .

For the rest of this proof, we will apply Proposition 19 with a compact as in Lemma
21, this time choosing 4 > 0 small enough such that for every # € {¢,r}, for every
e € ]0,¢0], for every z € [wgo, @], the path A* associated to z is valued in that compact,
and also such that the image of the initial path for p € [—pg, po] is contained in the
compact. This is possible as we chose the bounds of the intervals (wgo, @) to ensure that
the paths remain bounded, and bounded away from the absolute spectrum, as this is
the union of the image of two compact sets by continuous mappings. The mappings are
(&e,2) € [-1,1] x [0, 0] x [wh,, @] — A*(&) where A is associated to & (through ¢*(w)
constructed before) and such that A*(0) = z, and § € {¢,7}. It is possible to ensure the
desired conditions as long as €y is small enough.

It twfm < z < t@, by Lemma 5, one can bound the term in the exponential as follows

IR(A(E)) + R <O‘ — /a2 —4db+ 4/\(6)) < bt (z —ta)® 528%(@)75'

2 4t 4
Finally, for some constants C' and w’ positive, for every ¢ € [0, ], for every (t,z) €
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(R*)2if z < twh (say # = r), then the conditions on ¢* ensures that, for A associated to
wy, satisfies that for every £ € [-1, 1],

tz

tRA(E)) + R <i<f/<u+oo) —0.) — \/(f/(u+oo2) —0.)? —4deg' (Uuy o) + 4A(§)>

W't w'z

2 2wr
o

Now, we are ready to obtain the bounds on the low-frequency part of the integrals.

We will focus here on the part associated to y > 0.

If x < 0, then a direct bound is applied using that for every A € K |G(\, ¢, z,y)| <
CetlalRe(AZ () ) fact, one then obtains, with w; <t, %)

f et’\G()\,a,x,y)d)\‘
A

Te—f'(u_ )/ (oe—F (u_ )2 —4eg (u_,)+4A(E)
f RN 6]z +R 2 Y A(©)]
S e 76{57
. D-(A©))]
(y—(oe—f"(w, ))0)?

Vit

If z >0 and y > max(twyr,x), then, we decompose the integral in two part, one
containing the p,, and which can bounded with the choice of the curve A; associated to

—
Wy (t, yT)’ and the 7, part with is bounded by choosing the path Ay associated to

wy (t, Y . For example, if t&o > y — x > tw] , then we have the bounds
t 70

f G\, e, x, y)d\
A

m(A)Pe(A( £):€) v i (Me)) (y—z) ‘
], e

J et)\T€<A(§) e)A
Ao D.(A(¢))

+

dg'

f1y0p) = /(00— P01 ))?~1g (. +4A(E)

w A |, ( 2 )W
B ()||A<>| e

A
| KA
- ('b

" (Ue—f (s p) =/ (o= (u, )2 —4eg/ (u, ) +4A(E)
2

Te(Az( ):€)|

Yo e

1
n J 002 IR(NE)
-1

(y—t(oe—f"(uy)))? (y—z—t(oe—f'(u)))?
e e 4t +e 4t

Vi

gcestg’(g+w)
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If z >y > twlp, then the py(= py) part is bounded with the curve passing through
w,(t,x —y), and the 7, one with the curve passing through w;(¢,y). If y < tw}, ., then we

will need a new ingredient. To bound terms of the form

e - (V™ (\ e, x)m(A e) — 14(0,6)V"™5(0, )
Dc(N) ’

uniformly with respect to A, by some term exponentially localized in z, we decompose K
in two parts. Outside of any given small enough neighborhood of 0 in K, it is obtained
directly, and, using the Cauchy formula, it can be extended in the neighborhood itself.

In this regime, assuming thus y < twyr and x < 0, then w, (t, %) If x <y, then we use

for the 7, part the path associated to w, <t, %), and, for the p, part, the path associated

to w, <t, yT) If x > y then, use the path associated to w, (t, Ty) for the p, part,

and the path associated to w, (t, %) for the 7, part.

We decompose in four parts those associated to ;Gi?(y). If y ¢ [—tw4p, twh ] then
we have that 0,G;"(y) = 0.

For y € (0, tw; )

: 77,8 d\
PG < 2o Ve T
. €
< ¢ —w't —%
x—=€ e .
Vit
For Y € (tw;m tw?{p)
€ Nrs d)\
|ath7p(y)| g J‘A )\etAeI . V : (A’87y)_D()\)' |
—t(oe—f"(u - 2
g?eeg’(u+m)t6_(y « Z{t(f+ ) .
t
Similarly, for y € (_t%lyo, 0),
131 B . dA
s f Acfer V(A e 0) 5 |
A g
(y=toe 1" (wyp)))?
g%egg/(%rm)te Y T +
For y & (—twp, —tcufm)7
: 7l d\
Gl f APy -V (/\,6,y)D (A)]’
A €
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—t(oe—f (u_)))?
[P L ()
Vit

For the bounds on G;”*(y), one can keep the original path and derive crudely a Gaus-

<

sian type estimate, with a time-increasing bound, as it is enough to obtain some 6 > 0

and some w” independant of ¢ € [0, go]. O

4.2.4 Linear stability

In this section, we will obtain, by using the pointwise bounds on Green functions
derived in the previous subsection, results on the linear propagators, and this will, in
particular, imply boundedness of the linear propagators in weighted spaces.

Fix x : Ry — R, smooth and nondecreasing such that x(t) = 0 for every ¢t < 1 and
X(t) =1 for every t = 2.

The linear form s, ,(¢) is defined, for ¢ > 0, by, for any vy € BUC®(R)

52 () (o) = x() fR G (t, y)oly)dy.

and S.(t) is defined, for t > 0, by, for every vy € BUC°(R)

5.0)(u0) = ) [ Gilewwluddy + (1= x(0) [ Gl y)uulu)iy
R R
For s.,(t) one can easily obtain bounds of the form (for every vy € BUC’(R))

[52.5(t) (v0)| < Ce™”[vg] oo,

for some positive constants C,w”. In particular, show that ¢ — s.,(t) is well defined.
However, on t — 0;s.,(t), sharper bounds are needed.
First, fix n > 0. We can derive the following bounds on the liner propagators L. from

the pointwise Green functions derived earlier.

Proposition 23. There exists C' > 0 big enough such that the following holds
For every w', as well as «, and ey, all positive and small enough, for every e € [0, o],

vy € BUC

(Bo+n)

|8:(8) (wo)llzz,, ., + min(L,VE)[0:5:(t) (vo) |z, |+ 10esep(t) (v0)|

S.
< Ce —eT(e 60+77)

|1S=(t) (vo) | 2,

e(0p+

o+ min(1,v/t)]0,S:(t t)(vo)llz + 052 p(t) ()|

e(fg+m)
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< CGiw,tHUQBM" HLao .

Proof. The only point needed to be explained is how to bound
(y—2)—(toe—tf' (uy)))*

€ i —e(fo+n)y
e dy,
L+ \/g

given 7 > 0 and = > 0. Since

(y — 2 = t(oe = ['(u)))? +4e(00 + )ty =(y — & — t(o: — ['(w1) = 22(0p +1)))*
+t2(2e(00 + 1) (20 — 21 (uy0p) — 26(00 + 1))
+ 4e(bp + n)tx.

Which gives

—z)—(toe—tf'(u, y)))?
LU 1 (e2o)) y? ee(Oo+n)(0e—f" (1 o) —e(00+m))t ,—e(Bo+n)x
(& (& (&
J 6—5(90+77)ydy < f e 4t dy’
R

Vi " Vi

< 0676(7(5’00 +n) +g/(2+oo))t@*€(90 +n)x

The rest of the bounds are similar are trivial. ]

Now, we consider the critical case, that is, when 6 = 6. but some algebraic spatial

localization is added to the exponential localization. Fix § > 0 to encode the latter.

Proposition 24. There exists C' > 0 big enough such that the following holds
For every o, ' and «, all positive and small enough, for every e € [0,0], for every

vg € BUCY. 4 and for every t > 0

[S:(t)(vo) e + min(L, V) |2S(t) (vo)l gz + [Grse, (1) (v0)]
C
6 e8]
(1 I (ét))ﬁ H( ( ) ) UOHL%?

[S:(t)(vo) e + min(L, V)| 025:(t) (vo)l gz + [Grse,p (1) (v0)]

<C LUtHUOG HHLOO

Proof. The only missing point is to obtain the polynomial decay in time from the algebraic
extra localization when considering contributions from integrals over y € R, when x > 0.

To do so, one may use that, for every decay t > 0 and x > 0, for any a > 0, there exist
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C > 0 and w' > 0 such that for any € > 0 small enough, for any a > a,

(y—a—ta)® 3at  (y—z—ta)®

f e 4t du <C' _ta? J‘1+2 e 4t J
————5dy <Ce” 16 + 5y,
r, V(1 +ey)? 2 Vi1 +ey)?

. C
(1+et)?

4.2.5 Nonlinear stability

Now, to obtain the nonlinear stability, we are just missing a last key ingredient, a
way to obtain sharper bounds on the spatial derivative of the solution. In order to do so,
we will use a maximum principle. We start by discussing the case of an algebraic decay.
Fix § > 1. We need to fix some x : R — R such that x(z) = 0 for every z < 0 small
enough, and x(x) = x for every x > 0 big enough, and y is smooth and nondecreasing.

u

Also fix 0 < a < min(go7fl(g+;°)’f/(*‘°°)fg). In order to adapt the strategy from [BR23] to

that case, we consider the following weight (defined for ¢,z > 0), where p > 0 is small

enough. Define the weight A, 3 on Ry x R* as

exp (S:OC e(1+ (es))—ﬂd:s) (14 (e(x(x) + pt)))Pet=x(@)

€ + e—all

A p(t,x) =

We will focus on this case here. The case of the exponential decay, that is with £(6y+7),
is similar to the work in [BR23].
We have the following on R, x R*

oAy, (e o
4,, 9= < T etp " Tt eleo) + ut))) ’

Oz Ae ep , sgn(z)oeol!
(¢ — 95 s /A
Aa,ﬁ ( 71:) 1 + €<X(I) + ,[,Lt) + e X (x) + A 6_a|x|
A e sgll(:v)ae_o"g‘*")2 e23
€T ) t — 96 / - >~ 7 J—
220 = (e O B ) i e T
a2672a|x\€

Hence, if the solution is defined on [0,7], then, on [0,T] x R

0sAc
A g

0u( Ao pdv) — P(Acpisv) — <ae W) - P ) -2 ) (0a (A su0))
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amAs,ﬁ .

f"(Ue +0)(Us + 0pv)
Ac s

- (%2~ o - v - P+ o)
€,8

/ " &CAEB 2
+eg' (U, +v) — f"(U. +v)0,v + 2 T
e,
0% A,
_félﬂ) Aep0x0 + £(g'(Us +v) = ¢'(Ue))UcAc g
€,

+ (f"(Ue) = [T + 0)UZAc s + (f(UL) = f/(Ue +v) =¥ )ULA:

In order to apply the maximum principle from Chapter 3, we observe that for any K > 0,
when &y, a, § and 0 are sufficiently small and x, is sufficiently large, there exists v > 0

such that the right-hand side of the above equation multiplied by sgn(A. 30,v) is bounded

—0 e
(1+et)s

at any (¢,z) such that |z| = z,, and

above by

Ko

/ 895$+
O]+ elolt, ) + = lt )] < s

|Ac 5(t, 2)0p0(t, )| = 0.
With this in hands the proof is then achieved essentially as the one of the main result

in Chapter 3. See the end of the next section for some omitted details about time integrals.
In the exponentially decaying case (when the weight is associated to 6y + 7, and not

the critical 6.), we consider a weight of the form

exp (S:OO 56_57(5,90+77)st> ec(O0+n)x (@) ge (e 00 +n)t

A, (tx) = R

The strategy is similar.

Note that for the case of a weight of the e*(®*m?+ the bounds obtained are of the
following form. For some 4 > 0 small enough, for every K > 0, when ey, a, § and ¢ are
sufficiently small and z, is sufficiently large, the right-hand side of the above equation

multiplied by sgn(A. ,d,v) is bounded by above by
_78 (66—87(5,90+77)t + Oée—oda:\)
at any (¢,z) such that |z| > z,, and

[ (t)] + efCotn)a+ lo(t, )| + e=Cotmz |0 0(t, 2)] < K §ecTE00+mt \/Nl& (t,2)0zv(t,x)| = 5.
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Which also allows to conclude in that case.
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4.3 Some smooth traveling waves

Fix real numbers u_,, < u_ .

The profile of the traveling wave solution to the hyperbolic limiting problem solves

(f/(Qo) - U)QB = g(Uy),

with the assumptions that U, is valued in (u_,,u, ), converges towards u,, at oo,
where u,,, are zeros of g, and such that f' — ¢ and ¢g do not vanish on (u_,,u, ).
Furthermore, we assume that u.,, are not zeros of ¢’. These assumptions imply that ¢
and ' — o are, if u_,, < w,,, (respectively u_, > u,.), of the same (fixed) sign on
(U_opy Uy o) (respectively of opposite signs).

From now on, we will assume that u_, < u,,. Applying the transformation v — —u
allows one to go back to the other case, and it does not change the stability properties
of the wave.

Also, ¢'(u, o) (respectively ¢'(u_.)) is of the same sign as —g (respectively of the
same sign as ¢g) on (U_,, U, ). We assume from now on that ¢'(u_,) < 0 < ¢'(u,o).
The application transforming a function u of the variables (¢,x) to @ : (¢,z) — —u(t, —x)
enables us to go from one case to the other. Hence, g and f’ — o take only negative values
on (ﬂ—oo>ﬂ+oo)'

Under such assumptions, there exist a wave profile solution to (f'(Uy)—0)Ug = g(Uy),
converging towards u; at R.. First, we will show that, in that context, and for ¢ > 0
small enough, there exists a wave profile U, solution to eU” = (f'(U,) — o)U. — g(U,),
converging towards w, at Fo0o. Furthermore, we will obtain, in particular, that, up to
some spatial translation, U, converges pointwise towards U,.

We consider (6.)o<c<c, defined by 6y := S y) 0, and

O'_f/(ﬂ+gg)
o—f"(u, )=/ (c—f"(u 2—deg’ (u
0, = I =/ J;a(’“")) 1e9 (’M), and so, we have that 0. = 0y + O.(¢). As in the

previous section, we note 7(g,0) := €60 + (f'(ur0n) — )0 + ¢’ (U o).

We fix, for a given 7 > 0 some function ¢ : Ry xR, xR, such that if 7(g,0) < ¢'(u_.,)—n,
then ((t,e,0) = 1, and ((t,,0) = t otherwise. It is there to take into account some issues

to bounds an integral of the form

t
f e—a(t—s) eozsds7
0

compared to

t
f e—(a+n)(t—s) e ds.
0

Theorem 17. Let f and g, smooth functions from R to R, 0 € R, 000 >, Bmae > 0
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and enforce the previous assumptions on f, g and (u_,u,,) € R%
There exist g > 0, (U.)oge<ey, C > 0, & > 0, such that, for every e € (0,0, for
every Opmae = 0 = 0., and for every initial data vy € BUC}(R) such that ||U[)HW91,00 <9,

the solution w to 4.1.1 generated by U, + vy satisfies

[w(t,) = Uellzg < Cetmx@ @b rED g | e,

[0xw(t, ) — Q/EHLZO < CC(t, 0, 6)etmax(g/(ywo),T(sﬁ))HvoHWal’oo'

Furthermore, if the initial data vy satisfies also vg € BUCy_4(R), and ”'UQHWOLO% < 9, we

have that w satisfies

Hw<t7 ) - QEHW;E’OO < WHUOHW;EOZ

Let us emphasize here that the weights considered are actually strong enough to get
rid of the zero mode. As a consequence, we obtain an asymptotic nonlinear stability

result, not an orbital one.

4.3.1 Existence of the parabolic approximations

We are looking for wave profiles solutions to
(f'(U.) = o)UL = g(U.) + €U

which approximate the wave profile U, above in the inviscid limit.
In fact, we will ensure that by building (U, ). as a family of solution to order one ODE

associated with a family of nonlinearities of the form (F.)., such that F. converges, in

some sense to be precised after, to J (which will be noted F, the dependance on
o

"
the given speed o being implicit) when e goes to 0. As the limiting front only exist if
sen(Fly_ u, ) = 880(Uso — U_g), We limit ourselves to that case, and, furthermore, we
have that we are in that case, in our framework, if and only if f’ — o is of the opposite
sign of the one of ¢'(u,.,) (or, equivalently, of the same sign as the one of ¢'(u_)).

We want to build some function defined on [u_,u |, R. of size € in L* and of class

C' on (u_.,u, ) such that solutions to

y' = F(y)(1+ R(y))

with values in (u_,u, ), are actually solutions to

ey’ = (f'(y) — o)y —g(y).
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Which is true if and only if the following holds on (u_., 4, ),
eF(1+R)(F'1+R.)+ FR.) =(f —o)F(R. +1) — g.

This is equivalent, for € small enough, to the following ODE

f‘//
fr=o

f-op

R/s_( (f/*0->2 2_2/

R=—_"/ R R.+1)+
g eg(1+R.) °© 9( )

(1+ R.)

From which we can obtain a Duhamel formulation. From now on, we assume that w,, >
U_ o, §'(Uig) > 0> ¢'(u_,) (and, hence, f' — o <0 on [u_,,u,,]).

To obtain the bounds necessary to apply a fixed point argument, we will need to use the

J

5(u+oo - U) (U - Q—oo)

fact in the exponential, one has a term bounded by above by v — — ,

allowing to tame the singularity.

Proposition 25. With the assumption made before, we have that there exist g > 0,
C > 0 and 0 > 0 such that, for every e € (0,¢¢), there exists a unique smooth solution
of U + (o — f/(U)UL + g(U,) = 0 such that U_(0) = Uy(0), that converges to u,,, at
Foo.

Finally, it satisfies

U (z) —uyp] < Ce ™ onRy,
IU.(z) —u_| < Ce”™ onR_,
U (z)| < Ce "l onR,
\U"(z)] < Ce™®l onR

Proof. In order to prove the existence the wave profile, we will begin by showing the
existence of R., as announced before. To do so, we will apply a fixed point argument to
the function (which needs to be shown to be well defined)

T.: C%([uesp Uy ), R) = C¥([Usg, 4], R)
R <UH f exp (fvwds> (W(HR(w))

AN Moy (0) o
@) RW) ()0 oo\
g(0) W@M1+RWDR())d)'

To show that 7. is well defined, one needs some identities. For every v € (u_.,u, ),
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e>0and a >0,

f exp f s S LY
U_ oo wE(s —u o) e(w—u_y) o

v v o 1 1 o %
f exp (J a ds) ds=—|1- <v Lo ) )
U_ w 5(@4.00 - S) €<Q+oo - w) « Ui —U o

and also, for every R € C%([u_.,u, ], R),

lim exp f —« ds R(w) ds = —— ,
VU Jy w8 —u o) ) e(w—u_y) a

lim UOO exp U —« S)ds> = Rw) gy = Blte)

YT oo w ‘€<Q+oo - Upoo — w) @

They allow us to show of the form, that 7. is well defined. It also allows us to show
that for some positive constants gy, C; and Cs, for every € € (0,¢0], it maps the ball of
center 0 and radius C'i¢ into itself, and more precisely for every ¢ > 0 small enough and

every R € C%([u_y, u, ], R) such that || R » < Cie
C
ITe(R)lle < 71(5 + [ R|Z),

and, restricted to that ball, has a Lipschitz constant bounded by Cse, more precisely
we have that there exists C' > 0 such that for every ¢ > 0 small enough and every
(R1, Ry) € C°([u_o, tyop ], R) such that max (| Ry =, |Rel =) < Cie

|T2(Ry) = To(Re) = < C (e + | Buflo + | Bafl o) [ Ry — Rof e

Now, U., the solution to :

UL = F(U.)(1 + R(U.)) onR,

€

U.(0) = Up(0).

The bounds are obtained directly that for some constants C,6 > 0, for all € € (0, &¢],

by noticing that for x > 0 big enough,

(@+oo - Qe)/ < -0 (Q+oo - Qa) )
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Hence, for all nonnegative z,

From those, it is easy to derive from these identities that by eventually taking C' bigger

and v smaller, but still positive, that for any x nonnegative
UL (2)] + [UL(=2)| + |UZ(2)| + [UZ(~2)] < Ce™™.
In fact, it is proved for U’ by using that, for e > 0 small enough, for every v € [u_..,u, ],
|F(v)(1+ R.(v)] < 2| F'|oo min(u, o — v,0 — u_).
For Q’E', as
U = F'(U.)(1 + R(U.))Us + F(U)RL(UL)UZ,

it is enough to use that F'(1 + R.) + FR. is bounded on (u_, U, ).
[l

Let us stress out that, despite the integral form of 77, due to singularity at the endpoint
U_y, one may have T.(R).(u_.) # 0 for some R € C°([u_y,u.,], R), which is crucial
as, we knew before the start that if R, exists, then R.(u_.) # 0.

4.3.2 Maximum principle and stability of evolution systems

To bound the linear evolution systems, we will rely on the use of maximum princi-
ples, and in particular, the weights created to do so will need to take advantage of the

convective term.

Proposition 26. Let a € C°([0,T], BUCY(R)) and h € C°([0,T] x R x R), (h being
lipschitzian in the third coordinate) and 6 > 0 such that 1540y (v)R(-,-,v) < 0 for all
v e R (independently of the other variables). We have that any mild solution in BUC(R.)
to

atv('a ) + a('7 ')aﬂcv('7 ) = h(, '7U<'7 )) + 831}(', )
such that v(0,-) < § on R, and v(0,-) € BUC®(R) satisfies |[v(t,-) | = < & on [0,T].
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Proof. We fix such a, h, but assume them to be smooth for the moment, and such that
Lis400)(0)R(:, -, v) < —Y1(s5400)(v) for some fixed positive v, independent on v, t and .
Through a perturbation argument, we will obtain the general case.

In that case, we first assume that v(t,-) goes to 0 at © — +co for every t € [0,7] and
apply the Gronwall lemma to ¢ — { (v(t) — ), obtaining that v < 6 on [0,7] x R.

In order to relax the vanishing condition at +00, we replace v by wy(t, x) = v(t, x)e‘em.
By taking any 6 sufficiently small, we can apply the previous result, using that v > 0.
Letting 6 go to 0 gives the result in that case.

The general case is then obtained by regularization and then taking the limit. In par-
ticular, one needs to add a small perturbation to the regularization of h. It is done in
order to ensure that the h obtained satisfies that there exists some v > 0 positive such

that, for v = 9,

h(-, - 0) (5 400) (V) < =71 (5400) (V).

The details are classical and thus omitted here. O

Now, we turn to the linear estimates, applying the maximum principle we proved

earlier 26 to the linear problem.

Proposition 27. Let m and M be two positive constants and ¢ € L' n CY(R) such that
0< o< M and|¢| < M o.

There exist positive g and C such that, for any 0 < € < g9, b e R, T > 0, a €
C'nWL*([0,T] x R) and 8 € C°([0, T] x R) satisfying

mé]a\éM, B<Meo—0b,

any solution v to
Oy — 8(?52} + ad,v = Po

satisfies
lot, e < Ce™™[v(0, )| z.

Proof. Tt is sufficient to obtain the bound, for every t € [0,7] and x € R
v(t,x) < Ce™[v(0, )| =,

w := ve” that satisfies a modified equation of the form as the linearity of the operator

gives the rest of the bound.
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The idea is to build a new unknown
Ow + a0, w = €&§w + Bw
looking for 5 nonpositive on [0,7] x R
Ow — 02w + (a + 280,K)0pw = (B + Opk + (0 + 260,K) 0k — (02K + (0pk)?)w.
Thus, we want to ensure that
B+ 0k + (o + 260,K)0pk — (02K + (025)%) <0

on R.

It is straighforward to check that x(t,z) := bt + L Sg ¢ satisfies the above inequality
provided that g¢ is small enough, L has the sign of o and |L| is large enough (indepen-
dently of €).

Since ¢ is integrable, the proof is then concluded by applying Lemma 26. [

Now, we can obtain results that apply to evolution systems, and in particular to

obtain bounds in weighted spaces. We will place ourselves in weighted spaces of the form
BUC?(R).

Let us note that we only consider weights on R, .

Proposition 28. We consider f and g as before, as well as g small enough such as in
the proposition 25, and some fized Bpaz > 0 and Op,q,. There exist 1 € (0,e0], 6 > 0 and
C > 1, for every 0 < & < &1 and every T > 0 and every v € C°([0,T], BUC*(R)) such

that [v]| L= o, Bucomy) < 0 we have the solutions w to
dw + (f'(Us +v) = 0)0,(w) = eqw + ¢'(Us)w + (U )w

satisfy
[wt)lzz, < Clw(0)zz, exp ( f max (¢ (1), 9 (110 + O((f (t420) — 7)) +592>)

for every 0. =60 = 0.
Furthermore, we also have that if |w(t,.)|re < & for every By > 8 > 0 and 0 = 0.
that
|1+ (@) Dwlt, ) + (1 + %) [w(t, e < CI(1+ (2)Dw(0, )|z

Proof. Again we want to design a suitable space-time-dependent weight p so as to replace
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w with w,. Then w, satisfies

Oy, + (f’(UE +v)—0o+ Qsazp) Oy, =020, + (g'(Qa) + (f'(U. +v) — o) Cap)

P P
an (axp>2 ) -~
o +op+ f(U)UL | w
p (p)2 tp f ( ) P

To derive the first bound, we choose the weight of the form

p(t, ) = )

Y

where x is a smooth nondecreasing function which is constant equal to L on (—oo, L — 1]
and, for every x € [L + 1,+0), x(x) = z, |[x'|z» < 10 and ||x"|= < 10, where L > 10 is
a constant. Thus

O, + (f'(Us. + ) — 0 + 260) 0,1, — 020, = (¢'(U) + (f'(Us + v) — 0)0X/ ()
—e(0x/(2))* — ebx" (x) + 2e(0X' (2))?
+f1(U)U) W,

Hence the result in that case, as the crucial term ¢'(U,) + (f' (U, + v) — 0)0x'(z) —
e(0x' (1)) — ebx"(z) + 2e(0X'(x))* + f"(U.)U. is equal, on R, to a term exponentially
localized plus ¢'(u, o) + (f'(u,y) — 0)0 + €62, and, on R_, is equal to ¢'(u_,,) plus an
exponentially localized term, and one can thus directly apply to that case the previous

lemma.
Now, we assume that we are in the case associated to 6 = 6..

For a weight of the form

p(t,x) = (ct + x(x)) X,
Thus
p(t, )
ct + x(z)’

Buplt, ) =B (@ >(’“‘”>) + 0. (@)l ),

orp(t, ) =cp

ct + x(
p(t.) =0 @pte.) + (030) + DY i
B (z) Bx'(x)?
@ @
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Therefore

JU) + (f'(U. +v) o) (QEX/@) L AXW@) >+ cBY'(2)

x(z) + ct x(x) +ct

/ 2 " /
e (egxf(x) ¢ X) ) y @8 ey v s X e -

x(z) + ct x(x) + ct (x(x) + ct)
U ol : D 1) 4 X (@) X' ()
) = ) + (P 0) = Pl (030 + L) e
" X”(ZZZ) € 2 X’(ZE)Q " /
+ete) + e S0 e U g
288+ ot ) N ()5

on R,.

Taking ¢ positive sufficiently small, one concludes the proof by applying Proposition 27
with b = 0 and ¢(z) = C/(1 + |x|)* with some C' > 0 big enough. The equality above
gives the inequality on R, for C' big enough, and on R_ as yx/, x” is zero on some neigh-
borhood of —w0, ¢’'(u_,,) < 0 and ¢'(U.) converges exponentially fast towards ¢'(U_.,),
it is obtained directly. O

4.3.3 Nonlinear stability

Now, we can turn to the proof of the main statement of this part, Theorem 17.

Proof. We first prove the exponential bound. Let us observe that 7(g,-) is nonincreas-
ing on [0:,20,,.. + 1] (provided that &¢ is chosen sufficiently small) and bounded away
from zero uniformly in € on [26;, 20,4 + 1]. By considering quadratic zeroth order
terms as source terms and using a Duhamel formula, this is sufficient to conclude that
there exists a constant C' uniform with respect to & such that if [v[ = oryBucom)) <
3C et max(g'(W_co):T(E0) | | BUCO(R), then provided that ¢ is sufficiently small,

[0l oo go,71: 80y < 2Ce™ maX(g/(E‘w)’T(E’e))HUOHBch(R) since
t
J\ e—(t—s) max(g,(ﬂ,oc)77(€’29)) 6—25max(g’(gioo)ﬂ-(a,e))ds S e_tmax(g'(g,oc)ﬁ(aﬁ)) '
0

A continuity argument then concludes the relevant bound in L®(R,; BUCJ(R)).

To bound 0,v, we use a similar argument but this time we consider as source terms in

the Duhamel formula terms that are quadratic in (v, d,v) or linear in v with coefficients
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expontially decaying to zero at +oo0. In doing so we use that for any v > 0

Y

t
J o (t=s) max(q/(u_,)7(=.0+0) p—smax(g’ (u_),7(e0)) g < otmax(y’(u_o,),7(=0))
0

if ¢(u_y) > 7(g,0+v), with a constant that blows up as 7(e, 0+ v) gets close to ¢'(u_),

and that, anyway

t
J o (=9 max(g/ (u_ ), (e0+4v) —smax(q'(w_,)m(e6)) gg < po—tmax(s'(u_,)(0))
0

We finally also need that

t
f 6—(t—s) max (g’ (u_,),7(e,0+v)) 526—23max(g’(gioo),T(s,H))dS < te—tmax(g’(gioo),‘r(sﬁ)) )
0

The proof of the algebraic decay rates is completely similar, using that

t
J (=) max(g/(u_)r(e200) _ 45 1
0 (1+5)28 = (1+1¢)8

and for v > 0

t
J (9 max(g/w_)reorry B8 1
. (145)8 = (1+1)°
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CHAPTER 5

PROSPECTS

We conclude this thesis by gathering what we believe to be the main open questions

related to the present work.

5.1 Combustion models

5.1.1 Majda model

In the special case of main interest when f(U) = U?/2, all combustion waves of the
Majda model with step-like ignition function have been proved to be spectrally stable
[JY12]. This naturally suggests as an avenue to describe the large-time dynamics near
waves of arbitrary amplitude the possibility to extend Lyapunov-type results that take
spectral stability as assumptions and prove nonlinear stability, as in [YZ20, FR22], so
as to cover the present case. Note that our high-frequency damping estimates provide a
significant part of the expected analysis. The missing part is essentially linear and we
expect that the insights gained in [YZ20, FR22| could be of direct use.

5.1.2 ZND model

In the ZND model, we note here two different kinds of questions. First, for exponen-
tially localized weights, only instability was proved, but the question of the formation of
singularity of wave breaking type needs to be explored.

The second question which needs to be answered about the ZND model is whether or
not one can recover high-frequency damping properties for the ZND model by introduc-
ing crossed weights, that is, as ZND is a system, one can choose to write a function in a

particular basis, and each component is chosen in a different weighted space.

5.2 Stability of shocks

The study, at the hyperbolic level, of the asymptotic behavior of waves contaning
shocks is well developped in the scalar case, in particular with [DR20, DR22, GR]. How-
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ever, in the system case, a lot of work still needs to be done. Several steps are clearly
identified currently as the needed one to be realized to generalize [YZ20, FR22].
To indicate next steps in different directions, extensions should be able to cover for

general systems
1. Riemann shocks without spectral gap
2. waves that are not piecewise constant but exhibit a spectral gap
3. Riemann shocks of multidimensional systems.

Obviously after such separate generalizations, one should look to treat cases mixing them

or situations even worse (waves with caracteristic points, periodic waves,...).

5.3 Uniform stability in the vanishing viscosity limit

Even for scalar equations, some questions remain concerning the uniform stability of
viscous approximations of stable traveling waves of hyperbolic equations. An obvious one
is the consideration of waves with characteristic points whose stability has been analyzed
in [DR22]. Even if one restricts to Riemann shocks a few important questions are still
open.

One of those is the consideration of quasilinear regularizations, replacing €02 with
£0z(a(v)d,v) where a is bounded from below away from zero. Applying our strategy
would require in the Duhamel part of the estimates a control of 0?v. Yet, unlike what we
have done for 0,v, even in the near field, one cannot gain a control of ¢?v by the Duhamel
formula itself. A significant modification of the strategy of proof would be needed here.

Another one is the consideration of multidimensional scalar equations. The hyperbolic
counterpart is available in [DR20, GR]. In the multidimensional case, the phase shift also
depends on transverse variables. Moreover, in the hyperbolic case, transverse derivatives of
the phase shift do not decay, but this is compensated by some special uncoupling between
the phase shift and the shape perturbation. In the parabolic case the uncoupling property
is lost but one expects a non-uniform algebraic decay for the transverse derivatives. How

this could be combined still needs to be worked out.
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