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Abstract

This thesis investigates the question of adversarial examples in machine learning. These
small, imperceptible perturbations of an input can be crafted to fool any state-of-the
art classifier, and transfer to other models that solve the same task. Such vulnerabilities
constitute a major barrier to the use of machine learning for critical applications, from self-
driving cars to automated surgeries. Currently, no research team has found any "optimal"
classifier, whose performance can be mathematically certified against any attack, and new
defenses continue to be outperformed by new attacks. This raises two major question :

Q1: Is it only possible to obtain a classifier that performs optimally under any attack?

Q2: If so, how much specific information would we need to certify its performance?

We investigate Q1 through the lens of game theory. We show that for the 0/1 loss,
there can be no pure Nash equilibriums. This means that no deterministic classifier can
performs optimally against every attack : even with infinite processing power, we could
only have guarantees against some specific set of attacks. When using convex surrogates,
such equilibria can exist, but will always be unstable, i.e. impossible to compute in practice.

This encourages the use of randomization. We show that starting from any determinis-
tic base classifier, it is possible to design a randomized mixture that strictly outperforms
it under attack. We then provide an algorithm to output such a mixture, showing both
theoretical guarantees and empirical results on CIFAR10 and CIFAR100. We then show
that randomization in the form of noise injection increases the stability of equilibria at
the cost of natural accuracy. We also show conditions on the existence of equilibria when
the attacker is allowed randomization.

We then investigate Q2 by conducting an analysis of randomized smoothing certi-
fication. We quantify the gap between current, single-noise certificates, and the best
theoretically possible one, and show that it explodes as dimension increases when the
curvature of the decision boundary is high. This shows that more information is needed
to bypass the current impossibility results. We then focus on the class of noised-based
certificates, and introduce a new framework to collect information from several noise dis-
tributions at the same time. By separating the information gathering from the smoothing,
this additional information requires no further loss in accuracy. We show that this allows
to approximate the perfect certificate arbitrarily well, at the expense of high computational
cost. We finally study how to use invariances, symmetries and prior information to reduce
that cost, and provide a randomization-based certificate that can be computed indepen-
dently of the dimension.
We conclude this work with open research leads and perspectives.
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Résumé

Cette thèse porte sur la question des attaques adversariales en machine learning. Ces
perturbations, imperceptibles à l’oeil humain, sont conçues pour induire les classifieurs
en erreur, et transfèrent à nombre de modèles similaires. Les meilleurs réseaux actuels
sont vulnérables à ces attaques, ce qui constitue un obstacle majeur à l’utilisation du
ML pour des applications critiques comme les voitures autonomes ou les drones. A
l’heure actuelle, aucune équipe de chercheurs n’a identifié de classifieur "optimal", dont les
performances seraient garanties contre toutes attaques, et les nouvelles défenses continuent
d’être vaincues par de nouvelles attaques. Cela soulève deux questions :

Q1: Existe-t-il un classifieur optimal contre toutes les attaques à la fois ?

Q2: Si oui, de quel degré d’information a-t-on besoin pour garantir ses performances ?

Nous étudions Q1 sous l’angle de la théorie des jeux. Nous montrons qu’il n’existe
pas d’équilibre de Nash pur pour la 0/1 loss, et que par conséquent aucun classifieur
déterministe ne peut être optimal contre toutes les attaques à la fois, même avec une
puissance de calcul infinie. Avec des surrogates convexes, des équilibres purs peuvent
exister, mais ne peuvent être stable; autrement dit, ils seraient impossibles à calculer en
pratique. Tout cela encourage l’usage de la randomisation.

Nous montrons qu’à partir d’un classifieur déterministe, il est possible de créer une
mixture qui performe strictement mieux sous toute attaque. Nous présentons un algo-
rithme permettant d’obtenir cette mixture, et fournissons des garanties théoriques et des
résultats empiriques sur CIFAR10 et 100. Nous montrons ensuite que l’injection de bruit
stabilise les équilibres, au prix d’une augementation du risque naturel. Nous étudions
également les conditions d’existence d’équilibres de Nash lorsque l’attaquant est randomisé.

Nous étudions ensuite Q2 en analysant la certification pour Randomized Smoothing.
Nous quantifions l’écart entre les certificats actuels à bruit unique, et le certificat parfait,
et montrons que cela explose lorsque la dimension augmente, aux points où la frontière
de décision a une forte courbure locale. Cela montre la nécessité d’utiliser davantage
d’information pour dépasser les résultats d’impossibilité actuels. Nous introduisons une
méthode permettant de collecter de l’information de plusieurs bruits à la fois, indépen-
damment du smoothing et donc sans perte d’accuracy naturelle. Nous montrons que cela
permet d’approximer le certificat parfait avec une précision arbitraire, au prix d’un fort
coût en calcul. Nous étudions ensuite comment exploiter les invariances, symmétries et
l’information a priori pour réduire ce coût, et présentons un certificat basé sur des bruits à
centres aléatoires, pouvant être calculé indépendamment de la dimension du problème.
Nous concluons ensuite cette thèse par des questions de recherche ouvertes, ainsi que
quelques perspectives sur l’avenir du domaine.
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Notations and Symbols

We use bold lower-case to denote vectors and functions with multidimensional outputs
and standard lower-case to denote scalars and real-value functions. Depending on the
context, we either use calligraphic font or upper-case to denote ensembles – most of the
times calligraphic, sometimes upper-case to denote sub-sets or elements of a set of sets.
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∆(K) K dimensional simplex ∆(K) := {z ∈ RK st ∥z∥1 = 1}

∥v∥p ℓp-norm of v ∈ Rd for p ∈ [1,+∞) ∥v∥p =
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i=1 |vi|
p
)1/p

∥v∥∞ Infinite norm of v ∈ Rd ∥v∥∞ = maxi∈[d](|vi|)
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Vol(B) Volume of the sub-spaceB ⊂ Rd

Probability
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P(Z) Set of probability distribution over (A(Z),Z)
FZ,Z′ Set of measurable functions fromZ toZ ′

ψ#ρ Push-forward of ρ ∈ P(Z) byψ ∈ FZ×Z′

E[.] Expectation of a random event
P[.] Probability of a random event
N (., .) Gaussian distribution
Lap(., .) Laplace distribution
Φ cdf of the standard Gaussian distributionN (0, 1)
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Classification and Learning theory
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D Ground-truth distribution
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sign(x) Sign function applied on x sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0

xx



Abbreviations
a.k.a. also known as
cdf cumulative density function
C & W Carlini and Wagner (attack)
e.g. exempli gratia
Eq. Equation
ERM Empirical Risk Minimization
FGM Fast Gradient Method (attack)
i.e. id est
i.i.d. identically and independently distributed
PGD Projected Gradient Descent (attack)
resp. respectively
s.t. such that
SRM Structural Risk Minimization
std standard deviation
w.r.t. with respect to

xxi





1 Introduction

Contents

1.1 Context & Motivation . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Machine Learning and neural networks . . . . . . . . . 1

1.1.2 Vulnerabilities on deep learning models . . . . . . . . . 3

1.2 Position of the problem . . . . . . . . . . . . . . . . . . . 3

1.2.1 The standard binary classification problem . . . . . . . 3

1.2.2 Classification under attack . . . . . . . . . . . . . . . 6

1.2.3 A game theory perspective on adversarial example attacks . 7

1.2.4 Randomized smoothing and certification . . . . . . . . 8

1.3 Main contributions of the thesis . . . . . . . . . . . . . . . 9

1.3.1 Research papers . . . . . . . . . . . . . . . . . . . . 11

Machine learning algorithms are now at the center of many aspects of our everyday
lives, from self driving cars to shops that automatically track your purchases. However,
they sill exhibit some glaring vulnerabilities, that a malicious agent may use to fool even
the most successful classifiers to this date. The industry is thus the scene of a race between
attackers and defenders, whose stakes are the viability of machine learning itself. In
this chapter, we present the context in which this thesis takes place, as well as our main
motivations in section 1.1. We will then present, in section 1.2 the global problem that we
will tackle, namely How to design robust classifiers under adversarial perturbations? Finally,
we summarize the main contributions of this thesis in section 1.3.

1.1 Context & Motivation

1.1.1 Machine Learning and neural networks
Machine learning is a category of algorithms, that leverage historical data to accurately
predict new outcomes without being explicitly programmed to do so. They are parametric
functions, made of two main blocks : a representation of the data, extracting from the input
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/Regression
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Figure 1.1: Decomposition of a machine learning algorithm. Standard algorithms only learn the
classification function, whereas neural networks also learn the representation

the necessary concepts to solve the problem, and a classification or regression algorithm, that
weight these concepts to predict new outputs (fig. C.2). When the data is well represented,
simple algorithms like logistic regression are enough to make prediction in seemingly
complex problems such as whether to recommend a cesarean section ( [Mor-Yosef et al.,
1990]).

Deriving "good" representations of the data however, is a much bigger challenge. In-
deed, raw data is often impossible to analyze directly, even when using the most complex
classification aglorithms. There is for example no direct correlation between the relative in-
tensity of a pixel in an image, and the presence or absence of a dog in that image. For many
applications with structured data, such as recommendation engines [Khanal et al., 2020]
or spam filtering [Dada et al., 2019], representations were crafted manually by experts,
using prior knowledge on the problem at hand. However, as tasks became more complex,
working on high-level, unstructured data such as images and sounds, the representation
design quickly became the bottleneck of the process. Hence came the idea of learning
these representations from data as well.

Neural networks exist as early as 1943 with [McCulloch and Pitts, 1943] and the
multi-layer perceptron. They consist on several layers, learning successive representations
of the input, and expressing them in terms of other, more simple representations. For
example, a cat can be described in terms of eyes, nose, ears and fur, which can all be
described in terms of geometric shapes, themselves an arrangement of lines and angles,
until the bottom layer directly manipulates the pixels of the image. Given enough depth,
i.e. layers of representations, neural networks provide enough complexity to approximate
any continuous function.

Convolutional neural networks were then introduced for image recognition by [LeCun
et al., 1998], using prior information on the problem (namely translation invariance) to con-
strain the optimization. However, it is only with the progress of graphical programmable
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units (GPUs) and specific architectures built to exploit their processing capabilities, that
neural networks truly began to shine, as [Russakovsky et al., 2015] managed to outperform
the state of the art on Imagenet by more than 10 points, using AlexNet, a convolutional
network with over 60 million parameters. Today, deep neural networks achieve state-of-the
art performances in various domains such as image recognition [Simonyan and Zisserman,
2014], natural language processing ( [Zhang et al., 2018], and [Fedus et al., 2021] with
over one trillion parameters), and speech recognition [Hinton et al., 2012], exhibiting
remarkable generalization capabilities on new data.

1.1.2 Vulnerabilities on deep learning models
Although deep neural networks perform exceptionally well when evaluated in practice,
their way of making predictions remains opaque, as the representation learned by the
intermediate layers is not easily interpretable in human speech. The inability to provide
an explanation for the decisions made by such algorithms raises the question of whether
special cases may exist, that are not captured by test datasets, and where the algorithms
would make illogical decisions.

In 2013, [Szegedy et al., 2014] identified such a vulnerability : deep neural networks can
be fooled by small, imperceptible perturbations of the input, that are specifically crafted by
a malicious attacker. These adversarial example attacks were then shown to fool algorithms
in critical applications such as self-driving cars ( [Sitawarin et al., 2018], [Morgulis et al.,
2019]), speech recognition ( [Alzantot et al., 2018], [Qin et al., 2019]) or malware detection
systems ( [Li et al., 2019]). Worse, those attacks are simple to implement, and can be
reproduced by any individual with limited computational power. Furthermore, they can
be computed with no information on the algorithm, as they transfer : an attack designed
against one classifier will usually perform well against another that solves the same problem
( [Liu et al., 2016]).

1.2 Position of the problem
In this thesis, we will focus on the problem of supervised classification under adversarial
perturbations. We will start by recalling the standard classification problem, then formalize
the presence of an attacker, and state the main questions that we will work on answering.

1.2.1 The standard binary classification problem
Let X be our input space (usually Rd for images), and Y = {−1, 1} be our output
space. We consider that our algorithm will encounter images drawn from some unknown
distribution D over (X ,Y), that we call "ground truth distribution". The goal of the
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Figure 1.2: An illustration of adversarial example attacks from [Yang et al., 2021]. The column on
the left contains the target faces. For every "original" image, an adversarial example is
generated to be indistinguishable by a human, but classified by the algorithm as the
target.

classification task is to associate each input x ∈ X to the unique label y ∈ Y that correctly
describes it, using a classifier, i.e. a function h : X → Y .

To evaluate and compare different classifiers, we use a loss function L : Y × Y → R+

that measures how far our prediction is from the true label. Ideally, we would use the
zero-one loss, which counts the number of incorrect predictions made.

L0/1(h(x), y) = 1h(x) ̸=y (1.1)

We then select a hypothesis classH, which is the set of functions that we consider to
be pertinent for the problem at hand (for example continuous, linear, lipschitz . . . ). Our
classification task then comes down to an optimization problem : find a classifier h that
minimizes the risk, i.e. the average loss over the distributionD :

inf
h∈H

E
(x,y)∼D

[L(h(x), y)] (1.2)

However, in practice we do not have access to the true distribution. We only have some
historical data, in the form of a training set S = {(x1, y1), . . . (xn, yn)}, constituted of
points drawn i.i.d. fromD. To approximate the solution from eq. (1.1), we thus replaceD
by the empirical distribution associated with S , to obtain the empirical risk minimization
problem:

inf
h∈H

1

n

n∑
i=1

L(h(xi), yi) (1.3)
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Figure 1.3: The generalization problem. Our classifier must fit the data well enough to capture
its specificity and avoid underfitting, while avoiding too much complexity that would
capture the randomness of the sampling (overfitting).

However, this does not provide us any guarantee that our empirical risk minimizer will
also minimize the true risk. There is the risk of overfitting, i.e. tailoring our classifier so
well to the empirical distribution that we capture part of the randomness of the sampling,
instead of the underlying distribution (see fig. 1.3). We say that an algorithm generalize
well if it maintains good performances even on unknown data.

One possible solution for algorithms to generalize, is to use a very large sample size. As
n becomes large, the empirical distribution gets closer to the underlying one, and the law
of large numbers provides some concentration bounds that ensures that the empirical risk
is not too far from the risk. However, increasing the training size comes with additional
computational cost, and is often not enough when the dimension of the problem is very
high. As d increases, we need exponentially more samples for our algorithm to generalize
properly (this is one of the aspects of the curse of dimensionality).

Another possible solution to this problem is to add prior information about the true
distribution, by choosing a hypothesis classH that exhibits a "good" complexity for this
type of data. For example, linear regressions are a type of classification problem where
we expect the relationship between images and labels to be simple, and so restrict our
hypothesis class to the set of all linear functions. We can also penalize complex hypothesis
by introducing a regularization.

To study the generalization, we need some measure for the complexity of the hypothesis
class. This can be defined in several way, such as VC-dimension [Vapnik and Chervo-
nenkis, 2015] or the Rademacher complexity [Bartlett and Mendelson, 2002]. We use
this complexity measure to bound the the generalization gap, i.e. the difference between
the empirical risk and the true risk for any function h ∈ H.
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The combination of complexity bounds and concentration bounds from large sample
size allow us to in practice use the empirical risk minimization as a satisfying proxy to the
classification problem.

1.2.2 Classification under attack
In this setting, an external agent, called the Attacker, is allowed to perturbate any input
x ∈ X , with the goal of inducing a misclassification. More formally :

• For every input x ∈ X of class y, the Attacker can choose to replace it by a trans-
formed input ϕ(x) = x+ τ , with τ ∈ X ;

• The Attacker has perfect information on the underlying distributionD and knows
the true class of each input. Thus, he is in fact designing two functions : ϕ =

(ϕ1, ϕ−1). This means that when an input (x, y) is sampled fromD, the Attacker
will perturbate it into (ϕy(x), y).

• The score of the Attacker is the misclassification risk, to which we subtract an
additional term E[c(x, ϕy(x))] that represents the average cost of this attack. The
Attacker’s goal is to maximize that score.

Typically, c(x, z) =

{
0 if ∥x− z∥p ≤ ϵ

+∞ otherwise
, which represents the imperceptibility

constraint : to be valid, the perturbation must be small enough to be invisible for a human
eye. Note that since human sight is a complex process, involving many notions such as
contrast and spatial-sensitivity (see for example [Cavonius and Estevez, 1975]), this is
only a sufficient condition for imperceptibility, rather than perfectly encompassing the
phenomenon. The choice of the norm (typically ℓ2 or ℓ∞) that is used in that constraint is
important in practice, as they exhibit very different behaviors in large dimension. However,
in our theoretical analysis, we will focus on existence and stability results, and so only use
general properties of the constraint functions, which encompass all norms.

Note that this constraint takes a whole different meaning in fields such as text recognition,
where imperceptibility cannot be defined in a pixel-wise manner ( [Wang et al., 2022]).

We are thus confronted to a min-max problem, where both the Defender and the
Attacker try to optimize the following function :

Rc(h,ϕ) = E[l(h(ϕy(x)), y)− c(x, ϕy(x))] (1.4)

The adversarial nature of the problem (where two rational agents play against each
other) makes it natural to investigate it under the prism of Game Theory.
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Defense 1 Attack 1

Defense 2Attack 2

vulnerable to

robust against

vulnerable to

robust against

Figure 1.4: The cat and mouse games of adversarial attacks and defenses. New attacks are breaking
state-of-the art defenses, then outperformed by different, more specific defenses which
are themselves more vulnerable to other attacks.

1.2.3 A game theory perspective on adversarial example attacks
When this thesis began, the literature around adversarial examples revolved mainly around
designing efficient attacks or defenses, evaluating them against each other, with the hope
of improving the overal "strength" of attacks and defenses. The implicit hypothesis behind
this line of research was that there exists some perfect defense and/or perfect attack, which
could be reached with small iterative improvements, either in technique or computational
power.

This theory started to be questioned with [Tramer et al., 2020], which considerably
shook the domain, by showing the importance of the specificity of attacks and defenses.
A very elaborate defense can be broken by an old and simple attack, that is just slightly
adapted to the specificity of the classifier. Worst, when defenses are designed to be robust
against a certain form of attacks, they are often vulnerable to several other types. The
situation can be summarized by fig. 1.4 : attacks and defenses follow a cat-and-mouse
situation, outperforming each other in a seemingly unendless cycle.

This raises the following question :

Q1: Does a perfect defense or attack exist, and is it possible to compute ? Or is the chain of
attacks and defenses cyclic, and will never lead to a final solution ?

This question has a natural formulation in Game theory in terms of Nash equilibria, i.e.
stable states in the game, where no player has an incentive to modify its behaviour. We will
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Figure 1.5: Illustration of Randomized Smoothing. We sample around the input according to
some noise distributions, compute the relative probabilities of each class and return the
most probable one.

investigate this problem in chapter 3, and provide a definitive answer in the deterministic
regime.

We will then study whether such equilibria may actually arise in practice, through
the study of stability. This can be described as the "margin of error" that a computing
algorithm would have to identify equilibria, when trying to reach the optimal solution.

1.2.4 Randomized smoothing and certification

In the second part of this thesis, we will tackle the question of how to certify the perfor-
mance of classifiers under limited information. For that, we will focus on a framework
called randomized smoothing, which provides guarantees of robustness by collecting infor-
mation on the classifier from noise-based queries. We will conduct an analysis of current
certification algorithms, and show that the current limitations that weight on the method
can be lifted using information from several noise distributions at the same time. We then
introduce a new framework to derive the corresponding robustness guarantees.

Randomized Smoothing The Randomized smoothing of a classifier h at point x is a
new classifier, which returns the most probable value of h(x+u) when u is sampled from
a noise distribution q0. In practice, this is done using Monte-Carlo sampling, simulating
many ui ∼ q0 and counting the number of occurrences of each class for h(x+ ui) (see
fig. 1.5).

When using gaussian noise, this method allows to compute a certificate that is inde-
pendent of the dimension, and uses no information on the classifier outside of the values
py = Pu∼q0 [h(x+ u) = y], y = ±1. Furthermore, it performs remarkably well on
image classification, being the current state-of-the art of provable defenses ( [Salman et al.,
2019]).
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Recent papers ( [Yang et al., 2020], [Kumar et al., 2020]) have introduced impossibility
results. Namely, there is a tradeoff between robustness and performance : as the dimension
of the problem increases, keeping a constant level of robustness requires a drastic loss
of natural accuracy. That method is hence currently considered as "doomed" in the
community.

However, these impossibility results all rely on the current method of certification,
which uses the same noise distribution q0 to gather the information py, and to smooth
the classifier. This leads to the natural question :

Q2: Are these impossibility results intrinsical to Randomized smoothing, or are they just a
byproduct of the certification method ?

We will answer that question by exploring the limitations of current certificates, and
introducing a framework that allows to bypass the impossibility results.

1.3 Main contributions of the thesis
This thesis is constituted of two main parts. The first one is a theoretical analysis of the
adversarial example problem under the prism of game theory and optimal transport. We
answer Q1 by showing that no stable state can exist in the deterministic regime, and so
that the quest for a perfect attack and defense cannot be successful through empirical
exploration only. We then explore randomization as a promising research lead, showing
that it brings stability to the game and increase the Defender’s performance.

The second part is a study of Randomized smoothing certification. We answer Q2 by
exploring the limitations of current certificates, and showing that the gap between them
and the perfect certificate grows arbitrarily large with the dimension of the problem. We
then introduce a framework to obtain new certificates, and show that this allows to bypass
the impossibility results.

A game theory perspective on adversarial attacks and defenses
We formulate the global problem of adversarial attacks and defenses as a two-players
zero-sum game. On one side, the Defender solves a standard classification problem on
the perturbated distribution, whereas on the other side the Attacker solves an optimal
transport problem, trying to move the conditional distributions toward each other. Our
contributions are the following:
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1. We show that when both players play deterministic strategies, no stable pure Nash
equilibrium can exist in the game. Furthermore, under any realistic cost function
for the Adversary, no Nash equilibrium can exist at all;

2. We show several benefits of using randomization for the Defender. First, it is possible
to outperform any deterministic classifier using a simple randomized one, that we
provide an algorithm to design. Then, we show that noise injection increases the
stability of Nash equilibria, and quantify the accuracy/stability tradeoff that this
induces on some toy distributions.

3. We generalize the Attacker’s problem into an optimal transport one, and provide
general conditions for the existence of Nash equilibria for convex surrogate loss
functions.

A theoretical study of Randomized Smoothing certification
We provide a general framework to evaluate and compare certificates. Using that, we study
the limitations of current schemes, and introduce a new method for bypassing them.

1. We show, using easy to interpret decision boundaries, that single-noise certificates
are blind to the local curvature of the decision boundary. We quantify the gap
between single-noise certificates and the perfect one, and show that it explodes as
the dimension of the problem increases for points of high local curvature, thus
explaining the impossibility results.

2. We evaluate on neural networks the importance of this underestimation, by provid-
ing a sufficient conditions for the certificate to be locally suboptimal. We show that
this is the case for at least 40% of the points on CIFAR10, suggesting that huge
gains in robust accuracy are possible.

3. We introduce a new framework for designing certificates, that leverages the General-
ized Neyman-Pearson lemma to gather information from several noise distributions
at the same time. We show that this allows to get as close as desired from the per-
fect certificate with no loss of natural accuracy, at the cost of high computational
overhead.

4. We then provide some insights on how to reduce the computational issues. We
show that computing the Neyman-Pearson set can be reduced to a combinatorial
problem when gathering information from uniform noises, and that Monte-Carlo
sampling can be done in one dimension when using Gaussian noise. Finally, we
introduce the notion of high-probability certification, and show that introducing
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1.3 Main contributions of the thesis

randomization in the certification process allows us to obtain certificates that are
independent of the dimension.

Outline of the thesis
The rest of the thesis is organized as follows : Chapter 2 and 4 present overviews of the
adversarial attacks game and randomized smoothing respectively, Chapter 3 and 5 contain
our main contributions as summarized above, and Chapter 6 presents a summary of the
thesis, as well as several discussions and open problems. Finally, the appendix contains
additional results obtained in parallel of this thesis, such as on the consistency of loss
functions in the adversarial setting, and on designing efficient contact tracing schemes
against epidemics.

1.3.1 Research papers
During this thesis, we have contributed to several research papers, some being published
and others still in the process of writing :

1st author

• "Randomization Matters : how to defend against strong adversarial attacks"
(ICML 2020)
Rafaël Pinot*, Raphaël Ettedgui*, Geovani Rizk, Yann Chevaleyre, Jamal Atif;

• "Towards evading the theoretical limitations of Randomized smoothing : a theo-
retical analysis" (arxiv pre-print)
Raphaël Ettedgui, Alexandre Araujo, Rafaël Pinot, Yann Chevaleyre, Jamal Atif

• "Stability of Nash Equilibria in the adversarial examples game" (ongoing work)
Raphaël Ettedgui, Yann Chevaleyre, Jamal Atif

• "Deep dive on contact tracing for epidemics" (ongoing work)
Raphaël Ettedgui, Emma Müller

Other papers

• "Towards Consistency in Adversarial Classification" (ICML 2022)
Laurent Meunier, Raphaël Ettedgui, Rafaël Pinot, Yann Chevaleyre, Jamal Atif
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2 Background on adversarial
examples and game theory

The field of adversarial examples has received a considerable interest in the last few years.
The game theory and optimal transport perspective, which were emergent at the beginning
of this thesis, are now active research areas, with several important papers published each
year. In this chapter, we will provide an overview of that field. We summarize the standard
classification problem in Section 2.1, then the state of the arts of adversarial attacks in
Section 2.2 and defenses in Section 2.3. We provide an introduction to game theory in
Section 2.4, optimal transport in Section 2.5 and summarize the recent papers that link
these two concepts to adversarial attacks in Section 2.6.

2.1 The classification problem and Neural Networks
In this section, we will recall the definitions given in the introduction, and provide some
important result about classification theory.

2.1.1 Statistical learning theory
Let X be our input space, and Y = {−1, 1} our output space. For more generality,
we will consider classifiers as functions h : X → R. This means that instead of just
returning a label (which would correspond in this case to sign(h), they also indicate their
degree of confidence in the prediction. In this context, a loss function will be a function
L : (R× Y)→ R+, the most classical being the zero-one loss.

Hypothesis set Our research of "good" classifiers will often be guided by prior beliefs
on how a solution to the task at hand should behave. Hence, we restrict our optimization
problem to some given subset of all measurable functions, which we call the hypothesis set
H.

L0/1(h(x), y) := 1sign(h(x)) ̸=y (2.1)

13



2 Background on adversarial examples and game theory

Definition 1 (Standard classfication problem). Given a ground-truth distributionD
over (X ,Y), the classification problem is, as in the introduction, defined by the Risk
Minimization (RM) problem, i.e. :

inf
h∈H
RL(h) (RM)

whereRL(h) := E
(x,y)∼D

[L(h(x), y)]

Bayes optimal classification. For the 0/1 loss, if we have access to the ground-truth
distributionD, we can easily compute the optimal classifier. It simply returns the most
probable class given the input.

Definition 2 (Bayes optimal classifier). The Bayes optimal classifier is any function
hbayes such that almost surely, for x ∈ X , we have :

sign
(
hbayes(x)

)
= argmax

i=±1
P[y = i|x] (2.2)

By definition, it is the classifier with the lowest possible probability of misclassification,
for the 0/1 loss.

However, the 0/1 loss is non-convex, and so optimizing it is an NP-hard problem.
Although we use it for theoretical analysis, in practice we use surrogate losses as a proxy to
optimize the 0/1. This however only works when the loss function satisfies a property
called consistency ( [Bartlett et al., 2006], [Steinwart, 2007]) : its minimizing sequences
must also minimize the 0/1−loss.

Definition 3 (Consistency of a loss function). We say that the loss function L is
consistent with regard to the 0/1 loss if for every sequence of classifier hn, we have :

RL(hn)
n→∞−−−→ inf

h
RL(h)⇒ RL0/1

(hn)
n→∞−−−→ inf

h
RL0/1

(h) (2.3)

This means that any minimizing sequence for the surrogate loss is also a minimizing
sequence for the 0/1.

We will conduce a more through study of consistency in the standard and adversarial
case in Appendix B. For now, we simply deduce from this result that in the standard case,
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2.1 The classification problem and Neural Networks

the 0/1 loss can be optimized via gradient descent on a convex, consistent surrogate loss
such as the hinge or cross-entropy losses.

2.1.2 Training and testing : the generalization gap
In practice, as the ground-truth distribution is not known, we use historical data to build a
proxi distribution, that we call the empirical distribution. LetS = {(x1, y1), . . . , (xn, yn)}
where the (xi, yi) are drawn i.i.d. fromD. Then the empirical distribution is the average
of the Dirac distributions corresponding to the sampled points :

1

n

n∑
i=1

δx=xi

We thus evaluate the perfomance of our classifiers on this empirical distribution, which
leads to the Empirical Risk Minimization (ERM) problem :

inf
h∈H
Rn
L(h) whereRn

L(h) =
n∑
i=1

L(h(xi), yi) (ERM)

Let ĥn be the minimizer of Equation (ERM), and ĥbe the minimizer of Equation (RM).
To evaluate the generalization gap, i.e. how much risk we gained by using our empirical
distribution as a proxy, we must bound the quantity :

RL(ĥn)−RL(ĥ)

Note that the quantity of interest is the risk, not the empirical risk, which is just a proxy.
We can bound this gap using what is called the generalization error :

Definition 4 (Generalization Error). The generalization error for loss L and sample
S is defined by :

EnL = sup
h∈H
|RL(h)−Rn

L(h)| (2.4)

Proposition 1 (Bounding the generalization gap).

R(ĥn)−RL(ĥ) ≤ 2EnL (2.5)

Proof.

R(ĥn)−RL(ĥ) = R(ĥn)−Rn
L(ĥn) +Rn

L(ĥn)−Rn
L(ĥ)
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2 Background on adversarial examples and game theory

≤ R(ĥn)−Rn
L(ĥn) +Rn

L(h∗)−Rn
L(ĥ)

≤ 2 sup
h∈H
|RL(h)−Rn

L(h)|

This means that if we can bound, for every classifier, the difference between the risk
and the empirical risk, we can control the generalization gap as a whole. This bound is of
course not tight, but usually sufficient for our needs.

To bound the generalization error (and thus the generalization gap), we need a way of
evaluating the complexity of our class of functions, i.e. how well it can fit precise data.
Among the classical measures of complexity are the VC-Dimension ( [Blumer et al., 1989])
and the Rademacher complexity ( [Bartlett and Mendelson, 2002]). We will describe the
second one here, as it is more useful to analyze rich classes of functions, such as neural
networks.

Definition 5 (Rademacher Complexity). The empirical Rademacher complexity of
classH, for some sample S = {z1, . . . , zn} is defined as :

RS(H) := E
i=1...n,σi∼U({±1}

[
sup
h∈H

(
1

n

n∑
i=1

σih(zi)

)]
(2.6)

The σi are called Rademacher variables, i.e. uniformly distributed on {±1} (i.e.
P[σi = ±1] = 1

2
).

The Rademacher complexity of a class of functions represents, in a way, how well it can
be used to fit some random noise. Intuitively, classes with high Rademacher complexity
will tend to generalize worst, and be more prone to overfitting, whereas classes with
small Rademacher complexity will have a very small expressive power and be prone to
underfitting on complex problems.
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2.1 The classification problem and Neural Networks

Theorem 1 (Rademacher bound, [Bartlett and Mendelson, 2002]). LetH be some
class of functions, L a loss functions bounded by M > 0, and S = {z1, . . . , zn}
a sample. Let F (L,H) := {(x, y) 7→ L(h(x), y)|h ∈ H} be the loss class, i.e. all
possible combinations of the loss function and the hypothesis. Then for any δ ∈ (0, 1),
with probability at least 1− δ, we have :

ESL ≤ 2MRS(F (L,H)) + 3M

√
ln 2/δ

2n
(2.7)

2.1.3 An important hypothesis class : neural networks
In this thesis, we will mainly use neural networks in our implementations. Here, we give
an overview of that class of functions, as well as the different architectures that we will use.
In this section, we will considerX = Rd for some d > 0.

Definition 6 (Linear classifier). A linear classifier of parameter θ ∈ Rd is defined by :

hθ : x 7→ θ⊺x (2.8)

Classifying using linear functions consists in divinding the space in two subsets by a
hyperplane. These models are easy to study and train, but lack expressivity, as most real
datasets are not linearily separable. Furthermore, composing two linear functions gives
another linear function, adding no complexity to the class.

This is usually solved using representations of the data : we first transform our input in
some space that is well chosen to preserve most of the variance of the dataset, while being
linearily separable. The main idea of neural networks is to learn these representations
using a composition of linear classifiers and non-linear activation functions, typically the
Rectified Linear Unit ( [Nair and Hinton, 2010]).

Definition 7. The Rectified Linear Unit (ReLu) is defined on any space V by :

∀x ∈ V, σ(x) = max(0, x)

Currently, the Leaky ReLu max(α, x) for some small α > 0 is most commonly used,
to avoid zero-valued gradients and accelerate the convergence of networks.
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2 Background on adversarial examples and game theory

Figure 2.1: Representation of a neural network.

Definition 8 (Neural networks). A feed-forward neural network is a composition of
activation functions and linear functions, of the form :

σ ◦ hθ1 ◦ · · · ◦ σ ◦ hθm

With θ1, . . . , θm ∈ Rd.

We call each block σ ◦ hθi a layer of the network, and usually represents the overall
network as several blocks linked to each other. The intermediate layers are called hidden,
since the user usually never know their values, contrary to the first and last layer. They
correspond to the representation learning, converting the input into some concept space
that is better fit for the classification problem.
We therefore often view the neural network as a graph whose nodes are for each layer the
canonical base of the current representation space, and whose edges are weighted by the
linear coefficients.

On top of this basic structure, several training methods are used to avoid overfitting
and allow networks to generalize better :

• Dropout is a way of adding noise during the training, by zeroing at each step some
of the nodes that are chosen at random. This ensures some form of smoothness of
the function learned by the network, as it cannot be too sensitive to small changes
in the inputs.

• Regularization consists in adding a term in the loss function that penalizes the
norm of the parameters θi. This corresponds to adding prior beliefs on the class
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2.1 The classification problem and Neural Networks

Figure 2.2: Illustration of the convolution mechanism for images.

of functions, putting more probability mass on the most "simple" functions. For
example, an ℓ1 regularization will typically provide sparse parameter vectors, whereas
the ℓ2 will give small, non-zero values. A smoothness prior will lead to smoother
functions, etc.

Convolutions are a way of exploiting the translation-invariant properties of some input,
typically images. The idea is to apply a regularization to an ordinary neural network, to
only keep weights in a small window around each pixel, which we slide along the input so
that the result does not depend on the position in the image (see Figure 2.2).

Residual neural networks The strength from neural networks comes from their
expressive power, that is supposed to grow with their depth, as we use more and more
parameters. But for that to be the case, the consecutive function classes must be "nested",
i.e. each layer makes the network strictly more expressive (see Figure 2.3). To bypass
that issue, [He et al., 2016] introduced the idea of residual networks : each block learns
f(x)− x instead of f(x), to ensure that the identity mapping can always be learned, and
so that every function learned by the previous blocks can still be learned after adding a
layer.

This leads to the architecture we mainly use in this thesis for experiments, namely
ResNets and its variants.
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2 Background on adversarial examples and game theory

Figure 2.3: The difference between a non-nested and nested function class. In the first case, we
loose part of the expressive power when adding a layer, while in the second case we
strictly gain. Figure from [Zhang et al., 2018]

CIFAR10 and CIFAR100 datasets We use the CIFAR datasets ( [Krizhevsky and
Hinton, 2009] to evaluate our models. They are both comprised of the same 60000
32× 32 images with 3 channels, for a total dimension of 3072.These images are labelled
in 10 and 100 classes respectively for CIFAR10 and CIFAR100. This gives a total of
6000 per class for the first one, and only 600 for the second one, which is thus harder to
classify. Current state-of-the art models achieve 99.5% natural accuracy on CIFAR10
( [Dosovitskiy et al., 2020]), and 96.08% on CIFAR100 ( [Foret et al., 2020]).

2.2 The problem of adversarial examples in machine
learning

Let us now give an overview of the adversarial example attacks against deep neural networks.

2.2.1 Adversarial example attacks
An adversarial example is a small, imperceptible perturbation of an input, which fools the
classifier with high confidence. They were first introduced by [Szegedy et al., 2014], with
the classical example shown in Figure 2.4. In a more mathematical way, given a classifier
h and an input x, this amounts to finding δ ∈ X that is "small enough to be humanly
imperceptible", and such that h(x+ δ) ̸= h(x).
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2.2 The problem of adversarial examples in machine learning

Figure 2.4: An example of adversarial example attack.

Definition 9 (Adversarial example Attack). Let h be some classifier, L some loss
function, x ∈ X , and C(x) ⊂ X be some constraint set that represent imperceptibility.
Then the adversarial example problem is :

sup
δ∈C(x)

L(h(x+ δ), y) (2.9)

Note that this problem may not exhibit any solution. However, this is only used as a
proxy for the 0/1 loss-version of the problem, which is much harder to optimize :

Find δ ∈ C(x) such that h(x+ δ) ̸= h(x) (2.10)

And an approximation of the optimum in Equation (2.9) (such as one obtained via
gradient descent) is usually enough to induce a misclassification.

Imperceptibility As we mentionned in Chapter 1, defining the imperceptibility con-
dition is a hard problem, that is often bypassed by using a constraint ∥δ∥ ≤ ϵ for some
norm ∥.∥ and some ϵ > 0. The most standard constraints used in the literature rely on
the ℓp (for various p) and ℓ∞ norms. Note that as the dimension of the problem grows,
the norms behave in increasingly different ways, their unit balls overlapping on an ever
smallest part of the space. It follows that empirical robustness results rely heavily on the
choice of the norm.
For our theoretical results, we will most of the time rely on general properties of the norm
functions, but will sometimes need to specify when we use the ℓ2 or ℓ∞ norms, especially
for implementations.
The constraint set thus becomes C(x) = Bp(x, ϵ) where p ∈ (0,∞].
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2 Background on adversarial examples and game theory

Black and white box settings An important question is the amount of information
to which the attacker has access. Typically, most attacks require some knowledge on the
parameters of the models, to compute some form of gradient descent. We call white-box
setting the case where the attacker has perfect information, and black-box setting the case
where it has no information outside of the format of the inputs and outputs.

Transferability of attacks However, these two frameworks appear to be equivalent
in practice, due to the existence of the transferability phenomenon. Attacks that are
computed on a given classifier will often transfer to all similar models ( [Tramèr et al.,
2017], [Zhong and Deng, 2020]). It follows that we can focus our theoretical study on
the white-box setting without much loss of generality (on top of following the principle
of maximal precaution from cryptography).

2.2.2 Different types of attack models
To solve Equation (2.9), two methods are essentialy being used : minimizing the loss
directly, and then ensuring that the perturbation is small enough, or incorporating the
constraint to the loss in the form of a Lagrangian, and optimizing this new condition via
gradient descent.

Fast gradient sign method [Goodfellow et al., 2015] introduced the most direct kind
of attack, which is called FGSM or "fast gradient sign method". This consists in simply
taking a step in the direction of maximal increase of the loss :

xt+1 = xt + ϵ
∇xL(h(x

t), y)

∥∇xL(h(xt), y)∥
(FGSM)

Projected Gradient Descent This can be further extended by taking several gradient
steps, and enforcing the imperceptibility constraint by projecting at each step onBp(x, ϵ).
This attack framework is called Projected Gradient Descent, was one of the earliest bench-
marks to evaluate empirical defenses against ( [Madry et al., 2018], [Kurakin et al., 2018]).
This can be summarized in the following way :
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2.2 The problem of adversarial examples in machine learning

Definition 10 (Projected Gradient descent (PGD)). The PGD algorithm for classifier
h and loss L at point (x, y) is defined by the sequence x0 = x and for any t > 1:

xt+1 := ΠBp(x,ϵ)

(
xt + ϵ

∇xL(h(x
t), y)

∥∇xL(h(xt), y)∥

)
(2.11)

WhereΠBp(x,ϵ) is the projection operator onBp(x, ϵ).

Relaxing the constraint Another fruitful approach consists in switching the place
of the constraint and the minimization problem. This means minimizing the norm of
the perturbation, under the constraint that it induces a misclassification. This has the
benefit of being easier to optimize by stochastic gradient descent using the Lagrangian
formulation :

inf
δ
∥δ∥p + c · f(x+ δ) (2.12)

Wheref is some objective function, chosen such thatf(x+δ) ≤ 0 ⇐⇒ L(h(x), y) ≥
α for some chosen threshold α (which is selected empirically to be a good proxy for
h(x+ δ) ̸= y). This framework was developed by [Carlini and Wagner, 2017b], who use
p = 2 for their eponymous C&W attack.

Note that this frameworks does not ensures that ∥δ∥p ≤ ϵ. This can be compensated by
adding a projection onBp(x, ϵ) at the last step, although in practice that is never necessary,
as the minimization problem leads to very small values of ∥δ∥p.

Generative Adversarial networks A more recent approach to design adversarial ex-
ample attacks is the use of GANs ( [Xiao et al., 2018]). These networks are designed to
generate synthetic samples, under the hypothesis that artificial data is good if it is hard to
distinguish from real data. The core idea is to train two networks in parallel :

• The Discriminator performs a standard classification task, by separating real data
points from fake ones.

• The Generator inputs some noise, and outputs a sample. It is evaluated by the
response of the Discriminator, performing well if the Discriminator cannot distin-
guish the output sample from a real one.

This leads to a zero-sum game between both algorithms, and the objective functions
are designed so that a stable state (or Nash equilibria, as we will define later) exists, and
the learning procedure converges to it. In the case of Adversarial example attacks, the
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2 Background on adversarial examples and game theory

generator takes as input the original image instead of noise, and the discriminator simply
evaluates if the attack induces a misclassification or not from the classifier h.

2.2.3 The adversarial classification problem
The standard classification problem from Equation Equation (RM) thus becomes :

Definition 11 (Adversarial classification problem). Given a ground-truth distribution
D over (X ,Y), the adversarial classification problem is defined by the Adversarial
Risk Minimization (ARM), i.e. :

inf
h∈H
Radv
L (h) (ARM)

whereRadv
L (h) := E

(x,y)∼D

[
sup

z∈Bp(x,ϵ)

L(h(z), y)

]

This means that the classifier is always evaluating the worst-case scenario, with the
attack that causes the bigger increase in the loss. Equation (ARM) is the framework most
commonly used in the literature ( [Pydi and Jog, 2020a], [Diochnos et al., 2018], [Meunier
et al., 2021]), but lacks flexibility, as it does not encompasses how most real-world attacker
follow different, usually relaxed constraints than ∥δ∥ ≤ ϵ, as we saw in the previous
subsection. In chapter Chapter 3, we will introduce a more general framework to study
the adversarial classification problem, that take all of these alternative constraints into
account.

2.2.4 Hypothesis on the origins of attacks
The explanation of adversarial examples remains an open problem, although several differ-
ent explanations have been offered :

• Overfitting [Szegedy et al., 2014], when introducing the first examples of adversar-
ial attacks, postulated that this comes from current models being over-parametrized.
Deep neural networks can approximate almost any function, and so it would appear
logical that some overfitting happens, which is just not captured by our current test-
ing sets. Recent results ( [Nakkiran et al., 2021]) have further shown the existence
of a double descent phenomenon for most deep learning algorithms (including ad-
versarial training), where the generalization capabilities of the model first decreases
then increases when the sample size grows.
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• Local linearity [Goodfellow et al., 2015] rejected that hypothesis, claiming that
the transferability of attacks makes it impossible for these attacks to be an artifact
of training, and so of the noise in the training set. They postulate that the origin of
adversarial examples lies in the locally linear behavior of neural networks, showing
that in large dimension linear models always suffer from these kind of perturbations.

• Complexity of the image classes [Shafahi et al., 2018] analyze whether the dimen-
sionality of the dataset contributes to the prevalence of adversarial examples. They
conclude that there is no direct relation between the dimension of the problem and
adversarial susceptibility, but that high-complexity image classes are way harder to
defend using adversarial training, hinting at this complexity as a potential origin of
adversarial examples.

• Shape of the decision boundary [Moosavi-Dezfooli et al., 2019] claim the op-
posite hypothesis : they show that several defense mechanism (such as adversarial
training) lead to a local smoothing of the decision boundary, and especially a smaller
curvature. This would indicate that adversarial examples stem from high local cur-
vature. Our own results (see Chapter 5) point toward this hypothesis as well, as we
show the importance of the local curvature on randomized smoothing certifications,
and that two known robustness-inducing mechanism, namely noise injection and
adversarial training, reduce the local curvature of the decision boundary.

2.3 State of the art defenses
At the moment, no classifier achieves an industry-enabling performance against adversarial
attacks. In this section, we will give an overview of the current defense mechanisms, as
well as their limitations. They can be divided into two main categories :

• Empirical defenses are designed by trial and error, and evaluated empirically against
real-world attacks;

• Provable defenses rely on a mathematical framework, and offer some guarantees
of robustness.

2.3.1 Adversarial training
One of the first defense mechanisms was introduced by [Goodfellow et al., 2015]. As
adversarial examples show a problem of generalization, and so a dissonance between
the empirical distribution and the underlying ground truth, the natural solution is to
introduce some adversarial examples in the training set. This procedure was initially very
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costly (since every adversarial attack needs to be crafted individually), but [Shafahi et al.,
2019] showed that it is possible to drastically reduce that cost by re-using the gradient
computations efficiently.

Figure 2.5 illustrates this procedure. After some steps of pre-training (so that the
algorithm is efficient enough), an attack method (usually PGD, as it can be cheap to
compute) is used to create perturbations, which are then added to the training set for the
next iteration. Although lacking any guarantee, adversarial training has proven to be one
of the most effective defense mechanisms yet.

Figure 2.5: Illustration of adversarial training on a linear classifier. The attacks of the two blue
stars in the middle are added to the training set, with the consequence of "curving" the
decision boundary.

2.3.2 Adaptive attacks and the need for provable defenses
As the performance of empirical defenses seemed to grow, several voices began to challenge
their evaluation model, and proceed to defeat existing defenses with adaptive attacks,
which are designed specifically against the defense mechanism they target. For example,
[Carlini and Wagner, 2017a] show that the C&W attack, when tweaked, allows to defeat
several detection-based defenses, and [Athalye et al., 2018] show how obfuscated gradients
can be defeated by specific methods. This lead the community to use better evaluation
frameworks for empirical defenses, creating adaptive attacks against their own classifiers.

However, even with better evaluations, most efficient defenses ended up being defeated
by stronger, more specific attacks at some points. [Tramer et al., 2020] provided a method-
ology for designing arbitrarily strong adaptive attacks, and proceeded to demonstrte it by
defeating ten of the strongest defenses at that time, which were previously evaluated using
adaptive attacks.
This leads to the following question :

Why is it so hard to obtain a defense that performs well against every attack ?
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Two main hypotheses can be formulated to answer that question :

H1: A perfect classifier exists, and the current situation is simply a war of processing power
between the attack and defense, for who can compute the better approximation;

H2 There is no universally perfect classifier, and defenses will always be specific to some
category of attacks.

We will provide insights on this question in this thesis, and show that when no random-
ization is involved, H2 is the correct hypothesis (see Section 2.4)

2.3.3 Provable defenses
The limitations of empirical defenses and the difficulty of providing definitive evaluations
of defense mechanisms have created the need for provable guarantees of robustness, that
leave no doubt on the efficiency of a method. Several frameworks have been developed to
provide such guarantees:

• [Wong and Kolter, 2018] introduced the notion of Convex Outer Adversarial
Polytops : instead of computing the set of all possible adversarial attacks (which
is highly non-convex), they focus on a convex regularization of that set, which is
easier to analyze through linear programming, and allows to derive some bounds on
the adversarial risk (see Figure 2.6). This approach however perform decreasingly
well when the dimension of the problem increases, due to the poor scaling of linear
programming.

• Inspired by differential privacy, [Lecuyer et al., 2018] proposed an empirical method
for increasing the robustness of a classifier, using a local averaging under some
noise distribution. This was later made into a provable defense by [Cohen et al.,
2019], which showed how to obtain computable certificates of robustness using
the Neyman-Pearson Lemma. We will give a more thorough analysis of the state of
the art for Randomized smoothing in Chapter 4.

2.4 Introduction to game theory
Game theory is the study of how agents make rational decisions depending on the behavior
of others. Its purpose is to identify how order (in the form of stable states) can emerge
when each agent (or player) only cares for its own interest. In this section, we will give a
brief introduction to the field of adversarial game theory.
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Figure 2.6: Illustration of the Convex Outer Adversarial Polytope

N D
N (1, 1) (−2, 5)
D (5,−2) (0, 0)

Table 2.1: The prisoner’s dilemma. Each player can either Defect or Not. If no one defects, they
both get mild sentences, but if only one of them does, it will go free while the other will
have a heavy prison time. If both players defects, they get medium sentences. In this
game, defecting is a striclty dominant strategy, since it always reduces the prison time,
whatever the other player plays. It follows that (D,D) is the only Nash equilibrium, i.e.
"stable" outcome.

2.4.1 Two player strategic game

Definition 12 (Two player strategic game, ( [Laraki et al., 2019])). A game in strategic
form is a triple (I,J,g), where I and J are the non-empty set of (pure) strategies for each
player, and g = (g1, g2) where gk : (I × J) → R is the payoff function of player
k ∈ {1, 2}. If we have g1 = −g−1, we say that the game is zero-sum.

The idea is that player 1 chooses some strategy in I , without knowing the behavior of
player 2 which chooses a strategy in J . When both players have revealed their strategy,
a payoff is computed for each player. We usually summarize games in a table, such as
Table 2.1. The columns represent the possible strategies of player 2, and the rows of player
1. The payoffs are written as a pair (g1(i, j), g2(i, j))

We want to understand what outcomes will emerge when both players are rational. A
first tool to study that is dominant strategies.
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Definition 13 (Dominant strategy). A strategy i0 ∈ I is called dominant for player 1
if we have :

∀i ̸= i0,∀j ∈ J, g1(i, j) < g1(i0, j) (2.13)

A similar definition can be given for player 2 with g2 instead of g1.

Intuitively, if a dominant strategy exists for player i, he will always play it. In the Prisoner’s
Dilemma game, the strategy D is dominant for both players, so that we feel that the
outcome (D,D) is the only "rational one". More generally, we consider an outcome to be
rational if every player plays the best possible move, according to its anticipations of the
other player’s actions.

Definition 14 (Best responses). A strategy i1 of player 1 is a best response to strategy
j1 of player 2 if for any other strategy i2 of player 1, we have g1(i2, j1) ≤ g1(i1, j1). A
symmetric definition holds for player 2’s best responses.

Definition 15. A Nash Equilibria is a pair of strategies (i∗, j∗) ∈ I × j such that for
any other strategies i ∈ I , j ∈ J , we have:{

g1(i, j
∗) ≤ g1(i

∗, j∗)

g2(i
∗, j) ≤ g2(i

∗, j∗)

In other words, a state where no player has an incentive to modify its behavior, since
each one plays the best response to the other’s strategy.

A pair of dominant strategies will always be a Nash equilibrium, but the converse is
not necessarily true. In fact, many games have no dominant strategies. For example in
the game in Table 2.2, there is no dominant strategy for either player. However, (V,C)
is a Nash equilibrium, which means that if each player anticipates that the other is
playing the equilibrium, its most rational move is to play it as well.

2.4.2 Zero-sum games and the minimax problem
For zero-sum games, we can study Nash equilibria in terms of the guaranteed payoffs of
each player. In this setting, we will call g the payoff of player 1, and−g the payoff of player
2 (as the game is zero-sum). Note that player 1 will try to maximize g, whereas player 2
will want to minimize it. We can then define :
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A B
U (3, 0) (0, 1)
V (0, 0) (3, 1)
W (1, 1) (1, 0)

Table 2.2: A game with no dominant strategy, but a Nash equilibrium (V,B)

Definition 16 (Guaranteed payoffs). Player 1 guaranteesw ∈ R ∪ {−∞} if there
exists a strategy i0 that induces a payoff at leastw whatever the other players plays, i.e.

∀j ∈ J, g(i0, j) ≥ w

Symetrically, player 2 guaranteesw ∈ R ∪ {+∞} if there is j0 ∈ J such that :

∀i ∈ I, g(i, j0) ≤ w

A quantity of interest will be the best guaranteed payoff for every player. For every
strategy j ∈ J , player 1 can choose the strategy that gives the best payoff against j, and
thus guarantee inf

i∈I
g(i, j). In the same way, player 2 can guarantee sup

j∈J
g(i0, j) for every

strategy i0 of player 1. Hence :

Definition 17 (minmax and maxmin). We define the maxmin v and the minmax v
as respectively the highest payoff that player 1 can guarantee, and the lowest payoff that
player 2 can guarantee.

v = sup
i∈I

inf
j∈J

g(i, j) ∈ R ∪ {±∞}

v = inf
j∈J

sup
i∈I

g(i, j) ∈ R ∪ {±∞}

We can see this two values as worst-case scenarios for each player : v happens when
player 1 always plays the best response to player 2’s strategy (for example if he plays in
second, and has already seen the strategy), and v happens when player 2 always plays the
best response to player 1’s strategy. It follows that :
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R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Table 2.3: Rock-Paper-Scissors. 1 means a win of player 1,−1 of player 2, and 0 a draw.

R P S R

Figure 2.7: Successive strategies for Rock-Paper-Scissors. Blue nodes represent player 1, and orange
nodes player 2.

Lemma 1 (Duality gap).
v ≤ v

When the two are equal, we say that the game has a value, which is the rational outcome
that will emerge in the game. This corresponds, for zero-sum games, to the existence of a
Nash equilibrium (see [Maschler et al., 2020]). Note that these two notions of equivalence
do not necessarily coincide for non-zero sum games.

2.4.3 Anticipations, cyclicity and mixed Nash equilibria
However, some games have no Nash equilibrium in pure strategies, and instead exhibit
some form of cyclicity. The most classical example is the game Rock-Paper-Scissors:

What will happen in this game ? If player 1 plays rock, then player 2 has every incentive
to play Paper. But then, player 1 will want to change its strategy and play Scissors, which
in turns convinces player 2 to play Rock, and we are back to the beginning of the cycle
(see Figure 2.7).

What will then happen ? One possible solution is that the players can anticipate prob-
abilistic behaviors. For example, player 1 can expect that player 2 will play Rock 1

3
of

the time, Paper 1
3

and Scissors 1
3

. In their anticipation, the other’s player strategy is thus
randomized. Furthermore, they can themselves decide to rely on randomness, by for
example flipping a coin and deciding on a strategy depending on the outcome. In both
cases, we speak of mixed strategies.
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Definition 18 (Mixed Strategy). In the game (I, J, g) we say that the set∆(I) is the
set of all possible mixed strategies for player 1, and∆(J) is the set of mixed strategies
for player 2, where∆(S) represents the convex extension (or simplex) of any set S.

For example, a strategy for Rock-Paper-Scissors could be to play Rock 2
3

of the time,
Paper 1

6
of the time and Scissors 1

6
. When the set of pure strategies for a player is finite, then

the set of mixed strategies is constituted of mixtures, i.e. combinations of Dirac measures.

Mixed Nash equilibria Introducing mixed strategies amounts to a convex relaxation
of the problem. As that makes both player stronger, the duality gap can only be smaller
than in the deterministic case. For finite zero-sum games, this is enough to ensure the
existence of a value, and thus of a Nash equilibrium.

Theorem 2 (Minimax theorem [Neumann, 1928]). The mixed extension of a finite
two-player zero-sum game always has a value, and thus a mixed Nash equilibrium.

In the case of Rock-Paper-Scissors, the only Nash equilibrium happens when both
player play the purely random strategy (1

3
, 1
3
, 1
3
), giving an expected payoff of 0. Note that

for infinite zero-sum game, this theorem stops being valid, which is why we needed to
develop different tools to analyze Nash Equilibria in Chapter 3.

2.4.4 Stability of Nash Equilibria
For finite games, the notion of Nash equilibria is enough to satisfyingly capture the
mechanism of stability. However, for continuous games, such as the one we will study in
Chapter 3, players usually can’t compute their strategy exactly, but have access to some
confidence interval around it. For example, if both players play a real number, computers
will only be able to approximate that number, and infinitesimal variations can easily happen
as an artifact of the computation. It follows that any realistic notion of equilibrium in a
continuous setting must resist to asymptotical variations ( [Van Damme, 1991]).
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Figure 2.8: Illustration of the stability of equilibrium via a physics metaphor. A Nash equilibrium
ensures that no player has an interest to deviate, but does not tell anything about what
happens if some deviation happens by accident. For stable equilibria, the perturbation
has either no effect, or induces an incentive to go back to the Equilibrium.

Definition 19 (Stable Nash equilibria). Let (i∗, j∗) be some Nash equilibrium in
a continuous game, and d be some distance over the space of player 1’s strategies. It is
said to be δ−stable if for any i ∈ I such that d(i, i∗) ≤ δ, we have the two following
properties :

• g(i, j∗) ≤ g(i∗, j∗);

• g(i, j∗) = inf
j∈J

g(i, j)

In other words, player 1 has won nothing by deviating infinitesimally, and player 2 has
no incentive to change its strategy after the small perturbation of his opponent’s strategy.
If the first inequality is strict, the equilibrium will be strictly stable, and deviations from
the equilibrium will converge back to it.

This can be interpreted as follow : Once a standard Nash equilibrium has been reached,
no player has an incentive to deviate from it. But if, by some computational instability,
one of the player ends up deviating, what happens ? When the equilibrium is stable, the
other player won’t react, and the new state reached will also be a Nash equilibrium. In
a sense, it is more of an "equilbrium region", than an "equilibrium point". On the other
hand, if the equilibrium is unstable, then some of the deviations may result in a change in
the other player’s strategy, and both player go back to the cat-and-mouse of best responses,
potentially snowballing away from the equilibrium.
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2.5 Optimal Transport and Kantorovich duality
Now that we have a framework to define equilibria, and the tools of statistical learning
theory to study the Defender’s problem, we need a way to analyze the Attacker’s. His goal
is to modify the two conditional distributions P[X|Y = 1] and P[X|Y = −1] to make
them as similar as possible, thus creating "indecision zones", where both classes have the
same likelihood and the classifier "cannot make a choice". This is similar to the classical
problem of Optimal Transport, which has been widely studied. We will present here an
introduction to that field, that largely relies on the work of [Villani, 2009].

2.5.1 Motivating example : moving sand
In his "Traité sur les déblais et remblais" (1781), Monge introduced the following problems :
given a pile of sand and a whole, what is the most economic way to fill the whole using the
sand of the pile ? In this formulation, the cost induced by moving a unit of mass between
two points was the euclidean distance between both points. More formally, when we
consider the relative height/depth of the sand, this can be formulated in terms of measure
theory as follows :

Definition 20 (Monge Optimal Transport problem). Let µ and ν be probability
measures onX , and c : X ×X → [0,+∞]. The Monge Optimal Transport problem
consists in finding a measurable application T : X → X that is a solution to the
following minimization problem :

inf
T

∫
c(x, T (x))dµ(x)

s.t. T#µ = ν

Where T#µ is the pushforward measure of µ by T , defined by :

T#µ(C) = µ(T−1(C)) = µ({x ∈ X |T (x) ∈ C})

We are interested in the existence and unicity of the solution, as well as whether such
a solution can be computed in the general way. However, as such, the problem is very
difficult to tackle, as well as ill posed for many distributionsµ, ν. For example, ifµ contains
some Dirac distribution δx0 , and ν is an absolutely continuous probability distribution
(such that no point has a non-zero mass), then there is no transport application T that
can satisfy T#µ = ν. This is because we are not able to split the mass from point x0 to
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2.5 Optimal Transport and Kantorovich duality

Figure 2.9: Illustration of the Monge Problem. The transport application T transports units of
sand from µ to ν, but cannot "split" the mass. For example, here, the mass at point x
can be wholly transported on y, but not divided between y and some other point.

distribute it over some regionA ⊂ X , so any distribution T#µwould exhibit a Dirac on
T (x0).

2.5.2 Breaking rocks : the Kantorovich relaxation

To solve that issue, we need a more general way of defining transport applications. This
was done by Leonid Kantorovich in the 1940s, which gave the modern formulation of the
Optimal Transport problem. Intuitively, we can "break" the mass at point x by allowing
T (x) to be a probability distribution overX . This is formalized in the notion of Kernel
function. LetP(X ) denote the set of probability measures overX .

Definition 21 (Kernel). A kernel on X is an application p : X → P(X ), which
associates to each input x ∈ X a probability distribution px over X , such that for
any measurable bounded function f : X → R, the function x 7→

∫
X
f(u)px(du) is

measurable.
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Although rarely used in practice, this formulation will be very useful to us to interpret
couplings as randomized attacks later in Chapter 3, Chapter A. The equivalent of a
pushforward measured can be defined as ν = µpwhere:

µp(C) =

∫
x∈X

∫
y∈C

px(dy)dµ(x)

Kernels can be written in a symmetric ways as couplings, seing px as the conditional
expectation on x for some joint probability distribution overX × X .

Definition 22 (Coupling). Let µ, ν ∈ P(X ). A coupling between µ and ν is a
probability distribution π ∈ P(X × X ) such that :{

proj1#π = µ

proj2#π = ν

where proji#π stands for the i− thmarginal of π. We therefore want the first one to
corresponds to µ and the second to ν. We callΠ(µ, ν) the set of all couplings between µ
and ν.

We can see that there is a one-to-one correspondance between couplings and kernels. A
kernel naturally induces a coupling, and for the reverse :

Theorem 3 (Coupling-Kernel equivalence [Gozlan et al., 2018]). Let π ∈ Π(µ, ν).
There is a kernel p, unique µ−almost surely, such that for any bounded Borel-
measurable function f : X × X → R, we have:∫

f(x, y)π(dxdy) =

∫ (∫
f(x, y)px(dy)

)
µ(dx)

We can now define the Monge-Kantorovich problem in terms of couplings :
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Definition 23 (The Monge-Kantorovich Optimal Transport problem). Let µ, ν ∈
P(X ), and a measurable cost function c : X × X → [0,+∞]. We are looking for a
coupling π ∈ Π(µ, ν) that is solution of the following problem :

inf
π∈Π(µ,ν)

Ic(π) =

∫
c(x, y)π(dxdy)

We call the optimal transport cost betweenµ and ν the valueTc(µ, ν) = inf
π∈Π(µ,ν)

Ic(π).

A coupling π is called a transport plan between µ and ν.

2.5.3 The Kantorovich duality theorem
We can study the existence of optimal transport plans in an interesting way by casting that
problem as a min-max one, and using a duality theorem such as Fenchel-Rockafeller. In
this thesis, we will use reasonings that are very similar to the Kantorovich Duality theorem :

Theorem 4 (Kantorovich duality). Let c : X × X → [0,+∞[ be a lower semi-
continuous function, and µ, ν ∈ P(X ) be such that Tc(µ, ν) < +∞. We then
have :

Tc(µ, ν) = sup
(ϕ,ψ)∈Φc

{∫
ψ(x)µ(dx) +

∫
ϕ(y)ν(dy)

}
Where Φc is the set of all continuous bounded functions such that ψ(x) + ϕ(y) ≤
c(x, y). Furthermore, there is an optimal transport plan that attains the infimum in
Tc(µ, ν).

Theorem 4 relies on a powerful min-max result, which is called the Fenchel-Rockafeller
theorem. To state it, we first need to define the Fenchel-Legendre transform, which
corresponds to the highest linear function that is lower than a given function.

Definition 24 (Fenchel-Legendre transform). Let θ be a convex function on a normed
vector spaceE, with values in R ∪ {+∞}. The Legendre-Transform is the function θ∗,
defined on the topological dualE∗ of E, defined by :

θ∗(z∗) = sup
z∈E

[⟨z∗|z⟩ − θ(z)] (2.14)
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Theorem 5 (Fenchel-Rockafeller theorem [Villani, 2021]). Let X, Y be Banach
spaces, andF : X → R∪{+∞} andG : Y → R∪{+∞}. Let A be some bounded
linear operatorX → Y . Then if 0 ∈ relint(domG− AdomF ), then we have :

inf
x∈X

(f(x) + g(Ax)) = − inf
ϕ∈Y

(F ∗(A∗ϕ) +G∗(−ϕ∗)) (2.15)

And the right-hand side infimum is attained if it is finite.

We will use this theorem in Chapter 3 Chapter A to show the existence of Mixed Nash
equilibria in particular situations.
In the next section, we will summarize the existing works on the game-theory or min-max
perspective on adversarial examples, as well as position our results with regards to them.

2.6 Saddlepoint analysis of the adversarial classification
problem, and our relative positioning

2.6.1 Game theory analysis of the problem

Additive perturbations To our knowledge, the first formulation of the adversarial
example problem as a two-player zero-sum game was in [Pal and Vidal, 2020]. Their
framework is however very different from ours : they consider that the classifier h is fixed,
and that both the attack and the defense are additive perturbations a(x) and d(x) for
every point x. They evaluate a and d by checking whether x+ a(x) + d(x) is classified
differently than x by hL, which is the locally linear approximation of h.

g(x, a(x), d(x)) =

{
1 if sign(hL(x)) ̸= sign(hL(x+ a(x) + d(x)))

−1 otherwise.

Using this framework, they show the existence of a Nash equilibrium between the fast
gradient-sign attack, and Randomized smoothing as a defense. However, the margin of
the Defender is extremely tight compared to most papers in the field, as it only authorizes
small-size perturbations from the Bayes classifier, which has no theoretical justification.
We can view this as a form of correlated equilibrium, when both players agreee to restrict
the defender’s strategy accordingly.
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positioning

Our framework With the paper [Pinot et al., 2020], we introduced the game theory
formulation of the problem that is currently used by the literature, and showed the non-
existence of Nash equilibria in the deterministic regime. We will describe these results in
more details in Chapter 3.

Mixed Nash equilibria This framework was then extended by [Meunier et al., 2021],
who use the approach of Distributionally robust optimization. They authorized both the
defender and the attacker to use very general forms of randomization : the attacker plays a
transport plane instead of a Monge pushforward measure, and the defender plays a Borel
probability measure on (X × Y). In this setting, they show the existence of mixed Nash
equilibria, and how it can be approached using an entropic relaxation of the attacker’s
optimal transport problem.

Their approach differ from our analysis in Chapter A in two main ways :

• They use a much stronger relaxation of the defender’s space of strategies, which is
not necessary to obtain an equilibrium with convex, surrogate losses;

• They consider the case of the 0/1 losses, whereas we focus on convex surrogates.
Hence, those two approaches are complementary.

2.6.2 Analyzing the adversarial risk via optimal transport
One of the main challenges in the study of adversarial robustness is to derive bounds
on the risk under attack, to quantify how much incompressible loss these attacks will
incur, depending on the distribution. [Pydi and Jog, 2020a] (and [Bhagoji et al., 2019],
although with a smaller hypothesis class) provide a very elegant analysis of the adversarial
risk through optimal transport, leveraging Strassen’s theorem to formulate the optimal
adversarial risk as the optimal transport distance between the two conditional measures:

Definition 25 (ϵ-transport cost). For ϵ > 0, d some distance overX . We define the
cost function cϵ : (x, z) 7→ 1{d(x,y)>2ϵ}, and the optimal transport costDϵ by :

Dϵ(µ, ν) := inf
π∈Π(µ,ν)

E(x,z)∼πcϵ(x, z) (2.16)

This corresponds to the minimal average number of points that need to be moved by
more than ϵ for each distribution toward the decision boundary (or equivalently from 2ϵ

for only one of the distributions, the other staying in place), to make the two distributions
equal. For ϵ = 0, this corresponds to the total variation distance between µ and ν.
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Theorem 6 (Adversarial risk via optimal transport, [Pydi and Jog, 2020b]). Let µ1,
µ−1 be the distributions fromD, conditional to y = 1 and y = −1 respectively. We
consider the class of binary classifiers of the form 1A whereA ⊂ X is a closed set. Then
the optimal adversarial risk is given by :

inf
h∈H1

Radv
L0/1

(h) =
1

2
[1−Dϵ(µ1, µ−1)] (2.17)

(Recall thatRadv
L (h) := E

(x,y)∼D

[
sup

z∈Bp(x,ϵ)

L(h(z), y)

]
)

This is very closely related to our work, as Strassen’s theorem is a particular case of the
Kantorowitch duality for 0/1 cost functions. Reading these papers was a huge influence
on our work, and motivated us to take the optimal transport approach.

In our Chapter 3, Chapter A, we also cast the attacker’s problem as an optimal transport.
However, we make the couplings explicit in our approach, since we consider the existence
of an optimal strategy, and not just the value of the optimal risk. Furthermore, we work
with more general transport costs (for which Equation (2.16) is a particular case), and
convex surrogate losses whereas [Pydi and Jog, 2020a] use the 0/1.

2.7 Our positioning relative to previous papers
The novelty of our contributions in Chapter 3 can be summarized as follows:

• We cast the adversarial classification problem as a two-player zero-sum game, and
show that under most realistic constraints for the attacker, no pure Nash equilib-
rium can exist in the deterministic setting;

• We introduce the notion of stability of equilibria, to study their realizability in
practical settings, and show that no pure Nash equilibrium can be stable in the
deterministic setting;

• We study the importance of randomization for the Defender, showing that noise
injection increases the stability of equilibria, and that a boosting-like process allows
to outperform any deterministic classifier;

• We show that allowing for general randomized attacks leads to Nash equilibria
when using convex surrogate losses, and give some conditions for the existence of
optimal deterministic attacks.
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In this chapter, we will tackle the first major question of this thesis, namely the existence
of a "optimal" classifier, that would provide the best performance under any given attack.
The problem of adversarial risk minimization has a natural formulation as a two-players
zero-sum game. On one side, the Defender tries to find the best classifier under a given
attack, which amounts to a standard classification problem. On the other side, the At-
tacker tries to perturbate the input distribution to maximize the probability of error. This
is a form of optimal transport problem, as we will see in Section 3.1.2.

In this framework, Q1 becomes the larger question of the existence of a Nash equilib-
rium, a stable state of the game where no player has an incentive to modify its behavior.

Q1: Is it possible to design a classifier that performs optimally under any attack ?

Q1bis: Will the study of adversarial attacks and defenses reach a stable state ?

3.1 A zero-sum game of attacks and defenses

3.1.1 The Defender : a robust classification problem
Binary classification task. LetX ⊂ Rd andY = {-1, 1}. LetL be some loss function.
We consider a distributionD ∈ P(X × Y) that we assume to be of supportX ×Y . The
Defender is looking for a hypothesis (classifier) h in some class of functionsH, minimizing
the L-risk of hw.r.t. D:

R(h) : = E
(X,Y )∼D

[L(h(X), Y )]

= E
Y∼ν

[
E

X∼µY
[L(h(X), Y )]

]
=
∑
i=±1

qi

∫
X×X

Li(h(x))dµi(x)

(3.1)
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where q ∈ P(Y) is the probability measure that defines the law of the random variable
Y , and for any y ∈ Y ,Ly = L(·, y) and µy ∈ P(X ) is the conditional law ofX|(Y =

y).

Prior beliefs on robust classification As we stated in Chapter 2, the choice of the
hypothesis setH is of prime importance for the generalization capabilities of the classifier,
and usually reflects our prior beliefs on how "good" solutions should behave. For robust
classification, a necessary condition is that the classifier does not vary too much in the
neighborhood of a point, which is often referred to in the literature as a smoothness prior
( [Goodfellow et al., 2016]).

In this thesis, we will thus considerH to be the set of all continuous functions. Later,
we will investigate an even stronger prior, namely the Lipschitz prior (Appendix A).

3.1.2 The Attacker : an optimal transport problem
On the other side, given a classifier h : X → Y , the Adversary seeks, for every data
sample (x, y) ∼ D, a perturbation τ ∈ X that modifies x enough to change its class,
i.e. h(x + τ) ̸= y. This amounts to constructing, for each label y ∈ Y , a measurable
function ϕy (called a transport map) such that ϕy(x) is the perturbation associated with
the labeled example (x, y). This function naturally induces a probability distribution over
adversarial examples, which is simply the push-forward measure ϕy#µy.
After attack, the probability of misclassification is now :

Radv(h,ϕ) := E
Y∼ν

[
E

X∼ϕY #µY

[L(h(X), Y )]

]
. (3.2)

On top of seeking misclassification, the Attacker follows some constraints. The most
natural one being imperceptibility: the size of the perturbation must be small enough to
be invisible for humans. We formulate these in a very general way as constraint functions
Ω(ϕ), that can be any function of the attack.

LetFX be the set of all measurable functions fromX toX . The goal of the Adversary
is thus to find ϕ = (ϕ-1, ϕ1) ∈ (FX )

2 that maximizes the adversarial risk RΩ(h,ϕ)

defined as follows:

RΩ(h,ϕ) := Radv(h,ϕ)−Ω(ϕ) (3.3)

As we will see in the following of this thesis, realistic constraints are often generated by
some pointwise function, in which case we call them transport-based :
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Definition 26 (Transport-based constraint). We say that Ωc is a transport-based
constraint if there exists a measurable function c : X ×X → R+∪{∞}, that is lower
semicontinuous, such that for every x ∈ X , c(x, x) = 0, and so that :

∀ϕ ∈ (FX )
2, Ωc(ϕ) = E

Y∼ν

[
E

X∼µY
[c(X,ϕY (X)]

]
We call c the transport cost associated toΩc.

For any input x and some point z, c(x, z) represents the cost of moving x to z for the
Attacker. In the case of transport-based constraint, the Attacker’s problem now becomes
very similar to an optimal transport problem :

RΩc(h,ϕ) =
∑
i=±1

qi

∫
X×X

[Li(h(ϕi(x)))− c(x, ϕi(x))]dµi(x) (3.4)

3.1.3 Modeling cost functions for realistic adversaries

Definition 27 (Indicator cost). Let ϵ be some threshold for the human vision. The
most natural way to represent the constraint of imperciptibility is with a cost of the form:̃

cϵ(x, z) =

{
0 if ∥x− z∥ ≤ ϵ

+∞ otherwise
(3.5)

Note that this transport cost is lower semicontinuous (as an indicator function). Fur-
thermore, such a cost strictly forbids any attack of norm greater than ϵ. As we will see
later in this chapter, there are other, more continuous ways to model the imperceptibility
conditions, as well as additional constraints that realistic Attackers must fullfill.
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3.1 A zero-sum game of attacks and defenses

Definition 28 (Imperceptibility-enforcing transport cost). Let ϵ > 0, and k be some
transport cost. The (ϵ, k) imperceptibility-enforcing transport cost is :

cϵ,k(x, z) = cϵ(x, z) + k(x, z)

=

{
k(x, z) if ∥x− z∥ ≤ ϵ

+∞ otherwise

This is the general family of cost functions we will study in most of this chapter. It
encompasses two things :

• The imperceptibility constraint cϵ, which state that attacks must be of size at most
ϵ or fail;

• Additional constraints k, penalizing the transport of x to z.

In the next sections, we will focus on positive costs, which means that moving a point (i.e.
attacking) is never completely free for the Attacker, and always incurs some penalty, even
infinitesimal. Non-positive costs are highly unrealistic, considering computational costs,
discretion, and so on.

Definition 29. A transport cost k is said to be positive if ∀x ̸= z ∈ X , k(x, z) > 0. A
(ϵ, k)-imperceptibility enforcing constraint is said to be positive if the associated transport
cost is positive.

Here are two example of realistic costs for the Attacker, parametrized by a strength param-
eter λ > 0:
Example 1 (The Mass cost). From a computer-security point of view, the first limitation
that comes to mind is to limit the number of queries the Adversary can send to the classifier.
This amounts to penalizing the mass of points that the function moves:

kmass = λ1{x ̸= z}
Example 2 (The Carlini-Wagner cost). This cost function is frequently used to compute
attacks, since it is an easily-optimizable relaxation of the hard imperceptibility constraint.
In particular, it is used by Carlini & Wagner [Carlini and Wagner, 2017b] to compute the
eponymous attack.

kCW (x, z) = λ∥x− z∥22
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Figure 3.1: Illustration of the impact of cost-based constraints on the optimal attack. On the left,
both conditional distributions along with the attackable zones in blue and red. In the
middle, a possible optimal attack under the mass cost, where the attackable zone is
pushed on the other side of the decision boundary while the rest of the distribution is
keeped fixed. On the right, the only optimal attack under the Carlini& Wagner cost : a
projection on the decision boundary to minimize the distance travelled.

Note that both of these cost functions are positive, and so induce positive imperceptibility-
enforcing constraints. We will now use the definitions from this section to formulate the
problem as a two-player zero-sum game.

3.1.4 Formulating the problem as a zero-sum game
Note that for any fixed ϕ, Ω(ϕ) is independent of h. Hence, it is equivalent for the
Defender to minimizeR(h,ϕ) orR(h,ϕ)−Ω(ϕ) in h.

This means that the Defender’s optimization problem is not affected by the constraint
over the Attacker’s strategy, so that we can add this term to the Defender’s score without
loss of generality. It follows that the game can be viewed as zero-sum, i.e. both player want
to optimize the same score, but in opposite directions. The two players zero-sum game
of adversarial example attacks with constraint Ω on the Attacker (that we will call the
Ω-game) is :

Definition 30 (2-player zero-sum game of attacks and defenses).

Defender problem:̃

v(Ω) = inf
h∈H

sup
ϕ∈(FX )2

RΩ(h,ϕ). (3.6)

Attacker problem:̃

v(Ω) = sup
ϕ∈(FX )2

inf
h∈H
RΩ(h,ϕ). (3.7)
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The first problem corresponds to when the Defender plays first, so that the Attacker
can adjust his strategy depending on the chosen classifier h. This means that the attack
will always be a best response to h, i.e. argmax

ϕ∈(FX )2
RΩ(h,ϕ). In the case where the sup is

not attained, the Attacker will be able to choose a strategy as close to it as it wants.
The second problem is when the Attacker plays first, which means that the Defender

can play a best response against its strategy, namely argmin
h∈H

RΩ(h,ϕ), or a classifier

giving as close a risk as needed when the optimum is not attained.
When Ω is a transport-based constraint with cost c, we will call the game a c-game.

Note that the values of both problems have no reason to coincide. In general, there exists
what is called a duality gap between both.

Proposition 2 (duality gap). For any constraint functionΩ such that both problems
are well-defined, we have :

v(Ω) ≤ v(Ω)

i.e.
sup

ϕ∈(FX )2
inf
h∈H
RΩ(h,ϕ) ≤ inf

h1∈H
sup

ϕ∈(FX )2
RΩ(h1,ϕ)

The difference between both is called the duality gap, and is always non-negative.

Proof.

∀h1,ϕ1, inf
h∈H
RΩ(h,ϕ1) ≤ RΩ(h1,ϕ1)

=⇒ ∀h1, sup
ϕ∈(FX )2

inf
h∈H
RΩ(h,ϕ) ≤ sup

ϕ∈(FX )2
RΩ(h1,ϕ)

=⇒ sup
ϕ∈(FX )2

inf
h∈H
RΩ(h,ϕ) ≤ inf

h1∈H
sup

ϕ∈(FX )2
RΩ(h1,ϕ)

3.1.5 Strategies, best responses and Nash equilibrium
The choice of a classifierh for the Defender, as well as the choice of a pair of attack functions
ϕ = (ϕ1, ϕ−1) for the Attacker, are what we call pure (or deterministic) strategies for the
game. Both player play their strategy simultaneously, and without prior knowledge of
what the other will do. If the game is played multiple time, or if players are allowed to
modify their strategy anytime, then each of them will naturally adapt its behavior to what
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3 Studying Nash equilibria via Optimal Transport

the other player just played, and thus look for the best possible strategy to defeat that
move.

Definition 31 (Best Response). Let h ∈ H, andϕ ∈ (FX )
2 be a pair of strategies.

• A best response from the Defender toϕ is a hypothesis h∗ ∈ H such that

RΩ(h
∗,ϕ) = min

h∈H
RΩ(h,ϕ).

• Similarly, a best response from the adversary to h is an attack ϕ∗ ∈ (FX )
2

such that
RΩ(h,ϕ

∗) = max
ϕ∈(FX )2

RΩ(h,ϕ).

We write h∗ ∈ BR(ϕ) andϕ∗ ∈ BR(h)

The only way the game could reach a stable state is if no player has any incentive to
modify its behavior after seeing the other’s strategy, i.e. if both player play best responses
to each other. We say that such a state is a pure (or deterministic) Nash Equilibrium.

Definition 32 (Pure Nash Equilibrium). In the zero-sum game (Eq. 3.6), a pure
Nash equilibrium is a couple of strategies (h,ϕ) ∈ H × (FX )

2 such that{
h ∈ BR(ϕ) and,
ϕ ∈ BR(h).

Remark 1. All the definitions in this section assume that player play deterministic strategies
– i.e. that neither the Defender nor the adversary use randomization – hence the notion
of “Pure” Nash Equilibrium in the game theory terminology. Later in this thesis, we will
consider the case of randomized strategies.

3.1.6 0/1 loss and convex surrogates
Before diving into the mathematical results, it is important to discuss the choice of which
loss functions to consider in this problem. The most natural choice is the 0/1 loss :
L0/1(h, y) = 1sign(h)̸=y. This amounts to counting the number of mistakes made by the
classifier, and is the "true" score that both players wish to optimize.

This loss is however non-convex, and worse, optimizing it is an NP-hard problem.
Hence, all practical implementations rely on convex surrogate loss functions, that exhibit
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3.2 Study of the deterministic regime for the 0/1 loss

the property of consistency (see Definition 3), ensuring that optimizing them automati-
cally leads to optimizing the 0/1-loss in the non-adversarial case.

However, in the presence of attacks, both optimization problems are no longer equiv-
alent. As we show in appendix Chapter B (see also [Meunier et al., 2022b]), convex
surrogate losses cannot be adversarially consistent, so that optimizing them provide no
guarantee for the 0/1-loss. We are thus faced with two distinct problems, the theoretical
one, representing what "should" happen if a consistent surrogate is found someday, and
the practical one, that represents what currently happens in the machine learning field,
using convex surrogate loss functions.

In the following thesis, we will study both problems, and show when Nash equilibrium
can and cannot happen. We will then study the stability of these equilibria, to see if they
can realistically occur in practical situations.

3.2 Study of the deterministic regime for the 0/1 loss
In this section, we will study the deterministic regime of the game, and investigate the
existence of pure Nash equilibria depending on the constraints on the Attacker. We will
first characterize the Defender’s best response to a given attack, which is the same for all
Bayes Consistent losses, and does not depend on the cost function used. Then we will
show that pure Nash equilibria can exist when the Attacker has no constraint outside of
the imperceptibility, but show that these disappear as soon as the smallest, infinitesimal
positive transport cost is added. We’ll conclude the section with a discussion on what
these non-existence results mean for the field.

Notations In this whole section, we consider the0/1 lossL0/1(h(x), y) := 1sign(h(x)) ̸=y.
To simplify the notations, instead of having a classifier h and its sign, we will consider
the class of functionsH = {h = sign(g), g continuous}, so that the 0/1 loss becomes
L0/1(h(x), y) = 1{h(x) ̸= y}.

3.2.1 Defender’s best response

At a first glance, one would suspect that the best response for the Defender ought to be
the Optimal Bayes Classifier for the transported distribution. However, that is only well
defined if the conditional distributions admit a probability density function. This might
not always hold here for the transported distribution. Nevertheless, we show that there is
a property, shared by the Optimal Bayes Classifier when defined, that always holds for the
Defender’s best response.
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Lemma 2. Let us consider ϕ ∈ (FX )
2. If we take h ∈ BR(ϕ), then for any

y ∈ {±1} andB ⊂ Cy(h) of non-zero measure, one has

P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ {±1},X|(Y = y) ∼ ϕy#µy .

Proof. First let us see that, from Baye’s rules, we have :

P(Y = y|X ∈ B) =
P(X ∈ B|Y = y)P(Y = y)

P(X ∈ B)

=
ϕy#µy(B)× νy

P(X ∈ B)

SinceP(X ∈ B) is constant in y, we just need to show that for allB ⊂ Cy(h) of non-zero
measure, we have ν-yϕ-y#µ-y(B) ≤ νyϕy#µy(C)

For that, we reason ad absurdum. The main idea is that if there is a zone where class−y
is dominant, changing the value of the classifier on that zone would give a strictly better
score, which is a contradiction since the classifier is assumed to be optimal.

Let us suppose that there existsB ⊂ C1(h)of non-zero measure such thatν-1ϕ-1#µ-1(B) >

ν1ϕ1#µ1(B) (a symmetric result holds withB ⊂ C−1(h) and inverting 1 and−1 in all
computations). We can then construct h1 as follows:

h1(x) =

{
h(x) if x /∈ B
−1 otherwise.

Since h and h1 are identical outsideB, the difference between the adversarial risks of h
and h1 writes as follows:

RΩ(h,ϕ)−RΩ(h1,ϕ) =
∑
y=±1

νy

∫
B

(
1{h(x) ̸= y} − 1{h1(x) ̸= y}

)
d(ϕy#µy)(x)

=
∑
y=±1

νy

∫
B

(
1{1 ̸= y} − 1{−1 ̸= y}

)
d(ϕy#µy)(x)

Since B ⊂ C1(h) so that h = 1 over B. By definition, h1 = −1 over B. It follows
that :

RΩ(h,ϕ)−RΩ(h1,ϕ) = q−1ϕ−1#µ-1(B)− ν1ϕ1#µ1(B) (3.8)
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Figure 3.2: 2 normal conditional distributions. The blue zone represents the conditional risk of
class 1, and the green zone the conditional risk of class−1.

Since by hypothesis q−1ϕ−1#µ-1(C) > ν1ϕ1#µ1(C), the difference between the
adversarial risks of h and h1 is strictly positive. This means that h1 gives strictly lower
adversarial risk than the best response h. Since, by definition h is supposed to be optimal,
this leads to a contradiction. Hence Lemma 2 holds.

In particular, whenϕ1#µ1 andϕ-1#µ-1 admit probability density functions, Lemma 2
simply means thath is the Bayes optimal classifier for the distribution (ν, ϕ1#µ1, ϕ-1#µ-1)

1.

3.2.2 Unbridled Attacker : trivial Nash equilibria can exist
In this section, we will consider the case where the Attacker only follows an imperceptibility
constraint for some ϵ > 0, i.e. with a transport cost c = cϵ. Recall that :

cϵ(x, z) =

{
0 if ∥x− z∥ ≤ ϵ

+∞ otherwise

We will show that in that setting, trivial deterministic Nash equilibria may exist, i.e.
equilibria where the Defender plays the same strategy with or without attack. For this, we
will use an example from [Pydi and Jog, 2020a].

Let us take the example of two symmetrical normal distributions, with the same variance.
Letm,σ > 0. We define µ−1 = N (−m,σ2) and µ1 = N (m,σ2) (see Figure 3.7, with
m = 3 and σ = 3). Let ϵ < m.

The Bayes optimal classifier corresponding to these two distributions is simply1{x ≥ 0}.
Furthermore, as demonstrated by [Pydi and Jog, 2020a] in Theorem 5, the optimal adver-
sarial risk is :

1We prove this result in the supplementary material.
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Figure 3.3: Distributions after attack of size ϵ = 1.5

v = inf
h∈H

sup
ϕ∈(FX )2

RΩ(h,ϕ) = Φ

(
m− ϵ
σ

)
Where Φ is the cumulative distribution function of the normal distributionN (0, 1).
We know from Proposition 2 that for any distribution, v ≤ v. We will now show that

for this particular distribution, v ≥ v, thus prooving that the two are equal.
Let ψ1 : x 7→ x− ϵ, and ψ−1 : x 7→ x + ϵ. This represents the most "basic" attack,

i.e. pushing the whole conditional distributions toward the decision boundaries. This
transforms µ1 and µ−1 intoψ−1#µ−1 = N (−m+ ϵ, σ2) andψ1#µ1 = N (m− ϵ, σ2)

(see Figure 3.3)
A nice property of these distributions is that µ1(x) > µ−1(x) ⇐⇒ x > 0. Hence,

it is immediate from Lemma 2 that the optimal classifier, with or without attack, is
h∗ : x 7→ 1x>0. We can thus compute the adversarial risk easily :

R(h∗, ψ) = P
[
N (m− ϵ, σ2) < 0

]
= Φ

(
m− ϵ
σ

)
We thus have :

v = sup
ϕ

inf
h∈H
R(h, ϕ) ≥ inf

h∈H
R(h, ψ) = Φ

(
m− ϵ
σ

)
= v

Hence the result. It follows that (ψ, h∗) is a pure Nash equilibrium in our game. We
call this kind of equilibria trivial, because the Defender plays the same strategy with or
without attack.

For convex surrogates, pure nash equilibria are also possible, as a special case of Appendix
A when the cost allows the Attacker’s optimal transport problem to have a Monge solution.
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We will now study the existence of Nash equilibria for general, positive transport-based,
imperceptibility-enforcing constraints. For that, we will study both player’s best response
for a given strategy of the opponent. In this section, we will consider the most fundamental
loss function, namely the 0/1-loss.

3.2.3 Attacker’s best response
We will now study the Attacker’s best response against a given classifier h. For this, we
will need a few notations that will allow us a better grasp of the situation.

Definition 33. A pure Nash equilibrium (h,ϕ) of the game is said to be trivial if
ϕ = (IdX , IdX )

Recall the definition of the classfication zones :

Definition 34 (Classification zones). The classification zonesCy(h) are the partitions
ofX defined by h. More precisely :

∀y ∈ {±1}, Cy(h) = {x ∈ X |h(x) = y} (3.9)

We will now analyze further these zones, by separating the points where an attack may
succeed from the others.
Even when a point can be attack, the penalty incurred by moving the point is not always
worth the increase in the loss function. We will now define the vulnerable zone, as the
region where there exists an attack that brings a positive overall in score.

Definition 35 (Vulnerable zone). Let c be some transport cost. The vulnerable zones
are the portion of each classification zone where the benefit of attacking strictly outweights
the cost. It is the zone where a rational Attacker should always choose to attack.

∀y ∈ {±1}, Vy(h, c) = {x ∈ Cy(h)|∃z ∈ C−y(h), c(x, z) < 1} (3.10)

Finally, we define the indifference zone:
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Definition 36 (Indifference zone). Let ϵ > 0, c be some transport cost. The indifference
zone is the portion of each classification zone where the benefit of attacking exactly
matches the cost, which means that the Attacker is indifferent between attacking and
not moving the point.

∀y ∈ {±1}, Iy(h, c) = {x ∈ Cy(h)|∃z ∈ C−y(h), c(x, z) = 1} (3.11)

We will now formalize these intuitions into the following lemma :

Lemma 3. Let c be a positive transport cost. We consider a game with cost-based
constraint of cost c. Let h be some classifier, andϕ ∈ BR(h).. Then :

• For x ∈ X \ (Vy(h, c) ∪ Iy(h, c)), ϕy(x) = x almost surely;

• For x ∈ Vy(h, c), ϕy(x) ∈ C−y(h) almost surely;

• For x ∈ Iy(h, c), ϕy(x) ∈ {x} ∪ C−y(h) almost surely.

Proof. Letϕ ∈ BR(h).
First step : not moving is better outside of the attackable zone.
Let us reason ad absurdum and assume that there is a zoneA ⊂ X \ (Vy(h, c) ∪ Iy(h, c))
of nonzero measure such that ∀x ∈ A, ϕ1(x) ̸= x. The proof works exactly the same
when replacing 1 with−1. Letψ be such that ψ−1 = ϕ−1 and:

ψ1(x) =

{
ϕ1(x) for x ∈ X \ A
x for x ∈ A

Let∆R = RΩ(h,ϕ)−RΩ(h,ψ) Then :

∆R =
∑
i=±1

qi

∫
Rd

[1{h(ϕi(x)) ̸= i} − c(x, ϕi(x))]− [1{h(ψi(x)) ̸= i} − c(x, ψi(x))]dµi(x)

=

∫
A

[q1(1{h(ϕ1(x)) ̸= 1} − c(x, ϕ1(x)))− q−1(1{h(ψ1(x)) ̸= 1} − c(x, ψ1(x)))]dµ1(x)

Since ψ−1 = ϕ−1 and ψ1(x) = ϕ1(x) outside of A. Furthermore, ψ1(x) = x and
ϕ1(x) ̸= x onA. A ∩ (V1(h, ϵ) ∪ Iy(h, ϵ, c)) = ∅ so we know that for all x ∈ A, z ∈
C−1(h), c(x, z) > 1. It follows that :
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∆R =

∫
A

q1[1{h(ϕ1(x)) ̸= 1} − c(x, ϕ1(x))]− q−1[1{h(x) ̸= 1} − c(x, ψ1(x))]dµ1(x)

≤
∫
A

q1[1− c(x, ϕ1(x))]− q−1[0− k(x, x)]dµ1(x)

≤
∫
A

q1(1− c(x, ϕ1(x))︸ ︷︷ ︸
<0

)dµ1(x)

< 0

SinceA is of nonzero measure. We have constructedψ that gives a strictly higher score
thanϕ, contradiction.
Second step : When the cost is lower than the gain, then attacking is always the
strictly best solution.
We once again reason ad absurdum and assume that there exists a zoneA ⊂ C−1(h) ∪
V1(h, ϵ, c) of nonzero measure such that ∀x ∈ A, ϕ1(x) /∈ C−1(h). Letψ be such that
ψ−1 = ϕ−1 and :

ψ1(x) =

{
ϕ1(x) for x ∈ X \ A
z ∈ Nh such that c(x, z) < 1 for x ∈ A

We know that such a z exists for x ∈ V1(h, ϵ, c) by definition, and for x ∈ C−1(h),
z = xworks. Let∆R = RΩ(h,ϕ)−RΩ(h,ψ) Then :

∆R =
∑
i=±1

qi

∫
Rd

[1{h(ϕi(x)) ̸= i} − c(x, ϕi(x))]− [1{h(ψi(x)) ̸= i} − c(x, ψi(x))]dµi(x)

=

∫
A

q1[1{h(ϕ1(x)) ̸= 1} − c(x, ϕ1(x))]− q−1[1{h(ψ1(x)) ̸= 1} − c(x, ψ1(x))]dµ1(x)

Since ψ−1 = ϕ−1 and ψ1(x) = ϕ1(x) outside ofA.
By hypothesis, h(ϕ1(x)) = 1 onA, and by construction h(ψ1(x)) = −1 onA. Hence :

∆R =

∫
A

q1[0− c(x, ϕ1(x))]− q−1 [1− c(x, ψ1(x))]︸ ︷︷ ︸
>0 by construction

dµ1(x)

< q1

∫
A

[−c(x, ϕ1(x))] < 0
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Hence a contradiction.

Third step : when the cost is equal to the gain, the Attacker is indifferent between
not moving and doing an attack that passes the decision boundary.
Ad absurdum, let us assume that there is a zoneA ⊂ I1(h, ϵ, c) of nonzero measure, such
that ∀x ∈ A, ϕ1(x) ̸= x and ϕ1(x) /∈ C−1(h). Letψ be such that ψ−1 = ϕ−1 and:

ψ1(x) =

{
ϕ1(x) for x ∈ X \ A
x for x ∈ A

Let∆R = RΩ(h,ϕ)−RΩ(h,ψ) Then :

∆R =
∑
i=±1

qi

∫
Rd

[1{h(ϕi(x)) ̸= i} − c(x, ϕi(x))]− [1{h(ψi(x)) ̸= i} − c(x, ψi(x))]dµi(x)

=

∫
A

q1[1{h(ϕ1(x)) ̸= 1} − c(x, ϕ1(x))]− q−1[1{h(ψ1(x)) ̸= 1} − c(x, ψ1(x))]dµ1(x)

Since ψ−1 = ϕ−1 and ψ1(x) = ϕ1(x) outside of A. Furthermore, ψ1(x) = x and
ϕ1(x) ̸= x onA, and h(ϕ1(x)) = 1. Hence :

∆R =

∫
A

q1[1{h(ϕ1(x)) ̸= 1} − c(x, ϕ1(x))]− q−1[1{h(x) ̸= 1} − c(x, ψ1(x))]dµ1(x)

=

∫
A

q1[0− c(x, ϕ1(x))]− q−1[0− c(x, x)]dµ1(x)

= q1

∫
A

(−c(x, ϕ1(x)))dµ1(x)

< 0

SinceA is of nonzero measure and for every x ∈ A, ϕy(x) ̸= x so k(x, ϕy(x)) > 0. We
have constructedψ that gives a strictly higher score thanϕ, contradiction.

3.2.4 Non-existence of pure Nash equilibria in this setting
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Theorem 7. In the zero-sum game using L0/1, with any positive cost-based constraint,
there can be no pure Nash equilibrium.
Note that this is true in particular for positive imperceptibility-preserving constraints.

Proof. Let us assume, ad absurdum, that there is a pure Nash Equilibrium (h,ϕ). A
major consequence from Lemma 3 is that for all y, ϕy#µy(Vy(h, c)) = 0. This is easy to
see, since :

• for x ∈ C−y(h) ∪ Vy(h, c), ϕy(x) ∈ C−1(h) so ϕy(x) /∈ Vy(h, c);

• for x ∈ Cy(h) \ (Vy(h, c) ∪ Iy(h, c)), ϕy(x) = x /∈ Vy(h, c);

• for x ∈ Iy(h, c), either ϕy(x) = x or ϕy(x) ∈ C−y(x).
In both cases, ϕy(x) /∈ Vy(h, ϵ, k).

Another direct consequence of the lemma is that

ϕ−y#µ−y(Vy(h, c)) = µ−y(Vy(h, c) > 0

since ϕ−y = Id onCy(h). It follows that :

ν−yϕ−y#µ−y(Vy(h, c)) > 0 = νyϕy#µy(Vy(h, c)

and by Lemma 2 h /∈ BR(ϕ). Contradiction.

3.2.5 Consequences of this non-existence result
We will now analyze the importance of the previously obtained result. There are two
major consequences to the non-existence of Nash equilibria in the deterministic setting:

Consequence 1. There is no free lunch for transferable attacks.

To understand this statement, remark that, thanks to weak duality, the following inequality
always holds:

sup
ϕ∈(FX )2

inf
h∈H
RΩ(h,ϕ) ≤ inf

h∈H
sup

ϕ∈(FX )2
RΩ(h,ϕ).

On the left side problem (sup-inf), the Adversary looks for the best attacking strategyϕ
against any unknown classifier. This is tightly related to the notion of transferable attacks
(e.g. [Tramèr et al., 2017]), which refers to attacks successful against a wide range of
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3 Studying Nash equilibria via Optimal Transport

classifiers. On the right side our problem (inf-sup), where the Defender tries to find
the best classifier under any possible attack, whereas the Adversary plays in second and
specifically attacks this classifier. As a consequence of Theorem 7, the inequality is always
strict:

sup
ϕ∈(FX )2

inf
h∈H
RΩ(h,ϕ) < inf

h∈H
sup

ϕ∈(FX )2
RΩ(h,ϕ).

This means that both problems are not equivalent. In particular, an attack designed
to succeed against any classifier (i.e. a transferable attack) will not be as good as an attack
tailored for a given classifier.

Consequence 2. No deterministic defense may be proof against every attack.

Let us consider the state-of-the-art defense which is Adversarial Training. The idea is
to compute an efficient attackϕ, and train the classifier on created adversarial examples,
in order to move the decision boundary and make the classifier more robust to new
perturbations byϕ.
To be fully efficient, this method requires that ϕ remains an optimal attack on h even
after training. Our theorem shows that it is never the case: after training our classifier h
to become (h′) robust againstϕ, there will always be a different optimal attackϕ′ that is
efficient against h′. Hence Adversarial Training will never achieve a perfect defense.

3.3 Randomized Defender : outperforming
deterministic defenses

In this section, we will study the behavior of randomized defenses, and show that under
some specific cost functions, they can always outperform deterministic algorithms under
attack.

We keep using the 0/1 loss, as well as the notations from Section 3.2. We will fo-
cus here on the ℓ2 norm (but any hilbert norm would work as well), and two kinds of
imperceptibility-preserving costs : the Carlini-Wagner cost and the Mass cost, as defined
in Section 3.1.3. Recall that both costs are parametrized by a strength factor λ > 0, and
are defined by :

Ωnorm(ϕ) := λ E
Y∼ν

[
E

X∼µY

[
∥X − ϕY (X)∥2

+∞1{∥X − ϕY (X)∥2 > ϵ2}
]]
,

(3.12)
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Ωmass(ϕ) := λ E
Y∼ν

[
E

X∼µY

[
1{X ̸= ϕY (X)}

+∞1{∥X − ϕY (X)∥∞ > ϵ∞}
]]
.

(3.13)

On more general costs functions We believe that the results from this section could be
easily obtained for any positive cost function, as long as we can characterize the associated
optimal attack against any classifier. This is the reason why we selected examples of costs
instead of providing a general result. The method, however, is easily transposable to other
costs.

We call BRnorm and BRmass the corresponding best response sets for the Attacker.

3.3.1 Best response analysis for both cost functions
Before we can introduce randomization, we must first study the behavior of the optimal
attack under both costs functions. Let us introduce a more specific version of the attackable
zone :

Definition 37. Ph(ϵ) = {x ∈ C1(h)|∃z ∈ C−1(h), ∥z − x∥2 ≤ ϵ}

Lemma 2. Let h ∈ H andϕ ∈ BRnorm(h). Then the following assertion holds:

ϕ1(x) =

{
π(x) if x ∈ Ph(ϵ2)
x otherwise.

Where π is the orthogonal projection on (Ph)
∁. ϕ-1 is characterized symmetrically.

Proof. We will make this proof a little more general by only assuming thatX is an Hilbert
space with dot product<|> and associated norm ||.|| =

√
< . | . >. Let us first simplify

the worst case adversarial risk for h. Recall that h = sign(g) with g continuous. From
the definition of adversarial risk we have:

sup
ϕ∈(FX|ϵ2)

2

RΩnorm(h,ϕ) (3.14)

= sup
ϕ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1{h(ϕy(X)) ̸= y} − λ∥X − ϕy(X)∥ −∞1{∥X − ϕy(X)∥ > ϵ2}

]
(3.15)
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= sup
ϕ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1{g(ϕy(X))y ≤ 0} − λ∥X − ϕy(X)∥ −∞1{∥X − ϕy(X)∥ > ϵ2}

]
(3.16)

=
∑
y=±1

νy sup
ϕy∈FX

E
X∼µy

[
1{g(ϕy(X))y ≤ 0} − λ∥X − ϕy(X)∥ −∞1{∥X − ϕy(X)∥ > ϵ2}

]
(3.17)

Finding ϕ1 and ϕ1 are two independent optimization problems, hence, we focus on
characterizing ϕ1 (i.e. y = 1).

sup
ϕ1∈FX

E
X∼µ1

[
1{g(ϕ1(X)) ≤ 0} − λ∥X − ϕ1(X)∥ −∞1{∥X − ϕ1(X)∥ > ϵ2}

]
(3.18)

= E
X∼µ1

[
essup

z∈B∥.∥(X,ϵ2)

1(g(z) ≤ 0)− λ∥X − z∥

]
(3.19)

=

∫
X

essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ∥x− z∥ dµ1(x). (3.20)

Let us now consider (Hj)j∈J a partition ofX , we can write.

sup
ϕ1∈FX

E
X∼µ1

[
1{g(ϕ1(X)) ≤ 0} − λ∥X − ϕ1(X)∥ −∞1{∥X − ϕ1(X)∥ > ϵ2}

]
(3.21)

=
∑
j∈J

∫
Hj

essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ∥x− z∥ dµ1(x) (3.22)

In particular, we consider hereH0 = P ∁
h ,H1 = Ph \ Ph(ϵ2), andH2 = Ph(ϵ2).

For x ∈ H0 = P ∁
h . Taking z = xwe get1{g(z) ≤ 0}−λ∥x− z∥ = 1. Since for any

z ∈ X we have 1{g(z) ≤ 0} − λ∥x− z∥ ≤ 1, this strategy is optimal. Furthermore,
for any other optimal strategy z′, we would have ∥x− z′∥ = 0, hence z′ = x, and an
optimal attack will never move the points ofH0 = P ∁

h .

For x ∈ H1 = Ph \Ph(ϵ2). We haveB∥.∥(x, ϵ2) ⊂ Ph by definition ofPh(ϵ2). Hence,
for any z ∈ B∥.∥(x, ϵ2), one gets g(z) > 0. Then 1{g(z) ≤ 0} − λ∥x− z∥ ≤ 0. The
only optimal z will thus be z = x, giving value 0.
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Let us now consider x ∈ H2 = Ph(ϵ2) which is the interesting case where an attack
is possible. We know that B∥.∥(x, ϵ2) ∩ P ∁

h ̸= ∅, and for any z in this intersection,
1(g(z) ≤ 0) = 1. Hence :

essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ∥x− z∥ =max(1− λ ess inf
z∈B∥.∥(x,ϵ2)∩P ∁

h

∥x− z∥, 0)

(3.23)
=max(1− λπB∥.∥(x,ϵ2)∩P ∁

h
(x), 0) (3.24)

Where πB∥.∥(x,ϵ2)∩P ∁
h

is the projection on the closure of B∥.∥(x, ϵ2) ∩ P ∁
h . Note that

πB∥.∥(x,ϵ2)∩P ∁
h

exists: g is continuous, so B∥.∥(x, ϵ2) ∩ P ∁
h is a closed set, bounded, and

thus compact, since we are in finite dimension. The projection is however not guaranteed
to be unique since we have no evidence on the convexity of the set. Finally, let us remark
that, since λ ∈ (0, 1), and ϵ2 ≤ 1, one has 1− λπB∥.∥(x,ϵ2)∩P ∁

h
(x) ≥ 0 for any x ∈ H2.

Hence, on Ph(ϵ2), the optimal attack projects all the points on the decision boundary.
For simplicity, and since there is no ambiguity, we write the projection π.

Finally. SinceH0 ∪H1 ∪H2 = X , Lemma 2 holds. Furthermore, the score for this
optimal attack is:

sup
ϕ∈(FX|ϵ2)

2

RΩnorm
adv (h, ϕ) (3.25)

=
∑
y=±1

νy
∑
j∈J

∫
Hj

essup
z∈B∥.∥(x,ϵ2)

1{g(z)y ≤ 0} − λ∥x− z∥ dµy(x) (3.26)

Since the value is 0 on Ph \ Ph(ϵ2) (resp. onNh \Nh(ϵ2) ) for ϕ1 (resp. ϕ-1), one gets:

=q1

 ∫
Ph(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ1(x) +

∫
P ∁
h

1dµ1(x)

+ ν-1

 ∫
Nh(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ-1(x) +

∫
N∁

h

1dµ-1(x)


(3.27)

=q1

 ∫
Ph(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ1(x) + µ1(P

∁
h)

+ ν-1

 ∫
Nh(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ-1(x) + µ-1(N

∁
h)


(3.28)
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=R(h) + q1

∫
Ph(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ1(x) + ν-1

∫
Nh(ϵ2)

(
1− λ∥x− π(x)∥

)
dµ-1(x)

(3.29)

The last equation holds sinceR(h) = P(h(X) ̸= Y )P(g(X)Y ≤ 0) = q1µ1(P
∁
h) +

ν-1µ-1(N
∁
h). This provides an interesting decomposition of the adversarial risk into the

risk without attack and the loss on the attack zone.

Lemma 3. Let h ∈ H andϕ ∈ BRmass(h). Then the following assertion holds:{
ϕ1(x) ∈ (Ph)

∁ if x ∈ Ph(ϵ2)
ϕ1(x) = x otherwise.

Where (Ph)∁, the complement of Ph inX . ϕ-1 is characterized symmetrically.

Proof. Following the same proof schema as before the adversarial risk writes as follows:

sup
ϕ∈(FX|ϵ2)

2

RΩmass(h, ϕ) (3.30)

= sup
ϕ∈(FX )2

∑
y=±1

νy E
X∼µy

[1{h(ϕy(X)) ̸= y} − λ1{X ̸= ϕy(X)} −∞1{∥X − ϕy(X)∥ > ϵ2}]

(3.31)

= sup
ϕ∈(FX )2

∑
y=±1

νy E
X∼µy

[1{g(ϕy(X))y ≤ 0} − λ1{X ̸= ϕy(X)} −∞1{∥X − ϕy(X)∥ > ϵ2}]

(3.32)

=
∑
y=±1

νy sup
ϕy∈FX

E
X∼µy

[1{g(ϕy(X))y ≤ 0} − λ1{X ̸= ϕy(X)} −∞1{∥X − ϕy(X)∥ > ϵ2}]

(3.33)

Finding ϕ1 and ϕ1 are two independent optimization problem, hence we focus on charac-
terizing ϕ1 (i.e. y = 1).

sup
ϕ1∈FX

E
X∼µ1

[
1{g(ϕ1(X)) ≤ 0} − λ1{X ̸= ϕ1(X)} −∞1{∥X − ϕ1(X)∥ > ϵ2}

]
(3.34)

= E
X∼µ1

[
essup

z∈B∥.∥(X,ϵ2)

1{g(z) ≤ 0} − λ1{X ̸= z}

]
(3.35)
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=

∫
X

essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ1{x ̸= z} dµ1(x). (3.36)

Let us now consider (Hj)j∈J a partition ofX , we can write.

sup
ϕ1∈FX

E
X∼µ1

[
1{g(ϕ1(X)) ≤ 0} − λ1{X ̸= ϕ1(X)} −∞1{∥X − ϕ1(X)∥ > ϵ2}

]
(3.37)

=
∑
j∈J

∫
Hj

essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ1{x ̸= z} dµ1(x) (3.38)

In particular, we can takeH0 = P ∁
h ,H1 = Ph \ Ph(ϵ2), andH2 = Ph(ϵ2).

For x ∈ H0 = P ∁
h or x ∈ H1 = Ph \ Ph(ϵ2). With the same reasoning as before, any

optimal attack will choose ϕ1(x) = x.

Let x ∈ H2 = Ph(ϵ2). We know thatB∥.∥(x, ϵ2)∩P ∁
h ̸= ∅, and for any z in this inter-

section, one has g(z) ≤ 0 and z ̸= x. Hence essup
z∈B∥.∥(x,ϵ2)

1{g(z) ≤ 0} − λ1{z ̸= x} =

max(1 − λ, 0). Since λ ∈ (0, 1) one has 1{g(z) ≤ 0} − λ1{z ̸= x} = 1 − λ for
any z ∈ B∥.∥(x, ϵ2) ∩ P ∁

h . Then any function that given a x ∈ X outputs ϕ1(x) ∈
B∥.∥(x, ϵ2) ∩ P ∁

h is optimal onH2.

Finally. SinceH0 ∪H1 ∪H2 = X , Lemma 3 holds.

Armed with these lemma, we can now consider mixtures of classifiers.

3.3.2 Modelling randomized defenses
We have shown, in Theorem 7 that under any realistic constraints on the Attacker, there
can be no pure Nash equilibrium. This means that no deterministic classifier may be
proof against every attack. We would therefore need to allow for a wider class of strategies.
A natural extension of the game would thus be to allow randomization for both players,
who would now choose a distribution over pure strategies, leading to this game:

inf
η∈P(H)

sup
φ∈P((FX )2)

E
h∼η
f∼φ

[RΩ(h,ϕ)]. (3.39)

Without making further assumptions on this game (e.g. compactness), we cannot apply
known results from game theory (e.g. Sion theorem) to prove the existence of an equilib-
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rium in this setting. These assumptions would however make the problem loose much
generality, and does not hold here.

Randomization matters. Even without knowing if an equilibrium exists in the ran-
domized setting, we can prove that randomization matters. More precisely we show that,
under mild condition on the data distribution, any deterministic classifier can be out-
performed by a randomized one in terms of the worst case adversarial risk. To do so we
simplify Equation A.1 in two ways.

1. We do not consider the Adversary to be randomized, i.e we restrict the search space of
the Adversary to (FX )

2 instead ofP((FX )
2). This condition corresponds to the current

state-of-the-art in the domain: to the best of our knowledge, no efficient randomized
adversarial example attack has been designed (and so is used) yet. We will explore that
problem in Appendix chapter A.

2. We only consider a subclass of randomized classifiers, called mixtures, which are
discrete probability measures on a finite set of classifier. We show that this kind of ran-
domization is enough to strictly outperform any deterministic classifier. We will discuss
later the use of more general randomization (such as noise injection) for the Defender. Let
us now define a mixture of classifiers:

Definition 38 (Mixture of classifier). Let n ∈ N, h = (h1, ..., hn) ∈ Hn , and
q ∈ P([n]). A mixed classifier of h by q is a mappingmq

h fromX toP(Y) such that
for all x ∈ X , mq

h(x) is the discrete probability distribution that is defined for all
y ∈ Y by:

mq
h(x)(y) := E

i∼q
[1{hi(x) = y}].

We call such a mixture a mixed strategy of the Defender. Given some x ∈ X , this
amounts to picking a classifier hi from h at random following the distribution q, and
use it to output the predicted class for x, i.e hi(x). Note that a mixed strategy for the
Defender is a non deterministic algorithm, since it depends on the sampling one makes
on q. Hence, even if the attacks are defined in the same way as before, the Adversary now
needs to maximize a new objective function which is the expectation of the adversarial
risk under the distributionmq

h. It writes as follows:

RΩ(m
q
h) = E

Y∼ν

[
E

X∼ϕY #µY

[
E

Ŷ∼mq
h(X)

[
1
{
Ŷ ̸= Y

}]]]
−Ω(ϕ). (3.40)

We also writeRΩ to mean Equation (3.40), when it is clear from context that the Defender
uses a mixed classifier. Using this new set of strategies for the Defender, we can study
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whether mixed classifiers outperform deterministic ones, and how to efficiently design
them.

3.3.3 Mixtures can always outperform deterministic defenses
In this section, we will demonstrate that the efficiency of any deterministic defense can
be improved using a simple mixture algorithm. This method presents similarities with
the notions of fictitious play [Brown, 1951] in game theory, and boosting in machine
learning [Freund and Schapire, 1995]. Given a deterministic classifier h1, we combine it
(via randomization) with the best response h2 to its optimal attack. The rational behind
this idea is that, by construction, efficient attacks on one of these two classifiers will not
work on the other. If we can then calibrate the weights so that attacks on important zones
have a low probability of succeeding, then the average risk under attack on the mixture
will be low. We will thus need the following condition on the data distribution :

Definition 39 ((ϵ, p)-dilation and vanishing measure). Let U be a subset ofX , ϵ a
positive value, p ∈ {2,∞}, and µ a probability measure.

1. The (ϵ, p)-dilation of U is defined as follows:

U
p
⊕ ϵ :=

{
u+ v | (u, v) ∈ U ×X and ∥v∥p ≤ ϵ

}
.

2. We say that µ is (ϵ, p)-vanishinga on U if we have:

µ
(
U

p
⊕ ϵ\U

)
≤ µ(U).

aAs for P p
h we omit pwhen it is clear from the context.

This is because mixing h1 with h2 has two opposite consequences on the adversarial
risk. On one hand, where we only had to defend against attack on h1, we are now also
vulnerable to attacks on h2, so the total set of possible attacks is now bigger. On the
other hand, each attack will only work part of the time, depending on the probability
distribution q. When Definition 39 applies on the attackable zones, it ensures that we
gain more than we loose.
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Definition 40 (Attackable zone). Let ϵ > 0 be the imperceptibility threshold. Then
the attackable zone is defined by :

Ay(h, ϵ) = {x ∈ Cy(h),∃z ∈ C−y(h), ∥z − x∥2 ≤ ϵ}

Figure 3.4: Illustration of adversarial examples (only on class 1 for more readability) crossing the
decision boundary (left), adversarially trained classifier for the class 1 (middle), and a
randomized classifier that defends class 1. Stars are natural examples for class 1, and
crosses are natural examples for class -1. The straight line is the optimal Bayes classifier,
and dashed lines delimit the points close enough to the boundary to be attacked resp.
for class 1 and -1.

On the vanishing measure condition. Let us briefly explain this property. To defend
against an attack, the general tactic is to change the classifier output, when points are close
to the border (either all the time, as in Adversarial Training where we move the decision
boundary to incorporate adversarial examples, or part of the time as in our randomized
algorithm so that the attack only works with a given probability).

For example on figure 3.4, we mix the Bayes classifier (left) with its optimal attack that
swaps the blue and red zone between the dotted line, on the gray area that is the former
attack zone for the blue class. This gives the figure on the right. If the first classifier has a
weight α = 0.5, the 10 old attacks (points between the dotted lines) now succeed only
with probability 0.5 (the new optimal attack for star points being to leave them in place),
whereas 3 new attacks are created (blue points outside of the gray area) that succeed with
probability 0.5, for a total attack score of 6.5, which is lower than the old attack score of
10.

When adversarially training a classifier (Figure 3.4, middle), we change its output on
the blue zone, so that four of the star points cannot be successfully attacked anymore.
But in exchange, the dilation of this zone (in red) can now be attacked. For Adversarial
Training to work, we need the number of new potential attacks (i.e. the points that are
circled, 2 red ones in the dilatation and 2 blue ones that are close to the new boundary) to
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be smaller than the number of attacks we prevent (the points that are in a square, 4 blue
ones that an attack would send in the blue zone, and 3 red points that are far from the
new decision boundary).

This discussion shows that when no measure have any vanishing zone, Adversarial
Training cannot bring any gain. By contraposition, whenever a deterministic classifier can
be improved by Adversarial Training, it will also be outperformed under optimal attack
by a randomized algorithm (see Theorem 8).

With these new definitions, we now can state our second main result: mixtures outper-
form deterministic classifiers.

Theorem 8. (Randomization matters) Let h1 ∈ H, λ ∈ (0, 1),ϕ ∈ BR(h1), and
h2 ∈ BR(ϕ). If for some y ∈ {±1}, µy is ϵ2-vanishing onAy(h, ϵ2), then for any
α ∈ (1+λϵ2

2
, 1) one has:

∀ϕ′ ∈ BRnorm(m
q
h),RΩnorm(m

q
h,ϕ

′) < RΩnorm(h1,ϕ).

Where h = (h1, h2), q = (α, 1− α), andmq
h is the mixture of h by q. A similar

result holds for the mass penalty, with α ∈ (1+λ
2
, 1).

Proof of Theorem 8. We first start by proving the result for the mass penalty.

Figure 3.5: Illustration of the notationsU ,U+, andU− for proof of Theorem 8.

To demonstrate this theorem, let us assume for example y = 1 and denote U =

C1(h, ϵ2). We can construct h2 as follows

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.
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This means that h2 changes the class of all points in U , and do not change the rest,
compared to h1. Then taking α ∈ (0, 1), we can definemq

h, andϕ′ ∈ BR(mq
h). We aim

to find a condition on α so that the score ofmq
h is lower than the score of h1. Finally, let

us recall that

RΩmass(m
q
h,ϕ

′)

= q1

∫
X

sup
z∈B∥.∥(x,ϵ2)

α1{h1(z) = -1}+ (1− α)1{h2(z) = -1} − λ1{x ̸= z} dµ1(x)

+ ν-1

∫
X

sup
z∈B∥.∥(x,ϵ2)

α1{h1(z) = 10}+ (1− α)1{h2(z) = 1} − λ1{x ̸= z} dµ-1(x).

The only terms that may vary between the score of h1 and the score of mq
h are the

integrals on U , U ⊕ ϵ2 ∩ C1(h1) and ϕ−1
-1 (U) – inverse image of U by ϕ-1. These sets

represent respectively the points we mix on, the points that may become attacked – when
changing from h1 to mq

h – by moving them on U , and the ones that were – for h1 –
attacked before by moving them on U . Hence, for simplicity, we only write those terms.
Furthermore, we denote

U+ := U ⊕ ϵ2 ∩ C1(h1) \ U, U− := ϕ−1
-1 (U) and recall U := A1(h, ϵ2).

One can refer to Figure 3.5 for visual interpretation of this sets. We can now evaluate the
worst case adversarial score for h1 restricted to the above sets. Thanks to Lemma 3 that
characterizesϕ, we can write

RΩmass
adv (h1,ϕ)|U, U+, U−

= (1− λ)× q1µ1(U) + ν-1µ-1(U)

+ 0× q1µ1

(
U+
)
+ ν-1µ-1

(
U+
)

+ q1µ1

(
U−)+ (1− λ)× ν-1µ-1

(
U−).

Similarly, we can write the worst case adversarial score of the mixture on the sets we
consider. Note that the max operator comes from the fact that the adversary has to make a
choice between attacking the zone or just take advantage of the error due to randomization.

RΩmass
adv (mq

h,ϕ
′)|U, U+, U−

= max(1− α, 1− λ)× q1µ1(U) + max(α, 1− λ)× ν-1µ-1(U)

+ max(0, 1− α− λ)× q1µ1

(
U+
)
+ ν-1µ-1

(
U+
)
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+ q1µ1

(
U−)+max(0, α− λ)× ν-1µ-1

(
U−).

Computing the difference between these two terms, we get the following

RΩmass
adv (h1,ϕ)−RΩmass

adv (mq
h,ϕ

′) (3.41)
= (1− λ−max(1− α, 1− λ))× q1µ1(U) (3.42)

+ (1−max(α, 1− λ))× ν-1µ-1(U) (3.43)

− max(0, 1− α− λ)× q1µ1

(
U+
)

(3.44)

+(1− λ−max(0, α− λ))× ν-1µ-1
(
U−) (3.45)

Let us now simplify Equation (3.41) using additional assumptions.

• First, we have that Equation (3.43) is equal to

min(1− α, λ)µ-1(U)ν-1 > 0.

Thus, a sufficient condition for the difference between the adversarial scores to be
positive is to have the other terms greater or equal to 0.

• To have Equation (3.42)≥ 0 we can always set max(1− α, 1− λ) = 1−λ.This
gives us α ≥ λ.

• Also note that to get (3.44)≥ 0, we can force max(1− α− λ, 0) = 0. This gives
us α ≥ 1− λ.

• Finally, since α ≥ λ, we have that 1 − λ −max(0, α− λ) = 1 − α thus Equa-
tions (3.45)> 0.

With the above simplifications, we have (3.41) > 0 for any α > max(λ, 1 − λ) which
concludes the proof.

Let us now prove the version with the norm penalty :

Proof. Let us take U ⊂ A1(h, ϵ2) such that

min
x∈U
∥x− πPh\Ph(ϵ2)(x)∥ = δ ∈ (0, ϵ2)

. We construct h2 as follows.

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.
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Figure 3.6: Illustration of the notationsU ,U+,U− and δ for proof of Theorem ??.

This means that h2 changes the class of all points in U , and do not change the rest. Let
α ∈ (0, 1), the corresponding mixturemq

h, andϕ′ ∈ BR(mq
h). We will find a condition

on α so that the score ofmq
h is lower than the score of h1. Recall that

RΩnorm(m
q
h,ϕ

′)

= q1

∫
X

sup
z∈B∥.∥(x,ϵ2)

α1{h1(z) = -1}+ (1− α)1{h2(z) = -1} − λ∥x− z∥ dµ1(x)

+ ν-1

∫
X

sup
z∈B∥.∥(x,ϵ2)

α1{h1(z) = 1}+ (1− α)1{h2(z) = 1} − λ∥x− z∥ dµ-1(x).

As we discussed in proof of Theorem 8, the only terms that may vary between the score of
h1 and the score ofmq

h are the integrals onU ,U ⊕ ϵ2 ∩ C1(h1) and ϕ−1
-1 (U). Hence, for

simplicity, we only write those terms. Furthermore, we denote

U+ := U ⊕ ϵ2 ∩ C1(h1) \ U, U− := ϕ−1
-1 (U) and Pϵ2 := A1(h, ϵ2).

One can refer to Figure 3.6 for a visual interpretation of this ensembles. We can now
evaluate the worst case adversarial score for h1 restricted to the above sets. Thanks to
Lemma 2 that characterizesϕ, we can write

RΩnorm
adv (h1,ϕ)

= q1

∫
U

(
1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x) + ν-1µ-1(U)

+ q1

∫
U+\Pϵ2

0 dµ1(x) + ν-1µ-1
(
U+ \ Pϵ2

)
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+ q1

∫
U+∩Pϵ2

(
1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x) + ν-1µ-1

(
U+ ∩ Pϵ2

)
+ q1µ1

(
U−)+ ν-1

∫
U−

(
1− λ∥x− πU(x)∥

)
dµ-1(x).

Similarly we can evaluate the worst case adversarial score for the mixture,

RΩnorm
adv (mq

h,ϕ
′)

= q1

∫
U

max
(
1− α, 1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x)

+ ν-1

∫
U

max(α, 1− λ∥x− πU+(x)∥) dµ-1(x)

+ q1

∫
U+\Pϵ2

max(0, 1− α− λ∥x− πU(x)∥) dµ1(x) + ν-1µ-1
(
U+ \ Pϵ2

)
+ q1

∫
U+∩Pϵ2

max
(
1− α− λ∥x− πU(x)∥, 1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x)

+ ν-1µ-1
(
U+ ∩ Pϵ2

)
+ q1µ1

(
U−)

+ ν-1

∫
U−

max
(
0, 1− λ∥x− πC−1(h1)∁\U(x)∥, α− λ∥x− πU(x)∥

)
dµ-1(x).

Note that we need to take into account the special case of the points in the dilation that
were already in the attacked zone before, and that can now be attacked in two ways, either
by projecting on U – but that works with probability α, since the classification on U is
now randomized – or by projecting onC1(h1)

∁, which works with probability 1 but may
use more distance and so pay more penalty. We can now compute the difference between
both scores.

RΩnorm
adv (h1,ϕ)−RΩnorm

adv (mq
h,ϕ

′) (3.46)

= q1

∫
U

1− λ∥x− πC1(h1)∁
(x)∥ −max

(
1− α, 1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x)

(3.47)

+ ν-1

∫
U

1−max(α, 1− λ∥x− πU+(x)∥)dµ-1(x) (3.48)
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− q1
∫

U+\Pϵ2

max(1− α− λ∥x− πU(x)∥, 0)dµ1(x) (3.49)

+ q1

∫
U+∩Pϵ2

1− λ∥x− πC1(h1)∁
(x)∥

− max
(
1− α− λ∥x− πU(x)∥, 1− λ∥x− πC1(h1)∁

(x)∥
)
dµ1(x) (3.50)

+ ν-1

∫
U−

1− λ∥x− πU(x)∥

− max
(
0, 1− λ∥x− πC−1(h1)∁\U(x)∥, α− λ∥x− πU(x)∥

)
dµ-1(x). (3.51)

Let us simplify Equation (3.46) using using additional hypothesis:

• First, note that Equation (3.48)> 0. Then a sufficient condition for the difference
to be strictly positive is to ensure that other lines are≥ 0.

• In particular to have (3.47) ≥ 0 it is sufficient to have for all x ∈ U

max
(
1− α, 1− λ∥x− πC1(h1)∁

(x)∥
)
= 1− λ∥x− πC1(h1)∁

(x)∥.

This gives us α ≥ λ(ϵ2 − δ) ≥ λmax
x∈U
∥x− πC1(h1)∁

(x)∥.

• Similarly, to have (3.49) ≥ 0, we should set for all x ∈ U+ \ Pϵ2

α ≥ 1− λ∥x− πU(x)∥.

Since min
x∈U+\Pϵ2

∥x− πU(x)∥ = δ, we get the condition α ≥ 1− λδ.

• Finally (3.51)≥ 0, since by definition of U−, for any x ∈ U− we have

∥x− πC−1(h1)∁\U(x)∥ ≥ ∥x− πU(x)∥.

Finally, by summing all these simplifications, we have (3.46) > 0. Hence the result hold
for any α > max(1− λδ, λ(ϵ2 − δ))
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3.3.4 Improving a base classifier via randomization
Based on Theorem 8 we devise a new procedure (Algorithm 2), called Boosted Adver-
sarial Training (BAT) to construct robust classifiers. It is based on three core principles:
Adversarial Training, Boosting and Randomization.

Algorithm 1: Boosted Adversarial Training
Input : n the number of classifiers,D the training data set and α the weight

update parameter.
Create and adversarially train h1 onD
h = (h1) ; q = (1)
for i = 2, . . . , n do

Generate the adversarial data set D̃ againstmq
h.

Create and naturally train hi on D̃
qk ← (1− α)qk ∀k ∈ [i− 1]
qi ← α
q← (q1, . . . , qi)
h← (h1, . . . , hi)

end
returnmq

h

Contrary to classical algorithms such as Fictitious play that also generates mixtures
of classifiers, and whose theoretical guarantees rely on the existence of a Mixed Nash
Equilibrium, the performance of our algorithm is ensured by Theorem 8 to be at least as
good as the classifier it uses as a basis. Moreover, the implementation of Fictitious Play
would be impractical on high dimensional dataset we consider, due to computational
costs.

Given a datasetD and a weight update parameterα ∈ [0, 1], BAT starts by constructing
an adversarially trained classifier onD, and gives it a weight of 1. Then, at each step of the
algorithm, we train a new classifier on a data set D̃ built fromD that contains adversarial
examples created to fool the current mixture. This new classifier is added to the mixture
with a weight of α. Previous weights are then multiplied by 1− α.

At each step, we use ℓ∞-PGD with 20 iterations and ϵ∞ = 0.031 to attack the current
mixture and build the adversarial dataset D̃. We choose this attack to fairly compare
against Adversarial Training, which uses it during the training procedure.

On evaluating against ℓ∞-PGD We use Expectation over Transformation (EOT)
following [Athalye et al., 2018] and [Carlini et al., 2019], when implementing an ℓ∞-PGD
attack against a mixture of classifier. Indeed, it is important to compute the expected
loss over the mixture, so that the attack optimizes Equation (3.40). Previous works such
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Training method Natural ℓ∞-PGD ℓ2-C&W 0.4 ℓ2-C&W 0.6 ℓ2-C&W 0.8
Natural 0.88 0.00 0.00 0.00 0.00

[Madry et al., 2018] 0.83 0.42 0.67 0.60 0.51
BAT (n = 10, α = 0.06) 0.80 0.58 0.70 0.65 0.59

Table 3.1: Evaluation on CIFAR10 without data augmentation. Accuracy under attack of a single
classifier adversarially trained and the mixture formed with our Algorithm 2. The
evaluation is made with ℓ∞-PGD and ℓ2-C&W attacks both computed with 100 steps.
For ℓ∞-PGD we use an epsilon equal to 8/255 (≈ 0.031), a step size equal to 2/255
(≈ 0.008) and we allow random initialization. For ℓ2-C&W we use a learning rate
equal to 0.1, 9 binary search steps, the initial constant to 0.001, we allow the abortion
when it has already converged and we give the results for the different values of rejection
threshold ϵ2 ∈ {0.4, 0.6, 0.8}. Since the mixture draws a classifier in h according to
q to predict a class for each sample, we run 100 times the evaluation to compute the
expected accuracy under attack of the mixture. The width of the 95% confidence interval
is negligible (< 0.01). For this reason, we chose to omit it.

as [Dhillon et al., 2018] and [?] estimate the expected loss through a Monte Carlo sampling.
Since we assume perfect information for the Adversary, it knows the exact distribution of
the mixture. Hence it can directly compute the expected loss without using a sampling
method.

We conduced a grid-search to evaluate the influence ofα (see the supplementary material
for more details). For the results we present here, the optimal α we found is equal to
0.06 for 10 classifiers. In Table 3.1 we compare the accuracy (on the CIFAR10 dataset
[Krizhevsky and Hinton, 2009]) of Boosted and classical Adversarial Training under
attack with ℓ∞-PGD run for 100 iterations.

Results against ℓ∞-PGD. We compute 100 steps of ℓ∞-PGD for the attack at test
time, while only 20 steps during the training. The idea behind this difference is that
the Adversary may target only a few specific points, and so may have access to more
computational power for attacks than the Defender that trains on the whole dataset. For
a classifier to be fully robust, its loss of accuracy should be controlled when the attacks are
strongest than what it was trained on.

As shown in Table 3.1, the mixture generated by BAT with 10 classifiers and α = 0.06

outperforms adversarial training on all four attacks. This is already the case for 2 classifiers,
which corroborates the result from Theorem 8. We refer the reader to the supplementary
material for additional results on how the size of the mixture influences the performance.
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3.3 Randomized Defender : outperforming deterministic defenses

On Evaluating against ℓ2-C&W. Adversarial Training can also be used to defend
against ℓ2-C&W. We conducted experiments to evaluate whether the mixture constructed
with BAT also outperforms it against this attack. Since the basic ℓ2-C&W attack creates
an unbounded perturbation on examples, we implemented the constraint from Equa-
tion 3.12 by checking at test time whether the ℓ2-norm of the perturbation exceeds a
certain threshold ϵ2 ∈ {0.4, 0.6, 0.8}. If this holds, we keep the natural example, instead
of its adversary version.

For the attacks to be comparable, the radiuses of the balls must be chosen carefully. For
CIFAR10, which is a 3× 32× 32 dimensional space, this gives ϵ2 = 0.8 and ϵ∞ = 0.03.
The results of this evaluation are presented in Table 3.1. Note that we ran 100 steps for
the ℓ2-C&W as well.

Results against L2-C&W. The accuracy under attack of our mixture is higher than
that of adversarial training for all the thresholds. Our mixture is especially more robust
than Adversarial Training when the threshold (i.e. the budget for a perturbation), is high.
Here again, we see that with two classifiers the mixture already gives an accuracy under
attack of 0.53 against ℓ2-C&W with ϵ2 = 0.8 and outperforms Adversarial Training.
This result also corroborates Theorem 8.

3.3.5 Implementation details

In this section, we considerX = [0, 1]3×32×32 to be the set of images, andY = {1, ..., 10}
orY = {1, ..., 100} according to the dataset at hand.

Adversarial attacks Let (x, y) ∼ D and h ∈ H. We consider the following attacks:
(i) ℓ∞-PGD attack. In this scenario, the Adversary maximizes the loss objective func-

tion, under the constraint that the ℓ∞ norm of the perturbation remains bounded by
some value ϵ∞. To do so, it recursively computes:

xt+1 = ΠB∥.∥(x,ϵ∞)

[
xt + βsign

(
∇xL

(
h
(
xt
)
, y
))]

(3.52)

where L is some differentiable loss (such as the cross-entropy), β is a gradient step size,
andΠS is the projection operator on S. One can refer to [Madry et al., 2018] for imple-
mentation details.

(ii) ℓ2-C&W attack. In this attack, the Adversary optimizes the following objective:

argmin
τ∈X

∥τ∥2 + λ× cost(x+ τ) (3.53)
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where cost(x+ τ) < 0 if and only if h(x+ τ) ̸= y. The authors use a change of variable
τ = 1

2
(tanh(w) − x + 1) to ensure that x + τ ∈ X , a binary search to optimize the

constant λ, and Adam or SGD to compute an approximated solution. One should refer
to [Carlini and Wagner, 2017b] for implementation details.

Datasets. To illustrate our theoretical results we did experiments on the CIFAR10 and
CIFAR100 datasets. See [Krizhevsky et al., 2009] for more details.

Classifiers. All the classifiers we use are WideResNets (see [Zagoruyko and Komodakis,
2016]) with 28 layers, a widen factor of 10, a dropout factor of 0.3 and LeakyRelu activa-
tions with a 0.1 slope.

Natural Training. To train an undefended classifier we use the following hyperparam-
eters.

• Number of Epochs: 200

• Batch size: 128

• Loss function: Cross Entropy Loss

• Optimizer : SGD algorithm with momentum 0.9, weight decay of 2× 10−4 and
a learning rate that decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60

0.02 if 60 ≤ epoch < 120

0.004 if 120 ≤ epoch < 160

0.0008 if 160 ≤ epoch < 200

Adversarial Training. To adversarially train a classifier we use the same hyperparam-
eters as above, and generate adversarial examples using the ℓ∞-PGD attack with 20 it-
erations. When considering that the input space is [0, 255]3×32×32, on CIFAR10 and
CIFAR100, a perturbation is considered to be imperceptible for ϵ∞ = 8. Here, we
considerX = [0, 1]3×32×32 which is the normalization of the pixel space [0.255]3×32×32.
Hence, we choose ϵ2 = 0.031 (≈ 8/255) for each attack. Moreover, the step size we use
for ℓ∞-PGD is 0.008 (≈ 2/255), we use a random initialization for the gradient descent
and we repeat the procedure three times to take the best perturbation over all the iterations
i.e the one that maximises the loss. For the ℓ∞-PGD attack against the mixturemq

h, we
use the same parameters as above, but compute the gradient over the loss of the expected
logits.
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Evaluation Under Attack. At evaluation time, we use 100 iterations instead of 20
for Adaptive-ℓ∞-PGD, and the same remaining hyperparameters as before. For the
Adaptive-ℓ2-C&W attack, we use 100 iterations, a learning rate equal to 0.01, 9 binary
search steps, and an initial constant of 0.001. We give results for several different values of
the rejection threshold: ϵ2 ∈ {0.4, 0.6, 0.8}.

Computing Adaptive-ℓ2-C&W on a mixture To attack a randomized model, it is
advised in the literature [Tramer et al., 2020] to compute the expected logits returned by
this model. However this advice holds for randomized models that return logits in the
same range for a same example (e.g. classifier with noise injection). Our randomized model
is a mixture and returns logits that depend on selected classifier. Hence, for a same example,
the logits can be very different. This phenomenon made us notice that for some example in
the dataset, computing the expected loss over the classifier (instead of the expected logits)
performs better to find a good perturbation (it can be seen as computing the expectation
of the logits normalized thanks to the loss). To ensure a fair evaluation of our model, in
addition of using EOT with the expected logits, we compute in parallel EOT with the
expected loss and take the perturbation that maximizes the expected error of the mixture.
See the submitted code for more details.

Library used. We used the Pytorch and Advertorch libraries for all implementations.

Machine used. 6 Tesla V100-SXM2-32GB GPUs

Sanity checks for Adaptive attacks In [Tramer et al., 2020], the authors give a lot of
sanity checks and good practices to design an Adaptive attacks. We follow them and here
are the information for Adaptive-ℓ∞-PGD :

• We compute the gradient of the loss by doing the expected logits over the mixture.

• The attack is repeated 3 times with random start and we take the best perturbation
over all the iterations.

• When adding a constant to the logits, it doesn’t change anything to the attack

• When doing 200 iterations instead of 100 iterations, it doesn’t change the perfor-
mance of the attack

• When increasing the budget ϵ∞, the accuracy goes to 0, which ensures that there is
no gradient masking. Here are some values to back this statement:
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Epsilon 0.015 0.031 0.125 0.250
Accuracy 0.638 0.546 0.027 0.000

Table 3.2: Evolution of the accuracy under Adaptive-ℓ∞-PGD attack depending on the budget
ϵ∞

• The loss doesn’t fluctuate at the end of the optimization process.

Selecting the first element of the mixture. Our algorithm creates classifiers in a
boosting fashion, starting with an adversarially trained classifier. There are several ways of
selecting this first element of the mixture: use the classifier with the best accuracy under
attack (option 1, called bestAUA), or rather the one with the best natural accuracy (option
2). Table 3.3 compares both options.

Beside the fact that any of the two mixtures outperforms the first classifier, we see that
the fisrt option always outperforms the second. In fact, when taking option 1 (bestAUA =
True) the accuracy under ℓ∞-PGD attack of the mixture is 3% better than with option 2
(bestAUA = False). One can also note that both mixtures have the same natural accuracy
(0.80), which makes the choice of option 1 natural.

Training method base NA base AUA mixture NA mixture AUA
BAT (bestAUA=True) 0.77 0.46 0.80 0.55
BAT (bestAUA=False) 0.83 0.42 0.80 0.52

Table 3.3: Comparison of the mixture that has as first classifier the best one in term of natural
accuracy and the mixture that has as base classifier the best one in term of Accuracy
under attack. The accuracy under attack is computed with the ℓ∞-PGD attack. NA
means matural accuracy, and AUA means accuracy under attack.

3.3.6 Extension to more than two classifiers

As we mentioned earlier, a mixture of more than two classifiers can be constructed by
adding at each step t a new classifier trained naturally on the dataset D̃ that contains
adversarial examples against the mixture at step t− 1. Since D̃ has to be constructed from
a mixture, one would have to use an adaptive attack as Adaptive-ℓ∞-PGD. Here is the
algorithm for the extented version :
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Algorithm 2: Boosted Adversarial Training
Input : n the number of classifiers,D the training data set and α the weight

update parameter.
Create and adversarially train h1 onD
h = (h1) ; q = (1)

for i = 2, . . . , n do
Generate the adversarial data set D̃ againstmq

h.
Create and naturally train hi on D̃
qk ← (1− α)qk ∀k ∈ [i− 1]

qi ← α

q← (α, . . . , qi)

h← (h1, . . . , hi)
end
returnmq

h

Here to find the parameter α, the grid search is more costly. In fact in the two-classifier
version we only need to train the first and second classifier without taking care of α, and
then test all the values of α using the same two classifier we trained. For the extended
version, the third classifier (and all the other ones added after) depends on the first classifier,
the second one and their weights 1−α andα. Hence the third classifier for a certain value
of α can’t be use for another one and, to conduct the grid search, one have to retrain all
the classifiers from the third one. Naturally the parameters α depends on the number of
classifiers n in the mixtures.

3.4 Stability of Nash equilibria
In the case where Nash equilibria exist, the natural question to ask is whether either
player can actually compute its optimal strategy. This is a trivial question for discrete
zero-sum game, but in our case both players play continuous strategies from an infinite
set of possibilities. This means that players will only control their choice of strategy up
to some (ideally small) confidence interval. Typically, both the classifier and the attack
are computed using some variant of gradient descent on a loss function, to get as close
as possible to some local optimum. Thus, we need to know if sequences of attack and
defenses have any chance to converge to the equilibrium.

3.4.1 Stability to a perturbation of the attack
In this context, an equilibrium will be stable when a small variation from one of the players
around the equilibrium strategy does not change the best response of the other. In other
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words, both strategies are optimal not only against their best response, but also in a small
region around it. A gradient descent algorithm would only need to get into that optimality
region to find the equilibrium. To formalize this notion of stability, we first need a notion
of "distance" between strategies. We will focus in the rest of the section on the Attacker
side.

Definition 41 (Metrics on the attacks). Let ϕ, ψ : X → X , and µ a probability
measure overX . We define two families of distances between these two functions with
regards to µ :

dµ(ϕ, ψ) = EX∼µ
[
1ϕ(X )̸=ψ(X)

]
dd1(ϕ, ψ) = EX∼µ[d1(ϕ(x), ψ(x))]

where d1 is a metric onX .

The first metric counts the average number of points that are moved differently between
both attacks, whereas the second ponders it by how far away from each other both attacks
move the same point, according to some distance d1 over the input space.

Proposition 3. dµ and dd1 are both distances overX .

Proof. The result is immediate for dd1 as d1 is a distance. For dµ, we have :

• dµ(ϕ, ϕ) = 0.

• dµ(ϕ, ψ) = dµ(ψ, ϕ)

• 1ϕ(x)̸=ψ(x) ≤ 1ϕ(x)̸=ϕ̃(x) + 1 ˜ϕ(x)̸=ψ(x) for any x ∈ X and attack ϕ̃. Hence :
dµ(ϕ, ψ) ≤ dµ(ϕ, ϕ̃) + dµ(ϕ̃, ψ).

• if dmu(ϕ, ψ) = 0, then ϕ = ψ µ−almost everywhere.

This allows us to give a formal definition for Attacker-stability :

Definition 42 (δ−Attacker stability). We say that a Nash Equilibrium (ϕ∗, h∗) is
δ−Attacker stable if for any attackψ such that dµ(ϕ∗, ψ) ≤ δ, we have h∗ ∈ BR(ψ)
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This means that if the Adversary does a small variation of its attack, moving less than a
mass δ of points differently, the Defender has no incentive to change its strategy. An even
stronger definition of stability would also require ψ /∈ BR(h∗), i.e. that the Attacker
gets a worse score after perturbation (see Definition 19). This would ensure that a local
optimization procedure would bring him back to the equilibrium. However, as we will
show, even the lighter version of ?? is not met in the deterministic regime.

3.4.2 Nash equilibria cannot be stable in the deterministic regime

Using the definition from the previous section, we can now show our first main result
about the stability of pure Nash equilibria :

Theorem 9 (No stable Pure Nash Equilibrium). We consider either the 0/1 loss or
any convex Bayes consistent surrogate. Letµ be a probability measure of infinite support.
Let (ϕ∗, h∗) be a Pure Nash Equilibrium for µ. Then it cannot be δ−Attacker stable
for any δ > 0.

The idea behind this theorem is that small changes in the attack are enough to create a
hole in one of the conditional distributions, i.e. a zone of measure zero. This forces the
Bayes classifier to change its value on the hole, so that we leave the equilibrium.

We will now show an important property of pure Nash equilibria, namely that if the
optimal attack creates a hole in a zoneH that was classified 1 for the distribution µ1, then
it must also create it for µ−1. The intuition behind this result is that otherwise µ−1 would
dominate µ1 onH after attack, forcing the Bayes classifier to change its classification on
that zone. This is not possible, since by definition of the Nash Equilibrium the initial
classifier should be a best response to its optimal attack.

Lemma 4. Let H ⊂ C1(h
∗). Then if µ1#ϕ

∗
1(H) = 0, then we also have

µ−1#ϕ
∗
−1(H) = 0.

The same result is true when swapping 1 and−1.

Proof. By contradiction, if there is H such that
{

µ1#ϕ
∗
1(H) = 0

µ−1#ϕ
∗
−1(H) ̸= 0

then h∗ will

classifyH as−1 (else changing it to−1 would give it a better score under attack, which is
contradictory with its optimality). This is not possible, becauseH ⊂ C1(h

∗). Contradic-
tion.
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3 Studying Nash equilibria via Optimal Transport

We will now show that a small perturbation of the optimal attack can create a hole in
one of the distributions and not the other. For that, the first step is to ensure that there is
a zone of nonzero measure after attack, where a hole can be created.

Lemma 5. There is a M > 0 and i ∈ {−1, 1} such that H = B(0,M) ∩ Ci has
positive measure under µi#ϕ∗

i and µ−i#ϕ
∗
−i.

Proof. First of all, ifµ1#ϕ
∗
1(C1) = 0, then this means thatµ−1#ϕ

∗
−1(C−1) = 1. So there

is a i such that µi#ϕ∗
i (Ci) ̸= 0. Let us assume without loss of generality that this i is 1.

We then reason ad absurdum and suppose that for anyM > 0,
µ1#ϕ

∗
1(B(0,M) ∩ C1) = 0. Then, by σ−additivity of µ1#ϕ

∗
1, we have :

µ1#ϕ
∗
1

(
∞⋃

M=0

(B(0,M) ∩ C1)

)
≤

∞∑
M=0

(µ1#ϕ
∗
1(B(0,M) ∩ C1)) =

∞∑
M=0

0 = 0.

But the left hand term is equal to µ1#ϕ
∗
1(C1), which we shown to be non-zero. Con-

tradiction.

We then show that we can find a zone of positive measure, and of diameter small enough
to be emptied by an attack.

Lemma 6. For ϵ < min(M, ϵadv), there exists a subsetH ⊂ C1 such that :

• diam(H) < ϵ

• µ1#ϕ
∗
1(H) > 0.

Proof. B(0,M) is compact in X which is of finite dimension. Hence we can extract a
finite covering of the ballsB(x, ϵ

2
) for x ∈ B(0,M), namely

{
(B(xi,

ϵ
2
), i = 1..m

}
.

We have C1 ∩ B(0,M) ⊂
m⋃
i=1

(
B(xi,

ϵ
2
) ∩ C1

)
, so by σ−additivity of µ1#ϕ

∗
1, one of

these sets must have a nonzero measure. Hence there exists i0 such that :

µ1#ϕ
∗
1(H) > 0

whereH = B(xi0 ,
ϵ
2
) ∩ C1. AndH has a diameter of at most ϵ by definition.

We can now proove the main theorem :
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3.4 Stability of Nash equilibria

proof of theorem 9. Let H ⊂ C1 such that µi#ϕ∗
i (H) > 0 for both i=1 and -1, and so

that diam(H) < ϵ. Since µ is of infinite support, we can (by replacingH by one of its
subsets if needed) assume that µ(H) < δ as well.

Then for every x ∈ H , there exists zx /∈ H such that d(x, zx) ≤ ϵ. Let us construct a
new attack function ψ :

ψ1(x) =

∣∣∣∣ ϕ∗
1(x) for x /∈ H
zx for x ∈ H.

And ψ−1 = ϕ∗
−1

Then we have dµ(ϕ∗, ψ) < δ since the only points moved differently are on H. Let us
now show that h∗ /∈ BR(ψ), which will give the desired result.

We have µ1#ψ
∗
1(H) = 0 by definition of ψ, and µ−1#ψ

∗
−1(H) = 0. If h∗ was a

best response to ψ, it would thus classify almost all points of H as−1, else changing the
classification to−1 would strictly improve the score. But sinceH ⊂ C1, this is not the
case. Hence the result.

3.4.3 A more granular criterion : the instability factor
Our current definition of stability is useful as a criteria to evaluate whether an equilibrium
is realistic or not, but does not provide a "degree of stability" for non-stable equilibria, in
order to compare them and evaluate how different modifications of the game lead to more
or less stability. We therefore introduce the instability factor of an equilibrium, and show
that introducing randomization on the Defender’s side (and constraining to it) leads to
an increase in stability.

Definition 43 (instability factor). A δ-instability factor of a Nash equilibrium
(h∗,ϕ∗) is the maximum variation of measure that can be incurred from a variation of
the attack of size δ. More formally, we say that the Nash equilbrium has a δ−instability
factorK > 0 if for every attackψ such that, for i = ±1, dµ(ϕ∗

i , ψi) ≤ δ, we have :

∀H ⊂ X , |ψi#µi(H)− ϕ∗
i#µi(H)| ≤ Kδµ(H)

In particular, if ψi#µi and ϕ∗
i#µi have densities pi and p̃i, we have :

∀x ∈ X , |pi(x)− p̃i(x)| ≤ Kδ (3.54)
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3 Studying Nash equilibria via Optimal Transport

Proposition 4. If an equilibrium has a δ−instability factor of 0, then it is δ−Attacker
stable.

Proof. This result is immediate. The instability factor of 0 means that a variation of the
attack of size less then δ cannot change the transported measure. It follows that the Bayes
classifier will stay the same.

This definition provides us with a less strict criterion for stability. Typically, a very
small instability factor means that perturbating the attack will only incur a very small
modification of the transported measure, and can only shift the Bayes classifier on the
regions where the uncertainty was already very strong.

For deterministic classifiers, the instability factor will always be 1. That is because it is
always possible to empty a zone of measure δ for one of the two conditional distributions
by modifying the optimal attack.

Proposition 5 (instability factor for a pure Nash equilibrium). A pure Nash equilib-
rium always has a instability factor of 1.

Proof. During the proof of Theorem 9, we showed that the instability factor cannot be
lower than 1, since we can always use an attack of size δ to empty a zone of size δ in one of
the distributions, effectively reducing ϕ∗

i#µi by δ on that zone. We will now show that
the instability factor is exactly one. Let ψ be such that dµ(ψ, ϕ∗) ≤ δ. LetH ⊂ X . Let
us show that |ψi#µi(H)− ϕ∗

i#µi(H)| ≤ δµi(H).
Let us callZ = {x ∈ X |ψi(x) ̸= ϕ∗

i (x)}. Then µi(Z) ≤ δ by hypothesis.
Furthermore, we have, by definition ofZ , ψ−1

i (H) \ ϕ∗−1

i (H) ⊂ Z . It follows :

ψi#µi(H) = µi(ψ
−1
i (H))

= µi(ψ
−1
i (H) ∩ ϕ∗−1

i (H)) + µi(ψ
−1
i (H) \ ϕ∗−1

i (H))

≤ µi(ϕ
∗−1

i (H)) + µi(Z)
≤ µi(ϕ

∗−1

i (H)) + δ

An exactly symmetric computation gives us µi(ϕ∗−1

i (H)) ≤ µi(ψ
−1
i (H)) + δ, and by

combining both :
−δ ≤ µi(ϕ

∗−1

i (H))− µi(ψ−1
i (H)) ≤ δ

Which is the desired result.
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3.4 Stability of Nash equilibria

We will now show that when altering the class of possible strategies for the Defender
by allowing a particular type of randomization, we can reach much more stable Nash
equilibria.

3.4.4 Noise injection for the Defender stabilizes Nash equilibria, at
the price of accuracy

In this subsection, we will restrict the Defender to the class of Noise-Injected classifiers.

Definition 44 (Noise-injected classifier). Let h be a deterministic classifier, q0 be
some isotropic probability density function. The corresponding Noise-injected classifier
of distribution q0 takes the average of h over the distribution q0 :

hq0 : x 7→
∫
X

h(z)q0(z − x)dµ(x)

We call the class of Noise-injected classifiersNI .

This class of function preserves some of the most trivial Nash Equilibria, such as the one
described in Section 3.2.2, but contributes to stabilize them. In particular, their instability
factor is linked to ϵ and the Lipschitz constant of the noise distribution.

Proposition 6 (Instability factor for Noise-Injected classifiers). Let q0 be some
isotropic probability density function,L its Lipschitz constant, and ϵ > 0. Then in the
zero-sum game with attacks of size at most ϵ, all Nash equilibria have a instability
factor of ∥L∥∞ϵ.

Remark 2. For a normal distributionN (0, σ2Id), the Lipschitz constant is

L =
1√
2πσ

exp

(
−1

2

)
≃ 0.24

σ

We can see two important things from this :

• Forσ = 1 and ϵ = 0.5, this gives us a instability factor of 0.12, which is much smaller
than 1. Adding noise has considerably increased the stability of the equilibrium.

• There is a Stability-Accuracy tradeoff : as σ increases, the instability factor de-
creases, but so does the natural accuracy. By taking noises of large variance, we can
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3 Studying Nash equilibria via Optimal Transport

reach arbitrarily high levels of stability, but at the cost of global score. This phenomenon
is general to noise injection, as increasing the variance of the noise will always decrease
the Lipschitz constant of the pdf.

Proof. Let (hq0 , ϕ) be a Nash equilibrium, and ψ such that dµ(ϕ, ψ) ≤ δ. Let Zi =
{x ∈ X |ψi(x) ̸= ϕi(x)}. Note that µi(Zi) ≤ δ Then we have :

|ϕi#µi(H)− ψi#µi(H)| =

∣∣∣∣∣∣
∑
i=±1

qi

∫
X

∫
X

q0(z − ϕi(x))dµi(x)−
∫
X

q0(z − ψi(x))dµi(x)

dµi(z)
∣∣∣∣∣∣

≤
∑
i=±1

qi

∫
X

∣∣∣∣∣∣
∫
X

q0(z − ϕi(x))dµi(x)−
∫
X

q0(z − ψi(x))dµi(x)

∣∣∣∣∣∣
dµi(z)

≤
∑
i=±1

qi

∫
X

∫
X

L|ϕi(x)− ψi(x)|dµi(x)

dµi(z)
≤
∑
i=±1

qi

∫
X

∫
Zi

L|ϕi(x)− ψi(x)|dµi(x)

dµi(z)
≤
∑
i=±1

qi

∫
X

∫
Zi

Lϵdµi(x)

dµi(z)
≤
∑
i=±1

qi

∫
X

Lϵµi(Zi)dµi(z)

≤ Lϵδµ(H)

Hence the desired result.

3.4.5 Empirical visualization of the accuracy/stability tradeoff

Let us take the example of two normal distributions : µ−1 = N (−1, 4) andµ1 = N (1, 4)

(see Figure 3.7), with similar prior probability 1
2

.
The Bayes classifier corresponding to these two distributions is simply 1{x ≥ 0}. The

corresponding adversarial risk is simply the average of the green and blue colored zone,
namely P[N (−1, 4) ≥ 0] (here again by symmetry).

After injecting a noiseN (0, σ2), this risk becomes P[N (−1, 4 + σ2) ≥ 0]. The ad-
versarial risk is simply the risk when both distributions are translated toward the decision
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(a) initial distributions (b) after noise injection (c) under attack

Figure 3.7: 2 normal conditional distributions. The blue zone represents the conditional risk of
class 1, and the green zone the conditional risk of class−1.

Figure 3.8: Natural and adversarial risk versus instability factor, for several values of σ

boundary, i.e. P[N (−1 + ϵ, 4 + σ2) ≥ 0] (see Section 3.2.2 for a more thorough analysis
of the case of two normal conditional distributions).

We can thus quantify the accuracy/stability tradeoff for several values of σ. Here we
took ϵ = 0.5 as it is a classical value in adversarial learning problems.

3.5 Summary of our results
In Table 3.4, we summarize the state of current knowledge regarding the game theory
perspective on adversarial attacks. We have shown several important non-existence and non-
stability results in the deterministic case, highlighting the importance of randomization,
and exhibited an accuracy/stability tradeoff in the case of a randomized Defender, showing
that noise injection increases stability at the cost of accuracy.

In Appendix A, we also provide a general study of the case of randomized Attackers
when using a surrogate loss function, and show in particular some conditions for the
existence of a pure Nash equilibrium in this setting.
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Regime | cost 0/1-loss convex surrogate stability ?
Pure | none ✓ ✓ ✗

Pure | positive ✗ ✓ ✗

Mixed Attacker | none ✓ ✓ ?
Mixed Attacker | positive ? ✓ ?

Noise injection | none ? ? A/S tradeoff

Random (both) | none | ✓
[Meunier et al., 2021] ? ?

Table 3.4: Summary of our current state of knowledge. The blue checkmark means that an equi-
librium can exist / be stable, whereas the red cross means that it is not possible. The
orange question mark means that the question is hard and remains open

Furthermore, we have shown that mixtures can strictly outperform any deterministic
classifier, and provided a framework to implement such mixture (Boosted Adversarial
Training).

3.5.1 Future works and open problems
As we have seen, several regimes remained to be studied for the existence and stability of
equilibria. Furthermore, we identify three key steps that would be necessary to have a
complete picture of the problem :

• Studying different forms of randomization We have shown the impact of noise
injection (with uniform distributions) on stabilizing the equilibria. We believe that
this is a consequence of randomization as a whole, and several other forms would
benefit from being studied, such as different distributions for noise injection, finite
mixtures, general convolutions, and so on.

• Quantifying the duality gaps We know for instance that the randomized regime
provides a better performance than the deterministic one for the Defender’s prob-
lem. But by how much ? To know that, we must quantify the difference between
the optimal risk in the randomized and deterministic cases.

• Computing the Nash equilibria Knowing when equilibria exist and are stable
is important to orient the research, and know which regimes are worth studying
further. The next step however, is to compute such equilibria. This is a complex
problem, as it encompasses for example the computation of transport plans for
the Adversary. One possible lead would be to use a primal-dual algorithm such as
Chambolle-Pock.
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4 Background on randomized
smoothing and certification

After studying the existence and computability of optimal classifiers in various setting,
we will now focus on how to certify the performance of such classifiers. The current
state of the art framework for obtaining guarantees of robustness under attack is called
randomized smoothing. As it uses limited information on the classifier, it works with
arbitrarily large networks. However, it has been recently shown that the method suffers
from impossibility results, so that it cannot scale well to high-dimension problems. In
Chapter 5, we will provide a deeper analysis of randomized smoothing, and show that
these limitations can be bypassed by collecting more information.

In this chapter, we will first give a general presentation of Randomized smoothing
(the method, how to derive certificates, and how to pre-train the classifier), then we will
focus on computing the certificates, by analyzing the geometry of the Neyman-Pearson
set. Finally, we will describe the impossibility results and their limitations.

4.1 Randomized smoothing

4.1.1 From differential privacy to certified robustness
Randomized smoothing was first introduced by [Lecuyer et al., 2018] as a provable defense.
The inspiration came from the field of privacy preserving machine learning, which is the
study of how much information a learning algorithm reveals on the data it has been
trained on. Noise injection is often used in this field to ensure that this data cannot be
reconstructed with only access to the output of the training algorithm.

Privacy in machine learning Several definitions of privacy exist, among which dif-
ferential privacy appears as the current standard. It consists in bounding the maximal
variation of the output of an algorithm when an element is added or removed from the
training set.
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4 Background on randomized smoothing and certification

Definition 45 ((ϵ, δ)-Differential privacy for machine learning). Let Sn be the space
of all data samples of size n, andH a class of hypotheses. A Learning algorithm T is a
(possibly randomized) function which links a training sample S ∈ Sn to a hypothesis
h ∈ H. Then T is said to be (ϵ, δ)-differentially private if for any S,S ′ ∈ Sn that
only differ from one input-output pair, and any h ∈ H, we have

P[T (S) = h] ≤ exp(ϵ)P[T (S ′) = h] + δ

A major contribution from [Lecuyer et al., 2018] was to show that (ϵ, δ)−differential
privacy also translates into a robustness guarantee. Hence, algorithms that guarantee
differential privacy will naturally exhibit a provable certificate of robustness. The most
classical example is injecting Gaussian noise on the input at test time. This can be done
either by injecting the noise once, to obtain a randomized algorithm, or by sampling it
several times and computing the average reaction of the classifier to the noise distribution.

This is the idea behind Randomized smoothing : starting from a base classifier h, we
sample at every input x some noiseZ from an isotropic distribution q0, obtaining samples
x+Z1, . . . , x+Zn. We then classify each of these points, and perform a majority voting
to return the most probable class.

Randomized smoothing LetX = Rd be our input space andY = {0, 1} our label
space. LetH be the class of measurable functions from X to Y , and h ∈ H be a base
classifier. Randomized smoothing creates a new classifier hq0 by averaging h under some
probability density function q0 overX . When receiving an input x ∈ X , we compute the
probability that h takes value 1 for a point drawn from q0( · − x):

p(x, h, q0) =

∫
h(z)q0(z − x) dz

The smoothed classifier then returns the most probable class.

Definition 46 (Randomized smoothing). The q0-randomized smoothing of h is the
classifier:

hq0 : x 7→ 1

{
p(x, h, q0) >

1

2

}

[Lecuyer et al., 2018], and later [Li et al., 2018], have shown that it is possible to
compute a lower bound Lmax on the size of any successful attack against a randomized
smoothed classifier. This provides a robust region around each input, in which no attack

90



4.1 Randomized smoothing

can succeed. Furthermore, this certificate only requires information on the probabilities
p(x, h, q0), and no prior knowledge on the classifier. This makes it the first provable
defense that scales well to even large network architectures.

4.1.2 Deriving certificates : the Neyman-Pearson lemma
A stronger framework to derive certificates was then introduced by [Cohen et al., 2019].
Using the Neyman-pearson lemma, they compute the worst-case scenario which is consis-
tent with the information p(x, h, q0), and use it to obtain a tight certificate.

Theorem 10 (Neyman-Pearson lemma). Let q0 be a probability density functions.
Let δ be an attack vector. Then for any k > 0, we define the Neyman-Pearson set:

Sk =
{
u ∈ Rd|q0(x+ u+ δ) ≤ kq0(x+ u)

}
and the associated Neyman-Pearson function:

Φk = 1{Sk} (4.1)

Then for any function Φ : X → [0, 1] such that
∫
Φ(u)q0(x + u)dµ ≥∫

Φk(u)q0(x+ u)dµ, we have:∫
Φk(u)q0(x+ u+ δ)dµ(u) ≤

∫
Φ(u)q0(x+ u)dµ(u)

This means that, among all classifiers that are consistent with the informationp(x, h, q0)
that we have gathered about the true classifier h, the Neyman-Pearson function Equa-
tion (4.1) is the one that provides the worst certificates. A certificate for the Neyman-
Pearson function is thus a certificate for the true classifier. In general both the information
and the certificate are computed using Monte-Carlo sampling, which can be costly. How-
ever, in the case of the Gaussian noise, this is not necessary.

Gaussian noise In general both the information and the certificate are computed using
Monte-Carlo sampling, which can be costly. However, When using a normal distribution
for the smoothing, the Neyman-Pearson set Sk is always a half-space, delimited by a
hyperplane. This allows Cohen et Al. to compute a certificate which has a closed form,
and is independent on the dimension of the problem :
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Figure 4.1: Certificate using a Gaussian noise distribution. We gather information around point x
about the blue class S, using a distribution q0. We then compute the Neyman-Pearson
boundary, which is the hyperplane H orthogonal to (x, x + δ) such that the blue
half-space it delimits has the same measure as the initial set S for the distribution q0.

Theorem 11 (Certificate from [Cohen et al., 2019]). Let q0 = N (0, σ2I) and
p0 be such that p(x, h, q0) ≥ p0. Then hq0(x + δ) = hq0(x) for all δ such that
∥δ∥2 < σΦ−1(p).
Where Φ is the CDF of the standard normal distribution.

4.1.3 Monte-Carlo sampling and confidence intervals
Using Theorem 10 provides us with a general framework to compute certificate:

1. Using Monte-Carlo sampling, compute a lower bound p0 ≤ p(x, h, q0);

2. Tune the parameter k (using a binary search) so that p(x, Φk, q0) ≤ p0 while being
as close as possible, computing the expectation with Monte-Carlo sampling as well.
This gives us the Neyman-Pearson function, i.e. the worst-case classifier. We then
just need to compute the certificate for this classifier (which is known, so a simple
Monte-Carlo sampling works).

3. Compute p̃ = p(x, h, q0(·+ δ) via Monte-Carlo sampling for several values of δ,
to find the larger value of ∥δ∥ such that the probability remains≥ 1

2
. This gives the

certification radius.

In the case of Gaussian noise, steps 2 and 3 are non-necessary, as the certificate can
be computed directly from p0 using Theorem 11. For all steps, computations are done
through Monte-Carlo sampling, which induces randomness. We therefore must control
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the variation of the values, to minimize the chances of obtaining a p that is higher than
the real one for example, which would lead to a false certificate.

Confidence intervals For that, [Cohen et al., 2019] use a procedure called Predict,
which consists in sampling a large number of points from distribution q0, counting the
number of occurences of each class, and deducing the relative probabilities of occurence
pi. This constitutes a sampling from a binomial distribution, whose parameter is the real
probability p0. They then compute a confidence interval for the value p0 with a given
precision 1 − α, and use that to compute the certificate. Thus, they know that with
probability 1−α, that certificate will be an underestimation of the real one, and so a valid
robustness guarantee.

In Chapter 5, we will use similar confidence intervals for most of our implementations
with neural networks.

Distribution shift and noise injection As described by [Lecuyer et al., 2018], inject-
ing noise on a standard network usually leads to a near-zero natural accuracy, due to the
fact that the classifier is not prepared to classify noised inputs. More formally, there is a
distribution shift when adding noise: the conditional distributions change after convolu-
tion with q0, and there is no reason that the Bayes classifier remains the same. In practice,
this is solved by injecting noise as soon as the training step, to ensure that the network is
calibrated on the convoluted distributions, and will perform correctly after smoothing.

This constitutes our first hint that the choice of a base classifier is of paramount impor-
tance for Randomized smoothing (contrary to the accepted idea in the community that
the strength of the method comes from being classifier-agnostic). Noise injection during
the training amounts to "tailoring" the base classifier specifically for the method. We will
discuss that aspect further in Chapter 5.

4.2 Modern improvements to certificates
The framework described in the previous section made randomized smoothing a promising
approach for certified defenses against adversarial attacks. However, several downsides
remained :

• Outside of Gaussian noise, there is no easy way to compute certificates in high
dimensions;

• Good certification radius seemed to incur high drops in natural accuracy;

• The performance remained way unsufficient for industrial applications, with no
guarantees that improvements are possible.
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Several papesr have then improved on that method, to address these issues.

4.2.1 Choice of the base classifier
SmoothAdversarialTraining Seeing the importance of noise injection at training time
to avoid distribution shift, [Salman et al., 2019] have introduced the idea of adversarially
training the base classifier to further improve its robustness. For that, they introduced
SmoothAdv, an attack framework designed to work against randomized smoothed classi-
fiers, so that the attacks could be incorporated during the training, and target the vulnera-
bilities of the smoothed network and not just the base one. This idea is very similar to that
of the distribution shift, but here on the attacks. This allowed significant increases in the
certified accuracy, but at the cost of higher training times, adversarial training being very
costly.

Denoised Smoothing In a very different direction, [Salman et al., 2020] introduced
denoised smoothing as a way to use randomized smoothing with any base classifier, without
re-training it to include noise injection and adversarial training. The main idea was to
add a denoiser as the final layer of the base classifier, to cancel the distribution shift.
They use a standard denoiser (i.e. an algorithmD that is trained to minimize V (D) :=

Eδ∼q0 [D(x+ δ)− x]), but modify the training objective to take into account the need
to not perturbate the classification, which becomes :

Ṽ (D) = Eδ∼q0 [(D(x+ δ)− x) + λL(h(D(x+ δ)), h(x))]

This denoised smoothing manages to reach similar certified radius to [Cohen et al.,
2019] without any pre-training, which is an encouraging lead for plug-and-use randomized
smoothing in the future. A lot of work is however required to achieve decent certified
accuracy.

4.2.2 The geometry of the Neyman-Pearson set
One of the first difficulties of the framework developed by [Cohen et al., 2019] is that it is
very specific to the Gaussian distribution. For other distributions, the Neyman-Pearson
set has a more complex geometry, and the certificates often do not have a close form. This
considerably limits the possibilities of experimentations, and may even lead to disaster if
the Gaussian noise ends up not being viable (which seems to be the case, see Chapter 5
Section 5.2.3).

[Yang et al., 2020] have been the first to study the existence of an optimal smoothing
distribution : for a given adversary constraint (for example the set B of possible attacks,
like the ℓ1, ℓ2 or ℓ∞ balls), considering that we use uniform distributions, which "shape"

94



4.2 Modern improvements to certificates

should the support S of the distribution have for optimal certificates ? It turns out that
an answer exists : the best distribution uses a support that is in the shape of the Wulff
Crystal of the constraint set B.

Definition 47 (Wulff Crystal). The Wulff Crystal relative to a constraint set B that
is a ball for some norm ∥.∥ is defined as the unit ball of the norm dual to ∥.∥.

For example, for the ℓ2 adversary constraint, the optimal distribution is the uniform ℓ2,
whereas for the ℓ1 ball it will be a cube (or ℓ∞ ball). This result in fact generalizes for a
way larger set of possible constraints, see [Yang et al., 2020].

This then raises the question : how do we compute the Neyman-Pearson set efficiently
for potentially complex distributions ?

4.2.3 Computing the Neyman-Pearson set
For that, [Yang et al., 2020] have introduced two very powerful methods : first using level
sets to compute the Neyman-Pearson function exactly, then a gradient-based approach to
bound the robust radius. To simplify the notations, we will take the point x as the center
of our coordinate system. Furhtermore, let q1 = q0(·+ δ). The Neyman-Pearson set thus
becomes :

Sk =
{
u ∈ Rd|q1(u) ≤ kq1(u− δ)

}
The level set method The main idea of this method is to divide the Neyman-Pearson
set into "level sets" ∂Ut =

{
u ∈ Rd|q1(u) = t

}
, i.e. sets that have a constant value of q1.

They are the boundaries of the superlevel setsUt =
{
u ∈ Rd|q1(u) ≥ t

}
. This allows us

to express Sk as :

Sk =
⋃
t≥0

{
u ∈ Rd|q1(u) = t and

t

k
≤ q1(u− δ)

}
=
⋃
t≥0

{
∂Ut ∩ (Ut/k − δ)

}
Finally, the measure of the Neyman-Pearson set under q1 (which is the certificate !) can

be computed as:
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Theorem 12 (Level-Set method). We have :

q1(Sk) =
+∞∫
t=0

∫
∂Ut∩(Ut/k−δ)

t

∥∇q1(u)∥2
dudt

The main advantage of this method is that we now only need to handle the geometry of
the level sets and superlevel-sets of the distribution q1, instead of the Neyman-Pearson set
itself, which is usually much more simple, especially when the distribution q1 exhibits nice
properties of symmetry and invariances. The computation is usually done by Monte-Carlo
sampling, with a binary seach on k as usual.

The differential method This method consists in deriving a bound on the robust
radius by computing, in a sense, the derivative of the attack score : how much can an
infinitesimal perturbation modify the measure under q1 of any set of given measure p.

Theorem 13 (Differential method, [Yang et al., 2020]). The robust radius is at least:

R :=

1/2∫
1−p

1

ζ(p)
dp

where ζ(p) := sup
∥v∥=1

sup
U,q1(U)=p

lim
r→0

q1(U−rv)−p
r

.

They further introduce several techniques that allow for easy computations of the
function ζ for isotropic distributions.

4.2.4 Relaxing the attack constraint
Deriving a robust radius in the general case involves evaluating, for point x, all possible
cases of the smoothing measure under attack, i.e. Ax,ϵ := {q(x+ δ), ∥δ∥ ≤ ϵ}. The
geometry of that set is difficult to grasp in high dimensions, which why the Neyman-
Pearson approach is so popular, even though it gives a potentially loose bound on the
certificate due to the little information it uses.

[Dvijotham et al., 2020] have introduced an alternative approach to Neyman-Pearson :
they relax the set Ax,ϵ by replacing the pointwise constraint (∥z − x∥ ≤ ϵ) by a global
constraint on the distribution, by considering the setBx,ϵ of all ν such that d(q(x), ν) ≤
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K for some distance d overP(X ) and some constantK that depends on ϵ so thatAx,ϵ ⊂
Bx,ϵ.

In particular :

Ax,ϵ ⊂
{
ν|KL(ν, q(x)) ≤ ϵ2

2σ2

}
Where KL designs the Kullback-Leibler divergence between two probability distri-

butions. They also show similar results for other divergences such as the Renyi and
Hockey-Stick. The idea of this framework is that the divergence constraints can be easier
to bound than the general attack one.

4.2.5 Current performance
To our knowledge, the current state-of-the art of robust radii was achieved by [Salman
et al., 2019] with the SmoothAdv training that we described earlier. Table 4.1 summarizes
its performance, and compares it to the base model of [Cohen et al., 2019].

ℓ2 radius (ImageNet) 0.5 1 1.5 2.0 2.5 3.0 3.5
[Cohen et al., 2019] 49 37 29 19 15 12 9
[Salman et al., 2019] 56 45 38 28 26 20 17

Table 4.1: State of the art for Randomized smoothing certified radius. This shows the percentage
of points exhibiting each ℓ2 radius, on ImageNET, for the best classifiers of respectively
Cohen et Al and Salman et Al.

As we can see, current certification methods are still far from providing satisfying robust-
ness guarantees, which would be comparable to the natural accuracy of modern classifiers.
The slow rate of improvement and the apparent bottleneck in the increase of certified
radii lead many researchers to investigate the limitations of Randomized smoothing.

4.3 Current limitations of Randomized smoothing
Despite the many strengths of Randomized smoothing, in particular its ability to scale
with network architectures easily, several limitations have been identified.

4.3.1 Confidence intervals make sampling large radius increasingly
costly

The first limitation is due to the intrinsical nature of Monte-Carlo sampling and confidence
interval. Namely, even if we managed to design a "perfect" randomized smoothed classifier
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4 Background on randomized smoothing and certification

that is immune to all adversarial attacks, this wouldn’t directly reflect on large robust
radii on all points. This is because we use lower confidence bounds on the probability p
: even if we sampled N values for h(x + v) with v ∼ q0, and all values were of class 1,
with confidence value 1− αwe would only get a bound p = α

1
N , which is very slow to

converge to 1 as the number of samples increases.

Figure 4.2: For true value p=1, the radius is a concave function of the number of samples, and so
the marginal gains are decreasing. It takes more added samples to make the radius grow
from 2 to 3 than from 1 to 2. Figure from [Cohen et al., 2019]

4.3.2 Randomized smoothing shrinks convex decision regions

Randomized smoothing works by locally averaging a classifier using an isotropic noise
distribution. However, as it uses no information on the base classifier outside of the local
probablity p = Eu∼q0 [h(x + u)], it is blind to the way that probability is allocated in
space.

In particular, as we will study in more details in Chapter 5 Section 5.2, randomized
smoothing is blind to the local convexity of the decision boundary. Consider R2 and a
classifiaction region that is a disk. When averaging, using a uniform distribution, around
each point, the points that are close to the border of the disk will have a majority of points
outside, due to the curvature of the disk.

Figure 4.3 shows that for convex, bounded decision regions, the shrinking can be enough
to make the whole zone misclassified. This explains why robust radii do not increase for
all points as the radius of the noise increases.
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Figure 4.3: Randomized smoothing shrinks convex decision boundaries, even more when noise
variances are high. The red and yellow circles represent the robust radius around two
points.

[Mohapatra et al., 2021] have formalized this notion, and shown some conditions
under which the shrinking occurs. They have shown in particular that the shrinking
always occurs for bounded decision regions when the noise radius is large enough.

4.3.3 The robustness-accuracy tradeoff
Let h be some base classifier, and (qσ)σ>0 be a family of smoothing distributions, whose
only difference is their variance σ (for example qσ = N (0, σ2I). How do we choose the
parameter σ ? We have two opposite goals :

• Increasing σ means averaging over a larger zone of the input space. Hence, the
smoothed classifier will be robust to a wider size of perturbations;

• Increasing σ also means convoluting the conditional distributions µi with larger
noises, and so making them harder to separate. It follows that the optimal natural
accuracy will decrease, and the smoothed classifier will perform less well without
attacks.

This is what we call the robustness-accuracy tradeoff, and it is a major limitation of
randomized smoothing at the current time. We can formalize these notions as follows:
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4 Background on randomized smoothing and certification

Definition 48 ((ϵ, s)− robustness [Yang et al., 2020]). We say that q is (ϵ, s)−
robust if for any x, y ∈ Rd such that ∥x− y∥ ≤ ϵ, and any set (i.e. base classifier)
U ⊂ Rd, we have :

q(x+ U) ≥ 1

2
+ s⇒ q(y + U) ≥ 1

2

In other words, if any classifier returns a probability 1
2
+ s under q at point x, it has a

robust radius of at least ϵ around point x.

Definition 49 (l-accuracy, [Yang et al., 2020]). For all x, y ∈ Rd such that
∥x− y∥ ≥ 1, there exists a set (i.e. classifier) U such that :

|q(x+ U)− q(y + U)| ≥ l

In other words, the smoothing scheme does not collapse points : if x and y are away from
more than 1, then there should exist a classifier that differentiates them. This is a very
weak assumption, since the classifier can be different for every pair of points.

[Yang et al., 2020] have shown that maintaining an even merely decent accuracy leads
to vanishing robust radii as the dimension of the problem increases :

Theorem 14 (Impossibility result, [Yang et al., 2020]). Let ∥.∥ = ∥.∥p for any
p ∈ [1,+∞]. There exists c > 0 such that for any smoothing scheme that is both
(ϵ, s)−robust and l−accurate with s

l
≤ c, we have :

ϵ ≤ O(min(1, d−1/2+1/p))

This means that, for any smoothing distribution that uses the Neyman-Pearson guar-
antee from [Cohen et al., 2019], the robust radius will vanish as the dimension increases.
Equivalently, we would need absurdely large variances of noise to maintain even merely
decent accuracies in very high dimensions.

4.3.4 Going beyond the Neyman-Pearson certificates
The impossibility result described in the previous section has lead most of the research
community away from randomized smoothing, which appeared as a doomed method.
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However, these results only apply for certificates that use no information on the classifier
outside of the probability p. It follows that more classifier-specific certificates may have a
chance to evade these limitations. Several papers have begun investigating that question.

Using the full probability distribution [Dvijotham et al., 2020] derive certificates
in what they call the "full-information" setting, which is misleading as the information is
only on the output of the smoothed classifier, and not the base one. This means having
access to the probability of each class, and not only the dominant one. Furthermore, they
speed up computations using the f − divergencemethod described earlier. This only
leads to marginal improvement compared to [Cohen et al., 2019].

First and second-order information [Mohapatra et al., 2020] and [Levine et al.,
2021] showed that using first-order or second-order information leads to slightly better
certified radius. Mohapatra et al. also shows that it is theoretically possible to reconstruct a
Gaussian smoothed classifier using only information about its successive derivatives at the
point of interest (even the first derivatives are, however, extremely expensive to compute).

Although the higher-order approach is very similar to the framework we develop in
Chapter 5 Section 5.4, it exhibits a major limitation, namely its lack of modularity. The
results only stand for Gaussian smoothing (which as we will see in Chapter 5 Section 5.2 is
not suited for large dimensions), and cannot be easily combined with additional informa-
tion gathering techniques. As the higher-order informations are exponentially more costly
to compute, this method unfortunately has no chance of scaling in very high dimensions.

4.3.5 Specificity of our work
In the next chapter, we will analyze the limitations of randomized smoothing and offer a
framework to bypass them. Here, we will discuss the novelty of our approach, and how
our results differ from the state of the art.

Linking information to the limitations of RS As stated in several papers such
as [Yang et al., 2020], current no-go results only apply to certificates that use information
from a single noise distribution at test time. The intuition was that gathering more
information may lead to better results, but with no proof or even intuition on why this
would be the case. We are to our knowledge the first to provide a clear link between
the lack of information and the bad scaling of single-noise certificates. Furthermore, we
identify a cause for that poor performance in high dimension, namely that single-noise
certificates are blind to the curvature of the decision boundary. We show that for toy
decision boundary that exhibit a high curvature, the gap between the perfect certificate
and single-noise ones can become arbitrarily large.
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Multiple-noise certificates We then introduce a framework that leverages the general-
ized Neyman-Pearson lemma to use information from several noise distributions at the
same time. The novelty of this framework is twofolds : first, we separate the information
gathering from the smoothing itself, thus incurring no additional loss of accuracy. Second,
this works with any combination of noise distributions, which allows for tuning and
optimization that previous frameworks did not permit. Finally, we hint at how prior infor-
mation on the classifier may be used to drastically reduce the number of noises required
to achieve a given precision in the certificates.

High-probability certification We introduce a new type of certificates, called high-
probability certificates, which provide a guarantee with high probability over some random-
ization process that is inherent to the certification. In our case, we gather information from
several Gaussian noises whose centers are drawn randomly around the point of interest.
This ensures that, in high dimension, any attack will be orthogonal to the vector space gen-
erated by these points with high probability. We use that to derive dimension-independent
certificates, which may scale to any problem once an efficient implementation is found.
To our knowledge, this is the first time that such a certification method is derived.
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In Chapter 3, we studied conditions for the existence and computability of optimal
classifiers. Furthermore, our game theory analysis gave us two key insights on the adversarial
example problem:

• Randomization is the most promising direction of research, if we ever wish to devise
an optimally robust algorithm, that works against any attack;

• When adding randomization to an existing classifier to make it more robust, the
shape of the decision boundary plays a crucial role. Hence we should look for
classifier-specific randomization when possible.

In this chapter, we will study a different problem. If we ever find a good candidate
classifier, how can we certify its performance ? To tackle that question, we need a way of
obtaining certificates from any base classifier, and a way of collecting information from
that classifier to make the certificates specific. Randomized smoothing provides both of
these advantages, but as we saw in Chapter 4, currently suffers from strong impossibility
results, and is thus widely considered as a doomed method.

Our main goal will be to show that these impossibility results can be bypassed when
using stronger, classifier-specific certificates, and that these can be derived with no further
loss of natural accuracy. More specifically, we will tackle the following two questions :

Q1: Are the impossibility results for Randomized smoothing intrisical, or a byproduct of
the current certification methods ?

Q2: Is it possible to devise certificates that use more classifier-specific information, without
any loss of natural accuracy ?

To answer Q1, we will focus on uniform noise distributions, and show in Section 5.2
that current certificates gather suboptimal information on classifier, and are in particular
blind to the local curvature of the decision boundary. We show that this underestimation
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can become arbitrarily bad as dimension increases, justifying the impossibility results.
We then introduce a new framework for deriving certificates in Section 5.4, and show in
Section 5.5 that this framework allows to approximate the perfect certificate with arbitrary
precision, without any further loss of natural accuracy, thus answering Q2. Finally, in
Section 5.6 we will begin an analysis on the choice of noise distributions to efficiently
gather information from the classifier.

5.1 A general framework to study Randomized
smoothing certification

5.1.1 Probabilities and certificates
Recall that, for a binary classification problem, randomized smoothing consists in com-
puting the probability p(x, h, q0) = Pu∼q0 [h(x+ u) = 1], and then returning 1 iff
p(x, h, q0) ≥ 1

2
, thus performing a majority voting over the classes.

In this chapter, we will consider the points x such that p(x, h, q0) > 1
2

, so where the
smoothed classifier returns 1. The other case is exactly symmetrical. We will now give a
general definition of the robustness guarantees provided by randomized smoothing.

Definition 50 (ϵ-certificate). An ϵ-certificate for the q0-randomized smoothing of
h at point x is any lower bound on the probability after attack, i.e., some value v ∈ R
such that:

v ≤ inf
δ∈B(0,ϵ)

p(x+ δ, h, q0)

A certificate v is said to be successful if v > 1
2

.

A successful ϵ-certificate means that no attack of norm at most ϵ can fool the classifier.
This definition allows us to compare different certificates for the same smoothed classifier.
In the next subsection, we will focus on a particular class of certificates.

5.1.2 Partial information certificates
Certificates for randomized smoothing are usually “black-box”, i.e. we can only access the
classifier h through limited queries. This means giving a bound on the worst-case scenario
for some class of functions G that we know contains h.
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Definition 51 (Partial-information certificate). Let q0 be a probability density
function, and G a family of classifiers. The G−partial-information ϵ-certificate for the
q0-randomized smoothing of h at point x is:

PIC(h, q0, x, ϵ,G) = inf
g∈G

inf
δ∈B(0,ϵ)

p(x+ δ, g, q0)

When the infimum over G is attained by some g, we call g a G-worst case classifier.

Definition 52 (Noised-based certificate). LetQ be a finite family of probability
density functions, q0 a probability density function. TheQ−noise-based ϵ-certificate
for the q0-randomized smoothing of h at point x is:

NC(h, q0, x, ϵ,Q) = PIC(h, q0, x, ϵ,GQ)

where:
GQ = {g ∈ H | ∀q ∈ Q, p(x, g, q) = p(x, h, q)}

This is a special case of partial information certificate. We sometimes call a GQ-worst
case classifier aQ-worst case classifier.

A noise-based certificate is a lower bound over all classifiers that exhibit the same re-
sponse as h to every noise distribution inQ. The certificate from [Cohen et al., 2019] is
a particular type of noise-based certificate, where we only use one distribution to gather
information, namely the same q0 that is used for the smoothing, i.e.,Q = {q0}.

Note that there is a fundamental difference between q0, the noise used for the smoothing,
which is a part of the smoothed classifier hq0 used at test time, and the familyQ, which
are noises used to analyze the base classifier h, and so incur no loss of natural accuracy.
Noises fromQ are only used for information-gathering.

5.1.3 Comparing and evaluating certificates
Certificates being bounds, they can be compared as numbers. However, to evaluate the
quality of a certificate, we now need a benchmark. For that, we will use the perfect certificate,
i.e., the tightest possible bound, that uses full information over the classifier h.
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Definition 53 (Perfect certificate). The perfect ϵ-certificate for the q0-randomized
smoothing of h at point x is:

PC(h, q0, x, ϵ) = inf
δ∈B(0,ϵ)

p(x+ δ, h, q0)

The underestimation between prefect certificates and noise-based certificates can now
be defined as the difference between both bounds.

Definition 54 (Underestimation of a noise-based certificate). LetQ be a finite
family of probability density functions and let q0 ∈ Q and ϵ > 0. We define the
underestimation function ν as:

ν(h, q0, x, ϵ,Q) = PC(h, q0, x, ϵ)− NC(h, q0, x, ϵ,Q)

The function ν computes the difference between the perfect ϵ-certificate and the noise-
based ϵ-certificate for an classifier hwith randomized smoothing q0.

5.2 A theoretical analysis of the underestimation gap
In this section, we provide insight on the perceived limitations of randomized smoothing.
Recall that single-noise certificates, i.e., NC(h, q0, x, ϵ, {q0}), use the same noise q0 for
smoothing and information-gathering. This technique presents several weaknesses:
1. SinceQ is small, the certificate is obtained as a worst-case over a large set of functions
GQ. This will often make it significantly poorer than the optimal certificate PC for our
specific classifier.

2. The only way to gather more information on the decision boundary (and thus to obtain
a better certificate) is by increasing the variance of the noise. But this automatically
leads to a decrease in natural accuracy.

3. Such classifier-agnostic certificates considerably limit the possibilities of optimization
through the choice of the base classifier h. In particular, single-noise certificates are
blind to the “local curvature” of the decision boundary, as will be illustrated shortly.

5.2.1 Modelling the local curvature through toy decision
boundaries

To illustrate these limitations, we provide a deeper analysis of the underestimation func-
tion defined in Definition 54. In the following, we focus on the case of uniform noise
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distributions on an ℓ2 ball. To illustrate the importance of the local curvature of the
decision boundary, we use two families of parametric classifiers, that make this concept
easy to observe, namely cones and 2−piecewise linear sets. In both cases, the angle θ
represents how "open" the set is, and low values of θ correspond to a sharp curvature of
the associated decision boundary.

In the following, we will consider the dimension d ≥ 3. Most decision boundaries we
will use will have rotational symmetry, which will allow for simplified computations and
parametrization. Hence, we will define them using hypercylindrical coordinates :

Definition 55 (Hyper-cylindrical coordinates). This is an extension of the hyper-
spherical coordinates, defined in [Blumenson, 1960]] Let e1, . . . , ed be an orthonor-
mal base of Rd, with corresponding Euclidean coordinates (x1, . . . , xd). The hyper-
cylindrical coordinates of axis e1 are the following change of variable:

z = x1 (5.1)

ρ =
√
x22 + · · ·+ x2d (5.2)

ϕi = arccot

(
xi√

x2n + · · ·+ x2i

)
(5.3)

ϕd−1 = 2arccot

xd−1 +
√
x2d−1 + x2d

xd

 (5.4)

with the following reverse transformation:

x1 = z (5.5)
x2 = r cos(ϕ1) (5.6)

xi = r

(
i−2∏
i=1

sin(ϕi)

)
cos(ϕi−1) (5.7)

xd = r

(
d−2∏
i=1

sin(ϕi−2)

)
(5.8)

where i ∈ {2, . . . , d− 1}. This is a bijection, where ϕi ∈ [0, π], r ∈ R+, and
ϕd−1 ∈ [0, 2π], with the convention that ϕk = 0 when xk, . . . , xn = 0. Note that it
is simply a change of variables to hyperspherical coordinates on the d− 1 last variables.
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Figure 5.1: Illustration of hypercylindrical coordinates in 3 dimensions

Definition 56 (Cone of revolution). Let c ≥ 0. For any x ∈ Rd, let
z, ρ, ϕ1, . . . , ϕd−2 be the hyper-cylindrical coordinates of axis e1 (see Definition 55).
The cone of revolution of axis e1, peaked at c and of angle θ ∈

[
0, π

2

]
is the set C(c, θ),

defined by: 
z ∈ R
ρ ∈ R+ z > c and ρ ≤ z tan θ

ϕ1, . . . , ϕd−2 ∈ [0, π].


when θ ≤ π

2
(convex cone), and the set:

C(c, θ) = {z ≥ c or ρ ≥ −z tan(π − θ)}.

for the concave cone (θ > π
2

).
We define a classifier with conical decision boundary as hθ : x 7→ 1{x /∈ C(c, θ)}.
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Figure 5.2: Illustration of Theorem 15. Figure (a) describes the probability p(x, h, qr) = qr(
)+qr( ). Figure (b) describes the perfect certificate asPC(h, qr, x, ϵ) = qr( )+qr( )
whereas the single noised-based certificate is NC(h, qr, x, ϵ, {qr}) = qr( ). Figure
(c) shows that blue zone increases with θ, also, for θ = 0, we have qr( ) −−−→

d→∞
1.

Definition 57 (2-piecewise Linear set). Let c ≥ 0. Let x1, . . . xn be the euclidean
coordinates in the base (e1, . . . , en). The 2-piecewise linear decision region of axis e1
and e2, of distance c and angle θ ∈

[
0, π

2

]
is the set:{

x1, . . . , xn ∈ R | x1 > c and arctan

(
x2
x1

)
∈ [−θ, θ]

}

Remark 3. We can generalize this definition into a n−piecewise linear set, whose decision
boundary is locally linear except around "fracture points". This is obtained, for example,
with neural networks that use ReLu activations, so their study is of particular interest for
machine learning.

Definition 58 (Linear half-space). Let c ≥ 0. The half-space of translation c is, in
hypercylindrical coordinates of axis e1, the set:

H(c) =


z ∈ R
ρ ∈ R+ z > c

ϕ2, . . . , ϕd−1 ∈ [0, π].



5.2.2 Quantifying the underestimation of single-noise certificates
Intuition of Theorem 15. For both conical and 2-piecewise-linear decision bound-
aries, the gap between uniform single-noise certificates and the uniform perfect certificate
increases with the local curvature of the decision boundary. For high local curvatures,
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this gap becomes arbitrarily large as the dimension of the problem increases. Figure 5.2
illustrates this result in 2 dimensions.

Theorem 15 (Underestimation of single noise-based certificates). Let ϵ, r ∈ R∗
+

such that ϵ ≤ r. LetQ = {qr} where qr is a uniform distribution over an ℓ2 ball
Bd

2(0, r). We denote θm = arccos
(
ϵ
2r

)
. For any θ ∈ [0, θm], we denote by hθ the

classifier whose decision boundary is a cone of revolution of peak 0, axis e1 and angle
θ where (e1, . . . , ed) be any orthonormal basis of Rd. Then, ν(hθ, qr, 0, ϵ,Q) is a
continuous and decreasing function of θ. Furthermore, we have

• ν(h0, qr, 0, ϵ,Q) = 1− I1−( ϵ
2r

)2
(
d+1
2
, 1
2

)
• ν(hθm , qr, 0, ϵ,Q) = 0

where Iz(a, b) is the incomplete regularized beta function.
For any ϵ, r, ν(h0, qr, 0, ϵ,Q) −−−→

d→∞
1. The same result holds for 2-piecewise linear

sets.

e⃗1
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θ

x x+ ϵ

(a)

e⃗1

e⃗2

θ

x x+ ϵ

(b)

e⃗1

e⃗2

θ
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Figure 5.3: Illustration of the optimal attack with a cone of revolution as decision boundary. The
optimal attack of norm ϵ is the vector δ = [ϵe⃗1, 0, . . . , 0]. Figure (a) shows that there
is always a gain by translating along e1, Figure (b) shows the gain when translating
along both e1 and e2, and finally, Figure (c) shows the difference. The loss incurred by
the second translation, visible in the yellow zone, is greater than the gain (green zone).
The argument of the proof is that the reflection of the blue zone through the dotted
hyperplane is contained in the yellow zone.

Proof of Theorem 15.
First, in order to define the perfect certificate, we show that the optimal attack against
a conical decision boundary is the translation along its axis. This means that the attack
defined by δ = [ϵe⃗1, 0, . . . , 0]

⊤ is optimal. To prove that, we exploit the symmetry of
the problem, as illustrated in Figure 5.3. To compute the difference between the perfect
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5 A theoretical analysis of Randomized smoothing certification

certificate and single-noise certificate, we here again used the rotational symmetry of the
problem around axis e1, to compute the volume in hyper-cylindrical coordinates as defined
Definition 55. □

Let us now prove theorem 15. We will first need two intermediary results. First of all,
an asymptotic property of the regularized incomplete beta function, that is at the core of
the last part of the theorem.

Lemma 7 (Limit of the regularized incomplete beta function). Let z ≤ 1,
b = 1

2
fixed. Then Iz(a, b) −−−→

a→∞
0.

Proof. For any z < 1, a > 1, b = 1
2

, we have:

Iz(a, b) =
Γ (a+ b)

Γ (a)Γ (b)

∫ z

0

ta−1(1− t)b−1 dt (5.9)

≤ Γ (a+ b)

Γ (a)Γ (b)
za(1− z)−

1
2 (5.10)

From [Olver et al., 2010], Equation 5.11.12, we have the following approximation:

Γ (a+ b)

Γ (a)
∼

a→+∞
ab (5.11)

from Equation (5.11), we can show that:

Γ (a+ b)

Γ (a)Γ (b)
∼

a→+∞

ab

Γ (b)
(5.12)

Finally, we have:

Iz(a, b) ≤
Γ (a+ b)

Γ (a)Γ (b)
za(1− z)−

1
2 (5.13)

∼
a→+∞

ab

Γ (b)
za(1− z)−

1
2 (5.14)

−−−−→
a→+∞

0 (5.15)

which concludes the proof.

Let us now dive in the proof itself. To compute certificates, we need to know the
optimal attack against the cone. We will show that it is simply the translation along this
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5.2 A theoretical analysis of the underestimation gap

axis, although the proof is quite technical and relies heavily on the symmetries of the
problem. In what follows, V = Vol(Bd

2(0, r)).

Lemma 8. The optimal attack of size ϵ < r against C(0, θ) is the translation fully
along its axis e1, i.e. ϵe1.

Proof. LetA = Span(e1), B = Span(e2, . . . , ed). For any vectoru ∈ Rd, we writeu =

uA + uB where uA and uB are the orthogonal projections of u onA andB respectively.
First we will show that since the cone is invariant by rotation around e1, the orthogonal

component of the attack is as well. Without any attack, the probability that the smoothed
classifier returns 1 at point 0, is

p1 =

∫
Rd

1{x ∈ C(0, θ)}q0(x)dx (5.16)

=
1

V

∫
Rd

1{∥xB∥ ≤ ∥xA∥ tan(θ)}1
{
∥xA − 0∥2 + ∥xB − 0∥2 ≤ r2

}
dx (5.17)

(5.18)

where V is the volume of the ball of radius r and center 0.
Let δ be any attack vector of norm ∥δ∥ = ϵ. Attacking the smoothed classifier by δ

means that the classifier is now smoothed using the distribution q0(· − δ). This amounts
to shifting the center of the ball from (0, 0) to (δA, δB). Let

f(x, δ) = 1
{
∥xA − δA∥2 + ∥xB − δB∥2 ≤ r2

}
1{∥xB∥ ≤ ∥xA∥ tan(θ)}, ∀x ∈ Rd

(5.19)
Then at point 0, under attack δ, the smoothed classifier returns 1 with probability p(δ) =
1
V

∫
Rd

f(x, δ) dxwhere V is independent of δ.

We will now show that the attack is invariant by rotation around e1, which means that
any attack that is the image of δ by an isometry preserving e1 gives the same probability as
δ. let g be any isometric mapping such that g|A = IdA. Let δ̃ = g(δ). Recall that as g is
an isometry, g and g−1 are also affine, hence we have :{

∀x, y ∈ Rd, g(x− y) = g(x)− g(y) since g is affine
∀x, y ∈ Rd, ∥g(x)∥ = ∥x∥ since g is an isometry

(5.20)

And the same is true for g−1
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5 A theoretical analysis of Randomized smoothing certification

We can use that to show the rotation invariance, namely :

f(g−1(x), δ) = 1
{
∥g−1(xA)− δA∥2 + ∥g−1(xB)− δB∥2 ≤ r2

}
1
{
∥g−1(xB)∥ ≤ ∥g−1(xA)∥ tan(θ)

}
(5.21)

= 1
{
∥g−1(xA − δ̃A)∥2 + ∥g−1(xB − δ̃B)∥2 ≤ r2

}
1
{
∥g−1(xB)∥ ≤ ∥g−1(xA)∥ tan(θ)

}
(5.22)

= 1
{
∥xA − δ̃A∥2 + ∥xB − δ̃B∥2 ≤ r2

}
1{∥xB∥ ≤ ∥xA∥ tan(θ)}

(5.23)

= f(x, δ̃) = f(x, g−1(δ)) (5.24)

since g−1 is an isometry. It follows, by integrating and with a change of variable in the
integral, that the probability is invariant by rotation :

p(δ) =
1

V

∫
Rd

f(x, δ) dx (5.25)

=
1

V

∫
Rd

f(g−1(u), δ) du (5.26)

=
1

V

∫
Rd

f(u, g−1(δ)) du (5.27)

= p(δ̃) (5.28)

We show that the second component is detrimental

In particular, we can always choose g such that the g(δB) = δ2e2, isolating the orthogonal
component into a single coordinate. In what follows, we will consider δ of the form
δ = δ1e1 + δ2e2 and show that the attack is optimal when δ2 = 0. For this, we will
compute the difference between the attack translated by δ1e1 and the one translated by
δ1e1 + δ2e2, to show that the orthogonal component actually reduces the efficiency of
the attack. Let us first recall that

p(δ) =
1

V
Vol(B(δ, r) ∩ C(0, θ)). (5.29)

=
1

V

∫
Rd

1
{
∥x1 − δ1∥2 + ∥x2 − δ2∥2 + ∥x3∥2 + · · ·+ ∥xd∥2 ≤ r2

}
1{∥xB∥ ≤ ∥xA∥ tan(θ)} dx (5.30)
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(5.31)

e⃗1

e⃗2

θ

x x+ ϵ
e⃗1

e⃗2

θ

x x+ ϵ
e⃗1

e⃗2

θ

Figure 5.4: Illustration of the proof. The illustration on the left shows that there is always a gain
by translating along e1, the illustration in the middle shows the gain when translating
along both e1 and e2, and finally, the illustration on the right shows the difference. The
loss incurred by the second translation, visible in the yellow zone, is greater than the
gain (green zone). The argument of the proof is that the symmetric of the blue zone is
contained in the yellow zone.

LetA = B(δ, r)∩C(0, θ)\B(δ1e1, r) andD = B(δ1e1, r)∩C(0, θ)\B(δ, r). These
represents respectively the points lost and gained when attacking along the coordinate e2
after having already attacked along e1, as we will show :

p(δ1e1)− p(δ) =
1

V
Vol(B(δ1e1, r) ∩ C(0, θ))−

1

V
Vol(B(δ, r) ∩ C(0, θ)) (5.32)

=
1

V
(Vol(B(δ, r) ∩ C(0, θ) ∩B(δ1e1, r))

+ Vol(B(δ, r) ∩ C(0, θ) \B(δ1e1, r))

− Vol(B(δ1e1, r) ∩ C(0, θ)) ∩B(δ, r))

− Vol(B(δ1e1, r) ∩ C(0, θ) \B(δ, r)) (5.33)

=
1

V
(Vol(D)− Vol(A)) (5.34)

We have p(δ1e1)− p(δ) = 1
V
(Vol(D)− Vol(A)). To show that it is positive, i.e. that

there are more points lost than gained with the translation along e2 we will show that
there is an isometry v (preserving volumes) such that v(A) ⊂ D.

Letv be the reflection across the hyperplan
{
x ∈ Rd, x2 =

δ2
2

}
. We havev(x1, . . . , xd) =

(x1, δ2 − x2, x3, . . . , xd). For simplicity, for any x ∈ Rd, we denote v(x) = x̃.
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Let x ∈ A. We will show that x̃ is inD. As x is inA, we have
(x1 − δ1)2 + (x2 − δ2)2 + x23 + · · ·+ x2d ≤ r2

x1 > 0

x22 + · · ·+ x2d ≤ x21 tan
2(θ)

(x1 − δ1)2 + x22 + x23 + · · ·+ x2d > r2

(5.35)
(5.36)
(5.37)
(5.38)

Equation (5.35) states that x ∈ B(δ, r), Equation (5.36) and Equation (5.37) state
that it is in the cone, whereas Equation (5.38) says that x /∈ B(δ1e1, r).

Let us first show that x̃ ∈ C(0, θ). x̃1 = x1 > 0, and subtracting Equation (5.35)
from Equation (5.38) gives us x22 > (x2 − δ2)2. It follows:

x̃2
2 + · · ·+ x̃d

2 = (δ2 − x2)2 + x23 + · · ·+ x2d (5.39)
< x22 + · · ·+ x2d (5.40)
≤ x21 tan

2(θ) (from Equation (5.37)) (5.41)
= x̃1

2 tan2(θ) (5.42)

Now we show that x̃ ∈ B(δ1e1, r).

(x̃1 − δ1)2 + x̃2
2 + · · ·+ x̃d

2 = (x1 − δ1)2 + (x2 − δ2)2 + x23 + · · ·+ x2d (5.43)
≤ r2 (5.44)

Finally we show x̃ /∈ B(δ, r).

(x̃1 − δ1)2 + (x̃2 − δ2)2 + · · ·+ x̃d
2 = (x1 − δ1)2 + x22 + x23 + · · ·+ x2d (5.45)
> r2 (from Equation (5.38)) (5.46)

Combining the above, we get x̃ ∈ D. As x was chosen arbitrarily in A, we get
v(A) ⊂ D. As v is isometric, we finally get p(δ1e1)− p(δ) = 1

V
(Vol(A)− Vol(D)) =

1
V
(Vol(v(A))− Vol(D)) ≤ 0. The component orthogonal to the axis is detrimental to

the attack.

We show that the success of the attack grows with the first
coordinate

We now only need to prove that p(δ) is strictly increasing with δ1. For what follow, we
consider an attack δ1e1, and another one ((δ1 +∆)e1). We will use the same technique:
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Let A = B(δ1e1, r) ∩ C(0, θ) \ B((δ1 + ∆)e1, r), and D = B((δ1 + ∆)e1, r) ∩
C(0, θ) \B(δ1e1, r). We have p((δ1 +∆)e1)− p(δ1e1) = 1

V
(Vol(D)− Vol(A)), and

we will show that there is an isometry v such that v(A) ⊂ D.
Let v be the reflection across the hyperplane

{
x ∈ Rd | x1 = δ1 +

∆
2

}
. Let x =

(x1, . . . , xd) ∈ A. It verifies the following equations:
(x1 − δ1)2 + x22 + x23 + · · ·+ x2d ≤ r2

x1 > 0

x22 + · · ·+ x2d ≤ x21 tan
2(θ)

(x1 − δ1 −∆)2 + x22 + x23 + · · ·+ x2d > r2

(5.47)
(5.48)
(5.49)
(5.50)

v(x1, . . . , xd) = (2δ1 +∆− x1, x2, . . . , xd) = x̃.
First of all, subtracting Equation (5.50) from Equation (5.47) gives:

(x1 − δ1 −∆)2 > (x1 − δ1)2 ⇒ ∆2 − 2∆(x1 − δ1) > 0 (5.51)

⇒ x1 < δ1 +
∆

2
(5.52)

Let us show x̃ ∈ D.

x̃1
2 tan2(θ) = (2δ1 +∆− x1)2 tan2(θ) (5.53)

≥
(
2δ1 +∆− δ1 −

∆

2

)2

tan2(θ) (5.54)

=

(
δ1 +

∆

2

)2

tan2(θ) (5.55)

≥ x21 tan
2(θ) (5.56)

≥ x22 + · · ·+ x2d (5.57)
= x̃2

2 + · · ·+ x̃d
2 (5.58)

Hence x̃ ∈ C(0, θ). Then:

(x̃1 − δ1 −∆)2 + x̃2
2 + · · ·+ x̃d

2 = (x1 − δ1)2 + x22 + · · ·+ x2d (5.59)
≤ r2 (5.60)

Hence x̃ ∈ B((δ1 +∆)e1, r). Finally,

(x̃1 − δ1)2 + x̃2
2 + · · ·+ x̃d

2 = (x1 − δ1 −∆)2 + x22 + · · ·+ x2d (5.61)
> r2 (5.62)
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and we have x̃ /∈ B(δ1e,r). We have thus shown that Vol(D) ≥ Vol(A), and so the
attack is increasing in δ1.

Increasing along the first coordinate cannot diminish the attack
We will now show that the increase is strict. For that, we show that there exists points in
D whose image by v is not inA.

Recall thatD = B(δ1 +∆, r) ∩ C(0, θ) \B(δ1, r) is defined by the following set of
equations: 

(x1 − δ1 −∆)2 + x22 + x23 + · · ·+ x2d ≤ r2

x1 > 0

x22 + · · ·+ x2d ≤ x21 tan
2(θ)

(x1 − δ1)2 + x22 + x23 + · · ·+ x2d > r2

(5.63)
(5.64)
(5.65)
(5.66)

Let us reason by contradiction, and assume that v(D) ⊂ A

This means that for all points verifying the previous set of equations, we also have
x22 + · · ·+ x2d ≤ x̃21 tan

2(θ), i.e.

x22 + · · ·+ x2d ≤ (2δ1 +∆− x1)2 tan2(θ) (5.67)

Let us define u = x1 − δ and b = δ +∆. Combining eq. (5.67) and eq. (5.66) gives:

r2 ≤ (x1 − δ)2 + (2δ +∆− x1)2 tan2(θ)

≤ u2 + (b− u)2 tan2(θ)

≤ u2 + (b2 + u2 − 2bu) tan2(θ)

This implies:

(1 + tan2(θ))u2 − 2b tan2(θ)u+ b2 − r2 > 0

⇒ b2 − r2 > b2
tan2(θ)

1 + tan2(θ)

⇒ r2 < b2(1− sin2(θ) tan2(θ))

⇒ r2 < δ2(1− tan2(θ))

⇒ r2 < δ2

Which is a contradiction since we consider attacks of size δ = ϵ < r.
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5.2 A theoretical analysis of the underestimation gap

We have shown that any component of the attack that is orthogonal to e1 is detrimental
to the attack, and that an increase along e1 benefits the attack. It follows that the optimal
attack of size at most ϵ is ϵe1.

ϵ ϵθO

Bd
2 (0, r) ∩ C(0, θ)c

ϵ ϵθO

Bd
2 (0, r) \Bd

2 (δ, r)

ϵ ϵθO

Bd
2 (0, r) ∩ Bd

2 (δ, r) ∩
C(0, θ)c

ϵ ϵθO

Bd
2 (δ, r) ∩ Bd

2 (0, r)
c ∩

C(0, θ)c

Figure 5.5: Illustration of proof of Theorem 15. The worst-case classifier using only the information
p(θ) assumes that the zone in the second figureis entirely lost, whereas for the perfect
certificate, the blue zone in the fourth figure is not lost. That zone grows as θ shrinks.

We can now proove the theorem itself :

Proof of Theorem 15. Let r > 0, 0 < ϵ ≤ r, δ = [ϵ, 0, . . . , 0]⊤ ∈ Rd, θ ∈ [0, θm] with
θm = arccos

(
ϵ
2r

)
. Let C(0, θ) be a cone of revolution of peak 0, axis e1 and angle θ. Let

us consider all functions hθ whose decision boundary is the cone of revolution C(0, θ).
The probability p(x, hθ, q0) of returning class 1 at the point 0 for the classifier hθ after
smoothing by q0 is:

p(x, hθ, q0) =

∫
Rd

1
{
x ∈ Bd

2(0, r)
}

Vol(Bd
2(0, r))

1{x ∈ C(0, θ)c} dx (5.68)

=
Vol(Bd

2(0, r) ∩ C(0, θ)c)
Vol(Bd

2(0, r))
(5.69)

Single-noise certificates uses the fact that in the worst-case scenario, all the volume lost
during the translation was in class 1, and all the volume gained is in the class 0 (see proof
of [Yang et al., 2020] [Theorem I.19]) This gives:

C(hθ, q0, x, ϵ, {q0}) = p(x, hθ, q0)−
1

V

(
Vol(Bd

2(0, r) \Bd
2(δ, r))

)
(5.70)

=
1

V

(
Vol(Bd

2(0, r) ∩ C(0, θ)c)−
(
Vol(Bd

2(0, r) \Bd
2(δ, r))

))
(5.71)

=
1

V
Vol(Bd

2(0, r) ∩Bd
2(δ, r) ∩ C(0, θ)c) (5.72)
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In Equation (5.70), we say that in the worst case scenario all the volume lost during the
translation was in class 1, and all volume gained was in class 0, hence we loose everything
outside the intersection.

This corresponds to Section 5.2.2: the zone that is preserved after translation for the
noise certificate is the blue one in the third figure. We will show that the perfect certificate
also preserves the blue zone in the fourth figure.

Since by Lemma 8 the optimal attack against the cone is the translation along its axis,
the perfect certificate for the probability pwill be defined under the attack δ:

¶C(hθ, q0, x, ϵ) =
1

V
Vol(Bd

2(δ, r) ∩ C(0, θ)c) (5.73)

The difference between the perfect certificate and the single-noise based certificate (as in
Definition 54) is:

ν(hθ, q0, x, ϵ, {q0}) =
1

V

(
Vol(Bd

2(δ, r) ∩ C(0, θ)c)− Vol(Bd
2(0, r) ∩Bd

2(δ, r) ∩ C(0, θ)c)
)

(5.74)

=
1

V
Vol(Bd

2(δ, r) ∩ C(0, θ)c \
(
Bd

2(0, r) ∩Bd
2(δ, r) ∩ C(0, θ)c

)
)

(5.75)

=
1

V
Vol(Bd

2(δ, r) ∩ C(0, θ)c ∩
(
Bd

2(0, r) ∩Bd
2(δ, r) ∩ C(0, θ)c

)c
)

(5.76)

=
1

V
Vol(Bd

2(δ, r) ∩ C(0, θ)c ∩
(
Bd

2(0, r)
c ∪Bd

2(δ, r)
c ∪ C(0, θ)

)
)

(5.77)

=
1

V
Vol(Bd

2(δ, r) ∩Bd
2(0, r)

c ∩ C(0, θ)c) (5.78)

=
A

V

∞∫
x=0

∞∫
ρ=

x tan(θ)

1
{
(x− ϵ)2 + ρ2 ≤ r2

}
1
{
x2 + ρ2 > r2

}
ρd−2 dx dρ

(5.79)

whereA =
∫

ϕ1,...,ϕd−3∈[−π,π]
ϕd−2∈[0,2π]

∏d−2
k=1 sin

k ϕd−1−k dϕ1 . . . dϕd−2.

It follows that ν is a continuous function with respect to θ ∈ [0, θm]. It is decreasing,
since C(0, θ1) ⊂ C(0, θ2) when θ1 < θ2.
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Furthermore, when θ = 0:

ν(h0, q0, x, ϵ, {q0}) =
1

V
Vol(Bd

2(δ, r) ∩Bd
2(0, r)

c) (5.80)

=
1

V
Vol(Bd

2(δ, r) \Bd
2(0, r)) (5.81)

=
1

V
Vol(Bd

2(δ, r))− Vol(Bd
2(0, r) ∩Bd

2(δ, r)) (5.82)

=
1

V

(
Vol(Bd

2(δ, r)− 2Vol(Cap(r − ϵ

2
, r, d))

)
(5.83)

= 1− I
1−( ϵ

2r )
2

(
d+ 1

2
,
1

2

)
(5.84)

where the step from Equation (5.82) to Equation (5.83) is due because the intersection of
both spheres is the union of two spherical caps.

Moreover, from Lemma 7, we have ν(h0, q0, x, ϵ, {q0}) −−−→
d→∞

1:

And, whenθ = θm, we are going to prove thatν(hθm , q0, x, ϵ, {q0}) = 0. Equivalently,
we want to show that the set defined by:{

(x, ρ) ∈ R
∣∣ x < ϵ

2
and (x− ϵ)2 + ρ2 ≤ r2 and ρ > x tan θm

}
(5.85)

is an empty set. Let (x, ρ) in this set. We have:

ρ > x tan
(
arccos

( ϵ
2r

))
(5.86)

=
2rx

ϵ

√
1− ϵ2

4r2
(5.87)

due to the equality: tan(arccos(x)) =
√
1−x2
x

. Then, we have:

r2 ≥ (x− ϵ)2 + ρ2 (5.88)

≥ x2 − 2xϵ+ ϵ2 +
4r2x2

ϵ2

(
1− ϵ2

4r2

)
(5.89)

= x2 − 2xϵ+ ϵ2 +
4r2x2

ϵ2
− x2 (5.90)

=
4r2

ϵ2
x2 − 2xϵ+ ϵ2 (5.91)

Hence we have:
4r2

ϵ2
x2 − 2xϵ+ ϵ2 − r2 ≤ 0 and x ≤ ϵ

2
(5.92)
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h
Figure 5.6: Difference between the perfect certificate and the single-noise certificate, for several

dimensions, depending on the angle θ of the cone. As we can see, the difference is high
for a higher range of thetas as dimension increases.

But the minimum of the right hand side is: ϵ3

4r2
≤ ϵ

2
because r ≤ ϵ. Therefore, the r.h.s

is increasing on the interval [ ϵ
2
,∞] and is equal to 0 when x = ϵ

2
, which proves that no

point verifies Equation (5.92). That allows us to conclude that: ν(hθm , q0, x, ϵ, {q0}) =
0.

5.2.3 Numerical evaluation of the underestimation
As the uniform distribution has a finite support, the corresponding single-noise certificates
will be blind to everything outside that support. It will thus always consider the worst-case
scenario, namely that every point outside the ball is of the opposite class. Since it has no
information on the precise repartition of points in the ball, the single-noise certificate will
also assume that every point “lost” after the translation (see the green left crescent zone
outside the intersection in Section 5.2.2) was of class 1.

Hence, the difference between the perfect certificate and the single-noise certificate is
the relative area of the blue zone. The last part of the result shows that as the dimension
gets higher, the single noise certificate can become arbitrarily bad. In the extreme case
(ν(θ) = 1), it returns 0 even though the classification task is trivial. This is due to the fact
that the volume of balls tends to concentrate on their surface in high dimensions, and so
the relative weight of the crescent zone increases. We used simulations to plot the evolution
of the underestimation with the parameter θ and the dimension. We used Monte Carlo
sampling with 200k samples for each θ and each dimension.
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5.3 Empirical analysis with real-world decision boundaries

Figure 5.7: Underestimation of single-noise certificates for a normal distribution and a conical
decision boundary.

As we can see in Figure 5.6, as dimension increases the cone represents a smaller portion
of the space for a given θ. It follows that the underestimation becomes large for almost
every θ in high dimensions.

A natural follow-up question would be whether this result stays true for other noise
distributions, such as the Gaussian one, that is the most widely used in practice. However,
it seems that this is not the case : as we see on Figure 5.7

Underestimation for Gaussian noise As we can see on Figure 5.7, the situation is
completely different for Gaussian noise. The underestimation has a bell curve shape, get-
ting lower and flatter as dimension increases, and seemingly converging to 0. This suggests
that Gaussian noise is, in a sense, "doomed" for Randomized smoothing certification, as
there is no gap to be exploited between single-noise certificates (which suffer from the
no-go results) and the perfect one in high dimension.

Focusing on uniform noise, we now ask how likely we are to encounter these kinds of
high local curvature situations when models are trained on real datasets?

5.3 Empirical analysis with real-world decision
boundaries

In the following, we show that we can identify the points where the single-noise classifier is
suboptimal, by leveraging the information from several concentric noises. More precisely,
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5 A theoretical analysis of Randomized smoothing certification

for the uniform distribution, at points where the single-noise certificate is optimal, the
probability of being in class 1 will decrease as the radius of the noise increases.

To illustrate these limitations, we provide a deeper analysis of the underestimation
function defined in Definition 54. In the following, we focus on the case of uniform noise
distributions on an ℓ2 ball.

5.3.1 Identifying points of underestimation in a dataset
The main difficulty of real-world models is their opacity. We cannot know the precise
shape of the decision boundary, which makes it difficult to evaluate, for example, its local
curvature. We bypass this issue by providing a way to identify points where single-noise
certificates cannot be optimal. The intuition is the following : we know (Theorem 16) the
shape of single-noise worst-case classifiers how they would react to successive injections of
noise. If the true classifier exhibits a very different reaction, then it cannot have a locally
similar shape.
Intuition of Theorem 16. For an unknown decision boundary, at any point where the
single-noise certificate is optimal, the probability must locally decrease with the radius of
the noise. It follows that at any point where the probability increases with the radius of
the noise, the single-noise certificate cannot be optimal.

Theorem 16 (Identifying points of non-zero underestimation). For any r > 0, let
qr denote the uniform distribution overBd

2(0, r). Let r1 > 0, and h a classifier. For
any x ∈ Rd, ϵ > 0, if p(x, h, qr) is not a decreasing function of r over [r1, r1 + ϵ),
then PC(h, qr1 , x, ϵ) > NC(h, qr1 , x, ϵ, {qr}).

Proof. Let us denote qr, the uniform distribution of radius r > 0, let r1 > 0 and let gr1 be
the {qr1}-worst classifier. As we saw in the proof of Theorem 15, for any δ of norm ϵ, the
decision region of gr1 ,Dr1 = {z ∈ X | gr1(z) = 1}, is entirely contained inBd

2(x, r1).
Hence for any r > r1,

p(x, gr1 , qr) = P[U(x, r) ∈ Dr1 ] (5.93)

=
Vol(Bd

2(0, r) ∩Dr1)

Vol(Bd
2(x, r))

(5.94)

=
Vol(Bd

2(x, r1) ∩Dr1)

Vol(Bd
2(x, r))

(5.95)

becauseBd
2(x, r) ∩Dr1 ⊆ Bd

2(x, r1). Since r1 is constant, this is a decreasing function
in r.

A similar proof works for 2-piecewise linear decision boundaries.
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5.3.2 Evaluating the suboptimality of certificates on state-of-the art
models

Table 5.1

r0 / r1 ζ(r0, r1)

0.25 / 0.30 40.9%
0.50 / 0.55 41.9%
0.75 / 0.80 41.3%

We leverage Theorem 16 to evaluate the number of points
where single-noise certificates might be optimal, by “prob-
ing” the decision boundary with different distributions.
Let q0 and q1 be two uniform distributions with r0 and
r1 as their respective radius such that r0 < r1 and
let D the set containing all the images of the CIFAR10
dataset [Krizhevsky et al., 2009]. We aim at computing
the proportion ζ of points where the probability increases
with the radius of the noise:

ζ(r0, r1) =
1

|D|
∑
x∈D

1{p(x, h, q0) < p(x, h, q1)}

This quantity measures the proportion of points where a better information-gathering
scheme could improve the certificate. In the context of randomized smoothing, it is
common practice to also add noise during training in order to avoid distribution shift at
test time. Therefore, to perform this experiment, we use three models trained by [Yang
et al., 2020] with uniform distribution with respective radius of 0.25, 0.50 and 0.75.
We use the same radius r0 as the one used during training and we use a r1 = r0 + 0.05.
Table 5.1 shows the results of this experiment. We observe that nearly half of the corrected
classified points have the probability growing suggesting that single-noise certificates would
underestimate the real bound.

5.4 A new framework for separating smoothing and
information gathering

As we saw in Section 5.2, the main downside of single-noise certificates is the coupling of
smoothing and information-gathering. We will now introduce the generalized Neyman-
Pearson lemma, which allows to compute the worst-case decision boundary under con-
straint information.

5.4.1 The generalized Neyman-Pearson Lemma for obtaining
worst-case decision boundaries
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5 A theoretical analysis of Randomized smoothing certification

Theorem 17 (Generalized Neyman-Pearson lemma [Chernoff and Scheffe, 1952]).
Let q0, . . . , qn be probability density functions. For any k1, . . . , kn > 0, we define the
Neyman-Pearson set

SK =

{
q0(x) ≤

n∑
i=1

kiqi(x)

}

and the associated Neyman-Pearson function:

ΦK = 1{SK}

Then for any function Φ : X → [0, 1] such that
∫
Φqi dµ ≥

∫
ΦKqi dµ for all

i ∈ {1, . . . , n}, we have: ∫
ΦKq0 dµ ≤

∫
Φq0 dµ

Proof. By definition of ΦK, we have:∫
(Φ− ΦK)(q0 −

n∑
k=1

kiqi) dµ ≥ 0 (5.96)

since the integrand is always positive. Hence:∫
(Φ− ΦK)q0 dµ ≥

n∑
k=1

ki

∫
(Φ− ΦK)qidµ (5.97)

Since
∫
(Φ− ΦK)qi dµ ≥ 0, we have:∫

(Φ− ΦK)q0 dµ ≥ 0 (5.98)

which is the desired result.

The generalized Neyman-Pearson lemma states that if we can fit the set S to have
certain reactions

∫
ΦKqi dµ ≥ 0 to the noise distributions qi, then it will be the worst-

case decision boundary under the noise distribution q0. The main idea to obtain certificates
from this lemma is to notice that when the noise distributions are all isotropic, and q0 is of
the form q(· − δ), then the whole problem will be invariant by rotation in δ. This means
that the response will be the same for any δ of norm ϵ, thus giving a certificate.
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5.4 A new framework for separating smoothing and information gathering

Corollary 1 (Noise-based certificates). LetQ = {q0, . . . , qn} be a finite family of
isotropic probability density functions, of same center. Let ϵ > 0, and any δ of norm ϵ.
If the ki are such that ∀i, p(x, ΦK, qi) ≤ p(x, h, qi), then we have:

NC(h, q0, x, ϵ,Q) ≥ p(x+ δ, ΦK, q0)

Furthermore, this becomes an equality if ∀i, p(x, ΦK, qi) = p(x, h, qi)

This means that by choosing the ki such that p(x, ΦK, qi) is as close as possible from
p(x, h, qi) while remaining lower, we can get arbitrary close to NC(h, q0, x, ϵ,Q) using
the Neyman-Pearson classifier ΦK.

Note an important difference between multiple-noise certificates and single-noise ones:
we use many noise distributions of varying amplitude at certification time, but the noise
used for smoothing at test time, q0, remains constant. That is the strength of our frame-
work: dissociating the information gathering process and the smoothing itself.

An advantage of this method is that since the function class G can only shrink with the
number of noises used, a bound obtained with several noises will always be at least as good
as the one proposed by [Cohen et al., 2019].

5.4.2 Deriving certificates with information-gathering from
several noise distributions

Using the Generalized Neyman-Pearson lemma, we can extract information about the
decision boundary using noise distributions q0, . . . , qn, via Monte-Carlo sampling. We
then exploit that information to compute a worst-case decision boundary, which can be
used to obtain a certificate:

1. Compute p(x, h, qi) for all noises qi via Monte-Carlo sampling.
2. Compute the generalized Neyman-Pearson function ΦK by fitting the constants ki

such that p(x, ΦK, qi) ≤ pi with the closest possible approximation.
3. Fix some δ of norm ϵ. If the noises used are all isotropic, we can directly compute the

certificate p(x+ δ, ΦK, q0) via sampling.

If the noise distributions are not isotropic or have different centers (breaking the isotropy
of the problem), then we must take a lower bound over all p(x+ δ, ΦK, q0) (where ΦK
depends on δ), as we will do in the proof of Theorem 18. We will also show later that
introducing randomness in the certification process allows to obtain certificate even in the
non-isotropic case.
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5 A theoretical analysis of Randomized smoothing certification

Figure 5.8: Illustration of the Theorem 18. By querying the classifier with uniform noises on the
squares of the grid, we can compute an approximation of the true certificate using the
blue squares. As we refine the grid with smaller squares, the approximation becomes
increasingly good, and converges to the perfect certificate.

We will now show that this framework is enough to derive up to perfect certificates, and
does not incur any additionl loss of natural accuracy when compared to the corresponding
single-noise certificate.

5.5 Bypassing the limitations of single-noise certificates

5.5.1 General approximation result
Intuition of Theorem 18. For any continuous decision boundary, it is possible to
approximate the perfect certificate with arbitrary precision, using information from a
finite family of noise distributions. The size of the family used increases with the desired
precision. An illustration of this theorem is shown in Figure 5.8.

Theorem 18 (General approximation theorem). Let q0 be the uniform noise on
the ℓ∞ ballB∞(0, r) for some r > 0. For any ϵ > 0, ξ > 0 and x ∈ Rd, there exists
a finite familyQ of probability density functions such that:

NC(h, q0, x, ϵ,Q) ≥ PC(h, q0, x, ϵ)− ξ

Sketch of proof of Theorem 18. The idea of this proof is to define a grid of disjoint
squares covering the space. Then, we can construct a noise-based classifier that returns 1
only on the squares that are entirely contained in the decision region, i.e., a strict underes-
timate of the true classifier. As the grid gets thinner, the approximation will then converge
to the true classifier as a Riemann sum. □
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5.5 Bypassing the limitations of single-noise certificates

Proof of Theorem 18. Let n > 0, and some x ∈ X . We can construct a grid of (n(r +
2ϵ))d disjoint squares of side size 1

n
, of the form

[
a1
n
, a1+1

n

[
× · · · ×

[
ad
n
, ad+1

n

[
(except

the ones on the border of the ball that are closed) that will cover the ballBd
∞(x, r), as well

as its translation by ϵ in any direction.
Let us call the squares in this gridAj for j = 1 . . .m andm = (d+2ϵ

n
)d. They all have

the same volume Vn = ( 1
n
)d.

Let qj denote the probability density function of the uniform noise overAj :

∀j ∈ {1, . . . ,m}, z ∈ Rd, qj(z) =
1

Vn
1z∈Aj

(5.99)

Let V = Vol(Bd
∞(0, r)). For j ∈ {1, . . . ,m}, let pj =

∫
h(z)qj(z)dz be the

expected response of the true classifier h to noise qj (i.e. what is observed), and the
coefficients kj such that:

kj =

{
Vn
V

if pj = 1, i.e., h = 1 almost surely onAj
0 otherwise.

(5.100)

We choose these specific coefficients to only "activate" the squares where h = 1 almost
surely, i.e. that are entirely inside of the decision region.

Let δ be any attack vector of norm ϵ, and q̃0 = q0( · − δ) be the distribution after

attack by δ. The support of q̃0 isBd
∞(−δ, r) which is fully contained in

m⋃
i=1

Ai.

Let ΦK be the Neyman-Pearson function defined byK := {k1, . . . , kn}:

ΦK(x
′) =

{
1 if q̃0(x′) ≤

∑n
i=1 kiqi(x

′)

0 otherwise
(5.101)

We know that ΦK = 1 outside ofBd
∞(x+ δ, r) since q̃0 = 0 there. Let x′ ∈ Bd

∞(x+

δ, r). TheAi are disjoint and cover the ball, so there is exactly one j such that x′ ∈ Aj .
We then have for any x′ ∈ Aj :

ΦK(x
′) =

{
1 if h = 1 almost surely onAj
0 otherwise

(5.102)

Hence ΦK|Aj
= ess inf

Aj

(h), since h has values in {0, 1}. It follows that:

∫
ΦK(z)q̃0(z)dz =

m∑
i=1

(ess inf
Aj

(h))Vol(Ai ∩Bd
∞(x− δ, r)) (5.103)
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5 A theoretical analysis of Randomized smoothing certification

That is a lower Riemann sum for the integral
∫

Bd
∞(x−δ,r)

h, and so converges to it when

m→∞ as h is Riemann integrable. Hence we can choose n such that, for any δ,∫
ΦK(z)q̃0(z)dz ≤

∫
h(z)q̃0(z)dz + ξ (5.104)

which gives us the desired result, since this is true for any δ.

Theorem 18 shows that it is possible to collect asymptotically perfect information on
the decision boundary using only noise-based queries. The main improvement compared
to the result of [Mohapatra et al., 2020] is that we reconstruct the base classifier itself, and
not just the Gaussian smoothed version of it, hence it works for any smoothing scheme.
This shows that the black-box approach to randomized smoothing certification is viable,
and can bypass the theoretical limitations when using several noises instead of one.

Furthermore, if we have access to some prior information on the decision boundary, it
will be possible to design much more efficient noise-based information gathering schemes.
In the following, we present a result demonstrating that we can obtain full information in
the case of conical or 2-piecewise linear decision boundaries by using only a few concentric
uniform noises.

5.5.2 Adding prior information on the decision boundary

Definition 59 (Noise-based certificate with prior information). Let Q be a
finite family of probability density functions, F be a family of classifiers (typically
parameterized). Let q0 ∈ Q. TheQ−noise-based ϵ-certificate with prior information
F for the q0-randomized smoothing of h at point x is:

NCP(h, q0, x, ϵ,Q,F) = inf
g∈GQ,F

inf
δ∈B(0,ϵ)

p(x+ δ, g, q0)

where:
GQ,F = {g ∈ F | ∀q ∈ Q, p(x, g, q) = p(x, h, q)}

We will now show that adding prior information about the classifier can drastically
improve the power of noise-based certificate. In particular, if we know that the decision
boundary is in a parametrized family of curves, we can reach the perfect certificate us-
ing a small amount of noise, by reconstituting the parameters. In the case of conical
and 2−piecewise linear decision boundaries, we can do that because of a 1−to−1 cor-
respondence between the volume growth under concentric noises, and the parameter
θ.
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5.5 Bypassing the limitations of single-noise certificates

Definition 60 (Volume growth for a decision boundary). LetBd
2 , the ℓ2-ball in

dimension d,A a set and r1 > r2 ≥ 0. We define the volume growth ofA from r1 to
r2 as:

∆V (A, r1, r2) = Vol
(
A ∩Bd

2(0, r2)
)
− Vol

(
A ∩Bd

2(0, r1)
)

Definition 61 (Linear half-space). Let c ≥ 0. The half-space of translation c is, in
hypercylindrical coordinates of axis e1, the set:

H(c) =


z ∈ R
ρ ∈ R+ z > c

ϕ2, . . . , ϕd−1 ∈ [0, π].



Lemma 9 (Growth function for concentric noises). Let c ≥ 0, r2 > r1 > c.
Then∆V (C(c, θ), r1, r2) is a continuous, increasing function of θ, that is a bijection
from [0, π] to [0, ∆V (H(c), r1, r2)].
The same result holds for 2-piecewise linear sets of parameter θ.

Proof of Lemma 9. Let r2 > r1 > 0, c > 0. Let C(c, θ) be the cone of revolution of
peak c and angle θ. Let Bθ(r1, r2) = C(c, θ) ∩ Bd

2(0, r2) \ Bd
2(0, r1) andA(r1, r2) =

H(c) ∩Bd
2(0, r2) \Bd

2(0, r1).
First note thatVol(Bθ(r1, r2)) = Vol(C(c, θ)∩Bd

2(0, r2))−Vol(C(c, θ)∩Bd
2(0, r1)) =

∆V (C(c, θ), r1, r2), and similarly Vol(A(r1, r2)) = ∆V (H(c), r1, r2)

To compute the volume ofBθ(r1, r2), we must cut the integral into three zones: where
the bound is the cone, and where it is the surface of either of the balls. There exist a constant
K (dependent on the dimension, and containing the integration in all the variables ϕi in
hyper-spherical coordinates) such as:

Vol(Bθ(r1, r2)) = Vol(C(c, θ) ∩Bd
2(0, r2) \Bd

2(0, r1)) (5.105)

=
1

K

[∫ r1

x=r1 cos θ

∫ x tan θ

√
r21−x2

ρd−2 dρ dx+

∫ r2 cos θ

r1

∫ x tan θ

ρ=0

ρd−2 dρ dx+

∫ r2

r2 cos θ

∫ √r22−x2

ρ=0

ρd−2 dρ dx

]
(5.106)
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It follows that Vol(Bθ(r1, r2)) is a continuous function of θ.
Furthermore, ifθ2 > θ1, thenC(c, θ1) ⊂ C(c, θ2), soVol(Bθ1(r1, r2)) ≤ Vol(Bθ2(r1, r2)),

and the function is increasing.
For θ = 0, Vol(Bθ(r1, r2)) = 0, and for θ = π

2
, Bθ1(r1, r2)) = A(r1, r2). Hence the

result. When θ = π, the cone becomes the half-spaceH(c).

Intuition of Theorem 19. If we know that the decision boundary is conical or 2-
piecewise-linear, then its parameter θ can be perfectly identified using only the information
from two concentric noises. This then allows us to compute the perfect certificate by
Monte-Carlo sampling, knowing the true decision boundary. Figure 5.9 is an intuitive
illustration of the proposition. We can see that the volume of the cone captured by the
balls is a strictly non-decreasing function of θ, so that there is a 1−to−1 correspondence
between the gradient of the volume and the angle of the cone.

Theorem 19 (Perfect certificate for conical decision boundaries). Let θ0 ∈[
0, π

2

]
. Let h be a classifier whose decision boundary is the cone C(0, θ0). LetF be the

family of all classifiers with a decision boundary of the form C(0, θ). Then there exists
uniform noises q1 and q2 such that, for any noise q0, and any x ∈ Rd, ϵ > 0:

NCP(h, q0, x, ϵ, {q1, q2},F) = PC(h, q0, x, ϵ)

Proof of Theorem 19. This is an immediate consequence of Lemma 9 : From the infor-
mation of two noises, we can perfectly identify the parameter θ, and thus compute the
perfect certificate as PX∼q0(x)[X + ϵe1 ∈ C(0, θ)].

Also, by a direct extension of Theorem 19, a small number of concentric noises are
enough to obtain full information on general cones C(c, θ), in two steps:
• Evaluate the distance c to the decision boundary by finding the threshold such that
p(x, h, q(r)) ̸= 1. This can be done using a binary search with a given precision;

• Use two noises of radius r1 and r2 to identify the angle θ as presented in Theorem 19.
This hints at a more general result for piecewise linear decision boundaries (which in-
cludes all neural networks with ReLUs activations): it may be possible to gather perfect
information using only a limited number of concentric noises to “map” the fractures of
the decision boundary.

Designing certificates thus shifts from a classifier-agnostic problem to a more classifier-
specific one: any prior information on the decision boundary can help guide the choices
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of noises used at certification time. This also suggests that we could also choose the base
classifier not only because of its efficiency, but to obtain some desirable properties that
facilitate the certification process. This opens up a wide area of research.

θO

Figure 5.9: Illustration of Theorem 19. We see that the difference of volume captured between
two balls (blue, green and yellow zones) grows with θ. For θ < π

2 , the volume growth
is lower than for a hyperplane decision boundary (the cyan line) at the same distance.
The difference is shown by the gray zones.

5.6 Choosing the noises for information collection

5.6.1 Discussion on computational cost

In this section, we analyze the computational challenges of implementing noise-based
certificates, and explore some avenues to reduce them. There are currently three main
obstacles to computing noise-based certificates using the generalized Neyman-Pearson
Lemma:

1. Computing integrals via Monte Carlo sampling in high-dimension can become very
costly as this technique suffers from the curse of dimensionality.

2. When computing the integrals in high dimensions, numbers can become very small or
very large, leading to computational instability.1

3. Finally, fitting theki to compute the generalized Neyman-Pearson set is a hard stochastic
optimization problem.

We show that we can bypass problems 1. and 2. when using Gaussian noise for in-
formation collection. Furthermore, uniform noise as an information gathering method
considerably reduces problem 3, although suffering from problems 1 and 2.

1For example, the volume of an ℓ2 ball in dimension 784 (MNIST dimension) is approximately equal to
exp(−1503.90).
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5.6.2 Combinatorial fitting with uniform noises
When using uniform noises, the Neyman-Pearson set takes a very interesting shape. Let
A1, . . . , An be the sets on which the noise-gathering uniform distributions are taken,A0

the set used for the smoothing uniform distribution, and Ã0 the set translated by ϵ. Then
the Neyman-pearson set becomes :

S =

{
x ∈ Rd|1x∈Ã0

≤
n∑
i=1

ki1x∈Ai

}
(5.107)

If x ∈ Ã0, the left hand side will be 0 and x ∈ S. If x ∈ Ã0∩A1 and x /∈ A2, . . . , An,
then we have :

x ∈ S ⇐⇒ 1 ≤ k1 (5.108)

since 1x∈Ai
= 0 for i = 2 . . . n. Each indicative function can only take two values,

namely 0 and 1, and they each remain constant on the corresponding set. This means that
the generalized Neyman-Pearson set is constant of each set of the from
Ai0 ∩ · · · ∩ Aik ∩ (Aj0 ∪ · · · ∪ Ajl)∁.

It follows that the generalized Neyman-Pearson set can have at most 2n values.

Theorem 20 (Computing the ki for uniform noises). Let q0, . . . , qn be uniform
distributions, where n ≪ d. Then there are only at most 2n possible values for the
generalized Neyman-Pearson set S.

This means that the exact values of the ki do not matter, only the possible values of the
Neyman-Pearson set S. The research of S thus shifts from a hard optimization problem
to a combinatorial problem with only at most 2n values to try where n correspond to the
number of noise and is usually much lower than the input dimension. Note that by taking
n = 1, the certificate reduces to the single-noise certificate, and increasing the number of
noises can only improve it. Also, we should remark that smart choices of noises can make
that combinatorial problem easier in practice, since the support of the distributions does
not necessarily intersect with each other.

5.6.3 Lower dimension sampling with Gaussian noises

134



5.6 Choosing the noises for information collection

Theorem 21 (Gathering information from Gaussian noises). Let q0 be any
isotropic probability distribution, σ1, . . . , σn > 0. For i = 1 . . . n let qi ∼ N (0, σi)

be the noises used for information gathering. LetSk1...kn be the corresponding Neyman-
Pearson set, for any combination of parameters k1, . . . , kn > 0.
Then P[N (0, σ2

i ) ∈ Sk1...kn ] can be computed using a Monte Carlo sampling in
dimension 2 from a χ distribution with d− 2 degrees of freedom.

Sketch of proof for Theorem 21. The key of this proof is again the invariance by
rotation of the generalized Neyman-Pearson set around the direction e1 of the attack.
This allows us to separate ∥z∥2 into two components, one along e1, which follows a
1-dimensional normal distribution, and one in e⊥1 , whose norm follows a χ distribution
with d− 2 degrees of freedom. □

Proof. Let x ∈ Rd. q0 is an isotropic probability density function, which means that
there exists a function p0 such that ∀x ∈ Rd, q0(x) = p0(∥x∥2). For i = 1 . . . n, we
have:

P
[
N (x, σ2

i ) ∈ Sk1,...,kn
]
=

1

(2π)
d
2σd0

∫
Rd

exp

(
−∥u− x∥

2

2σ2
0

)
1u∈Sk1,...,kn

du (5.109)

where S is the Neyman-Person set defined as:

Sk1,...,kn =

{
u ∈ Rd

∣∣∣∣ p0(∥u− x− δ∥2) ≤ n∑
i=0

ki exp

(
−∥u− x∥

2

2σ2
i

)}
(5.110)

Where the ki are defined as in Corollary 1.
By expressing Equation (5.109) with hypercylindrical coordinates of center x and axis δ,

we have:

P
[
N (x, σ2

i ) ∈ Sk1,...,kn
]
=

1

(2π)
d
2σdi

∫
Rd

exp

(
−∥u− x∥

2

2σ2
i

)
1x∈S dx (5.111)

=
1

(2π)
d
2σd0

∫
µ∈R
r∈R+

ϕi∈[−π,π]
ϕd−2∈[0,2π]

exp

(
−r

2 + µ2

2σ2

)
1(r,µ)∈S̃J dr dµ dϕ1 . . . dϕd−2

(5.112)
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where from [Blumenson, 1960], the Jacobian J of the change of variables is:

J = rd−2

d−2∏
k=1

sink ϕd−1−k (5.113)

and where S̃ is the updated Neyman-Person set:

S̃ =

{
r, µ ∈ R

∣∣∣∣ p0(r2 + (µ− ϵ)2) ≤
n∑
i=0

ki exp

(
−r

2 + µ2

2σ2
i

)}
(5.114)

Given that the indicator function is independent of the ϕ1, . . . , ϕd−2, we can rearrange
the above equation as follows:

P
[
N (x, σ2

i ) ∈ Sk1,...,kn
]
=

1

(2π)
d
2σdi


∫
µ∈R
r∈R+

exp

(
−r

2 + µ2

2σ2

)
rd−21(r,µ)∈S̃ dr dµ




∫
ϕ1,...,ϕd−3∈[−π,π]

ϕd−2∈[0,2π]

d−2∏
k=1

sink ϕd−1−k dϕ1 . . . dϕd−2


(5.115)

By settingA as:

A =

∫
ϕ1,...,ϕd−3∈[−π,π]

ϕd−2∈[0,2π]

d−2∏
k=1

sink ϕd−1−k dϕ1 . . . dϕd−2 (5.116)

we have:

P
[
N (x, σ2

i ) ∈ Sk1,...,kn
]

=
A

(2π)
d
2σd0

 ∫
µ∈R

∫
r∈R+

exp

(
− r2

2σ2
0

)
exp

(
− µ2

2σ2

)
rd−21(r,µ)∈S̃ dr dµ


(5.117)
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Finally, we can express this probability with an expected value over a Gaussian and Chi
distribution:

P
[
N (x, σ2

i ) ∈ Sk1,...,kn
]
= E µ∼N (0,σ2

i )

r∼χ(d−1,0,σ2
i )

[
1(r,µ)∈S̃

]
(5.118)

which concludes the proof.

This means that whatever the noise used at smoothing time, we can easily gather infor-
mation from Gaussian noises, since the Neyman-Pearson set needs only be sampled in
dimension 2 to fit the ki.

5.6.4 Toward dimension-independent certificates with
high-probability certification

Definition 62 (High Probability Certification). An α-probable ϵ-certificate for
the q0 randomized smoothing is a value v ∈ R and a probability distributionQ such
that, for any δ of norm at most ϵ:

PQ[p(x+ δ, h, q0) ≥ v] ≥ 1− α

Note that the randomness is not on the attack, but on the noises used at certification
time. We do not certify for “the majority of attacks”, which would not work since attacks
are engineered, thus worst-case guarantees are required.

Theorem 22 (Asymptotic dimension-independent certificate). Let q0, . . . , qn are
normal distribution of same variance σ, centered on points x, z1, . . . , zn, where the
zi constitute a random family of orthonormal vectors, at constant distance from x.
For any α ∈ (0, 1), ϵ > 0, there exists an α-probable ϵ-certificate vd and a value
v ∈ [0, 1] such that vd −−−→

d→∞
v and v can be written as E[f(V )] for some function f

and where V is a random variable in dimension at most n+1 such that both V and f
are independent from the dimension d.

Furthermore, that convergence is fast : for CIFAR10, with α = 0.05, the approxima-
tion term vd

v
is already of 0.99. This means that we can compute the value v (independent

of the dimension) and use it as a high-probability certificate for the dimensions of real-
world datasets.
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θO

Figure 5.10: Illustration of Theorem 22. We can use translated noises to gather information (here
identify the yellow zones), and in high dimensions the random translations will be
almost orthogonal to the attack with high probability, whatever the direction of the
attack.

The core argument of Theorem 22 is that in high dimension, for any attack vector δ,
random directions will be almost orthogonal to δ with high probability. This allows us
to obtain a certificate using the generalized Neyman-Pearson lemma, although our our
noises do not have the same center so the problem is not isotropic.

This means that, by introducing some randomness during the information gathering,
we can obtain a certificate using non-isotropic noise that is very easy to compute, since
independent on the dimension. This removes one of the main barriers for our certificates
to scale in very large dimension.

To prove this theorem, the main idea is to bound the dot product between δ and the
xi, using concentration inequalities as the dimension increases.

Lemma 10. Let u be a random vector drawn uniformly on the unit sphere of Rd,
δ ∈ Rd of norm ϵ. Then :

P

[
|⟨u, δ⟩| ≥ ϵ√

(d+ 2)α

]
≤ α (5.119)

Proof. This is the direct consequence of Chebyshev’s inequality, since ⟨u, δ⟩ is a random
vector of expectation 0 (by symmetry), and :

V (u, δ) =
d∑
i=1

V (δiui)
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=
d∑
i=1

δ2i V (ui)

=
∥δ∥2

d+ 2
=

ϵ2

d+ 2

Lemma 11. Let v1, . . . , vn be random, orthogonal vectors, ei = vi
∥vi∥ δ a vector of

norm ϵ, and δP the orthogonal projection of δ on P = Span(e1, . . . , en). Then:

P
[
∥δP∥2 ≤

nϵ2

(d+ 2)α

]
≥ (1− α)n (5.120)

Proof. ∥δP∥2 =
n∑
i=1

⟨δ, vi⟩2, so we have :

P
[
∥δP∥2 ≤

nϵ2

(d+ 2)α

]
≥ P

[
∀i, |⟨vi, δ⟩| ≤

ϵ√
(d+ 2)α

]
(5.121)

≥ (1− α)n (5.122)

we can now prove the theorem :

Proof of Theorem 22. Let z0 be the center of the Gaussian noise used at train and test time.
Let zi (i = 1 . . . , n) be the centers of new Gaussian noises used to gather information.
We choose the zi as random vectors on the unit sphere, and orthonormalize them such
that (z0 − zi) are an orthogonal family.

Let P = Span(z1, . . . , zn), and δ = δP + δP⊥ where δP ∈ P and δP⊥ ∈ P⊥ and let
ϵ̃ = ∥δP⊥∥.

We use a coordinate system centered on z0, withµi =
〈

z0−zi
∥z0−zi∥ , z − z0

〉
(i = 1 . . .m),

t =
〈
δ
P⊥
ϵ
, x− z0

〉
, and r, ϕi (i = 1 . . . d−m− 2) the hypercylindrical coordinates of

axis δP⊥ in P⊥. Let di = ∥z0 − zi∥. Let πP be the orthogonal projection on P , πP⊥ on
P⊥. Then:

∥z − δ∥2 = ∥πP (z − δ)∥2 + ∥πP⊥(z − δ)∥2 (5.123)
= ∥πP (z)− δP∥2 + ∥πP⊥(z)− δP⊥∥2 (5.124)
= ∥πP (z)∥2 + ∥δP∥2 − 2⟨πP (z), δP ⟩+ r2 + (t− ϵ̃)2 (5.125)

139



5 A theoretical analysis of Randomized smoothing certification

=
∑

µ2
j + r2 + (t− ϵ̃)2 + ∥δP∥2 − 2⟨πP (z), δP ⟩ (5.126)

We can also write :

∀i = 1 . . .m, (5.127)
∥z − zi∥2 = ∥z − z0∥2 + ∥z0 − zi∥2 − 2⟨z − z0, z0 − zi⟩ (5.128)

= r2 +
m∑
j=1

µ2
j + t2 + d2i − 2µidi (5.129)

The certificate given by the generalized Neyman-Pearson lemma for a given δ is:

p̃ = P
[
N (z0 + δ, σ2) ∈ S

]
(5.130)

= K1

∫
exp
(
−∥z − δ∥2

)
1S dz (5.131)

= K1

∫
exp

(
− r2

2σ2

)
exp

(
−
∑n

j=1 µ
2
j

2σ2

)
exp

(
−(t− ϵ̃)2

2σ2

)
exp

(
−∥δP∥

2

2σ2

)
exp

(
2⟨πP (z), δP ⟩

2σ2

)
1Sr

d−n−2 dr dt dµi (5.132)

≥ K1

∫
a(r, µj, t) exp

(
− nϵ2

2σ2(d+ 2)α

)
exp

(
−
∑
j

µj
ϵ

2σ2
√

(d+ 2)α

)
1Sr

d−n−2 dr dt dµi (5.133)

WhereK1 is the normalization constant for a normal distribution of varianceσ2. Hence,
with probability at least (1− α)n+1, by Lemma 10.

Where:

a(r, µj, t) = exp

(
− r2

2σ2

)
exp

(
−
∑n

j=1 µ
2
j

2σ2

)
exp

(
−(t− ϵ̃)2

2σ2

)
(5.134)

and

b(r, µi, t) =
m∑
i=1

ki exp

(
−
r2 +

∑m
i=1 µ

2
j + t2 + d2i − 2µidi

2σ2

)
(5.135)
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Then, we need to obtain a lower subset of S. with high probability.

S =

{
r > 0, µi, t ∈ Rd

∣∣∣∣ a(r, µj, t) ≤ exp

(
−∥δP∥

2

2σ2

)
exp

(
2⟨z − z0, z0 − xi⟩

2σ2

)
b(r, µj, t)

}
(5.136)

⊃
{
r > 0, µi, t ∈ Rd

∣∣∣∣ a(r, µj, t) ≤ exp

(
− nϵ2

2σ2(d+ 2)α

)
exp

(
−
∑
j

µj
ϵ

2σ2
√

(d+ 2)α

)
b(r, µj, t)

}
(5.137)

We can further simplify S̃ by posing c0(n, d, α) = exp
(
− nϵ2

2σ2(d+2)α

)
, a(d, α) =

ϵ

2σ2
√

(d+2)α
and remarking that :

S̃ =

{
r > 0, µi, t ∈ Rd

∣∣∣∣ exp(− r2

2σ2

)
exp

(
−
∑n

j=1(µj − a(d, α))
2

2σ2

)
exp

(
−(t− ϵ̃)2

2σ2

)

≤ c0

m∑
i=1

ki exp

(
−
r2 +

∑m
i=1 µ

2
j + t2 + d2i − 2µidi

2σ2

)}
(5.138)

=

{
r > 0, µi, t ∈ Rd

∣∣∣∣ exp(−(t− ϵ̃)2

2σ2

)
≤ c0

m∑
i=1

ki exp

(
−t

2 + d2i − 2µidi
2σ2

)}
(5.139)

which only depends on variables t, µ1, . . . , µn, so we will write it S̃(t, µ1, . . . , µn). Hence:

p̃ ≥ K1

∫
exp

(
− r2

2σ2

)
exp

(
−
∑n

j=1 µ
2
j

2σ2

)
exp

(
−(t− ϵ̃)2

2σ2

)
exp

(
− nϵ2

2σ2d0α(1− ζ)

)
rd−n−21

{
S̃(t, µ1, . . . , µn)

}
dr dt dµi

≥ K2 exp

(
− nϵ2

2σ2d0α(1− ζ)

)∫
exp

(
−
∑n

j=1(µj − a(d, α))
2

2σ2

)
exp

(
−(t− ϵ̃)2

2σ2

)
exp

(
− nϵ2

2σ2d0α(1− ζ(α))

)
1S̃ dt dµi (5.140)

≥ Eµj∼N (a(d,α),σ2)

t∼N (ϵ,σ2)

[
1
{
S̃(t, µ1, . . . , µn)

}]
(5.141)
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Where K2 = K1∫
exp

(
− r2

2σ2

)
rd−2 dr

, which corresponds to removing the normalization of

the χ law.
When d→∞, we have c0(n, d, α)→ 1 and a(d, α)→ 0. Let :

S0 =

{
r > 0, µi, t ∈ Rd

∣∣∣∣ exp(−(t− ϵ̃)2

2σ2

)
≤

m∑
i=1

ki exp

(
−t

2 + d2i − 2µidi
2σ2

)}
(5.142)

Then

Eµj∼N (a(d,α),σ2)

t∼N (ϵ,σ2)

[
1
{
S̃(t, µ1, . . . , µn)

}]
−−−→
d→∞

Eµj∼N (0,σ2)

t∼N (ϵ,σ2)

[1{S0(t, µ1, . . . , µn)}]

(5.143)
which can be computed independently of the dimension.

5.7 Summary of our study of Randomized smoothing
certification

We have shown that the limitations of randomized smoothing are a byproduct of the certi-
fication method, namely the combination of the smoothing and information gathering
steps. We show that by dissociating the two processes, and using multiple distributions for
the information gathering, it is possible to circumvent these limitations without affecting
the standard accuracy of the classifier. This opens up a whole new field of classifier-specific
certification, with the guarantee of always performing better than single-noise certificates,
and without any additional loss in standard accuracy. Furthermore, it is now possible to
optimize the choice of the base classifier, and use prior information in the certification
process. However, much remains to do for noise-based certificates to be viable:

Computing the ki. Theorem 21 successfully reduces the difficulty of the problem.
However, even with those simplifications, fitting theki of the generalized Neyman-Pearson
set remains a difficult stochastic optimization problem. Indeed, each step requires the
computation of an integral via Monte Carlo sampling, and many steps may be necessary to
reach the desired precision. A potential direction of research would be to use the relaxation
introduced by [Dvijotham et al., 2020] for an easier way to compute approximation of
the Neyman-Pearson set. Both techniques from [Yang et al., 2020] to compute ordinary
Neyman-Pearson sets can also be extended to our general sets, for more computational
efficiency.
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5.7 Summary of our study of Randomized smoothing certification

Choosing the base classifierh. Now that our certificates use more specific information
on the classifier, it is possible to optimize the combination between the base classifier and
the noise distributions used. For example, we may adjust our training to ensure that the
decision boundary has the highest possible curvature, since it is where our new certificates
will shine. The work from [Salman et al., 2019], which combined noise injection and
adversarial training [Madry et al., 2018] during the training, suggest that different training
schemes can have an important impact on the certification performance. Recently, this
line of research has been studied and further improvements have been devised [Zhai et al.,
2020, Jeong and Shin, 2020, Zhen et al., 2021, Wang et al., 2021]. In the context of our
framework, new training schemes could be devised to improve the local curvature at each
point by adjusting the amount of noise injected.
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6 Conclusion and open problems

6.1 Summary of the results
In this thesis, we studied the problem of existence, computability and certifiation of
optimal classifiers in the presence of adversaries, using the prisms of game theory, optimal
transport and Neyman-Pearson certification. Our results can be summarized as follows :

• We studied the conditions under which "optimal" attacks and defenses can
exist, and be computable in practice. We showed that the deterministic regime
is not fit for stable equilibria, but randomization is a promising lead of re-
search, that create new equilibria, increases their stability, and provides better
performances under attack for the defender.

• We quantified the gap between single-noise certificates and the perfect one,
showing that although gaussian noise smoothing cannot evade the impos-
sibility results, uniform noise smoothing can, as that gap explodes with the
dimension of the problem for zones where the local curvature of the decision
boundary is high.

• We introduced a new framework to compute general noise-based certificates,
separating the smoothing from the information gathering to induce no loss
of accuracy. By using symmetries, invariances and high-probability certifica-
tion, we devised a certificate that can be computed independently from the
dimension of the problem, and provided several insights into computational
techniques.

We hope that this thesis will help the community by providing a new perspective on
adversarial classification. Our results open the way for several research areas, that we
discussed in this thesis. We now wish to discuss three more general open problems, that
we think are important for the development of the field.
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Figure 6.1: Adversarial examples for NLP. In this context, the imperceptibility makes less sense
visually than semantically : the first attack would be immediately detected by a human
as an "error", whereas the second, although very different in terms of norm, would go
unnoticed.

6.2 Open problem 1 : A better understanding of the
attacks and defenses

As mentioned in chapter 3, modeling the Attacker is not an easy task. We identify three
major difficulties :

• Imperceptibility : what does it mean for a modification to be humanly impercep-
tible ? Norm constraints can be a very imprecise proxy, especially for structured
applications such as text (see fig. 6.1). Field-specific notions of imperceptibility
need to be modeled, and their influence on the existence and stability of equilibria
studied;

• Computation : Imperceptibility constraints can be intractable, and require smoothed
approximation. Any unified theory of adversarial attacks must take into account all
"reasonable" smoothings of the problem, such as the Carlini&Wagner cost from
chapter 3;

• Additional constraints : Adversaries are never only constrained by impercepti-
bility. There are many other factors that may come into play depending on the
situation, from limited number of queries to computational resource, partial access
to the input, probabilistic success of the attack, etc.

A more general study of the adversary would greatly benefit the field, as current models
remain way too simple, often giving the theoretical opponent more power than it has in
practice.
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6.3 Open problem 2 : Increasing the stability of Nash equilibria via strategy restrictions

Similarly, real-life constraints on the classifier can considerably alter the analysis. This
includes :

• The search space : Restricting the search to measurable, continuous, or even
lipschitz functions can make a big difference, as highlighted in chapter A. Further
refinements would require a deeper analysis of the classes of functions used for each
application, like convolutional or residual neural networks.

• Surrogate losses : In a similar way, we have seen that the choice of the surrogate loss
function may drastically alter the existence of equilibria. We have studied convex
surrogates as well as the 0/1 loss, but as seen in Appendix A, convex surrogates
are not adversarially consistent. New losses need to be crafted, and the game they
generate may behave very differently from the current one.

6.3 Open problem 2 : Increasing the stability of Nash
equilibria via strategy restrictions

As we saw in chapter 3, restricting the defender to some class of functions has the potential
to increase the stability of equilibria. We did that using randomization, but a variety of
other schemes may be used :

• Randomized Smoothing seem like the next logical step to study, as we have shown
that its certification process is still a promising leadof research. It works in a simi-
lar fashion as noise injection, while being deterministic. Smoothing the decision
boundary of the classifier limits the local variation around any given point, and so
the local margin of reaction to any given attack. This would be a source of stability
for equilibria.

• Lipschitz Networks are a promising lead in the world of robust classification (see
for instance [Meunier et al., 2022a] and [Gouk et al., 2021]). As they limit the local
variation of a function, this restriction may be an interesting source of stability.
Furthermore, we know that under certain conditions, lipschitz optimal solutions
can exist, see chapter 3 chapter A.

More generally, will we always encounter an accuracy/stability tradeoff of some sorts ?
In other words :

Which class of functions allows for the best increase in the stability of equilibria
with minimal loss of natural accuracy ?
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6.4 Open problem 3 : A deeper understanding of the
adversarial attack phenomenon

One of the major difficulties with theoretical studies of adversarial classification is how mys-
terious the phenomenon remains. We lack tools to analyze real-world decision boundaries,
and understand the precise reasons behind the existence of attacks.

Why do adversarial examples exist, and are they unavoidable ?

Several aspects may play an important role :

• Curvature of the decision boundary. Intuitively, overfitting can create "spike"
zones in the classification region, which may go much further into the "territory"
of another class as it should (see fig. 6.2). This lead has only slightly been studied,
as evaluating the curvature of the decision boundary itself is a hard problem. The
most common proxy used is the second derivative of the loss function, which hides
much information. Using noise-based queries as in section 5.4 may however be a
way of understanding the shape of the decision region better, and quantifying the
impact that curvature has on the existence of attacks.

• Representation space. Another obstacle to our intuitive view of classification is
that data are projected in an unknown "concept space", that is itslef learned from
data by the network (see chapter 1). This projection may distort the distances
between input points, and be one of the causes of the existence of attacks. This can
be analyzed by computing the lipschitz constants of each layer in small networks,
and seeing how the curvature of the decision region changes with each successive
projection.

Understanding the root cause of adversarial examples will then lead to potential so-
lutions, like using noise injection with several types of distributions during training to
"model" the local curvature of the decision boundary, or focusing on building locally
lipschitz networks.
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Figure 6.2: Overfitting lead to spikes in the decision region, which are zones especially vulnerable
to attacks.

149





Bibliography

[Alzantot et al., 2018] Alzantot, M., Balaji, B., and Srivastava, M. (2018). Did you hear
that? adversarial examples against automatic speech recognition. arXiv preprint
arXiv:1801.00554.

[Athalye et al., 2018] Athalye, A., Carlini, N., and Wagner, D. (2018). Obfuscated gradi-
ents give a false sense of security: Circumventing defenses to adversarial examples. In
Proceedings of the 35th International Conference on Machine Learning.

[Awasthi et al., 2021a] Awasthi, P., Frank, N., Mao, A., Mohri, M., and Zhong, Y. (2021a).
Calibration and consistency of adversarial surrogate losses. Advances in Neural Infor-
mation Processing Systems, 34.

[Awasthi et al., 2021b] Awasthi, P., Frank, N. S., and Mohri, M. (2021b). On the
existence of the adversarial bayes classifier (extended version). arXiv preprint
arXiv:2112.01694.

[Awasthi et al., 2021c] Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. (2021c). A finer
calibration analysis for adversarial robustness. arXiv preprint arXiv:2105.01550.

[Bao et al., 2020] Bao, H., Scott, C., and Sugiyama, M. (2020). Calibrated surrogate
losses for adversarially robust classification. In Abernethy, J. and Agarwal, S., editors,
Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings
of Machine Learning Research, pages 408–451. PMLR.

[Bartlett et al., 2006] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Con-
vexity, classification, and risk bounds. Journal of the American Statistical Association,
101(473):138–156.

[Bartlett and Mendelson, 2002] Bartlett, P. L. and Mendelson, S. (2002). Rademacher
and gaussian complexities: Risk bounds and structural results. Journal of Machine
Learning Research, 3(Nov):463–482.

[Bhagoji et al., 2019] Bhagoji, A. N., Cullina, D., and Mittal, P. (2019). Lower bounds
on adversarial robustness from optimal transport. Advances in Neural Information
Processing Systems, 32.

151



Bibliography

[Blumenson, 1960] Blumenson, L. (1960). A derivation of n-dimensional spherical
coordinates. The American Mathematical Monthly, 67.

[Blumer et al., 1989] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K.
(1989). Learnability and the vapnik-chervonenkis dimension. Journal of the ACM
(JACM), 36(4):929–965.

[Brown, 1951] Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity
analysis of production and allocation, 13(1):374–376.

[Bungert et al., 2021] Bungert, L., Trillos, N. G., and Murray, R. (2021). The geometry
of adversarial training in binary classification. arXiv preprint arXiv:2111.13613.

[Carlini et al., 2019] Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J.,
Tsipras, D., Goodfellow, I., and Madry, A. (2019). On evaluating adversarial robustness.
arXiv preprint arXiv:1902.06705.

[Carlini and Wagner, 2017a] Carlini, N. and Wagner, D. (2017a). Adversarial examples
are not easily detected: Bypassing ten detection methods. In Proceedings of the 10th
ACM workshop on artificial intelligence and security, pages 3–14.

[Carlini and Wagner, 2017b] Carlini, N. and Wagner, D. (2017b). Towards evaluating
the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 39–57. IEEE.

[Cavonius and Estevez, 1975] Cavonius, C. and Estevez, O. (1975). Contrast sensitiv-
ity of individual colour mechanisms of human vision. The Journal of physiology,
248(3):649–662.

[Chernoff and Scheffe, 1952] Chernoff, H. and Scheffe, H. (1952). A generalization of
the neyman-pearson fundamental lemma. The Annals of Mathematical Statistics.

[Cohen et al., 2019] Cohen, J., Rosenfeld, E., and Kolter, Z. (2019). Certified adversar-
ial robustness via randomized smoothing. In Proceedings of the 36th International
Conference on Machine Learning.

[Dada et al., 2019] Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., Ajibuwa,
O. E., et al. (2019). Machine learning for email spam filtering: review, approaches and
open research problems. Heliyon, 5(6):e01802.

[Dhillon et al., 2018] Dhillon, G. S., Azizzadenesheli, K., Bernstein, J. D., Kossaifi, J.,
Khanna, A., Lipton, Z. C., and Anandkumar, A. (2018). Stochastic activation pruning
for robust adversarial defense. In International Conference on Learning Representations.

152



Bibliography

[Diochnos et al., 2018] Diochnos, D., Mahloujifar, S., and Mahmoody, M. (2018). Ad-
versarial risk and robustness: General definitions and implications for the uniform
distribution. Advances in Neural Information Processing Systems, 31.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.
(2020). An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

[Dvijotham et al., 2020] Dvijotham, K. D., Hayes, J., Balle, B., Kolter, Z., Qin, C., Gy-
orgy, A., Xiao, K., Gowal, S., and Kohli, P. (2020). A framework for robustness
certification of smoothed classifiers using f-divergences. In International Conference
on Learning Representations.

[Fedus et al., 2021] Fedus, W., Zoph, B., and Shazeer, N. (2021). Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.

[Foret et al., 2020] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020).
Sharpness-aware minimization for efficiently improving generalization. arXiv preprint
arXiv:2010.01412.

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. E. (1995). A Decision Theo-
retic Generalization of On-Line Learning and an Application to Boosting. In Vitányi,
P. M. B., editor, Second European Conference on Computational Learning Theory
(EuroCOLT-95), pages 23–37.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.

[Goodfellow et al., 2015] Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explain-
ing and harnessing adversarial examples. In International Conference on Learning
Representations.

[Gouk et al., 2021] Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. (2021). Regu-
larisation of neural networks by enforcing lipschitz continuity. Machine Learning,
110(2):393–416.

[Gozlan et al., 2018] Gozlan, N., Samson, P.-M., and Zitt, P.-A. (2018). Notes de cours
sur le transport optimal.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

153



Bibliography

[Hinton et al., 2012] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97.

[Jeong and Shin, 2020] Jeong, J. and Shin, J. (2020). Consistency regularization for
certified robustness of smoothed classifiers. Advances in Neural Information Processing
Systems, 33:10558–10570.

[Kermack and McKendrick, 1927] Kermack, W. O. and McKendrick, A. G. (1927). A
contribution to the mathematical theory of epidemics. Proceedings of the royal soci-
ety of london. Series A, Containing papers of a mathematical and physical character,
115(772):700–721.

[Khanal et al., 2020] Khanal, S. S., Prasad, P., Alsadoon, A., and Maag, A. (2020). A
systematic review: machine learning based recommendation systems for e-learning.
Education and Information Technologies, 25(4):2635–2664.

[Krizhevsky and Hinton, 2009] Krizhevsky, A. and Hinton, G. (2009). Learning multi-
ple layers of features from tiny images. Technical report, Citeseer.

[Krizhevsky et al., 2009] Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10
(canadian institute for advanced research).

[Kumar et al., 2020] Kumar, A., Levine, A., Goldstein, T., and Feizi, S. (2020). Curse of
dimensionality on randomized smoothing for certifiable robustness. In Proceedings of
the 37th International Conference on Machine Learning.

[Kurakin et al., 2018] Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial
examples in the physical world. In Artificial intelligence safety and security, pages
99–112. Chapman and Hall/CRC.

[Laraki et al., 2019] Laraki, R., Renault, J., and Sorin, S. (2019). Mathematical founda-
tions of game theory. Springer.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

[Lecuyer et al., 2018] Lecuyer, M., Atlidakais, V., Geambasu, R., Hsu, D., and Jana, S.
(2018). Certified robustness to adversarial examples with differential privacy. In 2019
IEEE Symposium on Security and Privacy (SP).

154



Bibliography

[Levine et al., 2021] Levine, A., Kumar, A., Goldstein, T., and Feizi, S. (2021). Tight
second-order certificates for randomized smoothing.

[Li et al., 2018] Li, B., Chen, C., Wang, W., and Carin, L. (2018). Second-order adversarial
attack and certifiable robustness.

[Li et al., 2019] Li, H., Zhou, S., Yuan, W., Li, J., and Leung, H. (2019). Adversarial-
example attacks toward android malware detection system. IEEE Systems Journal,
14(1):653–656.

[Liu et al., 2016] Liu, Y., Chen, X., Liu, C., and Song, D. (2016). Delving into transferable
adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770.

[Long and Servedio, 2013] Long, P. and Servedio, R. (2013). Consistency versus realiz-
able h-consistency for multiclass classification. In International Conference on Machine
Learning, pages 801–809. PMLR.

[Madry et al., 2018] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A.
(2018). Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations.

[Maschler et al., 2020] Maschler, M., Zamir, S., and Solan, E. (2020). Game theory.
Cambridge University Press.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133.

[Meunier et al., 2022a] Meunier, L., Delattre, B., Araujo, A., and Allauzen, A. (2022a).
A dynamical system perspective for lipschitz neural networks. In International Confer-
ence on Machine Learning.

[Meunier et al., 2022b] Meunier, L., Ettedgui, R., Pinot, R., Chevaleyre, Y., and Atif,
J. (2022b). Towards consistency in adversarial classification. arXiv preprint
arXiv:2205.10022.

[Meunier et al., 2021] Meunier, L., Scetbon, M., Pinot, R. B., Atif, J., and Chevaleyre,
Y. (2021). Mixed nash equilibria in the adversarial examples game. In International
Conference on Machine Learning, pages 7677–7687. PMLR.

[Mistry et al., 2021] Mistry, D., Litvinova, M., Pastore y Piontti, A., Chinazzi, M., Fu-
manelli, L., Gomes, M. F., Haque, S. A., Liu, Q.-H., Mu, K., Xiong, X., et al. (2021).
Inferring high-resolution human mixing patterns for disease modeling. Nature com-
munications, 12(1):1–12.

155



Bibliography

[Mohapatra et al., 2021] Mohapatra, J., Ko, C.-Y., Weng, L., Chen, P.-Y., Liu, S., and
Daniel, L. (2021). Hidden cost of randomized smoothing. In Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics.

[Mohapatra et al., 2020] Mohapatra, J., Ko, C.-Y., Weng, T.-W., Chen, P.-Y., Liu, S., and
Daniel, L. (2020). Higher-order certification for randomized smoothing. In Advances
in Neural Information Processing Systems.

[Moosavi-Dezfooli et al., 2019] Moosavi-Dezfooli, S.-M., Fawzi, A., Uesato, J., and
Frossard, P. (2019). Robustness via curvature regularization, and vice versa. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9078–9086.

[Mor-Yosef et al., 1990] Mor-Yosef, S., Samueloff, A., Modan, B., Navot, D., and
Schenker, J. G. (1990). Ranking the risk factors for cesarean: logistic regression analysis
of a nationwide study. Obstetrics and gynecology, 75(6):944–947.

[Morgulis et al., 2019] Morgulis, N., Kreines, A., Mendelowitz, S., and Weisglass, Y.
(2019). Fooling a real car with adversarial traffic signs. arXiv preprint arXiv:1907.00374.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines. In Icml.

[Nakkiran et al., 2021] Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and
Sutskever, I. (2021). Deep double descent: Where bigger models and more data hurt.
Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003.

[Neumann, 1928] Neumann, J. v. (1928). Zur theorie der gesellschaftsspiele. Mathema-
tische annalen, 100(1):295–320.

[Olver et al., 2010] Olver, F. W., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010).
NIST handbook of mathematical functions hardback and CD-ROM. Cambridge
university press.

[Pal and Vidal, 2020] Pal, A. and Vidal, R. (2020). A game theoretic analysis of additive
adversarial attacks and defenses. Advances in Neural Information Processing Systems,
33:1345–1355.

[Pinot et al., 2020] Pinot, R., Ettedgui, R., Rizk, G., Chevaleyre, Y., and Atif, J. (2020).
Randomization matters how to defend against strong adversarial attacks. In Interna-
tional Conference on Machine Learning, pages 7717–7727. PMLR.

156



Bibliography

[Pydi and Jog, 2020a] Pydi, M. S. and Jog, V. (2020a). Adversarial risk via optimal
transport and optimal couplings. In International Conference on Machine Learning,
pages 7814–7823. PMLR.

[Pydi and Jog, 2020b] Pydi, M. S. and Jog, V. (2020b). Adversarial risk via optimal
transport and optimal couplings. In International Conference on Machine Learning.

[Pydi and Jog, 2021] Pydi, M. S. and Jog, V. (2021). The many faces of adversarial risk.
Advances in Neural Information Processing Systems, 34.

[Qin et al., 2019] Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., and Raffel, C. (2019).
Imperceptible, robust, and targeted adversarial examples for automatic speech recogni-
tion. In International conference on machine learning, pages 5231–5240. PMLR.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale
visual recognition challenge. International journal of computer vision, 115(3):211–252.

[Salman et al., 2019] Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S.,
and Yang, G. (2019). Provably robust deep learning via adversarially trained smoothed
classifiers. In Advances in Neural Information Processing Systems.

[Salman et al., 2020] Salman, H., Sun, M., Yang, G., Kapoor, A., and Kolter, J. Z. (2020).
Denoised smoothing: A provable defense for pretrained classifiers. In Advances in
Neural Information Processing Systems.

[Shafahi et al., 2018] Shafahi, A., Huang, W. R., Studer, C., Feizi, S., and Goldstein, T.
(2018). Are adversarial examples inevitable? International Conference on Learning
Representtation.

[Shafahi et al., 2019] Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson, J., Studer,
C., Davis, L. S., Taylor, G., and Goldstein, T. (2019). Adversarial training for free!
Advances in Neural Information Processing Systems, 32.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Sitawarin et al., 2018] Sitawarin, C., Bhagoji, A. N., Mosenia, A., Mittal, P., and Chiang,
M. (2018). Rogue signs: Deceiving traffic sign recognition with malicious ads and
logos. arXiv preprint arXiv:1801.02780.

[Steinwart, 2007] Steinwart, I. (2007). How to compare different loss functions and
their risks. Constructive Approximation, 26(2):225–287.

157



Bibliography

[Szegedy et al., 2014] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., and Fergus, R. (2014). Intriguing properties of neural networks. In Interna-
tional Conference on Learning Representations.

[Tramer et al., 2020] Tramer, F., Carlini, N., Brendel, W., and Madry, A. (2020). On
adaptive attacks to adversarial example defenses. In Advances in Neural Information
Processing Systems.

[Tramèr et al., 2017] Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. (2017). The space of transferable adversarial examples. arXiv.

[Van Damme, 1991] Van Damme, E. (1991). Stability and perfection of Nash equilibria,
volume 339. Springer.

[Vapnik and Chervonenkis, 2015] Vapnik, V. N. and Chervonenkis, A. Y. (2015). On
the uniform convergence of relative frequencies of events to their probabilities. In
Measures of complexity, pages 11–30. Springer.

[Villani, 2009] Villani, C. (2009). Optimal transport: old and new, volume 338. Springer.

[Villani, 2021] Villani, C. (2021). Topics in optimal transportation, volume 58. American
Mathematical Soc.

[Wang et al., 2021] Wang, L., Zhai, R., He, D., Wang, L., and Jian, L. (2021). Pretrain-
to-finetune adversarial training via sample-wise randomized smoothing.

[Wang et al., 2022] Wang, W., Wang, L., Wang, R., Ye, A., and Ke, J. (2022). Better
constraints of imperceptibility, better adversarial examples in the text. International
Journal of Intelligent Systems, 37(6):3440–3459.

[Wong and Kolter, 2018] Wong, E. and Kolter, Z. (2018). Provable defenses against adver-
sarial examples via the convex outer adversarial polytope. In International Conference
on Machine Learning.

[Xiao et al., 2018] Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song, D.
(2018). Generating adversarial examples with adversarial networks. arXiv preprint
arXiv:1801.02610.

[Yang et al., 2020] Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I., and Li,
J. (2020). Randomized smoothing of all shapes and sizes. In Proceedings of the 37th
International Conference on Machine Learning.

158



Bibliography

[Yang et al., 2021] Yang, L., Song, Q., and Wu, Y. (2021). Attacks on state-of-the-art face
recognition using attentional adversarial attack generative network. Multimedia tools
and applications, 80(1):855–875.

[Zagoruyko and Komodakis, 2016] Zagoruyko, S. and Komodakis, N. (2016). Wide
residual networks. In Proceedings of the British Machine Vision Conference (BMVC),
pages 87.1–87.12. BMVA Press.

[Zhai et al., 2020] Zhai, R., Dan, C., He, D., Zhang, H., Gong, B., Ravikumar, P., Hsieh,
C.-J., and Wang, L. (2020). Macer: Attack-free and scalable robust training via maxi-
mizing certified radius. In International Conference on Learning Representations.

[Zhang et al., 2018] Zhang, L., Wang, S., and Liu, B. (2018). Deep learning for sentiment
analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 8(4):e1253.

[Zhang, 2004] Zhang, T. (2004). Statistical behavior and consistency of classification
methods based on convex risk minimization. The Annals of Statistics, 32(1):56–85.

[Zhen et al., 2021] Zhen, X., Chakraborty, R., and Singh, V. (2021). Simpler certified
radius maximization by propagating covariances. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7292–7301.

[Zhong and Deng, 2020] Zhong, Y. and Deng, W. (2020). Towards transferable adver-
sarial attack against deep face recognition. IEEE Transactions on Information Forensics
and Security, 16:1452–1466.

159





Appendices

161





A General study of the equilibrium
under randomized attacks

This chapter is a collaboration with Prof. Guillaume Carlier, from the Ceremade
Laboratory, who did the demonstrations of the theorems.

As we have shown the non-existence of Nash equilibrium in the deterministic regime, a
natural way of looking for optimal attacks and defenses is to study randomization, i.e. a
convex relaxation of the problem. This is also an extension from the work of [Pydi and Jog,
2020b], which through Strassen’s lemma implicitly model attacks as Monge transport
maps. In this section, we will study the case of randomized attacks as transport plans.

A.1 Problem statement : transport plans as randomized
attacks

Recall the Attacker’s problem we are looking for two distributions ϕy#µy that maximize
the expected risk, ponderated by some lower-semicontinuous transport cost c. This is very
similar to the Monge formulation of the optimal transport problem : transporting the
distribution amounts to finding a deterministc coupling (µy, ϕy#µy), i.e. we cannot split
the mass that is allocated at a point when we displace it.

As we saw in Section 2.5.2, the natural relaxation of transport maps is to allow the
Attacker to play a coupling between µy and another measure.

Definition 63 (Mixed strategy for the Attacker). A mixed strategy for the Attacker is
a pair of probability measures γi ∈ P(X ×X ), such that proj1#γi = µi, for i = ±1.
The set of all admissible strategies for the Attacker is thus :

∆µ1,µ−1 =
{
γi ∈ P(X × X ) : proj1#γi = µi, i = ±1

}
As we have seen in Section 2.5.2, this is equivalent to the Attacker playing a randomized

attack px ∈ P(X ) at every point, distributing the mass on some support instead of
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translating it all to a unique point. Let l : R×Y → R+ denote the loss function used for
classification, andLi = L(,̇i) for i = ±1. We define the mixed zero-sum game as follows:

Definition 64 (Mixed-Attacker zero-sum game). For any cost function ci, we define
the payoff of the zero-sum game as:

R(h, γ1, γ−1) :=
∑
i=±1

∫
X×X

[Li(h(z))− ci(x, z)]dγi(x, z)

Remark 4. Note that in this section, we incorporated the probabilities qi inside of µi for
more lisibility. The µi are therefore not necessarily probability measures.

We thus have the two following problems :
Defender problem :

v = inf
h∈C(X )

sup
(γ1,γ−1)∈∆µ1,µ−1

R(h, γ1, γ−1). (A.1)

Attacker problem :

v = sup
(γ1,γ−1)∈∆µ1,µ−1

inf
h∈C(X )

R(h, γ1, γ−1). (A.2)

A.2 Duality result, existence of a mixed nash
equilibrium

Let us first reformulate both problems in a way that is easier to analyze.

Hypothesis 1. In that section, we will make the following hypothesis :

• Li : R→ R+ are convex (and so continuous) for i = ±1.

• c : X × X → R ∪ {∞} is lower semicontinuous;

• ∀x ∈ X , c(x, x) = 0
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Proposition 7. For a fixed classifier h ∈ C(X ), the set of the Attacker’s best response
always contains a deterministic attack. Furthermore,

v = inf
h∈C(X )

∑
i=±1

∫
X

max
z∈X

[Li(h(z))− ci(x, z)]dµi(x) (A.3)

Proof. As c is lower semicontinuous, so is the function z 7→ Li(h(z))− c(x, z) for any
x ∈ X . AsX is compact, this function attains its maximum overX , andargmax

z∈X
{Li(h(z))− ci(x, z)}

is non-empty for every x ∈ X .
It follows that γ∗i = (Id, Si)#µi withSi(x) ∈ argmax

z∈X
{Li(h(z))− ci(x, z)} is well

defined, and is a maximizer ofR(h, ,̇)̇ over∆µ1,µ−1 . Hence :

max
(γ1,γ−1∈∆µ1,µ−1

R(h, γ1, γ−1) =
∑
i=±1

∫
X

max
z∈X

[Li(h(z))− ci(x, z)]dµi(x)

The result immediately follows by taking the infimum in h ∈ C(h)

Let us now simplify the Defender’s problem :

Definition 65 (Transported distribution). We define the transported distributions νi
(i = ±1) as the second marginal of the coupling γi :

νi = proj2#γi

Proposition 8. We can reformulate v using the transported distributions :

v = sup
(ν1,ν−1)∈P(X )

 inf
h∈C(X )

∑
i=±1

∫
X

Li ◦ hdνi −
∑
i=±1

Tc(µi, νi)

 (A.4)

Where Tc(µi, νi) denotes the value of the Monge-Kantorovich problem (see Sec-
tion 2.5.2):

Tc(µi, νi) = min
γ∈Π(µi,νi)

∫
X×X

ci(x, z)dγ(x, z)
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Proof.

ν = sup
(γ1,γ−1)∈∆µ1,µ−1

inf
h∈C(X )

∑
i=±1

∫
X×X

[Li(h(z))− ci(x, z)]dγi(x, z)

= sup
(γ1,γ−1)∈∆µ1,µ−1

 inf
h∈C(X )

∑
i=±1

∫
X

Li(h(z))dνi(z)−
∫

X×X

ci(x, z)dγi(x, z)


= sup

(ν1,ν−1)∈P(X )

sup
γ∈Π(µi,νi)

 inf
h∈C(X )

∑
i=±1

∫
X

Li(h(z))dνi(z)−
∫

X×X

ci(x, z)dγi(x, z)


= sup

(ν1,ν−1)∈P(X )

 inf
h∈C(X )

∑
i=±1

∫
X

Li(h(z))dνi(z)− inf
γ∈Π(µi,νi)

∫
X×X

ci(x, z)dγi(x, z)


= sup

(ν1,ν−1)∈P(X )

 inf
h∈C(X )

∑
i=±1

∫
X

Li ◦ hdνi −
∑
i=±1

Tc(µi, νi)


Hence the result.

We have thus divided the sup-inf into two portions : one that depends on the loss
function, but not the coupling itself, and one that only depends on the coupling and the
transport cost, but not the classifier or the loss function. We can further simplify the first
part noticing that for the distributions νi, the only important thing for the classifier is
their relative importance, i.e. how much more probable one class is from the other. In
other words, we will express their densities relative to some dominant distribution, in that
case ν1 + ν−1.

Lemma 12 ( [Bartlett et al., 2006], page 141). Let (ν1, ν−1) ∈ P(X ), and ν =

ν1 + ν−1. Let αi denote the density of νi with respect to ν (so that α1 + α−1 = 1

ν-almost everywhere. Then we have :

inf
h∈C(X )

∑
i=±1

∫
X

(Li ◦ h)dνi =
∫
X

H(α1(z))dν(z) (A.5)

Where
∀α ∈ [0, 1], H(α) := inf

t∈R
{αL1(t) + (1− α)L−1(t)} (A.6)

H is called the optimal conditional L−risk.
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Using the previous lemmas, we can now rewrite :

v = sup
(ν1,ν−1)∈P(X )

∫
X

H(
dν1
dν

)dν −
∑
i=±1

Tc(µi, νi)



Theorem 23 (Existence of an asymptotic Nash equilibrium). Under Hypothesis 1,
one has:

v = v = max
(γ1,γ−1)∈∆µ1,µ−1

inf
h∈C(X )

R(h, γ1, γ−1).

Proof. We have, from Equation (A.3):

v = inf
h∈C(X )

∑
i=±1

∫
X

max
z∈X

[Li(h(z))− ci(x, z)]dµi(x)

Seeing that max
z∈X

[Li(h(z))− ci(x, z)] is a function of x that is always greater than
Li(h(z))− ci(x, z), this expression can be rewritten equivalently as :

inf
(f1,f−1,h)∈C(X )3

∑
i=±1

∫
X

fidµi|∀(x, z) ∈ X 2, fi(x) ≥ Li(h(z))− ci(x, z)


Let us now define the following operators to write that problem in Fenchel-Rockafeller
form:

• Let F be the linear operator

∀(f1, f−1, h) ∈ C(X )3, F (f1, f−1, h) :=
∑
i=±1

fidµi

• Λ is the linear continuous operator with values in C(X 2)× C(X 2)× C(X ) :

∀(f1, f−1, h) ∈ C(X )3, Λ(f1, f−1, h) := (f1 ◦ proj1, f−1 ◦ proj1, h)

• andG is the function such that, for (g1, g−1, h) ∈ C(X 2)× C(X 2)× C(X ) :

G(g1, g−1, h) :=

{
0 if ∀(x, z) ∈ X 2, ψi(x, z) ≥ Li(h(z))− ci(x, z)
+∞ otherwise.

167



A General study of the equilibrium under randomized attacks

We thus have :

v = inf
(f1,f−1,h)∈C(X )3

F (f1, f−1, h) +G(Λ(f1, f−1, h))

By applying the Fenchel-Rockafeller theorem (Theorem 5), we get :

v = max
(γ1,γ−1,ν)∈M(X 2)2×M(X )

−F ∗(Λ∗(γ1, γ−1, ν))−G∗(−γ1,−γ−1,−ν)

Where the ajoints can be directly computed :

∀(γ1, γ−1, ν) ∈M(X 2)2 ×M, Λ∗(γ1, γ−1, ν) = (proj1#γ1, proj1#γ−1, ν)

hence

F ∗(Λ∗((γ1, γ−1, ν)) =

{
0 if proj1#γ1 = µ1, proj1#γ−1 = µ−1 and ν = 0

+∞ otherwise.

And finally:

−G∗(−γ1,−γ−1, 0) =

 inf
h∈C(X )

R(h, γ1, γ−1) if γi ≥ 0

−∞ otherwise.

Replacing, it follows that :

v = max
(γ1,γ−1)∈∆µ1,µ−1

inf
h∈C(X )

R(h, γ1, γ−1) = v

A.3 Existence of a optimal clssifier
We now know, from Theorem 23, that under Hypothesis 1 there exists a sequence of
classifiers whose risk under attack converge to the optimum. We know want to study
under which conditions an optimal solution can be exactly computed.

168



A.3 Existence of a optimal clssifier

Hypothesis 2. On top of Hypothesis 1 we assume :

• c1 and c−1 are continuous onX × X ;

• L1 is nonincreasing and L−1 is nondecreasing;

• lim
t→−∞

L1(t) = lim
t→∞

L−1(t) = +∞.

Theorem 24 (Existence of a continuous solution). Under Hypothesis 2, there exists
an optimal solution to Equation (A.3), i.e. the Defender has an continuous optimal
strategy.

Proof. Let (hn)n ∈ C(X )N be a minimizing sequence for Equation (A.3), i.e. such that

lim
n→∞

∑
i=±1

∫
X
fni (x)dµi(x) = v (A.7)

where
∀i = ±1, x ∈ X , fni (x) = max

z∈X
{Li(hn(z))− ci(x, z)}

As c1 and c−1 are continuous, the modulus

ω(t) = max
i=±1

max
{
|ci(x1, z1)− ci(x2, z2)|, (x1, x2, z1, z2) ∈ X 4, d(x1, x2) + d(z1, z2) ≤ t

}
satisfies ω(t)→ 0 as t→ 0. Hence, for every n ∈ N, i = ±1 and every (x1, x2) ∈ X 2,
we have:

|fni (x1)− fni (x2)| = |max
z1∈X
{Li(hn(z1))− ci(x1, z1)} −max

z2∈X
{Li(hn(z2))− ci(x2, z2)}|

= max
z1∈X
{Li(hn(z1))− ci(x1, z1)} − Li(hn(z2))− ci(x2, z2)|

where z2 attains the maximum in fni (x
′)

= |Li(hn(z2))− ci(x1, z2)− Li(hn(z2))− ci(x2, z2)|
≤ ω(d(x1, x2))

As ω does not depend in n, this means that both sequences (fni )n are uniformly equicon-
tinuous. Furthermore, since Li ≥ 0 and c(x, x) = 0, we know that fni ≥ 0. From
Equation (A.3), we know that min

x
fni (x) is bounded by v. Due to the equicontinuity,
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we can conclude that (fni )n is uniformly bounded. By Ascoli’s theorem, this means that,
up to a subsequence, fni converges uniformly to some function fi, and we have :

v =
∑
i=±1

∫
X
fi(x)dµi(x) (A.8)

We now need a way to reconstruct the function h from f . For that, we define a "dual"
function to fi : for i = ±1, any n and z ∈ X , let

gni (z) := min
x∈X
{fni (x) + ci(x, z)}

The uniform convergence of fni implies the uniform convergence of gni to the function
gi defined by :

gi(z) := min
x∈X
{fi(x) + ci(x, z)} (A.9)

By construction, we have :

gn1 ≥ L1 ◦ hn, gn−1 ≥ L1 ◦ hn (A.10)

and since lim
t→−∞

L1(t) = lim
t→∞

L−1(t) = +∞, this means that hn must be uniformly
bounded : there existsC > 0 such that−C ≤ hn ≤ C for all n.

We will now use the pseudo-inverse of the convex losses Li. For t > L1(C), we define :

L−1
1 (t) := inf{u ∈ (−∞, C], L1(u) ≤ t} (A.11)

Recall thatL1 is both nonincreasing and convex, so depending on whether its infimum
is attained or not, L1 is either decreasing on R or decreasing on some interval (−∞, a]
then constant on [a,+∞). In any case, t ≥ L1(u) ⇐⇒ L−1

1 (t) ≥ u and L−1
1 is

nonincreasing continuous. Similarly, for t ≥ L−1(−C), we define :

L−1
−1(t) := sup{u ∈ [C,+∞), L−1(u) ≤ t} (A.12)

L−1
−1 is nondecreasing continuous, and for t ≥ −C , t ≥ L−1(u) ⇐⇒ L−1

−1(t) ≥ u.
We can thus rewrite equation Equation (A.10) as :

L−1
−1(g

n
−1) ≤ hn ≤ L−1

1 (gn1 ) (A.13)

which by continuity passes to the limit to :

h = L−1
−1(g−1) ≥ h = L−1

1 (g1) (A.14)
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For i = ±1 and any h ∈ C(X ), we have gi ≥ Li ◦ h.
Recall that gi(z) = min

x∈X
{fi(x) + ci(x, z)}. This means that we have, for all x ∈ X ,

ϕi(x) ≥ max
z∈X
{Li(h(z))− ci(x, z)}

It follows that : ∑
i=±1

∫
X

max
z∈X

[Li(h(z))− ci(x, z)]dµi(x) ≤ v

which is the infimum. Hence, h solves Equation (A.3).

A.4 Existence of Lipschitz solutions

We have now shown the conditions for the existence of a continuous optimal solution. We
would expect this solution to exhibit more powerful forms of continuity, as robustness
naturally encourages controlled local variations. We will now investigate the conditions
under which a Lipschitz solution can exist.

Proposition 9. If, in addition to Hypothesis 2, we also have that :

• the transport costs ci are Lipschitz onX × X

• either L1 is decreasing or L−1 is increasing

Then there exists an optimal Lispschitz classifier.

Proof. Following the proof of Theorem 24, we find g1 and g−1 as in Equation (A.9) (in
the optimal transport terminology, we say that gi is ci-quasi-concave) such thatL−1

1 (g1) ≤
L−1
−1(g−1) and any h ∈ C(X ) such thatL−1

1 (g1) ≤ h ≤ L−1
−1(g−1) solves Equation (A.3).

Since the gi are of the form Equation (A.9), the fact that the ci are Lipschitz means that
the gi are as well. As L1 is decreasing and convex, its subgradient is bounded away from
zero on any compact interval, so its inverse is Lipschitz on compact sets, includingX , and
so isL−1

1 (g1), which is thus a Lipschitz solution. The same reasoning gives L−1
−1(g−1) as a

Lipschitz solution when L−1 is decreasing.
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A.5 Discussion on realistic transport costs and
transport plans.

The general hypothesis of Theorem 23 encompass most realistic transport costs, in partic-

ular imperceptibiliy-enforcing costs, of the form c(x, z) =

{
k(x, z) if ∥x− z∥ ≤ ϵ

+∞ otherwise
.

Allowing the use of randomized attacks, when using surrogate loss functions, thus
create asymptotic Nash equilibria in realistic scenarios. Hypothesis 2 is however more
constraining, as it does not hold with the imperceptibility constraint.

On imperceptibility this however leads to the question : is a strict imperceptibility
condition really realistic ? Does the human perception work by thresholds, or in a more
gradual way (in which case the relaxations of the imperceptibility constraints, such as the
Carlini&Wagner cost, would be a better modeling hypothesis).

Most relaxations of the imperceptibility constraint lead to continuous, and even Lips-
chitz costs, which ensure the existence of an optimal Lipschitz solution for the Defender.

On transport plans for attacks However, let us keep in mind that the Attacker
described in this section is very powerful. We allowed any randomized strategy, while
transport plans for continuous distributions are in practice very difficult, if not impossible
to compute. More research should be conduced to identify the realistic hypothesis for the
Attacker, and on how to compute randomized attacks.

To summarize our results in this section, for surrogate loss functions and relaxed imper-
ceptibility constraints, when the Attacker is allowed to play general randomized strategies,
there is an optimal continuous, and even Lipschitz classifier.
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adversarial classification

This chapter is the result of a work carried out in collaboration with Laurent Meunier,
published at Neurips 2022, under the name "Towards consistency in adversarial classifi-
cation". We refer the reader to the arxiv version of the paper for more details.
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As we mentioned in chapter 2, a fundamental aspect of classification is the choice of the
loss function. As the 0/1 loss is not convex, it is unusable in practical implementations, so
that convex surrogates are used in every neural network to this day. In the standard setting,
this does not incur any problem, as a wide class of losses exhibit the property of consistency,
i.e. minimizing them amounts to minimizing the 0/1. This is possible because consistency
can be reduced to a pointwise minimization property called calibration. However, this is
not possible anymore in the adversarial setting, as the problem is by nature non-pointwise.
Hence the question :

Can surrogate losses still be used as a proxy for minimizing the 0/1 loss in the presence of an
adversary that alters the inputs at test-time?

Different from the standard classification task, this cannot be reduced to a point-wise
minimization problem, and calibration needs not to be sufficient to ensure consistency.
In this paper, we expose some pathological behaviors specific to the adversarial problem,
and show that no convex surrogate loss can be consistent or calibrated in this context. It
is therefore necessary to design another class of surrogate functions that can be used to
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solve the adversarial consistency issue. As a first step towards designing such a class, we
identify sufficient and necessary conditions for a surrogate loss to be calibrated in both
the adversarial and standard settings. Finally, we give some directions for building a class
of losses that could be consistent in the adversarial framework.

B.1 Notions of Calibration and Consistency
Let us consider a classification task with input spaceX and output space Y = {−1,+1}.
Let (X , d) be a proper Polish (i.e. completely separable) metric space representing the
inputs space. For all x ∈ X and δ > 0, we denoteBδ(x) the closed ball of radius δ and
center x. We also assume that for all x ∈ X and δ > 0, Bδ(x) contains at least two
points1. Let us also endow Y with the trivial metric d′(y, y′) = 1y ̸=y′ . Then the space
(X × Y , d⊕ d′) is a proper Polish space. For any Polish spaceZ , we denoteM1

+(Z) the
Polish space of Borel probability measures onZ . We will denoteF(Z) the space of real
valued Borel measurable functions onZ . Finally, we denote R := R ∪ {∞,+∞}.

B.1.1 Notations and Preliminaries
The 0/1-loss is both non-continuous and non-convex, and its direct minimization is a
difficult problem. The concepts of calibration and consistency aim at identifying the
properties that a loss must satisfy in order to be a good surrogate for the minimization
of the 0/1-loss. In this section, we define these two concepts and explain the difference
between them. First of all, we need to give a general definition of a loss function.

Definition 66 (Loss function). A loss function is a functionL : X×Y×F(X )→ R
such that L(·, ·, f) is measurable for all f ∈ F(X ).

Note that this definition is not specific to the standard or adversarial case. In general,
the loss at point (x, y) can either depend only on f(x), or on other points related to x
(e.g. the set of points within a distance ε of x). We now recall the definition of the risk
associated with a loss L and a distribution P.

1For instance, for any norm ∥·∥, (Rd, ∥·∥) is a Polish metric space satisfying this property.
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Definition 67 (L-risk of a classifier). For a given loss function L, and a Borel proba-
bility distribution P overX × Y we define the risk of a classifier f associated with the
loss L and a distribution P as

RL,P(f) := E(x,y)∼P[L(x, y, f)].

We also define the optimal risk associated with the loss L as

R⋆
L,P := inf

f∈F(X )
RL,P(f)

Essentially, the risk of a classifier is defined as the average loss over the distribution P.
When the loss L is difficult to optimize in practice (e.g when it is non-convex or non-
differentiable), it is often preferred to optimize a surrogate loss function instead. In the
literature [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007], the notion of surrogate
losses has been studied as a consistency problem. In a nutshell, a surrogate loss is said
to be consistent if any minimizing sequence of classifiers for the risk associated with the
surrogate loss is also one for the risk associated withL. Formally, the notion of consistency
is as follows.

Definition 68 (Consistency). Let L1 and L2 be two loss functions. For a given
P ∈M+

1 (X ×Y),L2 is said to be consistent for P with respect toL1 if for all sequences
(fn)n ∈ F(X )N :

RL2,P(fn)→ R⋆
L2,P =⇒ RL1,P(fn)→ R⋆

L1,P (B.1)

Furthermore, L2 is said consistent with respect to a loss L1 the above holds for any
distribution P.

Consistency is in general a difficult problem to study because of its high dependency
on the distribution P at hand. Accordingly, several previous works [Zhang, 2004, Bartlett
and Mendelson, 2002, Steinwart, 2007] introduced a weaker notion to study a pointwise
version consistency. This simplified notion is called calibration and corresponds to consis-
tency when P is a combination of Dirac distributions. The main building block in the
analysis of the calibration problem is the calibration function, defined as follows.
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Definition 69 (Calibration function). Let L be a loss function. The calibration
function CL is

CL(x, η, f) := ηL(x, 1, f) + (1− η)L(x,−1, f),

for any η ∈ [0, 1], x ∈ X and f ∈ F(X ). We also define the optimal calibration
function as

C⋆L(x, η) := inf
f∈F(X )

CL(x, η, f).

Note that for any x ∈ X and η ∈ [0, 1], CL(x, η, f) = RL,P(f) with P = ηδ(x,+1) +

(1− η)δ(x,−1). The calibration function thus corresponds then to a pointwise notion of
the risk, evaluated at point x. η corresponds in this case to the conditional probability of
y = 1 given x. We now define the calibration property of a surrogate loss.

Definition 70 (Calibration). Let L1 and L2 be two loss functions. We say that L2

is calibrated with regards toL1 if for every ξ > 0, η ∈ [0, 1] and x ∈ X , there exists
δ > 0 such that for all f ∈ F(X ),

CL2(x, η, f)−C⋆L2
(x, η) ≤ δ =⇒ CL1(x, η, f)− C⋆L1

(x, η) ≤ ξ.

Furthermore, we say that L2 is uniformly calibrated with regards to L1 if for every
ξ > 0, there exists δ > 0 such that for all η ∈ [0, 1], x ∈ X and f ∈ F(X ) we have

CL2(x, η, f)− C⋆L2
(x, η) ≤ δ =⇒ CL1(x, η, f)− C⋆L1

(x, η) ≤ ξ.

Connection between calibration and consistency. It is always true that calibration is
a necessary condition for consistency. Yet there is no reason, in general, for the converse to
be true. However, in the specific context usually studied in the literature (i.e., the standard
classification with a well-defined 0/1-loss), the notions of consistency and calibration have
been shown to be equivalent. [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007]. In the
next section, we come back on existing results regarding calibration and consistency in
this specific (standard) classification setting.

B.1.2 Existing Results in the Standard Classification Setting
Classification is a standard task in machine learning that consists in finding a classification
function h : X → Y that maps an input x to a label y. In binary classification, h is
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often defined as the sign of a real valued function f ∈ F(X ). The loss usually used to
characterize classification tasks corresponds to the accuracy of the classifier h. When h is
defined as above, this loss is defined as follows.

Definition 71 (0/1 loss). Let f ∈ F(X ). We define the 0/1 loss as follows

l0/1(x, y, f) = 1y×sign(f(x))≤0

with a convention for the sign, e.g. sign(0) = 1. We will denoteRP(f) := Rl0/1,P(f),
R⋆

P := R⋆
l0/1,P, C(x, η, f) := Cl0/1(x, η, f) and C⋆(x, η) := C⋆l0/1(x, η).

Note that this 0/1-loss is different from the one introduced by [Bao et al., 2020,Awasthi
et al., 2021a, Awasthi et al., 2021c]: they used 1y×f(x)≤0 which is a usual 0/1 loss but
unadapted to consistency and calibrated study (see Section B.3 for details). Some of the
most prominent works [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007] among them
focus on the concept of margin losses, as defined below.

Definition 72 (Margin loss). A loss Lϕ is said to be a margin loss if there exists a
measurable function ϕ : R→ R+ such that:

Lϕ(x, y, f) = ϕ(yf(x))

For simplicity, we will say that ϕ is a margin loss function and we will denoteRϕ and Cϕ
the risk associated with the margin loss ϕ. Notably, it has been demonstrated in several
previous works [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007] that, for a margin
loss ϕ, we have always have C⋆ϕ(x, η) = infα∈R ηϕ(α) + (1 − η)ϕ(−α). This is in
particular one of the main observation allowing to show the following strong result about
the connection between consistency and calibration.

Theorem 25 ( [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007]). Let ϕ : R→
R+ be a continuous margin loss. Then the three following assertions are equivalent:
(i) ϕ is calibrated with regards to l0/1, (ii) ϕ is uniformly calibrated l0/1, (iii) ϕ is
consistent with regards to l0/1.
Moreover, if ϕ is convex and differentiable at 0, then ϕ is calibrated if and only
ϕ′(0) < 0.

The Hinge loss ϕ(t) = max(1 − t, 0) and the logistic loss ϕ(t) = log(1 + e−t) are
classical examples of convex consistent losses. Convexity is a desirable property for faster
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optimization of the loss, but there exist other non-convex losses that are calibrated as the
ramp loss (ϕ(t) = max(1−t, 0)+max(1+t, 0)) or the sigmoid loss (ϕ(t) = (1+et)−1).
In the next section, we present the adversarial classification setting for which Theorem 25
may not hold anymore.

Remark 5. The equivalence between calibration and consistency is a consequence from the
fact that, over the large space of measurable functions, minimizing the loss pointwisely in
the input by desintegrating with regards to x is equivalent to minimize the whole risk over
measurable functions. This result is very powerful and simplify the study of calibration in
the standard setting.

B.1.3 Calibration and Consistency in the Adversarial Setting.
We now consider the adversarial classification setting where an adversary tries to manipulate
the inputs at test time. Given ε > 0, they can move each point x ∼ P to another point x′
which is at distance at most ε from x2. The goal of this adversary is to maximize the 0/1
risk the shifted points from P. Formally, the loss associated to adversarial classification is
defined as follows.

Definition 73 (Adversarial 0/1 loss). Let ε ≥ 0. We define the adversarial 0/1 loss
of level ε as:

l0/1,ε(x, y, f) = sup
x′∈Bε(x)

1ysign(f(x))≤0

We will denote Rε,P(f) := Rl0/1,ε,P(f), R⋆
ε,P := R⋆

l0/1,ε,P, Cε(x, η, f) :=

Cl0/1,ε(x, η, f) and C⋆ε (x, η) := C⋆l0/1,ε(x, η) for every P, x, f and η.

Specificity of the adversarial case The adversarial risk minimization problem is much
more challenging than its standard counterpart because an inner supremum is added
to the optimization objective. With this inner supremum, it is no longer possible to
reduce the distributional problem to a pointwise minimization as it is usually done in
the standard classification framework. In fact, the notions of consistency and calibration
are significantly different in the adversarial setting. This means that the results obtained
in the standard classification may no longer be valid in the adversarial setting (e.g., the
calibration need not be sufficient for consistency), which makes the study of consistency
much more complicated. As a first step towards analyzing the adversarial classification
problem, we now adapt the notion of margin loss to the adversarial setting.

2Note that after shifting x to x′, the point need not be in the support of P anymore.
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Definition 74 (Adversarial margin loss). Let ϕ : R → R+ be a margin loss and
ε ≥ 0. We define the adversarial loss of level ε associated with ϕ as:

ϕε(x, y, f) = sup
x′∈Bε(x)

ϕ(yf(x′))

We say that ϕ is adversarially calibrated (resp. uniformly calibrated, resp. consistent)
at level ε if ϕε is calibrated (resp. uniformly calibrated, resp. consistent) wrt l0/1,ε.

Note that a first important sanity check to make is verify that ϕε and l0/1,ε are indeed
measurable and well defined. The arguments are not trivial since it uses advanced argu-
ments from measure theory, but it is necessary to establish measurability before going
further on. Proposition 10 states the measurability of ϕε and l0/1,ε.

Proposition 10. Let ϕ : R × Y → R be a measurable function and ε ≥ 0. For
every f ∈ F(X ), (x, y) 7→ ϕε(x, y, f) and (x, y) 7→ l0/1,ε(x, y, f) are universally
measurable.

Now that, we proved that the adversarial setting is properly defined, we can make a first
observation: the calibration functions forϕ andϕε are actually equal. This property might
seem counter-intuitive at first sight as the adversarial risk is most of the time strictly larger
than its standard counterpart. However, the calibration functions are only pointwise
dependent, hence having the same prediction for any element of the ballBε(x) suffices to
reach the optimal calibration C⋆ϕ(x, η).

Proposition 11. Let ε > 0. Let ϕ be a continuous classification margin loss. For all
x ∈ X and η ∈ [0, 1], we have

C⋆ϕε(x, η) = inf
α∈R

ηϕ(α) + (1− η)ϕ(−α) = C⋆ϕ(x, η) .

The last equality also holds for the adversarial 0/1 loss.

B.2 Solving Adversarial Calibration
In this section, we study the calibration of adversarial margin losses with regard to the
adversarial 0/1 loss. We first provide necessary and sufficient conditions under which
margin losses are adversarially calibrated. We then show that a wide range of surrogate
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losses that are calibrated in the standard setting are not calibrated in the adversarial setting.
Finally we propose a class of losses that are calibrated in the adversarial setting, namely the
shifted odd losses.

B.2.1 Necessary and Sufficient Conditions for Calibration
One of our main contributions is to find necessary and sufficient conditions for calibration
in the adversarial setting. In a brief, we identify that for studying calibration it is central to
understand the case where there might be indecision for classifiers (i.e. η = 1/2). Indeed,
in this case, either labelling positively or negatively the input xwould lead the same loss
for x. Next result provides a necessary condition for calibration.

Theorem 26 (Necessary condition for Calibration). Let ϕ be a continuous margin
loss and ε > 0. If ϕ is adversarially calibrated at level ε, then ϕ is calibrated in the
standard classification setting and 0 ̸∈ argminα∈R̄

1
2
ϕ(α) + 1

2
ϕ(−α).

While the condition of calibration in the standard classification setting seems natural,
we need to understand why 0 ̸∈ argminα∈R̄

1
2
ϕ(α) + 1

2
ϕ(−α). The intuition behind

this result is that a sequence of functions simply converging towards 0 in the ball of radius
ε around some x can take positive and negative values thus leading to suboptimal 0/1
adversarial risk. It turns out that, given an additional mild assumption, this condition is
actually sufficient to ensure calibration.

Theorem 27 (Sufficient condition for Calibration). Let ϕ be a continuous margin
loss and ε > 0. If ϕ is decreasing and strictly decreasing in a neighbourhood of 0 and
calibrated in the standard setting and 0 ̸∈ argminα∈R̄

1
2
ϕ(α) + 1

2
ϕ(−α), then ϕ is

adversarially uniformly calibrated at level ε.

Remark 6 (Decreasing hypothesis). For the reciprocal, the additional assumption that ϕ is
decreasing and strictly decreasing in a neighborhood of 0 is not restrictive for usual losses. In
Theorem ??, this assumption is stated as a necessary and sufficient condition for convex losses
to be calibrated.

B.2.2 Negative results
Thanks to Theorem 26, we can present two notable corollaries invalidating the use of
two important classes of surrogate losses in the standard setting. The first class of losses
are convex margin losses. These losses are maybe the most widely used in modern day
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machine learning as they comprise the logistic loss or the margin loss that are the building
block of most classification algorithms.

Corollary 2. Let ε > 0. Then no convex margin loss can be adversarially calibrated
at level ε.

A convex loss satisfies 1
2
ϕ(α) + 1

2
ϕ(−α) ≥ ϕ(0), hence 0 ∈ argminα∈R ϕ(α) +

ϕ(−α). From Theorem 26, we deduce the result. Then, ϕ is not adversarially calibrated
at level ε. This result seems counter-intuitive and highlights the difficulty of optimizing
and understanding the adversarial risk. Since convex losses are not adversarially calibrated,
one may hope to rely on famous non-convex losses such as sigmoid and ramp losses. But,
unfortunately, such losses are not calibrated either.

Corollary 3. Let ε > 0. Let λ ∈ R and ψ be a lower-bounded odd function such
that for all α ∈ R, ψ > −λ. We define ψ as ϕ(α) = λ + ψ(α). Then ϕ is not
adversarially calibrated at level ε.

Indeed, 1
2
ϕ(α) + 1

2
ϕ(−α) = λ, so that argminα∈R

1
2
ϕ(α) + 1

2
ϕ(−α) = R. Thanks to

Theorem 26, ϕ is not adversarially calibrated at level ε.

B.2.3 Positive results
Theorem 27 also gives sufficient conditions for ϕ to be adversarially calibrated. Leveraging
this result, we devise a class of margin losses that are indeed calibrated in the adversarial
settings. We call this class shifted odd losses, and we define it as follows.

Definition 75 (Shifted odd losses). We say that ϕ is a shifted odd margin loss if there
exists λ ≥ 0, τ > 0, and a continuous lower bounded decreasing odd functionψ that is
strictly decreasing in a neighborhood of 0 such that for all α ∈ R, ψ(α) ≥ −λ and
ϕ(α) = λ+ ψ(α− τ).

The key difference between a standard odd margin loss and a shifted odd margin loss
is the variations of the function α 7→ 1

2
ϕ(α) + 1

2
ϕ(−α). The primary difference is that,

in the standard case the optima of this function are located at 0 while they are located in
−∞ and +∞ in the adversarial setting. Let us give some examples of margin shifted odd
losses below.
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Figure B.1: Illustration of a calibrated loss in the adversarial setting. The sigmoid loss satisfy the
hypothesis for ψ. Its shifted version is then calibrated for adversarial classification.

Example 3 (Shifted odd losses). For every ε > 0 and every τ > 0, the shifted logistic loss,
defined as follows, is adversarially calibrated at level ε: ϕ : α 7→ (1 + exp{(α− τ)})−1

This loss is plotted on left in Figure B.1. We also plotted on right in Figure B.1α 7→ 1
2
ϕ(α)+

1
2
ϕ(−α) to justify that 0 ̸∈ argminα∈R̄

1
2
ϕ(α)+ 1

2
ϕ(−α). Also note that the shifted ramp

loss also satisfies the same properties.

A consequence of Theorem 27 is that shifted odd losses are adversarially calibrated, as
demonstrated in Proposition 12 stated below.

Proposition 12. Letϕ be a shifted odd margin loss. For every ε > 0,ϕ is adversarially
calibrated at level ε.

B.3 Related Work and Discussions
We now explain the differences between our approach and the one proposed by [Bao et al.,
2020, Awasthi et al., 2021a, Awasthi et al., 2021c]. The two main differences are the choice
of the 0/1 loss and the studied notion of consistency and calibration.

Alternative 0/1 loss An alternative 0/1 loss would the following: l≤(f(x), y) =

1yf(x)≤0. This loss penalizes indecision: i.e. predicting 0 would lead to a pointwise risk of
1 for y = 1 and y = −1 while the 0/1 loss l0/1 returns 1 for y = 1 and 0 for y = −1.
This definition was used by [Bao et al., 2020, Awasthi et al., 2021a, Awasthi et al., 2021c]
to prove their calibration and consistency results. While [Bartlett et al., 2006] was not
explicit on the choice for the 0/1 loss, [Steinwart, 2007] explicitly mentions that the
0/1 loss is not a margin loss. The use of this loss is not suited for studying consistency
and leads to inaccurate results as shown in the following counterexample. OnX = R,
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let P defined as P = 1
2
(δx=0,y=1 + δx=0,y=−1) and ϕ : R → R be a margin based

loss. The ϕ-risk minimization problem writes infα 1
2
(ϕ(α) + ϕ(−α)). For any convex

functional ϕ the optimum is attained for α = 0. fn : x 7→ 0 is a minimizing sequence
for the ϕ-risk. However Rl≤(fn) = 1 for all n and R∗

l≤
= 1

2
. Then we deduce that no

convex margin based loss is consistent wrt l≤. Consequently, the 0/1 loss to be used in
adversarial consistency needs to be l0/1,ε(x, y, f) = supx′∈Bε(x) 1ysign(f(x))≤0, otherwise
the obtained results might be innacurate.

H-consistency andH-calibration [Bao et al., 2020, Awasthi et al., 2021a, Awasthi
et al., 2021c] proposed to studyH-calibration andH-consistency in the adversarial setting,
i.e. calibration and consistency when minimizing sequences are inH. However, even in the
standard classification setting, the link between both notions in this extended setting is not
clear at all since a pointwise minimization of the risk cannot be done. To our knowledge,
there is only one research paper [Long and Servedio, 2013] that focuses on this notion in
standard setting. They do it in the restricted case of realisability, i.e. when the standard
optimal risk associated with the 0/1 loss equals 0. We believe that studyingH-consistency
and H-calibration in the adversarial setting is a bit anticipated. For these reasons, we
focus only on calibration and consistency on the space of measurable functionsF(X ).
However, note that many of our results can be adapted toH-calibration.

About the Adversarial Bayes Risk and Game Theory. A recent trend of work has
focused on analyzing the adversarial risk from multiple point of views. [Bhagoji et al.,
2019] as well as [Pydi and Jog, 2020b, Pydi and Jog, 2021] showed that the adversarial
optimal Bayes classifier can be written as optimal transport for a well chosen cost. Another
line of work [Pinot et al., 2020, Meunier et al., 2021, Pydi and Jog, 2021] have focused on
a game theoretic approach for analyzing the adversarial risk having interest in the nature of
equilibria between the classifier and the attacker. Recently, some researchers [Awasthi et al.,
2021b, Bungert et al., 2021] proved encouraging results on the existence of an optimal
Bayes classifier in the adversarial setting under mild assumptions.
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This section contains a summary of some of my works on modeling the COVID-19
pandemic. We will focus on contact tracing, i.e. soft public policies where a central
authority chooses to isolate a selected few individuals instead of using a global lockdown.
Let us first give a few definitions and preliminary observations, so that we can state the
problems we will tackle.

C.1 Introduction to compartimental models of
epidemics

Consider a population of N individuals, where an epidemic circulates. To model the
diffusion of the epidemic, we will first use the homogeneous SIR model, introduced
by [Kermack and McKendrick, 1927]. In this model, we consider that the population is
homogeneous, i.e. all individuals have the same characteristics relative to the disease. We
will remove this hypothesis in appendix C.3 to analyze age-stratified models.
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Figure C.1: Illustration of the SIR model

The idea of SIR models is to separate the population at any given point t into three
categories : the susceptibles (whose number is called S(t)), who can catch the disease,
the infected, which have it, and the recovered, who are immune and cannot catch it
anymore. Furthermore, we assume that we study over a time period T > 0 that is short
enough for the number of susceptible to have very little relative variation, i.e. S(t) = S is
constant over [1, . . . , T ].

Definition 76 (Homogeneous SIR model). An SIR model is defined by an initial
situation (S0, I0, R0), coefficients β, γ ∈ (0, 1), and a discrete process (S, I, R)(t)
such that (S, I, R)(0) = (S0, I0, R0), and for all t ∈ [1, . . . , T ]:

S(t+ 1) = S(t) = S

I(t+ 1) = β
S

N
I(t)− γI(t)

R(t+ 1) = γI(t)

where β represents the average number of people contaminated by each infected, and γ
the proportion of infected that recovers, all during a given period.

We will further separate β into two components :

β = n︸︷︷︸
average number

of contacts

× r︸︷︷︸
average risk

of contamination

This framework can be generalized when the population is stratified into K groups.
We call S1, . . . , SK the number of susceptibles, I1, . . . , Ik the number of infected, and
R1, . . . , Rk the number of recovered.
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Definition 77 (Stratified SIR model). A stratified SIR model is defined by an initial
situation (Sk(0), Ik(0), Rk(0) for k ∈ {1, . . . , K}, coefficients βi,j, γ ∈ (0, 1) for
(i, j) ∈ {1, . . . , K}, and a discrete process (Sk, Ik, Rk)(t) such that for all k ∈
{1, . . . , K}, t ∈ [1, . . . , T ]:

Sk(t+ 1) = S(t) = S

Ik(t+ 1) =
∑
j

βj,k
Ij(t)

Nj

− γIk(t)

Rk(t+ 1) = γIk(t)

where βj,k represents the average number of infectious contacts from individuals in
cohort j with susceptibles of cohort k, and γ the proportion of infected that recovers, all
during a given period.

Under this framework (and a multi-class generalization), we will study the following
questions :

Q1: What is the most efficient contact tracing policy at different stage of the epidemic ?

Q2: What are other, more global policies that can keep the epidemic under control while
minimizing the lockdown time ?

C.2 General theoretical study : optimal forms of
contact tracing depending on the prevalence

C.2.1 Different forms of contact tracing

In this section, we will analyze and compare contact tracing policies, i.e. selective isolation
of a portion of the population. Given an "isolation budget" b, what are efficient ways
to choose the people that are isolated ? We will compare three kinds of contact tracing
policies :

• Random Sampling : draw an individual at random in the cohort that exhibits the
highest prevalence, ask him to test and isolate if positive.
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• Standard Contact Tracing : ask all individuals that are tested positive for the list
of their contacts, and send these contacts a message asking them to test and isolate.
We are allowed to priorize contacts based on specific information such as age.

• App-based Contact Tracing : we assume that some application is adopted by
some given proportion of the population. When someone is tested positive, all of
its recent contact are automatically asked to test and isolate. The app does not have
access to any specific information about people, so works as if the population was
homogeneous.

Such contact tracing policies have two major objectives :

1. Prevent infections and/or ICUs;

2. Gather information on the contact matrices and epidemic coefficients;

To evaluate the efficiency of contact tracing mechanisms, several criterion can be con-
sidered :

• The number of ICUs avoided over a given period of time;

• The impact on the epidemic development (through for example the reproduction
rate);

• The amount of information gathered (speed to adjust to changing contact matrices,
convergence rate of the estimators...)

We will focus here on the first criterion, i.e. the number of ICUs avoided. Hence, we
will assume that the contact tracing is limited in its scale, and does not directly affect the
epidemic development. We will provide some insights on the information gathering later.

C.2.2 The different steps of contact tracing
Any contact tracing mechanism can be divided into two major steps :

1. Identify infectious individuals;

2. Priorize the ones to isolate based on their contact patterns.

Step 1. amounts to estimated the probability of being infected. Random sampling does
that by using the prior probability Ik

Nk
, which is the prevalence in a given cohort k, whereas

other contact tracing forms use the posterior probability P[infected|contact] for the
contacts of infected individuals.
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Infected Individual 0
contacttests

Contacts
with the rest

of the
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sampling

Figure C.2: The contact tracing process. The first step is to identify infectious individuals, either
as a contact of someone tested positive, or through random sampling. Then, we can
priorize these infected by how many other people they are susceptible to contaminate.

Step 2. amounts to evaluate the remaining fraction of the infectious window that remains
after calling the individual, ant then to count the number of ICUs caused by an infected,
depending on its cohort, over a given time span. We will study that second aspect in
appendix C.3

C.2.3 Homogeneous population : the prevalence threshold
When the population is homogeneous, two things happen :

• As every individual has the same action toward the evolution of the epidemic, the
performance of a contact tracing mechanism only depends on its ability to find
infected individuals, as how late they are found in their infectious window;

• Contact tracing and app-based contact tracing become identical, as there can be no
priorization.

Definition 78 (Contact tracing delay). The contact tracing delay of a policy is the
average proportion of the infectious window that is already over when an individual is
called.

Proposition 13. The contact tracing delay of Random Sampling is always 1
2

.

We can thus compare both policies as follow :
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Theorem 28. In the homogeneous scenario, at a given time t, the ct-score of Standard
Contact Tracing of delay δ and Random Sampling are given by :

• Standard CT : δr

• Random Sampling : I(t)
2N

It follows that standard contact tracing performs better for I(t)
N
≤ 2δr, whereas random

sampling performs better for I(t)
N

> 2δr. We call 2δr the prevalence threshold.

C.3 Analysis on real-world contact matrix : maximizing
the efficiency per call

In this section, we focus on the age-stratified SIR model, and study the following question
:

Q: How should we divide our call budget between the different cohorts ?

We make the following hypothesis :

• γ is constant across the different cohorts;

• all cohorts have the same populationN

• βi,j = Nni,jr, where ni,j is the average number of contacts from one person in
cohort i in cohort j

It follows that we only need the contact matrix M = (ni,j)i,j , which represents the
average number of contacts between two cohorts. Such contact matrices would usually be
obtained through contact tracing during the epidemic, to encompass variations which
inevitably occur at each change of public policy (opening the bars and restaurants, re-
stricting the number of people in closed space, etc). In this paper, we will use the contact
matrices provided by [Mistry et al., 2021] for France. Keep in mind that they reflect a
"standard" behavior of the population, and that results would probably be very different
depending on the period of the epidemic.

When using a vector notation for definition 77, we can easily see that :

I(t+ 1) = (M − γId)I(t) = GI(t)
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Figure C.3: Contact matrix from [Mistry et al., 2021], aggregated by cohorts of 10 years.

Where M is the contact matrix. It follows that the number of ICUs avoided by a call to
someone in cohort j, over a period T, is :

Theorem 29 (Number of ICUs avoided by a call). The number of ICUs avoided by
a call to someone in cohort j is :

T∑
t=1

k∑
k=1

αkG
t
j,k (C.1)

When plotting that for several values of t, we ca observe that although it is efficient on
the short run to priorize calls to old people, it is much more efficient on the long run to
call young people, as they have way more contacts and contaminate more people by ripple.
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Figure C.4: Number of ICU avoided by a call over a period T, depending on the age group of the
person called
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MOTS CLÉS

Exemples adverses - Théorie des Jeux - Transport optimal - Théorie de l’apprentissage statistique

RÉSUMÉ

Les modèles d’apprentissage automatique sont désormais au coeur de nombre d’applications, y compris les plus critiques
comme les voitures autonomes et le diagnostique médical. Il est par conséquent important que les systèmes embarqués
soient capables d’identifier, et si possible de neutraliser toute vulnérabilité de ces modèles, afin de garantir leur bon
fonctionnement.
Cette thèse se concentre sur l’un des principaux problèmes de sécurité en machine learning : les attaques par exemples
adversariaux. Nous étudions l’existence de modèles robustes contre ces attaques, en abordant la question sous l’angle
de la théorie des jeux et du transport optimal. Nous proposons ensuite un cadre général permettant d’améliorer les
garanties de robustesse que les algorithmes peuvent offrir.

ABSTRACT

Machine learning models are now at the heart of many applications, including the most critical such as autonomous
cars and medical diagnosis. It is thus important that embedded systems are able to identify, and if possible correct, any
vulnerability of these models, to guarantee their performance.
This thesis focuses on adversarial example attacks, which are one of the main security issues in machine learning. We
study the existence of robust models against such attacks, under the prism of game theory and optimal transport. We
then provide a general framework to obtain better guarantees of robustness for algorithms.
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Adversarial examples - Game theory - Optimal transport - Statistical learning theory
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