
HAL Id: tel-04631894
https://theses.hal.science/tel-04631894v1

Submitted on 2 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Achieving reliable control : robustness and stability in
nonlinear systems via DNN-based feedback design

Samuele Zoboli

To cite this version:
Samuele Zoboli. Achieving reliable control : robustness and stability in nonlinear systems via DNN-
based feedback design. Automatic Control Engineering. Université Claude Bernard - Lyon I, 2023.
English. �NNT : 2023LYO10172�. �tel-04631894�

https://theses.hal.science/tel-04631894v1
https://hal.archives-ouvertes.fr

THESE de DOCTORAT DE
L’UNIVERSITE CLAUDE BERNARD LYON 1

Ecole Doctorale N°160
Électronique, Électrotechnique, Automatique

Discipline: Automatique

Soutenue publiquement le 28/09/2023, par :

Samuele ZOBOLI

Achieving reliable control: robustness and stability in

nonlinear systems via DNN-based feedback design

Devant le jury composé de:

Bernhard MASCHKE
Christopher KELLETT
Marc JUNGERS
Maryam KAMGARPOUR
Sophie CERF
Vincent ANDRIEU
Daniele ASTOLFI

PU, Université Lyon 1
Pr, Université nationale australienne
DR, CNRS Nancy
PA, École polytechnique fédérale de Lausanne
CR, INRIA Lille
DR, CNRS Lyon
CR, CNRS Lyon

Jilles Steeve DIBANGOYE Pr, University of Groningen

Président
Rapporteur
Rapporteur

Examinatrice
Examinatrice

Directeur de thèse
Co-directeur de thèse
Co-directeur de thèse

Samuele ZOBOLI

Université Claude Bernard Lyon 1, LAGEPP bâtiment CPE, 3ème étage, bureau G315, 43 bd du
11 Novembre 1918, Villeurbanne Cedex, France.

Email:samuele.zoboli@gmail.com

Keywords: Nonlinear systems, robustness, stability, deep neural networks, contraction, multi-
agent synchronization, reinforcement learning.

Mots-clés : Systèmes non linéaires, robustesse, stabilité, réseaux de neurones profonds, con-
traction, synchronisation multi-agent, apprentissage par renforcement.

mailto:samuele.zoboli@gmail.com

Thanks

Before delving into the depths of my PhD work, I can’t help but express my deepest gratitude
to all the incredible individuals who turned this seemingly unachievable objective into a reality.
This manuscript wouldn’t exist without them and their support.

First, I would like to thank Marc Jungers and Christopher Kellett for agreeing to review this doc-
ument and for providing invaluable insights and comments. I am equally thankful to Bernhard
Maschke, Sophie Cerf and Maryam Kamgarpour for their participation in the jury. My appreci-
ation extends to everyone I had the chance to collaborate with over the course of these three
years, especially Giacomo Casadei, Luca Zaccarian, Andrea Mattioni, Bojan Mavkov, Christophe
Prieur, Santiago Sanchez Escalonilla Plaza and Bayu Jayawardhana. I learned a lot from you,
and I hope we will be able to work together again in the future.

It is not easy to express in words how grateful I am to my supervisors: Vincent Andrieu, Daniele
Astolfi and Jilles S. Dibangoye. You dedicated to me more time then I probably deserved.
Throughout these three years, you not only supported and listened to my ideas with the utmost
kindness and open-mindedness, but you also instilled in me your contagious love for research.
You managed to convince me to pursue an academic career without even trying. You were al-
ways ready to steer me back on track when I was veering off-course, and you never shied away
from questioning your initial thoughts. You taught me to always be ready to change my mind
and to never limit myself to my (often narrow) point of view. Your influence on me goes well
beyond academia, and I consider myself incredibly lucky to have had you as my mentors.

Similar feelings of gratitude arise when I think of all the people I met in Lyon and at LAGEPP. You
made me feel at home, even though I was 500km away from my family, and I cannot thank you
enough for that. To my girlfriend Maya, you’ve been my light during these three years, leading
me through the darkness and warming me when I needed it most. You made me feel like I truly
belonged. To Tommaso, Silvia, Michele, Paula and Juliette, you have been my (mostly) Italian
family in Lyon. Thank you for welcoming me like an old friend from my very first day, and for all
of the dinners, trips, movies and Mario Kart races. To Rita, Steeven, Romain, Xiaoqian, Maroua,
Carla, Kristy, Georgina, Mario, Mohammed, Quentin, Silvia, Valentina and all the PhDs, postdocs
and Master students who passed by the LAGEPP, thank you for all the time and experiences we
shared. A huge thanks goes also to the members of office G315: Johan, Andreu, Laura, Lucas,
Ling, Xueru, Idriss, Alexandre, Francois, Francesco, Idir and Andrea. I’ll miss our discussions in
the office, ranging from differential geometry to best pubs and restaurants in Lyon. Perhaps now,
without my "quiet" background conversations, you can finally work in peace (at least to some
extent). A special thanks is reserved to Mattia Giaccagli. We spent far too many hours rewriting
the same equations in a thousand different ways, hoping the rules of mathematics would bend
to our will and reveal the answers to unsolvable problems. I am thankful for those "wasted"
hours, for they were filled with stupid jokes, laughter and questionable music, recalling us that

iii

"We’re all in this together". To Madiha Nadri, Ulysse Serres, Pascal Dufour, Boussad Hamroun
and all the permanent members of the lab with whom I had the pleasure of working with, thank
you for your invaluable advice and precious support, especially on the teaching front.

Last but definitely not least, I want to express the most heartfelt thanks to my beloved family:
Mauro, Tommaso, Daniela and Irene. Without you, I wouldn’t have found the determination to
embark on this journey. Your love and encouragement have been my driving force during this
years. A similar debt of gratitude is owed to Pi, Manu and my lifelong friends in Modena. Thank
you for your presence, friendship and support throughout this years.

A final thought goes to my mother, Patrizia. Even if you’ve not been an active part in this journey,
your love, care and presence have shaped me into who I am today. Your teachings reverberate in
me and in all my actions, and they will continue to do so for the rest of my life. You will always
live in my heart.

https://youtu.be/DykVJl6wr_4

Abstract

Context

This thesis focuses on the integration of robustness and stability guarantees in feedback con-
trollers modeled by deep neural networks (DNNs), also known as neural controllers. The
main objective is to combine machine learning tools and control theoretic approaches to de-
rive practically applicable controllers with strong theoretical guarantees. Overall, the proposed
methodologies and theoretical results are aimed at offering insights into challenges related
to stability guarantees, robustness, and the application of control theoretic feedback designs,
both in discrete-time and continuous-time settings. The manuscript is divided into two main
parts.

In the first part, we investigate how control theory results can be utilized to enhance modern ma-
chine learning approaches for system control with stability and robustness guarantees. One key
issue with recent DNN-based controllers is the challenge of understanding whether these con-
trol laws, trained in simulated environments, maintain their stabilizing properties in real-world
scenarios and generalize over model uncertainties. Additionally, the guarantees of stabilizing
behavior provided by machine learning-based controllers remain unclear. Therefore, the first
part of this manuscript focuses on discrete-time nonlinear systems and analyzes various forms
of stability and robustness properties.

To address these challenges, in the first chapter we investigate how guaranteed stability proper-
ties can be embedded in DNN-based feedback designs. Recent works derived algorithms capable
of achieving guaranteed convergence to desired equilibria. However, they typically require a
sufficient number of training steps, whose amount is hard to know in practice. Additionally,
these proposed algorithms are often tailored to achieve stabilizing solutions and cannot be eas-
ily generalized to existing well-established approaches. Therefore, our primary objective is to
propose an algorithm-agnostic methodology that incorporates local stability guarantees in such
controllers, independently from their training process or time. To achieve this, we combine local
guaranteed controllers from optimal control theory with DNNs.

In the second and last chapter of the first part of the manuscript, we study robustness to model
uncertainties. Although robustness-related results exist for the discrete-time nonlinear frame-
work, fundamental contributions addressing non-vanishing disturbances, such as model mis-
matches, are still lacking. Our goal is to establish conditions for the transfer of stability prop-
erties based solely on norms of model mismatches. This analysis will determine whether the
existence and stability of equilibrium points for a nominal system imply the existence and sta-
bility of equilibrium points for sufficiently similar systems. In turn, these findings will justify
the use of adequately accurate simulators for training neural controllers that are intended for
real-world scenarios. Moreover, the derived theoretical results will motivate the utilization of

v

robust output regulation tools, such as integrators, to enhance the robustness of discrete-time
controllers (including learned ones), for which formal justification is currently absent in the
literature. By leveraging on the tools introduced in the previous chapter, the presented results
enable the development of guaranteed robustly stabilizing neural controllers.

Compared to the first part, the second part of the manuscript explores the reverse direction by
investigating how optimization and machine learning tools can assist in the application of con-
trol theoretic feedback designs without compromising their stabilizing properties. Specifically,
we focus on deriving controllers based on contraction analysis for discrete and continuous-time
nonlinear systems. Hence, we provide several optimization-based approaches allowing the de-
sign of nonlinear control laws making the closed-loop dynamics a contraction.

In the third chapter we start by examining the concept of incremental stability for discrete-time
nonlinear systems. While previous works have studied incremental stabilization in the discrete-
time context, approaches related to contraction analysis have only emerged in recent years.
These techniques provide guarantees of robust convergence to unique trajectories and are par-
ticularly suitable for optimization approaches. Hence, our goal is to present novel results on the
design of incrementally stabilizing feedback controllers based on discrete-time contraction the-
ory. The proposed design is based on the solution of a convex optimization problem and we show
its effectiveness by tackling the problem of multi-agent synchronization. Although DNNs are not
the central focus of this chapter, we demonstrate how the presented tools can be applied to sys-
tems incorporating DNNs. Furthermore, by establishing a link between the proposed controllers
and the solution of specific optimization problems, we pave the way for the future derivation of
neural control laws that guarantee robust convergence to unique trajectories.

In the fourth chapter, we shift our focus to continuous-time nonlinear systems. In continuous-
time, controllers based on Riemannian metrics have recently been proposed to enforce con-
traction of closed-loop systems. These control laws offer appealing properties, as they can be
applied in very general frameworks and guarantee robust closed-loop behaviors. However, their
analytical computation is typically challenging. Therefore, we investigate how DNN-based con-
trollers can help overcome this computational obstacle. Previous studies have already leveraged
learning techniques to derive suitable numerical approximations. However, these approaches
often rely on nested online optimization, which limits their applicability. Therefore, we derive
new closed-form feedback designs that can be directly approximated using DNNs. This direct
approximation enables the development of fast and reliable controllers, further highlighting the
potential of solutions at the intersection of control theory and machine learning.

Motivated by the aforementioned results, Chapter 5 introduces the concept of k-contraction as
a generalization of the notion of contraction. The objective is to provide a broader geometri-
cal understanding of the properties exhibited by contractive dynamics, thereby emphasizing the
underlying motivations driving the interest in these properties. Furthermore, this chapter opens
up new avenues for exploring future application of neural controllers within the context of con-
tractive systems. Presently, the available results on k-contractive dynamics lack conditions for
designing corresponding control laws. To address this gap, we propose a reworking of existing
definitions, tailored specifically for feedback design purposes. By doing so, we shed light on the
geometric interpretation of k-contraction and take an initial step towards developing controllers
that can enforce a rich set of closed-loop behaviors.

Main contributions

In Chapter 1, we propose a methodology to embed local stability guarantees in neural controllers
trained using deep reinforcement learning. To this aim, we study how to effectively blend local
guaranteed controllers with DNNs, and we validate our solution on multiple benchmarks. The
main theoretical contribution of this chapter can be found in the author’s publication [S4].

Contribution 1: We provide an algorithm-agnostic methodology to embed local stability guar-
antees in DNN-based controllers, independently from their training. The proposed solution is
experimentally validated on a number of control tasks and standard deep reinforcement learning
algorithms.

In Chapter 2, we study robustness properties in the discrete-time nonlinear framework through
the analysis of the transfer of stable behaviors between similar systems. Then, we specialize
the derived results in the context of output regulation under constant references. Finally, we
demonstrate the validity of our theoretical findings by learning a robust DNN-based controller
for nuclear fusion reactors. The experimental validation is a joint work with Andrea Mattioni
and other researchers at GIPSA-Lab, Grenoble, France. The main contribution of this chapter
can be found in the author’s publications [S3,S5].

Contribution 2: Through the concept of total stability, we show that conditions based on
norms of model differences are sufficient to conclude the transfer of stability properties between
discrete-time nonlinear dynamical systems.

Contribution 3: We formally justify the use of integral action for output regulation in discrete-
time nonlinear systems.

Contribution 4: We derive the explicit forwarding law for the control of discrete-time linear
systems in cascade with an integrator. By showing the optimality of such a control law with
respect to a quadratic cost, we generalize the approach of Chapter 1 to derive robustly stabilizing
neural controllers.

Contribution 5: We experimentally demonstrate the effectiveness of discrete-time integrators
in improving generalization properties of neural controllers learned via model-free deep rein-
forcement learning.

In Chapter 3, we study incremental stability and contraction analysis for discrete-time nonlinear
systems which are not differentiable everywhere. We propose a closed-form feedback design
making the closed-loop incrementally stable, and we apply it on the problem of multi-agent
synchronization. Most results presented in this chapter can be found in the author’s publica-
tion [S6].

Contribution 6: We extend existing results on contraction analysis in discrete-time to the non-
smooth framework and we propose a closed form feedback design showing gain margin proper-
ties.

Contribution 7: We show that the proposed design is solution to an optimization problem
with quadratic cost function, opening the way for data-driven learning approaches.

Contribution 8: We propose numerically tractable conditions in the form of generalized eigen-
value problems to compute incrementally stabilizing controllers.

Contribution 9: By leveraging on the above results, we propose controllers solving the multi-
agent synchronization problem for homogeneous networks of discrete-time nonlinear agents
under generic communication graphs. These results are derived by building on novel conditions
for linear systems synchronization.

In Chapter 4, we study the use of Riemannian metric-based incrementally stabilizing controllers
in the context of continuous-time multi-agent synchronization and output tracking. We cir-
cumvent the complexity of analytically computing the control law by exploiting DNNs. These
findings are the results of the joint work with Mattia Giaccagli (synchronization and tracking)
and Steeven Janny (tracking). The contributions of this chapter can be found in the author’s
publications [S2,S8].

Contribution 10: We show that recent conditions for incrementally stabilizing controllers can
be relaxed without the loss of stability and robustness guarantees. This directly enables learning
guaranteed neural control laws for incremental stabilization based on Riemannian metric.

Contribution 11: We propose an algorithm for learning Riemannian metrics paired with syn-
chronizing and tracking DNN-based controllers, and we experimentally validate the proposed
results.

In Chapter 5, we reformulate the notion of k-contraction. Thanks to our novel conditions,
we highlight interesting links between multiple definitions of partial stability existing in the
literature. The main contributions of this chapter have been obtained working with Andreu
Cecilia Piñol. The results of this chapter can be found in the author’s publications [S7].

Contribution 12: We propose novel design-friendly conditions for k-contraction. Moreover,
we shed light on connections between multiple existing notions in the field of partial stability
analysis.

Résumé

Contexte

Cette thèse se concentre sur l’intégration des garanties de robustesse et de stabilité dans les
contrôleurs de rétroaction modélisés par des réseaux neuronaux profonds (DNNs), également
connus sous le nom de contrôleurs neuronaux. L’objectif principal est de combiner des outils
d’apprentissage automatique et des approches théoriques du contrôle pour dériver des con-
trôleurs applicables dans la pratique, tout en offrant des garanties théoriques solides. Dans
l’ensemble, les méthodologies proposées et les résultats théoriques visent à donner un aperçu
des défis liés aux garanties de stabilité, à la robustesse et à l’application des lois de rétroaction
de la théorie du contrôle, à la fois dans des contextes à temps discret et à temps continu. Le
manuscrit est divisé en deux parties principales.

Dans la première partie, nous étudions comment les résultats de la théorie du contrôle peuvent
être utilisés pour améliorer les approches modernes d’apprentissage automatique pour le con-
trôle des systèmes avec des garanties de stabilité et de robustesse. L’un des principaux problèmes
posés par les contrôleurs récents basés sur les DNN est la difficulté de comprendre si ces lois de
contrôle, entraînée dans des environnements simulés, conservent leurs propriétés stabilisatrices
dans des scénarios réels et se généralisent en fonction des incertitudes du modèle. En outre,
les garanties de comportement stabilisant fournies par les contrôleurs basés sur l’apprentissage
automatique restent floues. Par conséquent, la première partie de ce manuscrit se concentre sur
les systèmes non linéaires à temps discret et analyse diverses formes de propriétés de stabilité
et de robustesse.

Pour relever ces défis, dans le premier chapitre nous étudions la comment les propriétés de
stabilité garantie peuvent être intégrées dans les lois de rétroaction basées sur les DNN. Des
travaux récents ont dérivé des algorithmes capables de garantir la convergence vers les équilibres
souhaités. Cependant, ils nécessitent généralement un nombre suffisant d’étapes d’apprentissage,
dont la quantité est difficile à connaître dans la pratique. En outre, les algorithmes proposés
sont souvent conçus pour atteindre des solutions stabilisantes et ne peuvent pas être facilement
généralisés aux approches existantes bien établies. Par conséquent, notre principal objectif est
de proposer une méthodologie indépendante des algorithmes qui intègre des garanties de sta-
bilité locale dans ces contrôleurs, indépendamment de leur processus ou temps d’apprentissage.
Pour ce faire, nous combinons des contrôleurs à garantie locale issus de la théorie du contrôle
optimal avec des DNNs.

Dans le deuxième et dernier chapitre de la première partie du manuscrit, nous étudions la ro-
bustesse aux incertitudes du modèle. Bien que des résultats relatifs à la robustesse existent pour
le cadre non linéaire à temps discret, des contributions fondamentales traitant des perturbations
constantes, telles que les incertitudes de modèles, font encore défaut. Notre objectif est d’établir

ix

des conditions permettant le transfert des propriétés de stabilité, en se basant uniquement sur
les normes des erreurs entre les modèles. Cette analyse déterminera si l’existence et la stabil-
ité des points d’équilibre d’un système nominal impliquent l’existence et la stabilité des points
d’équilibre de systèmes suffisamment similaires. À leur tour, ces résultats justifieront l’utilisation
de simulateurs suffisamment précis pour l’entraînement de contrôleurs neuronaux destinés à
des scénarios réels. En outre, les résultats théoriques dérivés motiveront l’utilisation d’outils de
régulation de sortie robustes, tels que les intégrateurs, pour améliorer la robustesse des con-
trôleurs à temps discret (y compris les contrôleurs appris), pour lesquels il n’existe actuellement
aucune justification formelle dans la littérature. En s’appuyant sur les outils introduits dans
le chapitre précédent, les résultats présentés permettent le développement de contrôleurs neu-
ronaux à stabilisation robuste garantie.

Par rapport à la première partie, la deuxième partie du manuscrit explore la direction inverse
en étudiant comment les outils d’optimisation et d’apprentissage automatique peuvent aider à
l’application des conceptions de rétroaction de la théorie du contrôle sans compromettre leurs
propriétés stabilisatrices. Plus précisément, nous nous concentrons sur la dérivation de con-
trôleurs basés sur l’analyse de contraction pour les systèmes non linéaires à temps discret et
continu. Ainsi, nous fournissons plusieurs approches basées sur l’optimisation permettant la
conception de lois de contrôle non linéaires faisant de la dynamique de la boucle fermée une
contraction.

Dans le troisième chapitre, nous commençons par examiner le concept de stabilité incrémentale
pour les systèmes non linéaires à temps discret. Alors que des travaux antérieurs ont étudié la
stabilisation incrémentale dans le contexte du temps discret, les approches liées à l’analyse de
contraction n’ont émergé que ces dernières années. Ces techniques fournissent des garanties
de convergence robuste vers des trajectoires uniques et sont particulièrement adaptées aux
approches d’optimisation. Notre objectif est donc de présenter de nouveaux résultats sur la
conception de contrôleurs à rétroaction à stabilisation incrémentale basés sur la théorie de la
contraction en temps discret. La conception proposée est basée sur la résolution d’un prob-
lème d’optimisation convexe et nous démontrons son efficacité en abordant le problème de la
synchronisation multi-agents. Bien que les DNNs ne soient pas au centre de ce chapitre, nous
démontrons comment les outils présentés peuvent être appliqués à des systèmes incorporant
des DNNs. De plus, en établissant un lien entre les contrôleurs proposés et la solution de prob-
lèmes d’optimisation spécifiques, nous ouvrons la voie à la dérivation future de lois de contrôle
neuronales qui garantissent une convergence robuste vers des trajectoires uniques.

Dans le quatrième chapitre, nous nous concentrons sur les systèmes non linéaires à temps con-
tinu. En temps continu, des contrôleurs basés sur des métriques riemanniennes ont récemment
été proposés pour garantir la contraction des systèmes en boucle fermée. Ces lois de contrôle
présentent des propriétés attrayantes, car elles peuvent être appliquées dans des cadres très
généraux et garantissent des comportements robustes souhaitables pour le système en boucle
fermée. Malheureusement, leur calcul analytique est généralement difficile. C’est pourquoi
nous étudions comment les contrôleurs basés sur les DNN peuvent aider à surmonter cet obsta-
cle. Des études antérieures ont déjà exploité des techniques d’apprentissage pour dériver des
approximations numériques appropriées. Cependant, ces approches reposent souvent sur une
optimisation en ligne imbriquée, ce qui limite leur applicabilité. Par conséquent, nous dérivons
de nouvelles lois de rétroaction de forme fermée qui peuvent être directement approximées à
l’aide des DNNs. Cette approximation directe permet de développer des contrôleurs rapides
et fiables, mettant ainsi en évidence le potentiel des solutions à l’intersection de la théorie du

contrôle et de l’apprentissage automatique.

Motivé par les résultats susmentionnés, le Chapitre 5 introduit le concept de k-contraction
comme une généralisation de la notion de contraction. L’objectif est de fournir une compréhen-
sion géométrique plus large des propriétés exhibées par les dynamiques contractives, mettant
ainsi l’accent sur les motivations sous-jacentes à l’origine de l’intérêt pour ces propriétés. En
outre, ce chapitre ouvre de nouvelles voies pour explorer les applications futures des contrôleurs
neuronaux dans le contexte des systèmes contractifs. Actuellement, les résultats disponibles sur
la dynamique k-contractive manquent de conditions pour concevoir les lois de contrôle corre-
spondantes. Pour combler cette lacune, nous proposons un remaniement des définitions ex-
istantes, adapté spécifiquement à la conception de lois de contrôle. Ce faisant, nous mettons
en lumière l’interprétation géométrique de la k-contraction et faisons un premier pas vers le
développement de contrôleurs capables d’appliquer un riche ensemble de comportements en
boucle fermée.

Contributions principales:

Dans le Chapitre 1, nous proposons une méthodologie pour intégrer des garanties de stabilité
locale dans les contrôleurs neuronaux formés à l’aide de l’apprentissage par renforcement pro-
fond. Dans ce but, nous étudions comment combiner efficacement des contrôleurs à garantie
locale avec des DNN, et nous validons notre solution sur de nombreux benchmarks. La princi-
pale contribution théorique de ce chapitre se trouve dans la publication de l’auteur [S4].

Contribution 1: Nous fournissons une méthodologie agnostique pour intégrer des garanties
de stabilité locale dans les contrôleurs basés sur les DNN, indépendamment de leur formation.
La solution proposée est validée expérimentalement sur un certain nombre de tâches de contrôle
et d’algorithmes standards d’apprentissage par renforcement profond.

Dans le Chapitre 2, nous étudions les propriétés de robustesse dans le cadre non linéaire à temps
discret à travers l’analyse du transfert de comportements stables entre des systèmes similaires.
Ensuite, nous spécialisons les résultats dérivés dans le contexte de la régulation de la sortie
sous des références constantes. Enfin, nous démontrons la validité de nos résultats théoriques
en apprenant un contrôleur robuste basé sur un DNN pour les réacteurs à fusion nucléaire. La
validation expérimentale est un travail conjoint avec Andrea Mattioni et d’autres chercheurs au
GIPSA-Lab, Grenoble, France. La contribution principale de ce chapitre peut être trouvée dans
les publications de l’auteur [S3,S5].

Contribution 2: Grâce au concept de stabilité totale, nous montrons que les conditions basées
sur les normes des différences de modèles sont suffisantes pour conclure le transfert des pro-
priétés de stabilité entre les systèmes dynamiques non linéaires à temps discret.

Contribution 3: Nous justifions formellement l’utilisation de l’action intégrale pour la régula-
tion de sortie dans les systèmes non linéaires à temps discret.

Contribution 4: Nous dérivons la loi de forwarding explicite pour le contrôle des systèmes
linéaires à temps discret en cascade avec un intégrateur. En montrant l’optimalité d’une telle loi
de contrôle par rapport à un coût quadratique, nous généralisons l’approche du Chapitre 1 pour
dériver des contrôleurs neuronaux robustes et stabilisants.

Contribution 5: Nous démontrons expérimentalement l’efficacité des intégrateurs à temps dis-
cret dans l’amélioration des propriétés de généralisation des contrôleurs neuronaux appris via
l’apprentissage par renforcement profond sans modèle.

Dans le Chapitre 3, nous étudions la stabilité incrémentale et l’analyse de contraction pour les
systèmes non linéaires à temps discret qui ne sont pas différentiables partout. Nous proposons
une conception de rétroaction de forme fermée qui rend la boucle fermée incrémentalement sta-
ble, et nous l’appliquons au problème de la synchronisation multi-agents. La plupart des résul-
tats présentés dans ce chapitre peuvent être trouvés dans la publication de l’auteur [S6].

Contribution 6: Nous étendons les résultats existants sur l’analyse de la contraction en temps
discret au cadre non lisse et nous proposons une conception de rétroaction de forme fermée
montrant des propriétés de marge de gain.

Contribution 7: Nous montrons que la conception proposée est une solution à un problème
d’optimisation avec une fonction de coût quadratique, ce qui ouvre la voie à des approches
d’apprentissage basées sur les données.

Contribution 8: Nous proposons des conditions numériques traçables sous la forme de prob-
lèmes de valeurs propres généralisées pour calculer des contrôleurs à stabilisation incrémen-
tale.

Contribution 9: En s’appuyant sur les résultats ci-dessus, nous proposons des contrôleurs qui
résolvent le problème de synchronisation multi-agents pour des réseaux homogènes d’agents
non linéaires à temps discret dans des graphes de communication génériques. Ces résultats sont
dérivés de nouvelles conditions de synchronisation des systèmes linéaires.

Dans le Chapitre 4, nous étudions l’utilisation de contrôleurs à stabilisation incrémentale basés
sur des métriques riemanniennes dans le contexte de la synchronisation multi-agents à temps
continu et du suivi de sortie. Nous contournons la complexité du calcul analytique de la loi
de contrôle en exploitant les DNN. Ces résultats sont le fruit d’un travail conjoint avec Mattia
Giaccagli (synchronisation et suivi) et Steeven Janny (suivi). Les contributions de ce chapitre
peuvent être trouvées dans les publications de l’auteur [S2,S8].

Contribution 10: Nous montrons que les conditions récentes pour les contrôleurs à stabilisa-
tion incrémentale peuvent être assouplies sans perte de garanties de stabilité et de robustesse.
Cela permet directement d’apprendre des lois de contrôle neuronales garanties pour la stabili-
sation incrémentale basée sur la métrique de Riemann.

Contribution 11: Nous proposons un algorithme d’apprentissage des métriques riemanni-
ennes associé à des contrôleurs basés sur des DNN de synchronisation et de suivi, et nous
validons expérimentalement les résultats proposés.

Dans le Chapitre 5, nous reformulons la notion de k-contraction. Grâce à nos nouvelles con-
ditions, nous mettons en évidence des liens intéressants entre les multiples définitions de la
stabilité partielle existant dans la littérature. Les principales contributions de ce chapitre ont
été obtenues en travaillant avec Andreu Cecilia Piñol. Les résultats de ce chapitre peuvent être
trouvés dans les publications de l’auteur [S1,S7].

Contribution 12: Nous proposons de nouvelles conditions pour la k-contraction. En outre,
nous mettons en lumière les liens entre plusieurs notions existantes dans le domaine de l’analyse
de la stabilité partielle.

xiv

Contents

List of Figures xvii

List of Tables xix

Notation xxi

Acronyms xxiii

I Robust optimal feedback design 1
Introduction . 3

1 Local stability via neural controllers 5
1.1 Globalizing LQR policies via deep reinforcement learning 6

1.1.1 Reward shaping . 7
1.1.2 Learning the policy . 9
1.1.3 Improving learning by reshaping the value function estimation 12

1.2 Experimental results . 13
1.2.1 Known local model example . 14
1.2.2 Unknown local model algorithm . 15
1.2.3 Unknown local model experiments . 19
1.2.4 Addressing general continuous reward functions 25

2 Integral action for discrete-time nonlinear systems 31
2.1 Total stability for autonomous systems . 32

2.1.1 Existence of equilibria . 33
2.1.2 Existence of an exponentially stable equilibrium 37

2.2 Total stability motivates integral action . 43
2.2.1 Existence of equilibria . 45
2.2.2 Robust regulation . 46
2.2.3 Globalizing local integral action-based controllers 48

2.3 Robust deep reinforcement learning for tokamak reactors 52
2.3.1 Control problem . 54
2.3.2 Training algorithm and simulation results 58

II Contraction as an optimization problem 65
Introduction . 67

xv

3 Discrete-time contractive feedback design 69
3.1 Incremental stability via non-smooth contraction 70

3.1.1 Sufficient conditions for exponential δISS 71
3.1.2 Nonlinear robust feedback design . 76
3.1.3 GEVPs for exponential δISS . 79
3.1.4 Optimality of discrete-time contractive feedbacks 83

3.2 Robust synchronization via contraction theory . 88
3.2.1 The problem of multi-agent synchronization 89
3.2.2 Continuous-time vs discrete-time synchronization 90
3.2.3 Synchronization of linear systems . 92
3.2.4 Synchronization of nonlinear systems . 99

4 Learning contractive controllers 107
4.1 Preliminaries on Riemannian metric conditions for feedback design 108

4.1.1 Riemannian metric conditions for incremental properties 109
4.1.2 Design of a contractive infinite-gain margin feedback 112

4.2 Learning synchronizing controllers for nonlinear systems 113
4.2.1 A relaxed nonlinear metric-based solution 114
4.2.2 Deep Learning for metric and controller estimation 121

4.3 Learning tracking controllers for nonlinear systems 124
4.3.1 Problem statement and proposed approach 126
4.3.2 Approximate output tracking: the analytic solution 127
4.3.3 DNN-based output tracking controller . 131
4.3.4 Illustrative example: ball and beam tracking Lorenz attractor 133

5 From 1 to k-contraction 137
5.1 k-contraction in nonlinear systems . 139

5.1.1 A sufficient condition based on matrix compounds 139
5.1.2 A sufficient condition based on p-dominance 141

5.2 k-contraction in LTI systems: a necessary and sufficient condition 147
5.2.1 Comparison with existing results . 150
5.2.2 The discrete-time case . 152

6 Conclusions and perspectives 157

Appendices 161

A Some theoretical background 163
A.1 Deep reinforcement learning concepts . 163
A.2 Highlights on graph theory . 166

B Tokamak model and simulation algorithm 169
B.1 Safety factor and thermal energy control model 169
B.2 Simulation Algorithm . 173

Bibliography 177

Own References 193

xvi

List of Figures

1.1 Example of blending function h(x) ∈ H1 with x ∈ R2 9
1.2 Domain of attraction and training returns . 16
1.3 Stability of policies during training (smoothed) 16
1.4 Training return: PSU (left), IPSU (center), DIPSU (right). 24
1.5 Stability score during training: PSU (left), IPSU (center), DIPSU (right). Row 1

and 3: local. Row 2 and 4: global. 24
1.6 Local stability over multiple instances of PSU. Standard algorithms set of training

masses mtrain = {0.7, 1, 1.3} (left), mtrain = {0.9, 1, 1.1} (right). 24

2.1 Example of perturbed dynamics preserving equilibria. 36
2.2 Lyapunov sublevel set for x ∈ R2 . 37
2.4 Different equilibrium solutions with different parameters. 56
2.5 Extended tokamak environment. 57
2.6 Integral weight training effect. 59
2.7 RAPTOR feedback control scheme. 59
2.8 Evolution of ι-profiles in four points of the spatial domain 62
2.9 ι-profiles at five time instants and applied inputs. 63

3.1 Simple undirected graph . 91
3.2 Trajectories during transient. a-b) state components with noise. c) mean error

wrt agent 1 with and without noise. 105
3.3 Long-term mean error wrt agent 1 in logarithmic scale. 105
3.4 Communication graph. 105

4.1 Synchronization of Lorentz oscillators. 125
4.2 The state reference generator approximates the solution of the regulator equations

and computes states and commands given an arbitrary reference signal. The
stabilizer leverages a learned contraction based controller to force the dynamical
system to track the reference. 132

4.3 Block-scheme of the ball and beam system . 134
4.4 State reference generator. (a) Four estimations from the state reference generator

in different regimes where uniform noise is added to the model. (b) Peak signal to
noise ratio (PSNR, dB) between the reference and the output for different noise
range. 135

5.1 Scheme of a 2-contractive system. The initial submanifold, described by Φ, is
some surface with vertices at x10, x

2
0 and x30. The volume of this submanifold ℓk(·)

decreases exponentially along the trajectories of the system. 139

xvii

5.2 Number of variables to be estimated Proposition 5.1 (solid) and by Theorem 5.1
(dashed) in function of k. Different colors refer to different state dimensions nx. . 151

A.1 Actor-critic structure . 165

B.1 Comparison between RAPTOR and training model open-loop simulations. 175

xviii

List of Tables

1.1 Mean evaluation rewards and standard deviations across ten trials (the higher the
better). 22

1.2 Maximum steady-state error norm in corrupted environments over ten trials (the
lower the better). Subscript ‘1’ indicates the system is initiated in x⋆. Subscript
‘2’ indicates the system is initiated in x0. 22

1.3 Hyperparameters. lr: learning rate, af: activation function, NN: hidden layer sizes 23
1.4 Pendulum swing-up environment parameters . 25
1.5 Inverted pendulum swing-up environment parameters 25
1.6 Double inverted pendulum swing-up environment parameters 25
1.7 Success rate over Ni = 104 initial conditions. Success threshold: ϵ = 0.001. Ini-

tial condition bounds b0 for the different tasks: [π, 8] (PSU), [1, π, 10, 3π] (IPSU),
[1, π, π, 10, 3π, 3π] (DIPSU). 25

4.1 Noise robustness with and without parameters fine-tuning. We measure RMSE
from reference for different gaussian noise StDev. on state measurements. 135

B.1 Table of symbols and corresponding units. 170

xix

xx

Notation

R Real numbers.
R⩾0 Non-negative real numbers R⩾0 := [0,+∞) .
R>0 Positive real numbers, R>0 := (0,+∞) .
Z Integer numbers.
N Non-negative integer numbers.
C Complex numbers.
Sn≻0 Set of symmetric positive definite matrices of dimension n,

i.e., Sn≻0 :=
{
A ∈ Rn×n|A = A⊤, A ≻ 0

}
.

Sn⪰0 Set of symmetric positive semi-definite matrices of dimension n,
i.e., Sn≻0 :=

{
A ∈ Rn×n|A = A⊤, A ⪰ 0

}
.

Re(λ) Real part of the complex number λ ∈ C.
Im(λ) Imaginary part of the complex number λ ∈ C.
λ∗ Complex conjugate of the complex number λ ∈ C.
Λ∗ Conjugate transpose of the complex matrix Λ ∈ Cn×m.
spec(A) Spectrum of A ∈ Rn×n.
t Discrete time instant, t ∈ Z.
t Continuous time instant, t ∈ R.
x+ Next discrete-time state , x+ := x(t+ 1) ∈ Rn.
ẋ Continuous-time state time-derivative, ẋ := dx

dt ∈ Rn.
|x| Standard Euclidean norm of x ∈ Rn.
d(x,X) Generic distance function between x ∈ Rn and a closed set X ⊂ Rn,

e.g., d(x,X) = |x|X := infz∈X |x− z|.
Br(x) Open ball of radius r centered in x ∈ Rn, i.e., Br(x) := {z ∈ Rn : |z − x| ⩽ r}.
X \ Y Intersection between X and the complement of Y.
X ⊂ Y The set S is strictly included in Y.
∂X Boundary of X .
α ∈ K The function α : R⩾0 → R⩾0 is of class K,

i.e., it is continuous, zero at zero and strictly increasing.
α ∈ K∞ The function α : R⩾0 → R⩾0 is of class K∞, i.e., α ∈ K and lims→∞ α(s) =∞.
α ∈ L The function α : R⩾0 → R⩾0 is of class L,

i.e., it is continuous, strictly decreasing and lims→∞ α(s) = 0.
α ∈ KL The function α : R⩾0 × R⩾0 → R⩾0 is of class KL,

i.e., it is class-K in its first argument and classL in its second argument.
In Identity matrix of dimension n.
1 (resp. 0) Column vector of 1s (resp. 0s) of appropriate dimension.
col(x, u) Column vector composed by the elements of x ∈ Rn and u ∈ Rm,

i.e., col(x, u) := (x⊤ u⊤)⊤ ∈ Rm+n.

xxi

diag(A,B) Block-diagonal matrix with block-diagonal elements A ∈ Rn×m and B ∈ Rp×q,
i.e., diag(A,B) :=

(
A 0
0 B

)
∈ R(n+p)×(m+q).(

n
k

)
Binomial coefficient

(
n
k

)
:= n!

k!(n−k)! , with n! the factorial of n ∈ N.
A⊗B Kronecker product between matrices A ∈ Rn×m and B ∈ Rp×q.
He {A} Hermitian of A ∈ Rn×n, i.e., He {A} := A⊤ +A.
E[x|y] Expected value of x given y.
Var[x] Variance of x.

xxii

Acronyms

DNN Deep Neural Network
RNN Recurrent Neural Network
DRL policy-based Deep Reinforcement Learning
PDE Partial Differential Equation
PDI Partial Differential Inequality
ARE continuous-time Algebraic Riccati Equation
DARE Discrete-time Algebraic Riccati Equation
DARI Discrete-time Algebraic Riccati Inequality
MARI Modified discrete-time Algebraic Riccati Inequality
DOA Domain Of Attraction
δGAS Incrementally Globally Asymptotically Stable
δGES Incrementally Globally Exponentially Stable
ISS Input-to-State Stable
δISS Incrementally Input-to-State Stable
LQR Linear Quadratic Regulator
DDPG Deep Deterministic Policy Gradient
PPO Proximal Policy Optimization
TD3 Twin Delayed Deep Deterministic Policy Gradient
SAC Soft Actor-Critic
PSU Pendulum Swing-Up
IPSU Inverted Pendulum Swing-Up
DIPSU Double Inverted Pendulum Swing-Up

xxiii

xxiv

Part I

Robust optimal feedback design

1

Introduction

In recent years, the use of deep neural networks (DNNs) for controlling dynamical systems
has gained significant attention due to advances in machine learning techniques [94,129,188].
DNN-based controllers, also known as neural controllers, have shown promising results on vari-
ous tasks. Training these controllers involves optimizing the network parameters to minimize a
loss function (or maximize a reward function), employing techniques such as supervised learn-
ing and policy-based deep reinforcement learning (DRL) algorithms [15, 91, 125, 187]. In par-
ticular, recent years saw the surge of model-free DRL methods for system control, due to their
ability to autonomously learn how to solve complex high-dimensional control tasks without the
need of a known model of the system, e.g., [147, 188, 195]. While model-free DRL methods
excel at solving complicated tasks on a performance level, only few of them study the stability
properties of the closed-loop in a Lyapunov sense [113]. As a consequence, these approaches
often suffer from brittleness, which has prompted efforts to enhance their robustness, either via
modified objectives or via specific algorithm designs, e.g. [26,49,66,150,169,214].

It is well-known that robustness to uncertainties is of paramount importance in the design of
feedback controllers. Ensuring convergence guarantees to a predetermined behavior is crucial
for the reliability and effectiveness of controlled systems. Traditionally, stability properties are
inferred through the analysis of the system model in closed-loop. However, uncertainties inher-
ently exist in control applications due to unmodeled effects and parameter mismatches. This is
especially true for complex nonlinear systems, where simplification is unavoidable for obtaining
a tractable model. To address this challenge, robust control and robust stability analysis have
become fundamental tools for control design [246].

As a matter of fact, the problem of synthesizing robust controllers can be formulated as an op-
timization problem, both in linear and nonlinear scenarios, as demonstrated in multiple prior
works [59, 115, 123, 167, 168]. Nevertheless, a strong theoretical foundation is crucial to un-
derstand how to properly formulate such robust learning tasks. Hence, in this first part of the
manuscript, we introduce simple yet theoretically sound methods to embed stability and ro-
bustness properties in neural controllers. As a fundamental constraint, we assume these control
laws to be trained on simplified model. Hence, the proposed robustness tools will serve as a key
means for translating simulated results to real-world applications.

In particular, we will focus on discrete-time nonlinear systems. In practical control implemen-
tations, control laws are often implemented using digital devices that operate at discrete time
instants due to the limitations of digital sensors and internal clocks. While the theory on robust
stability and regulation is well-developed for continuous-time systems [17, 77], there are still
gaps in the understanding of the discrete-time nonlinear scenario. Although it is known that
continuous-time results can be valid for small sampling times in the discrete framework [152],
this approach may not always be applicable or may be too restrictive for certain control appli-
cations. Therefore, designing controllers based on a discrete-time model of the plant can be
effective [153]. Moreover, it’s worth recalling that learning-to-control tasks arising in machine
learning, e.g. in DRL, are often formulated in discrete-time [28,122,210].

Given the above discussion, we start our analysis by studying how to embed closed-loop stability
guarantees in the learned controller. This first step lays the foundations for the developments
of the successive chapter, as the methods presented for obtaining robust regulation require lo-
cal stability properties. The proposed methodology is experimentally validated and thoroughly
analyzed. A portion of this chapter was presented in [S4].

3

In Chapter 2, we introduce robust stability results for discrete-time nonlinear systems. In the
first sections, we focus our attention towards stabilization of an equilibrium point and we show
that stability alone is insufficient to achieve robust regulation. To do so, we firstly recover and
reinterpret a notion of robustness (namely total stability) which is strongly related to gener-
alization capabilities over model uncertainties, directly addressing the gap between simulated
and real world tasks. Then, we propose tools to embed such robustness guarantees in discrete-
time neural controllers, specializing our study on the important problem of constant signals
rejection (e.g., caused by unknown system parameters). Inspired by the results of the previous
chapter, we study stabilization properties and optimality of forwarding-based laws in the linear
framework, with the aim of globalizing them to the nonlinear context via learning. The pro-
posed solution is also experimentally validated, reinforcing the theoretical claims and stressing
the importance of robustness properties in DNN-based controllers. All of the above results are
presented in Chapter 2 and covered in [S3,S5].

4

1 Local stability via neural controllers

Machine learning optimization tools have been proven to be valuable and effective in addressing
complex control problems [15, 125]. However, it is worth noting that conventional optimiza-
tion of controller parameters using off-the-shelf model-free DRL algorithms may not provide
desirable stability properties. As a consequence, the applicability of such methods in real-world
scenarios, where stringent stability and robustness guarantees are indispensable at least in a lo-
cal context, can be significantly compromised. Therefore, it is in our interest to investigate how
(local) exponential stability guarantees can be integrated into a DNN-based controller, where the
weights are learned using DRL methods. For an introduction on the fundamental DRL concepts
used in this chapter, we refer the reader to Appendix A.1.

Recently, the inclusion of Lyapunov theory in learning algorithms received increasing attention
[25, 26, 46, 48, 49, 93, 241, 244]. One early solution was proposed in [26], following the work
in [25]. The authors relied on a learned Gaussian model to certify Lyapunov stability, while
assuming a suitable initial safe controller and Lyapunov function are known. In [49], the authors
claim near-constraint satisfaction via policy gradient methods by projecting either the controller
parameters or the input onto a feasible set described by a Lyapunov constraint. Last, [95] uses a
Lyapunov function as a cost estimator for guaranteeing stability in the mean cost of the learned
control law. However, most existing approaches asymptotically learn stabilizing controllers,
but provide no guarantees throughout the training process. This characteristic is critical to
disentangle fundamental properties, such as local stability, from training time, and to ensure a
robust behavior even for sub-optimally trained controllers.

In what follows, we propose a methodology to integrate basic model knowledge in standard
model-free DRL algorithms. The aim is to safely blend a local controller guaranteeing relevant
properties with a general function approximator (a DNN). By enforcing a predefined structure
to the control law, we provide theoretical guarantees concerning the local stability of the system
via Lyapunov indirect theorem. This provides a theoretical framework to enhance many DRL
algorithms with local exponential stability guarantees, including at the training phase. We focus
on the optimal control of nonlinear systems under quadratic cost functions. The approach can
be seen as enhancing the capabilities of a linear controller by learning to operate outside its
domain of attraction, while maintaining its local properties. However, as it will be shown in the
last section of the chapter, these results can be extended to more general objective functions at
the price of sub-optimal performances. With a slight abuse of terminology, throughout the rest of

5

1.1. Globalizing LQR policies via deep reinforcement learning

this chapter we will use the terms locally exponentially stable, locally asymptotically stable and
locally stable interchangeably. The results of this chapter are partially covered in [S4].

1.1 Globalizing LQR policies via deep reinforcement learning

Since we aim at embedding local properties in nonlinear controllers optimal with respect to a
quadratic function, we start by recalling some important facts about the linear quadratic regu-
lator (LQR) problem. Consider a discrete-time linear system

x+ = Ax+Bu, (1.1)

with state x ∈ Rnx and control input u ∈ Rnu at time t. We suppose that the pair (A,B) is
controllable. Moreover, without loss of generality, we assume the origin to be an equilibrium
point for system (1.1). The infinite-horizon LQR problem asks for a stabilizing controller optimal
with respect to a quadratic cost function. By letting γ ∈ (0, 1] be a discount factor and t ∈ N
be an initial time, the discounted problem considers the minimization of the following cost
function

Jγ(x(t), u(t)) =

∞∑
k=0

γk
(
x(k + t)⊤Qγx(k + t) + u(k + t)⊤Rγu(k + t)

)
, (1.2)

where Qγ ∈ Snx⪰0 and Rγ ∈ Snu≻0. Under proper observability and controllability assumptions, for
a given discount factor γ, the optimal controller u⋆ for (1.1) with cost (1.2) is given as

u⋆ = K⋆
γx, K⋆

γ = −γ(Rγ + γB⊤PγB)−1B⊤PγA, (1.3)

where K⋆
γ is the optimal discounted gain and Pγ is the unique positive definite solution of the

discounted Discrete-time Algebraic Riccati Equation (DARE)

Pγ = Qγ + γA⊤(Pγ − γPγB(Rγ + γB⊤PγB)−1B⊤Pγ)A, (1.4)

see, e.g., [27, Chapter 4.3]. Equation (1.4) can be rewritten and solved as a standard DARE
for the new matrices Ã =

√
γA, B̃ =

√
γB. From [33, Section 3], the value functions for the

discounted LQR problem under the optimal controller are

J⋆γ(x) = x⊤Pγx, Q⋆
γ(x, u) = z⊤Hγz, (1.5)

with z := col(x, u) ∈ Rnx+nu and Hγ given by

Hγ =

(
Qγ + γA⊤PγA γA⊤PγB
γB⊤PγA Rγ + γB⊤PγB

)
.

In the discounted framework, closed-loop stability is dependent on the choice of the discount
factor γ. This may be intuitively seen from the fact that finding the matrix Pγ accounts to solving
a standard DARE for a system rescaled by γ, hence different from the plant. In [170, Section IV,
Corollary 3] the authors define a conservative lower bound γ∗ ∈ (0, 1], depending on Qγ and
Rγ , such that for any γ ∈ (γ∗, 1] the origin of the closed-loop (1.1)-(1.3) is exponentially stable.
Note that for γ = 1, we recover the so-called “undiscounted LQR” problem in which the cost
function reads

J(x(t), u(t)) := J1(x(t), u(t)) =

∞∑
k=0

x(k + t)⊤Qx(k + t) + u(k + t)⊤Ru(k + t), (1.6)

6

Chapter 1. Local stability via neural controllers

with optimal solution u⋆ given by

u⋆ = K⋆x, K⋆ = −(R+B⊤PB)−1B⊤PA, (1.7)

with P the symmetric positive definite matrix solution of the DARE

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q. (1.8)

For the undiscounted problem, stability of the closed-loop system is always guaranteed.

Remark 1.1. In what follows, we will focus on algorithms learning the parameter vector θ of a
deterministic parametrized policy πθ : Rnθ → Rnu via (A.3). However the proposed results can
be directly extended to include methods exploiting stochastic policies since the proposed solution is
independent from the choice of the DRL algorithm.

Recalling the concepts of Appendix A.1, we now tackle the nonlinear framework. For simplicity
of exposition, we consider the single input scenario (nu = 1). However, the proposed results can
be straightforwardly generalized to the multi-input case. Consider a deterministic discrete-time
nonlinear system

x+ = f(x, u), (1.9)

with state x ∈ Rnx , control input u ∈ U ⊆ R , and f : Rnx × R→ Rnx being a continuously dif-
ferentiable function in a neighborhood of the origin. Without loss of generality we suppose that
f(0, 0) = 0. Similarly to the problem in Section 2.3, we aim at learning an optimal policy with
respect to an undiscounted quadratic cost function. However, we also require such a policy to
be locally stabilizing at all times. Moreover, as a first step, we assume a good model for the sys-
tem is known solely around the desired equilibrium. In other words, we assume f is unknown,
and only its linearization of the form (1.1) with A := ∂f

∂x (0, 0) and B := ∂f
∂u(0, 0) is known. At

experiment time , we will also relax this assumption and we will rely on system identification
tools to estimate the required quantities. We formalize the problem as follows

Problem 1.1. Let J be an undiscounted cost function of the form (1.6) and assume a linearized
model of the form (1.1) for (1.9) is known, with (A,B) stabilizable. The goal is to learn an optimal
parametrized control policy πθ : Rnx × Rnθ → U with parameters θ ∈ Rnθ such that the origin of
the closed-loop system (1.9) with u = πθ(x) is locally asymptotically stable for all θ ∈ Rnθ , namely

∂πθ

∂x
(0) = K⋆, ∀ θ ∈ Rnθ , (1.10)

where K⋆ ∈ Rnx is the LQR optimal gain given in (1.7).

Remark 1.2. Solving the optimal problem implies requirement (1.10) since K⋆ is the unique op-
timal solution to the local problem. Moreover (1.10) ensures local stability around the origin by
Lyapunov indirect theorem, being K⋆ stabilizing for the linearized system.

1.1.1 Reward shaping

To solve the problem, we want to rely on DRL algorithms. Rewards play a fundamental role
in reinforcement learning. Hence, we need to design a suitable cost describing the learning
objective. Most DRL algorithms require the value function Jπ to have a finite value in order to
converge. However, when defined as an infinite sum over time, boundedness of Jπ may not be

7

1.1. Globalizing LQR policies via deep reinforcement learning

always ensured. Hence, starting from J in (1.6) we look for a reward function r : Rnx ×R→ R
and a discount factor γ ∈ (0, 1) defining a suitable γ-discounted function

Jγ,DRL(x(t), u(t)) =
∞∑
k=0

γkr(x(k + t), u(k + t)) (1.11)

which sets the learning objective for the agent. In the following lemma, we show that given any
undiscounted problem of the form (1.6)-(1.7), we can always redefine an associated discounted
problem of the form (1.2)-(1.3) so that the optimal gains (1.7) and (1.3) coincide. In the non-
linear framework, this allows addressing a discounted problem whose local solution perfectly
matches the undiscounted one, which is known to be stabilizing.

Lemma 1.1. Consider system (1.1) and an associated undiscounted optimal control problem of the
form (1.6). Moreover, let Q ∈ Snx≻0 and the pair (A,

√
Q) to be observable. Then, for any γ ∈ (0, 1],

the optimal gain K⋆ defined in (1.7) is the unique optimal solution of the discounted problem (1.2)
with Qγ , Rγ defined as

Qγ = γQ+ (1− γ)P, Rγ = γR. (1.12)

Moreover, the state-value function (1.5) of the discounted problem is finite.

Proof. If γ = 1 the proof is trivial, hence we will focus on γ ∈ (0, 1). First, note that since
Q, P and R are symmetric positive definite matrices, so are Qγ and Rγ for any γ ∈ (0, 1).
By multiplying both sides of the DARE (1.8) by γ and by using (1.12), we get

P = Qγ + γA⊤PA− γ2A⊤PB(Rγ + γB⊤PB)−1B⊤PA.

Under assumptions of controllability of (A,B) and observability of (A,
√
Q), the solution to

the Riccati equation is unique. Hence, from the definition of the discounted DARE (1.4) we
can conclude that P = Pγ . By inserting the latter and (1.12) in the optimal gain (1.7) we
obtain

K⋆ = −γ(Rγ + γB⊤PγB)−1B⊤PγA = K⋆
γ ,

which shows that (1.7) is also solution to the discounted problem defined by (1.2) when
considering weights in the form of (1.12).
The state-value function for a given policy is defined as the cost-to-go starting from an initial
state and following the policy. Given a quadratic cost function as in (1.6), it holds that

Ju(x+)− Ju(x) = −x⊤Qx− u⊤Ru. (1.13)

By plugging the matrices (1.12) in (1.13) and considering the value function (1.5) with
(1.8) for the undiscounted problem under the optimal input (1.7), yields

J⋆(x+) = γ−1J⋆(x)− γ−1(x⊤Qγx+ u⋆⊤Rγu
⋆). (1.14)

Then, by solving (1.14) we have

γtJ⋆(x(t)) = J⋆(x(0))−
t−1∑
j=0

γj(x(j)⊤Qγx(j) + u⋆(j)⊤Rγu
⋆(j)), (1.15)

8

Chapter 1. Local stability via neural controllers

Figure 1.1: Example of blending function h(x) ∈ H1 with x ∈ R2

where J⋆(x(0)) ∈ R denotes the initial condition. Since γ ∈ (0, 1) by letting t→∞ equation
(1.15) simplifies in

∞∑
j=0

γj(x(j)⊤Qγx(j) + u⋆(j)⊤Rγu
⋆(j)) = J⋆(x(0)). (1.16)

Being J⋆(x(0)) finite for the linear system (1.1) under the optimal controller (1.7), the
state-value function for the discounted problem under the undiscounted solution (1.7) is
also finite and this concludes the proof.

Based on Lemma 1.1, the undiscounted cost J in (1.6) can be replaced by its discounted version
(1.2) by using the weights (1.12). Then, we can obtain a suitable form of the cost Jγ,DRL for
DRL algorithms without affecting the local optimal solution to the problem. Hence, we set the
reward r from (1.11) as

r(x, u) = x⊤Qγx+ u⊤Rγu, (1.17)

with Qγ and Rγ defined as in (1.12). The value of γ is now a free parameter to be chosen as the
most suitable one for the algorithm convergence.

1.1.2 Learning the policy

With the previous result in mind, we can move to the control policy design. Our goal is to
ensure local stability of the closed-loop system (1.9) with u = πθ(x), i.e. to satisfy the local
approximation constraint (1.10) independently from the parameter vector θ. To this end, we
enforce a specific structure in our control policy via a blending function. Given any k ∈ N,
we define Hk as the set of continuously differentiable functions h : Rnx → R⩾0 satisfying the
following for all x ∈ Rnx

Hk :=
{
h ∈ Ck+1 : lim

s→0

h(sx)
sj |x|j = 0, lim

s→0

h(sx)
sk+1|x|k+1 ̸= 0, lim

|s|→∞
h(sx) = 1, j ∈ [0, k]

}
. (1.18)

In few words, the elements of the set Hk are sufficiently smooth real-valued positive functions
that are 0 in the origin, that saturate to 1 far from it and that behave as a function of order
k+ 1 with respect to their input in the non-saturating region. For instance, the function h(x) :=
tanh(x⊤x) in Figure 1.1 belongs to H1. The proposed control law is then designed as

πθ(x) = πloc(x) + πθglo(x), πloc(x) = K⋆x, πθglo(x) = h1(x)
(
µθ(x)− πloc(x)

)
. (1.19)

9

1.1. Globalizing LQR policies via deep reinforcement learning

where h1 ∈ H1 and µθ : Rnx → R is a scalar function to be learned by the DRL agent which is
parametrized by the set of parameters θ ∈ Rnθ and satisfies the following assumption:

Assumption 1.1. The function µθ is locally Lipschitz.

Remark 1.3. Note that most DNNs are locally Lipschitz since they are compositions of locally
Lipschitz functions. When learning a deterministic policy, the function µθ denotes directly the
parametrized approximator to be trained, i.e., the DNN. These policies are often learned with deter-
ministic policy gradient methods (e.g. DDPG [129] and TD3 [80]). Nevertheless, the results of this
chapter can be derived for stochastic policies. These are typically learned via stochastic policy gra-
dient methods (e.g. PPO [188] and SAC [94]) and often take the form of a Gaussian distribution
whose mean and variance are modeled by DNNs. When not addressing an adversarial scenario, ran-
domness is not necessary at test time, and a deterministic policy is often extracted from the learned
stochastic one (e.g., by taking its mean). Then, since we consider a single-agent scenario, we will
assume µθ to be modeled by a DNN, independently from the algorithm used for training.

Remark 1.4. The size of the guaranteed domain of attraction for policy (1.19) can be controlled
by shaping the function h1. The effect of the learned component in a neighborhood of the origin
is scaled by such a function. Hence, it is possible to strongly reduce the contribution of πθglo(x) in
regions where we trust the LQR controller πloc to stabilize the system. In the most extreme case, h1
can be chosen as a smooth step-like function, completely removing the effect of the learned policy in
the zero region.

In order to justify our choice for the control policy, in the following proposition we prove that, by
enforcing structure (1.19) and assuming µθ satisfies Assumption 1.1, we can learn an arbitrary
C2 policy satisfying the problem constraint (1.10). However, before presenting the result, we
need to introduce an auxiliary lemma related to first order approximations of functions. Then,
for this brief technical result, we will identify by xi the ith component of vector x ∈ Rnx . First,
we recall some multi-index definitions. For a general multi-index i ∈ Nn we denote

|i| = i1 + · · ·+ in, i! = i1! . . . in!, xi = xi11 . . . x
in
n ,

for any x ∈ Rnx . Then, given a function Φ : Rnx → R whose l-th order partial derivatives are
continuous, it is possible to define its derivative of order l as

DiΦ :=
∂|i|Φ

∂xi11 . . . ∂x
in
n

, |i| = l .

Finally, we define with o(xm+1) the standard little-o notation for functions of order smaller than
|x|m. We state now the following lemma.

Lemma 1.2. For a given point y ∈ Rnx and two real-valued functions Ψ1,Ψ2 ∈ Cm+1 : Rnx → R
such that DiΨ1(y) = DiΨ2(y), |i|⩽ m where i ∈ Nn is a multi index, it holds that Ψ1(x) =
Ψ2(x) + o(xm+2).

Proof. Introduce the multi-indices i, j ∈ Nn, i = (i1, i2, . . . , in), j = (j1, j2, . . . , jn) . Consider
an arbitrary real-valued function Φ : Rnx → R,Φ ∈ C l+1, l ∈ N. Given a point y ∈ Rnx , by
Taylor’s theorem for multivariate functions [118] it holds that

Φ(x) =
∑
|i|⩽l

DiΦ(y)

i!
(x− y)i +

∑
|j|=l+1

ΥΦ(x)(x− y)j,

10

Chapter 1. Local stability via neural controllers

where ΥΦ(x) = |j|
j!

∫ 1
0 (1 − t)|j|−1DjΦ(y + s(x − y))ds. Then, if Ψ1,Ψ2 ∈ Cm+1 they can be

equivalently expressed as

Ψ1(x) =
∑
|i|⩽m

DiΨ1(y)

i!
(x− y)i + o(xm+2), Ψ2(x) =

∑
|i|⩽m

DiΨ2(y)

i!
(x− y)i + o(xm+2).

If DiΨ1(y) = DiΨ2(y), |i| ⩽ m we can rearrange the last identity to obtain

∑
|i|⩽m

DiΨ1(y)

i!
(x− y)i = Ψ2(x)− o(xm+2).

Finally, by combining all previous equation we obtain Ψ1(x) = Ψ2(x) + o(xm+2), thus com-
pleting the proof.

We are now ready to state the result showing the generality of structure (1.19) for learning C2

policies.

Proposition 1.1. The following statements hold.

(i) Given any K⋆ ∈ Rnx and any function πθ : Rnx → R,πθ ∈ C2 satisfying the local approx-
imation constraint (1.10), for any function h1 ∈ H1 there always exists a locally Lipschitz
function µθ : Rnx → R satisfying the equality (1.19) for all x ∈ Rnx .

(ii) Let µθ satisfy Assumption 1.1, h1 ∈ H1 and πθ : Rnx → R as in (1.19). Then (1.10) is
satisfied.

Proof. Let us address point (i). By keeping in mind the multi-index properties, we consider
a multi-index i ∈ Nn. Constraint (1.10) implies

Diπθ(0) = Diπloc(0), |i| ⩽ 1. (1.20)

Select x0 = 0. Since πloc ∈ C2, if πθ ∈ C2 by Lemma 1.2, in a neighborhood of the
equilibrium we obtain πθ(x) = πloc(x) + o(x3). It is possible to find a suitable definition of
πθglo satisfying equation (1.19) by recalling that h1 ∈ H1. This shows the first item of the
proposition. We prove now the second item. If (1.19) is satisfied for all x ∈ Rnx , constraint
(1.10) is verified if and only if

lim
s→0

h1(sx)π
θ
glo(sx)

s|x| = 0, ∀x ∈ Rnx , (1.21)

where s ∈ R. If πθglo is a locally Lipschitz function, then lims→0

∣∣πθglo(sx)∣∣ ⩽ ωπ for all
x ∈ Rnx , being ωπ ∈ R⩾0. This implies that (1.21) holds if h1 ∈ H1 and this concludes the
proof.

Remark 1.5. Due to (1.19) being always enforced, the local guaranteed properties of classical LQR
are ensured even for the untrained policy.

Up to this point, we established how to design the objective for the DRL agent and how to
structure the policy to be learned. Hence, we are ready to present our solution to Problem 1.1
by invoking Lemma 1.1, Proposition 1.1 and by letting Assumption 1.1 hold.

11

1.1. Globalizing LQR policies via deep reinforcement learning

Theorem 1.1. Let be given any algorithm a ∈ A. Consider the cost (1.11) with the reward function
r given by (1.17). Then by selecting the control policy πθ as in (1.19) and determining its parameter
vector θ via a, Problem 1.1 is solved.

Proof. The reward function defined in (1.17) allows us to use the discounted cost (1.11)
without affecting the local solution K⋆ thanks to Lemma 1.1, and without restricting our
choice of γ ∈ (0, 1]. Then (1.19) ensures constraint (1.10) is always satisfied via Proposition
1.1 and Assumption 1.1. Finally a ∈ A allows the learning of the locally optimal policy
parameters.

The proposed solution is independent from the choice of the deep reinforcement learning algo-
rithm and it can be applied to a wide variety of existing model-free solutions.

In what follows, we study the behavior of the proposed solution during the training process.
We focus on the specific class actor-critic algorithms (see Appendix A.1), since many modern
solutions exploit the actor-critic architecture. Moreover, as previously said, we assume the pol-
icy to be trained via policy gradient methods, which are a common choice in the DRL frame-
work. For exploring the training behavior, we can combine the update law (A.3) and the policy
(1.19). Plugging the equality (1.19) in the deterministic policy gradient equation (A.3) high-
lights that

∇θπθ(x) = h1(x)∇θµθ(x), (1.22)

being µθ(xt) the only term depending on the parameters. Equation (1.22) shows that the closer
the system gets to the equilibrium point the smaller the updates become, since h1 ∈ H1. Note
that one can substitute the policy (1.19) in the nonlinear model (1.9) and obtain a new sys-
tem under the learned input µθ(x). Hence, the exploration noise which is typically added to
deterministic policies can be applied directly on µθ(x). This reflects the fact that µθ is the only
function to be learned. By doing so, πθ(x) is a random variable during training with

E
[
πθ(x)

]
= (1− h1(x))K⋆x+ h1(x)E

[
µθ(x)

]
,

Var
[
πθ(x)

]
= h1(x)

2Var
[
µθ(x)

]
,

being µθ(x) the only random component. Since h1 ∈ H1, the variance decreases the closer the
system is to the equilibrium. The analysis shows that, in a neighborhood of the equilibrium
point defined by h1, the updates to the parameters take into account the reduced importance
of the learned component to the received reward. Moreover, the explored actions focus around
the near-optimal linear input. Finally, the study suggests that each training episode should be
concluded once the equilibrium of the state-space (i.e. an arbitrarily small neighborhood of
it) is reached. This is in accordance with the fact that the agent is actually learning only how
to steer the system to the equilibrium point and not how to keep it there, being the solution
to the latter problem already provided by the local controller πloc. Note that the framework
of additive exploration noise with respect to µθ instead of πθ mimics the blending between a
stochastic policy trained with stochastic policy gradient [210] and a local policy. As such, the
similar results hold for the class of stochastic policy gradient-based methods.

1.1.3 Improving learning by reshaping the value function estimation

For designing critics, model-free RL algorithms usually rely on value functions to drive the policy
towards the optimal solution. Inspired by the structure of the control policy (1.19), we propose

12

Chapter 1. Local stability via neural controllers

a value function estimator built on the knowledge of its local behavior and of the linear model.
Suppose we are interested in the action-value function under the control policy (1.19). Let us
denote the its estimator by Q̂ϕ

π(xt, ut). Due to the structure of πθ, equation (1.5) provides a
suitable local approximation. Consequently, by defining z := col(x, u) and the set Z := {z ∈
Rnx+nu : z = (0, u), ∀u ∈ U}, we impose the following local constraint for all z ∈ Z

DiQ̂ϕ
π(z) = DiQ⋆

γ(z), |i| ⩽ 2 , (1.23)

with Di denoting the derivative of order i with the multi-index notation for multi-variable func-
tions. Constraint (1.23) parallels (1.10) by imposing the action-value function estimation to
be exactly (1.5) whenever x = 0. The idea comes from the fact that, in the origin, system
(1.9) behaves as its linearization and πθ(0) = πloc(0). As a consequence, (1.5) is the optimal
action-value function. Then, similarly to the policy equation (1.19), the estimated action-value
function Q̂ϕ

π(x, u) = Q̂ϕ
π(z) for the nonlinear system (1.9) under (1.19) is modeled as

Q̂ϕ
π(z) = Qloc(z) + Q̂ϕ

glo(z), Qloc(z) = Q⋆
γ(z), Q̂

ϕ
glo(z) = h2(x)(Ω

ϕ(z)−Qloc(z)), (1.24)

where h2 ∈ H2 , Ωϕ : Rnx × R → R is a parametrized function whose parameter vector ϕ ∈ Rq
is learned by the DRL agent and satisfying the following assumption:

Assumption 1.2. The function Ωϕ is locally Lipschitz.

As for the control policy, we justify the design choice (1.24) via the following Proposition, show-
ing that (1.24) and Assumption 1.2 allow learning a generic C3 function satisfying the local
constraint (1.23).

Proposition 1.2. The following statements hold.

1. For any C3 function Qloc ∈: Rnx+1 → R and any function Q̂ϕ
π : Rnx+1 → R, Q̂ϕ

π ∈ C3

satisfying the local approximation constraint (1.23) for any h2 ∈ H2, there always exists a
locally Lipschitz function Ωϕ : Rnx+1 → R satisfying the equality (1.24) for all x ∈ Rnx , ∀u ∈
U ⊆ R.

2. Let Ωϕ satisfy Assumption 1.2, h2 ∈ H2 and Q̂ϕ
π : Rn+1 → R as in (1.24). Then (1.23) is

satisfied.

Proof. The proof follows the same steps performed in the proof of Proposition 1.1. Note
that (1.23) holds for all points in Z instead of the single point scenario of Proposition 1.1.
Moreover, we match the second order approximation via h2 ∈ H2.

Algorithm 1 presents the procedure to implement the proposed solution with an actor-critic
algorithm. It takes as input the undiscounted problem formulation, the linearized matrices, an
actor-critic algorithm and a discount factor. Successively, it computes the linear optimal solution
and the associated discounted problem and sets the saturation functions enforcing the local
stability. Finally, it sets up the structured policy and value function(s) and runs the actor-critic
algorithm for learning the parameters. The output is a learned optimal locally asymptotically
stable deterministic policy.

1.2 Experimental results

In view of the results of Section 1.1, we test the proposed methodology for embedding local
knowledge in actor-critic algorithms. The main objective is to show that the learned policy im-
proves the local LQR in terms of domain of attraction (DOA) and the standard DNN controller

13

1.2. Experimental results

Algorithm 1 Algorithm for learning a Locally Asymptotically Stabilizing (LAS) control policy.
1: Input: (A,B), Q, R, γ, a ∈ A
2: Compute P , K⋆, Hγ , Qγ , Rγ
3: Pick h1 ∈ H1, h2 ∈ H2

4: Set r as in (1.17)
5: Set πθ as in (1.19) with parameters θ0
6: Set Q̂ϕ

π as in (1.24) with parameters ϕ0
7: Run a(θ0, ϕ0)
8: Output: LAS control policy πθ

in terms of robustness (provided by the local stability property). We recall that robustness in a
total stability sense can be interpreted as generalization over a bounded, continuous set of pa-
rameters. This is a valuable property when dealing with DNN-based controllers. We propose two
situations. First, we consider the simpler case of a known local model. Then, we address the sce-
nario where only the desired equilibrium point is known. This framework is more similar to the
one of standard DRL, where a model of the environment is not supposed to be available.

1.2.1 Known local model example

We run simulations in a frictionless inverted pendulum environment. The system nonlinear
model is {

α+ = α+ ω∆t,

ω+ = ω − 3g
2ℓ sin(α+ π)∆t+ 3

2mℓ2
(sat(u) + d)∆t,

where α ∈ [−π, π) is the angle between the position of the pendulum and the top vertical one,
ω ∈ R is its rate of change, sat(·) is a saturation function limiting the control input torque u in
[−2, 2], d is wind disturbance affecting the system, ∆t = 0.05 is the discretization step, g = 10 is
the approximated gravitational acceleration, ℓ = 1 is the length of the pendulum and m = 1 is
its mass. We denote x := col(α, ω) and we linearize the system around the unstable equilibrium
(x⋆, u⋆) = (0, 0), thus obtaining

A =

(
1 ∆t

3g
2ℓ∆t 1

)
, B =

(
0

3
2

∆t
mℓ2

)
.

The goal is to stabilize the pendulum at (x⋆, u⋆), corresponding to the top vertical position,
starting from any random initial condition. The parameters of the discounted LQR problem for
the linearized system are

Qγ =

(
1 0
0 0.1

)
, Rγ = 0.001, γ = 0.99, K⋆ =

(
−19.3006 −5.9918

)
, P =

(
8.088 0.4782
0.4782 0.1624

)
.

Due to input saturation, the only solution to the problem is to learn how to swing in order to gain
momentum. Clearly, the standard solution to an LQR problem is not describing such a control
behavior. We train the proposed policy using an off-the-shelf DRL algorithm, namely TD3 [80].
The nominal version of the learning algorithm comes from Stable Baselines 3 library [176] and
it is adapted to include our policy (1.19) and value function (1.24), following the steps in Algo-
rithm 1. Since most of DRL algorithms are designed to maximize the expected reward, we simply
invert the sign of r(x, u) and Qloc(x, u). Each training episode is stopped as soon as the state
enters a small ball of radius 10−5 centered in the origin, or their time limit is reached. We use

14

Chapter 1. Local stability via neural controllers

the functions h1(x) = tanh(tanh−1(0.99)x
⊤Px
c) and h2(x) = tanh(tanh−1(0.99)(x

⊤Px
c)

3
2), which

saturate outside the Lyapunov level set Vc(V) := {V (x) = c}, with c ∈ R>0. The value of c is
estimated by sampling random initial conditions and testing the convergence to the equilibrium
point, see Figure 1.2a, and we select c = 0.47.

We evaluate the performances and stability of our solution by comparing the results with the
simple LQR and the nominal version of the algorithm. Standard TD3 is trained with the same
reward function (1.17). In order to allow good training, episodes are not stopped as soon as a
neighborhood of the origin is reached. They are stopped only once the episode length limit has
been reached. We use the same hyperparameters for both the standard and the locally asymp-
totically stable version of the algorithm: 3-layers fully-connected DNNs with ReLU activation
functions, 64 units for the first hidden layer and 32 units as the second one, both for the critic
and for the actor, and a learning rate of λ = 0.00371.

We first analyze the learning performances. During training, we remove the disturbance wind
by setting a constant d = 0, and the initial condition is randomly sampled. From Figure 1.2b we
can infer that classical LQR succeeds only if the initial state lies inside it’s domain of attraction.
Its performances strongly fluctuates, since the magnitude of the return of an episode (i.e. the
final cost of the episode) is very big (bad) if the initial condition lies outside of its domain of
attraction or quite small (good) if the system starts close to the equilibrium. On the other hand,
our solution behaves comparably to the nominal TD3 algorithm.

We also study the stability of the closed loop system. During training, we periodically eval-
uate the policy by running an experiment in a different environment corrupted by uncertain-
ties. We simulate measurement noise u = πθ(x + w), w ∼ N (0, 0.03) and mass mismatch
mreal = 1.2mtrain. Moreover, the input is perturbed by external sinusoidal wind d = 0.36 sin(π50 t).
A “stability score" is extracted as the maximum of the norm of the error vector at steady state,
s := maxt∈[Tss,Tep] |x(t) − x⋆|, with Tep the maximum episode length and steady-state time
Tss = 0.8Tep. We run the stability evaluation episodes twice, at first with initial condition
x0 = (0.945π, 0)⊤, close to the position “down" of the pendulum, then with x0 = (0, 0)⊤, cor-
responding to the desired equilibrium point. Figure 1.3 clearly shows that the DRL approach
focuses solely on performances, as shown by the fact that more training steps do not imply a
more robust policy. For example, the norm of the steady-state error of the policy trained for
approximately 0.8 × 105 simulated seconds is much worse then the one of the policy trained
for approximately 0.6 × 105 simulated seconds, independently from the initial condition. Dif-
ferently, the scores for the modified algorithm remain fairly constant throughout training. It
can be clearly seen that the local behavior expressed when starting in the equilibrium point is
comparable to the one of the classical LQR policy. However, due to the learning procedure, also
the global behavior converges to a stable one. This shows that the learning component reli-
ably learned how to drive the system sufficiently close to the desired equilibrium for the local
component to guarantee stability. However we note that, as h1(x)→ 1, the learned component
becomes predominant, possibly affecting stability.

1.2.2 Unknown local model algorithm

Aiming at getting closer to the classical reinforcement learning framework, we now provide an
end-to-end algorithm addressing the case of completely unknown plant, along with practical
experimental validations. We are interested in showing the proposed approach still provides ro-
bust policies equipped with local stability guarantees, even when we have no access to the local
dynamics information. We will use simple techniques, adapting classical results from system

15

1.2. Experimental results

(a) Estimated level set for saturated LQR (b) Episode return during training

Figure 1.2: Domain of attraction and training returns

Figure 1.3: Stability of policies during training (smoothed)

identification and machine learning. These choices are mostly based on convenience and, given
the agnostic nature of the methodology, each step can be adapted with appropriate techniques,
given the task at hand. Hence, these experiments are aimed at emphasizing the importance
of enforcing stability properties in learned controllers to gain generalization and robustness.
We conduct experiments against standard deep actor-critic algorithms, specifically PPO [188],
DDPG [129], SAC [94], and TD3 [80], over three benchmarks from DRL literature.

To extend the approach, we start by assuming the desired equilibrium state x⋆ is known. Then,
we identify three required quantities: the steady-state input u⋆, the local model matrices A,B,
and the domain of attraction. Since we now consider arbitrary equilibrium pairs (x⋆, u⋆), we
need to perform the change of coordinates x̃ := x − x⋆, ũ := u − u⋆ and z̃ := z − z⋆, with
z := col(x, u) and z⋆ := col(x⋆, u⋆). Then, the related reward function (1.11) becomes r(x, u) :=
x̃⊤Qγ x̃+ ũ⊤Rγ ũ. Similarly, the policy (1.19) and action-value estimator (1.24) are modified as

πθ(x) = πloc(x) + πθglo(x), πloc(x) = u⋆ +K⋆x̃, πθglo(x) = h1(x̃)
(
µθ(x)− πloc(x)

)
, (1.25a)

Q̂ϕ
π(z) = Qloc(z) + Q̂ϕ

glo(z), Qloc(z) = Q⋆
γ(z̃), Q̂

ϕ
glo(z) = h2(x̃)(Ω

ϕ(z)−Qloc(z)). (1.25b)

We now present some simple techniques used to estimate the unknown quantities. First, without
any model knowledge, we need to estimate which input u⋆ would make the pair (x⋆, u⋆) an
equilibrium for the closed-loop system. Mathematically, we look for u⋆ such that x⋆ = f(x⋆, u⋆).

16

Chapter 1. Local stability via neural controllers

Algorithm 2 Linearized system identification
1: Input: x⋆, û⋆, b,Ne;
2: Sample ui ∼ N (û⋆, σ2), i = 0, . . . , Ne − 1;
3: Initialize the system in x(0) = x⋆;
4: for t = 0, . . . , Ne − 1 do
5: Apply ut and observe x+t = f(x(t), ut);
6: if |x+t

j − x⋆j | < bj for all j = 1, . . . , n then
7: x(t+ 1) = x+t ;
8: else
9: Reset the system in x(t+ 1) = x⋆;

10: Store (x(t), ut, x
+
t);

11: end if
12: end for
13: Compute M̂ with least squares;
14: Extract Â and B̂ as in (1.27);

Then, the estimated input û⋆ can be defined as the one minimizing the error between x⋆ and the
successive one, which is observed once such input is applied. Hence, we aim at solving

J(x, u) := |x+ − x|2, û⋆ = argmin
u

J(x⋆, u). (1.26)

There are multiple possibilities to solve such an optimization problem, e.g., automatic differ-
entiation tools. In our experiments, we use a genetic algorithm to find an initial estimate and
successively refine it via gradient descent until the computed cost falls below a small threshold
ϵu > 0. Once u⋆ has been estimated, we focus our attention on the local model estimation. As
the model is linear, given a dataset of tuples (x, u, x+), we can rely on classical system identifi-
cation techniques [202]. Indeed, a discrete-time linear time-invariant system of the form (1.1)
can be rewritten as

x+ =Mz, M =
(
A B

)
, (1.27)

and the system matrix estimation M̂ can be obtained by linear least square methods [202].
However, due to the nonlinear behavior of the plant, some care has to be taken during the data
collection procedure in order to obtain a suitable local model. Since we look for a linearization of
the system around the equilibrium, we sample Ne ∈ N random control actions ui from a normal
distribution ui ∼ N (û⋆, σ2), i = 0, . . . , Ne − 1, where σ > 0 is a sufficiently small standard
deviation. For a given index i ∈ N, we introduce the variable x+i = f(xi, ui). We collect
system trajectories by initializing its state in x⋆, i.e. x(0) = x⋆. Then, the control action u0 is
applied, the next state x+0 is sampled and the triplet (x(0), u0, x+0) is stored. Before applying the
successive action u1, the trajectory is stopped and the system is initialized back in the equilibrium
state x(1) = x⋆ if the new state x+0 lies outside of a box centered in the equilibrium state
B(x⋆) = {x ∈ Rnx : |xj−x⋆j | < bj , j = 1, . . . , n}, where superscript j refers to the jth component
of the vector and b ∈ Rnx is a vector of positive bounds. Otherwise, we directly apply the next
input, i.e. x(1) = x+0 . The process is repeated until Ne state-action-state samples are collected.
As previously stated, once the data has been collected, the system matrix M̂ can be obtained by
least square estimation [202]. Algorithm 2 presents the proposed procedure for linear model
estimation given a setpoint and a vector of positive state bounds b ∈ Rnx .

Once the linear model has been estimated, the local solution πloc in (1.19) can be computed.
Yet, since the size of the region where πloc stabilizes system (1.9) is still unknown, we propose

17

1.2. Experimental results

a simple automatic procedure for obtaining a conservative estimation of its domain of attraction
so that to set the shape of the blending functions h1, h2. There is a rich literature on domain
of attraction estimation, see e.g., [44, 220]. Our approach exploits the solution to the Discrete-
time Algebraic Riccati Equation (DARE) and allows for a direct definition of suitable functions
h1, h2. By means of Lyapunov inequalities, local asymptotic stability of an equilibrium point
for the closed-loop system can be characterized via the existence of a local Lyapunov function
V : Rnx → R, see e.g., [30]. Such a function has to satisfy the following conditions

V (x⋆) = 0, (1.28)

V (x) > 0 ∀x ∈ Rnx − {x⋆}, (1.29)

V (x′)− V (x) < 0 ∀x ∈ Rnx − {x⋆}. (1.30)

Furthermore, since πloc is the linear optimal policy, we can choose the optimal value function in
the linear framework as a candidate local Lyapunov function in a quadratic form, namely

V (x) = (x− x⋆)⊤P (x− x⋆), (1.31)

where P is the positive definite solution of the DARE, see e.g. [28]. Clearly, conditions (1.28)
and (1.29) are met by such a function by construction, hence it suffices to check whether (1.30)
is satisfied at different points. Then, the domain of attraction is set as the states inside an
ellipsoid described by (1.31) such that they all satisfy property (1.30). Practically, this size is
approximately estimated by sampling Nv ∈ N random points on the surface of an increasingly
bigger n-dimensional ellipsoids E(ck) := {x ∈ Rnx : V (x) ⩽ ck}. Then, for each of these
points, we check if the decrease condition (1.30) is satisfied by selecting actions with πloc on
the nonlinear system. We repeat the procedure for incremental values ck+1 = ck+∆c, ∆c ∈ R>0

until we find a sample violating the constraint (1.30). Then we set the estimated size ĉ⋆ = ck.
Note that, by continuity, a sufficiently fine sampling of the surface of the ellipsoid allows the
generalization of the result to the complete surface. The same can be stated for sufficiently
small ∆c. Once ĉ⋆ is known, we can define a normalized Lyapunov function ν(x) := V (x)/ĉ⋆.
This is useful to easily identify the states at the borders of the domain of attraction. Indeed, it
is smaller than 1 inside the estimated domain, larger outside and 1 on the borders. Then, as
hinted in the previous experiments, the saturation functions h1, h2 in (1.19) and (1.24) can be
shaped as

h1(x) = tanh (αν(x)), h2(x) = tanh
(
αν(x)3/2

)
, (1.32)

where α := tanh−1(β) and β ∈ (0, 1) set the value of h1,h2 at points on the boundaries of
the level set identified by ĉ⋆. Note that equations (1.32) satisfy the requirements presented in
(1.18) of being positive smooth, saturating, higher order functions with respect to πloc and Qloc

respectively. In other words, they guarantee the control policy and the action value behave as
the local quadratic optimal ones close to the equilibrium, and as the learned one far from it.
Moreover, the saturating action can be controlled by the value of β. If β is very small, at the
borders of the estimated domain the control policy will still be dominated by the local solution
K⋆. On the contrary, if β ≈ 1 we let the learned component modify the solution even inside the
estimated domain. Algorithm 3 proposes the routine for estimating the domain of attraction of
the local stabilizing policy. Note that the method presented in this section provides an estimation
of the stable region which may be very conservative. Indeed, it looks for the smaller invariant
ellipsoid contained in the domain. A less conservative approach may be to set a threshold of
allowed failures per level set. This can be controlled by setting a value δ ∈ [0, 1) different from

18

Chapter 1. Local stability via neural controllers

Algorithm 3 Local domain of attraction estimation

1: Input: x⋆, û⋆,∆c, Nv, δ;
2: (ĉ⋆, c, n_fails)← (0,∆c, 0);
3: while n_fails < int(δNv) + 1 do
4: Reset n_fails= 0;
5: Sample xi, i = 1, . . . , Nv on E(c);
6: for i=1, . . . , Nv do
7: Simulate x+i = f(xi,πloc(xi));
8: if V (x+i)− V (xi) ⩾ 0 then
9: n_fails = n_fails+ 1;

10: end if
11: if n_fails > int(δNv) then
12: ĉ⋆ = c;
13: break;
14: end if
15: end for
16: Update c← c+∆c;
17: end while

zero in Algorithm 3. However, the bigger δ, the less confident we can be in the estimation.

Once u∗, A,B have been estimated and h1, h2 have been selected, the last step is to select an
actor-critic DRL algorithm to learn the networks’ parameters. Thus, the complete algorithm runs
in two consequent steps: unknown quantities estimation and policy learning. We recall that
since the local policy is locally exponentially stabilizing, it is robust with respect to bounded
errors in the model and stability is guaranteed even if the learned model is not perfect, see
Chapter 2. Therefore, due to the robustness of the local solution K⋆, the control policy πθ is still
ensured to be locally stabilizing as long as the estimated model provides a good approximation
of the linearized behavior. This reflects in the choice of bounds b defining the box around the
equilibrium used for the local model estimation. Indeed, they should not describe too big of a
region around the goal state x⋆. Moreover, they may be dynamically changed if the resulting
model does not fit sufficiently well the collected trajectories. We also highlight that intertwining
the phases of model estimation and policy learning may cause the loss of the stability properties.
Indeed, even switching between stable linear systems may cause instability [127, Section 2.4.1].
Therefore, once the local stabilizing policy is fixed, we only allow fine-tuning of the overall
policy with the components learned by the DRL algorithm, which can still affect (slightly) the
local behavior. Indeed, we stress that the overall policy perfectly matches the local LQR policy
only at the equilibrium.

We can finally present the complete algorithm, whose pseudocode is presented in Algorithm 4.
The algorithm asks for the desired equilibrium state x⋆ and some hyperparameters: the vector
of bounds b, the number of estimation samples Ne, the number of samples per level set Nv, the
step size ∆c and the value β. It first estimates the steady-state input by solving the optimization
problem (1.26). Then it estimates the linearized model. Once Â and B̂ are known, the local
optimal policy πloc is computed and its domain of attraction is estimated. Once the local problem
has been solved, it sets the functions h1 and h2 as in (1.32) and trains the component µθ. Given
the undiscounted reward matrices Q,R describing the local quadratic optimization problem,
it maps them in the discounted framework based on the discount factor γ. Then, given an
actor-critic DRL algorithm, it outputs a near-optimal neural network policy guaranteeing local
asymptotic stability of the closed-loop.

1.2.3 Unknown local model experiments

Similarly to the example in Section 1.2.1, we analyze multiple aspects of the proposed solution.
First, we compare performances of standard DRL algorithms against those from their locally

19

1.2. Experimental results

Algorithm 4 Locally asymptotically stabilizing actor critic DRL (unknown model)
1: Input: x⋆, Ne, b,∆c, Nv, Q,R, γ, β;
2: Estimate û⋆ by solving (1.26);
3: Obtain Â and B̂ as in Algorithm 2 with û⋆ ;
4: Compute P , K⋆, H with Â and B̂ as in (1.8), (1.7);
5: Set πloc as in (1.25a) with û⋆ and K⋆;
6: Obtain ĉ⋆ as in Algorithm 3;
7: Set h1, h2 as in (1.32) via ĉ⋆;
8: Set πθ as in (1.19);
9: Set Q̂ϕ

π as in (1.24);
10: Compute Qγ , Rγ with P and γ as in (1.12);
11: Train πθ and Q̂ϕ

π with a ∈ A and reward (1.11);

asymptotically stabilizing variants (LAS policy). Next, we empirically study the stability prop-
erties of both family of algorithms. Then, we compare the difference in domain of attraction
size between the LAS solution and the classical local control-theoretic approach (LQR). Finally,
we also present experiments showing that the robustness properties generalize well to different
instances.

We train four different DRL algorithms, namely DDPG [129], PPO [188], TD3 [80] and SAC [95],
alongside their LAS versions. We train each algorithm over four random seeds and the training
is performed on a single NVidia GTX Titan X with 12 GB RAM. As in Section 1.2.1, the standard
formulation of the algorithms comes from Stable Baselines 3 [176] and it is modified for obtain-
ing the LAS design. For the estimation routine we set Ne = 3 × 105 and Nv = 5 × 103. Table
1.3 presents the main hyperparameters used for each algorithm and control task. Most of them
are provided by the Stable Baselines 3 library and they are not optimized, since the main goal is
to show the added value of locally stabilizing policies, especially in non-optimal conditions. All
the hyperparameters that are not shown in the table are also set as the default ones. For all the
algorithms, we use a discount factor γ = 0.99, in order to provide a sufficiently big virtual time
horizon to the optimization process.

Control tasks. We set up three different environments of increasing complexity for evaluating
algorithms. Similarly to Section 1.2.1, each algorithm is trained on an ideal version of the
environment, where noise and external disturbances are not included. Then, they are tested
on the “corrupted" version of the environment, where parameter mismatches, measurement
noise and sinusoidal disturbances perturb the task. In particular, each environment will evolve
according to discrete-time nonlinear dynamics of the form

x+ = f(η, x, sat[u,ū](ψ(x+ w)) + d),

where ψ : Rnx → R is an arbitrary policy (e.g. πθ), sat : R→ R is a hard saturation function clip-
ping the control input defined as sat[u,ū](·) := max(min(·, ū), u), η is a vector of constant system
parameters, w is a random noise sample and d is an external input disturbance. During training
w, d are identically 0 and the environment parameters are slightly different from the ones used
at test time, namely ηtest ̸= ηtrain. The metric for assessing stability is defined as the maximum
error at steady state, i.e. after some time we start looking at the maximum norm of the error
with respect to the goal state. This “stability cost" can be described as sψ = maxt∈[Tss,Tep] |x−x⋆|
where Tep ∈ N represents the maximum episode length in time steps and Tss ∈ [0, Tep) is the

20

Chapter 1. Local stability via neural controllers

instant at which we start evaluating the stability properties. Following Algorithm 4, the global
discounted objective is designed starting from a local undiscounted one. This ensures the local
solution is stabilizing. Moreover, it allows standard DRL algorithm trained on such an objective
to possibly converge to a locally stabilizing policy. For the local component, we use undiscounted
quadratic costs described by a diagonal matrix Q ∈ Snx≻0 and a scalar R > 0. Given that typical
DRL algorithms solve a maximization problem, we invert the sign of the instantaneous cost and
of the local component of the critic. We now briefly present the three control tasks.
Pendulum swing-up (PSU). This task mimics the one proposed in Section 1.2.1. A frictionless
pendulum has to be stabilized at a small angle from the unstable vertical position with lim-
ited input torque. The environment follows the same dynamics as OpenAI Gym [35] pendulum
swing-up. The state vector is composed of the error angle with respect to the top vertical po-
sition and its rate of change (nx = 2). The goal state is x⋆ = (π18 , 0)

⊤ and the initial condition
is x0 = (π, 0)⊤. Table 1.4 presents the environment parameters. For the PSU task, we use cost
matrices Q = diag(1, 0.1), R = 0.001.
Inverted pendulum swing-up (IPSU). A pendulum linked to a cart has to be stabilized in its unsta-
ble vertical position starting from the resting downward position. The environment is built using
Pybullet [52]. The cart can slide on a rail of limited length and the input force on the cart is
bounded. The cart is also required to reach the middle of the rail. The state vector is composed
of the distance between the cart and the center of the rail, the error angle with respect to the top
vertical position of the pole, the cart velocity and the angle rate of change (nx = 4). The goal
state is x⋆ = (0, 0, 0, 0)⊤ and the initial condition is x0 = (0, π, 0, 0)⊤. In Table 1.6 we report the
environment parameters. For the IPSU task, we set Q = diag(0.1, 0.1, 0.01, 0.01) R = 0.01.
Double inverted pendulum swing-up (DIPSU). The IPSU task has to be solved with a 2-link pen-
dulum. The state vector is composed of the distance between the cart and the center of the
rail, the error angle with respect to the top vertical position of the first pole, the error an-
gle of the second pole with respect to the first pole’s direction, the cart velocity and the an-
gles rates of change (nx = 6). The goal is to stabilize the system at x⋆ = (0, 0, 0, 0, 0, 0)⊤

and the initial condition is x0 = (0, π, 0, 0, 0, 0)⊤. The environment parameters are summa-
rized in Table 1.5. Finally, the optimization objective of DIPSU is described by matrices Q =
diag(0.001, 0.3, 0.3, 0.001, 0.01, 0.01), R = 0.0001.

Results. Results are shown in Figures 1.4,1.5, 1.6 and Tables 1.1, 1.2, 1.7. We start by dis-
cussing the performances of the proposed algorithm with respect to the standard ones. The
objective is to show that the addition of a locally stabilizing layer to the policy does not dete-
riorate performances of standard DRL solutions. The difference in performances can be clearly
seen by looking at the episode return during training. From Table 1.1 and Fig. 1.4, we see
that the LAS variants perform comparably to their standard versions. As expected, the approach
embeds the local exact solution in the neural policy, thus it does not impact the performances
once the πloc component is dominant. Moreover, in some instances the LAS policy performs
even better than the native algorithm. This is probably due to the fact that the local component
guides the exploration towards stabilizing actions. Since quadratic costs are proportional to the
norm of the error, stabilizing actions encourage the reduction of the instantaneous cost.

We continue by assessing the stability properties of the closed-loop for both types of policies, i.e.,
standard and LAS policies. Table 1.2 presents the stability cost of each algorithm after training. It
shows that LAS policies outperform the standard version in the local context, i.e., when starting
sufficiently close to the equilibrium. Note also the reliability of such a local behavior, as shown
by the small variation of the stability cost over different instances. As expected, this behavior is

21

1.2. Experimental results

PPO SAC

LAS Standard LAS Standard

PSU −160, 2± 97, 0 −162, 4± 91, 9 −133, 7± 62, 4 −133, 9± 77, 5
IPSU −142, 4± 35, 8 −104, 8± 21, 7 −92, 3± 1, 8 −102, 0± 8, 4
DIPSU −579, 1± 156, 3 −1706, 9± 481, 2 −245, 4± 5, 8 −447, 1± 5, 9

TD3 DDPG

LAS Standard LAS Standard

PSU −146, 4± 72, 1 −135, 5± 101, 4 −135, 1± 63, 9 −156, 8± 77, 3
IPSU −99, 0± 7, 3 −99, 7, 0± 3, 7 −120, 4± 29, 0 −155, 6± 28, 1
DIPSU −251, 3± 5, 7 −255, 3± 7, 8 −487, 4± 287, 4 −485, 1± 196, 0

Table 1.1: Mean evaluation rewards and standard deviations across ten trials (the higher the
better).

PPO SAC TD3 DDPG

LAS Standard LAS Standard LAS Standard LAS Standard
PSU1 0, 18± 0, 02 8, 63± 0.2 0, 1± 0, 01 0, 25± 0, 02 0, 1± 0, 01 7, 37± 0, 06 0, 09± 0, 01 0, 25± 0, 01
PSU2 0, 17± 0, 02 8, 64± 0, 1 0, 1± 0, 01 0, 27± 0, 03 0, 1± 0, 01 7, 42± 0, 03 0, 09± 0, 01 0, 24± 0, 01
IPSU1 0, 69± 0, 05 1, 95± 2, 76 0, 80± 0, 12 1, 07± 0, 25 0, 76± 0, 06 0, 92± 0, 10 0, 66± 0, 04 3, 27± 2, 08
IPSU2 3, 58± 3, 99 7, 16± 0, 20 0, 81± 0, 08 1, 18± 0, 39 0, 86± 0, 17 2, 46± 3, 32 0, 65± 0, 05 5, 15± 3, 09
DIPSU1 2, 28± 0, 11 11, 88± 4, 73 2, 29± 0, 27 7, 04± 4, 07 2, 37± 0, 19 9, 06± 0, 13 2, 40± 0, 12 3, 27± 0, 25
DIPSU2 6, 58± 5, 55 15, 17± 8, 77 2, 47± 0, 12 3, 92± 3, 60 2, 24± 0, 16 8, 97± 0, 07 2, 83± 0, 97 3, 26± 1, 60

Table 1.2: Maximum steady-state error norm in corrupted environments over ten trials (the
lower the better). Subscript ‘1’ indicates the system is initiated in x⋆. Subscript ‘2’ indicates the
system is initiated in x0.

guaranteed by the local stabilizing policy. Differently, standard algorithms may not converge to
a stabilizing behavior, due to a possibly poor approximation of the exact local optimal solution.
The smoothed evolution of the stability cost during training is shown in Fig. 1.5. Again, we note
from the plots of Fig. 1.5, that the standard algorithms are not capable of locally stabilizing the
system in the corrupted environments, due to low diversity of the dataset. On the contrary, the
LAS version shows a small error norm even with the untrained parameters, thanks to the local
knowledge. We also emphasize that the local solution maintains a small error norm if the initial
condition lies outside the domain of attraction of πloc but the learned component manages to
steer the system sufficiently close to the setpoint before Tss, as shown by Table 1.2 and Fig.
1.5 (left). This does not always happen, see Fig. 1.5 (center) and Fig. 1.5 (right), and the
LAS variants behave similarly to their native versions. Nevertheless, the local policy seems to
improve the stability cost also in the global context. Finally, we stress that local stability of the
closed-loop is preserved even if the algorithm does not reach a satisfactory solution, as for PPO
in Fig. 1.4 (right) and Fig. 1.5 (right).

We now study whether standard DRL algorithms can achieve local asymptotic stability with an
increased amount of data. We focus on the simplest task, the PSU. The standard algorithms are
trained on three instances with different masses, while the LAS version is trained on a single one
with the default massm = 1. Hence, we are providing a richer dataset to the nominal algorithms
to show that local generalization is obtained with small data overhead with respect to standard
techniques. We set the corrupted environment mass to mcorr = 1.2 and we explore two training

22

Chapter 1. Local stability via neural controllers

PSU IPSU DIPSU

lr af NN lr af NN lr af NN

DDPG 0.001 ReLU 400,300 0.001 ReLU 400,300 0.0001 ReLU 400,300
LAS-DDPG 0.001 ReLU 400,300 0.001 ReLU 400,300 0.0001 Tanh 400,300
PPO 0.003 Tanh 64,64 0.00025 Tanh 256,256 0.0001 Tanh 64,64
LAS-PPO 0.003 Tanh 64,64 0.00025 Tanh 256,256 0.0001 Tanh 64,64
TD3 0.001 ReLU 400,300 0.001 ReLU 400,300 0.0006 ReLU 400,300
LAS-TD3 0.001 ReLU 400,300 0.001 ReLU 400,300 0.0002 Tanh 256,256
SAC 0.001 ReLU 256,256 0.001 ReLU 256,256 0.001 ReLU 256,256
LAS-SAC 0.001 ReLU 256,256 0.001 ReLU 256,256 0.0001 Tanh 256,256

Table 1.3: Hyperparameters. lr: learning rate, af: activation function, NN: hidden layer sizes

situations. First, we present the results of experiments where the mcorr is between the smallest
and biggest values experienced by the algorithms, see Fig. 1.6 (left). Then, we show the results
for the case when the corrupted mass lies outside these boundaries, see Fig. 1.6 (right). We
note that in both cases a locally stable behavior is not guaranteed by the standard algorithms,
even when a higher amount of information is provided. This is particularly evident when the
corrupted mass is bigger then the maximum experienced one, see Fig. 1.6 (right). Nevertheless,
we can notice an improvement with respect to the single environment scenario, especially for
PPO. On the other hand, the LAS approach ensures satisfactory generalization capabilities over
a bounded, continuous set of parameters’ variations around the nominal ones, even if trained
on a single environment. The continuity of such a set and the reduced amount of required data
further motivate the interest in the LAS approaches.

Finally, we evaluate the size of the domain of attraction of the composite policy and compare
it to the linear control-theoretic solution (LQR). Hence, we uniformly sample Ni ∈ N random
initial conditions sampled inside a box B(0) defined by the bounds vector b0 ∈ Rnx . Then, we
run experiments in the uncorrupted environment, once with the trained LAS neural policy and
once with the LQR. Given an initial condition x and an episode length Tep > 0, the experiment
is considered a success if the error between the final state and the goal state is smaller than a
small threshold ϵ > 0. An evaluation metric p ∈ [0, 1] is given as a rate between the number of
successes and the number of initial conditions, namely

p =
n_successes

Ni
=

1

Ni

Ni∑
k=0

s(xk(Tep)),

where the k superscript identifies the experiment initialized with the kth initial condition and
s : Rnx → R is defined as

s(x) =

{
1 if |x− x⋆| ⩽ ϵ

0 otherwise

Table 1.7 shows that for each task the neural solution presents a bigger rate of success than the
local LQR. Hence, the size of the domain of attraction is improved by the learned component in
comparison to the control-theoretic linearization technique. It shows we can safely embed and
train a neural component into classical control-theoretic solutions without impairing their local
properties. Moreover, it highlights the effectiveness of modern learning approaches in improving
established control methods.

23

1.2. Experimental results

Figure 1.4: Training return: PSU (left), IPSU (center), DIPSU (right).

Figure 1.5: Stability score during training: PSU (left), IPSU (center), DIPSU (right). Row 1 and
3: local. Row 2 and 4: global.

Figure 1.6: Local stability over multiple instances of PSU. Standard algorithms set of training
masses mtrain = {0.7, 1, 1.3} (left), mtrain = {0.9, 1, 1.1} (right).

24

Chapter 1. Local stability via neural controllers

Parameters Training Corrupted

pole mass m 1 1.2
pole length l 1 1
gravity acceleration g 9.81 9.81
episode max length Tep 200 1000
input bounds [-2,2] [-2,2]
noise w 0 w ∼ N (0, 0.1)
disturbance d 0 0.2 sin(2π

100 t)
steady-state threshold Tss - 800

Table 1.4: Pendulum swing-up environment
parameters

Parameters Training Corrupted

cart mass mc 10.47 10.47
pole mass mp 5 6.53
pole length lp 0.6 0.8
rail bounds lr [-1,1] [-1,1]
episode max length Tep 1000 1000
input bounds [-100,100] [-100,100]
noise w 0 w ∼ N (0, 0.173)
disturbance d 0 20 sin(2π50 t)
steady-state threshold Tss - 800

Table 1.5: Inverted pendulum swing-up en-
vironment parameters

Parameters Training Corrupted

cart mass mc 10 10
first pole mass mp1 1 1
second pole mass mp2 1 1.2
first pole length lp1 0.6 0.6
second pole length lp2 0.6 0.7
rail bounds lr [-2,2] [-2,2]
episode max length Tep 1000 2000
input bounds [-200,200] [-200,200]
noise w 0 w ∼ N (0, 0.173)
disturbance d 0 20 sin(2π

100 t)
steady-state threshold Tss - 1600

Table 1.6: Double inverted pendulum swing-
up environment parameters

PSU IPSU DIPSU

LQR 0.6432 0.0856 0.0151
LAS-DDPG 1.0 0.8028 0.3362
LAS-PPO 0.9997 0.9987 0.0682
LAS-TD3 1.0 0.9454 0.4012
LAS-SAC 1.0 0.9501 0.4646

Table 1.7: Success rate over Ni = 104 initial
conditions. Success threshold: ϵ = 0.001.
Initial condition bounds b0 for the differ-
ent tasks: [π, 8] (PSU), [1, π, 10, 3π] (IPSU),
[1, π, π, 10, 3π, 3π] (DIPSU).

1.2.4 Addressing general continuous reward functions

In this final section of the chapter, we discuss potential avenues for improving the previously
presented results. In particular, we propose an objective reshaping technique that addresses
more general cost functions, while ensuring local exponential stability at all times. By accepting
a bounded performance error relative to an optimal policy defined by the initial objective, the
techniques discussed in Section 1.1 can be utilized in a broader setting, thus providing local
exponential stability properties.

In reinforcement learning, the choice of the objective function plays a pivotal role in determin-
ing the properties of the learned policy. When dealing with a non-quadratic reward function,
ensuring that the learned policy is locally exponentially stabilizing becomes challenging [170].
This challenge is even more pronounced if we aim for this property to remain unaffected by the
discount factor, similarly to Lemma 1.1. However, the requirement of a globally quadratic cost
as in Section 1.1 may turn out to be restrictive to define general stabilization tasks. Furthermore,
in the DRL community it is not common to use quadratic objectives.

To address these concerns, this section proposes a strategy to redesign a generic objective func-
tion, such that the optimal resulting policy is locally exponentially stabilizing independently
from the discount factor. In particular, we modify the reward to be locally quadratic in proxim-
ity of the desired equilibrium point. As a consequence, the results of Section 1.1 can be directly
applied. We consider a discrete-time nonlinear systems of the form

x+ = f(x, u) (1.33)

25

1.2. Experimental results

with x ∈ X ⊆ Rnx and u ∈ U ⊆ R. We focus on objective functions of the form (1.11),
namely,

Jγ(x(t), u(t)) =
∞∑
k=0

γkr(x(k + t), u(k + t)).

Moreover, we assume that at each time instant the environment returns an instantaneous reward
defined by the continuous, possibly non-smooth function r : X ×U → R⩾0, which is assumed to
satisfy the following

r(0, 0) = 0, r(x, u) > 0 ∀(x, u) ∈ X × U \ (0, 0). (1.34)

Similarly to Section 1.1, the objective is to obtain a near-optimal parametrized control policy
πθ : X × Rnθ → U which guarantees local exponential stability independently from the choice
of the parameter vector θ ∈ Rnθ . The characteristics in (1.34) seem natural when considering
stabilization to an equilibrium point. However, local exponential stability properties of a gen-
eral optimal solution to the presented problem are typically unknown, especially in the case of
discounted objectives [170]. Therefore, we propose to reshape the reward function such that it
ensures a locally exponentially stabilizing solution exists. In other words, we aim at designing a
continuous function r̂ : X × U → R⩾0 such that the objective

Ĵγ(x(t), u(t)) =

∞∑
k=0

γkr̂(x(k + t), u(k + t)),

describes a locally exponentially stable closed-loop behavior independently from the discount
factor γ.

In particular, we will pick a reshaped reward function which is locally quadratic and rely on the
results in Section 1.1.1. We start by analyzing the effect of a reward reshaping. Hence, we study
the performances with respect to r of the sub-optimal policy obtained under a modified reward
function r̂. Let r̂ : X × U → R⩾0 be a continuous approximation of r such that

r̂(0, 0) = 0, r̂(x, u) > 0, ∀(x, u) ∈ X × U \ (0, 0), (1.35a)

|r̂(x, u)− r(x, u)| ⩽ ϵ, ∀(x, u) ∈ X × U . (1.35b)

Following the state-value function definition (A.1), for an arbitrary policy π : X → U and for
any x ∈ X , we have

Jπ(x) =
∞∑
k=0

γkr(x(k + t),π(x(k + t))), (1.36a)

Ĵπ(x) =
∞∑
k=0

γkr̂(x(k + t),π(x(k + t))) (1.36b)

Let us identify by π⋆ and π̂⋆ the optimal policies minimizing Jπ and Ĵπ respectively. As recalled
in Appendix A.1, this implies

Jπ⋆(x(t)) = min
π

Jπ(x), π⋆(x) = argmin
π

Jπ(x), (1.37a)

Ĵπ̂⋆(x(t)) = min
π

Ĵπ(x), π̂⋆(x) = argmin
π

Ĵπ(x), (1.37b)

for all x ∈ X . Then, the following proposition presents an upper bound between policies perfor-
mances in terms of state-value function. In particular, we show that limϵ→0 Jπ̂⋆(x) = Jπ⋆(x) for
all x ∈ X . Namely, we can arbitrarily approximate the optimal state-value function via a proper
choice of the reshaped reward r̂.

26

Chapter 1. Local stability via neural controllers

Proposition 1.3. Let r̂ : X × U → R⩾0 be a reward function as in (1.35) with ϵ ⩾ 0 and let
γ ∈ (0, 1). Then, for all x ∈ X , the following bound holds

Jπ̂⋆(x) ⩽ Jπ⋆(x) +
2ϵ

1− γ . (1.38)

Proof. Consider the value functions (1.36). Properties (1.34), (1.35) and the triangle
inequality imply the following inequalities

Jπ(x) ⩽ |Jπ(x)− Ĵπ(x)|+ Ĵπ(x),

Ĵπ(x) ⩽ |Ĵπ(x)− Jπ(x)|+ Jπ(x),

for all x ∈ X and for any arbitrary policy π. Since π is assumed to be deterministic and
acting on a deterministic environment, it generates unique deterministic trajectories for any
initial condition. Then, bound (1.35b), γ ∈ (0, 1) and the geometric series convergence
properties let us conclude that

Jπ(x) ⩽
∞∑
k=0

γkϵ+ Ĵπ(x) ⩽
ϵ

1− γ + Ĵπ(x), (1.39a)

Ĵπ(x) ⩽
∞∑
k=0

γkϵ+ Jπ(x) ⩽
ϵ

1− γ + Jπ(x), (1.39b)

where we used the fact that the policy generating the trajectories in Jπ and Ĵπ is the same.
From (1.37), optimality of π⋆ and π̂⋆ implies

Jπ⋆(x) ⩽ Jπ(x), Ĵπ̂⋆(x) ⩽ Ĵπ(x), (1.40)

for all x ∈ X and all policies π. Then, by combining (1.39) with (1.40) we obtain

Jπ̂⋆(x) ⩽
ϵ

1− γ + Ĵπ̂⋆(x) ⩽
ϵ

1− γ + Ĵπ⋆(x) ⩽
2ϵ

1− γ + Jπ⋆(x),

thus concluding the proof.

Unfortunately, bound (1.38) is not informative if γ = 1. This is due to the fact that (1.35b)
allows for a non-zero discrepancy between r̂ and r in all points of the state-action space. In fact,
we have not assumed any properties on the reward trajectories. To address this limitation and
obtain more insightful bounds, we leverage the properties of these trajectories. Considering that
our focus is on stabilization problems, it is reasonable to assume that all optimal policies derived
from r and r̂ will eventually lead to convergence to the desired equilibrium, even if they are not
stabilizing in a Lyapunov sense. In other words, we suppose that the respective infinite-horizon
optimal state-value functions remain finite, causing the reward error to gradually vanish over
time due to (1.34) and (1.35a). Then, we formally define this behavior through the following
assumption.

Assumption 1.3. Let π be a stabilizing policy for system (1.33). Consider the reward functions
r and r̂ satisfying (1.34) and (1.35a) respectively. We suppose there exists a bounded function
ϵπ : (0, 1] → R⩾0 such that, for any initial time t ∈ N and any initial condition x(t) ∈ X , the

27

1.2. Experimental results

solution of the closed-loop system satisfy

∞∑
k=1

γk|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))| = ϵπ(γ), (1.41)

for any γ ∈ (0, 1].

We emphasize that the conditions specified in Assumption 1.3 are relatively mild. Firstly, given
the assumption of finite value functions and the shared global minimum between r̂ and r, it
is reasonable to anticipate that the disparity between instantaneous rewards will gradually di-
minish as both policies guide the system towards the same equilibrium. Secondly, the decay
rate in time can be chosen to be extremely small. As an example, we may consider a case in
which the difference between rewards satisfies along trajectories an harmonic convergence of
the form

|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))| ⩽ a

k1+b
,

for some strictly positive a, b. In this case, one may verify that (1.41) is satisfied with

ϵπ(γ) ⩽ a
1 + b

b
.

Note that this bound is over-conservative and a more precise one can be obtained by studying
convergence properties of polylogarithmic series. Under Assumption 1.3 we have the following
result, showing that inequality (1.38) in Proposition 1.3 can be refined with an ultimate finite
bound for any value of γ ∈ (0, 1], with 1 included.

Proposition 1.4. Let r̂ : X ×U → R⩾0 be a reward function as in (1.35a) and let Assumption 1.3
hold. Then, for any compact set C ⊂ Rnx , there exists a bounded function ε : (0, 1] → R⩾0 such
that, for all x ∈ C, the following bound holds

Jπ̂⋆(x) ⩽ Jπ⋆(x) + ε(γ). (1.42)

Proof. By following the same first steps as in the proof of Proposition 1.3, we obtain

Jπ(x(t)) ⩽
∞∑
k=0

γk|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))|+ Ĵπ(x(t)) (1.43a)

Ĵπ(x(t)) ⩽
∞∑
k=0

γk|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))|+ Jπ(x(t)). (1.43b)

By Assumption 1.3 and (1.35), the infinite sum of reward errors satisfies the following
bound

∞∑
k=0

γk|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))|

⩽ |r̂(x(t),π(x(t)))− r(x(t),π(x(t)))|+ ϵπ(γ).

Then, for any compact set of initial conditions C, the error between rewards is bounded due

28

Chapter 1. Local stability via neural controllers

to the continuity of the functions. Hence,

∞∑
k=0

γk|r̂(x(k + t),π(x(k + t)))− r(x(k + t),π(x(k + t)))| ⩽ cπ + ϵπ(γ), (1.44)

with cπ = supx∈C |r̂(x,π(x))− r(x,π(x))|. By combining (1.44) and (1.43), we obtain

Jπ(x) ⩽ cπ + ϵπ(γ) + Ĵπ(x)

Ĵπ(x) ⩽ cπ + ϵπ(γ) + Jπ(x).

Then, by proceeding as in the proof of Proposition 1.3 and combining (1.45) with (1.40)
we obtain

Jπ̂⋆(x) ⩽ cπ̂⋆ + ϵπ̂⋆(γ) + Ĵπ̂⋆(x) ⩽ cπ̂⋆ + ϵπ̂⋆(γ) + Ĵπ⋆(x)

⩽ cπ̂⋆ + cπ⋆ + ϵπ̂⋆(γ) + ϵπ⋆(γ) + Jπ⋆(x) = Jπ⋆(x) + ε(γ),

thus concluding the proof.

Based on the aforementioned findings, it is evident that making local adjustments to the reward
function has a limited impact on system performance, as long as the resulting optimal policy
stabilizes the system towards the desired equilibrium point. Consequently, our objective now is
to devise a locally quadratic reward function r̂ that ensures the generation of locally stabilizing
solutions regardless of the value of the discount factor γ. In particular, inspired by the approach
in Section 1.1, we pick a blending function hr : X × U → R⩾0 such that hr ∈ Hr with

Hr :=
{
h ∈ C3 : lim

s→0

h(sz)
sj |z|j = 0, lim

s→0

h(sz)
s3|z|3 ̸= 0, lim

|s|→∞
h(sz) = 1, j = 0, 1, 2

}
.

and z = col(x, u). Then, we can select the approximate reward as

r̂(x, u) := z⊤Wz + h3(x, u)
(
r(x, u)− z⊤Wz

)
, W :=

(
Qγ 0
0 Rγ

)
, (1.46)

with Qγ , Rγ designed as in (1.12) according to some Q ∈ Snx≻0, R ∈ Snu≻0 and P ∈ Snx≻0 solution to
the undiscounted DARE (1.8) with

A :=
∂f

∂x
(0, 0), B :=

∂f

∂u
(0, 0).

As per LQR theory presented at the beginning of Section 1.1, we assume the pair (A,B) to be
controllable and the pair (A,

√
Q) to be observable. Then, as (1.46) is locally quadratic and due

to the choice of matricesQγ , Rγ , the optimal local solution is (1.7), which is locally exponentially
stabilizing independently from γ. Henceforth, all techniques proposed in Section 1.1 apply and
provide a learned parametrized policy πθ as in (1.19) which is locally exponentially stabilizing
for all θ ∈ Rnθ . In conclusion, the blending approach presented in this chapter can be used in
a general context and can equip neural controllers trained on a wide class of reward functions
with local stabilization properties.

29

1.2. Experimental results

30

2 Integral action for discrete-time
nonlinear systems

It is well-known that model uncertainties have a notable impact on the regulation performance
of controllers in real-world applications. Applying a control law derived from a simplified model
to the actual plant may not precisely reach the desired reference, often resulting in a non-zero
offset from the setpoint. This observation indicates that stability properties alone might be
insufficient in certain applications. Then, following the scope of this first part of the manuscript,
our next step involves identifying the factors that enable the transfer of stability properties
between sufficiently similar discrete-time nonlinear systems. This is essential to address the
critical challenge of transitioning from simulation, where the behavior of the controller is known,
to the real-world, where stability of the closed-loop must be guaranteed. In the first sections
of the chapter, we assume that a model of the system is known, and our primary focus is to
analyze the robust stability properties of its equilibria. In the context of the feedback design
application of the last section, the assumed knowledge of the model will reflect the knowledge
of the simulated closed-loop behavior.

Our focus is on robust output regulation, where the goal is to steer the output to a constant ref-
erence or, equivalently, to reject constant disturbances. These problems encompass stabilization
to equilibria as a special case, where the output corresponds to the full state. The fundamen-
tal tool in the following analysis is the concept of total stability, which was first introduced
for continuous-time systems. One of the earliest appearance of total stability dates back to the
works of Dubosin, Gorsin and Malkin [138, pp. 316] (see also [180] and references therein),
and it was more recently studied in [17, 108, 180, 189]. In this context, robustness proper-
ties are analyzed directly via unstructured nonlinear model differences. This allows inferring
the preservation of a stable equilibrium point for sufficiently similar plants by means of simple
model comparison [17, Lemma 4, 5]. However, to the best of our knowledge, results mimick-
ing these well-established general approaches are still missing in the discrete-time nonlinear
context.

Some early necessary local conditions linked to discrete-time robustness appeared in [132].
Therein, the authors state that a necessary condition for local stability of nonlinear discrete-time
autonomous systems comes from invertibility of the vector field at the equilibrium and close to
it. The aforementioned condition can be seen as requiring the existence of a fixed point for a
perturbed system that does not differ too much in norm from the initial one. In other words,
the existence of a stable equilibrium has to be robust to small bounded variations of the local

31

2.1. Total stability for autonomous systems

dynamics. Also, results on robust stability appeared in [2, Chapter 5], where it is shown that if
the origin of the nominal system is locally stable and Lipschitz, it is also locally robustly stable
for bounded disturbances. More recent research in the field of converse Lyapunov theorems
for discrete-time systems has established that the existence of a smooth Lyapunov function is a
necessary condition for robust stability [111, 112]. Subsequently, [92] extended these results
to the stochastic framework. However, it is worth noting that these works primarily focused on
perturbations that vanish at the equilibrium. Furthermore, when considering persistent constant
disturbances (e.g., as discussed in [92, Section 7.1]), the authors only provide practical stability
guarantees without characterizing the system behavior inside the attractive set. This lack of
characterization may not ensure the correct functioning of specific tools classically associated to
output regulation. One common example is the integral action, which relies on the existence of
equilibria, as highlighted in [17].

By translating the continuous-time framework results to the discrete-time scenario, we will be
able to conclude that a neural controller trained on a simulator reproducing the fundamental
modes of the real plant will generate reliable closed-loop trajectories once applied on the real
system. This is the goal of this chapter. We draw conclusions similar to the continuous-time case,
yet under some fundamental differences, given by the discrete nature of the system. In particu-
lar, we show that stability properties of the equilibrium of a nominal model imply the existence
and stability of an equilibrium (possibly different from the former) for any perturbed system
“sufficiently close” to the nominal one. The result is proved under some regularity assumptions
and bounded mismatches. Moreover, we provide a counterexample highlighting that some re-
sults from the continuous-time scenario may not apply in the discretized framework, disproving
some arguments of [132]. In the second section of the chapter, we link the obtained results
on robust stability to the robust output regulation problem, building on recent forwarding tech-
niques [142]. We justify the addition of an integral action for rejecting constant disturbances
or tracking constant references. More specifically, we show that if the true model of the plant
to be controlled is sufficiently close to one used for controller design, then output regulation is
still achieved. Motivated by these findings, we combine the results of this chapter with the ones
presented in Chapter 1. We derive a local optimal controller guaranteeing exponential stability
of a cascade of a discrete-time linear system and an integrator, and we propose to globalize it to
the nonlinear scenario via learning. Finally, we build on the presented theoretical results to train
a robust DNN-based controller via model-free DRL methods on a simplified simulated nuclear
fusion reactor. The learned neural control law shows a robust behavior in tracking constant
references and in compensating modeling errors with respect to the precise simulator it is tested
on. The results of this chapter are covered in [S3,S5].

2.1 Total stability for autonomous systems

In this section, we study how the stability properties of the origin of a given discrete-time au-
tonomous nonlinear system

x+ = f(x), (2.1)

transfer to systems described by a sufficiently similar difference equation

x+ = f̂(x), (2.2)

where f : Rnx → Rnx , f̂ : Rnx → Rnx are continuous functions. As previously stated, the
findings on autonomous systems will be exploited in the following section for the analysis of

32

Chapter 2. Integral action for discrete-time nonlinear systems

robustness properties of the closed-loop. We propose two different results. The first one links the
existence of an equilibrium for system (2.1) to the existence of an equilibrium for the perturbed
system (2.2). Without loss of generality, we assume such an equilibrium for (2.1) to be the
origin. We show that an equilibrium for (2.2) exists, provided that the two models are locally
close enough. More precisely, the result holds if the functions f and f̂ are not too different
in the C0 norm, and system (2.1) presents a forward invariant set (trajectories starting in the
set remain in the set) containing its equilibrium and which is homeomorphic to the unit ball.
The second result considers the case where both the dynamics and the Jacobians of the two
systems (2.1), (2.2) are sufficiently similar. Under such conditions, we show that the existence
of a locally exponentially stable equilibrium for (2.1) implies the existence and uniqueness of
a locally exponentially stable equilibrium for (2.2) close to it. Moreover, we present a lower
bound on the size of the domain of attraction of the equilibrium for (2.2).

The definition of total stability historically involves quantitative properties of the solution initi-
ated from an equilibrium point under constantly acting disturbances [138, pp. 303]. Inspired
by these seminal works, we propose the following qualitative version of such a definition, which
is related to the preservation of an equilibrium. In particular, we define local similarities in the
phase plots between the vector fields of systems whose dynamics are close enough. A corre-
sponding delta-epsilon condition is given by Theorem 2.1.

Definition 2.1 (Total stability). The origin of system (2.1) is said to be totally stable if, for any f̂
close enough to f , we can associate an equilibrium xe which is (locally) asymptotically stable for
system (2.2).

2.1.1 Existence of equilibria

We now present the minimal assumption required to show the existence of an equilibrium for
(2.2). To this end, we introduce the following notation. Given a positive function V : A ⊆
Rnx → R⩾0 and a positive real number c > 0, we denote the sublevel set of such a function
as

Vc(V) := {x ∈ A : V (x) ⩽ c}. (2.3)

We also recall two useful definitions. Given two topological spaces X ,Y, a function ϕ : X → Y is
said to be a homeomorphism if it is continuous, bijective (i.e. its inverse exists and it is unique),
and its inverse is continuous. Moreover, X and Y are said to be homeomorphic if there exists a
function ϕ : X → Y which is a homeomorphism.

Assumption 2.1. Let A be an open subset of Rnx . There exists a C0 function V : A → R⩾0

satisfying V (0) = 0 and such that the following holds:

1. there exists a positive real number c̄ such that the set Vc̄(V) is homeomorphic to the unit ball;

2. there exists ρ ∈ (0, 1) such that

V (f(x)) ⩽ ρV (x), ∀x ∈ Vc̄(V). (2.4)

The first result is formalized by the following proposition. It states that, if the conditions of
Assumption 2.1 hold, system (2.2) admits (at least) one equilibrium inside the set Vc̄(V) if the
functions f and f̂ are “close enough”.

33

2.1. Total stability for autonomous systems

Proposition 2.1. Let Assumption 2.1 hold. Then, for any positive c ⩽ c̄ there exists a positive real
number δ such that, for any continuous function f̂ : Rnx → Rnx satisfying

|f̂(x)− f(x)| < δ, ∀x ∈ Vc̄(V) (2.5)

the corresponding system (2.2) admits an equilibrium point xe ∈ Vc(V). Moreover, such system has
no other equilibrium in the set Vc̄(V) \ Vc(V).

Proof. Consider c ⩽ c̄ and let ρ̂ be any positive real number satisfying ρ < ρ̂ < 1. Since the
set Vc̄(V) is homeomorphic to the unit ball, it is bounded. Moreover, the function V being
continuous, Vc(V) is a compact subset. Next, we define the function p : R⩾0 → R as

p(s) = max
x∈Vc̄(V)

v∈Rnx :|v|=1

{
V (f(x) + sv)− c̄

}
, (2.6)

with s a positive real number. Recalling item 2 of Assumption 2.1, we obtain

p(0) = max
x∈Vc̄(V)

v∈Rnx :|v|=1

{
V (f(x))− c̄

}
⩽ max

x∈Vc̄(V)
v∈Rnx :|v|=1

{
ρV (x)− c̄

}
⩽ (ρ− 1)c̄ < 0. (2.7)

Then, we define the function q : R⩾0 → R as

q(s) = max
x∈Vc̄(V)\Vc(V)
v∈Rnx :|v|=1

{
V (f(x) + sv)− ρ̂V (x)

}
.

It satisfies

q(0) = max
x∈Vc̄(V)\Vc(V)

{V (f(x))− ρ̂V (x)} ⩽ max
x∈Vc̄(V)\Vc(V)

{(ρ− ρ̂)V (x)}

⩽ (ρ− ρ̂)c < 0. (2.8)

As a consequence, since p, q are continuous functions satisfying (2.7), (2.8), there exists
δ > 0 such that

p(s) < 0, q(s) < 0, ∀ s ∈ [0, δ]. (2.9)

Now, pick any continuous function f̂ satisfying (2.5). Note that for all x in Vc̄(V) such that
f(x) ̸= f̂(x),

V (f̂(x))− c̄ = V (f(x) + sv)− c̄

with s = |f(x) − f̂(x)|, v = f̂(x)−f(x)
|f(x)−f̂(x)|

. Consequently, for all x in Vc̄(V) inequalities (2.9)

and (2.5) imply
V (f̂(x))− c̄ ⩽ p(|f(x)− f̂(x)|) < 0. (2.10)

Hence, f̂(x) ∈ Vc̄(V). By assumption, Vc̄(V) is homeomorphic to a unitary ball, which
we denote as B = {z ∈ Rnx : |z| ⩽ 1}. Hence, there exists two continuous mappings T :
Vc̄(V)→ B and T−1 : B→ Vc̄(V) such that T ◦T−1(z) = z for all z in B. Hence, the mapping
T ◦ f̂ ◦ T−1 : B → B is a continuous function. Hence, by Brouwer’s fixed point theorem,
there exists z∗ ∈ B such that T ◦ f̂ ◦ T−1(z∗) = z∗. Thus, it implies f̂ ◦ T−1(z∗) = T−1(z∗).
We deduce that xe = T−1(z∗) is a fixed point belonging to Vc̄(V). Now, let us consider the

34

Chapter 2. Integral action for discrete-time nonlinear systems

set Vc̄(V) \ Vc(V). As before, with the same definitions of s and v, inequalities (2.9) and
(2.5) imply that, for all x ∈ Vc̄(V) \ Vc(V), it holds

V (f̂(x))− ρ̂V (x) = V (f(x) + sv)− ρ̂V (x) ⩽ q(s) < 0.

Hence, f̂(x) ̸= x for all x ∈ Vc̄(V) \ Vc(V). Consequently, xe belongs to Vc(V) and this
concludes the proof.

Comments about Assumption 2.1. We remark that Assumption 2.1 and Proposition 2.1 do
not imply that equilibria of systems (2.1) and (2.2) are unique or attractive. Indeed, Assump-
tion 2.1 is not requiring the nominal system (2.1) to be asymptotically stable. It solely assumes
the existence of a forward invariant compact set that is homeomorphic to the unit ball. As a
matter of fact, since V is not strictly positive outside of the origin (i.e. we are not asking the
function V to be lower-bounded by a class K function of the norm of x), V may have multiple
local minima. This does not allow concluding asymptotic stability of the origin. In order to
clarify this aspect, we give the following simple example. Consider a system of the form

x+ = f(x) :=


1
2(x+ c) if x ⩾ c
1
2(x− c) if x ⩽ −c
x otherwise

where x ∈ R and f : R→ R is a piecewise continuous linear function and c is a strictly positive
constant. It can be seen that all the points satisfying |x| ⩽ c are equilibrium points, yet, none of
them is attractive. Now, select V as

V (x) :=

{
0 if |x| ⩽ c ,
|x| − c otherwise .

It is non-negative, continuous, and all level sets identified by c > 0 are homeomorphic to the
unit ball. Moreover, by the definition of f and since c > 0 we obtain

V (x+) =

{
0 ⩽ 1

2V (x) if |x| ⩽ c
1
2 |x| − 1

2c =
1
2V (x) otherwise

This shows that Assumption 2.1 holds and Proposition 2.1 applies. For instance, consider f̂(x) :=
f(x) + δ, satisfying (2.5). Pick c = 2c and c = c. If 2|δ| ⩽ c then f̂ admits a unique fixed point
xe satisfying |xe| = c+ 2|δ| ⩽ 2c and no other equilibrium exists inside the set Vc̄(V) \ Vc(V) :=
{2c < |xe| ⩽ 3c}. Finally, as a further example, by selecting any 0 < δ < 1

2c and

f̂(x) =


δ if 0 ⩽ x ⩽ δ
cx−δ2
c−δ if δ ⩽ x ⩽ c

f(x) + δ otherwise

it can be verified that x∗e = δ is an additional equilibrium point with respect to the previously
defined xe. This new equilibrium lies inside V0(V). The above example is represented in Fig-
ure 2.1.

Proposition 2.1 establishes the conditions under which the existence of an equilibrium for the
nominal model (2.1) implies the existence of an equilibrium for any perturbed system (2.2)
sufficiently close to the nominal one. This result parallels the continuous-time one presented

35

2.1. Total stability for autonomous systems

x

f(x)

f̂(x)

V (x)

f(x) + δ

f(x)− δ

c−c

(c, c)

(−c,−c)

(δ, δ)

Equilibrium for f̂

Figure 2.1: Example of perturbed dynamics preserving equilibria.

in [17, Lemma 4]. However, different assumptions are needed. In the continuous-time case, the
origin of the nominal system is supposed to be asymptotically stable. In turn, for any forward
invariant set, this ensures the existence of a Lyapunov function whose level sets are homeo-
morphic to a sphere, see [231, Theorem 1.2]. Unfortunately, in the discrete-time case this fact
is in general not true. As a matter of fact, Lyapunov level sets may be non-homeomorphic to
spheres, contrarily to what is stated in [132, Proof of Theorem 2.7]. As an example, see [90].
This phenomenon is due to the nature of such systems, as the presence of jumps doesn’t allow
an easy translation of continuous-time results. As a consequence, in Assumption 2.1 we ask for
the existence of an invariant sublevel set Vc̄(V) homeomorphic to a ball. At the same time, we
do not require asymptotic stability of the origin.

In the following, we present an example showing the aforementioned behavior. In particular, we
focus on a simple and stable linear system. We carefully craft a non-trivial Lyapunov function
guaranteeing asymptotic stability of the origin. Successively, we exploit the structure of such a
function to show that it has no sublevel set which is homeomorphic to a ball. Consider the linear
system

x+ = f(x) :=
1

2
Inx x,

where x ∈ Rnx , and the candidate Lyapunov function

V (x) =


0 x = 0

6|x| − 5 · 2i 2i ⩽ |x| < 2i + 2i−1

−4|x|+ 5 · 2i+1 2i + 2i−1 ⩽ |x| < 2i+1

where i ∈ Z ∪ {−∞,+∞} and it is uniquely defined by |x|. It can be verified that V (x) is
continuous. Consider the case where 2i ⩽ |x| < 2i + 2i−1 for some i in Z. We have 2i−1 ⩽
|f(x)| < 2i−1 + 2i−2 and

V (f(x))− V (x) = 6|f(x)| − 5 · 2i−1 − 6|x|+ 5 · 2i = −3|x|+ 5 · 2i−1 < −2i−1 < 0.

Similarly, for 2i + 2i−1 ⩽ |x| < 2i+1 for some i in Z we obtain 2i−1 + 2i−2 ⩽ |x| < 2i and

V (f(x))− V (x) = −4|f(x)|+ 5 · 2i + 4|x| − 5 · 2i+1 = 2|x| − 5 · 2i < −2i < 0.

36

Chapter 2. Integral action for discrete-time nonlinear systems

Figure 2.2: Lyapunov sublevel set for x ∈ R2

Hence, V is a continuous Lyapunov function for the system. However, it does not exist any c > 0
such that the corresponding sublevel set Vc(V) defined in (2.3) is homeomorphic to a ball, since
each sublevel set is not path-connected. Figure 2.2 shows such a behavior for the planar case
x ∈ R2.

Clearly, one could have picked a quadratic Lyapunov function for such a linear system. Yet,
this example shows that discrete-time Lyapunov functions do not always possess the desired
homeomorphicity property. As a consequence, we cannot guarantee that Lyapunov functions
provided by converse Lyapunov theorems (e.g., [106]) satisfy such a property.

2.1.2 Existence of an exponentially stable equilibrium

We now present the main result on total stability of this section, which is formalized in the
next theorem. This result parallels [17, Lemma 5]. We exploit the asymptotic properties of
the equilibrium for the nominal system (2.1) to prove existence, uniqueness and stability of an
equilibrium for (2.2).

Theorem 2.1. Assume the origin of the system (2.1) is asymptotically stable with domain of attrac-
tion A and locally exponentially stable. Let C be an arbitrary compact set satisfying {0} ⊂ C ⊂ A
and suppose the function f is C0 for all x ∈ A and C1 for all x ∈ C. Then, for any forward invariant
compact set C verifying

{0} ⊂ C ⊂ C ⊂ A,
there exists a positive scalar δ > 0 such that, for any function f̂ which is C0 for all x ∈ A and C1

for all x ∈ C and satisfying
|f̂(x)− f(x)| ⩽ δ, ∀x ∈ C, (2.11)∣∣∣∣∣∂f̂∂x (x)− ∂f

∂x
(x)

∣∣∣∣∣ ⩽ δ, ∀x ∈ C, (2.12)

the corresponding system (2.2) admits an equilibrium point xe ∈ C, which is asymptotically stable
with a domain of attraction containing C and locally exponentially stable. In other words, the origin
of system (2.1) is totally stable.

Note that, differently from [17, Lemma 5], the nominal and perturbed models are required to be
C1 inside C solely, while C0 outside. This allows considering interesting continuous functions,
such as saturation functions, which are not differentiable everywhere.

37

2.1. Total stability for autonomous systems

Proof. The proof is organized in several steps. We start by establishing the existence,
uniqueness and local exponential stability of an equilibrium for the perturbed system (2.2).
Then, we characterize the size of its domain of attraction by combining the converse Lya-
punov theorems established in [106] and techniques similar to the ones used in the proof
of Proposition 2.1. Before showing the proof we recall a useful relation. Given a symmetric
positive definite matrix P ∈ Snx≻0, for any A ∈ Rnx×nx and for any arbitrary scalar r := r1r2
with r1, r2 > 0, the generalized Schur’s complement implies that the following inequalities
are equivalent {

A⊤PA− rP ≺ 0

−P ≺ 0
⇐⇒

(
−r1P A⊤P
PA −r2P

)
≺ 0. (2.13)

Step 1: Local analysis Let P be a positive definite symmetric matrix and a ∈ (0, 1) a real
scalar satisfying

∂f

∂x
(0)⊤P

∂f

∂x
(0) ⪯ aP.

Since the origin is a locally exponentially stable equilibrium for system (2.1), its lineariza-
tion around the origin is stable. Hence, the existence of P is guaranteed by discrete-time
Lyapunov inequality. In the following, given any c > 0, we denote with Vc(P) the subset of
Rnx defined as

Vc(P) := {x ∈ Rnx : x⊤Px ⩽ c} ⊂ Rnx . (2.14)

Now, note that the quadratic Lyapunov function defined by P is a local Lyapunov function
for system (2.1). Moreover, note that for any a ∈ (0, 1) we have a < 1+a

2 < 1. Then, by
continuity there exists a real number ε > 0 such that Vε(P) ⊆ C and

∂f

∂x
(x)⊤P

∂f

∂x
(x) ≺ 1 + a

2
P ∀x ∈ Vε(P).

Equivalently, it holds

Ψ(x) :=

−1+a
2 P

∂f

∂x
(x)⊤P

P
∂f

∂x
(x) −P

 ≺ 0 (2.15)

for all x ∈ Vε(P). Consider the candidate Lyapunov function

V (x) = x⊤Px, V (x+) = f(x)⊤Pf(x).

By defining a function F : R → Rnx as F (s) := f(sx), and since we assumed the origin to
be an equilibrium point for f , we have

f(x) = f(x)− f(0) = F (1)− F (0) =
∫ 1

0

∂F

∂s
(s) ds =

∫ 1

0

∂f

∂x
(sx)x ds.

38

Chapter 2. Integral action for discrete-time nonlinear systems

Then, recalling that 1+a
2 < 1 and via the addition and subtraction of V (x+), we compute

V (x+)−1+a
2 V (x) = −1 + a

2
x⊤Px+He

{∫ 1

0
x⊤

∂f

∂x
(sx)⊤Pf(x) ds

}
− f(x)⊤Pf(x)

= −
(
1 + a

2
x⊤Px+ f(x)⊤Pf(x)

)∫ 1

0
ds+He

{∫ 1

0
x⊤

∂f

∂x
(sx)⊤Pf(x) ds

}
=

∫ 1

0

[
− 1 + a

2
x⊤Px+He

{
x⊤

∂f

∂x
(sx)⊤Pf(x)

}
− f(x)⊤Pf(x)

]
ds

=
(
x⊤ f(x)⊤

) ∫ 1

0
Ψ(sx)ds

(
x

f(x)

)
< 0 (2.16)

for all x ∈ Vε(P) and s ∈ [0, 1], where in the last step we used the definition of Ψ in (2.15).

Step 2: Existence of an equilibrium for the perturbed system Now, let f̂ satisfy

|f̂(x)− f(x)| ⩽ δ1 :=

√
ε(1− a)2

8λ(P)(3 + a)
, (2.17)

for all x ∈ V ε
2
(P), where λ̄(·) represents the maximum eigenvalue of its argument. In the

following, we show that the existence of such a bound and the local stability of system (2.1)
imply the existence of an equilibrium point xe ∈ V ε

2
(P) for the perturbed system (2.2). To

this aim, we leverage on Brouwer’s fixed point theorem. Hence, we need to show that the
set V ε

2
(P) is forward invariant for system (2.2) and that it is homeomorphic to a unit ball.

Let us choose x̄ ∈ Rnx satisfying x̄ ∈ ∂V ε
2
(P) and note that for all x ∈ ∂V ε

2
(P)

f̂(x)⊤P f̂(x) =
[
f̂(x)− f(x)

]⊤
P
[
f̂(x)− f(x)

]
+f(x)⊤Pf(x)+2

[
f̂(x)− f(x)

]⊤
Pf(x).

Then, using the generalized Young’s inequality 2αβ ⩽ ν−1α2 + νβ2 with ν =
1− a

2(1 + a)
,

α =
[
f̂(x)− f(x)

]⊤√
P , β =

√
Pf(x) on the last term, we obtain

f̂(x)⊤P f̂(x) ⩽
3 + a

1− a
[
f̂(x)− f(x)

]⊤
P
[
f̂(x)− f(x)

]
+

3 + a

2(1 + a)
f(x)⊤Pf(x)

⩽
1− a
4

x̄⊤Px̄+
3 + a

4
x⊤Px ⩽

1− a
4

x̄⊤Px̄+
3 + a

4
x̄⊤Px̄ ⩽ x̄⊤Px̄,

where we used inequality (2.17) in the second step for bounding the first term on the right-
hand side of the inequality.

Thus, V ε
2
(P) is forward invariant for the system (2.2). Moreover, since ∂V ε

2
(P) is the level

surface of a quadratic Lyapunov function, it is homeomorphic to a sphere. Hence, the
set V ε

2
(P) is homomorphic to a closed unit ball. Following the proof of Proposition 2.1

and employing Brouwer’s fixed point theorem, there exists a point xe ∈ V ε
2
(P) satisfying

f̂(xe) = xe.

39

2.1. Total stability for autonomous systems

Step 3: Local exponential stability Now we show that xe ∈ V ε
2
(P) is locally exponen-

tially stable for (2.2). In particular, we show that if f̂ satisfies∣∣∣∣∣∂f̂∂x (x)− ∂f

∂x
(x)

∣∣∣∣∣ ⩽ δ2 :=
1− a

2
√
10 + 6a

, (2.18)

for all x ∈ Vε(P), then, by denoting

x̃ := x− xe, f̄(x̃) := f̂(x̃+ xe)− f̂(xe) = f̂(x)− xe,

the candidate Lyapunov function V̂ (x̃) = x̃⊤Px̃ has to satisfy

V̂ (x̃+) = f̄(x̃)
⊤
P f̄(x̃) ⩽

3 + a

4
V̂ (x̃) < V̂ (x̃) (2.19)

for all x̃ ∈ Ṽε(P), where

Ṽε(P) = {x̃ ∈ Rnx : (xe + sx̃) ∈ Vε(P), ∀s ∈ [0, 1]}.

To show such a property, first note that by defining a function G : R → Rnx as G(s) =
f̂(xe + sx̃), it holds

f̄(x̃) = G(1)−G(0) =
∫ 1

0

∂f̂

∂x
(xe + sx̃) ds x̃.

Then, similarly to the previous part of the proof, we compute

V̂ (x̃+)− 3 + a

4
V (x̃) = −3 + a

4
x̃⊤Px̃− f̄(x̃)⊤P f̄(x̃) + 2f̄(x̃)

⊤
P

∫ 1

0

∂f̂

∂x
(xe + sx̃)x̃ ds

=
(
x̃⊤ f̄(x̃)

⊤
)∫ 1

0
Ψ̂(xe + sx̃)ds

(
x̃

f̄(x̃)

)
, (2.20)

where in the last step we defined

Ψ̂(x) :=

−3+a
4 P

∂f̂

∂x
(x)⊤P

P
∂f̂

∂x
(x) −P

 . (2.21)

Recalling (2.13) and since a ∈ (0, 1), if

Φ(x) :=

−5+3a
8 P

∂f̂

∂x
(x)⊤P

P
∂f̂

∂x
(x) −2(3+a)

5+3a P

 ≺ 0

then Ψ̂(x) ≺ 0. Thus, we can study the sign semi-definiteness of Φ(x) to conclude the sign
semi-definiteness of Ψ̂(x). By adding and subtracting Ψ(x) to Φ(x) and recalling inequality
(2.15), we obtain,

Φ(x) = Φ(x)−Ψ(x) + Ψ(x) ≺ Φ(x)−Ψ(x)

40

Chapter 2. Integral action for discrete-time nonlinear systems

Then,

Φ(x) ≺


a− 1

8
P

∂f̃

∂x
(x)⊤P

P
∂f̃

∂x
(x)

a− 1

5 + 3a
P

 ,

with ∂f̃
∂x (x) := ∂f̂

∂x (x) −
∂f
∂x (x). Via generalized Schur’s complement and bound (2.18), by

following the lines of Step 2 and since a ∈ (0, 1), we conclude that the matrix on the right-
hand side is negative semi-definite. Consequently, it holds Ψ̂(x) ≺ 0 for all x ∈ Ωε. As
a consequence, we conclude Ψ̂(xe + sx̃) ≺ 0 for all x̃ ∈ Ω̃ showing (2.19). We proved
that xe is locally exponentially stable for (2.2) with a domain of attraction including the
set {x̃ ∈ Ṽε(P)}. Note that by the definition of Ṽε(P) and since Vε(P) is convex, the point
xe + sx̃ = (1− s)xe + sx belongs to the set Vε(P) for all (x, xe, s) ∈ Vε(P)× Vε(P)× [0, 1] .
Hence, the domain of attraction of xe ∈ V ε

2
(P) contains the set {x ∈ Vε(P)}.

Step 4: Domain of attraction We now provide a stronger lower bound on the size of
the domain of attraction of the equilibrium point xe for the perturbed system (2.2). In
particular, we show that xe has a domain of attraction that includes the set C. First, by
picking

δ3 = min{δ1, δ2} (2.22)

where δ1 comes from (2.17) and δ2 is defined in (2.18), we obtain that the point xe is a
locally exponentially stable equilibrium point for (2.2). Moreover, it is contained in C and
its domain of attraction includes Vε(P).
Now, since C is forward invariant and since system (2.1) is time-invariant and described by
a continuous function on A, we can leverage on [106, Theorem 1] to claim the existence of
smooth Lyapunov functions V0 : A → R⩾0 and VC : A → R⩾0 such that for all x ∈ A it holds

α1(|x|) ⩽ V0(x) ⩽ α2(|x|), V0(f(x)) ⩽ ρ0V0(x), V0(x) = 0 ⇐⇒ x = 0,

and

α1(d(x, C)) ⩽ VC(x) ⩽ α2(d(x, C)), VC(f(x)) ⩽ ρCVC(x), VC(x) = 0 ⇐⇒ x ∈ C,

where α1, α2 ∈ K∞ and (ρ0, ρC) ∈ (0, 1) × (0, 1). Note that the two Lyapunov functions
can be bounded by different K∞ functions. Yet, we can select the minimum (maximum)
between those and obtain the same lower (upper) bound for the two. Consider now the set
C. Since it is compact and included in A, there exists a strictly positive real number d̄ such
that the set D := {x ∈ A : d(x, C) ∈ (0, d̄]} is a subset of A, namely D ⊂ A. Let

V(x) = VC(x) + σV0(x), (2.23)

with

σ =
α1(d̄)

2ν
, ν = sup

x∈A:d(x,C)⩽d̄
V0(x).

41

2.1. Total stability for autonomous systems

By picking ρ = max{ρ0, ρC}, for all x ∈ A it satisfies

α3(|x|) ⩽ V(x) ⩽ α4(|x|), V(f(x)) ⩽ ρV(x), V(x) = 0 ⇐⇒ x = 0

with α3, α4 ∈ K∞. This implies that V is a Lyapunov function for system (2.1) on A. Define
the following sets

∂Vd̄(V) := {x ∈ A : V(x) = α1(d̄)}, Vd̄(V) := {x ∈ A : V(x) ⩽ α1(d̄)}. (2.24)

Due to the definitions of VC in (2.23) and its lower bound, we have

α1(d(x, C)) ⩽ VC(x) ⩽ V(x).

Hence, d(x, C) ⩽ d̄ for all x ∈ Vd̄(V). As a consequence, for all x ∈ Vd̄(V), we have
ν ⩾ V0(x) and by (2.23) it holds

VC(x) = α1(d̄)

(
1− V0(x)

2ν

)
> 0.

These last relations imply C ⊂ Vd̄(V) ⊆ D ⊂ A. Now, let us identify by v > 0 a scalar such
that if V(x) ⩽ v then x ∈ V ε

2
(P), namely x⊤Px ⩽ ε

2 for all x ∈ A : V(x) ⩽ v. Define

δ4 := min

 inf
(y′,y′′)∈∂Vd̄(V)×∂C

|y′ − y′′|, (1− ρ)v
sup

x∈Vd̄(V)

∣∣∂V
∂x (x)

∣∣
 (2.25)

and consider (2.11) with (2.25). We can define the function p : R⩾0 → R as

p(s) = max
x∈C,|v|=1

{V (f(x) + sv)− α1(d̄)}.

Then, by the first argument of (2.25) and (2.24), for all s ∈ [0, δ4] we have p(s) < 0. Note
that for all x in C such that f(x) ̸= f̂(x),

V(f̂(x))− α1(d̄) = V (f(x) + sv)− α1(d̄) (2.26)

with s = |f̂(x)− f(x)|, v = f̂(x)−f(x)
|f̂(x)−f(x)|

. Consequently, for all x in C,

V(f̂(x))− α1(d̄) ⩽ p(|f̂(x)− f(x)|) ⩽ 0. (2.27)

Thus, f̂(x) ∈ Vd̄(V) for all x ∈ C and

f(x) + s(f̂(x)− f(x)) ∈ Vd̄(V), ∀(x, s) ∈ C × [0, 1].

Then, by picking s ∈ [0, 1] and a function H : R → R as H(s) = V (f(x) + s(f̂(x) − f(x))),
we have

V(f̂(x))−V(f(x)) = H(1)−H(0) =

∫ 1

0

∂V

∂x

(
f(x) + s(f̂(x)− f(x))

)
ds
[
f̂(x)− f(x)

]
.

42

Chapter 2. Integral action for discrete-time nonlinear systems

Consequently, for all x ∈ Vd̄(V), we obtain

V(f̂(x)) ⩽ V(f(x)) +

∫ 1

0
sup

x∈Vd̄(V)

∣∣∂V
∂x (x)

∣∣ds∣∣f̂(x)− f(x)∣∣
< ρV(x) + sup

x∈Vd̄(V)

∣∣∂V
∂x (x)

∣∣ δ < ρV(x) + (1− ρ)v.

Since ρ ∈ (0, 1), it holds {
V(f̂(x)) < V(x) ∀x ∈ C \ V ε

2
(P)

V(f̂(x)) < v ∀x ∈ V ε
2
(P).

(2.28)

Therefore, we may pick any function f̂ satisfying conditions (2.11), (2.12) with δ < min{δ3, δ4}.
The analysis shows that bound (2.25) ensures trajectories of the perturbed system (2.2) ini-
tialized in C converge to V ε

2
(P). Moreover, we previously proved Vε(P) is included in the

exponentially stable domain of attraction of xe. Hence, xe is an asymptotically stable equi-
librium for (2.2) and it is locally exponentially stable with domain of attraction including C.

Theorem 2.1 states that, in the presence of bounded mismatches, existence of a stable equilib-
rium is preserved for the perturbed system (2.2). This new equilibrium may not coincide with
the original one, yet it is guaranteed to be in its neighborhood. As a particular example, we
may study the case in which x+ = f(x) + δ with δ being a constant small perturbation. In
such scenario, the equilibrium of the perturbed system slightly shifts (it is actually computed as
the solution xe to f(xe) + δ = xe), and we recover the result proposed in [132, Theorem 2.7].
Hence, even if we highlight that the proof proposed by the authors is either incorrect or missing
some arguments, we believe that the general statement may be correct.

Finally, we highlight that the existence of a (possibly shifted) equilibrium may be of great value
in some applications. A direct example is the control of systems via integral-action, see e.g.,
[1,17,86], as detailed in the next section.

2.2 Total stability motivates integral action

As stated at the end of the previous section, the results of Theorem 2.1 can be of interest for the
output regulation problem and, in particular, in the context of integral-action controllers, see
e.g. [198]. Such control schemes are commonly employed for (constant) perturbation rejection
or (constant) reference tracking. The most trivial examples are PI and PID laws. In particular,
consider the following system

w+ = w,

ξ+ = F (w, ξ, u), e = H(w, ξ),
(2.29)

where ξ ∈ Rnξ is the state of the plant, u ∈ Rnu is the control input and e ∈ Rne represents
the output to be regulated to zero (without loss of generality), with ne ⩽ nu. For instance, in a
tracking problem, one can set e = y − yref where y is an output that must converge to a desired
reference yref . In the representation (2.29), w ∈ Rnw are constant signals representing refer-
ences to be tracked or (unknown) perturbations to be rejected. Following the output regulation
theory and the celebrated internal-model principle, asymptotic regulation of the output e can

43

2.2. Total stability motivates integral action

be achieved robustly with respect to model uncertainties of the functions F and H only if the
controller contains an integral action (able to perfectly compensate unknown constant perturba-
tions), see, e.g. [17,77,86] for the continuous-time case. We take inspiration from the results of
the previous section, where constant perturbations can be included in a more general context of
perturbed functions (e.g. instead of considering f(x) +w with f(0) = 0 we can simply consider
a new function f̂(x) possibly with f̂(0) ̸= 0). Then, we set a nominal value for the model (2.29)
and for the signals w. We describe the nominal system, possibly after a change of coordinate, in
the form

ξ+ = φ(ξ) + g(ξ, u), e = h(ξ)

with φ(0) = 0, g(ξ, 0) = 0 and h(ξ) = 0, so that the origin represents the nominal desired
equilibrium on which the regulation objective e = 0 is satisfied. Our objective is to show that the
use of an integral action allows to robustly preserve the desired asymptotic regulation property
e = 0 in the presence of model uncertainties in the nominal functions φ, g, h (that may come
from different values of w or uncertainties in F,H). For this reason, the explicit use of the
variable w in the state dynamics is not used anymore. Still, one can keep in mind that all
the functions may depend on some nominal value w⋆. Then, consider the following extended
system {

ξ+ =φ(ξ) + g(ξ, u), e = h(ξ),

z+ =z + k(ξ, e)
(2.30)

where z ∈ Rne represents a generalized integral discrete-time action with k being a C1 function
satisfying the following set of conditions

k(ξ, e) = 0 ⇐⇒ e = 0

|k(ξ, ya)− k(ξ, yb)| ⩽ L1(ξ)|ya − yb|∣∣∣∣∂k∂ξ (ξ, ya)− ∂k

∂ξ
(ξ, yb)

∣∣∣∣ ⩽ L2(ξ) |ya − yb|
(2.31)

for all ξ ∈ Rnξ , for all (ya, yb) ∈ Rne × Rne and for some continuous functions L1, L2 : Rnx →
R⩾0. It can be easily seen that by selecting k(ξ, e) = e we recover a standard discrete-time
integrator

z+ = z + e

that trivially satisfies the previous requirements with L1(ξ) = 1, L2(ξ) = 0. Under a feedback
controller u = α(ξ, z), we can define the extended dynamics for x = col(ξ, z) as

x+ = f(x) :=

(
φ(ξ) + g(ξ, α(ξ, z))
z + k(ξ, h(ξ))

)
. (2.32)

As previously explained, variations of the nominal value of the signals w and model uncertain-
ties of the functions f, g, h can be fully captured and represented with a closed-loop perturbed
model

x+ = f̂(x) :=

(
φ̂(ξ) + ĝ(ξ, α(ξ, z))

z + k(ξ, ĥ(ξ, α(ξ, z)))

)
. (2.33)

Thus, the goal is to study the robustness properties of the closed-loop x+ = f(x) and, in par-
ticular, to establish conditions under which the existence of an equilibrium is preserved. As
a matter of fact, the properties of the generalized integral action (2.31) allow concluding the
desired regulation property e = 0 is still preserved at the equilibrium in the presence of model
uncertainties.

44

Chapter 2. Integral action for discrete-time nonlinear systems

To this end, we introduce the following compact notation.

∆ξ(x) := |φ̂(ξ)− φ(ξ) + ĝ(ξ, α(ξ, z))− g(ξ, α(ξ, z))|,
∆e(x) := |ĥ(ξ, α(ξ, z))− h(ξ)|,
∆z(x) := |k(ξ, ĥ(ξ, α(ξ, z)))− k(ξ, h(ξ)|,

∆∂ξ(x) :=

∣∣∣∣∂φ̂∂ξ (ξ)− ∂φ

∂ξ
(ξ) +

∂ĝ

∂ξ
(ξ, α(ξ, z))− ∂g

∂ξ
(ξ, α(ξ, z))

∣∣∣∣ ,
∆∂u(x) :=

∣∣∣∣∂ĝ∂u(ξ, α(ξ, z))− ∂g

∂u
(ξ, α(ξ, z))

∣∣∣∣ ,
∆∂e(x) :=

∣∣∣∣∣∂ĥ∂ξ (ξ, α(ξ, z))− ∂h

∂ξ
(ξ)

∣∣∣∣∣+
∣∣∣∣∣∂ĥ∂u(ξ, α(ξ, z))

∣∣∣∣∣ .

(2.34)

2.2.1 Existence of equilibria

We first study the existence of equilibria where regulation is achieved for the perturbed system
(2.33). Hence, we assume φ, g, α, h to be continuous functions.

Proposition 2.2. Let Assumption 2.1 hold for the closed-loop system (2.32). Moreover, assume
h(0) = 0, g(ξ, 0) = 0 for all ξ ∈ Rnξ and let k satisfy (2.31). Then, for any positive c ⩽ c̄ there
exists a positive real number δ̄ > 0 such that, for any continuous functions φ̂ : Rnξ → Rnξ , ĝ :
Rnξ × Rnu → Rnξ , ĥ : Rnξ × Rnu → Rne satisfying

∆ξ(x) + ∆e(x) ⩽ δ̄, ∀x ∈ Vc̄(V), (2.35)

with ∆ξ,∆e defined in (2.34), the corresponding system (2.33) admits an equilibrium point (ξe, ze)
∈ Vc(V) on which output regulation is achieved, i.e. ĥ(ξe, α(ξe, ze)) = 0. Furthermore, system
(2.33) has no other equilibrium in the set Vc̄(V) \ Vc(V).

Proof. The proof relies on Proposition 2.1. It can be easily checked that (2.35) implies
(2.11) for the extended system (2.32). Since Rnξ × Rne is a finite dimensional space, all
norms are equivalent. Hence, there exists a strictly positive constant ℓ such that |x| ⩽
ℓ
∑n

i=1 |xi| where xi denotes the i-th component of x. Hence, recalling the compact notation
(2.34), we have |f̂(x) − f(x)| ⩽ ℓ(∆ξ(x) + ∆z(x)) for all x ∈ Rq+p. By defining L :=
supξ∈Vc̄(V) L1(ξ) ⩾ 0,we obtain |∆z(x)| ⩽ L|∆e(x)| for all x ∈ Vc̄(V) and therefore equation
(2.31) yields |f̂(x) − f(x)| ⩽ ℓ(1 + L)(∆ξ(x) + ∆e(x)) for all x ∈ Vc̄(V). Hence, (2.35)
implies (2.5) if δ̄ < δ

ℓ(1+L) . Then, Proposition 2.1 guarantees the existence of an equilibrium

(ξe, ze) ∈ Vc(V). In such an equilibrium, z+e = ze and consequently k(ξ, ĥ(ξe, α(ξe, ze))) = 0.
By (2.31), the last relation implies ĥ(ξe, α(ξe, ze)) = 0 and this concludes the proof.

Proposition 2.2 is a direct application of Proposition 2.1 to the extended system (2.32). Hence,
it guarantees the existence of (at least one) equilibrium for the perturbed closed-loop dynamics
(2.33). In turn, due to the presence of the integral action, in such equilibrium the outputs e are
identically 0, even in presence of model mismatches of the function φ, g. Thus, Proposition 2.2
shows that the addition of discrete-time generalized integrator dynamics to discrete-time non-
linear systems guarantees the existence of equilibria where (constant) reference tracking and
(constant) disturbance rejection is achieved. In other words, if the controller (designed for a
nominal system) is able to make the trajectories of the perturbed model converge to an equilib-
rium, then asymptotic regulation e = 0 is achieved.

45

2.2. Total stability motivates integral action

2.2.2 Robust regulation

Proposition 2.2 does not provide any characterization of the attractivity properties of the equi-
libria. In other words, it does not characterize the asymptotic regulation objective when starting
from an initial condition different from any of the equilibria. As a matter of fact, the gener-
ation of attractive and stable equilibria is often the main objective of control designs. Hence,
we build on Theorem 2.1 to show that the addition of a discrete-time integral component to
stabilizing controllers allows for robust asymptotic (constant) reference tracking and (constant)
disturbance rejection.

Assumption 2.2. There exists an open set A ⊆ Rnξ ×Rne and a C1 function α : Rnξ ×Rne → Rnu
such that the control law u = α(ξ, z) makes the origin of system (2.32) asymptotically stable with
domain of attraction A and locally exponentially stable.

Under Assumption 2.2, we can infer robust setpoint-tracking properties for the extended system
(2.32) by means of the results in the previous section.

Proposition 2.3. Let Assumption 2.2 hold and let C be an arbitrary compact subset of A including
the origin. Moreover, let functions φ, g, h be C0 for all (ξ, z) ∈ A and C1 for all (ξ, z) ∈ C. Finally,
assume h(0) = 0, g(ξ, 0) = 0 for all ξ ∈ Rnξ and let k satisfy (2.31). Then, for any forward
invariant compact set C verifying {0} ⊂ C ⊂ C ⊂ A, there exists a strictly positive scalar δ̄ such
that, for functions φ̂, ĝ, ĥ that are C0 for all (ξ, z) ∈ A and C1 for all (ξ, z) ∈ C, and satisfy

∆ξ(x) + ∆e(x) ⩽ δ̄, ∀x ∈ C, (2.36)

∆∂ξ(x) + ∆∂u(x) + ∆∂e(x) ⩽ δ̄, ∀x ∈ C, (2.37)

with ∆ξ,∆e,∆∂ξ,∆∂u,∆∂e defined in (2.34), the corresponding system (2.33) admits an equilib-
rium point (ξe, ze) ∈ C which is locally exponentially stable and asymptotically stable with domain
of attraction containing C. Moreover, on such an equilibrium, ĥ(ξe, α(ξe, ze)) = 0.

Proof. To prove the existence of an asymptotically stable equilibrium for (2.33) with a
locally exponential behavior, we rely on Theorem 2.1. As in the proof of Proposition 2.2,
it can be easily checked that (2.36) implies (2.11) for the extended system (2.32). By
following the same steps, we define L := supξ∈C L1(ξ) ⩾ 0. With the same definition of ℓ

as in the proof of Proposition 2.2, (2.36) implies (2.11) for all x ∈ C if δ < min{δ3,δ4}
ℓ(1+L) , with

δ3, δ4 defined in Step 4 of the proof of Theorem 2.1. Similarly, we can check that (2.37)
implies (2.12) for the extended system (2.32). Let us define

Lα := sup
(ξ,z)∈C

{∣∣∂α
∂ξ (ξ, z)

∣∣, ∣∣∂α∂z (ξ, z)∣∣} , Lk := sup
ξ∈C
{L1(ξ), L2(ξ)} ⩾ L.

To show this, let ℓ̄ > 0 such that |A| ⩽ ℓ̄
∑n

i=1 |Ai| where A is any (rectangular) matrix and
Ai denotes the i-th row. Then, by recalling the notation introduced in (2.34) and using the
previous inequalities, we obtain∣∣∂f̂

∂x (x)−
∂f
∂x (x)

∣∣ ⩽ ℓ̄∆∂ξ(x) + 2ℓ̄Lα∆∂u(x) + 2ℓ̄LαLk
∣∣∂ĥ
∂u(ξ, α(ξ, z))

∣∣
+ 2ℓ̄Lk

∣∣∂ĥ
∂ξ (ξ, α(ξ, z))− ∂h

∂ξ (ξ)
∣∣

⩽ ℓ̄(1 + 2(Lα + Lk + LαLk))(∆∂ξ +∆∂u +∆∂e)

46

Chapter 2. Integral action for discrete-time nonlinear systems

for all x ∈ C. Then, by picking

µ = max
{
ℓ(1 + L), ℓ̄(1 + 2(Lα + Lk + LαLk))

}
and δ̄ < min{δ3,δ4}

µ . Theorem 2.1 guarantees the existence of an asymptotically stable equi-
librium xe = (ξe, ze) which is close to the origin and locally exponentially stable. In such an
equilibrium, z+e = ze and consequently k(ξ, ĥ(ξe, α(ξe, ze))) = 0. By (2.31), ĥ(ξe, α(ξe, ze)) =
0 and this concludes the proof.

Proposition 2.3 states that discrete-time stabilizing controllers exploiting integral actions achieve
robust output regulation to constant setpoints. As an intuitive example, we may consider con-
trollers designed for a nonlinear model, whose constant parameters are identified through data.
Then, Proposition 2.3 guarantees that, if the approximation error is sufficiently small, the con-
troller will still stabilize the system and the output will reach the desired constant setpoint.

We finally remark that Proposition 2.3 holds for small model perturbations, i.e. for small varia-
tions of the value of w from its nominal value w⋆, when considering the original problem (2.29).
Such a result parallels the works [17] in continuous-time. If one wants to guarantee output reg-
ulation in the presence of large variations of the values of w, it is generally needed to rely on
incremental properties, e.g., [86].

About Assumption 2.2 and forwarding approach. It is not straightforward to see when and
how Assumption 2.2 can be satisfied, namely how to design the feedback law α(x, z) for the
extended dynamics (2.30). An elegant solution comes from discrete-time forwarding technique
[142]. If the origin of the autonomous system ξ+ = φ(ξ) is globally asymptotically stable and
locally exponentially stable, the origin of the extended system (2.32) can be stabilized via a
feedback controller. By considering the SISO scenario nu = ne = 1, the result in [142, Theorem
4.2] provides a feedback law u = α(ξ, z) achieving global asymptotic and local exponential
stability of the origin of the extended system (2.32).

In particular, suppose that W : Rnξ → R⩾0 is a Lyapunov function for system (2.1) which is
locally quadratic. Assume also that the linearization of (2.32) around the origin is stabilizable
and suppose to know a mapping M : Rnξ → R satisfying M(ξ+) = M(ξ) + k(ξ, h(ξ)). Then, we
can perform a change of coordinates η = z −M(ξ) and consider ζ = col(ξ, η). This leads to the
stabilizing controller u = ᾱ(ζ) given by the (implicit) solution to

u = −1

u

∫ u

0

∂V
∂ζ G(ζ

+(v), v)dv

with

V (ζ) =W (ξ) + η2, G(ζ, u)⊤ =
(
∂g
∂u(ξ, u),−∂M

∂ξ
∂g
∂u(ξ, u)

)
.

In the original coordinates, we obtain α(ξ, z) = ᾱ(ξ, z−M(ξ)). The function V above defined is
a Lyapunov function for the closed-loop systems. Moreover, note that if the function W has the
desired homeomorphicity properties, so has V by construction.

We refer to [142] and references therein for more details about the existence of such a mapping
M , and the extension to the MIMO scenario.

47

2.2. Total stability motivates integral action

2.2.3 Globalizing local integral action-based controllers

By combining results of Section 1.1 and Section 2.2, one can learn a nonlinear controller with
local stability guarantees and robustness to constant perturbations by solving the DARE (1.8) for
the extended system composed by the linearized plant and the integrator. In what follows, we
show that the choice of a locally quadratic objective as in Section 1.2.4 provides a local control
policy which is solution to the forwarding problem for the linearized framework [142]. In turn,
this guarantees local exponential stability of the closed-loop cascade.

Consider a discrete time nonlinear system evolving according to the difference equation

x+ = f(x, u), y = h(x)

where f, h ∈ C0 and such that the open-loop dynamics are locally exponentially stable, namely
0 = f(0, 0) and A = ∂f

∂x (0, 0) is Schur stable. We remark that one can pre-stabilize the linearized
model and consider f as the locally stable closed-loop. Our aim is to design a robust feedback
controller solving the output regulation problem for constant signals. Without loss of generality,
we assume such a constant reference to be 0. Hence, we extend the system with a discrete-time
integrator of the error {

x+ = f(x, u), y = h(x)

z+ = z + y
(2.38)

where z ∈ Rny , and we look for a controller u = α(x, z) which is locally exponentially stabilizing
for the cascade (2.38) and optimal with respect to the cost function

J(ζ(t), u(t)) :=
∞∑
k=0

γk
(
ζ(k + t)⊤Q̄γζ(k + t) + u(k + t)⊤Ru(k + t)

)
,

=
∞∑
k=0

γk
(
ζ(k + t)⊤

(
Qx,γ Q⊤

xz,γ

Qxz,γ Qz,γ

)
ζ(k + t) + u(k + t)⊤Ru(k + t)

)
,

(2.39)

where ζ := col(x, z), Qx,γ ∈ Snx≻0, Qz,γ ∈ Sny≻0, Rγ ∈ Snu≻0 and Qxz,γ ∈ Rny×nx is a coupling term.
Due to the complexity of finding an optimal solution of (2.39) in the nonlinear framework,
we rely on learning and the results of Section 1.1. Then, following the strategy proposed in to
Section 1.1, we propose to blend a local forwarding-based controller with a global learned policy
to prescribe a local guaranteed behavior of the extended system (see [24] for a continuous-time
counterpart). As per Section 1.1.2, we structure the control law as

u = Kxx+Kzz + ᾱ(x, z),

where Kx,Kz are derived from forwarding and ᾱ(x, z) is a nonlinear function to be learned.
Our first steps involves the study of the local closed-loop behavior and we show how to select
the local gains Kx,Kz.

Forwarding for integral action in discrete-time linear systems. We start our analysis by
specializing the discrete-time forwarding technique to the case of linear time-invariant cascades.
For our purposes, we will focus on the case where the second system is described by a discrete-
time integrator. However, the results can be generalized to more general dynamics by following
techniques similar to [18]. Consider the cascade system{

x+ = Ax+Bu, y = Cx

z+ = z + y
(2.40)

48

Chapter 2. Integral action for discrete-time nonlinear systems

where x ∈ Rnx , u ∈ Rnu and z ∈ Rny with ny ⩽ nu. Without loss of generality, we assume
the pair (A,B) to be controllable and matrix A to be Schur stable. As noted above, such an
assumption is not restrictive, as we can consider A as the pre-stabilized closed-loop A = Ā+BK̄
with Ā possibly unstable and a properly selected K̄. Moreover, we assume the following.

Assumption 2.3. The matrix

Σ :=

(
A− Inx B
C 0

)
is full rank. Namely, rank(Σ) = nx + ny.

Assumption 2.3 is related to the so called non-resonance condition [16, Chapter 4], and allows
for the design of a control input u stabilizing the cascade. Let us define a matrix M as

M := C(A− Inx)
−1. (2.41)

Since A is assumed to be Schur stable, such a matrix is well-defined and it is the unique solution
to the Sylvester equation

MA =M + C. (2.42)

We are now ready to present the closed-form solution to the forwarding problem defined by the
cascade (2.40).

Proposition 2.4. Let Assumption 2.3 hold and let R ∈ Snu≻0, Q ∈ Snx≻0. Moreover, let P ∈ Snx≻0 be
solution of A⊤PA = P −Q and M be defined as in (2.41). Then, the control law

u = −(R+B⊤P̄B)−1B⊤((PA+M⊤M)x−M⊤z), P̄ := P +M⊤M (2.43)

makes the closed-loop (2.40)-(2.43) asymptotically stable.

Proof. Consider the change of coordinates η := z−Mx. Then, the cascade (2.40) rewrites
as {

x+ = Ax+Bu,

η+ = η −MBu
(2.44)

and the control law becomes

u = −(R+B⊤P̄B)−1B⊤(PAx−M⊤η) =: Kxx+Kηη. (2.45)

Consider now the candidate Lyapunov function V (x, η) := x⊤Px+η⊤η. According to (2.44)
and (2.45), we have

V (x+, η+) = x⊤Txx x+ η⊤Tηη η + x⊤Txη η + η⊤Tηx x, (2.46)

where we defined

Txx := A⊤PA+A⊤PBKx +K⊤
x B

⊤PA+K⊤
x B

⊤P̄BKx, (2.47a)

Tηη := Iny −MBKη −K⊤
η B

⊤M⊤ +K⊤
η B

⊤P̄BKη, (2.47b)

Txη := A⊤PBKη −K⊤
x B

⊤M⊤ −K⊤
x B

⊤P̄BKη, (2.47c)

Tηx := −MBKx +K⊤
η B

⊤PA+K⊤
η B

⊤P̄BKx. (2.47d)

49

2.2. Total stability motivates integral action

By the definitions of Kx,Kη in (2.45), we derive

B⊤PA = −(R+B⊤P̄B)Kx, B⊤M⊤ = (R+B⊤P̄B)Kη,

showing that (2.47) is equivalent to

Txx := A⊤PA−K⊤
x (2R+B⊤P̄B)Kx, Tηη := Iny −K⊤

η (2R+B⊤P̄B)Kη,

Txη := −K⊤
x (2R+B⊤P̄B)Kη, Tηx := −K⊤

η (2R+B⊤P̄B)Kx.

Hence, by (2.46) and the fact that A⊤PA = ρP , we obtain the equivalence

V (x+, η+) = x⊤A⊤PAx+ η⊤η − (x⊤K⊤
x (2R+B⊤P̄B)Kxx+ ηK⊤

η (2R+B⊤P̄B)Kη

+ 2x⊤K⊤
x (2R+B⊤P̄B)Kηη)

= x⊤A⊤PAx+ η⊤η − (Kxx+Kηη)
⊤(2R+B⊤P̄B)(Kxx+Kηη)

= V (x, η)− x⊤Qx− u⊤(2R+B⊤P̄B)u.

Then, since Q ∈ Snx≻0, by using discrete-time LaSalle arguments [146] system (2.44) in
closed-loop with (2.45) can be proved to converge to the set

{(x, η) ∈ Rnx × Rny : x = 0, u = 0} = {0} × {(R+B⊤P̄B)−1B⊤M⊤η = 0}.

Consider now Assumption 2.3 and select a vector v = col(−(A − Inx)
−TC⊤v̄, v̄) ∈ Rnx+ny

with v̄ ∈ Rnx . We have
v⊤Σ =

(
0 −v̄⊤C(A− Inx)

−1B
)
.

Since Σ is full row-rank, v⊤Σ = 0 if and only if v = 0, namely, if v̄ = 0 . Then, it must hold
that C(A − Inx)

−1B = MB ̸= 0. Consequently, by the invertibility of R + B⊤P̄B, η = 0 is
the only admissible solution, thus showing asymptotic convergence to the origin.

Optimality of forwarding-based controller for linear systems. Bearing in mind the results
of the above paragraph, we now aim at showing that (2.43) is an optimal solution for an LQR
problem over the extended system (2.40). In doing so, we demonstrate that such a controller can
provide an optimal local solution to be subsequently globalized via the approach of Section 1.1.
Consequently, the goal is to prove that there exists a choice of the discount factor γ and the
cost matrices Qx,γ , Qxz,γ , Qz,γ and Rγ in (2.39) for which (2.43) is the optimal solution in the
linear framework. Similarly to Section 1.1, we start by analyzing the undiscounted framework,
namely γ = 1, yielding the minimization objective

Jlin(x(0), z(0), u(0)) :=
∞∑
k=0

(
x(k)⊤ z(k)⊤

)
Q̄

(
x(k)
z(k)

)
+ u(k)⊤Ru(k),

=
∞∑
k=0

(
x(k)⊤ z(k)⊤

)(Qx Q⊤
xz

Qxz Qz

)(
x(k)
z(k)

)
+ u(k)⊤Ru(k),

(2.48)

where Qx ∈ Snx≻0, Qz ∈ Sny≻0, R ∈ Snu≻0, Qxz ∈ Rny×nx and the initial time t = 0, without loss of
generality.

Proposition 2.5. Let Assumption 2.3 hold and let Q ∈ Snx≻0, R ∈ Snu≻0. Moreover, let P ∈ Snx≻0 be
solution of A⊤PA = P − Q and M be defined as in (2.41). Then, the control law (2.43) is the

50

Chapter 2. Integral action for discrete-time nonlinear systems

optimal solution to the minimization problem of (2.48) subject to dynamics (2.40) with

Qx = Q+
(
A⊤P M⊤M

)(BY B⊤ BY B⊤

BY B⊤ BY B⊤

)(
PA
M⊤M

)
,

Qz =MBYB⊤M⊤,
Qxz = −MBYB⊤(PA+M⊤M),

(2.49)

where we defined Y = Y ⊤ := (R+B⊤PB +B⊤M⊤MB)−1.

Proof. By performing the change of coordinates η = z −Mx and defining the aggregate
state ξ = col(x, η), the extended system (2.40) can be written in the compact form

ξ+ = Fξ +Gu, F =

(
A 0
0 Iny

)
, G =

(
Inx
−M

)
B. (2.50)

Similarly, the control law (2.43) becomes

u =
(
Kx Kη

)
ξ, (2.51)

where Kx,Kη are defined as in (2.45). As shown in the proof of Proposition 2.4, V (ξ) =
ξ⊤Pξ with P = diag(P, Iny) is a Lyapunov function for the closed-loop system (2.50)-(2.51).
Then, by LQR theory (see Section 1.1), the Lyapunov function is also the optimal value func-
tion for an LQR problem. Consequently, by defining the state weight in (x, η)-coordinates as
Q :=

(
Qx Q⊤

xz
Qxz Qz

)
and by selecting P := diag(P, Iny), the DARE (1.8) for the cascade (2.50)

reads

F⊤PF − F⊤PG(R+G⊤PG)−1G⊤PF = P−Q(
A⊤(P − PBY B⊤P)A A⊤PBY B⊤M⊤

MBYB⊤PA Iny −MBYB⊤M⊤

)
= P̃ (2.52)

where

P̃ :=

(
P −Qx −Q⊤

xz

−Qxz Iny −Qz

)
.

Recalling that A⊤PA = P −Q, equality (2.52) can be rewritten as(
Qx − (Q+A⊤PBY B⊤PA) Q⊤

xz +A⊤PBY B⊤M⊤

Qxz +MBYB⊤PA Qz −MBYB⊤M⊤

)
= 0. (2.53)

With the change of coordinates z = η +Mx, the extended state cost under the selection
(2.49) becomes

(x⊤z⊤)Q̄

(
x
z

)
= (x⊤η⊤)

(
Inx M⊤

0 Iny

)(
Qx Q⊤

xz

Qxz Qz

)(
Inx 0
M Iny

)(
x
η

)
= (x⊤η⊤)Q

(
x
η

)
.

By expanding the product, we obtain

Qx = Qx +M⊤Qxz +Q⊤
xzM +M⊤QzM, Qxz = Qxz +QzM, Qz = Qz,

51

2.3. Robust deep reinforcement learning for tokamak reactors

which leads to

Q =

(
Q+A⊤PBY B⊤PA −A⊤PBY B⊤M⊤

−MBYB⊤PA MBY B⊤M⊤

)
,

thus verifying (2.52). Note that Q ∈ Snx+ny⪰0 since it can be rewritten as

Q =

(
Q 0
0 0

)
+
(
K⊤
x K⊤

η

)(Y −1 Y −1

Y −1 Y −1

)(
Kx Kη

)
,

where we used the definitions of Kx, Kη in (2.45) and the fact that Y = Y Y −1Y. Moreover,
since M is solution to the Sylvester equation (2.44), the change of coordinates is always
well defined and Q ∈ Snx+ny⪰0 implies Q̄ ∈ Snx+ny⪰0 . Then, P is solution to the DARE (2.52)
for the extended system and the optimal controller gain is

K⋆ = −(R+G⊤PG)−1G⊤PF = −Y B⊤ (PA −M⊤) = (Kx Kη

)
.

Consequently, the control law (2.51) is the optimal solution to the minimization problem
(2.48)-(2.49) and this concludes the proof.

Remark 2.1. Notice that, while the weight on the x state can be independently controlled via
Q, the cost on the integral state z is regulated solely by the input weight matrix R. This strong
interconnection is due to the cascade structure, which inevitably intertwines the behavior of z to the
one of u and x.

Discounted locally quadratic rewards for locally stabilizing neural policies. The results
of the above paragraph does not seem to allow for a free choice of the extended state weight
matrix Q̄ =

(
Qx Q⊤

xz
Qxz Qz

)
. However, by recalling that the definition of DC-gain for discrete-time

linear systems K0 = C(A− Iny)
−1B =MB, the selection (2.49) can be rewritten as

Qx = Q+
(
A⊤P M⊤)(B(R+ Y)−1B⊤ BYK⊤

0

K0Y B
⊤ K0Y K

⊤
0

)(
PA
M

)
,

Qz = K0Y K
⊤
0 ,

Qxz = −(K0Y B
⊤PA+K0Y K

⊤
0 M),

where Y = Y ⊤ := (R + B⊤PB + K⊤
0 K0)

−1. Since K0 (and consequently M) depend solely
on the pre-stabilized matrix A, an arbitrary selection of the matrix Q̄ generates a specific pre-
stabilizing behavior, without impacting the exponential stability properties of the closed-loop.
Then, following Section 1.1, we can globalize the local controller by choosing a locally quadratic
cost according to Section 1.2.4, and selecting a local discounted quadratic reward in the (x, η)-
coordinates following Lemma 1.1, with Qγ =

(
Qx,γ Q⊤

xz,γ

Qxz,γ Qz,γ

)
and P = diag(P, Iny).

2.3 Robust deep reinforcement learning for tokamak reactors

Equipped with the robustness results of Section 2.2, we now aim at robustifying DNN-based
control laws. We focus on the complex problem of controlling the shape profile of plasma in
tokamak reactors. Tokamak reactors are toroidal nuclear fusion reactors where the plasma is
controlled and contained via strong magnetic fields [224, 229]. Because of the high uncer-
tainties in the measurements and estimations of plasma profiles, as well as in the modeling of

52

Chapter 2. Integral action for discrete-time nonlinear systems

kinetic and magnetic dynamics, robust feedback control is crucial to obtain high-performance
operations.

In the plasma control literature, it is common to interchangeably speak about the current pro-
file, safety factor q (and its inverse ι-profile), magnetic flux gradient profile, and magnetic flux
profile. In tokamak reactors, the safety factor is strongly linked to the plasma shape profile
and it has been found to be strictly related to Magnetohydrodynamic (MHD) activities [229].
Therefore, robustly controlling the safety factor to the desired profile becomes an essential step
towards obtaining long-time discharges [100]. In this section, we will consider the safety factor
profile control problem during the so-called flat-top phase.

From an operative point of view, a lot of contributions have been made by the plasma physics and
control communities working together. For instance, an overview of the plasma control in the
Tore Supra tokamak can be found in [149]. A first attempt to model and numerically simulate
the plasma profile evolution has been made in [29]. An early contribution in control of tokamak
reactors appeared in [230], where the authors show experimental results using proportional
feedback for the control of the internal inductance on Tore Supra. Then, throughout the years,
consistent effort has been put in proposing different strategies for modeling and controlling
such complex systems , see e.g., [20, 21, 32, 34, 81, 82, 119, 137, 144, 148, 156, 157, 159, 225].
However, the main challenge in model-based control of safety factor profile for advanced mode
operations is the derivation of dynamical models that are complex enough to retain the main
physical properties, and simple enough to be used for feedback design. Clearly, this requirement
impacts the set of achievable closed-loop performances, due to the complexity of controllers
computation. Hence, recent machine learning architectures such as DNNs stand out as valuable
performance-oriented tool for addressing the problem in a data-driven fashion. In particular,
the model-agnostic approach of many DRL algorithms has been shown to be effective on a wide
variety of complex tasks [15,125].

Unfortunately, few works have so far been dedicated to controlling PDEs using DRL, with the
exception of some specific methods such as [68, 69, 160]. Only more recently, some DRL algo-
rithms have been used in the context of nuclear fusion control. In [222], the authors proposed a
DRL technique to control the safety factor during the ramp-up phase, while in [190] the authors
developed a DRL algorithm to train a feed-forward controller for the kinetic profiles. In [223],
the authors present a DRL-based algorithm for simultaneous control of the safety factor and
normalized beta in the JT-60SA tokamak. Finally, a DRL controller has been proposed in [61]
for plasma shape control.

In this section, we propose to design a robust dynamic DNN-based controller to be trained on a
simplified model of a TCV tokamak reactor and successively tested on a control-oriented plasma
transport simulator (RAPTOR) [70,136,145,217]. The idea is to rely on the results of Section 2.2
and complement the neural controller with a discrete-time integrator. As such, we consider the
problem of stabilizing the extended cascade system composed of the plant and the integrator, as
in Figure 2.3a. As the learning agent is trained to stabilize the extended dynamics, it learns a
robust controller. Then, we aim at showing that the inclusion of an error integrator during and
after training robustifies DNN-based controllers learned via DRL, by improving generalization
to unseen constant perturbations. Before moving to the control problem, we highlight that such
a structure (DNN with an integrator) resembles the one of Recursive Neural Networks (RNNs),
e.g. [99,186]. As a matter of fact, the addition of an integrator can be seen as adding “memory"
in the agent, by providing time-related information. However, the generalization and robustness
properties are due to the specific structure of the integrator dynamics.

53

2.3. Robust deep reinforcement learning for tokamak reactors

(a) Extended system and controller. (b) Simplified representation of tokamak quantities

2.3.1 Control problem

Dynamic model. We start by presenting the tokamak dynamics and the simplified (and dis-
cretized) ones used for training. Additional details can be found in Appendix B. Consider
ψ(R,Z) the poloidal flux of the magnetic field B(R,Z) passing through a disc centred at the
toroidal axis at height Z and with surface S = πR2 where R is the large plasma radius. Let the
magnetic flux be defined as

ψ(R,Z) :=
1

2π

∫
S
B(R,Z)dS. (2.54)

Relation (2.54) can also be expressed in terms of the spatial index ρ. The term ρ is the toroidal
flux coefficient indexing the magnetic surfaces, defined as ρ = (2ϕ/Bϕ,0)

1
2 , where ϕ is the

toroidal magnetic flux and Bϕ,0 is the value of the toroidal magnetic flux at the plasma center.
The spatial index belongs to the interval [0, aρ] where aρ is the minor plasma radius correspond-
ing to the Last Closed Flux Surface (LCFS). A simplified representation is shown in Figure 2.3b,
where the different colors correspond to different magnetic surfaces identified by ρ. Given the
above quantities, the dynamics of (2.54) can be expressed by the following reaction-diffusion
equation [233]

∂ψ

∂t
(s, t) =

D(s, t)

a2ρ

∂2ψ

∂s2
(s, t) +

G(s, t)

aρ

∂ψ

∂s
(s, t) + S(s, t). (2.55)

where s = ρ/aρ identifies the normalized spatial variable, D(s, t) and G(s, t) are diffusion pa-
rameters, while S(s, t) is the source term and are defined in (B.2). We suppose the magnetic flux
to be controlled by two Electron Cyclotron Current Drive (ECCD) systems, each characterized
by its input power Peccd,i, where i ∈ 1, 2. Moreover, similarly to [145], we assume that the two
inputs are applied to the same spatial point. Specifically, the first antenna Peccd,1 has a positive
effect on ξ, while the second antenna Peccd,2 has a negative effect on it. Thus, from a theoretical
point of view, the two inputs can be treated as a single one.

An important quantity of plasma control in tokamak devices is the safety factor. This distributed
variable measures the toroidal over poloidal turns of a field line passing through a point (R,Z)
in a toroidal plane. Since the magnetic field lines are assumed to be equal in the same magnetic
surface, we can define the safety factor for each magnetic surface indexed by s. In particular,
the safety factor is defined as the quotient between the toroidal and poloidal gradient, which
reads as

q(s, t) :=
dϕ

dψ
=
∂ϕ/∂s

∂ψ/∂s
= −

Bϕ,0a
2
ρs

∂ψ/∂s
(2.56)

where ϕ(s, t) is the toroidal flux defined in (B.7). Another important quantity in plasma analysis

54

Chapter 2. Integral action for discrete-time nonlinear systems

is the ι-profile, which is defined as the inverse of the safety factor

ι(s, t) =
1

q(s, t)
=

∂ψ/∂s

Bϕ,0a2ρs
. (2.57)

The ι-profile is a more natural control variable since it proportionally depends on the poloidal
flux gradient. Additional details about the model are discussed in Appendix B.1. The following
equation gives the plasma thermal energy dynamics{

τth = e−5.7466P 0.0214
oh (1 + Peccd,1)

0.0426(1 + Peccd,2)
0.0012

d
dtWth = − 1

τth
Wth + Ptot, Wth(0) = Ptot(0)τth(0)

(2.58)

where

Ptot =

Neccd∑
i=1

Peccd,i + POH , (2.59)

with POH identifying the ohmic power and is defined in (B.8).

By means of an implicit-explicit time discretization and a fixed-step spatial discretization for
equation (2.55), and an implicit-explicit time discretization for equation (2.58), we obtain the
difference equation

ξ+ = f(ξ, u) (2.60)

in the state variable ξ = col(ψ, Wth) ∈ Rnψ+1 and input u ∈ [0, 1]. The discrete vector field
f is defined in (B.14). Here, nψ is the number of elements used in the spatial discretization
of equation (2.55). Hence, at iteration t, the vector ψ ∈ Rnψ denotes the discretized magnetic
flux in nψ spatial points, while Wth represents the thermal energy. The relation between u and
Peccd,i and further information on the simulation algorithm employed in this study can be found
in Appendix B.2. There, we also discuss discrepancies between the simplified simulation and
RAPTOR, which can intuitively appreciated in Figure B.1.

Control objective. We now move to the control problem. The objective is to regulate the ι-
profile ι(s, t) defined in (2.57) to a desired ι⋆(s). As ι depends on the magnetic flux gradient
∂ψ
∂s (s, t), the control objective can be reformulated as the regulation to a desired magnetic flux
gradient profile ∂ψ⋆

∂s (s). Therefore, we define the output corresponding to the discretized version
of the magnetic flux gradient

yg =


ψ2−ψ1

δs1
ψ3−ψ1

δs1+δs2
...

ψN−ψN−1

δsN

 =

C︷ ︸︸ ︷
− 1
δs1

1
δs1

0 · · · 0 0 0

− 1
δs1+δs2

0 1
δs1+δs2

· · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · − 1

δsN
1
δsN

0


(
ψ
Wth

)
(2.61)

where yg ∈ Rnψ and C ∈ Rnψ×nψ+1. In few words, yg outputs an approximated version of the
flux gradient profile at a finite amount of points si, i = 1, . . . , nψ. Then, we select one element
of the previously defined output to define the second output yr = Syg, where S ∈ R1×nψ is
the selection matrix with a single element equal to one and zero elsewhere. We assume the
system parameters to be uncertain, yet to belong to a known range of values. This implies we
do not know their value, and we can only rely on a rough estimate. Consider κn a generic
system’s parameter. According to the previous assumption, we know that κn ∈ [κn, κ̄n]. We

55

2.3. Robust deep reinforcement learning for tokamak reactors

Figure 2.4: Different equilibrium solutions with different parameters.

define the vector K as the collection of all the system’s parameters K = [κ1 κ2 . . . κnκ]
T ∈

K := [κ1, κ̄1]× [κ2, κ̄2]× · · · × [κnκ , κ̄nκ] ⊂ Rnκ , where nκ is the total number of parameters. We
denote by fK(ξ, u) the magnetic flux dynamics with parameters K{

ξ+ = fK(ξ, u)
yg = Cξ, yr = Syg

(2.62)

Therefore, it is possible to obtain the equilibrium position ξ⋆K = [∂ψ⋆TK /∂s W ⋆
th,K]T related to a

certain constant input u⋆ and set of parameter K, solving the equation

fK(ξ⋆K , u
⋆) = 0 (2.63)

with respect to ξ⋆K . Similarly, it can be experimentally obtained by simulating the system with
constant input and extracting the state into which RAPTOR stabilizes.

Clearly, equilibria are parameters dependent. In other words, the equilibrium solution ξ⋆K1
of

fK1(ξ
⋆, u⋆) may not be a solution of fK2(ξ

⋆, u⋆), as shown in Figure 2.4. Since parameters
are assumed to be uncertain, integral action is vital to converge to the desired equilibrium. In
addition, it robustifies the controller to mismatches between the training model and RAPTOR
(and, possibly, real-world applications). Note that, due to the aforementioned mismatches, a
desired reference y⋆

K̄
for the RAPTOR simulator under parameter vector K̄ may be unreachable

for the simplified model.

While integral action allows the regulation of the integrated quantity to zero, asymptotic regu-
lation can be achieved only for a number of output which is smaller or equal to the number of
inputs [103]. As such, having at our disposal only one input (the two antennas act in opposite
directions), we can only regulate one point in the spatial domain, corresponding to yr. Then,
we formulate the following control problem.

Problem 2.1. Stabilize the output yg as close as possible to the (potentially unreachable) desired
set point y⋆

K̄
, and, at the same time, guarantee that the selected output yr = Syg converges to the

desired value y⋆
r,K̄

= Sy⋆
K̄

.

As recalled in Section 2.2, the use of integral action guarantees regulation to zero of the error
yr − y⋆r,K̄ . We select the discrete-time integrator state dynamics as

z+ = z + (yr − y⋆r,K̄)δt, (2.64)

and the extended state x = col(ξ, z) ∈ X := Rnψ+2 = Rnx . Therefore, the extended dynamics
read as

x+ =

(
fK(ξ, u)

z + (yr − y⋆r,K̄)δt

)
= φK(x, u). (2.65)

56

Chapter 2. Integral action for discrete-time nonlinear systems

Figure 2.5: Extended tokamak environment.

Since we do not know a priori the equilibrium of the integral state (it depends on the unknown
parameters K), we fix the state reference x⋆K = col(ξ⋆

K̄
, 0). Then, the output of the extended

system is set as y = col(yg, z) and its reference to y⋆K = col(y⋆
K̄
, 0).

Optimization problem. The goal is to address the problem with DRL methods. Consequently,
we need to define an optimization objective. However, we do not use the blending technique
proposed in Chapter 1 since even the derivation of a linear model turns out to be complex in such
a framework. Nevertheless, to encourage a robust stabilizing solution, we choose a quadratic
cost minimization problem. This ensures the exact local optimal solution is exponentially stabi-
lizing, see Section 2.2.3. Then, we select a quadratic reward of the form

r(y, u) = −(y − y⋆K)TQ(y − y⋆K)−R(u− u⋆)2, (2.66)

where y+ is the observed next output and Q ∈ Snx≻0 and R is a positive scalar. In particular, we
choose

Q =

(
Q1

α3
2 S

⊤
α3
2 S α4

)
∈ R(nψ+1)×(nψ+1) R ∈ R. (2.67)

with W ∈ Rnx being a coupling vector and

Q1 =

α1 Ipi−1 0 0
0 α2 0
0 0 α1 Inψ−pi

 (2.68)

being pi the integration position and αi > 0 for all i = 1, . . . , 4. Notice that Q1 is built to have
a different cost at the diagonal entry corresponding to the error integrated by the integral state.
This gives an additional degree of freedom during the reward shaping procedure and can be
used to induce the DNN to rely more on the integral state. Moreover, the cross-terms in (2.66)
can be rewritten as

α3 (y − y⋆K)⊤ S⊤z = α3(yr − y⋆r,K̄)z = α3
z+ − z
δt

z. (2.69)

Therefore, it penalizes the integral state variations. We recall that integral action is useful to
achieve robust regulation only when the integral state reaches an equilibrium. The overall
extended tokamak environment is sketched in Figure 2.5.

57

2.3. Robust deep reinforcement learning for tokamak reactors

Algorithm 5 Tokamak DRL training algorithm
1: Input data:

• Initialize parameters for actor θ0 and critic ϕ0
• Initialize the evolution parameters K ∈ K
• select an actor-critic algorithm a

2: for k = 1 to Ne do
3: Randomly initialize the tokamak’s state ξ0 ∈ Rnψ+1

4: Initialize the integrator state z0 = 0
5: Randomly select a couple of compatible equilibrium and steady-state input (ξ⋆

K̃
, u⋆)

6: Compute the perturbed equilibrium x⋆
K̄

and y⋆
K̄

using (2.71)
7: for t = 1 to Ns do
8: The agent draws an action u = πθk(x)
9: Update the state x+ = φK(x, u)

10: Compute the reward r(y, u)
11: end for
12: Update actor parameters θk and critic parameters ϕk according to a
13: end for

2.3.2 Training algorithm and simulation results

In this section, we describe the strategy used to train an agent to exploit the integral state and
regulate the desired error to zero and successively present experimental results. We start from
the training procedure. Its implementation is summarized in Algorithm 5. We refer toNe andNs

as the number of episodes and episode steps in the training, respectively. This episodic learning
framework is a practical necessity, allowing for a finer exploration of possible initial conditions
and desired equilibria. Firstly, we select the training model parameters K ∈ K. Then, we define
the steady-state set SssK as

SssK = {(ξ⋆K , u⋆) ∈ RN × [0, 1] | fK(ξ⋆K , u
⋆) = 0}. (2.70)

Then, we perturb the desired equilibrium as if it was generated by a different set of parameters
K̃ ∈ K. This procedure encourages generalization and the exploitation of the integral dynamics.
By studying RAPTOR, we observed similarities in the shape of the flux gradient equilibria ξ⋆ for
numerous equilibrium points, under different plasma parameters. In particular, variations in the
plasma parameters corresponded to shifts of the maximum value of ξ⋆ while either flattening or
sharpening the shape of the equilibrium function around it. Then, to avoid the time-consuming
task of identifying all possible steady-state equilibria (ξ⋆

K̃
, u⋆) ∈ Sss

K̃
for each K̃ ∈ K, we re-

produce a similar behavior by approximating ξ⋆
K̃
(s) by a Gaussian function having a randomly

generated mean and variance

ξ⋆
K̃
(s) ≈ ξ⋆K(s) +

cN

σ
√
2π
e−

1
2(

s−µ
σ)

2

(2.71)

where µ ∽ U([0.4, 0.6]), σ ∽ U([0.8, 1.2]) and cN ∽ U([−1,+1]) are continuous uniform random
variable selected in different intervals. We choose a Gaussian function since it approaches zero
at s = 1, 0, and we aimed to preserve the value of ξ⋆K at the plasma’s center and the LCFS. This
decision is influenced by the fact that the magnetic flux gradient is constantly zero at the center,
while the flux gradient at the LCFS is primarily dependent on the magnetic central location,
which experiences comparatively minimal variations compared to other plasma parameters. To

58

Chapter 2. Integral action for discrete-time nonlinear systems

Figure 2.6: Integral weight training effect. Figure 2.7: RAPTOR feedback control scheme.

conclude, the learning procedure is carried out using any actor-critic algorithm. In our exper-
iments, we selected PPO [188]. The output of the training procedure is a trained DNN that
takes as input the state x and the reference point x⋆K and returns the values of the input u to be
applied.

We now move to the closed-loop simulations of the DRL feedback control law applied to the RAP-
TOR simulator. First, we explore the effect of the integral state cost on the training. Figure 2.6
shows the episode reward mean of four training runs with different integral cost parameters.
We fix the cost parameters

α1 = 0.1, α2 = 0.05, α3 = 0.1, α4 = a, R = 0.01, (2.72)

with the run-varying parameter a ∈ {25, 50, 100, 130}. The selection matrix S extracts the 5th

spatial point (pi = 5), i.e., it takes the form

S =
(
0 0 0 0 1 0 . . . 0

)
.

Practically, the 5th spatial point corresponds to the s = 0.2 position. We select a position near to
the plasma center since it is in the interval of the spatial domain where the measures are more
reliable. Moreover, it is sufficiently near to the deposit of the ECCD current, that is s = 0.

We remark that α4 is significantly bigger than αi, α2, α3 in all runs. Our studies showed that the
controller learned to use the integrator dynamics only when the weight of integral states was
significantly higher than the one of other states. Besides the fact that each component may have
different magnitude since the terms are not normalized, our intuition is that when the integral
state cost is not significant compared to the one of other states, the optimization process focuses
on stabilizing those states. This also reduces the integrator cost. However, while a low running
cost from the integral state may be tolerable for an approximate optimal solution, it indicates
that the integrator remains unstable and fails in correctly regulating the desired output. There-
fore, setting the weight of integral states higher than that of other states encourages learning
of a forwarding-like controller, see Section 2.2. On the flip side, Figure 2.6 demonstrates that
a higher weight assigned to integral states results in slower convergence. The intuition is that
if the weight is too high, the learning process slows down because the controller focuses solely
on the integrator. However, no direct action can be taken on the integrator dynamics due to
the cascade structure of the extended system. As a result, the gradients of the cost with respect
to the agent actions are small and the network requires more time to converge to an effective
solution.

59

2.3. Robust deep reinforcement learning for tokamak reactors

Once the DNN is trained to control the extended system, we test it on RAPTOR. We recall that
the training model comes from the simulation algorithm described in Appendix B.2, and thus
it is an approximation of the complex dynamics computed by RAPTOR. Moreover, as integral
action paired with input saturation may generate overshoots, we add an anti-windup layer. This
additional layer is not present at training time as the training procedure is run using the linear
integrator dynamic described by (2.64). Consequently, the training and test models have non-
negligible discrepancies.

The simple anti-windup scheme is implemented by modifying the integrator linear dynamics
(2.64) into

z+ =


z if u = 1 and yr,j − y⋆r,K̄ < 0

z if u = 0 and yr,j − y⋆r,K̄ ⩾ 0

z + (yr,j − y⋆r,K̄)δt. otherwise
(2.73)

We refer to [213] for a survey on anti-windup technique. Figure 2.7 shows the closed-loop with
the anti-windup scheme. We set the RAPTOR parameters as the ones in (B.15)-(B.16). Target
ι-profiles, corresponding to steady-state plasma configurations (ξ⋆K , u

⋆) ∈ SssK , are generated
by applying a constant input for a sufficiently long time in the RAPTOR simulator. During the
simulations, the ramp-up phase lasts until t = 0.02 s bringing the central current from Ip = 80 kA
to Ip = 120 kA, while the feedback controller is activated at t = 0.1 s. During the flat-top phase,
four different target profiles are given to the controller: the first at t = 0.1 s, the second at
t = 2.5 s, the third at t = 5 s, and the last at t = 7.5 s. To test the robustness of the DNN-based
control feedback, we set up three different control scenarios:

1st scenario. We compare neural controller performances with and without the anti-windup
layer (implemented only in the testing environment). The integration position s = 0.2 is not
changed between training and test. Results are shown in Figure 2.8a, which presents the ι-
profile evolution at four locations of the spatial domain s ∈ {0, 0.1, 0.25, 0.35} during a
simulation time of length Tsim = 10 s. Figure 2.9a and 2.9c show the ι-profiles at different time
instants t ∈ {2.5, 2.7, 2.9, 3.1, 3.3} and Figures 2.9b and 2.9d present the feedback control
input u = col(Peccd,1, Peccd,2) during the simulation interval.

2nd scenario. We compare the control performances of the anti-windup neural controller un-
der input perturbations. The integration position s = 0.2 is not changed between training and
test. We introduce an input disturbance at time t = 5.3 s, implemented in RAPTOR via a Neutral-
Beam Injector with ρdep = 0.4 and wcd = 0.4. Both parameters ρdep, wcd are set differently from
the ones of the ECCD antenna in (B.16). Figure 2.8b depicts the ι-trajectories in four points
of the spatial domain. The corresponding profile is presented in Figure 2.9e and the input is
depicted in Figure 2.9f.

3rd scenario. We study the robustness with respect to integration point of the anti-windup
neural controller. The integration position is changed from the 5th element (training) to the 3rd

(test), i.e., from s = 0.2 to s = 0.1. Figure 2.8c shows the ι trajectories in four points of the
spatial domain, and the corresponding input is depicted in Figure 2.9h. Figure 2.9g shows the
ι-profiles at five different time instants.

In the 1st scenario, we see from Figure 2.8a that the addition of anti-windup to the closed-loop
dynamics does not hinder the tracking capabilities of the controller, thus showing its robustness.

60

Chapter 2. Integral action for discrete-time nonlinear systems

Moreover, we can observe strong overshoot when the anti-windup layer is turned off, corre-
sponding to a slow integrator dynamics. This is expected, the integrator continues to evolve
even if the input is saturated. Using the nonlinear integrator dynamics in (2.73), we prevent
the integrator state from evolving in the wrong direction in case of input saturation. This leads
to faster response and reduced overshoots. Comparing Figures 2.9a and 2.9c, we can remark
that the ι-profile in the case of anti-windup implementation is converging faster to the desired
profile than in the case of linear integrator dynamics. For the 2nd scenario, we remark from
Figure 2.8b that the error at the integration point s = 0.2 is regulated to zero, even in presence
of the disturbance. As for the previous scenario, this shows the effectiveness of integral action in
providing robust regulation. The 3rd scenario shows the controller robustness to small variations
in the integration point. Indeed, Figure 2.8c shows that, once the disturbance is injected into
the system, the error is regulated to zero at the new position s = 0.1.

61

2.3. Robust deep reinforcement learning for tokamak reactors

(a) ι-profile trajectories with and without anti-windup.

(b) ι-profile trajectories with input disturbance at t = 5.3 s.

(c) ι-profile trajectories with disturbance and integration point s = 0.1.

Figure 2.8: Evolution of ι-profiles in four points of the spatial domain

62

Chapter 2. Integral action for discrete-time nonlinear systems

(a) ι-profile with anti-windup. (b) Applied input with anti-windup.

(c) ι-profile without anti-windup. (d) Applied input without anti-windup.

(e) ι-profile with disturbance. (f) Applied input with disturbance.

(g) ι-profile with shifted integration point. (h) Applied input with shifted integration point.

Figure 2.9: ι-profiles at five time instants and applied inputs.

63

2.3. Robust deep reinforcement learning for tokamak reactors

64

Part II

Contraction as an optimization
problem

65

Introduction

In Part I, we explored how control theoretic results can improve modern machine learning ap-
proaches for system control. As we proceed to the second part of this manuscript, our attention
shifts towards the complementary perspective. In other words, we examine how optimization
and machine learning tools can enhance control theoretic designs by providing approximate
solutions to complex problems that would otherwise be intractable. In particular, we focus on
results based on incremental stability obtained via contraction theory.

In simple terms, a system exhibits incremental stability properties if any two trajectories origi-
nating from different yet "close" initial conditions remain "close" throughout their time of exis-
tence. If the distance between these trajectories decreases over time, the system is incrementally
asymptotically stable (see, e.g. [3, 5, 9, 10, 22, 57, 72, 109, 134, 166, 178, 197, 203, 215, 216]).
Contraction theory, which involves the shrinkage of the length of any smooth curve between
two points [6], was first proposed several decades ago and has recently gained significant at-
tention within the control community [87, 107, 219]. Its applications have proven effective in
various control problems, including observer design [181, 239], output regulation [166], and
multi-agent synchronization [4, 7, 200]. Incremental stability is closely related to the notion of
contraction and their strong connection has been established, e.g. [83,216].

Chapter 3 marks this manuscript’s transition from equilibrium stabilization to incremental sta-
bility in discrete-time. There, we introduce novel robust incremental stability tools based on
discrete-time contraction and we address the multi-agent framework. The contractive control
law is obtained via the solution of a convex generalized eigenvalue problem. While DNNs will
not be the focus of this third chapter, we show that the design can be cast as an optimiza-
tion problem, thus opening possible developments based on data-driven methods and machine
learning tools. The results of this last chapter are partially covered in [S6].

Expanding on the ideas presented in Chapter 3, our subsequent focus revolves around discov-
ering neural feedback designs that approximate control laws making the closed-loop incremen-
tally stable via contraction theory. Among the numerous tools proposed to analyze contractivity
properties of dynamical systems, such as matrix measures based on both Euclidean and non-
Euclidean norms [3, 57, 203], Riemannian metrics have emerged as a noteworthy approach,
offering a general and intuitive verification method [5,6,134,197]. Very similar properties have
been also studied in the context of convergent theory [163, 166, 178], resulting in conditions
which are mainly equivalent to those studied in the context of Riemannian metrics (also de-
noted as Demidovich conditions [163]). More recently, some works focused on the design of
feedback controllers making a closed-loop system a contraction, see, e.g. [83, 140, 181, 242].
Unfortunately, when applied on general nonlinear systems, most of these Riemannian metric-
based designs require finding solutions to nonlinear partial differential inequalities. This task
often poses challenges and typically necessitates the use of numerical methods to obtain ap-
proximate solutions. Consequently, only a limited number of studies have proposed general
approaches to address this problem [58,110,139,209,219,227,228].

In Chapter 4, our primary objective is to develop practical methods for contractive feedback
design through the use of DNNs. Given the more mature literature on contraction theory in
the continuous-time domain, we will consider continuous-time nonlinear systems. Addressing
the scenario of Riemannian metric-based conditions, we propose a DNNs-based algorithm to
approximate controllers with infinite-gain margin properties, and show their effectiveness in
multi-agent synchronization. Thanks to the strong theoretical foundations these controllers are

67

built on, they will preserve fundamental robustness guarantees even when approximated by
DNNs. These results are part of [S2]. Successively, we improve the proposed technique and
apply it the output tracking problem [S8].

It is worth noting that some works already proposed generalizations to the concept of contrac-
tion [151, 236]. However, related feedback designs have yet to appear in the literature, due to
the complexity of the required conditions. Such a complexity also affects their practical solv-
ability via optimization methods, as the number of variables to be estimated rapidly explodes
for most pairs of system dimension and contraction order. Hence, we conclude this second part
by introducing the general notion of k-contraction, which we subsequently reformulate and in-
vestigate to derive design-friendly conditions. Our aim is to provide a broader understanding
of contraction analysis for dynamical systems, and opening new possibilities for future designs
of guaranteed neural controllers. Compared to existing results, our conditions scale nicely with
the system dimension and contraction order, thus allowing for an effective use of convex opti-
mization approaches on a significantly wider range of situations. The results are presented in
Chapter 5 and they are extracted from [S7].

68

3 Discrete-time contractive feedback
design

In Part I, our focus was on studying the robust stability of equilibrium points, which is funda-
mental in many control applications. However, there exist numerous control scenarios where
convergence to a trajectory is required instead of an equilibrium. Notable examples include out-
put tracking, where a system must follow a desired trajectory, and multi-agent synchronization,
where multiple agents need to coordinate and converge to the same solution [103,166].

In this chapter, we shift our attention to studying robust convergence to trajectories in the
discrete-time nonlinear framework. Our main analysis tool will be the concept of incremen-
tal stability, specifically, incremental Input-to-State Stability (δISS). Intuitively, incrementally
stable dynamics exhibit the intriguing property of “forgetting” their initial conditions while of-
fering robustness against signals entering in the input directions. This feature makes incremental
stability a useful property, since the vanishing effect of initial conditions implies that distances
between trajectories asymptotically decrease in time, ensuring robust convergence to a (possibly
unbounded) unique solution.

The concept of discrete-time incrementally stable dynamics has garnered attention from the
research community in the last two decades [22, 78, 88, 194, 215]. Typically, δISS is obtained
via incremental Lyapunov functions. More recently, paralleling the continuous-time framework,
the equivalence between δISS properties with exponential convergence rate and contractive
dynamics has been shown also in the discrete-time scenario [216]. However, existing results on
discrete-time contraction analysis focus on smooth dynamics [55,109,110,165,216]. In discrete-
time, this limitation becomes particularly relevant when dealing with machine learning tools
such as Deep Neural Networks (DNNs), where non-smooth functions (e.g., ReLU activations)
are typically involved.

Hence, in this chapter, we extend the results to encompass dynamics that are time-varying and
not differentiable everywhere. Additionally, we address the lack of closed-form solutions in ex-
isting feedback designs based on discrete-time contraction, which typically rely on optimization
problems [110, 227, 228]. By providing closed-form state-feedback controllers, we offer a con-
structive design that ensures uniform exponential incremental stability properties for the closed-
loop system. This approach not only enhances the practicality and efficiency of implementation
(compared, e.g., to approaches relying on estimation of shortest-paths, i.e. geodesics [228]) but
also provides insights into the optimality and gain margin properties of the proposed controllers.
More specifically, we draw parallels to results in the continuous-time framework [84], and we

69

3.1. Incremental stability via non-smooth contraction

demonstrate the optimality of the proposed control law with respect to a quadratic cost. These
findings lay a strong foundation for future developments based on learning approaches. We also
highlight the gain margin properties of the controller, emphasizing the key differences from the
continuous-time solution.

Lastly, building upon the aforementioned results, we address the problem of multi-agent syn-
chronization. We start by generalizing the results for the linear framework, as it serves as an
instrumental analysis for the nonlinear scenario. By establishing a clear link between linear
and nonlinear approaches, we leverage the proposed incremental stability tools to derive a dis-
tributed control law that solves the synchronization problem for a general network of identical
nonlinear agents. The results discussed in this chapter are partially covered in [S6].

3.1 Incremental stability via non-smooth contraction

As previously stated, the existing body of literature in the domain of discrete-time contraction
analysis has primarily concentrated on the study of systems governed by smooth dynamics. How-
ever, practical discrete-time models frequently exhibit non-differentiable nonlinearities, such as
saturations, which demand an extension of the analytical framework. Hence, in this section,
we generalize existing results to a particular class of non-smooth dynamics. We show the link
between such a class of systems and common non-smooth dynamics (e.g. piece-wise linear)
and we proposed a contraction-based closed-form control law making the closed-loop δISS with
exponential convergence rate. Furthermore, we analyze the gain margin properties and opti-
mality of these controllers, providing valuable insights into their performance and robustness
characteristics.

We start our analysis by recalling some definitions of incremental stability coming from the
literature, e.g. [22, Definition 1], [215, Definition 1]. At first, we consider unforced time-varying
systems and introduce the concept of asymptotic incremental stability. Consider a discrete-time
nonlinear system evolving according to the difference equation

x+ = f(x, t), (3.1)

with x ∈ Rnx and f : Rnx × N→ Rnx a continuous function of the state.

Definition 3.1 (Asymptotic incremental stability). System (3.1) is globally incrementally asymp-
totically stable (δGAS) if there exists βββ ∈ KL such that, for all t ⩾ t0 with t0 ∈ N and for any initial
states x1(t0), x2(t0), the resulting solutions x1(t), x2(t) of (3.1) satisfy

|x1(t)− x2(t)| ⩽ βββ(|x1(t0)− x2(t0)|, t).

The function βββ describes the rate at which trajectories converge to one another. If βββ represents
an exponential decay and it is uniform in the initial conditions, namely if there exists scalars
β > 0 and ρ ∈ (0, 1) such that βββ = βρt−t0 |x1(t0) − x2(t0)|, the system is said to be globally
uniformly incrementally exponentially stable (δGES).

For differentiable system dynamics, δGES properties have recently been shown to be equivalent
to contraction properties [216, Theorem 15]. In continuous-time, it is known that contractivity
can be studied by exploiting sufficient Euclidean metric-based conditions, also known as Demi-
dovich conditions [163]. Similar results recently appeared also for the discrete-time framework,

70

Chapter 3. Discrete-time contractive feedback design

thus generalizing the well-known Lyapunov stability inequality for linear systems to the nonlin-
ear scenario. These sufficient conditions are recalled in the following theorem [216, Theorem
14].

Theorem 3.1 (Discrete-time Demidovich conditions.). Consider system (3.1) and suppose f is C1

in its first argument. Moreover, suppose there exists a positive definite matrix P ∈ Snx≻0 and a scalar
ρ ∈ (0, 1) such that

∂f

∂x
(x, t)⊤P

∂f

∂x
(x, t) ⪯ ρ2P,

for all (x, t) ∈ Rnx × N. Then, system (3.2) is δGES.

We now move to the analysis of systems with inputs and we formally define incremental input-
to-state stability. This definition clearly highlights the robustness properties required in δISS
dynamics. Consider a system of the form

x+ = f(x,w, t), (3.2)

where w ∈ Rnw is a disturbance input and f : Rnx ×Rnw ×N→ Rnx is a continuous function of
state and input.

Definition 3.2 (Incremental Input-to-State Stability). System (3.2) is globally incrementally input-
to-state stable (δISS) if there exists βββ ∈ KL and γγγ ∈ K∞ such that, for all t ⩾ t0 with t0 ∈ N,
for any initial states x1(t0), x2(t0) and any pair of disturbance sequences t 7→ w1(t), t 7→ w2(t), the
resulting solutions x1(t), x2(t) of (3.1) satisfy

|x1(t)− x2(t)| ⩽ βββ(|x1(t0)− x2(t0)|, t) + γγγ(sup
t∈[t0,t]

|w1(t)− w2(t)|).

As for the unforced case, we particularize the property to the case of exponential uniform con-
vergence.

Definition 3.3 (Incremental exponential Input-to-State Stability). System (3.2) is globally uni-
formly incrementally input-to-state stable with exponential convergence rate (exponentially δISS) if
there exist β, γ > 0 and ρ ∈ (0, 1) such that, for all t ⩾ t0 with t0 ∈ N and for any initial states
x1(t0), x2(t0) and any pair of disturbance sequences t 7→ w1(t), t 7→ w2(t), the resulting solutions
x1(t), x2(t) of (3.4) satisfy

|x1(t)− x2(t)| ⩽ βρt−t0 |x1(t0)− x2(t0)|+ sup
t∈[t0,t]

γ|w1(t)− w2(t)| . (3.3)

3.1.1 Sufficient conditions for exponential δISS

While Theorem 3.1 represents a significant contribution to the field of discrete-time nonlin-
ear system analysis, its applicability is limited to scenarios with continuously differentiable
dynamics. This restriction excludes important classes of systems found in practice, such as
those modeled by DNNs employing ReLU activation functions. These systems often exhibit non-
differentiable behaviors, necessitating an extension of the existing results. Moreover, the result
provides incremental stability properties only for the autonomous scenario. In light of these
limitations, our objective is to propose a generalization that addresses the challenges posed
by non-differentiable discrete-time nonlinear systems with inputs. We generalize the results of
Theorem 3.1 to a class of non-differentiable and non-autonomous system dynamics. Then, we

71

3.1. Incremental stability via non-smooth contraction

establish a connection between the selected non-smooth representation and well-established
non-smooth dynamics. Building upon these results, we develop a closed-form control law
that guarantees exponential δISS properties for the closed-loop system. Consider time-varying
discrete-time nonlinear system of the form

x+ = φ(x, t) + w, (3.4)

where the function φ : Rnx × N→ Rnx is such that the following mild property holds.

Property 3.1. Function φ : Rnx × N → Rnx is continuous in its first argument and there exists a
(possibly unbounded) set of matrices Dφ ⊂ Rnx×nx such that, for each xa, xb ∈ Rnx and all t ∈ N,
there exists an integrable function ψ : [0, 1]→ Rnx×nx satisfying

φ(xa, t)− φ(xb, t) =
∫ 1

0
ψ(s) ds (xa − xb) (3.5a)

ψ(s) ∈ Dφ, ∀s ∈ [0, 1]. (3.5b)

The above definition allows considering a wide class of dynamical systems. First, note that
when nx = 1, Property 3.1 boils down to the requirement of φ being absolutely continuous.
Trivially, such a class of systems includes continuously differentiable ones with Dφ containing
all of their Jacobians. Moreover, Property 3.1 includes functions that are differentiable almost
everywhere (i.e., everywhere but on a set of measure zero), such as piecewise smooth and
Lipschitz functions. In this case, Dφ contains all the possible Clarke generalized gradients [50].
As a particular case, for linear systems of the form x+ = Ax + w, Dφ = {A}. When moving
to nonlinear systems, this allows the inclusion of some useful nonlinearities, such as saturations
and arctangents, by selecting Dφ as the vertices of the convex hull of all possible Jacobians.
Finally, systems satisfying Property 3.1 are linked to the class of piece-wise smooth continuous
(PWSC) dynamics, which saw the development of robust synchronization via contraction-based
designs in the continuous-time framework [63, 64]. In what follows, we show the relation
between these two classes of systems. Consider the unforced dynamics with w = 0. PWSC
dynamics are defined via a finite collection of open, disjoint, and nonempty sets X1, . . . ,Xp. By
defining ∂Xi the boundary of the set Xi and by X i its closure, i.e., X i = Xi∪∂Xi, a discrete-time
PWSC system is described by the following dynamics

x+ = Φ(x, t) =


φ1(x, t) ∀x ∈ X 1

...
φp(x, t) ∀x ∈ X p

, (3.6)

where φi : Xi → Rnx is a differentiable function, x ∈ Rnx is the state at time t ∈ N. Moreover,
these systems satisfy the following:

• The whole space Rnx can be covered, namely ∪pi=1X i ⊆ Rnx

• For any i, j, the intersection Σij := X i ∩ X j is either an Rnx−1 manifold included in ∂Xi
and ∂Xj or the empty set.

• Each φi is C1 for all x ∈ Xi and its Jacobian
∂φi
∂x

can be continuously extended on the

boundary ∂Xi
• Φ is C0 for all x ∈ Rnx

72

Chapter 3. Discrete-time contractive feedback design

• For any i, j such that Σij is not empty, it holds φi(x, t) = φj(x, t) for all t and all x ∈ Σij

Given these properties, the relation between PWSC dynamics and systems satisfying Property 3.1
is presented in the following proposition.

Proposition 3.1. If, for any couple (xa, xb) ∈ Rnx×Rnx , the dynamics of (3.6) switches a countable
(possibly infinite) number of times τ ∈ N along the line γ(s) = sxa − (1− s)xb, then system (3.6)
satisfies Property 3.1.

Proof. Consider the points xa and xb at time t ∈ N. First, note that if the line γ(s) =
sxa + (1 − s)xb lies completely on Σij , Φ(γ(s)) = φi(γ(s)) for all s ∈ [0, 1]. Indeed, since
by assumption φi ∈ C1 at the boundaries for all i = 1, . . . , p, we can arbitrarily choose the
dynamics of γ. In other words, we can assume the whole line to belong to the same set.
As such, the number of dynamics switches at time t is τ = 0, and the system behaves as a
continuously differentiable one. Then, we focus on the case when τ > 0. We identify by
xq = γ(sq) the states where γ(s) is forced to change dynamics for the q-th time. In other
words, sq ∈ (0, 1) is such that lims→s−q

γ(s) ∈ X i and lims→s+q
γ(s) ∈ Xj . Note that, since xq

lies at the intersection between two sets, we can arbitrarily assume its evolution to follow
either the i-th or the j-th dynamics. Then, by defining x0 := xb and xτ+1 := xa, we can
assume the following without loss of generality

if τ = 0 : γ(s) ∈ X i ∀s ∈ [0, 1], if τ > 0 :



x0 ∈ X h1
xτ+1 ∈ X hτ+1

γ(s) ∈ Xhq ∀s ∈ (sq−1, sq),
q = 1, . . . , τ + 1

xq ∈ Σhqhq+1 q = 1, . . . , τ

(3.7)

where we used the compact notation hi := h(xi) and h : Rnx → {1, . . . , p} is a function
linking each point of the state space to a set. Differently put, we can subdivide the line
connecting x0 to xτ+1 into a set of collinear and consecutive segments, each one belonging
to a single set. Then, since τ ∈ N (i.e., the set of segments is countable) the set of scalars
S = {s1, . . . , sτ} is of Lebesgue measure zero and, for any q = 1, . . . , τ + 1 and any i =
1, . . . , p, the following holds

xa − xb =
τ+1∑
q=1

(xq − xq−1) , (3.8a)

lim
(c1,c2)→(s+q−1,s

−
q)

∫ c2

c1

∂φi
∂x

(γ(s), t)ds =

∫ sq

sq−1

∂φi
∂x

(γ(s), t)ds , (3.8b)

By the fundamental theorem of calculus applied to the function Gq(s) = φhq(γ(s), t), equa-
tion (3.8b) leads to

φhq(xq, t)φhq(xq−1, t) = Gq(sq)−Gq(sq−1) =

∫ sq

sq−1

∂φhq
∂x

(γ(s), t) ds (xa − xb) . (3.9)

Consider the points x+a = Φ(xa, t) and x+b = Φ(xb, t) at time t+ 1. Since τ ∈ N, by (3.7) we

73

3.1. Incremental stability via non-smooth contraction

have

x+a − x+b =
τ+1∑
q=1

[Φ(xq, t)− Φ(xq−1, t)] =
τ+1∑
q=1

[
φhq(xq, t)− φhq(xq−1, k)

]
=

τ+1∑
q=1

∫ sq

sq−1

∂φhq
∂x

(γ(s), t) ds

 (xa − xb) . (3.10)

For each q = 1, . . . , τ , define the sets

DΦq :=
{
∂φhq
∂x

(xq, t),
∂φhq+1

∂x
(xq, t)

}
DΦ :=

{
∂φ1

∂x
, . . . ,

∂φp
∂x

}
.

By choosing the function ψ(s) in Proposition 3.1 such that, for all t ∈ N, it satisfies

ψ(s) =
∂φhq
∂x

(γ(s), t) ∀s ∈ (sq−1, sq),

ψ(sq) ∈ DΦq

ψk(s0) =
∂φh1
∂x

(xb, t)

ψ(sτ+1) =
∂φhτ+1

∂x
(xa, t)

equality (3.10) reads

Φ(xa, t)− Φ(xb, t) =

∫ 1

0
ψ(s) ds (xa − xb) .

with ψ(s) ∈ DΦ for all s ∈ [0, 1], and this concludes the proof.

We now generalize existing results to the framework of non-smooth dynamics whose vector
fields satisfy Property 3.1. We prove below a sufficient δISS condition extending the results
in [55, Theorem 2], [216, Theorem 14], [78, Theorem 6.1] to the case of time-varying non-
smooth vector fields satisfying Property 3.1.

Proposition 3.2. Consider system (3.4) and suppose that φ satisfies Property 3.1 with a specific
set-valued map Dφ. Moreover, suppose that there exists P ∈ Snx≻0 and ρ ∈ (0, 1) satisfying

J⊤PJ ⪯ ρ2P , ∀J ∈ Dφ. (3.11)

Then, system (3.4) is exponentially δISS according to Definition 3.3.

Proof. Consider the candidate Lyapunov function V : Rnx × Rnx → R⩾0 defined as

V (x1, x2) = (x1 − x2)⊤P (x1 − x2) ,

for any two states x1, x2 ∈ Rnx . Given any selection of x1, x2 and w1, w2 ∈ Rnx , define
function F : R→ Rnx as

F (s) = φ(sx1 + (1− s)x2, t) + (sw1 + (1− s)w2) .

74

Chapter 3. Discrete-time contractive feedback design

We have

x+1 − x+2 = F (1)− F (0) = φ(x1, t)− φ(x2, t) + (w1 − w2) .

In view of (3.5), we obtain

V (x+1 , x
+
2) = (x+1 − x+2)⊤P

[∫ 1

0
ψ(s) ds (x1 − x2) + (w1 − w2)

]
(3.12)

for some ψ(s) ∈ Dφ, for all s ∈ [0, 1]. Then, adding and subtracting ρ2V (x1, x2) and
V (x+1 , x

+
2) to the right-hand side of (3.12) yields

V (x+1 , x
+
2)− ρ2V (x1, x2) = 2(x+1 − x+2)⊤P

[∫ 1

0
ψ(s) ds (x1 − x2) + (w1 − w2)

]
− (x+1 − x+2)⊤P (x+1 − x+2)

∫ 1

0
ds− ρ2(x1 − x2)⊤P (x1 − x2)

∫ 1

0
ds

=

∫ 1

0
ξ⊤Υ(s)ξ ds+ 2(x+1 − x+2)⊤P (w1 − w2)

where we defined ξ := col(x1 − x2, x+1 − x+2) and

Υ(s) :=

(
−ρ2P ψ⊤(s)P
Pψ(s) −P

)
.

By performing steps similar to the ones in Theorem 2.1, due to (3.11) and a Schur comple-
ment, Υ(s) ⪯ 0 for all s ∈ [0, 1]. As a consequence, since ρ ∈ (0, 1), we obtain

V (x+1 , x
+
2)− ρ2V (x1, x2) ⩽ 2(x+1 − x+2)⊤P (w1 − w2) .

By the generalized Young’s inequality and by considering the decomposition P =
√
P

⊤√
P ,

we have

2(x+1 − x+2)⊤P (w1 − w2) ⩽ (1− ρ)V (x+1 , x
+
2) +

1

1− ρ(w1 − w2)
⊤P (w1 − w2) .

Then, by combining the previous inequalities we obtain

V (x+1 , x
+
2)− ρV (x1, x2) ⩽

1

ρ(1− ρ)(w1 − w2)
⊤P (w1 − w2) .

As ρ ∈ (0, 1) and P ≻ 0, the function V is a dissipation-form incremental Lyapunov function
[215, Definition 7]. Then, the result follows by [215, Theorem 8]. Finally, by using standard
arguments (i.e. [216, Theorem 14]) one can conclude the exponential behavior of solutions.

Equipped with sufficient conditions for contraction of non-smooth dynamics, we conclude the
subsection with some pedagogical examples, providing a useful insight into the applicability of
the result.

Example 3.1. Consider a system of the form

x+ = φ(x) = satr(Ax) , (3.13)

75

3.1. Incremental stability via non-smooth contraction

where r ∈ Rn>0 and the vector saturation function sat(·) has components sati(·) := max(min(·, ri),−ri).
It can be easily verified that, for all x ∈ Rn, the generalized Jacobian of φ [50] satisfies

∂φ

∂x
(x) ⊂ co{∆A, ∆ ∈∆}

where ∆ := {∆ = diag(δ1, . . . , δn) : δi ∈ {0, 1}, ∀i = 1, . . . , n} is a finite set of matrices repre-
senting the vertices of a polytope. More generally, let V be a set of matrices V := {A1, . . . , Av} with
v ∈ N, such that ∂φ(x) ∈ co{V} for all x ∈ Rn. Then, it suffices to verify (3.11) on V and convexity
of the equivalent formulation (

ρ2P J⊤

J P−1

)
⪰ 0

(obtained via a Schur complement) ensures that (3.11) holds for Dφ = coV. Similar reasonings
can be followed for smooth monotone saturation-like functions, such as arctangents or hyperbolic
tangents.

Example 3.2. The study of incremental stability properties of neural networks is gaining attention
in the research community, e.g. [31, 55, 241]. The presented contraction analysis tools can be
valuable to derive such properties. For example, a multilayer perceptron with L ∈ N layers and
ReLU activation functions can be described by the following dynamics

x+ = yL

yℓ =Wℓ ν(yℓ−1) + bℓ, ℓ = 1, . . . , L

y0 = x

(3.14)

with the ReLU function ν(·) applied component-wise, i.e., ν(x) has components νi(xi) := max(0, xi),
yℓ, bℓ ∈ Rnℓ and Wℓ ∈ Rnℓ×nℓ−1 . Denoting by x 7→ φ(x) the function satisfying yL = φ(x) recur-
sively defined in (3.14), by the chain rule [50, Theorem 2.6.6], for all x ∈ Rn, we have

∂φ(x) ⊂ co{WL∆L−1WL−1 . . .∆1W1,∆i ∈∆∀i = 1, . . . , L− 1},

with ∆ defined as in Example 3.1. Proceeding as in Example 3.1, we can conclude exponential δISS
properties of (3.14) by checking (3.16) on a set V satisfying ∂φ(x) ∈ coV for all x ∈ Rn. Similar
results extend to more complex recurrent neural networks, as shown in [55].

3.1.2 Nonlinear robust feedback design

We now exploit the results of Proposition 3.2 to design a feedback stabilizers u = α(x, t) inducing
exponential δISS of the closed-loop (as defined in Definition 3.3). Consider a nonlinear system
of the form

x+ = f(x, t) +Bu+ w, (3.15)

where f : Rnx × N → Rnx satisfies Property 3.1 and B ∈ Rnx×nu is full column rank. The
obtained result shows gain margin properties as defined below, which is inspired by [191, Defi-
nition 3.13].

Definition 3.4 (Gain margin of radius r). Consider system (3.15). A function α : Rnx ×R→ Rnu
is a δISS feedback with gain margin of radius r > 0 if, for any real numbers κ ∈ [1 − r, 1 + r],
system (3.15) with u = κα(x, t) is δISS with respect to w.

We now present a result for the design of incrementally stabilizing feedback controllers with
gain margin in the non-smooth nonlinear framework described by Property 3.1.

76

Chapter 3. Discrete-time contractive feedback design

Theorem 3.2. Let R ∈ Snu⪰0 and assume that f in (3.15) satisfies Property 3.1 for some Df ⊂
Rnx×nx . Moreover, suppose that there exists P ∈ Snx≻0 satisfying

J⊤QJ ⪯ ρ2P, ∀J ∈ Df, (3.16a)

Q := P − σPB
(
R+B⊤PB

)−1
B⊤P, (3.16b)

for some ρ ∈ (0, 1) and σ ∈ (0, 1]. Then for the system (3.15) the function

u = α(x, t) = −κ
(
R+B⊤PB

)−1
B⊤Pf(x, t) (3.17)

is a δISS feedback with gain margin of radius r =
√
1− σ.

Proof. For the sake of compactness, let us start by defining

Y = Y ⊤ :=
(
R+B⊤PB

)−1
, Ω = Inx −κBY B⊤P.

Since B is assumed to be full column rank, the matrix R+B⊤PB is invertible, and Y exists.
Then, Proposition 3.2 states that the closed-loop (3.15), (3.17), which can be written as
(3.4) with

φ(x, t) = f(x, t) +Bα(x, t) = Ωf(x, t), (3.18)

is exponentially δISS if
J⊤Ω⊤PΩJ ⪯ ρ2P, ∀J ∈ Df. (3.19)

By expanding the left-hand side in (3.19) and by adding and subtracting σJ⊤PBY B⊤PJ ,
due to (3.19) we obtain the equality

J⊤Ω⊤PΩJ = J⊤PJ−σJ⊤PBY B⊤PJ+(σ − 2κ)J⊤PBY B⊤PJ+κ2J⊤PBY B⊤PBY B⊤PJ,

where we note that the first two terms at the right-hand side coincide with J⊤QJ . Then
inequality (3.16) implies, for all J ∈ Df ,

J⊤Ω⊤PΩJ ⪯ ρ2P + J⊤PBY
(
(σ − 2κ)Y −1 + κ2B⊤PB

)
Y B⊤PJ

⪯ ρ2P + (κ2 − 2κ+ σ)J⊤PBY B⊤PJ,

where we expanded Y −1 and added κ2R ⪰ 0 inside the brackets. Since Y is positive definite,
(3.19) holds and Proposition 3.2 applies if κ2 − 2κ+ σ ⩽ 0, which holds if and only if

1−
√
1− σ ⩽ κ ⩽ 1 +

√
1− σ ,

as to be proven.

Remark 3.1. Consider the role of the parameter σ in (3.16b). On the one hand, a strictly positive
σ implies that the system can be made exponentially δISS with the addition of an input acting in
the correct directions. On the other hand, σ = 0 implies that the autonomous system x+ = f(x, t)
is already contracting, while a negative σ would mean that the autonomous system is sufficiently
robust to withstand inputs in the wrong directions. Then, conditions (3.16b) can be seen as a
generalization of the discrete-time Modified Algebraic Riccati Inequality (MARI) to the nonlinear
framework [43,221].

77

3.1. Incremental stability via non-smooth contraction

Remark 3.2. Note that (3.16b) implies Q ∈ Snx≻0 if R ∈ Snu≻0. Indeed, by (3.16b) and the block
matrix inversion identity

(A+ BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1

with A = P , B = B, C = B⊤ and D = R, the invertibility of R yields the equivalent formulation

Q = (1− σ)P + σ(P−1 +BR−1B⊤)−1.

Since σ ∈ (0, 1] and P ≻ 0, matrix Q is a σ-governed linear interpolation between positive definite
matrices and, thus, it is positive.

Despite lacking infinite gain margin properties, discrete-time controllers designed using Demi-
dovich conditions can be reformulated to exhibit similar characteristics. Specifically, σ, κ in
conditions (3.16),(3.17) can be expressed in terms of a pair of parameters σ1 and σ2, which
demonstrate behavior akin to infinite gain margin. In what follows, we revisit Theorem 3.2 in
terms of σ1, σ2.

Proposition 3.3. Let R ∈ Snu⪰0 and assume that f in (3.15) satisfies Property 3.1 for some Df ⊂
Rnx×nx . Moreover, suppose that there exists P ∈ Snx≻0 satisfying

J⊤QJ ⪯ ρ2P, ∀J ∈ Df,
Q := P − σ1 2σ2−σ1σ2

2
PB

(
R+B⊤PB

)−1
B⊤P,

(3.20)

for some ρ ∈ (0, 1) and some scalars σ1, σ2 satisfying σ1(2σ2 − σ1) > 0. Then, system (3.15) in
closed-loop with u = α(x, t) selected as (3.17) with

κ =
2σ2 − σ1

σ2
(3.21)

is exponentially δISS with respect to w.

Proof. From Theorem 3.2, sufficient conditions for exponential δISS properties require the
satisfaction of the bounds

σ1
2σ2 − σ1

σ22
∈ (0, 1], (3.22a)

2σ2 − σ1
σ2

∈
[
1−

√
1− σ1

2σ2 − σ1
σ22

, 1 +

√
1− σ1

2σ2 − σ1
σ22

]
. (3.22b)

We start by considering the first constraint (3.22a). Trivially, positivity is verified for all
(σ1, σ2) belonging to the set S1 :=

{
(σ1, σ2) ∈ R2 : σ1 > 0 ∧ σ2 > σ1

2 ∨ σ1 < 0 ∧ σ2 < σ1
2

}
,

which can be equivalently represented via the cone

S1 =
{
(σ1, σ2) ∈ R2 : σ1(2σ2 − σ1) > 0

}
. (3.23)

Similarly, it is easy to show that the upper bound in (3.22a) is satisfied if and only if

σ22 − 2σ2σ1 + σ21 ⩾ 0 ⇐⇒ (σ2 − σ1)2 ⩾ 0,

which holds for any σ1, σ2. Then (3.22a) is satisfied for all (σ1, σ2) ∈ S1. Consider now

78

Chapter 3. Discrete-time contractive feedback design

(3.22b). First, notice that for any σ1, σ2 there exist real solutions to the square roots, since

1− σ1
2σ2 − σ1

σ22
=

(σ2 − σ1)2
σ22

⩾ 0.

Then, we focus our attention to the satisfaction of the constraints. First, note that the lower
bound in (3.22b) reads as

2σ2 − σ1
σ2

⩾ 1−
√

(σ2 − σ1)2
σ22

.

Hence, by simple computations, it can be proven to be equivalent to√
(σ2 − σ1)2

σ22
⩾ −σ2 − σ1

σ2
.

On the one hand, if the pair (σ1, σ2) belongs to the set

S2 :=
{
(σ1, σ2) ∈ R2 : σ2 − σ1 ⩾ 0 ∧ σ2 > 0 ∨ σ1 − σ2 ⩽ 0 ∧ σ2 < 0

}
(3.24)

the above inequality is satisfied, as the right-hand side becomes negative. On the other
hand, if the pair (σ1, σ2) /∈ S2, the right-hand side is positive and squaring of the terms
yields (σ2 − σ1)

2 ⩾ (σ2 − σ1)
2, which is always verified. Hence, (3.22b) is satisfied for

all (σ1, σ2) ∈ R2 and (3.22) holds for all (σ1, σ2) ∈ S1. Therefore, by Theorem 3.2, the
closed-loop (3.15)-(3.17) with (3.21) is exponentially δISS.

Remark 3.3. The resemblance to infinite gain margin laws for continuous-time as in [84] is more
evident by defining the matrix R :=

σ2
2

2σ2−σ1 (R + B⊤PB) ≻ 0. In the continuous-time case, the
contraction condition for smooth dynamics reads

∂f

∂x
(x, t)⊤P + P

∂f

∂x
(x, t)− µPBR−1B⊤P ⪯ −λP,

where λ and µ are positive scalars. Then, the control law u = −κβ(x, t) with

β(x, t) = R−1B⊤Px

makes the closed-loop system δISS for any k ⩾ ρ
2 [83]. Hence, by substituting R, conditions (3.16)

under (3.20),(3.21) rewrite as

J⊤(P − σ1PBR−1B⊤P)J ⪯ ρP

and
α(x, t) = −σ2R−1B⊤Pf(x).

This closely resembles the continuous-time scenario as it allows for σ1 > 0, σ2 >
σ1
2 . However, the

weight matrix R is scaled by the parameters σ1, σ2 and, due to the quadratic form of (3.16a) and
the coupling between σ1 and σ2, the symmetric solution σ1 < 0, σ2 <

σ1
2 is also valid.

3.1.3 GEVPs for exponential δISS

We now discuss numerically efficient formulations of the results of Theorem 3.2. LMI-based con-
ditions for robust stabilization are a valuable tool for control design for discrete-time nonlinear

79

3.1. Incremental stability via non-smooth contraction

systems, see e.g. [88,110,194,247]. Hence, inspired by these works and recent LMI approaches
for solving MARI inequalities [199, 221], we propose LMI-based conditions to obtain the solu-
tion of the MARI-like inequality (3.16). This numerically efficient formulation provides a viable
solution to the design problem of robustly synchronizing controllers. First, we introduce an
equivalent formulation for (3.16). The parameters of the proposed reformulation can be ob-
tained by solving a generalized eigenvalue problem (GEVP). Then, we focus our attention on
the case where the set of possible open-loop Jacobians of the system dynamics (3.15) is poly-
topic. Finally, we target the specific case of Lur’e systems and propose numerically tractable
sufficient conditions.

Formulation as a GEVP. We start by reformulating Theorem 3.2 as an LMI problem. This
provides convex analysis conditions for constructing matrix P . Given this new formulation, the
convergence rate ρ and the parameter σ in (3.16) can be estimated as part of a GEVP.

Proposition 3.4. Let R ∈ Snu≻0, σ ∈ (0, 1], ρ ∈ (0, 1). The following LMIs in the decision variables
W and Σ

W ≻ 0, Σ ≻ 0,

(
ρW WJ⊤

JW ρΣ

)
⪰ 0, (3.25a)(

W + σBR−1B⊤ − Σ BR−1B⊤

BR−1B⊤ 1
σ

(
W

(1−σ) +BR−1B⊤
)) ⪰ 0, (3.25b)

hold if and only if conditions (3.16) hold with P = W−1 ≻ 0. Moreover, (3.25) is a generalized
eigenvalue problem in (σ, ρ,R), namely, if it is feasible for (σ, ρ, R̄), then it is feasible for any
(σ, ρ,R) such that σ ⩾ σ, ρ ⩾ ρ, R ⪯ R̄ and, conversely, if it is infeasible for (σ, ρ,R), then it is
infeasible for any (σ, ρ,R) such that σ ⩽ σ, ρ ⩽ ρ, R ⪰ R.

Proof. Consider the last LMI of (3.25). Since W ≻ 0 and R−1 ≻ 0, then its (2, 2) entry is
positive definite. Then, by the Schur complement (3.25b) holds if and only if

W + σBR−1B⊤ − Σ ⪰ σ(1− σ)BR−1B⊤(W + (1− σ)BR−1B⊤)−1BR−1B⊤,

which can be rearranged as

Σ ⪯W + σB
(
R−1 − (1− σ)R−1B⊤(W + (1− σ)BR−1B⊤)−1BR−1

)
B⊤. (3.26)

By the matrix inversion lemma (3.78) with A = R, B =
√
1− σB⊤, C =

√
1− σB, D = W ,

inequality (3.26) is equivalent to

Σ ⪯W + σB(R+ (1− σ)B⊤W−1B)−1B⊤.

Left and right multiplication of both sides by W−1 ≻ 0 yields the equivalent condition

W−1ΣW−1 ⪯W−1 − σW−1B(−(R+B⊤W−1B) + σB⊤W−1B)−1B⊤W−1. (3.27)

Once again, by the matrix inversion lemma (3.78) applied with A = W , B =
√
σB, C =√

σB⊤, D = −(R+B⊤W−1B), inequality (3.27) is equivalent to

W−1ΣW−1 ⪯ (W − σB(R+B⊤W−1B)−1B⊤)−1.

80

Chapter 3. Discrete-time contractive feedback design

By left and right multiplying both sides by W , we obtain the equivalent inequality

Σ ⪯W (W − σB(R+B⊤W−1B)−1B⊤)−1W. (3.28)

Since (ABC)−1 = C−1B−1A−1 for any invertible matrices A, B, C, inequality (3.28) is equiv-
alent to

Σ ⪯ (W−1(W − σB(R+B⊤W−1B)−1B⊤)W−1)−1

⪯ (P − σPB(R+B⊤PB)−1B⊤P)−1 = Q−1, (3.29)

where we used P =W−1 and the definition of Q in (3.16b). Consider now the right LMI in
(3.25a). By left and right multiplication by the matrix

T =

(
W−1 0
0 Inx

)
=

(
P 0
0 Inx

)
,

we have (
ρP J⊤

J ρΣ

)
=

(
ρW−1 J⊤

J ρΣ

)
⪰ 0.

Then, by the Schur complement, we obtain the equivalent condition ρW−1−ρ−1J⊤Σ−1J ⪰
0, which, with the selection P =W−1, can be written as

J⊤Σ−1J ⪯ ρ2P. (3.30)

Summarizing, we proved the equivalence of (3.25) with the four inequalities P ≻ 0, Σ ≻ 0,
(3.29) and (3.30), where we emphasize that under (3.25) Q−1 exists due to the positive
definiteness of Q implied by R ≻ 0, as established in Remark 3.2. More specifically, (3.25)
is equivalent to

P ≻ 0, Σ ≻ 0, Σ−1 ⪰ Q, J⊤Σ−1J ⪯ ρ2P. (3.31)

To complete the first part of the proof, we show that (3.31) is equivalent to (3.16). If (3.16)
holds, then Q ≻ 0 and (3.31) holds with Σ = Q−1. If (3.31) holds, then

J⊤QJ ⪯ J⊤Σ−1J ⪯ ρ2P,

thus completing the first part of the proof. To prove that (3.25) is a GEVP in (σ, ρ,R), let us
denote by W̄ , Σ̄ the solution of (3.25) with (σ̄, ρ̄, R̄). If σ ⩾ σ > 0, 0 ≺ R ⪯ R̄, we obtain

Q̄ = P̄ − σP̄B(R̄+B⊤P̄B)−1B⊤P̄ ⪰ P̄ − σP̄B(R+B⊤P̄B)−1B⊤P̄ = Q,

where P̄ = W̄−1 ≻ 0. Then, by (3.31) and since Σ̄−1 ⪰ Q̄ and ρ ⩾ ρ, the following
inequalities hold

P̄ ≻ 0, Σ̄ ≻ 0, Σ̄−1 ⪰ Q, J⊤Σ̄−1J ⪯ ρ̄2P̄ .
Due to the equivalence between inequalities (3.31) and (3.25), we conclude that P = P̄
is solution to (3.25) with (σ, ρ,R). Similar reasonings prove infeasibility of (3.31) for any
(σ, ρ,R) such that σ ⩽ σ, ρ ⩽ ρ, R ⪰ R if (3.31) is infeasible for (σ, ρ,R).

Polytopic conditions. Combined with Proposition 3.2, Proposition 3.4 requires the satisfac-
tion of (3.25) for all J ∈ Df . This may turn out to be impracticable, as Df could be infinite

81

3.1. Incremental stability via non-smooth contraction

dimensional. However, under some additional assumptions on system (3.15), we can follow a
polytopic approach similar to the one in Examples 3.1 and 3.2. Hence, we propose the follow-
ing result addressing the case where the open-loop system Jacobian belongs to a polytopic set
defined by a finite number of vertices.

Corollary 3.1. Let R ∈ Snu≻0 and assume that f in (3.15) satisfies Property 3.1 for some Df ⊂
Rnx×nx . Moreover, suppose there exists a finite set of matrices V := {A1, . . . , Av} ⊂ Rnx×nx such
that Df ⊆ coV. If there exist matrices W,Σ ∈ Snx≻0 and scalars ρ ∈ (0, 1), σ ∈ (0, 1] satisfying
(3.25) for all J ∈ V, the control law u = α(x, t) with α defined in (3.17) and P =W−1 makes the
closed-loop exponentially δISS with respect to w with gain margin of radius r =

√
1− σ.

Lur’e systems. We further specialize our result to the case of Lur’e systems. Namely, we now
consider nonlinear discrete-time systems of the form

x+ = f(x) +Bu = Ax+ Fϕ(Cx) +Bu, (3.32)

where C ∈ Rny×nx , F ∈ Rnx×ny and the square nonlinearity ϕ : Rny → Rny is a pool of
ny, possibly different, feedback nonlinear elements ϕ(y) := diag(ϕ1(y1), . . . , ϕny(yny)) whose
components ϕi, i = 1, . . . , ny, satisfy Property 3.1 for some intervals Dϕi ⊂ R, i = 1, . . . , ny.
We assume that each function ψi belongs to an incremental sector [0, ωi], with ωi ⩾ 0, in the
following classical sense:

(ϕi(s1)− ϕi(s2))(ϕi(s1)− ϕi(s2)− ωi(s1 − s2)) ⩽ 0, ∀s1, s2 ∈ R. (3.33)

By the non-smooth mean value theorem [50, Theorem 2.3.7], we may combine bounds (3.33)
into

He {JϕS(Jϕ − Ω)} ⪯ 0 (3.34)

which holds for all diagonal Jϕ ∈ Dϕ = diag(Dϕ1, . . . ,Dϕny), for any diagonal S ∈ Sny⪰0 and for
some diagonal Ω = diag(ω1, . . . , ωny) ∈ Sny⪰0. We then have the following result.

Proposition 3.5. Let R ∈ Snu≻0 and suppose that ϕ in (3.32) satisfies (3.33) for some Ω =
diag(ω1, . . . , ωny). If there exist symmetric matrices W,Σ, a diagonal matrix S ∈ Sny⪰0 and scalars
ρ ∈ (0, 1), σ ∈ (0, 1] satisfying (3.25b) and

W ⪰ 0, Σ ⪰ 0,

ρW WA⊤ WC⊤

AW ρΣ −FΩ⊤S
CW −SΩF⊤ 2S

 ⪰ 0, (3.35)

then the control law u = α(x, t) with α defined in (3.17) and P = W−1 makes the closed-loop
(3.32)-(3.17) exponentially δISS with respect to w with gain margin of radius r =

√
1− σ.

Proof. Due to [50, Theorem 2.3.7], (3.34) holds for any diagonal S ∈ Sny⪰0 and any

Jϕ ∈ Dϕ. Define the matrix Λ⊤ :=
(

Inx 0 0
0 Inx FJϕ

)
with any diagonal Jϕ ∈ Dϕ. It is easy to

verify that (3.34) implies

Λ⊤

0 0 0
0 0 −FΩ⊤S
0 −SΩF⊤ 2S

Λ = Λ⊤ΠΛ ⪯ 0. (3.36)

82

Chapter 3. Discrete-time contractive feedback design

Consider now (3.35), which implies

Λ⊤

ρW WA⊤ WC⊤

AW ρΣ −FΩ⊤S
CW −SΩF⊤ 2S

Λ = Λ⊤(Ξ + Π)Λ ⪰ 0,

where we defined

Ξ :=

ρW WA⊤ WC⊤

AW ρΣ 0
CW 0 0

 . (3.37)

By (3.36), we then have
Λ⊤ΞΛ ⪰ Λ⊤(Ξ + Π)Λ ⪰ 0,

thus showing Λ⊤ΞΛ ⪰ 0. Then, the expansion of the product leads to

Λ⊤ΞΛ =

(
ρW W (A+ FJϕC)

⊤

(A+ FJϕC)W ρΣ

)
⪰ 0, ∀Jϕ ∈ Dϕ.

By Proposition 3.4, the assumption (3.25b) implies that conditions (3.16) hold with P =
W−1 ≻ 0 for any J ∈ Df = A+ FDϕC. The proof is concluded by Proposition 3.2.

3.1.4 Optimality of discrete-time contractive feedbacks

In Section 3.1.2, we propose a fundamental result to derive method for designing robust in-
crementally stabilizing controllers through optimization problems. In order to provide further
insight into the properties of these controllers and their potential for application via machine
learning tools, we aim to demonstrate their optimality, similar to the continuous-time case [84].
To achieve this goal, we introduce a generalized version of Theorem 3.2, which provides suf-
ficient conditions for δISS based on Demidovich-like conditions with a discount factor. This
generalization lays the foundation for exploring the possibility of learning these robust con-
trollers using data-driven methods such as DRL. These results can be linked to the findings
in [41].

Proposition 3.6. Let R ∈ Snu⪰0 and assume that f in (3.15) satisfies Property 3.1 for some Df ⊂
Rnx×nx . Moreover, suppose that there exists P ∈ Snx≻0 satisfying

J⊤QJ ⪯ ρ2P, ∀J ∈ Df,
Q := ηP − ση2PB

(
R+ ηB⊤PB

)−1
B⊤P,

(3.38)

for some σ, η ∈ (0, 1] and ρ ∈ (0, η). Then, system (3.15) in closed-loop with u = α(x, t) selected as

α(x, t) = −κ
(
R+ ηB⊤PB

)−1
B⊤Pf(x, t) (3.39)

is exponentially δISS with respect to w for any κ ∈
[
η(1−

√
1− σ), η(1 +

√
1− σ)

]
.

Proof. Let us define Pη := ηP and ρη := ρ
η . By substituting Pη, ρη in (3.38), we obtain a

form equivalent to (3.16b). As a consequence, since ρ < η, by Theorem 3.2 the control law

α(x, t) = −κη
(
R+B⊤PηB

)−1
B⊤Pηf(x, t) (3.40)

83

3.1. Incremental stability via non-smooth contraction

makes the closed-loop (3.15)-(3.40) exponentially δISS with respect to w for any scalar gain
κη ∈

[
1−
√
1− σ, 1 +

√
1− σ

]
. By the definition of Pη, function (3.40) is equivalent to

α(x, t) = −ηκη
(
R+ ηB⊤PB

)−1
B⊤Pf(x, t).

By defining κ := ηκη, the bounds on κη translate to κ ∈
[
η(1−

√
1− σ), η(1 +

√
1− σ)

]
,

thus concluding the proof.

Remark 3.4. It is interesting to notice that the addition of a discount factor η ∈ (0, 1] can drastically
affect the gain margin properties of the controller. Indeed, η scales the radius of the circle of allowed
gains and shifts its center towards the origin.

In order to demonstrate the optimality of the proposed control law, we will draw on concepts
from the dynamic programming literature, see Appendix A.1. Hence, throughout the remainder
of this section, we will refer to control policies rather than control laws. Furthermore, as we are
considering cooperative tasks, we can focus on deterministic policies that directly map states to
actions, without loss of generality. For simplicity, we will now restrict our analysis to smooth,
time-invariant system dynamics of the form (3.15), where f is a C1 function of the state only.
However, the results can be generalized to systems satisfying Property 3.1. As the objective is to
prove the optimality of a controller that achieves closed-loop incremental stability, the objective
function will involve a distance metric between two arbitrary trajectories of the system, rather
than a measure of the distance to the origin. In other words, the problem can be reformulated
as a multi-agent synchronization one between homogeneous agents of the form{

x+1 = f(x1) +Bu1

x+2 = f(x2) +Bu2
(3.41)

where u1, u2 ∈ Rnu are arbitrary control actions. Then, we aim at showing that u1 = α(x1), u2 =
α(x2) with α as in (3.40) is a pair of optimal actions with respect to some synchronizing cost,
under a proper selection of the gain κ. Let us define the error coordinates

x̃(t) := x1(t)− x2(t)
f̃(t) := f(x1(t))− f(x2(t))
ũ(t) = u1(t)− u2(t).

We now present the optimality result for discrete-time contraction-based control laws. Consider
a discrete-time nonlinear system described by the following difference equation

x+ = f(x) +Bu, (3.42)

with x ∈ Rnx , u ∈ Rnu and f ∈ C1.

Theorem 3.3. Let R ∈ Snu≻0 , and assume there exists P ∈ Snx≻0 solution of

∂f

∂x
(x)⊤Q

∂f

∂x
(x) ≺ P, ∀x ∈ Rnx

Q := ηP − ση2PB
(
R+ ηB⊤PB

)−1
B⊤P,

(3.43)

for some σ, η ∈ (0, 1]. Then

α(x) = −ησ
(
R+ ηB⊤PB

)−1
B⊤Pf(x) (3.44)

84

Chapter 3. Discrete-time contractive feedback design

makes the closed-loop (3.42)-(3.44) exponentially δISS. Moreover, for any pair on initial conditions
x1(t), x2(t) evolving according to (3.41), the control policy (3.44) is an optimal policy with respect
to the incremental minimization problem described by the cost function

J(x1(t), x2(t), ũ(t)) =
∞∑
k=0

ηk
(
x̃(k + t)⊤S(x̄(k + t))x̃(k + t) + ũ(k + t)Rũ(k + t)

)
, (3.45)

where we defined

S(x) := P − ∂f

∂x
(x)⊤Q

∂f

∂x
(x), R := R+

1− σ
σ

(R+ ηB⊤PB) (3.46)

and x̄(k + t) := s̄x1(k + t) + (1− s̄)x2(k + t) with s̄ ∈ [0, 1] such that

f(x1)− f(x2) =
∂f

∂x
(s̄x1 + (1− s̄)x2) (x1 − x2).

Proof. Since 1 −
√
1− σ ⩽ σ ⩽ 1 +

√
1− σ for all σ ∈ (0, 1], exponential δISS properties

are easily proven via Proposition 3.6. Hence, we focus on the optimality of policy (3.44).
Note that, since R ∈ Snu≻0 and η ∈ (0, 1], the matrix Q in (3.38) can be proven to be positive
definite via steps similar to the ones in Remark 3.2, thus showing that the matrix valued
function S : Rnx → Snx≻0 satisfies

P ⪰ S(x) ≻ 0, ∀x ∈ Rnx .

Consider the Lyapunov function

V (x1, x2) := (x1 − x2)⊤P (x1 − x2) = x̃⊤Px̃.

We now show that it is the state-value function for problem (3.45) under policy (3.44),
namely V (x1, x2) = Jα,α(x1, x2), being Jα,α the state-value function obtained under the
choice u1 = α(x1) and u2 = α(x2) for all (x1, x2) ∈ Rnx × Rnx . To do so, let z = x2 and
x1 = z + x̃. At the successive timestep, we have

V (x+1 , x
+
2) = (x̃+)⊤Px̃+ =

(
f̃ +B (α(z + x̃)− α(z))

)⊤
P
(
f̃ +B (α(z + x̃)− α(z))

)
.

By defining the change of coordinates

α̃ := α(x1)− α(x2) = α(z + x̃)− α(z) = −ησ(R+B⊤PB)−1B⊤P f̃, (3.47)

definition (3.46) and the fact that −(R+B⊤PB)α̃ = ησB⊤P f̃ yield

V (x+1 , x
+
2) = f̃⊤P f̃ + α̃⊤B⊤P f̃ + f̃⊤PBα̃+ α̃⊤B⊤PBα̃

= f̃⊤
(
P − ησPB(R+ ηB⊤PB)−1B⊤P

)
f̃ − 1

ησ
α̃⊤(R+ ηB⊤PB)α̃+ α̃⊤B⊤PBα̃

=
1

η
f̃⊤Qf̃ + α̃⊤

(
B⊤PB − 1

ησ
(R+ ηB⊤PB)

)
α̃,

85

3.1. Incremental stability via non-smooth contraction

where Q is defined as in (3.38). Then, by adding and subtracting η−1R inside the parenthe-
sis of the last term, we obtain the equivalence

V (x+1 , x
+
2) =

1

η
f̃⊤Qf̃ + α̃⊤

(−1 + σ

ησ
(R+ ηB⊤PB)− 1

η
R

)
α̃ =

1

η

(
f̃⊤Qf̃ − α̃Rα̃

)
.

(3.48)
Let us define F : R→ Rnx as

F (s) := f(z + sx̃)− f(z).

It can be easily verified that F (0) = 0 and f̃ = F (1) − F (0). Hence, by the mean value
theorem there exists a scalar s̄ ∈ [0, 1] such that

F (1)− F (0) = dF

ds
(s̄) =

∂f

∂x
(z + s̄x̃)x̃.

Consequently, in view of (3.43) and by defining x̄ := z + s̄x̃, equation (3.48) is equivalent
to

ηV (x+1 , x
+
2) = V (x1, x2)− x̃⊤S(x̄)x̃− x̃⊤

∂f

∂x
(x̄)⊤Q

∂f

∂x
(x̄)x̃+ f̃⊤Qf̃ − αRα̃

= −(x̃⊤S(x̄)x̃+ α̃⊤Rα̃) + V (x1, x2). (3.49)

Hence, we showed V can be rewritten in the recursive form of a Bellman’s equation and
that V = Jα,α. We now show that it also is the optimal value function under the objective
(3.45). Consider two policies π1,π2 which differ from α only in the first input. In other
words, for i = 1, 2, let control policy πi be defined as

πi(x1(k + t), x2(k + t)) =

{
α(xi(k + t))− δi(x1(k + t), x2(k + t)) k = 0,

α(xi(k + t)) k ⩾ 1.
(3.50)

Consequently, the state-value function can be written as

Jπ1,π2(x1, x2) = x̃⊤S(x̄)x̃+ π̃⊤Rπ̃ + ηJα,α(x
+
1,π1

, x+2,π2
), (3.51)

where x+i,πi is the next state obtained using πi with i = 1, 2 and π̃ := π1(x1, x2)−π2(x1, x2).
Note that (3.49) implies

x̃⊤S(x̄)x̃+ α̃⊤Rα̃ = V (x1, x2)− ηV (x+1,α, x
+
2,α) = Jα,α(x1, x2)− ηJα,α(x+1,α, x+2,α),

where x+i,α with i = 1, 2 is the next state obtained following α. Then, recalling (3.51), we
obtain

Jπ1,π2(x1, x2) = Jα,α(x1, x2)− ηJα,α(x+1,α, x+2,α)− α̃⊤Rα̃+ π̃⊤Rπ̃ + ηJα,α(x
+
1,π1

, x+2,π2
).

Expansion of the term π̃ paired with (3.50) yields

Jπ1,π2(x1, x2) = Jα,α(x1, x2)− 2α̃⊤Rδ̃ + δ̃⊤Rδ̃ + ηJ̃π,α(x
+
1 , x

+
2), (3.52)

86

Chapter 3. Discrete-time contractive feedback design

where we defined δ̃ := δ1(x1, x2) − δ2(x1, x2) and the state-value function error term
J̃π,α(x

+
1 , x

+
2) := Jα,α(x

+
1,π1

, x+2,π2
)−Jα,α(x+1,α, x+2,α). Hence, using the fact that Jα,α(x1, x2) =

V (x1, x2) = x̃⊤Px̃ and (3.50), we obtain

J̃π,α(x
+
1 , x

+
2) =

(
f̃ +Bπ̃

)⊤
P
(
f̃ +Bπ̃

)
−
(
f̃ +Bα̃

)⊤
P
(
f̃ +Bα̃

)
= π̃⊤B⊤P f̃ + f̃⊤PBπ̃ + π̃⊤B⊤PBπ̃ − α̃⊤B⊤P f̃ − f̃⊤PBα̃− α̃⊤B⊤PBα̃

= −δ̃⊤B⊤P f̃ − f̃⊤PBδ̃ − δ̃⊤B⊤PBα̃− α̃⊤B⊤PBδ̃ + δ̃⊤B⊤PBδ̃.

By the definition of α̃ in (3.47) and the fact that −(R + B⊤PB)α̃ = ησB⊤P f̃ , the above
relation is equivalent to

J̃π,α(x
+
1 , x

+
2) =

2

ησ
δ̃⊤(R+ ηB⊤PB)α̃− 2δ̃⊤B⊤PBα̃+ δ̃⊤B⊤PBδ̃

=
2(1− σ)
ησ

δ̃⊤(R+ ηB⊤PB)α̃+
2

η
δ̃⊤Rα̃+ δ̃⊤B⊤PBδ̃

=
2

η
δ̃⊤
(
1− σ
σ

(R+B⊤PB) +R

)
α̃+ δ̃⊤B⊤PBδ̃

=
2

η
δ̃⊤Rα̃+ δ̃⊤B⊤PBδ̃. (3.53)

Hence, by substituting (3.53) in (3.52) we obtain

Jπ1,π2(x1, x2) = Jα,α(x1, x2)− 2α̃⊤Rδ̃ + δ̃⊤Rδ̃ + 2δ̃⊤Rα̃+ ηδ̃⊤B⊤PBδ̃

= Jα,α(x1, x2) + δ̃⊤(R+ ηB⊤PB)δ̃. (3.54)

Consider now two policies π⋆1,π
⋆
2 differing from α only in the first action, and assume this

first action to be optimal. Then, the two control policies provide the value function

Jπ⋆1,π
⋆
2
(x1, x2) = min

π̃
{x̃⊤S(x̄)x̃+ π̃⊤Rπ̃ + ηJπ⋆1,π

⋆
2
(x+1,π⋆1

, x+2,π⋆2
)}. (3.55)

However, in view of the above discussion and (3.54), the state-value function (3.55) is
equivalent to

Jπ⋆1,π
⋆
2
(x1, x2) = min

δ̃
{Jα,α(x1, x2) + δ̃⊤(R+ ηB⊤PB)δ̃} = Jα,α(x1, x2).

Then optimality of Jα,α follows by the recursive properties of Bellman’s equations, thus
showing optimality of α and concluding the proof.

Remark 3.5. The results of Theorem 3.3 can be generalized to time-varying dynamics. However, it
is interesting to notice that, in the time-invariant scenario, contraction implies existence and global
stability of a fixed point by Banach fixed point theorem [19]. As such, we can consider x2 = 0 to be
such a fixed point, without loss of generality. In turn, x̄ = x1 and the objective (3.45) becomes

J(x1(t), u1(t)) =
∞∑
k=0

ηk
(
x1(k + t)⊤S(x1(k + t))x1(k + t) + u1(k + t)Ru1(k + t)

)
, (3.56)

which is a single-agent minimization problem. Moreover, in the context of linear time-invariant
dynamics, (3.56) recovers the classical discounted LQR formulation, since S in (3.46) becomes the

87

3.2. Robust synchronization via contraction theory

constant matrix

S := P −A⊤
(
ηP − ση2PB

(
R+ ηB⊤PB

)−1
B⊤P

)
A.

DRL for contraction. Given the results of Theorem 3.3, one can envision learning a contrac-
tive feedback controller via data-driven methods. More specifically, we can define a two-agent
problem where the aim is to minimize a cost of the form (3.45), yielding an instantaneous
reward of the form

r(x1, x2, u1, u2) := −(x̃⊤S(x̄)x̃+ ũRũ),

where R ∈ Snu≻0 and S : Rnx → Snx≻0 are user-defined. First, we notice that in order to obtain
an approximation of the contractive controller (3.44) which is applicable in the single-agent
scenario, the two agents cannot use information about the other agent states. Second, we
remark that when R and S have been selected, we need a way of computing s̄ in x̄ = s̄x1+(1−
s̄)x2 . A thrilling possibility to avoid time-consuming online computations is the estimation of
s̄ via a DNN g : Rnx × Rnx × Rnθ → [0, 1] with parameters θ ∈ Rnθ . Given a dataset D of pairs
(x1, x2), the DNN can be trained with the objective

min
θ

∑
D

∣∣∣∣f(x1)− f(x2)− ∂f

∂x
(g(x1, x2, θ)x1 + (1− g(x1, x2, θ))x2) (x1 − x2)

∣∣∣∣2 .
Once the offline training is complete, the DNN offers a fast estimation of the value s̄ for two
given states x1, x2, and it can be used in the computation of the cost for training the neural
controller.

3.2 Robust synchronization via contraction theory

Multi-agent systems control has attracted a lot of attention from the control community. Many
modern control problems can be formulated as networks of interacting agents that aim to
achieve agreement [116]. In this section, we focus on the problem of state synchronization
in an homogeneous network of discrete-time agents, namely, all agents are identical. The sys-
tems are described by time-varying nonlinear models that are linear in the control input.

The problem of synchronization presents mature results in the linear framework, especially for
continuous-time agent dynamics [184, 205]. For discrete-time systems, notable results can be
found in [53, 133, 179, 206]. However, in the discrete-time setting, further investigations are
required to understand the relationship between the structure of a network (i.e., the eigenvalues
and eigenvectors associated with its representation) and the possibility of finding a suitable
synchronizing control. As a matter of fact, the structure of the communication graph has a
significant impact on discrete-time networks compared to continuous-time ones, and, while
graph normalization approaches like [97, 206] have proven effective, they may not always be
feasible. Additionally, existing solutions in the nonlinear scenario often focus on specific agent
structures, such as Lur’e system forms [194] or linear systems with saturated inputs [43], and
commonly employ observer design [98,128] or data-based optimization techniques [79].

In this section, propose a solution based on discrete-time contraction analysis and incremental
stability. There are two main motivations for this choice. Firstly, contraction analysis allows
the study of nonlinear systems via linear systems-like arguments. Hence, we can take inspi-
ration from the well-established literature on linear systems [206] and provide a direct link

88

Chapter 3. Discrete-time contractive feedback design

between the two scenarios. Secondly, incremental stability easily translates to synchronization
of homogeneous networks. In such networks, each agent can be seen as a singular trajectory of
the same system starting from different initial conditions. As trajectories of exponentially δISS
(i.e. contractive) systems “forget” their initial conditions and distances between them exponen-
tially decrease to zero, designing a distributed controller that makes the network dynamics a
contraction indirectly solves the global exponential synchronization problem. Then, by making
the network dynamics incrementally stable, we indirectly obtain robust state synchronization.
We remark that, differently from convergent systems as in [165], incremental stability does not
require the final trajectory to remain bounded [216, Section 4.3].

In what follows, we present two main contributions. Firstly, we establish new results on si-
multaneous stabilization and robust synchronization of discrete-time linear systems. Unlike
[97, 179, 206], our approach does not rely on the normalized Laplacian and assumes that all
local controllers are designed equally, without additional local degrees of freedom. This as-
sumption aligns with many practical applications where agents only have access to aggregate
information and lack knowledge about their neighbors in the graph or their degree, e.g. [60,158].
Thus, we provide conditions that encompass the normalized Laplacian as a subcase and we es-
tablish bounds that link the connectivity properties of the graph with the simultaneous stabiliz-
ability properties of the agents. Secondly, we address robust synchronization of homogeneous
discrete-time nonlinear agents by leveraging the results on contraction analysis and incremen-
tal stability discussed in Section 3.1.2. Our analysis considers almost differentiable dynamics,
linear input vector fields, and generic connected communication graphs (i.e., possibly directed
and weighted). As for the linear case, we relate the connectivity properties of the graph with
the simultaneous stabilizability properties of the agents.

For an introduction to fundamental concepts and results on graph theory relevant to the subse-
quent sections we refer to Appendix A.2.

3.2.1 The problem of multi-agent synchronization

Consider a homogeneous network of discrete-time agents, where the dynamics of each node
is described by an input-affine, possibly time-varying, nonlinear difference equation of the
form

x+i = f(xi, t) +Bui + wi, i = 1, . . . , N, (3.57)

where f : Rnx ×N→ Rnx is a continuous function of the state, B ∈ Rnx×nu is full column rank,
xi ∈ Rnx represents the state of node i and ui ∈ Rnu is the control input on node i, wi ∈ Rnx is
the disturbance affecting node i entering in the input directions, at timestep t ∈ N, and x+i ∈ Rnx
represents the state of node i at timestep t+ 1. We denote by Ni the set of neighbors of node i,
and we define the state of the entire network and the entire disturbance as

x := col(x1, . . . , xN) ∈ RNnx

w := col(w1, . . . , wN) ∈ RNnx .
(3.58)

Our synchronization objective is to design a distributed feedback control law of the form

ui =
∑
j∈Ni

aij

[
α(xi, t)− α(xj , t)

]
=

N∑
j=1

ℓijα(xj , t) (3.59)

89

3.2. Robust synchronization via contraction theory

for all i = 1, . . . , N , for some function α : Rnx × N → Rnu , that stabilizes the dynamics (3.57)
on the so-called synchronization manifoldM defined as

M := {x ∈ RNnx | xi = xj , for all i, j ∈ {1, . . . , N}}, (3.60)

where the states of all the agents of the network agree with each other. Furthermore, we re-
quire the control action ui to be equal to zero on the synchronization manifold. In other words,
when synchronization is achieved, no correction term is needed for each individual agent. As
a consequence, independently stabilizing all the agents on a desired equilibrium point is not a
valid solution in general. Note that the control law (3.59) satisfies this constraint by construc-
tion, due to the properties of the Laplacian matrix, see Appendix A.2. We consider the full-state
information problem. Differently put, the i-th agent can use the complete state information xj
of its neighbors j ∈ Ni alongside its own local information xi. We formalize our synchronization
problem as follows.

Problem 3.1 (Robust network synchronization). The distributed feedback control law (3.59)
solves the robust synchronization problem for the network (3.58) if there exists a function α and
real numbers c ⩾ 1, ρ ∈ (0, 1) and γ ⩾ 0 such that, for any initial condition (x(t0), t0) ∈ RNnx×N,
the solutions to the closed-loop system

x+i = f(xi, t) +B
N∑
j=1

ℓijα(xj , t) + wi, i = 1, . . . , N.

satisfy for all t ⩾ t0

|x(t)|M ⩽ c ρt−t0 |x(t0)|M + sup
t ∈ [t0, t]
i, j ∈ [1, N]

γ|wi(t)− wj(t)|, (3.61)

whereM is defined in (3.60).

3.2.2 Continuous-time vs discrete-time synchronization

In order to understand the challenges of Problem 3.1, we start from the linear scenario and recall
a few fundamental synchronization results. Consider a network ofN ∈ N continuous-time linear
systems of the form

ẋi = Axi +Bui, (3.62)

with A in Rnx×nx , B in Rnx×nu and ui, selected, according to (3.59), as a diffusive coupling of
the form

ui = K

N∑
j=1

ℓijxj . (3.63)

It is well known that the solution to the synchronization problem is based on only two assump-
tions: the stabilizabilty of the pair (A,B) and the connectivity of the graph, see, e.g. [102]. This
can be shown with an opportune change of coordinate recasting the synchronization problem
as a stabilization one. As a matter of fact, the synchronization problem can be viewed as a
simultaneous stabilization problem for the complex valued matrices

A+ λiBK, i = 2, . . . , N (3.64)

90

Chapter 3. Discrete-time contractive feedback design

1 2 3

Figure 3.1: Simple undirected graph

with λi being the (non-zero) eigenvalues of the Laplacian matrix L. In continuous-time, the
simultaneous stabilization of (3.64) via a unique gain K can be achieved by exploiting the
so-called infinite-gain margin property1 [191]. More specifically, the correction gain K of the
controller (3.62) is obtained as a solution to the continuous-time algebraic Riccati equation
(ARE) multiplied by a positive scalar gain, namely

PA+A⊤P − PBR−1B⊤P +Q = 0

K = −κR−1B⊤P
(3.65)

where κ > 0 must be chosen large enough. The lower bound on gain κ is inversely proportional
to the real part of the non-zero eigenvalue of the Laplacian matrix with the smallest real part.
In few words, stabilization of the complex matrix (A + λBK) with λ the eigenvalue of L with
the smallest (non-zero) real part leads to the stabilization of all other complex matrices, thus
leading to synchronization.

It is natural to hope that such a result can be extended to the discrete-time framework. There-
fore, we consider a network of N ∈ N homogeneous agents whose dynamics can be described
by a difference equation of the form

x+i = Axi +Bui (3.66)

with control input ui defined as in (3.63). Similarly to the continuous-time framework, the
discrete-time synchronization problem can be seen as the N − 1 stabilization problems of (3.64)
(see [97]). However, in the discrete-time framework, the infinite gain margin property does
not hold. Hence, the simultaneous stabilization may not be achievable for arbitrary λi, thus
imposing conditions on the solvability of the synchronization problem, e.g. [97, 206]. This
phenomenon is illustrated in the following simple example.

Example 3.3. Consider a network of N = 3 agents, whose dynamics are described by

x+i = 2xi + ui, xi ∈ R,∀i ∈ {1, 2, 3} (3.67)

with the simple (undirected) graph in Fig. 3.1 and Laplacian matrix

L =

 1 −1 0
−1 2 −1
0 −1 1

 .

The eigenvalues of L are {0, 1, 3}. Indeed, by using the transformation

T =

 1 0 0
−1

2 1 −1
2

−1 0 1


1Namely, if K stabilizes the pair (A,B), then aK is stabilizing for any a ⩾ 1.

91

3.2. Robust synchronization via contraction theory

one obtains

TLT−1 =

0 −1 −1
2

0 3 0
0 0 1

 .

Imposing a distributed control law of the form ui =
∑N

j=1 ℓijKxj with K ∈ R to be selected, using
the transformation T , namely,

x 7→
(
z
e

)
=

 z
e1
e2

 =

 x1
−1

2x1 + x2 − 1
2x3

−x1 + x3

 ,

one obtains the following (z, e) system

z+ = 2z −Ke1 − 1
2Ke2 ,

e+ =

(
2− 3K 0

0 2−K

)
e .

In order to guarantee state synchronization, one has to show that the e-component converges to
zero, namely K should satisfy |2 − 3K| < 1 and |2 −K| < 1. Clearly, such a K does not exist as
the first inequality is satisfied for K ∈ (13 , 1) while the second one holds for K ∈ (1, 3). In other
words, the synchronization problem for this simple example with a scalar controllable plant and
an undirected, not-weighted, connected Laplacian, which is diagonalizable with real eigenvalues,
cannot be solved.

In practical terms, stabilization of the pencil matrix associated to (3.64) in the discrete-time
framework is achievable only for a set of eigenvalues whose norm lies inside a compact set. A
possible workaround to this problem is presented in [179, 206] where the authors consider a
normalized Laplacian matrix, namely each row of the Laplacian matrix is differently normalized
based on the in-degree of each node [89]. Such a normalization allows containing the eigenval-
ues of L inside an opportune range where a unique solution for the N − 1 stabilization of (3.64)
indeed exists.

However, we aim at exploiting properties similar to the ones in continuous-time to provide
general conditions on the spectrum of the Laplacian under which Problem 3.1 can be solved
by controllers of the form (3.63). In the linear case, the resulting design is independent of
any normalization, thus being applicable to a broad class of networked problems, such as open
networks [76] or switching networks [40]. Normalization-based conditions can be recovered by
restricting the considered Laplacians to the set of normalized ones. Furthermore, the proposed
approach can be extended to the nonlinear case.

3.2.3 Synchronization of linear systems

Motivated by the previous discussion, we exploit simultaneous stabilization tools for solving the
multi-agent synchronization problem. We revisit the results in [206] by providing a solution with
non-normalized information exchange. Our solution applies to non-diagonalizable Laplacian
matrices, thus covering the results of [143] as a corollary. We start by presenting necessary
and sufficient conditions for state synchronization. Then, we propose a Riccati-based design
allowing for stabilization with any Laplacian whose eigenvalues belong to a given compact set.
We also show that such a design possesses gain margin properties. Finally, we specialize these
results to the multi-agent framework.

92

Chapter 3. Discrete-time contractive feedback design

Necessary and sufficient conditions. We start by presenting a general result for network
synchronization for linear systems. It is shown that the existence of a common control law for
systems associated with each non-zero eigenvalues of the Laplacian is equivalent to solving the
synchronization problem. Hence, we extend [206, Lemma 1] to the case of general Laplacian
matrices. While this section focuses on the full-state information case, we remark that it can be
straightforwardly extended to the static output-feedback scenario.

Theorem 3.4. For a network of N ∈ N agents described by dynamics

x+i = Axi +Bui + wi (3.68)

The diffusive control law ui defined in (3.63) solves Problem 3.1 if and only if

(i) the interconnection graph (possibly directed, weighted) G is connected or matrix A is Schur
stable, and

(ii) the gain K is such that matrix (A+ λBK) is Schur stable for any λ ∈ spec(L) \ {0}.
Proof. Sufficiency. Using the Kronecker notation, the closed-loop network dynamics can be
written as

x+ = ((IN ⊗A) + (L⊗BK))x+w, (3.69)

with x and w defined in (3.58). To show convergence to the synchronization manifoldM,
define a virtual leader as the node providing connectivity characterized in Definition A.1.
Without loss of generality, assume z := x1 to be such a node. Recalling the Laplacian
structure (A.5), define N−1 error coordinates e := col(e2, . . . , eN) ∈ RNnx with ei := xi−z.
Compactly, this reads as(

z
e

)
:= (T ⊗ Inx)x =

((
1 0⊤

−1 IN−1

)
⊗ Inx

)
x, . (3.70)

where we observe that T−1 =
(

1 0⊤
1 IN−1

)
so that, according to the partitioning in (A.5), we

have (
1 0⊤

−1 IN−1

)
L

(
1 0⊤

1 IN−1

)
=

(
0 L12

0 L22 − 1L12

)
.

Exploiting the structure of T , we obtain the error dynamics

e+ =
(
0 IN−1

)(
((TT−1 ⊗A) + (TLT−1 ⊗BK))

(
z
e

)
+ (T ⊗ Inx)w

)
= Acle+ w̃ , (3.71a)

where we defined the closed-loop matrix Acl as

Acl := (IN−1⊗A) + ((L22 − 1L12)⊗BK) (3.71b)

and w̃ := col(w̃2, . . . , w̃N) ∈ RNnx with w̃i := wi − w1. If Acl is Schur stable, the use of
standard arguments for linear systems yields

|e(t)| ⩽ c ρt−t0 |e(t0)|+ sup
t∈[t0,t]

γ|w̃(t)|, (3.72)

93

3.2. Robust synchronization via contraction theory

for some c, γ > 0 and ρ ∈ (0, 1). Since T in (3.70) has a bounded norm, we have, for some
c1 > 0,

|e|2 =
∣∣∣∣(ze

)
−
(
z
0

)∣∣∣∣2 = inf
z⋆∈Rnx

∣∣∣∣(ze
)
−
(
z⋆

0

)∣∣∣∣2 = inf
x⋆∈M

|(T ⊗ Inx)x− (T ⊗ Inx)x
⋆|2

⩽ inf
x⋆∈M

|(T ⊗ Inx)|2|x− x⋆|2

⩽ inf
x⋆∈M

c−1
1 |x− x⋆|2 = c−1

1 |x|2M

Also, since T is invertible, for some c2 > 0,

|x|2M = inf
x⋆∈M

|x− x⋆|2 = inf
x⋆∈M

|(T−1 ⊗ In)(T ⊗ Inx)(x− x⋆)|2

⩽ inf
x⋆∈M

c2|(T ⊗ Inx)x− (T ⊗ Inx)x
⋆|2

⩽ inf
z⋆∈Rnx

c2

∣∣∣∣(ze
)
−
(
z⋆

0

)∣∣∣∣2 = c2|e|2.

Then, we obtain the following relations

√
c1|e| ⩽ |x|M ⩽

√
c2|e|, |w̃| ⩽ sup

i,j∈[1,N]
c3|wi − wj |, (3.73)

for some c1, c2, c3 > 0. As a consequence, if Acl is Schur stable, one obtains robust synchro-
nization as in Problem 3.1. Therefore, in the rest of the proof we set w̃ = 0 and we show
that Acl in (3.71b) is Schur stable. Let TJ ∈ C(N−1)×(N−1) be a transformation such that
L = TJ(L22 − 1L12)T

−1
J is in Jordan canonical form. By defining the change of coordinates

Âcl = (TJ ⊗ IN−1)Acl(T
−1
J ⊗ IN−1), Schur stability of Âcl implies Schur stability of Acl. By

the properties of the Kronecker product and (3.71b), we have

Âcl = (IN−1⊗A) + (L ⊗BK). (3.74)

Since L is in its Jordan form, the former matrix is block triangular with diagonal block
equal to (A + λBK) with λ in spec(L). Hence, Schur stability of Âcl holds if and only if
the complex matrix (A + λBK) is Schur stable for all λ ∈ spec(L). Due to the similarity
transformations,

spec(L) = spec(L22 − 1L12) = spec(L) \ {λ1} ,
where λ1 = 0 is the eigenvalue associated to the eigenvector 1. Consider now the case
in item (i) where the graph is connected. By Lemma A.1, L has only one zero eigenvalue
and the gain K is such that (A + λBK) is Schur stable for all λ ∈ spec(L), which implies
Schur stability of Acl in (3.71b). If instead A is Schur in item (i), then (A− λBK) is Schur
stable for all eigenvalues λ of L (including the zero ones) and Acl in (3.71b) is exponentially
stable.

Necessity. Consider a Laplacian matrix of the form (A.5). Following the lines of the suf-
ficiency proof, the error dynamics between agents and a virtual leader are described by
(3.71a). We first study the connectivity requirement. Suppose that synchronization is

94

Chapter 3. Discrete-time contractive feedback design

achieved, A is unstable and at least one agent is not connected. Without loss of gener-
ality, assume x1 to be such a node. Since it is not connected, the Laplacian takes the form

L =

(
0 0⊤

0 L′

)
,

where L′ is the Laplacian matrix of the connected portion of the graph. Then, by (3.71a)
with w̃ = 0, we have

e+ = ((IN ⊗A) + (L′ ⊗BK))e .

Notice that L′ describes a connected graph. Then, by Lemma A.1, it has one zero eigenvalue.
By performing similar steps to the ones in the sufficiency proof, we define the transformed
closed-loop matrix

Âcl = (IN−1⊗A) + (L′ ⊗BK),

where L′ is in Jordan form. Note that Âcl is Schur stable if and only if the complex matrix
(A+λBK) is Schur stable for all λ ∈ spec(L′). However, spec(L′) includes a zero eigenvalue.
Hence, Âcl is stable if and only if A is Schur stable, showing the first item by establishing
contradiction. We now prove the necessity of item (ii). If the agents are synchronized, the
e subsystem in (3.71a) is asymptotically stable and the matrix Âcl in (3.74) is Schur. Since
L contains all the nonzero eigenvalues of L and Âcl is block-upper triangular, item (ii) must
hold, and this concludes the proof.

Gain margin computation via Riccati design. The results presented in the above paragraph
are not constructive. Therefore, following a similar approach to the one in [206], we provide
a design procedure for pencil matrices stabilization, namely we consider a single discrete-time
agent. Then, in the next paragraph, we will apply this result to the case of networks.

Consider a discrete-time linear system described by

x+ = Ax+Bu , (3.75)

with x ∈ Rnx , u ∈ Rnu and, without loss of generality, B is assumed to be full-column rank. The
goal is to find a gain matrix K ∈ Rnu×nx such that a state feedback control law u = Kx makes
the complex closed-loop matrix (A + λBK) Schur for some complex numbers λ. Inspired by
Definition 3.4, we formally define this notion as follows.

Definition 3.5 (Complex gain margin for linear systems). The matrix K is said to have a complex
gain margin with radius r > 0 if A+ λBK is Schur for any λ in {λ ∈ C : |λ− 1| ⩽ r}.
To find the complex gain margin of a matrix K, we propose a solution based on the discrete-time
Modified Algebraic Riccati Inequality (MARI) [43,199,221] defined as

A⊤PA− σA⊤PB(R+B⊤PB)−1B⊤PA ⪯ ρP , (3.76)

where R ∈ Snu⪰0, P ∈ Snx≻0 and generally σ ∈ (0, 1], ρ ∈ (0, 1). Note that, since B is assumed to be
full column rank, the matrix R + B⊤PB is positive definite and, consequently, invertible. The
main difference between the MARI (3.76) and the more common discrete-time Algebraic Riccati
Inequality (DARI)

A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q ≺ P (3.77)

lies in the presence of the scalar σ. First, note that if R ≻ 0 the positive semi-definite matrix Q
can be embedded in the right-hand side of (3.76) by exploiting ρP ≺ P −Q, which holds for a

95

3.2. Robust synchronization via contraction theory

suitable ρ ∈ (0, 1) as long as P − Q ≻ 0. Inequality P − Q ≻ 0 holds when R ∈ Snu≻0 since one
can rearrange (3.77) as

A⊤[P − PB(R+B⊤PB)−1B⊤P]A ≺ P −Q

and, by applying the block matrix inversion identity

(A+ BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 , (3.78)

with A−1 = P, D = R, C = B⊤, B = B, we obtain

0 ≺ A⊤(P−1 +BR−1B⊤)−1A ≺ P −Q . (3.79)

Due to the discussion above, the DARI (3.77) is a special case of the MARI (3.76) when σ = 1
and R is positive definite. As such, the MARI allows for an extra degree of freedom. Its role is to
weigh the impact of the input on the solution to the inequality. In other words, the smaller the
σ, the less we can rely on the input to stabilize the system. This is evident for the special case
σ = 0, where the MARI boils down to the Lyapunov inequality for autonomous discrete-time
systems.

We show next that the degree of freedom offered by the MARI (3.76) allows stating sufficient
conditions for the existence of a state feedback gain K solving the simultaneous stabilization
problem. This result reinterprets the findings of [43, Theorem 1].

Proposition 3.7. Let the pair (A,B) be stabilizable and R ∈ Snu⪰0. Let P ∈ Snx≻0 be a solution to the
MARI (3.76) for some σ ∈ (0, 1] and for some ρ ∈ (0, 1). Then the matrix

K = −(R+B⊤PB)−1B⊤PA , (3.80)

has a complex gain margin with radius r =
√
1− σ.

Proof. Consider the closed-loop matrix (A + λBK) for some arbitrary λ ∈ C and define
the following matrix

Γ := (A⊤ + λ∗K⊤B⊤)P (A+ λBK), (3.81)

with P solution to (3.76) and superscript ∗ denoting the complex conjugate. Substitut-
ing K in (3.80) into (3.81) and by defining Y := Y ⊤ = (R + B⊤PB)−1 for the sake of
compactness, we obtain

Γ = (A⊤ − λ∗A⊤PBY B⊤)P (A− λBY B⊤PA).

Expanding the product and adding and subtracting σA⊤PBY B⊤PA , by virtue of (3.76)
and using λλ∗ = |λ|2, λ+ λ∗ = 2Re(λ), we obtain

Γ ⪯ρP +A⊤PBY ((σ − 2Re(λ)) Inx +|λ|2B⊤PBY)B⊤PA .

Since R ⪰ 0, by the definition of Y we obtain Y B⊤PBY ⪯ Y Y −1Y ⪯ Y which implies

Γ ⪯ ρP + (σ − 2Re(λ) + |λ|2)A⊤PBY B⊤PA.

Since Y ≻ 0, the second term at the right-hand side is negative semidefinite if σ− 2Re(λ)+
|λ|2 ⩽ 0. Recall that |λ|2 = Re(λ)2 + Im(λ)2 and define the real scalars λR := Re(λ) − 1,

96

Chapter 3. Discrete-time contractive feedback design

λI := Im(λ). From the previous inequality, Γ ⪯ ρP if

σ − 2(λR + 1) + (λR + 1)2 + λ2I ⩽ 0 ⇐⇒ λ2R + λ2I ⩽ 1− σ .

By the definition of λR and λI , these inequalities characterize the circle of radius r =
√
1− σ

centered at the point c = (1, 0) of the complex plane. Therefore, if |λ − 1| ⩽ r we have
Γ ⪯ ρP and consequently

(A⊤ + λ∗K⊤B⊤)P (A+ λBK)− P ⪯ −(1− ρ)P. (3.82)

By [208, Theorem 3.2], since P ∈ Snx≻0, the complex closed-loop matrix (A+ λBK) is Schur
stable, which concludes the proof.

Remark 3.6. Since the DARI can be seen as a special case of the MARI with σ = 1, the gain margin
radius r degenerates to zero. This drastically reduces the set of simultaneously stabilizable matrices,
as only infinitesimal variations from the value λ = 1 are allowed thanks to continuity.

Remark 3.7. We remark that in [206] the use of the MARI is discouraged, as it is stated that
no standard algorithm exists to provide a solution. Also, the authors state that it is not clear when
such a solution exists. However, we highlight that recent results showed that LMI approaches provide
useful tools for finding such a solution, see e.g., [199, 221]. Moreover, concerning the existence of
positive definite stabilizing solutions of the MARI (3.76), we refer to [43, Proposition 3]. In simple
words, the authors of [43] prove the existence of at least one stabilizing positive definite solution
to the MARI for σ ∈ (σ, 1], where σ > 0 depends on R, ρ and the most unstable eigenvalue of A.
In particular, stabilizing solutions were shown to exist when the parameter is sufficiently close to 1
and R ≻ 0 (i.e., when we are sufficiently close to the standard DARI), see [43,199].

Robust linear synchronization. We now exploit Proposition 3.7 for discrete-time linear net-
work synchronization. We consider a network of systems (3.68) and combine the results of
Theorem 3.4 and Proposition 3.7 to design the state-feedback gain K inducing synchronization
over general time-invariant graphs. To this end, define the following quantities:

ηi :=

(|λi|
Re(λi)

)2

= 1 +

(
Im(λi)

Re(λi)

)2

, i = 2, . . . , N, (3.83a)

η := max{η2, . . . , ηN}, η := min{η2, . . . , ηN}, (3.83b)

λ := max
i∈{2,...,N}

Re(λi), λ := min
i∈{2,...,N}

Re(λi), (3.83c)

for the non-zero eigenvalues λi, i = 2, . . . , N , of a connected Laplacian matrix L. Our MARI-
based design is effective whenever the following inclusion holds for the graph-induced quantities
(3.83) and the MARI parameter σ ∈ (0, 1]:

ησ ∈
(
0, 1−

(η λ− η λ)2
(η λ+ η λ)2

]
. (3.84)

The following lemma establishes a useful implication of (3.84).

Lemma 3.1. Consider the quantities η, η, λ, λ in (3.83) and let σ ∈ (0, 1]. The following interval
of the real axis

K :=

[
1−√1− η σ

η λ
,
1 +
√
1− η σ
η λ

]
(3.85)

is nonempty if and only if (3.84) holds.

97

3.2. Robust synchronization via contraction theory

Proof. It is trivial that (3.84) implies ησ ⩽ 1 and then the square root in (3.1) is well
defined. To complete the proof, we show that the bound

1−√1− ησ
ηλ

⩽
1 +
√
1− ησ
ηλ

(3.86)

holds if and only if (3.84) is satisfied, namely if and only if

η σ ⩽ 1−
(η λ− η λ)2
(η λ+ η λ)2

=
4η η λλ

(η λ+ η λ)2
=

(
2η λ

η λ+ η λ

)2
η λ

η λ
,

which, due to the positivity of the squared term, is equivalent to(
η λ+ η λ

2η λ

)2

η σ −
η λ

η λ
⩽ 0 . (3.87)

Thus, we must show that (3.86) ⇐⇒ (3.87). By the lower bound of (3.84), η σ > 0. Then,
multiplying (3.87) by η σ paired with addition and subtraction of 1 − η σ at the right-hand
side yields the equivalent inequality

1− η σ ⩾

(
η λ+ η λ

2η λ

)2

(η σ)2 + 1−
(
1 +

η λ

η λ

)
η σ ⩾

(
1−

η λ+ η λ

2η λ
η σ

)2

. (3.88)

By taking the square root, (3.88) is equivalent to

√
1− η σ ⩾ 1−

η λ+ η λ

2η λ
η σ, (3.89)

where the right-hand side is non-negative because η λ ⩽ η λ and η σ ⩽ 1. Exploiting the
expansion η σ = (1−√1− η σ)(1 +√1− η σ) > 0, inequality (3.89) is equivalent to

η λ

η λ
⩾
(
1−

√
1− η σ

) 2

η σ
− 1 ⩾

1 + (1− η σ)− 2
√
1− η σ

η σ

⩾

(
1−√1− η σ

)2
(1−√1− η σ)(1 +√1− η σ) ⩾

1−√1− η σ
1 +
√
1− η σ ,

which coincides with (3.86), thus completing the proof.

We are ready to present the main result on robust synchronization of linear systems.

Theorem 3.5. Consider the network (3.68) and suppose that L is a Laplacian matrix describing
a connected, directed and weighted communication graph. Let R ∈ Snu⪰0 and suppose that there
exists P ∈ Snx≻0 such that (3.76) holds for a selection of σ satisfying (3.84) with η, η, λ, λ defined
in (3.83). Then, the distributed control law ui in (3.59), with α(x) = κKx and K selected as in
(3.80), solves Problem 3.1 for any scalar gain κ ∈ K as defined in (3.85).

Before proving Theorem 3.5, we highlight the importance of bounds (3.84) on σ in Proposition
3.5. First, differently from the continuous-time scenario [102, Chapter 5], the bounds on the
scalar gain κ depend on the imaginary part of the Laplacian eigenvalues via η and η. This is

98

Chapter 3. Discrete-time contractive feedback design

expected, as discrete-time stability requires the eigenvalues to lay inside the unit disc, and not
in the negative half-plane. Hence, in the case where there is at least one complex eigenvalue,
definitions (3.83) imply η > 1. As a consequence, it is necessary that σ < 1 for a real solution
to the square roots in (3.85) to exist. In the case of real eigenvalues, ηi = 1 for all i = 1, . . . , N .
Then, (3.85) simplifies to

κ ∈
[
1−
√
1− σ
λ

,
1 +
√
1− σ
λ

]
,

with condition (3.84) on σ simplified to

σ ∈
(
0, 1− (λ− λ)2

(λ+ λ)2

]
.

This last bound recovers the results in [53], where all eigenvalues of L are supposed to be real.
We emphasize that σ = 1 is a worst-case value not leading to synchronization unless λ = λ, as
in Remark 3.6. Moreover, smaller values of σ lead to robust synchronization over broader range
of graphs. We now show the proof for Theorem 3.5.

Proof. Theorem 3.5 By Theorem 3.4, Problem 3.1 is solved (equivalently, (3.61) holds) if
the matrices (A + λiκBK) are Schur for all λi ∈ spec(L) \ 0. By Proposition 3.7, each one
of these matrices is Schur if |κλi − 1|2 ⩽ 1 − σ. By expanding the norm, we conclude that
the closed-loop matrix associated to λi is Schur if σ − 2κRe(λi) + κ2|λi|2 ⩽ 0. Solving for κ
and recalling the definition of ηi in (3.83), we obtain robust synchronization if

κ ∈
[
1−√1− ηi σ
ηiRe(λi)

,
1 +
√
1− ηi σ

ηiRe(λi)

]
∀i = 2, . . . , N, (3.90)

because we simultaneously stabilize all the closed-loop matrices. First, note that from
(3.83c) we have ηi ⩾ 1. Moreover, ηi < ∞, because all eigenvalues λi have positive real
part. Then, since σ > 0, for any i = 2, . . . , N it holds that

1 +
√
1− ησ
ηλ

⩽
1−√1− ηiσ
ηiRe(λi)

⩽
1−√1− ησ

ηλ
.

Consequently, for any κ ∈ K as per (3.85), condition (3.90) holds and (3.61) holds, as to
be proven.

Remark 3.8. We highlight that, in combination with the results in [43], condition (3.84) implies
that there exist (σ, σ) ∈ (0, 1]2 such that synchronizing solutions to the multi-agent problem based
on MARI-design exist for some σ satisfying σ ⩾ σ and σ ⩽ σ. However, this set is not guaranteed to
be nonempty. In other words, it may happen that σ > σ. In particular, for unstable linear systems,
the lower bound σ depends on the choice of R, ρ in (3.76) and the most unstable eigenvalue of
A [43]. The upper bound σ depends on the Laplacian eigenvalues. The first implication is that it
may not be possible to synchronize a network of arbitrarily unstable systems under an arbitrary
communication graph. Similarly, some choices of convergence rate-control penalty pair (ρ,R) may
not be suitable for a given system-graph pair.

3.2.4 Synchronization of nonlinear systems

As a follow-up to the linear time-invariant scenario, in this subsection we present the design
procedure of robust controllers for nonlinear multi-agent synchronization. It is worth noting

99

3.2. Robust synchronization via contraction theory

that the result presented in the following hold implicitly for linear time varying and parameter
varying systems. For the sake of generality, they are all presented in the nonlinear framework.
Motivated by the linear framework and the use of robust stabilization tools, we explore the
design of robust stabilizers in the nonlinear framework by means of incremental input-to-state
stability (δISS) arguments presented in Section 3.1.2.

The link between Proposition 3.7 and Theorem 3.2 is evident. However, since the Jordan trans-
formation used in Section 3.2.3 cannot be easily applied in the nonlinear scenario, we will
exploit the novel results of Lemma A.2 to design an appropriate transformation. To the best of
the authors’ knowledge, while a general contraction-based approach appeared in [4], there is
no result paralleling Theorem 3.6 in the continuous-time framework, nor there is a Lyapunov-
based result addressing robust exponential synchronization of nonlinear agents under general
weighted, directed graphs. The main issue in continuous-time arises when considering a Lya-
punov function of the form (3.98). Indeed, it is not trivial to perform continuous-time parallel
steps similar to those at the end of the proof of Theorem 3.6, which exploit Demidovich-like con-
ditions [163, Theorem 1] to derive upper bounds on the Lyapunov decrease. We now present
the following main result on network synchronization of nonlinear systems.

Theorem 3.6. Consider the network (3.57) and suppose that f satisfies Property 3.1 for some
Df ⊂ Rnx×nx and L is a Laplacian matrix describing a connected, directed and weighted commu-
nication graph. Let ρ ∈ (0, 1) and σ ∈ (0, 1] satisfy

ρ ⩽ ρM , σ ⩽
1

ς
, ς :=

(
µ

µ

)2

, (3.91)

with ρM , µ, µ as in Lemma A.2. If, for some R ∈ Snu⪰0, there exists P ∈ Snx≻0 satisfying (3.16a),
(3.16b), then, the distributed control law ui =

∑N
j=1 ℓijα(xj , t) in (3.59) with α defined as in

(3.17) and κ satisfying

κ ∈
[(

1−
√
1− ςσ

)
ςµ

,

(
1 +
√
1− ςσ

)
ςµ

]
, (3.92)

solves Problem 3.1 for the network (3.57), namely, (3.61) holds.

Proof. Mimicking the linear framework, we show convergence to the synchronization
manifoldM by focusing our analysis on the error between agents. If these error dynamics
are robustly stable (ISS) with respect to an incremental version of w, then Problem 3.1 is
solved. Bearing in mind the steps of the proof of Theorem 3.4, we define a virtual leader
and consider, without loss of generality, x1 to be such a node. Next, define N − 1 error
coordinates with respect to such a leader node, e := col(e2, . . . , eN) ∈ RNnx with ei := xi−z
for all i = 1, . . . , N and z = x1. Similarly, we define the incremental disturbance w̃ :=
col(w̃2, . . . , w̃N) with w̃i := wi − w1. The error dynamics are described, for all i = 2, . . . , N ,
by

e+i = f(z + ei, t)− f(z, t) +B

N∑
j=1

(ℓij − ℓ1j)α(z + ej , t) + w̃i. (3.93)

Since by definition of the Laplacian entries
∑N

j=1 ℓij = 0 for any agent i, we can subtract

100

Chapter 3. Discrete-time contractive feedback design

B
∑N

j=1 (ℓij − ℓ1j)α(z, t) = 0 from the right-hand side so that (3.93) becomes

e+i = f̃(ei, t) +B
N∑
j=2

ℓ̃ijα̃(ej , t) + w̃i, (3.94)

with

ℓ̃ij = ℓij − ℓ1j , f̃(ei, t) = f(z + ei, t)− f(z, t), α̃(ej , t) = α(z + ej , t)− α(z, t). (3.95)

Overall, the closed-loop system can be written in compact form as

e+ = φ(e, t) + w̃, (3.96)

where we defined

φ(e, t) :=

 f̃(e2, t) +B
∑N

j=2 ℓ̃2jα̃(ej , t)
...

f̃(eN , t) +B
∑N

j=2 ℓ̃Njα̃(ej , t)

 . (3.97)

Now, select the following candidate Lyapunov function

V (e) = e⊤(M ⊗ P)e, (3.98)

whereM comes from Lemma A.2. Note that, due to the properties of the Kronecker product,
M ⊗ P is symmetric and positive-definite, being both M and P positive-definite matrices.
Now, for each value of z and e = col(e2, . . . , eN), define the scalar function Ft : R → RNnx
as

Ft(s) :=

 f̃s(s, e2, t) +B
∑N

j=2 ℓ̃2jα̃s(s, ej , t)
...

f̃s(s, eN , t) +B
∑N

j=2 ℓ̃Njα̃s(s, ej , t)

 , (3.99)

with the definitions

f̃s(s, ei, t) := f(z + sei, t)− f(z, t), (3.100a)

α̃s(s, ej , t) := α(z + sej , t)− α(z, t) = −κY B⊤P f̃s(s, ei, t), (3.100b)

where we used (3.17) and Y :=
(
R+B⊤PB

)−1. From (3.99)-(3.100) we have Ft(0) = 0
and from (3.5) we get

φ(e, t) = Ft(1) = Ft(1)− Ft(0) =

∫ 1

0
∂F (s)ds e, (3.101)

with the following selections, obtained from (3.99) by proceeding as in (3.71),

∂F (s) := [I(N−1)nx −κ((L22 − 1L12)⊗BY B⊤P)]Ψ(s), (3.102)

Ψ(s) := diag
(
ψ̃2(s) . . . , ψ̃N (s)

)
, (3.103)

ψ̃i(s) ∈ Df, ∀i = 2, . . . , N. (3.104)

101

3.2. Robust synchronization via contraction theory

Since V (e+) = 2(e+)⊤(M ⊗ P)e+ − V (e+) , subtracting ρV (e) on both sides, we obtain by
combining (3.96) and (3.101),

V (e+)− ρV (e) = 2 (e+)⊤(M ⊗ P)
∫ 1

0
∂F (s) ds e+ 2(e+)⊤(M ⊗ P)w̃

−
[
(e+)⊤(M ⊗ P)e+ + ρ e⊤(M ⊗ P)e

] ∫ 1

0
ds.

Then, by collecting everything under the integral and defining the extended error vector
ξ = col(e, e+) we obtain

V (e+)− ρV (e) = −
∫ 1

0
ξ⊤Υ(s)ξ ds+ 2(e+)⊤(M ⊗ P)w̃, (3.105a)

Υ(s) :=

(
ρ(M ⊗ P) −∂F⊤(s)(M ⊗ P)

−(M ⊗ P)∂F (s) (M ⊗ P)

)
. (3.105b)

Since P ≻ 0, M ≻ 0, and M ⊗P is invertible, we can study the positive definiteness of Υ(s)
via its Schur complement

Υ̂(s) = ρ(M ⊗ P)− ∂F⊤(s)(M ⊗ P)∂F (s) .

By using the definition of ∂F (s) in (3.102) and the properties of Kronecker products, we
obtain

Υ̂(s) = ρ(M ⊗ P)−Ψ(s)⊤(Ta +He {Tb}+ Tc)Ψ(s) (3.106)

where we defined

Ta :=M ⊗ P,
Tb := −κ(M(L22 − 1L12)⊗ PBY B⊤P),

Tc := κ2[(L22 − 1L12)
⊤M(L22 − 1L12)⊗ PBY B⊤PBY B⊤P].

For Tb, by the properties of the Kronecker product, since PBY B⊤P is symmetric we obtain

He {Tb} = −κ(He {M(L22 − 1L12)} ⊗ PBY B⊤P).

Consequently, by Lemma A.2 and using again the properties of the Kronecker product, the
following holds

He {Tb} ⪯ −2κµ(M ⊗ PBY B⊤P). (3.107)

Similarly, since R ⪰ 0, by exploiting the Kronecker product and by using again Lemma A.2,
we get

Tc ⪯ κ2µ2[M ⊗ PBY (R+B⊤PB)Y B⊤P] ⪯ κ2µ2(M ⊗ PBY B⊤P). (3.108)

102

Chapter 3. Discrete-time contractive feedback design

Using (3.107) and (3.108), matrix Υ̂ in (3.106) can be bounded as

Υ̂(s) ⪰ ρ(M ⊗ P)−Ψ(s)⊤(M ⊗ P)Ψ(s)

P = P + (κ2µ2 − 2κµ)PBY B⊤P
(3.109)

Now, consider P . By addition and subtraction, it can be rewritten as

P = P − σPBY B⊤P + (κ2µ2 − 2κµ+ σ)PBY B⊤P.

Then, if κ2µ2 − 2κµ+ σ ⩽ 0, namely if

µ

µ2

(
1−

√
1−

(
µ

µ

)2

σ

)
⩽ κ ⩽

µ

µ2

(
1 +

√
1−

(
µ

µ

)2

σ

)
,

which holds due to the selection in (3.92), we obtain

P ⪯ P − σPBY B⊤P = Q, (3.110)

with Q defined in (3.16b). Using (A.6a) from Lemma A.2 and (3.110), Υ̂(s) in (3.109)
satisfies

Υ̂(s) ⪰ mρ(IN−1⊗P)−mΨ(s)⊤(IN−1⊗Q)Ψ(s).

Recalling, from (3.103), the block-diagonal structure of Ψ(s), and exploiting (3.16) we
obtain

Υ̂(s) ⪰ mρ(IN−1⊗P)−m diag({ψ̃i(s)⊤Qψ̃i(s)}Ni=2)

⪰ mρ(IN−1⊗P)−m diag({ρ2P}Ni=2) = mρ(IN−1⊗P)−mρ2(IN−1⊗P)
⪰ ρ(m−mρ)(IN−1⊗P) ⪰ ρ(m−mρM)(IN−1⊗P) ⪰ 0,

where we used 0 < ρ ⩽ ρM = mm−1. Since Υ̂(s) ⪰ 0 for each s ∈ [0, 1], we conclude that
also Υ(s) defined in (3.105b) satisfies Υ(s) ⪰ 0 for all s ∈ [0, 1], and (3.105a) implies

V (e+)− ρV (e) ⩽ 2(e+)⊤(M ⊗ P)w̃ (3.111)

By the generalized Young’s inequality and by considering the factorization of the positive
matrix M ⊗ P =

√
M ⊗ P⊤√

M ⊗ P = (
√
M ⊗ P)2 (with

√
M ⊗ P denoting the unique

positive square root of M ⊗ P ≻ 0), we have

2(e+)⊤(M ⊗ P)w̃ = 2(e+)⊤(
√
M ⊗ P)2w̃

⩽ (1−√ρ)V (e+) +
1

1−√ρw̃
⊤(M ⊗ P)w̃.

103

3.2. Robust synchronization via contraction theory

Then, since ρ ∈ (0, 1), inequality (3.111) implies

V (e+)−√ρV (e) ⩽
1√

ρ(1−√ρ)w̃
⊤(M ⊗ P)w̃,

thus proving exponential ISS properties of the e dynamics due to the quadratic form of
(3.98). Finally, similarly to the linear scenario of Theorem 3.4, relations (3.73) hold and
robust synchronization as in Problem 3.1 is obtained, thus concluding the proof.

Remark 3.9. Note that the contraction inequality (3.16a) in the context of Theorem 3.6 is tightly
related to the structure of the Laplacian matrix and its eigenvalues. To appreciate this link, consider
the network graph to be undirected and leader-connected. Under these conditions, the Laplacian
L in (A.5) satisfies L11 = 0, L12 = 0. Then, L22 = L⊤

22 ≻ 0 and we can select M = IN−1 and
µ (resp. µ) in Lemma A.2 as the smallest (resp. largest) eigenvalue of L22. Consequently, the
admissible values of σ are related to the condition number of L22. Moreover, by picking M = IN−1,
the contraction rate ρ disentangles from the network structure, as m = m = 1. Indeed, from (A.6a)
we can select ρM = 1 and, consequently, condition (3.91) in Theorem 3.6 imposes no constraints
on ρ ∈ (0, 1), as in Proposition 3.2.

Numerical example. In what follows, we propose a simple numerical example to validate the
presented results. Consider a network of N = 6 agents connected according to the weighted,
directed graph in Figure 3.4 and evolving according to the Lur’e dynamics

x+i = Axi + Fϕ(Cxi) +Bui, i = 1, . . . , 6

where

A =

(
1.1 0.1
−0.3 0.5

)
, B =

(
2
0.3

)
, C =

(
1 −1

)
, F =

(
−0.1
0.7

)
,

and ϕ(·) = sat10(·) = max(min(·, 10),−10). It is simple to verify that Jϕ ∈ {0, 1} and the
Laplacian matrix is

L =



3 −1 0 0 −2 0
−1 2 0 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 −3 −1 0 4 0
0 0 0 0 −1 1

 .

Conditions (3.34), (3.35) and (3.25b) are easily solved with ρ = 0.9, σ = 0.285, S = Ω = 1 and
provide

W =

(
0.0408 −0.1747
−0.1747 1.1273

)
, Σ =

(
0.0388 −0.1294
−0.1294 0.8495

)
.

Then, we select a control law of the form (3.59) with α as in (3.17), R = 1 and κ = 0.2.
It is interesting to notice that, by solving (A.6) via semi-definite programming, ρ, σ and κ fall
outside the required bounds. This shows the conservativeness of our Lyapunov analysis, that is
aimed at obtaining a very general result. Finally, we simulate the proposed closed-loop under
the action of a random Gaussian noise w ∈ N (0, 0.5). Robust exponential convergence to a
non-trivial trajectory with initial conditions sampled from a normal distribution N (0, 100) are
presented in Figure 3.2 and Figure 3.3. As expected, Figure 3.3 shows an exponential decrease
of the average error between the agents, which converges to a bounded value in the presence of
additive noise.

104

Chapter 3. Discrete-time contractive feedback design

0 5 10 15 20 25 30 35 40
-200

-150

-100

-50

0

50

100

150
xi,1	with	noise

x1
x2

x3
x4

x5
x6

(a)

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

150

200

250
xi,2	with	noise

x1
x2

x3
x4

x5
x6

(b)

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500
Mean	error	norm

|e|	w	noise
|e|	w/o	noise

(c)

Figure 3.2: Trajectories during transient. a-b) state components with noise. c) mean error wrt
agent 1 with and without noise.

0 10 20 30 40 50 60 70 80
10-4

10-3

10-2

10-1

100

101

102

103 Mean	error	norm	(logscale)

|e|	w	noise
|e|	w/o	noise

Figure 3.3: Long-term mean error wrt agent 1
in logarithmic scale.

1 2 3

456

1

3
1

1
2

11

1

Figure 3.4: Communication graph.

105

3.2. Robust synchronization via contraction theory

106

4 Learning contractive controllers

In this chapter, we will concentrate on the classical notion of contraction and explore the inte-
gration of machine learning techniques in the design loop of controllers based on contraction
analysis. In particular, we will demonstrate how recent numerical approaches rooted in deep
learning can address the challenges of finding explicit solutions to feedback designs that rely on
solving partial differential inequalities (PDIs). The framework of contraction analysis saw the
development of different conditions for the verification of related properties. In what follows,
we focus on the so-called metric-based conditions, thus paralleling the results proposed in Chap-
ter 3. However, the continuous-time framework already witnessed the extension of Euclidean
metric-based conditions (also known as Demidovich conditions [57,163]) to the non-Euclidean
and Riemannian settings [6,37]. This extension allowed the study of design procedures for time-
varying, input-affine nonlinear systems with nonlinear input vector field, e.g. [86, 140]. There-
fore, we will focus our attention on the more general approaches based on Riemannian metric
conditions, that extend the Riccati equation and the so-called LgV conditions [171].

The chapter begins by reviewing the results for contractive feedback design with infinite-gain
margin properties. The proposed solution shares conceptual similarities with Control Contrac-
tion Metrics (CCMs), but differs in terms of the control action derivation [140]. Specifically,
in our approach, the control action is obtained without the need for path integration along the
geodesic, thus differing from CCMs-based methods (see [140, equation (6)]). Then, paralleling
Chapter 3, our attention turns to the multi-agent synchronization problem, and we demonstrate
how Riemannian metric-based approaches can be leveraged to address it. Finally, we leverage
the aforementioned results to tackle the robust regulation problem.

Since obtaining an analytical solution for the proposed controller design is often challenging,
we rely on DNNs for practical controller derivation. We propose an algorithm for learning a
synchronizing control law based on a Physics-Informed Neural Network (P-INN) approximating
the solution of a static PDI, which conceptually extends the stabilizability Riccati-like algebraic
inequality (see, e.g., [126, Section II.C]). It has to be noted that the use of DNNs for ap-
proximating contractive controllers recently attracted attention in the control community [58].
There are two primary motivations for employing modern optimization methods such as deep
learning in the design of controllers based on Riemannian metrics. Firstly, these designs often
involve solving PDIs, for which explicit solutions are hard to obtain. Deep learning offers well-
established methods for approximately solving partial differential equations, with P-INNs being

107

4.1. Preliminaries on Riemannian metric conditions for feedback design

a notable example [65, 120, 173, 177]. Secondly, recent Riemannian metric-based controllers
exhibit infinite-gain margin properties [84, 85]. In simple terms, this implies that scaling the
control action by any scalar gain greater than 1 still yields a stabilizing effect. As mentioned
in Section 3.2, this property is associated with some form of robustness, making this class of
controllers particularly appealing for guaranteed DNN-based feedback design.

Several related works have explored similar approaches [58, 209, 219, 228, 245]. In [219], the
authors propose a convex optimization problem to compute a suitable metric and subsequently
approximate the solution using a DNN. The convex optimization is solved on a finite number
of points and the DNN provides a continuous interpolation. However, the learning techniques
in [209,228] are more aligned with our approach. In [209] the authors propose learning CCMs
to solve output tracking problems. Similar to our scenario, both [228] and [209] aim at min-
imizing a loss function defined by the matrix conditions required for contraction. Once such
a function reaches zero, the DNN provides the entries of a suitable metric for each point in
the training/test datasets. In [228], the authors propose learning the metric via a Siamese
DNN structure [193]. Although related, our solution differs on several fundamental aspects.
Firstly, when considering the approximation error induced by the learning procedure, the results
in [209] only offer probabilistic convergence guarantees to trajectories close to the reference
one. Furthermore, the learned controller in [209] needs to adhere to specific structural con-
straints to ensure assumptions are always satisfied. In contrast, our approach allows for greater
expressivity of the selected approximator, without imposing constraints on the controller struc-
ture. Additionally, our sign definite cost relies on eigenvalues, ensuring sign-definiteness for all
points in the dataset, unlike the random sampling approach in [209]. Both [209] and [228] rely
on CCMs. Hence, while the proposed loss functions are similar in the sense they involve sign
definiteness-related costs, their components are different. Moreover, we introduce a separate
estimator that optimizes the cost function parameters and collaborates with the DNN during the
optimization process, resulting in more adaptable and flexible constraints. Furthermore, our so-
lution offers asymptotic convergence guarantees even when assumptions are only approximately
satisfied (see Theorem 4.4 and Theorem 4.5). Instead of computing the control law through ap-
proximate integration along the geodesic, we rely on these relaxed assumptions. This simplifies
the algorithm significantly, as finding geodesics is generally a computationally demanding task
that often involves solving an online optimization problem in each point, with no guarantee of
finding the exact solution due to optimization being performed only in compact sets. In con-
trast, our design derives the structure of the control action analytically, and its implementation
is obtained through offline optimization. Lastly, unlike [228], we operate in the continuous-time
framework, avoiding the need for a Siamese network by computing the DNN Jacobian. Common
libraries like PyTorch [162] provide automatic differentiation tools that facilitate obtaining the
Jacobian.

4.1 Preliminaries on Riemannian metric conditions for feedback
design

Since we will base our analysis on Riemannian metrics, we start by recalling some fundamental
results. Given a C1 vector field f : Rnx × R → Rnx and a C1 2-tensor P : Rnx × R → Rnx×nx ,

108

Chapter 4. Learning contractive controllers

we indicate with LfP (x, t) the Lie derivative of the tensor P along f defined as

LfP (x, t) := dfP (x, t) + P (x, t)∂f∂x (x, t) +
∂f
∂x (x, t)

⊤P (x, t) ,

dfP (x, t) := lim
h→0

P (X(x, t+ h, t), t)− P (x, t)
h

+
∂P

∂t
(x, t) ,

where X(x, t0 + t, t0) is the solution of the initial value problem

∂
∂tX(x, t0 + t, t0) = f(X(x, t0 + t, t0)), X(x, t0, t0) = x,

for all t ⩾ 0. Note that LfP (x, t) can be equivalently expressed as

LfP (x, t) = lim
h→0

(I + h∂f∂x (x, t))
⊤P (x+ hf(x, t), t+ h)(I + h∂f∂x (x, t))− P (x, t)

h
,

with coordinates

(LfP (x, t))i,j =
∑
k

[
2Pik(x, t)

∂fk
∂xj

(x, t) +
∂Pij
∂xk

(x, t)fk(x, t) +
∂Pij
∂t

(x, t)

]
,

being Pij (resp fi) the component of P (x, t) (resp. f) at coordinates (i, j) (resp. i). Given any
two elements x1, x2 ∈ Rnx , let Φt : [0, 1] → Rnx be any C1 path (parametrized by t) such that
at time t it satisfies Φt(0) = x1 and Φt(1) = x2. We define the length of the curve Φt in the
operator norm P (x, t) as

ℓ(Φt) :=

∫ 1

0

√
dΦt
ds

(s)⊤P (Φt(s), t)
dΦt
ds

(s) ds . (4.1)

The Riemannian distance between x1 and x2 is then defined as the infimum of the length among
all the possible piecewise C1 paths Φ, namely

dP (x1, x2) := inf
Φt
{ℓP (Φt)} .

For more details on Riemannian analysis, we refer to [181,212] and references therein.

4.1.1 Riemannian metric conditions for incremental properties

We now move to the presentation of stability results based on Riemannian metric conditions.
As a foundation, we start with the introduction of incremental properties in the autonomous
framework, thus creating a clear link with the results of Chapter 5. Then, we move to the
non-autonomous setting, and consider input-affine nonlinear systems.

Riemannian metric conditions for δδδGES. We start by considering autonomous nonlinear sys-
tems of the form

ẋ = f(x, t) (4.2)

where f : Rnx × R → Rnx is a C2 vector field in the first argument and piece-wise continuous
in the second. We denote by X(x, t, t0) the solution of system (4.2) with initial condition x
evaluated at time t ⩾ t0, and we assume existence and uniqueness of trajectories. We define the
notion of incremental stability as follows.

109

4.1. Preliminaries on Riemannian metric conditions for feedback design

Definition 4.1 (Incremental exponential stability). System (4.2) is incrementally globally expo-
nentially stable (δGES) if there exist two strictly positive real numbers λ, k > 0 such that

|X(x1, t, t0)−X(x2, t, t0)| ⩽ k|x1 − x2|e−λ(t−t0) (4.3)

for any couple of initial conditions (x1, x2) ∈ Rnx × Rnx and for all t ⩾ t0.

Riemannian metric conditions can be used to show that shrinking lengths of the form (4.1)
implies convergence of trajectories as per Definition 4.1. Following the metric approach [6, 87,
134], a dynamical system of the form (4.2) is δGES if there exists a Riemannian metric for which
the mapping t 7→ X(x, t, t0) is a contracting mapping. This concept is formally expressed by the
following theorem.

Theorem 4.1. Consider system (4.2) and suppose there exist three real numbers p, p, λ > 0 and a
C1 matrix function P : Rnx × R→ Rnx×nx taking symmetric positive definite values such that the
following holds

pI ⪯ P (x, t) ⪯ pI , (4.4a)

LfP (x, t) ⪯ −2λP (x, t) , (4.4b)

for all x ∈ Rnx and for all t ⩾ t0. Then the system (4.2) is δGES.

A proof can be found in [5, 83, 134]. A converse theorem can be found in [5, Proposition IV]
under the assumption of f being a globally Lipschitz vector field. Note that the lower bound
in (4.4a) is required to make sure that the whole Rnx space endowed with the Riemannian
metric P is complete. Such a condition guarantees that every geodesic (i.e. the shortest curve
between (x1, x2)) can be maximally extended to R, see e.g. [181]. By Hopf-Rinow’s Theorem
(see [212, Theorem 1.1]) this implies that the metric is complete and hence that the minimum
of the length of any curve connecting two point (x1, x2) is actually given by the length of the
geodesic at any time instant. Similarly, it guarantees that the Lyapunov function defined as
the distance associated to the norm operator |x|P := x⊤P (x, t)x is radially unbounded, and
therefore incremental properties are obtained globally in the state space. On the other hand,
the upper bound in (4.4a) is introduced for solutions to be uniformly decreasing with respect to
time and to correlate the Riemaniann distance in P to the Euclidean one in (4.3).

Riemannian metric conditions for δδδISS. We now move to input-affine systems, thus studying
the incremental input-to-state (δISS) properties of a system of the form

ẋ = φ(x, t) + g(x, t)w (4.5)

where w is an exogenous signal taking values in a compact set W ⊂ Rnw , φ : Rnx × R → Rnx
and g : Rnx × R→ Rnx×nw are C2 functions. Hence, we present a continuous-time counterpart
of the δISS property proposed in Chapter 3. We denote by X(x,w, t, t0) the solution of system
(4.5) starting at initial condition x at time t0 with input w = w(t) and satisfying the initial value
problem

X(x,w, t0, t0) = x,
∂X

∂t
(x,w, t, t0) = f(X(x,w, t, t0), t) + g(X(x,w, t, t0), t)w. (4.6)

We state the continuous-time counterpart of Definition 3.3 in the following definition.

110

Chapter 4. Learning contractive controllers

Definition 4.2 (Incremental exponential Input-to-State Stability). System (4.5) is incrementally
exponentially input-to-state stable (δISS) if there exist positive real numbers k, λ, γ > 0 such that

|X(x1, w1, t, t0)−X(x2, w2, t, t0)| ⩽ ke−λ(t−t0)|x1 − x2|+ γ sup
s∈[t0,t)

|w1(s)− w2(s)| (4.7)

for all initial conditions x1, x2 ∈ Rnx and for all inputs w1, w2 taking values in W ⊂ Rnw , for all
t ⩾ t0.

Similar to the result of Theorem 4.1, we present metric-based sufficient conditions to establish
incremental exponential ISS properties. To this aim, we first introduce the notion of Killing
vector field1.

Definition 4.3 (Killing vector field). Given a C1 2-tensor P : Rnx×R→ Rnx×nx and a C1 matrix
function g : Rnx × R→ Rnx×nw , we say that g is a Killing vector field with respect to P if

LgιP (x, t) = 0, ι = 1, . . . , nw, ∀(x, t) ∈ Rnx × R, (4.8)

with gι being the ι-th column of g.

In what follows, we will use the notation LgP (x, t) = 0 to indicate (4.8), with a slight abuse
of notation. The Killing Vector property implies that distances between different trajectories
generated by the vector field g(x, t) in the norm |·|P are invariant. Roughly speaking, the signals
that enter in the directions of the vector field g do not affect the distances, in the sense that
the distance (associated with the norm provided by P) between different trajectories of the
differential equation ẋ = g(x, t) is constant for any t ⩾ t0. It is easy to verify that the Killing
vector property is always satisfied between two constant matrices P (x) = P and g(x) = B.
Similarly, there always exists a matrix valued function P : Rnx → Rnx×nx satisfying the Killing
vector property for the case of scalar, time-invariant input vector field g : Rnx → Rnx , see
[83, Remark 1.3.2]. Based on the previous notion of Killing vector, we have the following
result.

Theorem 4.2. Consider system (4.5) and suppose that g is a bounded vector field, namely there
exists a real number g > 0 such that |g(x, t)| ⩽ g for all (x, t) ∈ Rnx×R. If there exists a C1 matrix
function P : Rnx × R → Rnx×nx taking symmetric positive definite values and three real numbers
p, p, λ > 0 satisfying

pI ⪯ P (x, t) ⪯ pI, (4.9a)

LfP (x, t) ⪯ −2λP (x, t), (4.9b)

LgP (x, t) = 0, (4.9c)

for all x ∈ Rnx and for all t ⩾ t0, then system (4.5) is δISS.

A proof can be found in [83,85]. Differently to some definitions from the literature, e.g. [9], the
signal w is required to live in bounded compact sets. This is needed to derive the δISS condition
(4.7) from the metric-based conditions (4.9). However, we emphasize that the parameter γ
doesn’t depend on the compact set W. Furthermore, we restrict the definition to the case of
exponential convergence. This is due to the fact that we look for metric-based conditions to
obtain the δISS property (4.7). In the more general definition considered in [9], any class-KL

1The name “Killing vector field” takes the name after Wilhelm Killing, a German mathematician.

111

4.1. Preliminaries on Riemannian metric conditions for feedback design

function can be selected. For instance, the previous result can be easily extended to the case in
which the system (4.5) is defined as

ẋ = f(x, t) + g(x, t)ρ(w)

with ρ being any function for which there exists a class-K∞ function δρ such that

|ρ(w1)− ρ(w2)| ⩽ δρ(|w1 − w2|).

In such a case, γ in (4.7) becomes a class-K function, [83, Section 1.3].

4.1.2 Design of a contractive infinite-gain margin feedback

Building on the above results, we now focus on the design of controllers making the closed loop
incrementally stable via contraction. Consider now a nonlinear system of the form

ẋ = f(x, t) + g(x, t)u

y = h(x, t)
(4.10)

with state x ∈ Rnx , control input u ∈ Rnu and measured output y ∈ Rny . The design of
infinite-gain margin laws in the context of input-affine nonlinear systems of the form (4.10) has
been investigated in the context of control Lyapunov function [191, Chapter 3] and arises quite
naturally in the context of feedback design for passive systems, e.g. [131]. Here, we study an
extension of the linear case in the context of contractive feedback laws. In particular, we state
the following definition.

Definition 4.4 (Contractive feedback with infinite-gain margin). Consider system (4.10). We say
that the C1 function ψ : Rny × R → Rnu is a contractive control law with infinite gain margin for
system (4.10) if there exist a C1 matrix function P : Rnx ×R→ Rnx×nx , taking symmetric positive
definite values and three real numbers p, p, λ > 0 such that the following holds

pI ⪯ P (x, t) ⪯ pI (4.11a)

LφκP (x, t) ⪯ −2λP (x, t), (4.11b)

for all x ∈ Rnx , all t ⩾ 0 and all κ ⩾ 1, where we defined the k-parametrized closed-loop

φκ(x, t) := f(x, t) + g(x, t)κψ(h(x, t)) .

Results for multiple scenarios (e.g., output feedback and observer forms) can be found in [83].
In what follows, we recall the ones for full-state feedback design h(x, t) = x, which will be the
main focus of the following sections. For systems in state-feedback form

ẋ = f(x, t) + g(x, t)(u+ w)

y = x
(4.12)

with state x ∈ Rnx control input u ∈ Rnu and disturbance w ∈ W ⊂ Rnu satisfying the matching
condition [172,175]. We have the following result.

112

Chapter 4. Learning contractive controllers

Proposition 4.1. Consider system (4.12), and suppose there exist a C1 matrix function P : Rnx ×
R→ Rnx × Rnx taking positive definite symmetric values, a function α : Rnx × R→ Rnu and real
numbers p, p̄, λ > 0 such that the following hold

pI ⪯ P (x, t) ⪯ p̄I , (4.13a)

LfP (x, t)− P (x, t)g(x, t)R−1g(x, t)⊤P (x, t) ⪯ −2λP (x, t) , (4.13b)

LgP (x, t) = 0 , (4.13c)

∂α

∂x
(x, t)⊤ = P (x, t)g(x, t) , (4.13d)

for all x ∈ Rnx , all t ⩾ 0 and for some positive definite symmetric matrix R ∈ Rnu×nu . Then,
the feedback law ψ(x, t) = −1

2R
−1α(x, t) is a contractive control law with infinite-gain margin for

system (4.12). Moreover, the closed-loop system is δISS with respect to w.

A proof can be obtained by adapting the one presented in [85, Theorem 3], see [85, Remark
1]. Condition (4.13b) can be seen as a Riccati-like inequality where P is a matrix function.
For linear systems of the form ẋ = Ax + Bu, condition (4.13b) boils down to the well-known
algebraic Riccati inequality (ARI) PA + A⊤P − PBR−1B⊤P ⪯ −2λP which admits a solution
under the mild assumption that (A,B) is stabilizable. In this case, a stabilizing control action is
given by u = −κR−1B⊤P for any κ ⩾ 1

2 . Furthermore, we remark that such a design possesses
the infinite-gain margin property [84]. Such a property will play a fundamental role in the
following section on multi-agent synchronization, as it will provide a synchronizing control
law that is “robust" with respect to the graph topology, see [102, Section 5], thus paralleling
the results in Section 3.2. Notice also that condition (4.13d) is asking for some integrability
property of the function Pg. Moreover, it is interesting to notice that it is a condition acting on
the Jacobian of the control law α, which can theoretically be shifted by any function of time
without loss of the contractivity properties of the closed-loop. This reflects the fact that stability
is imposed in the incremental framework, thus allowing convergence to non-trivial trajectories.
Such a fact turns out to be extremely useful in the context of multi-agent synchronization and
output tracking of the following sections. As a final remark, we highlight that for linear systems
both (4.13d) and (4.13c) are always satisfied. Indeed P is Euclidean (and thus constant) and so
it is g(x, t) = B. This implies that the Killing vector assumption (4.13c) holds and the function
α in (4.13d) is α(x, t) = B⊤Px.

4.2 Learning synchronizing controllers for nonlinear systems

In light of the results from Section 4.1, our objective is to leverage these findings to design
synchronizing controllers for multi-agent systems. As discussed in Chapter 3, synchronization
or consensus refers to the problem of a group of agents trying to achieve agreement. For the
synchronization of continuous-time linear systems, fundamental results were obtained in [126,
183] and a comprehensive discussion can be found in [102, Section 5]. For nonlinear systems,
most results exploit existing techniques developed for single-agent systems, specifically adapted
to deal with a distributed framework, e.g., [13,39,47,104,205]. A popular approach to solve the
synchronization problem consists in exploiting tools derived from contraction and incremental
stability theory (see [5, 9, 57, 72]). Based on this framework, most of the results considered
quadratic Lyapunov functions or, equivalently [57], Euclidean metrics, e.g., [8,14,51,164,226,
240,243]. However, only few investigated the use of nonlinear metrics, e.g., [4,105].

113

4.2. Learning synchronizing controllers for nonlinear systems

In this section, we address the synchronization problem for homogeneous networks (i.e., net-
works where the agents’ dynamics are identical) of continuous-time input-affine nonlinear sys-
tems using a distributed control feedback, i.e., diffusive coupling. The fundamental means to
achieve such a result is the use of control laws based on metric conditions, thus paralleling
Chapter 3. Since the input vector field is assumed to be a nonlinear function of the state, we
will exploit nonlinear Riemmanian metrics. Hence, we aim to design a static distributed state-
feedback controller based on the conditions presented in Section 4.1. Our focus is on undirected
and leader-connected graphs, where a designated leader agent can only transmit information
to other nodes, while bidirectional communication exists among the remaining nodes, see Ap-
pendix A.2.

Our approach is based on the solution of a PDI, which is very complex to verify analytically.
Therefore, to deal constructively with such a complexity, we show that synchronization can be
achieved in a regional context under less stringent assumptions. Thanks to this relaxation, we
show how machine learning techniques can aid in overcoming such a complexity without loosing
important convergence guarantees. Hence, we provide a formulation of a practical algorithm
based on DNNs to check the solvability of such a PDI. To show the potential of this approach, we
consider the problem of synchronizing a network of Lorentz oscillators in which the input gain
is highly nonlinear (and for which existing techniques cannot be easily applied).

4.2.1 A relaxed nonlinear metric-based solution

For an introduction about graph theoretic fundamental concepts we refer to Appendix A.2. We
now present the leader-synchronization problem, which can be interpreted as a specialized ver-
sion of Problem 3.1 in continuous-time. Consider a network of N agents. Without loss of gen-
erality, we assume the leader node to be node 1. The agents dynamics are described by

ẋ1 = f(x1, t)
ẋi = f(xi, t) + g(xi, t)ui, i = 2, . . . , N,

(4.14)

where x1 ∈ Rnx is the state of the leader, xi ∈ Rnx is the state of node i and ui ∈ Rnu is the
control action on node i, for all i = 2, . . . , N . We suppose that f, g are C2 functions in their first
argument and piece-wise continuous in the second. We denote the state of the entire network
as

x := col(x1, . . . , xN) ∈ RNnx . (4.15)

Furthermore, we denote with Xi(x
◦
i , t, t0) the trajectory of agent i evaluated at time t ⩾ t0

such that Xi(x
◦
i , t0, t0) = x◦i , and with X(x0, t, t0) the trajectory of the entire network (4.15)

evaluated at time t ⩾ t0, with initial condition x0 ∈ RNnx at initial time t0 ∈ R. Similar to
Section 3.2.1, our synchronization objective is to design a nonlinear diffusive coupling, namely
a distributed feedback control law of the form

ui = −
N∑
j=1

ℓijβ(xj , t) (4.16)

for all i = 2, . . . , N , for some C1 function β : Rnx×R→ Rnu , that stabilizes the dynamics (4.14)
on the so-called leader-synchronization manifoldM defined as

M := {x ∈ RNnx | xi = x1, for all i ∈ {1, . . . , N}}, (4.17)

where the states of all the agents of the network agree with the leader. By construction, the
i-th agent uses only the state information xj of its neighborhoods j ∈ Ni and its own local

114

Chapter 4. Learning contractive controllers

information xi. Furthermore, the control action ui is equal to zero on the synchronization
manifold. In other words, when consensus is achieved, no correction term is needed for each
individual agent. As a consequence, stabilizing all the agents on a desired equilibrium point is
generally not a valid solution in such a framework. We formalize our synchronization problem
as follows.

Problem 4.1 (Leader synchronization). The distributed feedback control law (4.16) solves the
leader-synchronization problem for the network (4.14) if the manifold M defined in (4.17) is
globally uniformly exponentially stable for the closed-loop dynamics

ẋ1 = f(x1, t) (4.18)

ẋi = f(xi, t)− g(xi, t)
N∑
j=1

ℓijβ(xj , t), i = 2, . . . , N,

namely, there exist positive constants k and λ > 0 such that for all (x0, t0) in RNnx × R solutions
of (4.18) are defined for all t ⩾ t0 and

|X(x0, t, t0)|M ⩽ ke−λ (t−t0) |x0|M, ∀t ⩾ t0. (4.19)

Then, in order to solve our leader synchronization problem, we assume existence of solutions
and leader-connected graphs. Moreover, we suppose that the pair f, g satisfies the following
controllability, Killing vector and integrability assumptions.

Assumption 4.1. The graph G = {V, E ,A} is undirected and leader-connected. Moreover, for each
(x◦1, t0) in Rnx × R the trajectory of (4.14) exists for all t ⩾ t0.

Assumption 4.2. There exist a C1 matrix function P : Rnx × R → Rnx×nx taking symmetric
positive definite values and positive real numbers p, p, ρ, λ > 0 such that the following holds for all
(x, t) ∈ Rnx × R

LfP (x, t)− ρP (x, t)g(x, t)g(x, t)⊤P (x, t) ⪯ −2λP (x, t) ,

pI ⪯ P (x, t) ⪯ pI .
(4.20)

Assumption 4.3. The matrix function g has the Killing vector field property with respect to P ,
namely

LgP (x, t) = 0 , ∀(x, t) ∈ Rnx × R . (4.21)

Assumption 4.4. The vector field Pg satisfies an integrability condition. Specifically, denoting
g = [g1 . . . gnu], there exists a C2 function α = (α1, . . . , αnu), αι : Rnx × R 7→ R for ι = 1, . . . , nu,
satisfying

∂αι
∂x

(x, t) = gι(x, t)
⊤P (x, t) , ∀(x, t) ∈ Rnx × R . (4.22)

We highlight that Assumption 4.2 and Assumption 4.3 recover the design proposed in [140,
Section III.A]. We are now ready to show the first result of this section, exploiting contraction
analysis for the design of synchronizing controllers.

115

4.2. Learning synchronizing controllers for nonlinear systems

Theorem 4.3. Consider a network G = {V, E ,A} of agents (4.14) and let Assumptions 4.1 to 4.4
hold. Then, for any κ ⩾ ρ

2µ , with µ given by Lemma A.3, the distributed state-feedback control law
(4.16) with

β(xi, t) = κα(xj , t) , (4.23)

and α satisfying (4.22), solves Problem 4.1.

Proof. The main goal is to show that the norm of the difference between any agent xi
and the leader x1 exponentially decreases to zero. Therefore, let us consider the following
change of coordinates

xi 7→ x̃i := xi − x1, i = 2, . . . , N

and let us collect all the vectors x̃i as x̃ := col(x̃2, . . . , x̃N) and define z = x1. Since ℓij = 0
for all j ̸∈ Ni, the dynamics of the error x̃i for all i = 2, . . . , N under the control law (4.16),
(4.23) can be rewritten as

˙̃xi = f(z + x̃i, t)− f(z, t)− κg(z + x̃i, t)

 N∑
j=2

ℓijα(z + x̃j , t) + ℓi1α(z, t)

 .
Note that there is no term on g(z, t), since no control action is acting on the leader. Since∑N

j=1 ℓij = 0 for all i = 1, . . . , N , we can add the term κg(z + x̃i, t)
(∑N

j=1 ℓij

)
α(z, t) = 0,

thus obtaining

˙̃xi = f(z + x̃i, t)− f(z, t)− κg(z + x̃i, t)
N∑
j=2

ℓij [α(z + x̃j , t)− α(z, t)] . (4.24)

Furthermore, in the new coordinates, the leader-synchronization manifold defined in (4.17)
corresponds to the origin of the x̃-dynamics. Now, given (z0, x̃0, t0) in RNnx×R, let T > t0 be
the time of existence of the solution of (4.24) initialized in (z0, x̃0) at time t0. For t in [t0,T),
let (Z(t), X̃(t)) denote this solution. Consider the function Γ : [0, 1]× [t0,T]→ RNnx , with
Γ = (Γ2, . . . ,ΓN) which satisfies Γ(s, t0) = s x̃0, and where Γi, i = 2, . . . , N , is the solution
of the following ordinary differential equation for t0 ⩽ t < t0 +T

∂Γi

∂t
(s, t) = f(ζi(s, t), t)− f(Z(t), t)− κg(ζi(s, t), t)

N∑
j=2

ℓij(α(ζj(s, t), t)− α(Z(t), t))

where we denoted ζi(s, t) = Z(t) + Γi(s, t). Note that, by uniqueness of the solution, Γ
satisfies

Γ(0, t) = 0, Γ(1, t) = X̃(t), ∀t ∈ [t0,T) . (4.25)

Consider now the function V defined by

V =
N∑
i=2

Vi, Vi(·) =
∫ 1

0

∂Γi
∂s

(s, ·)⊤P (ζi(s, ·), ·)
∂Γi
∂s

(s, ·)ds. (4.26)

116

Chapter 4. Learning contractive controllers

Note that, for all coordinates (k, l) in {1, . . . , nx}2, we have

d

dt
[P (ζi(s, t), t)kl] =

∂Pkl
∂x

(ζi(s, t), t)
∂ζi
∂t

(s, t) +
∂Pkl

∂t
(ζi(s, t), t),

=
∂Pkl
∂x

(ζi(s, t), t)

[
f

(
Z(t) +

∂Γi
∂t

(s, t)

)]
+
∂Pkl

∂t
(ζi(s, t), t).

This implies that for all vectors ν in Rnx , and i = 2, . . . , N ,

d

dt

[
ν⊤P (ζi(s, t), t)ν

]
= ν⊤dfP (ζi(s, t), t))ν − κ

N∑
j=2

[
ℓij

nu∑
ι=1

ν⊤dgιP (ζi(s, t), t)ν

×(αι(ζj(s, t), t)− αι(Z(t), t))
]
.

By using the Killing vector assumption (4.21) and the integrability assumption (4.22), the
time derivative of Vi becomes

V̇i(t) =

∫ 1

0

[
∂Γi
∂s

(s, t)⊤LfP (ζi(s, t), t)
∂Γi
∂s

(s, t)− 2κ
N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤

]
ds, (4.27)

where, for a generic index k, we defined

Ωk(s, t) :=
∂Γk
∂s

(s, t)⊤P (ζk(s, t), t)g(ζk(s, t), t).

With the following notations,

D(s, t) := diag (LfP (ζi(s, t), t))i=2,...,N , Ψ(s, t) := col (Ωi(s, t))i=2,...,N ,

we compute the derivative of V as follows

V̇ (t) =

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κΨ(s, t)L22Ψ(s, t)⊤

]
ds

⩽

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤

]
ds

where in the second step we used Assumption 4.1 and Lemma A.3. Therefore, by selecting
κ ⩾ ρ

2µ with ρ satisfying inequality (4.20) and µ > 0 given by Lemma A.3, we obtain the

bound V̇ (t) ⩽ −λV (t). By Gronwall’s Lemma, this implies V (t) ⩽ exp (−λ(t− t0))V (t0) for
all t ∈ [t0, t0 +T). Moreover, with (4.25) it yields

Vi(t) ⩾ p

∫ 1

0

∂Γi
∂s

(s, t)⊤
∂Γi
∂s

(s, t)ds ⩾ p |X̃i(t)|2 . (4.28)

Therefore, since
V (t0) ⩽ p |x̃0|2, (4.29)

117

4.2. Learning synchronizing controllers for nonlinear systems

it yields for all t in [t0, t0 +T) that

|X̃(t)|2 ⩽ e−λ(t−t0)
p

p
|x̃◦|2 .

Hence, remembering the definition x̃i = xi−z and the fact that the leader trajectory is well-
defined for all positive times, this implies that the trajectories are complete in positive time
(i.e. T = +∞). Moreover, by equivalence of norms in finite dimensional spaces it follows
that there exist two strictly positive real numbers c, c > 0 such that c|X(x0, t, t0)|M ⩽
|X̃(t)| ⩽ c|X(x0, t, t0)|M , for all t ⩾ t0, which implies (4.19) and concludes the proof.

Remark 4.1. The results presented in Theorem 4.3 can be extended to the output feedback scenario
as discussed in [S2]. However, in this section, we will focus exclusively on the state-feedback form of
(4.14).

It is important to note that the integrability condition (4.22) and the Killing vector assumption
(4.21) may not be practical from a learning perspective. Specifically, the constraints imposed by
(4.21)-(4.22) become exceedingly difficult to satisfy when using function approximators, partic-
ularly deep neural networks (DNNs). As a result, we propose a relaxation of these constraints,
which allows for approximate solutions without compromising convergence guarantees.

Relaxing the integrability condition. To relax the integrability constraint, we introduce a
bounded error between the Jacobian of α and the function Pg. Consequently, we propose the
following alternative assumption in place of Assumption 4.4.

Assumption 4.4b. There exist a C2 function α : Rnx ×R 7→ Rnu and a scalar ε > 0 such that, for
ι = 1, . . . , nu, the following holds∣∣∣∣∂αι∂x

(x, t)− gι(x, t)⊤P (x, t)
∣∣∣∣ ⩽ ε, ∀(t, x) ∈ R× Rnx . (4.30)

This relaxation offers two key advantages. Firstly, it eliminates the requirement for Pg to be
integrable, thereby expanding the set of admissible metric functions and facilitating its learning
process. Secondly, it simplifies the learning of α as its Jacobian only needs to approximate the
function Pg. Under this relaxed assumption, the results of Theorem 4.3 adapt as follows.

Theorem 4.4. Consider a network G = {V, E ,A} of agents (4.14) and let Assumptions 4.1, 4.2,
4.3 and 4.4b hold. Moreover, assume there exists a positive real number ḡ such that |gι(x, t)| ⩽ ḡ
for all (x, t) in Rnx × R and ι = 1, . . . , nu. Let µ, µ̄ > 0 be given by Lemma A.3 and let ℓ̄ =
maxij |ℓij | where (ℓij) is an element of the Laplacian matrix associated to the graph. Then, if ε in
Assumption 4.4b is selected as ε ∈ [0, ε∗) with ε∗ = (λµp)(ρµ̄p̄ḡnu), there exists κ∗ such that for
any κ ∈ [ρ2µ , κ

∗), the distributed state-feedback control law (4.16)-(4.23) solves the synchronization
Problem 4.1.

Proof. The proof is identical to the proof of Theorem 4.3 up to equation (4.27). Recalling
the compact notation ζi(s, t) = Z(t)+Γi(s, t), with Assumption 4.2, for each i in {2, . . . , N},
the function Vi defined in (4.26) satisfies for all t in [t0,T)

V̇i(t) =

∫ 1

0

[
∂Γi
∂s

(s, t)⊤LfP (ζi(s, t), t)
∂Γi
∂s

(s, t)− 2κ

N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤ + Ti(s, t)

]
ds,

118

Chapter 4. Learning contractive controllers

where we used the compact notation introduced in the proof of Theorem 4.3 and

Ti(s, t) := −2κ
∂Γi
∂s

(s, t)⊤
N∑
j=2

ℓij

nu∑
ι=1

P (ζi(s, t), t)gι(ζi(s, t), t)Σ(s, t)
∂Γj
∂s (s, t),

Σ(s, t) := ∂αι
∂x (ζj(s, t), t)− gι(ζj(s, t), t)⊤P (ζj(s, t), t).

With Assumption 4.4b and the bounds on P and g, the term Ti can be bound as follows

|Ti(t, s)| ⩽ 2κnup̄ḡε

∣∣∣∣∣∣
N∑
j=2

ℓij
∂Γi
∂s (s, t)

⊤ ∂Γj
∂s (s, t)

∣∣∣∣∣∣ = 2κc

∣∣∣∣∣∣
N∑
j=2

ℓij
∂Γi
∂s (s, t)

⊤ ∂Γj
∂s (s, t)

∣∣∣∣∣∣ .
Consequently, with Assumption 4.1 and the fact that L22 is bounded as in Lemma A.3, by
following the proof of Theorem 4.3 we obtain

V̇ (t) ⩽

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤ + 2κc

∂Γ

∂s
(s, t)⊤L22

∂Γ

∂s
(s, t)

]
ds.

Invoking again Lemma A.3 and the bounds on P , the above inequality gives

V̇ (t) ⩽

∫ 1

0

∂Γ

∂s
(s, t)⊤ diag(Υi)i=2,...,N

∂Γ

∂s
(s, t) ds,

where

Υi(ζi(s, t), t) = LfP (ζi(s, t), t)+2κP (ζi(s, t), t)

[
c̄ In−µg(ζi(s, t), t)⊤g(ζi(s, t), t)P (ζi(s, t), t)

]
,

with c̄ = µ̄nup̄ḡε
p . With Assumption 4.2, this implies

Υi(ζ, t) ⩽ (2κc̄− λ)P (ζ, t) + (ρ− 2κµ)P (ζ, t)g(ζ, t)⊤g(ζ, t)P (ζ, t).

Note that, with the choice of ε in the statement of the theorem, we have ρ
2µ <

λ
2c̄ . Conse-

quently, for each κ ∈ (ρ2µ ,
λ
2c̄) it implies V̇ (t) ⩽ −λ̃V (t) for all t ⩾ t0, where λ̃ = 2κc̄− λ is a

positive real number. The proof completes following the lines of the one of Theorem 4.3.

It is important to notice that the relaxation of the integrability condition comes at the price of
infinite-gain margin properties. Nevertheless, the approach still presents (reduced) robustness
properties with respect to the controller gain. Moreover, the result maintains its global conver-
gence characteristic. Finally, we remark that the allowed approximation error ε in Theorem 4.4
is strongly dependent on the network structure, which is highly reminiscent of the discrete-time
scenario of Section 3.2 with non-infinite gain margin properties.

Relaxing the Killing vector field assumption. When the equality constraint in Assumption
4.3 is replaced by an approximation, global synchronization may be lost. However, it is shown
in the following theorem that provided |LgP | is small enough, a semi-global result can be ob-
tained.

119

4.2. Learning synchronizing controllers for nonlinear systems

Theorem 4.5. Consider a network G = {V, E ,A} of systems (4.14). Suppose Assumption 4.1, 4.2,
and 4.4 hold, and let κ ⩾ ρ

µ be fixed. Moreover, assume there exists a positive real number ḡ such
that |gι(x, t)| ⩽ ḡ for all (x, t) in Rnx × R and ι = 1, . . . , nu. Then, for each x̄ > 0 there exist
k, ε > 0 such that, if the following holds

|LgιP (x, t)| ⩽ ε , ∀ (x, t, ι) ∈ Rnx × [t0,∞)× {1, . . . , nu}, (4.31)

then, for all (x0, t0) in RNnx × R such that |x0|M ⩽ x̄, the solution of (4.18) with the distributed
state-feedback control law (4.16), (4.23) is defined for all t ⩾ t0 and

|X(x0, t, t0)|M ⩽ ke−
λ
3 (t−t0) |x0|M , ∀t ⩾ t0. (4.32)

Proof. Let x̄, t0 > 0 and let x◦ ∈ RNn satisfy |x◦|M ⩽ x̄. Assume that (4.31) is satisfied for
some positive real number ε that will be selected later on. As in the proof of Theorem 4.3,
consider the function V defined in (4.26). With (4.28) and (4.29), there exists two positive
real numbers (cV , c̄V) such that

cV
∣∣X(x0, t, t0)

∣∣2
M ⩽ V (t) ⩽ c̄V

∣∣X(x0, t, t0)
∣∣2
M.

With Assumption 4.2, and 4.4, for each i in {2, . . . , N}, the function Vi defined in (4.26)
satisfies for all t in [t0,T)

V̇i(t) =

∫ 1

0

[
∂Γi
∂s

(s, t)⊤LfP (ζi(s, t), t)
∂Γi
∂s

(s, t)− 2κ
N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤ + T̃i(s, t)

]
ds,

where we used the compact notation introduced in the proof of Theorem 4.3 and

T̃i(s, t) :=− κ
∂Γi
∂s

(s, t)⊤
nu∑
ι=1

LgιP (ζi(s, t), t)
N∑
j=2

ℓijα̃ι(ζj(s, t), t)
∂Γi
∂s

(s, t).

with α̃ι(ζj(s, t), t) := αι(ζj(s, t), t)− αι(Z(t), t). Note that, with Assumption 4.4 we have

α̃ι(ζj(s, t), t) =

∫ 1

0

∂αι
∂x

(Z(t) + rΓj(s, t), t))Γj(s, t)dr

=

∫ 1

0

∂αι
∂x

(Z(t) + rΓj(s, t), t))

∫ s

0

∂Γj
∂s

(ν, t)dνdr.

Hence, exploiting Assumption 4.4 and the bounds on P and g, we have the following bound

|α̃ι(ζj(s, t), t)| ⩽ p̄ḡ

∫ 1

0

∣∣∣∣∂Γj∂s (ν, t)

∣∣∣∣ dν ⩽ p̄ḡ
1

2

∫ 1

0
1 +

∣∣∣∣∂Γj∂s (ν, t)

∣∣∣∣2 dν.
Employing the fact that

∫ 1
0 |∂Γi∂s (s, t)|2ds ⩽

Vi(t)
p , by (4.31) we obtain

|T̃i(s, t)| ⩽ κε
nuḡp̄

2p

N∑
j=2

ℓij(p+ Vj(t))
∂Γi
∂s

(s, t)⊤
∂Γi
∂s

(s, t).

120

Chapter 4. Learning contractive controllers

Consequently, Vi is bounded as

V̇i(t) ⩽

∫ 1

0

[
∂Γi
∂s

(s, t)⊤

LfP (ζi(s, t), t) + κεc

N∑
j=2

ℓij(p+ Vj(t))

 ∂Γi
∂s

(s, t)

−2κ
N∑
j=2

ℓijΩi(s, t)Ωj(s, t)
⊤

]
ds,

where c = nuḡp̄
2p . Consequently,

V̇ (t) ⩽

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤ + κεc

∂Γ

∂s
(s, t)⊤M(t)

∂Γ

∂s
(s, t)

]
ds

where M(t) = diag(L22V(t)) with V(t) = col(p+ Vi(t))i=2,...,N . Note that

M(t) ⩽ max
i


N∑
j=2

ℓij(p+ Vj(t))

 IN−1 ⩽ ℓ̄((N − 1)p+ V (t)) IN−1,

with ℓ̄ = max
ij

ℓij . Then

V̇ (t) ⩽

∫ 1

0

[
∂Γ

∂s
(s, t)⊤D(s, t)

∂Γ

∂s
(s, t)− 2κµΨ(s, t)Ψ(s, t)⊤+

κεcℓ̄(N − 1)p
∂Γ

∂s
(s, t)⊤

∂Γ

∂s
(s, t) + κεcℓ̄V (t)

∂Γ

∂s
(s, t)⊤

∂Γ

∂s
(s, t)

]
ds.

By using the bounds on P and following the proof of Theorem 4.3, with κ ⩾ ρ
2µ and c̄ = cℓ̄

we obtain

V̇ (t) ⩽ −(λ− c̄κε(N − 1))V (t) +
c̄κε

p

N∑
i=2

V 2
i ⩽ −

(
λ− c̄κε(N − 1)− c̄κε

p
V
)
V.

Finally, selecting ε < max
{

λ
3c̄κ(N−1) ,

λp

3c̄κc̄V x

}
it implies V̇ ⩽ −λ

3V for all t ⩾ t0, concluding
the proof.

4.2.2 Deep Learning for metric and controller estimation

As previously discussed, a drawback of the proposed approach lies in the fact that metrics may
not be easy to find in the Riemannian scenario. Moreover, even when a metric has been found,
designing a control law satisfying the integrability condition (4.22) may not be straightforward.
One way to overcome such difficulties is to rely on machine learning tools to obtain approximate
solutions, thus leveraging on Theorem 4.5 and Theorem 4.4. In what follows, we combine the
proposed control design with neural network architectures. Hence, the idea is to set up and
approximately solve an optimization problem aimed at circumventing the need for an analytic
metric. Once a suitable metric has been found via a first DNN, we train a second one to satisfy the

121

4.2. Learning synchronizing controllers for nonlinear systems

integrability condition. We now describe the proposed algorithm. Let us consider the problem
of finding a suitable approximation of the metric first. We enforce symmetry by solely learning
the upper triangular part of P (x, t). The neural metric is constructed as

P θ(x, t) =

 pθ1(x, t) · · · pθnx(x, t)
...

. . .
...

pθnx(x, t) · · · pθnp(x, t)

 ,

where np =
nx(nx+1)

2 is the total number of elements to be learned, the vector of matrix entries
p = col(pθ1(x, t), . . . , p

θ
np(x, t)) is the output of the neural network DNNP : Rnx ×Rnθ ×R 7→ Rnp

and θ ∈ Rnθ is the vector of DNNP parameters. To train the DNNP parameters, we rely on
Theorem 4.4 to relax the existence of a primitive for P θg and on Theorem 4.5 to loosen the
constraint posed by the Killing vector field property (4.21). We set up an optimization problem
asking for the minimization with respect to the parameters θ of the following cost function

JP (x, θ,w, c, t) =
4∑
i=1

wiJi(x, θ, c, t), (4.33)

being w = (w1, . . . , w4) a vector of (positive) scalar weights and

Ji(x, θ, c, t) = ln
(
max

{
λ̄(Mi(x, θ, c, t)), 0

}
+ 1
)
, i = 1, 4

Ji(x, θ, c, t) =
∑nu

ι=1 ln
(
max

{
λ̄(Mi,ι(x, θ, c, t)), 0

}
+ 1
)
, i = 2, 3

(4.34)

with i = 1, . . . , 4, λ̄ being the maximum eigenvalue of Mi and Mi defined as

M1(x, θ, c, t) = LfP θ(x, t)− c1P θ(x, t)g(x, t)g⊤(x, t)P θ(x, t) + c2 Inx
M2,ι(x, θ, c, t) = LgιP θ(x, t)− c3 Inx ,
M3,ι(x, θ, c, t) = −LgιP θ(x, t)− c3 Inx ,
M4(x, θ, c, t) = −P θ(x, t) + c4 Inx

where ci > 0, i = 1, . . . , 4 are positive scalars to be learned and c = (c1, c2, c3, c4). First, it is
worth noting that all matrices Mi, i = 1, . . . , 4 are symmetric, ensuring that their eigenvalues
are real. Then, each cost Ji serves a specific purpose in relation to the neural metric P θ. For
example, J1 introduces a positive cost when the contraction condition (4.20) is not satisfied. On
the other hand, J2 and J3 promote the boundedness of LgP , relaxing the Killing vector condition
(4.21). Importantly, the presence of imaginary eigenvalues would render M2 and M3 unrelated
to (4.31). Lastly, J4 guides the solution towards positive definite matrices, as stated in (4.20).
It is important to note that the upper bound on P θ is always satisfied, given that our algorithm
is optimized within a compact set S. The natural logarithm serves as a regularization term
between the costs Ji. It allows for the rescaling of costs with significantly different magnitudes
to similar values, facilitating a more precise determination of their relative importance using
the weight vector w. In parallel with the training of DNNP , we train a parameter estimator to
output the vector c = col(ci)i=1,...,4. The estimator and DNNP collaborate to the minimization of
the loss function (4.33). Notably, if the cost reaches a value of 0, all the contraction conditions
are satisfied for the dataset and the learned estimator output, allowing for the termination of
the learning process. The second step is to find a suitable law approximating the integrability
condition (4.22). We train the parameters ϕ ∈ Rnϕ of the second network DNNα : Rnx ×Rnϕ 7→
Rnu such that

Jα(x, ϕ, t) =

∣∣∣∣∂DNNα

∂x
(x, ϕ, t)− g(x, t)⊤P θ(x, t)

∣∣∣∣2 (4.35)

122

Chapter 4. Learning contractive controllers

is minimized. The full learning procedure is summarized by Algorithm 6. Clearly, the DNNs
can be trained only on a dataset D of finite size. Yet, DNNs are typically Lipschitz-continuous
functions. Hence, similarly to [228, Section IV], we provide a verification tool to assess the
satisfaction of contraction conditions over compact sets once the training is over.

Proposition 4.2. Let S ⊂ Rnx be an arbitrary compact set and D ⊂ Rnx a set with a finite number
of elements and let r > 0 be such that

S ⊆ ∪xi∈DBr(xi), Br(xi) := {x ∈ Rnx : |x− xi| < r}.

Let M : Rnx → Rnx×nx be a Lipschitz-continuous matrix-valued function, with Lipschitz constant
lM , taking symmetric values and such that M(xi) ⪯ −2qI for all xi ∈ D and for some q > 0. If
q, r, lM are such that q > rlM , then M(x) ⪯ −qI for all x ∈ S.

Proof. By Lipschitz-continuity of M we have

M(x) =M(xi) +M(x)−M(xi) ⪯M(xi) + |M(x)−M(xi)|I

⪯M(xi) + lM |x− xi|I ⪯ −q
(
2− |x− xi|

r

)
I

for an arbitrary xi ∈ D. Then, M(x) ⪯ −qI for all x ∈ Br(xi). The result follows from the
fact that S ⊆ ∪xi∈DBr(xi).

Proposition 4.2 implies that if the dataset is composed of points from a sufficiently fine grid,
then the learned properties extend to the points in between. Hence, we can obtain a valid
metric over a compact set by learning on a finite number of samples. Similar reasoning can be
proposed for the feedback law α. Since the estimated metric is a DNN and g ∈ C2, their product
is Lipschitz continuous on a compact set. Since α is also modeled as a DNN, by selecting smooth
activation functions its Jacobian is continuous. Following similar arguments to those used in
Proposition 4.2, we can finally guarantee that a bounded error on a grid translates to a bounded
error on a compact set including it.

These results can be extended to the time-varying domain by assuming the dataset contains
state-time pairs (trajectories). However, it is also necessary to assume bounded variation of the
dynamics over time, as we want the DNN to generalize properly. This would require the use
of Recurrent Neural Networks (RNNs) in order to embed time information in the approxima-
tions. For all these reasons, in the following illustrative example we focus on networks of time-
invariant nonlinear systems and employ multi-layer perceptrons (MLPs), i.e., fully-connected
feed-forward deep neural networks.

Example. We apply the proposed algorithm to a leader-synchronization problem2. We con-
sider a network of N = 6 identical Lorenz attractors. Such systems are particularly interesting,
since they can present a chaotic behavior. Each agent i = 1, . . . , N is described by the following
dynamics 

ẋi,1 = a(xi,2 − xi,1) + ui

ẋi,2 = xi,1(b− xi,3)− xi,2 + (2 + sin(xi,1))ui

ẋi,3 = xi,1xi,2 − cxi,3
2The code for reproducing the experiments proposed in this section can be found at https://github.com/

SamueleZoboli/Control-learning-multiagent-lorenz.git

123

https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git
https://github.com/SamueleZoboli/Control-learning-multiagent-lorenz.git

4.3. Learning tracking controllers for nonlinear systems

Algorithm 6 DNN-based synchronizing controller

1: Input: Dataset of
(
x , f(x, t) , g(x, t) , ∂f∂x (x, t) ,

∂g
∂x(x, t)

)
, DNNP ,DNNα;

2: while JP (x, θ,w, c, t) ̸= 0 do
3: Train DNNP and the estimator with (4.33);
4: end while
5: Train the DNNα with (4.35);
6: Set the distributed law ui = −κ

∑N
j=1 ℓijDNNα(xj , ϕ, t).

with xi = (xi,1, xi,2, xi,3) ∈ R3 and where a = 10, b = 28, c = 8
3 , guaranteeing the chaotic

behavior. We consider the control matrix g(x) = (1, 2 + sin(xi,1), 0) to exclude the possibility of
feedback linearizing solutions. The agents communicate with each other following the leader-
connected graph represented in Figure 4.1a.

We code and train our fully-connected DNNs and estimator using PyTorch [162]. For the metric
network, we select an architecture composed of 4 hidden layers, with size 30, 20, 20, 10 respec-
tively and tanh activation functions. The output layer passes through a saturation function as
a final activation, limiting the single elements of the metric. The second network presents 3
hidden layers, with size 30, 20, 10 respectively and tanh activation functions. We select the iden-
tity function as output layer activation function. We select a weight vector w = (1, 10, 10, 20),
directing the learning towards positive matrices first and successively satisfying the Killing-less
assumptions and the contraction condition. We train both the networks and the estimator using
Adam optimizer [114]. The learning rate for the metric network and the estimator is set as
3 × 10−3, while DNNα uses a learning rate of 5 × 10−3. The DNNs learning rate are scheduled
according to a cosine annealing policy [135], while the estimator one remains constant. We
train the neural metric and the estimator over 100 epochs (yet stopped after 15 epochs due to
the cost reaching 0) and the second DNN over 200 epochs. For both of the learning phases (the
metric learning and the controller learning), the dataset is composed by 2×105 samples coming
from a Gaussian distribution N (0, 10). We use 80% of the dataset as the training set, with a
batch size of 512. The remaining 20% is used as test set. We select a κ = 5 and we apply the
controller in a noisy-measurements scenario, i.e., ui = φ(xi + νi) where νi ∼ N (0, 0.2) repre-
sents some Gaussian measurement noise. This allows testing the robustness properties of the
proposed neural control law. Each agents’ initial condition is randomly sampled from a Gaussian
distribution N (0, 20). Figures 4.1b and Figure 4.1c show the controller performances once the
DNNs have been trained. Figure 4.1b presents the mean and standard deviation between agents
of the norm of the error with respect to the leader trajectory. Figure 4.1c directly shows the state
trajectories of each agent. As synchronization is achieved, we can see that the DNN optimized
with (4.33) provides a suitable estimated metric, while the one trained with (4.35) effectively
learns an approximate primitive of P θg. The parameter estimator provided a decay rate c3 ≈ 4.7
and c1 ≈ 36.3. From Figure Figure 4.1c it is possible to see that the agents quickly synchronize,
despite having significantly different initial conditions.

4.3 Learning tracking controllers for nonlinear systems

Building upon the results of the previous section, in this section we tackle the output tracking
problem for continuous-time nonlinear systems by means of contraction analysis tools.

Output tracking is arguably among the most versatile applications of control theory, ranging

124

Chapter 4. Learning contractive controllers

1

2

35

4

6

(a) Considered net-
work of Lorentz
oscillators.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

20

40

60

80

100
std(error norm)
mean(error norm)

(b) Evolution of the mean error norm
between agents with respect to the
leader.

−20

0

20

x 1

−100

−50

0

50

x 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0

50

x 3

(c) Evolution of the states
(x1, x2, x3) of agents ai, i = 1, . . . , N
(leader in orange).

Figure 4.1: Synchronization of Lorentz oscillators.

from vertical take-off in aerospace [141] and naval ships trajectories [234] to electronics [237]
and mechanics [238]. The task consists in designing a control action leading the output of a
dynamical system to track an arbitrary reference signal. Such a trajectory may be generated
from manual design or any external source, depending on the control task. While being fairly
simple to address on linear systems [77], output tracking remains an open problem for most
general nonlinear dynamical systems. In this case, existing approaches either rely on heavy
online computation or demand precise dynamical models.

Existing solutions canonically address the output tracking problem by exploiting one of the
following tools: (i) model inversion, (ii) regulation theory or (iii) optimization. (i) The first
method looks for an inverse model mapping the current state-target couple to the input trans-
porting the former to the latter. As an example, we point the reader to solutions based on
feedback linearization [101, Chapter 5.2] or [62] and references therein. (ii) The second design
generalizes the linear method: the controller is divided in a dynamical part (the internal model)
and a stabilizer [103]. The internal model component includes a generator of the steady-state
solution where the tracking error is zero. The stabilizer provides convergence to such a so-
lution (see e.g. [86] for the case of constant references). The overall control law guarantees
stability, attractivity and forward-invariantness of a manifold where tracking is achieved. As for
(i), the approach is strongly model-dependent. Related issues can be alleviated with possible
countermeasures such as adaptive techniques [192]. Unfortunately, these tricks often leverage
challenging analytical considerations, as they usually require a well-defined change of coordi-
nates to bring the system in normal form and, in most cases, a minimum-phase assumption. (iii)
Finally, the third method considers output tracking as an optimization problem, which motivates
the use of the corresponding tools.

The latter is promising in many ways: it can cope with (small) model errors and it requires mod-
erate theoretical analysis to be deployed, such as Model Predictive Control (MPC) [130]. The
main drawback is the computational effort. MPC usually requires solving an online optimiza-
tion problem for any point in the trajectory. The complexity of such a task drastically increases
for systems presenting significant nonlinearities. To avoid the need of online computation, an-
other class of optimization tools have emerged from the use of convex programming paired with
DNN-powered interpolation [218]. Deep learning-based controllers are fast, versatile, and very
efficient in most situations, but are very data intensive, and often requires a preexisting expert

125

4.3. Learning tracking controllers for nonlinear systems

agent to build a sufficiently informative dataset. A different option is to rely on the reinforce-
ment learning philosophy [28], which leverages exploration guided by a weak reward signal.
However, theoretical guarantees such as stability are challenging to obtain, which frequently
limits existing results to simpler classes of systems, e.g., linear ones [42].

Similar to Section 4.2, in what follows we develop a solution to the output tracking problem
which intertwines techniques from machine learning and control theory. To do so, we propose
a DNN-based algorithm whose backbone comes from output-regulation theory. Formally, we
propose a two-step controller. First, we estimate the solution of the regulator equations for a
given reference signal, resulting in steady-state trajectory π(t) and control action ψ(t) minimiz-
ing the tracking error. Then, we design a stabilizer making trajectories asymptotically converge
to the reference. To this aim, we rely on the results of Section 4.2. Hence, we revisit the out-
put tracking problem in a multi-agent framework where a single follower has to synchronize to
the leader. We design a stabilizer that makes the closed-loop a contraction and approximate its
analytical solution with DNNs, adapting the approach of Section 4.2.2.

The proposed control structure is inspired by the results in [166, Section 5.4]. However, we
highlight four main differences in our approach. (i) In [166, Section 5.4] the authors propose
the design u = β(x, π) = K(x − π), with K being a constant matrix and π the steady-state
solution to the regulator equation. In our design, through the notion of Killing vector field (see
Definition 4.3), we provide a more general structure for the controller β. (ii) We show that ap-
proximate, rather than asymptotic, tracking can be achieved under a non-perfect knowledge of
the solution of the regulator equations. (iii) We provide a DNNs-based algorithm for the estima-
tion of the unknown quantities that generalizes over references. (iv) We link the performances
of the DNNs to the tracking error. The complete algorithm is modified with respect to Algo-
ithm 6 in two main aspects. First, we add a “virtual-leader estimation” step by taking advantage
of results coming from output regulation theory. The regulator equations are solved thanks to
an end-to-end weakly supervised DNN that directly estimates steady-state variables from the
reference. We show that our model performs well even on challenging references. Second, we
introduce an auxiliary objective in the training of the neural metric. This secondary loss aims at
refining and tightening the constraints imposed by the primary loss (4.33).

4.3.1 Problem statement and proposed approach

In what follows, we consider a system of the form

ẋ = f(x) + g(x)u (4.36a)

e = h(x)− r(t) (4.36b)

where x ∈ Rnx is the state, u ∈ Rnu is a control action, f, g, h are sufficiently smooth functions
and e ∈ Rne is the error between an output y = h(x) and a known smooth time-varying reference
r(t) taking values on a compact set R ⊂ Rne . In order to simplify the analysis, we assume
forward completeness of the trajectories for all times t ⩾ t0, t0 ∈ R inside a forward invariant
compact set F ⊂ Rnx and we define g := supx∈F |g(x)|. Our goal is to design a feedback control
action u such that the error e asymptotically goes to zero. We formalize our problem as follows.
Let c ⩾ 0. Assume to know a smooth function γ : Rnx × R → Rnu such that the system (4.36)
in closed-loop with the feedback control u = γ(x, t) has bounded trajectories and such that
limt→+∞|e(t)| ⩽ c. Then:

• if c = 0, we say that the asymptotic output tracking control problem is solved;

126

Chapter 4. Learning contractive controllers

• if c > 0, we say that the approximate output tracking control problem is solved.

From a regulation theory viewpoint, asymptotic output tracking can be achieved only if there
exist two sufficiently smooth mappings π : Rne → Rnx and ψ : Rne → Rnu solution of the
so-called regulator equations (see for instance [38,103])

π̇(r(t)) = f(π(r(t))) + g(π(r(t)))ψ(r(t))

0 = h(π(r(t)))− r(t) . (4.37)

Here, the mapping π represents the steady-state manifold on which the tracking error is zero.
Hence, the state x must converge asymptotically to it. Similarly, the mapping ψ represents the
steady-state control action making such a manifold forward invariant along the trajectories of
the system. In order to have a well-posed problem, we assume that if r(t) ∈ R for all t ⩾ t0, then
π(t) solving (4.37) is bounded and satisfies π(t) ∈ F for all t ⩾ t0. Under perfect knowledge
of the model and of the solution of the regulator equations, we look for a controller solving the
asymptotic regulation problem and taking the form

u = γ(x, t) = ψ(t) + β(x, π, t), (4.38)

where ψ solves (4.37) and β is any function that forces the dynamics of x to converge to the
steady-state π(t) and that is asymptotically vanishing. In other words, β is any function such
that the trajectories of the closed-loop (4.36), (4.38) satisfy limt→+∞|x(t)− π(t)| = 0 and such
that β(x, x, t) = 0 for all (x, t) ∈ Rnx × R. Following these lines, we design β according to
the leader-follower multi-agent synchronization strategy proposed in Section 4.2. As such, we
consider a trivial directed graph whose network is composed by two agents. In particular, the
leader is the steady-state dynamics in (4.37) and the follower is the closed-loop system (4.36),
(4.38). With this approach, the problem of designing the function β in (4.38) can be seen
as designing a control action achieving synchronization between two nonlinear systems whose
open-loop dynamics is defined by

ẋ = f(x, t) := f(x) + g(x)ψ(t) . (4.39)

Hence, for controller design, we can exploits the results of Theorem 4.3. As reminded in Sec-
tion 4.2.2, it is often hard to analytically compute contractive stabilizers for systems present-
ing significant nonlinearities. The same holds for the exact solution to the regulator equations.
Hence, similarly to Section 4.2.2, we aim at solving approximate tracking with neural controllers
equipped with convergence guarantees.

4.3.2 Approximate output tracking: the analytic solution

In order to justify the use of function approximators, we first highlight the robustness proper-
ties of the closed-loop system under the controller (4.38). The goal is to show that (i) under
perfect knowledge of the system, of the regulation equations and of the control structure, the
asymptotic output tracking problem is solved; (ii) it is still possible to achieve approximate out-
put tracking by means of a approximate solution. Then, we show that the tracking error can be
straightforwardly linked to the approximation errors of the estimated quantities, and we provide
bounds guaranteeing approximate tracking up to arbitrary precision.
We start by assuming the following.

Assumption 4.5. Consider system (4.36), (4.37) and let f(x, t) = f(x) + g(x)ψ(t). There exist a
C1 matrix function P : Rnx ×R→ Rnx×nx taking symmetric positive definite values, a C2 function

127

4.3. Learning tracking controllers for nonlinear systems

β : Rnx × R → Rnu , positive real numbers p, p̄, λ, ρ > 0 such that, for all (x, t) ∈ Rnx × R, the
following holds:

(i) The matrix function P satisfies

LfP (x, t)− ρP (x, t)g(x)g(x)⊤P (x, t) ⪯ −λP (x, t) ,
pI ⪯ P (x, t) ⪯ pI . (4.40)

(ii) There exists a function α : Rnx × R→ Rnu satisfying the integrability condition

∂α

∂x
(x, t)⊤ = P (x, t)g(x) . (4.41)

(iii) The Killing vector property holds, namely

LgP (x, t) = 0. (4.42)

Clearly, Assumption 4.5 arises from the ones required in Theorem 4.3 and the integrability con-
dition is assumed to simplify the analysis. However, we recall that such an assumption can be
relaxed similarly to Section 4.2.2. We also highlight that (4.40) involves the closed-loop f . More-
over, we assume the existence of a Riemannian metric P satisfying the Killing vector assumption
(4.42). This is needed to ensure robust tracking with respect to input disturbances, which will be
related to the approximation introduced by DNNs. In the case of relaxed Killing conditions as in
Section 4.2.2, such robustness properties would hold only for small disturbances. Moreover, we
remark that the Killing vector property would allow the definition of a time-invariant Rieman-
nian metric P , as ψ enters φ via g. However, as perfect Killing conditions will not be achieved
by the neural metric, we introduce time dependency of P by providing ψ(t) as an additional
entry to our network. We are now ready to present a first result on δISS-like properties of the
closed-loop. We recall that a function ω ∈ L2 if it is measurable and

∫ +∞
0 |w(s)|2ds < +∞.

Proposition 4.3. Consider system (4.36), (4.37) and let f(x, t) = f(x)+g(x)ψ(t). Let Assumption
4.5 hold and suppose ω : R→ Rnu be in L2. Then, for any κ ⩾ ρ

2 , the trajectories of system (4.36)
in closed-loop with

u = ψ(t) + β(x, π, t) + ω(t) (4.43a)

where
β(x, π, t) = −κ(α(x, t)− α(π, t)) (4.43b)

satisfy
|X(x0, t, t0)−Π(π0, t, t0)| ⩽ k|x0 − π0|e−λ(t−t0) + ζ(sup

s∈[t0,t)
|ω(s)|) (4.44)

for all (x0, π0, t, t0) ∈ Rnx × Rnx × [t0,∞)× R, for some k, λ > 0 and for some class-K∞ function
ζ, with X(·) being the trajectory of (4.36) in closed-loop and Π(·) the trajectory of (4.37).

Proof. The proof follows the line of results in Section 4.2 and combines them with ISS-like
arguments. Thus, we only highlight the main parts. Define the state-error x̃ := x − π. Its
dynamics read as

˙̃x = f(π + x̃, t)− f(π, t)− κg(π + x̃)(α(π + x̃, t)− α(π, t)) + g(π + x̃)ω(t) . (4.45)

Let X̃(x̃0, t, t0) be a solution defined for all t ⩾ t0 and consider the function Γ : [0, 1]× R×
R → Rnx satisfying Γ(1, t0, t0) = X̃(x̃0, t0, t0), Γ(0, t0, t0) = 0 and Γ(s, t0, t0) = γ(s), where

128

Chapter 4. Learning contractive controllers

γ : [0, 1]→ Rnx is any C1 curve and solution to

∂Γ

∂t
(s, t, t0) = f(Γ + Π, t)− f(Π, t)− κg(Γ + Π)(α(Γ + Π, t)− α(Π, t)) + g(Γ + Π)w(s)

with Π = Π(π0, t, t0) being the trajectory of (4.37) (arguments are dropped to ease notation)
and w(s) = sω. Take the candidate Lyapunov function

V (t) =

∫ 1

0

∂Γ

∂s
(s, t, t0)

⊤P (Γ + Π, t)
∂Γ

∂s
(s, t, t0) ds (4.46)

with P solving (4.40). Taking its time-derivative, by the Killing vector assumption and the
integrability condition (4.41), we obtain

V̇ (t)⩽
∫ 1

0

∂Γ

∂s
(s, t, t0)

⊤[T1(s, t0, t) + T2(s, t0, t)]
∂Γ

∂s
(s, t, t0) + T3(s, t0, t) ds ,

with

T1(s, t0, t) = LfP (Γ + Π, t),

T2(s, t0, t) = −2κP (Γ+Π, t)g(Γ+Π)g⊤(Γ+Π)P (Γ+Π, t),

T3(s, t0, t) = He

{
∂Γ

∂s
(s, t, t0)

⊤P (Γ + Π, t)g(Γ + Π, t)ω(t)

}
.

From the (generalized) Young’s inequality a with parameters a = ∂Γ
∂s (s, t, t0)

⊤√P (Γ + Π, t),
b =

√
P (Γ + Π, t)g(Γ + Π)ω(t) and c = λ

2 it follows that

T3(s, t, t0) ⩽
λ

2

∂Γ

∂s
(s, t, t0)

⊤P (Γ+Π, t)
∂Γ

∂s
(s, t, t0)+

2

λ
ω(t)⊤g(Γ+Π)⊤P (Γ+Π, t)g(Γ+Π)ω(t)

Taking κ ⩾ ρ
2 and employing (4.40) we get

V̇ (t) ⩽ −λ
2V (t) + 2

λp g
2|ω(t)|2 .

From (4.40) and since X̃(x̃, t, t) = x̃(t) for all t, it follows that, for any t ⩾ t0

p|x̃(t)|2 ⩽ V (t) ⩽ p|x̃(t)|2 . (4.47)

Hence, the proof concludes by Gronwall’s lemma and by following standard ISS-like argu-
ments [204].

aGeneralized inequality of Young: 2ab ⩽ ca2 + b2

c
for any c > 0

The result of Proposition 4.3 shows that the control law (4.43) guarantees that trajectories of
(4.36) in closed-loop remain close to the solution of (4.37). In particular, the error between the
two depends on the component ω(t) in (4.43). Our objective is to approximate the control action
with DNNs. Then, in our case ω(t) represents an approximation error. Without full knowledge of
the model and of (π(t), ψ(t)) solution of (4.37), we end up using a control law of the form

u = ψ̂(t)− κ(α̂(x, t)− α̂(π̂, t)) , (4.48)

129

4.3. Learning tracking controllers for nonlinear systems

where ψ̂, π̂, α̂ represent suitable approximations of the functions ψ, π, α in (4.43). In what
follows, we link the error in the control action to the approximation capabilities of our DNN
structure. More specifically, we show that if the functions ψ̂, π̂, α̂ are sufficiently close to ψ, π, α,
then approximate regulation is still achieved. This lays strong foundations for the following
section, as we exploit DNNs to learn an approximate version of the exact functions, which are
not explicitly computable in general. Hence, via Proposition 4.3 and the following result, we
highlight the link between the approximation and the tracking error.

Proposition 4.4. Consider system (4.36) in closed-loop with the control law (4.48). Let (π, ψ) be
a solution of (4.37) and let f(x, t) := f(x) + g(x)ψ(t). Let (κ, α) be chosen as in Proposition 4.3.
Then, for any compact sets Wx̃ ⊂ Rnx , R ⊂ Rne such that r(t) ∈ R for all t ⩾ t0 and for any
δ ⩾ 0, there exist a compact set Wx and a scalar µδ ⩾ 0 such that, if the following holds for all
(x, t) ∈ Wx × [t0,∞)

|α̂(x, t)− α(x, t)| ⩽ µδ , |ψ̂(t)− ψ(t)| ⩽ µδ , |π̂(t)− π(t)| ⩽ µδ , (4.49)

then
lim

t→+∞
|X (x0, t, t0)−Π(π0, t, t0)| < δ.

for any (x0, π0) satisfying (x0 − π0) ∈ Wx̃.

Proof. Consider the control law (4.43a). By adding and subtracting ψ(t), α(x, t), α(π, t)
and α(π̂, t), we rewrite the control (4.48) as u(t) = u⋆(t)+ ũ(t) with u⋆ := ψ(t)−κ(α(x, t)−
α(π, t)) and ũ defined as

ũ(t) := ψ̂(t)− ψ(t)− κ[(α̂(x, t)− α(x, t)) + (α(π̂, t)− α̂(π̂, t)) + (α(π, t)− α(π̂, t)). (4.50)

Consider the Lyapunov function (4.46) with x̃ = x − π. Following the same lines as in the
proof of Proposition 4.3, it follows that

V̇ (t) ⩽ −λ
2V (t) + 2

λp g
2|ũ(t)|2 .

Consider now the reference r. Since r(t) ∈ R for all t ⩾ t0, there exists a compact set Wπ

such that π(t) ∈ Wπ for all t ⩾ t0. Now, define

η1 := sup
x∈Wπ

|x|, η2 := sup
x∈Wx̃

|x|, η3 := max{η2, δ} .

Then, Wx̃ ⊆ Bη3 . Define V :=
{
x̃0 ∈ Rn : V (t0) ⩽ p̄η23

}
, and note that x̃0 ∈ Bη3 implies

x̃0 ∈ V due to (4.47). Differently put, Bη3 ⊆ V. PickWx = Bη4 , where

η4 = η1 + sup
x∈V
|x| .

Then, V ⊆ Wx. Moreover, if x̃0 ∈ V, then x0 ∈ Wx. Pick

µδ =
λδp

2
√
2 p g(1 + 2κ+ κp g)

.

130

Chapter 4. Learning contractive controllers

From (4.49), (4.50) and the relation (4.41), it follows that, for all times t ⩾ t0 such that
x(t) ∈ Wx the following holds

|ũ(t)| ⩽ µδ + 2κµδ + κp g|π(t)− π̂(t)| ⩽ µδ(1 + 2κ+ κp g) ⩽
λδp

2
√
2 p g

.

Consider now the set V := {x̃0 ∈ Rnx : V (t0) < pδ2} and suppose x̃0 ∈ V. By (4.47), if
p|x̃0|2 < pδ2 then |x0 − π0| < δ . Now, note that V ⫋ Bη3 ⊆ V and suppose x̃0 ∈ V \ V. This
implies |x̃0|2 ⩾ p

pδ
2. However, since x̃0 ∈ V implies x0 ∈ Wx, we have

V̇ (t0) ⩽ −λV (t0) +
2
λp g

2|ũ(t0)|2 ⩽ λ
2 (

p2

2pδ
2 − V (t0)) ⩽ pλ2 (

1
2

p

pδ
2 − |x̃0|2) < 0 .

Hence, the level set V is forward invariant. Moreover, in view of the above results, the set
V is attractive and forward invariant, with domain of attraction including V. Recall that
Wx̃ ⊆ Bη3 ⊆ V. Hence, for all x̃0 ∈ Wx̃, it holds limt→+∞|X (x0, t, t0)−Π(π0, t, t0)| ⩽ δ .

4.3.3 DNN-based output tracking controller

Our goal is to rely on DNNs to find approximate solutions for the output tracking problem 3.
DNNs are typically continuous functions by construction. Hence, if the approximation error
over the training dataset is bounded, the error over a compact set including the dataset is also
bounded by continuity. This allows the application of Proposition 4.4. Moreover, conditions
related to the Lipschitz constant of the DNNs can be developed as per Lemma 4.2.

We split our controller into two parts: a steady-state component from solving the regulator equa-
tions and a stabilizing part based on Proposition 4.3. Instead of solving a time-consuming online
optimization problem, the steady-state trajectory π(t) is generated on the fly by our neural state
reference generator. Such a generator is trained offline to solve the regulator equations. The
stabilizer is derived from property (4.41) by modeling α(x, t) as a DNN and using Algorithm 6.
Without loss of generality, we consider t0 = 0. We also remark that the time-dependency of f is
due only to the reference r(t) (because of the tracking task). Thus, we discretize the problem
using Euler scheme with a small timestep τ , yielding the time-discretized state x(t). In order to
distinguish between feedforward and recurrent neural networks, we refer to m(·) as multi-layer
perceptron (MLP) and υ+ = g(·, υ) is a gated recurrent unit (GRU) with hidden state υ [45],
where we omitted gating functions from the notation.

The state reference generator. The goal of the state reference estimator is to estimate state
and command trajectories (π, ψ) verifying the dynamics (4.39) such that the observed part h(π̂)
remains as close as possible to the reference r. For a given time window T ∈ N, coherence
with the dynamics can be ensured by forecasting solely the initial state π(0) = π̂0 and the set of
steady-state inputs {ψ̂t}t∈[0,T]. The entire state trajectory can then be inferred readily from the
dynamical model. Since the plant may not be fully observable from a single point, estimating
the initial state can take advantage of longer reference signal r= {rt}t∈[0,T]. We thus propose
the following structure:{

q+ = g1 (r, q, ϕ1)
π̂0 = m1(q(T), θ1)

,

{
z+ = g2(π̂, r

+, z, ϕ2)

ψ̂ = m2(z, θ2)
, (4.51)

3Our code can be found at: https://github.com/SteevenJanny/OutputTracking_contraction.git

131

https://github.com/SteevenJanny/OutputTracking_contraction.git

4.3. Learning tracking controllers for nonlinear systems

State Reference Generator

DNN
Model⇡0

<latexit sha1_base64="bytqeMOWKdjZA9Vtwi5dtK/zCUs=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoRlxVMG2hLSWZTuvQvEgmSilu/AG3+mXiH+hfeGdMQS2iE5KcOfeeM3Pv9WJfpNKyXgvGwuLS8kpxtbS2vrG5Vd7eaaZRljDusMiPkrbnptwXIXekkD5vxwl3A8/nLW98ruKtW56kIgqv5STmvcAdhWIomCuJcrqx6Fv9csWqWnqZ88DOQQX5akTlF3QxQASGDAE4QkjCPlyk9HRgw0JMXA9T4hJCQsc57lEibUZZnDJcYsf0HdGuk7Mh7ZVnqtWMTvHpTUhp4oA0EeUlhNVppo5n2lmxv3lPtae624T+Xu4VECtxQ+xfulnmf3WqFokhTnUNgmqKNaOqY7lLpruibm5+qUqSQ0ycwgOKJ4SZVs76bGpNqmtXvXV1/E1nKlbtWZ6b4V3dkgZs/xznPGjWqvZRtXZ1XKmf5aMuYg/7OKR5nqCOCzTgkLfAI57wbFwasXFnTD5TjUKu2cW3ZTx8ABwjkPU=</latexit>

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkWom5JUQZdFNy5cVLAPaIsk02kdmiZhMhFKcecPuNUPE/9A/8I7YwpqEZ2Q5My559yZe68fByJRjvOasxYWl5ZX8quFtfWNza3i9k4ziVLJeINFQSTbvpfwQIS8oYQKeDuW3Bv7AW/5o3Mdb91xmYgovFaTmPfG3jAUA8E8RVSrGyeirA5viiWn4phlzwM3AyVkqx4VX9BFHxEYUozBEUIRDuAhoacDFw5i4nqYEicJCRPnuEeBvCmpOCk8Ykf0HdKuk7Eh7XXOxLgZnRLQK8lp44A8EekkYX2abeKpyazZ33JPTU59twn9/SzXmFiFW2L/8s2U//XpWhQGODU1CKopNoyujmVZUtMVfXP7S1WKMsTEadynuCTMjHPWZ9t4ElO77q1n4m9GqVm9Z5k2xbu+JQ3Y/TnOedCsVtyjSvXquFQ7y0adxx72UaZ5nqCGC9TRMFU+4gnP1qUlrYk1/ZRaucyzi2/LevgA/VaRsg==</latexit>

⇡(t)
<latexit sha1_base64="fvIq3JqsnzLCbs9JhWBKzfD6/hQ=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkWom5JWQZdFN4KbCvYBbZFkOq1j8zKZiLW48gfc6o+Jf6B/4Z0xBbWITkhy5tx7zsy91wldEUvLes0YM7Nz8wvZxdzS8srqWn59oxEHScR4nQVuELUcO+au8HldCunyVhhx23Nc3nSGxyrevOFRLAL/XI5C3vXsgS/6gtmSqEYnFEW5e5EvWCVLL3MalFNQQLpqQf4FHfQQgCGBBw4fkrALGzE9bZRhISSuizFxESGh4xz3yJE2oSxOGTaxQ/oOaNdOWZ/2yjPWakanuPRGpDSxQ5qA8iLC6jRTxxPtrNjfvMfaU91tRH8n9fKIlbgk9i/dJPO/OlWLRB+HugZBNYWaUdWx1CXRXVE3N79UJckhJE7hHsUjwkwrJ302tSbWtave2jr+pjMVq/YszU3wrm5JAy7/HOc0aFRK5b1S5Wy/UD1KR53FFrZRpHkeoIoT1FAn7ys84gnPxqlxbdwad5+pRibVbOLbMh4+AMPFkTU=</latexit>

Stabilizer

β

β

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkWom5JUQZdFNy5cVLAPaIsk02kdmiZhMhFKcecPuNUPE/9A/8I7YwpqEZ2Q5My559yZe68fByJRjvOasxYWl5ZX8quFtfWNza3i9k4ziVLJeINFQSTbvpfwQIS8oYQKeDuW3Bv7AW/5o3Mdb91xmYgovFaTmPfG3jAUA8E8RVSrGyeirA5viiWn4phlzwM3AyVkqx4VX9BFHxEYUozBEUIRDuAhoacDFw5i4nqYEicJCRPnuEeBvCmpOCk8Ykf0HdKuk7Eh7XXOxLgZnRLQK8lp44A8EekkYX2abeKpyazZ33JPTU59twn9/SzXmFiFW2L/8s2U//XpWhQGODU1CKopNoyujmVZUtMVfXP7S1WKMsTEadynuCTMjHPWZ9t4ElO77q1n4m9GqVm9Z5k2xbu+JQ3Y/TnOedCsVtyjSvXquFQ7y0adxx72UaZ5nqCGC9TRMFU+4gnP1qUlrYk1/ZRaucyzi2/LevgA/VaRsg==</latexit>

x(t)
<latexit sha1_base64="VCjM/KuIL14gNSnu7YZq40dRqHo=">AAACx3icjVHLSsNAFD3GV62vqks3wSLUTUmqoMuiG91VsA+oRZJ02g7Ni2RSWooLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3urHPU2FZrwvG4tLyympuLb++sbm1XdjZbaRRlnis7kV+lLRcJ2U+D1ldcOGzVpwwJ3B91nSHFzLeHLEk5VF4IyYx6wROP+Q97jlCUuOSOLorFK2ypZY5D2wNitCrFhVecIsuInjIEIAhhCDsw0FKTxs2LMTEdTAlLiHEVZzhHnnSZpTFKMMhdkjfPu3amg1pLz1TpfboFJ/ehJQmDkkTUV5CWJ5mqnimnCX7m/dUecq7Tejvaq+AWIEBsX/pZpn/1claBHo4UzVwqilWjKzO0y6Z6oq8ufmlKkEOMXESdymeEPaUctZnU2lSVbvsraPibypTsnLv6dwM7/KWNGD75zjnQaNSto/LleuTYvVcjzqHfRygRPM8RRWXqKFO3gM84gnPxpURGSNj/JlqLGjNHr4t4+EDs9qQZA==</latexit>

⇡(t)
<latexit sha1_base64="fvIq3JqsnzLCbs9JhWBKzfD6/hQ=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkWom5JWQZdFN4KbCvYBbZFkOq1j8zKZiLW48gfc6o+Jf6B/4Z0xBbWITkhy5tx7zsy91wldEUvLes0YM7Nz8wvZxdzS8srqWn59oxEHScR4nQVuELUcO+au8HldCunyVhhx23Nc3nSGxyrevOFRLAL/XI5C3vXsgS/6gtmSqEYnFEW5e5EvWCVLL3MalFNQQLpqQf4FHfQQgCGBBw4fkrALGzE9bZRhISSuizFxESGh4xz3yJE2oSxOGTaxQ/oOaNdOWZ/2yjPWakanuPRGpDSxQ5qA8iLC6jRTxxPtrNjfvMfaU91tRH8n9fKIlbgk9i/dJPO/OlWLRB+HugZBNYWaUdWx1CXRXVE3N79UJckhJE7hHsUjwkwrJ302tSbWtave2jr+pjMVq/YszU3wrm5JAy7/HOc0aFRK5b1S5Wy/UD1KR53FFrZRpHkeoIoT1FAn7ys84gnPxqlxbdwad5+pRibVbOLbMh4+AMPFkTU=</latexit>

r(t)
<latexit sha1_base64="YHW4sC8LH2Id1ydjq4fDO9ykObM=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkWom5JUQZdFN7qrYB9QiyTptA1NMmEyKZbiwh9wq38m/oH+hXfGFNQiOiHJmXPvOTP3XjcO/ERa1mvOWFhcWl7JrxbW1jc2t4rbO82Ep8JjDY8HXLRdJ2GBH7GG9GXA2rFgTugGrOWOzlW8NWYi8Xl0LScx64bOIPL7vudIRYmyPLwtlqyKpZc5D+wMlJCtOi++4AY9cHhIEYIhgiQcwEFCTwc2LMTEdTElThDydZzhHgXSppTFKMMhdkTfAe06GRvRXnkmWu3RKQG9gpQmDkjDKU8QVqeZOp5qZ8X+5j3VnupuE/q7mVdIrMSQ2L90s8z/6lQtEn2c6hp8qinWjKrOy1xS3RV1c/NLVZIcYuIU7lFcEPa0ctZnU2sSXbvqraPjbzpTsWrvZbkp3tUtacD2z3HOg2a1Yh9VqlfHpdpZNuo89rCPMs3zBDVcoI4GeQ/xiCc8G5cGN8bG3Weqkcs0u/i2jIcPpYiQXg==</latexit>

Dynamical
System

x(t)
<latexit sha1_base64="VCjM/KuIL14gNSnu7YZq40dRqHo=">AAACx3icjVHLSsNAFD3GV62vqks3wSLUTUmqoMuiG91VsA+oRZJ02g7Ni2RSWooLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3urHPU2FZrwvG4tLyympuLb++sbm1XdjZbaRRlnis7kV+lLRcJ2U+D1ldcOGzVpwwJ3B91nSHFzLeHLEk5VF4IyYx6wROP+Q97jlCUuOSOLorFK2ypZY5D2wNitCrFhVecIsuInjIEIAhhCDsw0FKTxs2LMTEdTAlLiHEVZzhHnnSZpTFKMMhdkjfPu3amg1pLz1TpfboFJ/ehJQmDkkTUV5CWJ5mqnimnCX7m/dUecq7Tejvaq+AWIEBsX/pZpn/1claBHo4UzVwqilWjKzO0y6Z6oq8ufmlKkEOMXESdymeEPaUctZnU2lSVbvsraPibypTsnLv6dwM7/KWNGD75zjnQaNSto/LleuTYvVcjzqHfRygRPM8RRWXqKFO3gM84gnPxpURGSNj/JlqLGjNHr4t4+EDs9qQZA==</latexit>+

<latexit sha1_base64="YfivQ4SStgbFIW4W6El8PPAYUcA=">AAACxHicjVHbSsNAED2Nt1pvVR99CRZBEEqigj4WBfGxBXuBWiTZbmtobmw2Qin6A77qt4l/oH/h7LoFtYhuSHL2zJyzOzN+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2PzpX8fYdF1mQxFdynPJe5A3jYBAwTxLVOLgpV5yqo5c9C1wDKjCrnpRfcI0+EjDkiMARQxIO4SGjpwsXDlLiepgQJwgFOs5xjxJpc8rilOERO6LvkHZdw8a0V56ZVjM6JaRXkNLGHmkSyhOE1Wm2jufaWbG/eU+0p7rbmP6+8YqIlbgl9i/dNPO/OlWLxACnuoaAako1o6pjxiXXXVE3t79UJckhJU7hPsUFYaaV0z7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wFrcOqe1Q9bBxXamdm1EXsYBf7NM8T1HCJOpra+xFPeLYurNDKrPwz1SoYzTa+LevhA7V7jzQ=</latexit>

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkWom5JUQZdFNy5cVLAPaIsk02kdmiZhMhFKcecPuNUPE/9A/8I7YwpqEZ2Q5My559yZe68fByJRjvOasxYWl5ZX8quFtfWNza3i9k4ziVLJeINFQSTbvpfwQIS8oYQKeDuW3Bv7AW/5o3Mdb91xmYgovFaTmPfG3jAUA8E8RVSrGyeirA5viiWn4phlzwM3AyVkqx4VX9BFHxEYUozBEUIRDuAhoacDFw5i4nqYEicJCRPnuEeBvCmpOCk8Ykf0HdKuk7Eh7XXOxLgZnRLQK8lp44A8EekkYX2abeKpyazZ33JPTU59twn9/SzXmFiFW2L/8s2U//XpWhQGODU1CKopNoyujmVZUtMVfXP7S1WKMsTEadynuCTMjHPWZ9t4ElO77q1n4m9GqVm9Z5k2xbu+JQ3Y/TnOedCsVtyjSvXquFQ7y0adxx72UaZ5nqCGC9TRMFU+4gnP1qUlrYk1/ZRaucyzi2/LevgA/VaRsg==</latexit>

u(t)
<latexit sha1_base64="QDDSIILN4KAzZ4E48OdtfQ7nVT4=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkWom5JUQZdFN7qrYB9QiyTptA3Ni8mkWIoLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3ukngp8KyXnPGwuLS8kp+tbC2vrG5VdzeaaZxxj3W8OIg5m3XSVngR6whfBGwdsKZE7oBa7mjcxlvjRlP/Ti6FpOEdUNnEPl933OEpLKyOLwtlqyKpZY5D2wNStCrHhdfcIMeYnjIEIIhgiAcwEFKTwc2LCTEdTEljhPyVZzhHgXSZpTFKMMhdkTfAe06mo1oLz1TpfbolIBeTkoTB6SJKY8TlqeZKp4pZ8n+5j1VnvJuE/q72iskVmBI7F+6WeZ/dbIWgT5OVQ0+1ZQoRlbnaZdMdUXe3PxSlSCHhDiJexTnhD2lnPXZVJpU1S5766j4m8qUrNx7OjfDu7wlDdj+Oc550KxW7KNK9eq4VDvTo85jD/so0zxPUMMF6miQ9xCPeMKzcWnExti4+0w1clqzi2/LePgArLGQYQ==</latexit>

Arbitrary reference
signal


<latexit sha1_base64="dRZGmjOpMFnFa6Qu/x4OJcGdCb8=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoRnBTwT6gLTKZTmtsXiYTsRZX/oBb/THxD/QvvDOmoBbRCUnOnHvPmbn3OpHnJtKyXnPGzOzc/EJ+sbC0vLK6VlzfaCRhGnNR56EXxi2HJcJzA1GXrvREK4oF8x1PNJ3hsYo3b0ScuGFwLkeR6PpsELh9lzNJVKMzZFHELoolq2zpZU4DOwMlZKsWFl/QQQ8hOFL4EAggCXtgSOhpw4aFiLguxsTFhFwdF7hHgbQpZQnKYMQO6TugXTtjA9orz0SrOZ3i0RuT0sQOaULKiwmr00wdT7WzYn/zHmtPdbcR/Z3MyydW4pLYv3STzP/qVC0SfRzqGlyqKdKMqo5nLqnuirq5+aUqSQ4RcQr3KB4T5lo56bOpNYmuXfWW6fibzlSs2vMsN8W7uiUN2P45zmnQqJTtvXLlbL9UPcpGnccWtrFL8zxAFSeooU7eV3jEE56NU+PauDXuPlONXKbZxLdlPHwAy9SRpA==</latexit>+

<latexit sha1_base64="YfivQ4SStgbFIW4W6El8PPAYUcA=">AAACxHicjVHbSsNAED2Nt1pvVR99CRZBEEqigj4WBfGxBXuBWiTZbmtobmw2Qin6A77qt4l/oH/h7LoFtYhuSHL2zJyzOzN+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2PzpX8fYdF1mQxFdynPJe5A3jYBAwTxLVOLgpV5yqo5c9C1wDKjCrnpRfcI0+EjDkiMARQxIO4SGjpwsXDlLiepgQJwgFOs5xjxJpc8rilOERO6LvkHZdw8a0V56ZVjM6JaRXkNLGHmkSyhOE1Wm2jufaWbG/eU+0p7rbmP6+8YqIlbgl9i/dNPO/OlWLxACnuoaAako1o6pjxiXXXVE3t79UJckhJU7hPsUFYaaV0z7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wFrcOqe1Q9bBxXamdm1EXsYBf7NM8T1HCJOpra+xFPeLYurNDKrPwz1SoYzTa+LevhA7V7jzQ=</latexit>

Figure 4.2: The state reference generator approximates the solution of the regulator equations
and computes states and commands given an arbitrary reference signal. The stabilizer leverages
a learned contraction based controller to force the dynamical system to track the reference.

with ϕ1, ϕ2, θ1, θ2 the parameters of the networks. We have two components: one dedicated
to the estimation of the initial state π(0) and another to the estimation of a one-step input.
In the first one, the recurrent unit g1 gathers temporal information from the reference into a
single vector q(T), which is then decoded to the initial state π̂0 through m1. In the second
component, the control signal ψ̂ is inferred from the current state of the simulated system π̂,
the target reference observation r+ and a latent memory vector z. The two parts combine as in
the yellow box in Figure 4.2. The first component estimates π(0) given the current reference.
Then, the second component is invoked recursively to estimate a sequence of inputs {ψ̂t}t∈[0,T].
For each loop, successive states π̂t are computed via the time-discretized steady-state dynamics
π̂+ = π̂ + (f(π̂) + g(π̂)ψ̂)τ with the estimated input ψ̂. As such, the first component is used
only once in the interval [0,T]. However, note that the reference signal may change during this
interval. In that case, a new estimate of π0 is obtained by running through the state reference
generator again. The model is trained to minimize the following objective:

min
ϕ1,ϕ2,θ1,θ2

T∑
t=0

|rt − h(π̂t)|2 s.t. π̂+ = π̂ + (f(π̂) + g(π̂)ψ̂)τ . (4.52)

The state reference generator is trained in an unsupervised manner, in the sense that no ground
truth states and controls are needed for training. The references can be chosen arbitrarily insofar
as these remain admissible by the dynamics. Nevertheless, the training requires prior knowledge
of a model of the system (f, g, h). Since in many practical cases a good model may not be
available, we robustify the state reference generator by training it with uniform noise on the
dynamics. This exploits the generalization capabilities of DNNs by enriching the training set.
Then, even if the model is faulty, the DNNs have more chances of producing suitable trajectories.
Note that the bounds on the noise can be directly related to the confidence in the model.

Stabilizer. The stabilizer relies on the function α̂ modeled as an MLP. To include time depen-
dence, the network inputs are both the system state and the steady-state input ψ(t), namely
α̂(x, t) = m3(x, ψ(t), θ3). This module is trained by following a two-step procedure, by using
a modified version of Algorithm 6. The modified algorithm includes an auxiliary loss aimed at
improving the estimation parameters c := (c1, c2, c3, c4) in (4.33). As in Section 4.2.2, we first
look for a metric P ∈ Snx≻0 satisfying the synchronisation constraint (4.40) and the Killing vector
property (4.42). This metric is also modeled as an MLP, i.e. P (x, t) ≈ m4(x, ψ(t), θ4) with pa-
rameters θ4, and it is initially trained according to the loss (4.33), where the time dependency
is injected via ψ. Namely, the first component of training objective is

JP,1(x, θ4,w1, c, ψ) =
4∑
i=1

wiJi(x, θ4, c, ψ),

132

Chapter 4. Learning contractive controllers

where w1 := (w1, . . . , w4) is a weight vector and Ji, i = 1, . . . , 4 are defined as in (4.34)
with

M1(x, θ4, c, ψ) = LfP
θ4(x, ψ)− c1P θ4(x, ψ)g(x)g⊤(x)P θ4(x, ψ) + c2 Inx ,

M2,ι(x, θ4, c, ψ) = LgιP θ4(x, ψ)− c3 Inx ,
M3,ι(x, θ4, c, ψ) = −LgιP θ4(x, ψ)− c3 Inx ,
M4(x, θ4, c, ψ) = −P θ4(x, ψ) + c4 Inx .

(4.53)

To the first loss component, we add a second one aimed at improving the vector of positive
scalar parameters c. Then, the objective is modeled as a switching loss function, composed by
two interacting elements

JP (x, θ4,w1,w2, c, ψ) = JP,1(x, θ4,w1, c, ψ) + σJP,2(w2, c) , (4.54)

with switch variable σ = 0 if JP,1(x, θ4,w, c, ψ) > 0 for all pairs (x, ψ) in the dataset and σ = 1
otherwise. The second component activates once a suitable metric is found (i.e., once JP,1=0).
Its aim is to improve the estimation of c, while looking for a better metric. Formally, it is defined
as

JP,2(w2, c) = w5 ln(c
2
1 + 1) + w6 ln(c

2
3 + 1)− w7 ln(c

2
2 + 1)− w8 ln(c

2
4 + 1), (4.55)

being w2 := (w5, . . . , w8) a vector of (positive) scalar weights. The sub-objective (4.55) aims at
minimizing c1 and c3, i.e., at reducing the controller dependence of the Riccati-like inequality
(4.40) and at getting close to perfect Killing conditions. At the same time, it aims at maximizing
c2 and c4, i.e., at increasing the contraction rate and the positivity of P . The composite objective
(4.54) switches between metric search and contraction parameters optimization. First, it looks
for a suitable metric along with set of parameters c. Then, it freezes the metric estimator
parameters θ4 and tries improving the contraction parameters c. If the metric still satisfies
JP,1=0, another step is taken in the direction of c improvement. If not, it unfreezes θ4 and the
loop starts again. Note that, by using JP,1 as a discriminant, we can set the trained network to
be the last one verifying JP,1(x, θ4,w1, c, ψ)=0 for all (x, ψ) in the dataset.

There are multiple experimental advantages in using the switching objective (4.54). First, it
achieves better estimation of parameters c. Second, it improves controller robustness, e.g.,
smaller c2 implies faster contraction, that is, better stability margins [203]. Third, it weakens
the dependence of c from the initial condition. As a matter of fact, c can be initialized to
looser bounds, which ease training. The second objective will then try to tighten the conditions
(4.53) progressively. Finally, it can escape from local minima as the shape of the loss function
drastically changes on switches.

Once a suitable metric is found, α̂ is learned according to (4.35). Each model of the stabilizer
is trained on a training set composed of states and commands (x, ψ) from pre-trained state
reference generator, thus ensuring consistency with future references generated at test time. We
remark that the state reference generator and the stabilizer can be trained separately, as long
as the training samples (x, ψ) for the stabilizer come from a similar distribution to the one of
the output ψ̂(t) of the state reference generator. Training m3,m4 on the outputs of the state
reference generator is a way to ensure this.

4.3.4 Illustrative example: ball and beam tracking Lorenz attractor

We test our solution on the well-known ball and beam setup, represented in Fig. 4.3 [96]. The
plant can be described by a system of the form (4.36) where x ∈ R4, u ∈ R and

f(x)= col(x2, b(x1x
2
4 − ga sin(x3)), x4, 0), g(x)= col(0, 0, 0, 1), h(x)=x1 .

133

4.3. Learning tracking controllers for nonlinear systems

x3

mga

u

x1

Figure 4.3: Block-scheme of the ball and beam system

From a physics viewpoint, x=col(x1, x2, x3, x4) with x1, x3 the ball position and beam angle
respectively, b a constant depending on system parameters and ga the gravitational acceleration.
The interest of this setup lies in the fact that the relative degree4 is not well-defined when the
beam angular velocity and the ball position are zero. Therefore, input-output linearization and
normal forms-based approaches fail to give a suitable controller. To make the problem harder, we
sample the reference signal using the trajectory of the first component z1 of a Lorenz oscillator
whose dynamics is described by

ż1 = 10(z2 − z1), ż2 = z1(28− z3)− z2, ż3 = z1z2 − 8
3z3, (4.56)

with random initial conditions. As (4.56) is a chaotic oscillator, it is exponentially sensitive to
initial conditions [155], making it hard to find analytical solutions to the regulator equations.
Then, approaches as in [166] become unfeasible in practice. Here, mi i = 1, . . . , 4 are four
layers, 64 hidden units and tanh-activated MLPs. Moreover, m1 and m2 use layer normalization
on intermediate layers. All networks are trained with Adam optimizer [114].

State reference generator objective. The state reference generator objective is to estimate
a trajectory in the state space as well as the commands allowing to follow it from a reference
signal, which can potentially concern solely a part of the state. The sought solution is thus
not necessarily unique. Nevertheless, our approach can exploit the long-range information of a
reference sequence to estimate an adequate initial condition. We show examples of predictions
from the state reference generator in Figure 4.4a. In a second time, we predict an input leading
the system to follow the reference. This is a challenging task, especially since it is learned
without direct supervision, that is, without knowledge of the optimal command for data in
the training set. Our approach performs well, even in a very noisy environment. Figure 4.4b
shows the evolution of the error when the dynamical model of the state reference generator is
disturbed by a uniform noise whose amplitude is varied. The results are obtained on a set of new
references absent from the training dataset. The standard deviation σ (represented by vertical
bars) is obtained by averaging the results over five iterations. We empirically find that the state
reference generator is consistently robust to model errors up to a significant intensity.

Behavior of the stabilizer. The stabilizer’s closed-loop behavior is illustrated in Figure 4.5a.
For a given new reference, the state reference generator estimates the solutions of the regulator
equations (π, ψ). We then simulate the stabilizer starting from six random initial conditions x0.
Experimentally, we find that the system quickly converges towards the trajectory of the state ref-
erence generator. This is in accordance with the previous theoretical results. At timestep t=300,
we drastically change the reference signal. The generator reacts rapidly to such a change and es-
timates a new pair (π(t), ψ(t)). Thanks to the stabilizer, the system converges quickly to the new
reference. Once finished, the trajectory remains close to the state reference without deviating

4see [101, Chapter IV]

134

Chapter 4. Learning contractive controllers

− 2 0 2

0

100

200

300

400

500

600
Ti
m
es
te
p
(#
)

Model noise: +/-0.000

− 2 0 2

Model noise: +/-0.001

− 2 0 2

Model noise: +/-0.010

− 2 0 2

Model noise: +/-0.050

Reference
Generator

(a)

10−3 10−2 10−1

Model noise (±σ)

−10

0

10

20

30

P
S

N
R

on
re

fe
re

n
ce

tr
ac

ki
n

g
(6

00
st

ep
s)

(b)
Figure 4.4: State reference generator. (a) Four estimations from the state reference generator
in different regimes where uniform noise is added to the model. (b) Peak signal to noise ratio
(PSNR, dB) between the reference and the output for different noise range.

0 100 200 300 400 500 600
Timestep (#)

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

Po
si
tio

n
(m

)

Reference
Generator
Initial Cond. #1
Initial Cond. #2
Initial Cond. #3
Initial Cond. #4
Initial Cond. #5
Initial Cond. #6

(a) Closed-loop behavior for six different initial con-
ditions. The reference is changed at timestep t=300
timesteps.

0.4 0.6 0.8 1.0 1.2 1.4
κ

100

3× 10−1

4× 10−1

6× 10−1

R
M

S
E

(r
ef

er
en

ce
)

Diverged

w/ param. fine-tuning

w/o param. fine-tuning

(b) Admissible control gains κ with and without
switching loss. Red crosses indicate that the sys-
tem diverged from the reference signal.

from it. As mentioned above, the analytical solution to the output tracking problem is difficult
to obtain with such a nonlinear system under chaotic references. Our approach, although it
is an approximation of the analytical solution, experimentally demonstrates satisfactory perfor-
mances. We report quantitative results in Table 4.1, considering a system perturbed by Gaussian
noise modeling measurement errors. We observe that the learned stabilizer α̂ is robust even in
noisy scenario. We also evaluate the advantages given by our switching objective, which reaches
more stringent parameters c. Table 4.1 compares noise robustness of our approach to the one
without the fine-tuning component. We observe experimentally that our improved loss function
leads to more robust control laws. Moreover, we also observe that fine-tuning allows for a wider
set of control gains κ, (Figure 4.5b). This is linked to the approximate Killing vector property,
see Theorem 4.5.

Parameter
Finetuning

Noise StDev
0 0.01 0.05 0.1

With
0.343 0.323 0.361 0.385
± 0.015 ± 0.015 ± 0.011 ± 0.014

Without
0.385 0.366 0.408 0.439
± 0.015 ± 0.016 ± 0.012 ± 0.016

Table 4.1: Noise robustness with and without parameters fine-tuning. We measure RMSE from
reference for different gaussian noise StDev. on state measurements.

135

4.3. Learning tracking controllers for nonlinear systems

136

5 From 1 to k-contraction

As previously stated, contraction theory is an emerging topic that has been used in numerous
applications. Nonetheless, many systems cannot present classical contractivity properties, e.g.
multi-stable systems. This motivated the study of suitable generalizations. Among others, some
notable examples are horizontal contraction [72, Section VII], where contraction properties are
required only on a subspace of the state space, transversal exponential stability [6], studying
attractiveness of invariant manifolds via the analysis of exponential stability of the transverse
plane, and p-dominance [74, 75], where convergence is imposed on a subspace by means of
nonsingular matrices. Motivated by the results of Muldowney [151], recent works presented
the notion of k-contraction [236], which generalizes the classical concept of shrinking distances
between system trajectories to contraction of volumes. As such, k-contraction includes clas-
sical contraction as the special case k = 1. For k > 1, this property can be used to analyze
asymptotic behavior of systems that are not contractive in the classical sense. For example, for
2-contractive time-invariant systems, every bounded solution converges to an equilibrium point
(not necessarily unique).

Existing sufficient conditions for k-contraction are given in terms of a particular matrix com-
pound of the Jacobian of the vector field dynamics [151, 236]. Although these conditions are
adequate for system analysis, their application for feedback design is limited. First, matrix com-
pounds rapidly explode in dimension for low value k and systems of large dimension. This fact
strongly impacts the effectiveness of convex optimization tools for analysis, as conditions be-
come computationally intractable. Moreover, it drastically increases the computational complex-
ity of potential feedback design algorithms. Second, the use of matrix compounds tools prevents
transforming the feedback design to a tractable LMI problem. Consequently, a k-contractive de-
sign methodology has yet to be developed.

Considering these limitations, in this chapter we propose alternative design-oriented conditions
for k-contraction that do not rely on matrix compounds but rather on simple matrix inequal-
ities on the given system dynamics. Due to this fact, our approach does not suffer from an
explosion in computational complexity due to very different values of contraction order k and
system dimension. Moreover, these inequalities can be solved via numerical method, thus open-
ing multiple paths for future development of DNN-based controllers providing larger classes of
guaranteed closed-loop behaviors. Finally, our conditions shed light on the strong connections
between k-contraction, horizontal contraction and p-dominance [74,75].

137

We proceed by formally presenting the definition of k-contraction. Our definition strongly
focuses on geometrical interpretation and it is related to the notion presented in the works
[151, 236]. Moreover, it directly translates to the definition of contraction presented in [6]
when considering objects of dimension 1, i.e. when k = 1.

Consider nonlinear systems of the form

ẋ = f(t, x), (5.1)

where x ∈ Rnx and f : Rnx × R → Rnx is sufficiently smooth with respect to its first argument
and continuous in the second. We denote the flow of (5.1) by ψt, so that ψt(x0) is the trajectory
of (5.1) passing through x0 at time 0. In [6], 1-contraction expresses the fact that the length
of any C1 curve from [0, 1] to Rnx decreases with time. To extend such a notion to any positive
integer k ∈ [1, nx], with nx being the state dimension of (5.1), we consider a set of sufficiently
smooth functions Ik defined on [0, 1]k, namely

Ik :=
{
Φ : [0, 1]k → Rnx | Φ is a smooth immersion

}
. (5.2)

Let P ∈ Snx≻0. For each Φ in Ik, we define the volume ℓk(Φ) of Φ as

ℓk(Φ) :=

∫
[0,1]k

√
det

{
∂Φ

∂s
(s)⊤P

∂Φ

∂s
(s)

}
ds . (5.3)

Note that, since f in (5.1) is sufficiently smooth, for each forward invariant set and for each t in
R⩾0 it yields that the corresponding flow ψt is also sufficiently smooth in this set. Consequently,
for each Φ in Ik such that Im(Φ) is in a forward invariant set, ψt ◦ Φ is in Ik.
The relation between Definition 5.1 and Definition 4.1 is evident, since the 1-compound of a
matrix is the matrix itself and the determinant of a scalar is the scalar itself. However, we
highlight that the metric P in (4.1) is a matrix valued function, differently from (5.3). In other
words, the proposed results will be restricted to Euclidean metric conditions and the Riemannian
scenario is left for future research.

With these notions at hand, we can now define k-contraction properties for nonlinear systems
of the form (5.1).

Definition 5.1 (k-contraction). Let k be a fixed integer between 1 and nx. System (5.1) is said to
be k-contractive on a forward invariant set S ⊆ Rnx if there exist strictly positive constants γ, η > 0
such that

ℓk(ψt ◦ Φ) ⩽ γe−ηt ℓk(Φ), ∀t ∈ R⩾0,

for all Φ ∈ Ik such that Im(Φ) ⊂ S.

In simple words, we say that a system is k-contractive if, for any parametrized k-dimensional
submanifold of Rnx from which trajectories are complete, its volume is exponentially shrinking
along the system dynamics. A scheme of this condition is depicted in Fig. 5.1. When k = 1, this
means that the length of any sufficiently smooth curve is exponentially decreasing, matching
the definition in [6]. Moreover, this definition includes the ones in [151], and [236, Section
3.2].

Remark 5.1. When Φ is injective and P is the identity matrix, (5.3) gives the Euclidean k-volume
of the submanifold Φ([0, 1]k) ⊂ Rnx . Note that 1-volumes are lengths, 2-volumes are areas and
3-volumes are standard volumes.

138

Chapter 5. From 1 to k-contraction

Figure 5.1: Scheme of a 2-contractive system. The initial submanifold, described by Φ, is some
surface with vertices at x10, x

2
0 and x30. The volume of this submanifold ℓk(·) decreases exponen-

tially along the trajectories of the system.

5.1 k-contraction in nonlinear systems

Sufficient conditions for k-contraction of nonlinear systems originally appeared in the seminal
work by Muldowney [151]. Recently, they have been rediscovered and reworked, e.g. [11,236].
However, the definition of k-contraction presented in the above works does not perfectly match
the one in Definition 5.1. Hence, in order to clarify existing results, we first focus on briefly de-
scribing these sufficient conditions in the context of k-contraction as presented in Definition 5.1.
Then, we proceed by presenting the recent concept of p-dominance and some related results.
The section is concluded by linking p-dominance tools to k-contraction analysis, thus obtaining
sufficient conditions that do not involve the computation of matrix compounds.

5.1.1 A sufficient condition based on matrix compounds

As previously stated, sufficient conditions provided in [151,236] strongly depend on the use of
matrix compounds. Hence, in order to understand such conditions, we start by introducing the
notion of multiplicative and additive compound of a matrix. We recall that a minor of order k
of a matrix Q ∈ Rn×m is the determinant of some k × k submatrix of Q.

Definition 5.2 (Multiplicative Compound [151]). Consider a matrix Q ∈ Rn×m and let k ∈ N
such that k ∈ [1,min{n,m}]. The kth multiplicative compound of Q, denoted as Q(k) ∈ Rq×q with
q =

(
n
k

)
, is the matrix of all the minors of order k of Q in a lexicographic order.

Definition 5.3 (Additive Compound [151]). Consider a matrix Q ∈ Rn×n and let k ∈ N such
that k ∈ [1, n]. The kth additive compound of Q, denoted as Q[k] ∈ Rq×q with q =

(
n
k

)
, is defined as

Q[k] :=
d

dε
(I + εQ)(k)

∣∣
ε=0

.

To give further intuition, we provide an example. Consider a 3× 3 matrix Q with entries qij for
i, j = 1, . . . , 3. The 2nd multiplicative compound Q(2) is

Q(2) =

det (q11 q12q21 q22) det (q11 q13q21 q23) det (q12 q13q22 q23)
det (q11 q12q31 q32) det (q11 q13q31 q33) det (q12 q13q32 q33)
det (q21 q22q31 q32) det (q21 q23q31 q33) det (q22 q23q32 q33)

 .
139

5.1. k-contraction in nonlinear systems

The additive compound can be explicitly computed using the entries qij of the matrix Q. More
details on this computation can be found in [71].

Bearing these definitions in mind, we now reframe the sufficient condition for k-contraction
presented in [151,236] in the framework of Definition 5.1.

Theorem 5.1. Assume there exist a forward invariant set A ⊆ Rnx , a symmetric positive definite
matrix Q ∈ Rq×q with q =

(
nx
k

)
and a real number µ > 0 such that for all (x, t) ∈ A× R⩾0

Q

(
∂f

∂x
(x, t)[k]

)
+

(
∂f

∂x
(x, t)[k]

)⊤
Q ⪯ −µQ. (5.4)

Then, system (5.1) is k-contractive on S := A.

Proof. Consider a smooth immersion Φ ∈ Ik, with Ik defined as in (5.2). To simplify
notation, for all (s, t) in [0, 1]k × R⩾0, let us denote

Γ(s, t) = ψt ◦ Φ(s), Γs(s, t) =
∂Γ

∂s
(s, t), v(s, t) =

(
Γs(s, t)

(k)
)⊤
P (k) Γs(s, t)

(k).

For all (s, t) in [0, 1]k × R⩾0, we have

d

dt
Γ(s, t) = f(Γ(s, t), t).

Then, by the chain rule, it follows that the point Γs(s, t) evolves according to

d

dt
Γs(s, t) =

∂2Γ

∂s∂t
(s, t) =

∂f

∂x
(Γ(s, t), t)Γs(s, t)

for all (s, t) in [0, 1]k × R⩾0. Since these dynamics are linear, following similar steps to the
ones presented in [236, Section 2.5], we obtain

d

dt
Γs(s, t)

(k) =
∂f

∂x
(Γ(s, t), t)[k]Γs(s, t)

(k). (5.5)

Fix a symmetric positive definite matrix P ∈ Snx≻0 such that Q = P (k). Then, since Γs(s, t) ∈
Rnx×k, from the Cauchy-Binet formula [67, Chapter 1] the following equality holds

det
(
Γs(s, t)

⊤P Γs(s, t)
)
=
(
Γs(s, t)

(k)
)⊤

P (k) Γs(s, t)
(k) = v(s, t). (5.6)

By, using the previous notation, the volume ℓk(ψt ◦Φ) of ψt ◦Φ computed according to (5.3)
takes the form

ℓk(ψt ◦ Φ) =
∫
[0,1]k

√
v(s, t)ds .

In turn, for all (s, t) in [0, 1]k × R⩾0, it evolves according to

d

dt
ℓk(ψt ◦ Φ) =

∫
[0,1]k

d

dt

√
v(s, t) ds =

∫
[0,1]k

He
{(

Γs(s, t)
(k)
)⊤
Q d

dtΓs(s, t)
(k)
}

2
√
v(s, t)

ds .

140

Chapter 5. From 1 to k-contraction

Hence, for all (s, t) in [0, 1]k × R⩾0, we obtain

d

dt
ℓk(Φ) =

∫
[0,1]k

1

2
√
v(s, t)

(
Γs(s, t)

(k)
)⊤

He
{
Q
∂f

∂x
(Γ(s, t))[k], t

}
Γs(s, t)

(k) ds .

Invoking inequality (5.4), the previous relation implies

d

dt
ℓk(ψt ◦ Φ) ⩽

∫
[0,1]k

− µ v(s, t)

2
√
v(s, t)

ds ⩽ −µ
2

∫
[0,1]k

√
v(s, t) ds ⩽ −µ

2
ℓk(ψt ◦ Φ)

for all (s, t) in [0, 1]k × R⩾0. The result follows by Grönwall’s lemma.

Remark 5.2. Inequality (5.4) is equivalent to the condition in [236, Theorem 9] using the logarith-
mic norm induced by the weighted ℓ2 norm (e.g. [37, Equation 2.56]). However, in our statement,
we allow the set A to be non-convex. Furthermore, for the case k = 1, we recover the well-known
Demidovich conditions (e.g. [57,163]) and the proof in [6] for contraction of lengths in the context
of Euclidean metrics.

5.1.2 A sufficient condition based on p-dominance

It is clear that computation of matrix compounds may become a difficult task, especially when
1 < k << nx. Moreover, as it will be clarified later on, the result in Theorem 5.1 do not
easily translate to feedback design procedures and their use is restricted to analysis. Hence,
we aim at proposing different conditions for k-contraction analysis which do not rely on matrix
compounds. To this aim, we introduce the concept of lifted system. Then, inspired by classical
works on contraction theory [134], we provide a result linking the exponential partial stability
properties of the lifted system to the k-contraction property proposed in Definition 5.1.

The definition of k-contraction for the lifted system was used in [235] to study the link between
k-contraction and other forms of generalized contraction. We now recall this definition and
provide further geometrical interpretation of it. For an arbitrary Riemannian manifold M, we
denote by TxM the tangent plane of M attached to a point x. The lifted system (also called
variational system) is a linear dynamical system evolving according to dynamics obtained via
linearization of (5.1) about the trajectory ψt(x0). Differently put, its trajectories evolve on the
tangent boundle (the union of all tangent planes) of the space of trajectories of the nonlinear
system. Mathematically, it takes the form

δ̇x =
∂f

∂x
(ψt(x0), t)δx, (5.7)

where δx belongs to the tangent space Tψt(x0)Rnx = Rnx . Then, ∂ψ
∂x

t
(x0)δx0 is a trajectory of

(5.7) at time t initialized at δx0 at t = 0. From linearity, it can be deduced that ∂ψ
∂x

t
(x0) is

the state transition matrix of (5.7). Then, ∂ψ
∂x

t
(x0)δx0 depicts the infinitesimal displacement

with respect to the solution ψt(x0) induced by the initial condition x0 + δx0 . Hence, in order to
define k-contraction of the lifted system (which we will call infinitesimal k-contraction), pick any
x0 ∈ Rnx and k initial conditions of the variational system in (5.7) δ1x0 , . . . , δ

k
x0 . Following [235],

we define
XNL(x0, t) :=

[
∂ψ
∂x

t
(x0)δ

1
x0 · · · ∂ψ

∂x

t
(x0)δ

k
x0

]
. (5.8)

141

5.1. k-contraction in nonlinear systems

Note that XNL(x0, 0) = ∂Φloc
∂r (r), where Φloc is a function whose image is an infinitesimal kth-

order parallelotpe with vertices at x0 and δix0 + x0, namely

Φloc(s) =
k∑
i=1

si(δ
i
x0 + x0) +

(
1−

k∑
i=1

si

)
x0, s ∈ [0, 1]k.

We have the following result relating [235] to Definition 5.1.

Lemma 5.1 (Infinitesimal k-contraction). Suppose there exist a forward invariant set A ⊆ Rnx
and strictly positive constants γ and η such that the following holds for all (x0, t) ∈ A× R⩾0∣∣∣(XNL(x0, t))

(k)
∣∣∣ ⩽ γe−ηt

∣∣∣(XNL(x0, 0))
(k)
∣∣∣ , (5.9)

Then, system (5.1) is k-contractive on S := A.

Proof. Following [236, Section 2.5], it can be shown that the compound matrix of
XNL(x0, t) evolves according to the linear dynamics

d

dt
(XNL(x0, t))

(k) =
∂f

∂x
(t,XNL(x0, t))

[k] (XNL(x0, t))
(k) . (5.10)

By (5.9), such dynamics are globally exponentially stable. Consider now an arbitrary Φ ∈
Ik. By following the first steps of the proof of Theorem 5.1, dynamics (5.5) and uniformity
of (5.10) imply ∣∣∣Γs(s, t)(k)∣∣∣ ⩽ γe−ηt

∣∣∣Γs(s, 0)(k)∣∣∣ .
Then, by selecting P in (5.3) as the identity matrix, by (5.6) we obtain

ℓk(ψt ◦ Φ) =
∫

[0,1]k

∣∣∣Γs(s, t)(k)∣∣∣ ds
∫

[0,1]k

γe−ηt
∣∣∣Γs(s, 0)(k)∣∣∣ ds

⩽ γe−ηt

∫
[0,1]k

∣∣∣Γs(s, 0)(k)∣∣∣ ds ⩽ γe−ηtℓk(Φ) ,

and this concludes the proof.

Remark 5.3. Notice that the sufficient condition (5.4) also implies exponential stability of (5.10),
in turn implying infinitesimal k-contraction.

With the above notions at hand, we can start introducing conditions for k-contraction which do
not involve the computation of matrix compounds. As a matter of fact, k-compounds will be used
in our proofs but, thanks to Lemma 5.1, they will not appear in the conditions. Our goal is to
impose partial stability conditions allowing the presence of unstable directions, but to limit their
rate of explosion. Indeed, if the rate of convergence is faster then the explosion one, kth-order
volume shrinks. To ease intuition, consider a rectangle with an expanding and a contracting
side. If the contracting side shrinks faster than the expanding one, the area of the rectangle goes
to zero. Conversely, if the contracting side shrinks at a lower rate, the area diverges in time.
To impose such a constraint, we will leverage the theory of p-dominance [74, 75]. Hence, we
rely on matrices with specific numbers of positive and negative eigenvalues. This generalizes
classical conditions for 1-contraction based on Euclidian norms by allowing some directions of
the state space to be unstable. Then, we first introduce the concept of inertia of a matrix with
respect to the imaginary axis, see e.g. [208, Definition 2.1].

142

Chapter 5. From 1 to k-contraction

Definition 5.4 (Matrix inertia wrt the imaginary axis [208]). The inertia of a matrix P with
respect to the imaginary axis is defined by the triplet of integers Inc(P) := (π−(P), π0(P), π+(P)),
where π−(P), π+(P) and π0(P) denote the numbers of eigenvalues of P with negative, positive and
zero real part, resp., counting multiplicities.

Since our conditions arise from the union between p-dominance and k-contraction analysis, we
need to recall some results from the literature. However, we will restrict our analysis to the case
of time-invariant dynamics. Consider nonlinear systems of the form

ẋ = f(x), (5.11)

where x ∈ Rnx and f is sufficiently smooth with respect to its argument. As before, the flow of
(5.11) is denoted by ψt, so that ψt(x0) is the trajectory of (5.11) passing through x0 at time 0. We
start by recalling the definition of p-dominance, which has been related to various differential
properties [75, Section V], such as differential positiveness [73] and monotonicity [12].

Definition 5.5 (p-dominance). System (5.11) is said to be strictly p-dominant on S ⊆ Rnx if there
exist a real number µ > 0 and a symmetric matrix P ∈ Rnx×nx with inertia with respect to the
imaginary axis Inc(P) = (p, 0, n− p) such that

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P ≺ −2µP , ∀x ∈ S. (5.12)

Then, we recall (with a mild reformulation) the following result on p-dominance [75, Theorem
1], which plays a fundamental role in our findings.

Theorem 5.2. Suppose that system (5.11) is strictly p-dominant on a compact forward invariant
setA ⊂ Rnx with rate µ > 0 and symmetric matrix P with inertia with respect to the imaginary axis
Inc(P) = (p, 0, n− p). Then, for each x ∈ A, there exists an invariant splitting TxRnx = Vx ⊕Hx,
i.e. there exists a continuous mapping T : Rnx → Rnx×nx invertible for any x ∈ A and satisfying

T(x) :=
[
Th(x) Tv(x)

]
, (5.13a)

where Th : Rnx → Rnx×nx−p and Tv : Rnx → Rnx×p satisfy

Im Th(x) = Hx, Im Tv(x) = Vx. (5.13b)

Moreover, there exist a scalar ch > 0 such that∣∣∣∣∂ψ∂x t(x) [Th(x) 0
]
δx

∣∣∣∣ ⩽ che
−µt ∣∣[Th(x) 0

]
δx
∣∣ (5.13c)

holds for all (t, x, δx) ∈ R⩾0 ×A× TxRnx .

Theorem 5.2 says that the p-dominance condition (5.12) splits the tangent space in a vertical
subspace of dimension p and a horizontal subspace of dimension nx − p. More precisely, for
each initial condition x0 ∈ S, the tangent space can be divided in a horizontal distribution
Hx and a vertical distribution Vx. Then, the property of p-dominance can be interpreted as a
form of horizontal contraction [72, Section VII], in the sense that contraction is only imposed
in the horizontal subspace. However, horizontal contraction is not a sufficient condition for k-
contraction [235], and a bound on the expansion rate of the vertical subspace has to be imposed.
To this aim, we present the following technical lemma.

143

5.1. k-contraction in nonlinear systems

Lemma 5.2. Consider system (5.11) and assume there exist a forward invariant compact set A ⊂
Rnx , a matrix P ∈ Snx≻0 and a scalar µ satisfying

∂f

∂x
(x)⊤P + P

∂f

∂x
(x) ≺ 2µP, (5.14)

for all x ∈ A. Then there exists a constant cv > 0 such that∣∣∣∣∂ψ∂x t(x) [0 Tv(x)
]
δx

∣∣∣∣ ⩽ cve
µt
∣∣[0 Tv(x)

]
δx
∣∣ (5.15)

for all (t, x, δx) ∈ R⩾0 ×A× TxRnx , with Tv as in (5.13b).

Proof. Consider the function, W := δ⊤x Pδx. It satisfies

λ(P)|δx|2 ⩽W ⩽ λ(P)|δx|2, (5.16)

where λ(·) and λ(·) represent the minimum and maximum eigenvalue of their argument,
respectively. By (5.7), its time-derivative satisfies

Ẇ = δ⊤x

(
P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P

)
δx

⩽ 2µ0δ
⊤
x Pδx = 2µW.

Then, by Grönwall–Bellman inequality, we obtain

W (t) ⩽W (0)e
∫ t
0 2µdτ = e2µtW (0), ∀t ∈ R⩾0.

Invoking (5.16), we obtain for all (t, x, δx) ∈ R⩾0 ×A× TxRnx∣∣∣∣∂ψ∂x t(x)δx
∣∣∣∣ ⩽

√
λ(P)

λ(P)
eµt|δx|.

As
[
0 Tv(x)

]
δx ∈ TxRnx , the result trivially follows.

Lemma 5.2 provides bounds on the expansion rate of the vertical subspace defined by the p-
dominance condition. Then, given the above results, we can now relate expansion and contrac-
tion rates of the subspaces defined by Theorem 5.2. Since our aim is to exploit Lemma 5.1, we
first present a technical lemma related to matrix compounds.

Lemma 5.3. Consider a time-varying matrix M(t) ∈ Rnx×nx

M(t) =
[
H(t) V (t)

]
,

withH(t) ∈ Rnx×nx−p, V (t) ∈ Rnx×p and p ∈ [0, nx). Assume there exist real numbers ch, cv, α, φ >
0 such that

|H(t)| ⩽ che
−αt, |V (t)| ⩽ cve

φt, ∀t ∈ R⩾0. (5.17)

If α > (k − 1)φ for some integer k ∈ [p+ 1, nx], there exist some real numbers c, ε > 0 such that

|M(t)(k)| ⩽ ce−εt, ∀t ∈ R⩾0. (5.18)

144

Chapter 5. From 1 to k-contraction

Proof. Consider the elements of the compound matrix M(t)(k). Each one is a kth-order
minor of the original matrix M(t), i.e., it is the determinant of a k × k submatrix of M(t),
see Definition 5.2. Since k ⩾ p + 1, each k × k submatrix contains at least one column
composed of elements of H(t). That is, in the minimum case

Mk(t) =
[
h(t) v1(t) . . . vk−1(t)

]
, (5.19)

where Mk(t) ∈ Rk×k is a submatrix of M(t), h(t) ∈ Rk is a vector with components of H(t)
and vi(t) ∈ Rk for i = 1, . . . , k − 1 is a vector with components of V (t). In what follows,
we show the elements of M(t)(k) are bounded. Hence, we focus on submatrices of the form
(5.19), since their determinant represents the worst-case scenario in a stability sense. Recall
that, by definition of the wedge product,

det(Mk(t)) = h(t) ∧ v1(t) ∧ · · · ∧ vk−1(t).

The wedge product can be represented using a basis ei, where ei depicts the ith canonical
vector of Rnx . More specifically, by bilinearity of the wedge product, we have

det(Mk(t)) =

n∑
i=1

hi(t)(ei ∧ v1(t) ∧ · · · ∧ vk−1(t)),

where hi(t) is the ith element of h(t). By performing similar operations on the remaining
vectors we deduce

det(Mk(t)) =
k∑

i1=1

· · ·
k∑

ik=1

hi1(t)vi22 (t) . . . vikk−1(t)Ek, (5.20)

where Ek := (ei1 ∧ ei2 ∧ · · · ∧ eik). By (5.17), we have

|hi(t)| ⩽ che
−αt, |vi(t)| ⩽ cve

φt.

Moreover, the factor Ek will be either zero or an element of the canonical basis in Rnx
multiplied by plus or minus one. Thus, using the triangle inequality, one obtains

|det(Mk(t))| ⩽ κchcve
(−α+(k−1)φ)t

where κ > 0 is a positive constant related to the number of non-zero instances of Ek. Now,
since α − (k − 1)φ > 0 by assumption, by continuity there always exists ε > 0 such that
α− (k − 1)φ− ε > 0. Then,

|M(t)(k)| = |e−εteεtM(t)(k)| ⩽ e−εt|eεtM(t)(k)|.

By considering the worst-case (5.19), we have

eεt| det(Mk(t))| ⩽ c̄e(−α+(k−1)φ+ε)t,

for some c̄ > 0. Hence, since α−(k−1)φ−ε > 0, each element of eεtM(t)(k) is exponentially
decreasing and the norm |eεtM(t)(k)| is uniformly bounded for all t ∈ R⩾0, thus concluding
the proof.

145

5.1. k-contraction in nonlinear systems

Leveraging on the previous lemmas, we provide a bound on the k multiplicative compound of
the state transition matrix of the lifted system (5.7).

Lemma 5.4. Consider system (5.11) and assume there exist a forward invariant compact set A ⊂
Rnx , constants µ0, µk−1 and matrices P0, Pk−1 ∈ Rnx×nx such that

∂f

∂x
(x)⊤P0 + P0

∂f

∂x
(x) ≺ 2µ0P0, (5.21a)

∂f

∂x
(x)⊤Pk−1 + Pk−1

∂f

∂x
(x) ≺ 2µk−1Pk−1 (5.21b)

µk−1 + (k − 1)µ0 < 0 (5.21c)

hold for all x ∈ A. Then, there exist ε, c > 0 such that∣∣∣∣∂ψ∂x t(x)(k)
∣∣∣∣ ⩽ ce−εt, ∀(t, x) ∈ R⩾0 ×A. (5.22)

Proof. Consider (5.13a) in Theorem 5.2. Invertibility of T(x) yields

∂ψ

∂x

t

(x) =
∂ψ

∂x

t

(x)T(x)T(x)−1 = Ψt(x)T(x)−1,

with Ψt(x) :=
[
∂ψ
∂x

t
(x)Th(x)

∂ψ
∂x

t
(x)Tv(x)

]
. Given any δx ∈ TxRnx , consider the decom-

position δx = (δhx , δ
v
x), where δhx ∈ Rnx−p and δvx ∈ Rp. Then, for an arbitrary δhx , inequality

(5.13c) of Theorem 5.2 implies∣∣∣∣∂ψ∂x t(x)Th(x)δ
h
x

∣∣∣∣ ⩽ che
−µk−1

∣∣∣Th(x)δ
h
x

∣∣∣ .
Recall the definition of matrix norm,∣∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣∣ := max
|u|=1

∣∣∣∣∂ψ∂x t(x)Th(x)u

∣∣∣∣ .
By selecting vector u⋆ such that |u⋆| = 1, the previous exponential relation and the triangular
inequality yield∣∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣∣ = ∣∣∣∣∂ψ∂x t(x)Th(x)u
⋆

∣∣∣∣ ⩽ che
−µk−1 |Th(x)u

⋆| ⩽ che
−µk−1 |Th(x)|.

Since A is compact and T is continuous, |Th(x)| is bounded for all x ∈ A. Then, by (5.13c),
and by (5.15) we obtain∣∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣∣ ⩽ che
−µk−1 |Th(x)| ⩽ c̄he

−µk−1 ,

∣∣∣∣∂ψ∂x t(x)Tv(x)

∣∣∣∣ ⩽ cve
µ0 |Tv(x)| ⩽ c̄ve

µ0

146

Chapter 5. From 1 to k-contraction

for all x ∈ A. Finally, by boundedness of T(x) and Lemma 5.3, we obtain∣∣∣∣∂ψ∂x t(x)(k)
∣∣∣∣ ⩽ |Ψt(x)(k)||T(x)−1(k)| ⩽ ce−εt

for all x ∈ A, concluding the proof.

Thanks to all the above results, we are finally ready to present the main result of this sec-
tion, namely, a set of sufficient conditions for k-contraction which do not involve matrix com-
pounds.

Theorem 5.3. Let A ⊂ Rnx be a compact forward invariant set and assume there exist symmetric
matrices P0, Pk−1 ∈ Rnx×nx of inertia with respect to the imaginary axis Inc(P0) = (0, 0, n),
Inc(Pk−1) = (k − 1, 0, nx − k + 1) and µ0, µk−1 ∈ R such that

∂f

∂x
(x)⊤P0 + P0

∂f

∂x
(x) ≺ 2µ0P0,

∂f

∂x
(x)⊤Pk−1 + Pk−1

∂f

∂x
(x) ≺ 2µk−1Pk−1

µk−1 + (k − 1)µ0 < 0

hold for all x ∈ A. Then, system (5.11) is k-contractive on S := A.

Proof. Consider the kth multiplicative compound of matrix XNL(t, x0) defined as in (5.8).
A simple computation shows

XNL(x0, t)
(k) =

[
∂ψ
∂x

t
(x0)δ

1
x0 . . . ∂ψ

∂x

t
(x0)δ

k
x0

](k)
=
∂ψ

∂x

t

(x0)
(k)XNL(x0, 0)

(k),

where the second inequality is derived from the Cauchy-Binet formula [67, Chapter 1].
From (5.21) and Lemma 5.4 we obtain∣∣∣(XNL(x0, t))

(k)
∣∣∣ ⩽ ce−εt

∣∣∣(XNL(x0, 0))
(k)
∣∣∣ .

Hence, the system is infinitesimally k-contractive and the result follows by Lemma 5.1.

It is natural to see the similarities between matrix inequalities (5.12) and (5.21). Indeed con-
dition (5.21b) is imposing p-dominance with a specific contraction rate, defined by (5.21c).
Hence, this condition sheds light on the relationship between k-contraction and p-dominance.
This relationship between p-dominance and k-contraction explains why both properties share
similar convergence results for systems evolving in a bounded set. Consider system (5.11) and
assume S is compact and forward invariant. In [124] it is shown that any bounded solution con-
verges to an equilibrium point if the system is 2-contractive. Similarly, in [75, Corollary 1], it is
proven that any bounded solution converges to a fixed point if the system is 1-dominant.

5.2 k-contraction in LTI systems: a necessary and sufficient condi-
tion

The results of Section 5.1.2 are encouraging, even if we had to restrict the analysis to forward in-
variant compact sets and time-invariant systems in order to exploit the findings of Theorem 5.2.
However, the conditions in Theorem 5.3 are only sufficient. As a matter of facts, they can be

147

5.2. k-contraction in LTI systems: a necessary and sufficient condition

seen as imposing the slowest rate of convergence among the convergence directions to be k − 1
times faster then the fastest exploding rate. This is clearly a conservative result, as ideally we
would like to perfectly dominate the sum of exploding rates. Unfortunately, this turns out to
be a difficult task in nonlinear systems. However, for linear systems we can exploit the rela-
tion between eigenvalues and convergence rates. As a matter of fact, this relation allows us to
separately consider each unstable direction and, consequently, provide more refined conditions.
Then, in what follows, we will focus on linear time-invariant system dynamics. Consider a linear
system of the form

ẋ = Ax, x ∈ Rnx . (5.24)

Recall that a spectral property of the additive compound matrix is that the eigenvalues of the
matrix A[k] are all the possible sums of the form λi1 + λi2 + · · · + λik , with 1 ⩽ i1 ⩽ . . . ⩽ ik ⩽
nx, see [236]. Moreover, A[k] defines the continuous-time dynamics of volumes in the linear
framework, see (5.10). Thus, a necessary and sufficient condition for k-contraction is

k∑
i=1

λi < 0. (5.25)

We now provide a set of sufficient and necessary conditions to establish the k-contractivity
property of (5.24) which do not involve matrix compounds. First, we recall a technical result
which will be instrumental for showing and understanding the main result of the section. This
lemma can be seen as the linear counterpart of Theorem 5.2. The result can be found, e.g.,
in [75, Proposition 1], [121, Section 13.1], [201, Lemma 1, Section 3].

Lemma 5.5. Assume there exists a symmetric matrix P ∈ Rnx×nx with Inc(P) = (p, 0, nx− p) and
a constant µ such that

A⊤P + PA ≺ 2µP . (5.26)

Then, matrix A has p eigenvalues with real part strictly bigger than µ and nx − p eigenvalues real
part strictly smaller or equal than µ.

We can now move to the main result. We start by considering the case of a matrix A having only
distinct real eigenvalues. This simplifies the statement and its readability. The general case will
be given as a corollary, whose proof will trivially follow given the one for the distinct eigenvalue
scenario.

Proposition 5.1. Assume that A has only distinct real eigenvalues. Then, system (5.24) is k-
contractive on S := Rnx if and only if there exist a set of symmetric matrices Pi ∈ Rnx×nx , i =
0, . . . , k − 1, with Inc(Pi) = (i, 0, nx − i), and a set of real numbers µi ∈ R, i = 0, . . . , k − 1, such
that

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , k − 1 , (5.27a)
k−1∑
i=0

µi < 0 . (5.27b)

Proof. As per (5.25), a necessary and sufficient condition for linear k-contraction is the
stability of A[k]. Then, the remainder of the proof is based on showing that (5.27a)- (5.27b)
in Proposition 5.1 are equivalent to A[k] being Hurwitz.
Sufficiency. Let the eigenvalues of A be ordered such that λ1 > λ2 > · · · > λnx . By Lemma
5.5, inequality (5.27a) implies λi+1 < µi for all i = 0, . . . , k− 1. Then, by (5.27b) and since

148

Chapter 5. From 1 to k-contraction

the eigenvalues are scalars, we have

k∑
i=1

λi =
k∑
i=1

λi <
k−1∑
i=0

µi < 0 ,

and (5.25) is satisfied.

Necessity. As stated in the previous step of the proof, if A[k] is Hurwitz, (5.25) is verified.
Hence, by continuity, there exists a set of scalars εi > 0 such that

∑k
i=1(εi + λi) < 0 . Select

µi−1 = εi + λi > λi, for i = 1, . . . , k − 1. We have

k−1∑
i=0

µi =

k∑
i=1

(εi + λi) < 0.

Now, define matrices Âi = A − µiI with i = 0, . . . , k − 1. It is clear that, by the definition
of µi, each matrix Âi has i negative eigenvalues and nx − i positive eigenvalues. Then,
by [208, Theorem 2.5], there exist symmetric matrices Pi such that

Â⊤Pi + PiÂ = −Gi ∀i = 0, . . . , k − 1 ,

with Gi ≻ 0 and Inc(Pi) = Inc(Âi) = {i, 0, nx − i}. Then, as Gi ≻ 0 and by using the
definition of Âi, we have

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , k − 1 ,

thus concluding the proof.

In the linear case, the previous interpretation of inequalities (5.21) bounding expansion and
contraction rates directly maps to µi bounding the k largest eigenvalues of matrix A. Then,
condition (5.27b) states that the sum of the k largest eigenvalues of A is negative.

For the general case of arbitrary eigenvalues (possibly complex conjugate), the previous result
needs to be slightly modified. More specifically, some of the inequalities (5.27a) cannot be
satisfied in the case of multiple eigenvalues having identical real parts. Hence, some conditions
need to be skipped. To this end, consider the matrix A in (5.24) and let us order the eigenvalues
of A as Re(λ1) ⩾ Re(λ2) ⩾ . . . ⩾ Re(λnx). We define

∆k := {i ∈ {1, . . . , k − 1} | Re(λi) > Re(λi+1)} ∪ {0},

and we denote by dj an element at position j ∈ [1,#∆k]:

∆k := {d1, d2, . . . , d#∆k} , d1 < d2 < · · · < d#∆k ,

with #∆k being the number of elements of ∆k. In simple words, ∆k contains the orders of
p-dominance that could be satisfied by A given a desired contraction order k.

Theorem 5.4. Let p = max∆k. System (5.24) is k-contractive if and only if there exists a set of
symmetric matrices Pi ∈ Rnx×nx , i ∈ ∆k with inertia with respect to the imaginary axis Inc(Pi) =

149

5.2. k-contraction in LTI systems: a necessary and sufficient condition

(i, 0, nx − i) and a set of positive constants µi such that

A⊤Pi + PiA ≺ 2µiP ∀i ∈ ∆k,

(k − p)µp +
∑

i∈∆k\{p}

hi µi < 0 ,

where hi = dj+1 − dj and j is an index such that dj = i.

The proof of Theorem 5.4 is omitted as it follows from the one of Proposition 5.3. Intuitively,
Theorem 5.4 is a rephrasing of Theorem 5.3 where inequalities corresponding to eigenvalues
having the same real part are merged. To improve clarity, we propose an example. Con-
sider system (5.24) with nx = 6 and eigenvalues satisfying Re(λ1) = Re(λ2) > Re(λ3) >
Re(λ4) = Re(λ5) > Re(λ6). Consider now the conditions for 6-contraction. We have ∆6 =
{0, 2, 3, 5} , #∆k = 4. Then, p = 5, (d1, d2, d3, d4) = (0, 2, 3, 5) and h0 = d2 − d1 = 2, h2 =
d3 − d2 = 1, h3 = d4 − d3 = 2. Consequently, conditions in Theorem 5.4 read as

A⊤Pi + PiA ≺ 2µiPi, ∀ i = 0, 2, 3, 5, 2µ0 + µ2 + 2µ3 + µ5 < 0.

These conditions consider the fact that Re(λ1) = Re(λ2) and Re(λ4) = Re(λ5). Indeed, these
eigenvalues are covered jointly by P2 (resp. P4), which has inertia with respect to the imaginary
axis (2, 0, 4) (resp. (4, 0, 2)). Similarly, µ0 (resp. µ3) is counted twice, as it upper-bounds the
real part of both λ1 (resp. λ4) and λ2 (resp. λ5). Consider now the conditions for 2-contraction.
Then, p = 0 and we obtain A⊤P0 + AP ≺ 2µ0P0, µ0 < 0. These conditions are identical to
the ones obtained when k = 1. As a matter of fact, a sufficient condition for k-contractivity is
(k − 1)-contractivity. However, given the eigenvalues of A, the system cannot be 2-contractive
without being 1-contractive. Hence, the condition becomes necessary.

5.2.1 Comparison with existing results

In this section, we elaborate further the relationship between our conditions and the ones of
existing works in k-contraction analysis that exploit matrix compounds [151,154,236]. In par-
ticular, we highlight the main advantages of our result when compared to matrix compound
methods, e.g. [236] and [54]. Moreover, we motivate why conditions as in Theorem 5.3 and
Theorem 5.4 are more suited to feedback design. Finally, we compare results in Proposition 5.1
to other recent ones avoiding matrix compounds [54].

We start by comparing computational complexity of Theorem 5.1 to the one of Proposition 5.1.
Our aim is to show that our results provide a set of conditions which is solvable by optimization
tools for a wide range of contraction order k and system dimension nx. We focus on the linear
system framework, as Proposition 5.1 provides a larger set of matrix inequalities with respect to
Theorem 5.3. We recall that sufficient conditions could be obtained by relaxing Proposition 5.1
to require only two conditions to be satisfied, as in Theorem 5.3. Moreover, we select Propo-
sition 5.1 since Theorem 5.4 requires fewer conditions to be satisfied (as #∆k ⩽ k). First,
notice that the inertia constraint in our condition can be relaxed to obtain an unconstrained
LMI, see [75, Section VI.B]. Hence, as both results (Theorem 5.1 in the linear framework and
Proposition 5.1) can be expressed in terms of unconstrained LMIs, we compare the number of
variables to be estimated by each. Let M ∈ Rr×r be an arbitrary square matrix and Q ∈ Rr×r
be a symmetric matrix. Since Q is symmetric, each condition of the form QM +M⊤Q ⪯ µQ
requires the computation ofN = r(r−1)/2+1 variables, namely the entries of the top triangular
portion of Q and the scalar µ. Then, Theorem 5.1 requires N1 =

(
nx
k

)((
nx
k

)
− 1
)
/2 + 1 variables

150

Chapter 5. From 1 to k-contraction

1 2 3 4 5 6 7 8 9 10 11
k

100

101

102

103

104

105

N
um

be
r	
of
	v
ar
ia
bl
es

Unknowns	to	be	estimated

Pr	5.1,	n
x
=5

Th	5.1,	n
x
=5

Pr	5.1,	n
x
=6

Th	5.1,	n
x
=6

Pr	5.1,	n
x
=7

Th	5.1,	n
x
=7

Pr	5.1,	n
x
=8

Th	5.1,	n
x
=8

Pr	5.1,	n
x
=9

Th	5.1,	n
x
=9

Pr	5.1,	n
x
=10

Th	5.1,	n
x
=10

Figure 5.2: Number of variables to be estimated Proposition 5.1 (solid) and by Theorem 5.1
(dashed) in function of k. Different colors refer to different state dimensions nx.

while Proposition 5.1 requires N2 = knx(nx − 1)/2 + k variables. To better understand how
the number of variables scales with different values of k and nx, see Fig. 5.2. Clearly, for large
dimensional systems and low k, the condition in (5.21) is of significantly smaller computational
complexity. Moreover, even in the worst case of k = nx, Proposition 5.1 typically requires be-
tween 102 and 103 variables. Differently, Theorem 5.1 can easily reach 104 variables in the worst
case.

Now we compare the results in terms of feedback design. We claim that the lack of matrix
compounds in Theorem 5.3 and Proposition 5.1 simplifies the process of k-contractive feedback
design. Consider a linear system of the form

ẋ = Ax+Bu,

where u ∈ Rnu is the control input. Assume we want to design a state-feedback controller of the
form u = −Kx, with K a constant matrix of adequate dimension and such that the closed-loop
system is k-contractive. On one hand, Theorem 5.1 reduces to designing K such that condition
(5.4) is satisfied for the closed-loop system. That is,

Q
(
(A−BK)[k]

)
+
(
(A−BK)[k]

)⊤
Q ⪯ −µQ.

However, this is a highly nonlinear and non-convex matrix inequality. Consequently, a design
methodology forK cannot be straightforwardly derived. On the other hand, also Proposition 5.1
asks for conditions (5.21) to be verified by the closed-loop system. However, this can be trans-
formed to a set of linear matrix inequalities by means of standard transformations [185]. For
this reason, we believe that condition (5.21) will be crucial in the development of k-contraction
design tools.

Finally, keeping our focus on the linear case, we compare to previous works that already in-
vestigated sufficient conditions for k-contraction that do not require the computation of the k-
additive compound. As a matter of fact, [54, Theorem 17] shows that a system is k-contractive
if there exist an invertible matrix T ∈ Rnx×nx and q ∈ {1, 2,∞} such that

tr(A) + (nx − k)µq(−TAT−1) < 0 (5.28)

151

5.2. k-contraction in LTI systems: a necessary and sufficient condition

where µq(·) represents the logarithmic norm of a matrix, see e.g. [3,207], and tr(A) denotes the
trace of the matrix A. We highlight that Proposition 5.1 provides necessary and sufficient condi-
tions while the condition (5.28) is only sufficient. This is made evident by the first example pre-
sented in [54, Section V], where the authors consider a diagonal matrix A = diag(λ1, . . . , λnx)
satisfying Re(λ1) ⩾ . . . ⩾ Re(λnx). Then, for any invertible matrix T and any q ∈ {1, 2,∞}, the
left-hand side in (5.28) reads as

tr(A) + (nx − k)µq(−TAT−1) = −(nx − k − 1)λn + λ1 + · · ·+ λnx−1.

Thus, condition (5.28) reduces to

λ1 + · · ·+ λnx−1 < (nx − k − 1)λnx < 0. (5.29)

Given the spectral property of the additive compound matrix, we recall that (5.25) is a necessary
and sufficient condition for k-contraction. For k = nx − 1, equation (5.29) reduces to (5.25).
Consequently, (5.29) is necessary and sufficient for (nx−1)-contraction. However, for nx−k > 1,
it is always possible to fix a sufficiently negative eigenvalue λnx such that (5.29) is not satisfied
even if (5.25) is satisfied. Thus, condition (5.28) is sufficient but not necessary.

5.2.2 The discrete-time case

Unfortunately, k-contraction conditions similar to the ones presented in Section 5.1.2 are still
missing in the discrete-time nonlinear scenario. This is due a lack of a parallel to Theorem 5.2
in such a framework. However, the linear case can leverage on eigenvalue arguments. Then,
we now propose necessary and sufficient conditions for k-contraction for linear time invariant
discrete-time systems equivalent to the ones in Proposition 5.1. We consider a discrete-time
linear system evolving according to the difference equation

x+ = Ax, x ∈ Rnx . (5.30)

We start by recalling the concept of inertia of a matrix with respect to the unit circle.

Definition 5.6 (Matrix inertia wrt the unit circle [208]). The inertia of a matrix P with respect
to the unit circle is defined by the triplet of integers Ind(P) := (π>1(P), π1(P), π<1(P)), where
π<1(P), π>1(P) and π1(P) denote the numbers of eigenvalues of P inside, outside and on the unit
circle, resp., counting multiplicities.

Then, before presenting our result for the linear discrete-time framework, we also recall the
discrete-time parallel of Lemma 5.5, see e.g. [208, Theorem 3.4], [121, Section 13.2].

Lemma 5.6. Assume there exists a symmetric matrix P with inertia with respect to the imaginary
axis Inc(P) = (p, 0, nx − p) and a positive constant µ such that

A⊤PA− µ2P ≺ 0 . (5.31)

Then, matrix A has p eigenvalues with module strictly bigger than µ and nx − p eigenvalues with
module smaller than µ. In other words, Ind(µ−1A) = Inc(P).

We are now ready to state the discrete-time result of this section. Similarly to Proposition 5.1
we first focus on the simplified case of state matrices A in (5.30) with eigenvalues of different
norms. This simplifies the analysis and intuition. Then, we generalize the result to arbitrary
state matrices.

152

Chapter 5. From 1 to k-contraction

Proposition 5.2. Assume A has no eigenvalue with the same norm. Then, system system (5.30) is
k-contractive on S := Rnx if and only if there exist a set of symmetric matrices Pi ∈ Rnx×nx , i =
0, . . . , k − 1 with inertia Inc(Pi) = (i, 0, nx − i) and a set of positive constants µi, i = 0, . . . , k − 1
such that

A⊤PiA− µ2iPi ≺ 0 ∀i = 0, . . . , k − 1 , (5.32a)
k−1∏
i=0

µi < 1 . (5.32b)

Proof. By the properties of the multiplicative compound, it is easy to show that A(k) defines
the volume dynamics in the discrete-time linear framework, [236]. Define λ1, . . . , λnx ∈ C
as the eigenvalues of the matrix A ordered according to their norm, that is

|λ1| > |λ2| > · · · > |λnx |.

A spectral property of the multiplicative compound matrix is that the eigenvalues of the
matrix A(k) are all the possible products of the form λi1×λi2×· · ·×λik , with 1 ⩽ i1 ⩽ . . . ⩽
ik ⩽ nx, [236]. This implies that a necessary and sufficient condition for k-contraction of
discrete-time linear systems is ∣∣∣∣∣

k∏
i=1

λi

∣∣∣∣∣ < 1 . (5.33)

Sufficiency. By Lemma 5.6, inequality (5.32a) implies

|λi+1| < µi, ∀i = 0, . . . , k − 1.

Then, by (5.32b), we have ∣∣∣∣∣
k∏
i=1

λi

∣∣∣∣∣ =
k∏
i=1

|λi| <
k−1∏
i=0

µi < 1 .

Necessity. If A(k) is Schur stable, inequality (5.33) is verified. Hence, by continuity, there
exist scalars εi > 1 such that ∣∣∣∣∣

k∏
i=1

εiλi

∣∣∣∣∣ < 1 .

Select
µi−1 = εi|λi| > |λi|, i = 1, . . . , k − 1.

We have

k−1∏
i=0

µi =

k∏
i=1

εi|λi| < 1.

153

5.2. k-contraction in LTI systems: a necessary and sufficient condition

Now, define matrices Âi = 1
µi
A with i = 0, . . . , k − 1. It is clear that, by the definition of µi,

each matrix Âi has inertia with respect to the unit disc Ind(Âi) = (nx − i, 0, i) with respect
to the unit circle. Then, by [208, Theorem 3.4], there exist symmetric matrices Pi such that

Â⊤PiÂ− Pi = −Gi ∀i = 0, . . . , k − 1 ,

with Gi positive definite and Pi with inertia with respect to the imaginary axis Inc(Pi) =
(i, 0, nx − i). Finally, as Gi ≻ 0 and by using the definition of Âi we have

A⊤PiA− µ2iPi ≺ 0 ∀i = 0, . . . , k − 1 ,

thus concluding the proof.

In Proposition 5.2 we assumed eigenvalues to have different norms to simplify the readability of
equations (5.32a), (5.32b) and ease the understanding of the concepts in the proof. However,
similar to the continuous-time case, some conditions may not be verifiable in the case of eigen-
values having the same norm. This is clarified in the following example. Consider system (5.30)
with state matrix A ∈ R6×6 having eigenvalues such that

|λ1| = |λ2| > |λ3| > |λ4| = |λ5| = |λ6|. (5.34)

Consider now (5.32a) with i = 1, namely

A⊤P1A− µ21P1 ≺ 0 ,

with P1 having inertia with respect to the imaginary axis Inc(P1) = (1, 0, nx − 1). Since |λ1| =
|λ2|, we have µ1 > |λ1|. Then the inertia with respect to the unit disc of Â1 = 1

µ1
A is equal

to the inertia with respect to the unit disc of Â0 = 1
µ0
A. In turn, by [208, Theorem 3.4], P1

and P0 must have the same inertia with respect to the imaginary axis, thus contradicting our
assumption on the inertia of P1. Therefore, paralleling Theorem 5.4, we propose the following
slight modification to Proposition 5.2 to tackle the issue.

Consider a system of the form (5.30) where the eigenvalues of A satisfy |λ1| ⩾ |λ2| ⩾ . . . ⩾ |λnx |.
We define

∆k := {i ∈ {1, . . . , k − 1} | |λi| > |λi+1|} ∪ {0},
and we denote by dj an element at position j ∈ [1,#∆k]:

∆k := {d1, d2, . . . , d#∆k} , d1 < d2 < · · · < d#∆k ,

with #∆k being the number of elements of ∆k. As per the continuous-time scenario, ∆k selects
the conditions (5.32a) that can be satisfied by A given a desired contraction order k.

Theorem 5.5. Let p = max∆k. System (5.24) is k-contractive if and only if there exists a set of
symmetric matrices Pi ∈ Rnx×nx , i ∈ ∆k with inertia with respect to the imaginary axis Inc(Pi) =
(i, 0, nx − i) and a set of positive constants µi such that

A⊤PiA− µ2iPi ≺ 0 ∀i ∈ ∆k,

µk−pp

∏
i∈∆k\{p}

µhii < 1 ,

where hi = dj+1 − dj and j is an index such that dj = i.

154

Chapter 5. From 1 to k-contraction

The proof of Theorem 5.5 is omitted as it follows from the one of Proposition 5.2. To improve
clarity, we go back to the previous example where A satisfies (5.34). Consider the conditions
for 3-contraction. We have ∆k = {0, 2} . Then, p = 2 and h0 = 2. Consequently, the conditions
in Theorem 5.5 read as

A⊤P0A− µ20P0 ≺ 0,

A⊤P2A− µ22P2 ≺ 0,

µ20 µ2 < 1.

As in the continuous-time case, it is clear that these conditions consider the fact that |λ1| = |λ2|.
These parallel conditions with respect to the continuous-time framework are promising for a
possible future extension of the nonlinear results in the discrete-time scenario.

155

5.2. k-contraction in LTI systems: a necessary and sufficient condition

156

6 Conclusions and perspectives

In this thesis, we derived multiple novel results on stability and robustness of system dynamics,
and we studied several methods to pair them with deep neural network approximations. Rang-
ing from results on robust stabilization of equilibrium points in discrete-time to trajectory follow-
ing in the continuous-time framework, we showed the potential of the interconnection between
the increasingly overlapping fields of control theory and machine learning. Via the combination
of strong theoretical results and extremely adaptable learning techniques, we derived practical
methods to obtain fast and complex DNN-based controllers equipped with strong guarantees.
Moreover, we provided theoretical foundations for future research that will necessitate expres-
sive function approximators (such as DNNs) to reach their full application potential.

In Chapter 1, we focused on learning locally asymptotically stabilizing laws for discrete-time
nonlinear systems. We introduced a novel approach involving the integration of locally sta-
bilizing behaviors into DNN-based controllers. To this aim, we presented the formulation of a
discounted learning objective that characterizes a closed-loop behavior aligned with the selected
local controller. Additionally, we derived finite optimality bounds that leverage stability prop-
erties to mitigate the impact of the discount factor. We comprehensively tested the proposed
methodology to validate its effectiveness.

In Chapter 2, we discussed the use of integral action in the discrete-time nonlinear domain.
We introduced the concept of discrete-time total stability and we derived conditions for the
transfer of stability properties between sufficiently similar systems, solely based on the norms
of differences between models. We showed that integral action allows for robust regulation
under constant signals in the discrete-time nonlinear settings, and we applied the findings to
learned controllers. In particular, we showed the effectiveness of integral action for DNN-based
controllers by learning a robust policy for plasma-shape control in tokamak reactors.

In Chapter 3, our attention turned to the investigation of discrete-time incremental stability
properties arising from contraction analysis. We presented sufficient conditions for the design of
controllers guaranteeing incremental exponential ISS properties of the closed-loop. Moreover,
we proved optimality of such laws with respect to an incremental quadratic cost, thereby paving
the way to future learning-based designs. The results were applied to the multi-agent setting,
and we provided sufficient contraction-based conditions for robust synchronization of discrete-
time nonlinear agents. Our findings were further validated through experimental testing.

157

In Chapter 4, we derived learning-based approaches to compute contractive controllers based
on Riemannian metrics in the nonlinear continuous-time framework. We relaxed existing con-
ditions to allow for DNN approximation errors, and we proposed an optimization problem to
learn control laws guaranteeing contractivity of the closed-loop. We specialized the proposed
methodology to the multi-agent synchronization and the output tracking problems, and we
proposed a switching objective function to improve the controller performance. Finally, we ex-
perimentally validated the controllers’ effectiveness by learning a synchronizing controller for
Lorenz oscillators and an output tracking controller for a ball-and-beam system under chaotic
references.

In Chapter 5, we proposed generalized Lyapunov conditions for k-contraction that do not rely on
matrix compounds. In the linear setting, we derived necessary and sufficient conditions for both
the continuous and discrete-time frameworks. In the nonlinear scenario, we obtained sufficient
condition for k-contraction of continuous-time dynamics. Finally, we presented a thorough com-
parison between our findings and existing results, highlighting the advantages of our approach
in eliminating the need for complex matrix compound computations.

There are multiple research directions that can be explored as a continuation of the works
presented in this manuscript. In what follows, we enlist some of the most thrilling ones, from
both the practical and the theoretical sides.

Total stability in sampled-data or hybrid systems. With the introduction of total stability
results in the discrete-time framework, Chapter 2 opens the possibility of exploring scenarios
where continuous-time and discrete-time analysis overlap. This is the case of sampled-data and
hybrid systems. In the former case, it may be interesting to compare conditions arising from
the discretized continuous framework to the ones proposed in Chapter 2. In the latter scenario,
an interesting opportunity lies in the formulation of hybrid total stability conditions, possibly
leading to the derivation of results on robust output regulation, similar to the continuous and
discrete-time framework.

Improving DRL generalization via internal models. Chapter 2 and Chapter 1 offer valu-
able insights in the generalization properties offered by the combination of deep reinforcement
learning and output regulation theory. However, the results presented in this thesis are limited
to the context of output regulation in presence of constant references. An interesting direction
is the generalization of this concept to any periodic reference trajectory. By relying on results
of output regulation based on internal model [103], one can envision learning optimal guar-
anteed asymptotically tracking controllers trained with model-free deep reinforcement learning
algorithms.

DRL for incrementally stabilizing feedbacks. As shown in Chapter 3, discrete-time contrac-
tive controllers are solutions to an infinite-horizon optimization problem under quadratic costs.
This interesting finding suggests that such controllers can be learned in a data-driven fashion.
However, a first fundamental question is how close suboptimal policies have to be to an opti-
mal solution (in value function difference terms) in order to preserve the guaranteed stabilizing
properties. Another thrilling open question is whether the synchronizing solution proposed in
Section 3.2 is also optimal. Finally, an exciting direction is the derivation of deep reinforcement
learning approaches to learn such controllers.

158

Chapter 6. Conclusions and perspectives

Riemannian metric-based conditions for discrete-time incrementally stabilizing feedbacks.
The developments in Chapter 3 are limited to Euclidean metrics. This limits the classes of non-
linear systems that can satisfy the required conditions. As a matter of fact, discrete-time contrac-
tion analysis based on Riemannian metrics is still limited to the autonomous framework [109].
The main challenge lies in the definition of a discrete-time parallel to the Killing vector field
condition. Then, an intriguing research direction is the study of discrete-time feedback designs
based on Riemannian metrics, paralleling the continuous-time framework. These results would
also allow the development of DNN-based algorithms for learning such metrics and controllers
also in the discrete-time nonlinear scenario.

Feedback design for k-contraction. Chapter 5 is a preliminary step for the design of k-
contractive feedback laws. These controllers may provide reliable behaviors in systems for
which classical stability theory cannot be used. As an example, 2-contractive dynamics evolving
in bounded sets converge to an equilibrium point and cannot present limit cycles. Then, future
research will focus on the derivation of such controllers and observers [S1]. Moreover, we be-
lieve that this investigation can lead to novel insights on the connection between different tools
for the analysis of partial stability, and it will involve the definition of generalized concepts of
the classical notions of stabilizability.

Discrete-time k-contraction. The results of k-contraction in the nonlinear framework have
been derived only for the continuous-time scenario. However, it may be useful to translate the
nonlinear results of Chapter 5 in discrete time. The motivation lies in the fact properties and
asymptotic behaviors of discrete-time k-contractive systems are still unclear. By investigating
this translation, we can provide useful insights in the analysis of such systems. Moreover, most
learning approaches typically work in discrete-time scenarios. Then, the analysis may provide
novel techniques for obtaining learning-based closed-loop systems equipped with valuable guar-
antees. Moreover, it is known that optimization algorithms can be interpreted as discrete-time
dynamical systems. Then, similarly to [56], these new contraction analysis tools could be used
for studying convergence properties of the learning algorithms themselves.

159

160

Appendices

161

A Some theoretical background

A.1 Deep reinforcement learning concepts

In this subsection, we briefly introduce some fundamental concepts of DRL and, more generally,
reinforcement learning. Typically, in the reinforcement learning framework, the learning agent
goal is to learn a mapping from state to actions generating a sequence of optimal inputs, called
control policy. Through the interaction with the environment, it observes the current state and
selects an action. In response, it receives a reward (which may be either positive or negative).
Based on such a reward, it adjusts its policy, guided by an optimization objective. Then, the
loop starts again and the agent observes the next state in order to select the next action. The
control policy π can be deterministic (π(x) is a deterministic action) or stochastic (π(u|x) is a
probability of action u given x, i.e. π(x) is a probability distribution). A stochastic policy draws
actions from a random distribution, whose state-dependent momenta are learned by the agent.
Stochastic policies are useful in adversarial contexts, where multiple agents compete with each
others. As a matter of fact, deterministic policies can be proved to be optimal only in cooperative
scenarios [174, Section 6.2.4]. In the framework of this manuscript, randomness of the policy
will be useful only in the training context for exploring different state-action pairs and improve
the policy. At test time, without loss of generality, we consider deterministic ones. Moreover, we
focus on the common framework of discrete-time, time-invariant systems under infinite-horizon
discounted objective functions.

In order to provide an intuition on the learning mechanisms behind DRL algorithms, we first
introduce some concepts of Dynamic Programming (DP), whose theory is the backbone of mod-
ern DRL. In the discrete-time deterministic DP framework, the reinforcement learning problem
is mapped to the problem of dealing with discrete-time dynamical systems (environments) gen-
erating a sequence of states (x(t))t∈N, x ∈ X ⊆ Rnx , under the influence of control inputs
(u(t))t∈N, u ∈ U ⊆ Rnu (actions). As previously stated, the objective is to find a mapping from
states to inputs, the control policy π, generating a control sequence leading to the maximum (or
minimum) of a γ-discounted function (also known as state-value function under π), Jπ : X → R,
defined as Jπ(x(t)) =

∑∞
k=0 γ

kr(x(k + t),π(x(k + t))), where γ ∈ (0, 1) and r : Rnx × Rnu → R
is the instantaneous reward function, see, e.g., [28]. The state-value function under an optimal
policy is the optimal state-value function J⋆ = maxπ Jπ, i.e. the one that provides the maximum
sum of future rewards for each state.

163

A.1. Deep reinforcement learning concepts

However, typical reinforcement learning methods address a stochastic scenario, where dynamics
are modeled by Markov Decision Processes (MDPs) [210]. Then, the state-value function Jπ

corresponds to the expected total discounted reward starting from state x(t) and then following
the policy π, namely

Jπ(x(t)) = E

[
r(x(t), u(t)) +

∞∑
k=1

γkr(x(k + t), u(k + t))
∣∣∣x(t), u(·) ∼ π(x(·))

]
, (A.1)

where E [· | ·] stands for the conditional expectation. We remark that the value function pro-
foundly depends on the policy π. Given a policy π and an initial state x(t), the value function
is given. However, the optimal state-value function J⋆ is independent from the policy, due to
the presence of a maximization operation over the policies. In other words, the optimal policies
may not be unique. Indeed, in light of the above discussion, it is clear that an optimal policy π⋆

is a policy such that Jπ⋆(x) = J⋆(x) for all x ∈ X .

In the reinforcement learning framework, the action-value function, or Q-function, Qπ : X ×
U → R, turns out to be more practical when dealing with unknown dynamics. The Q-function
corresponds to the expected total discounted reward when the action u(t) is taken in state x(t),
and then the policy π is followed from there on. Therefore, the Q-function is given by

Qπ(x(t), u(t)) = E

[
r(x(t), u(t)) +

∞∑
k=1

γkr(x(k + t), u(k + t))
∣∣∣x(t), u(t), u(k + t)∼π(x(k + t))

]
.

As for the optimal action-value function, the optimal Q-function is given by

Q⋆(x, u) = max
π

Qπ(x, u), ∀(x, u) ∈ X × U ,

and stands for the expected total discounted reward when the agent picks possible non-optimal
action u(t) in x(t), and then behaves optimally from there on. The relation between the optimal
action-value function and optimal state-value function directly comes from Bellman’s principle
of optimality [23] and it is expressed by

J⋆(x) = max
u∈U

Q⋆(x, u), ∀(x, u) ∈ X × U .

Then, if the optimal Q-function is known, the optimal action u⋆ for each state x can be extracted
by choosing the action u that maximizes Q⋆(x, u), namely

u⋆ = argmax
u∈U

Q⋆(x, u).

In reinforcement learning, the action is chosen by a policy to maximize the expected total dis-
counted reward. Most DP methods deal with problems where the state and action spaces are
discrete, i.e. finite. However, when dealing with control of physical systems, the state and action
spaces are continuous, i.e., infinite. To tackle the problem, DRL algorithms make use of func-
tion approximators, more specifically, DNNs. One major advantage of DRL algorithms is their
direct applicability to a large family of complex systems, especially in the case of model-free
approaches, e.g. [94,129,147]. In most cases, the environment to be controlled is considered a
black box. In order to estimate the future performances of the policy without knowing the en-
vironment, many DRL algorithms exploit actor-critic architectures [117] (see Figure A.1). This
family of methods exploits two or more DNNs (see e.g. [80]). The first is used as the policy,

164

Appendix A. Some theoretical background

Figure A.1: Actor-critic structure

while the others typically predict its performance by estimating the action-value or state-value
function. The actor is in charge of improving the policy DNN based on the value function that is
estimated by the critic. Hence, the critic’s role is to provide a DNN evaluating the current policy
prescribed by the actor. While the policy network is updated based on the critic’s estimation, the
estimator itself is updated according to the observed reward.

More formally, in actor-critic algorithms, the reward signal is used to update the parameter
vector ϕ ∈ Rnϕ of the action-value function estimator Q̂ϕ

π, according to a criterion Jϕ : X ×
U × Rnϕ → R. The parameter vector θ ∈ Rnθ of the actor policy πθ are subsequently updated
according to a different cost function Jθ : X × U × Rnθ → R depending on the new critic
estimation. Then, for our purposes, we define the class of actor-critic algorithms A as the set
of operators A := {a : Rnθ × Rnϕ → Rnθ × Rnϕ} with input (θ0, ϕ0) and output (θκ̄, ϕκ̄) such
that, for any κ ∈ [0, κ̄] ⊆ N, the parameters ϕ and θ are updated via some form of Stochastic
Gradient Descent [210, Chapter 9.3]. The classic formulation imposes θκ+1 = θκ − λaκ∇θJθ
and ϕκ+1 = ϕκ − λcκ∇ϕJϕ, where λaκ, λ

c
κ are the positive learning rates, subscript κ identifies a

parameter vector at iteration κ, ∇θ is the gradient with respect to the policy parameters, ∇ϕ is
the gradient with respect to the critic value function parameters and κ̄ ∈ N is the iteration index
such that ∇θJθ ⩽ ϵ and ∇ϕJϕ ⩽ ϵ for some small ϵ > 0 and for all κ ⩾ κ̄.

Training the critic. Inspired by the Bellman’s equation, a common critic parameters objective
is to minimize the one-step prediction error for all (x, u) ∈ X × U , namely

Jϕ(x, u) = E

[(
r(x, u) + max

u+∼π(x+)
Q̂ϕ

π(x
+, u+)− Q̂ϕ

π(x, u)

)2
]
. (A.2)

where x+, u+ represent the state and action at the next step respectively. This objective comes
from Q-learning theory and it can be seen it asks for a good estimation of the instantaneous
reward over an infinite trajectory defined by the current control policy, assuming the estimation
is correct from the successive step onward.

Training the policy. Many DRL update procedures exploit policy gradient theorems [196,211],
which compute the gradient of the value function with respect to the policy parameters. Algo-

165

A.2. Highlights on graph theory

rithms learning a deterministic policy exploit deterministic policy gradient theorem [196]. Given
a parametrized deterministic policy πθ and a set X ⊂ Rnx , deterministic policy gradient updates
take the form

∇θJπ(x) =

∫
X
dπ(x)∇θπθ(x)∇uQ̂ϕπ(x, u) |u=π(x) dx

= Ex∼dπ [∇θπθ(x)∇uQ̂ϕπ(x, u) |u=π(x)],
(A.3)

where ∇u the gradient with respect to the actions u = πθ(x) and the distribution function
dπ(x) :=

∫
X
∑∞

t=1 γ
t−1 Pr(x0) Pr(x0 → x, t,πθ)dx is the discounted state distribution, being

Pr(x0 → x, t,πθ) the probability of reaching the state x ∈ X after transitioning for t time steps
with initial condition x0, following policy πθ. For stochastic policies, updates are based on the
stochastic policy gradient theorem [211, Theorem 2]

∇θJπ(x) =

∫
X
dπ(x)

∫
U
∇θπθ(u|x)Q̂ϕπ(x, u)du dx

= Ex∼dπ ,u∼πθ [∇θ logπθ(u|x)Q̂ϕ
π(x, u)],

(A.4)

It can be proven that the stochastic policy gradient is the generalization of its deterministic
counterpart [195, Section 3.3].

A.2 Highlights on graph theory

In multi-agent control, a communication graph is typically described by a triplet G = {V, E ,A}
where V = {v1, v2, . . . , vN} is a set of N ⊂ N vertices (or nodes), E ⊂ V × V is the set of edges
ϵjh modeling the interconnection between such nodes, and A ∈ RN×N is the adjacency matrix,
whose entries ajh ⩾ 0 weight the flow of information from vertex j to vertex h. The Laplacian
matrix L ∈ RN×N of the graph G is defined as

ℓjh = −ajh for j ̸= h, ℓjh =
N∑
i=1

aji for j = h,

where ℓjh is the (j, h)-th entry of L. We denote with Ni the set of in-neighbors of node i, i.e.
the set Ni := {j ∈ {1, . . . , N} | ϵij ∈ E}. A graph is said to be undirected if information exchange
between agents can flow in any direction. If for some edges communication is not bi-directional,
the graph is said to be directed. A graph is said to be leader-connected if there exists a leader node
that can only send information, while bidirectional communication is allowed in the rest of the
network. If some entries aij of the adjacency matrix are different from ±1 or 0, the graph is said
to be weighted. For general directed, weighted graphs, the Laplacian matrix is not diagonalizable
and admits complex eigenvalues. If the graph is undirected, the Laplacian matrix is symmetric
and, hence, has only real eigenvalues [89]. We define connectivity following [102, Definition
5.1].

Definition A.1 (Connected graph). A graph G is connected if there is a node v such that, for any
other node vk ∈ V \ {v}, there is a path from v to vk.

Based on this definition, we recall the following property, see e.g., [89,102,161].

Lemma A.1. A directed weighted graph G = {V, E ,A} is connected if and only if its Laplacian
matrix L has only one trivial eigenvalue λ1 = 0 and all other eigenvalues λ2, . . . , λN have positive
real parts.

166

Appendix A. Some theoretical background

Lemma A.1 implies that, for connected graphs, the vector 1 is the eigenvector of L associated to
λ0 = 0, namely L1 = 0. Note that, in general, the Laplacian of the network can be partitioned
as

L =

(
L11 L12

L21 L22

)
(A.5)

where L11 is a scalar, L12 is a N − 1 row vector, L21 is a N − 1 column vector and L22 is a
(N − 1)× (N − 1) matrix. Given the above partition, for general directed, weighted graphs, the
following holds.

Lemma A.2. Let the weighted graph G = {V, E ,A} be directed and connected, with Laplacian
L and L11, L12 defined as in (A.5). Then, there exist M ∈ SN−1

≻0 and constants m,m, µ, µ > 0,
ρM ∈ (0, 1] such that

m IN−1 ⪯M ⪯ m IN−1, ρM ⩽
m

m
(A.6a)

He {M(L22 − 1L12)} ⪰ 2µM (A.6b)

(L22 − 1L12)
⊤M(L22 − 1L12) ⪯ µ2M. (A.6c)

Proof. Since the graph is connected, Lemma A.1 ensures that the Laplacian L, as in
(A.5), has one zero eigenvalue and N − 1 eigenvalues with positive real part. Consider the
transformation

T = T−1 :=

(
1 0
1 − IN−1

)
and consider the change of coordinates on the Laplacian defined by

L := TLT−1 = T

(
0 −L12

0 −L22

)
=

(
0 −L12

0 L22 − 1L12

)
,

where we exploited L1 = 0. Since T is full rank, by similarity transformation specL =
specL, namely, it has one zero eigenvalue and N − 1 eigenvalues with positive real part.
Then, due to the block-triangular structure of L, all the eigenvalues of L22 − 1L12 have
positive real part. Define L̃ := 1L12 − L22. Since all eigenvalues of L̃ have negative real
part, by the Lyapunov equation there exists M ∈ SN−1

≻0 satisfying

ML̃+ L̃⊤M = − IN−1 ≺ 0.

In turn, this implies M(−L̃) + (−L̃)⊤M ≻ 0. As a consequence, there exists a sufficiently
small scalar µ > 0 such that (A.6b) holds. We now move to the other inequalities in
Lemma A.2. Since M ∈ SN−1

≻0 , (A.6a) and (A.6c) trivially hold with of m and m being
the smallest and largest eigenvalues of M respectively, ρM = mm−1 and a sufficiently large
µ.

As a consequence, we recover the following property of leader-connected graphs, e.g. [89].

Lemma A.3. Suppose the graph G = {V, E ,A} is undirected and leader-connected . Then the
Laplacian L can be partitioned as

L =

(
0 0
L21 L22

)
.

Moreover, there exists a strictly positive real numbers µ, µ̄ > 0 such that µ IN−1 ⪯ L22 ⪯ µ̄ IN−1.

167

A.2. Highlights on graph theory

168

B Tokamak model and simulation
algorithm

B.1 Safety factor and thermal energy control model

Consider the reaction-diffusion equation describing the magnetic flux dynamics

∂ψ

∂t
(s, t) =

D(s, t)

a2ρ

∂2ψ

∂s2
(s, t) +

G(s, t)

aρ

∂ψ

∂s
(s, t) + S(s, t). (B.1)

The coefficients D(s, t), G(s, t), and S(s, t) can be computed by following [36, eq. III-34]
as

D(s, t) =
η∥C2

µ0C3
G(s, t) =

η∥Faρ

µ0C3

∂

∂ρ

(
C2

F

)
S(s, t) = L(ρ, t)jni L(ρ, t) =

η∥V
′Bϕ0

FC3
(B.2)

where η∥(ρ, t) is the resistivity, µ0 is the permeability of the free space, F is the diamagnetic
function, V (ρ, t) is the plasma volume, V ′ = ∂V

∂ρ is the volume spatial derivative while C2 and
C3 are space varying parameters depending on the considered plasma geometry configuration.
jni(s, t) is the non-inductive current source and includes the bootstrap current jbs as well as the
ECCD density currents jeccd

jni = jbs + jeccd.

In this work, the bootstrap currents are computed according to [70]

jbs = −
kbs

∂ψ/∂ρ

(
L31

∂ln(ne)
∂ρ

+Rpe(L31 + L32)
∂ln(Te)
∂ρ

+ (1−Rpe)(L31 + αL34)
∂ln(Ti)
∂ρ

)
(B.3)

where Te is the electronic temperature, Ti(s, t) ≈ αT i(t)Te(s, t) is the ions temperature, ne is
the electron density, α is a constant parameter while kbs, L31, L32, L34, Rpe are space varying
parameters depending on the electronic and ion temperatures and on the plasma geometric
configuration. The ion-to-electron temperature ratio can be fixed to αT i = 0.7. The electron
density can be approximated by

ne(s, t) ≈
γn + 1

γn
(1− sγn)n̄e

where n̄e is the electron line average density, that in our case has been considered to be constant
n̄e = 1× 10−19.

169

B.1. Safety factor and thermal energy control model

Symbol Description Unit
aρ Radius of the LCFS m
B Magnetic field T
Bϕ Toroidal magnetic field T
η∥ Resistivity Ω×m
e Electron charge 1.6022× 10−19 C
F Diamagnetic function T×m
ι Inverse of the safety factor
Ip Total plasma current A
jni Non-inductive current J/m2

jbs Bootstrap current J/m2

jeccd Electron Ciclotron Current Drive density current J/m2

jtor Toroidal density current J/m2

µ0 Permeability of the free space 4π × 10−7 H/m
ne Electron density profile m−3

ni Ion density profile m−3

ϕ Magnetic flux of the toroidal field T/m2

Peccd ECCD power W
POH Total ohmic power W
ψ Magnetic flux of the poloidal field T/m2

q Safety factor
R Major plasma radius m
R0 Magnetic center location m
ρ Spatial index
τth Thermal energy confinement time s
Te Electronic temperature eV
Ti Ion temperature eV
Upl Toroidal loop voltage
V Plasma volume m3

Wth Plasma thermal energy J
s Normalized spatial index
χe Electron thermal diffusivity m2/s
Zeff Effective Plasma charge C

Table B.1: Table of symbols and corresponding units.

170

Appendix B. Tokamak model and simulation algorithm

An appropriate and effective choice used in control-oriented plasma-dynamics simulators is to
approximate the current density by a weighted Gaussian [233]. According to [70], the ECCD
efficiency can be modelled heuristically as

jeccd,i(ρ, t) = ccd,ie
ρ2/0.52 Te

ne
e−4(ρ−ρdep,i)2/w2

cd,iPeccd,i(t) (B.4)

where wdep is the deposition width and ρdep is the location of the peak of the deposition, while
Peccd,i is the power associated with the i-th antenna. The parameter ccd is a machine-dependent
parameter that can be chosen to scale the expression to the experimentally obtained current
drive values. The total ECCD current is obtained as the sum of the different antennas, that in
this work are considered to be two

jeccd(ρ, t) = jeccd,1(ρ, t) + jeccd,2(ρ, t).

According to [182], the conductivity can be computed as

η∥ =
1

σ∥
=

1

σsptzcneo
. (B.5)

The Spitzer conductivity σsptz depends on the electron temperature and on the effective value
of the plasma charge Zeff . This last parameter may in general vary spatially, but it is chosen
here to be a fixed quantity for the whole plasma Zeff = 3.5. The neoclassical correction cneo
depends on the electron and ion collisionality parameters as well as on Zeff . Both σsptz and cneo
are space and time-varying.
Specific boundary conditions have to be considered both at the center and on the LCFS of the
plasma. At the plasma center, the spatial variation of the flux is zero

∂ψ

∂s
(0, t) = 0,

while at the LCFS, we consider a Neumann boundary condition

∂ψ

∂s
(1, t) = −R0µ0Ip(t)

2π
. (B.6)

where Ip is the total plasma current. The toroidal flux ϕ(s, t) is defined as the magnetic flux
passing through a poloidal surface centered at R0 and with radius ρ. Assuming that the toroidal
magnetic field remains constant, it is possible to obtain an explicit formula for the toroidal
flux [233]

ϕ(s, t) =
1

2π

∫
Spol

B(R,Z)dSpol = −
1

2π

∫
Spol

BϕdSpol ≈ −
Bϕ0a

2
ρs

2

2
. (B.7)

An instrumental quantity for the temperature dynamics is the ohmic power

POH =

∫ 1

0

1

2πR0
Upljtords (B.8)

In the previous equation, Upl identifies the toroidal loop voltage while jtor corresponds to the
toroidal density and they can be computed as

Upl =
∂ψ

∂t
jtor =

1

η∥

(
D(s, t)

a2ρ

∂2ψ

∂s2
+
G(s, t)

aρ

∂ψ

∂s

)
. (B.9)

171

B.1. Safety factor and thermal energy control model

We consider thermal dynamics in the model, to account for the delay introduced by temperature
diffusion. Rather than using a pure delay term, we chose to represent this delay with a dynamic
equation for more accurate modeling. However, we do not to incorporate the full distributed
thermal diffusion model in order to minimize simulation time and achieve a sufficiently short
training time for the RL algorithm. The temperature diffusion equation writes

3

2

∂neTe
∂t

=
1

ρ

∂

∂ρ

(
ρneχe(ρ, t)

∂Te
∂ρ

)
− 3neTe

2τd
+ ST (ρ, t)

where χe(ρ, t) is the electron thermal diffusivity, τd is the time-varying damping modeling the
losses and ST (ρ, t) is the source term. In our specific application, where we consider two ECCD
inputs, we have

ST (ρ, t) = ST,eccd,1(ρ, t) + ST,eccd,2(ρ, t).

It is worth remarking that for i ∈ {1, 2} the source term has an amplitude such that∫ 1

0
ST,eccd,i(s, t)ds = Peccd,i.

Because of the high uncertainty of the proposed temperature model and in order to effectively
diminish the simulation time, we choose to use an empirical reduced-order model that approx-
imates the actual temperature dynamics, similar to the one proposed in [232]. This model is
composed of an ordinary differential equation representing the evolution of the thermal energy
Wth and a DNN that takes as input the total power and the thermal energy and returns the
distributed temperature profile. The plasma thermal energy is defined as

Wth =We(t) +Wi(t) =
3e

2

∫
V
(neTe + niTi)dV =

3e

2

∫
V
(1 + αT iαni)neTedV

where ni ≈ αnine(s, t) is the ions density, e is the electron charge and We,Wi are the electrons
and ions energy, respectively. The density ratio can be approximately computed as αni ≈ (7 −
Zeff)/6.
The exponents in the τth expression in (2.58) have been obtained by applying linear regression
on data obtained from RAPTOR simulations. In particular, the collected data together with the
applied open-loop input, are organised in the vectors X and Y as following

X =


1

log(Ptot)
log(1 + Peccd,1)
log(1 + Peccd,2)

 Y = τth.

Linear regression is then applied to the couple (X,Y) to obtain the power constant values
k0, k1, k2, k3 such that

τth = ek0P k1tot(1 + Peccd,1)
k2(1 + Peccd,2)

k3 .

The temperature profile is obtained as the output of a DNN

Te(x, t) = fNN (Ptot,Wth). (B.10)

The neural network has been trained using a set of temperature profiles associated with the total
power and the thermal energy obtained by some RAPTOR simulations. For both the τth linear
regression and the DNN training, the RAPTOR simulations have been obtained by applying
different constant open-loop inputs to the system and extracting the total power, the thermal
energy, τth and the temperature profiles.

172

Appendix B. Tokamak model and simulation algorithm

B.2 Simulation Algorithm

Employing a combination of implicit-explicit time discretization and fixed-step spatial discretiza-
tion, as outlined in [233, Appendix A], system (B.1) can be approximated by the difference
equation

ψ+ = B−1
t Atψ +B−1

t St (B.11)

where ψ, St ∈ Rnψ are nψ-dimensional vectors of the magnetic flux and the source term at
nψ different point of the spatial domain at the t time step. The matrices At ∈ Rnψ×nψ and
Bt ∈ Rnψ×nψ depend on the plasma physical parameters and change at every iteration t. The
time discretization step is fixed at δt = 0.01, with an implicit-explicit ratio of h = 0.45, and
the total simulation time is referred to as Tsim. The space domain is divided into N = 21
discretization elements, with a fixed spatial discretization step of δxi = 0.05. Similarly, the
thermal energy dynamics can be approximated by the difference equation

W+
th = dtWth + stPtot,t

where Wth, Ptot,t ∈ R are the thermal energy and the total power at discrete time t, dt and st
are coefficients depending on τth,t. It is worth remarking that our study case is similar to the
one considered in [145], where the two available inputs act on the same spatial point: the first
antenna Peccd,1 acts positively on z while the second Peccd,2 acts negatively. The two input powers
have limited maximum power Peccd,i ∈ [P eccd,i, P̄eccd,i]. To control the magnetic flux gradient,
the control action corresponds to the difference between the two antennas’ power. Inversely, the
control action for the temperature profile corresponds to the sum of the two antennas’ power.
Since in this work we are interested in magnetic control, in the following we define a function
mapping from the desired power difference to the value of each antenna power. Firstly, we
define the control input u ∈ [0, 1] that is mapped to the desired difference α ∈ [α, ᾱ] between
the two ECCD powers applied at the t time iteration

α = α+ u(ᾱ− α) = Peccd,1 − Peccd,2, (B.12)

where α = P eccd,i − P̄eccd,2 and ᾱ = P̄eccd,1 − P eccd,2. Given a desired power difference α, the
control input powers are mapped to minimize their sum Peccd,1 + Peccd,2. The mapping can be
expressed by 

Peccd,1 = P eccd,i
Peccd,2 = P eccd,i − α

if α < P eccd,i − P eccd,2

Peccd,1 = α+ P eccd,2
Peccd,2 = P eccd,2

if α ⩾ P eccd,i − P eccd,2.
(B.13)

After the spatial discretization of the magnetic flux dynamics and the temporal discretization of
both the magnetic flux and thermal energy dynamics, we obtain the difference equation

ξ+ =

(
B−1

t At 0
0 dt

)
ξ +

(
B−1

t St
stPtot,t

)
= f(ξ, u). (B.14)

in the state variable

ξ =

(
ψ
Wth

)
∈ Rnψ+1.

The steps for the plasma magnetic flux and temperature simulation are listed in Algorithm 7.

173

B.2. Simulation Algorithm

Algorithm 7 Tokamak environment simulation algorithm
1: Input data:

• Initialization of ψ0, Wth,0 and POH,0 from RAPTOR simulation after the ramp-up phase
• Initialization of the constant physical parameters
• Initialization of the constant simulation parameters
• Initialization of the open-loop input U
• Simulation initialization t = 0

2: while t < Tsim/δt do
3: Input extraction : u = U [t]
4: Temperature: Te,t, Ti,t ← ftemp(u, POH ,Wth) with (2.59), (B.10) and (B.12)-(B.13)
5: Resistivity: η∥,t ← fresistivity(Te,t, ψ) with (B.5)
6: Bootstrap current: jbs,t ← fboostrap(Te,t, Ti,t, ψ) with (B.3)
7: ECCD deposit: (jeccd,1)t, (jeccd,2)t ← feccd(u, Te,t) with (B.4)
8: Non-inductive currents: jni,t ← jbs,t + (jeccd,1)t + (jeccd,2)t
9: Diffusion coefficients: Di,t, Gi,t, Li,t ← fcoeff (η∥,t) with (B.2)

10: Magnetic flux: ψ+ ← fψ(ψ,Di,t, Gi,t, Li,t, jni,t) with (B.14)
11: Thermal energy: W+

th ← fthermal(u, POH ,Wth) with (B.14)
12: Ohmic Power: P+

OH = fohmic(η∥,t, Te,t, Ti,t, u, ψ
+) with (B.8)-(B.9)

13: t← t+ 1
14: end while

The constant parameters are fixed as follows

Bϕ0 = 1.44, R0 = 0.88, aρ = 0.25, Zeff = 3.5, δ0 = 0.3,
n̄e = 1× 10−19, αT i = 0.7, µ0 = 4π × 10−7, γn = 2.

(B.15)

In the current experiment, we assume that the two ECCD actuators, described by the injected
current density in (B.4), have the following parameters

ccd,1 = 1, ρdep,1 = 0, wcd,1 = 0.35, P̄eccd,1 = 900(MW), P eccd,i = 360(MW),
ccd,2 = −1, ρdep,2 = 0, wcd,2 = 0.35, P̄eccd,2 = 750(MW), P eccd,2 = 100(MW).

(B.16)

It is worth noticing that the Ohmic power at time instant t + 1 is computed with the variables
η∥,t, Te,t, Ti,t, u, belonging to the time instant t, as well as ψ+, belonging to the time instant
t + 1. With this simulation procedure, it is not possible to only use variables belonging to the
time instant t + 1 for the P+

OH calculation because P+
OH itself is needed to compute Te,t+1 and

Ti,t+1. This is an intrinsic property of this simulation procedure, introduced in [233], that avoids
the implementation of a fixed point iteration research to find all the states at the time step t+1.
The nonlinear components of the model are delayed by one sample while an implicit-explicit
scheme is used for the linear components, thus avoiding the fixed-point iteration algorithm to
obtain a faster simulation.
To test the simulator’s precision with respect to a certain tokamak configuration, we compare
the trajectories obtained with the application of some constant open-loop controls with the ones
obtained through the application of the same controls with the RAPTOR simulator. The RAPTOR
simulator is a real-time predictor of the Ψ and Te profiles used as an observer in the TCV control
environment [70]. The kinetic and magnetic profiles are obtained by simulating two coupled
nonlinear reaction-diffusion PDEs. Therefore, the RAPTOR simulator provides fairly precise sim-
ulation results that can be taken as a reference for our simulator. Figure B.1 shows the ∂ψ

∂ρ (ρ, t)
trajectories with the application of the open loop input a = 0.15. The initial condition for both

174

Appendix B. Tokamak model and simulation algorithm

(a) ∂ψ/∂s open-loop trajectories. (b) ∂ψ/∂s open-loop profiles at t = 0.1, 0.2, 1.5.

Figure B.1: Comparison between RAPTOR and training model open-loop simulations.

the RAPTOR and the training simulator corresponds to the steady state with the constant open
loop input a = 0.7. In Figure B.1a are shown the trajectories of four points of the spatial domain
x = 0.05, 0.35, 0.5, 0.75 of both the RAPTOR and training simulator. While in Figure B.1b
are shown the ∂ψ

∂ρ (ρ, t) profiles at time instants t = 0.1, 0.2, 1.5. We remark that there exists a
visible difference between the profiles obtained with the proposed simulation algorithm and the
RAPTOR simulator. Nevertheless, we can observe similar trends:

• Small values of the input result to small values of the magnetic gradient peak,

• Small values of the input result to a right-shift of the magnetic gradient peak.

175

B.2. Simulation Algorithm

176

Bibliography

[1] M. Abdelrahem, C. M. Hackl, R. Kennel, and J. Rodriguez. Efficient direct-model predictive
control with discrete-time integral action for pmsgs. IEEE Transactions on Energy Conversion,
34(2):1063–1072, 2019.

[2] R. P. Agarwal. Difference equations and inequalities: theory, methods, and applications. CRC
Press, 2000.

[3] Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief intro-
duction and some open problems. In 53rd IEEE Conference on Decision and Control, pages
3835–3847, 2014.

[4] Z. Aminzare and E. D. Sontag. Synchronization of diffusively-connected nonlinear systems:
Results based on contractions with respect to general norms. IEEE Transactions on Network
Science and Engineering, 1(2):91–106, 2014.

[5] V. Andrieu, B. Jayawardhana, and L. Praly. Transverse exponential stability and applications.
IEEE Transactions on Automatic Control, 61(11):3396–3411, 2016.

[6] V. Andrieu, B. Jayawardhana, and L. Praly. Characterizations of global transversal exponen-
tial stability. IEEE Transactions on Automatic Control, 66(8):3682–3694, 2020.

[7] V. Andrieu, B. Jayawardhana, and S. Tarbouriech. Some results on exponential synchro-
nization of nonlinear systems. IEEE Transactions on Automatic Control, 63(4):1213–1219,
2018.

[8] V. Andrieu and S. Tarbouriech. LMI conditions for contraction and synchronization. IFAC-
PapersOnLine, 52(16):616–621, 2019.

[9] D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control, 47(3):410–421, 2002.

[10] D. Angeli. Further results on incremental input-to-state stability. IEEE Transactions on
Automatic Control, 54(6):1386–1391, 2009.

[11] D. Angeli, M. A. Al-Radhawi, and E. D. Sontag. A robust Lyapunov criterion for nonoscil-
latory behaviors in biological interaction networks. IEEE Transactions on Automatic Control,
67(7):3305–3320, 2022.

[12] D. Angeli and E. Sontag. Monotone control systems. IEEE Transactions on Automatic
Control, 48(10):1684–1698, 2003.

[13] M. Arcak. Passivity as a design tool for group coordination. IEEE Transactions on Automatic
Control, 52(8):1380–1390, 2007.

[14] M. Arcak. Certifying spatially uniform behavior in reaction–diffusion pde and compart-
mental ode systems. Automatica, 47(6):1219–1229, 2011.

177

Bibliography

[15] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[16] D. Astolfi. Observers and robust output regulation for nonlinear systems. PhD thesis, Uni-
versitá di Bologna, 2016.

[17] D. Astolfi and L. Praly. Integral action in output feedback for multi-input multi-output
nonlinear systems. IEEE Transactions on Automatic Control, 62(4):1559–1574, 2017.

[18] D. Astolfi, L. Praly, and L. Marconi. Harmonic internal models for structurally robust
periodic output regulation. Systems & Control Letters, 161:105154, 2022.

[19] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fundamenta mathematicae, 3(1):133–181, 1922.

[20] J. E. Barton, E. Schuster, F. Felici, and O. Sauter. Closed-loop control of the safety factor
profile in the tcv tokamak. In 53rd IEEE Conference on Decision and Control, pages 5660–
5665. IEEE, 2014.

[21] J. E. Barton, W. P. Wehner, E. Schuster, F. Felici, and O. Sauter. Simultaneous closed-loop
control of the current profile and the electron temperature profile in the tcv tokamak. In
2015 American Control Conference (ACC), pages 3316–3321. IEEE, 2015.

[22] F. Bayer, M. Bürger, and F. Allgöwer. Discrete-time incremental ISS: A framework for
robust NMPC. In European Control Conference, pages 2068–2073, 2013.

[23] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[24] M. S. Benachour, V. Andrieu, L. Praly, and H. Hammouri. Forwarding design with pre-
scribed local behavior. IEEE Transactions on Automatic Control, 58(12):3011–3023, 2013.

[25] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of
attraction for uncertain, nonlinear systems with gaussian processes. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 4661–4666. IEEE, 2016.

[26] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement
learning with stability guarantees. Advances in neural information processing systems, 30,
2017.

[27] D. P. Bertsekas. Dynamic programming and optimal control 4th edition, volume ii chapter
4 noncontractive total cost problems. Massachusetts Institute of Technology, 2018.

[28] D. P. Bertsekas. Reinforcement Learning and Optimal Control. Athena scientific, 2nd printing
edition, 2018.

[29] J. Blum. Numerical simulation and optimal control in plasma physics. New York, NY; John
Wiley and Sons Inc., 1989.

[30] N. Bof, R. Carli, and L. Schenato. Lyapunov theory for discrete time systems. arXiv preprint
arXiv:1809.05289, 2018.

[31] F. Bonassi, M. Farina, and R. Scattolini. Stability of discrete-time feed-forward neural
networks in NARX configuration. IFAC-PapersOnLine, 54(7):547–552, 2021.

[32] M. D. Boyer, J. Barton, E. Schuster, M. L. Walker, T. C. Luce, J. R. Ferron, B. G. Penaflor,
R. D. Johnson, and D. A. Humphreys. Backstepping control of the toroidal plasma current

178

Bibliography

profile in the DIII-D tokamak. IEEE Transactions on Control Systems Technology, 22(5):1725–
1739, 2014.

[33] S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In Advances
in neural information processing systems, pages 295–302, 1993.

[34] F. Bribiesca Argomedo, E. Witrant, C. Prieur, S. Brémond, R. Nouailletas, and J. Artaud.
Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma. Nuclear
Fusion, 53(3):033005, feb 2013.

[35] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016.

[36] R. Brégeon. Évolution résistive du profil de courant dans les tokamaks, application à
l’optimisation des echarges de Tore Supra. PhD thesis, Université de Provence (Aix-Marseille
I), CEA - Cadarache, 1998.

[37] F. Bullo. Contraction Theory for Dynamical Systems, volume 1. Kindle Direct Publishing,
2022.

[38] C. I. Byrnes and A. Isidori. Limit sets, zero dynamics, and internal models in the problem
of nonlinear output regulation. IEEE Transactions on Automatic Control, 2003.

[39] G. Casadei, D. Astolfi, A. Alessandri, and L. Zaccarian. Synchronization in networks of
identical nonlinear systems via dynamic dead zones. IEEE Control Systems Letters, 3(3):667–
672, 2019.

[40] G. Casadei, A. Isidori, and L. Marconi. About disconnected topologies and synchronization
of homogeneous nonlinear agents over switching networks. International Journal of Robust
and Nonlinear Control, 28(3):901–917, 2018.

[41] V. Chellaboina and W. M. Haddad. Stability margins of discrete-time nonlinear non-
quadratic optimal regulators. In Proceedings of the 37th IEEE Conference on Decision and
Control, volume 2, pages 1786–1791 vol.2, 1998.

[42] C. Chen, L. Xie, K. Xie, F. L. Lewis, and S. Xie. Adaptive optimal output tracking of
continuous-time systems via output-feedback-based reinforcement learning. Automatica,
2022.

[43] M. Z. Q. Chen, L. Zhang, H. Su, and G. Chen. Stabilizing solution and parameter de-
pendence of modified algebraic Riccati equation with application to discrete-time network
synchronization. IEEE Transactions on Automatic Control, 61(1):228–233, 2016.

[44] G. Chesi. Domain of attraction: analysis and control via SOS programming, volume 20.
Springer, 2011.

[45] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. In EMNLP, 2014.

[46] J. Choi, F. Castaneda, C. J. Tomlin, and K. Sreenath. Reinforcement learning for safety-
critical control under model uncertainty, using control Lyapunov functions and control bar-
rier functions. Robotics: Science and Systems (RSS), 2020.

179

Bibliography

[47] N. Chopra and M. Spong. Output synchronization of nonlinear systems with relative de-
gree one. In Recent advances in learning and control, pages 51–64. Springer, 2008.

[48] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A Lyapunov-based ap-
proach to safe reinforcement learning. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[49] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-
based safe policy optimization for continuous control. arXiv preprint arXiv:1901.10031,
ICML Workshop RL4RealLife, 2019.

[50] F. H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[51] M. Coraggio, P. DeLellis, S. J. Hogan, and M. Di Bernardo. Synchronization of networks of
piecewise-smooth systems. IEEE Control Systems Letters, 2(4):653–658, 2018.

[52] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

[53] A. Cristofaro and M. Mattioni. Hybrid consensus for multi-agent systems with time-driven
jumps. Nonlinear Analysis: Hybrid Systems, 43:101113, 2021.

[54] O. Dalin, R. Ofir, E. B. Shalom, A. Ovseevich, F. Bullo, and M. Margaliot. Verifying k-
contraction without computing k-compounds. arXiv preprint:2209.01046, 2022.

[55] W. D’Amico, A. La Bella, and M. Farina. An incremental input-to-state stability condition
for a generic class of recurrent neural networks. arXiv preprint arXiv:2210.09721, 2022.

[56] A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for
time-varying convex optimization. arXiv preprint arXiv:2305.15595, 2023.

[57] A. Davydov, S. Jafarpour, and F. Bullo. Non-euclidean contraction theory for robust non-
linear stability. IEEE Transactions on Automatic Control, 67(12):6667–6681, 2022.

[58] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A survey of neural
lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on
Robotics, 2023.

[59] M. C. De Oliveira, J. Bernussou, and J. C. Geromel. A new discrete-time robust stability
condition. Systems & Control Letters, 37(4):261–265, 1999.

[60] C. De Persis, E. R. A. Weitenberg, and F. Dörfler. A power consensus algorithm for dc
microgrids. Automatica, 89:364–375, 2018.

[61] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner,
A. Abdolmaleki, D. de Las Casas, C. Donner, L. Fritz, C. Galperti, A. Huber, J. Keeling,
M. Tsimpoukelli, J. Kay, A. Merle, J. M. Moret, S. Noury, D. Pesamosca, F.and Pfau, O. Sauter,
C. Sommariva, S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, and
M. Riedmiller. Magnetic control of tokamak plasmas through deep reinforcement learning.
Nature, 602(7897):414–419, 2022.

[62] S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-based output tracking. IEEE Trans-
actions on Automatic Control, 1996.

[63] M. Di Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-smooth dynamical
systems: theory and applications, volume 163. Springer Science & Business Media, 2008.

180

http://pybullet.org

Bibliography

[64] M. Di Bernardo, D. Liuzza, and G. Russo. Contraction analysis for a class of nondifferen-
tiable systems with applications to stability and network synchronization. SIAM Journal on
Control and Optimization, 52(5):3203–3227, 2014.

[65] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for
solving partial differential equations. communications in Numerical Methods in Engineering,
10(3):195–201, 1994.

[66] B. Eysenbach and S. Levine. Maximum entropy rl (provably) solves some robust rl prob-
lems. 10th International Conference on Learning Representations (ICLR), 2022.

[67] S. M. Fallat and C. R. Johnson. Totally nonnegative matrices. Princeton university press,
2022.

[68] A. Farahmand, S. Nabi, P. Grover, and D. N. Nikovski. Learning to control partial differ-
ential equations: Regularized fitted Q-iteration approach. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 4578–4585, 2016.

[69] A. Farahmand, S. Nabi, and D. N. Nikovski. Deep reinforcement learning for partial dif-
ferential equation control. In 2017 American Control Conference (ACC), pages 3120–3127,
2017.

[70] F. Felici. Real-Time Control of Tokamak Plasmas: from Control of Physics to Physics-Based
Control. PhD thesis, EPFL, Lausanne, 2011.

[71] M. Fiedler. Special matrices and their applications in numerical mathematics. Courier Cor-
poration, 2008.

[72] F. Forni and R. Sepulchre. A differential Lyapunov framework for contraction analysis.
IEEE Transactions on Automatic Control, 59(3):614–628, 2013.

[73] F. Forni and R. Sepulchre. Differentially positive systems. IEEE Transactions on Automatic
Control, 61(2):346–359, 2016.

[74] F. Forni and R. Sepulchre. A dissipativity theorem for p-dominant systems. In IEEE 56th
Conference on Decision and Control, pages 3467–3472, 2017.

[75] F. Forni and R. Sepulchre. Differential dissipativity theory for dominance analysis. IEEE
Transactions on Automatic Control, 64(6):2340–2351, 2019.

[76] M. Franceschelli and P. Frasca. Proportional dynamic consensus in open multi-agent sys-
tems. In IEEE Conference on Decision and Control (CDC), pages 900–905. IEEE, 2018.

[77] B. A. Francis and W. M. Wonham. The internal model principle of control theory. Auto-
matica, 12(5):457–465, 1976.

[78] V. Fromion and G. Scorletti. The behaviour of incrementally stable discrete time systems.
American Control Conference ACC, 6:4563 – 4567, 1999.

[79] H. Fu, X. Chen, W. Wang, and M. Wu. Data-based optimal synchronization control for
discrete-time nonlinear heterogeneous multiagent systems. IEEE Transactions on Cybernet-
ics, 2020.

[80] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pages 1587–1596. PMLR,
2018.

181

Bibliography

[81] A. Gahlawat, M. M. Peet, and E. Witrant. Control and verification of the safety-factor pro-
file in tokamaks using sum-of-squares polynomials. IFAC Proceedings Volumes, 44(1):12556–
12561, 2011. 18th IFAC World Congress.

[82] A. Gahlawat, E. Witrant, M. M. Peet, and M. Alamir. Bootstrap current optimization in
tokamaks using sum-of-squares polynomials. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pages 4359–4365, 2012.

[83] M. Giaccagli. Ph.D. thesis: “Incremental stability and applications for nonlinear control
systems”. PhD thesis, Universitè Claude Bernard Lyon 1, 2022.

[84] M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi. Infinite gain margin, contraction
and optimality: An LMI-based design. European Journal of Control, 68:100685, 2022.

[85] M. Giaccagli, D. Astolfi, and V. Andrieu. Further results on incremental input-to-state
stability based on contraction-metric analysis. In Submitted to IEEE 62nd Conference on
Decision and Control (CDC), 2023.

[86] M. Giaccagli, D. Astolfi, V. Andrieu, and L. Marconi. Sufficient conditions for global integral
action via incremental forwarding for input-affine nonlinear systems. IEEE Transactions on
Automatic Control, 67(12):6537–6551, 2022.

[87] P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of
contraction metrics. arXiv preprint arXiv:2203.01367, 2022.

[88] M. E. Gilmore, C. Guiver, and H. Logemann. Semi-global incremental input-to-state stabil-
ity of discrete-time Lur’e systems. Systems & Control Letters, 136:104593, 2020.

[89] C. Godsil and G. Royle. Algebraic graph theory. Springer, 2001.

[90] C. A. Gonzaga, M. Jungers, and J. Daafouz. Stability analysis of discrete-time Lur’e sys-
tems. Automatica, 48(9):2277–2283, 2012.

[91] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[92] S. Grammatico, A. Subbaraman, and A. R. Teel. Discrete-time stochastic control systems:
A continuous Lyapunov function implies robustness to strictly causal perturbations. Auto-
matica, 49(10):2939–2952, 2013.

[93] F. Gu, H. Yin, L. El Ghaoui, M. Arcak, P. Seiler, and M. Jin. Recurrent neural network
controllers synthesis with stability guarantees for partially observed systems. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pages 5385–5394, 2022.

[94] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR, 2018.

[95] M. Han, L. Zhang, J. Wang, and W. Pan. Actor-critic reinforcement learning for control
with stability guarantee. IEEE Robotics and Automation Letters, 5(4):6217–6224, 2020.

[96] J. Hauser, S. Sastry, and P. Kokotovic. Nonlinear control via approximate input-output
linearization: The ball and beam example. IEEE Transactions on Automatic Control, 1992.

[97] K. Hengster-Movric, K. You, F. L. Lewis, and L. Xie. Synchronization of discrete-time multi-
agent systems on graphs using riccati design. Automatica, 49(2):414–423, 2013.

182

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[98] H. J. C. Huijberts, T. Lilge, and H. Nijmeijer. Nonlinear discrete-time synchronization
via extended observers. International Journal of Bifurcation and Chaos, 11(07):1997–2006,
2001.

[99] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement
learning for POMDPs. In International Conference on Machine Learning, pages 2117–2126.
PMLR, 2018.

[100] F. Imbeaux, M. Lennholm, A. Ekedahl, P. Pastor, T. Aniel, S. Brémond, J. Decker, P. De-
vynck, R. Dumont, G. Giruzzi, P. Maget, D. Mazon, A. Merle, D. Molina, P. Moreau, F. Saint-
Laurent, J. Ségui, D. Zarzoso, and T. S. Team. Real-time control of the safety factor profile
diagnosed by magneto-hydrodynamic activity on the tore supra tokamak. Nuclear Fusion,
51(7):073033, jun 2011.

[101] A. Isidori. Nonlinear Control Systems. Springer, 1995.

[102] A. Isidori. Lectures in feedback design for multivariable systems. Springer, 2017.

[103] A. Isidori and C. I. Byrnes. Output regulation of nonlinear systems. IEEE Transactions on
Automatic Control, 1990.

[104] A. Isidori, L. Marconi, and G. Casadei. Robust output synchronization of a network of
heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Transactions on Auto-
matic Control, 59(10):2680–2691, 2014.

[105] S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for net-
work systems and diffusively coupled oscillators. IEEE Transactions on Automatic Control,
67(3):1285–1300, 2022.

[106] Z. Jiang and Y. Wang. A converse Lyapunov theorem for discrete-time systems with
disturbances. Systems & Control Letters, 45(1):49–58, 2002.

[107] J. Jouffroy. Some ancestors of contraction analysis. In 44th IEEE Conference on Decision
and Control, pages 5450–5455, 2005.

[108] J. Kato and T. Yoshizawa. A relationship between uniformly asymptotic stability and total
stability. Funkcialaj Ekvacioj, 12:233–238, 1969.

[109] Y. Kawano and Y. Hosoe. Contraction analysis of discrete-time stochastic systems. IEEE
Transactions on Automatic Control, pages 1–16, 2023.

[110] Y. Kawano and K. Kashima. An LMI framework for contraction-based nonlinear control
design by derivatives of Gaussian process regression. Automatica, 151:110928, 2023.

[111] C. M. Kellett and A. R. Teel. Smooth Lyapunov functions and robustness of stability for
difference inclusions. Systems & Control Letters, 52(5):395–405, 2004.

[112] C. M. Kellett and A. R. Teel. On the robustness of KL-stability for difference inclu-
sions: Smooth discrete-time Lyapunov functions. SIAM Journal on Control and Optimization,
44(3):777–800, 2005.

[113] H. K. Khalil. Nonlinear systems. Pearson, 3rd ed edition, 2002.

[114] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations (ICLR), 2015.

183

Bibliography

[115] B. Kiumarsi, F. L. Lewis, and Z. Jiang. H∞ control of linear discrete-time systems: Off-
policy reinforcement learning. Automatica, 78:144–152, 2017.

[116] S. Knorn, Z. Chen, and R. H. Middleton. Overview: Collective control of multiagent
systems. IEEE Transactions on Control of Network Systems, 3(4):334–347, 2015.

[117] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information process-
ing systems, 12, 1999.

[118] K. Königsberger. Analysis 2. Springer-Verlag, 2004.

[119] L. Laborde, D. Mazon, D. Moreau, A. Murari, R. Felton, L. Zabeo, R. Albanese, M. Ariola,
J. Bucalossi, F. Crisanti, M. de Baar, G. de Tommasi, P. de Vries, E. Joffrin, M. Lennholm,
X. Litaudon, A. Pironti, T. Tala, and A. Tuccillo. A model-based technique for integrated real-
time profile control in the JET tokamak. Plasma Physics and Controlled Fusion, 47(1):155–
183, dec 2004.

[120] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
1998.

[121] P. Lancaster and M. Tismenetsky. The theory of matrices: with applications. Elsevier, 1985.

[122] F. L. Lewis and D. Vrabie. Reinforcement learning and adaptive dynamic programming
for feedback control. IEEE circuits and systems magazine, 9(3):32–50, 2009.

[123] J. Li, J. Ding, T. Chai, F. L. Lewis, and S. Jagannathan. Adaptive interleaved reinforce-
ment learning: Robust stability of affine nonlinear systems with unknown uncertainty. IEEE
Transactions on Neural Networks and Learning Systems, 33(1):270–280, 2022.

[124] M. Y. Li and J. S. Muldowney. On R.A. Smith’s Autonomous Convergence Theorem. Rocky
Mountain Journal of Mathematics, 25(1):365 – 378, 1995.

[125] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[126] Z. Li, Z. Duan, G. Chen, and L. Huang. Consensus of multiagent systems and synchroniza-
tion of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I:
Regular Papers, 57(1):213–224, 2009.

[127] D. Liberzon. Switching in systems and control, volume 190. Springer, 2003.

[128] T. Lilge. Nonlinear discrete-time observers for synchronization problems. In New Direc-
tions in nonlinear observer design, pages 491–510. Springer, 1999.

[129] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. 4th International Conference on
Learning Representations (ICLR), 2016.

[130] D. Limon and T. Alamo. Tracking model predictive control. In Encyclopedia of Systems
and Control. Springer, 2021.

[131] W. Lin. Feedback stabilization of general nonlinear control systems: a passive system
approach. Systems & Control Letters, 25(1):41–52, 1995.

[132] W. Lin and C. I. Byrnes. Design of discrete-time nonlinear control systems via smooth
feedback. IEEE Transactions on Automatic Control, 39(11):2340–2346, 1994.

184

Bibliography

[133] Z. Liu, M. Zhang, A. Saberi, and A. A. Stoorvogel. Passivity based state synchronization of
homogeneous discrete-time multi-agent systems via static protocol in the presence of input
delay. European Journal of Control, 41:16–24, 2018.

[134] W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems. Auto-
matica, 34(6):683–696, 1998.

[135] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. 5th
International Conference on Learning Representations (ICLR), 2017.

[136] E. Maljaars, F. Felici, T. C. Blanken, C. Galperti, O. Sauter, M. R. De Baar, F. Carpanese,
T. P. Goodman, D. Kim, S. H. Kim, M. Kong, B. Mavkov, A. Merle, J. M. Moret, R. Nouail-
letas, M. Scheffer, A. A. Teplukhina, N. M. T. Vu, E. MST1-team, and TCV-team. Profile
control simulations and experiments on tcv: a controller test environment and results using
a model-based predictive controller. Nuclear Fusion, 57(12):126063, 2017.

[137] E. Maljaars, F. Felici, M. R. De Baar, J. Van Dongen, G. M. D. Hogeweij, P. J. M. Geelen,
and M. Steinbuch. Control of the tokamak safety factor profile with time-varying constraints
using mpc. Nuclear Fusion, 55(2):023001, 2015.

[138] I. G. Malkin. Stability Theory of Motion. Nauka, Moscow, 1966.

[139] I. R. Manchester, M. Revay, and R. Wang. Contraction-based methods for stable identifi-
cation and robust machine learning: a tutorial. In 2021 60th IEEE Conference on Decision
and Control (CDC), pages 2955–2962. IEEE, 2021.

[140] I. R. Manchester and J. J. E. Slotine. Control contraction metrics: Convex and intrinsic
criteria for nonlinear feedback design. IEEE Transactions on Automatic Control, 62(6):3046–
3053, 2017.

[141] P. Martin, S. Devasia, and B. Paden. A different look at output tracking: Control of a
VTOL aircraft. Automatica, 1996.

[142] M. Mattioni, S. Monaco, and D. Normand-Cyrot. Forwarding stabilization in discrete
time. Automatica, 109:108532, 2019.

[143] M. Mattioni, S. Monaco, and D. Normand-Cyrot. A new connection protocol for multi-
consensus of discrete-time systems. In American Control Conference (ACC), pages 5179–
5184. IEEE, 2022.

[144] B. Mavkov, E. Witrant, and C. Prieur. Distributed control of coupled inhomogeneous
diffusion in tokamak plasmas. IEEE Transactions on Control Systems Technology, 27(1):443–
450, 2019.

[145] B. Mavkov, E. Witrant, C. Prieur, E. Maljaars, F. Felici, O. Sauter, and TCV-Team. Exper-
imental validation of a Lyapunov-based controller for the plasma safety factor and plasma
pressure in the TCV tokamak. Nuclear Fusion, 58(5):056011, mar 2018.

[146] W. Mei and F. Bullo. Lasalle invariance principle for discrete-time dynamical systems: A
concise and self-contained tutorial. arXiv preprint arXiv:1710.03710, 2017.

[147] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

185

Bibliography

[148] D. Moreau, J. F. Artaud, J. R. Ferron, C. T. Holcomb, D. A. Humphreys, F. Liu, T. C. Luce,
J. M. Park, R. Prater, F. Turco, and M. L. Walker. Combined magnetic and kinetic control
of advanced tokamak steady state scenarios based on semi-empirical modelling. Nuclear
Fusion, 55(6):063011, 2015.

[149] P. Moreau, S. Bremond, D. Douai, A. Geraud, P. Hertout, M. Lennholm, D. Mazon,
F. Saint-Laurent, and T. S. Team. Plasma control in tore supra. Fusion Science and Tech-
nology, 56(3):1284–1299, 2009.

[150] J. Morimoto and K. Doya. Robust reinforcement learning. Neural computation,
17(2):335–359, 2005.

[151] J. Muldowney. Compound matrices and ordinary differential equations. Rocky Mountain
Journal of Mathematics, 20(4):857–872, 1990.

[152] D. Nešić, A. R. Teel, and D. Carnevale. Explicit computation of the sampling period in
emulation of controllers for nonlinear sampled-data systems. IEEE transactions on Automatic
Control, 54(3):619–624, 2009.

[153] D. Nešić, A. R. Teel, and P. V. Kokotović. Sufficient conditions for stabilization of sampled-
data nonlinear systems via discrete-time approximations. Systems & Control Letters, 38(4-
5):259–270, 1999.

[154] R. Ofir, M. Margaliot, Y. Levron, and J. J. Slotine. A sufficient condition for k-
contraction of the series connection of two systems. IEEE Transactions on Automatic Control,
67(9):4994–5001, 2022.

[155] E. Ott. Chaos in dynamical systems. Cambridge university press, 2002.

[156] Y. Ou, C. Xu, and E. Schuster. Robust control design for the poloidal magnetic flux pro-
file evolution in the presence of model uncertainties. IEEE Transactions on Plasma Science,
38(3):375–382, 2010.

[157] Y. Ou, C. Xu, E. Schuster, T. C. Luce, J. R. Ferron, M. L. Walker, and D. A. Humphreys. Op-
timal tracking control of current profile in tokamaks. IEEE Transactions on Control Systems
Technology, 19(2):432–441, 2011.

[158] D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, and J. Lygeros. Nash and wardrop
equilibria in aggregative games with coupling constraints. IEEE Transactions on Automatic
Control, 64(4):1373–1388, 2019.

[159] A. Pajares and E. Schuster. Nonlinear robust safety factor profile control in tokamaks
via feedback linearization and nonlinear damping techniques. In 2018 IEEE Conference on
Control Technology and Applications (CCTA), pages 306–311. IEEE, 2018.

[160] Y. Pan, A. Farahmand, M. White, S. Nabi, P. Grover, and D. Nikovski. Reinforcement
learning with function-valued action spaces for partial differential equation control. In
J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 3986–3995. PMLR,
10–15 Jul 2018.

[161] E. Panteley, A. Loria, and S. Sukumar. Strict Lyapunov functions for consensus under
directed connected graphs. In 2020 European Control Conference (ECC), pages 935–940.
IEEE, 2020.

186

Bibliography

[162] A. Paszke et al. Pytorch: an imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[163] A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Nijmeijer. Convergent dynamics, a
tribute to Boris Pavlovich Demidovich. Systems & Control Letters, 52(3-4):257–261, 2004.

[164] A. Pavlov, E. Steur, and N. van de Wouw. Nonlinear integral coupling for synchronization
in networks of nonlinear systems. Automatica, 140:110202, 2022.

[165] A. Pavlov and N. van de Wouw. Convergent discrete-time nonlinear systems: the case of
PWA systems. In 2008 American Control Conference, pages 3452–3457. IEEE, 2008.

[166] A. Pavlov, N. Van De Wouw, and H. Nijmeijer. Uniform output regulation of nonlinear
systems: a convergent dynamics approach, volume 205. Springer, 2006.

[167] I. R. Petersen. A stabilization algorithm for a class of uncertain linear systems. Systems &
Control Letters, 8(4):351–357, 1987.

[168] I. R. Petersen and C. V. Hollot. A Riccati equation approach to the stabilization of uncer-
tain linear systems. Automatica, 22(4):397–411, 1986.

[169] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement
learning. In International Conference on Machine Learning, pages 2817–2826. PMLR, 2017.

[170] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz. Stability analysis of discrete-time
infinite-horizon optimal control with discounted cost. IEEE Transactions on Automatic Con-
trol, 62(6):2736–2749, 2017.

[171] L. Praly, R. Ortega, and G. Kaliora. Stabilization of nonlinear systems via forwarding
mod{LgV }. IEEE Transactions on Automatic Control, 46(9):1461–1466, 2001.

[172] L. Praly and Y. Wang. Stabilization in spite of matched unmodeled dynamics and an
equivalent definition of input-to-state stability. Mathematics of Control, Signals and Systems,
9(1):1–33, 1996.

[173] D. C. Psichogios and L. H. Ungar. A hybrid neural network-first principles approach to
process modeling. AIChE Journal, 38(10):1499–1511, 1992.

[174] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

[175] Z. Qu. Robust control of nonlinear uncertain systems under generalized matching condi-
tions. Automatica, 29(4):985–998, 1993.

[176] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable base-
lines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[177] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[178] B. S. Rüffer, N. Van De Wouw, and M. Mueller. Convergent systems vs. incremental
stability. Systems & Control Letters, 62(3):277–285, 2013.

187

https://github.com/DLR-RM/stable-baselines3

Bibliography

[179] A. Saberi, A. A. Stoorvogel, M. Zhang, and P. Sannuti. Synchronization of Multi-Agent
Systems in the Presence of Disturbances and Delays. Springer Nature, 2022.

[180] L. Salvadori and A. Schiaffino. On the problem of total stability. Nonlinear Analysis:
Theory, Methods & Applications, 1(3):207–213, 1977.

[181] R. G. Sanfelice and L. Praly. Convergence of Nonlinear Observers on Rn With a Rieman-
nian Metric (Part I). IEEE Transactions on Automatic Control, 57(7):1709–1722, 2012.

[182] O. Sauter, C. Angioni, and Y. R. Lin-Liu. Neoclassical conductivity and bootstrap current
formulas for general axisymmetric equilibria and arbitrary collisionality regime. Physics of
Plasmas, 6(7):2834–2839, 1999.

[183] L. Scardovi and R. Sepulchre. Synchronization in networks of identical linear systems. In
47th IEEE Conference on Decision and Control, pages 546–551, 2008.

[184] L. Scardovi and R. Sepulchre. Synchronization in networks of identical linear systems.
Automatica, 45(11):2557–2562, 2009.

[185] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI
optimization. IEEE Transactions on Automatic Control, 42(7):896–911, 1997.

[186] J. Schmidhuber. Making the World Differentiable: On Using Self-Supervised Fully Recur-
rent Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary
Environments. Inst. für Informatik, 1990.

[187] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–
117, 2015.

[188] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[189] G. Seifert. On total stability and asymptotic stability. Tôhoku Math. Journ., 19(1), 1967.

[190] J. Seo, Y. S. Na, B. Kim, C. Y. Lee, M. S. Park, S. J. Park, and Y. H. Lee. Feedfor-
ward beta control in the KSTAR tokamak by deep reinforcement learning. Nuclear Fusion,
61(10):106010, sep 2021.

[191] R. Sepulchre, M. Jankovic, and P. V. Kokotovic. Constructive nonlinear control. Springer
Science & Business Media, 2012.

[192] A. Serrani, A. Isidori, and L. Marconi. Semi-global nonlinear output regulation with
adaptive internal model. IEEE Transactions on Automatic Control, 46(8):1178–1194, 2001.

[193] D. Sheng and G. Fazekas. A feature learning siamese model for intelligent control of the
dynamic range compressor. In IEEE International Joint Conference on Neural Networks, pages
1–8, 2019.

[194] D. D. Šiljak and D. M. Stipanovic. Robust stabilization of nonlinear systems: The LMI
approach. Mathematical problems in Engineering, 6(5):461–493, 2000.

[195] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

188

Bibliography

[196] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International conference on machine learning, pages 387–395.
PMLR, 2014.

[197] J. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems &
Control Letters, 65:74–80, 2014.

[198] J. W. Simpson-Porco. Low-gain stability of projected integral control for input-
constrained discrete-time nonlinear systems. IEEE Control Systems Letters, 6:788–793, 2021.

[199] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry.
Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control,
49(9):1453–1464, 2004.

[200] J. J. E. Slotine and W. Wang. A study of synchronization and group cooperation using
partial contraction theory. In Cooperative control, pages 207–228. Springer, 2005.

[201] R. A. Smith. The poincaré–bendixson theorem for certain differential equations of higher
order. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 83(1-2):63–79,
1979.

[202] T. Söderström and P. Stoica. System Identification. Prentice Hall International, 1989.

[203] E. Sontag. Contractive systems with inputs. In Perspectives in mathematical system theory,
control, and signal processing, pages 217–228. Springer, 2010.

[204] E. D. Sontag and Y. Wang. On characterizations of the input-to-state stability property.
Systems & Control Letters, 1995.

[205] G. Stan and R. Sepulchre. Analysis of interconnected oscillators by dissipativity theory.
IEEE Transactions on Automatic Control, 52(2):256–270, 2007.

[206] A. A. Stoorvogel, A. Saberi, M. Zhang, and Z. Liu. Solvability conditions and design for
synchronization of discrete-time multiagent systems. International Journal of Robust and
Nonlinear Control, 28(4):1381–1401, 2017.

[207] T. Strom. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741–753,
1975.

[208] T. Stykel. Stability and inertia theorems for generalized Lyapunov equations. Linear
Algebra and its Applications, 355(1-3):297–314, 2002.

[209] D. Sun, S. Jha, and C. Fan. Learning certified control using contraction metric. In Confer-
ence on Robot Learning, pages 1519–1539, 2021.

[210] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[211] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for
reinforcement learning with function approximation. In NIPs, volume 99, pages 1057–1063.
Citeseer, 1999.

[212] S. Takashi. Riemannian geometry, volume 149. American Mathematical Soc., 1996.

[213] S. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances
and open problems. IET control theory & applications, 3(1):1–19, 2009.

189

Bibliography

[214] C. Tessler, Y. Efroni, and S. Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pages 6215–
6224. PMLR, 2019.

[215] D. N. Tran, B. S. Rüffer, and C. M. Kellett. Incremental stability properties for discrete-
time systems. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 477–482.
IEEE, 2016.

[216] D. N. Tran, B. S. Rüffer, and C. M. Kellett. Convergence properties for discrete-time
nonlinear systems. IEEE Transactions on Automatic Control, 64(8):3415–3422, 2019.

[217] N. M. Trang Vu, R. Nouailletas, E. Maljaars, F. Felici, and O. Sauter. Plasma internal
profile control using ida-pbc: Application to tcv. Fusion Engineering and Design, 123:624–
627, 2017. Proceedings of the 29th Symposium on Fusion Technology (SOFT-29) Prague,
Czech Republic, September 5-9, 2016.

[218] H. Tsukamoto and S. Chung. Neural contraction metrics for robust estimation and con-
trol: A convex optimization approach. IEEE Control Systems Letters, 2020.

[219] H. Tsukamoto, S. Chung, and J. Slotine. Contraction theory for nonlinear stability analy-
sis and learning-based control: A tutorial overview. Annual Reviews in Control, 52:135–169,
2021.

[220] G. Valmorbida and J. Anderson. Region of attraction estimation using invariant sets and
rational lyapunov functions. Automatica, 75:37–45, 2017.

[221] F. J. Vargas and R. A. González. On the existence of a stabilizing solution of modified al-
gebraic Riccati equations in terms of standard algebraic Riccati equations and linear matrix
inequalities. IEEE Control Systems Letters, 4(1):91–96, 2020.

[222] T. Wakatsuki, T. Suzuki, N. Hayashi, N. Oyama, and S. Ide. Safety factor profile control
with reduced central solenoid flux consumption during plasma current ramp-up phase using
a reinforcement learning technique. Nuclear Fusion, 59(6):066022, may 2019.

[223] T. Wakatsuki, M. Yoshida, E. Narita, T. Suzuki, and N. Hayashi. Simultaneous control of
safety factor profile and normalized beta for jt-60sa using reinforcement learning. Nuclear
Fusion, 63(7):076017, 2023.

[224] M. L. Walker, P. De Vries, F. Felici, and E. Schuster. Introduction to tokamak plasma
control. In 2020 American Control Conference (ACC), pages 2901–2918, 2020.

[225] S. Wang, E. Witrant, and D. Moreau. Robust control of q-profile and βp using data-driven
models on east. Fusion Engineering and Design, 162:112071, 2021.

[226] W. Wang and J. E. Slotine. On partial contraction analysis for coupled nonlinear oscilla-
tors. Biological cybernetics, 92(1):38–53, 2005.

[227] L. Wei, R. Mccloy, and J. Bao. Control contraction metric synthesis for discrete-time
nonlinear systems. IFAC-PapersOnLine, 54(3):661–666, 2021.

[228] L. Wei, R. McCloy, and J. Bao. Discrete-time contraction-based control of nonlinear sys-
tems with parametric uncertainties using neural networks. Computers & Chemical Engineer-
ing, 166:107962, 2022.

[229] J. Wesson and D. J. Campbell. Tokamaks, volume 149. Oxford university press, 2011.

190

Bibliography

[230] T. Wijnands, D. Van Houtte, G. Martin, X. Litaudon, and P. Froissard. Feedback control
of the current profile on tore supra. Nuclear Fusion, 37(6):777–791, jun 1997.

[231] F. W. Wilson. The structure of the level surfaces of a Lyapunov function. Journal of
Differential Equations, 3:323–329, 1967.

[232] E. Witrant and S. Brémond. Shape identification for distributed parameter systems and
temperature profiles in tokamaks. In 50th IEEE Conference on Decision and Control and
European Control Conference, pages 2626–2631, 2011.

[233] E. Witrant, E. Joffrin, S. Bremond, G. Giruzzi, D. Mazon, O. Barana, and P. Moreau.
A control-oriented model of the current profile in tokamak plasma. Plasma Physics and
Controlled Fusion, 49:1075–1105, 2007.

[234] M. Wondergem, E. Lefeber, K. Pettersen, and H. Nijmeijer. Output feedback tracking of
ships. IEEE Transactions on Control Systems Technology, 2010.

[235] C. Wu and D. V. Dimarogonas. From partial and horizontal contraction to k-contraction.
arXiv preprint:2208.14379, 2022.

[236] C. Wu, I. Kanevskiy, and M. Margaliot. k-contraction: Theory and applications. Automat-
ica, 136:110048, 2022.

[237] Y. Wu and Q. Zou. Robust inversion-based 2-DOF control design for output tracking:
Piezoelectric-actuator example. IEEE Transactions on Control Systems Technology, 2009.

[238] X. J. Xie and N. Duan. Output tracking of high-order stochastic nonlinear systems with
application to benchmark mechanical system. IEEE Transactions on Automatic Control, 2010.

[239] B. Yi, R. Wang, and I. Manchester. Reduced-order nonlinear observers via contraction
analysis and convex optimization. IEEE Transactions on Automatic Control, 2021.

[240] H. Yin, B. Jayawardhana, and R. Reyes-Báez. Pinning synchronization of heterogeneous
multi-agent nonlinear systems via contraction analysis. IEEE Control Systems Letters, 2021.

[241] H. Yin, P. Seiler, and M. Arcak. Stability analysis using quadratic constraints for systems
with neural network controllers. IEEE Transactions on Automatic Control, 67(4):1980–1987,
2022.

[242] M. Zamani and P. Tabuada. Backstepping design for incremental stability. IEEE Transac-
tions on Automatic Control, 56(9):2184–2189, 2011.

[243] F. Zhang, H. Trentelman, and J. Scherpen. Fully distributed robust synchronization of
networked Lur’e systems with incremental nonlinearities. Automatica, 50(10):2515–2526,
2014.

[244] N. Zhang and N. Capel. Leoc: A principled method in integrating reinforcement learning
and classical control theory. In Learning for Dynamics and Control. PMLR, 2021.

[245] P. Zhao, A. Lakshmanan, K. Ackerman, A. Gahlawat, M. Pavone, and N. Hovakimyan.
Tube-certified trajectory tracking for nonlinear systems with robust control contraction met-
rics. IEEE Robotics and Automation Letters, 2022.

[246] K. Zhou and J. C. Doyle. Essentials of robust control. Prentice hall Upper Saddle River,
NJ, 1998.

191

Bibliography

[247] Z. Zuo, J. Wang, and L. Huang. Robust stabilization for non-linear discrete-time systems.
International Journal of Control, 77(4):384–388, 2004.

192

Own References

[S1] A. Cecilia, S. Zoboli, U. Serres, D. Astolfi, and V. Andrieu. LMI conditions for k-
contraction: analysis and design. Under review on IEEE Transactions on Automatic Con-
trol, 2023.

[S2] M. Giaccagli, S. Zoboli, D. Astolfi, V. Andrieu, and G. Casadei. Synchronization in Net-
works of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-
Learning for Feedback Estimation. Under review on IEEE Transactions on Automatic Con-
trol. Preprint: hal-03801100, 2023.

[S3] A. Mattioni, S. Zoboli, B. Mavkov, D. Astolfi, V. Andrieu, E. Witrant, P. Frasca, and
C. Prieur. Enhancing deep reinforcement learning with integral action to control toka-
mak safety factor. Fusion Engineering and Design, 2023.

[S4] S. Zoboli, V. Andrieu, D. Astolfi, G. Casadei, J. S. Dibangoye, and M. Nadri. Reinforce-
ment learning policies with local LQR guarantees for nonlinear discrete-time systems.
In 60th IEEE Conference on Decision and Control (CDC), pages 2258–2263. IEEE, 2021.

[S5] S. Zoboli, D. Astolfi, and V. Andrieu. Total stability of equilibria motivates integral
action in discrete-time nonlinear systems. Automatica, 155, 2023.

[S6] S. Zoboli, D. Astolfi, V. Andrieu, G. Casadei, and L. Zaccarian. Incremental stabilization
and multi-agent synchronization of discrete-time nonlinear systems. Under review on
IEEE Transactions on Automatic Control, 2023.

[S7] S. Zoboli, A. Cecilia, U. Serres, D. Astolfi, and V. Andrieu. LMI conditions for k-
contraction analysis: a step towards design. In Accepted at 62nd IEEE Conference on
Decision and Control (CDC), 2023.

[S8] S. Zoboli, S. Janny, and M. Giaccagli. Deep learning-based output tracking via regula-
tion and contraction theory. In 22nd IFAC World Congress, 2023.

193

	List of Figures
	List of Tables
	Notation
	Acronyms
	I Robust optimal feedback design
	Introduction
	Local stability via neural controllers
	Globalizing LQR policies via deep reinforcement learning
	Reward shaping
	Learning the policy
	Improving learning by reshaping the value function estimation

	Experimental results
	Known local model example
	Unknown local model algorithm
	Unknown local model experiments
	Addressing general continuous reward functions

	Integral action for discrete-time nonlinear systems
	Total stability for autonomous systems
	Existence of equilibria
	Existence of an exponentially stable equilibrium

	Total stability motivates integral action
	Existence of equilibria
	Robust regulation
	Globalizing local integral action-based controllers

	Robust deep reinforcement learning for tokamak reactors
	Control problem
	Training algorithm and simulation results

	II Contraction as an optimization problem
	Introduction
	Discrete-time contractive feedback design
	Incremental stability via non-smooth contraction
	Sufficient conditions for exponential bold0mu mumu ISS
	Nonlinear robust feedback design
	GEVPs for exponential bold0mu mumu ISS
	Optimality of discrete-time contractive feedbacks

	Robust synchronization via contraction theory
	The problem of multi-agent synchronization
	Continuous-time vs discrete-time synchronization
	Synchronization of linear systems
	Synchronization of nonlinear systems

	Learning contractive controllers
	Preliminaries on Riemannian metric conditions for feedback design
	Riemannian metric conditions for incremental properties
	Design of a contractive infinite-gain margin feedback

	Learning synchronizing controllers for nonlinear systems
	A relaxed nonlinear metric-based solution
	Deep Learning for metric and controller estimation

	Learning tracking controllers for nonlinear systems
	Problem statement and proposed approach
	Approximate output tracking: the analytic solution
	DNN-based output tracking controller
	Illustrative example: ball and beam tracking Lorenz attractor

	From 1 to k-contraction
	k-contraction in nonlinear systems
	A sufficient condition based on matrix compounds
	A sufficient condition based on p-dominance

	k-contraction in LTI systems: a necessary and sufficient condition
	Comparison with existing results
	The discrete-time case

	Conclusions and perspectives
	Appendices
	Some theoretical background
	Deep reinforcement learning concepts
	Highlights on graph theory

	Tokamak model and simulation algorithm
	Safety factor and thermal energy control model
	Simulation Algorithm

	Bibliography
	Own References

