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Résumé
Nous étudions les phénomènes collectifs dans les suspensions en bulk de mi-

cronageurs sphériques à trajectoires chirales en utilisant des simulations numéri-
ques à grande échelle. Le modèle est générique. Il correspond à la solution
d’ordre le plus bas d’un modèle général d’autopropulsion à nombres de Reynolds
faibles, constitué d’un dipôle source rotatif non axisymétrique. Nous montrons
que les nageurs purement circulaires et hélicöıdaux peuvent spontanément syn-
chroniser leur rotation. L’état synchronisé correspond à un alignement des
vitesses avec un ordre d’orientation élevé dans les directions polaire et azimu-
tale. Pour illustrer la robustesse de l’état synchronisé, nous considérons un
mélange racémique de nageurs hélicöıdaux où la synchronisation intra-espèce
est observée tandis que le système reste comme un fluide spatialement uni-
forme. Nos résultats démontrent la synchronisation hydrodynamique en tant
que phénomène collectif naturel pour les micronageurs à trajectoires chirales.
Une fois la synchronisation atteinte, nous montrons que le système peut mani-
fester des comportements collectifs post-synchronisation complexes impliquant
séparation de phase et propagation d’ondes d’ordre polaire local. Nos observa-
tions fournissent une base convaincante pour les recherches futures sur les flux
collectifs émergents et la diffusivité augmentée induite a cause de l’activité dans
les suspensions de micronageurs chiraux.

Mots-clès : Micronageurs, Synchronisation, Chiral, Flux à faible nombre de
Reynolds, Emergence, Phénomènes collectifs
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Abstract
We study collective phenomena in bulk suspensions of spherical microswim-

mers with chiral trajectories using large scale numerics. The model is generic. It
corresponds to the lowest order solution of a general model for self-propulsion at
low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole.
We show that both purely circular and helical swimmers can spontaneously syn-
chronize their rotation. The synchronized state corresponds to velocity align-
ment with high orientational order in both the polar and azimuthal directions.
To exemplify the robustness of the syncronised state, we consider a racemic mix-
ture of helical swimmers where intraspecies synchronization is observed while
the system remains as a spatially uniform fluid. Our results demonstrate hy-
drodynamic synchronization as a natural collective phenomenon for microswim-
mers with chiral trajectories. Once synchronisation is attained, we show that
the system can manifest complex post-synchronisation collective behaviour in-
volving phase separation and the propagation of waves with local polar order.
Our observations provide a compelling basis for future research on emerging
collective flows and activity-driven enhanced diffusivity in chiral microswimmer
suspensions.

Key words: Microswimmers, Synchronisation, Chiral, Low-Reynolds-number
flows, Emergence, Collective phenomena
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Introduction
Microswimmers comprise a subset of active matter systems where micro-

scopic entities are capable of self-propelling themselves within a fluid environ-
ment. Natural microswimmers consisting of biological microorganisms such
as bacteria, protists, ciliates and sperm cells are abundant in nature; repre-
senting most of the world’s biomass. Their collective dynamics has gained a
considerable amount of interest of late [1–9] and has inspired the current surge
in synthetic microswimmer research, typically based on phoretic Janus parti-
cles [10–12]. The interest for developing artificial swimmers has been fuelled by
the various promissing possibilities for applications such as micro-cargo trans-
portation [13–16], targeted drug delivery [16–19], artificial insemination [16, 20],
microsurgery [16, 17, 21–23] and water purification [24, 25] to name a few.

Figure I.1. Examples of biological and artificial microswimmers. Examples
of biological and artificial microswimmers taken from the literature. A: Schematic
representation of alga, bacteria, spermatozoon and ciliate drawn to relative scale [26];
B: the spherical colony of the flagellated green alga volvox [27]; C: Scanning electron
micrograph of a 48-h marine zooplankton larva [28]; D: An image of a Janus parti-
cle [29]; E: schematic representation of Janus particles and bacteria drawn to scale [25];
F: Images of artificial microswimmers with different shapes [30].

Most theoretical studies of microswimmer suspensions have concentrated on
particles that swim in straight lines, with simulations predicting the spontaneous
formation of collective swimming along a common direction — uniform polar
order [31–37]. However, most microorganisms generally tend to swim along
helical paths[28, 38–46]. Similarly, any asymmetry due to imperfections in the
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shape of the colloids or in their catalytic coating would also lead to chiral
motion for artifical swimmers [10, 47–49]. The fact of the matter being that
when dealing with microswimmers, rectilinear motion is more the exception
rather than the norm.

Continuum descriptions based on the long-range hydrodynamics produced
by flow singularities [50–53] have been extensively used in the past, with some
works including chiral flows [54–56]. However, these models fail to capture near-
field hydrodynamic effects, which are believed to be crucial for the formation of
polar order [33, 34]. Nevertheless, these models are presented with difficulties in
capturing the specificities associated with non-dilute suspensions of interacting
finite-volume swimmers.

Most of the current theoretical work of active particles moving along chiral
paths relies on dry microscopic descriptions such as active Brownian particle
(ABP) models [57–66]. These effectively account for excluded volume effects,
but neglect hydrodynamic interactions. Simulations of rotational dry models
have predicted large-scale synchronisation, when a Kuramoto-type alignment
term is included [58, 67]. Very recently, work on the hydrodynamics of chiral
swimmers in 3D has started to emerge, but has so far been limited to single and
two particle systems [68–73].

Explicitly incorporating chirality in hydrodynamic models used to study mi-
croswimmer suspensions could have an important effect regarding the emer-
gence of collective states, such as large-scale collective oscillations[74, 75], polar
order [31–37] or hydrodynamic synchronisation [76–82]. While synchronisation
arising from active flows has been predicted for linear trimers [76] and for rotors
on a 2-dimensional lattice [80], the ability of microswimmers to spontaneously
synchronise (or not) in freely moving bulk suspensions, remains an open ques-
tion.

In this work, we consider three-dimensional, wet, many-body systems of ac-
tive finite-sized spherical particles with intrinsic chiral trajectories. We perform
low-Reynolds-number numerical simulations of the microswimmer suspensions
at various biologically relevant packing fractions and study the collective be-
haviour of the system. We employ neutrally buoyant particles with no net force
or torque acting on them that undergo circular or helical trajectories in isolation
and interact between them solely through hydrodynamic and steric interactions.

We show that swimmers with chiral trajectories can synchronise their rota-
tion in a fully three-dimensional suspension. We consider finite sized swimmers,
with a surface slip-flow arising from the general solution for self-propulsion at
low Reynolds numbers [83], corresponding to a rotating source dipole flow in-
clined at an angle ψ with respect to the particle polar direction. A synchro-
nised state, corresponds to the alignment of these dipoles. We study three
distinct cases: circular swimmers, helical swimmers, and a racemic mixture
of left-handed and right-handed helical swimmers. In all cases, the sponta-
neous formation of synchronised states is observed. For some cases, we observe
post-synchronisation collective phenomena such as phase separation or travel-
ling bands with local polarisation; showing that despite the simplicity of its

2



constituents, the system boasts a richness of complex phenomena.
We begin with a presentation of the model and simulation method in the

next chapter (chapter 1), before moving on to study synchronisation in suspen-
sions of circular swimmers in chapter 2 and helical swimmers in chapter 3. We
study the global degree of alignment in the system, which is directly linked to
the emergence of synchronisation, and construct phase diagrams for both cir-
cular and helical swimmers, pointing out the key features and main differences
between each case. In chapter 3, we present a racemic mixture, which displays
a fascinating behaviour where alignment and synchronisation are attained at
the subpopulation level while the suspension remains homogeneously mixed.
Finally, in chapter 4, we touch upon our most recent, preliminary findings.
These involve observations of spontaneous, post-synchronisation phase separa-
tion and the emergence of propagating waves with local polarisation throughout
the system. We then conclude the work with a brief discussion regarding the
significance our results.

3



4



•••••••••••••••••••••••••••••••••••••••••••

1 Model for rotational
squirmers

This chapter introduces the so called squirmer model. The model was orig-
inally introduced by Lighthill in 1952 [84] and then extended by Blake in
1971 [85]. It describes the surface flow, or slip velocity, u of the active par-
ticle which is used as the boundary condition for the velocity field enabling the
self-propelled motion of a spherical body at low Reynolds numbers (Re ≪ 1).
This is also known as the pumping problem. Until the present day, its use is
widespread, being one of the standard models for the study of self-propelling
particles in Stokes flow.

1.1 The Stokes equations
Before introducing the model used in this work, we give a brief overview of

the fundamental physical concepts required to build the model in the first place.
Namely, the Stokes equations. These equations describe the fluid flow at the low
Reunolds number regime (Re ≪ 1). In this regime, the viscous forces dominate
the advective forces allowing us to approximate the Navier-Stokes equations for
an incomopressible fluid to:

∇p = µ∇2u (1.1)

∇ · u = 0 (1.2)
where p is the fluid pressure, µ the fluid viscosity and u the fluid velocity.

Evidently, equations (1.1) and (1.2) are significantly more simple than the
full Navier-Stokes equations. More importantly, the linearity of the equations
leads to important properties that can present interesting ramifications for low
Reynolds number locomotion. For example, the property of superposition, or
the property of rate independence which leads to the scallop theorem [86–88].
The absence of time (t) in the equations, leads to the property of instantaneity.
Meaning that all frames of reference are inertial frames and allowing us to study
the problem in any frame that we find convenient.
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1.2 The standard squirmer model
In its most commonly used form (what we refer to as the standard squirmer

model) the squirmer model corresponds to the axisymmetric slip velocity at the
surface of a particle of radius a given by:

uθ|r=a = B1 sinθ + 1
2B2 sin2θ (1.3)

where θ is the polar angle with respect to the particle’s axis of symmetry. B1
and B2 are coefficients that are used to obtain different slip velocity profiles for
the squirmer that can lead to significant qualitative differences in their collective
dynamics.

Equation 1.3 is often reformulated as:

uθ|r=a = 3
2u0 sinθ(1 + β cosθ) (1.4)

where β = B2/|B1| is defined as the squirming parameter and u0 = 2B1/3 is
the bulk swimming speed of a freely-moving, non-interacting squirmer. In the
next section, we explain how the bulk swimming speed u0 is obtained through
the reciprocal theorem for Stokes flows [89].

The squirming parameter β allows the classification of microswimmers into
4 different types: neutral squirmers (β = 0), pushers (β < 0), pullers (β > 0)
and shakers (β ± ∞).

In appendix A, we give schematic representations of each type of squirmer
that were created using the Wolfram Mathematica software [90]. We explain
in detail how to build each type of squirmer by combining different modes
appearing in Lamb’s general solution for Stokes flows [91].

Figure 1.1. The standard squirmer model. Analytical flow field of a pusher
(left) with β = 5, a neutral squirmer (middle) and a puller (right) with β = −5. Image
taken from [92]

6



1.3 Reciprocal theorem for the standard squirmer model
Stone and Samuel derived an integral theorem using the principle of virtual

work [89] which can be used to calculate the resulting bulk swimming velocity
U and angular velocity Ω of a particle due to a slip flow (disturbance motion)
u at its surface. For a standard squirmer with radius a we have:

U(t) = − 1
4πa2

∫
S

udS (1.5)

Ω(t) = − 3
8πa3

∫
S

n × udS (1.6)

with, n = êr normal to the surface S, dS = R2 sinθdθdϕ, and u given by
equation 1.3 (or 1.4).

Using generalised coefficients, with b1 = B1 and b2 = B2 for the standard
squirmer model, and writing the slip flow as u = sinθ(b1 + b2 cosθ) êθ, equations
1.5 and 1.6 in cartesian coordinates become:

U = − a2

4πa2

∫ π

0

∫ 2π

0
(b1 sinθ + b2 sinθ cosθ)(cosθ cosϕ, cosθ sinϕ,−sinθ) sinθdθdϕ

(1.7)

Ω = − 3
8πa

∫ π

0

∫ 2π

0
sin2θ(b1 + b2 cosθ) (− sinϕ, cosϕ, 0) dθdϕ (1.8)

Breaking equation 1.7 into components:

Ux = − 1
4π

∫ π

0

∫ 2π

0
(b1 sin2θ cosθ cosϕ+ b2 sin2θ cos2θ cosϕ) dθdϕ (1.9)

Uy = − 1
4π

∫ π

0

∫ 2π

0
(b1 sin2θ cosθ sinϕ+ b2 sin2θ cos2θ sinϕ) dθdϕ (1.10)

Uz = − 1
4π

∫ π

0

∫ 2π

0
(−b1 sin3θ − b2 sin3θ cosθ) dθdϕ (1.11)

When integrating with respect to ϕ from 0 to 2π, equations (1.9) and (1.10)
will give 0 since they are comprised of the functions sinϕ and cosϕ. Therefore:
U = Uzẑ.
Similarly for equation (1.8), since the dependence on ϕ in the two non-zero
components is of the type sinϕ or cosϕ, the angular velocity in these directions
will be zero (Ωx = Ωy = 0). Therefore, for the classic standard squirmer model
we find: Ω = 0, leaving us with just equation (1.11) to solve.

In order to make this work more pleasant to read, we skip the steps required
to reach the solution of (1.11) and refer the reader to appendix B.1 for the step
by step solution.
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Finally, the resulting transaltional and rotational motion of a standard squirmer
is given by:

U = 2b1

3 ẑ = 2B1

3 ẑ ≡ u0ẑ (1.12)

Ω = 0 (1.13)
The recirpocal theorem for the standard squirmer model therefore proves

that only the B1 coefficient, coming from the source dipole (neutral squirmer)
contribution plays a role in the net movement of the squirmer. The B2 mode
corresponding to the stresslet (see appendix A) only mixes the fluid and does not
contribute to the net total movement of the particle. Hence the name “shaker”
for the case where B1 = 0 (β ± ∞). Pushers and pullers therefore both swim
and mix the surounding fluid whereas neutral squirmers swim and do not mix
the fluid.

A schematic representation of the source dipole or neutral squirmer with its
characteristic axisymmetric surface flow is shown in Fig. 1.2. In Fig. 1.2, the
squirmer has its axis of symmetry aligned with the z-direction along which it
moves with speed u0, and its slip flow is given by equation 1.3 (or 1.4). More
specifically:

uθ|r=a = B1 sinθ = 3
2u0 sinθ (1.14)

Figure 1.2. Self-propulsion of the neutral squirmer. Local spherical coor-
dinate system for a squirmer of radius a (left )and surface slip flow of the B1 mode
of the squirmer model leading to self-propulsion speed u0 in the positive z-direction
(middle). The magnitude of the normalised surface flow is represented by the colour
scheme (right) from blue to orange and black streamlines indicate the direction of the
slip flow.

With the standard squirmer model, the particles are limited to just swim-
ming in straight lines. As discussed in the introduction, in many cases this is
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not ideal for obtaining an accurate description of real microswimmers. In the
next section, we go beyond the standard squirming model, to include azimuthal
flows via the rotlet term of the general squirmer model which will enable us to
construct squirmers that swim along circular and helical paths.

1.4 Squirmer model for circular and helical swimming
Following the work done by Pak and Lauga [83] on using Lamb’s general so-

lution in Stokes flow [89] to analytically derive the exact solution of the flow field
and swimming kinematics of a nonaxisymmetric squirmer, we create squirmers
with circular and helical trajectories.

The purely tangential slip velocity profile on the surface of a squirmer of
radius a, found in an incompressible fluid at low Reynolds numbers Re ∼ 0, is
given in spherical coordinates by an infinite series of modes for the polar and
azimuthal components eθ and eϕ:

ur|r=a = 0 (1.15)

uθ|r=a =
∞∑

n=1

n∑
m=0

−2 sinθPm′

n

nan+2 (Bmn cosmϕ+ B̃mn sinmϕ)

+ mPm
n

an+1 sinθ (C̃mn cosmϕ− Cmn sinmϕ)


(1.16)

uϕ|r=a =
∞∑

n=1

n∑
m=0

sinθPm′

n

an+1 (Cmn cosmϕ+ C̃mn sinmϕ)

+ 2mPm
n

nan+2 sinθ (B̃mn cosmϕ−Bmn sinmϕ)


(1.17)

where Pm
n = Pm

n (x) with x = cosθ are the associated Legendre polynomials
(with n ≥ 1 and 0 ≤ m ≤ n) and each mode can be identified by its corre-
sponding coefficient: Bmn, B̃mn, Cmn and C̃mn.

Equations (1.15) to (1.17) define the boundary conditions for the pumping
problem — i.e., the flow field produced without considering the contribution
from the induced motion of the squirmer as a consequence of the very same
boundary actuation. As shown in the preceding section, the contribution of the
induced translational and rotational motion of the squirmer can be calculated
by integral theorems and added to the pumping problem solution to give the
overall flow field of the squirmer:

v = u + uT + uR (1.18)

9



where u = urer + uθeθ + uϕeϕ is the solution of the pumping problem and
uT , uR are the flows due to the induced translation (U) and rotation (Ω).

When m = 0, we obtain axisymmetric flow fields about the z-axis of the
squirmer’s local spherical coordinate system (see Fig.1.2) — or what is com-
monly referred to as the polar axis (we will use these two terms interchangeably
throughout this work). In this case, the B01 and B02 modes correspond to the
forementioned, well-known and widely-used B1 and B2 coefficients appearing
in the standard squirmer model: u = B1 sinθ + 1

2B2 sinθ. The contribution of
the B1 term to the overall flow field surounding the squirmer corresponds to
that of a source dipole oriented along the polar axis and is responsible for the
translational motion of the particle along this axis with speed v0 = 2

3B1. B2
corresponds to a stresslet and is the mixing term, leading to a force dipole flow
field around the squirmer (in the polar/z-direction), and is used for defining
pushers and pullers (see appendix A) which we do not consider in this work.
Finally, the C0n mode, which we will refer to as C1, defines a rotlet in the z-
direction and is the only mode that leads to rotational motion about the polar
axis (see appendix B.4). However, it is important to note that the contribution
of the rotlet to the overall flow field is null. Given that there is no external
torque acting on the system and the swimmer is spherical in shape, the flow
from the pumping problem cancels out completely with that due to its induced
rotational motion, and angular momentum is effectively conserved (this is very
nicely explained by Pak and Lauga in [83]). At Re = 0, a squirmer comprised of
just the rotlet term therefore rotates without disturbing the surrounding fluid.

The modes with n = 1 and m = 1 are equivalent to the n = 1 and m =
0 modes discussed above but act in different directions. That is, their axis
of symmetry is not the polar axis (or z-axis). The B11 and C11 modes are
axisymmetric about the x-axis, and the B̃11 and C̃11 modes are axisymmetric
about the y-axis. Therefore, perhaps the “simplest” case of a squirmer that does
not swim in a straight line, consisting of just a hydrodynamic source dipole in
the overall flow field (neutral squirmer), can be constructed by combining B1
with C11 or C̃11; B11 with C1 or C̃11; or B̃11 with C1 or C11. (Using B1 + C1,
B11 + C11, or B̃11 + C̃11 would produce squirmers that swim in a straight line
while spinning around their axis of symmetry). Each one of the six pairs of
modes mentioned above leads to the squirmer having a circular trajectory in a
given plane perpendicular to its axis of rotation. Fig. 1.3 of the next section
gives a schematic representation of such a case.

Going one step further, helical motion can be produced by adding another
“B” mode (source dipole) in the direction of the axis of rotation of the squirmer,
perpendicular to the plane of its circular motion. What this effectively does
is lead to a situation where the induced rotational and tranlational velocities
of the squirmer are no longer perpendicular (U × Ω ̸= 0 and U · Ω ̸= 0).
The superposition of the two perpendicular source dipoles effectively leads to a
source dipole along the diagonal with an angle given by the relative strength of
the initial dipoles (see Figs. 1.4 and 1.5 of the following sections). This will be
explained further and made more clear by end of this chapter as we go into the
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specifics of the model.

1.5 Choosing the parameters for chiral swimmers

Without loosing generality, in this work, we use C1 + B̃11 for circular swim-
mers; and B1 + C1 + B̃11 for helical swimmers (see Figs. 1.3 and 1.4). Hence,
the boundary conditions defining the slip velocity profile of our squirmer model
are given in the polar êθ and azimuthal êφ directions, by:

uθ|r=a = B1 sinθ + B̃11 cosθ sinφ
uφ|r=a = C1 sinθ + B̃11 cosφ,

(1.19)

with the B1, C1 and B̃11 coefficients being our model parameters.

Figure 1.3. Building circular swimmers. Model for circular squirmers. The
surface slip-flows corresponding to the modes: C1 and B̃11 in the particle frame (left
and middle). The magnitude of the normalised surface velocity (slip flow) for each
mode is represented by a colour-code just like in Fig. 1.2 and the streamlines are
coloured black. The particle trajectory in the lab frame corresponding to circular
swimming perpendicular to the polar axis (z or m) with radius rt (right) and an
angular velocity ω0. The unit vectors m and s correspond to the particle polar and
azimuthal axes respectively.

In order to study synchronisation, and more generally the level of alignment
in the system, we define the local azimuthal s and polar m unit vector of the
swimmer as shown in Fig. 1.3 and Fig. 1.4. m points in the direction of the
squirmer’s polar axis (z-axis); and s points in the direction of the (local) x-axis.
For circular swimmers, s points towards the centre of the circular path, and for
helical swimmers it points towards the screw axis.

The B1 mode corresponds to the source dipole in the standard squirmer
model (bottom left in Fig. 1.4). C1 leads to a rotation of the particle around its
polar axis z (or m) with an angular velocity ω0 = C1/a (left in Fig. 1.3 and top
left in Fig. 1.4). B̃11 corresponds to a source dipole along y (middle in Fig. 1.3
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and top right in Fig. 1.4). The total swimmer flow field corresponds to a single
source dipole B with magnitudeB =

√
B̃2

11 +B2
1 , which rotates around the polar

axis (m) at an inclination ψ = | tan−1(B̃11/B1)| (Fig. 1.4). As already shown
in the previous section, an isolated particle has a swimming speed v0 = 2

3B.
When ψ = 90◦ (B1 = 0) the swimmers have circular trajectories in the plane
perpendicular to m (right in Fig. 1.3). The radius of the trajectory is given by
rt = 2B̃11a/(3C1) and the period by T0 = 2π/ω0 = 2πa/C1 = 2πrt/B̃11.

For ψ ̸= 90◦ and ψ ̸= 0◦ the trajectories become helical with pitch length p =
4πB1a/(3C1) corresponding to the distance p travelled along the direction given
by the particle’s polar axis m during one period T0 (bottom left in Fig. 1.4).
To characterise the helical swimming (0◦ < ψ < 90◦), we define the ratio λ ≡
rt/p = B̃11/(2πB1), which leads to: ψ = | tan−1 2πλ|.

Figure 1.4. Building helical swimmers. Model for helical squirmers. The
surface slip-flows corresponding to the modes: B1, C1 and B̃11 in the particle frame
(top and bottom left). The magnitude of the normalised surface velocity (slip flow)
for each mode is represented by a colour-code just like in Fig. 1.2 and the streamlines
are coloured black. The particle trajectory in the lab frame corresponds to helical
swimming along the polar axis (z or m) with radius rt, angular velocity ω0 and a
pitch lenght p (bottom right). The unit vectors m and s correspond to the particle
polar and azimuthal axes respectively and ψ is the inclination angle with respect to
m that depends on the relative strength of the B1 and B̃11 modes.
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1.6 Simulation details

To study the collective dynamics of suspensions of N swimmers, we use the
lattice Boltzmann method, where the microswimmers are modelled as spherical
squirmes with radius a [93, 94]. The no-slip boundary condition at the particle
surface [95–97], is modified to take into account the active slip-flows [98, 99].

We use lattice units where distance is given by the lattice spacing ∆x = 1
and time in simulation time-steps ∆t = 1. Particles of radius a (and diameter
σ) are placed within a cubic lattice Lx = Ly = Lz with periodic boundary
conditions, corresponding to a volume V . A short-range repulsive interaction is
implemented to avoid particle overlaps [93, 94] with a cut-off distance of 1∆x.

The fluid density is set to ρ = 1 and the dynamic viscosity to µ = 0.5. For
this entire work we set C1 = 0.001 leading to an intrinsic angular velocity of

Figure 1.5. Rotational swimmer flow field. (a), (c) and (d): Circular and
helical swimmer flow field obtained directly from the simulations, corresponding to
a source dipole B (neutral squirmer). (b) Image of a neutral squirmer flow field
form [100] for comparison with simulation results. The magnitude of the fluid velocity
is coloured using a logarithmic scale and overlaid by black streamlines in (a); and a
linear scale overlaid by white arrows in (d). A 3D image of a rotational squirmer
with its streamlines coloured in the linear scale according to the magnitude of the
fluid velocity. Images (a), (c) and (d) were created using the Paraview visualisation
software [101].
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ω0 = C1/a = 1.25 ·10−4 and to a rotational Reynolds number ReΩ = ρω0a
2/µ =

0.016. To realise different trajectory radii (rt) for a given a the source dipole
strength is varied B̃11 ∈ [0, 0.007]. These correspond to swimming speeds of
v0 = 2/3B̃11 ∈ [0, 4.67 · 10−3] and rt = v0a0/C1 ∈ [0, 4.67a]. The (linear)
Reynolds number is given by: Re = ρv0a/µ. The typical particle Reynolds
number throughout this work is Re ∼ 0.1.

For the helical swimmers we use B1 = 0.005 and vary B̃11 ∈ [0, 0.007] cor-
responding to a maximum Re ≈ 0.09. The parameters give a pitch length
p = 4πB1a/3C1 ≈ 21a (for the results presented in chapter 3).

Assuming a particle radius 1µm and using the viscosity of water 10−3Pas
as well as typical Re ∼ 10−2, a single lattice length ∆x and time ∆t can be
mapped to ∼ 0.1µm and ∼ 10µs, respectively. Therefore a typical simulation
run of ∼ 10 × 106 LB steps corresponds to 100s in real time.
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2 Circular swimmers
As mentioned in the introduction, theoretical studies have predicted the

spontaneous formation of uniform polarised flocks in suspensions of linear mi-
croswimmers [31–37]. In this chapter, we present the work we have carried out
in order to discover if circle swimmers display a similar behaviour and align
their velocities in such a way as to rotate in an ordered fashion. Namely, syn-
chronisation.

An ordered state, corresponds to the alignment of the source dipoles B. The
amount of alignment can be measured by considering a velocity order parameter:

Pv(t) =
∣∣∣∑N

i v̂i

∣∣∣
N

(2.1)

where v̂i = vi/vi is the unit velocity vector of particle i. To further quantify
the ordering, we measure the alignment along the azimuthal s and polar m
directions, by calculating:

Ps|m(t) =
∣∣∣∑N

i si|mi

∣∣∣
N

(2.2)

Therefore, Pv|s|m = 1 corresponds to complete order, and 0 to an isotropic state.
For the simulations, we generate initial configurations with the squirmers of

radius a = 8 randomly and homogeneouly distributed in the simulation box in
an isotropic state, with partial alignment, or in the fully ordered state. The
simulations are typically run for a minimum run-time tmax = 500T0 (where
T0 = 2π/ω0 is the intrinsic period of a single rotor) corresponding to ∼ 25 ×
106∆t LB steps. For dilute suspensions (packing fractions up to 10%), we use
tmax = 1000T0 (∼ 50 × 106∆t LB steps).

2.1 Synchronisation of circular microswimmers
We find that circular swimmers are capable of reaching a globally synchro-

nised state depending on the packing fraction ϕ. More specifically, starting
from isotropic initial conditions, spontaneous synchronisation is attained for:
ϕ ≈ 3 . . . 23% and rt ≈ 2 . . . 5a. The synchronisation diagram for circular swim-
mers with rt ∼ a is shown in Fig. 2.1. The synchronisation corresponds to
the spontaneous alignment of the particle velocities, with the growth of both
azimuthal and polar order, where typically Ps ≈ Pm ≈ Pv ≳ 0.85 at long times
(Fig. 2.2a).
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Figure 2.1. Synchronisation diagram for circular swimmers. Synchronisation
diagram for circular swimmers (ψ = 90◦) as a function of the volume fraction ϕ and
particle trajectory radius rt. Green circles indicate global synchronisation, and the
red triangles mark isotropic states. The synchronisation region is coloured according
to a waiting time tsync/T0 corresponding to the total time elapsed from the start
of the simulation until synchronisation is reached. The white curve corresponds to
ϕ = ϕ′

c
4/3πa3

2πr2
t a

with ϕ′
c = 70%. (see subsection 2.3 for details).

In the steady state, the system shows both frequency and phase locking
(Fig. 2.2c and d). The angular velocity ω distribution has a peak at the single
particle value ω0 and its width corresponds to the fluctuations arising from the
hydrodynamic coupling between the particles. These are reduced in the syn-
chronised state (Fig. 2.2c). The phase locking is apparent from the distribution
of the lag angle α = αs⊥

1,2 calculated for all the particle pairs, by considering the
angle between the s vectors of two different rotors in the plane perpendicular
to the global polar director, PM ∼ ∑N

i mi. The distribution of α changes from
uniform at t ≈ 0 to a normal distribution with a peak at α ≈ 0 in the glob-
ally synchronised state (Fig. 2.2d). In this state, the particle trajectories are
circular and aligned perpendicularly to PM (the global polar direction) (right
in Fig. 2.3). The particle positions remain isotropic with the pair-correlation
functions g(r), g(r⊥) and g(r||) showing liquid-like structure (Fig. 2.2b).

The likelihood of the synchronisation depends on the volume fraction ϕ and
the trajectory radius rt (Fig. 2.1). At low ϕ the system remains in an isotropic
state with the circular trajectories randomly oriented and distributed. For a di-
lute suspension, with very low ϕ, the swimmers are far apart and carry out their
circular trajectories seemingly independently. Since the flow field of the squirm-
ers is that of a source dipole (decaying as ∼ 1/r3 in the far-field), long range
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Figure 2.2. Circular microswimmer ordering dynamics. (a) Example of a
typical time evolution of the azimuthal Ps (red), velocity Pv (blue) and polar Pm

(black) order parameters. (b) Radial distribution function g(r) of the system at the
beginning (gray) and at the end (black) of the simulation. The g(r⊥) (g(r||)) are
calculated perpendicular (parallel) to the polar director PM . Probability distribution
of the (c) angular velocities ω and (d) phase lag angle α between all particle pairs, at
the start and end of the simulation. (The data corresponds to ϕ ≈ 0.15 and rt ≈ 3.33a).

hydrodynamic dipole-dipole interactions are present. Hence, for the moment we
cannot rule out with certainty the possibility of these systems eventually syn-
chronising over longer, computationally-prohibitive, time scales; even though
there appear to be no changes in the order parameter values over our chosen
waiting time tmax. In the final subsection of this chapter we address this.

When ϕ is increased, the trajectories become jagged in the isotropic state
(left in Fig. 2.3). At long times the trajectories align (right in Fig. 2.3). The
distribution of rotational frequencies ω has a peak at ω0 and the width likely
arises from the hydrodynamic fluctuations (Fig. 2.2c).

To study the ordering dynamics, we measure the total time tsync from the
beginning of the simulation until synchronisation is reached. Here, both Ps and
Pm reach a plateau. In general, when studying the order parameter evolution
with time, the dynamics leading to synchronisation seem to be quite rich and
diverse. This indicates that there could be more than one path for the system
to reach the synchronised state. Fig. 2.4 shows a few examples of the order
parameter time-evolution as the system synchronises (or not).

The fastest formation is observed in the middle of the synchronised region
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Figure 2.3. Circular swimmer synchronisation example. Snapshots of the sys-
tem at the beginning (left) and end (right) of the simulation, composed of 286 particles
corresponding to ϕ ≈ 0.15 and rt ≈ 3.33a. 25 selected particles with their trajectories
are shown on the bottom. The particles are coloured according to the y−component
of their s vector. The trajectories are shown over one period and coloured according
to the x−component of the swimmer’s m vector.

(Fig. 2.1). For a given rt, if ϕ is too large no synchronisation is observed.
This implies the existence of a dynamic bottleneck where the particles have
multiple collisions during their full-rotation time T0, hindering the growth of
global alignment. This effect can be observed for some simulations towards the
high-ϕ end of the synchronisation region, where the temporal evolution of the
order parameters presents delay times before the transition to the synchronised
state begins (see for example top-middle panel in Fig. 2.4).

Here, tsync is increased (Fig. 2.1), and the order parameters fluctuate close to
zero before the growth of the order begins. This effectively leads to the system
presenting a hysteresis-type behaviour close to the high ϕ limit of the synchro-
nisation region. Fig. 2.5 shows the time evolution of the order parameters Ps

18



Figure 2.4. Circular swimmer order parameter dynamics. A few examples
of the trajectories of the order parameters Ps (red) and Pm (black) leading to synchro-
nisation (or not) for circular microswimmers.

Figure 2.5. Hysteresis in circular swimmer synchronisation. Comparison be-
tween starting the simulations form an isotropic initial state (as used in the main text)
and fully ordered states for different ϕ at constant rt. The system shows hysteresis-
type behaviour within the simulation time, near the high density transition line.
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and Pm after 500 cycles at the high-ϕ end of the synchronisation region. For
simulations starting from an initial isotropic configuration, the order parame-
ters fluctuate close to 0 (red and black), whereas at higher ϕ order is maintained
for simulations starting in an initially ordered configuration (green and light-
grey). For even higher ϕ the ordered state with a high (Ps/Pm ≈ 1) degree of
alignment becomes unstable and the order parameters quickly drop to 0 with
a steep gradient (blue and dark-grey). Further investigation is currently being
carried out to determine the exact nature of the dynamic bottleneck and its
dependence on the system parameters.

2.2 Circular microswimmer diffusive dynamics
Interestingly, the particle dynamics is reminiscent of the absorbing-active

state transition predicted for dry active particles with circular trajectories in
2-dimensions (2D) [63]. Fig. 2.6 shows the dynamic phase diagram for the dry
system presented in [63]. The system is composed of particles of diameter σ
programmed to undergo circular trajectories of radius R. For low ϕ and small
R the system is found in the absorbing state. Here, the particles undergo their
circular trajectories uninterrupted by collisions and therefore the mean squared
displacement (MSD) develops a plateau at long times (blue curve in middle
panel in Fig. 2.6). When ϕ or R is increased, the collisions between particles
increase. Beyond certain values of ϕ and/or R the system is unable to find a
non-interacting state and finds itself in the active state. Here, the MSD of the
system grows proportionally with time (red curve in middle panel in Fig. 2.6)
just as one would expect for a diffusive system.

Figure 2.6. Dynamic phase diagram and diffusive dynamics of a 2D dry
system of chiral active particles with circular trajectories. From [63]. The dy-
namic phase diagram for dry systems of chiral active particles of diameter σ that carry
out circular trajectories of radius R independently (left). Mean square displacement
(MSD) corresponding to the active, critical and absorbing states (middle). Schematic
of the 2D circle active particles (right).

At the boundary between the absorbing and active states, the system is found
in a critical state where it is initially active for some time, and then falls into the
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absorbing state (green curve in middle panel in Fig. 2.6). For these cases, the
system displays local synchronisation in the final absorbing state. Here, finite
clusters can be found within which the particles have a similar orientation. At
the beginning of the simulation when the system is in the active state, it is more
homogeneous.

In our case however, working at small finite Re, we observe diffusion both
after synchronisation and even at very low ϕ due to the hydrodynamics. For the
simulations found in the synchronisation region (coloured region of synchronisa-
tion diagram in Fig. 2.1), the diffusive dynamics in the early-time homogeneous
isotropic state becomes sub-diffusive once the spontaneous synchronisation oc-
curs. An example of this is shown in Fig. 2.7.

The synchronising state with ϕ ≈ 0.125 and rt ≈ 4a (red curve in Fig. 2.7) is
ballistic at the very beginning of the simulation for t < T0, then becomes diffu-
sive with MSD ∼ t, and finally enters the synchronised state where MSD ∼ ta

with a < 1. On the other hand, the non-synchronising active isotropic state at
ϕ ≈ 0.188 and rt ≈ 4a (blue curve in Fig. 2.7) remains diffusive with MSD ∼ t
throughout. In the 2D dry system, where the particles interact exclusively
via steric collisions, only local synchronisation was observed [63].This suggests
that hydrodynamic interactions are crucial for the large scale synchronisation
observed here.

Figure 2.7. Mean square displacement for circular swimmers in the active
and synchronising states. Left panel: The mean square displacment (MSD) for
the the high density isotropic state (blue) and synchronising state (red) for circular
swimmers with rt ≈ 4a. At short times, the ballistic regime corresponds to the the
swimmers completing one cycle during their intrinsic period T0. At long times, the
active isotropic state shows diffusion MSD∼ t (b5lue), while at the synchronised state
the dynamics becomes sub-diffusive MSD∼ tα with α < 1 (the red curve at long times).
The inset shows the corresponding azimuthal Ps and polar Pm order parameters (in
the same log-log scale). Right panel: Ps(t) and Pm(t) in linear scale.

Fig. 2.8 shows how the circular microswimmer diffusive dynamics depends on
ϕ and rt by taking various cuts across the synchronisation diagram. Predictably,
diffusion increases monotonically with both ϕ and rt. Just like in Fig. 2.7,
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Figure 2.8. Circular microswimmer diffusive dynamics. Study of the mean
square displacement (MSD) of circular microswimmers depends on the packing fraction
ϕ and the radius of trajectory rt. The MSD is shown for points with ϕ ≈ 0.125 and
different rt values (blue) and different values of ϕ for rt of 4.67 (green), 2.67 (yellow)
and 1.33 (magenta).

the points in the synchronisation diagram ending in a globally synchronised
state present bends or kinks in their respective MSD curves, corresponding to
the sub-diffusive dynamics that indicate the onset of global synchronisation.
When comparing our system to the 2D dry system studied by Lei et al. in
[63], we could argue that the sychronisation region here would, in some way,
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correspond to the critical line separating the absorbing and active states in the
dry system (see and compare dynamic phase diagrams presented in Figs. 2.6
and 2.8). The presence of hydrodynamic interactions therefore allows for global
synchronisation to be spontaneously achieved across a whole region between the
absorbing and active regions in the dynamic phase diagram of active particles
with circular trajectories that is unachievable for dry systems.

2.3 Random close packing argument for the onset of
synchronisation in circular swimmer suspensions

Previous studies of linear squirmers predict that the alignment of source
dipoles corresponding to the formation of uniaxial polar order is dominated
by near-field hydrodynamic interactions [33, 34]. When rt ∼ a, an isolated
swimmer sweeps an area ∼ r2

t during one period T0, and can be thought to
occupy an effective volume 2πr2

t a. The lower-ϕ limit for the synchronisation
region, closely corresponds to the random close packing of discotic cylinders
with volume 2πr2

t a (white line in Fig. 2.1). Above this line, the effective volumes
overlap in the isotropic state, and the swimmers have a high probability of
interacting via near-field hydrodynamics.

According to this argument, if the volume fraction ϕ is below a given thresh-
old value, the circular swimmers are far enough from each other so that the
near-field hydrodynamic interactions are negligible, and there will be no align-
ing interaction between them to eventually lead to the synchronised state. For
t > T0, an isolated circular swimmer with a diameter σ encircles an area A = πr2

t

(in the plane perpendicular to the polar axis). Therefore, when rt∼σ, a circular
swimmer can be thought to occupy an effective volume: veff ≈ πr2

tσ, where
σ = 2a is the diameter of the particle.

Consequently, we can expect the aligning interaction between two swimmers
to arise when there is an overlap of their respective effective volumes veff . The
validity of this argument can be tested by studying the random close packing ϕ′

c

of different oblate geometrical objects with a volume v′ and an aspect ratio w =
σ/(2rt). Fig. 2.9 shows the ϕ curves, given by equations 2.3, corresponding to
the mapped ϕ′

c for systems with the same number density N/V and with particle
volumes v′: Oblate ellipsoids [102, 103] (blue), oblate hard spherocylinders —
OHSC [104] (yellow), discotic cylinders [105, 106] (orange), rectangular cuboids
[107] (green) and spheres using random close packing of 64% [108–110] (purple).
The lower boundary data for the synchrosnisation, is generally well fitted with
disk-like objects w ∼ σ/(2rt) < 1, while spheres w = 1 (purple) fail to do so.

The mapping for each curve appearing in the steady state diagram is given
by:

ϕ = ϕ′
c

v
v′ (2.3)

where v = 4/3πa3 is the actual volume a single spherical swimmer and ϕ′
c is the
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Figure 2.9. Random close packing for circular swimmers. The steady
state diagram of the circular swimmers. Bottom left panel: mapped fits of different
shapes (top panel) at their random close packing ϕ′

c (according to eq.2.3). Oblate
ellipsoids corresponding to the average values of ref [102, 103] (blue), oblate hard
spherocylinders — OHSC ref. [104] (yellow), discotic cylinders ref. [105, 106] (orange),
rectangular cuboids ref. [107] (green) and spheres ref. [108–110] (purple). All oblate
shapes, with volumes v′ ∼ r2

t σ give a reasonable fit to the data, while spheres, with
v′ ∼ r3

t , do not. Bottom right panel: random close packing for discotic cylinders in
orange just as before, according to ref. [105, 106], and assuming a constant ϕ′

c (white)
for: ϕ′

c = 75%, 70% and 65%. We use ϕ′
c = 70% in the main text.

random close packing for the corresponding shape with a volume v′ at the same
number density.

In the synchronisation diagram presented in section 2.1 (Fig. 2.1) we fit the
boundary using discotic cylinders (v′ = πr2

tσ) at ϕ′
c = 70%. The bottom right

panel in Fig. 2.9 shows the data using the random close packing of discotic
cylinders ϕ′

c(w) (orange) from references [105, 106]. The three white curves use
a constant ϕ′

c = 65%, ϕ′
c = 70% and ϕ′

c = 75% from left to right, respectively.
Let it be noted that the above reasoning is only valid for circular swim-

mers with a reasonably small radius of curvature rt ∼ a. When rt >> a the
trajectories could easily interpenetrate without affecting the particle dynamics.

2.4 De-synchronisation of circular microswimmers
In this final section of chapter 2, we focus on the region below the lower-

ϕ limit of the synchronisation diagram (striped region below the white curve
of synchronisation diagram presented in Fig. 2.10) in an attempt to discover
whether or not dilute suspensions with the swimmers far apart form each other
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Figure 2.10. De-synchronisation of circular microswimmers. Examples of
the time evolution of the order parameters Ps (red) and Pm (black) for points in the
synchronisation diagram below the lower-ϕ limit of the synchronisation region.

are capable of synchronisation.
Earlier in the chapter we argued that synchronisation arises due to the near-

filed hydrodynamic interactions between particles that lead to an alignment
between them at moderate packing fractions. Once the swimmers are far apart,
these interactions are not present in the system and therefore if the system was
ever to eventually synchronise, it would have to be attributed to the far field
hydrodynamic interactions.

The far-field flow generated by a neutral squirmer [83] presents no vorticity
and therefore is incapable of generating a torque on a point particle. On the
other hand, a finite sized particle found in the far-field flow of another could
experience a torque due to the difference in the flow field magnitude across its
body. However, any torque produced this way would be significantly small and
thus negligible, especially taking into account the fact that the far-field flow
of a neutral squirmer decays as 1/r3. Nevertheless, we cannot rule out with
certainty the possibility of the far-field flows of an ensemble composed of finite
sized particles having a resulting aligning interaction at extremely long times
well beyond tmax.

A good place to start to hopefully gain some insight regarding this problem,
is to determine if these dilute systems are stable in the synchronised state.
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Remarakbly, we find that the orientational order in the system is in fact lost
after long times. The results presented in Fig. 2.10 show how simulations that
were initialised with the particles fully-aligned in the synchronised state (Ps

/ Pm / ≈ 1) and with random positions eventually end up in the isotropic
state with Ps / Pm / ≈ 0. Furthermore, for a given rt, as the system becomes
more dilute, the de-synchronisation takes longer. This result suggests that if
anything, the far-field hydrodynamic interactions disorder the squirmers. This
finding highlights the importance of the near-field hydrodynamic interactions
even more, since in direct contrast to near-field hydrodynamic interactions, far-
field hydrodynamic interactions appear to have a destructive contribution to
synchronisation.

The reason why exactly the collective far-field interactions lead to disorder
is unclear and needs to be investigated. As a first guess, we speculate that the
far-field velocity fluctuations may play a role by slowing down and speeding
up different squirmers at different times. Since the squirmers are intrinsically
chiral, this effect would interfere negatively with the phase locking in the system
and eventually lead to the loss of order.

26



•••••••••••••••••••••••••••••••••••••••••••

3 Helical swimmers
In this chapter we study suspensions of helical swimmers. Similarly to the

preceding chapter concerning circular swimmers, we are mainly interested in
the synchronisation of helical microswimmers. We therefore make use of the
same order parameters defined in equations (3.1) and (2.2): Pv(t), Ps(t) and
Pm(t) to quantify the amount of alignment in the system and track its temporal
evolution.

Once more, we generate initial configurations with the squirmers homoge-
neously and randomly distributed in the simulation box in an isotropic state,
with partial order, or in the completely ordered (synchronised) state. In this
case, the simulations are typically run for a minimum time tmax = 60T0 (∼
3 × 106∆t LB steps) for ϕ > 10%, and tmax = 1000T0 (∼ 50 × 106∆t LB steps)
for ϕ ≤ 10%.

3.1 Synchronisation of helical microswimmers
The helical swimmer trajectories are characterised by the ratio between the

radius of curvature of the trajectory and the pitch length λ = rt/p (Fig. 1.4).
The particle motion is now 3-dimensional, leading to an increase of the proba-
bility of near-field interactions. Hence, synchronisation is observed at lower ϕ
than in the case of pure circular rotors. The synchronisation diagram for helical
swimmers is shown in Fig. 3.1.

When comparing the synchronisation diagram for helical swimmers to that
of circular swimmers (Fig. 2.1 and 3.1), we notice that the high-ϕ limit of the
synchronisation region has been slightly shifted back towards lower ϕ. This
means that the dynamic bottleneck (discussed in section 2.1 of the previous
chapter) occurs at more dilute systems for helical swimmers. This result is
expectable since the squirmers now have a higher probability of meeting and
interacting via the near-field hydrodynamics.

Another key difference between the two synchronisation diagrams which
comes as a consequence of the swimmers now having 3-dimensional motion,
is that synchronisation can now be achieved at very low packing fractions, well
in the circular swimming dilute de-synchronisation region. The squirmers now
actively explore space due to their swimming and eventually meet each other
interacting directly rather than relying in just far-field interactions.

Additionally, the synchronisation region for helical swimmers extends down
to values of rt smaller than a. In our case, we observe synchronisation for values
of rt ≈ 0.67a which correspond to λ = 0.03 and ψ = 11◦ (see Fig. 3.1). Whereas
circular swimmers appear to be incapable of synchronising below rt ≈ 2 (see
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Figure 3.1. Synchronisation diagram for helical swimmers. Synchro-
nisation state diagram for helical swimmers as a function of ϕ and λ = rt/p (or
ψ = | tan−1(B̃11/B1)|). The green circles correspond to global synchronisation, and
red triangles to isotropic states. The blue diamonds mark polar order for classic linear
neutral squirmers and yellow diamonds correspond to finite polar order in the absence
of synchronisation for chiral swimmers. (data corresponds to p ≈ 21a). The synchro-
nisation region is coloured according to a waiting time tsync/T0 corresponding to the
total time elapsed from the start of the simulation until synchronisation is reached.

Fig. 2.1).
When λ = 0 (rt = 0 or B̃11 = 0), the swimmers swim in a straight line with

v0 = 2/3B1 similar to classic neutral squirmers. In this case we are left with
Pm as the only relevant order parameter accounting for the global polar order.
In these cases, we observe the formation of pure polar order (Pm > 0; Ps ∼ 0)
(blue diamonds in Fig 3.1) in agreement with [31–37]. Remarkably, we also find
cases with λ > 0 with stable polar order in the absence of azimuthal ordering
and hence synchronisation (Pm > 0; Ps ≈ 0) (yellow diamonds in Fig. 3.1).
These cases occur in the bottom half of the phase diagram right at the high-ϕ
limit of the synchronisation region.

Just like with circular swimmers, a high degree of order is observed in the
synchronised state. (Fig. 3.2a and b), and the particles swim along a common
direction, with their helical trajectories aligned (Fig. 3.2c). Interestingly, when
the ratio B̃11/B1 is decreased, moving into regions of λ ≲ 0.1 and ψ ≲ 31◦,

28



the ordering dynamics is observed to change from a smooth growth for all three
order parameters Pv(t), Ps(t) and Pm(t), to a two-step process where the velocity
alignment initially corresponds only to alignment in the polar direction, followed
by a subsequent growth corresponding to alignment in the azimuthal direction
(see e.g. Fig. 3.2a and b, for λ ≈ 0.19 and λ ≈ 0.1, respectively).

The initially isotropic configuration of helical squirmers first spontaneously
attains polar order, similar to classic neutral squirmer simulations. Then, once
the polar flock has formed with the swimmers’ helical trajectories aligned, they
begin to synchronise their rotation aligning their velocities in the azimuthal
direction as well. It is in this same region (λ ≲ 0.1 and ψ ≲ 31◦) where we
observe the steady states with polar order and a lack of azimuthal order, as ϕ

Figure 3.2. Helical microswimmer ordering dynamics. Time-evolution of the
order parameters Ps (red), Pv (blue) and Pm (black) for (a) ϕ ≈ 0.083, λ ≈ 0.19 and
(b) ϕ ≈ 0.125, λ ≈ 0.1. (c) Snapshots of the system in the synchronised state with
the swimmers homogeneously distributed in space. The uwrapped trajectories of all
the N = 286 helical swimmers over 4T0 couloured according to mx (left). 8 selected
microswimmers with their trajectories coloured as a function of time (right). The
particles are coloured according to sy. (The snapshots in (c) correspond to ϕ ≈ 0.15,
λ ≈ 0.16).
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is increased to the high-ϕ limit of the synchronisation region corresponding to
the dynamic bottleneck.

These observations are perhaps easily understood when keeping in mind
the linearity of the Stokes equation. If we break down the helical swimmer
consisting of a source dipole B rotating about its polar axis m at an inclination
ψ = | tan−1(B̃11/B1)| (see section 1.4 of chapter 1) into the two modes B1 and
B̃11 used to build it (see Fig. 1.4), we end up having two source dipoles. One in
the polar m direction and the other in the azimuthal s direction. Therefore, as
we decrease the ratio B̃11/B1 moving to lower values of λ and ψ, towards the
bottom of the phase diagram, we can expect the dynamics in the polar direction
to be faster than those in the azimuthal one as a consequence of the linearity of
the Stokes equation and the principle of superposition. As a result, while the
system steady state may be the same across the synchronisation region, we have
a certain degree of control over the path to it, with the linearity of the system
making it easy for us to fine-tune the ordering dynamics of the microswimmer
suspension.

Both the rotational frequency and the phase locking show comparable be-
haviour to the circular swimmers (see Fig. 3.3). Typical examples of frequency
and phase locking for a system with N = 286 at ϕ = 0.15 and rt = 3.33 are
shown in Fig.3.3a and b. In Fig. 3.4 we give a comparison of the two synchro-
nisation diagrams for circular and helical swimmers.

Figure 3.3. Frequency and phase locking for helical microswimmers. Proba-
bility distribution for N = 286 helical swimmers corresponding to ϕ ≈ 0.15, rt ≈ 3.33a,
λ ≈ 0.16 and ψ ≈ 45◦ of the (a) angular velocities ω and (b) phase lag angle α between
all particle pairs, at the start and end of the simulation.

As mentioned earlier, the synchronisation spans to low chiralities, and is
observed for λ ≈ 0.03 . . . 0.22 and ϕ ≈ 2.5 . . . 20% (Fig. 3.1). The λ range
corresponds to experimentally observed trajectories of biological swimmers such
as λ = rt/p ≈ 0.05 for T. thermophila [42] and λ ≈ 0.15 for the 3-dimensional
swimming of sperm [43]. We note that the transition between synchronised
chiral states and the linear-swimming polar state (λ = 0) is predicted to occur
between λ ≲ 0.03 and λ = 0 (Fig. 3.1). This suggests that synchronisation may
well be observable at lower chiralities than λ ≈ 0.03 considered in Fig. 3.1.
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Figure 3.4. Circular-helical microswimmer synchronisation state diagram
comparison. Synchronisation state diagram for helical swimmers as a function of
ϕ and rt/a. The green circles correspond to global synchronisation, and red triangles
to isotropic states. The blue/yellow diamonds mark polar order in the absence of
azimuthal order above/below the ϕc line for circular swimmers (see Fig. 2.1). The
white circles mark the states for the same ϕ and rt leading to global synchronisation
for circular swimmers.

A summary of the order parameter dynamics for helical swimmers is shown
in Fig. 3.5. Here, we present the synchronisation diagram for helical swimmers
as a function of rt, B̃11 and ϕ (with B1 = 0.005). In this case, the shaded region
is coloured according to τ = 1/tsync. Typical examples of the time-evolution
profile of the Pm and Ps order parameters are shown for different point across
the phase diagram. Similar to circle swimmers (Fig. 2.2), we observe a variety of
dynamics for the order parameters, with this case presenting even more richness.

Starting with the synchronisation region, just as we discussed a moment ago,
we notice a clear trend in the time-evolution of the order parameters where the
separation (in time) of the growth between Pm and Ps increases as we move to
smaller values of rt (decreasing the ratio B̃11/B1). In general, the synchronising
region can be categorised into 3 groups (see Fig. 3.5): A nearly simultaneous
growth of both Pm and Ps (B̃11/B1 ≳ 1); Pm leading the ordering dynamics
(B̃11/B1 ≈ 1); and the two-step process where Pm grows and reaches a plateau
before Ps begins to grow (B̃11/B1 ≲ 1). As already discussed, close to the high-
ϕ limit of the synchronisation region Pm ̸= 0 and Ps ≈ 0 for the steady state
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Figure 3.5. Helical swimmer order parameter dynamics. Synchronisation
state diagram for helical swimmers as a function of ϕ and rt/a0 (a0 ≡ a). The syn-
chronisation region is coloured according to the inverse of the waiting time τ = 1/tsync

corresponding to the total time elapsed from the start of the simulation until synchro-
nisation is reached (in lattice units). Examples of typical time-evolution trajectories
for the order parameters Pm (black) and Ps (red) are shown corresponding to different
points in the phase diagram. Circles in the synchronisation region mark simulations
that end in global synchronisation with both Pm and Ps growing at the same time
(mint), Pm leading the ordering dynamics (light blue), and the two-step process where
Pm reaches a plateau before Ps begins to grow (blue). Red colsed/open circles corre-
spond to isotropic states that keep/lose their order when initialised in the fully-ordered
state. Yellow circles mark states that correspond to finite polar order in the absence of
synchronisation in the steady state. The white circle corresponds to an isotropic state
for classic neutral squirmers that keeps its polar order when initialised in the ordered
state.
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(see order parameter time-evolution corresponding to rt = 2, B̃11 = 0.003 and
ϕ ≈ 0.21Fig. 3.5).

Similar to circular swimmers, hysteresis also exists for helical swimmers. We
see that the synchronised state is maintained well beyond the high-ϕ limit of the
synchronisation region (closed red circles in Fig. 3.5). Eventually, at packing
fractions above 0.25% the order is not maintained and the system ends up in
the isotropic state with Pm/Ps ≈ 0 (open red circles in Fig. 3.5). For these cases
(ϕ > 0.25), the higher the packing fraction the faster the loss of order to the
isotropic state. Unsurprisingly, once again as the ratio B̃11/B1 is decreased, Ps

presents a faster decay than Pm (see for example order parameter time-evolution
corresponding to rt ≈ 0.67, B̃11 = 0.005 = 0.001 and ϕ ≈ 0.3 in Fig. 3.5).

At the bottom of the synchronisation state diagram, for rt = 0, spontaneous
polar order is observed for ϕ up to 25%. For ϕ = 0.3 (white cirlce in bottom right
corner of state diagram in Fig. 3.5), the system remains in the isotropic state
unable to spontaneously align. When initialised in the aligned state, polar order
is maintained with the system exhibitng hysteresis-like behaviour once again.
Interestingly, we find that polar order can spontaneously emerge for packing
fractions as low as 0.5% (see order parameter time-evolution corresponding to
rt = 0, B̃11 = 0 and ϕ ≈ 0.005 in Fig. 3.5). This is an important result
since it sheds more light on the exact nature of the aligning mechanism in
microswimmer suspensions. If we look closely at the order parameter curves,
we notice kinks that lead to an abrupt increase or decrease in the value. This
is additional proof that the particle aligning mechanism is due to near-field
hydrodynamic interactions between particles coming into close proximity in a
collision-like fashion.

3.2 Racemic mixture of helical microswimmers

Finally, to study the effect of frustration, we construct a racemic mix-
ture composed of right-handed and left-handed helical swimmers by choosing
C1 = ±0.001. Fig. 3.6 shows the analysis for one such case where we start the
simulation from a fully mixed isotropic state with particles from both right-
handed and left-handed populations randomly distributed in space.

The Pm and Ps order parameter time-evolution (Fig. 3.6a) shows how the
system spontaneously evolves from an isotropic state to a polar flock with
Pm ≈ 0.8. Agreeing with the predictions made for suspensions of linear neutral
squirmers [31–37]. However, when compared to our results with homochiral sus-
pensions of helical squirmers, we notice that there is a difference in the amount
of order (alignment) in the steady state. For the homochiral case, Pm ≈ 1 (see
Fig. 3.2a and b and synchronising states in Fig. 3.5). Whereas in our racemic
mixture Pm ≈ 0.8. This is due to the system experiencing a certain degree of
frustration because of the oppositely-rotating populations. This is effect is also
reflected in the Ps curve (red curve in Fig. 3.6a), where huge oscilations are
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Figure 3.6. Helical swimmer racemic mixture ordering dynamics. Racemic
mixture of helical swimmers at ϕ ≈ 0.1 and λ ≈ 0.16: Distributions of the (b) spin-
ning frequency ω and (c) the phase-angle difference α calculated for all swimmer pairs
(black), for clockwise (blue) and counter-clockwise (red) rotating populations, as well
as for the cross population (orange). (d) Total (black), homochiral (violet) and hete-
rochiral (orange) radial distribution functions.

observed spanning from 0 to 0.8 in the order parameter value. To understand
exactly what is happening, we calculate the polar and azimuthal order param-
eters for each population. A detailed presentation of this analysis is given in
Fig. 3.7. On a side note, the apparent long-time oscilation in Ps in Fig. 3.6a is
just an artefact of the frequency of points chosen when plotting the curve and
has no physical meaning behind it.

Fig. 3.7 shows simulation results corresponding to two cases of a racemic
mixture of helical squirmers. Starting form a completely isotropic initial config-
uration with Pm ≈ 0, Ps ≈ 0; and starting in a configuration where the particles
are completely ordered in the polar direction Pm = 1, Ps ≈ 0. In both cases,
the particles are homogeneously distributed in space.

The population order parameters now clearly show how each population of
rotating squirmers (left-handed and right-handed) is synchronised. This now
explains the large fluctuations of Ps. Since both populations display a high
degree of order within themselves and they both swim in roughly the same
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Figure 3.7. Helical swimmer racemic mixture order parameter analysis.
Azimuthal Ps (left) and polar Pm (right) order parameters for a racemic mixture of
helical microswimmers at ϕ ≈ 0.1 and λ ≈ 0.16 starting in an isotropic initial config-
uration (green) with Pm ≈ 0, Ps ≈ 0, and polar-ordered initial configuration (violet)
with Pm = 1, Ps ≈ 0. Top row: global order parameters. Middle row: Population
order parameters for the ordered initial configuration. Bottom row: population order
parameters for the isotropic initial configuration.

direction, the azimuthal unit vectors s will almost completely align or cancel
out twice per period T0, leading to the large fluctuations in Ps with period T0/2.
Within the time-scale of the simulations, we observe no spatial separation of
the swimmers whatsoever — the fluid-like pair-correlation function calculated
within species and cross-species matches with the g(r) of the whole system
(Fig. 3.6b). Remarkably, the system remains homogeneously mixed consisting
of two synchronised, interpenetrating fluids.

At the steady state, the particles, on average, swim along a common direction
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Figure 3.8. Helical swimmer racemic mixture snapshot. Snapshot of the
helical swimmer racemic mixture at ϕ ≈ 0.1 and λ ≈ 0.16 with unwrapped trajectories
at the steady state after 20T0. The system is composed of N = 190 squirmers. 95
with right-handed rotation (red) and 95 with left-handed rotation (blue).

and the rotational frequency ω distribution is observed to peak at ω0 (Fig. 3.6c).
The frustration in the system can be perceived again when comparing the pre-
and post-steady state distributions of the angular velocities for this case to those
of the homochiral case (compare Fig. 3.6c to Fig. 3.3a). Here the distribution
in the final steady state is almost the same as that in the initial isotropic state
whereas for the homochiral case, the distribution in the steady state has a much
more pronounced shape with the peak (at ω ≈ ω0) more than twice the height
of the initial distribution’s peak.

Similarly, at the steady state the phase-lag angle α distribution is wider
compared to that of the homochiral system (compare black curve in Fig. 3.6d
to Fig. 3.3b). However, the intra-species α shows strong phase-locking (blue
and red curves in Fig. 3.6d), whereas for the cross-species no significant peak
is observed (orange curve Fig. 3.6b). This implies that we have two oppositely
spinning populations in the system. This way, each population can present a
relatively high degree of alignment within itself while the total alignment in the
system is less pronounced. Upon closer inspection, the cross-species phase-lag
angle distribution shows a slight preference for α = ±π, which corresponds to
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a parallel orientation of the in-plane projections of the source dipoles (orange
curve in Fig. 3.6d). For α = ±π, the in plane source dipole velocites are aligned,
corresponding to a polar state in the plane perpendicular to the rotational (po-
lar) axis given by the polar director PM . (see Fig. 3.9). This means that as the
two populations swim roughly in the direction of PM while rotating in oppo-
site directions, they spend slightly more time, on average, in the configuration
where their in-plane velocities are aligned in parallel rather than unaligned and
anti-parallel to each other. Once again this highlights the importance of the
near-field interactions and more generally, the importance of hydrodynamics.

This result is effectively a manifestation of the linearity of the Stokes equa-
tions, agreeing with the aforementioned observations of the spontaneous for-
mation of polar order in suspensions of classic neutral squirmers [31–37]. In
dry models, we could expect the opposite effect — particles spending more time
together when their velocities are in the anti-parallel configuration as a result of
head-to-head collisions. This could lead to density variations (inhomogeneities)
in the system and perhaps even clustering under certain circumstances. Hy-
drodynamic interactions therefore would appear to suppress density variations,
allowing the system of left-handed and right-handed helical swimmers to remain
in a homogeneous phase despite the relatively high degree of frustration.

Figure 3.9. Racemic mixture cross-population phase-lag analysis.
Schematic showing the parallel (α = 0) and anti-parallel (α = ±π) configurations
of a pair of rotors with opposite chirality in the plane perpendicular to the average
global polar director PM . When the lag-angle α = 0, the in-plane velocities v1 and
v2 (given by the gray arrows) are antiparallel. For α = ±π the velocites are aligned,
corresponding to a polar state in the plane perpendicular to the rotational (polar)
axis. The arrows s1 and s2 mark the direction of the assigned azimuthal directors.
The polar directors m1 and m2 are perpendicular to the plane shown.
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3.3 Comparison to racemic mixture of circular
microswimmers

Finally, for comparison, we attempt to create a racemic mixture of circular
swimmers. For helical swimmers, this corresponds to the case where λ = ∞ of
ψ = 90◦. We use N = 190 circular squirmers at ϕ ≈ 0.1 and rt ≈ 0.33 with
B̃11 = 0.005 and C1 = ±0.001.

Fig. 3.10 shows the order parameter analysis similar to that carried out
in Fig. 3.7 for racemic mixtures of helical squirmers. Here, we show the time-
evolution of the order parameters for the whole system Pm and Ps; and the time-
evolution of the order parameters for the two oppositely-spinning populations
P 1

m, P 2
m, P 1

s and P 2
s . The system is initialised with the particles randomly and

homogeneously distributed in space with polar order Pm = 1 and no azimuthal
order Ps ≈ 0.

Figure 3.10. Circular swimmer racemic mixture order parameter analysis.
Time-evolution of the azimuthal Ps (red) and polar Pm (black) order parameters of
the racemic mixture of circular microswimmers system at ϕ ≈ 0.1 and rt ≈ 0.33. The
population azimuthal and polar order parameters are given by P 1

s (blue), P 2
s (light-

blue), P 1
m (orange) and P 2

m (yellow).

The results show how in the final, steady state both Pm ≈ 0 and Ps ≈ 0
with small fluctuations. When looking at the population order parameters,
we see that there is a very high degree of order in the system just like with
homochiral systems: P 1

m ≈ P 2
m ≈ P 1

s ≈ P 2
s ≈ 1. Each population is in the

fully synchronised state, and in fact, the whole system is fully synchronised
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with the two populations being indistinguishable (as far as practical purposes
are concerned) with all the particles now rotating in the same direction.

As already mentioned, the system is initialised with all the particle polar axes
m aligned in the same direction. Half the squirmers rotate clockwise and the
other half rotate counter-clockwise. Just like in the case of the racemic mixture
of helical swimmers, this creates a certain degree of frustration with oppositely-
spinning neutral squirmers “wanting” to align their velocities. In contrast to
helical swimmers, there is nothing stopping the squirmers from reorienting over
time in such a way as to always swim in the same direction, similar to the
case of the emergence of polar order in linear neutral swimmer suspensions [31–
37]. Therefore, the swimmers simply align their velocities over time with all of
them swimming in the same direction at the end (just like in the homochiral
situations of circular swimmers studied in chapter 2). This is equivalent to
flipping one of the populations’ global polar director by 180◦ from the start to
the end of the simulation (see Fig. 3.11). When this happens, half the squirmers
have their polar unit vector m in the opposite direction of those in the other
population (that hasn’t flipped). The same happens with the azimuthal unit
vectors s. Hence, Pm ≈ 0 and Ps ≈ 0 in the steady state. Interestingly, during
the re-ordering process, both the population polar order parameters P 1

m and
P 2

m are decreased to values of almost 0 while the population azimuthal order
parameters P 1

s and P 2
s begin to grow. Basically, the system completely loses its

Figure 3.11. Polar rotational autocorrelation function for a racemic mix-
ture of circular microswimmers. Time-evolution of the polar rotational autocor-
relation function Ci

P (t) for the whole system (red) and for each of the two populations
C1

P (t) (purple), C2
P (t) (green) for a racemic mixture of circle swimmers.
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partial order (polar order) entering a fully isotropic state and then builds the
order back up again to reach the fully synchronised state. This is a manifestation
of spontaneous symmetry breaking.

The large fluctuations during the growth of P 1
s and P 2

s are an indication
of the fact that particles from different populations begin to align between
themselves, highlighting the fact that the system is indeed homochiral and we
are merely tagging the particles with our definitions of m and s. The same is not
true for helical swimmers however, since in this case the symmetry is explicitly
broken by the presence of the B1 term; allowing us to construct frustrated states
composed of two separately-synchronised, mixed, chiral fluids.

In Fig. 3.11 we show the time-evolution of the polar rotational autocorre-
lation function Ci

P of the system CP and both populations C1
P and C2

P over
time:

Ci
P (t) = ⟨mi

j(0) · mi
j(t)⟩N (3.1)

where mj(0) is the jth squirmer’s m at in theinitial configuration t = 0 and
mj(t) is the jth squirmer’s m at time t.

The curves in Fig. 3.11 clearly show how one population has almost flipped
its m vectors from the beginning of the simulation to the end while the other
has almost returned in the same orientation. (Obviously, it is not necessary for
the system to re-orient in exactly the same direction in space and therefore we
do not expect C1

P/C
2
P ≈ 1/− 1 or vice versa).
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4 Post-synchronisation
collective phenomena

In this final chapter, we present preliminary results concerning findings we
have come across in the case of circular microswimmers, after the system has
reached the fully-synchronised state. Notably, we observe post-synchronisation
phase separation and wave propagation of local polarisation. Since we are still
trying to understand these observations, we limit ourselves to showcasing the
results and the initial analysis carried out so far in an attempt to understand
the underlying phenomena while sharing our current hypotheses.

4.1 Post-synchronisation phase separation in circular
microswimmer suspensions

In chapter 2 we showed how circular swimmers of radius a = 8 (lattice units)
can spontaneously synchronise their swimming and reach a globally aligned
state. In the synchronised state, all the particles rotate with their angular
velocities aligned and present a high degree of phase-locking whilst maintaining
a homogeneous, liquid-like structure. The spontaneous emergence of global
synchronisation is observed for packing fractions and radii of trajectory of ϕ ≈
3 . . . 23% and rt ≈ 2 . . . 5a respectively.

For most of the simulations, once the system has reached the synchronised
state, it remains there for the rest of the simulation time. Once the synchro-
nised state has been reached in a time tsync (see Fig. 2.1), our protocol involves
extending the simulations for an additional time of tsync. This way, we deem
the state stable if the system remains in the synchronised state with no further
changes in its dynamics.

For some cases however this is not the case. For certain simulations, a
high degree of alignment is maintained, but the system phase separates into
a dense, particle-laden region and a dilute region with very few particles in it
(see Fig. 4.1). The simulations where this occurs are found at the centre of the
synchronisation region, corresponding to the fastest synchronisation times tsync.

In Fig. 4.1 we show the synchronisation state diagram presented in section 2.1
of chapter 2 (Fig. 2.1) with the preliminary, phase-separating region marked out
by a black dashed line. To the right of the state diagram we show a snapshot of a
typical configuration corresponding to a post-synchronisation, phase-separated
system corresponding to a simulation with ϕ ≈ 0.11 and rt ≈ 4.67a.

Our initial guess as to what could be causing the onset of post-synchronisation
phase separtion, is the single particle Reynolds number, which we will refer to

41



Figure 4.1. Phase separation for circular swimmers. The synchronisation dia-
gram for circular swimmers presented in chapter 2 (Fig. 2.1) with the phase separating
region in the middle of the synchronisation region (left). A snapshot of the system at
ϕ ≈ 0.11 and rt ≈ 4.67a0 after the post-synchronisation phase separation has occured.
The particles are coloured using a blue/red scale according to the projection of their
m unit vector (black arrows) in the direction upwards of the page, while their s unit
vector is coloured using the same scale, according to the projection in the direction to
the left of the page.

as Re0 in this chapter. As mentioned at the beginning of chapter 1, the Stokes
equations are a good approximation for systems with Re ≪ 1 (Re → 0). In our
case, we are dealing with particles of Re0 ≈ 0.02...0.075. In the best case, the
system Reynolds number Re ≈ Re0. One could argue that this value is far from
being 0. We therefore suspect that the post-synchronisation phase separation
observed is linked to the single particle Reynolds number Re0 not being strictly
0.

In the following sections, we present the simulations and analysis we have
carried out in our attempt to elucidate this result. We set ϕ = 11%, ρ = 1 and
µ = 0.5 for all the simulations.

4.2 Finite Re analysis and size effects

In order to study any finite Re effects on the system dynamics and see if
our results agree with what is expected at low Re, we have carried out a series
of simulations where we vary a single or multiple parameters from amongst:
the particle radius a0, simulation cubic box length L, particle Reynolds number
Re0, packing fraction ϕ and surface slip flow B̃11; whilst maintaining the rest
constant. For the simulations, we choose values of ϕ and rt corresponding to
points in the state diagram that lead to global synchronisation, specifically ϕ ≈
11%. We initialise the system with random homogeneous initial configurations
of the particle positions starting from both an isotropic and a fully synchronised
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state. We then compare these simulations to one another and try to draw
conclusions. Our results from these simulations are presented in Fig. 4.2, 4.3
and 4.4.

Since we use the lattice Boltzmann method (LBM) for our simulations, one
important parameter from those mentioned above is the particle radius a0. If
the particle size is too small, the numerical error of the average velocity and
velocity fluctuations could increase to an extent where it could prove detrimental
to the simulations [92, 111].

In Fig. 4.2, we show simulations at ϕ ≈ 0.11 and rt ≈ 4.67a0 of N = 204
squirmers for different L and a0. Additionally, C1 = 0.001 and B̃11 = 0.007.
Therefore, v0 = 2

3B̃11 ≈ 0.0047. As we vary L and a0 from one simulation to
another, the single particle Reynolds number Re0 also inevitably changes since
it is proportional to a0 (Re0 = ρa0v0/µ).

The first interesting result is that the simulations with a0 = 2 do not syn-
chronise whereas those for a0 ≥ 4 do. Even when the system is initialised in the
fully-synchronised state (Ps ≈ 1 and Pm ≈ 1), the order is steadily decreased
over time until the system becomes isotropic (Ps ≈ 0 and Pm ≈ 0) (bottom plot
in blue panel of Fig. 4.2). At this point, it is unclear whether this result has
physical meaning or if it is simply due to the particle size being too small and
therefore leading to spurious results as a consequence of numerical errors.

The second interesting result, is the behaviour of the order parameter curves
once the system has synchronised for the simulations with a0 = 12. The curves
present dips and oscillations that seem to be absent from their smaller a0 coun-
terparts. For a0 = 4 and a0 = 8, once the system finds itself in the synchronised
state, the order parameter curves are flat and present small fluctuations around

Figure 4.2. Reynolds number and size effect in circular microswimmer sus-
pensions. Azimuthal Ps (red) and polar Pm (black) order parameter time-evolution
for 8 different simulations of suspensions composed of 204 squirmers at ϕ ≈ 11%,
C1 = 0.001 and B̃11 = 0.007. Moving from left to right (blue to orange) the particle
radius a0, box length L and Reynolds number Re0 are increased.
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the high average values achieved (green and yellow panels in Fig. 4.2). Whereas
for a0 = 12, the curves present significantly bigger fluctuations. This is in direct
contrast to what has been demonstrated in studies regarding the particle size
leading to numerical errors using the LB method [92, 111]. Therefore, this re-
sult suggests that the large fluctuations for the simulations with larger particles
could have a physical interpretation.

Figure 4.3. Size effect in circular microswimmer suspensions. Azimuthal Ps

(red) and polar Pm (black) order parameter time-evolution for 6 different simulations
of suspensions composed of 204 squirmers at ϕ ≈ 11%, C1 = 0.001 and Re0 ≈ 0.0747
. Moving from left to right (green to orange) the particle radius a0 and box length
L are increased while the swimming speed 2B̃11/3 is decreased. Snapshot depicting
the configuration of the system in the steady state are shown at the bottom for each
case. The particles are coloured according to the x-component of their azimuthal
s vector, pointing to the right side of the simulation box as seen from the reader’s
perspective. (Due to a limited storage space, the data corresponding to these curves
was not preserved and therefore we resorted to a crude method for the creation of the
insets which involves merely stretching out a zoomed-in screenshot of the curves along
the vertical axis direction).

In Fig. 4.3, we carry out a similar analysis to that of Fig. 4.2, but this time,
we eliminate the Re0 dependency from one simulation to another by varying
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the surface slip-flow magnitude B̃11 in such a way so that it scales according to
a0, leaving Re0 constant. When comparing the results of figures Fig. 4.2 and
Fig. 4.3, we notice that in the steady, synchronised state (Ps ≈ 1 and Pm ≈ 1),
the order parameter curves for a0 = 12 (orange panels) have flattened out
considerably in the latter case, but still show significantly larger fluctuations
than those for the a0 = 4 and a0 = 8 cases in the same figure (see insets in
Fig. 4.3). This suggests that the fluctuations depend at least on Re0. The higher
Re0, the larger the post-syncronisation fluctuations in the order parameters.
Additionally, given that the simulations in Fig. 4.3 now all have the same Re0,
we know that there is an additional dependence of the post-synchronisation
order parameter fluctuations on a0 and/or L. In the next section, we investigate
further in this direction.

For a0 = 4 and L = 80 the system remains homogeneous throughout the
simulation, while for the other cases the system has phase separated into a dense,
particle-laden region and a dilute region. When comparing the configurations
in each snapshot at the bottom of Fig. 4.3 to each other, we notice that for
larger values of a0, the system is less monochromatic. Meaning that there is
less alignment between the particles. This agrees with the larger fluctuations in
Ps. Another noteworthy observation is that the phase separation always occurs
in the direction of the global polar director PM . That is, the dense, particle-rich
region spreads out in the plain perpendicular to PM .

Furthermore, the large fluctuations in the order parameters for the post-
synchronisation phase-separating cases only appear after the system has already
phase separated. This implies that the extensivity of the system (related to L)
may play a key role in their appearance. The squirmers forming the particle-
rich region can be thought of as one single collective body since a high degree
of alignment (Ps ≈ Pm ≥ 0.9) is maintained across it. Visualising the system
in this regime and following the dynamics frame by frame, it becomes apparent
that the squirmers forming the dense region no longer carry out their circular
trajectories individually, but instead now rotate in unison as if pertaining to
one single body.

This beckons the reassessment of the system’s Reynolds number Re. Thus
far, the system Reynolds number has been directly associated to the single
particle Reynolds number Re0 = ρv0a0/µ ∼ 0.02...0.1. In this case however,
given that dense region spans across the size of the simulation box, perhaps a
better approximation for the system Reynolds number would scale with L and
be given by: Recoll ∼ ρvcoll(L/2)/µ. Where vcoll is the velocity of the dense
phase which is approximately the same as the average single particle velocity:
⟨v⟩ ≈ v0.

For the a0 = 8 simulations we have Recoll ≈ 0.747 (Recoll ≈ 10×Re0) and for
the a0 = 12 simulations we have Recoll ≈ 1.12 (Recoll ≈ 15 × Re0). Both these
cases correspond to the weakly inertial regime rather the zero-Reynolds Stokes
flow regime. Therefore, in both these cases we could expect the appearance of
inertial effects that could be responsible for the growth of the velocity fluctu-
ations in the system. The higher Recoll, the stronger the inertial effects and
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Figure 4.4. Small circular microswimmers. Azimuthal Ps (red) and polar Pm

(black) order parameter time-evolution for 6 different simulations of squirmer suspen-
sions at ϕ ≈ 11%, C1 = 0.001, B̃11 = 0.007, a0 = 2 (or 2.1) and Re ≈ 0.0187 (or
0.0196). Moving from left to right the box length L and number of particles N are
increased.

the larger the velocity fluctuations leading to a loss of alignment in the system,
which is captured by the large fluctuations in Ps and Pm.

Before moving on to the next section, we look back at our results for small
microswimmers (a0 = 2) in Fig. 4.2 (blue panel) where the system is incapable
of reaching or maintaining the synchronised state. According to the work done
in [92], for a fixed squirmer size a0, a larger box L leads to smaller numerical
errors in the velocity. In order to make sure our results corresponding to a fixed
particle size of a0 = 2 hold independent of the box size, we carry out simulations
with the same ϕ ≈ 0.11 for bigger L. We also increase the particle size slightly
to a0 = 2.1 in an attempt to minimise any additional uncertainties associated
to the particles being able to fit exactly across 4 lattice nodes. The results are
presented in Fig. 4.4.

As expected (just due to having better statistics), the fluctuations in the or-
der parameters are smaller for the larger systems. More importantly, the results
show that for the larger systems (with slightly bigger particles) synchronisation
is lost even faster (bottom plots in Fig. 4.4). However, it still remains unclear
to us whether or not this result is due to the velocity error associated to the
small particle size or if it has a physical meaning behind it. In the unlikely
scenario where the latter case is true, we hypothesise that it could be related to
a curvature effect, suggesting that the ratio of surface flow to surface curvature
plays an important role at least below a certain threshold.

To summarise, we have carried out a limited scaling analysis of a0, L, and
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Re0, for ϕ corresponding to a point in the synchronisation diagram for par-
ticles of radius a0 = 8 (see Fig. 4.1) that first leads to spontaneous synchro-
nisation from an initial isotropic state; and then, subsequently presents post-
synchronisation phase separation. The preliminary analysis presented in Fig. 4.2
and 4.3 suggests that the fluctuations in the order parameters after the system
has phase separated depend on Re0, L, and possibly a0. The dependence on Re0
is made clear by comparing the orange panels of Fig. 4.2 and 4.3 to each other.
The dependence on L and/or a0 is made clear when comparing the the three
panels of Fig. 4.3 to each other. When visualising the phase-separated system,
we observe that the particles in the dense, clustered region move in unison. This
leads us to the re-definition of the system Re as Recoll ∝ L. With Recoll ∼ 1
in our simulations, corresponding to the weakly inertial regime, we hypothesise
that this would give rise to inertial effects and increase the magnitude of the
velocity fluctuations.

4.3 Large-scale simulations of circular microswimmers
In order to minimise any periodic boundary condition effects and get a

better understanding of how the extensivity of the system affects the post-
synchronisation phase separation, we move to bigger simulation boxes (larger
L) while trying to remain within feasible computational times.

Figure 4.5. Large-scale simulations of circular microswimmers. Azimuthal
Ps and polar Pm order parameter time-evolution for simulations of squirmer suspen-
sions at ϕ ≈ 11%, C1 = 0.001 and B̃11 = 0.007.

In Fig. 4.5 we present the simulation results for systems at ϕ ≈ 11% and
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rt = 4.67a0 with L = 240. We use three different particle sizes: a0 = 4.2,
a0 = 6.3 and a0 = 8 to fill the simulation box homogeneously with random
initial positions for the squirmers and carry out two production runs of almost
25 · 106 steps for each case. One starting from an isotropic initial configuration
with Ps ≈ Pm ≈ 0, and another starting from a completely synchronised state
with Ps = Pm = 1.

When comparing the order parameter curves in Fig. 4.5 to those in Fig. 4.2
and Fig. 4.3 we notice a much more exacerbated effect of the fluctuations.
The simualtions with a0 = 8 and a0 = 6.3 present post-synchronisation phase
separation. For the simulations with a0 = 4.2, there is no phase separation in
the system.

For the moment, we focus on the simulations with particle radii of a0 = 8
and a0 = 6.3. In these cases, the system clearly reaches the fully synchronised
state Ps ≈ Pm ≈ 1 from an initially isotropic configuration (see violet and
yellow curves in Fig. 4.5). Then, once again, the system phase separates into
a dense, particle-rich region and a dilute region with almost no particles in it.
After phase separation, large fluctuations in the order parameter values begin
to develop. When comparing the order parameter fluctuations for a0 = 8 (violet
and blue curves in Fig. 4.5) to their smaller-box equivalent in Fig. 4.3 and 4.3,
the system-extensivity effect is evident. Here the simulation box is 50% bigger
and we have more than 3 times more particles. This result agrees with our
notion of Recoll ∝ L. Here, Recoll ≈ 1.12. For a0 = 6.3, we have the same Recoll

but the order parameter fluctuations are even bigger than those for a0 = 8
(compare violet and blue curves to yellow and green curves in Fig. 4.5). This
implies a dependence on either a0 or N , or both.

In [112], the authors study the dynamics of an active particle in an external
Poiseuille flow, and explain how active particles in an external flow at low fluid
inertia generate an active lift force (in addition to the classical inertial lift of
passive particles) that can give rise to the emergence of complex dynamics.
Moreover, they show that the dynamics is not only sensitive to the swimmer’s
hydrodynamic signature, but also its size. Therefore, it could be possible that
in our case, we have similar effects due to the squirmers swimming in a self-
induced, weakly-inertial, collective flow.

The duration and depth of the troughs in the order parameter curves for
a0 = 8 and a0 = 6.3 in Fig. 4.5 does not seem to be well defined. However,
there appear to be significant differences between those for one particle size when
compared to those of the other. For a0 = 6.3 and N = 1412 (yellow and green
curves in Fig. 4.5), the troughs are more pronounced and more chaotic, looking
more dissimilar between them and irregular in shape; seemingly extending over
undefined time intervals. For a0 = 8 and N = 689 (violet and blue curves
in Fig. 4.5), they are less pronounced and less chaotic, with somewhat more
regular and smooth shapes; being more well-defined and giving the impression
of a similar pattern being repeated at more consistent time intervals.

When visualising the systems, we see notable differences in the dense phase
cluster dynamics between the two cases. The cluster with larger and fewer par-
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ticles (corresponding to the a0 = 8 and N = 689 simulations) is much more
stable in shape. It continuously breaks up and reforms after every trough in the
order parameter time-evolution and more or less maintains a spheroid shape for
as long as it lasts. Whereas the cluster with smaller and more particles (cor-
responding to the a0 = 6.3 and N = 1412 simulations) undergoes more violent
changes in its shape, appearing to stretch, splay and break up at certain parts,
form swirls, and has an irregular shape over time. Fig. 4.6 shows snapshots
of each system in configurations which are characteristic of each one. These
observations match the profile of the order parameter curves well.

As for the squirmers found in the dilute region, they can, at times, be ob-
served being advected in directions perpendicular to their circular motion, to-
wards and away from the clustered, dense region. This observation appears to

Figure 4.6. Examples of phase separated circular microswimmer suspen-
sions. Left: Snapshots of the system corresponding to a0 = 8 and N = 689 before
(top) and after (bottom) the first trough in its order parameter time-evolution. Right:
Snapshots of the system correspondign to a0 = 6.3 and N = 1412 at two different
times (top/bottom). The polar unite vectors m are represented by black arrows and
monochromaticity indicates alignment in the azimuthal direction according to sy.
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confirm our hypothesis of the emergence of collective flows as a consequence of
the system Re entering the weakly inertial regime with Recoll ∼ 1. A study of
the fluid velocity throughout the simulation would be ideal to confirm this hy-
pothesis. Unfortunately, due to the limited time and resources at our disposal,
and the size of the system, only the particle information was stored for these
simulations. The fluid velocity files were saved only for the final configuration of
the system due to the large amount of storage space required for them. There-
fore, we leave this for future work while we limit ourselves to studying only the
particle velocities instead.

In the next section, we carry out a more detailed analysis of the a0 = 8 and
N = 689 simulation, using only the particle information generated during the
simulations.

4.4 Case study of post-synchronisation phase separa-
tion

With limited time to our disposal, we focus on the results corresponding to
a0 = 8 and N = 689 in Fig. 4.5 in this section since they are far less complex
and easier to analyse than those for a0 = 6.3. Specifically, we focus on the first
t = 125T0 cycles of the simulation starting from a fully synchronised state (with
homogeneous, random initial particle positions).

4.4.A Structure analysis of the clustered phase
To further analyse the cluster state, we calculate the pair-correlation func-

tions g(r), g(r⊥) and g(r||). The functions are calculated over 2T0 at three differ-
ent moments of the dynamics. Just as in chapter 2 (Fig. 2.2b), g(r) corresponds
to the standard radial distribution function of the system; whereas g(r⊥) and
g(r||) correspond to the radial distribution functions calculated perpendicular
and parallel to the global polar director PM respectively. The pair-correlations
functions are shown in Fig. 4.7.

At the start of the simulation, all three pair-correlation functions have ex-
actly the form we would expect. They show a liquid-like structure with isotropic
particle positions (left panel in middle of Fig. 4.7), just like in Fig. 2.2b of chap-
ter 2. Here, the squirmers present a high degree of alignment in their swimming
with Pv ≈ Ps ≈ Pm ≈ 1.

The middle panel in Fig. 4.7 shows the pair-correlation function profiles
once the post-synchronisation phase separation is almost complete. The pair-
correlation functions now present notable differences between them and with
respect to their form at the start of the simulation. As the system phase sepa-
rates, g(r) still has the form of a liquid pair-correlation function, but now the
density of the system decreases with distance, delineating the phase separation.
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Figure 4.7. Radial distribution function for phase separation dynamics of
circle swimmers. Time evolution of the azimuthal Ps (red), velocity Pv (blue) and
polar Pm (black) order parameters for the first trough in their time-evoution profiles.
Radial distribution function g(r) of the system calculated over 2T0 for 3 different
moments in time: at the start of the simulation (left), after phase separation before the
loss of alignment (middle), and after the alignment has been recovered (right). g(r⊥)
(g(r||)) are calculated perpendicular (parallel) to the polar director PM . Snapshots of
the configuration of the system at each time interval are shown at the bottom below
each case. The particle monochromaticity (over a colour spectrum ranging from blue
to red) indicates the strength of alignment in Ps. Black arrows reprent the squirmer
polar unit vector m.

The same trend, indicating clustering, is portrayed and exacerbated for g(r||).
Finally, in stark contrast to its analogues, g(r⊥) shows no density variation with
distance whatsoever. These observations mean one thing: the system phase sep-
arates along the direction of the global polar director PM , spreading out in the
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perpendicular direction as it does so.
The panel on the right in Fig. 4.7 shows the form of the pair-correlation

functions after the first trough in the order parameter time-evolution, once a
high degree of alignment in the system has been recovered. Here, all three
pair-correlation functions indicate that the system is phase separated with the
cluster now being very much isotropic in shape (with respect to PM) and there-
fore approximately spherical in form. Additionally, when compared to the g(r)
profile of the previous time-window, we notice that the system now is more
homogeneous despite still being in a clustered state.

Typical configurations of the system in each of these situations are depicted
at the bottom of Fig. 4.7. While at first glance the two phase-separated config-
urations (middle and right snapshots at bottom of Fig. 4.7) may seem almost
identical to each other, the change in the orientation of PM leads to the notable
differences in the pair-correlation function profiles.

During these first 125T0 of the simulation, the pair-correlation functions show
how the system undergoes changes in its density, compressing and expanding
before and after every trough, evocative of a “breathing motion”. Interestingly,
at the end of the cycle, the global polar director PM re-orients in a different
direction.

4.4.B Particle velocity analysis and enhanced diffusiv-
ity

With the order parameters Pv, Ps and Pm providing limited information,
in this subsection, we calculate the average velocity ⟨u⟩ of the whole squirmer
population and the associated standard deviation σu in an attempt to shed more
light on the system’s dynamical behaviour. Since for these simulations almost
all the squirmers are found in the dense clustered phase, with very few of them
being in the dilute region, we can approximate ⟨u⟩ and σu to the average velocity
and velocity fluctuations of the particle cluster.

Fig. 4.8 shows the order parameter curves for Ps, Pv and Pm, the mean
squared displacement (MSD) of the system, and ⟨u⟩ and σu during the the first
t = 125T0 cycles of the simulation.

The most noteworthy aspect of Fig. 4.8 is the curve for the velocity fluctua-
tions σu. Starting from the synchronised state, the velocity fluctuations slowly
grow over time while ⟨u⟩ remains roughly constant and the system begins to
phase separate around t/T0 ∼ 50. As the system begins to phase separate and
form the particle cluster, there is a small increase in ⟨u⟩ and a drastic increase
in σu. At around t/T0 ∼ 60 (grey dotted vertical line in Fig. 4.8) σu peaks at its
maximum value. This point corresponds to the end of a sharp fall in the order
parameter values. Form this point on, σu decreases and Pv, Ps and Pm fluctuate
at a plateau until the order slowly builds back up again as the squirmers begin
to re-align their velocities and re-synchronise with a new orientation for PM

52



0 25 50 75 100 125
t/T0 [cycles]

0.2

0.4

0.6

0.8

1.0
O

rd
er

 P
ar

am
et

er Ps

Pv

Pm

 

0.82

0.85

0.88

0.91

u
[u

0]

 
 

0

14

29

43

M
SD

[r
t2 ]

 
 

0.03

0.06

0.09

0.12

u
[u

0]

 

Figure 4.8. Post-synchronisation velocity analysis for circular swimmers.
Time evolution of the azimuthal Ps (red), velocity Pv (blue) and polar Pm (black)
order parameters for the first trough in their time-evoution profiles. The mean square
displacement (MSD) (green), average velocity of the squirmer population ⟨u⟩ (cyan)
and the corresponding standard deviation σu (orange) are calculated during this time.
The grey dotted vertical lines approximately mark peaks in σu.

(see snapshots in Fig. 4.7). Soon after, the velocity fluctuations begin to build
up again as the system begins what would correspond to the second cycle of the
“breathing motion”. We note that throughout this process ⟨u⟩ roughly remains
the same, with an associated standard deviation (σ⟨u⟩) in the region of 1%. On
the other hand, the standard deviation for σu (σσu) is in the region of 33%.
While magnitude of the average velocity of the system is conserved (blue curve
in Fig. 4.8), it undergoes significant changes in the magnitude of its fluctuations
(orange curve in Fig. 4.8) that are not random; but instead correspond to the
form of a curve that presents notable variations with physical meaning behind
them, reflecting the system dynamics.

During the time between consecutive peaks of σu, we notice that the MSD
increases. The increase in the velocity fluctuations appears to be directly linked
to an enhanced diffusivity in the system. In Fig. 4.9, we plot the order parameter
(Ps and Pm) time-evolution and the mean square displacement (MSD) of the
system for 500 cycles (in T0) of simulation time. Grey dashed vertical lines
approximately mark the points at which the order parameters experience a
sharp and abrupt plunge in value (corresponding to maxima in the velocity
fluctuations for each cycle of the system’s “breathing motion”). Most of the
vertical lines roughly coincide with kinks or bends in the MSD that correspond
to an increase of diffusivity.

The results in this subsection show a good agreement with our hypothesis
of inertial effects: As the system phase separates with the squirmers forming
one large cluster that spans the box length L, its Re increases due to the par-
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Figure 4.9. Enhanced diffusivity for circle swimmers. Time evolution of the
azimuthal Ps (red) and polar Pm (black) order parameters. Mean square displacement
(MSD) (green) presenting regions with enhanced diffusivity that roughly correspond
to the grey dashed vertical lines which approximately mark the steepest negative
gradients for the order parameter values.

ticles in the cluster roughly moving as one single body (Recoll). With Re now
corresponding to the weakly inertial regime, a particle-driven, collective flow be-
gins to develop while the squirmer velocity fluctuations experience a significant
growth. These effects could be responsible for the observed enhanced diffusivity
with every cycle of the breathing-motion.

As the squirmer velocity fluctuations increase, the degree of alignment be-
tween the squirmers is decreased. This breaks up the cohesion of the collective
and would lead to a smaller Re. When Re is decreased, the system becomes less
inertial. If the Re is such that there is nothing left to support the particle-driven
flows, they will begin to vanish. As the collective flows die out with the particle
cluster less intact, the squirmers begin to increase their alignment, recovering
the fully-synchronised state, and bringing an end to the cycle.

4.4.C Microswimmer dynamics
In this subsection we carry out a slightly more detailed study of the mi-

croswimmer dynamics before, during, and after the post-synchronisation phase
separation.

In Fig. 4.10, we choose 13 microswimmers at random and track them through-
out the first cycle of the breathing-motion. We trace out the trajectories of the
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particles for 2T0 or T0 and colour them according to the z-component of their
m unit vector (mz) (see Fig. 1.3 for reference). Depending on the case, the par-
ticles themselves are coloured according to the z-component of their s vector
(sz), or in a similar fashion to their trajectory (mz).

We show snapshots of the system at 5 different times: at the very beginning
of the simulation (blue panel in Fig. 4.10); in the phase separated state just
before the order parameters plummet in value (green panel in Fig. 4.10); at
the beginning of the order parameter recovery (yellow panel in Fig. 4.10); at
the peak of the order parameter values before the second cycle begins (magenta
panel in Fig. 4.10); and at the end of the first breathing-motion cycle (orange
panel in Fig. 4.10).

As mentioned earlier, the system is initialised in the fully synchronised state,
with all the squirmers aligned (Ps ≈ Pm ≈ 1) with their m unit vectors pointing
in the positive z direction. With the microswimmers programmed to undergo
circular trajectories, this means that they would orbit in the xy-plane individu-
ally. the blue panel in Fig. 4.10 that corresponds to the first 2T0 of the trajectory
(marked by the vertical blue line in the order parameter plot) shows a very high
degree of monochromaticity. This indicates a very high degree of alignment.
The squirmers carry out their circular orbits while they remain phase locked
and frequency locked with little fluctuations. The high degree of orientational
order is maintained for about 50T0.

After about 50T0, the system begins to phase separate (as shown in Fig. 4.7)
along the global polar director PM and the velocity fluctuations increase rapidly
(Fig. 4.8). Once the system is well phase separated into a dense particle-laden
phase and a dilute phase with almost no particles in it, the swimmers found
in the dense phase cluster together and move in unison as if they were one
single body. A relatively high degree of orientational order is still maintained.
The green panel in Fig. 4.10 shows how some of the 13 chosen squirmers are
found in the midst of the cluster, some on the periphery, and some in the dilute
region. The microswimmers found well outside the cluster continue to have
approximately circular trajectories in the xy-plane over the 2T0 time-window.
One of the swimmers found deep in the cluster however, seems to have moved
upwards along the z-axis while orbiting in the xy-plane, presenting a helical
trajectory (see top-left corner of top-right snapshot in green panel of Fig. 4.10.
Due to the PBCs, the particle is at the bottom of the box). Curiously, the
squirmers that find themselves at the periphery of the cluster during the time-
window appear to have tilted their axis of rotation, no longer orbiting in the
xy-plane. At the bottom of the top-right snapshot in the green panel of Fig. 4.10,
we can even see a squirmer that appears to have initially been in the cluster,
change the orientation of its axis of rotation within a time of approximately T0
and exit the cluster. Another squirmer close by, appears to have entered the
cluster while initially being at the periphery.

These observations show that while the cluster roughly preserves its size
and shape during an extended period of time, its composition is quite dynamic.
Particles are continuously being exchanged at its border, exiting and entering
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Figure 4.10. Post-synchronisation circular microswimmer dynamics. Time
evolution of the azimuthal Ps (red), velocity Pv (blue) and polar Pm (black) order
parameters for the first trough in their time-evoution profiles. Snapshots of the sys-
tem for 5 different times with the particle trajectories over the previous 2T0 or T0:
At the start of the simulation (blue); in the phase separated state just before the
order parameters plummet in value (green); at the beginning of the order parameter
recovery (yellow); at the peak of the order parameter values before the second cycle
of the breathing motion begins (magenta); and at the end of the first breathing cycle
(orange). The particles and their trajectories are coloured according to the colour
schemes displayed on the left of each panel.
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it. Here, it is important to recall that the neutral squirmer far-field flow is not
expected to induce any torques [83]. Therefore the torques on the squirmers
cannot be caused by the neutral squirmer far-field flow. When closely studied,
some of the squirmer trajectories present kinks in certain parts, corresponding
to an abrupt change in the swimmer’s motion. This means that the swimmer
has most probably come into close contact with one or more other squirmers
in a collision-like fashion. One hypothesis is that in this scenario the near-field
hydrodynamic interactions, which remain unknown to us, could be responsible
for inducing a torque on the squirmer.

As for the alleged emergent collective flows in the system, it is unclear to us
as of yet whether they could be capable of inducing hydrodynamic torques as
well. Instead, our results suggest that vertical flows develop in certain regions
of space. For example, the trajectory lines of the squirmer found deep in the
cluster with an upward helical motion is smooth and lacks any creases (top-left
corner of top-right snapshot in green panel of Fig. 4.10). When studying the
dynamics of the system frame by frame corresponding to this time-window, the
cluster begins to wobble in the direction of PM while it continues to rotate in
the perpendicular plane. It is as if a transversal wave propagated through it.
The particles in the cluster now display periodic motion both in the xy-plane
and along the z-axis. Both having a period of ≈ T0.

Signs of vertical advection in the system can also be seen outside the cluster.
With the squirmers closer to the cluster being advected towards and away from
it while orbiting in the plane perpendicular to the advection. Even two of the
squirmers found in the dilute region present smooth helical trajectories, albeit
with a very small pitch (top-right snapshot in green panel of Fig. 4.10). One of
them moves upwards and away from the cluster during the time-window, and
the other downwards towards the cluster (taking the shortest distance to the
cluster into account).

After the peak in the velocity fluctuations and before the alignment in the
system builds up again, most of the particle trajectories are no longer in the
xy-plane (yellow panel of Fig. 4.10). The particle cluster is less well-defined as
the system is more isotropic and homogeneous compared to the previous time-
windows. Eventually, alignment is recovered and the cluster becomes more
pronounced (magenta and orange panels of Fig. 4.10) with the particles in it
now rotating about a newly oriented PM that points in a different direction.
All the 13 tagged particles now find themselves in the re-oriented cluster. In
the magenta panel of Fig. 4.10, we add 4 extra particles to show that not all
the squirmers rotate approximately about PM . Curiously, these 4 particles do
not form part of the cluster and are found rotating in the dilute region with
approximately the same orientation as in the initial state of the system, despite
all four of them having entered the cluster previously and having changed their
initial orientation. As we move form the middle of the dilute region to the centre
of the cluster, we notice a seemingly continuous change of the squirmer axis of
rotation (m) going from the z-direction in the middle of the dilute region, to
the x-direction in the middle of the cluster.
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In Fig. 4.11, we track a single particle throughout the time duration of
the trough in the order parameter values in Fig. 4.10. This time corresponds
approximately to 30T0, spanning from 60T0 to 90T0 in the order parameter
time-evolution (see top-left panel in Fig. 4.10). Here, the cluster is less well-
defined and the particle velocity fluctuations are high. In this time period, we
observe the maximum and minimum particle velocities in the simulations. We
unwrap the particle positions and the tracked particle is marked black. The
rest of the particles are coloured according to a colour-scheme ranging from the
maximum, to the minimum vertical particle velocity detected throughout the
simulation, vzmax ≈ 1.18v0 to vzmin ≈ −1.23v0. The trajectory of the marked
particle is coloured according to another colour-scheme that ranges form mz = 1

Figure 4.11. Advection in phase-separated circular microswimmer suspen-
sions. Panels 1 − 6 show the sequential evolution of the system and selected particle
trajectory at six different moments in time. The selected, tracked particle is coloured
black. The particle with which it collides within the time frame given from panel 1
to 6 is also coloured black. The unwrapped trajectory is coloured according to the
projection of the squirmer m unit vector in the z-direction, mz, with the “rainbow”
colour-scheme that ranges form mz = 1 to mz = 0. The rest of the particles are
coloured according to the “jet” colour-scheme ranging from the maximum, to the min-
imum vertical particle velocity detected throughout the simulation, vzmax and vzmin

respectively. Enlarged images of the tracked particle trajectory from two different
view-points are shown at the right.
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to mz = 0. Additionally, we also colour black a second particle that comes into
very close contact with the first particle. In order to have a high resolution of the
particle trajectory, we record the particle positions every 0.02T0, corresponding
to free-particle travelled distances of ≈ 0.6a0 or 4.7 lattice nodes, and giving us
50 frames per T0.

A total of 6 snapshots are shown in Fig. 4.11. In the first snapshot, we
show the trajectory of the tagged particle over 2T0. Here, the particle is in
the dilute region. As we can see, the trajectory is coloured red (mz = 1) and
flat. In the next snapshot (2), the particle has moved upwards over a time of
3.5T0. Snapshot 3 corresponds to one frame before the tracked particle alters
its trajectory significantly due to coming into very close contact with the other
black particle. the change in motion of the particle is seen in snapshot 4. Its
axis of rotation, or polar axis m, has shifted significantly, with a change of
approximately 45◦. The particle then rotates in the new direction for about 2T0
(snapshot 5) before it finds itself at the periphery of the dense clustered phase.
It then begins to carry out a more chaotic trajectory, continuously changing the
direction of axis of rotation m as it passes through the dense region (snapshot
6).

Looking closely at the marked particle trajectory, we notice that as it comes
close to other neighbouring particles, its trajectory begins to become less smooth.
It begins to present small kinks and become jagged. For the first few circular
revolutions (each corresponding to a time of T0), while the particle is still in
the dilute region and before the collision with the other marked particle, the
trajectory presents small kinks only on one side as it comes closer to other
neighbouring particles also in the dilute region (see enlarged images of parti-
cle trajectory at the right of Fig. 4.11). Otherwise, the trajectory is smooth.
Moreover, the particle presents a net upwards motion with time that is not due
to collisions with other particles nor the particle’s motion itself since its active
swimming is in the plane perpendicular to the vertical motion. This observation
agrees with our hypothesis of the existence of collective flows.

As the particle moves upwards and approaches the dense region, the kinks
in its trajectory become more frequent and more pronounced (end part of red
coloured section of particle trajectory at the right of Fig. 4.11). Eventually it
collides with the neighbouring particle and changes its orientation of rotation
(change of colour of the trajectory in Fig. 4.11). This observation suggests that
the near-field hydrodynamics can indeed induce torques on the squirmers. With
the particle now rotating in a different direction, it finds itself interacting more
violently with the other particles at the edge of the clustered region. It expe-
riences multiple close contact interactions with its trajectory now being more
jagged rather than smooth (yellow part of trajectory in Fig. 4.11). Eventually,
it enters the dense region where it changes direction of rotation much more
frequently as it chaotically moves through the cluster (change of colours of tra-
jectory in panel 6 in Fig. 4.11) and is no longer found in close proximity to the
other tagged particle it collided with.

In a back-of-the-envelope calculation, the tracked squirmer in Fig. 4.11 shows

59



a maximum vertical velocity of ∼ a0/(T0/4). This corresponds to ≈ 0.14v0, not
too far form |vzmax| (which is the maximum recorded vertical velocity for the
whole simulation), and giving a rough estimate of the strength of the advection
(in the region of 10% of v0).

Finally, in Fig. 4.12 we show the full, unwrapped trajectories of 3 tagged
microswimmers at 4 different times. The tagged particles are coloured red
while the trajectories and the rest of the particles are coloured according to the
projection of their polar unit vector m (which points in the direction of their
axis of rotation) in the x-direction mx.

Panel 1 corresponds to a time shortly before phase separation occurs. The
system is in the synchronised state, homogeneous, and with all the particle
m vectors pointing approximately in the positive z-direction with small fluc-
tuations, corresponding to a green colour. In panel 2, the system has phase
separated into a dilute region and a clustered, dense region. On average, the
particles close to the borders of the clustered region undergo the biggest changes
in their m orientation. Their m begins to point along the negative x-direction,
corresponding to a colour change from green to blue. One of the 3 tagged

Figure 4.12. Tracking circular microswimmer trajectories before and after
phase separation. The panels 1 − 4 show the sequential evolution of the particle
trajectories at four different moments in time. The three tagged particles are coloured
red. Their trajectories, and the rest of the particles are coloured according to the
projection of the squirmer m unit vector in the x-direction, mx. The trajectories and
particle positions are unwrapped.
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particles is in this situation.
Panel 3 shows the state of the system after the reorientation of PM and the

average cluster rotation. The polar axes m of the particles in the cluster now
point in approximately the same direction as that of the particles found at the
cluster periphery in the previous panel (panel 2). That is, in approximately
the x-direction, corresponding to a blue colour. Two of the tagged particles are
now in the clustered phase and the other one has re-entered the dilute phase
after having spent some time in the cluster. Similarly, The two particles in the
cluster have previously spent some time in the dilute phase. Once again, this
shows that the clustered phase is dynamic, continuously exchanging particles
with the dilute region. Furthermore, the trajectories of the particles appear to
be more chaotic when they are close to the cluster’s periphery. For example
the end of the trajectory of the particle at the bottom-left corner of panel 3. In
panel 4 the particles begin to spread out in the zy-plane perpendicular to PM .
The system is in the synchronised state presenting a high degree of alignment.

4.5 Formation of travelling bands with local polarisa-
tion

In this section we present our brief analysis corresponding to the simulations
with squirmer radii of a0 = 4.2 in Fig. 4.7. The order parameter time-evolution
for this case shows a completely different behaviour to that for a0 = 8 and
a0 = 6.3. As we can see in Fig. 4.7, in this case the system is unable to
reach the globally synchronised state. The curves show large fluctuations in
Ps. Additionally, both Ps and Pm oscillate around values of roughly 0.3 and 0.2
respectively.

Fig. 4.13 shows the pair-correlation function g(r) of the system at the begin-
ning and end of the simulations. The system remains homogeneous throughout
the simulations showing liquid-like structure. Interestingly, in the steady state,
we observe what seems to be a travelling band with local polarisation (see panels
in Fig. 4.13). As we move along the direction of the band propagation, we note
a continuous change in the azimuthal orientation of the circular swimmers. The
squirmers found inside the band have approximately the opposite azimuthal
orientation s of those found outside it. Extending along the plane perpendic-
ular to the band’s propagation direction, the squirmers show a high degree of
alignment in their s vectors. This is marked by the colour of the squirmers in
Fig. 4.13. We colour the particles based on the projection of their s vector in
the directions of the band propagation using a red/blue colour-scheme. On the
other hand, the squirmers show absolutely no alignment between their polar
axes m. The squirmer m unit vectors point in all directions. Moreover, the
motion of the system presents oscillations in the plane perpendicular to the
travelling band as well, making the dynamics more complex.

When the simulation is visualised, we notice that the two regions composed of
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Figure 4.13. Traveling bands with local polarisation in circle microswim-
mer suspensions. Analysis of the simulations of circular swimmers with a0 = 4.2
in Fig. 4.7 initialised in an isotropic configuration. The radial distribution function is
shown for the start and end (steady state) of the simulation. The panels show snap-
shots of the system at the beginning, and at in the steady state where travelling bands
of local polarisation appear. The particles are coloured according to their s projection
in the direction of the travelling band using a red/blue colour scheme.

the squirmers inside the travelling band and those outside it, rotate in opposite
directions to each other. This may account for the large fluctuations observed
in the time evolution of Ps, in a similar way to what we discussed regarding the
racemic mixtures studied in section 3.2 of chapter 3. Therefore, if we were to plot
the azimuthal order parameter Ps of each region, we would expect a significantly
higher amount of order than the one shown for the whole suspension in Fig. 4.7.

In Fig. 4.14 we show the results of the particle velocity analysis similar to
that of Fig. 4.10. Due to the size of the data, corresponding to N = 4766, in
this case we only calculate ⟨u⟩ and σu at 5 different points of the first 380T0
of the simulation. (These points correspond to the only saved particle velocity
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Figure 4.14. Squirmer velocity analysis for travelling band with local
polar order. Time-evolution of the first 380T0 of the azimuthal Ps (red) and polar
Pm (black) order parameters of the simulation in Fig. 4.7 with a0 = 4.2 starting
in an isotropic initial configuration. The average particle velocity ⟨u⟩ and velocity
fluctuations σu at five different points in time are represented by cyan triangles and
orange circles respectively.

files we have for the whole simulation).
When compared to the results in Fig. 4.10 for a0 = 8 and N = 689, we

observe a couple important differences: First, the velocity fluctuations for this
case (a0 = 4.2 and N = 4766) do not appear to show a growth before the dip
in the order parameter values. In fact, despite the lack of points in the plot,
we observe the opposite effect. The five points remain at values in the region of
σu ≈ 0.12...0.18, and show a similar standard deviation to that of ⟨u⟩. Both ⟨u⟩
and σu evolve in a similar manner, unlike the results in Fig. 4.10. Second, we
notice a significantly greater gap between Ps and Pm. With the average values
having a difference of ∼ 0.2. This is due to the lack of polar order throughout
the whole space. While the squirmers show local order of their s vectors, their
m vectors appear to be uncorrelated.

4.6 Summary of the observations

The short, exploratory analysis carried in section 4.2 implies that the onset
of the post-synchronisation phase separation and its dynamics depend directly
on the single particle Reynolds number Re0. Throughout the whole chapter, we
have kept the packing fraction constant at ϕ ≈ 0.11 while other parameters were
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varied. In brief, regarding the post-synchronisation phase separation dynamics,
we currently have:

• Comparing the orange panels in Fig. 4.2 and 4.3, we notice a decrease in
the order parameter fluctuations for smaller Re0. This reflects the direct
dependence on Re0.

• Comparing the panels in Fig. 4.3 to each other suggests a dependence of
the post-synchronisation phase-separated dynamics on the particle size a0
and/or the extensivity of the system L since now Re = const across all
three panels.

• Our hypothesis of a collective Reynolds number Recoll ∼ ρvcoll(L/2)/µ,
suggests a dependence on L.

• In Fig. 4.7 the box length L is the same while we vary a0 and N . Here, we
notice much larger post-synchronisation fluctuations for the simulations
with smaller particles a0 = 6.3 and smaller Re0 (compared to the case
with a0 = 8) despite L = const. This implies a dependence of the post-
synchronisation phase-separated dynamics on a0 and/or N as well (how
coarse the cluster is).

• For a0 = 4.2 in Fig. 4.7, we do not observe phase separation, but instead,
a phase propagating wave as the system appears to be divided into two
oppositely rotating regions that present no order in the polar direction Pm

(see Fig. 4.13).

We take note that as we change a0, the free-particle radius of trajectory rt,
angular velocity ω0, and therefore rotational Reynolds number ReΩ change as
well. With the limited information we have til now, we refrain from drawing
conclusions regarding a dependency on rt since there is no clear trend in the
response of the system as we change rt. In Fig. 4.3 rt = const and according
to Fig. 4.2 a bigger rt would imply larger fluctuations. Whereas in Fig. 4.7 the
larger fluctuations are observed for a smaller value of rt. As for ReΩ, throughout
this work ReΩ ∼ 0.01 whereas Re ∼ 0.1. Therefore, for the sake of simplicity,
we do not take into account the effect of ReΩ for now.

Finally, in our case study of the post-synchronisation phase separation for
the system with a0 = 8 andN = 689, we come across strong evidence supporting
our hypothesis of the emergence of collective flows; and that the hydrodynamic
near-field interactions can induce torques on the particles.
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Conclusion
Using hydrodynamic simulations I have investigated suspensions of microswim-

mers with chiral trajectories at the limit of zero thermal noise.
The results presented in chapters 2 and 3 suggest the emergence of hy-

drodynamic synchronisation as a naturally occuring collective phenomenon for
microswimmers. The predictions should be relevant to a wide variety of exper-
imental systems; such as helically swimming bacteria [42] and sperm [43], or
chiral Quincke rollers [113] and spherical ciliates [100], where rotational motion
occurs naturally. The synchronisation state diagram in chapter 3 shows how syn-
chronisation can span up to low chiralities, being observed for λ ≈ 0.03 . . . 0.22
and ϕ ≈ 2.5 . . . 20%, and correspond to biologically relevant values of the pa-
rameters. For example, the experimentally observed trajectories of biological
swimmers such as T. thermophila with λ = rt/p ≈ 0.05 in [42] and the 3-
dimensional swimming of sperm with λ ≈ 0.15 in [43].

The observation of the intra-species synchronisation in the racemic mixture,
provides a surprising example of two synchronised, interpenetrating, fluids. Fur-
ther, it demonstrates that synchronisation can be robust as it is maintained in
the presence of hydrodynamic fluctuations arising from the source-dipole 1/r3

far-fields. This suggests, that it could be interesting to (re)analyse 3-dimensional
correlations in the rotational degrees of freedom in systems exhibiting polar or-
der, such as areas of uniform order in bacterial systems [1–9] or polar flocks in
motile colloids [114].

My work shows that the near-field hydrodynamic interactions appear to play
a key role in the ordering dynamics of the swimmers. With the random close
packing argument for the onset of synchronisation proving to be an effective
description for understanding the low-ϕ limit of the synchronisation region in
the state diagram. The occurrence of the dynamic bottle-neck at the high-
ϕ limit implies that the near-field hydrodynamic interactions are once again
crucial in determining the steady state of the system. I am currently carrying
out work in this direction by investigating the number of close contacts a particle
experiences at a given time (k-nearest neighbour interactions), and the duration
of the interacting and non-interacting time intervals.

With all this in mind, one can expect synchronisation to depend on the shape
of the particles. While this work is limited to the study of spherical swimmers,
microswimmers in general are not perfectly spherical and in many cases, present
elongated shapes. One could expect asymmetrical particles to facilitate synchro-
nisation in some cases, since the synchronised state effectively corresponds to
the particles being aligned with high orientational order in the azimuthal and
polar directions. This of course would depend on the precise shape of the par-
ticles and the orientation of the axes of symmetry relative to the translational
and rotational motion. An important consequence of the particles not having
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a spherical shape, is that the rotlet term, responsible for the rotational motion
of the particle, will in general no longer have a null contribution to the overall
flow field generated by the squirmer. Additionally, biological microswimmers do
not have smooth surfaces, but rather use the flagella and cilia at their surface
for self-propulsion. Taking this into account would increase the complexity of
studying these systems, especially when considering the near-field interactions.

Finally, in chapter 4, I report the emergence of post-synchronisation col-
lective phenomena such as phase separation and travelling bands with local
polarisation. Despite the results being in a preliminary phase, the analysis
so far alludes to the observed phenomena being directly linked to the finite,
non-zero, particle Reynolds number (Re0 in chapter 4). It suggests that the
microswimmer Reynolds number plays a critical role in determining the overall
dynamics of the system and can give rise to the emergence of complex collec-
tive behaviour. The observations could be relevant for biological systems that
have Reynolds numbers in the range studied here (Re ∼ 0.1), such as Volvox
carteri [115] and plankton [116]. The dynamic behaviour observed in the simu-
lations, could for example help shed light on understanding and predicting the
dynamics of plankton blooms [117, 118] — a challenging ecological issue.

These observations, together with the results concerning the racemic mixture
of helical swimmers and the various states existing across the synchronisation
diagrams — from fully synchronised helical swimming to the partially ordered
state displaying only polar alignment — show how the simplicity of Stokes flows
can be harnessed to potentially tune the topological flow state of programmable
active fluids.
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A. Slip velocity profiles of
neutral squirmers, shakers,

pushers and pullers

Here we give the equations and a visual representation of the slip flow corresponding
to the first few modes (n = 2 and m = 2) of the generalised squirmer model using
Wolfram Mathematica [90]. Additionally, we show how these modes can be used
to “construct” the 4 main types of squirmer: neutral squirmers, pushers, pullers and
shakers. The colour scheme and size of the arrows in the surface of the squirmer reflect
the intensity of the slip-flow. We normalise the magnitude of the velocity profiles by
their maximum value in each case to have a full spectrum of colours (in the “rainbow”
colour scheme) ranging from: 0 (blue) to 1 (red). The local axis coordinate tripod has
exactly the same orientation throughout and is only shown for the first image.

Using Lamb’s general solution in spherical coordinates for purely tangential defor-
mation (u) on the surface of a spherical particle given in [83]; we have:

ur|r=a = 0 (A.1)

uθ|r=a =
∞∑

n=1

n∑
m=0

−2 sinθPm′
n

nan+2 (Bmn cosmϕ+B̃mn sinmϕ)+ mPm
n

an+1 sinθ (C̃mn cosmϕ−Cmn sinmϕ)


(A.2)

uϕ|r=a =
∞∑

n=1

n∑
m=0

sinθPm′
n

an+1 (Cmn cosmϕ+C̃mn sinmϕ)+ 2mPm
n

nan+2 sinθ (B̃mn cosmϕ−Bmn sinmϕ)


(A.3)
where Pm

n = Pm
n (x), with x = cosθ.

Just for the sake of completion, the overall flow field is given by:

v = u + uT + uR (A.4)

where u = urer +uθeθ +uϕeϕ is the solution of the pumping problem and uT , uR are
the flows due to the induced translation (U) and rotation (Ω).
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A.1 n = 1
n=1, m=0

P 0
1 = x = cosθ , P 0′

1 = 1 (A.5)

uθ = −2 sinθ
a3 B01 (A.6)

uϕ = sinθ
a2 C01 (A.7)

where equation (A.6) corresponds to a source dipole (neutral squirmer), and
equation (A.7) to a rotlet and does not contribute to the overall flow field v because
it cancels out with the flow field due to the induced rotation uΩ.

By using the re-scaling:
B0n = − an+2

n+ 1Bn (A.8)

equation (A.6) becomes:
uθ = sinθB1 (A.9)

Figure A.1. Classic neutral squirmer. n=1, m=0. A source dipole (neutral
squirmer) in the z-direction.

n=1, m=1
P 1

1 = −
√

(1 − x2) = − sinθ , P 1′

1 = x√
1 − x2

= cosθ
sinθ (A.10)

uθ = −2 cosθ
a3 (B11 cosϕ+ B̃11 sinϕ) − 1

a2 (C̃11 cosϕ− C11 sinϕ) (A.11)
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uϕ = cosθ
a2 (C11 cosϕ+ C̃11 sinϕ) − 2

a3 (B̃11 cosϕ−B11 sinϕ) (A.12)

Similarly to the n=1, m=0 case, the B11/B̃11 and C11/C̃11 modes in equations (A.11)
and (A.12) correspond to source dipoles and rotlets respectively, in the x/y direc-
tions (with the rotlets not contributing to the overall flow field for the same reason
explained above).

Figure A.2. Neutral squirmers in x and y directions. n=1, m=1. Source
dipoles (neutral squirmers) in the x and y directions. Left: B11 mode. Right: B̃11
mode.

A.2 n = 2
n=2, m=0

P 0
2 = x = (3x2 − 1)

2 , P 0′

2 = 3x = 3 cosθ (A.13)

uθ = −3 sinθ cosθ
a4 B02 = −3 sin2θ

2a4 B02 (A.14)

uϕ = 3 sinθ cosθ
a3 C02 = 3 sin2θ

2a3 C02 (A.15)

Equation (A.15) corresponds to a rotlet dipole and is the leading-order mode in the
azimuthal direction (eϕ) contributing to the overall flow field v.

By re-scaling (equation (A.8)), equation (A.14) becomes:

uθ = sin2θ
2 B2 (A.16)

which corresponds to a stresslet in the z-direction (a shaker), S(ez,ez), and allows us
to define pushers and pullers (β = B2/B1).

71



Figure A.3. Classic shaker. n=2, m=0. A stresslet (B2 mode) in the z-direction

n=2, m=1

P 1
2 = −3x

√
(1 − x2) = −3 cosθ sinθ , P 1′

2 = −3
√

(1 − x2)+ 3x2√
(1 − x2)

= 3
(

cos2θ

sinθ −sinθ
)

(A.17)

uθ = 3(2 sin2θ − 1)
a4 (B12 cosϕ+ B̃12 sinϕ) − 3 cosθ

a3 (C̃12 cosϕ− C12 sinϕ) (A.18)

uϕ = 3(2 sin2θ − 1)
a3 (C12 cosϕ+ C̃12 sinϕ) − 3 cosθ

a4 (B̃12 cosϕ−B12 sinϕ) (A.19)

Figure A.4. The B21 and B̃21 modes. n=2, m=1. Left: B21 mode. Right: B̃21
mode.
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n=2, m=2
P 2

2 = 3(1 − x2) = 3 sin2θ , P 2′

2 = −6x = −6 cosθ (A.20)

uθ = 6 cosθ sinθ
a4 (B22 cos2ϕ+ B̃22 sin2ϕ) + 6 sinθ

a3 (C̃22 cos2ϕ− C22 sin2ϕ)

= 3 sin2θ
a4 (B22 cos2ϕ+ B̃22 sin2ϕ) + 6 sinθ

a3 (C̃22 cos2ϕ− C22 sin2ϕ) (A.21)

uϕ = −6 cosθ sinθ
a3 (C22 cos2ϕ+ C̃22 sin2ϕ) + 6 sinθ

a4 (B̃22 cos2ϕ−B22 sin2ϕ)

= −3 sin2θ
a3 (C22 cos2ϕ+ C̃22 sin2ϕ) + 6 sinθ

a4 (B̃22 cos2ϕ−B22 sin2ϕ) (A.22)

Here, in equations (A.18),(A.19),(A.21),(A.22), the Bm2/B̃m2 and Cm2/C̃m2 terms with
m = 1, 2; correspond to stresslets and rotlet dipoles respectively, in different ori-
entations.

Figure A.5. The B22 mode. n=2, m=2. Left: B22 mode. Right: B̃22 mode.

73



A.3 Forming Pullers and Pushers:

Similarly to (A.8), we introduce the following re-scaling:

Bmn = an+2

n+ 1Bnm , (m ̸= 0) (A.23)

The stresslets in the x, y directions can be obtained by combining modes B2 and B22
and choosing B2 = B22:

S(ex, ex) = B22

[
−mode(B2) − mode(B22)

2

]
(A.24)

S(ex, ex)uθ = B22

[
− sin2θ

2 − sin2θ cos2ϕ
2

]
(A.25)

S(ex, ex)uϕ = B22 sin θ sin2ϕ (A.26)

S(ey, ey) = B22

[
−mode(B2) + mode(B22)

2

]
(A.27)

S(ey, ey)uθ = B22

[
− sin2θ

2 + sin2θ cos2ϕ
2

]
(A.28)

S(ey, ey)uϕ = −B22 sin θ sin2ϕ (A.29)

Figure A.6. Shakers in the x and y directions. Stresslets in the x and y
directions. Left: S(ex,ex). Right: S(ey,ey).
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Figure A.7. Building a shaker (stresslet) in the x direction.

−mode(B2) − mode(B22)
2 =S(ex,ex)

Figure A.8. Building a shaker (stresslet) in the x direction.

−mode(B2) + mode(B22)
2 =S(ey,ey)

By combining the source dipoles (modes B1, B11 and B̃11) with their corresponding
stresslets we can form pullers and pushers:

Pullerz = mode(B1) + S(ez, ez) = mode(B1) +mode(B2) (A.30)

Pusherz = mode(B1) − S(ez, ez) = mode(B1) −mode(B2) (A.31)

Pullerzuθ = B1 sinθ +B2
sin2θ

2 (A.32)

Pullerzuϕ = 0 (A.33)

Pusherzuθ = B1 sinθ −B2
sin2θ

2 (A.34)

Pusherzuϕ = 0 (A.35)

Pullerx = mode(B11) + S(ex, ex) = mode(B11) −mode(B2) − mode(B22)
2 (A.36)

Pusherx = mode(B11) − S(ex, ex) = mode(B11) +mode(B2) + mode(B22)
2 (A.37)
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Figure A.9. Building a classic puller and pusher.
Top: mode(B1) +mode(B2) = Pullerz.

Bottom: mode(B1) + [−mode(B2)] = Pusherz.

Pullerxuθ = −B11 cosθ cosϕ−B22
sin2θ

2 −B22
sin2θ cos2ϕ

2 (A.38)

Pullerxuϕ = B11 sinϕ+B22sinθ sin2ϕ (A.39)

Pusherxuθ = −B11 cosθ cosϕ+B22
sin2θ

2 +B22
sin2θ cos2ϕ

2 (A.40)

Pusherxuϕ = B11 sinϕ−B22sinθ sin2ϕ (A.41)

Pullery = mode(B̃11) + S(ey, ey) = mode(B̃11) −mode(B2) + mode(B22)
2 (A.42)

Pushery = mode(B̃11) − S(ey, ey) = mode(B̃11) +mode(B2) − mode(B22)
2 (A.43)

Pulleryuθ = −B̃11 cosθ sinϕ−B22
sin2θ

2 +B22
sin2θ cos2ϕ

2 (A.44)

Pulleryuϕ = −B̃11 cosϕ−B22sinθ sin2ϕ (A.45)

Pusheryuθ = −B̃11 cosθ sinϕ+B22
sin2θ

2 −B22
sin2θ cos2ϕ

2 (A.46)

Pusheryuϕ = −B̃11 cosϕ+B22sinθ sin2ϕ (A.47)
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Figure A.10. Building a puller and pusher in the x direction.
Top: mode(B11)+S(ex, ex) = Pullerx. Bottom: mode(B11)+[−S(ex, ex)] = Pusherx.

Figure A.11. Building a puller and pusher in the x direction.
Top: mode(B̃11)+S(ey, ey) = Pullery. Bottom: mode(B̃11)+[−S(ey, ey)] = Pushery.
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B. Translational and Angular
Velocity of Self-Propelling

Particles
Here we use the reciprocal theorem for Stokes flows [89] to calculate the resulting

bulk swimming velocity U and angular velocity Ω of a particle, due to a slip flow
(disturbance motion) u′ at the surface, corresponding to different cases of slip flow
that were initially of interest to us. For each case, we begin with the corresponding
u′.

U(t) = − 1
4πR2

∫
S

u′dS (B.1)

Ω(t) = − 3
8πR3

∫
S

n × u′dS (B.2)

with n = êr normal to S and:

dS = R2 sinθdθdϕ (B.3)

Figure B.1. Local spherical coordinate system for a squirmer of radius R.
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B.1 Classic squirmer model: u′ = sinθ(b1 + b2 cosθ) êθ

U = − R2

4πR2

∫ π

0

∫ 2π

0
(b1 sinθ + b2 sinθ cosθ)(cosθ cosϕ, cosθ sinϕ,−sinθ) sinθdθdϕ

(B.4)
Treating each component separately:

Ux = − 1
4π

∫ π

0

∫ 2π

0
(b1 sin2θ cosθ cosϕ+ b2 sin2θ cos2θ cosϕ) dθdϕ (B.5)

Uy = − 1
4π

∫ π

0

∫ 2π

0
(b1 sin2θ cosθ sinϕ+ b2 sin2θ cos2θ sinϕ) dθdϕ (B.6)

Uz = − 1
4π

∫ π

0

∫ 2π

0
(−b1 sin3θ − b2 sin3θ cosθ) dθdϕ (B.7)

When integrating for ϕ from 0 to 2π, equations (B.5) and (B.6) will give 0 since we
have the functions sinϕ and cosϕ. Therefore: U = Uzẑ.

where: ∫
sin3α dα = 1

12(cos(3α) − 9 cosα) + C (B.8)

∫
sin3α cosαdα = sin4α

4 + C (B.9)

therefore:

U = Uzẑ = − 1
4π

0 , 0 , −2πb1

(
1
12(cos(3θ) − 9 cosθ)

∣∣∣∣∣
π

0

)
− 2πb2

(
sin4θ

4

∣∣∣∣∣
π

0

) (B.10)

U =
(

0, 0, 2πb1

4π · 4
3

)
=
(

0, 0, 2b1

3

)
= 2b1

3 ẑ (B.11)

And for the angular velocity:

Ω = − 3R2

8πR3

∫ π

0

∫ 2π

0
∥êr∥∥u′∥ sinα êϕ sinθdθdϕ (B.12)

Ω = − 3
8πR

∫ π

0

∫ 2π

0
sin2θ(b1 + b2 cosθ) (− sinϕ, cosϕ, 0) dθdϕ (B.13)

Since the dependence on ϕ in the non-zero components is of the type sinϕ or cosϕ,
the angular velocity in these directions will be zero (Ωx = Ωy = 0). Therefore, for the
classic squirmer model we find: Ω = 0.
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B.2 u′ = b2 cosϕ êϕ

êϕ = − sinϕx̂ + cosϕŷ = (− sinϕ, cosϕ, 0) (B.14)

U = − R2

4πR2

∫ π

0

∫ 2π

0
b2 cosϕ(− sinϕ, cosϕ, 0) sinθdθdϕ (B.15)

U = − 1
4π

∫ π

0

∫ 2π

0
(−b2 cosϕ sinϕ sinθ, b2 cos2ϕ sinθ, 0) dθdϕ (B.16)

U = −
−b2 cosθ

∣∣∣∣∣
π

0
4π

∫ 2π

0
(− cosϕ sinϕ, cos2ϕ, 0) dϕ (B.17)

where: ∫
cosα sinαdα = −cos2α

2 + C (B.18)∫
cos2αdα = 1

2(α + sinα cosα) + C (B.19)

therefore:

U = −2b2

4π

(
− cos2 ϕ

2

∣∣∣∣∣
2π

0
,

1
2(ϕ+ sinϕ cosϕ)

∣∣∣∣∣
2π

0
, 0
)

= − b2

2π (0, π, 0) (B.20)

U = −b2

2 ŷ (B.21)

B.3 u′ = sinθ b2 cosϕ êϕ

U = − R2

4πR2

∫ π

0

∫ 2π

0
sinθ · b2 cosϕ(− sinϕ, cosϕ, 0) sinθdθdϕ (B.22)

U = − 1
4π

∫ π

0

∫ 2π

0
(−b2 cosϕ sinϕ sin2θ, b2 cos2ϕ sin2θ, 0) dθdϕ (B.23)

where: ∫
sin2αdα =

∫
(1 − cos2α)dα = 1

2(α− sinα cosα) + C (B.24)

therefore:

U = −

b2
2 (θ − sin θ cos θ)

∣∣∣∣∣
π

0
4π

∫ 2π

0
(− cosϕ sinϕ, cos2ϕ, 0) dϕ (B.25)

and using equations (B.18) and (B.19):

U = −
b2π
2

4π

(
cos2α

2

∣∣∣∣∣
2π

0
,

1
2(ϕ+ sinϕ cosϕ)

∣∣∣∣∣
2π

0
, 0
)

= −b2

8 (0, π, 0) (B.26)

U = −b2π

8 ŷ ≈ −(0.39 · b2)ŷ (B.27)
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Figure B.2. Self-propulsion of squirmer with azimuthal slip-flow. Schematic
representation of the local xy-plane cross section of the self-propelling particle as
viewed from the top (positive z-axis). A slip flow of type: u′ = A cosϕ · êϕ (repre-
sented by the blue circle around the particle surface) leads to a transnational velocity
U (green arrow).

B.4 Our “general” rotor model: u′ = sinθ(b1+b2 cos(nϕ))êϕ

U = − R2

4πR2

∫ π

0

∫ 2π

0
sinθ(b1 + b2 cos(nϕ))(− sinϕ, cosϕ, 0) sinθdθdϕ (B.28)

U = − 1
4π

∫ π

0

∫ 2π

0
(− sin2θ sinϕ(b1 + b2 cos(nϕ)), sin2θ cosϕ(b1 + b2 cos(nϕ)), 0) dθdϕ

(B.29)

Similarly to equation (B.25):

U = −

1
2(θ − sinθ cosθ)

∣∣∣∣∣
π

0
4π

∫ 2π

0
(− sinϕ(b1 + b2 cos(nϕ)), cosϕ(b1 + b2 cos(nϕ)), 0) dϕ

(B.30)

The addends containing b1 of each component of U will give 0 when integrated with
respect to ϕ from 0 to 2π since they are functions of either sinϕ or cosϕ.
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Therefore we have:

U = −b2

8

∫ 2π

0
(− sinϕ cos(nϕ), cosϕ cos(nϕ), 0) dϕ (B.31)

Given the symmetry properties of the sine and cosine functions, sin(x) cos(nx),
cos(x) cos(nx) and sin(x) sin(nx) will have a period P = π for odd values of n (n =
1, 3, 5, ...) and P = 2π for even values of n (n = 0, 2, 4, ...). With cos2(x) ≥ 0 and
sin2(x) ≥ 0 (for n = 1) corresponding to the only cases in which the area between
the curve and the X-axis will be different from 0 for an interval of size L = mP
(m = 1, 2, 3, ...).

Therefore U ̸= 0 only for n = 1, which corresponds to the solution given previously in
part 2:

U = −b2π

8 ŷ ≈ −(0.39 b2) ŷ (B.32)

As for the angular velocity:

Ω = − 3R2

8πR3

∫ π

0

∫ 2π

0
∥êr∥∥u′∥ sinα êθ sinθdθdϕ (B.33)

where α is the angle between êr and u′ in the plane containing them and:

êθ = cosθ cosϕx̂ + cosθ sinϕŷ − sinθẑ = (cosθ cosϕ, cosθ sinϕ,− sinθ) (B.34)

Ω = − 3
8πR3

∫ π

0

∫ 2π

0
sin2θ(b1 + b2 cos(nϕ)) (cosθ cosϕ, cosθ sinϕ,−sinθ) dθdϕ (B.35)

Taking each component separately:

Ωx = − 3
8πR

∫ π

0
sin2θ cosθ dθ

∫ 2π

0
(b1 + b2 cos(nϕ)) cosϕ dϕ (B.36)

Ωy = − 3
8πR

∫ π

0
sin2θ cosθ dθ

∫ 2π

0
(b1 + b2 cos(nϕ)) sinϕ dϕ (B.37)

Ωz = 3
8πR

∫ π

0
sin3θ dθ

∫ 2π

0
(b1 + b2 cos(nϕ)) dϕ (B.38)

where: ∫
sin2α cosα dα = sin3α

3 + C (B.39)

∫
sin3α dα = 1

12(cos(3α) − 9 cosα) + C (B.40)

From equation (B.39) we see that the x and y components of Ω will be equal to 0 and
thus Ω = Ωzẑ:

Ω = 3
8πR

0 , 0 ,
(

1
12(cos(3ϕ) − 9 cosϕ)

∣∣∣∣∣
π

0

)(
2πb1 + b2

sin(nϕ)
n

∣∣∣∣∣
2π

0

) (B.41)

Ω = 3
8πR

0 , 0 , 4
3 · 2πb1

 = b1

R
ẑ (B.42)
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Hydrodynamic synchronisation of chiral microswimmers

Sotiris Samatas and Juho Lintuvuori
Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France

(Dated: January 18, 2023)

We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories
using large scale numerics. The model is generic. It corresponds to the lowest order solution
of a general model for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric
rotating source dipole. We show that both purely circular and helical swimmers can spontaneously
synchronize their rotation. The synchronized state corresponds to velocity alignment with high
orientational order in both the polar and azimuthal directions. Finally, we consider a racemic
mixture of helical swimmers where intraspecies synchronization is observed while the system remains
as a spatially uniform fluid. Our results demonstrate hydrodynamic synchronization as a natural
collective phenomenon for microswimmers with chiral trajectories.

Introduction.— Microswimmers are a subset of ac-
tive matter systems and correspond to microscopic ele-
ments self-propelling within a fluid environment. Nat-
ural microswimmers consist of biological microorgan-
isms [1–3] and their collective dynamics has gained a
lot of interest of late [4–12]. This has inspired research
on synthetic microswimmers, typically based on phoretic
Janus particles [13–15]. The interest for developing arti-
ficial swimmers has been fuelled by the various promiss-
ing possibilities for applications such as micro-cargo
transportation[16–19], targeted drug delivery[19–22], ar-
tificial insemination[19, 23] and microsurgery[19, 20, 24–
26].

Most theoretical studies of microswimmer suspensions
have concentrated on particles that swim in straight lines,
with simulations predicting the spontaneous formation of
collective swimming along a common direction — uni-
form polar order [27–33]. However, microorganisms typ-
ically have intrinsic chirality and tend to swim along he-
lical paths [34–44]. Similarly, any asymmetry due to im-
perfections in the shape of the colloids or in their cat-
alytic coating would also lead to chiral motion for artifical
swimmers [13, 45–48].

Continuum descriptions based on the long-range hy-
drodynamics produced by flow singularities [49–52] have
been extensively used in the past, with some works in-
cluding chiral flows [53–55]. However, these models fail
to capture near-field hydrodynamic effects, which are
believed to be crucial for the formation of polar or-
der [29, 30].

Most of the current theoretical work of active particles
moving along chiral paths relies on dry microscopic de-
scriptions such as active Brownian particle (ABP) mod-
els [56–65]. These effectively account for excluded volume
effects, but neglect hydrodynamic interactions. Simula-
tions of rotational dry models have predicted large-scale
synchronisation, when a Kuramoto-type alignment term
is included [57, 66]. Very recently, work on the hydro-
dynamics of chiral swimmers has started to emerge, but
has so far been limited to single and two particle systems
[67–72].

Explicitly incorporating chirality in hydrodynamic
models used to study microswimmer suspensions could
have an important effect regarding the emergence of col-
lective states, such as large-scale collective oscillations[73,
74], polar order [27–33] or hydrodynamic synchronisa-
tion [75–81]. While synchronisation arising from active
flows has been predicted for linear trimers [75] and for
rotors on a 2-dimensional lattice [79], the ability of mi-
croswimmers to spontaneously synchronise (or not) in
freely moving bulk suspensions, remains an open ques-
tion.

Here, we show that swimmers with chiral trajecto-
ries can synchronise their rotation in a fully three-
dimensional suspension. We consider finite sized swim-
mers, with a surface slip-flow arising from the general so-
lution for self-propulsion at low Reynolds numbers [82],
corresponding to a rotating source dipole flow inclined
at an angle ψ with respect to the particle polar direc-
tion. A synchronised state, corresponds to the alignment
of these dipoles. We study three distinct cases: circu-
lar swimmers, helical swimmers, and a racemic mixture
of left-handed and right-handed helical swimmers. In all
cases, the spontaneous formation of synchronised states
is observed.

Model for rotational squirmers.— To model the mi-
croswimmers, we consider spherical particles of radius
a, and extend the standard squirmer model [83, 84]
to include rotational slip-flows. Based on Lamb’s gen-
eral solution, the tangential slip-flow at the particle sur-
face, is given in spherical coordinates by an infinite se-
ries of modes for the polar and azimuthal components
eθ and eφ[82]. The lowest order modes correspond to
self-propulsion (source dipoles and rotlets), while the
higher order terms correspond to fluid mixing. We
choose [82, 85]

uθ|r=a = B1 sinθ + B̃11 cosθ sinφ

uφ|r=a = C1 sinθ + B̃11 cosφ.
(1)

The B1 mode corresponds to the source dipole in the
standard squirmer model (top right panel in Fig. 1a).
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FIG. 1. Model for rotational squirmers. (a) The surface slip-

flows corresponding to the different modes: B1, C1 and B̃11 in
the particle frame. The magnitude of the normalised surface
velocity (slip flow) for each mode is represented by a colour-
code and the streamlines are coloured black. (b) The particle
trajectories in the lab frame, corresponding to circular (left)
and helical (right) swimming. The unit vectors m and s cor-
respond to the particle polar and azimuthal axes respectively
and ψ is the inclination angle with respect to m. (c) Swim-
mer flow field obtained from the simulations, corresponding
to a source dipole B (neutral squirmer). The magnitude of
the fluid velocity is coloured using a logarithmic scale and
overlaid by black streamlines.

C1 leads to a rotation of the particle around its po-
lar axis z (or m) with an angular velocity ω0 = C1/a

(bottom left panel in Fig. 1a). B̃11 corresponds to a
source dipole along y (bottom right panel in Fig. 1a).
The total swimmer flow field corresponds to a single

source dipole B with magnitude B =

√
B̃2

11 +B2
1 , which

rotates around the polar axis (m) at an inclination

ψ = | tan−1(B̃11/B1)| (Fig. 1). An isolated particle
has a swimming speed v0 = 2

3B. When ψ = 90◦

(B1 = 0) the swimmers have circular trajectories in a
plane perpendicular to m (left in Fig. 1b). The ra-

dius of the trajectory is given by rt = 2B̃11a/(3C1) and
the period by T0 = 2π/ω0 = 2πa/C1. For ψ ̸= 90◦

and ψ ̸= 0◦ the trajectories become helical with pitch
length p = 4πB1a/(3C1) (right panel in Fig. 1b). To
characterise the helical swimming, we define the ratio
λ ≡ rt/p = B̃11/(2πB1) [85].

To study the collective dynamics of suspensions of N
swimmers, we use the lattice Boltzmann method [85].
The typical particle Reynolds number is Re ∼ 0.01
with simulation times ∼ 100s. (see supplementary ma-
terial [85] for details of simulations and mapping to SI
units). An orientationally ordered state, corresponds to
the alignment of the source dipoles B. The amount of
alignment can be measured by considering a velocity or-

der parameter Pv(t) =
|∑N

i v̂i|
N , where v̂i = vi/vi. To

further quantify the ordering, we measure the alignment
along the azimuthal s and polar m directions, by calcu-

FIG. 2. Synchronisation diagram for circular swimmers (ψ =
90◦) as a function of the volume fraction ϕ and particle trajec-
tory radius rt. Green circles indicate global synchronisation,
and the red triangles mark isotropic states. The synchronisa-
tion region is coloured according to a waiting time tsync/T0

corresponding to the total time elapsed from the start of the
simulation until synchronisation is reached. The white curve

corresponds to ϕ = ϕ′
c
4/3πa3

2πr2t a
with ϕ′

c = 70%. (see text and

supplementary material [85] for details).

lating Ps|m(t) =
|∑N

i si|mi|
N . Pv|s|m = 1 corresponds to

complete order, and 0 to an isotropic state.

Synchronisation of circular swimmers.— Starting
from isotropic initial conditions, we find that circular
swimmers spontaneously synchronise their rotation when
ϕ ≈ 3 . . . 23% and rt ≈ 2 . . . 5a (Fig. 2). The synchroni-
sation corresponds to the spontaneous alignment of the
particle velocities, with the growth of both azimuthal and
polar order, where typically Ps ≈ Pm ≈ Pv ≳ 0.85 at
long times (Fig. 3a). The phase locking is apparent from
the distribution of the lag angle α = αs⊥

1,2 calculated from
all the particle pairs, considering the s vectors of two
different rotors in the plane perpendicular to the global
polar director, PM ∼ ∑N

i mi. The distribution of α
changes from uniform at t ≈ 0 to a normal distribu-
tion with a peak at α ≈ 0 in the globally synchronised
state (Fig. 3d). In this state, the particle trajectories
are circular and aligned perpendicularly to PM (right in
Fig. 3e). The particle positions remain isotropic with the
pair-correlation functions g(r), g(r⊥) and g(r||) showing
liquid-like structure (Fig. 3b).

The likelihood of the synchronisation depends on the
volume fraction ϕ and the trajectory radius rt (Fig. 2).
At low ϕ the system remains in an isotropic state with the
circular trajectories randomly oriented and distributed.
When ϕ is increased, the trajectories become jagged in
the isotropic state (left in Fig. 3e). At long times the tra-
jectories align (right in Fig. 3e). The distribution of rota-
tional frequencies ω has a peak at ω0 and the width likely
arises from the hydrodynamic fluctuations (Fig. 3c). In-
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FIG. 3. (a) Circular swimmers: Example of a typical time
evolution of the azimuthal Ps (red), velocity Pv (blue) and
polar Pm (black) order parameters. (b) Radial distribution
function g(r) of the system at the beginning (gray) and at
the end (black) of the simulation. The g(r⊥) (g(r||)) are
calculated perpendicular (parallel) to the polar director PM .
Probability distribution of the (c) angular velocities ω and
(d) phase lag angle α between all particle pairs, at the start
and end of the simulation. (e) Snapshots of 25 selected parti-
cles at the beginning (left) and end (right) of the simulation.
The particles are coloured according to the y−component of
their s vector. The trajectories are shown over one period and
coloured according to the x−component of the swimmer’s m
vector. (The data corresponds to ϕ ≈ 0.15 and rt ≈ 3.33a).

terestingly, the particle dynamics is reminiscent of the
active-absorbing state transition predicted for dry cir-
cular swimmers in 2-dimensions (2D) [62] — the diffu-
sive dynamics in the isotropic state becomes sub-diffusive
when the spontaneous synchronisation occurs [85]. How-
ever, in the 2D dry system, where the particles interact
exclusively via steric collisions, only local synchronisation
was observed [62]. This suggests that hydrodynamic in-
teractions are crucial for the large scale synchronisation
observed here.

Previous studies of linear squirmers predict that the
alignment of source dipoles corresponding to the forma-
tion of uniaxial polar order is dominated by near-field
hydrodynamic interactions [29, 30]. When rt ∼ a, an
isolated swimmer sweeps an area ∼ r2t during one period
T0, and can be thought to occupy an effective volume

FIG. 4. State diagram for helical swimmers as a function of
ϕ and λ = rt/p. The green circles correspond to global syn-
chronisation, and red triangles to isotropic states. The blue
diamonds mark polar order for classic linear neutral squirmers
and yellow diamonds correspond to finite polar order in the
absence of synchronisation for chiral swimmers. (data corre-
sponds to p ≈ 21a).

2πr2t a. The lower-ϕ limit for the synchronisation region,
closely corresponds to the random close packing of dis-
cotic cylinders with volume 2πr2t a [85] (white line in
Fig. 2). Above this line, the effective volumes overlap in
the isotropic state, and the swimmers have a high prob-
ability of interacting via near-field hydrodynamics.

To study the ordering dynamics, we measure the to-
tal time tsync from the beginning of the simulation until
synchronisation is reached . The fastest formation is ob-
served in the middle of the synchronised region (Fig. 2).
For a given rt, if ϕ is too large no synchronisation is ob-
served. This implies the existence of a dynamic bottle-
neck where the particles have multiple collisions during
their full-rotation time T0, hindering the growth of global
alignment. For simulations towards the high-ϕ end of the
synchronisation region, tsync is increased (Fig. 2), and
the order parameters fluctuate close to zero before the
growth of the order begins.

Helical swimmers.— The helical swimmer trajecto-
ries are characterised by the ratio between the radius of
curvature of the trajectory and the pitch length λ = rt/p
(Fig. 1b). The particle motion is 3-dimensional, leading
to an increase of the probability of near-field interactions.
Hence, synchronisation is observed at lower ϕ than in the
case of pure rotors (Fig. 2 and 4). Similarly to circular
swimmers, a high degree of order is observed in the syn-
chronised state (Fig. 5a and b), and the particles swim
along a common direction, with their helical trajectories
aligned (Fig. 5c). Interestingly, when the ratio B̃11/B1 is
decreased, the ordering dynamics is observed to change
from a smooth growth to a two-step process where the ve-
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FIG. 5. Helical swimmers: Time-evolution of the order pa-
rameters Ps (red), Pv (blue) and Pm (black) for (a) ϕ ≈ 0.083,
λ ≈ 0.19 and (b) ϕ ≈ 0.125, λ ≈ 0.1. (c) Snapshots of the
system in the synchronised state. The uwrapped trajecto-
ries of all the N = 286 helical swimmers couloured according
to mx (left). 8 selected microswimmers with their trajecto-
ries coloured as a function of time (right). The particles are
coloured according to sy. (The snapshots in (c) correspond
to ϕ ≈ 0.15, λ ≈ 0.16).

locity alignment initially corresponds only to alignment
in the polar direction (see e.g. Fig. 5a and b, for λ ≈ 0.19
and λ ≈ 0.1, respectively). Both the rotational frequency
and the phase locking show comparable behaviour to the
circular swimmers [85].

When λ = 0, the swimmers correspond to achiral neu-
tral squirmers and the formation of pure polar order
(Pm > 0; Ps ∼ 0) is observed (blue diamonds in Fig 4) in
agreement with [27–33]. Remarkably, we also find cases
with λ > 0 with stable polar order in the absence of az-
imuthal ordering (Pm > 0; Ps ≈ 0) (yellow diamonds in
Fig. 4).

The synchronisation spans to low chiralities, and is ob-
served for λ ≈ 0.03 . . . 0.22 and ϕ ≈ 2.5 . . . 20% (Fig. 4).
The λ range corresponds to experimentally observed tra-
jectories of biological swimmers such as λ = rt/p ≈
0.05 for T. thermophila [39] and λ ≈ 0.15 for the 3-
dimensional swimming of sperm [40]. We note that the
transition between synchronised chiral states and the lin-
ear polar state (λ = 0) is predicted to occur between
λ ≲ 0.03 and λ = 0 (Fig. 4). This suggests that synchro-
nisation may well be observable at lower chiralities than
λ ≈ 0.03 considered in Fig. 4.

Racemic mixture.— Finally, to study the effect of
frustration, we construct a racemic mixture composed of
right-handed and left-handed helical swimmers by choos-

FIG. 6. Racemic mixture: Distributions of the (a) spin-
ning frequency ω and (b) the phase-angle difference α calcu-
lated for all swimmer pairs (black), for clockwise (blue) and
counter-clockwise (red) rotating populations, as well as for the
cross population (orange). (c) Total (black), homochiral (vi-
olet) and heterochiral (orange) radial distribution functions.
(d) Snapshot of the unwrapped trajectories at the steady state
after 20T0. (The data corresponds to ϕ ≈ 0.1 and λ ≈ 0.16).

ing C1 = ±0.001 (Fig. 6). We start from a fully mixed
isotropic state. At the steady state, the particles, on av-
erage, swim along a common direction (Fig. 6d) and the
rotational frequency ω is observed to peak at ω0 (Fig. 6a).
The intra-species α shows strong phase-locking (blue and
red curves in Fig. 6b), whereas for the cross-species no
significant peak is observed (orange curve Fig. 6b), due to
the oppositely spinning populations. However, the dis-
tribution shows a slight preference for α = ±π, which
corresponds to a parallel orientation of the in-plane pro-
jections of the source dipoles [85]. Within the time-scale
of the simulations, we observe no spatial separation of
the swimmers — the fluid-like pair-correlation function
calculated within species and cross-species matches with
the g(r) of the whole system (Fig. 6c).

Conclusions.— Using hydrodynamic simulations we
have investigated suspensions of microswimmers with
chiral trajectories at the limit of zero thermal noise. The
results suggest the emergence of hydrodynamic synchro-
nisation as a naturally occuring collective phenomenon
for microswimmers. The predictions should be relevant
to a wide variety of experimental systems; such as he-
lically swimming bacteria [39] and sperm [40], or chi-
ral Quincke rollers [86] and spherical ciliates [87], where
rotational motion occurs naturally. The observation of
the intra-species synchronisation in the racemic mixture,
provides a surprising example of two synchronised, in-
terpenetrating, fluids. Further, it demonstrates that the
synchronisation is maintained in the presence of hydro-
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dynamic fluctuations arising from the source-dipole 1/r3

far-fields. This suggests, that it could be interesting to
(re)analyse 3-dimensional correlations in the rotational
degrees of freedom in systems exhibiting polar order, such
as areas of uniform order in bacterial systems [4–12] or
polar flocks in motile colloids [88].
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[57] Hartmut Löwen. “Chirality in microswimmer motion: From circle swimmers to
active turbulence”. In: The European Physical Journal Special Topics 225.11
(2016), pp. 2319–2331.

[58] Benno Liebchen and Demian Levis. “Collective behavior of chiral active matter:
Pattern formation and enhanced flocking”. In: Physical review letters 119.5
(2017), p. 058002.

[59] Demian Levis and Benno Liebchen. “Simultaneous phase separation and pat-
tern formation in chiral active mixtures”. In: Physical Review E 100.1 (2019),
p. 012406.

[60] Guo-Jun Liao and Sabine HL Klapp. “Clustering and phase separation of circle
swimmers dispersed in a monolayer”. In: Soft matter 14.38 (2018), pp. 7873–
7882.

[61] Demian Levis and Benno Liebchen. “Micro-flock patterns and macro-clusters
in chiral active Brownian disks”. In: Journal of Physics: Condensed Matter 30.8
(2018), p. 084001.

[62] Jens Bickmann et al. “Analytical approach to chiral active systems: Suppressed
phase separation of interacting Brownian circle swimmers”. In: arXiv preprint
arXiv:2010.05262 (2020).

[63] Qun-Li Lei, Massimo Pica Ciamarra, and Ran Ni. “Nonequilibrium strongly hy-
peruniform fluids of circle active particles with large local density fluctuations”.
In: Science advances 5.1 (2019), eaau7423.

[64] Zhan Ma and Ran Ni. “Dynamical clustering interrupts motility-induced phase
separation in chiral active Brownian particles”. In: The Journal of Chemical
Physics 156.2 (2022), p. 021102.

[65] Guo-Jun Liao and Sabine HL Klapp. “Emergent vortices and phase separation
in systems of chiral active particles with dipolar interactions”. In: Soft Matter
17.28 (2021), pp. 6833–6847.

[66] Benno Liebchen and Demian Levis. “Chiral active matter”. In: Europhysics
Letters 139.6 (2022), p. 67001.

98



[67] Demian Levis, Ignacio Pagonabarraga, and Benno Liebchen. “Activity induced
synchronization: Mutual flocking and chiral self-sorting”. In: Physical Review
Research 1.2 (2019), p. 023026.

[68] Federico Fadda, John Jairo Molina, and Ryoichi Yamamoto. “Dynamics of a
chiral swimmer sedimenting on a flat plate”. In: Physical Review E 101.5 (2020),
p. 052608.
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